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Zusammenfassung

Diese Dissertation untersucht Anwendungen von materiebasierten Referenzsystemen im
Gruppenfeldtheorie (GFT) Ansatz für Quantengravitation. In nichtperturbativer Quanten-
gravitation ohne Hintergrundraumzeit werden üblicherweise Materiefelder verwendet, um
relationale Beschreibungen aufzustellen. In dieser Dissertation bestehen Referenzsysteme
aus Skalarfeldern und es werden drei Beispiele aufgezeigt, in denen siein GFT angewendet
werden.

Im ersten Beispiel wird ein homogenes, anisotropes GFT Kondensat erstellt, welches
an ein Skalarfeld gekoppelt ist. Basierend auf verschiedenen Begriffen von Anisotropie in
GFT werden zwei unterschiedliche GFT Zustände konstruiert. Das Skalarfeld, wirkend
als physikalische Uhr, extrahiert effektive Observablen und Dynamik jener Zustände und
demonstiert hierdurch den Prozess der Isotropisierung eines frühen anisotropen Univer-
sums.

Der zweite Fall errichtet einen schwarzenQuantenloch-Zustand in einem relationen ma-
teriebasierten Referenzsystem. Es wird analysiert, wie die expliziten Skalarfelder ohne
jegliche Information über ihre Dynamik rekonstruiert werden können. Aus den resultieren-
den Feldern, als Referenzsystem an GFT gekoppelt, wird ein GFT-Zustand entnommen,
welcher eine klassische Schwarzschild-Raumzeit im Grenzwert eines Kontinuums repro-
duziert.

Das Abschlussprojekt zeigt die Emergenz eines Amit-Roginsky-artigen Modells als
Störungen eines 3D Boulatov GFT-Modells auf, welches an ein Skalarfeld gekoppelt ist.
Die Kopplung an das Skalarfeld führt translationsinvariante kinetische Terme in die Boula-
tovwirkung ein. Störungen dieser neuen Wirkung ergeben eine effektive Theorie, die durch
Amit-Roginsky-Theorie beschrieben wird, falls Bedingungen gelten, aus welchen Dominanz
melonischer Diagramme hergeleitet werden kann.
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Summary

This dissertation studies the applications of matter reference frames in the Group Field
Theory (GFT) approach to quantum gravity. In non-perturbative quantum gravity with-
out a background space-time, matter fields are usually used to give relational descriptions.
In this dissertation, the matter reference frame consists of scalar fields, and three examples
of applying this reference system in GFT will be shown.

In the first example, homogeneous anisotropic GFT condensate states coupled with a
scalar field are built. Based on different definitions of ‘anisotropy’ in GFT, two distinct
GFT states are constructed parallelly. As a physical clock, the scalar field extracts effec-
tive observables and dynamics of these GFT states, demonstrating the isotropisation of an
anisotropic early universe.

The second case constructs a quantum black hole state in a relational matter refer-
ence frame. We will analyse how to find the explicit scalar fields without any information
about their dynamics. With the resulting scalar fields coupled to GFT states as a refer-
ence system, we obtain a GFT state that reproduces classical Schwarzschild geometry in
a continuum limit.

The final project shows the emergence of an Amit-Roginsky-like model as perturbations
over a 3D Boulatov GFT model coupled with a scalar field. The coupling of scalar fields
brings translationally invariant kinetic terms to the Boulatov action. The perturbations
over this new action yields an effective theory governed by Amit-Roginsky theory, and the
conditions are found to recover the melonic dominance.
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Chapter 1

Introduction

1.1 Approaches to Quantum Gravity
Quantum gravity, as its name indicates, is the quantum theory of gravity. General Rel-
ativity (GR), Quantum Physics, and Statistical Mechanics consist the basis of modern
physics. According to quantum physics, everything is fundamentally quantum, so GR, as
a classical theory, should also have a quantum description. However, GR and quantum
physics are not compatible with each other. For instance, Quantum Field Theory (QFT) is
a theory on a fixed background space-time, but in GR, space-time should also be involved
in dynamics. Moreover, no observation has been made where both gravity and quantum
effects are important. Without any experimental guidance, the task is more challenging.

Despite the difficulties, scientists spare no effort to pursue the unification of quantum
physics and GR for a long time, and the preliminary scheme for the quantisation of GR was
formed during 1930 to 1960 [1]. It has been more than one hundred years since Einstein
proposed a quantum modification on gravitational theories in 1916 [2]:

Da dies in Wahrheit in der Natur nicht zutreffen dürfte, so scheint es, daß
die Quantentheorie nicht nur die Maxwellsche Elektrodynamik, sondern auch
die neue Gravitationstheorie wird modifizieren müssen.

[Since in nature, this should not be true, it seems that the quantum theory
should not only modify Maxwell’s electrodynamics, but also the gravitational
theory.]

Around ten years later, Oskar Klein suggested that the concept of space-time should be
changed due to the quantum effect on gravity [3–5]. The first technical work attacking the
problem of quantum gravity was done by Rosenfeld in early 1930s [6, 7]. In the following two
decades, much effort was made in this field [8–19]. For example, the word ‘graviton’, which
is widely used today, was named by Blokhintsev and Gal’perin [8], denoting the quanta of
a gravitational field. In late sixties, Charles W. Misner discussed four possible directions to
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quantum gravity [20], covariant quantisation, canonical quantisation, Schwinger’s method
considering infinitesimal variations in propagator, and Feynman’s sum-over-histories ap-
proach, which are very close to the classifications nowadays. Quantum gravity today can
be roughly divided into two main streams: perturbative formalism and non-perturbative
formalism.

The perturbative approaches corresponds to the covariant quantisation in Misner’s
classification, and nowadays are usually represented by the string theory [21–23]. The birth
of perturbative quantum gravity traces back to 1952, when the ‘flat space quantisation’
of gravity was developed in Suraj N. Gupta’s papers [17–19]. In perturbative quantum
gravity, a space-time with metric gµν can be separated into a free Minkowski background
ηµν and a small non-linear perturbations hµν as interactions between gravitons,

gµν = ηµν + hµν , (1.1)

and this is why it is named ‘perturbative’. The perturbative programme thrived and its
basic framework was formed with the Feynman rules for GR completed in late 1960s [24–
29]. Though Gerard ’t Hooft and Martinus J. G. Veltman proved that Yang-Mills theory
can be renormalised [30, 31], evidence showing the non-renormalisability of GR was soon
found [32–35]. To solve this problem, various attempts were made such as the idea of
asymptotic safety [36], supergravity [37, 38], and higher derivative gravity [39]. However,
none of them broke the bottleneck.

The perturbative approach enjoyed a rebirth thanks to the string theory. String theory,
born in 1968, was initially developed as a realisation of S-matrix programme for hadronic
particle physics [40]. In early 1970s, the possibility of string theory to be a quantum gravity
candidate was considered [41–43], but string theory was not seriously considered until in
1984, when Michael B. Green and John H. Schwarz showed the anomaly cancellation [44],
which is known as the starting point of ‘the first superstring revolution’ [23]. Then in the
same year, the construction of heterotic string [45] and the Calabi-Yau compactification
[46] built a bridge from the high-energy string theory to our low-energy real world. The
superstring theory was well-established in 1987 [47, 48], combining ideas from other per-
turbative models such as supergravity. The string theory aims at not only quantising GR,
but also constructing ‘a theory of everything’ [39].

On the other hand, non-perturbative approaches to quantum gravity develops parallelly,
including canonical method, Feynman’s sum-over-histories method, and all other relevant
models. Being ‘non-perturbative’, these theories do not have a background space-time,
strictly obeying the diffeomorphism invariance required by GR. Another difference between
perturbative and non-perturbative approaches is that the only goal of non-perturbative
models is to construct a consistent theory quantising gravity, instead of ‘the final theory’.

The canonical programme began with the Peter G. Bergmann’s work on non-linear
fields [12, 13], which is the first work considering a phase quantisation with general co-
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variance. Based on these papers, Bergmann defines ‘true observables’ in quantum theories
as those whose ‘values (at a given time) are independent of the choice of the frame of
reference (including the gauge frame)’ [14]. Meanwhile, the Hamiltonian form of GR was
investigated by Dirac to explore the quantum nature of gravity [15, 16, 49]. Around ten
years later, Richard Arnowit, Stanley Deser, and Misner constructed the famous ADM for-
mulation [50], significantly simplifying the Hamiltonian formalism of GR. Bryce S. DeWitt
then derived the Wheeler-DeWitt equation in 1976 and proposed a concept of ‘wave func-
tion of the universe’ [51]. The development of canonical quantisation then encountered a
stumbling block like the covariant programme did, until the birth of loop quantum gravity
after almost twenty years.

Loop Quantum Gravity (LQG) 1, a canonical quantisation of GR [52, 53], is a typical
non-perturbative formalism and is a strong rival to the string theory. In 1986, Abhay
Ashtekar defined new phase space variables, known as ‘Ashtekar variables’ [54, 55], and
constructed a new Hamiltonian GR in terms of the spinorial connections, completing the
project of Amitaba Sen [56]. Soon it was found that the Wilson loops for Ashtekar variables
are solutions to the Wheeler-DeWitt equation [57], with the ‘Loop Space Representation
of Quantum General Relativity’ introduced by Carlo Rovelli and Lee Smolin[58, 59] in the
same year. The states of discrete space in LQG are labeled by Spin Networks (SNWs),
whose concept was first brought by Penrose in 1971 [60–62]. At this moment, LQG es-
tablished itself as a quantum gravity candidate, which is almost at the same time of the
superstring revolution, bringing the renaissance of canonical programme.

Another major member from non-perturbative family is the Spin Foam (SF) model
[53, 63–66], which approximately belongs to the sum-over-histories approach in Misner’s
classification. The sum-over-histories project of quantum gravity was first introduced in
1957, in ‘Feynman quantization of general relativity’ [20], the paper where Misner dis-
cusses four possible approaches to quantum gravity. Then from 1978, motivated by the
path-integral method on deriving a black-hole radiance [67], Hawking developed the quan-
tum gravity in Euclidean metrics [68–70]. Unlike string theory or LQG, SF is a younger
candidate. A spinfoam can be thought of as the history of a SNW, which gives the building
block of discretised space-time. Born in 1996 and combining techniques from topological
quantum field theory [71] as well as LQG, SF revived the sum-over-histories programme
[72–75].

One century has past, people have never stopped chasing a quantum gravity despite all
the difficulties [76]. Though string theory belongs to the ‘covariant’ programme in Misner’s
categorisation, today a ‘covariant’ formalism usually refers to the SF model. The precise
relation between LQG and SF still needs to be explored, and a theory of ‘covariant LQG’
is suggested to be the one merging LQG and SF and revealing the profound insights of
quantum gravity [53, 77–79].

1In this dissertation, LQG always refers to the ‘canonical LQG’.
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Nowadays, the quantum gravity community contains a wider range of models along-
side the three approaches mentioned above, such as the causal set theory [80, 81], the 2D
matrix model [82, 83], and the twistor programme [84, 85]. Not only between LQG and
SF, convergences also occur among many other quantum gravity models. This disserta-
tion will focus on the Group Field Theory (GFT) formalism for quantum gravity [86–89],
which captures some of these convergences. GFT is a non-perturbative theory, and it is
a generalisation of the matrix model, adopting and adapting techniques from LQG, SF,
tensor models [90–92], Regge calculus [93], and causal dynamical triangulation [94].

1.2 Group Field Theory Formalism
GFT has a very special way to define the quantum gravity, which is already summarised
by its name ‘group field theory’. To be precise, GFT aims to describe quantum gravity as
a ‘combinatorially non-local quantum field theories on group manifolds’ (or on the corre-
sponding Lie algebra) [88]. Let us explain the definition term by term.

combinatorially non-local GFT is characterised by its combinatorially non-local in-
teractions. As illustrated later in detail, GFT is not only a generalisation of matrix model,
but also an enrichment of tensor model. The field is characterised by its tensorial nature.

quantum field theories GFT uses techniques from QFT. QFT is no doubt currently
the best physical theory at quantum level. Like QFT, GFT lives on a smooth domain
manifold. The utilisation of QFT enables us to use concepts or techniques from it. For
instance, GFT can put differential operators in its kinetic terms, and GFT can also use
the standard definition of path integral. It should be mentioned that GFT is not a theory
of ‘graviton’, since there is no background space-time in GFT. As a result, GFT has no
canonical formulation or any space-time based notion.

on group manifolds Instead of a background space-time, GFT lives on a group mani-
fold, which is an significant difference with an usual QFT on space-time. The background
structure of GFT is provided by a local symmetry (Lie) group of the theory. Restricted by
the group domain, the field possesses special group-theoretic symmetries. For example, the
GR is invariant under Lorentz transformations, then it is natural to consider the Lorentz
group in GFT. One can also consider the subgroup of Lorentz group such as SU(2) rotation
group.



1.2 Group Field Theory Formalism 5

1.2.1 Matrix Model
To begin with, let us introduce first the Hermitian matrix model. The matrix model orig-
inates in 1961, when Regge described a Riemannian manifold without using coordinates
[93]. From 1982, much work was done to develop the idea of a 2D gravitational theory
[95–99]. In a matrix model, 2-simplices, together with their sub-simplices, form a simplicial
complex that gives a triangulation [100] of a 2D surface. Though it describes Euclidean
gravity, a basic assumption of the matrix model is that the Lorentzian gravity can be re-
covered by a rotation of the Euclidean time [82, 101].

Trivially, the dynamics of a point particle X can be described by an action

S = 1
2X

2 + λ

3X
3, (1.2)

where λ is a coupling constant. The point-like nature of the particles and the locality of
the interactions ensures that its Feynman diagrams are simple tri-valent diagrams with
(0 + 1)-dimensional combinatorial structure [88].

To increase the combinatorial dimension, one need to deal with a 1-dimensional object,
so here comes the matrix model. The dynamical objects of matrix model are rank-2
matrices Mij. Generalising the action of a point particle (1.2), for example, a simple
action of N ×N matrices Mij reads [88]

S = 1
2M

i
jK

jl
kiM

k
l −

λ√
N
M i

jM
m
n M

k
l V

jnl
mki, (1.3)

where the kinetic kernel is
Kjlki = δjkδ

l
i, (1.4)

and the vertex term is
Vjnl
mki = δjmδ

n
k δ

l
i. (1.5)

The matrices Mij can be graphically represented by ribbons [90], with side lines called
strand labeled by matrix indices, forming a dual complex. Then a ribbon vertex corresponds
to a triangle, and its ribbons are dual to the edges, which is illustrated in Figure 1.1. The
vertex term in action 1.3 forms a triangle, and the kinetic term tells how to glue these
triangles through the edges. The ribbon graphs are the Feynman diagrams Γ of matrix
model [82, 83], and let us show how this is related with a 2D simplicial gravity.

Assume that Γ consists of vΓ vertices and fΓ faces, and its dual simplicial complex
contains v vertices, e edges, and t triangles. The partition function

Z =
∫
D[Mij]e−S =

∑
Γ

(
λ√
N

)1/2

Zγ =
∑
Γ
λvΓN fΓ−vΓ/2 (1.6)
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Mij

Mjk

Mki

j

k

i

Figure 1.1: The interaction term of a matrix model (black solid lines) corresponds to a
2-simplex (red dashed line).

is obtained by summing over all possible triangulations [82, 83, 88]. Note that

fΓ −
1
2vΓ = v − 1

2t = v − e+ t = 2− 2h, (1.7)

where χ is the Euler characteristic and h is the number of genus of the simplicial complex
4. Therefore,

Z =
∑
4
λtNχ. (1.8)

Meanwhile, an Einstein action on a 2-dimensional manifold is simply

SE =
∫

d2x
√
g(−R + Λ) = (−4πχ+ ΛAM), (1.9)

where AM is the area of the manifold. The partition function

Z =
∫
D[g]e−SE (1.10)

is difficult to calculate, but we can first consider the discrete form of it. Suppose that
we discretise the surface into equilateral triangles, and each triangle is of area a. This
discretisation brings a factor of 1/G to the action, where G is the order of the discrete
symmetry group of the triangulation. Then let λ = exp{−Λa/G} and N = exp{4π/G},
and one obtains

Z =
∑
4
λtNχ =

∑
4
e

4πχ
G
−Λta

G . (1.11)

Each Feynman amplitude ZΓ is related to simplicial path integrals of 2D gravity on its
corresponding simplicial complex, and the total amplitude is obtained by summing over all
possible geometries and all possible topologies. This reflects an idea of the third quantisa-
tion [102]: making topology dynamical. In this way, one considers all possible space-time
geometries, rather than those limited by certain topology.
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Then one may be interested in exploring the continuum limit of a matrix model. To
do this, let us expands the partition function as

Z = N2Z0(λ) + Z1(λ) +N−2Z2(λ) + ...
∑
h

N2−2hZh(g), (1.12)

so the sum of triangulations can be controlled. When N → ∞, the term of Z0 will be
dominant. With h = 0, trivial topology will contribute most. Therefore, the large-N limit
in matrix model is also named the planar limit.

In order to study the continuum limit, we first work with the triangulations with fixed
topology (Z0) to find out if a critical point can be defined. One finds that Z0 can be written
as

lim
vΓ→∞

Z0(λ) ∼ lim
vΓ→∞

∑
vΓ

vγ−3
Γ

(
λ

λc

)vΓ

∼ (λ− λc)2−γ, (1.13)

when the number of vertices are large. Note that the expectation value of area of the
surface is proportional to vΓ:

〈A〉 = a〈vΓ〉 = a
∂

∂λ
lnZ0(λ) ∼ a

λ− λc
. (1.14)

The total area diverges if λ → λc, so we can make a → 0 in order to have a finite total
surface. Therefore, by sending a → 0 and vΓ → ∞, one has a continuum limit of the
matrix model, and this match the continuum path integral of 2D gravity through Liouville
approach [82, 83, 88].

Another continuum limit is obtained by summing over all topologies alongside a sum-
ming over geometries, and this is a double-scaling limit. Considering topologies with higher
genus and taking large number of vertices, the leading singular term of each partition func-
tion reads

Zh(λ) ' fh(λ− λc)
(2−β)χ

2 , (1.15)
where β is a constant and fh is a coefficient. Therefore, by taking λ→ λc when N →∞,
the contributions from higher-genus topologies are not necessarily compressed by Z0. The
total path integral is

Z '
∑
h

fhκ
2h−2, (1.16)

where κ ≡ N(λ − λc)(2−β)/2. As a result, if one take N → ∞ and λ → λc while fixing κ,
which is named a double-scaled limit, all possible topologies are included. The result of
this continuum limit also agrees with the 2D Liouville gravity [82, 83, 88].

In order to move up to higher dimensions, one may naïvely extend the matrix model
to a ‘tensor model’, where, for instance, Mij is replaced by an N × N × N tensor Tijk in
3D cases [103–105]. Then the action (1.3) becomes

S(T ) = 1
2
∑
i,j,k

TijkTkji − λ
∑

ijklmn

TijkTklmTmjnTnli, (1.17)
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and a rank-three tensor is represented by a three-strand ribbon. The path integral then
reads

Z =
∫
D[Tijk]e−S(T ) =

∑
Γ
λvΓZΓ (1.18)

Such an extension, however, failed to describe a 3D quantum gravity [88]. Unlike a matrix
model, this tensor model does not relate the Feynman amplitude with a 3D simplicial
gravity. In addition, it loses the control over topologies when computing path integrals.
Therefore, the 3D generalisation of a matrix model should be a model containing a richer
structure of path integral.

1.2.2 Group Field Theory
Such a generalisation of matrix model can be achieved by GFT. The first GFT model is
established by Boulatov [106], which describes a 3D gravity, and it was soon extended to
4D by Ooguri [107] in the same year. Instead of tensors with three indices, a 3D GFT
uses fields with three variables from a Lie group or its corresponding Lie algebra, i.e. Tijk
is replaced by ϕ(g1, g2, g3), where gi ∈ G are group elements. Summing over indices in
tensor models is replaced by an integral over the group manifold. In this way, one enriches
the tensor model with more degrees of freedom (d.o.f.) while keeping the combinatorial
non-local interactions. ‘Determined completely by the fundamental groups of a manifold’
[106], Boulatov model produces the simplicial path integral of a SU(2) 3D BF theory [108],
which is a topological theory equivalent to 3D GR.

Generally speaking, a d-dimensional GFT for quantum gravity is a theory of complex
non-local field ϕ(g1, g2, ..., gd) on the d-copies of a group manifold, where

ϕ(g1, g2, ..., gd) : Gd → C. (1.19)

A general GFT action reads

S =
∫

(dg)d(dg′)dϕ̄(g1, ..., gd)K(g, g′)ϕ(g′1, ..., g′d)

+
∑
i

λi
ni

∫
(dgn1)d...(dgni)dϕ̄(gn1)...Vi(gn1 , ..., gni)...ϕ(gni), (1.20)

where g ≡ (g1, g2, ..., gd), and dg is the Haar measure on Gd. The kinetic kernel is given
by K(g, g′), and all possible interaction terms containing ni fields are considered. The
group G is a Lie group, and the choice on G depends on which local gauge symmetry that
the gravity possesses. For example, SU(2), SL(2,R) are used for three dimensions, and
SL(2,C) can be chosen when studying a theory in four dimensions.

In addition to the group representation we used above, the Hilbert space of quantum
simplices can also be written in Lie algebra representation [109] and spin representation.
In Lie algebra representation, for instance, the field is

ϕ(X1, X2, ..., Xd) : su(2)d → C, (1.21)
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g1(j1)

g2(j2)

g3(j3)

g4(j4)

ϕ(g1, g2, g3, g4)↔ ϕj1j2j3j4 ↔

Figure 1.2: A tetrahedron (red dashed lines) corresponds to a four-valent spin network
(black lines), where each link is dual to a face of tetrahedron.

when G = SU(2). The group representation can be recovered through a non-commutative
Fourier transform [110–113],

ϕ̃(X) ≡
∫
G

dgeg(X)ϕ(g), (1.22)

where eg is the plane wave depending on the quantisation map [114]. The advantage of Lie
algebra representation is that it has a clear geometric interpretation on the group element
as parallel transport along the links dual to (d− 2)-faces [88].

The spin representation is simpler than Lie algebra representation, and it can be trans-
lated from group representation by Peter-Weyl decomposition into irreducible representa-
tions for G = SU(2) [115, 116], where the field is ϕj1,...,jd . This representation is of great
importance in this dissertation, as the calculation can be significantly simplified in spin
representation, and we will give a detailed introduction later.

Similar to a matrix representing an 1-simplex, ϕ(g1, g2, ..., gd) represents a (d − 1)-
simplex, belonging to a simplicial complex making the triangulation of a (d − 1)-space.
The dual complex is the Feynman diagram. A (d− 1)-simplex corresponds to a vertex in
dual complex, and its (d − 2)-faces correspond to the links attached to the vertex. The
group elements gi are assigned to these links in the dual complex. Take 3-dimensional space
for example, if G = SU(2), then the building blocks are tetrahedra given by ϕ(g1, g2, g3, g4)
dual to 4-valent SNWs, as shown by Figure 1.2.

In order that these (d−2)-faces can form a (d−1)-simplex, closure constraint is required.
In Lie algebra representation, it means ∑dXd = 0. In group representation, it is translated
to right gauge invariance

ϕ(g1, ..., gd) = ϕ(g1h, ..., gdh), ∀h ∈ G, (1.23)

which also means a symmetry under a global parallel translation. As for spin representa-
tion, it is realised by the triangle inequality among the spins ji.
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The field ϕ can be promoted into creation/annihilation operators ϕ̂†/ϕ̂, creating or
removing a (d− 1)-simplex [117]:

ϕ̂†(g) ≡
∑
~S

ĉ†~Sψ~S(g), (1.24)

where ĉ†~S/ĉ~S is the fundamental operator with Bosonic commutator, creating/annihilating
a d-valent vertex state ~S. The single-vertex wave-function ψ~S ≡

〈
g
∣∣∣~S〉 is normalised such

that
∫

dgψ~S(g)ψ~S′(g) = δ~S,~S′ .

