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Abstract

The video game market represents an influential and profitable industry. But concerns

have been raised how video games impact on the human mind. There are reservations that

video gaming may be addictive and foster aggressive behaviour. In contrast, a convincing

body of research indicates that playing video games may improve cognitive processing. The

exact mechanism thereof is not entirely understood. Most research suggests that video

games train individuals in learning how to employ attentional control to focus on processing

relevant information, while being able to suppress irrelevant information. Thus, video game

players acquire the ability of being able to develop strategies to process information more

efficiently. However, no algorithmic solution therefore has been provided yet. Thus, it is not

clear which and how attentional control functions contribute to these effects. Moreover,

neural mechanisms thereof are not well understood. We hypothesized that alterations in

alpha power, i.e., modulations in brain oscillatory activity around 10 Hz, represent a

promising neural substrate of video gaming effects. This was because, alpha activity

represents an established neural correlate of attention processing given that its amplitude

modulation corresponds to alterations in information processing. We investigated this by

relating differential cognitive processing in video game players to changes in alpha power

modulation. Moreover, we tried to imitate this effect using non-invasive brain stimulation.

We were successful in achieving the former but not the latter. We provide a reasonable

explanation for this. Thus, our results mostly support our hypothesis according to which

altered alpha power may account for gaming effects.

Keywords: transfer effects, computational modeling, attentional control, brain

stimulation
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General Introduction

According to a survey conducted by the Entertainment Software Association (2022)1,

approximately 66 % of the American population played video games for at least one hour

(and on average 13 hours) per week in 2021. Therefore, they used a tablet, PC, gaming

consoles, their smartphone or more than one of these devices. Hereby, puzzle, arcade, action

(role-play/ adventure), shooter and strategy video games were among the more and racing,

driving, fighting and sports video games among the lesser prevalently played video games.

Respondents stated that their reasons for playing video games were that it was fun, inspiring,

mentally stimulating, and stress relieving. Moreover, video gaming appeared to have

contributed to building and strengthening relational bonds with family members and peers.

Besides that, approximately 43.4, 56.1 and 60.4 billion dollars of profit have been made by

means of video game sales and sales of related products, e.g., consoles, in 2019, 2020 and

2021, respectively (Entertainment Software Association, 2022). Thus, the video game market

represents an extremely influential and increasingly profitable industry.

Adverse and Beneficial Effects of Video Gaming on the Human Mind

Adverse Effects: Aggression and Addiction. In this regard, concerns have been

raised as to how video games impact on the human mind. One of them refers to the

reservation that playing video games, in particular shooter video games, might foster

aggressive behavior given that video game players may experience and conduct extreme

violence during playing, e.g. killing opponents with weapons. Some politicians and journalists

even went so far as to claim that perpetrators might have been motivated to commit

rampages by video games (see, e.g., Dittmayer (2014), for an overview on this discussion in

Germany). In fact, the scientific literature on the association between playing video games,

aggression, and crime is quite inconclusive. On the one hand, there are indications that

playing video games might indeed slightly increase aggressive behavior (Furuya-Kanamori &

1 Estimates and predictions were made based on survey reports of approximately 4000 American respondents.
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Doi, 2016; Greitemeyer, 2022). On the other hand, playing video games also appears to be

associated with stress release, and thus maybe reduced aggression (Cunningham,

Engelstätter, & Ward, 2016; Markey, Markey, & French, 2015). This inconsistency is likely

related to diverging experimental designs and sample characteristics, e.g., methods having

been applied to analyze data, players’ motivations to play video games, their personality

traits, sociodemographic influences, the actual game play of the video games having been

played, etc. (Bonus, Peebles, & Riddle, 2015; Ferguson, Copenhaver, & Markey, 2020;

Ferguson, Olson, Kutner, & Warner, 2014; Kersten & Greitemeyer, 2022; Lee, Kim, & Choi,

2021). Besides that, one should bear in mind that both popular opinions and empirical

results may be biased by prejudices and stereotypes. Markey, Ivory, Slotter, Oliver, and

Maglalang (2020), for instance, found that playing video games was considered a more likely

cause for committing rampage in white perpetrators as compared to black ones. This implies

that racial stereotypes might bias individuals’ perception of the influence of video games.

Thus, playing some video games might indeed impact on aggression in the short run. But, it

is unlikely to significantly contribute to individuals actually conducting violent behavior.

Another concern is that playing video games may be highly addictive. In fact, the

World Health Organization recently included gaming disorder in its 11th revision of the

International Classification of Diseases (ICD-11) (World Health Organisation, 2019/2020).

Thus,

gaming disorder is characterised by a pattern of persistent or recurrent gaming

behaviour (‘digital gaming’ or ‘video gaming’), which may be online (i.e., over

the internet) or off-line, manifested by: 1. impaired control over gaming (e.g.,

onset, frequency, intensity, duration, termination, context); 2. increasing priority

given to gaming to the extent that gaming takes precedence over other life interests

and daily activities; and 3. continuation or escalation of gaming despite the

occurrence of negative consequences (World Health Organisation, 2019/2020).

Aarseth and colleagues (2017), however, criticized this conceptualization by pointing out
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that it lacked specificity. On top of that, they raised concerns if pathologizing video gaming

fostered stigmatization. In fact, the ICD-11 description of gaming disorder appears to

coincide with the common stereotype of video game players being perceived as couch

potatoes neglecting their hygiene and social lives for the sake of their video game characters.

Furthermore, the prevalence of video gaming disorder varies remarkably depending on

sample characteristics, such as nationality, age and gender, and methods having been applied

to analyze data (e.g., between 0.7 and 27.5 %) (Kim et al., 2022; Mihara & Higuchi, 2017;

Stevens, Dorstyn, Delfabbro, & King, 2021). Thus, data on gaming disorder is likely

confounded by social desirability and stereotypes about video game players. In support of

this, a study on stigmatization of Chinese eSports athletes, i.e., individuals playing video

games for competitive/professional reasons, showed that

eSports players have experienced two specific types of stigma over the past

twenty years. First, adults simply associate eSports with gaming addiction

that has led young people to miss out on higher education potentially leading

to good careers. Second, these youth may be perceived, somewhat naively, as

celebrating their gaming addiction by engaging in eSports as a professional

pursuit to cover up the fact that they are losers, causing them to lose mianzi

(‘face’) (Zhao & Zhu, 2021).

Thus, there are indications that video game players may develop an obsessive desire to

play video games. To evaluate, treat and investigate such behavior, however, a more

unbiased consensus on which characteristics of video gaming are to be considered as

pathological will be required.

Beneficial Effects: Cognitive Improvements. Besides that, there is a convincing

and growing body of research indicating that video gaming was associated with cognitive

improvement. For instance, video game players have been shown to outperform control

individuals in psychometric tasks operationalizing cognitive functions, such as perception (R.

Li, Polat, Scalzo, & Bavelier, 2010), memory (Blacker & Curby, 2013), executive control
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(Cain, Landau, & Shimamura, 2012), attention (Green & Bavelier, 2003) and probabilistic

inference (Schenk, Lech, & Suchan, 2017). Likewise, individuals with hardly any or without

video gaming experience displayed similarly enhanced cognitive processing after having

participated in a video game training (Bejjanki et al., 2014; Blacker, Curby, Klobusicky, &

Chein, 2014; Green & Bavelier, 2003; Green, Pouget, & Bavelier, 2010; Strobach, Frensch, &

Schubert, 2012). Furthermore, playing video games seems to elicit improvements in skills

beyond the scope of psychometric tasks, e.g., flight (simulation) performance and surgical

proficiency (Chiappe, Conger, Liao, Caldwell, & Vu, 2013; Gopher, Well, & Bareket, 1994;

Lu et al., 2022; Lynch, Aughwane, & Hammond, 2010; Schlickum, Hedman, Enochsson,

Kjellin, & Felländer-Tsai, 2009). Moreover, video games have been successfully applied to

augment clinical treatment of cognitive impairment, e.g., symptoms associated with

amblyopia (Foss, 2017; Gambacorta et al., 2018; R. W. Li, Ngo, Nguyen, & Levi, 2011) and

attention deficit hyperactivity disorder (Kollins et al., 2020), and to compensate for

age-related cognitive decline (Anguera et al., 2013). Interestingly, such effects had been more

prevalently observed in individuals after they had played action and multi-player online

battle arena video games or games with similar characteristics (Achtman, Green, & Bavelier,

2008; Bediou et al., 2018b; Large et al., 2019). Thus, these of all video games notorious for

fostering aggressive behavior (see above) might in fact improve cognitive processing.

The exact mechanism of these transfer effects, i.e., alterations in cognitive processing

coinciding with an improvement in video game performance even though playing video

games does not directly train them, is not yet fully understood. Bavelier, Green, Pouget, and

Schrater (2012), for instance, proposed that video game players’ superior performance in

cognitive processing could be explained by video gaming inadvertently training a cognitive

function which several cognitive processes have in common. Hereby, they argued for

probabilistic inference as a prime candidate (Bavelier, Green, et al., 2012; Green & Bavelier,

2012). Probabilistic inference refers to the ability of learning to anticipate events from

statistical regularities and develop behavioral strategies accordingly. Statistical regularities,
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in turn, represent the foundation of video game play characteristics. Thus, video game

players might passively practice to recognize statistical regularities of video games and to

develop and conduct strategies to succeed during gaming. Hereby, operand conditioning

likely represents a vital learning mechanism given that a failure to correctly anticipate an

event, e.g., an opponent, will require them to adjust their behavior by the point of success

(Koepp et al., 1998; Kühn et al., 2011; Schenk et al., 2017). As a result, video game players’

probabilistic inference may improve, and cognitive functions relying on probabilistic

computations might be altered, e.g., perception (Deroy, Spence, & Noppeney, 2016). In

support of this, it has been shown that video game players displayed superior probabilistic

inference in several tasks (Green et al., 2010; Schenk et al., 2017). Moreover, individuals

developed enhanced probabilistic inference as a result of playing action video games (Green

et al., 2010). Besides that, Bejjanki and colleagues (2014) found that such learning effects

coincided with video game players displaying an improving signal-to-noise ratio. Thus, the

conjunction between probabilistic inference and attentional control functions seems to

represent a crucial mechanism in transfer effects associated with video gaming (Bavelier &

Green, 2019; Green & Bavelier, 2012). In this regard, attentional control refers to a set of

attention and executive functions to enhance processing relevant information, while being

able to suppress irrelevant information (Bavelier & Green, 2019). Thus, video game players

appear to learn to recognize statistical regularities and to come up with successful strategies

rather efficiently than passively given that attentional control functions are trained and

deployed to facilitate these learning processes. In support of this, a meta-analysis showed

that video game players most reliably outperform control individuals in tasks

operationalizing attentional control (Bediou et al., 2018b, 2018a). Moreover, these effects

coincided with alterations in neural processing. Bavelier and colleagues (2012) and Föcker

and colleagues (2018), for instance, found that video game players’ superior performance in

two discrimination tasks was associated with them consulting the fronto-parietal top-down

network relevant for operating attentional control functions less strongly than control
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individuals (Corbetta, Patel, & Shulman, 2008). In line with the neural efficiency theory

(Haier et al., 1988), these results indicate that video game players had to put less effort into

executing the paradigm and hence displayed a weaker brain activity. Moreover, Tanaka and

colleagues (2013) showed that inter-individual performance differences in a match-to-sample

task between video game players and control individuals were correlated with volumentric

dissimilarities in the fronto-parietal top-down network. Furthermore, video game players’

superior visuospatial attention processing coincided with enlarged posterior P2 and P3

event-related potentials (Wu et al., 2012). On top of that, their ability to identify targets and

ignore distractors in rapid streams of visual stimuli was associated with stronger modulations

of steady-state visually evoked potentials (SSVEPs) and the anterior N1 (Föcker, Mortazavi,

Khoe, Hillyard, & Bavelier, 2019; Mishra, Zinni, Bavelier, & Hillyard, 2011). Thus, playing

video games might alter video game players’ neural networks in accordance to them learning

to recognize statistical regularities and to apply attentional control functions to develop

efficient behavioral and cognitive strategies resulting in overall enhanced cognitive processing.

Therefore, this hypothesis is also referred to as learning to learn hypothesis (Bavelier &

Green, 2019; Bavelier, Green, et al., 2012) (see, Figure 1, for a schematic visualization).

Hilgard, Sala, Boot, and Simons (2019), however, pointed out that effect size

estimations reported by Bediou and colleagues (2018b) might have been confounded by

publication bias. In detail, they criticized that effects might have been driven by the

publication outcome of foremost one particular research group, and over-estimated given that

some of the effect sizes included in the analysis may have been considered as original even

though these had been likely based on the same sample of participants. Besides that, video

game training effects may be unreliable. Boot, Kramer, Simons, Fabiani, and Gratton (2008),

for instance, were only partially able to replicate cognitive improvements by means of video

game training. Moreover, while Schubert and colleagues (2015) were able to demonstrate

enhanced temporal sensitivity and speed of information processing in video game players,

they could not elicit the same effects in non-video game players using a video game training.
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Figure 1 . Schematic Visualization of the Learning to Learn Hypothesis. Game play charac-

teristics of video games are based on statistical regularities. Video game players learn to

anticipate these regularities in the course of playing video games (i.e., probabilistic inference).

Operand conditioning represents a fundamental learning mechanism in this regard as video

game players learn to adapt their strategies through success and failure. Therefore, attentional

control functions to enhance relevant and to suppress irrelevant information processing come

into force. Thus, video game players learn to deploy cognitive resources efficiently by learning

to optimize the signal-to-noise ratio. As a result, video game players acquire the ability to

develop successful behavioral strategies as reflected by superior performance in psychometric

tasks (enhanced cognitive processing), everyday complex tasks (enhanced skills) and enhanced

video game play performance.
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Furthermore, it is still inconclusive which and how attentional control functions contribute to

video gaming effects. This is because, empirical findings on the association between

attentional control and video gaming had been ambiguous and/or inconsistent. For instance,

Bavelier and colleagues (2012) and Föcker and colleagues (2018) suggested that a lack of

neural modulation in the fronto-parietal top-down network might be an indication for

efficient attentional deployment in video game players given that this effect was associated

with superior performance in a task requiring attentional control functions. In contrast, this

effect could also indicate that video game players might have used a strategy independent of

attentional control which just coincided with a better performance given that there was

actually no indication for a recruitment of this network despite attentional deployment. A

similar logic applies to the effect reported by Mishra and colleagues (2011) according to

which a weaker modulation of SSVEPs in response to unattended stimuli was suggested to

reflect enhanced top-down inhibition in video game players. However, SSVEPs usually

correlate with the extent of attentional deployment towards stimuli (Vialatte, Maurice,

Dauwels, & Cichocki, 2010). Therefore, it seems more likely that this effect reflected a lack

of deployment of attentional resources rather than an active suppression. Furthermore, this

effect may be somehow controversial in any case provided that Krishnan, Kang, Sperling,

and Srinivasan (2013) found the opposite effect when they compared SSVEPs between action

and real-time strategy video game players having performed a very similar task as applied by

Mishra and colleagues (2011). On top of that, there are also indications that video gaming

transfer effects might be completely independent of attentional control. Both Schubert and

colleagues (2015) and Wilms and colleagues (2013), for instance, found that video game

players displayed superior temporal sensitivity and processing speed in comparison to

non-video game players. However, they could not show that video game players exhibited

improved top-down control or visuospatial attention in addition to that.

Thus, there is remarkable evidence that playing video games might elicit cognitive

improvements by training individuals in applying probabilistic inference in conjunction with
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attentional control functions to develop efficient behavioral and cognitive strategies.

However, further research will be required to investigate which and how these cognitive

functions relate to transfer effects associated with video gaming.

Aims and Scope of this Thesis

A particularly suitable neural mechanism therefore may be alpha activity, i.e.,

modulations in brain oscillatory activity around 10 Hz. This is because, alpha activity is

widely considered as a neural substrate of attentional control given that its attenuation

(desynchronization) has been frequently observed to go along with facilitated information

processing, while its increase (synchronization) coincided with the opposite effect

(Hanslmayr, Gross, Klimesch, & Shapiro, 2011; Jensen & Mazaheri, 2010; Klimesch, 2012;

Klimesch, Fellinger, & Freunberger, 2011, 2011; Klimesch, Sauseng, & Hanslmayr, 2007;

Peylo, Hilla, & Sauseng, 2021). In this regard, alpha power is particularly known for its

retinotopic modulation in association with the focus of attention. Thus, alpha activity

typically desynchronizes stronger in hemispheres contralateral to the focus of attention, while

it sometimes also increases in ipsilateral hemispheres (Capotosto, Babiloni, Romani, &

Corbetta, 2009; Jensen & Mazaheri, 2010; Rihs, Michel, & Thut, 2009; Sauseng et al., 2009;

Thut, Nietzel, Brandt, & Pascual-Leone, 2006). Furthermore, the opposite effect has been

observed in response to distracting stimuli in the visual field (Sauseng et al., 2009; Worden,

Foxe, Wang, & Simpson, 2000). Therefore, alpha power modulation appears to contribute to

enhancing relevant information processing and to suppressing irrelevant information

processing, which correlates with the functional properties of attentional control functions as

described in the learning to learn hypothesis (Bavelier & Green, 2019; Bavelier, Green, et al.,

2012). Thus, we propose that altered alpha power modulation may account for transfer

effects related to video gaming.

Does Alpha Power Modulation Indeed Operationalize Attentional Control?

However, recently, these functional properties of alpha power modulation have been
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challenged. Noonan and colleagues (2016), for instance, questioned whether alpha

synchronization was indeed related to information inhibition given that they had not been

able to relate distractor cueing effects with increased alpha power. Individuals participating

in their studies performed modified Posner’s cueing tasks where both target and distractor

locations had been cued. The authors hypothesized that participants would make use of these

cues to enhance target and to suppress distractor processing as reflected by reduced reaction

times towards target stimuli. Their behavioral results were in line with these hypotheses.

However, while individuals displayed on average a decreased alpha power in response to

target stimuli, they did not show an increased activity in response to distractors in the

respective contralateral hemispheres. Thus, the distractor cuing effect did not correlate with

the anticipated alpha power modulation. Moreover, Antonov, Chakravarthi, and Andersen

(2020) argued that alpha power modulation might in fact represent an epiphenomenon of

attentional orienting rather than a functional mechanism thereof. In support of this, they

found that individuals displayed a modulation earlier in SSVEPs than in alpha power prior

to target detection in rapid streams of visual stimuli. Furthermore, again individuals did not

display alpha synchronization in response to distractor stimuli. Thus, Antonov and

colleagues (2020) concluded that alpha power unlikely represented a causal mechanism in

visuospatial attention given that it had not been the first neural response being modulated

in anticipation of target stimuli, and in addition to that, not having been modulated by

distractor stimuli. We addressed these concerns in a recently published opinion article and

provided arguments in favor of alpha power representing a neural substrate of visuospatial

attention nevertheless (Peylo et al., 2021) (see, Cause or Consequence? Alpha

Oscillations in Visuospatial Attention in Research Projects, for more details).

Do Video Gaming Effects Correlate with Task-Specific Alpha Amplitude

Modulation? Besides that, we were not the first to suspect that alpha power modulation

might reflect a neural mechanism of cognitive alterations related to video gaming, and to

investigate this association. Mathewson and colleagues (2012), for instance, found an
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association between individuals’ improved shifting abilities and their frontal alpha power

recorded at the onset of study participation after training them in the Space Fortress video

game. Furthermore, Hazarika, Kant, Dasgupta, and Laskar (2018) and Hazarika and

Dasgupta (2020) found that inter-individual differences in alpha power coincided with

differential attention processing performance between video game players and control

individuals. However, these studies did not investigate task-related alpha power modulations,

e.g., related to stimulus processing. Thus, it is difficult to conclude whether alpha power

modulations indeed accounted for differential cognitive processing in video game players. We

addressed this issue in a recently published study (Hilla, Von Mankowski, Föcker, & Sauseng,

2020). Thus, we showed that video game players’ speed of information processing improved

in the course of time on task and that this effect, in turn, correlated with an increase in

alpha amplitude attenuation (see, Faster Visual Information Processing in Video

Gamers Is Associated With EEG Alpha Amplitude Modulation in Research

Projects, for more details).

Is it Possible to Imitate Video Gaming Effects by Means of Non-Invasive

Brain Stimulation? However, this was just a correlational relationship. Thus, our EEG

study results did not provide sufficient evidence in favor of altered alpha power modulation

accounting for differential cognitive processing in video game players. Furthermore, our

approach did only allow to operationalize individuals’ speed of information processing but

not their attention control functions, e.g., top-down control and visuospatal attention

processing. However, in order to provide strong evidence that alpha power indeed

operationalized attentional control and thus accounted for differential cognitive processing in

video game players, a relationship between altered alpha power, top-down/visuospatial

attention processing and speed of information processing needed to be established. We

addressed these issues by conducting a non-invasive brain stimulation study (Hilla, Link, &

Sauseng, 2023). The aim of this study was to demonstrate that transcranial alternating

current stimulation (tACS), an established method to modulate brain oscillatory activity
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(Helfrich et al., 2014; Kemmerer et al., 2022), applied at alpha frequency (i.e., ca. 10 Hz)

over individuals’ posterior parietal cortex could alter their speed of information processing

and top-down/visuospatial attention processing. Thus, we would have been able to imitate

our previous video gaming effect and to establish that this effect was related to alpha power

modulation impacting on attentional control (see, Alpha-tACS Alters Attentional

Control but not Cognitive Functions as Video Games Do in Research Projects,

for more details).
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Opinion

Cause or consequence? Alpha oscillations in
visuospatial attention

Charline Peylo,1,2 Yannik Hilla,1,2 and Paul Sauseng1,*

A well-established finding in the literature of human studies is that alpha activity
(rhythmical brain activity around 10 Hz) shows retinotopic amplitude modulation
during shifts in visual attention. Thus, it has long been argued that alpha ampli-
tude modulation might play a crucial role in attention-driven alterations in visual
information processing. Recently, there has been a revival of the topic, driven
in part by new studies directly investigating the possible causal relationship
between alpha activity and responses to visual input, both neuronally and
perceptually. Here, we discuss evidence for and against a causal role of alpha
activity in visual attentional processing. We conclude with hypotheses regarding
the mechanisms by which top-down-modulated alpha activity in the parietal
cortex might select visual information for attentive processing.

Alpha amplitude modulation during shifts in visuospatial attention
The participant is wired up, a full set of electroencephalogram (EEG) electrodes attached to the
scalp. The room is dimly lit, and the participant fixates a crosshair in the center of the screen in
front of them. They are instructed to covertly shift their visual attention (i.e., without moving their
gaze from the fixation cross) either to the left or to the right, depending on a spatial cue they
receive. The EEG is recorded. The participant shifts their attention to the left. What can be
observed now, even with the naked eye, is that rhythmical brain activity around 10 Hz, so called
alpha waves, is suppressed at right parietal electrode sites while it might increase in amplitude
over the left parietal cortex (Figure 1).

Such attention-related modulation of posterior EEG alpha amplitude is considered a particularly
consistent cognition-induced EEG oscillation pattern and it has frequently been reported [1–4].
In this context, decreased alpha amplitudes were discussed as neural substrate of cortical
activation [5–8] related to facilitated information processing [9], while increased alpha amplitudes
have been considered a marker of cortical deactivation associated with inhibitory processes of
cognition [10–12]. The argument can be made that if, as described above, alpha waves are
suppressed contralateral (and potentially increased ipsilateral) to the cued visual hemifield, posterior
alpha amplitude modulation may be a neural substrate of focused, directed attention. However,
this interpretation has been the matter of recent debate questioning whether modulations of EEG
alpha activity (see Glossary) represent a causal mechanism of cortical activation/deactivation
in visuospatial attention or whether they are merely an epiphenomenal consequence of shifted
visuospatial attention.

Alpha activity is a prominent rhythmic brain activity in humans (particularly during rest). It has been
considered an effective marker of cortical excitability [10,13–15]. In the context of visuospatial
attention, as mentioned, modulations of alpha activity reflect shifts of visuospatial attention in a
retinotopic manner, with suppressed alpha waves at loci of attention [3,16,17] and increased
alpha at brain areas processing unattended information [1,2,4]. This retinotopically organized
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ing evidence for both of these two
perspectives.

