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We have no need of other worlds. We need mirrors.  

We don't know what to do with other worlds. 

A single world, our own, suffices us. 

-  Stanisław Lem
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Summary 

In agricultural landscapes macrophyte-dominated shallow aquatic systems like ponds and 

lakes provide important ecosystem functions and services. These ecosystems get deteriorated 

by high nutrient concentrations originating from agricultural run-off as they lead to a regime 

shift to a phytoplankton-dominated turbid state. Agricultural run-off often not only comprises 

growth-promoting nutrients, especially nitrate, but also growth-inhibiting pesticides. When 

co-occurring, these two stressors may interact in an antagonistic, synergistic, or even reversed 

way. Whether the co-occurrence of pesticides in agricultural run-off affects nitrate-caused 

regime shifts remains unclear and thus, this question is at the core of this thesis. Another 

factor impacting aquatic ecosystems is elevated water temperature as a consequence of 

climate change which potentially modifies the effects of co-occurring nutrients and pesticides. 

Understanding the effects of multiple stressors, namely agricultural run-off and elevated 

temperatures, on regime shifts from macrophyte-dominated to phytoplankton-dominated 

states in shallow aquatic system is the aim of this thesis.  

I used experimental setups mimicking shallow aquatic lakes and a mixture representative for 

agricultural run-off (ARO, including nitrate, an herbicide, insecticide, fungicide and copper) to 

target three objectives: 1) assessing the interactive effects of combined agricultural stressors 

on regime shifts between primary producers, 2) analysing if the risk of regime shifts caused by 

multiple agricultural stressors is modified at higher temperatures, 3) validating the results 

obtained in objectives 1 & 2 for different scenarios reflecting possible in-field scenarios. 

Therefore, the effects of exposure via the sediment are clarified and the role of higher trophic 

levels is addressed. 

Targeting the first objective, I highlight the importance of combined stressors for regime 

shifts: nitrate on its own did lead to a phytoplankton bloom but did not induce a regime shift. 

When nitrate was combined with pesticides as ARO a regime shift was observed, as 

phytoplankton increased and in parallel macrophytes declined. Synergistic interactions 

between nitrate and pesticides were found. Further, process-based modelling of these 

experimental results revealed that adaptation of phytoplankton communities to ARO is one 

mechanism contributing to ARO-induced regime shifts. My results show that stressors with 

opposing mechanisms can act synergistically and thereby cause a regime shift. 
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The role of elevated temperatures (up to +4°C) on shifts between alternative states is scope 

of the second objective and revealed reversing effects: While elevated temperature without 

pollution strengthened the macrophyte-dominate state, it increased the risk for ARO-induced 

regime shifts in simplified settings with phototrophic communities. In settings with higher 

trophic levels (grazers and filter feeders), ARO interacts in a complex way with elevated 

temperatures and can modify the effect of ARO to an extent that does not allow for a clear 

interpretation. 

Targeting the third objective, validating the results for scenarios closer to field scenarios, 

revealed the important role of exposure pathways. ARO within the sediment impaired 

macrophyte growth but does lead to regime shifts as it is the case for ARO in the water phase. 

Further, even after increasing trophic complexity ARO still induced regime shifts. Additional 

factors possibly influencing the effect of ARO in the field, namely the photodegradation of 

pesticides and temporal dynamics of exposed stressors were identified. 

In conclusion, the findings presented in my dissertation indicate a risk for ARO-induced regime 

shifts from macrophyte- to phytoplankton dominance in shallow aquatic systems. Changes in 

the microalgae and zooplankton community and related trophic interactions enhance such 

regime shifts. The interactions in complex communities and other environmental factors, e.g. 

exposure pathways and physico-chemical properties of pesticides, need to be considered 

when transferring these results into the field. Additionally, elevated temperatures interact 

with these agricultural stressors in a complex way and can further increase the risk of regime 

shifts. These complex interactions need to be considered when defining future-prove safe 

operating spaces and mitigation measures for aquatic systems in agricultural landscapes. 
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Zusammenfassung 

In unserer landwirtschaftlich geprägten Umwelt erbringen Makrophyten-dominierte 

Flachgewässer wichtige Ökosystemleistungen. Hohe Nährstoffkonzentrationen, die aus 

landwirtschaftlichen Oberflächenabflüssen stammen, können zu einem Regimewechsel in 

einen Phytoplankton-dominierten, trüben Zustand führen, welcher die Leistungen des 

Ökosystems beeinträchtigt. Neben wachstumsfördernden Nährstoffen, insbesondere Nitrat, 

enthalten landwirtschaftliche Abflüsse oft auch wachstumshemmende Pestizide. Diese 

Stressoren können interagieren und es kann zu antagonistischen, synergistischen oder sogar 

reversen Interaktionen kommen, wobei die Rolle von Pestiziden auf einen nährstoffbedingten 

Regimewechsel noch unklar ist. Darüber hinaus wirken sich erhöhte Temperaturen, wie sie als 

Folge des Klimawandels auftreten, besonders auf Flachgewässer aus und können eventuell die 

Interaktion von Nährstoffen und Pestiziden verändern. Im Mittelpunkt dieser Doktorarbeit 

stand die Untersuchung der Auswirkung kombinierter Stressoren, nämlich der 

landwirtschaftlichen Abflüsse mit Nitrat und Pestiziden und des Klimawandels, auf den 

Regimewechsel in flachen aquatischen Systemen. Mittels experimenteller Modelökosysteme, 

die Flachgewässer nachbilden, und der Applikation einer Stoffmischung, die repräsentativ für 

landwirtschaftliche Abflüsse ist (ARO; bestehend aus Nitrat, einem Herbizid, Insektizid, 

Fungizid und Kupfer), habe ich drei Ziele verfolgt: 1) Bewerten wie sich die Interaktion der 

landwirtschaftlichen Stressoren auf Regimewechsel auswirkt. 2) Analyse, ob höhere 

Temperaturen das Risiko für solche Regimewechsel, ausgelöst durch landwirtschaftliche 

Abflüsse, moduliert. 3) Validierung der zuvor erzielten Ergebnisse für Szenarien, die näher an 

der tatsächlichen Situation im Feld liegen. Besonderer Fokus liegt hierbei auf den 

Expositionspfaden und der trophischen Komplexität in Flachgewässern. 

Mit einem multi-faktoriellen Gradientendesign konnte ich die Bedeutung von kombinierten 

Stressoren für Regimewechsel erarbeiten: Während Nitrat zwar das Phytoplanktonwachstum 

anregte, löste Nitrat alleine keinen Regimewechsel aus. Wurde Nitrat mit Pestiziden 

kombiniert, trat ein solcher Regimewechsel auf: die Phytoplankton-Biomasse nimmt zu, 

während gleichzeitig die der Makrophyten abnimmt. Eine synergistische Interaktion von Nitrat 

und Pestiziden wurde festgestellt. Mittels Prozess-basierter Modellierung wurde gezeigt, dass 

die Anpassungsfähigkeit der Phytoplanktongemeinschaft hierbei ein wichtiger Mechanismus 
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ist. Meine Ergebnisse zeigen, dass landwirtschaftliche Stressoren mit gegensätzlichen 

Mechanismen durch eine synergistische Interaktion zu einem Regimewechsel führen kann. 

Die genauere Betrachtung der Rolle erhöhter Temperaturen (bis zu +4°C) ergab gegenläufige 

Effekte: Während erhöhte Temperaturen den Makrophyten-dominierten Zustand fördern, 

erhöhen sie das Risiko für einen ARO-induzierten Regimewechsel. Steigert man zusätzlich die 

trophische Komplexität, interagiert ARO auf komplexe Weise mit höheren Temperaturen und 

kann die Wirkung von ARO in einem Ausmaß verändern, die keine eindeutige Interpretation 

zulässt.  

Die Validierung der vorherigen Ergebnisse für Szenarien, die der tatsächlichen Situation im 

Feld näherkommen, zeigte die wichtige Rolle der Expositionspfade. Die Exposition von ARO 

über das Sediment kann das Wachstum der Makrophyten beeinträchtigen, führt aber nicht zu 

Regimewechseln, wie es bei der Exposition über die Wasserphase der Fall ist. Darüber hinaus 

führte ARO auch bei zunehmender trophischer Komplexität noch zu einem Regimewechsel. 

Zusätzliche Faktoren, die möglicherweise die Wirkung von ARO im Freiland beeinflussen, sind 

die Photolyse von Pestiziden und die zeitliche Dynamik von exponierten Stressoren und deren 

zeitverzögerten Auswirkungen. 

Insgesamt zeigen die in dieser Dissertation vorgestellten Ergebnisse ein erhöhtes Risiko von 

ARO-induzierten Regimewechseln von Makrophyten- zur Phytoplanktondominanz in flachen 

aquatischen Systemen auf. Veränderungen in der Mikroalgen- und Zooplankton-

Gemeinschaft tragen zu einem solchen Regimewechsel bei. Diese komplexe 

Zusammensetzung der Lebensgemeinschaften und andere abiotische Faktoren, z. B. die 

Expositionspfade im Feld und physikalisch-chemische Eigenschaften von Pestiziden, müssen 

bei der Übertragung der Ergebnisse auf die Praxis berücksichtigt werden. Außerdem stehen 

erhöhte Temperaturen in komplexer Wechselwirkung mit diesen landwirtschaftlichen 

Stressfaktoren und illustrieren die Relevanz von Szenarien des Klimawandels für das Risiko von 

Regimewechseln in aquatischen Systemen. Diese komplizierten Interaktionen müssen 

berücksichtigt werden, um Grenzwerte und Maßnahmen für landwirtschaftlich beeinflusste 

Gewässer zu definieren, die auch in Zukunft Gültigkeit behalten. 
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1. Introduction 

1.1 Occurrence and relevance of shallow lakes  

Shallow aquatic ecosystems such as ponds, shallow lakes, ditches and kettle holes are the 

most abundant types of freshwater ecosystems globally (Downing et al., 2006; Verpoorter et 

al., 2014; Cael et al., 2017; Kazanjian et al., 2018). There are about 90 million lakes of a size 

between 0.002 and 0.01 km² and probably a higher number of even smaller lakes and ponds 

(Verpoorter et al., 2014). The depth of such shallow aquatic systems reaches up to 

approximately 5 meters (Nõges et al., 2003; Richardson et al., 2022). While these small aquatic 

systems comprise only a minor share in global non-glacial freshwater volume, they are at the 

core of the continental terrestrial-freshwater interface (Verpoorter et al., 2014). They provide 

important ecosystem functions and services (Hilt et al., 2017; Janssen et al., 2021; Lischeid et 

al., 2018). Shallow aquatic ecosystems provide habitats for rich biodiversity (Williams et al., 

2004), especially macrophytes and invertebrates (Hassall et al., 2011; Pätzig et al., 2012; see 

figure 1), and retain and remove nutrients as well as diverse pollutants (Barko and James, 

1998; Céréghino et al., 2013) and act as biogeochemical hotspots (Cheng and Basu, 2017).  