Correspondingly, one defines a Fock vacuum |0〉, which means ‘no space’. As the build-
ing blocks should be indistinguishable, the field operators obey Bosonic statistics:

[ϕ̂(g), ϕ̂†(g′)] = ∆R(g, g′), [ϕ̂(g), ϕ̂(g′)] = [ϕ̂†(g), ϕ̂†(g′)] = 0, (1.25)

where

∆R(g, g′) ≡
∫
dk

d∏
i=1

δ(gik(g′i)−1) (1.26)

is a Dirac delta over G.

Each building block and its dual complex created by ϕ̂† is interpreted as an ‘atom of
space’, and its Hilbert space is

H = L2(Gd). (1.27)

Then, the kinematical Hilbert space of GFT is a Fock space

F(H) =
∞⊕
v=0

sym
{
H(1) ⊗ ...⊗H(v)

}
, (1.28)

where sym represents the symmetry under ‘particle permutations’.

Though GFT is originally constructed as a generalised matrix model, it combines vari-
ous aspects from different non-perturbative approaches to quantum gravity, such as LQG,
SF, and coloured tensor models.

LQG First of all, GFT is tightly connected with LQG. GFT and LQG share the same
Hilbert space basis defining the quantum theory [118, 119]. In LQG, SNWs are the funda-
mental pre-geometric building blocks of a continuum space, and GFT can be viewed as a
QFT of SNWs when G = SU(2). Moreover, GFT can be thought of as a second quantised
reformulation of LQG [117, 119]. In such a way, one is able to borrow techniques from
LQG, such as area or volume operators, which are diagonalised in GFT spin representation.
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SF Another important feature of GFT is that its Feynman diagrams can explicitly re-
produce the same amplitude of SF model [120]. A SF σ describes the histories of a SNW.
The world-sheet of a link from SNW is a face, and the world-line of a vertex is called an
edge. The edges meet at the vertex of σ. Its Feynman amplitude is

Z =
∑
σ

w(σ)
∑
ρ

∏
f

Af (ρf )
∏
e

Ae(ρf |e)
∏
v

Av(ρf |v), (1.29)

where w(σ) is the weight and ρ are the representations labelling σ.

Consider (2 + 1)-dimensional GFT for example, where the building blocks of the space
are 2-simplices (triangles) represented by ϕ(g1, g2, g3). The group-representation action
reads

S(ϕ) = 1
2

∫
dg3ϕ(g1, g2, g3)ϕ(g3, g2, g1)

− λ4!

∫
dg6ϕ(g1, g2, g3)ϕ(g3, g4, g5)ϕ(g2, g2, g6)ϕ(g6, g4, g1), (1.30)

and in spin representation it becomes

S(ϕ) = 1
2
∑
j,m

ϕj1j2j3m1m2m3ϕ
j3j2j1
m3m2m1

− λ

4!
∑
j,m

{
j1 j2 j3
j4 j5 j6

}
ϕj1j2j3m1m2m3ϕ

j3j4j5
m3m4m5ϕ

j5j2j6
m5m2m6ϕ

j6j4j1
m6m4m1 , (1.31)

where
{
j1 j2 j3
j4 j5 j6

}
is a Wigner 6j symbol. The interactions among four triangles ϕ4 form

a tetrahedron, and the kinetic term glues these tetrahedra to form a 3D triangulation. The
Feynman amplitude of this GFT is

Z =
∫
D[ϕ]e−S(ϕ) =

∑
Γ

λn

sym[Γ]Z(Γ), (1.32)

where the Γ are Feynman diagrams (dual to 3D simplicial complex) with n vertices, and
sym[Γ] is the symmetry factor of a graph. By assigning each face and edge with an
irreducible representation of SU(2) and an intertwiner respectively, one obtains [88, 106]

Z(Γ) =
∏

f

∑
jf

∏
f

(2jf + 1)
∏
v

{
j1 j2 j3
j4 j5 j6

}
, (1.33)

which is the Ponzano-Regge SF amplitude.

Extending to (3 + 1) dimensions, we have a field ϕ(g1, g2, g3, g4), and obtain a Feynman
amplitude as the simplicial path integral of a BF theory [107]. A classical 4D Riemannian
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GR (Palatini-Holst continuum gravity) can be expressed as a constrained BF theory via
Plebanski formulation [88, 121, 122], and there are various methods to put the Plebanski
constraint in order to build a GFT for 4D gravity (see [123] for example).

Having introduced the basics of GFT, let us continue to fulfil the expectation of emer-
gent space-time and geometry in GFT. To this end, it is necessary to investigate the GFT
condensates in a material reference system.

1.3 Quantum Gravity Condensates in Relational Ref-
erence Frame

As mentioned, the GFT building blocks, encoded with pre-geometric fundamental d.o.f.,
are the ‘atoms of space’. One may wonder, if the geometry and the space-time are funda-
mentally discrete, then how do we build a bridge connecting GFT with a continuum world,
which is closely related with our daily life?

To answer the question, it is useful to consider the concept of ‘emergent space-time and
geometry’. This is not a unique concept that can only be found in GFT, and in fact, it is
widely used in many quantum gravity models such as LQG, SF, and causal set theory. The
basic idea is rather simple: the continuum is a collective behaviour of pre-geometric d.o.f.
in an effective description [124]. The space-time emerges from combinatorial structures in
GFT, and the pre-geometric data is given by the group elements. We assume that exists
such a phase, where only the collective behaviour of pre-geometric d.o.f. is of concern, and
call it a proto-geometric phase [125]. The continuum geometry and space-time is therefore
effectively recovered from a suitable averaging or coarse graining.

However, unlike usual QFTs, which are quantum theories on a space-time, GFT is a
quantum theory of space-time. Here comes another problem, that how to effectively de-
scribe a system when we lack a notion of time or coordinates?

In non-perturbative approaches, the concept of a ‘background space-time’ is broken
[52, 126]. In Newtonian physics and QFT, coordinates {xµ} defines ‘where’ an event is,
and the space-time is a primary notion: it is what one is left with after removing all dynam-
ical things away. But according to GR, space-time is also a dynamical object, so nothing
exists if all dynamical objects are taken away. The general covariance implies that manifold
is simply a mathematical tool that facilitates the description, and coordinate systems are
not physical either.

To describe a GFT system, especially its effective dynamics, it is important to localise
the quanta of space (or of space-time). The question is then how to define the location
without a background space-time? The strategy in this dissertation is to use a relational
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reference frame. This issue also closely related with the problem that what can be ob-
servables in quantum gravity, without any notion of ‘space-time point’? One answer to
it is the Dirac observable [127], which are gauge-invariant quantities in gauge theories. A
further argument was made by Rovelli [128] that we should also take the reference system
as dynamical objects in order to define observables and their locations.

When describing a object, one actually tells how this object evolves with respect to the
local value that the gravitational field takes. Then it is reasonable to say that this object
is at some ‘relational’ location with ‘relational’ dynamics to gravity. For example, to find
the evolution of a dynamical quantity A, one uses another dynamical object T as a clock.
When T is at some value To, A takes a corresponding value A(To). In other words, only
partial observables, which are physical quantities associated with a measuring procedure
are meaningful in a background-independent system [52, 129, 130]. It turns out that the
matter which is dynamically coupled with the gravity can be clock and rods, localising the
points in a diffeomorphism-invariant manner [128].

Choosing a clock is related with the problem of time [131]. The core of problem of time,
in short, is to figure out whether time is an observable in quantum gravity. In general,
there are three ways to attack the problem of time, tempus ante quantum, tempus post
quantum, and tempus nihil est. In ‘tempus ante quantum’ approach, a clock is selected
before quantising the system, and the ‘tempus nihil est’ method keeps the quantum system
timeless without any specific notion of time. In GFT, we use ‘tempus post quantum’
method, such that the notion of time is made after the quantisation. In this way, we
will have a ‘clock operator’ T̂ , such that its expectation value over a quantum state |o〉
corresponds to a classical clock time T = To, with very small quantum fluctuations from
T̂ . For example, if

〈o| T̂ |o〉 ' To, (1.34)
then

A(To) ' 〈o| Â |o〉 . (1.35)
The similar techniques are also applied when defining a rod. In short, in this dissertation,
clock and rods will all be defined after a time-neutral quantisation.

In quantum gravity, a simple but useful matter reference is the scalar field φ, whose
general action reads

Sφ = 1
2

∫ √
−g

[
(∂φ)2 + (m2 + α̃R)φ2

]
+
∫ √
−gV (φ) + ..., (1.36)

with m the mass, α̃ the coupling constant, and V (φ) a potential term. As a clock or a rod,
φ is assumed to be minimally coupled such that it will not largely affect the system to be
measured, so α̃ = 0. The mass term and the potential term will be chosen depending on
the situation.
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There are usually two methods to discretise the scalar fields: one is to assign d.o.f. on
simplicial complex, like lattice gauge theory [132, 133]; the other is to discretise the matter
field on dual complex. For simplicity, we choose the second method, so the value of φ is
associated on nodes of a SNW [52]. In this way, GFT yields the same Feynman amplitude
of a gravity coupled with scalar fields [134]. To localise the GFT quanta, d scalar fields are
needed at most, 1 clock and (d− 1) rods in usual. Then the field is generalised such that

ϕ(g1, ..., gd;φ1, ..., φd) : Gd × Rd → C, (1.37)

with a non-trivial commutator between field operators

[ϕ̂(g, φ), ϕ̂†(g′, φ′)] = ∆R(g, g′)δd(φ− φ′). (1.38)

Having coupled GFT with a relational matter reference frame, let us now show how GFT
effectively describes the emergence of continuum space-time. Interested in the collective
behaviour of GFT quanta, one may finds that the situation is quite similar with condensed
matter physics [135]. A simple but powerful GFT states that used to study a large number
of quanta on average is the GFT condensate state [136–138], and this technique will also
be applied in this dissertation. The simplest definition of a GFT condensate coherent state
is

|σ〉 ≡ Nσ exp
{∫

dgdφσ(g;φ)ϕ̂†(g;φ)
}
|0〉 , (1.39)

where Nσ = exp{−‖σ‖2/2} with ‖σ‖2 =
∫
dgdφ|σ(g;φ)|2 such that the state is normalised

〈σ|σ〉 = 1. The state (1.39) has a very similar form with bosonic coherent states in
condensed matter theory [135], and akin to the boson coherent state, it is an eigen-state
of GFT field operators, i.e.

ϕ̂(g;φ) |σ〉 = σ(g;φ) |σ〉 . (1.40)

State (1.39) gives a natural mean-field approximation of GFT. Since 〈ϕ̂(g;φ)〉 = σ(g;φ),
σ(g, φ) can be thought of as an order parameter [139]. Every quanta in (1.39) is determined
by the same wave-function σ(g;φ), which also equips homogeneity to the state. Because
of all the reasons above, (1.39) is named a GFT ‘condensate state’.

The next task is to localise the coherent state in a matter reference frame. Let us take
homogeneous cosmological cases for example, where one only needs a clock φ1 to define
‘when’ a GFT condensate state is. The simplest choice is to take away dφ in (1.39), and
claim that

|σ(φo)〉 = Nσ exp
{∫

dgσ(g;φo)ϕ̂†(g;φo)
}
|0〉 (1.41)

represents a condensate of tetrahedra at clock time φ1 = φo [140].
However, this definition suffers from infinitely large quantum fluctuations when calcu-

lating the momentum of the scalar field, ∂φ1 . To control divergence, one can instead use
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coherent peaking state by introducing a peaking function ηε [125]. Assume that at φ1 = φo,
the scalar field has momentum πo, and the condensate state is governed by a wave-function
σε;φo(g;φ1)

σε;φo(g;φ1) = ηε(g;φ1 − φo, πo)ς(g;φ1), (1.42)

with ς a ‘reduced wave-function’. The peaking function ηε reads

ηε(φ1 − φo, πo) ≡ Nε exp
(
−(φ1 − φo)2

2ε

)
exp(iπo(φ1 − φo)), (1.43)

and N 2
ε = (πoε)−1/2 in order that

∫
dφ|ηε|2 = 1. To ensure the quantum fluctuations does

not diverge, one requires ε � 1 to be small but finite, and επ2
0 � 1 [125, 141]. Then a

state
|σε;φo〉 ≡ Nσ exp

{∫
dgdφ1σε;φo(g;φ1)ϕ̂†(g;φ1)

}
|0〉 (1.44)

is called a coherent peaked state, picking a state approximately at φ1 = φo with negligible
relative variance when the number of tetrahedra is large enough. With this tool, one can
extract an effective description from GFT condensates and show the emergence of classical
space-time, which will be illustrated in the following chapters.

1.4 Overview of Dissertation
This dissertation focuses on the applications of the matter reference frame, which consists
of scalar fields, from various aspects of GFT.

Chapter 2 develops homogeneous anisotropic GFT condensate states coupled to a scalar
field, which are expected to have a correspondence with classical Bianchi I universe. We
will study the definitions of ‘isotropy’ in quantum cosmology, and build anisotropic GFT
states according to different definitions. Both observables and dynamics over these states
will be effectively described in terms of a matter clock.

In Chapter 3, a candidate quantum state of Schwarzschild black hole will be constructed
at kinetic level. Coupled with scalar fields which form a relational reference system, this
GFT state reproduces the observables sharing the same properties with those of a classical
Schwarzschild space-time. We will demonstrate how to find a suitable matter fields as
reference frame from a most general set-up.

Chapter 4 shows how Amit-Roginsky-like matter is reproduced effective as perturba-
tions around a 3D Boulatov GFT, with the help of a matter reference frame that facilitate
the computation.
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Finally, a conclusion and outlooks will be presented in Chapter 5, discussing the future
possible directions of research on GFT.

In addition, there will be three appendices. In order not to interrupt the smoothness of
this dissertation, a brief introduction of SU(2) recoupling theory will be given in Appendix
A, on which the calculation in this dissertation heavily relies. Appendix B illustrates
basics of edge-coloured graphs encoded with topology, which will be applied in chapter
3. Appendix C, as a complementary of Chapter 3 for interested readers, will illustrate a
simple example for a GFT states that corresponds to a negative-mass black hole.



Chapter 2

Effective Bianchi I Universe

This chapter is based on a project in collaboration with Daniele Oriti.

In this chapter, we will build a GFT cosmological model to describe a homogeneous
anisotropic universe. Working with an isotropic background, we introduce the anisotropy
as perturbations. By studying two different definitions of ‘isotropy’ in GFT, we will par-
allelly construct two types of anisotropic GFT condensate states and study their effective
dynamics, in terms of a matter clock. It will be shown that both models, being anisotropic
at early stage, become isotropic as the clock time increases.

2.1 Background
A quantum gravity theory is expect to resolve the singularities in classical theories. In
addition to the curvature singularities of black holes, another important singularity is the
initial Big-Bang singularity in cosmology, where quantum effects should be considered. An
important branch of quantum gravity is the quantum cosmology, which was started by Mis-
ner [142], applying the idea of canonical quantum gravity [51] to cosmology. This chapter
constructs a quantum cosmological model in GFT corresponding to a classical Bianchi I
universe, and demonstrates how to an extract effective description from it with a material
clock.

The Standard Cosmological Model (SCM), also known as (inflation+)ΛCMD model,
is based on two fundamental assumptions: i) GR correctly describes the gravity; ii) the
universe is homogeneous and isotropic at large scales, which is the cosmological princi-
ple. SCM is strongly supported by a wide range of observational evidence such as Cosmic
Microwave Background (CMB). In SCM, an initial singularity exists at the beginning of
the universe, the Big-Bang singularity, and this singularity is inevitable according to GR
[143–145]. The existence of space-time singularity implies a potential incompleteness of
current cosmological model, where they may not be able to provide a correct paradigm
for the early universe. Therefore, there is an argument that at Planck scale, one has to
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consider the quantum effect on gravity in order to resolve the singularity.

In quantum cosmology, one solution to the Big Bang singularity problem is replacing
the big bang with a ‘Big Bounce’ [146–148]. For example, bouncing solutions can be found
for a flat Friedmann-Lemaître-Robertson-Walker (FLRW) brane-world from string theory
[149]. Loop Quantum Cosmology (LQC) [150, 151] is a quantum cosmological theory where
techniques from LQG are applied, and it also finds a big bounce at the early stage of our
universe [152].

The investigation of the universe near the initial singularity can be largely simplified
by Belinski-Khalatnikov-Lifshitz (BKL) conjecture [153, 154], which implies that the dy-
namics of early universe can be approximated by Bianchi models [155, 156], which are
homogeneous and anisotropic.

Meanwhile, SCM is facing several challenges. An increasing number of high-precision
observations finds anomalies that question the exact isotropy of the large-scale universe.
For example, recent research in dipole anomaly [157, 158] finds dipole signals from number-
count show a inconsistency from the prediction of CMB at around 5σ. There are several
interpretations on these anomalies, and one candidate is a universe with non-trivial topol-
ogy such as Bianchi universes, which suggests that our universe is likely to have a preferred
direction [159–163].

As will be illustrated in detail later, GFT has managed to obtain Friedmann equations
from quantum gravity condensates in a matter reference frame [136–138], where the states
are set to be homogeneous and isotropic, obeying the cosmological principle. Considering
the BKL conjecture for early universe as well as the anomalies observed today, it is our
interest to extend the current GFT cosmological state to describe an anisotropic universe.
The anisotropic GFT state has not been well developed for the time being. Based on the
previous attempts [164, 165], we will try constructing a GFT state such that a Bianchi I
universe, which is the simplest anisotropic model, can emerge from it effectively. It will
be checked whether this GFT model can share some properties with the classical theory,
which helps us to understand isotropisation during expansion from an anisotropic early
state.

2.2 Bianchi I Model
Bianchi classification is a set of spatially homogeneous models, including nine types of
structure constants featuring the Lie algebra formed by Killing vectors [155, 156]. The
simplest one is the Bianchi I model, where the spatial curvature and structure constants
are both zero. The diagonalised Bianchi I metric in a standard synchronous form reads

ds2 = −N(τ)dτ 2 + a2
1(τ)dx2 + a2

2(τ)dy2 + a2
3(τ)dz2, (2.1)
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where N(t) is the lapse function, and scale factors ai(t)/aj(t) 6= constant to ensure
anisotropy.

Alternatively, one can work with Misner’s variables and rewrite the scale factors into
[166]

a1(τ) = V 1/3(τ)eβ+(τ)+
√

3β−(τ), (2.2)
a2(τ) = V 1/3(τ)eβ+(τ)−

√
3β−(τ), (2.3)

a3(τ) = V 1/3(τ)e−2β+(τ). (2.4)

The mean Hubble parameter can be calculated by the mean scale factor a := (a1a2a3)1/3,

H = ȧ

a
= 1

3(H1 +H2 +H3), (2.5)

where ‘·’ denotes d/dτ , and

Hi = ȧi
ai
. (2.6)

The ττ−component of Einstein equation is

H1H2 +H2H3 +H3H1 = 8πGρm, (2.7)

which can also be obtained from Hamiltonian constraint [167], where ρm is the energy
density. This equation can be recast into a generalised Friedmann equation

H2 = 8πG
3 ρm + Σ2

a6 , (2.8)

where
Σ2 = a6

18
[
(H1 −H2)2 + (H2 −H3)2 + (H3 −H1)2

]
(2.9)

is the shear term measuring contribution from anisotropy.

Now let us remember the argument on observables made in Chapter 1, so we should
consider only relational observables in a matter reference frame instead of the coordinates
{t, x, y, z}. The scalar fields will play the role of material frame, so let us continue to a
Bianchi I universe coupled with scalar fields. Since Bianchi I universe is homogeneous, there
is no spatial dependence and one clock is enough to describe the system. For convenience,
we choose a free massless scalar field φ and work with Misner’s variables. The parameters
β± can be treated as a couple of free massless scalar fields. Then we find the equation of
motion in terms of the clock time φ from the Hamiltonian formalism of such a Bianchi I
universe [165]

S =
∫

dτ
(
pV V̇ + p+β̇+ + p−β̇− + pφφ̇−NC

)
, (2.10)
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where C is the Hamiltonian constraint such that

NC = −6πGNV p2
V + 2πGNp2

+
3V + 2πGNp2

−
3V +

Np2
φ

2V . (2.11)

The momentum of scalar field pφ is a constant of motion [165, 167], and {pφ, NC} = 0.
The equations of motion are

φ̇ = {φ,NC} = Npφ
V

, (2.12)

V̇ = {V,NC} = −12πGNV pV , (2.13)

β̇± = {β±, NC} = 4πGNp±
3V . (2.14)

(2.15)

Combining (2.12) and (2.14), one obtains

dβ±
dφ = 4πG

3
p±
pφ
. (2.16)

Taking NC = 0, one finds the generalised Friedmann equation for Bianchi I universe:(
V ′(φ)
3V (φ)

)2

=
(

dβ+

dφ

)2

+
(

dβ−
dφ

)2

+ 4πG
3 , (2.17)

and ’ means d/dφ. A general solution for a Bianchi I universe coupled with a free massless
scalar field reads [168, 169]

ai(φ) = ai,oe
√

8πGκi(φ−φi), (2.18)
where κi and φi are some constants playing no role in our case. From (2.18), one finds that
the left-hand side of (2.17) is a constant, so its right-hand side should be a constant as well.

Then let us think about a question: what quantities can one use to show how anisotropic
a space-time is? Two common anisotropy criteria are the shear term Σ2 2.9 and the mean
anisotropy parameter A [170–173]

A :=
3∑
i=1

H2
i −H2

H2 . (2.19)

At first sight, one may also use β+ and β− to characterise the anisotropy, since metric
reduces to isotropic one when β+ = β− = 0. However, {β+, β−} are not unique to determine
a Bianchi I spacetime. For example, suppose one redefines the parameters such that

β+ = −1
2
(
β̃+ +

√
3β̃−

)
, (2.20)

β− = −1
2
(√

3β̃+ − β̃−
)
, (2.21)
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then the scale factors can be rewritten into

ã3(τ) ≡ a1(τ) = V
1
3 e−2β̃+ , (2.22)

ã2(τ) ≡ a2(τ) = V
1
3 eβ̃+−

√
3β̃− , (2.23)

ã1(τ) ≡ a3(τ) = V
1
3 eβ̃++

√
3β̃− . (2.24)

The spatial metric then becomes

dq2 = ã2
1(t)dx̃2 + ã2

2(t)dỹ2 + ã2
3(t)dz̃2, (2.25)

where x̃ = z, ỹ = y and z̃ = x, which is an equivalent space-time. It can be verified that
[(dβ+/dφ)2 + (dβ−/dφ)2] is the quantity that invariant under redefinition of coordinates,
and this is simply a shear term written in Misner’s variables. Therefore, the shear term
and the mean anisotropy parameter will act as ‘observables’ characterising the anisotropy
in this chapter.

2.3 Quantum Dynamics

2.3.1 GFT Equations of Motion
To continue, let us construct a homogeneous and anisotropic quantum model in terms of
the GFT condensate |σ〉 (1.39). Coupled with one scalar field, the basic GFT field is

ϕ(gv, φ) : SU(2)4 × R→ C. (2.26)

This field is then promoted to operators ϕ̂ and ϕ̂† to build the condensate state. A simple
choice to extract the effective dynamics of GFT condensates is to compute the Schwinger-
Dyson equation derived from a general GFT action (1.20) where

〈σ| δS[ϕ̂, ϕ̂†]
δϕ̂†

|σ〉 = 0, (2.27)

and it yields ∫
dgvdφvK(gv, gw; (φv − φw)2)σ(gv, φv) + Vδσ̄(gw, φw) = 0, (2.28)

similar to a Gross-Pitaevskii equation in condensed matter theory [138, 139]. We use a
generalised GFT model [164, 174–176] based on Engle-Pereira-Rovelli-Livine SF model
[177] such that

K = δ(gwg−1
v )δ(φv − φw)

[
−τ∂2

φ + η
∑
i

∆gi +M2
]
, (2.29)
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where ∆gi is Laplace-Beltrami operator acting on the group manifold. This choice on ki-
netic kernel is also required due to the renormalisability of GFT [178–182].

