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Zusammenfassung

Seit dem soziologischen Experiment von Milgram in den 1960er Jahren steht der
Graphenabstand in komplexen Netzwerken, insbesondere in sozialen Netzwerken,
im Fokus der Forschung in Netzwerken. In dieser Dissertation beschäftigen wir
uns mit einem räumlichen Zufallsgraph, der als skalenfreie Perkolation bekannt ist.
Dieser Graph zeigt ein reiches Phasendiagramm und wir konzentrieren uns auf dessen
kurzen Pfade. In diesem Modell sind x, y ∈ Zd mit einer Wahrscheinlichkeit, die von
Gewichten Wx,Wy sowie von dem euklidischen Abstand |x−y| abhängt, verbunden.

Zunächst untersuchen wir asymptotische Abstände in einem Parameterregime,
in dem der Graphenabstand polylogarithmisch im euklidischen Abstand ist. Mithilfe
eines multiskalaren Arguments erhalten wir verbesserte Schranken für den logarith-
mischen Exponenten. Im Heavy-tailed-Regime zeigt die Verbesserung in der oberen
Schranke eine Diskrepanz zu Long-range-Perkolation. Im Light-tailed-Regime wird
der korrekte Exponent identifiziert.

Im folgenden Teil der Dissertation erforschen wir Navigationsmöglichkeiten in
dem Modell. Wir untersuchen die Möglichkeit, mit ausschließlich lokalen Informa-
tionen (Gewichten und Positionen der Nachbarknoten) kurze Pfade zwischen zwei
gegebenen Knoten zu finden. In dem Regime mit polylogarithmischen Graphabstän-
den zeigen wir, dass jeder Algorithmus, der auf lokalen Informationen der Knoten
basiert, mindestens polynomiell viele Schritte benötigt, um das Ziel zu finden. Im
Gegensatz dazu findet ein Greedy-routing-Algorithmus in dem Parameterregime, in
welchem der Graphenabstand doppelt logarithmisch im euklidischen Abstand ist,
einen kurzen Pfad derselben Längenordnung.
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Abstract

Graph distances in real-world networks, in particular social networks, have been
always in the focus of network research since Milgram’s sociological experiment in
1960s. In this dissertation we specialize in a geometric random graph known as scale-
free percolation, which shows a rich phase diagram regarding graph distances, and
focus on short paths in it. In this model, x, y ∈ Zd are connected with probability
depending on i.i.d weights Wx,Wy and their Euclidean distance |x− y|.

First we study asymptotic distances in a regime where graph distances are poly-
logarithmic in Euclidean distance. With a multi-scale argument we obtain improved
bounds on the logarithmic exponent. In the heavy tail regime, improvement of the
upper bound shows a discrepancy with long-range percolation. In the light tail
regime, the correct exponent is identified.

The following part of this dissertation investigates navigation possibility in the
model. More precisely, we study the possibility to find short paths between two ver-
tices given only local information (weights and locations of neighbors). In the regime
where graph distances are poly-logarithmic we show that any algorithm based on
local information takes at least polynomial steps to find the target. In contrast,
in the regime where the graph distance is doubly logarithmic in the Euclidean dis-
tance, a short path with length of the same order can be found by a greedy routing
algorithm.
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Chapter 1

Introduction

1.1 Background

1.1.1 Real-world networks

The study of complex networks has become popular in recent years. A complex
network contains typically a large number of elements, and links that represent
the interactions between the elements. Many systems in real life, like social or
technological networks such as Facebook or World Wide Web, can be regarded as
complex networks. In order to analyse their structures and behavior, random graph
models were proposed and are now commonly used to simulate these networks.

A graph consists of a set of vertices that represent the elements in the networks,
and a set of edges that describe the links between the elements. For example, in
a social network like Facebook, the accounts can be viewed as vertices in a graph,
and two vertices of this kind are linked by an edge if they are friends of each other.
A formal introduction of the terminologies for graphs can be found in the following
section.

Although diverse real-world networks differ significantly, many of them share
essentially several common patterns. Here we point out two most famous properties
many networks in the real world possess.

• Scale-free property. A network is said to have the scale-free property, if the
degree distribution follows a power law. Here the degree of a vertex is the
number of vertices this vertex is connected to. In other words, a scale-free
network is characterized by the existence of hubs that own many contacts.
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3 Introduction

Many real-world networks turn out to exhibit the scale-free property, e.g. the
World Wide Web [5], the collaboration of movie actors in films [5], and some
financial networks [27].

• Small-world property. A finite network or graph is said to have the small-world
property, if the graph distance in the network is much smaller then the number
of vertices. If the graph is embedded into some metric space, then small-world
property means that the graph distance is negligible compared to the metric
between two vertices. In the famous sociological experiment by Milgram in
the 1960s, it is observed that the average graph distance between individuals
in Omaha and Boston is around 6, if we view friendship and kinship as an
edge between individuals, while the Euclidean distance between the two cities
is around 2000 kilometers [70].

We will introduce the two properties more quantitatively in Section 1.1.2.

1.1.2 Random graph models

Graph terminologies

A graph G = (V,E) consists of a countable set of vertices (or nodes), called vertex
set, V and a collection of edges, called edge set, E which is a subset of V × V .
More precisely, E ⊆ {{x, y} : x, y ∈ V, x ̸= y}. If {x, y} ∈ E, we say that x is
adjacent to y, and write x ∼ y. In this case the edge {x, y} is called incident to
x and y, and x, y are neighbors of each other. Similarly, two edges are also called
adjacent if they share a common vertex. A graph G = (V,E) is called undirected,
if {x, y} = {y, x} for all {x, y} ∈ E. Otherwise if {x, y} ≠ {y, x} for some x and
y, then the graph is directed. In some cases we also allow self-loops and multiple
edges in a graph, e.g in preferential attachment model. An edge {x, y} is called a
self-loop, if x = y. A graph that does not contain any self-loop or multiple edges is
called simple. Throughout this dissertation, unless specifically mentioned otherwise,
we always refer to undirected and simple graphs.

The degree dx of a vertex x in the graph G = (V,E) is defined as the number of
edges incident to it, that is

dx := #{y ∈ V : x ∼ y} =
∑
y∈V

1x∼y.

A graph G = (V,E) is called locally finite, if dx <∞ for all x ∈ V . G is a complete
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graph, if {x, y} ∈ E for all x ̸= y. A subgraph G′ = (V ′, E ′) of G = (V,E) is a
graph such that V ′ ⊆ V and E ′ ⊆ E. A graph G = (V,E) is called the Cartesian
product of G1 = (V1, E1) and G2 = (V2, E2) if V = V1 × V2 and

E =
{
{(x1, y1), (x2, y2)} : (x1 = x2, (y1, y2) ∈ E2) or (y1 = y2, (x1, x2) ∈ E1)

}
,

and we denote it by G = G1 ×G2.

A path π in a graph G = (V,E) is a sequence of distinct vertices (xi)i=0,1,...,n ⊆ V

such that {xi, xi+1} ∈ E for i = 0, 1, . . . , n − 1, and π is said to join x0 and xn. A
graph G = (V,E) is called connected, if for every pair (x, y) with x ̸= y there exists
a path joining x and y. A subgraph C of G is called a cluster, if C is connected and
is not connected to any other vertex that is not in C. The graph distance D(x, y)

between x, y is the minimum number of edges among all paths joining x, y. If such
path does not exist, i.e. x and y are in different clusters, then D(x, y) = ∞.

Random graphs

The concept ‘random graph’ refers to a probability distribution on a family of graphs.
Typically in a random graph edges are randomly generated. Random graph was first
introduced by Erdős and Rényi [39, 40, 41, 42]. In [40] they gave rather ample results
about Erdős-Rényi random graph, which is one of the simplest but most instruc-
tive random graph models. Since then random graph theory was broadly extended,
and varieties of random graph models have been proposed and investigated, in or-
der to simulate the real-world networks. Alon and Spencer [3], Bollobás [15] give
more details about the early literature on random graphs. Here we first introduce
some basic (finite) random graph models. For more sophisticated models, especially
spatial random graphs, we refer to Section 1.2 and 1.4 for more details.

As a preparation for the subsequent parts of the dissertation we reintroduce the
aforementioned properties for random graphs from Section 1.1.1 in a more mathe-
matical way.

• Scale-free property. A random graph is called scale-free, if the degree distri-
bution of its vertices satisfies a power law asymptotically. More precisely, for
a vertex x in the graph, there exists a constant κ > 0 such that for n large
enough it holds

P(dx ≥ n) ≈ n−κ. (1.1)



5 Introduction

Mind here the approximation “≈” has different interpretations in different
literature. One of the most common understanding of (1.1) is that there
exists a slowly varying function ℓ : R+ → R+ such that

P(dx ≥ n) = n−κℓ(n), for all n ∈ N.

A function ℓ : R+ → R+ is called slowly varying, if for all a > 0 the following
holds

lim
x→∞

ℓ(ax)

ℓ(x)
= 1.

It is easy to verify that constant functions and (poly)-logarithmic functions
are slowly varying.

• Small-world property. On finite networks, say with N vertices, “small world”
means that the graph distance between two points is much shorter than a
regular structure would suggest, e.g. (logN)O(1) as N → ∞. For infinite
networks, a different interpretation to the small-world effect is given. We call
an infinite subgraph C ⊂ Zd a small-world graph if the graph distance D(x, y)

on C is much smaller than the Euclidean distance, that is if for example

D(x, y) =
(
log |x− y|

)O(1) as |x− y| → ∞. (1.2)

Besides, a sequence of events (En)n∈N is called to happen with high probability,
if it holds that

lim
n→∞

P(En) = 1.

Sometimes it is abbreviated as w.h.p for brevity. In some literature, it is also called
“asymptotically almost surely” (or a.a.s for short). In this dissertation we will mainly
state the assertions in the former way.

Erdős-Rényi random graph

Erdős-Rényi random graph was first introduced by Erdős and Rényi [40], Gilbert
[49], Austin et al. [4] with slight differences. For this model one considers [n] :=

{1, 2, . . . , n} as the vertex set V . For each pair i ̸= j, the edge {i, j} between the
two vertices is open (or present) with probability p independently of all other pairs.
As a consequence we obtain a graph with a deterministic vertex set but a random
edge set, and we denote it by ER(n, p). An example of Erdős-Rényi random graph is
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(a) λ = 0.7.
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(b) λ = 1.3.

Figure 1.1: Two realizations of Erdős-Rényi random graphs ER(n, λ/n) with n =
100, λ = 0.7 in (a) and n = 100, λ = 1.3 in (b) respectively.

illustrated in Figure 1.1. Note that in Figure 1.1 coupling is used in the simulation
to show the monotonicity in the value of p.

It is easy to see that the degree of a vertex i in ER(n, p) follows a binomial
distribution, that is,

P(di = k) =

(
n− 1

k

)
pk(1− p)n−1−k.

If we choose p = λ/n for some positive constant λ, we see as the number of vertices
n goes to infinity,

P(di = k) =

(
n− 1

k

)
pk(1− p)n−1−k → e−λλ

k

k!
.

Note that the limit is the mass function of a Poisson distribution. On the other
hand, λk

k!
decays faster than k−τ for arbitrary τ > 0 as k increases, thus ER(n, λ/n)

is not scale-free.

In ER(n, λ/n) we denote by C(i) the open cluster that contains vertex i, and
Cmax the open cluster such that

∣∣Cmax

∣∣ = max
i∈[n]

∣∣C(i)∣∣.
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Mind that the equation above can only identify the size of Cmax, but not Cmax itself
uniquely. If several open clusters are of maximal size, we choose the one containing
the vertex with smallest index as Cmax. As the parameter λ varies, the size of Cmax

differs significantly, and thus exhibits a phenomenon of phase transition. In the
subcrtical phase (λ < 1), as n→ ∞ it is shown [3, 18]∣∣Cmax

∣∣
log n

P−→ 1

λ− 1− log λ
,

while in the supercritical phase (λ > 1), for every ν ∈ (1/2, 1) there exists δ =

δ(ν, λ) > 0 such that

P
(∣∣|Cmax| − ζn

∣∣ ≥ nν
)
= O

(
n−δ
)
,

where ζ is a positive constant [3]. Around the criticality (λ = 1), Cmax is asymp-
totically of size n2/3 [65, 73]. For more details about ER(n, λ/n) like connectivity,
degree distribution and limit theorems we refer to [63].

Generalized random graphs

As we haven seen, Erdős-Rényi model is a homogeneous random graph in the sense
that all the vertices play the same role. Therefore it is not a suitable model for
the networks with heterogeneous nodes like Facebook community where celebrities
have much more contacts than others. In order to overcome this drawback, the
generalized random graph model is studied [22, 43]. In this model, we take again
[n] := {1, 2, . . . , n} as the vertex set. For i, j ∈ [n] with i ̸= j, the edge {i, j} is open
independently with probability pi,j given as follows:

pi,j :=
wiwj

ℓn + wiwj

, (1.3)

where w = (wi)i∈[n] are the given vertex weights, and ℓn =
∑n

i=1wi is the total
weight. We denote by GRG(n,w) the generalized random graph with n vertices
and weights w. Mind that ER(n, λ/n) is a special case of GRG(n,w) by taking
wi =

nλ
n−λ

for all i ∈ [n].

A more general version of GRG(n,w) admits one more layer of randomness in
the way that it allows the weights to be independent and identically distributed
random variables. More precisely, we first sample the i.i.d weights (Wi) for (wi).
Given the weights, we connect i and j independently with probability pi,j as in
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Figure 1.2: An example of generalized random graph with 100 vertices and i.i.d
weights. The weight W has the tail distribution P(W > x) = x−1.5, x ≥ 1. The
radii of the red circles are proportional to the corresponding weights.

(1.3). Consequently, the edges are not independent anymore due to the fact that
ℓn appears in every edge probability. Later we will encounter a similar setting in
Section 1.2 when we introduce the main object of this dissertation. A realization of
generalized random graph with i.i.d weights can be seen in Figure 1.2.

Preferential attachment model

Preferential attachment model (PA model) was first considered by Yule to explain
the power-law distribution of the number of species per genus of flowering plants
[77]. Later on Simon [75], Price [74] made use of preferential attachment to in-
vestigate other phenomena in real life. In 1999 Barabási and Albert [5] proposed
the application of PA models to analyze the growth of World Wide Web. Here we
introduce a classical version of PA model from [63] as a sequence of random graphs
(PAδ

t )t∈N that admit self-loops. We start the introduction of the model by defining
the graph for t = 1, and then construct the sequence recursively. The graph PAδ

1



9 Introduction

consists of a single vertex v1 with a self-loop. Assume we have PAδ
t with vertices

(vi)i∈[t]. Now we describe the growth of the sequence from PAδ
t to PAδ

t+1. Given
PAδ

t , we add one more vertex vt+1, choose one vertex vi out of (vi)i∈[t+1] according
the following probability

p
(t)
i =


Di(t)+δ

t(2+δ)+(1+δ)
, if i ∈ [t],

1+δ
t(2+δ)+(1+δ)

, if i = t+ 1,

where Di(t) is the degree of vi in PAδ
t , and then connect vt+1 and the chosen vi. In

the case i = t+ 1, vt+1 will be connected to itself and thus form a self-loop, leading
to the isolation of vi+1 from PAδ

t . As a result of the mechanism, the random graph
PAδ

t has t vertices and t edges with self-loops counted in.

A similar variation of the preferential attachment model allows multiple edges
but disallows self-loops. We denote by

(
PAδ

t (b)
)
t∈N this variation where b stands

for “model (b)” in order to distinguish from the original version. This variation
of PA model can be described as follows: For t = 2 the graph PAδ

2(b) has two
vertices v1, v2 with two edges between them which are multiple edges. Conditioned
on PAδ

t (b), we add one more vertex vt+1, choose one of the previous nodes according
to the probability

pti =
Di(t) + δ

t(2 + δ)
, i ∈ [n],

and then connect vt+1 to the chosen vi. In this way we obtain PAδ
t+1(b). The

advantage of the model variation is that the resulting graph is always connected.

As we can see in the dynamics of preferential attachment model, the newly
added vertex has a preference for those vertices with more contacts in the current
graph, leading to the so-called “Matthew effect” in the resulting graph, which can
be roughly summarized by the adage “the rich get richer and the poor get poorer”.

One important feature of preferential attachment model is that its asymptotic
degree sequence satisfies a power law [17]. Therefore it offers a possible explanation
for the empirical power-law distribution observed from real-world phenomena. Due
to its scale-free property, the PA model has gained the attention of random graph
community, and a number of PA model variants have been proposed and studied,
for example, see [16] for a directed PA model, [25] for a quite general version, [10, 11]
for a competition-induced PA model, [31, 32, 33] for PA models with conditionally
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independent edges, and [61] for a spatial PA model.

1.1.3 Percolation

The model

Percolation was first introduced by Broadbent and Hammersley [23] in 1957, as a
stochastic model for the flow of fluid through porous materials. It turns out that
percolation has been of interest for not only mathematicians but also physicists,
since it exhibits important properties like phase transition and critical phenomena.

Imagine we immerse some porous material like a piece of stone in the water.
The water flows from some place inside the material to the other if there is an open
micro-channel between them. A natural question is: what is the probability that
some certain location in the material gets saturated? In other words, what is the
probability that there is an open path from the surface of the material to this point?

In order to model this phenomenon, Bernoulli bond percolation (henceforth ab-
breviated as bond percolation) was proposed, and we describe now the model briefly.
Consider the lattice Zd as the vertex set for some integer d ≥ 1. Let p be a
number with 0 ≤ p ≤ 1. With probability p a pair of nearest neighbors {x, y}
in Zd is connected independently of all others, and we call the edge (or bond)
{x, y} is open, if x and y are connected. Note here x, y are nearest neighbors if
∥x − y∥1 =

∑d
i=1 |xi − yi| = 1. With this mechanism we obtain a locally finite

random subgraph of the complete graph on Zd.

In the context of the modeling, the given material can be viewed as a large
finite subset of Z3. Then the water can flow from x to y if there exists an open
path between them. More generally, if we consider bond percolation on Zd, then the
corresponding question for percolation model will be what the probability is that the
origin is connected to infinity (for brevity we hence denote this probability by θ(p)
). Note here it makes more sense to consider the path to infinity because we have
an infinite vertex set. For sure this probability depends first on the parameter p. In
real world for the materials like granite, we can imagine that the value of p is close
to 0, because there is hardly hole inside. In contrast, for those very porous media
like sponge, it is reasonable to assume that p is very close to 1 for the modeling.

Intuitively speaking, a higher value of p results in more connectedness in bond
percolation. In other words, θ is a monotonically increasing function of p. This
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claim can be confirmed via a coupling argument [53].

If 0 is connected to infinity, then it lies in some infinite open cluster. We denote
by λ(p) the probability that there exists an infinite open cluster. Since we have
the independence of all edges, Kolmogorov’s 0-1 law (see e.g Theorem 2.5.3 in [38])
ensures that λ(p) takes values only in {0, 1}. Note that λ(0) = 0, λ(1) = 1 and λ is
increasing in p. Therefore there exists pc ∈ [0, 1] such that λ(p) = 0 for all p < pc

and λ(p) = 1 for all p > pc. That is, there exists a phase transition in the critical
value pc, as we will see later that the behavior of percolation differs significantly for
p < pc and p > pc. We call the percolation is in the supercritical phase if p > pc,
and it is in the subcritical phase if p < pc.

On the other hand, if there exists an infinite open cluster, the origin 0 is not
necessarily always contained in it, and hence θ(p) can take values also in (0, 1). Let
p′c := inf{p : θ(p) > 0}, one can show pc = p′c.

It should also be pointed out that the number of infinite open clusters is almost
surely at most 1 for bond percolation on Zd due to the work by Aizenman, Kesten
and Newman [2]. Their result was then simplified by Burton and Keane [24], and
Gandolfi, Keane and Newman [46]. A more general result about the number of
infinite open clusters for transitive connected graphs can be found in [68].

The value of pc

Apparently the value of pc depends on the dimension d. Since an infinite open cluster
can be embedded into and will stay open in higher dimensions, pc is decreasing in d.
So far the exact value of pc is still unknown for d ≥ 3 (see Table 1.1.3 for numerical
results about pc taken from [52, 69]). For the simplest case d = 1 it can be shown
that pc = 1. For d = 2 the plane square lattice it took long until the precise value of
pc was identified. In 1960 Harris [58] gave a proof that θ(1/2) = 0 for d = 2, which
implies pc ≥ 1/2. In 1980 Kesten proved in [66] that pc = 1/2 using duality. Later,
Zhang [53] gave a beautiful proof for the result θ(1/2) = 0. For the other direction
Duminil-Copin et al. [37] came up with a short proof in 2015. For general d ≥ 3

the following bounds for pc were established [23, 54]:

1

2d− 1
≤ pc ≤

1

2
.

At the same time, some asymptotic results about pc are known, as the dimension
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dimension 3 4 5 6 7 8 9 10
pc 0.2488 0.1601 0.1182 0.0942 0.0786 0.0677 0.0595 0.0531

Table 1.1: Numerical values of pc for bond percolation in dimension 3-10. The
results are rounded to 4 decimal places. We see pc is decreasing in the dimension d.

d goes to infinity. In 1990s, Hara and Slade [56, 57] developed the technology known
as ‘lace expansion’, and obtained the asymptotics of pc for large d:

pc =
1

2d
+

1

(2d)2
+

7/2

(2d)3
+O

(
1

(2d)4

)
, as d→ ∞.

More terms of higher orders have been identified in the physics literature for
bond percolation [47, 69], as well as for site percolation [48, 69, 60].

The subcritical phase

In the subcritical phase of bond percolation there exists almost surely no infinite
open cluster. In this case it is meaningful to ask how far an open path from the
origin can go. More precisely, let ∂Bn := {x ∈ Zd : ∥x∥1 = n}. We are interested
in the probability that 0 is connected with ∂Bn, that is, P(0 ↔ ∂Bn). In 1957
Hammersley [54] obtained the following exponential upper bound of the connection
probability with branching process arguments:

P (0 ↔ ∂Bn) ≤ e−σ(p)n, for all n ≥ 1,

for some constant σ(p) > 0, if χ(p) the expected size of the open cluster containing
0 is finite. Later on, this upper bound was sharpened to an exactly exponential
decay, as stated in [53]

ρn1−de−nϕ(p) ≤ P(0 ↔ ∂Bn) ≤ σnd−1e−nϕ(p), for all n ≥ 1,

for 0 < p ≤ 1 and some positive constants ρ, σ independent of p and some function
ϕ.

The supercritical phase

In the supercritical phase of bond percolation there exists almost surely an infinite
open cluster. Nevertheless we can ask a similar question as in the subcritical phase
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about the decay of connection probability P(0 ↔ ∂Bn) provided the open cluster
containing the origin is finite. Grimmett gave an asymptotic tail behavior of the
connection probability in [53], and we present it here:

P(0 ↔ ∂Bn, |C(0)| <∞) ≤ A(p, d)nde−nσ(p), for all n ≥ 1,

where C(0) is the open cluster that contains 0, A is a positive constant depending
on p and d, and σ is a positive function of p ∈ (pc, 1]. Furthermore, Aizenman et al.
[1] gave an sub-exponential estimate for the exact size of the cluster C(0):

P(|C(0)| = n) ≥ e−χ(p)n(d−1)/d

, for all n ≥ 1,

if p ∈ (pc, 1), where χ(p) ∈ (0,∞) is a constant depending on p.

At criticality

It is a central question in percolation theory whether the infinite open cluster exists
at criticality. Since long it is conjectured that θ(pc) = 0 for d ≥ 2. As mentioned
before, for d = 2, this conjecture was confirmed by Harris et. al [58, 66, 53]. With
help of lace expansion, Hara and Slade [56, 57] managed to show θ(pc) = 0 for
d ≥ 19, and this result was extended to d ≥ 11 in 2015 by Fitzner and van der
Hofstad [44].

Results about the behavior of graphs at criticality for other similar models also
suggest that this conjecture is very likely to be true. For example θ(pc) = 0 is
verified for bond percolation on Zd×Z+ by Barsky, Grimmett and Newman [6], and
for Zd×G with an arbitrary finite connected graphG by Duminil-Copin, Sidoravicius
and Tassion [36].

