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Summary

Machine Learning (ML) models are increasingly used in industry, as well as in
scientific research and social contexts. Unfortunately, ML models provide only
partial solutions to real-world problems, focusing on predictive performance
in static environments. Problem aspects beyond prediction, such as robust-
ness in employment, knowledge generation in science, or providing recourse
recommendations to end-users, cannot be directly tackled with ML models.

Explainable Artificial Intelligence (XAI) aims to solve, or at least highlight,
problem aspects beyond predictive performance through explanations. How-
ever, the field is still in its infancy, as fundamental questions such as “What
are explanations?”, “What constitutes a good explanation?”, or “How relate ex-
planation and understanding?” remain open. In this dissertation, I combine
philosophical conceptual analysis and mathematical formalization to clarify a
prerequisite of these difficult questions, namely what XAI explains: I point out
that XAI explanations are either associative or causal and either aim to explain
the ML model or the modeled phenomenon. The thesis is a collection of five
individual research papers that all aim to clarify how different problems in XAI
are related to these different “whats”.

In Paper I, my co-authors and I illustrate how to construct XAI methods for
inferring associational phenomenon relationships. Paper II directly relates to
the first; we formally show how to quantify uncertainty of such scientific infer-
ences for two XAI methods – partial dependence plots (PDP) and permutation
feature importance (PFI). Paper III discusses the relationship between coun-
terfactual explanations and adversarial examples; I argue that adversarial ex-
amples can be described as counterfactual explanations that alter the predic-
tion but not the underlying target variable. In Paper IV, my co-authors and I
argue that algorithmic recourse recommendations should help data-subjects
improve their qualification rather than to game the predictor. In Paper V, we
address general problems with model agnostic XAI methods and identify pos-
sible solutions.
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Chapter 1

General Introduction

“A problem well stated is a problem half solved.”

— Charles Franklin Kettering

Machine learning (ML) has broadened the range of problems in science
and elsewhere we can approach algorithmically: problems that scientists tried
to solve for many years, such as protein structure prediction, have recently
seen scientific breakthroughs using ML (Senior et al., 2020); sensitive tasks
that once required human judgment, such as medical diagnosis, are increas-
ingly supported and preprocessed by ML prediction models (Fatima et al.,
2017). As with all technologies, their adoption bears opportunities and, at the
same time, great risks. How do ML models arrive at their “decisions”? What
kind of errors are such ML systems prone to? Does science remain on epi-
stemically safe grounds when relying upon ML algorithms in research? How
can patients react to unfavorable algorithmic decisions?

One may argue that nothing is really new about ML with respect to
these problems: humans are also opaque in their decision making; all de-
cision makers (including humans) are prone to errors; scientists already use
computationally complex models in their research and adapt well to these
developments; physicians already use algorithmic decision support systems
and still provide patients with valuable action recommendations.

However, there is a fundamental difference between current ML models
and other models – ML models are opaque (Sullivan, 2020; Boge, 2021; Creel,
2020). Even when all model information is available, it is very hard for hu-
mans to understand the reasoning behind the model’s predictions; the “de-
cision making” cannot be easily mapped to humanly accessible concepts. This
opacity roots in the process by which ML models are generated. Instead of
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2 General Introduction

providing explicit reasoning rules or encoding tons of background knowledge
as in the days of good old fashioned artificial intelligence (GOFAI), ML models
can flexibly adapt to a range of different phenomena and learn directly from
examples as in (un-)supervised learning or from trial and error as in the case
of reinforcement learning (Russell, 2010; Hastie et al., 2009; Smith, 2019).

The standard narrative in the young field explainable artificial intelligence
(XAI) is therefore that ML opacity must be reduced (Zednik, 2021). Once ML
models are made transparent, they again fall into the class of models we know
how to deal with. XAI researchers have developed a number of methods (Mol-
nar, 2020) that help to explain, interpret or simply better understand ML mod-
els (see Section 1.3 for an overview). It should be noted here that the field
of XAI is often also referred to as interpretable machine learning (IML). In
this dissertation, the names XAI and IML are used as synonyms, even though
philosophers have highlighted conceptual differences between explanation
and interpretation (Erasmus et al., 2021).

This doctoral thesis focuses on what is explained in XAI – is it the ML
model or the underlying phenomenon? Is the explanation associative or
causal? Many controversies in the XAI community, as well as the usefulness
of XAI in scientific and social applications, depend on these questions. Two
aspects characterize my work: I use conceptual analysis to clarify the problem
under consideration; and, I employ mathematical tools to provide solutions
to the identified problem.

The thesis is a collection of five individual research paper, all having to do
with the different “whats” that XAI seeks to explain. However, before we come
to the papers, we first provide the reader with some background information
on the overall topic. Section 1 introduces the problems XAI aims to solve, the
methods it uses, and the criticisms it currently faces. Section 2 introduces
philosophical and scientific research on explanation in general, discusses the
relationship between philosophical and scientific findings, and illustrates the
role of the explanandum in explanations. Section 3 introduces four possible
explananda that XAI may aim to explain and discusses how my research relates
to them.
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1 Explainable AI

Before we can talk about XAI, we need to understand the problem that XAI
tries to solve. Therefore, we must conceptually understand what ML is about
and how it works.

The ML apparatus is designed for problems that can be squeezed into a
tight corset; it requires that the problem focuses on association and prediction
rather than causality and control, that there are specified input-output spaces
and corresponding data in those spaces, and that there is a clearly specified
and one-dimensional performance metric that captures success. One class of
problems for which ML has proven particularly successful, and which is also
the focus of this dissertation, is supervised learning tasks.

1.1 The Supervised ML Paradigm

In supervised learning tasks we want to predict a target𝑌 from variables𝑋 :=
(𝑋1, . . . ,𝑋𝑛). Supervised ML is therefore concerned with finding an ML
model 𝑚̂ that maps inputs from space 𝒳 to an output space 𝒴 and has low
(or ideally even minimal) expected prediction error (EPE). The EPE describes
the expected error the ML model makes when predicting 𝑌 from 𝑋 , where
the error is measured via a so-called loss function on space𝒴 .

Finding such a suitable ML model in practice requires the user to specify
the model class, the input 𝒳 and output space 𝒴 , a labeled dataset 𝒟 :=
((𝑥(1), 𝑦(1)), . . . , (𝑥(𝑘), 𝑦(𝑘))), and a loss function. With all these information
specified, one can run (given hyperparameters) a so-called learning algorithm
that searches for a model 𝑚̂ in the model class that minimizes the empirical
risk 1. If the learning process is successful, the model 𝑚̂ we obtain makes ac-
curate prediction also for data it has not seen i.e. 𝑚̂ generalizes well beyond
the dataset𝒟.

The most successful classes of ML models in the last decade have been
artificial neural networks (ANN) and random forests (RF). Both classes of
models are highly expressive i.e. they can describe a large variety of functions
and therefore capture even complex phenomena. The reason for their ex-
pressive power is the large number of free parameters and the architecture
of these models, which is composed of stacked simple units (e.g. neurons in
ANNs and decision trees in RFs). Both the architecture and the parameter val-
ues are selected to achieve high-predictive performance, rather than maintain

1The empirical risk is an estimation of the EPE with data.
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interpretability: model architecture is often selected by trial-and-error and
rule-of-thumb heuristics, rather than by theoretical guarantees or knowledge
of the application domain; parameter values are even automatically determ-
ined through an iterative learning process that fits the parameters to the data.
While this focus on predictive performance and automatic learning from data
has the advantage that trained ML models show great capacities in practice,
it makes them opaque to human understanding and interpretation. For this
reason, ML models obtained from ML learning algorithms have often been
called black-boxes (Rudin, 2019; Zednik, 2021; von Eschenbach, 2021).

1.2 XAI and Incomplete Problem Formulation

XAI is usually motivated on the grounds that trained models are black boxes
and thus need to be analyzed to become more transparent/fairer/inter-
pretable/etc. However, I prefer a more problem-centered framing to XAI,
called incomplete problem formulation (Doshi-Velez & Kim, 2017):

1. We transform our actual problem into a prediction problem that falls
within the ML paradigm.

2. Unfortunately, many aspects of the actual problem relevant to us are not
captured by the prediction problem.

3. Because we like the solution of the prediction problem (i.e., the ML
model) at least in the aspect it solved (i.e., the prediction), we do not
dump the ML model, but try to solve post hoc the parts of the actual
problem that the prediction problem did not capture.

In this picture, the XAI is the remedy for the initial misformulation or de-
formation of the problem. An example will illustrate the idea:

Example. Stroke 2 is a serious disease responsible for approximately 11% of
deaths worldwide (Lallukka et al., 2017). Predicting stroke risk is therefore of
critical interest to human society. Fortunately, we have more and more data
available from medical records or smartphone health tracking, which makes

2In a stroke, blood flow in the brain is reduced or blocked (called ischemic), or even open
bleeding occurs (called hemorrhagic), both of which lead to cell death. Scientists know of
a number of risk factors for stroke (e.g., high blood pressure, high cholesterol, smoking, or
obesity), early symptoms (e.g., facial drooping, arm weakness, or speech difficulties), and im-
mediate symptoms (e.g., loss of consciousness, headache, or vomiting) (Boehme et al., 2017;
Mackay et al., 2011).
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stroke prediction an ideal application for ML. Different stakeholder in differ-
ent contexts will have different goals with ML stroke prediction, four of them
are:

• Reliability. A physician uses an ML model as a decision support to
provide better stroke risk predictions to patients. While accuracy is im-
portant, she is most interested in what features the model focused on in
its prediction when she disagrees with it.

• Robustness. A private health insurance company commissions a robust
stroke prediction model from a technology company to optimize health
insurance premiums. Robustness has importance beyond accuracy here
to ensure that the system cannot be easily gamed.

• Knowledge Generation. A scientist may be interested to learn yet un-
known valuable predictors (causes, symptoms, or risk factors) of stroke.
A highly accurate prediction model addresses only secondary aspects
but not the primary problem of learning predictive factors.

• Recourse. Patients may want to use online tools to check their stroke
risk and lower it if it is high. While a highly accurate prediction model
is desirable, patients would also like to receive recommendations for ac-
tion to reduce their personal stroke risk.

If we had a human predictor instead of our ML model, we would ask her:
in the reliability scenario, what features she paid attention to in making her
decision; in the robustness scenario, how she would decide in a set of difficult
cases; in the knowledge generation scenario, what features she considers pre-
dictive; in the recourse scenario, which actions she would recommend to the
patient to reduce their stroke risk. In all scenarios, what is demanded could
be called an explanation. However, they are different types of explanations,
for different stakeholders, and with different purposes. XAI has been called
to the rescue for all these different situations to provide a post hoc fix of an
incompletely formulated problem.

1.3 XAI Methods

The core of current XAI research is defined by a common set of methods rather
than a common problem. Therefore, to better understand current XAI, we
provide a brief overview of the standard methods and taxonomies established
within the discipline (Molnar, 2020).

Three taxonomies are widely accepted:



6 General Introduction

• Model Interpretability: the model structure and model elements of in-
herently interpretable models have an intuitive interpretation; the model
structure and model elements of opaque models do not have an intuitive
interpretation.

• Method Scope: model-agnostic XAI techniques are applicable to any
functional mapping; model-specific XAI techniques are tailored to
models with specific properties (e.g. continuity) or from a certain class
(e.g. neural nets)

• Explanation Scope: global XAI techniques depict properties of the over-
all model; local XAI techniques explain individual predictions.

Model Interpretability. The following models are often referred to as
inherently interpretable: (generalized) linear models, decision trees, rule
based models or Bayesian networks; one can assign meaning to the indi-
vidual model elements and also cognitively understand the “decision making
process” of the model. However, the assumption that these models are
necessarily inherently interpretable has also been challenged (Lipton, 2018;
Breiman et al., 2001). It has been argued that for complex processes, models
either remain interpretable but not adequately capture the process, i.e. they
trade off interpretability against accuracy, making them less useful, or they
better capture the complex process by incorporating many features, including
interaction effects, but do so at the expense of interpretability (think of linear
models with thousand of features and higher order interaction terms).3

Models that are generally considered to fall into the class of opaque mod-
els include deep neural networks (DNNs) in all forms, ensemble-based meth-
ods such as random forests (RFs), or support vector machines (SVMs). How-
ever, there are attempts to configure the training process for opaque mod-
els to render them inherently interpretable: DNNs can be divided into two
tasks, concept learning and classification (Koh et al., 2020); tree ensembles can
be constructed to allow decomposition into effects of different orders (Hiabu
et al., 2020); SVMs can incorporate additional interpretability desiderata such
as sparsity (Martin-Barragan et al., 2014).

3The existence of such a trade-off between accuracy and interpretability has been ques-
tioned by Rudin (2019), who argues that there are always inherently interpretable models that
are as accurate as black-box models.
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Method and Explanation Scope. Well-known global model-agnostic XAI
techniques include: partial dependence plot (PDP), which describes the
expected effect of a feature change on prediction (Friedman et al., 1991);
permutation feature importance (PFI), which describes the decrease in model
performance when the information of a specific feature is removed (Breiman,
2001; Fisher et al., 2019); and shapley additive global importance (SAGE),
which describes the average conditional PFI of a feature over all possible
trajectories of how that feature can be added (Covert et al., 2020).

Well-known local model-agnostic XAI techniques include: local inter-
pretable model-agnostic explanations (LIME), which approximates the ML
model locally by a simpler model (e.g. linear model or decision tree) (Ribeiro
et al., 2016); Shapley Values that describe, for a given instance, the fair contri-
bution of individual features to the predicted value (Štrumbelj & Kononenko,
2014); and counterfactual explanations (CEs) (Wachter et al., 2017) that
explain individual predictions by alternative but maximally similar scenarios.

Well-known global model-specific XAI techniques include: activation
maximization, which analyzes individual neurons in an Artificial Neural
Network (ANN) and searches for inputs that maximally trigger that neuron
(Mahendran & Vedaldi, 2016; Olah et al., 2017); network dissection, which
describes a method for testing which elements in an ANN are associated
with prespecified humanly intelligible concepts (Bau et al., 2017); and testing
with concept activation vectors (TCAV), which measures how much a given
concept (defined via a concept dataset) affects predictions (Kim et al., 2018).

Well-known local model-specific XAI techniques include: gradient-based
feature attribution techniques, which describe the gradient of the prediction
with respect to individual inputs (e.g. pixels) (Simonyan et al., 2013; Alqaraawi
et al., 2020); path-attribution techniques, which compare a given input to a
certain reference input and integrate over the path (Qi et al., 2019).

Counterfactual Explanations and the Partial Dependence Plot. We now
depict two interpretation techniques in more detail, namely CE and PDP,
since they are used in several of the papers. Both are conceptually simple
and provide a good first intuition for (model agnostic) XAI methods. In both,
we assume a trained ML model 𝑚̂ : 𝒳 → 𝒴 that predicts whether someone
will get a stroke 𝑌 from a set of features 𝑋 including age, blood-pressure,
body-mass-index (BMI), etc.

Counterfactual Explanation. Suppose a patient is predicted to have high
stroke risk (𝑌 = 1) and wants to know why she did not receive a low stroke
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risk prediction (𝑌 = 0). For example, a counterfactual explanation would be
the following:

If the patient had a BMI of 27 instead of 33, her stroke prediction
would have been 0 instead of 1.

There could also be many alternative explanations of a similar form, rep-
resenting alternative scenarios with one or more alternated features. Such
alternative scenarios may provide understanding of predictions, action
recommendations, or opportunities for contesting adverse algorithmic
decisions (Wachter et al., 2017).

More formally, a counterfactual for a particular algorithmic decision
(𝑥, 𝑚̂(𝑥)) ∈ 𝒳 × 𝒴 is given by an alternative input 𝑥𝑐 ∈ 𝒳 with minimal
distance4 𝑑 to 𝑥 that leads to desired classification 𝑦𝑑𝑒𝑠 ∈ 𝒴 rather than 𝑚̂(𝑥)
i.e.

𝑥𝑐 ∈ argmin
𝑥′∈𝒳

𝑑𝒳 (𝑥, 𝑥
′) + 𝑑𝒴(𝑚̂(𝑥′), 𝑦𝑑𝑒𝑠).

Such 𝑥𝑐 can for example be found using gradient based techniques (for differ-
entiable models) (Wachter et al., 2017) or by genetic algorithms (Dandl et al.,
2020). A counterfactual explanation is the depiction of scenario 𝑥𝑐 in contrast
to 𝑥.

Partial Dependence Plot. Suppose an ML engineer wants to know how the
ML model uses age in its predictions. One can think of it as looking at how
changing age to a certain value would change the predicted risk of stroke on
average. This is exactly the idea behind PDPs (Friedman et al., 1991). The PDPs
for age and BMI are presented in Figure 1.1.

Formally, the PDP of a specific feature 𝑋𝑝 is defined as

𝑃𝐷𝑃𝑝(𝑧) := E𝑋−𝑝[𝑚̂(𝑋−𝑝, 𝑧)].

Since we generally do not have access to P(𝑋−𝑝), this term can be approxim-
ated and efficiently computed for finite data𝒟 via

𝑃𝐷𝑃 𝑝(𝑧) :=
1

𝑘

𝑘∑︁

𝑖=1

𝑚̂(𝑥
(𝑖)
−𝑝, 𝑧).

4𝑑 is a distance function on space 𝒳 that maps any two instances 𝑥1, 𝑥2 ∈ 𝒳 to a real
value 𝑑(𝑥1, 𝑥2) ≥ 0.
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Figure 1.1: Left plot: PDP for the feature age. We see that the prediction model
(RF model) strongly relies on age; the average predicted stroke increases for
increasing age. Right plot: PDP for the feature BMI. the average predicted
stroke increases with BMI. Due to the reliance on artificially generated data-
points, interpreting PDPs is generally difficult as we discuss in Paper I, Paper
II, and Paper V.

1.4 Current Criticisms of XAI

XAI has often been attacked at its very foundations. Researchers have ques-
tioned whether XAI is, can be, or even should be a research field of interest. It
has been argued that:

1. XAI conflates several goals (Lipton, 2018; Páez, 2019) or has no real goal
(Krishnan, 2020).

2. XAI lacks proper evaluation metrics (Doshi-Velez & Kim, 2017; Mohseni
et al., 2021) and should orient at social sciences with large scale human
experiments (Miller, 2019; Liao & Varshney, 2021).

3. XAI explanations are misleading (Rudin, 2019; Mittelstadt et al., 2019),
non-robust (Seuß, 2021), and do not incorporate uncertainties (Watson,
2022).

We will return to these criticisms and discuss them in the context of this dis-
sertation in Chapter 7.
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2 Explanation, Explanans, and Explanandum

In (probably too) general terms, the goal of XAI is the explanation of al-
gorithmic decisions and the interpretation of algorithmic behavior. The
conceptual nature of explanation and how humans explain in their daily life
has been extensively researched by philosophers of science and social sci-
entists respectively. The following brief overviews of this research follow the
authoritative introductions by Woodward & Ross (2021) and Miller (2019). For
a mini-glossary of relevant terms in the context of explanation see Figure 1.2.

Mini Glossary on Explanation Terms

Explanandum (pl. explananda): what is explained.

Explanans (pl. explanantia): how something is explained.

Explainer (pl. explainers): person who explains.

Explainee (pl. explainees): person who receives explanation.

Figure 1.2: Relevant terms in the context of explanation.

2.1 Explicating Explanation in Philosophy of Science

In philosophy of science, explanation has been largely described as a two-
place relationship:

Every explanation consists of an explanandum and an explanans.

Philosophers are concerned with discussing and defining how explanandum
and explanans must be related in order to establish a proper explanation.

Hempels deductive-nomological (DN) account of explanation was one of
the first and most famous competitors on the market (Hempel & Oppenheim,
1948; Hempel et al., 1965). Hempel proposal has a logical and a nomological5

aspect: the logical aspect is that the explanandum must follow logically from
the explanans and that the explanans must be true; the nomological aspect is
that the explanans must contain physical laws and that these laws must be an

5lawlike
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essential part for establishing the explanandum from the explanans. DN has
been criticized, for example. for focusing on logical entailment, the unclear
notion of a physical law, and the allowance for irrelevant explanantia (Salmon,
1979).

Salmon reacts to these criticisms and present the statistical relevance (SR)
account that explicates explanation in terms of statistical associations (Sal-
mon, 1971). Instead of logical entailment, SR focuses on whether the state of
the explanans makes a difference for the explanandum statistically. SR has
also been criticized, for example, for its focus on association instead of caus-
ation, treating low probability explanantia par with highly like ones, and the
problem that the same explanans can explain logically exclusive exaplananda
(Cartwright, 1979).

These criticisms led to various causal accounts of explanation that are now
prominent (Woodward, 1989, 2005; Halpern & Pearl, 2020; Salmon, 1984). In-
stead of asking if observing different explanantia has impact on the explanan-
dum, we ask if intervening on these explanantia would affect or would have
affected the explanandum. However, also these accounts face problems such
as the specifying a physical process, distinguishing between different explan-
ations, and accounting for non-causal explanations (Hitchcock, 1995; Kitcher,
1989; Reutlinger & Saatsi, 2018).

There is also diverse research about how we can explain with scientific
models (Bailer-Jones, 2003a,b; Bokulich, 2017; Jebeile & Kennedy, 2015;
Strevens, 2011). In model-based accounts of explanation, the explanandum is
represented in a model: explanantia are the factors that impact the explanan-
dum within that model i.e. explanations are model-relative. Model-based
accounts, however, are highly demanding because they require that it be
specified in what sense the explanandum is represented (Frigg, 2002) and
how complete and faithful the model must be in order to explain not only the
model itself but really the modeled phenomenon (Giere, 2004).

Finally, pragmatic accounts of explanation, such as that of Van Fraassen
et al. (1980); Achinstein (1983); De Regt & Dieks (2005), claim that attempts to
explicate explanation as a two-place relationship failed because they did not
take into account contextual information i.e. information about the explainer
and the explainee. According to this school of thought, explanations describe
answers to why questions that are inherently pragmatic entities and only in-
terpretable relative to a given context. Pragmatic theories have been criticized,
depending on how they fill the details, for providing a too liberal or deflation-
ary notion of explanation (Kitcher, 1989; Kitcher & Salmon, 1987; Woodward
& Ross, 2021).
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2.2 Researching Human Explanations in the Social Sciences

Similar to pragmatic accounts in philosophy, social science research sees ex-
planation as a three-place relationship that involves contextual information:

An explainer explains a phenomenon to an explainee.

Instead of asking about the formal relationship between explanans and ex-
planandum, the social sciences ask about the factors that make a good or
successful explanation for the explainer and the explainee. Investigating hu-
man factors, such as human reasoning, cognitive biases, or explanation goals
is therefore crucial in this research.

Malle’s process model gives an example of an account focused on the ex-
plainer (Malle, 2011). His model introduces and relates two important dis-
tinctions: it separates the explainer from the explanatory tools she uses; and
it distinguishes information processes from impression management processes.
The explainer’s information access refines her information processes and her
goals guide her impression management processes. The information available
to the explainer refines the explanatory tools she can use and the impression
management process selects the right tools.

Since explanation is a cooperative act, Hilton (1990) proposed to apply
Grice (1975) four maxims for cooperative conversation to explanation.6 The
four maxims applied to explanation are: quality i.e. explanations should be
(approximately) correct; quantity i.e. explanations should provide just the
right amount of detail and be informative to the explainee; relation i.e. ex-
planations should be relevant in the conversation context; manner i.e. ex-
planations should be provided in a respectful and helpful way. This normative
account of explanation as conversation, including the four maxims was em-
pirically supported (Slugoski et al., 1993; Tetlock & Boettger, 1989).

Psychological research has investigated how people actually explain in
everyday interaction. They found that: people incorporate intentions, beliefs,
and desires when explaining (Kashima et al., 1998); why questions are usually
understood as contrastive (Lipton, 1990; Chin-Parker & Cantelon, 2017);
people use cognitive biases when selecting explanations (Hesslow, 1988;
Lombrozo, 2010); reference to causes is perceived more explanatory than
reference to probabilistic associations (Hilton, 1996; Josephson & Josephson,
1996; McClure, 2002); reference to abnormal causes is perceived as more
explanatory than to expected causes (Kahneman & Tversky, 1981).

6Antaki & Leudar (1992) extended the conversational model from simple dialogues to more
complex arguments.
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2.3 The Role of the Explanandum in Explanation Selection

It seems as if the social science perspective on explanation as a three-place re-
lationship generalizes the philosophical two-place view: Philosophers wanted
to determine what counts as an explanation, while social scientists ultimately
want to figure out what good explanations are. However, we cannot have one
without the other – establishing what counts as an explanation is a prerequis-
ite for finding good explanations.

In my opinion, the philosophical and social science view must be seen as
two complementary steps in a process that can be explained with Figure 1.3:
the larger eclipse on the left can be seen as all possible explanantia that ex-
plain explanandum 𝐸, the definition of criteria for what belongs to this set
is a philosophical question; the smaller green circle describes the good ex-
planantia in a context 𝐶 (i.e. for a specific explainer and explainee), finding
this highly relevant subset is what social scientists are striving for.7 From the
philosophical point of view, we can consider the explainer and the explainee
as fine-tuning parameters that help select good explanantia; what they do not
affect is what counts as an explanation.8

Solving the three-place problem is both interesting and difficult; however,
current XAI already fails at the preceding problem of specifying the explanan-
dum properly.

The explanandum plays a major role in the search for good explanations,
as also shown in Figure 1.3. The two black eclipses describe the explanantia for
two different explananda, namely 𝐸 and 𝐸 ′. It could be that the two eclipses
overlap and describe explanantia that explain both𝐸 and𝐸 ′, but this need not
be the case in general. Suppose we think we want to explain 𝐸, but if we were
clear about the goal, we would see that we want to explain 𝐸 ′: then choosing
a good explanans for 𝐸 (green circle) might not be an explanans at all for 𝐸 ′,
which is even worse than choosing a bad (but still a) explanans for 𝐸 ′.

7This does not mean that philosophers should not help establish criteria for good explana-
tions in a specific context, or that social scientist’s cannot help establish formal criteria; it just
highlights the primary questions in the respective fields.

8Our view conflicts with pragmatic theories of explanation presented above that assume
we cannot explicate explanation without accounting for context (Van Fraassen et al., 1980;
Kitcher & Salmon, 1987).
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Explanantia
for E


Explanantia
for E'


good explanantia
of E in context C


good explanantia
of E' in context C


Figure 1.3: Philosophers are concerned with defining criteria for the mem-
bership of explanantia to one of the eclipses. Psychologists aim to find good
explanantia that are helpful in a context (here 𝐶) that belong to the green or
purple circles. Different explananda (here𝐸 and𝐸 ′) usually have partially dif-
ferent explanantia.

3 The Explanandum of XAI and My Research

What is the explanandum in XAI? There could be many, but the problem that
supervised ML addresses already strongly narrows down the possibilities. If
we abstract away from the specific application context of the ML model, we
find four “whats” that XAI may be interested to explain. The four whats can be
structured by two questions: Are we concerned with the phenomenon or the
model? Do we want to gain causal or associative knowledge?

3.1 Four “Whats”

The four explananda can be found in Figure 1.4 and relate to the different
philosophical accounts from Section 2.1, namely, the difference between
associative and causal explanations and between explaining models and
explaining phenomena with models. The first explanandum concerns how
the ML model associates input features 𝑋 with predictions 𝑌 (associative
model level). The second explanandum concerns how intervening on input
feature 𝑋 affect prediction 𝑌 (causal model level). The third explanandum
concerns how input variable 𝑋 is associated with target variable 𝑌 (associat-
ive phenomenon level). The fourth explanandum concerns how intervening
on input variable 𝑋 affects target variable 𝑌 (causal phenomenon level).

It is important to keep these four explananda separate. While it is possible
for an explanans to explain several different explananda, this is generally not
the case. Different XAI methods and particularly their specifications (e.g. in
their sampling (Janzing et al., 2020; Chen et al., 2020)) are suited for different
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Level Explanandum Application
Associative Model How is  associated with ? Reliability

Causal Model How does intervening on  affect ? Robustness

Associative Phenomenon How is  associated with ? Knowledge Generation

Causal Phenomenon How does intervening on  affect ? Recourse

Figure 1.4: Four levels of what one may want to explain with XAI.

explananda. If this is not made explicit, XAI methods might be used in the
wrong context. We may therefore end up in a situation like above, where our
explanans is well suited to explain 𝐸 in context 𝐶 , but does not explain 𝐸 ′,
which we originally wanted to explain, at all. Separating these four explananda
not only prevents misuse of XAI methods, but also legitimizes the usage of XAI
methods across applications as long as the abstract explanandum is identical.

3.2 My Work and the Four “Whats”

All papers in this dissertation are about differentiating these different ex-
plananda. The papers are either concerned with showing the conflation of
different explananda or with providing arguments for why particular goals
require addressing a particular explanandum.

In total, the dissertation includes five research papers, which I wrote to-
gether with other researchers (Papers I,II,IV,V) and alone (Paper III):

I Scientific Inference With Interpretable Machine Learning: Analyzing
Models to Learn About Real-World Phenomena

II Relating the Partial Dependence Plot and Permutation Feature Import-
ance to the Data Generating Process

III The Intriguing Relation Between Counterfactual Explanations and
Adversarial Examples

IV Improvement-focused Causal Recourse (ICR)

V General Pitfalls of Model-Agnostic Interpretation Methods for Machine
Learning Models
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Paper I. The theme of the different explananda is most evident in this pa-
per, which concerns the question how to perform scientific inference using
XAI. The paper discusses how we can use XAI to address questions that sci-
entists are concerned with, particularly questions about the associative phe-
nomenon level. We describe how this problem has been tackled with the tradi-
tional (statistical) approach by making assumptions about the phenomenon
and analyzing individual model elements, but argue that ML requires a more
holistic approach due to lacking representationality. We present a five step
guide that shows how XAI methods must be constructed to make them use-
ful for scientists who want to generate knowledge about the associative phe-
nomenon level.

Paper II. This paper goes in a similar direction as paper I, but instead of a
philosophical analysis of the problem of scientific inference, it shows how a
theoretical ground truth of two XAI methods, namely the PDP and the PFI,
can be defined. The ground truth is constituted by the XAI method applied
to the underlying data generating mechanism. In the paper, we show how
the error of our ML model explanation (PDP/PFI) compared to the “true” ex-
planation (DGP-PDP/DGP-PFI) can be decomposed into three components:
the bias and the variance induced by the learning process, and the error due
to Monte Carlo integration. We provide a formal analysis of these errors and
show how to define confidence intervals under the assumption of learner un-
biasedness.

Paper III. I argue that counterfactual explanations and adversarial examples
(instances that are misclassified by the ML model) are formally distinct, al-
though they can be generated by solving the same optimization problem. The
distinction again lies in the explanandum: while counterfactuals in their gen-
eral form remain model explanations, adversarials point out model errors; to
establish that a prediction is erroneous, it must be related to the associative or
causal phenomenon level to compare it with an underlying ground-truth. As
I show in the paper, an adversarial example can be seen as a counterfactual
explanation that is misclassified i.e. in which 𝑌 differs from 𝑌 even though
we input the same value for 𝑥𝑐.
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Paper IV. This paper has been inspired by Paper III. Rather than on general
purpose counterfactual explanations it focuses on situations, where we want
to provide data-subjects of ML models with action recommendation to re-
vert unfavorable algorithmic decisions. For this situation, an explanandum
at the causal model level has been proposed by Karimi et al. (2020) in which
we search for the minimal interventions on 𝑋 that would result in a change
in prediction 𝑌 . We argue that this approach leads to the problem that data-
subjects receive recommendations for how to game the predictor. Instead,
we propose to focus on action recommendations on 𝑋 that causally change
𝑌 i.e. explanations on the causal phenomenon level. We show that such re-
course recommendations not only (most likely) change the prediction in the
desired way, but also give robust and helpful action guidance to data-subjects.

Paper V. The paper discusses eight pitfalls of model-agnostic XAI tech-
niques: 1. assuming one fits all interpretability, 2. bad model generalization,
3. unnecessary use of complex models, 4. ignoring feature dependence, 5.
misleading interpretations due to feature interactions, 6. ignoring model and
approximation uncertainty, 7. failure to scale to high-dimensional settings,
and 8. unjustified causal interpretation. Pitfalls 1 and 8 directly concern
the conflation or lacking clarity about the explanandum. Pitfalls 2 and 4 are
closely related to the different levels of explananda, e.g. bad model generaliza-
tion and feature dependencies are not a problem if our explanandum remains
on the causal model level. For all pitfalls we provide a short description, a
solution, and point out open problems.

Structure. The next five chapters consist of the five papers in the aforemen-
tioned order. Each of them has its own introduction, discussion, and bibli-
ography. Chapter 7 consist of a short overall discussion; it discusses the ex-
tent to which the papers have helped solving the problem of the different ex-
plananda and whether they addressed the more general criticisms of XAI. The
thesis ends with a personal perspective and outlook on the field XAI.
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Chapter 2

Paper I: Scientific Inference With
Interpretable Machine Learning:
Analyzing Models to Learn About
Real-World Phenomena

Freiesleben, T., König, G., Molnar, C. and Tejero-Cantero, A. (unpublished).
Scientific Inference With Interpretable Machine Learning: Analyzing
Models to Learn About Real-World Phenomena. Under review at ’The
British Journal for Philosophy of Science’.

Author contributions:

T.F. wrote large parts of the paper and developed the initial idea. A.TC., G.K.,
and C.M. added valuable new ideas, proofread and helped revise the paper.
A.TC. helped in the design of Figures 1,3,4, and 7. G.K. wrote large parts of the
section on causal learning and A.TC. contributed a paragraph on mechanistic
models.
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Abstract

Interpretable machine learning (IML) is concerned with the behavior and the properties of machine

learning models. Scientists, however, are only interested in models as a gateway to understanding

phenomena. Our work aligns these two perspectives and shows how to design IML property descrip-

tors. These descriptors are IML methods that provide insight not just into the model, but also into the

properties of the phenomenon the model is designed to represent. We argue that IML is necessary

for scientific inference with machine learning (ML) models because their elements do not individ-

ually represent phenomenon properties; instead, the model in its entirety does. However, current

IML research often conflates two goals of model analysis — model audit and scientific inference

– making it unclear which model interpretations can be used to learn about phenomena. Building

on statistical decision theory, we show that IML property descriptors applied on a model provide

access to relevant aspects of the joint probability distribution of the data. We identify what questions

such descriptors can address, provide a guide to building appropriate descriptors and quantify their

epistemic uncertainty.

Keywords: Scientific Modeling, Interpretable Machine Learning, Scientific Representation, Inference, XAI



1 Introduction

Scientists increasingly use machine learning (ML) in their daily work. This development is not limited to natural

sciences like the geosciences (Reichstein et al. 2019) or material science (Schmidt et al. 2019), but also extends to

social sciences such as education science (Luan and Tsai 2021) and archaeology (Bickler 2021).

When building predictive models for problems with complex data structures, ML outcompetes classical statistical

models in both performance and convenience. Impressive recent examples of successful prediction models in science

include the automated particle tracking at CERN (Farrell et al. 2018), or DeepMind’s AlphaFold, which has essentially

solved the protein structure prediction challenge CASP (Senior et al. 2020). In such examples, some see a paradigm

shift towards theory-free science that “lets the data speak” (Kitchin 2014, Anderson 2008, Mayer-Schönberger and

Cukier 2013, Spinney 2022). Indeed, prediction is one of the core aims of science (Luk 2017, Douglas 2009), but

so are, as philosophers of science and statisticians emphasize, explanation and knowledge generation (Salmon 1979,

Longino 2018, Shmueli et al. 2010). Focusing exclusively on prediction may therefore represent a historical step back

(Toulmin 1961, Pearl 2018).

What hinders scientists from using ML models to gain real-world insights is model complexity and an unclear con-

nection between model and phenomenon — the so-called opacity problem (Boge 2022, Sullivan 2020). Interpretable

machine learning (IML, also called XAI, for eXplainable artificial intelligence) aims to solve the opacity problem by

analyzing individual model elements or inspecting specific model properties (Molnar 2020). Different stakeholders

with different goals hold diverse expectations of IML (Zednik 2021), including scientists (Roscher et al. 2020), ML

engineers (Bhatt et al. 2020), regulatory bodies (Wachter et al. 2017), and laypeople (Arrieta et al. 2020). Due to this

plurality, IML has been criticized for lacking a proper definition (Lipton 2018).

Nevertheless, scientists increasingly use IML for inferring which features are predictive of e.g. crop yield (Shah-

hosseini et al. 2020, Zhang et al. 2019), personality traits (Stachl et al. 2020), or seasonal precipitation (Gibson et al.

2021). Although researchers are aware that their IML analyses remain just model descriptions, it is often implied

that the explanations, associations, or effects found also extend to the corresponding real-world properties. Unfortu-

nately, drawing inferences with IML can currently be epistemically problematic because the interpretation methods

are not designed for that purpose (Molnar et al. 2022). In particular, the difference between model-only versus phe-

nomenon explanations is often unclear (Chen et al. 2020, Hooker et al. 2021), and a theory to quantify the uncertainty

of interpretations is lacking (Molnar et al. 2020a, Watson 2022).

Contributions. In this paper, we present an account of scientific inference with IML inspired by ideas from philoso-

phy of science and statistical inference. We focus on supervised learning on identically and independently distributed

(i.i.d.) data; we discuss other learning scenarios in Section 5.3. Our key contributions are: 1. We argue that ML cannot

profit from the traditional approach to scientific inference via model elements because its parameters do not represent

phenomenon properties (Section 3). While current IML methods aim to restore representationality of the model as a

whole, they conflate the model audit and scientific inference goals of interpretation. 2. We identify the properties that
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IML methods need to fulfill to provide access to aspects of the conditional probability distribution P(Y | X), where

X describes predictor variables and Y the target (Section 4). We call methods that are suitable for inference IML

property descriptors. We provide a guide to build such descriptors starting with a phenomenon question about X and

Y and evaluating whether it can be addressed, followed by an answer to this question with ML models and finite data,

and conclude with the quantification of epistemic uncertainty. We illustrate our approach using conditional partial

dependence plots (cPDP) as an example IML descriptor.

Terminology. For the purposes of our discussion below, a phenomenon is a real-world process whose aspects of

interest can be described by random variables. Observations of the phenomenon are drawn from the unknown joint

distribution induced by the random variables and form the dataset or just data. A ML model is a mathematical model

optimized with the aid of a learning algorithm applied on the collected data in order to accurately predict unknown

or withheld phenomenon observations, i.e. to generalize beyond the initial data. Here we focus on the supervised

learning setting. Finally, scientific inference is the process of rationally deriving conclusions about a phenomenon

from data (via ML, or other types of models). We employ inference to imply investigating unobserved variables and

parameters similar to statistical inference, i.e. in a more general sense than is common in some of the ML literature,

where it is used exclusively as a synonym for prediction. The knowledge gained by scientific inference can build the

basis of scientific explanations. These brief conceptual remarks are meant to reduce ambiguity in our usage: we lay

no claim as to their universality.

2 Related Work

Whether and how ML models, and specifically IML, can help obtain knowledge about the world is a debated topic

among philosophers of science, statisticians, and also the IML community.

Philosophy of Science. It has been argued that ML models are only suitable for prediction because their parameters

are instrumental and lack meaning (Bailer-Jones and Bailer-Jones 2002, Bokulich 2011). On the other hand, Sullivan

(2020) argues that nothing prevents us from gaining real-world knowledge with ML models as long as the link uncer-

tainty — the connection between the phenomenon and the model — can be assessed. Cichy and Kaiser (2019) and

Zednik and Boelsen (2022) claim that IML can help in learning about the real world, but they remain vague about

how model and phenomenon are connected. Like Watson (2022), we explain that IML methods relying on conditional

sampling are faithful to the phenomenon. However, while he assigns IML inferences to the causal phenomenon level,

we clarify that, without additional assumptions, such inferences only reveal associational relationships (Räz 2022).

Our work makes precise that ML models can be described as epistemic representations of a certain phenomenon that

allow us to perform valid inferences (Contessa 2007) via interpretations.
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Statistical Modeling and Machine Learning. Breiman et al. (2001) describes ML (algorithmic modeling) and

statistics (data modeling) as two approaches for reaching conclusions from data. On a medical example he shows that

post-hoc analysis of ML models can allow more correct inferences about the underlying phenomenon than standard,

inherently interpretable data models. Our paper gives an epistemic foundation for such post-hoc analyses. Shmueli

et al. (2010) distinguishes statistics and ML by their goals — prediction (ML) and explanation (statistics). Like Hooker

and Mentch (2021), we argue against such a clear distinction and offer steps to integrate the two fields.

This paper builds on ideas from Molnar et al. (2021), where they introduce ground-truth and confidence intervals

for partial dependence plots (PDP) and permutation feature importance (PFI) of arbitrary ML models. Our work

generalizes these ideas to arbitrary IML methods and draws the connection to the underlying phenomenon.

Interpretable Machine Learning. IML as a field has been widely criticized for being ill-defined, mixing different

goals (e.g. transparency and causality), conflating several notions (e.g. simulatability and decomposability), and

lacking a proper measure of success (Doshi-Velez and Kim 2017, Lipton 2018). Some even argued against the central

IML leitmotif of analyzing trained ML models post hoc in order to explain them (Rudin 2019). In this paper, we show

that, if we focus on interpretations for scientific inference, a clear foundation including a proper theory of success can

be provided and these criticisms can be partially addressed.

3 Scientific Inference and Elementwise Representationality

The goal of this paper is to analyze and describe how we can conduct scientific inference on ML models using IML

methods. This section explains why inference with ML models cannot be done as in traditional scientific models and

why current IML methods do not generally address the problem. The next section describes our solution and illustrates

it with a complete example from question formulation to uncertainty quantification.

3.1 ML Models are not Elementwise Representational

In scientific modeling, there is a paradigm that many models implicitly follow — we call it the paradigm of elementwise

representationality.

Definition. A model is elementwise representational (ER) if all model elements (variables, relations, and parameters)

represent an element in the phenomenon (components, dependencies, properties).

Figure 1 depicts the relationship between ER models and the phenomenon:1 variables describe phenomenon com-

ponents; mathematical relations between variables describe structural, causal or associational dependencies between

components; parameters specify the mathematical relations and describe properties of the component dependencies.

The upward arrows describe the encoding i.e. the translation of a phenomenon observation to a model configuration;

1See Appendix A for the philosophical origins of our perspective.
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The downward arrows describe the decoding i.e. the translation of knowledge about the model into knowledge about

the phenomenon. ER is obtained through model construction; ER models are usually “hand-crafted” based on back-

Phenomenon


Parameters
☾

Properties

☾ ☾

Components


Variables Relations
☾ ☾ ☾

ER Model

Dependencies

Earth ⊕ 

Moon ☾

Acceleration by force
Gravitational attraction


Newtonian gravitational 

dynamics of two point masses


Celestial motion 

of Earth and Moon


Masses, 

gravitational constant

☾ ☾ ☾ ☾

encoding decoding

Figure 1: Model and phenomenon sustain an encoding-decoding relationship. The main elements of a traditional,
ER model, are shown in encoding-decoding correspondence to the phenomenon elements they represent (Stachowiak
1973). Phenomenon and model elements are illustrated with a simple example of two bodies in gravitational interaction
and its classical, Newtonian mechanistic description.

ground knowledge and an underlying scientific theory. Variables are selected carefully and sparsely during model

construction, and the relations are constrained to a relation class with few free parameters. When ER models need

to account for an additional phenomenon aspect, they are gradually extended so that large parts of the “old” model

are preserved in the more expressive “new” model. ER even eases this model extension process because model inter-

ventions are intelligible on the level of model elements. Usually, ER is explicitly enforced in modeling: if there is a

phenomenon element devoid of meaning, researchers either try to interpret it or exclude it from the model.

ER is so remarkable because it gives models capabilities that go beyond prediction. ER simplifies the step of

decoding i.e. translating model knowledge into phenomenon knowledge. Scientists can analyze model elements and

draw immediate conclusions about the represented phenomenon element (Frigg and Nguyen 2021). However, only

those aspects of the phenomenon that have a model counterpart can be analyzed with this approach. Fortunately, as

described above, ER models can be extended to account for further relevant aspects identified by the scientist.

Running example:2 Linear Model. Suppose a researcher, we call her Laura, wants to study what attributes influence

students’ grades in mathematics. Specifically, she wants to research how language skills and math skills are associated.

She uses a dataset from Cortez and Silva (2008), who collected data3, encompassing 32 student attributes in Portuguese

schools including math/Portuguese grades, age, parents’ education, etc.

Laura starts with a classical ER model — a linear model with one predictor and one target variable. She selects

the student grade in Portuguese Xp and in mathematics Y as her proxy variables for students language and math

skills respectively.4 Based on her background knowledge, she assumes that the true relationship can be described as

Y = β0 + β1Xp + ϵ with β0, β1 ∈ R and an error ϵ ∼ N(µ, σ2). Laura centers Xp by the average student grade in

2Since the physical model from Figure 1 is a mechanistic causal model (Schölkopf et al. 2021), we switch henceforth to an
illustrative associational model from the social sciences that compares more fairly with current associational ML models. We
strongly simplify things in this example and do not claim that it reflects social science methodology or that ML is even required.

3see Appendix B for more details on the dataset
4In the Portuguese grading scheme, the range is 0-20, where 0 is the worst and 20 the best grade.
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Portuguese and obtains the prediction model

m̂LIN(xp) = 10.46 + 0.77xp

that minimizes the mean-squared-error (MSE). Laura’s model is ER: she can interpret β̂0 = 10.46 as the predicted

math grade for an average Portuguese student (if xp = 12.55)5 and β̂1 = 0.77 as the strength of association between

the Portuguese grade and the math grade.

Laura can analyze the model to draw scientific inferences about the underlying phenomenon, for example, with

95% confidence intervals6 for her estimates β̂0 and β̂1 with [10.05; 10.88] and [0.63; 0.91] respectively. The inference

she draws is on these parameters; Laura can only draw conclusions about the phenomenon given ER and high pre-

dictive model capacity. Laura may conclude from β̂1 that language skills and math skills are strongly and positively

related. To reach a more expressive and predictively accurate model, Laura can also extend the model to include addi-

tional features, relations, or interaction terms. As long as she preserves ER, she can directly draw scientific inferences

from analyzing model elements. Indeed, these inferences are only as valid as the modeling assumptions (e.g. target

normality, homoscedasticity, or linearity).

ML Models are generally not ER. ER makes model elements interpretable and allows to reason about the effects

of model or even real-world interventions; as such, ER models suit our image of science as an endeavor aimed at

understanding. However, as mentioned above, we usually require background knowledge on which components are

relevant, and we need to severely restrict the class of relations that can be considered for the given phenomenon. These

difficulties might lead scientists to either limit their investigations to phenomena that are already well studied or, as

Breiman et al. (2001) argued, to develop overly simple models for complex phenomena and possibly draw wrong

conclusions.

ML models excel in modeling complex problems with an unbounded number of components that display am-

biguous and entangled relationships i.e. ML models are highly expressive (Gühring et al. 2020). ML models are

subject-domain independent (Bailer-Jones and Bailer-Jones 2002), this means that we do not necessarily need subject-

domain background knowledge in modeling. Instead, ML modeling only requires specifying a broad model class and

a set of hyperparameters. The choice of these hyperparameters is data-domain specific i.e. they reflect inductive biases

that allow for efficient learning.

The gain in generality and convenience with ML comes at a price — ML models are generally not ER. As also

argued in Boge (2022), Bokulich (2011), Bailer-Jones and Bailer-Jones (2002), ML models (e.g. artificial neural net-

works) contain model elements such as weights, activation functions, or network structure that have no corresponding

phenomenon counterpart.

5Centering features is common in linear regression to make the intercept term interpretable.
6i.e., intervals [a, b] such that, if the model assumptions hold, a ‘true’ parameter β is found inside 95% of all observational

samples, P(a<β<b) = 0.95.
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Running example: Artificial Neural Network (ANN). Suppose Laura is dissatisfied with her linear model and fits a

dense three-layer neural network to predict math grades using all available features.7 She reduces the test MSE from

16.0 in the linear-one-variable model case to 8.9. A formal description of the model is given by:

m̂ANN(x) = σ3(W3σ2(W2σ1(W1x + b1) + b2) + b3)

where model elements are the values of the weight matrices W1, W2, W3 and bias vectors b1, b2, b3, and the activation

functions σ1, σ2, σ3. Unlike in the linear model above, it is highly unclear what these parameters correspond to

in our data or phenomenon. While the vector x is still representational, the weights, activation functions, or three-

layer architecture are very hard or even impossible to interpret: A high value of weight W (3,2)
1 might have a positive,

neutral, or negative effect on the target, dependent on all other model elements; the activation function only reflects the

currently popular heuristics in model training; and the particular three-layer architecture is a result of model selection

based on predictive performance and rules of thumb, but with little phenomenon-based rationale.