As is shown in Figure 1.2, a tetrahedron is created by ϕ̂†(g;φ), and its dual complex
is a SNW. For computational simplicity, we will work in spin representation from now on.
One first decompose the wave-function according to Peter-Weyl theorem,

σ(gv, φv) =
∑

{j},{m},lL,lR

ιj1j2j3j4lLm1m2m3m4ι
j1j2j3j4lR
n1n2n3n4 σ

j1j2j3j4lLlR(φv)
4∏
i=1

Dji
mini

(gv,i), (2.30)

where the intertwiner

ιj1j2j3j4lm1m2m3m4 =
∑
m,m′

Cj1j2l
m1m2mC

j3j4l′

m3m4m′
C ll′0
mm′0 (2.31)

is assigned on the vertex of a SNW to combine four links together, and Cjj1j2
mm1m2 the Clebsch-

Gordon coefficient [115, 116]. The subscript L and R of the intertwiner ι denotes invariance
under local frame rotations (left invariance) and the closure condition (right gauge invari-
ance).

First of all, we want to fix the shape of a tetrahedron with the areas of its faces and
require that the the intertwiner is an eigen-vector of the LQG volume operator that yields
the largest possible eigenvalue. This implies

ιj1j2j3j4lRn1n2n3n4 = ιj1j2j3j4l?n1n2n3n4 , (2.32)

where ιj1j2j3j4l?n1n2n3n4 is the intertwiner yielding the largest volume eigen-value. Then requiring
that lL = lR = l? since the volume is invariant under parallel transport, the wave-function
satisfies [140]

σ(gv, φv) =
∑
j,m

ιj1j2j3j4l?m1m2m3m4ι
j1j2j3j4l?
n1n2n3n4σ

j1j2j3j4(φv)
4∏
i=1

Dji
mini

(gv,i). (2.33)

Usually, the argument above is valid for ‘isotropic’ GFT condensates. However, as will
be illustrated below, the intertwiners of anisotropic building blocks will be fixed such that
they also have the largest eigen-values [164]. Then we may assume that the anisotropic
perturbations over an isotropic GFT state also satisfy the dynamics of the same type [176].

With the interaction terms neglected, the equation of motion (2.28) of σjv approximately
satisfies

Ajv∂
2
φσjv −Bjvσjv ' 0, (2.34)

where Ajv = −τ , and Bjv = −(η∑ji ji(ji + 1) +M2).
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To control the momentum of the scalar field φ, we apply coherent peaked state to define
the condensate state at clock time φ = φo, say |σε;φo〉 (1.44), and its wave-function reads

σε,φo(g, φ) = ηε(g;φ− φo, πo)ς(g, φ). (2.35)

Consequently, in spin representation, the Schwinger-Dyson equation receives corrections
from the peaking function such that [125]:

ς ′′jv(φo)− 2i πo
επ2

o − 1ς
′
jv(φo)−

(
ε−1 2

επ2
o − 1 + Bjv

Ajv

)
ςjv(φo) ' 0. (2.36)

If ςjv = ρjv exp(iθjv) with ρjv and θjv real, the equation above then becomes

ρ′′jv(φo)−
Q2
jv

ρ3
jv(φo)

−Υ2
jvρ

2
jv(φo) = 0, (2.37)

where
Υ2
jv = π2

o

επ2
0 − 1

(
2
επ2

o

− 1
επ2

0 − 1

)
+ Bjv

Ajv
. (2.38)

For convenience, we denote φo with φ, and a general solution of differential equations in
form (2.37) is [183]

ρjv(φ) =
e
√

Υ2
jv

(Φ−φ)
√

Ωjve
4
√

Υ2
jv

(φ−Φ) + Ωjv − 2Ejv
√

Ωjve
2
√

Υ2
jv

(φ−Φ)

2
√

Υ2
jv

4
√

Ωjv

, (2.39)

where Φ is the clock time of φ when a quantum bounce happens (usually Φ = 0), and

Ωjv = E2
jv + 4Q2

jvΥ
2
jv . (2.40)

There are three conserved quantities due to the introduction of coherent peaked states
[125]. The first is a charge Qj related with U(1) symmetry,

Qjv = ρ2
jv

(
θ′j −

π0

επ2
0 − 1

)
. (2.41)

The others are ‘bulk GFT energy’ Ejv , a charge generating translations of the reduced
background wave-function along the clock time direction φ0, which takes the form

Ejv = (ρ′jv)
2 +

Q2
jv

ρ2
j

−Υ2
jvρ

2
jv , (2.42)

and ‘relational energy’ Ẽjv
Ẽjv = Ejv + 2Qjv

π0

επ2
0 − 1 , (2.43)

where an ‘energy injection’ occurs due to the precise choice of the peaking function ηε.
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2.3.2 Generic Operators
Here we discuss operators most used in GFT. A generic GFT (1+1)-body operator acts on
a vertex w and results in another vertex v, without changing the combinatorial structure
of the state, which reads

Ôt ≡
∫

dgvdgwdφvdφwO(gv, gw;φv, φw)ϕ̂†t(gv;φv)ϕ̂t(gw;φw), (2.44)

where
O(gv, gw;φv, φw) ≡ 〈gv;φv| Ô |gw;φw〉 (2.45)

is the matrix element, and (2.44) is a ‘second quantised’ version of a ‘first quantised’ (1+1)-
body operator Ô, acting on states in the Fock space.

An important operator is the number operator :

N̂ =
∫

dgdφϕ̂†(g, φ)ϕ̂(g, φ), (2.46)

and its expectation value at φ0 in spin representation reads

〈N̂〉(φo) =
∫

dgdφ|σε,φo(g, φ;φo, πo)|2 '
∑
jv

ρ2
jv(φo). (2.47)

The area of the ith face of a tetrahedron is measured by an area operator

Âi = κ
∫

dgdφϕ̂†(g, φ)
√
EI
i E

J
i δIJ � ϕ̂(g, φ), (2.48)

where I = {1, 2, 3}. Here κ = 8πγ`2
P with γ the Barbero-Immirzi parameter, and Ei

I is
the LQG flux operators proportional to Lie derivatives on SU(2). The action of LQG flux
operator is [184–186]

EI
i � f(gj) := lim

ε→0
i

d
dεf(g1, ..., e

−iετIgj, ..., g4), (2.49)

for a function f : SU(2)4 → C, where τ I is the Pauli matrix, and τ Iτ I = j(j + 1)1 is the
SU(2) Casimir operator. The eigen-value of an area operator over a SNW is `2

0

√
ji(ji + 1),

and `0 is a fundamental length scale parameter.

The volume (density) operator is

V̂ =
∫

dgdφϕ̂†(gv, φv)V (gv, gw)ϕ̂†(gw, φw). (2.50)

Its expectation value over |σε;φo〉 is

〈V̂ 〉(φo) '
∑
jv

Vjvρ
2
jv(φo), (2.51)
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with Vjv the eigenvalue of volume operator when acting on the vertex v of a SNW. Finally
is the scalar field operator, which can defined as [140]

Φ̂ =
∫

dgvdφϕ̂†(gv, φ)ϕ̂(gv, φ)φ. (2.52)

However, 〈Φ̂〉 will show a dependence on the total number of tetrahedra, so 〈Φ̂〉 is an
extensive quantity depending on the scale of a system. As a scalar field, it should be an
intensive quantity independent of the scale, so we can redefine this operator as:

φ̂ := Φ̂
〈N̂〉

, (2.53)

such that
〈φ̂〉(φo) = 〈Φ̂〉(φo)

〈N̂〉(φo)
' φo, (2.54)

which makes sense.

2.4 Anisotropic Quantum Gravity Condensates I

2.4.1 Measurement of Anisotropy
As mentioned, we can use the shear and the anisotropy parameterA to tell how ‘anisotropic’
a universe is. However, we do not have the corresponding quantum operators in GFT. An
alternative way to calculate these quantities is to express them as functions of area or vol-
ume operators, which is well-defined already. To this end, let us first find the relations in a
classical Bianchi I universe, and apply them to quantum states to obtain the expectation
values approximately.

To begin with, it is necessary to define what is ‘isotropy’ before we study ‘anisotropy’.
Generally, there are two definitions of spatial ‘isotropy’ in GFT: i) One uses regular tetra-
hedra as the building blocks of an isotropic space, which is widely used in GFT quantum
cosmology [140]; ii) One chooses re-rectangular tetrahedra, where three orthogonal edges
of a tetrahedron meeting at one vertex are of the same length [176], which shares a sim-
ilar spirit with the ‘isotropy’ in LQC [167, 169]. In this chapter, these definitions will be
considered separately.

This section is based on the first definition of ‘isotropy’. To describe the anisotropy of
GFT condensates, let us first find observables in classical Bianchi I space-time. Suppose
we have a regular tetrahedron, whose faces are equilateral triangles with edges of length l.
Then let us embed this tetrahedron in a Bianchi I space-time, so the physical area of the
triangles as well as the physical length of the edges will change accordingly. Assume that
one face of this tetrahedron 4ABC is parallel to x − y plane, and the edge AC of this
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Figure 2.1: A tetrahedron in Bianchi I universe, which is regular if the space is isotropic.

triangle is parallel to y−axis, so z−axis represents the direction orthogonal to 4ABC, as
illustrated by Figure 2.1. Such embedding also yields a volume closest to the eigen-value
of the volume operator [165]

As a result, 4ABD ∼= 4BCD, so faces of a tetrahedron have three different physical
areas. Let the physical areas of 4ABC, 4ACD, 4ABD (or 4BCD) to be A, B and C
respectively, then one finds

A =
√

3
4 e2β+V

2
3 l2, (2.55)

B = e−(β++
√

3β−)

4
√

3

√
8 + e6β++2

√
3β−V

2
3 l2, (2.56)

C = e−(β++
√

3β−)

4
√

3

√
2 + 6e4

√
3β− + e6β++2

√
3β−V

2
3 l2, (2.57)

in terms of Misner’s variables {β+, β−}. Because the relation between the volume V and
Misner’s variables {β+, β−} is ill-behaved at quantum level [165], this dissertation only
consider the observables as functions of areas.

By requiring that β− = 0 if B = C and β+ = β− = 0 if A = B = C, one finds

β− = 1
4
√

3
ln
(
A2 + 3B2 − 12C2

A2 − 9B2

)
, (2.58)

and

β+ = 1
6 ln

8A2
√

A2+3B2−12C2

A2−9B2

12C2 − A2 − 3B2

. (2.59)
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Additionally, we define the ratios between scale factors

k1 := a3

a1
=

√√√√1
8

(
9B

2

A2 − 1
)
, (2.60)

k2 := a3

a2
=

√√√√1
8

(
94C2 −B2

3A2 − 1
)
, (2.61)

which are 1 in an isotropic universe. The anisotropy parameter A can be rewritten in two
ways:

A1(φ) := 18V 2(β′2+ + β′2−)
V ′2

, (2.62)

A2(φ) := 2V 2(k2
1k
′2
2 + k2

2k
′2
1 − k1k2k

′
1k
′
2)

V ′2k2
1k

2
2

, (2.63)

and they are equivalent in classical theory. Finally one can find the physical volume of a
tetrahedron as a function of the areas:

V 2 = A (−A2 − 3B2 + 12C2)(
27
√

3
)√

A2+3B2−12C2

A2−9B2

. (2.64)

All these relations above depend on how one embeds the tetrahedron, but they are reliable
quantities to measure the anisotropy. As discussed above, {β+, β−} are not unique to char-
acterise a Bianchi I space-time, so change embedding (for example, make 4ACD parallel
to x− z plane) is equivalent to change coordinates and thus get a different set of {β+, β−}.
Similar with the Bianchi I universe in LQC [167], different embedding in GFT does not
change the dynamics, and this is what really matters. Moreover, these relations have a
one-to-one correspondence to embedding, so once the way to embed a tetrahedron is fixed,
we are always able to describe its exact properties unambiguously. Speaking about the
volume, it is possible that other embedding cannot produce a volume similar to quantum
expectation values from fixed areas of the triangles. However, this issue is beyond the
dissertation, and we leave this for future.

Equipped with the knowledge on classical space-time, let us now move to the quantum
side. The strategy we use is to substitute the area eigenvalues into the classical expressions
and assume that the results are their quantum correspondence [165]. The eigen-value of
GFT (or LQG) volume operator depends on the intertwiner ιv associated to the vertex v
that connects four links together [187–191]. Simply substituting eigenvalues of area op-
erator into equation (2.64) does not yield the explicit eigenvalue of the volume operator.
However, the relative difference between (2.64) and the exact GFT volume eigenvalues are
very small [165], and we only care about the ratio V ′/V in (2.17), so it does not change to
result qualitatively if one use (2.64) to study the properties of volume. Hence, for conve-
nience, the following calculation involving V will be based on (2.64).
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2.4.2 Anisotropic Perturbations
An interesting fact is that Bianchi IX space can be separated into a closed FLRW back-
ground and a gravitational wave with longest wavelength [192, 193]. Though this is not
directly related with what we are dealing with in this chapter, it inspires an essential con-
jecture in our Bianchi I GFT model: the homogeneous anisotropic states are split into an
isotropic ‘background’ and anisotropic ‘perturbations’. It should be mentioned that the use
of ‘background’ and ‘perturbation’ is an abuse of notation. We require that isotropy will
emerge from an anisotropic state asymptotically, so the isotropic part of the GFT state will
be dominant. In this regime, the contribution from the anisotropic part is so small that
they can be viewed as perturbations over an isotropic background. However, this does not
mean that the anisotropy is also negligible at early stage. In fact, it is expected that our
GFT state is highly anisotropic at this stage. Moreover, we expect that the tetrahedron
assigned with four equal smallest spins will dominate at later time [194].

The embedding in Figure 2.1 results in a tetrahedron with three different faces, and
accordingly we consider SNWs assigned with spins of three different values jv = (j, j, ja, jb).
Let the links assigned with j correspond to 4ABD and 4BCD, and those with ja and jb
are dual to 4ABC and 4ACD separately. These SNWs are quantum counterparts of the
classical tetrahedra we discuss above. As mentioned above, only with areas of the triangles,
one cannot specify the shape of a tetrahedron, so we further require that each quantum
building blocks should take the largest possible volume eigen-value with given face areas.
In this way, we obtain a regular tetrahedron when its faces are of same area.

Tetrahedra with j = ja = jb are the building blocks of the isotropic background, and
the rest modes are called ‘anisotropic perturbation’. One finds that the order of spins in
a SNW is important, but this should not be a defect. Anisotropy means that there is a
preferred direction, and the correspondence between spin and the classical triangle con-
tain the information of embedding, so the order of spins tells us which direction is preferred.

According to (2.47) and (2.51) for instance, GFT geometric observables usually require
a sum of all SNW modes jv, and this means that tetrahedra with all possible shapes should
be included. It seems to be rather challenging, but one can simplify the situation through
the following analysis.

First of all, let  ≡ (η∑4
i=1 ji(ji + 1) + M2)/τ . Assume the correction from peaking

function is very small, and when  < 0, Υ2
jsv
< 0, according to solution (2.39), ρjv ∝

cos
(√
||φ

)
. When  > 0, Υ2

jsv
> 0, so ρjv ∝ exp

(√
φ
)
at large φ. By convention, one

usually choose τ < 0, η > 0, and M2 < 0. Then  increases as j decreases, so |σjv | grows
fastest for j = 0. Because |σjv |

2 = ρ2
jv gives the number expectation value for the mode

jv, j = 0 becomes dominant for large |φ|. However, there is no clear interpretation for a
tetrahedron with j = 0, so we can ignore it and set 1/2 be the minimum possible spin. At
late time, the condensate is almost occupied by the modes whose j = 1/2. Consequently,
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the wave-function

σ(gv, φ) =
∑
jv

ιj1j2j3j4lLm1m2m3m4ι
j1j2j3j4lR
n1n2n3n4 σ

j1j2j3j4lLlR(φ)
4∏
i=1

Dji
mini

(gv,i)

' ι1/2m1m2m3m4ι
1/2
n1n2n3n4σ1/2(φ)

4∏
i=1

D1/2
mini

(gv,i) (2.65)

for large φ in spin representation. Then one can approximately only deal with j = 1/2
when work in spin representation, and the kinematic kernel reads

K ' δ(gwg−1
v )δ(φv − φw)

[
−τ∂2

φ + 4η1
2

(1
2 + 1

)
+M2

]
, (2.66)

which means that the dynamics are governed by j = 1/2 state at late time. Therefore at
large φ, our model will become isotropic and satisfy Friedmann equation of flat space [138].

Solution (2.39) oscillates when the spins associated to a vertex takes some value jsv such
thatΥ2

jsv
< 0. Let us take τ = −1 for convenience, which loses no generality. Due to the

conditions required by low-spin dominance, the parameters we choose make Υ2
jsv

declines
when  increases, so only modes that (ja + jb + 2j) < jsv bring non-trivial contributions
which are non-oscillating [194].

Let us consider an isotropic background consisting of three modes: jv = {1/2}, jv =
{1}, and jv = {3/2}, which are dual to regular tetrahedra. We further assume that
jv = {2} yields oscillating solutions. This assumption can be achieved by requiring
−24η < M2 < −15η. With background modes fixed, one can do perturbations on them
respectively. Let η = 1 for simplicity, we chooseM2 = −23.9 in order to include anisotropic
perturbative mode as many as possible.

Furthermore, (2.58) and (2.59) put constraints on the perturbations as well, requiring
A2 + 3B2 − 12C2

A2 − 9B2 > 0, (2.67)

which means that its quantum counterpart should also satisfy
ja(ja + 1) + 3jb(jb + 1)− 12j(j + 1)

ja(ja + 1)− 9jb(jb + 1) > 0. (2.68)

Finally the SU(2) recouping theory [115, 116] demands that the sum of spins on a spin
network should be integer. With all restrictions mentioned above, only a finite number of
modes are allowed in our model, as shown in table 2.1.

Therefore, GFT condensates here are composed of these 25 modes, and we assume that
the wave-function of the full state is a sum over all wave-functions which are solutions to
(2.36) respectively:

σ = σ1/2 + σ1 + σ3/2 + σ1/2,1/2,1/2,3/2 + ...+ σ3/2,3/2,1,3. (2.69)
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Table 2.1: All possible modes of tetrahedra labelled by four spins that do not oscillate.
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Figure 2.2: The behaviour of N? when ε = 0.0001 and π0 = 10000. The value of ε bring
slight change to the plot which is indistinguishable.

Now let us move on to extract effective description and dynamics from this model.

2.4.3 Observables
This part investigates the behaviour of the observables over perturbed GFT condensates,
and we will compute the expectation value of number operator and the parameters mea-
suring anisotropy introduced before. In the following computation, E 1

2
= E1 = E 3

2
= 10

with all perturbations has Ei = 1.

Let us first study the number operator. An important quantity is the ratio between
numbers of small-spin background and the total number, which is defined as

N?(φ) ≡
N 1

2
(φ)

〈N̂(φ)〉
=

ρ 1
2
(φ)2∑

jv ρ
2
jv(φ) . (2.70)

This goes to 1, which not only shows the model becomes isotropic, but also agrees with
the statement that small spin dominate later at late time, as is illustrated in Figure 2.2.

Then for a tetrahedron with spins jv = (j, j, ja, jb), the ratio between scale factors can
be written into

kjv1 =

√√√√1
8

(
9 jb(jb + 1)
ja(ja + 1) − 1

)
, (2.71)

kjv2 =

√√√√1
8

(
94j(j + 1)− jb(jb + 1)

3ja(ja + 1) − 1
)
, (2.72)

according to their classical expressions (2.60) and (2.61). Thus, we can compute ki(σ) to
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measure the anisotropy of the whole condensate state, with definition

ki(σ) = 1
〈N̂〉

∑
jv

(ρ2
jvk

jv
i ), (2.73)

which is an intensive quantity. From Figure 2.3, one finds both k1(σ) and k2(σ) go to 1 as
|φ| becomes larger, which is consistent with the fact that the universe becomes isotropic
later.
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Figure 2.3: The behaviour of k1 and k2, where ε = 0.0001 and π0 = 10000.

The Misner’s variables {β+, β−} is calculated in a similar way, where

βjv+ = 1
6 ln

8ja(ja + 1)
√

ja(ja+1)+3jb(jb+1)−12j(j+1)
ja(ja+1)−9jb(jb+1)

12j(j + 1)− ja(ja + 1)− 3jb(jb + 1)

, (2.74)

βjv− = 1√
3

ln
(
ja(ja + 1) + 3jb(jb + 1)− 12j(j + 1)

ja(ja + 1)− 9jb(jb + 1)

)
, (2.75)

in accordance with (2.58) and (2.59). Then let

βJ± ≡
1
〈N̂〉

∑
jv

(ρ2
jvβ

jv
± ), (2.76)

and one finds they becomes zero at late time, as is shown in Fig.2.4.

For the mean anisotropy parameter A, one need to compute the volume as well. Here
we simply substitute the area eigen-values into (2.64)

V 2
jv ' `6

0

√
ja(ja + 1) (−ja(ja + 1)− 3jb(jb + 1) + 12j(j + 1))(

27
√

3
)√

ja(ja+1)+3jb(jb+1)−12j(j+1)
A2−9jb(jb+1)

, (2.77)
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Figure 2.4: The behaviour of β+ and β− in accordance with the embedding in this paper,
where ε = 0.0001 and π0 = 10000.

and use (2.51) to find the total volume. Then one can obtain A from volume, ratio k, and
Misners’s variables, substituting ki(σ) or βJ± into (2.62) or (2.63)

A1(φ) ≡
18V 2

(
(βJ+

′)2 + (βJ−
′)2
)

V ′2
, (2.78)

A2(φ) ≡
2V 2(k2

1(σ)k
′2
2(σ) + k2

2(σ)k
′2
1(σ) − k1(σ)k2(σ)k

′
1(σ)k

′
2(σ))

V ′2k2
1(σ)k

2
2(σ)

. (2.79)

Both of them go to zero when |φ| increases, as is demonstrated in Figure 2.5. The calcula-
tions of these observables are consistent among each other, all showing that the anisotropy
is relevant near bounce and isotropy is dominant at later time.
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Figure 2.5: The behaviour of A1 and A2, where ε = 0.0001 and π0 = 10000.

2.4.4 Quantum Fluctuations
This subsection demonstrates the reliability of the computation with the application of co-
herent peaked states. By calculating the relative variances of the observables, the quantum
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fluctuations from the clock field φ turns out to be very small at large number of tetrahedra.

The relative variance of an observable O is defined in a usual way:

∆2
O ≡

〈Ô2〉 − 〈Ô〉2

〈Ô〉2
. (2.80)

For number operator, one finds [141]

∆2
N = 1∑

jv Njv

' 1∑
jv ρ

2
jv

. (2.81)

Since ρjv(φ) grows exponentially for any mode jv in the state, the relative variance of
number operator definitely becomes negligible at late time, when the number of tetrahedra
goes to infinity.

Similarly for volume operator, one has

∆2
V '

∑
jv V

2
jvρ

2
jv

(∑jv Vjvρ
2
jv)2 . (2.82)

The relative variance of area operator takes the same form with that of the volume oper-
ator, except different eigen-values, so we do not repeat the result. No doubt, the relative
variance of both volume operator and area operator goes to zero for large φ.