For d ≥ 2, van der Berg and Keane [8] showed the function θ(p) is continuous for
all p ̸= pc, and θ(p) is continuous in pc if and only if θ(pc) = 0. So if the conjecture
above holds true, θ would be continuous for all p ∈ [0, 1].
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Figure 1.3: Scale-free percolation for λ = 0.2, τ = 2.5, α = 3. The radii of red balls
are proportional to the square root of corresponding weights.

1.2 Scale-free percolation

The model

Now we introduce the main object of this dissertation: scale-free percolation model
(also known as heterogeneous long-range percolation), which we henceforth abbre-
viate as SFP. We consider the lattice Zd with fixed dimension d ≥ 1 and construct
a random subgraph of the complete graph on the vertex set Zd. To each vertex
x ∈ Zd, we assign an i.i.d. weight Wx which follows a power-law distribution with
parameter τ − 1 (τ > 1), that is,

P(Wx ≥ w) = w−(τ−1), w ≥ 1. (1.4)
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Conditioning upon these weights, we declare an edge {x, y} to be open indepen-
dently of the status of other edges with probability

px,y =
λWxWy

|x− y|α
∧ 1, (1.5)

where | · | denotes the Euclidean norm and α, λ > 0 are further parameters of the
model. Here x ∧ y means the minimum of x and y. One example of scale-free
percolation is illustrated in Figure 1.3. We write x ∼ y if the edge {x, y} is open.

Note that other choices of connection probability are possible. For example, an
alternative is

px,y = 1− exp

(
−λWxWy

|x− y|α

)
.

Unless specifically mentioned otherwise, we use (1.5) for the connection probability
in scale-free percolation throughout this dissertation.

Recall a random graph is called scale-free, if its degree distribution follows a
power-law asymptotically. In 2013 Deijfen et al. showed that the degree of vertices
in SFP satisfies a power-law distribution with tail exponent

γ :=
α(τ − 1)

d
, (1.6)

as we present here:

Theorem 1.1 (Theorem 2.2 in [28]). Assume that the weight distribution in (1.4)
satisfies α > d and γ = α(τ − 1)/d > 1. Then there exists a function ℓ which is
slowly varying at infinity such that

P(Dx ≥ k) = k−γℓ(k), k ∈ N,

where Dx is the degree of x ∈ Zn.

Therefore scale-free percolation really matches its name.

Similar to Bernoulli bond percolation, the existance of the (unique) infinite clus-
ter is also of great interest. As they introduced this model, Deijfen et al. investigated
the critical value of λ, which is defined as

λc := inf{λ : θ(λ) > 0}, (1.7)

where θ(λ) is the probability that 0 is in the unique infinite open cluster.
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Theorem 1.2 (Theorem 3.1, 4.1, 4.2 and 4.4 in [28]). Depending on the parameters,
we have following results for λc:

1. Finiteness of the critical value:

(a) If d = 1, α ∈ (1, 2], then λc <∞;

(b) If d ≥ 2, then λc <∞.

2. Positivity of the critical value:

(a) If τ > 1, α > d, γ < 2, then λc = 0;

(b) If τ > 1, γ > 2, then λc > 0;

(c) If τ > 3, then λc > 0.

Graph distances

Graph distances in real-world networks, in particularly social networks, have been in
the focus of network research since Milgram’s experimental discovery of the small-
world effect (casually phrased as “six degrees of separation”), and have also been
investigated theoretically since then, e.g. [67, 70]. For a graph, the graph distance
between two vertices is defined as the length of a shortest open path connecting
them. If the vertices lie in different clusters (and hence such open paths do not
exist), then the graph distance is ∞.

For graph distances in scale-free percolation, a rich phase diagram has been
established in the literature: for two distinct vertices x, y ∈ Zd, we denote by D(x, y)

the graph distance between x and y. Then, conditional on x and y to be in the
(unique) infinite cluster, we get that with high probability (as |x− y| → ∞)

• if γ ≤ 1 then D(x, y) ≤ 2, cf. [59];

• if α < d, then D(x, y) ≤ ⌈d/(d− α)⌉, cf. [59];

• if γ ∈ (1, 2) and α > d, then D(x, y) = 2
| log(γ−1)| log log |x− y|, cf. [28, 64];

• if γ > 2 and α > 2d, then D(x, y) ≳ |x− y|, cf. [29, 72].

This behaviour (together with our new results) is summarized in Figure 1.4.
The results in the first three cases are referred as “ultra-small world” phenomenon,
because the asymptotics are of smaller order than the requirements of (1.2). In these
regimes, shortest paths are typically formed by vertices that have the highest weight
in a certain neighborhood (locally dominanting vertices or hubs). In contrast, for
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2 3 4

τ

α

α = d

α = 2d

γ = 1 γ = 2

D(x, y) ≤ 2 D(x, y) ≤ ⌈d/(d− α)⌉

D(x, y) ≈
log log |x− y|

D(x, y) ≳ |x− y|

D(x, y) ≈ (log |x− y|)∆

α(τ − 2) = d

(a) (b) (c)

Figure 1.4: Graph distances in different regimes of scale-free percolation. The re-
gions in shadow are those we are interested in. The areas (a), (b) and (c) represent
our improved bounds established in Theorem 1.3.

d < α < 2d and γ > 2, the weights are more homogeneous, and it is not sufficient
to consider only dominant vertices to find the shortest paths. In this regime, there
is a fine interplay between weights and spatial positions of various vertices, which
leads to (poly-)logarithmic upper and lower bounds on graph distances. One goal of
this dissertation is to identify the right logarithmic power, thereby completing the
phase diagram.

At the phase boundaries (γ = 1 and γ = 2) we expect that the graph distances
depend on the precise tail behavior of the connectivity function in (1.5), so that any
universality is lost.

Navigation

After we identify graph distances in SFP, a natural subsequent question will be
about the navigation possibility. More precisely, let s and t be two arbitrary vertices
in Zd. Is there any algorithm that finds a path between s and t of comparable
length as the shortest path using only local information? In other words, we focus
on algorithms with the following mechanism:

1. Information about the start s and the target t is given;

2. When the algorithm reaches some vertex x, the choice of next hop is made
based on the information of x’s neighbors (so called “local information”).

In our context, local information includes locations and weights. In some references,
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for example [67, 35], such algorithm using only local information is also called a
“decentralized algorithm”, and henceforth we will also use this terminology.

Let Xs,t be the number of steps a decentralized algorithm needs to find t from
s. We aim at such algorithms with

Xs,t ≈ D(s, t). (1.8)

as |s− t| → ∞. A random graph G is called navigable, if a decentralized algorithm
exists such that (1.8) holds in the sense that Xs,t = (1+o(1))D(s, t) with high proba-
bility. A weaker definition of navigability requires only that Xs,t = O (D(s, t)) when
|s − t| goes to infinity. As the reader will see in Section 1.3, scale-free percolation
in the doubly logarithmic regime is navigable in the strong sense.

If we have global information about the random graph, without doubt the short-
est path can be found between s and t. However, it is not always the case if we
have only local information. In other words, not all random graphs are navigable.
In 2000, Kleinberg showed in [67] that some finite small-world network on the 2-
dimensional lattice is not navigable. Later on, Franceschetti and Meester [45], Draief
and Ganesh [35] extended the results to continuum setting with Poisson points. In
all the models they considered the local information contains only locations, which
is a major difference to our model.

For scale-free percolation, as we will see later in Section 1.3 and Section 3.1, any
decentralized algorithm fails to find the shortest paths if γ > 2 and α ∈ (d, 2d) in
the sense that (1.8) are not satisfied in either strong or weak sense.

In practice, many algorithms have been proposed to solve the navigation problem
on graphs. One of the frequently used decentralized algorithms is greedy routing.
For a greedy routing algorithm we need an objective function ϕ with the local
information as its input. Then the algorithm selects the neighbor with highest
objective. More precisely, we have the following protocol for greedy routing:

Routing protocol: Given an objective function ϕ, when the algorithm is in
x, it will jump to the neighbor of x with highest objective in the next step,
and the objective of this neighbor must be larger than that of x. If such
neighbor of x does not exist, T will abort.

It is easily seen that a typical greedy routing path consists of vertices with
strictly increasing objectives. Mind that if greedy routing enters some local maxi-
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ϕ

s

x1

x2

x3

x4

x5

x7
x6

Figure 1.5: Example of running both greedy protocol and patching protocol on a
graph.

mum of objective, it will abort and hence fail. To avoid failure, a patching method
is proposed and will be discussed in details in Section 3.2.3. We first state it here:

Patching protocol: When the algorithm arrives at some local maximum,
among all the unvisited neighbors of visited vertices, it will go to the one
with highest objective and perform greedy routing from there.

Note that the patching protocol allows the algorithm to go backwards and en-
ables it to circumvent the deadlock of local maximums. For more general conditions
about patching, we refer to [20, 21].

Now we illustrate the greedy routing protocol and patching protocol with help of
Figure 1.5. In the example in Figure 1.5, by the greedy routing protocol the greedy
algorithm T will explore the graph from s in the following order: s, x1, x2, x3, x4, x5.
When T arrives at x5, which is a local optimum, it will be trapped there and fail.
Additionally with patching protocol T visits the unexplored neighbors of visited
nodes {s, x1, x2, x3, x4, x5}. In this graph the unexplored vertices are x6 and x7.
Since ϕ(x6) > ϕ(x7), T will go backwards and visit x6. Consequently the order in
which T explores the graph is: s,x1,x2,x3,x4,x5, x4, x3, x2,x6, x2, x3, x4, x5,x7.
Here bold means this vertex is visited for the first time in the route.

As we can see, if T has explored k vertices, two scenarios can happen:

(1) The current vertex x has at least a good neighbor in the sense that this neighbor
has a strictly larger objective than x. In this case it takes T only one step to
explore a new vertex;
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(2) The current vertex x is a local optimum in the sense that x has a larger objetive
than all its neighbors. With the patching protocol T can go back. After at most
k steps T will uncover a new vertex.

Therefore, with the patching protocol, it takes T at most
∑n

k=1(k − 1) = n(n−1)
2

to
explore n different vertices. This result will be useful in Section 3.2.3.

Since it only makes sense to talk about navigation possibilities if the start and
target are in the same open cluster, we assume the presence of edges between nearest
neighbors throughout Chapter 3. Besides, for simplicity it is sufficient to consider
the connection probability in the following form:

pxy =
WxWy

|x− y|α
∧ 1, (1.9)

and we will use (1.9) throughout Chapter 3. Note that the connection probabilities
in (1.9) already guarantee the presence of nearest neighbor edges, since Wx ≥ 1

and Wy ≥ 1. Therefore we can omit the percolation parameter λ in the connection
probabilities.

In spirit of Milgram’s experiment, a natural choice of objective function for
scale-free percolation will be the following:

ϕ(x) :=
Wx

|x− t|α
, x ∈ Zd. (1.10)

If the edge between s and t is present, then the algorithm should explore t

directly in the first hop, requiring that t should be the global maximizer of the
objective function. Apparently our choice in (1.10) satisfies this requirement. In
Section 3.2 we will stick to this choice of objective function.

For the other forms of connection probability, the corresponding choices of ob-
jective functions are discussed in Remark 3.6.

1.3 Main results

Before we proceed to the main results, we need to introduce some parameters.
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Parameters

α1 := α ∧ α(τ − 1)

2
= α ∧ γd

2
, α2 := α ∧ (α(τ − 1)− d) = α ∧ (γ − 1)d, (1.11)

∆ :=
log 2

log(2d/α)
, ∆1 :=

log 2

log(2d/α1)
, ∆2 :=

log 2

log(2d/α2)
. (1.12)

Here x ∧ y means the minimum of x and y.

If γ in (1.6) is larger than 2, then

d < α1 ≤ α2 ≤ α < 2d.

As a consequence
1 < ∆1 ≤ ∆2 ≤ ∆.

As showed in Theorem 1.2 that for d < α < 2d and γ > 1 the critical value
λc of SFP is finite. We thus may condition on two vertices x and y to be in the
same infinite cluster, if we take λ > λc. As before, let D(x, y) be the graph distance
between x and y, then it holds

Theorem 1.3. For scale-free percolation with parameters λ > λc, γ > 2, and d <

α < 2d, we have that for any ϵ > 0,

lim
|x−y|→∞

P
(
(log |x− y|)∆1−ϵ ≤ D(x, y) ≤ (log |x− y|)∆2+ϵ

∣∣∣x, y ∈ C∞
)
= 1.

Depending on the value of γ and α, the various minima in (1.11) give rise to
three different regimes. These are depicted in Figure 1.4. Writing C∞ for the unique
infinite cluster in the graph, we get

(a) for γ > 2, α(τ − 2) < d and arbitrary ϵ > 0,

lim
|x−y|→∞

P
(
(log |x− y|)∆1−ϵ ≤ D(x, y) ≤ (log |x− y|)∆2+ϵ

∣∣∣x, y ∈ C∞
)
= 1;

(b) for τ < 3, α(τ − 2) ≥ d and arbitrary ϵ > 0,

lim
|x−y|→∞

P
(
(log |x− y|)∆1−ϵ ≤ D(x, y) ≤ (log |x− y|)∆+ε

∣∣∣x, y ∈ C∞
)
= 1;
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(c) for τ ≥ 3 and arbitrary ϵ > 0,

lim
|x−y|→∞

P
(
(log |x− y|)∆−ϵ ≤ D(x, y) ≤ (log |x− y|)∆+ε

∣∣∣x, y ∈ C∞
)
= 1.

Note that here the upper bounds in Part (b) and (c) are from [29].

The main results in Theorem 1.3 about graph distances have been published in
[55]. Theorem 1.3 basically tells that with high probability the graph distance in
SFP is poly-logarithmic in Euclidean distance in the prescribed regime. Despite the
improvements in both the upper and lower bounds, the reader may observe that
there is still a gap between them in case (a) and (b) in our result. Therefore, it
remains open as to what the correct exponent is. The main difficulty in closing the
gap between the upper and lower bounds is that we do not have a precise estimate
for the probability of a path being open in scale-free percolation. Lemma 2.6 gives a
nice upper bound. However, in view of Proposition 2.17, it appears that this bound
is not optimal for τ < 3. As shown in Proposition 2.17 as well as in Lemma 2.20, the
actual asymptotics of the probability of a path being open in SFP are heterogeneous
in the exponents of edges, which poses a great difficulty.

Remark 1.4. In this dissertation, we made a specific choice for the connection prob-
ability in (1.5). In fact, our methods also apply to more general forms of connection
probabilities. The proofs for both lower and upper bounds in Section 2.1 and Section
2.2 only require asymptotics of the connection probability to estimate the path, for
example in Lemma 2.4 and Proposition 2.17. Therefore, our results generalise to
the scale-free percolation with connection probability px,y = Θ

(
λWxWy

|x−y|α ∧ 1
)

provided
that a unique infinite cluster exists.

If we make the extra assumption that additionally all nearest-neighbour edges
are open, then a comparison with long-range percolation (explained in the following
paragraph) gives the following improvement to parts (b) and (c) above: there exists
C > 0 such that

lim
|x−y|→∞

P
(
D(x, y) ≤ C (log |x− y|)∆

)
= 1. (1.13)

Mind that the extra assumption ensures that x, y ∈ C∞.

Now we state our results about navigability of scale-free percolation. In 2000
Kleinberg showed in [67] that some graph on the lattice is not navigable in the sense
that any decentralized algorithm on the graph needs at least polynomially many
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steps to find the target, while the theoretical graph distance between the start
and the target is only poly-logarithmic in the Euclidean distance. Later on, this
result was extended to other models whose local information includes only locations
[35, 45]. In our model, the local information does not only contain locations of
neighbors, but also their weights. We manage to show the following result about
navigability:

Let XT
s,t be the number of steps a decentralized algorithm T starting from s

needs to find t and denote by N the Euclidean distance between s and t, then

Theorem 1.5. Consider scale-free percolation with connection probability px,y =
λWxWy

|x−y|α ∧ 1, and parameters α ∈ (d, 2d), γ > 2. Let T be an arbitrary decentralized
algorithm. Then there exists a constant δ > 0 such that

lim
N→∞

P(XT
s,t ≥ N δ) = 1.

Recall a decentralized algorithm is an algorithm that uses only the local infor-
mation of neighbors. Theorem 1.5 tells us that in the poly-logarithmic regime that
any decentralized algorithm is inefficient in the sense that it takes much more steps
than the theoretical number to find the target.

In the heavy-tailed regime we show that there exists a decentralized algorithm
that finds the shortest paths. In other words, scale-free percolation is navigable in
this regime. We state the results as follows:

Theorem 1.6. Consider scale-free percolation with connection probability (1.9), and
parameters α > d, γ ∈ (1, 2). Let T be the greedy routing algorithm with objective
function as in (1.10). Furthermore, conditional on Ws and Wt, let L1, L2, L3 be
functions of N such that

Li =
1 + o(1)

| log(γ − 1)|

(
log logWs

(
ϕ(s)−1

)
+ log logWt

(
ϕ(s)−1

))
, i = 1, 2, 3. (1.14)

Then as N → ∞,

(a) with at least positive constant probability, T finds the target within L1 steps;

(b) with high probability, T terminates after at most L2 steps;

(c) with high probability, the greedy algorithm with patching protocol finds t within
L3 steps.
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Although Li, i = 1, 2, 3 look all the same in (1.14), they differ in fact in the o(1)
term. We will see the exact expressions of Li, i = 1, 2, 3 at the end of Section 3.2.1,
3.2.2 and 3.2.3 respectively.

Since ϕ(s) = Ws/N
α, we know Li ≈ 2

| log(γ−1)| log logN , as N → ∞. This
length coincides with the graph distance in the doubly logarithmic regime obtained
in [28, 64]. In this sense the greedy routing algorithm indeed finds the shortest path,
and therefore scale-free percolation is navigable in the doubly logarithmic regime.

Remark 1.7. In Theorem 1.5 our result is for the choice of connection probability
(1.9). Similar to the results about graph distances, we expect that Theorem 1.5 holds
true for scale-free percolation with connection probabilities in the more general form
px,y = Θ

(
λWxWy

|x−y|α ∧ 1
)
.

1.4 Related models

In this section we discuss several random graph models that are closely related to
scale-free percolation.

1.4.1 Long-range percolation

We first introduce a related (though easier) model named long-range percolation.
Our analysis of graph distances in scale-free percolation is crucially based on tech-
niques developed for long-range percolation.

Long-range percolation (henceforth LRP) is also defined on the lattice Zd for
fixed dimension d ≥ 1. Independently of all the other edges, the edge {x, y} is open
with probability pLRP

xy . A typical choice of pLRP
xy is

pLRP

xy =
λ

|x− y|α
∧ 1.

Note that pLRP
xy is equal to pxy for scale-free percolation (as defined in (1.5)) if Wx ≡ 1

or τ = ∞. One example of long-range percolation can be found in Figure 1.6.

Biskup et al. studied the graph distances in long-range percolation and obtained
sharp results.

Theorem 1.8 (Biskup [12], Trapman [76], Biskup-Lin [14]). Consider the long-range
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percolation with connection probability {pxy} such that

lim inf
|x−y|→∞

pLRP

xy |x− y|α > 0, (1.15)

for some α > 0. If d < α < 2d and a unique infinite open cluster exists, then for all
ϵ > 0 one has

lim
|x−y|→∞

P
(
(log |x− y|)∆−ϵ ≤ D(x, y) ≤ (log |x− y|)∆+ϵ

∣∣∣x, y ∈ C∞
)
= 1.

If, moreover, we have the stronger form of connection probability

pLRP

xy =
λ

|x− y|α
∧ 1,

and assume the existence of all nearest-neighbor edges, then there exist constants
C > c > 0 such that

lim
|x−y|→∞

P
(
c (log |x− y|)∆ ≤ D(x, y) ≤ C (log |x− y|)∆

)
= 1.

Trapman [76], moreover, identified the growth of the balls {x ∈ Zd : D(0, x) ≤
n} for LRP with d < α < 2d.

Now we can describe a coupling between LRP and SFP. To this end, we view the
two models from another perspective: to each edge {x, y} of the graph, we assign an
i.i.d. Uniform[0, 1]-distributed random variable Uxy. Then, for scale-free percolation
model, we consider for each edge {x, y} the event

Ax,y :=

{
Uxy ≤

λWxWy

|x− y|α
∧ 1

}
,

and we make the edge {x, y} open whenever Ax,y occurs. In the same way, for
long-range percolation we consider the event

Bx,y :=

{
Uxy ≤

λ

|x− y|α
∧ 1

}
.

We have thus constructed a coupling for the two models: since Wx ≥ 1 for all x ∈ Zd,
we have

λ

|x− y|α
∧ 1 ≤ λWxWy

|x− y|α
∧ 1,
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Figure 1.6: Long range percolation for λ = 0.2, α = 3.

which implies Ax,y ⊇ Bx,y, thus scale-free percolation dominates long-range perco-
lation in the sense that all the open edges in the LRP remain open in SFP. We
therefore get that distances in LRP are an upper bound for distances in SFP and
in particular get the upper bound (1.13).

For the remaining regimes, there are many rigorous results about the graph
distance D(x, y) as |x − y| → ∞. When α < d, Benjamini, Kesten, Peres and
Schramm [7] show that D(x, y) is bounded by some (explicit) constant. When
α > 2d, Berger [9] shows that D(x, y) ≥ |x − y|. For the borderline case α = 2 for
d = 1, Ding and Sly [34] show that D(x, y) ≈ |x− y|δ for some δ ∈ (0, 1).

Besides, as a corollary of Theorem 1.5 we show that long-range percolation is
not navigable if d < α < 2d. We will come to this in Corollary 3.4.
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1.4.2 Geometric inhomogeneous random graph

Geometric inhomogenneous random graph (henceforth GIRG) is a spatial random
graph on some finite domain of Rd for some fixed dimension d ≥ 1. More pre-
cisely, consider the d-dimensional torus Td := Rd/Zd, which can be viewed as the
d-dimensional unit cube [0, 1]d with all opposite faces identified. Note the distance
between x, y ∈ Td can be written for example as

|x− y| :=
d∑

i=1

min{|xi − yi|, 1− |xi − yi|},

with x = (xi) and y = (yi). The vertex set V of GIRG is sampled by a homogeneous
Poisson process on Td with intensity n.

Analogous to scale-free percolation, each vertex x in GIRG is assigned with i.i.d
weight Wx satisfying a power law as in (1.4):

P(Wx ≥ w) = w−(τ−1), w ≥ 1.

Given locations and weights, two vertices x, y in Td are connected according to
the following probability independently:

pGIRG
x,y := Θ

(
WxWy

n|x− y|α
∧ 1

)
.

By proper rescaling some induced subgraph of the GIRG model can be viewed as
the scale-free percolation in continuum in a finite domain [21]. In [19] Bringmann et
al. showed that the graph distance is asymptotically 2+o(1)

| log(γ−1)| log log n in the GRIG
model, if γ := α(τ−1)

d
∈ (1, 2). Later on in [21], a greedy routing algorithm was

proposed in order to find short paths between two vertices, and it turned out that
with high probability this algorithm finds the target within also 2+o(1)

| log(γ−1)| log log n

steps, if it is so patched that it can circumvent the local optimum in the route.

As the readers will see, the greedy routing algorithm for scale-free percolation
proceeds analogously as for the GIRG model in [21]. Here we point out the major
differences between the algorithms for both models.

First, the vertex set of GIRG is generated by a homogeneous Poisson process,
meaning that all vertices have random locations. In contrast, scale-free percolation
has the deterministic vertex set Zd. This allows us to assume the presence of all
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nearest-neighbor edges to make sure the start and the target are in the same cluster.

Besides, since GIRG is defined on a finite domain, by the property of Poisson
processes, it is a finite graph (almost surely). Consequently the patched algorithm
finds the target within finitely many steps if the start and the target are in the same
cluster. However, this is not the case for scale-free percolation, even if the start and
the target are in the unique infinite cluster. Fortunately, as we will see in Section
3.2, this possibility can be ruled out for scale-free percolation.

