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2. Introduction 

 

2.1 The burden of cardiometabolic diseases 

 
Cardiometabolic diseases (CMD) encompass a spectrum of diseases ranging from dia- 

betes and other metabolic diseases to cardiovascular diseases (CVD) such as myocar- 

dial infarction and stroke (1). It is one of the major public health concerns and is a leading 

cause of death worldwide. Almost 17.9 million people died of CVD in 2019, which ac- 

counts for 32% of all global deaths (2). Likewise, in the same year, almost 463 million 

(9.63%) people worldwide had diabetes which is estimated to increase to 700 million 

(10.9%) by 2045 (3). In Germany, approximately 10.1 million people are projected to 

suffer from diabetes in 2030 (3). In addition to being a public health problem, CMD is also 

regarded as a global economic burden. Worldwide, diabetes accounted for USD 1.3 trillion 

in 2015 which is expected to rise to USD 2.1 trillion in 2030 (4). Similarly, according to 

European Heart Network’s 2017 report, CVD is estimated to cost the EU economy € 210 

billion a year (5). 

 

Worldwide, over a billion people are suffering from metabolic diseases (6). According to 

World Health Organization 2020 fact sheets, obesity has tripled, hypertension has dou- 

bled since 1975, and diabetes has quadrupled since 1980 (7). In 2015, 603.7 million 

adults were affected by obesity (8). In Germany, 26% of adults were obese in 2016 (9). 

High body fat, especially central obesity, is associated with several metabolic diseases 

such as insulin resistance, hypertension, and dyslipidemia (10). Over two-thirds of the 

prevalence of hypertension is directly related to obesity (11). Globally, 22% of adults had 

raised blood pressure in 2015 (9). Hypertension doubles the relative risk of CVD and 

triplets the relative risk of type 2 diabetes (T2D) (11). It is regarded that metabolic dis- 

eases may overtake smoking as a leading risk factor for CVD in the future (12,13). Alt- 

hough there has been a substantial decrease in age-standardized morbidity and mortal- 

ity from CVD in Europe over the past 40 years, there is a serious concern that a consid- 

erable increase in obesity and T2D might slow or even reverse the trend (5,14). 

 

The increase in the elderly population will further increase the prevalence of metabolic 

diseases (10,15). The population aged 65 years and over is increasing. In 2019, one in 

11 people worldwide, i.e. 9 % of the population was over 65. By 2050, this number is 

expected to increase to 16% (16). With increasing age, several physiological changes 
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occur in the body. One of the changes refers to the increase in intra-abdominal fat, which 

leads to insulin resistance, hypertension, and dyslipidemia (10). 

 

Metabolic diseases also increase the risk of getting other severe diseases like cancers of 

different sites and infections (17–19). Recent studies have shown that individuals with 

CMD have a higher risk of getting COVID-19 and a more severe course of the disease 

and more vaccine breakthroughs (20,21). This situation has further emphasized the ur- 

gency of the best prevention and management of CMD. In recent years, there was an 

increased interest in research and the health care sector to prevent CMD. However, de- 

spite intense public health efforts (9), results are not very promising so far. Therefore, the 

development of a more robust and practical preventive approach that can be con- ducted 

at a large scale is necessary for the better prevention of CMD. 

 

2.2 Role of diet in CMD 

 
Diet is one of the major modifiable risk factor for CMD (22). Along with influencing the 

present health, diet also determines the future occurrence of chronic diseases (23). Sev- 

eral epidemiological studies have shown the relation between diet and the occurrence of 

CMD. For instance, the consumption of a high amount of sodium, and a low amount of 

fruits, vegetables, and potassium has been shown to increase the risk of hypertension 

(24). Similarly, an atherogenic diet that is rich in saturated fat elevates the blood choles- 

terol concentration, specifically LDL cholesterol (25) which can increase the risk of get- 

ting CVD. Similarly, a higher intake of refined carbohydrates is also linked with a higher 

risk of dyslipidemia (26). The consumption of foods with a high glycemic index (a meas- 

ure of how much 50 g of carbohydrate from a specific food raises the blood glucose level) 

increases the risk of insulin resistance and obesity. 