3.2 Scientific Inference in Light of Current IML

We have argued so far that:

i) If models are ER, they allow for scientific inference.

ii) ML models are generally not ER.

How can we still do scientific inference with ML models? We discuss two strategies to enable scientific inference

with ML: We argue that the first strategy, namely restoring ER, fails because ML models are designed to represent

in a distributed manner; the second strategy, embracing holistic representationality, is highly promising but current

attempts conflate different goals of model analysis. This discussion sets the basis for the next section, where we show

how a holistic account of representationality can enable scientific inference.

Restore ER. One strategy towards scientific inference with ML is to challenge Proposition ii) and show that ML

models are ER too. Researchers in this camp argue that individual elements in ML have a natural phenomenon

counterpart, but this counterpart only becomes evident when these model elements are extensively scrutinized.8 This

would be surprising: ER is not enforced in state-of-the-art techniques and, even worse, some methods such as training

with dropout purposefully discourage ER in order to gain robustness (Srivastava et al. 2014); ML models like ANNs

are designed for distributed representation (Buckner and Garson 2019, McClelland et al. 1987).

It has been claimed that model elements represent high-level constructs constituted from low-level phenomenon

7We chose a neural net to make our argument. For training the neural network, Laura splits data into training and test, uses
ReLu activation functions and minimizes the MSE loss via gradient descent with an adaptive learning rate.

8The underlying epistemological reasoning is that human representations are near-optimal and will be eventually rediscovered
by ML algorithms.
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components that are often called concepts (Buckner 2018, Olah et al. 2020).9 If this is the case, model elements or

aggregates of such elements can be reconnected to the phenomenon; ER would be restored by the representations

of coarse-grained phenomenon components. Research on neural networks supports that some model elements are

associated with concepts (Mu and Andreas 2020, Voss et al. 2021, Kim et al. 2018, Olah et al. 2017), however,

often these elements are neither the only associated elements nor exclusively associated with one concept as shown

in Figure 2 (Donnelly and Roegiest 2019, Bau et al. 2017, Olah et al. 2020). Problematically, intervening on these

model elements generally does not have the expected effect on the prediction — the elements do not share the causal

role of the “represented” concepts, even in prediction (Gale et al. 2020, Donnelly and Roegiest 2019). It is therefore

questionable in what sense they still represent.10 Moreover, this line of research predominantly focuses on images,

where nested concepts are arguably easier to identify for humans.

Figure 2: ML models are generally not ER. Three input images that independently trigger a single model element
(unit 55 in layer mixed4e, Olah et al. (2017; 2020)). A single unit in a neural net may respond to very different
“concepts”, e.g. heads of cats (left image), car bodies (center), or bees (right), suggesting that units generally do not
represent disentangled concepts (Mu and Andreas 2020, Nguyen et al. 2016).

Research on the representational correlates of model elements seems indeed fascinating. However, current ML models

that do not enforce ER will rely on distributed representations and cannot be reduced to logical concept machines.

The associative connection between model elements and phenomenon concepts should not be confused with their

equivalence. Analyzing single model elements will therefore be a hopeless enterprise.

Embrace Holistic Representationality. An alternative route to scientific inference is to accept that ER is well-

suited for scientific inference and that ML models are not ER but reject that ER is the only approach for scientific

inference. To choose this route, one must offer an alternative path for drawing scientific inference with ML models

that goes beyond the analysis of model elements.

Our approach is to regard the model as representational of phenomenon aspects only as a whole — we call this

holistic representationality (HR). HR implicitly underlies large parts of the current research program in IML: Model-

agnostic methods, in particular, analyze the entire ML model simply as an input-output mapping (Scholbeck et al.

9The idea is that similar to the hierarchical structure of components in nature, where lower level components such as atoms
combine to form higher level entities such as molecules, cells, and organisms; in deep nets, hierarchies evolve from pixels to shapes
to objects.

10Though note generative adversarial networks as an exception; here, interventions on model elements have been linked to
interventions on concepts in the generated images (Bau et al. 2018).
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2019); In the same spirit, many model-specific IML methods like gradient or path-based feature attribution treat ML

models as mappings with additional useful properties such as differentiability (Alqaraawi et al. 2020).

Model-agnostic and model-specific methods share the idea that relevant model properties such as the effects or

importances of variables can be derived by analyzing the model just as a functional mapping. Initial definitions

of, for example, global feature effects (Friedman et al. 1991) and feature importance (Breiman 2001) or local feature

contribution (Štrumbelj and Kononenko 2014) and model behavior (Ribeiro et al. 2016) have been presented. However,

many researchers have pointed out that these methods lead to counterintuitive results for dependent or interacting

features and offered alternative definitions (Apley and Zhu 2020, Strobl et al. 2008, Molnar et al. 2020b, Goldstein

et al. 2015, König et al. 2021b, Janzing et al. 2020, Slack et al. 2020, Alqaraawi et al. 2020).

We believe that these controversies stem from a lack of clarity about the goal of model analysis. Are we interested

in model properties to learn about the model (model audit) or do we want to use these model properties as a gateway

to learn about the underlying phenomenon (scientific inference)? These two goals must not be conflated.

The auditor examines model properties e.g. for debugging, to check if the model satisfies legal or ethical norms, or

to improve her understanding of the model by intervening on it (Raji et al. 2020). Auditors even take interest in model

properties that have no corresponding phenomenon counterpart such as single model elements or the model behavior

for unrealistic feature combinations. The scientist who wants to draw inferences, on the other hand, wants to learn

about model properties that can be interpreted in terms of the phenomenon.

Scientific inference and model audit should be viewed as two different but interacting goals. In each of them, we

take different stances toward the ML model: The auditor adopts a skeptical attitude of the model, she has ground-truth

information or normative standards to check the model against; the scientist adopts a trusting attitude, she wants to

learn from the model. Both cases describe a knowledge asymmetry (Gobet 2018, Rosser et al. 2008) but in opposite

directions. Auditing the model is an indispensable step for scientists to gain enough trust in it. Only after several

rounds of auditing and improvement should the researcher rely on the model to draw scientific conclusions.

4 Scientific Inference with IML Property Descriptors

We just argued that ML models are generally not ER and therefore do not allow for scientific inference in the standard

way. HR offers a viable alternative, but currently different goals of model analysis are conflated. In this section, we

show that a HR perspective enables scientific inference using IML methods. Particularly, we show that certain IML

methods — we call them IML property descriptors — can represent phenomenon properties. Figure 3 describes our

conceptual move: instead of matching phenomenon properties with model parameters as in ER models, we match

them with external descriptions of the whole model.

Idea. Instead of first thinking about the model and its properties (the model audit approach), we propose to start with

the phenomenon and a scientific question about it. IML methods for inference should answer, or at least help answer,

a scientific question concerning the phenomenon. The crucial step in our framework is to establish a link between the

9
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Figure 3: IML property descriptions distill phenomenon properties from HR models. Instead of explicitly en-
coding phenomenon properties as parameters like for ER models, HR models (e.g. ML models) encode phenomenon
properties in the whole model. We propose that these encoded properties can be read out with IML property descrip-
tions external to the model. In this way, IML offers an indirect route to scientific inferences through model analysis.

phenomenon and the model; we propose to draw this link with statistical decision theory, which shows what optimal

ML models can holistically represent. Clearly, an approximate ML model will not provide an answer if even the

optimal model cannot. However, if a question can in principle be answered with the optimal model, an ML model

trained on data can approximate the answer in practice. The problem then becomes to quantify the approximation

error.

4.1 ML Representationality and Optimal Predictors

Which aspects of a phenomenon ML models can represent even under ideal circumstances depends on the data,

the learning paradigm, and the loss function. For identically and independently distributed (i.i.d.) data used for

supervised learning, the theory of optimal predictors from statistical decision theory provides an answer (Hastie et al.

2009, p18-22). Besides the advanced theory available in this setting, supervised learning on i.i.d. data is the most

popular ML setup in practical applications. We briefly discuss representationality and scientific inference in the case

of unsupervised and causal learning in Section 5.3.

Basic Notation. We assume that the random variables X1, . . . , Xn and Y fully characterize the phenomenon. We

write the joint feature vector as X B (X1, . . . , Xn) with X B Range(X) and Y B Range(Y). X and Y jointly describe

the phenomenon.

Optimal Predictors. An optimal predictor m can predict realizations of the target Y from realizations of X with

minimal expected prediction error i.e. m = arg min
m̂∈M

EPEY|X(m̂), with EPEY|X(m̂) B
∫

Y
L(Y, m̂(X)) PY|X(y|x) dy, where

10



L describes a loss function L(Y,m(X)) : X × Y → R+ and m̂ a model in the setM of mappings from X to Y. Table 1

shows the optimal predictors for standard loss functions.

Problem Loss L(Y, m̂(X)) Optimal Predictor m

Regression Mean Squared Error (Y − m̂(X))2 EY|X[Y | X]

Mean Absolute Error |Y − m̂(X)| Median(Y | X)

Classification 0-1 Loss 0 if m̂(X) = Y, else 1 arg max
y∈Y

P(Y=y | X)

KL divergence
∑

r∈Y
PY(r) log

(
PY (r)
Pm̂(X)(r)

)
11 P(Y | X)

Table 1: The optimal predictors for standard loss functions can be derived from P(Y | X).

Supervised learning. Supervised learning seeks to find an optimal predictor m by using a learning algorithm12

I:∆→M that selects a a model m̂ from a setM with the aid of a datasetD B ((x(1), y(1)), . . . , (x(k), y(k))
)

withD in the

set of datasets ∆ drawn i.i.d. from the joint distribution, i.e. (x(i), y(i)) ∼ (X,Y). Instead of the EPE itself, the learning

algorithm minimizes the empirical risk on the test data (i.e. on data not used to train m̂), which is an estimator of the

EPE that can be computed from finite data.

4.2 IML Property Descriptors

We have just argued that ML models, when considered as a whole, approximate phenomenon aspects that can be

derived from the conditional distribution P(Y | X). IML property descriptors can help to investigate these aspects by

describing their relevant properties.

Five Steps Towards IML Methods for Inference. Our proposal consists of the five steps in Figure 4, which we

now discuss in detail. For each of the five steps, we provide an inference example based on the prediction of student

grades in mathematics. In what follows, we assume that we have a supervised learning ML model m̂ that approximates

a phenomenon aspect described by the optimal predictor m.

Step 1) Formalize Scientific Question. Science starts by formulating a question. To address it with ML, this

question has to be formalized. Exemplary questions that can already be addressed with IML methods following the

scheme below are discussed in Section 4.3. Note that IML for scientific inference only helps answer questions that

concern the association between X and Y.
11This describes the forward KL divergence KL(Y||m̂(X)) for discrete Y and m̂(X), which differs from the backward KL diver-

gence KL(m̂(X)||Y).
12The domain of I is only completely specified when the parameters that define the learning procedure and the search space of

the algorithm (called hyperparameters in the context of m̂) are fixed. For our discussion, the reader may assume hyperparameters
to have been set a priori by a human or an automated ML algorithm (Hutter et al. 2019).
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Figure 4: An epistemic foundation for scientific inference with IML. Steps 1 and 2 clarify what kinds of scientific
inferences we can draw with IML. Steps 3, 4, and 5 show how to draw such inferences and provide estimates of their
precision.

Formally. We denote the formalized question by Q.

Example. Suppose Laura wants to find out how students’ language skills are related to their math skills. She approaches

this problem by asking how students’ expected math grades are related to their Portuguese grades. Laura formalizes

this question as the conditional expectation i.e. Q = EY|Xp [Y | Xp], where Y, Xp respectively stand for the math and

Portuguese grade variable.13

Step 2) Establish Question Identifiability. Many scientific questions cannot be addressed using an ML model.

ML models can only help answer questions that could theoretically be addressed with the optimal predictor. We call

a question that the optimal predictor can help answer together with additional probabilistic knowledge (e.g. aspects

of P(X,Y)) identifiable. A constructive strategy to establish identifiability relative to some probabilistic knowledge

is to think of the transformations, using solely the probabilistic knowledge, that take the optimal predictor into the

question Q. Of course, it is desirable to keep the amount of probabilistic knowledge required to identify the question

to a minimum.

Formally. The optimal predictor is denoted by m. We say that a question is identifiable relative to probabilistic

knowledge K if we can compute Q from m and K.

Example. Assume that Laura has trained her neural network, which, unlike the simple linear model presented

above, takes into account all available features X, to minimize the MSE loss, i.e. m(X) = EY|X[Y | X]. Is Laura’s

question identifiable? For specific values of X, the optimal predictor allows to compute the expected value of Y i.e.

m(x) = EY|X[Y | X=x]. The only difference to Q is that m takes into account features besides the Portuguese grade,

that we denote X−p. If we have access to the conditional distribution P(X−p | Xp) (required14 probabilistic knowledge

13This conditional expectation is the best possible point estimate of the math grade under the MSE loss, given just the Portuguese
grades.

14Usually we do not have access to probabilistic knowledge K. We discuss this in more detail in Step 4.
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K), we can integrate these other features out by taking the expected value

Q B EY|Xp [Y | Xp]

= EX−p |Xp [EY|X[Y | X] | Xp] (by the tower rule, see App. C)

= EX−p |Xp [m(X) | Xp].

Thus, Q is identifiable via m given K = P(Xp | X−p).

Step 3) Design IML Property Descriptor. It is not enough to identify a question. We need a way to estimate an

answer for ML models — we need IML property descriptors. An IML property descriptor describes a continuous

function that applies the transformation from the question identification step above to a given ML model and outputs

an element of the space Q. Thus, given the optimal predictor, an IML property descriptor outputs an answer to Q.

Continuity guarantees that if our ML model is close to the optimal model, our answer is approximately correct. We

call the application of a property descriptor to a specific ML model, gK(m̂), a model property description.

Formally. An IML property descriptor is a continuous function gK (w.r.t. metrics dM and dQ)15 that identifies Q using

probabilistic knowledge K:

gK :M→ Q with gK(m) = Q.

The output space Q remains unspecified to account for the variety of scientific questions; Q could denote a set of real

numbers, vectors, functions, probability distributions, etc.

Example. The property descriptor describes the transformations that identify Q, i.e.

gK(m̂)(xp) B EX−p |Xp [m̂(X) | Xp=xp]. (4.1)

This is indeed a property descriptor because conditional expectation is continuous onM, and Q is identifiable given

K = P(X−p | Xp). Note that Equation (4.1) describes the well-known conditional partial dependence plot, or cPDP,

also known as M-plot (Molnar 2020, Apley and Zhu 2020).

Step 4) Estimate IML Property Descriptor. Often we lack access to relevant probabilistic knowledge K. Instead,

we have a finite amount of data on which we can evaluate our ML mapping, which we call the evaluation data. It

may bundle up our training and test data D (see Section 4.1), as well as additionally available (unlabeled) data, and

artificially generated data. The IML property description estimator describes a way to estimate property descriptions

with access only to the ML model plus the evaluation data.

15dM is a metric on the function spaceM, dM(m1,m2) B
∫
X

L(m1(x),m2(x))PX(x) dx for m1,m2 ∈ M. dQ describes a metric on

space Q.
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Formally. We denote the evaluation dataset by D∗ and the random process that generates it by D∗. We call ĝD∗ :

M→ Q the IML property description estimator if it is an unbiased estimator of gK i.e.

ED∗ [ĝD∗ (m̂)] = gK(m̂) for all m̂ ∈ M.

Example. Laura’s evaluation dataset D∗ is her initial training and test dataset D augmented by artificial instances

created by the following manipulation: Laura makes six copies of the data, and jitters the Portuguese grade by

1,−1, 2,−2, 3 or −3 respectively. This augmentation strategy reflects how Laura understands the Portuguese grade

as noisy based on her background knowledge (student performance varies daily and teachers may grade inconsis-

tently). Let the students with (jittered) Portuguese grade i be D∗|xp=i B (x ∈ D∗ | xp = i), then, we can define the IML

property description estimator16 at i as:

ĝD∗ (m̂)(i) B
1

|D∗|xp=i|
∑

x∈D∗|xp=i

m̂(x) (4.2)

The estimated answer to Laura’s question is plotted in Figure 5. The plot on the left suggests that math grade is

only strongly dependent on Portuguese grades in the interval 8 − 17. However, as we show in the next step, we must

also take into account that we have very sparse data in some regions (e.g. very few students scored below 8) before

confirming this first impression.
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Figure 5: Left Plot: Estimate of EY|Xp [Y | Xp] via Equation (4.2). Right Plot: Histogram of grades in Portuguese.

Step 5) Quantify Uncertainty. We have shown how we can estimate Q using an approximate ML model paired

with a suitable evaluation dataset. But how good is our estimate? Two steps involve approximations:

16the conditional mean is an unbiased estimator of the conditional expectation
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1. Applying the IML property descriptor to the ML model m̂ instead of the optimal model m; we call the

resulting error model error

ME[m̂] = dQ
(
gK(m), gK(m̂)

)
.

The model error depends on the ML model m̂ we obtained from the learning algorithm trained on the given

dataset.

2. Applying the IML property description estimator on our evaluation datasetD∗ instead of computing the true

model property description based on K directly; we call this error estimation error

EE[D∗] = dQ
(
gK(m̂), ĝD∗ (m̂)

)
.

The estimation error depends on the evaluation datasetD∗.

In theory, the model error and the estimation error can be separated. In practice, however, they are statistically de-

pendent because the training and the evaluation data overlap. Generally, neither the model error nor the estimation

error can be computed perfectly; this would require access to the optimal model m and infinitely many data instances.

Nevertheless, we can quantify in expectation how large the two errors are.

An intuitive approach to quantifying the expected errors is to decompose them into bias and variance contributions.

The two decompositions below quantify the range in which the true phenomenon property descriptions are most likely

to lie.

Formally. For the bias-variance decomposition, we assume the metric dQ to be the squared error.17 Considering the

dataset that we entered into the learning algorithm as a random variable D, we can decompose the expected ME[m̂]

error as follows

ED[ME[m̂]] = (gK(m) − ED[gK(m̂)])2
︸                       ︷︷                       ︸

Bias2

+ VD[gK(m̂)]︸       ︷︷       ︸
Variance

where m̂ B I(D) is the output of a machine learning algorithm I for datasetD (Section 4.1). Considering the evaluation

data as a random variable D∗, we can decompose the expected EED∗ error as follows

ED∗ [EE[D∗]] = (gK(m̂) − ED∗ [ĝD∗ (m̂)])2
︸                         ︷︷                         ︸

Bias2

+ VD∗ [ĝD∗ (m̂)]︸         ︷︷         ︸
Variance

= VD∗ [ĝD∗ (m̂)].

The bias term vanishes because the property description estimator is by definition unbiased w.r.t. the IML property

descriptor.

Example. Laura obtains different cPDPs (Figure 5) for different models with similar performance, as well as for

different selections of evaluation data, how much can she then rely on these cPDPs?

The estimates of the variances of the cPDP by Molnar et al. (2021) allow to calculate pointwise confidence intervals

17A bias-variance decomposition is also possible for other loss functions, including the 0-1 loss (Domingos 2000).
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(Figure 6). We can define a confidence interval that only incorporates the estimation uncertainty by

CIEE[D∗] B
[
ĝD∗ (m̂)(i) ± t1− α2

√
V̂D∗ [ĝD∗ (m̂)(i)]

]

and a confidence interval that incorporates both model and estimation uncertainty by

CIME[m̂]∧EE[D∗] B
[
ĝD∗ (m̂)(i) ± t1− α2

√
V̂D,D∗ [ĝD∗ (m̂)(i)]

]
.

For the combined confidence interval we require a strong and unfortunately not testable assumption to be satisfied —

unbiasedness of the ML algorithm. Unbiasedness implies that, in expectation over training sets, the ML algorithm

learns the optimal model, i.e. m = ED[m̂].18

Figure 6 shows that for students with Portuguese grades between 8 and 17, Laura can be very confident in her

model and the relationship it identifies between math and Portuguese grade.19 However, both for Portuguese grades

below 8 or above 17, the true value might be far off from our estimated value using a given model, as we can see from

the width of the confidence intervals. For these grade ranges, gathering more data may reduce Laura’s uncertainty.
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Figure 6: Uncertainty evaluation of an IML property description. Left: cPDP and its estimation error due to
Monte-Carlo integration. Right: cPDP with both estimation and model error. Confidence bands in dashed lines cover
the true expected math grade in 95% of all cases. These plots jointly suggest that most of the uncertainty is due to the
model error.

Summary. Figure 7 gives an overview of all functions and spaces involved in IML for scientific inference. We

started from a phenomenon and formalized a scientific question Q about it. Using a learning algorithm I on dataset

D from the phenomenon, we learned an ML model m̂ that approximates the optimal model m. We then set out to

answer Q from m̂. We defined a property descriptor gK , that is, a function that allows to compute Q from m given

K, respectively approximates Q from m̂ given K. Because gK requires probabilistic knowledge about P(X,Y), we
18Since unbiasedness is tied to a specific context, there is no conflict with the no-free-lunch theorems (Sterkenburg and Grünwald

2021).
19We used resampling techniques to estimate the two variances. In real-data settings it is generally not possible to always sample

new data for the model training and the evaluation. Although resampling may result in an underestimation of the variance, our goal
here is simply to illustrate the process of quantifying uncertainty for a concrete IML method.
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introduced a property description estimator ĝD∗ , a function estimating Q solely from finite data, the evaluation setD∗.
Finally, we showed how the expected error of our estimation steps can be quantified with confidence intervals CIME[D]

and CIEE[D∗].

ModelsDatasets

 

Descriptions

Figure 7: From datasets to inferences via ML models. Mappings are represented by arrows and sets are repre-
sented by filled circles, with confidence regions in green shades. Practical IML descriptions ĝD⋆ (m̂) are approximate,
uncertainty-aware answers to a question Q that are built from a model m̂ fit onD and an evaluation datasetD∗.

4.3 Property Descriptors and Current IML Methods

Many questions that can be answered based on the conditional probability distribution P(Y | X) are widely relevant.

The goal of practical IML research for inference should be to define relevant descriptors and provide accessible im-

plementations of these descriptors, including quantification of uncertainty. To find out which specific questions are

relevant to scientists, and therefore what descriptors are necessary, IML researchers, statisticians and scientists must

closely interact.

In Table 2 we present a few examples of elementary inference questions that can in principle be addressed by ex-

isting IML methods i.e. these methods can operate as property descriptors already. We distinguish between global and

local phenomenon questions: global questions concern general associations, local questions concern associations for

a specific instance. The last column highlights current IML methods that provide approximate answers, albeit often

without uncertainty quantification. Note how we ultimately require conditional versions of existing marginal IML

methods, which suggests that marginal sampling, which generates unrealistic instances, is inadequate in scientific

inference.

5 Discussion

ER models enable straightforward scientific inference because their elements represent something about the underlying

phenomenon. While ML models are generally not ER, IML can offer an indirect route to scientific inference, provided

20Only defined on phenomenon if P(Xp = p, X−p = x−p) > 0.
21Only with the right similarity metric that accounts for the realistic constraint.
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Global
Question Formalization IML method

Effect: What is the best estimate of Y if we only know
Xp?

mXp (Xp) cPDP
(Apley and Zhu 2020)

Conditional Contribution: How much worse can Y
be predicted from X if we hadn’t known Xp?

EPEX,Y(mX(X)) − EPEX−p,Y(mX−p (X−p)) cPFI
(Fisher et al. 2019)

Fair Contribution: What is the fair share of feature
Xp in the prediction of Y?

1
n

∑
S⊆{1,...,n}\ j

(
n−1
|S |
)−1(

EPEXS∪{ j} ,Y(mXS∪{ j} (XS∪{ j}))

−EPEXS ,Y(mXS (XS ))
)

SAGE
(Covert et al. 2020)

Relevant Value: Under which realistic conditions can
we expect to observe relevant value yrel?

arg min
x∈X∧P(X=x)>0

dY(mX(x), yrel) no method yet

Local
Effect: How does the best estimate of Y change relative
to Xp, knowing that X−p = x−p?

mX(Xp, x−p) ICE-curve
(Goldstein et al. 2015)

20

Conditional Contribution: How much worse can Y
be predicted from X = x if we hadn’t known Xp?

L(y,mX(x)) − L(y,mX−p (x−p)) no method yet

Fair Contribution: What is the fair share of feature
Xp in the prediction of Y if X = x?

1
n

∑
S⊆{1,...,n}\ j

(
n−1
|S |
)−1(

mXS∪{ j} (xS , x j) − mXS (xS )
) conditional

Shapley Values
(Aas et al. 2021)

Relevant Value: Under which realistic conditions
similar to X = x can we expect to observe relevant value
yrel?

arg min
x′∈X∧P(X=x′)>0

dY(mX(x′), yrel)+ λ dX(x, x′) Counterfactuals
(Dandl et al. 2020)

21

Table 2: Global and local formalized questions and matching IML property descriptors. Note that questions are
relative to a specific loss function L; for a set S ⊆ {1, . . . , n}, the term mXS describes the optimal predictor of Y w.r.t.
loss function L and random variable(s) Xi with i ∈ S . dX and dY describe suitable metrics on X and Y respectively.

model properties have a corresponding phenomenon counterpart. We have shown how phenomenon representation can

be achieved through optimal predictors and described how to practically construct IML property descriptors following

five-steps: the first two steps clarify what questions we can address with IML, step three and four show how to answer

them with ML models and finite data, and step five allows to evaluate how certain the answers are. We pointed out

that some current IML methods can already be seen as IML property descriptors.

Is the lack of elementwise representationality specific to ML models? No, ML shows only an extreme case. In fact,

there is a continuum between fully ER models and HR-only models: Some scientific models contain elements that

are difficult or impossible to interpret e.g. the wave function in physics (Callender 2015); complex classical statistical

models like generalized additive models also contain elements that are difficult to interpret. Our main message is: the

five-step approach can be used to extend inference to any non ER model (whether ML or not).

One could argue that science should only rely on ER models (Rudin 2019). Indeed, it would be great if we could

always build models from simple to complex and keep ER from beginning to end. However, more and more problems
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seem to be very difficult to tackle with this approach (Nearing et al. 2021); Interpretable but inaccurate models (w.r.t.

to the phenomenon) are not a solution (Breiman et al. 2001). In situations where we cannot construct accurate ER

models because we lack background knowledge or the phenomenon is very complex, scientific inference with ML

models may thus be the only viable alternative.

5.1 Implications

Adopting a phenomenon-centric perspective on IML allows us to answer a variety of questions that were puzzling

from a model-centric perspective:

Which questions can be addressed with IML property descriptors? IML property descriptors can help retrieve

relevant phenomenon properties i.e. properties derived from the conditional distribution P(Y | X). Which phenomenon

properties are relevant is context-specific and up to researchers to identify. While formulating questions, researchers

must be aware that supervised ML models are only representational of associative structure and not the underlying

causal mechanism (see Section 5.3).

Why use (I)ML for inference? Supervised ML can help draw scientific inference when sampling from X is easy but

sampling from Y is difficult, e.g. when Y is hard to measure or determined only in the future. In such situations,

analyzing both the model and the data with IML methods can allow for better conclusions than analyzing just the data

— the ML model fills the gaps by interpolation. Extrapolation to out-of-distribution data is generally not a strength

of ML and can lead to incorrect conclusions; such extrapolations should only be trusted if the learning algorithm

incorporated a powerful and suitable inductive bias.

When sampling from X is difficult or the property of interest can be computed more reliably by other means, we

advice against using IML for inference.

How important is model performance in inference? If the model is a poor approximation or representation of the

modeled phenomenon, the conclusions we draw from that model are unreliable (Cox 2006, Good and Hardin 2012).

Thus, a good fit is vital for gaining reliable knowledge.

Note that even for the optimal model, there remains the so-called Bayes error rate, an irreducible error arising from

the fact that X does not completely determine Y (Hastie et al. 2009). Thus, high error does not necessarily flag a

low-quality model, but rather may indicate that X provides insufficient information about Y.

What kind of data should be used for IML? Many IML methods (e.g. Shapley Values, LIME, etc.) rely on probing the

ML model on permuted data (Scholbeck et al. 2019). These artificial “data” may never occur in the real world. This

may be useful to audit the model, but if we want to learn about the world, artificial data is supposed to credibly sup-

plement observations. Our analysis therefore substantiates the criticism of Hooker and Mentch (2021), Hooker et al.

(2021), Mentch and Hooker (2016) concerning the permutation of features irrespective of the dependency structure in

the data.
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5.2 Open Problems

There are several open issues that we have not addressed:

What about non-tabular data? For some data types, such as images, audio, or video data, it is extremely difficult to

formulate scientific questions only in terms of low-level features such as pixels or audio frequencies. To follow our

approach, we need a translation of high-level concepts (e.g. objects in images or words in audio) that scientists can

use to formulate their questions into low-level features (e.g. pixels or audio frequencies) that the model works with.

Such translations are notoriously difficult to find; deep learning may help here (Jia et al. 2013, Zaeem and Komeili

2021, Zhou et al. 2018, Koh et al. 2020).

How to assess if data is realistic? In IML, we often need to augment our data. However, using unrealistic data

is highly problematic for scientific inference, as mentioned earlier. Reasonable permutations of features such as

Laura’s grade jitter strategy (see Section 4.2), can supply realistic data. However, this requires expert knowledge

about what permutations make sense. Conditional density estimation techniques or generative models (e.g. generative

adversarial networks, normalizing flows, variational autoencoders, etc.) may provide additional paths to obtain realistic

data. However, modeling the conditional density can be computationally intensive and more difficult than the original

prediction problem, or may even be epistemically problematic since it only approximates sampling real data.

To what extent does a property determine the true model? Sometimes, we know that the model answer to a scientific

question is correct. How strongly does this confirm the correctness of the model? Property descriptions narrow down

the potential models and sufficiently many property descriptions can even completely determine the model, e.g. for

the FANOVA decomposition (Apley and Zhu 2020, Hooker 2004). Model property descriptions may eventually be

used to incorporate background knowledge in training. Both directions, extracting knowledge from ML models, and

using background knowledge to build more adequate ML models, are elementary for scientific progress (Dwivedi et al.

2021, Nearing et al. 2021, Razavi 2021).

5.3 Other Forms of Scientific Inference With ML

In this paper, we focused exclusively on scientific inference with supervised learning ML models on i.i.d. data. For

this setting, there is sufficient theory in both statistical decision theory and IML research to provide secure epistemic

foundations for scientific inference. We have explained what we can learn about the conditional distribution of Y given

X. We can even learn that X contains little information about Y to predict it, which is scientifically interesting (Taleb

2005, Shmueli et al. 2010). However, many questions that scientists regularly face are of a different nature and go

beyond conditional distributions.

Unsupervised Learning. Unsupervised learning is concerned with estimating aspects of the joint distribution

P(X1, . . . , Xn). Unsupervised learning is hard as it typically targets a high-dimensional joint distribution and, often,
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lacks a clear measure of success (Hastie et al. 2009, p486). In principle, our five-step guide is also applicable to

unsupervised learning, however, we lack a theoretical counterpart to optimal predictors.

Causal Learning. The observational joint probability distribution is interesting, but it remains on rung one of Judea

Pearl’s ladder of causation — the associational level (Pearl and Mackenzie 2018). What scientists are often much

more interested in is answering causal questions such as average treatment effects (rung 2) or counterfactual questions

(rung 3) (Salmon 1998, Woodward and Ross 2021). Laura may be interested not only whether students’ language and

math skills are associated (rung 1), but also in whether the provision of tutoring in Portuguese affects students’ math

skills (rung 2) or whether a specific student (who is not a native Portuguese speaker) would have done better in math

if she had received Portuguese tutoring at a young age (rung 3).

Supervised ML models only represent aspects of the observational distribution (rung 1) and therefore generally

do not allow answering causal questions. As a consequence, the IML descriptors of the models also generally do not

allow causal insight into the data. Many IML papers that discuss causality (Schwab and Karlen 2019, Janzing et al.

2020, Wang et al. 2021, Heskes et al. 2020) are only concerned with causal effects on the model’s prediction, which

do not necessarily translate into a causal insight into the phenomenon.

In order to answer causal questions, causal models should be used instead.22 To learn a causal model, we must

gather interventional data and/or make strong, untestable assumptions. Causal inference constitutes thus a challenging

problem and remains an active area of research (Heinze-Deml et al. 2018, Kalisch and Bühlmann 2014, Constantinou

et al. 2021, Peters et al. 2017).

In certain situations, ML models can nevertheless be useful for causal inference. Firstly, if all predictor variables

are causally independent and the prediction target is caused by the features, the causal model interpretation implies

the causal data interpretation. Secondly, associative models in combination with IML can help estimate causal effects

even in the absence of causal independence if they are in principle identifiable by observation. For example, the partial

dependence plot coincides with the so-called adjustment formula and therefore identifies a causal effect if the backdoor

criterion is met (and the model optimally predicts the conditional expectation) (Zhao and Hastie 2021). Thirdly,

when there is access to observational and interventional data during training, training ML models with invariant risk

minimization yields models that predict accurately in interventional environments (Peters et al. 2016, Pfister et al.

2021, Arjovsky et al. 2019). For such intervention-stable models, IML methods that provide insight into the effect

of interventions on the prediction also describe causal effects on the underlying real-world components (König et al.

2021a).

Another way in which ML supports causal inference is by facilitating practical scientific inference relying on

complex mechanistical models, frequently implemented as numerical simulators. Indeed simulators can represent

complex, causal, dynamics in an ER fashion, but often at the price of an intractable likelihood and thus expensive

inference. A variety of new ML methods for likelihood-free inference on simulators (Cranmer et al. 2020) allows to

22Given a causal graph, observational data can allow to identify average causal effects (rung 2), e.g. with the so-called backdoor
criterion (Pearl 2009). For estimating counterfactuals (rung 3), assumptions beyond a causal graph and observational data must be
met (Holland 1986, Peters et al. 2017).
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estimate a full posterior distribution over ER parameters for increasingly complex models.

While supervised learning learns from a fixed dataset, reinforcement learning (RL) systems are designed to act and

can therefore assess the effect of interventions. As such, RL models can be designed to provide causal interpretations

(Bareinboim et al. 2015, Zhang and Bareinboim 2017, Gasse et al. 2021).

6 Conclusion

Traditional scientific models were designed to satisfy elementwise representationality. This allowed scientists to di-

rectly inspect model elements to learn about Nature. Although ML models do not satisfy elementwise representa-

tionality, we have showed that it is still possible to learn about the phenomenon using them. All we need to do is to

interrogate the model with suitable IML property descriptors. We have shown how such descriptors must be designed

to enable scientific inference.
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Janzing, D., Minorics, L., and Blöbaum, P. (2020). Feature relevance quantification in explainable ai: A causal

problem. In International Conference on artificial intelligence and statistics, pages 2907–2916. PMLR.

Jia, Y., Abbott, J. T., Austerweil, J. L., Griffiths, T., and Darrell, T. (2013). Visual concept learning: Combining

machine vision and bayesian generalization on concept hierarchies. Advances in Neural Information Processing

Systems, 26.

Kalisch, M. and Bühlmann, P. (2014). Causal structure learning and inference: a selective review. Quality Technology

& Quantitative Management, 11(1):3–21.

Kim, B., Wattenberg, M., Gilmer, J., Cai, C., Wexler, J., Viegas, F., et al. (2018). Interpretability beyond feature

attribution: Quantitative testing with concept activation vectors (tcav). In International conference on machine

learning, pages 2668–2677. PMLR.

Kitchin, R. (2014). Big data, new epistemologies and paradigm shifts. Big data & society, 1(1):2053951714528481.

Koh, P. W., Nguyen, T., Tang, Y. S., Mussmann, S., Pierson, E., Kim, B., and Liang, P. (2020). Concept bottleneck

models. In International Conference on Machine Learning, pages 5338–5348. PMLR.

König, G., Freiesleben, T., and Grosse-Wentrup, M. (2021a). A causal perspective on meaningful and robust algorith-

mic recourse. arXiv preprint arXiv:2107.07853.

König, G., Molnar, C., Bischl, B., and Grosse-Wentrup, M. (2021b). Relative feature importance. In 2020 25th

International Conference on Pattern Recognition (ICPR), pages 9318–9325. IEEE.

Levy, A. (2012). Models, fictions, and realism: Two packages. Philosophy of Science, 79(5):738–748.

Lipton, Z. C. (2018). The mythos of model interpretability: In machine learning, the concept of interpretability is both

important and slippery. Queue, 16(3):31–57.

26



Longino, H. E. (2018). The fate of knowledge. Princeton University Press.

Luan, H. and Tsai, C.-C. (2021). A review of using machine learning approaches for precision education. Educational

Technology & Society, 24(1):250–266.

Luk, R. W. (2017). A theory of scientific study. Foundations of Science, 22(1):11–38.

Mayer-Schönberger, V. and Cukier, K. (2013). Big data: A revolution that will transform how we live, work, and think.

Houghton Mifflin Harcourt.

McClelland, J. L., Rumelhart, D. E., Group, P. R., et al. (1987). Parallel Distributed Processing, Volume 2: Explo-

rations in the Microstructure of Cognition: Psychological and Biological Models, volume 2. MIT press.

Mentch, L. and Hooker, G. (2016). Quantifying uncertainty in random forests via confidence intervals and hypothesis

tests. The Journal of Machine Learning Research, 17(1):841–881.

Molnar, C. (2020). Interpretable machine learning. Lulu. com.

Molnar, C., Casalicchio, G., and Bischl, B. (2020a). Interpretable machine learning–a brief history, state-of-the-art

and challenges. In Joint European Conference on Machine Learning and Knowledge Discovery in Databases, pages

417–431. Springer.

Molnar, C., Freiesleben, T., König, G., Casalicchio, G., Wright, M. N., and Bischl, B. (2021). Relating the partial de-

pendence plot and permutation feature importance to the data generating process. arXiv preprint arXiv:2109.01433.

Molnar, C., König, G., Bischl, B., and Casalicchio, G. (2020b). Model-agnostic feature importance and effects with

dependent features–a conditional subgroup approach. arXiv preprint arXiv:2006.04628.

Molnar, C., König, G., Herbinger, J., Freiesleben, T., Dandl, S., Scholbeck, C. A., Casalicchio, G., Grosse-Wentrup,

M., and Bischl, B. (2022). General pitfalls of model-agnostic interpretation methods for machine learning models.

In Holzinger, A., Goebel, R., Fong, R., Moon, T., Müller, K.-R., and Samek, W., editors, xxAI - Beyond Explainable

AI: International Workshop, Held in Conjunction with ICML 2020, July 18, 2020, Vienna, Austria, Revised and

Extended Papers, pages 39–68, Cham. Springer International Publishing.

Mu, J. and Andreas, J. (2020). Compositional explanations of neurons. Advances in Neural Information Processing

Systems, 33:17153–17163.

Nearing, G. S., Kratzert, F., Sampson, A. K., Pelissier, C. S., Klotz, D., Frame, J. M., Prieto, C., and Gupta, H. V.

(2021). What role does hydrological science play in the age of machine learning? Water Resources Research,

57(3):e2020WR028091.

Nguyen, A., Yosinski, J., and Clune, J. (2016). Multifaceted feature visualization: Uncovering the different types of

features learned by each neuron in deep neural networks. arXiv preprint arXiv:1602.03616.

Olah, C., Cammarata, N., Schubert, L., Goh, G., Petrov, M., and Carter, S. (2020). Zoom in: An introduction to

circuits. Distill, 5(3):e00024–001.

Olah, C., Mordvintsev, A., and Schubert, L. (2017). Feature visualization. Distill, 2(11):e7.

27



Pearl, J. (2009). Causality. Cambridge university press.

Pearl, J. (2018). Theoretical impediments to machine learning with seven sparks from the causal revolution.

Pearl, J. and Mackenzie, D. (2018). The book of why: the new science of cause and effect. Basic books.
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Appendix A Background on Models and Phenomena

We follow Bailer-Jones ([2003b], p61) and others (Achinstein 1974, Levy 2012, Contessa 2007) in seeing models

as “an interpretative description of a phenomenon that facilitates perceptual as well as intellectual access to that

phenomenon”, where a phenomenon describes a fact or event in nature that is subject to be researched (Bailer-Jones

2003a). Phenomenon and scientific models have been described as a continuous hierarchy with data living close to

the phenomenon and the model close to theory (Suppes 1966). Models represent only some phenomenon aspects but

not others (Ritchey 2012, Bailer-Jones 2003b, Frigg and Nguyen 2021); a good model is true to the aspects that are

relevant to the model user (Bailer-Jones 2003b, Stachowiak 1973).
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Appendix B Dataset

Figure 8 gives a descriptions of the different features and is copied from Cortez and Silva (2008). In our trained

models, we only used the final G3 student grades. The data was collected during 2005 and 2006 from two public

schools, from the Alentejo region in Portugal. The database is collected from a variety of sources from both school

reports and questionnaires. Cortez and Silva (2008) integrated the information into a mathematics dataset (with 395

examples) and a Portuguese language dataset (649 records).

Figure 8: Attributes in the Cortez and Silva (2008) dataset.
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Appendix C Tower Rule for Expectations

For arbitrary random variables X,Y, Z holds that

EY|X[Y | X] = EZ|X
[
EY|X,Z[Y | X, Z] | X

]
.

This is also known as the rule of total expectation. Intuitively it says that it doesn’t matter if we directly take the

expectation of Y on X or if we first take the expectation of Y conditioned on a set of random variables X, Z that

includes X and then, “integrate Z out”.
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Abstract

Scientists and practitioners increasingly rely on machine learning to
model data and draw conclusions. Compared to statistical modeling ap-
proaches, machine learning makes fewer explicit assumptions about data
structures, such as linearity. Consequently, the parameters of machine
learning models usually cannot be easily related to the data generating
process. To learn about the modeled relationships, partial dependence
(PD) plots and permutation feature importance (PFI) are often used
as interpretation methods. However, PD and PFI lack a theory that re-
lates them to the data generating process. We formalize PD and PFI as
statistical estimators of ground truth estimands rooted in the data gen-
erating process. We show that PD and PFI estimates deviate from this
ground truth due to statistical biases, learner variance, and Monte Carlo

1
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approximation errors. To account for learner variance in PD and PFI es-
timation, we propose the learner-PD and the learner-PFI based on model
refits and propose corrected variance and confidence interval estimators.

Keywords: Interpretable Machine Learning, Permutation Feature
Importance, Partial Dependence Plot, Statistical Inference, Uncertainty
Quantification

1 Introduction

Statistical models such as linear or logistic regression models are frequently
used to learn about relationships in data. Assuming that a statistical model
reflects the data generating process (DGP) well, we may interpret the model
coefficients in place of the DGP and draw conclusions about the data. An
important part of interpreting the coefficients is the quantification of their
uncertainty via standard errors, which allows separation of random noise (non-
significant coefficients) from real effects. Statistical biases and violation of
assumptions are well-studied for many model classes, such as heterogeneous
residuals, deviations from normality, and non-additivity for linear models [1].

Increasingly, machine learning approaches – such as gradient-boosted trees,
random forests or neural networks – are being used instead of or in addition
to statistical models. Compared to statistical models that are driven by con-
siderations of the DGP, machine learning approaches often lack a mapping
between model parameters and properties of the DGP. Due to the ability of
many machine learning models to address highly non-linear relationships and
interactions, they often outperform more restrictive statistical models.

Scientific applications of machine learning are widespread and range from
modeling volunteer labor supply [2], mapping fish biomass [3], analyzing urban
reservoirs [4], identifying disease-associated genetic variants [5], to inferring
behavior from smartphone use [6]. In these scientific applications, the model
is only the means to an end: a better understanding of the DGP, in particular
to learn what features are predictive of the target variable.

Model-agnostic interpretation methods [7] are a (partial) remedy to the lack
of interpretable parameters of more complex models. Model-agnostic methods
follow a general procedure of 1) sampling data, 2) manipulating this data, 3)
predicting and finally 4) aggregating the predictions [8]. Since none of these
steps depends on specific model properties, model-agnostic interpretation tech-
niques allow us to study the behavior of arbitrary models. Partial dependence
(PD) plots [9] and permutation feature importance (PFI) [10, 11] are popular
model-agnostic methods for describing the relationship between input features
and model outcome on a global level. PD plots visualize the average effect that
features have on the prediction, and PFI estimates how much each feature
contributes to the model performance and therefore how relevant a feature is.
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Scientists who want to use PD and PFI to draw conclusions about the
DGP face a problem as these methods have been designed to describe the
prediction function, but lack a theory linking them to the DGP. In particular,
the uncertainty of PD and PFI with respect to the DGP is not quantified,
making it hard for scientists to assess the extent to which they are justified
to draw conclusions based on the PD and PFI applied to a single ML model.
Treating PD and PFI as statistical estimators (like coefficients in a regression
model) would allow us to quantify this epistemic uncertainty and remedy these
concerns. However, this requires a theoretical counterpart of PD and PFI in the
DGP: a ground truth estimand that these interpretation methods are intended
to retrieve.

Contributions

We are the first to treat PD and PFI as statistical estimators of ground
truth properties in the DGP. We introduce two notions, model-PD/PFI and
learner-PD/PFI, which allow to analyze the uncertainty due to Monte-Carlo
integration and uncertainty due to the training data/process, respectively.
We propose bias-variance decompositions, theorems of PD/PFI unbiasedness,
standard estimators, and confidence intervals for both PD and PFI. In ad-
dition, we leverage a variance correction approach from model performance
estimation [12] to improve the variance estimation. We demonstrate the qual-
ity of our proposed confidence intervals in simulations and their usefulness on
a medical example.

Structure

We start with a motivating example (Section 1.1) and a discussion of related
work (Section 1.2). In the methods section (Section 2), we introduce PD and
PFI formally, relate them to the DGP, and provide bias-variance decomposi-
tions, variance estimators and confidence intervals. In the simulation study in
Section 3, we test our proposed methods in various settings and compare them
to alternative approaches. In the application in Section 4, we demonstrate how
our confidence intervals for PD/PFI may help scientists to draw more justified
conclusions about the DGP. Finally, we discuss the limitations of our work in
Section 5.

1.1 Motivating Example

Imagine a researcher who wants to study chronic heart disease. She has data
available from the UCI machine learning repository [13] (Cleveland data,
n = 296) containing sociological and medical indicators such as age, blood
pressure and maximum heart rate. She wants to use machine learning methods
to predict heart disease, and also to learn about the most predictive features.
She compares the performance w.r.t. the predicted probabilities of a logistic
regression model, a decision tree (CART) [14], and a random forest classifier
[10] using 5-fold cross validation measured by the Brier score on the dataset;
the mean losses for the different models are: 0.199 (logistic regression), 0.250
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Figure 1 Left: Conditional Feature Importance. Right: Conditional Partial Dependence
Plot for the maximum heart rate (thalach).

(tree), and 0.130 (random forest). Since the random forest outperforms the
linear model and decision tree, she uses a random forest for further analysis;
she fits a random forest on 60 percent of the data and uses the remaining 40
percent as test set.1

In order to learn about how predictive the features are in the data gen-
erating process (DGP), she applies the PD and PFI to her trained model.
The features, such as age and blood pressure, are strongly correlated. To get
interpretations that are true to the data and that avoid extrapolation, she
employs conditional sampling based versions of PD and PFI (for a discussion
of marginal versus conditional sampling, we refer to the literature [15, 16],
Section 2.1, and Section 2.2). The conditional PD corresponds to the expected
prediction and therefore indicates how the probability of having heart disease
varies with the feature of interest [16]. Conditional feature importance quanti-
fies the surplus contribution of each feature over the remaining features (and
can be linked to conditional dependence with the prediction target [17, 18]).

Conditional interpretation methods require sampling from conditional dis-
tributions. She samples categorical variables using a log-loss optimal classifier;
and samples continuous variables by predicting the conditional mean and
resampling residuals (thereby assuming homoscedasticity). For all sampling
tasks, she fits a random forests once on the dataset. In order to model
multivariate mixed distributions, she employs a sequential design [19, 20].

The results (Figure 1) match with the researcher’s intuition. Many condi-
tional PFI values are small, indicating that the features are dependent and
could be replaced with the remaining variables. The most important features
are thalassemia (thal), the maximum heart rate (thalach), and resting state
ECG (restecg). In order to further understand the association with the max-
imum heart rate, she inspects the corresponding conditional PD plot. She
observes that the probability of having chronic heart disease drops when faster
maximum heart rates were observed.

Although the researcher finds the results plausible, she is unsure whether
her conclusions extend to properties of the data generating process. Various un-
certainties could influence her result: The feature importance and conditional

1All code is publicly available as part of the supplementary material.



Springer Nature 2021 LATEX template

Relating PDP and PFI to the Data Generating Process 5

PD results vary when they are recomputed — even for the same model; and
the random forest fit itself is a random variable with especially high variance
on small datasets.