1.4.3 Other related models

Various aspects of scale-free percolation have been investigated in the literature,
both on the lattice Zd [29, 59] as well as a continuum analogue [26, 30], where
vertices are given as a Poisson point process. The results in the present dissertation
have been obtained on Zd, but it appears that we do not make use of the lattice
structure in any crucial way, so that analogue results should hold for a continuum
version of the model.

It has been pointed out recently by Gracar et al. [50, 51] that scale-free per-
colation (in continuum), as well as many other random graphs models, can be un-
derstood as special cases of the weight-dependent random connection models. In the
language of [50], scale-free percolation corresponds to the weight-dependent random
connection model with product kernel and polynomial profile function. Mind that
the parametrization in [50] is different, see in particular [50, Table 2].

For related recent work on spatial preferential attachment graphs we refer to the
work by Hirsch and Mönch [61].



Chapter 2

Graph distances in scale-free
percolation

In this chapter we prove both upper bound and lower bound in Theorem 1.3, and
discuss the possibility of filling the gap between them for τ ∈ (2, 3).

2.1 Lower bound for graph distances

Theorem 2.1 (Lower bound in Theorem 1.3). For scale-free percolation with pa-
rameters λ > λc, γ > 2, and d < α < 2d, we have that for any ϵ > 0,

lim
|x−y|→∞

P
(
D(x, y) ≥ (log |x− y|)∆1−ϵ

∣∣∣x, y ∈ C∞
)
= 1.

Here D(x, y) is the graph distance between x and y, and C∞ is the unique infinite
cluster. The parameter ∆1 is given by

∆1 :=
log 2

log(2d/α1)
with α1 := α ∧ α(τ − 1)

2
= α ∧ γd

2
.

In order to prove the lower bound, we derive variants of Biskup’s arguments [12]
in the setting of scale-free percolation. Similar to [12], we split up the argument into
3 propositions.

The key difference between SFP and LRP is that adjacent edges in the former
model are only conditionally independent. We resolve this by adjusting the definition
of a hierarchy (below) and combine it with estimates from [28] to break up the

29
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dependence structure.

Definition 2.2. Given an integer n ≥ 1 and distinct vertices x, y ∈ Zd, we say that
the collection

Hn(x, y) = {(zσ) : σ ∈ {0, 1}k, k = 1, 2, . . . , n; zσ ∈ Zd}

is a hierarchy of depth n connecting x and y if

1. z0 = x and z1 = y;

2. zσ00 = zσ0 and zσ11 = zσ1 for all k = 0, 1, . . . , n− 2 and all σ ∈ {0, 1}k;

3. For all k = 0, 1, . . . , n − 2 and all σ ∈ {0, 1}k such that zσ01 ̸= zσ10, the edge
{zσ01, zσ10} is open;

4. Each edge {zσ01, zσ10} as specified in part 3 appears only once in Hn(x, y);

5. For zσ1 , zσ2 in Hn(x, y) with k ∈ {0, 1, . . . , n − 1}, σ1, σ2 ∈ {0, 1}k+1 and
σ1 ̸= σ2 we have that zσ1 = zσ2 if and only if there exists σ ∈ {0, 1}k such that
σ1 = σ0 and σ2 = σ1. In this case, we call the vertices zσ1 and zσ2 degenerate,
otherwise non-degenerate.

The vertices (zσ) are called sites of the hierarchy Hn(x, y).

x=z0 y=z1

z01

z10

z001(= z0011)

z0001

z010(= z0100)
z0110

z110

z101

z1001

z1010

z1101

z1110

= z0101

= z0010

Figure 2.1: A hierarchy of depth 4 with two degenerate sites z001 and z010

In the toy example depicted in Figure 2.1, the reader finds two overlapping sites.
For z001(= z0011) and z0010, there exists σ = (0, 0, 1) ∈ {0, 1}3 such that zσ1 = zσ0.
Therefore, this is a degenerate site in the sense of Condition 5. Similarly for z010
and z0101.
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Remark 2.3. With only Conditions 1-4, our definition would coincide with Def-
inition 2.1 in [12]. In addition, we impose Condition 5 to make sure that every
element (zσ) ∈ Hn(x, y) can be fitted into a vertex self-avoiding path connecting x
and y. By adding an additional condition, one realises the set of all hierarchies here
is a subset of hierarchies defined in [12], and this will be helpful when we count the
eligible hierarchies.

The hierarchy Hn(x, y) is essentially a (random) subgraph of the complete graph
with vertex set Zd. Condition 4 ensures that the number of open edges in this sub-
graph is at most 2n−1, and Condition 5 guarantees that the degree of all vertices in
Hn is no more than 2.

Since the shortest path connecting x and y is necessarily vertex self-avoiding,
meaning that the weight of a single vertex appears at most twice in the path, we
can estimate the probability of such a path by the Cauchy-Schwarz inequality.

Lemma 2.4 ([28, Lemma 4.3]). Let x, y ∈ Zd be distinct, then for all δ > 0, there
exists a constant Cδ := C(δ, λ) > 1 such that

E

[(
λ
WxWy

|x− y|α
∧ 1

)2
]1/2

≤ Cδ|x− y|−α1+δ, (2.1)

where α1 is defined as in (1.11).

Proof. From the proof of Lemma 4.3 in [28] we know

E

[(
λ
WxWy

|x− y|α
∧ 1

)2
]
≤ C1 (1 + log |x− y|) |x− y|−2α1 .

for some constant C1 ∈ (0,∞). Then for all δ > 0, one has

lim
r→∞

1 + log r

r2δ
= 0.

Hence there exists a constant C2 > 0 such that 1+ log r ≤ C2r
2δ for all r > 0. Then

we choose Cδ :=
√
C1C2 ∨ 2 as desired.

Remark 2.5. Actually, the estimation above can be further refined for τ > 3. If
τ > 3, the weights Wx and Wy have finite variance. In this case, we can get rid
of the δ in (2.1). On the other hand, since we can choose δ arbitrarily small, the
refinement does not change our result. For our purpose, we choose δ small enough
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that α− δ > d and α1 − δ > d.

Now we estimate the probability that a path is open from above. Note that we
call π a path of length n if there exist n + 1 distinct vertices x0, . . . , xn ∈ Zd such
that π = (x0, . . . , xn). We say that π is open if all the edges {xi−1, xi}i=1,...,n are
open.

Lemma 2.6 ([28, Thm. 4.2]). Let π := (z0, z1, . . . , zn) ∈
(
Zd
)n+1 be a path of length

n. Then for all δ > 0,

P (π is open) ≤
n∏

i=1

Cδ|zi − zi−1|−α1+δ,

where the constant Cδ is as in Lemma 2.4.

The proof of Lemma 2.6 can be found in the proof of Theorem 4.2 in [28],
which combines the Cauchy-Schwarz inequality with the alternating independence
of the edges in the path. With Lemma 2.6, one realises immediately that SFP
behaves similarly to LRP in the sense that they have similar upper bounds for the
probability of a path, which also indicates that the lower bound of SFP might be
treated similar to LRP.

Definition 2.7. Let x, y ∈ Zd be distinct, η ∈
(
0, α1/ (2d)

)
, and n ≥ 2. We define

En = En(η) as the event that every hierarchy Hn(x, y) of depth n connecting x and
y such that

|zσ01 − zσ10| ≥ |zσ0 − zσ1|(logN)−∆1 (2.2)

holds for all k = 0, 1, . . . , n− 2, and all σ ∈ {0, 1}k also satisfy the bounds∏
σ∈{0,1}k

|zσ0 − zσ1| ∨ 1 ≥ N (2η)k for all k = 1, 2, . . . , n− 1, (2.3)

where N = |x− y| is the Euclidean distance between x and y.

With help of Lemma 2.6 we now can estimate the probability of the event En.

Proposition 2.8. Let η ∈
(
0, α1/(2d)

)
. Pick δ > 0 so small that α1 − δ − d > 0

and α1− δ ∈ (2dη, α1), then there exists a constant c1 > 0 such that for all x, y ∈ Zd

with N = |x− y| satisfying ηn logN ≥ 2(α1 − δ − d),

P
(
Ec
n+1 ∩ En

)
≤ (logN)c12

n

N−(α1−δ−2dη)(2η)n ,
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and
P (Ec

2) ≤ (logN)c1 N−(α1−δ−2dη).

Proof. We modify the proof of Lemma 4.5 in [12] to fit our model.

Let A(n) be the set of all 2n-tuples (zσ) of sites (or hierarchies) such that (2.2)
holds for all σ ∈

{
{0, 1}k : k = 0, 1, . . . , n−1

}
and (2.3) is true for k = 1, 2, . . . , n−1

but not for k = n. Then

P
(
Ec
n+1 ∩ En

)
≤

∑
(zσ)∈A(n)

P (Hn(x, y) with sites (zσ)) . (2.4)

Here the event “Hn(x, y) with sites (zσ)" means all the edges in this hierarchy with
sites (zσ) are open as in Condition 3 in Definition 2.2.

Now we fix one single hierarchy Hn(x, y) with sites (zσ) and estimate its proba-
bility. Typically, a hierarchy consists of isolated edges, i.e., edges that do not share
a common vertex. However, since we also allow degenerate vertices as in Condition
5 of Definition 2.2, there might be adjacent edges in the hierarchy. Nevertheless, we
can decompose one hierarchy into several disjoint connected components, as exem-
plified in Figure 2.1. Condition 5 ensures that each of the connected components is
an open path.

Example. Consider the toy example in Figure 2.1. This hierarchy H4(x, y) can be
divided into 5 disjoint paths, namely

π1 = (z0110, z110, z001, z0001), π2 =(z01, z10),

π3 = (z1001, z1010), π4 = (z101, z110), π5 =(z1101, z1110).

Now assume that the hierarchy Hn(x, y) can be divided into m disjoint open
paths πi, i = 1, 2, . . . ,m, with πi = (xi0, xi1, . . . , ximi

) and xij ∈ (zσ). Then inde-
pendence of edge occupation implies

P (Hn(x, y) with sites (zσ)) = P

n−1⋂
k=0

⋂
σ∈{0,1}k

{zσ01 ∼ zσ10}


= P

(
m⋂
i=1

{πi is open}

)
=

m∏
i=1

P (πi is open) ,

where we rearrange the open edges in the hierarchy in the second step and use the
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fact that these open paths are vertex-disjoint and therefore independent in the last
step. Further,

P (Hn(x, y) with sites (zσ)) ≤
m∏
i=1

mi∏
j=1

Cδ

∣∣ximj
− ximj−1

∣∣−α1+δ

=
n−1∏
k=0

∏
σ∈{0,1}k

Cδ

(|zσ01 − zσ10| ∨ 1)α1−δ
,

where we apply Lemma 2.6 first and then bring the edges back in the original
order again. In the last step we add the maximum with 1 to make sure that the
denominator is not zero.
Likewise, we denote the “gaps” in the hierarchy by

tσ := zσ0 − zσ1,

and t∅ := x− y. With this notation, we rewrite condition (2.2) as

|zσ01 − zσ10| ≥ |tσ|(logN)−∆1 (2.5)

and condition (2.3) as ∏
σ∈{0,1}k

|tσ| ∨ 1 ≥ N (2η)k . (2.6)

Let B(k) be the set of all collections (tσ)σ∈{0,1}k of vertices in Zd such that (2.6) is
true. Then (2.4) implies

P
(
Ec
n+1 ∩ En

)
≤ |Bc(n)|

n−1∏
k=0

 ∑
(tσ)∈B(k)

∏
σ∈{0,1}k

Cδ

(
(logN)∆1

|tσ| ∨ 1

)α1−δ


Note that for k = 0, we have |t∅| = N . Hence the estimation above can be written
as

|Bc(n)|
(
Cδ(logN)∆1(α1−δ)

)2n
Nα1−δ

n−1∏
k=1

 ∑
(tσ)∈B(k)

∏
σ∈{0,1}k

Cδ

(|tσ| ∨ 1)α1−δ

 , (2.7)

For each k there are at most 2k multipliers in the product over all σ ∈ {0, 1}k

(the number is smaller if there exist degenerate sites). Therefore, there are in total∑n−1
k=0 2

k = 2n − 1 and we get the exponent 2n in the numerator in the first fraction.
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In addition, for n = 2, the event Ec
2 means that there exists a hierarchy with

sites (zσ) of depth 2 such that

|z01 − z10| ≥ |z0 − z1| (logN)−∆1 = N (logN)−∆1 ,

and
|z0 − z01||z11 − z1| ≤ N2η.

Therefore

P(Ec
2) ≤

∑
(tσ)/∈B(1)

P(z01 ∼ z10) ≤ |Bc(1)|Cδ (logN)∆1(α1−δ)

Nα1−δ
. (2.8)

In order to estimate (2.7) and (2.8), we need two lemmas from the appendix of
[12]. First for κ ∈ N and b > 0, we let

Θκ(b) =

{
(ni) ∈ Nκ : ni ≥ 1,

κ∏
i=1

ni ≥ bκ
}
,

and Θc
κ(b) be its complement in Nκ. Then one has the following estimates.

Lemma 2.9 (Lemma A.1 in [12]). For each ϵ > 0 there exists a constant g1 =

g1(ϵ) <∞ such that ∑
(ni)∈Θκ(b)

κ∏
i=1

1

n1+β
i

≤ (g1b
−β log b)κ

is true for all β > 0, all b > 1 and all κ ∈ N with

β − κ− 1

κ log b
≥ ϵ.

Lemma 2.10 (Lemma A.2 in [12]). There exists a constant g2 < ∞ such that for
each β > 1, each b ≥ e/4 and any κ ∈ N,

∑
(ni)∈Θc

κ(b)

κ∏
i=1

nβ−1
i ≤ (g2b

β log b)κ.

Let (nσ) be a collection of positive integers with nσ ≤ |tσ| ∨ 1 < nσ + 1. Note
that |{x ∈ Zd : n ≤ |x| ∨ 1 < n + 1}| ≤ cnd−1 for some positive constant c = c(d)
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independent of n. Then for each nσ there exists at most cnd−1
σ such tσ’s. Therefore,

∑
(tσ)∈B(k)

∏
σ∈{0,1}k

Cδ

(|tσ| ∨ 1)α1−δ
≤

∑
(nσ)∈Θ2k

(Nηk )

∏
σ∈{0,1}k

(
cnd−1

σ

Cδ

nα1−δ
σ

)

≤ (Cδcg1)
2k(ηk)2

k
(logN)2

k

Nηk2k(α1−δ−d)
, (2.9)

where we have applied Lemma 2.9 in the last step (2.9) with β = α1−δ−d, b = Nηk

and κ = 2k. Since η < 1, we obtain the further bound

∑
(tσ)∈B(k)

∏
σ∈{0,1}k

Cδ

(|tσ| ∨ 1)α1−δ
≤ (C1 logN)2

k

N (α1−δ−d)(2η)k
,

where we choose C1 := cCδg1. Now it is left to estimate the size of Bc(n), and this
can be done with help of Lemma 2.10 as∑

(tσ)/∈Bc(n)

1 ≤ (C2 logN)2
n

Nd(2η)n

with β = d, b = Nηn and κ = 2n.

Now (2.7) can be simplified to

(C2 logN)2
n

Nd(2η)n

(
Cδ(logN)∆1(α1−δ)

)2n
Nα1−δ

n−1∏
i=1

(C1 logN)2
k

N (α1−δ−d)(2η)k
.

≤
(
C1C2Cδ(logN)∆1(α1−δ)+2

)2n
N−((α1−δ−d)

∑n−1
k=1 (2η)

k+α1−δ−d(2η)n)

≤ (logN)c12
n

N−(α1−δ−2dη)(2η)n ,

where the last step uses the bound

(α1 − δ − d)
n−1∑
k=1

(2η)k + α1 − δ − d(2η)n ≥ (α1 − δ − 2dη)(2η)n.

Our further strategy is to show that an open path with distance shorter then
poly-logarithm is impossible. More precisely, we show that the existence of a shorter
path is contained in some event with negligible probability. The event we use is as
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follows.

Definition 2.11. Let x, y ∈ Zd be distinct and n ∈ N. We define Fn := Fn(x, y)

as the event that for every hierarchy of depth n connecting x and y and satisfying
(2.2), every collection of (vertex self-avoiding and) mutually disjoint paths πσ with
σ ∈ {0, 1}n−1 such that πσ connects zσ0 and zσ1 without using any vertex from the
hierarchy (except for the endpoints zσ0 and zσ1) obeys the bound∑

σ∈{0,1}n−1

|πσ| ≥ 2n. (2.10)

It might be instructive to look at the complement F c
n: this is the event that

there exists such a hierarchy between x and y satisfying (2.2), but the edges filling
the gaps violate (2.10). In the following proposition, we construct such a hierarchy
in F c

n from the shortest path.

Proposition 2.12 (Lemma 4.6 in [12]). Let ϵ ∈ (0,∆1). If N = |x−y| is sufficiently
large and

n >
∆1 − ϵ

log 2
log logN, (2.11)

then
{D(x, y) ≤ (logN)∆1−ϵ} ∩ Fn = ∅.

Proof. The proof of Lemma 4.6 in [12] still holds here for the event with modified
hierarchy, because the hierarchy there was constructed from the shortest path in
which all the vertices have degree at most 2. For better readability the proof sketch
is given here.

If D(x, y) ≤ (logN)∆1−ϵ ≤ (logN)∆1 , by triangle inequality, the shortest path
between x, y has at least one edge with length at least N/(logN)∆1 . Denote by z01
and z10 the endpoint of this long edges on the x-side and y-side, respectively. That
is,

|z01 − z10| ≥ |z0 − z1|(logN)−∆1 .

Apparently, D(x, z01) and D(y, z10) are both at most (logN)∆1 . With the similar
argument one finds the longest edge {z001, z010} in the gap between x and z01, and
{z101, z110} for the gap between y and z10. After iterating the steps n times, we
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obtain a hierarchy of depth n that satisfies (2.2). (2.11) implies that

(logN)∆1−ϵ ≤ 2n.

Therefore, the hierarchy we constructed from the short path satisfies:∑
σ

|πσ| < D(x, y) ≤ (logN)∆1−ϵ ≤ 2n.

In other words, (2.10) is violated.

Now we start to fill the "gaps" in the hierarchy. More precisely, we relate the
events En and Fn by the following proposition.

Proposition 2.13. Let η ∈ (0, α1/(2d)). For δ > 0 so small that α1−δ−d > 0 and
α1 − δ ∈ (2dη, α1), there exists a constant c2 > 0 such that for all distinct x, y ∈ Zd

with N = |x− y| satisfying ηn logN ≥ 2(α1 − δ − d),

P (F c
n ∩ En) ≤ (logN)c22

n

N−(α1−δ)(2η)n−1

.

The idea of proof is to first fix one hierarchy with the sites (zσ), and estimate the
probability that the paths that fill the gaps of this hierarchy have a certain length.
Then the gap-filling paths and the open edges in the hierarchy constitute a path
connecting x and y. With help of Lemma 2.6 we get the upper bound by summing
over all possible hierarchies.

Proof. Let A∗(n) be the set of all collections (zσ), σ ∈ {0, 1}n, satisfying (2.2) for
k = 0, 1, . . . , n− 2 and (2.3) for k = 1, 2, . . . , n− 1. Then

P(F c
n ∩ En) =

∑
(zσ)∈A∗(n)

P (F c
n ∩Hn on (zσ)) . (2.12)

Here "F c
n ∩Hn on (zσ)" means that Hn with sites (zσ) is a hierarchy satisfying F c

n,
as we have explained after Definition 2.11.

We estimate the summands on the right hand side of (2.12) by considering all
possible lengths of πσ. More precisely, let (mσ) be a tuple of non-negative integers
for σ ∈ {0, 1}n−1. Then
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P (F c
n ∩Hn on (zσ)) =

∑
(mσ)

P (F c
n ∩Hn on (zσ) with (|πσ|) = (mσ)) . (2.13)

Note that the open path πσ fills the gap between zσ0 and zσ1 in Hn for all σ ∈
{0, 1}n−1. All such open paths together with all the open edges (zσ01, zσ10), σ ∈
{0, 1}n−2, constitute a self-avoiding open path between x and y. Let Γσ(mσ) be the
set of all path of length mσ connecting zσ0 and zσ1, that is,

Γσ(mσ) =
{
π : π = (x0, x1, . . . , xmσ) with x0 = zσ0 and xmσ = zσ1

}
.

Now we estimate the probability in (2.13) as

P (F c
n ∩Hn on (zσ) with (|πσ|) = (mσ))

=E
[
P (F c

n ∩Hn on (zσ) with (|πσ|) = (mσ)) | (Wx)x∈Zd

]
=E

P
 ⋂

σ∈{0,1}n−1

{zσ0
πσ↔ zσ1}

⋂
σ∈{0,1}n−2

{zσ01 ∼ zσ10}

∣∣∣∣∣∣(Wx)x∈Zd

 , (2.14)

where {zσ0
πσ↔ zσ1} means πσ connects zσ0 and zσ1.

By the conditional independence of edges, we rewrite (2.14) as

P (F c
n ∩Hn on (zσ) with (|πσ|) = (mσ))

≤
∑

(πσ):πσ=(xσ0,...,xσmσ )
vertex-disjoint

E

 ∏
σ∈{0,1}n−1

P
(
πσ
∣∣(Wx)x∈Zd

) n−2∏
k=0

∏
σ′∈{0,1}k

pzσ′01zσ′10



=
∑

(πσ):πσ=(xσ0,...,xσmσ )
vertex-disjoint

E

 ∏
σ∈{0,1}n−1

mσ∏
i=1

pxσ(i−1),xσi

n−2∏
k=0

∏
σ′∈{0,1}k

pzσ′01zσ′10

 (2.15)

where we sum over all possible paths between zσ0 and zσ1 for all σ ∈ {0, 1}n−1 and
pxy is the connection probability as in (1.5).

In the expectation in (2.15) the probability is divided into two parts: the first
double product involves the edges filling the gaps in the hierarchy while the second
double product is about the open edges in the hierarchy, as depicted in Figure 2.2.

Note that all these paths (πσ) have mutually disjoint vertices. Therefore, for
fixed sites (zσ) and fixed paths (πσ), we obtain a self-avoiding open path starting
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x=z0
y=z1

z01

z10
z001

z010

z110
z101

π00

π01
π10 π11

Figure 2.2: A hierarchy of depth 3 with site (zσ)σ∈{0,1}3 . The gap-filling paths are
{πσ} with σ ∈ {0, 1}2. In this example |π00| = 1, |π01| = 3, |π10| = 1, |π11| = 2, and∑

|πσ| = 7 < 23 = 8. We see that the paths here, together with the edges in the
hierarchy, form a path connecting x and y.

from x and ending in y. Now we use Lemma 2.6 to bound the probability of this
path, i.e. the expectation in (2.15) as

E

 ∏
σ∈{0,1}n−1

mσ∏
i=1

pxσ(i−1),xσi

n−2∏
k=0

∏
σ′∈{0,1}k

pzσ′01zσ′10


≤

∏
σ∈{0,1}n−1

mσ∏
i=1

Cδ(
|xσ(i−1) − xσi| ∨ 1

)α1−δ

n−2∏
k=0

∏
σ′∈{0,1}k

Cδ

|zσ′01 − zσ′10|α1−δ
.

Then (2.15) becomes

P (F c
n ∩Hn on (zσ) with (|πσ|) = (mσ))

≤
∑
(πσ)

∏
σ∈{0,1}n−1

mσ∏
i=1

Cδ(
|xσ(i−1) − xσi| ∨ 1

)α1−δ

n−2∏
k=0

∏
σ′∈{0,1}k

Cδ

|zσ′01 − zσ′10|α1−δ

=

 ∏
σ∈{0,1}n−1

Qmσ(zσ0, zσ1)

 n−2∏
k=0

∏
σ′∈{0,1}k

Cδ

|zσ′01 − zσ′10|α1−δ

where

Qm(u, v) :=
∑

π=(x0,...,xm)
x0=u, ,xm=v

m∏
i=1

Cδ

(|xi−1 − xi| ∨ 1)α1−δ
.