 

As people eat different combinations of food in daily life, diet quality indices or dietary 

pattern has been increasingly used in nutritional studies to explore the relationship be- 

tween diet and disease occurrence. The dietary indices based on a combination of dif- 

ferent nutritional components can provide a holistic approach than using the single nu- 

trient approach (27). Several dietary indices and patterns have shown promising results 

in preventing CMD. According to a recent review, a higher adherence to the Mediterra- 

nean diet score (MDS) which is rich in fruits, vegetables, nuts, olive oil, and fatty fish, 

alters the type 2 diabetes (T2D) related mechanisms, like anti-inflammatory actions, glu- 

cagon-like peptide agonist compounds, and changes in gut microbiota (28). The Ameri- 

can Heart Association also recommends the MDS for the primary prevention of CVD 
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(29). The Alternate Healthy Eating Index (AHEI) which was initially designed in 2002 (30) 

based on American Dietary Guidelines and later revised in 2012 as AHEI-2010 (31) has 

shown to be associated with a decreased risk of chronic diseases such as T2D and CVD 

(32). Similarly, the Dietary Approaches to Stop Hypertension (DASH) eating plan con- 

sisting of fruits, vegetables, and low-fat dairy reduces the risk of hypertension (24). A 

study comparing four different dietary patterns (MDI, Healthy Eating Index 2010, AHEI- 

2010, and DASH) showed that better dietary pattern scores were inversely associated 

with the incidence of T2D (33). 

 

A study conducted in the US in 2017 showed that 45.4% of CMD-related deaths could be 

attributed to a suboptimal diet (34). Another study investigating the effects of dietary risk 

in 195 countries from 1990 to 2017 showed that globally one in five deaths was associated 

with dietary risk factors such as high intake of sodium, and low intake of whole grains, and 

fruits (35). Collectively, these data underpins the importance of diet in the reduction of the 

current as well as the future burden of CMD. The development of in- formed and 

evidence-based dietary recommendations can help millions of people at risk of metabolic 

and cardiovascular diseases. 

 

2.3 Inter-individual variation in response to diet 

 
Optimal nutrition is key to maintaining homeostasis, promoting health, and preventing 

diseases. The usual public health approach for preventing diet-related CMD is recom- 

mending a healthy diet and lifestyle (36). The underlying evidence for such dietary rec- 

ommendations is obtained from epidemiological or large clinical studies where general- 

ized nutritional advice is given at a population level (37). However, the evidence shows 

that there exists high interpersonal variability in response to the same food (19,38–42). 

Thus, people may have different metabolic reactions to specific dietary regimens. For 

instance, a study by Zeevi et al. (40) showed that people have different postprandial blood 

glucose responses even after consuming the same standard meals. Similarly, Berry et al. 

(41) also demonstrated inter-individual variability in postprandial triglyceride, insulin, and 

glucose following identical meals. Similar inter-individual differences were seen regarding 

hypertension response to salt intake (43) and absorption of Vitamin E (44). 

 

The variation in response to diet can be explained by the interpersonal heterogeneity in 

the microbiome, genetics, epigenetics, and environmental factors which impact the indi- 

vidual’s metabolism (19,45–47). This high variability illustrates that the use of generic 
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dietary advice, although practical, may not be very effective. For the optimal prevention 

of diet-related diseases, nutritional/dietary advice should move from the one size fits all 

concept to a more tailored/individualized approach. The growing understanding of inter- 

individual variation has led to the development of a new concept called personalized 

nutrition (PN) or precision nutrition (45). Although there is not a universally agreed-upon 

definition of PN, it is based on the idea of using the information of an individual to develop 

nutritional advice which would be more effective than generic advice (22,48). 

 

PN has shown to be effective in improving dietary habits compared to the generalized 

population level advice (40,49–52), most likely due to increased motivation. The large 

randomized controlled trial study called Food4me investigated the influence of person- 

alized versus generalized nutrition advice in changing the dietary behavior of people in 

seven different European countries (51). The study showed that after six months, the 

personalized advice group implemented better and sustained dietary behavior than the 

generic advice group. Likewise, the improvement in diet quality was seen among preg- 

nant women when they received computer-based tailored dietary counseling compared 

to pregnant women who received generic dietary advice (52). Similarly, the study by Zeevi 

et al. (40) developed an algorithm to predict the individual postprandial blood glu- cose 

based on blood parameters, dietary habits, anthropometrics, physical activity, and gut 

microbiota (40). When the participants were assigned to blinded randomized con- trolled 

dietary intervention based on the algorithm, lowered post-meal glucose and con- sistent 

alterations to the gut microbiota were observed. These results exhibit the effec- tiveness 

of PN in improving the health of individuals and reducing the burden of CMD. 