In order to assess whether the results extend to the DGP she would need to
quantify the involved uncertainties. Over the course of this paper we propose
confidence intervals for partial dependence and feature importance values that
take the uncertainties from the estimation of the interpretability method and
the model fitting into account. We will return to this example in Section 4,
where we show how our approach can help the researcher to evaluate the
uncertainty in her estimates.

1.2 Related Work

For models with inherent variance estimators it is possible to construct model-
based confidence intervals – for example for Bayesian additive regression trees
[21]. Moosbauer et al. [22] introduced a variance estimator for PD which is
applicable to all probabilistic models that provide information on posterior
(co)variance, such as Gaussian Processes (GPs). Furthermore, various applied
articles contain computations of PD confidence bands [2–4, 23–25]. These ap-
proaches either quantify only the error due to Monte Carlo approximation
or do not account for underestimation of the variance when covering learner
variance. This demonstrates the need for a theoretical underpinning of this
inferential tool for practical research. For PFI and related approaches, multi-
ple suggestions for confidence intervals and variance estimation are available.
Since PFI has first been introduced for random forests [10] (the PFI is also
known as Random Forest Feature Importance), several contributions are spe-
cific to the random forest PFI [26–28], for which Altmann et al. [29] propose
a test for null importance.

Model-agnostic PFI confidence intervals that are similar to ours have been
proposed [18, 30, 31]. Our approach additionally corrects for variance underes-
timation arising from resampling [12] and relate the estimators to the proposed
ground truth PFI. An alternative approach for providing bounds on PFI is
proposed by Fisher et al. [11] via Rashomon sets, which are sets of models
with similar near-optimal prediction accuracy. Our approach differs since we
consider bounds for a fixed model or a fixed learning process, while Rashomon
sets are defined by a model class and an error bound. Furthermore, alterna-
tive approaches of “model-free” inference have been introduced [32–34], which
aim to infer properties of the data without an intermediary machine learning
model.

2 Methods

In this Section, we present our formal framework: We introduce notation and
background on PD and PFI (Section 2.1); formulate PD and PFI as estimators
of (proposed) ground truth estimands in the DGP (Section 2.2); apply bias and
variance decompositions and separate different sources of uncertainty (Section
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2.3); and propose variance estimators and confidence intervals for the model-
PD/PFI (which only takes the variance from Monte-Carlo integration into
account, see Section 2.4) and the learner-PD/PFI (which also takes learner
variance into account, see Section 2.5).

2.1 Background and Notation

We denote the joint distribution induced by the data generating process as
PXY , where X is a p-dimensional random variable and Y a 1-dimensional ran-
dom variable. We consider the case where we aim to describe the true mapping
from X to the target Y with f(X) = E[Y | X = x].2 We denote a single ran-
dom draw from the DGP with x(i) and y(i). A dataset consisting of multiple
draws from PXY will be called Dn = {(x(1), y(1)), . . . , (x(n), y(n))}, where n is
the number of samples and with each (x(i), y(i)) ∼ PXY , i ∈ {1, . . . , n}.

A machine learning model f̂ is a function (f̂ : X → Y) that maps a vector
from the feature space X ∈ Rp to a prediction (e.g. Y = R for regression).

The model f̂ is induced based on a dataset Dn, using a loss function L :
Y ×Rp → R+

0 . As the true function f is unknown, the model f̂ is interpreted

instead of f – for example, with PD plots and PFI. The model f̂ is induced
by the learner algorithm I : D → H that maps from the space of datasets to
the function hypothesis space H. The learning process contains an essential
source of randomness, namely the training data as a random sample from
PXY . Since the model f̂ is induced by the learner fed with data, it can be
seen as a realization of a random variable F with distribution PF . We assume
that the model is evaluated with a risk function R(f̂) = EXY [L(Y, f̂(X))] =∫
L(y, f̂(x))dPXY , based on a loss function L. To obtain unbiased estimates

of the risk, model training and evaluation use different datasets. The dataset
Dn is split into Dn1

for model training and Dn2
for evaluation. The empirical

risk is estimated with R̂(f̂Dn2
,λ) := 1

n2

∑n2

i=1 L
(
y(i), f̂Dn2 ,λ

(x(i))
)

.

Let V and W be two random variables, we define a sampler as a function φ
that maps an input v ∈ V to a density function on a spaceW i.e. φ : V → {ψ | ψ
density onW}. The two most common samplers in the context of PD and PFI
are the marginal and the conditional sampler: the marginal sampler φmarg
maps every input v ∈ V to the density of W i.e. for all v ∈ V : φmarg(v) = ψW ;
the conditional sampler φcond maps every input v ∈ V with ψV (v) > 0 to the

conditional density of W i.e. for all v ∈ V : φcond(v) = ψW |V=v =
ψW,V =v

ψV =v
. As

such, samples from φmarg(v) follow P (W ), and samples from φcond(v) follow
P (W | V = v).

Simulation vs Real World Scenario

We distinguish between the ”simulation” and the ”real world” scenario [36]. In
the simulation scenario, we can generate a quasi-infinite number of datasets,
which allows us to refit the model multiple times using fresh data each time.

2This choice for f is motivated by the fact that the conditional expectation is the Bayes-optimal
predictor for the L2 loss and for the log-loss optimal predictor in binary classification [35].
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In the real world setting, we assume that a single dataset of size n is available.
To fit multiple models (of the same class) and to obtain multiple estimates
of the risk, resampling techniques such as bootstrapping, cross-validation and
repeated subsampling must be used. We denote by Bd the set of indices for
the training data in the d-th split repetition and with B−d the corresponding
test data indices, where Bd ∪ B−d = {1, . . . , n}, b ∈ {1, . . . ,m}, and m is the
number of models trained with different data.

The Role of Samplers

Like all model-agnostic interpretation techniques, both PD and PFI are based
on sampling data and evaluating the model on these data [8]. Dependent on
how we sample, we obtain different versions of PD and PFI and their results
must be interpreted in a different way [11, 18, 37–39]. The two most common
theoretical samplers in PD and PFI research are the marginal and the con-
ditional sampler. The choice of the sampler should depend on the modeler’s
objective and the structure of the data. Under certain conditions, the marginal
sampler allows to estimate causal effects [40]. However, for correlated input
features the marginal sampler may create unrealistic data outside the training
distribution, which is problematic if the goal is to draw inference about the
DGP; under such conditions, the conditional sampler may be a better choice
[16]. Samplers, especially conditional samplers, are generally not readily avail-
able, but must be learned with techniques such as conditional subgroups [38]
or conditional density estimators [41–46]. The learning process of the sampler
may introduce another source of uncertainty that we do not consider in this
work; we discuss this limitation in Section 5.

Difference Between Fixed Model and Random Variable

We distinguish between the interpretation of a single model and the distri-
bution of models produced by a learner. Frequently, a fixed trained model f̂
is the subject of interpretation. Any interpretation of a fixed model neglects
the variance originating from the learning process. We are often interested
in extending the interpretation to the distribution of models produced by a
learner. For example, the importance of a feature in a decision tree might be
zero because it was never selected for a split. However, if we were to train the
tree on a slightly different sample from the same distribution, it might obtain
a non-zero importance. A similar distinction between model and learner can
be made for performance estimation, where model performance is estimated
with a test set, but learner performance requires averaging performance over
m repetitions and thus m model refits.
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2.1.1 Partial Dependence Plot

The PD of a feature set XS , S ⊆ {1, . . . , p} (usually | S |= 1) for a given

x ∈ XS , a model f̂ and a sampler φ : XS → {ψ | ψ density on XC} is:

PDS,f̂ ,φ(x) := EX̃C∼φ(x)[f̂(x, X̃C)] =

∫

x̃c∈X̃C

φ(x)(x̃c)f̂(x, x̃c) dx̃c, (1)

where X̃C is a random variable distributed with density φ(x), and C denote
the indices of the remaining features so that S∪C = {1, . . . , p} and S∩C = ∅.
To estimate the PD for a specific function f̂ using Monte Carlo integration, we
draw r ∈ N samples for every x ∈ XS from φ(x) and denote the corresponding

dataset by Bφ(x) = (x̃
(i,x)
C )i=1,...,r. The estimation is given by:

P̂DS,f̂ ,φ(x) =
1

r

r∑

i=1

f̂(x, x̃
(i,x)
C ). (2)

By partial dependence plot (PDP) we denote the graph that visu-
alizes the PDP. The PDP consists of a line connecting the points
{(x(g), P̂DS,f̂ ,φ(x(g))}Gg=1, with G grid points that are usually equidistant or
quantiles of PXS

. See Figure 1 for an example of a PDP.

For the marginal sampler, the PDP of a model f̂ visualizes the expected ef-
fect of a feature after marginalizing out the effects of all other features [9]; for
the marginal version we do not necessarily need a sampler, since we can just
use the training and test data as a sample from XC for every x ∈ XS . For
the conditional sampler, the PDP is also called M-plot and visualizes the ex-
pected effect of a feature on the prediction, taking into account its associational
dependencies with all other features [9, 39].

2.1.2 Permutation Feature Importance

The PFI of a feature set XS (usually just one feature) for a model f̂ and a
sampler φ : XC → {ψ | ψ density on XS} is defined by:

PFIS,f̂ ,φ := EXC ,Y [EX̃S∼φ(XC)[L(Y, f̂(X̃S , XC))]]− EXY [L(Y, f̂(X))], (3)

where X̃S is a random variable distributed with density φ(XC), X̃S |= Y | XC

and XC are the remaining features so that S ∪C = {1, . . . , p} and S ∩C = ∅.
To estimate the PFI for a specific function f̂ and a sampler φ using Monte

Carlo integration, we draw r ∈ N samples for every datapoint x
(i)
C ∈ XC

(x
(i)
C describes the feature values in C of the i-th instance in the evaluation3

dataset Dn2
) from φ(x

(i)
C ) and denote the corresponding datasets by B

φ(x
(i)
C )

=

3The estimation of P̂FI requires unseen data, so that the loss estimates deliver unbiased results
[47, 48].
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(x̃
(k,i)
S )k=1,...,r. The estimation is given by:

P̂F IS,f̂ ,φ =
1

n2

n2∑

i=1

(
1

r

r∑

k=1

L(y(i), f̂(x̃
(k,i)
S , x

(i)
C ))− L(y(i), f̂(x(i)))

)
. (4)

We assume that the loss used for PFI can be computed per instance, which
excludes losses such as the area under the receiver operating characteristic
curve (AUC). See Figure 1 for a PFI example.

For the marginal sampler, the PFI of a model f̂ describes the change in loss
if the feature values in XS are randomly sampled from XS i.e. the possible
dependence to XC and Y is broken (extrapolation); for the marginal version,
we do not even need a sampler because we can simply take the permuted
feature values in XS in the evaluation dataset Dn2 [10, 11]. For the conditional
sampler, PFI is also called the conditional PFI and may be interpreted as the
additional importance of a feature given that we already know the other feature
values [18, 38, 49, 50].

Indices

To avoid indices overhead and because PDP/PFI and their respective estima-
tions are always relative to a fixed feature set S and sampler φ, we will ab-

breviate PDS,f̂ ,φ, P̂DS,f̂ ,φ, PFIS,f̂ ,φ, P̂F IS,f̂ ,φ with PDf̂ , P̂Df̂ , PFIf̂ , P̂F I f̂
respectively.

2.2 Relating the Model to the Data Generating Process

The goal of statistical inference is to gain knowledge about the DGP. There-
fore, the modeler aims to establish relationships between properties of the
model and the DGP. For example, under certain assumptions, the coefficients
of a generalized linear model (i.e. model properties) can be related to pa-
rameters of the respective conditional distribution defined by the DGP, such
as conditional mean and covariance structure (i.e. DGP properties). Machine
learning models such as random forests or neural networks lack such a map-
ping between learned model parameters and properties of the DGP. This lack
of counterparts in the DGP make it difficult to interpret complex machine
learning models and to draw conclusions about the real world. Interpretation
methods such as PD and PFI provide external descriptors of how features
affect the model predictions. However, PD and PFI are estimators that lack
a counterpart estimand in the DGP. We propose an inference approach for
these external descriptors. We define a ground truth version of PD and PFI
through the DGP, namely the DGP-PD and the DGP-PFI. The DGP-PD and
the DGP-PFI are defined as the PD and PFI, but applied to the true func-
tion f instead of the trained model f̂ . Consequently, the DGP-PD becomes
the feature effect of features XS on the underlying function f :
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Definition 1 (DGP-PD) The DGP-PD is the PD applied to function f : X 7→ Y of
the DGP with sampler φ : XS → {ψ | ψ density on XC}.

DGP-PD(x) := PDf (x)

Definition 2 (DGP-PFI) The DGP-PFI is the PFI applied to function f : X 7→ Y
of the DGP with sampler φ : XC → {ψ | ψ density on XS}.

DGP-PFI := PFIf

Note that the DGP-PD and DGP-PFI may not be well-defined for all
possible samplers. The DGP f(x) = E[Y | X = x] is undefined for x ∈ X with
zero density (ψX(x) = 0). For the marginal sampler, for instance, DGP-PD and
DGP-PFI might not be defined if the input features show strong correlations
[49]. Conditional samplers, on the other side, do not face this threat as they
preserve dependencies between features and therefore do not create unrealistic
inputs [11, 18, 38, 39].4 However, under certain conditions, it can still be useful
to also use other samplers than the conditional samplers to gain insight into
the DGP. For example, under certain conditions, the marginal PDP allows to
estimate causal effects [40] or recover relevant properties of linear DGPs [51].

Clearly, the function f is unknown in most applications, which makes it
impossible to know the DGP-PD and DGP-PFI for these cases. However, Def-
initions 1 and 2 enable, at least in theory, to compare the PD/PFI of a model
with the PD/PFI of the DGP in simulation studies and to research statis-
tical biases. More importantly, the ground truth definitions of DGP-PD and
DGP-PFI allow us to treat PD and PFI as statistical estimators of properties
of the DGP.

In this work, we study PD and PFI as statistical estimators of the ground
truth DPG-PD and DGP-PFI – including bias and variance decompositions
– as well as confidence interval estimators. DGP-PD and DGP-PFI describe
interesting properties of the DGP concerning the associational dependencies
between the predictors and the target [16]; however, practitioners must decide
whether these properties are relevant to answer their question or if different
tools of model-analysis provide more interesting estimands.

2.3 Bias-Variance Decomposition

The definition of DGP-PD and DGP-PFI gives us a ground truth to which
the PD and PFI of a model can be compared – at least in theory and sim-
ulation. The error of the estimation (mean squared error between estimator
and estimand) can be decomposed into the systematic deviation from the true
estimand (statistical bias) and the learner variance. PD and PFI are both
expectations over the (usually unknown) joint distribution of the data. The
expectations are therefore typically estimated from data using Monte Carlo

4To illustrate the idea of unrealistic data points, think of two strongly correlated features such
as the weight and height of a person. Not every combination of feature values is possible – a person
with a weight of 4kg and a height of 2m is from a biological perspective inconceivable.
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DGP-PD learner-PD model-PD P̂D

f E[f̂ ] f̂

DGP-PFI learner-PFI model-PFI P̂F I

Bias Variance MC

Learner Bias Learner Variance

Bias Variance MC

Figure 2 A model f̂ deviates from f due to learner bias and variance. Similarly, P̂D and

P̂F I estimates deviate from their ground truth versions DGP-PD and DGP-PFI due to bias,
variance, and Monte Carlo integration (MC).

integration, which adds another source of variation to the PFI and PD esti-
mates. Figure 2 visualizes the chain of errors that stand between the estimand

(DGP-PD, DGP-PFI) and the estimates (P̂D, P̂F I).
For the PD, we compare the mean squared error (MSE) between the true

DGP-PD (PDf as defined in Equation 1) with the theoretical PD of a model

instance f̂ (PDf̂ ) at position x.

EF [(PDf (x)− PDf̂ (x))2] = (PDf (x)− EF [PDf̂ (x)])2

︸ ︷︷ ︸
Bias2

+VF [PDf̂ (x)]
︸ ︷︷ ︸
V ariance

Here, F is the distribution of the trained models, which can be treated as a
random variable. The bias-variance decomposition of the MSE of estimators is
a well-known result [52]. For completeness, we provide a proof in Appendix A.
Figure 3 visualizes bias and variance of a PD curve, and the variance due to
Monte Carlo integration.

Similarly, the MSE of the theoretical PFI of a model (Equation 3) can
be decomposed into squared bias and variance. The proof can be found in
Appendix B.

EF [(PFIf̂ − PFIf )2] = Bias2
F [PFIf̂ ] + VF [PFIf̂ ]

The learner variance of PD/PFI stems from variance in the model fit,
which depends on the training sample. When constructing confidence intervals,
we must take into account the variance of PFI and PDP across model fits,
and not just the error due to Monte Carlo integration. As we show in an
application (Section 4), whether PD and PFI are based on a single model
or are averaged across model refits can impact both the interpretation and
especially the certainty of the interpretation. We therefore distinguish between
model-PD/PFI and learner-PD/PFI, which are averaged over refitted models.
Variance estimators for model-PD/PFI only account for variance due to Monte
Carlo integration.
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Figure 3 Illustration of bias, variance and Monte Carlo approximation for the PD with
marginal sampling. Left: Various PDPs using different data for the Monte Carlo integration,
but keeping the model fixed. Right: The green dashed line shows the DGP-PDP of a toy
example. Each thin line is the PDP for the model fitted with a different sample, and the
thick blue line is the average thereof. Deviations of the DGP-PDP from the expected PDP
are due to bias. Deviations of the individual model-PDPs from the expected PDP are due
to learner variance.

2.4 Model-PD and Model-PFI

Here, we study the model-PD and the model-PFI, and provide variance and
confidence interval estimators. With the terms model-PD and model-PFI, we
refer to the original proposals for PD [9] and PFI [10, 11] for fixed models. Con-

ditioning on a given model f̂ ignores the learner variance due to the learning
process. Only the variance due to Monte Carlo integration can be considered
in this case.

The model-PD estimator (Equation (2)) is unbiased regarding the theoreti-
cal model-PD (Equation (1)). Similarly, the estimated model-PFI (Equation 4)
is unbiased with respect to the theoretical model-PFI (Equation 3). These
findings rely on general properties of Monte Carlo integration, which state
that Monte Carlo integration converges to the integral due to the law of large
numbers. Proofs can be found in Appendix C and E. Moreover, under certain
conditions, model-PD and model-PFI are unbiased estimators of the DGP-PD
(Theorem 1) and DGP-PFI (Theorem 2), respectively.

To quantify the variance due to Monte Carlo integration and to construct
confidence intervals, we calculate the variance across the sample. For the
model-PD, the variance can be estimated with:

V̂(P̂Df̂ (x)) =
1

r(r − 1)

r∑

i=1

(
f̂(x, x̃

(i,x)
C )− P̂Df̂ (x)

)2

. (5)

Similarly for the model-PFI, the variance can be estimated with:

V̂(P̂F I f̂ ) =
1

n2(n2 − 1)

n2∑

i=1

(
L(i) − P̂F I f̂

)2

,
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where L(i) = 1
r

∑r
k=1 L(y(i), f̂(x̃

(k,i)
S , x

(i)
C ))− L(y(i), f̂(x(i))).

The model-PD and model-PFI are mean estimates of independent samples
with estimated variance. As such, they can be modelled approximately with
a t-distribution with r − 1 and n2 − 1 degrees of freedom, respectively. This
allows us to construct point-wise confidence bands for the model-PD and con-
fidence intervals for the model-PFI that capture the Monte Carlo integration
uncertainty. We define point-wise 1−α-confidence bands around the estimated
model-PD:

CI
P̂Df̂ (x)

=

[
P̂Df̂ (x)± t

1−α2

√
V̂(P̂Df̂ (x))

]
. (6)

where t
1−α2

is the 1− α/2 quantile of the t-distribution with r − 1 degrees of

freedom. We proceed in the same manner for PFI but with n2 − 1 degrees of
freedom:

CI
P̂FI f̂

=

[
P̂F I f̂ ± t1−α2

√
V̂(P̂F I f̂ )

]
. (7)

Confidence intervals for model-PD and model-PFI ignore the learner vari-
ance. Therefore, the interpretation is limited to variance regarding the Monte
Carlo integration, and we cannot generalize results to the DGP. The model-
PD/PFI and their confidence bands/intervals are applicable when the focus is
a fixed model.

2.5 Learner-PD and Learner-PFI

To account for the learner variance, we propose the learner-PD and the learner-
PFI, which average the PD/PFI over m model fits f̂d with d ∈ {1, . . . ,m}. The
models are produced by the same learning algorithm, but trained on different
data samples, denoted by training sample indices Bd and the remaining test
data B−d so that Bd ∩B−d = ∅ and Bd ∪B−d = Dn. The learner-variants are
averages of the model-variants, where for each model-PD/PFI, the model is
repeatedly “sampled” from the distribution of models F .

The learner-PD is therefore the expected PD over the distribution of models
generated by the learning process, i.e. EF [PDf̂ (x)]. We estimate the learner-
PD with:

P̂D(x) =
1

m

m∑

d=1

1

r

r∑

i=1

f̂d

(
x, xi,x,dC

)
, (8)

where f̂d is trained on sample indices Bd and the PD estimated with data
Bφ(x),d using a sampler φ m-times.

Following the PD, the learner-PFI is the expected PFI over the distribution
of models produced by the learner: EF [PFIf̂ ,φ]. We propose the following
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estimator for the learner-PFI:

P̂F I =
1

m

m∑

d=1

1

n2

n2∑

i=1

(
¯̃L

(i)
d − L

(i)
d

)
, (9)

where losses L
(i)
d = L(y(i), f̂d(x

(i))) and ¯̃L
(i)
d = 1

r

∑r
k=1 L(y(i), f̂d(x̃

(k,i,d)
S , x

(i)
C ))

are estimated with data B−d and m-times sampled data Bφ(x),d for a model
trained on data Bd. A similar estimator has been proposed by Janitza et al.
[28] for random forests.

2.5.1 Bias of the Learner-PD

The learner-PD is an unbiased estimator of the expected PD over the
distribution of models F , since

EF [P̂D(x)] = EF

[
1

m

m∑

d=1

P̂Df̂d
(x)

]
=
m

m
EF [PDf̂d

(x)] = EF [PDf̂d
(x)].

The bias of the learner-PD regarding the DGP-PD is linked to the bias of the
learner. If the learner is unbiased, the PDs are unbiased as well.

Theorem 1 Learner unbiasedness implies PD unbiasedness:
EF [f̂(x)] = f(x) =⇒ EF [PD

f̂
(x)] = PDf (x)

Proof Sketch 1 Applying Fubini’s Theorem allows us to switch the order of integrals.
Further replacing EF [f̂(x)] with f proves the unbiasedness. A full proof can be found
in Appendix D.

By learner bias, we refer to the expected deviation between the estimated f̂
and the true function f . Particularly interesting in this context is the inductive
bias (i.e. the preference of one generalization over another) that is needed for
learning ML models that generalize [53]. A wrong choice of inductive bias, such

as searching models f̂ in a linear hypotheses class when f is non-linear, leads
to deviations of the expected f̂ from f . But there are also other reasons why a
bias of f̂ from f may occur, for example if using an insufficiently large sample
of training data. We discuss the critical assumption of learner unbiasedness
further in Section 5.

2.5.2 Bias of the Learner-PFI

The learner-PFI is unbiased regarding the expected learner-PFI over the distri-
bution of models F , since the learner-PFI is a simple mean estimate. However,
unlike the learner-PD, learner unbiasedness does not generally imply unbi-
asedness of the learner-PFI regarding the DGP-PFI. This is generally only the
case, if we use the conditional sampler.
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Theorem 2 If the learner is unbiased with EF [f̂ ] = f and the L2-loss is used, then
the conditional model-PFI and conditional learner-PFI are unbiased estimators of
the conditional DGP-PFI.

Proof Sketch 2 Both L and L̃ can be decomposed into bias, variance, and irreducible
error. Due to the subtraction, the irreducible error vanishes, and the differences of
biases and variances remain. Model unbiasedness sets the bias terms to zero and
variance becomes zero due to conditional sampling. The extended proof can be found
in Appendix F.

Intuitively, the model-PFI and learner-PFI should tend to have a neg-
ative bias and therefore underestimate the DGP-PFI. A model cannot use
more information about the target than what is encoded in the DGP. How-
ever, as Theorem 3 shows, under specific conditions, the PFI using conditional
sampling can be larger than the DGP-PFI.

Theorem 3 The difference between the conditional model-PFI and the conditional
DGP-PFI is given by:

PFIf − PFIf̂ = 2EXC

[
VXS |XC

[f ]− CovXS |XC
[f, f̂ ]

]
.

Proof Sketch 3 For the L2 loss, the expected loss of a model f̂ can be decomposed
into the expected loss between f̂ and f and the expected variance of Y given X. Due
to the subtraction, the latter term vanishes. The remainder can be simplified using
that Y |= X̃S | XC and P (X̃S , XC) = P (XS , XC) due to the conditonal sampling.
The extended proof can be found in Appendix G.

However, for an overestimation of the conditional PFI to occur, the ex-
pected conditional variance of f̂ must be greater than the one of f . Moreover,
f̂ and f must have a large expected conditional covariance, meaning that f̂
has learned something about f .

2.5.3 Variance Estimation

The learner-PD and learner-PFI vary not only due to learner variance (refitted
models), but also due to using different samples each time for the Monte Carlo
integration. Therefore, their variance estimates capture the entire modeling
process. Consequently, learner-PD/PFI along with their variance estimators
bring us closer to the DGP-PD/PFI, and only the systematic bias remains
unknown.

We can estimate this point-wise variance of the learner-PD with:

V̂(P̂D(x)) =

(
1

m
+ c

)
· 1

(m− 1)

m∑

d=1

(P̂Df̂d
(x)− P̂D(x))2
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And equivalently for the learner-PFI:

V̂(P̂F I) =

(
1

m
+ c

)
· 1

(m− 1)

m∑

d=1

(P̂F I f̂d − P̂F I)2

The correction term c depends on the data setting. In simulation settings that
allow us to draw new training and test sets for each model, we can use c = 0,
yielding the standard variance estimators. In real world settings, we usually
have a fixed dataset of size n, and models are refitted using resampling tech-
niques. Consequently, data are shared by model refits, and variance estimators
will underestimate the true variance [12]. To correct the variance estimate of
the generalization error for bootstrapped or subsampled models, Nadeau and
Bengio [12] suggested the correction term c = n2

n1
(where n2 and n1 are sizes of

test and training data). However, the correction remains a rough correction,
relying on the strongly simplifying assumption that the correlation between
model refits depends only on the number of shared observations in the respec-
tive training datasets and not on the specific observations that they share.
While this assumption is usually wrong, we show in Section 3.1 that the cor-
rection term offers a vast improvement for variance estimation – compared to
using no correction.

2.5.4 Confidence Bands and Intervals

Since the learner-PD and learner-PFI are means with estimated variance, we
can use the t-distribution with m − 1 degrees of freedom to construct confi-
dence bands/intervals, where m is the number of model fits. The point-wise
confidence band for the learner-PD is:

CI
P̂D(x)

=

[
P̂D(x)± t

1−α2

√
V̂(P̂D(x))

]
,

where t
1−α2

is the respective 1 − α/2 quantile of the t-distribution with

m − 1 degrees of freedom. Equivalently, we propose a confidence interval for
the learner-PFI:

CI
P̂FI

=

[
P̂F I ± t

1−α2

√
V̂(P̂F I)

]
.

Taking the learner variance into account can affect the interpretation, as we
show in the application in Section 4. An additional advantage of the learner-
PD and learner-PFI is that they make better use of the data, since a larger
share of the data is employed as test data compared to only using a small
holdout set.
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Table 1 Coverage Probability of the 95% PDP Confidence Bands. boot = bootstrap, subs
= subsampling, * = with adjustment.

dgp model n boot boot* subs subs* ideal

linear lm 100 0.41 0.89 0.34 0.82 0.95
linear lm 1000 0.41 0.89 0.33 0.80 0.95
linear rf 100 0.39 0.86 0.36 0.83 0.95
linear rf 1000 0.38 0.87 0.35 0.83 0.95
linear tree 100 0.54 0.96 0.47 0.92 0.95
linear tree 1000 0.57 0.96 0.48 0.91 0.95
non-linear lm 100 0.43 0.90 0.36 0.84 0.95
non-linear lm 1000 0.41 0.89 0.33 0.81 0.95
non-linear rf 100 0.39 0.87 0.36 0.84 0.95
non-linear rf 1000 0.38 0.86 0.36 0.83 0.95
non-linear tree 100 0.58 0.98 0.51 0.95 0.95
non-linear tree 1000 0.59 0.97 0.51 0.94 0.95

3 Simulation Studies

In this Section, we study the coverage of the confidence intervals for the learner-
PD/PFI on simulated examples (Section 3.1) and compare our proposed
refitting-based variance estimation with model-based variance estimators
(Section 3.2).

3.1 Confidence Interval Coverage Simulation

In simulations, we compared confidence interval performance between boot-
strapping and subsampling, with and without variance correction. We simu-
lated two DGPs: a linear DGP was defined as y = f(x) = x1 − x2 + ε and a
non-linear DGP as y = f(x) = x1 −

√
1− x2 + x3 · x4 + (x4/10)2 + ε. All fea-

tures were uniformly sampled from the unit interval [0; 1], and for both DGPs,
we set ε ∼ N(0, 1). We studied the two settings “simulation” and “real world”
as described in Section 2.1. In both settings, we trained linear models (lm),
regression trees (tree) and random forests (rf) each 15 times, and computed
confidence intervals for the learner-PD and learner-PFI across the 15 refitted
models. In the “simulation” setting, we sampled n ∈ {100, 1000} fresh data
points for each model refit, where 63.2% of the data were used for training and
the remaining 36.8% for PDP and PFI estimation.5

In the “real world” setting, we sampled n ∈ {100, 1000} data points once
per experiment, and generated 15 training data sets using a bootstrap (sample
size n with replacement, which yields 0.632 · n unique data points in expec-
tation) or subsampling (sample size 0.632 · n without replacement). In both
settings, the learner-PD and learner-PFI as well as their respective confidence
intervals were computed over the 15 retrained models. We repeated the exper-
iment 10,000 times and counted how often the estimated confidence intervals

5We choose this training size (63.2%) to match the expected number of unique samples when
using bootstrapping, which allows to compare bootstrapping and subsampling.
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Table 2 Coverage Probability of the 95% PFI Confidence Intervals. boot = bootstrap,
subs = subsampling, * = with adjustment.

dgp model n boot boot* subs subs* ideal

linear lm 100 0.27 0.70 0.23 0.63 0.94
linear lm 1000 0.25 0.68 0.21 0.60 0.95
linear rf 100 0.44 0.92 0.39 0.88 0.95
linear rf 1000 0.42 0.90 0.38 0.86 0.95
linear tree 100 0.52 0.97 0.42 0.90 0.95
linear tree 1000 0.42 0.90 0.34 0.81 0.95
non-linear lm 100 0.31 0.81 0.25 0.72 0.94
non-linear lm 1000 0.25 0.67 0.21 0.59 0.95
non-linear rf 100 0.47 0.94 0.43 0.91 0.95
non-linear rf 1000 0.41 0.89 0.38 0.86 0.95
non-linear tree 100 0.68 0.99 0.56 0.96 0.94
non-linear tree 1000 0.58 0.97 0.46 0.92 0.95
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Figure 4 Confidence interval width vs. coverage for bootstrapping (boot) and subsampling
(subs), comparing before and after correction. Segments connect identical scenarios.

covered the expected PD or PFI (EF [PDf̂ ] and EF [PFIf̂ ]) over the distribu-

tion of models F .6 These expected values were computed using 10,000 separate
runs. The coverage estimates were averaged across features per scenario and
for PD also across grid points ({0.1, 0.3, 0.5, 0.7, 0.9}) for all features.

Table 2 and Table 1 show that in the “simulation” setting (“ideal”), we
can recover confidence intervals using the standard variance estimation with
the desired coverage probability. However, in the “real world” setting, the
confidence intervals for both the learner-PD and learner-PFI are too narrow
across all scenarios and both resampling strategies when the intervals are based
on naive variance estimates. Some coverage probabilities are especially low,
such as for linear models with 30%− 40%.

The coverage probabilities drastically improve when the correction term is
used (see Figure 4). However, in the simulated scenarios, these probabilities
are still somewhat too narrow. For the linear model, the confidence intervals

6The coverage does not refer to the DGP-PD/PFI, but rather to the expected learner-PD/PFI,
as we studied the choices of resampling and correction for the learner variance.
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Figure 5 Confidence interval width vs. coverage for bootstrapping (boot) and subsampling
(subs), both with correction. Segments connect identical scenarios.

were the narrowest, with coverage probabilities of around 80% − 90% for PD
and 60% − 80% for PFI across DGPs and sample sizes. The PD confidence
bands were not heavily affected by increasing sample size n, but the PFI es-
timates became slightly narrower in most cases. In the case of decision trees,
the adjusted confidence intervals were sometimes too large, especially for the
adjusted bootstrap.

Except for trees on the non-linear DGP, the bootstrap outperformed sub-
sampling in terms of coverage, i.e. the coverage was closer to the 95% level
and rather erred on the side of “caution” with wider confidence intervals (see
Figure 5). As recommended by Nadeau and Bengio [12], we used 15 refits. We
additionally analyzed how the coverage and interval width changed by increas-
ing refits from 2 to 30 and noticed that the coverage worsened with more refits
while the width of the confidence intervals decreased. Increasing the number
of refits incurs an inherent trade-off between interval width and coverage: The
more refits are considered, the more accurate the learner-PFI and learner-PD
become, and also the more certain the variance estimates become, scaling with
1/m. However, there is a limit to the information in the data, such that addi-
tional refits falsely reduce the variance estimate and the confidence intervals
become too narrow. To refit the model 10 - 20 times seemed to be an acceptable
trade-off between coverage and interval width, as demonstrated in Figure 6.
Below ∼ 10 refits, the confidence intervals were large and the mean PD/PFI es-
timates have a high variance. Above ∼ 20 refits, the widths no longer decreased
substantially. The figures for the other scenarios can be found in Appendix H.
With our simulation results, we could show that employing confidence intervals
using the naive variance estimation (without correction) results in considerably
too narrow intervals. While the simple correction term by Nadeau and Ben-
gio [12] does not always provide the desired coverage probability, it is a vast
improvement over the naive approach. We therefore recommend using the cor-
rection when computing confidence intervals for learner-PD and learner-PFI,
as this is currently the best approach available. We also recommend refitting
the model approximately 15 times. For more “cautious” confidence intervals,
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Figure 6 Average PD confidence band width (left) and coverage (right) as a function of
the number of refitted models for the random forest on the non-linear DGP.

we recommend using confidence intervals based on resampling with replace-
ment (bootstrap) over sampling without replacement (subsampling). However,
besides wider confidence intervals, the bootstrap also requires additional at-
tention when model-tuning with internal resampling is used; otherwise, data
points may inadvertently be used in both training and validation datasets.

3.2 Comparison to Model-based Approaches

While our methods based on model-refits provide confidence intervals for PD
and PFI in a model-agnostic manner, it is also possible to exploit (co)variance
estimates of probabilistic models to construct confidence intervals. Here, we
will, for the case of PD7, compare our approach with the model-based approach
of Moosbauer et al. [22] applied to a Gaussian Process (GP) and a linear model
(LM). Below, we summarize the key theoretical concepts of the model-based
approach and then investigate the differences to our approach based on two
simulation settings. We find that our approach more reliably delivers better
coverages that are closer to the 1−α confidence level; this can be explained by
the fact that the model-based approach ignores the variance in Monte Carlo
integration.

Theoretical background

Moosbauer et al. [22] leverage the kernel of GPs to analytically calculate

the model-based uncertainty contained in the PD function. Let f̂ be a GP

and m̂(x) =
(
m̂(x, x

(i)
C )
)
i=1,...,n2

its estimated posterior mean and K̂(x) =
(
k̂
(
(x, x

(i)
C ), (x, x

(j)
C )
))

i,j=1,...,n2

its estimated posterior covariance on the test

set Dn2 for fixed feature values x ∈ XS . The PD estimate P̂D of f̂ can be seen
as a random variable. Thus, the PD for the posterior mean function is given

7We do not know of any application of Moosbauer et al.’s [22] approach to PFI of probabilistic
models.
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by the expected value of P̂D:

Ef̂
[
P̂D(x)

]
= Ef̂

[
1

n2

n2∑

i=1

f̂(x, x
(i)
C )

]
=

1

n2

n2∑

i=1

m̂(x, x
(i)
C ). (10)

The variance of the PD is estimated accordingly and can be calculated
straightforwardly by leveraging the posterior covariance of the GP:

Vf̂
[
P̂D(x)

]
= Vf̂

[
1

n2

n2∑

i=1

f̂(x, x
(i)
C )

]
=

1

n2
2
1>K̂(x)1. (11)

Since the n2 predictors f̂(x, x
(i)
C ) of the GP follow a Gaussian distribution, their

sum is also normally distributed. Hence, we can construct confidence bands
for the mean estimate in Eq. (10) by using the variance estimate in Eq. (11)
together with the respective 1 − α/2 quantiles of the Gaussian distribution.
This approach is applicable to any models (including non-GPs) that provide
a fully specified covariance matrix between the predictions.

As Eq. (11) solely quantifies the variance w.r.t. the model given the ob-
served data, the resulting confidence bands only capture model variance but
not the variance induced by MC integration.

Simulation

We compare our approach for variance estimation to the model-based approach
on the following two settings:

DGP 1: Y = 4X1 − 2X2 + 2X3 −X4 +X5 + ε

DGP 2: Y = 2sin(2πX1) + cos(2πX2) + exp(0.5X3)− 2X2
4 +

√
X5 + ε

with Xj
i.i.d.∼ U(0, 1) for all j ∈ {1, ..., 5}. Given a DGP of the form y = f(x)+ε

the distribution of ε is set to ε ∼ N(0, (0.2 σ(f(x)))2).
While we calculate the DGP-PD for DGP 1 analytically, we approximate

it for DGP 2 by averaging over PDs generated by 10,000 independent draws
based on a linear model with correctly specified components.8 The experiments
are performed 1000 times for n = 200 and n = 1000, where a random sample
of n1 = 0.632 · n is used to fit the models and the remaining n2 = 0.368 ·
n observations are used to calculate the PD. Since both DGPs (if features
in DGP 2 are transformed accordingly) can be expressed by a linear model
and since model-based variance estimates for linear models can be derived
analytically based on the variance of their coefficients, we additionally compare
these estimates to our resampling-based approach (i.e. the learner-PD) for
a correctly specified linear model. While the model-based variance estimates
can be calculated by one model fit per repetition, we draw 15 subsampled

8“Correctly specified components” means here that the features X1 to X5 are transformed
according to the associated non-linear functions from DGP 2 before the LM is fitted.
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data sets per repetition to compute the variance estimate for the resampling-
based approach based on a marginal sampler (since we assume uncorrelated
features in all scenarios).9 We choose the grid points {0.1, 0.3, 0.5, 0.7, 0.9} and
a confidence level of 0.95 to evaluate the mean and variance estimates of the
PDs.

Table 3 shows the results for both the model-based (mod) and the adjusted
subsampling-based (subs) approach. The results are averaged over all features
and grid points. The coverage values for the model-based approach are lower
than the confidence level of 0.95 as well as lower than the coverage values of
the subsampling-based approach for all scenarios. The difference between the
two approaches is particularly large for the correctly specified linear model.
While the subsampling-based approach shows almost perfect coverages for the
different settings, the model-based approach is far off the nominal level with
values around 0.35. This gap can be explained by the MC integration variance
which is not incorporated in the model-based approaches. Hence, if the MC
error is relatively high compared to the model variance, coverages are bad.
To illustrate this relationship, we calculated the average standard deviation
of the MC integration variance estimator (see Eq. (5)) over all repetitions for
the model-based approaches which are provided in the last column of Table 3.
Since the confidence bands of these approaches only cover the model variance,
the confidence width is directly proportional to the model variance. If we now
compare the “MC se” column with the average widths of the model-based
approach, it is observable that coverages are rather low (e.g., 0.34 for DGP 1
and LM with n = 200) in the case where “MC se” divided by width is rather
high (e.g., 0.15/0.15 = 1). On the other hand coverages are high (e.g., 0.87
for DGP 2 and GP with n = 200) if “MC se” divided by width is lower (e.g.,
0.16/0.63 ≈ 0.25) and hence the model variance is rather high compared to
MC error.

Thus, if the main goal is to quantify both uncertainty sources inherent in
the PD estimation and thus to receive reasonable coverages, the model-based
approach cannot be recommended since only one of two sources of variability
are covered by the estimates. Even for the linear model, which is commonly
used for inferential purposes, the confidence bands for the PD estimates might
be far too conservative as shown in Table 3. The subsampling-based variance
estimates we proposed in this work however cover both the learner variance
and the MC error and provide satisfying coverage values.

4 Application

We apply our proposed estimators to the motivational example from Section
1.1. We supposed that a researcher predicted chronic heart disease [13] (Cleve-
land data, n = 296) from sociological and medical indicators such as age, blood

9We did not consider the bootstrapping approach in our experiments as we encountered numer-
ical issues in the invertability of the covariance matrix (due to duplicated values introduced by
bootstrap) [54].
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Table 3 Coverage probabilities for 95% confidence bands of PD estimates for
model-based (mod) and subsampling-based (subs) approaches. Results are averaged over
all features and grid points on DGPs 1 and 2 for the GP and LM. The experiments were
conducted on two different sample sizes n. Furthermore, mean (standard deviation) of
confidence width are reported for both approaches. The last column contains the standard
deviation of the MC error for the model-based approach.

dgp model n coverage width (sd)
mod subs mod subs mod

1 gp 200 0.66 0.95 0.36 (0.19) 0.48 (0.11) 0.15
1 gp 1000 0.71 0.97 0.28 (0.31) 0.24 (0.07) 0.07
1 lm 200 0.34 0.95 0.15 (0.03) 0.41 (0.10) 0.15
1 lm 1000 0.35 0.95 0.06 (0.01) 0.19 (0.05) 0.07
2 gp 200 0.87 0.88 0.63 (0.09) 0.48 (0.11) 0.16
2 gp 1000 0.85 0.92 0.31 (0.05) 0.26 (0.05) 0.08
2 lm 200 0.37 0.94 0.17 (0.04) 0.49 (0.13) 0.18
2 lm 1000 0.35 0.94 0.07 (0.02) 0.22 (0.06) 0.08
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Figure 7 Top: Conditional Learner-PFI and model-PFI with point-wise 95%-confidence
intervals for the random forest. Bottom: Conditional Learner-PDP and model-PDP with
point-wise 95%-confidence bands for the random forest and feature thalach

pressure and maximum heart rate. She fitted one random forest and estimated
conditional PFI and conditional PDPs to interpret the result.

Instead of only computing the conditional PFI and conditional PDP for
one model, we estimate the proposed conditional model-PFI and conditional
learner-PFI along with the proposed confidence intervals. For the learner-based
insights, we therefore refitted the model 15 times on resampled training sets.
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Figure 7 shows model and learner based conditional PFI and conditional
PDP with the corresponding confidence intervals (α = 0.05).

Conditional learner-PFI and model-PFI disagree on the ordering of the
features: they agree that thalassemia (thal) is the most important feature;
but conditional learner-PFI ranks number of major vessels (ca) and chest pain
(cp) next, while conditional model-PFI ranks maximum heart rate (thalach)
and resting state ECG (restecg) second and third. The confidence intervals
for conditional model-PFI and learner-PFI indicate that both learner variance
and the uncertainty stemming from the Monte Carlo integration are relatively
high. All conditional model-PFI confidence intervals include zero, indicating
that the high Monte Carlo uncertainty does not allow conclusions about the
ground-truth conditional model-PFI. The conditional model-PFI cannot tell
us to what extent the estimate varies due to learner variance; only the learner-
PFI can quantify the learner variance. All conditional learner-PFI confidences
intervals include zero as well (despite using the in comparison to bootstrapping
less conservative resampling based confidence intervals), indicating that the
high-ranked features may only appear relevant due to high model uncertainty.

Figure 7, bottom row, shows both the conditional model-PDP and the
conditional learner-PDP for the maximum heart rate feature (thalach). We
observe that individuals with high maximum heart rates are less likely to
have chronic heart disease. Notably, the confidence bands of the conditional
learner-PDP are wider than of the conditional model-PDP, and the conditional
learner PDP confidences are especially wide for extreme values with little data
support. Neglecting the learner variance would mean being overconfident about
the partial dependence curve. In particular, the Monte Carlo approximation
error decreases with 1/n as the sample size n for conditional PD and PFI
estimation increases. Wrongly interpreted, this can lead to a false sense of
confidence in the estimated effects and importance, since only one model is
considered and learner variance is ignored.

5 Discussion

We related the PD and the PFI to the DGP, proposed variance and confi-
dence intervals, and discussed conditions for inference. Our derivations were
motivated by taking an external view of the statistical inference process and
postulating that there is a ground truth counterpart to PD/PFI in the DGP.
To the best of our knowledge, statistical inference via model-agnostic inter-
pretable machine learning is already used in practice, but under-explored in
theory.

A critical assumption for inference of effects and importance using inter-
pretable machine learning is the unbiasedness of the learner. The learner bias
is difficult to test, and can be introduced by e.g. choice of model class, regu-
larization, and feature selection. For example, regularization techniques such
as LASSO introduce a small bias on purpose [55] to decrease learner variance
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and improve predictive performance. We must better understand how specific
biases affect the prediction function and consequently PD and PFI estimates.

Another crucial limitation for inference of PD and PFI is the underesti-
mation of variance due to data sharing between model refits. While we could
show that a simple correction of the variance [12] vastly improves the cover-
age, a proper estimation of the variance remains an open issue. A promising
approach relying on repeated nested cross validation to correctly estimate the
variance was recently proposed by Bates et al. [56]. However, this approach is
more computationally intensive by up to a factor of 1,000.

Furthermore, samplers are not readily available. Especially conditional
sampling is a complex problem, and samplers must be trained using data.
Training samplers even introduces another source of uncertainty to our esti-
mates that we neglected in our work. It is difficult to separate this source of
uncertainty from the uncertainty of the model learner, since trained samplers
are correlated not only with each other, but possibly also with the trained mod-
els. We see integrating sampler uncertainty as an important step in providing
reliable uncertainty estimates in practice, but we leave this to future work.
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Supplementary Material

Appendix A Bias and Variance of PD

The expected squared difference between model-PD and DGP-PD can be
decomposed into bias and variance.

Proof

EF [(PD
f̂

(x)− PDf (x))2] = EF [PD
f̂

(x)2] +EF [PDf (x)2]

− 2EF [PD
f̂

(x)PDf (x)]

= VF [PD
f̂

(x)] +EF [PD
f̂

(x)]2

+ PDf (x)2 − 2EF [PD
f̂

(x)PDf (x)]

= (PDf (x)−EF [PD
f̂

(x)])
︸ ︷︷ ︸

Bias

2 + VF [PD
f̂

(x)]
︸ ︷︷ ︸

Variance

�

Appendix B Bias and Variance of PFI

The expected squared difference between model-PFI and DGP-PFI can be
decomposed into bias and variance.

Proof

EF [(PFI
f̂
− PFIf )2] = EF [PFI2

f̂
] +EF [PFI2

f ]

− 2EF [PFI
f̂
PFIf ]

= VF [PFI
f̂

] +EF [PFI
f̂

]2

+ PFI2
f − 2EF [PFI

f̂
PFIf ]

= (PFIf −EF [PFI
f̂

])2 + VF [PFI
f̂

]

= Bias2F [PFI
f̂

] + VF [PFI
f̂

]

�

Appendix C Model-PD Unbiasedness
Regarding Theoretical PD

Proof By the law of large numbers, the Monte Carlo integration converges with
r → ∞ to the true integral. Assuming we have a fixed x, r identically distributed

random draws X̃
(1,x)
C , . . . , X̃

(r,x)
C ∼ φ(x) and a model f̂ , the estimate is:

EX̃C
[P̂D

f̂
(x)] = E

X̃
(1,x)
C ,...,X̃

(r,x)
C

[
1

r

r∑

i=1

f̂(x, X̃
(i,x)
C )

]

=
1

r
rEX̃C

[f̂(x, X̃C)]
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= PD
f̂

(x)

and therefore unbiased for the interval, i.e. the theoretical PD of the model. �

Appendix D Model-PD Unbiasedness
Regarding DGP-PD

Proof Unbiasedness of the model f̂ implies unbiasedness of the model-PD.

