
Evaluation of XPath Queries against
XML Streams

Dan Olteanu

Dissertation
zur ErlangungdesakademischenGradesdes

DoktorsderNaturwissenschaften
an derFakult•at f•ur Mathematik,Informatik und Statistik

derLudwig{Maximilians{Universit•at M•unchen

vorgelegtvon
Dan Olteanu

M•unchen,Dezember 2004

Erstgutachter: Fran�coisBry

Zweitgutachter: Dan Suciu (University of Washington)

Tag der m•undlichen Pr•ufung: 11. Februar 2005

To my wife Flori

iv

v

Abstract

XML is nowadays the de facto standard for electronic data interchangeon the Web.
Available XML data rangesfrom small Web pagesto ever-growing repositories of, e.g.,
biological and astronomical data, and even to rapidly changing and possibly unbounded
streams,as usedin Web data integration and publish-subscribe systems.

Animated by the ubiquity of XML data, the basic task of XML querying is becoming
of great theoretical and practical importance. The last years witnessede�orts as well
from practitioners, asalso from theoreticianstowards de�ning an appropriate XML query
language.At the coreof this commone�ort hasbeenidenti�ed a navigational approach for
information localization in XML data, comprisedin a practical and simplequery language
called XPath [46].

This work brings together the two aforementioned \w orlds", i.e., the XPath query eval-
uation and the XML data streams,and shows aswell theoretical asalsopractical relevance
of this fusion. Its relevance can not be subsumedby traditional databasemanagement
systems,becausethe latter are not designedfor rapid and continuousloading of individual
data items, and do not directly support the continuousqueriesthat are typical for stream
applications [17].

The �rst central contribution of this work consistsin the de�nition and the theoretical
investigationof three term rewriting systemsto rewrite querieswith reversepredicates,like
parent or ancestor,into equivalent forward queries,i.e., querieswithout reversepredicates.
Our rewriting approach is vital to the evaluation of querieswith reversepredicatesagainst
unboundedXML streams,becauseneither the storageof past fragments of the stream,nor
several streamtraversals,asrequiredby the evaluation of reversepredicates,area�ordable.

Beyond their declaredmain purposeof providing equivalencesbetween querieswith
reversepredicatesand forward queries,the applicationsof our rewriting systemsshedlight
on other query languageproperties, like the expressivity of someof its fragments, the
query minimization, or even the complexity of query evaluation. For example,using these
systems,onecan rewrite any graph query into an equivalent forward forest query.

The secondmain contribution consistsin a streamedandprogressiveevaluation strategy
of forward queriesagainstXML streams.The evaluation is speci�ed usingcompositionsof
so-calledstream processingfunctions, and is implemented using networks of deterministic
pushdown transducers. The complexity of this evaluation strategy is polynomial in both
the query and the data sizesfor forward forest queriesand even for a large fragment of
graph queries.

The third central contribution consists in two real monitoring applications that use
directly the results of this work: the monitoring of processesrunning on UNIX comput-
ers, and a system for providing graphically real-time tra�c and travel information, as
broadcastedwithin ubiquitous radio signals.

vi

Zusammenfassung

Heutzutage ist XML der de facto Standard f•ur den Datenaustausch im Web. Dabei
reicht die Spannean verf•ugbaren XML Daten von kleinen Webseitenbis hin zu immer
gr•o�er werdendenSammlungen,beispielsweisean biologischenoder anstronomischenDaten
und sogar,m•oglicherweiseunbegrenzte,Datenstr•omemit schnellemDatenaufkommen,wie
sie in publish-subscribe Systemenverwendet werden.

Getrieben durch die weite Verbreitung von XML Daten, bekommt die Anfragebear-
beitung an XML Daten zunehmendgr•o�ere theoretische und praktische Bedeutung. In
den letzten Jahren konnten Initiativ en sowohl von Seiten der Industrie als auch aus der
Forschung beobachtet werden,die darauf abzieheneineangemesseneXML Anfragesprache
zu de�nieren. DasKernergebnisdieserInitiativ en ist die Identi�k ation einesnavigationalen
Ansatzeszur Lokalisierungvon Informationen in XML Daten in der benutzer-orientierten
Anfragesprache XPath.

DieseArbeit bringt die zwei oben genannten Welten, die XPath Anfragebearbeitung
und XML Str•ome, zusammenund zeigt die sowohl praktische als auch theoretische Rele-
vanz dieserVerbindung.

Der erste Hauptbeitrag dieserArbeit besteht in der De�nition und der theoretischen
Untersuchung von drei Termersetzungssystemen,um Anfragen mit sogenannten \reverse"
Predikaten, wie beispielsweiseparent oder ancestor , in equivalente Anfragen, die keine
solchePredikate enthalten, umzuschreiben. UnserAnsatz ist essentiell fuer die Auswertung
von Anfragen mit \reverse" Predikaten gegenunbegrenzteXML Str•ome, da weder die
Speicherung von bereits verarbeiteten Stromfragmenten noch mehrere Durchl•aufe •uber
den XML Strom erforderlich sind.

Neben diesemHauptziel, die AnwendungenunsererUmschreibungssystemewerfen ein
neuesLicht auf andereEigenschaften der Anfragesprache, wie die Ausdruckskraft einiger
Fragmente, die Minimierung von Anfragen,und sogardie Komplexit•at der Anfrageauswer-
tung. Man kann beispielsweise unter Nutzung dieser Umschreibungssystemebeliebige
Graphanfragenin equivalente Waldanfragenohne\reverse" Predikate umschreiben.

Der zweiteHauptbeitrag besteht in einerstrom-basierten,progressivenAuswertungsstrate-
gie f•ur Waldanfragenohne\reverse" Predikate gegenXML Str•ome. Die Auswertung wird
spezi�ziert durch die Komposition von sogenannten Stromverarbeitungsfunktionen und
implementiert unter Verwendungvon Netzwerken ausdeterministischen Kellerautomaten.
Die Komplexit•at dieserAuswertungsstrategieist polynomiell sowohl in der Gr•osseder An-
frage als auch der Daten fuer Waldanfragenohne \reverse" Predikate und sogarf•ur viele
Graphanfragen.

Der letzte Hauptbeitrag besteht auszwei praktisch verwendbaren•Uberwachungssystemen,
die direkt auf den Resultaten dieser Arbeit aufsetzen: die •Uberwachung von auf einem
UNIX System laufendenProzessenund ein System, das Verkehrsinformationenaus Ra-
diosignalenin Echtzeit •uberwacht und graphisch aufbereitet.

vii

Ac kno wledgmen ts

During the last three years,many peoplehave contributed directly or indirectly to the
development of this dissertation. I would like to expressmy gratitude to them.

First of all I am deeply indebted to my advisor Fran�cois Bry, for his continuing trust
and support during the evolution of this thesis. Further, I am grateful to Dan Suciu,whose
work on XML query processinginuenced constantly my research directions. This thesis
and its author further bene�tted from long and very usefuldiscussionswith two of my best
supporters Tim Furche and Holger Meuss. Without their active commitment, this disser-
tation would not have beenpossible. I thank the students, whosethesesI co-supervised,
for their interest in my work and for bringing new relevant ideasto surface:Fatih Coskun,
SerapDurmaz, Tim Furche, Tobias Kiesling, SebastianScha�ert, Dominik Schwald, and
Markus Spannagel.I thank alsothe membersof our teaching and research group for creat-
ing a stimulating environment at the o�ce and a pleasant stay in Munich: amongothers,
Slim Abdennadher,Sacha Berger,Tim Geisler,Martin Josko, Michael Kraus, Ellen Lilge,
Bernhard Lorenz, Hans J•urgen Ohlbach, Paula P�atrânjan, StephanieSpranger,and Felix
Weigel. I especially want to mention Norbert Eisinger for his always competent adviseson
various subjects ranging from easyones,like conuence of rewriting systems,to complex
ones,like teaching computer sciencetopics.

Last, but de�nitely not least, I thank my wife, Flori, for her love and non-interrupting
support, my parents and my brother for enduring the physical distance that separated
us for such a long time, and all my friends for the weekends we spent together doing no
research.

viii

Con ten ts

1 In tro duction 1
1.1 Data Streams: Use,Concepts,and Research Issues 2
1.2 ThesisContributions and Overview . 6

2 Preliminaries 9
2.1 XML Essentials . 9
2.2 Example Scenarios . 11

3 LGQ (Logic Graph Query): An Abstraction of XP ath 15
3.1 Data Model . 16
3.2 Syntax . 19
3.3 Semantics . 22
3.4 Digraph Representations . 25
3.5 Path, Tree,DAG, Graph Formulas and Queries 26
3.6 Forward Formulas and their Specializations. 28
3.7 Measuresfor Formulas . 29
3.8 LGQ versusXPath . 31

3.8.1 XPath . 31
3.8.2 Concisenessof LGQ over XPath . 36
3.8.3 XPath=LGQ Forests . 38

4 Source-to-source Query Transformation: From LGQ to Forw ard LGQ 45
4.1 Problem Description . 48
4.2 A Tasteof Term Rewriting Systems. 52
4.3 Rewrite RulespreservingLGQ Equivalence. 56

4.3.1 Rulesadding single-join DAG-Structure 57
4.3.2 RulespreservingTree-Structure . 59
4.3.3 Rulesremoving DAG-Structure . 67
4.3.4 Rules for LGQ Normalization . 69
4.3.5 Rules for LGQ Simpli�cation . 70

4.4 Three Approachesto Rewrite LGQ to Forward LGQ Forests 72
4.4.1 Rewriting Examples . 73
4.4.2 Soundnessand Completeness . 76

x Con ten ts

4.4.3 Termination . 79
4.4.4 Conuence . 80

4.5 Complexity Analysis . 81
4.6 Related Work . 89

5 Evaluation of Forw ard LGQ Forest Queries against XML Streams 95
5.1 Problem Description . 96
5.2 Speci�cation . 101

5.2.1 Stream Messages . 102
5.2.2 Stream ProcessingFunctions . 103
5.2.3 From LGQ to Stream ProcessingFunctions 105
5.2.4 Evaluation of Atoms . 108
5.2.5 Evaluation of Path Formulas . 110
5.2.6 Evaluation of TreeFormulas . 112
5.2.7 Answer Computation . 119

5.3 Implementation . 120
5.3.1 SPEX Transducersand TransducerNetworks 120
5.3.2 Transducersfor Forward LGQ Predicates. 122
5.3.3 ProcessingExample with Transducersfor LGQ Predicates 127
5.3.4 Transducersfor Other Stream ProcessingFunctions 128

5.4 Minimization Problemsfor SPEX TransducerNetworks 130
5.5 Complexity Analysis . 133
5.6 Experimental Results . 140
5.7 Related Work . 142

5.7.1 Query Evaluation against stored XML Data 144
5.7.2 Query Evaluation against XML Data Streams 147
5.7.3 Hybrid Approaches . 153

6 Applications 155
6.1 Monitoring Computer Processes. 155
6.2 StreamedTra�c and Travel Information 157

7 Conclusion 159

A Pro ofs 161

Chapter 1

In tro duction

XML is nowadays the de facto standard for electronicdata interchangeon the Web. Cur-
rently available XML data range from small Web pages,the primary use of XML some
yearsago,to ever-growing XML repositoriesand rapidly changingand possiblyunbounded
XML streams. In order to meet the requirements for storing and processingXML-based
Webpages,the XML community proposedrecently in-memorytree representations of XML
data augmented with basic processingcapabilities, e.g., the DOM-basedapplication pro-
gram interface [145]. However, the shift in the sizeand arrival rate of XML data has to
be met also by a shift in appropriate techniques for processingit. XML repositories, as
used in natural languageprocessing[92], biological [28] and astronomical data [119], get
beyond the barrier of main-memorycapacitiesavailable on personalcomputers. Also, for
continuously generatedXML streamsused,e.g., in publish-subscribe systems[37, 7] and
in Web data integration [51], technologieslike DOM basedon in-memory representations
of the entire XML data are not appropriate. Traditional databasemanagement systems
are not designedfor rapid and continuous loading of individual data items, and they do
not directly support the continuous queriesthat are typical for stream applications [17].

Animated by the ubiquity of XML data, the basic task of XML querying is becoming
of great theoretical and practical importance. The last yearswitnessede�orts aswell from
practitioners, as also from theoreticianstowards the goal of de�ning an appropriate XML
query language. Various working drafts of W3C, e.g., [46, 23, 45], and research papers,
e.g., [5, 137], describe relevant work. As a coreof this commone�ort hasbeenidenti�ed a
navigational approach for information localization in XML data, comprisedin a practical
and simple query languagecalled XPath [46].

This work brings together the two aforementioned \w orlds", i.e., the XPath query
evaluation and the XML data streams, and shows as well theoretical as also practical
relevanceof this fusion. After shapingnext somedirections of current research on stream
processingin general,and XML stream processingin particular, this chapter namesthe
contributions of this work with pointers to relevant chapters.

2 1. In tro duction

1.1 Data Streams: Use, Concepts, and Research Is-
sues

Data streams[101, 26] arecontinuouslysent data, whosesizeand arrival rate make di�cult
or even impossibletheir storagebeforebeing processed.The focus of current research on
data streams is to provide techniques that allow, without delaying the arrival rate of
the data streams, (1) to monitor data streams, i.e., to watch them for particular data
patterns, and (2) to analyzeand produceaggregatevaluesfrom data streams.This section
highlights someconcepts,application domains,and research issuesmainly related to data
stream monitoring, though many characteristicsalsoapply to the data stream analysis.

Application Domains

Data streamsare encountered in many domains,ranging from analysisof scienti�c data to
monitoring and �ltering systems.

� Sensor-basedmonitoring systems,e.g., for tra�c or atmosphericconditions.

New techniques for monitoring data streams are developed to locate devices, like
cars on highways or luggagesin airports, that are equipped with position emitters
(sensors).For example,sensorsequippingtrucks areusedto monitor their tra�c and
highways usages,basedon which appropriate feesare computed. Sensorscan equip
alsohighways to detect tra�c parameterslike averagespeedor congestion.

In meteorology, streamsof scalarvaluesrepresenting atmosphericconditionsaregath-
eredby sensorsand usedin monitoring systemsthat enable,e.g., early recognitions
of tornados. The SensorWeb project [118] at NASA developsinstruments for mon-
itoring and exploring environments. The SensorWeb is an independent network of
wireless,intra-communicating sensorpods, deployed to monitor and explorea limit-
lessrange of environments, and can be tailored to whatever conditions it is sent to
monitor.

� Usagemonitoring systems.

Streamsconveying transactional data are gathered over networks from credit card
usagesand phonecalls for detecting usagepatterns indicating possiblefrauds [52].

� Publish-subscribe systems,e.g., for press,media, or �nancial news.

The world becomesincreasinglyinformation-driven and the natural needto �nd the
desired information is associated to �nding the needlein a haystack. To partially
ful�ll theseneeds,publish-subscribe systems[7] are usedto selectively disseminate
existing information gatheredfrom various heterogeneoussources(e.g., newspapers)
called publishers. The large amounts of users,which subscribe with particular pro-
�les, arethen noti�ed acrossa network in real time on content matching their interest.

1.1 Data Streams: Use, Concepts, and Research Issues 3

� XML packet routing.

XML routers perform content-based routing of individual XML packets to other
routersor clients basedupon pro�les (queries)that describe the information needs[6].
Industry trend towards development of XML messagingsystemsfor businessappli-
cationshasalready spawned a oury of start-up companiesdevelopingXML routing
systems,e.g.,Firano Software, Sarvega,Forum, Elitesecureweb, Knowhow, Xbridge-
soft, XMLblaster, cf. [81].

� Video �ltering basedon XML content descriptions.

The newgenerationvideostandards,e.g.,MPEG-7 [107, 143], provide elaborateXML
content descriptions that contain information ranging from \size" to the \current
speaker in scene".Such metadata is to be transmitted asan XML stream separated
yet related with the real video stream. The content-basedvideo �ltering and routing
is needed,e.g.,for jumping directly to or skipping certain scenes.First prototypesof
MPEG-7 basedsystems,e.g., [136], point to the needof e�cien t �ltering techniques
for fast and continuousXML streamsof highly structured metadata.

� Analysis of scienti�c data.

The European Southern Observatory (ESO) [111] is confronted with the problem
of processingweekly terabytes of astronomical data, as gatheredby its Very Large
Telescope (VLT). Such raw (pixel-based)data is usually accompaniedby its content
description(metadata) wrapped in XML. To someextend, the characteristicsof such
data are that of data streams: its arrival rate and size make a standard approach
for storing, indexing, and processingit rather di�cult. Current approachesfor deal-
ing with the metadata component are also basedon novel techniques for stream
processing1.

Punctuate, Tuple, and XML streams

There are three kinds of data streamscurrently under consideration. A data stream can
be a continuoussequenceof

� points, i.e., scalarvalueslike numbers or characters,

� tuples, and

� so-calledXML elements that are well-formed fragments of XML documents.

Punctuate streams(see,e.g., [29]) and tuple streams(see,e.g., [77]) consist in sequences
of data items that have the same length and are at, like relational database tuples.
Punctuate streamscan be seenas a special caseof tuple streams,becausethe constituent
points are tuples of arity one. The XML documents, as conveyed by many XML streams

1Joint work of ESO Archive Centre and the author is planned to provide e�cien t processingtechniques
of such XML-based metadata.

4 1. In tro duction

especially in monitoring measurement data, have reduced text content. XML is used
here as a formalism for specifying tree-like data, whosesize and nesting depth can be
unbounded and whosestructure can have recursive de�nition. All these characteristics
make the processingof XML data streamsespecially challenging(see,e.g., [124]).

Querying data streams

Data streamsquerying, alsocalled data streamsmonitoring, is the search for speci�c data
patterns in the continuously sent data, like newsabout a particular country in a streamof
newsreports, big exchangerate uctuations in a stream of stock market data, or particu-
lar life-threatening value combinations in a streamof medicalmeasurement data. Existing
research on data streamsadopted in the �rst placeexisting query languageslike SQL for
tuple streams,e.g., [1, 77], and XPath for XML streams,e.g., [37, 124]. For speci�c appli-
cation domainsspecialquery languagesaredeveloped. At AT&T a programminglanguage
calledHancock [52] hasbeendeveloped and usedto detect changesin userbehaviour with
respect to dialed phonenumbers, thus changesthat can indicate possiblemisuses.

Data streams posenew challengesto query evaluation. New techniques are needed
to enable a real-time evaluation of possibly complex queriesusing as a few as possible
spacefor temporary results. Queriesagainstdata streamsare sometimescalledcontinuous
queries,for they are evaluated steadily against incoming data. Independently arisesalso
the question regarding the time when the user is informed about the answers. This can
be doneeither progressively, i.e., assoon they are computed,or at given time intervals, or
when particular events happen, or even on explicit user request.

The existing query evaluation methods for data streamssharecommoncharacteristics:

� Only single-passqueryevaluation techniquesareconsideredthat requireno or limited
storageof the input data stream.

� The evaluation techniques are often basedon �nite/pushdo wn automata, for such
automata require simple and limited, consciouslyused,storagecapabilities.

� So-called\window" techniques that processonly excerptsof a given size from the
input data stream are often used. These techniques can guarantee bounds on the
memory neededfor temporary results at the expenseof computing approximate an-
swers instead of exact answers, cf. [12, 17, 139].

� Changesto already generatedquery answers are in generalnot considered,thus the
only kind of supported changeto the answers is the addition of further data.

Data stream systems versus Database systems

Querying data streamsrepresents a research �eld complementary to querying databases.
From a practical view point, the result of querying data streamscan be usedto populate
databases.Figure 1.1givesa brief comparisonbetweendata streamsystemsand traditional

1.1 Data Streams: Use, Concepts, and Research Issues 5

Data streams Databases
Data transient permanent
Queries permanent transient
Changes (mostly) limited to appending arbitrary
Answers approximate exact
Data access single-pass arbitrary
Indexing of queries of data

Figure 1.1: Comparisonof data stream and databasesystems

databasesystems.While in generalin databases,data is permanent and large and queries
are transient and few at a time, in data stream systemsthe queriesare permanent and
numerous,whereasthe data is transient. Publish-subscribe systemsthat �lter data streams
containing newsreports accordingto queriesof subscribersarebasedon possiblyvery large
databasesof queries.Hence,in a data streamcontext, traditional databasetechniqueslike
indexing can be primarily applied for queriesand not for data. In this respect, the data
stream systemXTrie [37] indexesXPath queriesand therefore acceleratesthe evaluation
of a large set of queriesagainst the sameXML stream.

Existing work on sequence[141] and temporal databases[142] has addressedsomeof
the issuesof stream-basedevaluation in a relational databasecontext, like time-sensitive
queriesand their related windows-basedevaluation techniques. However, research in se-
quencedatabaseshasfocusedon the generationof e�cien t queryplansevaluablein one-pass
over the stream and with constant memory, independent of the data. This is possibleif
the databasesystemcontrols, e.g., the sequenceo ws, and is unfortunately impossiblein
a data stream system. Also, research in temporal databasesis concernedprimarily with
maintaining a full history of each data value over time, whereasin data stream systems
the focus is on processingnew data on the y .

A cursory Review of Data Stream Systems

Data stream processinghas becomevery active. We provide here an incomplete list of
referencesto research contributions that describe stream processingtechniquesdeveloped
mostly within the last two years. More in-depth considerationsare done,e.g., by [17] for
relational data, and in Section5.7 for XML data.

The existing relational (tuple) stream systemsuseSQL extendedwith constructs for
sliding windows [40, 39, 17] or graphical \b ox and arrows" interface for specify data o w
through the system[36]. All thesesystemsfocus on optimizations, adaptivit y to unpre-
dictable and volatile environments, and support for blocking operators, i.e., those oper-
ators that are unable to produce the �rst tuple of its output until it has seenits entire
input. Additionally , NiagaraCQ [40] proposesrate-basedoptimizations basedon stream-
arrival and data-processingrates. Telegraph[39, 105] focuseson query executionstrategies
over data streamsgeneratedby sensors.Aurora [36, 1] proposescompile-time optimiza-

6 1. In tro duction

tions, like reordering operators and detection of commonsubqueries,and run-time opti-
mizations, like load sheddingbasedon application-speci�c measuresof quality of service.
STREAM [18, 17, 12, 117] investigatesclassesof queriesthat can be answeredexactly us-
ing a given bound of memory, memorymanagement issuesin caseof approximate answers,
and scheduling decisionsfor multiple query plans basedon rate synchronizations within
operators.

The XML stream systemsare divided in two main classes: given a set of queries,
somesystemsreport on matched queriesagainst XML documents conveyed in the stream
[7, 94, 37, 14, 57, 58, 76, 81], whereasothers return the matched stream fragments [104,
127, 132, 131, 20, 67, 139, 21, 98, 124, 125, 100, 99, 25, 133]. All these systemsare
automata-basedand, for processinglarge sets of queries, most of them employ various
techniquesfor �nding commonalitiesamongqueries.They di�er mainly in the complexities
of the employed query evaluation algorithm, which vary from linear [37, 20, 124, 125] to
exponential [7, 14, 131] in the sizeof the queries,and in the degreeof supporting XPath or
XQuery fragments for specifying queries,which variesfrom simpleXPath paths with child
and descendant axes[7, 94, 37, 14, 131] to XQuery querieswith child and descendant axes
and result construction [104, 98, 100].

From the secondclass,the SPEX system[128, 127, 67, 139, 124, 125, 25], which pro-
cesseswith polynomial complexities a considerably large XPath fragment containing all
axes, is the topic of this work. To the best of our knowledge,non-trivial approximation
techniquesfor coping with XPath query evaluation under hard memory boundswere de-
veloped only within the SPEX systemby [139].

1.2 Thesis Con tributions and Overview

This work motivates two complementary facetsof the problem of XPath query evaluation
against XML streamsand proposespractical solutions to them: the rewriting of queries
with reversepredicatesinto querieswith forward predicatesonly, and the evaluation of
forward queries against XML streams conveying ordered trees. The combined solution
proposedby this work is representativ e for the current trend of query evaluation techniques
presented in the previoussection,becauseit usesonepassover the input stream and it is
basedon pushdown automata.

The rewriting step proposedby this work is essential and its rationale lies in the prob-
lematic evaluation of querieswith reversepredicatesin a streamcontext, asexplainednext.
XPath hasbinary predicatesthat relate sourceand sink nodesfrom the conveyed tree. The
order of thesenodesin the stream, which corresponds to the depth-�rst, left-to-right pre-
order traversal of the conveyed tree, gives the type of predicates: for forward predicates,
e.g., child, the sink nodesappear after their sourcenodes,whereasfor reversepredicates,
e.g.,par, the sinksappearbeforetheir sources.In a streamcontext, the one-passevaluation
of querieswith reversepredicatesis problematic, becauseat the time sourcenodesare en-
countered, the sink nodesbelongto the streamfragment alreadyseenand are not anymore
accessible.Somestream-basedsystemsattack unsatisfactorily this problem by storing nec-

1.2 Thesis Con tributions and Overview 7

essaryfragments of the past stream,e.g.,Xalan [11]. Most other systems,including the one
describedby this work, useour rewriting solution, e.g.,[127, 84, 21, 138, 106, 131, 129, 124].

We present next the chapters of this thesisand highlight their contributions.
Chapter 2 recallsshortly widely acceptedmodelsand syntaxesof semistructureddata,

among which the tree model and the XML syntax are used further in this work. Two
running application scenarios,a journal archive and a genealogicaltree, are introduced
that will serve various examplesof the next chapters.

Chapter 3 introducesthe languageof logicalgraph queries(LGQ), an abstraction of the
practical languageXPath. LGQ is similar to non-recursiveDatalogwith built-in predicates.
The data model of LGQ and XPath is that of unranked orderedtreeswith labelednodes,
wherethe built-in predicateson nodesin such treesare the intuitiv e binary relations �rst
child, next sibling, and equality, aswell astheir reversesand the closuresof them and their
reverses.LGQ queriesare more succinct than XPath queries,though semantically LGQ is
equivalent to a strict fragment of it, called the languageof forward LGQ forests,and also
to (forward) XPath.

For an e�cien t evaluation of LGQ (and of XPath) queriesagainstXML streams,Chap-
ter 4 identi�es as relevant the problem of rewriting LGQ querieswith reversepredicates
into equivalent LGQ querieswithout reversepredicates,also called forward LGQ queries.
In this sense,Chapter 4 proposesthree sound and completeterm rewriting systemsthat
terminate and areconuent modulo the associativit y and commutativit y of the LGQ predi-
cates^ , _, and node-equality. The systemsdi�er aswell in the time and spacecomplexities
for rewriting LGQ queries,asalsoin the capability to yield forward LGQ queriesof certain
restricted types. For example,it is shown that LGQ graph queriescan be rewritten into
forward LGQ forest queries,whosesizesrange from linear to exponential in the sizesof
the input queries. Also, the sizeof each forward LGQ tree in the rewritten forest query
is variable-preservingminimal, i.e., it is boundedby the number of variablesof the initial
LGQ query, and not by the number of its predicates,which can be signi�cantly bigger. Fi-
nally, the chapter surveysrelatedwork on queryminimization, containment, and answering
queriesusing views,all relevant and directly connectedto results of the chapter.

Using the aforementioned results of Chapter 4, Chapter 5 introducesa streamedand
progressive evaluation strategy of forward LGQ forest queriesagainst XML streams. The
streamedaspect of the evaluation residesin the sequential (one-time) accessto the nodes
of the XML stream. A progressive evaluation delivers incrementally the query answers
as soon as they are computed. The proposedevaluation strategy compilesqueriesin so-
called stream processingfunctions consisting of sequential and parallel compositions of
simpler functions specifying LGQ predicateswith restricted access.Later on, it is shown
how each such simple function is implemented e�cien tly by a deterministic pushdown
transducer, and how each stream processingfunction specifying a query is realized by a
network of transducers. When dealing with transducersnetworks, there are at least two
minimization problemsto address:the problem of �nding the minimal network equivalent
to a given network, and the problem of minimal stream routing within a given network.
Both problemsare discussedand for the latter problem, an e�ective solution is given that
improves considerablythe processingtime of transducer networks. The time and space

8 1. In tro duction

complexitiesfor processingof XML streamswith networks of transducersfor eight di�erent
forward LGQ fragments is investigatedand showed to be polynomial in both the stream
and the query sizes.It is shown also that only for particular queriesthe spacecomplexity
of the evaluation dependsonly on the depth of the tree conveyed in the XML stream,and
not on its size. Furthermore, basedon both the complexity results of Chapters 4 and 5,
polynomial upper boundsfor the complexitiesfor the evaluation of a large LGQ fragment
of graph queriesare given. This chapter concludeswith an overview on existing evaluation
techniques for XML queriesin various contexts like main-memory, relational databases,
compresseddata, and streameddata.

Two real monitoring applications that usedirectly the results of this work are shortly
presented in Chapter 6: the monitoring of processesrunning on UNIX computers,and a
systemfor providing graphically in real-time tra�c and travel information, asbroadcasted
within ubiquitous radio signals.

Chapter 7 concludesthis work, and the Appendix fuels the interest of a critical eye
with someproofs that were skipped from the main body of this work.

Chapter 2

Preliminaries

2.1 XML Essentials

Much of today's data does not �t naturally into the traditional relational data model
[3, 27]. Especially Web data and data produced from the integration of heterogeneous
sourceshave irr egular, self-describing, and often changingstructure. Thesecharacteristics
contrast pregnantly with the regularity of and the a priori existenceof schemafor relational
data. Such neither raw nor fully structured data is called semistructured data [2].

Semistructureddata has irregular structure. In contrast to a relational data item (i.e.,
a tuple), a semistructured data item may have missing attributes, multiple occurrences
of the sameattribute, or recursive de�nition. Theseproperties make semistructureddata
items tree-like. Also, the sameattribute may have di�erent typesin di�erent items, and se-
mantically related information may be represented di�erently in various items. The above
characteristicsare supported also by recent studieson the properties of publicly available
semistructureddata [44, 43]. Thesestudiesemphasizethat the semistructureddata used
for information interchangebetweenapplications has in generalrecursive structure de�ni-
tion: a survey of 60 real datasetsfound 35 to be recursive, from which the onesfor data
interchangeare all recursive.

Semistructureddata is self-describing.The content of a semistructureddata item canbe
taggedwith labelsthat remind of attribute namesin relational schemas.Explicit schemas,
whenavailable, provide powerful grammar-basedmechanismsfor specifying classesof ex-
ible, possiblyorderedand recursively nestedstructures.

Semistructureddata hasoften changingstructure, especially in dynamic environments,
where data evolves over time and has various versions [41]. For example, in publish-
subscribe systems[37, 7], subscribersare informed on particular topics to be found in data
published from various sources. Due to the high number of sourcesand the abundance
of data, it is expected that data on thesetopics may comewith di�erent structures from
di�erent sourcesand even at di�erent moments in time.

10 2. Preliminaries

Mo dels for Semistructured Data. Thereareseveral data modelsproposedto capture
the aforementioned properties of semistructured data. These models can be classi�ed
in two classes:graph-oriented, e.g., OEM [5], and tree-oriented, e.g., DOM [145]. The
Object ExchangeModel (OEM) represents semistructured data as an (unordered) edge-
labeled graph, where additionally the nodesmay have object identi�ers. The Document
Object Model (DOM) represents semistructured data as a (ordered) node-labeled tree,
where additionally each node can have further properties, called attributes, of the form
name = value. For both data models, nodeswith text content are permitted. There is a
direct correspondencebetweenOEM andDOM models: the edgelabelsin OEM becomethe
node labels in DOM, the identi�ers in OEM becomevaluesof special attributes in DOM,
and referencesto nodesin OEM becomeattributes having as valuesthe identi�ers of the
referencednodes in DOM. Thus, although DOM describes primarily tree-like structures,
through attributes it can provide also a generalmechanism for the realization of various
\virtual" edgesbetweennodes,if attributes of di�erent nodeshave the samevalue.

Syntaxes for Semistructured Data. There are several syntaxes for semistructured
data, amongwhich we mention the OEM [5] and the XML [24] syntaxes. The eXtensible
Markup Language(XML) syntax, proposedby the World Wide Web Consortium (W3C),
is nowadays generallyacceptedas the data description languagefor both web-basedinfor-
mation systemsand electronicdata interchange.

OEM considersa BibTex-like syntax, wherestructures are represented assetsof semi-
structured data expressions.Each such expressionstandsfor an OEM substructurestarting
with an edgeand it is serializedasthe edgelabel followed by the identi�er of its sink node,
possibly followed by the serialization of the set of subexpressionsrepresenting its edges,
enclosedby curly braces. The graph structure is preserved in this serialization with the
help of node identi�ers, whosede�nitions and referencesare written syntactically di�erent.

XML is a genericmarkup language. In contrast to other markup languages,like Hy-
perText Markup Language(HTML) [134], XML does not have a �xed vocabulary, the
semantics of its markup is not a priori given, and the markup is used to specify the se-
mantic structure of the data rather than its layout. Using XML, one can de�ne markup
languages:there exists a plethora of XML-based languagesdeveloped mostly by W3C.

A serialization of a DOM (tree) structure in XML can be done as follows. A node is
serializedasthe concatenationof serializationsof its children nodesin their order, enclosed
by an opening and a closing tag. For a node with the label a, its opening tag is hai and
its closing tag is h=ai . An attribute with a name name and a value value is serializedas
name = value. The set of attributes of a node is serializedas a whitespace-separatedlist
of serializationsof the constituent attributes, and positioned in the opening tag of that
node betweenits label and the closinganglebracket i . The serialization of a text node is
that text. Note that angle brackets are not allowed in node labels and text 1. The XML
serialization of a semistructureddata is often called an XML document. Figure 2.1 shows
later an XML document representing a journal archive and its associated tree.

1Angle brackets are allowed in text only if they are escaped; e.g., h![CDATA[hai]]i is a valid text node.

2.2 Example Scenarios 11

An XML document is well-formed if it is either of the form text, or of the form
hai resth=ai , wheretext is a text that doesnot contain anglebrackets,a is a label, and rest is
a sequenceof well-formed XML documents2. Well-formed XML documents are important
becausethey correspond to serializationsof (DOM-lik e) treesthat describe semistructured
data. Therefore, tools developed for semistructured data, like query languages,can be
easily adjusted to well-formed XML documents.

This work considersa DOM-lik e model and the XML syntax for semistructureddata.
The DOM structuresand their XML serializationsare further simpli�ed by considering(1)
the node attributes modeledaschildren nodeshaving the attribute nameas label and the
attribute valueastext content, and (2) the text nodesmodeledaslabelednodeswherethe
content of the former becomelabelsof the latter.

Grammars for XML Data. Although XML data hasan implicit structure, given by
the labels stored within the tags, it is often useful to specify further structural and con-
tent constraints for XML documents. Such constraints can be speci�ed within grammars
(often called schemata) that de�ne languagesof well-formed XML documents. The XML
documents generatedby a grammar G are valid with respect to G, or simply G-valid. The
advantageso�ered by the existenceof grammarsfor XML documents stemmainly from the
data structure and content awarenessthat can be used,e.g.,by basicserviceslike storage
and querying for improving e�ciency .

There are several formalismsfor specifying XML grammars. Among them, Document
Type De�nitions (DTDs) [24], XML-Schema[59], and Relax NG [48] are the most popu-
lar ones. All theseformalismsare special subclassesof regular tree grammars[102], thus
the theory of regular tree grammars and of tree automata [50], to which tree grammars
are related, can be fruitfully usedalso for studying the properties of the practical afore-
mentioned grammar languages. Directly derived from the membership problem for tree
automata, [102] developsalsovalidation tools for XML documents.

2.2 Example Scenarios

Weintroduceheretwo real-lifescenariosof semistructureddata exemplifyingrepresentativ e
usagesof semistructureddata for expressingrelational and tree structures. Thesescenarios
are usedin the next chapters asbasisfor various examples.

Journal Arc hiv e

Since the arrival of the XML syntax for semistructured data, the common practice in
processingdata acrossnetworks is to deal locally with robust databasesystemsthat handle
relational data and to wrap it in XML, when it comesto exchangeit. Our �rst scenario
considersa natural relational structure expressedusing semistructureddata.

2Although omitted here,XML documents canstart with prologs de�ning, e.g.,their character encodings
or links to external grammars or styles.

12 2. Preliminaries

<journal>
 <title>db</title>
 <editor>dan</editor>
 <authors>
 <name>ana</name>
 <name>bob</name>
 </authors>
 <price>7</price>
</journal>

root

journal

title editor authors

"dan"
name name

"db"

"ana" "bob"

price

"7"

Figure 2.1: Excerpt of a journal archive

man

woman

man woman

womanman

man

man

man

man

man man alive

alive

man

man

alive

man

alive

man woman
Charles V

Charles VII,
Marie of Anjouthe Dauphin

Charles VI,
the Mad

Louis XI

Charles VIII

Charles

the Good
John II,

Francis Anna

Charles of Valois

Louis de Valois

Louis XII

Louis I de Valois

Louis II of Naples

Isabelle

Valentina Visconti

Figure 2.2: Excerpt of the family tree of John II, the Good

2.2 Example Scenarios 13

This scenariomodels a journal archive as a node-labeled tree, where each journal is
represented asa nodewith label journal, andeach of its properties,like title, editor, authors,
and price, are represented aschildren nodeswith corresponding labels. Figure 2.1 shows a
possiblejournal entry and its XML serialization.

Genealogical Tree

Semistructureddata is alsousedin practical casesto expresstree structures with recursive
de�nition [44, 43]. The secondscenarioconsidersa real-life caseof semistructured data
expressingthe genealogical(or family) tree of important historical persons,like pharaohs,
kings, or emperors. Such tree data weredescribed sinceancient times, and eventually used
to decideon the successorsat thrones.

This scenariomodels the genealogicaltree of someone'sfolk (ancestors,descendants,
brothers and sisters, nephewsand nieces)as a node-labeled tree, where that person is
represented as the root node, and each other person is represented as a node with label
either manor womanand has a child text node consistingin its name,e.g., in the caseof
John this would be 'John'. The children of a personare represented alsoaschildren nodes
of the node corresponding to that person,and the order betweenthesenodesreects the
ascendingorder of the ageof the corresponding children.

An interesting instance of this scenariois the family tree of the kings of France. An
excerptfrom its third dynasty, i.e., the Valoisdynasty (1328-1589),is simplistically modeled
in Figure 2.2 starting with the king John II, the Good, and ending shortly before the
ascensionto the throne by Louis XI I in 14983.

Salic Law In older times, the decisionon the successionto the throne of a kingdom
(like of France), in casethe king passesaway, wassometimesde�ned by the so-calledSalic
Law. This law stipulates that the king is the �rst living man descendingvia exclusively
a male line from the �rst king (in the caseof the Valois dynasty, this is Charles,count of
Valois), such that (1) all its male ancestorspassedaway, and (2) it has no older brother
that livesor hasa living male descendant via exclusively a male line. For the genealogical
tree of Figure 2.2 of year 1498,the king is CharlesVI I I.

A questioneasilyderived from the SalicLaw, and, perhaps,posedby any pretendant to
a throne in former times is: who must die, for someoneto becomea king? Consideringthe
genealogicaltree of Figure 2.2 of year 1498,Louis XI I becomesa king, only if the current
king CharlesVI I I, and also its male descendants that werealive at that time and descend
exclusively via a male line (Francis in our case),die. This happened,indeed,in 1498,when
CharlesVI I I died (in accident) and Francis alsodied.

As Chapter 3 shows next, such questionsare not trivial onesand query languageslike
XPath 1.0 [46] are not expressive enoughto posethem. The next chapter introducesa
query language,called LGQ, that is expressive enoughto capture such queries,and shows
that a small extensionof XPath makesit as expressive as LGQ.

3This family tree is in fact a graph: Louis XI is the sonof Marie of Anjou and CharlesVI I, the Dauphin,
and Charles of Valois is the son of Valentina Visconti and Louis of Valois.

14 2. Preliminaries

Chapter 3

LGQ (Logic Graph Query): An
Abstraction of XP ath

XPath [46] is a key languageamong the plethora of W3C languagesrede�ning the Web.
The motivation for studying XPath stemsfrom its importance as the prime languagefor
expressingselectionquerieson XML documents, importance demonstratedespecially by
its usagein several W3C recommendations:the query languageXQuery [23], the trans-
formation languageXSLT [45], the schema languageXML-Schema[59], and the language
for addressingfragments of XML documents XPointer [54]. The conceptsof XPath are in
fact not new. XPath is basically another syntax for a languageof monadic queries(i.e.,
with a single free variable) having built-in binary predicatesde�ning structural relations,
like child or sibling, betweennodesin orderedtrees.

This thesisstudiesXPath through the more familiar glassesof a Datalog-like language,
calledLGQ. LGQ is the languageof logic graph queriesover tree-structured data, and can
be seenas an abstraction of practical query languagesfor XML like XPath. It resembles
closely the non-recursive Datalog with negation, or the languageof conjunctive queries
with union and negation [4].

The motivation for using LGQ instead of XPath is twofold. First, languageslike the
onesenumerated above and to which LGQ resembles, are well-studied and successfully
researched in the literature [4]. Second,despiteits growing importance,XPath is still not
well-understood and its syntax posesmany (unnecessary)technical challengeswhile doing
more involved theoretical work (like query rewriting and answering).

The study of LGQ remains,however, alsoa study of XPath. This chapter shows that an
LGQ fragment, representing the so-calledLGQ forests,is equivalent to XPath. Chapter 4
investigatesfurther the expressivenessof LGQ and shows that it is semantically not more
expressive than its fragment of forward LGQ forests,thus than forward XPath. However,
LGQ queriesare in generalmore succinct than their equivalent XPath queries.

This chapter proceedsas follows. After introducing the commondata model of LGQ
and XPath, the LGQ syntax and semantics are provided, followed by the graphical repre-
sentations and various measuresfor LGQ queries.At last, the connectionbetweenXPath
and LGQ is established.

16 3. LGQ (Logic Graph Query): An Abstraction of XP ath

3.1 Data Mo del

As data model, LGQ and XPath usean abstraction of XML documents in from of �nite
unranked ordered trees, i.e., �nite trees where a node can have an unbounded number
of orderedchildren. This view upon XML documents is a simpli�cation of that of XML
Infoset [53], DOM [145], and XQuery 1.0 and XPath 2.0 Data Model [62], as explained
next.

Such treescan have only two typesof nodes: root and element. An element node is a
labelednode that can have element nodesaschildren. A root node is a distinguishednode
without labels, and a tree has exactly one root node. The root node corresponds to the
document node of DOM and of the XQuery 1.0 and XPath 2.0 Data Model.

Note that the data modelsof DOM, XQuery1.0,andXPath 2.0consideralsoother types
of nodes,like attribute, text, processinginstruction, and comment nodes. We considerthe
attributes of nodesmodeledaschildren elements. Text nodesare alsomodeledaselement
nodes,where their text contents becomelabels. Both labels and text contents are words
over a �nite set of symbols. We may distinguish between text contents and labels by
writing the text contents in quotes. We refer throughout this thesis to both of them as
labels. The other kinds of nodesarenot relevant for our primary issueof concernand their
addition to the present formalism doesnot raiseproblems.

There are two functions of type Node ! Boolean: isRoot and isElement. Applied
to a samenode, exactly one of them returns true. There is also a function label of type
Node ! String assigningto each element node its label and returning the empty string for
the root node.

The nodesfrom a tree are represented in an XML document asdescribed in Chapter 2.
Figure 2.1 shows an XML document representing a journal archive and its associated tree.

There is a total order � betweenthe nodesin a tree that correspondsto the depth-�rst
left-to-right preorder traversal of that tree. For two nodesn and m, n � m meansthat
n appearsbefore m and m after n in the tree. For the corresponding XML document, n
appearsbeforem, if n is the root node and m is any element in the XML document, or if n
is an element node and the representation of n has the �rst opening tag appearing before
the representation of m. Becausethis order corresponds to the order of opening tags in
XML documents, the order � is alsocalled the document order.

We considerNodes(T) denoting the set of nodesin a tree T.

No detests

A nodetest is a construct permissibleby the following grammar production

Nodetest::= l j l6= j * j root

where l stands for a node's label, root is a special keyword, and * is a wildcard. A node
hasthe nodetest l , if the node's label is l . A node hasthe nodetest l6= , if the node doesnot
have the label l . Any node has the wildcard nodetest. Finally, only root nodeshave the

3.1 Data Mo del 17

nodetest root. Examplesof nodetestsare a, a6= , `t' , `t'6= , where the latter two are written
in quotesand refer to the text content of a node.

Let NodeTest be the set of all nodetestsfor a given tree instance. For a given node and
nodetest, the function test returns true, if that node has that nodetest.

test :Node� NodeTest ! Boolean

test(x; n) =

8
>>>>>>>><

>>>>>>>>:

isElement(x) ^ label(x) = name , if n = name

isElement(x) ^ label(x) 6= name , if n = name6=

isElement(x) ^ label(x) = t̀ext0 , if n = t̀ext0

isElement(x) ^ label(x) 6= t̀ext0 , if n = t̀ext0
6=

tr ue , n = *

isRoot(x) , n = root:

Note that the notion of nodetest introducedheredeviatesfrom the oneof XPath 1.0 [46],
where * holds only for element nodes, and there is no counterpart of label6= . Note also
that other operations than equality and inequality, e.g., the less-thancomparison< , can
be incorporated in our nodetest formalism. In practical cases,such extensionsmake sense.

Binary Predicates

The baserelations between two nodes in an ordered tree are the parent/c hild, sibling,
and equality relations. Based on them, more complex relations can be de�ned. These
baserelations betweennodesin a tree are supported by LGQ using the binary predicates
fstChild, nextSibl, and self of type Node � Node ! Boolean: for two nodes n and m,
fstChild(n; m) holds if m is the �rst child of n, nextSibl(n; m) holds if m is the immediate
next sibling of n, respectively self(n; m) holds if m is n. These predicatescan be seen
as speci�cations of basic servicesthat the storagesystem or the XML document parser
provide.

For a binary predicate� , its transitive closure� + and its reexive transitive closure� �

are de�ned asusual by:

� 0 = self; � n+1 (x; z) , � n(x; y) ^ � (y; z)

� + = [
n2

�

nf 0g
� n ; � � = [

n2
�

� n :

More convenient predicatescan be de�ned further as the (composition of) transitive clo-
sures,and reexive transitive closures,of the basepredicatesand their inverses[70]. For
two nodesn and m,

� nextSibl+ (n; m) holds if m is a following sibling of n, i.e., the next sibling of n, or the
next sibling of the next sibling of n, and so on;

� nextSibl� (n; m) holds if m is a following sibling of n, or n itself;

18 3. LGQ (Logic Graph Query): An Abstraction of XP ath

� prevSibl(n; m) = nextSibl� 1(m; n) holds if n is the precedingsibling of m, i.e., if m is
the next sibling of n;

� prevSibl+ (n; m) = (nextSibl+)� 1(m; n) holds if m is a precedingsibling of n, i.e., if n
is a following sibling of m;

� prevSibl� (n; m) = (nextSibl�)� 1(m; n) holds if m is a precedingsibling of n, or n itself,
i.e., if n is a following sibling of m, or m itself;

� child(n; m) = fstChild(n; n0) ^ nextSibl� (n0; m) holds if m is a child of n, i.e., if m is
the �rst child of n, or a following sibling of the �rst child of n;

� child+ (n; m) holds if m is a descendant of n, i.e., if m is a child of n, or a child of a
child of n, and so on;

� child� (n; m) holds if m is a descendant of n, or n itself;

� par(n; m) = child� 1(m; n) holds if m is the parent of n, i.e., if n is a child of m; Note
that if fstChild(n; m) holds, then par(m; n) holds also;

� par+ (n; m) = (child+)� 1(m; n) holds if m is an ancestorof n, i.e., if n is a descendant
of m;

� par� (n; m) = (child�)� 1(m; n) holds if m is an ancestorof n, or n itself, i.e., if n is a
descendant of m, or m itself;

� foll(n; m) = par� (n; n0) ^ nextSibl+ (n0; n00) ^ child� (n00; m) holds if m follows n in doc-
ument order, i.e., m is a following sibling of n, or of its ancestors,or descendant of a
following sibling of either an ancestorof n or n itself;

� prec(n; m) = par� (n; n0) ^ prevSibl+ (n0; n00) ^ child� (n00; m) holds if m precedesn in
document order.

Note that for a given tree T and two nodes n and m in T, exactly one predicate � 2
f self; par+ ; child+ ; prec; follg has� (n; m). This meansalsothat, for any node n, thesepred-
icatesdivide the set of all nodesof T in disjunctive sets:

N odes(T) = prec(n) [foll(n) [child+ (n) [par+ (n) [self(n):

Predicate Classes. We classify the above built-in predicatesdepending on the order
and structural relations betweenthe nodesof the contained pairs. If for two nodesn and
m � (n; m) holds, then the predicate � is (1) forward, if m appearsafter n in document
order, (2) reverse, if m appearsbeforen in document order, (3) horizontal, if m is a sibling
of n, or (4) vertical, if m is an ancestoror descendant of n. Exceptionally, the predicate
self is consideredforward. Basedon this classi�cation, we de�ne the following predicate
classes:

3.2 Syntax 19

� the classF contains the f orward predicatesf self; fstChild; child; nextSiblg,

� the classR contains the reversepredicatesf par; prevSiblg,

� the classH contains the horizontal predicatesf nextSibl; prevSiblg,

� the classV contains the vertical predicatesf child; parg,

� the classX+ for the transitive closuresof predicatesfrom X 2 f F; R; V; Hg,

� the classX� for the reexive transitive closuresof predicatesfrom X 2 f F; R; V; Hg,

� X? = X [X+ [X� , whereX 2 f F; R; V; Hg.

New classescan be createdvia intersectionor union of aforementioned classes,e.g.,VF =
V\ F contains the predicatesbelongingto both classesF and V, i.e., f fstChild; childg. Also,
VF? = V? \ F? contains all forward vertical predicates,i.e., f fstChild; child; child+ ; child� g.

The restrictions of LGQ (or XPath) to allow only certain predicateclassesde�ne various
LGQ (XPath) fragments. E.g., LGQ[F?] is the LGQ fragment without reversepredicates.

3.2 Syntax

As building blocks, LGQ hasthe built-in binary predicatesof Section3.1, unary predicates
corresponding to nodetests,and unary predicatesde�ned by the usersusing the built-in
ones.The EBNF grammar for LGQ is given next.

LGQ ::= Id(Var) Formula:

Formula ::= Formula ^ Formula j Formula_ Formula j (Formula) j Atom:

Atom ::= Predicate(Var; Var) j Nodetest(Var) j Id(Var) j : Id(Var) j ? j > :

Predicate ::= Forward j Reverse:

Forward ::= Fwd Base j Fwd Base+ j Fwd Base� j self j fstChild j foll:

Fwd Base::= child j nextSibl:

Reverse::= Rev Base j Rev Base+ j Rev Base� j prec:

Rev Base::= par j prevSibl:

We explain next each LGQ syntactical construct.

Bo olean Connectiv es

LGQ hastwo associative and commutativ e binary connectives^ (and) and _ (or) and one
unary connective : (not). The connective : has precedenceover ^ that has precedence
over _, i.e., : binds stronger than ^ that binds stronger than _.

20 3. LGQ (Logic Graph Query): An Abstraction of XP ath

A toms

A binary atom � (v1; v2), associates two setsof nodesidenti�ed by the variable v1 and the
variable v2 accordingto the built-in predicate � .

For each possiblenodetestpredicate,e.g.,a, a6= , 'a', 'a'6= , or root, there is a unary atom
nodetest(v) that speci�es the setof nodeswith that nodetest. The setof nodesidenti�ed by
v is restricted by a(v) to nodeswith label a, and by a6= (v) to nodesthat do not have label
a. The set of nodesidenti�ed by v is restricted by 'a'(v) to nodeswith text content 'a', and
by 'a'6= (v) to nodesthat do not have text content 'a'. In contrast to label nodetests,the
text nodetestsare enclosedin quotes. The nodetest root(v) restricts the nodes identi�ed
by v to the root node. To disambiguate the nodetest root from a possiblelabel r oot, we
considerthe word root reserved and not allowed as a label.

For each user-de�ned predicate, e.g., Q, there is a unary atom Q(v) that speci�es the
set of nodescontained by that predicate.

There are two special nullary atoms ? and > useful for proofs and formula rewriting.
The atom ? selectsno nodesregardlessof the tree instance(i.e., it is unsatis�able). The
atom > selectsalways all nodes,regardlessof the tree instance.

Using LGQ booleanconnectivesand atoms, onecan construct formulas corresponding
to conjuncts, disjuncts, and negations.

T yp es of Variables

LGQ variablesare of two basetypes,dependingat which position they appear in a binary
atom � (v1; v2): the variables appearing at the �rst position are source variables, e.g., v1

above, and the variablesappearingat the secondposition are sink variables,e.g.,v2 above.
A variable that never appearsas source/sink is non-source/sink. A variable that appear
more than one time as source/sink is called multi -source/sink. The amount of binary
atomshaving a given variable assource/sinkde�nes the source/sink-arity of that variable.
A variable with source/sink-arity n is also called a n-source/sink variable. The forward
sink-arity of a variable in a disjunct is the amount of forward binary atoms that appear in
that disjunct and have that variable as sink.

Form ulas

An LGQ formula is de�ned recursively as follows

� a binary atom � (vi ; vj) is a formula, where� is a built-in binary predicate,

� a unary atom nodetest(v) is a formula, wherenodetestis a built-in unary predicate,

� a unary atom Q(v) is a formula, whereQ is a user-de�ned unary predicate,

� : Q(v) is a formula, calledalsoa negation,whereQ is a user-de�nedunary predicate,

� f 1 ^ f 2 is a formula, called alsoa disjunct, wheref 1 and f 2 are formulas,

3.2 Syntax 21

� f 1 _ f 2 is a formula, called alsoa conjunct, wheref 1 and f 2 are formulas.

The existencein a formula of conjuncts, disjuncts, and negations,is interpreted as the si-
multaneousexistence,alternate existence,respectively absence,of the corresponding facts.

A formula f is in disjunctive normal form, if f = f 1 _ � � � _ f n (n � 1) and each f i does
not contain the connective _. The function norm: Formula ! Formula brings a formula
in disjunctive normal form.

A formula is absolute, if it has at least one non-sink variables, and all such non-sink
variableshave a root nodetest.

A disjunct is connected, if either (1) it doesnot contain binary atoms,or (2) it contains
binary atoms and then each variable vn from its body is either a non-sink variable or
reachable from a non-sink variable v0. A variable vn is reachable from another variable v0

in a disjunct f , if f contains � 1(v0; v1) ^ � � � ^ � n (vn� 1; vn) (n � 0). A formula is connected,
if all disjuncts from its disjunctive normal form are connected.

We use the following short-hand notations for formulas. To denote that f 0 is a sub-
formula appears of f , we write f 0 � f . The set of variables from an LGQ formula f
is denoted by Vars(f). If only a sourcev0 and a sink vh variable from a formula are of
interest, such a formula can be abbreviatedby f (v0; vh) wheref is an arbitrary identi�er,
e.g.,child+ (v0; v1) ^ b(v1) ^ nextSibl+ (v1; v2) ^ d(v2) can be abbreviated to p(v0; v2).

Rules and Queries

An LGQ rule has the form Q(v) f , and expressesthe user-de�ned unary predicate
Q. The left-hand sideof is the rule head, and the right-hand side is the rule body. The
headof a rule hasa singlevariable v, called the head variable, and thereforesuch rules are
alsocalled monadic [69]. A rule body is an LGQ formula.

An LGQ query is either a rule or a non-empty set of rules with onedistinguishedrule.

Restrictions on LGQ Queries

LGQ has syntactic restrictions for head variables, negation, and user-de�ned predicates.
The head variable of each rule is syntactically restricted to appear in at least one non-
negatedatom of each disjunct in the query body, if the body is consideredin disjunctive
normal form. The negationcan be applied only to user-de�nedpredicates.Finally, recur-
sive de�nitions of user-de�nedpredicatesarenot allowed. In e�ect, LGQ is the languageof
non-recursive Datalog programswith negationand built-in predicatesover tree structures,
where additionally the negation is syntactically constrained to be applied only to user-
de�ned predicates.This restriction easesvariousprocessingsof LGQ queries,asdeveloped
in the next chapters, and comes,however, at the expenseof writing larger queriesthan
equivalent onesusing unrestricted negation.

Throughout this thesis, we are interested in absolute and connectedLGQ rules. An
LGQ rule is absoluteand connected,if its body formula is absoluteand connected.

22 3. LGQ (Logic Graph Query): An Abstraction of XP ath

3.3 Semantics

The evaluation of an LGQ query consists in �nding substitutions, or mappings, of its
variables to nodes in the data tree instance, such that the predicateson such variables,
as speci�ed in that query, hold also on their substituting nodesin that tree instance. We
de�ne next the notion of LGQ substitution and consistent substitution and give the formal
LGQ semantics basedon such substitutions.

LQ : Tree� Query ! Set(Node)

LQ T JQ(v) f K= � v(LF T Jf K(subst(Q; T)))

LF : Tree� Formula � Set(Substitution) ! Set(Substitution)

LF T JQ(v)K(�) = f s 2 � j s(v) 2 LQ T Jclause(Q)Kg

LF T J: Q(v)K(�) = f s 2 � j s(v) 62LQ T Jclause(Q)Kg = � � LF T JQ(v)K(�)

LF T Jf 1 ^ f 2K(�) = LF T Jf 1K(�) \ LF T Jf 2K(�)

= LF T Jf 1K(LF T Jf 2K(�)) = LF T Jf 2K(LF T Jf 1K(�))

LF T Jf 1 _ f 2K(�) = LF T Jf 1K(�) [LF T Jf 2K(�)

LF T J(f)K(�) = LF T Jf K(�)

LF T J� (v; w)K(�) = f s 2 � j � (s(v); s(w))g

LF T Jn(v)K(�) = f s 2 � j test(s(v); n)g

LF T J? K(�) = ;

LF T J> K(�) = �

Figure 3.1: LGQ Semantics

LGQ Substitutions

A LGQ substitution s is a total mapping from variables of an LGQ formula or query to
nodesin a tree instanceT: s = f v1 7! n1; : : : ; vk 7! nkg indicatesthat the variable vi maps
to the node ni in T. If v is a variable and s a substitution, then s(v) is the image of v
under s, i.e., the node in T to which the variable v is mapped. An LGQ substitution s is
consistent with an LGQ formula f and a tree T, if the predicateson variablesof f hold
also between the imagesof thesevariables under s in the tree T. More speci�cally, the
consistencyof an LGQ substitution is de�ned on the structure of LGQ formulasasfollows:

� f = � (v; w), where � is a built-in predicate. Then, s is consistent with f and T if
the imagesof v and w under s stand in predicate � in T, i.e., � (s(v); s(w)).

� f = n(v), wheren is a nodetest predicate. Then, s is consistent with f and T if the
imageof v under s is in the set of nodesin T with that nodetest n, i.e., test(s(v); n).

3.3 Semantics 23

� f = Q(v), whereQ is a user-de�nedpredicate. Then, s is consistent with f and T if
the imageof v under s is contained in the predicateQ.

� f = : Q(v), whereQ is a user-de�nedpredicate. Then, s is consistent with f and T,
if the imageof v under s is not contained in the predicateQ.

� f = f 1 ^ f 2, where f 1 and f 2 are formulas. Then, s is consistent with f and T, if s
is consistent with formulas f 1 and T, and alsowith f 2 and T.

� f = f 1 _ f 2, wheref 1 and f 2 are formulas. Then, s is consistent with f and T if s is
consistent with at least one formula f 1 or f 2 and T.

LGQ Semantics

The LGQ semantics is given in Figure 3.1 by meansof two functions LQ and LF . The
former function assignsmeaningto LGQ rules, whereasthe latter to LGQ formulas.

Applied on a tree T, an LGQ formula f , and a setof LGQ substitutions � of variablesin
f to nodesin T, the function LF computesthe subsetof � representing the substitutions
consistent with f and T. If the tree T is understood from the context, then it can be
ommited for simpli�cation. The function clause : I d ! Query used here delivers for a
given user-de�nedpredicatethe rule de�ning it. Applied on an LGQ query Q(v) f and
a set of LGQ substitutions � of variablesin f to nodesin T, the function LQ extracts the
set of imagesof the headvariable v under all substitutions from � consistent with f and
T. If � = Set(Substitution) is the set of all possibleLGQ substitutions computable for a
given query and a tree instanceT, the function LQ de�nes the answer to that LGQ query.
For a query Q and a tree T, Set(Substitution) is computedby subst(Q; T).

LGQ Equiv alence and Unsatis�abilit y

De�nition 3.3.1 (LGQ Form ula Equiv alence). Two LGQ formulas l and r are equiv-
alent, noted l � r , i� for any tree T the setsof all LGQ substitutionsconsistentwith l and
T, respectively r and T, restricted to the common variablesof l and r , are the same:

� var s(LF T JlK(� 1)) = � var s(LF T JrK(� 2))

where vars = Vars(l) \ Vars(r) 6= ; and � 1 = subst(l ; T); � 2 = subst(r; T).

De�nition 3.3.2 (LGQ Query Equiv alence). Two LGQ queriesQ1 and Q2 are equiv-
alent, noted Q1 � Q2, i� for any tree T they select the sameset of nodes:

LQ T JQ1K= LQ T JQ2K:

Note that probing the equivalenceof two formulas, as consideredby De�nition 3.3.1,
requires that both formulas have common variables. This de�nition can be extendedto
formulas without commonvariables, if mappings betweenvariables of both formulas are
provided.

24 3. LGQ (Logic Graph Query): An Abstraction of XP ath

An important aspect of LGQ equivalenceis that LGQ formulas that are identical up
to equivalent subformulas are alsoequivalent.