 

Figure 1 | Key Interactions between organism groups within fishless shallow lakes. Solid lines 

represent competition for light and nutrients, dotted lines represent feeding pressure (filter 

feeders ➔ phytoplankton, grazers ➔ periphyton & macrophytes). 

These small and shallow aquatic ecosystems are particularly present in agricultural landscapes 

(Beklioğlu et al., 2016; Lischeid et al., 2018; Rücker et al., 2019) and are commonly fishless or 

only habit a poor fish community (Lancelotti et al., 2009; Scheffer et al., 2006). Due to the high 

volume to surface ratio shallow aquatic ecosystems have a high potential for strong primary 
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producer dominance, most commonly dominated by macrophytes, but dominance by 

periphyton or phytoplankton is possible as well, depending on the environmental conditions 

(Scheffer & Van Nes, 2007). These phototrophic organisms experience feeding pressure 

respectively top-down control by filter feeders (zooplankton and mussels) and grazers (snails) 

(figure 1).  

1.2 Alternative stable states and regime shifts in shallow lakes 

Dominance by either macrophytes or phytoplankton establishes itself through self-enforcing 

feedback loops (figure 2; van Nes et al., 2016; Dakos et al., 2019). Primary producers compete 

mainly for light and nutrients. The faster growing or already dominating group limits access of 

these resources to the other groups. While at lower nutrient concentrations macrophytes 

dominate, as they can take up additional nutrients available in the sediment and produce 

allelopathic compounds that limit phytoplankton growth (Gross et al., 2007), at higher 

nutrient concentrations phytoplankton dominates and shades the other primary producers.  

 

Figure 2 | The self-enforcing feedback cycles of alternative stable states. The macrophyte-

dominated clear water state (blue) and a phytoplankton dominated turbid state (green) occur 

in dependence of the nutrient availability. The states sustain themselves through positive 

feedback cycles as long as a certain threshold is not exceeded. Once a threshold in nutrient 

availability is exceeded and phytoplankton enters its self-enhancing feedback cycle, 

macrophyte biomass decrease and a regime shift takes place.  
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Phytoplankton can make use of high nutrient concentrations faster than macrophytes due to 

lower doubling times respectively higher growth rates. The shift between these two states of 

dominance occurs rapidly when the threshold for the resilience of one state is exceeded and 

is referred to as  a regime shift (Scheffer et al., 1993). Next to phytoplankton, periphyton can 

dominate the ecosystems by growing on macrophyte leaves (epiphyton) and therefore 

shading macrophytes or by growing on the sediment surface (epipsammon) and hinder 

macrophyte germination in the first place (Roberts et al., 2003). Yet, the relationship of 

macrophytes and periphyton is complex, as – in return – macrophytes can limit periphyton 

growth through nutrient competition and allelopathy (Erhard and Gross, 2006; Wijewardene 

et al., 2022), whereby the role of allelopathy on microalgae growth in the context of regime 

shifts is uncertain (Gross et al., 2007; Mulderij et al., 2007). A dominance of periphyton is not 

included in the classical definition of regime shifts of shallow lakes (Scheffer et al., 1993) but 

its relevance has been recognized in recent years (e.g. Hao et al., 2020; Hilt et al., 2018; Liu et 

al., 2021), yet the reasons behind dominance of periphyton are not fully understood (de Souza 

et al., 2015; Vadeboncoeur et al., 2021). 

1.3 Nitrate in agricultural landscapes  

Commonly, regime shifts from macrophyte- to phytoplankton-dominance are induced by high 

nutrient concentrations mostly originating from agricultural applications (Causse et al., 2015; 

Rücker et al., 2019). In agricultural landscapes nutrients (phosphate, nitrogen) enter nearby 

aquatic ecosystems directly through improper fertilizer application, as diffuse agricultural run-

off following rain events or via subsurface drainage (Bilotta et al., 2008; Causse et al., 2015). 

The role of nitrate as polluter has long been hidden (Moss et al., 2013), despite nitrate being 

a major contributor to nutrient pollution from agriculture (Lassaletta et al., 2009; Xu et al., 

2014). Consequently, nitrate concentrations up to 5.8 ± 3.2 mg L-1 were found in small lentic 

water bodies (Wijewardene et al., 2021) and nitrate concentrations up to 9 mg L-1 were found 

in shallow lakes (James et al., 2005) affected by agricultural run-off. Since small and shallow 

aquatic ecosystems are common in agricultural landscapes (Lischeid et al., 2018), they are 

particularly exposed to nitrate by agricultural run-off and thereby to nitrate-induced regime 

shifts (Moss et al., 2013). 
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1.4 Pesticides in agricultural landscapes 

Next to nutrients, agricultural run-off also often transports pesticides to nearby shallow 

aquatic ecosystems (Liess et al., 2021), either dissolved in the run-off water or attached to 

suspended soils particles, depending on the physico-chemical properties of the pesticides 

(Adriaanse et al., 2017; Ulrich et al., 2013). Different types of pesticides and their respective 

mode-of-action target different organism groups resulting in a multitude of effects in these 

aquatic ecosystems. While herbicides are designed to affect primary producers, insecticides 

alter the zooplankton and macroinvertebrate community, and fungicides affect microbial 

activities. The ecosystem-wide response to pesticides included in agricultural run-off depends 

on the presence of different groups of pesticides in the agricultural run-off and the trophic 

levels in the respective ecosystems (Polazzo et al., 2021). Since herbicide exposure affects 

macrophytes less than planktonic algae species (Giddings et al., 2013), herbicides could 

eventually influence the occurrence of regime shifts but – as of my knowledge – no studies 

targeting herbicide-induced regime shifts exist. Furthermore, insecticides can support the 

occurrence of regime shifts by reducing filtration and feeding pressure on phytoplankton by 

filter feeders (e.g. Sayer et al., 2006). 

1.5 Co-occurrence of nutrients and pesticides 

A recent meta-analysis reports that more than two-thirds of aquatic systems undergo high 

nutrient loads resulting in eutrophication. Of these aquatic systems, 10-20% experience toxic 

stress and co-occurrence of toxic and nutrient-related stressors is found in 10-15% of cases 

(Nõges et al., 2016). While their study grouped all lentic ecosystems and did not break them 

down more deeply in different water body classes, actual exposure to co-occurring nutrient 

loads and pesticides in shallow aquatic ecosystems likely is even higher as these systems are 

particularly common in agriculturally influenced landscapes (Kazanjian et al., 2018; Lischeid & 

Kalettka, 2012). However, information on pesticide concentrations in small water bodies are 

underrepresented due to insufficient coverage of monitoring and mainly restricted to streams 

(Liess et al., 2021) and field studies measuring co-occurring nutrients and pesticides in shallow 

aquatic systems are very rare (e.g. Wijewardene et al., 2021). 
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1.6 Climate change and its effects on shallow lakes 

Another stressor affecting aquatic systems globally is climate change, and is rapidly gaining in 

relevance as climate change related effects occur more often than predicted only few years 

ago (Pörtner et al., 2021). Climate change has various effects on shallow aquatic ecosystems, 

e.g. higher CO2 concentrations in the water (Bates et al., 2008), higher fluctuations of the 

hydrological regime (Hayashi & van der Kamp, 2021; Jeppesen et al., 2014) and increased 

likelihood of drastic changes in temperature (Meerhoff et al., 2012; Woolway et al., 2021). 

The latter is of high relevance for shallow lakes, ponds and streams as they are rapidly heated 

due to their low surface-volume ratio, leading to a strong correlation with air temperatures 

(Woolway et al., 2016; Dokulil et al., 2021). An increase of lake water temperature by +4°C is 

predicted during heatwaves in the optimistic climate change scenarios, with even higher 

increases predicted for more dramatic climate change scenarios (Woolway et al., 2021). Next 

to these direct effects of climate change, a multitude of indirect effects take place, e.g. by 

higher surface run-off following stronger rain events, increasing concentrations of nutrients 

and pesticides through decreasing water volumes or changes in species interaction through 

different optimal temperatures (McKee et al., 2002; Marshall and Randhir, 2008; Jeppesen et 

al., 2011; Wu et al., 2021). Thus, higher temperatures due to climate change-related 

heatwaves or global warming in general interact with other stressors already present in the 

ecosystems.  

1.7 Stressor Interactions along a subsidy-stress gradient 

Phototrophic growth in aquatic ecosystems is controlled via nutrient availability (Moss et al., 

2013). From an autecological perspective an increase in nutrients subsidises further growth of 

phototrophs, in particular the growth of macrophytes at low to intermediate nutrient 

concentrations. The subsidy effect on the macrophyte-dominated clear water state is finite 

when other phototrophic communities gain an advantage at intermediate to high nutrient 

concentrations. In complex systems shading of macrophytes by phytoplankton or periphyton 

(e.g. Barker et al., 2008) is the main mechanism responsible for declining macrophyte growth 

(Yu et al., 2015) (figure 3).  
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Figure 3 | The effect of nutrients in the subsidy-stress concept from the perspective of the 

macrophyte-dominated clear water state. Regime shifts (RS) occur once the stressor exceeds 

a threshold concentration (TRS). 

Toxins, on the other side, do not subsidise growth but exert stress on organisms even at low 

concentrations. Thereby, co-occurring nutrients and pesticides lead to a complex subsidy-

stress trade-off and their combined effect changes along stressor gradients (Odum et al., 

1979) (figure 4).  

