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“We stand now where two roads diverge. But unlike the roads in Robert Frost‘s familiar poem, 

they are not equally fair. The road we have long been traveling is deceptively easy, a smooth 

superhighway on which we progress with great speed, but at its end lies disaster. The other fork 

of the road — the one less traveled by — offers our last, our only chance to reach a destination 

that assures the preservation of the earth.” 

Rachel Carson 
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Executive summary

The climate system, governed by the energy budget of the Earth, is complex, highly 

interconnected, and influenced by the nonlinear interactions between the atmosphere, ocean, 

cryosphere, land and biosphere. This system directly reacts to alterations in the Earth’s energy 

budget, triggered by changes in the external forcing, either by natural (i.e., solar cycles, 

volcanic eruptions) or anthropogenic origin (i.e., greenhouse gases, aerosols, land use 

change). The continued change in external forcing through anthropogenic origin leads to an 

increase in the radiative forcing, triggering a warming climate. The thermodynamic 

consequence of a warming climate is the increased water holding capacity of a warmer 

atmosphere, which will influence the moisture flux from the surface to the atmosphere and 

vice versa. Since the energy budget is a closed system, the atmospheric water budget needs to 

be balanced by an increased horizontal moisture flux which will influence atmospheric 

circulation. These planetary changes in the climate system will drive a divers regional and 

local precipitation response. Our society and the environment are impacted by both extremes 

and variations in the mean-state of precipitation. Thereby the current states of society and 

the environment are adapted to extremes and levels of variability of the past and are likely 

not sufficiently resilient to changes in the future. Hence, in Geography and related fields (i.e., 

Climate Sciences) the robust understanding of the global to local precipitation response to a 

warming climate is of key interest for the communication of mitigation needs and the 

development of adaptation strategies. 

The scope of this cumulative dissertation is therefore the detection of robust patterns of global 

and regional precipitation change in response to a warming climate. Ensembles of climate model 

simulations under past and future climate conditions are the foundation for this analysis. 

However, transient changes in any realization of the climate system, such as observations or 

any climate model simulation, are the combination of the forced signal and internal climate 

variability. The internal climate variability, or natural variability, is caused by the chaotic and 

nonlinear nature of the climate system and is present at any given time. It is therefore often 

described as an irreducible uncertainty. 

To enable the robust quantification of changes in the climate system, including the forced 

climate response and internal climate variability, the Single Model Initial-Condition Large 

Ensemble (SMILE) framework is used. SMILEs are a state-of-the-art experimental setup in 

climate modeling. In this setup, a SMILE consists of a single climate model which is run 

multiple times while keeping the external forcing identical in each run, only changing the 

initial states at the start of the simulation. The difference in initialization among the different 

simulation runs samples the uncertainty based on different atmospheric and ocean states as 
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well as due to the nonlinear nature of the climate system. Each realization of the climate 

model is equally likely and will result in different trajectories of weather and climate events. 

Within all three publications the SMILE framework is used to implicitly account for the 

intrinsic uncertainty of internal variability in the climate system. Multiple global SMILEs and 

one regional SMILE have been used to analyze precipitation in past, current and future climate 

conditions regarding changes in the mean, the variability, and the upper tail (i.e., extremes) of its 

distribution. Within the three publications the changes to the above are analyzed on spatial 

scales from global to local, as well as on temporal scales from three hours to decades.  

In the first publication (Wood et al. 2021), multiple global SMILEs have been used to detect 

robust changes in global and regional precipitation variability on interannual to decadal 

timescales. Changes in precipitation variability stand to impact both natural and human 

systems in profound ways. Precipitation variability encompasses not only extremes like 

droughts and floods, but also the spectrum of precipitation which populates the times 

between these extremes. An increase in precipitation variability can for example enhance the 

volatility of crop yields and dryland productivity as well as impact other natural and human 

systems. The results in Wood et al. (2021) show implicit evidence that precipitation variability 

is non-stationary and is increasing in response to rising global mean surface temperatures. 

Thereby, the changes on interannual to decadal timescales are markedly similar. Precipitation 

variability increases globally at rates of ~4 % per one degree of global surface temperature 

warming showing a high model agreement over up-to 75 % of the global surface area. The rate 

exceeds the change in mean precipitation (2.5 % K-1) which implies that the driving 

mechanisms of the change in mean and variability are different. 

In the second publication (Wood and Ludwig 2020), a single regional SMILE, the Canadian 

Regional Climate Model version 5 large ensemble, was used to analyze future changes in the 

magnitude of seasonal and annual maximum precipitation over Europe. The knowledge on how 

and why the intensity of extremes changes is critical to becoming a resilient society. The 

current infrastructure and environment are adapted to observed extremes of the past and 

might not be sufficiently resilient against the extremes of the future. In this study, the forced 

change in the magnitude of maximum precipitation was analyzed alongside the change in the 

internal variability to determine the time-of-emergence when the forced signal robustly 

emerges from the uncertainty of internal climate variability. The results in Wood and Ludwig 

(2020) show a widespread increase in the annual maximum precipitation on timesteps of three 

hours to five days. Thereby, the increase in subdaily maximum precipitation is larger than on 

daily scales. On seasonal scales there is a clear difference between widespread increases in the 

winter (DJF) compared to widespread decreases in maximum precipitation in summer (JJA) in 
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the south, west, and east of Europe. The north of Europe continues to show increasing trends 

even in summer. Areas with low or negative scaling rates in summer indicate that changes are 

partly or mainly driven by other components than thermodynamics (i.e., dynamic changes). 

An increase in the Bowen Ratio indicates that dry local moisture conditions might be limiting 

the thermodynamic component in these regions. Generally, forced signals emerge from 

internal variability by midcentury. 

In the third publication (Wood 2023), the regional SMILE CRCM5-LE, is used to analyze 

changes in the probability of extreme precipitation events in Europe. The upper tail of the 

precipitation distribution (i.e., extremes) is thereby influenced by both the mean and 

variability. This means that any change to either of these properties will determine the 

probability of extremes in the distribution. However, the level of contribution from mean and 

variability are largely unknown. This could however help in narrowing down the drivers of an 

increase (decrease) in the number of extreme precipitation events. Wood (2023) is the first 

publication to attribute these changes to the individual contributions from changes in the mean 

and variability in regional to local scales over Europe. The risk of extreme precipitation events 

increases in a +2 °C warmer world, with roughly 29 percent of all land area in Europe showing 

a doubling in the number extreme events. With continued warming the probability risk ratio 

will further increase and by +4 °C of warming already 69 percent of land grid cells are likely to 

show at least a doubling in extremes. The individual contributions from either the mean or 

variability can thereby jointly contribute to an amplification of event probability or counteract 

each other. On annual timescales the contributions are near equal, while in winter the mean 

contributes more and in summer the contribution from changes in the variability are larger. 

Thereby, in summer the change in variability can counteract the strong decrease in the mean 

and can be the sole driver of an increase in event probability. This can locally be observed over 

France, the Mediterranean Region, and Southeast Europe.  
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Zusammenfassung

Das Klimasystem, das vom Energiehaushalt der Erde bestimmt wird, ist komplex, stark 

vernetzt und wird durch die nichtlinearen Wechselwirkungen zwischen Atmosphäre, Ozean, 

Kryosphäre, Land und Biosphäre beeinflusst. Dieses System reagiert direkt auf 

Veränderungen im Energiehaushalt der Erde, ausgelöst durch Veränderungen des externen 

Antriebs, entweder durch natürliche (d.h. Sonnenzyklen, Vulkanausbrüche) oder 

anthropogene Einflüsse (d.h. Treibhausgase, Aerosole, Landnutzungsänderungen). Die 

anhaltende Veränderung des externen Antriebs durch anthropogene Einflüsse führt zu einer 

Zunahme des Strahlungsantriebs, welches eine Erwärmung des Klimas bewirkt. Die 

Klimaerwärmung führt dabei aufgrund der Thermodynamik zu einer erhöhten 

Wasserspeicherkapazität der Atmosphäre und damit einhergehend wird der Feuchtetransport 

von der Landoberfläche zur Atmosphäre und umgekehrt beeinflusst. Da die Energiebilanz ein 

geschlossenes System ist, muss die atmosphärische Wasserbilanz durch einen größeren 

horizontalen Feuchtetransport ausgeglichen werden, der die atmosphärische Zirkulation 

beeinflusst. Diese planetaren Veränderungen des Klimasystem lösen eine vielfältige regionale 

und lokale Niederschlagsreaktion aus. Unsere Gesellschaft und die Umwelt werden sowohl 

von Extremen als auch von Schwankungen des mittleren Niederschlags beeinflusst. Dabei ist 

der aktuelle Systemzustand der Gesellschaft und der Umwelt an die derzeitigen bzw. 

vergangenen Extremereignisse und Niederschlagsvariabilität angepasst und wahrscheinlich 

nicht ausreichend widerstandsfähig gegenüber Veränderungen in der Zukunft. Daher ist in 

der Geographie und benachbarten Forschungsfeldern (z.B. Klimawissenschaften) das robuste 

Verständnis der durch den Klimawandel hervorgerufenen Veränderungen des globalen und 

lokalen Niederschlags von zentralem Interesse für die Kommunikation von Mitigationszielen 

und der Entwicklung von Anpassungsstrategien. 

Gegenstand dieser kumulativen Dissertation ist daher die Erkennung robuster Muster globaler 

und regionaler Niederschlagsänderungen als Reaktion auf ein sich erwärmendes Klima. Die 

Grundlage der Auswertungen bilden Ensembles von Klimamodellsimulationen unter 

vergangenen und zukünftigen Klimabedingungen. Dabei sind jedoch die transienten 

Veränderungen einzelner Klimarealisationen, z.B. Beobachtungsdaten oder einzelne 

Klimasimulationen, das Produkt von Klimasignal und interner Klimavariabilität. Die interne 

Klimavariabilität oder natürliche Variabilität wird durch das Chaos und die nicht Linearität 

des Klimasystems verursacht und ist zu jeder Zeit vorhanden. Sie wird daher auch oft als nicht 

reduzierbare Unsicherheit bezeichnet. 

Um eine robuste Abschätzung der Klimaveränderungen, einschließlich des Klimasignals und 

der internen Klimavariabilität, zu ermöglichen, wird das Single Model Initial-Condition Large 
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Ensemble (SMILE) Framework verwendet. SMILEs bestehen aus mehreren 

Modellsimulationen desselben Klimamodels, wobei der externe Antrieb (d.h. 

Treibhausgaskonzentrationsszenario) in jeder Modellsimulation identisch bleibt und nur die 

Anfangszustände zu Beginn der Simulation geändert werden. Die Unterschiede in den 

Startbedingungen zwischen den verschiedenen Modellläufen führt aufgrund der nicht 

Linearität des Klimasystems zu unterschiedlichen Ausprägungen von Wetter- und 

Klimaereignissen. Dabei ist jede einzelne Klimasimulation gleich wahrscheinlich und das 

Ensemble aus den einzelnen Klimasimulationen ermöglicht somit die Quantifizierung der 

internen Klimavariabilität, welche durch unterschiedliche Zustände der Atmosphäre und 

Ozeane hervorgerufen wird. 

In allen drei Publikationen wird der SMILE Ansatz verwendet, um implizit die intrinsische 

Unsicherheit der internen Klimavariabilität zu berücksichtigen. Mehrere globale und ein 

regionales SMILE wurden verwendet um die Veränderungen des mittleren Niederschlags, der 

Niederschlagsvariabilität und der (feuchten) Extrema in vergangenen, aktuellen und 

zukünftigen Klimabedingungen zu untersuchen. Dabei wurden die Veränderungen auf 

räumlichen Skalen von global bis lokal sowie auf den zeitlichen Skalen von dreistündig bis 

dekadisch analysiert. 

In der ersten Publikation (Wood et al. 2021) wurden mehrere globale SMILEs verwendet, um 

robuste Veränderungen der jährlichen bis dekadischen Niederschlagsvariabilität auf der globalen 

und regionalen Skala zu erkennen. Veränderungen der Niederschlagsvariabilität werden 

natürliche und menschliche Systeme tiefgreifend beeinflussen. Die Niederschlagsvariabilität 

umfasst nicht nur Extreme wie Dürren und Überschwemmungen, sondern auch das 

Niederschlagsspektrum dazwischen. Eine Zunahme der Niederschlagsvariabilität kann 

beispielsweise die Volatilität von Ernteerträgen und Trockenlandproduktivität erhöhen und 

sich auf andere natürliche und menschliche Systeme auswirken. Die Ergebnisse in Wood et al. 

(2021) zeigen eindeutig, dass die Niederschlagsvariabilität nicht stationär ist und mit 

steigender Globaltemperatur ansteigen wird. Dabei ist die Zunahme der jährlichen bis 

dekadischen Variabilität sehr ähnlich. Die Niederschlagsvariabilität steigt mit jedem Grad der 

Erderwärmung um ~4 % an und zeigt dabei eine hohe Übereinstimmung der Modelle über ~75 

% der Erdoberfläche. Die Zunahme übersteigt dabei den Anstieg des mittleren Niederschlags 

(2.5 % K-1) was bedeutet, dass die Treiber der Änderung des Mittelwerts und der Variabilität 

unterschiedlich sind. 

In der zweiten Publikation (Wood and Ludwig 2020), wurde unter der Verwendung eines 

regionalen SMILEs, das Canadian Regional Climate Model version 5 large ensemble, die 

zukünftige Veränderung der saisonalen und jährlichen maximalen Niederschlagsmengen über 
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Europa untersucht. Das Wissen darüber, wie und warum sich die Intensität von Extremen 

ändert, ist entscheidend, um eine widerstandsfähige Gesellschaft zu werden. Die derzeitige 

Infrastruktur und Umwelt sind auf beobachtete Extremereignisse der Gegenwart und 

Vergangenheit angepasst und diese Systeme sind womöglich nicht widerstandsfähig gegen 

zukünftige Extremereignisse. In dieser Studie wurde das Klimasignal der maximalen 

Niederschlagsmenge gemeinsam mit der Veränderung der internen Klimavariabilität 

bestimmt, um den Zeitpunkt in der Zukunft zu ermitteln (time-of-emergence) an dem das 

Klimasignal den Schwankungsbereich der internen Klimavariabilität verlässt. Die Ergebnisse 

in Wood and Ludwig (2020) zeigen einen weiträumigen Anstieg des jährlichen 

Niederschlagsmaximum für Zeitschritte von drei Stunden bis fünf Tagen. Dabei ist die 

Zunahme der stündlichen Maximalwerte größer als auf der täglichen Zeitskala. Auf der 

saisonalen Ebene ist ein klarer Unterschied zwischen einer weiträumigen Zunahme im Winter 

(DJF) im gesamten Europa und einer weiträumigen Abnahme im Sommer (JJA) im Westen, 

Süden und Osten Europas zu erkennen. Nordeuropa zeigt auch im Sommer eine weitere 

Zunahme. Gebiete mit niedrigen oder negativen Skalierungsraten im Sommer weisen darauf 

hin, dass Veränderungen teilweise oder hauptsächlich durch andere Komponenten als die 

Thermodynamik (d.h. dynamische Veränderungen) getrieben werden. Eine Zunahme des 

Bowen Ratios deutet darauf hin, dass trockene Feuchtebedingungen möglicherweise die 

thermodynamische Komponente in diesen Gebieten limitiert. Generell verlässt das 

Klimasignal den Schwankungsbereich der internen Klimavariabilität bis zur Mitte des 

21.Jahrhunderts. 

In der dritten Publikation (Wood 2023) wird unter der Verwendung des regionalen SMILE 

CRCM5-LE die Veränderung der Wahrscheinlichkeit von extremen Niederschlagsereignissen in 

Europa untersucht. Das obere Ende der Niederschlagsverteilung (d.h. Extreme) ist dabei von 

Mittelwert und Variabilität beeinflusst. Dies bedeutet, dass jegliche Änderung des Mittelwerts 

oder der Variabilität die Wahrscheinlichkeit von Extremen in der Verteilung bestimmt. Jedoch 

ist der Anteil von Mittelwert und Variabilität weitgehend unbekannt. Dieses Wissen könnte 

jedoch dazu beitragen, die möglichen Treiber der Zunahme (Abnahme) der Häufigkeit von 

Extremereignissen einzugrenzen. Wood (2023) ist eine der ersten Publikationen, die die 

Veränderung der Häufigkeit von Extremereignissen den individuellen Beiträgen von 

Veränderungen des Mittelwerts und der Variabilität auf regionaler und lokaler Skala in Europa 

zuschreibt. Das Risiko von Extremereignissen steigt in einer +2 °C wärmeren Welt an und zeigt 

über etwa 29 Prozent der Landoberfläche Europas eine Verdoppelung der Anzahl an 

Extremereignissen. Bei anhaltender Erwärmung wird die Häufigkeit von Extremereignissen 

weiter ansteigen und bei einer Erwärmung von +4 °C dürften bereits 69 Prozent der 

Landoberfläche mindestens eine Verdoppelung aufweisen. Die individuellen Beiträge des 
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Mittelwerts und der Variabilität können dabei beide zu einer Zunahme der Häufigkeit 

beitragen oder einander Entgegenwirken. Auf jährlicher Zeitskala sind die Beiträge aus 

Mittelwert und Variabilität fast ausgeglichen, wohingegen im Winter der Mittelwert einen 

größeren Einfluss zeigt und im Sommer die Veränderung der Variabilität stärkeren Einfluss 

hat. Dabei kann im Sommer die Zunahme der Variabilität der starken Abnahme des 

Mittelwerts entgegenwirken und kann der alleinige Treiber für die Zunahme der Häufigkeit 

von Extremereignissen sein. Dies kann lokal über Frankreich, dem Mittelmeerraum und 

Südosteuropa beobachtet werden. 
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1 Introduction

Our society and the environment are impacted by both extremes and variations in the mean-

state. Thereby the current states of society and the environment are adapted to extremes and 

levels of variability of the past and might not be sufficiently resilient to changes in the future. 

Recent devastating extreme events throughout the world, such as the July 2021 flooding in 

Western Germany  (Kreienkamp et al. 2021), the heat wave in British Columbia in 2021 (Philip 

et al. 2021), the 2018-20 drought in Europe (Blauhut et al. 2022; Rakovec et al. 2022), or many 

more examples show the high vulnerability of our build environment and society against 

extreme events. It was quantified that climate change has already influenced the severity of 

these events (Philip et al. 2021; Kreienkamp et al. 2021) and that through continued global 

warming, droughts (Böhnisch et al. 2021; Aalbers et al. 2022; van der Wiel et al. 2022) and 

large floods (Brunner et al. 2021) are becoming more severe and frequent. Throughout many 

iterations of scientific reports by the Intergovernmental Panel on Climate Change (IPCC) and 

a large body of scientific publications, it is well established that the human influence on the 

climate system has profound impacts on the mean-state precipitation, precipitation 

variability, and precipitation extremes. 

Precipitation variability is expected to increases under global warming globally at rates larger 

than the mean climate (Wood et al. 2021; Pendergrass et al. 2017). Also, large scale modes of 

climate variability, such as the El Nino Southern Oscillation (e.g., Haszpra et al. 2020; Maher 

et al. 2018) or the North Atlantic Oscillation (e.g., Böhnisch et al. 2020; McKenna and Maycock 

2021), which govern the regional or local precipitation response, are expected to change. An 

increase in precipitation variability can regionally imply a precipitation volatility enhancing 

the risk of swings between extreme dry and wet conditions (Di Chen et al. 2022; Swain et al. 

2018; Madakumbura et al. 2019). Enhancing the volatility of crop yields and ecosystem 

productivity (Gherardi and Sala 2019; Rowhani et al. 2011; Ritter et al. 2020; Liu et al. 2020) 

to enhancing flood risk and damage (Nobre et al. 2017). Precipitation variability not only 

describes the ‘space between’ mean and extreme conditions, but also the time between wet 

and dry extremes. On the dry side of extremes, droughts are the clearest manifestation of 

precipitation variability. Drought-related economic losses are directly associated with the 

agricultural, energy, and public water supply sector (Cammalleri et al. 2020; Freire-González 

et al. 2017; van Loon 2015) for which losses may be easily quantifiable. However, there are 

many more impacts that may linger well beyond the drought end and can cause permanent 

damage to biodiversity and other natural environments (United Nations Office for Disaster 

Risk Reduction 2021). It is expected that the risk of droughts continues to increase (Aalbers 
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et al. 2022; Böhnisch et al. 2021; Spinoni et al. 2018) alongside the risk of shorter times 

between individual drought events and multiyear droughts (van der Wiel et al. 2022). 

