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Abstract

This thesis compiles four main results concerning adjoint semisimple linear
algebraic groups G of exceptional type F7; over an abstract field & with char(k) = 0.

The first one is the decomposition of most of the projective, homogeneous Fr-
varieties X, which are twisted forms of Gy/Pg for Gy denoting the split adjoint
E7, into Chow motives with Fy coefficients. The motivic decompositions depend
on several invariants of the given group G, such as the Tits index, the motivic J-
invariant and the Tits algebras of G. We also use the coaction map on the Chow
ring of X, which was recently defined by Petrov and Semenov, for this, giving more
insight into its behavior on non rational algebraic cycles.

The second main result is the provision of a table containing the possible
combinations of the mentioned invariants. We also mostly settle the question how
these parameters change under extension to function fields k(X)/k, for X being a
twisted form of G/Pg or the Severi-Brauer variety of the Tits algebra of G. This
extends the well known index reduction formulas proven by Merkurjev, Panin and
Wadsworth.

As a third main result we examine groups of type E;, which are obtained from
a construction by Tits and use an Albert algebra and a Quaternion algebra as
input. We then relate the invariants of the input to the invariants of the output
and calculate some of the motivic decompositions of the projective, homogeneous
G-varieties of the output.

The last main result is the unexpected discovery of a Galois cohomological degree
five invariant for any semisimple linear algebraic group of exceptional type E7, which
splits over the function field of the Severi-Brauer variety of its Tits algebra. It is
trivial if and only if the twisted form of the respective variety Go/P; of maximal
parabolic subgroups of type 1 has a zero cycle of odd degree. Such anisotropic
cases are obtained by the construction of Tits, for example. The construction of the
invariant involves some of the afore mentioned results, along the same techniques
used to prove them.



Zusammenfassung

Diese Dissertation setzt sich aus vier Hauptergebnissen iiber adjungierte
halbeinfache algebraische Gruppen G vom Ausnahmetyp E7 iber einem abstrakten
Koérper k mit char (k) = 0 zusammen.

Dabei stellt das erste Ergebnis die Zerlegung der meisten projektiven, homogenen
E;-Varietiaten in Chow Motive mit Fo-Koeffizienten dar. Die betrachteten Varietaten
sind getwistete Formen von Go/Pg, wobei G die zerfallene adjungierte Gruppe von
Typ E7 sei. Thre motivischen Zerlegungen hangen von verschiedenen Invarianten der
entsprechenden Gruppe, wie dem Tits Index, der motivischen J-Invariante und den
Tits Algebren von G ab. Wir verwenden dafiir auch die Kowirkung auf dem Chow
ring von X, welche kiirzlich von Petrov und Semenov eingefiihrt wurde. Einige der
erzielten Ergebnisse helfen ihr Verhalten auf nicht rationalen algebraischen Zykeln
besser zu verstehen.

Das zweite Hauptresultat ist eine Ubersicht iiber die moglichen Kombinationen
der drei genannten Invarianten. Wir beantworten auch die Frage, wie sich
diese Invarianten iiber Funktionenkorpern k(X) andern fast vollstdndig. Dabei
ist X entweder eine getwistete Form von Gy/Pg oder aber die Severi-Brauer
Varietédt einer Tits Algebra von (. Unser Ergebnis erweitert die wohlbekannten
Indexreduktionsformeln von Merkurjev, Panin und Wadsworth.

Fiir unser drittes Hauptresultat untersuchen wir Gruppen vom Typ E;, welche
aus einer Konstruktion von Tits stammen und die als Input eine Albert Algebra und
eine Quaternion Algebra verwendet. Wir stellen einen Zusammenhang zwischen den
Invarianten des Inputs und des Outputs her und berechnen einige der motivischen
Zerlegungen der projektiven, homogenen G-Varietaten des Outputs.

Das letzte Hauptresultat ist die Entdeckung einer Galois-kohomologischen Grad
fiinf Invariante, fiir halbeinfache lineare algebraische Gruppen vom Typ E7, welche
iiber dem Funktionenkorper der Severi-Brauer Varietét ihrer Tits Algebra zerfallen.
Diese Invariante ist genau dann nicht trivial, wenn die getwistete Form der Varietat
Go/ P, der maximalen parabolischen Untergruppen vom Typ 1 kein Nullzykel vom
ungeraden Grad hat. Solche anisotropen Gruppen kénnen zum Beispiel aus der
Konstruktion von Tits entstehen. Die Konstruktion der neuen Invariante benutzt
einige der zuvor erwahnten Resultate und auch deren Beweistechniken.



Main results

Theorem. Let G be an anisotropic, adjoint algebraic group of type E7 over k with
char(k) = 0, which splits over the generic point of the Severi-Brauer variety of its
Tits algebra. Then there is a functorial invariant hs € H®(k, us), such that for any
field extension L/k one has res(hs)ry, = 0 € H°(L, o) if and only if X1 has a zero
cycle of odd degree over L.

Theorem. Let G be an adjoint algebraic group of type FEr, with motivic Jo-
invariant Jo(G). Let Ry denote the upper motive of the Borel variety of G. When
Jy = (0,1,1,1) holds, the Chow motives of the G-varieties X1, X7 decompose as

M(X1) =U(X1) © Bicr Ry (i),
M(X7) = U(X7) @ U(X7)(1),
with P(I,t) =t*(t" —1)/(t — 1).
When Jy = (1,1,1,1) holds, M(X;) and M(X7) are indecomposable.

Theorem. Let G be an anisotropic, adjoint algebraic group of type E; with a non
split Tits algebra A. Then Jo(G) = (1,1,0,0) and ind(A) = 2 hold over k if and
only if G has semisimple anisotropic kernel Dy over k(SB(A)).

Theorem. Given an adjoint algebraic group G of type E7 over k, with Tits algebra
A of index 2, motivic Jy-invariant Jo(G) and semisimple anisotropic kernel Gy, the
following holds for p = [Gan, J2(G), ind(A)] over the generic point of the G-variety

p resy(x,)/k(P)
[E77<171717*)72] [D67(171717 )72]
[E,,(1,1,0,0), 2] Dy x Ay, (1,1,0,0), 2]
[Ex,(1,0,0,0),2] [47.(1,0,0,0),2]

Theorem. Let G be the output of the Fyx Ay — E; construction, with input (7, Q).
Then depending on the number of common slots of f3(J),Q the table below holds.

