Evaluation of XPath Queries against
XML Streams

Dan Olteanu

Dissertation
zur ErlangungdesakademisenGradesdes
Doktorsder Naturwissensmaften
an der Fakultat fur Mathematik,Informatik und Statistik
der Ludwig{Maximilians{Uniersiat Manden

vorgelegton
Dan Olteanu

Meinchen,Dezerber 2004

Erstgutachter: FrancoisBry
Zweitgutachter: Dan Suciu (University of Washington)
Tag der mundlichen Prufung: 11. Februar 2005

To my wife Flori

Abstract

XML is nowadays the de facto standard for electronic data interchange on the Web.
Available XML data rangesfrom small Web pagesto ewer-growing repositories of, e.g.,
biological and astronomical data, and ewen to rapidly changing and possibly unbounded
streams,as usedin Web data integration and publish-subscrile systems.

Animated by the ubiquity of XML data, the basictask of XML queryingis becoming
of great theoretical and practical importance. The last years withessede orts as well
from practitioners, as alsofrom theoreticianstowards de ning an appropriate XML query
language.At the coreof this commone ort hasbeenidenti ed a navigational approad for
information localization in XML data, comprisedin a practical and simple query language
called XPath [4g].

This work brings together the two aforemenioned \w orlds"”, i.e., the XPath query eval-
uation and the XML data streams,and shavs aswell theoretical asalsopractical relevance
of this fusion. Its relevance can not be subsumedby traditional databasemanagemenh
systems,becausehe latter are not designedfor rapid and cortinuousloading of individual
data items, and do not directly support the cortinuous queriesthat are typical for stream
applications [L7].

The rst certral cortribution of this work consistsin the de nition and the theoretical
investigation of three term rewriting systemsto rewrite querieswith reversepredicates,like
parert or ancestor,into equivalert forward queries,i.e., querieswithout reversepredicates.
Our rewriting approad is vital to the evaluation of querieswith reversepredicatesagainst
unbounded XML streams,becauseneither the storageof past fragmerts of the stream, nor
se\eral streamtraversals,asrequiredby the evaluation of reversepredicates,are a ordable.

Beyond their declaredmain purposeof providing equivalencesbetween querieswith
reversepredicatesand forward queries,the applications of our rewriting systemsshedlight
on other query languageproperties, like the expressiviy of someof its fragmerts, the
guery minimization, or even the complexity of query evaluation. For example,using these
systems,one can rewrite any graph query into an equivalert forward forest query:.

The secondmain cortribution consistsin a streamedand progressie evaluation strategy
of forward queriesagainst XML streams. The evaluation is speci ed using compositions of
so-calledstream processingfunctions, and is implemerted using networks of deterministic
pushdavn transducers. The complexity of this ewvaluation strategy is polynomial in both
the query and the data sizesfor forward forest queriesand ewven for a large fragmert of
graph queries.

The third certral cortribution consistsin two real monitoring applications that use
directly the results of this work: the monitoring of processesunning on UNIX comput-
ers, and a system for providing graphically real-time trac and travel information, as
broadcastedwithin ubiquitous radio signals.

Vi

Zusammenfassung

Heutzutageist XML der de facto Standard fur den Datenaustausb im Web. Dabei
reicht die Spannean verfugbaren XML Daten von kleinen Webseitenbis hin zu immer
gre er werdendenSammlungenpeispielsveisean biologisdien oder anstronomistien Daten
und sogar,meglicherweiseunbegrenzte Datenstrememit scnellem Datenaufkommen,wie
siein publish-subscrile Systemenverwendet werden.

Getrieben durch die weite Verbreitung von XML Daten, bekommt die Anfragebear-
beitung an XML Daten zunehmendgre ere theoretisthe und praktische Bedeutung. In
den letzten Jahren konnten Initiativ en sovohl von Seitender Industrie als aud aus der
Forsdung beobattet werden, die darauf abzieheneineangemessen¥ML Anfragesprabte
zu de nieren. DasKernergebnisdieserlnitiativ enist die Identi k ation einesnavigationalen
Ansatzeszur Lokalisierungvon Informationen in XML Daten in der berutzer-oriertierten
Anfragespratie XPath.

Diese Arbeit bringt die zwei oben genanrien Welten, die XPath Anfragebearbeitung
und XML Streme, zusammenund zeigt die sovohl praktische als auc theoretisde Rele-
vanz dieserVerbindung.

Der erste Hauptbeitrag dieser Arbeit bestelt in der De nition und der theoretisdien
Untersudiung von drei Termersetzungssystememm Anfragen mit sogenanten \reverse"
Predikaten, wie beispielsveise parent oder ancestor, in equivalerte Anfragen, die keine
solde Predikate erthalten, umzusdireiben. UnserAnsatzist essetiell fuer die Auswertung
von Anfragen mit \reverse" Predikaten gegenunbegrenzte XML Stroeme, da weder die
Speicherung von bereits verarbeiteten Stromfragmerien noch mehrere Durchlaufe uber
den XML Strom erforderlich sind.

Neben diesemHauptziel, die AnwendungenunsererUmsdireibungssystemeverfen ein
neuesLicht auf andereEigenstaften der Anfragesprade, wie die Ausdrudkskraft einiger
Fragmerte, die Minimierung von Anfragen, und sogardie Komplexitat der Anfrageausver-
tung. Man kann beispielsweise unter Nutzung dieser Umsdireibungssystemebeliebige
Graphanfragenin equivalerte Waldanfragenohne\reverse" Predikate umsdreiben.

Der zweite Hauptbeitrag besteht in einerstrom-basierten,progressien Auswertungsstrate-
gie fur Waldanfragenohne\reverse" Predikate gegenXML Stroeme. Die Auswertung wird
spezi ziert durch die Komposition von sogenanten Stromverarbeitungsfunktionen und
implemertiert unter Verwendungvon Netzwerken aus determinististhen Kellerautomaten.
Die Komplexitat dieserAuswertungsstrategieist polynomiell sovohl in der Grosseder An-
frage als audh der Daten fuer Waldanfragenohne \reverse" Predikate und sogarfur viele
Graphanfragen.

Der letzte Hauptbeitrag bestelt auszwei praktisch verwendbarentberwacungssystemen,
die direkt auf den Resultaten dieser Arbeit aufsetzen: die Uberwachung von auf einem
UNIX System laufendenProzessenund ein System, das Verkehrsinformationenaus Ra-
diosignalenin Echtzeit uberwacht und graphisd aufbereitet.

Vii

Ac knowledgmen ts

During the last three years,many peoplehave corntributed directly or indirectly to the
dewelopmen of this dissertation. | would like to expressmy gratitude to them.

First of all I am deeplyindebted to my advisor Francois Bry, for his cortinuing trust
and support during the ewlution of this thesis. Further, | am grateful to Dan Suciu, whose
work on XML query processingin uenced constartly my researt directions. This thesis
and its author further bene tted from long and very usefuldiscussionswith two of my best
supporters Tim Furche and Holger Meuss. Without their active commitmert, this disser-
tation would not have beenpossible. | thank the studerts, whosethesesl co-supervised,
for their interestin my work and for bringing new relevant ideasto surface:Fatih Coskun,
SerapDurmaz, Tim Furche, Tobias Kiesling, SebastianSda ert, Dominik Scwald, and
Markus Spannagel.l thank alsothe menbersof our teaching and researt group for creat-
ing a stimulating ervironmert at the o ce and a pleasan stay in Munich: amongothers,
Slim Abdennadher,Sada Berger, Tim Geisler,Martin Josko, Michael Kraus, Ellen Lilge,
Bernhard Lorenz, Hans Jurgen Ohlbad, Paula Patranjan, StephanieSpranger,and Felix
Weigel. | especially want to mertion Norbert Eisingerfor his always competert adviseson
various subjects ranging from easyones,like con uence of rewriting systems,to complex
ones,like teaching computer sciencetopics.

Last, but de nitely not least, | thank my wife, Flori, for her love and non-interrupting
support, my parerts and my brother for enduring the physical distance that separated
us for sudh a long time, and all my friends for the weelendswe spert together doing no
researb.

viii

cContents

[1__Intro duction | 1
[L.1 Data Streams: Use, Concepts,and Researb Issuels, 2
[L.2ThesisContributions and Qverview 6

2 Preliminaries | 9
1 XML Essefiald 9
22 ExampleScenarids 11

B_LGQ (Logic Graph Query): An Abstraction of XP athl 15
B.1 DataMoadel 16
B2 Svmad 19
B3 Semamicd 22
3.4 Digraph RepresefBtions 25
[3.5_Path, Tree, DAG, Graph Formulasand Queries 26
3.6 Forward Formulas and their Specializations. 28
BZ Measuresfor Formulas 29
%&aﬂ 31

.................................. 31

' flGQaoverXPathl 36

B.83 XPath=IGQ Faresth.o 38

o Transformation: _From 1L GQ fo Forward LGQ| 45

4.1 _ProblemDesCHDHOn e 48
4.2 A Tasteof Term Rewriting Systems. ovv ... 52
4.3 Rewrite Rulespreservingl GQ Equivalence. 56
4.3.1 Rulesadding single-join DAG-Structurd 57
4.3.2 RulespreservingTree-SIUCture 59
4.3.3 Rulesremoing DAG-SIUCIUIE 67
KU.3.4 Rulesfor LGQ Normalizatiodo v v v .. 69
kU35 Rulesfor LIGQ Simplication] 70

4.4 Three Approachesto Rewrite | GQ to Forward L GQ Forests 72
4.4.1 Rewriting Examples 73

X Contents

M43 Terminatiod 79

MA44 Conuence. 80

45 Complexity ANAlYSIS o o o e e e 81
b6 RelatedWorl 89
I5_Evaluation of Forward | GQ Forest Queries against XML Streams| 95
5.1 Problem DesCriptiono e 96
5.2 Specicationl 101
5.2.1 StreamMessages. 102

5.2.2 StreamProcessingFunctions 103

5.2.3 From L GQ to Stream ProcessingFunctions. 105

5.2.4 Fvaluation of AOMS 108

5.2.5 Fvaluation of Path Formulas 110

5.2.6 Evaluation of TreeFormulas 112

70 o S 119

5.3 Implemenationl 120
5.3.1 SPEX Transducersand TransducerNetworks. 120

15.3.2 Transducersfor Forward L GQ Predicates. 122
E__&.S_Em_c_essj_n,gExamole with Transducersfor LGQ Predicates 127

5.3.4 Transducersfor Other Stream ProcessingFunctions 128

5.4 Minimization Problemsfor SPEX TransducerNetworks 130
B.5_Complexity ANAIVSIS o e 133
5.6 Experimental ReSUlt 140
BZ RelatedWorl 142
5.7.1 _Query Evaluation againststored XML Data 144
5.7.2__Query Fvaluation againstXM|_Data Stream$ 147

B.7.3 Hybrid Approached 153

l6_ Applications | 155
6.1__Monitoring COMPUIEr PrOCESSES. . . . « . o o o o oo oo e 155
6.2_StreamedTrac and Travel Information 157
[7__Conclusion | 159

[A_Pro ofd 161

Chapter 1

Intro duction

XML is nowadays the de facto standard for electronicdata interchangeon the Web. Cur-

rently available XML data range from small Web pages,the primary use of XML some
yearsago,to ever-gronving XML repositoriesand rapidly changingand possiblyunbounded
XML streams. In order to meetthe requiremerts for storing and processingXML-based
Web pagesthe XML comnunity proposedrecerily in-memorytree represetations of XML

data augmerted with basic processingcapabilities, e.g., the DOM-basedapplication pro-
gram interface [145. Howewer, the shift in the sizeand arrival rate of XML data hasto

be met also by a shift in appropriate techniquesfor processingit. XML repositories, as
usedin natural languageprocessing[9Z], biological [Z§ and astronomical data [I1Y, get
beyond the barrier of main-memory capacitiesavailable on personalcomputers. Also, for
cortinuously generatedXML streamsused, e.g., in publish-subscrite systems[374, [7] and
in Web data integration [5]], technologieslike DOM basedon in-memory represetations
of the ertire XML data are not appropriate. Traditional databasemanagemenh systems
are not designedfor rapid and cortinuous loading of individual data items, and they do
not directly support the cortinuous queriesthat are typical for stream applications [L].

Animated by the ubiquity of XML data, the basictask of XML queryingis becoming
of great theoretical and practical importance. The last yearswitnessede orts aswell from
practitioners, as alsofrom theoreticianstowards the goal of de ning an appropriate XML
guery language. Various working drafts of W3C, e.qg., [4€, Z3, [45], and researt papers,
e.g.,[5, 131, descrile relevant work. As a coreof this commone ort hasbeenidertied a
navigational approad for information localization in XML data, comprisedin a practical
and simple query languagecalled XPath [4g].

This work brings together the two aforemenioned \w orlds”, i.e., the XPath query
ewvaluation and the XML data streams, and shavs as well theoretical as also practical
relevance of this fusion. After shapingnext somedirections of currert researf on stream
processingin general,and XML stream processingin particular, this chapter namesthe
cortributions of this work with pointers to relevant chapters.

1. Intro duction

1.1 Data Streams: Use, Concepts, and Research Is-

Sues

Data streams|107, 2€] are cortinuously sert data, whosesizeand arrival rate make di cult

or even impossibletheir storagebeforebeing processed.The focus of currert researb on
data streamsis to provide techniques that allow, without delaying the arrival rate of
the data streams, (1) to monitor data streams,i.e., to watch them for particular data
patterns, and (2) to analyzeand produceaggregatevaluesfrom data streams. This section
highlights someconcepts,application domains,and researt: issuesmainly related to data
stream monitoring, though many characteristicsalso apply to the data stream analysis.

Application Domains

Data streamsare encourered in many domains,ranging from analysisof scieri ¢ data to
monitoring and Itering systems.

Sensor-basednonitoring systems,e.g.,for trac or atmosphericconditions.

New techniques for monitoring data streams are deweloped to locate devices,like
cars on highways or luggagesin airports, that are equipped with position emitters
(sensors).For example,sensorsequippingtrucks are usedto monitor their trac and
highways usagesbasedon which appropriate feesare computed. Sensorscan equip
alsohighways to detecttrac parameterslike averagespeedor congestion.

In meteorology streamsof scalarvaluesrepreseting atmosphericconditionsare gath-
ered by sensorsand usedin monitoring systemsthat enable,e.g., early recognitions
of tornados. The SensorWeb project [118 at NASA dewlopsinstruments for mon-
itoring and exploring environmerts. The SensorWeb is an independent network of
wireless,intra-communicating sensorpods, deployed to monitor and explore a limit-

lessrange of ervironmernts, and can be tailored to whatever conditions it is sen to
monitor.

Usagemonitoring systems.

Streams corveying transactional data are gathered over networks from credit card
usagesand phonecalls for detecting usagepatterns indicating possiblefrauds [57].

Publish-subscrile systems,e.g., for press,media, or nancial news.

The world becomesncreasinglyinformation-driven and the natural needto nd the
desiredinformation is assaiated to nding the needlein a haystadk. To partially
fulll these needs,publish-subscrile systems]7] are usedto selectiely disseminate
existing information gatheredfrom various heterogeneousources(e.g., newspaers)
called publishers. The large amourts of users,which subscrite with particular pro-
les, arethen noti ed acrossanetwork in realtime on cortent matching their interest.

1.1 Data Streams: Use, Concepts, and Research Issues 3

XML padket routing.

XML routers perform content-based routing of individual XML padkets to other
routersor clients basedupon pro les (queries)that descrike the information needdg].
Industry trend towards dewelopmernt of XML messagingsystemsfor businessappli-
cations hasalready spavneda oury of start-up companiesdeweloping XML routing
systems,e.g.,Firano Software, Sarvega, Forum, Elitesecureveb, Knowhow, Xbridge-
soft, XMLblaster, cf. [&1].

Video Itering basedon XML cortent descriptions.

The newgenerationvideostandards,e.g., MPEG-7 [107, [14d, provide elaborate XML

content descriptionsthat cortain information ranging from \size" to the \current

spealer in scene". Sud metadatais to be transmitted asan XML stream separated
yet related with the real video stream. The cortent-basedvideo ltering and routing

is needed.e.qg.,for jumping directly to or skipping certain scenesFirst prototypesof
MPEG-7 basedsystems,e.g.,[134, point to the needof e cient ltering techniques
for fast and cortinuous XML streamsof highly structured metadata.

Analysis of scierti ¢ data.

The European Southern Obsenatory (ESO) [117] is confrorted with the problem
of processingweekly terabytes of astronomical data, as gatheredby its Very Large
Telescoe (VLT). Sud raw (pixel-based)data is usually accompaniedby its content
description (metadata) wrappedin XML. To someextend, the characteristicsof sut
data are that of data streams: its arrival rate and size make a standard approadh
for storing, indexing, and processingt rather di cult. Current approatesfor deal-
ing with the metadata component are also based on novel techniques for stream
processinE.

Punctuate, Tuple, and XML streams

There are three kinds of data streamscurrertly under consideration. A data stream can
be a continuous sequenceof

points, i.e., scalarvalueslike numbers or characters,
tuples, and
so-calledXML elemetts that are well-formed fragmerts of XML documerts.

Punctuate streams(see,e.g., [29]) and tuple streams(see,e.g., [/{]) consistin sequences
of data items that have the samelength and are at, like relational databasetuples.
Punctuate streamscan be seenas a special caseof tuple streams,becausehe constituert
points are tuples of arity one. The XML documerts, as corveyed by many XML streams

1Joint work of ESO Archive Centre and the author is plannedto provide e cien t processingtechniques
of such XML-based metadata.

4 1. Intro duction

especially in monitoring measuremen data, have reducedtext content. XML is used
here as a formalism for specifying tree-like data, whosesize and nesting depth can be
unbounded and whose structure can have recursive de nition. All these characteristics
make the processingof XML data streamsespecially challenging (see,e.qg., [124).

Querying data streams

Data streamsquerying, also called data streamsmonitoring, is the seard for speci ¢ data
patterns in the cortinuously sert data, like newsabout a particular courtry in a stream of
newsreports, big exdiangerate uctuations in a stream of stock market data, or particu-

lar life-threatening value combinations in a stream of medicalmeasuremendata. Existing

researb on data streamsadoptedin the rst place existing query languagedike SQL for

tuple streams,e.g., [T, [74], and XPath for XML streams,e.qg., [34, [124]. For speci c appli-

cation domainsspecial query languagesare deweloped. At AT&T a programminglanguage
called Hancock [52] hasbeendeweloped and usedto detect changesin userbehaviour with

respect to dialed phone numbers, thus changesthat can indicate possiblemisuses.

Data streams pose new challengesto query evaluation. New techniques are needed
to enable a real-time evaluation of possibly complex queriesusing as a few as possible
spacefor temporary results. Queriesagainstdata streamsare sometimescalled continuous
gueries,for they are ewvaluated steadily againstincoming data. Independerly arisesalso
the question regarding the time when the useris informed about the answers. This can
be doneeither progressiely, i.e., assoon they are computed, or at giventime intervals, or
when particular everts happen, or even on explicit userrequest.

The existing query evaluation methods for data streamssharecommoncharacteristics:

Only single-pasgjuery evaluation techniquesare consideredhat requireno or limited
storageof the input data stream.

The ewaluation techniques are often basedon nite/pushdo wn automata, for sud
automata require simple and limited, consciouslyused,storagecapabilities.

So-called\window" techniguesthat processonly excerptsof a given size from the
input data stream are often used. Thesetechniques can guarartee bounds on the
memory neededfor temporary results at the expenseof computing approximate an-
swers instead of exact answers, cf. [1Z, [14, [13Y.

Changesto already generatedquery answers are in generalnot consideredthus the
only kind of supported changeto the answersis the addition of further data.

Data stream systems versus Database systems

Querying data streamsrepresets a researb eld complememary to querying databases.
From a practical view point, the result of querying data streamscan be usedto populate
databases.Figure[L] givesa brief comparisonbetweendata streamsystemsand traditional

1.1 Data Streams: Use, Concepts, and Research Issues 5

Data streams Databases
Data transient permaner
Queries permanert transiert
Changes (mostly) limited to appending arbitrary
Answers appraximate exact
Data access | single-pass arbitrary
Indexing of queries of data

Figure 1.1: Comparisonof data stream and databasesystems

databasesystems.While in generalin databasesdata is permanen and large and queries
are transiert and few at a time, in data stream systemsthe queriesare permanen and
numerous,whereaghe data is transiernt. Publish-subscrile systemsthat lter data streams
cortaining newsreports accordingto queriesof subscrikersare basedon possiblyvery large
databasesof queries.Hence,in a data stream cortext, traditional databasetechniqueslike
indexing can be primarily applied for queriesand not for data. In this respect, the data
stream system XTrie [37] indexesXPath queriesand therefore accelerateshe ewaluation
of a large set of queriesagainstthe sameXML stream.

Existing work on sequencd14]] and temporal databaseq142 has addressedsome of
the issuesof stream-basedevaluation in a relational databasecortext, like time-sensitive
gueriesand their related windows-basedevaluation techniques. Howewer, researt in se-
guencedatabasesasfocusedon the generationof e cien t query plansevaluablein one-pass
over the stream and with constart memory, independernt of the data. This is possibleif
the databasesystemcortrols, e.g.,the sequenceo ws, and is unfortunately impossiblein
a data stream system. Also, researt in temporal databasesis concernedprimarily with
maintaining a full history of ead data value over time, whereasin data stream systems
the focusis on processingnew data on the vy.

A cursory Review of Data Stream Systems

Data stream processinghas becomevery active. We provide here an incomplete list of
referencedo researb corributions that descrike stream processingtechniquesdeweloped
mostly within the last two years. More in-depth considerationsare done, e.g., by [14] for
relational data, and in Sectionb4 for XML data.

The existing relational (tuple) stream systemsuse SQL extendedwith constructs for
sliding windows [40, 139, [14] or graphical \b ox and arrows" interface for specify data ow
through the system[3g]. All these systemsfocus on optimizations, adaptivity to unpre-
dictable and volatile ervironmens, and support for blocking operators, i.e., those oper-
ators that are unable to producethe rst tuple of its output until it has seenits ertire
input. Additionally, NiagaraCQ [4(] proposesrate-basedoptimizations basedon stream-
arrival and data-processingates. Telegraph[39, 104 focuseson query executionstrategies
over data streamsgeneratedby sensors. Aurora [3€, 1] proposescompile-time optimiza-

6 1. Intro duction

tions, like reordering operators and detection of common subqueries,and run-time opti-

mizations, like load sheddingbasedon application-speci ¢ measuresof quality of service.
STREAM [1§, 14, [TZ, 117 investigatesclassesf queriesthat can be answered exactly us-
ing a given bound of memory memory managemenhissuesin caseof approximate answers,
and stheduling decisionsfor multiple query plans basedon rate syndironizations within

operators.

The XML stream systemsare divided in two main classes: given a set of queries,
somesystemsreport on matchel queriesagainst XML documerts corveyed in the stream
[, 94, 34, [14, 54, 58, [7€, 81], whereasothers return the matched stream fragmerts [104
127, 132, 1137, 20, 64, [139 27, 98, 124 [125 100, 99, 25, 133. All these systemsare
automata-basedand, for processinglarge sets of queries, most of them employ various
techniquesfor nding commonalitiesamongqueries. They di er mainly in the complexities
of the employed query ewvaluation algorithm, which vary from linear [34, 20, 124 1245 to
exponenial [[7, 14, 137 in the sizeof the queries,and in the degreeof supporting XPath or
XQuery fragmerts for specifying queries,which variesfrom simple XPath paths with child
and descendah axes|7, 94, 37, 14, [137] to XQuery querieswith child and descendanh axes
and result construction [104 98, [100.

From the secondclass,the SPEX system|[128 [127, [64, 139 [124 [125 2], which pro-
cessesvith polynomial complexities a considerablylarge XPath fragmen cortaining all
axes,is the topic of this work. To the best of our knowledge, non-trivial approximation
techniquesfor copingwith XPath query evaluation under hard memory bounds were de-
veloped only within the SPEX systemby [139.

1.2 Thesis Contributions and Overview

This work motivatestwo complememary facetsof the problem of XPath query evaluation
against XML streamsand proposespractical solutions to them: the rewriting of queries
with reverse predicatesinto querieswith forward predicatesonly, and the ewaluation of
forward queriesagainst XML streams corveying ordered trees. The conbined solution
proposedby this work is represetativ e for the current trend of query evaluation techniques
presered in the previoussection,becausdt usesone passover the input streamand it is
basedon pushdavn automata.

The rewriting step proposedby this work is essetial and its rationale liesin the prob-
lematic evaluation of querieswith reversepredicatesin a streamconext, asexplainednext.
XPath hasbinary predicatesthat relate sourceand sink nodesfrom the corveyedtree. The
order of thesenodesin the stream, which corresppndsto the depth- rst, left-to-right pre-
order traversal of the corveyed tree, givesthe type of predicates: for forward predicates,
e.g., child the sink nodesappear after their sourcenodes, whereasfor reversepredicates,
e.g.,pa, the sinksappearbeforetheir sources.In a streamcortext, the one-pas®\waluation
of querieswith reversepredicatesis problematic, becauseat the time sourcenodesare en-
courtered, the sink nodesbelongto the streamfragmern already seenand are not anymore
accessible Somestream-basedsystemsattack unsatisfactorily this problem by storing nec-

1.2 Thesis Contributions and Overview 7

essaryfragmerts of the past stream, e.g., Xalan [11]. Most other systems,including the one
describted by this work, useour rewriting solution, e.qg.,[127 84, 271, 138 [106 137, 129 [124].

We presen next the chapters of this thesisand highlight their cortributions.

Chapter[2 recallsshortly widely acceptedmodels and syntaxes of semistructureddata,
among which the tree model and the XML syntax are used further in this work. Two
running application scenarios,a journal archive and a genealogicaltree, are introduced
that will sene various examplesof the next chapters.

Chapter@introducesthe languageof logical graph queries(LGQ), an abstraction of the
practical languageXPath. LGQ is similar to non-recursive Datalogwith built-in predicates.
The data model of LGQ and XPath is that of unranked orderedtreeswith labelednodes,
wherethe built-in predicateson nodesin sud treesare the intuitiv e binary relations rst
child, next sibling, and equality, aswell astheir reversesand the closuresof them and their
reverses.LGQ queriesare more succinctthan XPath queries,though semartically LGQ is
equivalent to a strict fragmert of it, calledthe languageof forward LGQ forests,and also
to (forward) XPath.

For ane cient ewaluation of LGQ (and of XPath) queriesagainst XML streams,Chap-
ter @ identi es asrelevant the problem of rewriting LGQ querieswith reversepredicates
into equivalent LGQ querieswithout reversepredicates,also called forward LGQ queries.
In this sense,Chapter @ proposesthree sound and completeterm rewriting systemsthat
terminate and are con uent modulo the assaiativity and commutativit y of the LGQ predi-
cates™, , andnode-equaliy. The systemsdi er aswell in the time and spacecomplexities
for rewriting LGQ queries,asalsoin the capability to yield forward LGQ queriesof certain
restricted types. For example,it is shovn that LGQ graph queriescan be rewritten into
forward LGQ forest queries,whosesizesrange from linear to exponertial in the sizesof
the input queries. Also, the size of ead forward LGQ tree in the rewritten forest query
is variable-preservingminimal, i.e., it is boundedby the number of variablesof the initial
LGQ query, and not by the number of its predicates,which can be signi cantly bigger. Fi-
nally, the chapter surveysrelated work on query minimization, cortainment, and answering
gueriesusing views, all relevant and directly connectedto results of the chapter.

Using the aforemertioned results of Chapter @, Chapter B introducesa streamedand
progressie evaluation strategy of forward LGQ forest queriesagainst XML streams. The
streamedaspect of the evaluation residesin the sequetial (one-time) accesdo the nodes
of the XML stream. A progressie ewvaluation delivers incremerally the query answers
as soon asthey are computed. The proposedevaluation strategy compilesqueriesin so-
called stream processingfunctions consisting of sequetial and parallel compositions of
simpler functions specifying LGQ predicateswith restricted access.Later on, it is shovn
how eat sud simple function is implemeried e ciently by a deterministic pushdavn
transducer, and how ead stream processingfunction specifying a query is realized by a
network of transducers. When dealing with transducersnetworks, there are at least two
minimization problemsto address:the problem of nding the minimal network equivalert
to a given network, and the problem of minimal stream routing within a given network.
Both problemsare discussedand for the latter problem, an e ectiv e solution is given that
improves considerablythe processingtime of transducer networks. The time and space

8 1. Intro duction

complexitiesfor processingof XML streamswith networks of transducersfor eight di erent

forward LGQ fragmernts is investigated and shonved to be polynomial in both the stream
and the query sizes.lIt is shavn alsothat only for particular queriesthe spacecomplexity

of the evaluation dependsonly on the depth of the tree corveyed in the XML stream, and

not on its size. Furthermore, basedon both the complexity results of Chaptersd and 5,

polynomial upper boundsfor the complexitiesfor the evaluation of a large LGQ fragmert

of graph queriesare given. This chapter concludeswith an overview on existing evaluation

techniquesfor XML queriesin various cortexts like main-memory relational databases,
compressedlata, and streameddata.

Two real monitoring applications that usedirectly the results of this work are shortly
preserned in Chapter@ the monitoring of processesunning on UNIX computers,and a
systemfor providing graphically in real-time tra ¢ and travel information, asbroadcasted
within ubiquitous radio signals.

Chapter [4 concludesthis work, and the Appendix fuels the interest of a critical eye
with someproofsthat were skipped from the main body of this work.

Chapter 2

Preliminaries

2.1 XML Essentials

Much of today's data doesnot t naturally into the traditional relational data model
[3, [Z4). Especially Web data and data produced from the integration of heterogeneous
sourceshave irr egular, self-describing and often changingstructure. Thesecharacteristics
cortrast pregnartly with the regularity of and the a priori existenceof schemafor relational
data. Sud neither raw nor fully structured data is called semistructured data [Z].

Semistructureddata hasirregular structure. In cortrast to a relational data item (i.e.,
a tuple), a semistructured data item may have missing attributes, multiple occurrences
of the sameattribute, or recursive de nition. Theseproperties make semistructureddata
itemstree-like. Also, the sameattribute may have di erent typesin di erent items, and se-
martically related information may be represeted di erently in variousitems. The above
characteristicsare supported also by recen studieson the properties of publicly available
semistructured data [44, 43]. Thesestudiesemphasizethat the semistructureddata used
for information interchangebetweenapplications hasin generalrecursive structure de ni-
tion: a surwvey of 60 real datasetsfound 35 to be recursiwe, from which the onesfor data
interchangeare all recursiwe.

Semistructureddata is self-describing.The content of a semistructureddata item canbe
taggedwith labelsthat remind of attribute namesin relational scihemas. Explicit schemas,
when available, provide powerful grammar-basedmedanismsfor specifying classeof ex-
ible, possibly orderedand recursively nestedstructures.

Semistructureddata hasoften changing structure, especially in dynamic ervironmens,
where data ewlves over time and has various versions [41]. For example, in publish-
subscrite systems|374, [7], subscrikersare informed on particular topics to be found in data
published from various sources. Due to the high number of sourcesand the abundance
of data, it is expectedthat data on thesetopics may comewith di erent structures from
di erent sourcesand ewven at di erent momerns in time.

10 2. Preliminaries

Mo dels for Semistructured Data. There arese\eral data modelsproposedto capture
the aforemetioned properties of semistructured data. These models can be classi ed
in two classes:graph-orierted, e.g., OEM [5], and tree-orierted, e.g., DOM [144. The
Object Exchange Model (OEM) represeits semistructured data as an (unordered) edge-
labeled graph, where additionally the nodes may have object iderti ers. The Documert
Object Model (DOM) represeits semistructured data as a (ordered) node-labkeled tree,
where additionally ead node can have further properties, called attributes, of the form
name = value. For both data models, nodeswith text cortent are permitted. Thereis a
direct correspndencebetweenOEM and DOM models: the edgelabelsin OEM becomethe
node labelsin DOM, the iderti ers in OEM becomevaluesof special attributes in DOM,
and referencego nodesin OEM becomeattributes having as valuesthe iderti ers of the
referencednodesin DOM. Thus, although DOM descrikes primarily tree-like structures,
through attributes it can provide also a generalmedanism for the realization of various
\virtual" edgesbetweennodes,if attributes of di erent nodeshave the samevalue.

Syntaxes for Semistructured Data. There are se\eral syrntaxes for semistructured
data, amongwhich we mertion the OEM [5] and the XML [24] syrntaxes. The eXtensible
Markup Language(XML) syntax, proposedby the World Wide Web Consortium (W3C),
is nowadays generallyacceptedasthe data descriptionlanguagefor both web-basednfor-
mation systemsand electronic data interchange.

OEM considersa BibTex-like syntax, wherestructures are represeted as setsof semi-
structured data expressions Each sud expressiorstandsfor an OEM substructurestarting
with an edgeand it is serializedasthe edgelabel followed by the identi er of its sink node,
possibly followed by the serialization of the set of subexpressiongepreseting its edges,
enclosedby curly braces. The graph structure is presened in this serialization with the
help of node iderti ers, whosede nitions and referencesre written syntactically di erent.

XML is a genericmarkup language. In cortrast to other markup languageslike Hy-
perText Markup Language(HTML) [I34, XML does not have a xed vocabulary, the
semairtics of its markup is not a priori given, and the markup is usedto specify the se-
marntic structure of the data rather than its layout. Using XML, onecan de ne markup
languages:there exists a plethora of XML-based languagesdeweloped mostly by W3C.

A serialization of a DOM (tree) structure in XML can be done as follows. A node is
serializedasthe concatenationof serializationsof its children nodesin their order, enclosed
by an opening and a closingtag. For a node with the label a, its openingtag is hai and
its closingtag is h=ai. An attribute with a name name and a value value is serializedas
name = value. The set of attributes of a node is serializedas a whitespace-separatedist
of serializations of the constituert attributes, and positioned in the opening tag of that
node betweenits label and the closinganglebracket i. The serialization of a text node is
that text. Note that angle brackets are not allowed in node labels and textll. The XML
serialization of a semistructureddata is often called an XML documer. Figure[Z1 shovs
later an XML documert represeting a journal archive and its assaiated tree.

1Angle brackets are allowed in text only if they are escaged; e.g., N[CDATA[hai]]i is a valid text node.

2.2 Example Scenarios 11

An XML documert is wel-formed if it is either of the form text, or of the form
hai resth=al , wheretext is atext that doesnot cortain anglebrackets, ais alabel, andrestis
a sequencef well-formed XML documertsl. Well-formed XML documerts are important
becausethey correspnd to serializationsof (DOM-lik €) treesthat descrite semistructured
data. Therefore, tools dewloped for semistructured data, like query languages,can be
easily adjusted to well-formed XML documerts.

This work considersa DOM-lik e model and the XML syntax for semistructureddata.
The DOM structures and their XML serializationsare further simpli ed by considering(1)
the node attributes modeledas children nodeshaving the attribute nameaslabel and the
attribute value astext cortent, and (2) the text nodesmodeledaslabelednodeswherethe
content of the former becomelabels of the latter.

Grammars for XML Data. Although XML data hasan implicit structure, given by
the labels stored within the tags, it is often usefulto specify further structural and con-
tent constrairts for XML documens. Sud constrains can be speci ed within grammars
(often called shemata) that de ne languagesof well-formed XML documeris. The XML
documerts generatedby a grammar G are valid with respectto G, or simply G-valid. The
advantageso ered by the existenceof grammarsfor XML documerts stemmainly from the
data structure and cortent awarenesghat canbe used,e.g.,by basicserviceslike storage
and querying for improving e ciency.

There are seeral formalismsfor specifying XML grammars. Among them, Documert
Type De nitions (DTDs) [24], XML-Schema[5Y], and Relax NG [4€] are the most popu-
lar ones. All theseformalismsare special subclassesof regular tree grammars[107, thus
the theory of regular tree grammars and of tree automata [5(], to which tree grammars
are related, can be fruitfully usedalso for studying the properties of the practical afore-
mertioned grammar languages. Directly derived from the menbership problem for tree
automata, [107 dewelopsalsovalidation tools for XML documerts.

2.2 Example Scenarios

We intro duceheretwo real-life scenarioof semistructureddata exemplifyingrepresemativ e
usageof semistructureddata for expressingelational and tree structures. Thesescenarios
are usedin the next chapters as basisfor various examples.

Journal Arc hive

Since the arrival of the XML syntax for semistructured data, the common practice in
processingdata acrossnetworks is to deallocally with robust databasesystemsthat handle
relational data and to wrap it in XML, whenit comesto exdhangeit. Our rst scenario
considersa natural relational structure expressedising semistructureddata.

2Although omitted here, XML documerts canstart with prologs de ning, e.g.,their character encadings
or links to external grammars or styles.

12 2. Preliminaries

o = ---- root
l <journal>
Ojournal <title>db</title>
<editor>dan</editor>
. , : <authors>
Otitle oeditor O authors O price <name>ana</name>
l l l\ l <name>bob</name>
Lo O Oname Oname O </authors>
db dan l l 7 <price>7</price>
</journal>
llanall Ilbobll

Figure 2.1: Excerpt of a journal archive

©)

v
b

O
Charley /\ Louis I de Valois /\I:abelle l
O Cman> O O

Charles Louis de Valois Louis Il of Naples Valentina Visconti
the Mad / /\ l

O o)
;2&1323%%/ Charles of Valois /\ Marie of Anjou
Charles VIlI \

o O

>

Charles Francis nna

Figure 2.2: Excerpt of the family tree of John |1, the Good

2.2 Example Scenarios 13

This scenariomodels a journal archive as a node-labeled tree, where ead journal is
represeted asanodewith labeljournal and ead of its properties, liketitle, editor, authors,
and price, are represeted as children nodeswith correspnding labels. Figure 27 shavs a
possiblejournal ertry and its XML serialization.

Genealogical Tree

Semistructureddata is alsousedin practical casedo expressree structureswith recursive
de nition [44, 43. The secondscenarioconsidersa real-life caseof semistructured data
expressingthe genealogicalor family) tree of important historical persons,like pharaohs,
kings, or emperors. Sud tree data were descrilked sinceanciert times, and ewertually used
to decideon the successorsat thrones.

This scenariomodels the genealogicalree of someone'dolk (ancestors,descendats,
brothers and sisters, nephewsand nieces)as a node-labeled tree, where that personis
represeted as the root node, and eat other personis represeted as a node with label
either manor womanand hasa child text node consistingin its name, e.g.,in the caseof
John this would be 'John'. The children of a personare represeted alsoas children nodes
of the node correspnding to that person,and the order betweenthesenodesre ects the
ascendingorder of the ageof the correspnding children.

An interesting instance of this scenariois the family tree of the kings of France. An
excerptfrom its third dynasty, i.e., the Valoisdynasty (1328-1589)js simplistically modeled
in Figure [Z3 starting with the king John II, the Good, and ending shortly before the
ascensiorto the throne by Louis XI1 in 1498

Salic Law In older times, the decisionon the successioro the throne of a kingdom
(like of France),in casethe king passesway, was sometimesde ned by the so-calledSalic
Law. This law stipulates that the king is the rst living man descendingvia exclusively
a male line from the rst king (in the caseof the Valois dynasty, this is Charles,court of
Valois), sudh that (1) all its male ancestorspassedaway, and (2) it has no older brother
that livesor hasa living male descendan via exclusiwely a maleline. For the genealogical
tree of Figure [Z2 of year 1498,the king is CharlesVI 1.

A questioneasilyderived from the SalicLaw, and, perhaps,posedby any pretendart to
a throne in former times is: who must die, for someondo becomea king? Consideringthe
genealogicatree of Figure [Z2 of year 1498, Louis Xl | becomesa king, only if the current
king CharlesVI1l, and alsoits male descendats that werealive at that time and descend
exclusiwely via a maleline (Francisin our case),die. This happened,indeed,in 1498,when
CharlesVIII died (in acciden) and Francis alsodied.

As Chapter 3 shaws next, sud questionsare not trivial onesand query languagedike
XPath 1.0 [4€] are not expressie enoughto posethem. The next chapter introducesa
guery language,called LGQ, that is expressie enoughto capture sud queries,and shavs
that a small extensionof XPath makesit as expressie as LGQ.

3This family tree is in fact a graph: Louis XI is the sonof Marie of Anjou and CharlesVI 1, the Dauphin,
and Charles of Valois is the son of Valertina Visconti and Louis of Valois.

14

2. Preliminaries

Chapter 3

LGQ (Logic Graph Query): An
Abstraction of XP ath

XPath [44] is a key languageamongthe plethora of W3C languagesrede ning the Web.
The motivation for studying XPath stemsfrom its importance as the prime languagefor
expressingselectionquerieson XML documerts, importance demonstratedespecially by
its usagein seweral W3C recommendations:the query languageXQuery [23], the trans-
formation languageXSLT [4Y], the shemalanguageXML-Schemal[bY, and the language
for addressingfragmerts of XML documerts XPointer [54]. The conceptsof XPath arein
fact not new. XPath is basically another syntax for a languageof monadic queries(i.e.,
with a single free variable) having built-in binary predicatesde ning structural relations,
like child or sibling, betweennodesin orderedtrees.

This thesisstudies XPath through the more familiar glassesf a Datalog-like language,
calledLGQ. LGQ is the languageof logic graph queriesover tree-structured data, and can
be seenas an abstraction of practical query languagesfor XML like XPath. It resenbles
closely the non-recursive Datalog with negation, or the languageof conjunctive queries
with union and negation [4].

The motivation for using LGQ instead of XPath is twofold. First, languageslike the
oneserumerated above and to which LGQ resenbles, are well-studied and successfully
researbed in the literature [4]. Second,despiteits growing importance, XPath is still not
well-understaod and its syntax posesmany (unnecessarytechnical challengeswhile doing
more involved theoretical work (like query rewriting and answering).

The study of LGQ remains,however, alsoa study of XPath. This chapter shonvsthat an
LGQ fragmert, represeting the so-calledLGQ forests,is equivalert to XPath. Chapter@d
investigatesfurther the expressienessof LGQ and shows that it is semanically not more
expressie than its fragmert of forward LGQ forests,thus than forward XPath. Howe\er,
LGQ queriesare in generalmore succinctthan their equivalert XPath queries.

This chapter proceedsas follows. After introducing the commondata model of LGQ
and XPath, the LGQ syntax and sematics are provided, followed by the graphical repre-
sentations and various measuredor LGQ queries. At last, the connectionbetween XPath
and LGQ is established.

16 3. LGQ (Logic Graph Query): An Abstraction of XP ath

3.1 Data Mo del

As data model, LGQ and XPath use an abstraction of XML documerts in from of nite
unranked ordered trees, i.e., nite trees where a node can have an unbounded number
of ordered children. This view upon XML documeris is a simpli cation of that of XML
Infoset [53], DOM [14Y, and XQuery 1.0 and XPath 2.0 Data Model [62], as explained
next.

Sud trees can have only two typesof nodes: root and element An elemen node is a
labelednode that can have elememn nodesaschildren. A root nodeis a distinguishednode
without labels, and a tree has exactly one root node. The root node correspndsto the
documert node of DOM and of the XQuery 1.0 and XPath 2.0 Data Model.

Note that the data modelsof DOM, XQuery 1.0,and XPath 2.0consideralsoothertypes
of nodes, like attribute, text, processingnstruction, and commen nodes. We considerthe
attributes of nodesmodeledas children elemeits. Text nodesare alsomodeledaselemen
nodes, wheretheir text cortents becomelabels. Both labels and text cortents are words
over a nite set of symbols. We may distinguish between text contents and labels by
writing the text cortents in quotes. We refer throughout this thesisto both of them as
labels. The other kinds of nodesare not relevant for our primary issueof concernand their
addition to the presen formalism doesnot raise problems.

There are two functions of type Node ! Boolean: isRoot and isElement Applied
to a samenode, exactly one of them returns true. There is also a function label of type
Node! String assigningto ead elemen node its label and returning the empty string for
the root node.

The nodesfrom atree arerepreseted in an XML document asdescritedin Chapter[2A
FigureZ1 shavs an XML documert represeting a journal archive and its assaiated tree.

Thereis atotal order betweenthe nodesin atree that correspndsto the depth- rst
left-to-right preorder traversal of that tree. For two nodesn and m, n m meansthat
n appearshkefore m and m after n in the tree. For the corresppnding XML documen, n
appearsbeforem, if n is the root node and m is any elemen in the XML documen, or if n
is an elemen node and the represetation of n hasthe rst openingtag appearing before
the represetation of m. Becausethis order correspndsto the order of opening tags in
XML documerts, the order s alsocalled the document order.

We considerNodeqT) denoting the set of nodesin atree T.

No detests
A nodetestis a construct permissibleby the following grammar production
Nodetest::= | j lg j *] root

wherel standsfor a node's label, root is a special keyword, and * is a wildcard. A node
hasthe nodetestl, if the node'slabel is|. A node hasthe nodetestlg, if the node doesnot
have the label I. Any node hasthe wildcard nodetest. Finally, only root nodeshave the

3.1 Data Mo del 17

nodetestroot. Examplesof nodetestsare a, ag, t', t's, wherethe latter two are written
in quotesand refer to the text cortent of a node.

Let NodeTest be the set of all nodetestsfor a given tree instance. For a given node and
nodetest, the function test returns true, if that node hasthat nodetest.

test:Node NodeTest! Boolean

isElemen(x) ” lakel(x) = name , if n = name

isElemen(x) " lakel(x) 6 name , if n = nameg
test(x; n) = isElementx) ~ label(x) = ‘text® ,if n = ‘text®
isElemen(x) » lakel(x) 6 “text® ,if n = ‘text?
% tr ue ,n=*
" isRoot(x) , N = root:

Note that the notion of nodetestintroducedhere deviatesfrom the one of XPath 1.0 [4€],
where * holds only for elemen nodes, and there is no courterpart of label. Note also
that other operations than equality and inequality, e.g., the less-thancomparison<, can
be incorporated in our nodetestformalism. In practical casessud extensionsmake sense.

Binary Predicates

The baserelations between two nodesin an ordered tree are the parert/c hild, sibling,
and equality relations. Basedon them, more complex relations can be de ned. These
baserelations betweennodesin a tree are supported by LGQ using the binary predicates
fstChild nextSib] and self of type Node Node ! Boolean: for two nodesn and m,
fstChildn; m) holdsif m is the rst child of n, nextSib{n; m) holdsif m is the immediate
next sibling of n, respectively sel{n; m) holds if m is n. These predicatescan be seen
as speci cations of basic servicesthat the storage systemor the XML documen parser
provide.
For a binary predicate , its transitive closure * andits re exiv e transitiv e closure

are de ned asusual by:

0= self "x2), "y (v:2)
- n2 I:nfOQ ! - nL :

More cornveniert predicatescan be de ned further asthe (composition of) transitive clo-
sures,and re exiv e transitiv e closures,of the basepredicatesand their inverses|7(]. For
two nodesn and m,

nextSibl (n; m) holdsif m is a following sibling of n, i.e., the next sibling of n, or the
next sibling of the next sibling of n, and soon;

nextSibl(n; m) holdsif m is a following sibling of n, or n itself;

18 3. LGQ (Logic Graph Query): An Abstraction of XP ath

prevSib{n; m) = nextSibl *(m: n) holdsif n is the precedingsibling of m, i.e., if m is
the next sibling of n;

prevSibl (n; m) = (nextSibl) (m;n) holdsif m is a precedingsibling of n, i.e., if n
is a following sibling of m;

prevSibl(n; m) = (nextSibl) (m;n) holdsif m is a precedingsibling of n, or n itself,
i.e., if n is a following sibling of m, or m itself;

childn; m) = fstChildn; n% ~ nextSibl(n%m) holdsif m is a child of n, i.e., if m is
the rst child of n, or a following sibling of the rst child of n;

child” (n; m) holdsif m is a descendan of n, i.e., if m is a child of n, or a child of a
child of n, and soon;

child (n; m) holdsif m is a descendan of n, or n itself;

pa(n; m) = child *(m; n) holdsif m is the parert of n, i.e., if n is a child of m; Note
that if fstChildn; m) holds, then par(m; n) holds also;

pa* (n;m) = (child") (m;n) holdsif m is an ancestorof n, i.e., if n is a descendan
of m;

par (n;m) = (child) *(m;n) holdsif m is an ancestorof n, or n itself, i.e., if nis a
descendan of m, or m itself;

foll(n; m) = par (n; N9 ~ nextSibl (N%n° ~ child (nN®9m) holdsif m follows n in doc-
umernt order, i.e., m is a following sibling of n, or of its ancestors,or descendan of a
following sibling of either an ancestorof n or n itself;

preqn;m) = par (n;n%Y ~ prevSibl (n%n® ~ child (N°®m) holds if m precedesn in
documert order.

Note that for a given tree T and two nodesn and m in T, exactly one predicate 2
f self pa*; child"; preg follg has (n; m). This meansalsothat, for any node n, thesepred-
icatesdivide the set of all nodesof T in disjunctive sets:

NodegT) = preqn) [foll(n) [child"(n)[pa® (n)[sel{n):

Predicate Classes. We classify the above built-in predicatesdepending on the order
and structural relations betweenthe nodesof the cortained pairs. If for two nodesn and
m (n; m) holds, then the predicate is (1) forward, if m appearsafter n in documert
order, (2) reverse if m appearsbeforen in documern order, (3) horizontal, if m is a sibling
of n, or (4) vertical, if m is an ancestoror descendan of n. Exceptionally, the predicate
selfis consideredforward. Basedon this classi cation, we de ne the following predicate
classes:

3.2 Syntax 19

the classF corntains the forward predicatesf self fstChild child nextSibg,

the classR cortains the rewersepredicatesf par; prevSibg,

the classH cortains the horizorntal predicatesf nextSibj prevSibd),

the classV cortains the vertical predicatesf child; parg,

the classX* for the transitive closuresof predicatesfrom X 2 fF; R; V; Hg,

the classX for the re exive transitiv e closuresof predicatesfrom X 2 fF; R; V; Hg,
X?= X[X' [X, whereX 2 fF;R;V;Hag.

New classesan be createdvia intersectionor union of aforemenioned classesg.g., VF =
V\ F contains the predicatesbelongingto both classed- and V, i.e., f fstChild childy. Also,
VF’ = V°\ F’ contains all forward vertical predicates,i.e., f fstChild child child"; child g.
The restrictions of LGQ (or XPath) to allow only certain predicateclassesle ne various
LGQ (XPath) fragmerts. E.g., LGQ[F’] is the LGQ fragmert without reversepredicates.

3.2 Syntax

As building blocks, LGQ hasthe built-in binary predicatesof Section3, unary predicates
correspnding to nodetests,and unary predicatesde ned by the usersusing the built-in
ones. The EBNF grammar for LGQ is given next.

LGQ = Id(Var) Formula:
Formula::= Formula” Formula j Formula__ Formula j (Formula) j Atom:
Atom ::= Predicate(Var; Var) j NodetestVar) j Id(Var) j : Ild(var) j ? | >:
Predicate ::= Forward j Reverse
Forward ::= Fwd_Basej Fwd.Base j Fwd_Base j selfj fstChildj foll:
Fwd_Base::= child j nextSibi
Reverse:= Rev.Basej Rev.Bas€ | Rev.Base | prec
Rev.Base::= pa j prevSibi

We explain next eatcy LGQ syntactical construct.

Boolean Connectiv es

LGQ hastwo assaiative and commutativ e binary connectives” (and) and _ (or) and one
unary connective : (not). The connective : has precedenceover M that has precedence
over , i.e.,: binds strongerthan ~ that binds strongerthan _.

20 3. LGQ (Logic Graph Query): An Abstraction of XP ath

Atoms

A binary atom (vi;V,), assa@iatestwo setsof nodesiderti ed by the variable v; and the
variable v, accordingto the built-in predicate

For eat possiblenodetest predicate,e.g.,a, ag, 'a’, 'a's, Or root, there is a unary atom
nodetes{v) that speci esthe setof nodeswith that nodetest. The setof nodesidenti ed by
v is restricted by a(v) to nodeswith label a, and by ag (v) to nodesthat do not have label
a. The setof nodesidenti ed by v is restricted by 'a’(v) to nodeswith text cortent 'a’, and
by 'a's (v) to nodesthat do not have text cortent 'a’. In cortrast to label nodetests,the
text nodetestsare enclosedin quotes. The nodetestroot(v) restricts the nodesiderti ed
by v to the root node. To disanmbiguate the nodetest root from a possiblelabel root, we
considerthe word root resened and not allowed as a label.

For eat user-de ned predicate, e.g., Q, there is a unary atom Q(v) that speci es the
set of nodescortained by that predicate.

There are two special nullary atoms? and > usefulfor proofs and formula rewriting.
The atom ? selectsno nodesregardlessof the tree instance(i.e., it is unsatis able). The
atom > selectsalways all nodes,regardlessof the tree instance.

Using LGQ booleanconnectivesand atoms, one can construct formulas correspnding
to conjuncts, disjuncts, and negations.

Typ es of Variables

LGQ variablesare of two basetypes, depending at which position they appearin a binary
atom (vq;V): the variables appearing at the rst position are source variables, e.g., v;
above, and the variablesappearingat the secondposition are sink variables,e.g.,v, above.
A variable that newer appearsas source/sink is non-source/sink. A variable that appear
more than one time as source/sink is called multi-source/sink. The amourt of binary
atoms having a given variable as source/sinkde nes the source/sink-arity of that variable.
A variable with source/sink-arity n is also called a n-source/sink variable. The forward
sink-arity of a variable in a disjunct is the amourt of forward binary atomsthat appearin
that disjunct and have that variable as sink.

Form ulas

An LGQ formula is de ned recursiwely as follows
a binary atom (v;;V;) is a formula, where is a built-in binary predicate,
a unary atom nodetestv) is a formula, where nodetestis a built-in unary predicate,
a unary atom Q(v) is a formula, whereQ is a user-de ned unary predicate,
: Q(v) is aformula, calledalsoa negation,whereQ is a user-de nedunary predicate,

f,1 " f, is aformula, called alsoa disjunct, wheref ; and f, are formulas,

3.2 Syntax 21

f, _f,isaformula, called alsoa conjunct, wheref; and f, are formulas.

The existencein a formula of conjuncts, disjuncts, and negations,is interpreted as the si-
multaneousexistence alternate existence respectively absencepf the correspnding facts.

A formula f isin disjunctive normal form,iff =f, _f, (n 1) andead f; does
not cortain the connective _. The function norm: Formula ! Formula brings a formula
in disjunctive normal form.

A formula is absolute if it has at least one non-sink variables, and all sud non-sink
variableshave a root nodetest.

A disjunct is connected, if either (1) it doesnot cortain binary atoms, or (2) it cortains
binary atoms and then ead variable v, from its body is either a non-sink variable or
readable from a non-sink variable vy. A variable v, is reatable from another variable vg
in adisjunct f, if f cortains 1(vo;ve))® "~ n(Va 1;Va) (n 0). A formula is connected,
if all disjuncts from its disjunctive normal form are connected.

We use the following short-hand notations for formulas. To denotethat f °is a sub-
formula appearsof f, we write f° f. The set of variables from an LGQ formula f
is denoted by Varg(f). If only a sourcevy and a sink v, variable from a formula are of
interest, sud a formula can be abbreviatedby f (vo;v,,) wheref is an arbitrary identi er,
e.g.,child” (vo; v1) » b(v1) A nextSibl (vq; V) A d(v,) can be abbreviatedto p(vo; V).

Rules and Queries

An LGQ rule hasthe form Q(v) f, and expresseshe user-de ned unary predicate
Q. The left-hand sideof s the rule head, and the right-hand sideis the rule body. The
headof a rule hasa singlevariable v, calledthe head variable, and thereforesud rules are
also called monadic[6Y. A rule body is an LGQ formula.

An LGQ query is either a rule or a non-empty set of rules with one distinguishedrule.

Restrictions on LGQ Queries

LGQ has synactic restrictions for head variables, negation, and user-de ned predicates.
The head variable of ead rule is syntactically restricted to appear in at least one non-
negatedatom of eat disjunct in the query body, if the body is consideredin disjunctive
normal form. The negation can be applied only to user-de ned predicates. Finally, recur-
sive de nitions of user-de nedpredicatesare not allowed. In e ect, LGQ is the languageof
non-recursive Datalog programswith negationand built-in predicatesover tree structures,
where additionally the negation is syntactically constrainedto be applied only to user-
de ned predicates. This restriction eases/arious processingof LGQ queries,asdeweloped
in the next chapters, and comes,howewer, at the expenseof writing larger queriesthan
equivalent onesusing unrestricted negation.

Throughout this thesis, we are interested in absolute and connectedLGQ rules. An
LGQ rule is absoluteand connected,if its body formula is absolute and connected.

22 3. LGQ (Logic Graph Query): An Abstraction of XP ath

3.3 Semantics

The ewaluation of an LGQ query consistsin nding substitutions, or mappings, of its
variablesto nodesin the data tree instance, sud that the predicateson sud variables,
asspeci ed in that query, hold alsoon their substituting nodesin that tree instance. We
de ne next the notion of LGQ substitution and consistem substitution and give the formal
LGQ semartics basedon sud substitutions.

LQ : Tree Query! Set(Node)
LQ+IQ(v) fK= (LF rJf Ksubs(Q;T)))
LF : Tree Formula Set(Substitution) ! Set(Substitution)
LF tIQ(V)K) =fs2 js(v) 2 LQrJlauseQ)Ky
LF 1 Q(VK)=fs2 js(v) 62AQtJclauseQ)ky = LF 1 IQ(V)K)
LF + XM oK) = LF 731K)\ LF 132K)
= LF t J1KLF 132K)) = LF 1 XoKLF 131K)
LF +Jf1_foK)= LF K)[LF + XK)
LF 7J(F)K) = LF 1K)
LF 3 (WK) =fs2 | (s(v);s(w))g
LF tIn(vV)K) =1fs2 jtest(s(v);n)g
LF +J?7K) =
LF t>K) =

Figure 3.1: LGQ Sematrtics

LGQ Substitutions

A LGQ substitution s is a total mapping from variablesof an LGQ formula or query to

to the node n; in T. If v is a variable and s a substitution, then s(v) is the image of v
unders, i.e., the node in T to which the variable v is mapped. An LGQ substitution s is
consistent with an LGQ formula f and a tree T, if the predicateson variablesof f hold
also between the imagesof thesevariables under s in the tree T. More speci cally, the
consistencyof an LGQ substitution is de ned on the structure of LGQ formulas asfollows:

f = (v;w), where is a built-in predicate. Then, s is consistet with f and T if
the imagesof v and w under s stand in predicate in T, i.e., (S(v);s(w)).

f = n(v), wheren is a nodetest predicate. Then, s is consistemh with f and T if the
imageof v under s is in the setof nodesin T with that nodetestn, i.e., test(s(v); n).

3.3 Semantics 23

f = Q(v), whereQ is a user-de ned predicate. Then, s is consistem with f and T if
the imageof v under s is cortained in the predicate Q.

f = : Q(v), whereQ is a user-de nedpredicate. Then, s is consistem with f and T,
if the imageof v under s is not cortained in the predicate Q.

f =f,~f,, wheref; and f, are formulas. Then, s is consisten with f and T, if s
is consistem with formulasf, and T, and alsowith f, and T.

f =f, f, wheref, andf, areformulas. Then, s is consisteth with f and T if sis
consistem with at leastoneformulaf, orf, and T.