On the wet side of the extremes, extreme precipitation events are projected to increase 

globally at rates of 6-7% per 1°C of increased global surface temperature warming (Allen and 

Ingram 2002; Held and Soden 2006; O’Gorman and Schneider 2009), which follows the rate of 

atmospheric moisture change. On global and regional scales, the increase in extreme 

precipitation is robust in observations (Contractor et al. 2021; Fowler et al. 2021; Guerreiro et 

al. 2018; Westra et al. 2013) and models (Fischer and Knutti 2016; Martel et al. 2021; Myhre 

et al. 2019; Westra et al. 2014; Fischer et al. 2013). Locally, these scaling rates can be exceeded 

substantially (Lenderink and van Meijgaard 2008; Lenderink et al. 2017; Fowler et al. 2021; 

Wood and Ludwig 2020). Thereby, global warming levels above 2°C significantly increase the 

risk of more severe extreme precipitation events (Kharin et al. 2018). Also, the nature of the 

weather systems producing extreme precipitation events are subject to change (Kahraman et 

al. 2021; Prein et al. 2017; Chan et al. 2023; Wasko et al. 2016). These changes to the 

magnitude and frequency of extremes, as well as the changing characteristic of the driving 

weather system, is leading to more severe and more frequent flood events (Hattermann et al. 

2018; Brunner et al. 2021; van der Wiel et al. 2019).  

However, future projections and the quantification of anthropogenic changes in the 

distribution of precipitation is challenged by the ever-present influence of internal climate 

variability. Internal variability in the climate system is an irreducible and important source of 

uncertainty (Hawkins and Sutton 2009; Lehner et al. 2020; Deser et al. 2012). On a year-to-

year basis everyone can observe the manifestation of internal climate variability in the form 

of a hot-dry summer followed by a cold-wet summer. These variations in weather and climate 

are induced by the complex interplay of natural processes in the atmosphere-ocean-land-

biosphere-cryosphere system.  

If we imagine a world with a minimal imprint of humans on the natural system (e.g., at pre-

industrial times) with centuries to millennia of uninfluenced observed weather and climate 

records (no volcanic eruptions and identical year-to-year solar radiation), we could imagine 

internal variability as fluctuations or wiggles around a well-defined stationary mean climate 

state. However, through natural (e.g., volcanic eruptions) or human causes (e.g., emitting of 

aerosols and greenhouse-gases) the earth system is undergoing a constant change of its 

external forcing that influences all components of the system. This means that we rather have 

a non-stationary climate system in which we have an evolving mean climate with wiggles 

around the mean where both the mean and the wiggles are influenced by external forcings. 
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Therefore, any climate realization, such as observations or climate model simulations, are the 

combination of a forced signal and internal variability. 

In this dissertation, Single Model Initial-condition Large Ensembles (SMILEs) are used to 

quantify changes in extreme and mean-state precipitation across scales in a warming climate. 

SMILEs are a state-of-the-art experimental setup in climate modeling which enables the 

robust quantification of changes in the climate system, including the forced climate response 

and internal climate variability. In this setup, a single climate model is run multiple times 

while keeping the external forcing identical in each run, only changing the initial states at the 

start of the simulation. The difference in initialization among the different simulation runs 

samples the uncertainty based on different atmospheric and ocean states as well as due to the 

non-linear nature of the climate system. Each realization of the climate model is equally likely 

and will result in different trajectories of weather and climate events. 

By using multiple SMILEs, the projected changes in precipitation and its variability across annual 

to decadal time scales are analyzed on a global scale (Publication 1, chapter 4). On regional 

scales, changes in annual and seasonal maximum precipitation are analyzed in a single regional 

50-member SMILE over Europe (Publication 2, chapter 5). The same regional SMILE was 

used to partition the individual contributions from changes in the mean and variability to explain 

changes in the probability of annual and seasonal extreme precipitation events over Europe 

(Publication 3, chapter 6). The key findings from the three publications are discussed in 

chapter 7. 

 



Scientific basis 

4 

2 Scientific basis

This chapter will give a brief introduction into the scientific basis needed to understand the 

global and regional precipitation response to a warming climate and why natural climate 

variability is an important factor contributing to the changes but also contributing to the 

uncertainties. First, the role of natural climate variability (section 2.1) and the common tools 

to quantify natural climate variability (section 2.2) are discussed. The SMILE framework, 

which is the central tool used within this dissertation, is described (section 2.3) alongside the 

basics of climate modeling (section 2.4). Lastly, a brief overview of the theoretical 

understanding of the global and regional precipitation response to a warming climate is given 

(section 2.5). 

2.1 The role of natural climate variability

In climate science and related impact studies, understanding the response of the climate 

system to external forcings, particularly from anthropogenic origin (i.e., greenhouse gases, 

aerosols, land use change), are of key interest. However, these transient changes in any 

realization of the climate system, such as observations or any climate model simulation, are 

the combination of the forced signal and internal climate variability. The internal climate 

variability, or natural variability, is caused by the chaotic and nonlinear nature of the climate 

system and is present at any given time. It is therefore often described as an irreducible 

uncertainty. On interannual timescales every one of us can observe natural variability. As one 

summer might be hot and dry, the following might be cold and wet. These interannual 

fluctuations are caused by different modes of variability, such as the El-Niño Southern 

Oscillation (ENSO), which can cause anomalous temperature and rainfall patterns over 

various regions on the globe. Regionally, different modes of variability are of importance, such 

as the North Atlantic Oscillation (NAO) for European weather and climate, which causes in its 

positive phase warmer and wetter winters in northern Europe, while cooler and drier 

conditions in the south, and vice versa for its negative phase (e.g., Hurrell and Deser 2010; 

Pokorná and Huth 2015; Woollings et al. 2015). From a local perspective these 

teleconnections might not be apparent at first, since the source region can be located far away 

(e.g., in the North Atlantic), however they are causally connected by for example shifting 

storm tracks further north or south, which then locally can determine the magnitude and 

frequency of extreme events. Extreme events are therefore the most discernible manifestation 

of internal variability. 

On longer time scales (years to decades), internal variability can modulate decadal trends 

(Maher et al. 2020; Marotzke and Forster 2015), which can lead to misconceptions of the 

forced signals, as prominently highlighted by the discussion on the global warming hiatus 
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(Hedemann et al. 2017). Therefore, it is important to analyze the internal variability alongside 

the forced signal to better quantify the underlying forced change in the presence of large 

internal climate variability. Over time the forced signal might become large enough to clearly 

emerge from the noise (i.e., introduced by the natural variability), however on regional scales 

the internal variability can remain a large uncertainty even far into the future (e.g., Lehner et 

al. 2020; Wood and Ludwig 2020). 

2.2 Tools to quantify natural climate variability

The key to quantifying internal climate variability is a large sample size to capture a wide 

variety of different atmospheric and ocean states, as well as different modes of climate 

variability (e.g., ENSO, NAO). The large sample size can either be long observational records 

or climate model data. 

Long observational records can be used to quantify internal climate variability. However, any 

observational record spanning a long period (e.g., the last 100 years) will be influenced by a 

forced signal and internal variability, which makes it difficult to disentangle the two 

components. Any forced trend can be removed by statistical methods (e.g., linear detrending) 

from the observations (i.e., a single realization) and the residuals can be interpreted as 

internal variability (e.g., Frankcombe et al. 2018). However, detrending (e.g., removing a 

linear trend) can introduce large biases in the amplitude and phase of internal variability 

(Frankcombe et al. 2015; Frankcombe et al. 2018). The imprint of the external forcing might 

not be adequately removed from the observational record, and instead internal variability and 

the forced response are mixed (England 2021). Further, throughout the observational period 

the equipment as well as the location of retrieval will likely have changed, which can introduce 

artefacts which itself can be misinterpreted as either a forced change or a change in internal 

variability. This highlights the difficulties of estimating the internal variability along the time 

dimension under constantly changing external factors. Another caveat is the lack of high 

quality and long observational records which are sparse and unequally distributed across the 

globe. 

Using climate model data can be a valuable tool to quantify internal climate variability across 

the entire globe. A way to estimate internal variability in the absence of any changes in 

external forcing, is the use of long equilibrium climate model simulations (e.g., Thompson et 

al. 2015; Wittenberg et al. 2014). For these idealized simulations, a climate model is forced by 

preindustrial external forcings, where the seasonal cycle of incoming solar radiation is 

repeated every year. In this setup, all concentrations of greenhouse gases, such as CO2, are 

kept constant at preindustrial levels. Thus, the external forcing from year-to-year is identical. 

These simulations are therefore commonly named preindustrial control simulations (or 
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PiControl). The climate model is run for an extensive period, generating hundreds to 

thousands of simulation years. Although the external forcing is identical for each of the 

simulated years, the state of the Earth System is not the same in each year, due to internal 

climate variability, leading to considerable deviations from year-to-year in the simulation. By 

removing the influence of a forced signal, caused by a change in external forcing, the entire 

timeseries from the PiControl simulations can be used to quantify internal variability. In 

contrast to the observations the internal variability in the PiControl simulations is well 

defined along the time dimension. A common way to estimate the internal variability is by 

removing the mean from the simulation and calculating the standard-deviation over the 

entire length of the simulation. This can be a robust and simple estimate of internal climate 

variability. However, the estimate from the PiControl simulation is bound to the assumption 

that internal variability is stationary (i.e., remaining constant at preindustrial levels) and 

therefore being independent from a change in external forcing. However, Pendergrass et al. 

(2017) and Wood et al. (2021) show implicit evidence that precipitation variability is changing 

globally and regionally, implying that internal variability is non-stationary and itself is likely 

to change under climate change. Other studies show this for Arctic precipitation variability 

(Bintanja et al. 2020) or changes in ENSO variability (Haszpra et al. 2020; Maher et al. 2018). 

This implies that the internal climate variability itself is influenced by the change in external 

forcing. Thus, the hypothesis of the PiControl simulation of a constant magnitude of internal 

variability is false and the internal variability from the PiControl simulations is bound to a 

stationary climate. Therefore, another tool besides observations and the PiControl 

simulations is needed to quantify internal variability in a non-stationary climate. 

The current best practice to determine internal variability in a non-stationary climate is the 

Single Model Initial-Condition Large Ensemble (SMILE) framework. A SMILE is a single 

climate model which has been run for multiple times (e.g., 50 times) with each single 

realization following the same external forcing but with different initial conditions at the start 

of the simulation. The small differences at the start of the simulation lead to different 

trajectories of weather and climate events due to the chaotic climate system. The differences 

among the individual realizations can be interpreted as internal variability. With SMILEs it is 

possible to determine both, the change in the mean-state as well as the change in internal 

variability under a changing external forcing. By utilizing the ensemble member space, the 

sample size can be increased for any point in time, for example sampling all 50 members for 

the 30-year period 1981-2010 will yield a sample size of 1500 equally likely years under the 

same external forcing. For any such 30-year period in the past, current, or future climate the 

mean, extremes, and the internal climate variability can be robustly quantified. This allows 

for the analyze of changes to any of these quantities under a constantly changing external 
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forcing. The SMILE framework is used as the key tool in this work and will be discussed in 

more detail in the next section. 

Observations should however not be ruled out as an essential tool to quantifying internal 

climate variability, especially not when the observations can be placed in the context of large 

ensemble climate model simulations, where they are essential for evaluating the modelled 

internal variability (Suarez-Gutierrez et al. 2021; Wood et al. 2021) as well as vice versa by 

utilizing the climate model simulations to evaluate the observational record (Rodgers et al. 

2015). Recent and ongoing progress in isolating internal variability from single climate model 

realizations or observations is being made by using statistical methods (e.g., Wills et al. 2020; 

Smoliak et al. 2015; Sippel et al. 2019; Deser et al. 2016). 

 

2.3 The large ensemble (SMILE) framework

The basic description of a SMILE setup is the use of a single climate model with multiple 

realizations for the same scenario. Thereby, the choice of the climate model as well as the 

choice of the scenario is not relevant. Figure 1 shows the schematic framework for a 

representative SMILE. The idealized SMILE in Figure 1(a) starts with five different realizations 

from different start dates in the long PiControl simulation (Figure 1, b), with ten additional 

small perturbations per initial run introduced in the year 1950, before the now 50 different 

realizations running freely until the end of the 21st century. In this framework, the two 

different main types of initialization schemes (macro and micro) are used to create the 

different realizations. The macro initialization samples initial states from well separated start 

dates within a long control simulation (Figure 1, b), it therefore samples uncertainty based on 

different atmospheric and ocean states as well as due to the non-linear nature of the climate 

system (Hawkins et al. 2016). The micro initialization adds random perturbations (e.g. cloud 

parameterization) to single macro states (Figure 1, c) sampling the uncertainty based on the 

non-linear response of the climate system (Hawkins et al. 2016). The macro initialization has 

the advantage that the inter-member spread (differences among the individual members) is 

already large from the start of the initialization, while member from micro initializations are 

very similar at the start and need time to result in the same inter-member spread as the macro 

counterparts. Leduc et al. (2019) show that it takes up to two years for temperature to evolve 

to the same magnitude of inter-member spread as from macro initialized members. This can 

be explained by the fact that the micro initialized members start with same ocean conditions, 

while macro members normally start with mixed ocean conditions, and it will take the micro 

members sometime to develop different ocean states. In this study, the differences between 
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the different initialization schemes are not of relevance for the analysis since the periods of 

interest are well separated from the initialization time. 

 

Figure 1 | SMILE Framework. (a) Schematic depiction of a SMILE with macro and micro initialization. (b) Macro 
initial states (colored dots with vertical lines) sampled from within the PiControl simulation (black line). (c) 
Evolving weather trajectories within the first 31 days after micro initialization. Same color family (blue, purple, 
green, orange, red) indicate the origin from the same macro initialization. The color intensity shows different 
micro initialized simulations. (d) Evolving ensemble mean (black line), ensemble spread (min/max, grey shading), 
and two individual ensemble members (blue and red line). Data for panels (b)-(d) from the CanESM2 model 
extracted for the grid cell covering the city of Munich. Data in (b) from the CanESM2 PiControl simulation. Data 
in (c) and (d) from the 50-member CanESM2 large ensemble simulations. 

The required ensemble size for a SMILE is dependent on the research question, target variable, 

the acceptable error suitable for the application, and the region (Tebaldi et al. 2021; Milinski 

et al. 2020; Wood et al. 2021). For the determination of the forced response smaller ensemble 

sizes are suitable for changes on global scales (Maher et al. 2021a; Milinski et al. 2020), but on 

regional scales it is possible that the sign of the forced trend can be misidentified by smaller 

ensembles depending on its location (Maher et al. 2019). In contrast, for the question on how 

internal variability itself is changing larger ensemble sizes are required. Maher et al. (2018) 

have revealed that for detecting changes in ENSO variability, ensemble sizes beyond 30 

member are needed, because ENSO itself is strongly influenced by internal variability. For the 

question on changing interannual precipitation variability, Wood et al. (2021) show that more 

members are advisable and are dependent on the geographic region. In the study it is suggest 

that for higher latitudes at least 30 members are needed, but also in other regions smaller 

ensembles might not be as reliable. The common ensemble size of the CMIP5 era SMILEs 

range from 16 (EC-Earth; Hazeleger et al. (2010)) to 100 members (MPI-GE; Maher et al. 

(2019)). Most SMILEs from this model era were not part of the initial CMIP5 modelling activity 

and most were ensembles of opportunity. Hence, most SMILEs were limited to the RCP8.5 
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scenario due to a tradeoff between ensemble size and number of scenarios. In CMIP6, SMILEs 

are commonly produced with multiple large ensembles from different models and for multiple 

scenarios. 

The main benefit of the SMILE framework is the provisioning of physically consistent large 

sample sizes of past and future climate events. Many studies have used SMILEs for a better 

estimation of the models forced response, enabling the clean separation of the forced 

response (i.e. climate change signal) and internal variability (e.g., Wood and Ludwig 2020; Kay 

et al. 2015; Maher et al. 2019) including partitioning of uncertainties (e.g., Lehner et al. 2020; 

Maher et al. 2021b). Other studies used SMILEs to analyze whether climate change influences 

internal climate variability itself, such as different modes of climate variability (e.g., Böhnisch 

et al. 2020; McKenna and Maycock 2021; Maher et al. 2018), or more general if interannual to 

decadal variability is changing (e.g., Wood et al. 2021; Bintanja et al. 2020; Maher et al. 2021b). 

The large sample size has also been used to study changes in extreme events (e.g., Aalbers et 

al. 2018; Poschlod and Ludwig 2021; Wood and Ludwig 2020; Bevacqua et al. 2022; 

Kirchmeier-Young et al. 2017) especially looking at extremes with low probabilities (i.e., long 

return periods) (e.g., van der Wiel et al. 2019; Martel et al. 2020; Brunner et al. 2021). SMILEs 

are also utilized as a testbed for new statistical methods including machine learning 

applications (e.g., Mittermeier et al. 2019; Mittermeier et al. 2022; McKinnon et al. 2017; 

Heinze-Deml et al. 2021; Lehner et al. 2017). Since observational reference datasets are 

uncertain (e.g., Alexander et al. 2020; Gampe et al. 2019) and can only represent a single 

realization of the climate system, model evaluation can also benefit from SMILEs by placing 

observations within the spread of the ensemble (e.g., Suarez-Gutierrez et al. 2021; Wood et 

al. 2021; Maher et al. 2019). This is not a complete list of applications and new innovative 

ways of using SMILEs are constantly being developed. For further examples of the use of 

SMILEs see Maher et al. (2021a) and Deser et al. (2020). 

Since the term large ensemble is not trademarked or defined it is also used for suites of 

multiple climate models with single realizations (e.g., CMIP, or CORDEX). These multi-model 

ensembles can also be termed large ensembles, however they do not offer the same clean 

separation between internal variability and forced signal. However, when comparing large 

multi-model ensembles (i.e., CMIP5, Euro-CORDEX) with SMILEs, there seems to be 

considerable internal variability included in multi-model large ensembles (Wood et al. 2021; 

Maher et al. 2021b; von Trentini et al. 2019). By clustering the CMIP5 multi-model ensemble 

into sub ensembles with similar or same atmospheric or ocean model components, the 

artificial ensembles can produce similar magnitudes of internal variability as an ensemble of 

SMILEs (Maher et al. 2021b). In this dissertation the terminology large ensemble is used in the 

context of SMILEs. 
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2.4 Basics of climate modeling

Climate models have already been mentioned several times, so what is a climate model and 

why is it a great tool to study the response of the Earth System to a changing climate? The 

main purpose of a climate model is to have a digital representation of the Earth system that 

can be used to run different versions (i.e., scenarios) of past and future climates to better 

understand the response of the Earth System to changing external forcings. The foundation 

of climate models are physical equations describing the interactions between the cryosphere, 

ocean, atmosphere, and biosphere with all important lateral and vertical fluxes of energy and 

mass compiled in a computer code. Technically this is achieved by dividing the Earth into a 

three-dimensional grid space of horizontal (representing geographic regions) and vertical 

(representing different atmospheric and sub-surface levels) grid cells, solving partial 

differential equations within each grid cell and moving mass and energy between them, while 

conserving mass, movement, and energy. This process is repeated for each timestep of the 

simulation which explains the high computational cost of running such models. 

If the three-dimensional network of grids circumvents the entire globe, then these models are 

considered Global Climate Models (GCM). The current generation of GCMs have a spatial 

resolution of approximately 1°-2.8°, which translates to roughly 100-300km. Compared to 

current versions, early GCMs had a simple representation of the atmosphere and ocean, and 

with each new version the components of the Earth system have been updated and extended. 

One of the latest advancements has been the addition of biogeochemical interactions in the 

Biosphere and Ocean component. This addition has allowed for a direct computation of 

biogeochemical cycles, such as the carbon cycle, which play an important role in the climate 

system. Hence, these models are called Earth System Models (ESM). For simplicity and 

because a distinction between GCM and ESM is not relevant in this work, both models will be 

related to as GCMs. 

2.4.1 Scenarios

To study the long-term climate change, climate models need to be linked to defined scenarios 

or pathways of future emissions/concentrations of GHGs and aerosols, as well as land use 

change, and possible changes in the natural forcing (i.e., solar cycle, volcanic eruptions). All 

climate model simulations used within the scope of this dissertation are based on the Coupled 

Model Intercomparison Project 5 (CMIP5) protocols (Taylor et al. 2012). The scenarios for the 

CMIP5 generation of simulations have been developed for the fifth assessment report (AR5) 

of the IPCC and are referred to as Representative Concentration Pathways (RCP). The RCP 

scenarios are representative GHG pathways which will result in a specific additional net 

radiative forcing (Meinshausen et al. 2011; Moss et al. 2010; van Vuuren et al. 2011). 

