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Summary 
 

Gradual depletion of the ozone layer and consequently, increased ultraviolet 

(UV) radiation on the Earth’s surface induces DNA-lesions inside the genome, 

thereby causing mutations. Three kinds of photoproducts are mainly formed, 

namely: cyclobutane pyrimidine dimers (CPD), pyrimidine-(6-4)-pyrimidone 

dimer [(6-4)PP] and the Dewar valence isomer of (6-4)PP lesion. The formation of 

these photolesions is a major cause of cell death (aging) and fatal disease like 

skin cancer. 

 

A part of this research was performed to investigate the formation and 

characterization of DNA-lesions under UVC radiation. Small, fluorescent labeled 

oligonucleotide hairpins (DNA, RNA and mixed DNA-RNA) were employed to 

this purpose. The amount of damage was quantified using HPLC. Here, a new 

method was developed, using ion-exchange SAX-column which works at 

pH = 13, to measure the lesion formation in a direct way. In order to know which 

lesions are formed, the irradiated hairpins were enzymatically digested. The 

lesions were separated by HPLC followed by their characterization using MS/MS 

fragmentation analysis.  

 

Investigation was performed to understand the impact of the neighboring 

nucleobases on the photo-reactivity of a dTpdT-dinucleotide. For this, hairpins 

were prepared in various sequential contexts. Analysis of these irradiated 

hairpins revealed the surprising result that the reactivity is strongly reduced 

when a dTpdT dinucleotide is locked between two neighboring 2’-

deoxyguanosines, strongly implying that genomic DNA will be 

inhomogeneously damaged and hence mutated under UVC radiation.  
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In order to account for the effect of oligonucleotide conformations (A versus B) 

on the photolesions formation, DNA, RNA and mixed DNA-RNA hairpins were 

irradiated. The most surprising observation is that the oligonucleotide hairpins, 

possessing more A-like conformations were found to be very much resistant to 

UVC degradation. RNA hairpins containing UpU dinucleotides were found to be 

fully protected from being damaged. A short, dTpdT-containing DNA stretch, 

embedded in an A-like RNA environment, was also found to be highly stable 

under UVC light. 

 

In the second part of this study, investigation was performed to assay the 

activities of CPD-photolyase enzyme isolated from different organisms. A 

synthetic cis-syn thymidine dimer with an open backbone was incorporated into 

DNA (Figure 1). CPD-photolyases were found to recognize and split this CPD-

lesion, via a [2π + 2π] cycloreversion process, into two 2’-deoxythymidine 

monomers.  
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Figure 1: Schematic presentation of a DNA containing the model CPD-lesion with open 

backbone structure.  

 

In order to profile the activities of photolyases and also to study photolyase 

activity inside living cell, a sensitive DNA-probe, known as molecular beacon 
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(Figure 2) was synthesized. The hairpin probe, which features a loop and stem 

structure contains the model CPD-lesion in its loop region. The molecular beacon 

(MB 1) in its closed form, is non-fluorescent due to efficient energy transfer 

(FRET) from the 5’-FAM to 3’-Dabsyl.  
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Figure 2: Depiction of the molecular beacon strategy to quantify DNA-repair activity. 

 

The MB 1 was designed to undergo strand break on reaction with photolyase in 

presence of light, thus separating the FAM and the Dabsyl and causing the 

fluorescence of FAM to be restored (see Figure 2). The activities of the photolyase 

can be studied by monitoring the fluorescence change. Activities of CPD-

photolyase isolated from A. nidulans and A. thaliana were studied using this MB-

probe.  

The sensitivity of this probe was tested with wild–type cell-extract from A. 

thaliana. The fishing-out of photolyase activity from this wild-type extract was 

possible. Effort was made to investigate the repair process within a living cell, 

using laser scanning fluorescence microscopy. The insertion of this artificial, 

chemically modified DNA-substrate in the cell nucleus was achieved. 
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Zusammenfassung 
 

Die graduelle Zerstörung der Ozonschicht und die folglich erhöhte ultraviolette 

(UV) Strahlung auf der Erdoberfläche induzieren DNA-Schäden innerhalb des 

Genoms, die Mutationen verursachen.  

 

Drei Arten von Photoschäden werden hauptsächlich gebildet: Cyclobutan-

Pyrimidin-Dimer (CPD), Pyrimidin-(6-4)-Pyrimidon-Dimer [(6-4)PP] und das 

Dewar-Valenzisomer des (6-4)PP-Schaden. Die Bildung dieser Photoschäden ist 

eine Hauptursache für Zelltod (Alterung) und gefährliche Krankheiten wie 

Hautkrebs.  

 

Ein Teil dieser Forschung wurde durchgeführt, um Bildung und 

Charakterisierung von DNA-Schäden unter UVC-Belichtung zu untersuchen. 

Hierfür wurden kurze, fluoreszenz-markierte Oligonukleotid-Haarnadeln (DNA, 

RNA und gemischte DNA-RNA) eingesetzt. Die Schadensmenge wurde mittels 

HPLC quantifiziert. Hierbei wurde eine neue Methode entwickelt, in der eine 

Ionenaustauscher-SAX-Säule bei pH = 13 verwendet wird und die 

Schadensbildung auf direktem Weg mißt. Diese sensitive analytische Methode 

erlaubt die Trennung von den Schäden enthaltenden Haarnadeln von ihren 

ungeschädigten Gegen stücken. Um zu wissen, welche Schäden gebildet 

wurden, wurden die belichteten Haarnadeln enzymatisch verdaut. Die Schäden 

wurden mittels HPLC getrennt und anschließend mit MS/MS-

Fragmentierungsanalyse charakterisiert.  

 

Der Einfluß der Nachbarbasen auf die Reaktivität eines dTpdT-Dinukleotids 

wurde untersucht. Zu diesem Zweck wurden Hairpins verschiedener Sequenz 



Kundu, L M Zusammenfassung 

 5

hergestellt. Die Analyse belichteter Hairpins lieferte das überraschende Ergebnis, 

daß die Reaktivität eines dTpdT-Dinukleotids, welches zwischen zwei 2´-

Desoxyguanosinen liegt, stark reduziert ist. Dies läßt den Schluß zu, daß 

genomische DNA von UVC-Strahlung in inhomogener Weise geschädigt wird, 

was zu Mutationen führt.  

 

Um den Effekt der Oligonukleotidkonformation (A vs. B) auf die Entstehung von 

Photoschäden aufzuklären, wurden DNA-, RNA- und gemischte DNA-RNA-

Hairpins belichtet. Die überraschendste Beobachtung war, daß Hairpins mit 

überwiegend A-ähnlicher Konformation äußerst resistent gegen UVC-Abbau 

waren. RNA-Hairpins, die ein UpU-Dinukleotid enthielten, waren sogar völlig 

vor Schäden geschützt. Ein kurzer, ein dTpdT enthaltender DNA-Abschnitt, 

welcher in eine A-ähnliche RNA-Konformation eingebettet war, zeigte sich 

ebenfalls als sehr stabil gegenüber UVC-Licht.  

 

Im zweiten Teil dieser Arbeit wurde ein Assay entwickelt, um die 

Enzymaktivität von CPD-Photolyasen aus verschiedenen Organismen zu testen. 

Hierzu wurde ein synthetisches cis,syn-Thymidindimer mit einem offenen 

Rückgrat in DNA eingebaut. Man konnte zeigen, daß die CPD-Photolyase den 

Schaden erkennt und über eine [2π + 2π]–Cycloreversion in die zwei 2´-

Desoxythymidinmonomere spaltet (Abbildung 1). 
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Abbildung 1: Schematische Darstellung von DNA, welche die CPD-Modellverbindung 

mit offenem Rückgrat enthält. 

 

Um die Photolyaseaktivität auch in lebenden Zellen zu verfolgen, wurde eine 

sehr empfindliche DNA-Sonde, der molecular beacon 1 (Abbildung 2), 

synthetisiert. Die Hairpinsonde, bestehend aus einem loop und dem Schaft, 

enthält die CPD-Schadenmodellverbindung im loop. Der  molecular beacon (MB 1) 

enthält ein Fluorophor (FAM) am 5´-Ende und einen Fluoreszenzlöscher 

(Dabsyl) am 3´-Ende. In geschlossener Form ist der molecular beacon nicht 

fluoreszent aufgrund von effizientem Energietransfer (FRET) vom FAM zum 

Dabsyl. 
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Abbildung 2: Darstellung der molecular beacon-Strategie zur Quantifizierung der DNA-

Reparaturaktivität. 
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MB 1 wurde so gestaltet, daß durch die Photolyasereaktion in Anwesenheit von 

Licht ein Strangbruch entsteht, durch den das FAM und das Dabsyl voneinander 

getrennt werden, was zum Wiederauftreten der Fluoreszenz des FAMs führt 

(siehe Abbildung 2). Die Aktivität der Photolyase kann so anhand der Änderung 

der Fluoreszenz verfolgt werden. Unter Verwendung der MB-Sonde konnte die 

Aktivität von Photolyasen aus A. nidulans und A. thaliana untersucht werden.  

Die Empfindlichkeit der Sonde wurde mit einem Wildtyp-Extrakt aus A. thaliana 

getestet. Es war möglich, die Photolyaseaktivität selektiv aus dem Wildtyp-

Extrakt „herauszufischen“. Es wurden Anstrengungen unternommen, um den 

Reparaturprozess in lebenden Zellen unter Verwendung von 

Fluoreszenzmikroskopie zu untersuchen. Das künstliche, chemisch modifizierte 

DNA-Substrat konnte erfolgreich in den Zellkern eingebracht werden.  
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1. Introduction 
 

 

1.1. Consequence of ozone layer destruction  
 

The sun, at the center of our solar system, provides us with the light and energy 

necessary for life. Along with essential rays, sunlight also contains very harmful 

ultraviolet (UV) radiation which ranges from 200-400 nm. Light of this 

wavelength range causes damage to DNA and proteins of living organisms. The 

ozone layer, situated in the stratosphere about 15 to 30 km above the earth’s 

surface, shields the harmful UV radiation from reaching the planet Earth,[1, 2] and 

thereby acts as a ‘space suit’ to protect the living world.[3-5] Over the past decades, 

however, anthropogenous factors have caused a severe reduction of ozone in the 

ozone layer.[6-11] The growing concentration of chlorofluorocarbons (CFC’s) is a 

major cause of ozone layer destruction.[12, 13] The increasing production of 

greenhouse gases[14, 15] (such as gases used for aerosols) also play a role in ozone 

layer depletion. It was observed that chemical reactions responsible for ozone 

depletion are extremely sensitive to temperature.[16] Relatively low temperatures 

favor the reactivities of the singlet oxygen radicals that are involved in the 

process. Hence, even small amounts of stratospheric cooling can greatly increase 

ozone depletion. When sunlight strikes the Earth’s surface, a part of the radiation 

is reflected back towards space as infra-red radiation (heat). Greenhouse gases 

absorb this infra-red radiation and trap the heat in the atmosphere which warms 

the Earth’s atmosphere but cools the stratosphere radiatively. As a result the 

ozone degradation rate increases.[17-19] The rate of destruction of the ozone layer is 

higher in high-latitude areas. In the Antarctic circle, a large ozone hole has been 
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observed from 1989 through 1996.[3, 8, 20] It is the most prominent example of how 

anthropogenic emissions of nitric oxides and other ozone-degrading gases cause 

ozone layer degradation. The depletion of the ozone layer, in turn, leads to an 

increase in UV-B/C radiation, which now reaches the surface of our planet.[21]  

An estimated 10% increase in UV radiation in Western Europe has been 

reported.[22] One of the proposed mechanisms of ozone degradation by CFC’s is 

presented in Figure 1.1. The mechanism is believed to proceed via several radical 

steps involving singlet oxygen.[2, 7, 14, 15, 23]  

 

 

C

Cl
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Cl F
UV-light

C

F

+ Cl

Cl Cl

O3Cl
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ClO

+

(Initiation)

O

O2

from 
photolysis of O2  

Figure 1.1: Mechanism of degradation of ozone by Chlorofluorocarbons. 

 

 

Exposure to UV radiation is the major cause of skin cancer[24-27]. The DNA/RNA 

in sunlight-exposed skin suffers formation of photo dimers between the 

neighboring nucleobases (see section 1.3), thereby causing mutations in the 

genome. One consequence of this is the generation of cancerous cells.[28-33]  
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1.2. Effect of UV exposure 

 

Sunlight consists of three types of UV radiation termed as UVA, UVB and UVC.  

UVA, ranging from 320-400 nm, is responsible for skin aging and cancers such as 

melanoma. Since UVA passes successfully through the ozone layer, it accounts 

for the majority of UV exposure. [34] 

UVB radiation (290-320 nm) causes sunburns, cataracts, immune-system damage 

and skin cancer. The most prevalent form is melanoma. Although most UVB rays 

are absorbed by the ozone layer, a considerable amounts still pass through, to 

cause severe damage. 

UVC contains rays within a range of 230-290 nm and is most fetal to exposed 

skin (malignant melanoma). Most of these rays are however absorbed by the 

ozone layer and normally do not reach the Earth.[35] 

The super-most layer of our skin (epidermis, 100 µm thick) contains three 

different types of cell: flat cells on the surface called squamous cells, round 

shaped cells called basal cells and melanocytes, which give skin it’s color.[35]  

Basal cells carcinoma (500,000 cases/yr, 500 deaths/yr) and squamous cells 

carcinoma (120,000 cases/yr, 1,500 deaths/yr) are the most common types of skin 

cancer whereas malignant melanoma (32,000 new cases/yr, 6,500 deaths/yr) is the 

most dangerous form of skin cancer due to damage caused to melanocytes.[36-38] 

Melanocytes possess a highly UV-absorbing pigment called melanin (responsible 

for color of the skin), and therefore are more susceptible to UV damage. Figure 

1.2 shows the development of different types of skin cancers.[35]  
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a)             b)           c)  

   

Figure 1.2: Depiction of three kinds of skin cancer: a) Basal cell carcinoma, b) Squamous 

cell carcinoma and c) Malignant melanoma 

 

 

1.3. Photoproducts 

 

The heterocyclic bases in DNA/RNA exhibit UV absorption in the range of 260 to 

280 nm. Radiation in this wavelength region raises the bases to their excited 

singlet or triplet state which then undergo various photochemical reactions.[39, 40] 

Generally, the nucleobases react with their immediate neighboring counterparts 

present in the same DNA/RNA strand,[41, 42] although the formation of inter-

strand photoproducts have also been reported.[43-47] Intra-strand dimers are 

favorable over the inter-strand crosslink photoproducts due to the well-

organized B-duplex structure of DNA and partially due to intra-strand stacking 

between the neighboring bases. Pyrimidine nucleobases were found to be the 

most vulnerable sites for such photochemical reactions when exposed to UV-B/C 

light, leading to formation of photolesions.[32, 40, 48, 49] As DNA nucleobases absorb 

light between 260 nm and 280 nm, cells are most vulnerable to UVC (230-290 nm) 

radiation. The commonly occurring photoproducts from UVC radiation are: TT-
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dimers, TC/CT-dimers and CC-dimers.[37, 41, 49-51] The best-known photoproducts 

are the cyclobutane pyrimidine dimers (CPD), the (6-4) pyrimidine-pyrimidone 

dimers [(6-4)PP] and their Dewar valence isomeric lesions.[39, 52] The CPD-lesions 

are formed by [2π + 2π] cycloaddition reaction between the adjacent pyrimidines, 

as shown in Figure 1.3. The (6-4)PP photoproducts are formed due to Paternó-

Büchi reaction which proceeds via an oxetane or azetidine intermediate. These 

intermediate products are unstable above -80 °C and undergo rapid ring opening 

to the (6-4)PP photolesions (Figure 1.3).[37, 53, 54] The structures of well-known 

photoproducts are given in Figure 1.3 to Figure 1.5. The (6-4)PP photolesions 

undergo photo-isomerization to their Dewar valence counterparts when 

irradiated with UVB light (around 320 nm). A less frequently observed 

photolesion, known as spore-photoproduct, has been identified in recent years. 

Spore photoproducts are found as the major photolesions in bacterial spores.[55, 56] 

These lesions are produced by addition of the methyl group of a thymine to the 

C5 position of another neighboring thymidine (Figure 1.6) and are conceived 

only in compact, dry, DNA under UVC light.[57-61]  
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Figure 1.3: Formation of thymine-thymidine (dTpdT) photoproducts by a) [2π + 2π] 

cycloaddition reaction, b) Paternó-Büchi reaction  

 

 



Kundu, L M Introduction 

 14

P
O

O O
O

OO

N

NO

N

N

NH2

O

H H

H H

O O

dCpdC-cis-syn CPD

P
O

O O
O

OO

N

N

NH2

O

N

N

NH2

O

O O

dCpdC

[2π + 2π] 
cycloaddition

dCpdC photoproducts

a)
H2N

P
O

O O
O

OO

N

NO

N

N

NH2

O
H

O O

dCpdC-trans-syn CPD
(2 isomers)

H2N H H

H

P
O

O O
O

OO

HN

NO

NH

N

O

O

H H

H H

O O

dUpdU-cis-syn CPD

O

P
O

O O
O

OO

HN

NO

NH

N

O

OH

O O

dUpdU-trans-syn CPD
(2 isomers)

O H H

H

Fast
deamination

Fast
deamination

 

P
O

O O
O

OO

HN

N

NH

O

NH

N

NH

O

O O

dCpdC

b)

HN

N

HN

O H

H
N

N

O

O
P
O

O

OO

O O

Azetidine

O

H
HN

N

O

O

H NH2

H
N

N

O

O
P
O

O

OO

O O

dUpdC (6-4) 
photoproduct

O

Paternó-Büchi
reaction

Rearrengement, 
deamination

HN

N

O

O

NH2

H
N O

N

O
P
O

O

O
O

O O

dUpdC Dewar 
photoproduct

O

NH

320 nm,
isomerization

 

Figure 1.4: Formation of cytosine-cytidine (dCpdC) photolesions and their deaminated 

products by a) [2π + 2π] cycloaddition reaction, b) Paternó-Büchi reaction 
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Figure 1.5: Photo-induced reaction of dTpdC dinucleotides 
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1.3.1. DNA, mutagenesis and cancer 
 

The biomolecule that masters the function and properties of cell is 

deoxyribonucleic acid, in short, DNA. It stores the genetic information which 

passes on through generations. The building units of DNA are four nucleosides, 

constituted from four heterocyclic nucleobases A, T, G and C.[62] The 

permutations and combinations of these nucleobases manufacture the 46 

chromosomes of a nucleus in a human cell. The novel A:T and G:C base-pairing 

(Watson-Crick) and the double-helix structure make DNA a unique 

biomolecule,[63] capable of replicating and thereby enabling DNA to storing 

informations.[62] A set of three nucleobases, known as a codon, directs amino acid 

synthesis and hence DNA governs the synthesis of a protein molecule to carry 

out the cell’s requirements.[62, 64, 65] Anther important biomolecule, similar to 

DNA, is RNA. RNA plays an important role in translating the genetic 

information, stored in DNA, into protein synthesis. It has been proposed that 

RNA were the very first molecules that started the life on Earth from the 

primordial soup.[66] 

 

A single base mutation within the genome can stop or misdirect protein 

synthesis, causing either cell death or uncontrolled cell division.[67] All living cells 

are constantly undergoing mitotic or miotic divisions, regulated e.g. by two 

kinds of genes: proto-oncogenes and tumor suppressor genes. The former 

encourages cell division whilst tumor suppressor genes (e.g. p53 gene) prevent 

excessive cell division (apoptosis). The product of these two polar functions 

balances the frequency of cell division. When mutated in its mutational hotspot, 

a proto-oncogene becomes an oncogene and functions differently. Likewise, if a 

tumor suppressor gene is damaged or mutated, it might also promote cell 
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division instead of suppressing it. Either of these cases results in excessive cell 

division, known as tumor cell growth. After a first mutation, multiple mutations 

are highly feasible which finally causes formation of cancer cells (Figure 1.7). A 

general overview of how cancer cells are formed is demonstrated in Figure 1.8. 

 

 

Figure 1.7: Propagation of DNA-mutation during cell divisions. The spots of various 

shapes indicate multiple type mutations. 

 

 

Figure 1.8: Depiction of various stages for advancement of invasive tumor from a single-

point genetic mutation.  
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Mutations occur due to damage of the genomic DNA (human genome contains 

about 109 nucleotides[62]). The DNA in cells are constantly exposed to many 

internal and external chemical agents such as highly reactive radicals and other 

reactive oxygen species that are produced during aerobic respiration.[68, 69] 

Exposure to UV light can also affect the DNA in exposed skin.[36] These chemical 

agents or the ultraviolet radiation can cause severe damage to the DNA/RNA 

nucleotides, thereby inducing mutations in the genome. The unstable hydroxyl 

radicals react with guanine or adenine bases in DNA to produce 8-oxo-guanines 

or 8-oxo-adenines which alter the Watson-Crick base-paring properties: hence 

DNA is more vulnerable to mutations.[70] A schematic presentation of possible 

consequences of DNA damage is shown in Figure 1.9. [71, 72] 

 

 

 

Figure 1.9: Demonstration of possible consequences of DNA damage and 

photoproducts. 
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1.3.2. Photolesions and mutagenesis  

 

During cell division, DNA makes a copy of itself for the new cell. This procedure, 

called replication, is carried out by a set of specialized enzymes known as 

polymerases. The single-stranded DNA, after denaturation of the double helix, 

serves as a template for replication. The presence of any damage inside DNA is 

usually detected by the polymerase before replication, and is immediately being 

repaired/replaced with correct nucleotides by repair enzymes. There are, 

however, lesions that are not detected by the polymerase and are therefore 

bypassed during replication. There also exist some polymerases (e.g. pol η, pol ι 

and pol κ ) which can bypass the lesions. During bypass, the lesions, due to 

different base-pairing properties than their undamaged precursors, lead to 

mutations of the genomic DNA and thereby alter the amino acid sequence it 

encodes. DNA photoproducts, when bypassed by the polymerases or 

unsuccessfully repaired, induce various mutations into the genome.[39, 73, 74] This 

section will describe the mechanisms of mutations, induced by different 

photoproducts.  

 

 

Cyclobutane pyrimidine dimer lesions (CPD) induced mutations 

 

The cytosine-derived CPD-lesion, formed upon UVB/C exposure, undergoes CC 

→ TT double point mutations via a fast deamination into UU CPD-lesion, 

described in Figure 1.10. [41, 73] 
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The deamination of the dCpdC CPD-lesion is a fast process, with a half-life of 

only about 5-6 hours, in vivo.[75, 76] The resulting dUpdU dinucleotide serves as a 

DNA template for polymerase and directs incorporation of 2’-deoxyadenosines 

in the counter-strand, which on further replication yields C → T 

transformation.[77] The p53 tumor suppressor gene of most common types of skin 

cancers has been found to possess C → T mutations including CC → TT double 

mutations. [32, 74, 77, 78]  

The dTpdT cyclobutane pyrimidine dimer (CPD) lesions are in general not 

mutagenic. Although dT[c,s]pdT lesion is efficiently bypassed by the 

polymerase, it is not mutagenic due its inability to alter the Watson-Crick base 

pairing properties compared to the undamaged dTpdT dinucleotide.[32, 79, 80] The 

5’- dT of 5’-dT[t,s]pdT-3’ lesion act as a mismatch as the methyl group (syn 

conformation) stays at the interface of Watson-Crick base pairing.[81] 
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Figure 1.10: Mutagenic potential of the cyclobutane-pyrimidine photolesion from 

dCpdC dinucleotide which causes CC → TT double point mutation. The structures 

below demonstrate formation of two possible isomers with similar mutagenic threat, the 

dCpdC-CPD photolesion and the E-imino tautomer of the dCpdC dinucleotide.  
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Mutation of (6-4)PP lesions 

 

The (6-4)PP photoproducts of dTpdT, dTpdC/dCpdT and dCpdC are highly 

mutagenic. The dTpdT-(6-4)PP lesion induces a T → C mutation in the genome. 