Prop osition 3.3.1 (Equiv alence-preserving adjunction). Let e1 and e2 be two LGQ
formulas that are identical up to two subformulasl of e1 and r of e2. Then, e1 and e2 are
equivalent, i� l and r are equivalent, and e1 and e2 do not contain variablesthat appear in
one of l and r , and not in the other.

Proof. Let e1 = l ^ e, e2 = r ^ e. The casewith e1 = l _ e, e2 = r _ e is dual. Then,

Vars(e) \ (Vars(l) � Vars(r)) = ; ; Vars(e) \ (Vars(r) � Vars(l)) = ; :

Let us consideralso

� e = subst(e;T); � l = subst(l ; T); � r = subst(r; T); � l ;e = subst(l ^ e;T)� r ;e = subst(r ^ e;T):

From the hypothesis (cf. De�nition 3.3.1 of LGQ equivalence)we have (for any tree in-
stance)

l � r , � Vars(l)\ Vars(r)LF JlK(� l) = � Vars(l)\ Vars(r)LF JrK(� r):

The extensionof the setsof substitutions � l and � r to � l ;e, respectively � r ;e, doesnot change
the above equality becausethe projection is still doneon commonvariables.

� Vars(l)\ Vars(r)LF JlK(� l ;e) = � Vars(l)\ Vars(r)LF JrK(� r ;e):

Becausethe variablesfrom Vars(l) contained in e appear also in Vars(r), we have

� Vars(l)\ Vars(r)LF JeK(� l ;e) = � Vars(l)\ Vars(r)LF JeK(� r ;e))

� Vars(l)\ Vars(r)LF JlK(� l ;e) \ � Vars(l)\ Vars(r)LF JeK(� l ;e) =

� Vars(l)\ Vars(r)LF JrK(� r ;e) \ � Vars(l)\ Vars(r)LF JeK(� r ;e) ,

� Vars(l)\ Vars(r)LF Jl ^ eK(� l ;e) = � Vars(l)\ Vars(r)LF Jr ^ eK(� r ;e):

The projection canbeextendedsafelyfrom the setof variablesVars(l)\ Vars(r) to (Vars(l)\
Vars(r)) [Vars(e), becausee hasvariablesthat either appear in both l and r , or not appear
in any of them.

� Vars(l)\ Vars(r)LF Jl ^ eK(� l ;e) = � Vars(l)\ Vars(r)LF Jr ^ eK(� r ;e) ,

� (Vars(l)\ Vars(r)) [Vars(e)LF Jl ^ eK(� l ;e) = � (Vars(l)\ Vars(r)) [Vars(e)LF Jr ^ eK(� r ;e) ,

l ^ e � r ^ e:

De�nition 3.3.3 (LGQ unsatis�abilit y). An LGQ formula e is unsatis�able i� for any
tree T the set of LGQ substitutionsconsistent with e is empty

LF T JeK(subst(e;T)) = ;

An LGQ query Q is unsatis�able i� for any tree T it does not select any node

LQ T JQK= ;

3.4 Digraph Represen tations 25

3.4 Digraph Represen tations

The digraphrepresentationof an LGQ formula (query) is the directedmulti-graph obtained
by taking the formula (query) variablesasnodesand the binary predicateson them aslabels
for edges.The nodefor the headvariable(in the caseof a query) is signi�cantly represented
using a box, the nodes for the other variables are represented using ellipses. Optionally,
we may annotate the nodes with their unary predicates. The nodes corresponding to
(non-sink) variableswith the root nodetest predicateare �lled-in in black.

In order to avoid cluttering, we may usea simpli�ed digraph representation, wherethe
edgesare drawn in such a way so as to convey the type of their corresponding predicate:
vertical (eventually inclined)/horizontal edgesstand for vertical/horizontal predicates,and
their direction conveys whether they are forward or reverse. Vertical forward predicates
are then drawn asdirected up-down edges,vertical reverseasdown-up, horizontal forward
as left-right, horizontal reverseas right-left 1. The edgesare then labeled only with the
plus (+) sign, if they correspond to transitive closurepredicates,and with the wildcard
(*) sign, if they correspond to reexive transitive closurepredicates.

v3

v1

v0 v0

v2v1v2v1

v0

b d v2 bd d

++

+

+ +

+

Figure 3.2: Digraph Representations of LGQ QueriesQ1, Q2, and Q3 of Example 3.4.1

Example 3.4.1. The following querieshave the digraph representations from Figure 3.2

Q1(v2) root(v0) ^ child+ (v0; v1) ^ b(v1) ^ nextSibl+ (v1; v2) ^ d(v2)

Q2(v2) root(v0) ^ child+ (v0; v1) ^ b(v1) ^ child(v0; v2) ^ d(v2)

Q3(v1) root(v0) ^ child+ (v0; v1) ^ d(v1) ^ nextSibl+ (v1; v2) ^ root(v3) ^ child+ (v3; v2):

Thereareformulasfor which onecannot derivea simpli�ed digraph representation. For
example,the formula child+ (v0; v1) ^ nextSibl(v1; v2) ^ child+ (v2; v0) enforcesto draw from
the descendant v2 of v0 a descendant edgeback to v0. However, from v2, only edgeshaving
vertical reversepredicatesaslabelscan be drawn to v0, and the simpli�ed digraph can not
be derived. In fact, LGQ formulas that do not have a simpli�ed digraph are unsatis�able,
i.e., their result is always empty regardlessof the input data. Throughout the thesis, all
formulasusedin examplespermit simpli�ed digraphsChapter 4 providesa rewriting-based
mechanismthat detectsunsatis�abilit y of LGQ formulasand rewrites such formulas to the
empty formula ? .

1The predicatesfoll and prec are not supported by this simpli�ed digraph representation. They can be,
however, substituted by their de�nition basedonly on horizontal and vertical predicates,cf. Section 3.1.

26 3. LGQ (Logic Graph Query): An Abstraction of XP ath

If an LGQ formula contains several disjuncts, when brought in disjunctive normal
form, then its digraph representation is the collection of the digraph representations of
each such disjuncts. If an LGQ disjunct hasalsonegation, i.e., it is of the form f ^ : Q(v)
wheref cancontain againnegation,then its digraph representation consistsin the digraph
representations of f , which is additionally marked with a plus (+) sign, and of Q, which
is additionally marked with a minus (-) sign. In order to distinguish the variable v used
to join Q and f , there is a dotted line betweenthe box for the variable v in the digraph
representation of Q and the representation of the samevariable in the digraph of f .

v0

v

v4 v3

woman

v0

v

man

alive v2

v1

+

+

woman

v0

v1

v

+

+

man

v0

v

+

+ + + -

-+

man

alive v3

v2

v1

alive v1

v0

vman

alive v2

v1

v4 v3

+
+

**

+
+

**

+

Figure 3.3: Digraph Representation of the LGQ Query of Example 3.4.2

Example 3.4.2. Consider an LGQ query asking for the current king after the Salic Law.
For the genealogicaltree of John II, the Good from Section2.2, this man is CharlesVI I I.
This query canbe formulated in LGQ as(1) the selectionof all living men, (2) the selection
of all men that descendfrom at least one femaledescendant, or (3) have male ancestors
that are alive, (4) or have male precedingsthat are alive, (4) but theseprecedingsmust
descendvia a male line from John.

Q(v) root(v0) ^ child+ (v0; v) ^ man(v) ^ : Q1(v) ^ child(v; v1) ^ alive(v1)

Q1(v) root(v0) ^ child+ (v0; v) ^ par+ (v; v1) ^ woman(v1)_

root(v0) ^ child+ (v0; v) ^ par+ (v; v1) ^ man(v1) ^ child(v1; v2) ^ alive(v2)_

root(v0) ^ child+ (v0; v) ^ prec(v; v1) ^ man(v1) ^ : Q2(v1) ^ child(v1; v2) ^ alive(v2)

Q2(v) root(v0) ^ child+ (v0; v) ^ prec(v; v1) ^ woman(v1) ^ child+ (v1; v2) ^ man(v2)

^ child(v2; v3) ^ alive(v3):

3.5 Path, Tree, DA G, Graph Form ulas and Queries 27

In order to usethe simpli�ed digraph representation for querieswith horizontal and vertical
predicates only, we replace in Q1 and Q2 prec(v; v1) by par� (v; v3) ^ prevSibl+ (v3; v4) ^
child� (v4; v1). The query Q has the digraph representation from Figure 3.3.

3.5 Path, Tree, DA G, Graph Form ulas and Queries

We introduce next the (rather intuitiv e) notions of path, tree, DAG, and graph formulas
(queries), by analogy to their representation as graphs described in Section 3.4, where
variablesinduce nodesand binary atoms induce oriented edgesin that graph.

A path formula p(v; w) is a connectedformula representing a disjunct of atoms, where
(1) each variable is neither multi-source nor multi-sink, and (2) it contains exactly one
non-sink variable. The non-sink variable, denotedabove by v, is called the path source,
and the only non-sourcevariable, denotedabove by w, is called the path sink.

A path query is a query with an absolutepath formula asbody and the headvariable as
the path sink, i.e., Q(t) p(v; t) with p(v; t) a path formula. An exampleof a path query
is Q(v2) r oot(v0) ^ child+ (v0; v1) ^ b(v1) ^ nextSibl+ (v1; v2) ^ d(v2), and its graphical
representation is given in Figure 3.2.

A tree formula t(v; w1; : : : ; wn) is a connectedformula where (1) each variable can be
multi-sourcebut not multi-sink, and (2) it contains exactly onenon-sinkvariable. The non-
sink variable, denotedabove by v, is called the tree source,and the non-sourcevariables,
denotedby w1; : : : ; wn , are called the tree sinks. A disjunction of tree formulas is a forest
formula.

A tree query is a query with an absolute tree formula as body. An exampleof a tree
query is Q(v2) r oot(v0) ^ child+ (v0; v1) ^ b(v1) ^ child(v0; v2) ^ d(v2), where v0 is a
multi-source variable. Its graphical representation is given later in Figure 3.2.

A DAG formula is a connectedformula with multi-source and multi-sink variables,
but without cycles. A formula is cyclic if, after bringing it in disjunctive normal form, it
contains subformula pathswith the samevariableaspath sourceandsink. Single-join DAG
formulasareDAG formulaswhereadditionally there areno two distinct path formulaswith
more than onenon-sink commonvariable.

A DAG query (resp. single-join DAG query) is a query with an absolute DAG (resp.
single-join DAG) formula as body. The single-join DAG query Q(v1) r oot(v0) ^
child+ (v0; v1) ^ d(v1) ^ nextSibl+ (v1; v2) ^ root(v3) ^ child+ (v3; v2) exempli�es a multi-sink
variable v2 occurring as sink in two binary atoms. Its graphical representation is given
later in Figure 3.2.

A graph formula is a connectedformula, without any restrictions concerningthe cycles
or typesof variables. A graph query is a query with an absolutegraph formula as body.

There is a specialization relation betweenclassesof path, tree, single-join DAG, DAG,
and graph formulas: one classis a specialization of the subsequent classes,in the order
given above.

28 3. LGQ (Logic Graph Query): An Abstraction of XP ath

Variable-preserving Minimalit y of LGQ Trees and Forests

LGQ formulas can be quite complex, graph-like, where a variable can be reachable from
another variable via several paths, or where cycles are allowed. The data instancesto
query are, however, trees. A natural question is whether this expressivity of LGQ graph
formulas is not equivalent to that of LGQ tree formulas. Chapter 4 givesa positive answer
to this question. The intuition is that even if in a disjunct a variable is reachable via
several distinct paths from another variable, their imagesin a tree instanceare connected
using exactly onepath. Thus a �nite disjunction of all connectionpossibilities of the two
variables consistent to the initial reachabilit y constraints should be always doable. Each
disjunct in the new formula would be then a LGQ tree subformula, wherethere is exactly
one path from the non-sink variable to each sink variable v, thus one atom having v as
sink.

The property of LGQ tree formulas to have each variable appearing only onceas sink
(except for the non-sink variable) is called variable-preservingminimalit y.

De�nition 3.5.1 (V ariable-preserving minimalit y). A satis�able formula e is variable-
preservingminimal, if thenumber of binary atomsin eachdisjunct of thedisjunctivenormal
form of e is equal to the number of variablesof that disjunct minus one.

Prop osition 3.5.1 (V ariable-preserving minimalit y of LGQ trees). LGQ tree for-
mulas are variable-preservingminimal.

Proof. An LGQ tree formula doesnot have multi-sink variables,thuseach variable appears
exactly onceassink, except for the non-sink variable having the root nodetest. Therefore,
the number of binary atoms in the tree formula is the number of sink variables of that
formula, i.e., the number of all variablesminus one.

As a corollary, LGQ forest formulas are alsovariable-preservingminimal, becausethey
are de�ned asdisjunctions of LGQ tree formulas that are variable-preservingminimal.

3.6 Forw ard Form ulas and their Specializations

This sectiongivesa classi�cation of formulas necessaryfor the results of Chapter 5.
A binary atom is forward, if its predicate is forward, and reverseotherwise. All unary

atoms are consideredforward. A formula (query) is forward if it contains only forward
atoms, and it is reverseotherwise.

We give in the following the syntactical characterization of three types of forward
formulas (queries): source-down, parent-down, and root-down forward formulas (queries).

A forward path formula is source-down, or simply sdown, if its path sourceis the source
variable of an � -atom with the predicate � 2 VF? n f selfg = f fstChild; child; child+ g, and
the formula contains no foll-atoms. Intuitiv ely, for a (source) node being the image of
the path sourceunder an LGQ substitution, a sdown path selectsonly descendant nodes
of that sourcenode. A sdown formula can contain also atoms with HF? predicates(but

3.7 Measures for Form ulas 29

their sourcevariable must not be the path source),becausethe sibling nodesof children
or descendants of the sourcenode (as selectedby the �rst atom child or child+) are also
children or descendants of the sourcenode.

A forward path formula is parent-down, or simply pdown, if its path sourceis the source
variable of an � -atom with � 2 HF? = f nextSibl; nextSibl+ ; nextSibl� g, and it contains no
foll-atoms. Intuitiv ely, for a (source) node being the image of the path sourcevariable
under an LGQ substitution, a pdown path selectsonly descendant nodesof the parent of
that context node. Other forward but foll-atoms are allowed, becausethe sibling nodesof
the sourcenodeand their children or descendants arechildren or descendants of the parent
of the sourcenode.

A forward path formula is root-down, or simply rdown, if it contains at least a foll-
atom and can contain any other forward atoms. Intuitiv ely, for a (source) node being
the image of the path sourcevariable under an LGQ substitution, a rdown path selects
only descendant nodesof the root of tree containing that sourcenode. Note that an LGQ
forward path formula is by default a rdown path formula.

The three typesof path formulas allow also (su�cien t) semantical characterizations:

p(v; w) is sdown ! 8s 2 Set(Substitution) : child+ (s(v); s(w))

p(v; w) is pdown ! 8s 2 Set(Substitution) : par(s(v); s(v0)) ^ child+ (s(v0); s(w)) ^ s(v) � s(w)

p(v; w) is rdown ! 8s 2 Set(Substitution) : root(s(v0)) ^ child+ (s(v0); s(w)) ^ t(v) � t(w):

Note that the above implications hold in both directions only for somegiven sourcenodes.
In general,a formula is (1) sdown if it contains only sdown path subformulas with a

multi-source variable as the path source,(2) pdown if it contains at least a pdown path
subformula with a multi-source variable as the path sourceand can contain sdown path
subformulas, and (3) is rdown if it contains at least a rdown path subformula with a
multi-source variable as the path source.

Example 3.6.1. Considerthe path formulas p1(v0; v2) = child(v0; v1) ^ nextSibl+ (v1; v2),
p2(v0; v2) = nextSibl+ (v0; v1) ^ child(v1; v2), and p(v0; v2) = child(v0; v1) ^ foll(v1; v2). Then,
p1(v; w) is a sdown path formula, p2(v; w) is a pdown path formula, and p(v; w) is a rdown
path formula. Also, p1(v; w) is a sdown tree formula, p1(v; w1) ^ p2(v; w2) is a pdown tree
formula, and (p2(v; w1) _ p3(v; w2)) ^ p1(v; w) is a rdown tree formula.

3.7 Measures for Form ulas

This sectionintroducesmeasuresfor formulas necessaryfor the results of Chapter 4.
A useful relation computablefor any two variablesin a formula is the connectivity (or

reachabilit y) relation. Intuitiv ely, two variables in a formula e are connectedif there is
(at least) one path betweentheir corresponding nodesin the digraph representation of e.
Additionally , we may alsocompute the length of such a path.

For LGQ formulas with cyclic digraphs, in the computation of paths connectingany
two variables,we considerall cyclesdetectedand not considered.

30 3. LGQ (Logic Graph Query): An Abstraction of XP ath

De�nition 3.7.1 (V ariable Connection). The connection from variable a to variable b
via a sequence of binary predicatesp in a formula e is a 4-ary predicate a

p
; e b de�ned as

follows:

� a �; e b, if � (a;b) � e,

� a
p:q
; e b, if a

p
; e1 v

q
; e2 b, and e1 ^ e2 � norm(e).

If the connection sequenceis irrelevant, then it can be omitted, e.g., we may write
a ; e b instead of a

p
; e b.

For a given connection a
p

; e b, the connection length is de�ned by the number of
predicatesin the connectionsequencep, and denotedjpj.

Basedon the variable connectionrelation, we de�ne next the position-set of � -atoms
in an LGQ formula, and the position-setof multi-sink variablesin an LGQ formula.

De�nition 3.7.2 (P osition-set of � -atoms). The position-set pos� (e) of � -atoms in an
LGQ formula e is the multiset of all lengthsof connections from a non-sink variable and
with its sequence ending with an � -atom (x is a possiblyempty sequence of predicates):

pos� (e) = f l j a 2 Vars(e); b2 Vars(e); root(a) � e;a ; x:�
e ; l = jx:� jg

Example3.7.1. Considerthe formula e = root(v1)^ child(v1; v2)^ (child(v2; v3)_ child(v2; v4))

^ child+ (v3; v4). Then, e.g., v1
child; e v2, v1

child:child; e v3. The position-set of child-formulas is
poschild(e) = f 1; 2; 2g.

Another important measurefor LGQ formulas is their size.

De�nition 3.7.3 (Size of LGQ Form ulas). The size jej of an LGQ formula e is the
sum of of sizesof all its constituent connectives and atoms, where the sizeof each boolean
connective is one, and the sizeof an atom is given by its arity.

Reverse and DA G Factors of LGQ Form ulas

We de�ne next the positional and the type reversefactors of an LGQ formula, which are
measuresfor the amount and position of reversebinary atoms of that formula.

De�nition 3.7.4 (Rev erse Position Factor of LGQ Form ulas). The reverseposition
factor posr ev(e) of an LGQ formula e is the union of positions-setsof all its reverseatoms:

posr ev(e) =
[

� 2 R?

(pos� (e)) :

An LGQ formula cancontain up to sevendi�erent typesof reverseatoms,cf. Section3.2.
The amount and type of reverseatoms in a formula e is given by its reversetype factor
typer ev(e).

3.8 LGQ versus XP ath 31

De�nition 3.7.5 (Rev erse T yp e Factor of LGQ Form ulas). The reversetype factor
typer ev(e) of an LGQ formula e containing br basereversepredicates, tcr transitive closure
reversepredicates, and tr cr reexive transitive closure reversepredicates, is a multiset
containing the number 1 br times, the number 2 tcr times, and number 3 tr cr times.

We de�ne alsothe orders> r ev
pos and > r ev

ty pe on LGQ formulas derived from the order > mul

on multisets f posr ev(e) j e 2 LGQg, respectively f typer ev(e) j e 2 LGQg:

s > r ev
pos t , posr ev(s) > mul posr ev(t) s > r ev

ty pe t , typer ev(s) > mul typer ev(t):

For a given formula e, typer ev(e) = ; exactly when posr ev(e) = ; , and this meansthat e
doesnot have reverseatoms at all.

Example3.7.2. Considerthe formulase = root(v1)^ child(v1; v2)^ (par(v2; v3)^ par+ (v3; v4)_
child+ (v2; v3) ^ self(v3; v4)) ^ par� (v3; v5) and e0 = root(v2) ^ par� (v2; v3) ^ par� (v2; v4). The
reversefactors are

posr ev(e) = fj child:parj; jchild:par:par+ j; jchild:par:par� j; jchild:child+ :par� jg = f 2; 3; 3; 3g,
typer ev(e) = f 1; 2; 3g,
posr ev(e0) = fj par� j; jpar� jg = f 1; 1g,
typer ev(e0) = f 3; 3g.

We give in the following a measurefor the amount of forward sink-arities of multi-sink
variablesin LGQ formulas. Recall that the forward sink-arity of a variable is the number
of forward binary atoms that appear in the samedisjunct and have that variable as sink.

De�nition 3.7.6 (D A G T yp e Factor of LGQ Form ulas). The dagtype factor typedag(e)
of an LGQ formula e is the multiset containing the forward sink-arity of each multi-sink
variable in e.

Example3.7.3. Considerthe formulase = root(v1)^ child(v1; v3)^ root(v2)^ (child+ (v2; v3)_
child+ (v2; v4) ^ nextSibl(v4; v3)) ^ child(v3; v5) that has a multi-sink variable v3. The dag
factor is the forward sink-arity of v3, which is typedag(e) = f 2; 2g, becausein each disjunct
v3 hasa forward 2-arity.

As for reversefactors, we de�ne alsothe order > dag
ty pe on LGQ formulas derived from the

order > mul on multisets f typedag(e) j e 2 LGQg:

s > dag
ty pe t , typedag(s) > mul typedag(t):

3.8 LGQ versus XP ath

Weintroducenext the practical query languageXPath and we show how it relatesto LGQ.

32 3. LGQ (Logic Graph Query): An Abstraction of XP ath

3.8.1 XP ath

The languagefor expressingnode selectionin tree consideredin the following is the un-
abbreviatedXPath fragment without functions, attribute handling, and value-basedjoins.
This fragment extendsCoreXPath [71] with nodetestson text content and with somenew
axesand operators, as explainedlater.

Data Mo del

The data model of XPath consideredhere is the same as for LGQ, and given in Sec-
tion 3.1. The binary predicatesde�ned there are supported in XPath by meansof bi-
nary relations called axes. For most built-in binary predicates,there is a corresponding
XPath axis. XPath has six forward axesand �v e reversebuilt-in axes,cf. Figure 3.4. A
forward/reverseaxis relates a node to nodes that appear in the tree after/b efore in the
document order. The axesof the following pairs are \symmetrical" of each other: parent
{ child, ancestor { descendant, descendant-or-self { ancestor-or-self, preceding{ following,
preceding-sibl{ following-sibling, and self { self. For the binary predicatesfstChild, nextSibl,
nextSibl� , prevSibl+ , and prevSibl� there are no direct corresponding XPath axes. How-
ever, this section extendsXPath with corresponding axes�rst-child, �rst-following-sibling,
following-sibling-or-self, �rst-p receding-sibling, and preceding-sibling-or-self, as shown later.

LGQ Predicates Corresponding XPath Construct
fstChild �rst-child
child child
child+ descendant
child� descendant-or-self
nextSibl �rst-following-sibling
nextSibl+ following-sibling
nextSibl� following-sibling-or-self
foll following
par parent
par+ ancestor
par� ancestor-or-self
prevSibl �rst-p receding-sibling
prevSibl+ preceding-sibling
prevSibl� preceding-sibling-or-self
prec preceding
self self .

Figure 3.4: Binary Predicatesand corresponding XPath Constructs

The total function pred: Predicate ! Axis is de�ned in Figure 3.4 and returns the
corresponding XPath axis for a given binary predicate.

3.8 LGQ versus XP ath 33

Syntax

An XPath query canbeconstructedfollowing the productionsof the grammargivenbelow.

path ::= path | path j / path j path / path j path [�lter] j

forward step j reversestep j > j ? :

�lter ::= �lter and �lter j �lter or �lter j not(�lter) j (�lter) j path :

forward step::= forward axis :: nodetest:

reversestep::= reverseaxis :: nodetest:

forward axis ::= selfj child j descendantj descendant-or-selfj following-siblingj following:

reverseaxis ::= parent j ancestor j ancestor-or-selfj preceding-siblingj preceding:

Looking at an XPath query givesalreadyan intuition for the orderedtree-like structure
matched by the query and for the kind of nodes to select. Indeed, a query like descen-
dant::a/child::b/preceding::ccould be interpreted as a sequenceof three navigations in a
tree using the XPath axesdescendant, child, and preceding. Consideringa starting node,
the descendants a-nodesare �rst reached, then their children b-nodes,and from the latter
nodes,the set of their precedingc-nodesrepresents the result to the query.

Similar to LGQ queries,XPath queriescan be alsoclassi�ed in XPath path, tree, and
forest queries.

A stepquery is an expressionaxis:: nodetest, whereaxis is either a forward or a reverse
axis, and nodetest is a nodetest asde�ned in Section3.1. A step is a \forw ard step", if its
axis is a forward axis, or a \reversestep", if its axis is a reverseaxis. For example,with
the forward step descendant::a, onenavigatesfrom a node to its descendants a-nodes,with
the reversestep ancestor::*, onenavigates from a node to its ancestors.

The XPath stepsareanothersyntax for LGQ formulasmadeout of onebinary atom and
oneunary atom. The forward stepdescendant::ais expressedin LGQ aschild+ (v1; v2)^ a(v2)
and the ancestorstep ancestor::* as par+ (v1; v2) ^ *(v2), or simpler as par+ (v1; v2).

A path query, called also a \lo cation path", is a sequenceof steps, like in /descen-
dant::a/child::b. The previous path query selectsall children b-nodes of a-nodes in the
input tree. There are absoluteand relative paths: an absolutepath starts with a path con-
structor / , whereasa relative path doesnot. The intuition behind absolute and relative
paths is that absolutepaths start the navigation from the root node of the tree, whereas
relative paths can be used to navigate also from other nodes. Note that the notion of
absolute XPath queries is similar to the notion of absolute LGQ rules, as discussedin
Section3.2.

The XPath paths are another syntax for LGQ paths. The above XPath path is equiv-
alent to the LGQ path Q(v2) root(v0) ^ child+ (v0; v1) ^ a(v1) ^ child(v1; v2) ^ b(v2).

A �lter expressionis de�ned recursively asa path, or an expressionbuilt up from paths
and the connectives and, or, and not, together with parentheses. XPath �lters are syn-
tactically delimited by squarebrackets, and each step in a query can have none, one, or
several such �lters. Semantically, a �lter conditions the selectionof nodes. The query

34 3. LGQ (Logic Graph Query): An Abstraction of XP ath

/descendant::a[child::b], where [child::b] is a �lter, selectsfrom the input tree only those
a-nodesthat have at least onechild b-node. The query /child::a[not(child::b)]selectsfrom
the input tree thosea-nodeswithout b-nodeschildren. The more complexquery /descen-
dant::a[not(child::b[not(child::c)])]selectsthose a-nodes without b-nodes children that do
not have c-nodeschildren.

The XPath querieswith �lters are another syntax for LGQ trees. The XPath query
/descendant::a[child::b][child::c]is expressedin LGQ asQ(v1) root(v0) ^ child+ (v0; v1) ^
a(v1) ^ child(v1; v2) ^ b(v2) ^ child(v1; v3) ^ c(v3).

Disjunctive queriesarequeriesof the form p1| : : : | pi | : : : | pk , wherefor all i = 1; : : : ; k,
pi is a queryand | is the set-unionoperator. For example,/descendant::a/child::*j /child::b
selectsall b-nodeschildren of the root and all children of every a-node from the input tree.
With disjunctive paths, one can navigate from a node to select other nodes via several
queries,thus the nodes selectedby a disjunctive query is the union of the sets of nodes
selectedby each of the constituent query.

The XPath disjunctive queriesare another syntax for LGQ forests. The above XPath
disjunctive query can be expressedin LGQ asQ(v2) root(v0) ^ child+ (v0; v1) ^ a(v1) ^
child(v1; v2) _ root(v0) ^ child(v0; v2) ^ b(v2).

The empty queries? and > are the sameas for LGQ. They are used as canonical
equivalents to the XPath queriesthat selectno nodes(?), or all nodes(>) from any given
tree. Thus, ? can be / parent::* , and > can be / descendant-or-self:: * .

Other useful query constructs expressible in XP ath

Other useful queries are expressiblein XPath, although without dedicated syntactical
constructs.

Universalquanti�cation canbeseenasa consequenceof the existential quanti�cation of
�lters and of allowing negationon such �lters. For example,askingfor nodessuch that a �l-
ter � holdsfor all its a-labeledchildren v canbeencoded in XPath as[not(child::a[not(�)])] .
XPath supports, however, a restricted form of universalquanti�cation: queriesasking,e.g.,
for all nodeswith a property � 3 descendants of nodeswith a property � 1, such that between
them there are only nodeswith a property � 2, can not be expressedin XPath.

Constructs if-then-elseare expressibleusing unions of two paths with �lters: if q then
p1 elsep2 can be expressedin XPath as [q]/p 1 j [not(q)]/p 2. Nestedif-then-elseconstructs
can then be alsostraightforwardly supported.

The logical implication ! and equivalence$ are also partially expressiblein XPath:
a �lter p1 ! p2 is expressibleas [not(p1) or p2], and a �lter p1 $ p2 is expressibleas [(p1

and p2) or (not(p1) and not(p2))] . Note that in both casesthe nodesselectedby p1 or p2

can not be answers,but they can rather condition the answers,becauseboth paths are in
�lters.

3.8 LGQ versus XP ath 35

Semantics

The semantics of XPath is given below by meansof the two semantics functions X Q and
X F , inspired by [69]. Applied on an XPath query, the function X Q yields the set of pairs
of sourceand answer nodes. Applied on an XPath �lter, the function X F yields the set
of nodesfor which that �lter is evaluated to true. Both functions are de�ned below using
pattern matching on the structure of XPath queries,respectively �lters.

X Q : Tree� Query ! Set((Node; Node))

X QT J=pK= N odes(T) � f y j (x; y) 2 X QT JpK; test(x; root)g

X QT Jp1 j p2K= X QT Jp1K[X QT Jp2K

X QT Jp1 � p2K= X QT Jp1K� X QT Jp2K

X QT Jp1 ==p2K= X QT Jp1K\ X QT Jp2K

X QT Jp1=p2K= f (x; z) j (x; y) 2 X QT Jp1K; (y; z) 2 X QT Jp1Kg

X QT Jp1[p2]K= f (x; y) j (x; y) 2 X QT Jp1K; y 2 X F T Jp2Kg

X QT J(p)K= X QT JpK

X QT J� :: � K= f (x; y) j (x; y) 2 pred� 1(�); test(y; �)g

X F : Tree� Query ! Node

X F T Jp1 or p2K= X F T Jp1K[X F T Jp1K

X F T Jp1 andp2K= X F T Jp1K\ X F T Jp1K

X F T Jnot(p)K= N odes(T) � X F T JpK

X F T JpK= f x0 j 9x : (x0; x) 2 X QT JpKg

The answer to an XPath query p is f y j 9x : (x; y) 2 X QT JpKg.

Extensions considered in this thesis

There are two XPath extensionsthat are consideredthroughout this thesis:, (1) the new
axes �rst-child, �rst-following-siblingand �rst-p receding-sibling, and (2) the set di�erence
operator.

The new axes �rst-child, �rst-following-sibling, following-sibling-or-self, �rst-p receding-
sibling, and preceding-sibling-or-self expressthe selection from a given node n of (1) the
�rst child of n, (2) the �rst sibling that immediately follows n in document order, (3) the
�rst sibling that immediately precedesn in document order. All axescanbeobtainedusing
the XPath 1.0 positional �lter [position()=1]. Applied to a set of nodes,this �lter retains
only the �rst node in document order (for the forward steps),or in reversedocument order

36 3. LGQ (Logic Graph Query): An Abstraction of XP ath

(for the reversesteps). The axesare expressedas

�rst-child::* = child::*[position()=1]

�rst-following-sibling::* = following-sibling::*[position()=1]

following-sibling-or-self::* = following-sibling::*j self::*

�rst-p receding-sibling::* = preceding-sibling::*[position()=1]

preceding-sibling-or-self::* = preceding-sibling::*j self::*

The set di�erence operator � , similar to the exceptoperator in XPath 2.0 [22], expresses
the di�erence betweentwo setsof nodes,as selectedby two XPath queries: the answer to
the query p1 � p2 consistsin thosenodesselectedby the path p1 and not by the path p2,
cf. XPath semantics de�ned above. Note that the XPath negation can be fully expressed
using the set-di�erence operator: the query p1[not(p2)] is expressibleas p1 � p1[p2]. In
contrast, the set di�erence operator can not be always expressedusing XPath negation
(seelater Example 3.8.2).

Although not explicitly consideredin this work, another interesting extensionis repre-
sented by the �lter with identit y-basednode equality == . For two XPath expressionsp1

and p2, the �lter p1 ==p2 holds if there is a node selectedby p1 which is identical to a node
selectedby p2. Note that the XPath fragment consideredhereextendedwith this �lter is
can expressLGQ single-join DAG queriesand a limited form of LGQ graph queries.

The equality == corresponds to built-in node equality operator (==) in XPath 2.0 and
XQuery 1.0,but it canalsobe usedfor comparingnodesetssimilar to generalcomparisons
in XPath 2.0. XPath 1.0 hasbuilt-in support only for equality basedon node values. The
only implicit node-identit y test ensuredby XPath can be speci�ed using the set union
operator | , becausethe set of nodesspeci�ed by p1 | p2 consistsin the nodesappearing
at least in one set speci�ed by p1 or p2. Then, the �lter p1 == p2 can be expressedusing
the XPath 1.0 expressioncount(p1 | p2) < count(p1) + count(p2) , wherecount(p) gives
the number of nodesin the set speci�ed by p.

Expressiv eness

The XPath fragment de�ned by the grammar given above is a logical core of XPath 1.0
that extendsthe Core XPath of [69]. It is expressiblein �rst-order logic when interpreted
on orderedtrees,and in Datalog with strati�ed negation[69]. XPath can be alsoextended
to match the expressivenessof �rst-order logic when interpreted on orderedtrees. In this
sense,the above extensionof positive (i.e., without negation) Core XPath with the set
di�erence operator becomes�rst-order complete. In the samesense,[109, 108] propose
CXPath, a �rst-order complete extension of XPath with conditional axis relations that
allow queriesof the kind \do a certain step (like child, descendant), while a condition is
satis�ed at the resulting node". It is also illuminating to think of Core XPath asa simple
temporal logic [68], whereasCXPath extendsXPath with (counterparts of) the since and
until operators.

3.8 LGQ versus XP ath 37

3.8.2 Conciseness of LGQ over XP ath

Dealing with XPath syntax is sometimescumbersome. Especially the explicit notation
for �lters using squaredbrackets risesvarious technical problemswhen translating XPath
expressionsto other query formalisms (or vice-versa), or when doing induction on the
structure of XPath expressions.

Arguably, the Datalog-likesyntax of LGQ is intuitiv e. Moreover, it allowsmorefreedom
than XPath in writing concisequerieswith help of variables. Also, the syntax sugaring
of XPath permits to write a bunch of queriesquite di�erently, although they all impose
rather similar constraints on the trees to be queried. For example,the XPath queries

/descendant::man[child::man[child::woman]][child::woman];

/descendant::man[child::man[child::woman]andchild::woman];

/descendant::man[child::man/child::womanandchild::woman]

select the sameset of nodes representing men having daughters and sonsthat have also
daughters. They di�er only in somesyntactical sugaring for expressing�lters and are
equivalent betweenthem and also to the LGQ query

Q(v1) root(v0) ^ child+ (v0; v1) ^ man(v1) ^ child(v1; v2) ^ man(v2)

^ child(v2; v3) ^ woman(v3) ^ child(v1; v4) ^ woman(v4):

Note that in the above LGQ query there is no explicit notation for �lters �a la XPath, but
only the distinguishedvariable v1 is written explicitly in the head.

No explicit notation for XPath �lters leadsto an even greater advantage of the LGQ
syntax. Considernow the XPath queries

/descendant::man[child::man[child::woman]]/child::woman;

/descendant::man[child::woman]/child::man[child::woman];

/descendant::man[child::woman]/child::man/child::woman

They are not equivalent though their structure is the same,and only the answer nodesare
selectedby another step. Becausethey have the samestructure, LGQ queriesequivalent
to them have the samebody as before, but only di�erent distinguished variables: in the
�rst casethe distinguishedvariable is v4 (and selectsdaughters of men with sonshaving
daughters), in the secondv2 (and selectssonsof men such that both have daughters), and
in the third v3 (and selectsdaughters of men having sistersand fathers).

LGQ allows also graph queriesthat are not expressibledirectly in XPath, though the
results of Chapter 4 ensurethe existenceof equivalent XPath queries. considerthe LGQ
DAG query that selectsfor each man all their femaledescendants that follow at least one
of their male descendants

G(v3) root(v0) ^ child+ (v0; v1) ^ man(v1) ^ child+ (v1; v2) ^ man(v2) ^ child+ (v1; v3)

^ woman(v3) ^ foll(v1; v3):

38 3. LGQ (Logic Graph Query): An Abstraction of XP ath

Note that v3 is a multi-sink variable in G. XPath can simulate the use of multi-source
variables in LGQ by meansof �lters. However, XPath can not simulate the useof multi-
sink variables,asneededin the above LGQ query G. There exists,however, the equivalent
XPath query

/descendant::man/descendant::man/following-sibling::*/descendant-or-self::womanj

/descendant::man/descendant::*[descendant::man]/following-sibling::*/descendant-or-self::woman:

The rationale behind the existenceof equivalent XPath queries to any LGQ query is
twofold: (1) XPath queriesare as expressibleas LGQ forests,and (2) LGQ graphsare as
expressibleas LGQ forests. The latter assertionis discussedin the next chapter, whereas
the former is discussednext.

3.8.3 XP ath=LGQ Forests

This section shows that XPath queriesare equivalent to LGQ forest queries. After dis-
cussingthe relation betweenXPath negationand LGQ negation,we give the encodings of
XPath into LGQ forestsand vice versa. Chapter 4 shows further that any LGQ query can
be reducedto forward LGQ forest queries,thus making XPath as expressive as LGQ.

LGQ Negation versus XP ath Negation

The XPath negationcan be expressedin LGQ.

Example3.8.1. Considerthe XPath query /descendant::*[not(child::man)]/child::womanse-
lecting the daughters of all personsthat have no sons.For the tree of Figure 2.2 depicting
an excerpt of the genealogicaltree of John II the Good, the result is the personLouis I I
of Naples. The samequery can be expressedalso in LGQ as

Q(v) root(v0) ^ child+ (v0; v1) ^ : Q0(v1) ^ child(v1; v) ^ woman(v);

Q0(v) root(v0) ^ child� (v0; v) ^ child(v; v1) ^ man(v1):

The query Q speci�es the selectionof womanchildren of personsthat are not selectedalso
by Q0. In turn, Q0 selectsall personsthat hasat least oneson.

In the previousexample,the negativepart of the XPath query is expressedin LGQ using
a separaterule Q0 that is a counterpart of the XPath negated�lter togetherwith the atoms
root(v0) andchild� (v0; v) that ensureQ0absoluteandconnected.Note that the addedatoms
do not constrain the bindings to v, becausea query like Q00(v) root(v0) ^ child� (v0; v)
selectsall nodes from the input tree. This general scheme is used for encoding XPath
querieswith negation into LGQ.

The negation is usedin XPath also for supporting universal quanti�cation. However,
this support is limited, and rendersthe XPath negation weaker than the LGQ negation,
as shown in the next example.

3.8 LGQ versus XP ath 39

Example3.8.2. Consideragainthe genealogicaltree of Figure 2.2and the query Q selecting
all men that have only male ancestors.After the Salic law, thesemen are pretendants to
the throne of France. The result of Q consistsin all men in that tree.

Q(v) root(v0) ^ child+ (v0; v) ^ man(v) ^ : Q0(v);

Q0(v) root(v0) ^ child� (v0; v1) ^ woman(v1) ^ child+ (v1; v):

The positive part of Q selectsall men, whereasthe subquery Q0 selectsall persons(in-
cluding) descendants of at least onefemaleperson. Therefore,the query Q selectsall men
having only male ancestors.This query is not expressiblein Core XPath [109, 108], but in
XPath extendedwith the set di�erence operator:

/descendant::man- /descendant::woman/descendant::man.

Enco ding XP ath in to LGQ Forests

The function
� !
X L givesthe encoding of XPath into LGQ forests: it takesasparametersan

XPath construct and an LGQ variable, called the working variable, and producesa pair
(v; f) consistingof the new working variable v and the LGQ formula f corresponding to
that XPath construct.

� !
X LJ=pK() = (v; root(v0) ^ f) : (v; f) =

� !
X LJpK(v0); v0 = freshvar()

� !
X LJ� :: � K(v) = (v1; pred� 1(�)(v; v1) ^ � (v1)) : v1 = freshvar()

� !
X LJp1[p2]K(v) = (v1; f 1 ^ f 2) : (v1; f 1) =

� !
X LJp1K(v); (v2; f 2) =

� !
X LJp2K(v1)

� !
X LJp1=p2K(v) = (v2; f 1 ^ f 2) : (v1; f 1) =

� !
X LJp1K(v); (v2; f 2) =

� !
X LJp2K(v1)

� !
X LJp1 j p2K(v) = (v1; f 1 _ f 2) : (v1; f 1) =

� !
X LJp1K(v); (v1; f 2) =

� !
X LJp2K(v)

� !
X LJp1 or p2K(v) = (v; f 1 _ f 2) : (v1; f 1) =

� !
X LJp1K(v); (v2; f 2) =

� !
X LJp2K(v)

� !
X LJp1 andp2K(v) = (v; f 1 ^ f 2) : (v1; f 1) =

� !
X LJp1K(v); (v2; f 2) =

� !
X LJp2K(v)

� !
X LJnot(p)K(v) = (v; : Q(v)) : (v1; f) =

� !
X LJpK(v);

Q(v) root(v0) ^ child� (v0; v) ^ f ; Q = freshid()
� !
X LJp1 � p2K(v) = (v1; f 1 ^ : Q(v1)) : (v1; f 1) =

� !
X LJp1K(v); (v1; f 2) =

� !
X LJp2K(v);

Q(v1) root(v0) ^ child� (v0; v) ^ f 2; Q = freshid()
� !
X LJ(p)K(v) =

� !
X LJpK(v):

Finally, the encoding of an absoluteXPath query =p is the LGQ rule Q(v) f , where

(v; f) =
� !
X LJ=pK().

40 3. LGQ (Logic Graph Query): An Abstraction of XP ath

The function
� !
X L is de�ned using pattern matching on the structure of XPath queries,

which are restricted syntactically to be absolute (i.e., with the leading =) and without
absolutepaths in �lters 2.

XPath doesnot have variables. Given two XPath location steps� 1:: � 1 and � 2:: � 2, one
can construct either (1) the path � 1:: � 1=� 2:: � 2 by using the path constructor =, or (2) the
step with �lter � 1:: � 1[� 2:: � 2] by using the �lter constructor [].

LGQ hasvariables. The aboveXPath path and �lter expressionscanbesimply encoded
in LGQ by annotating with variablesthe positionsbeforeand after each XPath syntactical
construct. For example, the path � 1 :: � 1=� 2 :: � 2 becomesv1 � v2

1 :: v3 � v4
1 =v5 � v5

2 :: v6 � v7
2 . The

XPath constructs::, =, [] ensurethat the samevariablemust appearbeforeand after them,
thus obtaining v1 � v2

1 :: v2 � v4
1 =v4 � v5

2 :: v5 � v7
2 . By consideringfurther that each XPath axis �

hasa corresponding extensionalLGQ binary predicatepred� 1(�) (cf. Figure 3.4), and that
each XPath nodetest has a corresponding LGQ unary predicate, we �nally obtain v1 � v2

1 ::
v2 � v2

1 =v2 � v5
2 ::v5 � v5

2 , or as an LGQ formula pred� 1(� 1)(v1; v2) ^ � 1(v2) ^ pred� 1(� 2)(v2; v5) ^
� 2(v5). The caseof XPath expressionswith �lters is similar.

We explain now some particularities of the encoding of or-�lters and unions. The
other XPath constructs are encoded similarly. The encoding of an or-�lter of two XPath
expressions(which can be on their turn also �lters) is a disjunction of the encodings of
each expressionwith the sameworking variable. The encoding of a union of two XPath
expressions(which canbe alsounions) is similar to that of an or-�lter, exceptthat the new
working variablesobtained from the encodings of both XPath expressionsare the same.

In the de�nition of the encoding of XPath into LGQ, the LGQ variablesand the names
for the LGQ intensionalpredicatesare createdfreshusing the functions freshvar(), respec-
tively freshid(). For a given LGQ formula or query, a freshvariable (predicate name) is a
new variable (predicate name) that doesnot appear already in that formula or query.

Note that such an encoding of XPath doesnot createmulti-sink variables,i.e., variables
that appear more than onetime at the secondposition in binary atoms. In e�ect, for any

XPath query, the function
� !
X L createsan LGQ forest.

Example 3.8.3. Considerthe XPath queries

p1 = /descendant::man[child::man]/child::woman

p2 = /descendant::man[child::woman]/child::man

p3 = /descendant::man[child::womanandchild::man]:

that select (1) all daughters of men having also sons, (2) all sons of men having also
daughters, and (3) all men having daughters and sons. From the genealogicaltree of
Figure 2.2, the queriesselect (1) the (nodes corresponding to the) personsIsabelle and
Anna, (2) the personsCharles V, Charles, Francis, and Louis I de Valois, and (3) the
personsJohn II the Good and CharlesVI I I. The LGQ-encodings of them are three LGQ
queriesQ1(v3) e and Q2(v2) e, and Q3(v1) e, wheretheir body e is

root(v0) ^ child+ (v0; v1) ^ man(v1) ^ child(v1; v2) ^ man(v2) ^ child(v1; v3) ^ woman(v3):

2XPath querieswith absolutepaths in �lters can be rewritten to equivalent querieswithout such �lters.

3.8 LGQ versus XP ath 41

We show next how p1 can be encoded in e bottom-up.

(v1; f 1) =
� !
X LJdescendant::manK(v0; root(v0)) = (v1; root(v0) ^ child+ (v0; v1) ^ man(v1))

(v2; f 2) =
� !
X LJchild::manK(v1; f 1) = (v2; f 1 ^ child(v1; v2) ^ man(v2))

(v3; f 3) =
� !
X LJdescendant::man[child::man]K(v0; root(v0)) = (v1; f 2)

(v4; f 4) =
� !
X LJchild::womanK(v3; f 3) = (v3; f 3 ^ child(v1; v3) ^ woman(v3))

(v5; f 5) =
� !
X LJdescendant::man[child::man]/child::womanK(v0; root(v0)) = (v4; f 4):

The �nal encoding of p1 is Q1(v5) f 5, wherev5 = v3 and f 5 = e.

Enco ding LGQ Forests in to XP ath

LGQ is not more expressive than XPath. However, there is no straightforward encoding
of the entire LGQ into XPath. Chapter 4 elaborateson this non-trivial encoding. We give

hereonly an encoding of LGQ forestsinto XPath using two functions X and
� !
LX and some

simpli�cations rules. This encoding is more involved than for XPath into LGQ, and this
is the price to pay for the explicit notation of �lters in XPath.

The LGQ forest queriesare brought �rst in disjunctive normal form and without >
and ? atoms in disjuncts. Chapter 4 gives later rewriting rules that yield queriesin this
form. The function X encodessuch queriesinto unionsof XPath absolutequeriesand uses

the function
� !
LX for encoding the body of each LGQ rule into an XPath union term. The

function
� !
LX takesasparametersthe headvariablev and the body bof the current rule, the

working formula to encode and the working variable, and producesan XPath expression.

X JQ(v) f 1 _ f 2K= X JQ(v) f 1K| X JQ(v) f 2K

X JQ(v) root(v0) ^ bK= /
� !
LX v;bJb^ > K(v0)

� !
LX v;bJ� (x; y) ^ f K(x) =

(
[leftx]/ step lefty , y ; b v or y = v

[step lefty] leftx , y 6; b v and y 6= v
;

leftx =
� !
LX v;bJf K(x); step= pred � 1(�)::* ; lefty =

� !
LX v;bJbK(y)

� !
LX v;bJ� (x) ^ f K(x) = [self:: �]

� !
LX v;bJf K(x)

� !
LX v;bJ: Q(x) ^ f K(x) = [self::* - X Jclause(Q)K]

� !
LX v;bJf K(x)

� !
LX v;bJ� (y) ^ f K(x) =

� !
LX v;bJ� (y; z) ^ f K(x) =

� !
LX v;bJ: Q(y) ^ f K(x) =

� !
LX v;bJf K(x)

� !
LX v;bJ> K(x) = [self::*] :

42 3. LGQ (Logic Graph Query): An Abstraction of XP ath

The function
� !
LX is de�ned using pattern matching on the structure of the working

formula � to encode and on the working variable x. If � starts with an atom that does
not have x as source,then that atom is skipped at this encoding stage,and the encoding
continueswith the rest of � in the sameway until an atom with x assourceis encountered.
If � is > , i.e., it is exhaustedand no atoms with x as sourceare found, then the �lter
[self:: �] is addedto the generatedquery. Note that this �lter, like the LGQ atom > , does
not add further constraints to the answers and can be safelyremoved afterwards.

If � = � (x) ^ f , i.e., � starts with the unary atom � (x), then � is encoded asan XPath
path wherethe �rst step self::� encodesthat unary atom, and the rest of the path remains
to encode f , wherex is the working variable.

If � = � (x; y) ^ f , i.e., � starts with the binary atom � (x; y), then the encoding of �
dependson whether the head variable v is reachable in b from y. Let left y be the XPath
expressionrepresenting the encoding of the subformula of bcontaining the atomsreachable
from x via y, and leftx the encoding of the subformula of bcontaining atomsreachablefrom
x via other variablesthan y, wherein both casesx is the working variable. Their encodings
are detailed below. In casev is reachable in b from y, then left y contains necessarilythe
path leadingto the answers,and is written in XPath outside �lters. Also in this case,left x

is a �lter, becausethere can not be another atom � 0(x; y0) with v reachable from y0 6= y in
b (b is a tree formula). In the other case,lefty becomesa �lter and leftx can contain the
path leading to the answers.

The expressionsstep lefty and leftx are generatedas follows. The former expression
consistsin the step step = pred � 1(�):: * representing the encoding of � (x; y), followed by
the expressionlefty representing the encoding of the subformula of bcontaining atomsthat
have y assourcevariable (thus y becomesnow the working variable). The latter expression
leftx is the encoding of the working formula without � (x; y), wherex is still the working
variable. Note that each atom is consideredexactly once,becauseb is a tree formula.

If � = : Q(x) ^ f , i.e., � starts with the unary atom : Q(x), then � is encoded as an
XPath expressionconsistingin a �lter that encodesthat atom, and an expressionleft x that
encodesf , in both caseswith x asthe working variable. The �lter represents the di�erence
betweenthe expressiongenerateduntil now and the encoding of the rule Q, done by the
function X . The encoding leftx is donelike in the above cases.

Simpli�cations. The encoding of LGQ forests into XPath using X and
� !
LX generates

asmany �lters asbinary predicatesthat are not on the connectionsequencefrom the non-
sink variable to the head variable. Also, each atom with a built-in predicate is encoded
into one distinct XPath step, although XPath stepscompriseboth a unary and a binary
extensionalpredicate. The following simple rewritings can be applied to the encoding of
LGQ forestsin order to simplify them (p standsfor an XPath expression):

p[self:: �] ! p � :: � [self:: �] ! � :: � :

Example 3.8.4. Considerthe query Q1 of Example 3.8.3 that selectsall daughters of men
having alsosons

3.8 LGQ versus XP ath 43

Q1(v) root(v0) ^ child+ (v0; v1) ^ man(v1) ^ child(v1; v2) ^ man(v2) ^ child(v1; v) ^ woman(v)

Q1(v) bis encodedinto XPath asfollows. Wecomputeand label �rst someexpressions:

e1 =
� !
LX v;bJman(v1) ^ child(v1; v2) ^ man(v2) ^ child(v1; v) ^ woman(v)K(v0) = self::*

e2 =
� !
LX v;bJman(v2) ^ child(v1; v) ^ woman(v)K(v2) = [self::man][self::*]

e3 =
� !
LX v;bJman(v2) ^ child(v1; v) ^ woman(v)K(v1) =

� !
LX v;bJchild(v1; v) ^ woman(v)K(v1)

= [
� !
LX v;bJwoman(v)K(v1)]/child::*

� !
LX v;bJwoman(v)K(v) = [self::*]/child::*[self::woman]:

Then, the encoding of Q1 is

X Jclause(Q1)K

= =
� !
LX v;bJchild+ (v0; v1) ^ man(v1) ^ child(v1; v2) ^ man(v2) ^ child(v1; v) ^ woman(v)K(v0)

= /[e1]/descendant::*
� !
LX v;bJbK(v1) = /[self::*]/descendant::*

� !
LX v;bJbK(v1)

= /[self::*]/descendant::*[self::man]
� !
LX v;bJchild(v1; v2) ^ man(v2) ^ child(v1; v) ^ woman(v)K(v1)

= /[self::*]/descendant::*[self::man][child::*e2] e3

= /[self::*]/descendant::*[self::man][child::*[self::man][self::*]][self::*]/child::*[self::woman]:

This XPath query can be further simpli�ed to /descendant::man[child::man]/child::woman.

XP ath=LGQ Forests

The encodings of XPath into LGQ forests and vice-versa are correct, as ensuredby the
following lemma. As a corollary, it follows that LGQ forest queriesare as expressive as
XPath queries.

Lemma 3.8.1 (Correctness of
� !
X L and

� !
LX encodings). The following holds:

1. Given any XPath queryp and tree T, the semanticsof p is the semanticsof the LGQ

formula f representingthe encoding of p using
� !
X L :

� v;v1 (LF T Jf K(�)) = X QJpK; where� = subst(f ; T);
� !
X LJpK(v) = (v1; f):

2. Given any LGQ forest Q(v) f and tree T, the semanticsof Q is the semantics
of the XPath query p representingthe encoding of Q using X :

� v;v1 (LF T Jf K(�)) = X QJpK; where� = subst(f ; T); p = X JQ(v) f K:

Proof. The proof is given in the Appendix.

44 3. LGQ (Logic Graph Query): An Abstraction of XP ath

Chapter 4

Source-to-source Query
Transformation: From LGQ to
Forw ard LGQ

The languageof logical graph queriesLGQ, as well as XPath, allows the speci�cation of
structural constraints for the nodesto be selectedby meansof binary predicatesbetween
nodes in trees. These structural constraints can be intuitiv ely seenas \navigations" in
trees, and are enabledby a large number of LGQ \navigational" predicates: seven for-
ward predicates(self; fstChild; child; child+ ; child� ; nextSibl+ ; foll) and �v e reversepredicates
(par; par+ ; par� ; prevSibl; prec). The number as well as the relevanceof thesenavigational
predicatesfor querying XML hasbeenchallengedin [55, 23, 96].

The random accessto XML data that is enabledby the various LGQ predicates(cor-
responding to navigational axesof XPath) hasproven particularly di�cult for an e�cien t
query evaluation against XML streams,whereonly one-passover the stream is a�ordable
(or possible). Processingof XML has seenthe widespreaduseof the W3C document ob-
ject model (DOM) [145], wherea main-memory representation of the entire XML data is
used. As DOM hasbeendeveloped with focuson document processingin useragents (e.g.,
browsers),this approach hasseveral shortcomingsfor other application areas.

First, a considerableamount of XML applications, in particular data-centric applica-
tions, handle XML documents too large to be processedin main memory. Such XML
documents are often encountered in natural languageprocessing[92], in biology [28] and
astronomy [119]. This aspect is exacerbatedby expensive main-memory representations
of XML documents. E.g., DOM-lik e main-memorystructures for XML documents tend to
be four-�v e times larger than the original XML document [91].

Second,the needfor progressive processing(also referred to as sequential processing)
of XML has emerged:Stream-basedprocessinggeneratingpartial results as soon as they
are available givesrise to a more e�cien t evaluation in certain contexts, e.g.,:

� For selective disseminationof information (SDI), continuously generatedstreamsof
XML documents have to be �ltered accordingto complex requirements speci�ed as

46 4. Source-to-source Query Transformation: From LGQ to Forw ard LGQ

XPath queriesbeforebeingdistributed to the subscribers[37, 7]. The routing of data
to selectedreceivers is also becomingincreasingly important in the context of web
servicesystems.

� To integrate data over the Internet, in particular from slow sources,it is desirableto
progressively processthe input beforethe full data is retrieved [94].

� As a generalprocessingschemefor XML, several solutions for pipelined processing
have beensuggested,where the input is sent through a chain of processorseach of
which taking the output of the precedingprocessorasinput, e.g.,ApacheCocoon [10].

� For progressive rendering of large XML documents, e.g., by meansof XSL(T), cf.
Requirement 19 of [96]. There have beenattempts to solve this problem [11].

There is a great interest in the identi�cation of a subsetof XPath (and of LGQ) that
allows e�cien t streamedand progressive processing,cf. [55] and Requirement 19 of [96].

For stream-basedprocessingof XML data, the Simple API for XML (SAX) [110] has
been speci�ed that allows sequential accessto the content of XML documents with low
memory footprint. Of particular concernfor progressive SAX-like processingare the LGQ
reversepredicates(corresponding to reverseaxesof XPath), i.e., thosepredicates(e.g.,par,
prec) that contain pairs of sourcenodesand sink nodesoccurring before thesesourcenodes
in document order. A restriction to forward predicates,i.e., thosepredicatesthat contain
pairsof sourcenodesandsink nodesappearingafter thesesourcenodes,is a straightforward
considerationfor an e�cien t stream-basedevaluation of XPath-like queries[55].

There arethree principal optionshow to evaluatean LGQ querywith reversepredicates
in a stream-basedcontext:

� Storing in memorysu�cien t information that allowsto accesspastevents particularly
whenevaluating a reversepredicate. This amounts to keepingin memorya (possibly
pruned) DOM representation of the data [11].

� Evaluating queriesin more than one passover the stream, provided several passes
are a�ordable/p ossible. With this approach, it is also necessaryto store additional
information to be used in successive runs. This information can be considerably
smaller than what is neededin the �rst approach.

� Rewriting querieswith reversepredicatesinto equivalent oneswithout thosereverse
predicates.

In this chapter, we target the last approach and we show it to be always possible.It is
lesstime consumingthan the secondapproach and doesnot require the in-memory storage
of fragments of the input as the �rst approach does.

We accomplish this goal by making use of the theory of term rewriting systems.
We de�ne �rst equivalence-preservingrewrite rules for LGQ formulas, and use them in

47

three distinct term rewriting systems. We show that all rewriting systemsenjoy impor-
tant properties like soundnessand completeness,termination, conuence, and the exis-
tence and uniquenessof normal forms modulo the equational theory AC (associativit y-
commutativit y) for predicates^ , _, and self. Using thesesystems,queriesof various LGQ
fragments can be rewritten into forward querieswithin the sameor smaller fragments, and
with complexitiesvarying from linear to exponential in the sizeof the input queries.

The �rst term rewriting system(TRS1) rewrites any LGQ single-join DAG into a for-
ward LGQ single-join DAG, and any LGQ graph into a forward LGQ graph. The com-
plexities of TRS1 are linear for time and logarithmic for space,and the sizeof the output
query is boundedin the sizeof the input query.

The secondterm rewriting system (TRS2) rewrites any LGQ forest into a forward
LGQ forest, any LGQ single-joinDAG into a forward LGQ single-joinDAG, and any LGQ
graph into a forward LGQ graph. For arbitrary queries,the complexitiesare exponential
for time and space,and the sizeof the output can be exponential in the number of reverse
predicatesin the input (i.e., the sizeof the reversetype factor of the input). It is shown
that, in general,LGQ forestscan not be rewritten into forward LGQ foreststhat have the
sizesmaller than exponential (worst case). However, for querieswithout closureforward
predicatesappearing beforeclosurereversepredicates,both either vertical or horizontal,
along a connectionsequence,the complexities of rewriting are polynomial for time, and
logarithmic for space,and the sizeof the output is boundedin the sizeof the input.

The third term rewriting system(TRS3) rewrites any LGQ graph into a forward LGQ
forest. TRS3 includes TRS2 and inherits the complexities of TRS2. For LGQ graph
containing only closurepredicates,respectively only non-closurepredicates,TRS3 yields
LGQ forestscontaining alsoonly closurepredicates,respectively non-closurepredicates.In
particular, it rewritesany LGQ graphcontaining neither disjunctionsnor closurepredicates
into a forward tree, which is variable-preservingminimal (cf. Proposition 3.5.1).

Beyond their declaredmain purposeof providing equivalencesbetweenforward queries
and querieswith reversepredicateswithin variousLGQ fragments, the applicationsof our
rewriting systemsshedlight on other LGQ properties, like the expressivity of someLGQ
fragments as mentioned above, the minimization of LGQ queries,or even the complexity
of LGQ query evaluation.

In this respect, the rewriting systemsdetect and eliminate non-trivial redundancies
within queries(seeExample 4.4.2for an immediate impression). Also, they renderevalua-
tion strategiesdesignedonly for forward queriesof particularly restricted LGQ fragments
as su�cien t to cover the whole languageLGQ, equivalent to these restricted fragments.
Indeed, Chapter 5 gives later an evaluation strategy only for forward LGQ forest and
single-joinDAG querieswith polynomial complexity. The complexitiesof the evaluation of
other LGQ queriesfollows then from both the complexitiesof rewriting them into forward
queriesand of the evaluation of theseforward queries.Besidesthe polynomial complexities
of the evaluation of LGQ forest and single-join DAG queries(and thus of XPath queries),
the most interesting result obtainedfrom the joint work of both this chapter and Chapter 5
is that there is a considerablylarge fragment of LGQ graph queriesthat admits evaluation
with polynomial complexities,although in generaltheir complexitiesare exponential.