The main difficulty arises when one tries to find the relative variance of ki, β±, and
A. Unlike number operator, area operator, or volume operator, ki, β±, and A do not have
GFT operators measuring their values straightforwardly. Instead, they are obtained as
functions of area or volume expectation values. If one simply treats them as functions of
areas, then the relative variance can be found through the formula of error propagation.
However, this will result in a diverging number. On the other hand, suppose we have
such operators who has eigenvalues ki or β±, then the fluctuations are similar with that of
volume or area operator, converging as the number increases. Since we do not have exact
operators, this issue is left open currently, and it is of interest that how can one construct
a GFT operator measuring anisotropy.

2.5 Anisotropic Quantum Gravity Condensates II

2.5.1 Measurement of Anisotropy
Let us continue to the other definition of ‘isotropy’, where tri-rectangular tetrahedra are
the building blocks of a three-dimensional space. Again, the embedding is performed, as
illustrated in Figure 2.6. Edges AD, BD, and CD of the tetrahedron are orthogonal to
each other, so it is convenient to require that they are parallel to x−, y−, and z− axis
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Figure 2.6: A tetrahedron in Bianchi I universe, where tri-rectangular tetrahedra are
building blocks.

respectively. Assume AD = BD = CD = l, so they have the same physical length if the
universe is isotropic. The physical areas of 4ADB (A), 4ACD (B), and 4DCB (C) read

A = 1
2a1a2l

2, (2.83)

B = 1
2a1a3l

2, (2.84)

C = 1
2a2a3l

2. (2.85)

It is straightforward to define the ratio between scale factors

k1 := a1

a3
= A

C
, (2.86)

k2 := a1

a2
= B

C
. (2.87)

(2.88)

Similarly, the Misner’s variables β± can also be written in terms of the physical areas,
where

β+ = 1
6 ln

(
A2

BC

)
, (2.89)

β− = 1
4
√

3
ln
(
B2

C2

)
. (2.90)

In addition, the anisotropy parameter A is expressed in the same way as (2.62) and (2.63).
Finally, the volume reads

V =
√

2
3 (ABC) 1

2 . (2.91)
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Again, these relations only works with the embedding illustrated here, which is the simplest
choice that we can make. But as argued, these quantities are not unique, and changing
embedding is equivalent to changing a coordinate system, so one needs to keep the calcu-
lation consistent all the time with the embedding. In this case, only three orthogonal faces
are needed to fix the shape of a tetrahedron, and we always demand that they determine
the coordinates {x, y, z} in the way explained above.

2.5.2 Anisotropic Perturbations

Let us choose jv = (1/2, 1/2, 1/2) to be the isotropic background mode. Given a SNW
(ja, jb, jc), we demand that ja, jb, and jc dual to 4ABD, 4ADC, and 4DBC separately.

With this definition, one has to less choice on the perturbations. For the perturbations
discussed in the previous section, where one choose j to be a ‘background spin’ and vary
ja and jb to get a perturbation (j, j, ja, jb). Here, however, one does not have such a ‘back-
ground spin’ which is fixed when performing perturbations, as no two triangles from the
tetrahedron are necessarily congruent here. As a result, ja, jb, and jc can be changed at
the same time as a perturbation.

From (2.39), one knows that the order of spins does not affect the wave-function. Mean-
while, consider all possible permutations on (ja, jb, jc) will result in an isotropic model, since
the way we embed tetrahedra will make their contribution to anisotropy cancel each other.
For instance, modes (1/2, 1/2, 1) and (1/2, 1, 1/2) are governed by the same wave-function,
so they will have the same number of tetrahedra. One finds that (1/2, 1/2, 1) contributes
β− = − log(8/3)/4

√
3 and (1/2, 1/2, 1) contributes β− = log(8/3)/4

√
3. As they are of the

same number, the total contribution is 0, so consequently they together form a isotropic
state. In order to avoid the situation where anisotropic modes yield an isotropic full state,
we limit the perturbations such that ja ≤ jb ≤ jc to obtain an anisotropic model.

The condensate state is expected to be dominated by smallest-spin modes, which is the
isotropic background as well. Therefore, everything remains almost the same with those
the previous section, except that here we only sum over three spins [176]. Let us take
(1/2, 1/2, 1/2) to be the only background mode, and choose 3/2 to be maximal possible
spin, so −M2 − 45η/4 < 0 while −M2 − 19η/2 > 0. The oscillating solutions are ignored
again. All possible modes are shown in Table 2.2, and we choose η = 1 and M2 = −10.
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Table 2.2: All possible modes of tri-rectangular tetrahedra labelled by three spins that
do not oscillate.

2.5.3 Observables
All observables are defined in the same way. For a SNW (ja, jb, jc), one defines

βjv+ = 1
6 ln

 ja(ja + 1)√
jb(jb + 1)jc(jc + 1)

, (2.92)

βjv− = 1
4
√

3
ln
(
jb(jb + 1)
jc(jc + 1)

)
, (2.93)

and

kjv1 =

√
ja(ja + 1)√
jc(jc + 1)

, (2.94)

kjv2 =

√
jb(jb + 1)√
jc(jc + 1)

. (2.95)

Then one can define the observables over the condensates:

ki(σ) = 1
〈N̂〉

∑
jv

ρ2
jvk

jv
i , (2.96)

βJ± = 1
〈N̂〉

∑
jv

ρ2
jvβ

jv
± , (2.97)

and A is defined in the same manner with (2.78) and (2.79).

Keeping all other parameters same with those in previous section, one obtains similar
results with this new definition of ‘isotropy’. Because SNWs with small spins are dominant
at late time, the condensates become isotropic as φ grows, which is shown in Figures 2.7,
2.8, 2.9, and 2.10. As the quantum fluctuations have exactly the same qualitative behaviour
as well, it is redundant to compute them again in and we simply skip the computation.
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Figure 2.7: The behaviour of N? when ε = 0.0001 and π0 = 10000.
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Figure 2.8: The behaviour of β+ and β− in accordance with the embedding in this paper,
where ε = 0.0001 and π0 = 10000.
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Figure 2.9: The behaviour of k1 and k2 in accordance with the embedding in this paper,
where ε = 0.0001 and π0 = 10000.
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Figure 2.10: The behaviour of A1 and A2, where ε = 0.0001 and π0 = 10000.

2.6 Effective Dynamics
GFT condensate state has successfully extracted an effective Friedmann equation [136–138].
If one defines an isotropic GFT condensates from regular tetrahedra, and the expectation
value of the volume operator at clock time φ over this state is V (φ), then V (φ) satisfies
the equation [140, 195]: (

V ′

3V

)2

= 4πGeff

3 , (2.98)

which is exactly the same form with an isotropic Friedmann equation where β′+ = β′− = 0
in (2.17).

The final part of the computation in this chapter is to extract the effective dynamics of
GFT condensates and to compare it with that of a classical Bianchi I universe. We expect
that our GFT effective equation have a similar form with (2.98) at later time since the
state becomes isotropic, which has been illustrated in previous sections. At early stage, on
the other hand, it is of our interest to find out if the effective equation looks similar with
a classical Bianchi I equation (2.17), such that(

V ′

3V

)2

=
(

dβJ+
dφ

)2

+
(

dβJ−
dφ

)2

+ 4πGeff

3 , (2.99)

where Geff is the effective GFT gravitational constant defined as

Geff := 1
3π

ρ′12
ρ 1

2

2

. (2.100)

As we use various quantities measuring anisotropy beside Misner’s variables, we also expect
the early effective dynamics of the volume satisfy(

V ′

3V

)2

= ξ2

18 + 4πGeff

3 , (2.101)
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where the shear
ξ2 =

2k′21(σ)

k2
1(σ)

+
2k′22(σ)

k2
2(σ)
−

2k′1(σ)k
′
2(σ)

k1(σ)k2(σ)
, (2.102)

and the expression of ξ2 is the same for ki if one uses the second definition of ‘isotropy’.
Equation (2.99) and (2.101) are equivalent at classical level, but they are not necessarily
the same for a quantum state as βJ± and ki(σ) are evaluated in different ways, so we consider
two equations separately.

In both FLRW and Bianchi I space-time, V ′/V is a constant. So the fact that V ′/V =
const is not enough to figure out which kind of dynamics that a GFT state satisfy. One
has to compute two terms on the right-hand side of equation (2.99) or (2.101) in order to
find out how the introduction of anisotropy affects the effective GFT dynamics.

From Fig.2.11, one finds the isotropic background given by regular tetrahedra (jv =
{1/2}, {1}, {3/2}) dominates after φ ' 10, as is shown by Figure 2.11. The situation is
similar for tri-rectangular condensates according to Figure 2.7, where the universe becomes
isotropic for φ & 10. In isotropic regime, the shear (dβ+/dφ)2 + (dβ−/dφ)2 or ξ2/18 is
negligible and (

V ′

3V

)2

' 4πGeff

3 , (2.103)

which means that GFT condensates reproduce FLRW dynamics effectively at late time.

It is interesting to investigate the period where anisotropy is relevant after bounce be-
fore φ ' 10. According to Fig.2.12 and 2.13, one finds that in the regime 5 . φ . 10, even
when anisotropy is ineligible, (2.17) is still well-satisfied, with very small contribution from
anisotropic perturbations. This is result is similar with the result in a recent research on
anisotropic GFT condensates [165], and it is true no matter how one defines ‘isotropy’ or
‘anisotropy’ in our case.

In a classical Bianchi space-time, when the spacial curvature is small or zero, the shear
term decreases much faster than the matter term if the universe is expanding [156]. In our
GFT model, we find a similar behaviour where the shear is almost negligible compared
with two other terms. This may also imply that the correction from anisotropic modes is
so small that one can still approximately apply isotropic homogeneous Friedmann equation
in a deep Planckian regime.

In addition to the explanation above, there can be an opposite argument, that the
anisotropy is not negligible, and an improvement of GFT model is needed in the future.
For far, there are three main possible reasons why the GFT condensates in this chapter
does not satisfy the classical anisotropic dynamics. One possibility is that the number of
building blocks of GFT condensate state is too small to reproduce a continuum behaviour.
As mentioned in Chapter 1, the emergence of continuum geometry and space-time requires
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Figure 2.11: The ratio between the number of isotropic tetrahedra (Niso) and that of total
tetrahedra (Ntot), where ε = 0.0001 and π0 = 10000, and isotropy is represented by regular
tetrahedra.

a large number of GFT quanta, which increases in the clock time. Therefore, the early
state may not contain enough number of the tetrahedra and thus it fails to recover the
Bianchi I dynamics.

Another possibility is that the number is large enough, but an improper definition of
GFT observables measuring anisotropy yields corrections that are too small. For instance,
(2.73) and (2.76) average over all tetrahedra, making the quantity almost a constant in
clock time, so the derivative with respect to the clock φ will be relatively small comparing
with V ′/V . Same result can be found from the calculation, where the quantities measur-
ing anisotropy in the same way as an average [165]. So far, such an average is inevitable,
because β± or ki is definitely an intensive quantity, while the number of tetrahedra (or
the volume of a system) should not change their values and properties. Therefore, this
may suggests that one needs a better way to characterise an anisotropic GFT state, or we
may need a suitable operator measuring anisotropy directly instead of using functions of
operators in this dissertation.

Finally, we may need a fundamentally different definition of anisotropic GFT conden-
sates, instead of an approximate linear combination of different modes. If one studies each
GFT mode alone, either ‘isotropic’ or ‘anisotropic’ modes will effectively yield Friedmann
equation, since every single mode can be used as isotropic building block if they are not put
together. For example, a regular mode {1/2} can be perturbed into {1/2, 1/2, 1/2, 3/2},
which is called an ‘anisotropic’ perturbation. Then let us think about a question, what
type of dynamics a state will yield if it only contains tetrahedra {1/2, 1/2, 1/2, 3/2}? At
first sight, one may think it has an effective equation similar with Bianchi I universe (2.17),
since it consists of only ‘anisotropic’ mode. However, if we are more careful, we will find
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Figure 2.12: Effective dynamics of GFT condensates, where isotropic background con-
sists of equilateral tetrahedra. The brown line represents (V ′/3V )2, and anisotropic part
is shown by the blue or green dot-dashed line. The effective matter term 4πGeff/3 is
illustrated by the red dashed line.

that this state also reproduce an isotropic Friedmann equation (2.98). Because β+ and
β− are both constants over this state, though they are non-zero, this state still satisfy an
isotropic equation of motion. Therefore, it is not surprising that Friedmann equation is
reproduced when isotropic building blocks are not dominant.

2.7 Discussion
In this chapter, we tried using GFT quantum gravity condensates to build a model de-
scribing a homogeneous anisotropic universe. In this model, a bouncing universe with
anisotropic ‘perturbations’ is constructed, and it evolves from an anisotropic state to an
isotropic state as the clock time passes by.

Compared with previous study [164, 165], following improvements are made in this
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Figure 2.13: Effective dynamics of GFT condensates, where isotropy is defined as
tri-rectangular tetrahedra with three edges of same length. The brown line represents
(V ′/3V )2, and anisotropic part is shown by the blue or green dot-dashed line. The effec-
tive matter term 4πGeff/3 is illustrated by the red dashed line.

project:

i. Neither [164] nor [165] used the coherent peaked state, which is applied in our new
model to control the quantum fluctuations;

ii. Neither [164] nor [165] took the low-spin dominance into consideration, but in our
model, the parameters in kinetic kernel are chosen to ensure the low-spin dominance;

iii. The model in [164] has no classical correspondence, but the states in [165] and in
this chapter aim to recover a Bianchi I universe;

iii. Compared with [165], where only a special Bianchi I universe with β− = 0 is consid-
ered, our model considers a Bianchi I model where Misner’s variables β± are both
non-vanishing;

v. Compared with [165], which uses only β+ to characterise the anisotropy, our state
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uses β±, shear term, as well as the anisotropy parameter as quantities to measure
the anisotropy;

vi. Both states from [164] and [165] consist of a background isotropic mode and certain
anisotropic mode(s), but our state is obtained by including all possible modes, with
constraints on spins found as well.

This chapter focuses on the Bianchi I universe. To get deeper insight on early universe, it
is helpful to study Bianchi IX model, where the curvature is non-zero. An significant feature
of Bianchi IX universe is its mixmaster dynamics and chaotic behaviour near singularity.
However, hitherto we are not able to construct such a state. One difficult task is adding
curvatures in GFT condensates. On one hand, the dynamics studied in this paper ignored
interactions V among SNWs, which result in a solution that yield flat Friedmann equation.
It is possible that involving interactions gives us information on the curvature when the
tetrahedra are connected. Unfortunately, this brings computational challenges and the
equation cannot be solved exactly for the time being. On the other hand, one lacks GFT
curvature operator to test the dynamics from condensates even we successfully construct
such a state. Therefore, it is of our interest to improve the GFT quantum cosmological
model to study the early universe as well as to explain present anomalies in the future.



Chapter 3

Quantum Schwarzschild Black Hole

This chapter is based on a project in collaboration with Daniele Oriti.

In this chapter, including both quantum geometric and scalar matter degrees of freedom,
candidate GFT micro-states of a spherically symmetric geometry will be constructed in a
material reference frame. The scalar fields realises the localisation of the various elements
of quantum geometry. By computing geometric observables over the GFT quantum states,
we will match the quantum states with a spherically symmetric classical geometry, with a
suitable matter reference frame found as well.

3.1 Background
Spherically symmetric geometries, especially Schwarzschild black holes, play a special role
in both classical and quantum gravity. For classical theories, they are an important simpli-
fied model for large massive objects and for the result of gravitational collapse. In quantum
gravity, they are crucial for mainly three reasons. Firstly, any quantum gravity theory is
called to provide a microscopic derivation of the black hole dynamics [196–200]. Second,
the curvature singularity of black holes is expected to be resolved by quantum gravity
theories; more generally, Planckian regime, which is reached in the last phase of black hole
evaporation [198, 201], needs to be revealed by these theories. Third, Schwarzschild black
hole represents a simple but highly non-trivial space-time geometries, which is only more
complicated than the homogeneous geometries in cosmological backgrounds. Therefore,
they are one of the first targets for reconstructing space-time from fundamental quantum
gravity degrees of freedom.

We have reviewed in Chapter 1 the GFT formalism as well as quantum gravity con-
densates. This chapter will use GFT condensates to construct a candidate micro-state of a
Schwarzschild black hole in a matter reference frame, which is a generalisation of the pre-
vious work [185, 186]. We will show how to find explicit solutions for scalar fields which act
as a relational reference frame. In this reference system, expectation values of geometric
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r1

r2

Figure 3.1: A foliation of a spherically symmetric space into concentric homogeneous
shells. The outer boundary of shell r1 and inner boundary on shell r2 are glued.

observables will be computed, and we will obtain a GFT state which is able to reproduce
continuum Schwarzschild geometry.

3.2 Spherically Symmetric GFT States

3.2.1 Seed State and Refinements
To begin with, let us first introduce the basic idea. The Schwarzschild geometry considered
in this chapter is no longer homogeneous, but the quantum state can still be constructed
from homogeneous GFT condensates. We consider a spherically symmetric 3D space foli-
ated into thin concentric shells [185, 186], as is shown by Figure 3.1. Each shell is labelled
by ri, which can be understood as a radial parameter. The outer boundary of one shell
r1 is glued with the inner boundary of another shell r2, and the full spatial foliation is
obtained by repeating this procedure on every shell. In such a way, every single shell alone
is homogeneous, and one can define every shell state through GFT condensate states.

The next step is to define the quantum states of these shells, endowed with a continuum
and semi-classical homogeneous geometry [137, 184]. These states should have the following
six features:

1. Spherical topology: the shell state are defined as a superposition of quantum states
dual to spherically symmetric simplicial complexes with shell topology, and the states
are obtained by increasing the number of 3-simplices (tetrahedra) from a ‘seed state’;
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2. Homogeneity: GFT quanta assigned with the same quantum geometric information
form a shell state, i.e. each building block is characterised by the same wave-function;

3. Near-flatness: the geometry inside the tetrahedra is nearly flat in order to have a
better geometric interpretation in a continuum embedding, which, however, plays
little role in this chapter;

4. Continuum approximation: the number of GFT building blocks consisting the shell
will be infinitely large, and the combinatorial aspect of the continuum approximation
will be considered as well;

5. Reference frame peakedness: matter d.o.f. from scalar fields will be included in these
states, and the wave-function governing the GFT quanta is sharply peaked around
given values of the scalar fields, with the scalar fields being good clock or rods;

6. Semi-classicality: the observables of shell states will match the ones in classical
geometry with controllable quantum fluctuations.

The first four requirements have been met by the model from [186], and we will include
the last two features in our generalised black hole state.

Then let us define a state with the features mentioned above. Each shell state corre-
sponds to the triangulation of a spherical shell with two boundaries, so they have topol-
ogy S2 × [0, 1]. These state can be constructed from a seed state |τ〉 by increasing the
number of building blocks through refinement operators M̂. In order to control the con-
nectivity, each tetrahedron (or each vertex in dual complex) is associated with a colour
t ∈ {B(lack),W (hite)}.

The seed state is the simplest triangulation of a spherical shell, as illustrated by Figure
3.2, where every four-valent vertex corresponds to a tetrahedron. Links associated to a
vertex is labelled by a colour labeled from 1 to 4, and only vertices with different colours
can be connected together. A shell state consists of three parts: inner boundary, bulk, and
outer boundary, where the bulk part has no open links. Similarly, only links with same
colour can be glued. For instance, assume Figure 3.2 represents the shell r1 in Figure 3.1,
then the open links from inner boundary of shell r2 must be of colour 1 in order to glue
them with those from outer boundary of shell r1. To distinguish three parts of a shell, let
us introduce another label, s ∈ {+, 0,−}, representing outer boundary, bulk, and inner
boundary respectively.

Given a seed state, one can define the refinement operator, which eliminates one vertex
and adds three new ones without changing the spherical topology. Such a movement can
be achieved by requiring that the new vertices are connected to form a melonic graph, or a
‘dipole insertion’ in the language of tensor models [90]. To control the connectivity of the
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Figure 3.2: The seed state of a shell, consisting of three layers.

graph, each layer has its own refinements acting on the state independently. The action of
a refinement on white vertices of a outer boundary M̂W+ is graphically [184]

M̂W+ :
12

3 4

1” 1’ 1

2
3’

4’ 2’ 4

3 ,

and for black vertices, it is

M̂B+ :
14

3 2

1” 1’ 1

4
3’

2’ 4’ 2

3 .

The ones for inner boundary is rather similar, where

M̂W− :
41

2 3

4” 4’ 4

1
2’

3’ 1’ 3

2 ,

and

M̂B− :
43

2 1

4” 4’ 4

3
2’

1’ 3’ 1

2 .
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For the bulk, the refinements are

M̂W0 :
12

3 4

1’ 1

2
3’

4’ 2’ 4

3 ,

and

M̂B0 :
14

3 2

1’ 1

4
3’

2’ 4’ 2

3 .

By repeating refinements, one increases the number of building blocks of a shell and obtains
a continuum limit of the quantum state.

3.2.2 Ladder Operators
In addition to graphic definition, the seed state and the refinements can also be defined
algebraically in terms of GFT condensate states. To this end, we first assume that our
shell state is a superposition of quantum states, which correspond to the triangulations of
a spherical shell. Moreover, the information of connectivity should be equipped to GFT
condensates, since the seed state or the refinements are all represented by connected SNWs
and only with connectivity can a state recover a continuum topology.

A black 4-valent vertex, dual to a tetrahedron, is created by ϕ̂†B(g1, g2, g3, g4), where
the colours of edges are assigned in a clockwise order. Similarly, a white vertex is created
by ϕ̂†W (g1, g2, g3, g4) , while the labels are in an anti-clockwise order:

ϕ̂†W (g1, g2, g3, g4):
12

3 4 ϕ̂†W (g1, g2, g3, g4):
14

3 2

The group element on a links can be interpreted as the parallel transport from one
tetrahedron to another. Suppose one link associated to vertex v is assigned with gv, while
a second link associated to vertex w has group element gw. Connecting these two links,
one should obtain another link with geometric information provided by g−1

w gv:

gv gw

connect
.

g−1
w gv
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To do this, an auxiliary variable hv is required, making sure that a connection can be
achieved through convolution. For instance, the connection between two links above can
be written as

ψ(gv)ψ(gw)→
∫

dhψ(hgv)ψ(hgw), (3.1)

resulting in a wave-function depending only on g−1
w gv, where ψ is a general wave-function

assigned on the vertices.

Therefore, we can require that a shell state is created by ladder operators [184]

σ̂t(hv) =
∫

dgvσ(hvgv)ϕ̂t(gv), (3.2)

σ̂†t (hv) =
∫

dgvσ(hvgv)ϕ̂†t(gv), (3.3)

annihilating or creating a superposition of tetrahedra of colour t, which is the new building
block from now on, and h is associated to the endpoints of the links to be connected.

Remember that each shell is labelled by a radial parameter r, and we can encode this
information into the GFT wave-function by coupling GFT state with a matter reference
frame. Generally for (3 + 1) dimensions, one needs a clock and three rods to localise a
tetrahedron. For simplicity, here we again use four scalar fields to build a relational frame,
{φ1, φ2, φ3, φ4} with φ1 the clock. Then the coherent peaked state introduced in Chapter
1 is applied again here to control the quantum fluctuations. An operator

σ̂†t (hv; {φτ , φu, φθ, φχ}) =
∫

dgvdφvστ,u,θ,χ(hvgv;φv)ϕ̂†(gv;φv), (3.4)

with

στ,u,θ,χ(g;φ) ≡ ηε1(φ1− φτ , πτ )ηε2(φ2− φu, πu)ηε3(φ3− φθ, πθ)ηε4(φ4− φχ, πχ)ς(g;φ), (3.5)

creates a superposition of tetrahedra at (φ0 = φτ , φ1 = φu, φ2 = φθ, φ3 = φχ).