Studies showed that the 3’-dT of this lesion preferentially pairs with a 2’-

deoxyguanosine while the 5’-dT remains well-paired with a 2’-deoxyadenosine 

in the opposite strand as shown in Figure 1.11.[82-84]  
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Figure 1.11:  Mechanistic pathway of T → C mutation induced by dTpdT-(6-4)PP 

photolesion due to misparing of 3’-dT of the (6-4)PP lesion. The structures demonstrate 

the course of formation of the (6-4)PP lesion. 
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The (6-4)PP lesions of dCpdC and dTpdC photoproducts probably induce a 

C → T mutation at the cytosine site due to its fast deamination into uracil.  

 

 

Mutagenicity of Dewar valence lesions 

 

Dewar valence photoproduct of a dTpdT-dinucleotide is also highly mutagenic. 

The exact kind of mutation by Dewar lesion is not very well-understood.[85] As 

like (6-4)PP lesion, the 3’-T of the Dewar-dTpdT lesion was also found to induce 

T → C mutation, although occurrence of double point mutation may not be ruled 

out.[52] 

 

 

1.3.3. Structure-activity relationships of the photoproducts  

 

The efficiency with which a photoproduct induces mutation does not only 

depend on its base-pairing property but also on several other important 

factors:[36]  

 

Lesion recognition and repair: the higher the distortion of the B-duplex DNA by a 

photoproduct, the less mutagenic it is. A lesion which induces a large local 

distortion or bend in the double helix will be easily identified by the repair 

system and will be repaired or replaced by the correct nucleotide(s) immediately. 

Among dTpdT derived photoproducts, the cis-syn cyclobutane dimer bends the 

DNA only by 7°[86] and in accord with Kaptein et al. and Taylor et al., does not 

strongly perturb the thermodynamics of the DNA[87]: hence this CPD-lesion is not 
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easily recognized by polymerases and repair enzymes. However, as it does not 

alter the Watson-Crick base-pairing properties compared to its undamaged 

counterpart, this lesion is unlikely to induce a mutation.[81] The trans-syn CPD-

lesion of dTpdT, due to its rigid stereochemical orientation, bends DNA by a 

large amount up to 22°, thereby increasing the thermodynamic energy of the 

duplex significantly. [81, 86, 87] As a result, this lesion possesses only a little 

mutagenic potential, being recognized easily by the repair enzymes. The 

surprising fact that the Dewar valence isomer is more mutagenic than (6-4)PP 

lesion was explained by molecular modeling. Taylor et al. showed that 

photoisomerization of the planar pyrimidone ring of the (6-4)PP product into the 

Dewar structure results in a more compact photoproduct which fits better in B-

DNA. Thus, the Dewar structure perturbs the local DNA structure to a lesser 

extent than the (6-4)PP lesion.[85] 

 

Rate at which photoproducts are formed: the higher the rate of production of a lesion, 

the greater the chance that it will lead to a mutation. It has been found that in 

general cyclobutane dimers are formed at much higher amounts than (6-4)PP or 

Dewar valence photoproducts. Taylor et al. have demonstrated that sunlight-

exposed dTpdT-derived cis-syn, trans-syn and (6-4)PP photolesions are formed at 

a ratio of 1: 0.1: 0.01 in duplex DNA.[36, 88] 

 

Rate of further chemical transformation: among the three dTpdT derived 

photoproducts only the (6-4)PP lesion undergoes photoisomerization into its 

Dewar product, with a half life of about 4 hrs in sunlight.[36] The Dewar product 

is quite stable at neutral pH despite its strained structure. 
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Rate of repair of a photoproduct: the repair of an individual lesion largely depends 

on the ease of recognition by the repair enzymes. It was shown, in vivo, that the 

cis-syn dimers are repaired much slower (half life 24 hrs) than corresponding (6-

4)PP or Dewar photoproducts (half life 3-4 hr).[89] Site-specific incorporations of 

dTpdT photoproducts and their enzymatic repair by E. coli uvr BC excinuclease 

showed relative repair rates of cis-syn, trans-syn, (6-4)PP and Dewar dTpdT 

photoproduct as 1:7:9:9.[90] The rate of incision can be approximately regarded as 

the rate of recognition by the uvrA subunit, which bound with relative affinities 

of 1:10:9:4. [91] 

 

Rate of bypass by polymerase: the ability of a lesion not to be detected and hence 

bypassed by polymerases play a very important role in determining its 

mutagenic potential.[36] As the cis-syn CPD-lesion induces less disorder into the B-

DNA, it has the highest capability to be overlooked and hence bypassed by 

polymerases during replication. The relative bypassing rates of cis-syn, trans-syn, 

(6-4)PP and Dewar photolesion of dTpdT by an exonuclease deficient 

polymerase from T7 bacteriophage, have been found to be 1: 0.3: 0.006: 0.1. 

Noteworthy is the fact that the (6-4)PP lesion is much less bypassed than its 

Dewar isomer, again demonstrating the better compatibility of the latter lesion 

into duplex DNA.[88] 
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1.4. Repair of DNA photoproducts 

 

Our cells are continuously damaged due to many external and internal affairs 

(approximately 104-106 DNA damage events per cell per day). Hence an adult 

human (1012 cells) needs about 1016-1018 DNA damage repair everyday.[92] 

The DNA photoproducts, discussed in section 1.3, formed upon UV-light 

exposure, are highly lethal and carcinogenic unless otherwise repaired from the 

genome. Cells have developed various methodologies to repair or replace such 

harmful lesions. Some of the important and well-studied repair mechanisms are 

described below. 

 

 

Nucleotide Excision Repair (NER) 

 

Almost all higher organisms including humans follow this sophisticated 

mechanism to repair certain DNA lesions, including photoproducts.[93-96] Plants 

and lower organisms also utilize this pathway for lesion repair to a large extent. 

In this process the repair enzyme recognizes the DNA lesion and excises a short 

oligonucleotide segment, approximately twenty nucleotides in length from either 

sides of the lesion, in the single strand. Local DNA synthesis by polymerases, 

using the complementary strand as a template (gap filling) is followed by 

ligation by DNA-ligase (see Figure 1.12a). The following steps are involved. 

 

recognition of a DNA lesion  

separation of the double helix at the DNA lesion site  
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single strand incision at both sides of the lesion 

excision of the lesion-containing single stranded DNA fragment 

DNA repair synthesis to fill the gap and  

ligation of the remaining single stranded nick  

 

In E. coli the damage removal proteins are UvrA, UvrB and UvrC and that in 

yeast are RAD3, RAD10 etc. 

 

 

a) Recognition by
    NER protein
 
 b) Excision

a) Polymerase I

b) Ligase

a

a) Recognition by
    BER Protein
 
b) Base Excision

AP-Endonuclease

a) DNA-Polymerase

b) DNA-Ligase

b  

Figure 1.12: Representation of two important mechanisms to repair DNA-lesions, 

including photolesions, in the genome: a) Nucleotide excision repair and b) Base 

excision repair. 
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Base excision repair (BER) 

 

The damaged DNA bases that are produced by deamination, oxidation and 

alkylation are repaired by this mechanism, as shown in Figure 1.12b. BER 

enzymes are glycosylases which recognize the damaged bases and remove them 

from the DNA by cleaving the N-glycosidic bond between the heterocyclic base 

and the sugar moiety.[72, 97] The abasic site is then removed by other enzymes 

involved in BER and replaced with the correct single nucleotide base by a repair 

polymerase. 

 

 

Repair by photolyase  

 

The majority of photoproducts in plants and lower organisms are repaired by 

photolyases.[98, 99] Section 1.5 will describe the structures and functions of these 

enzymes in details. 

 

 

Homologous-recombinant repair 

 

Recombinant repair is found in bacterial mutants which lack photolyases and 

excision repair proteins. This is a highly complex pathway coordinated by many 

homologous recombinant proteins.[72]  
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Mismatch repair 

 

Mismatched bases arise from replication errors during polymerase catalyzed 

DNA replication.[72] This system recognizes and removes the base-base 

mismatches followed by insertion of the correct nucleotide bases by the 

polymerase.  
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1.5. DNA photolyases 

 

DNA photolyases are monomeric proteins that directly repair the lethal and 

carcinogenic UV-induced DNA lesions in the genome of many organisms such as 

plants, lower organisms and some higher organisms like wood frogs, Australian 

kangaroos etc.[98, 100] Photolyases are among the rare kinds of enzymes that are 

driven by light.[41, 101, 102] Humans most probably do not possess this repair 

enzyme. Since plants are more exposed to sunlight and also absorb sunlight to a 

large extent for photosynthesis, they have a greater need of photolyases. Figure 

1.13 demonstrates the development of a plant’s growth which lacks photolyase 

gene. The growth of the photolyase-deficient, knock-out mutant plant, 

deteriorates very fast under UVB light compared to the wild-type plant which 

retains its photolyase activity. 
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a) Ler wild type    b) Ler uvr2-1 

 

26 d old plant, UV-B: 14 d (3.3 KJm-2d-1)  

Figure 1.13: Essence of photolyase for plant’s survival. Growth of 26 days old A. thaliana 

under UVB light is demonstrated for: a) Ler wild-type plant containing photolyase 

activity and b) Ler uvr2-1 mutant which lack photolyase activity. 

 

 

Depending upon the photolesions they repair, photolyases are divided into two 

categories: CPD-photolyase, that repairs cyclobutane pyrimidine dimers (CPD) 

and (6-4)-photolyase which reverts (6-4)PP lesions. The spore photoproduct is 

repaired by a non-photolyase enzyme known as spore photoproductlyase, which 

does not require light for its action.  

 

1.5.1. The mechanism of action of CPD photolyase  

 

CPD photolyase provides the major defense system for many organisms against 

UV radiation and thus prevents premature cell death, aging and prevalent 

diseases such as skin cancer. These photolyases effect the [2π + 2π] cycloreversion 

of CPD lesions in a light-driven process.[99, 103] All photolyases use the harmless 
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long wavelength radiation (450-550 nm) from sunlight to repair the 

photolesions.[104, 105] All photolyases found to date are flavoproteins, containing an 

essential, non-covalently bound coenzyme FAD in the active site and a non-

covalently bound second cofactor.[99, 106-110] This second coenzyme is, however, 

probably not very essential for function of photolyase. The coenzyme FAD binds 

to the active pocket of the photolyase in a very unusual U-shape conformation 

(Figure 1.15). Depending on the nature of the second cofactor, CPD photolyases 

can be classified into two categories: Type-II photolyase e.g. A. nidulans,[111] which 

uses 8-hydroxy-5-deazaflavin (8-HDF) and Type-I photolyase e.g. E. coli[112, 113] 

that carries methenyltetrahydrofolate (MTHF) as the second cofactor. The 

chemical structures of the cofactors are depicted in Figure 1.14.  
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Figure 1.14: Chemical structures of the three coenzymes for photolyase 

(Glu = Glutamate) 

 

 

Both the crystal structures from Type-I and Type-II photolyases (see Figure 1.15) 

published by Sancar[112] and Eker,[111] respectively, showed that the cofactor FAD is 

bound to the photolyase in an unusual U-shaped conformation. 
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Figure 1.15: Obtained crystal structures of Type-I photolyase from E. coli (left) and Type-

II photolyase isolated from A. nidulans (right) 

 

 

It is believed that photolyases recognize the substrate lesion in a flipped-out 

conformation.[114] In agreement with X-ray crystal structures obtained from other 

repair enzymes in complex with lesion-containing DNA,[115-117] photolyase 

appears to effect a local conformational change to a large extent upon binding to 

a substrate lesion.[114] A DNA bending of about 36° was observed from atomic 

force studies of the interaction between photolyase and substrate DNA.[118, 119] 

Recently, a cocrystal structure of thymidine together with a photolyase from 

T. thermophilus has revealed that the thymidine, in the binding pocket of the 

protein, resides within van der Waals distance from the isoaloxazine ring of 
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FAD.[120] This strong interaction, together with the stacking interaction of the 

thymine with the neighboring Trp353 residue and van der Waals interaction with 

Trp247, Met314 and Gln349 residues, is the driving force for the flip-out 

conformation of the thymidine.  

Photolyases are one of the very rare types of enzymes that require light for 

action.[121] Other light-dependent proteins are cryptochromes, rhodopsins etc. The 

second cofactor of photolyases (MTHF or 8-HDF), known as antenna cofactors, 

absorb long wavelength UV-visible light (450 nm to 550 nm) in order to activate 

the two-electron-reduced FADH- to its first excited singlet state from where an 

electron transfer to the dimer occurs.[98] The recognition of the dimer lesion by the 

photolyase is however, light independent. The intake of an electron by the dimer 

from fully reduced FADH*- governs the spontaneous cycloreversion of the dimer 

lesion into its monomers.[99] 

A schematic diagram of the CPD-repair phenomenon in E. coli is presented in 

Figure 1.16. In general, the partially reduced FADH• in the active site of 

photolyase is activated through direct energy transfer from the second cofactor 

(MTHF, for E. coli photolyase). The excited FADH• is then converted to the fully-

reduced form FADH-, by the amino acid residues of the active site of the enzyme. 

Finally an electron is transferred to the CPD dimer which drives the 

cycloreversion into the monomers.  
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Figure 1.16: Electron transfer process and mechanism of photoinduced repair of cis-syn 

thymine-thymidine cyclobutane-pyrimidine dimer lesion (dTpdT-CPD) catalyzed by 

Photolyase. The cycloreversion is initiated by the fully reduced FADH cofactor which 

becomes activated through energy transfer from the second coenzyme such as MTHF. 

 

 

1.5.2. Electron transfer mechanism between CPD and photolyase 

 

Theoretical investigations on the DNA lesion-photolyase complex and the dimer-

flavin electron transfer pathway have recently revealed that electron transfer to 

the CPD dimer occur from the fully reduced FADH- via the adenine moiety, as 

adenine is presumably in close proximity to the lesion due to the rare U-shaped 

orientation of the flavin in photolyase.[122, 123] Applying the DOCK 4.0 program to 
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a hypothetical DNA-photolyase complex, the study showed that the average 

distance between the dimer and the FADH- can be as low as 3 Å,[123] contradicting 

the other report suggesting a larger distance.[124] This study also showed that 

electron transfer from the FADH- to the dimer is not direct, rather an indirect 

process mediated by the adenine moiety of the FAD. Other studies of the dimer-

photolyase complex using AMBER force field support a flipped-out 

conformation of the dimer lesion during recognition by photolyase and also 

suggest that the event is independent of DNA sequence.[122]  

Experimental studies have also been performed to investigate the electron 

transfer mechanism using synthetic model compounds by Carell et al.[125] A 

systematic study with model compounds 1-4 (Figure 1.17) which contain a 

thymidine dimer-linked flavin moiety, has shown that deprotonation of flavin at 

N1 (pKa = 6.5) is essential for dimer cleavage.[126] No repair was observed at lower 

pH, with N1 of the flavin fully protonated. This investigation supports the 

necessity of fully reduced FADH- during photolyase-derived dimer repair. 

Protonation at N1 would result in the FADH2+-dimer- charge-complex after 

electron transfer from neutral FADH2 (see Figure 1.16), which would possibly 

undergo a fast charge recombination (backward reaction) that always competes 

with the dimer splitting process (ksplit = 2*106 S-1). Deprotonation at N1, on the 

other hand, would contribute a charge-shifted FADH-dimer- complex which 

would reduce the charge recombination process, thus increasing the overall yield 

of dimer repair (Φ = 0.7-0.9). Protonation of the dimer radical anion or hydrogen 

bonding had been suggested to accelerate the dimer cleavage.[125, 127] 
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Figure 1.17: Model compounds 1-4 for the investigation of electron transfer and energy 

transfer phenomena in photolyase-catalyzed CPD repair. Model compounds 1-4 are 

covalently linked flavin-deazaflavin-thymine dimer systems. While the flavin-dimer 

separation is kept constant, the dimer-deazaflavin distance is increased systematically 

from 1 over 2 and 3 to 4 

 

 

1.5.3. Energy transfer between the cofactors 

 

The non-covalently bound second cofactor (8-HDF or MTHF) serves as a photo-

antenna for photolyase. The easily accessible long-wavelength radiation from 

sunlight is absorbed by these light-harvesting cofactors and is funnelled to the 

semi-reduced FADH•.[99] The incapability of FAD to absorb the most available 

long-wavelength light perhaps forced nature to select these auxiliary cofactors. 
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Since the energy transfer phenomenon is important for FAD activation, the 

relative separation between the cofactors should also play a role in this process, 

as, according to Förster theory, the rate of energy transfer (KEET) is proportional to 

r-6, where ‘r’ is the distance between the dipoles. The theory predicts that a short 

separation distance between the two cofactors will enhance energy transfer and 

hence dimer repair process. Model compounds 1-4 (Figure 1.17) with 

systematically varied FAD-deazaflavin distance, were carefully studied by Epple 

et al.[128, 129] , to address the energy transfer event. It was first being observed by 

Deisenhofer et al. that the large separation of the two cofactors in photolyase 

structure is difficult to rationalize considering Förster theory.[112, 121] The model 

compounds 1-4 constituted of a flavin, a deazaflavin which is the second cofactor 

in Type-II photolyase and a photolyase substrate, the thymidine dimer (CPD). 

Keeping the flavin-dimer distance constant, the separation between flavin and 

deazaflavin was gradually increased from 1 to 4. The investigation showed that a 

selective irradiation of deazaflavin by monochromatic light resulted in the most 

efficient dimer cleavage for the compound 4, which has the largest cofactor-

cofactor separation. The efficiency of dimer repair gradually decreases through 3 

to 1, although a systematic increase in fluorescence energy transfer rate was 

exhibited sequentially in that direction. This system is a reasonable mimic to 

photolyase structure and also supports the necessity for large cofactor separation 

in the protein, as observed by Deisenhofer[112]. One explanation of this apparent 

anomaly is given by a possible ‘short circuit’ reaction which interferes with the 

dimer repair process. Figure 1.18 represents a schematic diagram of the possible 

electron transfer pathways from the activated and fully reduced FADH*-. 
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Figure 1.18: Mechanism of energy transfer from deazaflavin (F0) to flavin coenzyme in A. 

nidulans photolyase. The photo-excited and fully reduced flavin effects an electron 

transfer either to the CPD-dimer lesion or back to the deazaflavin. 

 

 

As demonstrated in Figure 1.18, the deazaflavin (F0), due to its higher reduction 

potential than that of the CPD-dimer, is believed to serve as an alternative 

electron acceptor. The electron trap by the deazaflavin in this scenario competes 

with the electron transfer needed for dimer repair. The efficiency of this electron 

sink is clearly expected to increase with increasing proximity of the two 

cofactors.  
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1.5.4. The photoactivation of FAD 

 

Flavin in the inactive form of photolyase exists in a semi reduced form as 

FADH•. Activation to the excited form FADH*• usually occurs due to excitation 

energy transfer (EET) from the second cofactor in presence of light (450-550 nm). 

The fully reduced, catalytic form FADH*- is obtained through one electron 

reduction with the participation of conserved amino acid residues in the active 

site of the protein. A study of the model compounds 1-4 showed that selective 

irradiation of deazaflavin strongly accelerates the reduction of the flavin 

chromophore in the presence of photoreductants such as EDTA. The photolytic 

reduction process involving flavin in both types of photolyases has been 

carefully investigated using time resolved absorption and electron paramagnetic 

resonance (EPR) spectroscopy.[130-132] For A. nidulans photolyase a flash absorption 

spectroscopic study in the absence of deazaflavin has indicated that selective 

photoactivation of FADH• gives rise to the fully reduced form FADH- in less 

than 500 ns, with a 7 ns laser flash.[130] The reduction occurs by extraction of an 

electron from the neighboring tryptophan (TrpH) residue which is present in the 

active centre of photolyase (Figure 1.19a). The resulting Trp• radical 

subsequently abstracts an electron from a tyrosine (TyrOH) residue with a half 

life of t1/2 = 50 µs, leaving behind a Tyr• radical which finally gets deactivated by 

an external electron donor, or reoxidizes the reduced flavin back to its inactive 

form, FADH•. The formation of the tyrosinyl radical was evident by time-

resolved electron paramagnetic resonance spectroscopy.[131] 
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Figure 1.19: Radical transfer cascade for the photo-reduction of the FADH cofactor in 

Type-II photolyase (A. nidulans) and Type-I photolyase (E. coli). a) In Type-II photolyase, 

an electron transfer from a surface tyrosine (Tyr) residue via a tryptophan (Trp) residue 

causes reduction of the FADH radical to the two electron reduced form. b) In Type-I 

photolyase, the electron is donated by Trp359 and Trp382 residues to the semi-reduced 

FADH radical. 