Here the sum runs over self-avoiding paths π of length m, and therefore Qm(u, v) is
the upper bound for the probability that u and w are connected by an open path
with length m. To simplify Qm(u, v) we will need the following lemma:

Lemma 2.14. For all u, v ∈ Zd with u ̸= v and α > d, there exists a constant
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a ∈ (0,∞), independent of u and v, such that

∑
w∈Zd,w/∈{u,v}

1

|u− w|α
1

|v − w|α
≤ a

|u− v|α
. (2.16)

Proof. Let A := {w ∈ Zd : |u−w| ≥ 1
2
|u−v|} and B := {w ∈ Zd : |v−w| ≥ 1

2
|u−v|}.

By triangle inequality, for an arbitrary w ∈ Zd we have either w ∈ A or w ∈ B.
Therefore∑
w∈Zd,w/∈{u,v}

1

|u− w|α
1

|v − w|α
≤

∑
w∈A,w ̸=v

1

|u− w|α
1

|v − w|α
+

∑
w∈B,w ̸=u

1

|u− w|α
1

|v − w|α

≤
∑
w ̸=v

2α

|u− v|α
1

|v − w|α
+
∑
w ̸=u

2α

|u− v|α
1

|u− w|α

≤ 2α+1

|u− v|α
∑
w ̸=u

1

|u− w|α
.

Since α > d, we have a := 2α+1
∑

w ̸=u
1

|u−w|α <∞.

With help of Lemma 2.14 we can bound Qm(u, v) from above by applying (2.16)
m times iteratively, and obtain

Qm(u, v) ≤
(Cδa)

m

(|u− v| ∨ 1)α1−δ
. (2.17)

If we now sum over all the possible combinations of (mσ) with
∑

σmσ < 2n, we
obtain the upper bound

P (F c
n ∩Hn on (zσ))

≤
∑

(mσ):
∑

σ mσ<2n

 ∏
σ∈{0,1}n−1

Qmσ(zσ0, zσ1)

 n−2∏
k=0

∏
σ′∈{0,1}k

Cδ

|zσ′01 − zσ′10|α1−δ

≤(4aCδ)
2n

∏
σ∈{0,1}n−1

1

(|zσ0 − zσ1| ∨ 1)α1−δ

n−2∏
k=0

∏
σ′∈{0,1}k

Cδ

|zσ′01 − zσ′10|α1−δ

≤(4aCδ)
2n

n−1∏
k=0

∏
σ∈{0,1}k

Cδ(logN)(α1−δ)∆′

(|zσ0 − zσ1| ∨ 1)α1−δ
.

Here we first used the estimation for Qm(u, v) in (2.17) and the fact that the number
of such eligible tuples (mσ) is at most 42

n , and subsequently used the fact that on
En the lengths of open edges in the hierarchy are subject to the constrain (2.5).
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We now can estimate the desired probability as

P(F c
n ∩ En) =

∑
(zσ)∈A∗(n)

(4aCδ)
2n

n−1∏
k=0

∏
σ∈{0,1}k

Cδ(logN)(α1−δ)∆′

(|zσ0 − zσ1| ∨ 1)α1−δ

≤
(
C1(logN)∆1(α1−δ)

)2n
Nα1−δ

n−1∏
k=0

∑
(tσ)∈B(k)

∏
σ∈{0,1}k

Cδ

(|tσ| ∨ 1)α1−δ
.

Recall that B(k) is the set of all collections (tσ), σ ∈ {0, 1}k, of vertices in Zd such
that (2.6) is true. Then by applying Lemma 2.9 again (as in (2.9)), together with

α1 − δ + (α1 − δ)
n−1∑
k=1

(2η)k ≥ (α1 − δ)(2η)n−1,

the result follows.

Proof of Theorem 1.3, lower bound. By Proposition 2.12 we can bound the proba-
bility of the event {D(x, y) ≤ (logN)∆1−ϵ} by the probability of the event F c

n once
Proposition 2.12 holds. That is, if the depth of the hierarchy n satisfies (2.11),

P
(
D(x, y) ≤ (logN)∆1−ϵ

)
≤ P (F c

n) .

Now we fix ϵ ∈ (0,∆1 − 1). Since 2−1/∆1 = α1/2d by (1.12), we can choose δ > 0

and η such that

2−
1/(∆1−ϵ) < η <

α1 − δ

2d
,

so that, in particular, ∆1−ϵ
log 2

< 1
log 1/η

. We further fix δ1 ∈ (0, α1 − δ− 2dη). For large
N we thus find n ∈ N such that

∆1 − ϵ

log 2
log logN < n ≤

log logN + log δ1
c1
− log log logN

log 1/η
. (2.18)

We henceforth assume that N is large enough that (for c1 from Proposition 2.8)

(logN)c12
n ≤ N δ1(2η)n . (2.19)

In this case, the right hand side of (2.18) is further bounded from above by

log logN − log 2(α1 − δ − d)

log 1/η
.
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Therefore, we may apply the assertions of Propositions 2.8, 2.12 and 2.13 (Proposi-
tion 2.8 even for all smaller values of n), and we thus get

P
(
D(x, y) ≤ (logN)∆1−ϵ

)
≤ P (F c

n) ≤ P (Ec
n) + P (F c

n ∩ En)

≤
n∑

k=3

P(Ec
k ∩ Ek−1) + P(Ec

2) + P (F c
n ∩ En) . (2.20)

Using Proposition 2.8 and (2.18), we get for k ≤ n that

P(Ec
k+1 ∩ Ek) ≤ N−(α1−δ−2dη−δ1)(2η)k ,

and Proposition 2.13 yields a similar bound for P (F c
n ∩ En). Since 2η > 1, we thus

get the right hand side of (2.20) arbitrarily close to 0 by choosing N sufficiently
large.

Translation invariance and the FKG-inequality yield

P(x, y ∈ C∞) ≥ P(x ∈ C∞)2 > 0.

Therefore, we have

lim
|x−y|→∞

P
(
D(x, y) ≤ (log |x− y|)∆1−ϵ

∣∣∣∣x, y ∈ C∞
)

= 0,

as desired.

2.2 Upper bound for graph distances

Theorem 2.15 (Upper bound in Theorem 1.3). For scale-free percolation with pa-
rameters λ > λc, γ > 2, and d < α < 2d, we have that for any ϵ > 0,

lim
|x−y|→∞

P
(
D(x, y) ≤ (log |x− y|)∆2+ϵ

∣∣∣x, y ∈ C∞
)
= 1.
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Here D(x, y) is the graph distance between x and y, and C∞ is the unique infinite
cluster. The parameter ∆2 is given by

∆2 :=
log 2

log(2d/α2)
with α2 := α ∧ (α(τ − 1)− d) .

The upper bound in (b) and (c) of Theorem 1.3 is already established in [29], so
that we can restrict our attention here to the case τ ∈ (2, 3). Interestingly, for τ ≥ 3,
the logarithmic power of upper and lower bound match, and we thus identified the
correct exponent.

Unlike in long-range percolation, edges in scale-free percolation are only condi-
tionally independent. Intuitively speaking, adjacent edges are positively correlated
due to the weight of their joint vertex (see Exercise 9.45 in Chapter 9 of [62]). Here
we state a more general result, which is implied by the FKG-Inequality (see e.g
Theorem 2.4 in [53]).

Proposition 2.16. Let π = (xi)i=0,...,n be a path in scale-free percolation and k ∈
{1, . . . , n − 1}, and let π1, π2 be two subpaths of π by cutting π at vertex xk. That
is, π1 = (xi)i=0,...,k and π2 = (xi)i=k,...,n. Then

P (π is open) ≥ P (π1 is open)P (π2 is open) .

From Proposition 2.16 we see that two adjacent edges (or even paths) in scale-
free percolation are indeed positively correlated. The next result tells us that in
some cases the positive correlation is significant.

Proposition 2.17 (Probability of adjacent edges). In scale-free percolation with
τ ∈ (2, 3) there exist x0 > 0 and c2 > c1 > 0 such that for all x, y and z ∈ Zd with
|x− y| ≥ |y − z| ≥ x0, we have

c1|x− y|−α|y − z|−α(τ−2) ≤ P(x ∼ y ∼ z) ≤ c2|x− y|−α|y − z|−α(τ−2).

Proof. We start by calculating the probability of this joint occurrence as

P(x ∼ y ∼ z) = E
[(

λWxWy

|x− y|α
∧ 1

)(
λWyWz

|y − z|α
∧ 1

)]
.

Now show that the two single weights Wx and Wz do not play a role in the result.
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On the one hand, we know Wx ≥ 1, therefore

E
[(

λWxWy

|x− y|α
∧ 1

)(
λWyWz

|y − z|α
∧ 1

)]
≥ E

[(
λWy

|x− y|α
∧ 1

)(
λWy

|y − z|α
∧ 1

)]
One the other hand, the inequality st ∧ 1 ≤ s(t ∧ 1) for s ≥ 1 and t > 0, implies

E
[(

λWxWy

|x− y|α
∧ 1

)(
λWyWz

|y − z|α
∧ 1

)]
≤ E

[
Wx

(
λWy

|x− y|α
∧ 1

)(
λWy

|y − z|α
∧ 1

)
Wz

]
= µ2E

[(
λWy

|x− y|α
∧ 1

)(
λWy

|y − z|α
∧ 1

)]
,

where µ := E[Wx] <∞ since τ > 2. We thus obtain

1

µ2
P(x ∼ y ∼ z) ≤ E

[(
λWy

|x− y|α
∧ 1

)(
λWy

|y − z|α
∧ 1

)]
≤ P(x ∼ y ∼ z).

Thus it suffices to compute the expectation

E
[(

λWy

|x− y|α
∧ 1

)(
λWy

|y − z|α
∧ 1

)]
=

∫
R

(
λu

|x− y|α
∧ 1

)(
λu

|y − z|α
∧ 1

)
dWy(u)

=

∫ ∞

1

(
λu

|x− y|α
∧ 1

)(
λu

|y − z|α
∧ 1

)
(τ − 1)u−τdu

We now split the domain of integration into following three intervals:

[1, |y − z|α/λ] , (|y − z|α/λ, |x− y|α/λ] , and (|x− y|α/λ,∞) .

After some calculation, one obtains

E
[(

λWy

|x− y|α
∧ 1

)(
λWy

|y − z|α
∧ 1

)]
=

τ − 1

(3− τ)(τ − 2)

λ

|x− y|α
λτ−2

|y − z|α(τ−2)
− τ − 1

3− τ

λ

|x− y|α
λ

|y − z|α
− λτ−1

τ − 2

1

|x− y|α(τ−1)
.

We thus may choose c2 := τ−1
(3−τ)(τ−2)

µ2λτ−1.

For τ ∈ (2, 3), we find that the first term dominates the sum when |y− z| → ∞
(the other terms are negative, but the total sum is trivially nonnegative). Hence
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there exist positive constant x0 and c1 such that

P(x ∼ y ∼ z) ≥ c1|x− y|−α|y − z|−α(τ−2) for |y − z| ≥ x0.

In fact, the weights of two end points do not contribute to the significant positive
correlation in Proposition 2.17, as we formulate in the next corollary.

Corollary 2.18. In scale-free percolation with τ ∈ (2, 3), there exist constants ci =
ci(a, b) > 0 for i = 1, 2 and x0 = x0(a, b) > 0 such that for all x, y and z ∈ Zd with
|x− y| ≥ |y − z| ≥ x0 we have

c1|x−y|−α|y−z|−α(τ−2) ≤ P (x ∼ y ∼ z|Wx = a,Wz = b) ≤ c2|x−y|−α|y−z|−α(τ−2).

In particular, for constants M > m > 0, there exist Ci = Ci(a, b,m,M) > 0, i = 1, 2

and x′0 = x′0(a, b) > 0 such that if |x− y| and |y − z| are comparable in the sense

m|x− y| ≤ |y − z| ≤M |x− y|,

then

C1|x− y|−α(τ−1)/2|y − z|−α(τ−1)/2 ≤ P (x ∼ y ∼ z|Wx = a,Wz = b)

≤ C2|x− y|−α(τ−1)/2|y − z|−α(τ−1)/2,

for all |x− y| ≥ x′0.

In light of Propositions 2.16 and 2.17 and Corollary 2.18, we now aim to con-
struct a path with edges of comparable length. Instead of connecting two vertices
directly, we use an intermediate vertex as a “bridge” to connect the two vertices. For
x, y ∈ Zd, A ⊂ Zd, we write

{x ∼ A ∼ y} =
⋃
z∈A

{x ∼ z ∼ y}

for the event that x and y are connected via an “intermediate vertex” in A.

Proposition 2.19. For β ∈ (0, 1), there exist constants N0, K > 0 such that for all
x, y ∈ Zd with N := |x− y| ≥ N0 it is true that

P (x ∼ A ∼ y) ≥ K

N2α1−dβ
,
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where
A :=

(1
2

(
x+ y

)
+
[
−Nβ, Nβ

]d) ∩ Zd

is the cube with side length Nβ centred at the middle point of the line segment between
x and y.

Proof. Since β < 1, there exist constants l = l(β, d) and L = L(β, d) with L > l > 0

and N1 > 0 such that

lN ≤ |x− z| ≤ LN and lN ≤ |y − z| ≤ LN,

for all z ∈ A and all N ≥ N1. Therefore, |x− z| and |y − z| are comparable in the
sense of Corollary 2.18. Thus we have

P (x ∼ A ∼ y) ≥ P (x ∼ A ∼ y|Wx = 1,Wy = 1)

= 1−
∏
z∈A

(1− P (x ∼ z ∼ y|Wx = Wy = 1)) ,

where we used the conditional independence of edges and the independence of vertex
weights.

We estimate this further using Corollary 2.18 and get that there exists N2 > 0,
c1 > 0, such that for all N ≥ N2,

P (x ∼ z ∼ y|Wx = Wy = 1) ≥ c1
1

|x− z|α1

1

|z − y|α1
≥ c1
L2α1

1

N2α1
. (2.21)

Note that the right hand side of (2.21) is independent of z, which allows us to
estimate

P (x ∼ A ∼ y) ≥ 1−
(
1− c1

L2α1N2α1

)Ndβ

.

Now we use the elementary bound

1− t ≤ e−t ≤ 1− 1

2
t (0 < t < 1) (2.22)

to conclude that(
1− c1

L2α1N2α1

)Ndβ

≤ e−CNdβ−2α1/L2α1 ≤ 1− c1
2N2α1−dβL2α1

.

Since dβ − 2α1 < 0, there exists N3 > 0 such that we have c1Ndβ−2α1/L2α1 < 1 for
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all N ≥ N3, and consequently also c1N−2α1L−2α1 < 1. Finally, we have

P(x ∼ A ∼ y) ≥ c1
2N2α1−dβL2α1

for all N ≥ N0 := max{N1, N2, N3} and choose K := c1
2L2α1

as desired.

With these preparations we finally prove the upper bound.

Proof of Theorem 1.3, upper bound. Since the adjacent paths in scale-free percola-
tion are positively correlated (by Proposition 2.16) and the probability of the com-
pound edge "x ∼ A ∼ y" decays algebraically with exponent 2α1 − dβ (by Proposi-
tion 2.19), we have that the probability of a path being open in SFP dominates that
in LRP with edge probability decaying with exponent 2α1 − dβ in (1.15). There-
fore, the graph distance in SFP in this case is no more than twice the distance in
long-range percolation with connection probability as in (1.15) but with α replaced
by 2α1 − dβ. Since one can choose β arbitrarily close to 1, the result follows from
Theorem 1.8.

2.3 Further discussion

From the previous sections one might realize that the methods we applied to prove
both upper and lower bound relies significantly on the estimates of path probabil-
ity. Therefore the heterogeneity of exponents in path probability of SFP, e.g. in
Proposition 2.17, leads to great difficulties in identifying the correct logarithmic ex-
ponent. In contrast, the homogeneity of exponents in long-range percolation makes
the problem more tractable. As we have seen in Section 1.4.1, abundant results
have been achieved for LRP [7, 9, 12, 13, 14, 34, 72, 76]. In view of this, we tried
to “homogenize” the path probability in the proofs for both upper and lower bound,
in order to make use of the mature techniques developed since long for LRP. In
Section 2.1 we used the Cauchy-Schwarz inequality in 2.6 to obtain an upper bound
with same exponent for all edges involved in a path. In Section 2.2, we constructed
a path composed of purely double edges, and obtained path probability with same
exponent for all double edges as well.
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However, in the estimates for upper bound of path probability in Lemma 2.6,
as well as in the estimates for lower bound in Proposition 2.17, it seem that we
were unable to identify the exact behavior of path probability, if τ ∈ (2, 3). Based
on the information from Lemma 2.6, Proposition 2.16 and Proposition 2.17 it is
reasonable to conjecture that the probability of a path with even length has the
following asymptotics:

P(π) ≈
n∏

i=1

(|x2i−2 − x2i−1| ∨ |x2i−1 − x2i|)−α ·

(|x2i−2 − x2i−1| ∧ |x2i−1 − x2i|)−α(τ−2) ,

(2.23)

where π := (z0, z1, . . . , z2n) ∈
(
Zd
)2n+1 is the path.

In fact it turns out that there is ample interaction between all neighboring
vertices, and hence the behavior of path probability is much more sophisticated
than (2.23) (the simple case n = 2 will be computed below), posing a major hurdle
to solve the graph distance problem.

Lemma 2.20. Let π = (x0, x1, . . . , x4) be a path of length 4. One has the following
estimation:

1. if |x0 − x1| < |x1 − x2| and |x3 − x4| < |x2 − x3|, then

1.1. if |x0 − x1||x2 − x3| < |x1 − x2||x3 − x4|, then

P(π) ≈ 1

|x0 − x1|α(τ−2)|x1 − x2|α|x2 − x3|α(τ−2)|x3 − x4|α
(2.24)

1.2. else

P(π) ≈ 1

|x0 − x1|α|x1 − x2|α(τ−2)|x2 − x3|α|x3 − x4|α(τ−2)

2. else

P(π) ≈ 1

(|x0 − x1| ∨ |x1 − x2|)α (|x0 − x1| ∧ |x1 − x2|)α(τ−2)
·

1

(|x2 − x3| ∨ |x3 − x4|)α (|x2 − x3| ∧ |x3 − x4|)α(τ−2)
.
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As in Section 2.2 we want to apply the double edge method by summing up all
the middle vertices x1 and x3. However in (2.24) if x3 is very close to x4, for example
in the extreme case |x3 − x4| = |x0 − x1| = 1, then

P(x0
2∼ x2

2∼ x4) ≳
1

|x0 − x2|α
1

|x2 − x4|α(τ−2)
(2.25)

Mind that the result in (2.25) holds for |x0 − x2| > |x2 − x4|, and is consistent with
Proposition 2.17.

In order to get rid of the exponent α(τ − 2) which is too small, we would have
to sum up all the middle points x2 again to obtain an upper bound for a quadruple
edge, and this is not what we want.



Chapter 3

Navigation in scale-free
percolation

In the previous chapter we see that the graph distance is asymptotically poly-
logarithmic for α ∈ (d, 2d) and γ > 2. However, in the proofs of both upper and
lower bound, we didn’t construct the shortest path. For the lower bound we see in
Proposition 2.12 that {D(x, y) < k} can be contained in some event that is easier to
estimate. For the upper bound we constructed some path consisting of double edges.
On the one hand, this path of even length is not necessarily the shortest path. On
the other hand, we don’t possess so much knowledge about this path, except that
some of its adjacent edges are of comparable lengths in the sense of Corollary 2.18.
Therefore, it is doubtful whether scale-free percolation is navigable in this regime.

In contrast to poly-logarithmic case, Deijfen et al. [28] constructed a path
by connecting vertices with highest weights in boxes of certain size in the doubly
logarithmic regime. This implies that there might be a decentralized algorithm that
can follow this route, or at least in the initial steps, as we will see in Section 3.2.

Let s and t be the start and the target respectively. As mentioned in Section
1.2, we will use the following connection probability

px,y =
WxWy

|x− y|α
∧ 1

in scale-free percolation throughout this chapter.

We first introduce some useful results that will be frequently used later.
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Lemma 3.1 (Chernoff bound). Let {Ai}i∈[n] be independent events, and N :=∑n
i=1 1An. Denote µ := E[N ]. Then

a) If µ ≥ K for some constant K > 0, then

P (N ≥ 1) ≥ 1− e−K .

b) Let δ ∈ [0, 1], then

P(|N − µ| > δµ) ≤ 2e−δ2µ/3.

The proof of part (a) proceeds with the application of the following inequality:

1− x ≤ e−x, ∀x ∈ [0, 1],

together with the independence of events. Part (b) is a result of Theorem 4.4 and
Theorem 4.5 in [71].

Lemma 3.2. Let α and d be two constants.

a) If α > d, then there exists some constant C1 := C1(α, d) > 0 such that

∑
x∈Zd:|x|>K

1

|x|α
≤ C1

Kα−d
,

for all K > 0;

b) If α < d, then there exists some constant C2 := C2(α, d) > 0 such that

∑
x∈Zd:0<|x|≤K

1

|x|α
≤ C2K

d−α,

for all K > 0.

The proof of Lemma 3.2 follows from the comparison with the multiple integral
of |x|−α on the corresponding domain in Rd.
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3.1 Nonnavigability in the logarithmic regime

In this section we consider the regime when α ∈ (d, 2d) and γ > 2, where the graph
distance of scale-free percolation is poly-logarithmic in the Euclidean distance. We
show that any decentralized algorithm fails to satisfy Xs,t ≈ D(s, t) in both strong
and weak sense. More precisely, we have

Theorem 1.5. Consider scale-free percolation with connection probability px,y =
λWxWy

|x−y|α ∧ 1, and parameters α ∈ (d, 2d), γ > 2. Let T be an arbitrary decentralized
algorithm. Then there exists a constant δ > 0 such that

lim
N→∞

P(XT
s,t ≥ N δ) = 1.

Here s and t are the start and the target respectively, and N := |s − t| is the
Euclidean distance between s and t.

In order to proof Theorem 1.5, we need the following lemma:

Lemma 3.3. Let x ∈ Zd, and K(w) be the number of neighbors of x with weight at
least w. Then conditional on the weight of x, we have

P [K(w) ≥ 1|Wx = u] ≤ cu
d
αw

d(1−γ)
α

for some constant c > 0.

Proof. We consider first the expected number of such neighbors:

E [K(w)|Wx = u] =
∑

y∈Zd:y ̸=x

P (x ∼ y,Wy ≥ w|Wx = u)

=
∑

y∈Zd:y ̸=x

∫ ∞

w

(
uv

|x− y|α
∧ 1

)
(τ − 1)v−τdv

Depending on the position of y, one have two cases for the minimum in the
integral:

• |x− y|α ≤ uw. In this case one has∫ ∞

w

(
uv

|x− y|α
∧ 1

)
(τ − 1)v−τdv = P(Wy ≥ w) = ω−τ+1;
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• |x− y|α > uw. Then∫ ∞

w

(
uv

|x− y|α
∧ 1

)
(τ − 1)v−τdv

=

∫ |x−y|α
u

w

uv

|x− y|α
(τ − 1)v−τdv + P

(
Wy ≥

|x− y|α

u

)
=
τ − 1

τ − 2

uw2−τ

|x− y|α
− 1

τ − 2

uτ−1

|x− y|α(τ−1)
≤ c1uw

2−τ

|x− y|α

Therefore we get∑
y∈Zd

P(x ∼ y,Wy ≥ w|Wx = u)

=
∑

y∈Zd:|x−y|α≤uw

w−τ+1 +
∑

y∈Zd:|x−y|α>uw

c1uw
2−τ

|x− y|α

≤c2 (uw)
d
α w−τ+1 + c3uw

2−τ 1

(uw)
α−d
α

= cu
d
αw

d(1−γ)
α .

The result follows the from Markov’s inequality.