‘ Q ‘ f3(J) ‘ f5(T) ‘ Slots ‘ If G is isotropic ‘ If G is isotropic ‘
0 | ()] 0 0 - [Dy, (0,1,0,0), 1]
0 | f3(J) | f5(T) 0 - [D4,(0,1,0,0), 1]
Q (j) 0 0 — [D5><A17<17170 0)7 ]
Q (‘-7) 0 1 — [D4 XAh(lalaO 0)7 ]
Q (j) 0 2 — [A%?(l 0 0 O)a ]
Q (\7) f5<u7) 0 [E7>(17170’0)72] [DB XAla(lvlaO 0)7 ]
Q (\7) fS(j) 1 [E77(17170’0)72] [D4><A1,(1,1,0 0)7 ]
Q (j) fS(j) 2 [E77(17070a O>72] [A?’(l’()?OvO)v ]
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Chapter 1

Introduction

The main topic of this thesis are linear algebraic groups G of exceptional type E-,
over a field of characteristic 0 and the Chow motives of the projective, homogeneous
G-varieties. These are varieties which become isomorphic to varieties of type G/ Peo
over k, with Pg being a parabolic subgroup of G. We will calculate many of the
motivic decompositions of the twisted forms of these varieties.

Although the concept of motives as an universal cohomology theory was invented
by Grothendieck, the very first publication on motives is due to Manin in [Ma68§].
The problem of calculating the motive of the Severi-Brauer variety of a central simple
algebra over a field was approached by Nikita Karpenko in his work [Kar95]. Such
varieties arise as certain projective, homogeneous G-varieties of algebraic groups
G of type A,. In particular, Karpenko found that the motive of an anisotropic
Severi-Brauer variety of a division algebra is indecomposable.

Shortly after Vishik (in [Vis98]) and also Rost (in [Ro98]) calculated motives
of some quadrics. These varieties are isomorphic to some projective, homogeneous
G-varieties of some algebraic groups G of type B,, and D,,. The fact that the motivic
summands in the motivic decompositions in general do not arise as the whole motive
of a variety, but just as a piece of the motive of some variety, plays an important role
Voevodsky’s proof of the Milnor conjecture (see [Voe96]) and also the more general
Bloch—Kato conjecture.

While generally the motive of a quadric can consist of several non isomorphic
motivic summands, the motive of an anisotropic Pfister quadric turned out to
contain only copies of one motivic summand up to isomorphism, just like Severi-
Brauer varieties. Projective, homogeneous G-varieties with this property arise in the
framework of generically split varieties and were later systematically considered by
Petrov, Semenov, and Zainoulline in [PSZ], [GSV] and [GSV2]. These are basically
all G-varieties which motivically resemble the Borel variety of a given GG. One
consequence of this work is that the motive of the Borel variety of any algebraic
group is totally understood. Besides, Yagita has calculated the motivic cohomology
of the Borel variety of a simply connected algebraic group in some cases in [Yag].

As for motives of arbitrary projective, homogeneous G-varieties, Bonnet treated
the case of G being of Killing-Cartan type Go in [Bo03]. These are also generically
split varieties, even though this term was not yet invented back then. His result
is the first on motives of algebraic groups of exceptional type. Also it turned out
that the motivic decompositions of the Gy-varieties encode information on the only
Galois cohomological invariant f3 of the torsors of these exceptional groups, the Rost
mvariant.

Most of the Galois cohomological machinery was developed by Serre in [Serre],
who conjectured that the Rost invariant exists for any simple simply connected
algebraic group. A general construction of the Rost invariant can be found in [GMS]
by Garibaldi, Merkurjev and Serre.



Recently Merkurjev has determined the structure of the group of normalized
cohomological invariants of degree three for most types of adjoint algebraic groups
in [Mer16]. His work also extends some of the C,, cases which have been established
by Garibaldi, Parimala, Tignol in [GPT] before.

In [NSZ] and [McD09] the motivic decompositions for F; (mod 3 and mod 2
respectively) were calculated by Nikolenko, Semenov, Zainoulline and MacDonald
in the second case. Again the already known Galois cohomological Fj-invariants
f3, f5 and g3, turned out to be reflected in the calculated motivic decompositions. In
fact, given the values of these invariants, one can exactly determine the structure of
the motivic summands occurring in the motivic decomposition of every projective,
homogeneous Fj-variety. This included the Borel variety as well, whose motive
depends only on f3; and g3 (i.e. the mod 2 or mod 3 case).

Meanwhile there has been some progress made on the motives of generalized
Severi-Brauer varieties by Zhykhovich in [Zhy] and Junkins, Krashen, Lemire in
[JKL].

Then in [Shells] Garibaldi, Petrov, and Semenov calculated the motivic
decompositions for adjoint groups of type Eg mod 3. For this they used a refined
concept of shells, a technique originally developed by Vishik in [Vis04] for quadrics.
This Eg case is different from the other exceptional ones so far, since with the
introduction of the motivic J-invariant for arbitrary algebraic groups by Petrov,
Semenov, Zainoulline in [PSZ] (see [Vis05] for the original construction for quadrics)
it came apparent that for anisotropic groups G of type Eg mod 3 there is not just
one specific motivic decomposition of the projective, homogeneous G-varieties, but
several (see [Shells], Table 8.A4).

The decomposition depends on the respective torsor one twists a split algebraic
group Gy with to obtain the studied G and the respective G-varieties. The J-
invariant allows to distinguish between these cases. It translates rationality of
algebraic cycles in the Chow ring of the Borel variety of this G into a numerical
information. It was also used in the classification of generically split varieties in
[GSV] and [GSV2] before the work [Shells].