 

 

The photoactivation process of Type-I photolyase from E. coli was also 

investigated using short time spectroscopy.[132-134] The data suggests involvement 

of a series of tryptophan residues in a multi-step radical transfer process (see 

Figure 1.19b). As with Type-II photolyase, the first electron abstraction by the 

excited FADH• occurs from a tryptophan (Trp382) residue, resulting tryptophenyl 
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radical cation (TrpH•+). But this process is much faster (30 ps) than that of A. 

nidulans photolyase (500 ns). The radical transfer process propagates through 

two more steps involving Trp359 and Trp306, each of which takes less than 10 ns to 

complete. The final deprotonation of the radical Trp306H•+ to Trp306• which takes 

approximately 300 ns, seems to trap the radical at Trp306•, positioned close to the 

surface of the protein. Deactivation of Trp306• takes place via electron abstraction 

from an exogeneous electron source (e.g. reducing agent). The involvement and 

importance of Trp306 was proved by a site-specific mutagenic study, which 

showed that replacement of Trp306 by an alanine (Ala) residue prevents E. coli 

photolyase from being photoactivated. The tryptophan residues were 

understood to be properly aligned and the distances of each radical transfer step 

were calculated to be 4.2 Å, 5.2 Å and 3.9 Å respectively.[135]  

 

 

1.5.5. Photolyase-substrate co-crystal study 

 

Although an extensive amount of theoretical work has been performed,[122, 123] the 

lack of sufficient substrate prevented formation of a photolyase-substrate 

complex for structural studies. A photolyase-CPD complex structure has been 

elucidated recently by Mees et al.[136] The co-crystal structure of A. nidulans 

photolyase in complex with a double-stranded DNA containing a synthetic 

thymidine dimer (CPD) with a formacetyl-bridge, in 1.8 Å resolution, has 

revealed plenty of information about the photolyase-substrate binding event 

(Figure 1.20). The CPD-lesion at the binding site has been found to be completely 

flipped out of the helical plane by about 50°, significantly higher than the 

theoretically predicted value (36°).[137, 138]  
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A       B 

 

Figure 1.20: Co-crystal structure of a photolyase (A. nidulans) complexed with a DNA 

substrate in 1.8 Å resolution. The substrate DNA bears a synthetic, formacetyl-bridged 

cis-syn cyclobutane-thymine-thymidine dimer (CPD) which is recognized by the 

photolyase. A) The CPD lesion just after the cleavage in the active pocket of the 

photolyase. The thymidine dimer is highlighted in blue, the cofactors in yellow and the 

adenine moiety of the FAD in purple. B) The overall bend of the modeled DNA B-

duplex with an internal CPD-lesion increased from about 22° (gray) to 50° on binding to 

the DNA polymerase (yellow) 

 

1.5.6. (6-4) photolyases  

 

The highly mutagenic (6-4)PP photoproducts and their Dewar isomeric lesions, 

in some organisms, are repaired by (6-4)-photolyases.[139] Although a crystal 

structure of this protein has not yet been published, the strong sequence 

homology with CPD-photolyases suggests a similar catalytic pathway for both 

types of enzymes. The (6-4)-photolyase is known to possess a FAD cofactor as 
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with CPD-photolyase and possibly also a folate, as a second cofactor. Recently an 

EPR study of isolated (6-4)-photolyase from X. laevis, confirmed the involvement 

of a tyrosyl radical during the photoreactivation of the reduced FADH-.[140] A 

suggested repair mechanism of this enzyme is to proceed via conversion back to 

an oxetane intermediate, as depicted is Figure 1.21.[141-143] 
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Figure 1.21: Proposed mechanism for the repair of (6-4)PP lesions by the (6-4) 

photolyase. The repair is believed to proceed via an oxetane intermediate. 
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1.6. Molecular Beacons 

 

Detection of genetic and cellular disorders is a very important factor for 

successful disease diagnosis. Understanding the functions and malfunctions of 

genes and proteins at a molecular level occupies the majority of today’s research 

and is a fast growing field. An extensive number of sophisticated techniques 

such as selective fluorescence labeling and DNA microchip arrays[144-147] have 

already been developed for biomolecular recognition but there is still a strong 

demand for efficient techniques with high sensitivity and specificity.  

Molecular beacons (MB) are excellent probes for target recognition and disease 

diagnosis, recently developed by F. R. Kramer and S. Tyagi in 1996.[148-150] This 

technique has gained enormous popularity in the last 3-4 years and has a wide 

range of applications e.g. for the detection of single base mismatch, [151-153] real 

time monitoring of PCR (RT-PCR),[150] detection of DNA-RNA hybrid probes in 

real time,[154] detection of pathogens[155] and even as biosensors.[156]  

 

MB’s are single stranded, hairpin shaped oligonucleotides with a stem-loop 

structure.[149, 157] The loop of the hairpin is usually designed to serve as a probe 

region. The self-complementary stem contains a fluorophore at the 5’-end and a 

non-fluorescence quencher at the 3’-end as depicted in Figure 1.22. This 

fluorophore-quencher system serves as a molecular photo-switch.[158, 159] In the 

absence of a target, the closed hairpin form turns the fluorescence ‘off’, whereas, 

recognition of the target will immediately switch the fluorescence ‘on’. MB’s are 

very sensitive and are extraordinarily target-specific. MB’s are now used as 

probes for DNA and RNA detection in living cells and protein studies.[160, 161] 
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1.6.1. Principles of MBs 

 

MB’s function as molecular switches, exploring the phenomenon of fluorescence 

resonance energy transfer (FRET).[162] The extraordinary target-specificity of the 

MB’s comes from their dual stability in both closed form (hairpin) and 

hybridized form (open) with the complementary target.[163] The loop sequence of 

the MB is the functional part which is specific to the target, whereas the stem part 

remains un-engaged in molecular recognition. The self-complementary stem 

however, holds the closed structure of the MB and is responsible for signal 

transduction upon loop-target interaction. A schematic presentation of how a MB 

functions, is shown in Figure 1.22. In the hairpin conformation, the fluorophore 

is in close proximity to the quencher and efficient energy transfer occurs from the 

fluorophore to the quencher residue. This quencher molecule absorbs the 

fluorescence energy of the fluorophore, resulting in a loss of fluorescence signal, 

because the quencher moiety by itself is non-fluorescent.  
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Figure 1.22: Basic principle of the molecular beacon (MB) as a sensitive probe. The figure 

describes opening of the MB structure upon hybridizing to a target DNA or on binding 

to a target protein. Opening of the hairpin results in loss of energy transfer from the 

fluorophore (FAM) to the quencher, thereby restoring the fluorescence of the FAM. 

 

 

When the loop of the MB binds to a complementary sequence[164-166] or a protein 

target,[167, 168] the stem of the MB melts due to better loop-target interaction and 

consequently the fluorophore and the quencher falls apart (Figure 1.22), 

preventing energy transfer and thus restoring fluorescence. In the closed MB 

form, energy transfer can occur either via FRET,[162] which requires spectral 

overlap between the fluorophore and the quencher, or via direct energy 

transfer.[169, 170] Direct energy transfer occurs due to the formation of a transient 

charge-transfer complex between the fluorophore and the nearby quencher. It 

requires physical contacts of the two participating moieties. The quenching 
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results in a reduction of the emission of the fluorophore. A schematic 

presentation (Jablonski diagram) of FRET between a fluorophore and a dark-

quencher is given in Figure 1.23. 
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Figure 1.23: Jablonski diagram for FRET between a fluorophore and a non-fluorescent 

quencher. The black arrow represents excitation of the fluorophore to higher electronic 

state (S1), squiggly line represents non-radiative relaxation to the ground state (S0) and 

the gray arrow comprises for the radiative fluorescence emission.  

 

 

FRET in a MB occurs within a spatial distance of 20-100 Å between the donor and 

the acceptor. The efficiency of FRET falls rapidly with increasing separation (r) of 

the two moieties.[171] Energy transfer efficiency (%E) is given by the following 

equation: 

 

%E =
R0

6

R0
6 + r6
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where R0 is the average donor-acceptor distance when the energy transfer 

reaches 50% and is calculated from the equation: 

 

 

R0 =
9.78 . 103

n-4. fd. k2. J
6

 

 

 

where n is the refractive index of the solution, fd is the quantum yield of the 

donor (fluorophore), J is the overlap integral, which is the area of overlap 

between the emission spectrum of the fluorophore and the absorption spectrum 

of the quencher, k is called orientation factor of the two dipoles.  

 

 

1.6.2. Designing molecular beacons 

 

When designing a molecular beacon, an important factor to be considered is how 

to acquire the best sensitivity of the probe (high signal to background ratio). The 

length of the stem structure should be designed to be sufficiently strong to hold 

the duplex configuration. But at the same time, it has to be weak enough to be 

denatured upon binding to the target. A typical MB contains a loop sequence 

which is 15-40 nucleotides long, whereas the stem usually contains 5-7 

nucleobases.[149]  
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The design of a MB probe, specific to a target, is based on a number of 

parameters. The most important of which is the melting point study. Figure 1.24 

shows a fluorescence-based melting point profile.[172] The bottom-curve 

demonstrates the fluorescence change of a MB with rising temperature. At low 

temperature, the fluorophore and the quencher are in close contact, turning the 

fluorescence ‘off’, whereas at higher temperatures the stem of the MB denatures, 

resulting in a coiled structure and the turning ‘on’ of the fluorescence. 

 

 

 

Figure 1.24: Designing molecular beacon on the basis of melting temperature study. The 

bottom-curve represents the melting curve of the MB on gradual heating, while the 

upper-curve shows the temperature dependent interaction of the MB with its 

complementary target DNA. While the MB-target hybrid predominates at low 

temperature, the relatively higher temperature favors the hairpin form to persist.[172]  

 

 

The upper-curve in Figure 1.24 shows a MB probe-target hybridization profile. 

The loop of the MB binds strongly with the target DNA below the melting point 

of the MB. However, as the temperature is increased the probe-target hybrid 
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gradually falls apart, causing the MB to fold back into the U-shape. In Figure 1.24 

this temperature (55 °C) is the critical point. The MB assay in this case, should be 

performed below 55 °C to attain highest sensitivity.  

Melting temperature study is very important for single mismatch detection using 

this MB technique. For this study the probe temperature is chosen as just slightly 

lower than the critical temperature. The target, with a single base mismatch, will 

not bind to the probe at this critical temperature because the probe-mismatch 

melting temperature will be slightly lower than the original probe-target hybrid. 

 

 

1.6.3. Kinetics and thermodynamics of MBs 

 

As described in section 1.6.1, a MB exists either in a folded hairpin (closed) or in 

a coiled (open) conformation.[163] The equilibrium of this two state transition 

process is given by the following expression.[173]  

 

 

Kclosed =
kclosed open form

kopen closed form
 

 

∆ Gclosed  = - RT ln (Kclosed)
 

 

 

The stability of the closed state is determined by its lower enthalpy (high 

negative value), whereas the open conformation is sustained due to its higher 
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entropy (high positive value) which comes from the high degrees of freedom of 

the coiled form. It has been shown that the rate of opening of the hairpin form is 

governed by the supplied thermal energy or the amount of enthalpy gained 

upon probe-target hybrid formation. The rate of the opening strictly follows 

Arrhenius kinetics. The opening process of the hairpin is independent of the loop 

sequence and loop size. The rate of closing of the coiled form into the hairpin 

structure, however, deviates strongly from Arrhenius kinetics and is determined 

by both the entropy of the open form as well as the enthalpy of the closed state of 

the hairpin.[174] Therefore the opening process of the MB is more regular than the 

closing phenomenon. The closing process also depends significantly on loop size 

and sequence.[174] Hence it is always preferable to study MB-target kinetics on the 

basis of the opening of the MB rather than the closing process.  

 

 

1.6.4. Surface immobilized MBs 

 

This technique is used widely for molecular recognition and disease diagnosis. 

The MB, specific to a target, is first immobilized onto a solid support.[164] The 

well-known biotin-avidin binding system is exploited for the immobilization 

process. The MB is synthesized with a biotin-linker which is able to recognize 

and bind to the avidin, immobilized on the surface of the solid support (Figure 

1.25).  
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Figure 1.25: Surface immobilized molecular beacon technique. The non-fluorescent MB 

is immobilized on solid support (black box) via biotin-avidin interaction. Opening of the 

hairpin loop upon binding to the complementary target (gray bar), causes 5’-FAM which 

was non-fluorescent in MB to fluoresces.  

 

 

It has been found that choosing the correct position of biotin in the MB stem is 

important. The biotin is usually positioned close to the quencher to avoid 

possible involvement in any energy transfer event with the fluorophore. The 

linker should be long enough to avoid any steric or chemical interactions 

between the biotin and the quencher molecule.[149]  

 

There are also other important MB-based surface techniques such as optical 

biosensors.[144, 156, 175] The surface core of an optical fiber is exposed by a chemical 

etching process. An evanescent, generated out of the surface is used to excite the 

fluorophore of the MB which is immobilized onto the surface. This technique has 

been used to detect non-labeled DNA targets in real time with high sensitivity. 

The surface immobilized biotinylated MB’s are also effective tools as multiple 

analyte biosensors. 
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1.6.5. Applications of MBs 

 

Real time enzyme assay: molecular beacons are one of the most efficient probes 

to assay DNA-binding or DNA-cleaving enzyme activities.[157, 167, 176, 177] Several 

enzymatic kinetics have been investigated using MB’s as a probe. The protein 

functions can be studied efficiently in real time only by monitoring the 

fluorescence fluctuations.  

The activities of DNA-cleaving enzymes[178] and DNA-cleaving small 

molecules[179] have also been investigated with high accuracy and sensitivity, 

using MB’s as probes. 

 

Single base mismatch detection: detection of a single base mismatch is of 

paramount importance in order to identify point mutations. MB’s have proved to 

be excellent probes for detection of target DNA sequences which differ by a 

single nucleobases.[153, 155, 166] Because of their high target sensitivity, MB’s are 

currently used for single nucleotide polymorphism (SNP)[180] and mutation 

detection assays.[181] As described earlier, the designing of the probe MB is very 

important for this type of study.  

 

Real-time monitoring of PCR: the most important and unique application of 

MB’s is their potential to be used as real time probes for monitoring DNA/RNA 

amplification during PCR.[151, 182-184] An excess of the MB probe is used for the 

experiment in a sealed PCR tube. The loop sequence of the MB-probe is 

complementary to a segment of the DNA/RNA sample of interest (amplicon). 

The fluorescence of the MB is measured at the annealing step of each cycle.[149, 185] 
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The MB-amplicon hybrid is formed at the annealing temperature, resulting in an 

increase of MB-fluorescence. The MB-amplicon hybrid again denatures under 

PCR temperature, thus preventing the MB from interfering in the amplification 

process. The progress of the PCR reaction therefore, can be studied directly by 

monitoring the fluorescence increase of the MB. Recently, methods have been 

developed to monitor multiple PCR reactions simultaneously using an array of 

MB’s. This multiplex assay is being widely used for detection of pathogens.[186]  

 

RNA detection in living cell: MB’s are used to track the pathways of mRNAs in 

living cells.[160, 187, 188] Cells transport mRNA from the transcription sites in the 

nucleus to the cytoplasm where they are translated into proteins. Nuclease 

resistant MB’s which contain a loop sequence complementary to the mRNA of 

interest, have been explored to track the migration of the mRNA. The movement 

of the mRNA in vivo could be visualized by following the fluorescence of the MB, 

which is turned ‘on’ upon binding to the target mRNA.[160] The change of 

transport pathway of the mRNA by employing genetic manipulation or chemical 

agents, has been found to alter the fluorescence distribution. This shows the 

sensitivity of the MB-probe to track mRNA transport process.  
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1.7. Mass spectrometry for biomolecular analysis 

 

Mass spectrometry is a sensitive technique to detect the precise mass (and 

therefore its identity) of chemical compounds and biomolecules such as DNA, 

RNA and proteins. Recently, advanced mass spectrometric methods allowed 

studying proteomics and identification of genetic mutations, at very low 

concentrations.  

 

In the present investigation to detect and characterize UV-induced DNA 

damages, an extensive amount of mass spectrometric analysis has been 

performed. Two kinds of mass ionizations were mainly used for the analysis: 

matrix assisted laser desorption ionization (MALDI-TOF) and electrospray 

ionization in combination with ion fragmentation (ESI-MS/MS). 

 

Figure 1.26a shows a general skeleton of a modern mass spectrometer which 

primarily contains three components: an ion source, an ion analyzer and a 

detector. Mass spectrometers vary widely depending upon the principles of the 

analyzer and the detector.  
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Figure 1.26: a) General principle of a mass spectrometer, b) depiction of a quadrupole in 

a Qstar i pulser MS/MS analyzer.  

 

 

MALDI-TOF separates the ions based on their time of flight from the target 

containing the sample. The higher masses reach the detector later than the lower 

masses. In electro-spray ionization (ESI), the analyte, dissolved in a solvent, is 

allowed to pass through a channel where a high potential difference is applied 

and molecules become positively charged. A continuous flow of dry nitrogen 

evaporates the solvent to form small droplets of ions which subsequently 

undergo Coulomb explosion due to high charge density. The ions are then 

separated based on their relative velocities.  

A mass fragmentation (MS/MS) technique is often employed to characterize the 

separated ions. For the work described here, a highly sensitive Qstar i pulser, 

quadrupole Time-of-Flight (TOF) mass spectrometer (Figure 1.27) was used 

which is capable of specific ion selection followed by its fragmentation and 

analysis using quadrupoles (see Figure 1.28).  

 

 



Kundu, L M Introduction 

 58

      

Figure 1.27: Depiction of components of a mass spectrometer: a) Qstar pulser 

quadrupole mass analyzer, b) ion-spray source  

 

The opposite rods of each quadrupole (Figure 1.26b) have same d.c. voltage. An 

a.c. voltage is overlaid in the second quadrupole (Q1) during the analysis. 

Depending on the frequency of the a.c. voltage, the second quadrupole can select 

only ions with a specific mass value (m/z) which migrates on a stable flight path. 

The mass selection, fragmentation and the detection of the ions by the 

quadrupoles is depicted in Figure 1.28.  

 

 

Q1     Q2   Q3 

Ion Selection  Ion fragmentation  Fragmentation analysis 

Figure 1.28: A schematic presentation of stepwise MS/MS analysis by the quadrupoles.  
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In the first quadrupole (Q0, not shown in Figure 1.28) collision occurs between 

the supplied gas and the analyte, due to a high applied potential. The ion 

selected by Q1 undergoes fragmentation in Q2, due to collision with the supplied 

nitrogen gas molecules. The fragmented ions are finally analyzed by the Q3 

which is essentially a mass detector. 
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2. Aims of Research 
 

The goal of this work was to investigate the formation and repair of UV-induced 

DNA-lesions. Understanding the effect of different chemical environments and 

conformations on DNA/RNA-damage formation event was a major focus of this 

research. Emphasis was made to establish efficient analytical methodologies for 

the separation, direct quantification and characterization of the photoproducts in 

DNA/RNA.  In order to achieve this, short, hairpin-shaped oligonucleotides were 

chosen as probes. In order to attain highest sensitivity and accuracy of lesion 

quantification, these hairpins were labeled with a fluorescent molecule. DNA 

and RNA hairpins were chosen for comparative conformation-dependent 

studies.  

 

Another major concern of this research was to investigate the mechanism of 

action of CPD-photolyase enzyme in repairing cyclobutane-thymidine dimers, 

and to develop methods that would yield information about the repair process in 

living cells. For this, efficient DNA-probes containing a synthetic CPD-lesion 

were designed, with the light-cycler molecular beacons (MB) strategy believed to 

be of use in these investigations. (Figure 2.1) This recently developed FRET-

based technique is an efficient probe to study cellular processes. The CPD-lesion 

containing MB-probe has been strategically designed to induce DNA strand 

break after photolyase-catalyzed repair of the CPD-lesion. 
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G----C
C----G
A----T
G----C
C----G 3'5'

T=T

T T

F Q  
Figure 2.1: Molecular beacon (MB) substrate for photolyase-catalyzed CPD-lesion repair. 
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3. UV Induced Damage Formation Event 
 

The UV-stimulated photoproduct formation and genomic damage is an 

important area of research to understand genomic mutation, aging and skin 

cancer. In the present context, the formation of various photoproducts has been 

studied under UVC radiation. Investigations of the UV-induced photodamage 

event have previously been performed but with cellular and/or chromosomal 

DNA irradiation,[189-191] where the selective study of a particular dinucleotide in a 

particular region (and hence its environmental effect) was difficult to commence. 

In this investigation, a series of small DNA, RNA and/or DNA-RNA mixed 

hairpins were prepared. All the hairpins were labeled with 6-FAM fluorescence 

moiety at the 5’-end of the hairpins. These strategically employed fluorescence-

labeled hairpin oligos have following advantages:  

 

Hairpins possess a loop and a stem structure, the latter being self-

complementary. The loop region of a hairpin acts as a single-stranded DNA 

whereas the stem part resembles a double-stranded oligonucleotide.[48] Hence a 

comparative study of UVC induction on single and double stranded DNA or 

RNA could be performed. Hairpins are also rather small molecules which 

enabled us to determine the amount of photoproducts directly using HPLC. 

 

The hairpin, although a short oligonucleotide, shows a high melting temperature 

and the melting is concentration independent.[192-194] Hence a slight concentration 

difference among the probe solutions would not have much impact on damage 

formation event, provided the irradiation source is sufficiently powerful.  
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The hairpin, being self-complementary and having a high melting point, exists as 

a single entity in probe solution, without any concentration fluctuation. In 

contrast, a normal double-stranded oligonucleotide always imposes a 

concentration fluctuation of the two single-stranded entities, due to manual 

pipeting error or unsuccessful hybridization or both. Hence for a double-

stranded DNA probe, at least three entities will co-exist in probe solution and an 

accurate damage analysis after UV irradiation could not be performed. The rate 

of photochemical reactions and the characteristics of the formed photoproducts 

from the free, unhybridized single stranded oligos might be very different 

compared to the hybridized double stranded probes, which is an important 

factor to be considered for such lesion analyses. 

 

Advantages of 5’-FAM labeling are: 

 

Labeling with a fluorescent molecule allows detection at a very low 

concentration level using fluorescence detector. Due to the concentration 

independent melting behavior of the hairpin, irradiation experiments performed 

at very low DNA concentration still generated a sufficient amount of UV-

damaged lesions for direct analysis. 

 

A dinucleotide after lesion formation loses its aromaticity and hence does not 

absorb as efficiently as individual bases at 260 or 280 nm.[40] Hence accurate 

quantification of the photoproducts can not be performed on the basis of 260 or 

280 nm UV-absorption. However, a precise measurement of photolesions can be 

achieved with a fluorescence detector which does not account for UV absorption. 

Moreover this fluorescent molecule does not interfere with the photoproduct 

formation.  
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Irradiation of small, fluorescence-labeled hairpins therefore, allowed direct 

measurements of the damage formation process. This is important because 

previously the lesions were quantified in an indirect way, back transferring the 

photoproducts into the monomers using enzymes like T4-endo V[195] or DNA-

photolyases.[98, 112] However, the activities of these enzymes by themselves might 

be modulated by the sequence and structural context of the lesion. 

 

All the DNA hairpins were constructed with 14 to 16 nucleotides as shown in 

Figure 3.1 (section 3.2) The hairpins contain a stem region of 5 to 6 nucleobase 

pairs, which is needed to form the necessary duplex structure. The loop is 

constructed either from four 2’-deoxycytidines, four 2’-deoxythymidines, four 2’-

deoxyadenosines or from a C12 spacer. The 5’-end of the hairpins were labeled 

with 6-FAM. In order to avoid any possibility that this fluorescent moiety 

interferes with the lesion formation process, hairpin 5 and another hairpin, 

having a sequence as 5 but without the 5’-end-labeled FAM, were employed. 

Both solutions of equal concentrations were irradiated for 6 min under a 254 nm 

hand lamp (energy fluence rate 7 mW/cm2). The HPLC measurements of the 

probes showed exactly the same amount of damage (50%). This observation 

therefore showed that the FAM at the 5’-end, remains unreacted during UVC 

irradiation. However, it allowed detection of oligonucleotides even in very small 

quantities.  

 

All the hairpins depicted in Figure 3.1 (section 3.2) were HPLC purified. The 

measured concentration of the stock solutions, observed mass (m/z) values, and 

their melting point are listed in Table 3.1.  
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Table 3.1: Tabulation of the observed molecular weights of hairpins 1-7, concentration of 

the stock solutions and their measured melting points (Tm)  

 

Hairpin (5’ to 3’) Observed m/z Melting 

point (Tm) 

1. FAM-GCGCG (CH2)12 CGCGC 3897 83 °C 

2. FAM-GCGCG AAAA CGCGC 4821 78 °C 

3. FAM-GCGCG CCCC CGCGC 4722 81 °C 

4. FAM-CATATG CCCC CATATG 5339 52 °C 

5. FAM-GCGCG TTTT CGCGC 4785 82 °C 

6. FAM-GTTTTG AAAA CAAAAC 5435 50 °C 

7. FAM-CCCCC AAAAA GGGGG 4821 77 °C 

 

 

3.1. HPLC methodology 

 

A new method of using HPLC (fluorescence detector, unless otherwise 

mentioned) for UVC induced photolesion detection was established in this study 

(for details see the experimental section). Photolesions that were produced after 

UVC irradiation of the oligonucleotides were directly analyzed by this method. 