LGQ Semantics

The LGQ semattics is given in Figure 37 by meansof two functions LQ and LF . The
former function assignsmeaningto LGQ rules, whereasthe latter to LGQ formulas.

Applied onatree T, anLGQ formula f , and a setof LGQ substitutions of variablesin
f to nodesin T, the function LF computesthe subsetof represeting the substitutions
consisten with f and T. If the tree T is understood from the cortext, then it can be
ommited for simpli cation. The function clause: 1d ! Query used here delivers for a
given user-de ned predicatethe rule de ning it. Applied onanLGQ queryQ(v) f and
a setof LGQ substitutions of variablesin f to nodesin T, the function LQ extracts the
set of imagesof the headvariable v under all substitutions from consisten with f and
T. If = Set(Substitution) is the set of all possibleLGQ substitutions computable for a
given query and a tree instanceT, the function LQ de nesthe answer to that LGQ query.
For aquery Q and a tree T, Set(Substitution) is computed by subst(Q; T).

LGQ Equiv alence and Unsatis abilit vy

De nition 3.3.1 (LGQ Formula Equiv alence). Two LGQ formulas| andr are equiv-
alent,noted| r,i for anytree T the setsof all LGQ substitutionsconsistentwith | and
T, respctively r and T, restricted to the common variablesof | and r, are the same:

vars(LF T‘J”(l)) = vars(I—F TJrI'(2))
whee vars = Vars()\ Vars(r) 6 ; and ;= subst(l;T); ,= subst(r;T).

De nition 3.3.2 (LGQ Query Equiv alence). Two LGQ queriesQ; and Q, are equiv-
alent, noted Q; Q,, i for anytree T they selet the sameset of nodes:

LQ 1JQ:1K= LQ7JQ:K

Note that probing the equivalenceof two formulas, as consideredby De nition B33,
requiresthat both formulas have common variables. This de nition can be extendedto
formulas without common variables, if mappings between variables of both formulas are
provided.

24 3. LGQ (Logic Graph Query): An Abstraction of XP ath

An important aspect of LGQ equivalenceis that LGQ formulas that are identical up
to equivalent subfornulas are also equivalert.

Prop osition 3.3.1 (Equiv alence-preserving adjunction). Lete; and e, be two LGQ
formulas that are identical up to two subformulasl of e; andr of e,. Then, e; and e, are
equivalent,i | andr are equivalent,and e; and e, do not contain variablesthat appear in
oneof | andr, and not in the other.

Proof. Lete; = 1" e e =r"e Thecasewith e, =1 _e & =r _eisdual Then,
Vars(e)\ (Varg(l) Varg(r)) = ;;Vars@e)\ (Varst) Vars()) = ;:

Let us consideralso

e = subsi(e;T); | = subst(l;T); = subst(r;T); = subst(l” e;T) (= subsi(r " e;T):

From the hypothesis(cf. De nition B3 of LGQ equivalence)we have (for any tree in-
stance)

| r, Vars(I)\ Vars(r)I—F J“’(I) = vars()\ Vars(r)l—F JFK r):

The extensionof the setsof substitutions | and , to ., respectively .., doesnot change
the above equality becausethe projection is still doneon commonvariables.

varsi)\ vars(r) LF K 1:e) = varsay varsr) LF JFK(1e):
Becausethe variablesfrom Vars(l) cortained in e appear alsoin Vars(r), we have
vars()\ vars(r)LF JEK(1.e) = vars) vars(r)LF JEK(r.e))
vars()\ vars(r)LF JK 1:) \ varsay vars(ry LF JeK(1:¢) =
vars()\ vars(r)LF IFrKC 1:e) V' varsgy vars(r) LF JeK(1) ,
vars()\ vars()LF I €K 1:6) = varsg) varsr) LF Ir el 1)

The projection canbe extendedsafelyfrom the setof variablesVars(l)\ Vars(r) to (Vars(I)\
Vars(r)) [Vars(e), becausee hasvariablesthat either appearin both | andr, or not appear
in any of them.

Vars(I)\ Vars(r)LF N EK I;e) = Vars(I)\ Vars(r)LF N el(r;e))
(Vars()\ Vars(r))[Vars(e)l—F N eK I;e) = (Vars()\ Vars(r))[Vars(e)l—F N el(r;e) y
I"e r™e:

0

De nition 3.3.3 (LGQ unsatis abilit y). An LGQ formula e is unsatis ablei for any
tree T the setof LGQ substitutions consistentwith e is empty

LF +JeK(subst(e;T)) = ;
An LGQ queryQ is unsatis ablei for anytree T it doesnot selet any node
LQ +JQK=;

3.4 Digraph Representations 25

3.4 Digraph Represen tations

The digraphrepresentationof an LGQ formula (query) is the directed multi-graph obtained
by taking the formula (query) variablesasnodesand the binary predicateson them aslabels
for edges.The nodefor the headvariable (in the caseof a query) is signi cantly represeited
using a box, the nodesfor the other variables are represeted using ellipses. Optionally,
we may annotate the nodes with their unary predicates. The nodes correspnding to
(non-sink) variableswith the root nodetest predicate are lled-in in bladk.

In order to avoid cluttering, we may usea simpli ed digraph represetation, wherethe
edgesare drawn in sud a way soasto corvey the type of their correspnding predicate:
vertical (evertually inclined)/horizontal edgesstand for vertical/horizontal predicates,and
their direction corveys whether they are forward or reverse. Vertical forward predicates
are then drawn asdirected up-down edgesyertical reverseasdown-up, horizontal forward
as left-right, horizortal reverseas right-leftﬁ. The edgesare then labeled only with the
plus (+) sign, if they correspnd to transitive closure predicates,and with the wildcard
(*) sign,if they corresmnd to re exiv e transitiv e closurepredicates.

Vo @ /o< Vo @ I V3
Vi ® T [d vp vo ld] ® v vild " O v

Figure 3.2: Digraph Represemations of LGQ QueriesQ1, Q,, and Q3 of Example[3:41

Example 3.4.1 The following querieshave the digraph represetations from Figure 32

Qi(v2) root(vp) ~ child (vo; vi) ~ b(vi) A nextSibl (vi; Vo) A d(vs)
Q2(v2) root(vo) A child” (vo; vi) A b(vq) A child(vg; v2) ~ d(vy)
Qs(vi) root(vp) ~ child” (vo;vi) A d(vi) A nextSibl (vi; Vo) A root(vs) A child™ (va; v,):

0

There are formulasfor which onecannot derive asimpli ed digraph represetation. For
example,the formula child" (vo; v1) A nextSib{vy; v,) ~ child” (v,; Vo) enforcesto draw from
the descendanv, of vy a descendahedgebad to vo. Howewer, from v,, only edgeshaving
vertical reversepredicatesaslabelscanbe drawn to vy, and the simpli ed digraph cannot
be derived. In fact, LGQ formulasthat do not have a simpli ed digraph are unsatis able,
i.e., their result is always empty regardlessof the input data. Throughout the thesis, all
formulas usedin examplespermit simpli ed digraphsChapterd providesa rewriting-based
medanismthat detectsunsatis abilit y of LGQ formulas and rewrites sud formulasto the
empty formula ? .

1The predicatesfoll and prec are not supported by this simplied digraph represeration. They can be,
however, substituted by their de nition basedonly on horizontal and vertical predicates, cf. Section[37l

26 3. LGQ (Logic Graph Query): An Abstraction of XP ath

If an LGQ formula cortains seeral disjuncts, when brought in disjunctive normal
form, then its digraph represemation is the collection of the digraph represetations of
ead sud disjuncts. If an LGQ disjunct hasalsonegation,i.e., it is of the form f ~ : Q(v)
wheref cancortain againnegation,then its digraph represetation consistsin the digraph
represemations of f, which is additionally marked with a plus (+) sign, and of Q, which
is additionally marked with a minus (-) sign. In order to distinguish the variable v used
to join Q and f, there is a dotted line betweenthe box for the variable v in the digraph
represetation of Q and the represetation of the samevariable in the digraph of f .

€5) ()
| () VO| | @ (] vo @ ® VO @ o vO @ (] VO|
+ + + + +
Cwoman> v (man) vy Vg O ~——0 V3 Vg O =——0 V3
NN N N
man | V v A oV Vi ov V1 ov
)
v ‘2 v2

Figure 3.3: Digraph Represetation of the LGQ Query of Example3.4.2

Example 3.4.2 Consideran LGQ query asking for the current king after the Salic Law.
For the genealogicalree of John |1, the Good from SectionlZ3, this man is CharlesVIII.
This query canbe formulated in LGQ as(1) the selectionof all living men, (2) the selection
of all men that descendfrom at least one femaledescendaty or (3) have male ancestors
that are alive, (4) or have male precedingsthat are alive, (4) but these precedingsmust
descendvia a male line from John.
Q(v) root(vo) A child” (vo; v) » man(v) ~ : Q1(v) * child(v;v,) * alive(v)
Q1(v) root(vo) A child™ (vo; v) A par® (v;vi) A womar(vy)_

root(vp) A child” (vo; v) A par* (v;vy) » mar(vy) ~ child(vy; vo) » alive(v,)

root(vo) A child™ (vo; v) A predv;vi) » mar(vy) * @ Qa(vq) ~ child(vy; vo) A alivevy)
Q2(v) root(vo) A child™ (vo; v) A predv; vi) » womar(vy) A child™ (vi; v2) A man(vy)

A child(v,; v3) M alivevs):

3.5 Path, Tree, DAG, Graph Formulas and Queries 27

In orderto usethe simpli ed digraph represetation for querieswith horizortal and vertical
predicatesonly, we replacein Q; and Q, predv;vi) by pa (v;vs) * prevSibl (vs;vs) A
child (v4;v1). The query Q hasthe digraph represetation from Figure 33 O

3.5 Path, Tree, DAG, Graph Formulas and Queries

We introduce next the (rather intuitiv e) notions of path, tree, DAG, and graph formulas
(queries), by analogy to their represetation as graphs descriked in Section3.4, where
variablesinduce nodesand binary atoms induce oriented edgesin that graph.

A path formula p(v; w) is a connectedformula represeting a disjunct of atoms, where
(1) ead variable is neither multi-source nor multi-sink, and (2) it cortains exactly one
non-sink variable. The non-sink variable, denoted above by v, is called the path source,
and the only non-sourcevariable, denotedabove by w, is called the path sink.

A path queryis a query with an absolutepath formula asbody and the headvariable as
the path sink, i.e., Q(t) p(v;t) with p(v;t) a path formula. An exampleof a path query
is Q(v2) root(vp) A child” (vo;v1) A b(vy) A nextSibl (vi;v,) ~ d(v2), and its graphical
represemation is givenin Figure 32

multi-source but not multi-sink, and (2) it cortains exactly onenon-sinkvariable. The non-
sink variable, denotedabove by v, is called the tree source,and the non-sourcevariables,

denotedby wa;:::;w,, are called the tree sinks. A disjunction of tree formulas is a forest
formula.

A tree query is a query with an absolutetree formula as body. An exampleof a tree
query is Q(v,) root(vo) * child” (vo; v1) » b(vy) A childvg; v,) ~ d(v»), where vy is a

multi-source variable. Its graphical represetation is given later in Figure 3.2

A DAG formula is a connectedformula with multi-source and multi-sink variables,
but without cycles. A formula is cyclic if, after bringing it in disjunctive normal form, it
contains subformula paths with the samevariable aspath sourceand sink. Single-join DAG
formulasare DAG formulaswhereadditionally there are no two distinct path formulaswith
more than one non-sink commonvariable.

A DAG query (resp. single-join DAG query) is a query with an absolute DAG (resp.
single-join DAG) formula as body. The single-join DAG query Q(vy) root(vp) *
child™ (vo; v1) d(vy) N nextSibl (vq;Vv,) A root(vs) A child” (v3;v2) exempli es a multi-sink
variable v, occurring as sink in two binary atoms. Its graphical represemation is given
later in Figure B2

A graph formula is a connectedformula, without any restrictions concerningthe cycles
or typesof variables. A graph query is a query with an absolutegraph formula as body.

There is a specialization relation betweenclassef path, tree, single-join DAG, DAG,
and graph formulas: one classis a specialization of the subsequen classes,n the order
given above.

28 3. LGQ (Logic Graph Query): An Abstraction of XP ath

Variable-preserving Minimalit y of LGQ Trees and Forests

LGQ formulas can be quite complex, graph-like, where a variable can be readable from
another variable via seeral paths, or where cyclesare allowed. The data instancesto
query are, however, trees. A natural questionis whether this expressiviy of LGQ graph
formulasis not equivalent to that of LGQ tree formulas. ChapterH givesa positive answer
to this question. The intuition is that ewen if in a disjunct a variable is readable via
seeral distinct paths from another variable, their imagesin a tree instance are connected
using exactly one path. Thus a nite disjunction of all connectionpossibilities of the two
variables consisten to the initial readability constrains should be always doable. Each
disjunct in the new formula would be then a LGQ tree subfornmula, wherethere is exactly
one path from the non-sink variable to ead sink variable v, thus one atom having v as
sink.

The property of LGQ tree formulas to have ead variable appearing only onceas sink
(exceptfor the non-sink variable) is called variable-preservingminimality.

De nition 3.5.1 (V ariable-preserving minimalit y). A satis able formula e is variable-
preservingminimal, if the number of binary atomsin eachdisjunct of the disjunctive normal
form of e is equal to the numter of variablesof that disjunct minus one.

Prop osition 3.5.1 (V ariable-preserving minimalit y of LGQ trees). LGQ tree for-
mulas are variable-preservingminimal.

Proof. An LGQ tree formula doesnot have multi-sink variables,thus ead variable appears
exactly onceas sink, exceptfor the non-sink variable having the root nodetest. Therefore,
the number of binary atoms in the tree formula is the number of sink variables of that
formula, i.e., the number of all variablesminus one. O

As a corollary, LGQ forest formulas are alsovariable-preservingminimal, becausehey
are de ned asdisjunctions of LGQ tree formulas that are variable-preservingminimal.

3.6 Forward Formulas and their Specializations

This sectiongivesa classi cation of formulas necessaryor the results of Chapter B

A binary atom is forward, if its predicateis forward, and reverseotherwise. All unary
atoms are consideredforward. A formula (query) is forward if it cortains only forward
atoms, and it is reverseotherwise.

We give in the following the syrntactical characterization of three types of forward
formulas (queries): source-davn, parert-down, and root-down forward formulas (queries).

A forward path formula is source-down or simply sdown, if its path sourceis the source
variable of an -atom with the predicate 2 VF’ nfselfy = ffstChild child child' g, and
the formula cortains no foll-atoms. Intuitiv ely, for a (source) node being the image of
the path sourceunder an LGQ substitution, a sdovn path selectsonly descendan nodes
of that sourcenode. A sdowvn formula can cortain also atoms with HF® predicates (but

3.7 Measures for Form ulas 29

their sourcevariable must not be the path source),becausethe sibling nodesof children
or descendats of the sourcenode (as selectedby the rst atom child or child") are also
children or descendats of the sourcenode.

A forward path formula is parent-down or simply pdown, if its path sourceis the source
variable of an -atom with 2 HF’ = f nextSibjnextSibl ; nextSiblg, and it cortains no
foll-atoms. Intuitiv ely, for a (source) node being the image of the path sourcevariable
under an LGQ substitution, a pdown path selectsonly descendan nodesof the parert of
that cortext node. Other forward but foll-atoms are allowed, becausehe sibling nodesof
the sourcenode and their children or descendats are children or descendats of the parernt
of the sourcenode.

A forward path formula is root-down or simply rdown, if it cortains at least a foll-
atom and can cortain any other forward atoms. Intuitiv ely, for a (source) node being
the image of the path sourcevariable under an LGQ substitution, a rdown path selects
only descendan nodesof the root of tree cortaining that sourcenode. Note that an LGQ
forward path formula is by default a rdown path formula.

The three typesof path formulas allow also (su cien t) semartical characterizations:

p(v; w) is sdown ! 8s 2 Set(Substitution) : child” (s(v); s(w))
p(v;w) is pdown ! 8s 2 Set(Substitution) : par(s(v); s(v3) * child” (s(v);s(w)) * s(v) s(w)
p(v;w) is rdown ! 8s 2 Set(Substitution) : root(s(v9) ~ child" (s(v9;s(w)) * t(v) t(w):

Note that the above implications hold in both directions only for somegiven sourcenodes.

In general,a formula is (1) sdown if it cortains only sdovn path subfornmulas with a
multi-source variable as the path source,(2) pdown if it cortains at least a pdown path
subfornmula with a multi-source variable as the path sourceand can cortain sdavn path
subfornulas, and (3) is rdown if it contains at least a rdown path subformula with a
multi-source variable asthe path source.

Example 3.6.1 Considerthe path formulas pi(Vo; v2) = child(vo; vi) A nextSibl (vi; vy),

P2(Vo; V2) = nextSibl (vo; v1) ~ child(vi; vo), and p(vo; v2) = child(vg; vi) 2 foll(vy;v,). Then,
p:(v; w) is a sdavn path formula, p2(v; w) is a pdown path formula, and p(v; w) is a rdown
path formula. Also, p;(v;w) is a sdownn tree formula, p;(v; wy) ~ pa2(v; W,) is a pdown tree
formula, and (p2(v; w1) _ ps(v;wy)) ™ pi(v;w) is a rdown tree formula. O

3.7 Measures for Form ulas

This sectionintroducesmeasuredor formulas necessaryfor the results of Chapter @

A usefulrelation computablefor any two variablesin a formula is the connectivity (or
readability) relation. Intuitiv ely, two variablesin a formula e are connectedif there is
(at least) one path betweentheir correspnding nodesin the digraph represetation of e.
Additionally, we may alsocompute the length of sud a path.

For LGQ formulas with cyclic digraphs, in the computation of paths connectingany
two variables,we considerall cyclesdetectedand not considered.

30 3. LGQ (Logic Graph Query): An Abstraction of XP ath

De nition 3.7.1 (V ariable Connection). The connection from variable a to variable b
via a sequene of binary predicatesp in a formula e is a 4-ary predicate a ; P.bdened as
follows:

a; b if (a;b e
a ;'O:qe b if a; pel VvV qez b, ande;* e, norm(e).

If the connection sequences irrelevant, then it can be omitted, e.g., we may write
a; e binsteadofa;'oe b.

For a given connection a :P. b, the connection length is de ned by the number of
predicatesin the connectionsequence, and denoted|pj.

Basedon the variable connectionrelation, we de ne next the position-setof -atoms
in an LGQ formula, and the position-setof multi-sink variablesin an LGQ formula.

De nition 3.7.2 (P osition-set of -atoms). The position-setpos (e) of -atomsin an

LGQ formula e is the multiset of all lengthsof connections from a non-sink variable and

with its sequene endingwith an -atom (x is a possiblyempty sequene of predicates):
pos (e) = fl ja2 Vars(e);b2 Vars(e);root(a) e;a; 5 ;l=jx: jg

’ e H

Example3.7.1 Considerthe formula e = root(v,)” child(vy; vo)” (child(vs; v3) _childvs; vs))
A child (va;va). Then, e.g.,vi ™9 vy, v; MM v The position-set of childformulas is

poshid(e) = f1;2; 2g. O
Another important measurefor LGQ formulas is their size

De nition 3.7.3 (Size of LGQ Formulas). The sizejg of an LGQ formula e is the
sum of of sizesof all its constituent connectives and atoms, wheie the size of each boolean
connective is one, and the size of an atom is given by its arity.

Reverse and DAG Factors of LGQ Formulas

We de ne next the positional and the type reversefactors of an LGQ formula, which are
measuredor the amourt and position of reversebinary atoms of that formula.

De nition 3.7.4 (Rev erse Position Factor of LGQ Formulas). The reverseposition
factor pos®'(e) of an LGQ formula e is the union of positions-setsof all its reverseatoms:

[
pos®(e) = (pos (€):

2R?

An LGQ formula cancortain up to sevendi erent typesof reverseatoms, cf. Section32
The amourt and type of reverseatomsin a formula e is given by its reversetype factor

typ€©v(e).

3.8 LGQ versus XP ath 31

De nition 3.7.5 (Rev erse Type Factor of LGQ Formulas). The reversetype factor
typ€©'(e) of an LGQ formula e containing br basereversepredicates, tcr transitive closure
reversepredicates, and trcr re exive transitive closure reversepredicates, is a multiset
containing the numker 1 br times, the numker 2 tcr times, and numkber 3 tr cr times.

We de ne alsothe orders> 5¢ and >~ on LGQ formulas derived from the order >

on multisets fpos®'(e) j e 2 LGQg, respectively ftype©'(e) j e 2 LGQQg:

S>pos by POS(S) >mu POsS®(t) S>ipe s tYPET(S) >mu type®(t):
For a given formula e, typ€©(e) = ; exactly when pos®€'(e) = ;, and this meansthat e
doesnot have reverseatoms at all.

Example3.7.2 Considerthe formulase = root(v;)”" child(vy; vo) (par(vz; v3) part (Va; Va) _
child” (vo; v3) ~ sel{vs; vy)) » par (vs;vs) and €°= root(v,) A par (Vz;va) » par (Vz;Vvs). The
reversefactors are

pos®'(e) = fj childpar; jchildpar:pa j;jchildpar:pa j;jchildchild :par jg = f2;3;3;3g,

type'(e) = f1;2;3g,

pos®(e) = fj par j;jpar jg = f1;1g,

typev(e”) = f3; 3g.

U

We give in the following a measurefor the amourt of forward sink-arities of multi-sink
variablesin LGQ formulas. Recall that the forward sink-arity of a variable is the number
of forward binary atomsthat appearin the samedisjunct and have that variable as sink.

De nition 3.7.6 (D AG Type Factor of LGQ Formulas). The dagtype factor ty pe®29(e)
of an LGQ formula e is the multiset containing the forward sink-arity of each multi-sink
variablein e.

Example3.7.3 Considerthe formulase = root(v;)” child(vy; va)” root(v,)” (child" (v2; v3) _
child” (vo; v4) A nextSib{vs; vs)) A childvs;vs) that has a multi-sink variable v3. The dag
factor is the forward sink-arity of vs, which is type®9(e) = f 2; 2g, becausen ead disjunct
vz hasa forward 2-arity.

O

dag

As for reversefactors, we de ne alsothe order > /5

order >, on multisets ftype™9(e) j e 2 LGQg:

on LGQ formulas derived from the

s>t typed(s) >y typed(t):

3.8 LGQ versus XP ath

We introducenext the practical query languageXPath and we shav how it relatesto LGQ.

32 3. LGQ (Logic Graph Query): An Abstraction of XP ath

3.8.1 XP ath

The languagefor expressingnode selectionin tree consideredin the following is the un-
abbreviated XPath fragmert without functions, attribute handling, and value-basedoins.
This fragmert extendsCore XPath [71] with nodetestson text cortent and with somenew
axesand operators, as explainedlater.

Data Mo del

The data model of XPath consideredhere is the sameas for LGQ, and given in Sec-
tion B The binary predicatesde ned there are supported in XPath by meansof bi-
nary relations called axes. For most built-in binary predicates,there is a correspnding
XPath axis. XPath has six forward axesand v e reversebuilt-in axes,cf. Figure 4. A
forward/reverseaxis relates a node to nodesthat appear in the tree after/b eforein the
documert order. The axesof the following pairs are \symmetrical* of eat other: parent
{ child ancesto { descendantdescendantteself { ancesto-or-self preceding{ following
preceding-sib{ following-siblingand self{ self For the binary predicatesfstChild nextSib)
nextSibl, prevSibl, and prevSibl there are no direct correspnding XPath axes. How-
ewer, this section extends XPath with correspnding axes rst-child, rst-following-sibling
following-sibling-oself, rst-preceding-siblingand preceding-siblingreself, as shown later.

LGQ Predicates Corresppnding XPath Construct
fstChild rst-child

child child

child’ descendant

child descendantteself
nextSibl rst-following-sibling
nextSibl following-sibling
nextSibl following-sibling-o-self
foll following

par paent

pa* ancesto

pa ancesto-or-self
prevSibl rst-p receding-sibling
prevSibl preceding-sibling
prevSibl preceding-siblingreself
prec preceding

self self.

Figure 3.4: Binary Predicatesand correspnding XPath Constructs

The total function pred: Predicate ! Axis is de ned in Figure 34 and returns the
correspnding XPath axis for a given binary predicate.

3.8 LGQ versus XP ath 33

Syntax

An XPath query canbe constructedfollowing the productions of the grammar given below.

path ::= path | path j / path j path/ path j path[Iter] j
forward _stepj reversestepj > j ?:
Iter ::= lter and Iter | lter or Iter jnot(lter) j(Iter) j path:
forward _step ::= forward_axis:: nodetest
reversestep::= reverseaxis:: nodetest
forward _axis ::= selfj childj descendanit descendant+eselfj following-sibling following:
reverseaxis ::= paentj ancestoj ancesto-or-selfj preceding-siblingpreceding

Looking at an XPath query givesalready an intuition for the orderedtree-like structure
matched by the query and for the kind of nodesto select. Indeed, a query like descen-
dant::a/child::b/preceding::ccould be interpreted as a sequenceof three navigations in a
tree using the XPath axesdescendantchild and preceding Consideringa starting node,
the descendats a-nodesare rst readed, then their children b-nodes,and from the latter
nodes,the set of their precedingc-nodesrepresets the result to the query.

Similar to LGQ queries,XPath queriescan be alsoclassi ed in XPath path, tree, and
forest queries.

A stepqueryis an expressioraxis:: nodetest whereaxis is either a forward or a reverse
axis, and nodetestis a nodetestasde ned in Section37l A stepis a \forw ard step", if its
axis is a forward axis, or a \reversestep", if its axis is a reverseaxis. For example,with
the forward step descendant:;aone navigatesfrom a node to its descendats a-nodes,with
the reversestep ancesto::*, one navigatesfrom a node to its ancestors.

The XPath stepsareanothersyntax for LGQ formulas madeout of onebinary atom and
oneunary atom. The forward stepdescendant::& expressedn LGQ aschild” (vy; V)™ a(Vv,)
and the ancestorstep ancesto:* aspa™ (vq;Vvz) * *(v2), or simpler aspa™ (vq; Vz).

A path query, called also a \lo cation path”, is a sequenceof steps, like in /descen-
dant::a/child::h The previous path query selectsall children b-nodes of a-nodesin the
input tree. There are absoluteand relative paths: an absolutepath starts with a path con-
structor /, whereasa relative path doesnot. The intuition behind absolute and relative
paths is that absolute paths start the navigation from the root node of the tree, whereas
relative paths can be usedto navigate also from other nodes. Note that the notion of
absolute XPath queriesis similar to the notion of absolute LGQ rules, as discussedin
SectionB32

The XPath paths are another syntax for LGQ paths. The above XPath path is equiv-
alert to the LGQ path Q(v) root(vo) A child™ (vo; vi) ~ a(vy) ~ child(vy; vo) N b(vs).

A lter expressions de ned recursively asa path, or an expressiorbuilt up from paths
and the connectives and or, and not, together with parertheses. XPath lters are syn-
tactically delimited by squarebradkets, and ead step in a query can have none, one, or
seweral suth lters. Sematically, a Iter conditions the selectionof nodes. The query

34 3. LGQ (Logic Graph Query): An Abstraction of XP ath

/descendant::a[child::bjwhere [child::b] is a Iter, selectsfrom the input tree only those
a-nodesthat have at least one child b-node. The query /child::a[not(child::b)] selectsfrom
the input tree those a-nodeswithout b-nodeschildren. The more complex query /descen-
dant::a[not(child::b[not(child::c)])selectsthose a-nodes without b-nodes children that do
not have c-nodeschildren.

The XPath querieswith Iters are another syntax for LGQ trees. The XPath query
/descendant::a[child::b][child::§ expressedn LGQ asQ(v;) root(vo) ~ child” (vo; vi) »
a(vy) * childvy; vo) ~ b(vz) A child(vy;vz) N c(vs).

pi isaqueryand | isthe set-unionoperator. For example,/descendant::a/child::} /child::b
selectsall b-nodeschildren of the root and all children of every a-node from the input tree.
With disjunctive paths, one can navigate from a node to selectother nodesvia se\eral
gueries, thus the nodes selectedby a disjunctive query is the union of the sets of nodes
selectedby ead of the constituert query.

The XPath disjunctive queriesare another syntax for LGQ forests. The above XPath
disjunctive query can be expressedn LGQ asQ(Vv») root(vp) ~ child™ (vo; v1) A a(vy) A
child(vy; vo) _ root(vg) ~ childvg; vo) ™ b(vs).

The empty queries? and > are the sameas for LGQ. They are used as canonical
equivalerts to the XPath queriesthat selectno nodes(?), or all nodes(>) from any given
tree. Thus, ? canbe/paent:* , and > canbe/descendantfeself: *.

Other useful query constructs expressible in XP ath

Other useful queries are expressiblein XPath, although without dedicated syntactical
constructs.

Universalquarti cation canbe seenasa consequencef the existertial quarti cation of
lters and of allowing negationon sudh lIters. For example,askingfor nodessud that a |-
ter holdsfor all its a-labeledchildren v canbe encaledin XPath as[not(child::a[not()])].
XPath supports, howewer, a restricted form of universalquarti cation: queriesasking,e.g.,
for all nodeswith a property 3 descendats of nodeswith aproperty 1, sud that between
them there are only nodeswith a property ,, cannot be expressedn XPath.

Constructs if-then-elseare expressibleusing unions of two paths with lters: if g then
p. elsep, can be expressedn XPath as[q]/p. j [not(q)]/p.. Nestedif-then-elseconstructs
canthen be also straightforwardly supported.

The logical implication ! and equivalence$ are also partially expressiblein XPath:
a lter py! pois expressibleas[not(p;) or p,], and a lter p; $ p, is expressibleas [(p;
andp,) or (not(p;) andnot(p,))]. Note that in both casesthe nodesselectedby p; or p,
can not be answers, but they can rather condition the answers, becauseboth paths are in
Ilters.

3.8 LGQ versus XP ath 35

Semantics

The sematics of XPath is given below by meansof the two semairtics functions X Q and
XF, inspired by [69]. Applied on an XPath query, the function X Q yields the set of pairs
of sourceand answer nodes. Applied on an XPath Iter, the function XF vyields the set
of nodesfor which that Iter is evaluated to true. Both functions are de ned below using
pattern matching on the structure of XPath queries,respectively lters.

XQ :Tree Query! Sef(Node Node))
XQrJpK= NodesgT) fyj(x;y) 2 XQtJpK test(x; root)g
XQtJp1 j p2K= X Q1IpK[X QrJpK
XQrIpr K= XQrIpK X QrpK
XQrJpr ==pK= X Q1Jp:K\ X Q1Jp2K
XQrIpi=pK= f(x;2) j (x;y) 2 XQ1Ip:K(y;2) 2 XQrIp1K9
XQrIpu[p]K= f(x;y) | (X;y) 2 XQrIpKYy 2 XF 1029
X QrJ(p)K= X QrJIpK
XQrd = K= f(xy)j (x;y) 2 pred *();testy;)g
XF :Tree Query! Node
XF1Jp or p,K= XF+IpK[XF1JpK
XF1Jp; andpK= XF 1Jp K\ XF +JpK
XFtJnot(p)K= NodegT) XF1JpK
XF1IpK= fXg) 9 : (Xo;X) 2 XQ1IpKy

The answer to an XPath querypisfyj 9x : (x;y) 2 X Q1 Jpkg.

Extensions considered in this thesis

There are two XPath extensionsthat are consideredthroughout this thesis:, (1) the new
axes rst-child, rst-following-siblingand rst-preceding-siblingand (2) the set di erence
operator.

The new axes rst-child, rst-following-sibling following-sibling-oself, rst-preceding-
sibling and preceding-siblingreself expressthe selectionfrom a given node n of (1) the
rst child of n, (2) the rst sibling that immediately follows n in documert order, (3) the
rst sibling that immediately precedes in documert order. All axescanbe obtainedusing
the XPath 1.0 positional Iter [position()=1]. Applied to a set of nodes,this Iter retains
only the rst nodein documert order (for the forward steps),or in reversedocumert order

36 3. LGQ (Logic Graph Query): An Abstraction of XP ath

(for the reversesteps). The axesare expressedas

rst-child::* = child::*[position()=1]
rst-following-sibling::* = following-sibling::*[sition()=1]
following-sibling-o-self::* = following-sibling::¥ self::*
rst-preceding-sibling::* = preceding-sibling::*[psition()=1]

preceding-siblingreself::* preceding-sibling::f self::*

The setdi erence operator , similar to the exceptoperator in XPath 2.0 [Z4], expresses
the di erence betweentwo setsof nodes,as selectedby two XPath queries:the answer to
the query p; p. consistsin those nodesselectedby the path p; and not by the path py,
cf. XPath semartics de ned above. Note that the XPath negation can be fully expressed
using the set-di erence operator: the query p;[not(p,)] is expressibleas p; pi[p2]. In
cortrast, the set di erence operator can not be always expressedusing XPath negation
(seelater Example[382.

Although not explicitly consideredin this work, another interesting extensionis repre-
serted by the lter with idertit y-basednode equality ==. For two XPath expressiong;
and py, the lter p, ==p, holdsif there is a node selectedoy p; which is identical to a node
selectedby p,. Note that the XPath fragmert consideredhere extendedwith this lter is
can expressLGQ single-joinDAG queriesand a limited form of LGQ graph queries.

The equality == correspndsto built-in node equality operator (=) in XPath 2.0 and
XQuery 1.0, but it canalsobe usedfor comparingnode setssimilar to generalcomparisons
in XPath 2.0. XPath 1.0 hasbuilt-in support only for equality basedon node values. The
only implicit node-iderity test ensuredby XPath can be speci ed using the set union
operator | , becausethe set of nodesspeci ed by p; | p. consistsin the nodesappearing
at leastin one set speci ed by p; or p,. Then, the Iter p; ==p, can be expressedising
the XPath 1.0 expressiorcount(p; | p.) < count(p;) + count(py), wherecount(p) gives
the number of nodesin the set speci ed by p.

Expressiv eness

The XPath fragmen de ned by the grammar given above is a logical core of XPath 1.0
that extendsthe Core XPath of [6Y9]. It is expressiblein rst-order logic when interpreted
on orderedtrees,and in Datalog with strati ed negation[6Y]. XPath can be alsoextended
to match the expressienessof rst-order logic when interpreted on orderedtrees. In this
sense,the above extension of positive (i.e., without negation) Core XPath with the set
di erence operator becomesrst-order complete. In the samesense,[109 108 propose
CXPath, a rst-order complete extensionof XPath with conditional axis relations that
allow queriesof the kind \do a certain step (like child, descendat), while a condition is
satis ed at the resulting node”. It is alsoilluminating to think of Core XPath asa simple
temporal logic [68], whereasCXPath extendsXPath with (counterparts of) the since and
until operators.

3.8 LGQ versus XP ath 37

3.8.2 Conciseness of LGQ over XP ath

Dealing with XPath syntax is sometimescumbersome. Especially the explicit notation
for lters using squaredbradkets risesvarious technical problemswhen translating XPath
expressionsto other query formalisms (or vice-versa), or when doing induction on the
structure of XPath expressions.

Arguably, the Datalog-like syntax of LGQ is intuitiv e. Moreover, it allows morefreedom
than XPath in writing concisequerieswith help of variables. Also, the syntax sugaring
of XPath permits to write a bunch of queriesquite di erently, although they all impose
rather similar constrairnts on the treesto be queried. For example,the XPath queries

/descendant::man[child::man[childaman]][child::\wman}
/descendant::man[child::man[childaman]and child::woman]
/descendant::man[child::man/child:omanand child::woman]

selectthe sameset of nodesrepreseting men having daughers and sonsthat have also
daughters. They dier only in somesynactical sugaring for expressing lters and are
equivalent betweenthem and alsoto the LGQ query

Q(v1) root(vg) A child” (vo; v4) A man(vy) A childvy; Vo) A man(vs)
A child(vz; v3) A womar(vs) A child(vy; vs) A womar(vy):

Note that in the above LGQ query there is no explicit notation for Iters ala XPath, but
only the distinguishedvariable v; is written explicitly in the head.

No explicit notation for XPath lters leadsto an ewen greater advantage of the LGQ
syrntax. Considernow the XPath queries

/descendant::man[child::man[childaman]]/child::voman
/descendant::man[child:mman]/child::man[child::aman]
/descendant::man[child:mman]/child::man/child::veman

They are not equivalert though their structure is the same,and only the answer nodesare
selectedby another step. Becausethey have the samestructure, LGQ queriesequivalent
to them have the samebody as before, but only di erent distinguished variables: in the
rst casethe distinguishedvariable is v, (and selectsdaughers of men with sonshaving
daughers), in the secondv, (and selectssonsof men sud that both have daugtters), and
in the third v; (and selectsdaughters of men having sistersand fathers).

LGQ allows also graph queriesthat are not expressibledirectly in XPath, though the
results of Chapter @ ensurethe existenceof equivalert XPath queries. considerthe LGQ
DAG query that selectsfor ead man all their femaledescendats that follow at leastone
of their male descendats

G(vz) root(vp) A child (vo;vi) » man(vy) ~ child™ (vi; Vo) A man(vy) ~ child' (vi; vs)
N womar(vs) ” foll(vy; vi):

38 3. LGQ (Logic Graph Query): An Abstraction of XP ath

Note that v; is a multi-sink variable in G. XPath can simulate the use of multi-source
variablesin LGQ by meansof Iters. Howewer, XPath can not simulate the use of multi-
sink variables,asneededn the above LGQ query G. There exists, howeer, the equivalen
XPath query

/descendant::man/descendant::man/follig-sibling::*/descendantreself::vomanj
/descendant::man/descendant::*[descendant::man]/waithg-sibling::*/descendantreself::voman

The rationale behind the existenceof equivalet XPath queriesto any LGQ query is
twofold: (1) XPath queriesare as expressibleas LGQ forests,and (2) LGQ graphsare as
expressibleas LGQ forests. The latter assertionis discussedn the next chapter, whereas
the former is discussedext.

3.8.3 XP ath=LGQ Forests

This section shows that XPath queriesare equivalernt to LGQ forest queries. After dis-
cussingthe relation betweenXPath negationand LGQ negation, we give the encalings of
XPath into LGQ forestsand vice versa. Chapter @ shows further that any LGQ query can
be reducedto forward LGQ forest queries,thus making XPath asexpressie asLGQ.

LGQ Negation versus XP ath Negation
The XPath negationcan be expressedn LGQ.

Example 3.8.1 Considerthe XPath query /descendant::*[not(child::man)]/child::amanse-
lecting the daughters of all personsthat have no sons. For the tree of Figure [Z2 depicting
an excerpt of the genealogicakree of John Il the Good, the result is the personLouis Il
of Naples. The samequery can be expressedalsoin LGQ as

Q(v) root(vp) ~ child" (Vo; v1) » : QY1) * child(vy;v) » womar(v);
QYv) root(vg) ~ child (vo; v) childv; vy) » man(vy):

The query Q speci es the selectionof womanchildren of personsthat are not selectedalso
by Q% In turn, Q°selectsall personsthat hasat least one son. O

In the previousexample,the negative part of the XPath queryis expressedn LGQ using
a separaterule Q°that is a courterpart of the XPath negated Iter togetherwith the atoms
root(vp) and child (vp; v) that ensureQ®absoluteand connected.Note that the addedatoms
do not constrain the bindings to v, becausea query like Q%v) root(vp) * child (vo; v)
selectsall nodesfrom the input tree. This generalsdhemeis usedfor encaling XPath
guerieswith negationinto LGQ.

The negationis usedin XPath alsofor supporting universal quarti cation. Howe\er,
this support is limited, and rendersthe XPath negation wealer than the LGQ negation,
as shavn in the next example.

3.8 LGQ versus XP ath 39

Example3.8.2 Consideragainthe genealogicatree of Figure[Zd and the query Q selecting
all menthat have only male ancestors. After the Salic law, thesemen are pretendarts to
the throne of France. The result of Q consistsin all menin that tree.

Q(v) root(vp) ~ child” (Vo;v) » man(v) » : QYVv):

QYv) root(vp) ~ child (vo; v1) » womar(vy) ~ child” (vq;Vv):

The positive part of Q selectsall men, whereasthe subquery Q° selectsall persons(in-
cluding) descendats of at least onefemaleperson. Therefore,the query Q selectsall men
having only male ancestors.This query is not expressiblen Core XPath [109 10§, but in
XPath extendedwith the setdi erence operator:

/descendant::man /descendant::wwman/descendant::man

Encoding XP ath into LGQ Forests

The function X L givesthe encaling of XPath into LGQ forests: it takesas parametersan
XPath construct and an LGQ variable, called the working variable, and producesa pair
(v;f) consistingof the new working variable v and the LGQ formula f correspnding to
that XPath construct.

X!LJ:FK_) = (v;root(vo) M f) : (v;f) = X!LJpI(vo);vo = freshvar()
X!LJ = Kv) = (vi;pred Y)(v;v) A (v)) :va = freshvar()
XLIppIKY) = (viif27 1) (vif2) = XLIDKY): (v2if2) = X LIppKva)
X!LJp1=p2I(v) = (vg; Fa N fR) i (vpsfy) = X!LJpll(v);(vz;fz) = X!LJpzl(vl)
XLdpy] p2RY) = (vaifs_2) : (vaifr) = XLIuKY); (v f2) = X LIpKv)
X!LJpl or ppKV) = (v;fy o) (vyify) = X!LJpll(v);(vz;fz) = X!LJpzl(v)
X!LJpl andpKVv) = (v;f1 M fo) 0 (ve;fy) = X!LJpll(v);(vz;fz) = X!LJpzl(v)

X!LJnot(p)I(v) = (v;: Q(V)) : (vy;f) = X!LJpl(v);
Q(v) root(vg) M child (vo; v) ~ f; Q = freshid()

X!LJpl PoKV) = (vp; 17 0 Q(vy)) @ (vy;fy) = X!LJpll(v);(vl;fz) = X!LJpzl(v);
Q(vq) root(vg) ~ child (vo; v) » f,; Q = freshid()

X!LJ(p) Kv) = X!LJpl(v):

Finally, thle encaling of an absolute XPath query =pis the LGQ rule Q(v) f, where
(v;f) = XLI=pKL).

40 3. LGQ (Logic Graph Query): An Abstraction of XP ath

The function X L is de ned using pattern matching on the structure of XPath queries,
which are restricted syntactically to be absolute (i.e., with the leading =) and without
absolutepathsin lters B

XPath doesnot have variables. Given two XPath location steps ;:: ; and :: ,, one
can construct either (1) the path ;. ;= ;1 , by usingthe path constructor =, or (2) the
stepwith lter i 4] 2:: 2] by usingthe Iter constructor|].

LGQ hasvariables. The above XPath path and Iter expressionganbe simply encaled
in LGQ by annotating with variablesthe positionsbeforeand after ead XPath syrtactical
construct. For example,the path ;:: ;= 1 , becomes’ J2::Vs J4=vs Js::Ve J7 The
XPath constructs::, =, [] ensurethat the samevariable must appear beforeand after them,
thus obtaining ¥+ j2::v2 j4=v4 Js::vs 77 By consideringfurther that eath XPath axis
hasa correspnding extensionalLGQ binary predicatepred () (cf. Figure33), and that
eah XPath nodetest has a correspnding LGQ unary predicate, we nally obtain ¥+ j2::
ve Y2=v2 ¥o::vs ¥ or asan LGQ formula pred 1(1)(vi;v2) N 1(vo) A pred 1 2)(va;vs) A

2(Vs). The caseof XPath expressionswith lters is similar.

We explain now some particularities of the encaling of or- Iters and unions. The
other XPath constructs are encaded similarly. The encaling of an or- Iter of two XPath
expressiongwhich can be on their turn also lters) is a disjunction of the encalings of
eah expressionwith the sameworking variable. The encaling of a union of two XPath
expressiongwhich canbe alsounions)is similar to that of an or- lter, exceptthat the new
working variablesobtained from the encalings of both XPath expressionsare the same.

In the de nition of the encaling of XPath into LGQ, the LGQ variablesand the names
for the LGQ intensionalpredicatesare createdfreshusing the functions freshvar(), respec-
tively freshid(). For a given LGQ formula or query, a freshvariable (predicate name)is a
new variable (predicate name) that doesnot appear already in that formula or query.

Note that sud an encaling of XPath doesnot createmulti-sink variables,i.e., variables
that appear more than onetilme at the secondposition in binary atoms. In e ect, for any

XPath query, the function X L createsan LGQ forest.
Example 3.8.3 Considerthe XPath queries

p; = /descendant::man[child::man]/child:oman
p. = /descendant::man[child:mman]/child::man
ps = /descendant::man[child:mmanand child::man]

that select(1) all daughters of men having also sons, (2) all sonsof men having also
daughers, and (3) all men having daughers and sons. From the genealogicaltree of
Figure 22, the queriesselect(1) the (nodes correspnding to the) personsisabelle and
Anna, (2) the personsCharlesV, Charles, Francis, and Louis | de Valois, and (3) the
personsJohn Il the Good and CharlesVIIl. The LGQ-encalings of them are three LGQ
queriesQi(vs) eand Qa(v2) e and Qs(v1) e wheretheir body e is

root(vo) A child™ (vo; vi) » mar(vy) ~ child(vy; vz) » man(v,) A child(vy; vs) » womar(vs):

2XPath querieswith absolutepathsin lters canbe rewritten to equivalert querieswithout sud lters.

3.8 LGQ versus XP ath 41

We shawv next how p; can be encaded in e bottom-up.

(vq;fq) = X!LJdescendant::mAQvo; root(vp)) = (vi;root(vp) ~ child™ (vo; vi) » man(vy))
(vo; o) = X!LJchiId::mam(vl;fl) = (vg; 1" childlvy; vo) » man(vs))

(v3;f3) = X!LJdescendant::man[child::mzm]o; root(vp)) = (vq;f>)

(vg;T4) = X!LJchiId::VDman(vg,;fg,) = (vsz;f3” child(vy; v3) » womar(vs))

(vs;fs5) = X'LJdescendant::man[child::man]/childomad(vo; root(Vp)) = (Va;f4):

The nal encding of p; is Q1(Vs) fs, wherevs = vz andfgs = e O

Encoding LGQ Forests into XP ath
LGQ is not more expressie than XPath. Howewer, there is no straightforward encaling
of the ertire LGQ into XPath. Chapterd elaborateson this non-trivial encmlipg. We give

hereonly an encading of LGQ forestsinto XPath usingtwo functions X and LX and some
simpli cations rules. This encaling is more involved than for XPath into LGQ, and this
is the price to pay for the explicit notation of Iters in XPath.

The LGQ forest queriesare brought rst in disjunctive normal form and without >
and ? atomsin disjuncts. Chapter @ giveslater rewriting rules that yield queriesin this
form. The funcI:tion X encalessud queriesinto unions of XPath absolutequeriesand uses

the functiqn LX for encaling the body of eat LGQ rule into an XPath union term. The

function LX takesasparametersthe headvariable v and the body bof the currert rule, the
working formula to encade and the working variable, and producesan XPath expression.

XJO(V) fi_ fK= XJO(V) 1Kl XJQ(v) f.K
XJO(V) T00t(Ve) A BK= /LX ypdb” > KVo)

e eyt = ISRty Ly ovory =y
left, = L!X viodf KX); step= pred *():*;left, = Lé(vipJoK(y)
Lé(vbd (X) N FKX) = [self:] Lﬁ(vipdf K(X)
Lé(vbd Q(X) M f Kx) = [self:* - X IclausgQ)K L!X vipdf KX)
LX i (1) " TKX) = LX upd (1:2) K0 = LX ok Q) A FKX) = LX i KX)
L!X vipd> KX) = [self:*]:

42 3. LGQ (Logic Graph Query): An Abstraction of XP ath

|

The function LX is de ned using pattern matching on the structure of the working
formula to encale and on the working variable x. If starts with an atom that does
not have x assource,then that atom is skipped at this encaling stage,and the encaling
cortinueswith the restof in the sameway until an atom with x assourceis encourtered.
If is >, i.e., it is exhaustedand no atoms with x as sourceare found, then the Iter
[self:]is addedto the generatedquery. Note that this lter, like the LGQ atom >, does
not add further constraints to the answers and can be safelyremoved afterwards.

If = (x)~f,ie., startswith the unary atom (x), then isencaledasan XPath
path wherethe rst stepself:: encalesthat unary atom, and the rest of the path remains
to encade f , wherex is the working variable.

If = (x;y)~f,ie., starts with the binary atom (x;y), then the encaling of
dependson whether the head variable v is readable in b from y. Let left, be the XPath
expressiorrepreseting the encaling of the subformula of b cortaining the atomsreadable
from x via y, and left, the encaling of the subfornula of b cortaining atomsreatable from
X via other variablesthan y, wherein both cases is the working variable. Their encalings
are detailed below. In casev is reacable in b from y, then left, cortains necessarilythe
path leadingto the answers,and is written in XPath outside Iters. Also in this case left,
is a lter, becausehere cannot be anotheratom qx;y9 with v reacable from y°6 vy in
b (bis a tree formula). In the other case,left, becomesa Iter and left, can cortain the
path leadingto the answers.

The expressionsstep left, and left, are generatedas follows. The former expression
consistsin the step step= pred ()::* represeting the encaling of (x;y), followed by
the expressiorleft, represeting the encaling of the subfornula of b cortaining atomsthat
havey assourcevariable (thusy becomesow the working variable). The latter expression
left, is the encaling of the working formula without (x;y), wherex is still the working
variable. Note that ead atom is consideredexactly once,becauseb is a tree formula.

If =:Q(X)~f,ie. starts with the unary atom : Q(x), then is encaled asan
XPath expressiorconsistingin a Iter that encalesthat atom, and an expressioneft, that
encalesf , in both caseswith x asthe working variable. The Iter represets the di erence
betweenthe expressiongenerateduntil now and the encaling of the rule Q, done by the
function X. The encdling left, is donelike in the above cases.

|
Simpli cations. The encaling of LGQ forestsinto XPath using X and LX generates
asmarny lters asbinary predicatesthat are not on the connectionsequencdrom the non-
sink variable to the head variable. Also, eat atom with a built-in predicate is encaled
into one distinct XPath step, although XPath stepscompriseboth a unary and a binary
extensionalpredicate. The following simple rewritings can be applied to the encaling of
LGQ forestsin order to simplify them (p standsfor an XPath expression):

p[self: 1! p o [self:]!

Example 3.8.4 Considerthe query Q; of Example[383that selectsall daughers of men
having alsosons

3.8 LGQ versus XP ath 43

Q1(v) root(vo) A child” (vo; vi) » man(vy) A child(vy; vo) A man(v,) A childvy; v) » womar(v)
Q1(v) bis encadedinto XPath asfollows. We computeand label rst someexpressions:
e = L!X viedman(vy) A child(vy; v2) » man(v,) A childvy; v) * woman(v)Kvp) = self::*
e = L!X vipdman(vy) A child(vy; v) » womar(v)Kv,) = [self::man][self::*]
e = L!X vipdman(vy) A child(vy; v) » womar(v)Kv,) = L!X vipdchild(vy; v) » womar(v)Kv;)

= [Lﬁ(viedwomar(v)Kvy)]/child::* L!X vedwomar(v)Kv) = [self::*]/child::*[self::voman]
Then, the encaling of Q; is
X JclausgQ;)K
=L$(vipdehild” (Vo; v1) A man(vy) ~ child(vy; vo) * man(v,) ~ child(vy; v) A womar(v)KVvo)

/[e:)/descendant:*LX vipdoK(vy) = /[self::*]/descendant::*LX vipJoK(V7)

= [[self::*]/descendant::*[self::man].X vipdchild(vy; vo) A man(v,) A child(vy; v) * womar(v)Kv;)
= /[self::*]/descendant::*[self::man][child::&;] e3
= [[self::*]/descendant::*[self::man][child::*[self::man][self::*g|fs*]/child::*[self::woman]

This XPath query can be further simpli ed to /descendant::man[child::man]/child:oman
O

XP ath=LGQ Forests

The encalings of XPath into LGQ forestsand vice-versa are correct, as ensuredby the
following lemma. As a corollary, it follows that LGQ forest queriesare as expressie as
XPath queries.

! !
Lemma 3.8.1 (Correctness of XL and LX encodings). The following holds:

1. Given any XPath queryp andtree T, the semant'icsof p is the semanticsof the LGQ
formula f representingthe enading of p using X L:

vvy (LF 1 K) = XQJpK where = subst(f;T);X!LJpl(v) = (vy;f):

2. Given any LGQ forest Q(v) f andtree T, the semanticsof Q is the semantics
of the XPath query p representingthe enading of Q using X :

vv (LF 1 K) = XQJIpK where = subsi(f;T);p= XJQ(V) f K

Proof. The proof is givenin the Appendix. O

44

3. LGQ (Logic Graph Query):

An Abstraction

of XP ath

Chapter 4

Source-to-source Query
Transformation: From LGQ to
Forward LGQ

The languageof logical graph queriesLGQ, as well as XPath, allows the speci cation of
structural constrairts for the nodesto be selectedby meansof binary predicatesbetween
nodesin trees. These structural constrairnts can be intuitiv ely seenas \navigations" in
trees, and are enabled by a large number of LGQ \navigational" predicates: sewen for-
ward predicates(self fstChild child child™; child ; nextSibl ; foll) and v e reversepredicates
(par; pa™; pa ;prevSibjpred. The number as well as the relevance of these navigational
predicatesfor querying XML hasbeenchallengedin [55, 23 9€].

The random accesdo XML data that is enabledby the various LGQ predicates(cor-
responding to navigational axesof XPath) has proven particularly di cult for an e cient
guery evaluation against XML streams,whereonly one-passover the streamis a ordable
(or possible). Processingof XML has seenthe widespreaduse of the W3C documern ob-
ject model (DOM) [144, wherea main-memoryrepresetation of the ertire XML data is
used. As DOM hasbeendeweloped with focuson documen processingn useragers (e.g.,
browsers),this approat has seeral shortcomingsfor other application areas.

First, a considerableamourt of XML applications, in particular data-ceriric applica-
tions, handle XML documeris too large to be processedin main memory Sud XML
documerts are often encourered in natural languageprocessing[97], in biology [2§ and
astronony [I19. This aspect is exacerbatedby expensive main-memory represetations
of XML documeris. E.g., DOM-lik e main-memorystructures for XML documeris tend to
be four- v e times larger than the original XML documernt [9]].

Second,the needfor progressie processing(also referredto as sequetial processing)
of XML has emerged: Stream-basedprocessinggeneratingpartial results as scon as they
are available givesrise to a more e cient evaluation in certain cortexts, e.g.,:

For selective disseminationof information (SDI), cortinuously generatedstreams of
XML documerts have to be Itered accordingto complexrequiremerts speci ed as

46 4. Source-to-source Query Transformation: From LGQ to Forward LGQ

XPath queriesbeforebeingdistributed to the subscrikers[37,[7]. The routing of data
to selectedreceiers is also becomingincreasingly important in the cortext of web
servicesystems.

To integrate data over the Internet, in particular from slov sourcesijt is desirableto
progressiely processthe input beforethe full data is retrieved [94].

As a generalprocessingsdheme for XML, seeral solutions for pipelined processing
have beensuggestedwhere the input is sert through a chain of processorseadt of
which taking the output of the precedingprocessoiasinput, e.g.,Apache Cocoon [1(].

For progressie rendering of large XML documerts, e.g., by meansof XSL(T), cf.
Requiremen 19 of [9€]. There have beenattempts to solwe this problem [11].

There is a great interest in the identi cation of a subsetof XPath (and of LGQ) that
allows e cien t streamedand progressie processingcf. [55 and Requiremen 19 of [9].

For stream-basedprocessingof XML data, the Simple API for XML (SAX) [11I(has
beenspeci ed that allows sequetial accesso the cortent of XML documerns with low
memory footprint. Of particular concernfor progressie SAX-like processingare the LGQ
reversepredicates(corresponding to reverseaxesof XPath), i.e., thosepredicates(e.g., pa,
preg that cortain pairs of sourcenodesand sink nodesoccurring before thesesourcenodes
in documert order. A restriction to forward predicates,i.e., those predicatesthat cornain
pairs of sourcenodesand sink nodesappearingafter thesesourcenodes,is a straightforward
considerationfor an e cien t stream-basedevaluation of XPath-like queries[54].

There arethree principal options how to evaluate an LGQ query with reversepredicates
in a stream-basedcortext:

Storing in memorysu cien t information that allowsto accesgasteverts particularly
when evwaluating a reversepredicate. This amourts to keepingin memory a (possibly
pruned) DOM represetation of the data [11].

Evaluating queriesin more than one passover the stream, provided se\eral passes
are a ordable/p ossible. With this approad, it is also necessaryto store additional
information to be usedin successie runs. This information can be considerably
smallerthan what is neededin the rst approad.

Rewriting querieswith reversepredicatesinto equivalent oneswithout thosereverse
predicates.

In this chapter, we target the last approad and we show it to be always possible.lt is
lesstime consumingthan the secondapproad and doesnot require the in-memory storage
of fragmerts of the input asthe rst approad does.

We accomplish this goal by making use of the theory of term rewriting systems.
We de ne rst equivalence-preservingewrite rules for LGQ formulas, and use them in

47

three distinct term rewriting systems. We shaw that all rewriting systemsenjoy impor-
tant properties like soundnessand completenesstermination, con uence, and the exis-
tence and uniguenessof normal forms modulo the equational theory AC (assaiativit y-
comnutativit y) for predicates™, _, and self Using thesesystems,queriesof various LGQ
fragmerts can be rewritten into forward querieswithin the sameor smallerfragmerts, and
with complexitiesvarying from linear to exponenrtial in the sizeof the input queries.

The rst term rewriting system(TRS;) rewrites any LGQ single-join DAG into a for-
ward LGQ single-join DAG, and any LGQ graph into a forward LGQ graph. The com-
plexities of TRS; are linear for time and logarithmic for space,and the sizeof the output
query is boundedin the sizeof the input query.

The secondterm rewriting system (TRS,) rewrites any LGQ forest into a forward
LGQ forest, any LGQ single-joinDAG into a forward LGQ single-joinDAG, and any LGQ
graph into a forward LGQ graph. For arbitrary queries,the complexitiesare exponertial
for time and space,and the sizeof the output can be exponertial in the number of reverse
predicatesin the input (i.e., the sizeof the reversetype factor of the input). It is shavn
that, in general, LGQ forestscan not be rewritten into forward LGQ foreststhat have the
size smaller than exponertial (worst case). Howeer, for querieswithout closureforward
predicatesappearing before closurereversepredicates,both either vertical or horizontal,
along a connectionsequencethe complexities of rewriting are polynomial for time, and
logarithmic for space,and the sizeof the output is boundedin the sizeof the input.