As the J-invariant can sometimes differentiate several anisotropic algebraic
groups, it can be thought of to be finer than the famous Tits index, originally
invented by Tits in [Tits66]. The Tits index of an algebraic group is also utilized in
this work as an input for the Chernousov-Gille-Merkurjev-Brosnan algorithm (see
[Shells, Chapter 6] for its functionality). This method was already used in [Shells]
for solving the Eg case. It is a combination of the results made by Chernousov,
Stefan Gille and Merkurjev in [CGM]| and Brosnan in [Bro05]. We benefit from its
Maple implementation, which is due to Nikolenko, Petrov, and Semenov (see e.g.
[NS06]), when performing calculations in the Chow ring of some G/ Peg.

Since algebraic groups of type E7; have many more possible Tits indexes and
values for J(G) in comparison to Eg, our undertaking has a much higher level of
complexity. Our first main task is to determine all possible combinations of these
invariants for adjoint algebraic groups of type F,. This takes eight chapters, as it
involves many techniques like shells, general Chow theory, index reduction, Galois
cohomological invariants and partly constructions of certain algebraic groups.

In the second step we then calculate motivic decompositions for these cases.



Problematically it is a highly non trivial task to predict the behavior of a motivic
summand and even the Tits index of a given algebraic group under a field extension
in general. This is why we are considering another invariant called the Tits algebras
introduced by Tits in [Tits71].

Once one knows how all these invariants change under certain field extensions,
we can apply some going up techniques to lift specific algebraic cycles to a base field.
Additionally involving combinatorial arguments enables us to prove or sometimes
disprove that some motivic decomposition holds.

The possible index of the Tits algebras depends on the Tits index (see [DG,
Table 8.]) of an algebraic group. Therefore it has been of general interest to know
how the index of the Tits algebra changes under certain field extensions long before.
These questions are related to the index reduction formulas treated in a series of
papers by Merkurjev, Panin and Wadsworth in [MPW]|, [MPW2].

We will call the triples of our considered invariants phases (Tits index, J-
invariant, Tits algebra).

Our many results on the possible transitions between phases after field extension
generalize the index reduction formulas in a broad sense. We also consider several
constructions of groups of type E7; and decode how the input parameters of the
famous F; x A; Tits construction affect the phase of the outcome. This construction
was already completely understood by Garibaldi in his work [Gar01] for a real closed
base field. We will allow an arbitrary base field of characteristic zero.

The topics of phases and motives mix in a complementary way, meaning
that in order to establish some motivic decompositions, we use certain phases
and transitions, while other transitions and phases arise from considering motivic
decompositions.

In contrast to motives mod 3 of the FEjg-varieties, which gave no further
insight into Galois cohomological invariants so far, we will find a phase with
associated motivic decompositions, from which we derive the existence of a Galois
cohomological degree five invariant for algebraic groups of type E7, which split over
the generic point of the Severi-Brauer variety of their Tits algebra, as final result.
Such groups exist over R for example. A similar result for algebraic groups of type
Es with trivial Rost invariant was obtained by Semenov in [S16]. However, obtaining
the motivic decomposition needed for applying this construction is much harder in
our F7 case.

1.1 Outline of the thesis

The twelve chapters of this work can be divided into a recital part, spanning
Chapters 1. through 7. and an original part mostly starting in Chapter 8, except
for some small lemmas and examples provided in the chapters before.

The recital part starts with the obligatory basics in notation in Chapter 1. The
Chapter 2. covers basics on split linear algebraic groups, such as root systems, the
Tits index, Borel varieties and some classification results. The case of arbitrary
linear algebraic groups over general fields (i.e. twisted forms of split groups) is
considered in the Chapter 3. It introduces basics on central simple algebras, Galois



cohomology and cohomological invariants of algebraic groups as well. One being the
famous Tits algebras.

As exceptional algebraic groups of type F; mod 2 can be thought of a general case
of some algebraic groups of type D,,, we treat quadratic forms and central simple
algebras with orthogonal involution in Chapter 4. Considering quadrics provides
many known examples of motivic decompositions of varieties into Chow motives,
which are introduced in Chapter 5. This chapter also serves as an overview of
several of the aspects of our motivic techniques used (uniqueness of decompositions,
lifting idempotents, Tate and Rost motives etc.).

The probably most important ingredient of this whole thesis, Karpenko’s
theorem, is also discussed there. It restricts the considerations of possible motivic
summands in the motivic decomposition of any G-variety to a few basic cases, which
still have to be determined of course.

These basic cases are not just altered by the Tits index, but also by the motivic
J-invariant, treated in Chapter 6. It allows to differentiate between anisotropic
algebraic groups for example. Also it heavily influences the motivic decomposition
type, at least in case of the Borel variety of a given algebraic group.

Chapter 7 deals with generically split varieties. By [GSV] knowing the motivic
J-invariant of an algebraic group G, one can decide which projective, homogeneous
G-varieties are generically split. More recently it has been found out in [PS22] that in
some cases one can reversely conclude the motivic J-invariant from knowing whether
Rost motives occur in the motivic decomposition of any projective, homogeneous
G-variety X, by using a certain coaction p on Ch(X). We also treat p and some of
its features in Chapter 7. For example we find that its enough to know p(pt) for
pt € Ch(X) to conclude if X is a generically splitting variety or not.

The original part of the thesis starts in Chapter 8. In this chapter we link the
themes from all previous chapters and introduce triples, called phases, of the Tits
index, the Jo-invariant and the index of the Tits algebras of G, to form some kind
of super invariant. We determine which phases are possible to occur at most, and
prove that except for a few cases all of them are admissible indeed.

As the motivic decompositions of the projective, homogeneous G-varieties
depend on the phase of G, we hence have determined a coarse classification of motivic
decomposition types for F; by doing so. Then in Chapter 9. and Chapter 10. the
motivic decompositions are concretely calculated phase by phase. The Chapter. 9
only treats the cases where all Tits algebras of G are split. This chapter is not
totally original, as some cases are already known. Still it features true originality,
when M (X;) is calculated.

The contents of Chapter 10. are much more complicated. Often we reduce a
case to one of the cases from Chapter 9. We start with the cases, when GG contains
a torus of rather big rank, and then slowly work our way up to the anisotropic case,
where Jy = (1,1,1,1) holds. The case of G having anisotropic kernel Dg is also of
great interest, as it deals with motives of involution varieties of a HSpini,.