48 4. Source-to-source Query Transformation: From LGQ to Forw ard LGQ

4.1 Problem Description

The equivalence-preservingremovalof LGQ reverseatoms (ERRA) problem is: given an
LGQ query (formula) containing reverseatoms, is there always an equivalent forward LGQ
query (formula)? And in the positive case,deliver the forward LGQ query (formula).

This chapter givesa positive answer to the ERRA problemfor the wholeLGQ language
and for someof its fragments. Furthermore, this chapter reveals several a vours of this
problem,dependant on the type(i.e., path, tree, etc.) of the givenLGQ query that contains
reverse atoms, and of its equivalent LGQ forward query obtained. Keeping an eye on
XPath, this chapter particularly studiesfor which LGQ queriesthereareequivalent forward
LGQ queriesthat correspond to XPath queriesand that can be obtained as solutions to
the ERRA problem.

The salient characteristicsof the ERRA problemare (1) the preservation of equivalence
betweenthe initial queryand the obtainedforward query, and(2) the removal of constituent
reverseatoms. Therefore,this problem hasstrong connectionsto the well-known problems
of query equivalence and view-basedquery rewriting, though the ERRA problem still
remainsdi�erent. Section4.6 discussesin more depth related problems.

The query equivalenceproblem is to decidewhether two queriesdeliver the samean-
swers for any data instance, thus approaches to the query equivalenceproblem assume
the queriesgiven and deliver yes/no answers regardingtheir equivalence.Such approaches
can not, however, apply to solve the ERRA problem, where an equivalent forward query
has to be found. Guessinga forward query and then testing whether it is equivalent to a
given query (containing reverseformulas) is not a�ordable, for there are in�nitely many
forward queries1. This observation givesalsothe direction for how to construct automated
solvers to the ERRA problem: if oneprovidesequivalent forward queriesfor a �nite num-
ber of etalon queriescontaining reverseformulas, and then showsthat any other query
is in fact just a combination of such etalon queriesfor which there are already forward
equivalents, then onecould usethe �nite set of forward equivalents to rewrite any query to
a forward equivalent, like putting together the piecesof a puzzle. Using this approach for
the ERRA problem, a sound (but not necessarilycomplete) approach to the equivalence
problem would be then: given two queries,check whether onequery can be obtained from
the other by using a �nite number of rewrite steps.

The rewriting approach opensthe door to the next strongly related problem: the view-
basedquery rewriting and answering problem (AQUV) [35]. The AQUV problem is to
�nd e�cien t methods to answer a query using a set of previously de�ned materialized
views over the database,rather than accessingthe databaserelations. Looking at ERRA
through AQUV glasses,onecould seethe etalon formulascontaining reverseatomsasview
bodies and their corresponding forward equivalents as view heads;a rewriting of a query
using such views replacesall occurrencesof instancesof any of the views bodies with the
corresponding instance of the views heads,thus delivering at the end an equivalent and

1Similar to the ideasof [65], it may be of interest to study if there is only a �nite (though large) number
of canonical forward queries that do not contain redundancies,that are equivalent to a given input, and
that depend on the input's properties (lik e structure, size,etc.).

4.1 Problem Description 49

forward query. This is, indeed, the way it is proceededalso in this chapter, with some
minor observations. First, the views must not be materialized. Second,we are interested
to rewrite only the problematic reverseatoms, thus rewriting the given query only in terms
of the given views is not an issue. Third, there can be more than one rewriting step, for
there can be views that map queriesto equivalent queriesthat still contain reverseatoms.

Warm-up Examples

Many real-world XML queries, formulated in XPath or LGQ, use reversepredicates. A
commonpractice in writing XML queriesis to �rst specify the nodesto be selected,and
then to further add structural constraints for these nodes. Arguably, such additional
structural constraints useas well forward as also reversepredicates.

For the impatient reader, this section gives a bit of the taste of rewriting reasonably
complexLGQ queriesinto equivalent forward LGQ queries.

Example 4.1.1. Considerthe journal archive exampleof Section2.2 and the query

A(v1) root(v0) ^ child+ (v0; v1) ^ name(v1) ^ : A0(v1) ^ par(v1; v2) ^ authors(v2)

^ par+ (v2; v3) ^ journal(v3) ^ child(v3; v4) ^ title(v4) ^ child(v4; v5) ^ `db'(v5):

A0(v1) root(v0) ^ child+ (v0; v1) ^ name(v1) ^ prevSibl+ (v1; v2) ^ name(v2):

Figure 4.1: Digraph representation for the query A

name v1

v0
+

authors

journal v3v0

namev2name

�

v5

v4

v1

v2 +

+

'db'

title
+

+

The query A selectsthe �rst author of a journal with the title `db', or more precisely,
the �rst namechild (v1) of authors-nodes(v2) that have journalancestors(v3) with a title
child containing the text `db' (v4). Note that the sameanswer canbe obtainedby usingthe
fstChildpredicatethat contains the pairs of nodesand their �rst children. This alternative
shows that fstChildis alsoredundant in LGQ and canbeobtainedusingchildand negation.

For the tree instanceof Figure 2.1 representing a journal archive, this query selectsthe
�rst name-node in document order (i.e., the node containing the text `ana'). The digraph
representation for this query is given in Figure 4.1. The sameanswer can be selectedalso

50 4. Source-to-source Query Transformation: From LGQ to Forw ard LGQ

Figure 4.2: Digraph representation for the forward query F A equivalent to A

name v1

authors

journal

v2 v4

v3

v0

+

v0

�

name namev5 v1v2

+

+

+

+

title

'db'

using the following forward LGQ query F A with the digraph representation of Figure 4.2

F A(v1) root(v0) ^ child+ (v0; v3) ^ journal(v3) ^ child+ (v3; v2) ^ authors(v2) ^ child(v2; v1)

^ name(v1) ^ child(v3; v4) ^ title(v4) ^ child(v1; v5) ^ `db'(v5):

F A0(v1) root(v0) ^ child+ (v0; v2) ^ name(v2) ^ nextSibl+ (v2; v1) ^ name(v1):

It is easyto seethat F A and A are equivalent. In the following, we proceedstep by
step with the rewriting of A, by �rst identifying path formulas made out of one forward
and onereverseatom, and then rewriting them to forward path formulas (if possible). In
the following, we make useof a substitution s consistent with the query A and with the
tree instance.

Step 1. Werewrite at this stepchild+ (v0; v1)^ par(v1; v2) into child� (v0; v2)^ child(v2; v1).
Becausethe root node s(v0) can not be an authors-node s(v2), we further simplify it to
child+ (v0; v2) ^ child(v2; v1). The intuition behind this rewriting is the following: if the
authors-node s(v2) is the parent of a name-node s(v1), which is a descendant of the root
nodes(v0), then that s(v2) is alsoa descendant of the root s(v0) and hasa name-nodechild
s(v1). Then, A is rewritten into an equivalent query A1 (A0 remainsthe same)

A1(v1) root(v0) ^ child+ (v0; v2) ^ authors(v2) ^ child(v2; v1) ^ name(v1) ^ : A0(v1)

^ par+ (v2; v3) ^ journal(v3) ^ child(v3; v4) ^ title(v4) ^ child(v4; v5) ^ 'db'(v5):

Step 2. Werewrite at this stepchild+ (v0; v2)^ par+ (v2; v3) into child� (v0; v3)^ child+ (v3; v2)_
child+ (v0; v2) ^ par+ (v0; v3). In our case,s(v0) is the root node, and becausethe root
does not have ancestors,the seconddisjunct is dropped. In the �rst disjunct, a journal-
node s(v3) can not be the root node s(v0). Therefore, the rewritten formula remains
child+ (v0; v3) ^ child+ (v3; v2). The intuition is the following: if an authors-node s(v2) is a
descendant of the root node s(v0) and alsoa descendant of a journal-node s(v3), then that
journal-node lies on the path between the root node and the authors-node. Then, A1 is

4.1 Problem Description 51

rewritten into an equivalent query A2 (A0 remainsthe same)

A2(v1) root(v0) ^ child+ (v0; v3) ^ journal(v3) ^ child+ (v3; v2) ^ authors(v2) ^ child(v2; v1)

^ name(v1) ^ : A0(v1) ^ child(v3; v4) ^ title(v4) ^ child(v4; v5) ^ 'db'(v5):

Step 3. A2 is a forward query. It remainsto rewrite A0 into an equivalent forward query.
We rewrite at this stepchild+ (v0; v1) ^ prevSibl+ (v1; v2) into child+ (v0; v2) ^ nextSibl+ (v2; v1).
The intuition is the following: if a node s(v1) precedesa sibling node s(v2) that is a
descendant of the node s(v0), then s(v1) is a descendant of the node s(v0) and is followed
by the sibling s(v2). Then, A0 is rewritten into the equivalent query F A0.

Example 4.1.2. Considerthe genealogicaltree exampleof Section2.2 and the query

G(v) root(v0) ^ child+ (v0; v) ^ man(v) ^ : G1(v) ^ child(v; v1) ^ alive(v)

G1(v) root(v0) ^ child+ (v0; v) ^ ((prec(v; v1) ^ : G2(v) _ par+ (v; v1)) ^ man(v1)

^ child(v1; v2) ^ alive(v2) _ par+ (v; v1) ^ woman(v1))

G2(v) root(v0) ^ child+ (v0; v) ^ prec(v; v1) ^ woman(v1) ^ child+ (v1; v2) ^ man(v2)

^ child(v2; v3) ^ alive(v3):

specifying the Salier law for the successionat the throne of a kingdom, as explained in
Section2.2.

Figure 4.3: Digraph representation for the forward query F G equivalent to G

v4

womanv

woman v1

v0

+

man

alive

v1

v2

v0

+

+

man

v0

v

+

+

man

alive

v0

v3

�

v0

man

alive

v1v1

v2

v3v4

�

v3

v2alive v1

+

*

+

+

+

+

+

v

*

+

+

*

+

*

vv

For the tree instance of Figure 2.2 representing the genealogicaltree of John II the
Good, this query selectsthe male personnamedCharlesVI I I. The digraph representation

52 4. Source-to-source Query Transformation: From LGQ to Forw ard LGQ

of G is given in Example 3.4.2. The sameanswer can be selectedusing the following
forward LGQ query F G with the digraph representation of Figure 4.3

F G(v) root(v0) ^ child+ (v0; v) ^ man(v) ^ : F G1(v) ^ child(v; v1) ^ alive(v)

F G1(v) root(v0) ^ child+ (v0; v1) ^ child+ (v1; v) ^ woman(v1)_

root(v0) ^ child+ (v0; v1) ^ child+ (v1; v) ^ man(v1) ^ child(v1; v2) ^ alive(v2)_

root(v0) ^ child+ (v0; v4) ^ nextSibl+ (v4; v3) ^ child� (v3; v) ^ : F G2(v)

^ child� (v4; v1) ^ man(v1) ^ child(v1; v2) ^ alive(v2):

F G2(v) root(v0) ^ child+ (v0; v4) ^ child� (v3; v) ^ nextSibl+ (v4; v3) ^ child� (v4; v1)

^ woman(v1) ^ child+ (v1; v2) ^ man(v2) ^ child(v2; v3) ^ alive(v3):

In the following, we highlight only the rewriting of G2 into F G2 (the rewriting of G1

into F G1 is similar). We make use of a substitution s consistent with the query G2

and the tree instance. First, each prec(v; v1) atom is replacedby the equivalent formula
par� (v; v3) ^ prevSibl+ (v3; v4) ^ child� (v4; v1). The query G2 becomes(in disjunctive normal
form)

G0
2(v) root(v0) ^ child+ (v0; v) ^ par� (v; v3) ^ prevSibl+ (v3; v4) ^ child� (v4; v1)

^ woman(v1) ^ child+ (v1; v2) ^ man(v2) ^ child(v2; v3) ^ alive(v3):

Step 1. We rewrite the formula child+ (v0; v) ^ par� (v; v3). Clearly, the nodess(v0), s(v),
and s(v3) lie on the samepath. Moreover, s(v0) appears before s(v) on this path, and
s(v3) can appear either before s(v0), or between s(v0) and s(v), or can be exactly s(v).
The formula specifying all thesepossibilities is

child+ (v0; v) ^ par+ (v0; v3) _ child� (v0; v3) ^ child+ (v3; v) _ child+ (v0; v) ^ self(v; v3):

The �rst disjunct is unsatis�able becauses(v0) is the root nodeand thereareno ancestorsof
the root node. The seconddisjunct becomeschild+ (v0; v3)^ child+ (v3; v), becauses(v0) is the
root nodeands(v3) is an alive-node. Concluding,the aboveformula becomeschild+ (v0; v3)^
child� (v3; v), and G0

2 is rewritten into the equivalent query

G00
2(v) root(v0) ^ child+ (v0; v3) ^ child� (v3; v) ^ prevSibl+ (v3; v4) ^ child� (v4; v1)

^ woman(v1) ^ child+ (v1; v2) ^ man(v2) ^ child(v2; v3) ^ alive(v3):

Step 2. The only reverseatom remainedis prevSibl+ (v3; v4), which is rewritten together
with child+ (v0; v3) into the formula child+ (v0; v4) ^ nextSibl+ (v4; v3), becauseif a node s(v4)
precedesa sibling node s(v3) that is a descendant of the node s(v0), then the node s(v4)
is also a descendant of s(v0) and is followed by the sibling node s(v3). With this last
rewriting, G00

2 becomesF G2.

The goalof this chapter is to automatethe aboveprocessof �nding an equivalent forward
query to any LGQ query. Wedo this by making useof the theory of term rewriting systems.

4.2 A Taste of Term Rewriting Systems 53

4.2 A Taste of Term Rewriting Systems

Term rewriting systemsare widely usedas a model of computation to relate syntax and
semantics. This sectionintroducesbasicnotions on term rewriting systems[16] necessary
to rewrite LGQ formulas.

Iden tities and Rewrite Rules

In order to expressidentities and rewritings of LGQ formulas, we de�ne a languageof
rewriting rules and identities LGQ! , similar to LGQ. LGQ! has two kinds of variables:

� variablesranging over LGQ formulas, written in upper case,e.g.,X , Y , Z ,

� variablesranging over LGQ variables,written in lower caseand underlined, e.g., x,
y, z.

Recall that the LGQ variablesare written in lower caseand not underlined, thus di�erent
from LGQ! variables.

The predicatesof LGQ are function symbols in LGQ! , and LGQ formulas are ground
terms (i.e., terms without LGQ! variables). Also, LGQ! hastwo binary predicates� and
! , written in in�x form. In the LGQ! terms s � t and s ! t, the term s is the left-hand
side,or simply lhs, and the term t is the right-hand side,or simply rhs.

Example4.2.1. The LGQ! term X ^ Y � Y ^ X is an identit y that expressesthe commu-
tativit y property of the ^ LGQ predicate. The LGQ! term child(x; y) ^ prevSibl(y; z) !
child(x; z) ^ nextSibl(z; y) speci�es a rewriting for LGQ formulas.

A LGQ! substitution � is a total mapping from LGQ! variablesto LGQ formulas or
variablesdenotedby (1) f X 1 7! s1; : : : ; X n 7! sng indicating that the LGQ! variable X i

maps to the LGQ formula si , or (2) f x1 7! s1; : : : ; xn 7! sng indicating that the LGQ!

variable x i mapsto the LGQ variable si . If � mapsan LGQ! variable to an LGQ formula
or variable, then that LGQ formula or variable is the imageof the LGQ ! variable under � .
If an LGQ! variable X (or x i) is not in the domain of � , then � (X) = X (and � (x i) = x i);
if f (t1; t2) is an LGQ! term, then � (f (t1; t2)) = f (� (t1); � (t2)).

A substitution � is a matching substitution of a LGQ! term l to an LGQ formula t, if
� (l) = t. Under a matching substitution, the instancesof lhs and rhs of a rewrite rule are
LGQ formulas.

If u is the most general uni�er of a set of terms, then any other uni�er v can be
expressedas v = uw, wherew is another substitution.

A term rewriting system (T; !) is a �nite setof rewrite rulesand(possibly)identities
on terms of T. If identities are present, then they serve to specify rewriting modulo these
identities, asdetailed in the following.

The next section proposesthree rewriting systems(LGQ! ,!) that contain rewrite
ruleswith lhs instancesequivalent to corresponding rhs instances.Theserewriting systems
can be usedto transform LGQ formulas into equivalent forward LGQ formulas.

54 4. Source-to-source Query Transformation: From LGQ to Forw ard LGQ

Example4.2.2. The LGQ! rule child(x; y) ^ prevSibl(y; z) ! child(x; z) ^ nextSibl(z; y) can
be usedto rewrite the formula e1 = child(a;d) ^ child(a;b) ^ prevSibl(b;c) into the formula
e2 = child(a;d) ^ child(a;b) ^ nextSibl(c;b). Note that e1 � e2.

A redex is an instance of the lhs of a rewrite rule under a matching substitution.
Contracting the redexmeansreplacingit with the corresponding instanceof the rhs of the
rule. The application of a rewrite rule lhs ! r hs to an LGQ formula s meanscontracting
a redex � (lhs) in s to the rhs instance � (r hs), both under the matching substitution � .
The result of such an application is written s[� (r hs)=� (lhs)], and the entire application is
written similar to a rule: s ! s[� (r hs)=� (lhs)]. A term s derives other term t, written
s �! t, if t can be obtained from s after a �nite (possibly empty) sequenceof rewrites:
s ! � � � ! t. In this case,we say also that the term s is reducible (with respect to the
relation !). If there is no term t such that s �! t, then s is irr educible. If s �! t and t is
irreducible, then t is a normal form of s, and we may write s ! ! t.

When dealingwith term rewriting systems,there are(at least) two important questions
to be asked:

Termination: Is it always the casethat after �nitely many rule applications an irre-
ducible term is reached?

Conuence: If there are di�erent ways of applying rules to a given term t, leading to
di�erent derived terms t1 and t2, can t1 and t2 be joined, i.e., canwe always �nd a common
term s that can be reached both from t1 and t2 by rule applications?

Both aforementioned properties ensurethe existenceand uniquenessof normal forms.

Termination

A rewriting relation ! is terminating if there are no in�nite derivations s0 ! s1 ! � � � .
Terminating relations are alsocalledwell-founded. By extension,a rewrite system(T; !),
whoserelation ! is terminating, is also terminating.

The termination problem for rewriting systemsis in general undecidable, i.e., there
can not be a generalprocedurethat, given an arbitrary �nite rewriting system, answers
\y es" if the system terminates, and \no" otherwise. However, it is useful to show that
a particular rewriting system terminates. The basic method to prove termination of a
rewriting system(T; !) is to embed it into another rewriting system(A; >) that is known
to terminate. This requiresa monotonemapping � : T ! A, wheremonotonemeansthat
lhs ! r hs implies � (lhs) > � (r hs). The most popular choice for termination proofs is
an embedding into (

�

; >), which is known to terminate, becausethe > order on natural
numbers is well-founded2.

Becausesomerewriting systemsneedmore complex orders, it is often useful to build
them as lexicographic products of simpler ones. From a number n of strict orders> i , i.e.,

2Recall that the order > on rational (and also real) numbers is not well-founded, becausethere can be
an in�nitely descendingchain of rational numbers betweentwo rational numbers.

4.2 A Taste of Term Rewriting Systems 55

transitive and irreexiv e relations, onecan build the lexicographicproduct > 1:::n as

(x1; : : : ; xn) > 1:::n (y1; : : : ; yn) , 9k � n : (8i < k : x i = yi); xk > k yk :

Properties like strictness and termination carry over from orders to their lexicographic
products.

A usefuland simple method for constructing terminating ordersis multisets (or bags),
i.e., setswith repeatedelements.

De�nition 4.2.1. A multiset M over a set A is a function M : A !
�

. Intuitively, M (x)
is the number of copiesof x 2 A in M . M(A) denotethe set of all �nite multisets over A.

We use standard set notation like f x; y; yg as an abbreviation of the function f x 7!
1; y 7! 2; z 7! 0g over the set A = f x; y; zg.

Somebasicoperations and relations on M(A) are:
Element : x 2 M , M (x) > 0.
Inclusion : M � N , 8x 2 A : M (x) � N (x).
Union : (M [N)(x) = M (x) + N (x).
Di�erence: (M � N)(x) = M (x)

:
� N (x), wherem

:
� n is m � n if m � n, elseis 0.

The order on multisets M over a �nite set A can be derived from an order on A.

De�nition 4.2.2 (Multiset Order). Given a strict order > on a setA, the corresponding
multiset order > mul is de�ned as follows:

M > mul N , 9X ; Y 2 M(A); ; 6= X � M ; N = (M � X) [Y; 8y 2 Y : 9x 2 X : x > y:

Properties like strictnessand termination carry over from (A; >) to (M(A); > mul).

Example 4.2.3. Consider the multisets M = f 8; 1g and N = f 7; 7; 1g. Then, M > mul N
becauseN = (M � X) [Y with X = f 8g and Y = f 7; 7g. Note that X and Y are not
uniquely determined: X = M and Y = N do work here too.

Throughout this chapter, we usestrict orderson terms derived from the order > mul on
(�nite) multisets over �nite setsof natural numbers.

Conuence

De�nition 4.2.3 (Joinable Terms). Two terms x and y are joinable for a relation ! ,
written x # y, i� there existsa term z suchthat x �! z � y.

De�nition 4.2.4 (Conuence). A rewrite relation is conuent i� terms are joinable
wheneverthey are derivablefrom a sameterm

y1
� x �! y2) y1 # y2

Checking conuencecanbehard, becauseit requiresto test the joinabilit y of all possible
terms derivable from a sameterm. A strictly weaker variant of conuence, called local
conuence, can be, however, easierto check.

56 4. Source-to-source Query Transformation: From LGQ to Forw ard LGQ

De�nition 4.2.5 (Lo cal conuence). A relation ! is locally conuent i� terms are
joinable wheneverthey are derivablein one step from a sameterm

y1 x ! y2) y1 # y2

A rewrite relation is locally conuent if (but not only if) no lhs uni�es with a non-
variable subterm (except itself) of any lhs, taking into account that variables appearing
in two rules (or in two instancesof the samerule) are always treated as disjoint. In cases
when the above requirement is not ful�lled, we get so-calledcritical pairs:

De�nition 4.2.6 (Critical Pairs). If l ! r and s ! t are two rewrite rules (with
variablesmade distinct) and � a most general uni�er of l and a non-variable subterm s0

of s, then the equation � (t) = � (s[� (r)=� (s0)]), where � (r) has replaced � (s0) (= � (l)) in
� (s), is a critical pair.

A �nite rewrite systemhas a �nite number of critical pairs. Local conuence can be
obtained also in the caseof existenceof critical pairs.

Theorem 4.2.1 ([16]). A rewrite relation is locally conuent i� all its critical pairs are
joinable.

Conuence canbe reducedto local conuenceonly for rewrite relations that terminate.

Lemma 4.2.1 ([122]). A termination relation is conuent if it is locally conuent.

We say also that the systemis conuent when its relation is conuent.

Rewriting modulo A C-theory

The LGQ predicates^ , _, and selfare associative and commutativ e (AC). Such properties
should be taken into account when applying rewrite rules.

Example 4.2.4. The rewrite rule

child(x; y) ^ prevSibl(y; z) ! child(x; z) ^ nextSibl(z; y)

can rewrite not only child(a;b) ^ prevSibl(b;c) into child(a;c) ^ nextSibl(c;b), but also, as
highly desired,prevSibl(b;c) ^ f ^ child(a;b) into nextSibl(c;b) ^ child(a;c) ^ f . Note that a
syntactical substitution fails in the latter case.What is neededis an equational matching
that takesinto account the AC properties of the ^ predicate.

The AC properties of LGQ predicates raise serious problems in rewriting systems,
becausesuch properties can not be oriented into terminating rewrite rules.

Example4.2.5. Considerthe rule X ^ Y ! Y ^ X expressingthe commutativit y property
of the ^ connective. The repeatedapplication of this rule to the LGQ formula child(a;b) ^
prevSibl(b;c) yields an in�nite number of contractions

child(a;b) ^ prevSibl(b;c) ! prevSibl(b;c) ^ child(a;b) ! child(a;b) ^ prevSibl(b;c) ! � � �

4.3 Rewrite Rules preserving LGQ Equiv alence 57

A commontechnique to accommodate AC properties in the rewriting processis to con-
sider rewriting modulo the AC-theory. More speci�cally, this chapter considersrewriting
systemscontaining the set AC of identities expressingthe commutativit y and associativit y
properties of ^ , _, and self (� 2 F? [R?):

X ^ Y � Y ^ X X ^ (Y ^ Z) � (X ^ Y) ^ Z

X _ Y � Y _ X X _ (Y _ Z) � (X _ Y) _ Z

self(x; y) � self(y; x) self(x; y) ^ � (y; z) � self(x; y) ^ � (x; z)

For the uni�cation of terms, the syntactic uni�cation doesnot su�ce anymore and uni�-
cation modulo AC-equations(or simply AC-uni�cation) has to be considered. Also, AC
matching substitutions must be usedto detect applicability of rules.

Several important notions applicable to syntactical rewriting have to be reconsidered
now in the light of rewriting modulo an equational theory. Let us considerthe \problem-
atic" identities (like AC-identities) of a rewriting systemseparatedin the set E from the
rules R. This givesrise to a new relation ! R=E , which is de�ned on equivalenceclassesof
terms ([s]� E is the classof all terms identical modulo E):

[s]� E ! R=E [t]� E , 9s0; t0 : s � E s0 ! R t0 � E t:

In the context of rewriting modulo an equational theory E (or simply E-rewriting), each
rewrite step involves E-matching, i.e., matching modulo � E . Also, the critical pair com-
putation involvesE-uni�cation. Two terms s and t are joinable modulo E, written s #E t,
if s �! s0 � E t0 � t.

AC-matching and AC-uni�cation are NP-completein general: the number of substitu-
tions (uni�ers) for any two terms canbeexponential in the sizeof the terms, see,e.g.,[103].
The LGQ! rewrite rules of this chapter ensurea polynomial upper bound to the AC-
matching, becausethey restrict severly the matchingsof their variables. Section4.5details
on this issue.

4.3 Rewrite Rules preserving LGQ Equiv alence

This section introducesequivalence-preserving(rewrite) rules of reverseand forward for-
mulas. These rules are used later in Section 4.4 to rewrite LGQ formulas into equiva-
lent forward LGQ formulas by repeatedly contracting the formulas until a normal form is
reached.

4.3.1 Rules adding single-join DA G-Structure

This sectionconsidersa simple yet powerful equivalence-preservingrule of reversebinary
atoms and forward formulas. The lhs and rhs of this rule are also expressiblein XPath
syntax, as consideredin our previous work [128]. Basedon this rule, Section 4.4 shows
how any LGQ formula can be rewritten into an equivalent LGQ forward formula, where

58 4. Source-to-source Query Transformation: From LGQ to Forw ard LGQ

each reverseatom in the initial formula inducesa multi-sink variable in the rewritten LGQ
formula.

Lemma 4.3.1 (Equiv alence-preserving rule adding single-join DA G-Structure).
Applying the rewrite rule

� (x; y) ! � � 1(y; x) ^ child+ (z; y) ^ root(z) (4.1)

to an LGQ formula e, whichcontains a reverse� -atom, yieldsan LGQ formula t equivalent
to s, where z is a freshLGQ variable in t.

Proof. For an instancel ! r of the above rule under a substitution � = f x 7! x; y 7! yg,
we show that (1) l � r , and (2) s � s[r=l].

The �rst part of the proof follows from the observation that all nodes in the tree are
descendants of the root. Then,

LF J� (x; y)K(�) = f t j t 2 � ; � (t(x); t(y))g

= f t j t 2 � ; � � 1(t(y); t(x)) ; child+ (root(t(x)) ; t(y))g

= f t j t 2 � ; � � 1(t(y); t(x)) ; child+ (z; t(y)) ; z = root(t(x))g

= LF J� � 1(y; x) ^ child+ (z; y) ^ root(z)K(�):

The secondpart of the proof follows from Proposition 3.3.1, with the condition that
the subformula of s obtained by removing l or r doesnot contain variablesappearingonly
in r , respectively l, and not in the other one. Indeed, the only new variable appearing in
r is the fresh variable z.

Remark 4.3.1. The lhs and rhs of Rule (4.1) can be alsoexpressedusing XPath extended
with the identit y-basedequality == . Let P be a rule variable standing for an XPath
relative formula, N and M nodetest holders (rule variables), an a forward axis, am a
reverseaxis, and bm the symmetrical axis to am . Cf. [128],

=P=an::N=am::M ! =descendant::M [bm::N ===P=an::N]

P[am::M] ! P[descendant::M =bm::node() ==self::node()]

Arguably, the above two equivalencesin XPath are harder to grasp than Rule (4.1) ex-
pressedin LGQ! : In XPath, a location step, made out of an axis and a nodetest, is an
atomic construct, and �lters are enclosedby squarebrackets. Therefore, both casesof
reversestepsinside and outside �lters have to be consideredin XPath. In LGQ, however,
the formulas corresponding to XPath �lters are not explicitly marked, and the nodetest
predicatesare not necessaryfor the rule and thereforenot carried over.

Example 4.3.1. Considerthe journal archive exampleof Section2.2 and the tree instance
of Figure 2.1. The LGQ tree query

Q(v3) root(v0) ^ child(v0; v1) ^ child(v1; v2) ^ par(v2; v3) ^ journal(v1) ^ editor(v2)

4.3 Rewrite Rules preserving LGQ Equiv alence 59

selectsthe parent node of an editor node that is child of a journalnode, which is in its turn
a child node of the root. For the given tree instance,Q1 selectsthe journalnode.

According to Rule (4.1) and Proposition 3.3.1, Q is equivalent to

F Q(v3) root(v0) ^ child(v0; v1) ^ child(v1; v2) ^ child(v3; v2) ^ child+ (v0
3; v3) ^ root(v0

3)

^ journal(v1) ^ editor(v2):

For Q there is an equivalent XPath query

/child::journal/child::editor/parent::node():

For F Q there is only an equivalent XPath query with equality basedon node-identit y:

/descendant::node()[child::editor == /child::journal/child::editor]

There is an order > r ev
ty pe between an LGQ formula s and the formula t obtained by

applying Rule (4.1) to s. Recall from Section3.7 that the order > r ev
ty pe is derived from the

multiset order > mul by s > r ev
ty pe t , typer ev(s) > mul typer ev(t).

Prop osition 4.3.1 (> r ev
ty pe-Decrease). An application of Rule (4.1) to an LGQ formula

s containing a redex of that rule yields an LGQ formula t that has a smaller type factor
than s: s > r ev

ty pe t.

Proof. Let � = f x 7! x; y 7! yg. We considerthere are n reversebinary atoms in s. The
reversetype factor for s is

typer ev(s) = f i 1; : : : ; ing:

Let i k bethe encoding of the existenceof that reverse� -atom in typer ev(s) (9k : 1 � k � n).
Recall that for two multisets A; B 2 M(N), the strict order > mul is de�ned by

A > mul B , 9C; D 2 M(N) : ; 6= X � A; B = (A � C) [D; 8d 2 D : 9c 2 C : c > d:

As ensuredby Rule (4.1), the reverse� -atom is removed. Hence,

typer ev(t) = (typer ev(s) � C) [D; C = f i kg; D = ;) typer ev(s) > mul typer ev(t)

) s > r ev
ty pe t:

60 4. Source-to-source Query Transformation: From LGQ to Forw ard LGQ

4.3.2 Rules preserving Tree-Structure

This sectiongivesequivalence-preservingrules for paths of a forward binary atom followed
by a reversebinary atom, by systematicallyexploiting each possiblecombination of forward
binary atoms with fstChild, child, child+ , nextSibl, and nextSibl+ predicates,and reverse
binary atoms with par, par+ , prevSibl, and prevSibl+ predicates. All in all, there are 20
such rules. Note that the combinations of the forward self-atom and the reverseatoms are
alreadycoveredin built-in identities of rewriting systems,cf. Section4.2, and thereforeare
not neededanymore in the rules. The rest of reverseand forward atoms can be safely left
out of discussion,as explainedfurther in Lemma 4.3.2.

These rules can be formulated also in XPath syntax, as consideredin our previous
work [128]. Basedon theserules, Section4.4 shows how any LGQ formula can be rewrit-
ten into an equivalent forward LGQ formula with no more multi-sink variables than in
the initial formula, thus the equivalent forward formula does not have additional graph
structure.

Lemma 4.3.2 (foll, prec, child� , nextSibl� , par� , prevSibl� Elimination). Consider � 2
f child; par; nextSibl; prevSiblg, and a, b freshvariables. Then, the application of the each of
following rewrite rules to an LGQ formula yields an equivalentLGQ formula.

foll(x; y) ! par� (x; a) ^ nextSibl+ (a;b) ^ child� (b;y) (4.2)

prec(x; y) ! par� (x; a) ^ prevSibl+ (a;b) ^ child� (b;y) (4.3)

� � (x; y) ! (� + (x; y) _ self(x; y)) : (4.4)

Proof. The �rst two rules follow directly from the de�nitions of the predicatesfoll and prec,
and the last rule from the de�nition of reexive transitive closureof binary predicates.

Lemma 4.3.3 (Equiv alence-preserving rules preserving tree-structure). Applying
each of the rewrite rules of Figure 4.4 to an LGQ formula s, which contains a path of the
form � 1(x; y) ^ � 2(y; z) with � 1 a forward predicate and � 2 a reversepredicate, yields an
equivalentLGQ formula t.

Proof. The proofs for all rules are given in Appendix.

Remark 4.3.2. The lhs and rhs of Rules(4.5) through (4.24) involving predicatesthat have
corresponding XPath axescan be alsoexpressedusing XPath. Let N and M be nodetest
holders(rule variables). Cf. [128], the Rule (4.7) can then be expressedas

descendant::N/parent::M ! descendant-or-self::N[child::M]

descendant::N[parent::M] ! descendant-or-self::N/child::M:

Note there are two rules necessaryin XPath to expressRule (4.7), for the caseof reverse
stepsinside and outside �lters. Both rules are similar and the only di�erence consistsin
the explicit syntactical marking with squarebrackets of XPath �lters.

4.3 Rewrite Rules preserving LGQ Equiv alence 61

fstChild(x; y) ^ par(y; z) ! self(x; z) ^ fstChild(z; y) (4.5)

child(x; y) ^ par(y; z) ! self(x; z) ^ child(z; y) (4.6)

child+ (x; y) ^ par(y; z) ! child� (x; z) ^ child(z; y) (4.7)

nextSibl(x; y) ^ par(y; z) ! nextSibl(x; y) ^ par(x; z) (4.8)

nextSibl+ (x; y) ^ par(y; z) ! nextSibl+ (x; y) ^ par(x; z) (4.9)

fstChild(x; y) ^ par+ (y; z) ! (fstChild(x; y) ^ par+ (x; z) (4.10)

_ fstChild(x; y) ^ self(x; z))

child(x; y) ^ par+ (y; z) ! (child(x; y) ^ par+ (x; z) (4.11)

_ child(x; y) ^ self(x; z))

child+ (x; y) ^ par+ (y; z) ! (child+ (x; y) ^ par+ (x; z) (4.12)

_ child� (x; z) ^ child+ (z; y))

nextSibl(x; y) ^ par+ (y; z) ! nextSibl(x; y) ^ par+ (x; z) (4.13)

nextSibl+ (x; y) ^ par+ (y; z) ! nextSibl+ (x; y) ^ par+ (x; z) (4.14)

fstChild(x; y) ^ prevSibl(y; z) ! ? (4.15)

child(x; y) ^ prevSibl(y; z) ! child(x; z) ^ nextSibl(z; y) (4.16)

child+ (x; y) ^ prevSibl(y; z) ! child+ (x; z) ^ nextSibl(z; y) (4.17)

nextSibl(x; y) ^ prevSibl(y; z) ! self(x; z) ^ nextSibl(z; y) (4.18)

nextSibl+ (x; y) ^ prevSibl(y; z) ! nextSibl� (x; z) ^ nextSibl(z; y) (4.19)

fstChild(x; y) ^ prevSibl+ (y; z) ! ? (4.20)

child(x; y) ^ prevSibl+ (y; z) ! child(x; z) ^ nextSibl+ (z; y) (4.21)

child+ (x; y) ^ prevSibl+ (y; z) ! child+ (x; z) ^ nextSibl+ (z; y) (4.22)

nextSibl(x; y) ^ prevSibl+ (y; z) ! (nextSibl(x; y) ^ prevSibl+ (x; z) (4.23)

_ nextSibl(x; y) ^ self(x; z))

nextSibl+ (x; y) ^ prevSibl+ (y; z) ! (nextSibl+ (x; y) ^ prevSibl+ (x; z) (4.24)

_ nextSibl� (x; z) ^ nextSibl+ (z; y))

Figure 4.4: Equivalence-preservingrules for paths of forward and reverseatoms

62 4. Source-to-source Query Transformation: From LGQ to Forw ard LGQ

As depicted in Figure 4.4, the interactions of forward (� 1) and reverse(� 2) atoms of
somerules behave similarly. In order to characterizethem more compactly, we de�ne six
interaction classes.The classi�cation of the rulesdependson the predicateclassesinvolved
in thoserules,asshown in Figure 4.5. Characteristicsof predicateclassescommonto both
atoms are factored out in the name of the interaction class, e.g., the interaction class
H/V(F,R)+ stands for (HF+ ,HR+)[(VF+ ,VR+), which contains rules where both forward
and reverseatoms have transitive closurepredicatesthat are either vertical or horizontal.

(f ; r) f (x; y) ^ r (y; z) ! Rules

(f fstChildg, HR?) ? (4.15),(4.20)

(f child; child+ g,HR?) f (x; z) ^ r � 1(z; y) (4.16),(4.17),(4.21),(4.22)

(HF,VR)? f (x; y) ^ r (x; z) (4.8),(4.9),(4.13),(4.14)

H/V(F,R+) (f (x; y) ^ r (x; z)_ (4.10),(4.11),(4.23)

f (x; y) ^ self(x; z))

H/V(F ?,R) f 0(x; z) ^ r � 1(z; y) (4.5),(4.6),(4.7),(4.18),(4.19)

H/V(F,R)+ (f (x; y) ^ r (x; z)_ (4.12),(4.24)

f 0(x; z) ^ r � 1(z; y))

(f ; f 0) 2 f (child; self); (fstChild; self); (child+ ; child�); (nextSibl; self); (nextSibl+ ; nextSibl�)g

Figure 4.5: Characterization of atom interactions of rules from Figure 4.4

Example 4.3.2 (par). Consider the journal archive example of Section 2.2 and the tree
instanceof Figure 2.1. The LGQ tree formula

Q1(v3) root(v0) ^ child(v0; v1) ^ child(v1; v2) ^ par(v2; v3) ^ journal(v1) ^ editor(v2)

selectsthe parent node of an editor node that is child of a journalnode, which is in its turn
a child node of the root. For the given tree, Q1 selectsthe journalnode.

According to Rule (4.6) and Proposition 3.3.1, Q1 is equivalent to

F Q1(v3) root(v0) ^ child(v0; v1) ^ child(v1; v2) ^ self(v1; v3) ^ journal(v1) ^ editor(v2)

or more compact,by replacingall occurencesof v1 by v3

F Q0
1(v3) root(v0) ^ child(v0; v3) ^ child(v3; v2) ^ journal(v3) ^ editor(v2):

Note there are equivalent XPath queriesfor the above LGQ trees.
Considernow the sametree instanceand the LGQ DAG formula

Q2(v3) root(v0) ^ child+ (v0; v1) ^ child+ (v0; v3) ^ nextSibl(v1; v2) ^ par(v2; v3)

^ name(v1) ^ name(v2) ^ authors(v3)

4.3 Rewrite Rules preserving LGQ Equiv alence 63

that selectsthe authors nodes descendants of the root and parents of namenodes that
immediately follow a namesibling node descendant of the root. For the given tree, Q2

selectsthe authors node.
According to Rule (4.8) and Proposition 3.3.1, Q2 is equivalent to

F Q2(v3) root(v0) ^ child+ (v0; v1) ^ child+ (v0; v3) ^ nextSibl(v1; v2) ^ par(v1; v3)

^ name(v1) ^ name(v2) ^ authors(v3)

becausethe parent of a sibling node (v2) of a node (v1) is alsoa parent of that node (v1).
Going further, Rule (4.7) can be applied now and we get

F Q0
2(v3) root(v0) ^ child� (v0; v3) ^ child+ (v0; v3) ^ nextSibl(v1; v2) ^ child(v3; v1)

^ name(v1) ^ name(v2) ^ authors(v3)

becausethe parent of a node descendant of the root is either the root or a descendant of
the root, both having a child. Also, becausebetweenv0 and v3 hold at the sametime the
relation child� and a subsetof it child+ , F Q0

2 can be further compactedto

F Q00
2(v3) root(v0) ^ child+ (v0; v3) ^ nextSibl(v1; v2) ^ child(v3; v1)

^ name(v1) ^ name(v2) ^ authors(v3)

Note that F Q00
2 is an LGQ path and has a corresponding XPath query, whereasits

equivalent Q2 is an LGQ DAG and hasno corresponding XPath query.
Such repeated redex detections and contractions constitute the basis of a rewriting

systemfor LGQ formulas, asproposednext in Section4.4.

Example 4.3.3 (par+). Consider the journal archive exampleof Section 2.2 and the tree
instanceof Figure 2.1. The LGQ path formula

Q3(v2) root(v0) ^ child+ (v0; v1) ^ nextSibl(v1; v2) ^ par+ (v2; v3) ^ name(v2) ^ name(v1)

selectsthe ancestorsof namenodesthat follow namesibling nodesdescendants of the root.
For the given tree, Q3 selectsthe nodesauthors, journal, and the root.

According to Rule (4.13) and Proposition 3.3.1, Q3 is equivalent to

F Q3(v2) root(v0) ^ child+ (v0; v1) ^ nextSibl(v1; v2) ^ par+ (v1; v3) ^ name(v2) ^ name(v1)

becausean ancestorv3 of a sibling node v2 of a node v1 is also an ancestorof that node
v1. According to Rule (4.12) and Proposition 3.3.1, F Q3 is equivalent to

F Q0
3(v2) root(v0) ^ nextSibl(v1; v2) ^ name(v2) ^ name(v1)

^ (child+ (v0; v1) ^ par+ (v0; v3) _ child� (v0; v3) ^ child+ (v3; v1))

or more compact(consideringthat root(v0) ^ par+ (v0; v3) ! ?)

F Q00
3(v2) root(v0) ^ nextSibl(v1; v2) ^ child� (v0; v3) ^ child+ (v3; v1) ^ name(v2) ^ name(v1):

Note there are equivalent XPath queriesfor the LGQ paths Q3, F Q3, and F Q00
3, and also

for the LGQ tree F Q0
3.

64 4. Source-to-source Query Transformation: From LGQ to Forw ard LGQ

Example4.3.4(prevSibland prevSibl+). Considerthe journal archive exampleof Section2.2
and the tree instanceof Figure 2.1 and the LGQ tree

Q4(v3) root(v0) ^ child+ (v0; v1) ^ prevSibl(v1; v2) ^ prevSibl+ (v1; v3) ^ price(v1) ^ authors(v2)

that selectsthe nodes that precedeprice sibling nodesthat are immediately precededby
an authors sibling node. For the given tree, Q4 selectsthe nodesauthors, editor and title.

According to Rule (4.17) and Proposition 3.3.1, Q4 is equivalent to

F Q4(v3) root(v0) ^ child+ (v0; v2) ^ nextSibl(v2; v1) ^ prevSibl+ (v1; v3) ^ price(v1) ^ authors(v2)

becausea preceding sibling node v2 of a descendant node v1 from another node v0 is
a descendant node of v0 that has a following sibling v1. According to Rule (4.23) and
Proposition 3.3.1, F Q4 is equivalent to

F Q0
4(v3) root(v0) ^ child+ (v0; v2) ^ price(v1) ^ authors(v2)

^ (nextSibl(v2; v1) ^ prevSibl+ (v2; v3) _ nextSibl(v2; v1) ^ self(v2; v3))

becausenodesv3, which precedesiblingsv2 that have immediatenext siblingsv1, areeither
the siblings v1 or precedethem.

Prop erties of Rules (4.5) through (4.24)

The applications of Rules (4.5) through (4.24) (1) preserve the variables from the initial
formula, (2) do not transform 1-sink variablesinto multi-sink variables,and (3) ensurean
order betweenLGQ formulas and their contractions. The secondproperty is very useful,
becausethe applications of such rules can never transform a tree formula into a DAG
formula, or into a graph with cycles. The third property guarantees that LGQ formulas
can not be rewritten endlessly, thus the rewriting terminates.

Prop osition 4.3.2 (V ariable, variable t yp e and connections preserv ation). The
application of each rule of Lemma 4.3.3 to an LGQ formula s does not intr oduce fresh
variables, it preservesthe sink-arity of variables, and also the connections of non-sink
variables.

no freshvariablesare introduced

Vars(s) � Vars(t)

non-sinkvariablesremainnon-sink

8x; y; z 2 Vars(s) : x 6; s y , z 6; t y

connectionsof non-sinkvariablesare preserved

8x; y; z 2 Vars(s) : z 6; s x ; s y , x ; t y

no multi-sinkvariablesremainno multi-sink

8y; x1; x2; x0
1; x0

2 2 Vars(s) : x1 6= x2; x0
1 6= x0

2; x1 6; s y; x2 6; s y , x0
1 6; s y; x0

2 6; s y:

4.3 Rewrite Rules preserving LGQ Equiv alence 65

Proof. This can be easily seenby inspecting all interaction classesof Figure 4.5.

The application of each rule of Lemma4.3.3ensuresan orderbetweenthe LGQ formulas
containing redexesof that rule and their contractions. This order is built up from simpler
orderson LGQ formulas, as de�ned next.

De�nition 4.3.1 (> r ev
ty pe� pos). Given the strict order > mul on the multisets f typer ev(e) j

e 2 LGQg and on f posr ev(e) j e 2 LGQg, the lexicographic product > r ev
ty pe� pos of > mul with

itself on LGQ � LGQ is de�ned by

s > r ev
ty pe� pos t , typer ev(s) > mul typer ev(t) or typer ev(s) = typer ev(t); posr ev(s) > mul posr ev(t):

Because> mul is strict order, so is > r ev
ty pe� pos, cf. Section4.2.

Prop osition 4.3.3 (> r ev
ty pe� pos-Decrease). An application of any rule of Lemma 4.3.3 to

an LGQ formula s containing a redex of that rule yields an LGQ formula t that has a
smaller reversefactor than s: s > r ev

ty pe� pos t.

Proof. Let � = f x 7! x; y 7! y; z 7! zg, and l ! r an instanceof a rule of Lemma 4.3.3
under the substitution � .

The ordering property can be shown by inspecting all six interaction classesof Fig-
ure 4.5. For all classes,the interaction is speci�ed within disjuncts, so we can safely
consideronly onedisjunct in s that contains l, and the other disjuncts are not changed.

Let x be the non-sink variable in both l and r . We considerthere are n reversebinary
atoms in s such that root ; s x

p
; s v whereroot is a non-sink variable, p is a connection

sequencethat ends with a reversepredicate, and v is a variable. The multiset of these
lengths jpj is denotedby f p1; : : : ; png, and a subsetf p1; : : : ; pmg (m � n) of them are the
lengths of connectionsfrom non-sink variables via the variable z. The rest of position-
sets of other reversebinary atoms is denoted by Rest1. The types of reversepredicates
appearing in the sequencesp are encoded in the multiset f i 1; : : : ; ing, and Rest2 is the
multiset of the types of the rest of reverse predicatesexistent in s. Then, the reverse
factors are

posr ev(s) = f p1; : : : ; png [Rest1; typer ev(s) = f i 1; : : : ; ing [Rest2:

Let i k be the encoding of the predicate r from l in typer ev(s) (9k : 1 � k � n).
Recall that for two multisets A; B 2 M(

�

), the strict order > mul is de�ned by

A > mul B , 9C; D 2 M(
�

) : ; 6= C � A; B = (A � C) [D; 8d 2 D : 9c 2 C : c > d:

Classes(f fstChild; child; child+ g,HR?), H/V(F ?,R). The reversepredicate r is removed.

typer ev(t) = (typer ev(s) � C) [D; C = f i kg; D = ;) typer ev(s) > mul typer ev(t)

) s > r ev
ty pe� pos t:

66 4. Source-to-source Query Transformation: From LGQ to Forw ard LGQ

Class(HF,VR)?. The lengths of the m connectionsof non-sink variables to reversepredi-
catesvia the variable z are decreasedby one, the connectionsvia y do not change(y has
the sameconnectionto x), and x remainsnon-sink. Then,

typer ev(t) = typer ev(s); posr ev(t) = (posr ev(s) � C) [D;

C = f pj j 1 � j � mg; D = f pj � 1 j 1 � j � mg

) typer ev(s) = typer ev(t); posr ev(s) > mul posr ev(t)) s > r ev
ty pe� pos t:

ClassesH/V(F,R+), H/V(F,R)+ . In this case,r = r 1 _ r2. The lengthsof the m connections
of non-sink variables to reversepredicatesvia the variable z are decreasedby one, the
connectionsvia y did not change. Note that the number of connectionsvia x is doubled.
However, in each createddisjunct the position factor is decreased,as in the previouscase.
Moreover, in the seconddisjunct, there is one reverse predicate less. Then, it can be
checked similarly to previouscasesthat

typer ev(s) = typer ev(e^ r1); posr ev(s) > mul posr ev(e^ r1)) s > r ev
ty pe� pos e^ r1

typer ev(s) > mul typer ev(e^ r2)) s > r ev
ty pe� pos e^ r2:

The order > r ev
ty pe� pos holds alsobetweennorm(s) and norm(t), because

typer ev(s) > mul typer ev(s)) typer ev(norm(s)) > mul typer ev(norm(t))

posr ev(s) > mul posr ev(s)) posr ev(norm(s)) > mul posr ev(norm(t)) :

Both implications hold becausethe rule applications do not change the reverse factors
Rest1 and Rest2, which refer also to all reversepredicatesthat appear once in s and t
and are not reachable from x, y, or z, and appear also in several disjuncts of s and t after
normalization. The reversefactors of all other reverseatoms are already consideredfor
s > r ev

ty pe� pos t.

Lemma4.3.3givessomerules (i.e., (4.10), (4.11), (4.12), (4.23), and (4.24)) whereeach
rhs hasmoreatomsthan its lhs: jlhsj > jr hsj. This growing is not ad-hoc, and in fact, for a
given lhs onecan not give a rule with a size-smallerrhs that preservesthe propertiesgiven
in Propositions4.3.2and 4.3.3. This meansthat each rule of Lemma4.3.3is size-minimal.
There exists,of course,other rules than thoseof Lemma4.3.3, whererhs hasthe sizeof its
lhs or less,but theserules do not preserve all the aforementioned properties. For example,
an adaptation of Rule 4.1soasto syntactically match the lhs of rules from Lemma4.3.3is:
f (x; y) ^ r (y; z) ! f (x; y) ^ r � 1(z; y). In this case,the reversepredicate r from the lhs is
replacedby its forward oner � 1 in the rhs, but instancesof y becomemulti-sink variables.

Theorem 4.3.1 (Size-minimalit y of rules under prop ert y set). Rules (4.5) through
(4.24) are size-minimalunder the setof properties of Propositions 4.3.2 and 4.3.3. Further-
more, any other property-preservingrule is an extensionof one Rule (4.5) through (4.24)
with redundant formulas.

4.3 Rewrite Rules preserving LGQ Equiv alence 67

Proof. The redexesof Rules (4.10), (4.11), (4.12), (4.23), and (4.24) with interactions of
type H/V(F,R+) and H/V(F,R)+ , are the only onesthat have the rhs size-biggerthan the
lhs. More speci�cally, the rhs has double the amount of binary atoms of the lhs. For the
other rules, the instancesof the lhs and rhs have the samesize or less,and this size is
minimal, becauseall three variablesthat appear in rhs can be interconnectedwith at least
two binary atoms.

We consideran instance of the Rule (4.12) under the substitution s = f x 7! x; y 7!
y; z 7! zg with the lhs l and the rhs r (the caseof (4.24) is dual, and the others similar)

child+ (x; y) ^ par+ (y; z) � child+ (x; y) ^ par+ (x; z) _ child� (x; z) ^ child+ (z; y)

Note that the sizeof l = s(lhs) (r = s(rhs)) is the sizeof lhs (rhs), becausethe substitution
s instantiates hereLGQ! variablesto LGQ variables.

We conduct a proof by contradiction, i.e., we assumethere exists a right-hand side r '
with fewer binary atoms than r .

The left-hand side l of the rule instance is a disjunct of only vertical formulas, thus
the nodesmatched by all three variablesare along a path such that the node s(y) has as
ancestorsnodess(x) and s(z) in any order. Hence,there canbe two possibilitiesto arrange
the matched nodesalong the path (from root to leaf):

(s(x); s(z); s(y)) and(s(z); s(x); s(y))

r ' preservesall three variables,henceit has at least two binary atoms. The binary pred-
icates on the imagesof variables must be only vertical also in r ', i.e., fstChild, child, par,
their transitive and reexive transitive closures.

We argue next that only closureformulas can be usedin r '. Indeed, the di�erence of
tree levels of nodesmatched by all three variablesvaries from one (in caseof fstChildand
child) and the maximum depth of the tree instance. This depth is not known beforehand,
and thereforealso the number of child (and also fstChildand par) predicatesnecessaryto
relate the nodess(x), s(z), and s(y).

Now, r ' couldbechild+ (x; z)^ child+ (z; y), which preservesthe properties,but LF Jr 0K�
LF JlK, thus it is not su�cien t. r ' can not be child+ (z; x) ^ child+ (x; y) becauseit doesnot
preserve the non-sink type of x. It can be seenthat any other combination of two atoms
with vertical closurepredicatesdoesnot su�ce, becauser ' is not equivalent to l, and even
more becausesomeproperties are eventually invalidated.

Therefore,r ' hassizebigger than l.
Adding a third vertical closureatom to r ' implies that either a DAG, a tree, or a path is

created. For the DAG case,either each variable appearsassourceand sink (and then x is
not anymore non-sink), or onevariable becomesmulti-sink (which invalidatesa property).
For the tree case,the properties are satis�ed, but all three variablesmust not necessarily
match along a path (contradicts the semantics). For the path case,the new (third) added
atom is a self-atom, which makes its addition useless.A disjunction of disjuncts can not
be createdwith three binary atoms,becauseeach disjunct must contain all three variables,
henceminimum two binary atoms.

68 4. Source-to-source Query Transformation: From LGQ to Forw ard LGQ

Therefore,r ' hasat least the sizeof r , which concludesthe �rst part of the proof. We
show now that r ' must include rhs.

Adding a fourth binary atom with a vertical closurepredicate to r ' derives all cases
of the previous step (which are all unsatisfactory) and the caseof a disjunction of two
disjuncts, each with two binary atoms with vertical closurepredicates: r '= r 1 _ r2. Each
predicate encodes one of the two possiblecasesto have the nodes matched by the vari-
ables aligned along a path. For the �rst case (x; z; y), only � 1(x; z) ^ � 2(z; y) (with
� 1; � 2 2 f child+ ; child� g) preserves the properties. For the secondcase (z; x; y), only
� 3(x; z) ^ � 4(x; y) (with � 3 2 f par+ ; par� g and � 4 2 f child+ ; child� g) preservesthe proper-
ties. However, the following predicateshold (seel): child+ (x; y) and child+ (z; y). The only
remainedpossibilities for r ' are:

Case 1 : child+ (x; z) ^ child+ (z; y) _ par+ (x; z) ^ child+ (x; y)

Case 2 : child� (x; z) ^ child+ (z; y) _ par� (x; z) ^ child+ (x; y)

Case 3 : child� (x; z) ^ child+ (z; y) _ par+ (x; z) ^ child+ (x; y)

Case 4 : child+ (x; z) ^ child+ (z; y) _ par� (x; z) ^ child+ (x; y)

The third caseexpressesexactly r . The �rst casedoesnot cover the possibility of x = z and
is excluded.The secondcasecoversthe aforementioned possibility in both disjuncts, hence
redundantly, and thereforeextendsr . The fourth r ' is equivalent to r , but the possibility
x = z appearswith the reverseatom par� (x; z) (rather than with the forward atom). In
this case,the property > r ev

ty pe� pos-decreaseis violated:

typer ev(r 0) > mul typer ev(l)) r 0 > r ev
ty pe� pos l :

r ' can consist of r and new atoms that keep it still equivalent to l, e.g., by adding an
already existing formula. Someof these extensionsare subject to duplicate elimination
and navigation compaction,as formalized in Lemma 4.3.6.

4.3.3 Rules remo ving DA G-Structure

This section considersan equivalence-preservingrule of simple forward DAG formulas
made out of two binary atoms having the samesink variable, and path formulas created
by replacingoneof the two binary atomsby its reverse.Basedon this rule and other rules
of this section,Section4.4 shows how any LGQ formula can be rewritten to an equivalent
forward LGQ forest formula.

Lemma 4.3.4 (Rule remo ving DA G-Structure). Applying the rewrite rule

f wd1(x; y) ^ f wd2(z; y) ! f wd1(x; y) ^ f wd� 1
2 (y; z): (4.25)

to an LGQ formula s yields an equivalentLGQ formula t.

4.3 Rewrite Rules preserving LGQ Equiv alence 69

Proof. For an instancel ! r of the above rule under a substitution � = f x 7! x; y 7! yg,
we show that (1) l � r , and (2) s � s[r=l].

The �rst part of the proof follows from the observation that � (x; y) � � � 1(y; x), for
any LGQ binary predicate � . Then,

LF Jf wd1(x; y) ^ f wd2(z; y)K(�) = LF Jf wd1(x; y) ^ f wd� 1
2 (y; z)K(�):

The secondpart of the proof follows from Proposition 3.3.1, with the condition that the
subformulas of s and t obtained by removing l, respectively r , do not contain variables
appearing only in r , respectively l, and not in the other one. Indeed, both l and r have
the samevariables.

Remark 4.3.3. The rhs of Rule (4.25) can not be expressedin XPath, even extendedwith
the identit y-basedequality == : turning the formula f wd2(z; y) into f wd� 1

2 (y; z) would
meanin XPath to loosethe implicit context node corresponding to the LGQ variablesthat
are instancesof z.

Example 4.3.5. Considerthe journal archive exampleof Section2.2 and the tree instance
of Figure 2.1. The LGQ DAG formula

Q5(v3) root(v0) ^ child(v0; v1) ^ child(v1; v2) ^ child(v3; v2) ^ journal(v1) ^ editor(v2)

that selectsthe parent node of an editor node that is child of a journalnode, which is in its
turn a child node of the root. For the given tree, Q5 selectsthe journalnode.

According to Rule (4.1) and Proposition 3.3.1, Q5 is equivalent to

F Q5(v3) root(v0) ^ child(v0; v1) ^ child(v1; v2) ^ par(v2; v3) ^ journal(v1) ^ editor(v2):

For F Q5 there is an equivalent XPath query, but for Q5 there is only an equivalent XPath
query with equality basedon node-identit y (==).

The application of Rule (4.25) ensuresthat the LGQ formulas containing instancesof
the lhs of that rule have a greater DAG factor than the result of such a rule application.

Prop osition 4.3.4 (> dag
ty pe-Decrease). An application of Rule (4.25) to an LGQ formula

s containing a redex of that rule yields an LGQ formula t that has a smaller type factor
than s: s > dag

ty pe t.

Proof. Let � = f x 7! x; y 7! y; z 7! zg. We considerthe DAG type factor for s

typedag(s) = f i 1; : : : ; ing; 81 � j � n : i j > 1:

Let i k (9k : 1 � k � n) be the forward sink-arity of y in s (i.e., the number of forward
binary atoms that have y as sink and that appear in a disjunct of s).

As ensuredby Rule (4.25), the variablesx and z have the sameforward sink-arities in
t and s. Also, the forward sink-arity i k of y is decreasedby one in t. Thus, if y is forward

70 4. Source-to-source Query Transformation: From LGQ to Forw ard LGQ

2-sink in s (i.e., i k = 2), then it is not anymore forward multi-sink in t, otherwisey remains
forward multi-sink, but with decreasedforward sink-arity.

Recall that for two multisets A; B 2 M(
�

), the strict order > mul is de�ned by

A > mul B , 9C; D 2 M(
�

) : ; 6= C � A ^ B = (A � C) [D ^ 8d 2 D : 9c 2 C : c > d:

Then, we get

typedag(t) = (typedag(s) � C) [D^ C = f i kg; D =

(
; , i k = 2

i k � 1 , otherwise

) typedag(s) > mul typedag(t)) s > dag
ty pe t:

4.3.4 Rules for LGQ Normalization

This sectiondescribes basic rules for bringing LGQ formulas in disjunctive normal form,
whereadditionally all uselessparenthesesare dropped.

Lemma 4.3.5 (Rules for DNF Normalization). The application of any of the following
rules to an LGQ formula s yields an equivalentLGQ formula t.

X ^ (Y _ Z) ! X ^ Y _ X ^ Z (4.26)

X _ (Y _ Z) ! X _ Y _ Z (4.27)

(Y ^ Z) ! Y ^ Z: (4.28)

Proof. The �rst rule is due to the distributivit y of ^ over _, the secondrule is due to the
associativit y of _, and the third rule is due to the precedenceof ^ over _.