The third term rewriting system(TRS3) rewrites any LGQ graph into a forward LGQ
forest. TRS; includes TRS, and inherits the complexities of TRS,. For LGQ graph
cortaining only closure predicates, respectively only non-closurepredicates, TRS; yields
LGQ forestscortaining alsoonly closurepredicates,respectively non-closurepredicates. In
particular, it rewritesany LGQ graph cortaining neither disjunctionsnor closurepredicates
into a forward tree, which is variable-preservingminimal (cf. Proposition [3.5.]).

Beyond their declaredmain purposeof providing equivalencesbetweenforward queries
and querieswith reversepredicateswithin various LGQ fragmerts, the applications of our
rewriting systemsshedlight on other LGQ properties, like the expressiviy of someLGQ
fragmerts as mertioned above, the minimization of LGQ queries,or even the complexity
of LGQ query evaluation.

In this respect, the rewriting systemsdetect and eliminate non-trivial redundancies
within queries(seeExampleZ2for an immediate impression). Also, they render evalua-
tion strategiesdesignedonly for forward queriesof particularly restricted LGQ fragmerts
assucient to cover the whole languageLGQ, equivalent to theserestricted fragmerts.
Indeed, Chapter B gives later an evaluation strategy only for forward LGQ forest and
single-joinDAG querieswith polynomial complexity. The complexitiesof the evaluation of
other LGQ queriesfollows then from both the complexitiesof rewriting them into forward
gueriesand of the evaluation of theseforward queries. Besideshe polynomial complexities
of the evaluation of LGQ forest and single-join DAG queries(and thus of XPath queries),
the most interesting result obtained from the joint work of both this chapter and Chapterd
is that thereis a considerablylarge fragmert of LGQ graph queriesthat admits evaluation
with polynomial complexities,although in generaltheir complexitiesare exponertial.

48 4. Source-to-source Query Transformation: From LGQ to Forward LGQ

4.1 Problem Description

The equivalene-preservingremoval of LGQ reverseatoms (ERRA) problemis: given an
LGQ query (formula) cortaining reverseatoms, is there always an equivalert forward LGQ
qguery (formula)? And in the positive case,deliver the forward LGQ query (formula).

This chapter givesa positive answer to the ERRA problemfor the whole LGQ language
and for someof its fragmens. Furthermore, this chapter reveals seweral avours of this
problem, dependart onthe type (i.e., path, tree, etc.) ofthe givenLGQ querythat cortains
reverse atoms, and of its equivalert LGQ forward query obtained. Keeping an eye on
XPath, this chapter particularly studiesfor which LGQ queriesthere are equivalernt forward
LGQ queriesthat correspnd to XPath queriesand that can be obtained as solutions to
the ERRA problem.

The saliert characteristicsof the ERRA problemare (1) the presenation of equivalence
betweenthe initial queryandthe obtainedforward query, and (2) the removal of constituert
reverseatoms. Therefore,this problem hasstrong connectionsto the well-known problems
of query equivalence and view-basedquery rewriting, though the ERRA problem still
remainsdi erent. Section.g discussesn more depth related problems.

The query equivalenceproblem is to decidewhether two queriesdeliver the samean-
swers for any data instance, thus approadesto the query equivalence problem assume
the queriesgiven and deliver yes/no answersregardingtheir equivalence. Sut approadhes
can not, howeer, apply to solve the ERRA problem, where an equivalert forward query
hasto be found. Guessinga forward query and then testing whether it is equivalert to a
given query (containing reverseformulas) is not a ordable, for there are in nitely many
forward querie. This obsenation givesalsothe direction for how to construct automated
solversto the ERRA problem: if one providesequivalert forward queriesfor a nite num-
ber of etalon queriesconaining reverseformulas, and then showsthat any other query
is in fact just a combination of sud etalon queriesfor which there are already forward
equivalents, then onecould usethe nite setof forward equivalerts to rewrite any query to
a forward equivalen, like putting together the piecesof a puzzle. Using this approad for
the ERRA problem, a sound (but not necessarilycomplete) approad to the equivalence
problem would be then: given two queries,ched whether one query can be obtained from
the other by usinga nite number of rewrite steps.

The rewriting approad opensthe door to the next strongly related problem: the view-
basedquery rewriting and answering problem (AQUV) [35]. The AQUYV problem is to
nd ecient methods to answer a query using a set of previously de ned materialized
views over the database,rather than accessinghe databaserelations. Looking at ERRA
through AQUV glassespnecould seethe etalon formulas cortaining reverseatoms asview
bodies and their correspnding forward equivalerts as view heads;a rewriting of a query
using sud views replacesall occurrencesof instancesof any of the views bodieswith the
correspnding instance of the views heads,thus delivering at the end an equivalent and

1Similar to the ideasof [65], it may be of interest to study if there is only a nite (though large) number
of canonical forward queriesthat do not contain redundancies,that are equivalent to a given input, and
that depend on the input's properties (lik e structure, size,etc.).

4.1 Problem Description 49

forward query. This is, indeed, the way it is proceededalso in this chapter, with some
minor obsenations. First, the views must not be materialized. Second,we are interested
to rewrite only the problematic reverseatoms, thus rewriting the given query only in terms
of the given views is not an issue. Third, there can be more than one rewriting step, for
there can be viewsthat map queriesto equivalert queriesthat still cortain reverseatoms.

Warm-up Examples

Many real-world XML queries,formulated in XPath or LGQ, usereversepredicates. A
commonpractice in writing XML queriesis to rst specify the nodesto be selected,and
then to further add structural constrairts for these nodes. Arguably, sud additional
structural constrairts useas well forward as alsoreversepredicates.

For the impatient reader, this section givesa bit of the taste of rewriting reasonably
complexLGQ queriesinto equivalert forward LGQ queries.

Example4.1.1 Considerthe journal archive exampleof SectionlZ2 and the query

A(vy) root(vo) A child' (vo; v1) » namévy) » : Avy) » par(vy; Vo) A authas(vs)
A pat (vo;va) N journalvs) A child(vs; vs) ~ title(vs) ~ child(vs; vs) ~ “db'(vs):
A%v,) root(vp) ~ child (Vo;vi) namév;) A prevSibl (vi;v,) * namév,):

Figure 4.1: Digraph represetation for the query A

® Vo @ V3 O ® Vo
T v Cite > Va +

The query A selectsthe rst author of a journal with the title "db’, or more precisely
the rst namechild (v;) of authas-nodes(v,) that have journalancestors(vs) with a title
child cortaining the text “db'(v4;). Note that the sameanswer canbe obtained by usingthe
fstChildpredicatethat cortains the pairs of nodesand their rst children. This alternative
shavsthat fstChildis alsoredundart in LGQ and can be obtained using childand negation.

For the tree instanceof Figure Z7 represeting a journal archive, this query selectsthe
rst namenode in documern order (i.e., the node cortaining the text "ana). The digraph
represemation for this query is given in Figure &7 The sameanswer can be selectedalso

50 4. Source-to-source Query Transformation: From LGQ to Forward LGQ

Figure 4.2: Digraph represemation for the forward query F A equivalert to A
® O

I-
"
/ .

@uod V2 Cile D V4
Vg

VO (] VO

| l

[mame] V1

using the following forward LGQ query F A with the digraph represetation of Figure 4.2

FA(v1) root(vp) ~ child™ (vo; v3) ~ journalvs) A child® (vs; v,) A authas(v,) ~ child(vy; vy)
N namév,) N child(vs; vg) M title(vy) A child(vy; vs) A "dbi(vs):
FAYv.) root(vo) ~ child (vo; v2) » namév,) nextSibl (v,;v1) A namév;):

It is easyto seethat FA and A are equivalert. In the following, we proceedstep by
step with the rewriting of A, by rst identifying path formulas made out of one forward
and onereverseatom, and then rewriting them to forward path formulas (if possible). In
the following, we make use of a substitution s consisten with the query A and with the
tree instance.

Step 1. Werewrite at this stepchild” (vo; v1)” par(vi; v2) into child (vo; v2)” child(vz; vy).
Becausethe root node s(vp) can not be an authas-node s(v,), we further simplify it to
child” (vo; v2) » childvo;vi). The intuition behind this rewriting is the following: if the
authas-node s(v,) is the parernt of a namenode s(v,), which is a descendah of the root
node s(vp), then that s(v,) is alsoa descendan of the root s(vp) and hasa namenode child
s(v1). Then, A is rewritten into an equivalert query A; (A° remainsthe same)

Ai(v1) root(vo) A child (vo; Vo) A authas(v,) ~ child(v,; vi) A namév,) » : AYv,)
A pat (vo;v3) N journalvs) A child(vs; vs) ~ title(v,) ~ child(vs; vs) A 'db'(vs):

Step 2. Werewrite at this stepchild” (vo; Vo)™ par* (vo; v3) into child (vo; v3)” child” (vs; V)
child” (vo; v2) » pa* (vo;v3). In our case,s(Vp) is the root node, and becausethe root
does not have ancestors,the seconddisjunct is dropped. In the rst disjunct, a journal
node s(v3z) can not be the root node s(vp). Therefore, the rewritten formula remains
child” (vo; v3) ~ child” (v3;v2). The intuition is the following: if an authas-node s(v,) is a
descendan of the root node s(vo) and alsoa descendah of a journatnode s(vs), then that
journaknode lies on the path betweenthe root node and the authasnode. Then, A; is

4.1 Problem Description 51

rewritten into an equivalert query A, (A° remainsthe same)

As(vy) root(vp) ~ child” (vo; vs) A journalvs) A child” (vs; vo) A authas(v,) ~ childvs; vq)
A namévy) A 0 Avy) A child(vs; vg) A title(vs) A child(vy; vs) ~ 'db’(vs):

Step 3. A, is aforward query. It remainsto rewrite A%into an equivalert forward query.

We rewrite at this step child" (vo; v1)* prevSibl (vi; V) into child” (vo; v2)» nextSibl (vo; v1).

The intuition is the following: if a node s(v;) precedesa sibling node s(v,) that is a

descendan of the node s(vp), then s(v;) is a descendah of the node s(vp) and is followed
by the sibling s(v,). Then, A%is rewritten into the equivalert query FA°. O

Example4.1.2 Considerthe genealogicalree exampleof SectionZd and the query

G(v) root(vo) A child™ (vo; v) » man(v) * : Gy(v) ” childlv;vy) ~ aliveg(v)

G1(v) root(vp) ™ child™ (vo; v) ~ ((preqv; vi) ~ : Go(v) _ pa®* (v;vi)) A man(vy)
A childivy; vo) A alive(v,) _ par™ (v;vi) A womar(vy))

Go(v) root(vp) A child” (vo; V) A preqv;vi) A womar(vy) A child” (vi; v2) A man(vs)
A child(v,; v3) N alivevs):

specifying the Salier law for the successiorat the throne of a kingdom, as explained in
SectionZ2

Figure 4.3: Digraph represetation for the forward query F G equivalert to G
@ O

] ® ® ® |
o v, ® Vo ® Yo

+ +
)
Vv

Vg o—=0 V3

+ / \ * * * l *
man] ¥ oy @2 0oV @ v0 G OV
g! v, R

For the tree instance of Figure [Z2 represeting the genealogicaltree of John Il the
Good, this query selectsthe male personnamedCharlesVI 1. The digraph represetation

52 4. Source-to-source Query Transformation: From LGQ to Forward LGQ

of G is given in Example 342 The sameanswer can be selectedusing the following
forward LGQ query FG with the digraph represetation of Figure &3

FG(v) root(vp) ~ child” (vo; v) » man(v) ~ : FGy(v) ~ childv;v,) ~ alivgV)
FGi(v) root(vg) ” child (vo;vy) ™ child (vq;v) A womar(vy)_
root(vo) A child™ (vo; v¢) ~ child” (vq;v) » man(vy) ~ childvy; vo) A alivevy)
root(vp) ~ child™ (vo; v4) A nextSibl (va; vs) A child (vs;v) A : FGa(V)
A child (vg; v1) man(vy) ~ child(vy; vo) N alivgv,):
FG,(v) root(vp) ~ child™ (vo;vs) ™ child (v3;v) A nextSibl (va; v3) A child (va4; V1)
A womar(vy) A child” (vi; vo) A man(v,) A child(vy; v3) A alive(vs):

In the following, we highlight only the rewriting of G, into FG, (the rewriting of G,
into FG; is similar). We make use of a substitution s consistem with the query G,
and the tree instance. First, eat preqv;v;) atom is replacedby the equivalert formula
pa (v;vs) ™ prevSibl (vz;vs) ~ child (v4;v1). The query G, becomeg(in disjunctive normal
form)

GO(v) root(vp) ~ child" (vo;v) A par (v;vs) ~ prevSibl (vs;vs) A child (v4; V1)
A womar(vy) A child” (vi; v2) A man(v,) A child(vy; vs) A alive(vs):

Step 1. We rewrite the formula child” (vo;v) * pa (v;vs). Clearly, the nodess(vg), s(V),
and s(vs) lie on the samepath. Moreover, s(vo) appears before s(v) on this path, and
s(v3) can appear either before s(vp), or betweens(vg) and s(v), or can be exactly s(v).
The formula specifying all thesepossibilitiesis

child” (vo; v) A pa* (vo; v3) _ child (Vo; vs) A child” (vs;v) _ child™ (vo; V) * selfv; vs):

The rst disjunct is unsatis able becauses(vp) is the root node and there are no ancestorsof
the root node. The seconddisjunct becomeschild” (vo; v3)” child” (vs; v), becauses(vp) is the
root nodeand s(v3) is an alivenode. Concluding, the above formula becomeshild™ (vo; v3)*
child (vs;Vv), and G is rewritten into the equivalert query

GRv) root(vp) A child" (vo;vs) A child (va;v) A prevSibl (vs;v,) A child (va; Vi)
A womar(vy) A child” (vi; vo) A man(v,) A child(vy; v3) ~ alive(vs):

Step 2. The only reverseatom remainedis prevSibt (vs; v4), which is rewritten together
with child (vo; v3) into the formula child” (vo; v4) * nextSibl (va; v3), becausdf a node s(v,)
precedesa sibling node s(v3) that is a descendan of the node s(vp), then the node s(v,4)
is also a descendan of s(vp) and is followed by the sibling node s(vs). With this last
rewriting, G3°becomes G.. O

The goalof this chapter is to automatethe above processof nding anequivalert forward
queryto any LGQ query. Wedo this by making useof the theory of term rewriting systems.

4.2 A Taste of Term Rewriting Systems 53

4.2 A Taste of Term Rewriting Systems

Term rewriting systemsare widely usedas a model of computation to relate syntax and
semaitics. This sectionintroducesbasic notions on term rewriting systems[1€] necessary
to rewrite LGQ formulas.

Identities and Rewrite Rules

In order to expressidertities and rewritings of LGQ formulas, we de ne a language of
rewriting rules and idertities LGQ' , similar to LGQ. LGQ' hastwo kinds of variables:

variablesranging over LGQ formulas, written in upper case,e.g.,X,Y, Z,

variablesranging over LGQ variables, written in lower caseand underlined, e.g., X,
y, Z.

Recallthat the LGQ variablesare written in lower caseand not underlined, thus di erent
from LGQ' variables.

The predicatesof LGQ are function symbolsin LGQ' , and LGQ formulas are ground
terms (i.e., terms without LGQ' variables). Also, LGQ' hastwo binary predicates and
I, written in inx form. In the LGQ' termss tands! t,the term sis the left-hand
side, or simply Ihs, and the term t is the right-hand side, or simply rhs.

Example4.2.1 The LGQ' term X ~Y Y~ X isanidertity that expresseshe comnu-
tativit y property of the » LGQ predicate. The LGQ' term childx; y) " prevSibly; z) !
childx; z) * nextSib(z;y) speci es a rewriting for LGQ formulas. O

A LGQ' substitution is atotal mapping from LGQ' variablesto LGQ formulas or

mapsto the LGQ formula s;, or (2) fx; 7! sq;::1;%n 7! spg indicating that the LGQ'
variable x; mapsto the LGQ variables;. If mapsanLGQ' variableto an LGQ formula
or variable, then that LGQ formula or variable is the image of the LGQ' variable under .
If anLGQ' variable X (or ;) is not in the domainof ,then (X)= X (and (x;) = Xi);
if f (t1;ty) isanLGQ' term, then (f (t1;t2)) = f((t1); (t2).

A substitution is a matching substitution of a LGQ' term | to an LGQ formula t, if

(I) = t. Under a matching substitution, the instancesof Ihs and rhs of a rewrite rule are
LGQ formulas.

If u is the most generl unier of a set of terms, then any other unier v can be
expressedasv = uw, wherew is another substitution.

A term rewriting system (T;!)isa nite setofrewrite rulesand (possibly)idertities
onterms of T. If idertities are presen, then they sene to specify rewriting modulo these
identities, asdetailed in the following.

The next section proposesthree rewriting systems(LGQ' ,!) that cortain rewrite
ruleswith Ihs instancesequivalent to correspnding rhs instances. Theserewriting systems
can be usedto transform LGQ formulasinto equivalent forward LGQ formulas.

54 4. Source-to-source Query Transformation: From LGQ to Forward LGQ

Example4.2.2 The LGQ' rule child(x; y) " prevSibly; z) ! childx; z) * nextSib{z;y) can
be usedto rewrite the formula e; = childa;d) * childa;b) * prevSib{b;c) into the formula
e = childa;d) * childa;b) ® nextSib{c;b). Note that e; e,. O

A redex is an instance of the lhs of a rewrite rule under a matching substitution.
Contracting the redexmeansreplacingit with the correspnding instanceof the rhs of the
rule. The application of a rewrite rule lhs! rhsto an LGQ formula s meanscortracting
aredex (lhs) in s to the rhs instance (rhs), both under the matching substitution
The result of sud an application is written s[(rhs)= (Ihs)], and the ertire application is
written similar to arule: s! s[(rhs)= (lhs)]. A term s derives other term t, written
s ! t, if t can be obtained from s after a nite (possibly empty) sequenceof rewrites:
s! I t. In this case,we sa alsothat the term s is reducible (with respect to the
relation!). If thereis notermt sud that s! t, thensisirreducible If s! tandtis
irreducible, then t is a normal form of s, and we may write s! 't.

When dealingwith term rewriting systemsthere are (at least) two important questions
to be asked:

Termination: Is it always the casethat after nitely many rule applications an irre-
ducible term is reathed?

Conuence: If there are di erent ways of applying rules to a given term t, leading to
di erent derivedtermst; andt,, cant; andt, bejoined, i.e., canwe always nd acommon
term s that can be readed both from t; and t, by rule applications?

Both aforemenioned properties ensurethe existenceand uniquenessof normal forms.

Termination

A rewriting relation ! is terminating if there are no in nite derivations sy ! s; ! .
Terminating relations are also called wel-founded. By extension,a rewrite system(T;!),
whoserelation ! is terminating, is alsoterminating.

The termination problem for rewriting systemsis in generalundecidable,i.e., there
can not be a generalprocedurethat, given an arbitrary nite rewriting system, answers
\y es" if the systemterminates, and \no" otherwise. Howewer, it is useful to shawv that
a particular rewriting system terminates. The basic method to prove termination of a
rewriting system(T;!) isto embedit into another rewriting system(A; >) that is known
to terminate. This requiresa monotonemapping : T ! A, wheremonotonemeansthat
Ihs ! rhs implies (lhs) > (rhs). The most popular choice for termination proofs is
an embeddinginto (;>), which is known to terminate, becausethe > order on natural
numbers is well-founded.

Becausesomerewriting systemsneedmore complexorders, it is often usefulto build
them as lexicographic products of simpler ones. From a number n of strict orders>, i.e.,

2Recall that the order > on rational (and also real) numbersis not well-founded, becausethere can be
an in nitely descendingchain of rational nhumbers betweentwo rational numbers.

4.2 A Taste of Term Rewriting Systems 55

transitive and irre exiv e relations, one can build the lexicographicproduct > ;.., as
(X15::00Xn) 21 (Y225 Yn) o 9K (8 < KX = Vi) Xk >k Yk

Properties like strictness and termination carry over from ordersto their lexicographic
products.

A usefuland simple method for constructing terminating ordersis multisets (or bags),
i.e., setswith repeatedelemerts.

De nition 4.2.1. A multisetM overasetA isafunction M : Al . Intuitively, M (x)
is the numkber of copiesof x 2 A in M. M(A) denotethe setof all nite multisets over A.

We use standard set notation like fx;y;yg as an abbreviation of the function fx 7!
1,y 7! 2,z 7! Og over the setA = fx;y;zg.
Somebasic operations and relations on M(A) are:
Elemen : x2M, M(x)> 0.
Inclusion: M N, 8 2A:M(x) N(x).
Union : (M [N)(x) = M(x)+ N(x). _
Dierence: (M N)(X) = M(x) N(x), wherem nism nifm n, elseisO.
The order on multisets M over a nite setA can be derived from an order on A.

De nition 4.2.2 (Multiset Order). Givena strict order> on a setA, the correspnding
multiset order >, is de ned as follows:

M>pu N, 9X;5Y2MAA);; 86X M;N=(M X)[Y;82Y :9x2X :x>y:

Properties like strictnessand termination carry over from (A; >) to (M(A); > mul)-

Example 4.2.3 Considerthe multisets M = f8,1gand N = f7,7;1g. Then, M >, N
becauseN = (M X)[Y with X = f8gandY = f7;7g. Note that X and Y are not
uniquely determined: X = M andY = N do work heretoo. O

Throughout this chapter, we usestrict orderson terms derived from the order > ,,;; on
(nite) multisets over nite setsof natural numbers.
Con uence

De nition 4.2.3 (Joinable Terms). Two terms x and y are joinable for a relation ! ,
written x #y, i there existsa term z suchthatx! z .

De nition 4.2.4 (Conuence). A rewrite relation is conuent i terms are joinable
wheneverthey are derivablefrom a sameterm

yi o X! y2) vi#y,

Chedking con uencecanbe hard, becauset requiresto test the joinability of all possible
terms derivable from a sameterm. A strictly wealer variant of con uence, called local
con uence, can be, howewer, easierto ched.

56 4. Source-to-source Query Transformation: From LGQ to Forward LGQ

De nition 4.2.5 (Local conuence). A relation! is locally conuent i terms are
joinable wheneverthey are derivablein one stepfrom a sameterm

yi X! y2) vi#y,

A rewrite relation is locally con uent if (but not only if) no lhs unies with a non-
variable subterm (except itself) of any lhs, taking into accourt that variables appearing
in two rules (or in two instancesof the samerule) are always treated as disjoint. In cases
when the above requiremen is not ful lled, we get so-calledcritical pairs:

De nition 4.2.6 (Critical Pairs). If I ! r ands ! t are two rewrite rules (with
variablesmade distinct) and a most generl uni er of | and a non-variable subterm s°
of s, then the equation (t) = (s[(r)= (s9]), whee (r) hasreplacd (s9 (= (1)) in
(s), is a critical pair.
A nite rewrite systemhasa nite number of critical pairs. Local con uence can be
obtained alsoin the caseof existenceof critical pairs.

Theorem 4.2.1 ([[I6]). A rewrite relation is locally con uent i all its critical pairs are
joinable.

Con uence canbe reducedto local con uenceonly for rewrite relationsthat terminate.
Lemma 4.2.1 ([[1ZZ]). A termination relation is con uent if it is locally con uent.

We say alsothat the systemis con uent whenits relation is con uent.

Rewriting modulo A C-theory

The LGQ predicates”, _, and selfare assaiative and comnutative (AC). Sud properties
should be taken into accourt when applying rewrite rules.

Example4.2.4 The rewrite rule

childx;y) * prevSibly; z) ! child(x; z) * nextSib(z; y)

can rewrite not only childa;b) * prevSib{b;c) into childa;c) * nextSib{(c;b), but also, as
highly desired,prevSib{b;c) * f ~ childa;b) into nextSib{c;b) * childa;c) ™ f. Note that a
syntactical substitution fails in the latter case.What is neededis an equational matching
that takesinto accourt the AC properties of the * predicate. O

The AC properties of LGQ predicates raise serious problems in rewriting systems,
becausesudt properties can not be oriented into terminating rewrite rules.

Example4.2.5 Considertherule X 2 Y I Y ~ X expressingthe commutativit y property
of the ® connective. The repeatedapplication of this rule to the LGQ formula child(a;b) »
prevSib{b;c) yields an in nite number of cortractions

childa;b) prevSib{b;c) ! prevSib{b;c) * childa;b) ! childa;b)~ prevSib{b;c) !

4.3 Rewrite Rules preserving LGQ Equiv alence 57

A commontechnique to accommalate AC propertiesin the rewriting processis to con-
sider rewriting modulo the AC-theory. More speci cally, this chapter considersrewriting
systemscortaining the setAC of idertities expressinghe commutativit y and assaiativity
propertiesof ~, _, andself(2 F°[R):

XAY YAX XA(YANZ) (XAY)NZ
X_Y Y_X X _(Y_2Z) (X_Y)_z
sel{x;y) sel{y;x) sel(x;y)* (y;2) sel{x;y)"* (X;2)

For the uni cation of terms, the syntactic uni cation doesnot su ce anymore and uni -
cation modulo AC-equations(or simply AC-uni cation) hasto be considered. Also, AC
matching substitutions must be usedto detect applicability of rules.

Seeral important notions applicable to syntactical rewriting have to be reconsidered
now in the light of rewriting modulo an equationaltheory. Let us considerthe \problem-
atic" identities (like AC-identities) of a rewriting systemseparatedin the set E from the
rules R. This givesriseto a newrelation ! g-¢, which is de ned on equivalenceclassesof
terms ([s] . is the classof all terms idertical modulo E):

[S] £ ! Rr=E [t] E QSQ,tOZS E SO! Rto g t

In the cortext of rewriting modulo an equational theory E (or simply E-rewriting), eath
rewrite step involves E-matching, i.e., matching modulo ¢. Also, the critical pair com-
putation involvesE -uni cation. Two terms s andt are joinable modulo E, written s #¢ t,
if st s% gt% t.

AC-matching and AC-uni cation are NP-completein general:the number of substitu-
tions (uni ers) for any two terms canbe exponertial in the sizeof the terms, see,e.g.,[103.
The LGQ' rewrite rules of this chapter ensurea polynomial upper bound to the AC-
matching, becausehey restrict sewerly the matchings of their variables. Sectiond.3 details
on this issue.

4.3 Rewrite Rules preserving LGQ Equiv alence

This sectionintroducesequivalence-preservingrewrite) rules of reverseand forward for-
mulas. Theserules are used later in Sectiond4 to rewrite LGQ formulas into equiva-
lent forward LGQ formulas by repeatedly cortracting the formulas until a normal form is
readed.

4.3.1 Rules adding single-join DA G-Structure

This section considersa simple yet powerful equivalence-preservingule of reversebinary
atoms and forward formulas. The lhs and rhs of this rule are also expressiblein XPath
syrntax, as consideredin our previous work [128. Basedon this rule, SectionE.4 shovs
how any LGQ formula can be rewritten into an equivalent LGQ forward formula, where

58 4. Source-to-source Query Transformation: From LGQ to Forward LGQ

ead reverseatom in the initial formula inducesa multi-sink variable in the rewritten LGQ
formula.

Lemma 4.3.1 (Equiv alence-preserving rule adding single-join DA G-Structure).
Applying the rewrite rule

x;y) ! (y;x) child (z;y) ~ root(z) (4.1)

to an LGQ formula e, which contains a reverse -atom, yieldsan LGQ formulat equivalent
to s, whee z is a freshLGQ variablein t.

Proof. For an instancel ! r of the above rule under a substitution = fx 7! x;y 7! yg,
weshovthat (1)1 r,and(2)s s[r=l]. -

The rst part of the proof follows from the obsenation that all nodesin the tree are
descendats of the root. Then,

LFJ (Gy)K) =ftjt2 ; (t(x);t(y)g

=ftjt2 ; (t(y);t(x)); child (root(t(x)); t(y))g
ftjit2 5 Ht(y);t(x));child (z;t(y)); z = root(t(x))g
LF J (y;x)~ child (z;y) * root(z)K):

The secondpart of the proof follows from Proposition 3337, with the condition that
the subformula of s obtained by removing | or r doesnot cortain variablesappearingonly
in r, respectively |, and not in the other one. Indeed, the only new variable appearingin
r is the freshvariable z. O

Remark 4.3.1 The |Ihs and rhs of Rule () can be also expressedusing XPath extended
with the identit y-basedequality ==. Let P be a rule variable standing for an XPath
relative formula, N and M nodetest holders (rule variables), a, a forward axis, a,, a
reverseaxis, and h,, the symmetrical axisto a,,. Cf. [12§,

=P=g,::N=a,::M | =descendartM [b,::N ===P=g,::N]
Plan::M]! PJ[descendarntM =k, ::node() ==self: node()]

Arguably, the above two equivalencesin XPath are harder to graspthan Rule (4.1) ex-
pressedin LGQ' : In XPath, a location step, made out of an axis and a nodetest, is an
atomic construct, and Iters are enclosedby square brackets. Therefore, both casesof
reversestepsinside and outside Iters have to be consideredin XPath. In LGQ, howeer,
the formulas correspnding to XPath Iters are not explicitly marked, and the nodetest
predicatesare not necessaryfor the rule and thereforenot carried over. O

Example 4.3.1 Considerthe journal archive exampleof Section 2.2 and the tree instance
of Figure 2.1 The LGQ tree query

Q(v3) root(vo) M child(vg; v1) A child(vy; vo) N par(vs; vs) N journalvy) A edita(vs,)

4.3 Rewrite Rules preserving LGQ Equiv alence 59

selectsthe parernt node of an edita node that is child of a journalnode, which is in its turn
a child node of the root. For the given tree instance,Q; selectsthe journalnode.

According to Rule (4.1) and Proposition 3.3.1 Q is equivalert to

FQ(v3) root(vp) ~ child(vo; v1) ~ child(vy; vo) A child(va; v2) A child” (v3; vs) ~ root(v3)
A journalvy) N editar(vy):

For Q there is an equivalert XPath query
[child::journal/child::edita/parent::nade():
For F Q there is only an equivalent XPath query with equality basedon node-iderit y:
/descendant::nde()[child::edito ==/child::journal/child::edita]

O

There is an order > {7, betweenan LGQ formula s and the formula t obtained by
applying Rule (4.1) to s. Recallfrom Section3.7 that the order > {7 is derived from the
multiset order >y by s>{7t, type€®(s) >mu type(t).

Prop osition 4.3.1 (>7.-Decrease). An application of Rule (4.1) to an LGQ formula

s containing a redex of that rule yields an LGQ formula t that has a smaller type factor

. rev
thans: s>{7 t.

Proof. Let = fx 7! x;y 7! yg. We considerthere are n reversebinary atomsin s. The
reversetype factor for s is

Let iy bethe encaling of the existenceof that reverse -atomin type®'(s) (9% :1 k n).
Recall that for two multisets A; B 2 M(N), the strict order >, is de ned by

A>.uB, 9C;D2M(N):;6 X AB=(A C)[D;8d2D:9c2C:c>d:
As ensuredby Rule (4.1), the reverse -atom is removed. Hence,

typd®(t) = (typd®'(s) C)[D;C=fixg;D =) typ€®(s)>mu type*'(t)

rev .
) s >type 8

60 4. Source-to-source Query Transformation: From LGQ to Forward LGQ

4.3.2 Rules preserving Tree-Structure

This sectiongivesequivalence-preservingulesfor paths of a forward binary atom followed
by areversebinary atom, by systematicallyexploiting ead possibleconmbination of forward
binary atoms with fstChild child child®, nextSib] and nextSibf predicates,and reverse
binary atoms with par, pa*, prevSib] and prevSibl predicates. All in all, there are 20
sud rules. Note that the combinations of the forward selfatom and the reverseatoms are
already coveredin built-in identities of rewriting systems,cf. Section4.2, and thereforeare
not neededanymore in the rules. The rest of reverseand forward atoms can be safelyleft
out of discussion,as explainedfurther in Lemma4.3.2

These rules can be formulated also in XPath syntax, as consideredin our previous
work [12§. Basedon theserules, Section4.4 shovs how any LGQ formula can be rewrit-
ten into an equivalent forward LGQ formula with no more multi-sink variables than in
the initial formula, thus the equivalert forward formula does not have additional graph
structure.

Lemma 4.3.2 (foll, preq child, nextSibl, pa , prevSibl Elimination). Consider 2
f child par; nextSibj prevSiby, and a, b freshvariables. Then, the application of the each of
following rewrite rules to an LGQ formula yields an equivalentLGQ formula.

foll(x;y) ! par (x;a)~ nextSibf (a;b) ~ child (b;y) (4.2)
preqx;y) ! pa (x;a)”* prevSibl (a;b) ~ child (b;y) (4.3)
xy) (T (xy) _sellx;y)): (4.4)

Proof. The rst two rulesfollow directly from the de nitions of the predicatesfoll and preg
and the last rule from the de nition of re exiv e transitiv e closureof binary predicates. [

Lemma 4.3.3 (Equiv alence-preserving rules preserving tree-structure). Applying
each of the rewrite rules of Figure 4.4 to an LGQ formula s, which contains a path of the
form 1(X;y) ™ 2(y;z) with ; a forward predicate and , a reversepredicate, yields an
equivalentLGQ formula t.

Proof. The proofsfor all rules are given in Appendix. O

Remark 4.3.2 The Ihs and rhs of Rules(4.5) through (4.249) involving predicatesthat have
correspnding XPath axescan be also expressedusing XPath. Let N and M be nodetest
holders(rule variables). Cf. [12§, the Rule (4.7) canthen be expresseds

descendant::N/p@&nt::M! descendanteself::N[child::M]
descendant::N[pant::M]! descendantseself::N/child::M

Note there are two rules necessaryin XPath to expressRule (4.7), for the caseof reverse
stepsinside and outside Iters. Both rules are similar and the only di erence consistsin
the explicit syntactical marking with squarebradkets of XPath lters. O

4.3 Rewrite Rules preserving LGQ Equiv alence 61

fstChildx;y) * par(y;z) ! sel{x; z) » fstChildz;y) (4.5)
childx;y) * par(y;z) ! sel{x;z) ~ childz;y) (4.6)
child” (x;y) * pa(y;z) ! child (x;z) ~ childz;y) (4.7)
nextSib(x;y) * par(y;z) ! nextSib{x;y) * pa(x;z) (4.8)
nextSibl (x;y) * pa(y;z) ! nextSibl (x;y) * pa(x; z) (4.9)
fstChildx;y) » pa® (y;z) ! (fstChildx;y) * pa™ (x;2) (4.10)

_ fstChildx;y) * sel{x; z))
childx;y) * pa®(y;z) ! (childx;y) * pa™ (x;z) (4.11)

_ childx;y) * sel{x; z))

child” (x;y) * pa* (y;z) ! (child" (x;y) * pa* (x;2) (4.12)

_ child (x;2) ~ child" (z;y))
nextSib{x;y) * pa*(y;z) ! nextSib{x;y) " pa* (x;z) (4.13)
nextSibl (x;y) * pa® (y;z) ! nextSibl (x;y) » pa” (x;2) (4.14)
fstChildx;y) * prevSibly;z) ! ? (4.15)
childx;y) * prevSibly; z) ! child(x; z) * nextSib(z;y) (4.16)
child” (x;y) ~ prevSibly;z) ! child" (x;z) * nextSib{z;y) (4.17)
nextSib(x;y) * prevSibly;z) ! sel{x;z) * nextSib{z;y) (4.18)
nextSibl (X;y) " prevSibly;z) ! nextSibl(x;z) * nextSib{(z;y) (4.19)
fstChildx;y) ~ prevSibl (y;z) ! ? (4.20)
childx;y) ~ prevSibl (y;z) ! childx; z) * nextSibl (z;y) (4.21)
child” (x;y) » prevSibl (y;z) ! child" (x;z) » nextSibl (z;y) (4.22)
nextSib(x;y) ~ prevSibl (y;z) ! (nextSib(x;y) ~ prevSibl (x; z) (4.23)

_ nextSib(x;y) * sel{x; z))
nextSibf (x;y) » prevSibl (y;z) ! (nextSibf (x;y) * prevSibl (x; z) (4.24)
_ nextSibl(x; z) * nextSibl (z;y))

Figure 4.4: Equivalence-preservingules for paths of forward and reverseatoms

62 4. Source-to-source Query Transformation: From LGQ to Forward LGQ

As depicted in Figure 4.4, the interactions of forward (;) and reverse(,) atoms of
somerules behare similarly. In order to characterizethem more compactly, we de ne six
interaction classes.The classi cation of the rulesdependson the predicateclassesnvolved
in thoserules, asshavn in Figure 4.5. Characteristicsof predicate classesommonto both
atoms are factored out in the name of the interaction class, e.g., the interaction class
H/V(F,R)* standsfor (HF ,HR")[(VF",VR"), which cortains rules where both forward
and reverseatoms have transitiv e closurepredicatesthat are either vertical or horizortal.

(f;r) f(x;y)*r(y;2)! Rules
(f fstChildy, HR?) ? (4.19,(4.20
(fehild child g HR) f(x;2)~r (zy) (4.16,(4.19,(4.2D,(4.29
(HF,VRY f(xy) " r(x;2) (4.8),(4.9,(4.13,(4.19
H/V(F,R™) fxy)rr(x;z)_ (4.10,(4.19,(4.23

f(x;y) " selfx;z))
HV(F*,R) 2~ r (zy) (4.5.(4.6,(4.7,(4.18,(4.19
H/V(F,R)™ fxy~rrixz_ (412,(4.29

fx;2) " r Yzy))
(f;£9 2 f(child sel); (fstChild selj; (child" ; child); (nextSibj sell; (nextSibl ; nextSibl)g

Figure 4.5: Characterization of atom interactions of rules from Figure 4.4

Example 4.3.2 (pa). Considerthe journal archive example of Section 2.2 and the tree
instanceof Figure 2.1 The LGQ tree formula

Q1(v3) root(vg) ~ childvp; v1) N childvy; vo) N par(vz; vs) A journalvy) N editar(vo)

selectsthe parernt node of an edita node that is child of a journalnode, which is in its turn
a child node of the root. For the given tree, Q; selectsthe journalnode.
According to Rule (4.6) and Proposition 3.3.1, Q; is equivalert to

FQ1(v3) root(vp) * child(vp; v1) ~ child(vy; vo) N selfvy; vs) A journalvy) ~ edita(vz)
or mare compact,by replacingall occurence®f v, by v
F QI(vs) root(vg) ~ child(vp; v3) * child(vs; v,) A journalvs) * edita(v,):

Note there are equivalent XPath queriesfor the above LGQ trees.
Considernow the sametree instanceand the LGQ DAG formula

Q,(v3) root(vg) A child” (vo;vi) A child” (vo; v3) A nextSib{vy; vo) » par(vo; Vi)
N namédvy) N namgv,) N authas(vs)

4.3 Rewrite Rules preserving LGQ Equiv alence 63

that selectsthe authas nodes descendats of the root and parerts of name nodes that
immediately follow a namesibling node descendan of the root. For the given tree, Q,
selectsthe authas node.
According to Rule (4.8) and Proposition 3.3.1 Q is equivalert to
FQo(vs) root(vp) ~ child” (vo;vi) ” child” (vo; va) A nextSib{vy; Vo) N par(vy;Vs)
N namdvy) N namdv,) N authas(vs)
becausethe parert of a sibling node (v,) of a node (v;) is alsoa parernt of that node (v;).
Going further, Rule (4.7) can be applied now and we get
F Q9(vs) root(vp) ~ child (vo; vs) A child” (vo; v3) A nextSib{vy; v,) ~ child(vs; v4)
N namdvy) namév,) N authas(vs)
becausethe parent of a node descendan of the root is either the root or a descendan of
the root, both having a child. Also, becausebetweenvy and v; hold at the sametime the
relation child and a subsetof it child”, F Q3 can be further compactedto
FQvs) root(vo) ~ child” (vo; vs) A nextSib{vy;v,) ~ child(vs; vi)
N namédv,;) N namév,) N authas(vs)
Note that FQ%is an LGQ path and has a correspnding XPath query, whereasits
equivalent Q, is an LGQ DAG and hasno correspnding XPath query.
Sud repeated redex detections and cortractions constitute the basis of a rewriting

systemfor LGQ formulas, as proposednext in Section4.4.
]

Example 4.3.3 (pa™). Considerthe journal archive example of Section 2.2 and the tree
instanceof Figure 2.1 The LGQ path formula
Qz(v2) root(vp) ~ child™ (vo; v1) A nextSib{vy; Vo) A pa’ (vo;vs) » namédv,) * namév,)

selectsthe ancestorsof namenodesthat follow namesibling nodesdescendats of the root.
For the giventree, Q; selectsthe nodesauthas, journal and the root.
According to Rule (4.13 and Proposition 3.3.1, Qs is equivalert to

F Qs(Vv2) root(vp) ~ child™ (vo; v1) A nextSib{vy; vo) A pa® (vi;vs) » namédv,) * namev,)
becausean ancestorv; of a sibling node v, of a node v; is also an ancestorof that node
vi. Accordingto Rule (4.12 and Proposition 3.3.1, F Qg3 is equivalert to
FQ3(v2) root(vp) » nextSib{vy; v,) * namdv,) * namev;)

A (child™ (vo; vi) N pa™ (vo; v3) _ child (vo; vs) A child' (vs;v1))

or mare compact(consideringhat root(vg) » pa® (vo;vs) ! ?)
FQ3{v,) root(vo) nextSib{vy;v,) * child (vo; va) A child” (vz;vi) » namévsy) » namév,):
Note there are equivalert XPath queriesfor the LGQ paths Qs, FQz, and FQY? and also

for the LGQ tree F Q3.
]

64 4. Source-to-source Query Transformation: From LGQ to Forward LGQ

Example4.3.4(prevSibland prevSibl). Considerthe journal archive exampleof Section2.2
and the tree instanceof Figure 2.1 and the LGQ tree

Qa4(Vv3) root(vp) ~ child” (vo; v1) * prevSib{vy; v,) ~ prevSibl (vi;vs) A price(vy) A authas(v,)

that selectsthe nodesthat precedeprice sibling nodesthat are immediately precededby
an authas sibling node. For the given tree, Q4 selectsthe nodesauthas, edita and title.
According to Rule (4.17) and Proposition 3.3.1 Q4 is equivalert to

FQa(vs) root(vg) ~ child (vo; Vo) A nextSib{vy; vi) ~ prevSibl (vq;vs) A priceg(vi) A authas(v,)

becausea preceding sibling node v, of a descendan node v; from another node vq is
a descendan node of vy that has a following sibling v,. According to Rule (4.23 and
Proposition 3.3.1, F Q4 is equivalert to

FQJ(vs) root(vo) child” (vo; vo) A pricg(vy) A authas(v,)
N (nextSib{v,; v1) A prevSibl (vo; v3) _ nextSib{vy; vi) » sel{v,; v3))

becausenodesvs, which precedesiblingsv, that have immediate next siblingsv;,, are either
the siblings v, or precedethem. O

Prop erties of Rules (4.5 through (4.24

The applications of Rules (4.5) through (4.24 (1) presene the variablesfrom the initial
formula, (2) do not transform 1-sink variablesinto multi-sink variables,and (3) ensurean
order betweenLGQ formulas and their cortractions. The secondproperty is very useful,
becausethe applications of sud rules can newer transform a tree formula into a DAG
formula, or into a graph with cycles. The third property guararteesthat LGQ formulas
can not be rewritten endlesslythus the rewriting terminates.

Prop osition 4.3.2 (V ariable, variable type and connections preserv ation). The
application of each rule of Lemma 4.3.3 to an LGQ formula s does not introduce fresh
variables, it preservesthe sink-arity of variables, and also the connections of non-sink
variables.

no freshvariablesare introduced

Vars(s) Vars(t)
non-sinkvariablesremainnon-sink

8x;y;z2 Vars(s) : X6 sy , ZB Y
connectionof non-sinkvariablesare preserved

8x;y;z2Vars(s): z6 sX; sy , XY

no multi-sink variablesremainno multi-sink
8y; X1, X2, X3 x5 2 Vars(s) 1 x1 6 Xx2; X386 xuX16 sy;XaB sy , XIBsy;xI6 sy:

4.3 Rewrite Rules preserving LGQ Equiv alence 65

Proof. This can be easily seenby inspecting all interaction classesf Figure 4.5. O

The application of ead rule of Lemma4.3.3ensuresan order betweenthe LGQ formulas
corntaining redexesof that rule and their cortractions. This order is built up from simpler
orderson LGQ formulas, asde ned next.

De nition 4.3.1 (>{/5e pos)- Given the strict order >y on the multisets f type *¥(e) |
e2 LGQg and on fpos®(e) j e 2 LGQg, the lexicographic product > 7. s Of >myu with
itself on LGQ LGQ is de ned by

S> (e post+ YPE(S) >mu type®(t) or type®/(s) = type™(t); pos/(s) > mu pos®(t):

Because>n is strict order, sois >{%. ., cf. Section4.2

Prop osition 4.3.3 (>{pe pos-D€Crease). An application of any rule of Lemma4.3.3 to
an LGQ formula s containing a redex of that rule yields an LGQ formula t that has a
smaler reversefactor than s: s >{*. . t.

Proof. Let = fx 7! x;y 7' y;z7! zg, and | ! r an instanceof a rule of Lemma 4.3.3
under the substitution .

The ordering property can be shavn by inspecting all six interaction classesof Fig-
ure 4.5 For all classes,the interaction is speci ed within disjuncts, so we can safely
consideronly onedisjunct in s that contains |, and the other disjuncts are not changed.

Let x be the non-sink variable in both | and r. We considerthere are n reversebinary
atomsin s sud that root; X ; ps v whereroot is a non-sink variable, p is a connection
sequencehat endswith a reversepredicate, and v is a variable. The multiset of these
lengthsjpj is denotedby fps;:::;png, and a subsetfp;;:::;pmg (M n) of them are the
lengths of connectionsfrom non-sink variables via the variable z. The rest of position-
sets of other reversebinary atoms is denoted by Rest;. The types of reverse predicates

multiset of the types of the rest of reverse predicatesexistert in s. Then, the reverse
factors are

Let iy be the encaling of the predicater from | in type®(s) (9k:1 k n).
Recall that for two multisets A; B 2 M(), the strict order >, is de ned by

A>. B, 9CCD2M():;6C AB=(A C)[D;8d2D:9c2C:c> d:
Classedf fstChild child child” g,HR?), H/V(F?,R). The reversepredicater is removed.

type®(t) = (type®(s) C)[D;C="fixgD =;) typd®(s)>mu type(t)

rev .
) S >type pos t

66 4. Source-to-source Query Transformation: From LGQ to Forward LGQ

Class(HF,VR). The lengths of the m connectionsof non-sink variablesto reverse predi-
catesvia the variable z are decreasedyy one, the connectionsvia y do not change(y has
the sameconnectionto x), and x remainsnon-sink. Then,

type ®'(t) = type®'(s); pos®'(t) = (pos®(s) C)[D;
C=fpjl j mgD=fpg 1j1 j mg
) typ€®'(s) = type(t); pos®'(S) > mu POS(1)) S>{7e post:

ClasseH/V(F,R"), H/V(F,R)". In this caser = ry_r,. The lengthsof the m connections
of non-sink variables to reverse predicatesvia the variable z are decreasedby one, the
connectionsvia y did not change. Note that the number of connectionsvia x is doubled.
Howewer, in eat createddisjunct the position factor is decreasedasin the previouscase.
Moreover, in the seconddisjunct, there is one reverse predicate less. Then, it can be
cheded similarly to previouscaseshat

type®'(s) = type®’(e” r1); pos(s) >mu POS®(€” 1)) S>ife pos € M1
type () > mu type€®(€” r2)) S>{e pos €7 I2:

The order >{%. .5 holds alsobetweennorm(s) and norm(t), because
type(s) > mu type®(s)) type*(norm(s)) > mu type™(norm(t))
Pos*(s) > mu Pos®(s)) pos®(norm(s)) >mu Pos*(norm(t)):

Both implications hold becausethe rule applications do not change the reverse factors
Rest; and Rest,, which refer also to all reverse predicatesthat appear oncein s and t
and are not readable from x, y, or z, and appear alsoin se\eral disjuncts of s and t after
normalization. The reversefactors of all other reverseatoms are already consideredfor
S> [bos . O

Lemma4.3.3givessomerules(i.e., (4.10, (4.11), (4.12, (4.23, and (4.29) whereeath
rhs hasmoreatomsthan its Ihs: jlhsj > jrhsj. This growing is not ad-hoc, andin fact, for a
given lhs onecan not give a rule with a size-smallerhs that presenesthe properties given
in Propositions4.3.2and 4.3.3 This meansthat ead rule of Lemma4.3.3is size-minimal.
There exists, of course,other rulesthan thoseof Lemma4.3.3 whererhs hasthe sizeof its
Ihs or less,but theserules do not presene all the aforemenioned properties. For example,
an adaptation of Rule 4.1 soasto syntactically match the Ihs of rulesfrom Lemma4.3.3is:
fox;y)2r(y;2) ! f(x;y)”r Y(z;y). In this case,the reversepredicater from the lhs is
replacedby its forward oner * in the rhs, but instancesof y becomemulti-sink variables.

Theorem 4.3.1 (Size-minimalit y of rules under prop erty set). Rules (4.5 through
(4.24 are size-minimalunder the setof properties of Propositions 4.3.2and 4.3.3. Further-
more, any other property-preservingrule is an extensionof one Rule (4.5) through (4.24)
with redundant formulas.

4.3 Rewrite Rules preserving LGQ Equiv alence 67

Proof. The redexesof Rules (4.10, (4.1)), (4.12, (4.23, and (4.24) with interactions of
type H/V(F,R") and H/V(F,R) ", are the only onesthat have the rhs size-biggerthan the
Ihs. More speci cally, the rhs has double the amourt of binary atoms of the Ihs. For the
other rules, the instancesof the lhs and rhs have the samesize or less, and this sizeis
minimal, becauseall three variablesthat appearin rhs canbe interconnectedwith at least
two binary atoms.

We consideran instance of the Rule (4.12 under the substitution s = fx 7! x;y 7!
y;z 7! zg with the Ihs | and the rhsr (the caseof (4.24 is dual, and the others similar)

child" (x;y) ~ pa® (y;z) child (x;y) * pa* (x;z) _ child (x; z) ~ child” (z;y)

Note that the sizeof | = s(Ihs) (r = s(rhs)) isthe sizeof Ihs (rhs), becausdahe substitution
s instantiates here LGQ' variablesto LGQ variables.

We conduct a proof by cortradiction, i.e., we assumethere exists a right-hand sider’
with fewer binary atomsthan r.

The left-hand side | of the rule instanceis a disjunct of only vertical formulas, thus
the nodesmatched by all three variablesare along a path sud that the node s(y) hasas
ancestorsnodess(x) and s(z) in any order. Hence,there canbe two possibilitiesto arrange
the matched nodesalong the path (from root to leaf):

(s(x); s(2);s(y)) and(s(z); s(x);s(y))

r' presenesall three variables, henceit hasat least two binary atoms. The binary pred-
icates on the imagesof variables must be only vertical alsoin r', i.e., fstChild child, par,
their transitive and re exiv e transitiv e closures.

We argue next that only closureformulas can be usedin r'. Indeed, the di erence of
tree levels of nodesmatched by all three variablesvariesfrom one (in caseof fstChildand
child and the maximum depth of the tree instance. This depth is not known beforehand,
and therefore also the number of child (and also fstChild and par) predicatesnecessaryto
relate the nodess(x), s(z), and s(y).

Now, r' could be child® (x; z)” child" (z;y), which presenesthe properties,but LF Jr K
LF JK thusit is not sucient. r' cannot be child” (z;x) ~ child (x; y) becauset doesnot
presene the non-sinktype of x. It canbe seenthat any other conbination of two atoms
with vertical closurepredicatesdoesnot su ce, becausea' is not equivalert to |, and even
more becausesomeproperties are evertually invalidated.

Therefore,r' hassizebiggerthan |I.

Adding athird vertical closureatomto r' impliesthat either a DAG, atree, or a path is
created. For the DAG case,either eat variable appearsas sourceand sink (and then x is
not anymore non-sink), or onevariable becomesamulti-sink (which invalidates a property).
For the tree case,the properties are satis ed, but all three variables must not necessarily
match along a path (contradicts the semartics). For the path case,the new (third) added
atom is a selfatom, which makesits addition useless.A disjunction of disjuncts can not
be createdwith three binary atoms, becausesad disjunct must cortain all three variables,
henceminimum two binary atoms.

68 4. Source-to-source Query Transformation: From LGQ to Forward LGQ

Therefore,r' hasat leastthe sizeof r, which concludesthe rst part of the proof. We
shonv now that r' must include rhs.

Adding a fourth binary atom with a vertical closurepredicateto r' derives all cases
of the previous step (which are all unsatisfactory) and the caseof a disjunction of two
disjuncts, eat with two binary atoms with vertical closurepredicates:r'= r; _r,. Ead
predicate encales one of the two possiblecasesto have the nodes matched by the vari-
ables aligned along a path. For the rst case(x;z;y), only 1(Xx;z) * 2(z;y) (with

1; 2 2 fchild ;child g) presenes the properties. For the secondcase(z;x;y), only

3(X;2) N 4(x;y) (with 32 fpa*;pa gand 4 2 fchild ;child g) presenesthe proper-
ties. Howeer, the following predicateshold (seel): child (x;y) and child” (z;y). The only
remainedpossibilitiesfor r' are:

Casel: child” (x; z) ~ child” (z;y) _ pa™ (x; z) ~ child” (x;y)
Case?2: child (x; z) ~ child” (z;y) _ par (x;z) ~ child" (x;y)
Case3: child (x; z) ~ child (z;y) _ pa™ (x; z) ~ child” (x;y)
Case4: child” (x; z) child” (z;y) _ pa (x;z) ~ child’ (x;y)

The third caseexpressegxactlyr. The rst casedoesnot cover the possibility of x = z and
is excluded. The secondcasecoversthe aforemetioned possibility in both disjuncts, hence
redundartly, and thereforeextendsr. The fourth r' is equivalert to r, but the possibility
X = z appearswith the reverseatom pa (x; z) (rather than with the forward atom). In

this case,the property >, ,,-decreasds violated:

type(r > mu type(l)) r0>trfr\3/e pos |

r' can consistof r and new atoms that keepit still equivalert to I, e.g., by adding an
already existing formula. Someof these extensionsare subject to duplicate elimination
and navigation compaction,asformalizedin Lemma4.3.6 O

4.3.3 Rules removing DA G-Structure

This section considersan equivalence-preservingule of simple forward DAG formulas
made out of two binary atoms having the samesink variable, and path formulas created
by replacingone of the two binary atoms by its reverse. Basedon this rule and other rules
of this section, Section4.4 shavs how any LGQ formula can be rewritten to an equivalert
forward LGQ forest formula.

Lemma 4.3.4 (Rule removing DA G-Structure). Applying the rewrite rule
fwdi(x;y) » fwdx(z;y) ! fwdi(x;y) * fwd, 1(X; 2): (4.25)

to an LGQ formula s yields an equivalentLGQ formula t.

4.3 Rewrite Rules preserving LGQ Equiv alence 69

Proof. For aninstancel ! r of the above rule under a substitution = fx 7! x;y 7! yg,
we shav that (1)1 r,and(2)s s[r=l].
The rst part of the proof follows from the obsenation that (X;y) Yy; x), for

any LGQ binary predicate . Then,
LF J wdi(x; y) » fwda(z;y)K) = LF Jf wdy(x;y) * fwd, *(y; 2)K):

The secondpart of the proof follows from Proposition 3.3.1, with the condition that the
subfornmulas of s and t obtained by removing |, respectively r, do not cortain variables
appearing only in r, respectively |, and not in the other one. Indeed, both | and r have
the samevariables. O

Remark 4.3.3 The rhs of Rule (4.25 can not be expressedn XPath, even extendedwith

the idertity-basedequality ==: turning the formula f wdx(z;y) into fwdzl(x; z) would
meanin XPath to loosethe implicit context node correspnding to the LGQ variablesthat
are instancesof z. O

Example 4.3.5 Considerthe journal archive exampleof Section 2.2 and the tree instance
of Figure 2.1 The LGQ DAG formula

Qs(v3) root(vp) ™ child(vp; vi) ~ child(vy; vo) A child(vs; v,) » journalv;) ~ edita(v,)

that selectsthe parert node of an edita node that is child of a journalnode, which isin its
turn a child node of the root. For the given tree, Qs selectsthe journalnode.
According to Rule (4.1) and Proposition 3.3.1 Qs is equivalert to

F Qs(Vv3) root(vg) M child(vg; v1) A child(vy; vo) N par(vs; vs) A journalvy) A edita(vy):

For F Qs there is an equivalert XPath query, but for Qs there is only an equivalert XPath
qguery with equality basedon node-idenity (==).
0

The application of Rule (4.25 ensuresthat the LGQ formulas cortaining instancesof
the Ihs of that rule have a greater DAG factor than the result of sud a rule application.

Prop osition 4.3.4 (>fya§e-Decrease). An application of Rule (4.29 to an LGQ formula

s containing a redex of that rule yields an LGQ formula t that has a smaller type factor

. dag
thans: s> 5 t.

Proof. Let = fx7! x;y 7!y;z7! zg. We considerthe DAG type factor for s
type®d(s) = fiy;::5i,0;81 j niij> L

Letix (9k : 1 k n) bethe forward sink-arity of y in s (i.e., the number of forward
binary atomsthat have y assink and that appearin a disjunct of s).

As ensuredby Rule (4.295, the variablesx and z have the sameforward sink-arities in
t and s. Also, the forward sink-arity i, of y is decreasedy onein t. Thus,if y is forward

70 4. Source-to-source Query Transformation: From LGQ to Forward LGQ

2-sinkin s (i.e., iy = 2), then it is not anymore forward multi-sink in t, otherwisey remains
forward multi-sink, but with decreasedorward sink-arity.
Recallthat for two multisets A; B 2 M(), the strict order >,y is de ned by

A>.uB, 9CD2M():;6C A"B=(A C)[D~"8d2D:9c2C:.c>d:
Then, we get
. H e 2
type™(t) = (typd"(s) C)[DAC=figD= = '“= %
ik 1 ,otherwise
) type(s) > my type®d(t)) s>Ft:

ty pe

4.3.4 Rules for LGQ Normalization

This sectiondescrikes basicrules for bringing LGQ formulas in disjunctive normal form,
where additionally all uselesparerthesesare dropped.

Lemma 4.3.5 (Rules for DNF Normalization). The application of any of the following
rulesto an LGQ formula s yields an equivalentLGQ formula t.

XA(Y _Z)! XAY_XAZ (4.26)
X _(Y_2Z)! X _Y_zZ (4.27)
(YAZ)! YAZ: (4.28)

Proof. The rst rule is dueto the distributivit y of » over _, the secondrule is due to the
assaiativity of _, and the third rule is dueto the precedenceof over _. O

The following proposition statesthat the rulesof Lemma4.3.5ensurean order, denoted
> 4nf , betweenLGQ formulass andt, wheret isa cortraction ofs. The order> 4. isderived
from the order on multisets of natural numbersrepreseting the amourt of parerthesesthat
nestead atom in LGQ formulas.