Then in Chapter 11., we consider an Fj x A; construction of E7; and sketch a
proof for showing how one can construct anisotropic algebraic groups of type E-,
with Jy = (1,1,0,0). In order to prove this generally, one needs to know an exact
formula for the Killing-Form of G, which takes very much effort and time constraints



did not allow us to do. The anisotropic J, = (1,0, 0, 0) case is also considered, but it
is not a new result that such groups exist. In the last Chapter 12., we then calculate
the motivic decomposition for the anisotropic (1,0, 0,0) case and also some motives
in the (1,1,0,0) case.

The very last section of Chapter 12. deals with the construction of a Galois
cohomological invariant for E; with J, = (1,0,0,0) via the decompositions obtained
in the first section of the chapter.

1.2 Generalities and notation

In this short section we set conventions on the notation, we will use throughout this
thesis.

1.2.1. We will generally work over an abstract field £ with characteristic zero. But
usually it is enough to demand char(k) # 2. Sometimes we assume cohomological
invariants mod p # 2 to be zero, without k being algebraically closed. Such cases are
provided by 2-special fields, which are fields k such that every finite field extension
of k is of degree 2" for some non-negative integer n. Such fields exist by [EKM,
Proposition 101.16].

1.2.2. By a scheme, we mean separated scheme of finite type over a field. By a
variety, we mean an integral scheme. Usually a variety over a field k is denoted by
X. If we want to emphasize that is considered over k (i.e. Spec(k) is the base), we
write X/k.

1.2.3. When mentioning the set of natural numbers N, the number 0 is not included.
We write Ny, in case it is included.

1.2.4. When we express motivic decompositions we use an indexation, which
sometimes relies on multisets. Unlike a usual set, a multiset can contain several
copies of the same element.

Chapter 2
Algebraic groups

This chapter serves as basic introduction to the terms and concepts we encounter
the most often. Canonical references for the theory of algebraic groups are [Inv],
[Hum] and [Hum?2].

2.1 Basics of algebraic groups

In this section we introduce the most basic facts about algebraic groups. Our main
references are [Inv] and [Hum].



2.1.1 Definition. An algebraic group over k is a variety G over k, endowed with
the structure of a group given by morphisms

m:GxG— G, (x,y) — xy (multiplication)
i:G— G, z+— 2! (inverse)

of varieties and an identity element e € G. If GG is a subgroup of the general linear
group GL, of invertible matrices of rank n, then it is called a linear algebraic group
over k. A closed subgroup H of G is a subgroup, which is closed in the Zariski
topology.

2.1.2. The set of k-rational points of GG carries a canonical group structure. We
often just call G a group or an algebraic group, even though we always mean a
linear algebraic group when the symbol G or H is used. We write G/k in case we
want to emphasize that the base field of GG is k. The only exception is that we write
G for G/k. Here are some examples.

2.1.3 Example. The most basic example may be the group p-th roots of unity f,.
Another example is the multiplicative group G,, of invertible elements. If G and
H are algebraic groups, the product variety G x H is an algebraic group as well,
by considering the product morphisms m¢g X mpyg, i¢ X 15 and the identity element
eqg X eqy.

2.1.4 Example. If G is an algebraic group, the group theoretic concepts of the
center Z(G), the centralizer, the normalizer or the commutator subgroup [G, G] of
G extend to algebraic groups as well.

2.1.5 Example. Fix an algebraic closed field k& with char(k) # 2. Consider the
following n-th orthogonal group O, := {M € GL, | MM" = e} for n > 2. The
determinant map det: O,, — G,, is a well known homomorphism, also satisfying
det(M) = det(M7T). Thus we have det(e) = det(M)? = 1 for all elements M
of O,. We can restrict the determinant to u,, without loss of generality and
obtain a surjective homomorphism of algebraic groups det: O,, — puy. Since the
determinant map is continuous and ps consists of two irreducible components, we
see that generally O,, has two connected components for every n > 2.

2.1.6 Definition. A linear algebraic group G is called connected, if it is irreducible
as a variety. If G is not trivial, it is called semisimple, if it is connected and G has no
nontrivial solvable, connected, normal subgroups. The n-fold product G,, x...xG,,
is called a split torus of rank n. We call a group 1" a torus of rank n, if it becomes
isomorphic a split torus of rank n over k. A torus of G is called mazimal, if it is
not strictly contained in another torus of G. We call G split, if it contains a split
maximal torus. If G contains a split maximal torus which has rank n over k, we say
that G has k-rank n.

2.1.7. For a list of the concrete types (i.e. for example SO,,, Spin,,, SL,,, etc.) of
split semisimple linear algebraic groups, including their definitions, see [Inv, §25]. It
is well known that for every such concrete type there is exactly one algebraic group
over an algebraically closed field. However, over an arbitrary field there are usually



several kinds of the same concrete type, called twisted forms (of SO,, for example).
We dedicate the Chapter 3 to discussing these issues. Speaking of types of groups,
there is another meaningful way of clustering algebraic groups. It takes a different
approach than writing down (matrix) equations, but relies on root systems.

2.2 Classification by Root systems

Our main references for the topic of root systems are [Inv, §24], from which we copy
most of our content.

2.2.1 Definition. Let V' be a finite dimensional R-vector space and let V* denote
its dual space. An endomorphism s € End(V) is called a reflection with respect to
a eV for a#0,if

1. s(a) = —q,

2. there is a hyperplane W C V' such that s, = Id.

We denote the reflection s by s, in that case. Consider the natural pairing
VoV =R, x®@ve (x,v) = x(v).

A reflection s with respect to a is then given by the formula s(v) = v — (x, v)«
for a unique element x € V*, with x|, = 0 and (x, o) = 2.

A finite subset ® C V # 0 is called a (reduced) root system (®,V) if

1. 0 # @ spans V.

2. If o € ® and xa € @ for x € R, then z = +1.

3. For each a € ® there is a reflection s, such that s,(®) = ®.

4. For each «, f € @, s,(5) = [ is an integral multiple of a.

The elements oo € ® C V are called roots. For a € ®, we define a* € V* by
So(v) = v — {a*,v) - a.

