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Abstract

This thesis compiles four main results concerning adjoint semisimple linear
algebraic groups G of exceptional type E7 over an abstract field k with char(k) = 0.

The first one is the decomposition of most of the projective, homogeneous E7-
varieties X, which are twisted forms of G0/PΘ for G0 denoting the split adjoint
E7, into Chow motives with F2 coefficients. The motivic decompositions depend
on several invariants of the given group G, such as the Tits index, the motivic J-
invariant and the Tits algebras of G. We also use the coaction map on the Chow
ring of X, which was recently defined by Petrov and Semenov, for this, giving more
insight into its behavior on non rational algebraic cycles.

The second main result is the provision of a table containing the possible
combinations of the mentioned invariants. We also mostly settle the question how
these parameters change under extension to function fields k(X)/k, for X being a
twisted form of G0/PΘ or the Severi-Brauer variety of the Tits algebra of G. This
extends the well known index reduction formulas proven by Merkurjev, Panin and
Wadsworth.

As a third main result we examine groups of type E7, which are obtained from
a construction by Tits and use an Albert algebra and a Quaternion algebra as
input. We then relate the invariants of the input to the invariants of the output
and calculate some of the motivic decompositions of the projective, homogeneous
G-varieties of the output.

The last main result is the unexpected discovery of a Galois cohomological degree
five invariant for any semisimple linear algebraic group of exceptional type E7, which
splits over the function field of the Severi-Brauer variety of its Tits algebra. It is
trivial if and only if the twisted form of the respective variety G0/P1 of maximal
parabolic subgroups of type 1 has a zero cycle of odd degree. Such anisotropic
cases are obtained by the construction of Tits, for example. The construction of the
invariant involves some of the afore mentioned results, along the same techniques
used to prove them.



Zusammenfassung

Diese Dissertation setzt sich aus vier Hauptergebnissen über adjungierte
halbeinfache algebraische Gruppen G vom Ausnahmetyp E7 über einem abstrakten
Körper k mit char (k) = 0 zusammen.

Dabei stellt das erste Ergebnis die Zerlegung der meisten projektiven, homogenen
E7-Varietäten in ChowMotive mit F2-Koeffizienten dar. Die betrachteten Varietäten
sind getwistete Formen von G0/PΘ, wobei G0 die zerfallene adjungierte Gruppe von
Typ E7 sei. Ihre motivischen Zerlegungen hängen von verschiedenen Invarianten der
entsprechenden Gruppe, wie dem Tits Index, der motivischen J-Invariante und den
Tits Algebren von G ab. Wir verwenden dafür auch die Kowirkung auf dem Chow
ring von X, welche kürzlich von Petrov und Semenov eingeführt wurde. Einige der
erzielten Ergebnisse helfen ihr Verhalten auf nicht rationalen algebraischen Zykeln
besser zu verstehen.

Das zweite Hauptresultat ist eine Übersicht über die möglichen Kombinationen
der drei genannten Invarianten. Wir beantworten auch die Frage, wie sich
diese Invarianten über Funktionenkörpern k(X) ändern fast vollständig. Dabei
ist X entweder eine getwistete Form von G0/PΘ oder aber die Severi-Brauer
Varietät einer Tits Algebra von G. Unser Ergebnis erweitert die wohlbekannten
Indexreduktionsformeln von Merkurjev, Panin und Wadsworth.

Für unser drittes Hauptresultat untersuchen wir Gruppen vom Typ E7, welche
aus einer Konstruktion von Tits stammen und die als Input eine Albert Algebra und
eine Quaternion Algebra verwendet. Wir stellen einen Zusammenhang zwischen den
Invarianten des Inputs und des Outputs her und berechnen einige der motivischen
Zerlegungen der projektiven, homogenen G-Varietäten des Outputs.

Das letzte Hauptresultat ist die Entdeckung einer Galois-kohomologischen Grad
fünf Invariante, für halbeinfache lineare algebraische Gruppen vom Typ E7, welche
über dem Funktionenkörper der Severi-Brauer Varietät ihrer Tits Algebra zerfallen.
Diese Invariante ist genau dann nicht trivial, wenn die getwistete Form der Varietät
G0/P1 der maximalen parabolischen Untergruppen vom Typ 1 kein Nullzykel vom
ungeraden Grad hat. Solche anisotropen Gruppen können zum Beispiel aus der
Konstruktion von Tits entstehen. Die Konstruktion der neuen Invariante benutzt
einige der zuvor erwähnten Resultate und auch deren Beweistechniken.



Main results

Theorem. Let G be an anisotropic, adjoint algebraic group of type E7 over k with
char(k) = 0, which splits over the generic point of the Severi-Brauer variety of its
Tits algebra. Then there is a functorial invariant h5 ∈ H5(k, µ2), such that for any
field extension L/k one has res(h5)L/k = 0 ∈ H5(L, µ2) if and only if X1 has a zero
cycle of odd degree over L.

Theorem. Let G be an adjoint algebraic group of type E7, with motivic J2-
invariant J2(G). Let RJ denote the upper motive of the Borel variety of G. When
J2 = (0, 1, 1, 1) holds, the Chow motives of the G-varieties X1, X7 decompose as

M(X1) = U(X1)⊕⊕
i∈I RJ(i),

M(X7) = U(X7)⊕ U(X7)(1),

with P (I, t) = t2(t13 − 1)/(t− 1).

When J2 = (1, 1, 1, 1) holds, M(X1) and M(X7) are indecomposable.

Theorem. Let G be an anisotropic, adjoint algebraic group of type E7 with a non
split Tits algebra A. Then J2(G) = (1, 1, 0, 0) and ind(A) = 2 hold over k if and
only if G has semisimple anisotropic kernel D4 over k(SB(A)).

Theorem. Given an adjoint algebraic group G of type E7 over k, with Tits algebra
A of index 2, motivic J2-invariant J2(G) and semisimple anisotropic kernel Gan, the
following holds for p = [Gan, J2(G), ind(A)] over the generic point of the G-variety
X1.

p resk(X1)/k(p)
[E7, (1, 1, 1, ∗), 2] [D6, (1, 1, 1, 0), 2]
[E7, (1, 1, 0, 0), 2] [D4 × A1, (1, 1, 0, 0), 2]
[E7, (1, 0, 0, 0), 2] [A3

1, (1, 0, 0, 0), 2]

Theorem. Let G be the output of the F4×A1 → E7 construction, with input (J , Q).
Then depending on the number of common slots of f3(J ), Q the table below holds.

Q f3(J ) f5(J ) Slots If G is isotropic If G is isotropic
0 f3(J ) 0 0 − [D4, (0, 1, 0, 0), 1]
0 f3(J ) f5(J ) 0 − [D4, (0, 1, 0, 0), 1]
Q f3(J ) 0 0 − [D5 × A1, (1, 1, 0, 0), 2]
Q f3(J ) 0 1 − [D4 × A1, (1, 1, 0, 0), 2]
Q f3(J ) 0 2 − [A3

1, (1, 0, 0, 0), 2]
Q f3(J ) f5(J ) 0 [E7, (1, 1, 0, 0), 2] [D5 × A1, (1, 1, 0, 0), 2]
Q f3(J ) f5(J ) 1 [E7, (1, 1, 0, 0), 2] [D4 × A1, (1, 1, 0, 0), 2]
Q f3(J ) f5(J ) 2 [E7, (1, 0, 0, 0), 2] [A3

1, (1, 0, 0, 0), 2]
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1

Chapter 1
Introduction

The main topic of this thesis are linear algebraic groups G of exceptional type E7,
over a field of characteristic 0 and the Chow motives of the projective, homogeneous
G-varieties. These are varieties which become isomorphic to varieties of type G/PΘ
over k, with PΘ being a parabolic subgroup of G. We will calculate many of the
motivic decompositions of the twisted forms of these varieties.

Although the concept of motives as an universal cohomology theory was invented
by Grothendieck, the very first publication on motives is due to Manin in [Ma68].
The problem of calculating the motive of the Severi-Brauer variety of a central simple
algebra over a field was approached by Nikita Karpenko in his work [Kar95]. Such
varieties arise as certain projective, homogeneous G-varieties of algebraic groups
G of type An. In particular, Karpenko found that the motive of an anisotropic
Severi-Brauer variety of a division algebra is indecomposable.

Shortly after Vishik (in [Vis98]) and also Rost (in [Ro98]) calculated motives
of some quadrics. These varieties are isomorphic to some projective, homogeneous
G-varieties of some algebraic groups G of type Bn and Dn. The fact that the motivic
summands in the motivic decompositions in general do not arise as the whole motive
of a variety, but just as a piece of the motive of some variety, plays an important role
Voevodsky’s proof of the Milnor conjecture (see [Voe96]) and also the more general
Bloch–Kato conjecture.

While generally the motive of a quadric can consist of several non isomorphic
motivic summands, the motive of an anisotropic Pfister quadric turned out to
contain only copies of one motivic summand up to isomorphism, just like Severi-
Brauer varieties. Projective, homogeneous G-varieties with this property arise in the
framework of generically split varieties and were later systematically considered by
Petrov, Semenov, and Zainoulline in [PSZ], [GSV] and [GSV2]. These are basically
all G-varieties which motivically resemble the Borel variety of a given G. One
consequence of this work is that the motive of the Borel variety of any algebraic
group is totally understood. Besides, Yagita has calculated the motivic cohomology
of the Borel variety of a simply connected algebraic group in some cases in [Yag].

As for motives of arbitrary projective, homogeneous G-varieties, Bonnet treated
the case of G being of Killing-Cartan type G2 in [Bo03]. These are also generically
split varieties, even though this term was not yet invented back then. His result
is the first on motives of algebraic groups of exceptional type. Also it turned out
that the motivic decompositions of the G2-varieties encode information on the only
Galois cohomological invariant f3 of the torsors of these exceptional groups, the Rost
invariant.

Most of the Galois cohomological machinery was developed by Serre in [Serre],
who conjectured that the Rost invariant exists for any simple simply connected
algebraic group. A general construction of the Rost invariant can be found in [GMS]
by Garibaldi, Merkurjev and Serre.
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Recently Merkurjev has determined the structure of the group of normalized
cohomological invariants of degree three for most types of adjoint algebraic groups
in [Mer16]. His work also extends some of the Cn cases which have been established
by Garibaldi, Parimala, Tignol in [GPT] before.

In [NSZ] and [McD09] the motivic decompositions for F4 (mod 3 and mod 2
respectively) were calculated by Nikolenko, Semenov, Zainoulline and MacDonald
in the second case. Again the already known Galois cohomological F4-invariants
f3, f5 and g3, turned out to be reflected in the calculated motivic decompositions. In
fact, given the values of these invariants, one can exactly determine the structure of
the motivic summands occurring in the motivic decomposition of every projective,
homogeneous F4-variety. This included the Borel variety as well, whose motive
depends only on f3 and g3 (i.e. the mod 2 or mod 3 case).

Meanwhile there has been some progress made on the motives of generalized
Severi-Brauer varieties by Zhykhovich in [Zhy] and Junkins, Krashen, Lemire in
[JKL].