Representative in this context means, that the pathway is only one of many possible 
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trajectories of GHG concentrations towards the specified radiative forcing. These 

representative pathways are the result of Integrated Assessment Tools and further post-

processing. In contrast to the previous SRES scenarios (Special Report on Emission Scenarios; 

Nakicenovic, N. and Swart, R. 2000), the RCP scenarios are not directly based on socio-

economic pathways (SSP). In the development of the different RCPs socio-economic 

assumptions (e.g., population and socioeconomic development) have been made, but they 

rather represent internally consistent sets of time-dependent forcing projections which could 

potentially be realized by more than one SSP (Collins et al. 2013). In CMIP5 and respectively 

for the AR5 the four main RCP scenarios RCP2.6, RCP4.5, RCP6.0 and RCP8.5 have been 

selected (Figure 2, a). Thereby, the numbering of the RCP scenarios represents the 

approximate net added radiative forcing at their 21st century stabilization or peak radiative 

forcing value (i.e., RCP8.5 -> additional 8.5 W/m²). The highest emission scenario RCP8.5 is 

often described as a pathway of little climate mitigation and therefore with a high demand for 

climate adaptation. The CMIP5 multi-model mean response for the RCP8.5 scenario is approx. 

an increase of +4.61 °C in global mean surface temperature above the pre-industrial period 

1850-1900 (Figure 2, b).  In contrast, the lowest scenario RCP2.6 represents a pathway with 

high levels of climate mitigation and respectively a smaller need for climate adaptation. The 

RCP2.6 scenario projects a GMST warming of +1.61°C above pre-industrial times. In this 

dissertation only the RCP8.5 scenario is considered. 

 

Figure 2 | Different Representative concentration pathway (RCP) scenarios and associated global mean surface 
temperature change. (a) Additional radiative forcing (Wm-2) in the four CMIP5 RCP scenarios (adapted from: 
Cubasch et al. 2013); (b) CMIP5 multi-model mean and model spread of global surface temperature change (°C) in 
response to the different RCP scenarios compared to the reference period 1986-2005. To translate the GMST 
change into warming above pre-industrial 1850-1900 an additional 0.61°C should be added. This is the assumed 
observed warming since 1850-1900 until 1986-2005. (adapted from: Collins et al. 2013)  
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2.4.2 Projection Uncertainties

All climate model simulations are subject to projection uncertainties which can be the result 

of different scenarios which entail different trajectories of global warming (scenario 

uncertainty), different models projecting low/high levels of change under the same forcing 

scenario (model uncertainty), and from the chaotic nature of the earth system (uncertainty 

from internal climate variability). A comprehensive overview of the three types of projection 

uncertainties and the fractional partitioning is given in (Hawkins and Sutton 2009; Lehner et 

al. 2020), and are briefly described here. 

The projection uncertainty from internal climate variability has already been discussed in 

some detail. The uncertainty originates from the chaotic nature of the earth system induced 

by natural processes in the atmosphere-ocean-land-biosphere-cryosphere system and can be 

considered an irreducible source of uncertainty which is present at any given point in the 

future or past. The current best practices to quantify internal climate variability are discussed 

in section 2.2. 

The scenario uncertainty, or radiative forcing uncertainty, describes the uncertainty related 

to the unknown future levels of greenhouse gas concentrations. Since these scenarios are 

socioeconomic what-if scenarios, they can be considered, from a climate science perspective, 

as an irreducible source of uncertainty. The scenario uncertainty can be quantified by using a 

multi-model ensemble (i.e., CORDEX, CMIP5/6) run under different emission scenarios (i.e., 

RCP or SSP-RCP). 

Model uncertainty, or climate response uncertainty, are determined by structural differences 

between the climate models, leading to differences in the model’s response to external 

forcing. The differences between the models arise from differences in model components and 

the setup/tuning of the model. Some of these model uncertainties can be traced back to 

differences in the implementation of the associated forcing agents from the RCP scenarios, 

which can lead to variations to the respective levels of radiative forcing (Collins et al. 2013). 

Most of the model uncertainty can be boiled down to model imperfections, they can be 

considered as a reducible uncertainty under constant improvements of the models. The model 

uncertainty can only be addressed with multi-model ensembles. However, separating the 

model uncertainty from the uncertainty of internal climate variability remains challenging in 

traditional multi-model ensembles (Maher et al. 2021b) where individual models only have a 

single or only a small number of realizations (i.e., CMIP5 or EURO-CORDEX). von Trentini et 

al. (2019) for example show that the spread of internal climate variability within a single 

SMILE can cover large parts of the spread in a multi-model ensemble (i.e., EURO-CORDEX). 

A more robust way in separating model uncertainty from internal climate variability is the use 
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of a multi-model ensemble consisting of multiple SMILEs (Maher et al. 2021b; Lehner et al. 

2020; Wood et al. 2021). 

 

Figure 3 | Fractional contribution to total uncertainty from the three main sources of climate projection uncertainty 
(internal variability, scenario, and model) for decadal mean precipitation. (a) Global annual decadal mean 
precipitation, (b) Local uncertainties for Seattle DJF decadal mean precipitation, (c) Regional uncertainty for the 
Sahel JJA decadal mean precipitation. (adapted from figures 2, 7 in Lehner et al. (2020)) 

The fractional contribution from all three sources of uncertainty is dependent on the 

projected time horizon (i.e., short-term (<30 years), mid-term (30-50 years), and long-term 

(>50 years)), as well as geographic region, regional extent (global vs. local), season, and target 

variables among others. Figure 3 showcases the fractional contribution of each uncertainty 

source to decadal projections of precipitation on global, regional and local scales (adapted 

from Lehner et al. 2020). On longer projection time scales the contribution from scenario 

uncertainty emerges to be the largest contribution, then model uncertainty and finally with 

lesser importance internal variability. However, on local scales the influence of internal 

climate variability grows in importance compared to the global scales and remains important 

throughout the mid-term and even the long-term perspective (Wood and Ludwig 2020; 

Lehner et al. 2020). For short-term projections, internal climate variability is the dominant 

source of uncertainty (Maher et al. 2020; Lehner et al. 2020). 

2.4.3 Regional Climate Models

Many local applications require climate information at higher spatial resolutions that current 

GCM simulations cannot commonly deliver. Although the current generation of GCMs can run 

on very high resolutions globally, computational limitations have so far hindered large scale 

applications. Current efforts within the High Resolution Model Intercomparison Project 

(HighResMIP) for CMIP6 are ongoing to deliver a multi-model ensemble of global simulations 

on spatial scales of 25-50km (Haarsma et al. 2016). The computational limitations have 

certainly been a larger issue in the past. Therefore, Regional Climate Models (RCM) or Limited 

Area models have been developed to bridge the resolution gap. The first models have been 
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developed in the late 1980s (Dickinson et al. 1989; Giorgi and Bates 1989). These models are 

run over smaller domains, such as Europe or North America, in a tradeoff between higher 

spatial resolution and computational cost. The RCMs are generally run on a spatial resolution 

of 0.11° or 0.44° (~12km or ~50km). The higher resolution allows for the representation of 

physical processes (e.g., convection, clouds) and geophysical features (e.g., topography, 

landuse, coastlines) at the subgrid-scale of a GCM, which should further enable better 

representation of mesoscale systems (i.e., storms and extreme events) (Giorgi and Gutowski 

2015). An RCM is normally not run independently and is rather dependent on the information 

of the GCM. Since, the RCM is simulating a limited area of the globe it requires lateral 

boundary conditions, which are provided through the driving GCM. This feeding of 

information from the GCM to the RCM is commonly done in a one-way-nesting setup. One-

way-nesting means that information is only shared from the GCM to the RCM without any 

feedbacks returning to the GCM (Giorgi and Gutowski 2015). While the RCM is able to develop 

its own weather and climate within its own RCM modeling domain, some information on 

large-scale circulation from the GCM should be retained (Laprise 2008). This can be achieved 

through techniques of spectral nudging (von Storch et al. 2000). Especially large-scale 

features such as the NAO, which is very relevant for the European weather and climate, should 

be maintained throughout the downscaling process. Böhnisch et al. (2020) show that the 

large-scale teleconnections, connected to the NAO, are properly propagated from the GCM to 

the finer RCM scale, for the GCM-RCM pair (CanESM2-CRCM5) that is of relevance for this 

study. 

The added-value of RCM over GCM simulations has been shown in many studies (e.g., Di Luca 

et al. 2016; Di Virgilio et al. 2020; Giorgi et al. 2016; Rummukainen 2016; Torma et al. 2015). 

Nonetheless, RCMs can show considerable biases when compared to observational datasets 

(e.g., Berg et al. 2019; Kotlarski et al. 2014), which is also true for GCM simulations.  

Any RCM will add another dimension of model uncertainty in addition to uncertainties 

already coming from the GCM. Choosing a single RCM to downscale all available GCM 

simulations would be a great start and would result in a better understanding of the 

uncertainties coming from the GCM on local scales. However, different RCMs will deliver 

different results for the same GCM (e.g., Rummukainen 2016). Therefore, the regional climate 

modelling community has consolidated its efforts, within the Coordinated Regional Climate 

Downscaling Experiment (CORDEX), in creating regional multi-model ensembles for 14 core 

regions across the globe (e.g., Endris et al. 2013; Giorgi and Gutowski 2015; Jacob et al. 2014; 

Mearns et al. 2012; Ruti et al. 2016). The joint goal is to maximize the matrix of GCM-RCM 

combination for multiple scenarios to address the complex uncertainty quantification. 
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In addition to these regional multi-model ensembles, some modeling groups have used 

funding opportunities to dynamically downscale global SMILEs to the RCM resolution to 

create regional SMILEs (e.g., Addor and Fischer 2015; Leduc et al. 2019; Aalbers et al. 2018; 

Fyfe et al. 2017). Thereby, each GCM-SMILE member is dynamically downscaled by the same 

RCM. Differences between the RCM member are due to the initial conditions in the driving 

GCM with no further perturbations added within the downscaling process, which means that 

these differences can be interpreted as internal climate variability. One of these regional 

SMILEs, the CRCM5-LE, is used within this dissertation. 

2.5 Theoretical understanding of global and regional precipitation 

change

The change in precipitation can generally be divided into the two main drivers 

thermodynamics and dynamical changes, whereby these components can amplify each other 

or contrast each other (Figure 4, c-d). The change in the global water cycle in a warming 

climate is partly determined by the thermodynamic response leading to an increase of near 

surface specific humidity and total atmospheric water content by about 7% per 1°C of 

warming, as defined by the Clausius-Clapeyron scaling (Held and Soden 2006; Douville et al. 

2021). However, the change in global mean precipitation and evaporation is rather 

constrained by the balance of energy fluxes in the atmosphere and at the surface, hence by 

the Earth’s energy budget (Douville et al. 2021). Thereby, latent heat released by precipitation 

is balanced by the net atmospheric longwave radiative cooling minus the heating from 

absorbed incoming sunlight and the sensible heat flux from the surface (Allan et al. 2020). It 

is established that global mean precipitation increases between ~2-3 % K-1 (Allen and Ingram 

2002; Allan et al. 2020; Collins et al. 2013) which can be confirmed by the ensemble of SMILEs 

used in this dissertation showing a multi-SMILE average of 2.5 % K-1 (Figure 4, a)(Wood et al. 

2021). The mean precipitation response is thereby governed by fast (rapid) adjustments that 

directly respond to changes in forcing agents (i.e., GHGs and aerosols), and slow adjustments 

(feedback response) through changes in mean surface temperature in response to radiative 

forcing (Allan et al. 2020; Sillmann et al. 2019). The increase in atmospheric water vapor due 

to thermodynamics implies an intensification of the horizontal moisture transport which 

generally leads to an amplification of regional precipitation minus evaporation (P-E) patterns 

(Douville et al. 2021). In short the areas with negative P-E patterns, mainly over the oceans, 

will experience an intensification of the moisture flux from the surface to the atmosphere 

(Allan et al. 2020).  As a consequence the atmospheric moisture balance is achieved by a 

horizontal moisture transport from the evaporative oceans to high precipitation zones of the 

atmospheric circulation (Douville et al. 2021). This change in the moisture transport and the 

greater warming over land than oceans will likely alter atmospheric circulations. Regional 
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water cycle changes are dominated by changes in the large-scale atmospheric circulations, 

which is however not yet as well understood as the thermodynamic component (Allan et al. 

2020). 

 

Figure 4 | Global patterns of mean and extreme precipitation change. (a) Multi-SMILE average forced response of 
mean precipitation at the end of the century. (b) Multi-SMILE average forced response of extreme precipitation 
(99.9th daily percentile) at the end of the century. (c) Thermodynamic contribution to changes in Rx1d, shown here 
as the multi-model mean fractional changes in thermodynamic scaling. (d) Dynamic contributions to changes in 
Rx1d defined as the difference between changes in full scaling and changes in thermodynamic scaling (full minus 
thermodynamic). (a)-(b) adapted from figure S5 in Wood et al. (2021). (c)-(d) adapted from figure 3 in Pfahl et al. 
(2017). 

In contrast to the changes in mean precipitation, changes in extreme precipitation are not 

constraint by the Earth’s energy budget and are rather constraint by the available atmospheric 

moisture. Hence, it can be expected that extremes change close to the Clausius-Clapeyron 

scaling of 7% K-1 (O’Gorman and Schneider 2009; Douville et al. 2021) which can be confirmed 

by the ensemble of SMILEs used in this dissertation showing a multi-SMILE average of 7.2 % 

K-1 (Figure 4, b)(Wood et al. 2021). However, the thermodynamic response which is relatively 

homogenous across the globe (Figure 4, c) can be modified by dynamical responses by either 

amplifying the regional thermodynamic response or by counteracting leading to a sign change 

(Figure 4, d). Thereby the two components (i.e., thermodynamics and dynamical changes) are 

not independent of each other but rather physically connected (Pfahl et al. 2017). The 
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mechanisms controlling the dynamical component and the changes thereof are regionally and 

seasonally divers. The models generally agree well on the thermodynamic response but show 

large model uncertainties for the changes in dynamic drivers (Zappa et al. 2013; Harvey et al. 

2020). Over Europe there are many studies that try to unravel the dynamic component driving 

the regional and seasonal precipitation response (e.g., Brogli et al. 2019; Kröner et al. 2017; 

Kjellström et al. 2013; Vries et al. 2022; Coumou et al. 2015; Tang et al. 2018). As an example 

two possible changes to the dynamic component governing changes in long duration extremes 

(Bevacqua et al. 2022) and determining convective sub-daily extremes (Chan et al. 2023) are 

discussed. 

Bevacqua et al. (2020) show that in winter the number of cyclone clusters (i.e., consecutive 

cyclones moving across the same region) could reduce while the mean precipitation intensity 

of each cyclones increases. Thereby, the increase in mean precipitation intensity per cyclone 

can be explained by the larger water holding capacity of a warmer atmosphere, i.e. 

thermodynamics. Over Northern Europe, the number of clusters remains unchanged while 

experiencing an increase in mean precipitation per cluster which overall increases the 

accumulated precipitation extremes from cyclones. Over Central Europe, despite a large 

increase in the mean precipitation per cluster, the accumulated precipitation extremes show 

only a moderate increase due to an overall reduction in the number of cyclones. Over Southern 

Europe, the accumulated extreme precipitation decreases due to a decrease in the number of 

cyclones. Which is generally consistent with the findings in Zappa et al. (2015), that show 

regionally reduced cyclone activity while mean precipitation intensity increases. In this study, 

they further show a reduction in the number of weakly precipitating cyclones while the 

number of strong and extreme precipitating cyclones increases. 

Changes to the storm characteristics of mesoscale-convective systems could explain the 

change in magnitude and frequency of extreme sub-daily precipitation events by changes in 

the duration and size of storms (Fowler et al. 2021). Mesoscale-convective systems are 

important contributors to extreme precipitation in Europe. However, there are currently 

contrasting lines of evidence, and no consensus is established. The study of Chan et al. (2023) 

has compared two different Pan-European CPM simulations, concluding that both show 

increases in peak precipitation intensity, total precipitation volume, and temporal clustering 

of mesoscale-convective storms in response to a warming climate. However, the two models 

disagree on how storm characteristics change. While the one model projects more frequent, 

smaller, and slower-moving storms, the other model projects fewer, larger, and faster-moving 

storms. 
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Although constant progress is being made, these studies highlight that it is difficult to narrow 

down the dominant drivers of mean and extreme precipitation change due to model 

uncertainty and internal climate variability. A first step in understanding the processes 

involved is the robust quantification of the forced change in mean and extreme precipitation 

in response to climate change. This dissertation contributes to detecting robust signals in the 

forced response in the presence of large internal climate variability. 
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3 Framing of the scientific publications

This cumulative dissertation is based on three peer-reviewed scientific articles of which two 

have been fully published in the international scientific journals of Environmental Research 

Letters and Geophysical Research Letters. The third paper has been submitted to the open-

access journal Earth System Dynamics. 

In Geography and related fields (i.e., Climate Sciences), robust understanding of the response 

of the climate system to external forcings, particularly from anthropogenic origin (i.e., 

greenhouse gases, aerosols, land use change), are of key interest for the communication of 

mitigation targets and the development of adaptation strategies. However, these transient 

changes in any realization of the climate system, such as observations or any climate model 

simulation, are the combination of the forced response and internal climate variability. This 

means that robust patterns of change are, depending on the time horizon, not easy to detect 

due to the noise from internal climate variability. 

The scope of this cumulative dissertation is the detection of robust patterns of global and 

regional precipitation change in response to a warming climate. Within all three publications the 

SMILE framework is used to implicitly account for the intrinsic uncertainty of internal 

variability in the climate system. Multiple global SMILEs and one regional SMILE have been 

used to analyze precipitation in past, current and future climate conditions regarding changes 

in the mean, the variability, and the upper tail (i.e., extremes) of its distribution. Within the 

three publications the changes to the above are analyzed on spatial scales from global to local, 

as well as on temporal scales from three hours to decades. In the following the scope of each 

publication including the initial hypothesis and posed research questions are discussed, as 

well as the transition between publications. 

The first publication Wood et al. (2021) (chapter 4) sets the contextual baseline of this work 

by proving that the climate simulations from the global SMILEs agree with the theoretical 

understanding of the global and regional precipitation response to a warming climate and are 

therefore a valid and useful tool for further analysis. In this publication a set of multiple global 

SMILEs was used to test the hypothesis of non-stationarity in precipitation variability and as a 

response to rising global mean surface temperature an increase in precipitation variability on 

interannual to decadal timescales. Within the scope of this paper the individual global SMILES 

(see Table 1) were first evaluated for their representation of interannual variability using two 

different global gridded observational datasets (see Table 2), before analyzing the forced 

changes and multi-model agreement in future precipitation variability. The following 

hypothesis and research questions are addressed in the publication: 
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H1: Precipitation variability is non-stationary and increases with rising global mean surface 

temperature on interannual to decadal timescales. 

RQ1.1: (a) Are SMILEs capable of capturing observed interannual variability? (b) Does the 

ensemble size influence the representation of variability? 

RQ1.2: Is precipitation variability increasing with an increase in global surface temperature 

and are the changes in variability comparable on interannual to decadal timescales? 

RQ1.3: Are changes in precipitation variability robust across SMILEs and if not where are 

the areas with high structural uncertainty? 

Table 1 | Overview of the global and regional large ensemble climate simulations used 

Global SMILEs       

Modeling 

Center 

Model 

Version 

Spatial 

Resolution 

Initialization 

(methods) 

Ensemble 

Size 

Scenario Reference Paper 

CCCma CanESM2 ~2.8° x 2.8° Macro and Micro 50 RCP8.5 Kirchmeier-Young 

et al. (2017) 

1 

NCAR CESM1 ~1.3° x 0.9° Micro 40 RCP8.5 Kay et al. (2015) 1 

CSIRO MK3.6 ~1.9° x 1.9° Macro 30 RCP8.5 Jeffrey et al. 

(2013) 

1 

SMHI/KNMI EC-Earth ~1.1° x 1.1° Micro 16 RCP8.5 Hazeleger et al. 

(2010) 

1 

GFDL CM3 ~2.0° x 2.5° Micro 20 RCP8.5 Sun et al. (2018) 1 

GFDL ESM2M ~2.0° x 2.5° Macro 30 RCP8.5 Rodgers et al. 