Prop osition 4.3.5 (> 4nf -Decrease). The application of any rule of Lemma4.3.5to an
LGQ formula s containing a redexof that rule yieldsa LGQ formula t with the numler of
parentheseghat nest each atom lessthan for s: s> g4 t.

Proof. Consider (a function that computesthe multiset of numbers represeting the
amourt of parerthesesthat nest eadh atom in a given LGQ formula. Consider ((s) =

fiy; ;imQ, wherefi;; ;ikg 0(s) is the multiset of the numbers of parerthesesthat
nestead atomin Y and Z. By inspecting the rules of Lemma4.3.5 it follows
o =(o(s) fij; @[fi; L ik 19, o) <mu ¢(S), S>n t:

O

4.3 Rewrite Rules preserving LGQ Equiv alence 71

4.3.5 Rules for LGQ Simpli cation

LGQ formulas can be unsatis able or can cortain redundancies.An unsatis able formula
is, e.g., childx; x), whereasa formula with redundanciesis child(x; y) ~ child” (x;y). The
former formula is unsatis able becauseno node is the child of itself. The latter formula
statesthat, for a substitution s consistem with that formula and a tree, both predicates
childand child” hold on the nodess(x) and s(y). Becausethe predicatechild” is the transi-
tive closureof child, it is clearthat child” (s(x); s(y)) holdsif childs(x); s(y)) holds. In sud
casesjt would be desirableto rewrite the formula to its simpler equivalert child(s(x); s(y)).

Sud redundanciesmay not be soobvious. Rewriting formulas with redundanciesusing
the rulespresened in this chapter can, however, discover and eliminate sud redundancies,
by reducing complex casedo trivial ones,as given belov in Lemma4.3.6 Example 4.4.2
shows in the next sectionsud cases.Towards the goal of rewriting arbitrary LGQ graphs
into forward LGQ forests,the elimination of someredundancieds a must, in orderto ensure
there are no multi-sink variables. Note that in the above formula with redundanciesy is
a multi-sink variable, thus a forest LGQ formula can not have sud variables.

This section introducessimpli cation rules that help in the processof rewriting by
removing redundanciesand detect unsatis abilit y.

Lemma 4.3.6 (General Rules). Considertwo nodetestsnodetest, nodetest, suchthat
for any node n test(n; nodetest) 6 test(n;nodetest), and the LGQ predicatesr 2 R
R';f 2F[F ;vh2 V[V' [H[H". Then, the application of any of the following rules
to an LGQ formula s containing a redex of that rule yields an equivalentLGQ formula t.

(Un)satis ability Detection

vh(x;x)! ? (4.29)
nodetesi(x) * nodetesp(x) ! ? (4.30)
sel{x;x)! > (4.31)
root(x) * r(x;y) ! ? (4.32)
root(x) * f(y;x) ! ? (4.33)
(Un)satis ability Propagation
Xnr21 2 (4.34)
X_ 2?21 X (4.35)
Xr>1 X (4.36)
X > > (4.37)
Duplicateelimination
XAX1 X (4.38)

X X1 X: (4.39)

72 4. Source-to-source Query Transformation: From LGQ to Forward LGQ

Remark 4.3.4 Se\eral other rulesfor navigation compactionand (un)satis abilit y detection
can be derived using the already existing rules:

YN A5y axy) (4.40)
re (x;x)! > (4.41)

v(x;y) M h(x;y) b ? (4.42)
v(x;y) M h(y;x) b2 (4.43)
vh(x;y) * vh(y;x) ! ? (4.44)

where(1; ») 2 f(selfchild); (self nextSibl); (child child"); (child child); (child" ; child);
(nextSibj nextSibl); (nextSibj nextSibl); (nextSibl ; nextSibl)g, re 2 F [R, v 2 V[
V';h2 H[H,andvh2 V[V' [H[H'.

The rst rule statesthat if the predicates ; and , are appliedto the samevariables
and ; is more speci c than ,, then their conjunction can be simplied to the ;-atom.
The other rules are self-explanatory We shav next how the rst three rules canbe derived
from the existing ones.

child(x; y) ~ child” (x; y) 42 childx; y) » pa™ (y; x)
4 childx; y) part (x;) _ childx; y) ~ selfx; x) 4% childx; y) A 2 _ childx; y) ~ selx;)
4 2 _ childx; y) ~ selfx; x) ‘1 childx; y) ~ seltx; x) 47 childx; y) ~ > 4 childx; y):

The secondrule can be derived as(considerre = , 2 R[F)

re (X;x) 9 selfx:x) " (x;x) 43D S ot xx) (437 .
The third rule can be derived as

\((x; y) A hicy) T2 veay) A b Lyx) !
? , v = fstChild
v(x;Xx) * h(x;y) 429 5 A h(x;y) 4% 5 , v 6 fstChild

Additionally, the following rule for navigation compaction can not be derived from the
existing onesand provesusefulin practical cases

(X y) _ 29! axy) (4.45)

0

The applications of the rules of Lemma4.3.6ensureghat the LGQ formulas containing
redexesof that rule have a greatersizethan their cortractions. This ordering property can
be speci ed using the strict order >, on formulas derived from the order > on natural
numbersrepreseting the sizeof formulas: s >g,et, js > jtj.

4.4 Three Approac hes to Rewrite LGQ to Forward LGQ Forests 73

Prop osition 4.3.6 (>,.-Decrease). The application of any rule of Lemma4.3.5to an
LGQ formula s containing a redex of that rule yieldsa LGQ formula t that hasa smaller
sizethan the sizeof s, i.e., S > gj,e t.

Proof. It canbe easilyseenby inspecting all rulesof Lemma4.3.6 Recallfrom Section3.7
that the sizeof ead atom is given by its arity, the sizeof eat booleanconnectiwe is one,
andthe sizeof a formula is the sumof the sizesof its constituert atomsand connectives. [J

4.4 Three Approac hes to Rewrite LGQ to Forward
LGQ Forests

Using the rewrite rules de ned in Section4.3, we can rewrite LGQ formulas represeting
the bodies of LGQ rules into forward LGQ formulas. Theserewrite rules are distributed
non-disjunctively in three setsthat de ne three (term) rewriting systems:

TRS; is the set containing Rule (4.1),
TRS; is the set of Rules(4.4) through (4.24 and (4.26) through (4.39,

TRS;3 includesTRS, and Rule (4.25.

Recall from Section 4.2 that all three rewriting systemscortain also the AC-idertities
expressingthe assaiativity and commutativit y properties of ~, _, and self and therefore
they use AC-rewriting.

The rewrite relation ! can be accompaniedby an index specifying its correspnding
rewriting system: e.g.,! ; for TRS;. Howewer, if it is understood from the cortext, we
sparethe explicit writing of this index and avoid cluttering. For the samereason,s #g t
is simply written ass#t without explicitly mertioning the set of AC identities, which are
always the same.

The properties of all three rewriting systemscan be summarizedas follows:

What canthe systemsrewrite?
TRS;, TRS,, and TRS; are soundand completefor LGQ formulas, i.e., eat of them
rewrites any LGQ formula into an equivalent forward LGQ formula.

What is the relation betweenthe type of input and of rewritten LGQ formulas?

{ TRS; rewrites LGQ single-join DAGs into forward LGQ single-join DAGs, and
LGQ graphsinto forward LGQ graphs;

{ TRS, rewrites LGQ forestsinto forward LGQ forests, LGQ single-join DAGs
into LGQ single-join DAGs, and LGQ graphsinto forward LGQ graphs;

74 4. Source-to-source Query Transformation: From LGQ to Forward LGQ

{ TRS;3 rewrites LGQ graphsinto forward LGQ forests; moreover, if the input
formula cortains only closure predicates, respectively non-closure predicates,
then its equivalert rewriting cortains also only closure predicates,respectively
non-closurepredicates.

Do the systemsterminate?
TRS;, TRS,, and TRS; terminate and all of them employ terminating ordersderived
from multiset orders.

Are the systemscon uent, i.e., yield they the samerewritten forward LGQ formula
regardlessof the order of rules applications?

{ TRS; and TRS;3 are con uent for any input LGQ formula,
{ TRS; is con uent only for LGQ forests.

Among the erumerated properties, perhapsthe most interesting one is that TRS;3 yields
forward LGQ forests for input LGQ paths, forests, single-join DAGs, and (even cyclic)
graphs. The intuition behind this result is that an LGQ formula satis able on tree data
re ects the tree structure of the data, fact that rendersforward LGQ forest formulas as
su cient to expressstructural constrairts amongnodesin a tree asgeneralLGQ formulas
do. As a corollary, it follows that forward XPath forest queries(or querieswith Iters
and unions), which are another syntax for forward LGQ forests, are su cient to express
generalLGQ queries. Howeer, this nice property comesat the expenseof using forward
LGQ forestsof size(possibly) exponertial in the sizeof the equivalert generalLGQ query:.
This obsenation on the LGQ and XPath expressienesss usedlater in Chapter 5, where
an e cient ewvaluation of LGQ forestsis su cient to cover the evaluation of arbitrary LGQ
formulas. Also, a direct evaluation of arbitrary LGQ queriesdoes not get around the
exponertial complexity, asshavn independerily by [74].

Another saliert result is that LGQ forests (thus XPath queries)can be rewritten into
forward LGQ single-joinDAGs of sizelinear in the input forests. Becausehe evaluation of
forward LGQ single-joinDAGs haspolynomial complexities(seelater Chapter 5), it follows
that one e ective and e cient solution for the ewaluation of XPath queries, particularly
in a cortext wherethe XPath reverseaxesare not desirable,is to rst rewrite them into
forward XPath queries,and then to evaluate the latter.

4.4.1 Rewriting Examples

This sectionconsidergwo rewriting examplesof oneLGQ tree and oneLGQ graphformulas
into forward LGQ forestformulas, asillustrated in Figures4.6 and 4.7. The thick edgesn
the digraph represetations of formulas represen the predicatesthat are considerednext
in the rewriting process.Ead thick (rewrite) arrow betweenthe digraph represetations
of formulas is accompaniedby the referenceto the rewrite rule to apply next.

4.4 Three Approac hes to Rewrite LGQ to Forward LGQ Forests 75

V4 O ([) VO VO (J O V4
L + + + +
Vi
v \Y vq O O—=O0vV
1 432 20 + © M 3 - 2 1 432
l422 4.13l
O Vg 7 O @ Vo Vo ® O Vg Va (@)
/+ 412 4.12 p
® Vo - B —_— Y0 @
//+ Vi V1 J7 *
V2 O " O vi vy, 0 O vy v30 O—=0 v, v30 O—=0 vy
* + +
l 412
VO Vo [}
o+ 4.23 bo*
4.12 Vg O — Va O
vy Jz + v & +
vg O O—=0 vy v3 O=—0—=0 v,
+
} |
4.22
TR52 Y Vo Vg) 4.23 Vo o
an §o* §*
TRS3 Vg O Vg O Va O
/+ J,Jf + vy
V204>+ OVvy vg=V; O—=0O v, V3 O—«>Jr O—=0 vy

Figure 4.6: Rewriting of the LGQ tree formula of Example 4.4.1

Example4.4.1 Considerthe LGQ tree formula
root(vp) ~ child™ (vo; v1) A (prevSibl (vi; Vo) _ nextSib{vi; vy) A prevSibl (vo; v3)) A part (Vo] vs)

Figure 4.6 showvs how this LGQ tree can be rewritten into an equivalert forward formula,
which is a forest of paths, by using the rewrite rules of TRS, (which are also of TRS3).
The forward LGQ formula equivalert to e, represeied graphically in the lower box, is

root(vo) ~ child (vo; va) A child™ (va; v2) A nextSibl (v,; v1)
_root(vp) ~ child (vo; v4) A child” (va4; vi) » sel{vy; vs) A nextSib{vy; V)
__root(vp) ™ child (vo; v4) child” (v4; v3) nextSibt (va; vi) A nextSib{vi; v»):
Note that it canbe simpli ed by factoring out the rst two atoms of ead conjunct.
The initial LGQ tree formula can be rewritten using the rewrite rules of TRS; into the
following single-join DAG formula (the reversebinary atoms are simply turned into their

correspnding forward binary atoms with their sourcesreadable from a fresh non-sink
variable):

root(vo) ~ child* (vo; vi) A (nextSibf (vo; vi) A child” (v3; vo) A root(va)
_ nextSib{vy; v2) A nextSibl (va; o) A child” (v§; va) A root(v3))
A child (va; Vo) A child™ (v3; vs) » root(vd):

O

76 4. Source-to-source Query Transformation: From LGQ to Forward LGQ

ViO—=0—=0V; V1 O —=0O}—=0Vy V1 O —=0O]—=0Q V3 V1 O—=0 OVvy
V3:VO
4.11 4.25 4.17
< — + ~E— + ~— +
V4 O—= 0 Vg Vg O—=0 Vg V4 O—= 0O Vg V4 O =—0 V5
4.11
4.43 TRS
® Vo ® Vo 3 ev
+ + + + +
J_ V1 O—=0O——=0Vp ViO—=0—=0V2 V1O —=0O——=0Vy
v v v
3 4.13 s Seql 8
— —-
V4 O —= 0 Vg V4O —=0 Vg Vg O—= 0 Vg

Figure 4.7: Rewriting of the LGQ graph formula of Example 4.4.2

4.4 Three Approac hes to Rewrite LGQ to Forward LGQ Forests 77

Example 4.4.2 Considerthe LGQ graph formula e

root(vp) A child” (vo; v1) A nextSibl(vy; Vo) A par (vo; Vo) » prevSib{vy; vs)
A prevSib{vs; vi) ~ child(vs; vs) A prevSibvs; v4) A child (vo; vs):

Figure 4.7 shonvs how e can be rewritten successiely into equivalert forward formulas
fe and fe Using the rewrite rules of TRS,, we obtain fe (seebox with label TRS; in
Figure 4.7)

root(vp) ~ child” (vo; v1) A nextSib{vy; vs) * nextSib{vs; v,) A child(vs; v,)
A nextSib{va; vs) ~ child” (vo; vs):

The formula fe is forward, but still a DAG. Using the additional rewrite rule of TRS,, we
obtain the formula fe® (seebox with label TRS; in Figure 4.7)

root(vp) A child” (vo; v1) nextSib{v.;vs) * nextSib{vs; Vo) A child(vs; vs) » nextSib{va; vs)

that isforward and aforest(in this caseevenatree). It isworth noting alsothat the formula
fel is variable-preservingminimal, i.e., the amourt of binary atoms in fe® is exactly the
number of its variablesminus one. Also, the (non-trivial) redundanciesof e, mainly derived
from the repeatedup-down and left-right navigationsin the tree instance,are detectedand
eliminated partly by TRS, and completely by TRS;.

The Seqreferencesn the rewrite arrows stand for sequencesf rule applications, and
they represem the following compactedrules:

Seql child” (x; y) ~ pa® (y;x) ! child (x;y)
Seq?2 nextSib{x; y) * prevSibly;x) ! nextSib(x;y)
Seq3 nextSibl(x; y) * prevSib{y;x) ! nextSib{x;y):

Sud compactedruleswerenot addedto the setof simpli cation identities of Lemma4.3.6
becauseahey can be derived from already existing rules, asdiscussedlsoin Remark 4.3.4
We shaowv next how Seq 1 is obtained.

child” (x; y) » pa™ (y;x) 42 childt (x;y) ™ pa® (x; x) _ child (x; x) ~ child” (x;y)
429 child (x;y)» 2 _ child (x; x) ~ child" (x; y)
G392 child (x;x) A child (x;)
4% child (x; x) A child® (x; y)
G4 S A chilg (x;y)
4% child' (x: y):

78 4. Source-to-source Query Transformation: From LGQ to Forward LGQ

The initial LGQ tree formula can be rewritten usingthe rewrite rules of TRS; into the
following LGQ graph formula (the reversebinary atomsare simply turned into their corre-
sponding forward binary atomswith their sourcereadable from a new non-sink variable,
seelines 2,3, 4, and 6 below):

root(vo) ~ child™ (vo; vi) nextSibl(vy; v,)
A child' (va; Vo) A child (v v,) A root(v3)
A nextSib{vs; o) A child (v3; vs) » root(v3)
nextSib{vy; vz) A child” (v§;v1) ~ root(v?)

>

A child(vs; vy)
N nextSib{vs; vs) A child” (v; v4) » root(vd)
A child” (vo; Vs):
]
4.4.2 Soundness and Completeness
This section shaws that all three rewriting systemsTRS; (1 i 3) are sound and

completefor LGQ formulas, i.e., eat of them rewrites any LGQ formula to an equivalert
forward LGQ formula. Furthermore, it is shovn how the structure of the rewritten LGQ
formula relatesto the structure of the input LGQ formula.

Theorem 4.4.1 (Soundness and Completeness of TRS;). All TRS; are soundand
completefor LGQ formulas:

(Soundnessfor any LGQ formula s, any derivableLGQ formula t from s is equivalent
to s, andif t is a normal form, thent is a forward LGQ formula

8s;t2LGQ s! t) s t
8s:t2LGQ :s! 't) t2LGOQIF:

(Completenessior any equivalentLGQ formulas s and forward t, TRS; rewritess to
a normal form forward LGQ formula t° that is equivalentto t

852 LGQ :8t2 LGQ[F]:s t) 9t°2 LGQ[F]:s! 't%t t°

Proof. For ead instancel ! r of the rules of Lemmas4.3.1through 4.3.6that de ne all
three rewriting systemsTRS;, it holdsthat | r,ands t = g[r=l], i.e., any formula s
and its cortraction t are equivalert. Thus, s derivesin onestep equivalert LGQ formulas
t: s! t) r t. It followsdirectly by completeinduction that s! t) s t.

We showv next for eatch TRS; that if t is irreducible (i.e., normal form), thent is a
forward LGQ formula. Recallthat a derived formula t is irreducible if no subfornula of it
is an instanceof the Ihs of a rule.

4.4 Three Approac hes to Rewrite LGQ to Forward LGQ Forests 79

TRS ; consistsin Rule (4.1) that rewritesany LGQ reversebinary atom to a forward LGQ
equivalert formula. Hence,only a formula t without reversebinary atoms, i.e., forward, is
irreducible.

TRS , consistsin Rules(4.4) through (4.24 and (4.26 through (4.39. There are three
casesconcerningthe type of binary atomsin s.

(A) If sisalreadyaforward LGQ formula, then somesimpli cation rulesof Lemma4.3.3
may apply, that yield an irreducible equivalert forward formula t, which is either ? or >
formulas, or a forward formula, becauseno reversebinary atom appearson rhs but not on
Ihs of a rule.

(B) If s hasonly reversebinary atoms, then there must be connectionsfrom non-sink
variablesto ead reversebinary atom, and for ead non-sink variable v there is a root(v)
unary predicate (recall that we consider only connectedand absolute LGQ formulas).
Applying repeatedly Rule (4.32 for unsatis abilit y detection and Rules(4.34 and (4.35
for unsatis abilit y propagation, the normal form is obtained ast = ?.

(C) If s hasreverseand forward binary atoms, then, along a connectionsequencen s,
there areeither (i) forward predicatesappearingbefore reversepredicates,(ii) or no forward
predicateappearsbeforereversepredicates. The latter caseis treated asno forward binary
atoms appearin s (seecaseB). In the former case,there are in s disjuncts of oneforward
and one reversebinary atom sud that the sink of the former is the sourceof the later.
Sud disjuncts are rewritten, accordingto Lemma4.3.3 either to (1) paths of two forward
binary atoms, or to (2) trees where one branch is a forward, the other a reversebinary
atom, or to (3) forestsof treesasin (2) and paths asin (1).

As ensuredby Theorem4.4.2 all rewriting systemsterminate, in particular alsoTRS,.
In caseq?2) and (3), the connectionsto somereversebinary atoms have shorter sequences,
but there can be more sud connections. Also, somerules of Lemma 4.3.5 for bringing
derivable terms into DNF may apply. Next, either case(A), or (B), or (C) applies.

Note that the rules of Lemma4.3.6 without (4.32 and (4.33, are just simpli cation
rulesbasedon navigation compactionand unsatis abilit y detectionand propagation. Thus,
sud rules can be left out without jeopardizingthe readability of an equivalert forward
normal form t.

TRS 3 extendsTRS, with Rule (4.25 that rewrites conjunctions of two forward binary
atomswith the samesink to a path of oneforward and onereversebinary atom. Therefore,
aforward formula that is normal form for TRS, is not a normal form for TRSg, if it cortains
multi-sink variables. We considerthe following caseswhere s cortains a disjunct of two
forward formulas, both having a variable y as sink:

(A) One formula is root(y) and the other is f wd(x; y), or one formula is vertical and
the other is horizortal, both having also the samesource. Then, the whole disjunct is
rewritten to ? and the multi-sink variable is eliminated, cf. Rules (4.29 through (4.33,
and (4.349 through (4.37).

(B) Both formulas do not correspnd to the above case. Then, one formula, say

80 4. Source-to-source Query Transformation: From LGQ to Forward LGQ

f wd(x; y), is rewritten to its reversef wd (y;x). The obtained formula s° cortaining the
reversebinary atom is then subject to rewriting using TRS,, which is embeddedin TRS;.
Most notably, the obtained normal form t° of TRS, doesnot cortain additional multi-sink
variables, as ensuredby Proposition 4.3.2 The procedurecan cortinue until all variables
have sink-arity at most one. The normal form t for TRS; is then a forward formula, but
alsowithout multi-sink variables. O

We state next the relations betweenthe structure of a LGQ formula and of its equivalert
forward LGQ formula, as obtained by rewriting the former using TRS;.

Prop osition 4.4.1 (Yield of TRS ;). TRS; rewritesany LGQ single-join DAG formula
into a forward LGQ single-join DAG formula, and any LGQ graph formula into a forward
LGQ graph formula.

Proof. TRS; consistsin Rule (4.1) with instancesrev(x;y) rev (y;x)” child (y%y)~
root(y9. This rule ensureghat the (multi-)sink y of the reverseatom in Ihs remains(multi-
)sink alsoin t, with one connectiondirectly from the fresh non-sink variable y% Also, if x
isa 1-sinkin s, then it becomes2-sinkin t.

Let s andt be the input, respectively the output, formulas. It follows that

(A) if sis aforestformula (or oneof its subcasedree and path), i.e., it hasno multi-
sink variables, then t is a single-join DAG formula with as many 2-sink variables (like x)
asreversebinary atomsin s.

(B) if sis asingle-joinDAG formula, then t is a single-join DAG formula with at least
as many multi-sink variablesasthere are in s, becausey keepsits sink-arity, and further
x can become2-sink (if it is not multi-sink in s).

(C) if sis a graph formula, then t is a graph formula, becauseRule (4.1) does not
remove cycles.

]

Prop osition 4.4.2 (Yield of TRS ;). TRS, rewrites any LGQ forest formula into a
forward LGQ forest formula, any LGQ single-join DAG formula into a LGQ single-join
DAG formula, and any LGQ graph formula into a forward LGQ graph formula.

Proof. TRS; consistsin Rules(4.4) through (4.24) and (4.26) through (4.39. An important
property of theserulesis that for a formula s cortaining a redexof any rule, its equivalert
cortraction t is a forestformula, cf. Proposition 4.3.2 i.e., the sink/non-sink variablesfrom
s remain sink/non-sink in t. It follows that

(A) if sisaforestformula (or oneofits subcasedree and path), i.e., it hasno multi-sink
variables,then t doesnot have multi-sink variables,hencet is a forest.

(B) if s is a single-join DAG formula, then t is a single-join DAG formula with the
samemulti-sink variablesasthere arein s.

(C) if sis a graph formula, then t is in generala graph formula, becausemulti-sinks
and cyclesare not necessarilyremoved via rewriting with TRS,.

]

4.4 Three Approac hes to Rewrite LGQ to Forward LGQ Forests 81

Prop osition 4.4.3 (Yield of TRS3). TRS; rewritesany LGQ graphformula into a for-
ward LGQ forestformula. Moreover, if the input formula contains only closure predicates,
respectively non-closue predicates, then its equivalentrewriting contains also only closure
predicates, resgectively non-closue predicates.

Proof. TRS; extends TRS, with Rule (4.25. As shown in proof of Theorem 4.4.1, the
normal form obtained using TRS; does not cortain multi-sink variables, henceit is a
forest (or one of its simpler casesof trees, paths, ?, or >).

The application of any rule of TRS; yieldsfor redexeswithout closurepredicatesalways
cortractions without closurepredicates. Using completeinduction over the (nite) number
of rule applications, it follows that also the (forward) normal forms do not have closure
predicates. The caseof redexescortaining only closurepredicatesis similar. O

The samerewriting property of fragmert closednesss not ensuredby TRS; for input
formulas without closure predicates,becauseTRS; yields rewritings cortaining as many
child predicatesasreversepredicatesin the input formulas. Also, TRS, hasthis property
up to the forestrestriction or rewritings equivalert to graph formulas.

From Proposition 4.4.3it follows alsothat the LGQ fragmerts cortaining formulasonly
with closurepredicates,respectively without closurepredicates,are as expressie astheir
forward forest subfragmets.

Prop osition 4.4.4. LGQ[H R] = LGQ[F]Forestsand LGQ[F [R"] = LGQI[F] Forests
Proof. The right-hand sidesof both equationsare included in their left-hand sides

LGQI[F[R]= LGQ[F][LGQ[R] LGQI[F] LGQIF]Forests
LGQ[F [R"]= LGQ[F][LGQ[R] LGQIF] LGQ[F] Forests

Proposition 4.4.3ensureghat any LGQ formula canberewritten using TRS; into aforward
forest LGQ formula, both formulas either cortaining closurepredicatesor not:

LGQI[F[R] LGQ[F]Forests LGQ[F [R"'] LGQ[F] LGQIF] Forests
O

We concludethis inspection on the expressiviy of LGQ with a remark on the ability
of TRS; to detect and remove redundanciesof input formulas. For any graph formula, its
equivalert rewriting cortains tree formulas as disjuncts, which are known to be variable-
preservingminimal, cf. Proposition 3.5.1 This minimization property of TRS; reades
its apogeewhen rewriting graph formulas without closurepredicates. In sud a case,the
forward normal form obtained for ead input disjunct is a tree formula, thus rewriting
graph formulas to variable-preservingminimal forest formulas, thus with sizeindependert
of the size of the input graph formulas and only dependert on the maximum number of
the variablesappearingin their disjuncts.

82 4. Source-to-source Query Transformation: From LGQ to Forward LGQ

4.4.3 Termination

This sectionshaws that all three rewriting systemsTRS; (1 i 3) terminate. For this,
we employ the strict, well-founded,orders>[ev,, >Tev, >0 >an , > sizes @nd lexicographic

products of them, all de ned on LGQ formulas.

Theorem 4.4.2 (T ermination prop erty of TRS 1.,.3). All three rewrite systems,i.e.,
TRS;, TRS,, and TRS; terminate.

Proof. The rewriting systemsTRS; areterminating if, for all LGQ formulass andt, s! t
implies s >; t, with >; terminating (well-founded) orders. The formula t is one-step
derivable from s.

As shavn below, theseorders>; are de ned using the strict and terminating orders
>tffr‘)’e, >ng, >§’ya§e, > 4nf » > size, @and their lexicographicproducts. The latter areterminating
becausethey are enmbeddingsinto the strict and terminating order > ,;,; on multisets over
natural numbers, and > on natural numbers. More precisely the orders>; are:

1 rev
TRS;. >4 18 >type'

Proposition 4.3.1ensuresthat the terminating order > {7, holds betweens and t.

TRS,. >, is >tryer\)/e >E,§\§ > dnf > size-
For applications of rules of Lemmas 4.3.3 the terminating order >{&Y > os 1S

ty pe
ensuredby Proposition 4.3.3betweennorm(s) and norm(t).

For applications of rules of Lemma4.3.5 the terminating order >4, betweens and
t is ensuredby Proposition 4.3.5 and also sud rule applications presene the order
>ype > pos PEtWEENformulas norm(s) and norm(t), i.e., sud rule applications do
not changethe reversefactors of norm(s) and norm(t).

For applications of rules of Lemma 4.3.6 the terminating order > g, is ensuredby
Proposition 4.3.6 and at the sametime sud rule applications presene the orders

>ipe > pos DEtweennorm(s) and norm(t), and >4t betweens and t.

Then, the lexicographicproduct of the later and the former (in this product order)
is alsoterminating: > 7. >p6d >dnf Zsize

TRS;. >3 is > ?yaé]e > tryer\)/e > Lg\é > dnf > size-
TRS; hasasinglemorerule in addition to TRS,, namelyRule (4.25 andfor its appli-

cations the terminating order >fya§e betweens and t is ensuredby Proposition 4.3.4
At the sametime, all rules of TRS, presene the terminating order >§’ya§e betweens
and t. Then, the lexicographicproduct of the former and the later (in this product

order) is terminating.

4.5 Complexit y Analysis 83

4.44 Conuence

Becausall three rewriting systemsterminate, cf. Theorem4.4.2 showing con uencecanbe
boiled down to showing local con uence [122, a much easiertask. The following theorem
statesthe local con uence properties of ead of our three rewriting systems.

Theorem 4.4.3 (Local conuence of TRS ;). The term rewriting systemsTRS; and
TRS; are locally con uent for any input LGQ formulas, whereas TRS; is locally con uent
for input LGQ forests,and not con uent for input LGQ DAGs and graphs.

Proof. The proof is givenin the Appendix. O

4.5 Complexit y Analysis

Discussion on the complexit y of AC-matc hing for LGQ' rules

AC-matching (and AC-uni cation) is NP-completein general:the number of substitutions
(uni ers) for any twotermsis nitary , but it canbe exponertial in the sizeof the terms, see,
e.g.,[103. In the particular caseof TRS;.,.3, we shav next that AC-matching is polynomial.
The intuition for this result is that the rewrite rules restrict sewerly the matchings of their
cortained variables.

The Ihs of LGQ' rewrite rules of TRS;.,.3 are of three kinds:

1. asinglebinary LGQ' atom, whereits variablesrange over LGQ variables,

2. anLGQ' path madeout of two atomswith di erent function symbols, where addi-
tionally all variablesrangeover LGQ variables,

3. anLGQ' formula cortaining only two or three variablesranging over LGQ formulas.

In the rst case,the AC-matching problem is reducible to syntactic matching, which is
linear in the sizeof both participating terms. In the secondcase the AC-matching problem
is reducible to syntactic matching of the variables from ead of the two atoms, followed
by chedking whether the variable appearing in both atoms matched the same constan.
This proceduretakesat most quadratic time in the term to match. In the third case,the
LGQ' variablescan match any subtermsof the LGQ formula. The number of all possible
conbinations of matchings of these variablesis exponertial in their number, where the
basisis the size of the term to match. Becausethe number of the LGQ' variablesis
bound by a constart (lessthan or equalthree), the time for AC-matching is at most cubic
in the sizeof the term to match.

The aforemerioned polynomial casedor AC-matching canbefurther reducedto linear,
if the powerful and elegan LGQ represetation of formulas and rules could have been
traded for more compactrepresetations. For example,the rewritings could be doneon the
digraph represemations of LGQ formulas, and applications of our rules can be performed
in linear time as, e.g., matchings of paths of length two in graphs. The quadratic time

84 4. Source-to-source Query Transformation: From LGQ to Forward LGQ

of the secondcasewould be neededthen only oncefor the construction of the digraph
represemation of the LGQ formula to rewrite.

The complexity factor of the AC-matching algorithm usedby our rewriting systemsdo
not appear in the following complexity results.

Complexit y of LGQ form ula rewriting using TRS ;.23

We conduct the complexity study of rewriting LGQ formulas using TRS;.,.3 with the
following declaredobjectives:

the time and spacecomplexity for rewriting LGQ formulas using eadh TRS;,
the sizeof the rewritten LGQ forward formula,

LGQ fragmerts for which someTRS; have the above complexitiesbetter.

For an input LGQ formula s, the following parameterscan in uence the above com-
plexities of its rewriting:

its sizejsj, and the sizeof its DNF normalization jnorm(s)j whereadditionally with
re exiv e transitiv e closureformulas rewritten into disjunctions of selfand transitive
closureatoms (seeRule (4.4)),

the reversefactors typ€e ©'(s), type€®'(norm(s)) and pos*®'(s), and the DAG factor
ty pe’29(norm(s)),

the variable connectionrelation ; s with connectionsequencep.

The results regardingthe above complexitiescan be summarizedas follows:

TRS; rewrites an LGQ formula s into an equivalent forward LGQ formula in linear
time and logarithmic space,and the sizeof t is linear in the sizeof s, more precisely
jti=jsjt 2 jtype®(s)j.

In general, TRS, needstime and space,and generatesequivalert forward LGQ for-
mula t with a number of disjuncts exponertial in the number of reversebinary atoms
in the normalized formula norm(s), i.e., in jtype€'(norm(s))j; also, the sizeof eath
disjunct of t is linear in jsj. As ensuredby Theorem 4.3.1, the exponertiality be-
haviour of rewriting using TRS, can not be avoided, and the output of TRS, is
optimal.

TRS; addsto the exponertial factor from the complexity results of TRS, the sum
of forward sink-arities of variablesin the normalized formula norm(s). Howe\er,
in contrast to TRS,, ead disjunct in t is a tree (and henceis variable-preserving
minimal) and its sizeis then linear in the maximum number of variablesin a disjunct
of s, which is notably independernt on the sizeof s, and can be much smaller than
the number of binary atoms of that disjunct.

4.5 Complexit y Analysis 85

For LGQ formulas, where eat connectionsequencehas neither vertical closurere-
versepredicatesafter vertical forward predicates, nor horizortal closure predicates
immediately after horizontal reverse predicates, TRS, needstime linear and space
logarithmic in the normalizedsizejnorm(s)j of s, and TRS, generatesewritten for-
mula t of size at most the normalized size jnorm(s)j. The samecomplexities are
achieved also by TRS; if additionally there is no connectionsequencewith vertical
closureforward predicates,having assink a variable with a forward sink-arity greater
than one, after vertical forward predicates.

Finally, an alternative technique is descriked for nding the upper bound on the
number of tree formulasin t by meansof orderson the variablesof s.

In the rest of this section,the aforemernioned claims are proven.

Theorem 4.5.1 (Complexities for TRS ;). TRS; rewrites any LGQ formula s into
an equivalent forward LGQ formula t in linear time and logarithmic space, and jtj =
jsi+2 jtype®(s)j.

Proof. TRS; consistsof Rule (4.1) that rewrites eat reversebinary atom into two forward
binary atoms and a unary formula (roof). The sizejtype©'(s)j of the reversetype factor
givesthe number of reversebinary atomsin s. The sizeof t can be then obtained trivially

asjtj = jsj+ 2 jtype€®'(s)j. Notethat it is not necessaryo normalizes, for a rewrite works
locally on a reversebinary atom. TRS; traversesthe ertire formula s and needsto store
just a pointer to the current binary atom. Therefore, TRS; needsonly extra logarithmic
space. O

The complexitiesfor TRS, depend highly on the kind of binary atoms existert in the
formula s to rewrite, and on their connections.In order to analyzesud complexities, we
conduct a study on the form of a connectionsequence from a non-sink variable. Recall
from De nition 3.7.1that a connectionfrom a variable a to a variable b with connection
sequencep in an formula s exists, written a PS5 b, if the binary atom p(a;b) exists in
e, or if there are variable connectionsa ;™5 v ;™ b with p = pi:p2. In the following,
we considerp having m reversepredicates(boundedby type©'(s)), eah of them having
n; forward predicatesappearing beforethemin p (1 i m). We consideralso these
reversepredicatesascendinglyorderedby their position in the connectionsequence, thus
the reversepredicate with a greaterindex appearsin p before a reversepredicate with a
smaller index. Then, the number of forward predicatesn; appearing before the reverse
predicate i is greater than or equal to the number of forward predicatesn;.; appearing
beforethe reversepredicatei + 1. This meansalsothat the number of (forward and reverse)
predicatesappearingbeforethe reversebinary atomi isn;+ m i, andthis number belongs
to the reverseposition-setof i, henceto the reverseposition factor pos €'(s) of s.

The number of disjunctsin t obtainedby rewriting onedisjunct in s usingTRS, depends
on the type of interactions between reverse and forward binary atomsin s, as given in
Figure 4.5, and it is computed by a family of functionsf ;j1 i mg for eat class

86 4. Source-to-source Query Transformation: From LGQ to Forward LGQ

of interactions betweenforward and reversebinary atoms. A function (nj;n; 1;:::;N4)
(3 i m) hasi parameters,i to 1, whereparameterj represets the number of forward
predicatesn; appearing beforethe reversepredicatej in p, and simulates the rewrite rule
applicationsfor di erent interaction classesthe time complexity of rewriting s using TRS,
is then the number of computation stepsrequiredto compute ,,, and the value computed
by isthe number of disjuncts in t obtained by rewriting one disjunct in s. Note that
the averagesizeof ead sud disjunct in t is boundedby jsj.

A family of functionsf ; j1 i mgis de ned next for eat classof interactions
betweenforward and reversebinary atoms. Note that thesefunctions simulate a rewriting
sequencewnhere rules are applied in sud an order so that the rst reversebinary atom
is always considered rst. That is, we consideralways the rst interaction to be found
in the connectionsequence.There are, of course,other possiblesimulations. In fact, for
ewvery possiblerewriting sequencenecande ne another family of functions simulating the
rewriting of a givenformula. All sud families have to computethe samevalue, if the term
rewriting systemis con uent. Howeer, the number of their computation stepsmay di er.

De nition 4.5.1. For classes(VF,HRY’, H/V(F?,R) the functions ; are de ned by

2 ia(n piinng) Li>1
i = 1 and for class (f fstChildy,HR)’
1 and for the other classes.

—~
=)
>
=
N—r
I
= O
I n

This de nition can be read also in terms of applications of rules correspnding to
interactions between binary atoms vertical forward and horizortal reversei (respectively
forward and non-closurereversei, both either vertical or horizontal): the e ect of an
interaction of sud a forward and reversebinary atomsis that the reversebinary atom is
removed (n; = 0).

De nition 4.5.2. For the class (HF,VRY’, the functions ; are de ned by

8
% i(np L::5;ng 1) ,i>1andn;>0
i BETRREE i>landn;=0
|(n|; .. ,nl) - | l(nl 1y ’nl)] I ~ an n|
g2 1(m 1) ,i=landn;>0
1 ,i=1landn; = 0.

The above de nition readsin terms of rule applications as follows: the e ect of an
interaction of sudh binary atoms, i.e., forward and reversei, is that the number of forward
binary atomsis reducedby 1 for i and for all reversebinary atomsj that follow it in the
connectionsequencgi.e., j < i). When there is no forward binary atom for i (n; = 0),
i.e., the reverseformula has beenremoved, the interaction of forward formulas and reverse
binary atomi 1 is considered.

4.5 Complexit y Analysis 87

De nition 4.5.3. For the classH/V(F,R") the functions ; are de ned by

8 ini L::ong D+ 5 4(ni2 L:iii;ng 1) ,i>landni>0
(Nyiiing) = i 1(ni 11 ng) ,i>1andn; =0
§1+ 1(ng 1) ,i=1landn,>0
0 ,i=1landn = 0.

The above de nition can be read in terms of rule applications asfollows: the e ect of
an interaction of sudh binary atoms, i.e., forward and reversei, is that two disjuncts are
created. The rst disjunct hasstill the reversebinary atom i, but, like in De nition 4.5.2
the number of forward binary atomsis reducedby 1 for i and for all reversebinary atoms
j that follow it in the connectionsequence(i.e., | < i). The seconddisjunct does not
have the reversebinary atom i (n; = 0), and, like in like in De nition 4.5.1 the number
of forward binary atomsis reducedby 1 for all reversebinary atomsj that follow it in the
connectionsequencdi.e., | < i).

De nition 4.5.4. For the classH/V(F,R)" the functions ; are de ned by

8

%i(ni L::osng D+ 5 «(nj 15::55n) ,i>21andn; > 1
(ni:oe: ny) = i a(Mi 15iiring) ,i>1landn =1
AR 31+ 4(np 1) i=landn >0

"0 ,i=1landn; = 0.

The rst branch encalesthe creation of two disjuncts. The rst disjunct still cortains
the reversebinary atom i and the number of forward binary atomsis reducedby 1 for all
reversebinary atomsj i in the connectionsequencdike in De nition 4.5.2 The second
disjunct doesnot contain the reversebinary atomi.

In De nitions 4.5.3 and 4.5.4 for the casewhen forward and reverse predicatesare
both horizortal, the functions hold only if the connectionsequencéhas n; forward predi-
catesappearing beforethe closurereversepredicatei. Otherwise,the simpler functions of
De nition 4.5.1hold.

Prop osition 4.5.1. The families of functions from De nitions 4.5.1 through4.5.4 for the
interaction classesof Figure 4.5 have the most number of computation stepsamong all
suchfamilies of functions.

Proof. (Sketch) Other possiblerewriting sequencegor the interaction classesconsidered
in De nitions 4.5.1and 4.5.2have the samenumber of computation stepsasthe rewriting
sequenceglescriled in these de nitions. Consider, e.g., that we start rewriting the |
reversebinary atom. For the former interaction class,it meansthat the reverseformula i
is removed after exactly one rewrite step. For the latter class,it meansthat j is pushed
towards a non-sink variable only if n; > n;;;. Otherwise, another reverse binary atom
k 6 1 with n, > ny4 is pushed. It is easyto seethat independenly on the choseof and
k, the samenumber of rewrite stepsare necessary

88 4. Source-to-source Query Transformation: From LGQ to Forward LGQ

We discussnext the simulations for the interaction classesconsideredin De nitions
4.5.3and 4.5.4 Ead application of rulesfor the rst reversebinary atomi (e.g.,a vertical
closure) having n; forward binary atoms (e.g., vertical closure) appearing beforeit, can
create two disjuncts and all binary atoms | appearing after i in a connection sequence
(1 j < i) would have now to be rewritten in both disjuncts (e.g., interactions of closures
either vertical or horizortal). Howewer, this doubling of the number of disjuncts must
not necessarilyimply the doubling of the number of rewritings for the binary atoms |
appearing before i in a connectionsequencgl | < i), if the whole formula s is not
normalized beforerewriting thesereversebinary atoms, but only after all reverseformulas
are removed. O

Theorem 4.5.2 (Complexities for TRS ;). TRS, rewritesan LGQ formula s into an
LGQ formula t in time T and space S, and with the sizejtj of t in O(a® jsj), whee
a = max(pos©'(norm(s))) and b= typ€®€(norm(s)).

Moreover, TRS, rewritess into t in time linear and extra space logarithmic in jnorm(s)j,
and geneates rewritten formula t of size at most jnorm(s)j, if each connection sequene
in s contains neither

vertical closure reversepredicates after vertical forward predicates, nor

horizontal closure reversepredicates immediately after horizontal reversepredicates.

Proof. An inspection of all rulesof TRS, show that theserulesdo not increasethe number
of baseformulas in disjuncts in t, but (possibly) the number of disjuncts in t. Therefore,
the averagesize of eat disjunct in norm(s) remainsthe samealsofor t, and is bounded
by jsj.

We use the the families of functionsf ; j 1 i mg de ned previously for eah
interaction class.We computein ead casethe function ,, andthe number of computation
stepsthat correspndsto rewriting m reversebinary atoms. After that, we shav how this
result can be extendedto the rewriting of all reversebinary atoms.

Recall that b = jtype®’(norm(s))j is the number of reversebinary atoms in norm(s)
and a = max(pos®'(norm(s)) is the maximum connectionlength from a reversebinary
atom to a non-sink variable in norm(s). Clearly, the number of forward predicatesn;,
which appear beforethe reversepredicatesalong a connectionsequenceis smallerthan a.

1. Classes(VF,HRY’, H/V(F?,R). The computation of |, requiresm stepsand the
number of disjuncts in t obtained by rewriting onedisjunct in sis 0 or 1:

0 , for class(f fstChildy,HR?)

1 , otherwise

The entire formula norm(s) is traversedonceand only one pointer to the currernt binary
atom is needed.Therefore, only extra logarithmic spacein jnorm(s)j is needed.

2. Class(HF,VRY. The number of disjuncts in t obtained by rewriting onedisjunct in
sis 1:

4.5 Complexit y Analysis 89

The number of stepsrequired for the computation of , is

m 1
m+nn,+ (Nj Njz1)=mM+ng

As for the rst case,only extra logarithmic spacein jnorm(s)j is needed.

For the interaction of horizortal forward and horizortal reverseof the next two cases,
the complexitieshold only if beforea horizortal reversei its forward horizortal predicates
n;, or other horizortal reversepredicatesappearimmediately beforeit. Otherwise,if there
is a vertical predicate inbetween,the better complexitiesof caseone hold.

3. ClassH/V(F,R*). The number of disjuncts in t obtained by rewriting one disjunct
in s, asalsothe number of computation steps,is exponertial in m:

Nm NMm 1 im ny is

(N ip):

m im=1 im 1=1 ip=1

4. ClassH/V(F,R)*. The number of disjuncts in t obtained by rewriting one disjunct
in s, asalsothe number of computation steps,is exponertial in m:

m(Nm;115Ng) = i:l(m 1(Nm 231177N1)) = i:; :::i:l(nl) = i:(ni):

The behaviour of combinations of any of these interaction classesfollows the more
complexclass(with respect to the number of computation stepsand of disjuncts).

The above considerationsare just for one connectionsequenceahat might not cortain
all reversepredicates,i.e., m might be smallerthan b. We show next that the above results
are extensiblefrom m to h.

If m < b, then there are other reverse predicatesalong another connection sequence
than p, cortaining, say, m° reverse predicateswith n; (m+ 1 i m®+ m) forward
predicatesbeforethem. This new connectionsequencas to be consideredin eat of the
already generateddisjunct. Let us considerthe fourth caseabove. The other casescan

m+m?©

be treated similarly. In this case,eat disjunct is replacedby other i=m+1(ni) disjuncts.
m+m?° m m+m?
The total number of disjuncts is now - (n) = (izl(ni))(i:mﬂ(ni)), and after treating
all connectionsequencesontaining reversepredicates,we can concludefor the fourth case
to be :1(”‘)' This result can be appraximated to izbl(a) = ab.
]

TRS; addsto the complexitiesof TRS, the overheadof transforming variableswith a
forward sink-arity greaterthan oneinto one-sinkvariables,cf. Section4.4.2and Rule (4.25.
Recallthat eat application of Rule (4.25 presenesthe sizeof the rewritten formula. For
an formula s, there are jtype®9(norm(s))j sud variablesj, and the number of forward
predicateson the longestconnectionpath until variable j denotedby n;. We denote by
f an-in the sum of forward sink-arities of all multi-sink variablesin s:

fan-in = ():
j 2ty pedad (nor m(s))

90 4. Source-to-source Query Transformation: From LGQ to Forward LGQ

f an-in can be also seenasthe number of reversebinary atomsintroducedby the applica-
tions of Rule (4.25, and this addsto the exponertial complexity factor of rewriting using
TRS,.

Also, TRS; rewrites any LGQ formula to a forward LGQ forest formula, where eat
constituert tree is in fact variable-preservingminimal, cf. Proposition 3.5.1 and is not
unsatis able with respect to the unsatis abilit y detection rules of Lemma 4.3.6

Theorem 4.5.3 (Complexities for TRS 3). TRS; rewritesan LGQ formula s into an
LGQ formulat in time T andspace S in O(a® jsj), and with the sizejtj of t in O(a®
n), whee a = max(pos®'(norm(s))) and c = jtyp€®(norm(s))j + f an-in, and n is the
maximum numter of variablesin a disjunct of norm(s).

Moreover, TRS; rewritess into t in time linear and extra space logarithmic in jnorm(s)j,
and geneates rewritten formula t of size at most jnorm(s)j, if each connection sequene
in s contains neither

vertical closure reversepredicates after vertical forward predicates, nor
horizontal closute predicates immediately after horizontal reversepredicates, nor

vertical closute forward predicates, havingas sink a variable with a forward sink-arity
greater than one, after vertical forward predicates.

Proof. Recall that TRS; cortains TRS,, which has time and spacecomplexity and gen-
eratest with a number of disjuncts in O(a® jsj) in general,and hastime linear, extra
spacelogarithmic, and jtj linear in jnorm(s)j for particular casesof s without connec-
tion sequencesvith vertical closurereversepredicatesafter vertical forward predicates,or
horizontal closure predicatesimmediately after horizorntal reverse predicates. The latter
complexitiesapply alsofor TRS3, if the application of the extra rule (4.25, which rewrites
forward binary atoms having assink a variable with a forward sink-arity greaterthan one,
doesnot generatesequencesf the above kind, thus any connectionsequencen s must not
corntain also vertical closureforward predicates,having as sink a variable with a forward
sink-arity greaterthan one, after vertical forward predicates.

TRS; rewrites LGQ formulasto forward LGQ forestformulas, cf. Theorem4.4.3 where
ead constituert disjunct is a tree, thus variable-preservingminimal, cf. Proposition 3.5.1
This meansthat ead disjunct in t has as many binary atoms as the maximum number
of variablesn in a disjunct in norm(s), which can be much smaller than the size of that
disjunct, which is on its turn boundedin jsj. Also, the number of nodetestformulas is
constarnt per eat variable.

BecauseTRS; is con uent, the order of rules applications doesnot matter for jtj. Let
us considerthat Rule (4.29 is applied until no other applications are possible. Then,

1) < fan-in new reversepredicatesare introducedin addition to the
j 2ty pedad (nor m(s))

existing onesty pe€ €¥(s). The casedistinction from the proof of Theorem4.5.2applies(see
that proof for details), by replacingty pe ¢'(norm(s)) with type®'(norm(s)) + f an-in. O

4.5 Complexit y Analysis 91

Alternativ e technique for nding the upper bound on the number of trees in t

Considerthe orders<, and <y, on LGQ variablesof an LGQ formula s, de ned by (vr 2
VR’, vf 2 VF’, hr 2 HR’, hf 2 HF):

vr(x;y) e, y<yXx vi(xiy) e, x<yy
hr(x;y) e, y<nX hf(x;y) e, x<ny:

Intuitiv ely, <, and <, are partial orderson LGQ variablesthat appearin vertical, respec-
tively horizontal binary atoms, and fx;yg 2<. (c 2 fv; hg) if for each LGQ substitution
consisten the input formula and tree, the image of x appearsin documert order before
the imageof y.

Total orderscan be obtained from <, and <}, by creating all possiblepermutations of
LGQ variables consisten with <, and <,. Then, the combination of one possibletotal
order obtained from <, together with one obtained from <, de nes a possibledisjunct
of t, by translating bad the pairs of theseordersin ~ -connectedbinary atoms (as showvn
above). Thesetotal orders can be derived by repeatedly decommsing <, and <, and
eliminating the unorderednesg f<y;<nQ):

= L fy)i(zy)g) (F °l f(x2);(zy)g ° f(zx);(xy)g): (4.46)

Note that in this way ead disjunct in t doesnot cortain any two vertical/horizontal binary
atoms having the samevariable as sink. The disjunct becomesa tree, if two additional
conditions are satis ed: there are no multi-sink variablesand no cycles.

For the former condition, that disjunct must not cortain any two binary atoms having
the samevariable as sink, i.e., there is no pair in the correspnding total orders,say
and |, derived from <, and <y, respectively, having the samevariable appearing on the
secondposition. This condition is ensuredby (cf. the interaction class(VF,HR)?)

vE LTy n= Rl f(zYe) V= L f(x2)g = Rl f(zY)o

The latter condition can be simply chedked by computing the transitive closures ,, and
, of the total orders , and . Theseclosuresare recursively de ned usingthe following
straightforward equivalences(8x; y 2 Vars(s)):

X Y, X yor9y2Varge :x vy ,z
X pY, X pyor9y2Vars@e) :x ny .z

The following propagationrule canbe further derived from the semartics of LGQ predicates
X VY nZ vW) X W,

becausethe descendats w of siblings z of nodesy that have ancestorsx, have also as
ancestorsthe nodesx. Detecting unsatis ability can be simply doneby chedking whether

.(c 2 fv;hg) cortains at least a pair of a variable with itself (x .x), or that a same
variable pair appearsin both , and | ((x;y)2 ,;(Xy)2).

92 4. Source-to-source Query Transformation: From LGQ to Forward LGQ

The number of total ordersderived from <, or <, is clearly exponertial in the number
of constituert pairs from both of them having the samevariable appearing on the second
position (see(4.46), i.e., it is exactly the number of reversebinary atoms plus the sum of
the forward sink-arities of variablesin s. This number is the sameexponertial factor of
Theorem4.5.3 Furthermore, the number of combinations of eat total order derived from
<, and of ead total order derived from <y, which is the product of the number of total
ordersfor ea <, and <y, givesan upper bound for the number of treesin t.

4.6 Related Work

The ERRA problemis an expressienessroblem and this chapter givesa positive solution
to it. The existenceof sud a solution ensuresthat one can safely considerthe forward
fragmert of XML query languagesfor tasks like evaluation, cortainment, etc., because
the reverse languagefragment can be simply expressiblewithin the forward fragmen,
though with its inherert complexity overhead. This is why the ERRA problem is of high
importance for XML query languages.and the existenceof the solution presented in this
chapter is usedin various conexts:

guery ewvaluation against XML streams;the rules of Lemma 4.3.3 are usedby [126
127, 84, 138 106 131, 129 124 127. Rule (4.1) is usedby [21] (at an algebraiclevel,
not expressedsynactically).

static inferenceof query propertieslike duplicate freenes@nd result ordering[85, 113.

complexity results for XPath query evaluation; [14Q proposesalgorithms for eval-
uation of XPath without closureaxes,and notesthat for this XPath fragmen the
rewriting using TRS; is LOGSPACE.

guery evaluation against XML data using relational databases]79, 80] proposee -
ciert spatial data indexesand point out that identities of Lemma 4.3.3can be used
to optimize query ewvaluation in sud contexts by pruning index regions.

expressiviy of XPath; Someof the rules of Lemmas4.3.3and 4.3.4arerecenly used
by [74] to show alsothat the languageof conjunctive queriesover someof the LGQ
built-in predicatesis as expressie as XPath.

This sectiondescrikesnext somerecert resultsonthe elds of XPath query containment
and equivalence,minimization, and rewriting. Note that XPath (and also LGQ) queries
are essetially specializedconjunctive querieson a tree-structured domain. Containment
of relational queries,thus alsotheir equivalenceand minimization that are basedupon, is
known to be NP-complete[3§].

The work found in the areaof query cortainment and equivalence,rewriting, and mini-
mization, canbe classi ed in two categories:model-basedand syntax-oriented approadies.
The former categoryrelieson a modeling of queriesastree patterns or various kind (tree,

4.6 Related Work 93

two-way) of automata. The problemsare then reducedto testsat the level of thesemodels.
The latter categoryappliessynactic operations, like rewriting. Arguably, syntax-oriented
approathiescomewith seweral advantages,like remainingat the level of the query language,
thus capturing the exact semarics and properties of the queriesand delivering the result
gueriesdirectly. Also, the encaling of sud problemsat the level of automata su ers when
translating bad the obtained solutions from automata to queries.

Query Containmen t and Equiv alence

The problem of query containmernt is to chedk whether the answers of one query are con-
tained in the answer of a secondquery for all databases.Equivalencecan be seenthen as
two-way cortainment. This problem receiwved signi cant attention in the context of XML,
e.g.,[33, 147 56, 148 115 149 121, 144 114. The motivation underlying sud robust body
of work reliesin practical issuedlike query optimization, e.g.,[38] or answering queriesus-
ing views (seebelow). Query cortainmernt is alsothe rst stepin addressingmoreinvolved
problemslike query minimization, rewriting, and answering queriesusing views.

[65] studiesthe cortainment of the union-freeand negation-freefragmert of the StruQL
query languagefor querying semistructured data seenas graph. LGQ and StruQL are
incomparable,becausd.GQ hasrelationsthat arenot expressiblan StruQL (the horizortal
andreverserelations), and StruQL allows closureson paths. [65] shavsthat for this StruQL
fragmert cortainment is decidable,and gives semaitic and syntactic criteria for cheding
containment. The semarnic criteria is basedon canonical databasesfor a given query,
i.e., databaseson which the query answer is not empty and the removal of one database
node rendersthe answer empty. Although there are in nitely many canonicaldatabases
for a given query, [65] shaws that for chedking cortainment it su ces to usejust a nite
number of them, which dependson the consideredqueries. Becausehe complexity of this
approad is triple exponertial, [65 dewelopsa more e cient syntactical criteria with only
exponertial complexity.

Strongly relatedto resultsof this chapter, [65] shavs alsothat, for afurther restriction of
StruQL to simpleregular path expressiongthat corresmpnd in fact to LGQI[f child child’ g]
path queries),the intersection R\ R° of two sud expressionsR and R is expressibleas
a union of expressionsR; [:::[Rk, where the size of eah R; is at most the size of
both R and R and the number k of union terms can be exponertial in the size of R
and R% This result, although stated only for simple path expressionsmirrors (almost
perfectly) three important properties of rewriting arbitrary LGQ formulas, asinvestigated
in this chapter: (1) DAG formulas (as obtained via intersection) can be always rewritten
to equivalent forestformulas, (2) which can have sizesexponenial in the sizesof the DAG
formulas, and (3) cortain only tree formulas, whosesizesare bound in the sizeof the DAG
formulas. Note that this chapter sharpensthe third property by ensuringthe sizeof the
resultedtree formulas dependern only on the number of variablesand not of the predicates
of the DAG formulas. The approad of [65] to theseresults is also di erent from ours:
there, eat simple regular path expressionis compiledinto an NFA, and their intersection
is equivalert to the product automaton. All possiblepaths from an initial to a nal state

94 4. Source-to-source Query Transformation: From LGQ to Forward LGQ

de ne then possibleregular path expressiongonained in their intersection,and there are
exponertially many sud paths.

[115 114 arefollow-up works of [65] with declaredfocuson the XPath fragmert of child
and child” axes,wildcards,and lters. In particular, it is shavn that for the aforemenioned
XPath fragmen, the containment problem is coNP-complete.Earlier researb shows that
for the XPath fragmert without any of the constructs (1) child” axis [148, (2) wildcards
[9], (3) lters, the cortainment problemis PTIME. For cheking cortainment, [115 114
proposeane cient (PTIME), soundalgorithm that is alsocompletein somepractical cases
(no lters), and a sound and complete algorithm (EXPTIME) that is e cient (PTIME)
in particular casesof interest (the number of child” axes,or of wildcards, or of lters is
bounded). The techniquesof [115 116 for cheking cortainment are similar to the onesof
[65], namelycanonicalmodels(similar to canonicaldatabases)and pattern homomorphism
betweentwo queries.

[33] considerghe cortainment problemfor conjunctive regular path querieswith inverse
(CRPQI). In cortrast to queriesof the StruQL fragmert consideredn [65], binary relations
createdvia composition (concatenation,Kleene-*, union) of child relations admit inverses.
The technique of [33 for chedking non-cortainment is basedon chedking non-emptinessof
a two-way nite automaton constructedfrom the two queries. [33] givesthe EXPSPACE
upper bound for CRPQI containment shown also by [65 for CRPQ (i.e., without the
inverse operator). This upper bound is furthermore shovn to be also a lower bound,
ewven for CRPQ. An interesting open issueis the problem of nding an equivalent forward
CRPQ (forest) query to any CRPQI query. We conjecturethat a (non-trivial) extension
of the results of this chapter in the direction of coping with Kleene-* composition of path
expressionsvould provide a solution to the problem.