Then in [Shells] Garibaldi, Petrov, and Semenov calculated the motivic
decompositions for adjoint groups of type E6 mod 3. For this they used a refined
concept of shells, a technique originally developed by Vishik in [Vis04] for quadrics.
This E6 case is different from the other exceptional ones so far, since with the
introduction of the motivic J-invariant for arbitrary algebraic groups by Petrov,
Semenov, Zainoulline in [PSZ] (see [Vis05] for the original construction for quadrics)
it came apparent that for anisotropic groups G of type E6 mod 3 there is not just
one specific motivic decomposition of the projective, homogeneous G-varieties, but
several (see [Shells], Table 8.A).

The decomposition depends on the respective torsor one twists a split algebraic
group G0 with to obtain the studied G and the respective G-varieties. The J-
invariant allows to distinguish between these cases. It translates rationality of
algebraic cycles in the Chow ring of the Borel variety of this G into a numerical
information. It was also used in the classification of generically split varieties in
[GSV] and [GSV2] before the work [Shells].

As the J-invariant can sometimes differentiate several anisotropic algebraic
groups, it can be thought of to be finer than the famous Tits index, originally
invented by Tits in [Tits66]. The Tits index of an algebraic group is also utilized in
this work as an input for the Chernousov-Gille-Merkurjev-Brosnan algorithm (see
[Shells, Chapter 6] for its functionality). This method was already used in [Shells]
for solving the E6 case. It is a combination of the results made by Chernousov,
Stefan Gille and Merkurjev in [CGM] and Brosnan in [Bro05]. We benefit from its
Maple implementation, which is due to Nikolenko, Petrov, and Semenov (see e.g.
[NS06]), when performing calculations in the Chow ring of some G/PΘ.

Since algebraic groups of type E7 have many more possible Tits indexes and
values for J2(G) in comparison to E6, our undertaking has a much higher level of
complexity. Our first main task is to determine all possible combinations of these
invariants for adjoint algebraic groups of type E7. This takes eight chapters, as it
involves many techniques like shells, general Chow theory, index reduction, Galois
cohomological invariants and partly constructions of certain algebraic groups.

In the second step we then calculate motivic decompositions for these cases.
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Problematically it is a highly non trivial task to predict the behavior of a motivic
summand and even the Tits index of a given algebraic group under a field extension
in general. This is why we are considering another invariant called the Tits algebras
introduced by Tits in [Tits71].

Once one knows how all these invariants change under certain field extensions,
we can apply some going up techniques to lift specific algebraic cycles to a base field.
Additionally involving combinatorial arguments enables us to prove or sometimes
disprove that some motivic decomposition holds.

The possible index of the Tits algebras depends on the Tits index (see [DG,
Table 8.]) of an algebraic group. Therefore it has been of general interest to know
how the index of the Tits algebra changes under certain field extensions long before.
These questions are related to the index reduction formulas treated in a series of
papers by Merkurjev, Panin and Wadsworth in [MPW], [MPW2].

We will call the triples of our considered invariants phases (Tits index, J-
invariant, Tits algebra).

Our many results on the possible transitions between phases after field extension
generalize the index reduction formulas in a broad sense. We also consider several
constructions of groups of type E7 and decode how the input parameters of the
famous F4×A1 Tits construction affect the phase of the outcome. This construction
was already completely understood by Garibaldi in his work [Gar01] for a real closed
base field. We will allow an arbitrary base field of characteristic zero.

The topics of phases and motives mix in a complementary way, meaning
that in order to establish some motivic decompositions, we use certain phases
and transitions, while other transitions and phases arise from considering motivic
decompositions.

In contrast to motives mod 3 of the E6-varieties, which gave no further
insight into Galois cohomological invariants so far, we will find a phase with
associated motivic decompositions, from which we derive the existence of a Galois
cohomological degree five invariant for algebraic groups of type E7, which split over
the generic point of the Severi-Brauer variety of their Tits algebra, as final result.
Such groups exist over R for example. A similar result for algebraic groups of type
E8 with trivial Rost invariant was obtained by Semenov in [S16]. However, obtaining
the motivic decomposition needed for applying this construction is much harder in
our E7 case.

1.1 Outline of the thesis
The twelve chapters of this work can be divided into a recital part, spanning
Chapters 1. through 7. and an original part mostly starting in Chapter 8, except
for some small lemmas and examples provided in the chapters before.

The recital part starts with the obligatory basics in notation in Chapter 1. The
Chapter 2. covers basics on split linear algebraic groups, such as root systems, the
Tits index, Borel varieties and some classification results. The case of arbitrary
linear algebraic groups over general fields (i.e. twisted forms of split groups) is
considered in the Chapter 3. It introduces basics on central simple algebras, Galois
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cohomology and cohomological invariants of algebraic groups as well. One being the
famous Tits algebras.

As exceptional algebraic groups of type E7 mod 2 can be thought of a general case
of some algebraic groups of type Dn, we treat quadratic forms and central simple
algebras with orthogonal involution in Chapter 4. Considering quadrics provides
many known examples of motivic decompositions of varieties into Chow motives,
which are introduced in Chapter 5. This chapter also serves as an overview of
several of the aspects of our motivic techniques used (uniqueness of decompositions,
lifting idempotents, Tate and Rost motives etc.).

The probably most important ingredient of this whole thesis, Karpenko’s
theorem, is also discussed there. It restricts the considerations of possible motivic
summands in the motivic decomposition of any G-variety to a few basic cases, which
still have to be determined of course.

These basic cases are not just altered by the Tits index, but also by the motivic
J-invariant, treated in Chapter 6. It allows to differentiate between anisotropic
algebraic groups for example. Also it heavily influences the motivic decomposition
type, at least in case of the Borel variety of a given algebraic group.

Chapter 7 deals with generically split varieties. By [GSV] knowing the motivic
J-invariant of an algebraic group G, one can decide which projective, homogeneous
G-varieties are generically split. More recently it has been found out in [PS22] that in
some cases one can reversely conclude the motivic J-invariant from knowing whether
Rost motives occur in the motivic decomposition of any projective, homogeneous
G-variety X, by using a certain coaction ρ on Ch(X). We also treat ρ and some of
its features in Chapter 7. For example we find that its enough to know ρ(pt) for
pt ∈ Ch(X) to conclude if X is a generically splitting variety or not.

The original part of the thesis starts in Chapter 8. In this chapter we link the
themes from all previous chapters and introduce triples, called phases, of the Tits
index, the J2-invariant and the index of the Tits algebras of G, to form some kind
of super invariant. We determine which phases are possible to occur at most, and
prove that except for a few cases all of them are admissible indeed.

As the motivic decompositions of the projective, homogeneous G-varieties
depend on the phase ofG, we hence have determined a coarse classification of motivic
decomposition types for E7 by doing so. Then in Chapter 9. and Chapter 10. the
motivic decompositions are concretely calculated phase by phase. The Chapter. 9
only treats the cases where all Tits algebras of G are split. This chapter is not
totally original, as some cases are already known. Still it features true originality,
when M(X1) is calculated.

The contents of Chapter 10. are much more complicated. Often we reduce a
case to one of the cases from Chapter 9. We start with the cases, when G contains
a torus of rather big rank, and then slowly work our way up to the anisotropic case,
where J2 = (1, 1, 1, 1) holds. The case of G having anisotropic kernel D6 is also of
great interest, as it deals with motives of involution varieties of a HSpin12.

Then in Chapter 11., we consider an F4 × A1 construction of E7 and sketch a
proof for showing how one can construct anisotropic algebraic groups of type E7,
with J2 = (1, 1, 0, 0). In order to prove this generally, one needs to know an exact
formula for the Killing-Form of G, which takes very much effort and time constraints
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did not allow us to do. The anisotropic J2 = (1, 0, 0, 0) case is also considered, but it
is not a new result that such groups exist. In the last Chapter 12., we then calculate
the motivic decomposition for the anisotropic (1, 0, 0, 0) case and also some motives
in the (1, 1, 0, 0) case.

The very last section of Chapter 12. deals with the construction of a Galois
cohomological invariant for E7 with J2 = (1, 0, 0, 0) via the decompositions obtained
in the first section of the chapter.

1.2 Generalities and notation
In this short section we set conventions on the notation, we will use throughout this
thesis.

1.2.1. We will generally work over an abstract field k with characteristic zero. But
usually it is enough to demand char(k) 6= 2. Sometimes we assume cohomological
invariants mod p 6= 2 to be zero, without k being algebraically closed. Such cases are
provided by 2-special fields, which are fields k such that every finite field extension
of k is of degree 2n for some non-negative integer n. Such fields exist by [EKM,
Proposition 101.16].

1.2.2. By a scheme, we mean separated scheme of finite type over a field. By a
variety, we mean an integral scheme. Usually a variety over a field k is denoted by
X. If we want to emphasize that is considered over k (i.e. Spec(k) is the base), we
write X/k.

1.2.3. When mentioning the set of natural numbers N, the number 0 is not included.
We write N0, in case it is included.

1.2.4. When we express motivic decompositions we use an indexation, which
sometimes relies on multisets. Unlike a usual set, a multiset can contain several
copies of the same element.

Chapter 2
Algebraic groups

This chapter serves as basic introduction to the terms and concepts we encounter
the most often. Canonical references for the theory of algebraic groups are [Inv],
[Hum] and [Hum2].

2.1 Basics of algebraic groups

In this section we introduce the most basic facts about algebraic groups. Our main
references are [Inv] and [Hum].
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2.1.1 Definition. An algebraic group over k is a variety G over k, endowed with
the structure of a group given by morphisms

m : G×G −→ G, (x, y) 7−→ xy (multiplication)

i : G −→ G, x 7−→ x−1 (inverse)

of varieties and an identity element e ∈ G. If G is a subgroup of the general linear
group GLn of invertible matrices of rank n, then it is called a linear algebraic group
over k. A closed subgroup H of G is a subgroup, which is closed in the Zariski
topology.

2.1.2. The set of k-rational points of G carries a canonical group structure. We
often just call G a group or an algebraic group, even though we always mean a
linear algebraic group when the symbol G or H is used. We write G/k in case we
want to emphasize that the base field of G is k. The only exception is that we write
G for G/k. Here are some examples.

2.1.3 Example. The most basic example may be the group p-th roots of unity µp.
Another example is the multiplicative group Gm of invertible elements. If G and
H are algebraic groups, the product variety G × H is an algebraic group as well,
by considering the product morphisms mG ×mH , iG × iH and the identity element
eG × eH .

2.1.4 Example. If G is an algebraic group, the group theoretic concepts of the
center Z(G), the centralizer, the normalizer or the commutator subgroup [G,G] of
G extend to algebraic groups as well.

2.1.5 Example. Fix an algebraic closed field k with char(k) 6= 2. Consider the
following n-th orthogonal group On := {M ∈ GLn | MMT = e} for n ≥ 2. The
determinant map det: On → Gm is a well known homomorphism, also satisfying
det(M) = det(MT ). Thus we have det(e) = det(M)2 = 1 for all elements M
of On. We can restrict the determinant to µ2, without loss of generality and
obtain a surjective homomorphism of algebraic groups det: On � µ2. Since the
determinant map is continuous and µ2 consists of two irreducible components, we
see that generally On has two connected components for every n ≥ 2.