(2015); 

Schlunegger et al. 

(2019) 

1 

MPI MPI-ESM-LR ~1.9° x 1.9° Macro 100 RCP8.5 Maher et al. (2019) 1 

        

Regional SMILEs       

Modeling 

Center 

Model 

Version 

Spatial 

Resolution 

Boundary 

Conditions 

(GCM) 

Ensemble 

Size 

Scenario Reference Paper 

Ouranos CRCM5 ~0.11°x0.11° CanESM2 50 RCP8.5 Leduc et al. (2019) 2, 3 

Ouranos CRCM5 ~0.11°x0.11° CanESM2 35 piControl  3 

 

The first publication already delivers valuable information on the changes of mean-state and 

extreme precipitation as well as of precipitation variability. However, the global SMILEs are 

too coarse to properly represent the complex regional to local precipitation response over 

Europe. Especially for precipitation extremes, higher resolution climate models are necessary 

to adequately represent the complex topography over Europe. Therefore, in the second 

publication Wood and Ludwig (2020) (chapter 5) a single regional SMILE (see Table 1) was 

used to test whether the magnitude of annual and seasonal maximum precipitation increases and 

whether the forced signal robustly emerges from internal climate variability over Europe. The 
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regional SMILE (i.e., CRCM5-LE) is a dynamically downscaled version of one global SMILE 

(i.e., CanESM2-LE) which has been part of the first publication. The findings from the first 

publication have proven that the driving CanESM2-LE represents interannual variability well 

as well as its agreement on changes in precipitation with the other SMILEs over Europe. The 

following hypothesis and research questions are addressed in the second publication: 

H2: The magnitude of heavy precipitation is increasing over Europe in a warming climate 

with changes emerging from internal variability. 

RQ2.1: (a) Is seasonal and annual maximum precipitation changing over Europe? (b) Is the 

magnitude of change dependent on the season and temporal aggregation? 

RQ2.2: Do the changes in seasonal and annual extremes follow the Clausius-Clapeyron 

scaling? 

RQ2.3: When can we expect changes in extreme precipitation to robustly emerge from 

internal variability? 

The first two publications show that the mean and variability of precipitation are changing in 

response to a warming climate, but that these changes are not synchronized, implying that 

the change in the mean and variability are driven by different mechanisms. The upper tail of 

the precipitation distribution (i.e., extremes) is thereby influenced by both the mean and 

variability. This means that any change to either of these properties will determine the 

probability of extremes in the distribution. The third publication Wood (2023) (chapter 6) 

investigates the importance of changes in both the mean and variability for the changes in the 

probability of extreme precipitation events in Europe. Climate simulations, from the same 

regional SMILE as in publication two (see Table 1), at pre-industrial, current and future 

climate conditions are used. The following hypothesis and research questions are addressed 

in the second publication: 

H3: Changes in the probability of extreme precipitation events are governed by changes in 

both the mean and variability. 

RQ3.1: (a) Do current climate projections over Europe already show an increase in the 

probability of extreme precipitation events? (b) Will the risk of extreme precipitation events 

continue to increase in future climates? 

RQ3.2: (a) What are the individual contributions from changes in the mean and variability 

to the total change in probability risk ratio? (b) Are the individual contributions dependent 

on the season, level of aggregation, or level of extremeness? 
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Table 2 | Overview of observational datasets used in evaluation studies 

Gridded observational datasets from the FROGS database (Roca et al. 2019) 

Dataset Name Spatial Resolution Coverage Period Reference Paper 

REGEN-ALL-v2019 1° x 1° Global land 1950-2016 Contractor et al. (2020) 1 

GPCC-FDD-v2018 1° x 1° Global land 1982-2016 Ziese et al. (2018) 1 

      

In-situ meteorological station data 

Dataset Provider Spatial Resolution Coverage Period Reference Paper 

DWD Point Germany 1995-2019 DWD (2020) 2 

MeteoSwiss Point Switzerland 1995-2019 MeteoSwiss (2020) 2 

 

The following chapters 4-6 include the three individual publications alongside a plain 

language summary for each publication and some general information on the respective 

journal. In chapter 7 the posed research questions are addressed by discussing the key 

findings of each publication upon which the initial hypothesis is either accepted or rejected. 

Further, the broader impact of the findings and work are briefly discussed. In chapter 8 the 

perspective on how the SMILE framework can be fused with other novel climate modeling and 

impact modeling frameworks is discussed. Lastly, chapter 9 gives a brief overview of other 

co-authored publications. 
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4 Changes in precipitation and its variability on a 

global scale

This work has been published in the Journal Environmental Research Letters. 

Wood, Raul R.; Lehner, Flavio; Pendergrass, Angeline G.; Schlunegger, Sarah (2021): Changes in 

precipitation variability across time scales in multiple global climate model large ensembles. In 

Environ. Res. Lett. 16 (8), p. 84022. DOI: 10.1088/1748-9326/ac10dd. 

Plain language Summary:

Anthropogenic changes in the variability of precipitation stand to impact both natural and 

human systems in profound ways. Precipitation variability encompasses not only extremes 

like droughts and floods, but also the spectrum of precipitation which populates the times 

between these extremes. An increase in precipitation variability can enhance the volatility of 

crop yields and dryland productivity as well as other natural and human systems. 

Understanding the changes in precipitation variability alongside changes in mean and 

extreme precipitation is essential in unraveling the hydrological cycle’s response to warming. 

We use a suite of state-of-the-art climate models, with each model consisting of a single-

model initial-condition large ensemble (SMILE), yielding at least 16 individual realizations of 

equally likely evolutions of future climate states for each climate model. The SMILE 

framework allows for increased precision in estimating the evolving distribution of 

precipitation, allowing for forced changes in precipitation variability to be compared across 

climate models. The relation between the rise in global surface temperature and the change 

in precipitation variability is explored on timescales from annual to decadal. Agreement 

among the model ensembles is evaluated as a sign of robustness for the projected changes. 

Author’s Contribution: 

RRW designed the concept and methodology of the work and carried out the analysis 

including figures. RRW wrote the manuscript with contributions from all co-authors. 

Journal:  

“Environmental Research Letters (ERL) is a high-impact, open-access journal intended to be 

the meeting place of the research and policy communities concerned with environmental 

change and management. […] The journal’s coverage reflects the increasingly 

interdisciplinary nature of environmental science, recognizing the wide-ranging 

contributions to the development of methods, tools and evaluation strategies relevant to the 

field. Submissions from across all components of the Earth system, i.e. land, atmosphere, 

cryosphere, biosphere and hydrosphere, and exchanges between these components are 
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welcome. […] The core of ERL’s content draws from observations, numerical modelling, 

theoretical and experimental approaches to environmental science, and especially science 

relevant to policy, impacts, and decision-making.” (IOP Publishing 2021) 

Journal Metrics 

Impact Factor (2-Year) 6.947 

Impact Factor (5-Year) 8.414 

CiteScore (2021) 9.4 

CiteScore Rank (2021) #20/228 
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5 Changes in extreme precipitation over Europe

This work has been published in the Journal Geophysical Research Letters. 

Wood, Raul R.; Ludwig, Ralf (2020): Analyzing Internal Variability and Forced Response of 

Subdaily and Daily Extreme Precipitation Over Europe. In Geophys. Res. Lett. 47 (17). DOI: 

10.1029/2020GL089300. 

Plain language Summary:

The knowledge on how and why the intensity and frequency of extremes changes is critical to 

becoming a resilient society. The current infrastructure and environment are adapted to 

observed extremes of the past and might not be sufficiently resilient against the extremes of 

the future. Observations are only one possible realization of a chaotic system, and the past 

and future climate system is altered by natural variations, and anthropogenic contributions. 

Since we can only measure one realization of the world, we need climate models to investigate 

the influence of natural variability and anthropogenic factors on the climate system. In this 

study, the detection of regional patterns of future changes in annual and seasonal maximum 

precipitation over Europe and the contribution of the uncertainty of natural variability on 

these changes is analyzed. For the separation of the forced signal and natural variability the 

regional SMILE CRCM5-LE is used. The time-of-emergence, the time in the future when the 

signal emerges from the noise of internal variability is determined. The CRCM5-LE is a single 

regional climate model driven by 50 realizations of a single global climate model (CanESM2-

LE) under the same emission scenario (RCP8.5). The differences between the 50 equally 

probable climate realizations originate from the non-linear response of the climate system 

and represent natural climate variability. 

Author’s Contribution:  

RRW designed the concept and methodology of the work, carried out the analysis including 

figures, and wrote the manuscript with contributions from RL.  

Journal: 

“Geophysical Research Letters (GRL) publishes high-impact, innovative, and timely research 

on major scientific advances in all the major geoscience disciplines. Papers should have broad 

and immediate implications meriting rapid decisions and high visibility.” (Wiley 2021) 
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Analyzing Internal Variability and Forced Response of
Subdaily and Daily Extreme Precipitation Over Europe
R. R. Wood1 and R. Ludwig1

1Department of Geography, LMU, Munich, Germany

Abstract At regional to local scales internal variability is expected to be a dominant source of uncertainty
in analyzing precipitation extremes and mean precipitation even far into the 21st century. A debated topic is
whether a faster increase in subdaily precipitation extremes can be expected. Here we analyzed seasonal
maximum precipitation in various time steps (3 hr, days, and 5 days) from a high‐resolution 50‐member
large‐ensemble (CRCM5‐LE) and compared them to changes in mean precipitation over Europe. Our results
show that the magnitude of change in extreme precipitation varies for season and duration. Subdaily
extremes increase at higher rates than daily extremes and show higher scaling with temperature. Northern
Europe shows widespread scaling above Clausius‐Clapeyron of subdaily extremes in all seasons and for daily
extremes in winter/spring. Scaling above Clausius‐Clapeyron is also visible over Eastern Europe in
winter/spring. For most regions and seasons the forced response emerges from the internal variability by
midcentury.

Plain Language Summary The knowledge on how and why the intensity and frequency of
extremes changes is critical to a resilient society. Our adaptive measures that are currently in place are
based on observed extremes of the past. We know that observations are only one realization of a chaotic
system and that the climate system is altered by natural variations, and anthropogenic contributions. Since
we can only measure one realization of the world, we need climate models to investigate the influence of
natural variability and anthropogenic factors. In this study we focus on the contribution of natural
variability and the detection of regional patterns of changes in extreme precipitation. We used regional
climate simulations, driven by multiple runs of global climate simulations under the same emission
scenario, but with slight changes at the start of the simulation to imitate the butterfly effect of the climate
system and simulate natural variability. We have found that natural variability plays a dominant role in the
first half of the 21st century. But we have also found that subdaily extreme precipitation is increasing at a
higher rate than daily extremes and that some of this change can be attributed to the warming of the
atmosphere.

1. Introduction

Extreme precipitation events are becoming more likely under climate change due to atmospheric warming
and the inherent alterations of the hydrological cycle (Allen & Ingram, 2002; Held & Soden, 2006; Wentz
et al., 2007). Increasing intensities and frequencies of extreme events pose an imminent threat to humans,
the economy, and the environment. On continental to global scales, models agree on the forced response
(FR) of precipitation extremes (Fischer et al., 2014) and observations show increases in daily extreme preci-
pitation (Alexander, 2016; Asadieh & Krakauer, 2015; Donat et al., 2016; Fischer & Knutti, 2016; Min
et al., 2011; Westra et al., 2013) and subdaily extremes (Barbero et al., 2017; Guerreiro et al., 2018; Xiao
et al., 2016) on a global scale.

There is currently a debate on whether subdaily precipitation extremes follow the Clausius‐Clapeyron (CC)
scaling or whether they increase at a higher rate. Based on observations and models, extreme precipitation is
expected to increase with the availability of water vapor in the atmosphere, following the CC scaling of 6–7%
per degree global warming. Mean precipitation on the other hand scales at a much lower rate of 1–3% per
degree warming (Allen & Ingram, 2002; Held & Soden, 2006). Twice the CC scaling in hourly observations
was first shown in Lenderink and van Meijgaard (2008) for stations in the Netherlands and was meanwhile
shown for stations throughout the world (Westra et al., 2014, and references therein). This shift from CC to
super‐CC scaling (>7%/K) can be attributed to a shift from stratiform to convective precipitation (Berg
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et al., 2013; Haerter & Berg, 2009; Molnar et al., 2015) and may also arise due to the physics of the clouds and
the latent heat released during condensation, boosting the convection (Lenderink et al., 2017).

Climate models on global and regional scales project extreme precipitation to increase in the 21st century
(Aalbers et al., 2018; Bao et al., 2017; Beniston et al., 2007; Boberg et al., 2010; Fischer et al., 2013; Fischer
& Knutti, 2014; Martel et al., 2018, 2019; Pendergrass & Hartmann, 2014; Rajczak et al., 2013; Sillmann
et al., 2013), which is attributable to human influences (Fischer & Knutti, 2015). Additionally, precipitation
extremes are expected to undergo a shift in seasonality from summer to spring and autumn (Brönnimann
et al., 2018; Marelle et al., 2018).

The internal variability (IV) of the climate system is an important source of uncertainty (Deser, Knutti,
et al., 2012; Deser, Phillips, et al., 2012; Fischer et al., 2013, 2014; Hawkins & Sutton, 2009; Hegerl et al., 2004;
Kendon et al., 2008; Lehner et al., 2020), especially on regional scales (Prein & Pendergrass, 2019). Over the
middle and high latitudes IV might be in the same magnitude as the forced anthropogenic response (Deser,
Knutti, et al., 2012; Deser, Phillips, et al., 2012). It originates from the coupled interaction of the land, atmo-
sphere, oceans, and cryosphere (Deser et al., 2014), which is always present, even at longer timescales.
Isolating the effects of IV from those of anthropogenic climate change requires ensembles of simulations
from a given climate model that is subject to the identical external forcing (Deser et al., 2014). Kendon
et al. (2008) and Kjellström et al. (2013) state that using large ensembles to Sample IV will lead to benefits
in the ability to accurately project future changes in local precipitation extremes.

By using the large‐ensemble approach the real FR can be analyzed. When using only one realization of a
model the effects of IV are neglected and the analyzed realization only shows one possible change. This
can also be true for small ensemble sizes in which the IV might be underrepresented and changes might
be misinterpreted as significant (Milinski et al., 2019).

Several single‐model initial‐condition large ensembles (SMILEs) are now available which allow for the ana-
lysis of the IV and the real underlying FR of the model. There are several SMILEs available on the global
scale (i.e., Fyfe et al., 2017; Kay et al., 2015; Maher et al., 2019). However, the magnitude, variability, and
regional‐ to local‐scale spatial patterns of climate variables are better represented in high‐resolution
RCMs (Chan et al., 2013; Giorgi et al., 2016; Kotlarski et al., 2014; Maraun et al., 2010; Prein et al., 2016).
Several studies have shown that hourly precipitation is better represented in convection‐permitting model
(CPM) simulations (Kendon et al., 2017; Prein et al., 2015; Westra et al., 2014), and Berg et al. (2019) pointed
out model deficiencies at hourly resolution in RCM simulations. However, due to their high computational
cost the number of CPM simulations is still limited in time and spatial extent, which makes it difficult to
study the effects of IV on local subdaily rainfall. Giorgi (2019) argues that due to the increased noise at
CPM resolution we will require an ensemble of simulations. Therefore, large ensembles of RCMs are still
the best estimate of IV on local to regional scales. The CRCM5 50‐member large‐ensemble (CRCM5‐LE,
Canadian Regional Climate Model Version 5) is the first Pan‐European SMILE of high resolution (0.11°)
(Leduc et al., 2019). Other regional large ensembles exist for Europe in coarser resolution (Addor &
Fischer, 2015) or on a smaller domain (Aalbers et al., 2018).

In this study, the effects of climate change on the intensity change of seasonal and annual maximum
3‐hourly (Rx3h), daily (Rx1d), 5‐daily (Rx5d), and mean precipitation are analyzed alongside the influence
of the IV. For this purpose, the simulations from the CRCM5‐LE were analyzed to distinguish between the
effect of climate change and natural variability. This study tries to answer these questions:

Is there a strong seasonal variability in the FR of maximum precipitation? When can we expect changes in
extreme precipitation to robustly emerge from IV? Is the CC expression constraining scaling rates of preci-
pitation extremes at subdaily and daily resolutions?

2. Data and Methods
2.1. Model Setup

The analysis of this paper is based on hourly precipitation data from the CRCM5‐LE. The data originate from
the first of its kind pan‐European high‐resolution initial‐condition multimember dynamical downscaling
experiment (Leduc et al., 2019) resulting in 50 equally likely transient (1950–2099) climate simulations from
the same global climate (GCM) and regional climate model (RCM) combination. The multimember
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initial‐condition simulations from the Canadian Earth SystemModel version 2 Large‐Ensemble (CanESM2‐
LE; Fyfe et al., 2017) were dynamically downscaled with the CRCM5 (v.3.3.3.1; Martynov et al., 2013;
Šeparović et al., 2013) in a one‐way nesting setup over Europe resulting in the 0.11° (approximately
12 km) resolution CRCM5‐LE. All 50 CanESM2‐LE simulations are driven with observed emissions (in
CO2 and non‐CO2 GHGs, aerosols, and land cover) during the historical period until 2005. For the subse-
quent period 2006–2099 all simulations were performed using the IPCC RCP8.5 scenario (Meinshausen
et al., 2011). The differences among the single CRCM5 members are due to the small initial‐condition per-
turbations in the driving CanESM2‐LE and can be interpreted as the natural variability (in the following
IV) of the climate system. At 0.11° resolution the CRCM5 model parameterizes deep convection following
the approach of Kain and Fritsch (1990) and shallow convection is based on a transient version of
Kuo (1965) scheme (Bélair et al., 2005).

2.2. Methods

For each member, season, and year the seasonal and annual maximum 3‐hourly (Rx3h), daily (Rx1d), and
5‐daily (Rx5d) precipitation was calculated, as well as seasonal (annual) mean precipitation. Seasonal max-
ima can be lower than annual maxima. The respective seasons are winter (DJF: December, January, and
February), spring (MAM: March, April, and May), summer (JJA: June, July, and August), and fall (SON:
September, October, and November). Changes in mean and extreme precipitation are differences in
30‐year seasonal (annual) means compared to the reference period 1980–2009 calculated first for each mem-
ber and afterward averaged over all 50 members. Figures 1–3 represent end of the century (2070–2099)
changes, while Figure 4 shows transient changes.

The distribution of the 30‐year mean values of the 50‐members in the future was compared to the distribu-
tion in the reference period by applying a two‐sided t test with unequal variances (p value: 0.01) to check for
a significant change in the mean (Figure 1). The IV is determined as the standard deviation of the
50‐member mean values (Figure 2) or relative changes (Figure 4).

There are several different ways to scale extreme precipitation with temperature by using the local or regio-
nal (dew point) temperature (Ban et al., 2015; Kendon et al., 2014, 2019) or binning with local temperature
variations (X. Zhang, Zwiers, et al., 2017). Here we have scaled precipitation with the CRCM5
domain‐averaged mean temperature change rather than using the local (grid cell) changes, because winterly
and longer duration extremes can be expected to be influenced by remote moisture sources, which are insuf-
ficiently represented by local temperature. In Figure 3, the scaling rates are calculated as ΔP/ΔT (%/K),
whereΔP is, for example, the relative change in seasonal (annual) Rx3h andΔT the change inmean seasonal
(annual) surface temperature compared to 1980–2009.

Additionally, the time‐of‐emergence is marked, where the signals are for the first time exceeding the IV and
remain above (Figure 4). Five regions of interest were analyzed (NEUR: Northern Europe, WEUR: Western
Europe, CEUR: Central Europe, EEUR: Eastern Europe, and SEUR: Southern Europe; see Figure S1 in the
supporting information).

For a general evaluation of the CRCM5‐LE see Leduc et al. (2019), and for an evaluation of seasonal maxi-
mum precipitation and the timing of the annual maximum see the supporting information
(Figures S10–S21).

3. Spatial Patterns of FR and IV

Annual maxima of subdaily precipitation are increasing throughout the European domain (EU) (Figure 1j),
except for the Iberian Peninsula (IP, no change or decreasing). The FR of seasonal maxima (Figures 1f–1i)
however reveals varying trends across seasons. While Rx3h is increasing throughout the EU in winter,
and spring/fall showing similarity to the FR of annual maxima, the seasonal changes in summer are remark-
ably diverse. Over France and the Mediterranean Rx3h is strongly decreasing in summer, while CEUR,
British Isles (BI) and NEUR showing prevailing increases.