These o* are called coroots and generate the dual root system ®* = {a* € V*}.

Two root systems (Pq,V)), (P2, Vs) are called isomorphic if there is an
isomorphism of vector spaces ¢ : Vi — Vs, with f(®1) = s.

For a family of root systems (®;,V;) for i € I, consider V' = @;c;V; and the
union ¢ = J;c; Y;. Then the root system (P, V) is called the sum of the ®;. A root
system ® of V is called irreducible if it is not the sum of some root systems &, ®,.

2.2.2 Definition. Let ® be a root system in V. We denote by A, the additive
subgroup of V| which is additively generated by all o € ®. It is a lattice, called the
root lattice. A vector v € V is called a weight, if a*(v) € Z for all a € ®. We obtain
another lattice



={veV | {(a*v) eZforall a € d},

called the weight lattice.

2.2.3. Since any a € ¢ is contained in V' as well, and (a*, a) € Z holds, we have
that A, C A. Also by the properties of roots, the quotient A/A,. is finite.

2.2.4 Definition. A subset A C ® of a root system ® in V is called a system of
simple roots or a base of ®, if for any o € ® there are unique ng € Z, such that
a =3 geang - [ and either all ng > 0 or all ng < 0 holds. The number of elements
of A is called its rank.

2.25. If A C ¢ is a base of & in V, its rank naturally equals the dimension
of V. We now outline how irreducible root systems can be classified. The
classification of reducible root systems then follows from decomposing a root system
into irreducible components and then applying the following classification method
by Dynkin diagrams.

2.2.6. (Dynkin diagrams) In [Inv, §24] it is explained that based on a system of
simple roots A, following certain rules, one can assign a diagram (which we also
denote by A) in a unique way to it, which is called Dynkin diagram. Fundamental
results on Dynkin diagrams include that a root system is irreducible if and only if its
Dynkin diagram consists of one component. The notion of the rank of A transitions
also to Dynkin diagrams. The root system of FE; for example has rank 7, which
translates into its Dynkin diagram below having seven nodes.

Two root systems are isomorphic, if and only if their Dynkin diagrams
coincide. Thus in order to classify (irreducible) root systems, one just needs to
classify (connected) Dynkin diagrams. This complete classification, including the
parameters ng for all roots of any system of simple roots (and thus Dynkin diagrams)
is enlisted in [Inv, §24.A]. The surprising thing about it is that, apart from four
so called classic infinite families of Dynkin diagrams, denoted A,, B,,,C,,, D,, (the
n denotes the rank), there are five unexpected ones Gy, Fy, Fg, E7 and Eg, called
exceptional.

2.2.7 Remark. It is rather obvious that for example the Eg root system is contained
in F, since the respective Dynkin diagrams are contained in each other. However,
there are also much less obvious inclusions, such as Dg C Eg (see [BdS]).

2.2.8 Definition. Assume A C @ is a base of ® in V. For A and the weight lattice
A, we define the cone of dominant weights in A as

Ay ={xeA]|{a*x)>0forall a € A}.

It is well known that one can introduce a partial ordering on A, by setting x > \’
if X' — x is a sum of simple roots. For any A € A/A, there exists a unique minimal
dominant weight x(A) € A in the coset .



2.2.9. So far this section has nothing to do with algebraic groups at first sight.
Before we establish this connection, note that the theory of the Lie algebra Lie(G)
of an algebraic group is discussed in [Inv, §21]. Also it should already be clear, that
once one knows that there is some correspondence between algebraic groups and
Dynkin diagrams, the classification above transits to algebraic groups. This is the
other method of classification mentioned afore.

2.2.10 Definition. (From algebraic groups to Dynkin diagrams) Let G be a split
semisimple algebraic group and let Lie(G) denote its Lie algebra. We fix a split
maximal torus 7' C G. We define T := Hom(7',G,,) and call it the character group
of T'. Consider the adjoint representation of G introduced in [Inv, Exm. 22.19]

ad: G — GL(Lie(G)).

Restricting the adjoint representation to 7', we obtain a subgroup ad(7) of
GL(Lie(G)). As G is split, T is diagonalizable in the usual sense, thus by [Inv,
22.20] we have a direct sum decomposition of Lie(G) into some vector spaces V, for
each 0 # a € f, called the weights of ad. The weights are known to be uniquely
defined for V,, # 0. In this concrete setup, the weights are also called the roots of
G and denoted by ®(G).

2.2.11 Theorem. ([Inv, Thrm. 25.1]) The set of all roots ®(G) of G is a root
system in T @ R.

[]

2.2.12. Because all split maximal tori in a split group are conjugate, the choice of
T C G does not effect ®(G). Therefore we have a unique assignment of a Dynkin
diagram to a given split semisimple linear algebraic group, as announced.

2.2.13 Definition. Assume G is an algebraic group over k, which is not necessarily
split. Let G have Dynkin diagram A(G). We then say that G has the same Killing-
Cartan type, i.e. A(G) = A(G).

2.2.14. There are further isomorphism results on groups and root systems in [Inv,
§25], which are all intuitive. Now that we have sketched the proof of the classification
of simple (see [Inv, 25.A]) split algebraic groups by Killing-Cartan types, we can
deduce further properties of split groups from their root system.

2.2.15 Proposition. ([Inv, Thrm. 25.2]) For any o € ®(G) and x € T one has
(a, X) € Z. In particular A, C T C A holds.

[]

2.2.16 Definition. Consider a split semisimple algebraic group G. We fix a split
maximal torus 7" C GG. Then G is often denoted by G*¢ and called simply connected,
if A/T is trivial. In case T/A, is trivial, G is called adjoint and often written as
G, Let G be a not necessarily split semisimple algebraic group. We then call G
simply connected or adjoint if G is simply connected or adjoint respectively.
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2.2.17. By the proof of [Inv, Thrm. 26.7], G* is in fact the unique (up to
isomorphism) cover for any algebraic group G of the same Killing-Cartan type as
G*¢. This includes groups which are neither simply connected nor adjoint. By the
results in the reference there are surjective group homomorphisms G* — G — G4
with finite kernels for any such group GG. Thus the term simply connected is not just
a random name, as G* does remind one to a universal covering space from topology,
which is characterized by being simply connected in the topological sense.