The following proposition statesthat the rulesof Lemma4.3.5ensurean order, denoted
> dnf , betweenLGQ formulass and t, wheret is a contraction of s. The order> dnf is derived
from the orderon multisets of natural numbersrepresenting the amount of parenthesesthat
nest each atom in LGQ formulas.

Prop osition 4.3.5 (> dnf -Decrease). The application of any rule of Lemma 4.3.5 to an
LGQ formula s containing a redexof that rule yields a LGQ formula t with the number of
parenthesesthat nest each atom lessthan for s: s > dnf t.

Proof. Consider � () a function that computes the multiset of numbers representing the
amount of parenthesesthat nest each atom in a given LGQ formula. Consider � () (s) =
f i1; � � � ; img, wheref i j ; � � � ; i kg � � () (s) is the multiset of the numbersof parenthesesthat
nest each atom in Y and Z . By inspecting the rules of Lemma 4.3.5, it follows

� () (t) = (� () (s) � f i j ; � � � ; i kg) [f i j � 1; � � � ; i k � 1g , � () (t) < mul � () (s) , s > dnf t:

4.3 Rewrite Rules preserving LGQ Equiv alence 71

4.3.5 Rules for LGQ Simpli�cation

LGQ formulas can be unsatis�able or can contain redundancies.An unsatis�able formula
is, e.g., child(x; x), whereasa formula with redundanciesis child(x; y) ^ child+ (x; y). The
former formula is unsatis�able becauseno node is the child of itself. The latter formula
states that, for a substitution s consistent with that formula and a tree, both predicates
childand child+ hold on the nodess(x) and s(y). Becausethe predicatechild+ is the transi-
tive closureof child, it is clear that child+ (s(x); s(y)) holds if child(s(x); s(y)) holds. In such
cases,it would bedesirableto rewrite the formula to its simplerequivalent child(s(x); s(y)).

Such redundanciesmay not be soobvious. Rewriting formulas with redundanciesusing
the rulespresented in this chapter can,however, discover and eliminate such redundancies,
by reducing complexcasesto trivial ones,as given below in Lemma 4.3.6. Example 4.4.2
shows in the next sectionsuch cases.Towards the goal of rewriting arbitrary LGQ graphs
into forward LGQ forests,the elimination of someredundanciesis a must, in order to ensure
there are no multi-sink variables. Note that in the above formula with redundancies,y is
a multi-sink variable, thus a forest LGQ formula can not have such variables.

This section introducessimpli�cation rules that help in the processof rewriting by
removing redundanciesand detect unsatis�abilit y.

Lemma 4.3.6 (General Rules). Consider two nodetestsnodetest1, nodetest2, such that
for any node n test(n; nodetest1) 6= test(n; nodetest2), and the LGQ predicates r 2 R [
R+ ; f 2 F [F+ ; vh 2 V [V+ [H [H+ . Then, the application of any of the following rules
to an LGQ formula s containing a redex of that rule yields an equivalent LGQ formula t.

(Un)satis�ability Detection

vh(x; x) ! ? (4.29)

nodetest1(x) ^ nodetest2(x) ! ? (4.30)

self(x; x) ! > (4.31)

root(x) ^ r (x; y) ! ? (4.32)

root(x) ^ f (y; x) ! ? (4.33)

(Un)satis�ability Propagation

X ^ ? ! ? (4.34)

X _ ? ! X (4.35)

X ^ > ! X (4.36)

X _ > ! > (4.37)

Duplicateelimination

X ^ X ! X (4.38)

X _ X ! X : (4.39)

72 4. Source-to-source Query Transformation: From LGQ to Forw ard LGQ

Remark 4.3.4. Several other rulesfor navigation compactionand (un)satis�abilit y detection
can be derived using the already existing rules:

� 1(x; y) ^ � 2(x; y) ! � 1(x; y) (4.40)

re (x; x) ! > (4.41)

v(x; y) ^ h(x; y) ! ? (4.42)

v(x; y) ^ h(y; x) ! ? (4.43)

vh(x; y) ^ vh(y; x) ! ? (4.44)

where(� 1; � 2) 2 f (self; child�); (self; nextSibl�); (child; child+); (child; child�); (child+ ; child�);
(nextSibl; nextSibl+); (nextSibl; nextSibl�); (nextSibl+ ; nextSibl�)g, re 2 F� [R� , v 2 V [
V+ ; h 2 H [H+ , and vh 2 V [V+ [H [H+ .

The �rst rule states that if the predicates� 1 and � 2 are applied to the samevariables
and � 1 is more speci�c than � 2, then their conjunction can be simpli�ed to the � 1-atom.
The other rulesare self-explanatory. We show next how the �rst three rulescanbe derived
from the existing ones.

child(x; y) ^ child+ (x; y)
(4.25)
! child(x; y) ^ par+ (y; x)

(4.11)
! child(x; y) ^ par+ (x; x) _ child(x; y) ^ self(x; x)

(4.29)
! child(x; y) ^ ? _ child(x; y) ^ self(x; x)

(4.34)
! ? _ child(x; y) ^ self(x; x)

(4.35)
! child(x; y) ^ self(x; x)

(4.31)
! child(x; y) ^ >

(4.36)
! child(x; y):

The secondrule can be derived as (considerre = � � , � 2 R [F)

re (x; x)
(4.4)
! self(x; x) _ � + (x; x)

(4.31)
! > _ � + (x; x)

(4.37)
! > :

The third rule can be derived as

v(x; y) ^ h(x; y)
(4.25)
! v(x; y) ^ h� 1(y; x) !

(
? , v = fstChild

v(x; x) ^ h(x; y)
(4.29)
! ? ^ h(x; y)

(4.36)
! ? , v 6= fstChild:

Additionally , the following rule for navigation compaction can not be derived from the
existing onesand provesuseful in practical cases

� 1(x; y) _ � 2(x; y) ! � 2(x; y) (4.45)

The applicationsof the rulesof Lemma4.3.6ensuresthat the LGQ formulascontaining
redexesof that rule have a greatersizethan their contractions. This ordering property can
be speci�ed using the strict order > siz e on formulas derived from the order > on natural
numbers representing the sizeof formulas: s > siz e t , jsj > jtj.

4.4 Three Approac hes to Rewrite LGQ to Forw ard LGQ Forests 73

Prop osition 4.3.6 (> siz e-Decrease). The application of any rule of Lemma 4.3.5 to an
LGQ formula s containing a redex of that rule yields a LGQ formula t that has a smaller
size than the sizeof s, i.e., s > siz e t.

Proof. It canbe easilyseenby inspecting all rulesof Lemma4.3.6. Recall from Section3.7
that the sizeof each atom is given by its arity, the sizeof each booleanconnective is one,
and the sizeof a formula is the sumof the sizesof its constituent atomsand connectives.

4.4 Three Approac hes to Rewrite LGQ to Forw ard
LGQ Forests

Using the rewrite rules de�ned in Section4.3, we can rewrite LGQ formulas representing
the bodies of LGQ rules into forward LGQ formulas. Theserewrite rules are distributed
non-disjunctively in three setsthat de�ne three (term) rewriting systems:

� TRS1 is the set containing Rule (4.1),

� TRS2 is the set of Rules(4.4) through (4.24) and (4.26) through (4.39),

� TRS3 includesTRS2 and Rule (4.25).

Recall from Section 4.2 that all three rewriting systemscontain also the AC-identities
expressingthe associativit y and commutativit y properties of ^ , _, and self, and therefore
they useAC-rewriting.

The rewrite relation ! can be accompaniedby an index specifying its corresponding
rewriting system: e.g., ! 1 for TRS1. However, if it is understood from the context, we
sparethe explicit writing of this index and avoid cluttering. For the samereason,s #E t
is simply written ass # t without explicitly mentioning the set of AC identities, which are
always the same.

The properties of all three rewriting systemscan be summarizedas follows:

� What can the systemsrewrite?
TRS1, TRS2, and TRS3 are soundand completefor LGQ formulas, i.e., each of them
rewrites any LGQ formula into an equivalent forward LGQ formula.

� What is the relation betweenthe type of input and of rewritten LGQ formulas?

{ TRS1 rewrites LGQ single-join DAGs into forward LGQ single-join DAGs, and
LGQ graphsinto forward LGQ graphs;

{ TRS2 rewrites LGQ forests into forward LGQ forests, LGQ single-join DAGs
into LGQ single-join DAGs, and LGQ graphsinto forward LGQ graphs;

74 4. Source-to-source Query Transformation: From LGQ to Forw ard LGQ

{ TRS3 rewrites LGQ graphs into forward LGQ forests; moreover, if the input
formula contains only closure predicates, respectively non-closurepredicates,
then its equivalent rewriting contains also only closurepredicates,respectively
non-closurepredicates.

� Do the systemsterminate?
TRS1, TRS2, and TRS3 terminate and all of them employ terminating ordersderived
from multiset orders.

� Are the systemsconuent, i.e., yield they the samerewritten forward LGQ formula
regardlessof the order of rules applications?

{ TRS1 and TRS3 are conuent for any input LGQ formula,

{ TRS2 is conuent only for LGQ forests.

Among the enumerated properties, perhapsthe most interesting one is that TRS3 yields
forward LGQ forests for input LGQ paths, forests, single-join DAGs, and (even cyclic)
graphs. The intuition behind this result is that an LGQ formula satis�able on tree data
reects the tree structure of the data, fact that rendersforward LGQ forest formulas as
su�cien t to expressstructural constraints amongnodesin a tree asgeneralLGQ formulas
do. As a corollary, it follows that forward XPath forest queries(or querieswith �lters
and unions), which are another syntax for forward LGQ forests,are su�cien t to express
generalLGQ queries. However, this nice property comesat the expenseof using forward
LGQ forestsof size(possibly) exponential in the sizeof the equivalent generalLGQ query.
This observation on the LGQ and XPath expressivenessis usedlater in Chapter 5, where
an e�cien t evaluation of LGQ forestsis su�cien t to cover the evaluation of arbitrary LGQ
formulas. Also, a direct evaluation of arbitrary LGQ queries does not get around the
exponential complexity, as shown independently by [74].

Another salient result is that LGQ forests(thus XPath queries)can be rewritten into
forward LGQ single-joinDAGs of sizelinear in the input forests. Becausethe evaluation of
forward LGQ single-joinDAGshaspolynomial complexities(seelater Chapter 5), it follows
that one e�ective and e�cien t solution for the evaluation of XPath queries,particularly
in a context where the XPath reverseaxesare not desirable,is to �rst rewrite them into
forward XPath queries,and then to evaluate the latter.

4.4.1 Rewriting Examples

This sectionconsiderstwo rewriting examplesof oneLGQ treeandoneLGQ graphformulas
into forward LGQ forest formulas, as illustrated in Figures4.6 and 4.7. The thick edgesin
the digraph representations of formulas represent the predicatesthat are considerednext
in the rewriting process.Each thick (rewrite) arrow betweenthe digraph representations
of formulas is accompaniedby the referenceto the rewrite rule to apply next.

4.4 Three Approac hes to Rewrite LGQ to Forw ard LGQ Forests 75

v1

v3 v2

v1

v0 v4

v2v3

v0

v4

v0

v2v1v3

v1

v4

v0

v3 v2

v4

v2 v1

v0

v4

v1v2

v4 v0

v1v2

v4 v0

v2 v1

v0

v4

v4

v0

v3 v2

v1

v1

v4

v0

v3 v2

v1

v0

v4

v3 v2
+

+ +

+ +

+

+

*

=

+

+

*

TRS

TRS
2

3

4.13

4.12

4.23

4.12

4.23

4.12

+

+

*

4.12

+

+

+ +

+

+

+

+

+

4.32

+

*

+

+

*

+

4.22

+

+

+

4.32

4.22

Figure 4.6: Rewriting of the LGQ tree formula of Example 4.4.1

Example 4.4.1. Considerthe LGQ tree formula

root(v0) ^ child+ (v0; v1) ^ (prevSibl+ (v1; v2) _ nextSibl(v1; v2) ^ prevSibl+ (v2; v3)) ^ par+ (v2; v4)

Figure 4.6 shows how this LGQ tree can be rewritten into an equivalent forward formula,
which is a forest of paths, by using the rewrite rules of TRS2 (which are alsoof TRS3).

The forward LGQ formula equivalent to e, represented graphically in the lower box, is

root(v0) ^ child� (v0; v4) ^ child+ (v4; v2) ^ nextSibl+ (v2; v1)

_ root(v0) ^ child� (v0; v4) ^ child+ (v4; v1) ^ self(v1; v3) ^ nextSibl(v1; v2)

_ root(v0) ^ child� (v0; v4) ^ child+ (v4; v3) ^ nextSibl+ (v3; v1) ^ nextSibl(v1; v2):

Note that it can be simpli�ed by factoring out the �rst two atoms of each conjunct.
The initial LGQ tree formula can be rewritten using the rewrite rules of TRS1 into the

following single-join DAG formula (the reversebinary atoms are simply turned into their
corresponding forward binary atoms with their sourcesreachable from a fresh non-sink
variable):

root(v0) ^ child+ (v0; v1) ^ (nextSibl+ (v2; v1) ^ child+ (v0
2; v2) ^ root(v0

2)

_ nextSibl(v1; v2) ^ nextSibl+ (v3; v2) ^ child+ (v0
3; v3) ^ root(v0

3))

^ child+ (v4; v2) ^ child+ (v0
4; v4) ^ root(v0

4):

76 4. Source-to-source Query Transformation: From LGQ to Forw ard LGQ

v0

v1

v3

v4 v5

v2

v0

v1

v3

v4

v2

v0

v1

v4

v2

v3

v0

v1

v4

v2

v3

v0

v1

v4

v2
v3

v0

v1

v4

v2
v3

v0

v1

v4

v2
v3 v0

v0

v1

v3

v4

v2

v0

v1

v4

v2

v3

v0

v1

v4

v2

v3

v0

v1

v3

v4 v5

v2

v0

v3

v4 v5

v1
v2 v1

v0

v1

v4

v2

v3

v0

v1

v4

v2
v3

++

+

5

+

+

v v5

+

*

5v

+

+

5v

+ +

TRS 2

5v

+

TRS 3

5v

+

=

5

+

+

v

+

v5

+

*

5v

+

*

++ + +

=

5v

+

+

4.4 4.44

4.14

4.4

4.19Seq 1 Seq 2

Seq 3

4.11

4.11

4.13 Seq 1

5v

+ +

4.25

4.43

4.17

++

+

++

+ + +

Figure 4.7: Rewriting of the LGQ graph formula of Example 4.4.2

4.4 Three Approac hes to Rewrite LGQ to Forw ard LGQ Forests 77

Example 4.4.2. Considerthe LGQ graph formula e

root(v0) ^ child+ (v0; v1) ^ nextSibl� (v1; v2) ^ par+ (v2; v0) ^ prevSibl(v2; v3)

^ prevSibl(v3; v1) ^ child(v3; v4) ^ prevSibl(v5; v4) ^ child+ (v0; v5):

Figure 4.7 shows how e can be rewritten successively into equivalent forward formulas
fe and fe0. Using the rewrite rules of TRS2, we obtain fe (seebox with label TRS2 in
Figure 4.7)

root(v0) ^ child+ (v0; v1) ^ nextSibl(v1; v3) ^ nextSibl(v3; v2) ^ child(v3; v4)

^ nextSibl(v4; v5) ^ child+ (v0; v5):

The formula fe is forward, but still a DAG. Using the additional rewrite rule of TRS2, we
obtain the formula fe0 (seebox with label TRS3 in Figure 4.7)

root(v0) ^ child+ (v0; v1) ^ nextSibl(v1; v3) ^ nextSibl(v3; v2) ^ child(v3; v4) ^ nextSibl(v4; v5)

that is forward anda forest(in this caseevena tree). It is worth noting alsothat the formula
fe0 is variable-preservingminimal, i.e., the amount of binary atoms in fe0 is exactly the
number of its variablesminusone. Also, the (non-trivial) redundanciesof e, mainly derived
from the repeatedup-down and left-right navigations in the tree instance,aredetectedand
eliminated partly by TRS2 and completely by TRS3.

The Seq referenceson the rewrite arrows stand for sequencesof rule applications, and
they represent the following compactedrules:

Seq1 child+ (x; y) ^ par+ (y; x) ! child+ (x; y)

Seq2 nextSibl(x; y) ^ prevSibl(y; x) ! nextSibl(x; y)

Seq3 nextSibl� (x; y) ^ prevSibl(y; x) ! nextSibl(x; y):

Such compactedruleswerenot addedto the set of simpli�cation identities of Lemma4.3.6,
becausethey can be derived from alreadyexisting rules, asdiscussedalsoin Remark 4.3.4.
We show next how Seq 1 is obtained.

child+ (x; y) ^ par+ (y; x)
(4.12)
! child+ (x; y) ^ par+ (x; x) _ child� (x; x) ^ child+ (x; y)

(4.29)
! child+ (x; y) ^ ? _ child� (x; x) ^ child+ (x; y)

(4.34)
! ? _ child� (x; x) ^ child+ (x; y)

(4.35)
! child� (x; x) ^ child+ (x; y)

(4.41)
! > ^ child+ (x; y)

(4.36)
! child+ (x; y):

78 4. Source-to-source Query Transformation: From LGQ to Forw ard LGQ

The initial LGQ tree formula can be rewritten using the rewrite rules of TRS1 into the
following LGQ graph formula (the reversebinary atomsare simply turned into their corre-
sponding forward binary atoms with their sourcereachable from a new non-sink variable,
seelines 2,3, 4, and 6 below):

root(v0) ^ child+ (v0; v1) ^ nextSibl� (v1; v2)

^ child+ (v2; v0) ^ child+ (v0
2; v2) ^ root(v0

2)

^ nextSibl(v3; v2) ^ child+ (v0
3; v3) ^ root(v0

3)

^ nextSibl(v1; v3) ^ child+ (v0
1; v1) ^ root(v0

1)

^ child(v3; v4)

^ nextSibl(v4; v5) ^ child+ (v0
4; v4) ^ root(v0

4)

^ child+ (v0; v5):

4.4.2 Soundness and Completeness

This section shows that all three rewriting systemsTRSi (1 � i � 3) are sound and
completefor LGQ formulas, i.e., each of them rewrites any LGQ formula to an equivalent
forward LGQ formula. Furthermore, it is shown how the structure of the rewritten LGQ
formula relatesto the structure of the input LGQ formula.

Theorem 4.4.1 (Soundness and Completeness of TRS i). All TRSi are sound and
completefor LGQ formulas:

� (Soundness)for any LGQ formula s, any derivableLGQ formula t from s is equivalent
to s, and if t is a normal form, then t is a forward LGQ formula

8s; t 2 LGQ :s �! t) s � t

8s; t 2 LGQ :s ! ! t) t 2 LGQ[F?]:

� (Completeness)for any equivalentLGQ formulas s and forward t, TRSi rewritess to
a normal form forward LGQ formula t0 that is equivalent to t

8s 2 LGQ : 8t 2 LGQ[F?] : s � t) 9t0 2 LGQ[F?] : s ! ! t0; t � t0:

Proof. For each instancel ! r of the rules of Lemmas4.3.1 through 4.3.6 that de�ne all
three rewriting systemsTRSi , it holds that l � r , and s � t = s[r=l], i.e., any formula s
and its contraction t are equivalent. Thus, s derives in onestep equivalent LGQ formulas
t: s ! t) r � t. It follows directly by completeinduction that s �! t) s � t.

We show next for each TRSi that if t is irreducible (i.e., normal form), then t is a
forward LGQ formula. Recall that a derived formula t is irreducible if no subformula of it
is an instanceof the lhs of a rule.

4.4 Three Approac hes to Rewrite LGQ to Forw ard LGQ Forests 79

TRS 1 consistsin Rule (4.1) that rewritesany LGQ reversebinary atom to a forward LGQ
equivalent formula. Hence,only a formula t without reversebinary atoms, i.e., forward, is
irreducible.

TRS 2 consistsin Rules (4.4) through (4.24) and (4.26) through (4.39). There are three
casesconcerningthe type of binary atoms in s.

(A) If s is alreadya forward LGQ formula, then somesimpli�cation rulesof Lemma4.3.3
may apply, that yield an irreducible equivalent forward formula t, which is either ? or >
formulas, or a forward formula, becauseno reversebinary atom appearson rhs but not on
lhs of a rule.

(B) If s hasonly reversebinary atoms, then there must be connectionsfrom non-sink
variables to each reversebinary atom, and for each non-sink variable v there is a root(v)
unary predicate (recall that we consider only connectedand absolute LGQ formulas).
Applying repeatedly Rule (4.32) for unsatis�abilit y detection and Rules (4.34) and (4.35)
for unsatis�abilit y propagation, the normal form is obtained as t = ? .

(C) If s hasreverseand forward binary atoms, then, along a connectionsequencein s,
thereareeither (i) forward predicatesappearingbefore reversepredicates,(ii) or no forward
predicateappearsbeforereversepredicates.The latter caseis treated asno forward binary
atoms appear in s (seecaseB). In the former case,there are in s disjuncts of oneforward
and one reversebinary atom such that the sink of the former is the sourceof the later.
Such disjuncts are rewritten, accordingto Lemma 4.3.3, either to (1) paths of two forward
binary atoms, or to (2) trees where one branch is a forward, the other a reversebinary
atom, or to (3) forestsof treesas in (2) and paths as in (1).

As ensuredby Theorem4.4.2, all rewriting systemsterminate, in particular alsoTRS2.
In cases(2) and (3), the connectionsto somereversebinary atomshave shorter sequences,
but there can be more such connections. Also, somerules of Lemma 4.3.5 for bringing
derivable terms into DNF may apply. Next, either case(A), or (B), or (C) applies.

Note that the rules of Lemma 4.3.6, without (4.32) and (4.33), are just simpli�cation
rulesbasedon navigation compactionandunsatis�abilit y detectionandpropagation. Thus,
such rules can be left out without jeopardizing the reachabilit y of an equivalent forward
normal form t.

TRS 3 extendsTRS2 with Rule (4.25) that rewrites conjunctions of two forward binary
atomswith the samesink to a path of oneforward and onereversebinary atom. Therefore,
a forward formula that is normal form for TRS2 is not a normal form for TRS3, if it contains
multi-sink variables. We considerthe following caseswhere s contains a disjunct of two
forward formulas, both having a variable y as sink:

(A) One formula is root(y) and the other is f wd(x; y), or one formula is vertical and
the other is horizontal, both having also the samesource. Then, the whole disjunct is
rewritten to ? and the multi-sink variable is eliminated, cf. Rules (4.29) through (4.33),
and (4.34) through (4.37).

(B) Both formulas do not correspond to the above case. Then, one formula, say

80 4. Source-to-source Query Transformation: From LGQ to Forw ard LGQ

f wd(x; y), is rewritten to its reversef wd� 1(y; x). The obtained formula s0 containing the
reversebinary atom is then subject to rewriting using TRS2, which is embeddedin TRS3.
Most notably, the obtained normal form t0 of TRS2 doesnot contain additional multi-sink
variables,as ensuredby Proposition 4.3.2. The procedurecan continue until all variables
have sink-arity at most one. The normal form t for TRS3 is then a forward formula, but
alsowithout multi-sink variables.

Westatenext the relationsbetweenthe structure of a LGQ formula andof its equivalent
forward LGQ formula, as obtained by rewriting the former using TRSi .

Prop osition 4.4.1 (Yield of TRS 1). TRS1 rewrites any LGQ single-join DAG formula
into a forward LGQ single-join DAG formula, and any LGQ graph formula into a forward
LGQ graph formula.

Proof. TRS1 consistsin Rule (4.1) with instancesrev(x; y) � r ev� 1(y; x) ^ child+ (y0; y) ^
root(y0). This rule ensuresthat the (multi-)sink y of the reverseatom in lhs remains(multi-
)sink also in t, with oneconnectiondirectly from the fresh non-sink variable y0. Also, if x
is a 1-sink in s, then it becomes2-sink in t.

Let s and t be the input, respectively the output, formulas. It follows that
(A) if s is a forest formula (or oneof its subcasestree and path), i.e., it hasno multi-

sink variables, then t is a single-join DAG formula with as many 2-sink variables(like x)
as reversebinary atoms in s.

(B) if s is a single-joinDAG formula, then t is a single-joinDAG formula with at least
as many multi-sink variablesas there are in s, becausey keepsits sink-arity, and further
x can become2-sink (if it is not multi-sink in s).

(C) if s is a graph formula, then t is a graph formula, becauseRule (4.1) does not
remove cycles.

Prop osition 4.4.2 (Yield of TRS 2). TRS2 rewrites any LGQ forest formula into a
forward LGQ forest formula, any LGQ single-join DAG formula into a LGQ single-join
DAG formula, and any LGQ graph formula into a forward LGQ graph formula.

Proof. TRS2 consistsin Rules(4.4) through (4.24) and(4.26) through (4.39). An important
property of theserules is that for a formula s containing a redexof any rule, its equivalent
contraction t is a forest formula, cf. Proposition 4.3.2, i.e., the sink/non-sink variablesfrom
s remain sink/non-sink in t. It follows that

(A) if s is a forestformula (or oneof its subcasestreeand path), i.e., it hasno multi-sink
variables,then t doesnot have multi-sink variables,hencet is a forest.

(B) if s is a single-join DAG formula, then t is a single-join DAG formula with the
samemulti-sink variablesas there are in s.

(C) if s is a graph formula, then t is in generala graph formula, becausemulti-sinks
and cyclesare not necessarilyremoved via rewriting with TRS2.

4.4 Three Approac hes to Rewrite LGQ to Forw ard LGQ Forests 81

Prop osition 4.4.3 (Yield of TRS 3). TRS3 rewrites any LGQ graph formula into a for-
ward LGQ forest formula. Moreover, if the input formula contains only closure predicates,
respectively non-closure predicates, then its equivalent rewriting contains also only closure
predicates, respectively non-closure predicates.

Proof. TRS3 extends TRS2 with Rule (4.25). As shown in proof of Theorem 4.4.1, the
normal form obtained using TRS3 does not contain multi-sink variables, hence it is a
forest (or oneof its simpler casesof trees,paths, ? , or >).

The application of any rule of TRS3 yields for redexeswithout closurepredicatesalways
contractions without closurepredicates.Usingcompleteinduction over the (�nite) number
of rule applications, it follows that also the (forward) normal forms do not have closure
predicates.The caseof redexescontaining only closurepredicatesis similar.

The samerewriting property of fragment closednessis not ensuredby TRS1 for input
formulas without closurepredicates,becauseTRS1 yields rewritings containing as many
child� predicatesas reversepredicatesin the input formulas. Also, TRS2 hasthis property
up to the forest restriction or rewritings equivalent to graph formulas.

From Proposition 4.4.3it followsalsothat the LGQ fragments containing formulasonly
with closurepredicates,respectively without closurepredicates,are as expressive as their
forward forest subfragments.

Prop osition 4.4.4. LGQ[F[R] = LGQ[F]Forestsand LGQ[F+ [R+] = LGQ[F+] Forests.

Proof. The right-hand sidesof both equationsare included in their left-hand sides

LGQ[F[R] = LGQ[F][LGQ[R]� LGQ[F]� LGQ[F]Forests

LGQ[F+ [R+] = LGQ[F+] [LGQ[R+] � LGQ[F+] � LGQ[F+] Forests:

Proposition 4.4.3ensuresthat any LGQ formula canberewritten usingTRS3 into a forward
forest LGQ formula, both formulas either containing closurepredicatesor not:

LGQ[F[R] � LGQ[F]Forests LGQ[F+ [R+] � LGQ[F+] � LGQ[F+] Forests:

We concludethis inspection on the expressivity of LGQ with a remark on the abilit y
of TRS3 to detect and remove redundanciesof input formulas. For any graph formula, its
equivalent rewriting contains tree formulas as disjuncts, which are known to be variable-
preservingminimal, cf. Proposition 3.5.1. This minimization property of TRS3 reaches
its apogeewhen rewriting graph formulas without closurepredicates. In such a case,the
forward normal form obtained for each input disjunct is a tree formula, thus rewriting
graph formulas to variable-preservingminimal forest formulas, thus with sizeindependent
of the sizeof the input graph formulas and only dependent on the maximum number of
the variablesappearing in their disjuncts.

82 4. Source-to-source Query Transformation: From LGQ to Forw ard LGQ

4.4.3 Termination

This sectionshows that all three rewriting systemsTRSi (1 � i � 3) terminate. For this,
we employ the strict, well-founded,orders> r ev

ty pe, > r ev
pos, > dag

ty pe, > dnf , > siz e, and lexicographic
products of them, all de�ned on LGQ formulas.

Theorem 4.4.2 (T ermination prop ert y of TRS 1;2;3). All three rewrite systems,i.e.,
TRS1, TRS2, and TRS3 terminate.

Proof. The rewriting systemsTRSi are terminating if, for all LGQ formulas s and t, s ! t
implies s > i t, with > i terminating (well-founded) orders. The formula t is one-step
derivable from s.

As shown below, theseorders > i are de�ned using the strict and terminating orders
> r ev

ty pe, > r ev
pos, > dag

ty pe, > dnf , > siz e, and their lexicographicproducts. The latter are terminating
becausethey are embeddingsinto the strict and terminating order > mul on multisets over
natural numbers, and > on natural numbers. More precisely, the orders> i are:

TRS1. > 1 is > r ev
ty pe.

Proposition 4.3.1ensuresthat the terminating order > r ev
ty pe holds betweens and t.

TRS2. > 2 is > r ev
ty pe � > r ev

pos � > dnf � > siz e.
For applications of rules of Lemmas 4.3.3, the terminating order > r ev

ty pe � > r ev
pos is

ensuredby Proposition 4.3.3betweennorm(s) and norm(t).

For applications of rules of Lemma 4.3.5, the terminating order > dnf betweens and
t is ensuredby Proposition 4.3.5, and also such rule applications preserve the order
> r ev

ty pe � > r ev
pos betweenformulas norm(s) and norm(t), i.e., such rule applications do

not changethe reversefactors of norm(s) and norm(t).

For applications of rules of Lemma 4.3.6 the terminating order > siz e is ensuredby
Proposition 4.3.6, and at the sametime such rule applications preserve the orders
> r ev

ty pe � > r ev
pos betweennorm(s) and norm(t), and > dnf betweens and t.

Then, the lexicographicproduct of the later and the former (in this product order)
is also terminating: > r ev

ty pe � > r ev
pos � > dnf � > siz e.

TRS3. > 3 is > dag
ty pe � > r ev

ty pe � > r ev
pos � > dnf � > siz e.

TRS3 hasa singlemorerule in addition to TRS2, namelyRule (4.25) and for its appli-
cations the terminating order > dag

ty pe betweens and t is ensuredby Proposition 4.3.4.
At the sametime, all rules of TRS2 preserve the terminating order > dag

ty pe betweens
and t. Then, the lexicographicproduct of the former and the later (in this product
order) is terminating.

4.5 Complexit y Analysis 83

4.4.4 Conuence

Becauseall three rewriting systemsterminate, cf. Theorem4.4.2, showing conuencecanbe
boiled down to showing local conuence [122], a much easiertask. The following theorem
statesthe local conuenceproperties of each of our three rewriting systems.

Theorem 4.4.3 (Lo cal conuence of TRS 1). The term rewriting systemsTRS1 and
TRS3 are locally conuent for any input LGQ formulas, whereas TRS2 is locally conuent
for input LGQ forests,and not conuent for input LGQ DAGs and graphs.

Proof. The proof is given in the Appendix.

4.5 Complexit y Analysis

Discussion on the complexit y of A C-matc hing for LGQ ! rules

AC-matching (and AC-uni�cation) is NP-completein general: the number of substitutions
(uni�ers) for any two terms is �nitary , but it canbeexponential in the sizeof the terms, see,
e.g.,[103]. In the particular caseof TRS1;2;3, weshow next that AC-matching is polynomial.
The intuition for this result is that the rewrite rules restrict severly the matchings of their
contained variables.

The lhs of LGQ! rewrite rules of TRS1;2;3 are of three kinds:

1. a singlebinary LGQ! atom, whereits variablesrangeover LGQ variables,

2. an LGQ! path madeout of two atoms with di�erent function symbols, whereaddi-
tionally all variablesrangeover LGQ variables,

3. an LGQ! formula containing only two or three variablesrangingover LGQ formulas.

In the �rst case,the AC-matching problem is reducible to syntactic matching, which is
linear in the sizeof both participating terms. In the secondcase,the AC-matching problem
is reducible to syntactic matching of the variables from each of the two atoms, followed
by checking whether the variable appearing in both atoms matched the sameconstant.
This proceduretakesat most quadratic time in the term to match. In the third case,the
LGQ! variablescan match any subtermsof the LGQ formula. The number of all possible
combinations of matchings of these variables is exponential in their number, where the
basis is the size of the term to match. Becausethe number of the LGQ ! variables is
bound by a constant (lessthan or equal three), the time for AC-matching is at most cubic
in the sizeof the term to match.

The aforementioned polynomial casesfor AC-matching canbefurther reducedto linear,
if the powerful and elegant LGQ representation of formulas and rules could have been
traded for morecompactrepresentations. For example,the rewritings could bedoneon the
digraph representations of LGQ formulas, and applications of our rules can be performed
in linear time as, e.g., matchings of paths of length two in graphs. The quadratic time

84 4. Source-to-source Query Transformation: From LGQ to Forw ard LGQ

of the secondcasewould be neededthen only once for the construction of the digraph
representation of the LGQ formula to rewrite.

The complexity factor of the AC-matching algorithm usedby our rewriting systemsdo
not appear in the following complexity results.

Complexit y of LGQ form ula rewriting using TRS 1;2;3

We conduct the complexity study of rewriting LGQ formulas using TRS1;2;3 with the
following declaredobjectives:

� the time and spacecomplexity for rewriting LGQ formulas using each TRSi ,

� the sizeof the rewritten LGQ forward formula,

� LGQ fragments for which someTRSi have the above complexitiesbetter.

For an input LGQ formula s, the following parameterscan inuence the above com-
plexities of its rewriting:

� its sizejsj, and the sizeof its DNF normalization jnorm(s)j whereadditionally with
reexive transitive closureformulas rewritten into disjunctions of selfand transitive
closureatoms (seeRule (4.4)),

� the reversefactors typer ev(s), typer ev(norm(s)) and posr ev(s), and the DAG factor
typedag(norm(s)),

� the variable connectionrelation
p

; s with connectionsequencep.

The results regarding the above complexitiescan be summarizedas follows:

� TRS1 rewrites an LGQ formula s into an equivalent forward LGQ formula in linear
time and logarithmic space,and the sizeof t is linear in the sizeof s, more precisely
jtj = jsj + 2 � jtyper ev(s)j.

� In general,TRS2 needstime and space,and generatesequivalent forward LGQ for-
mula t with a number of disjuncts exponential in the number of reversebinary atoms
in the normalized formula norm(s), i.e., in jtyper ev(norm(s)) j; also, the sizeof each
disjunct of t is linear in jsj. As ensuredby Theorem 4.3.1, the exponentialit y be-
haviour of rewriting using TRS2 can not be avoided, and the output of TRS2 is
optimal.

� TRS3 adds to the exponential factor from the complexity results of TRS2 the sum
of forward sink-arities of variables in the normalized formula norm(s). However,
in contrast to TRS2, each disjunct in t is a tree (and henceis variable-preserving
minimal) and its sizeis then linear in the maximum number of variablesin a disjunct
of s, which is notably independent on the sizeof s, and can be much smaller than
the number of binary atoms of that disjunct.

4.5 Complexit y Analysis 85

� For LGQ formulas, where each connectionsequencehas neither vertical closurere-
versepredicatesafter vertical forward predicates,nor horizontal closurepredicates
immediately after horizontal reversepredicates,TRS2 needstime linear and space
logarithmic in the normalizedsizejnorm(s)j of s, and TRS2 generatesrewritten for-
mula t of size at most the normalized size jnorm(s)j. The samecomplexities are
achieved also by TRS3 if additionally there is no connectionsequencewith vertical
closureforward predicates,having assink a variable with a forward sink-arity greater
than one,after vertical forward predicates.

� Finally, an alternative technique is described for �nding the upper bound on the
number of tree formulas in t by meansof orderson the variablesof s.

In the rest of this section,the aforementioned claims are proven.

Theorem 4.5.1 (Complexities for TRS 1). TRS1 rewrites any LGQ formula s into
an equivalent forward LGQ formula t in linear time and logarithmic space, and jtj =
jsj + 2 � jtyper ev(s)j.

Proof. TRS1 consistsof Rule (4.1) that rewrites each reversebinary atom into two forward
binary atoms and a unary formula (root). The sizejtyper ev(s)j of the reversetype factor
givesthe number of reversebinary atoms in s. The sizeof t can be then obtained trivially
asjtj = jsj+ 2� jtyper ev(s)j. Note that it is not necessaryto normalizes, for a rewrite works
locally on a reversebinary atom. TRS1 traversesthe entire formula s and needsto store
just a pointer to the current binary atom. Therefore,TRS1 needsonly extra logarithmic
space.

The complexitiesfor TRS2 depend highly on the kind of binary atoms existent in the
formula s to rewrite, and on their connections. In order to analyzesuch complexities,we
conduct a study on the form of a connectionsequencep from a non-sink variable. Recall
from De�nition 3.7.1 that a connectionfrom a variable a to a variable b with connection
sequencep in an formula s exists, written a

p
; s b, if the binary atom p(a;b) exists in

e, or if there are variable connectionsa
p1; s v

p2; s b with p = p1:p2. In the following,
we considerp having m reversepredicates(boundedby typer ev(s)), each of them having
ni forward predicatesappearing before them in p (1 � i � m). We consideralso these
reversepredicatesascendinglyorderedby their position in the connectionsequencep, thus
the reversepredicate with a greater index appears in p beforea reversepredicate with a
smaller index. Then, the number of forward predicatesni appearing before the reverse
predicate i is greater than or equal to the number of forward predicatesn i +1 appearing
beforethe reversepredicatei + 1. This meansalsothat the number of (forward and reverse)
predicatesappearingbeforethe reversebinary atom i is n i + m� i , and this number belongs
to the reverseposition-setof i , henceto the reverseposition factor posr ev(s) of s.

The number of disjuncts in t obtainedby rewriting onedisjunct in s usingTRS2 depends
on the type of interactions between reverseand forward binary atoms in s, as given in
Figure 4.5, and it is computed by a family of functions f � i j 1 � i � mg for each class

86 4. Source-to-source Query Transformation: From LGQ to Forw ard LGQ

of interactions betweenforward and reversebinary atoms. A function � i (ni ; ni � 1; : : : ; n1)
(1 � i � m) has i parameters,i to 1, whereparameter j represents the number of forward
predicatesnj appearing beforethe reversepredicate j in p, and simulates the rewrite rule
applicationsfor di�erent interaction classes:the time complexity of rewriting s usingTRS2

is then the number of computation stepsrequired to compute� m , and the value computed
by � m is the number of disjuncts in t obtained by rewriting one disjunct in s. Note that
the averagesizeof each such disjunct in t is boundedby jsj.

A family of functions f � i j 1 � i � mg is de�ned next for each classof interactions
betweenforward and reversebinary atoms. Note that thesefunctions simulate a rewriting
sequencewhere rules are applied in such an order so that the �rst reversebinary atom
is always considered�rst. That is, we consideralways the �rst interaction to be found
in the connectionsequence.There are, of course,other possiblesimulations. In fact, for
every possiblerewriting sequenceonecande�ne another family of functions simulating the
rewriting of a given formula. All such families have to computethe samevalue, if the term
rewriting systemis conuent. However, the number of their computation stepsmay di�er.

De�nition 4.5.1. For classes(VF,HR)?, H/V(F ?,R) the functions � i are de�ned by

� i (ni ; : : : ; n1) =

8
><

>:

� i � 1(ni � 1; : : : ; n1) , i > 1

0 , i = 1 and for class (f fstChildg,HR)?

1 , i = 1 and for the other classes.

This de�nition can be read also in terms of applications of rules corresponding to
interactions betweenbinary atoms vertical forward and horizontal reversei (respectively
forward and non-closurereverse i , both either vertical or horizontal): the e�ect of an
interaction of such a forward and reversebinary atoms is that the reversebinary atom is
removed (ni = 0).

De�nition 4.5.2. For the class (HF,VR)?, the functions � i are de�ned by

� i (ni ; : : : ; n1) =

8
>>><

>>>:

� i (ni � 1; : : : ; n1 � 1) , i > 1 and ni > 0

� i � 1(ni � 1; : : : ; n1) , i > 1 and ni = 0

� 1(n1 � 1) , i = 1 and ni > 0

1 , i = 1 and ni = 0.

The above de�nition reads in terms of rule applications as follows: the e�ect of an
interaction of such binary atoms, i.e., forward and reversei , is that the number of forward
binary atoms is reducedby 1 for i and for all reversebinary atoms j that follow it in the
connectionsequence(i.e., j < i). When there is no forward binary atom for i (n i = 0),
i.e., the reverseformula hasbeenremoved, the interaction of forward formulas and reverse
binary atom i � 1 is considered.

4.5 Complexit y Analysis 87

De�nition 4.5.3. For the class H/V(F,R+) the functions � i are de�ned by

� i (n1; : : : ; ni) =

8
>>><

>>>:

� i (ni � 1; : : : ; n1 � 1) + � i � 1(ni � 1 � 1; : : : ; n1 � 1) , i > 1 and ni > 0

� i � 1(ni � 1; : : : ; n1) , i > 1 and ni = 0

1 + � 1(n1 � 1) , i = 1 and ni > 0

0 , i = 1 and ni = 0.

The above de�nition can be read in terms of rule applications as follows: the e�ect of
an interaction of such binary atoms, i.e., forward and reversei , is that two disjuncts are
created. The �rst disjunct hasstill the reversebinary atom i , but, like in De�nition 4.5.2,
the number of forward binary atoms is reducedby 1 for i and for all reversebinary atoms
j that follow it in the connection sequence(i.e., j < i). The seconddisjunct does not
have the reversebinary atom i (ni = 0), and, like in like in De�nition 4.5.1, the number
of forward binary atoms is reducedby 1 for all reversebinary atoms j that follow it in the
connectionsequence(i.e., j < i).

De�nition 4.5.4. For the class H/V(F,R)+ the functions � i are de�ned by

� i (ni ; : : : ; n1) =

8
>>><

>>>:

� i (ni � 1; : : : ; n1 � 1) + � i � 1(ni � 1; : : : ; n1) , i > 1 and ni > 1

� i � 1(ni � 1; : : : ; n1) , i > 1 and ni = 1

1 + � 1(n1 � 1) , i = 1 and ni > 0

0 , i = 1 and ni = 0.

The �rst branch encodesthe creation of two disjuncts. The �rst disjunct still contains
the reversebinary atom i and the number of forward binary atoms is reducedby 1 for all
reversebinary atoms j � i in the connectionsequencelike in De�nition 4.5.2. The second
disjunct doesnot contain the reversebinary atom i .

In De�nitions 4.5.3 and 4.5.4, for the casewhen forward and reversepredicatesare
both horizontal, the functions hold only if the connectionsequencehas n i forward predi-
catesappearing beforethe closurereversepredicate i . Otherwise, the simpler functions of
De�nition 4.5.1hold.

Prop osition 4.5.1. The families of functions from De�nitions 4.5.1 through4.5.4 for the
interaction classesof Figure 4.5 have the most number of computation stepsamong all
suchfamilies of functions.

Proof. (Sketch) Other possiblerewriting sequencesfor the interaction classesconsidered
in De�nitions 4.5.1and 4.5.2have the samenumber of computation stepsas the rewriting
sequencesdescribed in these de�nitions. Consider, e.g., that we start rewriting the j
reversebinary atom. For the former interaction class,it meansthat the reverseformula i
is removed after exactly one rewrite step. For the latter class,it meansthat j is pushed
towards a non-sink variable only if ni > ni +1 . Otherwise, another reversebinary atom
k 6= i with nk > nk+1 is pushed. It is easyto seethat independently on the choseof j and
k, the samenumber of rewrite stepsare necessary.

88 4. Source-to-source Query Transformation: From LGQ to Forw ard LGQ

We discussnext the simulations for the interaction classesconsideredin De�nitions
4.5.3and 4.5.4. Each application of rules for the �rst reversebinary atom i (e.g., a vertical
closure) having ni forward binary atoms (e.g., vertical closure) appearing before it, can
create two disjuncts and all binary atoms j appearing after i in a connection sequence
(1 � j < i) would have now to be rewritten in both disjuncts (e.g., interactions of closures
either vertical or horizontal). However, this doubling of the number of disjuncts must
not necessarilyimply the doubling of the number of rewritings for the binary atoms j
appearing before i in a connection sequence(1 � j < i), if the whole formula s is not
normalizedbeforerewriting thesereversebinary atoms,but only after all reverseformulas
are removed.

Theorem 4.5.2 (Complexities for TRS 2). TRS2 rewrites an LGQ formula s into an
LGQ formula t in time T and space S, and with the size jtj of t in O(ab � jsj), where
a = max(posr ev(norm(s))) and b = typer ev(norm(s)).

Moreover, TRS2 rewritess into t in time linear andextra space logarithmic in jnorm(s)j,
and generates rewritten formula t of size at most jnorm(s)j, if each connection sequence
in s contains neither

� vertical closure reversepredicatesafter vertical forward predicates, nor

� horizontal closure reversepredicates immediately after horizontal reversepredicates.

Proof. An inspection of all rulesof TRS2 show that theserulesdo not increasethe number
of baseformulas in disjuncts in t, but (possibly) the number of disjuncts in t. Therefore,
the averagesizeof each disjunct in norm(s) remainsthe samealso for t, and is bounded
by jsj.

We use the the families of functions f � i j 1 � i � mg de�ned previously for each
interaction class.Wecomputein each casethe function � m and the number of computation
stepsthat correspondsto rewriting m reversebinary atoms. After that, we show how this
result can be extendedto the rewriting of all reversebinary atoms.

Recall that b = jtyper ev(norm(s)) j is the number of reversebinary atoms in norm(s)
and a = max(posr ev(norm(s)) is the maximum connection length from a reversebinary
atom to a non-sink variable in norm(s). Clearly, the number of forward predicatesn i ,
which appear beforethe reversepredicatesalong a connectionsequence,is smaller than a.

1. Classes(VF,HR)?, H/V(F ?,R). The computation of � m requires m steps and the
number of disjuncts in t obtained by rewriting onedisjunct in s is 0 or 1:

� m (nm ; : : : ; n1) =

(
0 , for class(f fstChildg,HR?)

1 , otherwise:

The entire formula norm(s) is traversedonceand only one pointer to the current binary
atom is needed.Therefore,only extra logarithmic spacein jnorm(s)j is needed.

2. Class(HF,VR)?. The number of disjuncts in t obtained by rewriting onedisjunct in
s is 1:

� m (nm ; : : : ; n1) = 1

4.5 Complexit y Analysis 89

The number of stepsrequired for the computation of � m is

m + nm +
m� 1
�

i =1
(ni � ni +1) = m + n1

As for the �rst case,only extra logarithmic spacein jnorm(s)j is needed.
For the interaction of horizontal forward and horizontal reverseof the next two cases,

the complexitieshold only if beforea horizontal reversei its forward horizontal predicates
ni , or other horizontal reversepredicatesappear immediately beforeit. Otherwise,if there
is a vertical predicate inbetween,the better complexitiesof caseonehold.

3. ClassH/V(F,R+). The number of disjuncts in t obtained by rewriting one disjunct
in s, as also the number of computation steps,is exponential in m:

� m (nm ; : : : ; n1) =
nm

�
i m =1

(� m� 1(nm� 1 � im ; : : : ; n1 � im)) =
nm

�
i m =1

nm � 1 � i m

�
i m � 1=1

: : :
n2 � i 3

�
i 2=1

� 1(n1 � i2):

4. ClassH/V(F,R)+ . The number of disjuncts in t obtained by rewriting one disjunct
in s, as also the number of computation steps,is exponential in m:

� m (nm ; : : : ; n1) =
nm

�
i m =1

(� m� 1(nm� 1; : : : ; n1)) =
nm

�
i m =1

: : :
n2

�
i 2=1

(n1) =
m
�

i =1
(ni):

The behaviour of combinations of any of these interaction classesfollows the more
complexclass(with respect to the number of computation stepsand of disjuncts).

The above considerationsare just for oneconnectionsequencethat might not contain
all reversepredicates,i.e., m might be smaller than b. We show next that the above results
are extensiblefrom m to b.

If m < b, then there are other reversepredicatesalong another connectionsequence
than p, containing, say, m0 reverse predicateswith ni (m + 1 � i � m0 + m) forward
predicatesbefore them. This new connectionsequenceis to be consideredin each of the
already generateddisjunct. Let us considerthe fourth caseabove. The other casescan

be treated similarly. In this case,each disjunct is replacedby other
m+ m0

�
i = m+1

(ni) disjuncts.

The total number of disjuncts is now
m+ m0

�
i =1

(ni) = (
m
�

i =1
(ni))(

m+ m0

�
i = m+1

(ni)), and after treating

all connectionsequencescontaining reversepredicates,we can concludefor the fourth case

to be
b
�

i =1
(ni). This result can be approximated to

b
�

i =1
(a) = ab.

TRS3 adds to the complexitiesof TRS2 the overheadof transforming variableswith a
forward sink-arity greaterthan oneinto one-sinkvariables,cf. Section4.4.2andRule (4.25).
Recall that each application of Rule (4.25) preservesthe sizeof the rewritten formula. For
an formula s, there are jtypedag(norm(s)) j such variables j , and the number of forward
predicateson the longest connectionpath until variable j denotedby n j . We denote by
f an-in the sum of forward sink-arities of all multi-sink variablesin s:

f an-in = �
j 2 ty pedag (nor m(s))

(j):

90 4. Source-to-source Query Transformation: From LGQ to Forw ard LGQ

f an-in can be alsoseenas the number of reversebinary atoms introducedby the applica-
tions of Rule (4.25), and this addsto the exponential complexity factor of rewriting using
TRS2.

Also, TRS3 rewrites any LGQ formula to a forward LGQ forest formula, where each
constituent tree is in fact variable-preservingminimal, cf. Proposition 3.5.1 and is not
unsatis�able with respect to the unsatis�abilit y detection rules of Lemma 4.3.6.

Theorem 4.5.3 (Complexities for TRS 3). TRS3 rewrites an LGQ formula s into an
LGQ formula t in time T and space S in O(ac � jsj), and with the size jtj of t in O(ac �
n), where a = max(posr ev(norm(s))) and c = jtyper ev(norm(s)) j + f an-in , and n is the
maximum number of variablesin a disjunct of norm(s).

Moreover, TRS3 rewritess into t in time linear andextra space logarithmic in jnorm(s)j,
and generates rewritten formula t of size at most jnorm(s)j, if each connection sequence
in s contains neither

� vertical closure reversepredicatesafter vertical forward predicates, nor

� horizontal closure predicates immediately after horizontal reversepredicates, nor

� vertical closure forward predicates,havingassink a variablewith a forward sink-arity
greater than one, after vertical forward predicates.

Proof. Recall that TRS3 contains TRS2, which has time and spacecomplexity and gen-
erates t with a number of disjuncts in O(ab � jsj) in general,and has time linear, extra
spacelogarithmic, and jtj linear in jnorm(s)j for particular casesof s without connec-
tion sequenceswith vertical closurereversepredicatesafter vertical forward predicates,or
horizontal closurepredicatesimmediately after horizontal reversepredicates. The latter
complexitiesapply alsofor TRS3, if the application of the extra rule (4.25), which rewrites
forward binary atomshaving assink a variable with a forward sink-arity greater than one,
doesnot generatesequencesof the above kind, thus any connectionsequencein s must not
contain also vertical closureforward predicates,having as sink a variable with a forward
sink-arity greater than one,after vertical forward predicates.

TRS3 rewrites LGQ formulas to forward LGQ forest formulas, cf. Theorem4.4.3, where
each constituent disjunct is a tree, thus variable-preservingminimal, cf. Proposition 3.5.1.
This meansthat each disjunct in t has as many binary atoms as the maximum number
of variablesn in a disjunct in norm(s), which can be much smaller than the sizeof that
disjunct, which is on its turn bounded in jsj. Also, the number of nodetest-formulas is
constant per each variable.

BecauseTRS3 is conuent, the order of rules applications doesnot matter for jtj. Let
us consider that Rule (4.25) is applied until no other applications are possible. Then,

�
j 2 ty pedag (nor m(s))

(j � 1) < f an-in new reversepredicatesare introduced in addition to the

existing onestyper ev(s). The casedistinction from the proof of Theorem4.5.2applies(see
that proof for details), by replacingtyper ev(norm(s)) with typer ev(norm(s)) + f an-in .

4.5 Complexit y Analysis 91

Alternativ e technique for �nding the upp er bound on the number of trees in t

Considerthe orders< v and < h on LGQ variablesof an LGQ formula s, de�ned by (vr 2
VR?, vf 2 VF?, hr 2 HR?, hf 2 HF?):

vr (x; y) � e , y < v x; vf (x; y) � e , x < v y

hr (x; y) � e , y < h x; hf (x; y) � e , x < h y:

Intuitiv ely, < v and < h are partial orderson LGQ variablesthat appear in vertical, respec-
tively horizontal binary atoms, and f x; yg 2< c (c 2 f v; hg) if for each LGQ substitution
consistent the input formula and tree, the image of x appears in document order before
the imageof y.

Total orderscan be obtained from < v and < h by creating all possiblepermutations of
LGQ variables consistent with < v and < h. Then, the combination of one possibletotal
order obtained from < v together with one obtained from < h de�nes a possibledisjunct
of t, by translating back the pairs of theseorders in ^ -connectedbinary atoms (as shown
above). These total orders can be derived by repeatedly decomposing < v and < h and
eliminating the unorderedness(� � f < v; < hg):

� = � 0[f (x; y); (z; y)g) (f � 0[f (x; z); (z; y)g; � 0[f (z; x); (x; y)g): (4.46)

Note that in this way each disjunct in t doesnot contain any two vertical/horizontal binary
atoms having the samevariable as sink. The disjunct becomesa tree, if two additional
conditions are satis�ed: there are no multi-sink variablesand no cycles.

For the former condition, that disjunct must not contain any two binary atoms having
the samevariable as sink, i.e., there is no pair in the corresponding total orders, say � v

and � h, derived from < v and < h respectively, having the samevariable appearing on the
secondposition. This condition is ensuredby (cf. the interaction class(VF,HR)?)

� v = � 0
v [f (x; y)g; � h = � 0

h [f (z; y)g) � v = � 0
v [f (x; z)g; � h = � 0

h [f (z; y)g:

The latter condition can be simply checked by computing the transitive closures� �
v and

� �
h of the total orders� v and � h. Theseclosuresare recursively de�ned using the following

straightforward equivalences(8x; y 2 Vars(s)):

x� �
vy , x� vy or 9y 2 Vars(e) : x� vy� �

vz

x� �
hy , x� hy or 9y 2 Vars(e) : x� hy� �

hz:

The following propagationrule canbefurther derivedfrom the semantics of LGQ predicates

x� �
vy� �

hz� �
vw) x� �

vw;

becausethe descendants w of siblings z of nodes y that have ancestorsx, have also as
ancestorsthe nodesx. Detecting unsatis�abilit y can be simply doneby checking whether
� �

c(c 2 f v; hg) contains at least a pair of a variable with itself (x� �
cx), or that a same

variable pair appearsin both � �
v and � �

h ((x; y) 2 � �
v; (x; y) 2 � �

h).

92 4. Source-to-source Query Transformation: From LGQ to Forw ard LGQ

The number of total ordersderived from < v or < h is clearly exponential in the number
of constituent pairs from both of them having the samevariable appearing on the second
position (see(4.46)), i.e., it is exactly the number of reversebinary atoms plus the sum of
the forward sink-arities of variables in s. This number is the sameexponential factor of
Theorem4.5.3. Furthermore, the number of combinations of each total order derived from
< v and of each total order derived from < h, which is the product of the number of total
ordersfor each < v and < h, givesan upper bound for the number of trees in t.

4.6 Related Work

The ERRA problem is an expressivenessproblem and this chapter givesa positive solution
to it. The existenceof such a solution ensuresthat one can safely considerthe forward
fragment of XML query languagesfor tasks like evaluation, containment, etc., because
the reverse languagefragment can be simply expressiblewithin the forward fragment,
though with its inherent complexity overhead. This is why the ERRA problem is of high
importance for XML query languages,and the existenceof the solution presented in this
chapter is usedin various contexts:

� query evaluation against XML streams;the rules of Lemma 4.3.3 are usedby [126,
127, 84, 138, 106, 131, 129, 124, 125]. Rule (4.1) is usedby [21] (at an algebraiclevel,
not expressedsyntactically).

� static inferenceof querypropertieslikeduplicate freenessandresult ordering[85, 112].

� complexity results for XPath query evaluation; [140] proposesalgorithms for eval-
uation of XPath without closureaxes,and notes that for this XPath fragment the
rewriting using TRS2 is LOGSPACE.

� query evaluation against XML data using relational databases;[79, 80] proposee�-
cient spatial data indexesand point out that identities of Lemma 4.3.3can be used
to optimize query evaluation in such contexts by pruning index regions.

� expressivity of XPath; Someof the rules of Lemmas4.3.3and 4.3.4are recently used
by [74] to show also that the languageof conjunctive queriesover someof the LGQ
built-in predicatesis as expressive as XPath.

This sectiondescribesnext somerecent resultson the �elds of XPath querycontainment
and equivalence,minimization, and rewriting. Note that XPath (and also LGQ) queries
are essentially specializedconjunctive querieson a tree-structured domain. Containment
of relational queries,thus also their equivalenceand minimization that are basedupon, is
known to be NP-complete[38].

The work found in the areaof query containment and equivalence,rewriting, and mini-
mization, canbe classi�ed in two categories:model-basedand syntax-oriented approaches.
The former categoryrelieson a modeling of queriesas tree patterns or various kind (tree,

4.6 Related Work 93

two-way) of automata. The problemsare then reducedto testsat the level of thesemodels.
The latter categoryappliessyntactic operations, like rewriting. Arguably, syntax-oriented
approachescomewith several advantages,like remainingat the level of the query language,
thus capturing the exact semantics and properties of the queriesand delivering the result
queriesdirectly. Also, the encoding of such problemsat the level of automata su�ers when
translating back the obtained solutions from automata to queries.

Query Con tainmen t and Equiv alence

The problem of query containment is to check whether the answers of onequery are con-
tained in the answer of a secondquery for all databases.Equivalencecan be seenthen as
two-way containment. This problem received signi�cant attention in the context of XML,
e.g.,[33, 147, 56, 148, 115, 149, 121, 144, 116]. The motivation underlying such robust body
of work reliesin practical issueslike query optimization, e.g., [38] or answering queriesus-
ing views(seebelow). Query containment is alsothe �rst step in addressingmore involved
problemslike query minimization, rewriting, and answering queriesusing views.

[65] studiesthe containment of the union-freeand negation-freefragment of the StruQL
query languagefor querying semistructured data seenas graph. LGQ and StruQL are
incomparable,becauseLGQ hasrelationsthat arenot expressiblein StruQL (the horizontal
and reverserelations), andStruQL allowsclosureson paths. [65] showsthat for this StruQL
fragment containment is decidable,and givessemantic and syntactic criteria for checking
containment. The semantic criteria is basedon canonical databasesfor a given query,
i.e., databaseson which the query answer is not empty and the removal of one database
node rendersthe answer empty. Although there are in�nitely many canonicaldatabases
for a given query, [65] shows that for checking containment it su�ces to use just a �nite
number of them, which dependson the consideredqueries.Becausethe complexity of this
approach is triple exponential, [65] developsa more e�cien t syntactical criteria with only
exponential complexity.

Strongly relatedto resultsof this chapter, [65] showsalsothat, for a further restriction of
StruQL to simpleregular path expressions(that correspond in fact to LGQ[f child; child+ g]
path queries), the intersection R \ R0 of two such expressionsR and R0 is expressibleas
a union of expressionsR1 [: : : [Rk , where the size of each Ri is at most the size of
both R and R0, and the number k of union terms can be exponential in the size of R
and R0. This result, although stated only for simple path expressions,mirrors (almost
perfectly) three important properties of rewriting arbitrary LGQ formulas, as investigated
in this chapter: (1) DAG formulas (as obtained via intersection) can be always rewritten
to equivalent forest formulas, (2) which can have sizesexponential in the sizesof the DAG
formulas, and (3) contain only tree formulas, whosesizesare bound in the sizeof the DAG
formulas. Note that this chapter sharpensthe third property by ensuring the sizeof the
resultedtree formulasdependent only on the number of variablesand not of the predicates
of the DAG formulas. The approach of [65] to these results is also di�erent from ours:
there, each simple regular path expressionis compiled into an NFA, and their intersection
is equivalent to the product automaton. All possiblepaths from an initial to a �nal state

94 4. Source-to-source Query Transformation: From LGQ to Forw ard LGQ

de�ne then possibleregular path expressionscontained in their intersection,and there are
exponentially many such paths.

[115, 116] are follow-up works of [65] with declaredfocuson the XPath fragment of child
and child+ axes,wildcards,and �lters. In particular, it is shown that for the aforementioned
XPath fragment, the containment problem is coNP-complete.Earlier research shows that
for the XPath fragment without any of the constructs (1) child+ axis [148], (2) wildcards
[9], (3) �lters, the containment problem is PTIME. For checking containment, [115, 116]
proposean e�cien t (PTIME), soundalgorithm that is alsocompletein somepractical cases
(no �lters), and a sound and completealgorithm (EXPTIME) that is e�cien t (PTIME)
in particular casesof interest (the number of child+ axes,or of wildcards, or of �lters is
bounded). The techniquesof [115, 116] for checking containment are similar to the onesof
[65], namelycanonicalmodels(similar to canonicaldatabases),andpattern homomorphism
betweentwo queries.