Comparing these seasonal changes to changes of mean precipitation (Figure S4), then subdaily extremes
show increasing trends over CEUR, BI, and southern Scandinavia, despite strong decreasing summerly
mean precipitation over the majority of EU. These regional differences in FR can partly be explained by
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Figure 1. Spatial pattern of mean Rx3h in the reference period (1980–2009, a–e) and the 50‐member mean forced signal
in percent at the end of the century (2070–2099, f–j) for seasons winter (a, f), spring (b, g), summer (c, h), fall (d, i),
and annual (e, j). Hatched areas in (f–j) indicate nonsignificant areas according to a two‐sided t test with unequal
variances (p value: 0.01).
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the continued availability of moisture for the formation of convection. The Bowen Ratio (BR), which is the
ratio between sensible and latent heat flux, indicates the continued dominance of latent heat over the
regions with increasing Rx3h in summer (Figure S5). The regions with decreasing Rx3h on the other hand
show a dramatic increase in BR, indicating an increase in sensible heat. Especially over the
Mediterranean, the decreasing mean precipitation in the preceding season amplifies the lack of moisture
from surface.

Figure 2. Internal variability of Rx3h in the reference period (1980–2009, a–e) and relative changes by 2070–99 (f–j) for
seasons winter (a, f), spring (b, g), summer(c, h), fall (d, i), and annual (e, j).
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The patterns for the FR of Rx1d (Figures S2f–S2j) are similar to Rx3h, however showing overall lower
changes for seasonal as well as annual maxima. Rx1d can originate from shorter duration rainfall bursts,
hence the similarity to subdaily maxima. Rx5d originate from stratiform precipitation rather than convective
precipitation and therefore show closer resemblance to the FR of mean precipitation (Figures S3f–S3j for
Rx5d and Figures S4f–S4j for mean precipitation). In general, longer duration extremes increase at a lower
rate than subdaily extremes.

The IV of Rx3h is in general highest in summer and lowest in winter (Figures 2a–2d), which is attributable to
the role of convection in summer. However, in high‐elevation regions (Alps and Pyrenees) the variability in
summer is remarkable lower than their surroundings, which might indicate a lack of convection. In general,
the IV of Rx3h is homogeneous over large areas of the domain only showing topographic features in sum-
mer. The IV of Rx1d, Rx5d, and mean precipitation show higher values along large topographic features
(Figures S6a–S6e, S7a–S7e, and S8a–S8e).

Figure 3. Precipitation scaling with domain‐average temperature change by 2070–2099 compared to 1980–2009. Columns indicate seasons/annual; rows indicate
extreme indices (Rx3h, Rx1d, and Rx5d) and mean precipitation (mean). Areas with a negative scaling are shown in red colors; scaling above the
Clausius‐Clapeyron scaling (>7%/K) is shown in magenta colors.
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The changes of IV by the end of the century reveal an increase in variability for seasonal and annual
Rx3h (Figures 2f–2j) throughout the EU. NEUR show strong relative changes in IV in summer, fall,
and annual maxima, which indicates the increasing role of convection. In contrast the variability over
the IP is decreasing in summer for Rx3h as well as all other indices (Figures S6h, S7h, and S8h), which
implies, together with the strong decrease in FR, the increasing lack of precipitation over the IP and
Mediterranean Sea.

Figure 4. Transient 30‐year moving window of forced response and internal variability. Solid lines: ensemble‐mean
relative changes, dashed lines: internal variability (standard deviation of the 50‐member relative changes). If signals
show negative values, the internal variability is shown as positive and negative. Columns: seasons and annual; rows:
regions. Points indicate the time‐of‐emergence where signal/noise remains above 1.
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In general, the changes of IV for Rx1d, Rx5d, and mean precipitation are regionally more diverse than for
Rx3h, showing small areas throughout the domain with increases and decreases in all seasons. This empha-
sizes the role of IV as a source of uncertainty on regional scales.

4. Scaling With Mean Temperature Change

Scaling changes with temperature allows for a first look at whether changes can be attributed to thermody-
namics or if it is rather likely to be influenced by dynamic changes. Figure 3 shows CC or super‐CC scaling
(>7%/K) for Rx3h over NEUR throughout all seasons and for annual maxima, which implies thermody-
namics having a dominant role. Other regions also indicate super‐CC scaling for Rx3h mainly in winter
and partly in spring over EEUR, the Balkan Peninsula, Northern Italy, southern part of CEUR, or
Northwestern IP. In summer and in the annual maxima, parts of the Alps show super‐CC scaling for
Rx3h, which might be connected to an increase of convective events over high alpine elevations as shown
in Giorgi et al. (2016). Longer duration extremes show generally considerably less areas with super‐CC scal-
ing, and mainly only in winter and partly in spring. This can also be seen in Figure S9.

The large proportion of land areas without CC‐scaling or negative scaling indicates that the changes are
mainly driven by other effects than thermodynamics. In some recent studies (Kröner et al., 2017; Pfahl
et al., 2017) it is shown that other factors may have stronger contributions than thermodynamics. Pfahl
et al. (2017) argue that the negative changes in extreme precipitation can be related to decreases in the ver-
tical velocity, which can even offset the influence of thermodynamic change. The changes of regional
dynamics might partly be attributed to a northward shift of present day pattern of vertical velocity, which
can be related to a general expansion of the Hadley cells (Kröner et al., 2017; Pfahl et al., 2017). As a result
of the extension of the Hadley cell, SEUR would become more strongly affected by subsidence, which would
lead to reduced convection (Kröner et al., 2017). Brogli et al. (2019) argue that Hadley cells only have a small
influence on European climate change and rather propose a change in lapse rates and meridional change as
important factors. Also, changes in cyclone intensities can play a role as shown for the Mediterranean (Pfahl
et al., 2017; Zappa et al., 2015). Other factors that can contribute to a drying are the land‐ocean warming con-
trast and soil‐moisture feedbacks (Kröner et al., 2017).

5. Transient Changes of Extreme Precipitation and Emergence From IV

Looking at the evolution of the FR and IV (Figure 4), there is a clear tendency in all regions and all seasons
that shorter extremes show stronger signals for both intensity and IV. In general, the Rx3h is the upper
bound of change and mean precipitation the lower bound. The Rx3h and Rx1d show a very similar FR in
several regions, mainly in winter or spring. In summer, the Rx3h exceeds by far the other indices showing
a large discrepancy between the change in mean precipitation and Rx3h. The change in mean precipitation
and Rx3h are counter directional in all regions except NEUR. Thus, this implies that different processes gov-
ern the response of the hydrological cycle. Tang et al. (2018) explain the drying of the south and wetting of
north, by showing an enhanced sea‐level‐pressure pattern (similar to NAO‐AO), which can divert the jet
stream and storm tracks northward reducing precipitation in the Mediterranean and increasing precipita-
tion in NEUR in summer.

Apart from the summer signals, smooth linear trends are visible tending to accelerate toward the end of the
century. WEUR shows a strong trend for Rx3h within the first 10 years followed by a period of reduced
increase and acceleration toward the end again. This altered near future behavior is also visible for Rx1d,
which is followed by a slow decrease in summer; Rx5d in summer shows no trend at first, then decreases.
CEUR and EEUR show linear trends for summer until around 2060 with a followed flattening in CEUR
and a reversal in EEUR. These hooked shape trends might indicate that land‐atmosphere feedbacks undergo
a considerable change under global warming. This might indicate that the moisture availability rather than
the storage capacity of the atmosphere constrains extreme precipitation (Berg et al., 2009; Drobinski
et al., 2016; Hardwick Jones et al., 2010) and therefore only seen in summer, where mean precipitation is
largely decreasing.

Madsen et al. (2014) conclude an increase in daily extreme precipitation based on observations for several
European areas, confirming the findings of the projected future changes in daily extreme precipitation in
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this study: over the United Kingdom in winter, spring, and autumn; over Germany and western Czech
Republic in winter; over French Mediterranean regions; Belgium and Northeastern Italy.

In Figure 4, the IV is defined as the standard deviation of the 50‐member relative changes. The IV is increas-
ing for about three decades before stabilizing at around 10–20% in SEUR and 5–15% in other regions. It
shows the importance of IV on shorter timescales and after stabilizing an emergence of robust signals
depends on the intensity of the FR. The uncertainty from IV plays an important role on regional scales until
midcentury, as also shown by Lehner et al. (2020). The decrease in IV toward the end of the century over
SEUR in summer can be explained by approaching zero precipitation, which leads to a compression of
the standard deviation.

The information about the FR and the IV can be used to assess whether a signal is strong and attributable to
climate change or whether the change is still clouded by the uncertainty that lies within the range of IV.
The time when the signal leaves the band of IV (a signal‐to‐noise ratio greater than 1) is referred to as
time‐of‐emergence. The Rx3h emerges in almost all seasons and regions from the IV before the middle
of the century.

Only where the FR is small emergence is either reached later or no emergence before the end of the century
is reached. Where the FR of Rx3h is smaller or like Rx1d, the FR of subdaily extremes emerges later than
the daily FR due to smaller IV in Rx1d. Otherwise, subdaily extremes generally emerge before daily
extremes. For seasonal maxima in winter as well as for annual maxima all indices show an emergence
before the end of the century, except in SEUR. Here, only in summer all indices agree on an emergence
before midcentury. In general, the signals of all indices emerge earlier in winter than in summer, which
can be attributed to higher values of IV in summer. Indices emerging in the second half of the century
or not emerging at all highlight the importance of IV as a dominant source of uncertainty on regional scales
late into the 21st century.

6. Conclusion and Discussion

In this study we have analyzed seasonal and annual maximum precipitation for various temporal resolutions
(3‐hr, days, and 5 days) from the CRCM5‐LE under the RCP8.5 scenario.

Is the CC expression constraining scaling rates of precipitation extremes at subdaily and daily resolutions?
We show that subdaily extremes (Rx3h) exhibit stronger increases and higher CC‐scaling than daily
extremes and mean precipitation. These findings are consistent with other studies (e.g., W. Zhang,
Villarini, et al., 2017). While regions such as NEUR and EEUR exhibit precipitation extremes with
super‐CC scaling (>7%/K), which might indicate that changes are mainly driven by thermodynamics, other
areas such as France or SEUR seem to be strongly influenced by dynamic changes (e.g., a change in storm
tracks or altered latent heat flux induced by reduced soil moisture). In these regions the alterations of the
IV could also be triggered by dynamic changes.

Is there a strong seasonal variability in the FR of maximum precipitation? The trends of Rx3h can differ con-
siderably from one season to the other. While NEUR and WEUR show even higher trends for summer,
SEUR shows decreasing trends in summer compared to increases (winter) or no change.

When can we expect changes in extreme precipitation to robustly emerge from IV? Despite the dominant
source of uncertainty induced by the IV, robust signals can be detected within the 21st century on regional
scales. For almost all indices and seasons a time‐of‐emergence before midcentury can be projected. The Rx3h
tends to emerge earlier than daily indices or mean precipitation, as well as an earlier emergence in winter
over summer, which is also suggested by Kendon et al. (2018). However, especially in areas with small sig-
nals the IV remains a dominant source of uncertainty even until the end of the century. Also, Prein and
Pendergrass (2019) and Lehner et al. (2020) argue that on regional scales IV will remain a dominant source
of uncertainty.

Since the signals predominantly emerge before 2050, they are likely to be independent of the RCP scenario.
The rate of extreme precipitation change scaled with temperature does not substantially vary across RCP sce-
narios (Berg et al., 2019; Pendergrass et al., 2015) until the midcentury, and even late in the 21st century
there is still a considerable overlap for RCP4.5 and RCP8.5 results (Sanderson et al., 2018). Also, Lehner
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et al. (2020) show that scenario uncertainty becomes relevant after 2050. Therefore, we can have confidence
in the sign of extreme precipitation change, the higher scaling of subdaily extremes versus longer duration
extremes, and the evolution of the IV.

Comparing our results with the only other high‐resolution large‐ensemble study over Western Europe
(Aalbers et al., 2018) indicates a strong coherence of the regional pattern of mean and extreme precipitation,
which implies that other regional SMILEs agree in the increase in extreme precipitation as well as their spa-
tial patterns. However, as shown by Berg et al. (2019) RCMs showmodel deficiencies for hourly summer pre-
cipitation due the parametrization of convection that may alter the magnitude of change. It would be
important to extend this study to CPM simulations to study the impact of convection parametrization on
the results shown for subdaily extremes. Innocenti et al. (2019) showed for North America that the
CRCM5‐LE can reproduce the annual and diurnal cycle of annual maximum daily and subdaily precipita-
tion and that they are comparable to a 4 km WRF simulation. For four smaller European regions
Hodnebrog et al. (2019) compared the CRCM5‐LE to 3 km WRF simulations and show that the WRF
CPM shows smaller increases of summerly Rx1h but that both show a stronger intensification of subdaily
extremes compared to daily extremes or mean precipitation and that IV is a dominant source of uncertainty.

On the regional scale more high‐resolution large ensembles are needed to comprehensively analyze the
robustness of regional patterns and to narrow down the individual sources of uncertainties that arise from
model deficiencies, emission scenarios, and IV.

Data Availability Statement

The CRCM5‐LE precipitation data are available to the scientific community online (http://www.climex-pro-
ject.org).
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seasonal extreme precipitation events 

Plain language Summary:

The frequency of precipitation extremes is set to change in response to a warming climate. 

The upper tail of the precipitation distribution (i.e., extremes) is thereby influenced by both 

the mean and variability. This means that any change to either of these properties will 

determine the probability of extremes in the distribution. How large the individual 

contributions from either of them (mean or variability) to the change in precipitation 

extremes are, is largely unknown. This is however relevant for a better understanding of how 

and why climate extremes change. The two previous publications show that the change in the 

mean and variability are not synchronized, implying that these changes are driven by different 

mechanisms. The probability risk ratio framework is used in regional large ensemble climate 

simulations at pre-industrial, current, and future climate conditions to determine the change 

in the probability of precipitation extremes over Europe. This framework is extended to 

partition the change in extreme event probability into contributions from a change in the 

mean and variability. The results reveal that the change in variability can be equally or even 

more important than the mean. 
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Abstract. The frequency of precipitation extremes is set to change in response to a warming climate. Thereby, the change in 

precipitation extreme event occurrence is influenced by both a shift in the mean and a change in variability. How large the 

individual contributions from either of them (mean or variability) to the change in precipitation extremes are, is largely 

unknown. This is however relevant for a better understanding of how and why climate extremes change. For this study, two 

sets of forcing experiments from the regional CRCM5 initial-condition large ensemble are used. A set of 50 members with 10 

historical and RCP8.5 forcing as well as a 35-member (700 year) ensemble of pre-industrial natural forcing. The concept of 

the probability risk ratio is used to partition the change in extreme event occurrence into contributions from a change in 

mean climate or a change in variability. The results show that the contributions from a change in variability are in parts 

equally important to changes in the mean, and can even exceed them. The level of contributions shows high spatial variation 

which underlines the importance of regional processes for changes in extremes. While over Scandinavia or Mid-Europe the 15 

mean influences the increase in extremes more, reversely the increase is driven by changes in variability over France, the 

Iberian Peninsula, and the Mediterranean. For annual extremes the differences between the ratios of contribution of mean 

and variability are smaller, while on seasonal scales the difference in contributions becomes larger. In winter (DJF) the mean 

contributes more to an increase in extreme events, while in summer (JJA) the change in variability drives the change in 

extremes. The level of temporal aggregation (3h, 24h, 72h) has only a small influence on annual and winterly extremes, 20 

while in summer the contribution from variability can increase with longer durations. The level of extremeness for the event 

definition generally increases the role of variability. These results highlight the need for a better understanding of changes in 

climate variability to better understand the mechanisms behind changes in climate extremes. 

1 Introduction 

Climate extremes (i.e., droughts, heat waves and floods) are set to change in a warming climate (Böhnisch et al., 2021; 25 

Brunner et al., 2021; Suarez-Gutierrez et al., 2020; van der Wiel et al., 2022) and recent devastating extreme events are 

testing the resilience of society. The rapid attribution of recent devastating extremes, such as the July 2021 Flood in Western 

Germany (Kreienkamp et al., 2021) or the heat wave in British Columbia (Philip et al., 2021) emphasize an already 

quantifiable influence of climate change on the severity of these and other extreme events. In observational records 



2 
 

significant trends emerge for various extreme metrics (Contractor et al., 2021; Fischer and Knutti, 2016; Fowler et al., 2021; 30 

Guerreiro et al., 2018; Westra et al., 2013). The impact of a warming climate on future precipitation extremes is a well-

studied research field (Martel et al., 2021) with a consensus that precipitation extremes are increasing in magnitude and 

frequency over most parts of the world. Over Europe, it is shown that the magnitude (i.e., mean state) of extreme or heavy 

precipitation is increasing in Central and Northern Europe in all seasons while the Mediterranean Region can show 

decreasing trends in summer (Aalbers et al., 2018; Hodnebrog et al., 2019; Poschlod and Ludwig, 2021; Rajczak and Schär, 35 

2017; Rutgersson et al., 2022; Wood and Ludwig, 2020). At sub-daily timescales precipitation extremes can increase at 

higher rates then on daily timescales (Wood and Ludwig, 2020; Fowler et al., 2021). The general assumption is that the 

magnitude of precipitation extremes is likely to increase under a warming climate due to atmospheric warming and its 

inherent impact on the hydrological cycle (Allen and Ingram, 2002; Held and Soden, 2006). While mean precipitation is 

constrained by the Earth’s energy budget and scales at 1-3%/K per degree of global surface temperature warming, extremes 40 

are not constrained and can scale at the rate of moisture change at around 6-7%/K (O’Gorman and Schneider, 2009). 

Regionally and seasonally it is shown that precipitation extremes can considerably deviate from these global scaling rates, by 

scaling at levels well above the 7%/K Clausius-Clapeyron scaling (Wood and Ludwig, 2020; Lenderink et al., 2017; 

Poschlod and Ludwig, 2021; Lenderink and van Meijgaard, 2008) or showing negative scaling rates for seasonal extremes in 

the Mediterranean (Wood and Ludwig, 2020; Bador and Alexander, 2022). The regional and seasonal response of extreme 45 

precipitation to global warming is thereby governed by thermodynamic and dynamic drivers (Brogli et al., 2019; Kröner et 

al., 2017; Pfahl et al., 2017; Norris et al., 2019; Vries et al., 2022). 

Besides the change in the magnitude of extreme precipitation, the extreme event occurrence (i.e., frequency) is as well set to 

change under global warming (Martel et al., 2020; Myhre et al., 2019). Any changes to the distribution of precipitation, 

hence also extreme events at the tail of the distribution, are influenced by both a shift in the mean and a change in variability. 50 

Thereby, the changes in the mean and variability can have different driving mechanisms (Pendergrass et al., 2017; van der 

Wiel and Bintanja, 2021; Bintanja and Selten, 2014; Bintanja et al., 2020). The variability connects the swings between 

extreme climatic states (Swain et al., 2018) and even when taking an evolving mean climate into account the change in 

variability influences the occurrence of extremes (Suarez-Gutierrez et al., 2020). Precipitation variability has been shown to 

increase at a higher rate than mean precipitation with regionally diverse patterns (Pendergrass et al., 2017; Wood et al., 55 

2021). In global climate model simulations, van der Wiel and Bintanja (2021) show that the contributions of climate 

variability to the change in monthly extreme precipitation is considerable and that the contribution shows strong regional 

variations. However, to analyze the contributions on the European scale, higher resolution regional climate simulations are 

required. Higher resolution regional climate models yield lower biases and show added-value in representing local climate 

(Prein et al., 2016; Poschlod, 2021). 60 

Extreme events with its rare occurrence are the most discernible manifestation of internal climate variability and more 

broadly precipitation projections are strongly influenced by the uncertainty of internal climate variability even far into the 

future (Lehner et al., 2020), especially on regional scales (Lehner et al., 2020; Wood and Ludwig, 2020). Hence, climate 
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simulations from a regional single model initial-condition large ensemble (SMILE) are used for a more robust sampling of 

extreme events under pre-industrial, current, and future climate conditions. The benefit of using SMILEs for the robust 65 

quantification of extreme event metrics has been asserted in many studies for numerous types of extremes. For example, the 

added-value of SMILEs for a better quantification of rare flood events (van der Wiel et al., 2019; Brunner et al., 2021; 

Kelder et al., 2022), the change in magnitude and frequency of precipitation extremes (Aalbers et al., 2018; Hodnebrog et al., 

2019; Martel et al., 2020; Poschlod and Ludwig, 2021; Wood and Ludwig, 2020; Thompson et al., 2017), or droughts 

(Aalbers et al., 2022; Böhnisch et al., 2021; van der Wiel et al., 2022). SMILEs are also beneficial for studying changes in 70 

precipitation variability (e.g., Maher et al., 2021b; Pendergrass et al., 2017; Wood et al., 2021), the changes in the driving 

modes of climate variability (e.g., ENSO or NAO; Maher et al., 2018; McKenna and Maycock, 2021), and the robust 

quantification of changes in weather patterns (Mittermeier et al., 2019; Mittermeier et al., 2022). An overview of other 

applications using SMILEs can be found in Deser et al. (2020) and Maher et al. (2021a).  