 

Figure 4 | The interactions of co-occurring nutrients and pesticides in the subsidy-stress 

concept from the perspective of the macrophyte-dominated clear water state. Pesticides do 

not subsidy but exert stress on the system, and potentially even modify the subsidy-stress 

relationship of nutrients when co-occurring in agricultural run-off (ARO). Thereby, pesticides 

can eventually lower the threshold for nutrient induced regime shifts (TRS).  
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The effect of combined stressors can differ from the addition of individual effects when 

multiple stressors interact (figure 5). There is not yet a uniform approach to identify and 

classify interaction types within aquatic ecology (Orr et al., 2020). Yet, most studies follow a 

classification in interaction types as antagonistic and synergistic next to additive effects (Côté 

et al., 2016). An additive effect of combined stressors is observed when the individual effects 

of the two or more stressors add up to the observed combined effect without further 

interaction. An antagonistic interaction of combined stressors is observed, when the observed 

effect is between zero (no effect observed) and the sum (additive effect) of two one-

directional acting or within the range of the two bi-directional acting stressors. A synergistic 

interaction is observed when the observed effect is higher than the sum of two one-directional 

acting stressors or outside the range of two bi-directional stressors (see figure 5).  

In rare cases interacting one-directional stressors not only modify the strength of the 

combined effect but even change the direction of the combined effect through their 

interaction, e.g. when two stressors with positive effects lead to a combined negative effect. 

This additional interaction type was classified by Piggott et al. (2015) as “mitigating synergism” 

and further adapted by Jackson et al. (2016) as reversed interaction (figure 5).  

  

Figure 5 | Co-occurring stressors can interact in different ways. Here antagonistic, synergistic, 

and reversed interactions are classified based on the effect of two equidirectional (A) and 

oppositely (B) acting stressors in comparison with their single and their additive effect. 

External factors or further additional stressors, e.g. elevated temperatures, can influence the 

sensitivity of aquatic systems to already occurring individual stressors and ultimately modify 

their combined effect respectively interaction (figure 6). While the effect of elevated 

temperatures and nutrients was tested (e.g. McKee et al., 2003; Moss et al., 2003; Piggott et 

al., 2012) as well as the effect of elevated temperatures and pesticides (e.g. Larras et al., 2013; 

Tasmin et al., 2014), the existing studies do not allow projection of the effect of increased 
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temperature on this subsidy-stress combination in the context of regime shifts. Two possible 

scenarios for changes of the effect of combined nitrate and pesticides along the subsidy-stress 

gradient are shown as an example (figure 6).  

 

Figure 6 | The potential effect of higher temperatures on ARO in the subsidy-stress concept 

from the perspective of the macrophyte-dominated clear water state.  As a consequence the 

threshold of ARO-induced regime shifts (TRS) could be modified, e.g. to a higher or lower ARO 

concentration. 

Their combined effect stays the same when the change in sensitivity to the stressors outweigh 

each other, it can be worsened when the sensitivity acts in the same direction, or one stressor 

dominates the combined effect. This way elevated temperatures might lower sensitivity to 

pesticides while in parallel the sensitivity to nutrients increases, leading to no change in their 

combined effect. When the third stressor changes sensitivity of the two other stressors in the 

same direction, e.g. when elevated temperature increases pesticide and nutrient sensitivity in 

parallel, the combined effect can be stronger than without the third stressor. 

1.8 First Objective: Effects of interacting agricultural stressors on alternative 

stable states of shallow aquatic ecosystems  

The combined effect of nutrients and pesticides has mostly been assessed in regard to single 

species or single species groups like periphyton, macrophytes, or phytoplankton (e.g. Murdock 

et al., 2013; Nuttens et al., 2016; Pannard et al., 2009; Rossi et al., 2018). The combined effect 

of these two stressors varies depending on actual concentrations along the subsidy-stress 

gradient and biological endpoints used in the studies. For example, Murdock et al. (2013) 
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found that high nutrient concentrations lower the effect of an herbicide on periphyton, while 

Nuttens et al (2016) found stronger reduction in macrophyte growth when both stressors 

were present. When no clear effects on biomass-related parameters are observed, changes in 

species competition is often hypothesised (e.g. Pannard et al., 2009). Remote and meta-

studies support the overall hypothesis that agricultural land use leads to phytoplankton 

blooms (Kakouei et al., 2021), but often focus only on nutrient concentrations and do not 

account for co-occurring pesticides (Nielsen et al., 2012). Multiple stressor studies accounting 

for competing phototrophic groups or even interactions with higher trophic levels are rare 

and do not focus on ecosystem wide effects as alternative stable states respectively regime 

shifts (Bracewell et al., 2019; Polazzo et al., 2021). Concluding, the role of co-occurring nitrate 

and pesticides remains unclear even for the first trophic level (primary producers) and even 

more so for multiple trophic levels.  

The first objective of this thesis is to assess the interactive effects of multiple agricultural 

stressors on regime shifts between primary producers. 

1.9 Second objective: Interacting agricultural stressors on alternative stable 

states of shallow aquatic ecosystems under climate change 

The effect of elevated temperature caused by climate change on alternative stable states in 

shallow lakes is difficult to precise. The ultimate effect of higher temperature alone is yet topic 

of discussion, as it can lead to macrophyte dominance (Hansson et al., 2020), or phytoplankton 

dominance (Paerl and Huisman, 2008) or even promote periphyton (Mahdy et al., 2015). 

Further, higher temperature can interact with agricultural stressors. Once again, the combined 

effects of higher temperature and nutrients in shallow aquatic ecosystems are complex and 

studies do not report consistent results. While micro- and mesocosm studies often report a 

promoted periphyton respectively benthic algae growth at high nutrient concentrations 

(Ökzan et al., 2010; Trochine et al., 2011; Hao et al., 2020), this effect depends on the response 

of the presence of macrophyte species present (Yang Liu et al., 2021; Wu et al., 2021). Remote 

and meta studies report that phytoplankton and in particular cyanobacteria blooms become 

more likely in nutrient rich ecosystems due to higher temperatures (Moss, 2011; Kosten et al., 

2012; Beaulieu et al., 2013). 



Introduction 

10 
 

On the other hand, it was shown that higher temperatures may limit the negative effects of 

pesticides (Larras et al., 2013; Tasmin et al., 2014). The effect of higher temperatures on 

herbicide toxicity likely depends on species present and acclimation processes (Gomes and 

Juneau, 2017). Microalgae can adapt to herbicide pollution on a cellular level while the whole 

community can adapt via selection of more tolerant species within the community (Tlili et al., 

2015). Yet the speed of potential adaption varies for the different microalgae groups. As a 

consequence of this, diatoms are at disadvantage due to their lower biovolume and 

consequently higher herbicide sensitivity  while the community composition shifts to 

cyanobacteria dominance when exposed to herbicides at higher temperatures (Gomes and 

Juneau, 2017). Comparable studies for submerged aquatic macrophytes are missing. In 

conclusion, effects of higher temperature on the competition of phototrophic groups under 

multiple agricultural stressors cannot be projected based on current knowledge.  

The second objective of this thesis is to analyse the risk of regime shifts caused by agricultural 

stressors and potential modifications by higher temperatures.  

1.10 Third objective: Role of exposure pathways and trophic interactions for 

regime shifts induced by agricultural stressors 

The main cause for increased phytoplankton growth and hence regime shifts are higher 

nutrient concentrations in the water column. This exposure pathway dominates in 

experimental settings (e.g Liu et al., 2021; Pereira et al., 2017; van Wijngaarden et al., 2005). 

Such studies neglect the occurrence and release of agricultural run-off via the sediment. 

Various studies have proven the presence of high nutrient and pesticide concentrations in the 

sediments of aquatic systems (Otto et al., 2016; Qu et al., 2017; Machate et al., 2021), 

originating from subsurface flow (Bilotta et al., 2008), bound to suspended soil particles (Ulrich 

et al., 2013), or absorbed from the water column (Adriaanse et al., 2022). Further, the release 

of nutrients and pesticides from the sediment to the water phase can be influenced by 

organisms (Diepens et al., 2014) and increasing temperatures (Duan and Kaushal, 2013). 

Whether both exposure pathways, via the sediment or the water phase, can lead to regime 

shifts is unclear. To clarify the role of exposure pathways and if they need further 

consideration when transferring experimental results to field scale, is the first part of the third 

objective of this thesis. 
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The competition for light and nutrients between phytoplankton, periphyton and 

phytoplankton is the main mechanism determining the state of the ecosystem in shallow lakes 

(Scheffer et al., 1993; van Nes et al., 2016). In real-world scenarios, each of these biological 

components is usually impacted directly by a higher trophic level. Filter feeders such as 

mussels and diverse zooplankton species can reduce the phytoplankton biomass (Scheffer, 

1999). Snails and zooplankton graze on periphyton and even macrophytes to some part 

(Phillips et al., 2016; Yang et al., 2020). Higher trophic levels themselves, their interactions 

within these levels and their feeding pressure on lower trophic levels are impacted by multiple 

stressors, too (Kong et al., 2016; Griffiths et al., 2021). For example, higher temperatures 

modify feeding behaviour of filter feeders (Loiterton et al., 2004; Hardenbicker et al., 2015), 

but temperatures can easily exceed optimal levels and reach lethal temperatures during 

heatwaves (White et al., 2015). Similarly, pesticides decrease biological fitness and 

survivability, leading to higher death and lower spawning rates (Hanazato, 2001). Studies on 

the combined effect of agricultural run-off and climate related warming considering whole 

ecosystem effects are rare (e.g. Polazzo et al., 2021; Zhang et al., 2022). To clarify the role of 

higher trophic levels and if they need further consideration when transferring results from 

simplified experimental settings to field scale, is the second part of the third objective of this 

thesis. 

The third objective of this thesis is to validate the before described results for different 

scenarios reflecting possible in-field scenarios. In the first part (a) the effects of exposure via 

the sediment are clarified, in the second part (b) the role of higher trophic levels is addressed. 
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1.11 Objectives of this thesis 

To address the effect of multiple agricultural stressors, namely nitrate and pesticides, in 

perspective of climate change, on the competition of aquatic phototrophic communities, the 

following objectives are at the core of this thesis: 

1) Assessing the interactive effects of combined agricultural stressors on regime 

shifts between primary producers. 

2) Analysing if the risk of regime shifts caused by multiple agricultural stressors is 

modified at higher temperatures.  