We discuss the extent to which the tem-
poral dynamics of alpha activity and
extrinsic modulation of alpha amplitude
can be used as a basis for arguing for
or against alpha activity as a causal sub-
strate of visuospatial attention.

We also discuss whether alpha activity
implements attention by gain control in
the early visual cortex.
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alpha activity in early visual areas, however, seems to be under top-down control by frontoparietal
networks [3,18–20]. Modulation of EEG alpha activity in the visual cortex could then reflect top-
down-controlled changes in local excitability that may in turn affect the processing of incoming
visual stimuli (gain control). Recent studies have led to a resurgence of interest in alpha activity’s
role in visual attention. There has been doubt about whether alpha activity plays a causal role in
attentional processing by implementing gain control in early visual areas [21–23] or even that
alpha activity is causally involved in visuospatial attention at all [24]. Here, we evaluate several
arguments for as well as against a causal role of alpha activity in visuospatial attention, and
more specifically whether modulation of alpha activity reflects gain control in early visual areas.

Temporal dynamics of visuospatial attention and alpha activity: arguments
against a causal role?
If alpha amplitude modulation is causally involved in attention-related gain control of incoming
signals, a clear prediction ensues: alpha amplitude should be the first measurement capturing
any attentional effects [i.e., there should be attention-related alpha amplitude changes prior to
any effects on event-related potentials (ERPs) or response times]. In line with this prediction,
compared with early target-evoked ERPs [25,26], alpha activity seems to exhibit effects much
earlier [2–4]; namely, already in response to an attentional cue. However, as correctly pointed
out in the context of a recent study [24], this does not necessarily lend evidence to the idea
that alpha activity represents the initial neural response of visuospatial attention shifts. To examine
the issue further, the aforementioned study measured steady-state visually evoked potentials
(SSVEPs) as a proxy for neural activity from the early visual cortex modulated by visual attention
[24]. Additionally, EEG alpha activity and behavioral attention parameters were acquired. The

Alpha wave
suppression

Alpha amplitude
increase

A�ended visual
field
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Figure 1. Retinotopic modulation of posterior alpha amplitude during covert shifts of visual attention. A
participant is instructed to fixate the middle of a screen. When a cue appears (arrow pointing to the left), visual attention
has to be shifted into the respective visual hemifield (i.e., the left hemifield) without any gaze movement. This shifting of
visuospatial attention is usually associated with the suppression of alpha waves at parietal electroencephalogram (EEG)
recording sites contralateral to the attended hemifield (in this example, the right hemisphere) and is often paralleled by an
alpha amplitude increase ipsilateral to the cued hemifield (here, the left).
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Glossary
Alpha activity: neural oscillatory activity
in a frequency range around 10 Hz in
humans. It has been claimed that the
amplitude of alpha activity is associated
with cortical excitability.
Duty cycle: the excitatory part of a
neural oscillation’s cycle. Usually the
duty cycle is characterized by increased
neuronal firing.
Entrainment: alignment of intrinsic
oscillatory brain activity using stimulation
approaches, usually rhythmic ones,
such as sensory, electrical, magnetic, or
ultrasonic stimulation. This might lead
to increased amplitude at respective
and/or related frequency ranges or it
could result in alignment of the neural
oscillation’s instantaneous phase.
Gain control: adjustment of neural
activity to put greater or lesser weight on
the processing of a specific incoming
stimulus. Gain control has been
discussed, for instance, to reflect a
physiological correlate of a spotlight of
attention in the early visual cortex [61].
Gating: a neural mechanism to
modulate the flow of low-level
information to higher visual cortical
areas.
Noninvasive brain stimulation
(NIBS): noninvasive techniques to
modulate brain activity. Examples of
NIBS techniques are TMS and tES. TMS
alters neuronal activity by means of
electromagnetic pulses generated by a
coil that is held against the participant’s
scalp. tES stimulates neuronal tissue by
means of electric currents applied via
electrodes attached to the scalp. To
gear into ongoing oscillatory brain
activity, a series of electromagnetic
pulses (rTMS) or rhythmical fluctuations
of electrical current (tACS) can be
delivered.
Phase coherence: a measure of the
presence and strength of a systematic
relationship between the phase of two
distinct neural oscillations (e.g., at
different brain sites, with different
frequencies). Phase coherence is high if
the phase relationship is consistent over
time (usually across trials) and low if the
phase relationship varies randomly.
Posner task: experimental paradigm to
investigate the shifting of visuospatial
attention. Participants are asked to keep
their gaze at a fixation cross in themiddle
of a screen. Then, the left or the right
visual hemifield is cued. Participants are
asked to covertly shift their visual
attention into the cued hemifield
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authors observed an attention-related increase of SSVEP amplitudes shortly prior to lateralized
suppression of alpha waves. Modulation of alpha activation was clearly lagging behavioral
estimates of when attention was shifted to the periphery. Therefore, it was concluded that alpha
amplitude modulation cannot be the causal substrate of visuospatial attention but rather must be
the consequence of shifted attention.

However, in a similar study [23] lateralized alpha modulation preceded attentional alterations of
SSVEPs in earlier visual areas. Nevertheless, alpha activity did not have any direct impact on
SSVEPs in the visual cortex. Thus, if alpha activity played a direct role in visuospatial attentional
shifting, most likely it would not do so by altering sensory gain control in visual areas (as discussed
later in greater detail). This is supported by recent findings, which also suggest independence
between posterior alpha activity and SSVEPs [22].

Consequently, one could conclude that modulation of alpha activity is not causally involved in
shifts of visual attention – but not so fast! First, whereas SSVEPs have a notable signal-to-
noise-ratio due to averaging over trials, alpha activity can be far noisier. All signals that do not
constitute the evoked response should, in theory, be eliminated from the SSVEP due to averaging.
Alpha amplitude is usually rectified before averaging over trials, and therefore random noise
overlapping in frequency space with alpha activity will be picked up by the signal. Thus, a high
level of noise could make it impossible to relate alpha amplitude with SSVEPs. Second, to obtain
estimates of alpha amplitude it is necessary to filter raw EEG data in one way or another. All filters
will lead to smearing in the temporal and spectral domains. The exact temporal evolution of true
alpha activity, therefore, is difficult to determine. Third, shifting visual attention does not solely
modulate alpha amplitude. A concurrent increase in theta activity (rhythmical activity at frequencies
slightly lower than the alpha frequency band) has been reported (e.g., [3,27]). Due to spectral
smearing when filtering EEG data, this transient increase in theta activity could ‘leak’ into the
alpha band and make the latter look as if its amplitude were decreasing far later than it is the
case for the actual, underlying alpha activity.

Most importantly, however, as pointed out in the discussion later, modulation of alpha activity
could be causally involved in the implementation of visual attention even if it lags behind other
effects in early visual cortex (e.g., SSVEPs); namely, if higher visual areas used alpha activity for
filtering or gating of upstream visual information.

We would argue then that, based on the findings discussed earlier, it would be premature to
dismiss a causal relation between alpha amplitude modulation and shifts of visual attention. To
recapitulate: (i) the exact temporal evolution of alpha amplitude modulation is difficult to determine;
(ii) genuine alpha activity can be distorted by spectral smearing due to filtering data; and (iii) alpha
activity could be used as an attentional implementation mechanism further up the cortical
hierarchy.

Closed-loop neural self-regulation of alpha activity and visuospatial attention:
evidence in favor of a causal role?
Closed-loop neural self-regulation (also known as neurofeedback training) is a procedure in which
a continuous brain activity marker (e.g., alpha amplitude) is displayed to the participant in real
time. Based on operant conditioning, the aim is to make the participant’s brain ‘learn’ which
brain activation level or pattern to produce [28,29]. This approach can be used to test whether
posterior alpha amplitude modulation plays a causal role during visuospatial attention shifts.
Specifically, if participants are trained to display lateralized posterior alpha activity modulation,
similar to the modulation observed during shifts of visuospatial attention, their attentional
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(i.e., without moving their eyes). This is
followed by the presentation of a visual
target stimulus either in the attended
visual hemifield (valid trial) or in a smaller
proportion of trials in the unattended
hemifield (invalid trial).
Steady-state visually evoked
potentials (SSVEPs): an ERP (i.e., a
neural response observable after
averaging neural activity over a large
number of trials) elicited by a series of
rhythmically displayed visual stimuli,
which is characterized by an increase in
amplitude and a rhythmic amplitude
modulation persisting throughout the
stimulation. It is modulated by attentional
processing, as indicated by an increase
in amplitude in response to attended
stimuli relative to unattended stimuli.
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processing should be altered accordingly. In a recent study employing this approach [30],
participants were trained to either selectively increase left parietal magnetoencephalographic
(MEG) alpha activity or right parietal alpha amplitude. In response to neurofeedback training,
evoked responses were attenuated in the hemisphere where alpha had been increased and
visuospatial attention performance was increased ipsilateral to the hemisphere with increased
alpha amplitudes. Neurofeedback training itself had been administered without any lateralized
visual task and without a task that required shifting of visuospatial attention [30]. It seems reason-
able to conclude that the study provides solid evidence for a causal role of lateralized alpha
amplitude modulation in visuospatial attention control.

However, again, counter arguments could be raised. It has been argued that even when using a
centrally presented, non-visuospatial-attention-like feedback task during the neurofeedback
training, participants might adopt a strategy in which they covertly shift their visual attention to
either the left or the right visual hemifield to provoke increased alpha activity ipsilateral (as well
as decreased alpha amplitudes contralateral) to the attended hemifield [31]. In that case, during
the training session participants might learn to indirectly modulate alpha activity by covertly
shifting their visuospatial attention to one side (i.e., attentional biasing of one visual hemifield),
which would then lead to decreased alpha activity and increased evoked responses in contralat-
eral posterior brain areas, as well as better attentional performance within this hemifield during the
subsequent attention task. In this scenario, it cannot be completely ruled out that alpha amplitude
might only be the result of shifted visuospatial attention, rather than the basis thereof.

Alpha-related noninvasive brain stimulation (NIBS) and visuospatial attention:
evidence (most likely) in favor of a causal role
One of the most common approaches to test causality in cognitive neuroscience isNIBS [32,33].
By applying either transcranial magnetic stimulation (TMS) or transcranial electrical stimulation
(tES) in a rhythmical fashion, intrinsic brain oscillations can be entrained or perturbed [34–38].
Empirical studies following this approach provide some evidence that posterior alpha activity is
causally involved in the control of visuospatial attention.

In one study, repetitive TMS at 5, 10, or 20 Hz was applied over the parieto-occipital cortex,
immediately followed by a visual, near-threshold target shown in the visual field ipsilateral or
contralateral to the stimulation [39]. Among the protocols, only 10-Hz stimulation (i.e., stimulation
in the alpha frequency range) led to increased detection rates for targets presented ipsilateral to
the stimulation site, whereas targets contralateral to the TMS were less likely to be detected. So,
entrainment of alpha activity by external rhythmical stimulation can have the same effect on
visual perception as that found during voluntary shifting of visuospatial attention. By increasing
alpha activity in one hemisphere, visual perception is biased towards more efficient information
processing in the ipsilateral visual field. There is recent evidence showing a similar effect even
during a visuospatial attention task [40]. It was demonstrated that transcranial alternating-current
stimulation (tACS) at participants’ individual alpha frequency over the left parieto-occipital cortex
altered task performance in a spatial cueing paradigm. Entraining (i.e., increasing) alpha activity
contralateral to targets led to increased response times in invalidly cued trials. Importantly, this
effect was observed only in endogenous shifts of attention and not in exogenous attention trials,
supporting the idea that modulation of alpha activity leads to top-down-controlled changes in
visual information processing.

Another noninvasive approach to test causality involves reversible, ‘virtual’ lesions to specific
cortical locations. Applying virtual lesions at cortical regions known to be causally involved in
the control of visuospatial attention was shown to impact attention-related alpha activity and
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task performance. In a study using a Posner task, repetitive TMS at 20 Hz (which causes a
transient, virtual lesion) applied over the intraparietal sulcus or the frontal eye field (FEF) just
following the presentation of a spatial cue led to a collapse of lateralized alpha activity and
reduced task performance [41]. Moreover, the TMS-induced change of lateralized attention-
related alpha activity predicted response times during the Posner task. Another study found
similar results when applying slow repetitive TMS (rTMS) (causing reduced cortical excitability
outlasting the stimulation) over the right FEF [42]. The stimulation led to increased response
times in valid trials in a Posner task as well as the obliteration of attention-related lateralized
alpha activity in the cue–target interval.

It seems reasonable to conclude, then, that posterior alpha activity is a substrate of visuospatial
attention: entrainment of alpha activity leads to alterations of attentional task performance that
correspond to the location of the activity being manipulated and ‘knocking out’ of lateralized
alpha activity using virtual lesions leads to reduced attentional processing. While these lines of
research provide evidence for a causal role of alpha modulation in visuospatial attention, the
specific ways in which alpha activity might affect cortical processing remain equivocal. An idea
of relevance in this context, as discussed later, is that alpha activity might not implement gain
control as a neural substrate of cortical excitability in the early visual areas but rather acts as
a gating mechanism that controls the flow of low-level information to higher visual areas.

Alpha activity in the early visual areas, parietal cortex, and frontoparietal
networks: what is the specific function of alpha activity in visuospatial attention?
As pointed out earlier, it has been suggested that alpha activity represents a mechanism of
controlling cortical excitability [10,12,14,43]. This, of course, should also hold for early visual
areas. Related to this, it was shown that spontaneous fluctuations in alpha oscillatory activity
recorded at occipitoparietal electrode sites predicted the perception of TMS-induced phos-
phenes [5]. Higher spontaneous pre-stimulation alpha activity representing cortical deactivation
led to a reduced probability of perception of phosphenes. In other studies, it was found that
the level of occipital alpha activity determined perceptual performance in visual discrimination
tasks, with higher alpha amplitude being associated with poorer perception [44–46].

In addition to alpha amplitude, the instantaneous phase and inter-regional coherence of alpha
oscillations are important features in the context of attentional phenomena. In particular, short-
term fluctuations in perception and attention seem to correlate with phase-based measures of
alpha activity. This observation is consistent with the notion that the current phase of an ongoing
EEG oscillation reflects a momentary state of the neuronal population’s excitability and is thus
indicative of more or less favorable time intervals for successful information processing [47–49]. In
a study providing an elegant example of these relationships [50], the processing of near-threshold
visual targets was dependent not only on alpha amplitude but also on the alpha phase being in a
preferable peak state at target onset, suggesting two supplementary mechanisms based on steady
versus pulsed release from alpha-driven inhibition, respectively (see also [10,12,51–53]).

A related point of consideration is the substrates of top-down attentional control. The processes
discussed above, of instantaneous alpha-phase-dependent fluctuations in visual perceptual
processing, are unlikely to be directly modulated by voluntary top-down control, although they
could still be critically involved in the implementation of visuospatial attention [49]. By contrast,
a good candidate for top-down attentional control is interregional phase coherence [18–20]
as a proxy for synchrony and successful communication between neuronal populations [54].
During the cue–target interval in a Posner task, increased frontoparietal alpha phase coherence
was observed contralateral to the visual hemifield that attention was shifted towards [3].
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Moreover, high frontoparietal alpha coherence was associated with a decreased probability of
missing the second of two rapidly presented targets, a phenomenon known as attentional
blink, suggesting alpha coherence-dependent tuning of an attentional filter [55]. These findings
point towards a vital role of frontoparietal interaction in controlling visuospatial attention and
possibly controlling the excitation level of posterior brain areas (indicated by modulated alpha
amplitude). Direct evidence for this interpretation comes from a study in which, during an atten-
tional shifting task, the FEFwas transiently, virtually lesioned using TMS [42]. Asmentioned earlier,
this intervention led to reduced modulation of posterior alpha activity. At the same time, the
prefrontal drive onto posterior parietal sites at alpha frequency was reduced. Further, this top-
down prefrontal-to-parietal coupling reduction predicted interindividual differences in behavioral
TMS response in the attention task.

So, does that mean that a frontoparietal attention network [56] synchronized at alpha frequency
[18–20,42] controls perceptual gain in the early visual cortex by means of alpha amplitude
modulation? Most likely not. As pointed out earlier, SSVEPs in the early visual cortex as a proxy
of visual gain control are not correlated with alpha amplitude modulation [22,23]. Also, the FEF
does not seem to directly control the excitation level of the early visual cortex, as demonstrated
by concurrent TMS and electrophysiological recordings [57]. In a recent MEG study [21], no
evidence for alpha oscillations implementing gain control in early visual areas was found. Instead
it was suggested that attentional modulation of alpha activity in the parieto-occipital cortex
reflected a gating mechanism; that is, alpha activity would be involved in selecting upstream
information from early visual areas to be consciously processed. In other words, unlike the classical
view, in which alpha power modulations are proposed as an attention mechanism affecting the
likelihood of successful information processing in the early visual cortex, alpha power may in fact
be involved in a selection process higher up the hierarchy.

This could explain why, for instance, in the study discussed earlier [24] attention effects of alpha
activity were found to set in slightly later than initially expected. Gain control in early visual areas
might be implemented largely independent of attention-related alpha amplitude modulations in
the higher visual cortex (and be reflected by early effects obtained by SSVEPs). Upstream visual
information would then be submitted to attentional gating by alpha activity in the higher visual
cortex.

How could this suggested gating mechanism be reflected by alpha activity work? As discussed
earlier, perceptual processes in the early visual cortex seem tightly tied to the instantaneous alpha
phase [50,51,53]. The oscillation might represent a rhythmic fluctuation between excitation and
inhibition [6,39], with the inhibitory phase being prolonged by the amplitude increase [12,13]
(Figure 2); in other words, if the amplitude increases, the duty cycle (i.e., the part of the alpha
cycle that is associated with increased neuronal firing [14]) becomes shortened; alpha amplitude
suppression, by contrast, would lead to a longer duty cycle. If, therefore, rhythmically sampled
pre-attentive perceptual information is fed forward to a parietal cortex that exhibits alpha suppression,
the likelihood of this information being further processed in parietal areas is high. If this rhythmically
sampled perceptual information, however, meets the parietal cortex at high alpha amplitude
(and consequently a short duty cycle), the chances are high that this visual information arrives at a
time interval of high inhibition. This perceptual information would, therefore, be blocked from further
processing (Figure 2).

Concluding remarks
While alpha activity may represent only one among several mechanisms in attentional processing,
it seems reasonable to conclude that it plays a causal role in shifts of visuospatial attention.
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Outstanding questions
What are the mechanisms by which
remote brain areas (e.g., the prefrontal
cortex) impact posterior alpha ampli-
tude modulation?

Which plays a greater role in visuospatial
attention processes: alpha amplitude
modulation or the instantaneous phase
of alpha activity?

What role does the interaction between
alpha activity and oscillatory brain
processes in other frequency ranges
play in the control of visual attention?

Are there further, parallel attentional
gating mechanisms beyond alpha
frequency; for instance, ones that are
reflected by activity in other frequency
bands?
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However, it might not directly implement gain control in the early visual cortex but instead reflect a
mechanism higher up the visual hierarchy, possibly attentional gating. There is also good
evidence to suggest that alpha activity in higher visual areas is strongly influenced by the prefrontal
cortex and frontoparietal attention networks. An analogy to the situation can be drawn from the
world of toy cars. To steer a radio-controlled toy car, there is a need for a remote control, a receiver,
a servomotor, and a wheel suspension system. Collectively, these elements ultimately point
the wheels in a certain direction. Obviously, one would not make the case that any of these
parts, the wheels’ pointing to the right (for instance), has a causal role in the car taking a right
turn. Likewise, posterior alpha activity seems causally involved in visuospatial attention (and most
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Figure 2. Proposed mechanism by which alpha activity in higher visual areas implements attentional gating. In
response to a cue, the prefrontal cortex initiates the modulation of alpha activity in the posterior parietal cortex. The amplitude
of the alpha activity will determine the length of the respective duty cycle, with a high amplitude leading to a relatively short
duty cycle. At the same time, sensory input is rhythmically sampled at alpha frequency in the early visual cortex. The
probability of this upstream information being further processed in the higher visual cortex is increased when the parietal
alpha amplitude is low and, therefore, the duty cycle is long. With the very short duty cycle when alpha activity is high, it is
likely that in this scenario the rhythmically sampled sensory input will meet the longer inhibitory phase of alpha and
consequently will not be further processed.
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likely not on a level of the early visual cortex), but only as one part in a multiple-element control
mechanism. Future research needs to address, however, the temporal dynamics and context
specificity of the attentional gating mechanism implemented by alpha activity (see Outstanding
questions). Prior work has shown, for instance, that preparatory alpha activity seems to be exclu-
sively associatedwith target cuing and not with distracter cuing [58–60]. These findings are not fully
compatible with the idea of alpha activity reflecting a general gating mechanism of attention, giving
rise to the assumption that there might even be further, parallel gating mechanisms involved in
attention – potentially reflected by oscillatory brain activity beyond alpha frequency.
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Video gaming, specifically action video gaming, seems to improve a range of
cognitive functions. The basis for these improvements may be attentional control
in conjunction with reward-related learning to amplify the execution of goal-relevant
actions while suppressing goal-irrelevant actions. Given that EEG alpha power reflects
inhibitory processing, a core component of attentional control, it might represent the
electrophysiological substrate of cognitive improvement in video gaming. The aim of
this study was to test whether non-video gamers (NVGs), non-action video gamers
(NAVGs) and action video gamers (AVGs) exhibit differences in EEG alpha power,
and whether this might account for differences in visual information processing as
operationalized by the theory of visual attention (TVA). Forty male volunteers performed
a visual short-term memory paradigm where they memorized shape stimuli depicted
on circular stimulus displays at six different exposure durations while their EEGs were
recorded. Accuracy data was analyzed using TVA-algorithms. There was a positive
correlation between the extent of post-stimulus EEG alpha power attenuation (10–
12 Hz) and speed of information processing across all participants. Moreover, both
EEG alpha power attenuation and speed of information processing were modulated by
an interaction between group affiliation and time on task, indicating that video gamers
showed larger EEG alpha power attenuations and faster information processing over
time than NVGs – with AVGs displaying the largest increase. An additional regression
analysis affirmed this observation. From this we concluded that EEG alpha power might
be a promising neural substrate for explaining cognitive improvement in video gaming.

Keywords: theory of visual attention (TVA), attentional control, short-term memory, learning to learn, cognitive
improvement in video gamers, knowledge system

INTRODUCTION

There is convincing evidence that playing commercially available video games, in particular action
video games, such as Battlefield V (EA DICE; Stockholm), may improve cognitive functions –
ranging from perception (Dye et al., 2009; Li et al., 2009, 2010; Bejjanki et al., 2014), over memory
(Blacker and Curby, 2013; Blacker et al., 2014; McDermott et al., 2014; Pavan et al., 2019),
probabilistic inference (Green et al., 2010; Schenk et al., 2017), and executive control (Colzato
et al., 2010; Cain et al., 2012; Green et al., 2012; Strobach et al., 2012) to attentional deployment
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(Greenfield et al., 1994; Green and Bavelier, 2003; Chisholm
and Kingstone, 2012; Cain et al., 2014; Wu and Spence, 2013).
Thus, video gaming might represent a promising tool both for
investigating human learning and therapeutic use in clinical
populations (e.g., in patients with amblyopia, see Gambacorta
et al., 2018). In this sense, for instance, EndeavorRxTM (Akili
Interactive Labs, Boston, MA, United States), a racing video
game customized to treat children with ADHD (Kollins et al.,
2020), was approved by the Food and Drug Administration
(FDA), recently.