Proof of Theorem 1.5. Let s =: X0, X1, . . . , Xn be the path found by T , and πk(T )

be the path till step k. That is, πk(T ) = (X0, X1, . . . , Xk). If XT
s,t ≤ N δ, then by

triangle inequality, the algorithm T must have one jump that is at least N1−δ long.
Denote by Ek the event that such a jump happens at step k for the first time. Then,

P(XT
s,t ≤ N δ) ≤ P

Nδ⋃
k=1

Ek

 =
Nδ∑
k=1

P(Ek).

Let Πk(x, y) be the collection of self-avoiding paths connecting x and y with length
k. For an arbitrary ϵ > 0, we can bound the probability of Ek in the following way:

P(Ek) ≤
∑

x,y∈Zd:|x−y|α>N1−δ

∑
π∈Πk−1(s,x):y/∈π

P(πk−1(T ) = π,Xk = y)

≤
∑

x,y∈Zd:|x−y|α>N1−δ

∑
π∈Πk−1(s,x):y/∈π

P(πk−1(T ) = π,Xk = y,WXk−1
≤ N ϵ,WXk

≤ N ϵ)

+
∑

x,y∈Zd:|x−y|α>N1−δ

∑
π∈Πk−1(s,x):y/∈π

P(πk−1(T ) = π,Xk = y,WXk−1
> N ϵ)

+
∑

x,y∈Zd:|x−y|α>N1−δ

∑
π∈Πk−1(s,x):y/∈π

P(πk−1(T ) = π,Xk = y,WXk
> N ϵ)
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Apparently the last two sums can be bounded from above by P(WXk−1
> N ϵ)

and P(WXk
> N ϵ) respectively. For these two probabilities one has the following

upper bound:

P(WXk
> N ϵ) =P(WXk

> N ϵ|WXk−1
> N ϵ)P(WXk−1

> N ϵ)

+ P(WXk
> N ϵ|WXk−1

≤ N ϵ)P(WXk−1
≤ N ϵ)

≤P(WXk−1
> N ϵ) + c (N ϵ)

d
α (N ϵ)

d(1−γ)
α

≤P(Ws > N ϵ) + ckN
ϵd(2−γ)

α = N ϵ(1−τ) + ckN
ϵd(2−γ)

α .

The second last line follows from Lemma 3.3.

Now we bound the probability in the first sum from above. Since the path π

does not contain y, then conditional on the weights Wx,Wy, we make use of the
independence of the edge {x, y} and the event πk−1(T ) = π. More precisely,

P(πk−1(T ) = π,Xk = y,WXk−1
≤ N ϵ,WXk

≤ N ϵ)

≤P(πk−1(T ) = π, x ∼ y,Wx ≤ N ϵ,Wy ≤ N ϵ)

=

∫ Nϵ

1

∫ Nϵ

1

P(πk−1(T ) = π|Wx = u,Wy = v)

· P(x ∼ y|Wx = u,Wy = v)µ(du)µ(dv)

=

∫ Nϵ

1

∫ Nϵ

1

P(πk−1(T ) = π|Wx = u,Wy = v)

·
(

uv

|x− y|α
∧ 1

)
µ(du)µ(dv)

≤ N2ϵ

|x− y|α
P (πk−1(T ) = π) ,

where µ is the law of Wx. Consequently we have∑
x,y∈Zd:|x−y|α>N1−δ

∑
π∈Πk−1(s,x):y/∈π

P(πk−1(T ) = π,Xk = y,WXk−1
≤ N ϵ,WXk

≤ N ϵ)

≤
∑

x,y∈Zd:|x−y|α>N1−δ

∑
π∈Πk−1(s,x):y/∈π

N2ϵ

|x− y|α
P(πk−1(T ) = π)

=
∑
x∈Zd

∑
y∈Zd:|x−y|α>N1−δ

N2ϵ

|x− y|α
P(Xk−1 = x)

≤
∑
x∈Zd

P(Xk−1 = x)
cN2ϵ

N (α−d)(1−δ)
=

cN2ϵ

N (α−d)(1−δ)
,



3.1. Nonnavigability in the logarithmic regime 56

where we applied Lemma 3.2 in the second last step.

With all these preparations we can finally bound the probability of the event E:

P(E) =
Nδ∑
k=1

P(Ek) ≤
Nδ∑
k=1

cN2ϵ

N (α−d)(1−δ)
+ 2

Nδ∑
k=0

P(WXk
> N ϵ)

≤N δ · cN2ϵ+(1−δ)(d−α) + 2(N δ + 1)N ϵ(1−τ) + 2
Nδ∑
k=1

ckN
ϵd(2−γ)

α

≤cN δ+2ϵ+(1−δ)(d−α) + 4N δ+ϵ(1−τ) + c′N2δ+
ϵd(2−γ)

α

Since α > d, τ > 1 and γ > 2, we can choose δ and ϵ so small that all the exponents
on the last line above are negative, and thus conclude the proof of Theorem 1.5.

Corollary 3.4. Long-range percolation is not navigable for α ∈ (d, 2d).

Proof. The proof of Corollary 3.4 goes similarly as for Theorem 1.5.

Let T be a decentralized algorithm on long-range percolation. Denote by s, t

the start and the target respectively. Furthermore, let N := |s− t| be the Euclidean
distance between the start and target. Let E(N) be the event that T finds the target
within N δ steps for some δ > 0. If E(N) happens, then among the N δ jumps there
exists at least one jump with distance at least N1−δ. Denote by Ei the event that
this long jump happens for the first time at the i-th node xi. By the independence
of edges in long-range percolation we know

P(E(N)) ≤
Nδ∑
i=1

P(Ei).

Moreover, P(Ei) can be bounded from above in the following way:

P(Ei) ≤
∑

y∈Zd:|y−xi|≥N1−δ

P(y ∼ xi) =
∑

y∈Zd:|y−xi|≥N1−δ

1

|y − xi|α

≤ C

N (1−δ)(α−d)
,

where the last step follows from Lemma 3.2. Consequently we have the estimate for
P(E):

P(E(N)) ≤
Nδ∑
i=1

P(Ei) ≤
N δ

N (1−δ)(α−d)
=

1

N (1−δ)(α−d)−δ
.
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Since α > d, we can choose δ so small such that (1− δ)(α− d)− δ > 0. In this case
it holds

lim
N→∞

P(E(N)) = 0.

Remark 3.5. The proof of the corollary above holds true for all α with α > d in
long-range percolation, that is, if α > d, then the number of steps any decentralized
algorithm needs to find the target is at least polynomial in the Euclidean distance
between the start and target. This is no surprise for α > 2d, since Berger [9] showed
that the graph distance D(s, t) between s and t satisfies

lim inf
|s−t|→∞

D(s, t)

|s− t|
> 0

almost surely, if for some α > 2d the following holds:

0 < lim
|x−y|→∞

pLRP
x,y

|x− y|α
<∞.

3.2 Navigability in the doubly logarithmic regime

In this section we consider the regime when α > d and γ ∈ (1, 2), where scale-free
percolation has doubly logarithmic graph distances.

Let T be the decentralized algorithm which obeys the greedy routing protocol
in Section 1.2. We take

ϕ(x) :=
Wx

|x− t|α
, x ∈ Zd

as our objective function for T . Besides, as mentioned before, we condition on the
weights of s and t throughout this section.

Remark 3.6. In the section, for simplicity we use the following connection proba-
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bility in scale-free percolation:

px,y :=
WxWy

|x− y|α
∧ 1,

and choose the corresponding objective function

ϕ(x) :=
Wx

|x− t|α

for the greedy routing algorithm. For other forms of connection probability, we can
also decide the corresponding objective functions. For example, if px,y =

λWxWy

|x−y|α ∧ 1,

we choose ϕ(x) = λWx

|x−t|α . If px,y = 1 − exp
(
−λWxWy

|x−y|α

)
, one option will be ϕ(x) =

1− exp
(
− λWx

|x−t|α

)
.

3.2.1 Success probability of greedy routing

We first show that the greedy routing algorithm finds the target with at least positive
constant probability within doubly logarithmically many steps. More precisely, we
have:

Theorem 3.7 (Part (a) in Theorem 1.6). Consider scale-free percolation with con-
nection probability (1.9), and parameters α > d, γ ∈ (1, 2). Let T be the greedy
routing algorithm with objective function as in (1.10). Then, conditional on Ws and
Wt, with at least positive constant probability, T finds the target within L1 steps as
N → ∞, where L1 is a function of N given as follows:

L1 =
1 + o(1)

| log(γ − 1)|

(
log logWs

(
ϕ(s)−1

)
+ log logWt

(
ϕ(s)−1

))
.

Given the objective function as in (1.10), one has the following heuristics for the
greedy routing: At the very beginning, the vertices the greedy routing algorithm T

visits have typically small weights and hence have mainly close neighbors. In this
circumstance, T will first visit some vertex very close to the current one, but with
much higher weight hence also higher objective, and iterate such steps until it is
difficult to increase the weights. This intuition in the initial stage coincides with
the path constructed in the proof of Theorem 5.1 in [28]. After this stage T already
reaches some vertex with very high weight, which allows the existence of long-range
connections. Then the algorithm starts to overcome the distance to the target, and
ends in some vertex very close to it or even finds it.
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More precisely, given w0 and ϕ0, the greedy routing proceeds in three stages:

• Start stage: The start stage consists of at most one jump. The vertex s itself
has a weight at least w0 or after the first step the greedy routing algorithm
finds some neighbor x1 of s with ϕ(x1) ≥ ϕ(s) and Wx1 ≥ w0;

• Main stage: T starts in this stage with a vertex (s or x1) with weight at least
w0. In the main stage, first the weights along the greedy path grow doubly
exponentially, and then the objectives increase similarly. After the main stage,
T ends in some vertex xℓ+1 with ϕ(xℓ+1) > ϕ0;

• End stage: If xℓ+1 is not t, then it is connected to t directly. In this case T
finds t.

We show that all events in the three stages happen with at least positive constant
probability independent of |s− t|.

Proposition 3.8 (Start stage). Conditional on Ws, s itself or its best neighbor x1
has weight at least w0 > 1 with at least constant positive probability independent
of N := |s − t|. Here best neighbor means it has the largest objective among the
neighbors of s.

Proof. We henceforth assume Ws < w0, otherwise the proof is trivial if Ws ≥ w0.
Denote by A the following set

A :=
{
y ∈ Zd : |y − t| ≤ |s− t|

}
.

Further we denote B as the ball around s with radius |s−t|
2

. That is

B :=

{
y ∈ Zd : |y − s| ≤ |s− t|

2

}
.

The relation between the sets A and B can be seen in Figure 3.1.

We show first that the best neighbor of s does not lie in A \ B with high
probability. We do it by showing that, as |s− t| grows, the number of neighbors of
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s ty1

AB

Figure 3.1: Illustration of A and B.

s in A \B goes to 0. Let Ns be the number of neighbors of s in A \B, then

E[Ns|Ws] =
∑

y∈A\B

P (y ∼ s|Ws) =
∑

y∈A\B

E
[
WsWy

|s− y|α
∧ 1

∣∣∣∣Ws

]

≤
∑

y∈A\B

2αE
[
WsWy

|s− t|α
∧ 1

∣∣∣∣Ws

]

≤
∑

y∈A\B

w02
αE
[

Wy

|s− t|α
∧ 1

]
.

Now we can make a case distinction to calculate the expected value.

• τ ∈ (1, 2). Then E[Wy] = ∞. In this case we have

E
[

Wy

|s− t|α
∧ 1

]
=

∫ |s−t|α

1

u

|s− t|α
u−τdu+ P (Wy ≥ |s− t|α)

≤ c

|s− t|α(τ−1)
,

for some constant c > 0. Since γ = α(τ − 1)/d > 1, we have α(τ − 1) > d.
Together with the fact that |A\B| ≤ C|s− t|d for some constant C depending
only on d, we obtain E [Ns|Ws] → 0 as |s− t| → ∞.

• τ = 2.

E
[

Wy

|s− t|α
∧ 1

]
=

∫ |s−t|α

1

u

|s− t|α
u−2du+ P (Wy ≥ |s− t|α)

≤ c log |s− t|
|s− t|α

+
c

|s− t|α
,
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for some constant c > 0. With the same argument as in the case τ ∈ (1, 2) we
conclude that E [Ns|Ws] → 0 as |s− t| → ∞.

• τ ∈ (2, 3). In this case we have µ := E[Wy] <∞ and therefore

E
[

Wy

|s− t|α
∧ 1

]
≤ E

[
Wy

|s− t|α

]
=

µ

|s− t|α
,

Since α > d, we have E [Ns|Ws] → 0 as |s− t| → ∞.

To summarize, for τ ∈ (1, 3), we have lim|s−t|→∞ E [Ns|Ws] = 0, and therefore also
lim|s−t|→∞ P(Ns = 0|Ws) = 1. Especially if |s − t| > K for some constant K > 0,
we have P(Ns = 0|Ws) ≥ 1/2. Note that the constant K here is independent of Ws.

Let y1 be one nearest vertex to s in A ∩ B. By our assumption of all nearest-
neighbor edges we know s ∼ y1. Then

P (Wy1 ≥ 2αw0) = (2αw0)
−τ+1 .

Conditional on Wy1 ≥ 2αw0, one has ϕ(y1) ≥ 2αw0

|s−t|α > ϕ(s). Let ymax be the best
neighbor of s. Then for |s−t| > K with probability at least 1/2 we have ymax /∈ A\B.
In this case |ymax − t| ≥ 1/2|s− t|. By definition of best neighbor, we have

ϕ(ymax) ≥ ϕ(y1) ≥
2αw0

|s− t|α
.

Then
Wymax ≥

2αw0

|s− t|α
|ymax − t|α ≥ w0.

As we discussed before, the main stage is divided into two main phases and
a transition phase. In the first main phase, T goes along vertices with increasing
weights and hence increasing objectives; In the second phase, T visits vertices with
increasing objectives, until it reaches some threshold ϕ0 for the objective. Now we
describe this procedure in more details.

We first introduce some parameters and functions.
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• χ : R+ → R is a function with

χ(ϵ) :=
1− αϵ/d

γ − 1
. (3.1)

• ζ is a constant in (1,∞) such that

− ζ +
α(ζ − 1)

d(γ − 1)
> 0. (3.2)

Such ζ exists because α
d(γ−1)

> 1.

• ϵ1 is a positive constant such that χ(ϵ1) > 1 and

χ(ϵ1)− 1− χ(ϵ)

χ(ϵ1)
+ χ(ζϵ1) ≥ 0, (3.3)

for all ϵ ∈ [0, ϵ1]. Such ϵ1 exists because

χ(0)− 1− χ(0)

χ(0)
+ χ(0) =

1

γ − 1
− (γ − 1) > 0,

since γ ∈ (1, 2).

• f0 : R+ → R+ is a function with

lim
N→∞

f0(N) = ∞, and lim
N→∞

f0(N)

log logN
= 0; (3.4)

• ϵ2 : R+ → R+ is a function with

ϵ2(N) :=
1

log log f0(N)
.

• w′
0 : R+ → R+ and ϕ′

0 : R+ → R+ are functions with

w′
0(N) := w

(χ(ζϵ1)f0(N))
0 , and ϕ′

0(N) = ϕ
(χ(ϵ1)f0(N))
0 . (3.5)

Since ϵ2 → 0 as N → ∞, we assume ϵ2 ≤ ϵ1 from now on. The function χ is
decreasing, and hence χ(ϵ2) ≥ χ(ϵ1) > 1.

Now we define some sets of vertices in which greedy routing algorithm is mainly
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performed. Based on the weight configuration, we define the random sets

V>ϕ := {x ∈ Zd : ϕ(x) > ϕ},

V1 :=
{
x ∈ Zd : ϕ(x) ≤ W−χ(ϵ1)

x

}
,

V2 :=
{
x ∈ Zd : ϕ(x) ≥ W−χ(ϵ1)

x

}
,

V (w, ϕ) := {x ∈ V1 : Wx ≥ w, ϕ(x) ≤ ϕ} ∪ {x ∈ V2 : ϕ(x) ≤ ϕ}

V ′
1 :=

{
x ∈ V (w0, ϕ0) : ϕ(x) ≤ W−χ(ϵ2)

x

}
Since we choose ϵ2 ≤ ϵ1, we get V ′

1 ⊆ V1. Later on we will see that greedy routing
takes place mostly in V (w0, ϕ0). In the first phase, T explores vertices in V1, and in
the second phase, it visits V2.

In the first phase, if x ∈ V1, we define

V +
1 (x, ϵ) :=

{
y ∈ Zd : Wy ≥ W χ(ϵ)

x , ϕ(y) ≥ ϕ(x)W χ(ϵ)−1
x

}
V −
1 (x, ϵ) :=

{
y ∈ Zd : Wy ≤ W χ(ζϵ)

x , ϕ(y) ≥ ϕ(x)W χ(ϵ)−1
x

}
In the second phase, if x ∈ V2, we define

V +
2 (x, ϵ) :=

{
y ∈ V2 : ϕ(y) ≥ ϕ(x)1/χ(ϵ)

}
V −
2 (x, ϵ) :=

{
y ∈ V1 : ϕ(y) ≥ ϕ(x)1/χ(ϵ)

}
V +
1 (x, ϵ) and V +

2 (x, ϵ) contain ‘good’ neighbors of x, which we expect T to visit
in the next jump from x. In contrast, V −

1 (x, ϵ) and V −
2 (x, ϵ) include ‘bad’ neighbors

that T should avoid. In addition, we denote by Γ(x) the set of neighbors of x. Also
it is reasonable to assume that ϕ(x) < 1 for all the vertices in the greedy path.
Otherwise we have px,t = ϕ(x)Wt ∧ 1 = 1 for some x, and T jumps to t from x

according to the routing protocol.

Furthermore, we divide the sets V1 and V2 into smaller layers:

Layers in the first phase:

Let (zj)j∈N be an increasing sequence with z0 := w0 defined recursively in the
following way

zj+1 =

z
χ(ζϵ1)
j if zj < w′

0,

z
χ(ζϵ2)
j otherwise,

(3.6)
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where w′
0 is defined in (3.5). Then we define the following layers in the first phase

A1,j := {x ∈ V ′
1 : zj−1 ≤ Wx < zj} , j ≥ 1, (3.7)

Layer in the transition phase:

A1,∞ :=
{
x ∈ V (w0, ϕ0) : ϕ(x)W

χ(ϵ1)
x ≤ 1 ≤ ϕ(x)W χ(ϵ2)

x

}
. (3.8)

Layers in the second phase:

Let (ψj)j∈N be a decreasing sequence with ψ0 := ϕ0 defined also recursively in
the following way:

ψj+1 =

ψ
χ(ϵ1)
j if ψj > ϕ′

0,

ψ
χ(ϵ2)
j otherwise ,

(3.9)

where ϕ′
0 is defined in (3.5). Now we define the layers in the second phase

A2,j := {x ∈ V2 ∩ V (ω0, ϕ0) : ψj−1 ≥ ϕ(x) > ψj} . (3.10)

By construction of the layers one realizes⋃
j∈N∪{∞}

A1,j = V1 ∩ V (w0, ϕ0), and
⋃
j∈N

A2,j = V2 ∩ V (w0, ϕ0). (3.11)

Correspondingly we define two sequences (ϵ(j)1 )j∈N∪{∞} and (ϵj2)j∈N taking values
in {ϵ1, ϵ2} based on the layers. More precisely

ϵ
(j)
1 :=

ϵ1 if zj < w′
0,

ϵ2 else.

ϵ∞1 := ϵ1,

ϵ
(j)
2 :=

ϵ1 if ψj > ϕ′
0,

ϵ2 else.

where zj and ψj are defined in (3.6) and (3.9) respectively. In other words, ϵ(j)i takes
the value of ϵ ∈ {ϵ1, ϵ2} that is used in the definition of the upper bound of layer
Ai,j+1.

Remark 3.9. We will show that the greedy routing algorithm T visits each layer at
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most once, and follows the order below:

A1,1, . . . , A1,j, . . . , A1,∞, . . . , A2,j, . . . , A2,1. (3.12)

Denote Bi,j as the union of A1,1 to Ai,j according to the order above, that is,

Bi,j :=


⋃j

m=1A1,m i = 1, j <∞;⋃∞
m=1A1,m

⋃
A1,∞ i = 1, j = ∞;⋃∞

m=1A1,m

⋃
A1,∞

⋃∞
m=j A2,m i = 2.

The next two lemmas tell us it is very likely that T explores those good neighbors.
We denote by Ex and Px the expectation and the probability measure conditioned
on the weight of the vertex x respectively. In other words,

Ex[ · ] := E[ · |Wx], and Px[ · ] := P[ · |Wx].

Then we have the following results:

Lemma 3.10 (Jump in the first phase). Let x be a vertex in A1,j for some j ∈ N.
Then we have

a) There exists some constant c > 0 independent of x such that

Ex

[∣∣Γ(x) ∩ V +
1

(
x, ϵ

(j)
1

) ∣∣] ≥ cW ϵ
(j)
1

x ;

b) If in addition w0 is chosen so large that

w
χ(ζϵ1)−χ(ϵ1)
0 ≤ (1/2)α, and (3.13)

w

(
α(1−ζ)
d(γ−1)

χ(ζϵ1)
f0(N)

log log f0(N)

)
0 ≤ (1/2)α, for all N ≥ N1, (3.14)

where N1 > 0 is the number such that χ(ζϵ1)f0(N)

log log f0(N)
> 1 for all N ≥ N1. Then we

also have for all N ≥ N1 that

Ex

[∣∣Γ(x) ∩ V −
1

(
x, ϵ

(j)
1

) ∣∣] ≤ CW−ρϵ
(j)
1

x logWx,

for some positive constants ρ := ρ(α, d, τ, ζ) and C := C(α, d, τ, ζ).
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Proof. a) Let ϵ ∈ {ϵ1, ϵ2} and

A(x, ϵ) :=
{
y ∈ Zd : Wy ≥ W χ(ϵ)

x , |y − t| ≤ |x− t|
}
.

For y ∈ A(x, ϵ) one has

ϕ(y) =
Wy

|y − t|α
≥ W

χ(ϵ)
x

|y − t|α
≥ W

χ(ϵ)
x

|x− t|α
= ϕ(x)W χ(ϵ)−1

x .

In other words, A(x, ϵ) ⊆ V +
1 (x, ϵ).

Then the expected size of good neighbors is

Ex

[
|Γ(x) ∩ V +

1 (x, ϵ)|
]
≥ E [|Γ(x) ∩ A(x, ϵ)|]

=
∑

y∈Zd:|y−t|≤|x−t|

P
(
y ∼ x,Wy ≥ W χ(ϵ)

x

)
=

∑
y∈Zd:|y−t|≤|x−t|

∫ ∞

W
χ(ϵ)
x

(
Wxu

|x− y|α
∧ 1

)
u−τdu

Depending on the minimum in the integral above, we need to distinguish all such
y’s.

Let A1(x, ϵ) :=
{
y ∈ A(x, ϵ) : |x − y|α ≤ W

χ(ϵ)+1
x

}
, and A2(x, ϵ) := A(x, ϵ) \

A1(x, ϵ).

First for y ∈ A1(x, ϵ), the integral above becomes∫ ∞

W
χ(ϵ)
x

1 · u−τdu =
1

(τ − 1)W
χ(ϵ)(τ−1)
x

.

Therefore

∑
y∈A1(x,ϵ)

1

(τ − 1)W
χ(ϵ)(τ−1)
x

≥
c

(
W

χ(ϵ)+1
α

x

)d

W
χ(ϵ)(τ−1)
x

,

for some constant c independent of x and Wx. Here we used the following fact to
estimate the volume of the intersection between two balls, as depicted in Figure
3.2.

Fact 3.11. Let t, x ∈ Zd, and R1 := |x− t|. Let A1 := {y ∈ Zd : |y − t| ≤ R1},
and A2 := {y ∈ Zd : |y−x| ≤ R2}. Assume R2 ≤ R1, then there exists a constant
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c independent of R1, R2 such that

|A1 ∩ A2| ≥ cRd
2.

t
x

R1 R2

A1 A2

Figure 3.2: The shaded area is the intersection of A1 and A2.