EF [PD
f̂

(x)]
Def
=

∫

F

∫

x̃c∈X̃C

φ(x)(x̃c)f̂(x, x̃c) dx̃c dP (F )

Fub
=

∫

x̃c∈X̃C

∫

F
φ(x)(x̃c)f̂(x, x̃c) dP (F ) dx̃c

const.
=

∫

x̃c∈X̃C

φ(x)(x̃c)

∫

F
f̂(x, x̃c) dP (F ) dx̃c

unbiased
=

∫

x̃c∈X̃C

φ(x)(x̃c)f(x, x̃c) dx̃c

def
= PDf (x)

Fubini’s theorem requires that
∫
F,X̃C

| φ(x)(X̃c)f̂(X̃c) | dPF,XC
< ∞. One

sufficient condition for this is when the model predictions have an upper bound
c :| f̂(x) |< c <∞. �

Appendix E Model-PFI Regarding theoretical
PFI

Proof As a function of random variables, the loss L itself is a random variable. We
assume that the loss L(i) of observation i is a sample from the distribution of losses:
L(i) ∼ L and, similarly for the loss: L̃(k,i) ∼ L̃, where L(i) = L(y(i), f̂(x(i))) and

L̃(k,i) = L(y(i), f̂(x̃
(k,i)
S , x

(i)
C )).

The expectation of our estimator is:

EX̃SXSXCY
[P̂F I

f̂
] = EX̃SXSXCY

[
1

n2

n2∑

i=1

(
1

r

r∑

k=1

(L̃(k,i) − L(i)))

]

=
1

n2
n2EX̃SXSXCY

[((
1

r
rL̃)− L)]

= EX̃SXCY
[L̃]−EXSXCY [L]

= PFI
f̂

In expectation, we retrieve the theoretical PFI of the model.
�

Appendix F PFI Biases for L2

In this proof, we use the conditional sampler φcond for both, the DGP-PFI
and the model-PFI. Moreover, we assume that L is the squared loss L(y, f̂) =
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(y − f̂(x))
2

and that E[Y | X] can be described by f with some additive,
irreducible, error ε with E(ε) = 0 and V(ε) = σ2. To further examine the bias
for the PFI, we apply the Bias-Variance Decomposition additionally on the
loss itself: In addition, we use that EXY [Y ] = EX [f(X)], VY [Y ] = σ2 and
E[A2] = V[A] + E[A]2. We first derive the bias-variance decomposition of (i)
permuted loss and (ii) original loss and therefrom derive the expected PFI.

For the permuted loss (i):

EFX̃SXY
[L̃] = EFX̃SXY

[(Y − ˜̂
f)2]

= EX̃SXY
[Y 2 − 2Y EF [

˜̂
f ] + EF [

˜̂
f2]]

= EX̃SXY
[Y 2 − 2Y EF [

˜̂
f ] + EF [

˜̂
f ]2 + VF [

˜̂
f ]]

= VY [Y ] + EX̃SX
[f2 − 2fEF [

˜̂
f ] + EF [

˜̃
f̂ ]2 + VF [

˜̂
f ]]

= σ2
︸︷︷︸

Data Var

+EX̃SX

[
(f − EF [

˜̂
f ])2

]

︸ ︷︷ ︸
Bias2

+EX̃SX
[VF [

˜̂
f ]]︸ ︷︷ ︸

Variance

For the original loss (ii):

EFXY [L] = EFXY [(Y − f̂)2]

= EXY [Y 2 − 2Y EF [f̂ ] + EF [f̂2]]

= EXY [Y 2 − 2Y EF [f̂ ] + EF [f̂ ]2 + VF [f̂ ]]

= VY [Y ] + EX [f2 − 2fEF [f̂ ] + EF [f̂ ]2 + VF [f̂ ]]

= σ2
︸︷︷︸

Data Var

+EX

[
(f − EF [f̂ ])2

]

︸ ︷︷ ︸
Bias2

+EX [VF (f̂)]︸ ︷︷ ︸
Variance

The expected PFI for feature XS then is:

EF [PFIf̂ ] = EFX̃SXY
[L̃]− EFXY [L]

(i)+(ii)
= σ2 + EX̃SX

[
(f − EF [

˜̂
f ])2

]
+ EX̃SX

[VF (
˜̂
f)]

− (σ2 + EX

[
(f − EF [f̂ ])2

]
+ EX [VF (f̂)])

= EX̃SX

[
(f − EF [

˜̂
f ])2

]
− EX

[
(f − EF [f̂ ])2

]

+ EX̃SX
[VF [

˜̂
f ]]− EX [VF [f̂ ]]

We can derive the same L2 decomposition for the DGP-PFI by replacing f̂
with f in the equation above. This yields PFIf = EX̃SX

[(f(X)−f(X̃S , XC))2],

since VF [f ] = VF [f̃ ] = 0 and EF [f ] = f and EF [f̃ ] = f̃ .
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The bias of the model-PFI compared to the DGP-PFI is:

EF [PFIf̂ ]− PFIf = EX̃SX
[(f − EF [

˜̂
f ])2 − (f − f̃)2]

︸ ︷︷ ︸
Permutation Loss Bias

(F1)

− EX
[
(f − EF [f̂ ])2]

]

︸ ︷︷ ︸
(Learner Bias)2

+EX̃SX
[VF [f̂ ]]− EX [VF [f̂ ]]

︸ ︷︷ ︸
Variance Inflation

(F2)

unbiased
= EX̃SX

[VF [f̂ ]]− EX [VF [f̂ ]]
︸ ︷︷ ︸

Variance Inflation

(F3)

X̃S∼XS |XC
= 0 (F4)

The permutation loss bias and the squared learner bias are zero due to the
unbiasedness assumption, i.e. EF [f̂ ] = f . The variance inflation term is zero
if X̃S ∼ XS | XC , which is here the case due to conditional sampling.

Appendix G conditional DGP-PFI minus
model-PFI for L2

In this proof, we use the conditional sampler φcond for both, the DGP-PFI and
the model-PFI.

PFIf − PFIf̂ = EX̃SXCY
[(Y − f)2]− EXSXCY [(Y − f)2]

−
(
EX̃SXCY

[(Y − f̂)2]− EXSXCY [(Y − f̂)2]
)

=
(
EXSXCY [(Y − f̂)2]− EXSXCY [(Y − f)2]

)

︸ ︷︷ ︸
T1:=

+
(
EX̃SXCY

[(Y − f))2]− EX̃SXCY
[(Y − f̂)2]

)

︸ ︷︷ ︸
T2:=

We know that for any g : X → Y holds:

EX,Y [(Y − g)2] = EX [VY |X [Y ]] + EX [(EY |X [Y ]− g)2]

Since f = EY |XS ,XC
[Y ] we can conclude for our first term T1 that:

T1 = EXSXC
[VY |XS ,XC

[Y ]] + EXSXC
[(f − f̂)2]

−
(
EXSXC

[VY |XS ,XC
[Y ]] + EXSXC

[(f − f)2]︸ ︷︷ ︸
=0

)

= EXSXC
[(f − f̂)2]
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We apply the same strategy to T2. Moreover, Y |= X̃S | XC .

T2 = EX̃SXC
[VY |X̃S ,XC

[Y ]] + EX̃SXC
[(EY |X̃S ,XC

[Y ]− f)2]

−
(
EX̃SXC

[VY |X̃S ,XC
[Y ]] + EX̃SXC

[(EY |X̃S ,XC
[Y ]− f̂)2]

)

= EX̃SXC
[(EY |XC

[Y ]− f)2]− EX̃SXC
[(EY |XC

[Y ]− f̂)2]

If we now set together the two terms again and use in the first step that
P (XS , XC) = P (X̃S , XC), we obtain:

T1+T2 = EXSXC
[(f − f̂)2] + EXSXC

[(EY |XC
[Y ]− f)2]

− EXSXC
[(EY |XC

[Y ]− f̂)2]

= EXSXC

[
f2 − 2ff̂ + f̂2 + EY |XC

[Y ]2 − 2EY |XC
[Y ]f + f2

− EY |XC
[Y ]2 + 2EY |XC

[Y ]f̂ − f̂2
]

= 2EXSXC

[
(f2 − EY |XC

[Y ]f)− (ff̂ − EY |XC
[Y ]f̂)

]

= 2EXC

[
EXS |XC

[
(f2 − EY |XC

[Y ]f)− (ff̂ − EY |XC
[Y ]f̂)

]]

∗
= 2EXC

[
(EXS |XC

[f2]− EY |XC
[Y ]EXS |XC

[f ])

− (EXS |XC
[ff̂ ]− EY |XC

[Y ]EXS |XC
[f̂ ])
]

∗∗
= 2EXC

[
(EXS |XC

[f2]− EXS |XC
[f ]2)

− (EXS |XC
[ff̂ ]− EXS |XC

[f̂ ]EXS |XC
[f ])
]

= 2EXC

[
VXS |XC

[f ]− CovXS |XC
[f, f̂ ]

]

At *, we use the fact that the random variable EY |XC
[Y ] is measurable by

the σ-Algebra generated from XC , and we are inclined to pull it out of the
expectation. In **, we use that from f = EY |XS ,XC

[Y ] follows EXS |XC
[f ] =

EY |XC
[Y ].

Appendix H CI simulation results
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Figure H3 CI coverage for PD with n=1,000.
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Figure H5 CI coverage for PFI with n=100.
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Figure H7 CI coverage for PFI with n=1,000.
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Abstract
The same method that creates adversarial examples (AEs) to fool image-classifiers 
can be used to generate counterfactual explanations (CEs) that explain algorithmic 
decisions. This observation has led researchers to consider CEs as AEs by another 
name. We argue that the relationship to the true label and the tolerance with respect 
to proximity are two properties that formally distinguish CEs and AEs. Based on 
these arguments, we introduce CEs, AEs, and related concepts mathematically in a 
common framework. Furthermore, we show connections between current methods 
for generating CEs and AEs, and estimate that the fields will merge more and more 
as the number of common use-cases grows.

Keywords  Counterfactual explanation · Adversarial example · XAI · AI-safety

1  Introduction

Machine Learning (ML) is transforming industry, science, and our society. Today, 
ML algorithms can fix a date at the hairdresser (Leviathan and Matias 2018), deter-
mine a protein’s 3D shape from its amino-acid sequence (Senior et al. 2020), and 
even write news articles (Brown et  al. 2020). Taking a sharp look at these devel-
opments, we observe a tendency towards more and more complex models. Differ-
ent ML models are stacked together heuristically, with limited theoretical backing 
(Hutson 2018). In some applications, complexity may not be an issue as long as the 
algorithm performs well most of the time. However, in socially, epistemically, or 
safety-critical domains, complexity can rule out ML solutions—think of e.g. autono-
mous driving, scientific discovery, or criminal justice. Two of the major drawbacks 
of highly complex algorithms are the opaqueness problem (Lipton 2018) and adver-
sarial attacks (Szegedy et al. 2014).

 *	 Timo Freiesleben 
	 timo.freiesleben@campus.lmu.de

1	 Munich Center for Mathematical Philosophy, Ludwig-Maximilians-Universität, Ludwigstrasse 
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The opaqueness problem describes the limited epistemic access humans have 
to the inner workings of ML algorithms, especially concerning the semantic inter-
pretation of parameters, the learning process, and the human-predictability of ML 
decisions (Burrell 2016). This lack of interpretability has gained a lot of attention 
recently, which gave rise to the field eXplainable Artificial Intelligence (XAI; Doshi-
Velez and Kim 2017; Rudin 2019). Many techniques have been proposed to gain 
insights into ML systems (Adadi and Berrada 2018; Došilović et al. 2018; Das and 
Rad 2020). Especially model-agnostic methods have gained attraction since, unlike 
model-specific methods, their application is not restricted to a specific model type 
(Molnar 2019). Global model-agnostic interpretation techniques like Permutation 
Feature Importance (Fisher et al. 2019) or Partial Dependence Plots (Friedman et al. 
1991) aim at understanding the general properties of ML algorithms. On the other 
side, local model-agnostic interpretation methods like LIME (Ribeiro et al. 2016) or 
Shapley Values (Štrumbelj and Kononenko 2014) aim at understanding the behavior 
of algorithms for particular regions. One way to explain a specific model-prediction 
is a Counterfactual Explanation (CE; Wachter et al. 2017). A CE explains a predic-
tion by presenting a maximally close alternative input that would have resulted in a 
different (usually desired) prediction. CEs are the first class of objects we study in 
this paper.

The problem of adversarial attacks describes the fact that complex ML algo-
rithms are vulnerable to deceptions (Papernot et al. 2016a; Goodfellow et al. 2015; 
Szegedy et al. 2014). Such malfunctions can be exploited by attackers to e.g. harm 
model-employers or endanger end-users (Song et  al. 2018). The field that investi-
gates adversarial attacks is called adversarial ML (Joseph et al. 2018). If the attack 
happens during the training process by inserting mislabeled training data, the attack 
is called poisoning. If an attack happens after the training process, it is commonly 
called an adversarial example (AE; Serban et al. 2020). AEs are inputs that resemble 
real data but are misclassified by a trained ML model, e.g., the image of a turtle is 
classified as a riffle (Athalye et al. 2018). Hence, misclassified means here that the 
algorithm assigns the wrong class/value compared to some (usually human-given) 
ground-truth (Elsayed et al. 2018). AEs are the second class of objects relevant to 
our study.

Even though the opaqueness problem and the problem of adversarial attacks 
seem unrelated at first sight, there are good reasons to study them jointly. AEs show 
where an ML model fails, and examining these failures deepens our understanding 
of the model (Tomsett et al. 2018; Dong et al. 2017). Explanations on the other hand 
can shed light on how ML algorithms can be improved to make them more robust 
against AEs (Molnar 2019). As a downside, explanations may enclose too much 
information about the model, thereby allowing AEs to be constructed and the model 
attacked (Ignatiev et al. 2019; Sokol and Flach 2019). CEs are even stronger con-
nected to AEs than other explanations. CEs and AEs can be obtained by solving the 
same optimization problem1 (Wachter et al. 2017; Szegedy et al. 2014):

1  x describes the original input, x′ the counterfactual/adversarial vector, f the ML model, ydes the desired 
classification, d(⋅, ⋅) and d�(⋅, ⋅) distances, and � a trade-off scalar. For details, see Sect. 4.3.
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Term 1 has led to various confusions concerning the relationship between CEs and 
AEs in the research community.2 We aim to resolve them and give a detailed analy-
sis of the relationship between the two fields.

The aim of the present paper is twofold. Our first goal is the clarification of con-
cepts. Commonly used concepts such as CE/AE, flipping/misclassifying, process/
model-level, and closeness/distance are often misunderstood or not clearly defined. 
We define these terms properly in one mathematical framework, aiming for more 
clarity and unification. The second goal is to familiarize researchers of each of the 
respective fields with its neighboring area. Even in one of the fields, it is hard to 
keep track of developments and new ideas, in both it is worse. Since there are many 
ways in which each of the fields can profit from the other, both methodologically 
and conceptually, we aim to provide a guide connecting the two literatures.

We will start by providing an intuition to the reader with two standard use cases 
of CEs/AEs and give an overview of relevant other applications in Sect.  2. In 
Sect. 3, we present the (historical) background of CEs and AEs, including the cur-
rent debate around their relationship. Next, we present arguments in what sense the 
current understanding of the relation between CEs and AEs is flawed in Sect. 4.1. 
In Sect. 4.2, we will argue that the notions of misclassification and maximal prox-
imity are the central properties that distinguish CEs from AEs. Based on that, we 
introduce in Sect.  4.3 our more fine-grained formal definitions of CEs, AEs, and 
related concepts. In Sect. 5, we discuss connections between the solution approaches 
for finding CEs/AEs in the literature. We conclude in Sect. 6 by discussing the rel-
evance and limitations of our work.

2 � Examples and Use Cases

Before we get into the technical and conceptual details, let us look at two use cases 
where both CEs and AEs have been successfully deployed. This provides an intui-
tion to the reader and will moreover serve explanatory purposes in the later sections. 
The first example is among the most prominent use-cases of CEs, automated lend-
ing. The second example shows one prominent use-case of AEs, image-classifica-
tion of hand-written digits.

Loan Application imagine a scenario where person P wants to obtain a loan and 
applies for it through a bank’s online portal. She has to enter several of her proper-
ties into the user-interface e.g. her age, salary, capital, number of open loans, and 
number of pets. The portal uses an automated, algorithmic decision system, which 
decides that P will not receive the loan. However, she would have liked to obtain it 
and therefore demands an explanation. An example of a potential CE would be:

(1)argmin
x�∈X

d(x, x�) + � d�(f (x�), ydes).

2  We discuss these confusions in more detail in Sect. 4.1.
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If P had a 5, 000 €  p.a. higher salary and an outstanding loan less, her loan appli-
cation would have been accepted.

She can use this information to guide her future actions or potentially to contest the 
algorithmic decision. Clearly, CEs are not restricted to that setting. If P were the 
model engineer instead of the customer, she could also use the explanation to raise 
her understanding of the model or to debug it.

Now, suppose that P wants to trick the system to get the credit. Assume the deci-
sion system was constructed from an ML algorithm, trained on historic data of the 
companies loan admission policy. From the data, the algorithm has learned that the 
number of pets is positively associated with repaying the credit and consequently the 
system uses the information in its decision making.3 One potential way to trick the 
system with an AE in such a case could for example look as follows:

P indicates two more pets on the application form than she actually has to obtain 
the loan.

P has changed a feature that the model deems causally relevant for creditworthiness 
but which is only spuriously correlated, thus, P has tricked the model. Moreover, she 
probably does not even have to prove the feature to the bank as there is often no offi-
cial legal document for the ownership of e.g. fish or birds. This change allowed her 
to obtain the loan, even though none of her properties have changed.

Hand-Written Digits Recognition imagine a simplified scenario in which a postal 
service employs an image recognition algorithm. This algorithm takes as input 
gray-scale 28 × 28 pixel images and assigns them the number between 0 and 9 they 
depict. This procedure eases the work of the postal service a lot. Cases of errors are 
rare but costly, as the postal service must pay the sender 5€  if a letter or package is 
sent to the wrong address. Therefore, the postal service is interested in improving 
the algorithm.

One way of improving the system would be to generate CEs for specific instances, 
evaluate how useful they are, and adjust the algorithm. Such CEs can be found in the 
first two columns of Fig. 1. One can see e.g. that the images in the first row show 
that the algorithm assigns major importance to the lower-left line to distinguish 
between a six and a five. The postal service might derive that the algorithm already 
has a robust understanding of digits.

Now, assume we take the perspective of an attacker who is interested in exploit-
ing the 5€  per error system. Such an attacker will be interested in generating AEs, 
put them on letters/parcels and gain money. Examples of such AEs are presented 
in the last column of Fig. 1. One can see e.g. that the system has problems when 
random dots appear around a 0 and misclassifies the input as the number 5. While 
the attacker will aim to accomplish many successful attacks, the postal service will 

3  Reasons for such an association in the data might be that pets are expensive and hence associated with 
capital/salary or that people with more pets have also kids and are therefore more reliable. The example 
is inspired by Ballet et al. (2019).
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try to limit the deceivability of its algorithm by making it more robust or excluding 
unrealistic outliers in classification.

The Relevance of These Use-Cases loan applications are among the most popular 
example use-cases in the CE literature (Wachter et al. 2017; Dandl et al. 2020; Grath 
et al. 2018). The example is particularly valuable as it describes a technically and 
ethically complex decision situation, in which explanations are a requirement. Inter-
estingly, the lending use-case gains more and more interest also in the AE literature 
since it depicts the safety troubles of ML systems. Ballet et al. (2019) introduce a 
new notion of imperceptibility for these scenarios which got quickly picked up by 
others (Cartella et al. 2021; Hashemi and Fathi 2020).

Hand-Written-Digits classification is the classical use-case among all image-
classification tasks. Many methods to generate AEs discuss it at least as a test case 
(Wang et al. 2019; Szegedy et al. 2014; Papernot et al. 2017). The feature space is 
comparatively small and the problem itself well studied, therefore, generating AEs 
is computationally cheap and conceptually informative. However, security threats 
cannot be as easily depicted from this use case (that is why we created the fictional 
scenario from above). Because of its simplicity, it has also been used as a starting 
point in the CE literature. The difficulty lies here in finding semantically meaningful 
notions of similarity for images. Three papers proposed approaches to that problem, 
Van Looveren and Klaise (2019) use prototypes to generate realistic CEs, Poyiadzi 
et  al. (2020) use allowed paths, and Goyal et  al. (2019) use differently classified 
images to identify regions that shift the classification.

Other Use Cases there are common use-cases for CEs other than loan approval, 
such as university applications, diabetes diagnosis (Wachter et  al. 2017), adult-
income prediction (Mothilal et al. 2020), or predicting student performances in law-
school (Russell 2019). Most of the common use-cases focus on tabular data settings, 
as it is easier to make sense of CEs in these scenarios (Verma et al. 2020). Changes 
in semantically meaningful variables are easy to convey. Moreover, the scenarios 
considered often describe high-stakes decisions with an ethical dimension. There 

Fig. 1   The images are taken from Van Looveren and Klaise (2019) and Papernot et al. (2017). They are 
generated from CNNs trained on the MNIST dataset. The first an the third column depict original images 
from the MNIST dataset. Column two depicts the corresponding CEs and column four shows the cor-
responding AEs
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are few non-classification, non-tabular settings in which CEs have been applied, 
such as image recognition (Goyal et al. 2019; Van Looveren and Klaise 2019), NLP-
tasks (Akula et al. 2019), regression problems (Anjomshoae et al. 2019) and non-
supervised learning settings (Olson et al. 2021).

The AE community on the other hand has largely focused on image classifica-
tion tasks (Serban et al. 2020). Many AEs focus particularly on the state-of-the-art 
image classifiers from Google, Amazon, or Facebook (Serban et  al. 2020). Well-
known examples include AEs on road signs (Eykholt et al. 2018), the 3-D print of 
a turtle classified as a rifle (Athalye et al. 2018), and the adversarial patch, a sticker 
that fools image recognition software into classifying it as a toaster (Brown et  al. 
2017). One reason why image classifiers lie at the center of the study of AEs is that 
the imperceptibility of changes and the true class label are easy to define (Ballet 
et al. 2019). Moreover, since image recognition models focus on models like CNNs, 
AEs help to assess the limitations of opaque deep learning algorithms. However, 
there is also work on AEs in other task environments e.g. audio/video-classification 
(Carlini et  al. 2016; Carlini and Wagner 2018; Wei et  al. 2018), regression prob-
lems (Balda et al. 2019), and non-supervised learning settings (Behzadan and Munir 
2017; Huang et al. 2017).

3 � Background on CEs and AEs

This section provides a background on where CEs and AEs have historically come 
from, discusses their roles in ML, and presents the discussions about the relation-
ship between the two. The historic background and roles of CEs/AEs provide the 
basis for understanding the discussions around the relationship between the two 
fields, which motivate our proposal.

3.1 � Historic Background

History of CEs CEs have their roots in Philosophy as so-called subjunctive counter-
factual conditionals. They describe conditionals of the form

where S and Q are events. Importantly, event S did not in fact occur. The truth-con-
dition for conditional 2 is hotly debated in philosophy until today (Starr 2019). The 
approach that was taken up by the XAI community (Wachter et al. 2017) builds on 
the work of Lewis (1973) and Stalnaker (1968). In their framework, conditional 2 
holds if and only if the closest possible world4 �� ∈ � to the actual world � ∈ � 
in which S is the case5 also Q is the case. The notion of similarity between possi-
ble worlds is critical in assessing a counterfactual conditional and Lewis discusses 

(2)If S was the case Q would have been the case,

4  � denotes the set of possible worlds.
5  S is false in �.
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similarity in more detail in Lewis (1979). He argues that between close worlds laws 
of nature must be preserved, widespread, diverse violations should be avoided, and 
facts stay congruent for maximal time. Particular facts on the other side can be 
changed without significantly increasing dissimilarity. Despite these specifications, 
Lewis himself admits that the under-specified notion of similarity between possible 
worlds remains the crucial weak-spot of his framework (Lewis 1983).

It is very important to keep in mind that Lewis aimed to describe causal depend-
ence via counterfactual conditionals (Menzies and Beebee 2019). The idea is that Q′ 
causally depends on S′ if and only if, if S were not the case Q would not have been 
the case.6 Even though CEs are not necessarily causal (Reutlinger 2018), the con-
nection to causality is the main factor that underlies the explanatory force of CEs in 
XAI. We can see a textual CE in XAI as a true counterfactual conditional in which 
the antecedent describes a change in input features and the consequent a correspond-
ing change in the classification.

Research on CEs in Psychology concerning human-to-human interaction is 
another root and inspiration of the discussion in XAI (Byrne 2016; Miller 2019). 
Humans use CEs in their daily life when they explain behavior or phenomena to 
each other, often in the form of a contrastive explanation highlighting the differ-
ences to the real scenario. Byrne (2019) summarized the central findings on CEs in 
Psychology and evaluates their relevance to XAI. She points out that people tend to 
create CEs that: add information rather than delete, show better rather than worse 
outcomes, identify relevant cause–effect relationships, and change antecedents that 
are exceptional, controllable, action-based, recent, and not highly improbable.

Using Lewis’s account of counterfactuals for generating explanations for the deci-
sions of ML algorithms was first proposed by Wachter et al. (2017) who also drew 
the connection to the philosophical/psychological tradition of CEs. They argue that 
CEs have three intuitive functions: raise understanding, give guidance for future 
actions, and allow to contest decisions.7 Also, they highlighted the legal relevance 
of CEs and argued that they satisfy the requirements proposed in the so-called ’right 
to explanation’ as it is defined in Recital 71 of the European General Data Protection 
Regulation (GDPR). This law guarantees European citizens the right to obtain an 
explanation in cases they are subject to the fully automated decision-making of an 
algorithm (Voigt and Von dem Bussche 2017).

History of AEs AEs have a less rich philosophical tradition, but instead a strong 
history in the robustness and reliability literature in computer science (Joseph et al. 
2018). Fernandez et al. (2005) describes robustness as “the ability of a software to 
keep an ‘acceptable’ behavior [...] in spite of exceptional or unforeseen execution 
conditions.” The reliability and robustness of computer systems have always been 

6  Interestingly, Pearl (2009) turns this story around and defines counterfactuals via causal graphs. 
Instead of comparing similar worlds, he directly focuses on the underlying mechanisms defined by a 
structural equation. However, as Woodward (2002) and Hitchcock (2001) pointed out that is a matter of 
interpretation as we can instead also understand Pearl’s structural equations as sets of primitive counter-
factuals. Also, Pearl’s notion has found its way into the XAI literature in the form of algorithmic recourse 
(Karimi et al. 2020c, b).
7  It is not necessarily the case that all of these functions are or can be satisfied by one CE (Russell 2019).
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major concerns, especially in safety-critical applications such as health or the mili-
tary sector. Critical elements can be the human interactors, hardware (e.g. sensors, 
hard drives, or processors), and the software. All kind of software is prone to errone-
ous behavior (Kizza et al. 2013), however, adversarial ML focuses particularly on 
the robustness of ML software.

For classical ‘rule-based’ software, the robustness can often be tested by formal 
verification (D’silva et  al. 2008). This becomes more difficult if systems interact 
dynamically with their environment or learn from data. Statistical Learning The-
ory tries to extend the idea of formal verification to statistical learning methods and 
gives theoretical guarantees for the performance of specific model-classes (Vapnik 
2013). Unfortunately, good guarantees become unattainable for very broad and pow-
erful model-classes such as for Deep Neural Networks and learning procedures like 
Stochastic Gradient Descent (Goodfellow et  al. 2016). What is special about the 
robustness of complex ML algorithms compared to others is that they are vulner-
able to attacks even if common errors in model-selection have been avoided (Bishop 
2006; Claeskens et al. 2008; Good and Hardin 2012). Moreover, the kind of attacks 
they are vulnerable to is highly unexpected, which even has led to the question of 
whether they learn anything meaningful at all (Szegedy et al. 2014). The study of 
adversarial ML is not restricted to Deep Learning but also applies to classical ML 
models e.g. logistic regression (Dalvi et al. 2004).

The research in adversarial ML focuses on attacks on ML models by manipulated 
inputs and the defenses against such attacks. An AE describes an input to a model 
that is deliberately designed to effectively “fool” the model into misclassifying8 it. 
AEs occur even for ML algorithms with strong performances in testing-conditions. 
Since the changes from the original to the adversarial input are mostly impercepti-
ble to humans, AEs have been compared to optical illusions tailored to ML models 
(Elsayed et al. 2018).

Szegedy et al. (2014) and Goodfellow et al. (2015) contributed milestones in the 
literature on AEs by not only providing ways to generate AEs but also attempting to 
explain their existence. Szegedy et al. (2014) argued that AEs live mainly in spaces 
of low probability in the data-manifold. Therefore, they do not appear in either the 
training or the test dataset. Hence, artificial neural networks (ANNs) can have a low 
generalization error despite the existence of AEs. Goodfellow et  al. (2015) refuse 
this thesis and argue that AEs arise instead due to the linearity of many ML models 
including ANNs with semi-linear activations. Tanay and Griffin (2016) disagree and 
show that linearity is neither sufficient nor necessary to explain AEs. Instead, they 
claim that AEs lie slightly outside the real-data distribution close to tilted decision 
boundaries. They argue that the decision boundary is continuous outside the data-
manifold and can therefore easily be crossed by AEs. A radically different view is 
proposed by Ilyas et al. (2019) who show that AEs arise from highly predictive but 
non-robust features present in the training data. Hence, AEs are a human-centered 

8  From now on, we will mainly talk about misclassification and classifying. However, this is only to 
simplify our language usage. AEs are not restricted to classification tasks but also work on regression 
problems.
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phenomenon, the ML models, however, just rely on useful information in the data 
humans do not use.9

3.2 � Role in ML

Due to the theoretical foundation, practical applicability, and legal significance, the 
CE approach was quickly adopted by the XAI community as one method to explain 
individual predictions of ML models to end-users (Verma et al. 2020). Nevertheless, 
the method remains controversial and has often been accused of giving misleading 
explanations (Laugel et al. 2019a; Barocas et al. 2020; Páez 2019).

The trust we have in AI systems is and will be closely linked to the extent to 
which adversarial attacks are possible (Toreini et  al. 2020). On the negative side, 
AEs can cause severe damage and security threats (Eykholt et  al. 2018). On the 
positive side, AEs can help us understand how the algorithm works (Ignatiev et al. 
2019; Tomsett et al. 2018) and therefore to understand what it has actually learned 
(Lu et al. 2017a). AEs can even concretely improve models (Bekoulis et al. 2018; 
Stutz et al. 2019).

Both CEs and AEs play a great role in the ML landscape, namely for the trust 
people have in ML (Shin 2021; Toreini et  al. 2020). CEs and AEs contribute to 
improving model understanding, identifying biases, and even offer methods to elim-
inate these biases through adversarial/counterfactual-training (Bekoulis et al. 2018; 
Sharma et  al. 2020). However, while improving understanding and highlighting 
algorithmic problems is usually only a byproduct of AEs, it is the focus of CEs. 
The deception of a system, on the other hand, is essential for AEs, but a potential 
byproduct of CEs in cases where they disclose too much information about the algo-
rithm (Sokol and Flach 2019).

3.3 � The Relation Between CEs and AEs

As mentioned in Sect. 1, CEs and AEs derive from solutions to the same optimiza-
tion problem 1. While the close mathematical relationship between CEs and AEs 
has been frequently pointed out, their exact relationship remains controversial and 
there are a variety of opinions on the matter we present here in more detail.

In one of the early papers on CEs, Wachter et al. (2017) note that an AE can be 
described as “a counterfactual by a different name” (Wachter et al. 2017, p. 852). 
They see one difference between counterfactuals and adversarials in the applied 
notion of distance arising from the misaligned aims, e.g. sparsity vs. impercep-
tibility. The other difference they argue for is that while counterfactuals ought to 

9  Since it is extremely controversial why AEs exist, it is also hard to defend a system against them. It is 
even difficult to formulate the desired property an ML model should have concerning AEs (Bastani et al. 
2016; Biggio and Roli 2018). Classical verification methods have to be modified because they explode 
computationally in the high-dimensional input spaces we are dealing with in ML. Since defense tech-
niques are not relevant for CEs, we will not discuss them in the present paper. We advise the interested 
reader to Serban et al. (2020).
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describe closest possible worlds, AEs often result from ‘impossible worlds’ in the 
Lewisian sense i.e. unrealistic data-points. Additionally, they hint at methodologi-
cal synergies between the two approaches, especially with respect to optimization 
techniques.

Browne and Swift (2020) reject the two difference makers between CEs and AEs 
highlighted by Wachter et al. (2017) (distance metrics, possibility of worlds) as not 
definitional. They argue that using the “wrong” notion of distance may favor less rel-
evant counterfactuals, but these are still ultimately potential explanations. Moreover, 
they reject the claim that adversarials must describe impossible worlds by pointing 
out that adversarial attacks can be carried out in real-world settings. Instead, they 
view counterfactuals and adversarials as formally equivalent. They argue that the 
key difference between CEs and AEs is not mathematical, but relies on the semantic 
properties of the input space. They point out that: “Mathematically speaking, there 
is no difference between a vector of pixel values and a vector of semantically rich 
features” (Browne and Swift 2020,  p. 6). They highlight the role of semantics in 
human-to-human explanation and claim that this difference makes CEs for image-
data adversarials as AEs cannot be conveyed to an explainee in human-understand-
able terms.

Verma et  al. (2020) see the terms CE and AE as non-interchangeable due to 
the different desiderata they must account for. They highlight tensions between 
the adversarial desideratum of imperceptibility and counterfactual desiderata like 
sparsity, closeness to the data-manifold, and actionability. According to Grath 
et al. (2018) CEs and AEs are similar as both are example-based approaches. They 
describe the distinction between CEs and AEs as the difference between flipping and 
explaining decisions. They remark that CEs inform about the changes, while AEs 
aim at hiding those. Laugel et al. (2019b) agree that the two concepts show strong 
mathematical similarities. However, they also point to the difference in purpose 
and application. They note that CEs are mainly considered in the context of low-
dimensional tabular data scenarios, whereas AEs are considered in less-structured 
domains like image/audio data. Dandl et al. (2020) and Molnar (2019) describe AEs 
as special CEs with the aim of deception. Sokol and Flach (2019) discuss CEs in the 
context of AI safety. They make the case that CEs can disclose too much informa-
tion about the model and thereby lead to AEs.

4 � Defining Concepts

This section consists of three parts: (1) a critical assessment of the accounts from 
Sect. 3.3; (2) our conceptual proposal; (3) our formal proposal. In the first part, we 
will argue why none of the afore-mentioned accounts can properly explain the dif-
ference between CEs and AEs. As we will point out, one problem is that they focus 
on the optimization problem  1 as the defining mathematical term for CEs/AEs. 
Instead, we will explain why solving Eq. 1 leads to counterfactuals in tabular set-
tings and adversarials in the image-domain. Moreover, we propose that the relation 
of the counterfactual/adversarial to the true label and the proximity to the original 
data-point present the definitional distinction between CEs and AEs. Since these 
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two distinguishing properties are not captured by Eq. 1 we will consequently present 
novel mathematical definitions of CEs/AEs in part three.

In our arguments, we assume that the reader is familiar with the ideas behind 
decision boundaries, data manifolds, meaningless/unrealistic/unseen inputs, and 
distance metrics. For readers who are not familiar with these concepts, we have pro-
vided a short glossary in Appendix A where we explain these concepts with an illus-
trative example.

4.1 � Conceptual Discussion of Other Accounts

Two Names for the Same Objects Taking the optimization problem from Eq. 1 as 
definitional, Wachter et al. (2017) and Browne and Swift (2020) conclude that they 
are the same mathematical objects. To evaluate this claim, imagine a model, e.g. an 
image classifier that, for all inputs for which a ground truth exists, assigns exactly 
this ground truth. Now, consider a particular prediction of this perfect algorithm. Via 
solving the optimization problem in Eq. 1 we can generate counterfactuals. The CEs 
would be pointing to another input that receives a different assignment e.g. instead 
of the original image of a 3, it shows a 9 looking similar to that 3. However, the sys-
tem cannot be fooled by a modified image because it is always correct. Therefore, no 
AEs exist in that case and none of the generated counterfactuals is an AE. The case 
of a perfect algorithm shows that there are models for which we can reasonably gen-
erate CEs but no AEs. Consequently, they cannot generally be the same objects with 
different names. This shows that while there may be some cases where a vector can 
be called both counterfactual and adversarial, there must be a definitional difference 
between the two concepts.

The Two Differ in AimsVerma et al. (2020) point out that the terms are not inter-
changeable because “while the optimization problem is similar to the one posed in 
counterfactual-generation, the desiderata are different” (Verma et al. 2020, p.4). By 
desiderata they mean additional requirements that are enforced on adversarials (like 
imperceptibility) or counterfactuals (e.g. sparsity, closeness to the data-manifold and 
feasibility. See also Sect. 5). These different desiderata are realized in the different 
distance metrics applied. This difference in aims corresponds to what Wachter et al. 
(2017) mean by claiming that AEs are not making use of appropriate distance met-
rics. So even though counterfactuals and adversarials share the same formal defini-
tion, they can be distinguished by their notion of distance i.e. the applied metric.

We agree with Browne and Swift (2020) that the applied distances do not indicate 
a definitional difference between CEs/AEs. We contend that whether the desiderata 
overlap or not, depends on the respective aims the user has with a CE/AE. Agents 
might also be interested in generating CEs to get guidance on how to deceive the 
system (Sokol and Flach 2019). In such cases, imperceptibility will indeed be rel-
evant, while sparsity or closeness to the data-manifold will be less relevant. Moreo-
ver, attackers could be interested in creating realistic AEs because they are harder to 
detect. In such scenarios, closeness to the data-manifold or feasibility constraints are 
desirable properties of AEs. Also, both CEs and AEs can be relevant to better under-
stand the model at hand and to improve it.
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If the desiderata are similar, so is the mathematical approach. In such scenar-
ios, good counterfactuals and adversarials may actually align and describe the 
same objects. However, a proper definitional distinction between concepts should 
be universal, objective, and independent of the agent’s intentions. It requires neces-
sary (and sufficient) criteria that make an object an instantiation of one object-class 
rather than another. The various desiderata are insufficient to account for differences 
between counterfactuals and adversarials in this strong sense.

Flipping and ExplainingGrath et  al. (2018) draws the distinction between CEs 
and AEs as the difference between explaining and flipping a decision. While CEs 
point to changes in a meaningful way, AEs try to hide those. We think that this is a 
solid observation, however, it shows a difference in presentation and not in defini-
tion. If the presentation style would be the whole difference, we would agree that 
CEs and AEs could mathematically be described as the same objects by a different 
name.

Low vs. High-Dimensional Use CasesLaugel et al. (2019b), Wachter et al. (2017), 
and Browne and Swift (2020) highlight the difference in use-cases. They argue, that 
while for CEs mainly low-dimensional and semantically meaningful features are 
used, AEs are mostly considered for high-dimensional image data with little seman-
tic meaning of individual features. Therefore, the difference is not a difference of 
mathematical objects but rather a difference of semantic structure of the input space 
provided to generate an explanation/attack. In that sense, an AE is a CE that points 
to semantically non-interpretable factors.

However, as discussed in Sect. 2 the use-cases are increasingly overlapping. So, 
if Browne and Swift (2020) would be right that the provided semantics in the input 
spaces is the crucial difference, authors studying AEs in low-dimensional setups 
would just directly use the approaches from the CE literature instead of develop-
ing new methods. According to their argumentation, the two approaches should be 
equivalent for low-dimensional setups. But, what we can notice is that e.g. Ballet 
et  al. (2019) uses expert knowledge to generate imperceptible AEs for structured 
data by asking for features they find irrelevant for the decision at hand. Moreover, 
Goyal et al. (2019) and Poyiadzi et al. (2020) manage to give, as it seems, meaning-
ful CEs also for high-dimensional input spaces without making use of higher-level 
semantic concepts the model creates while Browne and Swift (2020) thought this is 
inevitable. These examples show that the semantic structure of the input space can-
not account for a definitional distinction. Nevertheless, we agree that the difference 
between CEs and AEs is semantic in nature.

4.2 � Our Proposal

After our critical assessment, we found that all approaches so far have failed to 
show definitional differences between counterfactuals and adversarials. This is not 
surprising bearing in mind that all of them take Eq. 1 as definitional for CEs and 
AEs. If one starts with the same definition for both approaches, one can either claim 
that counterfactuals and adversarials are identical or point to the elements within 
the optimization problem that differ such as the applied distances (i.e. the aims) or 
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the structure of the input space. However, just because two object classes contain 
solutions to the same optimization problem, does not mean that they are identical.10 
We propose two definitional differences between CEs and AEs that have so far been 
overseen. Moreover, we argue why nevertheless Eq. 1 can generate both CEs and 
AEs in different contexts.

Misclassification one obvious distinction that has largely been overseen by 
researchers is that adversarials must be necessarily misclassified while counterfac-
tuals are agnostic in that respect. A correctly classified counterfactual is acceptable 
and often even desirable. On the other hand, if an adversarial were correctly classi-
fied, no one would call it an adversarial as it would provide no means to attack a tar-
get system. Consequently, misclassification is a necessary condition that any object 
called an adversarial must meet. This is different from the desiderata discussed 
above, which depend only on the goals of the agent with a CE or AE. Misclassi-
fication as a definitional distinction has been overseen since CEs and AEs can be 
generated by solving the same optimization problem 1. How can it be that the same 
optimization problem is used to generate CEs for tabular-data models and AEs for 
image-data models? This is the crucial question that has to be assessed. It is strongly 
connected to the riddle the existence of AEs poses as discussed in Sect. 3.1, there-
fore, our analysis bases on the ideas of Szegedy et al. (2014) and Tanay and Griffin 
(2016).

We must look at image-classification models to answer why solutions to Eq. 1 are 
mostly misclassified in that scenario. Complex image classifiers perform reasonably 
well on training data and highly similar inputs. In “unseen regions”, on the other 
hand, they have to extrapolate and therefore perform worse. Since the input space 
is incredibly high-dimensional, the training data and therefore the data-manifold 
the algorithm approximates is comparably tiny. That means, there are many more 
meaningless, unrealistic, and unseen inputs than there are points in the training-data. 
The assignment of these inputs is not trustworthy and does not necessarily match 
the assignment of other nearby inputs. At the same time, there is usually a strongly 
limited number of classes that inputs are assigned to. Moreover, the training-data 
assigned to different classes have great distances. Hence, if we search for an input 
from another class but close to a given input, the probability is high that it is an input 
the algorithm has not seen, is unrealistic, or is meaningless and therefore where the 
algorithm is not reliable. Thus, the model will with high probability misclassify this 
input. Often these close inputs are neither unrealistic nor meaningless as thought by 
Wachter et al. (2017), but realistic. Completely unrealistic or meaningless inputs are 
at greater distance from the original input. Realistic but unseen data-points make up 
the dangerous AEs.

This explains why misclassified adversarials are generated in input spaces with 
high-dimensionality and little structure. The effect is even stronger if distances 
are applied that do not reflect what humans consider to be close inputs in the 
high-dimensional case. Minimal changes according to conceptually less-justified 

10  For example, both local maxima and minima minimize the absolute derivative of a differentiable func-
tion. Nevertheless, the two object classes can be formally distinguished.
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distances break the dependencies between variables present in the real world and 
therefore search for inputs in regions with less training-data support. This line of 
thought might suggest that the main reason why mostly adversarials are obtained 
by Eq. 1 for image-classification is the use of distance metrics with little conceptual 
justification. Whether the right distance metric would yield fewer adversarials is, in 
our opinion, an empirical question that we cannot settle here. However, we will pre-
sent our thoughts on this in Sect. 6.2.

There are several reasons why counterfactuals generated in structured, low-
dimensional input spaces are not generally adversarials. First, the models are often 
more robust and extrapolate better in unseen regions, also because background 
knowledge can more easily enter the model. Second, the real-world variables have 
a much simpler dependence structure compared to the high-dimensional image-data 
case. Additionally, as distances are chosen that favor sparse rather than distributed 
changes, these dependencies are often preserved by the manipulations to the input 
vectors. Third, often additional constraints are added that make sure that the gener-
ated input stays close/within the data-manifold i.e. in regions where the model per-
forms well (further discussions of these constraints can be found in Sect. 5.2).

Summed up, both counterfactuals and adversarials can be generated using the 
same method. However, that does not entail that they describe the same object class. 
Counterfactuals are agnostic with respect to the true label, whereas adversarials 
must be misclassified. From this perspective, counterfactuals could be considered 
the more general object-class. However, this conclusion would be drawn too early, 
since there is a second definitional difference.

Proximity to the Original Input additionally to misclassification, we want to high-
light a second, minor distinction between counterfactuals and adversarials, which is 
their tolerance with respect to proximity to the original input.

Closeness to the original input is usually a benefit for adversarials to make them 
less perceptible. However, an adversarial can still be used to attack a system if it is a 
little bit more distal to x than another adversarial (Goodfellow et al. 2015). Depend-
ent on the aim of the attacker, this might even be desirable. Adversarials with greater 
distance to the decision boundary transfer better between different models, are often 
more effective, or more meaningful (Zhang et al. 2019; Elsayed et al. 2018).

For counterfactuals on the other side, closeness to the original input plays a sig-
nificant role in the causal interpretation as discussed in Sect. 3.1. Without maximal 
closeness, a counterfactual shows only a sufficient scenario for a different classifica-
tion but not a necessary one. For example, assume we are in the loan-application set-
ting from Sect. 2, where one point describes a maximally close counterfactual and 
the other a relatively close alternative input to x, both assigned to the same class. 
Assume moreover that the only difference between them is a change in gender from 
female to male. Then, even though such a change in gender would not impact the 
model-prediction, it would appear as a cause for the explainee receiving the alter-
native input. Such alternative inputs are less valuable than actual counterfactuals 
not only to data-subjects but also for model-developers examining the model. Thus, 
accepting ’close enough’ but not maximally close inputs with a different classifica-
tion as counterfactuals means either ignoring better CEs or admitting that the used 
distance is not perfectly adjusted for relevance in the given context.
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Despite that difference in their tolerance with regards to proximity, we do not see 
this difference as equally essential as misclassification. If closeness is handled more 
loosely to generate “CEs”, we might not gain real CEs, but still possibly relevant 
explanations. Thus, we do not entirely leave the category of objects. If on the other 
side we generate correctly classified inputs, we left the realm of attacks.

4.3 � Our Definitions

As we argued, we must not take Eq. 1 as definitional for CEs/AEs. To account for 
the definitional differences we proposed in Sect.  4.2, we require novel definitions 
that include misclassification and the tolerance with respect to proximity to the orig-
inal input. The definitions we will offer satisfy these requirements, offer useful con-
ceptual extensions, and are grounded in the recent literature (e.g. Verma et al. 2020; 
Stepin et  al. 2021 for CEs and Szegedy et  al. 2014; Serban et  al. 2020 for AEs). 
We try to be maximally inclusive to the usage of the terms in the general literature, 
however, due to the great number of papers on both fields (Yuan et al. 2019; Verma 
et al. 2020; Serban et al. 2020; Stepin et al. 2021) our framework will probably not 
be able to cover all usages.

Before we can define CEs and AEs, we need to know what we aim to explain or 
attack, namely ML models or the processes in which they are employed. We will 
restrict ourselves here to the highly common supervised learning setup. Moreo-
ver, we will focus on classification tasks. These restrictions have mainly the pur-
pose to keep the analysis accessible. Many notions can be easily extended to other 
learning-paradigms.

Machine Learning Algorithms and Models assume we consider the relation of 
variables X ∶= X1 ×⋯ × Xn and a (often one-dimensional) variable Y . We can 
see these variables as random variables standing in a causal relation to each other. 
Let X and Y denote the co-domain of X  respectively Y . A (supervised) ML algo-
rithm � is a procedure that based on a set of models M , a labeled training dataset 
DTr ∶= {(x1, y1),… , (xn, yn)} with n ∈ ℕ , some hyperparameters H , an optimization 
method O , and a loss function L outputs a model f ∈ M . This procedure � intui-
tively speaking searches for a model f in the set M , using method O and hyperpa-
rameters H , that has a low prediction loss L on the training dataset DTr.

The model f ∈ M that is obtained by running the procedure � on a given input 
is called the machine learning model. It can be described as a function f ∶ X → Y  . 
This model ideally has a low bias measured by the loss function on the training 
dataset DTr and, moreover, a low generalization error on an unseen test dataset 
DTe ∶= {(xn+1, yn+1),… , (xl, yl)} with l > n . That means that f does predict values of 
Y from X  in cases it has seen the correct assignment, but also for cases that have not 
been part of the training dataset DTr.

Counterfactuals and Adversarials unlike other authors, we distinguish between 
the mathematical objects that induce a CE/AE and the explanations/examples 
themselves. First, we will define the mathematical objects. For all the following 
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definitions, assume we consider a fixed ML model f, a particular vector11 x ∈ X that 
is mapped by f to a value f (x) ∈ Y  , and a semi-metric12 d(⋅, ⋅) on space X.