However, in order to apply commercially available video
games (e.g., Battlefield V) for such purposes, the mechanisms
underlying their effects need to be understood more in detail:
one prominent attempt to explain how in particular action video
games may improve cognitive processing is the idea that they
affect one specific cognitive domain which several cognitive
functions have in common – also known as learning to learn
approach (Bavelier et al., 2012b; Green and Bavelier, 2012).
According to this approach (Bavelier et al., 2012b; Green and
Bavelier, 2012), playing action video games may improve video
gamers’ probabilistic inference, which may enhance additional
cognitive processes that rely on probabilistic inference, e.g.,
perception (Deroy et al., 2016) and attention (Rao, 2005). Thus,
action video gamers (AVGs) might not outperform non-video
gamers (NVGs) in a paradigm right from the start but after a time
course of learning. Recently this approach has been developed
further as a significant body of research indicated that foremost
cognitive functions related to top–down attentional deployment
were affected by video gaming (Bediou et al., 2018; Bavelier and
Green, 2019). Hereby, Bavelier and Green (2019) suggested that
the conjunction between reward-related learning and attentional
control might be a core mechanism underlying improvements
in cognitive processing related to video gaming. The idea here
was that video gaming might train video gamers to select goal-
relevant actions over goal-irrelevant actions which, in turn, might
lead to more efficient cognitive processing. The basis for this
was supposed to be an increase in dopaminergic transmission
as video games seem to elicit learning mechanisms similar to
operant conditioning, and an enhanced suppression of irrelevant
information processing while relevant information processing
may be facilitated – which is considered as attentional control in
this context (Bavelier and Green, 2019).

In support of this, Koepp et al. (1998) showed that
dopaminergic transmission of the left striatum increased during
action video gaming; and Kühn et al. (2011) found that
adolescents who frequently played video games exhibited larger
gray matter volumes and stronger blood oxygenation level
dependent signals in the left ventral striatum compared to
adolescents with irregular gaming behavior while performing
the Monetary Incentive Delay Task. Furthermore, Tanaka et al.
(2013) elaborated that AVGs showed larger gray matter volumes
in the right posterior parietal cortex than NVGs, and Bavelier
et al. (2012a) as well as Föcker et al. (2018) demonstrated that
AVGs exhibited different blood oxygenation level dependent
signals in brain areas of a dorsal fronto-parietal top–down
attention network (Corbetta et al., 2008) compared to NVGs,
while performing attention demanding paradigms. Moreover,

AVGs were shown to suppress distractors more efficiently than
NVGs and NAVGs as reflected by stronger modulations of
steady-state visual evoked potentials in the electroencephalogram
(EEG) (Mishra et al., 2011; Krishnan et al., 2013); and, they
showed stronger attention related amplitude responses in event-
related potentials in the EEG compared to NVGs, for instance, in
the anterior N1, P2, and P3 (Wu et al., 2012; Föcker et al., 2019).

However, these neural signatures were mostly (if at all)
associated with modulations of attentional deployment, but
rarely with modulations in additional cognitive functions (but see
also, Tanaka et al., 2013). Thus, these data do not really allow any
conclusions as to whether inter-individual differences in these
neural substrates may also functionally apply to other cognitive
processes. One promising candidate to fill this gap and relate
inter-individual differences in neural signatures of attentional
control with modulations in additional cognitive functions may
be brain oscillatory activity in the frequency range from 8 to
14 Hz – also known as alpha oscillations. According to the
inhibition-timing hypothesis (Klimesch et al., 2007b), amplitude
modulations of EEG alpha oscillations represent a neural
substrate of top–down inhibitory processing (for a validation
of and new vistas on the inhibition-timing hypothesis, see
also Jensen and Mazaheri, 2010; Fries, 2015). More specifically,
the inhibition-timing hypothesis suggests that an increase in
EEG alpha power after processing sensory information [also
known as event-related synchronization (ERS)] goes along
with an increase in inhibitory processing; while a decrease in
EEG alpha power after processing sensory information [also
known as event-related desynchronization (ERD)] may go along
with disinhibition (see also Pfurtscheller and Lopes da Silva,
1999). Inhibitory processing, in turn, is a core property of
attention (Chun et al., 2011). Therefore, modulations in EEG
alpha power are assumed to represent a neural substrate of
attentional control (Klimesch, 2012). Crucially, such modulations
were shown to play a considerable role in cognitive functions
associated with attentional control – for instance, in perception
(Klimesch et al., 2011), (visual short-term) memory (Sauseng
et al., 2009; Nenert et al., 2012), executive control (Sauseng et al.,
2006), and probabilistic inference (Spaak et al., 2016). Hence
EEG alpha power modulations represent a promising candidate
for investigating neural mechanism of cognitive improvement
related to video gaming. However, in this regard, it needs to be
considered that alpha oscillatory activity is highly task-dependent
(Klimesch et al., 2011): for instance, while EEG alpha power
seems to decrease in anticipation of the time point (Nobre and
van Ede, 2018), spatial position (Spaak et al., 2016) or identity
(Capotosto et al., 2009) of an up-coming target in visual detection
paradigms; it tends to increase in anticipation of stimuli in
visual short-term memory paradigms and decrease after stimulus
processing later on (e.g., Nenert et al., 2012). Moreover, in
line with the inhibition-timing hypothesis, alpha activity tends
toward increasing in response to distractors (Worden et al., 2000;
Sauseng et al., 2009). Furthermore, EEG alpha oscillations can
be sub-divided into lower alpha frequency bands (e.g., from
6.42 to 9.75 Hz, see Freunberger et al., 2008) that seem to
be related merely to attentional processing, and medium or
upper alpha frequency bands (e.g., from 9.17 to 13 Hz, see
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Freunberger et al., 2008) that appear to be correlated with higher
level cognitive processing, e.g., when attention is deployed in
concert with perception and memory (Klimesch, 1997, 2012;
Klimesch et al., 2011). But, the frequency range of lower, medium
and upper alpha bands may drastically vary depending on data
recording and analysis protocols.

Hazarika et al. (2018) and Hazarika and Dasgupta (2020)
have already provided some evidence that AVGs might exhibit
differences in EEG alpha oscillatory activity as they found that
AVGs showed larger relative EEG alpha power values than NVGs
while performing a Corsi block-tapping task and the Bivalent
Shape Task. But their results should be considered with caution
as their procedures to estimate participant’s relative EEG alpha
power values was problematic. One of the main issues here may
be that each participant’s relative EEG alpha power value was
estimated based on trials of different lengths, while performing
the Corsi block-tapping task since the length of a trial depended
on the individual performance of a participant (Hazarika and
Dasgupta, 2020). Thus, the estimates are hardly comparable
between subjects and groups. On top of that, it appeared that
Hazarika et al. (2018) and Hazarika and Dasgupta (2020) did
not control for potential contaminations by stimulus exposure
duration, time on task or task requirements, though EEG alpha
power was shown to decay over time, to be modulated by time
on task and to be highly task-specific (Klimesch et al., 2011;
Benwell et al., 2019). Furthermore, they reported relative EEG
alpha power estimates that were quite broad (7.8–15.6 Hz). Thus,
the estimates might reflect the impact of not only alpha oscillatory
activity but also other frequency bands. In conclusion, further
research on the functional role of EEG alpha oscillatory activity
in inter-individual differences in cognitive processing between
video gamers and control participants is required to understand
neural mechanisms underlying cognitive improvements due
to video gaming.

In this regard, the aim of this study was to investigate
whether habitual gaming behavior might modulate EEG alpha
power while processing stimuli in a visual-short-term memory
paradigm, and whether such modulations might be relatable
to inter-individual differences in visual attentional information
processing. For this, we applied a computational modeling
approach based on the theory of visual attention (TVA; Bundesen,
1990; Bundesen et al., 2015) because it allows the computation
of several parameter values associated with visual attentional
processing, such as speed of information processing (C) or the
maximum capacity of the visual short-term memory store (K)
(Kyllingsbaek, 2006; Dyrholm et al., 2011). For this, participants’
accuracy data are fit to exponential graphs using TVA-algorithms
to determine their TVA C and K parameter values based on
the assumptions (1) that the capacity of the visual short-term
memory store is limited, (2) but that all visual information
is processed in parallel and (3) hence needs to be filtered
according to subjectively relevant criteria using attentional
deployment. Hereby, the y-asymptotic levels of the exponential
graphs represent K parameter values and slope lines that intersect
the exponential graph on the x-axis C parameter values. We
decided on investigating TVA C and K parameter values in
particular since they were likely related with EEG alpha activity

as they have been associated with the posterior N1 and the
contralateral delay activity (CDA), respectively (Wiegand et al.,
2014b) – two event-related potentials that have been discussed
to be linked to EEG alpha activity (Klimesch et al., 2004; Gruber
et al., 2005; Klimesch et al., 2007a; van Dijk et al., 2010); and
because ERD in the medium or upper alpha frequency band
is considered a crucial neural signature in visual short-term
memory (Klimesch, 1997, 2012; Sauseng et al., 2009; Nenert
et al., 2012). An additional reason was that video gamers were
shown to exhibit larger TVA C parameter values than NVGs
(Wilms et al., 2013) – an effect already replicated (Schubert et al.,
2015). Hence, the effect was considered suitable to investigate
whether inter-individual differences in event-related EEG alpha
power modulations between video gamers and NVGs might
predict differences in TVA C parameter values – but not in
TVA K parameter values since video gamers and NVGs did not
seem to differ in the capacity of visual short-term memory as
operationalized by the TVA K parameter (Wilms et al., 2013;
Schubert et al., 2015).

Therefore, we hypothesized (1) that the extent of participants’
ERD in the medium or upper alpha frequency band after
processing stimuli presented in a visual short-term memory
paradigm may be correlated with TVA C and K parameter values,
respectively; (2) that habitual video gaming might modulate EEG
alpha power as video gaming seems to impact on attentional
control; and (3) that inter-individual differences in ERD in
the medium or upper alpha frequency bands between video
gamers and non-video gamers might go along with inter-
individual differences in TVA C parameter values. On top of
that, we expected (4) that different lengths of exposure durations
used to compute TVA parameter values and time on task as
operationalized by experimental blocks in our paradigm might
contaminate our EEG alpha power estimates – which is why we
controlled for these factors in our statistical analyses (Klimesch
et al., 2011; Benwell et al., 2019).

MATERIALS AND METHODS

Participants
We recruited participants via flyers published on mailing
lists and internet platforms, stating that we were looking for
male volunteers to participate in an EEG study on perceptual
processing. Thus, we did not explicitly recruit video gamers, but
we used a cover story to prevent selection bias and expectation
effects from confounding the data (Boot et al., 2011; Schubert and
Strobach, 2012).

A screening was conducted to control whether prospective
volunteers were suitable for participating in the study. Only
male individuals between 18 and 40 years of age with normal
or corrected-to-normal vision and no history of neurological
or psychiatric disorders were eligible. We recruited only male
participants as their representation among video gamers was
likely larger than that of females (Entertainment Software
Association, 2019) – a procedure which is quite common in
gaming research (e.g., Green and Bavelier, 2007). In total 40
healthy male German- or English-speaking volunteers with

Frontiers in Psychology | www.frontiersin.org 3 December 2020 | Volume 11 | Article 599788



NEUROGAME 30

fpsyg-11-599788 December 2, 2020 Time: 19:44 # 4

Hilla et al. EEG Alpha Power in Gamers

normal or corrected-to-normal vision participated in our study.
Fifteen were classified as NVGs, 15 as NAVGs and 10 as AVGs.
The data of two participants were excluded due to poor EEG
data quality. Thus, data of 14 NVGs (Mage = 24.93 years, age
range = 22–30 years), 15 NAVGs (Mage = 22.73 years, age
range = 19–32 years) and 9 AVGs (Mage = 24.89 years, age
range = 21–31 years) were used for statistical analyses. Our
sample size was comparable to sample sizes reported in studies
that followed a similar methodological approach (Wilms et al.,
2013; Schubert et al., 2015), and in studies investigating other
gaming effects (Li et al., 2009, 2011; Wu et al., 2012). The three
groups did not differ in mean age, F(2,35) = 2.43, p = 0.103,
and were similar in educational status (High School graduation
vs. Bachelor’s Degree vs. Master’s Degree vs. German Diploma,
Fisher’s exact test, p = 0.128). The study was approved by the
local ethics review board. All volunteers gave written informed
consent in accordance with the Declaration of Helsinki before
their participation, and they were compensated with 3 Euros for
participating in the screening and 10 Euros per hour spent on the
EEG study, or participants received student lab tokens.

Procedures and Materials
Video Gaming Questionnaire
Prior to testing, we asked participants to provide the names
of a maximum of 10 video games they had played regularly
and most often in the previous 12–24 months. In addition to
that, we asked how many hours per week they had played the
respective games on average in the previous 12–24 months. Each
video game’s genre was determined based on the producers’
description. With regard to the classification scheme of Green
et al. (2017), subjects were, then, classified as NVGs if in
the previous 12–24 months, they had played first/third person
shooter, action role play/adventure, sports/driving, real-time
strategy/multi-player online platform video games each for a
maximum of 1 h and non-action turn-based role play/fantasy,
turn-based strategy/life simulation/puzzle, music or other video
games each for a maximum of 3 h, but in total not more than
5 h per week on average. Participants were classified as AVGs if
in the previous 12–24 months, they had played first/third person
shooter, action role play/adventure games for at least 5 h per week
on average. All remaining individuals were classified as NAVGs.

Visual Short-Term Memory Paradigm
Our paradigm was run on a computer with an AMD AthlonTM

II X2 B24 processor (AMD, Sunnyvale, CA, United States) and
a 64-Bit Windows 7 operating system (Microsoft, Redmond,
WA, United States). The paradigm was developed using Python’s
(Version 3.7.3; Python Software Foundation) Tkinter library1

and run in Spyder (Version 3.3.32). Stimuli were presented on
a 17′′/43 cm monitor (Acer Group, Taiwan) with a refresh
rate of 60 Hz. Triggers were sent to the EEG computer using
the dportio.dll in-script plug-in.3 Responses were given on a

1https://wiki.python.org/moin/TkInter
2https://www.spyder-ide.org/
3https://real.kyiv.ua/avreal/download/#DLPORTIO_TABLE

regular keyboard (KB212-B; Dell Technologies Inc., Round
Rock. United States).

We developed our own TVA paradigm based on Vangkilde
et al. (2011) with shape stimuli instead of letter stimuli to control
for language confounds. Participants sat in a comfortable chair,
approximately 80 cm from the screen, in a dimly lit room. Each
trial started with the presentation of a gray blank screen. After
1002 ms, a white fixation cross was depicted in the center of
the screen (0.72◦ × 0.72◦ of visual angle). After an additional
1002 ms, a stimulus display comprising 6 out of 10 white
geometrical shapes (circle, ellipse, hexagon, diamond, pentagon,
rhombus, square, star, trapezoid, triangle) was presented. Those
shapes were displayed on an invisible circle at 30◦, 90◦, 150◦,
210◦, 270◦ and 330◦ around the fixation cross. The radius of the
circle was 2.72◦ of visual angle. Each shape was located within an
area of 2.29◦ × 2.29◦ of visual angle and could reach a maximum
size of 2.08◦ × 2.08◦ of visual angle (e.g., square). Stimulus
displays were presented at one of six different exposure durations
(16.7, 33.4, 50.1, 83.5, 150.3, and 200.4 ms). Directly after the
stimulus display, a mask display consisting of white squares of
2.29◦ × 2.29◦ of visual angle with random black polygons based
on 8 random points was presented to interrupt processing of
stimulus displays exactly at the end of the exposure duration.
This mask display lasted for 501 ms. Thereafter, an instruction
written in white letters was displayed in the center of the screen.
Participants were asked to retrieve as many shapes as possible
and to indicate which ones had been presented by pressing
corresponding buttons on the keyboard (D: circle, F: ellipse, G:
hexagon, H: diamond, J: pentagon, K: rhombus, C: square, V:
star, B: trapezoid, N: triangle). Each key was marked with a glow-
in-the-dark sticker of the corresponding shape. Participants were
asked not to guess. Every new trial was initiated by pressing the
space bar. Participants started the paradigm with a training block
consisting of 24 trials. During this training, participants received
feedback. If at least one response was incorrect within a trial, a
black “X” covering 0.93◦ × 0.93◦ of visual angle was presented
in the center of the screen for 501 ms. There were 210 stimulus
displays, see equation (1) for details:

10!
(10− 6)! ∗ 6!

= 210 (1)

Each stimulus display was presented once in an experimental
block and 24 out of those 210 stimulus displays were randomly
chosen for the training block. Thus, each participant performed
one training block and two experimental blocks, which makes a
total of 444 trials. During the training, each exposure duration
was used four times and during each experimental block, each
exposure duration was used 35 times. The sequence of trials was
always random. The association between a stimulus display and
an exposure duration was random. Participants were allowed to
take a break between blocks and after each trial. For a scheme of
an exemplary trial, see Figure 1.

Computation of TVA C and K Parameter Values
Estimating TVA C and K parameter values requires the
manipulation of the exposure duration and the application
of masks. Manipulating the exposure duration is necessary
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FIGURE 1 | Paradigm. Participants performed a visual short-term memory paradigm where they had to memorize white shape stimuli depicted on an invisible circle
in the center of the screen at six different exposure durations. Mask displays were used to prevent further processing. At the end of each trial, participants indicated
which shapes they could memorize by pressing corresponding buttons on a keyboard.

because TVA-algorithms estimate each participant’s TVA C and
K parameter value by fitting their accuracy data at each exposure
duration to an exponential distribution by using maximum-
likelihood method. Hereby, the slope line that intersects the
exponential graph on the x-axis reflects the value of the C
parameter, and the y-asymptotic level of the exponential graph
reflects the K parameter value (Bundesen, 1990; Kyllingsbaek,
2006; Dyrholm et al., 2011; Bundesen et al., 2015). The
application of masks was necessary to prevent visual aftereffects
that may otherwise have influenced stimulus processing (see
Kyllingsbaek, 2006). As the exposure durations were such an
essential element in the computation of TVA C and K parameter
values, we inspected the temporal dynamics of the stimuli
by using the default_timer() function of the timeit library4.
Specifically, we recorded the time points when the in-script
commands to visualize stimuli (fixation cross, stimulus displays,
mask displays and instruction texts) were given (with a resolution
of at least 1 ms) and computed the time differences between them.
This, however, revealed that there had been minor imprecisions
in the presentation times of the stimuli. Such imprecisions are
unfortunately inevitable when using non-real time operating
systems and working with a refresh-rate of 60 Hz. We corrected
for those flaws by adding the mode value (rounded to the first
decimal place) of each exposure duration’s deviation distribution
to the expected exposure duration value. Thus, we changed the
original exposure durations from 16.7, 33.4, 50.1, 83.5, 150.3, and
200.4 ms to 17.8, 35.6, 53.4, 89, 144.6, and 198 ms, respectively.
We decided to add the mode value because it represents the most
common realization of a distribution and therefore, arguably
covers the most frequent exposure durations participants were
confronted with while performing the paradigm. We then
estimated each participant’s TVA C and K parameter value based

4https://docs.python.org/3.7/library/timeit.html

on their accuracy data of the experimental trials by using the
LIBTVA toolbox (Dyrholm et al., 2011) run in Matlab R2015a
(Math Works, Natick, MA, United States). Finke et al. (2005)
established that a minimum of 192 trials in a visual short-term
memory paradigm would be sufficient to reliably estimate TVA C
and K parameter values in 35 participants. Our visual short-term
memory paradigm was comparable to the experimental design
used in Finke et al.’s (2005) study and our participants performed
420 experimental trials. Therefore, we were confident that our
TVA C and K parameter estimates were reliable.

EEG Data Recording
EEG recordings were stored on a computer with an AMD
AthlonTM 64 × 2 Dual Core Processor 5000 + processor (AMD,
Sunnyvale, CA, United States) and a 64-Bit Windows 7 operating
system (Microsoft, Redmond, WA, United States). EEGs were
recorded by using a 64-channel BrainAmp DC amplifier and
Brain Vision Recorder Software (Brain Products GmbH, Gilching,
Germany). Sixty two Ag/AgCl electrodes mounted in a cap
(EASYCAP, Herrsching, Germany) were arranged according to
the 10–10 international EEG system. During recording, EEGs
were referenced against the tip of the nose. Vertical and
horizontal EOGs were mounted above the left eyebrow and
on the left canthus of the left eye, respectively. EEGs were
digitized with a sampling rate of 1000 Hz and filtered with a
band-pass filter between 0.016 and 250 Hz. Impedances were
kept below 10 kOhm.

Computation of EEG Alpha Power
EEG data were analyzed using Brain Vision Analyzer 2 (BVA,
Brain Products GmbH, Gilching, Germany). At first, raw data
were inspected for large scale artifacts such as movement artifacts
and artifacts caused by cable movements. Those artifacts were
then manually excluded from further analysis using BVA’s Raw
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Data Inspection tool. Subsequently, a bandpass filter between
0.1 and 120 Hz and a notch filter of 50 Hz were applied to
reduce slow voltage drifts, muscle artifacts and line noise. If
necessary, bad channels were interpolated using the Topographic
Interpolation tool. Afterward, the EEG was re-referenced to
averaged common reference. Then, an Ocular Correction ICA
was applied using the Infomax Restricted Algorithm to correct
eye movement artifacts, such as blinks and saccades. After that,
a second data inspection was conducted to exclude remaining
muscle artifacts, uncorrected EOG artifacts and unspecific spikes.
Data were resampled to 1024 Hz to prepare the data for an
upcoming Fast Fourier Transformation with a resolution of
2 Hz. Data were segmented into segments of 500 ms before
the presentation of stimulus displays and after the presentation
of the mask display. Subsequently, Fast Fourier Transformation
was applied to segments. Trials were then averaged into power
spectra for each time window (pre-stimulus and post-mask)
and each participant, separately. Then, EEG power ratios were
computed by dividing average power spectra before stimulus
presentation by average power spectra after mask presentation,
see equation (2):

EEG power ratio =
average EEG Power Spectrapre−stimulus

average EEG Power Spectrapost−mask
(2)

Afterward, we achieved medium and upper alpha ratios
by exporting ratios averaged over occipital, parietal and
occipitoparietal channels (O1, O2, Oz, P1, P2, P3, P4, P5, P6,
P7, P8, PO3, PO4, PO7, PO8, POz, Pz) of frequency bands
ranging from 10–12 and 12–14 Hz. At last, we log-transformed
these medium and upper alpha ratios using log10 to prepare the
data for statistical analyses based on general linear models. Ratio
values> 0 indicated ERD, ratio values< 0 ERS.

We did not include segments ranging from the onset of
stimulus displays to the onset of mask displays since we assumed
that differences in the exposure durations might contaminate the
EEG as they cause different on- and offset evoked potentials.
In previous research, this issue was circumvented by combining
data of two paradigms – one where masks had been applied
but no EEG was recorded and one where masks were not
applied but EEGs were recorded (Wiegand et al., 2014a,b, 2016).
This procedure certainly allowed for a valid estimation of both
TVA parameter values and event-related potentials. However, the
shortcoming here may be that an association between the two
components might be problematic because of both the temporal
distinct recording times and the different task requirements. In
contrast, to circumvent this issue, but with the shortcoming of
having to neglect data ranging from the presentation of the
stimulus display to the presentation of the mask display, we
compared alpha power before stimulus processing with alpha
power after mask processing. Note also that Hanslmayr et al.
(2009) showed that estimates of alpha power modulations were
quite stable at the rate of 15 trials and more using a simulation
approach (see supplements of Hanslmayr et al., 2009). We used
35 trials to compute alpha power ratios for each exposure
duration per block. Therefore, we were confident that our alpha
ratios were reliable.