 

2.4 Metabotyping 

 
Though providing dietary advice on an individual level is the epitome of the PN, we can- 

not ignore the fact that it requires an extensive amount of data and resources (22). For 

each intervention to be effective and influence the population’s health, it has to be prac- 

tical and scalable (53). Therefore, the concept of providing targeted dietary advice (tar- 

geted nutrition) (54) to groups of metabolically most similar individuals, also known as 

metabotype, is gaining momentum (46,55–57). A recent review by Zeisel (45) has also 

highlighted the fact that personalization at a stratified level is a more feasible and practi- 

cal approach than personalization at an individual level. According to Toro-Martín et al., 

the process of stratifying people based on key characteristics makes the nutritional ad- 

vice the same for all members of a stratum and thus can be considered as a personalized 

approach (58). 
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Metabotyping refers to the process of grouping similar individuals together into smaller 

subgroups based on their metabolic or phenotypic characteristics (46,57,59). These met- 

abolic phenotypes, also known as metabotypes, are the results of genetic and environ- 

mental factors such as diet, lifestyle, and gut microbiome (53,60). The individual within 

the same metabotype subgroup has similar metabolic profiles compared to individuals in 

different metabotype subgroups. The grouping of metabolically similar individuals helps 

to identify subpopulations with differing risks for metabolic diseases and would allow the 

efficient use of preventive measures such as dietary and lifestyle intervention for the 

prevention of CMD, provided that differential effects were scientifically proven (Figure 1). 

 

The development and use of the metabotype concept was rapidly increasing in recent 

years aiming to investigate the linkage between diets and different chronic diseases 

(22,46,56). Several markers of metabolic pathways are used to identify and define a 

metabotype concept (22,46,56). For instance, Tzeng et al. (61) used a metabotyping 

approach with 10 cardio-metabolic parameters to cluster the women sharing similar met- 

abolic risk factors into similar subgroups. Similarly, Chua et al. (62) used 263 lipids in 

blood plasma and identified three distinct circadian metabolic phenotypes. Frazier-Wood 

et al. (63) also used a metabotyping approach to explore the relationship between the 

diameter of three lipoproteins and metabolic syndromes. Likewise, in our previous stud- 

ies, we identified three distinct metabotype subgroups using 32 (64) and 16 (65) different 

biochemical and anthropometric parameters. 

 

Few studies have also incorporated metabolomics for metabotyping purposes (66–70). 

For instance, Fiamoncini and colleagues (67) analyzed around 300 plasma metabolites 

to identify 2 metabotypes and evaluated their respective responses to mixed meal toler- 

ance tests and dietary interventions aimed at weight loss. Similarly, Muniandy et al. (68) 

explored 111 plasma metabolites and identified two subgroups related to cardio-meta- 

bolic risk factors. 

 

Metabotypes have also been defined based on differential responses to nutritional inter- 

ventions and supplements (67,71–74). For example, Krishnan et al. (73) identified the 

three distinct subgroups based on the differential response to a low and high glycemic 

meal. Likewise, in a controlled cross-over intervention study Wang et al. (75) identified 

the distinct subgroups with differing carotenoid responses to carotenoid-rich beverages. 
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In the same way, Vázquez-Fresno and colleagues (74) identified four clusters with dis- 

tinct clinical profiles using 69 biochemical and anthropometric parameters in response to 

red wine polyphenol intake. 

 

Evidence shows that the application of metabotyping in epidemiological or longitudinal 

studies aids in identifying the metabolically similar groups that are related to diet-related 

diseases and cardio-metabolic risk factors (22,64,65,76). Likewise, the use of metabo- 

typing in intervention studies can help in investigating the differential response to dietary 

interventions (71,72,74). For example, in our previous study where we investigated the 

association between diet and T2D, we found that the associations varied by different 

metabotype subgroups (65). The metabotype with healthy metabolic characteristics 

showed a higher risk of T2D when the consumption of meat was increased. Whereas, the 

risk of T2D among the unfavorable metabotype subgroup was positively associated with 

consumption of sugar-sweetened beverages and inversely associated with fruit in- take. 

Also, in another study, we could only identify the significant association between T2D and 

dietary indices (AHEI and MDS) in the unfavorable metabotype subgroup which was 

otherwise significant in the total study population (76). Likewise, an intervention study 

conducted by O’Sullivan showed that a significant effect of vitamin D (decrease in insulin, 

homeostatic model assessment scores, and CRP) was only seen after stratifying the 

study population into metabolic subgroups (72). 

 

Furthermore, the metabotyping approach has also been used as a tool for developing 

personalized/targeted nutrition. The decision tree method was used in different studies 

(53,54,77) to develop targeted dietary advice at the metabotype subgroup level. The 

comparison of results from the decision tree with the individual-based approach deliv- 

ered by dietitians showed very good agreement, i.e. the dietary advice matched in more 

than 80% of study participants. 