[144 proposesa technique for chedking cortainment of XPath queriesbasedon an
inferenceand rewriting systemthat allows assertingand proving corntainment properties
by usingjudgmerts.

In the presenceof sthemaslike DTDs or of strictly more powerful regulartree grammars,
the XPath query cortainment problem provesto be harder [146 147 56, 148 121, 149.
For DTDs and simple XPath integrity constrairts the problemis undecidable[56]. For the
XPath fragmert with Iters (no closuresor wildcards), for which the standard cortainment
problemis PTIME, the query containment problem is coNP-complete[148 121]. Query
containment under DTDs is decidable (EXPTIME) for the XPath fragmert cortaining
child" axis, lters and wildcards [149. The technique for chedking cortainment is basedin
[149 on the transformation of queriesinto regular tree grammars, and the use of known
decidability and closureresultsfor regular tree grammars. Howewer, XPath query cortain-
mert in presenceof disjunctions, variable bindings, equality testing, and DTD constrairts
is undecidable[121]].

Query Minimization

The query minimization problemis to nd for a given query an equivalert one that has
the smallestsizeamongall its equivalernts. Minimization is oneimportant path to query

4.6 Related Work 95

optimization, becausea decreasdn the query sizea ects positively the query evaluation.
Note that the minimization problem is at least as hard as the cortainment problem, on
which it is based. Therefore,complexity lower boundsof the latter apply alsoto the former.

Results of this chapter have direct relevanceto the state of the art of the query min-
imization problem. More speci cally, the rewriting approad presened in this chapter
has also someminimization properties. First, the rules of Lemma 4.3.6 eliminate simple
syntactic redundancies. Second,and more important, non-obvious semaric redundan-
cies are detected and eliminated. TRS; yields forward forest formulas, where ead tree
is variable-preservingminimal, ewven if the input formula does not have this minimality.
Recall that variable-preservingminimality meansthat the rewritten formula cortains as
many binary atoms as variablesin the tree minus one, thus no redundart binary atoms
appear in any disjunct of the rewritten forward formula. Also, there are no redundancies
amongdisjuncts. Only somerules of TRS; create disjunctions, but ead disjunct is not
(semartically) cortained in any other, and the number of these disjunctions is minimal
under certain properties, cf. Theorem 4.3.1 The variable-preservingminimality, asinves-
tigated in this chapter, is complememary to the more involved minimality objective of
[148 9, 135 64], wherevariablescan be alsoremoved.

There are se\eral e orts towards XPath query minimization [148 9, 135 64]. In the
absenceof DTDs, simple XPath expressionsuilt up from child axis, wildcard, and lters,
have a uniqgue minimal equivalert expression,which can be found in polynomial time
[14§. Theseresults carry over even if child® axis, but no wildcard, is allowed [9]. For
XPath querieswith child and child® axes, Iters, and wildcards, the minimization problem
is NP-hard [64], and its variant of nding an equivalert query with sizelessthan a given
threshold is coNP-complete(basedon results for cortainment [115).

In the presenceof child/parent and sibling constrairts derived from DTDs, the simple
XPath expressionsdo not necessarilyhave a unique minimal equivalert [148. For sim-
pler constrairts, like required child, required descendat)y and required co-accurrencesthe
equivalert minimal query remains howewer unique [9]. Latter, [139 gives more e cient
variants of the polynomial algorithms of [9].

All presened approadeshave at their corethe obsenation that a minimum sizequery
equivalert to a query having child and child” axes, lters, and wildcards, can be found
amongthe subpatternsof the latter (thusthe minimal query is doneby pruning redundart
subqueriesuntil no subquery can be removed while preservingequivalence). Also, for the
queriesof [148 9, 133, a cortainment betweentwo sud queriesp and g can be reducedto
nding a homomorphismfrom g to p, which can be donein polynomial time. For queries
having child and child" axes, Iters, and wildcards, this property doesnot necessarilyhold
[115 114, and the minimization problem becomes\NP-hard [64].

View-based Query Pro cessing

There are two (similar) approatesto view-basedquery processing35]: view-basedquery
rewriting and answering.
In the view-basedquery rewriting approad, we are given a query and a set of views,

96 4. Source-to-source Query Transformation: From LGQ to Forward LGQ

and the goalis to reformulate the query into an expressionthe rewriting, that refersonly
to the views, and providesthe answer to the query. Typically, the rewriting is formulated
in the samelanguageused for the query and the views, but in the alphabet of the view
names,rather than in the alphabet of the database. Thus, query processings divided here
in two steps,wherethe rst stepre-expressethe queryin terms of a given query language
over the alphabet of the view names,and the secondstep evaluatesthe rewriting over the
view extensions.

The ERRA problem can be seenas a specialization of the view-basedquery rewriting,
where the views are derived from the rewrite rules of this chapter. There are still some
important di erences betweenthe two problems: in the ERRA problem, (1) the rewriting
must be equivalert to the initial query, (2) the reformulation must not be necessarilydone
using only the views (only query parts with reverseatoms should be rewritten), and (3)
there canbe morethan onereformulation step, for there canbe viewsthat map formulasto
equivalert formulasthat still cortain reverseatoms. The approad to queryrewriting taken
in this chapter it is di erent from [13Q (and others descrited in [83]) where an algorithm
for rewriting regular path queriesusingtechniqueslike containment mappingsand chaseis
proposed. In our case,the exact rewriting procedure(that may correspnd to a so-called
evaluation strategy of rewriting systems)is of no immediate importance, becauseour focus
is more on properties like uniquenessof normal forms, which we shov to be presened by
any of the rewriting strategies(becauseof the con uence property). Proprietary rewriting
algorithms are, howewer, tuned to obtain e ciency for particular classesf queriesto be
rewritten.

In the view-basedquery answering approad, besideghe query and the view de nitions,
we are alsogiven the extensionsof the views. The goalis to computethe answersthat are
implied by theseextensions.Thus, we do not poseany limit to query processingand the
only goalis to compute the answer to the query by exploiting all possibleinformation, in
particular the view extensions.

The complexities of view-basedrewriting and answering problems for regular path
gueriesare studied in [31, 32]. The rewriting problem is 2EXPTIME, and the answering
problem is coNP-completein the size of the view extensions. Theseresults are further
extendedto regular path querieswith inverse[34].

View-basedquery processinghasimportant application domains[83], e.g., query opti-
mization, databasedesign,data integration, data warehouseand sematic data cading.

In the context of query optimization, computing a query using previously materialized
views can speed up query processingbecausepart of the computation necessaryfor the
guery may have already beendone while computing the views.

In the context of databasedesign,view de nitions provide a medanism for support-
ing the independenceof the physical and the logical view of the data, thus enabling the
modi cations of the storagestemaof the data (i.e., the physical view) without changing
its logical shema; the storagesdiema can then be seenas a set of views over the logical
sthema.

In the context of data integration, a uniform query interface (a mediated sthema) is
provided to a multitude of autonomousdata sources(that are sematically mapped to

4.6 Related Work 97

relations from the mediated sthema via sourcedescriptions). The di erence of the data
integration domainto the query optimization and databasedesigndomainsconsistsin their
di erent focuses:in the data integration domain, the number of views (i.e., sources)tend
to be much larger, the sourcesdo not cortain the completeextensionsof the views, and the
rewriting canbe (maximally-)contained in the initial query, not necessarilyequinalert [123.

In the cortext of data warehousesit is neededto choosea set of viewsto materialize
in the warehouse.

In the context of semaric data cading in client-server systems,the data cated at the
client is modeled semarically as a set of views, rather than at the physical level as a set
of data pagesor tuples. Later, decidingwhich data needsto be sert from the sener to the
client in order to answer a given query requiresto analyzewhich parts of the query can be
answered by the caded views.

98 4. Source-to-source Query Transformation: From LGQ to Forward LGQ

Chapter 5

Evaluation of Forward LGQ Forest
Queries against XML Streams

This chapter introducesthe problem of streamedand progressie evaluation of forward
LGQ forestqueriesagainst XML streams(SPEX) and describesa solution for it [127, 124
1253. Recallthat the LGQ fragmert of forestqueriesis equivalent to XPath, cf. Chapter 3.
Moreover, Chapter 4 shows that the fragmert of forward LGQ forestsis equivalert to full
LGQ. Therefore, it is important to stressthat the ewaluation strategy of forward LGQ
forest queries,as consideredin this chapter, appliesto XPath queriesand to unrestricted
LGQ graph queries,too.

After stating the SPEX problemand positioning it brie y in the cortext of query evalu-
ation and tree pattern matching, Section5.2intro ducesa strategy for the SPEX evaluation
againstunbounded XML streamsby meansof so-calledstream processingfunctions. For
eah LGQ predicate, there is a correspnding stream processingfunction that computes,
for a given set of sourcenodes, the sink nodesthat stand in that predicatewith any of the
sourcenodes. The composition of LGQ atomsinto LGQ formulas and queriesis re ected
in the sequetial and parallel composition of the correspnding functions. Section 5.3
givesan e cient realization of the proposedevaluation strategy by meansof networks of
communicating deterministic pushdavn transducers. A transducer network is a directed
acyclic graph where nodes are transducersand the commnunication between transducers
is directed by the graph edges. Two minimization problemsfor transducer networks are
discussedn Section5.4: the problem of nding the minimal network equivalert to a given
network, and the problem of minimal streamrouting within a given network. For the latter
problem, an e ective solution is given that improves considerablythe processingtime of
transducer networks. Section5.5 investigatesthe complexity upper boundsfor the evalu-
ation of queriesfrom eight fragmerts of forward LGQ forests. All casesenjoy polynomial
complexitiesin both the sizeof the query and of the input stream, and someof them have
complexitiesindependert of the streamsize. Correlating theseresults with the complexity
resultsof LGQ query rewriting from Chapter 4, it is shown further that alarge fragmert of
LGQ graph querieshas polynomial complexity for the evaluation. Thesetheoretical com-
plexities are alsocon rmed by extensive experimertal ewvaluations in Section5.6. Finally,

100 5. Evaluation of Forward LGQ Forest Queries against XML Streams

Section5.7 is dewted to related work in the eld of XPath query evaluation.

5.1 Problem Description

The streameal and progressive evaluation of forward LGQ forest queries against XML
streams (SPEX) problem is: given a forward LGQ forward query and a (possibly un-
bounded) well-formed XML stream, compute and deliver as soon as possiblethe exact
answversto the query in a single passover the stream, provided no knowledge about the
streamis used.

There arethree saliert aspectsof the SPEX problem: (1) the kind of queriesto evaluate,
(2) the streamedand (3) the progressie aspects of the ewaluation. In the sequelit is
arguedthat the rst aspect of the problem, i.e., the evaluation of forward LGQ queries,
has similarities with standard tree matching problems, though it is di erent. Also, it is
shown that the latter two aspects of the problem make an important di erence to the
generalproblem of evaluating forest LGQ queriesagainstin-memory XML data.

1. The evaluation of forward LGQ queriesis de ned on ordered unranked trees with
labels on nodes, not directly on XML streamsthat are serializationsof sud trees. Also,
guery ansvers are de ned as setsof nodesfrom trees, cf. Chapter 3. In order to accom-
modate LGQ (and also XPath) ewaluation to XML streams, we still refer to nodesand
trees implicitly corveyed in the XML streams, while consideringthe mapping of nodes
to stream (or well-formed XML documen) fragmerns, as detailed in Section 3.1 Note
that becausethe trees are not really materialized, the LGQ predicateson nodesin trees
have to be rediscavered at processingtime. Indeed, for the LGQ evaluation against XML
streamswe use the indispensableparert/c hild and sibling binary predicatesencaled in
the XML streamsby somea-priori xed orders of opening and closingtags of fragmerns
correspnding to nodes. Query answers are then well-formed fragmerts of XML streams
that correspnd to nodesin the tree corveyed in the stream.

2. The streamed aspect of the evaluation residesn the sequetial accesdo the messages
of the XML stream, which correspndsto the (depth- rst, left-to-right) preordertraversal
of the tree conveyed in the XML stream. This order is also called document order [46],
becauseit correspndsto the order of the opening and closing tags of nodesin an XML
documert, hencealsoto the order of tagsin an XML stream.

3. The progressiveaspect of the evaluation residesin the incremenal delivering of the
qguery answers as soon as possible. This is motivated mainly by processingin dynamic
environmerts and by memoryissues.The former issueis evidert whenthe query answers
are input for other processesn pipeline processing thus immediate delivering of answers
improvesthe overall performance.The query evaluation againstunbounded XML streams
should deliver answers incremerially, becausethere is no expected evaluation end. Also,
collectingall answersto be deliveredat the evaluation end canrequire unboundedmemory,

Recall that LGQ querieshave intuitiv e graphical represetations, called digraph rep-

5.1 Problem Description 101

resemations in Section3.4. The digraphs of LGQ forest queriesare unorderedtrees with

binary predicateson edges. The relation between two data nodes mapped by two di-

rectly connectedquery nodesin a query digraph can be besidesparert/c hild, alsoances-
tor/descendan, preceding/folloving, or preceding-sibling/folloving-sibling, ascorrespnd-
ing to the LGQ predicates.

There is a striking similarity betweenthe evaluation problem of LGQ forest queries
and two variations of the popular tree matching problem introduced by [87]. Despite of
their similarity, these problemsare still di erent, mainly with clear implications on the
algorithmic designand the evaluation complexity of their solutions.

The tree matching problem [87] consistsin matching a data tree with a set of tree
patterns (the queries).[87] shows that the tree patterns can be preprocessednto a struc-
ture of exponertial size,which factors out all commonsubpatterns, sud that every data
tree can subsequetly be matched bottom-up in linear time. The best algorithm to date
is O(nlog®m) [49. This technique cannot be applied to the ewaluation of LGQ forest
gueriesbecausgl) all patterns of [87] are orderedand represeh only LGQ forest queries
with pa/ child predicates, and (2) the data tree is traversedbottom-up, condition that
cortradicts the constrairt of a streamedquery evaluation.

A more similar problem is introducedin [97] asthe unordered tree inclusion problem:
given the pattern and the data tree, can the pattern be obtained from the data tree by
node deletions? This problem is di erent from the LGQ forest query evaluation because
(1) sud patterns correspndsto LGQ forest queriesonly with pa*/ child” predicates,and
(2) two nodesfrom the pattern can not be mapped to the samenode in the data tree.
The latter di erence makesthe unorderedtree inclusion NP-complete [97], whereasthe
ewvaluation of the LGQ forest queriesremains polynomial.

The standard approad for XPath ewaluation is given by [7(. Although this approad
meetsgood complexity results, it doesnot meet the streamedand progressie aspects of
the SPEX problem: the XML documen hasto be stored in memory a priori to query
ewvaluation, and the answers are deliveredonly at the very end of the evaluation process.

XML Streams versus In-memory XML Data

This section highlights someof the challengesof the query evaluation against XML data
streamsby comparingit to a query evaluation approad for in-memory XML data, asused,
e.g.,by [70, 78]. The salient featuresof both approadesare stressedalsoby an illustrating
example.

In the following, we distinguish between two scenarios: the evaluation against the
in-memory XML tree of Figure 5.1(a), and against the XML stream of Figure 5.1(b)
correspnding to the (depth- rst left-to-right) preordertraversal of that XML tree. Note
that the label indicesdo not belongto nodesand are only usedto ensurea clearernode
identi cation.

As query example,let us considerthe LGQ tree query

Q(v3) root(vp) A child” (vo; v1) ~ a(vy) ~ child(vi; vo) A d(vo) A child™ (vq;vs) A c(va):

102 5. Evaluation of Forward LGQ Forest Queries against XML Streams

(2) (2

() (9 (o CoCfICew
() ©
heyihasihciih/ ¢ ih/ azihc,ih/ cihdqih/ diih/ a;i

(a) An XML Tree (b) An XML Stream

The evaluation of this query on a tree yields all c-nodesdescendats of a-nodesthat have
at leasta d-child. For the tree of Figure 5.1(a), the answer is the set of both c-nodes. In a
stream cortext, the answer is the serialization of thesetwo c-nodesin the documert order.

In-memory XML data. We sketch now a standard XPath ewaluation approad, as
usedby e cien t XPath evaluatorsfor in-memory XML data currertly available[70, 78], but
failed by popular XPath evaluators[11, 47, 113 61]. It consistsin the stepwise (decoupled)
ewvaluation of the query, wherethe ewvaluation of ead predicate is donein one processing
step with respect to an input set of sourcenodesand yields an output set of nodesthat
are then input for the ewaluation of other predicates. For the above query its evaluation
can be accomplishedby (1) computing all a-nodesthat stand in the predicate child™ with
the root node, (2) then by computing all d-nodesthat stand in the predicate child with
the previously selecteda-nodes, (3) by collecting only the a-nodesselectedin the rst step
that have at leasta d-child, and nally (4) by computing the set of all c-nodesthat stand
in the predicate child® with any a-node selectedin the previous step.

For the tree of Figure 5.1(a), the rst step computesthe setfa;, a,g, the secondstep
computesf d; g, the third step computesf a,g, and the fourth step computesf c;,c,Q.

There are (at least) two important characteristicsof this evaluation strategy:

1. the evaluation is query-driven with random accesdo data nodes. Each predicateis
evaluated oncefor good, and the evaluation of se\eral predicatesis not intertwined.
Also, the samenode can be visited se\eral times, becausese\eral intermediary result
sets can have common nodes. Moreover, the evaluation of the samepredicate can
even require to visit the samenode se\eral times.

2. An intermediary result set can not exceedthe amourt of all nodesin the tree and
is only meaningful for the evaluation of the next predicate(s). to ensurethe former
constrairt, the intermediary result setsare subject to duplicate removal operations.

XML data streams. Figure 5.1(b) depictsthe previoustree together with the XML
stream correspnding to its (depth- rst, left-to-right) preordertraversal,ashighlighted by

5.1 Problem Description 103

the greencurve. Recallthat the XML streamis the XML documert in unparsedformat,
and the corresppndencebetween the tree and the stream is simply obtained with the
preorder traversal of the tree asfollows: on entering a node, its opening tag is appended
to the stream, on exiting that node, its closingtag is appendedto the stream. Recall that
the order of opening and closingtags in an XML stream is the \do cumert order" that
correspndsalsoto the order of tagsin an XML documert.

The requiremen of the in-memory evaluation strategy to visit the same nodesat dif-
ferert times violates one of the main goalsof the query evaluation against XML streams,
namely to usea single passover the input XML stream,i.e., one(depth- rst left-to-right)
preorder traversal of the corveyed tree. The novel strategy consideredhereis to ewvaluate
all predicatesof a query simultaneously while consideringalsotheir inherert dependencies
regardingtheir sourceand sink nodes.

For the ewvaluation of the samequery againstthat XML stream, the tags are processed
stepwisein the order imposedby their appearancein the XML stream. We consideralso
that eat predicateis implemerted by somesomesort of automaton that is instructed to
nd incremenally the tags of all sink nodesthat stand in that predicate with somegiven
sourcenodes. For example,an automaton for the predicate child” nds the opening tags
of all sink nodesin the stream that are descendats of any given sourcenode. In order
to evaluate an ertire query, the independernt automata for the predicatesconstituting the
guery comnunicate with ead other as indicated by the sourceand sink variables of the
atoms having those predicates: if the sourcevariable of an -atom is the sink variable of
an “atom, then the automaton for ©informs the automaton for about its ndings.
Sud automata can be alsocomposed. We detail next how our query can be evaluated by
sud a machinery madeout of three automata, say for the compositions of the binary
predicate followed by the unary predicate . More precisely we considerthe automata
child” a, childd, and child" c.

On encourtering the opening tag ha,i, the automaton child” a matches and commu-
nicates this information to its immediate next automata childd and child" c¢. Thesenext
automata try to match now opening tags of d-nodeschildren of a;, and c-nodes descen-
dants of a; respectively. The sameprocedurehappensfor the next openingtag ha,i. On
encounering hc,i, the automaton child” ¢ matchesfor a; and a, and communicatesthat c;
is a potential answer. Sud potential answersshouldbe bu ered, together with the stream
fragmerts betweentheir openingand closingtags, until the decisionon their appurtenance
to the result is met. On encourering W ai, it is known that no d-node child of a, was
found, thus the c;-node is not anymore a potertial answer due to the constrairts of the
a,-node. Howeer, the c;-node remains a potential answer due to the (not yet satis ed)
constrairts of the a;-node. On receiving hc,i, the automaton child” ¢ matchesfor a; and
communicatesthe beginningof a new potential answer ¢,. On hd,i, the automaton childd
matchesfor a;, and both ¢; and ¢, becomeanswers and are immediately output. The rest
of the stream doesnot bring any new potential answersand its processings skipped here.

It is worth noting somechallengesof query evaluation against XML streams,for these
challengesshedthe light on the important characteristicsof the evaluation approad pro-

104

5. Evaluation of Forward LGQ Forest Queries against XML Streams

posedhere:

1. For copingwith the query evaluation in a stream context, Chapter 4 introducesrules

for rewriting LGQ queriesto forward LGQ queries. Theserewrite rules ensurethat
no reverse predicatesoccur in the query to be evaluated. The motivation for sud
rewrites lies in the expensi\e evaluation in a stream cortext of querieswith reverse
predicatesthat can require to maintain a history of the already processedstream.
Becausdhe evaluation of a forward LGQ queryfrom a sourcenode always yields a set
of sink nodeslocated in the tree after it in documert order. i.e., later in the stream
conveying the tree, it is possibleto ewaluate forward LGQ querieswhile traversing
the streamonly once. The evaluation strategy descrilked in the next sectionis based
on this vital obsenation and is indeedableto evaluate forward LGQ queriesusing a
single passover the input XML stream.

. The forward LGQ binary predicateson nodes of a tree are not a priori computed,

rather they have to be rediscavered during processingof a stream corveying that
tree. The rediscaoery of sudh structural predicatesin a streamcan be naturally done
using stadks to remenber the depths of various nodesin the stream. This way, e.g.,
the children of a node n can be discorered by searting for nodes n® with (1) the
opening and closing tags appearing enclosedby the opening and closing tags of n
and with (2) the depth being the depth of n plus 1.

. The result of the ewaluation of a predicate g is comnunicated by the automata

implemerting g to the automaton(a) implemerting the immediate next predicate(s)
in the query. Sud a comnunication must ensurethat the immediate next automata
get assoon as possibleand progressiely input they have to work on. The approadh
proposedhererealizesthe commnunication alongthe stream by annotating the nodes
that are input for the immediate next automata.

In order to better cortrol the amourt of memory and kind of operations used for
guery evaluation, a natural choicefor the implemertation of the forward LGQ pred-
icatesis o ered by low-level nite state automata that needa stadk (seethe rst
characteristic above) and needto commnunicate (seethe secondcharacteristic above).
A formal model that meetsall theserequiremerts is the pushdavn transducer, i.e.,
an automaton with stack and output. Section5.3 givesindeedan implemertation of
all forward LGQ predicatesby meansof deterministic pushdavn transducers.

. The evaluation of forward LGQ queriesagainstXML streamscanrequiretheoretically

to bu er streamfragmerts (asexempli ed above), and in worst casethe ertire stream
needsto be bu ered, though practical casegoint to bu ers of sizelinearly dependen
on the streamdepth, and independen of the streamsize. In cortrast, the exempli ed
ewvaluation approad for in-memory XML data [70, 78] requiresalways to store the
ertire data in memory and needsalsomemory linear in the sizeof the input data for
intermediary results.

5.2 Speci cation 105

5.2 Speci cation

This section preseits an evaluation strategy for the SPEX problem. This strategy is e -
ciertly realizedin the next section using networks of commnunicating deterministic push-
down transducers.

For the ewaluation of forward LGQ forest queries, we consider the computation of
their constituert predicatesrestricted to the following task: given a set of sourcenodes,
compute the set of sink nodesthat stand in that predicate with any of the sourcenodes.
Sud limited accessego the forward LGQ predicatescan be speci ed using functions
with sets of nodes as domains and co-domains. If we considersud computations of all
predicatesp; of a given LGQ query speci ed by functions f;, then the whole query can
be ewvaluated by the application of appropriate compositions of those functions f;. For
example,the computation of two predicatesp; and p,, where the sourcenodes of p, are
the sink nodes of p;, can be speci ed naturally by the sequetial composition of their
correspnding functionsf; f,. The computation of the samepredicates,wherethe source
nodesof both of them are the same,can be speci ed naturally by the parallel composition
of their correspnding functions f; + f,. Generalizing,for any forward LGQ query; its
computation can be speci ed using sud sequetial and parallel compositions of functions.

Note that sud an evaluation is independert on the immediate implications of storing or
streamingof the input XML data. As explainedin the previoussection,if the data is stored,
then an e cient ewaluation strategy would evaluate eat predicate at a time, whereasif
the data is streamed,that approad is not possibleand all predicatesshould be evaluated
at the sametime. For the processingwith functions, the former casewould correspnd
to an innermost evaluation order, whereasthe latter caseto an outermost-like evaluation
order: for f; f,, using the innermost evaluation order, we evaluated completely f; and
then f,, whereasusing the outermost-like evaluation order, we evaluate f ; incremertally as
much asneededfor the evaluation of f,. In other words, the kind of evaluation we perform
is re ected by its order, and our sameealuation strategy can be applied in both cases.
Howewer, from now on, we detail on our evaluation strategy arguing only from the side of
the streaming case.

Two important ingredierts are used for specifying the presen ewaluation strategy:
stream annotations and functions specifying the evaluation of forward LGQ predicates
against XML streams,called herestream processingfunctions. Streamannotationsareim-
portant for marking sourceand sink nodesof predicatesin the XML stream. The stream
processingfunctions usethe annotationsto di erentiate the sourcenodesfrom the others
in their input stream, and the sink nodesfrom the othersin their output stream. Applied
on an XML streamwith specially marked sourcenodes,a stream processingfunction for a
predicate movesthe annotations of ead sourcenode to all sink nodesthat stand in the
predicate with that sourcenode. In this way, the nodesin the streamremain unchanged
and only their annotations may change. The sequetial and parallel compositions of sud
functions, which specify analogouscompositions of atomsin LGQ queries,may propagate
annotations of initial sourcenodesto nal sink nodes,which constitute the result of the
evaluation of LGQ queries.

106 5. Evaluation of Forward LGQ Forest Queries against XML Streams

In the following, stream messagesind stream processingfunctions and their composi-
tions are introduced, followed by the step-by-step speci cation of LGQ query evaluation
via compositions of stream processingfunctions. Section5.3 shavs how stream processing
functions can be e cien tly implemerted using deterministic pushdavn transducers.

5.2.1 Stream Messages

Streamsare depth- rst, left-to-right, preorder serializationsof trees, thus they are made
of well-formed XML documerts represeting sud serializations. A messagein sud a
stream is an opening or a closingtag. Additionally, the streamsconsideredhere cortain
annotationsthat appearimmediately after openingtags. During the evaluation of a query,
annotations are usedto mark in the stream nodesselectedby its subqueries.

An annotation is expressedusing a nite (possibly empty) list of natural numbersin
ascendingorder, e.g., [1,2]. There are two special annotations: the empty annotation,
noted [], correspnding to the empty list, and the full annotation, noted [0], correspnding
to the list cortaining all annotations. There are three operations de ned for annotations:
union t , intersectu, and inclusion v, the semarnics of which resenble that of the well-
known set operations|[, \, and . For example,the operation ct s denotesthe union
of annotations ¢ and s with duplicate removal, like in [1,2} [2,3]=[1,2,3]. Any annotation
corntains the empty annotation and is cortained in the full annotation.

Although a node is not a stream messageywe may often speakin the following about
streamsmade up of nodes, rather than of tags. This more abstract view upon a stream
is motivated by conciseness;larity, and also by the vocabulary congruenceof processing
streams with functions, as detailed later in this section, and computing answers with
the LGQ semairiics introduced in Chapter 3. In this respect, it should be clear that
the wordings (1) \all children of a node n are annotated in the output stream with the
annotation of n from the input stream" and (2) \all opening tags of children of a node n
are immediately followed in the result stream by the annotation that immediately follows
the openingtag of n in the input stream” are equivalent.

Let E be the set of all opening and closingtags, A the set of all possibleannotations,
and M = E [A the set of all stream messagesi.e., the set of annotations and tags.
A stream s over a setsof messagedM is a (nite and possibly unbounded) sequenceof

messagess 2 M = M". We write a stream cortaining the messagesn; and m, in
n 0

this order asm;m, (while reading from left to right, the stream comesfrom right to left).

Relations on streams. Ead messagen a streamhasan idertity given by its position
in the stream: to denote a messagan in a stream, we may alternatively write (m;i) to
explicitly state that the messagem appears at position i 2 in that stream. Using
positions in streams, one can di erentiate two distinct messagewvith the samecortent.
Howe\er, if not explicitly needed,the position of a messagen a stream may be skipped.
The documert order on nodesin trees, i.e., the depth-rst, left-to-right preorder,
is applicable alsoto nodesin streams. For a given stream s, the order ¢ is the total

5.2 Speci cation 107

order amongthe message®f the stream as given by the natural order of their positions:
(m;i) < (m%i9ifi< i

The relation < is the menbership relation between messages®nd streams: m < s
meansthat the messagem is in the streams. The relation @ is de ned only for nodes
in streamsand denotesthe annotation of nodes: @f) is the annotation of the node n.
Becausethe samenode can have di erent annotationsin di erent streams,we may write
@x(n) to explicitly state that the node n hasthe annotation @(n) in the streams.

5.2.2 Stream Pro cessing Functions

We considerherea classof functions, called stream processingunctions, that take asinput
X streamsand return y streamsof type M , which additionally are preorder serializations
of the sametree:

f:(M)1 (M)

The streamprocessingunctions are node-preservingand node-monotone.Node-preserving
meansthat the nodesfrom the input streamsbelong alsoto the output streams. Node-
monotone meansthat the order of nodesin the input streamsis presened also in the
output streams. Note that both properties are ensuredif all input and output streamsare
preorder serializationsof the sametree. The only changesdone by sud functions refer to
the annotations of nodes. Stream processingunctions are de ned in the following sections
by specifying only the di erencesbetweenthe input and the output streams. It is implicitly
assumedhat besidesthe speci ed changes,the other messagesare simply copiedfrom the
input to the output streams.

Function comp ositions. We useheretwo kinds of function composition: the sequetial
composition and the parallel composition ++ :

(f 9)(x) = g(f (x))
(f + g)(x) = (f (x);9(x))

We considerthat the sequetial composition () binds strongerthan the parallel composi-
tion (+).

Note that thesecompositions are analogousto the composition of LGQ formulas: path
formulas are constructed by the sequetial composition of atoms, and tree and forest
formulas are constructed by the parallel composition of atoms.

A peculiarity of the evaluation order of sequetial compositions of stream processing
functions is that the componen functions are evaluated stepwise, sud that ead stream
messageoutput by the rst function becomesthe input to the next function before the
rst function processeshe next messagen the input stream. This way, the intermediary
streamsneednot be stored.

108 5. Evaluation of Forward LGQ Forest Queries against XML Streams

Base functions. For processingVl streams,three basefunctions are de ned: the merge
function , the lter function j, and the annotation-meme function ..

The mergefunction : M M ! M intertwinestwo input streamssud that in
the result stream one messagdrom the rst streamis followed by one messagdrom the
secondstream. The closingtags from the streams(if there are any) are simply addedto the
result streamwithout requiring a courterpart messagdrom the other stream. If a stream
is shorter than the other, then the remainder of the bigger stream is simply appendedto
the result stream.

We may write the -function asanin x operator, i.e.,s; s, forthe -application on
the streamss; and s,. A straightforward usageof the -function is to annotate a stream
corntaining only messagesorrespnding to nodes(i.e., tags and strings) with annotations
from another stream. The -function canbe usedalsoasa more generalstream construc-
tor: the concatenationof a messagen with a streams canbe expressedy -mergingthe
stream cortaining the messagem and the streams: m s.

The synbol- Iter function j takes a stream and a set of messagesand returns the
fragmert of the input stream, wherethe messagesiot occurring in the input messageset
are Itered out: j: M I M . For astreams and a messageset , we write the
j-function asan in x operator sj for the application of j ons and .

i M ' M s =lKjx<s*x2 i:

It is easyto obsene that for a streams 2 M , the -merging of the two substreams
sje and sj, of a stream s yields bad the original streams:

S= S| Ya:

The annotation-mergefunction . : M M ! M for abooleanconnective cis a
node-preservingand node-monotonefunction that takestwo streamswith the samenodes
and returns one stream where a node appearsonly once. An annotation a appearsin the
output stream if and only if a appearsin both input streams(for c = *), or in at least
one input stream (for c = _). More speci cally, the annotation a appearsin the output
streamassoon asit is encourtered in the input stream(s): a appearsin the output stream
at a position i, if and only if a appears(1) in oneinput stream at position i and in the
other input stream at a position lower than or equalto i (for c= *), or (2) in at leastone
input streamat the positioni (for c= _). The function . is de ned usingthe following
equivalenceswherethe function is usedin in x form:

(1) < sije N (M51) < spje , (N50) < (S1 ¢ So)je:

av a;®av a” (aii) < sija ” (aiz) < Spja, av a (a%maxis;iz)) < (S1 ~ S)ja:
(ai) < sija _ (ai) < spja, av @ (%) < (s1 Sja:

The variables appearing only in the left side of equivalencesare universally quarti ed,

whereasthe remaining onesare existertially quantied. The rst equivalenceensureshat
in the output stream, the node from both input streamsappear only once. The last two

5.2 Speci cation 109

equivalencesensurethat annotations are computedin the output stream accordingto the
textual de nition ofthe . function. A simpli ed equivalenceconcerningthe annotations
is inferred from the last two equivalences:

Cavata <sj), avarad< (s ¢S
J

For k input streams,the previousequivalencesbecome:
N

((n;i) < sjje), (i) < (st _ i1t _ sWje: (5.1)
A 1§ k
N k(av a ™ (a;i)) < sja), av a’ (a(fll\/IjA)ﬁ(ij)) <(sy ~ i ~S)jar (5.2
j
| (a;i) < 5ja), avar@i)<(ss 11 sja: (5.3)
. ? I((;\J/ ;" a <sja), avara<(s; ¢ ¢S (5.4)

5.2.3 From LGQ to Stream Pro cessing Functions

This section gives the translation sheme of LGQ forest queriesinto stream processing
functions and shavs how the LGQ semarics de ned in Chapter 3 and the evaluation of
sud functions are related.

Translation Scheme of Forward LGQ Forest Queries to Function Graphs

The translation sthemehasthree distinct phases,as detailed below.

Pre-translation Phase. In this phase,we simplify the LGQ forest queries. First, the
guery to be translated is brought in disjunctive normal form. Second,ead atom sel{x; y)
appearing in a disjunct is removed and the variable y is replacedby x in that disjunct
(howeer, if y is the headvariable, then y replacesx). Third, we add a newunary predicate,
head, to the headvariable in ead disjunct. The semattics of this novel predicate is the
sameas for a wildcard nodetest predicate. Thus, it doesnot changethe semartics of the
guery, and senessolelythe purposeof a simpli ed translation phase,as detailed next.

Translation Phase. The translation of the body formula of a forward LGQ forest query
is givenin Figure 5.1 by the translation function F de ned using pattern matching on the
structure of LGQ forest formulas.

The result of a formula translation is a stream processingunction represeting sequen-
tial and parallel compositionsof (1) the functions ¢ for LGQ predicates , (2) the function
for the novel headpredicatehead (3) the functions sc!opeand scopefor dealingwith
the treenessof queries,(4) the input and output functionsin and out, and (5) the identity
function Id. Two functions are composedin sequenceif they are induced by two formulas

110 5. Evaluation of Forward LGQ Forest Queries against XML Streams

F :Formula Variable! M ! M
FIL RKx)= (FJLKx) + FIRKX))
F Joot(y) » RKX) = in FJRKY) out
FJ (xy)" RKX) = zgéopa (+ FIRKY) + FJRKX) " scopg
¢ FIRKX) , 6 head

FI (0" RK) =
PITRIZ dopg (head] ++ FIRKx)) scopg | = head

FJ (X y)KX) = ¢
FJ (X)KX) = ¢
FJ (y;2) " RKx) = FJ (y) ™ RKX) = FJRKX)

FJ (y;2)Kx) = FJ (y)» RKx) = Id:

Figure 5.1: Translation Sdhemeof LGQ Forest Formulasto Function Graphs

sud that the sink variable of the rst formula is the sourcevariable of the secondone.
Two functions are composedin parallel, if they are induced by two formulas that have the
samesourcevariable. The next sectionsof this chapter detail all thesefunctions.

The graph of a streamprocessingunction obtainedby translating a queryis constructed
similarly to the digraph represetation of that query. In a function graph, the nodesare
labeled with the componert functions and a directed edge exists between two nodes if
there is a sequetial composition of the functions labeling thesenodes, or of the function
labeling the rst node and a parallel composition of someother componert functions and
the function labeling the secondnode. The sourcenodesof a function graph are labeled
by the function in, its sinks by the function out, and the inner nodes are labeled with
functions for predicatesand with the functions scopeand scope

Note that the translations of two queries,which arethe samemodulo the commnutativit y
of the A connectiw, yield two non-isomorphicfunction graphs, though their ewvaluation
results are the same. The next and last translation phasesimpli es sud function graphs
sud that they becomeisomorphic (and even smaller).

Remark 5.2.1 The LGQ negation and the single-join DAGs are not consideredin this
chapter. The evaluation approad presetned herecan, howeer, be extendedto treat them
too. A publicly available query evaluator (http://spex.sourceforge.n et) basedon the
results of this chapter supports both aforemerioned extensions. O

Post-translation Phase. The outcome of the translation phasecan be simplied in
se\eral directions, while still preservingits semarics. The simpli cation can be achieved
by the term rewriting systemde ned below. Although not shown here,it can be chedked
that the systemis terminating and con uent modulo the assiativity and comnmutativit y

5.2 Speci cation 111

of + . The variables X, Y, and Z stand for arbitrary (compositions of) functions, x
standsfor LGQ variables.

sc!opg (X + 1d) ~¢ scope! X (5.5)

sc!opq (X +) ~¢ scope! ¢ X (5.6)

séopq (séopq (X +Y) "¢ scopg + Z) "¢ scope (5.7)
! sc!opq (X + Y + Z) *¢ scope

(X+HY) ¢+ 2Z) ! XHYHZ) ; (5.8)

(in X out+ in Y out) ¢! in (X +Y) ; out (5.9)

X YH X Z! X (Y H 2Z) (5.10)

X+ X zZ! X Z (5.11)

Rule (5.5 eliminate the identity function Id. Rules (5.6), (5.7), and (5.8), relax the
rankednessof function graphs, i.e., every node in a function graph can have now more
than two outgoing edges.The parallel compositions of functions for unary predicatesand
other functions are transformedinto sequetial compositions of the latter and the former.
Rule (5.9) factors out the functions in and out. Further simpli cations with (5.10 and
(5.17) factor out commonpre xes of subgraphswith the samesource.

Example5.2.1 Considerthe LGQ tree query
Q(va) root(vo) ~ child™ (vo; v1) ~ a(vy) ~ child™ (vi;vo) A d(vo) ~ child™ (vq;vs) A c(va)

that selectsall c-nodes descendats of a-nodesthat have at least a d-descendan Fig-
ure 5.2.3 shows two simpli ed versionsof the function graph for the body of Q after
adding the predicate. In cortrast to the rst versionfrom Figure 5.2(a), the second
versionis the normal form, i.e., it is not anymore reducible using the rewrite rules of the
post-translation phase. O

It is easyto seethat the above translation sthemecreatesfunction graphslinear in the
sizeof the input query.

Prop osition 5.2.1 (Linearit y of the Translation Scheme). For a givenforward LGQ
forest query, the translation schemeof Figure 5.1 creates a function graph linear in the
size of that query.

Proof. It results from the simple obsenation that the translation of ead query construct
inducesa constart amourt of functions in the function graph. O

Equiv alence of LGQ Semantics and Evaluation of Stream Pro cessing Functions

The LGQ semattics is given in Section 3.3 using the functions LQ for LGQ queriesand
LF for LGQ formulas. For a given set of substitutions of query variablesto the nodes
in the tree conveyed by the XML stream, these functions keep only those substitutions

112 5. Evaluation of Forward LGQ Forest Queries against XML Streams

—
scope,

(a) (b)

Figure 5.2: Two equivalert function graphsfor the query of Example 5.2.1

5.2 Speci cation 113

that are consistem with the query and the tree, i.e., sud that for any substitution the
predicateson the variablesholds also on their images.

For a query Q(v) f and an XML stream s, the link betweenthe sematics of Q
and the answers computed by the stream processingfunction F Jf * head(v)Kis given by
the function , which mapstreesto XML streams.

De nition 5.2.1 (Tree-to-Stream mapping). The function : Tree! M mapsa
tree to its depth- rst, left-to-right, preorder traversalthat yieldsan XML stream.

For the query Q and a given tree T, the mapping betweenthe LGQ sematics of Q
LQ1JQ(V) f Kand the stream processingfunction F Jf * head(v)Kfollows by

FJ A head(V)K (T)) = LQ+JQ(v) fK (5.12)

The next sectionsgives stream processingfunctions that specify the evaluation of LGQ
formulas of increasedcomplexity: atoms, paths, and trees. Then, the computation of
answvers using thesestream processingfunctions is detailed.

5.2.4 Evaluation of Atoms

The ewaluation of the -atoms, where is an LGQ predicate, is reduced here to the
following problem: given a setof sourcenodesfrom atree T, computethe set of sink nodes
from T that standin with any of the sourcenodes. The problem is approaded here by
computing the sink nodes simultaneously for all sourcenodes (a set-at-a-time approad).
Note that sud an approad di ers from, e.g.,[11], wherefor ead sourcenodethe setof sink
nodesstanding in a predicate with that sourcenode is computed independerily (a node-
at-a-time approad). The subtle di erence betweenthe two approadheshasa tremendous
e ect regardingboth their e ciency and applicability in a streamenvironment. The node-
at-a-time approat can compute for seweral sourcenodes non-disjunct sets of sink nodes
that are then mergedinto a single set. Thus, somenodes can be visited se\eral times.
An exampleof non-disjunct sets of nodescomputed from seeral sourcenodesis the set
of descendan nodes of sourcenodesthat stand themsehesin a child® predicate: the set
of sink nodes computed for a sourcenode cortains then the set of sink nodes computed
for any of its descendats. The set-at-a-time approad computessimultaneously the set of
sink nodesfor all sourcenodes, thus avoiding the duplicate removal in the nal merging
phaseof non-disjunct sets,and alsoto visit nodesse\eral times.

For a uniform treatment of unary and binary atoms, we considerin the following binary
variants of the unary atoms. In this sensethe binary variant (vq;v;) of the unary predicate

(v1) consistsin the pairs of all nodesthat are alsoin that unary predicate.

For eath LGQ predicate consisting of pairs of sourceand sink nodes from a tree
T, we de ne the stream processingfunction ¢ : M ! M with its input and output
streamsserializationsof T, wherethe annotation of ead sourcenode in the input stream
is non-empty and is included in the annotations of the sink nodesthat stand in with
that sourcenode.

114 5. Evaluation of Forward LGQ Forest Queries against XML Streams

De nition 5.2.2. The node-preserving and node-monotonestream processing function
M ' M for an LGQ predicate computesfor each sink node n® a new annotation
that is the union of the annotations of all source nodesn that standin with n®

G
’= i (s);8n°< sfe : @o(n) = (@(n)jn<sjg; (n;n9):

The annotationsarethe only messagethat arechangedin the output stream. The com-
putation of new annotations expressedn the above equation meetsthe textual de nition
f the stream processingfunctions for LGQ predicates. The node n° gets the annotation
(@(n) j n < sjg; (n;n9) that is the union of annotations @(n) of all nodesn in the
streams sud that n standsin with n® The annotation a is empty either if (n;n% does
not hold for any n, or the annotation of n is empty.

The union of annotations is necessanbecausesink nodesn® can stand in a (transitiv e
or re exiv e transitive closure) predicate with seweral sourcenodesn. For example,a sink
node can be the descendan of seweral sourcenodes. Howeer, a sink node n° can stand in
a non-closurepredicate with (at most) onenode n. For example,a sink node can be the
child of (at most) one sourcenode.

Example 5.2.2 Figure 5.2.4 shaws a tree with annotated nodes, as corveyed in an input
XML stream, and the reannotations of these nodes as generatedby the application of
functions (1) child , (2) child’ ¢, (3) nextSibf ; , and (4) foll; for processinghe input stream.

The input stream cortains two a-nodesannotated with [1] and [2], and three b-nodes
annotated with [3], [4], and respectively with []. Recall that an annotation for a node
follows immediately the openingtag of that node.

1. The function child movesthe annotation of eat sourcenode to its children.

2. The annotation of ead node in the output stream of the function child"; is the
union of annotations of all its ancestors. For example,the annotation of the rst b-node
becomesghe union [1,2] of the annotations [1] and [2] of both a-nodes.

3. The function nextSibl; annotatesead node with the union of annotations of all
sibling nodesthat preceddt. For example,the last b-nodeis annotatedwith the annotation
[2] of its precedingsibling a-node.

The function folly annotatesead node with the union of annotations of all nodesthat
precedeit. For example,the last b-node is annotated with the union [2,3,4]of annotations
all other b-nodes([3] and [4]) and of the seconda-node ([2]). O

As expressedy De nition 5.2.2and exempli ed by Figure 5.2.4 the annotation of any
node n from the input streamis included in the annotations of all nodesn®in the output
stream of a function ¢, if n standsin with n® Basedon this obsenation, the following
propositions give two important properties of annotations createdby sud functions.

Prop osition 5.2.2 (No de reachabilit y). If a node n standsin predicate with a node
n® then the annotation @(n) of n in the stream s is contained in the annotation @ , ()(n9
of n%in the stream ¢ (s):

(nnY) @) v @, (nY:

5.2 Speci cation 115

<a>[1] <a>[2] [3] [4] [] <a>[] <a>[1] [2] [2] [1]

<a>[1] <a>[2] [3] [4] [] <a>[] <a>[1] [1,2] [1,2] [1]

<a>[1] <a>[2] [3] [4] [] <a>[] <a>[] [] [3] [2]

foll ¢

<a>[1] <a>[2] [3] [4] [] <a>[] <a>[] [] [3] [2,3,4]

Figure 5.3: Processingwith child , child" s, nextSibl ;, and foll;

116 5. Evaluation of Forward LGQ Forest Queries against XML Streams

The above implication says alsothat if n hasa non-empty annotation in s, then n®has
alsoa non-empty annotation in the stream ¢ (S):

(nin%);@(n) 6 [1) @, (9(n)6 [

The implication of Proposition 5.2.2doesnot hold in both directions becauseseeral nodes
can have the sameannotations, as stated next. Thus, the annotations can not be usedas
node iderti ers, for they neednot be unique.

Prop osition 5.2.3 (Annotation ambiguit y). The output stream of a stream processing
function for an LGQ predicate can contain an annotation seveal times, or the intersection
of two annotationsin the output stream can be non-empty.

5.2.5 Evaluation of Path Form ulas

The translation of a path formula, which is a conjunction of atoms, yields a sequetial
composition of streamprocessingunctions, which aretranslations of the componert atoms.

De nition 5.2.3. The node-preserving and node-monotonestream processing function
pr :M ! M foranLGQ path formula p = l(vo;vl)" N K(we 1) v) is the sequential
composition of functions | for the predicates ' (1 i Kk):

1 ... k.
f PR

Pr = f

Recall that the evaluation order of the stream processingfunction p; imposesthat all
componert functions are evaluated stepwise, sud that ead stream messageutput by the
rst function becomeshe input to the next function beforethe rst function processeshe
next messagen the input stream. This way, the intermediary streamsneednot be stored.

Example5.2.3 Figure 5.2.5shavs atree with annotated nodes(top-left), ascornveyedin an
XML stream, and the reannotation of this tree (bottom-right), asgeneratedby the stream
processingunction p; = child nextSibl; b; folk self d; for evaluating the path formula
p(vyi; Vs) = child(vy; vo) ™ nextSibl (vo; vs) ™ b(vs; v3) * foll(vs; va) ~ selfva; vs) * d(vs; vs). The
intermediary results of the componert functions child , nextSibl ¢ by, foll;, andself d; are
alsoshaown, albeit they are not materialized during processing.The input stream cornains
two a-nodesannotated with [1] and [2], three b-nodesannotated with [3], [4], and [5], and
one d-node that hasan empty annotation. The function p; computesa stream wherethe
annotation of ead node n movesto eat d-node that follows b-next siblings of children of
n. For our tree, the path p cortains only the pair of the rst a-node and the d-node, thus
the latter node getsthe annotation of the former in the output stream. The other nodes
get the empty annotation.

1. The function child movesthe annotation of eat node to its children.

2. The annotation of eah b-node in the output stream of the function nextSibl; by
is the union of annotations of all its precedingsibling nodes. For example,the annotation
of the secondb-node becomeghe annotation [2] of the rst b-node, and the annotation of
the rst b-node becomeghe empty annotation [], for there are no precedingsiblings of it.

5.2 Speci cation 117

child f
_>
3] [2]
<a>[1]<a>[2][3][4][5]<d>[]</d> <a>[]<a>[1][2][2][1]<d>[5]</d>

<a>[]<a>[1][2][2][1]<d>[5]</d> <a>[J<a>[][][2][1]<d>[]</d>

<a>[]<a>[I[][2][1]<d>[|</d> <a>[J<a>[][][][2]<d>[2]</d>

<a>[]<a>[I[][][2]<d>[2]</d> <a>[J<a>[][][][[<d>[2]</d>

Figure 5.4: Processingwith child nextSibl; b; follk self o

118 5. Evaluation of Forward LGQ Forest Queries against XML Streams

3. The function folli annotatesead node with the union of annotations of all nodes
that precedet. For example,the last b-nodeis annotatedwith the union [2] of annotations
of all other b-nodes([] and [2]) and of the seconda-node (]]).

4. The function self d; replacesall annotations of nodeswith other label than d with
the empty annotation. Thus, the only d-node in the XML stream keepsits non-empty
annotation. O

The processingof streamswith functions for path formulas p inherit the properties of
processingstreamswith functions for constituert predicates:

the nodesfrom the input stream are copiedin the output stream, and

the annotation of eat sourcenode is moved in the output streamto ead sink node
that standsin p with that sourcenode.

Also, the properties of annotations from streamscreatedby functions for predicateshold
alsofor annotations from streamscreatedby functions for path formulas p:

the annotation of eat sink node in the output stream cortains the annotations of
all sourcenodesthat stand in p with that sink node (node readability), and

an annotation canappear se\eral timesin the output stream(annotation ambiguity).

These results can be easily derived from the analogousPropositions 5.2.2 and 5.2.3 by
using completeinduction over the number of predicatesin the path.

5.2.6 Evaluation of Tree Form ulas

Treeformulas are structurally more complexthan path formulasin that they allow multi-
sourcevariables,thus seeral subformulas having the samesourcevariable. The evaluation
of sud subfornulas is basedon the parallel composition of their correspnding stream
processingfunctions, becausethesefunctions have to processthe samestream cortaining
sourcenodesthat are bindings for their commonsourcevariable. This considerationrises
seeral new challenges. First, the output streams of these functions must be brought
together into a single aggregatedstream that is the serialization of the sametree as the
input stream, and cortains someof the annotations that appear in the output streams.
Second,n orderto nd the sink nodesstandingin a giventree formula with a sourcenode,
the relation betweenthe sourcenodesfrom the input stream and the sink nodesfrom the
aggregatedstream should be uniquely establishedwith help of the annotations propagated
from the input to the aggregatedstream.

The rst challengeis partially solwed by the ewaluation order of stream processing
functions: becauseonemessageés processedy all functions at a time in the order dictated
by their compositions, the aggregationof the output streamsresumeso delivering further
the samemessagewvhen read from all output streams. Additionally, the annotation of
ead messagen the aggregatedstream dependson the annotations already read in all the
output streams.

5.2 Speci cation 119

The secondchallengecan not be solved immediately and needssigni cant extensionsof
the current evaluation strategy. Its non-trivialit y stemsfrom the fact that seweral source
nodescan have the sameannotation in the input stream,thusit is not immediately clear
which sink nodesstand in a given tree formula with a sourcenode. As detailed later, one
possibility is (1) to reannotate uniquely the sourcenodesfrom the input streamsthat are
to be processedy seeral functionsin parallel, and (2) to remenber the mappingsbetween
the original and the new annotations.

Both challengesare addressedn detail next.

Stream Aggregation

The translation schemeof Section5.2.3translates booleanconnectivesc 2 f* ; g of LGQ
formulas to correspnding stream processingfunctions c; .

De nition 5.2.4 (Connectiv e Functions). For k input streams that are annotated se-
rializations of the sametree T, the node-monotonestream processingfunctions ~¢; ¢ :
(M)1 M computeoutput streams that are also serializationsof T and whee an anno-
tation marksa nodeonly if it appears before that nodein all input streams(”¢), respctively
in at least one of the input streams (_;):

CG(S1;:::;Sk)=S1 ¢ i ¢Sk, c2fh; g

The above equationof ¢; matchesits textual courterpart, becauséhe annotation-merge
function ¢, de ned in Section5.2.2 computesthe aforemenioned aggregationof streams.
Note alsothat, accordingto the de nition of the parallel composition ++ of functions,
the application of ¢ on k streamsis the application of ¢ on the parallel composition of
all streamss; to Sy: G (Sy;:::;Sk) = G (S + 110 +H S¢).

Annotation Mappings

Recallthat the annotationsof nodesin an arbitrary streamare not necessarilyunique, thus
they are not iderti ers for the nodesthey accompaly, as alsostated by Proposition 5.2.3
This fact makesit di cult to detect which sink nodesfrom the output streamsof seeral
functions composedin parallel stand in a tree formula, speci ed by thesefunctions, with
the same source node from an input stream. In order to overcomethis dicult y, we
(1) reannotate uniquely the sourcenodes from the input stream, and (2) remenber the
mappingsbetweenthe original and the new annotations. By using unique annotations for
all sourcenodesin the input stream, the detection in the output streamsof sink nodes,
which stand in the tree formula with a sourcenode, is reducible to testing whether the
uniqueannotation of that sourcenodeis cortained in all annotationsof thesesink nodes,cf.
Proposition 5.2.2 The annotation mappingsare necessarypecausehe original annotations
of the sourcenodes encale dependenciesof thesenodesto other nodes, as computed by
functions correspnding to other subformulas.

In order to ewaluate functions composedin parallel, we proceedthen as follows. In
the rst phase,the sourcenodesfrom the input stream are reannotateduniquely and the

120 5. Evaluation of Forward LGQ Forest Queries against XML Streams

mappingsbetweenthe original and the fresh annotations are stored within the stream. In
the secondohase the functions composedin parallel procesghe samenewinput streamand
deliver their output streams. In the third phase,the output streamsare aggregated.In the
fourth and last phase the freshannotationsfrom the aggregatedstreamare mappedbad to
their original courterparts. In this way, the old dependenciesf the sourcenodesconveyed
by the original annotations are kept while safely evaluating the parallel composition of
functions. Thus, the fresh annotations are usedexclusiely for the ewvaluation of parallel
compositions and are dropped afterwards.

There is a generalresenblance of this ewaluation strategy to the implemenation of
function calls in abstract madinesfor programming languages:the initial phasedeclares
newvariableswithin the scope of the calledfunction, the next two phasesisethesevariables
to computeand carry the results of the function call, and the last phasemapstheseresults
to valuesof variablesfrom the upper scope, wherethe function is called.

The phalsesare realizedasfollows. The rst phaseis doneby the so-calledscope-begin
functions scope which createannotation scopes,the secondphaseis doneby the functions
composedin parallel, the third phaseis doneby the connectiwe functions”¢ and _; de ned
above, and the last phaseis done by the so-calledscope-endfunctions scope which close
annotation scopes.

We detail now on how the mappings are created and used. For eath multi-source
variable i 2 Vars(f) of a formula f, we de ne the in-mapping function !" and the out-
mapping function ' that map non-emply sourceannotationsa to sink annotationsb. The
annotation mappings are written a !' b for in-mappingsand b ' a for out-mappings.

Becausd' and ' arefunctions, they cannot map the samesourceannotation to di erent
sink annotations. For in-mappings, the annotations a and the fresh annotations b are
non-empty, whereasfor out-mappingsthe annotations b can be alsoempty.

Sud annotation mappings are created only for multi-source variables, becauseonly
in this casethe annotations in the input stream needto be unique. Annotations of a
multi-source variable t can stand in an in-mapping relation with annotations of another
multi-source variable s that leadsto t in f s ; : t and there is no multi-source variable
uwith s; ¢ u; ; t. Betweenthe full annotation created by the in function and the
annotations of any other multi-source variablescan hold the transitiv e closurein-mapping
relation !I' *. For a multi-source variable i, the relation I' * is the set of pairs of the full
annotation [0] and the (non-empty) annotations &, if

there is no multi-source variable leadingto i, or
there is a multi-source variable] with a]Q X g and [0] X T g
More compact, the transitiv e closurein-mapping relation is de ned by the equivalence

o] *a, [0]' & or[0]" ta v a]-o!i a:

5.2 Speci cation 121

If [O] I' *a holds, we s& that g is readablefrom [0]. This meansalsothereis at leastone
annotation in-mapping for ead multi-source variable connectedto i that mapsannotations
reatable from [0] and from which g is readable.

Analogously the transitiv e closure out-mapping relation ' + is the set of all pairs of
(non-empty) annotations a and [0] sud that [0] can be readed from & using (at least)
one annotation out-mapping of eat multi-source variable leadingto i:

O] "ta, [0 aof]’ tave ' a:

An annotation mapping is expressedn the stream asa new messageaype. The set of
stream message$/! is now extendedto cortain alsothe set of annotation mappingsA*® :

[o
A% = (' ['Y=faX bja2A;b2 A;X 2f!'; ' gi2Varsf);f 2 LGQg:

i2Vars
An annotation mappinga X b followsin the streamthe fresh annotation b (for X = 3) or
the annotation a (for X = '), hencealso the node having that annotation. The number

of annotation mappings that can accompary a node is bounded in double the number
of multi-source variables, becausea node can have at most one annotation in-mapping
(respectively at most oneannotation out-mapping) for ead sud variable. The annotation
mappingsof a node in a stream can be accessedising the function : M E! P(A%)
that returns for a given node the set of all its annotation mappingsin a given stream.