Such a state with four scalar fields is rather complicated. Fortunately, we expect this
GFT state will yield Schwarzschild geometry, so the shell state should be static, which
significantly simplify the construction. Being static, there should be no dependence on
clock time. Additionally, as we deal with a shell as a whole, there is no need to localise every
tetrahedra consisting the shell, and only one parameter r is enough to tell the difference
among shells. As a result, we take φ2 to be a ‘radial’ rod characterising the shells, and there
is no dependence on neither φ3 nor φ4. From now on, we denote φ2 by φ for convenience,
and the ladder operators are simplified into

σ̂†t (h;φu) ≡
∫

dgdφσu(hg;φ)ϕ̂†t(g;φ), (3.6)

σ̂t(h;φu) ≡
∫

dgdφσu(hg;φ)ϕ̂t(g;φ), (3.7)
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where
σu(g;φ) = ηε(φ− φu, πu)ς(g;φ). (3.8)

A shell u is the one whose bulk part is created by ladder operators peaking at φ = φu, with
two boundaries having slightly different peaks:

σ̂†u,t0(h) ≡ σ̂†t (h;φu), (3.9)
σ̂†u,t+(h) ≡ σ̂†t (h;φu + δφu), (3.10)
σ̂†u,t−(h) ≡ σ̂†t (h;φu − δφu), (3.11)

where δφu ∈ R is a small number.

In order that we can distinguish different layers s, or equivalently, states of different
layers must be orthogonal, there should be a constraint on δφu, i.e. it cannot be too small.
According to the definition (1.42) and (1.43), what contributes to the states is a Gaußian
function exp((φ− φu)2/2ε), as the other parts will be canceled or will be integrated away
in calculation. As ε � 1, the peaking function approximately perform a measurement
at φ = φa. However, ε is small but finite, so the peaking function η actually counts the
contribution from φ = φu − 3

√
ε to φ = φu + 3

√
ε. A straightforward choice is to make

peaks not to overlap with each other,

|φu1 − φu2| ≥ 6
√
ε. (3.12)

With condition (3.12), one obtains

[σ̂(h;φu1), σ̂†(h, φu2)] ' 0. (3.13)

Therefore, we always require δφu ≥ 6
√
ε in this chapter.

To further ensure the homogeneity of a shell state, ladder operators should obey Bosonic
statistics. Let us work out the commutator in spin representation, which is more convenient
than other representations. Again, Peter-Weyl decomposition on reduced wave-function ς
is performed where

ς(gv, φv) =
∑
j,lL,lR

ιj1j2j3j4lLm1m2m3m4ι
j1j2j3j4lR
n1n2n3n4 ς

j1j2j3j4lLlR(φv)
4∏
i=1

Dji
mini

(gv,i), (3.14)

where the intertwiner

ιj1j2j3j4m1m2m3m4 =
∑
m,m′

Cj1j2l
m1m2mC

j3j4l′

m3m4m′
C ll′0
mm′0 (3.15)

is assigned on the vertex of a SNW to combine four links together, and Cjj1j2
mm1m2 the Clebsch-

Gordon coefficient [115, 116]. We use the convention∫
dgDj

mn(g)Dj′

m′n′(g) = 1
dj
δmm′δnn′δjj′ , (3.16)
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where dj = 2j + 1, and normalise the intertwiners with n [184]∑
m

ιj1j2j3j4lm1m2m3m4ι
j1j2j3j4l′

m1m2m3m4 = δl,l
′
n(j1, j2, j3, j4, l). (3.17)

If one assumes

ςj1j2j3j4lLlR(φu) = δlL,lRς
j1j2j3j4lL(φu), (3.18)

and

ςj1j2j3j4lR(φu)ςj1j2j3j4lR(φu) = 1
ς̃(φu)

d2
j1d

2
j2d

2
j3d

2
j4

n(j1, j2, j3, j4, lR) , (3.19)

the commutator reads

[σ̂t(hv;φu), σ̂†t′(hw;φu′)] = δu,u′δt,t′
1

ς̃(φu)

∫
SU(2)

dγ
4∏
i=1

δ(γhvih−1
wi

) ≡ δr,r′δt,t′
1

ς̃(φu)
∆L(hv, hw).

(3.20)
The assumption (3.19) is necessary to obtain a Bosonic commutator (3.20), which provides
the states with homogeneity. This commutator also agrees with the idea of space-time
being quantum gravity quanta condensate [202, 203].

For simplicity, ς̃(φu) is replaced by ς̃us, where

ς̃u0 = ς̃(φu), (3.21)
ς̃u+ = ς̃(φu + δφu), (3.22)
ς̃u− = ς̃(φu − δφu). (3.23)

Then we can write the states in terms of these ladder operators. A seed state of u-shell is

|τu〉 ≡
∫

dg10σ̂†u,B+(e, g2, g3, g4)σ̂†u,W+(e, g′2, g3, g4)σ̂†u,B0(g′′1 , g′2, g′′′3 , g′′4)

σ̂†u,W0(g′′1 , g2, g
′′
3 , g
′′
4)σ̂†u,B−(g′′′′1 , g′′′′2 , g′′3 , e)σ̂

†
u,W−(g′′′′1 , g′′′′2 , g′′′3 , e) |0〉 , (3.24)

and the refinement operators reads

M̂u,W+ ≡ ς̃2
us

∫
dk2dk3dk4dh4′dh3′dh2′σ̂

†
u,W+(e, k2, h3′ , h4′)σ̂†u,B+(e, h2′ , h3′ , h4′)

σ̂†u,W+(e, h2′ , k3, k4)σ̂u,W+(e, k2, k3, k4), (3.25)

where we take the one acting on the white vertices at outer boundary for example. The
expression for a generic shell state is

|Ψu〉 = F (M̂u,Bs,M̂u,Ws) |τu〉 , (3.26)

where F is a generic function. By taking large number of refinements such that the number
of building blocks goes to infinity, this state can be interpreted as continuum geometry.
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Since the number will be large enough, one can assume that each layer contains the same
number of vertices, n white and n black.

In order to find the expectation values over GFT shell states, we need a more precise
expression for (3.26). Let |Γn〉 be a general linear combination of |Ψu〉 with 6n vertices,
obtained from the seed state through (n− 1) refinements on each layer:

|Γn(φu)〉 ≡
1

(n!)3

∏
s={+,0,−}

ς̃n−1
us

∫ 6n∏
i=1

dhiJΓ(h1, ..., h6n)σ̂†u,B+(h1)...σ̂†u,W+(hn+1)...σ̂†u,B0(h2n+1)

...σ̂†u,W0(h3n+1)...σ̂†u,B−(h4n+1)...σ̂†u,W−(h5n+1)...σ̂†u,W−(h6n) |0〉 , (3.27)
where JΓ are Dirac delta functions to connects the links in the graph and form the spherical-
shell topology. Such a state is equipped with coarse grained microscopic degrees of freedom
as well as only a few controllable variables. We do not normalise this state in order that
the data contained in wave-function will not be erased away.

3.3 Operators and Expectation Values

3.3.1 Extended (1 + 1)−body Operators
To ensure the semi-classicality of GFT states, we will compute the geometric observables
over the shell state and compare them with their classical correspondence. In this chap-
ter, we consider the area and the volume of a shell, since they are all the GFT geometric
observables available.

To continue, let us define the extended GFT operators. As illustrated in chapter 2, a
generic GFT operator takes the form of (2.44):

Ôt ≡
∫

dgvdgwdφvdφwO(gv, gw;φv, φw)ϕ̂†t(gv;φv)ϕ̂t(gw;φw), (3.28)

However, a shell contains three layers, so (3.28) is unable to distinguish these layers. For
instance, one only needs to count the area of the outer boundary when computing the area
of a shell, but (2.44) will compute the total area of three layers together, which makes
no sense. Therefore, one should extend (3.28) to separately calculate the observables over
three layers respectively. Such an extended version can be achieved by placing appropriate
ladder operators σ̂ts and σ̂†ts in (3.28) [184]:

Ôu,ts ≡
∫

dhvdhwOus(hv, hw)σ̂†u,ts(hv)σ̂u,ts(hw), (3.29)

where
Ous(h, h′) = ς̃3

us

∏
s′ 6=s

ς̃2
us′∫

dgvdgwdφvdφwσu,s(hvgv, φv)O(gv, gw;φv, φw)σu,s(hwgw, φw). (3.30)
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In order that the extended operator will give a right result, we have applied the requirement
that

〈τu| Ôu,ts |τu〉 ∼
∫

dhdh′ 〈0| σ̂u,ts(h)Ôtσ̂†u,ts(h′) |0〉 . (3.31)

Before we continue, let us give a brief interpretation of the constraint (3.31). Note that
there is no ‘single-particle’ state in this construction, and a seed state is the simplest case
one can consider in our case. Requirement (3.31) means that the extended operator acting
on a seed state will yield a similar result with (3.28) on a ‘single-particle’ state. Because of
the connectivity on the left-hand side, two quantities in (3.31) should only differ by some
Dirac delta functions.

The extended number operator in this chapter, which reads

n̂u,ts ≡ ς̃3
us

∏
s′ 6=s

ς̃2
us′

∫
dhvσ̂†u,ts(hv)σ̂u,ts(hv), (3.32)

will count the number of tetrahedra condensates in a state. It can be verified that
〈Γn(φu)| n̂u,ts |Γn(φu)〉 = n as expected. Similarly, one can extend area operators and
volume (density) operators, and compute their expectation value over a u-shell respec-
tively.

3.3.2 Area and Volume
In spin representation, SNW states are the eigen-states of area operators as well as volume
operator. So let us again move to spin representation to simplify the calculation.

In spin representation, the group creation operator ϕ̂†t(g, φ) is decomposed into

ϕ̂†t(g, φ) =
∑

j,m,n,l

ϕ̂†j1j2j3j4l(t)m1m2m3m4
(φ)ιj1j2j3j4ln1n2n3n4

4∏
i=1

Dji
mini

(gi), (3.33)

where the gauge invariance of ϕ̂ is represented by the intertwiner. The field operators in
spin basis satisfies

[ϕ̂ j1j2j3j4l
(t)m1m2m3m4

(φ), ϕ̂†j
′
1j
′
2j
′
3j
′
4l
′

(t′)m′1m′2m′3m′4
(φ′)] = δt,t′δji,j′iδmi,m′iδl,l′δ

4(φ− φ′). (3.34)

Then the condensate field operator reads

σ̂†t (hI) =
∫

dgIdφ
∑

j,m,n,o,lL,lR

σj1j2j3j4lLlR(φ)ιj1j2j3j4lLm1m2m3m4ι
j1j2j3j4lR
n1n2n3n4

4∏
I=1

DmIoI (hI)DoInI (gI)ϕ̂
†
t(gI , φ)

≡
∑

j,m,o,lL

ˆ̃σ† j1j2j3j4lL
(t)o1o2o3o4

ιj1j2j3j4lLm1m2m3m4

4∏
I=1

DjI
mIoI

(hI), (3.35)
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where the wave-function assigned to the new operator is

σ̃j1j2j3j4lL(t)o1o2o3o4
(gI , φ) ≡ 〈gt, φt| σ̂†j1j2j3j4lL(t)o1o2o3o4

|0〉 =
∑
lR

σj1j2j3j4lLlR(φ)ιj1j2j3j4lRn1n2n3n4

4∏
I=1

DjI
oInI

(gI). (3.36)

The operator can be extended as

ˆ̃σ†j1j2j3j4lL(u,t)o1o2o3o4
=
∑
lR

∫
dgIdφσj1j2j3j4lLlRu (φ)ιj1j2j3j4lRn1n2n3n4

4∏
I=1

DjI
oInI

(gI)ϕ̂†(gI , φ), (3.37)

peaked at φ = φu.

Let area operator count the area of the outer boundary with open links labelled 1 on
u−shell, such that

Â1(φu) =
∑

t=W,B
Â1,t+ ≡

∏
s={+,0,−}

ς̃2
usκ

∑
t=B,W

∫
dhvI σ̂

†
r,t+(hvI)

√
Ei

1E
j
1δij � σ̂r,t+(hvI), (3.38)

which is an extended version of the usual area operator (2.48). The expectation value of
area operator (3.38) is

〈Γn(φu)| Â1(φu) |Γn(φu)〉

=
∑

t={B,W}
κ〈n̂u,ts〉

∫
dgvIdhvIdφvσφu+δφu(hvIgvI ;φv)

√
Ei

1E
j
1δij � σφu+δφu(hvIgvI ;φv)

≡
∑

t={B,W}
〈n̂u,t+〉a1,u+, (3.39)

where a1,us is the area for a single open link 1 on the boundary + of shell u, whose wave-
function peaks at φu + δφu:

a1,u+ = κ
∑
lL,j,o

∫
dhdφσ̃j1j2j3j4lL(u+)o1o2o3o4

(h, φ)
√
Ei

1E
j
1δi,j � σ̃j1j2j3j4lL(u+)o1o2o3o4

(h;φ)

' κς̃−1
u+

∑
lL,j,o,n,n′

∫
dh

d2
j1d

2
j2d

2
j3d

2
j4

n(j1, j2, j3, j4, lL)

ιj1j2j3j4lLn1n2n3n4 ι
j1j2j3j4lL
n′1n
′
2n
′
3n
′
4

4∏
I=1

DjI
oInI

(h)DjI
oIn
′
I
(h)

√
j1(j1 + 1)

= κς̃(φu + δφu)−1∑
j

dj1dj2dj3dj4

√
j1(j1 + 1). (3.40)

Though Â(φu) acts on a shell labeled by u, it actually computes the area of a layer whose
‘radial coordinate’ is φu + δφu. So we have

〈Asphere(φu)〉 ∝ ς̃−1(φu). (3.41)
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The expectation value of volume operator can be found in a similar vein. The extended
volume density operator reads

V̂u,ts =
∫

dhvdhwσ̂†u,ts(hv)V (hv, hw)σ̂u,ts(hw), (3.42)

which results in

〈V̂u,ts〉 = 〈n̂u,ts〉
∫

dhdh′dgdgdφdφ′δ(h, h′)σus(hg;φ)V (g, g′)σus(h′g′;φ′)

≡ 〈n̂u,ts〉V̄(a)ts(φu). (3.43)

The spatial-volume of a shell reads

〈V3(φu)〉 =
∑

t={B,W}

∑
s={+,0,−}

〈n̂u,ts〉V̄(a)ts(φ)dφ|φ=φu , (3.44)

where dφ is the infinitesimal variation in field space [204]. Letting Vj1j2j3j4 be the eigen-
value of a volume density operator acting on a SNW with links {j1, j2, j3, j4}, one finds the
average volume is

V̄(a)us =
∑

j,j′,m,m′,l,l′

∫
dhdh′dφvdφwδj,j′δm,m′Vj1j2j3j4

σ̃j1j2j3j4l(u,ts)m1m2m3m4
(h, φv))δ(l, l′)σ̃

j′1j
′
2j
′
3j
′
4l
′

(u,ts)m′1m′2m′3m′4
(h;φw)

=
∑

j,m,lR,l
′
R,n,n

′

∫
dhdφwδ(lR, l′R)σj1j2j3j4lRus (φw)σj1j2j3j4l

′
R

us (φw)

ιj1j2j3j4lRn1n2n3n4 ι
j1j2j3j4l′R
n′1n
′
2n
′
3n
′
4

4∏
i=1

Dji
mini

(hi)Dji
min′i

(hi)Vj1j2j3j4

' ς̃−1
us

∑
j

Vj1j2j3j4dj1dj2dj3dj4 . (3.45)

So we finally find the total effective volume of shell-u

〈V3(φu)〉 ∝ ς̃(φ)−1dφ|φ=φu + ς̃(φ)−1dφ|φ=φu+δφu + ς̃(φ)−1dφ|φ=φu−δφu

' 3ς̃(φ)−1dφ|φ=φu . (3.46)

Before we go to classical side and match these observables to find properties of wave-
function σ, let us take a quick investigation on the general properties of these shell states,
where a horizon-like structure obeying the area law will be found.

3.4 Gluing States and Properties
The full space foliation is obtained by gluing the shells. One will find that coupling of
matter d.o.f. does not change the properties such as entanglement structure, which are
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the same with the state without scalar fields [186]. Since the process and the results are
almost the same with that in [186], this section will simply give a brief summary.

A generic complete-foliation state reads∣∣∣Ψ̃〉 =
∏
u

|Ψu〉 , (3.47)

with a density matrix
ρ̂ =

∣∣∣Ψ̃〉 〈Ψ̃
∣∣∣ . (3.48)

To find the entanglement structure between shells, let us consider a graph A describing
the outer boundary of a shell at φ1, and a graph B for the inner boundary of a shell at φ2.
Both graphs have the same number n of vertices, so they could be glued properly. Then
the wave-function of the glued graph A ∪B is

ψ(gA1
I , ..., gAnI , gB1

I , ..., gBnI ;φA1 , ...φAn , φB1 , ...φBn)

=
n∏
i=1

σ̃j1j2j3j4lR
Aimi1m

i
2m

i
3m

i
4
(gAiI , φAi)σ̃

j1j2j3j4lR
Bini1n

i
2n
i
3n
i
4
(gBiI , φBi)

δ
mi1,−n

tm1 (i)
1

4∏
J=2

δ
miJ ,−m

tm
J

(i)
J

δ
niJ ,−n

tn
J

(i)
J

, (3.49)

where tmJ (i)/tnJ(i) represents the target vertex in graph A/B of edge J departing from ver-
tex i, and δ’s are used to keep track of the connectivity of graph A ∪B.

Integrating away the B part results in a reduced density matrix for part A

ρ
(n)
A (g1

I , ..., g
n
I , g

′1
I , ..., g

′n
I ;φ1, ...φn, φ′

1
, ..., φ′

n)

=
(
ς̃(φ1 + δφu)∏4

I=1 djI

)n n∏
i=1

σ̃j1j2j3j4lL
Aimi1m

i
2m

i
3m

i
4
(giI , φi)σ̃

j1j2j3j4lL
Aim

′i
1 m
′i
2 m
′i
3 m
′i
4
(g′iI , φ′i)

δmi1,m′i1

4∏
J=2

δ
miJ ,−m

tm
J

(i)
J

δ
m′iJ ,−m′

tm
′

J
(i)

J

. (3.50)

This implies that no information about bulk degrees of freedom can be found from a re-
duced density matrix, so only the shells nearby will contribute to the entanglement entropy
[186].

If A has combinatorial pattern α, then (3.50) has eigen-states

Ψn
u,s(Γα) = Ψ(n)

A (n1, g, φ) =
(
ς̃(φ1 + δφu)∏4

I=1 djI

)n
2 n∏
I=1

σ̃j1j2j3j4lL
Aini1n

i
2n
i
3n
i
4
(giI , φi)

4∏
J=2

δ
niJ ,−n

tn
J

(i)
J

, (3.51)

which satisfies 〈
Ψ(n)
A (n1, g, φ

′)
∣∣∣Ψ(n)

A (n′1, g, φ)
〉

=
n∏
i=1

δni1,n′i1 . (3.52)
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We find that ∫ n∏
i=1

dgidφiρ(n)
A (g1

I , ..., g
n
I , g

′1
I , ..., g

′n
I ;φ1, ...φn, φ′

1
, ..., φ′

n)Ψ(n)
A (n1, g, φ)

= Ψ(n)
A (m1, g

′, φ′). (3.53)

The orthogonality between states has been proved that [186]

〈
Ψn
u,s(Γα)

∣∣∣Ψn
u,s(Γα′)

〉
= δα,α′

n∏
i=1

δni1,n′i1 , (3.54)

which indicates
ρ(n)
u,s(Γα)Ψ(n)

u,s(Γα′) =
{

Ψ(n)
u,s(Γα′) α = α′

0 α 6= α′
. (3.55)

Computation above shows that the matter reference frame do not affect the entanglement
structure of the states, and the reduced density matrix can be diagonalised. Therefore,
the entropy of a shell can be obtained by counting the number of the states (or graphs),
which is the same as the Boltzmann entropy [186].

Then we can identify a shell state as a black hole horizon by maximising its entropy.
This strategy is supported by the argument that horizon entropy has an upper bound
[205, 206], describing the dynamics in this purely kinematic model to a certain degree.

The entropy consists of two parts: one from combinatorial structure, and the other
from geometric information. The combinatorial entropy is contributed from graphs Γα at
fixed topology,

Scomb = −
N∑
α=1

ωn(Γα) log[ωn(Γα)], (3.56)

and ωn is the weight. Let N be the total number of graphs with a given number of vertices
(which is 2n in each layer). The most disordered configuration is the one that all weights
are equal, i.e.

ωmaxn (Γ) = 1
N
. (3.57)

Thus,
Smaxcomb = log(N). (3.58)

The number of distinct graphs obtained with (n − 1) refinement moves acting on l layers
of the shell initial seed states is found to be

N =
(

(2n− 2)!
n!(n− 1)!

)l
. (3.59)

Scalar fields do not affect the combinatorial structure of the graphs, so N here is exactly
the same with that in case where only geometrical degrees of freedom are considered [186].
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Taking n to be large and applying Stirling’s formula

log(n!) ' n log(n)− n+ 1
2 log(2πn), (3.60)

one obtains
Smaxcomb ' 2ln log(2)− 3

2 l log(n). (3.61)

This is the entropy from combinatorial degrees of freedom on the horizon.

The ‘geometric’ entropy relies on the degeneracy of the Hilbert space for a single vertex,
whose macroscopic quantities are given by fixed values. Suppose aH is the average area
dual to the links on the horizon, and the degeneracy of the Hilbert space for a single
vertex is ∆(aH) for the fixed values of the macroscopic quantities. The total entropy of
the horizon is

S(n, aH) = log(N∆(aH)) = 2nl log(2) + log(∆(a))− 3l
2 log(n). (3.62)

Assume the classical horizon area is of AH . Consider a function [186] Σ(n, aH , λ), where

Σ(n, aH , λ) = S(n, aH) + λ(AH − 2naH), (3.63)

and λ ' 1/8`2
P is a Lagrange multiplier that imposes the area constraint [186]. To maximise

the entropy at large n, one requires
∂Σ
n

= 2l log(2)− 3l
2n − 2λaH ' 2l log(2)− 2λaH = 0, (3.64)

∂Σ
aH

= ∆′(aH)
∆(aH) − 2λn = 0, (3.65)

∂Σ
λ

= AH − 2naH = 0. (3.66)

Then one obtains

aH = l log(2)
λ

, (3.67)

2naH = AH , (3.68)
∆(aH) = exp(2λaHn) = exp(λAH). (3.69)

One also supposes that aH ∼ `2
P , with `P the Planck length. Then the entropy reads

S(AH) ' 2nl log(2) + log(∆(aH))− 3l
2 log

(
AH
l2P

)

= 2aλn+ λAH −
3l
2 log

(
AH
l2P

)

= 2λAH −
3l
2 log

(
AH
l2P

)
. (3.70)
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Finally, one finds

S(AH) ' AH
4`2
P

− 3l
2 log

(
AH
`2
P

)
, (3.71)

If the combinatorial structures of the three layers are the same, through entropy max-
imisation, one obtains

S(AH) ' AH
4`P
− 3

2 log
(
AH
`2
P

)
. (3.72)

The logarithm correction is consistent with results in LQG [207–209]. Thus, if a horizon
exists in this full state, its entropy will obey the area law.