3) Validating the results obtained in objectives 1 & 2 for different scenarios 

reflecting possible in-field scenarios. In the first part (a) the effects of exposure 

via the sediment are clarified, in the second part (b) the role of higher trophic 

levels is addressed. 
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1.12 Framework of this thesis: the Climshift project 

The work presented in my thesis is part of the French-German project Climshift, funded by the 

French National Research Agency ANR and the German Research Foundation DFG. The 

Climshift project aims to define safe operating spaces for shallow aquatic systems affected by 

agricultural stressors and climate change. Threshold for agricultural stressors should be 

defined based on the occurrence of regime shifts. These thresholds should hold true in the 

future when climate change effects, in particular elevated temperatures, become more 

severe. The German project partners include the Helmholtz-Centre for Environmental 

Research (UFZ) Leipzig, the Leibniz Institute for Freshwater Ecology and Inland Fisheries (IGB) 

Berlin and the Ludwig-Maximilians-University Munich. The French project partners include the 

Laboratoire Ecologie Fonctionnelle et Environnement (ECOLAB) Toulouse and the Laboratoire 

Interdisciplinaire des Environnements Continentaux (LIEC) Metz.  

1.13 Structure of this thesis 

Within the following seven chapters, the objectives of this thesis will be addressed: 

In chapter 2 Material & Methods, the setup of the microcosm and mesocosm systems used 

as model ecosystems in this thesis are explained. Further, the mixture representing 

agricultural run-off is introduced. Ultimately, an overview of the experimental designs 

regarding ARO concentrations, and the use of elevated temperature is given. 

In chapter 3 Stressor Interactions (Polst et al., 2022b: "Warming lowers critical thresholds for 

multiple stressor–induced shifts between aquatic primary producers"; published in Science of 

the Total Environment) the interactions of different agricultural stressors are tested along a 

gradient using a factorial design. Dose-response curves are modelled and give insights on the 

modification of regime shift thresholds. Further, the potentially modifying effect of elevated 

temperature on ARO-induced regime shifts is tested.  

In chapter 4 Process-based Modeling (López Moreira M. et al., 2022.: “Microcosm 

experiments combined with process-based modelling reveal differential response and 

adaptation of aquatic primary producers to warming and agricultural run-off”; submitted to 

Frontiers in Plant Science), a process-based model is developed based on the results of a 

microcosm experiment. The model gives insights into processes contributing to ARO-induced 
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regime shifts and respects the influence of elevated temperature on pesticide toxicity. This 

work was conducted in close cooperation with G. Mazacote at the Institute for Freshwater 

Ecology and Fisheries (IGB) Berlin. 

In chapter 5 Exposure Pathways (Polst et al., 2022a: “Exposure pathways matter: Aquatic 

phototrophic communities respond differently to agricultural run-off released via sediment or 

water”; submitted to the Journal of Applied Ecology and currently in review), two exposure 

pathways, via the sediment and via the water column, of the ARO mixture were tested. The 

role of elevated temperature on the two pathways and its potential implications for the 

occurrence of regime shifts were investigated. This work was performed in cooperation with 

J. Allen from the Université de Lorraine respectively Université de Toulouse.  

In chapter 6 Trophic Complexity (Vijayaraj et al., 2022a: " Evaluating multiple stressor effects 

on benthic–pelagic freshwater communities in systems of different complexity: challenges in 

upscaling"; published in Water), the potential of ARO-induced regime shifts was tested at 

different trophic complexities. In the first experiment, the established microcosms were 

complemented with key species of the next higher trophic level (filter feeders & grazers). In 

the second experiment, outdoor mesocosms with natural phyto- and zooplankton 

communities were constructed and the effects of ARO were tested along a gradient at two 

temperature regimes (ambient and heated). This work was supported by every member of the 

Climshift project (see 1.13), with significant contributions from V. Vijayaraj and N. Kipferler. 

The microcosm experiment was carried out at the Université de Lorraine in Metz (France), the 

mesocosm experiment was carried out at the Ludwig-Maximilians-University Munich 

(Germany). 

In chapter 7 Discussion, the results presented in the preceding chapters are discussed in the 

context of the three objectives. Comparison of the conduced experiments to each other and 

to relevant literature. 

In chapter 8 Conclusion, I present a conclusive perspective on the recovery of ARO-induced 

regime shifts, the consideration of the presented stressors in risk assessment and measures 

to prevent ARO-induced regime shifts. 
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1.14 Joint Methods 

Targeting the main question of competition between phototrophic groups, which is at the core 

of regime shifts, I focus on those compartments in the first three chapters of this thesis. A 

microcosm system with macrophytes, periphyton and phytoplankton excluding higher trophic 

levels was used to focus on phototrophic organisms. To answer the second part of the third 

objective, how these formerly obtained results from simplified communities, restricted to 

photoautotrophs, transfer to systems with higher trophic levels, consumers (snails, mussels, 

zooplankton) were added to the established microcosm design as well as constructed larger 

outdoor mesocosms.  

1.14.1 Microcosm and mesocosm setups 

The design of the microcosms, which are shown in figure 7 and 8, was based on the 

standardised test system No. 239: Water-Sediment Myriophyllum Spicatum Toxicity Test 

(OECD, 2014). Sediment was prepared according to the protocol including quartz sand, peat, 

kaolin, nettle powder and CaCO3. To provide constant and comparable conditions between 

the individual microcosms and the different experiments, Volvic® mineral water (8 L, Danone 

Deutschland GmbH, Germany) was used as an aqueous medium free of pesticides and low on 

nutrients. Vertical strips of plastic (Stressor Interaction, Process-based Modelling & Trophic 

Complexity chapters 3, 4, 6) or glass (Exposure Pathways chapter 5) were used as surface for 

periphyton colonisation. An aeration system was added to provide movement of the water as 

it usually occurs through wind in ecosystems. The lower part of the microcosms was wrapped 

in dark foil to prevent an artificially increased lateral light influx. Building up on this test 

system, three submerged macrophyte species, typically found in shallow eutrophic 

ecosystems were selected (Hilt et al., 2018): Myriophyllum spicatum, Potamogeton 

perfoliatus, and Elodea nuttallii. In the Stressor Interaction and the Process-based Modeling 

chapters 3 & 4, selected algae species were used as inoculum for planktonic and benthic algae. 

In the Exposure Pathways chapter 4 and the replicated experiment of the Stressor Interaction 

chapter 3 a natural algae inoculum was used to increase species diversity. In the microcosm 

experiment of the Trophic Complexity chapter 6, an additional trophic level was included with 

filter feeding zooplankton (Daphnia magna) and mussels (Dreissena polymorpha) as well as 

grazing snails (Lymnea stagnalis) (figure 13).  
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Figure 7 | Microcosms before the start of the Exposure Pathway experiment. The strips for 

periphyton colonisation and wrapping of the lower part were not yet included.  

 

Figure 8 | Microcosm at the end of the Stressor Interaction experiment. 
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In the Trophic Complexity chapter 6, the microcosm system, comprising two trophic levels, 

was compared with the outdoor mesocosm system also including a more complex second 

trophic level. The main differences between this microcosm and the mesocosm systems were 

the sediment, type and volume of water, the species inoculum used and exposure to external 

factors which could not be controlled in the outdoor mesocosm. These mesocosms, shown in 

figure 9, were open to external influences such as precipitation and evaporation, natural light, 

and invasion of additional species. Instead of the standardized sediment based on the OECD 

guideline, a mixture of soil and sand was used. Local well water low on nutrients was used to 

fill up the mesocosms (570 L). Next to the snail and mussel species from the microcosm 

experiment, natural zoo- and phytoplankton communities as well as natural periphyton 

communities were used as inoculum.  

  

Figure 9 | Mesocosm at the start (left) and at the end (right) of the experiment in the Trophic 

Complexity chapter 6. 

1.14.2 Agricultural run-off mixture (ARO) 

An artificial mixture representing agricultural run-off was designed and used in all 

chapters/experiments. The mixture consisted of three organic pesticides, copper, which is 

used in inorganic farming, and nitrate (table 1). As representatives of several categories and 

modes of action of pesticides, terbuthylazine (herbicide, photosynthesis inhibitor), pirimicarb 

(insecticide, acetylcholinesterase inhibitor), tebuconazole (fungicide, dimethylase inhibitor), 

copper as CuSO4 (algaecide & fungicide, multiple mode of action) were selected based on 

recent publications (Fawaz et al., 2018; Halbach et al., 2021; Liess et al., 2021; Wijewardene 

et al., 2021). Using single species tests and literature data, pesticide concentrations were 
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selected in the approximate concentration of the EC20 (effective concentration at which 20% 

of organisms show a negative effect for the measured parameter). The mixture and the 

respective concentrations were published in Allen et al. (2021) for the first time: 

Table 1 | Compounds, stressor type and concentration of the original ARO mixture. 

 N-NO3 Terbuthylazine Pirimicarb Tebuconazole Copper 

Stressor Nutrient Herbicide Insecticide Fungicide Pesticide 

ARO 9000 µg L-1 3 µg L-1 15 µg L-1 90 µg L-1 42 µg L-1 

 

All three organic pesticides were recently found in agriculturally impacted ponds 

(Wijewardene et al., 2021). In more detail, literature reports terbuthylazine concentrations in 

streams and ponds ranging from 1.2 µg L-1 (Knauer, 2016) up to 9.6 µg L-1 (Baillie, 2016). For 

the ARO mixture a concentration of 3 µg L-1 terbuthylazine was selected based on the single 

species algae test and fits within in range of environmental concentrations reported in 

literature. A concentration of 15 µg L-1 was selected for pirimicarb based on a single species 

daphnia test. Data on environmental concentrations of pirimicarb are rare, and range 

between 0.02 µg L-1 (Wijewardene et al., 2021) and 2 µg L-1 (Kreuger, 1998). The concentration 

of the fungicide tebuconazole was selected based on literature data. Zubrod et al. (2011) 

reported a lowest observed effect concentration of 61.3 µg L-1 on fungal biomass associated 

to leaf litter disks. Artigas et al. (2012) found negative effects on periphyton functions such as 

lower photosynthetic activity at a concentration of 20 µg L-1. In another study Maltby et al. 

(2009) reported a median HC5 (5 percent quantile) for non-fungal species of 238 µg L-1. Due 

to the lack of suitable literature and the lack of standardized tests for aquatic fungi, a 

concentration of 90 µg L-1, slightly higher than the one reported by Zubrod et al. (2011), was 

chosen for the ARO mixture. Copper concentrations were based on recent publication by 

Fawaz et al. (2018), who reported a 96 h EC50 of 65.93 µg L−1 for algae. For nitrate a 

concentration of 9 mg L-1 was selected based on James et al. (2005) who showed a clear 

decrease in submerged macrophyte species at such high nitrate concentrations. 