Statistical Analyses
We used R (R Core Team, 2018) to conduct statistical analyses
and visualize results. Specifically, we used the apaTables package
to generate tables (Standley, 2018); the BayesFactor package
to compute Bayes factors (Moray and Rouder, 2018); the
cowplot, the ggplot2, and the RColorBrewer packages to visualize
data with colorblind-friendly color palettes (Neuwirth, 2014;
Wickham, 2016; Wilke, 2019); the dplyr package (Wickham
et al., 2019) to process data; the ez package to compute variance
analytical procedures (Lawrence, 2016); the performance package
to control model assumptions of regression and correlation
models (Lüdecke et al., 2020); the rstatix package to control model
assumptions of variance analytical procedures (Kassambara,
2020); and the stats package to conduct Pearson’s moment
correlation tests. For variance analytical methods with between-
subjects factors, we used Shapiro–Wilk test (Shapiro and Wilk,
1965) and Levene’s test (Levene, 1960) to control for assumptions
of normality and variance homogeneity, respectively. In case
of violations of normality, we, nevertheless, computed variance
analytical methods since they were shown to be robust against
such violations (Schmider et al., 2010). The assumption of
homogeneity was met in all variance analytical models with
between-subjects factors. For variance analytical methods with
an additional within-subject factor, Mauchly’s tests were used to
test the assumption of sphericity. In case of a violation of the
assumption of sphericity, the Greenhouse–Geisser correction was
applied (Abdi, 2010). In general, we computed variance analytical
procedures based on type II sums of squares since our group
sample sizes were unbalanced (Langsrud, 2003). To quantify
significant variance analytical results, we reported generalized
eta squared (η2

G; Olejnik and Algina, 2003). For regression
and correlation models, we first screened for outliers using
Cook’s distance (Cook, 1977), then the assumptions of normality
and of homoscedasticity were controlled. All our regression
and correlation models met the assumptions of normality
and homoscedasticity. To quantify the strengths of significant
associations, we reported Pearson’s correlation coefficient r; and
to quantify model fits of regression models, we reported the
determination coefficient R2. Besides, we computed and reported
Bayes factors. These indicate how likely the data occur either
under the assumption of H1 or H0. For instance, a Bayes factor
BF10 = 4 indicates the data are four times more in support
of the H1 than the H0. In contrast, a Bayes factor BF01 = 3
indicates the data are three times more in support of the H0 than
the H1. We only computed Bayes factors for significant results.
We corrected for multiple comparisons using Bonferroni method
(Bland and Altman, 1995).

At first, we computed 4 one-tailed Pearson’s moment
correlation tests with average medium or upper alpha ratios and
TVA C or K parameter values as variables. We expected positive
correlation coefficients as we hypothesized that each participant’s
ERD in the medium or upper alpha frequency band may be
correlated with their TVA C and K parameter values, respectively.
For this, we had to average each participant’s medium and upper
alpha ratio over each level of exposure duration across all blocks
to achieve one average medium and upper alpha ratio that
could be matched with each participant’s individual TVA C and
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K parameter value. Note, however, that this was problematic
since EEG alpha power might decay over time (Klimesch et al.,
2011) – thus, average medium or upper alpha ratios might be
contaminated by different lengths of exposure durations; and,
EEG alpha power is modulated by time on task (Benwell et al.,
2019) – thus, average medium or upper alpha ratios might differ
at least between blocks. Afterward, we computed two three-way
ANOVAs with GROUP (NVGs vs. NAVGs vs. AVGs) as between-
subjects factor, EXPOSURE DURATION (17.8, 35.6, 53.4, 89,
144.6, and 198 ms) and TIME ON TASK (Block 1 vs. Block 2)
as within-subject factors and medium and upper alpha ratios as
dependent variables, respectively. In doing so, we investigated
the influence of the factor GROUP on medium and upper
alpha ratios as we expected that video gamers exhibit different
event-related EEG alpha power modulations than NVGs. In
addition to that, we investigated the influence of EXPOSURE
DURATION and TIME ON TASK on medium and upper alpha
ratios to control for modulations by different lengths of exposure
durations (Klimesch et al., 2011) and time on task (Benwell
et al., 2019). Afterward, we conducted two two-way ANOVAs
with GROUP (NVGs vs. NAVGs vs. AVGs) as between-subjects
factor, TIME ON TASK (Block 1 vs. Block 2) as within-subject
factor and TVA C and K parameter values as dependent variables,
respectively. We expected inter-individual differences in ERD in
medium or upper alpha frequency bands between video gamers
and NVGs to go along with inter-individual differences in TVA
C parameter values, but not in K parameter values. However,
if this was the case because EEG alpha power modulations and
TVA C and K parameter values were associated, TVA C and K
parameter values may also be modulated by time on task – and
probably by different lengths of exposure durations. Therefore,
we had to estimate TVA C and K parameter values for each
block separately by estimating each participant’s TVA C and K
parameter value based on their 210 experimental trials of each
block – which is still a sufficient trial number to estimate reliable
values (see Finke et al., 2005). However, we could not control
for potential influences of exposure durations since TVA C and
K parameter values are estimated based on accuracy data of all
exposure durations, and hence it is not possible to compute them
for one individual exposure duration (see above).

Finally, we conducted regression analyses with each
participant’s TVA parameter difference value as criterion variable
[see equation (3)], each participant’s alpha ratio difference
value as predictor variable [see equation (4)], and GROUP as
dummy variable (NVGs vs. NAVGs vs. AVGs) where NVGs were

used as reference to put the results of significant ANOVAs for
alpha ratios and for TVA parameter values in relation to each
other.

TVA parameter difference value

= TVA parameter valueBlock 2

−TVA parameter valueBlock 1 (3)

alpha ratio difference value

= average alpha ratioBlock 2

−average alpha ratioBlock 1 (4)

The regression model was built as described in equation (5),
where Y indicates TVA parameter difference values, X alpha
ratio difference values, i the index corresponding to a participant,
α the intercept of the reference model (NVGs), β1 the slope
of the reference model, Dij the dummy variable of group j,
β2 the difference in intercepts between NAVGs and NVGs, β3
the difference in intercepts between AVGs and NVGs, β4 the
difference in slopes between NAVGs and NVGs, β5 the difference
in slopes between AVGs and NVGs and εi the residual term.
We tested the significance of the whole model but not of the
individual βj parameter values. This is because βj values may be
potentially biased because of small group sample sizes yielding
significant results without enough statistical power.

Yi = α+ β1Xi + β2DiNAVGs + β3DiAVGs + β4 (XiDiNAVGs)

+ β5 (XiDiAVGs)+ εi (5)

RESULTS

There was a marginally significant positive correlation between
average medium alpha ratios and C parameter values, R2 = 0.11,
r = 0.33, t(36) = 2.06, puncorrected = 0.023, pcorrected = 0.093,
BF10 = 3.96. But none of the other correlations reached
significance (for a more detailed description, see Table 1). This
correlation indicates that an increase in alpha power attenuation
in a frequency band from 10 to 12 Hz after processing stimulus
displays (i.e., ERD) goes along with an increase in speed of
information processing. For a visualization of the association,
see Figure 2.

However, as expected, the ANOVA with GROUP (NVGs
vs. NAVGs vs. AVGs) as between-subjects factor, EXPOSURE

TABLE 1 | One-tailed Pearson’s moment correlation tests with average medium or average upper alpha ratios and theory of visual attention speed of information
processing parameter values (C parameter values) or visual short-term memory capacity parameter values (K parameter values) as variables.

Model r R2 df t p pBonferroni BF10

K parameter values and average medium alpha ratios 0.08 0.01 36 0.51 0.307 1.000
K parameter values and average upper alpha ratios 0.20 0.04 36 1.23 0.114 0.454
C parameter values and average medium alpha ratios 0.33 0.11 36 2.06 0.023 0.093 3.96
C parameter values and average upper alpha ratios 0.12 0.01 36 0.70 0.244 0.977

r indicates Pearson’s correlation coefficients. R2 indicates determination coefficients. df indicates degrees of freedom. p indicates uncorrected p-values. pBonferroni
indicates p-values corrected by means of Bonferroni method. BF10 indicates Bayes factors in favor of the H1. BF10 was only reported for (marginally) significant
results after application of the Bonferroni method. Raw medium and upper alpha ratios were log-transformed using log10 to prepare them for statistical analyses based
on linear models.
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FIGURE 2 | Correlation between theory of visual attention speed of
information processing parameter values (C parameter values) and average
medium alpha ratios (10–12 Hz) after processing stimulus displays. Averages
were computed based on log-transformed medium alpha ratios using log10.
Average alpha ratios > 0 indicate event-related desynchronization (ERD);
average alpha ratios < 0 event-related synchronization (ERS). N indicates the
number of participants, R2 the estimate of the determination coefficient, r the
estimate of Pearson’s correlation coefficient and BF10 the evidence in support
of the H1. Histograms opposite to the y- and x-axes indicate the distribution
of C parameter values and average medium alpha ratios, respectively. Group
affiliation is indicated by different colors (NVGs: green, NAVGs: orange, AVGs:
purple) and shapes (NVGs: circle, NAVGs: triangle, AVGs: square). There was
a marginally significant positive correlation between C parameter values and
average medium alpha ratios, indicating that faster speed of information
processing was associated with an increase in alpha power attenuation in a
frequency range from 10 to 12 Hz after stimulus processing (i.e., ERD).

DURATION (17.8, 35.6, 53.4, 89, 144.6, and 198 ms) and TIME
ON TASK (Block 1 vs. Block 2) as within-subject factors and
medium alpha ratios as dependent variable revealed a significant
main effect EXPOSURE DURATION, F(3.72,130.37) = 16.80,
p = 0.000, η2

G = 0.05, BF10 > 100, indicating that the
extent of alpha power attenuation in the frequency band
from 10 to 12 Hz after stimulus processing was differentially
modulated by exposure durations. Specifically, the extent of
attenuation appeared to increase in relation to increasing
exposure durations up to 144.6 ms, and to decrease with even
longer exposure durations (for a visualization see Figure 3A).
Hence, the correlation between average medium alpha ratios and
C parameter values might be slightly contaminated by differential
effects of exposure durations as medium alpha ratios were
averaged without considering these intra-individual differences.
Nevertheless, this procedure was inevitable as alpha ratios
needed to be matched to the individual TVA parameter values,
respectively (see Computation of TVA C and K parameter
values for a revision). A similar effect was found for upper alpha
ratios, F(3.63,127.05) = 5.41, p = 0.001, η2

G = 0.02, BF10 > 100 (see
Figure 3B for a visualization).

But, more importantly, this ANOVA also revealed a significant
interaction GROUP × TIME ON TASK for medium alpha

ratios, F(2,35) = 4.80, p = 0.014, η2
G = 0.01, BF10 > 100,

suggesting that there were differential intra-individual differences
in alpha power attenuation in the frequency band from 10 to
12 Hz between experimental blocks between video gamers and
control participants. Specifically, participants exhibited larger
medium alpha ratios – i.e., a stronger ERD – in Block 2
relative to Block 1, but AVGs showed the largest increase (see
Figure 4A for a visualization). Thus, this result is partially
in line with our hypotheses since we expected inter-individual
differences in alpha oscillatory activity between video gamers
and control participants and intra-individual differences between
experimental blocks, but we did not expect the effects to interact
with each other. None of the other main or interaction effects
for medium or upper alpha ratios reached significance (see
Tables 2, 3 for a more detailed inspection of the ANOVAs for
medium or upper alpha ratios, respectively).

On top of that, the ANOVA with GROUP (NVGs vs. NAVGs
vs. AVGs) as between-subjects factor and TIME ON TASK
(Block 1 vs. Block 2) as within-subject factor for C parameter
values revealed a significant interaction GROUP × TIME ON
TASK, F(2,35) = 3.99, p = 0.027, η2

G = 0.05, BF10 = 0.22. This
indicates that there were differential intra-individual differences
in C parameter values between experimental blocks between
video gamers and control participants. In detail, NVGs showed
larger C values than video gamers in Block 1. In contrast,
video gamers exhibited larger C values than NVGs in Block 2
with AVGs showing the largest increase (see Figure 4B). Thus,
partially in line with our hypothesis, the temporal dynamics of
TVA C parameter values were nicely paralleled by medium alpha
ratios in video gamers but not in NVGs. None of the other
main or interaction effects for C or K parameter values reached
significance (for a detailed description of the ANOVAs for TVA
C and K parameter values see Tables 4, 5, respectively).

At last, we analyzed whether there was an association between
the interaction effect for C and the interaction effect for medium
alpha ratios by means of a regression analysis with C parameter
difference values as criterion variable, medium alpha ratio
difference values as predictor variable and GROUP as dummy
variable (NVGs vs. NAVGs vs. AVGs) where NVGs were used
as reference. One non-video gamer and one action video gamer
had to be excluded from the analysis because they were identified
as outliers. The regression analysis indicated that the model was
significant, R2 = 0.41, F(5,30) = 4.10, p = 0.006, BF10 = 8.29.
The estimated linear models for NVGs, NAVGs and AVGs can
be inferred from equation (6), (7), and (8), respectively, where Y
indicates C parameter difference values, X medium alpha ratio
difference values, i the index corresponding to a participant and
εi the residual term:

NVGs : Yi = −1.64− 34.22 ∗ Xi + εi (6)

NAVGs : Yi = 2.76− 6.47 ∗ Xi + εi (7)

AVGs : Yi = −4.94+ 162.74 ∗ Xi + εi (8)

By comparing the slope values between equations (6), (7),
and (8), two differences between NVGs and NAVGs on the
one side, and AVGs on the other side are observable: firstly,
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FIGURE 3 | Impact of different exposure durations on average medium alpha ratios (10–12 Hz) and average upper alpha ratios (12–14 Hz) after processing stimulus
displays. Averages were computed based on log-transformed medium and upper alpha ratios using log10. Average alpha ratios > 0 indicate event-related
desynchronization (ERD); average alpha ratios < 0 event-related synchronization (ERS). N indicates the number of participants, η2

G generalized eta-squared, BF10

the evidence in support of the H1, and the dotted horizontal line indicates the absence of any modulation of alpha activity (alpha ratio = 0). Participants’ individual
average medium or upper alpha ratios for each exposure duration are indicated by different colors (17.8 ms: green, 35.6 ms: orange, 53.4 ms: purple, 89 ms: pink,
144.6 ms: light green, 198 ms: yellow) and shapes (17.8 ms: circle, 35.6 ms: square, 53.4 ms: diamond, 89 ms: triangle, 144.6 ms: triangle upside down, 198 ms:
empty square). Total averages over all participants of each exposure duration are indicated by black dots. Error bars indicate standard errors. The main effect
EXPOSURE DURATION was significant for medium alpha ratios after processing stimulus displays indicating that the extent of alpha power attenuation in a
frequency band from 10 to 12 Hz after stimulus processing increased in relation to increasing exposure durations up to 144.6 ms (i.e., ERD) but started to decrease
with even longer exposure duration again (i.e., ERS) (A). A similar effect was found for upper alpha ratios (B).

in NVGs and NAVGs there seems to be a negative relation
between C parameter difference values and medium alpha ratio
difference values, indicating that if NAVGs and NVGs showed
an increase in alpha power attenuation in a frequency band
from 10 to 12 Hz in the second experimental block relative
to the first one, their speed of information processing capacity
might decrease. In contrast, in AVGs, there was a positive
association, suggesting that if AVGs showed such an increase,
their speed of information processing might increase. Secondly,
the sizes of the slope values in NVGs and NAVGs were relatively
smaller than those of AVGs. For a visualization of the linear
models of each group, see Figure 5. This was in line with
our previous results for NVGs and AVGs but not NAVGs –
though one should not pay too much attention to the slope
value of the NAVGs’ model as it was quite small and hence not
significant. Thus, our regression analysis seems to support our
previous observation that intra-individual differences in alpha

power attenuation (10–12 Hz) and C parameter values between
experimental blocks may be differentially associated depending
on gaming behavior; and judging by the size of the slope value,
this seems to apply especially to AVGs. However, these results
should be considered with caution as the slope estimates in the
AVGs model were heavily biased by a rather small sample of
participants. For a more detailed description of the regression
analysis, see Table 6.

DISCUSSION

Given that EEG alpha power modulations represent a neural
substrate of attentional control, our results may support the
idea that the conjunction between reward-related learning and
attentional control represents a core mechanism in cognitive
improvement in video gamers (Bavelier and Green, 2019). This
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FIGURE 4 | Significant interactions GROUP [non-video gamers (NVGs) vs. non-action video gamers (NAVGs) vs. action video gamers (AVGs)] × TIME ON TASK
(Block 1 vs. Block 2) for average medium alpha ratios (10–12 Hz) after processing stimulus displays and theory of visual attention speed of information processing
parameter values (C parameter values). Average medium alpha ratios were computed based on log-transformed medium alpha ratios using log10. Average alpha
ratios > 0 indicate event-related desynchronization (ERD); average alpha ratios < 0 event-related synchronization (ERS). N indicates the number of participants, η2

G
generalized eta-squared, BF10 the evidence in support of the H1, and the dotted horizontal line indicates the absence of any modulation of alpha activity (alpha
ratio = 0). Group affiliation is indicated by different colors (NVGs: green, NAVGs: orange, AVGs: purple) and shapes (NVGs: circle, NAVGs: triangle, AVGs: square).
Total averages over all participants of each level combination of GROUP and TIME ON TASK are indicated by black dots. Error bars indicate standard errors. The
interaction for average medium alpha ratios indicates that participants in each group exhibited a larger alpha power attenuation in a frequency band from 10 to 12 Hz
(i.e., ERD) in the second experimental block relative to the first one, but that AVGs showed the largest increase (in ERD) (A). The interaction for C parameter values
indicates that NVGs exhibited larger C parameter values than video gamers in the first experimental block, but that video gamers showed larger C parameter values
in the second experimental block with AVGs displaying the largest increase (B). Thus, the temporal dynamics of C parameter values were nicely paralleled by
average medium alpha ratios in video gamers but not in NVGs.

TABLE 2 | ANOVA with GROUP [non-video gamers (NVGs) vs. non-action video gamers (NAVGs) vs. action video gamers (AVGs)] as between-subjects factor, TIME ON
TASK (Block 1 vs. Block 2) and EXPOSURE DURATION (17.8, 35.6, 53.4, 89, 144.6, and 198 ms) as within-subject factors and medium alpha ratios (10–12 Hz) as
dependent variable.

Predictor dfNum dfDen Epsilon F p η2
G BF10

Group 2.00 35.00 0.47 0.626 0.02

Time on task 1.00 35.00 17.65 0.000 0.02 >100

Group x Time on task 2.00 35.00 4.80 0.014 0.01 >100

Exposure duration 3.72 130.37 0.74 16.80 0.000 0.05 >100

Group × Exposure duration 7.45 130.37 0.74 0.90 0.510 0.01

Time on task × Exposure duration 4.14 144.77 0.83 0.61 0.662 0.00

Group × Time on task × Exposure duration 8.27 144.77 0.83 0.64 0.749 0.00

dfNum indicates degrees of freedom numerator. dfDen indicates degrees of freedom denominator. Epsilon indicates Greenhouse–Geisser multiplier for degrees of freedom,
p-values and degrees of freedom in the table incorporate this correction. η2

G indicates generalized eta-squared. BF10 indicates Bayes factors in favor of the H1. BF10
was only reported for significant main or interaction effects. Raw medium alpha ratios were log-transformed using log10 to prepare them for statistical analyses based
on linear models.
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TABLE 3 | ANOVA with GROUP [non-video gamers (NVGs) vs. non-action video gamers (NAVGs) vs. action video gamers (AVGs)] as between-subjects factor, TIME ON
TASK (Block 1 vs. Block 2) and EXPOSURE DURATION (17.8, 35.6, 53.4, 89, 144.6, and 198 ms) as within-subject factors and upper alpha ratios (12–14 Hz) as
dependent variable.

Predictor dfNum dfDen Epsilon F p η2
G BF10

Group 2.00 35.00 2.69 0.082 0.11

Time on task 1.00 35.00 2.27 0.141 0.00

Group × Time on task 2.00 35.00 0.67 0.516 0.00

Exposure duration 3.63 127.05 0.73 5.41 0.001 0.02 >100

Group × Exposure duration 7.26 127.05 0.73 0.96 0.467 0.01

Time on task × Exposure duration 4.59 160.63 0.92 0.77 0.564 0.00

Group × Time on task × Exposure duration 9.18 160.63 0.92 1.17 0.315 0.00

dfNum indicates degrees of freedom numerator. dfDen indicates degrees of freedom denominator. Epsilon indicates Greenhouse–Geisser multiplier for degrees of freedom,
p-values and degrees of freedom in the table incorporate this correction. η2

G indicates generalized eta-squared. BF10 indicates Bayes factors in favor of the H1. BF10
was only reported for significant main or interaction effects. Raw upper alpha ratios were log-transformed using log10 to prepare them for statistical analyses based
on linear models.

TABLE 4 | ANOVA with GROUP [non-video gamers (NVGs) vs. non-action video
gamers (NAVGs) vs. action video gamers (AVGs)] as between-subjects factor,
TIME ON TASK (Block 1 vs. Block 2) as within-subject factor and theory of visual
attention speed of information processing parameter values (C parameter values)
as dependent variable.

Predictor dfNum dfDen F p η2
G BF10

Group 2 35 0.33 0.720 0.01

Time on task 1 35 0.67 0.418 0.00

Group × Time on task 2 35 3.99 0.027 0.05 0.22

dfNum indicates degrees of freedom numerator. dfDen indicates degrees of freedom
denominator. η2

G indicates generalized eta-squared. BF10 indicates Bayes factors
in favor of the H1. BF10 was only reported for significant main or interaction effects.
Note that the low BF10 value for the GROUP × TIME ON TASK interaction was to
be expected as neither the main effect GROUP nor the main effect TIME ON TASK
were significant.

TABLE 5 | ANOVA with GROUP [non-video gamers (NVGs) vs. non-action video
gamers (NAVGs) vs. action video gamers (AVGs)] as between-subjects factor,
TIME ON TASK (Block 1 vs. Block 2) as within-subject factor and theory of visual
attention visual short-term memory capacity parameter values (K parameter
values) as dependent variable.

Predictor dfNum dfDen F p η2
G

Group 2 35 0.94 0.400 0.04

Time on task 1 35 0.16 0.694 0.00

Group × Time on task 2 35 1.82 0.178 0.01

dfNum indicates degrees of freedom numerator. dfDen indicates degrees of freedom
denominator. η2

G indicates generalized eta-squared.

is because, we found that inter-individual differences in speed
of information processing as operationalized by TVA between
video gamers and NVGs were associated with inter-individual
differences in post-stimulus EEG alpha power attenuation from
10 to 12 Hz. Hereby, it was particularly interesting that video
gamers did not outperform NVGs right from the start but in the
course of performing the paradigm and that this was paralleled
by an increase in alpha ERD in video gamers but not in NVGs –
which is well in line with the learning to learn approach (Bavelier
et al., 2012b; Green and Bavelier, 2012). Moreover, it was quite
interesting that our regression analysis indicated that foremost

FIGURE 5 | Regression model with each participant’s C parameter difference
value as criterion variable, each participant’s medium alpha ratio difference
value as predictor variable and GROUP [non-video gamers (NVGs) vs.
non-action video gamers (NAVGs) vs. action video gamers (AVGs)] as dummy
variable where NVGs were used as reference. Values > 0 indicate that
participants’ values in the second experimental block were larger than those
in the first block; values < 0 indicate that participants’ values in the first
experimental block were larger than those in the second block. Nj indicates
the number of participants per group, R2 the determination coefficient of the
model, BF10 the evidence in support of the model fit. Group affiliation is
indicated by different colors (NVGs: green, NAVGs: orange, AVGs: purple) and
shapes (NVGs: circle, NAVGs: triangle, AVGs: square). Histograms opposite to
the y- and x-axes indicate the distribution of C parameter and medium alpha
ratio difference values for each group (NVGs: green, NAVGs: orange, AVGs:
purple), respectively. Note that one non-video gamer and one action video
gamer had to be excluded from the analysis as they were identified as outliers
using Cook’s distance. While there were relatively small and negative relations
between C parameter and medium alpha ratio difference values in NVGs and
NAVGs, there was a strong positive association in AVGs, indicating that the
association between intra-individual differences in both average medium alpha
ratios and C parameter values between experimental blocks was particularly
strong in AVGs.

AVGs might benefit from this increase in alpha ERD as they
showed the strongest positive relation between TVA C parameter
and medium alpha ratio difference values – which supports
the idea that gamers might benefit specifically from playing
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TABLE 6 | Regression analysis with C parameter difference values as criterion
variable, medium alpha ratio difference values as predictor variable and GROUP
as dummy variable [non-video gamers (NVGs) vs. non-action video gamers
(NAVGs) vs. action video gamers (AVGs)] where NVGs were used as reference.