3.5 Recovery of Schwarzschild Geometry
Both area and volume of quantum shell states are still abstract because wave-function σ
is unknown. In this chapter, we only consider a GFT black hole candidate state at kinetic
level, with no dynamics be of concern. Unlike Chapter 2, where we consider the dynam-
ics and obtain the GFT wave-function by solving the Schwinger-Dyson equation, in this
chapter, we will find the wave-function by matching the quantum expectation values with
classical geometric observables. To do this, the key point here is to have the precise scalar
fields.

3.5.1 Klein-Gordon Equation
The scalar fields are clocks and rods, so their existence cannot affect the original space-
time too much. If we consider the precise black hole solution of a Schwarzschild space-time
coupled with a scalar field, the main features of the black hole will be changed dramatically.
Focusing on reproducing a Schwarzschild black hole, we will approximately solve equations
of motion of the scalar fields in a Schwarzschild background:

ds2 = −
(

1− 2GM
r

)
dt2 +

(
1− 2GM

r

)−1
dr2 + r2(dθ2 + sin2(θ)dχ2). (3.73)

So far, we only consider the model at kinetic level, and GFT model does not restrict
the scalar fields with dynamics. As a result, there no reason to presume that these fields
are massless (m = 0) or free (V (φ) = 0). Thus, the only information one has is that the
scalar fields satisfy the Klein-Gordon equations,

∇µ∇µφi −m2
iφi − V ′i (φi) = 0, (3.74)



3.5 Recovery of Schwarzschild Geometry 61

with negligible energy-momentum tensors.

Rµν −
1
2gµνR = 1

2

4∑
i=1

[
∂µφi∂νφi −

1
2gµν

(
(∂φi)2 + m2

iφ
2
i + 2Vi(φi)

)]
' 0. (3.75)

Furthermore, depending on the role it plays, the field should also be monotonic in a tem-
poral or a spatial direction.

The metric (3.73) can be rewritten in arbitrary coordinates, but the GFT foliation
discussed in previous section has picked a preferred form of the metric facilitating the
calculation, which reads

ds2 = −f1(τ, u)dτ 2 + f2(τ, u)du2 + 2f3(τ, u)dτdu+ r2(τ, u)dΩ2, (3.76)

where τ , u are arbitrary time-like and space-like coordinates. By requiring f1 > 0 and
f2 > 0, the constant-τ hypersurface is space-like. The metric (3.76) foliates a space into
nested spheres, compatible with what GFT has assumed. Then analytical solutions of
scalar fields in (3.76) can be used to rewrite the spatial part of the Schwarzschild metric
in a ‘relational’ manner, such that

dh2
relational = f2[τ(φ1), u(φ2)]

φ′2(u)2 dφ2
2 + r(φ1, φ2)2dΩ2(φ3, φ4), (3.77)

According to the relational metric (3.77), at a fixed clock time φ1 = φτ , the area and the
volume of a sphere at φ2 = φu are

Arel(φu) = 4πr2(φτ , φu), (3.78)

V3rel(φu) = 4πr2(φτ , φ2)

√
f2[φτ , φ2]
φ′2(u) dφ2|φ2=φu . (3.79)

By requiring that
Arel(φu) ∝ 〈Asphere(φu)〉GFT , (3.80)

and
V3rel(φu) ∝ 〈V3(φu)〉GFT , (3.81)

one will find what wave-function σ should be assigned to GFT building blocks in order to
reproduce the continuum Schwarzschild geometry.

With a few conditions put on the scalar fields, it seems to be impossible to find the
precise solutions, but we will show how ambiguities are exhausted in the following analy-
sis. In addition, the expectation values (3.41) and (3.46) are invariant under a scalar field
redefinition such as choosing φ̃(φ) as a new variable. So even redefining the fields, we will
explore all possibilities.
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First of all, we have shown that GFT construction has a preferred form of coordinates
(3.76) that yields a spherical foliation. Next, we do not have to find all scalar fields, since
φ1 and φ2 are sufficient to give relational description. It is not only because φ3 and φ4
will break the spherical symmetry, but also because it is meaningless to localise a point
on a sphere if a sphere as a whole is the most basic quantity, which has been argued al-
ready. Thus one could leave them abstract and implicitly assume their energy-momentum
density is negligible. However, unlike φ3 and φ4, an exact solution of φ1 is necessary, even
though there is no clock-dependence in GFT states, because a clock is essential to define
an equal-time hypersurface. Therefore, we need to solve classical Klein-Gordon equations
for φ1 and φ2.

From condition (3.80), one knows that the usual radial coordinate r should have no
φ1-dependence, or equivalently no τ -dependence. Without losing any generality, one can
choose u = r, and the foliation (3.76) becomes

ds2 = −f1(r)dτ 2 + f2(r)dr2 + 2f3(r)dτdr + r2dΩ2. (3.82)

Assume φ1(τ) has a potential V (φ1) and a mass term m1. Its Klein-Gordon equation reads

0 = ∇µ∇µφ1 − V ′(φ1)−m2
1φ1(τ)

= − f2(r)
f1(r)f2(r) + f3(r)2φ

′′
1(τ)− V ′(φ1)−m2

1φ1(τ) (3.83)

−rf2(r)f3(r)f ′1(r) + f1(r) (rf3(r)f ′2(r)− 2f2(r) (rf ′3(r) + 2f3(r)))− 4f3(r)3

2r (f1(r)f2(r) + f3(r)2)2 φ′1(τ).

Since f2(r) > 0, the first term on the right-hand side is non-zero unless φ′′1(τ) = 0, which
is not allowed since φ1 must be monotonic in τ . So this term is non-vanishing. Meanwhile,
φ1 and V (φ1) have no r-dependence while other terms contain r, so the contribution from
potential and mass should be zero in order that the equation makes sense. For the same
reason, the remaining terms containing r needs to be canceled. An option is that the last
term equals zero for any r ∈ R+, which results in a solvable equation. The equation

rf2(r)f3(r)f ′1(r) + f1(r) (rf3(r)f ′2(r)− 2f2(r) (rf ′3(r) + 2f3(r)))− 4f3(r)3 = 0 (3.84)

has the following solutions

f3(r) = 0, (3.85)

f3(r) =

√
f1(r)f2(r)
√
−1 + C1r4 , (3.86)

f3(r) = −

√
f1(r)f2(r)
√
−1 + C1r4 , (3.87)

where C1 is a constant. Both φ1 and φ2 must be real, so the last two solutions, yielding a
solution φ1 with non-vanishing imaginary part, are ruled out. When f3 = 0, one obtains
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a Schwarzschild metric in usual spherical coordinates (3.73) if τ = t. The Klein-Gordon
equation of φ1(t) reads

φ′′1(t) = 0, (3.88)
whose solution is

φ1(t) = β1t, (3.89)
where β2

1 � 1 so the energy-momentum tensor Ttt ' 0.

To find φ1, one first notes that conditions (3.80) and (3.81) together imply

dφ2(r)
dr = β2√

f(r)
, (3.90)

where
f(r) = 1− 2GM

r
, (3.91)

with β2 an arbitrary constant. It is immediate to obtain

φ2(r) = β2r

√
1− 2GM

r
+ 2β1GMarctanh

√1− 2M
r

 , (3.92)

for positive mass M with r > 2GM . Then let us find its mass or potential. Absorbing the
mass term in potential term V (φ2), one has

∇µ∇µφ− V ′(φ) = 0. (3.93)

Substituting the solution into this equation yields

β2
2r − 3GM
r2
√
f(r)

= V ′(φ2). (3.94)

The inverse r(φ2) tells how area and volume of a thin shell depend on φ2. Though
the inverse cannot be expressed analytically for the time being, we can find it at different
limits separately. First is the asymptotic infinity r → ∞. In this region, V ′(φ2) ' 0, and
the simplest choice is that V (φ2) = 0. Then for the rod, we have φ′2(r) ' 0, and

φ2(r) ' β2r. (3.95)

Therefore, φ2 → ∞ corresponds the asymptotic infinity. In the near-horizon regime, one
finds f(r) ' r/2M − 1, and

dφ2(r)
dr ' β2√

r
2GM − 1

. (3.96)

Therefore,
φ2(r) ' 4β1GM

√
r

2M − 1, (3.97)
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and φ2 ' 0 at the event horizon. Its inverse reads

r = φ2
2

8β2
2GM

+ 2GM. (3.98)

Consequently,
V ′(φ2) ' β2

2
φ2
, (3.99)

so
V (φ2) ' β2

2 ln(φ2). (3.100)
It can be checked that φ1 and φ2 are good clock and rod. As φ1 = β1t, there is a

one-to-one correspondence between φ1 and t. For φ2, φ′2(r) ∝ 1/
√
f(r), and it is always

true that f(r) > 0. So φ2 is a monotonic function of r.

We have shown that, starting at kinematical trial states, all ambiguities on scalar field
dynamics are eventually removed, and the precise scalar fields are obtained.

3.5.2 Macroscopic GFT Wave-function
It is straightforward to find the relational observables and match them with quantum
expectation values, and the GFT wave-function σ will be fixed. The relational spatial
metric reads

dh2
rel = 1

β2
2

dφ2
1 + r2(φ2)dΩ2. (3.101)

At asymptotic infinity, φ2 →∞, a sphere at φ2 = φu has the area and the 3-volume

Arel(φu) = 4π
(
φu
β2

)2

, (3.102)

V3rel(φu) = 4π
β2

(
φ2

β2

)2

dφ2|φ2=φu . (3.103)

In near-horizon regime when M > 0,

Arel(φu) = 4π
(

φ2
u

8β2
2GM

+ 2GM
)2

, (3.104)

V3rel(φu) = 4π
β1

(
φ2

2
8β2

2GM
+ 2GM

)2

dφ2|φ2=φu . (3.105)

To summarise, the GFT wave-functions should have such properties in order to build
micro-states of spherically symmetric geometries:

Schwarzschild


Asymptotic infinity(φ→∞) ς̃(φ)−1 ∝ φ2

Near-horizon(φ ∼ 0) ς̃(φ)−1 ∝ (φ2 + 16β2
1(GM)2)2

Near-singularity Not available
. (3.106)
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Because φ(r) ends at r = 2GM , the rod cannot pass the horizon. As a result, no wave-
function corresponds to the near-singularity behaviour is available.

3.6 Discussion
In this chapter, we construct a candidate quantum state of spherically symmetric black
hole in a matter reference frame at kinetic level. With SNW connectivity and a proper
wave-function assigned to GFT building blocks, these states can reproduce the continuum
Schwarzschild geometries.

Admittedly, some limitations exist. The first one is that scalar field as a rod cannot
extend into the horizon, which also occurs in a previous paper [210]. Neither GFT model
can describe both interior and exterior Schwarzschild regions. In our case, real solutions
of Klein-Gordon equations can only be found for scalar fields monotonic in usual spherical
coordinates {t, r, θ, χ} separately. When crossing the horizon, r is no longer space-like and
it becomes a temporal coordinate, so φ2(r) is no longer a rod inside the horizon. Such
a limitation suggests a possible improvement in the future. An important set-up in our
model is that the condensates are labeled by the value of φ2, which is assumed to be a
‘radial parameter’. A ‘radial coordinate’ will inevitably encounter a coordinate singularity
on event horizon r = 2GM . Therefore, the construction is more likely to reach inside if the
scalar fields behave like Kruskal-Szekeres coordinates. It is hopeful to find a suitable choice
in future the by generalising the states further and labeling each shell with appropriate
parameters. Another limitation is that dynamics has not been included in this model, and
it is assumed implicitly the states satisfy the microscopic quantum dynamics. Finally, we
did not calculate curvatures, which is of great importance when investigating black holes
and resolving the curvature singularity. However, the absence of curvature operator has
been a problem for long, and it is beyond the scope of this dissertation.

A similar research on GFT black hole as quantum gravity condensate coupled with
scalar fields has been conducted previously [210], where the wave-function were found by
matching the observables as well. The wave-functions and the scalar fields in our paper
are different from those in [210], because these two models are fundamentally different.
The model in this dissertation benefits from several improvements. First, the connectivity
is introduced to the graph, whilst the previous work simply considers the disconnected
tetrahedra. As mentioned, only with connected states can one recover the continuum
topological structure, so the model in this chapter is physically more rigorous. Next, the
coherent peaked state is applied in our model, which makes quantum fluctuations control-
lable. Moreover, our result could match all available geometrical quantities, but only the
volume is considered in [210]. Additionally, the scalar fields in our model do not necessarily
satisfy the harmonic gauge (�φ = 0) applied in previous papers. Instead, mass and poten-
tial terms are included to make the fields as general as possible, which leads to different
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solutions for Klein-Gordon equations. Lastly, our state can reproduce the area law with
the same corrections with those from LQG.

Despite the limitations, which are not really problems at early stage, our model has
made a great progress. The results suggests that we are working on a correct direction,
and it is our interest to improve the model and generalise it to various black holes in the
future.



Chapter 4

Amit-Roginsky Model from Boulatov
Model

This chapter is based on a project in collaboration with Victor Nador, Daniele Oriti, Xian-
Kai Pang, and Adrian Tanasa.

In this chapter, an Amit-Roginsky-like model will be obtained as a perturbation around
the 3D Boulatov GFT in a matter reference frame, which consists of three scalar fields. The
explicit conditions on the classical solutions of Boulatov model as well as the perturbations
will be studied, in order to recover an Amit-Roginsky-like effective action. This work
explores the possibility of combining an interesting matter theory with melonic dominance
and a 3D GFT.

4.1 Background
The role of matter in quantum gravity, however, is not limited to a relational reference
frame. Let us first forget the relational matter reference system, and take a closer look at
the GFT action (1.20). As introduced, containing of geometric d.o.f., this is a quantum
theory of space-time. In addition to gravity, there are various types of matter in our real
world. So as a candidate for quantum gravity, GFT should be able to describe the in-
teraction between the matter and the gravity. Furthermore, the construction of quantum
gravity needs guidance from experiments. The inclusion of matter within GFT is a promis-
ing way towards the quantum gravity phenomenology [211], which is possible to provide
observational test on a theory.

The coupling of matter fields in GFT has been studied for a long time [133, 134, 212].
Beside the direct coupling, the scalar matter can be introduced to 3D GFT as a particular
phase of geometry [213], which a simpler method. The strategy starts from a GFT action
SGFT, and finds its classical solution ϕf . After doing a perturbation ϕ around the solution,
one obtains a field ϕf + ϕ. Finally, substituting the perturbed field into SGFT yields an
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effective action Seff
Seff = SGFT(ϕf + ϕ)− SGFT(ϕf ), (4.1)

and this effective action turns out to be the one describing the dynamics of a scalar field.

In this chapter, we will continue with a GFT coupled with scalar fields as physical
reference frame. Starting from the GFT action and its classical solution, we will follow the
work done in [213] and show how an effective Amit-Roginsky-like matter field emerges as
a perturbation over the geometry.

4.2 Boulatov Model
The first quantum gravity model is the Ponzano-Regge quantisation of a (2+1)-dimensional
Euclidean gravity [214], which belongs to the sum-over-histories quantum gravity pro-
gramme and can be viewed as a SF model. As mentioned in Chapter 1, GFT has a
correspondence with SF, and the dual GFT of Ponzano-Regge theory is the Boulatov
model [106], whose dynamical object is a field T (g1, g2, g3) : G3 → C, where G = SU(2)
for Riemannian quantum gravity in Euclidean signature.

The field T (g1, g2, g3) satisfies the reality condition [213]

T (g1, g2, g3) = T̄ (g3, g2, g1), (4.2)

as well as the right gauge invariance

T (g1h, g2h, g3h) = T (g1, g2, g3) ∀h ∈ SU(2). (4.3)

The dynamics of field T is governed by the action

S = µ2

2

∫
dg1dg2dg3T (g1, g2, g3)T̄ (g1, g2, g3)

− λ

4!

∫ 6∏
i=1

dgiT (g1, g2, g3)T (g3, g5, g4)T (g4, g2, g6)T (g6, g5, g1), (4.4)

where µ is the ‘mass’, and λ is a coupling constant. Thus, the action (4.4) yields the
equation of motion

µ2T (g3, g2, g1) = λ

3!

∫
dg4dg5dg6T (g3, g5, g4)T (g4, g2, g6)T (g6, g5, g1). (4.5)
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As performed in previous chapters, we again work in the spin representation for con-
venience. Then according to Peter-Weyl theorem, T (g1, g2, g3) can be decomposed into

T (g1, g2, g3) =
∑
{j,m,n}

Tm1m2m3
j1j2j3

3∏
i=1

√
2ji + 1Dji

mini
(gi)

(
j1 j2 j3
n1 n2 n3

)
, (4.6)

with

Tm1m2m3
j1j2j3 =

∫
dg1dg2dg3

∑
{n}

T (g1, g2, g3)
3∏
i=1

√
2ji + 1D̄ji

mini
(gi)

(
j1 j2 j3
n1 n2 n3

)
. (4.7)

Thus, the spin-representation version of the action (4.4) is

SB[T ] =
∑

j1,j2,j3

µ2

2 |T
m1,m2,m3
j1,j2,j3 |2 − λ

4!
∑
j1,..,j6

{
j1 j2 j3
j4 j5 j6

}
T 46j , (4.8)

where
|Tm1,m2,m3
j1,j2,j3 |2 =

∑
j1,j2,j3

m1,m2,m3

(−1)
∑3

i=1(ji−mi)Tm1,m2,m3
j1,j2,j3 T−m1,−m2,−m3

j1,j2,j3 , (4.9)

and

T 46j =
∑
{j,m}

(−1)
∑6

i=1(ji−mi)T−m1,−m2,−m3
j1j2j3 Tm3,m5,−m4

j3j5j4 Tm4,m2,−m6
j4j2j6 Tm6,−m5,m1

j6j5j1 . (4.10)

Correspondingly, the equation of motion in spin representation reads

µ2Tm1,m2,m3
j1,j2,j3 = λ

3!
∑

j4,j5,j6

{
j1 j2 j3
j4 j5 j6

}
T

46j
\{m1,m2,m3}, (4.11)

where

T
46j
\{m1,m2,m3} =

∑
m4,m5,m6

(−1)
∑6

i=4(ji−mi)Tm3,m5,−m4
j3j5j4 Tm4,m2,−m6

j4j2j6 Tm6,−m5,m1
j6j5j1 . (4.12)

means that magnetic indices m1,m2 and m3 are not summed on.

A field T represents a triangle, and the interaction term glues four triangles to form a
tetrahedron as a building block of a 3D Euclidean space. The kinetic term connects the
faces of these tetrahedron, so one obtains the triangulation, as illustrated in Figure 4.1 and
Figure 4.2.

4.2.1 Matter Reference Frame and Homogeneous Solution
In this chapter, real scalar fields are used as relational reference frame as well. The coupling
of matter d.o.f. will facilitate the following computation where a matter field will occur
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g1 g1

g2 g2

g3 g3

Figure 4.1: The field T (g1, g2, g3) corresponds to a triangle, and its kinetic term tells how
to glue two triangles, which are the faces of tetrahedra.

g1 g2 g3

g3

g5

g4

g6 g2 g4

g1

g5

g6

←→

Figure 4.2: The interaction term of T (g1, g2, g3) combines four fields, corresponding to a
tetrahedron as a building block of 3D Euclidean gravity.

effectively as a perturbation over geometry. For simplicity, the scalar fields in this chapter
are assumed to be free and massless, same with those applied in chapter 2.

In three dimensions, one needs three scalar fields in total, χ1, χ2, and χ3, to localise a
triangle. Let χ = (χ1, χ2, χ3), and as illustrated in Chapter 1, the field T is extended to
T (g1, g2, g3;χ) : SU(2)3 × R3 → C. The new action then reads

S[T ] =
∫

[dg]3d3χ

[
1
2∇T (g1, g2, g3;χ)∇T̄ (g1, g2, g3;χ) + µ2

2 T (g1, g2, g3;χ)T̄ (g1, g2, g3;χ)
]

− λ

4!

∫ 6∏
i=1

dgid3χT (g1, g2, g3;χ)T (g3, g5, g4;χ)T (g4, g2, g6;χ)T (g6, g5, g1;χ)., (4.13)

where ∇ = (∂χ1 , ∂χ2 , ∂χ3). The first term in (4.13) shows an invariance under translation
χi → χi + ai, where ai are some real constants. The equation of motion of (4.13) reads

∇2T (g3, g2, g1;χ) + µ2T (g3, g2, g1;χ)

= λ

3!

∫
dg4dg5dg6T (g3, g5, g4;χ)T (g4, g2, g6;χ)T (g6, g5, g1;χ). (4.14)

In spin representation, the action (4.14) becomes

SB[T (χ)] =
∑

j1,j2,j3

∫
d3χ

[
1
2
∣∣∣∇Tm1,m2,m3

j1,j2,j3 (χ)
∣∣∣2 + µ2

2
∣∣∣Tm1,m2,m3
j1,j2,j3 (χ)

∣∣∣2

− λ4!
∑
j1,..,j6

{
j1 j2 j3
j4 j5 j6

}∫
d3χT (χ)46j

 . (4.15)
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This leads to the equation of motion:

∇2Tm1,m2,m3
j1,j2,j3 (χ) + µ2Tm1,m2,m3

j1,j2,j3 (χ) = λ

3!
∑

j4,j5,j6

{
j1 j2 j3
j4 j5 j6

}
T (χ)46j

\{m1,m2,m3}. (4.16)

Boulatov model has a family of classical homogeneous solution [213], which is indepen-
dent of χ:

Tf (g1, g2, g3) = µ

√
3!
λ

∫
dhδ(g1h)f(g2h)δ(g3h), (4.17)

where f is an arbitrary function f : SU(2)→ C and it is normalised such that
∫

dgf 2 = 1.
In (4.17), δ denotes the Dirac delta over SU(2), such that∫

dhδ(h) = 1,
∫

dhδ(h)f(h) = f(I), (4.18)

where I is SU(2) group identity. Its spin-representation dual is

(Tf )m1,m2,m3
j1,j2,j3 = µ

√
3!
λ

√
dj1dj3

∑
l2

f j2m2,l2

(
j1 j2 j3
m1 l2 m3

)
, (4.19)

where dj = 2j + 1. In spin representation, f jmn reads

f jmn =
√

2j + 1
∫

dgf(g)D̄j
mn(g), (4.20)

and satisfies the normalization condition∑
j,m,n

(−1)m−nf jmnf
j
−m,−n = 1. (4.21)

Before we move on, let us discuss briefly a special type of solution which is regularised
by the heat kernel. One finds a divergent action if one substitutes (4.17) into (4.13), due
to the Dirac delta. To control the divergences, we can replace the Dirac delta with a
heat-kernel delta:

δ(g) =
∑
j,m

(2j + 1)Dj
mm(g)→ δε(g) =

∑
j,m

(2j + 1)Dj
mm(g)e−εCj , (4.22)

where Cj = j(j + 1) is the quadratic Casimir of SU(2) spin-j representation. If ε → 0,
this is simply a Dirac delta. Accordingly, function f is decomposed into

fε(g) =
∑
j,m,n

f jmnD
j
mn(g)e−εCj . (4.23)

When ε→ 0, one recovers the original function f .
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Assume the norm of δε to be α−2
ε , and the normalised version for δε is

∆ε(g) = αε
∑
j,m,n

√
dj(∆ε)jmnDj

mn(g)e−εCj , (4.24)

where the Peter-Weyl coefficients (∆ε)jmn reads

(∆ε)jmn = αε
√
djδmne

−εCj . (4.25)

Then a regularised and symmetric solution can be

Tε(g1, g2, g3) = µ

√
3!
λ

∫
dhδε(g1h)∆ε(g2h)δε(g3h)

= µαε

√
3!
λ

∫
dhδε(g1h)δε(g2h)δε(g3h), (4.26)

in group representation, or

(Tε)m1m2m3
j1j2j3

= µαε

√
3!
λ

3∏
i=1

√
djie

−εCji

(
j1 j2 j3
m1 m2 m3

)
, (4.27)

in spin representation. However, (4.26) is only an approximate solution of Boulatov model,
so we will continue with solution (4.17) in following sections.