Therefore

Ex

[
|Γ(x) ∩ V +

1 (x, ϵ)|
]
≥
c

(
W

χ(ϵ)+1
α

x

)d

W
χ(ϵ)(τ−1)
x

= cW (χ(ϵ)+1)d/α−χ(ϵ)(τ−1)
x = cW ϵ

x.

In the last step, we plug in χ(ϵ) = 1−αϵ/d
γ−1

.

b) First such N1 > 0 exists because χ(ζϵ1) > 1. Besides, the existence of such w0

is guaranteed by the fact that ζ > 1. For brevity we write ϵ instead of ϵ(j)1 for
corresponding x in the proof of part b).

Let B1(x, ϵ) :=
{
y ∈ Zd : |y− t|α ≤ W

χ(ζϵ)+1−χ(ϵ)
x ϕ(x)−1

}
. We have the following

estimate for the volume of B1(x, ϵ):

|B1(x, ϵ)| ≤
(
cW χ(ζϵ)+1−χ(ϵ)

x ϕ(x)−1
)d/α

,

for some c := c(d). Let y ∈ V −
1 (x, ϵ). Then we have

ϕ(x)W χ(ϵ)−1
x |y − t|α ≤ Wy ≤ W χ(ζϵ)

x .
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Then

Ex

[∣∣Γ(x) ∩ V −
1 (x, ϵ)

∣∣]
=

∑
y∈B1(x,ϵ)

P
(
ϕ(x)W γ(ϵ)−1

x |y − t|α ≤ Wy ≤ W γ(ζϵ)
x , y ∼ x

)
=

∑
y∈B1(x,ϵ)

∫ W
γ(ζϵ)
x

ϕ(x)W
γ(ϵ)−1
x |y−t|α

(
Wxu

|x− y|α
∧ 1

)
u−τdu

For y ∈ B1 (x, ϵ), one has |y − t|α/|x − t|α ≤ W
γ(ζϵ)−γ(ϵ)
x . Now we want to show

that this ratio goes to 0 if Wx grows to infinity. Depending on the value of ϵ we
have the following two cases:

• ϵ = ϵ1. In this case we know w0 ≤ Wx < w′
0, where w′

0 is defined in (3.5).
Consequently one has

|y − t|α/|x− t|α ≤ W χ(ζϵ1)−χ(ϵ1)
x ≤ w

χ(ζϵ1)−χ(ϵ1)
0 ≤ (1/2)α;

• ϵ = ϵ2. In this case we know Wx ≥ w′
0. Therefore

|y − t|α/|x− t|α ≤ W χ(ζϵ2)−χ(ϵ2)
x ≤ (w′

0)
χ(ζϵ2)−χ(ϵ2) =

(
w
(χ(ζϵ1)f0(N))
0

)α(1−ζ)ϵ2
d(γ−1)

= w

(
α(1−ζ)
d(γ−1)

χ(ζϵ1)
f0(N)

log log f0(N)

)
0 ≤ (1/2)α.

In both cases we obtain |y − t| ≤ 1
2
|x− t|. By the triangle inequality,

|x− y| ≥ 1

2
|x− t|. (3.15)

Then we have for u ≤ W
χ(ζϵ)
x :

Wxu

|x− y|α
∧ 1 ≤ Wxu

|x− y|α
≤ 2α

Wxu

|x− t|α
,

and hence

Ex

[∣∣Γ(x) ∩ V −
1

(
x, ϵ

(j)
1

) ∣∣] ≤ 2α
∑

y∈B1

(
x,ϵ

(j)
1

)
∫ W

χ(ζϵ(j)1 )
x

ϕ(x)W
χ(ϵ(j)1 )−1

x |y−t|α

Wxu

|x− t|α
u−τdu.
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We calculate the integral in different cases:

i) τ ∈ (1, 2).

∫ W
χ(ζϵ)
x

ϕ(x)W
χ(ϵ)−1
x |y−t|α

Wxu

|x− t|α
u−τdu ≤ ϕ(x)

2− τ
W χ(ζϵ)(2−τ)

x .

Then

Ex

[
|Γ(x) ∩ V −

1 (x, ϵ)|
]
≤ϕ(x) 2α

2− τ
W χ(ζϵ)(2−τ)

x |B1(x, ϵ)|

≤ϕ(x) 2α

2− τ
W χ(ζϵ)(2−τ)

x

(
cW χ(ζϵ)+1−χ(ϵ)

x ϕ(x)−1
)d/α

=Cϕ(x)1−d/αW χ(ζϵ)(2−τ)+d/α(χ(ζϵ)+1−χ(ϵ))
x

We know at the same time ϕ(x) ≤ W
−χ(ϵ)
x , since x ∈ A1,j ⊆ V ′

1 . Thus

E
[
|Γ(x) ∩ V −

1 (x, ϵ)|
]
≤CW (d/α−1)χ(ϵ)

x W χ(ζϵ)(2−τ)+d/α(χ(ζϵ)+1−χ(ϵ))
x

=CW
ϵ(ζ+α(1−ζ)

d(γ−1) )
x .

Denote ρ := −ζ + α(ζ−1)
d(γ−1)

. By our choice of ζ in (3.2) one has ρ > 0.

ii) τ = 2.

∫ W
χ(ζϵ)
x

ϕ(x)W
χ(ϵ)−1
x |y−t|α

Wxu

|x− t|α
u−τdu ≤ χ(ζϵ)

Wx logWx

|x− t|α
.

Together with the estimate for the volume of B1(x, ϵ) we obtain

Ex

[
|Γ(x) ∩ V −

1 (x, ϵ)|
]
≤ 2αχ(ζϵ)

Wx logWx

|x− t|α
(
cW χ(ζϵ)+1−χ(ϵ)

x ϕ(x)−1
)d/α

≤ cϕ(x)1−d/αW
d
α
(χ(ζϵ)+1−χ(ϵ))

x logWx

≤ cW
γ−ζ
γ−1

ϵ
x logWx.

Note here we used the fact that for τ = 2, it holds γ = α/d.

iii) τ ∈ (2, 3).

∫ W
χ(ζϵ)
x

ϕ(x)W
χ(ϵ)−1
x |y−t|α

Wxu

|x− t|α
u−τdu ≤ ϕ(x)3−τ

τ − 2

W
(χ(ϵ)−1)(2−τ)
x

|y − t|α(τ−2)

Since γ = α(τ−1)
d

< 2 and α > d, one has the following estimate (see also
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Figure 1.4)

α(τ − 2) = α(τ − 1)− α = γd− α < 2d− α < d.

Then Lemma 3.2 implies:

Ex

[
|Γ(x) ∩ V −

1 (x, ϵ)|
]
≤

∑
y∈Zd:|y−t|α≤W

χ(ζϵ)+1−χ(ϵ)
x ϕ(x)−1

2αϕ(x)3−τ

τ − 2

W
(χ(ϵ)−1)(2−τ)
x

|y − t|α(τ−2)

≤Cϕ(x)3−τW (χ(ϵ)−1)(2−τ)
x

[
W χ(ζϵ)+1−χ(ϵ)

x ϕ(x)−1
] d−α(τ−2)

α

≤CW (d/α−1)χ(ϵ)
x W χ(ζϵ)(2−τ)+d/α(χ(ζϵ)+1−χ(ϵ))

x

=CW
ϵ(ζ+α(1−ζ)

d(γ−1) )
x .

Lemma 3.12 (Jump in the second phase). Let x be a vertex in the layer A2,j for
some j ∈ N. Then we have

a) There exist constants c, c′ > 0 independent of x such that

Ex

[∣∣Γ(x) ∩ V +
2

(
x, ϵ

(j)
2

) ∣∣] ≥ cϕ(x)−c′ϵ
(j)
2 ;

b) If, in addition, ϕ0 is chosen so small that

ϕ

(
1+ 1

χ(ϵ1)

)(
1− 1

χ(ϵ1)

)
0 ≤ 1

2α
, and (3.16)(

ϕ
(χ(ϵ1)f0(N))
0

)(
1+ 1

χ(ϵ1)

)(
1− 1

χ(ϵ2)

)
≤ 1

2α
, for all N ≥ N2, (3.17)

where N2 is a constant such that f0(N) ≥ 1 for all N ≥ N2. Then we also have
for all N ≥ N2 that

Ex

[∣∣Γ(x) ∩ V −
2

(
x, ϵ

(j)
2

) ∣∣] ≤ Cϕ(x)ϵ
(j)
2 log

(
ϕ(x)−1

)
,

for some constant C := C(α, d, , τ, ϵ1).
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Proof. a) Let ϵ ∈ {ϵ1, ϵ2}, and define the set

A(x, ϵ) :=
{
y ∈ Zd : |y − t|α ≤ ϕ(x)−1−1/χ(ϵ),Wy ≥ ϕ(x)−1

}
.

For y ∈ A(x, ϵ), one has

ϕ(y) =
Wy

|y − t|α
≥ ϕ(x)−1

ϕ(x)−1−1/χ(ϵ)
= ϕ(x)1/χ(ϵ).

In order to show that y ∈ V +
2 (x, ϵ), we still need to show y ∈ V2. Since Wy ≥ 1,

χ(ϵ1) ≥ 1 and χ(ϵ) ≥ 1, one has

W 1+χ(ϵ1)
y ≥ W 1+1/χ(ϵ)

y ≥ ϕ(x)−1−1/χ(ϵ) ≥ |y − t|α.

This means ϕ(y) ≥ W
−χ(ϵ1)
y . Therefore y ∈ V2 and A(x, ϵ) ⊆ V +

2 (x, ϵ).

In addition, for y ∈ A(x, ϵ), one has

|y − t|α ≤ ϕ(x)−1−1/χ(ϵ), and ϕ(x) ≥ W−χ(ϵ1)
x ≥ W−χ(ϵ)

x .

Then |y − t|α ≤ ϕ(x)−1W
χ(ϵ)1/χ(ϵ)
x = |x − t|α. We know by triangle inequality

that |x− y| ≤ 2|x− t|.

Now we can estimate the size of the set of good neighbors in the second phase:

Ex

[
|Γ(x) ∩ V +

2 (x, ϵ)|
]
≥ Ex [|Γ(x) ∩ A(x, ϵ)|]

=
∑

y∈Zd:|y−t|α≤ϕ(x)−1−1/χ(ϵ)

∫ ∞

ϕ(x)−1

(
Wxu

|x− y|α
∧ 1

)
u−τdu

≥
∑

y∈Zd:|y−t|α≤ϕ(x)−1−1/χ(ϵ)

1

2α

∫ ∞

ϕ(x)−1

(
Wxu

|x− t|α
∧ 1

)
u−τdu

=
∑

y∈Zd:|y−t|α≤ϕ(x)−1−1/χ(ϵ)

1

2α

∫ ∞

ϕ(x)−1

u−τdu

≥c
(
ϕ(x)−1−1/χ(ϵ)

)d/α
ϕ(x)τ−1 = cϕ(x)−

γ−1
1−αϵ/d

ϵ

≥cϕ(x)−(γ−1)ϵ.

b) It is clear that such N2 exists, because limN→∞ f0(N) = ∞. By the construction
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of the function χ in (3.1), we know there is a constant K > 0 such that(
−1− 1

χ(ϵ1)

)(
1

χ(ϵ2)
− 1

)
≥ K.

Consequently for N ≥ N2 one has

(
ϕ
(χ(ϵ1)f0(N))
0

)(
−1− 1

χ(ϵ1)

)(
1

χ(ϵ2)
−1

)
≤ ϕ

Kχ(ϵ1)
0 .

Therefore such ϕ0 satisfying (3.16) and (3.17) exists. Again, for brevity we write
ϵ instead of ϵ(j)2 for corresponding x in the proof of part b).

Let y ∈ V −
2 (x, ϵ). Then

ϕ(y) ≥ ϕ(x)1/χ(ϵ), ϕ(y) ≤ W−χ(ϵ1)
y .

Consequently we have the following estimate for the distance between y and t:

|y − t|α =ϕ(y)−1Wy ≤ ϕ(y)−1ϕ(y)−1/χ(ϵ1) ≤
(
ϕ(x)−1ϕ(x)−1/χ(ϵ1)

)1/χ(ϵ)

Now we want to show that
(
ϕ(x)−1ϕ(x)−1/χ(ϵ1)

)1/χ(ϵ)−1 can be small by choosing
ϕ0 properly.

Depending on the value of ϵ we have two possible cases:

• ϵ = ϵ1. In this case we know ϕ′
0 < ϕ(x) < ϕ0, where ϕ′

0 is defined in (3.5).
Hence

(
ϕ(x)−1ϕ(x)−1/χ(ϵ1)

)1/χ(ϵ)−1
= ϕ(x)

(
−1− 1

χ(ϵ1)

)(
1

χ(ϵ1)
−1

)

≤ϕ
(
−1− 1

χ(ϵ1)

)(
1

χ(ϵ1)
−1

)
0 ≤ 1

2α
;

• ϵ = ϵ2. In this case we have ϕ(x) ≤ ϕ′
0. By plugging ϕ′

0 in we obtain

(
ϕ(x)−1ϕ(x)−1/χ(ϵ1)

)1/χ(ϵ)−1
= ϕ(x)

(
−1− 1

χ(ϵ1)

)(
1

χ(ϵ2)
−1

)

≤ϕ
′
(
−1− 1

χ(ϵ1)

)(
1

χ(ϵ2)
−1

)
0 =

(
ϕ
(χ(ϵ1)f0(N))
0

)(
−1− 1

χ(ϵ1)

)(
1

χ(ϵ2)
−1

)
≤ 1

2α
.
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In both cases we know

(
ϕ(x)−1ϕ(x)−1/χ(ϵ1)

)1/χ(ϵ) ≤ 1

2α
ϕ(x)−1ϕ(x)−1/χ(ϵ1)

≤(1/2)αϕ(x)−1Wx = (1/2|x− t|)α.

In the last line we used the fact that x ∈ V2 and hence ϕ(x) ≥ W
−χ(ϵ1)
x . By

triangle inequality, |x− y| ≥ 1/2|x− t|.

Denote B(x, ϵ) :=
{
y ∈ Zd : ϕ(x) ≤ |y − t|−

χ(ϵ)χ(ϵ1)α
1+χ(ϵ1)

}
. Then

Ex

[
|Γ(x) ∩ V −

2 (x, ϵ)|
]
=

∑
y∈B(x,ϵ)

P(y ∼ x, ϕ(x)1/χ(ϵ)|y − t|α ≤ Wy ≤ |y − t|
α

1+χ(ϵ1) )

=
∑

y∈B(x,ϵ)

∫ |y−t|
α

1+χ(ϵ1)

ϕ(x)1/χ(ϵ)|y−t|α

(
Wxu

|x− y|α
∧ 1

)
u−τdu

≤
∑

y∈B(x,ϵ)

2α
∫ |y−t|

α
1+χ(ϵ1)

ϕ(x)1/χ(ϵ)|y−t|α

(
Wxu

|x− t|α
∧ 1

)
u−τdu

For y ∈ B(x, ϵ) one has ϕ(x) ≤ |y − t|−
χ(ϵ)χ(ϵ1)α
1+χ(ϵ1) . Consequently |y − t|α ≤

ϕ(x)
− 1+χ(ϵ1)

χ(ϵ)χ(ϵ1) , and

ϕ(x)|y − t|
α

1+χ(ϵ1) ≤ ϕ(x)ϕ(x)
− 1

χ(ϵ)χ(ϵ1) ≤ 1.

Then we can get rid of the minimum in the integrand above, and the integral
becomes

∫ |y−t|
α

1+χ(ϵ1)

ϕ(x)1/χ(ϵ)|y−t|α
ϕ(x)u−τ+1du

For different values of τ we have the following 3 cases:

• τ ∈ (1, 2). In this case the integral becomes:

∫ |y−t|
α

1+χ(ϵ1)

ϕ(x)1/χ(ϵ)|y−t|α
ϕ(x)u−τ+1du ≤ 1

2− τ
ϕ(x)|y − t|

α(2−τ)
1+χ(ϵ1) .
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Lemma 3.2 implies:

Ex

[
|Γ(x) ∩ V −

2 (x, ϵ)|
]
≤ 2α

2− τ

∑
y∈B(x,ϵ)

ϕ(x)|y − t|
α(2−τ)
1+χ(ϵ1)

≤ Cϕ(x)

[
ϕ(x)

− 1+χ(ϵ1)
χ(ϵ)χ(ϵ1)α

] α(2−τ)
1+χ(ϵ1)

+d

= Cϕ(x)f(ϵ,ϵ1).

where f(ϵ, ϵ1) := 1− 1+χ(ϵ1)
χ(ϵ)χ(ϵ1)α

(
α(2−τ)
1+χ(ϵ1)

+ d
)
.

f(ϵ, ϵ1) is a continuous function of ϵ and ϵ1, and

f(0, 0) = (2− γ) [1 + (2− τ)(γ − 1)] > 0.

Therefore we can choose ϵ1 so small that f(ϵ, ϵ1) ≥ ϵ for all ϵ ∈ (0, ϵ1]. Since
ϕ(x) ≤ 1, we have Ex

[
|Γ(x) ∩ V −

2 (x, ϵ)|
]
≤ Cϕ(x)ϵ.

• τ = 2. We compute the integral in the following way:

∫ |y−t|
α

1+χ(ϵ1)

ϕ(x)1/χ(ϵ)|y−t|α
ϕ(x)u−τ+1du = ϕ(x)

∫ |y−t|
α

1+χ(ϵ1)

ϕ(x)1/χ(ϵ)|y−t|α
u−1du

≤ cϕ(x) log |y − t|.

Therefore we have the following estimate:

Ex

[
|Γ(x) ∩ V −

2 (x, ϵ)|
]
≤ cϕ(x)ϕ(x)

− d
α

1+χ(ϵ1)
χ(ϵ)χ(ϵ1) log |y − t|

≤ c

χ(ϵ)
ϕ(x)f(ϵ,ϵ1) log

1

ϕ(x)
,

where f(ϵ, ϵ1) := 1− d
α

1+χ(ϵ1)
χ(ϵ)χ(ϵ1)

. Note for τ = 2 we have γ = α/d, and

f(0, 0) = γ
[
1− (γ − 1)2

]
> 0.

With the same argument as in the case τ ∈ (1, 2) we can choose ϵ1 so small
that f(ϵ, ϵ1) ≥ ϵ for all ϵ ∈ (0, ϵ1]. Together with the fact that χ(ϵ) ≥ χ(ϵ1),
we obtain the following upper bound

Ex

[
|Γ(x) ∩ V −

2 (x, ϵ)|
]
≤ Cϕ(x)ϵ log

(
ϕ(x)−1

)
.
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• τ ∈ (2, 3). The integral can be simplified as follows:

∫ |y−t|
α

1+χ(ϵ1)

ϕ(x)1/χ(ϵ)|y−t|α
ϕ(x)u−τ+1du ≤ cϕ(x)ϕ(x)−

τ−2
χ(ϵ) |y − t|−α(τ−2).

Lemma 3.2 allows us to make following estimation:

Ex

[
|Γ(x) ∩ V −

2 (x, ϵ)|
]
≤

∑
y∈B(x,ϵ)

cϕ(x)ϕ(x)−
τ−2
χ(ϵ) |y − t|−α(τ−2)

≤ c′ϕ(x)1−
τ−2
χ(ϵ)

[
ϕ(x)

− 1+χ(ϵ1)
αχ(ϵ)χ(ϵ1)

]−α(τ−2)+d

= c′ϕ(x)f(ϵ,ϵ1),

where f(ϵ, ϵ1) := 1− 1+χ(ϵ1)
χ(ϵ)χ(ϵ1)α

(
α(2−τ)
1+χ(ϵ1)

+ d
)
.

Again we play the trick as in the case τ ∈ (1, 2) and can find some ϵ1 so small
that f(ϵ, ϵ1) ≥ ϵ for all ϵ ∈ (0, ϵ1]. Therefore we have Ex

[
|Γ(x) ∩ V −

2 (x, ϵ)|
]
≤

Cϕ(x)ϵ.

To summarize, in all three cases we have the following upper bound for the
expected size of ‘bad’ neighbors:

Ex

[
|Γ(x) ∩ V −

2 (x, ϵ)|
]
≤ Cϕ(x)ϵ log

(
ϕ(x)−1

)
.

Lemma 3.10 and Lemma 3.12 suggest that the objectives of vertices in the greedy
path grow doubly exponentially, that is, given a vertex x in the greedy path with
objective ϕ(x), the k-th vertex xk after x has objective

ϕ(xk) ≈ ϕ(x)a
k

,

for some constant a < 1. We will come to this in Part (c) and (d) in Proposition
3.13.

Now we describe the typical trajectory of greedy routing. Note that every hop of
T depends highly on the current vertex, leading to a dependence structure between
consecutive jumps. To overcome the dependence, we introduce so-called ‘layers’ in
Zd, and show that with high probability, the greedy path will traverse each layer at
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most once. Depending on the phases, we introduce different layers as follows:

The next proposition tells us that after traversing at most O(log logN) layers
as defined above, the greedy routing algorithm reaches some vertex with objective
at least ϕ0. In light of Proposition 3.8, we may assume that ϕ(x1) < ϕ0, where x1 is
the vertex found in Proposition 3.8 with Wx1 ≥ w0. Otherwise the algorithm skips
the main part stage and starts with a vertex of objective larger than ϕ0.

For the proposition about the main part stage we make two choices of w0 and
ϕ0:

• w0 and ϕ0 are positive constants satisfying (3.13)(3.14) and (3.16)(3.17) re-
spectively. Or

• w0 and ϕ0 are functions of N such that

lim
N→∞

w0(N) = ∞, lim
N→∞

ϕ0(N) = 0. (3.18)

Note that Lemma 3.10 and 3.12 are true if w0 and ϕ0 satisfy (3.18) respectively. As
we will see, Proposition 3.13 is valid for both choices of w0 and ϕ0. In this section we
use the proposition with the first choice of w0 and ϕ0 (see the proof of Proposition
3.14). The second choice is applied in Section 3.2.2 and Section 3.2.3.

Proposition 3.13 (Main stage). Let f0 be a function as in (3.4). Then there exist
constants κ and N0 such that the following statement holds for all N ≥ N0:

Let w0 and ϕ0 be either positive constants such that Lemma 3.10 and 3.12 hold
true, or positive functions such that conditions in (3.18) are satisfied. Furthermore,
let G≤ϕ0 be the subgraph of scale-free percolation on Zd induced by vertices of objective
at most ϕ0, and Pϕ0 be the greedy path on G≤ϕ0 starting in s. Assume there exists a
vertex x1 ∈ Pϕ0 ∩V (w0, ϕ0), then there exists a positive constant δ, as well as Cδ > 0

depending on δ such that with probability

1− CδM
−δ

the set Pϕ0 contains a subpath P ′ = (x1, x2, . . . , xℓ) such that

(a) P ′ ⊆ V (w0, ϕ0);

(b) P ′ ⊆ V1 or P ′ ⊆ V2 or there exists k ∈ {2, . . . , ℓ− 1} such that (x1, . . . , xk) ⊆ V1

and (xk+1, . . . , xℓ) ⊆ V2;
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(c) If {xi, xi+1, xi+2} be three subsequent vertices in P ′ ∩ V1 and xi ∈ A1,j for some
j, then Wxi+2

≥ W
χ(ζϵ1)
xi ;

(d) If {xi, xi+1, xi+2} be three subsequent vertices in P ′ ∩ V2 and xi ∈ A2,j for some
j, then ϕ(xi+2) ≥ ϕ(xi)

1/χ(ϵ1);

(e) The length ℓ of P ′ satisfies

ℓ ≤ 2f0(N) +
log logw0

(ϕ(x1)
−1)

logχ(ζϵ2)
+

log logϕ−1
0

(ϕ(x1)
−1)

logχ(ϵ2)
;

(f) If xℓ ∈ Ai,j for some pair (i, j), then

Exℓ

[∣∣Γ(xℓ) ∩ V +
i

(
xℓ, ϵ

(j)
i

)
∩ V>ϕ0

∣∣] ≥ κMκ. (3.19)

Proof. The proof of Proposition 3.13 is divided into three steps

(1) Construction of some event E that implies (a)− (e);

(2) Existence of a constant κ > 0 for (f);

(3) Estimation of P(E) from below.