2.1.6 Definition. A linear algebraic group G is called connected, if it is irreducible
as a variety. If G is not trivial, it is called semisimple, if it is connected and G has no
nontrivial solvable, connected, normal subgroups. The n-fold product Gm× . . .×Gm

is called a split torus of rank n. We call a group T a torus of rank n, if it becomes
isomorphic a split torus of rank n over k. A torus of G is called maximal, if it is
not strictly contained in another torus of G. We call G split, if it contains a split
maximal torus. If G contains a split maximal torus which has rank n over k, we say
that G has k-rank n.

2.1.7. For a list of the concrete types (i.e. for example SOn, Spinn, SLn, etc.) of
split semisimple linear algebraic groups, including their definitions, see [Inv, §25]. It
is well known that for every such concrete type there is exactly one algebraic group
over an algebraically closed field. However, over an arbitrary field there are usually
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several kinds of the same concrete type, called twisted forms (of SOn for example).
We dedicate the Chapter 3 to discussing these issues. Speaking of types of groups,
there is another meaningful way of clustering algebraic groups. It takes a different
approach than writing down (matrix) equations, but relies on root systems.

2.2 Classification by Root systems

Our main references for the topic of root systems are [Inv, §24], from which we copy
most of our content.

2.2.1 Definition. Let V be a finite dimensional R-vector space and let V ∗ denote
its dual space. An endomorphism s ∈ End(V ) is called a reflection with respect to
α ∈ V for α 6= 0, if

1. s(α) = −α,

2. there is a hyperplane W ⊂ V such that s|W = Id.

We denote the reflection s by sα in that case. Consider the natural pairing

V ∗ ⊗ V → R, χ⊗ v 7→ 〈χ, v〉 = χ(v).

A reflection s with respect to α is then given by the formula s(v) = v − 〈χ, v〉α
for a unique element χ ∈ V ∗, with χ|W = 0 and 〈χ, α〉 = 2.

A finite subset Φ ⊂ V 6= 0 is called a (reduced) root system (Φ, V ) if

1. 0 6= Φ spans V .

2. If α ∈ Φ and xα ∈ Φ for x ∈ R, then x = ±1.

3. For each α ∈ Φ there is a reflection sα such that sα(Φ) = Φ.

4. For each α, β ∈ Φ, sα(β) = β is an integral multiple of α.

The elements α ∈ Φ ⊂ V are called roots. For α ∈ Φ, we define α∗ ∈ V ∗ by

sα(v) = v − 〈α∗, v〉 · α.

These α∗ are called coroots and generate the dual root system Φ∗ = {α∗ ∈ V ∗}.

Two root systems (Φ1, V1), (Φ2, V2) are called isomorphic if there is an
isomorphism of vector spaces φ : V1 → V2, with f(Φ1) = Φ2.

For a family of root systems (Φi, Vi) for i ∈ I, consider V = ⊕i∈IVi and the
union Φ = ⋃

i∈I Φi. Then the root system (Φ, V ) is called the sum of the Φi. A root
system Φ of V is called irreducible if it is not the sum of some root systems Φ1,Φ2.

2.2.2 Definition. Let Φ be a root system in V . We denote by Λr the additive
subgroup of V , which is additively generated by all α ∈ Φ. It is a lattice, called the
root lattice. A vector v ∈ V is called a weight, if α∗(v) ∈ Z for all α ∈ Φ. We obtain
another lattice
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Λ := {v ∈ V | 〈α∗, v〉 ∈ Z for all α ∈ Φ},

called the weight lattice.
2.2.3. Since any α ∈ Φ is contained in V as well, and 〈α∗, α〉 ∈ Z holds, we have
that Λr ⊂ Λ. Also by the properties of roots, the quotient Λ/Λr is finite.
2.2.4 Definition. A subset ∆ ⊂ Φ of a root system Φ in V is called a system of
simple roots or a base of Φ, if for any α ∈ Φ there are unique nβ ∈ Z, such that
α = ∑

β∈∆ nβ · β and either all nβ ≥ 0 or all nβ ≤ 0 holds. The number of elements
of ∆ is called its rank.
2.2.5. If ∆ ⊂ Φ is a base of Φ in V , its rank naturally equals the dimension
of V . We now outline how irreducible root systems can be classified. The
classification of reducible root systems then follows from decomposing a root system
into irreducible components and then applying the following classification method
by Dynkin diagrams.
2.2.6. (Dynkin diagrams) In [Inv, §24] it is explained that based on a system of
simple roots ∆, following certain rules, one can assign a diagram (which we also
denote by ∆) in a unique way to it, which is called Dynkin diagram. Fundamental
results on Dynkin diagrams include that a root system is irreducible if and only if its
Dynkin diagram consists of one component. The notion of the rank of ∆ transitions
also to Dynkin diagrams. The root system of E7 for example has rank 7, which
translates into its Dynkin diagram below having seven nodes.

x
x

x x x x x
1.

2.

3. 4. 5. 6. 7.

Two root systems are isomorphic, if and only if their Dynkin diagrams
coincide. Thus in order to classify (irreducible) root systems, one just needs to
classify (connected) Dynkin diagrams. This complete classification, including the
parameters nβ for all roots of any system of simple roots (and thus Dynkin diagrams)
is enlisted in [Inv, §24.A]. The surprising thing about it is that, apart from four
so called classic infinite families of Dynkin diagrams, denoted An, Bn, Cn, Dn (the
n denotes the rank), there are five unexpected ones G2, F4, E6, E7 and E8, called
exceptional.
2.2.7 Remark. It is rather obvious that for example the E6 root system is contained
in E7, since the respective Dynkin diagrams are contained in each other. However,
there are also much less obvious inclusions, such as D8 ⊂ E8 (see [BdS]).
2.2.8 Definition. Assume ∆ ⊂ Φ is a base of Φ in V . For ∆ and the weight lattice
Λ, we define the cone of dominant weights in Λ as

Λ+ := {χ ∈ Λ | 〈α∗, χ〉 ≥ 0 for all α ∈ ∆}.

It is well known that one can introduce a partial ordering on Λ, by setting χ > χ′

if χ′ − χ is a sum of simple roots. For any λ ∈ Λ/Λr there exists a unique minimal
dominant weight χ(λ) ∈ Λ+ in the coset λ.
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2.2.9. So far this section has nothing to do with algebraic groups at first sight.
Before we establish this connection, note that the theory of the Lie algebra Lie(G)
of an algebraic group is discussed in [Inv, §21]. Also it should already be clear, that
once one knows that there is some correspondence between algebraic groups and
Dynkin diagrams, the classification above transits to algebraic groups. This is the
other method of classification mentioned afore.

2.2.10 Definition. (From algebraic groups to Dynkin diagrams) Let G be a split
semisimple algebraic group and let Lie(G) denote its Lie algebra. We fix a split
maximal torus T ⊂ G. We define T̂ := Hom(T,Gm) and call it the character group
of T . Consider the adjoint representation of G introduced in [Inv, Exm. 22.19]

ad: G −→ GL(Lie(G)).

Restricting the adjoint representation to T , we obtain a subgroup ad(T ) of
GL(Lie(G)). As G is split, T is diagonalizable in the usual sense, thus by [Inv,
22.20] we have a direct sum decomposition of Lie(G) into some vector spaces Vα for
each 0 6= α ∈ T̂ , called the weights of ad. The weights are known to be uniquely
defined for Vα 6= 0. In this concrete setup, the weights are also called the roots of
G and denoted by Φ(G).

2.2.11 Theorem. ([Inv, Thrm. 25.1]) The set of all roots Φ(G) of G is a root
system in T̂ ⊗ R.

2.2.12. Because all split maximal tori in a split group are conjugate, the choice of
T ⊂ G does not effect Φ(G). Therefore we have a unique assignment of a Dynkin
diagram to a given split semisimple linear algebraic group, as announced.

2.2.13 Definition. Assume G is an algebraic group over k, which is not necessarily
split. Let G have Dynkin diagram ∆(G). We then say that G has the same Killing-
Cartan type, i.e. ∆(G) = ∆(G).

2.2.14. There are further isomorphism results on groups and root systems in [Inv,
§25], which are all intuitive. Now that we have sketched the proof of the classification
of simple (see [Inv, 25.A]) split algebraic groups by Killing-Cartan types, we can
deduce further properties of split groups from their root system.

2.2.15 Proposition. ([Inv, Thrm. 25.2]) For any α ∈ Φ(G) and χ ∈ T̂ one has
〈α, χ〉 ∈ Z. In particular Λr ⊂ T̂ ⊂ Λ holds.

2.2.16 Definition. Consider a split semisimple algebraic group G. We fix a split
maximal torus T ⊂ G. Then G is often denoted by Gsc and called simply connected,
if Λ/T̂ is trivial. In case T̂ /Λr is trivial, G is called adjoint and often written as
Gad. Let G be a not necessarily split semisimple algebraic group. We then call G
simply connected or adjoint if G is simply connected or adjoint respectively.
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2.2.17. By the proof of [Inv, Thrm. 26.7], Gsc is in fact the unique (up to
isomorphism) cover for any algebraic group G of the same Killing-Cartan type as
Gsc. This includes groups which are neither simply connected nor adjoint. By the
results in the reference there are surjective group homomorphisms Gsc → G→ Gad

with finite kernels for any such group G. Thus the term simply connected is not just
a random name, as Gsc does remind one to a universal covering space from topology,
which is characterized by being simply connected in the topological sense.
2.2.18. A similar kind of naming holds for the term of a group being adjoint. It
comes from the fact that the image of the adjoint representation of G has a trivial
center by [Inv, §25 Central isogenies]. By the reference, any adjoint group G is
isomorphic the factor group of the simply connected group of the same Killing-
Cartan type Gsc by its center Z(Gsc).
2.2.19. (Enumeration of simple roots) For enumerating the nodes of the Dynkin
diagram ∆(G) of G (and thus the simple roots), we use what is known as the
Bourbaki enumeration (see [Bou]). Also in case we cite results involving any possibly
different enumeration of the simple roots, we will translate it to this enumeration.
The only exception from this enumeration are the calculations done with the Chow
Maple package from [NS06], since its inputs rely on an enumeration which is due to
Stembridge and are used in the Maple package [St04], on which the one from [NS06]
is based on.
2.2.20. (Translation of enumeration) To help comprehending our results by the
Chow Maple package, we give the translation from Bourbaki to Stembridge. For
groups of type Dn the i-th Bourbaki root is the (n + 1 − i)-th Stembridge root.
For groups of type F4 the i-th Bourbaki root is the (5− i)-th Stembridge root. For
groups of types An, E6, E7, E8 the enumerations coincide. The roots of groups of
type Bn and Cn will not be considered.