4.3 Amit-Roginsky Theory as a Phase of Boulatov
Model

4.3.1 Amit-Roginsky Model
Systems with a large number of d.o.f. are of great interest in physics. Take the matrix
model for example, where the dynamical objects are N × N matrices. The large-N limit
is also known as the ‘planar limit’ [82], where only spherical topology contributes to the
Feynman diagrams [82, 215]. Extending to tensor models, one finds that tensor models are
dominated by melonic graphs when N →∞ [90, 215].

Another interesting example with large d.o.f. is the Sachedev-Ye-Kitaev (SYK) model
[216–219], which becomes increasingly important in both condensate matter physics and
fundamental physics. It is a model of strongly coupled quantum many-body systems. One
remarkable feature of SYK model is being solvable, and it is believed that SYK model has
a gravitational dual with maximal chaos. A typical action of an SYKq model containing
N fermions has an interaction among q Majorana fermions,

Sq =
∫
dτ

 N∑
i=1

ψi
d

dτ
ψi −

iq/2

q!

N∑
i1,...,iq=1

Ji1...iqψi1 ...ψiq

 , (4.28)
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i1 i1

i2

i3

i4

disorder averaging

Figure 4.3: The self energy of an SYK4 model at large N is a melonic graph. The
fully dressed Green function is represented by black lines, and the correction from disorder
averaging is denoted by the blue dotted line.

where the coupling constant Ji1...iq are independent random Gaußian variables. This model
can be solved if Ji1...iq has zero mean and N → ∞, and one can apply the self-averaging
properties of SYK model to find the correlation functions up to 1/N corrections. At large-
N limit, the Feynman graphs of SYK model are melonic [220], as is shown by Figure 4.3
which takes q = 4 for example.

Motivated by Razvan Gurau’s work on tensor models [221, 222], Edward Witten made
an important step and defined an ‘SYK-like’ model without quenched disorder [223]. Wit-
ten’s new model describes a system sharing similar properties with SYK model, but in a
more conventional large-N limit. This theory is also known as the Gurau-Witten model.
In this theory, N real fermionic tensors are the dynamical objects, and the action reads

SGurau-Witten =
∫
dt

(
N∑
i=1

ψi
d

dt
ψi −

iq/2

q! Jψi1 ...ψiq

)
, (4.29)

where J is a real coupling constant. The Feynman diagrams are represented by ribbon
graphs like those for a matrix model. It is encouraging that at large-N limit, Gurau-
Witten model is also dominated by melonic graphs. For this reason, such models are called
‘SYK-like’. When q = 4, the tensors are of rank-3 and it is described by the Klebanov-
Tarnopolsky model [224].

There is another type of theory which also possesses melonic dominance, named Amit-
Roginsky (AR) model [225]. It is a φ3 theory where the bosonic field φ is self-coupled
through a Wigner’s 3j symbol:

SAR[φ] =
∫

ddx
{

1
2
∑
m

(−1)j−m
[
(∇φjm)(∇φj−m) + µφjmφ

j
−m

]
+

∑
m1,m2,m3

λ

3!
√

2j + 1
(
j j j
m1 m2 m3

)
φj−m1φ

j
−m2φ

j
−m3

}
, (4.30)

and m = 1, ..., N . According to SU(2) recoupling theory, j in the 3j symbol from (4.30)
should be an integer, in order that the 3j symbol is non-vanishing [115, 116]. As a result,
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the model lives in an irreducible representation of SO(3) of dimension N = 2j + 1. When
N →∞, it is found that AR model is also governed by melonic graphs [226].

It has been shown that a scalar field can be obtained from Boulatov model as a ‘2D
phase ’ excitation over the geometry [213]. The strategy is perturbing the classical solution
of Boulatov model and substituting the perturbed solution to the action. One will find
an effective action in addition to the original Boulatov action, and this effective action
generates the dynamics of a matter field [213]. In this chapter, it is our interest to verify
whether the AR model can be recovered as a effective field if we do a perturbation on
Boulatov model.

4.3.2 Perturbations over Homogeneous Solution
The so-called ‘2D phases’ of Boulatov model is a type of surface-like perturbations over
the field T which only depends on two of the groups elements [213]:

T (g1, g2, g3;χ) = ψ(g1, g3;χ). (4.31)

The perturbation ψ becomes

ψm1m2m3
j1j2j3 (χ) =

∑
{n}

∫
[dg]3ψ(g1, g3;χ)

3∏
i=1

√
2ji + 1D̄ji

mini

(
j1 j2 j3
n1 n2 n3

)

≡ δj2,0δm2,0δ
j1,j3

√
2j1 + 1ψj1m1,m3(χ) (4.32)

in spin representation. Let ψ be a perturbation around the homogeneous solution (4.17),
then the perturbed field is

Tψ(g1, g2, g3;χ) = Tf (g1, g2, g3) + ξψ(g1, g3;χ), (4.33)

where ξ is a small real positive constant such that 0 < ξ � 1. The dual of perturbed field
in spin representation is

(Tψ)m1m2m3
j1j2j3 (χ) = (Tf )m1m2m3

j1j2j3 + ξδj2,0δm2,0δ
j1,j3ψj1m1,m3(χ). (4.34)

Substituting (4.34) into the action (4.15), one obtains an action

SB[Tψ(χ)] = SB[T ] + ξ2 · Seff [ψ] +O(ξ4), (4.35)

where terms at the first order of ξ vanishes since Tf (4.17) is a solution to the equation of
motion. Terms at the first order are approximately vanishing if one applies the heat kernel
solution (4.27). Since the action Seff [ψ] represents the effective action of the perturbation
field ψjmn and contains corrections up to ξ, ξ2Seff [ψ] contains corrections up to order ξ3.

We expect that Seff takes a form similar with the AR model (4.30), which means that an
effective dynamics of matter can be obtained as a 2D-phase excitation around the Boulatov
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model [213]. Now we are going to compute the effective action and show how to achieve
this goal in detail.

Note that the AR model involves a field φ transforming in a representation of SU(2),
and it carries only one magnetic index m. Therefore, we can make the situation easier by
first specialising the type of perturbations and requiring that

ψj1m1m3(χ) =
∑
m

√
2j1 + 1φj1m(χ)

(
j1 j1 j1
m1 m m3

)
. (4.36)

Now let us continue to find the effective action Seff . One finds that the quadratic
term of ξ receives three kinds of contributions. First, the kinetic term of Boulatov action
contributes terms with a form ψψ. Then, the interaction term gives two distinct type of
contributions, depending on how the two perturbative fields are connected in the action.
Schematically, these two terms can be represented under the form TTψψ when the two
perturbative fields ψmamb share one magnetic indices, and TψTψ is used in the case where
they share none.

Quadratic terms I: ψψ The kinetic term ∑
j1,j2,j3

∣∣∣(Tψ)m1,m2,m3
j1,j2,j3 (χ)

∣∣∣2 of the Boulatov
action contributes the following term ψψ to the effective action:

∑
j1,j2,j3

m1,m2,m3

(−1)
∑3

i=1(ji−mi)
[
δj2,0δm2,0δ

j1,j3ψj1m1,m3

] [
δj2,0δ−m2,0δ

j1,j3ψj1−m1,−m3

]

=
∑

j1,m1,m3
m,m′

(−1)2j1−m1−m3φj1mφ
j1
m′(2j1 + 1)

(
j1 j1 j1
m1 m m3

)(
j1 j1 j1
−m1 m′ −m3

)

=
∑
j1,m1

(−1)j1−m1φj1m1φ
j1
−m1 . (4.37)

This term shares the same form with the quadratic term of the AR action (4.30). Note
that this contribution is independent of the solution Tm1m2m3

j1j2j3 and therefore it does not
impose any restriction on the homogeneous solution considered.
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Quadratic terms II: TTψψ Terms of TTψψ come from the interaction term from the
action, and they have four types, each contributing to the effective action with

∑
m1,··· ,m6
j1,··· ,j6

{
j1 j2 j3
j4 j5 j6

}
(−1)

∑
i
(ji−mi)T−m1,−m2,−m3

j1j2j3 Tm3,m5,−m4
j3j5j4

× δj2,0δm2,0δ
j4,j6ψj4m4,−m6δ

j5,0δm5,0δ
j6,j1ψj6m6,m1

=
∑

m1,m3,m4,m6
j1,j3,j4,j6

{
j1 0 j3
j4 0 j6

}
(−1)

∑
i 6=2,5(ji−mi)T−m1,0,−m3

j1,0,j3 Tm3,0,−m4
j3,0,j4 δj4,j6δj6,j1ψj1m4,−m6ψ

j1
m6,m1

=
∑

m1,m3,m4,m6
j1

(−1)6j1−
∑

i 6=2,5miT−m1,0,−m3
j1,0,j1 Tm3,0,−m4

j1,0,j1 ψj1m4,−m6ψ
j1
m1,m6

=
∑

j1,m1,m6,m4

[∑
m3

(−1)−m3−m4T−m1,0,−m3
j1,0,j1 Tm3,0,−m4

j1,0,j1

]
(−1)2j1−m1−m6ψj1m4,−m6ψ

j1
m1,m6 (4.38)

If the homogeneous solution Tm1m2m3
j1j2j3 satisfies

∑
m3

(−1)−m3−m4T−m1,0,−m3
j1,0,j1 Tm3,0,−m4

j1,0,j1 = c1,j1δm1,−m4 (4.39)

with c1,j1 some constant to be fixed later, then one finds

∑
m1,··· ,m6
j1,··· ,j6

{
j1 j2 j3
j4 j5 j6

}
(−1)

∑
i
(ji−mi)T−m1,−m2,−m3

j1j2j3 Tm3,m5,−m4
j3j5j4

× δj2,0δm2,0δ
j4,j6ψj4m4,−m6δ

j5,0δm5,0δ
j6,j1ψj6m6,m1

=
∑

j1,m1,m6,m4

[∑
m3

(−1)−m3−m4T−m1,0,−m3
j1,0,j1 Tm3,0,−m4

j1,0,j1

]
(−1)2j1−m1−m6ψj1m4,−m6ψ

j1
m1,m6

=
∑
j1,m1

c1,j1(−1)j1−m1φj1m1φ
j1
−m1 , (4.40)

where (4.36) is applied. This is similar with the kinetic term of the AR model (4.30).
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Quadratic terms III: TψTψ The second type contribution from interactions is TψTψ,
which contains two terms. Each of this term contributes to the effective action as follows∑

m1,··· ,m6
j1,··· ,j6

(−1)
∑

i
(ji−mi)T−m1,−m2,−m3

j1j2j3 δj5,0δm5,0δ
j3,j4ψj3m3,−m4

× Tm4,m2,−m6
j4j2j6 δj5,0δm5,0δ

j1,j6ψj6m6m1

{
j1 j2 j3
j4 j5 j6

}

=
∑

m1,m3,m4,m6
j1,j3

(−1)j1+j3−m4−m6ψj3m3,−m4ψ
j1
m6,m1

1√
(2j1 + 1)(2j3 + 1)

×
∑
j2,m2

(−1)
∑3

i=1(2ji−mi)T−m1,−m2,−m3
j1,j2,j3 Tm4,m2,−m6

j3,j2,j1 . (4.41)

For a general solution of the equation of motion, this term leads to a non-diagonal kinetic
term for the ψ field . By requiring that the homogeneous solution satisfies

∑
j2,m2

(−1)
∑3

i=1(2ji−mi)T−m1,−m2,−m3
j1,j2,j3 Tm4,m2,−m6

j3,j2,j1 = c2,j1c2,j3δm1,−m6δm3,m4 , (4.42)

where c2,j is again a constant to be found later, one finds the contribution from TψTψ
becomes

∑
m1,m3,m4,m6

j1,j3

(−1)j1+j3−m4−m6ψj3m3,−m4ψ
j1
m6,m1

1√
(2j1 + 1)(2j3 + 1)

×
∑
j2,m2

(−1)
∑3

i=1(2ji−mi)T−m1,−m2,−m3
j1,j2,j3 Tm4,m2,−m6

j3,j2,j1

=
 ∑
j1,m1

(−1)j1−m1
c2,j1√
2j1 + 1ψ

j1
m1,−m1

2

. (4.43)

When specializing to the type of perturbation given by equation (4.36), we obtain

∑
j1,m1

(−1)j1−m1
c2,j1√
2j1 + 1ψ

j1
m1,−m1 =

∑
j1,m1,m

(−1)j1−m1c2,j1φ
j1
m

(
j1 j1 j1
m1 m −m1

)
,

=
∑
j1

c2,j1φ
j1
0
∑
m1

(−1)j1−m1

(
j1 j1 j1
m1 0 −m1

)
,

=
∑
j1

c2,j1φ
j1
0 δj1,0

√
2j1 + 1,

=c2,0φ
0
0. (4.44)

Therefore, the quadratic term obtained from TψTψ term can also be diagonal under certain
choices of homogeneous solution and perturbations mentioned above.
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Cubic terms There is only one type of cubic contribution which also comes from the
interaction term of (4.16), say Tψψψ. Their contribution reads∑
{j,m}

(−1)
∑
i

(ji−mi)
T−m1,−m2,−m3
j1,j2,j3 δj5,0δm5,0ψ

j3
m3,−m4δ

j2,0δm2,0ψ
j4
m4,−m6δ

j5,0δm5,0ψ
j6
m6,m1

{
j1 j2 j3
j4 j5 j6

}

=
∑

m1,m3,m4,m6
j1

(−1)
−
∑
i6=2,5

mi

T−m1,0,−m3
j1,0,j1

(−1)2j1

2j1 + 1ψ
j1
m3,−m4ψ

j1
m4,−m6ψ

j1
m6,m1 . (4.45)

If we assume that the homogeneous solution T satisfies
T−m1,0,−m3
j1,0,j1 = c3,j1(−1)−m3δm1,−m3 , (4.46)

with c3,j1 a constant, this contribution becomes∑
m1,m3,m4,m6

j1

(−1)−
∑

i6=2,5 miT−m1,0,−m3
j1,0,j1

(−1)2j1

2j1 + 1ψ
j1
m3,−m4ψ

j1
m4,−m6ψ

j1
m6,m1

=
∑

m3,m4,m6
j1

(−1)2j1−m3−m4−m6
c3,j1

2j1 + 1ψ
j1
m3,−m4ψ

j1
m4,−m6ψ

j1
m6,−m3 . (4.47)

Substituting (4.36) into the equation above, one finds∑
m1,m3,m4,m6

j1

(−1)−
∑

i 6=2,5miT−m1,0,−m3
j1,0,j1

(−1)2j1

2j1 + 1ψ
j1
m3,−m4ψ

j1
m4,−m6ψ

j1
m6,m1

=
∑

m3,m4,m6
j1

(−1)2j1−m3−m4−m6
c3,j1

2j1 + 1
∑

m,m′,m′′
φj1mφ

j1
m′φ

j1
m′′

×
(
j1 j1 j1
m3 m −m4

)(
j1 j1 j1
m4 m′ −m6

)(
j1 j1 j1
m6 m′′ −m3

)

× (−1)j1
∑

m3,m4,m6

(−1)3j1−m3−m4−m6

(
j1 j1 j1
m −m4 m3

)(
j1 j1 j1
m6 m′′ −m3

)(
j1 j1 j1
−m6 m4 m′

)

=
∑

m,m′,m′′

j1

c3,j1
2j1 + 1

{
j1 j1 j1
j1 j1 j1

}
φj1mφ

j1
m′φ

j1
m′′

(
j1 j1 j1
m m′ m′′

)
. (4.48)

We have used the fact that (−1)2j1 = 1, since j1 here has to be an integer so that the 3j
symbol will not vanish. Thus, when imposing the condition (4.46), one obtains a contri-
bution which corresponds to the interaction term of the AR model (4.30).

Furthermore, when comparing two conditions (4.39) and (4.46), one notes that the
former will be automatically satisfied when the later is true, and two coefficients are related
through the relation

c1,j1 = c2
3,j1 . (4.49)

Based on the calculation above, let us continue to show the emergence of an AR-like model
as an effective field.
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4.3.3 The Emergence of Amit-Roginsky Model
With conditions (4.42) as well as (4.46), for a perturbation (4.36), one finds the effective
action Seff [ψ] in (4.35)

Seff [ψ] ≡ S[φjm] = S0[φ0
0] +

∑
j

Sj[φjm], (4.50)

where

S0[φ0
0] =

∫
d3~χ

(
1
2

{
(∇φ0

0)2 +
[
µ2 + λ

3!(2c
2
3,0 + c2

2,0)
]

(φ0
0)2
}
− ξλ

3! c3,0
(
φ0

0

)3
)
, (4.51)

and

Sj[φjm] =
∫

d3~χ

{
1
2

[
|∇φjn|2 +

(
µ2 + λ

3!c
2
3,j

)
|φjn|2

]

−c3,j1
2dj

ξλ

3!

{
j j j
j j j

} ∑
m1,m2,m3

φjm1φ
j
m2φ

j
m3

(
j j j
m1 m2 m3

)}
, (4.52)

with ∑n |φjn|2 = ∑
n(−1)j−nφjnφ

j
−n. The fields φ with different spin label j decouple and

each of them has the form of an AR action (4.30) with j-dependent mass term and coupling.

Explicit values of coefficients Before closing this section, it is also interesting to make
the constraints in (4.39), (4.42), and (4.46) more explicit. Here we briefly show how to find
the precise values of c1,j, c2,j, and c3,j.

Substituting (4.19) into (4.46), one obtains

µ

√
3!
λ
dj1f

0
00

(
j1 0 j1
−m1 0 −m3

)
= µ

√
3!dj1
λ

f 0
00(−1)j1+m3δm1,−m3 = c3,j1(−1)−m3δm1,−m3 ,

(4.53)
which means

c3,j =

(−1)jµ
√

3!dj
λ
f 0

00 if j ∈ N
0 otherwise

. (4.54)

On the other hand, (4.42) yields

3!µ2

λ

∑
j2,m2

(−1)
∑3

i=1(4ji−mi)dj1dj3
∑
n2,l2

f j2−m2,−n2f
j2
m2,l2

(
j1 j3 j2
m1 m3 n2

)(
j1 j3 j2
−m6 m4 l2

)
= c2,j1c2,j3δm1,−m6δm3,m4 , (4.55)

so one can assume ∑
m2

(−1)n2−m2f j2−m2,−n2f
j2
m2,l2 ≡ dj2c

2
f,j2δn2,l2 , (4.56)
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with c2
f,2 ∼ c2,j1c2,j3 a constant. It can be determined with normalisation condition (4.21)

1 =
∑

j2,m2,n2,l2

(−1)n2−m2f j2−m2,−n2f
j2
m2,l2δn2,l2 ,

=
∑
j2

d2
j2c

2
f,j2 . (4.57)

We can also consider the heat-kernel regularised solution (4.26), which reads

(fε)jmn = αε
√
djδmne

−εCj . (4.58)

It is straightforward to find that

c3,j = (−1)jµ
√

3!dj
λ

(∆ε)0
00 = (−1)jµ

√
3!dj
λ
αε, (4.59)

and the coefficients cf,j should take the form

cf,j = αεdje
−εCj . (4.60)

Similarly, the condition (4.42) is only satisfied approximately at first order in ε. Indeed at
first order in ε,

∑
j,m

dje
−2εCj

(
j1 j2 j
m1 m2 m

)(
j1 j2 j
m′1 m′2 m

)
≈ δm′1m1δm′2m2 . (4.61)

Hence the coefficients c2,j from the condition (4.42)is found to be

c2,j = µdjαε

√
3!
λ
. (4.62)

4.4 Melonic Dominance of Matter Perturbation
An important feature of AR model is its dominance of melonic graphs at large-N(= 2j+1)
limit [226]. However, the main difference between the effective action (4.50) and the original
AR model (4.30) is the presence of a sum over spins j. Thus one needs to check whether such
a summation spoils the existence of a melonic limit or not. Though the general behaviour of
{3nj} symbols as functions of j is still an open issue [227–230], one can qualitatively study
the behaviour of the Feynman amplitudes and impose additional constraints to ensure the
existence of a melonic limit.
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4.4.1 Feynman Amplitude
For simplicity, we will forget in this paragraph the heat kernel regularisation and work with
the actions given by (4.52). Our new model (4.50) contains a sum over actions labelled by
j, and each action from the sum has a Feynman diagram γ, whose amplitudes consists of
an isoscalar part Iγ and an isospin part Sγ [225, 226]. Therefore, the Feynman amplitude
of the new model is

Aγ =
∑
j

cγ

(
λ{6j}

3!(2j + 1)

)v
IγSγ, (4.63)

where cγ is the combinatorial factor of the diagram and v is the number of vertices. The
isoscalar part is simply an usual space integral [225, 226], and the isospin part is used to
investigate the dependence on N of a Feynman diagram.

The melonic contributions are from Fully 2-Particle Reducible (F2PR) diagrams. They
are graphs that always admit a 2-cut which gives another melonic graph with fewer vertices,
until a trivial graph (the simplest 2-particle irreducible graph) is reached. Every isospin
amplitude reads

SF2PR = (2j + 1)1−n, (4.64)

for a graph with v = 2n vertices. So the total contribution of F2PR graphs is

AF2PR ∼
∑
j

(2j + 1)1−3n{6j}2n ≡ ĀF2PR, (4.65)

according to (4.63).

For graphs which are not F2PR, their isospin amplitudes can be factorized as a product
of 3-particle irreducible graphs

SNF2PR = (2j + 1)−n0
k∏
i=1

S{3nij}{6j}2n, (4.66)

where
n = 1 + n0 − k +

k∑
i=1

ni, (4.67)

and S{3nij} (3nij symbols) are amplitudes of three-particle irreducible diagrams with 2ni
vertices. Consequently, the full Feynman amplitude is of order

ANF2PR ∼
∑
j

(2j + 1)−n0−2n
k∏
i=1

S{3nij}{6j}2n ≡ ĀNF2PR, (4.68)

When N = 2j+1 goes to infinity, their amplitudes is conjectured to have a scaling bounded
where [225]

S{3nij} ≤ (2j + 1)1−ni−αi , (4.69)
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for some positive real numbers αi > 0. If one assumes (4.69) holds for any value of N ,
then the amplitude from NF2PR graphs has an upper bound

ĀNF2PR ≤
∑
j

(2j + 1)1−3n−α{6j}2n, (4.70)

with α = ∑
i αi. The contribution from F2PR graphs is

ĀF2PR ∼
∑
j

(2j + 1)1−3n{6j}2n <
∑
j

(2j + 1)1−3n =
(
1− 21−3n

)
ζ(3n− 1), (4.71)

since {6j} is a very small number. In AR model, without a summation, when N = 2j+1→
∞, the contribution from F2PR graphs overwhelms the contribution from other diagrams.
However, summing over j may make the two Feynman amplitudes be at the same order,
since they are two infinite series that converge. Therefore, it is possible that ANF2PR is
comparable with AF2PR because of the summation. Even if (4.69) fails for values of N
satisfying N < Nm for some bound Nm, the melonic graphs may not be dominant since
the summation from Nm is still infinite. Moreover, it is also a subtle point to define how
‘large’ is a ‘large N ’ is, or what is the exact value of Nm. If Nm is small, then (4.70)
approximately give the correct behaviour.

Thus we can see that the sum over j might dramatically changes the amplitudes of
the Feynman graphs of the Amit-Roginsky model and spoil the melonic limit at large j
when including a summation over spin index j. However, the explicit properties of the
summation is currently not available, so this is only a possibility. Fortunately, there is
are two simple ways to exclude this possibility and ensure the melonic dominance to be
preserved, which will be discussed below.