This mixture representing agricultural run-off was the starting point for all experiments. Based 

on the aims and hypotheses of each experiment the ARO mixture was used in a dose-

dependent design at lower or higher concentrations, but the original concentration was tested 
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in all experiments (see table 2). In the individual experiments the different concentrations 

were named according to their relative enrichment factor starting at the lowest 

concentrations (ARO 1) respectively. This led to different naming of the same concentrations 

in the different experiments. For a better overview and direct comparison of ARO 

concentrations used in each experiment see figures 10 to 13 and table 2. 

1.14.3 Experimental setup 

In the first experiment – the Stressor Interaction chapter 3 – I split up the ARO mixture and 

tested individual and combined stressors in a factorial dose-response design (figure 10). In the 

first part, I tested the full ARO mixture in a replicated experiment to account for reproducibility 

of the microcosms. In the second part, I split up the ARO mixture and compared the effects of 

individual stressors with the full ARO mixture along a gradient. Only the full ARO mixture was 

tested at ambient and heated conditions. In the following, I refer to this experiment 

respectively the chapter as the Stressor Interaction chapter 3. For the next experiment I used 

an ARO gradient with replicated microcosms to collect robust data that were then used in a 

process-based model (figure 11). This model allows us to further investigate potential 

mechanisms relevant in regime shifts. Therefore, I refer to this work as the Process-based 

Modeling chapter 4. In the third experiment I have tested ARO exposure via two pathways, 

via the water column and via the sediment (figure 12). Two ARO concentrations (ARO 1 and 

ARO 4) were used next to a control and tested at ambient (22°C) and elevated temperature 

(26°C). This work is referred to as the Exposure Pathways chapter 5. In the last experiment, 

higher trophic systems were tested (figure 14). In the microcosm experiment representative 

key species of the first consumer level (Daphnia, snails, mussels) were used. Further, this 

experiment compared the Volvic® water already used in the other experiments with the well 

water used in the mesocosm study. In the mesocosm experiment a natural zooplankton 

community was used and the outdoor placement of the mesocosm allowed further 

immigration of other invertebrate species. Instead of a single replicated ARO treatment as 

used for the microcosms, the mesocosm experiment used a gradient of ARO. Both 

experimental designs were mirrored at ambient and heated conditions. This work is 

summarized in the Trophic Complexity chapter 6. 

In each experiment, the effect of ARO was tested at ambient and elevated temperatures. For 

the microcosm experiments an ambient temperature of 22°C was selected as representative 
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ambient lake water temperature during summer (Mckee et al., 2002; Sand-Jensen et al., 

2019). An increase of +4°C for the elevated temperature treatments was targeted based on 

Woolway et. al (2021), who predict such an increase of lake water temperature during 

heatwaves. Since the mesocosm experiment was conducted outdoors, the ambient water 

temperature could not be set to a fixed temperature and was determined by outdoor factors, 

e.g. radiation and air temperature. For the heated mesocosm an increased temperature 

by +4°C in comparison to the ambient temperature was targeted, the same temperature 

difference attempted to achieve in the microcosm experiments. 

 

Figure 10 | The study design used in the Stressor Interaction chapter 3 of this thesis. 

 

Figure 11 | The study design used in the Process-based Modelling chapter 4 of this thesis. 
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Figure 12 | The study design used in the Exposure Pathways chapter 5 of this thesis. 

 

 

Figure 13 | The study design used in the Trophic Complexity chapter 6 of this thesis. 
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Table 2 | Concentrations and labelling of the ARO mixture in the different experiments. 

Concentrations were labelled according to the relative enrichment factor of the mixture for 

the microcosm experiments, starting with 1 for the lowest concentration used and ascending 

further. For the mesocosm experiment in the Trophic Complexity chapter 6 relative dilution 

factors were used, starting with 1 for the highest concentration and then descending to 1/64th 

of the original concentration (not all steps shown). The original ARO mixture (as shown in 

table 1) is marked in bold numbers. (*) For the microcosm experiment of the Trophic 

Complexity chapter 6, only one ARO concentration was used which was not further numbered. 

Treatments without ARO were labelled as control (C). 

Chapters 0 x 1/64 … x 1/8 x 1/4 x 1/2 1 x 2 x 4 

Stressor Interactions 

(chapter 3)  
C   1 2 4 8 16  

Process-based Modelling 

(chapter 4) 
C    1 2 4 8 16 

Exposure Pathways 

(chapter 5) 
C    1  4   

Trophic Complexity  

(chapter 6) 

– Microcosm 

C      1*   

– Mesocosm  C 0.015 … 0.125 0.25 0.5 1   
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2. Warming lowers critical thresholds for multiple stressor-induced 

regime shifts between aquatic primary producers 

 

Bastian H. Polst, Sabine Hilt, Herwig Stibor, Franz Hölker, Joey Allen, Vinita Vijayaraj, Nora 

Kipferler, Jopséphine Leflaive, Elisabeth M. Gross, Mechthild Schmitt-Jansen 

 

Published on June 11th, 2022 in Science of the Total Environment 

The manuscript and its supplementary material can be found online at: 

doi: 10.1016/j.scitotenv.2022.156511  

 

 

Figure 14 | Graphical abstract of the following Stressor Interaction chapter 3. 
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3. Microcosm experiments combined with process-based modelling 

reveal differential response and adaptation of aquatic primary 

producers to warming and agricultural run-off 

 

Gregorio A. López Moreira M., Bastian H. Polst, Elisabeth M. Gross, Mechthild Schmitt-Jansen, 

Franz Hölker, Sabine Hilt 

 

Submitted to Frontiers in Plant Science, on the 9th December 2022 

This article and supplementary material can be found online at:  

https://www.frontiersin.org/articles/10.3389/fpls.2023.1120441/abstract 

 

Figure 15 | Key result of the microcosm experiment of the Process-based Modelling paper: 

Relative accumulated biomass (size) and share of the phototrophic communities for each 

treatment. 
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4. Exposure pathways matter: Aquatic phototrophic communities 

respond differently to agricultural run-off released via sediment or 

water  

 

Bastian H. Polst, Joey Allen, Franz Hölker, Sabine Hilt, Herwig Stibor, Elisabeth M. Gross, 

Mechthild Schmitt-Jansen 

Submitted on 19th October 2022, to the Journal of Applied Ecology and currently in review. 

Supplemental Material is included at the end of this chapter starting at page 31 of the 

following manuscript. 

 

Figure 16 | Graphical abstract for the following Exposure Pathways chapter 5. 
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Figure 17 | Key result of the following Trophic Upscaling chapter showing the share of 

phototrophic groups in the micro- and the mesocosms. The red circle indicate treatments 

with elevated temperature. 
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6. Discussion 

Shallow aquatic systems within agricultural landscapes are often affected by surface run-off 

transporting nutrients and pesticides, so called agricultural run-off. In these systems, high 

nutrient concentrations can lead to regime shifts from a macrophyte-dominated clear water 

state to a phytoplankton-dominated turbid state, which thereby impairs the ecosystem 

services of shallow aquatic systems (Hilt et al., 2017). Such regime shifts can further be 

facilitated by elevated temperatures occurring during heatwaves or due to global warming. 

Assessing the effects of these multiple stressors on regime shifts is the aim of my thesis. Three 

main objectives were identified and targeted with my work: 

1) Assessing the interactive effects of combined agricultural stressors on regime 

shifts between primary producers. 

2) Analysing if the risk of regime shifts caused by multiple agricultural stressors is 

modified at higher temperatures.  

3) Validating the results obtained in objectives 1 & 2 for different scenarios 

reflecting possible in-field scenarios. In the first part (a) the effects of exposure 

via the sediment are clarified, in the second part (b) the role of higher trophic 

levels is clarified. 

Towards these objectives I will discuss in the following the interacting effects of nitrate and 

pesticides and how their combined exposure leads to regime shifts. I highlight the role of an 

adapting phytoplankton community (objective 1, chapter 7.1). Further, I discuss the role of 

elevated temperatures on regime shifts by comparing the effect of elevated temperatures 

individually and combined with ARO (objective 2, chapter 7.2). In the last part I discuss factors 

of relevance in the field that were included in the experimental settings, in particular the 

exposure pathways and fate of ARO, trophic complexity with a potential community 

adaptation, and temporal dynamics of stressor effects (objective 3, chapter 7.3). I conclude 

my thesis with an outlook to the recovery of ARO-induced regime shifts, further 

considerations of multiple stressors in risk assessment and measures needed to prevent 

regime shifts in the first place. 
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6.1 The effect of agricultural run-off (ARO) on the first trophic of shallow 

lakes level – phototrophic communities 

High nitrate concentrations originating from agriculture are the driving factor behind 

phytoplankton growth and consequently the regime shifts reported in literature (Moss et al., 

2013). Besides nitrate, pesticides are used extensively in agriculture and are major pollutants 

in aquatic systems. Agricultural run-off transports both, nitrate and pesticides, in nearby 

shallow aquatic systems where these co-occurring stressors can possibly interact. Since these 

two stressors have an opposing mechanisms – growth stimulating versus growth inhibiting – 

their co-occurrence may affect growth of phototrophic communities and ultimately the 

occurrence of regime shifts. To understand the effect of nitrate and pesticides on the shading 

potential of phytoplankton, I excluded, in a first experimental-driven approach, higher trophic 

levels in my experimental settings and focused on the biological interactions of the 

phototrophic communities. These are key players in the occurrence of regime shifts from 

macrophyte- to phytoplankton-dominated states. To further disentangle potential ecological 

mechanisms on the level of primary producers, a process-based modelling approach was used.  

In the following, I summarize the results related to the first objective, and then discuss the 

role of stressor interactions and the adaptation potential of the phytoplankton community as 

an important mechanism responsible for regime shifts.  

6.1.1 Summary of the key results related to objective 1: Synergistic interactions of 

multiple agricultural stressors lead to regime shifts between primary producers 

The experimental approach applied in the Stressor Interaction chapter 3 revealed that nitrate-

induced phytoplankton growth alone did not provide sufficient stress to limit macrophyte 

growth and thereby it did not induce a regime shift. These occurred only with co-occurring 

exposure of nitrate and pesticides, despite comparable levels of phytoplankton density in the 

treatments with individual nitrate and the combined treatment including pesticides. 