2.3 Parabolic subgroups and projective, homoge-
neous G-varieties

This section roughly explains how certain projective varieties can virtually be
thought of as being attached to a given algebraic group (see [Hum2, §30]). We
assume first that the base field k is algebraically closed.
2.3.1 Definition. Let G be an algebraic group over an algebraically closed field
k. A subgroup B ⊂ G is called a Borel subgroup of G, if it is a closed, connected,
solvable group, which is not properly included in any bigger group satisfying these
properties. The collection of all such groups is an actual variety by [Hum2, 23.3]
and called Borel variety and denoted by X.
2.3.2 Definition. Let G be an algebraic group. A closed subgroup P ⊂ G is called
parabolic subgroup, if it includes a Borel subgroup of G. This also covers the case of
P being a Borel subgroup of G itself. The quotient G/P is projective and is called a
projective, homogeneous G-variety in this case. The term homogeneous means that
G operates transitively on G/P .
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2.3.3 Definition. (Notation) Consider a semisimple algebraic group G over an
algebraically closed field k. Let Θ be a subset of ∆(G). The simple roots in
Θ correspond to parabolic subgroups of G (see also [Shells, Chapter 2]). We
normalize the notation in the same way as in the reference. This means that the
group generated by the set theoretic complement of Θ is denoted by PΘ. Thus the
projective, homogeneous G-variety XΘ := G/PΘ has all elements generated by the
roots of G modded out that are not in Θ. We write X1,3, when Θ = {1, 3} holds for
example. In case Θ contains one element, PΘ is generated by all simple roots but
one and is also called maximal.

2.3.4. The extreme cases are Θ = ∅, which means XΘ ' Spec(k) and Θ = ∆(G),
in which case the projective, homogeneous variety X∆(G) is just the Borel variety.

2.3.5 Definition. Let G be an algebraic group over some field k. If G contains no
split torus of at least k-rank one, it is called anisotropic. If the k-rank of G is at
least one, we say that G is isotropic. If G contains a Borel subgroup over k, it is
called quasi split over k.

2.3.6. In the next chapter we will revisit the definition of the varietiesXΘ in the case
when G is anisotropic. For this one needs some Galois cohomological machinery.

2.3.7 Definition. We say a field extension L/k is Galois, if it is finite, separable
and normal. We denote the respective Galois group by Gal(L/k). We define the so
called absolute Galois group of k by

Γ := Gal(k/k) = lim←− Gal(L/k), for L/k Galois.

2.3.8 Remark. It is well known that Gal(k/k) acts on the Dynkin diagram of an
algebraic group as well. A group with a non trivial Gal(k/k)-action on its Dynkin
diagram, is called outer and otherwise inner. For this action to be non trivial, the
Dynkin diagram needs to admit some symmetry. One can also define being quasi
split using the Gal(k/k)-action (see [Inv, 27.C]). But we do only consider groups of
inner type in this thesis. Note that any group of inner type is quasi split if and only
if it is split by [Inv, 27.C the comment after Prop. 27.8].

Chapter 3
Torsors and cohomological invari-
ants

So far it did not necessarily become clear from our definitions, that there may
be anisotropic algebraic groups of the same concrete Killing-Cartan type over the
same field which are not isomorphic. Also we have considered algebraic groups
basically just as abstract objects arising from root systems. We would like to consider
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algebraic groups which are not split, but are so called twisted forms. Most properties
of twisted forms depend on some kind of underlying object. These objects are called
torsors. The theory of torsors for algebraic groups is strongly connected to Galois
cohomology, which in turn allows to introduce Galois cohomological invariants of
algebraic groups.

3.1 Galois Cohomology

This section contains a few basics on Galois cohomology. We copy all of it from
[Inv] and the fundamental work [Serre].

3.1.1 Definition. A discrete topological space M with continuous Γ-left action, is
called a Γ-set. If Γ acts by group homomorphisms on a Γ-set M , i.e.

σ(a1 ⊗ a2) = σ(a1)⊗ σ(a2)

holds, and if M is also a commutative group, we call it a Γ-module. Let M be a
Γ-module (resp. a Γ-set). If M is just a Γ-set, assume that n ≤ 1. We denote by
Hn(k,M) := Hn(Γ,M) the n-th Galois cohomology group of k (resp. the Galois
cohomology set) with values in M as defined in [Inv, §28.A].

If M,N are Γ-modules, one can consider the cup product

∪ : Hn(k,M)×Hm(k,N) −→ Hn+m(k,M ⊗Z N), (α, β) 7−→ α ∪ β.

It is inherited from the tensor product M ⊗Z N , which naturally arises from the
Γ-left action by group homomorphisms on M,N .

By [EKM, 99.C] there is a map resL/k : Hn(k,M) −→ Hn(L,M), for an arbitrary
field extension L/k, which is called the restriction from k to L. This includes the
case, where L is the function field k(X) for some smooth projective variety X.

3.1.2 Definition. Let µ2 denote the group of the second roots of unity and assume
that char(k) 6= 2 for a field k. Then by [Inv, §30] one can identify µ2 ⊗ µ2 with µ2,
so Hn(k, µ⊗n2 ) = Hn(k, µ2) holds for n > 0. We define the Galois cohomology ring
mod 2

H(k, µ2) :=
∞⊕
i=0

H i(k, µ2).

An element (a1)∪. . .∪(an) ∈ Hn(k, µ2) is called a pure symbol. It is a consequence
of the norm residue theorem mod 2, formerly known as the Milnor conjecture, that
each element α ∈ H(k, µ2) is a sum of pure symbols. The elements (ai) ∈ H1(k, µ2)
making up the pure symbols, α is a sum of, are called its slots.

Two elements α ∈ H(k, µ2) and β ∈ H(k, µ2) are said to have n common slots,
if there are n not necessarily distinct (ai) ∈ H1(k, µ2) occurring in every of their
summands. Assume all summands of α ∈ H(k, µ2) have n common slots (aj) for
j ∈ [1 : n]. Let β = (a1) ∪ . . . ∪ (an) hold. Then we say that β divides α.
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3.1.3. The first Galois cohomology H1(k,M) is of particular interest, especially
when M is a linear algebraic group. In this case H1(k,M) is known to be just a set.
We come back to this in the next section.

3.2 Torsors

We shortly explain to concept of torsors of an algebraic group and point out their
connection to Galois cohomology in this section (see [Inv, §28]).

3.2.1 Definition. ([Inv, Chapter VII]) Let G be a linear algebraic group over a
field k. A G-torsor or a principal homogeneous space over k is a non-empty algebraic
variety ξ over k equipped with an action of G such that G acts on ξ simply transitive.

Two G-torsors ξ and ξ′ are called isomorphic, if there exists a G-equivariant
isomorphism m : ξ → ξ′ over k.

3.2.2. Considering the right action of G on itself, the definition makes any algebraic
group G into its own torsor, called the trivial torsor. Note that any two G-torsors
over k become eventually trivial and thus isomorphic over k.

3.2.3 Definition. A G-torsor which can specialize to any given G-torsor is called
a versal torsor.

3.2.4. The mathematical term versal can conceptually be understood as the idea
of something being universal. The existence of versal torsors is proven in [GMS,
Chapter I 5.3]. As this idea suggests, proving or disproving something about a
versal torsor is often enough to cover all other cases.

3.2.5 Example. The torsors for groups of type G2 are known to correspond to the
so called Octonion algebras O (see [Inv, Thrm. 25.14 and §39]). The torsors for
groups of type F4 are known to correspond to Albert algebras (see [Inv, Thrm. 25.13
and §40]) and will be denoted by J .

3.2.6. For Albert algebras it is known, that some of them are division, while others
are not. It also known that the property of J being division, does not solely
determine whether Aut(J ) is isotropic or not. This makes the consideration of
the Tits index and later on Galois cohomological invariants necessary, which are
introduced in Section 3.4 and Section 3.6. There is a connection between the torsors
of an algebraic group and Galois cohomology.

3.2.7 Theorem. ([Inv, Prop. 28.14]) For a linear algebraic group G over an
arbitrary field k, there exists a functorial bijection from the set of isomorphism
classes of G-torsors over k to H1(k,G).

3.2.8 Remark. Note that while H i(k, µp) is an abelian group for all i ∈ N0 and
all primes p, the situation is very different for H1(k,G0), with G0 being some split
algebraic group. In that case we can only be sure about H1(k,G0) being a pointed
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set with the trivial torsor as the distinguished element. For example we can consider
the reduced norm map Nrd: GL1(A) −→ Gm (see [Inv, §20]) for some central simple
algebra A (see section 3.4). Using a Hilbert 90 type argument (see [Inv, Corollary
29.4]), one can show that H1(k, SL1(A)) ' k∗/Nrd(A∗) holds . For groups of type
E7 instead there is not any such description, as the E7-torsors are only known rather
abstractly (see [Gar01]). The E8 case marks the least understood one.

3.3 Twisted forms

In this section we take on twisted forms. Note that in [Inv, §28.C.] the notion of
the actual twisting is explained.

3.3.1 Definition. Let G0 be a split semisimple algebraic group over k. Consider
two torsors ξ, ξ′ ∈ H1(k,G0) and the groups G ' ξG0 and G′ ' ξ′G0. Then G and
G′ are called (inner) twisted forms of G0 and also of each other. Twisting a group G
by a versal G0-torsor (defined over a larger field) results in a so called versal form
of G. We call any group G simply connected or adjoint, if the split G is simply
connected or adjoint respectively.

3.3.2. In case one twists a split group G0 with a versal G0-torsor ξ, the invariants
of ξG0 take in some sense the highest possible or most abstract value. For example,
twisting G0 with a versal torsor, will result in a form of G0, which is anisotropic. In
contrast to this, twisting with the trivial torsor results in the split form G0 itself.

3.3.3 Definition. (Twisted G-varieties) So far, we have introduced the G-
varieties G/PΘ only in case G is split. Let G0 be a split group over k and let ξ be a
G0-torsor. Let PΘ is be a parabolic subgroup of G0. Note that PΘ is also necessarily
split. Let G ' ξG0 hold. We reset XΘ := ξ(G0/PΘ), to denote the twist of G0/PΘ
by ξ. Consider some field extension L/k, we then set XΘ/L := res(ξ)L/k(G0/PΘ) or
simply say that we consider XΘ over L.

3.3.4. Equivalently we can define the varieties XΘ as the varieties of parabolic
subgroups of G = ξG0 of type Θ. Observe that by [SGAIII, Cor. XXVI.3.6] these
varieties are defined over k. This also includes the case of the Borel variety. We
obtain the following very well known corollary.

3.3.5 Corollary. Let X be the Borel variety of an algebraic group G of inner type
over k. Then G is split if and only if X has a k-rational point.

Proof: By the definition of quasi split groups, G is quasi split exactly if it has a
Borel group defined over k. This is measured by X having a rational point over k.
As by [Inv, 27.C the comment after Prop. 27.8] any group of inner type is split (i.e.
contains a split maximal torus) if it is quasi split, the claim follows.

3.3.6. Twisting a split group G0 into G, does not just determine whether its
anisotropic or not, but also alters other features as we will see. Attempting to
describe and classify these changes is the actual reason we are interested in the
motivic decompositions of the respective projective, homogeneous G-varieties.
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3.4 The Tits index

In this section we introduce the Tits index. This invariant of algebraic groups was
introduced in [Tits66] and is one of the most important ones in algebraic group
theory. Note that since we only consider groups of inner type in this thesis, we omit
the notion of the Gal(k/k)-action in conjunction with the definition of Tits index
(see [Inv, §26]).