This is for the first time an analytical separation method is established to separate 

the dimeric-lesions in an intact oligonucleotide from the undamaged 

oligonucleotide. A highly efficient ion-exchange SAX (1000-8) column was 

utilized for the separation of the damage-containing oligonucleotides from the 

undamaged ones. Since most of the photoproducts are dimers, which do not alter 

the number of negatively charged phosphate groups or establish a significant 
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polarity difference, they could not be detected directly with reversed-phase or 

other commonly employed HPLC columns. The SAX-column was found to be 

capable of and efficient in, quantifying the overall damage within an irradiated 

oligonucleotide. The separations were performed at pH~13 at room temperature 

(T= 25 °C). These relatively harsh conditions were needed in order to denature 

the hairpins completely, especially those having a high G:C content. For the 

experiments the hairpins were dissolved in buffer of (150 mM sodium chloride, 

10 mM Tris-HCl buffer, pH = 7.4). The concentration of the hairpins was kept as 

low as 0.2 µM. The solutions, taken in a 2 mm fluorescence cuvette, were 

irradiated for 10 to 30 min at 254 nm (± 10 nm) inside a fluorimeter equipped 

with a single monochromator. During irradiation the temperature of the sample 

holder was kept constant at 10 °C. An aliquot of sample was taken out before and 

after irradiation and injected into the HPLC through an autosampler, with 

detection via a fluorescence detector (see experimental section). 

Since FAM has an absorption maximum at 495 nm, the detector was set at an 

excitation wavelength of 495 nm and the emission was measured at 520 nm.  

 

 

3.2. Lesion formation on the different of nucleobases 

 

In order to test, using this direct method, which of the nucleobases are prone to 

UVC-induced lesion formation, single-stranded poly-dT, poly-dC, poly-dA and 

poly-dG oligonucleotides were irradiated for around 30 min at 254 nm. The 

observed damage formations, after HPLC analyses are listed in Table 3.2. Except 

for the oligo (FAM-TTTT-3’), all HPLC’s were analyzed by SAX-column. The 

damage content of this short oligo was analyzed with a reversed-phase column 
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using a very flat gradient (see experimental section). The reverse phase HPLC 

analyses of all the other oligonucleotides listed in Table 3.1, were also performed, 

but no photolesions were identified.  

 

Table 3.2: Depiction of the damage formation of the fluorescent (FAM) labeled single-

stranded oligonucleotides under UVC light at 254 nm. Probe concentration = 0.2 µM in 

buffer (150 mM NaCl, 10 mM Tris-HCl, pH = 7.4). 

 

Oligonucleotides (5’ to 3’) Time of 

irradiation 

(min) 

Damage (%) at 

254 nm 

FAM-TTTTTTTTT 30 55 

FAM-TTTT 30 36  

FAM-CCCCC 30 0 

FAM-AAAAAAAAA 60  0 

FAM-GGGGGG 60 0 

 

 

From Table 3.2 it can be understood that guanine and adenine are immune to 

UVC radiation, clearly supporting the established data that the pyrimidines and 

not the purine nucleobases are active targets under UVC light.[196-198] Surprisingly, 

cytosine nucleobases were also found to be inert under UVC radiation in a 

single-stranded configuration under the chosen experimental conditions. This 

relatively new observation has been affirmed in the preceding experiments with 

hairpins. Only thymine, in a single stranded DNA-conformation, was found to 

be severely damaged under UVC, supporting the published data that thymine is 

most vulnerable site for photodamage.[190] 
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In this work a systematic comparison was made between single-stranded and 

double-stranded oligonucleotide led damage formation, by comparing damage 

occurred in the loop and the stem structure of a hairpin, respectively. To this end 

hairpins 1-7 (Figure 3.1) were irradiated. Irradiation of hairpins 1-4 gave no 

detectable damage even after 1 hour of irradiation under UVC light (Table 3.3). 

The HPLC’s of all four hairpins before and after irradiation were found to be 

unaltered (not shown).  

 

 

83°C 78°C 81°C 52°C

C C

3'

5'

CC

3

A A

3'

5'

AA

2

T T

3'

5'

TT

5

C C
G
T
A
T
A
C

3'

5'

CC

4

A A

3'

5'

AA

7

G
C
G
C
G

3'

5'

1

(CH2)12

82°C 50°C 77°CTm:

A A
G
T
T
T
T
G

3'

5'

AA

6

C
A
A
A
A
C

------
------
------
------
------
------

------
------
------
------
------
------

C
A
T
A
T
G

------
------
------
------
------

C
G
C
G
C

G
C
G
C
G

------
------
------
------
------

C
G
C
G
C

G
C
G
C
G

------
------
------
------
------

C
G
C
G
C

G
C
G
C
G

------
------
------
------
------

C
G
C
G
C

C
C
C
C
C

------
------
------
------
------

G
G
G
G
G

F F F
F

F
F

F

 

Figure 3.1: Depiction of the hairpins 1 - 7 prepared to study the reactivity of the various 

bases in the presence of UVC-light. F (6-FAM) = 5’-Fluorescein. Melting point (Tm) 

condition: chairpin = 3 µM in buffer (150 mM NaCl, 10 mM Tris-HCl, pH = 7.4). 

 

Hairpins 1 and 2, which both contain an alternate G:C duplex stem, were not 

expected to undergo a photo-reaction under UVC radiation, and were used in a 

control study. The loop of hairpin 1 contains a UV-unreactive C12 spacer, and 

that of hairpin 2 features four UVC-inert 2’-deoxyadenosines. The surprising 
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observation that hairpins 3 and 4, both of which contain four 2’-deoxycytidines 

in the loop of the hairpins, remained undamaged under UVC irradiation affirms 

the result from poly-dC irradiation listed in Table 3.2. This finding, that a poly-

dC sequence in the single-stranded configuration remains undamaged to UVC 

light, was not previously known. 

 

Any possibility of co-elution of the damaged hairpin with its undamaged 

counterpart was dismissed by further enzymatic digestion of the irradiated 

hairpins followed by mass spectrometric analysis described later in this section.  

 

The efficiency of damage formation of the hairpins 1-7 is depicted in Table 3.3.  
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Table 3.3: A comparative study of damage formation of the FAM labeled 

hairpins 1-7 after irradiation at 254 nm at 10 °C. Assay solution: hairpin 

concentration = 0.2 µM in buffer (150 mM NaCl, 10 mM Tris-HCl, pH = 7.4). The 

amount of formed photoproducts was analyzed and quantified by analytical 

HPLC using SAX-column. 

 

Hairpins (5’ to 3’) Irradiation 

time (min) 

Irradiation 

temperature 

(°C) 

Damage 

(%) 

1. FAM-GCGCG (CH2)12 CGCGC 30 10 0 

2. FAM-GCGCG AAAA CGCGC 30 10 0 

3. FAM-GCGCG CCCC CGCGC 30 10 0 

4. FAM-CATATG CCCC CATATG 30 10 0 

5. FAM-GCGCG TTTT CGCGC 20 10 32 

6. FAM-GTTTTG AAAA CAAAAC 20 10 25 

7. FAM-CCCCC AAAAA GGGGG 20 10 12 

 

 

Unlike oligonucleotides 1-4, the hairpins 5-7 were found to be strongly degraded 

by UVC irradiation. Figure 3.2 shows chromatograms of all three hairpins before 

(bottom) and after (top) 20 min of irradiation at 254 nm. As can be evident from 

Figure 3.2, hairpins 5 and 6, both of which contain a short homo 2’-

deoxythymidine sequence in the single-stranded loop and the duplex stem 

respectively, were found to be damaged significantly (32% and 25% respectively, 

after 20 min irradiation) confirming that thymine is the most sensitive target 

under UVC irradiation. The damage content of these two hairpins is comparable, 
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indicating that photoreaction of 2’-deoxythymidine is independent of 

oligonucleotide configuration or flexibility. Hairpin 7 which features a homo 2’-

deoxycytidine duplex sequence, was also found to be degraded (12% after 20 min 

of irradiation), but to a much lesser extent compared to hairpins 5 and 6.  
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Figure 3.2: Depiction of the HPL-chromatograms before (bottom) and after (top) 

irradiation of hairpins 5, 6 and 7 with UVC light for 20 min. Assay solution: hairpin 

concentration = 0.2 µM in buffer (150 mM NaCl, 10 mM Tris-HCl, pH = 7.4). λirr = 254 nm 

(± 10 nm), T = 20 °C. HPLC conditions: Nucleogel-SAX-column (1000-8); eluting buffers 

(buffer A: 0.2 M NaCl/0.01 M NaOH in H2O, pH = 13; buffer B: 1 M NaCl/0.01 M NaOH in 

H2O; pH = 13); Gradient: 0-75% B in 25 min and then up to 85% B in 35 min at a flow of 

0.7 mL/min. t = retention time; I = relative fluorescence intensity. 
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Comparison of hairpin 7 with hairpins 3 and 4, which both gave no HPLC 

detectable photodamage, reveals that for a homo 2’-deoxycytidine sequence, a 

proper alignment of the two dC’s is essential. The dCpdC dinucleotide in a well-

organized duplex stem is just energetically fit for lesion formation, whereas a 

dCpdC dinucleotide in the loop/single stranded DNA sequence is poorly 

organized due to better flexibility. This pre-organization is probably not 

necessary for dTdT dinucleotides, resulting in a large amount of photolesions in 

both flexibly arranged single-stranded (5) and organized double-stranded (6) 

DNA under UVC light. Hairpin 4 was found to be undamaged by UVC light 

except for a very insignificant amount of dTpdA photolesions found only in 

mass spectrometric measurement. This result is interesting because it excludes 

any dTpdT lesion formation between the non-adjacent 2’-deoxythymidines, 

intervened by a 2’-deoxyadenosin, which is different from the early report with 

single strands.[199] Under our irradiation conditions, inter-strand dTpdT lesions 

were not detected, contradicting what was previously observed by Douki et al., 

that 2’-deoxythymidines present in opposite strands form cross-linked dTpdT 

photolesions under UV light.[44] If at all, the formation of dTpdT photoproducts 

of non-adjacent 2’-deoxythymidines is of minor chemical significance and may 

require a much higher radiation dose.  

 

 

3.3. Stability of the photoproducts under various pH 

conditions 

 

Photoproducts are known to undergo degradation under highly basic conditions. 

Cis-syn and trans-syn dTpdT-CPD-lesions were reported to be converted into 
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their dicarboxylic acid salts when treated with 5-10 M sodium hydroxide at 

elevated temperatures.[200-203] The (6-4)PP photoproduct and its Dewar valence 

isomer were also found to be unstable under these high alkaline conditions. In 

order to investigate whether the relatively alkaline condition (0.01 M NaOH, 

pH = 13) used in our chromatographic detection of the damage oligonucleotides 

interferes with precise lesion analysis, the stability of the damaged DNA hairpins 

was tested. For this, a very short, single-stranded oligonucleotide sequence [5’-

TTTT-3’] was irradiated. A fraction of the probe was analyzed by ion-exchange 

chromatography at pH = 13 and another fraction by reversed-phase 

chromatography. Detection of damaged oligonucleotides using this reversed-

phase column was possible only with a very short oligonucleotide such as that 

used, with a very flat gradient (C-18 column, Nucleosil 250*4 mm, 3 µm; buffer A: 

0.1 M AcOH/NEt3 in water, pH = 7.0; buffer B: 0.1 M AcOH/NEt3 in 80% 

acetonitrile, pH = 7.0; gradient: 0 to 30% B in 90 min). Both analytical methods 

produced the same result (30% damage after 20 min irradiation). This result was 

further strengthened with two other experiments.  In one, the hairpin 6, which 

produced a significant amount of damage, was irradiated. One fraction of this 

sample was measured immediately after the irradiation using ion-exchange SAX-

column and another fraction was injected into the HPLC after incubation for 1 

hour in a buffer of pH = 13 (buffer A of SAX analysis was used). The obtained 

HPLC profiles were identical with an error margin of 1%, confirming that the 

chromatographic condition used for damage analysis was not harsh enough to 

degrade the formed lesions. In another experiment, an oligonucleotide hairpin 

containing a synthetic cis-syn thymidine dimer (dTdT-CPD-lesion, see Figure 4.2 

for structure) which was site specifically incorporated (FAM-

CGACGTXTCGTCG-3’, where X= dTdT CPD-lesion), was incubated in SAX-A 

buffer for over an hour. The HPLC analysis showed no degradation of the CPD-
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lesion. This observation together with the literature data, affirm the conclusion 

that the formed photolesions are stable under the HPLC conditions used for 

analysis. 

 

 

3.4. Enzymatic digestion and lesion analysis 

 

The HPLC profiles of the hairpins allowed precise quantification of the 

photoproducts. This technique, however, could not determine the identity of the 

lesions. In order to identify the produced damages, irradiated oligonucleotides 

were enzymatically digested following a method developed by Cadet et al.[190, 204] 

This digestive system generates individual monomers and dinucleotide lesion 

dimers with a phosphate group (dNpdN lesion). The functions of the enzymes 

are briefly described below. 

 

Nuclease P1 was used to hydrolyse double-stranded DNA (hairpins) into shorter 

fragments. It also removes the 3’-phosphate group from the nucleotides 

produced after action of calf spleen phosphodiesterase (phosphodiesterase II). 

 

Phosphodiesterase II recognizes the 5’-hydroxy terminal of a nucleotide and 

releases the 3’-phosphomononucleotides. 

 

Alkaline phosphatase cleaves the 5’-phosphate from DNA or RNA. 
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Phosphodiesterase I (snake venom) hydrolyses 5’-mononucleotides from 3’-

hydroxy terminated DNA. The detail of this enzymatic digestion is described in 

the experimental section. 

 

The dinucleotide lesions were separated from the individual monomers after the 

enzymatic digestion, by reversed-phase HPLC using a HDO column and the 

lesions were analyzed by HPLC coupled mass spectrometry (ESI-MS).  

 

 

3.5. HPLC-ESI-MS for damage detection 

 

In order to analyze which lesions were predominantly formed due to UVC 

irradiation, a short single-stranded oligonucleotide [5’-TTTT-3’] was irradiated 

and the solution was analyzed (without enzymatic digestion) by reversed-phase 

HPLC coupled to electrospray mass spectrometry (ESI-MS). All the new peaks 

obtained after irradiation (Figure 3.3) had the same molecular weight as the 

unirradiated oligonucleotide (m/z = 1154). This result is in full agreement with 

the formation of mainly CPD, (6-4)PP and its Dewar valence isomeric dTpdT 

lesions, all of which have the same molecular weight, indistinguishable from a 

dTpdT dinucleotide. In order to identify these photoproducts, further 

experiments were performed by total enzymatic digestion of the irradiated 

hairpins. First of all, a methodology was established for the separation of the 

individual nucleosides and the photoproducts. For this, unirradiated DNA 

hairpin 9 and a mixed DNA-RNA hairpin 16 were enzymatically digested.[190, 204] 

Individual monomers were separated by a HDO column using a very slow 

gradient as described in the experimental section 5.2.1.10. The UV-detector of the 
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HPLC was set at 210 nm which is the absorption maximum of most of the dTpdT 

photoproducts. Samples were analyzed by coupling HPLC with a mass 

spectrometer (HPLC-ESI). Figure 3.4 depicts crude LCMS spectra of the 

unirradiated hairpins 9 and 16. Both the LCMS spectra showed all the individual 

nucleosides from the DNA (9) and the RNA hairpin (16), characterized by their 

m/z values. 

 

 tret / min

I

 
Figure 3.3: Reversed-phase HPLC separation and characterization of the photoproducts 

upon irradiation of a short single-stranded oligonucleotide [5’-TTTT-3’]. Probe 

concentration = 0.2 µM in buffer (150 mM NaCl, 10 mM Tris-HCl, pH = 7.4). λirr = 254 nm 

(± 10 nm), T = 10 °C. HPLC conditions: Nucleosill 120-3 C18 column; eluting buffers: A = 

0.1 M AcOH/NEt3 in water, pH = 7.0, B = 0.1 M AcOH/NEt3 in 80% acetonitrile, pH = 7.0; 

Gradient: 0 to 30% B in 90 min. tret = retention time; tirr = irradiation time; I = relative 

fluorescence intensity 

 

 

For the identification of the photolesions, the UV-vulnerable hairpin 5 was 

irradiated at 254 nm and enzymatically digested. Figure 3.5 shows a LCMS 
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spectrum of the irradiated hairpin 5 followed by enzymatic digestion. It should 

be noted from Figure 3.5, that the presence of photoproducts could not be 

identified from the LCMS spectrum, due to their very low yield compared to the 

individual nucleosides. However a thorough scan over the LCMS spectrum (ion-

extraction) revealed new peaks compared to the non-irradiated reference 

spectrum. All the new peaks had masses (m/z) of 545, the mass of dTpdT 

photoproducts. Hence it can be concluded from the LCMS spectrum, that 

irradiation of hairpin 5 yielded only the dimeric dTpdT photolesions. A selective 

extraction of ions with m/z = 545 is shown in the subset of Figure 3.5. 
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Figure 3.4: LCMS analysis of the digested DNA hairpin 9 (a) and the DNA-RNA mixed 

hairpin 16 (b). The chromatograms show all the individual DNA and RNA monomers. 

X = unknown peaks. HPLC condition: Uptisphere 3 HDO column (150*2.1 mm), eluting 

buffers: A = 2 mM AcOH/NEt3 in water, pH 7.0, B = 2 mM AcOH/NEt3 in 80% acetonitrile, 

pH 7.0; Gradient: 0-3% B in 12 min and then up to 20% B in 30 min. 
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Figure 3.5: LCMS analysis of the irradiated and digested DNA hairpin 5. 

X = unrecognized peaks, might also contain dimer lesions. The subset shows all the new 

peaks obtained after ion-extraction at m/z = 545.0 to 545.2. 

 

 

3.6. Characterization of photoproducts by HPLC-ESI-MS/MS 

 

The characterization of the photoproducts was performed by mass spectrometry 

using ion selection followed by further fragmentation of the ions (MS/MS). With 

this method ions of a particular m/z value were selected by the first quadrupol 

followed by fragmentation of each ion by the second quadrupol. For hairpin 6, 

the first quadrupol was set m/z = 545, the mass of dimeric dTpdT lesions. Part of 
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the chromatogram obtained after HPLC-ESI-MS/MS is presented in Figure 3.6. 

The assigned peaks correspond to the dTpdT photoproducts. The non-assigned 

peaks are unspecific with no characteristic fragmentations and were also present 

in the control experiment with non-irradiated hairpin 6. These peaks might be 

due to a dTpdT dinucleotide, which might have arisen from incomplete 

digestion. 

 

 

Figure 3.6: Depiction of the HPLC-MS/MS data obtained for hairpin 6 after irradiation 

and complete digestion. The insets show the fragmentation pattern of the detected 

lesions. The first quadrupole (Q1) was set to m/z = 545, and the fragmentation was 

measured in a mass range of 150 - 600 amu. The polarity was set to the negative ion 
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mode. a: dTpdT Dewar photoproduct, b: dTpdT cis-syn-CPD, c: dTpdT-(6-4)PP lesion; 

dR: 2-deoxyribose, t = retention time, TIC = total ion current, I = relative signal intensity. 

 

 

The insets of Figure 3.6 represent the fragmentation pattern of the assigned 

peaks. The photoproducts were identified by this characteristic fragmentation 

pattern. At 19 min, a compound (signal a) was detected with a fragmentation 

pattern reported as that of Dewar valence dTpdT photoproduct. The 

fragmentation of the peak at 20 min (signal b) was found to be identical with the 

reported fragmentation of CPD-dTpdT lesion. At approximately 24.5 min a new 

peak was obtained which had a fragmentation matching that of the (6-4)PP 

dTpdT lesion (signal c). All these structural assignments were performed on the 

basis of elution time and fragmentation pattern of the lesions following the 

published data of Cadet et al.[49, 190, 205] The characteristic fragmentations are briefly 

discussed bellow. 

Abbreviation: dR = deoxyribose; dRp = deoxyribose phosphate. 

 

Dewar dTpdT: 195 [dRp]-, 217 [bases-H2O-OH-H]-, 236 [bases-OH]-, 293 [dRpdR]-

, 432 (uncharacterized) 

 

CPD dTpdT: 195 [dRp]-, 447 [CPD dTpdT-dR]- 

 

(6-4) dTpdT: 195 [dRp]-, 217 [bases-H2O-OH-H]-, 236 [bases-OH]-, 293 [dRpdR]-, 

432 (uncharacterized) 

 

It might be noteworthy to observe that (6-4)PP and its Dewar valence dTpdT 

lesion showed similar fragmentation patterns. These two lesions were 
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differentiated by their relative elution time from the column. The Dewar isomer, 

reported to be more polar than the (6-4)PP lesion, was assigned to the faster 

eluting peak.  

Similar results were obtained from the irradiation and digestion of the hairpin 5, 

containing four 2’-deoxythymidine residues in the hairpin loop. The HPLC-ESI-

MS/MS showed only CPD, (6-4)PP and Dewar valence dTpdT lesions with their 

characteristics fragmentations. 

 

In order to analyze the damage sustained by the C-rich hairpin 7, similar HPLC-

ESI-MS/MS experiments were performed. Hairpin 7 was irradiated under UVC 

light and was enzymatically digested as above. The sample was analyzed by 

LCMS and MS/MS. For MS/MS, the first quadrupol was set at m/z = 515 in low 

resolution. The resolution was kept low deliberately, to detect ions in the range 

of 515 (dCpdC dimeric lesions) to 516 (dUpdC lesions). The dCpdC lesions were 

found to undergo fast deamination into their corresponding 2’-deoxyuridine 

photoproducts.[49] A parallel reference experiment was always performed with 

unirradiated hairpin 7. The obtained chromatogram together with the 

fragmentations of the assigned peaks is shown in Figure 3.7.  
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Figure 3.7: Depiction of the HPLC-MS/MS data of hairpin 7 after irradiation and 

complete digestion. The insets show the fragmentation pattern of the detected lesions. 

The first quadrupole (Q1) was set to m/z = 515, and the TOF range was chosen from 150 - 

600 amu. The polarity was set to the negative ion mode. a: dCpdC photolesion, b: 

dUpdC-Dewar valence isomer, c: dUpdC-(6-4) lesion, dR: 2-deoxyribose, t = retention 

time, TIC = total ion current, I = relative signal intensity. (The structures of the 

photoproducts were drawn in accordance with literature data) 

 

 

As can be seen, the peak obtained between 8 and 9 min (signal a), showed a mass 

(m/z) of 515, which is the mass of a dCpdC dinucleotide and that of other dimeric 
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photolesions. The fragmentation pattern proved these lesions to be CPD dCpdC 

lesion: 417 [CPD dCpdC-dR]-, 195 [dRp]- 

 

At retention times of 12 and 17 min, peaks were observed with masses of (m/z) 

516. These lesions should correspond to the dUpdC lesions. The fragmentation of 

signal b was found to match with the characteristic fragmentation of Dewar 

valence dUpdC lesion. The fragmentation of signal c was found to be similar 

compared to peak b. The higher elution time of this lesion was the basis to assign 

it as the (6-4)PP dUpdC photoproduct.  