Here the probability risk ratio is used in regional large-ensemble climate simulations to partition the changes in extreme 75 

annual and seasonal precipitation events into contributions from changes in mean climate and climate variability. It is further 

analysed whether the contributions are influenced by the warming level, season, level of extremeness, or level of temporal 

aggregation (3h-72h). 

2 Data and Methods 

2.1 Climate simulations 80 

For this study, two sets of forcing experiments (ALL and NAT) with the Canadian Regional Climate Model version 5 

(CRCM5) are used. The ALL forcing experiment originate from the CRCM5 large ensemble (CRCM5-LE; Leduc et al., 

2019). The CRCM5-LE is a regional 50 member initial-condition large ensemble, which was produced by dynamically 

downscaling the 50 member CanESM2 large ensemble (Canadian Earth System Model version 2 large ensemble; Fyfe et al., 

2017; Kirchmeier-Young et al., 2017) with the regional climate model CRCM5 (v.3.3.3.1; Martynov et al., 2013; Šeparović 85 

et al., 2013) to the EURO-CORDEX 0.11° grid in a one-way nesting setup. All 50-member use combined anthropogenic 

(CO2 and non‐CO2 GHGs, aerosols, and land cover) and natural (solar and volcanic influences) forcing (ALL forcings). 

Historical forcing is applied before 2006, and RCP8.5 (Meinshausen et al., 2011) is used for 2006 until 2100. The 

differences among the individual CRCM5 members are due to the macro and micro initialization in the driving CanESM2-

LE and can be interpreted as natural climate variability. 90 

For the NAT forcing experiment, the CRCM5 uses the CanESM2 pre-industrial control simulations (Arora et al., 2011) as its 

driving data. The pre-industrial simulations represent a climate state in 1850 without anthropogenic global warming at 

constant atmospheric CO2 levels of 284.7ppm. From this 1000-year CanESM2 pre-industrial continuous simulation, 35 non 

overlapping time slices of each 22 years were selected and used as boundary conditions for the CRCM5 resulting in 35 pre-

industrial control members. From each of the 35 CRCM5 members, the first two years were discarded as spin-up, resulting 95 
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in an ensemble of 700 years (35 members x 20 years). The CRCM5 setup used for this pre-industrial ensemble is identical to 

the setup used in Leduc et al. (2019) for the CRCM5-LE. Both CRCM5 experiments share the same model parameterization 

of deep convection (Kain and Fritsch, 1990) and shallow convection (Kuo, 1965; Bélair et al., 2005) providing hourly 

precipitation outputs. At a resolution of 0.11° a discrete modelling of convection is not possible and needs to be 

parameterized within the regional climate model. 100 

The CRCM5-LE precipitation data was evaluated in various studies, showing a good representation of the timing of 

maximum annual precipitation (Wood and Ludwig, 2020), as well as good agreement for ten-year return levels of 3h-24h 

annual maxima with observations (Poschlod et al., 2021) over Europe. The CRCM5-LE is further capable of simulating 

synoptic weather pattern (i.e., Vb-cyclone) which are relevant for long-lasting high impact rainfall events triggering floods in 

the Alpine Region (Mittermeier et al., 2019). Over Eastern North America, the CRCM5-LE also yields a good representation 105 

of the annual and daily cycle (Innocenti et al., 2019). An analysis of the general biases of the CRCM5 setup can be found in 

(Leduc et al., 2019). Future projections of the annual maximum precipitation in the CRCM5-LE over Europe show similar 

patterns and magnitudes to the 16-member EC-Earth-RACMO large ensemble (Aalbers et al., 2018; Wood and Ludwig, 

2020). The CRCM5-LE also shows a comparable spread of internal variability to other regional SMILEs and a good 

agreement of interannual variability with observations (von Trentini et al., 2020). The good representation of interannual 110 

variability can also be asserted to the driving CanESM2-LE (Wood et al., 2021). The large-scale NAO teleconnections, 

which are relevant for the interannual to multi-annual variability over Europe, are properly propagated from the driving 

CanESM2-LE to the CRCM5-LE (Böhnisch et al., 2020). For the CanESM2 statistically robust NAO patterns have been 

evaluated under current climate conditions (Böhnisch et al., 2020). 

2.2 Methods 115 

Here the probability risk ratio is used in regional large-ensemble climate simulations to partition the changes in extreme 

annual and seasonal precipitation events into contributions from changes in mean climate and climate variability. The basis 

for the analysis is annual (seasonal) maximum precipitation, which is defined as the maximum precipitation sum within a 

season (DJF or JJA) and year. Precipitation sums are calculated with a rolling window of size 3h, 24h and 72h accounting 

for partial overlaps with preceding/trailing seasons (years) to receive the absolute annual (seasonal) maximum precipitation. 120 

Annual (seasonal) maxima are calculated for each ensemble member and grid cell separately.  

2.2.1 Event probability 

The probability risk ratio is a widely used metric in attribution studies (Kirchmeier‐Young et al., 2019a; Kirchmeier‐Young 

et al., 2019b; Otto et al., 2018b; Swain et al., 2020) to analyse the change in event probability. It requires event probabilities 

from two different climate simulations (Figure 1a), which are defined here as the number of annual (seasonal) maxima 125 

exceeding a local event threshold. The event threshold is valid for both simulations and is based on the NAT simulations, 
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calculated for each season separately. For the threshold definition, all 700 annual (seasonal) values are pooled and 

normalized by its mean (see Eq. 1).  

RXnorm = (RXi – RXNAT) / RXNAT (Eq. 1) 

Where RXnorm is the normalised annual (seasonal) maximum precipitation, RXNAT the mean annual (seasonal) maximum 130 

precipitation in the NAT simulation, and RXi the values to be normalised. The normalization (Eq. 1) is valid for both NAT 

and ALL simulations by replacing RXi with ALL (NAT) values. A normalization is applied to receive a comparable 

threshold across the domain and season. Thresholds based on absolute values without a normalization can show high spatial 

and seasonal variability. After normalization the standard-deviation over all values is calculated and events exceeding two-

times (three-times) the standard-deviation are considered for the event probability (Figure 1a). 135 

Threshold = N*std(RXnorm, NAT) (Eq. 2) 

Calculations of the threshold and event probabilities are performed for each grid cell separately. To ensure the same sample 

size in the NAT and ALL simulations, 35 random members have been picked from the full 50-member ALL simulations. 

The random sampling without replacement has no effect on the results and different sets of random samples will produce 

only very small marginal differences. 140 

 
Figure 1: Schematic of the probability risk ratio framework for separating contributions from mean and variability. Two 
examples are given. In example A both mean and variability contribute to an increase in event probability. Example B shows 
contrasting contributions from mean and variability. a) Shows two different climate simulations (NAT and ALL) for which the 
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PRtotal is calculated based on the number of events exceeding the threshold in both distributions. b) Any change in the mean is 145 
removed by shifting the ALL distribution to match the mean in the NAT distributions, the shifted ALL simulation is then used to 
determine the PRvar based on the events exceeding the threshold. c) The PRmean can be determined from an adapted probability 
risk ratio relationship, giving the PR-values for PRtotal, PRmean, and PRvar. d) The ratio of contribution is determined from the 
individual contributions from PRmean and PRvar to the PRtotal, which sum up to 1. For more details see the methods (section 
2.2). 150 

2.2.2 Probability risk ratios 

To assess the change in event probability, the framework of the probability risk ratio is applied. The conventional risk ratio 

as used in many attribution studies is calculated as follows: 

PR = PALL / PNAT (Eq. 3) 

with PR=1 indicating no change in extreme event probability, PR>1 indicates an increase in event probability and PR<1 a 155 

decrease in probability. Here, the event probabilities (PALL, PNAT) are given as the number of extreme events in the ALL and 

NAT dataset and as described above. The conventional risk ratio framework is extended, as proposed by van der Wiel and 

Bintanja (2021) to separate the contributions from changes in the mean and changes in variability. The PRTotal is calculated in 

the classical way by following Eq.3. The PRTotal includes both the contributions from a change in the mean and variability 

and therefore concludes the total change. To quantify the role of a change in variability (widening of the distribution), the 160 

influence of any change in the mean is first removed by shifting the entire distribution of ALL to match the mean of NAT 

(Figure 1b). The shifting is achieved by subtracting the difference in the mean of ALL and NAT. The shifting of the 

distribution is done prior to the normalization of the ALL precipitation values (i.e., Eq 1). The number of extreme events is 

determined in the new distribution and used to calculate the risk ratio PRvar, representing the change in event occurrence due 

to the change in variability. From the two risk ratios PRTotal and PRvar, the risk ratio for PRmean can be calculated following 165 

the new risk ratio relationship: 

PRTotal = PRmean + PRvar -1 (Eq. 4) 

In this relationship subtracting by 1 is necessary because the reference PR-value is 1 (no change). The PR-values should be 

evaluated on a logarithmic scale, where PR=2 and PR=0.5 indicate a similar change in magnitude (Figure 1c). 

2.2.3 Contributions from mean and variability 170 

To quantify the relative contributions attributable to the change in the mean (PRmean) and change in variability (PRvar) to the 

total risk change (PRTotal), a simple ratio of contribution is calculated as proposed by van der Wiel and Bintanja (2021): 

Cmean = (PRmean - 1) / (PRTotal - 1) (Eq.5) 

Which is equivalent for variability (Cvar) by replacing PRmean with PRvar. The two contributions Cmean and Cvar sum up to 1. 

Thereby, they can either result in the same sign, which means that both mean and variability contribute to an increase 175 

(decrease) in the risk ratio (see Example A in Figure 1d), or they can have opposite signs showing opposing contributions 

(see Example B in Figure 1d). For the regional analysis the probability risk ratios (total, mean, and var) are averaged across 
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grid cells falling within the region boundaries (inclusion is based on cell centre points) before the ratio of contribution is 

calculated based on the regionally averaged PR-values. 

2.2.4 Warming levels 180 

Lastly, the risk ratios and their contributions are analysed for different warming levels. The warming levels are calculated 

from the driving CanESM2-LE dataset with a rolling window of 20 years with the pi-Control CanESM2 simulation as the 

reference. The ensemble mean warming is used to identify the 20-year periods closest to 1°C, 2°C, 3° and 4°C. Thereby, the 

1°C warming level is considered as the current climate. 

3 Results 185 

3.1 Probability risk ratio and ratio of contribution in annual extremes 

3.1.2 Current climate 

Compared to a stable pre-industrial climate the present-day climate (+1°C) in the CRCM5-LE shows a widespread increase 

in the mean 3-hourly annual maximum (AX3h) precipitation by 4.6 % K-1 over land (Figure 2a). The regionally averaged 

scaling rates differ between 3.6 and 5.9 % K-1 among the different subregions. The standard deviation (i.e., variability) of the 190 

AX3h has increased by 8.9 % K-1 over all land area within the same time (Figure 2b). The increase in variability is larger 

than the change in the mean AX3h in all subregions. The total probability risk ratio (PRtotal) of AX3h events larger than 2-

sigma has also increased slightly by 1.36 averaged over all land areas (Figure 2e, Figure 4). This total change is influenced 

by both the change in the mean and variability. When the probability risk ratio is calculated based on the mean and 

variability separately, then slightly higher risk ratios can be seen for the PRvar (1.2) than for PRmean (1.16) (Figure 2c-d). 195 

The individual ratios of contribution for mean and variability to the total risk ratio show that the increase in the PRtotal can 

to a larger part be attributed to a change in variability (0.55 when averaged over all land area) and to a slightly lesser extend 

due to the mean (0.45) (Figure 2f-g, Figure 5). Within all subregions the contribution from variability varies between 0.48 

and 0.63. 

Other studies show that the observational records reveal an increased risk of extreme precipitation, at least when taking the 200 

change in mean extremes as a proxy (Westra et al., 2013; Westra et al., 2014; Donat et al., 2016; Sippel et al., 2017). Which 

in parts fits the trend seen in the CRCM5-LE, since the mean contributes to roughly 0.45 to the increase in extreme events. 

Although trends in single realizations (i.e., observations) could be underestimated since changes in variability are difficult to 

quantify from the limited sample size, studies from the detection and attribution community show that climate change is now 

detectable in everyday weather events (Sippel et al., 2020) and that recent extreme events over Europe have been amplified 205 

by climate change (Kreienkamp et al., 2021; Otto et al., 2018a), which makes the results from the CRCM5-LE for the seem 

plausible. 
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Figure 2: Changes in the current climate (+1°C) compared to a stable pre-industrial climate in the CRCM5-LE simulations. a) 
Change in the mean annual rx3h. b) Change in the variability (i.e., standard deviation of annual rx3h). c) PRmean, d) PRvar and 210 
e) PRtotal values for 2-sigma events. f) ratio of contribution for changes in the mean. g) ratio of contribution for changes in 
variability. 

3.1.2 Future climates 

In a two-degree (+2°C) warmer world, the probability risk ratio continues to increase to 1.77 showing a doubling of 2-sigma 

extreme events in roughly 29 percent of the land area (Figure 3a). The strongest increases in the total risk ratio can be seen in 215 

the Scandinavian region with an average increase in the PRtotal by 2.1 with roughly 56 percent of grid cells showing a 

doubling in events. By a change of mean or variability alone, a considerably smaller percentage of land area would show a 

doubling in extreme events in Scandinavia (mean: 13 %, var: 6.3 %), and over all land areas (mean: 4 %, var: 3.5 %). This 

emphasizes the joint role that changes in mean and variability have for shaping the total change in extremes. Both the 

Scandinavian region and the Alps are clearly visible in the PRmean maps while the PRvar show a more widespread increase 220 

in the risk ratio throughout the entire domain (Figure 3b-c). 



9 
 

 
Figure 3: Probability risk ratios for annual rx3h for extreme events larger than 2-sigma in a +2 °Cand +4 °C warmer world. a) + 
d) PRtotal. b) + e) PRmean. c) + f) PRvar. a) – c) +2 °C climate. d) – f) +4 °C climate. All probabilities relative to the pre-industrial 
climate. 225 

In a four-degree (+4 °C) warmer world, the risk of 2-sigma extreme events becomes more likely with roughly 69 percent of 

land grid cells showing at least a doubling of events with an average increase in PRtotal of 2.7 (Figure 3d-f). While the 

PRvar is generally still increasing more widespread, the PRmean shows a more contrasting picture with regions, such as the 

Alps and Scandinavia, showing a very large increase in PR-values, while other regions show PR-values closer to one (i.e., no 

change), such as parts of the Iberian Peninsula or France. Figure 4 shows the regional average PR-values (total, mean, and 230 

var) for all PRUDENCE subregions at different warming levels, and reveals that in most regions the PRmean and PRvar 

develop similar. In Mid-Europe, Eastern Europe, and the Mediterranean both the PRmean and PRvar develop very closely 

and show almost identical PR-values. Over the British Isles the PRmean starts to increase steeper towards the +4°C warming 

level, diverging from the PRvar which shows a continued increase but at a lower level. In Scandinavia and the Alps, where 

the change in the PRtotal is most pronounced, the PRmean diverges already at +2°C from the PRvar and increases at 235 

considerably higher rates. Over France and the Iberian Peninsula, where overall PRtotal values are lower than in other 

regions, the PRvar remains throughout all warming levels slightly above the increase in PRmean. In all subdomains the 

probability of more extremes increases no matter if this is driven by a change in the mean or variability. 
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Figure 4: Regional averaged PR-values (total, mean, and var) for the PRUDENCE regions at different warming levels for annual 240 
rx3h events larger than 2-sigma. PRtotal (red), PRmean (blue), and PRvar (purple) values (y-axis) at warming levels (+1, +2, +3, 
+4 °C) (x-axis). The lower left panel shows the aggregation over all land grid cells and shows axis labels. 

In Figure 5, the individual contributions from PRmean and PRvar to the total change (PRtotal) are shown for the subregions. 

Generalized over all land areas the contributions reveal that the change in variability attributes slightly more (approx. 0.55) 

in the current climate (+1°C) and the contributions steadily reduce to approx. 0.45 in the +4°C warmer world. This means the 245 

contributions from mean and variability develop diagonally to each other with the mean gaining in importance. On the 

regional scale however, there are distinct differences among the regions. The British Isles show a similar development to the 

domain average, but slightly more pronounced with the variability contributing by 0.58 in the current climate and by 0.41 at 

+4°C. In the Mediterranean this is less pronounced, and both contribute close to equally in the current and future climates. In 

Mid-Europe and Eastern Europe, the contributions from variability and mean converge with continued warming. In the 250 

current climate the variability has a higher contribution. Over Eastern Europe the converging takes slightly longer than over 

Mid-Europe where both (mean and variability) contribute equally from a +2°C climate onwards. In France, both 

contributions tend to converge, however the contributions from variability remain higher than the mean (0.55-0.63). In 

contrast, over Scandinavia and the Alps the contributions are approximately equal at current levels and diverge throughout 

the future warming with the mean gaining in importance (0.64 in both regions). Over the Iberian Peninsula the variability 255 

gains in importance towards a +3°C world (0.6) and slightly converges towards the end but remains higher than the mean. 
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Figure 5: Individual contributions from PRmean and PRvar to the PRtotal in the different PRUDENCE regions at different 
warming levels. Ratio of contributions from PR-values in Figure 4. Contribution from the mean in blue and contributions from 260 
variability in purple. Ratio of contribution on the y-axis and different warming levels on the x-axis. Warming levels: +1, +2, +3, +4 
°C; The lower left panel shows the aggregation over all land grid cells and shows axis labels. 

3.2 Extremes on seasonal scales 

3.2.1 Probability Risk Ratios 

Looking at the seasonal scales which can be relevant for decision-makers the patterns reveal some interesting and diverse 265 

characteristics. Figure 6 shows maps of the probability risk ratios (PRtotal, PRmean, and PRvar) in the +4°C world for the 

two seasons winter (DJF) and summer (JJA) in comparison to the annual scale (as seen in Figure 3). The two seasons have 

been chosen since they show a strong seasonal contrast in the forced response of mean seasonal maximum precipitation as 

well as seasonal total precipitation amounts (Wood and Ludwig, 2020; Christensen et al., 2019; Matte et al., 2019; Rajczak 

et al., 2013).  270 

In winter the increase in total risk ratio is in many parts of the domain larger than on the annual scales. Over Eastern Europe, 

the Greater Alps, the Balkan region as well as over the Iberian Peninsula more intense and widespread increases can be seen 

compared to the annual scale. Also, in winter the contrast between PRmean and PRvar is more pronounced with the mean 

projecting a higher probability of extremes. While the winter shows large widespread increases, in summer more grid cells 
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emerge that show a decrease, no change or only a marginal increase in the PRtotal. In general, the pattern of PRtotal follows 275 

the expected North-South gradient with increases in the north and decreases in the south. However, despite the summerly 

decrease in PRmean over France, Italy, Eastern Europe, the Balkan, and the Pyrenees, which clearly follows the decrease in 

the mean JJAx3h (see Figure S1 in the supplementary material), the PRtotal is still increasing in parts of these regions. 

Which means that the number of extremes is increasing even though the mean is decreasing and would project a decline in 

extremes. Here, the decline in the risk ratio is compensated by the change in variability which is showing the opposite and 280 

shows an increase in the PRvar in these areas. This clearly highlights that the mean change is not always a sufficient proxy 

for the change in the probability of extremes. Especially over the Mediterranean and the Iberian Peninsula a widespread 

decline in the mean summerly average extremes is projected, however due to the change in the variability the probability of 

summerly extremes greater than 2-sigma remains and can even increase locally. Other clearly visible features in summer are 

the Alps and Scandinavia, which are also apparent features in winter and on the annual scale. 285 

 
Figure 6: Annual probability risk ratios of rx3h events compared to seasonal DJF and JJA PR-values at +4 °C warming. a) – c) 
Annual PR-values; d) – f) DJF PR-values; g) – i) JJA PR-values; a) + d) + g) PRtotal; b) + e) + h) PRmean; c) + f) + i) PRvar. 