Repetition of the combined treatment in the experiments of the other chapters lead to 

comparable results (figure 18). Ultimately, synergistic interactions of nitrate and pesticide led 

to the observed regime shifts. Using the combined experimental and modelling approach in 

the Process-based Modeling chapter 4 revealed an adaptation of microalgae communities to 

the herbicide exposure. 
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Figure 18 | Overview of the relative effects on the biomass of the three phototrophic 

communities of shallow aquatic systems caused by the ARO mixture tested across all 

experiments at ambient temperature (see table 2). Results from microcosm studies are 

shown as effect sizes ± standard error (Stressor Interaction chapter 3) or ± confidence interval 

(in the Process-based Modelling, Exposure Pathways and Trophic Complexity chapters 4, 5 

& 6). Mesocosm experimental results from the Trophic Upscaling chapter 6 are shown as ratio 

in comparison to the control treatment as no effect sizes or variance could be calculated due 

to the lack of replicates. For details, e.g. which biological endpoint (e.g. chlorophyll a 

concentration or dry weight) were used for the respective calculations, see the individual 

chapters. 

6.1.2 Interaction of stressors increase the risk of regime shifts 

Opposing to the widespread understanding that high nitrate respectively nitrogen 

concentrations comparable to the ones used in my experiments increase phytoplankton 

growth, thereby shading of macrophytes and finally lead to regime shifts (Moss et al., 2013; 

Olsen et al., 2015), no nitrate-induced regime shifts were observed in the experimental 

settings of this thesis (Stressor Interaction chapter 3). A reason for this discrepancy maybe 

found in methodological-related effects e.g. too shallow microcosms that limit the realistic 

representation of real ecosystems. This way macrophytes could have still gained enough light 
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as they were too close to the water surface to experience strong shading by phytoplankton. 

On the other side, regime shifts were found at similar phytoplankton levels when pesticides 

co-occurred (Stressor Interaction chapter). Contrasting to this finding, Gomes & Juneau (2017) 

and Brain et al. (2012) found that the toxicity of herbicides with the same mode-of-action as 

terbuthylazine decreases with decreasing light availability. Phototrophic organisms can 

produce more pigments to counteract the lower light availability caused by shading or as a 

response to low-dosed herbicides (Cedergreen et al., 2007; Gomes and Juneau, 2017). This 

mechanism can lead to an even higher photosynthetic efficiency and limit the effects of 

shading or herbicides (Hormesis effect, see Cedergreen et al., 2007). Nevertheless, following 

the subsidy-stress and stressor addition concepts, shading by phytoplankton and herbicides 

should both limit the growth of macrophytes once certain thresholds are exceeded when 

exposed in combination (figure 19). Both, the direct toxic stress exerted by herbicides and the 

indirect stress by nitrate-induced shading, act synergistically at high concentrations but 

interactions may differ along the gradient (Stressor Interaction chapter 3). A mesocosm 

experiment performed by Wendt-Rasch et al. (2004) indicates such addition respectively 

synergism as the toxic effect of herbicides is increased in turbid conditions and supports our 

findings.  

 

Figure 19 | The subsidy-stress concept (see also Fig. 4 Intro) now adjusted to the effects of 

the agricultural stressors from the perspective of the macrophyte-dominated clear water 

state according to their effects observed in the Stressor Interaction experiment. Only the 

combined treatment of nitrate and pesticides as ARO led to regime shifts (RS) at a certain 

threshold (TRS). 
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Concluding, the limits at which macrophytes can counteract the negative effects by the direct 

toxic stress and the indirect stress by shading were exceeded with the ARO concentrations 

tested in this work. Synergistic interactions of co-occurring pesticides and nitrate-induced 

shading led to stronger effects on macrophytes, and clear regime shifts to phytoplankton 

dominated states. Furthermore, this result suggests that the role of pesticides on the 

occurrence of regime shifts is underestimated, and perhaps explains some of the remaining 

variability in studies that focus exclusively on nutrients (e.g. Beaulieu et al., 2013). 

6.1.3 The high adaptation potential of the phytoplankton community is 

contributing to the increased risk of regime shifts 

Long-term direct impact of pesticides on growth of phototrophic organisms or communities is 

difficult to analyse as they can adapt towards pesticide exposure over longer times via two 

means: 1) Physiological acclimation e.g. via increased pigment production (Gomes and Juneau, 

2017), or 2) adaptation of the community through selection of tolerant species (Tlili et al., 

2015). The range of herbicide concentrations in which macrophytes can acclimate to the 

exposure seems to be rather small. Cunningham et al. (1984) found recovery of 

P. perfoliatus at 0.31 µg L-1 atrazine but not at 1.2 µg L-1 atrazine despite fivefold increase in 

chlorophyll a content, which is comparable to the lower end of the environmental relevant 

herbicide concentrations tested in this work. Adaption of the macrophyte community via 

species selection does not take place within the timeframe at which regime shifts occur 

(<1 year). Microalgae communities on the other hand can adapt to exposure much faster due 

to their low generation time (Bérard and Benninghoff, 2001; Schmitt-Jansen and Altenburger, 

2005). Thereby, microalgae communities can adapt to pesticide pollution and increase their 

tolerance within the timeframe of regime shifts, which is conceptualized in the concept of 

pollution-induced community tolerance (PICT, Tlili et al., 2015). 

Testing species and community adaption via the PICT approach is challenging and a time 

intensive task, therefore such data in terms of regime shifts or even for multiple groups of 

phototrophs within a shared ecosystem are non-existent. In the Process-based Modelling 

chapter 4 I targeted this problem with a novel modelling approach and thereby have proven 

the adaption of microalgae communities. Concluding, phytoplankton communities adapt to 

ARO exposure, and this adaption contributes to regime shifts, thereby answering the second 

part of our first objective. 
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6.2 Effects of climate change on shallow aquatic systems 

Higher average global temperatures as well as more frequent and intensive heatwaves are the 

apparently biggest effect of climate change on freshwater ecosystems (Dokulil et al., 2021; 

Woolway et al., 2021; Zhang et al., 2022). Lake water temperatures are predicted to increase 

by +4°C during heatwaves in low-greenhouse-gas-emission scenarios and even higher in 

scenarios with higher greenhouse gas emissions (Dokulil et al., 2021; Woolway et al., 2021). 

These increased temperatures are likely leading to regime shifts but can also interact with 

agricultural run-off and modify their potential to induce regime shifts (Paerl and Huisman, 

2008; Moss et al., 2011). Whether the risk of ARO-induced regime shifts is modified at 

elevated temperatures is the second objective in this thesis. An increase in water temperature 

was therefore included in all experimental settings as a separate control treatment and in 

combination with the respective ARO treatments. This experimental approach revealed key 

results presented in the following paragraph and is discussed afterwards.  

6.2.1 Summary of the results related to Objective 2: Elevated temperatures 

modulate the risk of ARO-induced regime shifts 

Higher temperatures (ranging from +2.5°C to +4°C in the experimental settings) alone did not 

promote regime shifts and even increased macrophyte growth (see e.g. Stressor Interaction 

chapter). Nevertheless, higher temperatures affected ARO-related effects in each experiment 

as shown in the overview in table 3.  

Table 3 | Overview of the effects of higher temperature on ARO-induced regime shifts. 

Chapter Effect of elevated temperature Risk of regime shifts 

Stressor Interaction  
lowers thresholds for ARO-induced regime 

shifts 
increased 

Process-based 

Modelling  

accelerates metabolism and decreases 

herbicide sensitivity of phytoplankton 
increased 

Exposure Pathways 
negates negative effect of ARO exposure via 

sediment 
unaffected 

Trophic Complexity 

varying effect along the ARO gradient; 

Reversed effect at the highest ARO 

concentration 

too complex to 

conclude 
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In the Stressor Interaction chapter 3, higher temperatures decreased the thresholds for ARO-

induced regime shifts. In the Process-based Modeling chapter 4, the model settings in which 

higher temperature did decrease the sensitivity to the herbicide, had the best fitting. In the 

Exposure Pathways chapter 5, higher temperature negated the negative effects of sediment-

exposed ARO. In the Trophic Complexity chapter 6, higher temperature reversed the ARO-

related effect at higher biological complexity at the highest ARO concentration in the 

mesocosm experiment. Overall, the reversed interaction of elevated temperature and ARO 

must be highlighted, as elevated temperatures alone did not induce regime shifts. When 

combined with ARO the risk of regime shifts can be increased as most clearly seen in the 

Stressor Interaction chapter 3 (figure 20). 

 

Figure 20 | The subsidy-stress concept (see also Fig. 6 Intro) now adjusted to the effects of 

the agricultural stressors and elevated temperature from the perspective of the 

macrophyte-dominated clear water state according to their effects observed in the Stressor 

Interaction chapter 3. While elevated temperature alone further subsidized the macrophyte-

dominated state, it lowered the threshold for ARO-induced regime shifts (TRS). 

The effects of higher temperatures on ARO-induced regime shifts are more subtle and depend 

very much on additional factors as the range of ARO concentrations, the exposure pathway 

and complexity of the ecosystem. It seems that higher temperature rather modulates the 

effects of ARO in multiple directions depending on the experimental settings than a clear one-

directional effect on ARO-induced regime shifts and hints to the need of a mechanistic 

understanding of the mechanisms behind stressor interactions. 
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6.2.2 The direct effect of elevated temperatures is unlikely to induce regime shifts 

Many studies observed or predict increased phytoplankton growth in shallow lakes due to 

elevated temperatures (Paerl and Huisman, 2008; Kosten et al., 2012; Lürling et al., 2013; 

Richardson et al., 2019), while other studies predict macrophyte dominance (Mckee et al., 

2002; Cao et al., 2015; Hansson et al., 2020). In an experimental mesocosm setting, 

Zhang et al. (2022) found a trend to periphyton dominance as a consequence of heatwaves. 