[33] considersthe containment problemfor conjunctive regularpath querieswith inverse
(CRPQI). In contrast to queriesof the StruQL fragment consideredin [65], binary relations
createdvia composition (concatenation,Kleene-*, union) of child relations admit inverses.
The technique of [33] for checking non-containment is basedon checking non-emptinessof
a two-way �nite automaton constructed from the two queries. [33] gives the EXPSPACE
upper bound for CRPQI containment shown also by [65] for CRPQ (i.e., without the
inverse operator). This upper bound is furthermore shown to be also a lower bound,
even for CRPQ. An interesting open issueis the problem of �nding an equivalent forward
CRPQ (forest) query to any CRPQI query. We conjecture that a (non-trivial) extension
of the results of this chapter in the direction of coping with Kleene-* composition of path
expressionswould provide a solution to the problem.

[144] proposesa technique for checking containment of XPath queries based on an
inferenceand rewriting systemthat allows assertingand proving containment properties
by using judgments.

In the presenceof schemaslikeDTDs or of strictly morepowerful regular treegrammars,
the XPath query containment problem proves to be harder [146, 147, 56, 148, 121, 149].
For DTDs and simpleXPath integrity constraints the problem is undecidable[56]. For the
XPath fragment with �lters (no closuresor wildcards), for which the standardcontainment
problem is PTIME, the query containment problem is coNP-complete[148, 121]. Query
containment under DTDs is decidable (EXPTIME) for the XPath fragment containing
child+ axis, �lters and wildcards [149]. The technique for checking containment is basedin
[149] on the transformation of queriesinto regular tree grammars,and the useof known
decidability and closureresults for regular tree grammars. However, XPath query contain-
ment in presenceof disjunctions, variable bindings, equality testing, and DTD constraints
is undecidable[121].

Query Minimization

The query minimization problem is to �nd for a given query an equivalent one that has
the smallest sizeamongall its equivalents. Minimization is one important path to query

4.6 Related Work 95

optimization, becausea decreasein the query sizea�ects positively the query evaluation.
Note that the minimization problem is at least as hard as the containment problem, on
which it is based.Therefore,complexity lower boundsof the latter apply alsoto the former.

Results of this chapter have direct relevanceto the state of the art of the query min-
imization problem. More speci�cally, the rewriting approach presented in this chapter
has also someminimization properties. First, the rules of Lemma 4.3.6 eliminate simple
syntactic redundancies. Second,and more important, non-obvious semantic redundan-
cies are detected and eliminated. TRS3 yields forward forest formulas, where each tree
is variable-preservingminimal, even if the input formula does not have this minimalit y.
Recall that variable-preservingminimalit y meansthat the rewritten formula contains as
many binary atoms as variables in the tree minus one, thus no redundant binary atoms
appear in any disjunct of the rewritten forward formula. Also, there are no redundancies
among disjuncts. Only somerules of TRS2 create disjunctions, but each disjunct is not
(semantically) contained in any other, and the number of these disjunctions is minimal
under certain properties, cf. Theorem 4.3.1. The variable-preservingminimalit y, as inves-
tigated in this chapter, is complementary to the more involved minimalit y objective of
[148, 9, 135, 64], wherevariablescan be also removed.

There are several e�orts towards XPath query minimization [148, 9, 135, 64]. In the
absenceof DTDs, simple XPath expressionsbuilt up from child axis, wildcard, and �lters,
have a unique minimal equivalent expression,which can be found in polynomial time
[148]. These results carry over even if child+ axis, but no wildcard, is allowed [9]. For
XPath querieswith child and child+ axes,�lters, and wildcards, the minimization problem
is NP-hard [64], and its variant of �nding an equivalent query with sizelessthan a given
threshold is coNP-complete(basedon results for containment [115]).

In the presenceof child/parent and sibling constraints derived from DTDs, the simple
XPath expressionsdo not necessarilyhave a unique minimal equivalent [148]. For sim-
pler constraints, like required child, required descendant, and required co-occurrences,the
equivalent minimal query remains however unique [9]. Latter, [135] gives more e�cien t
variants of the polynomial algorithms of [9].

All presented approacheshave at their corethe observation that a minimum sizequery
equivalent to a query having child and child+ axes, �lters, and wildcards, can be found
amongthe subpatternsof the latter (thus the minimal query is doneby pruning redundant
subqueriesuntil no subquery can be removed while preservingequivalence). Also, for the
queriesof [148, 9, 135], a containment betweentwo such queriesp and q can be reducedto
�nding a homomorphismfrom q to p, which can be done in polynomial time. For queries
having child and child+ axes,�lters, and wildcards, this property doesnot necessarilyhold
[115, 116], and the minimization problem becomesNP-hard [64].

View-based Query Pro cessing

There are two (similar) approachesto view-basedquery processing[35]: view-basedquery
rewriting and answering.

In the view-basedquery rewriting approach, we are given a query and a set of views,

96 4. Source-to-source Query Transformation: From LGQ to Forw ard LGQ

and the goal is to reformulate the query into an expression,the rewriting, that refersonly
to the views, and provides the answer to the query. Typically, the rewriting is formulated
in the samelanguageused for the query and the views, but in the alphabet of the view
names,rather than in the alphabet of the database.Thus, query processingis divided here
in two steps,wherethe �rst step re-expressesthe query in terms of a given query language
over the alphabet of the view names,and the secondstep evaluatesthe rewriting over the
view extensions.

The ERRA problem can be seenas a specialization of the view-basedquery rewriting,
where the views are derived from the rewrite rules of this chapter. There are still some
important di�erences betweenthe two problems: in the ERRA problem, (1) the rewriting
must be equivalent to the initial query, (2) the reformulation must not be necessarilydone
using only the views (only query parts with reverseatoms should be rewritten), and (3)
there canbemorethan onereformulation step, for there canbeviewsthat map formulasto
equivalent formulasthat still contain reverseatoms. The approach to query rewriting taken
in this chapter it is di�erent from [130] (and others described in [83]) wherean algorithm
for rewriting regular path queriesusing techniqueslike containment mappingsand chaseis
proposed. In our case,the exact rewriting procedure(that may correspond to a so-called
evaluation strategy of rewriting systems)is of no immediate importance,becauseour focus
is more on properties like uniquenessof normal forms, which we show to be preserved by
any of the rewriting strategies(becauseof the conuenceproperty). Proprietary rewriting
algorithms are, however, tuned to obtain e�ciency for particular classesof queriesto be
rewritten.

In the view-basedqueryanswering approach, besidesthe queryand the view de�nitions,
we are alsogiven the extensionsof the views. The goal is to computethe answers that are
implied by theseextensions.Thus, we do not poseany limit to query processing,and the
only goal is to compute the answer to the query by exploiting all possibleinformation, in
particular the view extensions.

The complexities of view-basedrewriting and answering problems for regular path
queriesare studied in [31, 32]. The rewriting problem is 2EXPTIME, and the answering
problem is coNP-completein the size of the view extensions. These results are further
extendedto regular path querieswith inverse[34].

View-basedquery processinghas important application domains[83], e.g.,query opti-
mization, databasedesign,data integration, data warehouse,and semantic data caching.

In the context of query optimization, computing a query using previously materialized
views can speed up query processingbecausepart of the computation necessaryfor the
query may have already beendonewhile computing the views.

In the context of databasedesign,view de�nitions provide a mechanism for support-
ing the independenceof the physical and the logical view of the data, thus enabling the
modi�cations of the storageschemaof the data (i.e., the physical view) without changing
its logical schema; the storageschema can then be seenas a set of views over the logical
schema.

In the context of data integration, a uniform query interface (a mediated schema) is
provided to a multitude of autonomousdata sources(that are semantically mapped to

4.6 Related Work 97

relations from the mediated schema via sourcedescriptions). The di�erence of the data
integration domainto the queryoptimization and databasedesigndomainsconsistsin their
di�erent focuses:in the data integration domain, the number of views (i.e., sources)tend
to be much larger, the sourcesdo not contain the completeextensionsof the views,and the
rewriting canbe(maximally-)contained in the initial query, not necessarilyequivalent [123].

In the context of data warehouses,it is neededto choosea set of views to materialize
in the warehouse.

In the context of semantic data caching in client-server systems,the data cached at the
client is modeledsemantically as a set of views, rather than at the physical level as a set
of data pagesor tuples. Later, decidingwhich data needsto be sent from the server to the
client in order to answer a given query requiresto analyzewhich parts of the query can be
answeredby the cached views.

98 4. Source-to-source Query Transformation: From LGQ to Forw ard LGQ

Chapter 5

Evaluation of Forw ard LGQ Forest
Queries against XML Streams

This chapter introducesthe problem of streamedand progressive evaluation of forward
LGQ forest queriesagainstXML streams(SPEX) and describesa solution for it [127, 124,
125]. Recall that the LGQ fragment of forest queriesis equivalent to XPath, cf. Chapter 3.
Moreover, Chapter 4 shows that the fragment of forward LGQ forestsis equivalent to full
LGQ. Therefore, it is important to stressthat the evaluation strategy of forward LGQ
forest queries,as consideredin this chapter, applies to XPath queriesand to unrestricted
LGQ graph queries,too.

After stating the SPEX problemand positioning it briey in the context of query evalu-
ation and tree pattern matching, Section5.2 introducesa strategy for the SPEX evaluation
against unboundedXML streamsby meansof so-calledstream processingfunctions. For
each LGQ predicate, there is a corresponding stream processingfunction that computes,
for a given set of sourcenodes,the sink nodesthat stand in that predicatewith any of the
sourcenodes. The composition of LGQ atoms into LGQ formulas and queriesis reected
in the sequential and parallel composition of the corresponding functions. Section 5.3
givesan e�cien t realization of the proposedevaluation strategy by meansof networks of
communicating deterministic pushdown transducers. A transducer network is a directed
acyclic graph where nodes are transducersand the communication between transducers
is directed by the graph edges. Two minimization problems for transducer networks are
discussedin Section5.4: the problem of �nding the minimal network equivalent to a given
network, and the problemof minimal streamrouting within a givennetwork. For the latter
problem, an e�ective solution is given that improves considerablythe processingtime of
transducernetworks. Section5.5 investigatesthe complexity upper bounds for the evalu-
ation of queriesfrom eight fragments of forward LGQ forests. All casesenjoy polynomial
complexitiesin both the sizeof the query and of the input stream,and someof them have
complexitiesindependent of the streamsize. Correlating theseresultswith the complexity
resultsof LGQ query rewriting from Chapter 4, it is shown further that a largefragment of
LGQ graph querieshas polynomial complexity for the evaluation. Thesetheoretical com-
plexities are also con�rmed by extensive experimental evaluations in Section5.6. Finally,

100 5. Evaluation of Forw ard LGQ Forest Queries against XML Streams

Section5.7 is devoted to related work in the �eld of XPath query evaluation.

5.1 Problem Description

The streamed and progressiveevaluation of forward LGQ forest queries against XML
streams (SPEX) problem is: given a forward LGQ forward query and a (possibly un-
bounded) well-formed XML stream, compute and deliver as soon as possiblethe exact
answers to the query in a single passover the stream, provided no knowledgeabout the
stream is used.

Therearethreesalient aspectsof the SPEX problem: (1) the kind of queriesto evaluate,
(2) the streamedand (3) the progressive aspects of the evaluation. In the sequelit is
argued that the �rst aspect of the problem, i.e., the evaluation of forward LGQ queries,
has similarities with standard tree matching problems, though it is di�erent. Also, it is
shown that the latter two aspects of the problem make an important di�erence to the
generalproblem of evaluating forest LGQ queriesagainst in-memory XML data.

1. The evaluation of forward LGQ queriesis de�ned on orderedunranked trees with
labels on nodes,not directly on XML streamsthat are serializationsof such trees. Also,
query answers are de�ned as setsof nodes from trees, cf. Chapter 3. In order to accom-
modate LGQ (and also XPath) evaluation to XML streams,we still refer to nodes and
trees implicitly conveyed in the XML streams, while consideringthe mapping of nodes
to stream (or well-formed XML document) fragments, as detailed in Section 3.1. Note
that becausethe trees are not really materialized, the LGQ predicateson nodes in trees
have to be rediscovered at processingtime. Indeed, for the LGQ evaluation against XML
streamswe use the indispensableparent/c hild and sibling binary predicatesencoded in
the XML streamsby somea-priori �xed orders of opening and closing tags of fragments
corresponding to nodes. Query answers are then well-formed fragments of XML streams
that correspond to nodesin the tree conveyed in the stream.

2. The streamed aspect of the evaluation residesin the sequential accessto the messages
of the XML stream,which correspondsto the (depth-�rst, left-to-right) preorder traversal
of the tree conveyed in the XML stream. This order is also called document order [46],
becauseit corresponds to the order of the opening and closing tags of nodes in an XML
document, hencealso to the order of tags in an XML stream.

3. The progressiveaspect of the evaluation residesin the incremental delivering of the
query answers as soon as possible. This is motivated mainly by processingin dynamic
environments and by memory issues.The former issueis evident when the query answers
are input for other processesin pipeline processing,thus immediate delivering of answers
improvesthe overall performance.The query evaluation againstunboundedXML streams
should deliver answers incrementally, becausethere is no expected evaluation end. Also,
collectingall answersto bedeliveredat the evaluation endcanrequireunboundedmemory.

Recall that LGQ querieshave intuitiv e graphical representations, called digraph rep-

5.1 Problem Description 101

resentations in Section3.4. The digraphs of LGQ forest queriesare unorderedtrees with
binary predicates on edges. The relation between two data nodes mapped by two di-
rectly connectedquery nodesin a query digraph can be besidesparent/c hild, also ances-
tor/descendant, preceding/following, or preceding-sibling/following-sibling, ascorrespond-
ing to the LGQ predicates.

There is a striking similarity between the evaluation problem of LGQ forest queries
and two variations of the popular tree matching problem introduced by [87]. Despite of
their similarity, these problems are still di�erent, mainly with clear implications on the
algorithmic designand the evaluation complexity of their solutions.

The tree matching problem [87] consists in matching a data tree with a set of tree
patterns (the queries). [87] shows that the tree patterns can be preprocessedinto a struc-
ture of exponential size,which factors out all commonsubpatterns, such that every data
tree can subsequently be matched bottom-up in linear time. The best algorithm to date
is O(nlog3m) [49]. This technique cannot be applied to the evaluation of LGQ forest
queriesbecause(1) all patterns of [87] are orderedand represent only LGQ forest queries
with par/ child predicates, and (2) the data tree is traversedbottom-up, condition that
contradicts the constraint of a streamedquery evaluation.

A more similar problem is introduced in [97] as the unordered tree inclusion problem:
given the pattern and the data tree, can the pattern be obtained from the data tree by
node deletions? This problem is di�erent from the LGQ forest query evaluation because
(1) such patterns correspondsto LGQ forest queriesonly with par+ / child+ predicates,and
(2) two nodes from the pattern can not be mapped to the samenode in the data tree.
The latter di�erence makes the unordered tree inclusion NP-complete [97], whereasthe
evaluation of the LGQ forest queriesremainspolynomial.

The standard approach for XPath evaluation is given by [70]. Although this approach
meetsgood complexity results, it doesnot meet the streamedand progressive aspects of
the SPEX problem: the XML document has to be stored in memory a priori to query
evaluation, and the answers are deliveredonly at the very end of the evaluation process.

XML Streams versus In-memory XML Data

This section highlights someof the challengesof the query evaluation against XML data
streamsby comparingit to a query evaluation approach for in-memoryXML data, asused,
e.g.,by [70, 78]. The salient featuresof both approachesare stressedalsoby an illustrating
example.

In the following, we distinguish between two scenarios: the evaluation against the
in-memory XML tree of Figure 5.1(a), and against the XML stream of Figure 5.1(b)
corresponding to the (depth-�rst left-to-right) preorder traversal of that XML tree. Note
that the label indices do not belong to nodesand are only usedto ensurea clearernode
identi�cation.

As query example,let us considerthe LGQ tree query

Q(v3) root(v0) ^ child+ (v0; v1) ^ a(v1) ^ child(v1; v2) ^ d(v2) ^ child+ (v1; v3) ^ c(v3):

102 5. Evaluation of Forw ard LGQ Forest Queries against XML Streams

a

a c d

c

1

1

12 2

(a) An XML Tree

a

a c d

c

122

1

1

ha1iha2ihc1ih/ c1ih/ a2ihc2ih/ c2ihd1ih/ d1ih/ a1i

(b) An XML Stream

The evaluation of this query on a tree yields all c-nodesdescendants of a-nodesthat have
at least a d-child. For the tree of Figure 5.1(a), the answer is the set of both c-nodes. In a
streamcontext, the answer is the serializationof thesetwo c-nodesin the document order.

In-memory XML data. We sketch now a standard XPath evaluation approach, as
usedby e�cien t XPath evaluatorsfor in-memoryXML data currently available [70, 78], but
failed by popular XPath evaluators [11, 47, 113, 61]. It consistsin the stepwise(decoupled)
evaluation of the query, where the evaluation of each predicate is done in one processing
step with respect to an input set of sourcenodesand yields an output set of nodes that
are then input for the evaluation of other predicates. For the above query, its evaluation
can be accomplishedby (1) computing all a-nodesthat stand in the predicatechild+ with
the root node, (2) then by computing all d-nodes that stand in the predicate child with
the previously selecteda-nodes,(3) by collecting only the a-nodesselectedin the �rst step
that have at least a d-child, and �nally (4) by computing the set of all c-nodesthat stand
in the predicatechild+ with any a-node selectedin the previousstep.

For the tree of Figure 5.1(a), the �rst step computesthe set f a1, a2g, the secondstep
computesf d1g, the third step computesf a2g, and the fourth step computesf c1,c2g.

There are (at least) two important characteristicsof this evaluation strategy:

1. the evaluation is query-driven with random accessto data nodes. Each predicate is
evaluated oncefor good, and the evaluation of several predicatesis not intertwined.
Also, the samenode can be visited several times, becauseseveral intermediary result
sets can have common nodes. Moreover, the evaluation of the samepredicate can
even require to visit the samenode several times.

2. An intermediary result set can not exceedthe amount of all nodes in the tree and
is only meaningful for the evaluation of the next predicate(s). to ensurethe former
constraint, the intermediary result setsare subject to duplicate removal operations.

XML data streams. Figure 5.1(b) depicts the previoustree together with the XML
streamcorresponding to its (depth-�rst, left-to-right) preordertraversal,ashighlighted by

5.1 Problem Description 103

the greencurve. Recall that the XML stream is the XML document in unparsedformat,
and the correspondencebetween the tree and the stream is simply obtained with the
preorder traversal of the tree as follows: on entering a node, its opening tag is appended
to the stream,on exiting that node, its closingtag is appendedto the stream. Recall that
the order of opening and closing tags in an XML stream is the \do cument order" that
correspondsalso to the order of tags in an XML document.

The requirement of the in-memory evaluation strategy to visit the samenodesat dif-
ferent times violates one of the main goalsof the query evaluation against XML streams,
namely to usea singlepassover the input XML stream, i.e., one(depth-�rst left-to-right)
preorder traversal of the conveyed tree. The novel strategy consideredhere is to evaluate
all predicatesof a query simultaneously, while consideringalsotheir inherent dependencies
regarding their sourceand sink nodes.

For the evaluation of the samequery against that XML stream, the tags are processed
stepwise in the order imposedby their appearancein the XML stream. We consideralso
that each predicate is implemented by somesomesort of automaton that is instructed to
�nd incrementally the tags of all sink nodesthat stand in that predicatewith somegiven
sourcenodes. For example,an automaton for the predicate child+ �nds the opening tags
of all sink nodes in the stream that are descendants of any given sourcenode. In order
to evaluate an entire query, the independent automata for the predicatesconstituting the
query communicate with each other as indicated by the sourceand sink variables of the
atoms having those predicates: if the sourcevariable of an � -atom is the sink variable of
an � 0-atom, then the automaton for � 0 informs the automaton for � about its �ndings.
Such automata can be alsocomposed.We detail next how our query can be evaluated by
such a machinery madeout of three automata, say � � � for the compositionsof the binary
predicate � followed by the unary predicate � . More precisely, we considerthe automata
child+ �a, child�d, and child+ �c.

On encountering the opening tag ha1i , the automaton child+ �a matches and commu-
nicates this information to its immediate next automata child�d and child+ �c. Thesenext
automata try to match now opening tags of d-nodeschildren of a1, and c-nodesdescen-
dants of a1 respectively. The sameprocedurehappensfor the next opening tag ha2i . On
encountering hc1i , the automaton child+ �c matchesfor a1 and a2 and communicatesthat c1

is a potential answer. Such potential answersshouldbe bu�ered, together with the stream
fragments betweentheir openingand closingtags,until the decisionon their appurtenance
to the result is met. On encountering h/ a2i , it is known that no d-node child of a2 was
found, thus the c1-node is not anymore a potential answer due to the constraints of the
a2-node. However, the c1-node remains a potential answer due to the (not yet satis�ed)
constraints of the a1-node. On receivinghc2i , the automaton child+ �c matchesfor a1 and
communicatesthe beginningof a new potential answer c2. On hd1i , the automaton child�d
matchesfor a1, and both c1 and c2 becomeanswersand are immediately output. The rest
of the streamdoesnot bring any new potential answersand its processingis skipped here.

It is worth noting somechallengesof query evaluation against XML streams,for these
challengesshedthe light on the important characteristicsof the evaluation approach pro-

104 5. Evaluation of Forw ard LGQ Forest Queries against XML Streams

posedhere:

1. For copingwith the query evaluation in a streamcontext, Chapter 4 introducesrules
for rewriting LGQ queriesto forward LGQ queries. Theserewrite rules ensurethat
no reversepredicatesoccur in the query to be evaluated. The motivation for such
rewrites lies in the expensive evaluation in a stream context of querieswith reverse
predicatesthat can require to maintain a history of the already processedstream.
Becausethe evaluation of a forward LGQ query from a sourcenodealways yieldsa set
of sink nodeslocated in the tree after it in document order. i.e., later in the stream
conveying the tree, it is possibleto evaluate forward LGQ querieswhile traversing
the streamonly once. The evaluation strategy described in the next sectionis based
on this vital observation and is indeedable to evaluate forward LGQ queriesusing a
singlepassover the input XML stream.

2. The forward LGQ binary predicateson nodes of a tree are not a priori computed,
rather they have to be rediscovered during processingof a stream conveying that
tree. The rediscovery of such structural predicatesin a streamcan be naturally done
using stacks to remember the depths of various nodesin the stream. This way, e.g.,
the children of a node n can be discovered by searching for nodes n0 with (1) the
opening and closing tags appearing enclosedby the opening and closing tags of n
and with (2) the depth being the depth of n plus 1.

3. The result of the evaluation of a predicate q is communicated by the automata
implementing q to the automaton(a) implementing the immediate next predicate(s)
in the query. Such a communication must ensurethat the immediate next automata
get assoon aspossibleand progressively input they have to work on. The approach
proposedhererealizesthe communication along the stream by annotating the nodes
that are input for the immediate next automata.

In order to better control the amount of memory and kind of operations used for
query evaluation, a natural choicefor the implementation of the forward LGQ pred-
icates is o�ered by low-level �nite state automata that need a stack (seethe �rst
characteristic above) and needto communicate (seethe secondcharacteristic above).
A formal model that meetsall theserequirements is the pushdown transducer, i.e.,
an automaton with stack and output. Section5.3 givesindeedan implementation of
all forward LGQ predicatesby meansof deterministic pushdown transducers.

4. The evaluation of forward LGQ queriesagainstXML streamscanrequiretheoretically
to bu�er streamfragments (asexempli�ed above), and in worst casethe entire stream
needsto bebu�ered, though practical casespoint to bu�ers of sizelinearly dependent
on the streamdepth, and independent of the streamsize. In contrast, the exempli�ed
evaluation approach for in-memory XML data [70, 78] requiresalways to store the
entire data in memory and needsalsomemory linear in the sizeof the input data for
intermediary results.

5.2 Speci�cation 105

5.2 Speci�cation

This sectionpresents an evaluation strategy for the SPEX problem. This strategy is e�-
ciently realized in the next section using networks of communicating deterministic push-
down transducers.

For the evaluation of forward LGQ forest queries, we consider the computation of
their constituent predicatesrestricted to the following task: given a set of sourcenodes,
compute the set of sink nodesthat stand in that predicate with any of the sourcenodes.
Such limited accessesto the forward LGQ predicates can be speci�ed using functions
with sets of nodes as domains and co-domains. If we considersuch computations of all
predicatespi of a given LGQ query speci�ed by functions f i , then the whole query can
be evaluated by the application of appropriate compositions of those functions f i . For
example, the computation of two predicatesp1 and p2, where the sourcenodesof p2 are
the sink nodes of p1, can be speci�ed naturally by the sequential composition of their
corresponding functions f 1 � f 2. The computation of the samepredicates,wherethe source
nodesof both of them are the same,can be speci�ed naturally by the parallel composition
of their corresponding functions f 1 ++ f 2. Generalizing, for any forward LGQ query, its
computation can be speci�ed using such sequential and parallel compositionsof functions.

Note that such an evaluation is independent on the immediateimplications of storing or
streamingof the input XML data. As explainedin the previoussection,if the data is stored,
then an e�cien t evaluation strategy would evaluate each predicate at a time, whereasif
the data is streamed,that approach is not possibleand all predicatesshould be evaluated
at the sametime. For the processingwith functions, the former casewould correspond
to an innermost evaluation order, whereasthe latter caseto an outermost-like evaluation
order: for f 1 � f 2, using the innermost evaluation order, we evaluated completely f 1 and
then f 2, whereasusingthe outermost-like evaluation order, we evaluate f 1 incrementally as
much asneededfor the evaluation of f 2. In other words, the kind of evaluation we perform
is reected by its order, and our sameevaluation strategy can be applied in both cases.
However, from now on, we detail on our evaluation strategy arguing only from the sideof
the streamingcase.

Two important ingredients are used for specifying the present evaluation strategy:
stream annotations and functions specifying the evaluation of forward LGQ predicates
againstXML streams,calledherestream processingfunctions. Streamannotationsare im-
portant for marking sourceand sink nodesof predicatesin the XML stream. The stream
processingfunctions usethe annotations to di�erentiate the sourcenodesfrom the others
in their input stream,and the sink nodesfrom the others in their output stream. Applied
on an XML streamwith specially marked sourcenodes,a streamprocessingfunction for a
predicate � movesthe annotations of each sourcenode to all sink nodesthat stand in the
predicate� with that sourcenode. In this way, the nodesin the streamremain unchanged
and only their annotations may change. The sequential and parallel compositions of such
functions, which specify analogouscompositions of atoms in LGQ queries,may propagate
annotations of initial sourcenodesto �nal sink nodes,which constitute the result of the
evaluation of LGQ queries.

106 5. Evaluation of Forw ard LGQ Forest Queries against XML Streams

In the following, stream messagesand stream processingfunctions and their composi-
tions are introduced, followed by the step-by-step speci�cation of LGQ query evaluation
via compositions of stream processingfunctions. Section5.3 shows how stream processing
functions can be e�cien tly implemented using deterministic pushdown transducers.

5.2.1 Stream Messages

Streamsare depth-�rst, left-to-right, preorder serializationsof trees, thus they are made
of well-formed XML documents representing such serializations. A messagein such a
stream is an opening or a closing tag. Additionally , the streamsconsideredhere contain
annotationsthat appear immediately after openingtags. During the evaluation of a query,
annotations are usedto mark in the stream nodesselectedby its subqueries.

An annotation is expressedusing a �nite (possibly empty) list of natural numbers in
ascendingorder, e.g., [1,2]. There are two special annotations: the empty annotation,
noted [], corresponding to the empty list, and the full annotation, noted [0], corresponding
to the list containing all annotations. There are three operations de�ned for annotations:
union t , intersect u, and inclusion v , the semantics of which resemble that of the well-
known set operations [, \ , and � . For example, the operation c t s denotesthe union
of annotations c and s with duplicate removal, like in [1,2]t [2,3]=[1,2,3]. Any annotation
contains the empty annotation and is contained in the full annotation.

Although a node is not a stream message,we may often speak in the following about
streamsmade up of nodes, rather than of tags. This more abstract view upon a stream
is motivated by conciseness,clarity, and also by the vocabulary congruenceof processing
streams with functions, as detailed later in this section, and computing answers with
the LGQ semantics introduced in Chapter 3. In this respect, it should be clear that
the wordings (1) \all children of a node n are annotated in the output stream with the
annotation of n from the input stream" and (2) \all opening tags of children of a node n
are immediately followed in the result stream by the annotation that immediately follows
the opening tag of n in the input stream" are equivalent.

Let E be the set of all opening and closingtags, A the set of all possibleannotations,
and M = E [A the set of all stream messages,i.e., the set of annotations and tags.
A stream s over a set of messagesM is a (�nite and possibly unbounded) sequenceof
messages:s 2 M � =

S

n� 0
M n . We write a stream containing the messagesm1 and m2 in

this order asm1m2 (while reading from left to right, the stream comesfrom right to left).

Relations on streams. Each messagein a stream hasan identit y given by its position
in the stream: to denote a messagem in a stream, we may alternatively write (m; i) to
explicitly state that the messagem appears at position i 2

�

in that stream. Using
positions in streams,one can di�erentiate two distinct messageswith the samecontent.
However, if not explicitly needed,the position of a messagein a stream may be skipped.

The document order � on nodes in trees, i.e., the depth-�rst, left-to-right preorder,
is applicable also to nodes in streams. For a given stream s, the order � s is the total

5.2 Speci�cation 107

order among the messagesof the stream as given by the natural order of their positions:
(m; i) � s (m0; i0) if i < i0.

The relation < is the membership relation between messagesand streams: m < s
meansthat the messagem is in the stream s. The relation @is de�ned only for nodes
in streamsand denotesthe annotation of nodes: @(n) is the annotation of the node n.
Becausethe samenode can have di�erent annotations in di�erent streams,we may write
@s(n) to explicitly state that the node n has the annotation @s(n) in the stream s.

5.2.2 Stream Pro cessing Functions

We considerherea classof functions, calledstreamprocessingfunctions, that take asinput
x streamsand return y streamsof type M � , which additionally are preorderserializations
of the sametree:

f : (M �)x ! (M �)y :

The streamprocessingfunctionsarenode-preservingand node-monotone.Node-preserving
meansthat the nodes from the input streamsbelong also to the output streams. Node-
monotone meansthat the order of nodes in the input streams is preserved also in the
output streams.Note that both properties are ensuredif all input and output streamsare
preorderserializationsof the sametree. The only changesdoneby such functions refer to
the annotationsof nodes. Streamprocessingfunctions are de�ned in the following sections
by specifyingonly the di�erencesbetweenthe input and the output streams. It is implicitly
assumedthat besidesthe speci�ed changes,the other messagesare simply copiedfrom the
input to the output streams.

Function comp ositions. Weuseheretwo kinds of function composition: the sequential
composition � and the parallel composition ++ :

(f � g)(x) = g(f (x))

(f ++ g)(x) = (f (x); g(x))

We considerthat the sequential composition (�) binds stronger than the parallel composi-
tion (++).

Note that thesecompositionsare analogousto the composition of LGQ formulas: path
formulas are constructed by the sequential composition of atoms, and tree and forest
formulas are constructedby the parallel composition of atoms.

A peculiarity of the evaluation order of sequential compositions of stream processing
functions is that the component functions are evaluated stepwise, such that each stream
messageoutput by the �rst function becomesthe input to the next function before the
�rst function processesthe next messagein the input stream. This way, the intermediary
streamsneednot be stored.

108 5. Evaluation of Forw ard LGQ Forest Queries against XML Streams

Base functions. For processingM � streams,three basefunctions arede�ned: the merge
function � , the �lter function j, and the annotation-merge function � c.

The mergefunction � : M � � M � ! M � intertwines two input streamssuch that in
the result stream one messagefrom the �rst stream is followed by one messagefrom the
secondstream. The closingtagsfrom the streams(if there areany) aresimply addedto the
result stream without requiring a counterpart messagefrom the other stream. If a stream
is shorter than the other, then the remainder of the bigger stream is simply appendedto
the result stream.

We may write the � -function asan in�x operator, i.e., s1 � s2 for the � -application on
the streamss1 and s2. A straightforward usageof the � -function is to annotate a stream
containing only messagescorresponding to nodes(i.e., tags and strings) with annotations
from another stream. The � -function can be usedalsoasa more generalstreamconstruc-
tor: the concatenationof a messagem with a streams can be expressedby � -mergingthe
stream containing the messagem and the stream s: m � s.

The symbol-�lter function j takes a stream and a set of messagesand returns the
fragment of the input stream, wherethe messagesnot occurring in the input messageset
are �ltered out: j: M � � � ! M � . For a stream s and a messageset �, we write the
j-function as an in�x operator sj � for the application of j on s and �.

j: M � � � ! M � ; sj � = hx j x < s ^ x 2 � i :

It is easyto observe that for a stream s 2 M � , the � -merging of the two substreams
sjE and sjA of a stream s yields back the original stream s:

s = sjE � sjA :

The annotation-mergefunction � c : M � � M � ! M � for a booleanconnective c is a
node-preservingand node-monotonefunction that takestwo streamswith the samenodes
and returns onestream wherea node appearsonly once. An annotation a appearsin the
output stream if and only if a appears in both input streams(for c = ^), or in at least
one input stream (for c = _). More speci�cally, the annotation a appears in the output
streamassoon as it is encountered in the input stream(s): a appearsin the output stream
at a position i , if and only if a appears(1) in one input stream at position i and in the
other input stream at a position lower than or equal to i (for c = ^), or (2) in at least one
input streamat the position i (for c = _). The function � c is de�ned using the following
equivalences,wherethe function is usedin in�x form:

(n; i) < s1jE ^ (n; i) < s2jE , (n; i) < (s1 � c s2)jE :

a v a1 ^ a v a2 ^ (a1; i1) < s1jA ^ (a2; i2) < s2jA , a v a0^ (a0; max(i 1; i2)) < (s1 � ^ s2)jA :

(a; i) < s1jA _ (a; i) < s2jA , a v a0^ (a0; i) < (s1 � _ s2)jA :

The variables appearing only in the left side of equivalencesare universally quanti�ed,
whereasthe remaining onesare existentially quanti�ed. The �rst equivalenceensuresthat
in the output stream, the node from both input streamsappear only once. The last two

5.2 Speci�cation 109

equivalencesensurethat annotations are computed in the output stream accordingto the
textual de�nition of the � c function. A simpli�ed equivalenceconcerningthe annotations
is inferred from the last two equivalences:

C
1� j � 2

(a v aj ^ aj < sj jA) , a v a0^ a0 < (s1 � c s2)jA :

For k input streams,the previousequivalencesbecome:
^

1� j � k

((n; i) < sj jE) , (n; i) < (s1 � _ : : : � _ sk)jE : (5.1)

^

1� j � k

(a v aj ^ (aj ; i j) < sj jA) , a v a0^ (a0; MAX
1� j � k

(i j)) < (s1 � ^ : : : � ^ sk)jA : (5.2)

_

1� j � k

((a; i) < sj jA) , a v a0^ (a0; i) < (s1 � _ : : : � _ sk)jA : (5.3)

C
1� j � k

(a v aj ^ aj < sj jA) , a v a0^ a0 < (s1 � c : : : � c sk)jA : (5.4)

5.2.3 From LGQ to Stream Pro cessing Functions

This section gives the translation scheme of LGQ forest queries into stream processing
functions and shows how the LGQ semantics de�ned in Chapter 3 and the evaluation of
such functions are related.

Translation Scheme of Forw ard LGQ Forest Queries to Function Graphs

The translation schemehas three distinct phases,as detailed below.

Pre-translation Phase. In this phase,we simplify the LGQ forest queries. First, the
query to be translated is brought in disjunctive normal form. Second,each atom self(x; y)
appearing in a disjunct is removed and the variable y is replacedby x in that disjunct
(however, if y is the headvariable, then y replacesx). Third, weadd a newunary predicate,
head, to the head variable in each disjunct. The semantics of this novel predicate is the
sameas for a wildcard nodetest predicate. Thus, it doesnot changethe semantics of the
query, and servessolely the purposeof a simpli�ed translation phase,as detailed next.

Translation Phase. The translation of the body formula of a forward LGQ forest query
is given in Figure 5.1 by the translation function F de�ned using pattern matching on the
structure of LGQ forest formulas.

The result of a formula translation is a streamprocessingfunction representing sequen-
tial and parallel compositionsof (1) the functions � f for LGQ predicates� , (2) the function
head for the novel headpredicatehead, (3) the functions

!
scopeand

scopefor dealingwith

the treenessof queries,(4) the input and output functions in and out, and (5) the identit y
function Id . Two functions are composedin sequence,if they are inducedby two formulas

110 5. Evaluation of Forw ard LGQ Forest Queries against XML Streams

F : Formula � Variable ! M � ! M �

F JL _ RK(x) = (F JLK(x) ++ F JRK(x)) � _ f

F Jroot(y) ^ RK(x) = in � F JRK(y) � out

F J� (x; y) ^ RK(x) =
!

scopex � (� f � F JRK(y) ++ F JRK(x)) � ^ f �

scopex

F J� (x) ^ RK(x) =

(
� f � F JRK(x) , � 6= head

!
scopex � (head ++ F JRK(x)) �

scopex , � = head

F J� (x; y)K(x) = � f

F J� (x)K(x) = � f

F J� (y; z) ^ RK(x) = F J� (y) ^ RK(x) = F JRK(x)

F J� (y; z)K(x) = F J� (y) ^ RK(x) = Id :

Figure 5.1: Translation Schemeof LGQ Forest Formulas to Function Graphs

such that the sink variable of the �rst formula is the sourcevariable of the secondone.
Two functions are composedin parallel, if they are inducedby two formulas that have the
samesourcevariable. The next sectionsof this chapter detail all thesefunctions.

The graphof a streamprocessingfunction obtainedby translating a query is constructed
similarly to the digraph representation of that query. In a function graph, the nodesare
labeled with the component functions and a directed edgeexists between two nodes if
there is a sequential composition of the functions labeling thesenodes,or of the function
labeling the �rst node and a parallel composition of someother component functions and
the function labeling the secondnode. The sourcenodesof a function graph are labeled
by the function in , its sinks by the function out, and the inner nodes are labeled with
functions for predicatesand with the functions

!
scopeand

scope.

Note that the translationsof two queries,which arethe samemodulo the commutativit y
of the ^ connective, yield two non-isomorphic function graphs, though their evaluation
results are the same. The next and last translation phasesimpli�es such function graphs
such that they becomeisomorphic (and even smaller).

Remark 5.2.1. The LGQ negation and the single-join DAGs are not consideredin this
chapter. The evaluation approach presented herecan, however, be extendedto treat them
too. A publicly available query evaluator (http://spex.sourceforge.n et) basedon the
results of this chapter supports both aforementioned extensions.

Post-translation Phase. The outcome of the translation phasecan be simpli�ed in
several directions, while still preservingits semantics. The simpli�cation can be achieved
by the term rewriting systemde�ned below. Although not shown here, it can be checked
that the systemis terminating and conuent modulo the associativit y and commutativit y

5.2 Speci�cation 111

of ++ . The variables X , Y , and Z stand for arbitrary (compositions of) functions, x
standsfor LGQ variables.

!
scopex � (X ++ Id) � ^ f �

scopex ! X (5.5)

!
scopex � (X ++ � f) � ^ f �

scopex ! � f � X (5.6)

!
scopex � (

!
scopex � (X ++ Y) � ^ f �

scopex ++ Z) � ^ f �

scopex (5.7)

!
!

scopex � (X ++ Y ++ Z) � ^ f �

scopex
((X ++ Y) � _ f ++ Z) � _ f ! (X ++ Y ++ Z) � _ f (5.8)

(in � X � out ++ in � Y � out) � _ f ! in � (X ++ Y) � _ f � out (5.9)

X � Y ++ X � Z ! X � (Y ++ Z) (5.10)

X ++ X � Z ! X � Z (5.11)

Rule (5.5) eliminate the identit y function Id . Rules (5.6), (5.7), and (5.8), relax the
rankednessof function graphs, i.e., every node in a function graph can have now more
than two outgoing edges.The parallel compositions of functions for unary predicatesand
other functions are transformed into sequential compositions of the latter and the former.
Rule (5.9) factors out the functions in and out. Further simpli�cations with (5.10) and
(5.11) factor out commonpre�xes of subgraphswith the samesource.

Example 5.2.1. Considerthe LGQ tree query

Q(v3) root(v0) ^ child+ (v0; v1) ^ a(v1) ^ child+ (v1; v2) ^ d(v2) ^ child+ (v1; v3) ^ c(v3)

that selectsall c-nodes descendants of a-nodes that have at least a d-descendant. Fig-
ure 5.2.3 shows two simpli�ed versions of the function graph for the body of Q after
adding the head predicate. In contrast to the �rst versionfrom Figure 5.2(a), the second
version is the normal form, i.e., it is not anymore reducible using the rewrite rules of the
post-translation phase.

It is easyto seethat the above translation schemecreatesfunction graphslinear in the
sizeof the input query.

Prop osition 5.2.1 (Linearit y of the Translation Scheme). For a givenforward LGQ
forest query, the translation schemeof Figure 5.1 creates a function graph linear in the
sizeof that query.

Proof. It results from the simple observation that the translation of each query construct
inducesa constant amount of functions in the function graph.

Equiv alence of LGQ Semantics and Evaluation of Stream Pro cessing Functions

The LGQ semantics is given in Section 3.3 using the functions LQ for LGQ queriesand
LF for LGQ formulas. For a given set of substitutions of query variables to the nodes
in the tree conveyed by the XML stream, these functions keep only those substitutions

112 5. Evaluation of Forw ard LGQ Forest Queries against XML Streams

head

child f
+

c f

child f
+

df Id

af

child f
+

scopevo

Id

scopevo

out

in

scope

scope

scope

scope

v1

v1

v1

v1

(a)

af

child f
+

scope

in

child f
+

c f

head

scopev1

df

out

v1

(b)

Figure 5.2: Two equivalent function graphsfor the query of Example 5.2.1

5.2 Speci�cation 113

that are consistent with the query and the tree, i.e., such that for any substitution the
predicateson the variablesholds alsoon their images.

For a query Q(v) f and an XML stream s, the link between the semantics of Q
and the answers computed by the stream processingfunction F Jf ^ head(v)Kis given by
the function � , which maps treesto XML streams.

De�nition 5.2.1 (T ree-to-Stream mapping). The function � : Tree ! M � maps a
tree to its depth-�rst, left-to-right, preorder traversalthat yields an XML stream.

For the query Q and a given tree T, the mapping between the LGQ semantics of Q
LQ T JQ(v) f Kand the stream processingfunction F Jf ^ head(v)Kfollows by

F Jf ^ head(v)K(� (T)) = LQ T JQ(v) f K: (5.12)

The next sectionsgivesstream processingfunctions that specify the evaluation of LGQ
formulas of increasedcomplexity: atoms, paths, and trees. Then, the computation of
answers using thesestream processingfunctions is detailed.

5.2.4 Evaluation of A toms

The evaluation of the � -atoms, where � is an LGQ predicate, is reduced here to the
following problem: given a set of sourcenodesfrom a tree T, computethe set of sink nodes
from T that stand in � with any of the sourcenodes. The problem is approached hereby
computing the sink nodessimultaneously for all sourcenodes(a set-at-a-time approach).
Note that such an approach di�ers from, e.g.,[11], wherefor each sourcenodethe setof sink
nodesstanding in a predicate with that sourcenode is computed independently (a node-
at-a-time approach). The subtle di�erence betweenthe two approacheshasa tremendous
e�ect regardingboth their e�ciency and applicability in a streamenvironment. The node-
at-a-time approach can compute for several sourcenodesnon-disjunct setsof sink nodes
that are then merged into a single set. Thus, somenodes can be visited several times.
An exampleof non-disjunct setsof nodescomputed from several sourcenodes is the set
of descendant nodesof sourcenodesthat stand themselves in a child+ predicate: the set
of sink nodescomputed for a sourcenode contains then the set of sink nodes computed
for any of its descendants. The set-at-a-timeapproach computessimultaneously the set of
sink nodes for all sourcenodes, thus avoiding the duplicate removal in the �nal merging
phaseof non-disjunct sets,and also to visit nodesseveral times.

For a uniform treatment of unary and binary atoms,we considerin the following binary
variants of the unary atoms. In this sense,the binary variant � (v1; v1) of the unary predicate
� (v1) consistsin the pairs of all nodesthat are also in that unary predicate.

For each LGQ predicate � consisting of pairs of sourceand sink nodes from a tree
T, we de�ne the stream processingfunction � f : M � ! M � with its input and output
streamsserializationsof T, wherethe annotation of each sourcenode in the input stream
is non-empty and is included in the annotations of the sink nodes that stand in � with
that sourcenode.

114 5. Evaluation of Forw ard LGQ Forest Queries against XML Streams

De�nition 5.2.2. The node-preserving and node-monotonestream processing function
� f : M � ! M � for an LGQ predicate � computesfor each sink node n0 a new annotation
that is the union of the annotations of all source nodesn that stand in � with n0:

s0 = � f (s); 8n0 < s0jE : @s0(n0) =
G

(@s(n) j n < sjE ; � (n; n0)) :

The annotationsarethe only messagesthat arechangedin the output stream. The com-
putation of new annotations expressedin the above equation meetsthe textual de�nition
of the stream processingfunctions for LGQ predicates. The node n0 gets the annotationF

(@s(n) j n < sjE ; � (n; n0)) that is the union of annotations @s(n) of all nodesn in the
streams such that n standsin � with n0. The annotation a is empty either if � (n; n0) does
not hold for any n, or the annotation of n is empty.

The union of annotations is necessarybecausesink nodesn0 can stand in a (transitiv e
or reexive transitive closure)predicate with several sourcenodesn. For example,a sink
node can be the descendant of several sourcenodes. However, a sink node n0 can stand in
a non-closurepredicate with (at most) one node n. For example,a sink node can be the
child of (at most) onesourcenode.

Example 5.2.2. Figure 5.2.4 shows a tree with annotated nodes,as conveyed in an input
XML stream, and the reannotations of these nodes as generatedby the application of
functions (1) childf , (2) child+

f , (3) nextSibl+ f , and (4) follf for processingthe input stream.
The input stream contains two a-nodesannotated with [1] and [2], and three b-nodes

annotated with [3], [4], and respectively with []. Recall that an annotation for a node
follows immediately the opening tag of that node.

1. The function childf movesthe annotation of each sourcenode to its children.
2. The annotation of each node in the output stream of the function child+

f is the
union of annotations of all its ancestors.For example,the annotation of the �rst b-node
becomesthe union [1,2] of the annotations [1] and [2] of both a-nodes.

3. The function nextSibl+ f annotateseach node with the union of annotations of all
sibling nodesthat precedeit. For example,the last b-nodeis annotatedwith the annotation
[2] of its precedingsibling a-node.

The function follf annotateseach node with the union of annotations of all nodesthat
precedeit. For example,the last b-node is annotated with the union [2,3,4]of annotations
all other b-nodes([3] and [4]) and of the seconda-node ([2]).

As expressedby De�nition 5.2.2and exempli�ed by Figure 5.2.4, the annotation of any
node n from the input stream is included in the annotations of all nodesn0 in the output
stream of a function � f , if n standsin � with n0. Basedon this observation, the following
propositions give two important properties of annotations createdby such functions.

Prop osition 5.2.2 (No de reachabilit y). If a node n standsin predicate � with a node
n0, then the annotation @s(n) of n in the stream s is contained in the annotation @� f (s) (n0)
of n0 in the stream � f (s):

� (n; n0)) @s(n) v @� f (s) (n0):

5.2 Speci�cation 115

[] a

a

b

b

b

[1]

[2] [2]

[1]

[1] a

a

b

b

b

[2]

[3] [4]

[]

f

<a>[1] <a>[2] [3] [4] [] <a>[] <a>[1] [2] [2] [1]

child

[] a

a

b

b

b

[1]

[1,2] [1,2]

[1]

<a>[1] <a>[2] [3] [4] []

[1] a

a

b

b

b

[2]

[3] [4]

[]

f

<a>[] <a>[1] [1,2] [1,2] [1]

+
child

[] a

a

b

b

b

[]

[] [3]

[2]

<a>[1] <a>[2] [3] [4] []

[1] a

a

b

b

b

[2]

[3] [4]

[]

f

<a>[] <a>[] [] [3] [2]

nextSibl
+

[] a

a

b

b

b

[]

[] [3]

[2,3,4]

<a>[1] <a>[2] [3] [4] []

[1] a

a

b

b

b

[2]

[3] [4]

[]

<a>[] <a>[] [] [3] [2,3,4]

foll f

Figure 5.3: Processingwith childf , child+
f , nextSibl+ f , and follf

116 5. Evaluation of Forw ard LGQ Forest Queries against XML Streams

The above implication says alsothat if n hasa non-empty annotation in s, then n0 has
alsoa non-empty annotation in the stream � f (s):

� (n; n0); @s(n) 6= []) @� f (s)(n0) 6= []:

The implication of Proposition 5.2.2doesnot hold in both directionsbecauseseveral nodes
can have the sameannotations, as stated next. Thus, the annotations can not be usedas
node identi�ers, for they neednot be unique.

Prop osition 5.2.3 (Annotation ambiguit y). The output stream of a stream processing
function for an LGQ predicate can contain an annotation several times, or the intersection
of two annotations in the output stream can be non-empty.

5.2.5 Evaluation of Path Form ulas

The translation of a path formula, which is a conjunction of atoms, yields a sequential
composition of streamprocessingfunctions,which aretranslationsof the component atoms.

De�nition 5.2.3. The node-preserving and node-monotonestream processing function
pf : M � ! M � for an LGQ path formula p = � 1(v0; v1) ^ : : : ^ � k(vk� 1; vk) is the sequential
composition of functions � i

f for the predicates � i (1 � i � k):

pf = � 1
f � : : : � � k

f :

Recall that the evaluation order of the stream processingfunction pf imposesthat all
component functions are evaluated stepwise,such that each streammessageoutput by the
�rst function becomesthe input to the next function beforethe �rst function processesthe
next messagein the input stream. This way, the intermediary streamsneednot be stored.

Example5.2.3. Figure 5.2.5showsa tree with annotatednodes(top-left), asconveyed in an
XML stream,and the reannotation of this tree (bottom-right), asgeneratedby the stream
processingfunction pf = childf �nextSibl+ f �bf � follf �selff �df for evaluating the path formula
p(v1; v5) = child(v1; v2) ^ nextSibl+ (v2; v3) ^ b(v3; v3) ^ foll(v3; v4) ^ self(v4; v5) ^ d(v5; v5). The
intermediary resultsof the component functions childf , nextSibl+ f �bf , follf , and selff �df are
alsoshown, albeit they are not materializedduring processing.The input streamcontains
two a-nodesannotated with [1] and [2], three b-nodesannotated with [3], [4], and [5], and
oned-node that has an empty annotation. The function pf computesa stream wherethe
annotation of each node n movesto each d-node that follows b-next siblings of children of
n. For our tree, the path p contains only the pair of the �rst a-node and the d-node, thus
the latter node gets the annotation of the former in the output stream. The other nodes
get the empty annotation.

1. The function childf movesthe annotation of each node to its children.
2. The annotation of each b-node in the output stream of the function nextSibl+ f � bf

is the union of annotations of all its precedingsibling nodes. For example,the annotation
of the secondb-node becomesthe annotation [2] of the �rst b-node, and the annotation of
the �rst b-node becomesthe empty annotation [], for there are no precedingsiblingsof it.

5.2 Speci�cation 117

d d

a

a

b

b

b

[1]

[2] [2]

[1]

[1] a

a

b

b

b

[2]

[3] [4] []

[5]

child
[]

[5]

<a>[]<a>[1][2][2][1]<d>[5]</d><a>[1]<a>[2][3][4][5]<d>[]</d>

f

d d

a

a

b

b

b

[]

[] [2]

[] a

a

b

b

b

[1]

[2] [2] [5]

[1]

[]

[1]

[]

<a>[]<a>[][][2][1]<d>[]</d><a>[]<a>[1][2][2][1]<d>[5]</d>

nextSibl
+ .

fbf

d d

a

a

b

b

b

[]

[]

[] a

a

b

b

b

[]

[] [2] []

[1]

foll
[]

[2]

[2][]

<a>[]<a>[][][2][1]<d>[]</d> <a>[]<a>[][][][2]<d>[2]</d>

f

d d

a

a

b

b

b

[]

[]

[] a

a

b

b

b

[]

[] [] [2]

[2]

[]

[]

[2][]

self

<a>[]<a>[][][][]<d>[2]</d><a>[]<a>[][][][2]<d>[2]</d>

. d ff

Figure 5.4: Processingwith childf � nextSibl+ f � bf � follf � selff � df

118 5. Evaluation of Forw ard LGQ Forest Queries against XML Streams

3. The function follf annotateseach node with the union of annotations of all nodes
that precedeit. For example,the last b-nodeis annotatedwith the union [2] of annotations
of all other b-nodes([] and [2]) and of the seconda-node ([]).

4. The function selff � df replacesall annotations of nodeswith other label than d with
the empty annotation. Thus, the only d-node in the XML stream keepsits non-empty
annotation.

The processingof streamswith functions for path formulas p inherit the properties of
processingstreamswith functions for constituent predicates:

� the nodesfrom the input stream are copiedin the output stream, and

� the annotation of each sourcenode is moved in the output stream to each sink node
that stands in p with that sourcenode.

Also, the properties of annotations from streamscreatedby functions for predicateshold
also for annotations from streamscreatedby functions for path formulas p:

� the annotation of each sink node in the output stream contains the annotations of
all sourcenodesthat stand in p with that sink node (node reachabilit y), and

� an annotation canappearseveral times in the output stream(annotation ambiguity).

These results can be easily derived from the analogousPropositions 5.2.2 and 5.2.3 by
using completeinduction over the number of predicatesin the path.

5.2.6 Evaluation of Tree Form ulas

Treeformulas are structurally more complexthan path formulas in that they allow multi-
sourcevariables,thus several subformulas having the samesourcevariable. The evaluation
of such subformulas is basedon the parallel composition of their corresponding stream
processingfunctions, becausethesefunctions have to processthe samestream containing
sourcenodesthat are bindings for their commonsourcevariable. This considerationrises
several new challenges. First, the output streams of these functions must be brought
together into a single aggregatedstream that is the serialization of the sametree as the
input stream, and contains someof the annotations that appear in the output streams.
Second,in order to �nd the sink nodesstanding in a given tree formula with a sourcenode,
the relation betweenthe sourcenodesfrom the input stream and the sink nodesfrom the
aggregatedstreamshouldbe uniquely establishedwith help of the annotationspropagated
from the input to the aggregatedstream.

The �rst challenge is partially solved by the evaluation order of stream processing
functions: becauseonemessageis processedby all functions at a time in the order dictated
by their compositions, the aggregationof the output streamsresumesto delivering further
the samemessagewhen read from all output streams. Additionally , the annotation of
each messagein the aggregatedstream dependson the annotations already read in all the
output streams.

5.2 Speci�cation 119

The secondchallengecannot be solved immediately and needssigni�cant extensionsof
the current evaluation strategy. Its non-trivialit y stemsfrom the fact that several source
nodescan have the sameannotation in the input stream, thus it is not immediately clear
which sink nodesstand in a given tree formula with a sourcenode. As detailed later, one
possibility is (1) to reannotateuniquely the sourcenodesfrom the input streamsthat are
to beprocessedby several functions in parallel, and (2) to remember the mappingsbetween
the original and the new annotations.

Both challengesare addressedin detail next.

Stream Aggregation

The translation schemeof Section5.2.3translatesbooleanconnectivesc 2 f^ ; _g of LGQ
formulas to corresponding stream processingfunctions cf .

De�nition 5.2.4 (Connectiv e Functions). For k input streams that are annotated se-
rializations of the same tree T, the node-monotonestream processingfunctions ^ f ; _ f :
(M �)k ! M � computeoutput streams that are also serializationsof T and where an anno-
tation marksa nodeonly if it appears before that nodein all input streams(^ f), respectively
in at least one of the input streams (_ f):

cf (s1; : : : ; sk) = s1 � c : : : � c sk ; c 2 f^ ; _g:

The aboveequationof cf matchesits textual counterpart, becausethe annotation-merge
function � c, de�ned in Section5.2.2, computesthe aforementioned aggregationof streams.
Note also that, according to the de�nition of the parallel composition ++ of functions,
the application of cf on k streamsis the application of cf on the parallel composition of
all streamss1 to sk : cf (s1; : : : ; sk) = cf (s1 ++ : : : ++ sk).

Annotation Mappings

Recall that the annotationsof nodesin an arbitrary streamarenot necessarilyunique, thus
they are not identi�ers for the nodesthey accompany, as alsostated by Proposition 5.2.3.
This fact makes it di�cult to detect which sink nodesfrom the output streamsof several
functions composedin parallel stand in a tree formula, speci�ed by thesefunctions, with
the same sourcenode from an input stream. In order to overcome this di�cult y, we
(1) reannotate uniquely the sourcenodes from the input stream, and (2) remember the
mappingsbetweenthe original and the new annotations. By using unique annotations for
all sourcenodes in the input stream, the detection in the output streamsof sink nodes,
which stand in the tree formula with a sourcenode, is reducible to testing whether the
uniqueannotation of that sourcenodeis contained in all annotationsof thesesink nodes,cf.
Proposition 5.2.2. The annotation mappingsarenecessarybecausethe original annotations
of the sourcenodesencode dependenciesof thesenodes to other nodes,as computed by
functions corresponding to other subformulas.

In order to evaluate functions composed in parallel, we proceedthen as follows. In
the �rst phase,the sourcenodesfrom the input stream are reannotateduniquely and the

120 5. Evaluation of Forw ard LGQ Forest Queries against XML Streams

mappingsbetweenthe original and the fresh annotations are stored within the stream. In
the secondphase,the functionscomposedin parallel processthe samenewinput streamand
deliver their output streams. In the third phase,the output streamsareaggregated.In the
fourth and last phase,the freshannotationsfrom the aggregatedstreamaremappedback to
their original counterparts. In this way, the old dependenciesof the sourcenodesconveyed
by the original annotations are kept while safely evaluating the parallel composition of
functions. Thus, the fresh annotations are usedexclusively for the evaluation of parallel
compositions and are dropped afterwards.

There is a general resemblance of this evaluation strategy to the implementation of
function calls in abstract machines for programming languages:the initial phasedeclares
newvariableswithin the scopeof the calledfunction, the next two phasesusethesevariables
to computeand carry the resultsof the function call, and the last phasemapstheseresults
to valuesof variablesfrom the upper scope, wherethe function is called.

The phasesare realizedasfollows. The �rst phaseis doneby the so-calledscope-begin
functions

!
scope, which createannotation scopes,the secondphaseis doneby the functions

composedin parallel, the third phaseis doneby the connective functions ^ f and _ f de�ned
above, and the last phaseis doneby the so-calledscope-endfunctions

scope, which close

annotation scopes.
We detail now on how the mappings are created and used. For each multi-source

variable i 2 Vars(f) of a formula f , we de�ne the in-mapping function i! and the out-
mapping function i that map non-empty sourceannotationsa to sink annotationsb. The
annotation mappings are written a i! b for in-mappings and b i a for out-mappings.
Because i! and i are functions, they cannot map the samesourceannotation to di�erent
sink annotations. For in-mappings, the annotations a and the fresh annotations b are
non-empty, whereasfor out-mappingsthe annotations b can be alsoempty.

Such annotation mappings are created only for multi-source variables, becauseonly
in this casethe annotations in the input stream need to be unique. Annotations of a
multi-source variable t can stand in an in-mapping relation with annotations of another
multi-source variable s that leadsto t in f s ; f t and there is no multi-source variable
u with s ; f u ; f t. Between the full annotation created by the in function and the
annotations of any other multi-source variablescan hold the transitive closurein-mapping
relation i! + . For a multi-source variable i , the relation i! + is the set of pairs of the full
annotation [0] and the (non-empty) annotations ai , if

� there is no multi-source variable leading to i , or

� there is a multi-source variable j with aj � a0
j

i! ai and [0]
j

! + ; aj .

More compact, the transitive closurein-mapping relation is de�ned by the equivalence

[0] i! + ai , [0] i! ai or [0]
j

! + aj v a0
j

i! ai :

5.2 Speci�cation 121

If [0] i! + ai holds,we say that ai is reachable from [0]. This meansalsothere is at leastone
annotation in-mapping for each multi-sourcevariableconnectedto i that mapsannotations
reachable from [0] and from which ai is reachable.

Analogously, the transitive closureout-mapping relation i + is the set of all pairs of
(non-empty) annotations ai and [0] such that [0] can be reached from ai using (at least)
oneannotation out-mapping of each multi-source variable leading to i :

[0] i + ai , [0] i ai or [0]
j

 + aj v a0
j

i ai :

An annotation mapping is expressedin the stream as a new messagetype. The set of
stream messagesM is now extendedto contain also the set of annotation mappingsA$:

A$ =
[

i 2 Vars

(i! [i) = f a X b j a 2 A; b2 A; X 2 f i! ; i g; i 2 Vars(f); f 2 LGQg:

An annotation mapping a X b follows in the streamthe freshannotation b (for X = i!) or
the annotation a (for X = i), hencealso the node having that annotation. The number
of annotation mappings that can accompany a node is bounded in double the number
of multi-source variables, becausea node can have at most one annotation in-mapping
(respectively at most oneannotation out-mapping) for each such variable. The annotation
mappingsof a node in a stream can be accessedusing the function � : M � � E ! P(A$)
that returns for a given node the set of all its annotation mappingsin a given stream.