 

As individuals at high risk of CMD are more motivated to change their health behavior 

(78), the use of targeted dietary advice based on metabotypes may help to effectively 

influence the population’s dietary behavior. Moreover, metabotype can also aid in trans- 

ferring the targeted nutrition into practice by helping clinicians to overcome the usual 

hurdles like lack of time, workload, and inadequate training (79,80) and provide dietary 

advice quickly (53,54). 
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Figure 1: Flowchart representing a shift of dietary approach from population level to tar- 

geted subgroup level. 

 

2.5 Scientific Challenges 

 
Despite of known advantages of the metabotype concepts, the application of metabotyp- 

ing in nutritional studies is still at an early stage. There exists no unique definition of 

metabotype nor a defined method to identify metabotype subgroups. Moreover, the se- 

lection criteria of parameters for metabotyping (clustering parameters) are usually arbi- 

trary (22) or based on availability or expert opinions. Due to these significant limitations, 

studies have used different methods and several parameters from different metabolic 

pathways to define metabotypes (46,56). The use of parameters ranges from a few sim- 

ple and affordable clinical parameters to very large and expensive omics data. This het- 

erogeneity in definitions and methods has limited the use of the metabotyping concept in 

general research settings and primary care. For instance, the use of different metabo- 

types in different studies has made it difficult to make reasonable comparisons (22,46). 

Similarly, it has also reduced the reproducibility across the research groups which has 

further hindered the generalizability across different cohorts and populations. 

 

Therefore, there is an urgent need to identify a valid metabotype definition based on a 

few easily accessible clinical parameters. The metabotyping parameters should be cho- 

sen based on valid statistical methods without disregarding the availability and clini- 

cal/nutritional relevance. Furthermore, these metabotypes should be evaluated using dif- 

ferential reactions to dietary factors and validated in different study populations to ensure 
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reproducibility and generalizability across populations. And most importantly metabo- 

types should be easily and quickly definable, affordable, and thus suitable for large-scale 

applications. 

 

A unique definition of metabotypes would help to identify the metabolically similar sub- 

groups that may benefit from tailored/personalized dietary interventions for optimal pre- 

vention of CMD at a population level. 

 

2.6 Aims and objectives of the Dissertation 

 
The current dissertation aims to address the scientific challenges and current gaps in the 

literature by developing a metabotype concept based on standard clinical parameters that 

identify metabolically homogenous groups which respond similarly to dietary inter- 

ventions. For this purpose, the doctoral candidate has published two first-author manu- 

scripts in international peer-reviewed journals. 

 

The objective of the first publication was (i) selection of few and routinely available stand- 

ard clinical parameters for metabotyping purposes and (ii) to identify the valid metabo- 

type definition based on selected parameters in a population-based Cooperative Health 

Research in the Region of Augsburg (KORA) F4 study (81,82) and a seven-year follow- 

up KORA FF4 study (83). Likewise, the aim of the second publication was to evaluate the 

identified metabotypes by (i) assigning participants from enable cluster of nutrition 

research to metabotype subgroups identified in the KORA F4 study and (ii) examining if 

the different metabotypes subgroups react differently to dietary interventions like oral 

glucose tolerance test (OGTT) (84) and 12-week dietary fiber intervention (DFI) (85). 

 

2.7 Description of the analyses and contribution to the problem 

at hand 

The first publication identified two valid metabotype definitions for each disease group, 

cardiovascular diseases and metabolic diseases, based on four and five standard clinical 

parameters, respectively (Table 1). For this purpose, we used the data from 3001 study 

participants of population-based KORA F4 and KORA FF4 studies. We selected six 

metabotyping parameters (Table 1) using the machine learning-based variable selection 

method called permutation variable importance which was further validated by sensitivity 
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analysis performed using two different methods called cross-validated permutation vari- 

able importance measure and gradient boosted feature selection. Based on the selected 

parameters 18 different metabotype models with three clusters each were created using 

the K-means clustering algorithm. Based on the distribution of the clustering parameters 

(triglyceride, glucose, uric acid, BMI, HDLc, and Non-HDLc), cluster 1 was regarded as 

the healthy cluster, cluster 2 was regarded as the intermediate cluster, and cluster 3 was 

regarded as the unfavorable cluster. Next, all models were compared based on the inci- 

dence of CMD in the unfavorable cluster (cluster 3). Model 7 had the highest incidence of 

any metabolic disease (defined as the presence of at least one of the metabolic dis- 

eases: hypertension, hyperuricemia, dyslipidemia, and T2D) and was regarded as the 

best model with respect to the development of metabolic diseases. Model 7 was com- 

prised of only five metabolic parameters namely, glucose, BMI, uric acid, HDLc, and Non-

HDLc. Similarly, model 17 consisting of only four parameters (triglyceride, glucose, HDLc, 

and Non-HDLc) showed the highest incidence of cardiovascular diseases (myo- cardial 

infarction, stroke) and was regarded as the best model with respect to cardiovas- cular 

diseases. 