We first define some event that satisfies (a)− (e) in the proposition. Denote by
Pi,j the greedy path in Bi,j. Let Ei,j be the event that satisfies

i) Pi,j ∩ Ai,j = ∅, or

ii) the first vertex x ∈ Pi,j ∩ Ai,j satisfies (3.19), or

iii) the first vertex x ∈ Pi,j ∩Ai,j has at least one good neighbor. x′ is called a good
neighbor of x if x′ ∈ Γ(x) and satisfies

x′ ∈ V (w0, ϕ0) \Bi,j with ϕ(x′) ≥ ϕ(x)

and
ϕ(x′) > ϕ(y) for all y ∈ Γ(x) ∩Bi,j.

Remark. The three cases in Ei,j correspond to three situations in the routing:

i) The greedy routing path does not go through the layer Ai,j;

ii) The greedy routing path goes through the layer Ai,j and jumps to some vertex
with objective larger than ϕ0 after this step;
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Weight

w0

zj−1

zj

zk−1

zk

zℓ−1

zℓ

A1,j

A1,k

A1,ℓ

xi

xi+1

xi+2

Figure 3.3: Three subsequent vertices in P ′∩V1. Note that they don’t lie necessarily
in consecutive layers and j < k < ℓ.

iii) The greedy routing path goes through Ai,j and it continues in the main stage.

First we show that the event E :=
⋂

i,j Ei,j implies (a) − (e). More precisely,
we will find a path P ′ = (xi) based on the events (Ei,j). By assumption in the
proposition, we have x1 ∈ Pϕ0 ∩ V (w0, ϕ0) and hence it lies in some layer Ai,j

because of (3.11). Since the event Ei,j holds true, the greedy routing algorithm T

finds x2 ∈ Ai′,j′ as a good neighbor of x1 with Ai,j before Ai′,j′ in the prescribed
order of (3.12). By iterating this procedure we build a path P ′ with at most one
vertex in each layer, until (3.19) is satisfied for some xℓ ∈ P ′.

Clearly, (a) and (b) are true for the path P ′ due to the construction of layers
(Ai,j) in (3.7), (3.8) and (3.10).

For (c), if {xi, xi+1, xi+2} are three subsequent vertices in P ′ ∩ V1 and xi ∈ A1,j

for some j, as in Figure 3.3, then we have

Wxi+2
≥ zj+1 ≥ z

χ(ζϵ1)
j ≥ W χ(ζϵ1)

xi
.

For (d) the argument is similar to (c). If {xi, xi+1, xi+2} are three subsequent
vertices in P ′ ∩ V2 and xi ∈ A2,j for some j, as illustrated in Figure 3.4, then we



79 Chapter 3. Navigation in scale-free percolation

Objective
ϕ0

ψj

ψj−1

ψk

ψk−1

ψℓ

ψℓ−1

A2,j

A2,k

A2,ℓ

xi

xi+1

xi+2

Figure 3.4: Three subsequent vertices in P ′∩V2. Note that they don’t lie necessarily
in consecutive layers and j > k > ℓ.

have

ϕ(xi+2) ≥ ψj−2 ≥ ψ
1/χ(ϵ1)
j−1 ≥ ϕ(xi)

1/χ(ϵ1).

For (e) let L1, L2 be the number of layers visited by P ′ in V1 and V2 respectively.

In the first phase, as we have seen in (3.6) and (3.7), P ′ visits possibly two kinds
of layers. Let L1,1 and L1,2 be the number of layers defined with ϵ1 and ϵ2 respectively
that are visited by P ′. By definition of w′

0 in (3.5), we obtain L1,1 ≤ f0(N). For L1,2

we observe that by the routing protocol all the vertices in P ′ has objetive at least
ϕ(x1). Therefore, if x ∈ P ′ has a weight larger than ϕ(x1)−1, then x ∈ V2 because

W χ(ϵ1)
x ϕ(x) ≥ ϕ(x1)

−χ(ϵ1)ϕ(x1) ≥ 1.

So it is sufficient to count how many layers are there with weight between w0

and ϕ(x1)−1. This simplifies to solve the following equation

w
(χ(ζϵ2)L1,2)
0 = ϕ(x1)

−1.
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Therefore we obtain

L1,2 =
log logw0

(ϕ(x1)
−1)

logχ(ζϵ2)
.

For the second phase we have a similar argument. Let L2,1 and L2,2 be the
number of layers visited by P ′ that are defined with ϵ1 and ϵ2 respectively in the
second phase. Similarly we have L2,1 = f0(N). For L2,2 it is sufficient to consider the
number of layers of objective between ϕ(x1) and ϕ0. That is to solve the equation

ϕ
(χ(ϵ2)L2,2)
0 = ϕ(x1).

Consequently we get

L2,2 =
log logϕ−1

0
(ϕ(x1)

−1)

logχ(ϵ2)
.

Therefore we obtain

ℓ = L1 + L2 = L1,1 + L1,2 + L2,1 + L2,2

≤ 2f0(N) +
log logw0

(ϕ(x1)
−1)

logχ(ζϵ2)
+

log logϕ−1
0

(ϕ(x1)
−1)

logχ(ϵ2)
,

and this finishes the first step.

Now we try to find a constant κ satisfying (3.19). More precisely, given c > 0

as a constant, we find a constant κ > 0 such that the following holds: there exists
M > 0, and for all N ≥M one has

cW
ϵ
(j)
i

x > 2κMκ, and cϕ(x)−cϵ
(j)
i > 2κMκ, (3.20)

for all x ∈ Ai,j, i ∈ 1, 2 and j ≥ 1.

In order to find such κ we need to consider three cases:

• i = 1, j <∞. Let j0 be the number such that if j ≤ j0, ϵ1 is used for A1,j, and
otherwise ϵ2 is used.

If x ∈ A1,j and hence x ∈ V ′
1 for some j ≤ j0, then Wx ≥ w0 and ϕ(x) ≤
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W
−χ(ϵ2)
x . We can choose κ so small thatcW ϵ1

x > 2κwκ
0 ≥ 2κMκ,

cϕ(x)−cϵ1 ≥ cW
cϵ1χ(ϵ2)
x ≥ cW cϵ1

x > 2κMκ.

If x ∈ A1,j for some j > j0, then Wx ≥ w′
0 and ϕ(x) ≤ W

−χ(ϵ2)
x . Since

limN→∞ f0(N) = ∞, there exists M1 > 0 such that for all N ≥M1 one has

χ(ζϵ1)
f0(N)

log log f0(N)
≥ c,

where c is the constant given in (3.20). In this case, we can choose κ with
κ < c2 ∧ 1

2
c. ThencW

ϵ2
x > cw′ϵ2

0 = cw
χ(ζϵ1)

f0(N)

log log f0(N)

0 > 2κwκ
0 ≥ 2κMκ,

cϕ(x)−cϵ2 ≥ cW cϵ2
x ≥ cwc2

0 > 2κMκ.

• i = 1, j = ∞. Since x ∈ A1,∞, one has x ∈ V1 ∩ V (w0, ϕ0) and therefore
Wx ≥ w0 and ϕ(x) ≤ ϕ0. For c > 0 we can choose such a small κ thatcW ϵ1

x > 2κwκ
0 ≥ 2κMκ

cϕ(x)−cϵ1 > 2κϕ−κ
0 ≥ 2κMκ.

• i = 2, j < ∞. Let j1 be the number such that for j ≤ j1, ϵ1 is used for the
layer A2,j, and else ϵ2 is used.

If x ∈ A2,j for some j ≤ j1, then ϕ(x) ≤ ϕ0 and W
−χ(ϵ1)
x ≤ ϕ(x). We can

choose κ so small thatcϕ(x)−cϵ1 > 2κϕ−κ
0 ≥ 2κMκ,

cW ϵ1
x ≥ cϕ(x)

− ϵ1
χ(ϵ1) > 2κϕ−κ

0 ≥ 2κMκ.

If x ∈ A2,j for some j > j1, then ϕ(x) ≤ ϕ′
0 and W

−χ(ϵ1)
x ≥ ϕ(x). Since

limN→∞ f0(N) = ∞, there exists M2 > 0 such that for N > M2 one has

χ(ϵ1)
f0(N)

log log f0(N)
> 1.
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In this case, we can choose κ so small thatcϕ(x)
−cϵ2 ≥ cϕ′−cϵ2

0 = cϕ
− cχ(ϵ1)

f0(N)

log log f0(N)

0 > 2κϕ−κ
0 ≥ 2κM−κ,

cW ϵ2
x ≥ cϕ(x)

− ϵ2
χ(ϵ1) ≥ cϕ

′− ϵ2
χ(ϵ1)

0 > 2κϕ−κ
0 ≥ 2κM−κ.

By choosing the minimum of all κ’s in all three phases above we obtain the
desired constant κ, and hence finish the second step.

As we have see, E is indeed the good event. Now we need to estimate the
probability of E from below. Since we have

P(E) ≥ 1−
∑
j≥1

P(Ec
1,j)− P(Ec

1,∞)−
∑
j≥1

P(Ec
2,j),

and

P(Ei,j) =P (Ei,j|Pi,j ∩ Ai,j = ∅)P (Pi,j ∩ Ai,j = ∅)

+ P (Ei,j|Pi,j ∩ Ai,j ̸= ∅)P (Pi,j ∩ Ai,j ̸= ∅)

=P (Pi,j ∩ Ai,j = ∅) + P (Ei,j|Pi,j ∩ Ai,j ̸= ∅)P (Pi,j ∩ Ai,j ̸= ∅)

≥P (Ei,j|Pi,j ∩ Ai,j ̸= ∅) ,

it is sufficient to give a lower bound for the conditional probability in the last line.

Depending on the phases we have the following estimates for P(E1,j):

• i = 1, j <∞. Since we condition on Pi,j ∩A1,j ̸= ∅, let y be the first vertex in
Pi,j ∩ A1,j. Assume (3.19) does not hold for y. By our choice of κ we have

Ey

[∣∣Γ(y) ∩ V +
1

(
y, ϵ

(j)
1

)
∩ V>ϕ0

∣∣] < κMκ <
1

2
cW ϵ

(j)
1

y .

By Lemma 3.10 we know

Ey

[∣∣Γ(y) ∩ V +
1

(
y, ϵ

(j)
1

) ∣∣] ≥ cW ϵ
(j)
1

y .

As a consequence we obtain

Ey

[∣∣Γ(y) ∩ V +
1

(
y, ϵ

(j)
1

)
∩ V≤ϕ0

∣∣] ≥ 1

2
cW ϵ

(j)
1

y .

Since y ∈ A1,j, we know Wy ≥ zj−1. By Chernoff’s inequality in Lemma
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Weight

zj−1

zj

zj+1

A1,j

A1,j+1

y

y′

z

V +
1 (y, ϵ

(j)
1 )

Figure 3.5: Jump in the first phase.

3.1, with probability at least 1 − exp

(
−1/2cz

ϵ
(j)
1
j−1

)
, y has a neighbor y′ ∈

V +
1 (y, ϵ

(j)
1 ) ∩ V<ϕ0 , as in Figure 3.5. If there exist several such neighbors, we

choose the one with highest objective to make sure that it is the target of the
greedy algorithm T . Now we show that y′ is a good neighbor of yl.

First, since y′ ∈ V +
1 (y, ϵ

(j)
1 ), we know Wy′ ≥ W

χ(ϵ
(j)
1 )

y ≥ z
χ(ϵ

(j)
1 )

j−1 ≥ zj. Therefore

y′ ∈ V (w0, ϕ0) \ B1,j. Besides, ϕ(y′) ≥ ϕ(y)W
χ(ϵ

(j)
1 )−1

y . In order to show y′

is a good neighbor, we still need to show that ϕ(y)W χ(ϵ
(j)
1 )−1

y > ϕ(z) for all
z ∈ Γ(y) ∩B1,j.

Note if ϕ(z) ≥ ϕ(y)W
χ(ϵ

(j)
1 )−1

y for some z ∈ B1,j, then z ∈ V −
1

(
y, ϵ

(j)
1

)
, because

Wz ≤ zj = z
χ(ζϵ

(j)
1 )

j−1 ≤ W
χ(ζϵ

(j)
1 )

y . Therefore it is sufficient to estimate the size of

V −
1

(
y, ϵ

(j)
1

)
. By Lemma 3.10 we have

Ey

[∣∣Γ(y) ∩ V −
1

(
y, ϵ

(j)
1

) ∣∣] ≤ CW−ρϵ
(j)
1

y logWy ≤ Cz
−ρϵ

(j)
1

j−1 log zj.

Note that the right hand side is independent of Wy. Therefore, we can replace
Ey by E on the left hand side. By Markov’s inequality, with probability at

least 1− Cz
−ρϵ

(j)
1

j−1 log zj, y has no neighbor in V −
1

(
y, ϵ

(j)
1

)
. In this case y′ is a
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good neighbor of y. As a consequence

P(E1,j) ≥ P(E1,j|P1,j ∩ A1,j ̸= ∅)

≥
(
1− exp

(
−1/2cz

ϵ
(j)
1
j−1

))(
1− Cz

−ρϵ
(j)
1

j−1 log zj

)
≥ 1− exp

(
−1/2cz

ϵ
(j)
1
j−1

)
− Cz

−ρϵ
(j)
1

j−1 log zj

≥ 1− C ′z
−ρϵ

(j)
1

j−1 log zj.

• i = 1, j = ∞. Since y ∈ A1,∞ satisfies ϕ(y)W χ(ϵ1)
y ≤ 1 ≤ ϕ(y)W

χ(ϵ2)
y , for

x ∈ V +
1 (y, ϵ1) one has ϕ(x) ≥ ϕ(y)W

χ(ϵ1)−1
y and Wx ≥ W

χ(ϵ1)
y . Then

ϕ(x) ≥ ϕ(y)W χ(ϵ1)−1
y ≥ W−χ(ϵ2)

y W χ(ϵ1)−1
y ≥ W

χ(ϵ1)−1−χ(ϵ2)
χ(ϵ1)

x ≥ W−χ(ϵ1)
x .

The last step above is true due to the choice of ϵ1 in (3.3) and the fact that
ζ > 1. Therefore x ∈ V2 and x /∈ B1,∞. This means once the algorithm T

visits the layer of transition A1,∞, it is very likely to jump to a vertex in V2

and consequently enter the second phase of greedy routing. Recall that Bi,j is
the union from A1,1 to Ai,j according to the order in Remark 3.9.

Now let y be the first vertex in P1,∞ ∩A1,∞, and as before assume (3.19) does
not hold for y. Then by the choice of κ we have

Ey

[∣∣Γ(y) ∩ V +
1 (y, ϵ1) ∩ V>ϕ0

∣∣] < κMκ <
1

2
cW ϵ1

y .

Lemma 3.10 implies

Ey

[
|Γ(y) ∩ V +

1 (y, ϵ1)|
]
≥ cW ϵ1

y .

Therefore

Ey

[
|Γ(y) ∩ V +

1 (y, ϵ1) ∩ V<ϕ0|
]
> 1/2cW ϵ1

y .

By Chernoff’s bound in Lemma 3.1, with at least probability 1−exp (−1/2cwϵ1
0 ),

y has at least one neighbor y′ in V +
1 (y, ϵ1)∩V<ϕ0 . Consequently y′ /∈ B1,∞ and

y′ ∈ V2.

We show now y′ is a good neighbor of y. That is, we need to show

1. ϕ(y′) ≥ ϕ(y);
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2. ϕ(y′) ≥ ϕ(x) for all x ∈ Γ(y) ∩B1,∞.

Since y′ ∈ V +
1 (y, ϵ1), one has ϕ(y′) ≥ ϕ(y)W

χ(ϵ1)−1
y ≥ ϕ(y). Therefore the first

condition is satisfied.

For the second condition, let z ∈ B1,∞ with ϕ(z) ≥ ϕ(y)W
χ(ϵ1)−1
y . Then

W χ(ϵ1)
z ≤ ϕ(z)−1 ≤ ϕ(y)−1W−χ(ϵ1)+1

y ≤ W χ(ϵ2)−χ(ϵ1)+1
y ≤ W χ(ϵ1)χ(ζϵ1)

y ,

where we used (3.3) in the last estimation. As a result we obtain z ∈ V −
1 (y, ϵ1).

By Lemma 3.10 we have for arbitrary δ′ > 0

Ey

[
|Γ(y) ∩ V −

1 (y, ϵ1)|
]
≤ CW−ρϵ1

y logWy ≤ Cδ′W
−ρϵ1+δ′

y ≤ Cδ′w
−ρϵ1+δ′

0 ,

for some positive constant Cδ′ := Cδ(C, δ
′).

Hence with probability at least 1−Cδ′w
−ρϵ1+δ′

0 , y has no neighbor in V −
1 (y, ϵ1).

In this case all x ∈ Γ(y) ∩B1,∞ satisfies

ϕ(x) < ϕ(yl)W
χ(ϵ1)−1
y ≤ ϕ(y′),

which means y′ is a good neighbor of y.

To summarize, we have

P(E1,∞) ≥ (1− exp (−1/2cwϵ1
0 ))

(
1− Cδ′w

−ρϵ1+δ′

0

)
≥ 1− exp (−1/2cwϵ1

0 )− Cδ′w
−ρϵ1+δ′

0

≥ 1− C ′
δ′w

−ρϵ1+δ′

0 .

• i = 2, j < ∞. Let y be the first vertex in P2,j ∩ A2,j. Assume (3.19) does not
hold for y, that is

Ey

[∣∣Γ(y) ∩ V +
2 (y, ϵ

(j)
2 ) ∩ V>ϕ0

∣∣] < κMκ <
c

2
ϕ(y)−cϵ

(j)
2 .

By Lemma 3.12 one knows

Ey

[∣∣Γ(y) ∩ V +
2 (y, ϵ

(j)
2 )
∣∣] ≥ cϕ(y)−cϵ

(j)
2 .
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Objective

ψj

ψj−1

ψj−2

A2,j

A2,j−1

y

y′

z

V +
2 (y, ϵ

(j)
2 )

Figure 3.6: Jump in the second phase.

It follows that

Ey

[∣∣Γ(y) ∩ V +
2 (y, ϵ

(j)
2 ) ∩ V<ϕ0

∣∣] > c

2
ϕ(y)−cϵ

(j)
2 .

By Chernoff’s bound in Lemma 3.1, together with the fact that ψj−1 ≥ ϕ(y) >

ψj, with probability at least 1− exp

(
−c/2ψ−cϵ

(j)
2

j−1

)
, there will be at least one

vertex in the set Γ(y)∩V +
2 (y, ϵ

(j)
2 )∩V<ϕ0 . Let y′ be the vertex in this set with

highest objective, as showed in Figure 3.6. Because y′ ∈ V +
2 (y, ϵ

(j)
2 ), we have

ϕ(y′) ≥ ϕ(y)1/χ(ϵ
(j)
2 ) > ψ

1/χ(ϵ
(j)
2 )

j = ψj−1.

Therefore y′ /∈ B2,j. Next we show y′ is a good neighbor of y.

To be a good neighbor of y, y′ must satisfy the following conditions:

1. ϕ(y′) ≥ ϕ(y);

2. ϕ(y′) ≥ ϕ(z) for all z ∈ Γ(y) ∩B2,j.

The first condition is clearly satisfied, because ϕ(y′) > ψj−1 ≥ ϕ(y). For the
second condition, we will show that all the vertices in B2,j have objective less
than ψj−1. Consider z ∈ B2,j with ϕ(z) ≥ ϕ(y)1/χ(ϵ

(j)
2 ) ≥ ψj−1, then z ∈ B1,∞.

That is, y ∈ V1 and consequently y ∈ V −
2 (y, ϵ

(j)
2 ). By Lemma 3.12 we know

Ey

[
|Γ(y) ∩ V −

2 (y, ϵ
(j)
2 )|
]
≤ Cϕ(y)ϵ

(j)
2 log

(
ϕ(y)−1

)
≤ Cψ

ϵ
(j)
2
j−1 logψ

−1
j .
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Therefore, by Markov inequality, with probability at least 1 − Cψ
ϵ
(j)
2
j−1 logψ

−1
j

such vertex z above does not exist. In this case, y′ is a good neighbor of y.
Then

P (E2,j) ≥
(
1− exp

(
−c/2ψ−cϵ

(j)
2

j−1

))(
1− Cψ

ϵ
(j)
2
j−1 logψ

−1
j

)
≥ 1− C ′ψ

ϵ
(j)
2
j−1 logψ

−1
j .

With all the preparations we can estimate the probability of E:

P(E) ≥ 1−
∞∑
j=1

P(Ec
1,j)− P(Ec

1,∞)−
∞∑
j=1

P(Ec
2,j)

≥ 1−
∞∑
j=1

C ′z
−ρϵ

(j)
1

j−1 log zj − C ′
δ′w

−ρϵ1+δ′

0 −
∞∑
j=1

C ′ψ
ϵ
(j)
2
j−1 logψ

−1
j . (3.21)

For the first sum in (3.21), we consider two cases, depending on the value of ϵ(j)1 .
Let j0 = min{j ∈ N : zj > w′

0}. That is, j0 is the smallest index such that zj0+1 is
defined with ϵ2 in (3.6). Then

∞∑
j=1

z
−ρϵ

(j)
1

j−1 log zj =

j0∑
j=1

z−ρϵ1
j−1 log zj +

∞∑
j=j0+1

z−ρϵ2
j−1 log zj. (3.22)

For the first part of (3.22) we have the following estimation:

j0∑
j=1

z−ρϵ1
j−1 log zj =

j0∑
j=1

(
w

χ(ζϵ1)j−1

0

)−ρϵ1
χ(ζϵ1)

j logw0

≤ logw0

(
γ(ζϵ1)w

−ρϵ1
0 +

j0−1∑
j=1

(
γ(ζϵ1)w

−ρϵ1χ(ζϵ1)
0

)j)
≤
(
γ(ζϵ1)w

−ρϵ1
0 + 2w

−ρϵ1χ(ζϵ1)
0

)
logw0

≤ 2γ(ζϵ1)w
−ρϵ1
0 logw0.
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For the second part of (3.22) we apply a similar argument:

∞∑
j=j0+1

z−ρϵ2
j−1 log zj ≤

∞∑
j=0

(
(w′

0)
χ(ζϵ2)j

)−ρϵ2
χ(ζϵ2)

2 logw′
0

≤ χ(ζϵ2)
2 logw′

0

(
(w′

0)
−ρϵ2 +

∞∑
j=1

(
(w′

0)
−ρϵ2χ(ζϵ2)

)j)
.

Note the base in the geometric series above satisfies

(w′
0)

−ρϵ2χ(ζϵ2) =

(
w

χ(ζϵ2)
χ(ζϵ1)

f0(N)

log log f0(N)

0

)−ρ

→ 0, as N → ∞.

Therefore for N large one has

∞∑
j=1

(
(w′

0)
−ρϵ2χ(ζϵ2)

)j
≤ 2 (w′

0)
−ρϵ2χ(ζϵ2) ≤ 2 (w′

0)
−ρϵ2 .

As a result, we obtain for N large,

∞∑
j=1

z
−ρϵ

(j)
1

j−1 log zj ≤ 2χ(ζϵ1)w
−ρϵ1
0 logw0 + 3χ(ζϵ2)

2(w′
0)

−ρϵ2 logw′
0

≤ Cδw
−δ
0 ≤ CδM

−δ,

where δ is a constant in (0, ρϵ1) and M = w0∧ϕ−1
0 . Note that the second step holds

because (w′
0)

ϵ2 ≫ w0.

For the second sum in (3.21) we use exactly the same method and obtain

∞∑
j=1

C ′ψ
ϵ
(j)
2
j−1 logψ

−1
j ≤ Cδϕ

δ
0 ≤ CδM

−δ.

This finishes the proof of Proposition 3.13.

Proposition 3.14 (End stage). Assume now T arrives at some vertex xℓ that sat-
isfies the condition (3.19). Then there exists a positive constant µ ∈ (0, 1] such
that the greedy algorithm T starting from xℓ ends in the target t within 2 steps with
probability at least µ.