Annotation Scopes

An annotation scope delimits the lifetime of a fresh annotation, similar to the scope de-
limiting the lifetime of variablesdeclaredlocally to proceduresin programminglanguages.
The lifetime of a freshannotation spansover the stream fragment delimited by the source
nodehaving that annotation in the input streamand the last of its sink nodesin the aggre-
gated stream. Recall that the sink nodescomealways after the sourcenodes,becausethe
stream processingfunctions, which compute the output streamsto be aggregated,specify
forward LGQ formulas. In the following, we consider�rst that the end of such a stream
fragment coincideswith the end of the wholestream. Then, it is shown that dependingon
the type (sdown, pdown, or rdown) of the LGQ formula speci�ed by the streamprocessing
functions, the lifetime of a freshannotation can be considerablyshortened.It is, of course,
of advantage to �x at compile-time the maximum lifetime of an annotation. In this way,
annotations that are not further neededcan be discardedduring processing,and not only
at the very end.

An annotation scope is openedand closedby two complementary stream processing
functions scope-begin

!
scopeand scope-end

scope. When openingit, in-mappingsof original

and fresh annotations are created,and original annotation are replacedby fresh annota-
tions. The closingof an annotation scope consistsin mapping back the fresh annotations
to the original ones,using out-mappings.

122 5. Evaluation of Forw ard LGQ Forest Queries against XML Streams

De�nition 5.2.5 (Scop e-Begin). Consider a multi-source variable i and a stream s.
The node-preservingand node-monotonefunction

!
scopei : M � ! M � (1) creates a fresh

annotation @s0(n) = new(@s(n)) for each non-empty annotation @s(n), and (2) addsthe

in-mapping message@s(n) i! @s0(n) after a2 to the output stream:

s0 =
!

scopei (s); 8n < s0jE ; @s(n) 6= [] : @s0(n) = new(@s(n)) ;

� s0(n) = � s(n) [f (@s(n) i! @s0(n))g:

The new function createsa fresh annotation for each received non-empty annotation.
The above de�nition describesonly the streamchangesdoneby

!
scope. The other messages

are copiedunchangedfrom the input to the output stream.

De�nition 5.2.6 (Scop e-End). Consider a multi-source variable i and a stream s. The
node-preservingand node-monotonefunction

scopei : M � ! M � (1) creates for each non-

empty annotation @s(n) the union @s0(n) of all annotations that are mapped in s to parts
of @s(n), and (2) addsthe out-mappingmessage@s(n) i @s0(n) after @s0(n) to the output
stream:

s0 =

scopei (s); 8n < s0jE : @s0(n) =
G

(a1 j a2 v @s(n); (a1
i! a2) < s);

� s0(n) = � s(n) [f (@s0(n) i @s(n))g:

As for
!

scope, the above de�nition describes only the stream changesdone by

scope.
The other messagesare copiedunchangedfrom the input to the output stream.
Example 5.2.4. Figure 5.5 shows the evaluation of the function

!
scope� ((child+

f � af ++ child+
f � cf) � ^ f ++ nextSiblf � bf) � _ f �

scope

that speci�es the LGQ formula

(child+ (v; v2) ^ a(v2) ^ child+ (v; v3) ^ c(v3)) _ nextSibl(v; v4) ^ b(v4):

For avoiding cluttering in the �gure, we intentionally omitted the index v of
!

scopeand

scope. The �gure shows the input stream and the tree conveyed within, together with
selectedstreamsrepresenting the output of the component functions

!
scope, _ f , and

scope.

The result of processingcan be interpreted as follows: only the sourcenodes with non-
empty annotations contained in annotationsappearing in the output streamstand in that
formula with someother nodes. In particular, thesesourcenodesare the �rst b-node and
the �rst a-node, becausetheir annotation [2] appearsin the output stream.

Prop osition 5.2.4. Considerthe stream processingfunctions scope-begin
!

scopei , scope-end

scopei for a multi-source variablei , and the node-preservingand node-monotonef that does
not �lter out annotation mappingsfor i . Consider also the streams s1, s2 =

!
scopei (s1),

s3 = f (s2), and s4 =

scopei (s3). Then, the following implication holds:

8n; n0 < s1jE : @s2 (n) v @s3 (n
0)) @s1 (n) v @s4 (n0):

Moreover, if s1 hasonly unique annotations, then the implication holdsin both directions.

5.2 Speci�cation 123

f

a

[2]

b

c

[]

b[]

[] [1,2]

a

[2]

b[]

[]

a c

b

[] [2]

a

scope

scope

f

child c
f

.
f
+child a

f
.

f
+

[5]

b

c

[1]

[4]a

a

[]

b

c

[]

b[1]

[1,2] []

[3]

b

a a

a

a

b

c

[]

b[]

[] [1,2]

[]

a

[2]

b

c

[]

b[]

[] []

a

b

[]

a

b

[]

b[]

[] [1,2]

a

a

a

b

b[1]

c

[2]

[2]

[3] [3]

[2]

S6

S7

S1

S0

STREAMS

S0:
[2]

<c>[3]

S1:
[1] [2]�>[1]

<c>[4] [3]�>[4]

S6:
[] [2]�>[1]

<c>[1,2] [3]�>[4]

S7:
[]

<c>[2] [2]<�[1,2]

<a>[3]<a>[2]

<a>[3] [3]�>[3]<a>[2] [2]�>[2]

[1]</c>

[5] [1]�>[5]</c>

<a>[] [2]�>[2]

</c>

<a>[] [3]�>[3]

[2] [1]�>[5]

<a>[]<a>[]

</c> [2] [2]<�[2]

nextSibl f
b.

f

Figure 5.5: Processingwith
!

scope�((child+
f �af ++ child+

f �cf) �^ f ++ nextSiblf �bf) �_ f �

scope

124 5. Evaluation of Forw ard LGQ Forest Queries against XML Streams

Proof. The functions
!

scopei and

scopei preserve the non-emptinessof annotations,cf. Def-
initions 5.2.5and 5.2.6. Hence,@sj (n) 6= [] , @sj +1 (n) 6= [] , for j 2 f 1; 3g.

The casewhere @s1 (n) = @s2 (n) = [] holds immediately, for [] v @s(n0) holds for
every node n0 in every stream s. It remains to prove the implication for the non-trivial
case@s1 (n) 6= [].

@s2 (n) v @s3 (n0) , (@s1 (n) i! @s2 (n)) < s2; @s2 (n) v @s3 (n
0);

@s4 (n
0) =

G
(a1 j a2 v @s3 (n

0); (a1
i! a2) < s4)

! @s1 (n) v @s4 (n
0):

The last implication is due to the observation that a2 can be @s2 (n).

Reducing the Annotation Scopes

The lifetime of a freshannotation spansover the stream fragment delimited by the source
node having that annotation in the input stream and the last of its sink nodes in the
output stream. The position of thosesink nodesrelative to the sourcenodesis, however,
highly dependent on the kind of formulas speci�ed by the functions producing the output
stream. We addressnext this issuefor the three typesof forward formulas introduced in
Section3.6: source-down (sdown), parent-down (pdown), and root-down (rdown).

Sdown formulas contain only sdown path formulas that relate any sourcenode to some
of its descendants. Thus, the lifetime of a freshannotation marking a sourcenodeis limited
to the stream fragment enclosedby the start and end tags of that sourcenode.

Pdown formulas contain sdown and pdown path formulas that relate any sourcenode
to someof its followings that are also descendants of its parent node. Thus, the lifetime
of a freshannotation marking a sourcenode is limited to the streamfragment enclosedby
the start tag of that sourcenode and the end tag of its parent node.

Rdown formulas contain sdown, pdown, or rdown path formulas that relate any source
node to someof its followings. Thus, the lifetime of a fresh annotation marking a source
node is limited to the stream fragment enclosedby the start tag of the context node and
the end of the stream.

Using this information on the lifetime of annotations, someannotations can be dis-
cardedas soon as their scope is exhausted. The important implications of the limitation
of annotation lifetime are

1. the reusability of annotations, and

2. the limitation of the number of fresh conditions alive at a time.

The e�ect of reusinga dismissedfresh annotation can be simply seenas a rede�nition of
the in-mapping and out-mapping functions for that annotation. In fact, the functions are
not changed,but rather they are de�ned to consideronly the last (in- or out-) annotation
mapping of a given annotation.

5.2 Speci�cation 125

The limitation of the number of fresh annotations alive at a time becomesthe bound
for the domainsof the in/out-mapping functions serializedin the stream, as stated later
by Proposition 5.2.5.

Summing up, the stream fragment su�cien t to evaluate a formula of type x from a
sourcenode n starts with the opening tag of n and endswith (1) the closingtag of n (for
x = sdown), (2) the closingtag of the parent of n (for x = pdown), or (3) the last closing
tag of the stream (for x = rdown). We de�ne the function endx that returns the last tag
of such a stream fragment depending on the predicate type x and sourcenode n. Also,
we de�ne the function newx that createsnew annotations for each encountered non-empty
annotation in a given stream. In contrast to the function new that createsalways unique
annotations, the function newx reusesannotationsaccordingto x. Thus, when the lifetime
of an annotation is ended,the sameannotation can be reused.

We distinguish between three types of scope-begin functions, depending on the type
of formulas speci�ed by the functions processingthe stream createdby such scope-begin
functions: the sdown

!
scopesdown , the pdown

!
scopepdown , and the rdown

!
scoper down scope-

begin functions. Note that the rdown scope-begin function is more generalthan the other
two, and its de�nition corresponds to De�nition 5.2.5 of the basic scope-begin function

!
scope.

De�nition 5.2.7 (sdown, pdown, and rdo wn scope-begin). Let us consider a multi-
source variablei being the path source of formulasof type x 2 f cdown; pdown; rdowng only,
and a stream s. The node-preservingand node-monotonefunction

!
scopei

x : M � ! M �

(1) replaces each non-empty annotation a1 with a fresh annotation a2, and adds to the

output stream (2) the in-mapping annotation a1
i! a2 after a2, and (3) the out-mapping

annotation [] i a2 at the end of the lifetime of a2. The stream changesdoneby
!

scopeare
described as follows(the other messagesare copied unchanged from the input to the output
stream):

s0 =
!

scope
x

i (s); 8n < s0jE : @s0(n) = newx (@s(n)) ; � s0(n) = � s(n) [f (@s(n) i! @s0(n))g;

� s0(endx (n)) = � s(endx (n)) [f ([] i @s0(n))g:

Example 5.2.5. Figure 5.6 gives an input stream together with the tree it conveys, and
the reannotatedstream createdby the scope-begin functions

!
scopesdown ,

!
scopepdown , and

!
scoper down for the input stream. Note that the number of freshannotationsalive at a time
di�ers for all three cases.This number is boundedeither (1) in the tree depth, or (2) in
the sum of the maximum tree depth and breadth, or (3) in the tree size.

The following proposition states the sizeof in-mapping relations for a predicate con-
tained in oneof the previously de�ned classes.

Prop osition 5.2.5. Consider the evaluation of LGQ formulas f , which are of type x 2
f sdown; pdown; rdowng and haveassource a multi-source variablei , on a stream conveying

126 5. Evaluation of Forw ard LGQ Forest Queries against XML Streams

d d

a

a

b

b

b

[]

[2]

[2] a

a

b

b

b

[]

[3] [3] [4]

[3]

[1]

[2]

[3][2]

scope

Input Stream:

Output Stream:

sdown

<a>[2] <a>[] [3] [3] [3] <d>[4] </d>

<a>[1] [2]�>[1] <a>[] [2] [3]�>[2] [2] [3]�>[2] [2] [3]�>[2] <d>[3] [4]�>[3] </d>

d d

a

a

b

b

b

[]

[2]

[2] a

a

b

b

b

[]

[3] [3] [4]

[3]

[1]

[2]

[3][3]

scope

Input Stream:

Output Stream:

pdown

<a>[2] <a>[] [3] [3] [3] <d>[4] </d>

<a>[1] [2]�>[1] <a>[] [2] [3]�>[2] [3] [3]�>[3] [2] [3]�>[2] <d>[3] [4]�>[3] </d>

d d

a

a

b

b

b

[]

[2]

[2] a

a

b

b

b

[]

[3] [3] [4]

[3]

[1]

[4]

[5][3]

scope

Input Stream:

Output Stream:

rdown

<a>[2] <a>[] [3] [3] [3] <d>[4] </d>

<a>[1] [2]�>[1] <a>[] [2] [3]�>[2] [3] [3]�>[3] [4] [3]�>[4] <d>[5] [4]�>[5] </d>

Figure 5.6: Example with sdown, pdown, and rdown scope-begin functions

5.2 Speci�cation 127

a tree with depth d, breadth b, and size s. The maximum size j i! j of the in-mapping
relation i! required for the evaluationof f is

j i! j =

8
><

>:

d if x = sdown;

d + b if x = pdown;

s if x = rdown:

Proof. Recall that after the opening tag of each sourcenode, there is a non-empty annota-
tion for which a scope-begin function

!
scopex createsa freshannotation and an in-mapping

annotation.
Casex = sdown. After the closingtag of each sourcenode, the lifetime of the annota-

tion createdat the corresponding opening tag is ended. There can be at most d opening
tags beforeencountering oneof their closingtags, thus at most d new annotations alive.

Casex = pdown. After the closingtag of the parent of each sourcenode, the lifetime
of the annotation created at the corresponding opening tag is ended. There can be at
most d + b opening tags beforeencountering the closing tag corresponding to the parent
of the node with the last opening tag. The bound d + b is ensuredby the maximum
number of nestedopening tags until the closingtag corresponding to the last opening tag
is encountered (d) and the number of opening tags of sibling nodesthat can follow (b).

Casex = rdown. After the last closingtag of the stream,the lifetime of the annotation
createdat the corresponding opening tag is ended. There can be at most s opening tags
after a context nodeand beforethe last closingtag of the streamand possiblya non-empty
annotation after each opening tag.

5.2.7 Answ er Computation

The answerscomputedby a streamprocessingfunction for a given LGQ query are among
the nodesmarked by the head function with non-empty annotations that are either full
annotations, or stand in the transitive closureout-mapping relation with the full annota-
tion. We discussnext the functions in and out, then the computation of answers for the
caseof path queriesand for the more complexcaseof tree queries.

Annotation schemes for the input stream

The nodes from an input XML stream are annotated initially by the stream processing
function in, such that the �rst node (i.e., the root) gets a full annotation, and the other
nodes get empty annotations. This annotation schemecorresponds to the evaluation of
absolute queries, i.e., queries that are evaluated from the root node. A query is then
absoluteor relative dependingon the position and amount of full annotations in the input
stream. For example,an interesting scheme is obtained by marking each node from the
input stream with a full annotation. This annotation schemeenforcesthe computation of
the set of all nodesreachable via a query from any node from the stream,and corresponds
to the evaluation of a special caseof relative queries.

128 5. Evaluation of Forw ard LGQ Forest Queries against XML Streams

Creation of poten tial answers and detection of answers

The potential answers are the nodes speci�cally marked by the function head with a
non-empty annotation. Recall from Section5.2.3 that the is function head induced in a
streamprocessingfunction by a unary predicateon the headvariable of the corresponding
query.

The last function in a sequential compositions of functions specifying the evaluation of
a query is the function out. Given a stream containing all nodesfrom the initial stream,
possibly with out-mapping annotations as results of annotation scopes, together with the
annotations doneby the head function, the out function detectswhich nodesmarked by
the head function are answers,and which not.

There are two distinct casesto consider for the detection of answers: (1) for path
queries,and (2) for forest and tree queries.

1. Path queriesare translated into sequential compositions of functions corresponding
to the component predicates. Becausethe head predicate is on a non-sourcevariable,
the head function is the last-but-one in sequence,immediately before the out function.
There are no annotation scopes,and the only annotation usedduring the processingis the
full annotation. The nodesmarked by the head function with the full annotation reach
immediately the out function and are the query answers.

2. Tree queriesare translated into sequential and parallel compositions of functions
corresponding to the component predicates. The stream s processedin this caseby the
head function contains annotations from a certain annotation scope i , and the nodes

marked by this function with non-empty annotations ai are query answers only if the
following condition is satis�ed.

The annotation ai of an answer node must stand in the transitive closureout-mapping
relation with the full annotation [0]. This holdsonly if ai standsin the out-mappingrelation
either with the full annotation, or with an annotation aj from another scope j and a part
a0

j of it standsin the transitive closureout-mapping relation with the full annotation.

[0] i + ai , [0] i ai or [0]
j

 + aj v a0
j

i ai :

This condition ensuresthat all annotationsa0
j and the annotation ai are in the aggregated

streamsof their corresponding scopes j and i . This meansalso that the annotation a0
j

is collected from all (at least one) of the output streamsof the functions specifying tree
formulas.

If the lifetime of annotationsis reduced,cf. Section5.2.6, then the sameannotation can
be usedseveral times and the above characterization of answers doesnot hold in general.
Instead, the condition must be strengthen such that the annotations a0

j and ai are alive.
This meansthat, in the input stream of the out function, the nearestout-mapping of each
such annotation must not be to the empty annotation: neither []

j
 a0

j nor [] i ai .
Because(1) the input stream to the out function can not be stored, and (2) when

receivinga particular potential answer, the out function may needto exploreout-mappings
in the stream's history or future, a reasonableimplementation of the out function must

5.3 Implemen tation 129

output the encountered answersassoon aspossible,and bu�er only the potential answers
until the decisionon their appurtenanceto the result is met. In particular, on each received
out-mapping, the out function must check whether it is relevant for the bu�ered potential
answers. Note also that the out-mappings appear in the stream as soon as their source
annotations are encountered in the aggregatedstreams,and thesesourceannotations are
propagatedoptimal in the output streamsto aggregatedue to the de�nition of the stream
processingfunctions for LGQ predicates.

5.3 Implemen tation

For the implementation of the evaluation strategy described in Section 5.2, we chosede-
terministic pushdown transducers,i.e., automata with pushdown store and output tape,
due to several reasons. First, the computation of structural relations between nodes in
treesconveyed in XML streams,like the forward LGQ predicatesspecify, is donenaturally
using pushdown automata. The pushdown storesof such automata are usedto remember
the depths of various nodes in the stream, and they su�ce to compute relations de�ned
using the tree depth. Second,the output tape of such automata is useful for establish-
ing communication with other automata. Complex stream processingfunctions specifying
LGQ formulas are realizedby networks of communicating automata, where their connec-
tions reect the (parallel and sequential) compositionsof functions for the LGQ predicates
making up the formulas.

After introducing the necessarypreliminaries on pushdown transducers, this section
givesthe transducersfor forward LGQ predicatesand for other streamprocessingfunctions
usedfor the evaluation of LGQ forest formulas.

5.3.1 SPEX Transducers and Transducer Net works

Pushdown transducersare automata with pushdown store and output tape. More for-
mally, a pushdown transducer [82] is an eight-tuple hQ; � ; � ; � ; � ; q0; Z0; F i that satis�es
the following conditions:

� Q is a �nite set of states.

� �, � and � are alphabets. � is the input alphabet, and its elements are called input
symbols. � is the pushdown alphabet, and its elements arecalledpushdown symbols.
� is the output alphabet, the elements of which are called output symbols.

� � is a relation from Q � (� [f "g) � (� [f "g) to 2Q � � � � (� [f "g). � is called the
transition table, the elements of which are called transition rules.

� q0 is an element in Q, called the initial state.

� Z0 is an element in �, called the bottom pushdown symbol.

130 5. Evaluation of Forw ard LGQ Forest Queries against XML Streams

� F is a subsetof Q. The statesin the subsetF arecalledthe accepting,or �nal states.

Deterministic pushdown transducersallow at most one transition from any of its states.
In this case,the transition relation becomesa function from Q � (� [f "g) � (� [f "g) to
Q � � � � (� [f "g).

Oneof the main usagesof pushdown transducersis to support recursion. In fact, recur-
sive �nite-domain programsare characterizedby pushdown transducers[82]. Processing
an XML streamwith pushdown transducerscorrespondsto a depth-�rst, left-to-right, pre-
order traversalof the (implicit) tree conveyed by the XML stream,and usesalsoan implicit
form of recursion,in order to discover which closingtag correspondsto which opening tag.
Exploiting the a�nit y betweendepth-�rst search and stack management, the transducers
use their stacks for tracking the node depth in such trees. This way, the forward LGQ
predicates can be evaluated in a single pass, which corresponds to a run of pushdown
transducerson the XML stream.

SPEX Transducers

We usein the following a simpli�ed classof deterministic pushdown transducers,which we
call SPEX transducers.

De�nition 5.3.1 (SPEX Transducer). A SPEX transducer is a single-statedetermin-
istic pushdowntransducer, where the input and output alphabets are the set of all opening
and closingtagsand annotations M , the stackalphabet is the set of all annotations A, the
bottom pushdownsymbol Z0 is the empty annotation [], and the transition function � is
canonically extended to the con�guration-based transition function ` : M � A � ! A � � M � .

Note that for de�ning a SPEX transducer, it is only necessaryto give its transition
function � .

Example 5.3.1. Considerthe SPEX transducerde�ned by the following transitions

1. ([c] ,) ` ([c] j , ")
2. (h� i , [s] j) ` ([s] j , h� i [s])
3. (h=� i , [s] j) ` (, h=� i)

On receivingan input symbol [c], which is an annotation, the �rst transition pushesthat
symbol onto the stack and doesnot output anything. Note that the stack content [c] j
is j-separatedin its top [c] and the rest , and no output is simulated by writing on the
output tape the empty symbol " .

On receiving an input symbol h� i , which is an opening tag, and with the annotation
[s] as the top of the stack, the secondtransition keepsthe samestack con�guration and
outputs �rst the input symbol hai followed by the top of the stack [s].

On receivingan input symbol h=� i , which is a closingtag, and with the annotation [s]
as the top of the stack, the third transition outputs the input symbol and pops the top
annotation o� the stack.

In e�ect, this SPEX transducermovesthe annotations of nodesto their children.

5.3 Implemen tation 131

SPEX Transducer Net works

The sequential and parallel compositions of stream processingfunctions are implemented
by sequential and parallel compositions of pushdown transducers,where the meaning of
transducer compositions is the same as for functions: the output of one transducer is
the input for the immediate next ones(for sequential composition), respectively several
transducershave the sameinput (for parallel composition). For such compositions are
oriented (from onetransducerto another), the implementation for a function specifying an
arbitrary LGQ formula is done using networks of transducers,or directed acyclic graphs
whereeach node is a pushdown transducerand each edgebetweentwo transducersinforces
that the input tape of the sink transducer is the output tape of the sourcetransducer.
In this respect, a transducer network is isomorphic to the function graph of the stream
processingfunction it implements.

5.3.2 Transducers for Forw ard LGQ Predicates

A transducerfor a forward LGQ binary predicate � : Node� Node ! Boolean,or simpler
an � -transducer, implements the function f � : Set(Node) ! Set(Node) that computes,for
a given tree T and a set of sourcenodes n in T, the set of all sink nodes m in T that
stand in the predicate � with n, i.e., � (n; m) holds. More precisely, instead of processing
directly the set of sourcenodes,a transducerprocessesthe stream conveying all nodesin
T, wherethosesourcenodesn are marked with non-empty annotations. The yield of the
transducer is the stream conveying all nodes in T, where only the sink nodeshave non-
empty annotations,and a sink nodem is annotatedpreciselywith the union of annotations
of all sourcenodesn that stand in the predicate � with m.

For accomplishingthis task, an � -transducer usesits stack to store the annotations
of the sourcenodes until their corresponding sink nodes are encountered in the coming
stream. The key issueon designingsuch transducersstems in satisfying the constraint
that when a sink node is encountered on the stream, the annotations of its corresponding
sourcenodesare on the top of the stack, thus justifying the useof such an access-restricted
memory store. In this way, the sink nodescan be easily marked with the annotations of
their corresponding sourcenodes. This sectionshows that, indeed,there are deterministic
pushdown transducersthat implement the functions f � of the forward LGQ predicates� ,
and this fact makesour choice for pushdown transducersnatural. Section5.5 shows that
a relaxation of the stackwise accessto the store of each transducer brings a better space
complexity, at the expenseof a more complicatedstore management.

Con�guration-basedtransitions de�ning � -transducersaregiven in the following, and a
processingexamplewith them is given later in this section. Initially , an empty annotation
[] is pushedonto the stack of each transducer. Note that the � -transducersdi�er only in
the �rst transition, which is a compactionof several simpler transitions that do only one
stack operation.

We de�ne next the transducersfor the forward binary predicates: child, fstChild, and
nextSibl, then for the transitive closurepredicateschild+ and nextSibl+ , and then for the

132 5. Evaluation of Forw ard LGQ Forest Queries against XML Streams

reexive transitive closureschild� and nextSibl� . For the implementation of the nodetest
predicates,we use �nite transducers(i.e., without the pushdown store). Finally, we give
somethoughts on the capabilities of such transducersto implement more sophisticated
predicates,and even simple compositions of predicates.

The child-transducer moves the annotations of nodes to their children. The tran-
sitions of this transducer read as follows: (1) if an annotation [c] is received, then [c] is
pushedonto the stack and nothing is output; (2) if an opening tag h� i is received, then
it is output followed by the annotation from the top of the stack; (3) if a closing tag is
received, then it is output and the top annotation is popped o� the stack.

1. ([c] ,) ` ([c] j , ")
2. (h� i , [s] j) ` ([s] j , h� i [s])
3. (h=� i , [s] j) ` (, h=� i)

Recall that the annotation of a node n follows its opening tag. When receivinga node n
annotated with [c], [c] is pushedonto the stack. The following two casescan then appear:

(1) the closingtag of n is received, and [c] is popped o� the stack. This corresponds to
the casewhen there are no other child nodesof n left in the incoming stream.

(2) the opening tag of a child node m of n is received, and it is output followed by [c].
Thus, the node m is annotated correctly with [c], which was the annotation of n.

In the secondcase,a new annotation, say [c0], is received afterwards, pushed onto the
stack, and usedto annotate children p of m. Only when the closing tag of p is received,
[c0] is popped and [c] becomesagain the top of the stack. At this time, siblings of m can
be received and annotated with [c] (the above cases2), or the closingtag of n is received
(the above case1).

The fstChild-transducer movesthe annotations of nodesto their �rst children. This
transducer is a simpli�cation of the child-transducer,by restricting a stored annotation [s]
of a node n to mark at most one node. This node is necessarilythe �rst child of n, as
ensuredby the left-to-right traversalof the children existent in the stream. This restriction
can be realizedby replacing [s] with the empty annotation as soon as a child of n and its
annotation, say [c], is received. Below, we give the �rst transition modi�ed accordingly.
The other transitions are as for the child-transducer.

1. ([c], [s] j) ` ([c] j [] j , ")

The nextSibl-transducer moves the annotations of nodes to their immediate next
sibling, if any. The transitions of this transducerare the sameas for the child-transducer,
exceptfor the �rst one,which is givenbelow. In the �rst transition, this transducerreplaces
the top of the stack [s] with the received annotation [c] of the sourcenode n and pushesan
empty annotation [] onto the stack. The annotation [] is then usedto annotatechildren of
n. When the closingtag of n is received, the annotation [] is popped and its next sibling
node m can be annotated with the top annotation [c]. The other next siblings can not be
annotated with [c], because[c] is replacedby the annotation of m, say [c0], and now the
immediate next sibling of m can be annotated with [c0].

5.3 Implemen tation 133

1. ([c], [s] j) ` ([] j [c] j , ")

Remark 5.3.1. Note that for the basepredicates� 2 f fstChild; child; nextSiblg and any sink
node m, there exists at most one sourcenode n such that � (n; m) holds. Therefore, an
� -transducerdoesnot needto computeunionsof annotationsof several sourcenodesn for
annotating sink nodes. We seenext that the transducersfor closurepredicates� + and � �

have to compute such unions, becausethere can be several nodesn for which � + (n; m),
respectively � � (n; m), holds.

The child+ -transducer moves the annotations of nodes to their descendants. The
transitions of this transducer are the sameas for the child-transducer,except for the �rst
one, which is given below. In the �rst transition, this transducer pushesonto the stack
the received annotation [c] together with the top annotation [s]: [c]t [s]. The di�erence to
the child-transducer is that also the annotations [s] of the ancestorsna of n are used to
annotate children m of n, for the nodesm are alsodescendants of the nodesna.

1. ([c], [s] j) ` ([c]t [s] j [s] j , ")

When receivinga node n annotatedwith [c], [c] is pushedonto the stack together with the
current top [s]: [c]t [s]. The following two casescan then appear:

(1) the closingtag of n is received, and [c]t [s] is popped o� the stack. This corresponds
to the casewhen there are no other descendants of n left in the incoming stream.

(2) the opening tag of a child m of n is received, and it is output followed by [c]t [s].
Thus, the children of n, which are alsodescendants of n, are annotated correctly.

In the secondcase, a new annotation, say [c0], is received afterwards, the annotation
[c0]t [c]t [s] is pushed onto the stack and used to annotate children p of m. Thus, the
annotation [c] is alsousedto annotate children p of m (n00), hencedescendants of n. Only
when the closingtag of p is received, [c0]t [c]t [s] is popped and [c]t [s] becomesagain the
top of the stack. At this time, siblings of m can be received and annotated with [c]t [s]
(the above case2), or the closingtag of n is received (the above case1).

The nextSibl+ -transducer movesthe annotationsof sourcenodesto their next siblings.
The transitions of this transducerare the sameas for the child-transducer,except for the
�rst one,which is given below. In the �rst transition, this transduceraddsto the top of the
stack [s] the received annotation [c] of the sourcenode n and pushesan empty annotation
[]. The annotation [] is then usedto annotate children of n. When the closing tag of n
is received, the annotation [] is popped and its next sibling nodes m can be annotated
with the top annotation [c]. Becausethe old top of the stack [s] is kept together with the
newly received annotation [c], then annotations of precedingsiblings of n are alsousedto
annotate the following siblings of n.

1. ([c], [s] j) ` ([] j [c]t [s] j , ")

134 5. Evaluation of Forw ard LGQ Forest Queries against XML Streams

The transducersfor the reexive transitive closuresare simple variations of the ones
for transitive closuresde�ned above. We explain them shortly below.

The child� -transducer movesthe annotations of each node n to its descendants and
to the node n itself. This transduceris de�ned below similar to the child+ -transducer,with
the di�erence that a noden keepsits own annotation, say [c], togetherwith the annotations
of its ancestors,say [s].

1. ([c] , [s] j) ` ([c]t [s] j [s] j , [c]t [s])
2. (h� i ,) ` (, h� i)
3. (h=� i , [s] j) ` (, h=� i)

The nextSibl� -transducer movesthe annotations of each node n to its next siblings and
to the node n itself.

1. ([c] , [s] j) ` ([] j [c]t [s] j , [c]t [s])
2. (h� i ,) ` (, h� i)
3. (h=� i , [s] j) ` (, h=� i)

Transducers for LGQ No detest Predicates

A �nite transducerfor an LGQ nodetestpredicatenodetest: Node� NodeTest ! Node, or
simply a nodetest-transducer,implements the function f nodetest : Set(Node)� NodeTest !
Set(Node) that computes,for a given tree T and a set of sourcenodes in T, the subset
of it consistingonly in the nodeswith that nodetest. As for � -transducers,the nodetest-
transducersprocessesthe stream conveying all nodes in T and outputs the samestream
whereonly annotations can be changed.A transducer for a nodetest � replacesthe anno-
tations of nodeswithout that nodetest with the empty annotation. The transitions of an
� nodetest-transducerare given next. For simpli�cation, each transition can considertwo
input symbols at once. Also, the nodetest : � stands for any nodetest but � . Becausewe
consider�nitely many nodetests,this compactrepresentation for any nodetestbut � holds.

1. (h� i [c]) ` (h� i [c])
2. (h: � i [c]) ` (h� i [])
3. (h=� i) ` (h=� i)
4. (h=: � i) ` (h=: � i)

Variations of Transducers for LGQ Predicates

From the transitions of the � -transducers, it can be observed that the relation between
the binary predicates� and their corresponding � -transducersis determined by how the
annotation of each node n is stored onto the transducer's stack. Theserelations can be
resumedas follows ([c] is the annotation of n currently read and [s] is the current top of
the stack):

1. [c] is output as soon as it is read. Then, [c] is usedto mark alson.

5.3 Implemen tation 135

2. [c] is pushedin the new top. Then, [c] is usedto mark also the children of n.

3. [c] is pushedin the old top. Then, [c] is usedto mark also the next sibling of n.

4. [s] is pushedin the new top. Then, [s] is usedto mark also the descendants of n.

5. [s] is pushedin the old top. Then, [s] is usedto mark also the next siblings of n.

By mixing the above behaviours 1 to 5, one can get the transducers implementing the
desiredbuilt-in predicates. For example,combining behaviours 1 and any other ensures
the reexivit y of the implemented predicate. Combining behaviours 4 and 2, or 5 and 3,
ensuresthe transitivit y of the implemented predicate. And combining 1 and 2 and 4, or 1
and 3 and 5, ensuresboth the transitivit y and reexivit y of the implemented predicate.

There are, of course,other possiblecombinations. For example, the combination of
behaviours 2 to 5 givesthe implementation of the complexpredicatechild+ -or-nextSibl+ =
child+ [nextSibl+ . Thesecombinations are reected in the following changedtransition:

1. ([c], [s] j) ` ([c]t [s] j [c]t [s] j , ")

More non-trivial predicatescan be supported by changingalsothe other transitions of the
child-transducer. We exemplify this with the foll-transducer de�ned below. In the �rst
transition, it replacesthe old top annotation [s] with the new annotation [c] and then
pushesalsothe old top [s]. Becausethe nodesfollowing a node n are all nodesreachable in
the further stream after closing the node n, the annotation [c] becomespart of the top of
the stack and usedto annotate incoming nodesassoon as the node n is closed(transition
3). In contrast to the � -transducerspreviously de�ned, oncean annotation becomespart
of the stack, it remainsthere, becausethe following sibling nodesof the ancestornodesof
n follow alson.

1. ([c] , [s] j) ` ([s] j [c] j , ")
2. (h� i , [s] j) ` ([s] j , h� i [s])
3. (h/ � i , [c] j [s] j) ` ([c]t [s] j , h/ � i)

Although pushdown transducersare not closedunder composition, the composition of
pushdown and �nite transducersis possibleand even bene�cial. In this sense,one can
create transducersimplementing composition of binary and nodetest predicates. We give
below the transitions of a transducer for the composition of the child binary predicate
and the a nodetest-predicatede�ning, for a set of nodes, the set of their children with
nodetest a. Note that such compositions are generaland natural. The generality of such
compositions ensuresthat they can be applied on any binary and unary predicate. Their
naturalit y is ensuredby the usagein the practical XML query languageXPath of atomic
constructscalledlocation stepsmadeout of a binary and a unary predicate,like in child::a.
By convenience,we name the transducer, implementing such a combination of a binary
predicate � and a nodetest predicate � , the � :: � -transducer.

136 5. Evaluation of Forw ard LGQ Forest Queries against XML Streams

1. ([c] ,) ` ([c] j , ")
2. (hai , [s] j) ` ([s] j , hai [s])
3. (h: ai ,) ` (, h: ai [])
4. (h=ai , [s] j) ` (, h=ai)
5. (h=: ai , [s] j) ` (, h=: ai)

5.3.3 Pro cessing Example with Transducers for LGQ Predicates

We show next how the child::b-transducerprocessesincrementally the stream

hai [1] hai [2] hbi [3] h/ bih/ aihbi [] h/ bih/ ai

containing two a-nodesand two b-nodes.
Recall that the stack is initialized with an empty annotation []. The stack con�guration

changesonly on receivingannotationsandclosingtags. On receivingopeningtagsmatching
its nodetest, the transduceroutputs that opening tag followed by the top of its stack.

hai It outputs the tag, followed by its (initial) top annotation []. Thus, the �rst a-node
doesnot have in the input stream a parent with a non-empty annotation.

The stack con�guration remains[].

[1] It pushes[1] onto the stack, This way, it is instructed to mark all b-children of the
�rst a-node with [1].

The stack con�guration becomes[1]j[] (the top is at the left).

hai It outputs the tag, followed by []. Although the top annotation is [1], this output is
correct, becausethe received node doesnot have a b-nodetest.

The stack con�guration remains[1]j[].

[2] It pushes[2] onto the stack. This way, it is instructed to mark all b-children of the
seconda-node with [2].

The stack con�guration becomes[2]j[1]j[].

hbi It outputs the tag, followedby the top annotation [2]. This output is correct, because
the received node doeshave a b-nodetest and is a child of the seconda-node.

The stack con�guration remains[2]j[1]j[].

[3] It pushes[3] onto the stack. This way, it is instructed to mark all b-children of the
�rst b-node with [3].

The stack con�guration becomes[3]j[2]j[1]j[].

h/ bi It popsthe top [3] o� the stack, meaningthat there areno children of the �rst b-node
left in the stream. This is correct, becausethe �rst b-node doesnot have children at
all.

The stack con�guration becomes[2]j[1]j[].

5.3 Implemen tation 137

h/ ai It pops the top [2] o� the stack, meaning that there are no children of the second
a-node left in the stream.

The stack con�guration becomes[1]j[].

hbi It outputs the tag, followedby the top annotation [1]. This output is correct, because
the received node doeshave a b-nodetest and is a child of the �rst a-node.

The stack con�guration remains[1]j[].

[] It pushes[] onto the stack. This way, it is instructed to mark all b-children of the
secondb-node with []. Becausethe other children are also marked with [], we can
concludethat the transducerwill mark all children of the secondb-node with [].

The stack con�guration becomes[]j[1]j[].

h/ bi It pops the top [] o� the stack, meaning that there are no children of the second
b-node left in the stream.

The stack con�guration becomes[1]j[].

h/ ai It popsthe top [1] o� the stack, meaningthat there areno children of the �rst a-node
left in the stream.

The stack con�guration becomes[] and the processingis �nished.

The output streamsproducedby the transducerschild+ ::b, nextSibl+ ::b, and foll::b when
processingthe sameinput stream are shown below:

input hai [1] hai [2] hbi [3] h/ bi h/ ai hbi [] h/ bi h/ ai
child+ ::b hai [] hai [] hbi [1,2] h/ bi h/ ai hbi [1] h/ bi h/ ai
nextSibl+ ::b hai [] hai [] hbi [] h/ bi h/ ai hbi [2] h/ bi h/ ai
foll::b hai [] hai [] hbi [] h/ bi h/ ai hbi [2,3] h/ bi h/ ai

5.3.4 Transducers for Other Stream Pro cessing Functions

The evaluation strategy of this chapter usesalso rather complex stream processingfunc-
tions, e.g.,for dealingwith aggregationsof several streams,annotation scopes,andmanage-
ment of potential answers,and SPEX transducersare not expressive enoughto implement
all of them. Therefore, we discusshere the implementations of someof these functions,
like of the scope functions

!
scopei and

scopei and of the connective functions ^ f and _ f ,

by meansof SPEX transducerswith straightforward extensions.
Recall from De�nition 5.2.7 that the node-preservingand node-monotonefunctions

!
scopei

x (for a multi-source variable i) replaceseach annotation [c] with a freshannotation
[s+ 1], which is a singleton list, and addsto the output streamthe in-mapping annotation
[c] i! [s + 1] after [c], and the out-mapping annotation [] i [s + 1] at the end of the
lifetime of [s + 1]. The fresh annotation [s + 1] is generatedusing the top annotation [s]
from the stack. We give next the relevant transition rulesof the transducerfor the function

138 5. Evaluation of Forw ard LGQ Forest Queries against XML Streams

!
scopei

sdown . The transitions for the other messagetypes consist in simply copying the
messagesfrom the input to the output stream.

1. ([c] , [s] j) ` ([s + 1] j [s] j , [s + 1]([c] i! [s + 1]))
2. (h� i ,) ` (, h� i)

3. (h/ � i , [s] j) ` (, h/ � i ([] i [s]))

Note that the lifetime of the annotation [s+ 1] endsassoon asthe tree depth, wherethat
fresh annotation is created, is reached again. The transducersfor the other scope-begin
types,i.e.,

!
scopei

pdown and
!

scopei
r down , are de�ned similarly, with the only di�erence that

the lifetime of [s+ 1] endsassoon as(1) the tree depth smallerby onethan the tree depth,
wherethat freshannotation is created,is reached again (for

!
scopei

pdown), and (2) the end
of the stream is reached (for

!
scopei

r down).
The node-preservingand node-monotonefunction

scopei replaceseach non-empty an-

notation encountered in the input streamwith the union of all annotationsthat aremapped
to parts of the former annotation. It alsoadds the out-mapping messageof the former to
the latter annotation to the output streamafter the latter annotation. Its implementation
is done by a transducer that usesa random accessiblestore (i.e., a Turing machine) for
keepingthe in-mappingsencountered in the input stream.

The connective functions ^ f and _ f are responsible for aggregatingseveral streams
into a single stream being the serialization of the same tree as the input streams, cf.
De�nition 5.2.4. Their de�nitions are basedon the annotation-mergefunction � c de�ned
in Section 5.2.2, which ensuresthat an annotation a appears in the output stream at a
given position p if and only if a appearsin all input streamsat positionspreviousto p (for
c = ^), or in at least one input stream at a position previousto p (for c = _).

The implementation of � ^ is givenbelow by a modi�ed SPEX transducerwithout stack,
but with an array, whosesizeis given by the number n of streamsto aggregate.Also, this
transducerhasan input tape for each of its input streams.The transitions for messagesof
other types, like in-mappings,are not shown, becausesuch messagesare simply copiedto
the output.

1. (([c1]; : : : ; [cn]) , ([s1]; : : : ; [sn])) ` (([s1] t [c1]; : : : ; [sn] t [cn]),
nd

i =1
([si] t [ci]))

2. ((h� i ,: : :,h� i) , ([s1]; : : : ; [sn])) ` (([s1]; : : : ; [sn]), h� i)
3. ((h/ � i ,: : :,h/ � i), ([s1]; : : : ; [sn])) ` (([s1]; : : : ; [sn]), h/ � i)

The transducer for � _ di�ers from that of � ^ in the treatment of annotations. The
former onecopiesall annotations from the input streamsto the output stream.

5.4 Minimization Problems for SPEX Transducer Net-
works

When dealingwith networks of transducers,there are at least two minimization problems
to address:the problem of �nding the minimal network equivalent to a given network, and

5.4 Minimization Problems for SPEX Transducer Net works 139

the problem of minimal stream routing within a given network.
An equivalent minimal network is a network that producesthe sameoutput as the

initial network for a given input and has lesstransducersthat the initial network. Such a
network could be obtained, e.g.,by

1. composingseveral pushdown transducersinto a singlepushdown transducer,

2. reducing the network to an equivalent fragment of it, and

3. �nding a completely other network equivalent to the initial one.

The �rst possibility is excluded,for pushdowntransducersare in generalnot closedunder
composition [42]. The last two possibilities can be partially lifted at the level of LGQ as
a query reformulation and minimization problem: for a given query, �nd an equivalent
minimal query. This problem is partially addressedin Chapter 4 and it is not further
addressedhere. Recall from Section5.2.3that the translation of LGQ formulas into stream
processingfunctions has a simpli�cation phasethat can dramatically reduce the size of
function graphs, and thus of the corresponding transducer networks. In that case,the
simpli�cations are not possibleat the level of LGQ.

The minimal stream routing problem within a network is: given a transducernetwork
and an arbitrary input stream, instruct the transducersto sendfurther only stream frag-
ments that can be of interest to the successortransducers. This problem is (partially)
addressednext.

The streamprocessingfunctions usedin this chapter arenode-preserving,i.e., all nodes
from the input stream appear in the output stream. Consequently, the transducersim-
plementing them are also node-preserving. This property ensuresan easierand uniform
treatment of transducers,although at the cost of routing within the corresponding net-
works also stream fragments that are not relevant for the computation of query answers.
Consider,e.g.,an XML streamcontaining information about articles possiblyfollowedonly
at the very end of the stream by information about books,and a query asking for authors
of books with given pricesand publishers. For this query, our evaluation strategy creates
a network, whosenumber of transducersis linear in the number of component LGQ pred-
icates and of multi-source variables. The transducersin the network processthe stream
incrementally, and each transducersendsfurther the stream to its successive transducers.
In casethe transducer instructed to �nd books-nodes,say the books-transducer, encoun-
ters such a node, then it sendsthat node further to its successors,with an additional
non-empty annotation. In caseit encounters other nodes,e.g., article-nodes, then it still
sendsit further, but with an additional empty annotation. Either way, all nodesfrom the
stream reach all transducersfrom the network.

We considerhere two routing strategiesto restrict the stream fragments sent between
transducers.

1. Recall that all transducerssucceedingthe books-transducerlook always for nodesin
the streamfragment that followsthe books-nodes.Thus, the queryevaluation is not altered,

140 5. Evaluation of Forw ard LGQ Forest Queries against XML Streams

if the books-transducersendsfurther only the streamfragment starting with the �rst books-
node and ending together with the stream, and the other transducersdo the samefor the
nodesthey are instructed to �nd relative to nodesfound by their previoustransducers.The
transducerswould processthen a much smaller fragment of the input stream. Although
this observation doesnot changethe worst-casecomplexity of our evaluation strategy, it
provesvery competitiv e in practical cases.

2. The minimization of the streamrouted betweentransducersdoesnot stop here. Let
usconsideragainthe previousexample,and assumethat the transducersreceiving(directly
or indirectly) stream from the books-transducer look for nodes to be found only inside
the stream fragments corresponding to books-nodes(like their descendants, or siblings of
their descendants). Then, the books-transducer can safely sendfurther only such stream
fragments corresponding to books-nodes.

Such information on the interest of transducerscan be inferred from both the query to
evaluate and the characteristicsof the stream (e.g., its grammar). For the SPEX setting
consideredhere,i.e., no a-priori knowledgeof the incomingstreamis provided, only the �rst
inferencecaseis reasonable.We are con�dent that exploring the secondcaseis rewarding
too, but we delegateit to future research for now.

Both aforementioned approaches to minimal stream routing, called here phase1 and
respectively phase2 routing, can be easily supported by the evaluation strategy presented
in this chapter. Their use deviatesa bit from our previous explanations in that the al-
ready existing transducersare not drastically changed,but rather new transducers,called
structural �lters, are placedcorrespondingly at compile-time in the network.

The improvement achieved by using structural �lters depends tremendously on the
selectivity of the query evaluated by the transducer network. In the previous example,
the selectivity is rather high, becausethe books-transducer, positioned near the top of
the network, �nds books-nodesat the very end of the stream. In such cases,the gain is
fully rewarding. However, in caseswhere the query is not selective, the e�ort to run the
additional routers can be reected in worse timing of the evaluation. Section 5.6 shows
that in practice such routers bring the evaluation time up to several times better than of
the original network.

In a streamcontext, the selectivity of the (continuous)query canchangeover time, due
to changesin the input stream. Therefore,an interesting question,which is not addressed
here, is to add or remove the routers at run-time, depending on the changesin the query
selectivity.

A �nal remark beforede�ning the router transducers. Due to the fragmentation they
operate on (well-formed) XML streams, such routers output stream fragments that are
not necessarilywell-formed. In particular, the routers can sendclosingtags without their
accompanying opening tags. The neededchangesto the existing transducersare mini-
mal: the stacks of the SPEX transducershave a non-removable bottom-symbol (which is
interpreted as the empty annotation) which may not be removed.

5.4 Minimization Problems for SPEX Transducer Net works 141

Phase1 Routing

After each transducerfor a forward LGQ predicate,we add to the network a phase1 router
transducer which sendsfurther the stream fragment starting with the �rst opening tag
followed by a non-empty annotation. For a more compact de�nition, we may read two
input symbols at once1. The transition rules read as follows. If no non-empty annotation
hasbeenalreadyreceived (stated by the empty annotation asthe only entry on the stack),
then no messageis let through. As soon as the stack consistsin a non-empty annotation,
all subsequent messagesare let through. Finally, in casethe received nodehasa non-empty
annotation ([s] 6= []), then it is sent through and the annotation becomesthe stack content
(standsfor any annotation).

1. (h� i [] , []) ` ([], ")
2. (h=� i , []) ` ([], ")
3. (h� i [] , [s]) ` ([s], h� i [])
4. (h=� i , [s]) ` ([s], h=� i)
5. (h� i [s],) ` ([s], h� i [s])

Phase2 Routing

After each transducer for a forward LGQ predicate, we add to the network a so-called
phase2 router transducerwhich sendsfurther only streamfragments that canbe relevant to
the other transducersdown the network. Wecandistinguishherethe casesof (sub)networks
evaluating sdown, pdown, and rdown formulas. The �rst casecorrespondsto our previous
example,becauseall transducersunder the phase2 router transducer look for nodesto be
found only inside the streamfragments corresponding to nodesmatched by the transducer
positionedabove that router. The secondcaserestricts the routed streamto the fragments
between the node having a non-empty annotation and the closing tag of its parent. A
phase2 router transducerfor the third caseis the sameas for phase1 and asde�ned above,
becauseit restricts the routed stream to the fragment between the �rst node having a
non-empty annotation and the end of the stream.

We give next the phase2 router transducerfor the sdown case.In contrast to the phase1
router, the phase2 router usesits stack to remember the smallestdepth of a received node
with a non-empty annotation. Therefore,only if the stack consistsin an empty annotation,
then the opening and closingtags of nodeswith empty annotations are not let through.

1. (h� i [] , []) ` ([], ")
2. (h=� i , []) ` ([], ")
3. (h� i [c],) ` ([c] j , h� i [c])
4. (h� i [] , j) ` ([] j j , h� i [])
5. (h=� i , j) ` (, h=� i)

1This relaxation doesnot make the phase1 router more expressive than SPEX transducers.

142 5. Evaluation of Forw ard LGQ Forest Queries against XML Streams

5.5 Complexit y Analysis

This section gives upper bounds for the time and spacecomplexities of the LGQ query
evaluation using the evaluation strategy developed in this chapter. After analyzing the
complexities for forward LGQ forests, which are explicitly targeted in this chapter, the
complexities for LGQ graphs are also discussed,as derivable from both the complexities
of rewriting of graphs into forward forests and the complexities of evaluating the latter.
Several other ideas on improving the spacecomplexity are also presented, though not
thoroughly investigated.

The evaluation of forward LGQ forest queriesproposed in this chapter has polyno-
mial combined complexity (i.e., in the sizeof the data and of the query) near the lower
bound [71] for in-memory evaluation of Core XPath, a strict fragment of forward LGQ
forests. Although in generalit is consideredthat the query is �xed, in a stream context
there are good reasonsto take also the query size into account, especially when dealing
with sets of (millions of) queries to be evaluated at the sametime, as encountered in
publish-subscribe systems[76].

The presentation of the complexity results for forward LGQ forests is guided by the
following thread. First, a discussionon the sizeof annotations and of transducer stacks
is conducted. Then, the time and spacecomplexitiesare investigated for eight classesof
forward LGQ forests. Inside these fragments, somesubfragments that enjoy even better
complexitiesare de�ned further, though their syntactical characterization getscomplex.

In the remainderweconsiderthat the LGQ queryhassizeq, the XML stream(conveying
trees) hasmaximal depth d, maximal breadth b, and sizes.

Discussion on the size of an annotation

An annotation is represented as a list of natural numbers in ascendingorder. We discuss
the memoryrequirements to storesuch a list, wherethe greatestnumber allowedn depends
linearly on the stream parametersd, b, or s.

Case 1. The list is an empty list (corresponding to an empty annotation) or a singleton
list containing the number 0 (corresponding to a full annotation) or 1. In this case,the
list can be represented using constant spaceO(1).

Case 2. The list is either (a) a singleton list, e.g., [3], or (b) a continuous list of
(successive) numbers,e.g., [2,3,4],wherethe numbers in the list are lessthan the greatest
number allowed n. Such a continuous list can be represented as an interval where the
upper delimiter is lessthat n. Note that a number lessthan n can be represented using
log2 n bits. In this case,the list can be represented using O(logn) bits.

Case 3. The list is an uncontinuous(i.e., with holes)list of numbers,e.g., [2,4], where
the numbers in the list are lessthan the greatestnumber allowed n. In this case,the list
can be represented asa bitset with at most n positions, thus with sizeO(n).

The stacks of all pushdown transducersde�ned in Section 5.3.1 contain only annota-
tions, as ensuredby their de�nitions. Recall from Proposition 5.2.5 that the amount of

5.5 Complexit y Analysis 143

annotations stored onto the stacks of
!

scopex transducers(x 2 f sdown; pdown; rdowng) is
d for x = sdown, d + b for x = pdown, and s for x = rdown. The following proposition
gives the bound on the maximum number of annotations existent at a time on a stack of
transducersfor binary predicates.

Prop osition 5.5.1. The stackof a transducer for an LGQ binary predicate hasat most d
entries, where each entry is an annotation.

Proof. The stack of each such transducerchangesasfollows: for each annotation following
an opening tag the transducerpushesan annotation onto the stack (it may be the received
annotation, the empty annotation or another computed annotation) and for each closing
tag an annotation is popped from the stack. A stack can have at most d annotations
(entries), for there can be at most d opening tags encountered in the stream beforeoneof
their closingtags is received.

Becauseeach stack entry is an annotation, the sizeof a transducer stack dependson
the sizeof the annotation, as discussedin the previousparagraph. For each of the above
casesof di�erent annotation sizes,di�erent stack sizesare de�ned that are d times bigger
than the annotation size.

Discussion on the size of the bu�er for poten tial answers

The memory neededfor processingLGQ querieson streamswith SPEX is given by the
memory used for transducer stacks and also by the memory used for bu�ering stream
fragments when needed.

The evaluation of a tree querycanrequireextra memoryfor bu�ering potential answers.
As pointed out in Section5.2.7, if, for a particular substitution consistent with that tree
query and the stream, the imageof the headvariable (the head image) in encountered in
the streambefore the imageof another variable, then that headimagebecomesa potential
answer and has to be bu�ered until either all variables get an image (in which casethe
head image becomesan answer), or it is known that they can not get images(in which
casethe head imageis dropped).

In worst case,the entire stream is a potential answer that dependson a variable sub-
stitution that happensonly at the end of the entire stream. In this pathological case,the
entire stream is bu�ered.

It is worth noting that this bu�ering of potential answers is a constant aspect of the
SPEX problem itself, and thus independent of the method described here.

Well-ordered Queries have bu�er-free Evaluation

We noticed there is a forward LGQ fragment containing queries,for which all substitutions
consistent with them and any tree ensurethat the head image appearsafter the images
of the other variables. Thus, the evaluation of such queriesdoesnot needbu�ering. We
call the querieswith this fortunate order of variable imageswell-ordered queries, and their
classLGQwoq.

144 5. Evaluation of Forw ard LGQ Forest Queries against XML Streams

Forward forest queriesfrom LGQwoq admit an easygraphical characterization: for all
their possibledigraph representations, all nodesabove the node corresponding to the head
variable are on the path to the latter, which additionally has no outgoing edges.LGQwoq

contains also all queries that admit an equivalent forward forest query with the above
graphical characterization. For example, in Figure 4.3, the �rst two and the last two
digraphsrepresent well-orderedqueries,whereasthe middle digraph not. Clearly, LGQwoq

includes the LGQ fragment of forward paths, becausethe head variable of forward path
queriesis non-source(the �rst condition), and there is no upper node that doesnot lead
to the node corresponding to the headvariable (the secondcondition).

Although not addressedhere, it is interesting to study LGQ fragments that become
LGQwoq only in the presenceof particular classesof streams,as de�ned by grammars.

Com bined Complexities for Eigh t Forw ard LGQ Forest Fragmen ts

The spaceand time combined complexitiesfor the evaluation of queriesfrom eight forward
LGQ forest fragments are given below. The rationale behind choosing thesefragments is
given by the various sizesof annotations createdduring query evaluation and by the lack
or need to bu�er stream fragments. The syntactical characterization of these fragments
is given in Table 5.1 and their combined complexities in Table 5.2. All these fragments
contain nodetestsand all LGQ booleanconnectives. The di�erences betweenthem consist
in the typesof permissibletree formulas (sdown, pdown, rdown, cf. Section3.6) and of the
LGQ built-in predicates.Recallthat an sdown/p down/rdown tree formula hasmulti-source
variablesbeing also sourcesof sdown/p down/rdown paths subformulas. An sdown paths
contains only forward vertical atoms. A pdown path contains only forward vertical and
horizontal predicatesatoms, and starts with a horizontal atom. An rdown path contains
foll-atoms.

From any of theseeight fragments, a subfragment constructedby removing query con-
structs listed in Table 5.1 lies in the samecomplexity classas the fragment from which it
is derived, if this subfragment is not already listed in the table separately.

Fragment sdown/p down/rdown tree formulas F F+ [F� [f follg
LGQ1 none + +
LGQ2 sdown + {
LGQ3 sdown { +
LGQ4 sdown, pdown { +
LGQ5 sdown, pdown, rdown { +
LGQ6 sdown + +
LGQ7 sdown, pdown + +
LGQ8 sdown, pdown, rdown + +

Table 5.1: Syntactical Characterization of consideredLGQ Fragments

5.5 Complexit y Analysis 145

Fragment Annotation Size SpaceComplexity Si Time Complexity Ti

LGQ1 O(1) O(q � d) O(q � s)
LGQ2 O(1) O(q � d + s) O(q � s)
LGQ3 O(log(d)) O(q � d � log(d) + s) O(q � log(d) � s)
LGQ4 O(log(d + b)) O(q � d � log(d + b) + s) O(q � log(d + b) � s)
LGQ5 O(log(s)) O(q � d � log(s) + s) O(q � log(s) � s)
LGQ6 O(d) O(q � d2 + s) O(q � d � s)
LGQ7 O(d + b) O(q � d � (d + b) + s) O(q � (d + b) � s)
LGQ8 O(s) O(q � d � s) O(q � s2)

Table 5.2: Combined Complexity of consideredLGQ Fragments

Theorem 5.5.1 (Complexit y of Forw ard LGQ Query Evaluation). For the LGQi

fragmentsde�ned in Table 5.1, the space Si and time Ti combined complexities for the
evaluatingqueriesof thesefragmentsare the onesgiven in Table5.2 (1 � i � 8).

Discussion. For all eight LGQ fragments the following three propertieshold. First, the size
of a transducernetwork for an LGQ query is linear in the sizeof the query. This property
holds (1) due to the linear size of the stream processingfunction in the corresponding
query, as ensuredby Proposition 5.2.1 for the translation scheme of Section 5.2.3, and
(2) due to the one-to-onemapping of stream processingfunctions to transducers.Second,
each node in the stream hasan annotation, the sizeof which inuences both the time and
the spacecomplexitiesof query evaluation. Third, a transducerstack can store at most d
annotations, as ensuredby Proposition 5.5.1.

The processingwith a transducer network requiresthen time linear in the sizeof the
query q and spacelinear in the query sizeq and in the depth d. The time complexity Ti

and spacecomplexity Si depend alsoon the sizeof annotations createdduring processing,
as highlighted in Table 5.2. The remainder investigatesthe size of an annotation that
di�erentiates the complexitiesof the de�ned LGQ fragments.

LGQ 1 evaluation needs annotations of constan t size. No sdown/p down/rdown
formulas in the query meansno multi-source variables, thus no tree queries. This means
thereareno

!
scopex transducersin the network correspondingto the query, andno bu�ering

is needed. Then, the only non-empty annotations on the transducer stacks are the full
annotationsproducedby the in transducer. This correspondsto Case(1) of annotationsof
constant size. The unions of annotations doneby transducersfor closurepredicatesyield
always empty or full annotations of constant size.

All remainedfragments LGQi (2 � i � 8) allow tree queries. The previous discussion
on the sizeof the bu�er for potential answerspoints out that the evaluation of tree queries
can require a bu�er of maximum sizes.

The translation schemeof Section 5.2.3 for a given query adds to the corresponding
stream processingfunction a

!
scopex function for each multi-source variable in the query.

The corresponding scope transducer createsfresh annotations that are at most d for x =

146 5. Evaluation of Forw ard LGQ Forest Queries against XML Streams

sdown, at most d + b for x = pdown, and at most s for x = rdown, cf. Proposition 5.2.5.
All annotations created by a scope transducer are singleton lists containing one number
spanning from 1 to the maximum amount of fresh annotations. The above bounds hold
also for the sizeof the in-mapping and out-mapping relations, cf. the sameproposition.

LGQ 2 evaluation needs annotations of constan t size. No closurepredicatesin
the query meansno unionsof annotationsdoneby transducers.Therefore,the annotations
have constant size.

The next six fragments LGQi (3 � i � 8) allow querieswith closure predicates to
a varying degree. Basedon this degree,various

!
scopex transducerscan appear in the

transducernetwork for a given query. The type of such transducersdeterminesthe amount
of annotations existent at a time on their stacks and circulated downstream the network,
as given above. Therefore,depending on thesecases,the unions of annotations can have
sizeO(d), O(d + b), or O(s).

Among the next six fragments LGQ i , the next three (3 � i � 5) allow only queries
with closurepredicates,henceall transducersfor such predicatescompute unions. The
result of such a union is always a continuous list of numbers and it can be represented
as an interval, where the biggest number is boundedby d, d + b, or s respectively. This
corresponds to Case(2.2) of annotations of sizeboundedby log(d), log(d + b), or log(s).

The last three fragments LGQ i (6 � i � 8) allow querieswith non-closurepredicates
and alsoto a varying degreeclosurepredicates.The result of annotation unionscan be an
uncontinuous list of numbers, and it can be represented as a bitset with at most d, d + b,
or s positions. Apart of the sizeof annotations, theselast three fragments are symmetrical
to the previousthree ones.

Summarizingthe results, we get:
1. The queries contain sdown, but not pdown/rdown formulas. Then, their corre-

sponding networks can contain
!

scopesdown transducersthat store at most d annotations
at a time. If the queriescontain only closurepredicates,then the unions of annotations
can always be represented as intervals, otherwiseas bitsets. The latter casecorresponds
to LGQ3 and the annotations have sizeat most log(d). The former casecorresponds to
LGQ6 and the annotations have sizeat most d.