3.4.1 Definition. Let G be a semisimple algebraic group over k. Let T (G) ⊂ ∆(G)
be the set consisting of the simple roots αi, for which the G-varieties Xi have a
rational point over k. Then T (G) is called the Tits index of G over k. Choose a
maximal split torus T in G. Then one considers its centralizer denoted by ZG(T ).
The derived subgroup [ZG(T ), ZG(T )] of ZG(T ) is then defined to be the semisimple
anisotropic kernel of G over k. We denote it by Gan. Sometimes we just call it the
anisotropic kernel of G.

3.4.2 Example. If for some algebraic group G/k, the variety XΘ has a rational
point over k only for Θ = {1}, we have T (G) = {1} for example. Note that the Tits
index of an anisotropic group is by definition equal to the empty set. Finally note
that the disjoint union of ∆(Gan) and T (G) equals ∆(G).

3.4.3. All theoretically possible Tits indexes are enlisted in [Tits66]. Interestingly
only a few of those that are combinatorially possible exist. An extended version of
the table in [Tits66] was provided in [DG]. It does also contain the information of
whether a Tits index can occur over a p-special field or not. The refined version of
the Tits index is called a Tits p-index. The table also contains information on the
Tits algebras, which we introduce later. We will from now on refer to these tables
as the Tits classification. We sometimes call a Tits p-index, a Tits index occurring
mod p. As can be seen in the reference, one can visualize the Tits index by circling
the respective nodes in the Dynkin diagram.

3.4.4 Remark. Any torus in G/k of k-rank n extends to a torus in G/L of at least
L-rank n over a field extension L/k. Therefore T (G/k) ⊂ T (G/L) holds in general.
A group G is quasi split if and only if T (G) = ∆(G) holds. Note that if G is adjoint
and ∆(Gan) is not connected, then Gan it is not a direct product in general, but it
is often known to be a central product.

3.4.5. If one considers the anisotropic Tits index of some group considered over k,
then the other Tits indexes theoretically arise over some field extensions of L/k and
L′/k. But even in case they do, this does not mean that the isotropic XΘ over LL′
are exactly those which are either isotropic over L or L′. Consider the following
example.

3.4.6 Example. Take an isotropic group of type A5. By the Tits classification, it
is possible for such groups to have {3} or {2, 4} as Tits index. Extending scalars
does in any case either split the respective group or does not alter the Tits index.
Thus one can not obtain the Tits index {2, 3, 4} = {3} ∪ {2, 4}.
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3.5 Central simple algebras and Brauer groups

For a deep treatment of the topic of central, simple algebras and their relation to
Galois cohomology, see [GSz], which is our main reference for this section. The goal
of this subsection is just to introduce the Brauer group, its elements and a well
known isomorphism in Galois cohomology. We just cite several lemmas to make it a
bit comprehensible how the Brauer group was even invented. This section probably
marks the least innovative one.

3.5.1 Definition. A finite dimensional k-algebra A is called central if its center is
isomorphic to k. When every two sided ideal of A is trivial or A itself, then A is
called simple. In case A is as central and simple k-algebra, we call it a CSA over k
and often write A/k.

3.5.2 Lemma. ([GSz, Lemma 2.2.2]) Let A be a finite dimensional k-algebra and
let L/k be a finite field extension. Then A/L is a CSA if and only A/k is a CSA.

3.5.3 Lemma. ([GSz, Corollary 2.2.3.]) Let A be a CSA over k. Then the
dimension of A as a k-vector space is a square.

3.5.4 Definition. Let A be a CSA over k. The integer
√

dimk(A) is called the
degree of A. If Matn×n(L) ' A/L holds for a field extension L/k and a suitable n,
we say that L splits A or A splits over L.

3.5.5 Lemma. ([GSz, Corollary 2.2.6]) Let A be a CSA over k. Then there exists
a finite, separable field extension L/k over which A splits.

3.5.6 Wedderburn’s Theorem. ([GSz, Theorem 2.1.3.]) Let A be a CSA of degree
n over k. Then there exists a unique division algebra D, such that A ' Matm×m(D)
for a suitable m.

3.5.7 Definition. Let A be a CSA over k, with A ' Matm×m(D) for a division
algebra D. The degree of D is called the index of A. We write ind(A) for it.

3.5.8 Definition. (The Brauer group of a field) Given two CSAs A,B over k,
we say that A is Brauer equivalent to B, if there is a division algebra D over k
and positive integers m,n, such that A ' Matm×m(D) and B ' Matn×n(D). If
A ' Matm×m(D) holds, then D is Brauer equivalent to A. The set of CSAs over k
mod Brauer equivalence and equipped with the tensor product ⊗ as an operation is
called the Brauer group of k and denoted by Br(k) (see [GSz 2.4]).
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3.5.9. That Br(k) is actually a group can be seen by considering the opposite algebra
Aop of A (see [GSz, Proposition 2.4.8.]). The fact that Br(k) is also abelian, follows
naturally from the tensor product of CSAs being a commutative operation.

It also known that the Brauer group of a field has torsion. The subgroup of
p-torsion elements of Br(k) is usually denoted by pBr(k). Often the Brauer group is
considered as an additive group and thus + is used for denoting the group operation.
The following connection between the Brauer group and Galois cohomology groups
is well known and important.

3.5.10 Theorem. ([Inv, p. 397 and §30]) Let Gm denote the multiplicative group
over k viewed as an algebraic group. There are isomorphisms Br(k) ' H2(k, Gm)
and pBr(k) ' H2(k, µp).

3.6 Cohomological invariants

We now introduce the notion of cohomological invariants for algebraic groups very
briefly. On the one hand this is necessary for being able to properly introduce Tits
algebras in the next chapter. On the other hand we will prove the existence of a
cohomological invariant for certain groups of type E7 in the final chapter. This
involves the invariants of F4, which requires them to be introduced priorly. Our
references for this topic, originally introduced by Serre, are [GMS] or [Inv].

3.6.1 Definition. Let G be a split algebraic group over a field k and let M be a
Γ-module. A map

m : H1(k,G) −→ Hn(k,M),

which is functorial in k and with m(0) = 0 is called a normalized degree n
cohomological invariant of G. If M ' µ⊗(n−1)

p holds, we say that m is an invariant
mod p.

We write Invn(G,Q/Z(n − 1))norm to denote the group of normalized degree n
invariants of G (see [GMS, Appendix A]).

A normalized invariant fn of degree n is called decomposable, if there is another
invariant fm and some α ∈ H(k,Q/Z(n)), such that fn = fm ∪ α. Otherwise it is
called indecomposable. The factor group

Invn(G,Q/Z(n− 1))ind := Invn(G,Q/Z(n− 1))norm/Invn(G,Q/Z(n− 1))dec

is named the group of indecomposable invariants of degree n, while the denominator
on the right hand side is the group of decomposable invariants of degree n of G.
It follows from our definition, that both of these groups contain only normalized
invariants.

3.6.2. See [GMS, Part 2] for further details. Let us assume that the characteristic of
k is not p. We have that µ⊗(n−1)

p is contained in Q/Z(n− 1), so all mod p invariants
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of degree n are of course contained in Invn(G,Q/Z(n−1))norm. It is well known that
for each group type there are so called torsion primes p (see [GMS]) and in case p
is not a torsion prime for G, then Invn(G, µ⊗(n−1)

p ) is trivial for all n.

3.6.3. For algebraic groups of type Bn, Dn, G2 the only torsion primes are 2. Groups
of type F4, E6 and E7 also have 3 torsion. The most exceptional cases are constituted
by E8, which also haves 5 torsion, and An, for which every prime p dividing n + 1
is known to occur as torsion prime. A famous cohomological invariant of degree 3
is the Rost invariant.

3.6.4 Theorem. ([GMS, Part 2. Thrm. 9.11]) For an absolutely simple simply
connected algebraic group G, the group Inv3(G,Q/Z(2))norm is finite cyclic and with
canonical generator RG.

3.6.5. The generator RG from the theorem is the mentioned Rost invariant.
It is of great interest, since for the group of invariants of degree 2, one has
Inv2(G,Q/Z(1))norm ' Pic(G) by [Inv, Proposition 31.19]. Combining with the fact
that for every semisimple simply connected group Pic(G) = 0 holds (see [San,
Lemme 6.9]), one sees that there is no non trivial degree 2 invariant for simply
connected groups.

Thus the degree three invariants are naturally the next biggest invariants for
simply connected groups to consider in terms of degree. For groups G of type F4 a
lot is known about the cohomological invariants of H1(k,G).

3.6.6 Theorem. ([Inv, §40]) Let F4 denote a split group of the same type over a
field k of characteristic unequal to 2, 3. There are the following invariants defined
on H1(k, F4), which distinguish the Albert algebras J ∈ H1(k, F4).

f3 : H1(k, F4) −→ H3(k, µ2)

g3 : H1(k, F4) −→ H3(k, µ⊗2
3 )

f5 : H1(k, F4) −→ H5(k, µ2)

Further consider G ' Aut(J ). The Albert algebra J is division if and only if
g3(J ) 6= 0 holds. Assume it is not division. Then the group G is isotropic if
and only if f5(J ) = 0 holds. Generally G is split if and only if f3(J ) = g3(J ) = 0
holds. Additionally, f3(J ) always divides f5(J ). Lastly, when J is division, G is
anisotropic.

3.6.7 Remark. Even though Albert algebras J are not the F4-torsors, but just
correspond to them, we often write J ∈ H1(k, F4). We proceed the same with
Octonion algebras.

3.6.8. The f3 invariant is often referred to as the even part of the Rost invariant
RF4 . It defines an Octonion algebra O over k. We can think of O as lying under J ,
just like a division algebra lies under a CSA by Wedderburn’s theorem. Except for
the striking difference that it is possible for O to be split (i.e. f3(J ) = 0) without
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J being split as well (i.e. g3(J ) 6= 0) as the statements from [Inv, §40] suggest. In
case g3(J ) is zero, J is also called reduced.

3.6.9. The Rost invariant was first discovered for Octonion algebras by Hurwitz. It
yields an invariant f3 : H1(k,G2)→ H3(k, µ2). Assume we assign to a given Albert
algebra its underlying Octonion algebra. Since this assignment is surjective by the
construction methods of Albert algebras introduced in [Inv, §39], combining it with
the f3 invariant of G2 one obtains the f3 from the theorem.

3.6.10 Remark. A question naturally arising in conjunction with the Rost invariant
is, whether any simply connected algebraic group with zero Rost invariant is split,
like in the case of groups of type G2 and F4 (see [Inv, §39] again). For groups of type
E8 it is not always the case by a result of Jacobson (see [Jac]). This was exploited in
[S16] to construct an indecomposable degree five invariant for anisotropic groups of
type E8 with zero Rost invariant, out of the motivic decompositions of the projective,
homogeneous E8-varieties. This inspired our final chapter, even though we consider
adjoint groups of type E7, for which the Rost invariant is not defined.

3.6.11. In fact very little is known about cohomological invariants of torsors of
adjoint groups of type E7. Above degree two, the only result so far is given by
Merkurjev, who has calculated the group of indecomposable degree 3 invariants in
[Mer16]. It turns out, that for torsors of simple adjoint E7s all indecomposable mod
2 invariants of degree 3 are trivial (see [Mer16, Theorem 4.9]). The example below
is an interesting consequence from this result, which is seemingly unnoticed by the
experts so far.