Proof. If t ∈ Γ(xℓ), then we are done. Otherwise consider the set Γ(xℓ)∩V>ϕ0 . Since



89 Chapter 3. Navigation in scale-free percolation

the vertex xℓ satisfies (3.19), we know

E [|Γ(xℓ) ∩ V>ϕ0|] ≥ κMκ.

By the Chernoff bound in Lemma 3.1, Γ(xℓ) ∩ V>ϕ0 is non-empty with at least
probability ν > 0. In this case, let xℓ+1 be the vertex in Γ(xℓ) ∩ V>ϕ0 with highest
objective. Then xℓ+1 is linked to t with probability

P(xℓ+1 ∼ t) = E
[
1 ∧

Wxℓ+1
Wt

|xℓ+1 − t|α

]
= E [1 ∧ ϕ(xℓ+1)Wt] ≥ ϕ0.

If xℓ+1 is connected with t, since t is the global maximizer of the objective function,
T jumps from xℓ+1 to t. We choose µ := νϕ0 as the desired the constant. Note
in the proof we apply Proposition 3.13 with w0, ϕ0 as constants. This finishes the
proof.

Proof of Theorem 3.7. With Proposition 3.8, 3.13 and 3.14 we come to the conclu-
sion that with at least constant probability the greedy routing algorithm T starting
from s will find the target t successfully within L steps, and L satisfies

L ≤ 1 + 2f0(N) +
log logw0

(ϕ(x1)
−1)

logχ(ζϵ2)
+

log logϕ−1
0

(ϕ(x1)
−1)

logχ(ϵ2)
+ 2

≤ 1 + o(1)

| log(γ − 1)|

(
log logWs

(
ϕ(s)−1

)
+ log logWt

(
ϕ(s)−1

))
.

In this case, we choose w0 and ϕ0 as constants for Proposition 3.13.

3.2.2 Length of greedy routing paths

In Section 3.2.1 we see that the greedy algorithm starting from s finds the target
t within O(log log |s − t|) steps with at least constant positive probability. The
following result tells us that no matter whether the algorithm finds the target or
not, it terminates after at most O(log log |s− t|) steps.

Theorem 3.15 (Part (b) in Theorem 1.6). Consider scale-free percolation with
connection probability px,y = WxWy

|x−y|α ∧ 1, and parameters α > d, γ ∈ (1, 2). Let T
be the greedy routing algorithm with objective function ϕ(x) = Wx

|x−t|α as in (1.10).
Then, conditional on Ws and Wt, with high probability, T terminates within L2 steps
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as N → ∞, where L2 is a function of N given as follows:

L2 =
1 + o(1)

| log(γ − 1)|

(
log logWs

(
ϕ(s)−1

)
+ log logWt

(
ϕ(s)−1

))
.

In the previous discussions we have seen that the greedy routing algorithm T

will either find the target t or be trapped in some local optimum. In this section we
will show that with high probability in both cases the length of greedy path will be
at most doubly logarithmic in the Euclidean distance, as stated in Theorem 3.15.

Proposition 3.16 (Unlikely jumps). Let c > 1 be a constant and x ∈ Zd, and
w0, ϵ > 0. Then

(a) There exists some constant c1 > 0 such that with probability 1 − c1w
c1(1+ϵ−γ)
0

there exists no vertex y (except possibly t) such that Wy ≥ w0 and ϕ(y) ≥ w−ϵ
0 ;

If Wx ≤ w0, then for arbitrary δ > 0, there exists Cδ := Cδ(δ) such that

(b) With probability 1− Cδw
1+δ−c(α−d)/d
0 , x has no such neighbor y that Wy ≤ w0

and |x− y|d ≥ wc
0;

Proof. The main idea for the proof of the assertions in the proposition is to first
estimate the expected size of corresponding sets and then to obtain the bounds for
the probabilities by Markov’s inequality.

(a) Let A1 := {x ∈ Zd : Wx ≥ w0, ϕ(x) ≥ w−ϵ
0 }. We now estimate the expected size

of A1:

E[|A1|] =
∑
x∈Zd

P
(
Wx ≥ w0, ϕ(x) ≥ w−ϵ

0

)
=
∑
x∈Zd

P
(
Wx ≥ w0,Wx ≥ w−ϵ

0 |x− t|α
)

=
∑
x∈S

P (Wx ≥ w0) +
∑
x∈Sc

P
(
Wx ≥ w−ϵ

0 |x− t|α
)
,

where S := {x ∈ Zd : w1+ϵ
0 ≥ |x − t|α}. For the first sum it is sufficient to

estimate the size of S, and we know |S| ≤ cw
(1+ϵ)d

α
0 for some constant c := c(d).

Therefore ∑
x∈S

P (Wx ≥ w0) ≤ cw
(1+ϵ)d

α
0 w−τ+1

0 .
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For the second sum we apply Lemma 3.2, and obtain

∑
x∈Sc

P
(
Wx ≥ w−ϵ

0 |x− t|α
)
=

∑
x∈Zd:|x−t|≥w

1+ϵ
α

0

w
ϵ(τ−1)
0

|x− t|α(τ−1)

≤ Cw
ϵ(τ−1)
0

w
1+ϵ
α

(α(τ−1)−d)

0

= Cw
(1+ϵ)d

α
0 w−τ+1

0 .

Here we used the fact that α(τ − 1) > d because γ = α(τ−1)
d

> 1. Hence we have

E[|A1|] ≤ c′w
d
α
(1+ϵ−γ)

0 . By Markov’s inequality the result follows.

(b) Let A2 := {y ∈ Zd : x ∼ y,Wy ≤ w0, |x− y|d ≥ wc
0}. Then

E[|A2|] =
∑

y∈Zd:|x−y|d≥wc
0

P(y ∼ x,Wy ≤ w0)

=
∑

y∈Zd:|x−y|d≥wc
0

∫ w0

1

u−τ

(
Wxu

|x− y|α
∧ 1

)
du

≤
∑

y∈Zd:|x−y|d≥wc
0

w0

|x− y|α

∫ w0

1

u−τ+1du

≤ Cw0

w
c(α−d)/d
0

∫ w0

1

u−τ+1du

where we applied Lemma 3.2 in the last step.

• If τ ∈ (1, 2), then
∫ w0

1
u−τ+1du ≤ w2−τ

0

2−τ
, and therefore

E[|A2|] ≤ C1w
3−τ−c(α−d)/d
0 .

• If τ = 2, we have
∫ w0

1
u−τ+1du ≤ logw0. And

E[|A2|] ≤ Cw
3−τ−c(α−d)/d
0 logw0 ≤ Cδw

3−τ+δ−c(α−d)/d
0 ,

for any δ > 0.

• If τ ∈ (2, 3), we have
∫ w0

1
u−τ+1du ≤ 1

τ−2
. Then

E[|A2|] ≤ C1w
1−c(α−d)/d
0 .

To summarize, for δ > 0 there exists a constant Cδ := Cδ(δ) > 0 such that
E[|A2|] ≤ Cδw

1+δ−c(α−d)/d
0 .
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Definition 3.17 (w-grid). A w-grid is a partition of Zd into hypercubes with side
length w1/d. The hypercubes in the w-grid are called cells.

By definition each cell in a w-grid has volume w.

Analogous to the proof in Section 3.2.1, the greedy path can also be divided into
three parts.

1. Start stage: Starting from s, with high probability T aborts or finds some
vertex x1 with weight at least w0 in several steps;

2. Main stage: From x1 with high probability T arrives at some vertex xℓ with
given objective ϕ0 within doubly logarithmic number of steps;

3. End stage: From xℓ with high probability T terminates in a few steps.

For the main stage we just apply Proposition 3.13 with w0, ϕ0 satisfying (3.18).
The following proposition deals with the start stage and ensures that with high
probability greedy algorithm reaches some vertex with weight at least w0 or just
stops within several steps.

Proposition 3.18 (Start stage). Let w0 = w0(N) be a function of N such that
limN→∞w0(N) = ∞. Further we assume the starting vertex s satisfies Ws ≤ w0 and
ϕ(s) ≤ e−w0. Then, with high probability, the greedy routing algorithm terminates
within w

6d/α
0 steps, or after visiting w6d/α

0 different vertices, it reaches some vertex
with weight at least w0.

Proof. Denote by G the graph generated by scale-free percolation in Zd. Let G′ be
the subgraph of G induced by all the vertices with weights less than w0.

First we let the greedy routing run on G′. Consider the first hop from x0 := s.
By choosing c properly in Proposition 3.16 (b) we know with probability at least
1−w−1−6d/α

0 all neighbors of s have a distance at most wc
0 to s. In this case, the greedy

routing will visit the next vertex x1 in the path with |x1 − s| ≤ wc
0. By repeating

the step for w6d/α
0 times, together with the subadditivity of probability, we obtain

with probability at least 1 − w−1
0 a greedy routing path P ′ := {x0, x1, . . . , xw6d/α

0

}

that satisfies |xi − xi−1| ≤ wc
0. Therefore |s− xi| ≤ w

c+6d/α
0 for all i ∈ [w

6d/α
0 ].

Then we let the greedy routing run on G for w6d/α
0 steps, and get the real greedy

path P . The following scenarios may happen:
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• P ̸= P ′. In this case we are done because P ̸= P ′ means the greedy routing
on G has gone out of G′, which implies the algorithm has reached some vertex
in G with weight at least w0.

• P = P ′. Consider a w
3d/α
0 -grid on Zd. By definition each w

3d/α
0 -cell contains

w
3d/α
0 vertices. Then greedy routing either stops before it visits w6d/α

0 vertices,
or after exploring for w6d/α

0 steps, it has visited at least w3d/α
0 different cells. Let

C1, . . . , Cw
3d/α
0

be the first w3d/α
0 cells in the grid the greedy routing algorithm

goes through, and choose yi ∈ P ∩ Ci. Note here yi is not necessarily xi

because the path may have more vertices in a single cell. Further let Mi :=

{x ∈ Ci|Wx ≥ w3
0, x ∼ yi} and M :=

⋃
Mi. Then

E [|M |] =
∑
i

E [|Mi|] = w
3d/α
0 E [|Mi|]

≥w3d/α
0 w

3d/α
0 w

−3(τ−1)
0

w3
0(

w
3/α
0

)α = w
3d
α
(2−γ)

0 .

Here we use the fact that if x and yi are in the same cell, we have |x−yi| ≤ w
3/α
0 .

Since γ ∈ (1, 2) we know E[|M |] → ∞ as N → ∞. By the Chernoff bound
from Lemma 3.1, with high probability there exists a smallest index i ∈ [w

3d/α
0 ]

such that there is a vertex y in the cell Ci with Wy ≥ w0 and y ∼ yi.

It remains to show that the vertex y we find above has a large enough objective.
Let y′ be a neighbor of yi with Wy′ < w0. By Proposition 3.16 (b) we know with
high probability |y′ − yi| ≤ wc

0 and hence |y′ − t| ≥ |yi − t| − wc
0. Now we consider

the locations of the vertices. Since ϕ(s) ≤ e−w0 one has |s− t|α ≥ ew0 . On the other
hand, |yi − s| ≤ w

c+6d/α
0 ≪ |s− t| for N large enough. Then

|yi − t| ≥ 1

2
|s− t| ≥ 1

2
ew0 ≫ wk

0

for any k > 0 and N large. Consequently for N large, one has |yi − t| + w
3/α
0 ≤

2 (|yi − t| − wc
0). Then

ϕ(y) =
Wy

|y − t|α
≥ w3

0(
|yi − t|+ w

3/α
0

)α ≥ w3
0

2α (|yi − t| − wc
0)

α

>
w0

(|yi − t| − wc
0)

α > ϕ(y′).

Therefore the greedy routing will not visit the neighbors of yi with weights less than
w0 since yi has at least one neighbor with higher objective than all these vertices.
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Proof of Theorem 3.15. Let f0 be a function as in (3.4), and w0, ϕ0 be as follows:

w0(N) := max{log f0(N),Ws}, and ϕ0(N) := min{W−1
t , f−1

0 (N)}.

Apparently w0 and ϕ0 satisfy (3.18). Assume now ϕ(s) ≤ ϕ0, otherwise we skip
both start and main stage. Furthermore, for N large, we have

ϕ(s) =
Ws

Nα
≤ w0

Nα
≪ e−w0 .

Considering the value of w0 we have two possible cases:

i) If w0 = Ws, then we already start with some vertex with weight at least w0,
and hence the start stage will be skipped.

ii) If w0 = log f0(N), then by Proposition 3.18, with high probability, T reaches
after at most w6d/α

0 steps some vertex x1 with Wx1 ≥ w0.

By Proposition 3.13 we know with high probability starting from x1 within ℓ+1

steps T visits a vertex xℓ+1 with objective at least ϕ0, where ℓ is bounded as follows:

ℓ ≤ 2f0(N) +
log logw0

(ϕ(s)−1)

logχ(ζϵ2)
+

log logϕ−1
0

(ϕ(s)−1)

logχ(ϵ2)
.

Assume now T reaches xℓ+1 with ϕ(xℓ+1) ≥ ϕ0. For ϕ0 we have two cases:

i) If ϕ0 = W−1
t . Then we know

pxℓ+1,t = E
[
Wxℓ+1

Wt

|xℓ+1 − t|α
∧ 1

]
= E [(ϕ(xℓ+1)Wt) ∧ 1] = 1.

In this case, T jumps to t from xℓ+1 with probability 1.

ii) If ϕ0 = f−1
0 . Let Nϕ0 be the number of vertices in Zd with objective at least ϕ0.

Then

E(Nϕ0) =
∑

x∈Zd,x ̸=t

P(ϕ(x) ≥ ϕ0) =
∑

x∈Zd,x ̸=t

P(Wx ≥ |x− t|αϕ0)

=
∑

x∈Zd,x ̸=t

ϕ1−τ
0

|x− t|α(τ−1)
= Cϕ−τ+1

0 ,

where C :=
∑

x∈Zd,x ̸=t
1

|x−t|α(τ−1) < ∞ because γ = α(τ−1)
d

> 1. By Markov’s
inequality, with probability at most Cϕ3−τ

0 we have Nϕ0 ≥ ϕ−2
0 . Since τ ∈
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(1, 3), one has limN→∞Cϕ3−τ
0 = 0. Therefore with high probability we have

Nϕ0 ≤ ϕ−2
0 . Conditioned on the event Nϕ0 ≤ ϕ−2

0 , from xℓ+1 greedy routing
will continue with at most ϕ−2

0 steps because the routing protocol only admits
vertices with higher objective.

To summerize, with high probability, the length of greedy path L satisfies

L ≤ w
6d/α
0 + ℓ+ ϕ−2

0

=
log logw0

(ϕ(s)−1)

logχ(ζϵ2)
+

log logϕ−1
0

(ϕ(s)−1)

logχ(ϵ2)
+ f(N)

=
log logw0

(ϕ(s)−1) + log logϕ−1
0

(ϕ(s)−1)

| log(γ − 1)|+ o(1)
+ f(N)

≤ 1 + o(1)

| log(γ − 1)|
(
log logWs

(
ϕ(s)−1

)
+ log logWt

(
ϕ(s)−1

))
+ f(N),

as N → ∞, where

f(N) := (log f0(N))
6d/α + f0(N)2 + 2f0(N) = o(log logN)

by our choice of f0 in (3.4).

3.2.3 A patching method

In this section we propose a patching solution such that even if the greedy algorithm
reaches some local optimum, it can still continue. The patching protocol goes as
follows:

Let V (i) be the set of vertices the greedy algorithm T has explored after i steps,
and V (i)

N be the set of unexplored neighbors of all vertices in V (i). That is,

V
(i)
N :=

y ∈
⋃

x∈V (i)

Γ(x)

∣∣∣∣y is unexplored

 .

When T arrives at some local optimum at step i, then it will go to the vertex in V (i)
N

with highest objective in the next step and resume the greedy routing from there.
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In other words,

xi+1 = arg max
x∈V (i)

N

ϕ(x),

where xi+1 is the i+ 1-th vertex in the routing path.

For the patched greedy routing algorithm we have the following result:

Theorem 3.19 (Part (c) in Theorem 1.6). Consider scale-free percolation with con-
nection probability (1.9), and parameters α > d, γ ∈ (1, 2). Let T be the greedy
routing algorithm with objective function as in (1.10). Furthermore, we assume T
admits the patching protocol. Then, conditional on Ws and Wt, with high probability,
T finds the target t within L3 steps as N → ∞, where L3 is a function of N given
as follows:

L3 =
1 + o(1)

| log(γ − 1)|

(
log logWs

(
ϕ(s)−1

)
+ log logWt

(
ϕ(s)−1

))
.

Theorem 3.19 tells that with high probability the greedy routing algorithm
with patching protocol finds the target successfully within doubly logarithmic steps.
Analogous to Section 3.2.1 and Section 3.2.2, the routing process is divided into
three stages. By Proposition 3.13 with high probability the abortion of T does not
occur in the main part, therefore we don’t state here the proposition for this phase
repeatedly.

Proposition 3.20 (Start of patching). Let w0 = w0(N) be a function fulfilling

lim
N→∞

w0(N) = ∞, and lim sup
N→∞

w0(N)

log log logN
≤ C

for some positive constant C. Assume ϕ(s) ≤ e−w0. Then starting from s, the
patched greedy algorithm T finds either the target t or some vertex with weight at
least w0 within o(log logN) steps.

Proof. The proof is trivial, if Ws ≥ w0. Otherwise we let T run on the graph from
s. Two scenarios may happen:

1. T stops before it visits w6d/α
0 different vertices. In this case, with the patching

protocol the only reason is that T already finds the target t and therefore finishes
the routing ahead. Assume now T has visited k different vertices. By the patching
protocol it takes at most k jumps to reach the next unexplored vertex. Therefore,



97 Chapter 3. Navigation in scale-free percolation

T needs at most
∑n

k=1 k = n(n+ 1)/2 ≤ n2 steps to visit n different vertices. In
this scenario, the length L of a greedy path is at most w12d/α

0 = o (log logN) as
N → ∞;

2. T visits w6d/α
0 different vertices. In this case we know from Proposition 3.18 with

high probability T finds some vertex u with weight Wu ≥ w0 within
(
w

6d/α
0

)2
=

o(log logN) steps.

This finishes the proof.

Proposition 3.21 (End of patching). Let w0 = w0(N) be a positive function with
limN→∞w0(N) = ∞. Further let k be a positive constant fulfilling

k >
τ − 1

d
. (3.23)

Suppose the target t has weight Wt ≤ w0. Then with high probability, there exists an
open path P of length at most wk

0 from t to some vertex v with Wv ≥ w0 such that
for each y ∈ P it holds that ϕ(y) ≥ w−kα

0 .

Proof. Due to the existence of nearest edges, we can prove this proposition in a easy
way. Let B be the ball around t with volume wkd

0 . Then every vertex in B is joined
with t. We consider the probability of the event E that there exists a vertex v in B
with weight at least w0.

P(Ec) = P

(⋂
x∈B

{Wx < w0}

)
=
(
1− w

−(τ−1)
0

)wkd
0

=

[(
1− 1

wτ−1
0

)wτ−1
0

]wkd−(τ−1)
0

.

Therefore if kd > τ − 1 we get P(E) → 1 as N → ∞. Let v be the vertex in B with
Wv ≥ w0, then |v − t| ≤ wk

0 and hence

ϕ(v) =
Wv

|v − t|α
≥ w0

wkα
0

= w1−kα
0 ≥ w−kα

0 .

Besides, let P be an open shortest path joining t and v using only nearest edges,
then the length of P is at most wk

0 . For y ∈ P with y ̸= t and y ̸= v it holds that
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|y − t| ≤ |v − t| and

ϕ(y) =
Wy

|y − t|α
≥ 1

wkα
0

= w−kα
0 .

Proof of Theorem 3.19. Let w0 = w0(N) be a function as in Proposition 3.20 and
ϕ0 = w

−1/2
0 . If Ws ≥ w0, the greedy algorithm T already finds some vertex with

weight at least w0. Otherwise

ϕ(s) =
Ws

|s− t|α
≤ w0

Nα
≤ e−w0 , for N large.

By Proposition 3.20, with high probability T finds the target t or some vertex u

with weight at least w0 within o(log logN) steps. In the former case we are done.
So it is sufficient to consider the second case.

Assume now the patched algorithm T visits u with Wu ≥ w0. By Proposition
3.13, with high probability T finds some vertex u1 with ϕ(u1) ≥ ϕ0 within ℓ + 1

steps, and ℓ satisfies

ℓ = 2f0(N) +
log logw0

(ϕ(x1)
−1)

logχ(ζϵ2)
+

log logϕ−1
0

(ϕ(x1)
−1)

logχ(ϵ2)

≤ 2f0(N) +
log logw0

(ϕ(s)−1)

logχ(ζϵ2)
+

log logϕ−1
0

(ϕ(s)−1)

logχ(ϵ2)
.

Denote by G≥ϕ the subgraph of scale-free percolation on Zd induced by vertices
with objective at least ϕ. We first consider the expected size of G≥ϕ:

E [|G≥ϕ|] =
∑

x∈Zd:x ̸=t

P(ϕ(x) ≥ ϕ) + 1 =
∑

x∈Zd:x ̸=t

P(Wx ≥ ϕ|x− t|α) + 1

=
∑

x∈Zd:x ̸=t

ϕ−τ+1|x− t|−α(τ−1) + 1 = Cϕ−τ+1.

for some positive constant C > 0. By the Chernoff bound in Lemma 3.1, with high
probability, |G≥ϕ| ≤ 2Cϕ−(τ−1) if ϕ := ϕ(N) → 0 as N → ∞. Now we take k = 2

α
.

Note that this choice of k satisfies (3.23) since it holds γ := α(τ−1)
d

< 2 in the doubly
logarithmic regime. We consider G≥w−2

0
. Since ϕ(u1) ≥ ϕ0 = w

−1/2
0 ≥ w−2

0 , we have
u1 ∈ G≥w−2

0
. Let C be the cluster of G≥w−2

0
in which u1 lies. We continue with the

patched greedy algorithm from u1. If t ∈ C, we estimate the number of steps in
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order to find t. Assume now T has explored k vertices in C. To visit an unexplored
vertex it takes at most k steps by the patching protocol. As a result, T needs at
most

∑|C|
k=1 k ≤ |C|2 ≤ |G≥w−2

0
|2 = o(log logN) steps to find t. So it is sufficient to

show that with high probability t is also in the cluster C.

By Proposition 3.21 we know with high probability there exists an open path
that joins t and v for some v ∈ Zd with Wv ≥ w0. Denote r := |v− t|. We have two
cases depending on the distance between u1 and t:

i) |u1 − t| ≥ r. In this case u1 is still far away from the target. We consider the
probability that u1 is connected to v:

P(u1 ∼ v) = E
[
Wu1Wv

|u1 − v|α
∧ 1

]
≥ E

[
Wu1Wv

(|u1 − t|+ r)α
∧ 1

]
≥ E

[
Wu1Wv

2α|u1 − t|α
∧ 1

]
≥ ϕ0w0

2α
∧ 1 =

w
1/2
0

2α
∧ 1 = 1.

The last step holds for N large, since limN→∞w0(N) = ∞.

ii) |u1 − t| ≤ r. From the proof of Proposition 3.21 we know |u1 − t| ≤ r ≤ w
2/α
0 .

Therefore u1 ∈ B with B := {x ∈ Zd : |x − t| ≤ w
2/α
0 }. It is clear that all

vertices in B are joined with t and have objective at least w−2
0 . This means

B ⊆ C, and in particular t ∈ C.

To summarize, with high probability, the patched greedy algorithm finds the target
t within L steps, where L is subject to the following bound:

L ≤ w
12α/d
0 + 2f0(N) +

log logw0
(ϕ(s)−1)

logχ(ζϵ2)
+

log logϕ−1
0

(ϕ(s)−1)

logχ(ϵ2)
+ 2Cw

2(τ−1)
0

≤ 1 + o(1)

| log(γ − 1)|
(
log logWs

(
ϕ(s)−1

)
+ log logWt

(
ϕ(s)−1

))
.
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