2.2.18. A similar kind of naming holds for the term of a group being adjoint. It
comes from the fact that the image of the adjoint representation of G has a trivial
center by [Inv, §25 Central isogenies]. By the reference, any adjoint group G is
isomorphic the factor group of the simply connected group of the same Killing-
Cartan type G*¢ by its center Z(G*°).

2.2.19. (Enumeration of simple roots) For enumerating the nodes of the Dynkin
diagram A(G) of G (and thus the simple roots), we use what is known as the
Bourbaki enumeration (see [Bou]). Also in case we cite results involving any possibly
different enumeration of the simple roots, we will translate it to this enumeration.
The only exception from this enumeration are the calculations done with the Chow
Maple package from [NS06], since its inputs rely on an enumeration which is due to
Stembridge and are used in the Maple package [St04], on which the one from [NS06]
is based on.

2.2.20. (Translation of enumeration) To help comprehending our results by the
Chow Maple package, we give the translation from Bourbaki to Stembridge. For
groups of type D, the i-th Bourbaki root is the (n + 1 — i)-th Stembridge root.
For groups of type Fy the i-th Bourbaki root is the (5 — i)-th Stembridge root. For
groups of types A,, Egs, F7, Eg the enumerations coincide. The roots of groups of
type B, and C,, will not be considered.

2.3 Parabolic subgroups and projective, homoge-
neous (-varieties

This section roughly explains how certain projective varieties can virtually be
thought of as being attached to a given algebraic group (see [Hum2, §30]). We
assume first that the base field k is algebraically closed.

2.3.1 Definition. Let G be an algebraic group over an algebraically closed field
k. A subgroup B C G is called a Borel subgroup of G, if it is a closed, connected,
solvable group, which is not properly included in any bigger group satisfying these
properties. The collection of all such groups is an actual variety by [Hum2, 23.3]
and called Borel variety and denoted by X.

2.3.2 Definition. Let G be an algebraic group. A closed subgroup P C G is called
parabolic subgroup, if it includes a Borel subgroup of GG. This also covers the case of
P being a Borel subgroup of G itself. The quotient G/ P is projective and is called a
projective, homogeneous G-variety in this case. The term homogeneous means that
G operates transitively on G/P.
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2.3.3 Definition. (Notation) Consider a semisimple algebraic group G over an
algebraically closed field k. Let © be a subset of A(G). The simple roots in
© correspond to parabolic subgroups of G (see also [Shells, Chapter 2]). We
normalize the notation in the same way as in the reference. This means that the
group generated by the set theoretic complement of © is denoted by Pg. Thus the
projective, homogeneous G-variety Xg := GG/Pg has all elements generated by the
roots of G modded out that are not in ©. We write X 3, when © = {1, 3} holds for
example. In case © contains one element, Py is generated by all simple roots but
one and is also called mazimal.

2.3.4. The extreme cases are © = (), which means Xg =~ Spec(k) and © = A(G),
in which case the projective, homogeneous variety Xa(q) is just the Borel variety.

2.3.5 Definition. Let G be an algebraic group over some field k. If G contains no
split torus of at least k-rank one, it is called anisotropic. If the k-rank of GG is at
least one, we say that G is isotropic. If G' contains a Borel subgroup over k, it is
called quasi split over k.

2.3.6. In the next chapter we will revisit the definition of the varieties Xg in the case
when G is anisotropic. For this one needs some Galois cohomological machinery.

2.3.7 Definition. We say a field extension L/k is Galois, if it is finite, separable
and normal. We denote the respective Galois group by Gal(L/k). We define the so
called absolute Galois group of k by

I':= Gal(k/k) = lim Gal(L/k), for L/k Galois.

2.3.8 Remark. It is well known that Gal(k/k) acts on the Dynkin diagram of an
algebraic group as well. A group with a non trivial Gal(k/k)-action on its Dynkin
diagram, is called outer and otherwise inner. For this action to be non trivial, the
Dynkin diagram needs to admit some symmetry. One can also define being quasi
split using the Gal(k/k)-action (see [Inv, 27.C]). But we do only consider groups of
inner type in this thesis. Note that any group of inner type is quasi split if and only
if it is split by [Inv, 27.C the comment after Prop. 27.8].

Chapter 3

Torsors and cohomological invari-
ants

So far it did not necessarily become clear from our definitions, that there may
be anisotropic algebraic groups of the same concrete Killing-Cartan type over the
same field which are not isomorphic. Also we have considered algebraic groups
basically just as abstract objects arising from root systems. We would like to consider
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algebraic groups which are not split, but are so called twisted forms. Most properties
of twisted forms depend on some kind of underlying object. These objects are called
torsors. The theory of torsors for algebraic groups is strongly connected to Galois
cohomology, which in turn allows to introduce Galois cohomological invariants of
algebraic groups.

3.1 Galois Cohomology

This section contains a few basics on Galois cohomology. We copy all of it from
[Inv] and the fundamental work [Serre].

3.1.1 Definition. A discrete topological space M with continuous I'-left action, is
called a I'-set. If T acts by group homomorphisms on a ['-set M, i.e.

o(a; ® az) = o(a) ® o(as)

holds, and if M is also a commutative group, we call it a I'-module. Let M be a
-module (resp. a I'-set). If M is just a [-set, assume that n < 1. We denote by
H"(k,M) := H"(I', M) the n-th Galois cohomology group of k (resp. the Galois
cohomology set) with values in M as defined in [Inv, §28.A].

If M, N are I'-modules, one can consider the cup product
U: H"(k,M) x H™(k,N) — H"™™(k, M ®z N), (a, ) — a U .

It is inherited from the tensor product M ®7 N, which naturally arises from the
[-left action by group homomorphisms on M, N.

By [EKM, 99.C] there is a map resy i, : H"(k, M) — H™(L, M), for an arbitrary
field extension L/k, which is called the restriction from k to L. This includes the
case, where L is the function field k£(X) for some smooth projective variety X.