4.4.2 Melonic Dominance
Though the amplitudes of the perturbation fields φjm may not be dominated by melonic
graphs due to the summation over j. We can ensure the melonic dominance by make the
summation finite with There exists one naïve way to get the melonic dominance back. One
can further specialise the form of perturbation (4.34) in order to enforce the selection of
one spin j, getting rid of the sum over spin labels and leading to the original AR model.

(Tψ)m1m2m3
j1j2j3 (χ) = Tm1m2m3

j1j2j3 + δj1jδj2,0δm2,0ψ
j1
m1,m3(χ). (4.72)

Another example that recovers melonic dominance works with the approximate solution
(4.26). When j2 = 0, the solution becomes

(Tε)m1m2m3
j1j2j3 = µαε

√
3!
λ
e−2εCj1

√
2j1 + 1(−1)j1−m1δj1,j3δm1,−m3 , (4.73)

which scales as
√

2j1 + 1 for j1 < jmax <∞ if ε = (2jmax(jmax + 1))−1. For terms j > jmax,
the contribution are suppressed. Then in the Peter-Weyl expansion, the coefficients with
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larger j are dominant, and (Tε)m1m2m3
j1j2j3 with ji < jmin can be neglected for large jmin. Then

at first order of ε, the perturbed field is

(Tψ)m1m2m3
j1j2j3 (χ) '

{
Tm1m2m3
j1j2j3 + δj1jδj2,0δm2,0ψ

j1
m1,m3(χ), jmin ≤ ji ≤ jmax

0, otherwise .

In this case, we only sum over a finite number of j, so the non-F2PR graphs are higher
order infinitesimals like those of AR model. Consequently, the melonic dominance is back.

While it is still unclear whether a summation over spins could spoil the dominance of
melonic diagram in the most general framework, here we demonstrate that it is possible
to preserve this melonic limit either by specialising the type of perturbation considered, or
by making use of the heat kernel regularisation and taking a double scaling limit.

4.5 Discussion
This chapter we show the emergence of AR model as a 2D-phase excitation over non-trivial
geometry given by a Boulatov model. This is not new that matter can be ‘defined as a
particular phase of the geometry ’[213], and our result is in fact a special case of that in
[213]. However, instead of usual scalar fields, we managed to extract matter similar to an
AR model which possesses melonic dominance at large d.o.f. with certain conditions.

Another important feature is that we work in a relational reference frame consisting
of scalar fields χ. Though they seems to play no role in the computation above, they
are actually of great importance such that the action changed accordingly to (4.13) which
includes a Laplacian ∇ acting on the Euclidean space. This leads to the recovery of the
effective action (4.50), which is our main result in this chapter. One can repeat the pro-
cedure without χ, but this will require a much more elaborate computation to proof the
emergence of matter phase [213]. The application of a matter reference frame significantly
simplifies the calculation and gives rise to an AR-like model.

There are two possible generalisations of this new model. The first one is to find other
classical solutions to the Boulatov model and find if the effective field theory of matter,
especially that of AR theory, can be recovered as well. The second is more difficult but
may be more of physical interest, which aims to obtain an SYK model as a perturbative
phase of geometry.
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Chapter 5

Conclusion

This dissertation illustrates several applications of a matter reference frame in GFT formal-
ism of quantum gravity. Due to general covariance in GR, the introduction of coordinates
or the manifold is simply a way to facilitate the description of a system [231]. In fact, what
is physical is the relative location and dynamics among various dynamical objects [52],
and matter can act as a relational reference system for us to define local observables. All
examples demonstrated in this dissertation use scalar fields as the matter reference frame,
which is also a common choice that one makes in LQG.

Chapter 2 shows a very common application of material reference frame, extracting
effective dynamics of GFT condensate comparing with the dynamics of a universe. In this
chapter, based on different definitions of ‘isotropic’ GFT states, we accordingly define the
‘anisotropic’ condensates, in a most general way that we are able to deal with so far. We
demonstrate the possibility of GFT condensate states to describe the very early universe
which is homogeneous but anisotropic, described by a Bianchi I model.

In Chapter 3 is a more complicated example, where we exhaust all ambiguities and
showed how to find the explicit scalar fields even start from a very general situation, with-
out any information of their classical dynamics. We tackle the challenge and find such a
physical reference frame. Coupled with this reference system, the GFT state reproduces
an effective continuum Schwarzschild geometry, on the basis of a few relevant geometric
observables.

Finally, Chapter 4 uses a matter reference system for a slightly different purpose. In-
stead of straightforwardly give an effective description of kinetics or dynamics of a GFT
state, which is done in the previous two chapters, here the introduction of scalar fields
brings a translationally invariant term in Boulatov model, and thus the perturbation over
this new action yields an effective scalar matter field which is described by AR theory.
This can be understood as the emergence of AR-like matter as geometric perturbations.

The anisotropic GFT state, GFT micro-state of black holes, and the effective melonic
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dominant matter are all topics that are not well-developed in GFT, compared with other
branches such as isotropic GFT cosmology. Here let us discuss some open issues and pos-
sible future directions related to or beyond these topics.

Spatial Curvature A main open issue for GFT cosmology is generalising the model to
describe more complicated and physical states. So far, most research in GFT cosmology
studies a spatially flat FLRW universe. Therefore, it is natural to ask whether an open or
a closed universe can be reproduced by the GFT condensates effectively. The inclusion of
curvature is quite a challenging task since it involves the construction of a curvature oper-
ator in GFT. However, we can start from two possible directions which are more feasible.
First, the geometry inside each tetrahedron is assumed to be flat, and the information of
curvature is encoded in the way we connect the tetrahedra. If the space-time and geometry
is emergent from a large d.o.f., then we need a state containing a large number of connected
GFT quanta. Second, the GFT condensates assume that the interaction among tetrahedra
are negligible, but it is very likely that one has to include the interaction term in dynamics
when non-zero curvature is considered.

Quantum Bounce An important feature of GFT cosmological model is that there is a
quantum bounce, which can also be seen from Chapter 2. The bounce exists as the GFT
wave-function σ is symmetric about a clock time φ = Φ. However, effective dynamics of
a GFT condensate state is only valid with a large number of building blocks, or when the
quantum fluctuations are small. Therefore, we shall ask if GFT really allows the existence
of a quantum bounce? Either quantum bounce or early universe calls for a more accurate
description of the state consisting only a limited number of GFT quanta, which may be
too small that the condensate approximation breaks down.

Black Holes In chapter 3, the micro-state of a spherically symmetric vacuum space-
time is built, while no quantum dynamics is considered. A possible improvement of this
model can be achieved by including the dynamics. One may also ask if the black hole
evaporation can be described in GFT. It is also of great interested if we can identify a
GFT state with a black hole horizon, beside maximising the entropy. For example, one
can check if Ryu-Takayanagi formula can be recovered from a GFT microscopic state, and
identify a horizon-like region from GFT states [232–234]. Furthermore, as a test ground
of quantum theory of gravity, more physical black holes are necessary to be investigated
in GFT, such as the Kerr black hole. However, physical black holes are usually not highly
symmetric. Foliation of a space into shells enables us to investigate a Schwarzschild black
hole with GFT condensates, but a Kerr space-time can not be treated in a similar way.
Before solving such a complicated problem, one can first try building inhomogeneous or
anisotropic GFT state as the first step.
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Inhomogeneity GFT condensate state is a state of homogeneous geometry. However,
it is important to consider inhomogeneity in GFT in order to have a wider range of appli-
cations. To this end, one can explore the possibility of including inhomogeneity in GFT
condensates. For example, it can be introduced as quantum fluctuations, and a better
method is expected. If this direction is not correct, then we shall ask, how to make GFT
reproduce an inhomogeneous geometry, or how to go beyond the homogeneous GFT con-
densates?

SYK Model As discussed in Chapter 4, AR-like matter can be viewed as a perturbation
around Boulatov model. AR is similar with an SYK model that they are both dominated
by melonic graphs at large N . So one can explore whether an true SYK matter can be
recovered in a similar way. In addition, more recently, Jackiw-Teitelboim (JT)-dilaton
gravity is suggested to be a bulk correspondence of a high-temperature double scaled SYK
theory on boundary [235, 236], and it has been shown that JT gravity is dual to a matrix
model [237, 238]. Therefore, it seems hopeful that we can get clue to the relation between
the SYK theory and the GFT.

As a young candidate of quantum gravity, GFT has lots of aspects to be explored. Even
for theories with long histories like String Theory and LQG, there is still a long journey
to quantum gravity. Both quantum physics and GR brought conceptual revolutions to the
way that people understand the world where we are living. The way to a quantum theory
of gravity has not been found out completely, and what we are facing with is not only
the computational challenges, but also conceptual issues, which have been illustrated by
the three projects in this dissertation. There are still many aspects of physical reference
frame to be explored. For example, what is the physical role of clocks in quantum gravity?
How to solve the problem of time? As for GFT, it provides a promising scheme to explore
the non-perturbative approaches to quantum gravity. We hope it will make more exciting
progress including but not limited to the issues mentioned above in near future.



88 5. Conclusion



Appendix A

SU(2) Recouping Theory and Spin
Network States

This part gives a brief introduction to SU(2) recoupling theory, which is essential in this
dissertation. For detailed reviews, we refer nice papers written by Martin-Dussaud [115]
and Mäkinen [116] for the interested readers.

A.1 Basics

A.1.1 Wigner Matrices
The Haar measure dg defines the integral over SU(2). It is a unique normalised quasi-
regular Borel measure such that ∫

dg = 1, (A.1)

and ∫
dgf(gu) =

∫
dgf(ug) =

∫
dgf(g), (A.2)

where u ∈ SU(2) is a group element.

The Hilbert space of SU(2) group is denoted by L2(SU(2)), which is defined as a space
of complex functions f : SU(2)→ C such that∫

SU(2)
dg|f(g)|2dg <∞, (A.3)

and its scalar product is
(f1, f2) ≡

∫
SU(2)

f ∗1 (g)f2(g)dg. (A.4)

The spin-j representation of SU(2) group is a (2j + 1)-dimensional irreducible repre-
sentation. It is associated with a j-Hilbert space whose canonical basis is the magnetic
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basis, |j,m〉, where m ∈ {−j,−j+ 1, ..., j− 1, j}. The action of an SU(2) group element g
over a j-Hilbert space can be represented in magnetic basis with a Wigner matrix, whose
matrix elements are defined as

Dj
mn(g) ≡ 〈j, n| g |j,m〉 . (A.5)

Schur orthogonality relations implies the Wigner matrices form an orthogonal family such
that ∫

SU(2)
dgDj′

m′n′(g)Dj
mn(g) = 1

dj
δjj′δmm′δnn′ , (A.6)

where dj = 2j + 1. An important property of Wigner matrix is that

Dj
mn(g) = (−1)m−nDj

−m,−n(g). (A.7)

The group multiplication rule reads

Dj
mn(g1g2) =

∑
l

Dj
ml(g1)Dj

ln(g2). (A.8)

According to Peter-Weyl’s theorem, any function f ∈ L2(SU(2)) can be decomposed
into

f(g) =
∑
{j,m,n}

f jmnD
j
mn(g), (A.9)

where the coefficients f jmn ∈ C, and Dj
mn(g) acts as a basis of L2(SU(2)).

A.1.2 Intertwiners
If we have two irreducible representations of SU(2) labelled by j1 and j2, then their tensor
product is given by

|j1,m1; j2,m2〉 ≡ |j1,m1〉 ⊗ |j2,m2〉 . (A.10)
This tensor product has another basis |(j1j2)j,m〉 which relates with |j1,m1; j2,m2〉 through

|(j1j2)j,m〉 =
∑

m1,m2

Cj1j2j
m1m2m |j1,m1; j2,m2〉 , (A.11)

and
Cj1j2j
m1m2m ≡ 〈j1,m1; j2,m2|(j1j2)j,m〉 (A.12)

is the Clebsch-Gordan coefficient. It has three important properties:

1. Clebsch-Gordan coefficient is well-defined and non-vanishing only if the spins satisfy
the triangle inequality

|j1 − j2| ≤ j ≤ j1 + j2, (A.13)
and

j1 + j2 + j = integer. (A.14)
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2. Cj1j2j
m1m2m = 0 if m 6= m1 +m2.

3. It satisfies the orthogonality relations∑
m1,m2

Cj1j2j
m1m2mC

j1j2j′

m1m2m′
= δjj′δmm′ , (A.15)∑

m1,m2

Cj1j2j
m1m2mC

j1j2j
m′1m

′
2m

= δm1m′1
δm2m′2

. (A.16)

A Wigner’s 3j symbol is defined as(
j1 j2 j3
m1 m2 m3

)
≡ (−1)j1−j2−m3

√
2j3 + 1 Cj1j2j3

m1,m2,−m3 . (A.17)

If we have the tensor product among three representations, j1, j2, and j3, then there exists
an eigen-vector of the total angular momentum operator J (1) + J (2) + J (3)

|0〉 =
∑

m1,m2,m3

(
j1 j2 j3
m1 m2 m3

)
|j1,m1〉 ⊗ |j2,m2〉 ⊗ |j3,m3〉 , (A.18)

which is of zero eigen-value.

The 6j symbol is defined as{
j1 j2 j3
j4 j5 j6

}
=
∑
ji,mi

(−1)
∑6

a=1(ja−ma)
(

j1 j2 j3
−m1 −m2 −m3

)(
j1 j5 j6
m1 −m5 m6

)

·
(
j4 j2 j6
m4 m2 −m6

)(
j4 j5 j3
−m4 m5 m3

)
. (A.19)

It similarly gives a possible decomposition of the tensor production among four irreducible
representations.

An intertwiner ι is an invariant tensor of SU(2). We can imagine it as a knot that
‘intertwines’ the irreducible representations together, which is more obvious in graphic
calculus to be discussed in the next section. For example, the only three-valent intertwiners
are given by 3j-symbols:

ιm1m2m3 =
(
j1 j2 j3
m1 m2 m3

)
. (A.20)

And the Wigner’s 4j-symbol is an example for 4-valent intertwiner, whose definition is(
j1 j2 j3 j4
m1 m2 m3 m4

)(j)

≡
∑
m

(−1)j−m
(
j1 j2 j
m1 m2 m

)(
j j3 j4
m m2 m4

)
, (A.21)

which can be applied to give another possible decomposition of the production of four
spin-j representations.
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A.2 Graphic Formalism
The calculation in SU(2) recoupling theory can be simplified by applying the graphic for-
malism. This section lists examples that are frequently used.

The Kronecker delta is a single line in graphic framework:

δmn =m nj
. (A.22)

Invariant rank-2 tensors of SU(2)

εAB =
(

0 1
−1 0

)
, εAB =

(
0 1
−1 0

)
, (A.23)

are represented as

ε(j)mn =m nj
, (A.24)

and

ε(j)mn = m nj
. (A.25)

The 3j symbol is the basic object of graphic calculus, which is

(
j1 j2 j3
m1 m2 m3

)
=

j1

j2 j3

+ =

j1

j3 j2

− .

(A.26)

Summation over a magnetic index m from −j to j is achieved by gluing two links. Ac-
cordingly, the 4j symbols are

= ∑j
m=−j

j1 j2 j3 j4

j

j1
j2 j j j3 j4

.
(A.27)

The graph of a 6j symbol, similarly, can be obtained by gluing four 3j symbols according
to (A.19):

{
j1 j2 j3
k1 k2 k3

}
=

j1

j2

j3

k1

k2

k3

.

(A.28)
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A.3 Spin Network
The SU(2) recoupling theory has an important application to LQG and GFT [52]. The
basis of the Hilbert space in LQG is the SNW |Γ, ι, j〉, where Γ denotes an abstract directed
graph consisting of nodes and links. The intertwiner ι is assigned to the nodes, and the
spin j is on the links.

Suppose we have a SNW containing N 4-valent nodes and l links. According to Peter-
Weyl theorem, such a SNW can be written as a function Ψ(g1, g2, g3, g4) ∈ L2

(
SU(2)N

)
Γ
,

where L2
(
SU(2)N

)
Γ
is a subspace of L2

(
SU(2)N

)
. To this end, one first note that the

Wigner matrices can be represented by a graph:

Dj
mn(g) = m ng, j

, (A.29)

and this can be associated to each link from Γ with g ∈ SU(2). Then we can virtually
split the nodes such that

=

j1

j2 j3

j4

ι

j1

j2 j3

j4

ι ,

(A.30)

and assign a 4j symbol
(
j1 j2 j3 j4
m1 m2 m3 m4

)(ι)

to the split node. After summing over the

magnetic indices, one obtains

Ψ(g1, g2, g3, g4) =
∑
m,n

∏
N∈Γ

(
jN 1 jN 2 jN 3 jN 4
mN 1 mN 2 mN 3 mN 4

)(ιN ) 4∏
Ni=1

D
jNi
mNinNi

(gNi) (A.31)

as a SNW wave-function.

A.4 Useful Properties
This section lists properties of Wigner’s 3j and 6j symbols which helps in Chapter 4, and
they can be simply derived through graphic calculus.

First of all, the 3j symbol is invariant under the action of SU(2) group,

Dj1
m1n1D

j2
m2n2D

j3
m3n3

(
j1 j2 j3
n1 n2 n3

)
=
(
j1 j2 j3
m1 m2 m3

)
. (A.32)
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Wigner 3j symbol is also symmetric under the even permutations of indices, and an
additional phase under odd permutations(

j1 j2 j3
m1 m2 m3

)
= (−1)j1+j2+j3

(
j2 j1 j3
m2 m1 m3

)
= (−1)j1+j2+j3

(
j1 j2 j3
−m1 −m2 −m3

)
.

(A.33)
The 3j symbols satisfy two orthonormal relations such that

(2j3 + 1)
∑

m1,m2

(
j1 j2 j3
m1 m2 m3

)(
j1 j2 j′3
m1 m2 m′3

)
= δj3,j′3δm3,m′3

, (A.34)

∑
j3,m3

(2j3 + 1)
(
j1 j2 j3
m1 m2 m3

)(
j1 j2 j3
m′1 m′2 m3

)
= δm1,m′2

δm2,m′2
, (A.35)

Finally, the 3j symbol satisfies

∑
m

(−1)j−m
(
j j k
m −m 0

)
=
√

2j + 1δk,0. (A.36)

and (
j1 j2 0
m1 m2 0

)
= δj1,j2

1√
2j1 + 1δm1,−m2 (A.37)

For the 6j symbol, one has

∑
n1,n2,n3

(−1)
∑3

a=1(ka−na)
(
j1 k2 k3
m1 −n2 n3

)(
k1 j2 k3
n1 m2 −n3

)(
k1 k2 j3
−n1 n2 m3

)

=
{
j1 j2 j3
k1 k2 k3

}(
j1 j2 j3
m1 m2 m3

)
. (A.38)

Finally when one of the spin index (say j6) vanishes we have{
j1 j2 j3
j4 j5 0

}
= δj1,j5δj2,j4√

dj1dj2
(−1)j1+j2+j3 , (A.39)

where j1, j2, and j3 satisfy the triangle inequality.



Appendix B

Edge-Coloured Graph and Topology

This is a brief introduction to definitions of graph structures that are encoded with topo-
logical information, which are useful in Chapter 3. For interested readers, we refer to a
nice paper [184], which illustrates the idea of homogeneous geometries as GFT condensates
in detail. The review [90] also contains the basics of graph-encoded topologies.

A d−simplex is a d−dimensional object. For example, a 2−simplex is a triangle, and
a 3−simplex a tetrahedron. The finite set of simplices is a simplicial complex, where the
simplices are glued along their sub-simplices. The union of all simplices is a polyhedron |K|
of the simplicial complex K. If there exists a homeomorphism f mapping the polyhedron
|K| to a topological space X, then (f,K) is a triangulation of X [100].

A d-dimensional simplicial manifold is a simplicial complex, with the neighborhood of
each point is homeomorphic to a d-dimensional ball [82]. A simplicial pseudo-manifold is
obtained by gluing d-simplices along their (d − 1)-subsimplices until a complex with no
boundary is formed. A Riemannian metric can be equipped to a d-dimensional simplicial
manifold with three assumptions [82]:

1) The space in the d−simplices is flat;

2) The (d− 1)−faces are flat as well;

3) The metric is continuous at (d− 1)−faces.

A closed graph B1234 of 4 colours is defined as an edge-coloured graph that is bipartite
as well as 4-regular, and the four edges on a vertex should be labelled by different colours.
A simple example is

1
2
3

4
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Then a d-bubble is a maximal connected d coloured sub-graph of B1234. For example,
3-bubbles of the example above can be

1
2
3

1

4

3

and so son. The 0-bubbles, 1-bubbles, 2-bubbles, and 3-bubbles are vertices, faces, and
3-dimensional cells respectively.

If we associate every d-bubble in B1234 with a (3− d)-simplex, and translate the nested
structure of the bubbles to the dual nested structure of the simplicial cells, then we will
obtain a non-branching, pure, strongly-connected simplicial complex, which is a pseudo-
manifold.

A melonic move creates or removes melonic graph(s) as follows

←→
i i i

and preserves the topology of the graphs.



Appendix C

Negative-mass Black Hole

This part shows the relational description of a quantum GFT state built in Chapter 3,
which corresponds to a classical negative-mass M < 0 Schwarzschild black hole. Though
it is non-physical, here we use it as an example to show how to deal with a state corre-
sponding to a black hole with a naked singularity.

When M is negative, the clock scalar field is unchanged with φ1 = β1t and the rod
scalar field has a real solution

φ2(r) =
√
r(r − 2GM) + 2Marcsinh

(√
− r

2GM

)
. (C.1)

The Klein-Gordon equation (3.93) remains unchanged, and the derivatives of solution
(3.92) and (C.1) with respect to r are the same. The expression (3.92) is modified to (C.1)
because when x > 1, arctanh(x) as a real-valued function is ill-defined. When r → 0,
f(r) ' −2GM/r. As a result, the φ1(r) reads

φ2(r) '
√

2β1r

3
√
−GM/r

. (C.2)

Thus, φ2 ' 0 corresponds to a naked singularity with

r =
(
−9GMφ2

2√
2β2

2

) 1
3

. (C.3)

For the potential, one obtains

V ′(φ2) ' −
√

2β2
2

φ2
, (C.4)

and
V (φ2) '

√
2β2

2 ln
(

1
φ2

)
. (C.5)
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In order that the energy-momentum tensor of φ2 is negligible, |β2| is a very small constant
too. Thus, the potential V (φ1) at order β2

2 can be dropped.

Repeating the same procedure, one obtains the near-singularity behaviour whenM < 0,

Arel(φu) = 4π
(

9GMφ2
u√

2β2
1

) 2
3

, (C.6)

V3rel(φu) = 4π
β1

(
9GMφ2

1√
2β2

1

) 2
3

δφ2|φ2=φu . (C.7)

A negative-mass black hole has a naked singularity, and no horizon exists in this case.
Hence, no wave-function corresponds to the near-horizon regime. Together with the
positive-mass case, the wave-functions are

Schwarzschild



M > 0
{ Asymptotic infinity(φ→∞) ς̃(φ)−1 ∝ φ2

Near-horizon(φ ∼ 0) ς̃(φ)−1 ∝ (φ2 + 16β2
1(GM)2)2

Near-singularity Not available

M < 0
{ Asymptotic infinity(φ→∞) ς̃(φ)−1 ∝ φ2

Near-horizon Non-existent
Near-singularity(φ ∼ 0) ς̃(φ)−1 ∝ φ

4
3

.

(C.8)

The curvature singularity at r = 0 corresponds to a sphere of vanishing area. As mentioned,
the simplest state is a seed state, so there is no such a GFT state describing a sphere with
zero area, and we easily bypass the singularity even whenM < 0. Certainly, the resolution
of singularity needs an explicit calculation of the curvature. Lacking a GFT curvature
operator, here we only give a very naïve argument to show the non-singularity of a GFT
state.
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