Definition  We call x� ∈ X an alternative to x if f (x�) ≠ f (x).

In simple terms, x′ is an alternative to x if it gets a different assignment by f.

Definition  Let 𝜖 > 0 . We call x′
�
 an �-alternative to x if

We can think of x′
�
 as a step away from x for which we cross a decision boundary 

of the model but stay within a local �-environment around x.

Definition  We call cx ∈ X a counterfactual to x if

Staying in the narrative, a counterfactual describes the shortest13 step that crosses 
a decision boundary. Notice that this closest vector does not have to be unique, there 
might exist a variety of vectors in equal distance.

A true label yx�,true ∈ Y  for a vector x� ∈ X describes the objectively correct label 
that the input-vector x′ should be assigned to. This ground-truth is often given by 
expert human evaluation. Not for all inputs there exists such a true label. The reason 
might be that the correct assignment is controversial even among expert evaluators 
or the considered input is unrealistic. Why are such unrealistic inputs relevant? As 
introduced above, image(X) ⊆ X . That means that in cases where the subset-relation 
is strict, our model f is defined on data-points that do not realistically occur in the 
real world.

Definition  We call a vector x� ∈ X misclassified if f (x�) ≠ yx�,true.

A misclassification describes a mistake made by the algorithm relative to an 
expert-human assignment.

Definition  Let 𝜖 > 0 . We call ax,� ∈ X an adversarial to x if

In the literature, no clear definitional distinction is drawn between counterfac-
tuals and adversarials. However, as we have argued in Sect. 4.2, we believe that 
the distinctions we have introduced are conceptually necessary. The definitions 

d(x�
𝜖
, x) < 𝜖 and x�

𝜖
is an alternative to x.

d(cx, x) is minimal subject to f (cx) ≠ f (x).

ax,�is an �-alternative and misclassified.

11  This vector x describes mostly a real-data instance.
12  A semi-metric on a space X is a function d ∶ X × X → ℝ such that for all x, x� ∈ X d(x, x�) ≥ 0 , 
d(x, x�) = 0 ⇔ x = x� , and d(x, x�) = d(x�, x).
13  With respect to d(⋅, ⋅).
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of counterfactuals and adversarials differ in two aspects: the relation to the true 
instance label and the constraint of how close the respective data-point must be. 
The misclassification of adversarials enters the definition by enforcing it as an 
additional necessary condition. Note that this entails that only inputs for which a 
ground-truth exists can in our definition be called adversarials.

The second definitional difference we introduce is that counterfactuals must be 
maximally close data-points, while adversarials need only be within an �-environ-
ment around the original input x. This relaxed condition on adversarials is intro-
duced via defining them as �-alternatives. This means, whether an input is called 
an adversarial or not, depends on how close the attacker requires the input to be. 
If the constraint is put too strong i.e. if � is too small, there might not exist any 
adversarials within that environment. If, on the other side, the constraint-parame-
ter is set very high, even inputs rather dissimilar to the original input can count as 
proper adversarials. Unlike adversarials, counterfactuals always exist as long as 
there exists an alternative to x. Moreover, only maximally close alternatives count 
as proper counterfactuals.

Especially counterfactuals, but also adversarials are often targeted i.e. the gen-
erated vector should not only be assigned to a different class than the original 
vector but to a specific desired class. The desired class imposes an additional 
relevance constraint. For counterfactuals, this may be from the perspective of the 
end-user who wants to get her loan application accepted rather than rejected or 
the model-engineer who wants to check whether the model can distinguish an 
input from other inputs of a specific object-class. For adversarials, this may be 
the desired classification from the perspective of the attacker of the system (e.g. 
Whatever is next to this sticker is a toaster Brown et al. 2017). In cases where a 
desired class exists and is imposed, we talk about targeted ( �)-counterfactuals/
adversarials. More formally, let ydes ∈ Y  with f (x) ≠ ydes denote the desired out-
come of a stakeholder given such a desired outcome exists.

Definition  We call an alternative x� ∈ X to x ydes-targeted if f (x�) = ydes.

The notion of targeted vectors has relevance when it comes to generating coun-
terfactuals/adversarials (see Sect. 5). Moreover, we can see the ydes-targeted prop-
erty as a further specification of a counterfactual/adversarial that informs about 
the relevant class. In the case of counterfactuals, targetedness also has defini-
tional relevance. Not every ydes-targeted counterfactual is also a “normal” coun-
terfactual. There are cases where cx is a vector with minimal distance to x that 
belongs to class ydes , however, there still exist inputs x′ closer to x than cx that 
change the classification to a different class f (x) ≠ f (x�) ≠ ydes . Consider a loan 
application scenario in which a poor rejected applicant does not only want to get 
his loan accepted but be classified as a high-credibility premium client with bet-
ter conditions. In such a case, the targeted counterfactual would not be among the 
more realistic “normal” counterfactuals. For adversarials on the other side, every 
targeted adversarial is also a “normal” adversarial given we consider the same � 
environment.
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CEs and AEs so far, we have only discussed vectors living in a space X. How do 
we get from these vectors to explanations or attacks?

Definition 

–	 A contrastive explanation (CON) is a presentation of an alternative x′ in contrast 
to x understandable to a human agent.

–	 A counterfactual explanation (CE) is a presentation of a counterfactual cx under-
standable to a human agent.

–	 An adversarial example (AE) is the depiction of an adversarial ax.

Notice that while every counterfactual and every adversarial describes an alterna-
tive, not every CE or AE is a CON. CONs must be presented as a contrast between 
x′ and x. Possible presentation styles for CEs/AEs include the presentation in form 
of an (English-)conditional of type III for tabular data, an image for visual-data, or a 
sound for auditory-data. For tabular data, we use the property that the input features 
in such scenarios are interpretable. That means they have semantic meaning and can 
be expressed by human language concepts.

Assume we are in such a tabular-data scenario where x = (x1,… , xn) describes 
the original vector and cx = (cx1 ,… , cxn ) one of its targeted-counterfactuals. Now, 
consider the vector cx − x . p ≤ n of this vector’s values will be non zero. Assume 
k1,… , kp describe the names of these non-zero entries of the vector and ek1 ,… , ekp 
their respective values. The (contrastive) CE in this scenario would be:

If P had a ek1 ,… , ekp higher/lower value in k1,… , kp , she would have reached her 
desired classification instead of f(x).

For image-data, we can use the fact that vectors in such spaces can be visualized 
directly in their image representation. Examples have been shown both for CEs and 
AEs in Sect. 2. The same holds for auditory data-inputs which can be presented as a 
sound.

As mentioned above, often there is not one unique counterfactual to a given vec-
tor x. Therefore, there is not one unique correct CE. Worse, often different CEs 
are incompatible. The fact that there are several equally “good” explanations for 
the same prediction is called the Rashomon effect (Molnar 2019). Several ways 
to deal with this problem have been proposed. Mothilal et al. (2020), Moore et al. 
(2019), Wachter et  al. (2017), and Dandl et  al. (2020) propose to present various 
CEs dependent on the specific aim of a user. However, then the question arises, how 
many and which ones? Others propose to select a single CE according to relevance 
(Fernández-Loría et al. 2020) or a quality standard set by the user, such as complex-
ity (Sokol and Flach 2019). We think the question the Rashomon effect poses is still 
open to debate. AEs are unique neither. However, as AEs must not cohere, nor be 
necessarily presented to humans, this plays no role.

Model-Level and Real-World one distinction that is often overlooked is the 
difference between an explanation/attack on the model-level and the real-world. 
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We need to be clear about whether we want to explain/attack the model or the 
modeled process. Generally, the former is much easier to accomplish than the 
latter. We can only move from a model explanation/attack to a process explana-
tion/attack if the model itself, and also the translation of our inputs, preserve the 
essential structure of the process (Molnar et al. 2020). There are two scenarios for 
which the distinction between the two levels is relevant: it is relevant for CEs if a 
user is interested in recourse to attain a desired outcome (Karimi et al. 2020c). It 
is relevant for AEs if an attacker aims to deceive an ML system deployed in the 
physical world (Kurakin et al. 2016).

To give two examples that highlight the difference between model-level 
and real-world explanations/attacks, we reconsider the examples from Sect.  2. 
The presented CE in the loan application setting was: “If P had a 5, 000 €   p.a. 
higher salary and an outstanding loan less, her loan application would have been 
accepted.” This explanation clearly tells us something about the employed model, 
namely about the assignment for a particular alternative. However, P could take 
this as an action recommendation in the sense that if she raises her salary and 
paid her outstanding loan, she will receive the loan she applied for. Unfortunately, 
things are not that simple in the real world. P has to work hard to raise her salary 
and pay her open loan, this does not happen in zero time. By the time she reaches 
the required threshold, she may be five years older and her loan application will 
be rejected again, this time due to her advanced age or because a different algo-
rithm is now used (Venkatasubramanian and Alfano 2020). So the transfer from 
the model explanation to an action recommendation for recourse is not as easy.

A similar example can be shown for AEs. Consider the Hand-Written Digits 
Recognition Scenario from Sect.  2 where an attacker aims to money-pump the 
postal service. The AEs presented are clearly inputs that trick the model. How-
ever, if she now aims to make the step to a real-world fraud, she has to print them 
out. A bad printing, different colors, alternative background, changed angles, or 
the camera employed by the postal service will impact which input the model 
receives. Thus, the AE might not work in the postal-service hand-written digits 
recognition service but only in the artificial setting where we can directly manip-
ulate the input the model receives.

For both CEs and AEs, we need to know the employment context and the 
required functionality in order to be clear about what level we are dealing with. 
The work of Karimi et  al. (2020c) and Mahajan et  al. (2019) on algorithmic 
recourse and the work of Kurakin et  al. (2016), Lu et  al. (2017b), and Athalye 
et  al. (2018) AEs in the physical world have alerted the CE and AE communi-
ties to the importance of the two different levels. The two levels collapse only for 
artificial settings in which the model perfectly matches the process (Karimi et al. 
2020c) and the interventions truly lead to improvements in the target (König et al. 
2021).

Definition  We say a CE/AE operates at the real-world level if it describes changes 
in X  that result in changes in Y . We say that a CE/AE operates at the model-level if 
it describes changes in X that result in changes in Y.
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5 � Generation of CEs/AEs

So far we have motivated and discussed the formal definitions of CEs/AEs. 
Now, we move from the definition to their generation. Again, we will focus on 
the connections between the two fields. Before we start, it is important to note 
that the generation methods for AEs do generally not guarantee success i.e. it is 
unclear whether the generated input vector is misclassified. Instead, misclassi-
fication is particularly in image-classification still often reached accidentally as 
discussed in Sect. 4.2.

5.1 � General Approaches

Optimization Problem the most common approach to find CEs/AEs is to formu-
late and solve an optimization problem. Such a problem formulation is already 
present in the definition of CEs/AEs, however, this is an optimization under side 
conditions and therefore not easy to solve. Instead, the standard formulation as 
a single objective optimization problem is Eq. 1 that led to the confusions dis-
cussed in Sect. 4.1.

For both (targeted/untargeted) CEs and AEs there exist many other formulations 
as an optimization problem (Serban et al. 2020; Verma et al. 2020). For example, for 
CEs Poyiadzi et al. (2020), Kanamori et al. (2020), and Van Looveren and Klaise 
(2019) add additional terms to Eq. 1 encoding further desiderata (see aims and dis-
tances below), Dandl et  al. (2020) instead add these desiderata by formulating a 
multi-objective optimizations problem, and Karimi et al. (2020a) formulate a search 
for the smallest intervention on the variables needed to attain a change in classifica-
tion. Similar to the former formulations for CEs, there exist approaches to AEs like 
(Carlini and Wagner 2017; Moosavi-Dezfooli et al. 2017) which modify the objec-
tive from Eq. 1 to obtain desired properties like computational efficiency or univer-
sality of an AE. Other optimization problems also take into account transformations 
of background or objects and generate AEs whose classification is invariant under 
such transformations (Eykholt et al. 2018; Brown et al. 2017; Athalye et al. 2018).

Generative Networks a second way to generate CEs/AEs that has been fruit-
fully applied is the use of generative networks that generate CEs/AEs for a given 
input. This technique is widespread for both AEs (Goodfellow et al. 2014; Zhao 
et al. 2017; Yuan et al. 2019) and CEs (Mahajan et al. 2019; Van Looveren and 
Klaise 2019; Pawelczyk et al. 2020).

Sensitivity Analysis a third approach that is almost exclusively used by the AEs 
community is sensitivity analysis. Information about the gradient (Goodfellow et al. 
2015; Lyu et  al. 2015) or Jacobian (Papernot et  al. 2016b) of the function in the 
specific input is used to make a step in the direction of the decision boundary to a 
different class. Moore et al. (2019) is the only example we are aware of who use this 
approach to generate CEs. One reason why such approaches have probably not been 
picked up in the CE-literature is that it has limited conceptual justification, e.g. with 
respect to minimal distance, as we discuss in Sect. 6.



97

1 3

The Intriguing Relation Between Counterfactual Explanations…

5.2 � Distances

All approaches to generate AEs necessitate an underlying notion of distance, mainly 
for the inputs space but often also for the output space. Researchers worked with a 
high variety of distances. Often the distances encode specific desiderata research-
ers want CEs/AEs to satisfy. For both fields, the question for the right distance for 
a given use-case is considered an open problem (Serban et  al. 2020; Verma et  al. 
2020). Since every norm induces a metric, we will use the names of the norms and 
generally talk about distances.

Sparsity and Imperceptibility since explanations often need to be understand-
able to people with limited time and cognitive resources, it is desirable for CEs to 
point out only few relevant features. Therefore, distances are preferred that take into 
account sparsity. For adversarials on the other side, a common aim is imperceptibil-
ity. Changes from the original input to the modified input should be hard to grasp 
for human observers. While these desiderata often lead to conflicting notions of dis-
tance, they also can coincide. For example, the L0 and L1 norm have both been fruit-
fully been applied to generate sparse counterfactuals (Dandl et  al. 2020; Wachter 
et al. 2017) and imperceptible AEs (Su et al. 2019; Tramer and Boneh 2019; Pawel-
czyk et al. 2020).

However, some distances to attain sparsity of counterfactuals have not been used 
to reach imperceptibility of AEs. One way by which sparsity can be guaranteed is to 
explicitly put a constraint on the number of features allowed to change (Kanamori 
et al. 2020; Ustun et al. 2019; Sokol and Flach 2019). Another is to constrain the 
number of actions that can be taken, but not the number of the corresponding feature 
changes (Karimi et al. 2020c). To attain imperceptibility of AEs, the distances are 
more diverse. Common examples are the L2 (Moosavi-Dezfooli et al. 2016) and L∞ 
(Goodfellow et  al. 2015; Elsayed et  al. 2018) norm for distributed changes which 
often makes AEs look identical to the input they origin from. Other norms, more 
inspired by human perception are the Wasserstein-distance (Wong et al. 2019), using 
physical parameters underlying the image formation process (Liu et al. 2018), or the 
Perceptual Adversarial Similarity Score (Rozsa et al. 2016).

Plausibility and Misclassification in many contexts, end-users want to use expla-
nations for guiding their future actions. In such scenarios, CEs should not present an 
entirely unrealistic alternative scenario to the explainee. Instead, the recommended 
alternative should be within reach and if possible it should be feasible for agents to 
perform actions based on these alternatives. This often means that the counterfactual 
lies in the natural data-distribution. AEs must by definition be misclassified, which 
as discussed in Sect. 4.2, is often easier to reach on the edges or slightly outside the 
natural data-manifold. We see an antagonism between the goal of realism of CEs 
and the misclassification of AEs. Thus, progress in one of them (especially concern-
ing the applied distances) can easily inform progress in the other, only with reversed 
sign in the optimization.

One common way to attain plausibility is to take into account the distance of 
the CE to the closest training-datapoint (Kanamori et al. 2020; Dandl et al. 2020; 
Sharma et al. 2020) or the allowed path to the counterfactual (Poyiadzi et al. 2020). 
Often, additional constraints are posed such that only actionable features should be 
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changed to avoid non-helpful recommendations (Ustun et al. 2019). Another way is 
to take into account the causal structure of the real-world features. If a counterfac-
tual arises realistically from an intervention on some of these features, the corre-
sponding CE is plausible (Mahajan et al. 2019; Karimi et al. 2020c).

To attain misclassified inputs, it is generally reasonable to search in low-probabil-
ity areas of the data-manifold (Szegedy et al. 2014) or even outside of it (Tanay and 
Griffin 2016). Therefore, most distances for AEs do not respect the causal structure 
between the corresponding real-world variables. Some even act directly against the 
causal structure and modify only irrelevant features (Ballet et al. 2019) or, just as 
for CEs, put constraints on the potential changes (Cartella et al. 2021). Particularly 
noteworthy is the distance of Moosavi-Dezfooli et al. (2017) who encode the robust-
ness of the flip in classification and also the work of Carlini and Wagner (2017) who 
compare the misclassification between different applied distances. Interestingly, it 
has been found that a greater distance to the given decision boundary guarantees 
more robustness of misclassification, hence, many do not search for minimal but 
only close adversarials (Zhang et al. 2019).

Contestability and Misclassification CEs should allow explainees to detect 
adverse or wrong decisions. If the explainee is an end-user, this could be the case if 
she feels judged unfairly (Kusner et al. 2017; Asher et al. 2020). On the other side, 
if the explainee is the model-engineer, this could mean CEs reveal bugs. Again, AEs 
must be misclassified. Decision-making mistakes are the common denominator of 
the contestability reached by CEs and misclassification provided by AEs. Various 
ways have been proposed to encode these aims.

Russell (2019) provide contestability by presenting a range of diverse CEs in 
which different features were modified. This increases the chance that some CEs are 
presented that provide grounds to contest the decision. Sharma et al. (2020) define 
protected properties like ethnicity and focus on changes in these features in their 
distance. Laugel et al. (2019b) discuss how standard norms like L1 can lead to unjus-
tified CEs since they arise from inputs outside the training-data. Hashemi and Fathi 
(2020) combines CEs and AEs to evaluate the weaknesses of a given model. They 
use both, the L0 and L2 norm plus focus on protected features in search for realistic 
but misclassified counterfactuals. In a similar vein, Ballet et al. (2019) assign impor-
tance weights to features and through these weights they define weighted Lp norm 
where changes in more important features have a lower weight and are therefore 
more likely to change in the optimization process. Cartella et al. (2021) extend their 
work and put additional constraints to keep the adversarials realistic but still fraudu-
lent. Especially the last three examples show the great overlap between the goals of 
contestability and misclassification.

5.3 � Model‑Access

As we have discussed above, we do not need to define an optimization problem to 
generate counterfactuals or adversarials. However, different solution methods dif-
fer in the degree of model-access they need. We distinguish between black-box and 
white-box scenarios. In a black-box scenario, explainers/attackers can only query 
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the model for some inputs they provide and receive the corresponding output. In a 
white-box scenario, the explainer/attacker has full model access. We can further dis-
tinguish between methods that only work for a particular model-class and methods 
that are model-agnostic. All black-box solvers work for any model. For white-box 
solvers, some only need access to gradients and therefore require a differentiable 
model and those that are specific to a particular model-class e.g. linear models but 
can therefore often handle mixed-data. Interestingly, even though white-box scenar-
ios are more realistic for explainers and black-box scenarios more commonly occur 
for attackers, the literature shows tendencies in the opposite directions.14

Many solvers rely on access to the models gradients e.g. for CEs (Wachter et al. 
2017; Mothilal et al. 2020; Pawelczyk et al. 2020; Mahajan et al. 2019) or for AEs 
(Szegedy et  al. 2014; Athalye et  al. 2018; Brown et  al. 2017; Ballet et  al. 2019). 
Other solvers for CEs are model-specific and require full model-access such as 
mixed-integer linear program solvers (Ustun et  al. 2019; Russell 2019; Kanamori 
et al. 2020) or solvers tailored for decision trees (Tolomei et al. 2017). For AEs some 
solvers require neural network feature representations (Sabour et  al. 2016). How-
ever, several solvers can deal with a black-box setup. Common in both literatures 
are evolutionary algorithms e.g. for CEs (Sharma et al. 2020; Dandl et al. 2020) and 
for AEs (Guo et al. 2019; Alzantot et al. 2019; Su et al. 2019). Very prominent for 
AEs are also the approximation of gradients by symmetric differences (Chen et al. 
2017) and the usage of surrogate models (Papernot et al. 2017). Especially the latter 
approach is interesting as it is based on the transferability of AEs between different 
models optimized for the same task.

We see that many solvers are fruitfully used in both domains. It will be seen 
whether surrogate model-based approaches also find their way into the CE literature. 
We find the use of them for CEs conceptually controversial as the faithfulness to the 
model is more critical for an explanation than for an attack (also see Sect. 6 for a 
short discussion of this point)).15

6 � Discussion

In this paper, we discussed the relationship between CEs and AEs. We argued that 
the definitional difference between the two object classes consists in their relation 
to the true data labels (i.e. adversarials must necessarily be misclassified) and their 
proximity to the original data-point (i.e. counterfactuals must be maximally close 
to the original input). Based on this, we introduced formal definitions for the key 
concepts of the fields. In addition, we have highlighted similarities and differences 
between the two fields in terms of use cases, solution methods, and distance metrics.

14  See Serban et al. (2020) and Verma et al. (2020) who notice the respective tendencies in their surveys. 
They explain this by the chances to explore more in white box settings and the computational problems 
of black-box attacks in high-dimensional use cases (see Sect. 2).
15  A first approach to use a surrogate model to generate similar explanations to CEs was proposed by 
Guidotti et al. (2018).
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6.1 � Relevance

Our work adds a new viewpoint to the discussion of the relationship between CEs 
and AEs. Eventually, we hope that our work can form the basis for merging the two 
fields. Based on our arguments and the formal definitions inspired by them, adver-
sarials can be seen as special cases of (more distal) misclassified counterfactuals. 
Especially when it comes to CEs for which misclassification is a desirable property, 
such as CEs for contesting adverse decisions, detecting bugs, or improving model-
robustness, we see potential synergies. We believe that a solid conceptual discussion 
becomes more important as these functions of CEs are emphasized and as applica-
tion domains overlap (e.g., AEs in lending, CEs for image classification).

Our work also has a clear practical relevance. The conceptual arguments for 
the maximal proximity of counterfactuals make clear that generating counterfactu-
als via sensitivity analysis, as proposed by Moore et al. (2019), or using surrogate 
model approaches could be problematic. In the case of sensitivity analysis, maximal 
proximity to the original input is not guaranteed and hence the corresponding CEs 
have less explanatory power. Surrogate models might not be sufficiently faithful to 
the original model and therefore lead to bad/misleading explanations. As we dis-
cussed, solution methods to find CEs can also generate AEs, but the reverse can be 
problematic.

What we have shown in terms of the current literature is that there is a large 
amount of overlap. We have also suggested which parts are good candidates for 
transfers. However, as we have made clear, such transfers of mathematical frame-
works or approaches require conceptual justification. While transferring gradient-
based solution techniques from the AE literature to generate counterfactuals, as pro-
posed by Wachter et al. (2017), is conceptually unproblematic, using counterfactuals 
to measure the robustness of a model, as suggested by Sharma et al. (2020), will not 
work for tabular data scenarios.

6.2 � Limitations and Open Problems

Misclassification Formalized our work points to an important weak spot of the 
current AE literature: misclassification is achieved more or less by accident in the 
image domain, but is not clearly formalized. Such a formalization of misclassifica-
tion would greatly advance the merging process between CEs and AEs. It may be 
considered a limitation of our work that we have not provided this formalization but 
instead referred to the true data-labels, which are either expensive to obtain or sim-
ply unknown. Nevertheless, we want to provide a roadmap of what such a formaliza-
tion might look like.

We believe that Ballet et  al. (2019) made the first solid contributions to a for-
mal representation without requiring the ground-truth data labels. In our opinion, a 
good candidate framework for generalizing their approach is causal modeling (Pearl 
2009). If we have a true causal model, misclassification is obtained by modifying a 
correctly classified input sufficiently to change the classification, but in a way that 
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violates the causal structure. We suggest that adversarials can be viewed as small 
modifications in causally irrelevant features that unjustly influence the prediction.

Unfortunately, approaching the problem of misclassification from a causal mod-
eling perspective also comes with strong requirements: we need a structural causal 
model or at least a causal graph. Obtaining such models is extremely difficult (Pearl 
2009; Schölkopf 2019), and when dealing with conceptually lower-order features 
such as pixels or sounds, causal models might even be the wrong descriptive lan-
guage. Still, we think that even limited causal knowledge about, e.g. parts of the 
causal graph or some of the structural equation, might suffice in many contexts to 
prove that a change in classification is unjustified. Moreover, for conceptually less-
structured feature spaces, higher-order causal models (Beckers and Halpern 2019) 
where features such as objects are supervened by lower-order features such as pixels 
may provide the right level of description to define misclassification.

Distances on Unstructured Spaces in our discussion in Sect. 4.2 on misclassifica-
tion, we gave reasons why most inputs that solve Eq. 1 are misclassified. We argued 
that theoretically poorly justified distance metrics are one of the reasons for this phe-
nomenon. However, we did not address whether this might be the only reason for 
this behavior and whether this would still be the case if we had conceptually well-
justified distances on high dimensional spaces with little semantics such as pixel 
spaces.

We believe that this is an empirical question we could not settle in this paper. The 
standard way for approaching it would be to move the distances from raw features 
such as pixels to higher-order features such as object properties. It has often been 
pointed out that deep-learning algorithms based on convolutional neural networks 
(CNNs; Goodfellow et al. 2016) automatically find semantically meaningful features 
in layers close to the output space (Zhang and Zhu 2018; Bau et al. 2017). For exam-
ple, one could define a distance function on the feature space just before the so-
called dense layer in CNNs, which is responsible for classification.

While we consider this a promising direction for future research, there are good 
reasons to remain skeptical. First, unfortunately, it is not so easy to assign specific 
semantic meaning to these high-level features, since some of them are poly-seman-
tic and are triggered by quite different inputs (Olah et al. 2020). Distance measures 
on such features may therefore also be conceptually unjustified and the problem 
remains. Second, examples of AEs, such as those given by Szegedy et al. (2014) or 
Goodfellow et al. (2015), seem to show images that are almost identical to the origi-
nal image. Hence, conceptually well-justified distance functions should also assign a 
low distance to these images, and consequently they will still be generated by solv-
ing Eq. 1. Following (Ilyas et al. 2019), we think that AEs are generated by Eq. 1 not 
only because we apply the wrong distance function, but also because the ML model 
has not really learned the robust concepts that humans use to distinguish objects.

Explanations and Deceptions we have not discussed the conceptual relationship 
between illusions and explanations more generally (e.g. the relation between every-
day life explanations and cognitive biases or optical illusions), but have focused only 
on CEs/AEs in ML. In what sense can an illusion explain a phenomenon? How can 
an explanation lead to a deception? Is there an underlying conceptual or even cogni-
tive connection between explaining and deceiving? We do find these questions, and 
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the possible embedding of our CE/AE discussion within them, intriguing. For now, 
however, we leave these deep and difficult philosophical/psychological questions to 
other researchers.

Glossary

We will shortly explain the following terms with the help of the example depicted in 
Fig. 2. As in Sect. 4.3 we call f ∶ X → Y  the classifier, X the input space, and Y the 
output space.

Decision boundary in the example, the decision boundary is described by the 
blue line. All inputs above the decision boundary are labeled “approved”, all inputs 
below the blue line are labeled “rejected”. Crossing the decision boundary means 
that a point is moved from one side of the decision boundary to the other. For exam-
ple, the individual represented by the black “x” at position (1, 28) might cross the 
decision boundary by moving his salary up 1000€  or by buying two more pets.

More generally, we can describe a decision boundary as a hypersurface in space Y 
that separates one class from another. These hypersurfaces are induced by the clas-
sification model f ∶ X → Y .

Data-Manifold in our example, the green and red points lie within the data-mani-
fold of realistic data samples. However, there is no point number or negative number 
of pets, so such instances would lie outside the data-manifold.

Fig. 2   This figure depicts the decision behavior of a simple classifier. It describes the scenario from 
Sect.  2, which is inspired by Ballet et  al. (2019). The classifier uses two features, salary and number 
of pets, to decide whether to approve or reject a loan application. The green dots are the training data 
labeled as approved, the red dots are the training data labeled as rejected. The blue line describes the 
decision boundary of the classifier
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More generally, a data-manifold describes a subset (often a hypersurface) of the 
spaces X × Y  that arises naturally from a data-generating mechanism. A data-mani-
fold encompasses the statistical population. The training and test data are usually a 
sample from this population.

Meaningless, unrealistic, or unseen inputs:

–	 Meaningless an example of a meaningless input in our scenario would be a per-
son with a negative number of pets. It describes an input that makes no sense to 
us, but is contained in the space X.

–	 Unrealistic an example of an unrealistic input in our scenario would be a person 
with five million pets. It describes an input we can understand, but that most 
likely does not occur in the real world.

–	 Unseen but realistic an example of an unseen input in our scenario would be a 
person who earns 29,000€  and has four pets. It describes an input that may real-
istically occur in the real world, but was not part of the training data.

Conceptually (un-)justified distance metrics conceptually unjustified distance met-
rics assign small distances to inputs that are not similar from a conceptual stand-
point. In our example, a distance function might assign a small distance to the points 
x1 = (0, 10) and x2 = (22, 10) . This would make x2 , which lies far outside the data 
manifold and is assigned to the “approved” class by the model, a potential counter-
factual for x1 . However, x2 is highly unrealistic as 20 pets are a lot and it breaks the 
dependence that 20 pets are probably too expensive for an income of 10,000€  per 
year. This dependency problem is more severe for pixel spaces, since pixels have 
strong dependencies in the real world with their neighboring pixels. Moreover, an 
image in the form of a set of pixels represents an image of objects to humans, a fact 
that is difficult to account for with a metric.
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Abstract

Algorithmic recourse recommendations, such as Karimi et
al.’s (2021) causal recourse (CR), inform stakeholders of how
to act to revert unfavorable decisions. However, there are
actions that lead to acceptance (i.e., revert the model’s de-
cision) but do not lead to improvement (i.e., may not re-
vert the underlying real-world state). To recommend such ac-
tions is to recommend fooling the predictor. We introduce a
novel method, Improvement-Focused Causal Recourse (ICR),
which involves a conceptual shift: Firstly, we require ICR rec-
ommendations to guide towards improvement. Secondly, we
do not tailor the recommendations to be accepted by a specific
predictor. Instead, we leverage causal knowledge to design de-
cision systems that predict accurately pre- and post-recourse.
As a result, improvement guarantees translate into acceptance
guarantees. We demonstrate that given correct causal knowl-
edge ICR, in contrast to existing approaches, guides towards
both acceptance and improvement.

1 Introduction
Predictive systems are increasingly deployed for high-stakes
decisions, for instance in hiring (Raghavan et al. 2020), ju-
dicial systems (Zeng, Ustun, and Rudin 2017), or when dis-
tributing medical resources (Obermeyer and Mullainathan
2019). A range of work (Wachter, Mittelstadt, and Russell
2017; Ustun, Spangher, and Liu 2019; Karimi, Schölkopf,
and Valera 2021) develops tools that offer individuals pos-
sibilities for so-called algorithmic recourse (i.e. actions that
revert unfavorable decisions). Joining previous work in the
field, we distinguish between reverting the model’s predic-
tion Ŷ (acceptance) and reverting the underlying real-world
state Y (improvement) and argue that recourse should lead
to acceptance and improvement (Ustun, Spangher, and Liu
2019; Barocas, Selbst, and Raghavan 2020). Existing meth-
ods, such as counterfactual explanations (CE; Wachter, Mit-
telstadt, and Russell (2017)) or causal recourse (CR; Karimi,
Schölkopf, and Valera (2021)), ignore the underlying real-
world state and only optimize for acceptance. Since ML
models are not designed to predict accurately in interven-
tional environments (i.e. environments where actions have
changed the data distribution), acceptance does not neces-
sarily imply improvement.

Copyright © 2023, Association for the Advancement of Artificial
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Figure 1: Directed Acyclic Graph (DAG) illustrating the
perspectives of counterfactual explanations (CE, left) and
causal recourse (CR, center) in contrast to improvement-
focused recourse (ICR, right). Green edges represent real-
world causal links, blue edges the prediction model. Gray
nodes represent covariates, and the red (yellow) node the
primary (secondary) recourse target. CR respects causal rela-
tionships, but solely between input features; only ICR takes
the target Y into account. While CE and CR aim to revert
the prediction Ŷ , ICR aims to revert the target Y .

Let us consider an example. We aim to predict whether hos-
pital visitors without test certificate are infected with Covid
to restrict access to tested and low-risk individuals. Here, the
model’s prediction Ŷ represents whether someone is classi-
fied to be infected, whereas the target Y represents whether
someone is actually infected. Target and prediction differ in
how they are affected by actions: Intervening on the symp-
toms may change the model’s diagnosis Ŷ , but will not af-
fect whether someone is infected (Y ).
Both counterfactual explanations (CE) and causal recourse
(CR) only target Ŷ (Figure 1). Therefore, CE and CR may
suggest altering the symptoms (e.g., by taking cough drops)
and thereby may recommend to game the predictor: Al-
though the intervention leads to acceptance, the actual Covid
risk Y is not improved.1
One may argue that this is an issue of the prediction model
and may adapt the predictor to make gaming less lucrative
than improvement (Miller, Milli, and Hardt 2020). However,
such adaptions may come at the cost of predictive perfor-
mance – even in light of causal knowledge. The reason is that
gameable variables can be highly predictive (Shavit, Edel-
man, and Axelrod 2020); In our example, the model’s re-
liance on the symptom state would need to be reduced. Thus,
we tackle the problem by adjusting the explanation instead.

1In E.1, the case is formally demonstrated.



Contributions We present improvement-focused causal
recourse (ICR), the first recourse method that targets im-
provement instead of acceptance. Since estimating the ef-
fects of actions is a causal problem, causal knowledge is
required. More specifically, we show how to exploit either
knowledge of the structural causal model (SCMs) or the
causal graph to guide towards improvement (Section 5). On
a conceptual level we argue that the individual’s improve-
ment options should not be limited by an acceptance con-
straint (Section 4). In order to nevertheless yield acceptance,
we show how to exploit said causal knowledge to design
post-recourse decision systems that in expectation recognize
improvement (Section 6), such that improvement guarantees
translate into acceptance guarantees (Section 7). On syn-
thetic and semi-synthetic data, we demonstrate that ICR, in
contrast to existing approaches, leads to improvement and
acceptance (Section 8).

2 Related Work
Constrastive Explanations Contrastive explanations ex-
plain decisions by contrasting them with alternative decision
scenarios (Karimi et al. 2020a; Stepin et al. 2021); a well
known example are counterfactual explanations (CE) that
highlight the minimal feature changes required to revert the
decision of a predictor f̂(x) (Wachter, Mittelstadt, and Rus-
sell 2017; Dandl et al. 2020). However, CEs are ignorant
of causal dependencies in the data and therefore in general
fail to guide action (Karimi, Schölkopf, and Valera 2021).
In contrast, the causal recourse (CR) framework by Karimi
et al. (2022) takes the causal dependencies between covari-
ates into account: More specifically, Karimi et al. (2022)
use structural causal models or causal graphs to guide in-
dividuals towards acceptance.2 The importance of improve-
ment was discussed before (Ustun, Spangher, and Liu 2019;
Barocas, Selbst, and Raghavan 2020), but as of now no
improvement-focused recourse method was proposed.

Strategic Classification The related field of strategic mod-
eling investigates how the prediction mechanism incen-
tivizes rational agents (Hardt et al. 2016; Tsirtsis and
Gomez Rodriguez 2020). A range of work (Bechavod et al.
2020; Chen, Wang, and Liu 2020; Miller, Milli, and Hardt
2020) thereby distinguishes models that incentivize gaming
(i.e., interventions that affect the prediction Ŷ but not the
underlying target Y in the desired way) and improvement
(i.e., actions that also yield the desired change in Y ). Strate-
gic modeling is concerned with adapting the model, where
except for special cases the following three goals are in con-
flict: incentivizing improvement, predictive accuracy, and re-
trieving the true underlying mechanism (Shavit, Edelman,
and Axelrod 2020).

3 Background and Notation
Prediction model We assume binary probabilistic predic-
tors and cross-entropy loss, such that the optimal score
function h∗(x) models the conditional probability P (Y =

2For the interested reader, we formally introduce CR in our no-
tation in A.4.

1|X = x), which we abbreviate as p(y|x). We denote the
estimated score function as ĥ(x), which can be transformed
into the binary decision function f̂(x) := [ĥ(x) ≥ t] via the
decision threshold t.

Causal data model We model the data generating process
using a structural causal model (SCM)M∈ Π (Pearl 2009;
Peters, Janzing, and Schölkopf 2017). The model M =
⟨X, U, F⟩ consists of the endogenous variables X ∈ X ,
the mutually independent exogenous variables U ∈ U , and
structural equations F : U → X . Each structural equation
fj specifies how Xj is determined by its endogenous causes
and the corresponding exogenous variable Uj . The SCM en-
tails a directed graph G, where variables are connected to
their direct effects via a directed edge.
The index set of endogenous variables is denoted as D. The
parent indexes of node j are referred to as pa(j) and the chil-
dren indexes as ch(j). We refer to the respective variables as
Xpa(j). We write Xpa(j) to denote all parents excluding Y
and (X, Y )pa(j) to denote all parents including Y . All as-
cendant indexes of a set S are denoted as asc(S), its com-
plement as nasc(S), all descendant indexes as d(S), and its
complement as nd(S).
SCMs allow to answer causal questions. This means that
they cannot only be used to describe (conditional) distri-
butions (observation, rung 1 on Pearl’s ladder of causation
(Pearl 2009)), but can also be used to predict the (average)
effect of actions do(x) (intervention, rung 2) and imagine
the results of alternative actions in light of factual observa-
tion (x, y)F (counterfactuals, rung 3).
As such, we model actions as structural interventions a :
Π → Π, which can be constructed as do(a) = do({Xi :=
θi}i∈I), where I is the index set of features to be intervened
upon. A model of the interventional distribution can be ob-
tained by fixing the intervened upon values to θI (e.g. by
replacing the structural equation fI := θI ). Counterfactu-
als can be computed in three steps (Pearl 2009): First, the
factual distribution of exogenous variables U given the fac-
tual observation of the endogenous variables xF is inferred
(abduction) (i.e., P (Uj |XF )). Second, the structural inter-
ventions corresponding to do(a) are performed (action). Fi-
nally, we can sample from the counterfactual distribution
P (XSCF |X = xF , do(a)) using the abducted noise and the
intervened-upon structural equations (prediction).

4 The Two Tales of Contrastive Explanations
In the introduction we have demonstrated that CE and CR
may suggest to game the predictor (i.e. guide towards ac-
ceptance without improvement). To tackle the issue, we will
introduce a new explanation technique called improvement-
focused causal recourse (ICR) in Section 5.
In this section we lay the conceptual justification for our
method. More specifically, we argue that for recourse the
acceptance constraint of CR should be replaced by an im-
provement constraint. Therefore, we first recall that a multi-
tude of goals may be pursued with contrastive explanations
(Wachter, Mittelstadt, and Russell 2017) and separate two
purposes of contrastive explanations: contestability of algo-
rithmic decisions and actionable recourse. We then argue



that improvement is an essential requirement for recourse
and that the individual’s options for improvement should not
be limited by acceptance constraints.

Contestability and recourse are distinct goals. Contesta-
bility is concerned with the question of whether the algorith-
mic decision is correct according to common sense, moral
or legal standards. Explanations may help model authorities
to detect violations of such standards or enable explainees
to contest unfavorable decisions (Wachter, Mittelstadt, and
Russell 2017; Freiesleben 2021). Explanations that aim to
enable contestability must reflect the model’s rationale for
an algorithmic decision. Recourse recommendations on the
other hand need to satisfy various constraints unrelated to
the model, such as causal links between variables (Karimi,
Schölkopf, and Valera 2021) or their actionability (Ustun,
Spangher, and Liu 2019). Consequently, explanations geared
to contest are more complete and true to the model while re-
course recommendations are more selective and true to the
underlying process.3 We believe that the selectivity and re-
liance of recourse recommendations on factors besides the
model itself is not a limitation but an indispensable condi-
tion for making explanations more relevant to the explainee.

In the context of recourse, improvement is desirable for
model authority and explainee. We consider improve-
ment to be an important normative requirement for recourse,
both with respect to explainee and model authority. Valu-
able recourse recommendations enable explainees to plan
and act; thus, such recommendations must either provide
indefinite validity or a clear expiration date (Wachter, Mit-
telstadt, and Russell 2017; Barocas, Selbst, and Ragha-
van 2020; Venkatasubramanian and Alfano 2020). Problem-
atically, when model authorities give guarantees for non-
improving recourse, this constitutes a binding commitment
to misclassification. However, if model authorities do not
provide recourse guarantees over time, this diminishes the
value of recourse recommendations to explainees. They
might invest effort into non-improving actions that ulti-
mately do not even lead to acceptance because the classifier
changed.4 In contrast, improvement-focused recourse is hon-
ored by any accurate classifier. We conclude that, given these
advantages for both model authority and explainee, recourse
recommendations should help to improve the underlying tar-
get Y .5

Improvement should come first, acceptance second.
Taken that we constrain the optimization on improvement,
how to guarantee acceptance remains an open question. One

3We do not claim that recourse and contestability always di-
verge, we only describe a difference in focus. If contesting is suc-
cessful it may even provide an alternative route towards recourse.

4For instance, in the introductory example, an intervention on
the symptom state would only be honored by a refit of the model
on pre- and post-recourse data for the small percentage of individ-
uals who were already vaccinated, as documented in more detail
in E.1. Also, gaming actions may not be robust concerning model
multiplicity, as seen in the experiments (Section 8).

5We do not claim that gaming is necessarily bad; it may be jus-
tified when predictors perform morally questionable tasks.

approach would be to constrain the optimization on both im-
provement and acceptance. However, a restriction on accep-
tance is either redundant or, from our moral standpoint, ques-
tionable: If improvement already implies acceptance, the
constraint is redundant. In the remaining cases, we can pre-
dict improvement with the available causal knowledge but
would withhold these (potentially less costly) improvement
options because of the limitations of the observational pre-
dictor. To ensure that acceptance ensues improvement, we
instead suggest to exploit the assumed causal knowledge for
accurate post-recourse prediction (Section 6), such that ac-
ceptance guarantees can be made (Section 7).

5 Improvement-Focused Causal Recourse
(ICR)

We continue with the formal introduction of ICR, an explana-
tion technique that targets improvement (Y = 1) instead of
acceptance (Ŷ = 1). Therefore we first define the improve-
ment confidence γ, which can be optimized to yield ICR.
Like previous work in the field (Karimi et al. 2020b), we dis-
tinguish two settings: In the first setting, knowledge of the
SCM can be assumed, such that we can leverage structural
counterfactuals (rung 3 on Pearl’s ladder of causation) to in-
troduce the individualized improvement confidence γind. In
the second setting only the causal graph is known, which
we exploit to propose the subpopulation-based improvement
confidence γsub (rung 2).

Individualized improvement confidence For the individ-
ualized improvement confidence γind we exploit knowledge
of a SCM. SCMs can be used to answer counterfactual ques-
tions (rung 3). In contrast to rung-2-predictions, counterfac-
tuals are tailored to the individual and their situation (Pearl
2009): They ask what would have been if one had acted dif-
ferently and thereby exploit the individual’s factual obser-
vation. Given unchanged circumstances, counterfactuals can
be seen as individualized causal effect predictions.
In contrast to existing SCM-based recourse techniques
(Karimi et al. 2022) we include both the prediction Ŷ and
the target variable Y as separate variables in the SCM. As a
result, the SCM can be used not only to model the individu-
alized probability of acceptance, but also the individualized
probability of improvement.

Definition 1 (Individualized improvement confidence). For
pre-recourse observation xpre and action a we define the
individualized improvement confidence as

γind(a) = γ(a, xpre) := P (Y post = 1|do(a), xpre).

Since the pre-recourse (factual) target Y cannot be ob-
served, standard counterfactual prediction cannot be applied
directly. However, we can regard the distribution as a mix-
ture with two components, one for each possible state of Y .
We can estimate the mixing weights using h∗ and each com-
ponent using standard counterfactual prediction. Details in-
cluding pseudocode are provided in B.1.



Subpopulation-based improvement confidence For the
estimation of the individualized improvement confidence
γind knowledge of the SCM is required. If the SCM is not
specified, but the causal graph is known instead and there
are no unobserved confounders (causal sufficiency), we can
still estimate the effect of interventions (rung 2).
In contrast to counterfactual distributions (rung 3), interven-
tional distributions describe the whole population and there-
fore provide limited insight into the effects of actions on spe-
cific individuals. Building on Karimi et al. (2020b), we thus
narrow the population down to a subpopulation of similar
individuals, for which we then estimate the subpopulation-
based causal effect. More specifically, we consider indi-
viduals to belong to the same subgroup if the variables
that are not affected by the intervention take the same val-
ues. For action a, we define the subgroup characteristics as
Ga := nd(Ia) (i.e., the non-descendants of the intervened-
upon variables in the causal graph).6 More formally, we de-
fine the subpopulation-based improvement confidence γsub

as the probability of Y taking the favorable outcome in the
subgroup of similar individuals (Definition 2).

Definition 2 (Subpopulation-based improvement confi-
dence). Let a be an action that potentially affects Y , i.e.
Ia ∩ asc(Y ) ̸= ∅.7 Then we define the subpopulation-based
improvement confidence as

γsub(a) = γ(a, xpre
Ga

) := P (Y post = 1|do(a), xpre
Ga

).

The set Ga is chosen for practical reasons. In order to
make the estimation more accurate, we would like to condi-
tion on as many characteristics as possible. However, with-
out access to the SCM, one can only identify interventional
distributions for subgroups of the population by condition-
ing on their (unobserved) post-intervention characteristics
(but not by conditioning on their pre-intervention character-
istics) (Pearl 2009; Glymour, Pearl, and Jewell 2016). If we
were to select a subgroup from a post-recourse distribution
by conditioning on pre-recourse characteristics that are af-
fected by a (e.g. strong pre-recourse symptoms), we yield a
group that the individual may not be part of (e.g. people with
strong post-recourse symptoms). In contrast, for XGa pre-
and post-intervention values coincide, such that we can es-
timate γsub: Assuming causal sufficiency, the standard pro-
cedure to sample interventional distributions can be applied,
only that additionally Xpost

Ga
:= xpre

Ga
. Based on the sample

γsub can be estimated (as detailed in B.3).
The estimation of γsub does not require knowledge of the
SCM, but is less accurate than γind. In the introductory ex-
ample, for the action get vaccinated the set of subgroup-
characteristics Ga is empty. As such, γsub is concerned with
the effect of a vaccination over the whole population. If we
were to observe zip code, a variable that is not affected by
vaccination, γsub would indicate the effect of vaccination

6The estimand resembles the conditional treatment effect with
Ga being effect modifiers (Hernán MA 2020).

7If a cannot affect Y , we can predict P (Y |xpre, do(a)) =
P (Y |xpre) using the optimal observational predictor h∗.

for subjects that share the explainee’s zip code. In contrast,
γind also takes the explainee’s symptom state into account.

Optimization problem To generate ICR recommenda-
tions, we can optimize Equation 1. We aim to find actions
that meet a user-specified improvement target confidence γ
with minimal cost for the recourse seeking individual. The
cost function cost(a, xpre) captures the effort the individual
requires to perform action a (Karimi et al. 2020b).
As for CE or CR, the optimization problem for ICR is com-
putationally challenging (B.4). It can be seen as a two-level
problem, where on the first level the intervention targets Ia,
and on the second level the corresponding intervention val-
ues θa are optimized (Karimi et al. 2020b). Since we target
improvement, we can restrict Ia to causes of Y . Following
Dandl et al. (2020), we use the genetic algorithm NSGA-II
(Deb et al. 2002) for optimization.

argmina=do(XI=θ) cost(a, xpre) s.t. γ(a) ≥ γ. (1)

6 Accurate Post-Recourse Prediction
Recourse recommendations should not only lead to improve-
ment Y but also revert the decision Ŷ . Whether acceptance
guarantees naturally ensue from γ depends on the ability
of the predictor to recognize improvements. As follows, we
demonstrate how the assumed causal knowledge can be ex-
ploited to design accurate post-recourse predictors. We find
that an individualized post-recourse predictor is required to
translate γind into an individualized acceptance guarantee,
but curiously that the observational predictor is sufficient in
supopulation-based settings.