Annotation Scopes

An annotation scope delimits the lifetime of a fresh annotation, similar to the scope de-
limiting the lifetime of variablesdeclaredlocally to proceduresin programminglanguages.
The lifetime of a freshannotation spansover the stream fragmen delimited by the source
node having that annotation in the input streamand the last of its sink nodesin the aggre-
gated stream. Recall that the sink nodescomealways after the sourcenodes,becausehe
stream processingfunctions, which compute the output streamsto be aggregated specify
forward LGQ formulas. In the following, we consider rst that the end of sud a stream
fragmert coincideswith the end of the whole stream. Then, it is shovn that dependingon
the type (sdowvn, pdown, or rdown) of the LGQ formula speci ed by the stream processing
functions, the lifetime of a freshannotation can be considerablyshortened. It is, of course,
of advantage to x at compile-time the maximum lifetime of an annotation. In this way,
annotationsthat are not further neededcan be discardedduring processingand not only
at the very end.

An annotation scope is openedand closedby two complemetary stream processing
functions scope-begin scopeand scope-endscope When openingit, in-mappingsof original
and fresh annotations are created, and original annotation are replacedby fresh annota-
tions. The closingof an annotation scope consistsin mapping badk the fresh annotations
to the original ones,using out-mappings.

122 5. Evaluation of Forward LGQ Forest Queries against XML Streams

De nition 5.2.5 (Scope-Begin). Consider a muI'ti-souroe variable i and a stream s.
The node-preservingand node-monotonefunction scope: M ! M (1) createsa fresh
annotation @o(n) = neV\(@S_(n)) for each non-empty annotation @(n), and (2) addsthe

in-mapping message@(n) !' @w(n) after a, to the output stream:
$°= scope(s): 8n < sYe; @(N) 6 []: @o(n) = Nnew@(n));
S = (M f@mn! @ng

The new function createsa fresh annotation for eath recei\eq non-empty annotation.
The above de nition describesonly the stream changesdoneby scope The other messages
are copiedunchangedfrom the input to the output stream.

De nition 5.2.6 (Scope-End). Considera multi-source variablei and a stream s. The

node-preservingand node-monotonefunction scope: M ! M (1) createsfor each non-
empty annotation @ (n) the union @(n) of all annotations that are mapped in s to parts

of @(n), and (2) addsthe out-mappingmessageay(n) i @o(n) after @o(n) to the output
stream: G
s°= scopg(s); 8n < sYe : @o(N) = (a1 jax v @(n);(ax ! a) < 9);
()= (N[f(@in ' @m)e:
As for séope the above de nition descrikes only the stream changesdone by scope

The other messagesre copiedunchangedfrom the input to the output stream.
Example5.2.4 Figure 5.5 shaws the evaluation of the function

sc!ope ((child"s & ++ childs ¢) "¢ + nextSibl by) _; scope
that speci es the LGQ formula
(child” (v;v2) ~ a(vz) A child (v;vs) A c(v3)) _ nextSib{v; vs) b(vs):

For avoiding cluttering in the gure, we intentionally omitted the index v of sc!opeand
scope The gure shaws the input stream and the tree corveyed wit'hin, together with
selectedstreamsrepreseting the output of the componert functions scope ¢, and scope
The result of processingcan be interpreted as follows: only the sourcenodeswith non-
empty annotations cortained in annotations appearingin the output streamstand in that
formula with someother nodes. In particular, thesesourcenodesare the rst b-node and
the rst a-node, becausetheir annotation [2] appearsin the output stream. O

Prop osition 5.2.4. Considerthe stream processingfunctions sape-kegin séope, sope-end
scope for a multi-source variablei, and the node-preservingand node-monotonef that does
not Iter out annotation mappingsfor i. Consider also the streams sy, s, = sc!ope(sl),
sz = f(sz), and s; = scopeg(ss). Then, the following implication holds:

8n;n’< sije t @, (N) v @,(nY) @,(n)v @,(nY:

Moreover, if s; hasonly unique annotations, then the implication holdsin both directions.

5.2 Speci cation

123

STREAMS

SO:
[2]
<c>[3]

S1:
[1] [2] >[1]

<c>[4] [3] >[4]
S6:

[][2]>[1]

<c>[1,2] [3] >[4]

S7:
[]

<c>[2] [2]<[1,2]

<a>[2]

</c>

<a>[2] [2] >[2]

</c>

<a>[][2]>[2]

</c>

<a>]]

</c>

<la>

<la>

<a>[3]

[1]
<a>[3] [3] >3]

[5] [1] >[5]

<a>[][3]>[3]

[2] [1] >[5]

<a>]]

[2] [2]< [2]

Figure 5.5: Processingwith sc!ope((child*f g + child"s)~ + nextSibl by) ¢ scope

124 5. Evaluation of Forward LGQ Forest Queries against XML Streams

Proof. The functions sc!ope and scope presene the non-emptinessof annotations, cf. Def-
initions 5.2.5and 5.2.6 Hence,@, (n) 6 [], @, (n) &[], forj 2f1;3g.

The casewhere @, (n) = @,(n) = [] holds immediately, for [] v @(n% holds for
every node n®in ewery streams. It remainsto prove the implication for the non-trivial

case@,(n) 6 [].

@,(nv @,ny, (@' @, (") < %2i @,(M) v @,(n;
@, (N9 = (@jav @,n%; (a! a) < s
I @,(n)v @,(n:

The last implication is due to the obsenation that a, canbe @, (n). O

Reducing the Annotation Scopes

The lifetime of a freshannotation spansover the stream fragmen delimited by the source
node having that annotation in the input stream and the last of its sink nodesin the
output stream. The position of those sink nodesrelative to the sourcenodesis, howe\er,
highly dependert on the kind of formulas speci ed by the functions producing the output
stream. We addressnext this issuefor the three types of forward formulas introducedin
Section3.6. source-davn (sdown), parernt-down (pdown), and root-down (rdown).

Sdown formulas cortain only sdavn path formulas that relate any sourcenode to some
of its descendats. Thus, the lifetime of a freshannotation marking a sourcenodeis limited
to the streamfragmert enclosedby the start and end tags of that sourcenode.

Pdown formulas cortain sdovn and pdown path formulas that relate any sourcenode
to someof its followings that are also descendats of its parert node. Thus, the lifetime
of a freshannotation marking a sourcenode is limited to the streamfragmen enclosedby
the start tag of that sourcenode and the end tag of its parert node.

Rdown formulas cortain sdowvn, pdown, or rdown path formulasthat relate any source
node to someof its followings. Thus, the lifetime of a fresh annotation marking a source
node is limited to the stream fragmen enclosedby the start tag of the cortext node and
the end of the stream.

Using this information on the lifetime of annotations, someannotations can be dis-
carded as soon astheir scope is exhausted. The important implications of the limitation
of annotation lifetime are

1. the reusability of annotations, and
2. the limitation of the number of fresh conditions alive at a time.

The e ect of reusinga dismissedfresh annotation can be simply seenas a rede nition of
the in-mapping and out-mapping functions for that annotation. In fact, the functions are
not changed,but rather they are de ned to consideronly the last (in- or out-) annotation
mapping of a given annotation.

5.2 Speci cation 125

The limitation of the number of fresh annotations alive at a time becomesthe bound
for the domains of the in/out-mapping functions serializedin the stream, as stated later
by Proposition 5.2.5

Summing up, the stream fragmert su cient to ewaluate a formula of type x from a
sourcenode n starts with the openingtag of n and endswith (1) the closingtag of n (for
x = sdown), (2) the closingtag of the parernt of n (for x = pdown), or (3) the last closing
tag of the stream (for x = rdown). We de ne the function end that returns the last tag
of sudh a stream fragmert depending on the predicate type x and sourcenode n. Also,
we de ne the function new that createsnew annotationsfor ead encouriered non-empty
annotation in a given stream. In cortrast to the function new that createsalways unique
annotations, the function new reusesannotationsaccordingto x. Thus, whenthe lifetime
of an annotation is ended,the sameannotation can be reused.

We distinguish betweenthree types of scope-begin functions, depending on the type
of formulas speci ed by the functions processmgthe stream created by such scope-begin
functions: the sdown scopeSdOWn the pdown scope'“d"wn and the rdown scope“’°Wn scope-
beginfunctions. Note that the rdown scope-begin function is more generalthan the other
two, and its de nition correspndsto De nition 5.2.5 of the basic scope-begin function
scope

De nition 5.2.7 (sdown, pdown, and rdown scope-begin). Let us considera multi-
source variablei being the path source of formulas of type x 2 f cdown; pdown; rdowng only,
and a stream s. The node-preservingand node-monotonefunction séope M I M

(1) replaes each non-empty annotation a; with a fresh annotation a,, and addsto the

output stream (2) the in-mapping annotation a; ! a, after a,, and (3) the out-mapping
annotation[] ' a, at the end of the lifetime of a,. The stream changesdone by sc!opeare

descriled as follows (the other messagesire copied unchange from the input to the output
stream):

sP= sc!opex(s);8n < sYe : @o(n) = new (@(n)); «(n) = <(N)[fF(@(n) X @o(N))g;
o(end(n)) = (end(m) [f([] ' @)y

Example 5.2.5 Figure 5.6 gives an input stream together W|th the tree it conveys, and
the reannotated stream createdby the scope-begin functions scopeSdOWn scope'odo‘"’n and
scope“’OWn for the input stream. Note that the number of freshannotations alive at atime
di ers for all three cases.This number is boundedeither (1) in the tree depth, or (2) in
the sum of the maximum tree depth and breadth, or (3) in the tree size. O

The following proposition states the size of in-mapping relations for a predicate con-
tained in one of the previously de ned classes.

Prop osition 5.2.5. Consider the evaluation of LGQ formulas f , which are of type x 2
f sdown; pdown; rdowng and haveas source a multi-source variablei, on a stream conveying

126 5. Evaluation of Forward LGQ Forest Queries against XML Streams

(3]

Input Stream: <a>[2] <a>[][3] [3] [3] <d>[4] </d>
Output Stream: <a>[1] [2] >[1] <a>[] [2] [3] >[2] [2] [3] >[2] [2] [3] >[2] <d>[3] [4] >[3] </d>

(3]

Input Stream: <a>[2] <a>[][3] [3] [3] <d>[4] </d>
Output Stream: <a>[1] [2] >[1] <a>[] [2] [3] >[2] [3] [3] >[3] [2] [3] >[2] <d>[3] [4] >[3] </d>

(3]

Input Stream: <a>[2] <a>[] [3] [3] [3] <d>[4] </d>
Output Stream: <a>[1] [2] >[1] <a>[] [2] [3] >[2] [3] [3] >[3] [4] [3] >[4] <d>[5] [4] >[5] </d>

Figure 5.6: Example with sdavn, pdown, and rdown scope-begin functions

5.2 Speci cation 127

a tree with depth d, breadth b, and sizes. The maximum size 3 j of the in-mapping
relation!' required for the evaluationof f is

8
_ 2d if x = sdown;
jr j=_d+b if x= pdown;
"s if Xx = rdown:

Proof. Recallthat after the openingtag of ead sourcenode, there is a non-empty annota-
tion for which a scope-begin function scope* createsa freshannotation and an in-mapping
annotation.

Casex = sdown. After the closingtag of eat sourcenode, the lifetime of the annota-
tion createdat the correspnding opening tag is ended. There can be at most d opening
tags beforeencourtering one of their closingtags, thus at most d new annotations alive.

Casex = pdown. After the closingtag of the parent of eat sourcenode, the lifetime
of the annotation created at the correspnding opening tag is ended. There can be at
most d + b opening tags before encourering the closingtag correspnding to the parent
of the node with the last opening tag. The bound d + b is ensuredby the maximum
number of nestedopening tags until the closingtag correspnding to the last openingtag
is encourtered (d) and the number of opening tags of sibling nodesthat can follow (b).

Casex = rdown. After the last closingtag of the stream, the lifetime of the annotation
createdat the correspnding opening tag is ended. There can be at most s opening tags
after a cortext node and beforethe last closingtag of the streamand possiblya non-empty
annotation after ead openingtag. O

5.2.7 Answ er Computation

The answers computedby a stream processingfunction for a given LGQ query are among
the nodesmarked by the function with non-emply annotations that are either full
annotations, or stand in the transitive closureout-mapping relation with the full annota-
tion. We discussnext the functions in and out, then the computation of answers for the
caseof path queriesand for the more complex caseof tree queries.

Annotation schemes for the input stream

The nodesfrom an input XML stream are annotated initially by the stream processing
function in, sud that the rst node (i.e., the root) getsa full annotation, and the other
nodes get empty annotations. This annotation sdheme correspnds to the evaluation of
absolute queries, i.e., queriesthat are ewaluated from the root node. A query is then

absoluteor relative depending on the position and amourt of full annotationsin the input

stream. For example, an interesting schemeis obtained by marking ead node from the

input streamwith a full annotation. This annotation shemeenforcesthe computation of
the setof all nodesreadable via a query from any node from the stream, and correspnds
to the evaluation of a special caseof relative queries.

128 5. Evaluation of Forward LGQ Forest Queries against XML Streams

Creation of potential answers and detection of answers

The potential answers are the nodes speci cally marked by the function with a

non-empty annotation. Recall from Section5.2.3that the is function inducedin a
stream processingfunction by a unary predicate on the headvariable of the correspnding
query.

The last function in a sequetial compositions of functions specifying the evaluation of
a query is the function out. Given a stream cortaining all nodesfrom the initial stream,
possibly with out-mapping annotations as results of annotation scopes, together with the
annotations done by the function, the out function detectswhich nodesmarked by
the function are answers, and which not.

There are two distinct casesto considerfor the detection of answers: (1) for path
gueries,and (2) for forest and tree queries.

1. Path queriesare translated into sequetial compositions of functions correspnding
to the component predicates. Becausethe head predicate is on a non-sourcevariable,
the function is the last-but-one in sequencejmmediately before the out function.
There are no annotation scoges,and the only annotation usedduring the processings the
full annotation. The nodesmarked by the function with the full annotation read
immediately the out function and are the query answers.

2. Tree queriesare translated into sequetial and parallel compositions of functions
correspnding to the component predicates. The stream s processedn this caseby the
function cortains annotations from a certain annotation scoge i, and the nodes
marked by this function with non-emply annotations a; are query answvers only if the
following condition is satis ed.

The annotation a; of an answer node must stand in the transitiv e closureout-mapping
relation with the full annotation [0]. This holdsonly if a; standsin the out-mappingrelation
either with the full annotation, or with an annotation a; from another scopej and a part
a]-0 of it standsin the transitiv e closureout-mapping relation with the full annotation.

o' *a, [0]" aiOF[O]j+ajva]°iai:

This condition ensureghat all annotations a]-0 and the annotation a are in the aggregated
streams of their correspnding scopesj and i. This meansalso that the annotation aj0
is collectedfrom all (at least one) of the output streamsof the functions specifying tree
formulas.

If the lifetime of annotationsis reduced,cf. Section5.2.6 then the sameannotation can
be usedse\eral times and the above characterization of answers doesnot hold in general.
Instead, the condition must be strengthen sud that the annotations aj0 and a; are alive.
This meansthat, in the input stream of the out function, the nearestout-mapping of ead

sudh annotation must not be to the empty annotation: neither []) a]-0 nor[] ' a.
Because(1) the input stream to the out function can not be stored, and (2) when

receivinga particular potential answer, the out function may needto exploreout-mappings

in the stream's history or future, a reasonableimplemenrtation of the out function must

5.3 Implemen tation 129

output the encourtered answers as scon as possible,and bu er only the potential answers
until the decisionon their appurtenanceto the resultis met. In particular, on eat received
out-mapping, the out function must chedk whetherit is relevant for the bu ered potertial

ansvers. Note also that the out-mappings appear in the stream as soon as their source
annotations are encourtered in the aggregatedstreams,and these sourceannotations are
propagatedoptimal in the output streamsto aggregatedue to the de nition of the stream
processingfunctions for LGQ predicates.

5.3 Implemen tation

For the implemenation of the ewaluation strategy descriked in Section 5.2, we chosede-
terministic pushdavn transducers,i.e., automata with pushdavn store and output tape,
due to seeral reasons. First, the computation of structural relations between nodesin
treescorveyed in XML streams,like the forward LGQ predicatesspecify, is donenaturally
using pushdavn automata. The pushdavn storesof sud automata are usedto remenber
the depths of various nodesin the stream, and they su ce to compute relations de ned
using the tree depth. Second,the output tape of sud automata is useful for establish-
ing communication with other automata. Complex stream processingfunctions specifying
LGQ formulas are realized by networks of communicating automata, where their connec-
tions re ect the (parallel and sequetial) compositions of functions for the LGQ predicates
making up the formulas.

After introducing the necessarypreliminaries on pushdavn transducers, this section
givesthe transducersfor forward LGQ predicatesand for other stream processingunctions
usedfor the evaluation of LGQ forest formulas.

5.3.1 SPEX Transducers and Transducer Networks

Pushdavn transducersare automata with pushdavn store and output tape. More for-
mally, a pushdavn transducer [82] is an eight-tuple hQ; ; ; ; ;®;Zo;Fi that satis es
the following conditions:

Q is a nite setof states.

, and arealphabets. isthe input alphabet, and its elemelts are called input
symbols. isthe pushdavn alphabet, and its elemerts are called pushdavn symbols.
is the output alphabet, the elemeits of which are called output synbols.

isarelatonfromQ ([f"g) ([f"g)to 2% ([f"g). Iiscalledthe
transition table, the elemens of which are called transition rules.

(p is an elemen in Q, calledthe initial state.

Zo isanelemen in , calledthe bottom pushdavn symbol.

130 5. Evaluation of Forward LGQ Forest Queries against XML Streams

F is asubsetof Q. The statesin the subsetF are calledthe accepting,or nal states.

Deterministic pushdavn transducersallow at most one transition from any of its states.
In this case,the transition relation becomesa function fromQ ([f"g) ([f"g) to
Q ([f"0).

One of the main usagesf pushdavn transducersis to support recursion. In fact, recur-
sive nite-domain programsare characterizedby pushdavn transducers[82]. Processing
an XML streamwith pushdavn transducerscorrespndsto a depth- rst, left-to-right, pre-
ordertraversalof the (implicit) tree corveyed by the XML stream,and usesalsoan implicit
form of recursion,in order to discover which closingtag correspndsto which openingtag.
Exploiting the a nit y betweendepth- rst searth and stadk managemet) the transducers
usetheir stads for tracking the node depth in sud trees. This way, the forward LGQ
predicates can be evaluated in a single pass, which correspnds to a run of pushdavn
transducerson the XML stream.

SPEX Transducers

We usein the following a simpli ed classof deterministic pushdavn transducers,which we
call SPEX transducers.

De nition 5.3.1 (SPEX Transducer). A SPEX transduer is a single-statedetermin-
istic pushdowntransduer, wheee the input and output alphalets are the set of all opening
and closingtagsand annotations M, the stackalphalet is the set of all annotations A, the
bottom pushdownsymlol Z, is the empty annotation [], and the transition function is
canonically extende to the con guration-baseal transition functon ":M A ! A M .

Note that for de ning a SPEX transducer, it is only necessaryto give its transition
function

Example5.3.1 Considerthe SPEX transducerde ned by the following transitions

L([d ,) (i, ")
2. (hi[sli)" (Islj ,hils])
(e sli) ()

On receivingan input symbol [c], which is an annotation, the rst transition pushesthat
symbol onto the stack and doesnot output anything. Note that the stadk cortent [c]j
is j-separatedin its top [c] and the rest , and no output is simulated by writing on the
output tape the empty synbol ".

On receiving an input symbol h i, which is an opening tag, and with the annotation
[s] asthe top of the stak, the secondtransition keepsthe samestad con guration and
outputs rst the input symbol hai followed by the top of the stad [s].

On receivingan input symbol h= i, which is a closingtag, and with the annotation [s]
as the top of the stadk, the third transition outputs the input symbol and pops the top
annotation o the stac.

In e ect, this SPEX transducer movesthe annotations of nodesto their children. [

5.3 Implemen tation 131

SPEX Transducer Networks

The sequetial and parallel compositions of stream processingfunctions are implemerted
by sequetial and parallel compositions of pushdavn transducers,where the meaning of
transducer compositions is the same as for functions: the output of one transducer is
the input for the immediate next ones(for sequetial composition), respectively se\eral
transducershave the sameinput (for parallel composition). For sud compositions are
oriented (from onetransducerto another), the implemertation for a function specifyingan
arbitrary LGQ formula is done using networks of transducers,or directed acyclic graphs
whereead nodeis a pushdavn transducerand eat edgebetweentwo transducersinforces
that the input tape of the sink transducer is the output tape of the sourcetransducer.
In this respect, a transducer network is isomorphicto the function graph of the stream
processingfunction it implemerts.

5.3.2 Transducers for Forward LGQ Predicates

A transducerfor a forward LGQ binary predicate : Node Node! Boolean,or simpler
an -transducer,implemerts the function f : SetNode)! Set(Node) that computes,for
a given tree T and a set of sourcenodesn in T, the set of all sink nodesm in T that
stand in the predicate with n, i.e., (n; m) holds. More precisely instead of processing
directly the set of sourcenodes,a transducer processeshe stream cornveying all nodesin
T, wherethose sourcenodesn are marked with non-empty annotations. The yield of the
transducer is the stream cornveying all nodesin T, where only the sink nodes have non-
empty annotations, and a sink node m is annotated preciselywith the union of annotations
of all sourcenodesn that stand in the predicate with m.

For accomplishingthis task, an -transducer usesits stadk to store the annotations
of the sourcenodes until their correspnding sink nodes are encourered in the coming
stream. The key issueon designingsud transducersstemsin satisfying the constrain
that when a sink node is encourtered on the stream, the annotations of its correspnding
sourcenodesare on the top of the stad, thusjustifying the useof sud an access-restricted
memory store. In this way, the sink nodes can be easily marked with the annotations of
their correspnding sourcenodes. This sectionshaws that, indeed,there are deterministic
pushdavn transducersthat implemert the functionsf of the forward LGQ predicates
and this fact makes our choice for pushdavn transducersnatural. Section5.5 shows that
a relaxation of the stadkwise accesdo the store of eat transducer brings a better space
complexity, at the expenseof a more complicated store managemen

Con guration-basedtransitions de ning -transducersare givenin the following, and a
processingexamplewith them is given later in this section. Initially , an empty annotation
[] is pushedonto the stadk of ead transducer. Note that the -transducersdier only in
the rst transition, which is a compaction of seweral simpler transitions that do only one
stadk operation.

We de ne next the transducersfor the forward binary predicates: child, fstChild and
nextSib) then for the transitive closure predicateschild” and nextSibl, and then for the

132 5. Evaluation of Forward LGQ Forest Queries against XML Streams

re exiv e transitive closureschild and nextSibl. For the implemertation of the nodetest
predicates,we use nite transducers(i.e., without the pushdavn store). Finally, we give
somethoughts on the capabilities of sud transducersto implemernt more sophisticated
predicates,and even simple compositions of predicates.

The childtransducer movesthe annotations of nodesto their children. The tran-
sitions of this transducer read as follows: (1) if an annotation [c] is receiwed, then [c] is
pushedonto the stadk and nothing is output; (2) if an openingtag h i is receiwed, then
it is output followed by the annotation from the top of the stadck; (3) if a closingtag is
receied, then it is output and the top annotation is popped o the stad.

L ([d ,) (i, ")
2.(hi[sli)" (sli ,hils])
3(EiIsli) (i)

Recall that the annotation of a node n follows its opening tag. When receivinga node n
annotated with [c], [c] is pushedonto the stack. The following two casescan then appear:

(1) the closingtag of n is received, and [c] is popped o the stadk. This correspndsto
the casewhen there are no other child nodesof n left in the incoming stream.

(2) the openingtag of a child node m of n is receiwed, and it is output followed by [c].
Thus, the node m is annotated correctly with [c], which wasthe annotation of n.

In the secondcase,a new annotation, say [¢J, is received afterwards, pushedonto the
stack, and usedto annotate children p of m. Only when the closingtag of p is receiwed,
[is popped and [c] becomesagain the top of the stadk. At this time, siblings of m can
be received and annotated with [c] (the above cases?), or the closingtag of n is received
(the above casel).

The fstChildtransducer movesthe annotations of nodesto their rst children. This
transduceris a simpli cation of the child-transducer, by restricting a stored annotation [s]
of a node n to mark at most one node. This node is necessarilythe rst child of n, as
ensuredby the left-to-right traversalof the children existert in the stream. This restriction
can be realizedby replacing[s] with the empty annotation as soon asa child of n and its
annotation, say [c], is received. Below, we give the rst transition modi ed accordingly
The other transitions are asfor the child-transducer.

L(c [slj) (@djlli »")

The nextSibltransducer moves the annotations of nodesto their immediate next
sibling, if any. The transitions of this transducerare the sameas for the childtransducer,
exceptfor the rst one,which is givenbelow. In the rst transition, this transducerreplaces
the top of the stad [s] with the received annotation [c] of the sourcenode n and pushesan
empty annotation [] onto the stadk. The annotation [] is then usedto annotate children of
n. When the closingtag of n is receiwed, the annotation [] is popped and its next sibling
node m can be annotated with the top annotation [c]. The other next siblings can not be
annotated with [c], becaus€[d] is replacedby the annotation of m, say [c, and now the
immediate next sibling of m can be annotated with [cY.

5.3 Implemen tation 133

L(c [slj)~ (Cliledj ")

Remark 5.3.1 Note that for the basepredicates 2 ffstChild child nextSibg and any sink
node m, there exists at most one sourcenode n sud that (n; m) holds. Therefore, an
-transducerdoesnot needto compute unions of annotations of seweral sourcenodesn for
annotating sink nodes. We seenext that the transducersfor closurepredicates * and
have to compute sudh unions, becausethere can be seeral nodesn for which *(n; m),
respectively (n;m), holds. O

The child" -transducer movesthe annotations of nodesto their descendats. The
transitions of this transducer are the sameas for the childtransducer, exceptfor the rst
one, which is given below. In the rst transition, this transducer pushesonto the stack
the received annotation [c] together with the top annotation [s]: [c]t [s]. The di erence to
the childtransduceris that also the annotations [s] of the ancestorsn, of n are usedto
annotate children m of n, for the nodesm are also descendats of the nodesn,.

L(c, [slj) (ct[slilsli »")

When receivinga node n annotated with [c], [c] is pushedonto the stadk together with the
current top [s]: [c]t [s]. The following two casescan then appear:

(1) the closingtag of n is received, and [c]t [s] is popped 0 the stadk. This correspnds
to the casewhenthere are no other descendats of n left in the incoming stream.

(2) the opening tag of a child m of n is received, and it is output followed by [c]t [S].
Thus, the children of n, which are alsodescendats of n, are annotated correctly.

In the secondcase,a new annotation, say [c], is received afterwards, the annotation
[t [c]t [s] is pushedonto the stadk and usedto annotate children p of m. Thus, the
annotation [d] is alsousedto annotate children p of m (n%, hencedescendats of n. Only
when the closingtag of p is received, [ct [c]t [s] is popped and [c]t [s] becomesagain the
top of the stadk. At this time, siblings of m can be received and annotated with [c]t [3]
(the above case?), or the closingtag of n is received (the above casel).

The nextSibl -transducer movesthe annotationsof sourcenodesto their next siblings.
The transitions of this transducer are the sameas for the childtransducer, exceptfor the
rst one,which is givenbelow. In the rst transition, this transduceraddsto the top of the
stadk [s] the received annotation [c] of the sourcenode n and pushesan empty annotation
[]. The annotation [] is then usedto annotate children of n. When the closingtag of n
is received, the annotation [] is popped and its next sibling nodesm can be annotated
with the top annotation [c]. Becausethe old top of the stad [s] is kept together with the
newly received annotation [c], then annotations of precedingsiblings of n are alsousedto
annotate the following siblings of n.

L (e [sli) (liletisli »")

134 5. Evaluation of Forward LGQ Forest Queries against XML Streams

The transducersfor the re exive transitive closuresare simple variations of the ones
for transitiv e closuresde ned above. We explain them shortly below.

The child -transducer movesthe annotations of ead node n to its descendats and
to the node n itself. This transduceris de ned below similar to the child’ -transducer,with
the di erence that a node n keepsits own annotation, say [c], togetherwith the annotations
of its ancestors,s& [s].

1. ([c ,[sli) ([cft[s]jlsli . [c]t [s])
2. (hi ,) (,hi)
3. (i, [s]j) (. i)

The nextSibl-transducer movesthe annotations of eat node n to its next siblings and
to the node n itself.

L([c ,[sli) (lildtIsli ,[clt[s])
2. (hi,) (, hi)
3. (i, [s]j) (D)

Transducers for LGQ Nodetest Predicates

A nite transducerfor an LGQ nodetestpredicatenodetest: Node NodeTest! Node,or
simply a nodetest-transducer,implemerts the function f ggetest : S€t(Node) NodeTest!
Set(Node) that computes,for a given tree T and a set of sourcenodesin T, the subset
of it consistingonly in the nodeswith that nodetest. As for -transducers,the nodetest-
transducersprocesseshe stream corveying all nodesin T and outputs the samestream
whereonly annotations can be changed. A transducerfor a nodetest replacesthe anno-
tations of nodeswithout that nodetestwith the empty annotation. The transitions of an
nodetest-transducerare given next. For simpli cation, ead transition can considertwo
input symbols at once. Also, the nodetest: standsfor any nodetestbut . Becausewe
consider nitely marny nodetests,this compactrepresetation for any nodetestbut holds.

1. (hi[cg)" (hilc])
2. (h: i[d) " (hil[])
(=i) (ki)
4. (= i) (= i)

Variations of Transducers for LGQ Predicates

From the transitions of the -transducers,it can be obsened that the relation between
the binary predicates and their correspnding -transducersis determined by how the
annotation of ead node n is stored onto the transducer'sstadk. Theserelations can be
resumedas follows ([c] is the annotation of n currertly read and [s] is the current top of
the stak):

1. [c] is output assoon asit is read. Then, [c] is usedto mark alson.

5.3 Implemen tation 135

2. [c] is pushedin the newtop. Then, [c] is usedto mark alsothe children of n.

3. [c] is pushedin the old top. Then, [c] is usedto mark alsothe next sibling of n.
4. [s] is pushedin the newtop. Then, [s] is usedto mark alsothe descendats of n.
5. [s] is pushedin the old top. Then, [s] is usedto mark alsothe next siblings of n.

By mixing the above behaviours 1 to 5, one can get the transducersimplemerting the
desiredbuilt-in predicates. For example, conbining behaviours 1 and any other ensures
the re exivit y of the implemerted predicate. Combining behaviours 4 and 2, or 5 and 3,
ensuresthe transitivit y of the implemented predicate. And combining 1 and 2 and 4, or 1
and 3 and 5, ensuresboth the transitivit y and re exivit y of the implemerted predicate.
There are, of course,other possibleconbinations. For example, the conmbination of
behaviours 2 to 5 givesthe implemertation of the complex predicate child" -or-nextSibl =
child" [nextSibl . Thesecombinations are re ected in the following changedtransition:

L (Ic. [slj)~ ([ct[sljlclt [s]i ")

More non-trivial predicatescan be supported by changingalsothe other transitions of the
childtransducer. We exemplify this with the foll-transducer de ned below. In the rst
transition, it replacesthe old top annotation [s] with the new annotation [c] and then
pushesalsothe old top [s]. Becauseahe nodesfollowing a node n are all nodesreadablein
the further stream after closingthe node n, the annotation [c] becomespart of the top of
the stak and usedto annotate incoming nodesas soon asthe node n is closed(transition
3). In cortrast to the -transducerspreviously de ned, oncean annotation becomespart
of the stad, it remainsthere, becausethe following sibling nodesof the ancestornodesof
n follow alson.

L(cd ., I8l) (slildj . ")
2.(hi, [slj)" ([sli ,hi[s])
3.(W i, [c]j[sli) ([ct[sli . W i)

Although pushdavn transducersare not closedunder composition, the composition of
pushdavn and nite transducersis possibleand even bene cial. In this sense,one can
createtransducersimplemerting composition of binary and nodetest predicates. We give
below the transitions of a transducer for the composition of the child binary predicate
and the a nodetest-predicatede ning, for a set of nodes, the set of their children with
nodetesta. Note that sud compositions are generaland natural. The generality of sut
compositions ensuresthat they can be applied on any binary and unary predicate. Their
naturality is ensuredby the usagein the practical XML query languageXPath of atomic
constructscalledlocation stepsmadeout of a binary and a unary predicate, like in child:a.
By corvenience,we name the transducer, implemerting sud a combination of a binary
predicate and a nodetestpredicate , the :: -transducer.

136 5. Evaluation of Forward LGQ Forest Queries against XML Streams

L(d) (e ")
2. (hi[s]j) ([sli , heifs])
3 (hai ,) (L hua[])
4. (e [s]j) (., bFai)
5. (Feai,[s]j)" (k= ai)

5.3.3 Pro cessing Example with Transducers for LGQ Predicates

We shav next how the child::btransducer processesncremertally the stream
hai[1] hai [2] hai [3] W bih/ aihbi[] H bih/ ai

cornaining two a-nodesand two b-nodes.

Recallthat the stad isinitialized with an empty annotation []. The stadk con guration
changesonly onreceivingannotationsand closingtags. On receivingopeningtags matching
its nodetest, the transducer outputs that openingtag followed by the top of its stad.

hai It outputs the tag, followed by its (initial) top annotation []. Thus, the rst a-node
doesnot have in the input streama parert with a non-empty annotation.
The stadk con guration remains|].

[1] It pushes[1] onto the stad, This way, it is instructed to mark all b-children of the
rst a-node with [1].
The stack con guration becomed1]j[] (the top is at the left).

hai It outputs the tag, followed by []. Although the top annotation is [1], this output is
correct, becausethe received node doesnot have a b-nodetest.
The stadk con guration remains[1]j[].

[2] It pushes[2] onto the stadk. This way, it is instructed to mark all b-children of the
seconda-node with [2].
The stadk con guration becomed2]j[1][].

hbi It outputs the tag, followed by the top annotation [2]. This output is correct, because
the received node doeshave a b-nodetestand is a child of the seconda-node.
The stadk con guration remains[2]j[1][].

[3] It pushes[3] onto the stadk. This way, it is instructed to mark all b-children of the
rst b-node with [3].
The stack con guration becomeq3]j[2]i[1][]-

H bi It popsthe top [3]0 the stadk, meaningthat there are no children of the rst b-node

left in the stream. This is correct, becausehe rst b-node doesnot have children at
all.

The stadk con guration becomed2]j[1][].

5.3 Implemen tation 137

Wai It popsthe top [2] 0 the stak, meaningthat there are no children of the second
a-node left in the stream.

The stadk con guration becomed1][].
hoi It outputs the tag, followed by the top annotation [1]. This output is correct, because
the received node doeshave a b-nodetestand is a child of the rst a-node.
The stadk con guration remains[1]j[].
[] It pushes[] onto the stadk. This way, it is instructed to mark all b-children of the

secondb-node with []. Becausethe other children are also marked with [], we can
concludethat the transducerwill mark all children of the secondb-node with [].

The stadk con guration becomeq Jj[1][].

W bi It popsthe top [] o the stak, meaningthat there are no children of the second
b-node left in the stream.

The stadk con guration becomed1][].

W a It popsthetop [1]o the stadk, meaningthat there are no children of the rst a-node
left in the stream.

The stadk con guration becomeq] and the processings nished.

The output streamsproducedby the transducerschild ::b, nextSibl ::b, and foll::b when
processingthe sameinput stream are shovn below:
input hai [1] hai [2] b [3] Hh Ha hi] Wb Hai
child ::b bai [] hai [] Hi [1,2] Wb Ha hi [1] Wb Hai
nextSibl :b [hai [] hai [] Hi [] Wb Ha Hi [2] hb Hai
foll::b hai [] hai [] Hoi] Wb Ha hi [2,3] Wb HWai

5.3.4 Transducers for Other Stream Pro cessing Functions

The ewaluation strategy of this chapter usesalso rather complex stream processingfunc-
tions, e.g.,for dealingwith aggregationsof seweral streams,annotation scoges,and manage-
mert of potential answers,and SPEX transducersare not expressie enoughto implement
all of them. Therefore, we dlscusshere the implemenations of someof these functions,
like of the scope functions scope and scope and of the connective functions *¢ and _¢,
by meansof SPEX transducerswith straightforward extensions.

Recall from De nition 5.2.7 that the node-preservingand node-monotonefunctions
scope (for a multi-source variable i) replaceseat annotation [c] with a freshannotation
[s+ 1], which is a singletonlist, and addsto the output streamthe in-mapping annotation
[!' [s+ 1] after [c], and the out-mapping annotation [] ' [s+ 1] at the end of the
lifetime of [s+ 1]. The fresh annotation [s + 1] is generatedusing the top annotation [s]
from the stadk. We give next the relevant transition rulesof the transducerfor the function

138 5. Evaluation of Forward LGQ Forest Queries against XML Streams

sc!ope sdown — The transitions for the other messageypes consistin simply copying the
message$rom the input to the output stream.

L(d 6]) (s+ajlsli L [s+ (! [s+ 1])
2. (hi ,) (, hi)
3.(W i, [s]j) (, Wil " [s))

Note that the lifetime of the annotation [s+ 1] endsassoon asthe tree depth, wherethat
fresh annotation is created, is readied again. The transducersfor the other scope-begin
types,i.e., scope pdown and scope rdown “are de ned similarly, with the only di erence that
the lifetime of [s+ 1] endsassoon as(l) the tree depth smallerby onethan the tree depth,
wherethat freshannotation is created,is readed again (for séope pdowny “and (2) the end
of the streamis reated (for sc!ope rdowny,

The node-preservingand node-monotonefunction scope replacesead non-empty an-
notation encouneredin the input streamwith the union of all annotationsthat are mapped
to parts of the former annotation. It alsoaddsthe out-mapping messagef the former to
the latter annotation to the output streamafter the latter annotation. Its implemertation
is done by a transducer that usesa random accessiblestore (i.e., a Turing macine) for
keepingthe in-mappingsencourered in the input stream.

The connective functions s and _; are responsible for aggregatingse\eral streams
into a single stream being the serialization of the sametree as the input streams, cf.
De nition 5.2.4 Their de nitions are basedon the annotation-mergefunction . de ned
in Section5.2.2 which ensuresthat an annotation a appearsin the output stream at a
given position p if and only if a appearsin all input streamsat positions previousto p (for
c= "), orin at least one input streamat a position previousto p (for c=).

The implementation of . isgivenbelowv by amodi ed SPEX transducerwithout stad,
but with an array, whosesizeis given by the number n of streamsto aggregate.Also, this
transducerhasan input tape for eat of its input streams. The transitions for messagesf
other types, like in-mappings, are not shavn, becausesud messagesire simply copiedto
the output.

Lo(([eadszzslen]) s (Isalziifsal)) © ((Isalt [ea]iczzsi[salt [Cn]) ([S.]t [c])

2. ((hi,: h 1) L ([saliizisa]) ~ (([l 5D, hi)
3.((W iyinb i), ([saliz::i[sal)) (([sa]::: 2 Isn]), b i)

The transducerfor _ diers from that of « in the treatment of annotations. The
former one copiesall annotations from the input streamsto the output stream.

5.4 Minimization Problems for SPEX Transducer Net-
works

When dealingwith networks of transducers,there are at least two minimization problems
to address:the problem of nding the minimal network equivalert to a given network, and

5.4 Minimization Problems for SPEX Transducer Networks 139

the problem of minimal stream routing within a given network.

An equivalert minimal network is a network that producesthe sameoutput as the
initial network for a given input and haslesstransducersthat the initial network. Sud a
network could be obtained, e.g., by

1. composingseeral pushdavn transducersinto a single pushdavn transducer,
2. reducingthe network to an equivalert fragmert of it, and

3. nding a completely other network equivalert to the initial one.

The rst possibility is excluded,for pushdowntransducersare in generalnot closedunder
composition [42]. The last two possibilities can be partially lifted at the level of LGQ as
a query reformulation and minimization problem: for a given query, nd an equivalert
minimal query. This problem is partially addressedin Chapter 4 and it is not further
addressedhere. Recallfrom Section5.2.3that the translation of LGQ formulasinto stream
processingfunctions has a simpli cation phasethat can dramatically reducethe size of
function graphs, and thus of the correspnding transducer networks. In that case,the
simpli cations are not possibleat the level of LGQ.

The minimal streamrouting problem within a network is: given a transducer network
and an arbitrary input stream, instruct the transducersto sendfurther only stream frag-
merts that can be of interest to the successotransducers. This problem is (partially)
addressedext.

The streamprocessingunctions usedin this chapter are node-preservingj.e., all nodes
from the input stream appear in the output stream. Consequetly, the transducersim-
plemerting them are also node-preserving. This property ensuresan easierand uniform
treatment of transducers,although at the cost of routing within the correspnding net-
works also stream fragmerts that are not relevant for the computation of query answers.
Consider,e.g.,an XML streamcortaining information about articles possiblyfollowed only
at the very end of the stream by information about books, and a query askingfor authors
of books with given pricesand publishers. For this query, our evaluation strategy creates
a network, whosenumber of transducersis linear in the number of componert LGQ pred-
icates and of multi-source variables. The transducersin the network processthe stream
incremerally, and ead transducer sendsfurther the streamto its successie transducers.
In casethe transducerinstructed to nd booksnodes,say the bookstransducer, encoun-
ters sud a node, then it sendsthat node further to its successorswith an additional
non-emply annotation. In caseit encourers other nodes, e.g., article-nodes, then it still
sendsit further, but with an additional empty annotation. Either way, all nodesfrom the
streamread all transducersfrom the network.

We considerheretwo routing strategiesto restrict the stream fragmerts sert between
transducers.

1. Recallthat all transducerssucceedinghe bookstransducerlook always for nodesin
the streamfragmernt that followsthe booksnodes. Thus, the query evaluation is not altered,

140 5. Evaluation of Forward LGQ Forest Queries against XML Streams

if the bookstransducersendsfurther only the streamfragmert starting with the rst books
node and ending together with the stream, and the other transducersdo the samefor the
nodesthey areinstructed to nd relative to nodesfound by their previoustransducers. The
transducerswould processthen a much smaller fragmert of the input stream. Although
this obsenation doesnot changethe worst-casecomplexity of our evaluation strategy; it
provesvery competitive in practical cases.

2. The minimization of the streamrouted betweentransducersdoesnot stop here. Let
us consideragainthe previousexample,and assumehat the transducersreceiving(directly
or indirectly) stream from the bookstransducer look for nodesto be found only inside
the stream fragmerts correspnding to booksnodes (lik e their descendats, or siblings of
their descendats). Then, the bookstransducer can safely sendfurther only sud stream
fragmerts correspnding to booksnodes.

Sud information on the interest of transducerscan be inferred from both the query to
ewvaluate and the characteristics of the stream (e.g., its grammar). For the SPEX setting
considerechere,i.e., no a-priori knowledgeof the incomingstreamis provided, only the rst
inferencecaseis reasonable.We are con dent that exploring the secondcaseis rewarding
too, but we delegateit to future researt for now.

Both aforemenioned approadiesto minimal stream routing, called here phase and
respectively phase routing, can be easily supported by the evaluation strategy presered
in this chapter. Their use deviatesa bit from our previous explanationsin that the al-
ready existing transducersare not drastically changed,but rather new transducers,called
structural lters, are placedcorrespndingly at compile-timein the network.

The improvemen adhieved by using structural Iters depends tremendously on the
selectivity of the query evaluated by the transducer network. In the previous example,
the selectivity is rather high, becausethe bookstransducer, positioned near the top of
the network, nds booksnodesat the very end of the stream. In sud casesthe gain is
fully rewarding. However, in caseswherethe query is not selecti\e, the e ort to run the
additional routers can be re ected in worsetiming of the ewvaluation. Section 5.6 shows
that in practice sud routers bring the evaluation time up to se\eral times better than of
the original network.

In a streamconext, the selectivity of the (continuous) query canchangeover time, due
to changesin the input stream. Therefore,an interesting question,which is not addressed
here,is to add or remove the routers at run-time, depending on the changesin the query
selectivity.

A nal remark beforede ning the router transducers. Due to the fragmertation they
operate on (well-formed) XML streams, sud routers output stream fragmerts that are
not necessarilywell-formed. In particular, the routers can sendclosingtags without their
accomparing opening tags. The neededchangesto the existing transducersare mini-
mal: the stadks of the SPEX transducershave a non-removable bottom-symbol (which is
interpreted asthe empty annotation) which may not be removed.

5.4 Minimization Problems for SPEX Transducer Networks 141

Phase; Routing

After ead transducerfor a forward LGQ predicate,we add to the network a phasg router
transducer which sendsfurther the stream fragmert starting with the rst opening tag
followed by a non-empty annotation. For a more compact de nition, we may read two
input symbols at once. The transition rules read as follows. If no non-empty annotation
hasbeenalreadyreceiwed (stated by the empty annotation asthe only ertry on the sta),
then no messages let through. As soon asthe stadk consistsin a non-empty annotation,
all subsequenmessageare let through. Finally, in casethe received node hasa non-empty
annotation ([s] & []), thenit is sert through and the annotation becomeghe stad cortent
(_ standsfor any annotation).

L(hifl, [D (1L ")
2. (i, 0D (1L ")
3. (hill, [s]) " (sl hi[])
4. (h=i L [s]) ([s], hei)
5 (hils],)~ ([s], hifs])

Phase, Routing

After eat transducer for a forward LGQ predicate, we add to the network a so-called
phase router transducerwhich sendsfurther only streamfragmerts that canberelevant to
the other transducersdown the network. We candistinguish herethe casef (sub)networks
ewvaluating sdavn, pdown, and rdown formulas. The rst casecorrespndsto our previous
example,becauseall transducersunder the phase router transducerlook for nodesto be
found only inside the streamfragmerts correspnding to nodesmatched by the transducer
positionedabove that router. The secondcaserestricts the routed streamto the fragmerts
between the node having a non-empty annotation and the closingtag of its parert. A
phase router transducerfor the third caseis the sameasfor phase and asde ned above,
becauseit restricts the routed stream to the fragmert betweenthe rst node having a
non-emptly annotation and the end of the stream.

We give next the phase router transducerfor the sdavn case.In cortrast to the phase
router, the phase router usesits stadk to remenber the smallestdepth of a received node
with a non-empty annotation. Therefore,only if the stadk consistsin an empty annotation,
then the opening and closingtags of nodeswith empty annotations are not let through.

-(hifl, [D [l ")
(i, D) (L")
- (hifd,)" ([cj— hi[c])
-(hill, —j)~ ([1i—j , hi[])
L,) (, =)

a b~ wDdNPE

1This relaxation doesnot make the phasg router more expressive than SPEX transducers.

142 5. Evaluation of Forward LGQ Forest Queries against XML Streams

5.5 Complexit y Analysis

This section gives upper bounds for the time and spacecomplexities of the LGQ query
ewvaluation using the evaluation strategy deweloped in this chapter. After analyzing the
complexities for forward LGQ forests, which are explicitly targeted in this chapter, the
complexitiesfor LGQ graphs are also discussed,as derivable from both the complexities
of rewriting of graphsinto forward forestsand the complexities of evaluating the latter.
Se\eral other ideas on improving the spacecomplexity are also preseited, though not
thoroughly investigated.

The ewaluation of forward LGQ forest queriesproposedin this chapter has polyno-
mial combined complexity (i.e., in the size of the data and of the query) near the lower
bound [7]] for in-memory ewaluation of Core XPath, a strict fragmert of forward LGQ
forests. Although in generalit is consideredthat the queryis xed, in a stream cornext
there are good reasonsto take also the query sizeinto accoun, especially when dealing
with sets of (millions of) queriesto be ewvaluated at the sametime, as encourered in
publish-subscrile systems[76].

The presermation of the complexity results for forward LGQ forestsis guided by the
following thread. First, a discussionon the size of annotations and of transducer stacks
is conducted. Then, the time and spacecomplexitiesare investigatedfor eight classesof
forward LGQ forests. Inside thesefragmerts, somesubfragmetts that enjoy ewven better
complexitiesare de ned further, though their syntactical characterization gets complex.

In the remainderwe considerthat the LGQ query hassizeq, the XML stream(cornveying
trees) has maximal depth d, maximal breadth b, and sizes.

Discussion on the size of an annotation

An annotation is represeted as a list of natural numbersin ascendingorder. We discuss
the memoryrequiremerts to storesud alist, wherethe greatestnumber allowed n depends
linearly on the stream parametersd, b, or s.

Case 1. Thelist isanempty list (corresppndingto an empty annotation) or a singleton
list cortaining the number O (correspnding to a full annotation) or 1. In this case,the
list can be represeted using constart spaceO(1).

Case 2. The list is either (a) a singleton list, e.g., [3], or (b) a cortinuous list of
(successig) numbers, e.g.,[2,3,4],wherethe numbersin the list are lessthan the greatest
number allowed n. Sud a cortinuous list can be represeted as an interval where the
upper delimiter is lessthat n. Note that a number lessthan n can be represetted using
log, n bits. In this case,the list can be represeted using O(logn) bits.

Case 3. The list is an uncortinuous (i.e., with holes)list of numbers, e.g.,[2,4], where
the numbersin the list are lessthan the greatestnumber allowed n. In this case,the list
can be represerted asa bitset with at most n positions, thus with sizeO(n).

The stadks of all pushdavn transducersde ned in Section 5.3.1 cortain only annota-
tions, as ensuredby their de nitions. Recall from Proposition 5.2.5that the amourt of

5.5 Complexit y Analysis 143

annotations stored onto the stads of sc!opeX transducers(x 2 f sdown; pdown; rdowng) is
d for x = sdown, d + b for x = pdown, and s for x = rdown. The following proposition
givesthe bound on the maximum number of annotations existert at a time on a stadk of
transducersfor binary predicates.

Prop osition 5.5.1. The stackof a transduer for an LGQ binary predicate hasat mostd
entries, where each entry is an annotation.

Proof. The stad of eat sud transducerchangesasfollows: for ead annotation following
an openingtag the transducerpushesan annotation onto the stad (it may be the received
annotation, the empty annotation or another computed annotation) and for eat closing
tag an annotation is popped from the stak. A stadk can have at most d annotations
(entries), for there can be at most d opening tags encourtered in the stream beforeone of
their closingtags is receiwed. O

Becauseeadt stad ertry is an annotation, the size of a transducer stadk dependson
the sizeof the annotation, as discussedn the previous paragraph. For ead of the above
casesf di erent annotation sizes,di erent stak sizesare de ned that are d times bigger
than the annotation size.

Discussion on the size of the buer for potential answers

The memory neededfor processingLGQ querieson streamswith SPEX is given by the
memory used for transducer stadks and also by the memory used for bu ering stream
fragmerts when needed.

The evaluation of a tree query canrequire extra memoryfor bu ering potential answers.
As pointed out in Section5.2.7, if, for a particular substitution consisten with that tree
guery and the stream, the image of the head variable (the headimage) in encounered in
the stream before the imageof another variable, then that headimagebecomesa potential
answer and hasto be bu ered until either all variables get an image (in which casethe
head image becomesan answer), or it is known that they can not get images(in which
casethe headimageis dropped).

In worst case,the ertire streamis a potential answer that dependson a variable sub-
stitution that happensonly at the end of the ertire stream. In this pathological case,the
ertire streamis bu ered.

It is worth noting that this bu ering of potential answersis a constart aspect of the
SPEX problem itself, and thus independen of the method descriled here.

Well-ordered Queries have bu er-free Evaluation

We noticedthere is a forward LGQ fragmert cortaining queries,for which all substitutions
consisten with them and any tree ensurethat the headimage appears after the images
of the other variables. Thus, the evaluation of sud queriesdoesnot needbu ering. We
call the querieswith this fortunate order of variable imageswell-ordered queries and their
classLGQW°q.

144 5. Evaluation of Forward LGQ Forest Queries against XML Streams

Forward forest queriesfrom LGQW°? admit an easygraphical characterization: for all
their possibledigraph represetations, all nodesabove the node correspnding to the head
variable are on the path to the latter, which additionally has no outgoing edges.LGQ%°4
contains also all queriesthat admit an equivalert forward forest query with the above
graphical characterization. For example, in Figure 4.3 the rst two and the last two
digraphsrepresen well-orderedqueries,whereasthe middle digraph not. Clearly, LGQW"°
includesthe LGQ fragmen of forward paths, becausethe head variable of forward path
gueriesis non-source(the rst condition), and there is no upper node that doesnot lead
to the node correspnding to the headvariable (the secondcondition).

Although not addressedhere, it is interesting to study LGQ fragmerts that become
LGQW™°9 only in the presenceof particular classesf streams,asde ned by grammars.

Combined Complexities for Eight Forward LGQ Forest Fragments

The spaceand time conbined complexitiesfor the evaluation of queriesfrom eight forward
LGQ forest fragmerts are given below. The rationale behind choosing thesefragmerts is
given by the various sizesof annotations createdduring query evaluation and by the lack
or needto bu er stream fragmers. The syntactical characterization of these fragmerts
is given in Table 5.1 and their combined complexitiesin Table 5.2 All thesefragmerts
cortain nodetestsand all LGQ booleanconnectiwes. The di erences betweenthem consist
in the typesof permissibletree formulas (sdown, pdown, rdown, cf. Section3.6) and of the
LGQ built-in predicates. Recallthat an sdovn/p down/rdown tree formula hasmulti-source
variables being also sourcesof sdovn/p down/rdown paths subformulas. An sdowvn paths
cortains only forward vertical atoms. A pdown path contains only forward vertical and
horizortal predicatesatoms, and starts with a horizorntal atom. An rdown path cortains
foll-atoms.

From any of theseeigh fragmerts, a subfragmei constructed by removing query con-
structs listed in Table 5.1 liesin the samecomplexity classasthe fragmert from which it
is derived, if this subfragmer is not already listed in the table separately

| Fragmert | sdavn/p down/rdown tree formulas | F | F*[F [ffollg |

LGQ: none + +
LGQ> sdowvn + {
LGQ;3 sdowvn { +
LGQq4 sdown, pdown { +
LGQs sdown, pdown, rdown { +
LGQe sdavn + +
LGQ~ sdown, pdown + +
LGQg sdown, pdown, rdown + +

Table 5.1: Syntactical Characterization of consideredLGQ Fragmerts

5.5 Complexit y Analysis 145

| Fragmert || Annotation Size| SpaceComplexity S; | Time Complexity T; |
LGQ1 O(1) O(q d) O(q s)
LGQ2 O(1) O(q d+5s) O(q s)
LGQs O(log(d)) O(q d log(d) + s) O(q log(d) s)
LGQq4 O(log(d + b)) O(d logld+b+s)|O(g logld+ b s
LGQs O(log(s)) O(q d log(s) + s) O(q log(s) s)
LGQs O(d) O(q d*+) O(g d s)
LGQ+ O(d+ b) O(q d (d+ b+ s) O(q (d+b s)
LGQs O(s) O(@ d 9 O(q_s’)

Table 5.2: Combined Complexity of consideredLGQ Fragmerts

Theorem 5.5.1 (Complexit y of Forward LGQ Query Evaluation). For the LGQ;
fragmentsde ned in Table 5.1, the space S; and time T, combined complexities for the
evaluatingqueriesof thesefragmentsare the onesgivenin Table5.2(1 i 8).

Discussion. For all eight LGQ fragmerts the following three propertieshold. First, the size
of a transducernetwork for an LGQ query is linear in the sizeof the query. This property
holds (1) due to the linear size of the stream processingfunction in the correspnding
query, as ensuredby Proposition 5.2.1 for the translation stheme of Section 5.2.3 and
(2) dueto the one-to-onemapping of stream processingfunctions to transducers. Second,
eat node in the stream hasan annotation, the sizeof which in uences both the time and
the spacecomplexitiesof query evaluation. Third, a transducerstadk can store at most d
annotations, as ensuredby Proposition 5.5.1

The processingwith a transducer network requiresthen time linear in the size of the
guery q and spacelinear in the query sizeq and in the depth d. The time complexity T;
and spacecomplexity S; depend alsoon the size of annotations createdduring processing,
as highlighted in Table 5.2 The remainder investigatesthe size of an annotation that
di erentiates the complexitiesof the de ned LGQ fragmerts.

LGQ ; evaluation needs annotations of constant size. No sdovn/p down/rdown
formulasin thle query meansno multi-source variables, thus no tree queries. This means
thereareno scope* transducersin the network correspndingto the query, andno bu ering
is needed. Then, the only non-emply annotations on the transducer stadks are the full
annotations producedby the in transducer. This correspndsto Case(1) of annotations of
constart size. The unions of annotations done by transducersfor closurepredicatesyield
always empty or full annotations of constart size.

All remainedfragmerts LGQ; (2 1 8) allow tree queries. The previous discussion
on the sizeof the bu er for potential answerspoints out that the evaluation of tree queries
canrequire a bu er of maximum sizes.

The translation scheme of Section5.2.3 for a given query addsto the correspnding
stream processingfunction a scope* function for ead multi-source variable in the query.
The correspnding scope transducer createsfresh annotations that are at most d for x =

146 5. Evaluation of Forward LGQ Forest Queries against XML Streams

sdown, at mostd + b for x = pdown, and at most s for x = rdown, cf. Proposition 5.2.5
All annotations created by a scope transducer are singleton lists cortaining one number
spanningfrom 1 to the maximum amourt of fresh annotations. The above bounds hold
alsofor the sizeof the in-mapping and out-mapping relations, cf. the sameproposition.

LGQ , evaluation needs annotations of constant size. No closurepredicatesin
the query meansno unions of annotationsdoneby transducers. Therefore,the annotations
have constart size.

The next six fragmerts LGQ; (3 i 8) allow querieswith closure predicatesto
a varying degree. Basedon this degree,various séopeX transducerscan appear in the
transducernetwork for a given query. The type of sud transducersdeterminesthe amourt
of annotations existert at a time on their stadks and circulated downstream the network,
as given above. Therefore, depending on these casesthe unions of annotations can have
sizeO(d), O(d + b), or O(s).

Among the next six fragmerts LGQ;, the next three (3 i 5) allow only queries
with closure predicates, henceall transducersfor sud predicatescompute unions. The
result of sud a union is always a cortinuous list of numbers and it can be represeted
as an interval, where the biggestnumber is boundedby d, d + b, or s respectively. This
correspndsto Case(2.2) of annotations of sizeboundedby log(d), log(d + b), or log(s).

The last three fragmens LGQ; (6 1 8) allow querieswith non-closurepredicates
and alsoto a varying degreeclosurepredicates. The result of annotation unionscanbe an
uncortinuouslist of numbers, and it can be represeted as a bitset with at mostd, d+ b,
or s positions. Apart of the sizeof annotations, theselast three fragmerts are symmetrical
to the previousthree ones.

Summarizingthe results, we get:

1. The queriescortain sdowvn, but not pdown/rdown formulas. Then, their corre-
sponding networks can cortain séopeSd"W” transducersthat store at most d annotations
at a time. If the queriescortain only closure predicates,then the unions of annotations
can always be represeted as intervals, otherwise as bitsets. The latter casecorrespnds
to LGQ3 and the annotations have size at most log(d). The former casecorrespnds to
LGQe and the annotations have sizeat most d.

2. The queriescortain sdovn and pdown, but not rdown formulas. Then, their corre-
sponding networks can cortain scopeOdOW” transducersthat storeat mostd+ b annotations
at a time. If the queriescontain only closure predicates,then the unions of annotations
can always be represered as intervals, otherwise as bitsets. The latter casecorrespnds
to LGQ4 and the annotations have sizeat most log(d + b). The former casecorrespnds
to LGQ; and the annotations have sizeat mostd + b.