Predictor b b 95% CI [LL, UL] Fit

Intercept −1.64 [−6.09, 2.81]

Medium alpha ratio
difference values

−34.22 [−139.63, 71.18]

NAVGs 4.40 [−1.62, 10.41]

AVGs −3.30 [−12.28, 5.68]

Medium alpha ratio
difference
values × NAVGs

27.76 [−109.95, 165.47]

Medium alpha ratio
difference
values × AVGs

196.96 [53.72, 340.20]

R2 = 0.41
95% CI[0.05, 0.53]
F(5, 30) = 4.10,

p = 0.006,
BF10 = 8.29

b represents unstandardized regression weights. LL and UL indicate the lower and
upper limits of a confidence interval without corrections for multiple comparisons,
respectively. R2 indicates the determination coefficient. BF10 indicates the Bayes
factor in favor of the model fit.

action video games (Achtman et al., 2008). Therefore, our data
suggest that attentional control as operationalized by EEG alpha
power modulations might play a considerable role in learning
mechanisms relevant for cognitive improvement in video gamers
(Bavelier and Green, 2019).

We show that alpha ERD in a frequency range from 10 to
12 Hz may represent a neural substrate of speed of information
processing as operationalized by TVA. Considering that the
extent of ERD in a similar alpha frequency band after stimulus
processing had already been related to reaction times (Nenert
et al., 2012), this result was not surprising, but it might play
a considerable role for new vistas on TVA. This is because,
according to TVA (Bundesen, 1990; Kyllingsbaek, 2006; Dyrholm
et al., 2011; Bundesen et al., 2015), visual information is processed
by means of two core attentional processing components, i.e.,
filtering and pigeonholing, where filtering allows the selection of
specific visual features, e.g., colors, while pigeonholing allows for
the selection of visual categories, e.g., letters (Broadbent, 1970).
Based on the assumption that all visual information is processed
in parallel and that there is a limited capacity of the visual
short-term memory store, filtering and pigeonholing represent
mechanisms to determine the processing rate or probability for a
visual stimulus to be encoded into the visual short-term memory
store as described by the rate equation (9)

vx (i) = η(x, i)βi
wx∑
z∈S wz

(9)

where vx(i) indicates the processing rate that x is an element of
category i, η(x, i) the sensory evidence that x is an element of
i, βi the perceptual decision bias to favor category i over other
categories, and wx the relative attentional weight in favor of an
object x – which is divided by the sum of attentional weights of

all remaining objects in the visual field S. The attentional weight
term wx can be described further by equation (10)

wx =
∑
j∈G

η(x, j)πj (10)

where j indicates a visual category aka visual feature, G the set
of all features that may be associated with a pertinence value,
η(x, j) the sensory evidence that x belongs to feature j, and
πj the pertinence or weight in favor of a feature j (Dyrholm
et al., 2011). Thus, βi and wx represent pigeonholing and filtering,
respectively. On top of that, based on the assumption that the rate
equation is dependent on the exposure duration of visual stimuli
and the number of visual stimuli in the visual field, and that the
attentional capacities of healthy humans are equally spread across
the visual field, vx(i) may also be considered as a fraction of the
total processing capacity at a given time point in a multi-stimulus
setting where the processing capacity is spread across the whole
visual field. Thus, the processing rate of a stimulus can also be
described according to equation (11)

vx = C
wx∑
z∈S wz

(11)

where vx indicates the processing rate of an object x, C
the fixed limited processing capacity measured in Hz or the
number of elements that can be encoded per second (aka TVA’s
speed of information processing parameter) and wx the relative
attentional weight in favor of object x (Dyrholm et al., 2011).
Thus, according to TVA, visual speed of information processing
is moderated by the attentional weighting term – or by an
individual’s filtering capacity.

Based on Klimesch (1997, 2012) and Klimesch et al. (2011),
one might expect that oscillatory activity in the lower alpha
frequency band was associated with TVA’s rate equation. But in
contrast, our data suggest that higher-level cognitive processing
might be a mechanism either of the C parameter or the
conjunction between the C and the attentional weight parameters
as C parameter values were associated with alpha power
attenuation in a frequency band from 10 to 12 Hz after stimulus
processing. A potential explanation here might be that the two
parameters may represent the retrieval of specific knowledge
systems to semantically encode sensory information (Klimesch
et al., 2011; Klimesch, 2012). According to Klimesch et al.
(2011) and Klimesch (2012), a knowledge system refers to a
neural network that is associated with implicit and explicit
aspects of long-term memory. Hereby, alpha phase alignments
in the medium or upper alpha frequency bands are assumed
to represent the onset of retrieving from a knowledge system,
while alpha power modulations in the medium or upper alpha
frequency band may modulate the amplification of the retrieval
of relevant and the suppression of the retrieval of irrelevant
information from a knowledge system (Klimesch et al., 2011;
Klimesch, 2012). But further research investigating the role of
lower alpha oscillations and the conjunction between lower and
medium or upper alpha oscillations and TVA C as well as wx
parameter values would be necessary to gain more insights on the
role of knowledge systems in TVA.
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Furthermore, we would like to discuss potential implications
of our results at the intersection of computer sciences, health
care and the gaming industry. Considering that there are already
customized video games that are used for clinical purposes
(Kollins et al., 2020); and video games where on-screen characters
may even be controlled by means of brain oscillatory activity or
event-related potentials using brain-computer interfaces (Bayliss,
2003; Nijholt et al., 2009), which may enable people with
a physical disability to enjoy video gaming and feel more
inclusive (see, Bos et al., 2010, for a more detailed review),
one might question the significance of gaming effects associated
with commercially available video games. One of the largest
shortcomings of the latter is the lack of standardization. The
issue here is that if we compare markers of neural activity and
cognitive processing between participants who differ in their
gaming behavior, or even if we compare changes in such markers
associated with video gaming training regimes, we can hardly tell
what differential characteristics between the groups or between
the training regimes caused the inter-individual differences in
neural activity and cognitive processing. On the other hand,
research on gaming effects related to commercially available video
games lays the foundation for the development of customized
video games for clinical treatment, for fostering learning abilities,
or for making commercially available video games even more
entertaining. This is because, these frequent observations that
inter-individual differences in neural and cognitive processing
may be related to inter-individual differences in gaming behavior
tell us that there may be aspects of commercially available
video games that play a considerable role for human learning.
Understanding the mechanisms underlying these phenomena,
in turn, may then be the key for more significant or fruitful
applications. For instance, if EEG alpha power modulations
specifically in the medium and upper frequency bands turn out to
be a robust neural substrate of cognitive improvements associated
with playing commercially available video games, they could be
used as a parameter for adjusting the complexity of the gameplay
of video games in brain-computer interfaces.

With this being said, we would like to discuss some of the
shortcomings in our experimental design as well. For instance,
our individual group samples sizes were rather small which
indicates a low statistical power. But considering that most
of our statistical analyses (Pearson’s moment correlation tests,
ANOVAs and regression analysis) were based on our total sample
size (outliers not included), our statistical power should be
acceptable. On top of that, we used type II sums of squares
to compensate for unbalanced group samples (Langsrud, 2003);
and in addition to that, our samples were similar to sample
sizes of previous research on gaming effects (Li et al., 2009,
2011; Wu et al., 2012; Wilms et al., 2013; Schubert et al.,
2015). Thus, we acknowledge that statistical power might be
considered an issue in our study, but we argue that we used
statistical methods that were less prone to individual group
sample sizes and therefore, sufficient to identify reliable gaming
effects. Furthermore, we did not find correlations between K
parameter values and alpha ratios. We suggest that a reason
for this may be that we analyzed a rather early time window
where the CDA may not yet have been fully observable:

Wiegand et al. (2014b), for instance, observed the onset of this
event-related potential approximately 300 ms after stimulus
processing and it persisted until a response was provided. By
combining TVA data and EEG data from two different paradigms
where no mask displays were used in the EEG paradigm but
a blank screen of 900 ms, it was possible to investigate the
CDA (Wiegand et al., 2014a,b, 2016). In contrast, based on
our experimental design, it was more difficult to study this
time window as we used mask displays and ratios based on
500 ms segments.

Besides, we did not exactly replicate previous findings where
video gamers exhibited larger C parameter values than NVGs
(Wilms et al., 2013; Schubert et al., 2015). We believe that
one plausible reason for this might be that we used different
classification criteria for participants than Wilms et al. (2013)
and Schubert et al. (2015). Wilms et al. (2013), for instance,
classified participants as experienced players if they had played
action video games for more than 15 h a month, as casual
players if they had played 4–8 h per month and as non-
players if they played less than 2 h per months. In contrast,
Schubert et al. (2015) classified participants as video game
experts if they had played action video games at least 10 h a
week in the last 6–12 months or as non-experts if they had
played action video games less than 1 h a week in the last
6–12 months. In comparison, we also considered additional
gaming habits to action video gaming, and we used different
time constraints (Green et al., 2017). Thus, and in consideration
that the classification of participants according to their gaming
behavior may be in any case somehow arbitrary given that,
for instance, action video games can be understood as video
games where “under the most basic definition the player’s
on-screen character can run, jump, roll, shoot, or fly, but
the defining characteristic is that enemies and obstacles are
overcome by physical means, rather than involved intellectual
problem solving” (Next Generation, 1996, p. 29) (which is
a rather unspecific description), we argue that differences in
classification criteria are likely associated with slightly different
gaming effects. Recruiting more specified and, hence, more
differentiable groups might be a solution for this. For instance,
Qiu et al. (2018) subdivided participants in AVGs and control
participants based on their reported skill score in the video
game League of Legends. Alternatively, in an attempt to
increase effects between groups, a gaming group of professional
e-sportsmen/sportswomen could be recruited.

Another limitation might be that despite our efforts to
properly process the data, either our EEG power values, or our
TVA estimates might not have been perfectly accurate because
e.g., the factor exposure duration might have contaminated our
procedures. Such contaminations are, unfortunately, inevitable
using TVA-algorithms. Moreover, we need to point out that
our data only show a correlational and not a causal relation
between faster visual information processing and EEG alpha
power modulations in gamers. To show a causal relation, one
might need to apply an experimental design comprising a video
gaming training regime.

Nevertheless, our data indicate that there may be inter-
individual differences in event-related EEG alpha power
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modulations related to inter-individual differences in habitual
gaming behavior, and that these modulations might go along
with inter-individual differences in speed of visual information
processing as operationalized by TVA. We conclude from
this, that EEG alpha power modulations may be a promising
neural substrate of alterations in visual cognitive processing
in video gamers.
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Abstract

Video game players’ faster speed of information processing has been shown to

coincide with altered posterior alpha power modulation, that is, brain

oscillatory activity around 10 Hz. Thus, it was proposed that improved

cognitive processing in video game players may be related to differential alpha

activity. However, a causal relationship thereof has not yet been established.

We addressed this by conducting a non-invasive brain stimulation study to

demonstrate that modulating alpha power using transcranial alternating cur-

rent stimulation (tACS) may impact on speed of information processing. Fur-

thermore, we aimed to show that this effect correlated with altered attentional

control, for example, visuospatial attention and/or top-down control proces-

sing, given that this has been suggested to contribute to video gaming effects.

Therefore, we recruited 19 non-video game players to undergo one of five

brain stimulation conditions while performing a visual short-term memory

task at five different days, respectively. Thus, we applied tACS either at 10 Hz

(alpha frequency) or at 16.18 Hz (control frequency) either over their left or

right posterior parietal cortex (PPC) or a sham stimulation. Individuals’ speed
of information processing, visuospatial attention and top-down control proces-

sing were operationalised using a computational modelling approach based on

the theory of visual attention. We found that alpha-tACS applied over individ-

uals’ left PPC altered their visuospatial attention orientation but not their

speed of information processing. Thus, we were not able to establish a causal

relationship between speed of information processing and altered visuospatial
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attention processing through alpha power modulation using non-invasive

brain stimulation.

KEYWORD S
attentional control, brain stimulation, computational modeling, transfer effects

1 | INTRODUCTION

Video game players, that is, individuals who regularly
play video games for several hours a week, appear to
develop superior cognitive processing skills through play-
ing video games. For instance, they have been shown to
outperform non-video game players, that is, individuals
not sharing this habit, in psychometric tasks operationa-
lising attentional processing (Bediou et al., 2018; Green &
Bavelier, 2003), perception (Li et al., 2010; Pohl
et al., 2014), executive control (Cain et al., 2012; Green
et al., 2012), memory (Blacker & Curby, 2013;
McDermott et al., 2014) and probabilistic inference
(Green et al., 2010; Schenk et al., 2017). Moreover, non-
video game players displayed similar cognitive improve-
ments after having participated in a video game training
(Bejjanki et al., 2014; Blacker et al., 2014; Green
et al., 2010; Green & Bavelier, 2003; Strobach
et al., 2012). Thus, video gaming seems to impact not
only on individuals’ gaming performance but also inad-
vertently on their cognitive functions—a phenomena
known as transfer effect (Perkins & Salomon, 1992).

The underlying mechanism thereof is not yet fully
understood. Bavelier, Green, et al. (2012), for instance,
suggested that video games might train individuals in
developing efficient cognitive strategies by improving
their probabilistic inference, that is, the ability to learn
statistical regularities. Attentional control, the conjunc-
tion between attention and executive control functions to
enable individuals to focus on processing relevant infor-
mation while being able to suppress irrelevant informa-
tion, may play a considerable role in this regard
(Bavelier & Green, 2019). Bejjanki et al. (2014), for
instance, showed that video game players did not outper-
form non-video game players in a psychometric task from
the start on but after time on task; and that this effect, in
turn, correlated with an increasing signal-to-noise ratio
during information processing.

Furthermore, in support of this, video game players’
superior cognitive processing correlated with alterations
in neural substrates of attentional control functions
(Bavelier, Achtman, et al., 2012; Föcker et al., 2018, 2019;
Krishnan et al., 2013; Mishra et al., 2011; Tanaka
et al., 2013; Wu et al., 2012). Hilla et al. (2020), for
instance, found that video game players’ faster speed of

information processing was associated with an increase
in posterior parietal alpha amplitude attenuation in the
course of time on task. Alpha activity refers to brain oscil-
latory activity around 10 Hz. It is widely considered as a
neural substrate of attention processing given that its
amplitude modulation coincides with differential infor-
mation processing. Hereby, attenuated alpha activity
appears to be associated with better and increased alpha
activity with worse information processing, respectively
(Capotosto et al., 2009; Jensen & Mazaheri, 2010; Peylo
et al., 2021; Thut et al., 2006). Thus, Hilla and colleagues’
(Hilla et al., 2020) results indicate that video game
players’ faster information processing might be related to
them having been able to learn to deploy attention more
efficiently than control individuals (see, Bavelier &
Green, 2019).

However, this was just a correlational finding. Thus,
it is not clear yet whether alpha power modulation may
indeed impact on individuals’ speed of information
processing.

Furthermore, this alpha power modulation did not
provide information which and how attentional control
functions contributed to enhanced information proces-
sing (Hilla et al., 2020). To address these issues, we con-
ducted a non-invasive brain stimulation study where
non-video game players performed a visual short-term
memory task at five different days and experienced one
of five different stimulation conditions at each day. The
aim of this study was to demonstrate that modulating
posterior alpha activity using transcranial alternating cur-
rent stimulation (tACS) may affect individuals’ speed of
information processing by impacting on their attentional
control functions. Thus, we would imitate the video gam-
ing effect previously described (Hilla et al., 2020) and
acquire indirect evidence indicating that the conjunction
between alpha power modulation and altered attentional
control may account for enhanced cognitive processing
as observed in video game players (Bavelier &
Green, 2019). We used tACS therefore because it repre-
sents an established non-invasive brain stimulation
method to alter brain oscillatory activity (Herrmann
et al., 2016). Moreover, applied at alpha frequency over
the posterior parietal cortex (PPC), it has been shown to
reliably modulate visuospatial attention processing—an
essential cognitive control function (Helfrich et al., 2014;
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Kemmerer et al., 2022; Vogeti et al., 2022). Furthermore,
similar to Hilla and colleagues (Hilla et al., 2020), we
operationalised individuals’ speed of information proces-
sing by means of a computational modelling approach
based on the theory of visual attention (TVA) (Bundesen
et al., 2015; Dyrholm et al., 2011; Kyllingsbæk, 2006).
Likewise, their attentional control functions were opera-
tionalised by means of TVA visuospatial attention and
top-down control parameter values.

Besides that, we modelled and investigated individ-
uals’ TVA visual short-term memory capacity. This was
because TVA visual short-term memory capacity was
likely affected by tACS as well given that, firstly, short-
term memory performance has been shown to be related
to alpha activity (Riddle et al., 2020; Sauseng et al., 2009).
Secondly, TVA speed of information processing and
short-term memory capacity are highly correlated (Finke
et al., 2005). Thus, differential TVA visual short-term
memory capacity likely coincides with altered speed of
information processing through alpha power modulation.
In this regard, in particular right hemispheric brain stim-
ulation might induce alterations in TVA cognitive proces-
sing. In support of this, Hung et al. (2005), Kraft et al.
(2015) and Moos et al. (2012) showed that TVA visual
short-term memory capacity and top-down control were
modulated by right but not left hemispheric posterior
brain stimulation.

Thus, we hypothesised that tACS applied at alpha fre-
quency (10 Hz) over individuals’ PPC would alter their
TVA speed of information processing (H1) (Hilla
et al., 2020). Moreover, we expected this effect to be
related to alterations in TVA visuospatial attention
and/or top-down control processing (H2) (Bavelier &
Green, 2019; Kemmerer et al., 2022). In addition to that,
we anticipated that differential TVA short-term memory
capacity may coincide with these effects (H3) (Finke
et al., 2005; Riddle et al., 2020; Sauseng et al., 2009). Fur-
thermore, we expected that these effects might be more
pronounced as result of right than left hemispheric tACS
application (H4) (Hung et al., 2005; Kraft et al., 2015;
Moos et al., 2012).

2 | METHODS

2.1 | Participants

We estimated that 18 individuals were required to
achieve a statistically significant effect, assuming a mod-
erate effect size (eta2p = .10) with a statistical power of
80% and a chance of committing a Type I error of 5% in a
repeated measures design where each individual’s perfor-
mance would be measured five times (Campbell &

Thompson, 2012). Thus, we recruited 19 healthy volun-
teers to participate in experiments at five different days;
that is, 95 test sessions were run in total (Nfemale= 9;
Nmale= 10). At each day, they performed a visual short-
term memory task and experienced one of five different
brain stimulation conditions. Participants were between
19 and 30 years old (M= 23; SD= 2.54). All except for
one individual with mixed handedness were right handed
(Veale, 2014). Moreover, most of them were undergradu-
ate students (NUndergraduate= 10; NBachelor’s Degree= 6;
NTraining= 1; NMaster’s Degree= 1; NPhD= 1) and pursued
studies foremost in Social Sciences, for example, Psychol-
ogy (NSocial Sciences= 11; NMedicine= 4; NHumanities= 1;
NNatural Sciences= 1; NTechnology= 1; NNot a student= 1). The
local ethics review board approved this study. All volun-
teers provided written informed consent in line with the
Declaration of Helsinki, and all volunteers were compen-
sated for their participation either with money or student
lab tokens.

2.2 | Materials and procedures

2.2.1 | Inclusion criteria and demographic
data acquisition

Only healthy individuals between 18 and 40 years of age
with normal or corrected-to-normal vision who fulfilled
the criteria of non-video game players were eligible to
participate in this study (Green et al., 2017; Large
et al., 2019). All individuals were thoroughly screened for
(1) any history of seizures, epilepsy, fainting or traumatic
brain injury, (2) any type of metal objects in their body
(though retainers and dental fillings were allowed) and
(3) residual risk factors, such as a history of surgery on
their spine, drug/alcohol or medication intake, tinnitus,
pregnancy or sleep deprivation. Only if none of these fac-
tors applied to an individual were they allowed to partici-
pate in the experiments.

2.2.2 | Task

We developed a visual short-term memory task by means
of Python’s Tkinter library1 and run it using the Spyder
IDE2 on a computer with an AMD AthlonTM II X2 B24
processor (AMD, Sunnyvale, CA, United States) and a
64-Bit Windows 7 operating system (Microsoft, Redmond,
WA, United States). Stimuli were presented on a
1700/43 cm monitor (Acer Group, Taiwan) with a refresh

1https://wiki.python.org/moin/TkInter
2https://www.spyder-ide.org/
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rate of 60 Hz, whereas participants sat approximately
80 cm distant from this screen on a comfortable chair in
a darkened room.

The participants performed the same visual short-
term memory task at each day while one of five different
brain stimulation protocols was applied simultaneously.
The visual short-term memory task comprised a training
and two blocks of experimental trials where individuals
had to memorise two white shapes that were depicted on
a virtual circle (radius of 2.72� of visual angle) either in
the left or right visual field, either with or without black
shapes as distractors at one of three different exposure
durations. In detail, each trial started with the presenta-
tion of a blank screen. After 1002 ms, a white fixation
cross (.72� � .72� of visual angle) appeared in the centre
of the screen. We asked the participants to focus their
attention to this fixation cross. After additional 1002 ms,
a memory display was depicted. A memory display
always contained two unique white shapes and in half of
the trials two unique white shapes and four unique black
shapes (approximately 2.08� � 2.08� of visual angle). We
asked the participants only to memorise white and to
ignore black shapes. These shapes could be an ellipse, a
diamond, a pentagon, a rhombus, a square, a trapezoid
or a triangle. Shapes were depicted at 210�, 270� and 330�

in the left or at 30�, 90� and 150� in the right visual field,
respectively. But white shapes were presented either only
in the right or left visual field. After 66.8, 100.2 or
133.6 ms, a memory display was substituted by a mask
display. This comprised white squares at each location
where a shape could have been presented with random
black polygons depicted on them (2.29� � 2.29� of visual
angle). After another 501 ms, the participants were
instructed to report which shapes they memorised by
pressing keys marked with the corresponding shapes.
Therefore, we marked keys with luminescent stickers.
Thus, an ellipse was glued on key “f”, a diamond on key
“g”, a pentagon on key “h”, a rhombus on key “j”, a
square on key “v”, a trapezoid on key “b” and a triangle
on key “n”, respectively. These stickers served as a refer-
ence guide.

Thus, the participants were not required to learn
button-to-stimulus response mappings. The participants
were not supposed to guess. They were allowed to refrain
and could indicate between one and two shapes. There
was no response time limit. The participants started the
next trial by pressing the space key. For a visualisation of
the task, see Figure 1. One training comprised 24 trials.
Training trials differed from experimental ones by provid-
ing feedback after each response: if the participants
refrained or indicated at least one incorrect shape during
a training, a black “X” (.93� � .93� of visual angle) was
presented in the centre of the screen for 501 ms after the

space key had been pressed. But this was not the case
during the experiment. Individuals were allowed to con-
duct up to two trainings at the first day and one training
on each following testing session. Then, the participants
performed two blocks of 252 experimental trials, that is,
504 experimental trials in total. There were 21 unique
combinations how shape stimuli could have been paired
in a memory display (e.g. ellipse and square). These pairs
could then either be presented in the left or right visual
field and either on their own or with four additional
black distracting shapes. To ensure that each shape was
equally often presented at each position in the visual
field, target pairs were displayed according to three con-
ditions in each visual field both in normal and reversed
order, for example, ellipse at the upper and square at the
lower position of the left visual field, and vice versa.
Thus, there were 504 possible memory display combina-
tions (42 shape pairings [normal and reversed order] dis-
tributed across six location conditions [three in both
visual fields] and presented either on their own or with
distractors). Presenting each memory display at each
exposure duration would have resulted in 1512 experi-
mental trials. On average, individuals would have worked
for 3 h on this task. Moreover, individuals would have
undergone approximately 3 h of brain stimulation—
which we considered unreasonable. Therefore, memory
displays were randomly but evenly associated with expo-
sure durations. Thus, all participants performed 252 trials
where memory displays had been presented with targets
in either the left or right visual field and with or without
distractors at each testing session, respectively. Moreover,
all participants performed 168 trials where memory dis-
plays had been presented at 66.8, 100.2 or 133.6 ms. Note
that the trial number of each condition (e.g. memory dis-
plays with targets presented in the left visual field with-
out distractors at the longest exposure duration) differed
slightly within and between individuals and between test-
ing sessions given that exposure durations were ran-
domly assigned to memory displays. Crucially, these
differences were not significant.3 Thus, potential perfor-
mance differences across conditions were unlikely related
to different numbers of trials of experimental conditions.
Furthermore, the order of memory displays was always
random. Thus, the participants were not able to antici-
pate either the identity or location of target shapes or the
condition or exposure duration of a memory display.