Abbreviation: dR = deoxyribose; dRp = deoxyribose phosphate. 

 

Dewar dUpdC: 195 [dRP]-, 205 [bases-NH3-H]-, 418 [dUpdC-dR]-, 401 [dUpdC-

dR-NH2-H]- 

 

(6-4) dUpdC: 195 [dRP]-, 205 [bases-NH3-H]-, 418 [dUpdC-dR]-, 401 [dUpdC-dR-

NH2-H]- 

 

The MS/MS measurement was also performed with the irradiated hairpin 7, 

setting the detector at a precise mass (m/z) of 517, the mass of dUpdU lesions, 

which might have formed due to fast deamination of both cytosines from dCpdC 

lesions. All the three kinds of lesions i.e. dUpdU CPD, (6-4)PP dUpdU and its 

Dewar valence isomer, were clearly detected and characterized from their 

fragmentation pattern. 

 

From the MS/MS experiments it can be concluded that irradiation of hairpins 5 

and 6 under UVC light leads to the formation of CPD, (6-4) and Dewar valence 
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dTpdT photolesions, whereas hairpin 7 produces the commonly formed dCpdC, 

dUpdC and dUpdU photoproducts. 

 

In order to prove that the damaged peaks obtained during direct ion-exchange 

HPLC analysis of the irradiated hairpins were indeed due to the above 

photoproducts, two experiments were performed. Firstly, the damaged hairpins, 

after irradiation of 5, 6, and 7, were isolated using analytical ion-exchange 

chromatography (SAX-column). The fractions were desalted and enzymatically 

digested. HPLC-MS (followed by ion-extraction) and HPLC-MS/MS experiments 

showed all the usual dTpdT and dCpdC lesions, confirming that the hairpin 

degradation was indeed due to photoproduct formation. The undamaged 

oligonucleotides were also isolated from the ion-exchange HPLC and treated 

similarly. Here, however, no lesions were found, which excludes any possibility 

of co-elution of the damaged products with the undamaged ones. 

Similar experiments were performed with hairpins 1-4, which did not give any 

damage under UVC light. The hairpins were enzymatically digested after 

irradiation and HPLC-MS was performed followed by ion-extraction. No lesions 

were found for hairpins 1-3, confirming that no co-elution occurred. In the case 

of hairpin 4, which contains an alternating A:T sequence, however, a very small 

amount of new peaks were observed in the HPLC-MS (followed by ion 

extraction). More careful analysis of these peaks by HPLC-MS/MS confirmed 

these compounds to be dTpdA photoproducts, which support previous 

observations by Zhao et al.[206] These damages were not visible during ion-

exchange HPLC analysis due to their very low quantum yield. 

In order to search for the presence of any other photoproducts apart from the 

commonly observed ones, thorough scans of HPLC-MS chromatograms were 

performed, using a sensitive ion-extraction method. This method allows the user 
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to search for new peaks with specific a mass value (m/z) and several masses can 

be checked from a single HPLC-MS run. Many kinds of hypothetical 

photolesions were searched including hydration and oxidation products of 

thymine and cytosines. However, neither these reported lesions nor any new 

photoproduct was found, indicating that they were either not formed under our 

irradiation conditions or under UVC light in general.  

 

The mass spectroscopic analysis confirmed that detection and quantification of 

the damaged photoproducts using this newly established ion-exchange 

chromatographic method is indeed a good measure of the total amount of the 

UVC induced photoproducts. 

 

 

3.7. Dose-dependence study 

 

UVC-mediated photochemical reactions of the nucleobases are reversible 

processes. Photoproducts were found to undergo cyclo-reversions at 254 nm into 

the respective monomers.[207] The relative dose of the irradiation source, 

therefore, should have a strong impact on the overall yield of the photoproducts. 

Hence under the experimental irradiation conditions, the lesion formations 

should be consistent and linearly dose-dependent, to acquire precise comparison 

of the damage formation obtained from the hairpins irradiation. This was 

confirmed by irradiation of the UVC-vulnerable hairpin 6 for increasing periods 

of time. A plot of the amount of degradation, quantified by HPLC, against the 

irradiation time is shown in Figure 3.8. Up to as long as 30 min irradiation, the 

damage formation process was found to depend linearly on the dose of UVC 
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light under our conditions (see experimental section). From 40 min onwards, the 

damage formation starts to deviate from linearity (not shown in Figure 3.8) due 

to the reversibility of the UV damage formation process. Hence only the amount 

of DNA damage formed up to 30 min of irradiation were considered. 

 

 

tirr / min

damage
%

 

Figure 3.8: Dose-dependence of the lesion formation process measured by irradiation of 

hairpin 6 at 254 nm. Assay solution: chairpin = 0.2 µM in buffer (150 mM NaCl, 10 mM Tris-

HCl, pH = 7.4). λirr = 254 nm (± 10 nm), T = 20 °C. HPLC conditions: Nucleogel-SAX-

column (1000-8); eluting buffers (buffer A: 0.2 M NaCl/0.01 M NaOH in H2O, pH = 13; 

buffer B: 1 M NaCl/0.01 M NaOH in H2O; pH = 13); Gradient: 0-75% B in 25 min and then 

up to 85% B in 35 min at a flow of 0.7 mL/min. tirr  = irradiation time. 

 

 

3.8. Sequence context 

 

Under UVC conditions, only 2’-deoxythymidines and well-paired 2’-

deoxycytidines were found to be degraded into photoproducts. Since genomic 

DNA’s were found to be non-homogeneously damaged under UV light,[208] the 
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neighboring nucleotides might have some effect on photoproduct formation. 

Although a few studies have been performed to understand this environmental 

effect,[209-211] a lack of efficient methodology has left plenty of space for further 

investigations. In order to rationalize how the nearest neighbors participate in 

damage formation, oligonucleotide hairpins 8-15 were implemented. All these 

hairpins, shown in Figure 3.9, contain a UVC-reactive dTpdT dinucleotide in 

various sequential environments in the stem structure of the DNA hairpins.  
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Figure 3.9: Depiction of the eight hairpin molecules 8 - 15 analyzed in order to assess 

how the nearest neighbors influence the UV lesion formation process in a dTpdT-

dinucleotide sequence. F: (6-FAM) = 5’-Fluorescein. Melting point (Tm) condition: chairpin = 

3 µM in buffer (150 mM NaCl, 10 mM Tris-HCl, pH = 7.4) 
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All these hairpins were characterized by their molecular weights which were 

measured by MALDI-TOF. Concentrations and melting points were measured 

(depicted in Table 3.4) using a UV-spectrometer. The high melting temperature 

of the hairpins confirmed the duplex structure at room temperature.  

 

 

Table 3.4: Tabulation of the observed molecular weights of hairpins 8-15, concentration 

of the stock solutions and their measured melting points (Tm)  

 

Hairpins (5’ to 3’) Observed 

molecular 

mass (m/z) 

Melting 

point 

(Tm)  

8. FAM- CCTTCG CCCC CGAAGG 5341 68 °C 

9. FAM- CCAACG CCCC CGTTGG 5340 70 °C 

10. FAM- CATTAC CCCC GTAATG 5359 [M+Na]+ 52 °C 

11. FAM- CATTAC AAAA GTAATG 5433 50 °C 

12. FAM- CGTTGC AAAA GCAACG 5434 70 °C 

13. FAM- CCCAACCC CCCC GGGTTGGG 6577 >85 °C 

14. FAM- CACTAC AAAA GTAGTG 5436 60 °C 

15. FAM- CATCAC AAAA GTGATG 5436 63 °C 

 

 

All of these hairpins 8-15 were irradiated with UVC light at 254 nm in a cuvette 

inside a fluorimeter, at a constant temperature of 10 °C. The efficiency of damage 

formation of these hairpins is summarized in Table 3.5. The damaged hairpins 

were separated by ion-exchange (SAX-column) HPLC and detected with a 
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fluorescence detector. The chromatographic profiles of the hairpins 8-10 before 

(bottom) and after (top) irradiation for 30 min are shown in Figure 3.10.  

 

 

Table 3.5: A comparative study of damage formation of the FAM labeled hairpins 8-15 

after irradiation at 254 nm at 10 °C. Assay solution: hairpin concentration = 0.2 µM in 

buffer (150 mM NaCl, 10 mM Tris-HCl, pH = 7.4). The photoproduct containing DNA 

was separated and quantified by analytical HPLC using SAX-column. 

 

Hairpins (5’-3’) Irradiation 

time (min) 

Temperature 

(°C) 

Damage 

(%) 

8. FAM- CCTTCG CCCC CGAAGG 30 10 40 

9. FAM- CCAACG CCCC CGTTGG 30 10 < 3 

10. FAM- CATTAC CCCC GTAATG 30 10 20-25 

11. FAM- CATTAC AAAA GTAATG 30 10 20-25 

12. FAM- CGTTGC AAAA GCAACG 30 10 < 2-3 

13. FAM- CCCAACCC CCCC GGGTTGGG 30 10 3-4 

14. FAM- CACTAC AAAA GTAGTG 35 10 25 

15. FAM- CATCAC AAAA GTGATG 35 10 35 
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Figure 3.10: HPL chromatograms of the hairpin molecules 8, 9 and 10 before (bottom) 

and after (top) irradiation with UVC light (254 nm) for about 30 min. Assay solution: 

chairpin = 0.2 µM in buffer (150 mM NaCl, 10 mM Tris-HCl, pH = 7.4). λirr = 254 nm 

(± 10 nm), T = 20 °C. HPLC conditions: Nucleogel-SAX-column (1000-8); eluting buffers 

(buffer A: 0.2 M NaCl/0.01 M NaOH in H2O, pH = 13; buffer B: 1 M NaCl/0.01 M NaOH in 

H2O; pH = 13); Gradient: 0-75% B in 25 min and then up to 85% B in 35 min at a flow of 

0.7 mL/min. t = retention time; I = fluorescence intensity. 

 

 

From the chromatograms it can be interpreted that the neighboring nucleotides 

play an important role in dTpdT photodamage. The damage formation was 

severe for hairpin 8, where a dTpdT dinucleotide is flanked by two 2’-

deoxycytidine residues. Approximately 40% of the hairpin damage was observed 

with this hairpin, after 30 min irradiation. The high occurrence of lesions in this 

hairpin could be due to formation of dTpdT and dTpdC (or dCpdT) 

photoproducts. In this hairpin the 2’-deoxythymidines can react not only with 

one another but also with the neighboring 2’-deoxycytidines, making this (5’-
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CTTC-3’) stem-sequence highly vulnerable to UVC light. In hairpin 10, on the 

other hand, the dTpdT dinucleotide is flanked by two 2’-deoxyadenosines. Since 

it has been shown in the previous section that 2’-deoxyadenosines were not 

found to undergo UVC degradation, except for a very small amount of dTpdA 

photolesion formation, hairpin 10 was not found to be as reactive as hairpin 8. 

Here, about 20-25% damage was estimated from the chromatogram, mainly due 

to sole formation of dTpdT photoproducts. Similar amounts of degradation were 

observed from hairpin 11, where the loop sequence of the hairpin was changed 

from (dC)4 (as in hairpin 10) into (dA)4. Comparing the photoreactivities of 

hairpin 10 and 11, it can be stated that degradation of hairpin 10 does not depend 

on the loop structure of the hairpin: the observed damage was formed in the 

stem structure. Hairpin 9 features a dTpdT dinucleotide sandwiched between 

two 2’-deoxyguanosines. Irradiation of this hairpin for more than 30 min, 

surprisingly, yielded almost no damage. This data was confirmed by irradiation 

and subsequent HPLC analysis of the hairpin 12 which also contains a dTpdT 

dinucleotide between two neighboring 2’-deoxyguanosines. Hardly any 

photodamage of 12 could be identified even after prolonged irradiation. When 

the number of G:C base pairs in both 3’ and 5’ directions were increased in the 

neighborhood of dTpdT dinucleotide as in hairpin 13, the large protective effect 

of the guanines continued. 

 

Hence it can be concluded that neighboring nucleobases play an important role 

during photoreaction of UVC-sensitive dTpdT dinucleotides. 2’-

deoxythymidines locked between 2’-deoxyguanosine residues appear to be 

shielded most. This observation shows that our genome will be inhomogenously 

damaged under such UVC light. So photo-induced damage formation and hence 
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mutation frequency will vary from genome to genome due to their different 

sequential environments. 

 

The reason for this neighboring group participation can be explained by 

considering the flexibility of the duplex hairpin and the energetics of the 

photoproduct formation process. 2’-deoxyguanosin residues, in the 

neighborhood of a dTpdT dinucleotide, has better stability than dA residues. 

Hence, neighboring dG:dC base pairs offer more local rigidity than dA:dT base 

pairs. It’s well known that a dTpdT dimer, after its formation, induces a local 

DNA distortion. The dTpdT dinucleotide, locked between two nearby 2’-

deoxyguanosines, may require higher activation energy to react in order to 

undergo photoproducts formation. 

 

The photoreactivity of dTpdC dinucleotides was also investigated using the 

direct HPLC-analysis method. For this, hairpins 14, with a 5’-dCpdT-3’ sequence 

and 15, with a 5’-dTpdC-3’ sequence were used (see Figure 3.9). The hairpins 

were irradiated for about 35 min under identical conditions as above. The HPLC 

analyses of these two hairpins yielded about 25% damage formation for hairpin 

14 (5’-dCpdT-3’), whereas almost 35% degradation (Table 3.5) was detected from 

hairpin 15 (5’-dTpdC-3’). The result that 5’-dT in a dTpdC dinucleotide is more 

UVC-reactive than 3’-dT, supports earlier observation by Douki et al.[49] The 

explanation of this higher reactivity of 5’-dT is given by the better compatibility 

of the methyl group of the 5’-dT in a dTpdC dimer into the duplex DNA. 

 

In order to again characterize the types of photolesions formed in this sequence 

context, all the hairpins 8-15 were again irradiated at 254 nm using the hand 

lamp (see experimental section) and enzymatically digested as described earlier 
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in section 3.4. The digested solutions were separated with HPLC and the lesions 

were identified by ESI-MS and ESI-MS/MS coupled to HPLC. A systematic scan 

over the ESI-MS spectrum followed by ion extraction revealed the dimeric 

lesions of dTpdT and dTpdC/dCpdT for hairpins 8, 10, 11, 14 and 15. No 

oxidation or hydration products were detected. However, very small amount 

dTpdA photoproducts were obtained along with dTpdT lesions in the HPLC-MS 

followed by ion extraction for hairpins 10 and 11. These dTpdA photolesions 

were not detectable in HPLC analysis. The mass spectrometric analysis showed 

no lesion formation for hairpins 9, 12 and 13, supporting the results obtained 

from HPLC profiles (see Figure 3.10 and Table 3.5) and rules out any co-elution 

of the damage photoproducts with the undamaged ones during HPLC profiling. 

The ESI-MS/MS spectra obtained from the hairpin 8 is shown in Figure 3.11 and 

3.12. Here the detector was, in one experiment, set at a mass (m/z) of 530 to detect 

dTpdC photoproducts (Figure 3.11) and in another, the mass (m/z) value of 545 

was chosen to identify the dTpdT induced photoproducts (Figure 3.12). The 

fragmentations of the new peaks compare to the control experiments are shown 

in insets.[51] The fragmentation analysis of Figure 3.11 resulted Dewar valence 

and (6-4)PP photolesions of a dTpdC dinucleotide. Detection at m/z = 531 also 

yielded characteristic lesions of dUpdT dinucleotides. The dU resulted from fast 

deamination of dCpdT photoproducts. Figure 3.12 again shows all the major 

dTpdT photoproducts with identical fragmentation pattern as in Figure 3.6 from 

hairpin 6.  
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Figure 3.11: HPLC-MS/MS experiment at m/z = 530 after digestion of irradiated hairpin 

10. The insets show the fragmentation pattern. The first quadrupole (Q1) was set to m/z = 

530, and the TOF range was chosen from 150 - 600 amu. The polarity was set to the 

negative ion mode. Peaks a and b: dTpdC derived photo lesions, t = retention time, TIC = 

total ion current, I = relative signal intensity. 

 

 

For irradiated hairpin 10, the detector was set at m/z = 545 and all three dTpdT 

photolesions, the CPD, (6-4)PP and its Dewar valence isomer were characterized.  
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Figure 3.12: HPLC-MS/MS experiment at m/z = 545 after the digestion of irradiated 

hairpin 16. The first quadrupole (Q1) was set to m/z = 545, and the TOF range was 

chosen from 150 - 600 amu. The polarity was set to the negative ion mode. a: dTpdT 

Dewar photoproduct, b: dTpdT-CPD, c: dTpdT-(6-4)PP lesion. dR: 2-deoxyribose, t = 

retention time TIC = total ion current, I = relative signal intensity. For the fragmentation 

pattern see Figure 5. 

 

 

Irradiated hairpin 10 also yielded some dTpdA photoproducts when the mass 

detector was set at m/z = 553. However, the analysis of the fragmentation pattern 

is still open to interpretation due to lack of model compounds.  
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3.9. Conformation-dependence on photoproduct formation 

 

The poly-dC’s arranged in a single-stranded DNA were seen to behave 

differently under UVC light than a well-organized double-stranded hairpin 

DNA. The neighboring nucleotides are also understood to have a significant 

influence on the photoproduct formation. These observations indicate that the 

overall conformation of an oligonucleotide might also have a considerable 

impact on photoreactivation process. The conformation effect on photoproduct 

formation has not been well studied and therefore only limited data is 

available.[47, 208, 212, 213] By changing the DNA conformation due to complex 

formation with small acid soluble proteins from Bacillius species only spore 

photoproduct and no CPD lesions was formed upon UV irradiation.[214] 

In the present research, a systematic investigation was performed to understand 

the influence of overall secondary structure on the damage formation event. To 

this end a set of well-organized RNA and DNA-RNA mixed hairpins 16-19, 

depicted in Figure 3.13, were employed.  

All the bases written in bold red, represent 2’-deoxyribonucleosides (DNA bases) 

and those in italics are ribonucleosides (RNA bases). The RNA environment was 

chosen because it induces a more A-like conformation in contrast to DNA which 

preferentially forms a B-type duplex.[62, 215] The DNA-RNA heteroduplexes have 

been found to adopt more A-like helix conformation as well.[216] 
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Figure 3.13: DNA/RNA hairpins 16 - 19 prepared for the investigation of how strongly 

the duplex conformation influences the UVC damage formation process. RNA bases are 

shown in italics, DNA bases are printed in bold. F: (6-FAM) = 5’-Fluorescein. Melting 

point (Tm) condition: chairpin = 3 µM in buffer (150 mM NaCl, 10 mM Tris-HCl, pH = 7.4) 

 

 

Hairpins 16, 18 and 19 are mixed DNA-RNA strands whereas 17 is a pure RNA 

hairpin. The hairpin 16 contains a dTpdT dinucleotide in a RNA environment. 

Hairpin 17 is a pure RNA structure where thymine was replaced with uracil. In 

hairpin 18, the DNA stretch was increased to four bases. Hairpin 19 contains two 

uracil moieties embedded in a DNA duplex. The concentrations, observed mass 

(m/z) values and melting points of these hairpins are listed in Table 3.6. The 

DNA-RNA mixed duplexes are known to show a little higher melting 

temperature than respective DNA-DNA duplexes. The similar trend is visible 

here as hairpin 18 was found to possess slightly higher melting point (70 °C) than 

hairpin 16 or 19.  
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Table 3.6: Tabulation of the observed molecular weights of hairpins 16-19, concentration 

of the stock solutions and their measured melting points (Tm)  

 

Hairpins (5’ to 3’) Observed 

molecular mass 

(m/z) 

Melting 

point 

(Tm)  

16. FAM-CCTTCG CCCC CGAAGG 5657 [M+Na]+ 65 °C 

17. FAM-CCUUCG CCCC CGAAGG 5891 [M+Na]+ 64 °C 

18. FAM-CCTTCG CCCC CGAAGG 6965 [M+Na]+ 70 °C 

19. FAM-CCUUCG CCCC CGAAGG 5635 [M+Na]+ 60 °C 

 

 

3.9.1. CD spectral analysis 

 

The conformations of the hairpins 16-19 were analyzed by CD-spectroscopy. 

After melting point studies, the solutions were used as probes for CD 

measurements. Figure 3.14 shows the CD spectra obtained for hairpins 12, 17 and 

18. Hairpin 12 is a pure DNA strand, 17 being a pure RNA hairpin whereas 

hairpin 18 has a mixed DNA-RNA sequence. From the CD data, the DNA 

hairpin 12 (solid black) was found to have a B-like conformation showing two 

maxima at 284 nm and 218 nm and a minimum at 250 nm. These observed values 

tally properly with reported data on DNA hairpins which state that DNA 

hairpins deviate slightly from normal double stranded DNA.  
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Figure 3.14: CD-spectra of the DNA hairpins 12 (solid black), 17 (dotted black) and 18 

(solid gray). chairpin = 3 µM in 150 mM NaCl, 10 mM Tris-HCl buffer, pH = 7.4. T = 20 °C.  

 

 

The pure RNA hairpin 17 (solid gray) was found to adopt a more A-type 

conformation. Here the maxima were detected at 271 nm and 221 nm while the 

minimum appeared at 242 nm. The maxima of the mixed DNA-RNA hairpin 18 

were shifted compare to hairpin 12, to 276 nm and 223 nm whereas the minimum 

was found at 250 nm, confirming that it possesses more of A-like conformation in 

comparison to pure DNA hairpin 12. The CD data of the other hairpins 16 and 

19, not shown in Figure 3.14 due to clarity reason, were observed to adopt an 

almost identical conformation to 18 (see Table 3.7). From analysis of the CD data 

it can be concluded that RNA hairpins adopt a more A-like conformation, fully 

supporting the literature data.[62, 217, 218] 
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Table 3.7: Determination of conformations of the DNA hairpin 12, DNA/RNA mixed 

hairpins 16, 18 and 19 and the pure RNA hairpin 17 by CD-spectroscopy. Assay 

solution: ). chairpin = 3 µM in 150 mM NaCl, 10 mM Tris-HCl buffer, pH = 7.4. T = 20 °C. 

 

Hairpin (5’ to 3’) Maxima at 

(nm) 

Minimum 

(nm)  

Conformation

 

12. FAM- CGTTGC AAAA GCAACG 284 and 218 250 B 

16. FAM-CCTTCG CCCC CGAAGG   A-like 

17. FAM-CCUUCG CCCC CGAAGG 271 and 221 242 A 

18. FAM-CCTTCG CCCC CGAAGG 276 and 223 250 Between B 

and A 

19. FAM-CCUUCG CCCC CGAAGG 275 and 223 248 Between B 

and A 

 

 

All these hairpins were irradiated at 254 nm inside the fluorimeter as described 

earlier, at the same concentration of 2 µM taken in a fluorescence cuvette. The 

RNA hairpins were handled carefully on a pre-sterilized bench, as RNA 

oligonucleotides are known to be degraded very fast with RNAse present in skin. 