3.1.2 Definition. Let uy denote the group of the second roots of unity and assume
that char(k) # 2 for a field k. Then by [Inv, §30] one can identify pg ® s with ps,
so H(k, us™) = H™(k, po) holds for n > 0. We define the Galois cohomology ring
mod 2

H(k. ) := @ H'(k, o)

An element (a1)U...U(a,) € H™(k, po) is called a pure symbol. It is a consequence
of the norm residue theorem mod 2, formerly known as the Milnor conjecture, that
each element o € H(k, 1) is a sum of pure symbols. The elements (a;) € H'(k, o)
making up the pure symbols, « is a sum of, are called its slots.

Two elements o € H(k, u2) and € H(k, u2) are said to have n common slots,
if there are n not necessarily distinct (a;) € H'(k, pg) occurring in every of their
summands. Assume all summands of o € H(k, pi3) have n common slots (a;) for
j€[l:n]. Let 8= (a1)U...U (ay,) hold. Then we say that 5 divides c.
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3.1.3. The first Galois cohomology H'(k, M) is of particular interest, especially
when M is a linear algebraic group. In this case H'(k, M) is known to be just a set.
We come back to this in the next section.

3.2 Torsors

We shortly explain to concept of torsors of an algebraic group and point out their
connection to Galois cohomology in this section (see [Inv, §28]).

3.2.1 Definition. ([Inv, Chapter VII]) Let G be a linear algebraic group over a
field k. A G-torsor or a principal homogeneous space over k is a non-empty algebraic
variety & over k equipped with an action of G such that G acts on £ simply transitive.

Two G-torsors £ and £ are called isomorphic, if there exists a G-equivariant
isomorphism m: & — £ over k.

3.2.2. Considering the right action of GG on itself, the definition makes any algebraic
group G into its own torsor, called the trivial torsor. Note that any two G-torsors
over k become eventually trivial and thus isomorphic over k.

3.2.3 Definition. A G-torsor which can specialize to any given G-torsor is called
a versal torsor.

3.2.4. The mathematical term wversal can conceptually be understood as the idea
of something being wuniversal. The existence of versal torsors is proven in [GMS,
Chapter T 5.3]. As this idea suggests, proving or disproving something about a
versal torsor is often enough to cover all other cases.

3.2.5 Example. The torsors for groups of type G5 are known to correspond to the
so called Octonion algebras O (see [Inv, Thrm. 25.14 and §39]). The torsors for
groups of type Fj are known to correspond to Albert algebras (see [Inv, Thrm. 25.13
and §40]) and will be denoted by J.

3.2.6. For Albert algebras it is known, that some of them are division, while others
are not. It also known that the property of J being division, does not solely
determine whether Aut(J) is isotropic or not. This makes the consideration of
the Tits index and later on Galois cohomological invariants necessary, which are
introduced in Section 3.4 and Section 3.6. There is a connection between the torsors
of an algebraic group and Galois cohomology.

3.2.7 Theorem. ([Inv, Prop. 28.14]) For a linear algebraic group G over an
arbitrary field k, there exists a functorial bijection from the set of isomorphism
classes of G-torsors over k to H'(k,G).

]

3.2.8 Remark. Note that while H'(k, u,) is an abelian group for all i € Ny and
all primes p, the situation is very different for H'(k, Gy), with Gy being some split
algebraic group. In that case we can only be sure about H'(k, Gy) being a pointed
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set with the trivial torsor as the distinguished element. For example we can consider
the reduced norm map Nrd: GL;(A) — G,, (see [Inv, §20]) for some central simple
algebra A (see section 3.4). Using a Hilbert 90 type argument (see [Inv, Corollary
29.4]), one can show that H'(k, SLi(A)) ~ k*/Nrd(A*) holds . For groups of type
E; instead there is not any such description, as the Fr-torsors are only known rather
abstractly (see [Gar01]). The Eg case marks the least understood one.

3.3 Twisted forms

In this section we take on twisted forms. Note that in [Inv, §28.C.] the notion of
the actual twisting is explained.

3.3.1 Definition. Let Gy be a split semisimple algebraic group over k. Consider
two torsors &,& € H'(k,Gp) and the groups G ~ Gy and G’ ~ ¢Gy. Then G and
G’ are called (inner) twisted forms of Gy and also of each other. Twisting a group G
by a versal Go-torsor (defined over a larger field) results in a so called versal form
of G. We call any group G simply connected or adjoint, if the split G is simply
connected or adjoint respectively.

3.3.2. In case one twists a split group G with a versal Go-torsor £, the invariants
of ¢Gy take in some sense the highest possible or most abstract value. For example,
twisting Gy with a versal torsor, will result in a form of GGy, which is anisotropic. In
contrast to this, twisting with the trivial torsor results in the split form G itself.

3.3.3 Definition. (Twisted G-varieties) So far, we have introduced the G-
varieties G/ Pg only in case G is split. Let G be a split group over k and let £ be a
Go-torsor. Let Pg is be a parabolic subgroup of GGg. Note that Pg is also necessarily
split. Let G =~ (G hold. We reset Xg := ¢(Gy/Po), to denote the twist of Go/Pe
by £. Consider some field extension L/k, we then set Xg/L := ,cq(), . (Go/Pe) or
simply say that we consider Xg over L.

L/k(

3.3.4. Equivalently we can define the varieties X¢ as the varieties of parabolic
subgroups of G = ¢Gy of type ©. Observe that by [SGAIIL, Cor. XXVI.3.6] these
varieties are defined over k. This also includes the case of the Borel variety. We
obtain the following very well known corollary.

3.3.5 Corollary. Let X be the Borel variety of an algebraic group G of inner type
over k. Then G s split if and only if X has a k-rational point.