2. The queriescontain sdown and pdown, but not rdown formulas. Then, their corre-
sponding networks cancontain

!
scopepdown transducersthat storeat most d+ bannotations

at a time. If the queriescontain only closurepredicates,then the unions of annotations
can always be represented as intervals, otherwiseas bitsets. The latter casecorresponds
to LGQ4 and the annotations have sizeat most log(d + b). The former casecorresponds
to LGQ7 and the annotations have sizeat most d + b.

3. The queriescontain sdown, pdown, and rdown formulas. Then, their corresponding
networks can contain

!
scoper down transducersthat store at most s annotations at a time.

If the queriescontain only closurepredicates,then the unions of annotations can always
be represented as intervals, otherwiseasbitsets. The latter casecorrespondsto LGQ5 and
the annotations have sizeat most log(s). The former casecorresponds to LGQ8 and the
annotations have sizeat most s.

5.5 Complexit y Analysis 147

Remark 5.5.1. Recall from Chapter 4 that the languageof forward LGQ forestskeepsits
expressiveness,even if the foll-predicate is removed, becausefoll-atoms can be rewritten
into formulas without foll, but with reverseatoms. Such formulas can be rewritten into
(possibly) exponentially bigger equivalent forward formulas.

On the other hand, Theorem 5.5.1 states that the time complexity can be quadratic,
and the spacecomplexity linear, in the streamsizefor LGQ8 containing the foll-predicate.

The tradeo� betweenthe complexitiesof the latter and the former casescan be easier
motivated by various application scenarios.For the evaluation of rather complex queries
against a stream of small (but many) independent XML documents [7], the latter ap-
proach makessense,whereasfor the evaluation of simpler queriesagainsta streamof large
(possiblyunbounded) XML documents, the former approach is more appropriated.

Com bined Complexities for Graph Queries

In general,graph queriesare rewritten into forward forests with size exponential in the
size of the graph queries. Therefore, the evaluation strategy introduced in this chapter
would require exponential complexity in the sizeof the initial query for evaluating them.
However, as shown by [74], the evaluation of graph queriesis exponential in general. Our
work re�nds, thus, this result of [74]. As explainedbelow, it goesevenbeyond and identi�es
a large LGQ fragment of graph queries,whoseevaluation has polynomial upper bounds.
This makesour evaluation strategy optimal and completefor graph queries,and, although
exponential in general,it is polynomial in particular cases.

Thesecomplexity resultsarederivable from both the complexitiesof evaluating forward
forests, as detailed in this chapter, and the complexities of rewriting graph queriesinto
forward forests,as detailed in Chapter 4. In particular, the rewriting of a graph query s
yieldsa forward forestquery, whosesizeis linear in the sizeof s, if each connectionsequence
in s contains neither (i) vertical closurereversepredicatesafter vertical forward predicates,
nor (ii) horizontal closurepredicatesimmediately after horizontal reversepredicates,and
nor (iii) vertical closureforward predicates,having assink a variable with a forward sink-
arity greater than one,after vertical forward predicates(cf. Theorem 4.5.3).

We conjecture that an even larger LGQ fragment of graph queriescan be evaluated
with polynomial combined complexities. By relaxing the condition on the forwardness
of the rewritten forest queries,one can expect that more graph queriescan be rewritten
into polynomially-sizedforest queries. This result, co-relatedwith the existenceof poly-
nomial (main-memory) evaluation strategiesfor forest queries(with forward and reverse
predicates),e.g., [71], makesthe evaluation of thesegraph queriespolynomial.

Impro ving Space Complexit y

When consideringtransducernetworks for the evaluation of LGQ6 and LGQ7 queries,there
is an interesting monotonicity relation between the annotations existent at any time on
the stack of transducersfor predicates:any two annotationsrepresenting consecutive stack
entries have the property that the one near the top is either (1) empty, or (2) the same

148 5. Evaluation of Forw ard LGQ Forest Queries against XML Streams

as the other one, or (3) represents a list containing numbers that are all greater than the
numbers of the other annotation, or (4) the two annotations have a commonsublist, and
the previousthird caseappliesto the rest of both annotations.

We de�ne the monotonicity binary relation corresponding to the cases2,3,and 4 above,
by extending the order � from numbers to lists of numbers, i.e., to annotations:

[a] � [b] , 8i < [a]; 9j < [b] : i � j:

We give without proof the following proposition that summarizesour observation.

Prop osition 5.5.2. Consider the following con�guration of the stackof a transducer for a
horizontal or vertical forward LGQ predicate during processingan XML stream: [cn] j : : : j
[c1] where [c1] is the stackbottom. Then, either [ci] = [] or [ci � 1] � [ci], where 1 < i � n.

Such a property is very useful becauseit exhibits the possibility to store the anno-
tations more e�cien tly than using a stack. The gain lies in avoiding to store redundant
annotations.

Consider that instead of the rigorous accesspolicies of stacks, we allow occasionally
ourselvesto accessentries below their top. We alsoconsidera new symbol, called marker.
The basicstack operations can be, then, implemented as follows:

push. We follow the aforementioned four cases.In the �rst and third cases,we push
the marker and then the received empty annotation. In the other two cases,we push only
the di�erence betweenthe received annotation and the top annotation. It should be clear
that our stack doesnot contain overlapping annotations asentries, if they are non-empty.

pop. We pop the top entry, as for normal stacks. If after popping the new top
becomesa marker, then we pop it too.

top. We collect all annotations starting with the top and endingwhen the bottom of
the stack is reached, or when a marker is found. The union of the collectedannotations
represents the top annotation.

5.6 Exp erimen tal Results

The theoretical complexity results of Section5.5 are veri�ed by an extensive experimental
evaluation conductedon a prototype implementation of our SPEX evaluation in Java (Sun
JRE 1.5) on a Pentium 1.5 GHz with 500MB under Linux 2.4.

XML Streams. The e�ect of varying the stream size s on the evaluation time is
consideredfor two XML stream sets. The �rst set [114] provides real-life XML streams,
ranging in size from 21 to 21 million nodes and in depth from 3 to 36. The second
set provides synthetic XML streamswith a slightly more complex structure that allows
more precisevariations in the workload parameters.The synthetic data is generatedfrom
information about the currently running processeson computer networks and allows the
speci�cation of both the size and the maximum depth of the generateddata (see also
Chapter 6).

5.6 Exp erimen tal Results 149

0

50

100

150

200

250

300

0 100 200 300 400 500 600 700

tim
e

(s
ec

)

stream size s (MB)

real-life data
synthetic data

(a) Varying stream sizes (q = 10, 3 � d � 32)

0

4

8

12

16

20

0 100 200 300 400 500 600 700 800 900 1000

tim
e

(s
ec

)

query size q (relations)

(b) Varying query sizeq (s = 244kB, d = 32)

Figure 5.7: Scalability (p� = p+ = pnextSibl = p Y= 0:5)

2
2.2
2.4
2.6
2.8

3
3.2
3.4
3.6

0% 20% 40% 60% 80% 100%

tim
e

(s
ec

)

probability (%)

closure
next

wildcard

(a) E�ect of p� , p+ , and pnextSibl

2

3

4

5

6

7

8

0 100 200 300 400 500 600 700 800 900 1000

sp
ac

e
(M

B
)

query size q (relations)

(b) E�ect of varying query sizeq

Figure 5.8: If not varied, s = 244kB, d = 32, q = 10, p� = p+ = pnextSibl = p Y= 0:5

0

5

10

15

20

25

30

35

0 100 200 300 400 500 600 700 800 900 1000

av
g

tim
e

(s
ec

)

query size q

parse
naive

phase1
phase2

(a) Varying query sizeq (s = 450 kB)

150

175

200

225

250

275

300

325

0% 20% 40% 60% 80% 100%

av
g

tim
e

(s
ec

)

probability (%)

parse
naive

phase1
phase2

(b) E�ect of p+ (s = 700 MB, q = 10)

Figure 5.9: E�ect of �lters. If not varied, p� = p+ = pnextSibl = 0:5

150 5. Evaluation of Forw ard LGQ Forest Queries against XML Streams

Queries. Only LGQ queriesthat are \grammar-aware" are considered,i.e., that ex-
pressstructures compatible with the grammar of the XML streamsunder consideration.
Their generationhas been tuned with the query sizeq and several probabilities: pnextSibl

and p+ for next-sibling, respectively closurepredicates,p Yfor a multi-source variable, and
p� for the probability of a wildcard nodetest. For example,a path query has p Y= 0. For
each parametersetting, 10{50 querieshave beentested, totaling about 2000queries.

Scalabilit y. Scalability resultsare presented for streamand query size. In both cases,
the depth is boundedin a rather small constant (d � 36) and its inuence on processing
time showed to be considerablysmaller than of the stream and query size. Figure 5.7
emphasizesthe theoretical results: Queryprocessingtime increaseslinearly with the stream
sizeaswell aswith the querysize. The e�ect is visible in both the real-life and the synthetic
data set, with a slightly higher increasefor the synthetic data due to its more complex
structure.

Varying the query characteristics. Figure 5.8(a)showsan increaseof the evaluation
time by a factor of lessthan 2 when p� and p+ increasefrom 0 to 100%. It also suggests
that the evaluation times for nextSibland child are comparable.Further experiments have
shown that the evaluation of forward tree and DAG queriesis slightly moreexpensive than
the evaluation of simple path queries.

The memory usage is almost constant over the full range of the previous tests. Cf.
Figure 5.8(b), an increaseof the query sizeq from 1 to 1000leadsto an increasefrom 2 to 8
MB of the memory for the network and for its processing.The memoryuseis measuredby
inspecting the propertiesof the Java virtual machine (e.g.,usingRuntime.totalMemory()
and Runtime.freeMemory()).

Stream routing minimization. All previoustests show experimental results for the
\naiv e" versionof our evaluation strategy, i.e., that versionwithout the phase1 and phase2
routers described in Section5.4. Figure 5.9 shows how theserouters a�ect the evaluation
time. The phase2 router improves the evaluation time up to 3 times for our tests using
queries,whosesizesrange from 5 to 1000,cf. Figure 5.9(a). The same�gure shows also
that, for small XML streams,our evaluation strategy is in average�v e times slower than
the mereparsing of the XML stream2, if phase2 is used,10 times slower if phase1 is used,
and 15 times slower for the naive version(i.e., without routers). Using the phase2 routers,
an increasein the query sizeq tends to have little to constant inuence on the evaluation
time. This result is explainedby the fact that an increasein the query sizeleadsoften to
an increasein its selectivity, which sustain afterall the rationale for the usageof routers
(seeSection 5.4 for more). The samerationale applies for the results of Figure 5.9(b),
where the increaseof the closureprobability (p+) makes the querieslessselective. This
leadsto a lesse�ective gain achieved by using the routers.

2We usedthe Crimson SAX parser available at http://xml.apach e. org /c rim son/ .

5.7 Related Work 151

5.7 Related Work

Sincethe XPath standardwasproposedasa W3C Recommendation[46] and usedby other
W3C RecommendationslikeXSLT [45], XQuery [23], XML-Schema[59], andXPointer [54],
signi�cant research andapplication interest for the XPath languagewasgrowing constantly.
Someof the research questionsrelated to properties of XPath, like query containment,
rewriting, or minimalit y are detailed in the related work sectionof Chapter 4. We detail
hereon the query evaluation problem.

The problem of XPath query evaluation against XML data (may it be stored in main
memory or streamed) is one of the most basic and widespreaddatabasequery problem
in the context of XML. In the following, we position its SPEX variant (i.e., against XML
streams) versusthe query evaluation against tuple (relational) streams. Then, we state
shortly the theoretical complexity of XPath evaluation as found in the literature, and give
a succinct overview on existing XPath query evaluation techniques by �rstly describing
somesigni�cant work in the �eld of main-memory query evaluation against XML data,
and later surveying approachesin the �eld of query evaluation against XML streams.

Discussion on the XP ath evaluation: XML streams versus tuple streams

Besidesthe apparent discrepancyconcerningmodelingaspectsbetweenrelational andXML
data, at relations (i.e., setsof tuples of rather constant size) can be, of course,usedto
describe hierarchies(tree data), asXML does. Augmented alsoby the ourishing research
on the topic of querying tuple streams,e.g., [15, 18, 17, 77, 117, 1, 39, 36, 40], the idea of
querying tuple streams conveyingXML data can be appealing at a �rst glance. However,
just a short look would reveal a salient unnaturalnessof this approach: to bene�t from the
hierarchical structure conveyed in the stream, expensive structural joins like parent/c hild
and preceding-sibling/following-sibling have to be computed. Samework in the �eld of
querying tuple streams identi�ed computations of joins as very expensive, for they can
requireunboundedmemory(provided no knowledgeabout the incomingstreamis at hand).
In this sense,[12] provesspacelower boundsfor the evaluation of continuousselect-project-
join queriesover tuple streams,and givese�cien t join algorithms for speci�c cases,e.g.,for
joins on numerical values. As a generalapproach to cope with join computation that can
require unboundedmemory in a tuple stream(as well as in an XML stream) environment,
relevant work [36] proposesjoin computation under memory or time constraints, called
windows.

In a sense,XML streamscan be seenas views upon tuple streamswhere particular
joins (i.e., parent/c hild and preceding-sibling/following-sibling) are already conveniently
materialized for easyingfurther processing.Convenient join materialization meansin the
context of XML that, along an XML stream, it is easy to encounter the pairs of nodes
participating to thesejoins by simply using a stack to keeptrack of nodesdepth (as done
also by our SPEX evaluator). For the parent/c hild join, (1) a child of a (parent) node is
placed in the XML stream betweenthe opening and closingtags of the parent node, and
has a depth with one unit higher than the depth of the parent node. For the preceding-

152 5. Evaluation of Forw ard LGQ Forest Queries against XML Streams

sibling/following-sibling join, (1) the siblings have the sameparent node and depth, and
oneappearsafter the other in the stream'ssequence.

It would be interesting to research, however, on how other kind of joins, e.g.,ID-IDREF
in XML data enabling graph structures, can be conveniently materialized in a stream
of XML. Note that X-scan [94], a automaton-basedquery operator for XML �ltering,
computesnaively such ID-IDREF joins along an XML stream by simply storing all nodes
that might be part of the join and testing, after encountering each newnode in the stream,
whether this new node is in the join with somealready stored nodes.

Discussion on key issues of an e�cien t XP ath evaluation

Recall that the evaluation of an XPath query yields a set of nodes(henceduplicate free)
that it further sorted in document order. This canbe achieved, e.g.,by sorting the list and
pruning the duplicates at the end of the query evaluation, or by sorting and pruning the
duplicatesafter the evaluation of each XPath step. The former approach is usedby popular
XSLT/X Query processorslike [11, 47, 61] and can lead to an exponential blowup of the
intermediate results in the sizeof the query. The latter approach makesthe sorting opera-
tion a major bottleneck. To partially overcomethis, [85] detectsand removesunnecessary
sorting operations of intermediary results. However, the duplicate elimination operation
after the evaluation of each step jeopardizesany attempt to progressive (pipelined) pro-
cessingthat, by avoiding to build intermediate results, is one of the major reasonswhy
query evaluation in relational databasesis highly e�cien t.

The key issueof an e�cien t XPath evaluation consistsin avoiding the creationof dupli-
catesat any time during processing,as failed by, e.g., [11, 47, 113, 61, 7], and successfully
consideredby, e.g., [70, 78, 84, 86], and alsoby SPEX.

Com bined Complexit y of XP ath Evaluation is P-complete [71]

Recent work [71, 140, 19] discussesthe complexity lower boundsof XPath evaluation.
Polynomial upper boundsfor combined complexity (i.e., in the sizeof the data and the

query) of XPath evaluation are given, e.g.,by [70], and alsoby the SPEX evaluator of this
chapter.

[71] shows further that the XPath evaluation problem is P-hard by reduction from the
monotonebooleancircuit valueproblem,which is P-complete. The combined complexity of
several restricted fragments of XPath is further detected: Core XPath is alsoP-complete,
positive (i.e., without negation) Core XPath is LOGCFL-complete, the fragment of path
queries(corresponding to LGQ1) is NL-complete (nondeterministic logarithmic space)3.
[74] shows recently that the evaluation of LGQ-like graph queriesis NP-complete. Recall
that Section 5.5 re�nds this result and shows further there is a large fragment of LGQ
graph queries,whoseevaluation haspolynomial complexities.

3Recall that NL � LOGCFL � P.

5.7 Related Work 153

5.7.1 Query Evaluation against stored XML Data

The main characteristicsof queryevaluation againststoredXML data residein the random
accessto the data. This enablesseveral passesover the data, the creationof variousindexes,
or the compressionof the data beforeprocessingit, as discussednext.

A. Plain XML data stored in main memory

The issueof e�cien t XPath evaluation against in-memory XML data received attention
recently, whenpopular XSLT (i.e., XPath-based)processingtools, like Xalan [11], XT [47],
and Internet Explorer [113], proved to be highly ine�cien t on ever-growing XML docu-
ments that shifted from simple Web pagesto large XML repositories [120, 60, 28, 114].
Experimental evaluations of the above mentioned XSLT processors,as well as XQuery
processors,e.g., Galax [61], as performed by [70, 106], show that such processorsbreak
for rather small XML documents, e.g., around 33 MB for Galax and 75 MB for Xalan.
This fact is exacerbatedby expensive main-memory representations of XML documents:
DOM-lik e main-memory structures for XML documents tend to be four-�v e times larger
than their original XML documents [91].

Xalan [11], XT [47], and IE6 [113]

As pointed out also by [70], popular tools like Xalan, XT, and IE, are in fact ine�cien t
even for small XML documents and large queries. At a critical inspection of their code,
the XPath evaluation strategy of these tools resembles a straightforward node-at-a-time
implementation of the XPath denotational semantics given, e.g., in [128], and asexplained
next. For a given query, these processorsevaluate the �rst query construct from the
root node, get as a result a bag of nodes, then proceed to the evaluation of the next
query construct from each node from the previously computed node bag and so on. It
is clear that the evaluation of each query construct from a node may result in a set of
nodes of size linear in the size of the XML document (e.g., the number of descendants
of a node is linear in the XML document size). In this way, the recursive evaluation of
the constructs of an XPath query endsup consumingtime exponential in the sizeof the
query in the worst case,even for very simple path queries.Considerthe evaluation of the
XPath query /descendant::a/: : :/descendant::aagainst an XML document containing only
nesteda-nodes. The evaluation of the �rst step yields the bag of all a nodesin the XML
document, the evaluation of the seconddescendant::astep yields for each a node the set
of all its descendants (which has sizelinear in the document size). The evaluation of the
third step is donenow from a number of nodesquadratic in the document sizeand yields a
bag of nodescubic in the document size. Although theseintermediary node bagshave size
exponential in the sizeof the initial XML document, the amount of distinct nodes they
contain doesnot (and can not) exceedthe sizeof the initial XML document.

154 5. Evaluation of Forw ard LGQ Forest Queries against XML Streams

Con text-V alue Table Principle [70, 72, 73]

An e�cien t implementation of full XPath is provided in [70, 72] and improved in [73]. A
simpli�ed versionof it is usedto de�ne the semantics of XPath in [69] and in Chapter 3.

[70] de�nes a formal bottom-up semantics of full XPath, which leads to a bottom-
up main-memory XPath processingalgorithm that runs in the worst casein low-degree
polynomial time in terms of the data and of the query size. By a bottom-up algorithm is
meant a method of processingXPath while traversingthe parsetree of the query from its
leavesup to its root. The evaluation strategy is basedon a context-valuetable principle:
given an expressione that occurs in the input query, the context-value table of e speci�es
all valid combinations of contexts and values,such that e evaluates to a value in a given
context. Such a table for expressione is obtained by �rst computing the context-value
tablesof the direct subexpressionsof e in the parsetree and subsequently combining them
into the context-value table for e. Given that the sizeof each of the context-value tables
has a polynomial bound and each of the combination stepscan be e�ected in polynomial
time, query evaluation in total under this principle has also a polynomial time bound.
A general mechanism for translating the bottom-up algorithm into a top-down one is
further discussed,motivated by the computation of fewer uselessintermediate results of
the latter algorithm. [70] identi�es alsoan XPath fragment, calledCore XPath, that enjoys
linear-time combined complexity. Core XPath contains all XPath axes,nodetests,and the
composition operators / and [] for constructing paths and �lters, and it is a proper subset
of an XPath fragment equivalent to LGQ.

Similar Tree Pattern Matc hing Problems

As pointed out also in Section 5.1, there are similarities of the XPath query evaluation
problem with variations of tree matching problems[87, 97], whereas well queriesand as
data can be consideredtrees and the query evaluation can be reducedto computing the
matching of the query tree into the data tree. However, the query trees consideredin
[87, 97] can be expressedin XPath using only the restricted amount of XPath child and
following-siblingaxes [87] and descendantaxes [97], and it is not trivial to extend these
algorithms to cover all axesof XPath.

B. Compressed XML data stored in main memory

In order to deal with large amounts of XML data that can not be kept entirely in main
memory, recent research work split into two main directions: querying compressedXML
data stored in main memory, and querying streamsconveying unmaterialized XML data.
Research work for the latter approach is consideredfurther in Section5.7.2, whereassome
work [66, 30, 13] for the former is shortly presented here.

XML data compressionis e�ective becauseof the high redundancy of self-describing
XML documents. Approaches like [66, 30, 13] that compressXML data and evaluate
queriesin the compresseddomain provide a twofold advantage, by avoiding (i) to store
and (ii) to query redundant data. [30] separatesthe text from the skeleton (structure) of

5.7 Related Work 155

an XML data instanceand compressesthe skeleton basedon sharing of commonsubtrees
into directed acyclic graphswith multiple edges.This compressionmethod can lead to an
exponential reduction in the instancesize. The compressed,uncompressed,and partially
decompressedinstancesof the sameXML document areall equivalent under a bisimulation
relation that preservesthe structure and the order of the initial XML document. [30] gives
alsoevaluation techniquesfor XPath axesand set operationson compressedinstancesand
shows that the evaluation of XPath queriesonly with reverseaxesis linear in the sizeof
the query and of the compressedinstance(they navigate the instanceupwards and do no
decompression),whereasfor querieswith forward axescanbe exponential in the query size
(they navigate the instance downward and unfold it), making forward axesundesirable.
Note that this contrasts to our streamcontext whereforward axesare preferredto reverse
axes,becausethe evaluation of the latter would require to keepa history of the already
seenstream.

[66] supplements [30] by further showing that the method of [30] is PSPACE-complete
and for positive (i.e., without negation) Core XPath is NP-complete, though on uncom-
pressedtrees it is PTIME-complete [71].

XQuec[13] focuseson the compressionof the valuesfound in an XML document, moti-
vated by the fact that for a rich corpusof (real and synthetic) XML datasetsthe measures
of [13] speculate a value percentage of up to 80% of the whole document. Each value
is compressedindividually using an order-preservingtextual compressionalgorithm ade-
quated to that value type, thus enablingto evaluate, in the compresseddomain, inequality
comparisons.BecauseXQuec compressesonly the textual content of an XML document,
its query evaluation technique is rather orthogonalto our SPEX evaluation strategy (which
hasa big dealon the evaluation of structural queries). In fact, a mixed approach usingour
evaluation strategy for querying the structure and XQuec methods for querying the text
of XML data instances(provided onecan a-priori compressthe textual components in the
input stream) would be surely bene�cial.

C. XML data stored in relational databases

XP ath Accelerator [80, 79, 78] and Friends [86]

[80, 79, 78] proposean index structure for XML trees,the XPath accelerator,that cancom-
pletely live inside a relational databasesystemand supports all XPath axes.This index is
basedon the pre/post encoding schemesof the nodesin the XML tree, whereby pre/post
encoding schemeis meant the association of each node to its preorder/postorder rank as
computed in a preorder/postorder traversal of the XML tree. Based on this pre/post
encoding, the selectionof somenodesfrom other nodescan be easily speci�ed using rela-
tionships betweentheir pre/post values. E.g., the descendant nodesof a node n are those
nodes n0 that have a preorder value greater than the one of n, and its postorder value
lower than the one of n. [80] shows how this index can bene�t from the rewrite rules of
Chapter 4 by rewriting queriesto equivalent queriescontaining axesfurther optimizable.

[86] adapts straightforwardly the evaluation of XPath axes based on the relational

156 5. Evaluation of Forw ard LGQ Forest Queries against XML Streams

storageof the input XML document and the pre/post encoding schemeof [78] to main-
memory DOM [145] structures. In this way, [86] improves upon [70], where XPath axes
are evaluated linearly in the sizeof the XML document, whereasin [86] axesare evaluated
linearly in the sizeof the intermediate resultswhich are often much smaller than the entire
document.

5.7.2 Query Evaluation against XML Data Streams

Recall that the problem of query evaluation against XML streamsbearssomeof the chal-
lengesof the problem of query evaluation against stored data (like e�ciency) and further
facesnew challengesimposedby the sequential one-timeaccessto data.

In the following, wedistinguish betweenthe querymatching problem, i.e., givena query
and a stream, check whether the query selectsa non-empty set of nodesfrom the stream,
and the query answering problem, i.e., given a query and the stream, deliver the set of
nodesselectedby the query from the stream.

A. Query Matc hing

In the context of publish-subscribe or event noti�cation systems,the XML stream needs
to be �ltered by a large number of queries. In contrast to the approach of this chapter,
�ltering engineslike [7, 37, 14, 76] assumethe streampartitioned into comparatively small
XML documents (in the rangeof hundredsto thousandsof elements per XML document),
and it is deemedsu�cien t to determinewhether somequeriesmatch an XML document,
rather than answering the queries. Such XPath queriesare often called boolean queries,
becausethe result of their evaluation is a yes/no answer, rather than a set of nodes.

Discussion on DFAs versus PD As for pro cessing XML streams

Finite automata (FAs) [88] are a natural and e�ective way to processsimple querieslike
XPath paths. Several works [7, 37, 14, 76] usemodi�ed deterministic or non-deterministic
FAs to processpath queries. Steps of a path are mapped to states of such a non-
deterministic machine. A transition from an active state is �red whenan element is found
in the XML document that matchesthe transition. If an acceptingstate is reached, then
the document is said to satisfy the query.

There are several interesting issuesto mention about the evaluation of XML queries
using modi�ed deterministic �nite automata (DFAs). All these issuesare related to the
unboundnessof the XML streamcharacteristicslike its depth, or alphabet size,and to the
tree-like data conveyed therein. First, the number of statesin such a DFA dependson the
queryand on the data stream,and in order to givean upper boundfor the number of states,
oneneedsto makevariousupper bound assumptionson the streamcharacteristics. Second,
such modi�ed DFAs have a computational model signi�cantly di�erent from that of the
standard automaton that borrows its name. The computation of statesat runtime in such
modi�ed DFAs resembles the computation of stack con�gurations in pushdown automata

5.7 Related Work 157

(PDAs). In fact, dealing with an unbounded number of states in a DFA resembles even
closerthe unboundnessof a stack sizein PDAs. Third, a stack of sizeproportional to the
maximum depth of the treesconveyed in XML streamsis necessaryfor even the most basic
sequential navigation and parsing tasksof XML streams.Such tasks require to keeptrack
of the depth of nodesin the tree while traversing it depth-�rst. Therefore,all DFA-based
approaches[7, 37, 14, 76] use,in addition to other data structures, alsoa stack.

As a proof of conceptfor the above �rst and secondobservation, considerthe following
scenariofor the evaluation of forward paths using sequential compositions of pushdown
transducers,asdoneby our SPEX evaluator described in this chapter, under the assump-
tion that the XML streamdepth is bounded. Each SPEX transducerhasa stack bounded
in the depth of the tree conveyed in the input XML stream. For a given upper bound on
this depth, each SPEX transducercan be encoded as a �nite transducer,wherethe stack
con�gurations becomestates. The number of statesis then exponential in the depth of the
stream, but �nite. Then, the states are computed also at run-time, hencelazily, as stack
con�gurations arecomputedby SPEX transducers.Note that becausestack con�gurations
already encode the node depths, also the third observation is considered.Furthermore, a
sequenceof �nite transducerscan be reducedto a single �nite transducer, because�nite
transducersare closedunder composition [42]. Such a scenariois reasonablewhen it is a
priori known that such a bound for the streamdepth exists,e.g.,as inferred from a stream
grammar.

Several approaches to the query matching problem [7, 37, 14, 76, 75] are detailed in
the following. All of them compile queriesinto somesort of �nite automata that (1) are
extended with structures varying from stacks [76] to tries [37] and hash tables [7], and
(2) compute the states of the automaton at run-time. These evaluation techniques are
designedto processlarge amounts (i.e., millions) of boolean queries. They identify and
eliminate also commonsubquery pre�xes in the structure navigation [57, 37] and also in
the content comparisonpart [81], and are basedon the premisesthat in publish-subscribe
systemssigni�cant commonality amonguser interests represented as a set of querieswill
exist. Such structure and content commonalitiesamong large amounts of XPath queries
arealsodiscoveredusingvariouscost-basedheuristicsand usedin a SPEX extension,called
M-SPEX [67].

X-scan [94], XML TK [14, 76, 75], and XPush [81]

In the context of integration of large heterogeneousXML data wherethe data is streamed
from remotesourcesacrossa network and the query results are seldomlyreusedfor subse-
quent queries,[94] identi�es the on-the-y evaluation of regular path expressionsagainst
XML data as an e�cien t alternative to the evaluation of joins on locally stored relational
tables containing XML data. [94] proposesa novel operator, called X-scan, used in the
Tukwila integration system[95], to computebindings for query variableswhile XML data
arrivesacrossa network, and to deliver incrementally thesebindings to other operatorsof
the Tukwila system. The central mechanism underlying the operation of X-scan is a set

158 5. Evaluation of Forw ard LGQ Forest Queries against XML Streams

of deterministic state machines created for the regular path expressionsto be processed.
X-scanproceedsasfollows: the XML data getsparsedand storedlocally asan XML graph,
a structural index is built to facilitate fast graph traversal,and the state machinesperform
a depth-�rst search over the structural index. When a machine reachesan end state, then
the associated regular path matched and a binding is found. The potential problem with
the compilation of regular paths into deterministic �nite state machines (FSMs), is that
the states of each FSM have to be constructedat compile-time, although not all of them
might be usedat run-time, and their number can be exponential in the sizeof the regular
path.

XMLTK [14, 76, 75] considersthe problem of answering a large number of boolean
queries(XPath paths with child and descendantaxes)against a sameXML stream using
DFAs. The salient contribution residesin the theoretical study on the number of statesin
the DFA constructedeagerly, as in X-Scan[94], and lazily, asusedin text processing.The
lazy computation of the states meansthat the states are expandedat run-time and only
those states are created that are necessaryto processthe given XML data instance. [76]
shows that the number of statesof an eagerDFA can grow exponentially in the number of
XPath queries,and even in the number of wildcards for a singlequery. For the lazy DFA,
[76] proves an upper bound on its number of states that is independent on the number
and shape of XPath expressions,and only depends exponentially in the characteristics
of the stream grammar. However, if no grammar is available, there is no upper bound
guarantee on the amount of memory used. A query matcher basedon lazy DFAs validates
experimentally the theoretical claims by obtaining a constant throughput independent
on the number of queries. In order to guarantee hard upper bounds on the amount of
spaceused,[76] proposesto combine its lazy DFA approach with slower, but more robust
alternative evaluation methods like [37].

The idea of computing lazily the automaton states is further usedfor the XPush ma-
chine [81], a modi�ed deterministic pushdown automaton. In order to overcomethe rel-
atively high cost of computing states at run-time, [81] proposesa training of the XPush
machine beforerunning it on the actual data, training that precomputessomestatesand
transition entries. In addition to [76], XPush eliminates at compile-time common query
pre�xes aswell in the structure navigation part asalso in the �lter comparisonpart. The
theoretical and empirical analysisof [81] show that the number of statesin the lazy XPush
machine is about the sameorder of magnitude as the total number of atomic �lters in the
query set, much lessthan the worst caseexponential number.

XFilter [7], YFilter [58, 57], and XT rie [37]

XFilter [7] compilesXPath booleanquerieswith childand descendantaxesand �lters into a
setof �nite statemachines(FSMs), with each machine responsiblefor the matching of some
query step. Each FSM has extra information regarding, e.g., the identi�er of the query
containing its correspondingstep, the position of its stepin the query, and the continuously
updated information on the depth level in the XML document where it is supposedto
match (information that can be simulated in fact with a stack). The collection of FSMs

5.7 Related Work 159

of all queriesare indexedusing a hashtable on the nodetestsof their corresponding steps.
The hashtable is usedat processingtime to keeptrack of the FSMs that are supposedto
match next. When a state machine for a last step in a query hasmatched, then the whole
query, with the identi�er carried by the FSM, has matched. Becauseit keepstrack of all
instancesof partially matched queries,XFilter has an exponential complexity in the size
of the query.

[37] proposesa novel index structure, termed XTrie, that is basedon decomposing
queriesviewed as tree patterns into collectionsof substrings(i.e., sequencesof nodetests)
and indexesthem using a trie. XTrie is more space-e�cient than XFilter sincethe space
costof XTrie is dominatedby the number of substringsin each tree pattern, while the space
cost of XFilter is dominated by the number of nodetestsin each tree pattern (i.e., steps).
Also, by indexing on substrings instead of single nodetests,the substring-table entries in
XTrie are alsoprobed lessoften that the hashtable entries in XFilter. Furthermore, XTrie
ignorespartial matchings of queriesthat are redundant, in contrast to XFilter [7].

YFilter [57, 58] translates a set of booleanqueriesinto a single query wherecommon
pre�xes are identi�ed and eliminated, and compilesthe resulted query into an NFA. Each
state of the NFA is associated with (possibly)many queriesand whenan acceptingstate is
reachedat processingtime, then the associatedqueriesaresatis�ed by the input document.
Also here,a run-time stack is usedin addition to track the active and previouslyprocessed
states.

B. Query Answ ering

XSM [104], XSQ [132, 131], and �� o&[20, 21]

An XSM (XML StreamMachine) [104] is a �nite state machine, augmented with random-
access(input andoutput) bu�ers, that processesXML streamswith non-recursivestructure
de�nition on the y . Various XQuery [23] primitiv e expressionse, i.e., �lters with joins,
the descendantaxis, and static element constructors, are translated into XSMs M e. An
XQuery expressionis then reducedto an XSM network wherethe bu�er of M e is an input
bu�er for M e0, if e is a subexpressionof e0. Then, an entire XSM network is composedinto
a singleoptimized XSM that is �nally compiled into a C program. Each bu�er is usedto
store stream fragments depending on the query to evaluate and on the input stream, and
hasassociated a set of read and write pointers.

The extensionof XSM approach to handle (1) streamswith recursive structure de�ni-
tion and (2) all XPath axes,as both are consideredby SPEX, is not further addressed.
Real XML data usedfor information interchangebetweenapplications has in generalre-
cursive structure de�nition. A survey [44] of 60 real datasets found 35 to be recursive,
from which the onesfor data interchangeare all recursive. We conjecturethat the adap-
tation of XSMs to processXML streamswith recursive structure de�nition would require
an additional stack for each XSM, thus upgrading XSMs to pushdown transducerswith
random-accessbu�ers. The composition of XSMs into a singleXSMs becomesthen more
complicated, consideringat a �rst glancethere is no standard method to composepush-

160 5. Evaluation of Forw ard LGQ Forest Queries against XML Streams

down transducersinto a singleone(in fact, standard pushdown transducersare not closed
under composition [42]).

XSQ [131] compilesrestricted XPath queries(only child and descendantaxes,unnested
�lters with at most one such axis) into an exponential number of pushdown transduc-
ers augmented with queuesthat are gathered into a hierarchical deterministic pushdown
transducer. Concerningthe worst-casetime complexity, XSQ can perform an exponential
number of operations per stream message,even for non-recursive streams.

�� o&[20, 21] is an algorithm for evaluating XPath querieswith child and descendant
axesand their symmetrical reverseaxesparent and ancestor. A query is compiled into a
DAG structure wherenodesare XPath nodetestsand edgesare XPath axes. The reverse
axesare rewritten using rewrite rules similar to the onesof Section4.3.1, and asalsoused
in previouswork of the present author [125]. The evaluation of such a DAG query is based
on the incremental construction of a matching-structure consistingof mappingsof query
nodes from the DAG query to nodes from the tree conveyed in the input stream. This
evaluation approach is similar to the tree pattern evaluation algorithm of [116], though the
latter constructs the matching-structure bottom-up in the data tree, whereasthe former
constructs the structure top-down, as imposedby the stream sequence,i.e., depth-�rst
left-to-right preorder traversalof the data tree. All answers of the query are accumulated
in this matching-structure, and they are delivered at the very end of the stream (thus
no progressive processingis performed). An answer is determined uniquely by exactly
one matching of each query node, and all thesematchings are accumulated also until the
end of the processing. SPEX does also construct such a matching-structure, which is
updated constantly on the arrival of new streammessagesand distributed on the stacks of
transducers,but it contains only su�cien t information to determinethe next answers,and
previousmatchings that are not anymore neededfor possiblenew answers are dropped.

XSA G [98] and FluX Query [100, 99]

XML Stream Attribute Grammars (XSAG) [98] represent a query language for XML
streamsthat allows data transformation. In this formalism, queriesare expressedas ex-
tendedregular tree grammars[102] that (1) are annotated with attribution functions that
describe the output to be producedfrom the input stream, and (2) have productions with
right-hand sidesbeing strongly one-unambiguousregular expressions,i.e., expressionsfor
which the parse tree of any word can be unambiguously constructed incrementally with
just onesymbol lookahead. XSQG queriesare processedin linear time with memory con-
sumption boundedin the depth of the stream. Note that our SPEX evaluator hassimilar
time and spacecomplexitiesfor two important LGQ fragments (1) LGQ1, and (2) LGQwoq

with the bu�er-free evaluation.
The di�erence between [98] and our SPEX evaluator takes two important directions.

First, the usageof XSAGs is basedon the premisethat the grammar of the XML stream
is known a priori, and no loose speci�cation of the data to be found is allowed (e.g.,
by meansof closurepredicates like child+). Second,as also shown in [149], there is an
interesting connection between XPath queries that are always evaluated on someXML

5.7 Related Work 161

streams (documents) to a non-empty set, and the (regular tree) grammar that de�nes
the classof those XML streams. Simple path queries(thus queriesfrom LGQ1) can be
translated to grammars, whosenumber of productions is exponential in the size of the
query. The intuition residesin the intrinsic di�cult y to translate closure predicatesto
standard grammar formalisms. Structural constraints, as speci�ed by grammars,can be,
however, translated linearly into LGQ forest queriescontaining only horizontal and non-
closurevertical predicates.

FluX [100, 99] is an extensionof the XQuery language[23] that supports event-based
query processingand the conscioushandling of memorybu�ers. [100] de�nes alsosafeFlux
queriesthat are never executedbeforethe data items referredto have beenfully read from
the stream and may be assumedavailable in main memory bu�ers. This safety is ensured
by the order constraints betweenselecteddata items, asprovided by grammars. Note that,
similar to the notion of query safety, this chapter proposesalsothe more generalnotion of
query well-orderedness(for queries,whoseevaluation doesnot require bu�ers) that does
not necessarilyrequire grammar information.

C. General-purp ose Pro cessing of XML Streams

There are nowadays variousSAX-basedAPIs [110] for processingXML streams.To model
such APIs, [133] de�nes a type and e�ect system for a programming language� str with
operations that read (conditional destructively and non-destructively) sequentially mes-
sagesfrom an XML input stream and write messagesto output streams. The bene�t of
a type and e�ect system is the static analysisof programs in order to ensure,e.g., that
the programsread and write words in which opening and closing tags match. The basis
for such a systemare visibly pushdown expressions(VPEs) that are usedas e�ects, and
correspond to the classof newly discovered visibly pushdown languages[8], which are a
proper subsetof deterministic context-free languagesclosedunder concatenation,union,
intersection,complementation, and Kleene-*. VPEs canbeseenasthe streamcounterparts
of regular expressiontypes[89], a notation for regular tree languages[50] usedastypesfor
the XDuce programming language[90] that manipulatesXML documents as trees.

5.7.3 Hybrid Approac hes

By a hybrid evaluation technique is meant here a combination of techniques for main
memory XML data and for streams, e.g., [106]. Such approaches are motivated by the
constant sizeincreaseof real XML documents, e.g., [114, 120], that can not be processed
anymore in main memory, and are basedon the rather strong assumption that several
passesover the input XML document arepossible.The generalstrategyof theseapproaches
is (1) to �lter out from the original document fragments that are irrelevant to the query
at hand, and (2) to evaluate the query on the (presumably much smaller) �ltered XML
document. Note that although this method may be temporarily a su�cien t solution to
processlarger XML documents ([106] reports the processingof XML documents several

162 5. Evaluation of Forw ard LGQ Forest Queries against XML Streams

times larger than the original onesin average),it can still be proven ine�cien t as soon as
XML documents get even larger.

In the context of the Galax XQuery engine,[106] proposesa static inferencealgorithm
that identi�es at compile-timethe XPath simplepaths(only with childanddescendantaxes)
that are required to evaluate a given XQuery query. [106] givesalso an algorithm for the
simultaneousevaluation of a set of simple paths against the streamedXML document, in
the spirit of XFilter [7] presented previously. As XFilter, the algorithm considersa limited
fragment of XPath and can perform exponentially in the depth of the XML document.

Chapter 6

Applications

We describe heretwo real-world applications that have beenimplemented using the SPEX
evaluator described in this work.

6.1 Monitoring Computer Pro cesses

The �rst application [25] has a twofold goal. First, it monitors parametersof processes
running on UNIX computers. Second,it demonstratesthe featuresof our SPEX evaluator:

1. the processingof XML streamswith recursive structure de�nition and unbounded
sizeasgatheredfrom the information about UNIX processes,and

2. the detection of speci�c patterns in such richly structured XML streamsbasedon
the evaluation of rather complicatedXPath queries.

This application usesalsoa novel, sophisticatedvisualization of its run-time system,called
SPEX Viewer, that makespossibleto visualize

1. the rewriting of XPath queriesinto equivalent querieswithout reverseaxes,

2. the networks of pushdown transducersgeneratedfrom such queries,

3. the incremental processingof XML streamswith transducernetworks under various
optimization settings, and

4. the progressive generationof answers.

Un bounded XML streams. The parametersof processesrunning on UNIX computers
are constantly gathered as a continuous XML stream from the output of the ps -elfH
command. The information about a processis represented as an XML element process
containing child elements for variouspropertiesof a process,such asmemory and time used,
current priority and state, and child processes.Thus, the processhierarchy is represented
by parent-child relations betweenprocess-elements.

164 6. Applications

Figure 6.1: ProcessingStepsof the SPEX processor

The XML stream generatedin this manner is unbounded in sizeand depth, because
(1) new processinformation wrapped in XML is repeatedly sent in the streamand (2) the
processhierarchy can contain arbitrarily nestedprocesses.Note that, in practice, many
UNIX versionsallow at most 512processesrunning at a time on onemachine, thus limiting
the processhierarchy depth of onecomputer in the monitored systemto 512. However, in
computer networks, processesrunning on one computer can lunch subprocesseson other
computers,thus the processhierarchy can surpassthe barrier of 512.

XP ath queries. By meansof XPath queries, the monitoring application allows the
user to specify what processinformation conveyed in the XML stream is to be watched
and reported back. One can, e.g., monitor suspendedprocesseswith CPU and memory
expensive subprocesses.More speci�cally, thesecanbeprocesseswith a certain low priorit y
(e.g., below 10) that are currently stopped and are ancestorsof at least oneprocessin the
processhierarchy. Furthermore, this other processmust use more than 500 MB main
memory or be already running for more than 24 hours. The corresponding XPath query
is given below

/descendant::process[child::time> 24 or child::memory > 500]/ancestor::process

[child::priority < 10 and child::state= 'stopped']

SPEX can evaluate also querieswith simple aggregationsthat are not introduced in
Chapter 3, but make sensein real-world scenarios.For example,monitoring queriescan
selectprocessesthat together with their subprocessesusea certain amount of memory or
that have more than a given number of subprocesses.Note that rather complexand pos-
sibly nestedqueriescan be expressedin XPath and processedwith SPEX. Query nestings
reect processnestingsexpressedin the XML stream. The combination of the XML en-
coding of processinformation usedhereand the SPEX evaluator turns out to be a natural,
declarative, and e�ective solution for monitoring parametersof processes.

How the monitoring system works? Querying XML streamswith SPEX consists
in four steps, as shown in Figure 6.1. First, the input XPath query is rewritten into a
forward XPath query, as detailed in Chapter 4. The forward query is compiled into a
logical query plan that abstracts out details of the concreteXPath syntax. This is the

6.1 Monitoring Computer Pro cesses 165

function graph of the query. Then, a physical query plan is generatedby extending the
logical query plan with operators for determination and collection of answers. This is the
SPEX transducernetwork of that function graph. In the last step, the XML stream,which
in the chosenapplication scenarioconsistsin information about the status of processes,is
processedcontinuously with the physical query plan, and the output streamconveying the
answers to the original query is generatedprogressively.

Figure 6.2: SPEX Viewer illustrates how SPEX processesXML streams

How the monitoring system is demonstrated? The systemis demonstratedusing
the SPEX Viewer, that visualizeshow our SPEX evaluator processesXML streams. The
salient features of the SPEX Viewer consist in illustrating the four steps of the SPEX
processor,in particular showing (1) the logical and physical query plans, (2) the stepwise
processingof XML streamswith physical query plans together with the progressive gener-
ation of answers,and (3) the windows over the most recent messagesfrom the input XML
stream and the most recent answers.

A vector-basedgraph rendering enginehas been designedand implemented that �ts
the needsof demonstratingSPEX. Sincequery plans and SPEX transducernetworks may
be quite large, reversiblevisualization actions like moving, hiding parts, and zooming are
o�ered. As transducerstacks changeduring queryprocessingin content andsize,automatic
on-line graph reshapingis provided. Figure 6.2 shows a rendering of the physical query
plan for an XPath query in the middle areaof the visualization tool. The lower areashows
(from left to right) windows over the most recent fragment of the input XML stream,over
the current potential answers,and over the most recent query answers.

166 6. Applications

For a detailed insight into the XML stream processing,three processingmodi are pro-
vided that can be switched at any time during processing:the step-by-step, running, and
pausemodi. In the step-by-stepmode, the content of each transducerstack and the message
passingbetween transducerscan be inspected for each incoming stream message.In the
running mode, the input stream is processedmessageafter messagewith a speedchosen
by the user (cf. the delay slider on the topright of Figure 6.2). The pausemode is used
to interrupt the processingfor a detailed inspection of transducersin the network. While
in the pausemode, processingcan be resumedby selectingeither the step-by-step or the
running mode. Breakpoints can be speci�ed to alert when a given XML tag reachesgiven
transducers,or when given transducershave particular stack con�gurations.

6.2 Streamed Tra�c and Travel Information

The secondapplication is currently under development within a practical course\Streamed
Tra�c and Travel Information" 1 o�ered at the Institute for Computer Science,University
of Munich, in the winter term 2004/2005and co-supervisedby the present author. It is
a monitoring system for tra�c and travel information, such as announcements of tra�c
congestionsor reports on weather conditions. The tra�c information is captured from
RDS/TMC radio signals [93], �rst converted into sequencesof bits and later into XML
streamsthat are to bewatched for data patterns speci�c or relevant to a givenregion/time.
The main components of the monitoring systemare briey described below.

1. The RDS-information acquisition component consistsof (i) dedicatedhardware for
capturing in real-time RDS/TMC radio signalsand converting them into digital in-
formation, and of (ii) software for decoding and converting the gatheredinformation
into XML streams. Such XML streamscontain information about events like loca-
tion, category, duration, and direction. The location of an event is represented in
the XML streamby an identi�er together with its country-dependent administrative
hierarchy that enablesto specify on which fragment of which street in which city,
county, state, etc. a given event happens. The event categorydescribes the kind of
events dependent alsoon the location, e.g,,tra�c congestion(can happen anywhere)
or bull or tomato �gh ts (can happen on the streetsof Spain).

2. The XML streammonitoring component is basedon the evaluation of XPath queries
againstXML streamsconveying tra�c newsusingour SPEX evaluator. At this step,
only the XML stream fragments corresponding to special events relevant to a given
location are selectedand converted into SVG [63] document fragments (which are
alsoXML-based), whosevisualizationsare relevant for the corresponding events.

3. The SVG output of the secondcomponent updates an already existing SVG-based
map of a given location. For example,our application usedan SVG-basedmap of
the city Munich.

1http://www.pms.if i.l mu.de /l ehre/ pr akt ik um/tr avelt ra ffi c/ 04ws05/

Chapter 7

Conclusion

The work presented in this thesis is devoted to the problem of XPath query evaluation
against XML streams. For this problem, it identi�es its characteristics and proposesan
e�ective solution. The salient aspectsof the proposedsolution, e.g.,one-pass,progressive,
and automata-based,are evolving in key goals for the trend of XPath query evaluation
techniquesthat follows it, thus making it representativ e.

The problem of XPath query evaluation against XML data (may it be stored in main
memory or streamed) is one of the most basic and widespreaddatabasequery problem
in the context of XML. Sincethe XPath standard was proposedas a W3C Recommenda-
tion [46] and usedby other W3C Recommendationslike XSLT [45], XQuery [23], XML-
Schema [59], and XPointer [54], the research and application interest for the XPath lan-
guagewas growing constantly.

Data streamsare preferableto data stored in memory in contexts wherethe data is too
large or volatile, or a standard approach to data processingbasedon data storing is too
time or spaceconsuming. In many applications, XML streamsare more appropriate than
tuple streams,for XML data is tree-like, its sizeand nestingdepth can be unboundedand
its structure canhave recursive de�nition. Becauseof all thesecharacteristics,the problem
of query evaluation against XML data streamsposesinteresting research challenges.

For approaching the problem, this work takestwo complementary directions.
First, it identi�es that forward queriescan be evaluated in a single traversal of the

input XML stream. This fact is of importance, becauseXML streamscan be unbounded,
and several passesare not a�ordable. The other queriescan be accommodated also to
one-passevaluation by rewriting them into equivalent forward ones. In this respect, this
work proposesthree rewriting systemsthat rewrite any query from two query languages
considered,i.e., XPath and an abstraction of it, called LGQ, into an equivalent forward
query. Our rewriting techniquesshow the tradeo� betweenthe structural simplicity of the
equivalent forward queriesand their size. For example, this work gives an exponential
(lower and upper) bound for the rewriting of graph queries(expressibledirectly only in
LGQ) into equivalent forward forest queries(expressiblein both XPath and LGQ). Also,
a linear upper bound is given for the rewriting of forest queriesinto equivalent forward
single-join DAG queries,which are more complexthan forest queries.Using the rewriting

168 7. Conclusion

systems,this work investigatesalso several other properties of LGQ (and also XPath),
e.g., the expressivity of someof its fragments, the query minimization, and even the query
evaluation.

Second,a streamedand progressive evaluation strategy of forward forestqueriesagainst
XML streamsis proposed.The streamedaspect of the evaluation residesin the sequential
(as opposedto random) accessto the messagesof the XML stream. A progressive evalua-
tion delivers incrementally the query answersassoon aspossible.The proposedevaluation
strategy compilesqueriesin networks of deterministic pushdown transducersthat process
XML streamswith polynomial time and spacecomplexities in both the stream and the
query sizes.

The results of this work took various disseminationdirections. Our results on XPath
query rewriting are used, e.g., for other XPath query evaluators against XML streams
[84, 138, 106, 131, 129, 21] or for optimization of XPath query evaluation in relational
databases[79, 80]. For practitioners, implementations of the rewriting and evaluation
algorithms are publicly available at http://spex.sourceforge.ne t , and are usedin ap-
plications for monitoring highway tra�c events or processesrunning on UNIX computers.

Recently, new research relevant to the problem of querying XML streamsand based
directly upon this work hasbeenco-investigatedby the present author. Its generalthreads
convergetowardsdealingwith contexts wherethe number of queriesto be evaluated simul-
taneouslyis large[67], or the memoryavailable for queryevaluation hasgivenbounds[139].
There, cost-basedheuristicsaredeployed to �nd out e�cien t queryplansfor setsof queries,
and respectively to �nd out which potential answers stored in memory can be discarded
when free memory is needed.Such work is not detailed here,but it constitutes a natural
continuation of the research investigations in the area of querying XML streamsstarted
by this work.

App endix A

Pro ofs

Pro of of Lemma 3.8.1

I. XPath � LGQ Forests. We prove that for any XPath query p and tree T, its answer is
the answer deliveredby the LGQ query q representing the encoding of p.

Let us consider (r; f) =
� !
X LJpK(v), for any XPath query p. Also, consider � =

subst(Vars(f); T) the set of all possiblesubstitutions mapping variables in f to nodes
in T. Thus, 8v 2 Vars(f) : � v(�) = Nodes(T).

This proof has two parts. First, we show that the set of substitutions from � that are
consistent to f and T and that are further restricted to the variablesv and r is the set of
pairs of sourceand answer nodesascomputedby the semantics function X Q on p and T:

� v;r (LF T Jf K(�)) = X QT JpK: (A.1)

Second,we show that the answer to p is the set of images of r under the consistent
substitutions from � .

We prove Equation (A.1) using induction on the structure of XPath queries.
Base Case. p = � :: � . Then, f = � 0(v; v1) ^ � (v1) with � 0 = pred� 1(�).

X QJ� :: � K= f (x; y) j � 0(x; y); test(y; �)g �= f (s(v); s(v1)) j s 2 � ; � 0(s(v); s(v1)) ; test(s(v1); �)g

= f (s(v); s(v1)) j s 2 LF T J� 0(v; v1)K(�); s 2 LF T J� (v1)Kg

= � v;v1 (LF T J� 0(v; v1) ^ � (v1)K(�)) :

The equality � holds for x = s(v) and y = s(v1), wheres is a substitution consistent with
f and T.

Induction Hyp othesis. Equation (A.1) holds for the XPath queriesp1 and p2

� v;v1 (LF T Jf 1K(�)) = X QT Jp1K; where(v1; f 1) =
� !
X LJp1K(v) (A.2)

� v0;v2 (LF T Jf 2K(�)) = X QT Jp2K; where(v2; f 2) =
� !
X LJp2K(v0) (A.3)

170 A. Pro ofs

In casep1 is in a �lter, Equation (A.2) becomes(the sameholds also for p2)

� v(LF T Jf 1K(�)) = X F T Jp1K; where(v1; f 1) =
� !
X LJp1K(v):

Induction Steps. We show next that Equation (A.1) holdsalsofor the XPath queries
=p1, p1=p2, p1 j p2, p1 � p2, p1[p2], p1 or p2, p1 andp2, and not(p1).

1. p = =p1. Then, (v1; root(v0) ^ f 1) =
� !
X LJpK(v0).

X QT J=p1K= Nodes(T) � f y j (x; y) 2 X QT Jp1K; test(x; root)g

= Nodes(T) � f y j (x; y) 2 � v0 ;v1 (LF T Jf 1K(�)) ; test(x; root)g

= Nodes(T) � f s(v1) j s 2 LF T Jf 1K(�); test(s(v0); root)g

= Nodes(T) � � v1 (LF T Jf 1 ^ root(v0)K(�)) :

This meansthat the pairsof any nodeand the nodescomputedby � v1 (LF T Jf 1^ root(v0)K(�))
is in the result.

2. p = p1=p2. Then, (v2; f 1 ^ f 2) =
� !
X LJp1=p2K(v) and v0 = v1 in Equation (A.3).

X QT Jp1=p2K= f (x; z) j (x; y) 2 X QT Jp1K; (y; z) 2 X QT Jp2Kg

= f (x; z) j (x; y) 2 � v;v1 (LF T Jf 1K(�)) ; (y; z) 2 � v1 ;v2 (LF T Jf 2K(�))g

= f (s(v); s(v2)) j s 2 LF T Jf 1K(�); s 2 LF T Jf 2K(�)g = � v;v2 (LF T Jf 1 ^ f 2K(�)) :

3. p = p1 j p2. Then, (v1; f 1 _ f 2) =
� !
X LJp1 j p2K(v) and v0 = v, v2 = v1 in Equa-

tion (A.3).

X QJp1 j p2K= X QJp1K[X QJp2K= � v;v1 (LF T Jf 1K(�)) [� v;v1 (LF T Jf 2K(�))

= � v;v1 (LF T Jf 1 _ f 2K(�)) :

4. p = p1[p2]. Then, (v1; f 1 ^ f 2) =
� !
X LJp1[p2]K(v) and v0 = v1 in Equation (A.3) and

p2 is in a �lter.

X QT Jp1[p2]K= f (x; y) j (x; y) 2 X QT Jp1K; y 2 X F T Jp2Kg

= f (x; y) j (x; y) 2 � v;v1 (LF T Jf 1K(�)) ; y 2 f x0 j 9x : (x0; x) 2 X F T Jp2Kgg

= f (s(v); s(v1)) j s 2 LF T Jf 1K(�); s(v1) 2 LF T Jf 2K(�)g

= � v;v1 (LF T Jf 1 ^ f 2K(�)) :

5. p = p1 or p2. Then, (v; f 1 _ f 2) =
� !
X LJp1 or p2K(v) and v0 = v in Equation (A.3),

and p, p1, and p2 are in �lters.

X F T Jp1 or p2K= X F T Jp1K[X F T Jp2K= � v(LF T Jf 1K(�)) [� v(LF T Jf 2K(�))

= � v(LF T Jf 1 _ f 2K(�)) :

171

6. p = p1 andp2. Then, (v; f 1 ^ f 2) =
� !
X LJp1 andp2K(v) and v0 = v in Equation (A.3),

and p, p1, and p2 are in �lters.

X F T Jp1 andp2K= X F T Jp1K\ X F T Jp2K= � v(LF T Jf 1K(�)) \ � v(LF T Jf 2K(�))

= � v(LF T Jf 1 ^ f 2K(�)) :

7. p = p1 � p2. Then, (v1; f 1 ^ : Q(v1)) =
� !
X LJp1 � p2K(v), whereQ(v1) root(v0) ^

child+ (v0; v1) ^ f 2. Also, v0 = v, v2 = v1 in Equation (A.3).

� v;v1 (LF T Jf 1 ^ : Q(v1)K(�)) = � v;v1 (LF T Jf 1K(�)) \ � v;v1 (LF T J: Q(v1)K(�))

= � v;v1 (LF T Jf 1K(�) \ (� � LF T JQ(v1)K(�))) = � v;v1 (LF T Jf 1K(�) � LF T JQ(v1)K(�))

= X QT Jp1K� � v;v1 (f s j s 2 � ; s(v1) 2 LQ T Jclause(Q)Kg)
+= X QT Jp1K� � v;v1 (f s j s 2 � ; s(v1) 2 � v1 (LF T Jroot(v0) ^ child� (v0; v) ^ f 2K(� 0))g)

= X QT Jp1K� � v;v1 (f s j s 2 � ; s(v1) 2 � v1 (LF T Jroot(v0) ^ child� (v0; v)K(� 0) \ LF T Jf 2K(� 0))g)

= X QT Jp1K� � v;v1 (f s j s 2 � ; s(v1) 2 (Nodes(T) \ � v1 (LF T Jf 2K(� 0))) g)

= X QT Jp1K� � v;v1 (f s j s 2 � ; s(v1) 2 � v1 (LF T Jf 2K(� 0))g)
�= X QT Jp1K� � v;v1 (f s j s 2 � ; s(v1) 2 � v1 (LF T Jf 2K(�))g)

= X QT Jp1K� � v;v1 (f s j s 2 LF T Jf 2K(�)g)

= X QT Jp1K� X QT Jp2K:

The variablev0 is freshfor f 2. In Equation (+), � 0 = subst(Vars(f 2) [f v0g; T). In Equation
(*), � v(LF T Jf 2K)(� 0) = � v(LF T Jf 2K)(�), becausev0 62Vars(f 2).

8. p = not(p1). Then, (v; : Q(v)) =
� !
X LJnot(p)K(v), where Q(v) root(v0) ^

child+ (v0; v) ^ f 1. Also, p and p1 are in �lter. This caseis treated similarly to case7.

� v(LF T J: Q(v)K(�)) = � v(� � LF T JQ(v)K(�))
1= Nodes(T) � � v(f s j s(v) 2 � v(LF T Jroot(v0) ^ child� (v0; v) ^ f 1K(� 0))g)

= Nodes(T) � � v(LF T Jroot(v0) ^ child� (v0; v) ^ f 1K(� 0))

= Nodes(T) � � v(LF T Jroot(v0) ^ child� (v0; v)K(� 0) \ LF Jf 1K(� 0))
2= Nodes(T) � � v(� 0\ LF Jf 1K(� 0)) 3= Nodes(T) � � v(LF Jf 1K(�))

= Nodes(T) � X F T Jp1K= X F T Jnot(p1)K:

Equation (1) usesthe hypothesisv 2 Vars(f 1) : � v(�) = Nodes(T) and omits the interme-
diate step LF T JQ(v)K(�) = f s j s(v) 2 � vLQ T Jclause(Q)K. As for case6, in Equation (2),
� 0 = subst(Vars(f 2) [f v0g; T) and in Equation (3) � v(LF T Jf 1K)(� 0) = � v(LF T Jf 1K)(�).