The participants had sufficient opportunities to make
breaks. This was because, firstly, there was no response
time limit but a new trial was started by pressing the
space key. Secondly, we asked the participants to make a

3Please review the Task section of our supporting information for more
details on conditional trial distributions.
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NEUROGAME 48

longer break between experimental blocks. No brain
stimulation was applied during these longer breaks.

2.3 | Theory of visual attention cognitive
functions

2.3.1 | Parameter value estimation

We operationalised visual short-term memory capacity (K),
visual speed of information processing (C), a temporal
threshold for conscious information processing (effective
exposure duration; t0), top-down control (α) and visuospa-
tial attentional processing (spatial bias) by means of a com-
putational modelling approach based on TVA (Bundesen
et al., 2015; Dyrholm et al., 2011; Kyllingsbæk, 2006).
Parameter values reflecting these cognitive functions were
estimated based on performance in different task condi-
tions using maximum likelihood method.

K parameter values (visual short-term memory capac-
ity) were computed from accuracy data in response to
memory displays presented at different exposure

durations and based on different set sizes using a mass
function as described in Equation (1) (Dyrholm
et al., 2011; Kyllingsbæk, 2006). Hereby, i indicates an
individual, j the number of items that may be memorised,
n the total number of items presented in the visual field
and P the probability for memorising j items.

Ki ¼
Xn

j¼1
P jð Þ� j ð1Þ

C and t0 parameter values (speed of information pro-
cessing; effective exposure duration) were computed from
accuracy data in response to memory displays presented
at different exposure durations as well (Dyrholm
et al., 2011; Kyllingsbæk, 2006). The idea underlying the
modelling approach of these three parameters is that the
number of memorised items should increase exponen-
tially as a function of exposure duration: the longer the
exposure duration, the easier the encoding, the more
likely targets may be memorised.

Thus, the probabilities P for memorising j items
depend on how many items j had been correctly recalled

F I GURE 1 Participants performed a visual short-term memory task where they memorised white shapes depicted on an invisible circle

either in the left or right visual field, either with or without black shapes as distractors at one of three different exposure durations. There

were always two white shapes regardless of memory display condition. Memory displays were subsequently masked by white squares with

random black polygons depicted on them to prevent afterimages. At the end of each trial, the participants were asked to indicate which

shapes they memorised by pressing keys on a regular keyboard marked with corresponding shapes. There was no response time limit. Each

new trial was initiated by pressing the space key. At the onset of each trial, a blank gray screen was shown. After 1002 ms, a white “+” was
depicted in the centre of the screen to which the participants were supposed to focus their gaze to. After 1002 ms, a new memory display was

shown.
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NEUROGAME 49

at each exposure duration (but see, Dyrholm et al. [2011],
for more information on this relationship). Consequen-
tially, the asymptotic level of this function indicates the
visual short-term memory capacity, K; its starting point
the minimum exposure duration required for conscious
information processing, t0; and the gradient parameter of
its slope line visual speed of information processing, C.
Temporal precision is crucial here. Thus, we applied
masks to prevent visual afterimages. On top of that, we
controlled for temporal imprecision related to operations
run on non-real time operating systems by computing the
mode value of distributions of difference values between
predicted and observed time delays between stimuli
applying the default_timer function of Python’s timeit
library.4 Thus, we corrected for temporal imprecision by
adding respective mode difference values to the predicted
exposure durations. Consequentially, 66.8, 100.2 and
133.6 ms were changed to 71.2, 106.8, and 126.8 ms for
computational modelling (see Hilla et al. (2020) for a sim-
ilar approach).

TVA α parameter values (top-down control) were
computed from differences in accuracy data in response
to trials where either only targets or targets and distrac-
tors had been displayed in memory displays, see
Equation (2) (Dyrholm et al., 2011; Kyllingsbæk, 2006).
An individual i with high top-down control should allo-
cate attention resources w stronger to targets than dis-
tractors resulting in a larger ratio between the two
conditions as compared to an individual i with lower top-
down control. Thus, α values range between 0 and 1 with
0 indicating high top-down control and 1 similar atten-
tional weighting in both conditions. We then applied a
log10-transformation on α values after adding 1 as a con-
stant to enable linear comparisons. As a result, α values
ranged between 0 and .30 with 0 suggesting high and .30
low top-down control.

αi ¼wdistractorsi

wtargetsi

ð2Þ

TVA spatial bias values were computed from differ-
ences in accuracy data in response to targets presented at
different spatial locations in memory displays (Dyrholm
et al., 2011; Kyllingsbæk, 2006). Hereby, attentional
weights w were estimated for every position depending
on how well the participants responded to these spatial
locations. We then put the attentional weights of stimuli
presented in the left visual field in relation to those dis-
played in the right to compute a spatial bias, see
Equation (3). Hereby, i indicates an individual and w an
attentional weight of either the left ( j) or right (k) visual

field. Values > .5 indicate a leftward and values < .5 a
rightward spatial bias.

Spatial Biasi ¼
P3

j¼1wjiP3
j¼1wjiþ

P3
k¼1wki

ð3Þ

2.3.2 | Differential model assumptions:
balanced vs. biased visuospatial attentional
processing

TVA parameter values may be estimated under the
assumptions that attentional resources are either distrib-
uted homogeneously, that is, balanced, or biased in the
visual field. In theory, healthy individuals’ performances
should fit well to a balanced model given that they
should be able to allocate attentional resources homoge-
neously in the visual field. Nevertheless, it has also been
frequently reported that healthy individuals display a
visuospatial bias (Brooks et al., 2014). Thus, their perfor-
mance may be fit to both model assumptions.

However, such model fit assumptions may impact on
TVA parameter estimation beyond attentional resource
allocation resulting in divergent parameter estimates.
K parameter estimation, for instance, depends on set sizes
of memory displays (Dyrholm et al., 2011;
Kyllingsbæk, 2006). Given a balanced model, probabili-
ties P for memorising j items may be computed based on
the assumption that individuals memorise up to two tar-
gets irrespective of their spatial location in the visual
field. In contrast, provided a biased model, these proba-
bilities P may be computed based on the assumptions
that targets had been presented at six different locations
and either with or without distractors. Consequentially,
probabilities P might be largest for memorising 0, 1 or
2 items given a balanced model, whereas they may be
largest for memorising more than two items provided a
biased model. Thus, K parameter values may be over-
estimated given a biased as compared to a balanced
model. Furthermore, for similar reasons TVA α parame-
ter value estimates might differ depending on model
assumptions. These are computed based on performance
in response to memory displays with targets only as com-
pared to targets and distractors. Given a balanced model,
combinations of these conditions (e.g., targets presented
at six different spatial locations) may be neglected. In
contrast, provided a biased model, attentional weighting
towards targets presented at different spatial locations
and either with or without distractors is accounted for.
Thus, α estimates might diverge. Therefore, we con-
ducted a series of control analyses to determine which4https://docs.python.org/3.7/library/timeit.html
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NEUROGAME 50

estimates (based on a balanced or biased model) should
be used for further analyses.5

As a result, we chose to use TVA estimates based on
the biased TVA model because individuals’ performances
fit best to this model (as determined based on AICc
values). However, there were three exceptions:
(1) K parameter estimates were based on the balanced
model because they appeared to have been over-
estimated based on the biased model; (2) data of three
testing sessions fit better to the balanced than the biased
model; and (3) there were five cases where the deviation
between estimates given a biased and a balanced model
were unreasonably large because of extreme values of the
biased model (two cases for t0 and three cases for
C estimates). Therefore, we substituted these estimates by
estimates of the balanced model.

2.3.3 | Brain stimulation

We used a NE® starstim tACS device (Neuroelectrics®,
Barcelona, Spain) and four electrodes mounted in a neo-
prene cap to apply tACS online at 2000 μA (zero-to-peak
intensity). There were five different stimulation condi-
tions: Condition 1: 10-Hz stimulation applied to the left
PPC; Condition 2: 10-Hz stimulation applied to the right
PPC; Condition 3: 16.18-Hz stimulation applied to the left
PPC; Condition 4: 16.18-Hz stimulation applied to the
right PPC; and Condition 5: sham stimulation applied
over the medial superior parietal cortex. Online means
that the stimulation was applied throughout the whole
time while participants performed the task. The stimula-
tion started directly before the participants started per-
forming experimental trials and was stopped after they

had performed the last experimental trial. Each stimula-
tion was applied on a different day. Hereby, we deter-
mined all possible unique combinations of conditions per
day and randomly selected one such stimulation protocol
for each participant. Thus, each participant experienced a
unique stimulation protocol. There was no indication
that either one of the stimulation conditions was applied
more frequently on a specific day as compared to other
days. Thus, it is rather unlikely that order effects con-
founded our data. For left hemispheric stimulation, the
stimulation electrode was mounted at electrode site P3,
and return electrodes were mounted at electrode sites Oz,
Cz and T7. In contrast for right hemispheric stimulation,
the stimulation electrode was mounted at electrode site
P4 and return electrodes were mounted at electrode sites
Oz, Cz and T8.6 As can be inferred from Figure 2, these
protocols should have resulted in a fairly focal stimula-
tion of the parietal cortex (Bender et al., 2019; Helfrich
et al., 2014; Moliadze et al., 2019; Wolinski et al., 2018).
For sham stimulation, the stimulation electrode was posi-
tioned at electrode site Cz and return electrodes were
mounted at electrode sites P3, Oz and T7. Hereby, a stim-
ulation of 16.18 Hz was ramped up at the onset of experi-
mental trials but ramped down again after 3 s and did
not further continue throughout the experiment. After
their final session, the participants were informed of the
aim of this study and asked to indicate at which day
sham stimulation may have been applied. None of the
individuals were able to correctly indicate this. Moreover,
none of the individuals reported differential sensations
during testing sessions. Thus, we are confident that their

5See Methods in supporting information for more details.

6For the interested reader, see Brain Stimulation in supporting
information, for a discussion why alpha-tACS applied at 10 Hz as
compared to an individual alpha frequency (IAF) was sufficient for our
research purpose.

F I GURE 2 Electric field model(s). (left side) Simulation of an electric field generated in the left hemisphere by mounting a stimulation

electrode at P3 and return electrodes at Oz, Cz and T7, respectively. (right side) Simulation of an electric field generated in the right

hemisphere by mounting a stimulation electrode at P4 and return electrodes at Oz, Cz and T8, respectively. The magnitude of the electric

field is indicated in jEj.
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NEUROGAME 51

performance had been unlikely affected by expectation
effects.

2.4 | Statistical analyses

2.4.1 | Model fitting

We computed hierarchical generalised (linear/additive)
regression models to test our hypotheses. Hereby, stimu-
lation condition (Condition 1 vs. Condition 2
vs. Condition 3 vs. Condition 4 vs. Condition 5), target
position (left vs. right), trial type condition (targets only
vs. targets and distractors), exposure duration (71.2 ms
vs. 106.8 ms vs. 128.6 ms), TVA K (short-term memory
capacity), C (speed of information processing), t0 (effec-
tive exposure duration), α (top-down control), and spatial
bias (visuospatial attention) parameter values and indi-
viduals’ error rate represented variables of interest.

However, we only analysed t0 for exploratory reasons
given that we had no strong hypothesis how tACS might
impact on this parameter. We determined the signifi-
cance of a model by comparing its second-order Akaike
information criterion (AICc) value to the AICc value of a
reference model. Smaller AICc values indicate a better
model fit than larger ones. Thus, ΔAICc values > 2 sug-
gest a significant model fit difference (Burnham &
Anderson, 2004). For instance, in order to test whether
there were differential effects of tACS conditions on TVA
speed of information processing, one would compare the
AICc value of a model comprising stimulation condition
as predictor variable and TVA C parameter values as cri-
terion variable with the AICc value of a model without
predictor variable. The latter is also referred to as inter-
cept model given that its model fit depends on its mean/
intercept value only. If the AICc value of the former
model was at least two units smaller than the AICc value
of the latter model, this would indicate that stimulation
condition explained a significant portion of the variance
of TVA C parameter values. In contrast, in order to test
whether an interaction between two predictors, for exam-
ple, target position and exposure duration, explained a sig-
nificant portion of a criterion variable, for example, error
rate, one would need to compare a model comprising
both the main effects target position and exposure dura-
tion and the interaction term between target position and
exposure duration to a model comprising only the main
effect terms target position and exposure duration. Thus, it
would be possible to disentangle the interaction effect
from the main effects. Furthermore, it is possible to intro-
duce random effects to these models. Random effects rep-
resent variables that may possibly explain some variance
of the criterion variable but are not of primary research

interest. For instance, there may be intra-individual dif-
ferences between testing sessions given that individuals’
activity levels may fluctuate or because some are faster
learners than others. Introducing these variables, for
example, subject and day, to a model allows to control for
their contribution to the dependent variable, meaning
that the influence of predictors of interest may be esti-
mated more precisely. This is because, the influence of
stimulation condition would not only be estimated based
on different levels of stimulation condition but also
depending on individuals’ performance in general and
the performance displayed at different days. In addition
to that, random effects may also be considered for slope
estimations in models with metric predictors, for exam-
ple, with TVA C parameter values as predictor and TVA
K parameter values as criterion variables. Thus, the rela-
tionship between TVA parameter values would be esti-
mated by allowing for differential relationships for each
individual and/or at each day. Importantly, for compar-
ing models with random effects, both the reference model
and model of interest need to contain the random effects.
Besides that, model fits between different models may be
compared to each other to determine which model
explains a criterion best.

2.4.2 | Bayesian statistics

In addition to that, we computed Bayes factors (BF10)
based on Bayes information criterion (BIC) values in order
to determine how strong the data favoured a model of
interest over a reference model using Equation (4) by
Wagenmakers (2007). For instance, BF10 = 3 indicates
that data fit three times more likely to a model of interest
as compared to the corresponding reference model. How-
ever, model fits as operationalised by means of ΔAICc
and BF10 values do not necessarily match since BIC
values are differently penalised than AICc values
(Stoica & Selen, 2004). Thus, we considered a model fit as
significant only if ΔAICc > 2 and BF10 > 1.

BF10 ¼ exp BICreference�BICmodel of interestð Þ=2ð Þ ð4Þ

2.4.3 | Post-hoc processing

The range of most plausible estimates of linear regression
coefficients was then determined by computing two-
tailed confidence intervals whose significance level,
α = .05, was adjusted by means of Benjamini-Hochberg
(BH) procedure if necessary, see Equation (5)
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NEUROGAME 52

(Benjamini & Hochberg, 1995).7 Moreover, the signifi-
cance of condition-specific smooth terms was determined
by means of F-test statistics where p-values were also cor-
rected by applying the BH-procedure if necessary.

CIBH ¼ y� t
1�� rank�α

ntests�2;nobservations� df parametricþdf smoothð Þ�1
� �� se yð Þ

� �

ð5Þ

The range of most plausible average estimates
reported, for example, for descriptive statistical reasons,
were determined by computing two-tailed confidence
intervals with a significance level of .1%, see
Equation (6).

CIdescriptive ¼ y� t 1�α
2;nobservations�1ð � se yð Þ

h i
ð6Þ

2.4.4 | Model assumptions and constraints

We controlled for outliers in regression models with
smooth terms by applying the density-based spatial clus-
tering of applications with noise (DBSCAN) algorithm
(Ester et al., 1996). Hereby, clusters contained at least five
data points, and their radius was constrained to distance
values <Q3þ3� IQR. We only analysed models further if
there were less than 5% outliers.

Moreover, we only reported models if their model fits
were significant, ΔAICc > 2 and BF10 > 1, based on both
full data and data without outliers.

Furthermore, we controlled if residuals were fairly
symmetrically distributed applying the following proce-
dure: at first, we estimated location and scale parameter
values given a normal distribution based on residual
values using maximum likelihood method. Then, we
determined the frequency of each residual value rounded
to the second decimal. Afterwards, we computed the
probability of these residual values by dividing these fre-
quencies by the total amount of unique residual values.
In a next step, we accumulated these probabilities in an
ascending order corresponding to the order of the resid-
ual values to model the progression of a cumulative dis-
tribution function. Subsequently, we indeed modelled a
normal cumulative distribution function based on the
location and scale parameter estimates we had acquired
using maximum likelihood method. Thus, we were able
to determine the most plausible deviation between

observed and predicted cumulative probabilities of resid-
ual values given a normal distribution assumption using
confidence intervals with a significance level of 5%
(CIGauss). We did not determine the model fit based on
whether 0 was among these most plausible values.
Firstly, this approach would be counter-intuitive to fre-
quentistic testing. Secondly, 0 may be unlikely among the
most plausible values the better the model fit given that
the corresponding standard error may be small and
hence the range of the confidence interval narrow. Alter-
natively, we will report the size of the range of the most
plausible values (range sizeGauss). There is no rule of
thumb which range size indicates a good model fit and
thus implies symmetrically distributed residuals. Never-
theless, we believe that a range size of up to 5% may sug-
gest a very good, between 5% and 10% a good, and
between 10% and 15% an acceptable fit.

On top of that, we controlled whether residuals were
homoscedastic using the following approach: we fitted
generalised additive models with z-standardised residuals
as criterion and z-standardised predicted values as predic-
tor variables with random intercepts and slopes for each
individual and each day (if applicable) and compared the
model fit to a reference model with random intercepts
and slopes for each individual and each day
(if applicable). If ΔAICc > 2 and BF10 > 1, we considered
a model as problematic and did not report it.

2.4.5 | Individuals’ performance

We then investigated which stimulation and conditional
factors impacted on individuals’ performance in the
visual short-term memory task the most. For this, we
conducted hierarchical regression analyses with error rate
as criterion variable, and stimulation condition
(Condition 1 vs. Condition 2 vs. Condition 3
vs. Condition 4 vs. Condition 5), target position (left
vs. right), trial type condition (targets only vs. targets and
distractors) and exposure duration (71.2 ms vs. 106.8 ms
vs. 126.8 ms) as predictor variables with random inter-
cepts for each individual and for each day.

2.4.6 | TVA parameter values

Furthermore, we analysed whether different brain stimu-
lation protocols impacted on TVA cognitive functions rel-
ative to sham condition by conducting hierarchical
regression analyses with K (short-term memory capacity),
C (speed of information processing), t0 (effective expo-
sure duration), α (top-down control) and spatial bias
parameter values as criterion variables and stimulation

7Note that we did not consider intercepts for these computations as we
were primarily interested in significant differences between conditions.
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NEUROGAME 53

condition (Condition 1 vs. Condition 2 vs. Condition 3
vs. Condition 4 vs. Condition 5) as predictor variable with
random intercepts for each individual and for each day.

2.4.7 | Associations between TVA parameter
values

Moreover, we investigated whether associations between
TVA parameter values were differently affected by stimu-
lation condition as compared to sham condition. For this,
we computed hierarchical generalised additive models
with K, C, t0, α and spatial bias parameter values as crite-
rion variable, either one of the remaining parameter
values as predictor variable, and stimulation condition
(Condition 1 vs. Condition 2 vs. Condition 3 vs. Condition
4 vs. Condition 5) as grouping variable with random inter-
cepts and slopes for each individual. We also conducted
these analyses with day (1 vs. 2 vs. 3 vs. 4 vs. 5) as grouping
variable. If the latter model fits were significant, we did
not include day as a random effect variable.

2.4.8 | Software

Data analyses were conducted using R (R Core
Team, 2022; Version 4.2.2). Data were (pre-)processed
using the dplyr and tidyr packages (Wickham, 2021;
Wickham et al., 2021). Binomial tests were conducted
using the rstatix package (Kassambara, 2021)
(see supporting information for application examples).

Regression models were fit and processed by means of
the mgcv and tidymv packages (Coretta, 2021;
Wood, 2011). AICc values were computed using the
MuMIn package (Barton, 2020). To employ outlier
detection, we used the dbscan and factoextra packages
(Hahsler et al., 2019; Kassambara & Mundt, 2020). To esti-
mate location and scale parameters of a normal distribu-
tion using maximum likelihood method, we applied the
optim algorithm of R’s stats package (R Core Team, 2022).
For data visualisation, we used the ggplot2, patchwork,
RColorBrewer, and kableExtra packages (Neuwirth, 2014;
Pedersen, 2020; Wickham, 2016; Zhu, 2021).

3 | RESULTS

3.1 | Individuals’ performance

Individuals’ performance was best explained by a model
comprising target position, trial type condition and expo-
sure duration as interaction term with random intercepts
for each individual and each day irrespective of the

stimulation protocol (ΔAICc = 69.54, BF10 > 100,
CIGauss = [.00; .02], range sizeGauss = 1.63%).8 On average,
they displayed the lowest mean error rate of between
1.67 and 7.97% in response to targets presented in the
right visual field without distractors at the longest expo-
sure duration. Their mean error rate was on average
between .36 and 5.69% larger in response to memory dis-
plays with distractors. Moreover, their mean error rate
was on average between 1.50 and 7.13% larger in
response to memory displays presented at the shortest
exposure duration. In addition to that, their mean error
rate increased further by on average between 5.29 and
13.93% if targets had been presented in the left visual
field at the shortest exposure duration. All remaining
effect terms were unlikely to contribute to explaining
individuals’ performance as the respective confidence
intervals contained 0, see Table 1. For a visualisation of
these effects, see Figure 3.

3.2 | TVA parameter values

Only the model with spatial bias values as criterion vari-
able and stimulation condition as categorical predictor
variable with random intercepts for each individual and
each day reached significance (ΔAICc = 4.19,
BF10 = 2.22, CIGauss = [.01; .03], range sizeGauss = 1.99%).
Individuals’ spatial bias values ranged on average
between .04 and .35 in the sham condition. Thus, the par-
ticipants seemed to have deployed attentional resources
stronger to the right visual field given that spatial bias
values < .5 indicate a rightward and values > .5 a left-
ward bias. Interestingly, only tACS applied to the left
PPC at alpha frequency (10 Hz) modulated this effect as
individuals’ spatial bias values were on average between
.02 and .18 values larger in Condition 1 as compared to
Condition 5. Thus, left hemispheric alpha-tACS applied
to the left PPC appeared to have caused a reduction of a
rightward spatial bias towards more balanced attentional
processing in the majority of subjects. For a visualisation
of this effect, see Figure 4.9

3.3 | Associations between TVA
parameter values

Moreover, only the model comprising α values as crite-
rion variable and spatial bias values as predictor

8ΔAICc and BF10 values were computed in comparison to AICc and BIC
values of two different second best models.
9For a visualization of the impact of all tACS protocols on spatial bias
values, see Results in supporting information.
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NEUROGAME 54

variable with random intercepts and slopes for each
individual reached significance when fit for each stimu-
lation condition, separately (ΔAICc = 10.76, BF10 > 100,
CIGauss = [�.01; .12], range sizeGauss = 12.27%). Hereby,
all conditional fits were significant, psBH < .001. As
can be inferred from Figure 5, there appeared to be a
linear association between the two variables in

Condition 5 (sham condition). This indicates that on
average individuals allocated attentional resources
stronger to targets than distractors if presented in the
right visual field than the left one at the baseline.
Interestingly, there were very similar trajectories
describing the association between the two variables
for each brain stimulation condition. Thus, tACS

TAB L E 1 Generalised linear model with error rate as criterion and target position (left vs. right), trial type condition (targets only vs.

targets and distractors) and exposure duration (71.2 ms vs. 106.8 ms vs 126.8 ms) as predictors and subject and day as random effects.

Regression coefficients Lower bound Upper bound

Target position (left) � exposure duration (71.2 ms) .05289 .13931

Exposure duration (71.2 ms) .01504 .07130

Trial type condition (targets and distractors) .00362 .05687

Target position (left) � trial type condition (targets and distractors) � exposure duration (71.2 ms) �.00334 .09879

Trial type condition (targets an distractors) � exposure duration (71.2 ms) �.00658 .06308

Target position (left) � trial type condition (targets and distractors) �.01011 .05745

Target position (left) � exposure duration (106.8 ms) �.01057 .05517

Trial type condition (targets and distractors) � exposure duration (106.8 ms) �.00999 .05415

Target position (left) � trial type condition (targets and distractors) � exposure duration (106.8 ms) �.02975 .05891

Exposure duration (106.8 ms) �.01530 .02810

Target position (left) �.01538 .02717

Note: Lower/upper bound: Benjamini–Hochberg-corrected confidence interval boundaries.