3.6.12 Example. (Invariants of E7 and an application) In [Gar01], objects
corresponding to the E7-torsors, called gifts were determined. Take a CSA of degree
56 named A and a symplectic involution τ on A (see [Inv §2] for involutions). Then
one needs a map π : A → A fulfilling five special requirements in relation to τ (see
[Gar01, Definition 3.2]). The triple (A, τ, π) then forms a gift.

From the definition of gifts, it is not clear whether for a given pair (A, τ) there
is such a π, to make (A, τ, π) a gift. But it is well known that the pairs (A, τ)
correspond to C28-torsors. Consider a group of type C28 given by PGSp(A, τ).
Simply deleting π from the gift (A, τ, π), gives a map m : H1(k,Ead

7 )→ H1(k, C28).
In [Mer16, Theorem 4.6], we see that that Inv3(PGSp(A, τ), µ2)ind is cyclic of

order two. We denote its generator by f3. Composing f3 withm, yields a normalized
invariant

f3 ◦m : H1(k,Ead
7 ) −→ H3(k, µ2).

This composed invariant f3 ◦m must be indecomposable, since f3 is indecomposable
(in fact the only invariant of lower degree is the Tits algebra introduced next chapter
and which is A ∈ Br(k) and also coincides for both groups involved). But as
Inv3(Ead

7 , µ2)ind = 0, as proven by Merkurjev, it follows that the composition f3 ◦m
is zero in general. It follows that any C28-torsor (A, τ), for which f3 is not zero, can
not lie in the image of m. Thus we see that f3 detects (at least some) pairs (A, τ),
which do not admit a map π, such that (A, τ, π) is a gift.
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3.6.13. (Tits constructions) Another application of the Galois cohomology functor
in the realm of algebraic groups is the construction of groups out of others. This
often works as follows. Consider an embedding of split groups H ↪→ G. It is not
required that H is simple, i.e. one could for example choose H to be of type A2×A2
and G to be of type E6. Then apply H1(k,−) and consider the induced pushforward
map. The fiddly part is then to prove statements on the output in terms of the input.

3.6.14. The original idea of this procedure is due to Tits and bears his name,
although there are also some concrete constructions of certain groups referred to
as Tits constructions as well. Adjoint groups of type E7 mod 2, for example are
proven to completely arise from a D6 × A1 construction by Petrov in [P13]. This
construction however is far from being deciphered in terms of their input versus their
output yet. In the second last chapter, we take a look at a F4 × A1 construction
also originally due to Tits and present the outputs in terms of the cohomological
invariants of the input. We need the notion of Tits algebras for such considerations,
which we present in the next section.

3.7 Tits algebras

We now introduce the first ever discovered general construction of a cohomological
invariant of algebraic groups, the Tits algebras (see [Tits71]). There are many
possibilities to construct Tits algebras. For a compact overview on several of
these see [S15, Chapter 3 and 4]. We loosely copy the methods of construction
via boundary morphism and representations from this source (see [Inv, §27] for a
deeper treatment). We need a bit more of representation theory, as Tits algebras
actually measure to which degree a certain representation is defined over the base,
if one wants to call it that.

3.7.1 Definition. Let G0 be an split semisimple algebraic group over k. We fix a
split maximal torus T ⊂ G0 and consider an irreducible representation
ρ : G0 → GL(V ). Restricting ρ to T , we obtain some weights in Λ (analogously to
the case of the adjoint representation), since T is diagonalizable. Using the partial
ordering (see [Inv, §24]) on these weights, we can pick a biggest element, called the
highest weight of ρ.

3.7.2 Definition. (Tits algebras via representation theory) Consider a split
semisimple algebraic group G0. We fix a split maximal torus T ⊂ G0. Now consider
an (inner) twist G of G0 by an ξ ∈ H1(k,G0), and fix an ω ∈ Λ+ ∩ T̂ . The CSA
denoted Aω is called a Tits algebra of G corresponding to ω, if there is a group
homomorphism
ρ : G→ GL1(Aω), such that the representation ρ⊗ ksep : G/ksep → GL1(Aω ⊗k ksep)
of the split group G/ksep is the representation with the highest weight ω.

Let Λr be the root lattice of G. There is the Tits homomorphism (see [Inv, 27.7])

β : Λ/Λr −→ Br(k), ω 7−→ Aω
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where Aω is the Tits algebra of G of the weight ω ∈ Λ+ ∩ T̂ , which is the unique
representative of ω in Λ/Λr. If all Tits algebras of G are split, G is called strongly
inner.

3.7.3 Remark. By [Inv, Thrm. 27.1] there is in fact a bijection between Λ+∩T̂ and
the set of isomorphism classes of irreducible representations ρ of G0, mapping the
class of ρ to its highest weight ω. So the number of possibly non Brauer equivalent
Tits algebras is for example bounded by the rank of G0.

3.7.4 Definition. (Tits algebras via boundary morphism) Consider a split
semisimple algebraic groupG over a field k. We consider the following exact sequence

1→ Z(G)→ Gsc → G→ 1,

with Z(G) denoting the center of G and Gsc the split simply connected group with
the same type as G. Note that G ' Gsc/Z(G) is just the split adjoint group of the
same type as G. The sequence induces a long exact sequence in Galois cohomology
(see [Serre]), from which we can cut out the following piece

H1(k,Gsc)→ H1(k,G) ∂−→ H2(k, Z(G)).

Now we consider an irreducible representation ρ : G → GLn. We restrict it to the
center and obtain λρ : Z(G) → Gm. This map does induce a map (λρ)∗ on the
Galois cohomology level, which gives us the following composition.

H1(k,G) ∂−→ H2(k, Z(G)) (λρ)∗−−−→ H2(k,Gm) ' Br(k).

The image of any ξ ∈ H1(k,G) under this composition is called the Brauer class of
a Tits algebra of the twist ξG. Since ξ is fixed, it depends only on ρ and is denoted
by Aρ. The number of elements λρ ∈ Hom(Z(G),Gm) = T̂ /Λr is finite. Thus the
number of Brauer classes of Tits algebras of ξG is finite, too.

3.7.5 Remark. ([GSV, p. 11 Example 4)]) For algebraic groups of type E7, the
Tits algebras Aωi for i = 1, 3, 4, 6 are always split, while the Tits algebras Aωi for
i = 2, 5, 7 are Brauer equivalent. Thus for a group G of type E7, we can speak of
the Tits algebra A of G, although we usually mean Aω7 . Also the Tits algebras mod
3 are split for all groups of type E7. The dependence of the possible indexes of A,
which are {1, 2, 4, 8}, from the Tits index is also included in the Tits classification
in [DG].

3.7.6 Example. Every group of type G2, F4 or E8 is simply connected and adjoint,
since for each of these types the root lattice and the weight lattice coincide (see [Inv,
24.A]). Thus all Tits algebras for groups of these types are split.

3.8 Severi-Brauer varieties

3.8.1 Definition. Let A denote a CSA with deg(A) = n. Its well known that the
dimension of any right ideal I in A, is divisible by deg(A). We call the quotient
rdim(I) := dimk(I)/deg(A) the reduced dimension of I. Then the variety
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SBi(A) := {I ∈ A | I is a right ideal of A, with rdimk(I) = i}

is called, the i-th Severi-Brauer variety of A, for i being an integer in [1 : n − 1].
For i = 1 we simply write SB(A) and call it the Severi-Brauer variety of A.

3.8.2. It is well known (see [GSz, 5.1]) that Severi-Brauer varieties SB(A) are twisted
forms of projective spaces. Thus the Chow rings mod p of SB(A)/k are simply
isomorphic to Fp[h]/〈hm〉, while m is known to be equal to deg(A). Another well
known fact is that A with ind(A) = pj, reduces its index over k(SBpm(A)) to pm for
m ≤ j (see [SvB]). If one passes to k(SBl(A)), such that gcd(pj, l) = 1 holds, SB(A)
splits and the class of A becomes split by the following remark.

3.8.3 Remark. ([GSz, Remark 5.3.7]) A direct consequence from the results on
[GSz, section 5.3] is that if A is a CSA over k, its class in Br(k) is trivial if and only
if SB(A) has a rational point over k. This naturally applies to any field extension
L/k and thus A ⊗k L is trivial in Br(L) if and only SB(A)/L = SB(A ⊗k L) has a
rational point.

3.8.4. As every variety X has rational points over k(X), it is clear that A is split
over k(SB(A)) by the lemma above. In the case an algebraic group G has non trivial
Tits algebras Ai for i ∈ [1 : n] over k, this raises the question whether G splits over
k(SB(Ai)) for some i. For groups of type E7 we describe the general criteria for this
to happen in Chapter 7.

3.8.5 Example. By checking the Tits classification of the Tits indexes of E7, we can
already find such a case as special case. Every group G of type E7 with anisotropic,
semisimple kernel of type A3

1 (these always have a Tits algebra A of index two) is
split over k(SB(A)). This follows because there is only one Tits index with at least
the same nodes circled like in the case of G having anisotropic kernel of type A3

1 and
additionally having split Tits algebra, namely the split one.

Chapter 4
Quadrics and involution varieties

4.1 Quadratic forms and quadrics

In this section we introduce some of the most basic definitions and fundamental
results about quadratic forms. Everything can be found in [EKM]. The content is
just intended for the sake of completeness, it is very well known to everyone working
in the field.

4.1.1 Definition. Let k be a field with char(k) 6= 2. A quadratic form or just
form q over k of rank(q) = n is a homogeneous polynomial over k of degree 2 in n
indeterminate variables Xi.
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It is well known that one can diagonalize every quadratic form, i.e., bring it to
the form q = ∑n

i=1 aiX
2
i , with ai ∈ k, and q is called non degenerate, if all ai ∈ k∗. In

this thesis we consider only non degenerate quadratic forms. The smooth projective
variety

Xq := {a ∈ Pn−1 | q(a) = 0} ⊂ Pn−1

of dimension n − 2 is named a quadric. The form X2 − Y 2 is called a hyperbolic
plane. A quadric Xq or the form q are called isotropic over k if Xq has a k-rational
point. Otherwise it is called anisotropic.

4.1.2. For the definition of the addition ⊥ and multiplication ⊗ of quadratic forms,
see [EKM, p. 44] and [EKM, p. 51]. It is well known that Xq is isotropic if and
only if q contains a hyperbolic plane as a subform. In that case one can cancel the
hyperbolic plane or planes, to obtain an anisotropic subform. It is also a fundamental
result by Witt, that if two quadratic forms are isometric after one has canceled at
least one hyperbolic plane, they are already isometric before cancellation (see [EKM,
Thrm. 8.4]).

4.1.3 Definition. For quadratic forms q, p, we write q ⊥ p for their orthogonal sum
and q⊗p for their tensor product. If a form q is isotropic, we say that it splits off one
(or several) hyperbolic planes. The isometry class of a maximal anisotropic subform
of q is called its anisotropic kernel. If q consists only of hyperbolic planes, it is called
hyperbolic and Xq is called split. The number of hyperbolic planes contained in q
over k is called the Witt index of q over k and denoted w(q/k) or just w(q).