 

Both selected models, model 7 and model 17 were further evaluated using socio-demo- 

graphic characteristics as well as an additional set of biochemical parameters that were 

not included in identifying metabotype groups. In both models, cluster 1 showed favora- 

ble socio-demographic characteristics such as the lowest age, the highest percentage of 

participants that are non-smokers, physically active, and have more than 12 years of 

education. Similarly, cluster 1 also had the lowest median concentrations of unfavorable 

biochemical parameters such as insulin, alkaline phosphatase, gamma-glutamyltrans- 

ferase (GGT), glutamate-oxaloacetate transaminase (GOT), glutamate-pyruvate trans- 

aminase (GPT), glycated hemoglobin (HbA1c), and high-sensitive C-reactive protein (hs- 

CRP). In contrast, cluster 3 of both models showed unfavorable socio-demographic char- 

acteristics such as the highest median age, the highest percentage of heavy drinkers, and 

physically inactive participants. This subgroup also had the highest median concen- 

trations of biochemical parameters. The characteristics of cluster 2 were in between clus- 

ter 1 and cluster 3. 

 

Thus the homogenous characteristics within the clusters and distinct differences across 

the clusters proved that this work successfully identified a valid metabotype concept 

based on a few standard clinical parameters. The findings from this publication can be 

easily used in the general population on large scale for early identification of metaboli- 

cally similar subgroups that may benefit from the preventive measures. 
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Table 1: Selected parameters and identified metabotype models in the first publication. 
 
 

Selected parameters Identified metabotype models 

1. Triglyceride 
2. Uric acid 
3. BMI 
4. HDLc 
5. Glucose 
6. Non-HDLc 

Metabolic disease model 
1. Glucose 
2. HDLc 
3. Non-HDLc 
4. Uric acid 
5. BMI 

Cardiovascular disease model 
1. Glucose 
2. HDLc 
3. Non-HDLc 
4. Triglyceride 

 
BMI: body mass index; HDLc: high-density lipoprotein; LDLc: low-density lipoprotein; Non-HDLc: non-high- 

density lipoprotein. 

 

The second publication evaluated the metabotype definition identified in the first publi- 

cation. For this metabotypes identified in the KORA study were assigned to 356 partici- 

pants of two sub-studies (OGTT sub-study and 12-week DFI sub-study) of the enable 

cohorts. It was done by minimizing the Euclidean distance of the z-standardized clus- 

tering parameters of the KORA study to the respective z-standardized cluster centers 

of the same parameters of the enable study. Next, the differential reaction of partici- 

pants across the metabotype subgroups to OGTT and DFI was investigated by using 

linear mixed models and multivariate linear regression models. The participants of the 

OGTT sub-study were provided with an oral glucose bolus (75 g) and blood glucose 

values were determined in blood samples drawn at baseline (before OGTT) and 30, 60, 

90, 120, 180, and 240 minutes. In the case of the DFI sub-study, intervention partici- 

pants were provided with dietary fiber-enriched food for 12 weeks with the aim of in- 

creasing intake of dietary fiber by 10 grams per day. 

 

Similar to the results of the KORA studies, the participants of the enable cohorts as- 

signed to clusters 1, 2, and 3 showed favorable, intermediate, and unfavorable meta- 

bolic characteristics, respectively. Regarding the differential reaction to OGTT, partici- 

pants in different metabotype subgroups showed significantly different reactions even 

when adjusted for age, sex, and physical activity. The unfavorable cluster (cluster 3) re- 

vealed the strongest reaction in serum glucose values at all measured time points 

whereas the favorable cluster (cluster 1) had the lowest reaction. Also, according to the 

results of the linear regression models, the baseline glucose-adjusted area under the 

curve (AUC) of cluster 3 participants was significantly higher compared to participants 
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in clusters 1 and 2. Similar results were seen when the analyses were stratified by age 

groups, i.e. in middle-agers (40-65 years) and older adults (75-85 years). In the case of 

the dietary fiber intervention study, differential reactions between metabotype sub- 

groups were measured in terms of the change in metabolic parameters (Table 2) be- 

fore (visit 1) and after 12 weeks of intervention (visit 3). No significant difference in met- 

abolic parameters was seen across the metabotype subgroups in linear regression ad- 

justed for age, sex, and physical activity. This might have been due to a low number of 

participants in cluster 3 which is the major limitation of this study. Nevertheless, by the 

end of the 12-week intervention, participants in cluster 3 exhibited the highest mean re- 

duction in metabolic parameters like insulin, TC, LDLc, Non-HDLc, and systolic and di- 

astolic pressure. 