The results obtained in my work strengthen the argument of increased macrophyte growth in 

shallow aquatic systems at higher temperatures without agricultural pollution. Apart from the 

direct effects on growth of primary producers further temperature-related indirect effects 

may occur that can modify the risk of regime shifts. Higher remobilization of nutrients from 

the sediments  could contribute to regime shifts (Duan and Kaushal, 2013) but was not found 

in the Exposure Pathways chapter 5. Further, higher temperatures can influence bottom-up 

control of filter feeders and grazers through changes in the food quality (macrophytes and 

microalgae) as well as top-down controlling feeding behaviour of snails (Moore et al., 1996; 

Zhang et al., 2019), but these were not explicitly tested in my experimental work. Ultimately, 

higher temperature without further agricultural pollution as studied in this thesis do not 

indicate an increased risk for regime shifts, neither by direct nor indirect effects. The opposite 

is the case, higher temperatures strengthen the macrophyte-dominated clear water state in 

shallow aquatic systems. 

6.2.3 Elevated temperatures can interact with ARO to modify regime shifts 

As shown in this thesis, effects of higher temperatures on ARO-induced regime shifts are too 

complex to be summarized in one clear statement. Further comparison to literature is difficult 

since only very few comparable studies exist. While remote and meta-studies show an 

increased risk of regime shifts when connecting land-use and higher temperatures (e.g. 

Beaulieu et al., 2013; Jeppesen et al., 2011; Kakouei et al., 2021), experimental studies are 

often limited in their conclusion regarding ARO-induced regime shifts. For example, Allen et 

al. (2021) found no modulation of ARO-related effects by elevated temperatures in a 

comparable experimental setting. Similarly, Zhang et al. (2022) found effects related to regime 

shifts when co-exposing nutrients and glyphosate at higher temperature, yet interactions of 

temperature and pollution were only found for one macrophyte species. In the Trophic 

Complexity chapter 6, ARO at elevated temperature had a positive effect on periphyton 
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growth too and adds further arguments to the ongoing discussion on the role of periphyton 

in shallow lakes (e.g. Vadeboncoeur et al., 2021; Wijewardene et al., 2021) and if a periphyton-

dominated clear water state is becoming a third alternative state due to climate change and 

agricultural pollution. Ultimately, elevated temperatures can interact with ARO, as highlighted 

in figure 20, and can thereby modify ARO-induced regime shifts. The overall effects of higher 

temperatures are subtle and depend on further environmental factors. 

6.2.4 The effects of Climate Change go beyond elevated temperatures  

The consequences of climate change for shallow aquatic systems are much more versatile and 

complex than just elevated temperatures. Physico-chemical changes (e.g. increasing CO2 

concentration, pH), changes in hydrological regime (water volume, desiccation) and changes 

in external energy influx (radiation) are possible further threads to ecosystems and can 

influence ARO-induced regime shifts in aquatic ecosystems (Bates et al., 2008). For example, 

higher radiation increases pesticide degradation, a lower water volume increases 

concentrations of chemical stressors, and CO2 promotes growth of algae (Delpla et al., 2009; 

Li et al., 2016). Further, an earlier start of the growing season can favour macrophyte 

dominance (Rooney and Kalff, 2000), giving the macrophytes a head start in the competition 

versus microalgae. The whole bandwidth of climate change-related effects on shallow aquatic 

systems and potential impacts on regime shifts seems challenging. Focusing on increasing 

temperatures due to heatwaves and global warming in general is an already urgent problem 

and a good starting point to investigate climate change related effects on shallow aquatic 

systems.  

6.3 ARO-induced regime shifts in scenarios closer to field situations 

Micro- and mesocosm experiments are a popular tool to test the effect of global stressors on 

aquatic systems (Benton et al., 2007; Stewart et al., 2013). Yet the question if and how far 

results from those experimental settings can be transferred to aquatic systems in field 

scenarios is still a matter of discussion (Carpenter, 1996; Spivak et al., 2011; Simmons et al., 

2021). One major limitation for the transfer of micro- and mesocosm experiments towards 

field scenarios is the inclusion of higher trophic levels (Carpenter, 1996; Queirós et al., 2015). 

Additionally, in the context of agriculturally influenced landscapes, another limiting factor was 

identified, namely the exposure pathway via surface run-off or subsurface flow respectively 
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binding of pesticides to sediment particles (Ulrich et al., 2013; Qu et al., 2017; Niu et al., 2021). 

The exposure via the sediment was tested in this study with a controlled microcosm 

experiment at laboratory scale. To test the effects of higher trophic levels, two experiments 

were performed, one indoor microcosm experiment with selected key species of the second 

trophic level and one outdoor mesocosm experiment with further addition of natural 

planktonic communities. By design, the outdoor mesocosm experiment considered additional 

environmental factors as shown in table 4.  

Table 4 | Factors potentially affecting the validation and transfer of results obtained under 

the first two objectives of this thesis to scenarios closer to the field. 

Chapter Factor affecting  

Exposure Pathways  exposure via the sediment 

Trophic Complexity: higher trophic levels: 

- Microcosm experiment - key species 

- Mesocosm experiment - natural zooplankton communities 

Trophic Complexity:  

Mesocosm experiment 
  
 

natural sun light 

wind & precipitation 

daily temperature fluctuations 
 

In the following I shortly summarize and discuss the results of the respective chapters related 

to objective 3, starting with the first part of the third objective related to the Exposure 

Pathways chapter 5, followed by the second part of the third objective related to the Trophic 

Complexity chapter 6 and its two experiments including higher trophic levels. 

6.3.1 Summary of the key results related to objective 3a: Exposure via the sediment 

does not lead to regime shifts 

I have hypothesized that exposure via the sediment affects only rooted macrophytes, while 

exposure via the water leads to a regime shift to phytoplankton dominance, as it was observed 

in the other Stressor Interaction chapter 3 and Process-based Modeling chapters 4 which 

focused on the application via the water phase. The experimental results confirm this 

hypothesis and show that the effects caused via different pathways are more complex. Nitrate 

and the pesticides, in particular the insecticide pirimicarb, partly translocated from the 

sediment to the water column based on their physico-chemical characteristics. Nevertheless, 
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while we saw macrophytes negatively impacted by sediment exposure, the effects were the 

strongest when ARO was exposed via the water phase and phytoplankton shaded 

macrophytes. Based on the results in this chapter I conclude that exposure of ARO via the 

sediment has a negative impact, but the impact is worse when exposed via the water column.  

6.3.2 The fate of pesticides influences ARO-induced regime shifts 

The effects of ARO associated with the sediment depend on the fate of pesticides and nitrate. 

Binding of pesticides to soil particles depends on the physico-chemical properties of the 

respective chemicals, with logKOW and LogKOC as a major descriptor of their binding tendency 

and consequently their bioavailability (Knauer, 2016, Exposure Pathways chapter 5). 

Hydrophilic substances, e.g. pirimicarb (logKOW < 3), are more easily resolved into the water 

column, while hydrophobic substances, e.g. terbuthylazine and tebuconazole (logKOW > 3), will 

be absorbed to the sediment particles. In the end, such processes greatly contributed to the 

prevention of regime-shifts in our experimental sediment-exposed scenarios (Exposure 

Pathways chapter). In the field the translocation of pesticides from the sediment to the water 

phase can be accelerated by sediment dwelling organisms (Bundschuh et al., 2016), which 

were not included in in the Exposure Pathways chapter 5. Further experiments including 

multiple sediment dwelling organisms and various pesticides with different physico-chemical 

properties could enhance the realisms of such studies and allow for further extrapolation to 

the individual conditions in the field. The list of potential factors influencing the fate of 

pesticides goes even further. The stability and degradation of pesticides often depends on 

exposure to ultraviolet radiation (Burrows et al., 2002; Remucal, 2014; Lian et al., 2021). As 

observed in the Trophic Complexity chapter 6, pesticide concentrations – in particular the ones 

of pirimicarb – decreased drastically in the outdoor mesocosm due to direct photolysis when 

exposed to natural sun light. The rapid degradation of this insecticide was of high importance 

for the temporal stressor dynamics in the outdoor mesocosms, which is further discussed in 

paragraph 7.3.6.  
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6.3.3 Summary of the key results related to objective 3b: Higher trophic levels 

barely modify regime shifts induced by agricultural run-off 

In the Trophic Complexity chapter 6 complex systems including higher trophic levels were used 

to test the effect of ARO exposed via the water column on nature-like systems. In the 

microcosm experiment regime-opposing effects were observed due to the activity of filter 

feeders. In the mesocosm experiment relative effects promoting periphyton growth on the 

cost of macrophytes and phytoplankton growth were observed, yet phytoplankton was the 

dominating group after eight weeks of ARO exposure. At higher temperatures periphyton 

showed the strongest relative increase, while macrophytes were dominating the mesocosm 

at the highest ARO treatment. Looking at the effects along the whole ARO gradient, tested, 

the effects show an intermediate state of macrophyte dominance at lower ARO 

concentrations. At higher temperatures the effects respectively dominating phototrophic 

groups varies along the gradient and allows for no clear interpretation respectively prediction.  

6.3.4 The effects of combined agricultural stressors stay the same across trophic 

complexity 

A better understanding of stressor mechanisms across different trophic scales is achieved by 

a combination of experiments focusing on single or few species and experiments focusing on 

complex communities at ecosystem levels (Puche et al., 2020). Once an understanding of the 

main mechanisms is obtained, in case of regime shifts it is the nitrate-induced shading by 

phytoplankton, the addition of higher trophic levels increases realism and possibly modify the 

occurrence of regime shifts. To gain further insight, a closer look at Vijayaraj et al. (2022b) is 

helpful, who tested the interactions of nitrate and pesticides in systems with a  comparable 

approach as used in my Trophic Complexity chapter 6 (table 5): In their study, Vijayaraj et al. 

(2022b) used the same microcosm setup including grazers and filter feeders as in the Trophic 

Complexity chapter of this thesis to disentangle the effects of nitrate and pesticides in 

comparison with their mixed effect. No regime shifts were observed in the nitrate treatment 

due to the feeding pressure by filter feeders. While daphnia and snail abundance was affected 

by the pesticides, no regime shift was observed for the pesticide treatment. In the ARO 

treatment, where nitrate and pesticides were combined, the interaction of nutrients and 

pesticides lead to a regime shift.  
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Table 5 | Comparison of the potential of ARO-induced regime shifts in dependence of higher 

trophic levels. Effects are shown for the original ARO concentrations highlighted in table 2. 