F I GURE 3 Individuals’ performance. Performance was operationalised by (mean) error rate. Individuals’ error rates in response to

stimuli presented at different positions in the visual field (left vs. right), without and with distractors (targets only vs. targets and distractors)

and at different exposure durations (71.2 ms vs. 106.8 ms vs. 126.8 ms) are illustrated by different colours, shapes, luminance and

transparency values. Target position contrasts are indicated by green squares and pink diamonds; trial type condition contrasts by

differences in luminance; and exposure duration contrasts by different levels of transparency. The black dashed line indicates P (at least one

incorrect). (left panel) Individuals’ mean error rate in each condition averaged over stimulation conditions and corresponding 99.9%

confidence intervals. (right panel) Regression coefficients: individuals’ error rate increased in response to memory displays with distractors

and in response to memory displays presented at the shortest exposure duration—in particular if targets had been presented in the left visual

field. Dots indicate averages, and whiskers Benjamini–Hochberg-corrected confidence intervals.
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NEUROGAME 55

unlikely or just weakly modulated this association.
Similar effects were found when grouped by day, see
supporting information.

4 | DISCUSSION

The aim of this study was to demonstrate that modulat-
ing (right hemispheric [H4] [Hung et al., 2005; Kraft
et al., 2015; Moos et al., 2012]) posterior parietal alpha
activity using tACS may affect individuals’ speed of infor-
mation processing (H1) (Hilla et al., 2020) and short-
term memory capacity (H3) (Finke et al., 2005) by
impacting on their attentional control functions (H2)
(Bavelier & Green, 2019; Helfrich et al., 2014; Kemmerer
et al., 2022; Riddle et al., 2020; Sauseng et al., 2009;
Vogeti et al., 2022). However, the participants displayed
similar speed of information processing and short-term
memory capacity regardless of stimulation condition. In
addition to that, alpha-tACS applied over individuals’ left
but not right PPC impacted on their visuospatial atten-
tion orientation. Thus, our data support H2 but not H1,
H3 and H4.

4.1 | Inter-hemispheric competition and
visuospatial attentional processing

We did not expect our participants to attend stronger to
the right than the left visual field. In fact, previous
research indicated that healthy individuals prevalently
demonstrate a visuospatial bias towards the left and not
the right visual field—a phenomenon established as pseu-
doneglect (Brooks et al., 2014). According to the activa-
tion-orientation hypothesis (AOH) such an attentional
bias may be related to differential hemispheric activation
with stronger biases emerging contralateral to the hemi-
sphere with the higher excitation level (Reuter-Lorenz
et al., 1990). Thus, pseudoneglect might be a consequence
of higher excitation in the right as compared to the left
hemisphere during visuospatial attentional processing
(Siman-Tov et al., 2007). In line with this, Loftus and
Nicholls (2012) showed that individuals exhibited a
significant reduction in pseudoneglect after anodal
(excitatory) transcranial direct current stimulation had
been applied to the left PPC. The authors suggested that
this effect might be related to inter-hemispheric competi-
tion where the imbalance in excitation levels between the

F I GURE 4 Effect of transcranial alternating current stimulation (tACS) at alpha frequency (10 Hz) on theory of visual attention spatial

bias values. Values between 0 and .5 indicate a rightward, and between .5 and 1 a leftward spatial bias. Individuals’ spatial bias values
during sham stimulation served as baseline and are indicated as dark grey dots. Individuals’ spatial bias values during alpha-tACS applied to

the left posterior parietal cortex (PPC) are visualised as light blue dots. (left panel) Individuals’ spatial bias values and corresponding 99.9%-

confidence intervals. (right panel) Significant main effect of 10 Hz-tACS over left PPC: on average, individuals’ spatial bias values were < .5

in the sham condition, and larger after 10 Hz-tACS had been applied over the left PPC in most of the individuals. Thus, alpha tACS to the

left PPC seemed to have reduced most individuals’ rightward spatial bias compared to baseline. The dot indicates the average, and whiskers

the Benjamini–Hochberg-corrected confidence interval.
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NEUROGAME 56

right and the left hemisphere might have been altered by
anodal stimulation analogously shifting attention away
from the left and more towards the right visual field.

Thus, the question of why participants in this study
demonstrated nevertheless a rightward spatial bias needs
to be addressed. One explanation for this may be an
imbalance in alpha power between hemispheres. Alpha
brain oscillatory activity is widely considered as a neural
substrate of visuospatial attentional processing provided
that lower/larger activity seems to coincide with proces-
sing states more/less favourable for information proces-
sing in line with the focus of attention, respectively
(Jensen & Mazaheri, 2010; Klimesch, 2012; Peylo
et al., 2021; Thut et al., 2006). Regarding the AOH
(Reuter-Lorenz et al., 1990), one would then expect that
attention would be biased towards a visual hemifield con-
tralateral to the hemisphere with the lowest and ipsilat-
eral to the hemisphere with the highest alpha oscillatory
activity. Our data partially support this account given
that alpha-tACS applied to the left PPC coincided with
an attentional shift away from the right visual hemifield.
But the question remains why our participants exhibited
a rightward and not a leftward visuospatial bias in the
sham condition in the first place? One explanation may

be that individuals might have demonstrated an
increased alpha activity in the right as compared to the
left hemisphere during visuospatial attentional proces-
sing. In support of this, Gallotto et al. (2020) found that
individuals exhibited a larger alpha power in the right as
compared to the left hemisphere in neutral conditions
while performing a spatial orientation task. This implies
that individuals may display an imbalance in hemi-
spheric alpha activity even in conditions where attention
is not cued towards one particular hemifield. Further-
more, individuals displayed larger differences in alpha
activity between neutral and cued trials in the left as
compared to the right hemisphere. This indicates that
there may be a larger potential for alpha power modula-
tion in the left than the right hemisphere. Thus, our par-
ticipants’ visuospatial attention bias towards the right
visual field might have been driven by a larger alpha
activity in the right hemisphere. Moreover, this effect
may only have been altered by left hemispheric alpha-
tACS application provided that there may have been a
larger propensity for modulation in the left hemisphere.
However, further research on alpha oscillatory activity
during this task execution will be required to test these
hypotheses.

F I GURE 5 Association between theory of visual attention α (top-down control) and spatial bias values (visuospatial attention) in

different brain stimulation conditions. α values close to zero indicate high top-down control and close to .30 no differentiation between

targets and distractors. Spatial bias values < .5 suggest a rightward, and values > .5 a leftward spatial bias. Five different stimulation

protocols were applied. Differential hemispheric stimulation is indicated by different colours (left hemispheric tACS: blue, right hemispheric

tACS: red). Stimulation frequencies are indicated by different levels of luminance (10 Hz: bright, 16.18 Hz: dark). Sham stimulation is

indicated by dark grey dots. Model fits were significant in each condition; and overall, there appeared to be (a tendency for) a linear

association between the two variables in all conditions. PPC: posterior parietal cortex.
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NEUROGAME 57

4.2 | Association between TVA spatial
bias and α values

Furthermore, we did not expect a significant relationship
between TVA α and spatial bias values. This was because
Wiegand et al. (2018) demonstrated that TVA visuospa-
tial attentional processing and top-down control were
related to distinct electrophysiological mechanisms
which implied that these parameters were independent.
In contrast, our findings suggest an association between
these two parameters such that individuals’ ability of
target enhancement may be stronger if visuospatial
attention was directed to the right visual field. One expla-
nation for this may be that visuospatial attention may be
deployed to facilitate target enhancement foremost in
challenging conditions. In support of this, we observed
that individuals displayed a larger error rate in response
to targets presented in the left visual field as compared to
the right one in particular if stimuli had been presented
at the shortest exposure duration. But their performance
was better in response to memory displays with targets
only than targets and distractors irrespective of the
remaining conditions. This indicates that visuospatial
attention rather than target enhancement may be
deployed to deal with challenging circumstances, for
example, processing information presented at very short
exposure duration. Moreover, Shalev et al. (2018) showed
that individuals’ TVA top-down control could be
increased by directing visuospatial attention towards the
right visual field using a lateralised sustained attention
task.10 Thus, TVA spatial bias and α parameter values
may indeed reflect distinct cognitive functions. Neverthe-
less, these might interact.

4.3 | Video gaming effects

If we had been able to demonstrate that modulating
alpha activity using tACS impacted on TVA speed of
information processing through alterations in attentional
control functions, we would have been able to imitate an
effect previously observed in video game players, that is,
that video game players’ faster visual information proces-
sing coincided with alpha amplitude modulation (Hilla
et al., 2020). Furthermore, this effect would have pro-
vided indirect evidence in favour of alpha power modula-
tion potentially representing a causal mechanism of this
effect. In addition to that, we would have been able to
infer to some extent which attention control function, for
example, target enhancement and/or visuospatial

attention processing, may have contributed to the effect.
On top of that, combined, these effects would have pro-
vided indirect evidence in favour of the hypothesis
according to which video games may train individuals in
learning to deploy attention control such that they may
develop efficient cognitive strategies (Bavelier &
Green, 2019).

However, we had only been able to show that modu-
lating alpha activity using tACS impacted on individuals’
visuospatial attention orientation. Thus, one might con-
clude from this effect that alpha power modulation might
not represent a neural substrate of TVA speed of informa-
tion processing. In addition to that, one might doubt if
alpha power modulation indeed contributed to video
game players’ faster information processing (Hilla
et al., 2020). We believe that such a conclusion may be
premature given that we may not have been able to imi-
tate the exact the same neural modulation as observed in
video game players using tACS. This is because alpha-
tACS rather increases brain oscillatory activity (Helfrich
et al., 2014; Kemmerer et al., 2022). In contrast, video
game players’ faster speed of information processing cor-
related with alpha amplitude attenuation time-locked to
memory display processing (Hilla et al., 2020). The issue
here may be not so much that tACS increases brain oscil-
latory activity (because even opposite effects, that is,
slower speed of information processing related to
increased alpha activity, would have supported our
hypotheses) but rather that alpha-tACS would have been
required to alter alpha power modulation specifically
related to memory display processing. Hung et al. (2005),
for instance, showed that 10-Hz repetitive transcranial
magnetic stimulation (rTMS) time-locked to memory dis-
plays applied over individuals’ right hemispheric PPC
altered their TVA top-down control. In this context,
rTMS represents a non-invasive brain stimulation
method employing a different mechanism to alter brain
oscillatory activity as compared to tACS. Nevertheless,
both methods appear to induce similar effects (Veniero
et al., 2015). Thus, a temporally more precise application
of (a different) brain stimulation at alpha frequency may
be suitable to impact on TVA speed of information pro-
cessing via altered TVA top-down control. But further
research will be required to prove this hypothesis.

Besides speed of information processing, we expected
alpha-tACS to impact on TVA short-term memory capac-
ity K. We derived this hypothesis from the observation
that short-term memory performance was related to
alpha power modulation (Riddle et al., 2020; Sauseng
et al., 2009) and TVA speed of information processing
and short-term memory capacity commonly correlate
(Finke et al., 2005). Moreover, video game players
have been frequently shown to demonstrate enhanced

10However, this effect did only manifest as a result of high-frequency
transcranial random-noise stimulation to both hemispheres.
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NEUROGAME 58

short-term memory processing (Blacker & Curby, 2013;
McDermott et al., 2014; Tanaka et al., 2013). Thus, if our
results had been in line with our hypotheses (H1 and
H2), this may have indirectly implied that alpha power
modulation may account for video gaming effects—
therefore also for differential short-term memory proces-
sing in video game players (Blacker & Curby, 2013;
McDermott et al., 2014; Tanaka et al., 2013). However,
we had not been successful in establishing such a rela-
tionship. We speculate that one explanation for this may
be that short-term memory processing may be stronger
related to theta oscillatory activity around 5 Hz rather
than alpha power (Lisman, 2010; Riddle et al., 2020;
Sauseng et al., 2009). For instance, Jaušovec et al. (2014),
Bender et al. (2019) and Wolinski et al. (2018) showed
that individuals’ short-term memory capacity could be
increased by means of theta-tACS applied over their PPC.
Furthermore, Kraft et al. (2015) found that individuals’
TVA short-term memory capacity could be altered by
applying 6-Hz rTMS time-locked to memory displays over
individuals’ right precuneus. Thus, TVA K parameter
values may be more likely affected by modulating theta
as compared to alpha activity. But further research will
be required to establish this.

5 | CONCLUSION

The aim of this study was to demonstrate that modulat-
ing posterior parietal alpha activity using tACS may
impact on individuals’ speed of information processing
by alternating their attentional control functions. If our
results had been in line with this, we would have been
able to imitate an effect previously observed in video
game players, that is, that video game players’ faster
visual information processing coincided with alpha
amplitude modulation (Hilla et al., 2020). Thus, this
effect would have indirectly indicated that alpha power
modulation might represent a neural substrate of video
gaming effects. However, we only managed to change
individuals’ visuospatial attention orientation by applying
tACS at alpha frequency over their left PPC. This indi-
cates that mere alterations in visuospatial attention pro-
cessing related to alpha oscillatory activity unlikely
account for differential cognitive processing as observed
in video game players.
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Supplementary Material: Alpha-tACS Alters Attentional Control but not Cognitive29

Functions as Video Games Do: A Psychophysical Investigation based on the Theory of30

Viusal Attention31

Methods32

Task33

In total participants performed 504 experimental trials at each day/testing session.34

Thereof, they performed 252 experimental trials where targets had been presented either in35

the left or right visual field, respectively. Moreover, they performed 252 trials where targets36

had been presented either with or without distractors each. Furthermore, participants37

performed 168 trials where memory displays had been presented at the shortest, medium and38

longest exposure duration, respectively. Thus, memory displays had been displayed39

according to twelve different conditions. In this regard, one would naturally expect that40

individuals performed 42 trials of each condition. However, this was not the case. This was41

because, we had to account for additional constraints. For instance, we wanted to make sure42

that participants processed all target shapes equally often and equally often at each one of43

the six locations where stimuli could have been presented in the visual field. There were 2144

possible combinations to pair shape stimuli, e.g., ellipse and square. Moreover, there were six45

possibilities how these pairs could have been presented in a memory display, e.g. ellipse at46

the upper location and square at the lower location of the left side. However, if we would47

have related just these 21 pairs to these six location pairs, shapes would not have been48

presented equally often at each location. Thus, we had to include pairs of reversed order as49

well, e.g., ellipse at the upper location and square at the lower location of the left side and50

vice versa. This resulted in 252 memory display combinations (2 times 21 (target pairings)51

times 6 (location pairing)). These pairings, in turn, were presented either with or without52

distractors resulting in 504 memory display combinations. Participants would have to have53

performed 1512 trials each day to execute all memory display combinations at each exposure54
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duration. This would have required approximately 3 hours, which was unreasonable to the55

participants – especially, given that we applied online tACS stimulation. Instead, we56

randomly and evenly paired exposure durations with memory displays. Thus, there were57

slight differences between numbers of trials of each of the twelve conditions but the number58

of trials across each level of target position, trial type condition and exposure duration was59

balanced. This was sufficient for TVA computational modeling given that e.g., speed of60

information processing is derived from the estimated number of memorized items per61

exposure duration (short, medium and long) but not condition. On top of that, TVA spatial62

bias was unlikely affected by this since spatial weights are derived from individuals’ accuracy63

in response to each location independent of condition. Also, TVA top-down control is64

unlikely affected by this given that this parameter value is inferred from individuals’65

differential performance in response to memory displays with targets only as compared to66

targets and distractors independent of condition. However, at this point, one might also67

wonder whether differential numbers of trials between target position and trial type condition68

and exposure duration might affect TVA parameter estimation. In fact, previous research69

indicated that TVA K, C and t0 parameter estimation was more robust irrespective of small70

or large numbers of trials than spatial bias and top-down control parameter estimation (Finke71

et al., 2005). Thus, we decided to ”relate more trials” to each level of target position and72

trial type condition than exposure duration to achieve equally robust parameter estimates.73

Theory of Visual Attention Cognitive Functions74

Differential Model Assumptions: balanced vs. biased visuospatial75

attentional processing. We used the following approach to choose which model estimates76

should be used for further analyses: we investigated to which model assumption individuals’77

performance fit best by using second-order Aikaike information criterion (AICc) values of78

each model (balanced vs. biased) by means of a hierarchical regression analysis allowing for79

random intercepts for each individual. The smaller the AICc value the better the model fit.80
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Then, we computed difference values between individuals’ TVA parameter estimates and81

sorted individuals into groups of over-estimation depending on whether biased estimates82

were larger (balanced < biased) or smaller than balanced (balanced > biased) estimates. If83

there were no differences in TVA parameter estimates between models, individuals’ TVA84

parameter value estimates of both models should remain at their relative order compared to85

other individuals. In other words: there should be a linear relationship between TVA86

parameter estimates of both models. However, if there were significant deviations between87

these estimates, this may suggest that TVA parameter estimates might have been88

over-estimated depending on the respective model assumption. Subsequently, we computed89

hierarchical regression analyses with absolute difference values between TVA parameter90

estimates of the two different models as criterion variable and over-estimation (balanced <91

biased vs. balanced > biased) as categorical predictor variable with random intercepts for92

each individual to quantify whether deviations were significant. Moreover, we contrasted the93

amount of over-estimations (balanced < biased vs. balanced > biased) using binomial tests.94

On average AICc values of the biased TVA model were between 172.65 and 221.5995

values smaller than those of the balanced model. Thus, individuals’ performances fit better96

to the biased as compared to the balanced model. Moreover, absolute difference values of K97

parameter estimates given an over-estimation in the biased model (balanced < biased) were98

on average between 0.03 and 0.94 values larger than absolute difference values of K99

parameter estimates given an over-estimation in the balanced model (balanced > biased).100

Thus, the extent of over-estimation was significantly larger in the biased as compared to the101

balanced model. Furthermore, K parameter estimates were on average between 1.81 to 1 and102

4.85 to 1 times more often over-estimated in the biased as compared to the balanced model.103

The latter was also the case for C parameter values where C parameter estimates had been104

over-estimated on average between 1.16 to 1 and 2.82 to 1 times in the biased model relative105

to the balanced one. The opposite seemed to be the case for α values given that on average α106

estimates had been over-estimated between 1.09 to 1 and 2.64 to 1 times in the balanced as107
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compared to the biased model. But there appeared to be no significant effect in absolute108

difference values of either C or α estimates given an over-estimation either in the biased or109

balanced model. Also, there was no indication for significant differences in t0 parameter110

estimates of either a biased or balanced TVA model.111

Brain Stimulation112

On average, human alpha activity peaks around 10 Hz. However, there are crucial113

intra- and inter-individual differences in alpha activity depending on e.g., age, genetics,114

hemispheric connectivity and cognitive processing (Başar, 2012; Haegens, Cousijn, Wallis,115

Harrison, & Nobre, 2014; Smit, Wright, Hansell, Geffen, & Martin, 2006). Thus, individuals116

display slightly different peaks in their alpha activity. This is referred to as individual alpha117

frequency (IAF). Non-invasive brain stimulation applied at IAF is supposed to induce118

stronger and more reliable effects than at mean peak frequency (Kasten, Duecker, Maack,119

Meiser, & Herrmann, 2019; Vogeti, Boetzel, & Herrmann, 2022). In support of this,120

Kemmerer and colleagues (2022) showed that tACS applied at IAF but not at IAF121

plus/minus 2 Hz caused a visuospatial shift towards the left visual field relative to sham122

condition. However, it should also be noted that these control stimulations might have been123

inappropriate in some individuals given that their IAF ranged between 8 and 11.4 Hz and124

thus likely smeared into other frequency bands, e.g., theta (ca. 5 Hz) and beta (ca. 13 Hz).125

Moreover, Helfrich and colleagues (2014) found that tACS applied at 10 Hz and IAF over126

the PPC caused similar stimulation effects. Thus, alpha-tACS applied at 10 Hz seems to be127

equally sufficient to modulate alpha power as at IAF.128
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Results129

Impact of all tACS Protocols on Spatial Bias Values130

Figure 1 . Effect of Transcranial Alternating Current Stimulation (tACS) on Theory of Visual

Attention Spatial Bias Values. Values between 0 and 0.5 indicate a rightward, and between

0.5 and 1 a leftward spatial bias. TACS was delivered either at 10 Hz (bright) or 16.18 Hz

(dark) over either the left (blue) or right (red) posterior parietal cortex (PPC). Individuals’

spatial bias values during sham condition served as baseline and are indicated as dark gray

dots. Left side: individuals’ spatial bias values. Right side: corresponding 99.9 %-confidence

intervals.
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Associations between TVA Parameter Values131

Figure 2 . Association Between Theory of Visual Attention α (Top-Down Control) and Spatial

Bias Values (Visuospatial Attention) on different days. α values close to zero indicate high

top-down control and close to 0.30 no differentiation between targets and distractors. Spatial

bias values < 0.5 suggest a rightward, and values > 0.5 a leftward spatial bias. There are

data points from five different days. The order of days is indicated by different shades of

green. Model fits were significant for each day (∆AICc = 17.77, BF10 > 100, CIGauss =

[0.00; 0.11], range sizeGauss = 10.32 %, psBH < .011). But fits were quite similar indicating

that the relationship between TVA parameters did not differ between days.
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General Discussion

We found that video game players’ speed of information processing improved in the

course of performing a visual short-term memory task; and that this effect, in turn,

correlated with an increase in EEG alpha amplitude attenuation (Hilla et al., 2020). In this

regard, alpha oscillatory activity may represent a top-down control driven gating mechanism

to modulate the likelihood of processing information (Peylo et al., 2021). This corresponds

well with the ascribed role of attentional control functions in transfer effects associated with

video gaming. Thus, video game players appear to acquire the ability of learning to develop

effective cognitive and behavioral strategies by applying attentional control functions in

order to enhance processing relevant and to suppress processing irrelevant information

(Bavelier & Green, 2019).

But we were not able to show that individuals’ speed of information processing (in

addition to their visuospatial orientation) changed as a result of transcranial alternating

current stimulation (tACS) applied at alpha frequency over the left posterior parietal cortex

(Hilla et al., 2023). Thus, we had not been successful in our attempt of artificially inducing

alterations in speed of information processing as observed in video game players by

modulating non-video game players’ alpha oscillatory activity using non-invasive brain

stimulation (Hilla et al., 2020). Such an effect, however, would have been required to

conclude that there was a causal relationship between alterations in alpha activity and

transfer effects related to video gaming.

Thus, there appears to be inconclusive evidence both in favor and opposition of our

thesis according to which alterations in alpha oscillatory activity may represent a neural

substrate of transfer effects related to video gaming. On second thought, our results rather

challenge the functional description of attentional control provided by Bavelier and Green

(2019). This is because, they indicate that video game playing unlikely alters attentional

control functions, such as selective and visuospatial attention, per sé but rather the

algorithmic level thereof. We will discuss how a computational model based on the theory of
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visual attention (TVA) (Bundesen, 1990; Bundesen, Vangkilde, & Petersen, 2015; Dyrholm,

Kyllingsbæk, Espeseth, & Bundesen, 2011) may be used to operationalize this algorithmic

level. In addition to that, we will elaborate how gating as operationalized by alpha

oscillatory activity may be related to this model. Thus, we will argue that our results in fact

mostly support our hypotheses.

A Computational Model of Attentional Control Based on the Theory of Visual

Attention (TVA) to Operationalize Video Gaming Effects

Improved TVA Information Processing Capacity in Video Game Players

Relates to Higher-Level Selective Attention Processing. There is no single cognitive

function that reflects attentional control. In contrast, individuals display attentional control

as a result of employing predominantly attention and executive cognitive functions (Bavelier

& Green, 2019), e.g., sustained, selective and visuospatial attention (Chun, Golomb,

Turk-Browne, et al., 2011), and top-down inhibition, switching/shifting and updating

(Friedman & Miyake, 2017; Miyake et al., 2000). Given that video game players have been

shown to exhibit superior performance in tasks requiring the application of these functions

(Bediou et al., 2018b; Blacker et al., 2014; Föcker et al., 2018, 2019; Green & Bavelier, 2003;

Strobach et al., 2012), and based on the observation that their superior performance appears

to coincide with an improving signal-to-noise ratio (Bejjanki et al., 2014), it was proposed

that altered attentional control might play a significant role in video gaming effects (Bavelier

& Green, 2019). In this regard, attentional control is supposed to enable individuals to focus

on processing relevant information while simultaneously being able to suppress irrelevant

information (Bavelier & Green, 2019). However, an algorithmic solution to this computation

has not yet been provided. Thus, the concept of attentional control is quite ambivalent. As a

result, it has been challenging to infer which and how functional characteristics of attentional

control differ between video game players and control individuals. To solve this issue, we

used a computational model based on TVA (Bundesen, 1990; Bundesen et al., 2015;
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Dyrholm et al., 2011).