All the materials used for RNA, e.g. eppendorf cups, cuvettes, eppendorf tips, 

HPLC vials and buffers were autoclaved prior to use. The amount of damaged 

oligonucleotides, after UVC irradiation was quantified by HPLC using our direct 

method. Table 3.8 depicts radiation impact on the hairpins 16-19. The 

chromatography profiles of these hairpins before (bottom) and after (top) 

irradiation are shown in Figure 3.15.  
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Table 3.8: A comparative study of damage formation of the FAM labeled hairpins 1-7 

after irradiation at 254 nm at 10 °C. Assay solution: hairpin concentration = 0.2 µM in 

buffer (150 mM NaCl, 10 mM Tris-HCl, pH = 7.4). The amount of formed photoproducts 

was analyzed and quantified by analytical HPLC using SAX-column. 

 

Hairpin (5’ to 3’) Irradiation 

time (min)

Temperature 

(°C) 

Damage 

(%) 

16. FAM-CCTTCG CCCC CGAAGG 60 10 0 

17. FAM-CCUUCG CCCC CGAAGG 60 10 0 

18. FAM-CCTTCG CCCC CGAAGG 30 10 5 

19. FAM-CCUUCG CCCC CGAAGG 20 10 10 

 

 

For hairpin 16, no lesion formation was observed even after 60 min of irradiation. 

This observation was unexpected as, hairpin 8 which has same sequence as that 

of hairpin 16 but in a pure DNA environment, produced 40% damage after 

20 min of irradiation. The same unusual UVC resistance was observed for 

hairpin 17, which contains a UpU dinucleotide instead of dTpdT as in hairpin 16. 

Even after 60 min of irradiation no photoproduct formation could be detected in 

HPLC. This data suggests that pyrimidine bases, in a compact A-like structural 

environment are very much protected from UVC light.  
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Figure 3.15: HPL chromatograms of the four hairpin 16 - 19 before (bottom) and after 

(top) 20 min of irradiation under UVC light. Assay solution: chairpin = 0.2 µM in buffer 

(150 mM NaCl, 10 mM Tris-HCl, pH = 7.4). λirr = 254 nm (± 10 nm), T = 20 °C. HPLC 

conditions: Nucleogel-SAX-column (1000-8); eluting buffers (buffer A: 0.2 M NaCl/0.01 M 

NaOH in H2O, pH = 13; buffer B: 1 M NaCl/0.01 M NaOH in H2O; pH = 13); Gradient: 0-

75% B in 25 min and then up to 85% B in 35 min at a flow of 0.7 mL/min. t = retention 

time; I = relative fluorescence intensity. 
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This observation was supported by HPLC-MS/MS analysis of the irradiated and 

subsequently digested hairpins 16 and 17, which also gave no detectable lesions 

confirming the results obtained from the HPLC experiments. The fact that a UpU 

sequence is in principle able to form UV lesions upon irradiation was proven 

with hairpin 19, containing the UpU sequence within a DNA hairpin. Here, 

about 10% degradation was measured within 20 min of irradiation.  

If the dTpdT containing DNA stretch was enlarged within the RNA hairpin as in 

18, we still observe a strong reduction of the amount of UV lesions, proving that 

it is indeed the A-conformation of the hairpin stem and not the contact of the 

dTpdT sequence with RNA-nucleotides that is responsible for the protective 

effect. 

 

In order to analyze which lesions are formed in these A-like structures, hairpin 

18 was irradiated for an extended time period (60 min) to produce enough 

lesions for HPLC-MS/MS analysis. The irradiated sample was then digested 

enzymatically as described earlier and was analyzed by HPLC-MS/MS.[49, 219] The 

enzyme mixture was found to digest RNA hairpins as well. For the lesion 

characterization, two HPLC-MS runs were performed. In the first run, the 

quadrupol was set at m/z = 530, to detect the dTpdC derived photoproducts. 

Here two kinds of photolesions were observed. The mass and the fragmentation 

showed clearly that the lesions are either dTpdC (6-4)PP or dTpdC-Dewar lesion. 

The obtained HPLC-MS spectrum and the fragmentations of these peaks were 

very similar to those observed for DNA hairpin 10 (Figure 3.11 and 3.12). Since 

the Dewar lesions are generally more polar, we speculate that the peak (a) may 

be due to the Dewar lesion and the peak (b) is the (6-4)PP lesion. However, this 

data is not sufficient for a clear assignment of these structures. At a detection 
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mass of m/z = 545 which is the mass (m/z) of a dTpdT-dinucleotide and hence 

their photoproducts, again all the usual photoproducts, the dTpdT-CPD, the 

dTpdT-(6-4)PP and its Dewar valence isomer were detected (Figure 3.12). This 

clarify that a dTpdT-dinucleotide sequence embedded in a RNA environment 

produces the same photoproducts as in a DNA environment, but to a lesser 

extent due to the conformation adopted by RNA.  

 

It can be concluded that an A-like double helix structure dramatically reduces 

the reactivity of dTpdT and UpU dinucleotides in the presence of UVC light. In 

summary, RNA is much more UV stable than DNA if exposed to UVC light. 
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3.10. Summary and conclusion 

 

UV irradiation leads to severe genomic damage. The DNA lesions formed upon 

UV irradiation are mainly cyclobutane pyrimidine dimers, (6-4)PP photolesions 

and Dewar valence isomers of the (6-4)PP photoproducts. These lesions are 

predominantly responsible for the development of non-melanoma skin cancers.  

 

In the present work small fluorescein-labeled DNA, RNA and mixed DNA-RNA 

hairpins, which form stable folded oligonucleotide duplex structures at room 

temperature, were employed to investigate the UVC-induced DNA or RNA 

damage formation event. The concentration-independent melting behavior of the 

hairpins allowed irradiation at very low concentrations, which produces a 

significant amount of lesions even under very mild UVC conditions. Due to the 

small size of the hairpins it was possible to quantify the amount of UVC 

degradation directly, using a newly developed ion-exchange chromatographic 

method at pH = 13 (fluorescence detection) at room temperature. The 

quantification of the damaged oligonucleotides by fluorescence detection, 

instead of detection by UV-absorption, enabled an accurate measurement of 

DNA degradation. Irradiation of hairpins possessing various sequences once 

again established that 2’-deoxythymidine is the most vulnerable DNA base in 

UVC light. Direct HPLC studies of the total damage yield, together with MS/MS 

structure determination of the formed lesions, prove that homo 2’-

deoxythymidine stretches form rapidly UVC induced lesions in large quantities. 

The Dewar valence isomer lesion is formed in much smaller amounts. 2’-

Deoxythymidines give rise to these lesions in flexible DNA regions as well as in 
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the well structured, double helical stem area. 2’-Deoxycytidines, in contrast, react 

in the presence of UVC light only in the well organized B-duplex. Flexible homo 

dC-sequence regions are UVC resistant. 

 

Investigation of the reactivity of a dTpdT-dinucleotide in various sequence 

contexts revealed the surprising result that the reactivity is strongly reduced 

when a dTpdT dinucleotide is locked between two neighboring 2’-

deoxyguanosines. The reason for the protective effect is probably due to a 

reduced flexibility of the 2’-deoxythymidines embedded between 2’-

deoxyguanosines. First of all, the dTʹs are stacking on top of large purine bases 

and secondly, the flanking sequences are G:C base pairs which have significantly 

higher pairing strength than an A:T base pair, making the duplex more rigid 

which may hinder the re-orientation of the duplex upon photolesion formation. 

The sequence dependence on lesion formation suggests that genomic DNA will 

be inhomogeneously damaged under such UV exposure. 

 

The most surprising observation is that the oligonucleotide hairpins, possessing 

more A-like conformations are very much resistant to UVC degradation. RNA 

hairpins containing UpU dinucleotides sequence were found to be fully 

protected from being damaged. The dTpdT stretches, embedded in an A-like 

RNA environment, showed surprising stability under UVC light. This could be 

explained by more compact structure of A-duplex compared to B-duplex. The 

activation energy required for structural arrangement of the dTpdT lesions 

inside a compact A-conformation might be too high to pay off. 

 

This observation is particularly interesting in a biological context, since DNA in 

eukaryotes is densely packed in chromatin. DNA which is present in the nucleus 
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of the cell does not possess an ideal B-conformation because genomic DNA’s are 

wrapped around nucleosomes. This study shows that this distortion from B-

duplex structure will tremendously affect the UV stability of the duplex.[220, 221] 

 

The observation of high UVC stability of RNA oligonucleotides can be co-related 

to prebiotic research which study the origin of life. A widely-acknowledged 

theory of prebiotic world is the RNA world theory. [222, 223] The theory 

hypothesizes that RNA was the first biomolecule on earth that was synthesized 

from the constituents present in the primordial soup, and hence it was the 

precursor of life. Due to the lack of ozone at the very beginning of life on the 

earth, it is believed that UV radiation dose on earth’s surface was quite higher 

than it is today. The present observation that RNA is immune to UV light 

compared to DNA provides one more clue that might have encouraged RNA to 

evolve on the primordial earth and hence supports the RNA world theory.  
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4. Photolyase Catalyzed CPD-Lesion Repair Study 
 

 

4.1. Activities of CPD-photolyase 

 

Cis-syn Cyclobutane-thymidine-dimer (CPD) is the major photoproduct in 

genomic DNA and is responsible for aging and skin cancer.[36] CPD-photolyase is 

the major defense system in plants and many other organisms, repairing the 

CPD-lesion inside the cell nucleus.[99] This light-driven enzyme uses long 

wavelength radiation (350 to 450 nm) for its function. Photolyase therefore, can 

act only in tissues and cells that are exposed to daylight.  

 

Although CPD-photolyases were isolated from different organisms and their 

structural features were studied, the activities of the photolyases have not yet 

been understood properly. Type-I photolyases are well studied microbial 

enzymes. Type-II enzymes are present in higher organisms such as plants. These 

photolyases are not well understood. The Carell group has a long-standing 

research interest in photolyase-catalyzed CPD-repair phenomenon. Towards this 

end, various model compounds have been synthesized and their repair 

mechanisms have been investigated using photolyases.[128, 157, 224]  

 

In the present investigation, a molecular beacon (MB) probe technique was 

explored to assay the photolyase-mediated CPD-repair process. The probe, 

which contains a synthetic CPD-lesion, serves as a substrate for photolyase. The 

activities of both Type-II (A. nidulans) and Class-II (A. thaliana) CPD-photolyases 

were profiled with this new probe methodology. Investigation was performed to 
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fish-out the photolyase activity from a protein-pool, in a wild-type cell extract. 

Attempt was also made to monitor the CPD-repair process within living cell, 

using this reporter probe.  

 

 

4.2. Molecular beacon based photolyase-substrate DNA 

 

Molecular beacons (MB) are U-shaped oligonucleotides that are efficient and 

highly target-specific probes. MBs in the past, have been used as probes for 

DNA-binding and DNA-cleaving proteins,[167, 168] DNA-cleaving small molecules 

and self-replicating systems.[179, 225] In the present work, a molecular beacon was 

designed to assay photolyase repair process. The molecular beacon 21 contains a 

CPD-lesion in its loop structure. This was for the first time that a synthetic target 

was incorporated in a molecular beacon structure. This cis-syn thymidine-dimer-

lesion (see Figure 4.2 for structure), which has a open backbone structure, was 

synthesized by L.T. Burgdorf,[157] and is analogous to a natural photolyase 

substrate first synthesized by J. –S. Taylor.[226] The CPD-containing MB-probe 21 

therefore, serves as a DNA-substrate for the CPD-photolyases. Figure 4.1 

describes the MB-photolyase interaction process.  
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Figure 4.1: Depiction of the molecular beacon strategy employed to quantify DNA-

repair activity. The beacon contains a 5ʹ-Fluorescein (6-FAM), a 3’-Diazabenzylsulfonyl-

(Dabsyl) quencher and the substrate analog 21 in the loop of the hairpin. 

 

 

The synthesized CPD-lesion, which forms an open-backbone structure (see 

Figure 4.2) after the DNA synthesis followed by deprotection,[227, 228] is a potential 

substrate for CPD-photolyase and was thus designed in order to translate 

photolyase activity into a strand break, as depicted in Figure 4.2. This CPD-lesion 

was found to be efficiently recognized by the repair enzymes. Photolyases accept 

this open-backbone substrate analog, most probably because they do not contact 

the central phosphodiester group in the photolyase-DNA complex. This fact was 

established by A. Sancar by using data from detailed footprinting studies.[98] 
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Figure 4.2: A schematic presentation of the CPD-lesion containing molecular beacon 

which induces strand break after photolyase-catalyzed repair the dimer. 

 

 

As depicted in Figure 4.1, the MB 21 contains a fluorescence moiety (6-FAM, 

excitation: 495 nm, emission: 520 nm) at the 5’-end and a fluorescence quencher 

Dabsyl, at the 3’-end. The structures of these two molecules are shown in Figure 

4.3. Dabsyl was used as the first base attached to the solid support in the 

cartridge, while FAM was a 5’-end terminator during the synthesis of the MB 21.  

 

The molecular beacon, in its closed form, is non-fluorescent due to efficient 

energy transfer from FAM to Dabsyl. When treated with photolyase and 

irradiated with light of suitable wavelength, the CPD-lesion undergoes cleavage 

due to cycloreversion of the thymidine-dimer (see Figure 4.2). The temporary 
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double-stranded DNA thus obtained, separates readily at room temperature, due 

to its very low melting point (less than 20 °C). As a consequence, the fluorescence 

of 6-FAM will be restored after the strand break (see Figure 4.1).  

 

The 6-FAM phosphoramidite, which is a white solid, was non-fluorescent before 

the DNA synthesis. However, after the DNA synthesis, followed by deprotection 

from the solid support, it exhibited brilliant green fluorescence in aqueous 

solution of pH above 7.0 (see Figure 4.3). The red colored, controlled pore glass 

(CPG) supported 3’-Dabsyl was used as a universal fluorescence quencher. 
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Figure 4.3: Structural presentation of the 5’-end (6-FAM) and 3’-end quencher Dabsyl 

before and after deprotection. CPG = Controlled pore glass. 
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With an intention to obtain a very short molecular beacon probe for photolyase, 

at first a molecular beacon with CPD-dimer was synthesized, having a sequence: 

5’-FAM-GACGTXTCGTC-Dabsyl-3’ (where X= CPD lesion, shown in Figure 4.2). 

This sequence which is one base pair shorter in the stem region than the hairpin 

probe 21, did not show any melting behavior. This indicates that the short stem-

sequence was incapable of forming a self-complementary stem structure which is 

an essential requirement for a molecular beacon. So MB-hairpin 21 was the 

shortest molecular beacon probe with a desired loop and stem structure, 

employed in this study to assay photolyase activities. 

 

 

4.2.1. Synthesis of the molecular beacon 

 

The synthesis of the molecular beacon was performed in an automated DNA-

synthesizer using standard phosphoramidite synthesis protocol, developed by 

Caruthers et al.[229-231] The solid phase synthesis was performed on a CPG-

supported cartridge from 3’ to 5’ direction. A schematic diagram of the important 

steps of automated synthesis is presented in Figure 4.4.  
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Figure 4.4: Demonstration of the important steps involved during solid phase DNA-

synthesis in automated DNA-synthesizer. 
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4.2.2. Characterization of the molecular beacon 

 

To obtain the required sensitivity of the assay method, particular attention was 

paid to the purity of the molecular beacon 21. The purity of the synthesized 

photolyase-cleavable molecular beacon was examined by reversed-phase HPLC 

which showed a single, sharp peak at a retention time of about 20 min (Figure 

4.5). However, presumably due to the strong self-pairing property of the 

designed molecular beacon, which forces the oligonucleotide into the U-

conformation, the HPLC analysis had to be performed at an elevated 

temperature (55 °C) with a RPC18- HPLC column having a particle size of 3 µm. 

Colder conditions or the use of the standard 5 µm column gave broad and 

unresolved peaks.  
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Figure 4.5: HPL-Chromatogram of the molecular beacon 21. Buffer: A = 0.1 M 

AcOH/NEt3 in water, pH 7.0, B = 0.1 M AcOH/ NEt3 in 80% acetonitrile, pH 7.0; Gradient: 

0 to 45% B in 35 min. 55 °C, Column: Nucleosil 250 mm x 4 mm, 120Å, 3 µm. tret = 

retention time; I = relative fluorescence intensity.  
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The MALDI-TOF spectrum depicted in Figure 4.6 displays the expected 

molecular weight (21+: MW = 5218) and the potassium adduct ([21+K] +: MW = 

5257) of the threefold modified molecular beacon 21. 
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Figure 4.6: MALDI-TOF mass spectrum of the molecular beacon 21. Matrix: 

THA/Citrate (2:1) in ethanol. 

 

 

The self-complementary behavior of the molecular beacon 21 was tested by 

melting point (Tm) analysis. The melting temperature analysis based on UV 

absorption at 260 nm, showed high Tm of about 72 °C. In order to investigate the 

fluorescence quenching efficiency of the MB 21 and also to study the fluorescence 

signal to noise ratio, resulted from unwinding of the hairpin stem, fluorescence 

melting point measurement was performed. Figure 4.7 shows a temperature 

dependent fluorescence change of this molecular beacon. The probe was excited 

at 495 nm while the emission was recorded at 520 nm.  
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Figure 4.7: Fluorescence melting curve of the hairpin 21 (cDNA = 3 µM, 150 mM NaCl, 

10 mM Tris, pH 7.4). Tm ≈ 72 °C. I = relative fluorescence intensity. 

 

 

It is clear from Figure 4.7 that the molecular beacon 21 at room temperature (not 

shown in Figure 4.7), possesses a well paired, duplex stem structure. The 

fluorescence of FAM was virtually quenched at room temperature, due to FRET 

or direct energy transfer between the FAM and the 3’-quencher Dabsyl.[149, 169] 

With increase in temperature, the stem of the molecular beacon starts melting, 

thus gradually increasing the spatial distance between the fluorophore and the 

quencher. The fluorescence signal of FAM, therefore, started increasing as a 

result of depression of FRET efficiency (fluorescence quenching efficiency falls 

down sharply in increasing the distance between the interacting moieties). At 

very high temperature, the molecular beacon acts as a coiled, single-stranded 

DNA, resulting in a stable fluorescence signal intensity (plateau of the Figure 

4.7). As can be seen in Figure 4.7, the melting of the hairpin resulted in the 
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fluorescence intensity to increase only by a factor of two. This confirms that the 

length of the MB-oligonucleotide is short enough to enable efficient energy 

transfer even in the stretched-out single-stranded DNA-conformation. The 

fluorescence signal change due to melting of the MB is in fact an estimation of 

the background signal for photolyase-catalyzed repair of the MB 21, as the stem 

of the MB might unwind during recognition of the CPD-lesion by the photolyase.  

In contrast to stem opening, the cleavage of the MB 21 should result in a high 

fluorescence signal (theoretically, the signal to noise ratio should be at least, 

more than 10), due to complete loss of fluorescence energy transfer between 

FAM and Dabsyl which become separated as a result of the hairpin cleavage (see 

Figure 4.1). 

The fluorescence melting study of this short, cleavable molecular beacon 21 thus 

showed that it might act as a sensitive probe with high signal to background 

ratio for activity profiling of the photolyases.  

The thermal stability of the duplex strand (5’- CGACGTT- 3’: 3’- GCTGCTT- 5’) 

which presumably would be formed after the cleavage of molecular beacon 21 at 

the dimer position, was also investigated. These two strands, partially 

complementary to each other, gave no detectable melting temperature, 

confirming that cleavage of the thymidine dimer substrate will lead to complete 

stem dissociation at room temperature.  

 

 



Kundu, L M Photolyase Catalyzed CPD-Lesion Repair Study 

 121

4.3. Activity profiling of Type-II photolyase with molecular 

beacon substrate 

 

Using the molecular beacon 21 as a substrate, the light-induced repair of the 

thymidine-dimer was studied using Type-II photolyase. The progress of the 

repair process was monitored by recording fluorescence signal of the molecular 

beacon as a function of time. Well characterized, pure, Type-II photolyase from 

A. nidulans was generously provided by Prof. A. P. M. Eker. This pure photolyase 

has a molecular weight of about 54 kDa and possesses 8-HDF as the light-

harvesting cofactor along with the essential FAD cofactor.[232, 233] A 100 µL solution 

was prepared containing A. nidulas photolyase (0.10 µM, 10 pmol) and molecular 

beacon 21 (0.25 µM) in a buffer (NaCl: 150 mM, Tris: 10 mM, DTT: 10 mM, 

pH = 7.4). The semi-reduced FADH•, in the protein environment, was expected 

to undergo reduction into its fully reduced form FADH-, under this pH 

condition. The solution was irradiated under a white-light source at 27 °C. As 

A. nidulans photolyase is known to absorb light around 435 nm, a 380 nm cut off 

filter was used during the irradiation, to avoid high-energy radiation (above 

380 nm). The irradiation was paused from time to time and fluorescence of the 

solution was measured inside a fluorimeter. The temperature inside the 

fluorimeter was kept constant at 27 °C. The obtained fluorescence growth is 

shown in Figure 4.8 with respect to irradiation time (curve a). Two control 

experiments were also performed in order to quantify the background activities. 

Curve b in Figure 4.8, represents the fluorescence fluctuation of an identical 

solution kept in dark. Another control experiment was carried out with a 

solution containing only the molecular beacon 21 of same concentration but 

without any photolyase, and was irradiated in parallel, under the identical 
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condition. This was performed to test the stability of the molecular beacon 

substrate under the irradiation condition (depicted in curve c). It is clearly 

evident from curve a that the expected thymidine-dimer repair, followed by a 

strand cleavage, gives rise to a strong fluorescence elevation. The fluorescence 

signal intensity was found to be increased by a factor of 10 compared to the 

background signal. A comparison of curve a with the background signal (curve b 

or c) clearly demonstrates a high signal to noise ratio as result of photolyase-

substrate reaction. The continuum of curve a, after 60 min of irradiation, 

indicates the completion of substrate cleavage, reaching the fluorescence signal 

intensity to a constant value. Comparing the high fluorescence-signal turn-out 

(curve a) with the thermal denaturation profile (Figure 4.7) where only two-fold 

fluorescence increment was observed, it can be clearly stated that this high 

fluorescence signal intensity is indeed caused of a strand break of the MB 21, 

separating the FAM and the Dabsyl to a infinite distance.  
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Figure 4.8: Fluorescence-based repair study with the A. nidulans photolyase. Assay 

solution: Molecular beacon 21 (0.2 µM), buffer (150 mM NaCl, 10 mM Tris, pH 7.5), DTT 

(10 mM) and A. nidulans photolyase (0.15 µM), Temperature: 27 °C. a) assay solution 

irradiated with white light. b) Dark control. c) Assay solution containing no photolyase 

enzyme irradiated with white light. tirr = irradiation time; I = relative fluorescence 

intensity. 

 

 

4.3.1. HPLC profiling of photolyase activity 

 

In order to prove further, that the fluorescence increment in Figure 4.8 (curve a) 

is in fact due to cleavage of the molecular beacon 21 at the thymidine-dimer 

position, time dependent HPLC studies were performed with the assay solution. 