4.1.4 Definition. (Splitting pattern) Assume q is anisotropic over k. Since passing
to k1 := k(Xq) necessarily makes q isotropic, its Witt index will become positive.
The Witt index of q over k(Xq) is called the first Witt index of q, denoted by w1(q).

Assume q1 is the anisotropic kernel of q over k1. Then one can pass to k1(Xq1)
and repeat the procedure. The Witt index of q over ki, is named the i-th Witt index
and denoted by wi(q). One eventually finds a field ki over which q is split, i.e.,
its Witt index equals [dim q/2]. The sequence of Witt indexes one obtains, carries
important information on q. We define the so called splitting pattern of q by

[w1(q), w2(q)− w1(q), . . . , wm(q)− wm−1(q)].

In this definition wm(q) marks the last Witt index in the described process until q
is split. Thus the splitting pattern has length m. This way of writing down the
splitting pattern uses the so called relative Witt indexes. Some authors use the
absolute splitting pattern [w1(q), w2(q), . . . , wm(q)] sometimes. A table containing
the relative splitting patterns for quadratic forms up to rank 12 can be found at the
end of [Vis04] and will be referred to as the splitting pattern table.

4.1.5 Example. For a quadratic form q of rank(q) > 4 consider the algebraic group
G ' SO(q) (see [Inv, §23]). It is known that the G-variety X1 is isomorphic to Xq.
Thus X1 is isotropic if and only if Xq is. But much more is true. The Witt index of
q is reflected in the Tits index of G and vice versa. If for example q is a rank 2n form
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and has Witt index i ≤ n, the anisotropic kernel of Dn ' SO(q) is Dn−i ' SO(q′)
with q′ denoting the anisotropic kernel of q.

4.1.6 Definition. Let us consider the set of isomorphism classes of all quadratic
forms over k denoted by Ŵ (k). With ⊥ and ⊗ it is a ring. It contains an
ideal generated by the hyperbolic plane X2 − Y 2. The Witt ring is defined as
W (k) := Ŵ (k)/〈X2 − Y 2〉. Often when we deal with a quadratic form, we actually
mean the class of q in the Witt ring. One invariant defined on W (k) for example is
the (signed) discriminant

disc: W (k) −→ k∗/k∗2,
∑n
i=1 aiX

2
i 7−→ (−1)n(n−1)/2 ∏n

i=1 ai.

4.1.7. On the Witt ring one can define a map assigning to q its rank, considered
mod 2. The kernel of this map I, which is also called the fundamental ideal, and its
powers define a filtration on the Witt ring, which is then key to the development of
the modern quadratic form theory.

A part of it are Milnor’s famous conjecture (which now is a theorem). Thanks
to this highly non trivial result, one can identify In/In+1 with Hn(k, µ2) via an
isomorphism rn for any n ∈ N0 (see [EKM, §16] for more on Voevodsky and the
Milnor conjecture). For example, r1 is induced by disc(−), as H1(k, µ2) ' k∗/k∗2

holds.

4.1.8 Definition. Consider the quadratic form X2 − aY 2 for some a ∈ k∗. We
denote it by 〈〈a〉〉. We write ϕn = 〈〈a1, . . . , an〉〉 for the tensor product ⊗n

i=1〈〈ai〉〉. It
is called a n-Pfister form. Its class in Hn(k, µ2) under rn is known to be the pure
symbol (a1) ∪ . . . ∪ (an).

4.1.9. It is very well known that any Pfister form is either anisotropic or hyperbolic
and that among quadratic forms of even rank, Pfister forms uniquely satisfy this
property up to scaling. Further it is well known that any proper subform ϕ′ of an
anisotropic Pfister form ϕ over k which is also a Pfister form, stays anisotropic over
k(Xϕ) (this follows from [EKM, Thrm. 26.5]).

If for example one passes to the generic point of Xϕ for ϕ = 〈〈1, 1, 1, 1, 1〉〉 over
R, the form 〈〈1, 1〉〉 stays anisotropic. If however the rank of two Pfister forms ϕ, ϕ′
coincides and let us say Xϕ′ is hyperbolic over k(Xϕ), then ϕ and ϕ′ are isometric
over k by [EKM, Corollary 23.6]. Lastly, it is also known that the n-Pfister forms
over k generate In additively.

4.2 Involution varieties

In this section we introduce varieties naturally assigned to pairs (A, σ), for a CSA A
with an orthogonal involution σ. The original involution varieties (see [Tao92]) are
known to be twisted forms of quadrics. For the theory of involutions, along with the
adjoint form qσ and the discriminant of orthogonal involutions and a classification
of group types like SO(A, σ) or HSpin(A, σ), see [Inv, §26].
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4.2.1 Definition. Let A be a CSA of degree deg(A) = 2n over k and let σ be an
orthogonal involution on A with trivial discriminant. Then

I(A, σ)i := {I ⊂ A | I is a right ideal of A, with rdimk(I) = i and σ(I)I = 0}

is called the i-th involution variety of (A, σ), for i being an integer in [1 : n]. We
just write I(A, σ) for the first involution variety. Involution varieties for i > 1 are
also often called generalized involution varieties.

4.2.2. One can define an analogue for symplectic involutions τ and extend the
definition to groups of type Cn. But we do not use or prove anything making these
considerations necessary. The interesting part is, that the G-variety Xi for a group
G of inner type Dn, is known to be isomorphic to I(A, σ)i or I(A, τ)i for i < n− 1.
The cases of i = n − 1 or n constitute a special case by [MT95, Examples 2.4.5],
as I(A, σ)n−1 is in fact Xn−1,n, while I(A, σ)n is not a homogeneous variety and
consists of two connected components, which are Xn−1 and Xn.

If one splits A by passing to k(SB(A)), the involution variety I(A, σ) becomes
isomorphic to a quadric Xqσ . The quadratic form qσ over k(SB(A)) is solely defined
by σ (see [Inv §1]) and is said to be adjoint to σ.

4.2.3. It is well known, that I(A, σ) is a closed subvariety of SB(A) of codimension
1. This is not true for i > 1, as comparing dimensions shows. One may wonder
what the Tits index of G over k(SB(A)) is. Despite all efforts this is still a widely
unsolved issue if A is not division. Some insight is given by a result of Karpenko.

4.2.4 Theorem. ([Kar09, Thrm 3.3]) Let (A, σ) be a CSA with deg(A) = 2n, Brauer
class D, an orthogonal involution σ and ind(A/k) = a. Let qσ be the quadratic form
adjoint to σ over k(SB(D)). Then the Witt index of qσ is divisible by a.

4.2.5 Remark. In [Inv, 8.B] the definition of the Clifford algebra (see [EKM, §11])
is extended from quadratic forms q to (A, σ). Also, some of the Tits algebras ωi
for a group of type Dn defined by (A, σ), may be trivial over k(SB(A)) where qσ is
defined, but not over k.

Concretely the Tits algebras Aωi over k are trivial, when i ≤ n − 2 is even by
[MT95, the part before Corollary 2.11] and isomorphic to A, when i is odd. We see
that if Dn is defined by a quadratic form (i.e. A is split), the only ωi for which the
Tits algebras are possibly not trivial are i = n− 1, n.

Chapter 5
Chow motives

In this chapter we introduce the motivic category Mk of Chow motives with Fp
coefficients of smooth projective varieties over k, alongside some of its features. As



26

a preparation we start with Chow rings, before we can properly defineMk. Good
resources are [Ful] and [EKM, Chapter X]. For motives exclusively one can use
[EKM, Chapter XII]. We then introduce the notion of upper motives and explain how
the motivic decompositions of projective, homogeneous G-varieties can be restricted
to the study of their upper motive. This constitutes a major simplification to the
task of calculating the motivic decompositions of all projective, homogeneous E7-
varieties.

We then introduce the theory of shells, which has been used in [Shells] to establish
the mod 3 motivic decompositions of the projective, homogeneous E6-varieties
and was fundamental to a lot of proofs. Also we give many examples of known
decompositions, including proofs, to display how to apply the techniques introduced
previously. The examples and their proofs are also established to be referenced to
later on, when we calculate the much more complicated decompositions for E7. We
close the chapter by mentioning a well known algorithm, which calculates motivic
decompositions of projective, homogeneous G-varieties, provided G is isotropic.

5.1 The Chow functor and algebraic cycles

The category of Chow motives arises from a construction incorporating the
Chow functor and thus the notion of Chow groups and algebraic cycles. These
fundamentals of intersection theory can be found in [Ful]. We assume the reader
knows about algebraic cycles and rational equivalence. A survey on the concept of
an adequate equivalence relation for defining Chow groups (also of different kind
than the ones we use) can be found in [Sam].

5.1.1 Definition. Let k be a field. For some smooth variety X, we denote the i-th
Chow group of algebraic cycles of dimension i on X up to rational equivalence, with
Z coefficients by CHi(X). The i-th Chow group of algebraic cycles of codimension
i on X up to rational equivalence, with Z coefficients is denoted by CHi(X).

We define the Chow ring of X by CH∗(X) := ⊕dim(X)
i=0 CHi(X). Additionally we set

Chi(X) := CHi(X) ⊗ Fp and Ch∗(X) := CH∗(X) ⊗ Fp. The definition of CH∗(X)
and Ch∗(X) are analogues.

If U is a closed subvariety of X, we denote its class in CH∗(X) also by U and
usually refer to it as a cycle, too. A cycle α ∈ CHi(X), which solely represents the
class of a closed subvariety of X, is called a prime cycle.

5.1.2 Remark. Most of the time we do not include the grading when writing
CH(X) or Ch(X), except when want to emphasize that the grading is respected.
We mostly use F2 coefficients for Ch(X) throughout this whole thesis. Especially
when we calculate motives of the projective, homogeneous E7-varieties. We point
out if other Fp coefficients are used, by referring to it as the mod p case.

5.1.3. (Ring structure on CH(X)) By definition CH(X) is Z-module. But it
also carries the structure of commutative ring, which one obtains by considering
the intersection product of classes of algebraic cycles (see [Ful, 8.0 and 8.3]) and
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extending it from prime cycles to general sums of prime cycles. Consider α ∈ CHi(X)
and β ∈ CHj(X). We then write αβ for their product in CHi+j(X).

The structure of the Chow rings mod p of split algebraic groups considered as
varieties is well known. The Chow rings of the G-varieties G/P are not completely
known in terms of generators and relations yet due to their complexity. Even when
G is split. But they can in theory be obtained by an algorithmic approach.

5.1.4. (Chow maple package) The Chow maple package, we use for many
calculations, allows us to calculate arbitrary products in the Chow ring of
XΘ ' G/PΘ for any split simple algebraic group G. It uses methods, which are
explained in [Shells, 5. and 6.] and expresses each generator of a Chow group
Chi(G/PΘ) in terms of Weyl coordinates (see [Shells, 5.] or [Hum, 10.3] for more on
Weyl groups).

Assume for example, that the routine chow generators outputs the elements
z[3, 4, 3, 6, 7, 4], z[4, 2, 3, 6, 5, 4], z[7, 4, 6, 3, 5, 4] (in this exact order) as generators of
Ch6(XΘ). We will then refer to them as γ6,1, γ6,2, γ6,3.