 

The results from the second publication further verified the validity and transferability as 

well as the generalizability of the metabotype definition identified in the first publication. 

Furthermore, it supported the use of the identified metabotypes to explore the inter-in- 

dividual variation in diet. Thus, these findings present a metabotype concept as a 

promising tool to identify the subgroups that can benefit from targeted dietary interven- 

tions as a measure to prevent CMD at a population level. 

 

Table 2: Outcome parameters included in second publication. 
 
 

Outcome parameters in OGTT sub-study Outcome parameters in DFI sub-study 

Fixed effects 
 

1. Glucose values 
2. Time of measurements 

(Baseline, 30 minutes, 60 
minutes, 90 minutes, and 120 

minutes) 
 

Random effects 
 

1. Participants 

1. Glucose 
2. Insulin 
3. Total cholesterol 
4. LDLc 
5. HDLc 
6. Non-HDLc 
7. Triglyceride 
8. Systolic BP 
9. Diastolic BP 
10. hs-CRP 

 
HDLc: high-density lipoprotein; LDLc: low-density lipoprotein; Non-HDLc: non-high-density lipoprotein; hs- 
CRP: high sensitive C-reactive protein. 
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3. Summary 
 

Cardiometabolic diseases (CMD) are major challenges for public health and lead to a 

substantial economic burden globally. Diet is regarded as one of the main modifiable risk 

factors for CMD. However, growing evidence suggests that people react differently to the 

same diet. This idea of inter-individual variation in response to diet has given rise to the 

concept of personalized nutrition. In contrast to the current practice of giving the same 

dietary advice to an entire population, personalized nutrition aims to provide tar- geted 

dietary advice at a group or individual level. One such approach is grouping met- 

abolically similar individuals (metabotyping) into smaller subgroups called metabotypes. 

This concept is based on the notion that individuals within a subgroup show a high met- 

abolic similarity compared to the other subgroups and are expected to react similarly to 

dietary interventions. 

Based on earlier scientific work, the current dissertation aimed (i) to identify a valid 

metabotype definition using few and routinely available standard clinical parameters and 

(ii) to replicate the identified metabotype concept in an independent study and to test for 

differential response of the metabotype subgroups to dietary interventions, i.e. to an oral 

glucose tolerance test (OGTT), and a 12-week dietary fiber intervention (DFI). 

In the first part of the work, we used data from 3001 adults from the Cooperative Health 

Research in the Region of Augsburg (KORA) F4 cohort. We identified the optimal set of 

parameters using the permutation variable importance method and validated it with two 

other similar feature selection methods. Using unique combinations of the set of identi- 

fied parameters, namely triglyceride, glucose, uric acid, HDL cholesterol, Non-HDL cho- 

lesterol, and BMI, different metabotype models were created with three clusters each by 

K-means clustering. Based on the distribution of clustering parameters, the obtained 

clusters were regarded as the healthy cluster (cluster 1), intermediate cluster (cluster 2), 

and unfavorable cluster (cluster 3). The models were compared based on the cumulative 

incidence of CMD as assessed in a seven-year follow-up study (KORA FF4). 

Based on the highest incidence of metabolic disease in cluster 3, model 7 was selected 

as the best model for metabolic diseases that consisted of only five parameters, namely 

glucose, uric acid, BMI, HDLc, and Non-HDLc. Similarly, based on the highest incidence 

of cardiovascular disease in cluster 3, model 17 consisting of only four parameters (glu- 

cose, triglyceride, HDLc, and Non-HDLc) was selected as the best model for cardiovas- 

cular disease. In both selected models, participants in cluster 3 had the most unfavorable 

median values of available metabolic parameters. Likewise, individuals in cluster 3 were 

older, were more likely to have received less than 10 years of education, and were more 
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frequently physically inactive. In contrast participants in cluster 1 exhibited favorable met- 

abolic as well as socio-demographic characteristics. Characteristics of cluster 2 were in 

between clusters 1 and 3. The homogenous characteristics within the cluster and distinct 

differences across the clusters prove that valid metabotypes were identified based on a 

few and easily accessible clinical parameters. 

In the second part of the work, we assigned 365 participants of two enable sub-studies, 

the oral glucose tolerance test (OGTT), and the 12-week dietary fiber intervention (DFI), 

to metabotypes as identified in KORA by minimizing the Euclidean distances to the clus- 

ter centers of z-standardized clustering parameters. In the OGTT study, volunteers were 

provided with an oral 75 g glucose bolus and blood glucose values were determined in 

blood samples drawn at baseline (before OGTT) and 30, 60, 90, 120, 180, and 240 

minutes thereafter. In the DFI sub-study, participants were provided with dietary fiber- 

enriched foods for 12 weeks leading to an average increase in dietary fiber intake of 10 

grams/day. The changes in metabolic markers were determined in blood samples col- 

lected at baseline and the end of the intervention phase. 