3. The querlescortaln sdawvn, pdown, and rdown formulas. Then, their correspnding
networks can cortain scope“’°Wn transducersthat store at most s annotations at a time.
If the queriescortain only closurepredicates,then the unions of annotations can always
be represeted asintervals, otherwiseasbitsets. The latter casecorrespndsto LGQ5 and
the annotations have sizeat most log(s). The former casecorrespndsto LGQg and the
annotations have sizeat mosts. O

5.5 Complexit y Analysis 147

Remark 5.5.1 Recall from Chapter 4 that the languageof forward LGQ forestskeepsits
expressieness,ewen if the foll-predicate is removed, becausefoll-atoms can be rewritten
into formulas without foll, but with reverseatoms. Sud formulas can be rewritten into
(possibly) exponertially bigger equivalert forward formulas.

On the other hand, Theorem 5.5.1 states that the time complexity can be quadratic,
and the spacecomplexity linear, in the streamsizefor LGQg cortaining the foll-predicate.

The tradeo betweenthe complexitiesof the latter and the former casescan be easier
motivated by various application scenarios.For the ewvaluation of rather complex queries
against a stream of small (but many) independen XML documeris [7], the latter ap-
proach makessensewhereasfor the evaluation of simpler queriesagainsta stream of large
(possibly unbounded) XML documerts, the former approad is more appropriated. O

Combined Complexities for Graph Queries

In general, graph queriesare rewritten into forward forestswith size exponertial in the
size of the graph queries. Therefore, the ewvaluation strategy introduced in this chapter
would require exponertial complexity in the sizeof the initial query for evaluating them.
Howewer, as showvn by [74], the evaluation of graph queriesis exponertial in general. Our
work re nds, thus, this result of [74]. As explainedbelow, it goesevenbeyond andidenti es
a large LGQ fragmert of graph queries,whoseewaluation has polynomial upper bounds.
This makesour ewvaluation strategy optimal and completefor graph queries,and, although
exponertial in general,it is polynomial in particular cases.

Thesecomplexity resultsare derivable from both the complexitiesof evaluating forward
forests, as detailed in this chapter, and the complexities of rewriting graph queriesinto
forward forests, as detailed in Chapter 4. In particular, the rewriting of a graph query s
yields a forward forestquery, whosesizeis linear in the sizeof s, if eat connectionsequence
in s contains neither (i) vertical closurereversepredicatesafter vertical forward predicates,
nor (ii) horizortal closurepredicatesimmediately after horizortal reversepredicates,and
nor (iii) vertical closureforward predicates,having assink a variable with a forward sink-
arity greaterthan one, after vertical forward predicates(cf. Theorem4.5.3.

We conjecture that an ewen larger LGQ fragmert of graph queriescan be evaluated
with polynomial combined complexities. By relaxing the condition on the forwardness
of the rewritten forest queries,one can expect that more graph queriescan be rewritten
into polynomially-sizedforest queries. This result, co-relatedwith the existenceof poly-
nomial (main-memory) evaluation strategiesfor forest queries(with forward and reverse
predicates),e.qg.,[71], makesthe evaluation of thesegraph queriespolynomial.

Impro ving Space Complexit y

When consideringtransducernetworks for the evaluation of LGQg and LGQ- queries,there
is an interesting monotonicity relation betweenthe annotations existert at any time on
the stadk of transducersfor predicates:any two annotationsrepreseting consecutie stack
ertries have the property that the one near the top is either (1) empty, or (2) the same

148 5. Evaluation of Forward LGQ Forest Queries against XML Streams

asthe other one, or (3) represets a list cortaining numbersthat are all greaterthan the
numbers of the other annotation, or (4) the two annotations have a commonsublist, and
the previousthird caseappliesto the rest of both annotations.

We de ne the monotonicity binary relation correspnding to the case<,3,and 4 above,
by extendingthe order from numbersto lists of numbers,i.e., to annotations:

[l [0, 8i<[a;9 <[o:i I
We give without proof the following proposition that summarizesour obsenation.

Prop osition 5.5.2. Considerthe following con guration of the stackof a transduer for a
horizontal or vertical forward LGQ predicate during processingan XML stream: [C,]] :::]
[c;] whee [c1] is the stackbottom. Then, either [¢]=[]or [¢ 1] [G], wheel<i n.

Sud a property is very useful becauseit exhibits the possibility to store the anno-
tations more e cien tly than using a stack. The gain lies in avoiding to store redundart
annotations.

Considerthat instead of the rigorous accesspolicies of stadks, we allow occasionally
oursehesto acces=riries below their top. We also considera new symbol, called marker.
The basicstadk operations can be, then, implemerted as follows:

push. We follow the aforemerioned four cases.In the rst and third caseswe push
the marker and then the received empty annotation. In the other two caseswe push only
the di erence betweenthe received annotation and the top annotation. It should be clear
that our stadk doesnot cortain overlapping annotations as erries, if they are non-empty.

pop. We pop the top enry, as for normal stadks. If after popping the new top
becomesa marker, then we pop it too.

top. We collect all annotations starting with the top and endingwhenthe bottom of
the stadk is reathed, or when a marker is found. The union of the collected annotations
represets the top annotation.

5.6 Exp erimen tal Results

The theoretical complexity results of Section5.5 are veri ed by an extensive experimertal
ewvaluation conductedon a prototype implemertation of our SPEX ewaluation in Java (Sun
JRE 1.5) on a Pertium 1.5 GHz with 500MB under Linux 2.4.

XML Streams. The e ect of varying the stream size s on the evaluation time is
consideredfor two XML stream sets. The rst set[114 provides real-life XML streams,
ranging in size from 21 to 21 million nodes and in depth from 3 to 36. The second
set provides synthetic XML streamswith a slightly more complex structure that allows
more precisevariations in the workload parameters. The syrthetic data is generatedfrom
information about the currently running processeon computer networks and allows the
speci cation of both the size and the maximum depth of the generateddata (see also
Chapter 6).

5.6 Exp erimen tal Results

149

300 T T T T T)
real-life data ey

250 [i
200 k synthetic data o

150 e

time (sec)

+

o

50

time (sec)

0 100 200 300 400

stream size s (MB)

500 600

(a) Varying streamsizes (q= 10,3 d 32)
Figure 5.7: Scalability (p

700

T
closure

wildcard

time (sec)

space (MB)

40% 60%
probability (%)

80%

(@) Eect of p, p:, and pnexisibi

100%

N
o

=
N o
T T

o S foe]
T

100 200 300 400 500 600 700 800 900 1000
query size q (relations)

(b) Varying query sizeq (s = 244kB, d = 32)
= P+ = Prexsiol = Py = 0:5)

N Wb OO N

100 200 300 400 500 600 700 800 900 1000
query size q (relations)

(b) E ect of varying query sizeq

Figure 5.8: If not varied, s = 244kB, d= 32,9= 10,p = P+ = Prextsibi = P» = 0:5

35 T T T T T T T T T

30 parse T
T 5 naive ------- T 13
3 phasel -------- e &
o 20 - phase2 -- 7 3 o
Es 5T 1 £
o P - o
F 10 I NI S 3

5 [l s B) -

0 i i i i i i i i i

0 100 200 300 400 500 600 700 800 900 1000

query size q

(a) Varying query sizeq (s = 450kB)

325

300

275

250
225 B

200
175

150

T T T :
s -
”””””””””””””””””””””””””””””” T

N -
""""""""" % v 1
' parse i

: naive -------
phasel -------- B
phase2 i

1 1 | ;

0%

40% 60%
probability (%)

80% 100%

(b) Eect of p (s= 700MB, g= 10)
Figure 5.9: E ect of Iters. If not varied,p = p+ = Prextsiol = 0:5

150 5. Evaluation of Forward LGQ Forest Queries against XML Streams

Queries. Only LGQ queriesthat are \grammar-aware" are considered,i.e., that ex-
pressstructures compatible with the grammar of the XML streamsunder consideration.
Their generationhas beentuned with the query size q and seeral probabilities: Prextsioi
and p. for next-sibling, respectively closurepredicates,p, for a multi-source variable, and
p for the probability of a wildcard nodetest. For example,a path query hasp, = 0. For
eah parametersetting, 10{50 querieshave beentested, totaling about 2000queries.

Scalabilit y. Scalability results are presered for streamand query size. In both cases,
the depth is boundedin a rather small constart (d 36) and its in uence on processing
time shoved to be considerably smaller than of the stream and query size. Figure 5.7
emphasizeshe theoretical results: Query processingime increasedinearly with the stream
sizeaswell aswith the querysize. The e ect is visible in both the real-life and the syrthetic
data set, with a slightly higher increasefor the syrthetic data due to its more complex
structure.

Varying the query characteristics. Figure 5.8(a)shovsanincreaseofthe evaluation
time by a factor of lessthan 2 whenp and p; increasefrom 0 to 100%. It also suggests
that the evaluation times for nextSibland child are comparable. Further experimenrs have
shown that the evaluation of forward tree and DAG queriesis slightly more expensiwe than
the evaluation of simple path queries.

The memory usage is almost constart over the full range of the previoustests. Cf.
Figure 5.8(b), an increaseof the query sizeqfrom 1 to 1000leadsto an increasefrom 2to 8
MB of the memory for the network and for its processing.The memory useis measuredoy
inspecting the properties of the Java virtual madine (e.g., using Runtime.totalMemory()
and Runtime.freeMemory()).

Stream routing minimization. All previoustests shov experimertal results for the
\naiv e" versionof our evaluation strategy, i.e., that versionwithout the phase and phase
routers descriked in Section5.4. Figure 5.9 shavs how theserouters a ect the evaluation
time. The phase router improvesthe evaluation time up to 3 times for our tests using
gueries,whosesizesrange from 5 to 1000, cf. Figure 5.9(a). The same gure shaws also
that, for small XML streams,our evaluation strategy is in average v e times slover than
the mere parsing of the XML strean?, if phase is used,10 times slower if phasg is used,
and 15 times slower for the naive version (i.e., without routers). Using the phase routers,
an increasein the query sizeq tendsto have little to constart in uence on the evaluation
time. This result is explainedby the fact that an increasein the query sizeleadsoften to
an increasein its selectivity, which sustain afterall the rationale for the usageof routers
(see Section 5.4 for more). The samerationale applies for the results of Figure 5.9(b),
where the increaseof the closure probability (p.) makesthe querieslessselective. This
leadsto a lesse ective gain acieved by using the routers.

2We usedthe Crimson SAX parser available at http://xml.apach e. org/c rimson/.

5.7 Related Work 151

5.7 Related Work

Sincethe XPath standard wasproposedasa W3C Recommendationf46] and usedby other
W3C Recommendationdike XSLT [45], XQuery [23], XML-Schema[59], and XPointer [54],
signi cant researt and application interest for the XPath languagewasgrowing constartly .
Someof the researti questionsrelated to properties of XPath, like query cortainment,
rewriting, or minimality are detailed in the related work sectionof Chapter 4. We detail
hereon the query evaluation problem.

The problem of XPath query ewvaluation against XML data (may it be storedin main
memory or streamed)is one of the most basic and widespreaddatabasequery problem
in the cortext of XML. In the following, we position its SPEX variant (i.e., against XML
streams) versusthe query evaluation against tuple (relational) streams. Then, we state
shortly the theoretical complexity of XPath evaluation asfound in the literature, and give
a succinct overview on existing XPath query ewvaluation techniquesby rstly describing
somesigni cant work in the eld of main-memory query evaluation against XML data,
and later surveying approadesin the eld of query evaluation against XML streams.

Discussion on the XP ath evaluation: XML streams versus tuple streams

Besideghe apparert discrepancyconcerningmodeling aspectsbetweenrelational and XML
data, at relations (i.e., setsof tuples of rather constart size) can be, of course,usedto
descrike hierarchies (tree data), as XML does. Augmerted alsoby the ourishing resear
on the topic of querying tuple streams,e.g.,[15, 18, 17, 77, 117, 1, 39, 36, 40], the idea of
guerying tuple streams conveying XML data can be appealingat a rst glance. Howeer,
just a short look would reveal a saliert unnaturalnessof this approad: to bene t from the
hierardhical structure corveyed in the stream, expensiwe structural joins like parert/c hild
and preceding-sibling/folloving-sibling have to be computed. Samework in the eld of
guerying tuple streamsidentied computations of joins as very expensiwe, for they can
require unboundedmemory (provided no knowledgeabout the incoming streamis at hand).
In this sense[12] provesspacdower boundsfor the evaluation of cortinuousselect-prgect-
join queriesover tuple streams,and givese cient join algorithms for speci ¢ casesg.g.,for
joins on numerical values. As a generalapproad to cope with join computation that can
require unboundedmemoryin atuple stream (aswell asin an XML stream) ernvironmen,
relevant work [36] proposesjoin computation under memory or time constrairts, called
windows

In a sense, XML streamscan be seenas views upon tuple streamswhere particular
joins (i.e., parert/c hild and preceding-sibling/follaving-sibling) are already conveniertly
materialized for easyingfurther processing.Conveniert join materialization meansin the
context of XML that, alongan XML stream, it is easyto encourer the pairs of nodes
participating to thesejoins by simply using a stack to keeptrack of nodesdepth (as done
also by our SPEX ewaluator). For the parert/c hild join, (1) a child of a (parernt) node is
placedin the XML stream betweenthe opening and closingtags of the parernt node, and
has a depth with one unit higher than the depth of the parernt node. For the preceding-

152 5. Evaluation of Forward LGQ Forest Queries against XML Streams

sibling/following-sibling join, (1) the siblings have the sameparent node and depth, and
one appearsafter the other in the stream'ssequence.

It would be interestingto researf, however, on how other kind of joins, e.g.,ID-IDREF
in XML data enabling graph structures, can be corveniertly materialized in a stream
of XML. Note that X-scan [94], a automaton-basedquery operator for XML Itering,
computesnaively sud ID-IDREF joins alongan XML stream by simply storing all nodes
that might be part of the join and testing, after encourtering eat newnode in the stream,
whether this new node is in the join with somealready stored nodes.

Discussion on key issues of an e cien t XP ath evaluation

Recall that the evaluation of an XPath query yields a set of nodes (henceduplicate free)
that it further sortedin documert order. This canbe achieved, e.g., by sorting the list and
pruning the duplicates at the end of the query evaluation, or by sorting and pruning the
duplicatesafter the evaluation of ead XPath step. The former approad is usedby popular
XSLT/X Query processordike [11, 47, 61] and can lead to an exponertial blowup of the
intermediate resultsin the sizeof the query. The latter approad makesthe sorting opera-
tion a major bottlenedk. To partially overcomethis, [85] detectsand removesunnecessary
sorting operations of intermediary results. Howeer, the duplicate elimination operation
after the ewaluation of ead step jeopardizesany attempt to progressie (pipelined) pro-
cessingthat, by avoiding to build intermediate results, is one of the major reasonswhy
guery evaluation in relational databasess highly e cien t.

The key issueof an e cien t XPath evaluation consistsin avoiding the creation of dupli-
catesat any time during processingasfailed by, e.g.,[11, 47, 113 61, 7], and successfully
consideredby, e.g.,[70, 78, 84, 86|, and alsoby SPEX.

Combined Complexit y of XP ath Evaluation is P-complete [71]

Recen work [71, 140 19 discusseshe complexity lower boundsof XPath ewaluation.

Polynomial upper boundsfor combined complexity (i.e., in the sizeof the data and the
guery) of XPath ewaluation are given, e.g.,by [70], and alsoby the SPEX ewaluator of this
chapter.

[71] shows further that the XPath ewaluation problem is P-hard by reduction from the
monotonebooleancircuit value problem, which is P-complete. The combined complexity of
seeral restricted fragmerts of XPath is further detected: Core XPath is also P-complete,
positive (i.e., without negation) Core XPath is LOGCFL-complete, the fragmen of path
queries (corresponding to LGQ,) is NL-complete (nondeterministic logarithmic space§.
[74] shaws recertly that the evaluation of LGQ-like graph queriesis NP-complete. Recall
that Section5.5 re nds this result and shows further there is a large fragmert of LGQ
graph queries,whoseevaluation has polynomial complexities.

SRecallthat NL LOGCFL P.

5.7 Related Work 153

5.7.1 Query Evaluation against stored XML Data

The main characteristicsof query evaluation againststored XML data residein the random
accessgo the data. This enablesse\eral passe®ver the data, the creationof variousindexes,
or the compressionof the data beforeprocessingt, asdiscussedext.

A. Plain XML data stored in main memory

The issueof e cient XPath evaluation againstin-memory XML data received attention
recenly, whenpopular XSLT (i.e., XPath-based)processingools, like Xalan [11], XT [47],
and Internet Explorer [113, proved to be highly ine cient on ewer-groving XML docu-
merts that shifted from simple Web pagesto large XML repositories [120 60, 28, 114.
Experimertal ewvaluations of the above mertioned XSLT processors,as well as XQuery
processorse.g., Galax [6]], as performed by [70, 106, shav that sud processorsbreak
for rather small XML documerts, e.g., around 33 MB for Galax and 75 MB for Xalan.
This fact is exacerbatedby expensive main-memory represetations of XML documerns:
DOM:-like main-memory structures for XML documerts tend to be four- v e times larger
than their original XML documeris [91].

Xalan [11], XT [47], and IE6 [113]

As pointed out also by [70], popular tools like Xalan, XT, and IE, are in fact ine cien t
even for small XML documerns and large queries. At a critical inspection of their code,
the XPath ewaluation strategy of thesetools resenbles a straightforward node-at-a-time
implemenation of the XPath denotational sematrtics given, e.g.,in [12§, and asexplained
next. For a given query, these processorsewaluate the rst query construct from the
root node, get as a result a bag of nodes, then proceedto the ewaluation of the next
guery construct from ead node from the previously computed node bag and so on. It
is clear that the evaluation of ead query construct from a node may result in a set of
nodes of sizelinear in the size of the XML documert (e.g., the number of descendats
of a node is linear in the XML documert size). In this way, the recursiwe evaluation of
the constructs of an XPath query endsup consumingtime exponertial in the size of the
guery in the worst case,ewven for very simple path queries. Considerthe evaluation of the
XPath query /descendant::a/: :/descendant::aagainstan XML documert cortaining only
nesteda-nodes. The ewvaluation of the rst step yields the bag of all a nodesin the XML
documert, the evaluation of the seconddescendant::atep yields for ead a node the set
of all its descendats (which hassizelinear in the documern size). The ewaluation of the
third stepis donenow from a number of nodesquadratic in the documert sizeand yieldsa
bag of nodescubicin the documert size. Although theseintermediary node bagshave size
exponertial in the sizeof the initial XML documert, the amourt of distinct nodesthey
corntain doesnot (and can not) exceedthe sizeof the initial XML documert.

154 5. Evaluation of Forward LGQ Forest Queries against XML Streams

Context-V alue Table Principle [70, 72, 73]

An e cient implemenation of full XPath is provided in [70, 72] and improved in [73]. A
simpli ed versionof it is usedto de ne the semanics of XPath in [69] and in Chapter 3.
[70] de nes a formal bottom-up semarics of full XPath, which leadsto a bottom-

up main-memory XPath processingalgorithm that runs in the worst casein low-degree
polynomial time in terms of the data and of the query size. By a bottom-up algorithm is
meart a method of processingXPath while traversingthe parsetree of the query from its
leavesup to its root. The ewaluation strategy is basedon a context-valuetable principle:
given an expressione that occursin the input query, the context-value table of e speci es
all valid conbinations of cortexts and values,sud that e evaluatesto a value in a given
context. Sud a table for expressione is obtained by rst computing the corntext-value
tables of the direct subexpression®f e in the parsetree and subsequetly combining them
into the corntext-value table for e. Given that the sizeof ead of the cortext-value tables
has a polynomial bound and eat of the combination stepscan be e ected in polynomial
time, query ewaluation in total under this principle has also a polynomial time bound.
A general medanism for translating the bottom-up algorithm into a top-down one is
further discussedmotivated by the computation of fewer uselessntermediate results of
the latter algorithm. [70Q] identi es alsoan XPath fragmert, called Core XPath, that enjoys
linear-time combined complexity. Core XPath cortains all XPath axes,nodetests,and the
composition operators/ and [] for constructing paths and lIters, andit is a proper subset
of an XPath fragmen equivalert to LGQ.

Similar Tree Pattern Matc hing Problems

As pointed out alsoin Section5.1, there are similarities of the XPath query evaluation
problem with variations of tree matching problems[87, 97], where as well queriesand as
data can be consideredtrees and the query ewaluation can be reducedto computing the
matching of the query tree into the data tree. Howewer, the query trees consideredin
[87, 97] can be expressedn XPath using only the restricted amourt of XPath child and
following-siblingaxes [87] and descendanaxes[97], and it is not trivial to extend these
algorithms to cover all axesof XPath.

B. Compressed XML data stored in main memory

In order to deal with large amourts of XML data that can not be kept ertirely in main
memory, recert researb work split into two main directions: querying compressedXML
data storedin main memory and querying streamscorveying unmaterialized XML data.
Researh work for the latter approad is consideredfurther in Section5.7.2 whereassome
work [66, 30, 13] for the former is shortly presenied here.

XML data compressionis e ective becauseof the high redundancy of self-describing
XML documeris. Approacheslike [66, 30, 13 that compressXML data and ewaluate
gueriesin the compresseddomain provide a twofold advantage, by avoiding (i) to store
and (ii) to query redundart data. [30] separatesthe text from the skeleton (structure) of

5.7 Related Work 155

an XML data instanceand compresseshe skeleton basedon sharing of commonsubtrees
into directed acyclic graphswith multiple edges.This compressiommethod canleadto an
exponertial reduction in the instance size. The compresseduncompressedand partially

decompressethstancesof the sameXML documert areall equivalert under a bisimulation

relation that presenesthe structure and the order of the initial XML documer. [30] gives
alsoewaluation techniquesfor XPath axesand set operations on compressednstancesand
shows that the ewaluation of XPath queriesonly with reverseaxesis linear in the size of
the query and of the compressednstance (they navigate the instance upwards and do no
decompression)whereasfor querieswith forward axescanbe exponertial in the query size
(they navigate the instance downward and unfold it), making forward axesundesirable.
Note that this cortrasts to our stream corntext whereforward axesare preferredto reverse
axes, becausethe ewaluation of the latter would require to keepa history of the already
seenstream.

[66] supplemerts [3Q] by further shawing that the method of [30] is PSPACE-complete
and for positive (i.e., without negation) Core XPath is NP-complete, though on uncom-
pressedtreesit is PTIME-complete [71]].

XQuec[13 focuseson the compressiorof the valuesfound in an XML documen, moti-
vated by the fact that for a rich corpusof (real and synthetic) XML datasetsthe measures
of [13 speculate a value perceriage of up to 80% of the whole document. Ead value
is compressedndividually using an order-preservingtextual compressionalgorithm ade-
guatedto that valuetype, thus enablingto ewvaluate, in the compressediomain, inequality
comparisons.BecauseXQuec compresse®nly the textual content of an XML documert,
its query evaluation techniqueis rather orthogonalto our SPEX ewaluation strategy (which
hasa big deal on the evaluation of structural queries). In fact, a mixed approad using our
ewvaluation strategy for querying the structure and XQuec methods for querying the text
of XML data instances(provided one can a-priori compresghe textual componerts in the
input stream) would be surely bene cial.

C. XML data stored in relational databases
XP ath Accelerator [80, 79, 78] and Friends [86]

[80, 79, 78] proposean index structure for XML trees,the XPath accelerator.that cancom-
pletely live inside a relational databasesystemand supports all XPath axes. This index is
basedon the pre/post encaling sthhemesof the nodesin the XML tree, whereby pre/p ost
encaling shemeis meart the assaiation of ead node to its preorder/postorder rank as
computed in a preorder/postorder traversal of the XML tree. Basedon this pre/post
encaling, the selectionof somenodesfrom other nodescan be easily speci ed using rela-
tionships betweentheir pre/post values. E.g., the descendan nodesof a node n are those
nodes n® that have a preorder value greater than the one of n, and its postorder value
lower than the one of n. [80] shows how this index can benet from the rewrite rules of
Chapter 4 by rewriting queriesto equivalernt queriescortaining axesfurther optimizable.
[86] adapts straightforwardly the ewaluation of XPath axes basedon the relational

156 5. Evaluation of Forward LGQ Forest Queries against XML Streams

storageof the input XML documer and the pre/post encaling scheme of [78] to main-
memory DOM [14] structures. In this way, [86] improvesupon [70], where XPath axes
are evaluated linearly in the sizeof the XML documer, whereasin [86] axesare evaluated
linearly in the sizeof the intermediate results which are often much smallerthan the ertire
documert.

5.7.2 Query Evaluation against XML Data Streams

Recallthat the problem of query evaluation against XML streamsbearssomeof the chal-
lengesof the problem of query evaluation against stored data (like e ciency) and further
facesnew challengesimposedby the sequetial one-time accesdo data.

In the following, we distinguish betweenthe query matching problem,i.e., givena query
and a stream, chedk whether the query selectsa non-empty set of nodesfrom the stream,
and the query answering problem, i.e., given a query and the stream, deliver the set of
nodesselectedby the query from the stream.

A. Query Matc hing

In the cortext of publish-subscrile or evert noti cation systems,the XML stream needs
to be ltered by a large number of queries. In cortrast to the approad of this chapter,
Itering enginedike [7, 37, 14, 76] assumethe streampartitioned into comparatively small
XML documerts (in the rangeof hundredsto thousandsof elemens per XML documen),

and it is deemedsu cient to determine whether somequeriesmatch an XML documen,

rather than answering the queries. Sud XPath queriesare often called boolean queries,
becausehe result of their evaluation is a yes/no answer, rather than a set of nodes.

Discussion on DFAs versus PD As for pro cessing XML streams

Finite automata (FAs) [88] are a natural and e ective way to processsimple querieslike
XPath paths. Seweral works [7, 37, 14, 76 usemodi ed deterministic or non-deterministic
FAs to processpath queries. Steps of a path are mapped to states of sud a non-
deterministic madhine. A transition from an active state is red whenan elemen is found
in the XML documert that matchesthe transition. If an acceptingstate is readed, then
the documern is said to satisfy the query.

There are se\eral interesting issuesto mertion about the ewvaluation of XML queries
using modi ed deterministic nite automata (DFAs). All theseissuesare related to the
unboundnessof the XML stream characteristicslike its depth, or alphabet size,and to the
tree-like data corveyed therein. First, the number of statesin sud a DFA dependson the
gueryand onthe data stream,andin orderto give an upper boundfor the number of states,
oneneedsto make variousupper bound assumptionson the stream characteristics. Second,
sud modi ed DFAs have a computational model signi cantly di erent from that of the
standard automaton that borrows its name. The computation of statesat runtime in sud
modi ed DFAs resenblesthe computation of stack con gurations in pushdavn automata

5.7 Related Work 157

(PDASs). In fact, dealing with an unbounded number of statesin a DFA resenbles even
closerthe unboundnessof a stack sizein PDAs. Third, a stack of sizeproportional to the
maximum depth of the treescorveyed in XML streamsis necessaryor eventhe most basic
sequetial navigation and parsingtasksof XML streams. Sud tasksrequire to keeptrack
of the depth of nodesin the tree while traversingit depth- rst. Therefore,all DFA-based
approades|7, 37, 14, 76] use,in addition to other data structures, alsoa stac.

As a proof of conceptfor the above rst and secondobsenation, considerthe following
scenariofor the ewaluation of forward paths using sequetial compositions of pushdavn
transducers,asdone by our SPEX ewaluator descrited in this chapter, under the assump-
tion that the XML streamdepth is bounded. Each SPEX transducerhasa stadk bounded
in the depth of the tree corveyed in the input XML stream. For a given upper bound on
this depth, eadr SPEX transducer can be encaled asa nite transducer, wherethe stack
con gurations becomestates. The number of statesis then exponertial in the depth of the
stream, but nite. Then, the statesare computed also at run-time, hencelazily, as stack
con gurations arecomputedby SPEX transducers. Note that becausestadk con gurations
already encade the node depths, alsothe third obsenation is considered.Furthermore, a
sequenceof nite transducerscan be reducedto a single nite transducer, because nite
transducersare closedunder composition [42]. Sud a scenariois reasonablewhenit is a
priori known that sud a bound for the streamdepth exists, e.g.,asinferred from a stream
grammar.

Se\eral approadiesto the query matching problem [7, 37, 14, 76, 75 are detailed in
the following. All of them compile queriesinto somesort of nite automata that (1) are
extendedwith structures varying from stads [76] to tries [37] and hash tables [7], and
(2) compute the states of the automaton at run-time. These ewaluation techniques are
designedto processlarge amourts (i.e., millions) of boolean queries. They identify and
eliminate also common subquery pre xes in the structure navigation [57, 37] and alsoin
the content comparisonpart [81], and are basedon the premisesthat in publish-subscrile
systemssigni cant commonality among user interests represeted as a set of querieswill
exist. Sud structure and cortent commonalitiesamong large amourts of XPath queries
are alsodiscoveredusingvarious cost-basecheuristicsand usedin a SPEX extension,called
M-SPEX [67].

X-scan [94], XML TK [14, 76, 75], and XPush [81]

In the cortext of integration of large heterogeneouXML data wherethe data is streamed
from remote sourcesacrossa network and the query results are seldomlyreusedfor subse-
quert queries,[94] identi es the on-the-y evaluation of regular path expressionsagainst
XML data asan e cient alternative to the evaluation of joins on locally stored relational
tables cortaining XML data. [94] proposesa novel operator, called X-scan, usedin the
Tukwila integration system[95], to compute bindings for query variableswhile XML data
arrivesacrossa network, and to deliver incremenally thesebindingsto other operators of
the Tukwila system. The certral medanism underlying the operation of X-scanis a set

158 5. Evaluation of Forward LGQ Forest Queries against XML Streams

of deterministic state madines createdfor the regular path expressiongo be processed.
X-scanproceedsasfollows: the XML data getsparsedand storedlocally asan XML graph,
a structural index s built to facilitate fast graph traversal,and the state macinesperform
a depth- rst seart over the structural index. When a macdine readhesan end state, then
the assaiated regular path matched and a binding is found. The potertial problem with
the compilation of regular paths into deterministic nite state madines (FSMs), is that
the states of eath FSM have to be constructed at compile-time, although not all of them
might be usedat run-time, and their number can be exponertial in the sizeof the regular
path.

XMLTK [14, 76, 75 considersthe problem of answering a large number of boolean
queries(XPath paths with child and descendanaxes)againsta sameXML stream using
DFAs. The saliert cortribution residesin the theoretical study on the number of statesin
the DFA constructedeagerly asin X-Scan[94], and lazily, asusedin text processing.The
lazy computation of the states meansthat the states are expandedat run-time and only
those states are createdthat are necessaryto processthe given XML data instance. [76]
shavs that the number of statesof an eagerDFA can grow exponertially in the number of
XPath queries,and even in the number of wildcards for a singlequery. For the lazy DFA,
[76] proves an upper bound on its number of states that is independert on the number
and shape of XPath expressions,and only depends exponertially in the characteristics
of the stream grammar. Howewer, if no grammar is available, there is no upper bound
guarartee on the amourt of memoryused. A query matcher basedon lazy DFAs validates
experimenrtally the theoretical claims by obtaining a constart throughput independert
on the number of queries. In order to guarartee hard upper bounds on the amourt of
spaceused,[76] proposesto conbine its lazy DFA approad with slower, but more robust
alternative evaluation methods like [37).

The idea of computing lazily the automaton statesis further usedfor the XPush ma-
chine [81], a modi ed deterministic pushdavn automaton. In order to overcomethe rel-
atively high cost of computing states at run-time, [81] proposesa training of the XPush
machine beforerunning it on the actual data, training that precomputessomestatesand
transition erntries. In addition to [76], XPush eliminates at compile-time common query
pre xes aswell in the structure navigation part asalsoin the lter comparisonpart. The
theoretical and empirical analysisof [81] show that the number of statesin the lazy XPush
madine is about the sameorder of magnitude asthe total number of atomic Iters in the
guery set, much lessthan the worst caseexponertial number.

XFilter [7], YFilter [58, 57], and XT rie [37]

XFilter [7] compilesXPath booleanquerieswith childand descendanaxesand lters into a
setof nite state madines(FSMs), with ead madine responsiblefor the matching of some
query step. Each FSM has extra information regarding, e.g., the iderti er of the query
cortaining its correspnding step, the position of its stepin the query, and the cortinuously
updated information on the depth level in the XML documen where it is supposedto
match (information that can be simulated in fact with a stadk). The collection of FSMs

5.7 Related Work 159

of all queriesare indexedusing a hashtable on the nodetestsof their correspnding steps.
The hashtable is usedat processingtime to keeptrack of the FSMs that are supposedto
match next. When a state madine for a last stepin a query has matched, then the whole
query, with the identi er carried by the FSM, has matched. Becauseit keepstrack of all
instancesof partially matched queries, XFilter has an exponertial complexity in the size
of the query.

[37] proposesa novel index structure, termed XTrie, that is basedon decompsing
gueriesviewed as tree patterns into collectionsof substrings(i.e., sequence®f nodetests)
and indexesthem using a trie. XTrie is more space-e cient than XFilter sincethe space
costof XTrie is dominated by the number of substringsin ead tree pattern, while the space
cost of XFilter is dominated by the number of nodetestsin ead tree pattern (i.e., steps).
Also, by indexing on substringsinstead of single nodetests,the substring-table ertries in
XTrie are alsoprobed lessoften that the hashtable ertries in XFilter. Furthermore, XTrie
ignorespartial matchings of queriesthat are redundart, in cortrast to XFilter [7].

YFilter [57, 58 translates a set of boolean queriesinto a single query where common
pre xes are identi ed and eliminated, and compilesthe resulted query into an NFA. Eac
state of the NFA is assaiated with (possibly) many queriesand whenan acceptingstate is
reatedat processingime, then the assaiated queriesare satis ed by the input documen.
Also here,a run-time stad is usedin addition to track the active and previously processed
states.

B. Query Answ ering
XSM [104], XSQ [132, 131], and 0&[20, 21]

An XSM (XML Stream Machine) [104 is a nite state madine, augmerted with random-
accesginput and output) bu ers, that processeXML streamswith non-recursie structure
de nition on the y. Various XQuery [23] primitiv e expressionsg, i.e., lters with joins,
the descendantxis, and static elemen constructors, are translated into XSMs M.. An
XQuery expressions then reducedto an XSM network wherethe bu er of M¢ is an input
bu er for M, if e is a subexpressionof €. Then, an ertire XSM network is composedinto
a single optimized XSM that is nally compiledinto a C program. Eac bu er is usedto
store stream fragmerts depending on the query to evaluate and on the input stream, and
has asswiated a set of read and write pointers.

The extensionof XSM approad to handle (1) streamswith recursive structure de ni-
tion and (2) all XPath axes,as both are consideredby SPEX, is not further addressed.
Real XML data usedfor information interchange between applications hasin generalre-
cursive structure de nition. A surwey [44] of 60 real datasetsfound 35 to be recursiw,
from which the onesfor data interchangeare all recursive. We conjecturethat the adap-
tation of XSMs to processXML streamswith recursive structure de nition would require
an additional stadk for eadr XSM, thus upgrading XSMs to pushdavn transducerswith
random-acces$u ers. The composition of XSMs into a single XSMs becomeshen more
complicated, consideringat a rst glancethere is no standard method to composepush-

160 5. Evaluation of Forward LGQ Forest Queries against XML Streams

down transducersinto a singleone (in fact, standard pushdavn transducersare not closed
under composition [42)).

XSQ [13]] compilesrestricted XPath queries(only child and descendanaxes,unnested
Iters with at most one sudh axis) into an exponertial number of pushdavn transduc-
ers augmened with queuesthat are gatheredinto a hierarchical deterministic pushdavn
transducer. Concerningthe worst-casetime complexity, XSQ can perform an exponertial
number of operations per stream messageeven for non-recursie streams.

0&[20, 21] is an algorithm for evaluating XPath querieswith child and descendant
axesand their symmetrical reverseaxespaent and ancesto. A query is compiledinto a
DAG structure wherenodesare XPath nodetestsand edgesare XPath axes. The reverse
axesare rewritten using rewrite rules similar to the onesof Section4.3.1, and asalsoused
in previouswork of the presen author [125. The evaluation of sud a DAG query is based
on the incremenal construction of a matching-structure consisting of mappings of query
nodesfrom the DAG query to nodesfrom the tree corveyed in the input stream. This
evaluation approad is similar to the tree pattern evaluation algorithm of [116, though the
latter constructs the matching-structure bottom-up in the data tree, whereasthe former
constructs the structure top-down, as imposedby the stream sequencej.e., depth- rst
left-to-right preordertraversalof the data tree. All answers of the query are accunulated
in this matching-structure, and they are delivered at the very end of the stream (thus
no progressie processingis performed). An answer is determined uniquely by exactly
one matching of ead query node, and all thesematchings are accunulated also until the
end of the processing. SPEX does also construct sud a matching-structure, which is
updated constarily on the arrival of new stream messageand distributed on the stadks of
transducers,but it cortains only su cien t information to determinethe next answers, and
previous matchings that are not anymore neededfor possiblenew answers are dropped.

XSA G [98] and FluX Query [100, 99]

XML Stream Attribute Grammars (XSAG) [98] represeh a query language for XML
streamsthat allows data transformation. In this formalism, queriesare expressedas ex-
tendedregular tree grammars[107 that (1) are annotated with attribution functions that
descrile the output to be producedfrom the input stream, and (2) have productions with
right-hand sidesbeing strongly one-unanbiguousregular expressionsj.e., expressiongor
which the parsetree of any word can be unambiguously constructed incremertally with
just one symbol lookahead. XSQG queriesare processedn linear time with memory con-
sumption boundedin the depth of the stream. Note that our SPEX evaluator has similar
time and spacecomplexitiesfor two important LGQ fragmerts (1) LGQ,, and (2) LGQW™°
with the bu er-free ewvaluation.

The di erence between [98] and our SPEX ewaluator takestwo important directions.
First, the usageof XSAGs is basedon the premisethat the grammar of the XML stream
is known a priori, and no loose speci cation of the data to be found is allowed (e.qg.,
by meansof closure predicateslike child”). Second,as also shavn in [149, there is an
interesting connection between XPath queriesthat are always ewaluated on some XML

5.7 Related Work 161

streams (documerts) to a non-empty set, and the (regular tree) grammar that de nes
the classof those XML streams. Simple path queries(thus queriesfrom LGQ;) can be
translated to grammars, whose number of productions is exponertial in the size of the
query. The intuition residesin the intrinsic di cult y to translate closure predicatesto
standard grammar formalisms. Structural constrairts, as speci ed by grammars, can be,
howewer, translated linearly into LGQ forest queriescortaining only horizortal and non-
closurevertical predicates.

FluX [100 99 is an extensionof the XQuery language[23] that supports event-based
guery processingand the conscioushandling of memorybu ers. [100 de nes alsosafeFlux
queriesthat are never executedbeforethe data items referredto have beenfully readfrom
the streamand may be assumedavailable in main memory bu ers. This safety is ensured
by the order constrains betweenselecteddata items, asprovided by grammars. Note that,
similar to the notion of query safet, this chapter proposesalsothe more generalnotion of
query well-orderednesgfor queries,whoseewaluation does not require bu ers) that does
not necessarilyrequire grammar information.

C. General-purp ose Pro cessing of XML Streams

There are nowadays various SAX-basedAPIs [11(for processingKML streams. To model
sudh APls, [133 de nes a type and e ect systemfor a programming language ¢ with
operations that read (conditional destructively and non-destructively) sequetially mes-
sagesfrom an XML input stream and write messageso output streams. The benet of
a type and e ect systemis the static analysis of programsin order to ensure,e.g., that
the programsread and write words in which opening and closing tags match. The basis
for sud a systemare visibly pushdavn expressiongVPES) that are usedas e ects, and
correspnd to the classof newly discovered visibly pushdavn languages[8], which are a
proper subsetof deterministic context-free languagesclosedunder concatenation, union,
intersection,complemetmation, and Kleene-*. VPESs canbe seenasthe streamcourterparts
of regular expressiontypes[89], a notation for regular tree languageq50] usedastypesfor
the XDuce programming language[90] that manipulates XML documeris astrees.

5.7.3 Hybrid Approac hes

By a hybrid ewaluation technique is meart here a conbination of techniques for main
memory XML data and for streams, e.g., [10§. Sud approates are motivated by the
constan sizeincreaseof real XML documerts, e.g.,[114 120, that can not be processed
anymore in main memory and are basedon the rather strong assumption that se\eral
passe®verthe input XML documert are possible. The generalstrategy of theseapproades
is (1) to Iter out from the original documert fragmerts that are irrelevant to the query
at hand, and (2) to ewaluate the query on the (presumably much smaller) ltered XML
documert. Note that although this method may be temporarily a su cient solution to
processlarger XML documerts ([10§ reports the processingof XML documerts seeral

162 5. Evaluation of Forward LGQ Forest Queries against XML Streams

times larger than the original onesin average),it canstill be provenine cient assoon as
XML documerts get even larger.

In the cortext of the Galax XQuery engine,[10§ proposesa static inferencealgorithm
that identi es at compile-timethe XPath simplepaths (only with childand descendanaxes)
that are requiredto evaluate a given XQuery query. [10§ givesalso an algorithm for the
simultaneousevaluation of a set of simple paths againstthe streamedXML documen, in
the spirit of XFilter [7] presented previously As XFilter, the algorithm considersa limited
fragmert of XPath and can perform exponertially in the depth of the XML documert.

Chapter 6

Applications

We descrile heretwo real-world applicationsthat have beenimplemerted usingthe SPEX
evaluator descriled in this work.

6.1 Monitoring Computer Pro cesses

The rst application [25 has a twofold goal. First, it monitors parametersof processes
running on UNIX computers. Second,it demonstratesthe featuresof our SPEX evaluator:

1. the processingof XML streamswith recursive structure de nition and unbounded
sizeas gatheredfrom the information about UNIX processesand

2. the detection of speci ¢ patterns in sud richly structured XML streamsbasedon
the evaluation of rather complicated XPath queries.

This application usesalsoa novel, sophisticatedvisualization of its run-time system,called
SPEX Viewer, that makespossibleto visualize

1. the rewriting of XPath queriesinto equivalert querieswithout reverseaxes,
2. the networks of pushdavn transducersgeneratedfrom sud queries,

3. the incremenal processingof XML streamswith transducernetworks under various
optimization settings, and

4. the progressie generationof answers.

Unbounded XML streams. The parametersof processesunning on UNIX computers
are constartly gatheredas a cortinuous XML stream from the output of the ps -elfH
command. The information about a processis represeted as an XML elemen process
containing child elemeits for various propertiesof a processsud asmemay and time used,
current priority and state and child processes.Thus, the processhierarchy is represeted
by parert-child relations betweenprocesselemerts.

164 6. Applications

0 Forward 4®J\ . 4®J\ B
XPath Query SIRUE o ST Optimized | Compilation Logical Generation Physical

transformations
! XPath Query Query Plan Query Plan

Processing ?tl::ezl#l

Status of

processes continuously gathered into XML Stream

Figure 6.1: ProcessingStepsof the SPEX processor

The XML stream generatedin this manneris unboundedin size and depth, because
(1) new processinformation wrappedin XML is repeatedly sert in the streamand (2) the
processhierardhy can cortain arbitrarily nestedprocesses.Note that, in practice, many
UNIX versionsallow at most512processesunning at a time on onemadine, thus limiting
the processhierardiy depth of onecomputerin the monitored systemto 512. Howeer, in
computer networks, processesunning on one computer can lunch subprocessen other
computers,thus the processhierarchy can surpassthe barrier of 512.

XP ath queries. By meansof XPath queries,the monitoring application allows the
userto specify what processinformation conveyed in the XML stream is to be watched
and reported badk. One can, e.g., monitor suspended processesvith CPU and memory
expensiwe subprocessesMore speci cally, thesecanbe processesvith a certain low priority
(e.g., below 10) that are currently stopped and are ancestorsof at leastone processin the
processhierarchy. Furthermore, this other processmust use more than 500 MB main

memory or be already running for more than 24 hours. The correspnding XPath query
is given belov

/descendant::pocess[child::time> 24 or child::memaoy > 500]/ancestae::process
[child::priority < 10 and child::state = 'stopped']

SPEX can ewaluate also querieswith simple aggregationsthat are not introduced in
Chapter 3, but make sensein real-world scenarios.For example, monitoring queriescan
selectprocessegshat together with their subprocessesisea certain amourt of memory or
that have more than a given number of subpracessesNote that rather complexand pos-
sibly nestedqueriescan be expressedn XPath and processedvith SPEX. Query nestings
re ect processnestingsexpressedn the XML stream. The combination of the XML en-
coding of processinformation usedhereand the SPEX evaluator turns out to be a natural,
declarative, and e ectiv e solution for monitoring parametersof processes.

How the monitoring system works? Querying XML streamswith SPEX consists
in four steps, as shovn in Figure 6.1 First, the input XPath query is rewritten into a
forward XPath query, as detailed in Chapter 4. The forward query is compiled into a
logical query plan that abstracts out details of the concrete XPath syrntax. This is the

6.1 Monitoring Computer Pro cesses 165

function graph of the query. Then, a physical query plan is generatedby extending the
logical query plan with operators for determination and collection of answers. This is the
SPEX transducernetwork of that function graph. In the last step, the XML stream, which
in the chosenapplication scenarioconsistsin information about the status of processesis
processeccortinuously with the physical query plan, and the output stream cornveying the
answersto the original query is generatedprogressiely.

Figure 6.2: SPEX Viewer illustrates how SPEX processeXML streams

How the monitoring system is demonstrated? The systemis demonstratedusing
the SPEX Viewer, that visualizeshow our SPEX ewaluator processesXML streams. The
saliert features of the SPEX Viewer consistin illustrating the four stepsof the SPEX
processor,n particular shoving (1) the logical and physical query plans, (2) the stepwise
processingof XML streamswith physical query planstogether with the progressie gener-
ation of answers, and (3) the windows over the most recert messagefrom the input XML
stream and the most recen answers.

A vector-basedgraph rendering engine has been designedand implemerted that ts
the needsof demonstrating SPEX. Sincequery plans and SPEX transducer networks may
be quite large, reversible visualization actions like moving, hiding parts, and zooming are
o ered. Astransducerstads changeduring queryprocessingn cortent and size,automatic
on-line graph reshapingis provided. Figure 6.2 shows a rendering of the physical query
plan for an XPath query in the middle areaof the visualization tool. The lower areashows
(from left to right) windows over the most recer fragmert of the input XML stream, over
the current potential answers, and over the most recern query answers.

166 6. Applications

For a detailed insight into the XML stream processingthree processingmodi are pro-
vided that can be switched at any time during processing:the step-hy-step, running, and
pausemodi. In the step-by-stepnade, the content of eat transducerstadk and the message
passingbetweentransducerscan be inspected for ead incoming stream message.In the
running mode, the input stream is processedmessagefter messagewith a speedchosen
by the user (cf. the delay slider on the topright of Figure 6.2). The pausemade is used
to interrupt the processingfor a detailed inspection of transducersin the network. While
in the pausemode, processingcan be resumedby selectingeither the step-by-step or the
running mode. Breakpoints can be speci ed to alert whena given XML tag readesgiven
transducers,or when given transducershave particular stadk con gurations.

6.2 Streamed Trac and Travel Information

The secondapplication is currertly underdewelopmen within a practical course\Streamed
Trac and Travel Information"* o ered at the Institute for Computer Science University
of Munich, in the winter term 2004/2005and co-sugervised by the presen author. It is
a monitoring systemfor trac and travel information, sud as announcemets of tra c
congestionsor reports on weather conditions. The trac information is captured from
RDS/TMC radio signals[93], rst corverted into sequence®f bits and later into XML
streamsthat areto be watched for data patterns speci c or relevant to a givenregion/time.
The main componerts of the monitoring systemare brie y descriked below.

1. The RDS-information acquisition componert consistsof (i) dedicated hardware for
capturing in real-time RDS/TMC radio signalsand cornverting them into digital in-
formation, and of (ii) software for decaling and corverting the gatheredinformation
into XML streams. Sudh XML streamscortain information about ewerts like loca-
tion, category duration, and direction. The location of an ewvent is represeted in
the XML streamby an iderti er togetherwith its courtry-dependen administrative
hierarchy that enablesto specify on which fragmert of which street in which city,
courty, state, etc. a given evert happens. The event category descritesthe kind of
events dependen alsoon the location, e.g,,tra ¢ congestion(can happen anywhere)
or bull or tomato ghts (can happen on the streetsof Spain).

2. The XML streammonitoring componert is basedon the evaluation of XPath queries
againstXML streamscornveyingtra c newsusingour SPEX evaluator. At this step,
only the XML stream fragmerts correspnding to special evernts relevant to a given
location are selectedand cornverted into SVG [63] documert fragmenrs (which are
also XML-based), whosevisualizations are relevant for the correspnding everts.

3. The SVG output of the secondcomponert updates an already existing SVG-based
map of a given location. For example, our application usedan SVG-basedmap of
the city Munich.

Ihttp://mvww.pms.if il mude/l ehre/ praktik unitr avelt raffi ¢/ 04ws®/

Chapter 7

Conclusion

The work presetted in this thesisis dewted to the problem of XPath query ewvaluation
against XML streams. For this problem, it identi es its characteristics and proposesan
e ective solution. The saliert aspectsof the proposedsolution, e.g.,one-passprogressie,
and automata-based,are ewlving in key goalsfor the trend of XPath query evaluation
techniquesthat follows it, thus making it represetativ e.

The problem of XPath query evaluation against XML data (may it be storedin main
memory or streamed)is one of the most basic and widespreaddatabasequery problem
in the cortext of XML. Sincethe XPath standard was proposedasa W3C Recommenda-
tion [46 and usedby other W3C Recommendationdike XSLT [45], XQuery [23], XML-
Shema|[59, and XPointer [54], the researd and application interest for the XPath lan-
guagewas growing constartly.

Data streamsare preferableto data storedin memoryin contexts wherethe data is too
large or volatile, or a standard approad to data processingbasedon data storing is too
time or spaceconsuming.In many applications, XML streamsare more appropriate than
tuple streams,for XML data is tree-like, its sizeand nesting depth can be unboundedand
its structure can have recursive de nition. Becauseof all thesecharacteristics,the problem
of query evaluation against XML data streamsposesinteresting researt challenges.

For approading the problem, this work takestwo complememary directions.

First, it identi es that forward queriescan be evaluated in a single traversal of the
input XML stream. This fact is of importance, becauseXML streamscan be unbounded,
and seeral passesare not a ordable. The other queriescan be accommalated also to
one-passevaluation by rewriting them into equivalert forward ones. In this respect, this
work proposesthree rewriting systemsthat rewrite any query from two query languages
considered,i.e., XPath and an abstraction of it, called LGQ, into an equivalert forward
qguery. Our rewriting techniquesshaw the tradeo betweenthe structural simplicity of the
equivalert forward queriesand their size. For example, this work gives an exponertial
(lower and upper) bound for the rewriting of graph queries(expressibledirectly only in
LGQ) into equivalert forward forest queries(expressiblein both XPath and LGQ). Also,
a linear upper bound is given for the rewriting of forest queriesinto equivalernt forward
single-join DAG queries,which are more complexthan forest queries. Using the rewriting

168 7. Conclusion

systems, this work investigatesalso se\eral other properties of LGQ (and also XPath),
e.g.,the expressiviy of someof its fragmerts, the query minimization, and eventhe query
ewvaluation.

Seconda streamedand progressie evaluation strategy of forward forest queriesagainst
XML streamsis proposed. The streamedaspect of the ewvaluation residesin the sequetial
(as opposedto random) accesdo the messagesf the XML stream. A progressie evalua-
tion deliversincremenally the query answersassoon aspossible. The proposedevaluation
strategy compilesqueriesin networks of deterministic pushdavn transducersthat process
XML streamswith polynomial time and spacecomplexitiesin both the stream and the
guery sizes.

The results of this work took various disseminationdirections. Our results on XPath
qguery rewriting are used, e.g., for other XPath query evaluators against XML streams
[84, 138 106 131, 129 21] or for optimization of XPath query evaluation in relational
databases[79, 80]. For practitioners, implemertations of the rewriting and evaluation
algorithms are publicly available at http://spex.sourceforge.ne t, and are usedin ap-
plications for monitoring highway trac ewens or processesunning on UNIX computers.

Recertly, new researt relevant to the problem of querying XML streamsand based
directly upon this work hasbeenco-investigatedby the presen author. Its generalthreads
convergetowards dealingwith cortexts wherethe number of queriesto be evaluated simul-
taneouslyis large[67], or the memoryavailable for query evaluation hasgiven bounds[139.
There, cost-basedheuristicsaredeployedto nd out e cien t query plansfor setsof queries,
and respectively to nd out which potertial answers stored in memory can be discarded
when free memory is needed. Sud work is not detailed here, but it constitutes a natural
cortinuation of the researt investigationsin the area of querying XML streamsstarted
by this work.

App endix A

Pro ofs

Pro of of Lemma 3.8.1

I. XPath LGQ Forests We prove that for any XPath query p and tree T, its answer is
the answer delivered by the LG(IQ query q represeting the encaling of p.

Let us consider (r;f) = XLJpKV), for any XPath query p. Also, consider =
subst(Vars(f); T) the set of all possible substitutions mapping variablesin f to nodes
in T. Thus,8v 2 Vars(f) : ,()= NodegT).

This proof hastwo parts. First, we shav that the set of substitutions from that are
consisten to f and T and that are further restricted to the variablesv and r is the set of
pairs of sourceand answer nodesas computed by the semarics function XQ onpand T:

vr(LF 71X K)) = XQrJpK (A.1)

Second,we showv that the answer to p is the set of imagesof r under the consisten
substitutions from

We prove Equation (A.1) usinginduction on the structure of XPath queries.
Base Case. p= : . Then,f = {v;v))* (vi) with %= pred ().

XQJ : K= f(x:y)j Ax;y):testy;)g= f(s(v);s(v1))js2 ; Us(v);s(vi));test(s(v1);)g
f(s(v);s(v)) js2 LF 13 qv;vi)K);s2 LF 1J (V1)K

= v (LF 13 qv;v) A (VK):
The equality holdsfor x = s(v) andy = s(v;), wheres is a substitution consistem with

fandT.
Induction Hyp othesis. Equation (A.1) holdsfor the XPath queriesp,; and p,

vy (LF 131K)) = X QrdpsK where(vs;f1) = X LpiKv) (A2)
v, (LF 132K) = X QrJpK where(vy; f2) = X LJIpKV9 (A.3)

170 A. Pro ofs

In casep, isin a lter, Equation (A.2) becomegqthe sameholds alsofor p,)

V(LF 11K) = XF1JpiK where(vy;f1) = XLJIpiKV):

Induction Steps. We show next that Equation (A.1) holdsalsofor the XPath queries
=Pu P1=R2, P1j P2, Pr P2, PalP2], P OF P2, P1 @andp,, and not(py).
1. p= =p;. Then, (vq;root(vy) N 1) = X'LJpI(vo).

X QrJpK= NodegT) fyj(x;y) 2 XQrJp:Ktest(x; root)g
NodesT) fyj(Xy)2 vou (LF 131K));testx; root)g
NodeqT) fs(vi))js?2LF +J.K);test(s(vp);root)g
NodegT) ,(LF 1Jf1” root(vo)K)):

This meansthat the pairs of any node and the nodescomputedby , (LF 1Jf 1" root(vo)K))
is in the result. !
2. p= pi=p. Then, (vo;f1~ f5) = XLJIp=p:KV) and v°= v; in Equation (A.3).

XQrIpi=pK= f(x;2) j (x;y) 2 XQ7IpK (Y;2) 2 X Q7JIp2K9
=f(x2)J(6Y)2 v, (LF 1K1K)i (V;2) 2 vy, (LF 132K))g
= f(s(V);S(V2)) jS2 LF 1Jf1K);S2 LF 1JoK)= yu, (LF 7 I 12 foK)):

3. p=p1]j p2. Then, (vq;f1) = X'LJpl j p2KV) and VO = v, v, = v; in Equa-
tion (A.3).

XQJplj sz: XQJle[XQJpZK: v;vl(I—F T‘Jf ll()) [v;vl(I—F TJf 2|'())
= v, (LF 11 _f2K)):

4. p= pps]. Then, (vi;f1 2 f5) = XLIpup,]KV) and v = v, in Equation (A.3) and
pz isin a lter.

X QrIpu[p2]K= (X y) j (Xy) 2 XQrIpKY 2 XF 1Ip2K9

=TSV T (YY) 2 v (LE 7 XK)y 2 £X0] 9% 2 (X0;X) 2 X F 1Jp2Kgg
f(s(v);s(va)) js2 LF 11K);s(va) 2 LF 732K)g
= v (LF 732 ™ f2K0)):

5. p= pLorp,. Then, (v;f; _ fy) = XLJp; or p,KVv) and v° = v in Equation (A.3),
and p, p1, and p, arein lters.

X FTJpl or p2K= X FTJle[X FTJsz: V(LF TJf]_K)) [V(LF TJf 2[())
= V(LF TJfl_ fZK))

171

6. p= p; andp,. Then, (v;f, " f,) = X'LJpl andp,KV) and v°= v in Equation (A.3),
and p, p1, and p, arein lters.
XF1Jpr andpK= XF oK\ XF1JooK=(LF +J:K)\ (LF 1J2K))
= y(LF 1 X7 2K)):

7.p=p1 P2 Then, (vi;f1 2 Q(v1)) = XLIp p2KV), where Q(v4) root(vp) "
child® (vo; v1) ~ f5. Also, V2= v, v, = v; in Equation (A.3).
v (LF 731 2 Q(v)K) = vy (LF 71K)\ v, (LF 730 Q(v)K)
= v (LF 3K)\ (0 LF1IQ(V)K) = v, (LF 11K) LF 1IQ(V1)K)
= XQrJmK vy, (fsjs2 ;s(vi) 2 LQrJIclausgQ)Kg)
XQrImK v, (fsjs2 ;s(vi) 2, (LF tJoot(vp) ~ child (vo;v) * f.K 9)g)
= XQrJpK vy, (fsjs2 ;s(vy) 2 ,(LF tJoot(ve) » child (vo;v)K 9\ LF 1J.K 9)g)
= XQrIK vy, (fsjs2 ;s(vi) 2 (NodeqT)\ ,(LF XK 9)0)
= XQrJpK vy (fsjs2 ;s(vi) 2 o (LF 1XK 90
= XQrIpK vy, (fsjs2 ;s(vi) 2 v, (LF 1X2K))0)
= XQrImK vy (fsjs2 LF 132K)9)
= XQrJpK XQrJpK
The variable vy is freshfor f,. In Equation (+), °= subst(Vars(f,)[fvg; T). In Equation
(*), W(LF 1JX28(9 = (LF 7 J2K(), becausev, 62vars(f2).