13 
 

Through the regional aggregation some generalized statements can be formulated. Aggregated over all land areas, the 

PRtotal increase is strongest in DJF (3.34) compared to the annual scale (2.7) and lowest in JJA (2.06) at +4°C warming 290 

(Figure 7). Generally, this can also be shown for France (DJF: 2.8, AMAX: 2.04, JJA: 1.6), the Alps (DJF: 5.6, AMAX: 

3.78, JJA: 3), and Eastern Europe (DJF: 4.18, AMAX: 2.17, JJA: 1.6). In these regions the PRtotal increases for the two 

seasons and the annual values. Also, the Iberian Peninsula and the Mediterranean show the same order of strongest to lowest 

increases, but with the unique characteristic that in JJA the PRtotal is decreasing in the Iberian Peninsula (0.71) and 

declining towards no change in the Mediterranean.  295 

A different order can be seen over Scandinavia and Mid-Europe where the PRtotal in JJA and the annual scale are basically 

identical in their progression with warming. In Scandinavia, the PRtotal in DJF remains below JJA and the annual values for 

all warming levels. In Mid-Europe, values of JJA remain below DJF and the annual values until the +4°C world where all 

three values converge to approx. 2.7-2.8 (PRtotal). In the British Isles, the PRtotal is largest on the annual scale and is 

closely followed by JJA and shows a weaker increase in winter. 300 

Generally, when comparing the evolution of PRmean and PRvar it can be stated, that in summer the PRvar is above the 

PRmean, and in winter vice versa. Except for Scandinavia where PRmean is always larger than PRvar. On annual scales, 

both the PRmean and PRvar are generally quite similar except for the Alps and Scandinavia where PRmean is considerably 

larger than PRvar. 
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 305 
Figure 7: Comparison of regional averaged annual and seasonal PR-values (total, mean, and var) at different warming levels. The 
panels show PRtotal (red), PRmean (blue), and PRvar (purple) values (y-axis) at warming levels (+1, +2, +3, +4 °C) (x-axis). The 
solid lines with the circle marker represent annual PR-values (same as in Figure 4); the dashed lines with the triangle marker 
represent PR-values in winter (DJF); the dotted lines with the square marker represent PR-values in summer (JJA). The lower left 
panel shows the aggregation over all land grid cells and shows axis labels. 310 

3.2.2 Ratio of Contribution from mean and variability 

In Figure 8 the ratios of contribution for JJA, DJF and the annual scale are compared. All regions, except for Scandinavia 

show the general behaviour that the variability contributes to a large extent to the change in extremes in summer, while in 

winter this relation is opposite (i.e., mean > var). Aggregated over all land areas, the variability attributes to 0.56-0.66 of the 

change in summer while the mean only contributes to 0.34-0.44 of the change. In winter, the contribution of the variability 315 

only contributes to roughly a quarter (0.23-0.28) while the mean dominates the change in probability by roughly three-

quarters (0.72-0.78). In comparison on the annual scale either the mean or variability contribute closer to equal by 0.45-0.55. 

Over the British Isles, the change in variability initially contributes to 0.7 (mean: 0.3) of the current change in the probability 

of summerly extremes before the contribution of both variability and mean converge to roughly equal contributions in a 

+4°C world. In winter, the mean initially contributes to most of the change with roughly 0.9 (var: 0.1) and slowly reduces to 320 

0.76 (var: 0.24). 
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Over the Alps the ratios of contribution are very stable across all warming levels within their respective season. In summer, 

the variability contributes to a higher degree with roughly 0.6 compared to 0.4 from the mean. In winter, the change in 

probability is dominated by the change in the mean contributing by 0.8 (var: 0.2).  

Also, in Scandinavia the ratio of contribution remains very stable across the warming levels in winter, with the mean 325 

contributing roughly by 0.8 to the overall change (var: 0.2). In summer, both the mean and variability initially contribute 

almost equally to the change and diverge to roughly 0.6 attributable to the change in the mean compared to 0.4 by the 

variability. 

Over Eastern Europe, the variability attributes roughly to 0.6 (mean: 0.4) of the current change in summer and increases to 

0.7 (mean: 0.3) in future climates. In winter, the contributions are stable across warming levels and the mean attributes to 330 

roughly 0.75 (var: 0.25) of the change. 

Over Mid-Europe, the difference in contributions between mean and variability is initially larger, and they slightly converge 

in a warmer climate. In summer, the variability contributes to 0.63 (mean: 0.37) of the total change before the two 

contributions converge slightly. In winter, the current change is predominantly driven by the change in the mean (close to 

1.0) before the variability slightly gains in importance with roughly 0.25 (mean: 0.75) in warmer climates. 335 

Over France, the ratios of contribution are experiencing considerable changes throughout the different warming levels and 

seasons. In winter, the mean contributes by 0.9 to the current change before reducing slightly to 0.75. In the same time 

contributions from variability increase from 0.1 to 0.25. In summer, the variability is the main driver of change with 0.8 at 

current climate levels and increasing beyond 1 in the future climate. A contribution beyond 1 is possible because the mean 

contributes negatively to the change in the total risk ratio while variability shows an increase in extremes attributing to an 340 

overall increase in summerly extremes. This exemplifies that the change in the mean and variability can not only amplify the 

change in event probability, but in some cases counteract each other. 

Over the Iberian Peninsula, the decline in the mean is responsible for the overall decline in the probability of extremes in 

summer. While the mean contributes to a decline throughout all warming levels, the variability can initially offset the overall 

decline in summerly extremes but can’t compensate for the strong decline in the mean in warmer climates. Note that the 345 

change in the sign of contributions in JJA is due to a change in the PRtotal shifting from an increase (>1) to a decrease (<1). 

However, locally in the northern parts of the Iberian Peninsula increases in the probability of extremes in summer can still 

occur due to the change in variability even though the mean is strongly decreasing (as seen in Figure 6). In winter, for which 

the PRtotal is continuously increasing, the mean contributes initially with 0.83 (var: 0.17) and is subsequently lower in 

warmer climates (0.66-0.69). 350 

Also, over the Mediterranean the mean contributes continuously to a decline in summerly extremes, however here the 

change in variability can initially offset the decline and lead to an increase in the probability of extremes in summer before 

the reversal of the trend towards no change of extremes in the +4°C world which is slowed by the presence of variability. In 

winter the mean attributes to roughly 0.7 of the change while variability by 0.3. The contributions are thereby stable across 

all warming levels. 355 
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Figure 8: Comparison of individual contributions of annual and seasonal PRmean and PRvar to the PRtotal at different warming 
levels. Ratio of contributions from PR-values in Figure 7. Contribution from the mean in blue and contributions from variability 
in purple. Ratio of contribution on the y-axis with different warming levels on the x-axis (+1, +2, +3, +4 °C). The solid lines with 
the circle marker represent annual ratio of contributions (same as in Figure 5); the dashed lines with the triangle marker 360 
represent ratios in winter (DJF); the dotted lines with the square marker represent ratios in summer (JJA). The lower left panel 
shows the aggregation over all land grid cells and shows axis labels. 

3.3 Influence of the temporal aggregation 

Until now, all results shown are for an aggregation level of three hours raising the question whether the level of aggregation 

(i.e., 24-hours, 72-hours) has any influence on the ratio of contribution. First, looking at the probability risk ratios of annual 365 

extremes reveals that the level of temporal aggregation influences the magnitude of the probability risk ratios of total, mean 

and variability. In general, the PR-values of subdaily extremes (3-hours) are in most regions and aggregated over all land 

area higher than for 24-hours and 72-hours. Only over France the 3-hourly and 24-hourly PRtotal values develop close to 

identical with the 72-hours showing slightly lower values before all three aggregations converge in a similar PRtotal at +4°C. 

In Scandinavia, both the 24- and 72-hour extremes show near identical PR-values well below the 3-hour aggregation. 370 
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Figure 9: Regional probability risk ratios for different temporal aggregation levels (3h, 24h, 72h) on annual scales. The panels 
show PRtotal (red), PRmean (blue), and PRvar (purple) values (y-axis) at warming levels (+1, +2, +3, +4 °C) (x-axis). The solid 
lines with the circle marker represent PR-values for 3-hour temporal aggregation (same as in Figure 4); the dashed lines with the 
triangle marker represent PR-values for 24-hours; the dotted lines with the square marker represent PR-values for 72-hours. The 375 
lower left panel shows the aggregation over all land grid cells and shows axis labels. 

 

The level of temporal aggregation has however only a very marginal influence on the ratio of contribution and the main 

takeaways from the previous sections remain true. Only in the Iberian Peninsula the influence of the variability considerably 

gains in importance. This is caused by a decrease in the PRmean in the 24-hour and 72-hour extremes. In the 3-hour data all 380 

PRtotal, PRmean, and PRvar show an increase, while in the 24h and 72h the PRmean shows a downward trend and in the 

72h even a decrease in the PRmean from +3°C warming on. In comparison, the PRvar continues to increase in the 24h and 

increases then decreases in the 72h data. 
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Figure 10: Regional ratios of contribution based on different levels of temporal aggregation (3h, 24h, and 72h) for annual maxima. 385 
Ratio of contributions from PR-values in Figure 9. Contribution from the mean in blue and contributions from variability in 
purple. Ratio of contribution on the y-axis with different warming levels on the x-axis (+1, +2, +3, +4 °C). The solid lines with the 
circle marker represent individual contributions for 3-hour temporal aggregation (same as in Figure 5); the dashed lines with the 
triangle marker represent contributions for 24-hours; the dotted lines with the square marker represent contributions for 72-
hours. The lower left panel shows the aggregation over all land grid cells and shows axis labels. 390 

 

Winter shows generally the same influence of temporal aggregation as seen on the annual scales. The PR-values are 

generally lower in the longer durations then in the subdaily extremes (Figure S2). In the British-Isles, Mid-Europe, Eastern 

Europe and over all land areas the three aggregation levels produce very similar PR-values throughout. Only in Scandinavia 

the longer durations show considerably higher PR-values then on the subdaily scale (PRtotal for 3h: 3.3, 24h: 4.2, 72h: 4.4). 395 

Over the Alps (PRtotal, 3h: 5.6, 24h: 3.6, 72h: 2.8) and the Iberian Peninsula (PRtotal, 3h: 2.9, 24h: 1.5, 72h: 1.3) the longer 

duration PR-values are markedly lower. Also, over France and the Mediterranean the PR-values are lower in the 24h and 72h 

data. However, these differences in the PR-values have only a low influence on the overall ratio of contributions which 

remain almost unaffected in the subregions of Scandinavia, Eastern Europe, the Alps, and the Mediterranean as well as 

aggregated over all land area (Figure S3). Over Mid-Europe the influence of the variability gains in importance for 400 

explaining the changes in the current (3h: ~0, 24/72h: ~0.3) and near-term future climate (3h: ~0.3, 24/72h: ~0.4). In the +3 

and +4°C climates the ratios of contribution are near identical on all temporal aggregation levels. In the British-Isles the 

mean contributes more to the changes in the current climate in both the 24 and 72h data. In the future climates ratios are 
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similar across aggregation levels. In France, the variability in the 24-hours gains slightly in importance in the current climate 

compared to the 3-hours. In the 72h data the mean gains in importance in current climate and slightly in future climates. In 405 

the Iberian Peninsula the 3h and 24h ratios are near identical, but in the 72h data the variability loses in importance 

especially in the +4°C climate due to the decrease in PRvar towards no change (1) from a previous increase (>1). 

However, in summer the ratio of contribution is markedly influenced by the level of temporal aggregation (Figure S5). 

Aggregated over all land area this results in the variability contributing by 0.7-0.76 in the 24h data and 0.74-0.87 in the 72h 

data compared to 0.56-0.66 in the 3h data. The gain in importance of the variability for changes in the probability of 410 

extremes with the level of aggregation can be seen in all regions. Differences due to the level of aggregation are less defined 

in the regions of Scandinavia and Mid-Europe, but very noticeable in France, the Alps, Eastern Europe, the Iberian 

Peninsula, and the Mediterranean. These differences in the ratio of contribution can be explained by the mean showing 

progressively decreasing PR-values (<1) or values closer to no-change with longer durations. The PRmean values of the 24h 

and 72h are markedly lower than for the 3h data, while the temporal aggregation produces less of a difference in the PRvar 415 

values (Figure S4). As a result, the importance of the variability for the future changes in extreme event probability increases 

with temporal aggregation in summer. 

3.4 Influence of the level of extremeness 

The level of extremeness (2-sigma or 3-sigma) does in general not change the overall conclusions of the importance of both 

the mean and variability for the total change in extreme events. The regions largely show the same order of importance by 420 

either the mean or variability. For example, regions where the mean contributes more to a change in event probability then 

the variability will also show this behaviour with a higher threshold for the event definition. However, the level of 

extremeness does in general increase the ratio of contribution for variability and respectively lowers the ratio of the mean. 

This increase in the ratio of contribution for variability is true for the annual scales (Figure S6) as well as the seasonal scales 

(Figure S7, S8). Further, this can also be shown for the different temporal aggregations (Figure S9, S10). On the seasonal 425 

scale the order of contribution is unchanged with the mean showing higher contributions in winter, and the variability 

showing higher contributions in summer. On the annual scales where the ratios of contribution are relatively similar anyway 

the increase in the ratio for variability can change the major contributor from mean to variability. In regions where the mean 

and variability contributed near equal (e.g., Mid-Europe, Mediterranean) the contributions from the variability remain above 

the mean with the 3-sigma threshold. Regions where the main contributor switched throughout continued warming from 430 

variability to mean (e.g., British-Isles, all land area) also show for the 3-sigma events that the contribution from variability 

remains larger than the mean, but the ratios converge to near equal in the +4°C world. 
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4 Discussion 

In this study, only one regional large ensemble has been used which makes it difficult to evaluate the importance of model 

uncertainty on these results. Using multiple global SMILEs van der Wiel and Bintanja (2021) have shown that the model 435 

uncertainty seems to only play a minor role for the contributions of mean and variability to the extreme event occurrence. 

However, different models will influence the magnitude of the probability risk ratios. On the local scale different regional 

climate models can show different land-atmosphere feedbacks, due to a difference in model components or parameterization, 

which can influence the evolution of local precipitation extremes (e.g., Ritzhaupt and Maraun, 2023). Other regional 

SMILEs are necessary to analyse the impact of model uncertainty on the results. However, the availability of other regional 440 

SMILEs is limited. The only two other regional SMILES over Europe (to the knowledge of the author) differ in the extent of 

the domain (Aalbers et al., 2018) or the model resolution (Brönnimann et al., 2018; Addor and Fischer, 2015). von Trentini 

et al. (2020) have analyzed the three regional SMILEs and show that the three SMILEs reveal comparable changes in 

interannual variability of various climate indicators. Comparing projections for seasonal maximum precipitation in the 50-

member CRCM5-LE (Wood and Ludwig, 2020) and the 16-member EC-Earth-RACMO ensemble (Aalbers et al., 2018) 445 

reveals very comparable forced changes in the mean magnitudes. This might indicate that the findings in van der Wiel and 

Bintanja (2021) of a small influence of model uncertainty on the ratio of contribution could potentially also be true for 

regional SMILEs.  

Over the Mediterranean region, including the Iberian Peninsula, it has been shown that the magnitude of the drying trend 

especially for total summerly precipitation as well as mean extreme magnitudes can be model dependant, however there is a 450 

high model agreement on an overall drying (e.g., Ritzhaupt and Maraun, 2023; Zittis et al., 2021). However, it has also been 

shown that lower likelihood precipitation extremes still increase in the northern parts of the Mediterranean region (e.g., Zittis 

et al., 2021). Both, the reduction in mean climate characteristics while upper tails increase, fit the results shown in this study 

and strengthen the hypothesis that the increase in lower likelihood precipitation events is mainly driven by an increase in the 

variability. Most regional climate simulations place the French domain within a transitional zone between a drying signal of 455 

summerly precipitation in the south and a wetting in the north of Europe (e.g., Aalbers et al., 2018; Ritzhaupt and Maraun, 

2023; Wood and Ludwig, 2020), largely showing no-change or a slight decrease in mean-state extremes, which is consistent 

with the results here. This means that any increase in the upper tails is dependent on the change in variability. 

Scenario uncertainty could also have an influence. However, by using warming levels instead of fixed time periods and 

under the assumption that there is a physical basis for the connection of level of warming and climate system response, the 460 

scenario uncertainty can be reduced at least for the warming levels which are reachable by both lower and higher emission 

scenarios. To fully address the influence of scenario uncertainty on the presented results, a regional SMILE with multiple 

dynamically downscaled emission scenarios from the same global model would be necessary. Unfortunately, such a multi 

scenario regional SMILE ensemble does not exist. 
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Several studies have highlighted that convection permitting climate models (CPM) are better in representing precipitation 465 

extremes compared to regional climate models on non-convection resolving resolutions, especially in summer for convective 

events (e.g., Ban et al., 2014; Kendon et al., 2017; Pichelli et al., 2021). These studies are however often only a single model 

with a single short time slice simulation. Progress is being made on the availability of a multi-model CPM ensemble 

(Coppola et al., 2020; Pichelli et al., 2021). However, these simulations will only cover a small part of the Pan-European 

domain and will rely on short time slice simulations of single climate realizations. These single decadal climate realizations 470 

will however be strongly influenced by natural climate variability (Lehner et al., 2020; Leduc et al., 2019; Deser et al., 2012; 

Hawkins and Sutton, 2009). Poschlod (2021) has shown the suitability of the CRCM5-LE and highlights the added value of 

using a regional SMILE for the analysis of precipitation extremes even on non-convection permitting resolutions. Other 

studies have shown that the CRCM5-LE, even though convection is parameterized, can show a good representation of the 

timing of maximum annual precipitation (Wood and Ludwig, 2020), as well as good agreement for ten-year return levels of 475 

3h-24h annual maxima with observations (Poschlod et al., 2021) over Europe. Concerning overall patterns of precipitation 

change in CPM compared to RCM ensembles, Pichelli et al. (2021) have shown that both ensembles are largely in agreement 

on the patterns of the change (over the Alps and northern Mediterranean) but that differences might occur in the magnitudes. 

This will likely entail that the magnitudes of the probability risk ratios will be different in the CPM models. However, this 

does not necessarily mean a change in the relation between the influences of the mean and variability. The level of temporal 480 

aggregations or the level of extremeness also influence the magnitudes of the PR-values, but do not necessarily entail a 

change in the ratios of contribution. Further, Kendon et al. (2017) have shown that CPM and RCM simulations agree on 

many aspects of the change in future precipitation projections. 

5 Conclusion 

In this study, climate simulations from the regional CRCM5 initial-condition large ensemble are used to analyse the general 485 

drivers for the change in extreme annual and seasonal precipitation event probability. The concept of the probability risk 

ratio is used to partition the change in extreme event occurrence into individual contributions from a change in mean climate 

and a change in variability. The results reveal that for the increase in event probability of annual maxima larger than 2-

sigma, both the change in the mean and variability contribute near equally to the total change. For seasonal extremes in 

winter (DJF) the change in the mean is the major contributor to the total change. In summer the contribution from the change 490 

in variability is larger than the mean, and in some regions, variability is the sole driver of an increase in extreme event 

occurrence. Over France, the Iberian Peninsula, and the Mediterranean the change in variability can lead to an increase in 

extreme event probability despite a strong decline in extreme precipitation events as projected by the mean. The strong 

decrease in the mean would likely entail a decrease in the probability of extreme precipitation events, but due to an increase 

in variability the overall probability can still increase or remain at current levels. The level of extremeness in the event 495 

definition (2-sigma or 3-sigma) does in general not change the overall results of this study. Also, the level of temporal 



22 
 

aggregation is generally not changing the results. However, both do tend to increase the importance of the variability 

slightly. 
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7 Conclusion

The three publications contribute to a better understanding of the global to local precipitation 

response to a changing climate. Multiple global SMILEs and one regional SMILE have been 

used to analyze precipitation in current and future climate conditions regarding changes in 

the mean, the variability, and the upper tail (i.e., extremes) of its distribution. By applying the 

SMILE framework, the intrinsic uncertainty of internal climate variability could implicitly be 

accounted for. In the following the key findings of the three publications with respect to the 

posed research questions and hypothesis are discussed. 