The linear mixed model revealed that participants in the unfavorable cluster 3 had a 

significantly higher blood glucose reaction after glucose bolus at all measured time points. 

The analysis of the area under the curve (AUC) confirmed these results. In the DFI study, 

no statistically significant differences in metabolic parameters by metabotype subgroups 

could be obtained. However, a few participants in the unfavorable cluster 3 (n=6) showed 

the highest mean reduction in metabolic parameters, like serum insulin, cholesterol 

parameters (TC, LDLc, and Non-HDLc), and systolic and diastolic blood pres- sure. Taken 

together, the results of the two interventions indicate that participants as- signed to the 

three metabotyping react differently to dietary intervention, and thus may benefit from 

targeted dietary advice. Furthermore, the successful replication of metabo- types 

demonstrated that the identified metabotypes are easily transferable and general- izable 

to different populations. 

The optimized metabotyping concept as developed and tested in these studies can pro- 

mote the use of metabotyping on a large scale, leading to targeted and effective advice 

for the primary prevention of CMD. 



21 

 

 

 

4. Zusammenfassung (deutsch) 
 

Kardiometabolische Erkrankungen (CMD) stellen eine große Herausforderung für die 

öffentliche Gesundheit dar und führen weltweit zu einer erheblichen wirtschaftlichen Be- 

lastung. Die Ernährung gilt als einer der wichtigsten modifizierbaren Risikofaktoren für 

CMD. Es gibt jedoch zunehmend Hinweise darauf, dass Menschen unterschiedlich auf 

dieselbe Ernährung reagieren. Diese Idee der interindividuellen Unterschiede in der Re- 

aktion auf die Ernährung hat das Konzept der personalisierten Ernährung hervorge- 

bracht. Im Gegensatz zur derzeitigen Praxis, der ganzen Bevölkerung dieselben Ernäh- 

rungsempfehlungen zu geben, zielt die personalisierte Ernährung darauf ab, gezielte Er- 

nährungsempfehlungen auf Gruppen- oder Individualebene zu geben. Ein solcher An- 

satz besteht darin, stoffwechselmäßig ähnliche Personen in homogene Untergruppen, so 

genannte Metabotypen, einzuteilen. Diesem Konzept liegt die Vorstellung zugrunde, 

dass Personen innerhalb einer Untergruppe im Vergleich zu den anderen Untergruppen 

eine große Ähnlichkeit im Stoffwechsel aufweisen und voraussichtlich ähnlich auf Ernäh- 

rungsmaßnahmen reagieren werden. 

Auf der Grundlage früherer wissenschaftlicher Arbeiten zielte die aktuelle Doktorarbeit 

darauf ab, (i) eine gültige Metabotyp-Definition anhand weniger und routinemäßig ver- 

fügbarer klinischer Standardparameter zu ermitteln und (ii) das ermittelte Metabotyp- 

Konzept in einer unabhängigen Studie zu replizieren und die unterschiedliche Reaktion 

der Metabotyp-Untergruppen auf Ernährungsinterventionen zu testen, d. h. auf einen 

oralen Glukosetoleranztest (OGTT) und eine 12-wöchige Ballaststoffintervention (DFI). 

Im ersten Teil der Arbeit wurden Daten von 3001 Erwachsenen aus der Kooperativen 

Gesundheitsforschung in der Region Augsburg (KORA) F4 verwendet. Die Auswahl der 

wichtigsten Parameter erfolgte mithilfe der Permutation Variable Importance-Methode 

und wurde mit zwei anderen ähnlichen Methoden zur Feature-Auswahl bestätigt. Für 

unterschiedliche Kombinationen der identifizierten Parameter, nämlich Triglyceride, Glu- 

kose, Harnsäure, HDL-Cholesterin, Non-HDL-Cholesterin und BMI, wurden verschie- 

dene Metabotyp-Modelle mit jeweils drei Clustern mittels der K-means-Cluster clustering 

erstellt. Auf der Grundlage der Verteilung der Clusterparameter wurden die erhaltenen 

Cluster als gesunde Cluster (Cluster 1), mittlere Cluster (Cluster 2) und unvorteilhafte 

Cluster (Cluster 3) betrachtet. Die Modelle wurden auf der Grundlage der kumulativen 

Inzidenz von CMD über 7 Jahre (erfasst in der KORA FF4-Studie) verglichen. 