Individualized post-recourse prediction If we were to
use the optimal pre-recourse observational predictor h∗ for
post-recourse prediction, there would be an imbalance in
predictive capability between ML model and individualized
ICR: ICR individualizes its predictions using xpre and the
SCM. This knowledge is not accessible by the predictor h∗,
which only makes use of xpost. As such, improvement that
was accurately predicted by ICR is not necessarily recog-
nized by h∗ and γind cannot be directly translated into an
acceptance bound. We demonstrate the issue at an Example
in E.3.8
In order to settle the imbalance between ICR and the pre-
dictor, we suggest to leverage the SCM not only when gen-
erating individualized ICR recommendations but also when
predicting post-recourse, such that the predictor is at least
as accurate as γind. More formally, we suggest to esti-
mate the post-recourse distribution of Y conditional on xpre,
do(a), and the post-recourse observation xpost,a (Definition
3). This post-recourse prediction resembles the counterfac-
tual distribution, except that we additionally take the factual
post-recourse observation of the covariates into account.

8One may also argue that standard predictive models are not
suitable since optimality of the predictor in the pre-recourse distri-
bution does not necessarily imply optimality in interventional en-
vironments (as Example 1, E.1 demonstrates). We can refute this
criticism using Proposition 3, where we learn that ĥ∗ is stable with
respect to ICR actions.



Definition 3 (Individualized post-recourse predictor). We
define the individualized post-recourse predictor as

h∗,ind(xpost) = P (Y post = 1|xpost, xpre, do(a))

For SCMs with invertible equations, h∗,ind can be es-
timated using a closed form solution. Otherwise we can
sample from the counterfactual post-recourse distribution
p(ypost, xpost|xpre, do(a)) (as we did for the estimation of
γind), select the samples that conform with xpost and com-
pute the proportion of favorable outcomes (details in B.2).
For the individualized post-recourse predictor, improvement
probability and prediction are closely linked (Proposition
1). More specifically, the expected post-recourse prediction
h∗,ind is equal to the individualized improvement probabil-
ity γ(xpre, a). We will exploit Proposition 1 in Section 7,
where we derive acceptance guarantees for ICR.
Proposition 1. The expected individualized post-recourse
score is equal to the individualized improvement probability
γind(xpre, a) := P (Y post = 1|xpre, do(a)), i.e.

E[ĥ∗,ind(xpost)|xpre, do(a)] = γind(a).

Subpopulation-based post-recourse prediction Cu-
riously we find that for ICR actions a the optimal
observational pre-recourse predictor h∗ remains accurate:
in the subpopulation of similar individuals the expected
post-recourse prediction corresponds to the improvement
probability γsub(a) (Proposition 3). This allows us to derive
acceptance guarantees for h∗ in Section 7.
This result is in contrast to the negative results for CR,
where actions may not affect prediction and the underlying
target coherently, such that the predictive performance
deteriorates (as demonstrated in the introduction, and more
formally in E.1). The key difference to CR is that ICR
actions exclusively intervene on causes of Y : Interventions
on non-causal variables may lead to a shift in the conditional
distribution P (Y |XS) (where S ⊆ D is any set of variables
that allows for optimal prediction). In contrast, given
causal sufficiency, the conditional P (Y |XS) is stable to
interventions on causes of Y .
Proposition 2. Given nonzero cost for all interventions,
ICR exclusively suggests actions on causes of Y . Assuming
causal sufficiency, for optimal models the conditional distri-
bution of Y given the variables XS that the model uses (i.e.
P (Y |XS)) is stable w.r.t interventions on causes. Therefore,
optimal predictors are intervention stable w.r.t. ICR actions.
Proposition 3. Given causal sufficiency and positivity9, for
interventions on causes the expected subgroup-wide optimal
score h∗ is equal to the subgroup-wide improvement proba-
bility γsub(a) := P (Y post = 1|do(a), xpre

Ga
), i.e.

E[ĥ∗(xpost)|xpre
Ga

, do(a)] = γsub(a).

9Positivity ensures that the post-recourse observation lies
within the observational support (Neal 2020), where the model was
trained (i.e., ppre(xpost) > 0)).

Link between CR and ICR: Proposition 2 has further inter-
esting consequences. For CR actions a that only intervene
on causes of Y and that are guaranteed to yield a predicted
score ζ in the subpopulation, we can infer that γsub(a) ≥ ζ.
For instance, if acceptance with respect to a 0.5 decision
threshold can be guaranteed, that implies improvement with
at least 50% probability. As such, in subpopulation-based
settings (1) improvement guarantees can be made for CR if
only interventions on causes are lucrative, and (2) CR can be
adapted to also guide towards improvement by a restricting
actions to intervene on causes.

7 Acceptance Guarantees
For the presented accurate post-recourse predictors, im-
provement guarantees translate into acceptance guarantees
(Proposition 4). The reason is that the post-recourse predic-
tion is linked to γ (Propositions 1 and 3).
Proposition 4. Let g be a predictor with
E[g(xpost)|xpre

S , do(a)] = γ(xpre
S , a). Then for a deci-

sion threshold t the post-recourse acceptance probability
η(t; xpre

S , a) := P (g(xpost) > t|xpre
S , do(a)) is lower

bounded by the respective improvement probability:

η(t; xpre
S , a, g) ≥ γ(xpre

S , a)− t

1− t
.

Proof (sketch): We decompose the expected prediction (γ)
into true positive rate (TPR), false negative rate (FNR) and
acceptance rate. By bounding TPR and FNR we yield the
presented acceptance bound. The proof is provided in D.4.

Using Proposition 4, we can tune confidence γ and the
model’s decision threshold to yield a desired acceptance rate.
For instance, we can guarantee acceptance with (subgroup-
wide) probability η ≥ 0.9 given γ = 0.95 and a global deci-
sion threshold t = 0.5 .
Furthermore we can leverage the sampling procedures that
we use to compute γ to estimate the individualized or
subpopulation-based acceptance rate η(t; xpre

S , a, g) (as de-
tailed in B.1 and B.3). To guarantee acceptance with cer-
tainty, the decision threshold can be set to t = 0.
For the explainee, it is vital that the acceptance guarantee
is presented in a human-intelligible fashion. In contrast to
previous work in the field, we suggest to communicate the
acceptance guarantee in terms of a probability.10 Further-
more, for subpopulation-based recourse, the set of subgroup
characteristics should be transparent. In the hospital admis-
sion example, the subpopulation-based acceptance guaran-
tee could be communicated as follows: Within a group of
individuals that share your zip code, a vaccination leads to
acceptance with at least probability η.

8 Experiments
In the experiments we evaluate the following questions,
assuming correct causal knowledge and accurate models of
the conditional distributions in the data:

10For CR, the acceptance confidence is encoded in a hyperpa-
rameter, as explained in E.2.



Q1: Do CE, CR and ICR lead to improvement?
Q2: Do CE, CR and ICR lead to acceptance (by pre- and
post- post-recourse predictor)?
Q3: Do CE, CR and ICR lead to acceptance by other
predictors with comparable test error?11

Q4: How costly are CE, CR and ICR recommendations?

Setup We evaluate CE, individualized and subpopulation-
based CR and ICR with various confidence levels, over
multiple runs, and on multiple synthetic and semi-synthetic
datasets with known ground-truth (listed below).12 Random
forests were used for prediction, except in the 3var settings
where logistic regression models were used. Following
Dandl et al. (2020), we use NSGA-II (Deb et al. 2002) for
optimization. For a full specification of the SCMs including
the linear cost functions we refer to C.2. Details on the
implementation and access to the code are provided in C.1.

3var-causal: A linear gaussian SCM with binary tar-
get Y , where all features are causes of Y .
3var-noncausal: The same setup as 3var-causal, except that
one of the features is an effect of Y .
5var-skill: A categorical semi-synthetic SCM where
programming skill-level is predicted from causes (e.g.
university degree) and non-causal indicators extracted from
GitHub (e.g. commit count).
7var-covid: A semi-synthetic dataset inspired by a real-
world covid screening model (Jehi et al. 2020; Wynants
et al. 2020).13 The model includes typical causes like covid
vaccination or population density and symptoms like fever
and fatigue. The variables are mixed categorical and con-
tinuous with various noise distributions. Their relationships
include nonlinear structural equations.

Results The results are visualized in Figures 3-5 and pro-
vided in tabular form in C.3. For each setting CE, CR
and ICR explanations were computed over 10 runs on
200 individuals each. For CR and ICR the confidences
0.75, 0.85, 0.9, 0.95 were targeted (for CR: η, for ICR: γ).
For CE no slack is allowed, such that the results correspond
to a confidence level of 1.0. Values are plotted on quadratic
scales.

Q1 (Figure 3): In scenarios where gaming is possible and
lucrative (3var-noncausal, 5var-skill and 7var-covid) ICR
reliably guides towards improvement, but CE and CR game
the predictor and yield improvement rates close to zero.
For instance, on 5var-skill CE and CR exclusively suggest
to tune the GitHub profile (e.g. by adding more commits).
Since the employer offered recourse it should be honored al-
though the applicants remain unqualified. In contrast, ICR

11The problem that refits on the same data with similar perfor-
mance have different mechanism is known as the Rashomon prob-
lem or model multiplicity (Breiman 2001; Pawelczyk, Broelemann,
and Kasneci 2020; Marx, Calmon, and Ustun 2020).

12For ground-truth counterfactuals, simulations are necessary
(Holland 1986).

13The real-world screening model is used to decide whether indi-
viduals need a test certificate to enter a hospital. It can be accessed
via https://riskcalc.org/COVID19/.
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Figure 2: Left: Causal graphs. Right: Legend for color
(SCM) and linestyle (recourse type) in Figures 3, 4 and 5.
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Figure 3: Observed improvement rates γobs (Q1).

suggests to get a degree or to gain experience, such that re-
course implementing individuals are suited for the job.
On 3var-causal, where gaming is not possible, CR also
achieves improvement. However, since acceptance w.r.t to
a decision treshold t = 0.5 is targeted, only improvement
rates close to 50% are achieved (the expected predicted score
translates into γsub (Proposition 3)).
For subp. ICR, γobs is below γ, because the subpopula-
tion may include individuals that were already accepted pre-
recourse, such that γsub and γobs may not coincide.

Q2 (Figure 4): All methods yield the desired acceptance
rates w.r.t. to the pre-recourse predictor.14 For CE and CR
ηobs is higher than for ICR, and for ind. recourse higher than
for subp. recourse. Curiously, although no acceptance guar-
antees could be derived for the pre-recourse predictor and
ind. ICR, we find that both pre- and ind. post-recourse pre-
dictor reliably lead to acceptance.15

Q3 (Figure 5): We observe that CE and CR actions are
unlikely to be honored by other model fits with similar per-
formance on the same data. This result is highly relevant to
practitioners, since models deployed in real-world scenarios
are regularly refitted. As such, individuals that implemented
acceptance-focused recourse may not be accepted after all,
since the decision model was refitted in the meantime. In
contrast, ICR acceptance rates are nearly unaffected by refits.
The result confirms our argument that improvement-focused
recourse may be more desirable for explainees (Section 4).

14ICR holds the acceptance rates from Proposition 4, as analyzed
in more detail in C.3.

15Given that the ind. post-recourse predictor is much more dif-
ficult to estimate, the pre-recourse predictor in combination with
individualized acceptance guarantees (B.1) may cautiously be used
as fallback.



0.0

0.5

0.75

0.85
0.9

0.95
1.0

CE: obs

0.75 0.85 0.9 0.95

CR: obs

0.75 0.85 0.9 0.95

ICR: obs

Figure 4: Observed acceptance rates ηobs w.r.t. h∗; for ind.
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Figure 5: Observed acceptance rates for other fits with com-
parable test set performance ηobs,refit (Q3).

Q4 (Table 1): CR actions are cheaper than ICR actions,
since improvement may require more effort than gaming. As
such, CR has benefits for the explainee: For instance, on
5var-skill, CR suggests to tune the GitHub profile (e.g. by
adding more commits), which requires less effort than earn-
ing a degree or gaining job experience. Detailed results on
cost are reported in C.3.

In conclusion, ICR actions require more effort than CR,
but lead to improvement and acceptance while being more
robust to refits of the model.

9 Limitations and Discussion
Causal knowledge and assumptions Individualized ICR
requires a fully specified SCM; Subpopulation-based ICR
is less demanding but still requires the causal graph and
causal sufficiency. SCMs and causal graphs are rarely read-
ily available in practice (Peters, Janzing, and Schölkopf
2017) and causal sufficiency is difficult to test (Janzing et al.
2012). Research on causal inference gives reason for cau-
tious optimism that the difficulties in constructing SCMs
and causal graphs can eventually be overcome (Spirtes and

Table 1: Recourse cost (Q4).

CE ind. CR sub. CR ind. ICR sub. ICR

1.8 ± 1.1 1.3 ± 1.1 1.7 ± 1.0 4.3 ± 3.3 4.2 ± 3.3

Zhang 2016; Peters, Janzing, and Schölkopf 2017; Heinze-
Deml, Maathuis, and Meinshausen 2018; Malinsky and
Danks 2018; Glymour, Zhang, and Spirtes 2019).
There are further foundational problems linked to causal-
ity that affect our approach: causal cycles, an ontologically
vague target Y (e.g. in hiring), disparities in our data, or
causal model misspecification (Barocas and Selbst 2016;
Barocas, Hardt, and Narayanan 2017; Bongers et al. 2021).
All of these factors are considered difficult open problems
and may have detrimental impact on our, as well as on any
other, recourse framework.
Guiding action without causal knowledge is impossible;
when causal knowledge is available, our work provides a nor-
mative framework for improvement-focused recourse rec-
ommendations. Thus, we join a range of work in explainabil-
ity (Frye, Rowat, and Feige 2020; Heskes et al. 2020; Wang,
Wiens, and Lundberg 2021; Zhao and Hastie 2021) and fair-
ness (Kilbertus et al. 2017; Kusner et al. 2017; Zhang and
Bareinboim 2018; Makhlouf, Zhioua, and Palamidessi 2020)
that highlights the importance of causal knowledge.

Contestability Improvement-focused recourse guides in-
dividuals towards actions that help them to improve, e.g., it
recommends a vaccination to lower the risk to get infected
with Covid. If, however, a explainee is more interested in
contesting the algorithmic decision, (improvement-focused)
recourse recommendations are not sufficient. Think of an in-
dividual who is denied entrance to an event because of their
high Covid risk prediction, which is based on a non-causal,
spurious association with their country of origin16. In such
situations, we suggest to additionally show explainees di-
verse explanations, which enable to contest the decision. For
example, such an explanation could be: if your country of
origin would be different, your predicted Covid risk would
have been lower.

10 Conclusion
In the present paper, we took a causal perspective and inves-
tigated the effect of recourse recommendations on the un-
derlying target variable. We demonstrated that acceptance-
focused recourse recommendations like counterfactual ex-
planations or causal recourse may not improve the underly-
ing prediction but game the predictor instead. The problem
stems from predictive, but non-causal relationships, which
are abundant in machine learning applications.17

We tackled the problem in the explanation domain and in-
troduced Improvement-Focused Causal Recourse (ICR), an
explanation technique that guides towards improvement of
the prediction target and demonstrated how to design post-
recourse predictors such that improvement leads to accep-
tance. We confirm the theoretical results in experiments.
With ICR we hope to inspire a shift from acceptance- to
improvement-focused recourse.

16E.g., due to a spurious association with the causal variable type
of vaccine.

17For instance, in hiring, certain keywords in the CV may be
associated with qualification, but adding them to the CV does not
improve aptitude (Strong 2022).
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A Extended Background
As follows, we recapitulate well-known definitions in our
notation, provide more detailed background on related work
and recapitulate results that we use in the proofs. Readers
who are already familiar with recourse terminology and d-
separation (A.1 and A.2), and who are not interested in more
detailed introductions of intervention stability (A.3, only re-
quired for the proof of Proposition 2) or causal recourse
(A.4), may skip this section.

A.1 Overview of important terms
An overview of important terms is provided in Table 2.

A.2 d-separation
Two variable sets X, Y are called d-separated (Geiger,
Verma, and Pearl 1990; Spirtes et al. 2000) by the variable
set Z in a graph G (denoted as X ⊥G Y |Z), if, and only
if, for every path p it either holds that (i) p contains a chain
i → m → j or a fork i ← m → j where m ∈ Z or
(ii) p contains a collider i → m ← j such that m and for
all of its descendants n it holds that m,n ̸∈ Z. Given the
causal Markov property, d-separation in a causal graph im-
plies (conditional) independence in the data (Peters, Janzing,
and Schölkopf 2017).

A.3 Generalizability and intervention stability
For Proposition 2, we leverage necessary conditions for in-
variant conditional distributions as derived in (Pfister et al.
2021). The authors introduce a d-separation based interven-
tion stability criterion that is applied to a modified version
of G. For every intervened upon variable Xl an auxiliary in-
tervention variable, denoted as Il, is added as direct cause of
Xl, yielding G∗. The intervention variable can be seen as a
switch between different mechanisms. A set S ⊆ {1, . . . , d}
is called intervention stable regarding a set of actions if for
all intervened upon variables Xl (where l ∈ I total) the d-
separation I l ⊥G∗ Y |XS holds in G∗. The authors show that
intervention stability implies an invariant conditional distri-
bution, i.e., for all actions a, b ∈ A with Ia, Ib ⊆ I total it
holds that p(ya|xS) = p(yb|xS) (Pfister et al. (2021), Ap-
pendix A).

A.4 Causal recourse
ICR is closely related to the CR framework (Karimi et al.
2020b; Karimi, Schölkopf, and Valera 2021), but differs sub-
stantially in its motivation and target. In order to allow for
a direct comparison we briefly sketch the main ideas and
the central CR definitions in our notation. Like ICR, CR
aims to guide individuals to revert unfavorable algorithmic
decisions (recourse). Therefore, they suggest to search for
cost-efficient actions that lead to acceptance by the predic-
tion model. Actions are modeled as structural interventions
a : Π → Π, which can be constructed as a = do({Xi :=
θi}i∈I), where I is the index set of features to be intervened
upon (Karimi, Schölkopf, and Valera 2021). The conserva-
tiveness of the suggested actions can be adjusted using the
hyperparameter γLCB , that determines the adaptive thresh-
old thresh(a) and thereby how many standard deviations

the expected prediction shall be away from the model’s de-
cision threshold t. In order to accommodate different lev-
els of causal knowledge, two probabilistic versions of CR
were introduced (Karimi et al. 2020b): While individualized
recourse assumes knowledge of the SCM, subpopulation-
based CR only assumes knowledge of the causal graph.

Individualized recourse Individualized recourse predicts
the effect of actions using structural counterfactuals (Karimi,
Schölkopf, and Valera 2021), which require a full specifica-
tion of the SCM.

Given a function that evaluates the cost of actions
(cost(a, xpre)), the optimization goal for individualized
causal recourse is given below. The adaptive threshold
thresh bounds the prediction away from the decision
threshold.18

a∗ ∈ argmin
a∈A

cost(a, xpre)

s.t. E[ĥ(xpost)|do(a), xpre] ≥ thresh(a)

with thresh(a) := 0.5 + γLCB

√
Var[ĥ(xpost,a)]

Subpopulation-based recourse: If no knowledge of the
SCM is given, counterfactual distributions cannot be esti-
mated and consequently individualized recourse recommen-
dations cannot be computed. Subpopulation-based CR is
based on the average treatment effect within a subgroup of
similar individuals (Karimi et al. 2020b). More specifically
individuals belong to the same group if the non-descendants
nd(I) of intervention variables (which ceteris paribus re-
main constant despite the intervention) take the same value.
The subpopulation-based objective is given below.

a∗ ∈ argmin
a∈A

cost(a, xpre) s.t.

EXd(I)|do(XI=θ),xpre
nd(I)

[ĥ(xpre
nd(I), θ, Xd(I))]

≥ thresh(a).

A.5 Robust algorithmic recourse
The robustness of CEs and CR has been investigated before
(Rawal, Kamar, and Lakkaraju 2021; Pawelczyk, Broele-
mann, and Kasneci 2020; Upadhyay, Joshi, and Lakkaraju
2021; Dominguez-Olmedo, Karimi, and Schölkopf 2021;
Pawelczyk et al. 2022), yet only with respect to generic
shifts of model and data. Only (Pawelczyk, Broelemann, and
Kasneci 2020) investigate the robustness regarding refits on
the same data. They find that on-the-manifold CEs are more
robust than standard CEs. In contrast, we empirically com-
pare the robustness of CE, CR and ICR with respect to refits
on the same data.

18Further constraints have been suggested, e.g., xpost,a ∈
Plausible or a ∈ Feasible (Laugel et al. 2019; Ustun, Spangher,
and Liu 2019; Mahajan, Tan, and Sharma 2020; Dandl et al. 2020;
Karimi, Schölkopf, and Valera 2021).



Table 2: Overview of important terms and their meanings.

term meaning

explainee individual for whom the explanation is generated, e.g. loan applicant
model authority decision-making entity, e.g. credit institute
recourse action of the explainee that reverts unfavorable decision
acceptance desirable model prediction (Ŷ = 1)
improvement (yield) desirable state of the underlying target (Y = 1)
gaming yield acceptance without improvement, e.g. treating the symptoms
pre-/post-recourse before/after implementing recourse recommendation
contestability the explainee’s ability to contest an algorithmic decision
robustness of recourse probability that recourse is accepted despite model/data shifts

B Estimation and Optimization
As follows we provide detailed explanations of the proposed
estimation procedures. First, we explain how to sample from
the individualized post-recourse distribution, which allows
us to estimate the individualized improvement and accep-
tance rates (γind and ηind, B.1). Based on the same sam-
pling mechanism we can also estimate the individualized
post-recourse prediction h∗,ind (B.2). Then we explain how
to sample from the subpopulation-based post-recourse dis-
tribution, which allows us to estimate the subpopulation-
based improvement and acceptance rates (γsub and ηsub,
B.3). Furthermore, we provide details on optimization (B.4)
and demonstrate that the optimal observational predictor h∗

can also be estimated using the SCM (B.5).

B.1 Estimation of the individualized
improvement confidence γind and
individualized acceptance rate ηind

We recall that γind is the counterfactual probability of the un-
derlying target Y taking the favorable outcome, and ηind the
counterfactual probability of the prediction Ŷ taking the fa-
vorable outcome. In order to estimate γind and ηind we first
sample covariates and target from the counterfactual post-
recourse distribution and then compute the proportion of fa-
vorable outcomes for Y and Ŷ in the sample.
In general, sampling from counterfactual distributions based
on a SCM is performed in three steps (Section 3, (Pearl
2009)).

1. Abduction: The exogenous noise variables are recon-
structed from the observations, i.e., p(uY,D|xpre) is es-
timated.

2. Intervention: The intervention do(a) on the SCM M is
performed by replacing the respective structural equa-
tions fIa := θIa , yieldingMdo(a).

3. Prediction: The abducted noise variables are sam-
pled from p(uY,D|xpre) and passed through the model
Mdo(a) to sample from the counterfactual distribution
P (Y post, Xpost|xpre, do(a)).

Given knowledge of the SCM, the challenge is to sample the
exogeneous variables from p(uY,D|xpre) (abduction). As
follows we explain the abduction in two steps. First, we ex-
plain how we can abduct uj for variables for which both the

node xj and all parents (x, y)pa(j) are observed, which we
refer to as the standard abduction case. Then we factorize
the abduction of the joint p(uY,D|xpre) into several compo-
nents which can be reduced to said standard abduction case.
The sampling procedure is summarized in Algorithm 1.

Recap: Standard abduction If for a node uj both the
node (x, y)j and the parents (x, y)pa(j) are observed, we
can apply standard abduction. The standard abduction pro-
cedure depends on the type of structural equation and exoge-
nous noise distribution.
Given invertible structural equations, observation of
xj , xpa(j) determines uj . More specifically, uj can be recon-
structed using

uj = f−1(xj ; xpa(j)).

For instance, for additive structural equations
fj(uj ; xpa(j)) = g(xpa(j)) + uj , the inversion is given by
f−1

j (xj ; xpa(j)) = xj − g(xpa(j)).
In our experiments we also included binomial variables
with a sigmoidal (non-invertible) structural equation.
More specifically, the structural equations are defined as
xj = [σ(l(xpa(j))) ≤ uj ] with Uj ∼ Unif(0, 1). Here
σ refers to the sigmoid function and l to some linear
combination. [cond] evaluates to 1 when the condition is
true and otherwise to 0. Intuitively, σ(l(xpa(j))) can be seen
as a nonlinear activation function which determines the
probability of the node being activated (xj = 1). uj acts as
a dice, where values ≤ σ(l(xpa(j))) imply xj = 1 and vice
versa.
For those variables, if xj = 1, we know that
uj ≤ σ(l(xpa(j))) and vice versa, such that we can
abduct Uj as follows (and can therefore sample uj):

P (Uj |xj ; xpa(j)) =

{
Unif(0, σ(l(xpa(j)))), for xj = 1
Unif(σ(l(xpa(j))), 1), for xj = 0

As we will see in the next section, our estimation procedure
can be flexibly extended to SCMs with different types of
structural equations, as long as a procedure to sample from
the abducted exogneous noise variable for the standard case
(where parents and the node itself are observed) is available.

Factorization of p(u|x) We have demonstrated how to
abduct individual nodes in the standard setting where the



Algorithm 1: Sampling from the individualized post-
recourse distribution

Data: pre-recourse observation xpre, action a (where
do(a) := do(XIa := θ)), sample size M ,
structural causal modelM with structural
equations fj , observational predictor h

Result: sample from p(ypost, xpost|xpre, do(a))
getMdo(a) by updating fi(xpa(i); ui) := θi for
i ∈ Ia ;

for m in (0, ..., M − 1) do
sample y′ from Binomial(h(xpre)) ;
for j in D do

sample u
(m)
j from p(uj |(x, y′)j , (x, y′)pa(j));

▷ comment: leveraging standard abduction;
end
sample u

(m)
Y from p(uY |y′, xpa(Y )) ;

compute (xpost, ypost)(m) = fMdo(a)
(u(m)) ;

end

corresponding endogenous variable and its parents are ob-
served.
As follows we demonstrate how to sample from the joint
distribution of the exogenous variables given an observation
of X (and without observing Y ). Therefore, we show that
p(u|x) can be seen as a mixture of two distributions, one for
each possible state y′ of Y . In order to sample from it, we
(1) need to sample y′ from the mixing distribution p(y|x)
and (2) given y′, sample from the respective abducted noise
variable p(u|y′, x).

p(u|x) (2)

law tot. prob.
=

∑

y′∈{0,1}
p(u, y′|x) (3)

cond. prob.
=

∑

y′∈{0,1}
p(u|y′, x)p(y′|x) (4)

The binomial mixing distribution p(y|x) can be obtained and
sampled from by leveraging the cross-entropy optimal pre-
dictor h∗ (which can for instance be derived from the SCM,
see B.5). In order to sample from p(u|y′, x) we leverage
the Markov factorization, which allows us to sample each
component independently using the standard abduction pro-
cedure described above.

p(u|x, y′)
d-sep.

= P (uY |xpa(Y ), y
′)

∏

k∈ch(Y )

P (uk|xk, xpa(k), y
′)

∏

k ̸∈ch(Y )

P (uk|xk, xpa(k)).

(5)

The overall procedure is summarized in Algorithm 1.

Estimation of γind and ηind Given the procedure to sam-
ple from the individualized post-recourse distribution we

Algorithm 2: Estimating h∗,ind

Data: pre-recourse observation xpre, action a,
sample size M , structural causal modelM,
observational predictor h, m = 0

Result: ĥind(xpost; xpre, do(a))
while m < M do

sample (x′, y′) using Alg. 1 and xpre, a,M, h;
if x′ = xpost then

m = m + 1; store y′ as y′(m) ;
end

end
ĥind(xpost) = 1

M

∑M
m=1 y′(m)

can estimate γind by taking the mean over the samples taken
for Y post. Similarly, for each sample for Xpost we can com-
pute the prediction ŷpost using either h ≥ t or hind ≥ t. By
taking the mean over all sampled predictions ŷpost we can es-
timate the respective acceptance probability η(t; xpre, a, h)
or η(t; xpre, a, hind).

B.2 Estimation of the individualized
post-recourse prediction

We continue to show how the individualized post-recourse
prediction can be estimated. We recall that h∗,ind is

h∗,ind(xpost; xpre, a) = P (Y post = 1|xpost, xpre, do(a)).

We can estimate h∗,ind by leveraging the procedure to
sample from the post-recourse covariate distribution (Algo-
rithm 1). More specifically, we draw samples (y′, x′) from
P (Y post, Xpost|do(a), xpre) and keep those that conform
with xpost (i.e., x′ = xpost). Within the subsample, we
compute the proportion of samples for which y′ = 1 to
estimate p(ypost|xpre, xpost, do(a)). In more formal terms,
we approximate Eq. 6 using rejection sampling and Monte
Carlo integration (Koller and Friedman 2009).
If the structural equations are invertible19 or the nodes are
categorical the procedure is tractable, since many or all
samples conform with xpost. Otherwise the estimation may
become intractable. We see the application of likelihood
weighting or MCMC as promising directions and refer
interested readers to Koller and Friedman (2009).
In addition to the sampling-based procedure we also derive
a closed-form solution for settings with invertible structural
equations, which is provided in Proposition 5, Eq. 7.

Proposition 5. In general, the individualized post-recourse
predictor can be estimated as

p(ypost|xpre, xpost, do(a))

=

∫
U p(ypost, xpost|u, do(a))p(u|xpre)du∑

y′∈{0,1}
(∫

U p(y′, xpost|u, do(a))p(u|xpre)du
) (6)

19Meaning that the abducted joint distribution has point mass
probability for two configurations, one for each possible state of
Y .
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Figure 6: Left: Causal graph GIa
visualizing the

subpopulation-based post-recourse setting, including
the prediction target Y (light blue), intervened-upon vari-
ables Ia (red), the subgroup characteristics Ga (cyan) and
the descendants Γ that shall be resampled (dark blue).
Ia indicates that incoming edges to Ia were removed.
Right: Causal graph GIaGa

where incoming edges to Ia

and outgoing edges from Ga were removed. We observe
that in this manipulated graph Ga is d-separated from Γ.
Thus, according to the second rule of do-calculus, for Ga

intervention and conditioning coincide.

Given invertible structural equations, the individualized
post-recourse prediction function reduces to

p(ypost|xpost, xpre, do(a))

=
p(U−I = f−1

do(a)(y
post, xpost)|xpre, do(a))

∑
y′∈{0,1} p(U−I = f−1

do(a)(y
′, xpost)|xpre, do(a))

.

(7)

B.3 Estimation of the subpopulation-based
improvement confidence γsub and the
subpopulation-based acceptance rate ηsub

As follows we detail how to estimate γsub and ηsub. We fo-
cus on actions a that potentially affect Y , meaning that they
intervene on causes of Y .20

In order to estimate γsub and ηsub we sample (x′, y′) from
the subpopulation-based post-recourse distribution. Given a
sample from the subpopulation-based post-recourse distribu-
tion we can estimate γsub and ηsub by taking the respective
sample means.
We explain the sampling procedure in two steps: We first
recall how causal graphs can be leveraged to sample inter-
ventional distributions, and then explain why we can apply
the procedure to sample from the subpopulation-based post-
recourse distribution.

Recap: Sampling interventional distributions leveraging
a causally sufficient causal graph G Given a causal graph

20Actions that do not affect Y trivially do not lead to improve-
ment. The respective probability of Y = 1 can be estimated using
the optimal observational predictor.

Algorithm 3: Sampling from the subpopulation-
based post-recourse distribution

Data: pre-recourse observation xpre, action a with
Ia ∩ asc(Y ) ̸= ∅ (do(a) := do(XIa := θ)),
sample size M , causal graph G, conditional
distributions P (Xj |Xpa(j)) for j ∈ Γ with
Γ := {r : r ∈ asc(Y ) ∧ r ∈ d(I)}

Result: sample from p(y, xΓ|do(a), xGa)
for m← 0 to M do

Γsorted ← topologicalsort( Γ;Gdo(a)) ▷ sort such
that causes precede effects ;

for j in Γsorted do
sample (x, y)

post,(m)
j

∼ P ((X, Y )j |(X, Y )pa(j) = (x, y)post
pa(j)) ;

end
end

G (that fulfills the global Markov property), the joint distribu-
tion P (X, Y ) can be reformulated using the Markov factor-
ization, which makes use of the d-separations in the graph.

p(x, y) = p(y|xpa(y))
∏

j∈D

p(xj |(x, y)pa(j))

As a consequence, we can sample from the joint distribu-
tion by sampling each component given its respective par-
ents. In order to ensure that the parents for each node have
been sampled already, the graph is traversed in topological
order, starting with the root node and ending with the sink
nodes (Koller and Friedman 2009).
Given that causal sufficiency (no unobserved confounders)
and the principle of independent mechanisms hold, the same
procedure can also be applied when sampling from interven-
tional distributions of the form p(x, y|do(a)) by leveraging
the so-called truncated factorization. The intervened upon
nodes are not sampled from their parents, but fixed to the
values θa. The remaining nodes Γ are sampled as before:

p((x, y)Γ|do(a)) =
∏

j∈Γ

p((x, y)j |(x, y)pa(j)∩Γ, θpa(j)∩Ia)

with Γ := D\Ia

Sampling from the subpopulation-based post-recourse
distribution using G We recall that for actions a that po-
tentially affect Y the subpopulation-based post-recourse dis-
tribution is defined as

P (Y post, Xpost|do(a), Xpost
Ga

= xpre
Ga

). (8)

As we will see, the previously described sampling procedure
can be applied. Therefore we apply the second rule of do-
calculus to show that in Equation 8 conditioning on xGa

is
equal to intervening do(XGa

= xGa
). More specifically, if

we remove all outgoing edges from XGa
and all incoming

edges to Ia, then XGa
and XΓ with Γ := D\Ia∩Ga = d(Ia)

are d-separated, meaning that conditioning and intervention



are equivalent (Figure 6).

P ((Y, X)post
Γ |do(a), Xpost

Ga
= xpre

Ga
)

= P ((Y, X)post
Γ |do(a), do(Xpost

Ga
= xpre

Ga
))

As follows we can leverage the procedure to sample interven-
tional distributions to sample from the subpopulation-based
post-recourse distribution. The procedure is illustrated in Al-
gorithm 3.

Learning the conditional distributions P (Xj |xpa(j)) In
this work we assume that we have prior knowledge that al-
lows us to sample from the components of the factorization
(P (Xj |xpa(j)), e.g. available if we know the SCM).
If the conditional distributions are not known, they can
be learned from observational data; depending on which
assumptions about distribution and functional can be made,
different techniques may be employed. For categorical
variables the problem reduces to standard supervised
learning with cross-entropy loss. For linear Gaussian data,
the conditional distribution can be estimated analytically
from the covariance matrix (Page Jr 1984). A variety of
estimation techniques exist for continuous settings with
nonlinearities (Bishop 1994; Bashtannyk and Hyndman
2001; Sohn, Lee, and Yan 2015; Trippe and Turner 2018;
Winkler et al. 2019; Hothorn and Zeileis 2021).

B.4 Optimization

Like the optimization problems for CE (Wachter, Mittelstadt,
and Russell 2017; Tsirtsis and Gomez Rodriguez 2020) or
CR (Karimi et al. 2020b), the optimization problem for ICR
is computationally challenging. It can be seen as a two-stage
problem, where in the first stage the intervention targets Ia,
and in the second stage the corresponding intervention val-
ues θa are optimized (Karimi et al. 2020b). For the selec-
tion of intervention targets Ia alone 2d′

combinations exist,
with d′ ≤ d being the number of causes of Y . We jointly
optimize the intervention targets and the intervention values
using a genetic algorithm called NSGA-II (Deb et al. 2002).
For mixed categorical and continuous data, previous work in
the field (Dandl et al. 2020) suggests to use NSGA-II in com-
bination with mixed integer evaluation strategies (Li et al.
2013). The exact hyperparameter configurations are reported
in C.3.

B.5 Estimation of the optimal observational
predictor h∗ using the SCM

Instead of leveraging supervised learning with cross-entropy
loss, we can factorize the optimal observational predictor as
shown in Proposition 6 and then leverage the SCM for the
estimation.

Proposition 6. The optimal observational predictor can be
factorized into conditional distributions of nodes given their
parents (using the Markov factorization). More specifically,

we yield

p(y|x) =
p(x, y)

p(x)
=

p(x, y)∑
y′∈{0,1} p(x, y)

(9)

M.f.
=

p(y|xpa(j))
∏

j∈D p(xj |(x, y)pa(j))∑
y′∈{0,1} p(y′|xpa(j))

∏
j∈D p(xj |(x, y′)pa(j))

(10)

=
p(y|xpa(j))

∏
j∈ch(y) p(xj |xpa(j), y)

∑
y′∈{0,1} p(y′|xpa(j))

∏
j∈ch(y) p(xj |xpa(j), y′)

.

(11)

It remains to show how the conditional distribution
p(xj |xpa(j)) of a node given its parents can be estimated.
Generally it holds that

p(xj |xpa(j)) (12)

law tot. prob.
=

∫

Uj

p(xj |xpa(j), uj)p(uj |xpa(j))du (13)

SCM, uj ⊥ xpa(j)
=

∫

Uj

[f(xpa(j), uj) = xj ]p(uj)du. (14)

The integral can be approximated using Monte Carlo inte-
gration: we can sample from p(uj), compute the respective
x̃j = fj(xpa(j), ũj) and compute the proportion of cases
where xj = x̃j . If Xj and Uj are continuous, this may re-
quire huge sample sizes to converge.
Furthermore, we may be able to leverage assumptions about
fj to derive a closed form solution. If fj is invertible, the in-
tegral reduces to p(xj |xpa(j)) = p(Uj = f−1

j (xj , xpa(j))).
For binary nodes with xj := [σ(l(xpa(j))) ≤ uj ] and
Uj ∼ Unif(0, 1), we directly see that p(xj |xpa(j)) =
σ(l(xpa(j))).

C Details on Experiments
In this section we provide additional details on the experi-
ments. More specifically, we explain which open-source li-
braries we use, how to access our code and how to reproduce
the results in C.1. We formally introduce the synthetic and
semi-synthetic datasets that we used in our experiments in
C.2 and the corresponding figures. Details on hyperparam-
eters, models as well as detailed results are reported in C.3
and the corresponding tables.

C.1 Implementation
The code relies of efficient tensor calculations with numpy
(Harris et al. 2020), pytorch (Paszke et al. 2019) and
jax (Bradbury et al. 2018). For named dataframes we use
pandas (pandas development team 2020). For plotting
we rely on matplotlib (Hunter 2007) and seaborn
(Waskom 2021). We use the evolutionary optimization
library deap (Fortin et al. 2012) and NSGA-II (Deb
et al. 2002) to solve the combinatorial optimization prob-
lem.21 In order to speed up the computation, we cache

21We also implemented abduction based on probabilistic infer-
ence. Thereby we rely on on pyro (Bingham et al. 2018) for



queries and results for the improvement confidence using
functools.cache. For continuous variables the inter-
vention can be rounded to a specified number of digits to
increase the probability of reusing a cached result (with ne-
glectable loss of precision).22

All code is publicly available via https://anonymous.
4open.science/r/icr-aaai/README.md. The repository con-
tains the user-friendly python package icr, which we use
in our experiments to generate and evaluate recourse. Fur-
thermore, the scripts for the experiments, the scripts for the
visualization of the results as well as a README.md with
instructions for the installation of all dependencies are con-
tained in the repository, such that the experiments are repro-
ducible.

C.2 Synthetic and Semi-Synthetic Datasets
3var-causal and 3var-noncausal are abstract, synthetic set-
tings. 5var-skill is inspired by Montandon, Valente, and
Silva (2021), who use GitHub profiles to detect the role of
a developer. In our SCM we model senior-level skill as a bi-
nary variable which is caused by programming experience
and the education degree. The skill is causal for GitHub met-
rics such as the number of commits, the number of program-
ming languages and the number of stars. The 7var-covid
dataset is inspired by Jehi et al. (2020). The following vari-
ables are introduced: population density D, flu vaccination
VI , number of covid vaccination shots VC , deviation from
average BMI B, whether someone is free of covid disease
C, whether the individual has influence I , appetite loss SA,
fever SFe and fatigue SFa. The corresponding structural
equations, noise distributions and causal graphs are provided
in Figure 7 (3var-causal), 8 (3var-noncausal), 9 (5var-skill)
and 10 (7var-covid). A pairplot for each dataset is presented
in Figure 11. In our notation σ is the sigmoid function, N the
Gaussian distribution, Cat a categorical distribution, Unif
the uniform distribution, Bern a Bernoulli distribution and
GaP a Gamma-Poisson mixture. [cond] is 1 when the con-
dition is met and 0 if not. As a consequence variables with
[Z ≤ U ] and U ∼ Unif(0, 1) are bernoulli distributed with
Bern(Z).

C.3 Detailed Results
In this section we report all experimental results in tabular
form. More specifically, the results for 3var-causal are re-
ported in Table 3, for 3var-noncausal in Table 4, for 5var-
skill in Table 5 and for 7var-covid in Table 6. For each ex-
periment we report the specified confidence γ (or η for CR),
as well as the observed improvement rate γobs, the observed
acceptance rate ηobs, the observed acceptance rate by the in-
dividualized post-recourse predictor ηindiv.

obs , the observed ac-
ceptance rate on refits ηrefit

obs and the average recourse cost
for individuals who were rejected and whom were provided

discrete inference and numpyro (Phan, Pradhan, and Jankowiak
2019) for MCMC inference of continuous variables. For our exper-
iments we used the analytical formulas presented in B

22All packages are open source. For detailed license information
we refer to the respective package websites.

with a recourse recommendation. A visual summary of the
results is provided in Section 8.

In order to enable a more direct comparison of the CR
and ICR targets, we equalize the optimization thresholds for
ICR and CR. More specifically, for CR we require the (in-
dividualized or subpopulation-based) acceptance probability
to be ≥ η, and for ICR we require the (individualized or
subpopulation-based) improvement probability to be ≥ γ,
where γ = η.23 Furthermore, in order to be able to esti-
mate the effects of recourse actions, CR assumes causal suffi-
ciency, meaning that there are no two endogeneous variables
that share an unobserved cause. If the target variable Y is ex-
ogeneous then any causal model with more than one endoge-
neous direct effect of Y violates the assumptions. In order to
enable an application of CR on datasets with more than one
effect variable we assume knowledge of the SCM including
Y for CR as well and draw ground-truth interventional sam-
ples from the SCM instead of identifying the interventional
distribution from observational data.

For 3var-causal and 3var-noncausal we configured
NSGA-II to optimize over 600 generations with a popula-
tion size of 300, for 5var-skill and 7var-covid 1000 gen-
erations with 500 individuals were used. For all experi-
ments the crossover probability was 0.3 and the mutation
probability 0.05. For all settings continuous variables were
rounded to 1 decimal point. For the 3 variable settings
a standard sklearn LogisticRegression was used,
for the refits without penality. For the nonlinear dataset a
RandomForestClassifier with max depth 30, 50 es-
timators and balanced subsampling was applied. The exper-
imental results were computed on a Quad core Intel Core
i7-7700 Kaby Lake processor. For each setting, the experi-
ments took between 24 to 48 hours.

D Proofs
As follows we provide the full proofs for Propositions 1 - 5.

D.1 Linking individualized prediction with γind,
Proof of Proposition 1

Proposition 1. The expected individualized post-recourse
score is equal to the individualized improvement probability
γind(xpre, a) := P (Y post = 1|xpre, do(a)), i.e.

E[ĥ∗,ind(xpost)|xpre, do(a)] = γind(a).

Proof: It holds that

E[h∗,ind(xpost)|xpre, do(a)]

= E[E[Y |xpre, xpost]|xpre, do(a)]

total exp.
= E[Y |xpre, do(a)]

= γind(a).

D.2 Intervention stability w.r.t. ICR actions,
Proposition 2

Proposition 2. Given nonzero cost for all interventions,
ICR exclusively suggests actions on causes of Y . Assuming

23A short comment on the choice of a non-adaptive threshold
can be found in E.2.
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(a) Causal graph

X1 := U1, U1 ∼ N(0, 1)

X2 := X1 + U2, U2 ∼ N(0, 1)

X3 := X1 + X2 + U3, U3 ∼ N(0, 1)

Y ∼ [σ(X1 + X2 + X3) ≤ UY ] , UY ∼ Unif(0, 1)

(b) Structural Equations

Figure 7: SCM for 3var-causal. The cost function is given as cost(a) = δ1 + δ2 + δ3, where δ is the vector of absolute changes
to the intervened upon variables. E.g., for do(a) = do(X1 = x′

1), δ1 = |x′
1 − x1| and δ2 = δ3 = 0

X1X2

Y

X3

(a) Causal graph

X1 := U1, U1 ∼ N(0, 1)

X2 := X1 + U1, U1 ∼ N(0, 1)

Y := [σ(X1 + X2) ≤ UY ] , UY ∼ Unif(0, 1)

X3 := X1 + X2 + Y + U3, U3 ∼ N(0, 0.1)

(b) Structural Equations

Figure 8: SCM for 3var-noncausal with cost(a) = δ1 + δ2 + δ3.

experience E degree D

senior-level skill S

nr commits GC nr languages GL nr stars GS

(a) Causal graph

E := UE ; UE ∼ GaP (8, 8/3)

D := UD; UD ∼ Cat(0.4, 0.2, 0.3, 0.1)

S := [σ(−10 + 3E + 4D)) ≤ US ] ; US ∼ Unif(0, 1)

GC := 10E(11 + 100D) + UGC
; UGC

∼ GaP (40, 40/4)

GL := σ(10S) + UGL
; UGL

∼ GaP (2, 2/4)

GS := 10S + UGS
; UGS

∼ GaP (5, 5/4)

(b) Structural Equations

Figure 9: SCM for 5var-skill with cost(a) = 5δE + 5δD + 0.0001δGC
+ 0.01δGL

+ 0.1δGS .

density Dflu vacc VIcovid shots VCBMI B

covid-free C

appetite SAfever SFefatigue SFa

(a) Causal graph

D := UD; UD ∼ Γ(4, 4/3)

VI := UVI
; UVI

∼ Bern(0.39)

VC := UVC
; UVC

∼ Cat(0.24, 0.02, 0.15, 0.59)

B := UB ; UB ∼ N(0, 1)

C :=
[
σ(−(−3 + D − VI − 2.5VC + 0.2B2)) ≤ UC

]
;

UC ∼ Unif(0, 1)

SA := [σ(−2C) ≤ USA
] ; USA

∼ Unif(0, 1)

SFe := [σ(5− 9C) ≤ USFe
] ; USFe

∼ Unif(0, 1)

SFa :=
[
σ(−1 + B2 − 2C) ≤ USFa

]
;

USFa
∼ Unif(0, 1)

(b) Structural Equations

Figure 10: SCM for 7var-covid with cost function cost(a) = δD + δVI
+ δVC

+ δB + δSA
+ δSFe

+ δSFa
.



2

0

2

x1

5

0x2

5

0

5

x3

2.5 0.0 2.5
x1

0.0

0.5

1.0

y

5 0
x2

5 0 5
x3

0 1
y

(a) Pairplot for 3var-causal.

2

0

2

4

x1

0

5

x2

0.0

0.5

1.0

y

2.5 0.0 2.5
x1

5

0

5
x3

0 5
x2

0.0 0.5 1.0
y

5 0 5
x3

(b) Pairplot for 3var-noncausal.

0

5

10

ye
ar

s_
ex

pe
rie

nc
e

0

1

2

3

de
gr

ee

0.0

0.5

1.0

se
ni

or
-le

ve
l_

sk
ill

0

5000

10000

nr
_c

om
m

its

0

10

20

nr
_l

an
gu

ag
es

0 5 10
years_experience

0

10

20

nr
_s

ta
rs

0 2
degree

0.0 0.5 1.0
senior-level_skill

0 5000 10000
nr_commits

0 10 20
nr_languages

0 10 20
nr_stars

(c) Pairplot for 5var-skill.

0

5

10

po
p_

de
ns

ity

0.0

0.5

1.0

flu
_s

ho
t

0

1

2

3

co
vi

d_
sh

ot
s

0.2

0.0

0.2

bm
i_

di
ff

0.0

0.5

1.0

co
vi

d-
fre

e

0

1

2

ap
pe

tit
e_

lo
ss

0.0

0.5

1.0

fe
ve

r

0 5 10
pop_density

0.0

0.5

1.0

fa
tig

ue

0.0 0.5 1.0
flu_shot

0 2
covid_shots

0.25 0.00 0.25
bmi_diff

0.0 0.5 1.0
covid-free

0 1 2
appetite_loss

0.0 0.5 1.0
fever

0.0 0.5 1.0
fatigue

(d) Pairplot for 7var-covid.

Figure 11: Pairplots for the SCMs.



Table 3: Results for 3var-causal.