TVA operationalizes attention processing based on the following assumptions

(Bundesen, 1990; Bundesen et al., 2015): firstly, individuals’ cognitive processing capacities

are considered limited such that e.g., only a limited amount of information may be encoded

and held in memory. Secondly, sensory information is processed in parallel. Thus, there is a

race for information being encoded into memory. Thirdly, the likelihood of information being

encoded depends on the interplay between two attention control functions, i.e., pigeonholing

and filtering (Broadbent, 1970). Pigeonholing serves to prioritize object categories, e.g., color.

Filtering allows to prioritize features of objects, e.g., red over blue. Thus, the conjunction

between pigeonholing and filtering predominantly reflects an hierarchical selective attention

mechanism. With reference to these assumptions, the rate equation was developed to model

the likelihood of information being encoded into memory (1) (Bundesen, 1990; Bundesen et

al., 2015; Dyrholm et al., 2011).

vx(i) = η(x, i) × βi × wx∑
z∈S wz

(1)

In this regard, vx(i) denotes the rate at which an object x may be classified as belonging

to category i, and hence encoded into memory. vx(i) is computed as a function of the

sensory evidence, η(x, i), in favor of object x being classifiable as belonging to category i; the

sensory decision bias, βi, in favor of processing objects of category i, and the weight, wx, in

favor of processing object x over other objects z in the visual field S. The magnitude of

η(x, i) depends on the resolution of the sensory information i related to x. For instance,

η(x, i) is small in the dark as individuals may simply not be able to perceive information

under these circumstances. βi refers to pigeonholing. Attentional weights are computed as

described by the weighting equation (2),

wx =
∑
j∈G

η(x, j) × πj (2)

where the weight of processing object x depends on the sum of the product between the
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sensory evidence that object x has feature j and the pertinence weight, πj, in favor of

processing feature j in contrast to other features included in G. Thus, this weighting process

reflects filtering (Bundesen, 1990; Bundesen et al., 2015; Dyrholm et al., 2011).

As a consequence, cognitive functions, such as short-term memory capacity, K, speed of

information processing, C, encoding duration, t0, visuspatial attention processing, spatial

bias, and top-down control, α, may be derived from individuals’ recall accuracy of memorized

information. In this regard, we and colleagues most reliably observed that video game

players appear to display a superior information processing capacity as indicated by larger C

values in comparison to control individuals (Hilla et al., 2020; Schubert et al., 2015; Wilms et

al., 2013) (see also, Faster Visual Information Processing in Video Gamers Is

Associated With EEG Alpha Amplitude Modulation in Research Projects, for

more details). But no differences in visuospatial attention or top-down control had been

found. Such effects, however, would have been required to support the idea that improved

attentional control accounted for gaming effects (Bavelier & Green, 2019).

Nevertheless, it might be premature to dismiss Bavelier and Green’s account (2019)

based on these results. The reason for this is, that the rate equation can be simplified as

described in equation (3),

vx(i) = C × wx∑
z∈S wz

(3)

such that the rate of processing object x may be considered as a function of a fraction of

individuals’ overall processing capacities. Hereby, C is the product between the sensory

evidence that x is an object of category i and the perceptual decision bias, βi, which is

supposed to reflect pigeonholing. Thus, video game players’ larger C parameter values may

indicate superior sensory encoding abilities (Hilla et al., 2020; Schubert et al., 2015; Wilms et

al., 2013) driven by enhanced higher-level selective attention processing given that

pigeonholing plays a considerable role in selective attention (Broadbent, 1970; Bundesen,

1990; Bundesen et al., 2015).
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We argue that indeed differential pigeonholing rather than sensory information

processing abilities may be associated with performance differences between video game

players and control individuals. One reason for that is, that TVA constitutes that the

computation of sensory evidence depends on the quality of physical properties of

information, e.g., luminescence or color resolution (Bundesen, 1990; Bundesen et al., 2015).

Therefore, sensory evidence computations should be unaffected by video gaming as per

definition. Nevertheless, one could argue that this assumption was hardly valid given that

some cognitive operation must be executed to encode sensory information. In this regard,

there is evidence that early perceptual processing may be independent of attention

processing, which would match with TVA’s description of η(x, i) (Di Russo, Martinez, &

Hillyard, 2003). Thus, video game players’ faster information processing might be related to

alterations in early information processing. In opposition to this, firstly, there are reasonable

arguments in favor of these early cognitive operations being nevertheless associated with

attention processing (Qin, Wiens, Rauss, & Pourtois, 2022). In addition to that, conscious

information processing (as is the case if individuals memorize and report information) likely

requires attention deployment (Jennings, 2015; Marchetti, 2012; Van Boxtel, Tsuchiya, &

Koch, 2010). Secondly, Föcker and colleagues (2018) found that video game players’ superior

performance was correlated with alterations in neural markers of perceptual processing

associated with but not independent of attention processing. Thus, it seems fair to conclude

that video game players’ superior performance may be associated with altered selective

attention as indicated by pigeonholing (but not filtering) as opposed to mere perceptual

processing. Consequentially, alterations in TVA C parameter values might in fact support

Bavelier and Green’s account (2019)

Extending the TVA Computational Model by a Saliency Map Framework to

Allow for Flexibility Despite Fixed Cognitive Capacities. With this being said, one

should bear in mind that the theoretical assumptions of TVA (Bundesen, 1990; Bundesen et

al., 2015) and the learning to learn hypothesis (Bavelier, Green, et al., 2012) are not entirely
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compatible. This is because, the learning to learn hypothesis proposes that video game

players outperform control individuals in tasks as a result of developing better cognitive

strategies after having learned the statistical regularities of tasks and how to employ

attentional control to efficiently execute these tasks (Bavelier & Green, 2019; Bavelier, Green,

et al., 2012). This implies that individuals’ processing capacities may change in the course of

performing a paradigm. But this opposes TVA’s assumption that individuals’ information

processing capacities are fixed (Bundesen, 1990; Bundesen et al., 2015).

We propose that extending TVA’s computational model by the concept of the saliency

map (Itti & Koch, 2001) might allow to reconcile TVA and the learning to learn hypothesis.

The saliency map account suggests that individuals’ attention is drawn towards information

exhibiting the highest level of salience (Itti & Koch, 2001). In this regard, the degree of

salience is a function of the contrast in features, such as color, intensity, orientation, motion,

etc., between stimuli. Thus, the stimulus that differs the most from all other stimuli catches

individuals’ attention. Therefore, a red flower surrounded by green grass figuratively pops

out. In contrast, it is more difficult to identify a red flower if it stands among other diversely

colored plants. These phenomena have been investigated early on by means of feature- and

conjunction search paradigms (Treisman & Gelade, 1980; Treisman & Sato, 1990). Neuronal

receptive field properties, e.g., sensitivity for edges or orientations, appear to be at the heart

of the computation of saliency map contrasts (Itti & Koch, 2001). Thus, the most salient

stimulus appears so as a result of how specifically neurons are triggered by physical

properties of that stimulus. These computations may be modulated by top-down attention

processing by weighting certain features stronger than others (Krummenacher & Müller,

2012). In addition to that, more contemporary saliency map models propose a hierarchically

organized structure differentiating between sensory modalities, dimensions and features

(Liesefeld, Liesefeld, Pollmann, & Müller, 2018). Thus, contrast computations and attention

weighting seem to take place within modalities, across dimensions, and across features and

may possibly interact (Töllner, Gramann, Müller, & Eimer, 2009). TVA might allow an
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algorithmic solution to these computations such that TVA’s sensory evidence parameter may

be equated with contrast computations as described in the saliency map approach.

Furthermore, top-down weighting could be modeled according to TVA’s sensory decision

bias (pigeonholing) and weighting (filtering) given that these highly resemble dimension- and

feature-based weighting, respectively.

We argue that combining TVA and the saliency map framework provides a possible

solution to the incompatibility between TVA and the learning to learn hypothesis in terms of

assumptions of cognitive flexibility as the saliency map account allows to define individuals’

scope of information processing without compromising an assumption of either one of these

theories. This is because, as mentioned above, saliency map contrast computations are

highly dependent on receptive field properties (Itti & Koch, 2001). Thus, neuronal activity

may range within a certain scope depending on how specifically a stimulus may trigger a

respective receptive field. But essentially there is an upper bound to this activity – at least

due to the refractory period. Thus, sensory evidence may be constrained by individuals’

neuronal firing properties. Following this logic, top-down attention processing may modulate

neuronal firing rates within but not beyond this scope (Briggs, Mangun, & Usrey, 2013;

McAdams & Maunsell, 1999; Moran & Desimone, 1985; Reynolds, Pasternak, & Desimone,

2000). Thus, an extension of the TVA computational model by the saliency map account

allows alterations in TVA C parameter values as a result of changes in dimension-based

weighting/pigeonholing associated with video gaming in line with the learning to learn

hypothesis (Bavelier, Green, et al., 2012). But crucially it does not compromise TVA’s

assumption of fixed information processing capacity (Bundesen, 1990; Bundesen et al., 2015)

provided that C was considered constrained by neuronal activity boundaries.

Alpha Oscillatory Activity as Neural Substrate of TVA Information

Processing. The theoretical framework described above is compatible with the neural

interpretation of TVA (NTVA) (Bundesen, Habekost, & Kyllingsbæk, 2011). According to

this account, filtering and pigeonholing correspond to modulations of the number and
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activation level of neurons, respectively. Thus, filtering is associated with neuronal receptive

fields being triggered by features j of objects x – changing neuronal states from baseline to

active; and pigeonholing relates to top-down processing driven modulations of the activation

level of these neurons such that processing information of category i receives a higher

priority level compared to other categories. Dimension- and feature-based weighting may

account for these neural operations. Thus, our extended TVA computational framework and

the NTVA model are in line. Despite that, we do prefer an account according to which both

dimension- and feature-based weighting predominantly impact on the neural activation level

(as opposed to the number of active neurons) (Briggs et al., 2013; McAdams & Maunsell,

1999; Moran & Desimone, 1985; Reynolds et al., 2000). This is because, this approach allows

for a continuum of neural activation in contrast to a switch between “baseline” and “active”

states, which in our opinion, is a more ecologically valid model of neural firing rates. NTVA

might nevertheless argue for differential effects of filtering and pigeonholing to ensure a fixed

processing capacity. Thus, the magnitude of activation is constrained by the pigeonholing

operation independent of the amount of active neurons (Bundesen et al., 2011). We account

for this prerequisite by arguing that neuronal activity may be constrained in any case by

neuronal firing properties. Thus, our framework is still compatible with and potentially more

flexible than the NTVA model.

In this regard, we propose gating as operationalized by modulations of alpha oscillatory

activity as a neural substrate of dimension-based weighting/pigeonholing. Gating refers to a

mechanism to modulate the likelihood of information processing, and has been proposed

based on the observation that high alpha power in the posterior parietal cortex coincided

with a small likelihood of information being processed, while small alpha power correlated

with a larger likelihood of information processing (Zhigalov & Jensen, 2020). This

mechanism may be associated with the length of the duty cycle of alpha oscillatory activity.

This is because, increased alpha amplitudes relate to shorter duty cycles and decreased

amplitudes to longer duty cycles which, in turn, indicate the length of a time window for
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information being able to transfer from early visual cortical areas to other brain areas for

further processing (Peylo et al., 2021) (see, Cause or Consequence? Alpha Oscillations

in Visuospatial Attention in Research Projects, for more details). Thus, gating

represents a neural substrate of higher-level selective attention. In terms of our extended

TVA framework, gating may serve to prioritize processing objects x of category i by

providing information of category i a higher chance of being further processed than other

categories. In this regard, one could consider alpha amplitude modulations as gates to either

allow information to pass (attenuated amplitude ~ open door) or to prevent information

from passing (high amplitude ~ closed door). Crucially, gating is compatible with (N)TVA’s

assumption of individuals’ fixed information processing capacity as gating is constrained by

alpha oscillatory activity. Thus, there may be inter- and intra-individual differences in

frequency, amplitude and phase in alpha activity but these will manifest on average around

10 Hz and not exceed activity level boundaries due to neural firing properties (Başar, 2012;

Haegens, Cousijn, Wallis, Harrison, & Nobre, 2014; Smit, Wright, Hansell, Geffen, & Martin,

2006). Furthermore, gating is compatible with the idea of hierarchically organized processing

stages as described in the saliency map approach (Itti & Koch, 2001) given that gating is

likely employed at higher level processing stages after early perceptual processing (Antonov

et al., 2020; Gundlach, Moratti, Forschack, & Müller, 2020; Zhigalov & Jensen, 2020). Thus,

gating represents a promising neural substrate of higher-level selective attention potentially

related to pigeonholing in our extended TVA framework.

One might argue now that our observation that individuals’ C parameter values were

unaffected by alpha-tACS (Hilla et al., 2023) might oppose this model since a modulation of

alpha power should have impacted on individuals’ selective attention processing (see,

Alpha-tACS Alters Attentional Control but not Cognitive Functions as Video

Games Do in Research Projects, for more details). However, this line of argumentation

neglects to differentiate between selective and viusospatial attention processing. According to

our framework, gating should serve to prioritize processing information of category i as



NEUROGAME 80

opposed to other categories. Therefore, prefrontal cortical areas were supposed to modulate

alpha oscillatory activity such that there should be an attenuated alpha response to stimuli

of category i (Peylo et al., 2021). In order to imitate this effect, our tACS protocol should

have altered individuals’ alpha oscillatory activity in a similar fashion. However, it is rather

unlikely that we were able to achieve this given that tACS induces an overall increase in

oscillatory activity (Helfrich et al., 2014; Kemmerer et al., 2022). Thus, alpha-tACS unlikely

altered pigeonholing given that tACS increased alpha amplitudes in response to all categories.

Visusopatial attention processing, on the other hand, could have been altered since tACS

had been applied unilaterally over the posterior parietal cortex. Consequentially, an

alpha-tACS induced hemispheric imbalance in alpha power may have re-oriented individuals’

visuospatial attention as reflected by shifts of their TVA spatial bias (Hilla et al., 2023).

Thus, our brain stimulation study results provide discriminatory evidence in favor of our

extended TVA framework by emphasizing that indeed alterations in selective as opposed to

visuospatial attention processing may account for video game players’ enhanced speed of

information processing.

Summary. By this point, we have elaborated that video game players’ superior

performance in (visual) short-term memory tasks were likely related to alterations in

higher-level selective attention processing through changes in pigeonholing as reflected by

larger TVA C parameter values (Hilla et al., 2020; Schubert et al., 2015; Wilms et al., 2013).

In this regard, we provided a solution to the flexibility-fixed-capacity-incompatibility issue

between TVA (Bundesen, 1990; Bundesen et al., 2015) and the learning to learn approach

(Bavelier, Green, et al., 2012) by extending TVA’s computational model (Dyrholm et al.,

2011) by a saliency map framework (Itti & Koch, 2001). Moreover, we introduced gating as

operationalized by alpha oscillatory activity (Gundlach et al., 2020; Zhigalov & Jensen, 2020)

as neural mechanism of pigeonholing (Broadbent, 1970). Thus, we propose an extended

computational model based on TVA to explain alterations in cognitive processing related to

video gaming. In this regard, video game playing may train individuals in learning to process
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rather relevant than irrelevant information by efficiently employing higher-level selective

attention as operationalized by e.g., pigeonholing (Broadbent, 1970). This operation is

supposed to be related to alpha amplitude modulation such that alpha power should

attenuate in response to relevant information, e.g., category i, and potentially increase in

response to irrelevant information. Note, however, that this mechanism should not be

understood as a gain control mechanism such that relevant information processing was

enhanced and irrelevant information processing suppressed. In contrast, we argue for a

modulation of the likelihood of information processing in line with gating (Peylo et al., 2021;

Zhigalov & Jensen, 2020).

Feasibility of the Extended TVA Model to Explain Video Gaming Effects.

Given that our framework does not relay on target information enhancement and distractor

suppression mechanisms to operationalize attention control, it might provide new

perspectives on controversial video gaming effects. For instance, we pointed out that it might

be premature to interpret weaker neural responses in brain areas associated with top-down

attention processing (even though correlated with superior performance in discrimination

tasks) as indicative of enhanced attentional control in video game players (Bavelier, Achtman,

et al., 2012; Föcker et al., 2018). In this regard, the authors (Bavelier, Achtman, et al., 2012;

Föcker et al., 2018) argued in favor of superior attentional control with reference to the

neural efficiency hypothesis (Haier et al., 1988). Thus, video game players might have been

less challenged in performing the discrimination tasks as a result of their superior attention

control, which correlated with weaker neural responses in brain areas related to top-down

attention processing (Bavelier, Achtman, et al., 2012; Föcker et al., 2018). However, the

neural efficiency hypothesis (Haier et al., 1988) is quite controversial. This is because, on the

one hand, it appears to be supported by research on intelligence (Neubauer & Fink, 2009)

and age-related cognitive decline (Rypma, Berger, Genova, Rebbechi, & D’Esposito, 2005).

But at the same time, these effects are rather inconsistent because they are highly

task-specific and appear to dependent on demographic variables (Dunst et al., 2014; Lipp et
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al., 2012; Neubauer & Fink, 2009). Moreover, it is not compatible with neural correlates

typically related to attention processing. Gazzaley, Cooney, McEvoy, Knight, and D’Esposito

(2005), for instance, showed that individuals displayed larger neural responses to attended

stimuli and weaker ones to ignored stimuli. Furthermore, Egner and Hirsch (2005) found

that cognitive interference may be rather resolved by enhancing task-relevant processing as

opposed to suppressing task-irrelevant information processing. Following this logic, one

would have expected video game players to display enhanced target processing given that

they performed better than control individuals; and this in turn, should have correlated with

larger but not weaker brain activity while performing the tasks. In contrast, our framework

would suggest that video game players might have been particularly selective in information

processing. Thus, video game players appear to have applied a strategy to predominantly

avoid information processing. This is because, alpha power has been often observed to be

negatively correlated with blood-oxygenation-level-dependent signals (Pang & Robinson,

2018). Consequentially, video game players’ weaker brain responses likely coincided with

high alpha activity, which indicates a larger selectivity for information processing according

to our framework. This implies that video game players in fact displayed enhanced attention

processing, which is in line with Bavelier and Green’s account (Bavelier & Green, 2019).

Besides that, we have already elaborated that Wilms and colleagues (2013) and Schubert and

colleague’s (2015) results could be interpreted as in favor instead of opposition of Bavelier

and Green’s approach (Bavelier & Green, 2019). This is because, video game players’ larger

C parameter values are likely related to enhanced higher-level selective attention processing

as operationalized by pigeonholing (Broadbent, 1970). However, our framework cannot

explain why there were inconsistent results regarding SSVEPs in response to distractor

stimuli in video game players (Krishnan et al., 2013; Mishra et al., 2011). This is because,

SSVEPs are likely independent of alpha oscillatory activity (Antonov et al., 2020; Gundlach

et al., 2020; Keitel et al., 2019). Hence, this effect is out of the scope of our framework.
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Future Research

Future research will have to test whether gating as operationalized by alpha oscillatory

activity may indeed provide a neural correlate of dimension-based weighting such that

differential category weighting correlates with differential alpha amplitude modulation. In

support of this, Snyder and Foxe (2010), for instance, found that individuals’ alpha power

was modulated in line with dimension-weighting such that alpha power increased in response

to irrelevant categories as compared to relevant ones. Crucially, this modulation appears to

apply in particular to later dimension-based as opposed to early feature-based selective

attention processing (Gundlach, Forschack, & Müller, 2023; van Diepen, Miller, Mazaheri, &

Geng, 2016; Wildegger, van Ede, Woolrich, Gillebert, & Nobre, 2017). Besides that,

Freunberger, Klimesch, Griesmayr, Sauseng, and Gruber (2008) found that object

recognition correlated with alpha amplitude modulation. This observation had a strong

impact on the development of the knowledge system hypothesis according to which alpha

power modulation was supposed to represent a mechanism of encoding based on long-term

memory representations (Klimesch, 2012; Klimesch et al., 2011). Thus, there is essential

evidence in favor of alpha power modulation representing a neural mechanism of higher-level

selective attention at later processing stages in line with our framework but further research

will be required to establish this processing hierarchy.

Besides that, future research will have to extent our framework by algorithmic solutions

to cognitive operations preceding and following information encoding. TVA only proposes

that the conjunction between pigeonholing and filtering modulates the likelihood of

information processing during encoding (Bundesen, 1990; Bundesen et al., 2015). But it does

not commit to any additional model assumption in terms of attention processing.

Nevertheless, there are indications that individuals may employ attention in anticipation to

stimulus processing, after stimulus processing and even in response to retro-cues – operations

which also have been shown to correlate with alpha power modulation, respectively

(Klimesch et al., 2011; Nenert, Viswanathan, Dubuc, & Visscher, 2012; Roesner, Arnau,
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Skiba, Wascher, & Schneider, 2020; Spaak, Fonken, Jensen, & Lange, 2016; Worden et al.,

2000). Thus, further research will be required to investigate whether our framework may

only account for encoding or may also also incorporate additional attention operations.

Furthermore, the concept of a quantitative representation of information in memory has

been challenged. Schurgin, Wixted, and Brady (2020), for instance, provided strong evidence

that individuals’ memory recall may be operationalized by an encoding operation where the

internal representation of memorized information is executed by means of a familiarity

function. Thus, when individuals are asked to indicate which feature j of category i matches

with a (memorized) target object x, the strength of the association between feature j of the

probe and of the memorized object x appears to determine the memory recall accuracy.

Thus, information is unlikely represented as quantifiable unit in memory but rather as a

reversed saliency map. However, how external and internal encoding mechanisms interact

and whether our framework may account for them remains an open question and requires

further investigation.

In this regard, research on the functional role of interactions between prefrontal activity

and posterior alpha oscillatory actvity may be particularly interesting. This is because, there

are indications that prefrontal areas control attention processing related to posterior parietal

alpha activity (Capotosto et al., 2009; Sauseng, Feldheim, Freunberger, & Hummel, 2011) –

however, whether this applies foremost to visuospatial attention orienting or also to

additional attention operations remains an open question. Moreover, rather frontal theta

activity around 5 Hz as opposed to posterior alpha power appears to be associated with

information prioritization (Riddle, Scimeca, Cellier, Dhanani, & D’Esposito, 2020). Thus,

alpha power might in fact only represent a size-variable gate to either allow for information

to pass or not. But the central mechanism thereof may be controlled by frontal activity. If

such a mechanism indeed existed, this would imply that alpha power modulation was just a

means to filter information while the actual weighting operation might have taken place in

prefrontal areas and earlier on. As a result, alpha oscillatory activity might still represent a
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neural correlate of video gaming effects. However, alpha power modulation would represent

rather an intermediate step within a complex weighting mechanism. Thus future research will

be required to determine the significance of alpha power modulations in video gaming effects.

Conlcusion

With all this being said and done, is it fair to conlcude that alpha activity represents an

essential neural substrate of transfer effects related to video gaming? Our experimental

results mostly support this idea. This is because, we were able to demonstrate, firstly, that

video game players may develop superior speed of information processing as function of time

on task. Secondly, that this effect was likely relate to altered higher-level selective attention

processing; and thirdly, that this effect coincided with an increase in alpha amplitude

attenuation (Hilla et al., 2020). Thus, we were able to relate alterations in alpha oscillatory

activity to a video gaming transfer effect in line with the learning to learn hypothesis

(Bavelier & Green, 2019; Bavelier, Green, et al., 2012). Furthermore, our brain stimulation

study results emphasize that this effect indeed likely required higher-level selective attention

processing given that mere alterations in visuospatial attention processing had been

insufficient to imitate the effect (Hilla et al., 2023).
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