For this, a 400 µL assay solution was prepared containing the molecular beacon 

substrate 21 (4 µM) and A. nidulans photolyase (0.2 µM, 20 pmol). The mixture 

was irradiated under identical condition as above. A small amount of aliquot 

samples were taken out at regular intervals and were injected into the HPLC. The 

obtained analytical HPLC profile using fluorescence detector is shown in Figure 
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4.9. The Z-axis represents the irradiation time coordinate. All the HPLCs were 

performed with a 3 µm column at 55 °C. As can be seen from Figure 4.9, at a 

retention time of about 20 min, a small peak was observed (before irradiation), 

due to elution of hairpin 21. With the progress of irradiation, a new peak started 

arising at a retention time of about 10 min. Co-injection studies with reference 

oligonucleotides confirmed that this peak was due to the FAM labeled single 

stranded oligonucleotide 5’-FAM-CGACGTT-3’ (22), which is in fact, the short 

oligonucleotide fragment expected to be produced after the thymidine-dimer 

cleavage. MALDI-TOF analysis of the irradiated sample also showed a peak with 

a mass (m/z) of 2630, which is the mass of the FAM-containing fragmented strand 

22, along with the hairpin mass (m/z) of 5218. Analytical HPLC of this irradiated 

solution was carried out also with UV-detection at 260 nm. The HPLC clearly 

showed two new peaks at 10 min and 14 min of retention time, along with the 

intact molecular beacon 21 eluted at 20 min. By co-injection studies, both of these 

new peaks were identified as the expected fragmented-oligonucleotides 22 and 

23 (see Figure 4.2) generated from cycloreversion of the thymidine-dimer. 
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Figure 4.9: Series of HPL-chromatograms of the assay solution irradiated with white 

light. Assay solution: Molecular beacon 21 (4 µM), buffer (150 mM NaCl, 10 mM Tris, pH 

7.5), DTT (10 mM) and A. nidulans photolyase (0.15 µM). Temperature: 27 °C. HPLC-

conditions: Nucleosil column 250 nm x 4 mm , 120 Å, 3 µm; buffer: A = 0.1 M AcOH/NEt3 

in water, pH 7.0, B = 0.1 M AcOH/NEt3 in 80% acetonitrile, pH 7.0; Gradient: 0 to 45% B 

in 35 min. Temperature: 55 °C. tret = retention time; tirr = irradiation time; I = relative 

fluorescence intensity 

 

 

The second fragmented strand 5’-TTCGTCG-Dabsyl-3’ (23) could not be 

visualized in the HPLC diagram 4.9, as this strand is non-fluorescent. The much 

higher fluorescence signal intensity of the FAM-labeled fragment 22 (also see 

Figure 4.2) in comparison to the original hairpin 21, proves again the huge loss of 

energy transfer (FRET) from FAM to the Dabsyl, as a consequence of hairpin 

cleavage. This energy transfer is strong enough in the hairpin 21, even in its 

single stranded, denatured form, due to its short length (see Figure 4.7). Because 

of this non-linearity of the fluorescence energy transfer, which falls down rapidly 
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with increasing distance between the interaction moieties, the quantification of 

the photolyase-catalyzed dimer repair, could not be performed with this HPLC 

profile followed integration of the newly developed peak. 

 

4.4. Repair study with Class-II photolyase from A. thaliana 

 

The goal of this study was to investigate whether this molecular beacon 

technique allow quantification of the dimer repair even in crude cell extracts, 

particularly in plant cell extract. Towards this target, investigation was first 

performed to analyze if the CPD-lesion containing MB 21 is accepted as a 

substrate also by a Class-II photolyase from a higher organism. Here the enzyme 

(At-PHR1) from the plant A. thaliana was chosen. The enzyme, carrying a C-

terminal 6xHis tag, was expressed in E. coli and affinity-purified on a Ni-

column.[234] It was isolated containing the FAD-cofactor but without any 

detectable second antenna pigment, which should strongly decrease the activity 

of the recombinant enzyme. Despite the low activity, the molecular beacon 

substrate enabled rapid analysis of the A. thaliana photolyase activity as depicted 

in Figure 4.10, even without an excess of the hairpin. Curve a shows the rapid 

fluorescence increase of an assay solution (100 µL) containing 0.2 µM of the 

beacon 21 and 1.2 µM of the A. thaliana enzyme, upon irradiation of the assay at 

366 nm (energy fluence rate 44 Wm-2). Curve b represents the fluorescence 

change obtained from a control experiment with an identical solution kept in the 

dark. 
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Figure 4.10: Fluorescence-based repair study with the A. thaliana enzyme. Assay 

composition: Molecular beacon 21 (0.2 µM), buffer (150 mM NaCl, 10 mM Tris, pH 7.5), 

DTT (10 mM) and A. thaliana enzyme (1.2 µM). Temperature: 27 °C. a) Assay solution 

irradiated at 366 nm (44 Wm-2). b) Dark control. tirr = irradiation time; I = relative 

fluorescence intensity 

 

 

To prove that the large fluorescence signal (curve a, Figure 4.10) was indeed due 

to a result of the hairpin cleavage at the thymidine-dimer position, analytical 

HPLCs were also performed with the irradiated solution using both fluorescence 

and UV detection. Both HPLCs confirmed the extra peaks were the fragmented 

oligonucleotides after the expected dimer cleavage. These data therefore prove 

that the molecular beacon is indeed an efficient assay to allow rapid and reliable 

analysis of even the Class-II photolyase enzymes. 
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4.5. Activity profiling of Class-II photolyase in crude cell 

extracts 

 

With a desire to study the damage repair within living cells (chemistry inside 

living cells), this molecular beacon 21 was employed to fish-out photolyase 

activity in crude, wild type cell extract. Identification and characterization of a 

target protein from a mixture is important in proteomics research.[235, 236] 

Currently, two-dimensional gel electrophoresis or other powerful separation 

techniques in combination with mass spectrometry[237] are most frequently 

employed for the direct investigation of the proteom of cells. Most recently, 

novel small molecule based techniques were described. In this context, B. F. 

Cravatt coupled protease suicide inhibitors to the molecule biotin thereby 

creating compounds which enabled selective extraction and quantification of 

proteases or other proteins with an accessible nucleophile from the complete 

proteom of cells (activity based protein profiling).[238, 239] Along a similar line, P. G. 

Schultz reported synthesis of constructs made up of a small molecule inhibitors 

linked to a PNA-strand and a fluorophore. Addition of these compounds to a 

protein mixture specifically allowed to ʺhuntʺ for certain proteins, which were 

subsequently quantified on a DNA-array.[240] Activity or affinity based protein 

characterization would be a descent way for their separations. In connection with 

the ongoing current effort to investigate DNA repair processes, it would be 

useful to develop methods that will allow quantification of DNA repair activities 

in the proteom of cells. 

 

Using the molecular beacon as probe, the wild-type cell extract from A. thaliana 

plant was analyzed. Figure 4.11 shows the data obtained from the cell extracts 
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studies. All the cell extracts were prepared and supplied by Prof. A. Batschauer, 

our long standing collaborator. As a control, cell extract was also prepared from 

A. thaliana plants lacking the PHR1 photolyase gene (phr1 mutant).  

 

In order to study the possibility of detection of photolyase activity in these cell 

extracts, a 100 µL assay solution was prepared containing 0.2 µM of the hairpin 21 

and a cell extract solution with a concentration of 0.7 µg of total protein per µL 

(70 µg of total protein extract in the assay solution). This assay solution was 

irradiated for 1 h at room temperature at λ = 366 nm (44 Wm-2). The background 

(Figure 4.11b, line 2) was determined by keeping an identical reference assay 

solution, containing the same amount of protein extract in the dark. 
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Figure 4.11: Fluorescence based repair study in cell extracts. Assay composition: 

Molecular beacon 21 (0.2 µM), buffer (150 mM NaCl, 10 mM Tris, pH 7.5), DTT (10 mM). 

Total protein concentration 0.7 µg per µL assay solution. Temperature: 27 °C. 

a) Bar graph representation of the assay data. Each bar shows the difference of the 

fluorescence response between a sample, which was kept in the dark and a sample 
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irradiated at 366 nm (44 Wm-2) for 60 min: 1) an assay containing just the molecular 

beacon. 2) an assay containing protein extract from the photolyase mutant UVR2-1. 3) an 

assay containing protein extract from wild type plants. I = relative fluorescence intensity.  

b) Time dependent increase of the fluorescence response from a sample containing the 

wild type cell extract and the molecular beacon 21.1: Irradiated assay solution with wild 

type extract. 2: Assay solution kept in the dark 

 

 

Relative to the mutant control, depicted in Figure 4.11a, bar 2 in which the 

difference of the fluorescence response between the irradiation (366 nm, 44 Wm-2) 

and the dark control was plotted, a reproducible threefold increase in 

fluorescence signal was observed in the assay solution containing the wild type 

cell extract (Figure. 4.11a, bar 3). This indicates reduced photolyase activity in the 

mutant plant. Bar 1 (Figure 4.11a) shows an identical experiment as above but 

with an assay containing only the molecular beacon, and no cell extract, which 

shows almost no change in fluorescence response. 

 

As evident from Figure 4.11a that the molecular beacon 21, containing a reporter 

unit (the thymidine dimer), is able to detect photolyase specifically from a 

protein-pool. The efficiency of this probe, though, is not up to the mark as 

expected. The mutant extract which should lack the photolyase enzyme also 

showed some light-induced DNA cleaving activities as can be seen from Figure 

4.11a, bar graph 2. This can be due to presence of some other light-active 

proteins.  

 

Figure 4.11b, where the fluorescence change of the hairpin with wild-type extract 

irradiated at 366 nm is plotted compared to its dark control, reflects a significant 
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amount of background activity (curve 2). As it is a dark control, this unexpected 

background signal could not result from photolyase activity, although according 

to recent scientific believe, the presence of photolyases which are also active in 

dark can not be ruled out. This large background signal might have generated 

from DNA cleaving protein. In order to further investigate the detection limit, a 

small amount of purified A. nidulans photolyase was added during wild type cell 

extract assay and the increase of repair rate was recorded. A systematic study 

showed that an amount of 5-10 pmol of purified photolyase was clearly 

detectable with the hairpin dissolved in cell extract.  

 

In order to address the prominent dark control activity obtained from Figure 

4.11a, line 2, stability of the molecular beacon 21 in the cell extract was studied 

carefully, which is described later in this chapter.  

 

 

4.6. Study with living cell: single cell detection 

 

With an aim to study CPD-repair inside living cell, first, attempt was taken to 

incorporate the MB-probe 21, containing the CPD-lesion, into a plant cell. This 

was done by ‘transformation from A. thaliana protoplast’. All experiments were 

performed in collaboration with Prof. A. Batschauer. In short, membrane free cells 

(called protoplast) were obtained from A. thaliana cell-culture solution by 

incubating it at 22 °C for 5 min, followed by re-suspension of the precipitate in an 

enzyme mixture containing membrane cleaving proteins. MB-probe 21 was 

incubated with a carrier DNA (plasmid) and transformation was performed by 

incubating this mixture with the protoplast solution.  
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Detection of the MB-probe inside cell was performed by a laser scanning 

fluorescence microscope. Figure 4.12 shows the abundance of fluorescence in the 

cell-nucleus compared to the control study. Further analysis of the fluorescence 

spectrum yielded an emission maximum of 515 nm (see Figure 4.13), which is in 

fact, matches with the emission of the FAM which is labeled at the 5’-end of the 

MB-probe 21. This confirms that the fluorescence obtained in the cell-nucleus 

(Figure 4.12) is due to the incorporation of the MB-probe containing the CPD-

lesion. Further experiments to study the actual repair of the CPD-lesion inside 

the cell, is currently underway.  

 

 

Figure 4.12: Image obtained from confocal fluorescence microscopic study. The bright 

fluorescence spot represents the incorporation of the MB 21 inside the cell-nucleus.  
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Figure 4.13: The fluorescence spectrum obtained from the Figure 4.12. The strong 

emission signal at 515 nm proves that its due to the fluorophore FAM.  

 

4.7. Stability of the MB-probe in cell extract 
 

In order to address the significant fluorescence signal in the dark control in 

Figure 4.11a, line 2, in section 4.5, the stability of the MB-probe 21 in the wild-

type cell extract was performed. As cell extract contains many different proteins, 

it might react with the non-biological compounds such as the CPD-lesion, FAM 

and Dabsyl present in MB 21, and thereby degrade the MB.  

 

A systematic study was performed, first with a hairpin strand 24 (5’-FAM-

CGACGTXTCGTCG-3’, where X= CPD-lesion), which has exactly the same 

sequence as MB 21 but without the 3’-Dabsyl labeling. Hairpin 24 was diluted in 

the cell extract. A fraction of this solution was incubated for about 30 min in dark 

at 20 °C. The other fraction was irradiated in white light (to see the CPD-repair). 

Both samples were then analyzed by HPLC (fluorescence detection) using ion-

exchange SAX-column. Figure 4.14 shows the HPLC profiles of the unirradiated 
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(Figure 4.14a) and irradiated (Figure 4.14b) samples. The sharp, single peak of 

the hairpin 24 in Figure 4.14b, clearly explains that the FAM and the 

incorporated CPD-lesion are fairly stable in cell extract. On the other hand, the 

HPLC of the irradiated sample (Figure 4.14b) showed a new peak at about 

21 min of elution time which is proved, by co-injection study, to be the FAM 

containing repaired strand 22. This experiment proves that photolyase is active 

and is recognized by the hairpin 24 in the cell extract. Similar experiments were 

performed to test the stability of this hairpin in mutant cell extract. The dark 

control, after 30 min of incubation in a dark room, showed no change in HPLC 

(not shown in Figure). The irradiated sample also did not yield any new peak in 

HPLC analysis proving that neither hairpin degradation nor CPD-repair 

occurred in the mutant cell extract which devoid of any photolyase.  
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Figure 4.14: Depiction of HPLCs of the hairpin 24 in wild-type cell extract: a) probe 

taken in cell-extract was incubated in dark for 30 min and b) probe in cell extract was 

iraadiated in white light for about 30 min. 

 

Incubation of the MB 21 in wild-type cell extract in dark for 60 min, followed by 

HPLC analysis produced about 30% degradation of the MB 21 (not shown in 
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Figure). The main degraded peak is assumed to be due to lose of the 3’-Dabsyl. 

The reason might be due to presence of a sulphamide group in Dabsyl (see 

Figure 4.3, section 4.2 for structure of Dabsyl) instead of a biologically relevant 

amide group.  
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Figure 4.15: HPLC profiles for the stability of the MB 25 in wild-type cell-extract: a) 

HPLC of the probe before addition of the cell-extract and b) HPLC after incubating MB 

25 in cell extract in dark for 60 min.  

 

In order to improve the sensitivity of the MB-probe to study CPD-repair in cell 

extract and in future, in living cell, a new MB-probe was synthesized with same 

sequence as MB 21 but replacing 3’-Dabsyl by 3’-Dabcyl which contain an amide 

group instead of a sulphamide group (see Figure 4.3). The stability of this probe 

(MB 25: 5’-FAM-CGACGTXTCGTCG-3’-Dabcyl where X= CPD-lesion) was 

tested after incubating in cell extract. Incubation of this probe in cell extract in 

dark for about 60 min yielded no degradation of this strand, as depicted in 

Figure 4.15. Hence, this MB 25 can be an efficient DNA-probe with required 

sensitivity to study CPD-repair in wild-type cell extract and also in living cell.  
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4.8. Summary and conclusion 

 

The detailed analysis of the DNA, RNA, and protein-content (genome, 

transcriptome and proteome) of cells is of paramount importance for our 

understanding of the complex functional networks that control life. Knowledge 

gained in the areas of genomics[146] and proteomics[235, 236] may lead to the 

discovery of new pharmaceutical targets and the development of novel 

therapeutic strategies.  

Genomic DNA in cell is constantly undergoing damages due to various factors. 

The DNA-lesions are mutagenic and hence are harmful for the cell. DNA-

photoproducts are the damages formed due to UV-exposure and need to be 

repaired to maintain healthy cell divisions. Photolyase was found to be the major 

defense system of the plants as well as many other organisms. CPD-photolyases 

are known to repair the CPD-photolesions in a light-driven process.  

 

In the present work, the photoreversion of a thymidine CPD-lesion by 

photolyase enzyme, isolated from A. nidulans and A. thaliana, was studied using a 

recently developed molecular beacon probe technique. The photolyase-substrate 

MB 21 contained a synthetic thymidine CPD-lesion which mimics naturally 

occurring CPD-lesion. This lesion was designed to induce a strand break during 

photolyase-catalyzed dimer repair. The MB 21 served as an efficient and 

sensitive probe to profile photolyase-activities. The activities of both Type-II (A. 

nidulans) and Class-II (A. thaliana) CPD-photolyases were profiled with this new 

probe methodology.  
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The sensitivity of the probe DNA 21 was tested with wild-type and over-

expressed cell extracts isolated from A. thaliana. The probe could successfully 

detect photolyase activity even within a wild-type extract, despite of the fact that 

a significant background activity was observed. Effort was made to investigate 

the repair process within a living cell, using fluorescence microscopy. Towards 

this goal the MB 21 was injected into the living cell. The insertion of this artificial, 

chemically modified DNA-substrate in the cell nucleus was achieved.  
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5. Experimental Section 
 

 

5.1. Materials and methods 

 

5.1.1. Equipments used in this study 

 

Oligonucleotide Synthesis: The oligonucleotide strands were synthesized on a 

Perseptive Biosystems’ ExpediteTM 8900 DNA synthesizer, Model: 8909, a versatile 

dual column instrument. The model 8909 of the 8900 series can use up to nine 

nucleotide monomer reservoirs and eight ancillary reagent reservoirs with a total 

capacity of 800 cycles at 0.2 µmole scale. The protected phosphoramidites were 

purchased from Glen Research. The solid CPG-supported oligonucleoside 

cartridges were bought from PE Biosystems. The other ultra dry reagents (p.a) 

were purchased from Fluka, Aldrich and Roth. The solvent acetonitrile for 

activator and the phosphoramidite monomers were bought from Roth with a 

water content of less than 10 ppm. The synthesis was carried out by following 

standard DNA synthesis protocol provided by Perseptive Biosystems’. 

 

 

UV/Vis Spectrometry for melting point measurement: Absorptions, 

concentrations and melting temperatures (Tm) of the oligonucleotide strands 

were measured with a Varian Cary Bio 100 UV-spectrometer equipped with a 

Cary Temperature Controller, Sample Transport Accessory and Multi Cell Block. A 

constant flow of nitrogen kept the sample block[241] free from air/moisture. The 
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temperature of the probe was measured from a reference cuvette containing only 

water. A constant gradient of 5 °C/min was used for melting point 

measurements. Cuvettes of 4 mm inner-diameter and 10 mm path length, 

purchased from Helma, were used. The extinction-coefficient (ε260) of the oligos 

were calculated by algebraic addition of the ε260 of the individual monomeric 

nucleobases. The used values are given in Table 5.1. The extinction-coefficient of 

the thymidine dimer (CPD) was approximately taken as twice that of a 2’-

deoxythymine monomer. 

 

 

Table 5.1: Tabulation of the extinction coefficient (ε260) of the nucleosides at 260 nm. 

 

Nucleobases dA dC dG dT 6-Fam T=T 

dimer 

ε260 (mmol-1. 

cm 

15.01 7.11 12.01 8.41 21.00 16.81 

(2*dT) 

 

 

The concentration of a DNA oligonucleotide was determined by its relative 

absorptivity at 260 nm and was calculated using standard program. The melting 

point (Tm) was determined as follows: an array of melting curves of a given 

DNA-strand were plotted in OriginR and fitted with 9th order polynomial 

function. The null point of the second derivative of the polynomial function gave 

the value of ‘point of inflection’ which is the melting point of the oligonucleotide 

strand. 
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Fluorescence Spectroscopy: Fluorescence spectra were measured using JASCO-

FP-750 fluorescence spectrometer (150 W Xe-lamp, single monochromator) 

equipped with a Temperature Controller. A DNA concentration of about 0.2 µM 

(200 µL) was used in a 2 mm fluorescence cuvette (Helma).  

 

 

Circular Dichroism (CD) Spectroscopy: The conformations of the oligos were 

determined with a J810 spectropolarimeter from JASCO. A CDF426 temperature 

controller was used to monitor the temperature during measurements. 

 

 

HPL-Chromatography: The synthesized oligos were purified and analyzed by 

HPL-Chromatograms. For analytical studies, a Merck-Hitachi HPL-Chromatogram 

(Darmstadt, Germany) with D-7000 interface module, L-7480 fluorescence detector, 

L-7400 UV-detector, L-7200 autosampler, L-7100 pump and a L-7612 degasser 

were used along with an external column thermostat from JASCO. The 

purification of the oligonucleotides were also performed by a Merck-Hitachi HPL-

Chromatogram (Darmstadt, Germany) configured with an D-7000 interface, L7420 

UV-Vis detector, L-7150 pump and L-7350 column oven. The sample to be 

purified was injected manually via rheodyne.  For LCMS and HPLC-ESI-MS/MS, 

an Agilent Technologies (Waldbronn, Germany) 1100 series HPLC was employed, 

configured with a quarternary pump, vacuum degasser, autosampler, column 

thermostat, and UV-detector (variable wavelength). A variety of columns were 

utilized depending upon purposes. For DNA purification, preferentially a 

Nucleosil 100-7 C18 Macherey-Nagel column (250*10 mm) was explored. Analytical 

separations were performed with a series of different columns: reverse phase 

Nucleosil 100-5 C18 (250*4) and 120-3 C18 (250*4 mm) columns were used from 
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Macherey-Nagel; ion exchange Nucleogel SAX (1000-8) from Macherey-Nagel was 

explored extensively for UV-induced damage studies. A highly efficient 

Uptisphere 3 HDO C18 (150*2.1 mm) was used for LCMS analysis.  

The buffers were prepared from quality puriss. p.a or purum reagents and 

solvents, purchased preferentially from Fluka. Purum solvents were distilled 

prior to use. The commercially available reagents were used without further 

purification.  

 

 

Mass Spectroscopy (MS): The MS service was generously obtained from the 

Department of Chemistry, Philipps University Marburg; AG Marahiel (Department 

of Chemistry, Philipps University Marburg) and Department of Chemistry and 

Pharmacy, Ludwig-Maximilians University Munich. The ESI-Mass Spectrometries 

were either from Finnigan TSQ7000 (probe concentration ca 10-5 M in MeOH or 

MeCN, flow 25 µL/min, N2 spray) or Finnigan MAT95. ESI-MS/MS were 

measured with a QStar Pulsar i (ESI-Q-q-TOF) mass spectrometer from Applied 

Biosystem, Darmstadt, Germany. MALDI-TOF mass spectra were measured with a 

Brucker Biflex III instrument (Matrix: 2,4,6-Trihydroxyacetophenon (0.5 M in 

EtOH)/Diammoniumcitrate (0.1 M in water) in 1:1 vol. ratio or 3-

Hydroxypicolinic acid (0.5 M) in acetonitrile/water mixture in 1:1 vol. ratio). 