Aufgrund der höchsten Inzidenz von Stoffwechselerkrankungen in Cluster 3 wurde Mo- 

dell 7 als Modell für Stoffwechselerkrankung ausgewählt, das aus nur fünf Stoffwechsel- 
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parametern besteht, nämlich Glukose, Harnsäure, BMI, HDLc und Non-HDLc. In ähnli- 

cher Weise wurde aufgrund der höchsten Inzidenz kardiovaskulärer Erkrankungen in 

Cluster 3 das Modell 17 mit nur vier Parametern (Glukose, Triglyzeride, HDLc und Non- 

HDLc) als Modell für kardiovaskuläre Erkrankungen ausgewählt. In beiden ausgewähl- 

ten Modellen hatten die Teilnehmer in Cluster 3 die unvorteilhaftesten Medianwerte der 

verfügbaren Stoffwechselparameter. Ebenso waren die Personen in Cluster 3 älter, hat- 

ten häufiger einen Bildungsabschluss von weniger als 10 Jahren und waren häufiger 

körperlich inaktiv. Im Gegensatz dazu wiesen die Teilnehmer in Cluster 1 sowohl güns- 

tige metabolische als auch soziodemographische Merkmale auf. Die Merkmale von 

Cluster 2 lagen zwischen denen von Cluster 1 und 3. Die Homogenität der Merkmale 

innerhalb der Cluster und die deutlichen Unterschiede zwischen den Clustern beweisen, 

dass gültige Metabotypen auf der Grundlage einiger weniger und leicht zugänglicher 

klinischer Parameter identifiziert werden konnten. 

Im zweiten Teil der Arbeit ordneten wir 365 TeilnehmerInnen in zwei Interventionsstu- 

dien, dem oralen Glukosetoleranztest (OGTT) und der 12-wöchigen Ballaststoffinterven- 

tion (DFI), den in KORA identifizierten Metatbotypen zu, indem wir die euklidischen Ab- 

stände zu den Zentren der z-standardisierten Clustering-Parameter minimierten. In der 

OGTT-Studie erhielten die Probanden einen oralen Glukosebolus von 75 g und die Blut- 

zuckerwerte wurden in Blutproben bestimmt, die zu Beginn (vor der OGTT) und 30, 60, 

90, 120, 180 und 240 Minuten danach entnommen wurden. In der DFI-Teilstudie erhiel- 

ten die Teilnehmer 12 Wochen lang mit Ballaststoffen angereicherte Lebensmittel, was 

zu einer durchschnittlichen Erhöhung der Ballaststoffaufnahme um 10 Gramm/Tag 

führte. Die Veränderungen der Stoffwechselmarker wurden in Blutproben bestimmt, die 

zu Beginn und am Ende der Interventionsphase entnommen wurden. 

Das Linear Mixed Modell ergab, dass die Teilnehmer im unvorteilhaften Cluster 3 (im 

Vergleich zu Cluster 1 und 2) zu allen gemessenen Zeitpunkten eine signifikant höhere 

Blutglukosereaktion nach Glukosebolus aufwiesen. Die Analyse der Fläche unter der 

Glukosekurve (Area Under the Curve, AUC) bestätigte diese Ergebnisse. In der DFI- 

Studie konnten keine statistisch signifikanten Unterschiede in den Stoffwechselparame- 

tern zwischen den Metabotyp-Untergruppen festgestellt werden. Allerdings zeigten ei- 

nige wenige Teilnehmer im unvorteilhaften Cluster 3 (n=6) die höchste mittlere Reduk- 

tion einiger Stoffwechselparameter, wie Seruminsulin, Cholesterinparameter (TC, LDLc 

und Non-HDLc) sowie des systolischen und diastolischen Blutdrucks. Zusammenge- 

nommen deuten die Ergebnisse der beiden Interventionen darauf hin, dass die Teilneh- 

mer, die den drei Stoffwechseltypen zugeordnet wurden, unterschiedlich auf die Ernäh- 
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rungsintervention reagieren und somit von einer gezielten Ernährungsberatung profitie- 

ren können. Darüber hinaus hat die erfolgreiche Replikation der Metabotypen gezeigt, 

dass die identifizierten Metabotypen leicht auf andere Bevölkerungsgruppen übertragbar 

sind. 

Das Metabotypkonzept zeichnet sich somit zusehends als vielversprechende Methode 

zur Stratifizierung der Bevölkerung in metabolisch homogene Gruppen ab, um eine ge- 

zielte und effektive Intervention zur Prävention von cardio-metabolischen Krankheiten 

druchzuführen. 
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