3var-causal γ / η γobs. ± ηobs. ± ηindivid.
obs. ± ηrefit

obs. ± ∅ cost ±
CE - 0.41 0.09 1.00 0.00 - - 0.60 0.20 3.08 0.41

ind. CR 0.75 0.47 0.10 1.00 0.00 - - 0.70 0.10 2.46 0.37
ind. CR 0.85 0.44 0.08 1.00 0.00 - - 0.72 0.12 2.39 0.25
ind. CR 0.90 0.47 0.09 1.00 0.00 - - 0.72 0.14 2.36 0.35
ind. CR 0.95 0.49 0.07 1.00 0.00 - - 0.67 0.10 2.44 0.31

subp. CR 0.75 0.46 0.11 0.86 0.04 - - 0.64 0.14 2.66 0.41
subp. CR 0.85 0.43 0.08 0.93 0.02 - - 0.69 0.14 2.64 0.32
subp. CR 0.90 0.45 0.09 0.96 0.02 - - 0.70 0.15 2.73 0.42
subp. CR 0.95 0.48 0.09 0.98 0.01 - - 0.64 0.14 2.86 0.41

ind. ICR 0.75 0.79 0.06 0.98 0.02 1.0 0.0 0.96 0.03 3.27 0.50
ind. ICR 0.85 0.86 0.03 1.00 0.01 1.0 0.0 0.97 0.02 3.82 0.30
ind. ICR 0.90 0.90 0.02 1.00 0.01 1.0 0.0 0.98 0.03 3.70 0.31
ind. ICR 0.95 0.95 0.01 1.00 0.00 1.0 0.0 0.99 0.01 4.08 0.24

subp. ICR 0.75 0.75 0.04 0.93 0.04 - - 0.90 0.04 3.34 0.49
subp. ICR 0.85 0.87 0.03 0.98 0.01 - - 0.96 0.02 4.05 0.29
subp. ICR 0.90 0.89 0.02 0.99 0.01 - - 0.97 0.02 3.87 0.25
subp. ICR 0.95 0.94 0.02 1.00 0.00 - - 0.99 0.01 4.22 0.28

Table 4: Results for 3var-noncausal

3var-noncausal γ / η γobs. ± ηobs. ± ηindivid.
obs. ± ηrefit

obs. ± ∅ cost ±
CE - 0.17 0.03 0.98 0.04 - - 0.67 0.15 2.28 0.26

ind. CR 0.75 0.25 0.03 1.00 0.00 - - 0.70 0.13 2.28 0.21
ind. CR 0.85 0.24 0.02 1.00 0.00 - - 0.73 0.13 2.29 0.17
ind. CR 0.90 0.24 0.04 1.00 0.00 - - 0.71 0.11 2.24 0.16
ind. CR 0.95 0.23 0.04 1.00 0.00 - - 0.73 0.12 2.18 0.32

subp. CR 0.75 0.22 0.03 0.91 0.03 - - 0.63 0.15 2.18 0.12
subp. CR 0.85 0.19 0.03 0.95 0.02 - - 0.67 0.15 2.33 0.21
subp. CR 0.90 0.19 0.03 0.97 0.01 - - 0.65 0.14 2.42 0.19
subp. CR 0.95 0.19 0.03 0.99 0.01 - - 0.69 0.14 2.26 0.32

ind. ICR 0.75 0.77 0.03 0.93 0.02 0.79 0.03 0.93 0.02 2.16 0.11
ind. ICR 0.85 0.86 0.02 0.99 0.01 0.90 0.02 0.99 0.01 2.51 0.08
ind. ICR 0.90 0.91 0.03 1.00 0.00 0.94 0.01 1.00 0.00 3.00 0.08
ind. ICR 0.95 0.96 0.02 0.98 0.07 0.98 0.01 0.98 0.08 3.32 0.16

subp. ICR 0.75 0.69 0.03 0.77 0.05 - - 0.76 0.05 2.11 0.20
subp. ICR 0.85 0.82 0.03 0.93 0.02 - - 0.92 0.02 2.42 0.11
subp. ICR 0.90 0.89 0.03 0.98 0.01 - - 0.97 0.01 2.86 0.13
subp. ICR 0.95 0.94 0.02 0.97 0.10 - - 0.96 0.12 3.19 0.15



Table 5: Results for 5var-skill

5var-skill γ / η γobs. ± ηobs. ± ηindivid.
obs. ± ηrefit

obs. ± ∅ cost ±
CE - 0.00 0.00 1.00 0.00 - - 0.76 0.14 1.34 1.28

ind. CR 0.75 0.00 0.00 1.00 0.00 - - 0.86 0.11 0.27 0.28
ind. CR 0.85 0.00 0.00 1.00 0.00 - - 0.81 0.14 0.24 0.20
ind. CR 0.90 0.00 0.01 1.00 0.00 - - 0.70 0.15 0.10 0.00
ind. CR 0.95 0.00 0.00 1.00 0.00 - - 0.66 0.16 0.11 0.03

subp. CR 0.75 0.00 0.00 1.00 0.00 - - 0.85 0.11 4.06 4.97
subp. CR 0.85 0.00 0.00 1.00 0.00 - - 0.80 0.15 0.24 0.19
subp. CR 0.90 0.00 0.01 1.00 0.00 - - 0.70 0.15 0.10 0.01
subp. CR 0.95 0.00 0.00 1.00 0.00 - - 0.66 0.15 0.12 0.04

ind. ICR 0.75 0.94 0.02 0.94 0.02 0.94 0.02 0.94 0.02 4.95 5.32
ind. ICR 0.85 0.94 0.01 0.93 0.02 0.94 0.01 0.93 0.02 9.80 0.27
ind. ICR 0.90 0.96 0.02 0.96 0.02 0.96 0.02 0.96 0.02 10.38 0.23
ind. ICR 0.95 0.98 0.01 0.98 0.01 0.98 0.01 0.98 0.01 11.23 0.21

subp. ICR 0.75 0.93 0.01 0.93 0.02 - - 0.93 0.01 4.72 5.08
subp. ICR 0.85 0.94 0.01 0.94 0.01 - - 0.94 0.02 9.74 0.17
subp. ICR 0.90 0.96 0.01 0.96 0.01 - - 0.96 0.01 10.46 0.53
subp. ICR 0.95 0.97 0.01 0.97 0.01 - - 0.97 0.01 10.88 0.21

Table 6: Results for 7var-covid

7var-covid γ / η γobs. ± ηobs. ± ηindivid.
obs. ± ηrefit

obs. ± ∅ cost ±
CE - 0.00 0.00 1.00 0.00 - - 1.00 0.00 0.60 0.12

ind. CR 0.75 0.01 0.00 1.00 0.00 - - 0.99 0.01 0.56 0.02
ind. CR 0.85 0.00 0.00 1.00 0.00 - - 0.99 0.00 0.55 0.02
ind. CR 0.90 0.00 0.00 1.00 0.00 - - 1.00 0.00 0.55 0.03
ind. CR 0.95 0.00 0.00 1.00 0.00 - - 0.99 0.01 0.54 0.07

subp. CR 0.75 0.01 0.01 0.92 0.02 - - 0.91 0.02 0.52 0.03
subp. CR 0.85 0.00 0.01 0.97 0.01 - - 0.96 0.01 0.75 0.40
subp. CR 0.90 0.00 0.00 0.98 0.01 - - 0.98 0.01 0.55 0.03
subp. CR 0.95 0.00 0.00 0.99 0.01 - - 0.98 0.01 0.51 0.07

ind. ICR 0.75 0.81 0.03 0.81 0.03 0.82 0.04 0.81 0.03 1.26 0.02
ind. ICR 0.85 0.85 0.03 0.85 0.03 0.86 0.03 0.85 0.03 1.14 0.44
ind. ICR 0.90 0.89 0.03 0.89 0.03 0.90 0.02 0.89 0.03 1.61 0.02
ind. ICR 0.95 0.95 0.01 0.95 0.01 0.95 0.01 0.95 0.01 1.97 0.06

subp. ICR 0.75 0.61 0.04 0.61 0.04 - - 0.61 0.04 1.06 0.03
subp. ICR 0.85 0.73 0.03 0.73 0.03 - - 0.73 0.03 1.09 0.34
subp. ICR 0.90 0.81 0.04 0.81 0.04 - - 0.81 0.04 1.42 0.05
subp. ICR 0.95 0.90 0.03 0.90 0.03 - - 0.90 0.03 1.73 0.06
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Figure 12: A schematic drawing illustrating under which
interventions I1, . . . , I8 the Markov blanket (double circle)
is intervention stable. In this setting, we consider the in-
tervention variables to be independent treatment variables:
We would like to know how the different actions influence
the conditional distribution, irrespective of how likely they
are to be applied. Therefore, they are modeled as parent-
less variables. Green indicates intervention stability, red indi-
cates no intervention stability. Orange indicates intervention
stability of non-causal variables. Dotted variables are not ob-
served. Left: Since all endogenous variables are observed,
MBO(Y ) is stable w.r.t. interventions on every endogenous
cause of Y (Proposition 3). Right: Unobserved variables
(X2, X8) open paths between interventions on causes and
Y .

causal sufficiency, for any optimal predictor the conditional
distribution of Y given the variables that the model uses XS

(i.e. P (Y |XS)) is stable w.r.t interventions on causes. There-
fore, optimal predictors are intervention stable w.r.t. ICR ac-
tions.

Proof: We prove the statement in six steps.
ICR only intervenes on causes: The goal of meaningful

recourse is to improve Y with minimal cost. Only interven-
tions on causes alter Y . Consequently, actions on non-causes
of Y would not be suggested by meaningful recourse.

Given causal sufficiency, a graph G and an endogenous
Y , the set of endogeneous direct parents, direct effects and
direct parents of effects are the minimal d-separating set
SG: Standard result, see e.g. Peters, Janzing, and Schölkopf
(2017), Proposition 6.27.

The set SG∗ in the augmented graph G∗ coincides with
SG: The minimal d-separating set contains direct causes, di-
rect effects and direct parents of direct effects. Il is never a
direct cause of Xl. Also, since Il has no endogenous causes,
it cannot be a direct effect. Furthermore, since we restrict in-
terventions to be performed on causes, Il cannot be a direct
parent of a direct effect.

SG is intervention stable: As follows, all intervention vari-
ables are d-separated from Y in G∗ by SG . Therefore SG is
intervention stable. An example is given in Figure 12.

Then also the markov blanket is intervention stable: Since
d-separation implies independence MB(Y ) ⊆ SG . There-
fore, if XT ⊥ Y |XMB(Y ) then also XT ⊥ Y |SG . If any
element s ∈ SG it holds that s ̸∈MB(Y ), then it must hold
that Xs ⊥ Y |XMB(Y ). Therefore, if XT ⊥ Y |XMB(Y ), Xs

then also XT ⊥ Y |XMB(Y ) and therefore any indepen-
dence entailed by SG also holds for MB(Y ). Since Pfis-
ter et al. (2021) only require the independence that is im-

plied by d-separation in their invariant conditional proof,
the same implication holds for the MB(Y ). As follows,
P (Y |XMB(Y )) is invariant with respect to interventions on
any set of endogenous causes.

Then any superset of the markov blanket is intervention
stable: We prove the statement by contradiction. The markov
blanket d-separates the target variable Y from any other set
of variables. If adding a set of variables S1 to the markov
blanket would open a path to any other set of variables S2,
then it would hold that S := S1 ∪ S2 is not d-separated
from Y (P (Y |MB(Y )) = P (Y |MB(Y ), S1, S2) ̸=
P (Y |MB(Y ), S1) = P (Y |MB(Y )))

D.3 Linking observational prediction and γsub,
Proposition 3

Proposition 3. Given causal sufficiency and positivity24, for
interventions on causes the expected subgroup-wide optimal
score h∗ is equal to the subgroup-wide improvement proba-
bility γsub(a) := P (Y post = 1|do(a), xpre

Ga
), i.e.

E[ĥ∗(xpost)|xpre
Ga

, do(a)] = γsub(a).

Proof: The proposition follows from Proposition 2. More
specifically

E[h∗(xpost,a)|xpre
G , a] (15)

= E[E[Y |xpost,a]|xpre
G , a] (16)

total exp.
= E[Y |xpre

G , a] (17)

def. γsub

= γsub(a). (18)

D.4 Acceptance Bound, Proof of Proposition 4
Proposition 4. Let g be a predictor with
E[g(xpost)|xpre

S , do(a)] = γ(xpre
S , a). Then for a deci-

sion threshold t the post-recourse acceptance probability
η(t; xpre

S , a) := P (g(xpost) > t|xpre
S , do(a)) is lower

bounded:

η(t; xpre
S , a) ≥ γ(xpre

S , a)− t

1− t
.

Proof: Positivity (ppre(xpost) > 0) is necessary for
subpopulation-based ICR since only then we can assume
that the model is actually optimal for any input that
it receives. The problem is discussed in more detail in
Hernán MA (2020); Neal (2020).

As follows we denote ĥ∗ as the random variable indicat-
ing the predictions of the post-recourse predictors described
in Section 5.
From Propositions 1 and 3, for both individualized and
subpopulation-based post-recourse predictors we know that

E[ĥ(xpost,a)∗|xpre
S , do(a)] = γ(xpre

S , a).

We decompose the expected prediction

24Positivity ensures that the post-recourse observation lies
within the observational support , where the model was trained (i.e.,
ppre(xpost) > 0), (Neal 2020)).



γ(xpre
S , a) (19)

= E[ĥ∗|xpre
S , a] (20)

=
E[ĥ∗|ĥ∗ > t]P (ĥ∗ > t)

+E[ĥ∗|ĥ∗ ≤ t]P (ĥ∗ ≤ t)

∣∣∣∣
xpre
S ,a

(21)

=
E[ĥ∗|ĥ∗ > t]P (ĥ∗ > t)

+E[ĥ∗|ĥ∗ ≤ t](1− P (ĥ∗ > t))

∣∣∣∣
xpre
S ,a

(22)

=
E[ĥ∗|ĥ∗ > t]P (ĥ∗ > t)

+E[ĥ∗|ĥ∗ ≤ t]− P (ĥ∗ > t)E[ĥ∗|ĥ∗ ≤ t]

∣∣∣∣
xpre
S ,a

(23)

=
E[ĥ∗|ĥ∗ ≤ t]

+P (ĥ∗ > t)
(
E[ĥ∗|ĥ∗ > t]− E[ĥ∗|ĥ∗ ≤ t]

)
∣∣∣∣∣
xpre
S ,a

(24)

which can be reformulated to yield the acceptance rate η:

γ − E[ĥ∗|ĥ∗ ≤ t]

E[ĥ∗|ĥ∗ > t]− E[ĥ∗|ĥ∗ ≤ t]

∣∣∣∣∣
xpre
S ,a

(25)

= P (ĥ∗ > t|xpre
S , a) = η(xpre

S , a). (26)

It holds that E[ĥ∗,ind|ĥ∗ ≤ t] = FNR(t) and
E[ĥ∗|ĥ∗ > t] = TPR(t).

We can show that E[ĥ∗|ĥ∗ ≤ t] ≤ t:

0 ≤ FNR(t|xpre
S , a) (27)

= P (Y a,post = 1|h∗ ≤ t, xpre
S , a) (28)

= E[Y a,post|h∗ ≤ t, xpre
S , a] (29)

= E[E[Y a,post|xpost,a]|h∗ ≤ t, xpre
S , a] (30)

= E[h∗|h∗ ≤ t, xpre
S , a] (31)

≤ t (32)

and analog that 1 ≥ TPR(t) ≥ t. Therefore

η(t, xpre
S , a) (33)

=
γ − FNR(t)

TPR(t)− FNR(t)

∣∣∣∣
xpre
S ,a

(34)

≥ γ(xpre
S , a)− FNR(t)

1− FNR(t)
≥ γ(xpre

S , a)− t

1− t
. (35)

D.5 Individualized post-recourse prediction,
proof of Proposition 5

Proposition 5. In general, the individualized post-recourse
predictor can be estimated as

p(ypost|xpre, xpost, do(a)) (36)

=

∫
U p(ypost, xpost|u, do(a))p(u|xpre)du∑

y′∈{0,1}
(∫

U p(y′, xpost|u, do(a))p(u|xpre)du
)

(37)

Given binary decision problems with invertible structural
equations, the individualized post-recourse prediction func-
tion reduces to

p(ypost|xpost, xpre, do(a)) (38)

=
p(U−I = f−1

do(a)(y
post, xpost)|xpre, do(a))

∑
y′∈{0,1} p(U−I = f−1

do(a)(y
′, xpost)|xpre, do(a))

.

(39)

Proof: It holds that

p(ypost|xpre, xpost, do(a)) (40)

def. cond.
=

p(ypost, xpost|xpre, do(a))

p(xpost|xpre, do(a))
(41)

(42)

We can reformulate the conditional distribution
p(ypost, xpost|xpre, do(a)) as two parts, one that de-
scribes the probability of a state of the context given xpre,
and one that describes the probability of a post-recourse
state xpost, ypost given a certain noise state u and do(a).

p(ypost, xpost|xpre, do(a)) (43)

marginal.
=

∫

U
p(ypost, xpost, u|xpre, do(a))du (44)

chain rule
=

∫

U
p(ypost, xpost|u, xpre, do(a))p(u|xpre)du

(45)

(y, x)post ⊥ xpre|u
=

∫

U
p(ypost, xpost|u, do(a))p(u|xpre)du.

(46)

In combination we yield

p(ypost|xpre, xpost, do(a)) (47)

=

∫
U p(ypost, xpost|u, do(a))p(u|xpre)du∫

Y
(∫

U p(y′, xpost|u, do(a))p(u|xpre)du
)
dy′ (48)

=

∫
U p(ypost, xpost|u, do(a))p(u|xpre)du∑

y′∈0,1

(∫
U p(y′, xpost|u, do(a))p(u|xpre)du

) (49)

For a setting with invertible structural equations this reduces
to

p(ypost|xpost, xpre, do(a)) (50)

=
p(ypost, xpost|xpre, do(a))

p(xpost|xpre, do(a))
(51)

=
p(U−I = f−1(ypost, xpost)|xpre, do(a))∑

y′∈{0,1} p(U−I = f−1(ypost, xpost)|xpre, do(a))
.

(52)

where −I is the index set for variables that have not been
intervened on (since the noise terms for the intervened upon
variables are isolated variables in the interventional graph).
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E.1 Negative Result: Algorithmic recourse is

neither meaningful nor robust
In the introduction we claimed that CR recommendations
(Karimi et al. 2020b; Karimi, Schölkopf, and Valera 2021)
may not lead to improvement. Now, we formally demon-
strate the case on the Covid hospital admission example (Fig-
ure 1) which we extend with the full structural causal model
(Example 1). Furthermore, we show that CR is not robust
to refits of the model on mixed pre- and post-recourse data.
All code is publicly available via https://anonymous.4open.
science/r/icr-aaai/README.md.

Example 1. Let V indicate whether someone is fully vacci-
nated, Y indicate whether someone is free of Covid and S
whether someone is asymptomatic. The data is generated by
the following structural causal model (SCM) entailing the
causal graph depicted in Figure 1:

V := UV , UV ∼ Bern(0.5) (53)
Y := V + UY mod 2, UY ∼ Bern(0.09) (54)
S := Y + US mod 2, US ∼ Bern(0.05) (55)

For prediction, a sklearn logistic regression model is fit
on 2000 samples, yielding ĥ with βv ≈ 3.7, βs ≈ 5.1,
β0 ≈ −4.3. Visitors are allowed to enter the hospital if
ĥ < 0.5. Intervening on (flipping) V and S costs 0.5 and
0.1 respectively.

Lack of improvement: Given a decision threshold of 0.5,
the model admits everyone without symptoms (S = 1), ir-
respective of their vaccination status V . Therefore, in or-
der to revert rejections (S = 0), both individualized and
subpopulation-based CR suggest removing the symptoms S
(do(S = 1), for instance by taking cough drops). However,
since they only treat the symptoms S, the actual Covid risk
Y is unaffected: none of the recourse-implementing individ-
uals actually improve. We say the predictor is gamed.

Lack of robustness: For individuals who implement re-
course the association between symptom state S and Covid
risk Y is broken. Thus, the predictive power of the model for
recourse-seeking individual drops from ≈ 95 percent pre-
recourse to≈ 5 percent post-recourse.25 A refit of the model
on a mix pre- and post-recourse data (2000 samples each)
yields ĥ with βV ≈ 4.1, βS ≈ 3.3, β0 ≈ −4.8. Since the
association between symptom state and disease status is bro-
ken post-recourse, the new model rejects individuals if they
are not vaccinated, irrespective of their symptom state. For
that reason, recourse recommendations that were designed
for the original model only lead to acceptance by the refitted
model for those individuals who happened to be vaccinated
anyway.
The example demonstrates that CR recommendations are
prone to gaming the predictor and therefore may neither lead
to improvement nor be robust to model refits.

25The previously wrongly-rejected individuals are correctly clas-
sified after implementing recourse.

E.2 Interpretability of improvement confidence γ

Counterfactuals are concerned with changing the inputs to
the model such that the model prediction changes in the de-
sired way. Since the prediction function is deterministic and
accessible, the post-recourse prediction can be determined
exactly.
In contrast CR and ICR deal with the effects of real-world
interventions on real-world variables. As such, the effects of
recourse actions on the covariates (and the underlying pre-
diction target) cannot be determined exactly. Therefore both
CR and ICR have to deal with uncertainty.
CR deals with this uncertainty by phrasing the optimiza-
tion objective for CR in terms of an expectation over the
prediction distribution and by using an action-adaptive con-
fidence threshold. This threshold thresh bounds the ex-
pected prediction away from the model’s decision threshold
(e.g. t = 0.5). Using the conservativeness parameters, the
user can roughly steer how far the expected prediction shall
be away from the decision boundary.
In contrast, ICR deals with the uncertainty by letting the
user specify the confidence γ, which can be intuitively in-
terpreted as improvement probability (whereas the expected
prediction cannot be interpreted as acceptance probability).
A lower-bound on the acceptance probability for a combina-
tion of γ and t is given in Proposition 4. Furthermore, we
can estimate the individualized and subpopulation-based ac-
ceptance rates for a specific situation (a, xpre) as detailed in
B.1 and B.3. The human-interpretable improvement and ac-
ceptance confidences are vital for the explainee to make an
informed decision.
In order to allow a direct comparison of the methods, we
rephrase the CR objective to optimize the acceptance proba-
bility η in our experiments.

E.3 Imbalance between standard predictors and
individualized ICR recommendations

In Section 6 we argued that there is an imbalance in predic-
tive capability between (optimal) observational predictors
and the pre-recourse SCM (which used to predict γind). We
illustrate the problem on a simple example.
Example 2. Let there be a three variable chain X1 → Y →
X2 where at every step the value is incremented by one with
50% chance and the maximum value is set to 2 (X1 := U1,
Y := X1+UY , X2 := min(2, Y +U2) where U1, U2, UY ∼
Bern(0.5)). Let us assume a factual observation xpre =
(0, 2) and action a = do(X1 = 1) yielding xpost = (1, 2).
For the observation xpre = (0, 2) we can infer that UY must
have been 1, since two increments are needed to get from 0 to
2. However, from the post-intervention observation xpost =
(1, 2) we cannot infer where the increment happened (UY

or U2). As a consequence, an optimal predictive model that
only has access to xpost would predict that ypost for xpost =
(1, 2) could be 1 or 2 with equal likelihood. In contrast, with
access to xpre and the SCM we can infer that ypost = 2
since UY = 1.

In the above example, given knowledge of the SCM, the
pre-intervention observation xpre and the performed action
a we can already abduct UY perfectly and therefore correctly



determine the post-intervention state of Y (even without ac-
cess to the post-intervention observation xpost). In contrast,
with the post-recourse observation alone it is impossible to
reconstruct UY and therefore impossible to determine the
post-intervention state of Y .26 In the context of ICR this
means that the observational predictor’s post-recourse pre-
dictions are not directly linked with γ: they may not honor
the implementation of actions with γind = 1. As a conse-
quence, we suggested to use the SCM for post-recourse pre-
diction in Section 6.
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1 Introduction

In recent years, both industry and academia have increasingly shifted away
from parametric models, such as generalized linear models, and towards non-
parametric and non-linear machine learning (ML) models such as random forests,
gradient boosting, or neural networks. The major driving force behind this devel-
opment has been a considerable outperformance of ML over traditional models
on many prediction tasks [32]. In part, this is because most ML models han-
dle interactions and non-linear effects automatically. While classical statistical
models – such as generalized additive models (GAMs) – also support the inclu-
sion of interactions and non-linear effects, they come with the increased cost of
having to (manually) specify and evaluate these modeling options. The benefits
of many ML models are partly offset by their lack of interpretability, which is
of major importance in many applications. For certain model classes (e.g. lin-
ear models), feature effects or importance scores can be directly inferred from
the learned parameters and the model structure. In contrast, it is more diffi-
cult to extract such information from complex non-linear ML models that, for
instance, do not have intelligible parameters and are hence often considered
black boxes. However, model-agnostic interpretation methods allow us to har-
ness the predictive power of ML models while gaining insights into the black-box
model. These interpretation methods are already applied in many different fields.
Applications of interpretable machine learning (IML) include understanding pre-
evacuation decision-making [124] with partial dependence plots [36], inferring
behavior from smartphone usage [105,106] with the help of permutation feature
importance [107] and accumulated local effect plots [3], or understanding the
relation between critical illness and health records [70] using Shapley additive
explanations (SHAP) [78]. Given the widespread application of interpretable
machine learning, it is crucial to highlight potential pitfalls, that, in the worst
case, can produce incorrect conclusions.

This paper focuses on pitfalls for model-agnostic IML methods, i.e. meth-
ods that can be applied to any predictive model. Model-specific methods, in
contrast, are tied to a certain model class (e.g. saliency maps [57] for gradient-
based models, such as neural networks), and are mainly considered out-of-scope
for this work. We focus on pitfalls for global interpretation methods, which
describe the expected behavior of the entire model with respect to the whole
data distribution. However, many of the pitfalls also apply to local explanation
methods, which explain individual predictions or classifications. Global meth-
ods include the partial dependence plot (PDP) [36], partial importance (PI)
[19], accumulated local affects (ALE) [3], or the permutation feature impor-
tance (PFI) [12,19,33]. Local methods include the individual conditional expec-
tation (ICE) curves [38], individual conditional importance (ICI) [19], local
interpretable model-agnostic explanations (LIME) [94], Shapley values [108] and
SHapley Additive exPlanations (SHAP) [77,78] or counterfactual explanations
[26,115]. Furthermore, we distinguish between feature effect and feature impor-
tance methods. A feature effect indicates the direction and magnitude of a change
in predicted outcome due to changes in feature values. Effect methods include
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Fig. 1. Selection of popular model-agnostic interpretation techniques, classified as local
or global, and as effect or importance methods.

Shapley values, SHAP, LIME, ICE, PDP, or ALE. Feature importance meth-
ods quantify the contribution of a feature to the model performance (e.g. via a
loss function) or to the variance of the prediction function. Importance methods
include the PFI, ICI, PI, or SAGE. See Fig. 1 for a visual summary.

The interpretation of ML models can have subtle pitfalls. Since many of
the interpretation methods work by similar principles of manipulating data and
“probing” the model [100], they also share many pitfalls. The sources of these
pitfalls can be broadly divided into three categories: (1) application of an unsuit-
able ML model which does not reflect the underlying data generating process
very well, (2) inherent limitations of the applied IML method, and (3) wrong
application of an IML method. Typical pitfalls for (1) are bad model generaliza-
tion or the unnecessary use of complex ML models. Applying an IML method in
a wrong way (3) often results from the users’ lack of knowledge of the inherent
limitations of the chosen IML method (2). For example, if feature dependencies
and interactions are present, potential extrapolations might lead to mislead-
ing interpretations for perturbation-based IML methods (inherent limitation).
In such cases, methods like PFI might be a wrong choice to quantify feature
importance.

Table 1. Categorization of the pitfalls by source.

Sources of pitfall Sections

Unsuitable ML model 3, 4

Limitation of IML method 5.1, 6.1, 6.2, 9.1, 9.2

Wrong application of IML method 2, 5.2, 5.3, 7, 8, 9.3, 10

Contributions: We uncover and review general pitfalls of model-agnostic inter-
pretation techniques. The categorization of these pitfalls into different sources
is provided in Table 1. Each section describes and illustrates a pitfall, reviews
possible solutions for practitioners to circumvent the pitfall, and discusses open
issues that require further research. The pitfalls are accompanied by illustrative



42 C. Molnar et al.

examples for which the code can be found in this repository: https://github.com/
compstat-lmu/code pitfalls iml.git. In addition to reproducing our examples, we
invite readers to use this code as a starting point for their own experiments and
explorations.

Related Work: Rudin et al. [96] present principles for interpretability and dis-
cuss challenges for model interpretation with a focus on inherently interpretable
models. Das et al. [27] survey methods for explainable AI and discuss challenges
with a focus on saliency maps for neural networks. A general warning about using
and explaining ML models for high stakes decisions has been brought forward
by Rudin [95], in which the author argues against model-agnostic techniques
in favor of inherently interpretable models. Krishnan [64] criticizes the general
conceptual foundation of interpretability, but does not dispute the usefulness of
available methods. Likewise, Lipton [73] criticizes interpretable ML for its lack
of causal conclusions, trust, and insights, but the author does not discuss any
pitfalls in detail. Specific pitfalls due to dependent features are discussed by
Hooker [54] for PDPs and functional ANOVA as well as by Hooker and Mentch
[55] for feature importance computations. Hall [47] discusses recommendations
for the application of particular interpretation methods but does not address
general pitfalls.

2 Assuming One-Fits-All Interpretability

Pitfall: Assuming that a single IML method fits in all interpretation contexts
can lead to dangerous misinterpretation. IML methods condense the complex-
ity of ML models into human-intelligible descriptions that only provide insight
into specific aspects of the model and data. The vast number of interpretation
methods make it difficult for practitioners to choose an interpretation method
that can answer their question. Due to the wide range of goals that are pursued
under the umbrella term “interpretability”, the methods differ in which aspects
of the model and data they describe.

For example, there are several ways to quantify or rank the features according
to their relevance. The relevance measured by PFI can be very different from
the relevance measured by the SHAP importance. If a practitioner aims to gain
insight into the relevance of a feature regarding the model’s generalization error,
a loss-based method (on unseen test data) such as PFI should be used. If we aim
to expose which features the model relies on for its prediction or classification –
irrespective of whether they aid the model’s generalization performance – PFI
on test data is misleading. In such scenarios, one should quantify the relevance
of a feature regarding the model’s prediction (and not the model’s generalization
error) using methods like the SHAP importance [76].

We illustrate the difference in Fig. 2. We simulated a data-generating process
where the target is completely independent of all features. Hence, the features
are just noise and should not contribute to the model’s generalization error.
Consequently, the features are not considered relevant by PFI on test data.
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However, the model mechanistically relies on a number of spuriously correlated
features. This reliance is exposed by marginal global SHAP importance.

As the example demonstrates, it would be misleading to view the PFI com-
puted on test data or global SHAP as one-fits-all feature importance techniques.
Like any IML method, they can only provide insight into certain aspects of model
and data.

Many pitfalls in this paper arise from situations where an IML method that
was designed for one purpose is applied in an unsuitable context. For example,
extrapolation (Sect. 5.1) can be problematic when we aim to study how the
model behaves under realistic data but simultaneously can be the correct choice
if we want to study the sensitivity to a feature outside the data distribution.

For some IML techniques – especially local methods – even the same method
can provide very different explanations, depending on the choice of hyperparam-
eters: For counterfactuals, explanation goals are encoded in their optimization
metrics [26,34] such as sparsity and data faithfulness; The scope and meaning
of LIME explanations depend on the kernel width and the notion of complexity
[8,37].

Solution: The suitability of an IML method cannot be evaluated with respect to
one-fits-all interpretability but must be motivated and assessed with respect to
well-defined interpretation goals. Similarly, practitioners must tailor the choice
of the IML method and its respective hyperparameters to the interpretation
context. This implies that these goals need to be clearly stated in a detailed
manner before any analysis – which is still often not the case.

Open Issues: Since IML methods themselves are subject to interpretation,
practitioners must be informed about which conclusions can or cannot be drawn
given different choices of IML technique. In general, there are three aspects to
be considered: (a) an intuitively understandable and plausible algorithmic con-
struction of the IML method to achieve an explanation; (b) a clear mathematical
axiomatization of interpretation goals and properties, which are linked by proofs
and theoretical considerations to IML methods, and properties of models and
data characteristics; (c) a practical translation for practitioners of the axioms
from (b) in terms of what an IML method provides and what not, ideally with
implementable guidelines and diagnostic checks for violated assumptions to guar-
antee correct interpretations. While (a) is nearly always given for any published
method, much work remains for (b) and (c).

3 Bad Model Generalization

Pitfall: Under- or overfitting models can result in misleading interpretations
with respect to the true feature effects and importance scores, as the model does
not match the underlying data-generating process well [39]. Formally, most IML
methods are designed to interpret the model instead of drawing inferences about
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Fig. 2. Assuming one-fits-all interpretability. A default xgboost regression model
that minimizes the mean squared error (MSE) was fitted on 20 independently and uni-
formly distributed features to predict another independent, uniformly sampled target.
In this setting, predicting the (unconditional) mean E[Y ] in a constant model is opti-
mal. The learner overfits due to a small training data size. Mean marginal SHAP (red,
error bars indicate 0.05 and 0.95 quantiles) exposes all mechanistically used features.
In contrast, PFI on test data (blue, error bars indicate 0.05 and 0.95 quantiles) con-
siders all features to be irrelevant, since no feature contributes to the generalization
performance.

the data-generating process. In practice, however, the latter is often the goal of
the analysis, and then an interpretation can only be as good as its underlying
model. If a model approximates the data-generating process well enough, its
interpretation should reveal insights into the underlying process.

Solution: In-sample evaluation (i.e. on training data) should not be used to
assess the performance of ML models due to the risk of overfitting on the train-
ing data, which will lead to overly optimistic performance estimates. We must
resort to out-of-sample validation based on resampling procedures such as hold-
out for larger datasets or cross-validation, or even repeated cross-validation for
small sample size scenarios. These resampling procedures are readily available
in software [67,89], and well-studied in theory as well as practice [4,11,104],
although rigorous analysis of cross-validation is still considered an open prob-
lem [103]. Nested resampling is necessary, when computational model selection
and hyperparameter tuning are involved [10]. This is important, as the Bayes
error for most practical situations is unknown, and we cannot make absolute
statements about whether a model already optimally fits the data.

Figure 3 shows the mean squared errors for a simulated example on both
training and test data for a support vector machine (SVM), a random forest,
and a linear model. Additionally, PDPs for all models are displayed, which show
to what extent each model’s effect estimates deviate from the ground truth. The
linear model is unable to represent the non-linear relationship, which is reflected
in a high error on both test and training data and the linear PDPs. In contrast,
the random forest has a low training error but a much higher test error, which
indicates overfitting. Also, the PDPs for the random forest display overfitting
behavior, as the curves are quite noisy, especially at the lower and upper value
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Fig. 3. Bad model generalization. Top: Performance estimates on training and test
data for a linear regression model (underfitting), a random forest (overfitting) and a
support vector machine with radial basis kernel (good fit). The three features are drawn
from a uniform distribution, and the target was generated as Y = X2

1 +X2−5X1X2+ε,
with ε ∼ N(0, 5).Bottom: PDPs for the data-generating process (DGP) – which is the
ground truth – and for the three models.

ranges of each feature. The SVM with both low training and test error comes
closest to the true PDPs.

4 Unnecessary Use of Complex Models

Pitfall: A common mistake is to use an opaque, complex ML model when an
interpretable model would have been sufficient, i.e. when the performance of
interpretable models is only negligibly worse – or maybe the same or even better
– than that of the ML model. Although model-agnostic methods can shed light
on the behavior of complex ML models, inherently interpretable models still
offer a higher degree of transparency [95] and considering them increases the
chance of discovering the true data-generating function [23]. What constitutes
an interpretable model is highly dependent on the situation and target audience,
as even a linear model might be difficult to interpret when many features and
interactions are involved.

It is commonly believed that complex ML models always outperform more
interpretable models in terms of accuracy and should thus be preferred. However,
there are several examples where interpretable models have proven to be serious
competitors: More than 15 years ago, Hand [49] demonstrated that simple models
often achieve more than 90% of the predictive power of potentially highly com-
plex models across the UCI benchmark data repository and concluded that such
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models often should be preferred due to their inherent interpretability; Makri-
dakis et al. [79] systematically compared various ML models (including long-
short-term-memory models and multi-layer neural networks) to statistical mod-
els (e.g. damped exponential smoothing and the Theta method) in time series
forecasting tasks and found that the latter consistently show greater predictive
accuracy; Kuhle et al. [65] found that random forests, gradient boosting and
neural networks did not outperform logistic regression in predicting fetal growth
abnormalities; Similarly, Wu et al. [120] have shown that a logistic regression
model performs as well as AdaBoost and even better than an SVM in predicting
heart disease from electronic health record data; Baesens et al. [7] showed that
simple interpretable classifiers perform competitively for credit scoring, and in
an update to the study the authors note that “the complexity and/or recency
of a classifier are misleading indicators of its prediction performance” [71].

Solution: We recommend starting with simple, interpretable models such as
linear regression models and decision trees. Generalized additive models (GAM)
[50] can serve as a gradual transition between simple linear models and more
complex machine learning models. GAMs have the desirable property that they
can additively model smooth, non-linear effects and provide PDPs out-of-the-
box, but without the potential pitfall of masking interactions (see Sect. 6). The
additive model structure of a GAM is specified before fitting the model so that
only the pre-specified feature or interaction effects are estimated. Interactions
between features can be added manually or algorithmically (e.g. via a forward
greedy search) [18]. GAMs can be fitted with component-wise boosting [99]. The
boosting approach allows to smoothly increase model complexity, from sparse
linear models to more complex GAMs with non-linear effects and interactions.
This smooth transition provides insight into the tradeoffs between model sim-
plicity and performance gains. Furthermore, component-wise boosting has an
in-built feature selection mechanism as the model is build incrementally, which
is especially useful in high-dimensional settings (see Sect. 9.1). The predictive
performance of models of different complexity should be carefully measured and
compared. Complex models should only be favored if the additional performance
gain is both significant and relevant – a judgment call that the practitioner must
ultimately make. Starting with simple models is considered best practice in data
science, independent of the question of interpretability [23]. The comparison of
predictive performance between model classes of different complexity can add
further insights for interpretation.

Open Issues: Measures of model complexity allow quantifying the trade-off
between complexity and performance and to automatically optimize for multiple
objectives beyond performance. Some steps have been made towards quantifying
model complexity, such as using functional decomposition and quantifying the
complexity of the components [82] or measuring the stability of predictions [92].
However, further research is required, as there is no single perfect definition of
interpretability, but rather multiple depending on the context [30,95].
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5 Ignoring Feature Dependence

5.1 Interpretation with Extrapolation

Pitfall: When features are dependent, perturbation-based IML methods such
as PFI, PDP, LIME, and Shapley values extrapolate in areas where the model
was trained with little or no training data, which can cause misleading interpre-
tations [55]. This is especially true if the ML model relies on feature interactions
[45] – which is often the case. Perturbations produce artificial data points that
are used for model predictions, which in turn are aggregated to produce global
or local interpretations [100]. Feature values can be perturbed by replacing orig-
inal values with values from an equidistant grid of that feature, with permuted
or randomly subsampled values [19], or with quantiles. We highlight two major
issues: First, if features are dependent, all three perturbation approaches pro-
duce unrealistic data points, i.e. the new data points are located outside of the
multivariate joint distribution of the data (see Fig. 4). Second, even if features
are independent, using an equidistant grid can produce unrealistic values for the
feature of interest. Consider a feature that follows a skewed distribution with
outliers. An equidistant grid would generate many values between outliers and
non-outliers. In contrast to the grid-based approach, the other two approaches
maintain the marginal distribution of the feature of interest.

Both issues can result in misleading interpretations (illustrative examples are
given in [55,84]), since the model is evaluated in areas of the feature space with
few or no observed real data points, where model uncertainty can be expected
to be very high. This issue is aggravated if interpretation methods integrate
over such points with the same weight and confidence as for much more realistic
samples with high model confidence.

Solution: Before applying interpretation methods, practitioners should check
for dependencies between features in the data, e.g. via descriptive statistics or
measures of dependence (see Sect. 5.2). When it is unavoidable to include depen-
dent features in the model (which is usually the case in ML scenarios), additional
information regarding the strength and shape of the dependence structure should
be provided. Sometimes, alternative interpretation methods can be used as a
workaround or to provide additional information. Accumulated local effect plots
(ALE) [3] can be applied when features are dependent, but can produce non-
intuitive effect plots for simple linear models with interactions [45]. For other
methods such as the PFI, conditional variants exist [17,84,107]. In the case
of LIME, it was suggested to focus in sampling on realistic (i.e. close to the
data manifold) [97] and relevant areas (e.g. close to the decision boundary) [69].
Note, however, that conditional interpretations are often different and should
not be used as a substitute for unconditional interpretations (see Sect. 5.3). Fur-
thermore, dependent features should not be interpreted separately but rather
jointly. This can be achieved by visualizing e.g. a 2-dimensional ALE plot of
two dependent features, which, admittedly, only works for very low-dimensional
combinations. Especially in high-dimensional settings where dependent features
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Fig. 4. Interpretation with extrapolation. Illustration of artificial data points gen-
erated by three different perturbation approaches. The black dots refer to observed data
points and the red crosses to the artificial data points.

can be grouped in a meaningful way, grouped interpretation methods might be
more reasonable (see Sect. 9.1).

We recommend using quantiles or randomly subsampled values over equidis-
tant grids. By default, many implementations of interpretability methods use an
equidistant grid to perturb feature values [41,81,89], although some also allow
using user-defined values.

Open Issues: A comprehensive comparison of strategies addressing extrapola-
tion and how they affect an interpretation method is currently missing. This also
includes studying interpretation methods and their conditional variants when
they are applied to data with different dependence structures.

5.2 Confusing Linear Correlation with General Dependence

Pitfall: Features with a Pearson correlation coefficient (PCC) close to zero can
still be dependent and cause misleading model interpretations (see Fig. 5). While
independence between two features implies that the PCC is zero, the converse is
generally false. The PCC, which is often used to analyze dependence, only tracks
linear correlations and has other shortcomings such as sensitivity to outliers
[113]. Any type of dependence between features can have a strong impact on the
interpretation of the results of IML methods (see Sect. 5.1). Thus, knowledge
about the (possibly non-linear) dependencies between features is crucial for an
informed use of IML methods.

Solution: Low-dimensional data can be visualized to detect dependence (e.g.
scatter plots) [80]. For high-dimensional data, several other measures of depen-
dence in addition to PCC can be used. If dependence is monotonic, Spearman’s
rank correlation coefficient [72] can be a simple, robust alternative to PCC.
For categorical or mixed features, separate dependence measures have been pro-
posed, such as Kendall’s rank correlation coefficient for ordinal features, or the
phi coefficient and Goodman & Kruskal’s lambda for nominal features [59].
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Fig. 5. Confusing linear correlation with dependence. Highly dependent fea-
tures X1 and X2 that have a correlation close to zero. A test (H0: Features are inde-
pendent) using Pearson correlation is not significant, but for HSIC, the H0-hypothesis
gets rejected. Data from [80].

Studying non-linear dependencies is more difficult since a vast variety of
possible associations have to be checked. Nevertheless, several non-linear asso-
ciation measures with sound statistical properties exist. Kernel-based measures,
such as kernel canonical correlation analysis (KCCA) [6] or the Hilbert-Schmidt
independence criterion (HSIC) [44], are commonly used. They have a solid the-
oretical foundation, are computationally feasible, and robust [113]. In addition,
there are information-theoretical measures, such as (conditional) mutual infor-
mation [24] or the maximal information coefficient (MIC) [93], that can however
be difficult to estimate [9,116]. Other important measures are e.g. the distance
correlation [111], the randomized dependence coefficient (RDC) [74], or the alter-
nating conditional expectations (ACE) algorithm [14]. In addition to using PCC,
we recommend using at least one measure that detects non-linear dependencies
(e.g. HSIC).

5.3 Misunderstanding Conditional Interpretation

Pitfall: Conditional variants of interpretation techniques avoid extrapolation
but require a different interpretation. Interpretation methods that perturb fea-
tures independently of others will extrapolate under dependent features but
provide insight into the model’s mechanism [56,61]. Therefore, these methods
are said to be true to the model but not true to the data [21].

For feature effect methods such as the PDP, the plot can be interpreted as
the isolated, average effect the feature has on the prediction. For the PFI, the
importance can be interpreted as the drop in performance when the feature’s
information is “destroyed” (by perturbing it). Marginal SHAP value functions
[78] quantify a feature’s contribution to a specific prediction, and marginal SAGE
value functions [25] quantify a feature’s contribution to the overall prediction
performance. All the aforementioned methods extrapolate under dependent fea-
tures (see also Sect. 5.1), but satisfy sensitivity, i.e. are zero if a feature is not
used by the model [25,56,61,110].
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Fig. 6. Misunderstanding conditional interpretation. A linear model was fit-
ted on the data-generating process modeled using a linear Gaussian structural causal
model. The entailed directed acyclic graph is depicted on the left. For illustrative pur-
poses, the original model coefficients were updated such that not only feature X3, but
also feature X2 is used by the model. PFI on test data considers both X3 and X2 to be
relevant. In contrast, conditional feature importance variants either only consider X3

to be relevant (CFI) or consider all features to be relevant (conditional SAGE value
function).

Conditional variants of these interpretation methods do not replace feature
values independently of other features, but in such a way that they conform to
the conditional distribution. This changes the interpretation as the effects of all
dependent features become entangled. Depending on the method, conditional
sampling leads to a more or less restrictive notion of relevance.

For example, for dependent features, the Conditional Feature Importance
(CFI) [17,84,107,117] answers the question: “How much does the model perfor-
mance drop if we permute a feature, but given that we know the values of the
other features?” [63,84,107].1 Two highly dependent features might be individu-
ally important (based on the unconditional PFI), but have a very low conditional
importance score because the information of one feature is contained in the other
and vice versa.

In contrast, the conditional variant of PDP, called marginal plot or M-plot
[3], violates sensitivity, i.e. may even show an effect for features that are not used
by the model. This is because for M-plots, the feature of interest is not sampled
conditionally on the remaining features, but rather the remaining features are
sampled conditionally on the feature of interest. As a consequence, the distri-
bution of dependent covariates varies with the value of the feature of interest.
Similarly, conditional SAGE and conditional SHAP value functions sample the
remaining features conditional on the feature of interest and therefore violate
sensitivity [25,56,61,109].

We demonstrate the difference between PFI, CFI, and conditional SAGE
value functions on a simulated example (Fig. 6) where the data-generating mech-

1 While for CFI the conditional independence of the feature of interest Xj with the
target Y given the remaining features X−j (Y ⊥ Xj |X−j) is already a sufficient
condition for zero importance, the corresponding PFI may still be nonzero [63].
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anism is known. While PFI only considers features to be relevant if they are
actually used by the model, SAGE value functions may also consider a feature
to be important that is not directly used by the model if it contains information
that the model exploits. CFI only considers a feature to be relevant if it is both
mechanistically used by the model and contributes unique information about Y .

Solution: When features are highly dependent and conditional effects and
importance scores are used, the practitioner must be aware of the distinct
interpretation. Recent work formalizes the implications of marginal and condi-
tional interpretation techniques [21,25,56,61,63]. While marginal methods pro-
vide insight into the model’s mechanism but are not true to the data, their
conditional variants are not true to the model but provide insight into the asso-
ciations in the data.

If joint insight into model and data is required, designated methods must be
used. ALE plots [3] provide interval-wise unconditional interpretations that are
true to the data. They have been criticized to produce non-intuitive results for
certain data-generating mechanisms [45]. Molnar et al. [84] propose a subgroup-
based conditional sampling technique that allows for group-wise marginal inter-
pretations that are true to model and data and that can be applied to fea-
ture importance and feature effects methods such as conditional PDPs and
CFI. For feature importance, the DEDACT framework [61] allows to decom-
pose conditional importance measures such as SAGE value functions into their
marginal contributions and vice versa, thereby allowing global insight into both:
the sources of prediction-relevant information in the data as well as into the
feature pathways by which the information enters the model.

Open Issues: The quality of conditional IML techniques depends on the good-
ness of the conditional sampler. Especially in continuous, high-dimensional set-
tings, conditional sampling is challenging. More research on the robustness of
interpretation techniques regarding the quality of the sample is required.