We show next that the answer to any absoluteXPath query p is the set of imagesfor

the variable r as computedby LQ T JQ(r) f K, where(v; f) =
� !
X LJpK():

f y j 9x : (x; y) 2 X QT JpKg = LQ T JQ(r) f K:

172 A. Pro ofs

We prove this equation by using Equation (A.1), which is already proven above

� v;r (LF T Jf K(�)) = X QT JpK:

Then,

f y j 9x : (x; y) 2 X QT JpKg = f y j 9x : (x; y) 2 � v;r (LF T Jf K(�))g

= � r (LF T Jf K(�)) = LQ T JQ(r) f K:

I I. LGQ Forests � XPath. We conduct induction on the tree structure of any LGQ
tree query Q(v) b. We show �rst for any tree subformula f of b that consistsin all
atoms from b reachable from its sourcex, there is an equivalent XPath query p that is the

encoding of f using
� !
LX . More speci�cally, we show that

(
X QJpK= � x;v (LF J� (y)K(�)) , x ; f v

X F JpK= � x (LF J� (y)K(�)) , otherwise;
wherep =

� !
LX v;bJf K(x):

Consequently, we show that for any LGQ forest there is an equivalent XPath query.
Base Case. We show there are XPath queriesequivalent to LGQ atoms.

1. f = � (x). Then,
� !
LX v;bJ� (x)K(x) = [self:: �].

X QJ[self:: �]K= f n j n 2 X F Jself:: � Kg

= f n j test(n; �)g = � y(LF J� (y)K(�)) = � y(LF Jf K(�)) :

2. f = � (x; y).

2a. y = v. Then,
� !
LX v;bJ� (x; y)K(x) = pred � 1::* .

X QJpred � 1(�)::*K= f (n; m) j (n; m) 2 pred � 1(�); test(m; *)g

= f (n; m) j (n; m) 2 pred� 1(�)g = � x;v (LF J� (x; y)K(�)) :

2b. y 6= v. Then,
� !
LX v;bJ� (x; y)K(x) = [pred � 1::*] .

X F J[pred � 1(�)::*]K= f n j (n; m) 2 pred � 1(�); test(m; *)g

= f n j (n; m) 2 pred � 1(�)g = � x (LF J� (x; y)K(�)) :

Induction Hyp othesis. We considerthere are equivalent XPath queriesfor the for-
mulas A and B.

Induction Step. We show there are equivalent XPath queriesto tree formulas f =
A ^ B, where x is the sourcevariable, A is an atom, and B is a formula, the latter two
having equivalent XPath queries.Wetreat next the casewhenv reachablefrom x (x ; b v),
the other caseis similar.

173

1. A = � (x), B = f x , where f x consistsin all atoms from f reachable from x. Then,
� !
LX v;bJ� (x) ^ f xK(x) = [self:: �] leftx , whereleftx =

� !
LX v;bJf xK(x).

X QJ[self:: �]leftx K= f (n; m) j n 2 X F Jself:: � K; (n; m) 2 X QJleftx Kg

= f (n; m) j n 2 � x (LF J� (x)K(�)) ; (n; m) 2 � x;v (LF Jf xK(�))g = � x;v (LF Jf K(�)) :

2. A = � (x; y), B = f x ^ f y, where f x consistsin all atoms from f reachable from x
via any other variable but y, and f y consistsin all atoms from b reachable from y. Note
that becausef is a tree, f x and f y do not have common atoms, and f = A ^ B. Let

leftx =
� !
LX v;bJf xK(x), lefty =

� !
LX v;bJf yK(x), and step=

� !
LX v;bJ� (x; y)K(x).

2a. y ; f v or y = v. Then,
� !
LX v;bJ� (x; y) ^ f x ^ f yK(x) = [leftx]/ step lefty .

X QJ[leftx]/ step leftyK= f (n; m) j n 2 X F Jleftx K; (n; p) 2 X QJstepK; (p;m) 2 X QJleftyKg

= f (n; m) j n 2 � x (LF Jf xK(�)) ; (n; p) 2 � x;y (LF J� (x; y)K(�)) ; (p;m) 2 � y;v(LF Jf yK(�))g

= � x;v (LF J� (x; y) ^ f x ^ f yK(�)) = � x;v (LF Jf K(�)) :

2b. y 6; f v or y 6= v. Then,
� !
LX v;bJ� (x; y) ^ f x ^ f yK(x) = [step lefty]leftx .

X QJ[step lefty]leftx K= f (n; m) j n 2 X F JstepleftyK; (n; m) 2 X QJleftx Kg

= f (n; m) j n 2 � x (LF J� (x; y) ^ f yK(�)) ; (n; m) 2 � x;v (LF Jf xK(�))g

= � x;v (LF J� (x; y) ^ f x ^ f yK(�)) = � x;v (LF Jf K(�)) :

3. A = : N (x), B = f x , wheref x consistsin all atoms from f reachable from x. Then,
� !
LX v;bJ: N (x)K(x) = [self::* - X Jclause(N)K] and leftx =

� !
LX v;bJf xK(x).

X QJ[self:: �]leftx K= f (n; m) j n 2 X F Jself:: � K; (n; m) 2 X QJleftx Kg

= f (n; m) j n 2 � x (LF J� (x)K(�)) ; (n; m) 2 � x;v (LF Jf xK(�))g = � x;v (LF Jf K(�)) :

We show next that for any LGQ forest formula f there is an equivalent XPath query.
The basecaseis for f a tree formula and holds due to the above proof. The induction
hypothesis states there are equivalent queries for the forest formulas f 1 and f 2, where
all atoms from both formulas are reachable via the sourcevariable x. Then, it holds

also for f 1 _ f 2 (the induction step). Let p1 =
� !
LX v;bJf 1K(x), p2 =

� !
LX v;bJf 2K(x), and

X QJp1K= � x;v (LF Jf 1K(�)), X QJp2K= � x;v (LF Jf 2K(�)). Then,

X QJp1 j p2K= X QJp1K[X QJp2K= � x;v (LF Jf 1K(�)) [� x;v (LF Jf 2K(�))

= � x;v (LF Jf 1 _ f 2K(�)) :

The equivalencefor queriesfollows then directly from the projection of the pairs com-
puted for formulas on the headvariable.

174 A. Pro ofs

Pro of of Lemma 4.3.3

For an instance l ! r of each rule (4.5) through (4.24) under an LGQ! substitution
� = f x 7! x; y 7! yg, we show that (1) l � r , and (2) s � s[r=l].

For the �rst part of the proof, we may use below some equivalencesderived from
de�nitions of base binary predicates on nodes in trees. The secondpart of the proof
follows from Proposition 3.3.1, with the condition that the subformulas of s and t obtained
by removing l, respectively r , do not contain variables appearing only in r , respectively
l, and not in the other one. Indeed, both l and r have the samevariables,or r doesnot
contain variablesat all.

We usethe following implications (h 2 H?, v1; v2 2 f fstChild; childg)

v1(y; x) ^ v2(z; x)) self(y; z) (Treeness) (1)

nextSibl(y; x) ^ nextSibl(z; x)) self(y; z) (Treeness) (2)

h(x; y)) child(z; x) ^ child(z; y) (Siblings) (3)

and the equivalence(� 2 V [H)

� + (x; y) � � � (x; z) ^ � (z; y) (Closure) (4):

Note that the variables x and y appearing on the left-side of) or � are universally
quanti�ed, the other (z) is a fresh variable existentially quanti�ed.

Rules (4.5) and (4.6). Let v 2 f fstChild; childg.

v(x; y) ^ par(y; z) � v(x; y) ^ child(z; y)
1
� v(x; y) ^ v(z; y) ^ self(x; z) � v(z; y) ^ self(x; z):

Rules (4.7) and (4.19). Let f 2 f child; nextSiblg.

f + (x; y) ^ f � 1(y; z)
4
� f � (x; p) ^ f (p;y) ^ f (z; y)
1;2
� self(p;z) ^ f � (x; z) ^ f (z; y) � f � (x; y) ^ f (z; y):

Rules (4.8) and (4.9). Let h 2 f nextSibl; nextSibl+ g.

h(x; y) ^ par(y; z) � h(x; y) ^ child(z; y) � h(x; y) ^ child(z; y) ^ child(p;x) ^ child(p;y)

� h(x; y) ^ child(z; y) ^ child(z; x) ^ self(p;y) � h(x; y) ^ child(z; x) � h(x; y) ^ par(x; z):

Rules (4.10), (4.11), and (4.23).
Let � 2 f par; prevSiblg. We allow alsopar� 1 = fstChild(strictly , par� 1 � fstChild).

� � 1(x; y) ^ � + (y; z)^ � (� � 1)+ (z; y) ^ � (y; x)
+
� (� � 1)� (z; x) ^ � � 1(x; y)

4
� (� � 1)+ (z; x) ^ � � 1(x; y) _ self(z; x) ^ � � 1(x; y) � � + (x; z) ^ � � 1(x; y) _ self(x; z) ^ � � 1(x; y):

Equivalence(+) holds due to Rules(4.7) and (4.19).

175

Rules (4.12) and (4.24). Let � 2 F+ .

� (x; y) ^ � � 1(y; z):

Consider an LGQ substitution t consistent with the formula and a tree instance. The
imagesof all variables are along a samepath from the root and there is a partial order
betweenthem: t(x) � t(y), t(z) � t(y). The possibilities for the order betweent(x) and
t(z) are (1) t(z) � t(x), (2) t(x) = t(z), and (3) t(x) � t(z). This readsalso (1) t(z) is
an ancestor(precedingsibling) of t(x), (2) t(x) is the sameas t(z), (3) t(x) is an ancestor
(precedingsibling) of t(z), thus t(z) lies betweent(x) and t(y). The LGQ encoding of all
thesepossibilities is:

� (x; y) ^ � � 1(y; z) � � (x; y) ^ � � 1(x; z) _ � (x; y) ^ self(x; z) _ � (x; z) ^ � (z; y):

Rules (4.13) and (4.14). Let h 2 f nextSibl; nextSibl+ g.

h(x; y) ^ par+ (y; z)
2
� h(x; y) ^ child(p;x) ^ child(p;y) ^ par+ (y; z)
4
� h(x; y) ^ child(p;x) ^ child(p;y) ^ par� (r; z) ^ par(y; r)

� h(x; y) ^ child(p;x) ^ child(p;y) ^ par� (r; z) ^ child(r; y)
1
� self(p;r) ^ h(x; y) ^ child(r; x) ^ child(r; y) ^ par� (r; z)
4
� self(p;r) ^ h(x; y) ^ child(r; y) ^ par+ (x; z)

� h(x; y) ^ par+ (x; z):

Rules (4.15) and (4.20) follow directly from the de�nition of fstChild(n; m): m is the
�rst child of n, thus, for h 2 f prevSibl; prevSibl+ g holds

fstChild(x; y) ^ h(y; z) � ? :

Rules (4.16), (4.21). Let h 2 f prevSibl; prevSibl+ g.

child(x; y) ^ h(y; z) � child(x; y) ^ h� 1(z; y)
3
� child(x; y) ^ h� 1(z; y) ^ child(p;z) ^ child(p;y)
1
� self(p;x) ^ child(x; z) ^ h� 1(z; y) ^ child(x; y)

� child(x; z) ^ h� 1(z; y):

Rules (4.17) and (4.22). Let h 2 f prevSibl; prevSibl+ g.

child+ (x; y) ^ h(y; z)
4
� child� (x; p) ^ child(p;y) ^ h� 1(z; y)
3
� child� (x; p) ^ child(p;y) ^ h� 1(z; y) ^ child(r; z) ^ child(r; y)
1
� self(p;r) ^ child� (x; r) ^ child(r; y) ^ h� 1(z; y) ^ child(r; z)
4
� child+ (x; z) ^ h� 1(z; y):

Rule (4.18).

nextSibl(x; y) ^ prevSibl(y; z) � nextSibl(x; y) ^ nextSibl(z; y)
2
� nextSibl(z; y) ^ self(x; z):

176 A. Pro ofs

Pro of of Theorem 4.4.3

Weproveherethe local conuenceproperty of the term rewriting systemsTRSi (1 � i � 3).
We needto show that, given oneterm x that can rewrite (in onestep) into y1 and y2 using
di�erent rewrite rules, y1 and y2 are joinable, i.e., they reduceto the sameterm after a
�nite rewriting sequence:y1 x ! y2) y1 # y2.

TRS 1 consistsof a single rule, namely Rule 4.1, and there is no critical pair createdby
this rule with itself or any of the AC-identities.

TRS 2. Recall that the rewrite rules of TRS2 are de�ned by Lemmas4.3.2, 4.3.3, 4.3.5,
and 4.3.6, that de�ne interactions betweeneach forward and reverseformula.

First, we show that for LGQ general graphs, and even for the restricted version of
single-join DAGs, TRS2 is not locally conuent. Considerthe single-join DAG formula x

x = root(a) ^ child+ (a;b) ^ prevSibl(b;d) ^ root(e) ^ child+ (e;c) ^ nextSibl(c;b)

We follow the two rewriting sequences

I. root(a) ^ child+ (a;b) ^ prevSibl(b;d) ^ root(e) ^ child+ (e;c) ^ nextSibl(c;b)

! root(a) ^ child+ (a;d) ^ nextSibl(d;b) ^ root(e) ^ child+ (e;c) ^ nextSibl(c;b):

II. root(a) ^ child+ (a;b) ^ prevSibl(b;d) ^ root(e) ^ child+ (e;c) ^ nextSibl(c;b)

! root(a) ^ child+ (a;b) ^ self(c;d) ^ root(e) ^ child+ (e;c) ^ nextSibl(c;b):

It is clear that the �nal contractions in both casescan not be rewritten anymore, and that
they are di�erent.

This concludesone half of the proof. We focus now on proving that TRS2 is locally
conuent for LGQ forestsand its simpler derivates, i.e., treesand paths.

There are two casesregarding the interference of multiple redexes: either they do
not interfere at all, or they have a common pre�x. An example for the former caseis:
child(a;b) ^ par(b;c) ^ child(c;d) ^ prevSibl(d;e), wherethe �rst two binary atomsconstitute
a redex for Rule (4.6) and the last two binary atoms constitute a redex for Rule (4.16).
It is clear that in this casethe contracting order doesnot matter and the samerewrite is
produced. In the latter case,there are critical pairs. More precisely, the lhs of each rule
of Lemma 4.3.3uni�es with a subterm of the lhs of the built-in A-identit y for ^ . We treat
next this casein detail.

Weconsiderthe LGQ formula � 1(a;b)^ � 2(b;c)^ � 3(b;d), where� 1 is a forward predicate
and � 2 and � 3 are reversepredicates. Note that this term corresponds to a LGQ tree
formula. Termslike � 1(a;b) ^ � 2(c;b) ^ � 3(b;d) can not appear becausesuch terms are not
anymore tree formulas, but DAGs.

The following combinations are to be considered(note that ^ is commutativ e and
thereforethe symmetrical casesfor � 2 and � 3 are not necessary):

177

Case (� 1 , � 2 , � 3)
1. (HF? , VR? , VR?)
2. (HF? , HR? , VR?)
3. (VF? , HR? , HR?)
4. (VF? , HR? , VR?)

To follow up the rewritings easier,we may renamespeci�cally to each casethe relations � 1,
� 2, � 3 to (a composition of) abbreviations of their type, e.g., v=h for vertical/horizontal,
f =r for forward/reverserelations.

Case 1 is similar to the previouscase,becauseit usesthe interaction type (HF, VR)?,
which behavesidentical to (f selfg,R?) (seeFigure 4.5).

Case 2. Only interactions of type (HF,VR?) (branch I) or of type H(F, R)? (branch I I)
are considered�rst. We renamethe relations accordingly: hf = � 1, hr = � 2, vr = � 3.

I. hf (a;b) ^ hr (b;c) ^ vr (b;d) ! hf (a;b) ^ hr (b;c) ^ vr (a;d):

Now we can considerfor both branchesonly the interaction H(F,R)?. After several rewrite
steps, the term hf (a;b) ^ hr (b;c) is contracted to a term t containing only horizontal
formulas and no further contraction can be performed on this term. Proposition 4.3.2
ensuresthat the connectionsof the non-sinkvariable a are preserved, in particular a ; t b.
Only interactions (HF,VR?) can be conducted now, and they push each variable that is
connectedto b asthe �rst variable of vr , particularly alsoa. Becausethe rule applications
preserve a asnon-sink, this variable can not be replacedand the vr (a;d) is obtained.

Case 3. Only interactions of type (VF,HR)? can be considered�rst. We renamethe
relations accordingly: vf = � 1, hr 1 = � 2, hr 2 = � 3. We consider�rst that vf = fstChild.

I. vf (a;b) ^ hr 1(b;c) ^ hr 2(b;d) ! ? ^ hr 2(b;d) ! ? :

II. vf (a;b) ^ hr 1(b;c) ^ hr 2(b;d) ! ? ^ hr 1(b;c) ! ? :

For the casevf 2 f child; child+ g we have

I. vf (a;b) ^ hr 1(b;c) ^ hr 2(b;d) ! vf (a;c) ^ hr � 1
1 (c;b) ^ hr 2(b;d):

II. vf (a;b) ^ hr 1(b;c) ^ hr 2(b;d) ! vf (a;d) ^ hr 1(b;c) ^ hr � 1
2 (d;b):

Subcase1: hr 1 = hr 2 = prevSibl. Then, hr � 1
1 = hr � 1

2 = nextSibl.

I. vf (a;c) ^ nextSibl(c;b) ^ prevSibl(b;d) ! vf (a;c) ^ self(c;d) ^ nextSibl(d;b):

II. vf (a;d) ^ prevSibl(b;c) ^ nextSibl(d;b) ! vf (a;d) ^ self(d;c) ^ nextSibl(c;b):

Both contractions are identical up to the variable equality c = d that is ensuredby the the
rewriting modulo equationaltheory including self(v1; v2) ^ � (v2; v3) � self(v1; v2) ^ � (v1; v3).

178 A. Pro ofs

Subcase2: hr 1 = prevSibl+ , hr 2 = prevSibl. Then, hr � 1
1 = nextSibl+ , hr � 1

2 = nextSibl.

I. vf (a;c) ^ nextSibl+ (c;b) ^ prevSibl(b;d)

! vf (a;c) ^ nextSibl� (c;d) ^ nextSibl(d;b)

! vf (a;c) ^ (nextSibl+ (c;d) _ self(c;d)) ^ nextSibl(d;b)

! vf (a;c) ^ nextSibl+ (c;d) ^ nextSibl(d;b) _ vf (a;c) ^ self(c;d) ^ nextSibl(d;b):

II. vf (a;d) ^ prevSibl+ (b;c) ^ nextSibl(d;b)

! vf (a;d) ^ (prevSibl+ (d;c) ^ nextSibl(d;b) _ self(d;c) ^ nextSibl(d;b))

! vf (a;d) ^ prevSibl+ (d;c) ^ nextSibl(d;b) _ vf (a;d) ^ self(d;c) ^ nextSibl(d;b)

! vf (a;c) ^ nextSibl+ (c;d) ^ nextSibl(d;b) _ vf (a;d) ^ self(d;c) ^ nextSibl(d;b):

Both contractions are identical up to the variable equality c = d in the secondconjunct.
Subcase3: hr 1 = prevSibl, hr 2 = prevSibl+ . Then, hr � 1

1 = nextSibl, hr � 1
2 = nextSibl+ .

I. vf (a;c) ^ nextSibl(c;b) ^ prevSibl+ (b;d)

! vf (a;c) ^ (nextSibl(c;b) ^ prevSibl+ (c;d) ^ _ nextSibl(c;b) ^ self(c;d))

! vf (a;c) ^ nextSibl(c;b) ^ prevSibl+ (c;d) _ vf (a;c) ^ nextSibl(c;b) ^ self(c;d)

! vf (a;d) ^ nextSibl(c;b) ^ nextSibl+ (d;c) _ vf (a;c) ^ nextSibl(c;b) ^ self(c;d):

II. vf (a;d) ^ prevSibl(b;c) ^ nextSibl+ (d;b)

! vf (a;d) ^ nextSibl(c;b) ^ nextSibl� (d;c)

! vf (a;d) ^ nextSibl(c;b) ^ (nextSibl+ (d;c) _ self(d;c))

! vf (a;d) ^ nextSibl(c;b) ^ nextSibl+ (d;c) _ vf (a;d) ^ nextSibl(c;b) ^ self(d;c):

Both contractions are identical up to the variable equality c = d in the secondconjunct.
Subcase4: hr 1 = hr 2 = prevSibl+ . Then, hr � 1

1 = hr � 1
2 = nextSibl+ .

I. vf (a;c) ^ nextSibl+ (c;b) ^ prevSibl+ (b;d)

! vf (a;c) ^ (nextSibl+ (c;b) ^ prevSibl+ (c;d) _ nextSibl� (c;d) ^ nextSibl+ (d;b))

! vf (a;c) ^ nextSibl+ (c;b) ^ prevSibl+ (c;d) _ vf (a;c) ^ nextSibl� (c;d) ^ nextSibl+ (d;b)

! vf (a;d) ^ nextSibl+ (c;b) ^ nextSibl+ (d;c) _ vf (a;c) ^ nextSibl� (c;d) ^ nextSibl+ (d;b):

II. vf (a;d) ^ prevSibl+ (b;c) ^ nextSibl+ (d;b)

! vf (a;d) ^ (prevSibl+ (d;c) ^ nextSibl+ (d;b) _ nextSibl� (d;c) ^ nextSibl+ (d;b))

! vf (a;d) ^ prevSibl+ (d;c) ^ nextSibl+ (d;b) _ vf (a;d) ^ nextSibl� (d;c) ^ nextSibl(d;b)

! vf (a;c) ^ nextSibl+ (c;d) ^ nextSibl+ (d;b) _ vf (a;d) ^ nextSibl� (d;c) ^ nextSibl(d;b):

Both contractions are identical up to the variable equality c = d in both conjuncts.
Case 4. Only interactions of type (VF,HR)? (branch I) or special casesof V(F,R)?

179

(branch I I) are considered�rst. We renamethe relations vf = � 1, hr = � 2, vr = � 3.

I. vf (a;b) ^ hr (b;c) ^ vr (b;d) ! vf (a;c) ^ hr � 1(c;b) ^ vr (b;d)

! vf (a;c) ^ hr � 1(c;b) ^ vr (c;d):

For both branches,only special casesof interaction type V(F,R)? can be applied further.
For branch I, we consider as term of interest only the subterm vf (a;c) ^ vr (c;d) and
for branch I I we consider the subterm vf (a;b) ^ vr (b;d) (we leave the forward formula
hr � 1(c;b) out of discussionfor a while, becauseit can not interact now with the other two
for both branches). It should be clear that (1) both branchesget the samecontraction up
to replacingc (from the contraction of branch I) with b(to get the contraction of branch I I),
and (2) both contractions have only forward formulas. For branch I I, this meansthat only
interactions of type (VF, HR)? can apply. Proposition 4.3.2 ensuresthat the connections
of the non-sink variable a are preserved, in particular a ; t b. The interaction (VF,HR)?

ensuresthat a ; t b;hr (b;c)) a ; t c;hr � 1(c;b), b is replacedby c in the contraction for
branch I I, and hr � 1(c;b) is addedalso.

TRS 3. TRS2 is not conuent for input LGQ graphs. The local conuence could be
obtained, however, by adding a rule for rewriting disjuncts of two forward atoms having
the samesink into disjuncts of one of theseforward atoms and the secondforward atom
replacedby its corresponding reverseone. TRS2 improveson TRS1 exactly in this point
by adding Rule (4.25).

BecauseTRS3 includesTRS2, all interferencecasesof multiple redexesthat appear in
TRS2 can appear also here, but they do not raise conuence problems,as shown already
for TRS2. The new interferencecasesthat can appear are

A. � 1(a;b) ^ � 2(c;b) ^ � 3(d;b) with � 1; � 2; � 3 2 F?

B. � 1(a;b) ^ � 2(c;b) ^ � 3(b;d) with � 1; � 2 2 F?; � 3 2 R?:

For caseA, there are three possibledistinct contractions, as underlined below

I. � 1(a;b) ^ � � 1
2 (b;c) ^ � 3(d;b) ! � 1(a;b) ^ � � 1

2 (b;c) ^ � � 1
3 (b;d): (1) or

! � � 1
1 (b;a) ^ � � 1

2 (b;c) ^ � 3(d;b): (2)

II. � 1(a;b) ^ � 2(c;b) ^ � � 1
3 (b;d) ! � 1(a;b) ^ � � 1

2 (b;c) ^ � � 1
3 (b;d): (1) or

! � � 1
1 (b;a) ^ � 2(c;b) ^ � � 1

3 (b;d): (3)

III. � � 1
1 (b;a) ^ � 2(c;b) ^ � 3(d;b) ! � � 1

1 (b;a) ^ � 2(c;b) ^ � � 1
3 (b;d): (3) or

! � � 1
1 (b;a) ^ � � 1

2 (b;c) ^ � 3(d;b): (1):

Note that the terms (I) to (I I I) are joinable betweeneach other (the arabic numbers on
the right represent identical contractions). The caseB can be shown similarly.

180 A. Pro ofs

Bibliograph y

[1] Daniel J. Abadi, Donald Carney, Ugur C� etintemel, Mitch Cherniack, Christian Con-
vey, SangdonLee,MichaelStonebraker, NesimeTatbul, and StanleyB. Zdonik, \Au-
rora: a new model and architecture for data stream management," VLDB Journal,
vol. 12, no. 2, pp. 120{139,2003.

[2] SergeAbiteboul, \Querying semistructureddata," in Proc. of Int. Conf. on Database
Theory (ICDT) , 1997,pp. 1{18.

[3] SergeAbiteboul, Peter Buneman,and Dan Suciu, Data on the Web, Morgan Kauf-
mann, 2000.

[4] SergeAbiteboul, Richard Hull, andVictor Vianu, Foundationsof Databases, Addison
Wesley, 1995.

[5] SergeAbiteboul, Dallas Quass,John McHugh, Jenifer Widom, and Janet Wiener,
\The Lorel query languagefor semistructureddata," International Journal on Digital
Libraries, vol. 1, no. 1, pp. 68{88, 1997.

[6] David K. Gi�ord Alex C. Snoeren, Kenneth Conley, \Mesh-basedcontent routing
usingXML," in Proc. of ACM Symposium on Operating SystemsPrinciples (SOSP),
2001,pp. 160{173.

[7] Mehmet Altinel and Michael J. Franklin, \E�cien t �ltering of XML documents for
selective disseminationof information," in Proc. of Int. Conf. on Very Large Data
Bases(VLDB) , 2000,pp. 53{64.

[8] RajeevAlur and P. Madhusudan, \Visibly pushdown languages,"in Proc. of Annual
ACM Symposium on Theory of Computing (STOC), 2004,pp. 202{211.

[9] SihemAmer-Yahia, SungRanCho, Laks V. S. Lakshmanan,and DiveshSrivastava,
\T reepattern queryminimization," VLDB Journal, vol. 11,no. 4, pp. 315{331,2002.

[10] Apache Project, Cocoon 2.0: XML publishing framework, 2001,
http://xml.apache.org/co coon/in dex. html .

[11] Apache Project, Xalan-Java Version 2.2, 2001,
http://xml.apache.org/xa lan- j/i ndex.ht ml.

182 BIBLIOGRAPHY

[12] Arvind Arasu, Brian Babcock, Shivnath Babu, Jon McAllister, and Jenifer Widom,
\Characterizing memory requirements for queriesover continuousdata streams," in
Proc. of ACM SIGMOD/SIGAR T Symposium on Principles of Database Systems
(PODS), 2002,pp. 221{232.

[13] Andrei Arion, Angela Bonifati, Gianni Costa, Ioana ManolescuSandraD'Aguanno,
and Andrea Pugliese, \E�cien t query evaluation over compressedXML data," in
Proc. of Int. Conf. on Extending DatabaseTechnology (EDBT) , 2004,pp. 200{218.

[14] Iliana Avila-Campillo, Ashish Gupta, Makoto Onizuka, Demian Raven, and Dan
Suciu, \XML TK: An XML toolkit for scalableXML stream processing,"in Proc. of
Int. Workshopon Programming LanguageTechnologiesfor XML (PLAN-X) , 2002.

[15] Ron Avnur and JosephM. Hellerstein, \Eddies: Continuously adaptive query pro-
cessing," in Proc. of ACM SIGMOD. 2000,pp. 261{272,ACM Press.

[16] Franz Baader and Tobias Nipkow, Term Rewriting and All That, Cambridge Uni-
versity Press,1998.

[17] Brian Babcock, Shivnath Babu, Mayur Datar, RajeevMotwani, and Jenifer Widom,
\Mo dels and issuesin data stream systems," in Proc. of ACM SIGMOD/SIGAR T
Symposium on Principles of DatabaseSystems(PODS), 2002,pp. 1{16.

[18] Shivnath Babu and Jenifer Widom, \Continuous queriesover data streams," Proc.
of ACM SIGMOD, pp. 109{120,2001.

[19] Ziv Bar-Youssef,Marcus Fontoura, and Vanja Josifovski, \On the memory require-
ments of XPath evaluation over XML streams," in Proc. of ACM SIGMOD/SIGAR T
Symposium on Principles of DatabaseSystems(PODS), 2004,pp. 177{188.

[20] Charles Barton, Philippe Charles, Deepak Goyal, Mukund Raghavachari, Marcus
Fontoura, and Vanja Josifovski, \An algorithm for streamingXPath processingwith
forward and backward axes," in Proc. of Int. Workshopon Programming Language
Technologiesfor XML (PLAN-X) , 2002.

[21] Charles Barton, Philippe Charles, Deepak Goyal, Mukund Raghavachari, Marcus
Fontoura, and Vanja Josifovski, \Streaming XPath processingwith forward and
backward axes," in Proc. of Int. Conf. on Data Engineering (ICDE) , 2003, pp.
455{466.

[22] Anders Berlund, Scott Boag, Don Chamberlin, Mary F. Fernandez,Michael Kay,
Jonathan Robie, and J�erôme Sim�eon, \XML path language(XPath) 2.0," W3C
working draft, 2002.

[23] Scott Boag,Don Chamberlin, Mary F. Fernandez,DanielaFlorescu,JonathanRobie,
and J�erômeSim�eon, \X Query 1.0: An XML query language,"Working draft, World
Wide Web Consortium, 2002.

BIBLIOGRAPHY 183

[24] Tim Bray, JeanPaoli, C. M. Sperberg-McQueen,andEveMaler, \Extensible markup
language(XML) 1.0," W3C Recommendation,World Wide Web Consortium, 1998,
http://www.w3.org/TR/REC - xml .

[25] Fran�coisBry, Fatih Coskun,SerapDurmaz, Tim Furche, Dan Olteanu, and Markus
Spannagel:, \The XML stream query processorSPEX," in Proc. of Int. Conf. on
Data Engineering (ICDE) , 2005, to appear.

[26] Fran�coisBry, Tim Furche, and Dan Olteanu, \Aktuelles schlagwort: Datenstr•ome,"
Informatik Spektrum, vol. 27, no. 2, pp. 168{171,2004.

[27] Fran�cois Bry, Michael Kraus, Dan Olteanu, and SebastianScha�ert, \Aktuelles
schlagwort: Semistrukturierte daten," Informatik Spektrum, vol. 24, no. 4, pp. 230{
233,2001.

[28] Fran�cois Bry and Peer Kr•oger, \A computational biology databasedigest: Data,
data analysis,and data management," Distributed and Parallel Databases, vol. 13,
no. 1, pp. 7{42, 2003.

[29] Ahmet Bulut and Ambuj Singh, \SWAT: Hierarchical streamsummarizationin large
networks," in Proc. of Int. Conf. on Data Engineering (ICDE) , 2003,pp. 303{314.

[30] Peter Buneman,Martin Grohe, and Christoph Koch, \P ath querieson compressed
XML," in Proc. of Int. Conf. on Very LargeData Bases(VLDB) , 2003,pp. 141{152.

[31] Diego Calvanese,Giuseppe De Giacomo, Maurizio Lenzerini, and MosheY. Vardi,
\Rewriting of regular expressionsand regular path queries," in Proc. of ACM SIG-
MOD/SIGAR T Symposium on Principles of Database Systems(PODS), 1999, pp.
194{204.

[32] Diego Calvanese,Giuseppe De Giacomo, Maurizio Lenzerini, and MosheY. Vardi,
\Answering regular path queriesusing views," in Proc. of Int. Conf. on Data Engi-
neering (ICDE) , 2000,pp. 389{398.

[33] Diego Calvanese,Giuseppe De Giacomo, Maurizio Lenzerini, and MosheY. Vardi,
\Containment of conjunctive regular path querieswith inverse," in Proc. of Knowl-
edgeRepresentation(KR) , 2000,pp. 176{185.

[34] Diego Calvanese,Giuseppe De Giacomo, Maurizio Lenzerini, and MosheY. Vardi,
\View-based query processingfor regular path querieswith inverse," in Proc. of
ACM SIGMOD/SIGAR T Symposium on Principles of Database Systems(PODS),
2000,pp. 58{66.

[35] Diego Calvanese,Giuseppe De Giacomo, Maurizio Lenzerini, and MosheY. Vardi,
\What is view-basedquery rewriting? (position paper)," in Proc. of Int. Workshop
on KnowledgeRepresentationmeets Databases(KRDB) , 2000,pp. 17{27.

184 BIBLIOGRAPHY

[36] Donald Carney, Ugur Cetintemel, Mitch Cherniack, Christian Convey, SangdonLee,
Greg Seidman,Michael Stonebraker, NesimeTatbul, and StanleyB. Zdonik, \Moni-
toring streams:A newclassof data management applications," in Proc. of Int. Conf.
on Very LargeData Bases(VLDB) , 2002,pp. 215{226.

[37] Chee-YongChan,PascalFelber, MinosN. Garofalakis,andRajeevRastogi, \E�cien t
�ltering of XML documents with XPath expressions,"in Proc. of Int. Conf. on Data
Engineering (ICDE) , 2002,pp. 235{244.

[38] A. K. Chandraand P. M. Merlin, \Optimal implementation of conjunctive queriesin
relational databases,"in Proc. of Annual ACM Symposium on Theory of Computing
(TOC) , 1977,pp. 77 { 90.

[39] Sirish Chandrasekaran and Michael J. Franklin, \Streaming queriesover streaming
data," in Proc. of Int. Conf. on Very LargeData Bases(VLDB) , 2002,pp. 203{214.

[40] Jianjun Chen, David J. DeWitt, , and Je�rey F. Naughton, \Design and evaluation
of alternative selectionplacement strategies in optimizing continuous queries," in
Proc. of Int. Conf. on Data Engineering (ICDE) , 2002,pp. 345{356.

[41] Shu-Yao Chien, Managingand queryingmultiversion XML documents, Ph.D. thesis,
University of California, Los Angeles,2001.

[42] Christian Cho�rut and Karel Culik I I, \Prop erties of �nite and pushdown transduc-
ers," SIAM Journal of Computing, vol. 12, no. 2, pp. 300{315,1983.

[43] Byron Choi, \DTD Inquisitor 2," Tech. Rep., Univ. of Pennsylvania,
http://db.cis.upenn.edu/ ~kkchoi /DTDI2/ , 2001.

[44] Byron Choi, \What are real DTDs like," in Proc. of Int. Workshopon the Web and
Databases(WebDB), 2001,pp. 43{48.

[45] JamesClark, \XSL transformations (XSLT) version 1.0," W3C Recommendation,
World Wide Web Consortium, 1999.

[46] JamesClark and Steve DeRose, \XML path language(XPath) version 1.0," W3C
Recommendation,World Wide Web Consortium, 1999.

[47] James Clark and William D. Lindsey, XT: An XSLT Engine, 2002,
http://www.blnz.com/xt/i ndex.ht ml.

[48] JamesClark and Makoto Murata, \Relax NG," Tech. Rep., OASIS Committee
Speci�cation, 2001, http://www.relaxng.org/ .

[49] R. Cole, R. Hanharan, and P. Indyk, \T ree pattern matching and subsetmatching
in deterministic O(nlog3n)-time," in SODA: ACM-SIAM Symposium on Discrete
Algorithms, 1999,pp. 245{254.

BIBLIOGRAPHY 185

[50] H. Comon, M. Dauchet, R. Gilleron, F. Jacquemard, D. Lugiez, S. Ti-
son, and M. Tommasi, \T ree automata techniques and applications,"
http://www.grappa.univ- lill e3.f r/ta ta , 1997, releaseOctober, 1st 2002.

[51] Andy Cooke, Alasdair J. G. Gray, and Wernet Nutt, \Data integration techniquesin
grid monitoring," Tech. Rep. HW-MA CS-TR-0019,Herriot-Watt University, 2004.

[52] Corina Cortes,Kathleen Fisher, Daryl Pregibon, Anne Rogers,and Frederick Smith,
\Hancock: A languagefor extracting signaturesfrom data streams," in Proc. of Int.
Conf. on KnowledgeDiscovery and Data Mining, 2000,pp. 9{17.

[53] John Cowan and Richard Tobin, \XML Information Set (secondedition)," Working
draft, World Wide Web Consortium, 2004.

[54] Steven DeRose,Ron Daniel Jr., Paul Grosso,Eve Maler, Jonathan Marsh, and Nor-
man Walsh, \XML pointer language(XPointer)," W3C Recommendation,World
Wide Web Consortium, 2002, http://www.w3.org/TR/xptr / .

[55] Arpan Desai, \In troduction to Sequential XPath," in Proc. IDEA lliance XML Con-
ference, 2001.

[56] Alin Deutsch and Val Tannen, \Containment for classesof XPath expressionsunder
integrity constraints," in Proc. of Int. Workshopon KnowledgeRepresentationmeets
Databases(KRDB) , 2001.

[57] Yanlei Diao, Mehmet Altinel, Michael J. Franklin, Hao Zhang,and Peter M. Fischer,
\P ath sharing and predicate evaluation for high-performanceXML �ltering," ACM
Transactionson DatabaseSystems(TODS), vol. 28, no. 4, pp. 467{516,2003.

[58] Yanlei Diao, Peter Fischer, MichaelJ. Franklin, and Raymond To, \YFilter: E�cien t
and scalable�ltering of XML documents," in Proc. of Int. Conf. on Data Engineering
(ICDE) , 2002,pp. 341{342.

[59] David C. Fallside and Priscilla Walmsley, \XML-Sc hema," W3C Recommendation,
World Wide Web Consortium, 2001, http://www.w3.org/XML/Sche ma.

[60] C. Fellbaum, Ed., WordNet { An Electronic Lexical Database, MIT Press,1998,
http://www.cogsci.prince ton. edu/~wn/ .

[61] Mary F. Fern�andez, J�erôme Sim�eon, Byron Choi, Am�elie Marian, and Gargi Sur,
\Implementing XQuery 1.0: The Galax experience," in Proc. of Int. Conf. on Very
Large Data Bases(VLDB) , 2003,pp. 1077{1080.

[62] Mary Fern�andez, Ashok Malhotra, Jonathan Marsh, Marton Nagy, and Norman
Walsh, \X Query 1.0 and XPath 2.0 data model," Working draft, World Wide Web
Consortium, 2004.

186 BIBLIOGRAPHY

[63] Jon Ferraiolo, Fujisawa Jun, and Dean Jackson, \Scalable Vector Graphics (SVG)
1.1 Speci�cation," W3C Recommendation,World Wide Web Consortium, 2003,
http://www.w3.org/TR/SVG / .

[64] SergioFlesca,Filipp o Furfaro, and Elio Masciari, \On the minimization of XPath
queries," in Proc. of Int. Conf. on Very Large Data Bases(VLDB) , pp. 153{164.

[65] Daniela Florescu,Alon Levy, and Dan Suciu, \Query containment for conjunctive
querieswith regular expressions,"in Proc. of ACM SIGMOD/SIGAR T Symposium
on Principles of DatabaseSystems(PODS), 1998,pp. 139{148.

[66] Markus Frick, Martin Grohe,and Christoph Koch, \Query evaluation on compressed
trees," in Annual IEEE Symposium on Logic in ComputerScience (LICS) , 2003,pp.
188{197.

[67] Tim Furche, \Optimizing multiple queriesagainst XML streams," Diploma thesis,
Univ. of Munich, 2003.

[68] Dov M. Gabbay, Ian Hodkinson, and Mark Reynolds, Temporal Logic, Oxford
University Press,1994.

[69] GeorgGottlob and Christoph Koch, \Monadic queriesover tree-structureddata," in
Annual IEEE Symposium on Logic in Computer Science (LICS) , 2002,pp. 189{202.

[70] Georg Gottlob, Christoph Koch, and Reinhard Pichler, \E�cien t algorithms for
processingXPath queries," in Proc. of Int. Conf. on Very LargeData Bases(VLDB) ,
2002,pp. 95{106.

[71] Georg Gottlob, Christoph Koch, and Reinhard Pichler, \The complexity of XPath
query evaluation," in Proc. of ACM SIGMOD/SIGAR T Symposium on Principles
of DatabaseSystems(PODS), 2003,pp. 179{190.

[72] Georg Gottlob, Christoph Koch, and Reinhard Pichler, \XP ath processingin a
nutshell," SIGMOD Record, vol. 32, no. 1, pp. 12{19, 2003.

[73] Georg Gottlob, Christoph Koch, and Reinhard Pichler, \XP ath query evaluation:
Improving time and spacee�ciency ," in Proc. of Int. Conf. on Data Engineering
(ICDE) , 2003,pp. 379{390.

[74] GeorgGottlob, Christoph Koch, and Klaus Schulz, \Conjunctiv e queriesover trees,"
in Proc. of ACM SIGMOD/SIGAR T Symposium on Principles of DatabaseSystems
(PODS), 2004,pp. 189{200.

[75] Todd J. Green, Ashish Gupta, GeromeMiklau, Makoto Onizuka, and Dan Suciu,
\Pro cessingXML streamswith deterministic automata and stream indexes," ACM
Transactionson DatabaseSystems(TODS), vol. 29, no. 4, 2004.

BIBLIOGRAPHY 187

[76] Todd J. Green,GeromeMiklau, Makoto Onizuka, and Dan Suciu, \Pro cessingXML
streamswith deterministic automata," in Proc. of Int. Conf. on Database Theory
(ICDT) , 2003,pp. 173{189.

[77] The STREAM Group, \STREAM: The Stanford Stream Data Manager," in IEEE
Data Engineering Bulletin, http://www- db.stanford.edu /str eam/, 2003,vol. 26.

[78] Torsten Grust, \Accelerating XPath location steps," in Proc. of ACM SIGMOD,
2002,pp. 109{120.

[79] Torsten Grust, Maurice van Keulen, and Jens Teubner, \Staircase join: Teach a
relational DBMS to watch its (axis) steps," in Proc. of Int. Conf. on Very Large
Data Bases(VLDB) , 2003,pp. 524{535.

[80] Torsten Grust, Maurice van Keulen, and JensTeubner, \Accelerating XPath evalu-
ation in any RDBMS," ACM Transactionson DatabaseSystems(TODS), , no. 29,
pp. 91{131, 2004.

[81] Ashish Kumar Gupta and Dan Suciu, \Stream processingof XPath querieswith
predicates," in Proc. of ACM SIGMOD, 2003,pp. 419{430.

[82] E. Gurari, An Intr oduction to the Theory of Computation, Computer SciencePress,
1989.

[83] Alon Y. Halevy, \Answering queriesusing views: A survey," VLDB Journal, vol.
10, no. 4, pp. 270{294,2001.

[84] SvenHelmer,Carl-Christian Kanne,andGuido Moerkotte, \Optimized translation of
XPath into algebraicexpressionsparameterizedby programscontaining navigational
primitiv es," in Proc. of Int. Conf. on WebInformation SystemsEngineering (WISE) ,
2002,pp. 215{224.

[85] Jan Hidders and Philippe Michiels, \Av oiding unnecessaryordering operations in
XPath," in Proc. of Int. Conf. on Data BaseProgrammingLanguages(DBPL) , 2003,
pp. 54{70.

[86] Jan Hidders and Philippe Michiels, \E�cien t XPath axis evaluation for DOM data
structures," in Proc. of Int. Workshopon Programming LanguageTechnologies for
XML (PLAN-X) , 2004.

[87] C. M. Ho�mann and M. J. O'Donnell, \P attern matching in trees," Journal of ACM,
vol. 29, no. 1, pp. 68{95, 1982.

[88] John E. Hopcroft and Je�rey D. Ullman, Intr oduction to Automata Theory. Lan-
guages,and Computation, Addison Wesley, 1979.

188 BIBLIOGRAPHY

[89] Haruo Hosoya and Benjamin C. Pierce, \Regular expressionpattern matching," in
Proc. of Annual ACM Symposiumon Principles of ProgrammingLanguages(POPL) ,
2001,pp. 67{80.

[90] Haruo Hosoya and Benjamin C. Pierce, \Xduce: A statically typed XML processing
language," ACM Transactionson Internet Technology (TOIT) , vol. 3, no. 2, pp.
117{148,2003.

[91] I. Sosnoski Software Solutions, http://www.sosnoski.com/ opensrc /xml bench,
Java XML ModelsBenchmarks, 2004.

[92] Nancy Ide, Patrice Bonhomme,and Laurent Romary, \X CES: An XML-based stan-
dard for linguistic corpora," in Proc. Annual Conf. on LanguageResources and
Evaluation (LREC) , 2000,pp. 825{830.

[93] International StandardOrganization (ISO), Tra�c and Traveller Information (TTI)
{ TTI messagesvia tra�c messagecoding { Part 1: Coding protocol for Radio Data
System{ Tra�c MessageChannel (RDS-TMC) , 2003, http://www.iso.org .

[94] Zachary G. Ives, Alon Y. Halevy, and Daniel S. Weld, \An XML query enginefor
network-bound data," VLDB Journal, vol. 11, no. 4, pp. 380{402,2002.

[95] Zachary G. Ives,Alon Y. Levy, Daniel S. Weld, Daniela Florescu,and Marc Fried-
man, \Adaptiv e query processingfor internet applications," IEEE Data Engineering
Bulletin, vol. 23, no. 2, pp. 19{26, 2000.

[96] Michael Kay, \XSL Transformations (XSLT) Version 2.0," Working draft, World
Wide Web Consortium, 2004.

[97] P. Kilp elainen and H. Mannila, \Ordered and unordered tree inclusion," SIAM
Journal of Computing, vol. 24, no. 2, pp. 340{356,1995.

[98] Christoph Koch and StefanieScherzinger, \A ttribute grammars for scalablequery
processingon XML streams," in Proc. of Int. Conf. on Data Base Programming
Languages(DBPL) , 2003,pp. 233{256.

[99] Christoph Koch, StefanieScherzinger,Nicole Schweikardt, and Bernhard Stegmaier,
\FluX Query: An optimizing XQuery processorfor streamingXML data," in Proc. of
Int. Conf. on Very LargeData Bases(VLDB) , 2004,pp. 1309{1312,Demonstration.

[100] Christoph Koch, StefanieScherzinger,Nicole Schweikardt, and Bernhard Stegmaier,
\Schema-basedscheduling of event processorsand bu�er minimization for querieson
structured data streams," in Proc. of Int. Conf. on Very LargeData Bases(VLDB) ,
2004,pp. 228{239.

[101] Nick Koudasand DiveshSrivastava, \Data streamquery processing:A tutorial," in
Proc. of Int. Conf. on Very LargeData Bases(VLDB) , 2003,p. 1149.

BIBLIOGRAPHY 189

[102] Dongwon Lee, Murali Mani, and Makoto Murata, \Reasoning about XML schema
languagesusing formal languagetheory," Tech. Rep. RJ 10197Log 95071, IBM
Reseach, 2000.

[103] Patrick Lincoln and Jim Christian, \Adv entures in associative-commutativ e uni�ca-
tion," Journal of Symbolic Computation, vol. 8, no. 1{2, pp. 217{240,1989.

[104] Bertram Lud•ascher, Pratik Mukhopadhyay, and Yannis Papakonstantinou, \A
transducer-basedXML query processor," in Proc. of Int. Conf. on Very LargeData
Bases(VLDB) , 2002,pp. 227{238.

[105] Samuel Madden, Mehul A. Shah, JosephM. Hellerstein, and Vijayshankar Raman,
\Continuously adaptive continuous queriesover streams," in Proc. of ACM SIG-
MOD, 2002,pp. 49{60.

[106] Am�elie Marian and J�erômeSim�eon, \Pro jecting XML documents," in Proc. of Int.
Conf. on Very LargeData Bases(VLDB) , 2003,pp. 213{224.

[107] Jos�e M. Mart��nez, \MPEG-7 overview," Tech.
Rep. N4980, ISO/IEC JTC1/SC29/W G11, 2002,
http://mpeg.telecomitali alab .co m/st andards/ mpeg- 7/ mpeg- 7. htm.

[108] Maarten Marx, \X CPath, the �rst order completeXPath dialect," in Proc. of ACM
SIGMOD/SIGAR T Symposium on Principles of Database Systems(PODS), 2004,
pp. 13{22.

[109] Maarten Marx, \XP ath with conditional axis relations," in Proc. of Int. Conf. on
ExtendingDatabaseTechnology (EDBT) , 2004,pp. 477{494.

[110] David Megginson, SAX: The Simple API for XML , 1998,
http://www.saxproject.or g/ .

[111] Holger Meuss,Andreas Wicenec,and S. Farrow, \Flexible storageof astronomical
data in the ALMA archive," in ASP Conf. Ser. 314: Astronomical Data Analysis
Software and Systems(ADASS), 2004,pp. 97{+, http://www.eso.org .

[112] Philippe Michiels, \X Query optimization," in VLDB PhD Workshop, 2003.

[113] Microsoft Corporation, Internet Explorer 6.0, 2002,
http://www.microsoft.com /win dows/ie /wor ldwi de/ all. mspx.

[114] Gerome Miklau, XMLData Repository, Univ. of Washington, 2003,
http://www.cs.washington .edu/re search/x mldatas ets .

[115] GeromeMiklau and Dan Suciu, \Containment and equivalenceof an XPath frag-
ment," in Proc. of ACM SIGMOD/SIGAR T Symposium on Principles of Database
Systems(PODS), 2002,pp. 65{76.

190 BIBLIOGRAPHY

[116] Gerome Miklau and Dan Suciu, \Containment and equivalenceof a fragment of
XPath," Journal of the ACM, vol. 51, no. 1, pp. 2{45, 2004.

[117] Rajeev Motwani, Jennifer Widom, Arvind Arasu, Brian Babcock, Shivnath Babu,
Mayur Datar, Gurmeet Singh Manku, Chris Olston, Justin Rosenstein,and Rohit
Varma, \Query processing,approximation, and resourcemanagement in a data
stream management system," in Proc. of CIDR, 2003.

[118] NASA, JPL SensorWebsProject, http://sensorwebs.jpl.nasa. gov, 2004.

[119] NASA, XML Group Resources Page, http://xml.gsfc.nasa.gov , 2004.

[120] Netscape, DMOZ: Open Directory Project, http://dmoz.org , 2005.

[121] Frank Neven and Thomas Schwentick, \XP ath containment in the presenceof dis-
junction, DTDs, and variables," in Proc. of Int. Conf. on DatabaseTheory (ICDT) ,
2003,pp. 315{ 329.

[122] M. H. A. Newman, \On theories with a combinatorial de�nition of 'equivalence',"
Annals of Mathematics, vol. 43, no. 2, pp. 223{ 243,1942.

[123] Dan Olteanu, \Answering queriesusing views in agora," M.S. thesis, "Politehnica"
University of Bucharest, 2000.

[124] Dan Olteanu, Tim Furche,andFran�coisBry, \An e�cien t single-passqueryevaluator
for XML data streams," in Proc. of Annual ACM Symposium on Applied Computing
(SAC), 2004,pp. 627{631.

[125] Dan Olteanu, Tim Furche, and Fran�cois Bry, \Ev aluating complex queriesagainst
XML streamswith polynomial combined complexity," in Proc. of Annual British
National Conference on Databases(BNCOD) , 2004,pp. 31{44.

[126] Dan Olteanu, Tobias Kiesling, and Fran�cois Bry, \An evaluation of regular path
expressionswith quali�ers against XML streams," Tech. Rep. PMS-FB-2002-12,
Univ. of Munich, Institute of Computer Science,2002.

[127] Dan Olteanu, Tobias Kiesling, and Fran�cois Bry, \An evaluation of regular path
expressionswith quali�ers against XML streams," in Proc. of Int. Conf. on Data
Engineering (ICDE) , 2003,pp. 702{704.

[128] Dan Olteanu, Holger Meuss,Tim Furche, and Fran�cois Bry, \XP ath: Looking for-
ward," in Proc. of EDBT WorkshopXMLDM , 2002,pp. 109{127, LNCS 2490.

[129] Makoto Onizuka, \Ligh t-weight xPath processingof XML streamwith deterministic
automata," in Proc. of the Int. Conf. on Information and KnowledgeManagement
(CIKM) , 2003,pp. 342{349.

BIBLIOGRAPHY 191

[130] Yannis Papakonstantinou and Vasilis Vassalos,\Query rewriting for semistructured
data," in Proc. of ACM SIGMOD, 1999,pp. 455{466.

[131] FengPengand SudarshanS. Chawathe, \XSQ: A StreamingXPath Engine," Tech.
Rep. CS-TR-4493(UMIA CS-TR-2003-62),University of Maryland, 2003.

[132] FengPengand SudarshanS.Chawathe, \XSQ: StreamingXPath Queries:A Demon-
stration," in Proc. of Int. Conf. on Data Engineering (ICDE) , 2003,pp. 780{782.

[133] Corin Pitcher, \Visibly pushdown expressione�ects for XML streamprocessing,"in
Proc. of Int. Workshopon ProgrammingLanguageTechnologiesfor XML (PLAN-X) ,
2005, to appear.

[134] Dave Raggett, Arnaud Le Hors, and Ian Jacobs, \Hyp ertext markup language
(HTML) 4.01speci�cation," W3C Recommendation,World Wide Web Consortium,
1999, http://www.w3.org/TR/REC- html 40/ .

[135] Prakash Ramanan, \E�cien t algorithms for minimizing tree pattern queries," in
Proc. of ACM SIGMOD, 2002,pp. 299{309.

[136] DerekRogers,JaneHunter, andDouglasKosovic, \The TV-tra wler project," Journal
of Imaging Systemsand Technology, pp. 289{296,2003.

[137] SebastianScha�ert, Xcerpt: A Query and Transformation Languagefor the Web,
Ph.D. thesis,University of Munich, 2004.

[138] Ste�en Schott and Markus L. Noga, \Lazy XSL transformations," in Proc. of ACM
Symposium on Document Engineering, 2003,pp. 9{18.

[139] Dominik Schwald, \Appro ximate streamedevaluation of XPath under memory con-
straints," Project thesis,Univ. of Munich, 2003.

[140] Luc Segou�n, \T yping and querying XML documents: somecomplexity bounds,"
in Proc. of ACM SIGMOD/SIGAR T Symposium on Principles of DatabaseSystems
(PODS), 2003,pp. 167{178.

[141] P. Seshadri,M. Livny, and R. Ramakrishnan, \The designand implementation of
a sequencedatabasesystem," in Proc. of Int. Conf. on Very Large Data Bases
(VLDB) , 1996,pp. 99{110.

[142] R. Snodgrassand I. Ahn, \A taxonomy of time in databases," in Proc. of ACM
SIGMOD, 1985,pp. 236{245.

[143] Anthony Vetro, \MPEG-7 applications," Tech. Rep. N3934, ISO/IEC
JTC1/SC29/W G11, 2001.

192

[144] Jean-Yves Vion-Dury and Nabil Layaida, \Containment of XPath expressions:an
inferenceand rewriting basedapproach," in Proc. of Extreme Markup Languages,
2003.

[145] Ray Whitmer, \Do cument Object Model (DOM) Level 3 XPath Speci�cation," W3C
Recommendation,World Wide Web Consortium, 2000.

[146] Peter T. Wood, \Optimising web queriesusing document type de�nitions," in Proc.
2nd ACM Workshop on Web Information and Data Management(WIDM) , 1999,
pp. 28{32.

[147] Peter T. Wood, \On the equivalenceof XML patterns," in Computational Logic,
2000,pp. 1152{1166.

[148] Peter T. Wood, \Minimizing simple XPath expressions,"in Proc. of Int. Workshop
on Web and Databases(WebDB), 2001,pp. 13{18.

[149] Peter T. Wood, \Containment for XPath fragments under DTD constraints," in
Proc. of Int. Conf. on DatabaseTheory (ICDT) , 2003,pp. 300{314.

Index

Annotations, 106, 142
ambiguity, 116
in-mapping i! , 120, 122, 124, 125, 127,

138
lifetime, 121, 124, 125
mapping, 119
operations, 106

inclusion v , 106, 108, 114, 121, 122
intersect u, 106, 133, 135, 138
union t , 106, 114, 116, 122, 138

out-mapping i , 120, 122, 124, 125,
127, 128

scope, 121

LGQ Formulas
absolute,21
binary atoms, 20
connected,21
connectives,19
DAGs, 27, 47
disjunctive normal form, 21
DNF, 70
equivalence,23
forests,27, 47, 144
graphs,27, 47, 147
paths, 27

pdown, 121, 124, 143
rdown, 121, 124, 143
sdown, 121, 124, 143
sdown, pdown, rdown, 28, 125, 144,

145
predicates,17
predicates,classes,18
query, 21
rule, body, 21

rule, head,21
semantics, 23
substitutions, 22
substitutions,consistent, 22
trees,27, 47, 144
unary atoms, 20
unsatis�abilit y, 24
variable

forward sink-arity, 20, 31
fresh,40
head,21
multi-sink, 20
multi-source, 20
sink, 20
sink-arity, 20
source,20

variable-preservingminimalit y, 28, 47,
77, 81, 95

Measures
connection

sequence,30, 85{ 88
variable, 30, 41, 64, 79, 80, 84

DAG type factor typedag, 31
reverseposition factor posr ev, 30
sizej e j, 30
type position factor typer ev, 31

Orders
> dag

ty pe, 31, 69, 82
> r ev

pos, 31, 82
> r ev

ty pe� pos, 65, 66, 68, 82
> r ev

ty pe, 31, 59, 82
> dnf , 70, 82
> mul , 59, 65, 68{ 70
> siz e, 73, 82

194 INDEX

lexicographicproduct, 54
on multisets, 55
well-founded,54

Rewriting
AC matching, 57, 83
AC uni�cation, 57
conuence, 54

critical pairs, 56
local, 56, 83

Identit y � , 53
joinable terms, 55
lhs, rhs, 53
modulo

AC, 56, 73, 177
equational theory, 56

normal form, 54, 78
Rule ! , 53
Rules

par+ , 61
par� , 60
child� , 60
foll, 60
nextSibl� , 60
par, 60
prec, 60
prevSibl, 61
prevSibl+ , 61
prevSibl� , 60
DNF, 70
duplicate elimination, 71
relation-independent, 58
simpli�cation, 71
unsatis�abilit y detection, 71
unsatis�abilit y propagation, 71

substitution, 53
matching, 53
mgu, 53

termination, 54, 82

Stream ProcessingFunctions, 105, 107
� f for predicate� , 109, 113, 114, 116,

131

in , 109, 127
out, 109, 127
head , 109, 127

annotation-merge� c, 108, 119, 138
composition

parallel (++), 107, 109, 110, 119,
122

sequential (�), 107, 109, 110, 116,
122

connective _ f , 119, 138
connective ^ f , 119, 138
merge� , 108
scope-begin

!
scope, 109, 110, 122, 125

scope-beginsdown, pdown, rdown, 125,
138

scope-end

scope, 109, 110, 122
symbol-�lter j, 108

Curriculum Vitae

Personal Data

Name: Dan Alexandru Olteanu
Date of Birth: 9th of November, 1976
Placeof Birth: Târgovi�ste, Romania
Marital Status: Married

Studies

February 2005 PhD examination in Computer Science(LMU, Munich)
Spring/Summer 2000 visiting student in the Caravel project (INRIA, Rocquencourt)
October 2000 Dipl. Ing. in Computer Science(Politehnica, Bucharest)
July 1995 Baccalaureatein Math-Physics(HighSchool, Târgovi�ste)

Research In terests

� SemistructuredData

� XML query processing

� Data Integration

� Formal Languagesand Automata

	Introduction
	Data Streams: Use, Concepts, and Research Issues
	Thesis Contributions and Overview

	Preliminaries
	XML Essentials
	Example Scenarios

	LGQ (Logic Graph Query): An Abstraction of XPath
	Data Model
	Syntax
	Semantics
	Digraph Representations
	Path, Tree, DAG, Graph Formulas and Queries
	Forward Formulas and their Specializations
	Measures for Formulas
	LGQ versus XPath
	XPath
	Conciseness of LGQ over XPath
	XPath=LGQ Forests

	Source-to-source Query Transformation: From LGQ to Forward LGQ
	Problem Description
	A Taste of Term Rewriting Systems
	Rewrite Rules preserving LGQ Equivalence
	Rules adding single-join DAG-Structure
	Rules preserving Tree-Structure
	Rules removing DAG-Structure
	Rules for LGQ Normalization
	Rules for LGQ Simplification

	Three Approaches to Rewrite LGQ to Forward LGQ Forests
	Rewriting Examples
	Soundness and Completeness
	Termination
	Confluence

	Complexity Analysis
	Related Work

	Evaluation of Forward LGQ Forest Queries against XML Streams
	Problem Description
	Specification
	Stream Messages
	Stream Processing Functions
	From LGQ to Stream Processing Functions
	Evaluation of Atoms
	Evaluation of Path Formulas
	Evaluation of Tree Formulas
	Answer Computation

	Implementation
	SPEX Transducers and Transducer Networks
	Transducers for Forward LGQ Predicates
	Processing Example with Transducers for LGQ Predicates
	Transducers for Other Stream Processing Functions

	Minimization Problems for SPEX Transducer Networks
	Complexity Analysis
	Experimental Results
	Related Work
	Query Evaluation against stored XML Data
	Query Evaluation against XML Data Streams
	Hybrid Approaches

	Applications
	Monitoring Computer Processes
	Streamed Traffic and Travel Information

	Conclusion