Proof: By the definition of quasi split groups, G is quasi split exactly if it has a
Borel group defined over k. This is measured by X having a rational point over k.
As by [Inv, 27.C the comment after Prop. 27.8] any group of inner type is split (i.e.
contains a split maximal torus) if it is quasi split, the claim follows.

m

3.3.6. Twisting a split group Gy into G, does not just determine whether its
anisotropic or not, but also alters other features as we will see. Attempting to
describe and classify these changes is the actual reason we are interested in the
motivic decompositions of the respective projective, homogeneous G-varieties.
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3.4 The Tits index

In this section we introduce the Tits index. This invariant of algebraic groups was
introduced in [Tits66] and is one of the most important ones in algebraic group
theory. Note that since we only consider groups of inner type in this thesis, we omit
the notion of the Gal(k/k)-action in conjunction with the definition of Tits index
(see [Inv, §26]).

3.4.1 Definition. Let G be a semisimple algebraic group over k. Let 7(G) C A(G)
be the set consisting of the simple roots «;, for which the G-varieties X; have a
rational point over k. Then 7(G) is called the Tits index of G over k. Choose a
maximal split torus 7" in G. Then one considers its centralizer denoted by Zg(T).
The derived subgroup [Zg(T'), Za(T)] of Z5(T) is then defined to be the semisimple
anisotropic kernel of G over k. We denote it by G,. Sometimes we just call it the
anisotropic kernel of G.

3.4.2 Example. If for some algebraic group G/k, the variety X¢ has a rational
point over k only for © = {1}, we have T (G) = {1} for example. Note that the Tits
index of an anisotropic group is by definition equal to the empty set. Finally note

that the disjoint union of A(G,,) and 7 (G) equals A(G).

3.4.3. All theoretically possible Tits indexes are enlisted in [Tits66]. Interestingly
only a few of those that are combinatorially possible exist. An extended version of
the table in [Tits66] was provided in [DG]. It does also contain the information of
whether a Tits index can occur over a p-special field or not. The refined version of
the Tits index is called a Tits p-index. The table also contains information on the
Tits algebras, which we introduce later. We will from now on refer to these tables
as the Tits classification. We sometimes call a Tits p-index, a Tits index occurring
mod p. As can be seen in the reference, one can visualize the Tits index by circling
the respective nodes in the Dynkin diagram.

3.4.4 Remark. Any torus in G/k of k-rank n extends to a torus in G/L of at least
L-rank n over a field extension L/k. Therefore T(G/k) C T(G/L) holds in general.
A group G is quasi split if and only if 7(G) = A(G) holds. Note that if G is adjoint
and A(Ggy,) is not connected, then G, it is not a direct product in general, but it
is often known to be a central product.

3.4.5. If one considers the anisotropic Tits index of some group considered over k,
then the other Tits indexes theoretically arise over some field extensions of L/k and
L'/k. But even in case they do, this does not mean that the isotropic X¢ over LL'
are exactly those which are either isotropic over L or L’. Consider the following
example.

3.4.6 Example. Take an isotropic group of type As. By the Tits classification, it
is possible for such groups to have {3} or {2,4} as Tits index. Extending scalars
does in any case either split the respective group or does not alter the Tits index.
Thus one can not obtain the Tits index {2,3,4} = {3} U{2,4}.
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3.5 Central simple algebras and Brauer groups

For a deep treatment of the topic of central, simple algebras and their relation to
Galois cohomology, see [GSz|, which is our main reference for this section. The goal
of this subsection is just to introduce the Brauer group, its elements and a well
known isomorphism in Galois cohomology. We just cite several lemmas to make it a
bit comprehensible how the Brauer group was even invented. This section probably
marks the least innovative one.

3.5.1 Definition. A finite dimensional k-algebra A is called central if its center is
isomorphic to k. When every two sided ideal of A is trivial or A itself, then A is
called simple. In case A is as central and simple k-algebra, we call it a CSA over k
and often write A/k.

3.5.2 Lemma. ([GSz, Lemma 2.2.2]) Let A be a finite dimensional k-algebra and
let L/k be a finite field extension. Then A/L is a CSA if and only A/k is a CSA.

O]
3.5.3 Lemma. ([GSz, Corollary 2.2.3.]) Let A be a CSA over k. Then the

dimension of A as a k-vector space is a square.

]

3.5.4 Definition. Let A be a CSA over k. The integer |/dim(A) is called the
degree of A. If Mat,,x, (L) ~ A/L holds for a field extension L/k and a suitable n,
we say that L splits A or A splits over L.

3.5.5 Lemma. ([GSz, Corollary 2.2.6]) Let A be a CSA over k. Then there exists
a finite, separable field extension L/k over which A splits.

]

3.5.6 Wedderburn’s Theorem. (|GSz, Theorem 2.1.3.]) Let A be a CSA of degree
n over k. Then there ezists a unique division algebra D, such that A ~ Mat,,x.m (D)
for a suitable m.

[]

3.5.7 Definition. Let A be a CSA over k, with A ~ Mat,«,(D) for a division
algebra D. The degree of D is called the index of A. We write ind(A) for it.

3.5.8 Definition. (The Brauer group of a field) Given two CSAs A, B over k,
we say that A is Brauer equivalent to B, if there is a division algebra D over k
and positive integers m,n, such that A ~ Mat,,«.,,(D) and B ~ Mat,«,(D). If
A >~ Mat,,xm (D) holds, then D is Brauer equivalent to A. The set of CSAs over k
mod Brauer equivalence and equipped with the tensor product ® as an operation is
called the Brauer group of k and denoted by Br(k) (see [GSz 2.4]).
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3.5.9. That Br(k) is actually a group can be seen by considering the opposite algebra
A% of A (see [GSz, Proposition 2.4.8.]). The fact that Br(k) is also abelian, follows
naturally from the tensor product of CSAs being a commutative operation.

It also known that the Brauer group of a field has torsion. The subgroup of
p-torsion elements of Br(k) is usually denoted by ,Br(k). Often the Brauer group is
considered as an additive group and thus + is used for denoting the group operation.
The following connection between the Brauer group and Galois cohomology groups
is well known and important.

3.5.10 Theorem. ([Inv, p. 397 and §30]) Let G,, denote the multiplicative group
over k viewed as an algebraic group. There are isomorphisms Br(k) ~ H?*(k, G,,)
and ,Br(k) ~ H*(k, ).

]

3.6 Cohomological invariants

We now introduce the notion of cohomological invariants for algebraic gro