6 Misleading Interpretations Due to Feature Interactions

6.1 Misleading Feature Effects Due to Aggregation

Pitfall: Global interpretation methods, such as PDP or ALE plots, visualize
the average effect of a feature on a model’s prediction. However, they can pro-
duce misleading interpretations when features interact. Figure 7 A and B show
the marginal effect of features X1 and X2 of the below-stated simulation exam-
ple. While the PDP of the non-interacting feature X1 seems to capture the
true underlying effect of X1 on the target quite well (A), the global aggregated
effect of the interacting feature X2 (B) shows almost no influence on the target,
although an effect is clearly there by construction.
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Fig. 7. Misleading effect due to interactions. Simulation example with inter-

actions: Y = 3X1 − 6X2 + 12X21(X3≥0) + ε with X1, X2, X3
i.i.d.∼ U [−1, 1] and

ε
i.i.d.∼ N(0, 0.3). A random forest with 500 trees is fitted on 1000 observations. Effects

are calculated on 200 randomly sampled (training) observations. A, B: PDP (yellow)
and ICE curves of X1 and X2; C: Derivative ICE curves and their standard deviation
of X2; D: 2-dimensional PDP of X2 and X3.

Solution: For the PDP, we recommend to additionally consider the correspond-
ing ICE curves [38]. While PDP and ALE average out interaction effects, ICE
curves directly show the heterogeneity between individual predictions. Figure 7
A illustrates that the individual marginal effect curves all follow an upward trend
with only small variations. Hence, by aggregating these ICE curves to a global
marginal effect curve such as the PDP, we do not lose much information. How-
ever, when the regarded feature interacts with other features, such as feature X2

with feature X3 in this example, then marginal effect curves of different obser-
vations might not show similar effects on the target. Hence, ICE curves become
very heterogeneous, as shown in Fig. 7 B. In this case, the influence of feature
X2 is not well represented by the global average marginal effect. Particularly
for continuous interactions where ICE curves start at different intercepts, we
recommend the use of derivative or centered ICE curves, which eliminate differ-
ences in intercepts and leave only differences due to interactions [38]. Derivative
ICE curves also point out the regions of highest interaction with other features.
For example, Fig. 7 C indicates that predictions for X2 taking values close to 0
strongly depend on other features’ values. While these methods show that inter-
actions are present with regards to the feature of interest but do not reveal other
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features with which it interacts, the 2-dimensional PDP or ALE plot are options
to visualize 2-way interaction effects. The 2-dimensional PDP in Fig. 7 D shows
that predictions with regards to feature X2 highly depend on the feature values
of feature X3.

Other methods that aim to gain more insights into these visualizations are
based on clustering homogeneous ICE curves, such as visual interaction effects
(VINE) [16] or [122]. As an example, in Fig. 7 B, it would be more meaningful to
average over the upward and downward proceeding ICE curves separately and
hence show that the average influence of feature X2 on the target depends on
an interacting feature (here: X3). Work by Zon et al. [125] followed a similar
idea by proposing an interactive visualization tool to group Shapley values with
regards to interacting features that need to be defined by the user.

Open Issues: The introduced visualization methods are not able to illustrate
the type of the underlying interaction and most of them are also not applicable
to higher-order interactions.

6.2 Failing to Separate Main from Interaction Effects

Pitfall: Many interpretation methods that quantify a feature’s importance or
effect cannot separate an interaction from main effects. The PFI, for example,
includes both the importance of a feature and the importance of all its interac-
tions with other features [19]. Also local explanation methods such as LIME and
Shapley values only provide additive explanations without separation of main
effects and interactions [40].

Solution: Functional ANOVA introduced by [53] is probably the most popular
approach to decompose the joint distribution into main and interaction effects.
Using the same idea, the H-Statistic [35] quantifies the interaction strength
between two features or between one feature and all others by decomposing
the 2-dimensional PDP into its univariate components. The H-Statistic is based
on the fact that, in the case of non-interacting features, the 2-dimensional par-
tial dependence function equals the sum of the two underlying univariate par-
tial dependence functions. Another similar interaction score based on partial
dependencies is defined by [42]. Instead of decomposing the partial dependence
function, [87] uses the predictive performance to measure interaction strength.
Based on Shapley values, Lundberg et al. [77] proposed SHAP interaction val-
ues, and Casalicchio et al. [19] proposed a fair attribution of the importance of
interactions to the individual features.

Furthermore, Hooker [54] considers dependent features and decomposes the
predictions in main and interaction effects. A way to identify higher-order inter-
actions is shown in [53].

Open Issues: Most methods that quantify interactions are not able to identify
higher-order interactions and interactions of dependent features. Furthermore,
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the presented solutions usually lack automatic detection and ranking of all inter-
actions of a model. Identifying a suitable shape or form of the modeled inter-
action is not straightforward as interactions can be very different and complex,
e.g., they can be a simple product of features (multiplicative interaction) or can
have a complex joint non-linear effect such as smooth spline surface.

7 Ignoring Model and Approximation Uncertainty

Pitfall: Many interpretation methods only provide a mean estimate but do not
quantify uncertainty. Both the model training and the computation of interpre-
tation are subject to uncertainty. The model is trained on (random) data, and
therefore should be regarded as a random variable. Similarly, LIME’s surrogate
model relies on perturbed and reweighted samples of the data to approximate the
prediction function locally [94]. Other interpretation methods are often defined
in terms of expectations over the data (PFI, PDP, Shapley values, ...), but are
approximated using Monte Carlo integration. Ignoring uncertainty can result in
the interpretation of noise and non-robust results. The true effect of a feature
may be flat, but – purely by chance, especially on smaller datasets – the Shap-
ley value might show an effect. This effect could cancel out once averaged over
multiple model fits.

Fig. 8. Ignoring model and approximation uncertainty. PDP for X1 with Y =
0 ·X1 +

∑10
j=2 Xj + εi with X1, . . . , X10 ∼ U [0, 1] and εi ∼ N(0, 0.9). Left: PDP for X1

of a random forest trained on 100 data points. Middle: Multiple PDPs (10x) for the
model from left plots, but with different samples (each n=100) for PDP estimation.
Right: Repeated (10x) data samples of n=100 and newly fitted random forest.

Figure 8 shows that a single PDP (first plot) can be misleading because it
does not show the variance due to PDP estimation (second plot) and model
fitting (third plot). If we are not interested in learning about a specific model,
but rather about the relationship between feature X1 and the target (in this
case), we should consider the model variance.
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Solution: By repeatedly computing PDP and PFI with a given model, but with
different permutations or bootstrap samples, the uncertainty of the estimate
can be quantified, for example in the form of confidence intervals. For PFI,
frameworks for confidence intervals and hypothesis tests exist [2,117], but they
assume a fixed model. If the practitioner wants to condition the analysis on the
modeling process and capture the process’ variance instead of conditioning on a
fixed model, PDP and PFI should be computed on multiple model fits [83].

Open Issues: While Moosbauer et al. [85] derived confidence bands for PDPs
for probabilistic ML models that cover the model’s uncertainty, a general model-
agnostic uncertainty measure for feature effect methods such as ALE [3] and PDP
[36] has (to the best of our knowledge) not been introduced yet.

8 Ignoring the Rashomon Effect

Pitfall: Sometimes different models explain the data-generating process equally
well, but contradict each other. This phenomenon is called the Rashomon effect,
named after the movie “Rashomon” from the year 1950. Breiman formalized it
for predictive models in 2001 [13]: Different prediction models might perform
equally well (Rashomon set), but construct the prediction function in a different
way (e.g. relying on different features). This can result in conflicting interpre-
tations and conclusions about the data. Even small differences in the training
data can cause one model to be preferred over another.

For example, Dong and Rudin [29] identified a Rashomon set of equally well
performing models for the COMPAS dataset. They showed that the models
differed greatly in the importance they put on certain features. Specifically, if
criminal history was identified as less important, race was more important and
vice versa. Cherry-picking one model and its underlying explanation might not
be sufficient to draw conclusions about the data-generating process. As Hancox-
Li [48] states “just because race happens to be an unimportant variable in that
one explanation does not mean that it is objectively an unimportant variable”.

The Rashomon effect can also occur at the level of the interpretation method
itself. Differing hyperparameters or interpretation goals can be one reason (see
Sect. 2). But even if the hyperparameters are fixed, we could still obtain contra-
dicting explanations by an interpretation method, e.g., due to a different data
sample or initial seed.

A concrete example of the Rashomon effect is counterfactual explanations.
Different counterfactuals may all alter the prediction in the desired way, but
point to different feature changes required for that change. If a person is deemed
uncreditworthy, one corresponding counterfactual explaining this decision may
point to a scenario in which the person had asked for a shorter loan duration
and amount, while another counterfactual may point to a scenario in which
the person had a higher income and more stable job. Focusing on only one
counterfactual explanation in such cases strongly limits the possible epistemic
access.
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Solution: If multiple, equally good models exist, their interpretations should
be compared. Variable importance clouds [29] is a method for exploring variable
importance scores for equally good models within one model class. If the interpre-
tations are in conflict, conclusions must be drawn carefully. Domain experts or
further constraints (e.g. fairness or sparsity) could help to pick a suitable model.
Semenova et al. [102] also hypothesized that a large Rashomon set could contain
simpler or more interpretable models, which should be preferred according to
Sect. 4.

In the case of counterfactual explanations, multiple, equally good explana-
tions exist. Here, methods that return a set of explanations rather than a single
one should be used – for example, the method by Dandl et al. [26] or Mothilal
et al. [86].

Open Issues: Numerous very different counterfactual explanations are over-
whelming for users. Methods for aggregating or combining explanations are still
a matter of future research.

9 Failure to Scale to High-Dimensional Settings

9.1 Human-Intelligibility of High-Dimensional IML Output

Pitfall: Applying IML methods naively to high-dimensional datasets (e.g. visu-
alizing feature effects or computing importance scores on feature level) leads to
an overwhelming and high-dimensional IML output, which impedes human anal-
ysis. Especially interpretation methods that are based on visualizations make
it difficult for practitioners in high-dimensional settings to focus on the most
important insights.

Solution: A natural approach is to reduce the dimensionality before applying
any IML methods. Whether this facilitates understanding or not depends on
the possible semantic interpretability of the resulting, reduced feature space –
as features can either be selected or dimensionality can be reduced by linear
or non-linear transformations. Assuming that users would like to interpret in
the original feature space, many feature selection techniques can be used [46],
resulting in much sparser and consequently easier to interpret models. Wrap-
per selection approaches are model-agnostic and algorithms like greedy forward
selection or subset selection procedures [5,60], which start from an empty model
and iteratively add relevant (subsets of) features if needed, even allow to measure
the relevance of features for predictive performance. An alternative is to directly
use models that implicitly perform feature selection such as LASSO [112] or
component-wise boosting [99] as they can produce sparse models with fewer fea-
tures. In the case of LIME or other interpretation methods based on surrogate
models, the aforementioned techniques could be applied to the surrogate model.

When features can be meaningfully grouped in a data-driven or knowledge-
driven way [51], applying IML methods directly to grouped features instead of
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single features is usually more time-efficient to compute and often leads to more
appropriate interpretations. Examples where features can naturally be grouped
include the grouping of sensor data [20], time-lagged features [75], or one-hot-
encoded categorical features and interaction terms [43]. Before a model is fitted,
groupings could already be exploited for dimensionality reduction, for example
by selecting groups of features by the group LASSO [121].

For model interpretation, various papers extended feature importance meth-
ods from single features to groups of features [5,43,114,119]. In the case of
grouped PFI, this means that we perturb the entire group of features at once
and measure the performance drop compared to the unperturbed dataset. Com-
pared to standard PFI, the grouped PFI does not break the association to the
other features of the group, but to features of other groups and the target. This is
especially useful when features within the same group are highly correlated (e.g.
time-lagged features), but between-group dependencies are rather low. Hence,
this might also be a possible solution for the extrapolation pitfall described in
Sect. 5.1.

We consider the PhoneStudy in [106] as an illustration. The PhoneStudy
dataset contains 1821 features to analyze the link between human behavior based
on smartphone data and participants’ personalities. Interpreting the results in
this use case seems to be challenging since features were dependent and single
feature effects were either small or non-linear [106]. The features have been
grouped in behavior-specific categories such as app-usage, music consumption,
or overall phone usage. Au et al. [5] calculated various grouped importance
scores on the feature groups to measure their influence on a specific personality
trait (e.g. conscientiousness). Furthermore, the authors applied a greedy forward
subset selection procedure via repeated subsampling on the feature groups and
showed that combining app-usage features and overall phone usage features were
most of the times sufficient for the given prediction task.

Open Issues: The quality of a grouping-based interpretation strongly depends
on the human intelligibility and meaningfulness of the grouping. If the grouping
structure is not naturally given, then data-driven methods can be used. However,
if feature groups are not meaningful (e.g. if they cannot be described by a super-
feature such as app-usage), then subsequent interpretations of these groups are
purposeless. One solution could be to combine feature selection strategies with
interpretation methods. For example, LIME’s surrogate model could be a LASSO
model. However, beyond surrogate models, the integration of feature selection
strategies remains an open issue that requires further research.

Existing research on grouped interpretation methods mainly focused on quan-
tifying grouped feature importance, but the question of “how a group of fea-
tures influences a model’s prediction” remains almost unanswered. Only recently,
[5,15,101] attempted to answer this question by using dimension-reduction tech-
niques (such as PCA) before applying the interpretation method. However, this
is also a matter of further research.
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9.2 Computational Effort

Pitfall: Some interpretation methods do not scale linearly with the number of
features. For example, for the computation of exact Shapley values the number
of possible coalitions [25,78], or for a (full) functional ANOVA decomposition
the number of components (main effects plus all interactions) scales with O(2p)
[54].2

Solution: For the functional ANOVA, a common solution is to keep the analysis
to the main effects and selected 2-way interactions (similar for PDP and ALE).
Interesting 2-way interactions can be selected by another method such as the
H-statistic [35]. However, the selection of 2-way interactions requires additional
computational effort. Interaction strength usually decreases quickly with increas-
ing interaction size, and one should only consider d-way interactions when all
their (d−1)-way interactions were significant [53]. For Shapley-based methods, an
efficient approximation exists that is based on randomly sampling and evaluat-
ing feature orderings until the estimates converge. The variance of the estimates
reduces in O( 1

m ), where m is the number of evaluated orderings [25,78].

9.3 Ignoring Multiple Comparison Problem

Pitfall: Simultaneously testing the importance of multiple features will result
in false-positive interpretations if the multiple comparisons problem (MCP) is
ignored. The MCP is well known in significance tests for linear models and
exists similarly in testing for feature importance in ML. For example, suppose
we simultaneously test the importance of 50 features (with the H0-hypothesis
of zero importance) at the significance level α = 0.05. Even if all features are
unimportant, the probability of observing that at least one feature is significantly
important is 1 − P(‘no feature important’) = 1 − (1 − 0.05)50 ≈ 0.923. Multiple
comparisons become even more problematic the higher the dimension of the
dataset.

Solution: Methods such as Model-X knockoffs [17] directly control for the false
discovery rate (FDR). For all other methods that provide p-values or confidence
intervals, such as PIMP (Permutation IMPortance) [2], which is a testing app-
roach for PFI, MCP is often ignored in practice to the best of our knowledge,
with some exceptions[105,117]. One of the most popular MCP adjustment meth-
ods is the Bonferroni correction [31], which rejects a null hypothesis if its p-value
is smaller than α/p, with p as the number of tests. It has the disadvantage that
it increases the probability of false negatives [90]. Since MCP is well known
in statistics, we refer the practitioner to [28] for an overview and discussion of
alternative adjustment methods, such as the Bonferroni-Holm method [52].

2 Similar to the PDP or ALE plots, the functional ANOVA components describe
individual feature effects and interactions.
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Fig. 9. Failure to scale to high-dimensional settings. Comparison of the num-
ber of features with significant importance - once with and once without Bonferroni-
corrected significance levels for a varying number of added noise variables. Datasets
were sampled from Y = 2X1 + 2X2

2 + ε with X1, X2, ε ∼ N(0, 1). X3, X4, ..., Xp ∼
N(0, 1) are additional noise variables with p ranging between 2 and 1000. For each p,
we sampled two datasets from this data-generating process – one to train a random
forest with 500 trees on and one to test whether feature importances differed from 0
using PIMP. In all experiments, X1 and X2 were correctly identified as important.

As an example, in Fig. 9 we compare the number of features with significant
importance measured by PIMP once with and once without Bonferroni-adjusted
significance levels (α = 0.05 vs. α = 0.05/p). Without correcting for multi-
comparisons, the number of features mistakenly evaluated as important grows
considerably with increasing dimension, whereas Bonferroni correction results in
only a modest increase.

10 Unjustified Causal Interpretation

Pitfall: Practitioners are often interested in causal insights into the underly-
ing data-generating mechanisms, which IML methods do not generally provide.
Common causal questions include the identification of causes and effects, pre-
dicting the effects of interventions, and answering counterfactual questions [88].
For example, a medical researcher might want to identify risk factors or predict
average and individual treatment effects [66]. In search of answers, a researcher
can therefore be tempted to interpret the result of IML methods from a causal
perspective.

However, a causal interpretation of predictive models is often not possible.
Standard supervised ML models are not designed to model causal relationships
but to merely exploit associations. A model may therefore rely on causes and
effects of the target variable as well as on variables that help to reconstruct
unobserved influences on Y , e.g. causes of effects [118]. Consequently, the ques-
tion of whether a variable is relevant to a predictive model (indicated e.g. by
PFI > 0) does not directly indicate whether a variable is a cause, an effect,
or does not stand in any causal relation to the target variable. Furthermore,
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even if a model would rely solely on direct causes for the prediction, the causal
structure between features must be taken into account. Intervening on a variable
in the real world may affect not only Y but also other variables in the feature
set. Without assumptions about the underlying causal structure, IML methods
cannot account for these adaptions and guide action [58,62].

As an example, we constructed a dataset by sampling from a structural causal
model (SCM), for which the corresponding causal graph is depicted in Fig. 10. All
relationships are linear Gaussian with variance 1 and coefficients 1. For a linear
model fitted on the dataset, all features were considered to be relevant based
on the model coefficients (ŷ = 0.329x1 + 0.323x2 − 0.327x3 + 0.342x4 + 0.334x5,
R2 = 0.943), although x3, x4 and x5 do not cause Y .

Solution: The practitioner must carefully assess whether sufficient assumptions
can be made about the underlying data-generating process, the learned model,
and the interpretation technique. If these assumptions are met, a causal inter-
pretation may be possible. The PDP between a feature and the target can be
interpreted as the respective average causal effect if the model performs well and
the set of remaining variables is a valid adjustment set [123]. When it is known
whether a model is deployed in a causal or anti-causal setting – i.e. whether
the model attempts to predict an effect from its causes or the other way round
– a partial identification of the causal roles based on feature relevance is pos-
sible (under strong and non-testable assumptions) [118]. Designated tools and
approaches are available for causal discovery and inference [91].

Open Issues: The challenge of causal discovery and inference remains an open
key issue in the field of ML. Careful research is required to make explicit under
which assumptions what insight about the underlying data-generating mecha-
nism can be gained by interpreting an ML model.

Fig. 10. Causal graph

11 Discussion

In this paper, we have reviewed numerous pitfalls of local and global model-
agnostic interpretation techniques, e.g. in the case of bad model generalization,
dependent features, interactions between features, or causal interpretations. We
have not attempted to provide an exhaustive list of all potential pitfalls in ML
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model interpretation, but have instead focused on common pitfalls that apply
to various model-agnostic IML methods and pose a particularly high risk.

We have omitted pitfalls that are more specific to one IML method type:
For local methods, the vague notions of neighborhood and distance can lead to
misinterpretations [68,69], and common distance metrics (such as the Euclidean
distance) are prone to the curse of dimensionality [1]; Surrogate methods such
as LIME may not be entirely faithful to the original model they replace in
interpretation. Moreover, we have not addressed pitfalls associated with certain
data types (like the definition of superpixels in image data [98]), nor those related
to human cognitive biases (e.g. the illusion of model understanding [22]).

Many pitfalls in the paper are strongly linked with axioms that encode
desiderata of model interpretation. For example, pitfall Sect. 5.3 (misunderstand-
ing conditional interpretations) is related to violations of sensitivity [56,110]. As
such, axioms can help to make the strengths and limitations of methods explicit.
Therefore, we encourage an axiomatic evaluation of interpretation methods.

We hope to promote a more cautious approach when interpreting ML models
in practice, to point practitioners to already (partially) available solutions, and
to stimulate further research on these issues. The stakes are high: ML algorithms
are increasingly used for socially relevant decisions, and model interpretations
play an important role in every empirical science. Therefore, we believe that
users can benefit from concrete guidance on properties, dangers, and problems
of IML techniques – especially as the field is advancing at high speed. We need
to strive towards a recommended, well-understood set of tools, which will in turn
require much more careful research. This especially concerns the meta-issues of
comparisons of IML techniques, IML diagnostic tools to warn against mislead-
ing interpretations, and tools for analyzing multiple dependent or interacting
features.
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Chapter 7

Discussion

“The end of a melody is not its goal, and yet if a melody has not reached
its end, it has not reached its goal.”

— Friedrich Nietzsche

This thesis included five different research projects, all focused on different
sub-problems within the field of XAI. However, all projects can be understood
as attempts to gain more clarity about the different “whats” we want to explain
in different contexts using XAI tools. As described in the introduction, four
different levels can be distinguished: the associative model level, the causal
model level, the associative phenomenon level and the causal phenomenon
level.

I want to use this final Chapter to summarize the five papers with respect
to the four levels view (Section 1), orient my work within the literature and
display its significance (Section 2), discuss limitations (Section 3), and provide
an outlook (Section 4).

1 Summary: The Five Papers and the Four “Whats”

In Paper I and Paper II, my co-authors and I argued that scientists are ulti-
mately interested in the phenomenon rather than the ML model. Thus, XAI
methods for scientists should aim at the associative or ideally even causal phe-
nomenon level rather than the causal model level. Both papers shown how
associative properties of the phenomenon can be inferred by analyzing the
model: Paper I focused on which properties of the conditional distribution
P(𝑌 |𝑋) can potentially be described with XAI and discussed whether we can
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reach the causal phenomenon level; Paper II focused on quantifying the un-
certainty for two specific properties that can be described with the PDP and
PFI, respectively, and experimentally/formally demonstrating the quality of
this uncertainty quantification.

Paper III and Paper IV discussed the different levels in the context of
counterfactual explanations (CEs). In both papers, (my co-authors and) I
argued that standard CEs for model audit only concern the causal model level
and are agnostic with respect to the associative/causal phenomenon level.
However, if we aim to attack the model or provide recourse recommendations
to end-users, the target changes: attacking the model requires to search for
adversarial examples (AEs) i.e. counterfactuals for which 𝑌 differs from 𝑌 ;
providing recourse recommendation requires the discussion of interventions
that allow both 𝑌 and 𝑌 to change in the same way.

In Paper V, the four levels view is explicit in pitfalls 1, 5 and 10. While papers
I, II, III, and IV were purpose-centric – that is, they started with a purpose and
developed from there – Paper V takes a methods-centric perspective.1 Due to
the shared purpose-centric perspective, the line of reasoning in Papers I, II,
III, and IV is very similar: 1. We start with a fixed purpose, such as learning
about the world in Paper I and Paper II, attacking an ML model in Paper III, or
algorithmic recourse in Paper IV. 2. Next, we argue how this purpose decides
which of the four levels to aim for. 3. Next, we show that current research on
the topic lacks clarity about the different levels. 4. Finally, (my co-authors and)
I offer a formal solution that is aware of the different levels and purpose, and
we show how it is applied on an example.

2 Orientation and Significance of the Five Papers

In this section, I will discuss my work in the context of:

• the central criticisms of XAI,

• sub-fields in XAI, and

• (philosophy of) science.

In each context I will display the significance of my work and, where applic-
able, its societal, epistemic, and ethical implications.

1Purpose dependence is also briefly discussed in Paper V, pitfall 1. In my opinion, the
purpose-centric perspective should generally be preferred to the the method-centered per-
spective because it ensures that XAI contributes to solving real problems.



2 Orientation and Significance of the Five Papers 195

2.1 The Central Criticisms of XAI

XAI as a field is pre-paradigmatic in a Kuhnian sense (Kuhn, 1970) – its founda-
tions are contested within the field and there are competing paradigm candid-
ates. My work focused primarily on one of these paradigms, which is probably
the most mature competitor on the market – the so-called model-agnostic XAI
(Molnar, 2020). In model-agnostic XAI, the ML model is reduced to an input-
output mapping (Scholbeck et al., 2019). The other major competitor, model-
specific XAI, exploits the specific model-structure and model-properties. In
Paper I, my co-authors and I argue why parts of model-specific XAI, namely
those that analyze individual model elements, face fundamental problems be-
cause they assume that ML models learn humanly-accessible features (Olah
et al., 2020). My primary focus on the model-agnostic paradigm stems from
its universal applicability and these arguments from Paper I against interpret-
ations of individual model elements.

As discussed in Section 1.4, current XAI2 faces several fundamental criti-
cisms: 1. XAI conflates or lacks goals; 2. XAI provides unsatisfactory explan-
ation evaluation; 3. XAI provides misleading, non-robust explanations that
lack uncertainty quantification. These criticisms have all also been discussed
in more detail in Paper V, where we pointed out pitfalls in using XAI methods.
I believe that all of the criticisms listed are valid, they describe key problems
within the field XAI, and if we want to move forward as a field, these criticisms
must be addressed – this was one major motivation behind my thesis.

The Problem XAI Tries to Solve is Ill-defined Lipton (2018) most prom-
inently argues that interpretability is not a monolithic concept, but en-
compasses various endeavors such as increasing trust, improving model
robustness, or providing legally required explanations for algorithmic
decisions. He therefore criticizes the field for lacking a proper problem
formulation and states:

“When we have solid problem formulations, flaws in methodo-
logy can be addressed by articulating new methods. But when
the problem formulation itself is flawed, neither algorithms nor
experiments are sufficient to address the underlying problem.”
(Lipton, 2018)

My work has been strongly inspired and can be seen as a direct response to
his fundamental criticism. Particularly in Paper I and Paper IV, my co-authors

2this applies to both model-agnostic and model-specific XAI
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and I show how in specific contexts the problem we want to solve with XAI
can be well defined and consequently approached. This is not to say that my
work has solved the central problem of XAI, which is to provide a universal
definition of explainability. Rather, my co-authors and I narrowed down the
problem to a more fine-grained aspect, and specific purpose, and shown that
XAI methods can(not) help to solve it.

I see the critique of a lacking problem formulation (fundamental criticism
1) as the most fundamental, it is one cause of the problem of unsatisfactory
evaluation (fundamental criticism 2) and the problem of misleading explana-
tions (fundamental criticism 3). The goal determines the evaluation strategy
and the success conditions. Explanations themselves cannot mislead if they
satisfy a prespecified goal, but the goal itself might be morally questionable.
Moreover, uncertainty can be quantified if we know which estimate is uncer-
tain with respect to which goal.

XAI Explanations are Hard to Evaluate Doshi-Velez & Kim (2017) provide
a framework to discuss the evaluation of interpretability along three levels,
application-grounded, human-grounded, and functionally grounded evalu-
ation, with the first two evaluation levels requiring cumbersome and expens-
ive experiments with humans. I agree that the gold standard we should aim
for is testing whether the explanation does, when given to a human, improve
her performance on the task at hand. However, the focus in my work on the
different explananda allows to establish the sanity of XAI methods at an earlier
state – does the method provide any explanation at all for the phenomenon it
is supposed to explain? As argued in Section 2, the right explanandum must
be established prior to the choice of the best possible explanation, and thus
before psychological experiments are conducted. Moreover, we show in Paper
I that for the case of scientific inference, where the goal is to learn an aspect
of P(𝑌 |𝑋), a purely formal evaluation approach is sufficient and no human
experiments are required.

XAI Explanations are Misleading and do not Display Uncertainties Rudin
(2019) argues in her seminal work against the use of model-agnostic XAI
(at least for high-stakes decisions) and recommends instead the use of
interpretable models3. While I do not defend some of the methods she
attacks, such as LIME or saliency maps, my work shows that the criticism
is wrong in its generality. For instance, global model-agnostic techniques

3In Paper I, Paper II, and Paper V, my co-authors and I highlighted that her proposed solu-
tion to solely rely on interpretable models is a strong constraint for solving practical problems.
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such as conditional PDP and conditional PFI (see Paper I and Paper II) can
be epistemically well-grounded and, under certain conditions, allow us to
learn something about the underlying phenomenon. In addition, in Papers
III and IV, my co-authors and I have described ways in which counterfactual
explanations can be less misleading by tailoring them to a particular purpose
such as recourse or contestability.

The lacking uncertainty quantification of XAI explanations has been widely
noted (Rudin et al., 2022; Doshi-Velez & Kim, 2017; Watson, 2022; Molnar et al.,
2020). My co-authors and I address the problem for specific methods and pur-
poses in Paper I, Paper II, and Paper IV. In Paper I and Paper II, we analyze the
uncertainty arising from the randomness of the data, the learning process, and
Monte-Carlo integration. In Paper IV, we focus on the uncertainty with respect
to recourse acceptance guarantees under certain actions of the end-user. In
addition, in Paper V, we discuss the problem of quantifying uncertainty and
identify possible solutions.

2.2 Counterfactual Explanations, Algorithmic Recourse, and
Adversarial Examples

Paper III and Paper IV both deal with counterfactual explanations. Paper III
and Paper IV both deal with counterfactual explanations. In this section, we
will discuss these two papers and their relationship in more detail.

Counterfactual Explanations and Algorithmic Recourse Wachter et al.
(2017) proposed counterfactual explanations as a method that can serve vari-
ous purposes, such as understanding individual ML predictions, contesting
algorithmic decisions, and providing end-users with action recommendations
to reverse unfavorable decisions. Especially the latter purpose – recommend-
ing recourse – gained increasing attention in the literature. Recommending
recourse requires to: put additional constraints, such as actionability (Ustun
et al., 2019); specify actions rather than alternative scenarios (Karimi et al.,
2020); incorporate the causal dependencies between input features in the real
world (Karimi et al., 2021).

In Paper IV, we build on these ideas on algorithmic recourse, but attack
their central premise, namely we argue that it is more important in recourse
to change the target rather than just the prediction; that is, we should target
a different explanandum with our recourse recommendations. Our proposal
has strong epistemic, ethical, and societal implications. On the epistemic side,
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if we focus on the target rather than the prediction, our recourse recommend-
ation becomes independent of the ML model mechanism and instead must
be generated from causal knowledge about the world. Thus, we cannot simply
apply XAI methods to solve this problem. On the ethical side, we argue that
reversing only the prediction, but not the target, poses a problem not only for
the model-authority, but potentially also the individual. In the stroke risk pre-
diction from chapter 1, imagine a case in which the individual reduced her
predicted stroke risk by lowering her blood-pressure using medication, but
this medication has the side-effect of increasing her stroke risk. Our view here
is consistent with recent arguments from moral philosophy promoting causal
recourse explanations (Vredenburgh, 2022). Finally, on the societal side, un-
like previous proposals, our proposal does not provide an incentive for data
subjects to game the predictor, i.e., the functioning of ML models remains in-
tact. If ML models serve important societal functions, e.g. correctly diagnos-
ing patients or giving loans only to people who can repay them, our recourse
formalization should be favored over the that of Karimi et al. (2020).

Counterfactual Explanations and Adversarial Examples In Paper III,
counterfactual explanations are related to adversarial examples. This also
happened in the original proposal of Wachter et al. (2017), however they
incorrectly identify counterfactuals with adversarials, ignoring their relation-
ship to the prediction target, as argued in Paper III. Instead, my paper shows
that adversarial examples can be viewed as a special kind of counterfactuals,
namely those that change the prediction but not the underlying target. It
therefore allows for the integration of these two hitherto quite independent
fields of research (Pawelczyk et al., 2022). Moreover, as I highlight the possible
connections and introduce the main concepts, the paper also serves as a
dictionary for the various communities to translate between the fields.

Adversarial Examples and Recourse Recommendations Taking the res-
ults of Paper III and Paper IV together has the potential to illuminate the
discussion strongly. Together, the papers show that adversarial examples
and recourse recommendations are formally opposite objects4: adversarials
revert the prediction but maintain the target, while for recourse we want to
revert both target and prediction in agreement; adversarials make widespread
imperceptible changes, while for recourse recommendations sparse changes
better allow subjects to act; in adversarials we break causal dependencies,

4This relationship is also captured in the papers, but with a focus on the notion of contest-
ing algorithmic decisions.
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while in recourse causal dependencies must be respected. Whenever two
concepts that are their opposite, they can profit from each other. Adversarial
examples research, in my view, would profit from reverting the causal ap-
proach that recourse research takes. On the other side, recourse research can
strongly profit from adversarials research with respect to less structured data
domains such as audio or image data.

2.3 (Philosophy of ) Science

Paper I and Paper II focus on the use of XAI for scientific inference, i.e. for
learning about the real world phenomenon represented by the ML model. In
this section, we discuss the potential implications of these two papers for sci-
entific practice and on debates within philosophy of science.

Significance for Science Paper I and Paper II have a very ambitious goal – to
show that ML in alliance with XAI has the potential to complement and even
partially replace classical (statistical) modeling for scientific purposes. While it
is widely acknowledged that ML is superior when it comes to mere prediction,
it was held that for other scientific goals, such gaining knowledge or provid-
ing causal explanations, classical (in Paper I, we call it elementwise repres-
entational (ER)) modeling remains superior (Shmueli et al., 2010). However,
in Paper I, we showed that questions concerning the conditional distribution
P(𝑌 |𝑋) can be addressed with the help of ML model analysis. Moreover,
we can quantify the epistemic uncertainty with respect to these answers and
provide confidence estimates. Paper II goes here more into depth and fleshes
out this uncertainty quantification in full detail for the PDP and PFI.

Many questions previously explored with statistical modeling can now
better be addressed because, as we argue in the papers, ML relies less on
strong assumptions about the nature of the modeled phenomenon. Instead,
ML models automatically capture complex relationships and interactions
between features. However, Paper I and Paper II highlight not only the
strengths of supervised ML for drawing inference but also its weaknesses. In
general, the inferences that XAI allows to draw about the phenomenon should
not be interpreted causally at the phenomenon level. ML models capture
only the associational relationship in the data, as the effects of the target can
be just as predictive as the causes. We point this out as a general limitation of
XAI methods applied to supervised learning models in Paper I, Paper II, and
Paper V.

As scientists are already starting to use XAI techniques to learn about their
phenomenon (sometimes in the wrong ways), our work comes at the right
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time. In particular, for fields where the data we obtain from measurement
is high-dimensional and hard to interpret – think of neuroscience, molecular
biology, or particle physics – ML combined with XAI could open new paths to
study phenomena (Cichy & Kaiser, 2019; Hasson et al., 2020).

Significance for Philosophy of Science Sullivan (2020) and Cichy & Kaiser
(2019) have famously argued that it is possible to learn about real-world phe-
nomena via ML. However, the connection between the ML model and the
phenomenon – Sullivan calls this the link uncertainty – must be small. Un-
fortunately, both remain very vague about what this link uncertainty consists
of and how it can be reduced. In Paper I, my co-authors and I argue that one
needs to rethink the question of representationality in order to establish the
link between the model and the phenomenon. We highlight that classical sci-
entific models are largely built on the idea that every model element is repres-
enting an interpretable aspect of the phenomenon (Frigg & Nguyen, 2021). We
show that it is not individual model elements, but only the entire model that
can be interpreted in terms of the phenomenon. To assess the link between
the model and the world, the only access point is through strong predictive
performance. To introspect the aspect of the phenomenon that is represen-
ted by the whole model – this is, to zoom into this aspect – XAI techniques
tailored to this task must be used. We note that our approach is applicable to
any model where it is not the model elements that represent the phenomenon,
but the entire model. On the clarificatory side, Paper I also dampens the un-
warranted hopes by Sullivan (2020); Watson (2022); Zednik & Boelsen (2022)
to interpret ML models as representing causal relationships; associations is all
that supervised ML can offer us.5

The second major debate within philosophy of science to which my work
has contributed concern the role of XAI in science and how much opacity ulti-
mately limits the use of ML in science (Cichy & Kaiser, 2019; Creel, 2020; Boge,
2021; Zednik & Boelsen, 2022). Boge (2021) describes two different dimen-
sions of ML opacity, opacity with respect to the concepts learned with ML al-
gorithms and opacity with respect to ML model predictions. He points out
the problem that, especially in the first case, a gap may arise between sci-
entific discovery and scientific explanation. In Paper I, my co-authors and I
strengthen his arguments and describe that people will have difficulty under-
standing features learned by ML models due to the distributed representation
in neural networks. We conclude that applying model-specific XAI techniques
to understand these features, while intriguing, is hopeless and will lead re-

5This might change if additional assumptions are in place (Peters et al., 2017).
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searchers astray. Boge’s second opacity concerns the functional opacity of the
prediction model; many noted that model-agnostic XAI could help make the
functional properties more transparent, but they remained unclear on what
opacity they want reduced (model or world) and what explanations they hope
to find (causal or associational) (Cichy & Kaiser, 2019; Zednik & Boelsen, 2022;
Roscher et al., 2020). Watson (2022) was clearer about the former, but, as we
argue in Paper I, is wrong about the latter, thinking that XAI methods provide
causal explanations about the world. In Paper I, we clearly separate between
explanations that aim to audit the model from those that aim to draw scientific
inference, but also describe their interaction. Importantly, in Paper I and Pa-
per II, we argue that if we strive for scientific inference with XAI, it is crucial to
integrate only ML predictions on realistic data.

Finally, I see the significance of my work also in the connections it allows
to draw between classical statistical modeling and ML modeling, which is par-
ticularly relevant to philosophers of statistics. For example, my co-authors
and I have shown how ML modeling and classical statistical modeling can
be fused to perform statistical inference using XAI techniques. The import-
ant contribution of my work is here to provide a representation of the un-
derlying data generating mechanism via statistical decision theory. This link
between the ML model and the underlying data generating mechanism, which
is strongly emphasized in classical statistical modeling (Romeijn, 2022), will
allow to transfer a whole range of other concepts from statistics to ML, such
as hypotheses testing. Sampling of data is another big problem in both stat-
istics and ML, which has been touched by Paper I, Paper II, and Paper V. We
argue that permuting individual features or intervening on them risks creat-
ing unrealistic data (Hooker & Mentch, 2019). Think of a case where the data
describes basketball players and we change a individual players size from 2.10
meters to 1.50 without accounting or the resulting changes in his weight or
playing skills. With such unrealistic data, the ML model must extrapolate and
therefore cannot usually be reliably interpreted.6 My co-authors and I there-
fore emphasize in Paper II the importance of conditional sampling of features
and also its difficulty.

6Even worse, data might not only be unrealistic but completely impossible, imagine a per-
son with 2.10 meter but a weight of 2 kg.
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3 Limitations

Now that I have contextualized the contributions of my work across literatures
and fields, I would like to use this section to point out the limitations of my
work.

General Limitations of the Four “Whats” As I argued before, the purpose of
the explanation determines the correct explanandum. Since there are so many
possible purposes of XAI explanations, there is still room for confusion about
the correct explanandum. In my work, I have only addressed the question of
the explanandum for a very few selected purposes such as scientific inference,
adversarial attacks, or algorithmic recourse, focusing on a limited number of
methods such as CE, PDP, and PFI. There is still much to be done, and some
purposes of XAI may still need to be found.

The list of four explananda may be considered incomplete. Indeed, there
are quite different explanations when the goal is to learn high-level concepts
with XAI or to introspect model elements (Olah et al., 2020, 2017; Bau et al.,
2018). Also, for other learning paradigms such as unsupervised or reinforce-
ment learning, we can go beyond the simplistic setting of explaining how 𝑋
relates to 𝑌 or 𝑌 . Nonetheless, for standard supervised learning setups and
with a focus on model-agnostic XAI, the four levels are probably exhaustive
and can guide many current XAI discussions.

Specific Limitations of Paper I and Paper II Paper I and Paper II, as de-
scribed above, are similar in spirit, although they put different emphasis on
the conceptual and the formal work. Thus, they share some of their limita-
tions. The most important limitation, in my opinion, is that the proposed con-
fidence intervals are based on a very strong assumption, namely, learner un-
biasedness. Learner unbiasedness means that the learning algorithm learns
the optimal prediction model in expectation about the learning situations.
This assumption is enormously far from any guarantees that statistical learn-
ing theory can give us so far for complex ML models such as random forests or
neural networks (Bishop & Nasrabadi, 2006). Learner unbiasedness requires
that we provide our learning algorithm with the right inductive bias by choos-
ing an appropriate optimizer, select solid hyperparameters and choosing the
right model class for the problem. Perhaps learner unbiasedness is not such a
strong constraint in practice after all. Human experts have control over which
models they include when estimating confidence. They will only strive for
high-performing models and adjust the inductive bias accordingly.
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The second major limitation is the conditional sampling that must be per-
formed in order to apply XAI methods for scientific inference in practice. Con-
ditional sampling is similarly difficult to the original problem we were trying
to to solve, which was learning an aspect of the conditional distribution of 𝑌
given 𝑋 . Just like ML models, conditional samplers must be learned from
data, which introduces another source of error and uncertainty. This learning
process of conditional samplers is ignored in both Paper I and Paper II, but it
is necessary to apply these techniques in practice.

A third limitation I see is the following: my work has shown that XAI allows
to draw scientific inferences and learn about the phenomenon, but it has also
made clear that for some problems there are much simpler and even more
accurate techniques to draw the same inference without using XAI. Let me
use an analogy to illustrate the problem: Suppose you have build an extremely
complex but fairly accurate Lego model of the city Munich, which contains a
counterpart of all humans, cars, trees, lakes, and so on. Now, suppose that the
question you want to answer with this model is very simple: how long is the
queue at my favorite falafel restaurant right now? Find the restaurant in your
Lego model, maybe move a few pieces aside to get there and count the Lego
figures. However, if the length of the queue is your only question, you don’t
even need to build the Lego model. You could just walk into the restaurant and
count the people, and your answer would probably be very accurate. Training
a complex ML model and then applying XAI techniques is similar to building a
Lego representation of a city just to answer a few specific questions about the
world. Using XAI for inference is only useful if you have a complex predictive
model anyway and want to use it as an add-on to draw conclusions.

Paper I and Paper II share some, but not all, weaknesses. For instance,
one limitation of Paper II is its focus on PDP and PFI without giving a clear
rationale for why exactly these two methods should be relevant for scientific
inference. This is improved in Paper I, where a question regarding the phe-
nomenon guides the choice of the XAI method. On the other side, Paper I
does not provide the experimental and formal depth of Paper II, so it remains
unclear how well the results from Paper I are transferable to non-ideal envir-
onments.
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Specific Limitations of Paper III The main limitation of Paper III is the
following: while conceptually it provides clear guidance on how to formally
separate CEs and AEs via their relation to the true target label (misclassific-
ation), it does not allow for an operationalization of misclassification that
would make the optimization problem different for AEs and CEs. This is a
general gap in AE research. However, in the paper I describe ways to achieve
such an operationalization using causal models.

Specific Limitations of Paper IV Unlike Paper III, Paper IV does provide a
formalization for changing the state of the prediction target using causal mod-
els. Our formalism from Paper IV can therefore be operationalized and used in
practice. The main weakness of Paper IV is the great amount of causal know-
ledge required for such an operationalization, which is generally not readily
available but needs domain experts; in particular, the individualized recourse
for which we need SCMs might has more theoretical than practical relevance.
It should be noted, however, as we argue in the paper, it is not possible to
tackle the recourse problem without such causal knowledge.

Specific Limitations of Paper V As a commentary and survey paper of XAI
methods with emphasis on their pitfalls, the limitations of Paper V lie in its
limited coverage of the field and its problems. The focus is not only limited
to model-agnostic XAI methods, but also places a strong emphasis on global
rather than local methods. The focus is not only limited to model-agnostic XAI
methods, but also places a strong emphasis on global rather than local meth-
ods. Furthermore, the focus is only on some methods and problems within
model-agnostic XAI that we believe are relevant to researchers.

4 Outlook

I would like to use this final section of the paper to preview open problems
and future work, and to speculate on future developments in XAI research.
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The Four “Whats” I believe that the various explananda will receive increas-
ing attention in future XAI research. XAI is still trying to find its core concepts,
and what XAI explains must necessarily belong to those core concepts. Many
discussions that are currently going on about the right sampling techniques,
the Rashomon effect of explanations (i.e. many explanations can explain the
same explanandum), or the usefulness of particular XAI techniques can be
seen as disguised discussion about the right explanandum. XAI techniques
that target the same explanandum can be used across applications that share
this explanandum. Perhaps we will see further diversification of explanations
in XAI, but the four proposed levels will certainly be an essential part of it.

Future Work Paper I distinguishes between scientific models in which each
model element represents an aspect of the phenomenon (elementwise rep-
resentationality) and models where only the whole model represents (holistic
representationality). The relationship between elementwise and holistic rep-
resentationality needs to be explored in further depth. In particular, it would
be interesting to describe a classical mechanistic model, e.g. the Hodgkin-
Huxley model from computational neuroscience (Hodgkin & Huxley, 1952),
with a holistic representational model and recover its different aspects using
tools of model analysis.

Paper III shows that current research obtains AE by accident, solving the
standard optimization problem for counterfactual explanations. However,
this approach does not work, for instance, for tabular data structures in
general. Also as ML models get better, it becomes more difficult to attack
them. Currently, there is no formalized notion of misclassification, a gap that
needs to be addressed. The formalization of recourse in Paper IV would be
a good starting point for this endeavor. A formalization of misclassification
would be relevant not only from the attacker’s perspective, but especially
from the defender’s perspective. In particular, it would be interesting from
the perspective of algorithmic fairness. If users receive CEs that indicate
algorithmic errors, they have grounds to contest unfavorable decisions. User
contestability would be an ethical and social milestone in the application of
ML systems.

Paper IV gives a reformulation of the recourse problem. The superiority of
our formulation compared to the one by Karimi et al. (2020) could be more
clearly emphasized if both approaches were implemented in a real-world
social context where people respond to the recommendations they receive.
Since recourse will eventually be put into practice, it is only a matter of time
before the consequences can be observed.



206 Discussion

Altogether, in the future I would like to continue working on purposes of
ML beyond predictive performance, similar to my work on scientific inference
and algorithmic recourse. In particular, I would like to work on algorithmic
fairness, i.e., the problem that ML model predictions can be based on sensit-
ive attributes. In addition, I would like to further explore the methodological
implications of using ML in science and the scientific models that scientists
can create.

Future of XAI One might think that XAI is only a temporary study. Once ML
models become arbitrarily accurate in their predictions, we no longer need
explanations to bolster our trust in the system. We may not understand how
these models arrive at their conclusions, but we don’t need to because they
are as reliable as a calculator adding two numbers together. However, this idea
focuses on one purpose of explanations, which is to gain trust. For other pur-
poses, such as algorithmic recourse or scientific inference, it remains unclear
why increasing model accuracy would resolve the need for explanations. In
the natural or social sciences, for example, the search for explanations and for
models with explanatory power is of crucial interest beyond mere predictive
accuracy (Longino, 2018; Shmueli et al., 2010).

Even if we were to assume that trust is the only concern, perfect accur-
acy would not eliminate it. Accuracy is always measured relative to a particu-
lar loss function compared to a particular ground truth. The cases where we
really demand trust are the cases where the correct loss-function and also the
ground-truth are controversial, explanations and transparent decision making
are therefore necessary even with perfect accuracy.

All in all, I am optimistic that XAI is there to stay. I hope that XAI will con-
tribute to using ML for the benefit of humanity, and I wish that my work will
provide a push (however small) in that direction.
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List of Abbreviations

Abbreviations Used in the Thesis

AE Adversarial Example
AI Artificial Intelligence
ALE Accumulated Local Effect
ANN Artificial Neural Network
BMI Body-Mass-Index
CART Classification and Regression Trees
CE Counterfactual Explanation
CNN Convolutional Neural Network
CR Causal Recourse
DGP Data-Generating Process
DL Deep Learning
DN Deductive-Nomological account of explanation by Hempel
DNN Deep Neural Network
ER Elementwise Representationality
FANOVA Functional ANalysis Of VAriance
GAN Generative Adversarial Network
GAM Generalized Additive Model
GOFAI Good Old Fashioned AI
HR Holistic Representationality
ICE Individual Conditional Expectation
ICI Individual Conditional Importance
ICR Improvement-focused Causal Recourse
IML Interpretable Machine Learning
LASSO Least Absolute Shrinkage and Selection Operator
LSTM Long Short Term Memory
LIME Local Interpretable Model-agnostic Explanations
MC Monte Carlo
ML Machine Learning
MSE Mean Squared Error
NLP Natural Language Processing
PCA Principal Component Analysis
PCC Pearson Correlation Coefficient
PDP Partial Dependence Plot
PFI Permutation Feature Importance
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RF Random Forest
RL Reinforcement Learning
SAGE Shapley Additive Global importancE
SCM Structural Causal Model
SHAP SHapley Additive exPlanations
SR Statistical-Relevance account of explanation by Salmon
SVM Support Vector Machine
XAI eXplainable Artificial Intelligence
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