In the first publication (Wood et al. 2021) seven global SMILEs from the multi-model large 

ensemble archive were used to analyze changes in interannual to decadal precipitation 

variability in a warming climate. It is the first paper to evaluate the SMILEs collectively 

regarding their representation of interannual precipitation variability compared to observed 

variability. The evaluation reveals a possible influence of the ensemble size on the 

representation of interannual variability. The main focus of the paper is the future change of 

precipitation variability on interannual to decadal timescales.   

H1: Precipitation variability is non-stationary and increases with rising global mean surface 

temperature on interannual to decadal timescales. 

The findings from Wood et al. (2021) confirm the hypothesis. The results show implicit 

evidence that precipitation variability is non-stationary and changing in response to rising 

global mean surface temperatures. Thereby, the changes on interannual to decadal timescales 

are markedly similar. 

RQ1.1: (a) Are SMILEs capable of capturing observed interannual variability? (b) Does the 

ensemble size influence the representation of variability? 

The evaluation of interannual precipitation variability generally reveals that the seven global 

SMILEs show a better representation of variability over the Northern compared to the 

Southern Hemisphere. Most SMILEs capture interannual variability well over North and 

Central America, Europe, and Western Russia. Over tropical regions model differences are 

apparent, especially over South America where some SMILEs show an overestimation of 

variability, while others show an underestimation. The intercomparison of evaluation results 

revealed a tendency of smaller ensemble sizes to underestimate interannual variability more 

widespread. To test this hypothesis, multiple artificial small (16-member) and medium (30-

member) size ensembles were randomly sampled from the 100-member MPI large ensemble, 

to quantify the influence of the ensemble size on precipitation variability. The results indicate 

a possible ensemble size dependance over northern hemisphere mid- to high-latitudes, with 
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smaller ensembles showing an underestimation of variability. For the High Latitudes a large 

ensemble size of +40 members is recommended. An underestimation of variability over South 

America, East Asia, South-East Asia, and Northern Australia could partly be ensemble size 

dependent. Results over other regions, such as Africa, the Amazon, the Middle East, or India 

are likely not ensemble size dependent, but rather model dependent.  

RQ1.2: Is precipitation variability increasing with an increase in global surface temperature and 

are the changes in variability comparable on interannual to decadal timescales? 

The results from the multi-SMILE analysis show implicit evidence for an increase in 

precipitation variability on interannual to decadal timescales in response to a warming 

climate. The multi-SMILE average shows an increase in interannual variability globally by 4 

% K-1 (percentage change per one degree of global surface temperature increase) and markedly 

similar rates for multiyear (3.7 % K-1) and decadal variability (4 % K-1). Over land, the increase 

in variability is slightly larger (4.5-4.7 % K-1). Locally, increases can exceed the global scaling 

rates which will have considerable relevance for local adaptation plans. The increase in 

precipitation variability is larger than the projected increase in mean-state precipitation (2.5 

% K-1) which implies that the changes are governed by different mechanisms.  

RQ1.3: Are changes in precipitation variability robust across SMILEs and if not where are the 

areas with high structural uncertainty? 

In this publication the robustness of results is determined where five out of six SMILEs agree 

on the sign of change. Areas that do not meet this definition are considered to have high 

structural (i.e., model) uncertainty. Changes in interannual precipitation variability are robust 

in 75 percent of gridcells globally with slightly higher agreement over land than over ocean. 

The model agreement is also high for decadal variability with 66 percent of all gridcells 

showing agreement on the sign. Over the mid- to high latitudes the model agreement is even 

higher showing agreement in 80-100 percent of gridcells. SMILES generally disagree over the 

land area of Central and South America, the Sahel Region, the Middle East, and Australia. As 

well as over the tropical Atlantic Ocean, the Southern Indian Ocean, and parts of the sub-

tropical Pacific. These areas are dominated by large model uncertainty.  

What is the broader impact of these results? 

On the scientific side this work has contributed to the large ensemble community by 

evaluating interannual precipitation variability in a suite of multiple SMILEs from the multi-

model large ensemble archive and adding new insights for the discussion of ‘how large must 

a large ensemble be?’. Further, this work confirms and extends previous studies delivering 

implicit evidence that precipitation variability is increasing with global warming and where 
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this change is robust across models. For society an increase in precipitation variability implies 

an increase in precipitation volatility with an enhanced risk of swings between dry and wet 

conditions. Society is adapted to current levels of variability and any changes will likely pose 

severe challenges for local communities that rely on precipitation as a primary water source. 

In the second publication (Wood and Ludwig 2020), a single regional SMILE, the CRCM5-LE, 

was used to analyze future changes in seasonal and annual maximum precipitation over 

Europe. Alongside the forced changes in the magnitude of maximum precipitation, the change 

in the internal variability was analyzed to determine the time-of-emergence when the forced 

signal robustly emerges from the uncertainty of internal climate variability. 

H2: The magnitude of heavy precipitation is increasing over Europe in a warming climate with 

changes emerging from internal variability. 

The findings from Wood and Ludwig (2020) can partly confirm the hypothesis. On the annual 

scale the hypothesis can be confirmed. Annual maximum precipitation is increasing in 

magnitude throughout Europe with changes emerging from internal variability. However, on 

seasonal scales the forced changes show a strong seasonal contrast between winter 

(widespread increase) and summer (widespread decrease). This means in summer the 

hypothesis needs to be rejected in many parts of Europe. 

RQ2.1: (a) Is seasonal and annual maximum precipitation changing over Europe? (b) Is the 

magnitude of change dependent on the season and temporal aggregation? 

Annual maximum precipitation is increasing throughout Europe showing generally higher 

increases on subdaily (3h) than on daily (1d, 5d) temporal scales. On seasonal scales, there is 

a noticeable difference between changes in summer and all other seasons. There is generally 

a widespread increase in the maximum precipitation in all seasons besides summer. In 

summer, there is an apparent north-south gradient of increases in Northern Europe including 

the British Isles, and continuously decreasing trends moving south. Thereby, the transition 

zone moves further north with increasing temporal aggregation. In subdaily (3h) and daily 

(1d) extremes, Central Europe shows summerly increases, while for multi-day extremes (5d) 

there is no significant change. Over France, South-Eastern Europe, and the Mediterranean 

region there is however a large difference between a decrease in summer and an increase in 

winter (and other seasons).  

RQ2.2: Do the changes in seasonal and annual extremes follow the Clausius-Clapeyron scaling? 

The climate simulations show widespread scaling rates of subdaily and daily extremes above 

the Clausius-Clapeyron (CC) scaling (~7% per 1°C of warming) over mainly Northern, Eastern 

and South-Eastern Europe. Locally scaling rates above CC are also possible in other regions. 
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Scaling rates above CC are however dependent on the season and temporal aggregation. 

Generally, subdaily extremes show larger areas with above CC-scaling and overall scaling 

rates than daily extremes. Northern Europe show above CC-scaling throughout all seasons 

while other regions mainly show above CC-scaling for winter (DJF) and spring (MAM). 

Extremes scaling near and above CC indicate a strong role of the thermodynamic component 

in explaining the increase in magnitude. Areas with low or negative scaling rates indicate that 

changes are partly or mainly driven by other effects than thermodynamics (i.e., dynamic 

changes). Looking at the Bowen Ratio indicates that the local moisture availability might be 

limiting the thermodynamic component in these regions. The Bowen Ratio determines the 

relationship between the sensible and latent heat flux. The change in the relationship 

between the two fluxes indicates a shift towards a stronger sensible heat flux and reduced 

latent heat flux, which means a lack of moisture from the surface and indicates an increase in 

aridity. The preceding season already shows a decrease in mean precipitation which can 

amplify the lack of moisture. Over Central, Northern, and Eastern Europe, as well as the 

British Isles, the Bowen ratio indicates continued sufficient local moisture content in summer 

which correlates with positive scaling rates near or above CC. 

RQ2.3: When can we expect changes in extreme precipitation to robustly emerge from internal 

variability? 

Robust emergence of the forced change from internal variability is determined by the signal-

to-noise ratio exceeding and remaining above one standard-deviation. In this analysis the 

internal variability (i.e., noise) is defined as the standard-deviation of the individual trends 

from all 50 member, and the forced response (i.e., signal) is the mean of all 50 trends. In most 

regions the time-of-emergence is reached before or by the middle of the 21st century. 

Generally, subdaily extremes emerge earlier than daily extremes, as well as extremes in winter 

compared to other seasons. However, the results show that internal variability can remain an 

important source of uncertainty throughout the end of the century. 

What is the broader impact of these results? 

This work has further strengthened the theory that subdaily extremes change at faster rates 

than daily extremes. It further contributes to a growing literature of research indicating local 

and regional scaling rates above Clausius-Clapeyron. The strong increase in subdaily 

precipitation extremes calls for an enhanced adaptation planning in urban areas. Especially 

new infrastructure projects should include climate information into the planning and 

dimensioning. In urban areas or areas with low permeability, a strong increase in the total 

precipitation sums of subdaily extremes can potentially cause local flash flooding. This work 
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further highlights that the uncertainty of internal variability can be large on regional scales 

even far into the future. 

In the publications one and two, it has been established that precipitation variability in 

general as well as the variability of seasonal/annual maximum precipitation, and mean 

maximum precipitation is changing. This means that all these individual changes will likely 

influence the probability of extreme precipitation events occurring and will likely contribute 

to the change thereof. Therefore, the third publication (Wood 2023) explores the individual 

contributions from changes in the mean and variability to changes in the total change in 

extreme precipitation event probability. The analysis is based on climate simulations from the 

same regional SMILE (CRCM5-LE) used in the second publication as well as data from its 

driving global SMILE (CanESM2-LE), which was used in the first publication.  

H3: Changes in the probability of extreme precipitation events are governed by changes in both the 

mean and variability. 

This hypothesis can be confirmed. Changes in the mean and variability collectively contribute 

to a change in the extreme event probability. The individual contributions from either the 

mean or variability can thereby jointly contribute to an amplification of event probability or 

counteract each other.  

RQ3.1: (a) Do current climate projections over Europe already show an increase in the probability 

of extreme precipitation events? (b) Will the risk of extreme precipitation events continue to 

increase in future climates? 

The results reveal that current climate simulations (i.e., climate simulations at +1°C of global 

warming) already show an increase in the total probability risk ratio by 1.36 over all land area 

in Europe compared to pre-industrial climate simulations. A probability risk ratio above one 

indicates an increase in the risk of annual 3-hourly extreme precipitation events occurring or 

in other words that the frequency of such events has increased. Thereby, the increase in the 

total probability risk ratio is influenced by both the change in the mean and variability. In this 

study, extreme events are defined as annual extremes greater than two standard deviations 

(i.e., 2-sigma). An additional warming until +2°C will further increase the total probability risk 

ratio to 1.77. In a +2°C warmer world, roughly 29 percent of all land area in Europe will already 

show a doubling of 2-sigma extreme events. With continued warming the probability risk ratio 

will further increase. By +4°C of warming already 69 percent of land grid cells are likely to 

show at least a doubling of the probability risk ratio with a European average of 2.7 over land. 

In winter the increase is generally larger than on the annual scale. In summer patterns are 

more complex with regions showing increases, decreases, and no-change in extremes. 

However, despite a strong decrease of the mean in some regions, such as France, the Iberian 
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Peninsula, the Mediterranean, or South-East Europe, the total risk ratio continues to increase 

due to changes in variability. 

RQ3.2: (a) What are the individual contributions from changes in the mean and variability to the 

total change in probability risk ratio? (b) Are the individual contributions dependent on the season, 

level of aggregation, or level of extremeness? 

On annual scales the change in the mean and variability both contribute approximately equal 

to an increase in the total risk ratio. In winter the change in the mean dominates the increase 

in extreme events by attributing for roughly three-quarters of the total change. In summer, 

the relation is opposite (i.e., variability > mean) and variability accounts for up-to two-thirds 

of the change. In regions that show a strong decline in the mean, such as France, the Iberian 

Peninsula, the Mediterranean, and South-Eastern Europe, the change in variability can be the 

sole driver of the increase in extreme events. These results have also been tested for different 

temporal aggregation levels (i.e., 24-hours, 72-hours). On the annual scale and in winter the 

level of temporal aggregation has only a minor influence. In summer the level of contribution 

from variability increases with the level of temporal aggregation. This can be explained by the 

stronger and more widespread decrease in mean maximum precipitation in summer at longer 

timescales, while the variability continues to increase in summer. The results have also been 

tested for a different level of extremeness (3-sigma compared to 2-sigma) and it can be stated 

that the overall conclusions of the importance of both the mean and variability for the total 

change in extreme events does not change. In some cases, the change in variability gains in 

importance.   

What is the broader impact of these results? 

The fact that the number of extreme events can continue to increase, due to the presence and 

increase of precipitation variability, while the average extreme declines is an important 

information for the communication of climate risk at regional and local scales. The large 

contribution from the change in the mean extremes in winter means that if we can explain 

the mechanisms for the change in the mean extremes, we can also largely explain the increase 

in extreme events in winter. However, in summer we will need to understand the mechanisms 

in variability to fully explain the change in extremes. Hence, to better understand the change 

in seasonal and annual extreme event frequency the drivers of a change in extreme 

precipitation variability needs to be further explored. 
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8 Discussion and perspectives for future research

A commonly raised statement when precipitation extremes are analyzed in the context of 

GCM and RCM simulations is that convection permitting climate models (CPM) are better at 

representing precipitation extremes compared to non-convection resolving resolutions. This 

has been shown in numerous studies and is certainly true especially for convective events in 

summer (e.g., Pichelli et al. 2021; Ban et al. 2014; Kendon et al. 2017). Despite the increased 

precision in convective events, the currently available CPM simulations have the large 

drawback of mainly consisting of only a single climate realization for a short time slice, and 

mostly only covering a small part of the Pan-European domain. Which is a result of the very 

high computational cost of running and storing CPM simulations. There is progress being 

made on developing a multi-model CPM ensemble (Coppola et al. 2020; Pichelli et al. 2021) 

which however will only be based on decadal time slices as well. These single decadal climate 

realizations will likely be strongly influenced by large uncertainties from internal variability 

(Leduc et al. 2019; Lehner et al. 2020; Hawkins and Sutton 2009; Deser et al. 2012). Further, 

Giorgi (2019) argues that there is increased noise at CPM resolutions which requires an 

ensemble of climate simulations. Hence, regional SMILEs remain a valuable tool to study 

extremes on regional to local scales in the presence of large internal variability. A key question 

that needs to be answered is whether we truly require large ensembles of CPM simulations or 

whether we can infer the information of internal climate variability onto the CPM simulations 

from RCM SMILEs. 

A possible way of bringing together the two existing modeling tools (i.e., large ensembles and 

CPM models) could be the event based dynamical downscaling of extreme events detected 

within the large ensemble by using a CPM model (e.g., Huang et al. 2020). Going even a step 

further, this could potentially be extended by using the ensemble boosting approach (Gessner 

et al. 2021, 2022). In ensemble boosting regular SMILEs are used to detect relevant extreme 

events, for which then additional ensemble runs are re-initialized at certain lead times by 

adding small perturbations at the initialization to create a boosted ensemble (i.e., even larger 

ensemble) of possible realizations of the same extreme event. This approach could potentially 

also be implemented on the CPM scale. Here higher resolution GCM large ensembles or RCM 

large ensembles could be used to detect high impact low likelihood events on the coarser scale 

and only run the CPM model for the selected extreme events from the large ensembles. This 

way we could merge the benefits of both worlds and wouldn’t require long transient CPM 

simulations. 

Lastly, for the impact modeling community it has been challenging to use SMILEs within the 

scope of the established modeling environments, due to the overwhelming amount of data 
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and computational requirements. Dynamic impact modeling requires intense post-processing 

work (i.e., bias correction and spatial downscaling) to deliver a higher level of detail needed 

on the local scale. In the case of physically and spatially explicit impact models this means 

long runtimes with a high computational cost. However, the emerging field of storylines (e.g., 

Sillmann et al. 2021; Shepherd et al. 2018) could open new opportunities for the impact 

modeling community. Thereby, physically consistent analogues of past events (e.g., the 2018 

drought, van der Wiel et al. 2021) can be searched in SMILEs under future climate conditions 

(e.g., in a +2 or +3°C climate) to retrieve a limited set of extreme events which can then be 

processed and evaluated within the impact models. In such a setup, the benefits from the 

SMILE framework (i.e., robust quantification of extreme events) are retained while adding 

increased detail through the impact model and having the possibility to test adaptation 

strategies for such extreme events. 
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9 Scientific outreach

Besides the three papers directly connected to this dissertation I have contributed to multiple 

scientific papers related to the fields of climatology, hydrometeorology, and hydrology: 

M. I. Brunner, D. L. Swain, R. R. Wood, F. Willkofer, J. M. Done, E. Gilleland, R. Ludwig 

(2021): An extremeness threshold determines the regional response of floods to changes in 

rainfall extremes, Communications Earth & Environment 2(1):173, 10.1038/s43247-021-

00248-x 

In this paper, we analyzed how changes in extreme precipitation and changes in flood 

magnitude and frequency are connected. For Bavaria, we show that an increase in 

precipitation extremes is not directly inferring an increase in floods. We found that there 

exists an extremeness threshold for above which increased flood magnitude and frequency is 

driven by the increase in extreme precipitation, and below the threshold the flood response is 

modulated by land surface processes even though extreme precipitation is increasing. This 

partly reconciles the lack of trends in the observations.  

F. Willkofer, R. R. Wood, F. von Trentini, J. Weissmüller, B. Poschlod, R. Ludwig (2020): 

A Holistic Modelling Approach for the Estimation of Return Levels of Peak Flows in Bavaria, 

Water, 12 (9), https://doi.org/10.3390/w12092349 

This paper proposes a new holistic modeling approach for hydrological impact studies. In 

most impact studies the impact model (i.e., hydrological model) is set up for each individual 

catchment with the goal of optimizing the parameter space for each individual location. 

However, this can result in many different parameter sets which might react differently to 

external changes. Hence, with a single global parameter set any changes in response to 

climate change should therefore be more comparable across catchments, since differences 

should only rely on the change in climate and not due to differences in the parameter set.  

B. Poschlod, J. Zscheischler, J. Sillmann, R. R. Wood, R. Ludwig (2020): Climate change 

effects on hydrometeorological compound events over southern Norway, Weather and 

Climate Extremes, Volume 28, 2020, https://doi.org/10.1016/j.wace.2020.100253 

This paper highlights the use of the CRCM5 large ensemble to study compound climate 

events. The large ensemble framework allows for the analysis of rare multivariate compound 

climate extremes, due to its large sample size. Over Norway two compound events that can 

trigger flooding have been analyzed. Rain on snow events as well as heavy precipitation on 

saturated soils. 
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J. Leandro, K.-F. Chen, R. R. Wood, R. Ludwig (2020): A scalable flood-resilience-index 

for measuring climate change adaptation: Munich city, Water Research, 173, 

https://doi.org/10.1016/j.watres.2020.115502 

In this paper, we used the CRCM5 large ensemble precipitation data to derive future changes 

to the intensity-duration frequency (IDF) curves of precipitation over Maxvorstadt (Munich). 

The future IDF curves were used to simulate future extreme precipitation events to study flood 

resilience in the urban area of Maxvorstadt. 

Ø. Hodnebrog, L. Marelle, K. Alterskjær, R. R. Wood, R. Ludwig, E. M. Fischer, T. B. 

Richardson, P. M. Forster, J. Sillmann, G. Myhre (2019): Intensification of summer 

precipitation with shorter timescales in Europe, Environmental Research Letters, 14 (12), 

https://doi.org/10.1088/1748-9326/ab549c 

In this paper, WRF simulations at convection-permitting scales over four different regions in 

Europe have been compared to a set of regional SMILEs alongside their driving SMILEs. 

Summerly extremes have been analyzed regarding the temperature scaling rates. Scaling rates 

close to Clausius-Clapeyron could be detected however no super-CC scaling due to the 

pronounced and robust summer drying over many regions. 

B. Poschlod, Ø. Hodnebrog, R. R. Wood, K. Altersjær, R. Ludwig, G. Myhre, J. Sillmann 

(2018): Comparison and Evaluation of Statistical Rainfall Disaggregation and High-

Resolution Dynamical Downscaling over Complex Terrain, Journal of Hydrometeorology, 

Vol. 19, No. 12, 2018, https://doi.org/10.1175/JHM-D-18-0132.1 

Lastly, in this paper a statistical method for the rainfall disaggregation from daily to hourly 

timescales has been compared to the result of a convection-permitting model run and 

observations. 
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