8. p = not(p)). Then, (v;: Q(v)) = XLJnot(p)Kv), where Q(v) root(vg) "
child” (vo;v) f1. Also, p and p, arein lIter. This caseis treated similarly to case7.

v(LF 1 QK) = v(LF7IQ(VK))

NodesT) v (fsjs(v) 2 (LF tJoot(vp)” child (vo;v) * f1K 9)g)
NodesT) (LF tJroot(vo) ~ child (vo;v) » 1K 9)

Nodes(T) (LF tJroot(vp) ~ child (vo; V)K Y\ LF J.K 9)

Nodes(T) (°\ LF J.K 9) 2 NodeqT) (LF J:K))
Nodes(T) XF1JpK= XFJnot(p;)K

I+

I~

|

Equation (1) usesthe hypothesisv 2 Vars(f,) : () = Nodes(T) and omits the interme-
diate stepLF tJQ(V)K) = fsjs(v) 2 ,LQtJclausgQ)K As for case6, in Equation (2),
0= subst(Vars(f,) [fvog; T) and in Equation (3) (LF +J:K(9 = (LF 1+J1K().

We showv next that the answer to any absolute XPath query p i's the set of imagesfor
the variable r ascomputedby LQ +JQ(r) f K where(v;f) = X LJpK.):

fyjox:(xy) 2 XQrJpkg= LQ7JQ(r) fK

172 A. Pro ofs

We prove this equation by using Equation (A.1), which is already proven above
vir (LF 7K 1)) = XQrJpK
Then,

fyjox:(x;y) 2 XQrIpkg=fyjox:(x;y) 2 vr(LF I K))g
= ((LF 73K)) = LQ+IQ(r) fK

II. LGQ Forests XPath. We conduct induction on the tree structure of any LGQ
tree query Q(v) b. We shav rst for any tree subforrmula f of b that consistsin all
atomsfrom b readwablle from its sourcex, there is an equivalert XPath query p that is the

encaling of f usingLX . More speci cally, we show that

XQJK= ,w(LFJ (Y)K) .Xx; Vv

~ wherep = LX y,Jf KX):
XFJpK= (LFJ (y)K)) , otherwise '

Consequetly, we show that for any LGQ forestthere is an equivalent XPath query.
Base Case. We show there are XPath queriesequivalent to LGQ atoms.

1.f = (x). Then, L!X vbd (X)KX) = [self:].

XQJself: [K=fnjn2 XFJself: K
=fnjtest(n;)g= ((LFJ (VK)) = y(LF XK)):

2.f = (Xy).
2a.y = v. Then, LX ypJ (x;y)Kx) = pred L:*.

XQJpred *():*K= f(n;m)j(n;m) 2 pred *();test(m;*)g
= f(n;m)j(n;m) 2 pred *()g= v (LFJ (X Y)K)):

2b. y 6 v. Then, LX v.uJ (X;y)KX) = [pred :#].

XF Jpred *():*]K= fnj(n;m) 2 pred *();test(m;*)g
=fnj(mm)2pred *()g= «(LFJ (X;y)K)):

Induction Hyp othesis. We considerthere are equivalert XPath queriesfor the for-
mulas A and B.

Induction Step. We show there are equivalert XPath queriesto tree formulasf =
A~ B, wherex is the sourcevariable, A is an atom, and B is a formula, the latter two
having equivalert XPath queries. Wetreat next the casewhenv readablefrom x (x ; V),
the other caseis similar.

173

| 1. A= (x), B = fy, wheref, consistsin all altomsfromf readable from x. Then,
LX vpd (X) ~ f.KX) = [self:] left, whereleft, = LX ,.pJf (KX).

X QJself: JleftyK= f(n;m) jn2 XFJself: K(n;m) 2 XQJeft Ky
=f(m)jn2 (LFJ (K));(nim) 2 o (LF XK))g= v (LF XK)):

2. A= (xy), B = fy"fy, wheref, consistsin all atoms from f readable from x
via any other variable but y, and f, consistsin all atoms from b reachable from y. Note
that becausef is a tree, f, and f, do not have commonatoms, and f = A" B. Let

| | |

left, = LX ypJf (KX), left, = LX pJfyKx), and step= LX ypJd (X; y)KX).
2a.y; ¢ vory=v. Then, LX vibd (X y) N fx M FyKX) = [leftc]/ step left,.

X QJlefty]/ stepleft,K= f(n;m) j n 2 XF JeftyK (n; p) 2 X QJstepk (p;m) 2 X QJleft, kg
=f(nim)jn2 (LF XK))i(nip) 2 xy(LFJ OGy)K))i(pim) 2y (LF JyK))g
= xw(lFI ("Mt M K) = v (LF K)):

2b.y 6 ; vory6 v. Then, LX vbd (X y) N fx M FyKX) = [step lefty]left,.

X QJ[step lefty]leftyK= f(n;m) j n 2 X F Jstepeft,K (n; m) 2 X QJleft, Ky
=f(mm)in2 (LFJ (y) ™ fyK) (mm) 2 (LF XK))g
= xw(LFI MMy) =« (LF X K)):

3. A=:N(x), B =f,, wheref, consistsin all atomsfrom f readable from x. Then,
LX v.0d: N(X)KX) = [self:* - X JclausgN)K and left, = LX ., Jf xKX).

X QJself: JleftyK= f(n;m) jn2 XFJself: K(n;m) 2 XQJleft,ky
=f(nim)jn2 (LFJ (XK));(nim) 2 o (LF XK))g= v (LF XK)):

We show next that for any LGQ forestformula f there is an equivalert XPath query.
The basecaseis for f a tree formula and holds due to the above proof. The induction
hypothesis states there are equivalent queriesfor the forest formulas f, and f,, where
all atoms from both formulas are reatable via thle source variable X. Then, it holds
also for f; _ f, (the induction step). Let p; = LX ypJf1KX), po = LX ,J2KX), and
XQJIp K= v (LF 1K), XQJIpK= " v (LF Jf2K)). Then,

XQJp:j pK= XQInK[XQJpK= v (LF JF1K) [xv(LF J2K))
= x;v(l—F\]fl_fZI'())

The equivalencefor queriesfollows then directly from the projection of the pairs com-
puted for formulas on the headvariable.

174 A. Pro ofs

Pro of of Lemma 4.3.3

For an instancel ! r of eat rule (4.5 through (4.24 under an LGQ' substitution
=fx 7' x;y 7! yg, weshav that (1) | r,and(2)s s[r=l].

For the rst part of the proof, we may use below some equivalencesderived from
de nitions of base binary predicateson nodesin trees. The secondpart of the proof
follows from Proposition 3.3.1, with the condition that the subfornulas of s and t obtained
by removing |, respectively r, do not cortain variables appearing only in r, respectively
[, and not in the other one. Indeed, both | and r have the samevariables, or r does not
cortain variablesat all.

We usethe following implications (h 2 H?, v;; v, 2 ffstChild childg)

vi(y; X) M vo(z;x)) selly; z) (Treenesg (1)
nextSib(y; x) * nextSib(z;x)) sel{y;z) (Treenes$ (2)
h(x;y)) childz;x) " childz;y) (Siblings) 3)

and the equivalence(2 V[H)
(X Y) x;2) ™ (z;y) (Closure) (4):

Note that the variables x and y appearing on the left-side of) or are universally
guarti ed, the other (z) is a freshvariable existertially quarti ed.
Rules (4.5 and (4.6). Let v 2 ffstChild childy.

v(x;y) N pa(y;z) v(x;y)” childz;y) ! v(x;y) M v(z;y) N sellx;z) v(z;y) " selfx; 2):
Rules (4.7) and (4.19. Let f 2 fchild nextSibg.
ooy At Yy ap A F(Py)~ f(zi)
12 selfp;2) " f (x;2)"f(z;y) T (xXy)"f(zy):
Rules (4.8) and (4.9). Let h 2 f nextSibjnextSibl g.

h(x;y) * par(y;z) h(x;y) " childz;y) h(x;y) " childz;y)~ childp;x) * childp;y)
h(x; y) ~ childz;y) » childz;x) * sel{p;y) h(x;y) " childz;x) h(x;y) " pa(x; z):

Rules (4.10, (4.17), and (4.23.
Let 2 fpa;prevSiby. We allow alsopar ! = fstChild (strictly, pa * fstChild.

xy)r Tyr (Y@t (Y @ Hxy)
(D @zx)N My _selz;x)r Hxy) TN Mxy)_sellx;z) N Hxy):

Equivalence(+) holdsdueto Rules(4.7) and (4.19.

4

175

Rules (4.12 and (4.24. Let 2 F'.

" My 2):

Consideran LGQ substitution t consisteh with the formula and a tree instance. The
imagesof all variables are along a samepath from the root and there is a partial order
betweenthem: t(x) t(y), t(z) t(y). The possibilitiesfor the order betweent(x) and
t(z) are(1) t(z) t(x), (2) t(x) = t(z), and (3) t(x) t(z). This readsalso (1) t(z) is
an ancestor(precedingsibling) of t(x), (2) t(x) is the sameast(z), (3) t(x) is an ancestor
(precedingsibling) of t(z), thust(z) lies betweent(x) and t(y). The LGQ encading of all
thesepossibilitiesis:

)t My syt) (xy)tsellxz) - (62N (zy):
Rules (4.13 and (4.14. Let h 2 f nextSibj nextSibl g.
h(x;y)» par* (y;2) = h(x;y)* childp;x) ~ child(p;y) * pa* (y;2)
‘ h(x; y) ~ childp;x) ~ childp;y) » pa (r;z) » pa(y;r)
h(x;y) ~ childp;x) * childp;y) * par (r;2) * childr;y)
. selfp;r) » h(x;y) ™ childr;x) ~ childr;y) ~ pa (r;z)

‘ sel{p;r) ~ h(x;y) ~ childr;y) » pa® (x; z)
h(x;y) » pa™ (x; 2):
Rules (4.195 and (4.20 follow directly from the de nition of fstChildn; m): m is the
rst child of n, thus, for h 2 f prevSibj prevSibl g holds

fstChildx; y) ~ h(y;z) ?:
Rules (4.16), (4.21). Let h 2 f prevSibjprevSibl g.
childx;y) ~ h(y;z) ~ childx;y) "~ h Y(z;y)
° childx; y) ~ h Y(z;y)~ childp;z) ~ childp;y)
! sel{p;x) ~ childx;z) » h (z;y)* childx;y)
childx; z) » h *(z;y):
Rules (4.17) and (4.29. Let h 2 f prevSibjprevSibl g.
child” (x;y) ~ h(y:z) * child (x; p) ~ child(p;y) » h *(z:y)
® child (x; p) ~ childp;y) ~ h *(z;y) ~ childr;z) ~ childr;y)
! sel{p;r) ~ child (x;r) ~ childr;y) * h *(z;y)* childr; z)
* child (x;2) * h Y(z;y):
Rule (4.18.
nextSib(x; y) » prevSibly;z) nextSib{x;y) * nextSib(z;y) ? nextSib{z; y) N sel{x; z):

176 A. Pro ofs

Pro of of Theorem 4.4.3

We prove herethe local con uenceproperty of the term rewriting systemsTRS; (1 1 3).
We needto shaw that, givenoneterm x that canrewrite (in onestep)into y; andy, using
di erent rewrite rules, y; and y, are joinable, i.e., they reduceto the sameterm after a
nite rewriting sequencey; X! Vy,) Vyi#Vo.

TRS ; consistsof a singlerule, namely Rule 4.1, and there is no critical pair created by
this rule with itself or any of the AC-identities.

TRS,. Recallthat the rewrite rules of TRS, are de ned by Lemmas4.3.2 4.3.3 4.3.5
and 4.3.6 that de ne interactions betweenead forward and reverseformula.

First, we showv that for LGQ generalgraphs, and ewen for the restricted version of
single-join DAGSs, TRS; is not locally con uent. Considerthe single-join DAG formula x

x = root(a) ~ child" (a;b) » prevSib{b;d) * root(e) ~ child" (e;c) * nextSib{c;b)
We follow the two rewriting sequences

l. root(a) ~ child” (a;b) * prevSib{b;d) ~ root(e) » child” (e;c) » nextSib{c;b)

I root(a) ” child" (a;d) * nextSib{d;b) ~ root(e) * child” (e;c) » nextSib{c;b):
Il. root(a) ~ child" (a;b) ~ prevSib{b;d) ~ root(e) * child" (e;c) * nextSib{c;b)

I root(a) ™ child” (a;b) ~ selfc;d) ” root(e) ~ child” (e;c) * nextSib{c;b):

It is clearthat the nal cortractions in both casescan not be rewritten anymore, and that
they are di erent.

This concludesone half of the proof. We focus now on proving that TRS, is locally
con uent for LGQ forestsand its simpler derivates, i.e., treesand paths.

There are two casesregarding the interference of multiple redexes: either they do
not interfere at all, or they have a commonpre x. An examplefor the former caseis:
childa; b)» par(b;c)” childc;d)~ prevSib{d; €), wherethe rst two binary atoms constitute
a redex for Rule (4.6) and the last two binary atoms constitute a redex for Rule (4.16.
It is clearthat in this casethe cortracting order doesnot matter and the samerewrite is
produced. In the latter case,there are critical pairs. More precisely the |hs of eat rule
of Lemma4.3.3uni es with a subterm of the lhs of the built-in A-identity for ~. We treat
next this casein detalil.

We considerthe LGQ formula 1(a;b)”™ 2(b;c)™ 3(b;d), where ; isaforward predicate
and , and 3 are reversepredicates. Note that this term correspndsto a LGQ tree
formula. Termslike i(a;bp”™ ,(c;bh” 3(b;d) cannot appear becausesud terms are not
anymore tree formulas, but DAGs.

The following combinations are to be considered(note that ~ is comnutative and
thereforethe symmetrical casedor , and 3 are not necessary):

177

Case| (1) 2) 3)
1. (HF"’ . VR | VR?)
2. (HF"’ ., HR? VR?)
3. (VF"’ ., HR? HR?)
4 (VF"’ ., HR? VR?)

To follow up the rewritings easier,we may renamespeci cally to ead casethe relations 1,
2, 3 to (a composition of) abbreviations of their type, e.g., v=h for vertical/horizontal,
f =r for forward/reverserelations.
Case 1 is similar to the previouscase,becauset usesthe interaction type (HF, VR)?,
which behavesidertical to (f selfy,R?) (seeFigure 4.5).
Case 2. Only interactions of type (HF,VR) (branch 1) or of type H(F, R)? (branch I1)
are consideredrst. We renamethe relations accordingly: hf =, hr = 5, vr= 3.

. hf(a;b)” hr(b;0)~ vr(b:d) ! hf (a;b)» hr(b;c) vr(a;d):

Now we can considerfor both branchesonly the interaction H(F,R)’. After seeral rewrite
steps, the term hf (a;b) ® hr(b;c) is cortracted to a term t cortaining only horizontal
formulas and no further cortraction can be performed on this term. Proposition 4.3.2
ensuregshat the connectionsof the non-sinkvariable a are presened, in particular a; b
Only interactions (HF,VR) can be conducted now, and they push ead variable that is
connectedto basthe rst variable of vr, particularly alsoa. Becausethe rule applications
presene a asnon-sink, this variable can not be replacedand the vr (a;d) is obtained.
Case 3. Only interactions of type (VF,HR)’ can be considered rst. We renamethe
relations accordingly: vf = 1, hry = ,, hr, = 3. We consider rst that vf = fstChild

I v (a;B) ™ hro(b;)) A hro(bzd) ! 2 A hro(bid) ! 2:
. vf(a;b)” hry(o:0) » hro(b:d)! 2 A hri(bi)) ! ?:

For the casevf 2 fchild child" g we have

l. vf(a;b)» hry(b;0) ~ hry(b;d) ! vf(a;0)” hryt(c;) ~ hry(b;d):
Il. vf(a;b)” hry(b;c) » hry(b;d) ! vf(a;d)” hry(b;c) » hr,(d;b):

Subcasel: hry = hr, = prevSibl Then, hr; ' = hr,* = nextSibl

l. vf(a;c) ™ nextSib{c;b) * prevSib{b;d) I vf (a;c) » sel{c;d) * nextSib{d;b):
[l. vf(a;d) " prevSib{b;c) * nextSib{d;b) I vf (a;d) » sel{d;c) * nextSib{c;b):

Both cortractions are idertical up to the variable equality c = d that is ensuredby the the
rewriting modulo equationaltheory including selfvy; vo)™ (vo;v3) selfvy;vo) ™ (Ve V3).

178 A. Pro ofs

Subcase2: hr; = prevSibl, hr, = prevSibl Then, hr; ! = nextSibt, hr,* = nextSibl

I. vf(a;c)” nextSibt (c;b) A prevSib{b;d)

I vf (a;c) * nextSibl(c;d) » nextSib{d;b)

I vf(a;c) M (nextSibl (c;d) _ selfc;d)) * nextSib{d;b)

I vf (a;c) » nextSibl (c;d) nextSib{d;b) _ vf (a;c) ” sel{c;d)* nextSib{d;b):
Il. vf (a;d)” prevSibl (b;c) » nextSib{d;b)

I vf(a;d) ~ (prevSibl (d;c) * nextSib{d;b) _ selfd;c) * nextSib{d; b))

I vf (a;d)~ prevSibl (d;c) » nextSib{d;b) _ vf (a;d) * sel{d;c) » nextSib{d;b)

I vf (a;c) » nextSibf (c;d) ~ nextSib{d;b) _ vf (a;d) ” sel{d;c) nextSib{d;b):

Both cortractions areidertical up to the variable equality c = din the secondconjunct.
Subcase3: hr; = prevSibj hr, = prevSibt. Then, hr; ! = nextSib) hr,* = nextSibt .

l. vf(a;c)* nextSib{c;b) * prevSibl (b;d)

I vf(a;c) M (nextSib{c;b) ~ prevSibl (c;d) * _ nextSib{c;b) * sel{c;d))

I vf (a;c) » nextSib{c;b) ~ prevSibl (c;d) _ vf (a;c) » nextSib{c;b) ~ sel{c;d)

I vf (a;d) » nextSib{c;b) » nextSibl (d;c) _ vf (a;c) * nextSib{c;b) * selfc;d):
Il. vf (a;d) ~ prevSib{b;c) * nextSibl (d;b)

I vf (a;d) * nextSib{c;b) » nextSibl(d;c)

I vf (a;d) » nextSib{c;b) » (nextSibl (d;c) _ sel{d;c))

I vf (a;d) » nextSib{c;b) » nextSibl (d;c) _ vf (a;d) * nextSib{c;b) * sel{d;c):

Both cortractions areidertical up to the variable equality c = din the secondconjunct.
Subcase4: hry = hr, = prevSibt. Then, hr; ! = hr, ! = nextSibf .

I. vf(a;c)* nextSibf (c;b) * prevSibl (b;d)

I vf(a;c) » (nextSibl (c;b) ~ prevSibl (c;d) _ nextSibl(c;d) ~ nextSibl (d;b))

I vf (a;c) ® nextSibl (c;b) ~ prevSibl (c;d) _ vf (a;c) » nextSibl(c;d) » nextSibl (d;b)

I vf (a;d) ~ nextSibl (c;b) * nextSibl (d;c) _ vf (a;c) * nextSibl(c;d) » nextSibl (d;b):
Il. vf(a;d)~ prevSibl (b;c) * nextSibt (d;b)

I vf(a;d) (prevSibt (d;c) » nextSibl (d;b) _ nextSibl(d;c) * nextSibf (d; b))

I vf (a;d)~ prevSibl (d;c) A nextSibl (d;b) _ vf (a;d) * nextSibl(d;c) * nextSib{d;b)

I vf (a;c) » nextSibl (c;d) » nextSibl (d;b) _ vf (a;d) » nextSibl(d;c) » nextSib{d;b):

Both cortractions are idertical up to the variable equality ¢ = d in both conjuncts.
Case 4. Only interactions of type (VF,HR)’ (branch I) or special casesof V(F,R)’

179

(branch 11) are consideredrst. We renamethe relationsvf = , hr = ,, vr = 3.

l. vf (a;b) ~ hr(b;c) ~ vr(b;d) ! vf(a;c) ™ hr (c;b) ~ vr(b;d)
I vf(a;c)™ hr 1(c;b ~ vr(c;d):

For both branches, only special casesof interaction type V(F,R)’ can be applied further.

For branch I, we consider as term of interest only the subterm vf (a;c) » vr(c;d) and
for branch 11 we considerthe subterm vf (a;b) * vr(b;d) (we leave the forward formula
hr 1(c;b) out of discussionfor a while, becausdt can not interact now with the other two
for both branches). It should be clearthat (1) both branchesget the samecortraction up

to replacingc (from the cortraction of branch 1) with b(to getthe cortraction of branch 11),

and (2) both cortractions have only forward formulas. For branch |1, this meansthat only
interactions of type (VF, HR)’ can apply. Proposition 4.3.2 ensuresthat the connections
of the non-sink variable a are presered, in particular a ; b. The interaction (VF,HR)’
ensuresthat a; ; b;hr(b;c)) a; c;hr (c;b), bis replacedby cin the cortraction for
branch I, and hr %(c;b) is addedalso.

TRS 3. TRS, is not con uent for input LGQ graphs. The local con uence could be
obtained, howewer, by adding a rule for rewriting disjuncts of two forward atoms having
the samesink into disjuncts of one of theseforward atoms and the secondforward atom
replacedby its correspnding reverseone. TRS, improveson TRS; exactly in this point
by adding Rule (4.25).

BecauseTRS; includesTRS,, all interferencecasesof multiple redexesthat appearin
TRS, can appear also here, but they do not raise con uence problems, as shavn already
for TRS,. The new interferencecaseshat can appear are

A, @b” a(c;h” s(dib) with 1; 2 32 F
B. (&b’ acih” 3(bid) with 1; 22 F; 32 R

For caseA, there are three possibledistinct cortractions, as underlined below

L @bh LYbo~ a(dibl ! a(abh LYo~ Sibid): (1) or
L i) (g a(dib): (2)

. (a;b” (o~ ;H(b;d) I (ap” LNbio N gHbid): (1) or
G-V P (H KA (R B)

. Ho;@)~ (c;h ™ 3(d;b LMo r oA gH(bid): (3) or

Lo M) Nk s(dib): (D):

Note that the terms (1) to (I11) are joinable betweenead other (the arabic numbers on
the right represen identical cortractions). The caseB can be shavn similarly.

180 A. Pro ofs

Bibliograph vy

[1] Daniel J. Abadi, Donald Carney Ugur Cetintemel, Mitch Cherniadk, Christian Con-
vey, SangdonLee, Michael Stonebraler, NesimeTatbul, and StanleyB. Zdonik, \Au-
rora: a new model and architecture for data stream managemety” VLDB Journal,
vol. 12, no. 2, pp. 120{139,2003.

[2] SergeAbiteboul, \Querying semistructureddata," in Proc. of Int. Conf. on Datalase
Theory (ICDT) , 1997,pp. 1{18.

[3] SergeAbiteboul, Peter Buneman,and Dan Suciu, Data on the Web Morgan Kauf-
mann, 2000.

[4] SergeAbiteboul, Richard Hull, and Victor Vianu, Foundationsof Databases Addison
Wesley 1995.

[5] SergeAbiteboul, Dallas Quass,John McHugh, Jenifer Widom, and Janet Wiener,
\The Lorel querylanguagefor semistructureddata,” International Journal on Digital
Libraries, vol. 1, no. 1, pp. 68{88, 1997.

[6] David K. Giord Alex C. Snceren, Kenneth Conley, \Mesh-basedcornent routing
using XML," in Proc. of ACM Symmsium on Operating SystemsPrinciples (SOSP),
2001,pp. 160{173.

[7] Mehmet Altinel and Michael J. Franklin, \E cien t Itering of XML documerts for
selective disseminationof information,” in Proc. of Int. Conf. on Very Large Data
Bases(VLDB) , 2000,pp. 53{64.

[8] RajeevAlur and P. Madhusudan, \Visibly pushdavn languages,"in Proc. of Annual
ACM Symmsium on Theory of Computing (STOC), 2004,pp. 202{211.

[9] Sihem Amer-Yahia, SungRanCho, Laks V. S. Lakshmanan,and Divesh Srivastava,
\T reepattern query minimization,” VLDB Journal, vol. 11, no. 4, pp. 315{331,2002.

[10] Apache Project, Cocoon 2.0: XML publishing framework 2001,
http://xml.apache.org/co coor/in dex. html .

[11] Apache Project, Xalan-Java Version 2.2, 2001,
http://xml.apache.org/xa lan- j/i ndexht ml.

182 BIBLIOGRAPHY

[12] Arvind Arasu, Brian Babcock, Shivnath Babu, Jon McAllister, and Jenifer Widom,
\Characterizing memory requiremerts for queriesover cortinuous data streams," in
Proc. of ACM SIGMOD/SIGART Sympmsium on Principles of Datalbase Systems
(PODS), 2002,pp. 221{232.

[13] Andrei Arion, Angela Bonifati, Gianni Costa, loana ManolescuSandraD'Aguanno,
and Andrea Pugliese, \E cien t query ewaluation over compressedXML data,” in
Proc. of Int. Conf. on Extending Database Technolagy (EDBT) , 2004,pp. 200{218.

[14] lliana Avila-Campillo, Ashish Gupta, Makoto Onizuka, Demian Raven, and Dan
Suciu, \XML TK: An XML toolkit for scalableXML stream processing,"in Proc. of
Int. Workshopon Programming LanguageTechnolayiesfor XML (PLAN-X) , 2002.

[15] Ron Avnur and JosephM. Hellerstein, \Eddies: Continuously adaptive query pro-
cessing,"in Proc. of ACM SIGMOD. 2000, pp. 261{272,ACM Press.

[16] Franz Baader and Tobias Nipkow, Term Rewriting and All That, Cambridge Uni-
versity Press,1998.

[17] Brian Babcock, Shivnath Babu, Mayur Datar, Rajeev Motwani, and Jenifer Widom,
\Mo dels and issuesin data stream systems," in Proc. of ACM SIGMOD/SIGART
Sympmsium on Principles of Database Systems(PODS), 2002,pp. 1{16.

[18] Shivnath Babu and Jenifer Widom, \Continuous queriesover data streams," Proc.
of ACM SIGMOD, pp. 109{120,2001.

[19] Ziv Bar-Youssef,Marcus Fontoura, and Vanja Josifovski, \On the memory require-
merts of XPath evaluation over XML streams," in Proc. of ACM SIGMOD/SIGART
Sympmsium on Principles of Database Systems(PODS), 2004, pp. 177{188.

[20] Charles Barton, Philippe Charles, Deepak Goyal, Mukund Raghavachari, Marcus
Fontoura, and Vanja Josifosski, \An algorithm for streaming XPath processingwith
forward and badkward axes," in Proc. of Int. Workshopon Programming Language
Technolagiesfor XML (PLAN-X) , 2002.

[21] Charles Barton, Philippe Charles, Deepak Goyal, Mukund Raghavachari, Marcus
Fontoura, and Vanja Josiforski, \Streaming XPath processingwith forward and
badkward axes," in Proc. of Int. Conf. on Data Engineering (ICDE), 2003, pp.
455{466.

[22] Anders Berlund, Scott Boag, Don Chamberlin, Mary F. Fernandez,Michael Kay,
Jonathan Robie, and Jerdme Simeon, \ XML path language(XPath) 2.0, W3C
working draft, 2002.

[23] Scott Boag,Don Chamberlin, Mary F. Fernandez DanielaFlorescu,Jonathan Robie,
and Jerdbme Simeon, \X Query 1.0: An XML query language,”Working draft, World
Wide Web Consortium, 2002.

BIBLIOGRAPHY 183

[24] Tim Bray, JeanPaoli, C. M. Sperberg-McQueenand Eve Maler, \Extensible markup
language(XML) 1.0," W3C Recommendation World Wide Web Consortium, 1998,
http://www.w3.0rg/TR/REC - xn .

[25] Francois Bry, Fatih Coskun,SerapDurmaz, Tim Furche, Dan Olteanu, and Markus
Spannagel:,\The XML stream query processorSPEX," in Proc. of Int. Conf. on
Data Engineering (ICDE) , 2005, to appear.

[26] FrancoisBry, Tim Furche, and Dan Olteanu, \Aktuelles scdlagwort: Datenstreme,”
Informatik Spektrum, vol. 27, no. 2, pp. 168{171,2004.

[27] Francois Bry, Michael Kraus, Dan Olteanu, and SebastianSda ert, \Aktuelles
sdlagwort: Semistrukturierte daten,” Informatik Spektrum, vol. 24, no. 4, pp. 230{
233,2001.

[28] Francois Bry and Peer Kroger, \A computational biology databasedigest: Data,
data analysis,and data managemet)” Distributed and Parallel Databases vol. 13,
no. 1, pp. 7{42, 2003.

[29] Ahmet Bulut and Ambuj Singh,\SWAT: Hierarchical streamsummarizationin large
networks," in Proc. of Int. Conf. on Data Engineering (ICDE) , 2003,pp. 303{314.

[30] Peter Buneman, Martin Grohe, and Christoph Koch, \P ath querieson compressed
XML," in Proc. of Int. Conf. on Very Large Data Bases(VLDB) , 2003,pp. 141{152.

[31] Diego Calvanese,Giusepe De Giacomo, Maurizio Lenzerini, and Moshe Y. Vardi,
\Rewriting of regular expressionsand regular path queries," in Proc. of ACM SIG-
MOD/SIGAR T Sympmsium on Principles of Datalkase Systems(PODS), 1999, pp.
194{204.

[32] Diego Calvanese,Giuseppe De Giacomo, Maurizio Lenzerini, and MosheY. Vardi,
\Answering regular path queriesusing views," in Proc. of Int. Conf. on Data Engi-
neering (ICDE) , 2000, pp. 389{398.

[33] Diego Calvanese,Giusepe De Giacomo, Maurizio Lenzerini, and Moshe Y. Vardi,
\Containment of conjunctive regular path querieswith inverse," in Proc. of Knowl-
edge Representation(KR) , 2000, pp. 176{185.

[34] Diego Calvanese,Giusepe De Giacomo, Maurizio Lenzerini, and Moshe Y. Vardi,
\View-based query processingfor regular path querieswith inverse,” in Proc. of
ACM SIGMOD/SIGART Sympmsium on Principles of Database Systems(PODS),
2000, pp. 58{66.

[35] Diego Calvanese,Giuseppe De Giacomo, Maurizio Lenzerini, and MosheY. Vardi,
\What is view-basedquery rewriting? (position paper),” in Proc. of Int. Workshop
on Knowledge Representationmeets Databases(KRDB) , 2000,pp. 17{27.

184 BIBLIOGRAPHY

[36] Donald Carney, Ugur Cetintemel, Mitch Cherniadk, Christian Convey, SangdonLee,
Greg Seidman,Michael Stonebraler, NesimeTatbul, and Stanley B. Zdonik, \Moni-
toring streams: A new classof data managemen applications,” in Proc. of Int. Conf.
on Very Large Data Bases(VLDB) , 2002,pp. 215{226.

[37] Chee-YongChan, PascalFelber, Minos N. Garofalakis,and RajeevRastogi, \E cien t
Itering of XML documerts with XPath expressions,"in Proc. of Int. Conf. on Data
Engineering (ICDE) , 2002,pp. 235{244.

[38] A. K. Chandraand P. M. Merlin, \Optimal implemertation of conjunctive queriesin
relational databases,"in Proc. of Annual ACM Symposium on Theory of Computing
(TOC), 1977,pp. 77 { 90.

[39] Sirish Chandraselran and Michael J. Franklin, \Streaming queriesover streaming
data,” in Proc. of Int. Conf. on Very Large Data Bases(VLDB) , 2002,pp. 203{214.

[40] Jianjun Chen, David J. DeWitt, , and Je rey F. Naughton, \Design and evaluation
of alternative selection placemen strategiesin optimizing cortinuous queries," in
Proc. of Int. Conf. on Data Engineering (ICDE) , 2002,pp. 345{356.

[41] Shu-Yao Chien, Managingand queryingmultiversion XML documents Ph.D. thesis,
University of California, Los Angeles,2001.

[42] Christian Cho rut and Karel Culik 11, \Prop erties of nite and pushdavn transduc-
ers,"” SIAM Journal of Computing vol. 12, no. 2, pp. 300{315,1983.

[43] Byron Choi, \DTD Inquisitor 2," Ted. Rep., Univ. of Pennsyhania,
http://db.cis.upenn.edu/ ~kkchoi /DTDO2/ , 2001.

[44] Byron Choi, \What arereal DTDs like," in Proc. of Int. Workshopon the Web and
Datalases(WebDB), 2001, pp. 43{48.

[45] JamesClark, \XSL transformations (XSLT) version 1.0, W3C Recommendation,
World Wide Web Consortium, 1999.

[46] JamesClark and Stewe DeRose,\XML path language(XPath) version1.0," W3C
Recommendation,World Wide Web Consortium, 1999.

[47] James Clark and William D. Lindsey XT: An XSLT Engine 2002,
http://lwww.blnz.com/xt/i ndexht ml.

[48] JamesClark and Makoto Murata, \Relax NG," Ted. Rep., OASIS Committee
Speci cation, 2001, http://www.relaxng.org/

[49] R. Cole, R. Hanharan, and P. Indyk, \T ree pattern matching and subsetmatching
in deterministic O(nlog®n)-time," in SODA: ACM-SIAM Symmsium on Discrete
Algorithms, 1999, pp. 245{254.

BIBLIOGRAPHY 185

[50] H. Comon, M. Dauchet, R. Gilleron, F. Jacquemard, D. Lugiez, S. Ti-
son, and M. Tommasi, \Tree automata techniques and applications,”
http://www.grappa.univ- lill e3.f rita ta, 1997, releaseOctober, 1st 2002.

[51] Andy Cooke, Alasdair J. G. Gray, and Wernet Nutt, \Data integration techniquesin
grid monitoring,” Ted. Rep. HW-MA CS-TR-0019,Herriot-Watt University, 2004.

[52] Corina Cortes, Kathleen Fisher, Daryl Pregibon, Anne Rogers,and Frederidk Smith,
\Hancock: A languagefor extracting signaturesfrom data streams," in Proc. of Int.
Conf. on KnowledgeDiscovery and Data Mining, 2000, pp. 9{17.

[53] John Cowan and Richard Tobin, \XML Information Set(secondedition)," Working
draft, World Wide Web Consortium, 2004.

[54] Steven DeRose,Ron Daniel Jr., Paul Grosso,Eve Maler, Jonathan Marsh, and Nor-
man Walsh, \XML pointer language (XPointer),” W3C Recommendation,World
Wide Web Consortium, 2002, http://www.w3.org/TR/xptr /.

[55] Arpan Desai, \In troduction to Sequetial XPath," in Proc. IDEAlliance XML Con-
ference, 2001.

[56] Alin Deutsd and Val Tannen,\Containment for classesof XPath expressionsinder
integrity constraints,” in Proc. of Int. Workshopon KnowledgeRepresentationmeets
Datalbases(KRDB) , 2001.

[57] Yanlei Diao, Mehmet Altinel, MichaelJ. Franklin, Hao Zhang, and Peter M. Fischer,
\P ath sharing and predicate evaluation for high-performanceXML ltering,” ACM
Transactionson Datalase Systems(TODS), vol. 28, no. 4, pp. 467{516,2003.

[58] YanleiDiao, Peter Fischer, Michael J. Franklin, and Raymond To, \YFilter: E cien t
and scalableltering of XML documeris,” in Proc. of Int. Conf. on Data Engineering
(ICDE), 2002,pp. 341{342.

[59] David C. Fallside and Priscilla Walmsley \XML-Sc hema,” W3C Recommendation,
World Wide Web Consortium, 2001, http://www.w3.0rg/XML/Sche ma

[60] C. Fellbaum, Ed., WordNet { An Electronic Lexical Database MIT Press, 1998,
http://www.cogsci.prince ton. edu~wr/ .

[61] Mary F. Fernandez, Jeréme Simeon, Byron Choi, Amelie Marian, and Gargi Sur,
\Implementing XQuery 1.0: The Galax experience," in Proc. of Int. Conf. on Very
Large Data Bases(VLDB) , 2003,pp. 1077{1080.

[62] Mary Fernandez, Ashok Malhotra, Jonathan Marsh, Marton Nagy, and Norman
Walsh, \X Query 1.0 and XPath 2.0 data model,” Working draft, World Wide Web
Consortium, 2004.

186 BIBLIOGRAPHY

[63] Jon Ferraiolo, Fujisawa Jun, and Dean Jadkson, \Scalable Vector Graphics (SVG)
1.1 Speci cation,” W3C Recommendation,World Wide Web Consortium, 2003,
http://www.w3.0rg/TR/SVG / .

[64] SergioFlesca, Filipp o Furfaro, and Elio Masciari, \On the minimization of XPath
qgueries," in Proc. of Int. Conf. on Very Large Data Bases(VLDB) , pp. 153{164.

[65] Daniela Florescu, Alon Levy, and Dan Suciu, \Query cortainment for conjunctive
querieswith regular expressions,”in Proc. of ACM SIGMOD/SIGART Sympmsium
on Principles of Database Systems(PODS), 1998, pp. 139{148.

[66] Markus Frick, Martin Grohe,and Christoph Koch, \Query ewaluation on compressed
trees,"” in Annual IEEE Sympsiumon Logic in Computer Sciene (LICS), 2003,pp.
188{197.

[67] Tim Furche, \Optimizing multiple queriesagainst XML streams,” Diploma thesis,
Univ. of Munich, 2003.

[68] Dov M. Gabbay, lan Hodkinson, and Mark Reynolds, Tempral Logic, Oxford
University Press,1994.

[69] GeorgGottlob and Christoph Koch, \Monadic queriesover tree-structured data,” in
Annual IEEE Sympmsium on Logic in Computer Scien@ (LICS), 2002,pp. 189{202.

[70] Georg Gottlob, Christoph Koch, and Reinhard Pichler, \E cien t algorithms for
processingXPath queries,"in Proc. of Int. Conf. on Very LargeData Bases(VLDB) ,
2002,pp. 95{106.

[71] Georg Gottlob, Christoph Koch, and Reinhard Pichler, \The complexity of XPath
guery ewvaluation,” in Proc. of ACM SIGMOD/SIGART Symmsium on Principles
of Database Systems(PODS), 2003,pp. 179{190.

[72] Georg Gottlob, Christoph Koch, and Reinhard Pichler, \XP ath processingin a
nutshell,” SIGMOD Record, vol. 32, no. 1, pp. 12{19, 2003.

[73] Georg Gottlob, Christoph Koch, and Reinhard Pichler, \XP ath query ewaluation:
Improving time and spacee ciency,” in Proc. of Int. Conf. on Data Engineering
(ICDE) , 2003, pp. 379{390.

[74] GeorgGottlob, Christoph Koch, and Klaus Sdlz, \Conjunctiv e queriesover trees,"
in Proc. of ACM SIGMOD/SIGART Sympmsium on Principles of Datalase Systems
(PODS), 2004, pp. 189{200.

[75] Todd J. Green, Ashish Gupta, Gerome Miklau, Makoto Onizuka, and Dan Suciu,
\Pro cessingXML streamswith deterministic automata and stream indexes," ACM
Transactionson Datalase Systems(TODS), vol. 29, no. 4, 2004.

BIBLIOGRAPHY 187

[76] Todd J. Green,GeromeMiklau, Makoto Onizuka, and Dan Suciu, \Pro cessing<ML
streamswith deterministic automata,” in Proc. of Int. Conf. on Database Theory
(ICDT) , 2003,pp. 173{189.

[77] The STREAM Group, \STREAM: The Stanford Stream Data Manager," in IEEE
Data Engineering Bulletin, http://www- db.stanford.edu /str eam/, 2003,vol. 26.

[78] Torsten Grust, \Accelerating XPath location steps,” in Proc. of ACM SIGMOD,
2002,pp. 109{120.

[79] Torsten Grust, Maurice van Keulen, and Jens Teubner, \Staircase join: Teah a
relational DBMS to watch its (axis) steps,” in Proc. of Int. Conf. on Very Large
Data Bases(VLDB) , 2003,pp. 524{535.

[80] Torsten Grust, Maurice van Keulen, and JensTeubner, \Accelerating XPath ewalu-
ation in any RDBMS," ACM Transactionson Database Systems(TODS), , no. 29,
pp. 91{131, 2004.

[81] Ashish Kumar Gupta and Dan Suciu, \Stream processingof XPath querieswith
predicates,” in Proc. of ACM SIGMOD, 2003, pp. 419{430.

[82] E. Gurari, An Introduction to the Theory of Computation, Computer SciencePress,
1989.

[83] Alon Y. Halevy, \Answering queriesusing views: A surwey," VLDB Journal, vol.
10, no. 4, pp. 270{294,2001.

[84] SvenHelmer, Carl-Christian Kanne, and Guido Moerkotte, \Optimized translation of
XPath into algebraicexpressiongarameterizedby programscortaining navigational
primitiv es," in Proc. of Int. Conf. on WebInformation SystemsEngineering (WISE),
2002,pp. 215{224.

[85] Jan Hidders and Philippe Michiels, \Av oiding unnecessaryordering operations in
XPath," in Proc. of Int. Conf. on Data BaseProgramming LanguagesDBPL) , 2003,
pp. 54{70.

[86] Jan Hidders and Philipp e Michiels, \E cien t XPath axis evaluation for DOM data
structures,” in Proc. of Int. Workshopon Programming LanguageTechnolayies for
XML (PLAN-X) , 2004.

[87] C. M. Ho mann and M. J. O'Donnell, \P attern matching in trees," Journal of ACM,
vol. 29, no. 1, pp. 68{95, 1982.

[88] John E. Hopcroft and Jerey D. Ullman, Introduction to Automata Theory. Lan-
guages,and Computation, Addison Wesley 1979.

188 BIBLIOGRAPHY

[89] Haruo Hosgya and Benjamin C. Pierce, \Regular expressionpattern matching," in
Proc. of Annual ACM Sympmsium on Principles of Programming LanguagegPOPL),
2001, pp. 67{80.

[90] Haruo Hosgya and Benjamin C. Pierce, \Xduce: A statically typed XML processing
language,” ACM Transactionson Internet Technolagy (TOIT) , vol. 3, no. 2, pp.
117{148,2003.

[91] I. Sosnoski Software Solutions, http://www.sosnoski.com/ openrsrc /xml bench,
Java XML Models Benchmarks 2004.

[92] Nancy Ide, Patrice Bonhomme,and Laurent Romary, \X CES: An XML-based stan-
dard for linguistic corpora,” in Proc. Annual Conf. on LanguageResources and
Evaluation (LREC), 2000, pp. 825{830.

[93] International Standard Organization (ISO), Trac and Traveler Information (TTI)
{ TTI messagesia trac messageoding { Part 1: Coding protocol for Radio Data
System{ Trac MessageChannel(RDS-TMC), 2003, http://www.iso.org

[94] Zadhary G. Ives, Alon Y. Halevy, and Daniel S. Weld, \An XML query enginefor
network-bound data,” VLDB Journal, vol. 11, no. 4, pp. 380{402,2002.

[95] Zadhary G. Ives,Alon Y. Levy, Daniel S. Weld, Daniela Florescu, and Marc Fried-
man, \Adaptiv e query processingor internet applications,” IEEE Data Engineering
Bulletin, vol. 23, no. 2, pp. 19{26, 2000.

[96] Michael Kay, \XSL Transformations (XSLT) Version2.0," Working draft, World
Wide Web Consortium, 2004.

[97] P. Kilp elainenand H. Mannila, \Ordered and unorderedtree inclusion,” SIAM
Journal of Computing vol. 24, no. 2, pp. 340{356,1995.

[98] Christoph Koch and Stefanie Scherzinger, \A ttribute grammarsfor scalablequery
processingon XML streams,” in Proc. of Int. Conf. on Data Base Programming
LanguageqDBPL), 2003,pp. 233{256.

[99] Christoph Koch, StefanieSderzinger,Nicole Sdweikardt, and Bernhard Stegmaier,
\FluX Query: An optimizing XQuery processoffor streamingXML data," in Proc. of
Int. Conf. on Very Large Data Bases(VLDB) , 2004,pp. 1309{1312,Demonstration.

[100] Christoph Koch, StefanieSderzinger,Nicole Scweikardt, and Bernhard Stegmaier,
\Schema-basedsheduling of evert processorsand bu er minimization for querieson
structured data streams," in Proc. of Int. Conf. on Very Large Data Bases(VLDB) ,
2004, pp. 228{239.

[101] Nick Koudasand DiveshSrivastava, \Data streamquery processing:A tutorial,” in
Proc. of Int. Conf. on Very Large Data Bases(VLDB) , 2003,p. 1149.

BIBLIOGRAPHY 189

[102] Dongwon Lee, Murali Mani, and Makoto Murata, \Reasoning about XML sdema
languagesusing formal languagetheory,” Ted. Rep. RJ 10197 Log 95071, 1BM
Reseah, 2000.

[103] Patrick Lincoln and Jim Christian, \Adv ertures in ass@iative-comnutativ e uni ca-
tion,” Journal of Symlwlic Computation, vol. 8, no. 1{2, pp. 217{240,1989.

[104] Bertram Ludasder, Pratik Mukhopadhyay, and Yannis Papakonstartinou, \A
transducer-basedXML query processor,"in Proc. of Int. Conf. on Very Large Data
Bases(VLDB) , 2002,pp. 227{238.

[105] Sanuel Madden, Mehul A. Shah, JosephM. Hellerstein, and Vijayshankar Raman,
\Continuously adaptive cortinuous queriesover streams,” in Proc. of ACM SIG-
MOD, 2002,pp. 49{60.

[106] Amelie Marian and Jerdme Simeon, \Pro jecting XML documernts," in Proc. of Int.
Conf. on Very Large Data Bases(VLDB) , 2003,pp. 213{224.

[107] Jose M. Mart nez, \MPEG-7 overview," Ted.
Rep. N4980, ISO/IEC JTC1/SC29/W G11, 2002,
http://mpeg.telecomitali alab .co m/standards/ mpg- 7/ mpg- 7. htm.

[108] Maarten Marx, \X CPath, the rst order complete XPath dialect," in Proc. of ACM
SIGMOD/SIGART Sympmsium on Principles of Datakase Systems(PODS), 2004,
pp. 13{22.

[109] Maarten Marx, \XP ath with conditional axis relations,” in Proc. of Int. Conf. on
Extending Database Technolay (EDBT) , 2004,pp. 477{494.

[110] David Megginson, SAX: The Simple APl for XML, 1998,
http://www.saxproject.or g/ .

[111] Holger Meuss, Andreas Wicenec,and S. Farrow, \Flexible storageof astronomical
data in the ALMA archive,” in ASP Conf. Ser. 314: Astronomical Data Analysis
Softwale and Systems(AD ASS), 2004,pp. 97{+, http://www.eso.org

[112] Philipp e Michiels, \X Query optimization,” in VLDB PhD Workshop 2003.

[113] Microsoft Corporation, Internet Explorer 6.0, 2002,
http://www.microsoft.com /win dows/ie /worldwi de/all. mspx

[114] Gerome Miklau, XMLData Repsitory, Univ. of Washington, 2003,
http://www.cs.washington .edu/re search/x mldatas ets .

[115] Gerome Miklau and Dan Suciu, \Containment and equivalenceof an XPath frag-
mert," in Proc. of ACM SIGMOD/SIGART Symmsium on Principles of Datalase
Systems(PODS), 2002,pp. 65{76.

190 BIBLIOGRAPHY

[116] Gerome Miklau and Dan Suciu, \Containment and equivalence of a fragmert of
XPath," Journal of the ACM, vol. 51, no. 1, pp. 2{45, 2004.

[117] Rajeev Motwani, Jennifer Widom, Arvind Arasu, Brian Babcock, Shivnath Babu,
Mayur Datar, Gurmeet Singh Manku, Chris Olston, Justin Rosenstein,and Rohit
Varma, \Query processing,approximation, and resourcemanagemenh in a data
stream managemenh system," in Proc. of CIDR, 2003.

[118] NASA, JPL SensorWebsProject, http://sensorwebs.jpl.nasa. gov, 2004.
[119] NASA, XML Group Resoures Page http://xml.gsfc.nasa.gov , 2004.
[120] Netscape, DMOZ: Open Directory Project, http://dmoz.org , 2005.

[121] Frank Newven and Thomas Sdwertick, \XP ath cortainment in the presenceof dis-
junction, DTDs, and variables," in Proc. of Int. Conf. on Database Theory (ICDT) ,
2003, pp. 315{ 329.

[122] M. H. A. Newman, \On theorieswith a conmbinatorial de nition of 'equivalence’,”
Annals of Mathematics vol. 43, no. 2, pp. 223{ 243,1942.

[123] Dan Olteanu, \Answering queriesusing viewsin agora,” M.S. thesis, "P olitehnica"
University of Bucharest, 2000.

[124] Dan Olteanu, Tim Furche, and FrancoisBry, \An e cien t single-pasgjuery evaluator
for XML data streams," in Proc. of Annual ACM Symmsium on Applied Computing
(SAC), 2004,pp. 627{631.

[125] Dan Olteanu, Tim Furche, and Francois Bry, \Ev aluating complex queriesagainst
XML streamswith polynomial combined complexity,” in Proc. of Annual British
National Conference on Databases(BNCOD), 2004,pp. 31{44.

[126] Dan Olteanu, Tobias Kiesling, and Francois Bry, \An ewaluation of regular path
expressionswith quali ers against XML streams,” Ted. Rep. PMS-FB-2002-12,
Univ. of Munich, Institute of Computer Science 2002.

[127] Dan Olteanu, Tobias Kiesling, and Francois Bry, \An ewaluation of regular path
expressionswith quali ers against XML streams," in Proc. of Int. Conf. on Data
Engineering (ICDE) , 2003,pp. 702{704.

[128] Dan Olteanu, Holger Meuss, Tim Furche, and Francois Bry, \XP ath: Looking for-
ward," in Proc. of EDBT Workshop XMLDM , 2002,pp. 109{127, LNCS 2490.

[129] Makoto Onizuka, \Ligh t-weight xPath processingof XML streamwith deterministic
automata,” in Proc. of the Int. Conf. on Information and Knowledge Management
(CIKM) , 2003,pp. 342{349.

BIBLIOGRAPHY 191

[130] Yannis Papakonstartinou and Vasilis Vassalos,\Query rewriting for semistructured
data,” in Proc. of ACM SIGMOD, 1999,pp. 455{466.

[131] Feng Pengand SudarshanS. Chawathe, \XSQ: A Streaming XPath Engine," Ted.
Rep. CS-TR-4493(UMIA CS-TR-2003-62),University of Maryland, 2003.

[132] FengPengand SudarshanS. Chawathe, \XSQ: StreamingXPath Queries: A Demon-
stration,” in Proc. of Int. Conf. on Data Engineering (ICDE) , 2003,pp. 780{782.

[133] Corin Pitcher, \Visibly pushdavn expressiore ects for XML streamprocessing,"in
Proc. of Int. Workshopon Programming LanguageTechnolayiesfor XML (PLAN-X) ,
2005, to appear.

[134] Dave Raggett, Arnaud Le Hors, and lan Jacobs, \Hyp ertext markup language
(HTML) 4.01speci cation,” W3C RecommendationWorld Wide Web Consortium,
1999, http://mwww.w3.0rg/TR/REC- html 40/ .

[135] Prakash Ramanan, \E cien t algorithms for minimizing tree pattern queries," in
Proc. of ACM SIGMOD, 2002,pp. 299{309.

[136] DerekRogers,JaneHunter, and DouglasKosovic, \The TV-tra wler project,” Journal
of Imaging Systemsand Technolay, pp. 289{296,2003.

[137] SebastianSda ert, Xcerpt: A Query and Transformation Languagefor the Web,
Ph.D. thesis, University of Munich, 2004.

[138] Ste en Sdott and Markus L. Noga, \Lazy XSL transformations," in Proc. of ACM
Symmsium on Document Engineering, 2003,pp. 9{18.

[139] Dominik Scwald, \Appro ximate streamedevaluation of XPath under memory con-
straints,” Project thesis, Univ. of Munich, 2003.

[140] Luc Segou n, \T yping and querying XML documeris: somecomplexity bounds,"
in Proc. of ACM SIGMOD/SIGART Symposium on Principles of Datalase Systems
(PODS), 2003,pp. 167{178.

[141] P. Seshadri,M. Livny, and R. Ramakrishnan, \The designand implemenation of
a sequencedatabasesystem,” in Proc. of Int. Conf. on Very Large Data Bases
(VLDB) , 1996,pp. 99{110.

[142] R. Snadgrassand I. Ahn, \A taxonony of time in databases,” in Proc. of ACM
SIGMOD, 1985,pp. 236{245.

[143] Anthony Vetro, \MPEG-7 applications," Ted. Rep. N3934, ISO/IEC
JTC1/SC29/W G11, 2001.

192

[144] Jean-Ywes Vion-Dury and Nabil Layaida, \Containment of XPath expressions:an
inferenceand rewriting basedapproad,” in Proc. of Extreme Markup Languages
2003.

[145] Ray Whitmer, \Do cumert Object Model (DOM) Level 3 XPath Speci cation,” W3C
Recommendation World Wide Web Consortium, 2000.

[146] Peter T. Wood, \Optimising web queriesusing documert type de nitions,” in Proc.
2nd ACM Workshop on Web Information and Data Management(WIDM) , 1999,
pp. 28{32.

[147] Peter T. Wood, \On the equivalenceof XML patterns,” in Computational Logic,
2000,pp. 1152{1166.

[148] Peter T. Wood, \Minimizing simple XPath expressions,"in Proc. of Int. Workshop
on Web and Datalases(WebDB), 2001,pp. 13{18.

[149] Peter T. Wood, \Containment for XPath fragmerts under DTD constrairts,” in
Proc. of Int. Conf. on Datalase Theory (ICDT) , 2003,pp. 300{314.

Index

Annotations, 106 142

ambiguity, 116
in-mapping!' , 120 122 124 125 127,
138
lifetime, 121, 124 125
mapping, 119
operations, 106
inclusionv, 106 108 114 121 122
intersectu, 106 133 135 138
uniont , 106 114 116 122 138
out-mapping ', 120 122 124 125
127,128
scope, 121

LGQ Formulas

absolute, 21

binary atoms, 20

connected,21

connectiwes, 19

DAGs, 27, 47

disjunctive normal form, 21

DNF, 70

equivalence,23

forests,27, 47, 144

graphs, 27, 47, 147

paths, 27
pdown, 121, 124 143
rdown, 121, 124 143
sdown, 121, 124 143
sdown, pdown, rdown, 28 125 144

145

predicates,17

predicates,classes,18

query, 21

rule, body, 21

rule, head, 21
semarics, 23
substitutions, 22
substitutions,consistet, 22
trees, 27, 47, 144
unary atoms, 20
unsatis ability, 24
variable

forward sink-arity, 20, 31

fresh, 40

head, 21

multi-sink, 20

multi-source, 20

sink, 20

sink-arity, 20

source,20
variable-preservingninimality, 28, 47,

77, 81, 95

Measures

connection

sequence30, 85{88

variable, 30, 41, 64, 79, 80, 84
DAG type factor type®@9, 31
reverseposition factor pos ¢, 30
sizej ej, 30
type position factor type ¢, 31

Orders

>, 31, 69, 82

>rev 31 82

pos’

> 1% pos: 65, 66, 68, 82

>rev 31 59, 82
>gnf . 70, 82
>, D9, 65, 6870

> sizes 13, 82

194

INDEX

lexicographicproduct, 54
on multisets, 55
well-founded, 54

Rewriting
AC matching, 57, 83
AC uni cation, 57
con uence, 54
critical pairs, 56
local, 56, 83
Identity , 53
joinable terms, 55
Ihs, rhs, 53
modulo
AC, 56, 73 177
equationaltheory, 56
normal form, 54, 78
Rule! , 53
Rules
pa*t, 61
pa , 60
child , 60
foll, 60
nextSibl, 60
pa, 60
prec 60
prevSib) 61
prevSibt, 61
prevSibl, 60
DNF, 70
duplicate elimination, 71
relation-independen, 58
simpli cation, 71
unsatis abilit y detection, 71
unsatis abilit y propagation, 71
substitution, 53
matching, 53
mgu, 53
termination, 54, 82

Stream ProcessingFunctions, 105 107

¢ for predicate , 109 113 114 116

131

in, 109 127
out, 109 127
[head], 109 127
annotation-merge ., 108 119 138
composition
parallel (+), 107, 109 110 119
122
sequetial (), 107, 109 11Q 11§
122
connective ¢, 119 138
connective ¢, 119 138
merge ,108'
scope-begin scope 109 110 122 125
scope-beginsdown, pdown, rdown, 125
138
scope-endscope 109 11Q 122
symbol- Iter j, 108

Curriculum Vitae

Personal Data

Name: Dan Alexandru Olteanu
Date of Birth: 9th of November, 1976
Place of Birth: Targoviste, Romania
Marital Status: Married
Studies
February 2005 PhD examinationin Computer Science(LMU, Munich)
Spring/Summer 2000 visiting studert in the Caravel project (INRIA, Rocquencourt)
October 2000 Dipl. Ing. in Computer Science(Politehnica, Bucharest)
July 1995 Baccalaureatein Math-Physics (HighSdool, Targoviste)

Research Interests

Semistructured Data
XML query processing
Data Integration

Formal Languagesand Automata

	Introduction
	Data Streams: Use, Concepts, and Research Issues
	Thesis Contributions and Overview

	Preliminaries
	XML Essentials
	Example Scenarios

	LGQ (Logic Graph Query): An Abstraction of XPath
	Data Model
	Syntax
	Semantics
	Digraph Representations
	Path, Tree, DAG, Graph Formulas and Queries
	Forward Formulas and their Specializations
	Measures for Formulas
	LGQ versus XPath
	XPath
	Conciseness of LGQ over XPath
	XPath=LGQ Forests

	Source-to-source Query Transformation: From LGQ to Forward LGQ
	Problem Description
	A Taste of Term Rewriting Systems
	Rewrite Rules preserving LGQ Equivalence
	Rules adding single-join DAG-Structure
	Rules preserving Tree-Structure
	Rules removing DAG-Structure
	Rules for LGQ Normalization
	Rules for LGQ Simplification

	Three Approaches to Rewrite LGQ to Forward LGQ Forests
	Rewriting Examples
	Soundness and Completeness
	Termination
	Confluence

	Complexity Analysis
	Related Work

	Evaluation of Forward LGQ Forest Queries against XML Streams
	Problem Description
	Specification
	Stream Messages
	Stream Processing Functions
	From LGQ to Stream Processing Functions
	Evaluation of Atoms
	Evaluation of Path Formulas
	Evaluation of Tree Formulas
	Answer Computation

	Implementation
	SPEX Transducers and Transducer Networks
	Transducers for Forward LGQ Predicates
	Processing Example with Transducers for LGQ Predicates
	Transducers for Other Stream Processing Functions

	Minimization Problems for SPEX Transducer Networks
	Complexity Analysis
	Experimental Results
	Related Work
	Query Evaluation against stored XML Data
	Query Evaluation against XML Data Streams
	Hybrid Approaches

	Applications
	Monitoring Computer Processes
	Streamed Traffic and Travel Information

	Conclusion