Experiment Higher trophic levels  Stressor Regime shift 

Stressor Interaction no Nitrate × 

  
Pesticides × 

  
ARO ✓ 

Vijayaraj et al. (2022b) ✓ Nitrate × 

  
Pesticides × 

  
ARO ✓ 

Trophic Complexity 
   

- Microcosm ✓ ARO ✓ 

- Mesocosm ✓ ARO ✓ 
 

Conclusively, comparing the results from Vijayaraj et al (2022b) and my own experiments, 

comparable  interactions of nitrate and pesticides in the ARO mixture were found even with 

inclusion of higher trophic levels. The observed effect of ARO is comparable to the ones 

observed in the microcosm study focusing on phototrophs only in the Stressor Interactions 

chapter, and the microcosm study including filter feeders in the Trophic Complexity chapter. 

In the end, the conclusion drawn for the effect of ARO when tested on phototrophic 

communities holds true for systems with higher trophic complexity: Combined agricultural 

stressors induces regime-shift and is this effect is detectable even across experiments differing 

in trophic complexity.  

6.3.5 Changes in the zooplankton community enable regime shifts 

Despite the addition of representative key species, these indoor microcosm experiments were 

still simplified compared to complex communities in natural systems. Through the addition of 

a natural zooplankton community and openness to invasive species, the outdoor mesocosm 

in the Trophic Complexity chapter 6 not only had a second trophic level, but a more advanced 

third trophic level with species, e.g. Chaoborus and Odonata larvae, feeding on zooplankton. 

These omnivorous species likely limited the top-down control exerted by planktivorous 

zooplankton and thereby indirectly led to phytoplankton dominance. Such a top-down control 

leading to a phytoplankton bloom was also observed, for example, by Walsh et al. (2016) with 
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the invasive zooplankton species Bythotrephes in Lake Mendodta (USA). This shows the 

limitations of laboratory experiments focusing on few selected key species in comparison to 

complex ecosystems as tested in the mesocosms (Trophic Complexity chapter 6) and found in 

the field. Further, this highlights that there are not only bottom-up mechanisms, e.g. nitrate 

induced phytoplankton growth, but also top-down mechanisms contributing to regime shifts 

when complex higher trophic levels are present. 

6.3.6 Temporal dynamics of combined stressors after pulsed exposure 

While answering the research questions of this thesis, an additional stressor-related factor 

gained my attention. The temporal dynamics of stressors influenced the experimental results 

and their transfer to field situations. Co-occurring stressors usually do not only differ in their 

intensity but also must overlap in time and space to be able to co-act on biological systems 

(Jackson et al., 2021; Polazzo et al., 2021). The agricultural stressors in this work were applied 

as a single combined pulse, but still differed in their temporal effect dimension. Nitrate 

concentrations in the water rapidly decreased through uptake by phytoplankton which rapidly 

transforms this inorganic stressor into an indirect biotic stress by limiting light availability for 

benthic phototrophs. Thus, the stressor nitrate had the strongest effects when phytoplankton 

peaked, inducing a unimodal distribution of the secondary indirect stressor (shading) over 

time. In contrast, pesticide concentrations decreased at a much slower rate than nitrate, but 

pesticides were not transformed into a secondary stressor (figure 21). Heavy metals as copper 

do not degrade over time as organic pesticides but can be absorbed by organic matter and 

can form compounds with hydrogen that reduces the toxicity of copper.  

As shown in the Exposure Pathways chapter 5 and the Trophic Complexity chapter 6, pesticides 

show different degradation ratios based on exposure pathways and exposure to artificial or 

natural light. Despite synchronous exposure, the duration of exposure can differ for the 

different trophic scales as seen in the mesocosm experiment of the Trophic Complexity 

chapter 6, where zooplankton experienced only a short exposure period by the insecticide, 

while phototrophs were exposed to the herbicide for the whole duration of the experiment. 

Further, time-lagged effects are of importance and effects of stressors can still be found after 

the applied chemical has disappeared. Time-lagged effects were seen in the Stressor 

Interaction chapter 3, where the nitrate-induced phytoplankton bloom was limited in duration 

but still led to detectable long-lasting, respectively delayed effects of shading in macrophytes. 
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In the opposite and despite our comparable experimental setups, primary producer growth in 

the Process-based Modeling chapter 4 was lower and relative high nitrate concentrations 

were still found at the end of the experiment. Subpar growth of microalgae before inoculation 

and the original sampling of macrophytes used for the experiment from nearby aquatic 

systems late in the season may explain these discrepancies and indicate the importance of 

starting conditions in such laboratory experiments. 

 

Figure 21 | Conceptual stressor strength over time as applied in this thesis. While the nitrate 

concentrations are rapidly transformed into phytoplankton and thereby to shading of 

macrophytes, pesticides degrade at slower rate and the elevated temperature stays constant 

throughout the observed time. 

Another aspect raised by Jackson et al. (2021) is the exposure over several generation times. 

While regime shifts related to agricultural run-off occur within one generation of 

macrophytes, microalgae pass several generations within this time frame. This allows the 

microalgae community to adapt via selection of more tolerant respectively adapted species. 

Zooplankton species can adapt to stressor exposure via rapid micro-evolutionary processes 

within the span of a few generations and have an advantage to stressor exposure over several 

generations of no exposure (Jansen et al., 2011; Orr et al., 2021). Thus, adaptation to one or 

more stressors depends on temporal stressor dynamics, can occur within different trophic 

levels in parallel and contribute to synergistic interactions of multiple stressors with 

ecosystem wide effects.  
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7. Conclusion 

The research performed in my thesis touches a broad range of topics, from stressor-

interactions and alterative-stable states of ecosystem to community adaptation and the 

relevance of temporal dynamics of stressors. The discussed topics contribute to an enhanced 

understanding of regime shifts induced by agricultural run-off in the context of climate 

change. In the following I discuss implications of my results for the recovery from an ARO-

induced regime shift, further needs for environmental risk assessment to derive ecological 

thresholds and implementation of measures related to the stressors highlighted in my thesis.  

7.1 Recovery of the system to a macrophyte dominated state 

The alternative stable state concept (Scheffer et al., 1993) explains that the first regime-shift 

to a phytoplankton-dominated clear water state happens at a higher nutrient concentration 

than the recovery-shift to a macrophyte dominated state, a so-called hysteresis effect (e.g. 

highlighted by Ibelings et al., 2007). In this thesis I have shown that pesticides increase the risk 

and lower the nitrate threshold concentrations inducing this first regime-shift. While the 

recovery of the system was not part of the work in this thesis, I can give a brief hypothetical 

outlook to the implications of ARO on recovery of shallow aquatic systems.  

The recovery towards macrophyte dominance mostly depends on a few key filter-feeders, 

especially daphnia and mussels (Ibelings et al., 2007; Gulati et al., 2008). Representatives for 

both groups were found to be negatively affected by the ARO mixture. Invertebrates were 

affected by the insecticide and snails were affected by the fungicide, too. Yet these negative 

effects could be limited by the high photodegradation of the insecticide. Thus there is a chance 

that filter feeding communities recover quickly from the non-lethal ARO-effects and support 

the recovery of the system, while, at the same time, macrophytes still experience exposure to 

more persistent herbicides. As a consequence, recovery of macrophytes may takes longer 

than the re-establishment of a clear-water state. In both cases, higher temperatures can 

support the recovery due to the positive effects on filter feeders and macrophyte growth, 

unless critical temperatures are exceeded. Additional factors, e.g. close contact of mussels to 

contaminated sediment, additional trophic levels, or recycling of nutrients from detritus could 

further influence the recovery.  
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7.2 Ecological thresholds for risk management 

The aim of risk assessment is to define acute and chronic thresholds based on adverse 

ecological effects for the protection of ecosystems. This approach is used for example in the 

water framework directive in which single species tests, micro- and mesocosm experiments 

as well as effect data from the field are used to derive threshold values for protection and 

establishment of a good state of ecosystems (SCHEER, 2018). While such thresholds exist for 

nitrate and pesticides, their combined effect when co-occurring is neglected. The work in this 

thesis offers an approach based on stable states of ecosystems covering the effects of multiple 

stressors in the whole ecosystem. The importance of synergistic effects deriving from 

interactions of direct and indirect stressor effects is highlighted and illustrates the complexity 

of stressor interactions in whole ecosystems. This finding is of importance for the diagnosis 

and prioritisation of multiple stressors. Further, this thesis provides a first look at the 

relevance of the abiotic stressor of elevated temperatures and heat waves on combined 

effects with other stressors, which is not yet implemented for risk assessment of chemicals in 

freshwater systems or their management (SCHEER, 2018). Building up on the foundation laid 

with my work, precise quantitative data on the combined effects of agricultural stressors on 

regime shifts in shallow aquatic systems are needed at best using crossed gradient studies 

with a changing ratio in the stressor mixture are needed (figure 22). 

 

Figure 22 | Concept of experimental designs needed to clearly define thresholds for co-

occurring nitrate and pesticides under global warming. The “X” in the left part of the figure 

marks the mixture rates used in my experiments. 

In my work, the stressors were tested at a fixed mixture ratio but at differing concentrations 

(Figure 22, marked by “X”). Experiments at different scales of complexity and further 

consideration of increasing temperatures combined with modelling approaches would allow 
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for derivation of future-prove thresholds respectively environmental quality standards values 

for protection of aquatic systems impacted by multiple agricultural stressors.  

7.3 Implementation of ecological thresholds into management of aquatic 

systems 

Ecological thresholds derived from risk assessment find their way into ecosystem 

management via implementation into legislation. For such an implementation, management 

thresholds are derived by applying a safety factor to these ecological thresholds, based on the 

quality of the available data. These management thresholds, often referred to as 

environmental quality standards, are the basis of which further mitigation measures are 

decided. But unlike larger aquatic systems, small and shallow aquatic systems within an 

agricultural landscape are often not included in legislative regulations like e.g. the water 

framework directive (Weisner et al., 2022). For these lager systems, riparian buffer strips are 

a well-established measure to limit the influx of agricultural run-off (Arora et al., 2010). 

Riparian buffer strips could not only limit the influx of agricultural run-off but also provide 

shade and thereby decrease water temperatures (Cole et al., 2020). In shallow ponds, lakes 

and slow-flowing streams in agricultural landscapes mitigation measures are rarely applied 

due to the lack of legal obligation. Including these aquatic systems in legislations aiming to 

protect aquatic ecosystems, e.g. the water framework directive or the EU nitrate directive, 

would enable regular monitoring of influx of agricultural run-off and force the use of such 

mitigation measures. This could ultimately prevent regime shifts and ensure preservation of 

the preferred clear water state and its manifold ecosystem services.  
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