Probes were measured either with normal mode (both positive and negative) or 

reflective mode (negative) with 19 KV acceleration voltage. Irradiated DNA 

probes were desalted prior to measurement, through MF-MilliporeTM membrane 

filter (pore size 0.025 µm). The mass signals were assigned by their m/z values. 
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Capillary Electrophoresis: A P/ACETM MDQ DNA system from Beckman Coulter 

was employed for analytical separation of oligo nucleotides. Separations were 

performed on the basis of mass/size (m/z) of the oligos. A 21 cm long, fused-silica 

capillary was used for analysis. The stationary phase was a highly viscous 

polyacrylamide gel, purchased from Beckman Coulter and was prepared with 

double distilled water.  Tris-Borate-EDTA buffer also from Beckman Coulter, 

served as the mobile phase. The buffer contained 7 M urea, to suffice the DNA 

double strand denaturation. DNA probes were injected into the capillary by 

immersing the two ends of the capillary (function as electrodes) into sample vial 

for over 2 sec. with 10 KV injection voltage and were measured at a constant 

separation voltage of 9 KV for a period of 45 min. The detector was either a dual 

wavelength laser induced fluorescence (LIF) detector (488 nm argon ion laser 

module) or a UV-VIS detector. 

Some of the other equipments used in this study are listed in below in table 5.2. 

 

 

Table 5.2: Equipments used for DNA-damage and repair studies. 

 

Equipment Manufacturer 

Autoclave  Systec (Wettenberg) 

Speed vac Savant (Zürich) 

Centrifugate  Heraeus AG 

Rotovapor Heidolph 

Thermomixer comfort  Eppendorf 
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Oligonucleotides  

 

The chemically available oligos were purchased from Metabion or MWG-Biotech 

AG (Germany). Oligos were further purified by HPLC and characterized by 

MADI-TOF. The RNA’s and DNA-RNA mixed oligos were purchased from IBA 

(Germany) and were used without further purification. 

 

 

5.1.2. Materials and Reagents 

 

Solvents and Chemicals: All used solvents and chemicals were of analytical 

grade (p.a) and were purchased from Fluka (Deisenhofen), Sigma (München), Roth 

(Karlsruhe), Acros (Belgium) and Merck (Darmstadt). Solvents were distilled prier 

to use and dried when needed following established protocols. Distillations were 

performed using rotovapor from Büchi. Dry solvents for DNA synthesis were 

further dried over molecular sieve (4 Å) prier to use. A list of materials used is 

shown in Table 5.3. 
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Table 5.3: List of important materials used for this study. 

 

Materials Manufacturer 

Quartz cuvettes  Helma (Mülheim) 

Pipettes  Eppendorf, ABimed (France) 

DNA CPG-cartridges  Glen Research 

Eppendorf cups VWR (Darmstadt) 

PCR tubes VWR (Darmstadt) 

Membrane filters Millipore 

Sep-pakR  C-18 cartridges  Waters Millipore 

syringe filters (0.45 µm and 0.2 µm) Whatman, Macherey-Nagel 

HPLC vial VWR 

 

 

Enzymes for DNA digestion  

The commercial enzymes used for oligonucleotide digestion is depicted in Figure 

5.4. 

Table 5.4: List of the commercial enzymes used in this study 

Nuclease P1 (from penicillium 

citrinum) 

Roche Diagnostic GmbH 

Phosphodiesterase I (from snake 

venom) 

USB 

Phosphodiesterase II (from calf spleen) CalBioChem 

Alkaline Phosphatase (CIP) BioLabs 
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5.2. Methods 

 

 

5.2.1. DNA damage study 

 

 

5.2.1.1. Purification of oligos 
 

All purchased DNA-hairpins were further purified by reversed-phase HPL-

chromatography. About 1 mL of concentrated DNA was injected manually into 

the HPLC via rheodyne. Peaks were detected by absorption at 260 nm. The 

following protocol was used for purification: 

 

VP 250/10 Nucleosil 100-7 C18 column from Macherey-Nagel 

Buffer A: 0.1 M Triethylammoniumacetate in H2O 

Buffer B: 0.1 M Triethylammoniumacetate in H2O/ 80% Acetonitrile 

Flow: 5 mL /min 

Gradient: 0-45% B in 35 min 
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5.2.1.2. Characterization of oligos 

 

The purified DNA was dissolved in about 1 mL double-distilled water in an 

eppendorf cup. DNA was characterized by its m/z value obtained from MALDI-

TOF. Two kinds of matrices were used for the measurement: 

2,4,6-Trihydroxyacetophenon (0.5 M in EtOH)/Diammoniumcitrate (0.1 M in 

water) in 1:1 vol. ratio 

3-Hydroxypicolinic acid (0.5 M) in acetonitrile/water (1:1 vol. ratio) 

 

A 1:1 mixture (by volume) of a DNA-probe (1-10 pmol/µL) and the matrix was 

prepared. About 0.5 µL was pipetted onto the target which was subsequently 

allowed to dry at room temperature to obtain solid crystal. MALDI-TOF was 

measured either in normal mode (positive or negative) or reflector mode 

(negative) with 19 KV acceleration voltage. 

 

 

5.2.1.3. Concentration and melting point determination 

 

With a fraction of the DNA stock solution, optical density (OD) was measured at 

260 nm. The probe solution, taken in a UV-cuvette, was heated to 85 °C inside 

UV-spectrometer and OD260 was measured compared to a reference cuvette filled 

only with double-distilled water. Concentration of the DNA stock solution was 

then determined applying Lamberts-Beer’s equation: 

 A260 = log I/I0= c. ε260.d 

ε260 = Σi εi 
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where A260 is the absorbance of the probe at 260 nm which is determined from the 

intensity of the transmitted light (I) compared to the intensity of the emerging 

light (I0), c is the concentration of the probe DNA, ε260 is the algebraic sum of 

extinction-coefficients of the individual nucleosides at 260 nm and d is the path-

length of the light through the sample.  

 

A 3 µM DNA solution was prepared in 150 mM NaCl/10 mM Tris-HCl buffer (pH 

7.4) for melting point (Tm) determination. The solution (900 µL) was taken in a 

UV-cuvette with a thin layer of silicon-oil on top of it, to prevent evaporation. 

Absorptions (A260, A280, A320) were measured, at a constant temperature gradient 

of 0.5 °C/min starting from 5 °C to 95 °C. Tm was computed from a plot of 

absorptions against temperature in OriginR. 

 

 

5.2.1.4. Hybridization of oligos 

 

Oligonucleotides, which preferentially adopt a tertiary, undefined structure in 

their normal state, were hybridized with their counter-strands (for hairpins, self 

hybridization), prier to any experiment, to obtain a well defined duplex 

structure. Oligonucleotide solutions, prepared in 150 mM NaCl/10 mM Tris-HCl 

(pH 7.4) buffer in eppendorf cups (1.5-2 mL), were heated to 85 °C in a Test Tube 

Thermostat (TCR100, Roth) containing pure water for a duration of 5-7 min. 

Turning off the power supply allowed slow cooling of the blocks to room 

temperature and subsequent annealing of the oligos. 
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Hybridizations were also performed inside PCR instrument by heating the 

probes (taken in PCR tubes) to 90 °C and subsequent cooling to 4 °C with a 

temperature gradient of 0.5 °C/min. 

 

 

5.2.1.5. Irradiation of hairpins 

 

All irradiations were performed at 254 nm (±10 nm) inside a fluorimeter (150 W 

Xe-lamp). All oligonucleotide solutions were prepared at the same concentration 

(0.2 µM) in a buffer containing 150 mM NaCl/10 mM Tris-HCl; pH = 7.4. About 

200 µL of each solution was taken in a 2 mm fluorescence cuvette and was 

irradiated for duration of 20-30 min at a constant temperature of 10 °C. A 

constant flow of nitrogen always kept the probe chamber free from 

oxygen/moisture in order to avoid any oxidation of DNA by external agents. 

After irradiation, 20 µL of solution was injected into the HPLC for damage 

formation analysis. 

Irradiation of DNA probe for enzymatic digestion was performed with a 254 nm 

hand lamp (2*15 W) from Vilbert Lourmat (France), having an energy fluence rate 

of 7 mW/cm2. DNA, RNA and/or DNA-RNA mixed hairpins (20 µM) was 

irradiated for 14-15 min in a dark room at 10 °C, to produce enough damage for 

MS/MS analysis.  
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5.2.1.6. Desalting oligos by Sep-pak C18 

 

The duplex oligonucleotide hairpins were desalted after irradiation through sep-

pak C18 column. The procedure involved the following steps. 

 

Step 1: The column was activated by purging it with 10 mL Acetonitrile over 

1 min. 

Step 2: Column was then slowly equilibrated with 10-15 mL of double distilled 

H2O over a period of 2 min. 

Step 3: The remaining H2O was pushed out of the column by purging air through 

it. 

Step 4: DNA (less than 1 mL) was then injected onto the column by a syringe with 

a flow of about 1 mL /min 

Step 5: Column was washed with 3-4 mL of double distilled H2O with a flow of 

about 2 mL /min to get rid of all the salts present with DNA sample. 

Step 6: Column was made dry by pumping air (about 2 mL) through it. 

Step 7: Finally DNA was eluted using 4-5 mL of 80:20 Acetonitrile/water for a 

period of 3 min. 

 

 

5.2.1.7. HPLC detection of DNA-damage 

 

The lesion containing oligonucleotides, after irradiation, were separated and 

identified from their undamaged counterpart by means of analytical HPLC. A 

new methodology employing Nucleogel-SAX-column was established for the 

damage-separation.  
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All analyses were performed at room temperature (25 °C) using HPL-

chromatography associated with a fluorescence detector (L-7480). A Nucleogel-

SAX (1000-8) column, purchased from Macherey-Nagel was utilized for the 

separation. The following protocol was used.  

 

Buffer A: 0.2 M NaCl/0.01 M NaOH in H2O, pH = 13 

Buffer B: 1.0 M NaCl/0.01 M NaOH in H2O; pH = 13 

Flow rate: 0.7 mM/min 

Gradient: 0-75% B in 25 min and then to 85% B in 35 min. 

 

20 µL of a sample was injected into the HPLC through an autosampler (L-7200). 

The fluorescence detector was set at an excitation-wavelength of 495 nm, which 

is the absorption maximum of 6-FAM. Consequently, emission spectrum was 

measured at 520 nm. 

 

Detection of damage formation for very short, single-stranded oligonucleotides 

(4-6 nucleobases long) was achieved by reversed-phase (C18) column using a 

very flat gradient. The slight polarity difference between a dinucleotide and a 

photodimer could be detected by 120-3 C18 column only for very short 

oligonucleotides. The separation conditions were as follows: 

 

VP 250/4 Nucleosil 120-3 C18 column from Macherey-Nagel 

Buffer A: 0.1 M Triethylammoniumacetate in H2O 

Buffer B: 0.1 M Triethylammoniumacetate in H2O/80% Acetonitrile 

Flow: 0.6 mL/min 

Gradient: 0 to 30% B in 90 min 
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5.2.1.8. Determination of conformations of the hairpins 

 

The conformations of the DNA, RNA and DNA/RNA mixed hairpins were 

determined using CD spectrometry. The probe (3 µM, 900 µL), taken from the 

UV-spectrometer after the Tm measurement, was used CD analysis at 25 °C.  

 

 

5.2.1.9. Enzymatic digestion 

 

In order to characterize the photoproducts formed upon UVC irradiation, 

oligonucleotide hairpin was fully digested into the individual nucleobases by 

action of a set of enzymes. In addition to four canonical nucleobases, the 

irradiated hairpin also produced dinucleotide photoproducts upon enzymatic 

digestion. The hairpin (20 µM), after irradiation for 15 min by 254 nm hand lamp 

and subsequent desalting, was treated for complete enzymatic-digestion. A 

100 µL (20 µM) solution of the oligonucleotide was taken in an Eppendorf cup. 

The digestion was performed in two steps at different pH conditions. The buffers 

used were: 

 

Buffer A: 300 mM ammonium acetate, 100 mM CaCl2 and 1 mM ZnSO4; pH = 5.7 

Buffer B: 500 mM Tris-HCl, 1 mM EDTA; pH = 8.0 

 

Step 1: 10 µL of buffer A was added to the probe solution followed by addition of 

nuclease P1 (penicillium citrinum): 20 units  

and phosphodiesterase II (calf spleen): 0.5 units  
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The solution was incubated at 37 °C for about 3 hrs in a thermomixer. 

 

Step 2: to the resulting solution from step 1, 12 µL of buffer B was added to raise 

the pH to approximately 8.0 followed by successive addition of  

alkaline phosphatase (calf intestine) 10 units and 

phosphodiesterase I (snake venom) 0.1 unit 

The solution was further incubated for a period of 2-3 hrs at 37 °C. The solution 

thus obtained was added to 6 µL of hydrochloric acid (0.1 N) to bring the pH 

down to approximately 7.0. The solution was then centrifuged at 3000 g for about 

5 min to precipitate the excess enzymes. The supernatant aqueous phase was 

collected and transferred to another Eppendorf cup for storage at -80 °C. A 30 µL 

solution was transferred into HPLC injection vial for damage analysis. Samples 

were analyzed by HPLC-MS/MS system to characterize dinucleotide-

monophosphate photoproducts. As a control, a parallel digestion was always 

performed with the corresponding unirradiated oligonucleotide. 

 

 

5.2.1.10. HPLC-MS/MS analysis 

 

The individual nucleosides and the lesion dinuclotides, after enzymatic digestion 

were identified by HPLC coupled to a mass spectrometer. A highly efficient 

Uptisphere 3 HDO column (150*2.1 mm) was utilized for separation of the 

nucleosides. The following conditions were used for the separation. 

 

Buffer A: 2 mM Triethylammonia/Acetic acid in H2O 

Buffer B: 2 mM Triethylammonia/Acetic acid in 80% Acetonitrile/ 20% H2O 
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Gradient: A mixed gradient was used with 0-3% B in 12 min and up to 20% B in 

30 min. 

Flow rate: A very low flow rate of 0.2 mL/min was used in order to facilitate 

detection of individual masses. 

 

The UV detector was set at 210 nm, since most of the dinucleotide photoproducts 

absorb at this wavelength. A sample volume of 30 µL of 20 µM concentration was 

injected. The components coming apart from HPLC were allowed to pass 

through a Qstar i pulser mass spectrometer (Applied Biosciences) at a maximum 

flow rate of 200 µL/min where they were ionized and were subsequently 

measured by ESI-MS. The characterization of the photoproducts was performed 

with a quadrupole. Here an ion of a particular m/z value was selected depending 

on its frequency and was passed through the quadrupole on a stable flight path 

where it gets fragmented and was identified by its characteristic fragmentation 

pattern.  

The polarity was always set to the negative ion mode with ion-spray voltage of -

4000 V. Ion source gas1 was set to 40, curtain gas to 25. Other measuring 

parameters were as follows: DP1 -60V, FP -225V, DP2 -10V. 

The TOF range was chosen from 150 amu to 600 amu for both MS and MS/MS 

measurements. For ESI-MS a standard CAD-gas value of 3 was used, while it 

was increased to 7 for MS/MS analysis. For better signal intensities, the product 

ion scans (MS/MS) were performed in the ‘Enhance Allʹ modes with a value of -

34 V for the collision energy (CE), while the first quadrupol (Q1) was fixed 

during these experiments to the mass of the ions of interest. 
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5.2.2. DNA repair 

 

 

5.2.2.1. Synthesis of oligonucleotides 

 

The oligonucleotides containing lesions were synthesized with a Perseptive 

Biosystems’ ExpediteTM 8900 automated DNA synthesizer (Figure 5.1). Synthesis 

was performed on a controlled pore glass (CPG) supported cassette (cartridge). 

The cassette usually contained the 3’-nucleoside attached to CPG support. 

Synthesis was usually carried out automatically by sequential addition of β-

cyanoethyl phosphoramidite monomers from 3’ to 5’ direction. The monomers 

and most of the other reagents were prepared with 10 ppm acetonitril (p.a) and 

were left overnight on pre dried molecular sieves (4Å) in dark. The following 

reagents were used during synthesis in 1.3 µmol scale. 

 

Phosphoramidite A, T, G, C: 0.10 M in 10 ppm MeCN 

Modified Phosphoramidites: 0.15 M in 10 ppm MeCN 

Detritylation: 3% Dichloroacetic acid in Dichloromethane (DCM) 

Activator: Turbotetrazole (0.15 M ) with 0.45 M tetrazole in THF  

Capping (Cap A): Pac-anhydride (0.53 M), 2,6-Lutidin (11.1%) in 30 ppm MeCN 

Capping (Cap B): N-Methylimidazol (16%) in 30 ppm MeCN 

Washing: Dichloromethane, 30 ppm Acetonitril (MeCN) 

Oxidation: Iodine (0.01 M) in 2,6-Lutidin/acetonitrile/H2O 0.6:6.5:3 
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Figure 5.1: Depiction of a Perseptive Biosystems’ ExpediteTM 8900 automated DNA 

synthesizer used in this study for automated DNA-synthesis. 

 

 

After installing the reagents, the channels were filled up with fluids by priming 

each reagent following the procedure in the manual. All syntheses were 

performed with ‘DMT-on’ mode. The coupling time for usual phosphoramidites 

was 1 min and that of the modified phosphoramidites was chosen as 5 min. The 

advancement of the synthesis was monitored with a ‘trityl viewer’ on the basis of 

UV absorbance of the outgoing trityl group produced during detritylation.  
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5.2.2.2. Deprotection of the oligonucleotide 

 

After the DNA synthesis is over, the cartridge was taken out of the synthesizer, 

transferred into an eppendorf (2 mL) cup and the DNA was cleaved from the 

solid support. The following protocol was employed for the deprotection. 

 

DNA Cartridge: 1 µmol 

Ammonia (30% in H2O, p.a): 0.9 mL 

Ethanol (p.a): 0.3 mL 

Temperature: 55 °C 

Time: 12 hrs 

Incubation speed: 1000 rpm 

 

Deprotection of the oligonucleotide from the solid CPG-support and the cleavage 

of the phosphoramidite-protecting groups could be performed at room 

temperature in 4 hr. But for modified phosphoramidites such as cis-syn CPD-

silyl-thymidine dimer or 6-FAM, an extended period of 12-14 hrs was used at 

elevated temperature, as shown above.  

After deprotection, ammonia was evaporated in a speed vac, sample was diluted 

with double distilled water (0.5 mL) and the glass beads were filtered ‘off’ 

through a Whatman 0.2 µm syringe filter. The solution was then concentrated in 

a speed vac, and finally a solution of 1 mL was made and stored at -80 °C. 
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5.2.2.3. Purification of oligonucleotides 

 

The deprotected DNA was purified from the unsuccessfully coupled sequences  

by reversed-phase HPLC as described earlier in this section. For hairpin DNAs, 

purification were performed at an elevated column temperature of 50 °C. 

 

VP 250/10 Nucleosil 100-7 C18 column from Macherey-Nagel 

Buffer A: 0.1 M Triethylammoniumacetate in H2O 

Buffer B: 0.1 M Triethylammoniumacetate in H2O/80% acetonitrile 

Flow: 5 mL/min 

Gradient: 0-45% B in 35 min 

 

Fractions were collected in 10 mL eppendorf tubes, followed by evaporation of 

the solvent and finally transferred into 2 mL eppendorf cups. The identity of the 

desired DNA was confirmed by MALDI-TOF measurement. Finally a stock 

solution of 1 mM was made and was stored at -80 °C for further studies. 

 

 

5.2.2.4. Repair studies with the purified A. nidulans photolyase 

 

Repair measurements were performed using a fluorescence spectrometer 

(JASCO-FP-750). An assay solution (100 µL) containing photoreactivation buffer 

(NaCl: 150 mM, Tris: 10 mM), DTT (10 mM) and A. nidulans enzyme (0.15 µM) was 

prepared. The solution, taken in a cuvette, was sealed with a rubber-septum and 

was set free from oxygen by purging nitrogen-gas slowly through the sample for 

about 2 min. The complete reduction and activation of the FAD-containing A. 
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nidulans was performed by shining white-light onto the solution for about 1 min, 

followed by addition of the substrate molecular beacon 21 (0.2 µM). For the 

catalytic study, the assay solution was irradiated by white-light and the 

fluorescence intensity (excitation: 495 nm, emission: 520 nm) was measured time 

to time. The experiment was performed at 27 °C. The dark control was carried 

out simultaneously using a similar cuvette and identical conditions. Irradiation 

in the absence of photolyase was also performed under similar conditions. The 

analysis of the repair reaction by HPLC was performed with an assay solution 

(200 µL) containing molecular beacon 21 (4 µM), buffer (NaCl: 150 mM, Tris: 

10 mM), DTT (10 mM) and A. nidulans photolyase (0.2 µM). The solution was 

again irradiated by white light. 10 µL samples were taken out after defined time 

intervals. To these samples was added 20 µL of an acetic acid (20%) solution to 

stop any further repair. HPLC analysis was performed using the following 

conditions:  

 

VP 250/4 Nucleosil 120-3 C18 column from Macherey-Nagel 

Buffer A: 0.1 M Triethylammoniumacetate in H2O, pH 7.0 

Buffer B: 0.1 M Triethylammoniumacetate in H2O/80% acetonitrile, pH 7.0 

Flow: 0.7 mL/min 

Gradient: 0-45% B in 35 min 

 

5.2.2.5. Repair studies with the purified A. thaliana photolyase:  

 

Repair experiment was carried out as described above. The assay solution 

(100 µL) contained the molecular beacon 21 (0.2 µM), photoreactivation buffer 

(see above) and A. thaliana photolyase in a concentration of 1.2 µM. The 
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photoreactivation of the enzyme was commenced by irradiating the assay 

solution under white-light for a short time. All irradiations were carried out with 

a 366 nm lamp (energy fluence rate 44 Wm-2) at 27 °C. The dark control was 

performed simultaneously but the assay solution was kept in the dark. Total 

protein extracts were prepared from rosette leaves of 21-day-old A. thaliana wild-

type (ecotype Landsberg erecta) and photolyase mutant uvr2-1 plants essentially 

as described previously.  

 

 

5.2.2.6. Repair study with cell extracts:  

 

Repair experiments were carried out as described above. The assay solution 

(100 µL) contained the molecular beacon 21 (0.2 µM), photoreactivation buffer 

(see above) and cell extracts in a final concentration of 0.7 µg per µL. All 

irradiations were carried out with a 366 nm lamp (44 Wm-2) at 27 °C. As a 

background control, another assay solution was kept in the dark.  
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6. Abbreviations 
 

EtOH   Ethanol 

MeOH  Mthanol 

THF   Tetrahydrofuran 

MeCN  Acetonitrile 

DCM   Dichloromethane 

EDTA   Ethylenediaminetetraacetate 

6-FAM  6-Fluorescein 

THA   2,4,6-Trihydroxyaccetophenone monohydrate 

NEt3   Triethylamine  

AcOH   Acetic acid 

TFA   Trifluoroacetic acid 

Pac-anhydride Phenyloxyaceticanhydride 

Tetrazol  5-(4-Nitrophenyl)-Tetrazol 

NMR   Magnetic Resonance 

min   Minute 

MS   Mass Spectrometry 

UV   Ultra-violet 

CD   Circular Dichroism 

Vol.   Volume 

Min   Minute 

hr   Hour 

µM   Micro-molar 

µL   Micro-liter 

L   Liter 

Oligo   Oligonucleotide 
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Tris   Tris-(hydroxymethyl)-aminomethane hydrochloride  
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