If PΘ is a maximal parabolic subgroup of G, then there is only one generator of
Ch1(XΘ), which we usually denote by h.

5.1.5 Definition. (Poincaré polynomials of Chow rings) Let X be a smooth
projective, homogeneous variety. We define the Poincaré polynomial of Ch(X) via

P (X, t) := ∑∞
i=0 rankFp(Chi(X))ti ∈ N0[t],

where X denotes X over k.
In case X is the G-variety XΘ for Θ ⊂ ∆(G), one can calculate P (XΘ, t) by

dividing some concrete polynomials by each other (see [GSV, Def. 2.5] for how to
obtain these). A polynomial s(t) = ∑n

i=0 ait
i ∈ N0[t] with deg(s(t)) = n is called

symmetric, if ai = an−i for all i ∈ [0 : n]. By Poincaré duality, we have that P (X, t)
is symmetric.

5.1.6 Example. Let A denote a CSA. Then P (SB(A), t) = (tdeg(A) − 1)/(t − 1)
holds. If q is a non degenerate quadratic form of odd rank n, then one has
P (Xq, t) = (tn−1 − 1)/(t − 1) for the quadric Xq. If n is even, one has
P (Xq, t) = (tn−1 − 1)/(t− 1) + t(n−2)/2, i.e. Ch(n−2)/2(Xq) has F2-rank 2.

5.1.7 Definition. Let f : X → Y be a proper morphism for smooth varieties
varieties X, Y . We then obtain a pushforward map f∗ : CH(X) → CH(Y ). If
Y ' Spec(k) holds, the respective pushforward map is denoted by deg: CH(X)→ Z
and is called the degree map.

5.1.8 Definition. Let X be a smooth variety over k and L/k be a field extension
of k. Then there is the restriction map resL/k : CH(X/k) → CH(X/L). Elements
which lie in the image of the restriction map are called rational over k.

5.1.9. The two definitions above hold analogously for Ch(−). The k-rational
elements form a subring of Ch(X/L) for an extension L/k, since res is a
homomorphism of rings. Calculations of rational cycles in Ch(X/k) turn out to
be notoriously hard. One tool to calculate rational cycles is the Steenrod map
defined below.
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5.1.10 Definition. (Steenrod operations) By [Voe01], [Br03] and [Pr] there is a
map Sl : Chi(X) → Chi+l(p−1)(X), called l-th Steenrod operation mod p, for Chow
groups mod any prime p. It satisfies

1. S0 is the identity on Chl(X).

2. Sl(α) is zero, if α is in Chi(X) for i < l.

3. Sl(α) = αp, if α is in Chl(X).

4. Sl(α) is rational, if α is rational.

One can also consider S• : Ch(X)→ Ch(X), called the total Steenrod operation
mod p. It is defined as S• = ∑dim(X)

l=0 Sl.

5.1.11 Remark. Using the Chow maple package, we are able to calculate the l-th
Steenrod operation. Still, this only helps to calculate rational cycles out of others.
To instead fundamentally say something about rational cycles in Ch(X) (forX being
an inner twist of G/PΘ), we consider the following well known exact sequence (see
[MT95, 2.3 proof of Thrm B])

0→ Pic(X)→ Pic(X) β−→ Br(k)→ Br(k(X)),

obtained from the Hochschild-Serre spectral sequence. The map β is basically the
Tits homomorphism. Identifying Ch1(X) with Pic(X), we can conclude that if
X = Xi holds, the unique generator h (which is just the cycle class corresponding
to ωi ∈ Λ) is rational if and only if the respective Tits algebra β(h) is trivial. This
reveals a connection between algebraic cycles on specific projective, homogeneous
varieties and the Tits algebras.

5.2 The category of Chow motives

In this section we introduce Chow motives mod p. Many categories of motives bear
the same spirit of this construction, but incorporate a different equivalence relation
or not even the Chow functor. The different ingredients often alter the features of
the constructed category. Our main reference for the construction of Chow motives
is [EKM, §62 to §64].

5.2.1 Definition. (The category of correspondences) Let k be a field. We denote the
category of smooth projective varieties over k by Vark. LetX, Y be varieties in Vark.
Let Xl for l = 1, . . . , n be the irreducible components of X and set dl = dim(Xl).
We define the correspondences from X to Y as

Corr(X, Y ) :=
n∐
l=1

Chdl(Xl × Y ).

with a correspondence product described below.
An element f ∈ MorVark(X, Y ), induces an element [Γf ] ∈ Corr(X, Y ), via its

graph Γf . We obtain a functor from Vark to Corrk, the just defined category of
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correspondences over k. It satisfies

Obj(Corrk) = {X | X ∈ Obj(Vark)},

MorCorrk(X, Y ) = Corr(X, Y ).

The diagonal morphism ∆X : X → X ×X and its graph

Γ∆X
∈ Corr(X,X) = End(X)

are of special interest.

5.2.2. (The correspondence product) In addition to the obvious product structure
on Ch(X × X), coming from the intersection product on Ch(X × X), there is
another product called correspondence product, denoted by ◦. To define it properly,
we consider smooth projective varieties X, Y , Z and their product X × Y ×Z. Let
pr12, pr13, pr23 be the projection to X ×Y , X ×Z and Y ×Z respectively. Then the
product of α ∈ Corr(X, Y ) and β ∈ Corr(Y, Z) is given by

α ◦ β = pr13∗(pr∗12(α)pr∗23(β)) ∈ Corr(X,Z).

The identity element in End(X) is given by the class of ∆X . An element
ρ ∈ End(X) with ρ ◦ ρ = ρ, is called a projector or an idempotent.

5.2.3 Definition. (The category of Chow motives) The category Mk of Chow
motives over k is obtained by taking the idempotent completion (also known as the
Karoubi envelope) of Corrk. It satisfies the following

Obj(Mk) = {(X, ρ) | X ∈ Obj(Corrk), ρ ∈ End(X), ρ ◦ ρ = ρ}

MorMk
((X, ρ), (Y, π)) = π ◦MorCorrk(X, Y ) ◦ ρ ⊂ MorCorrk(X, Y ).

The motive (X,∆X) of X ∈ Obj(Vark) is called the motive of X and will be denoted
by M(X).

5.2.4 Definition. If ρ ∈ End(X) is a projector, then ∆X − ρ is a projector too and
we call (X, ρ) amotivic summand ofM(X). If (X, ρ) is a motivic summand ofM(X)
and there are no non trivial projectors π1, π2 ∈ End(X), such that ρ = π1 +π2, while
π1 ◦ π2 = π2 ◦ π1 = 0 holds, we say that (X, ρ) ' N is an indecomposable motivic
summand of M(X). We then write N ∈M(X).

There is a realization functor r :Mk −→ Z-Mod, given via

r((X, ρ)) := Im(Ch∗(X) pr∗1−−→ Ch∗(X ×X) ρ−→ Ch∗(X ×X) pr2∗−−→Ch∗(X)).

The middle arrow denotes taking the intersection product with ρ. The maps pr∗1, pr2∗
denote the pullback and pushforward of the projections to the first and second
component. Because the realization functor r naturally commutes with the Chow
functor Ch: Vark → Z-Mod, it is also common to write Ch(N) for r(N).

Let l be the smallest number, for which Chl((X, ρ)) 6= 0 holds and j be the
biggest number, for which Chj((X, ρ)) 6= 0 holds. We say that (X, ρ) starts in l
and ends in j. If a motive (X, ρ) starts in l, we call any nonzero cycle in Chl(X) a
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generic point of (X, ρ). Typically abuse the language refer to it as the generic point.
The number j − l is called the dimension of (X, ρ). We write dim((X, ρ)) for it.

5.2.5 Definition. The categoryMk is known to be tensor additive, meaning one
can add and multiply motives. For two motives (X, ρ), (Y, π) we have

(X, ρ)⊕ (Y, π) = (X t Y, ρ+ π),

(X, ρ)⊗ (Y, π) = (X × Y, ρ× π).

A motivic decomposition of X is a finite collection of nontrivial projectors ρi ∈
End(X), such that ∆X = ∑

ρi and ρi ◦ ρj = ρj ◦ ρi = δi,jρi . The last
property is also called mutually orthogonal. The motivic decomposition is then
given by M(X) = (X,∆X) = ⊕

i(X, ρi). The realization map naturally respects
decompositions, i.e. we have that r(M(X)) = ⊕

i r((X, ρi)).

5.2.6. While it is certainly of general interest to calculate the Chow ring when
considering motives, the way M(X) decomposes provides additional information.
The decomposition reflects the rationality of algebraic cycles in Ch(X) over a certain
base field. So the base field does play an essential role for determining the motivic
decomposition type of X.

5.2.7 Definition. Consider field extension L/k. The restriction map on Ch(X)
extends naturally to Ch(X × X). Thus we can consider a restriction for
motives. Assume that an indecomposable motivic summand N ∈ M(X/k)
becomes decomposable into some motivic summands Ni over L. We then write
resL/k(N) = ⊕Ni and say that N splits off the (or a specific) Ni over L. Also, we
say that theNi are glued over k. We might also call them glued to N over k. Consider
an indecomposable motivic summand (X/L, π) ∈ resL/k(M(X)) = M(X/L). If the
projector π is (not) rational over k, we say (X/L, π) is (not) visible over k. If a
motive N is visible over k, we sometimes write N/k to indicate that we consider it
over k.

5.2.8. The diagonal ∆X/L is always defined over the base field k. But other
projectors in End(X/L) are often not defined over k. This is what constitutes
the main problem in calculating motivic decompositions. We will encounter cases
where ∆X/L is also the only rational projector in End(X/L). The smallest possible
motivic summand is introduced below.

5.2.9 Definition. (Tate motives) Consider the projective line P1. The algebraic
cycle pt×P1 ∈ Ch(P1×P1) defines a projector in End(P1). Thus we obtain a motive
Fp(1) := (P1, pt×P1). Also we set Fp := M(Spec(k)) = (Spec(k), pt× pt). The first
one is the Tate motive, while the second one is the trivial Tate motive. The Tate
motive defines the endofunctor

(−)⊗ Fp(1) :Mk −→Mk.

We call (−) ⊗ Fp(1) the Tate shift. The motive N(i) := N ⊗ Fp(1)⊗i is called the
i-th Tate shift of N . This includes Fp(i) = Fp(1)⊗i as well, which is simply called
a Tate motive. Tate shifting some motive N by i, increases the starting point of N
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by i. A motive is called split over k, if it completely decomposes into a sum of Tate
motives (this includes shifts and the trivial Tate motive as well) over k.

5.2.10 Definition. Two motives (X, ρ), (Y, π) are isomorphic if there are elements
α ∈ MorMk

((X, ρ), (Y, π)) and β ∈ MorMk
((Y, π), (X, ρ)), such that α ◦ β = π and

β ◦ α = ρ holds.

5.2.11 Definition. (Poincaré polynomials of motives) Let N be a motive in Mk.
We assume that rankFp(Chi(N/k)) is finite for all i ∈ N0. We define

P (N, t) := ∑∞
i=0 rankFp(Chi(N/k))ti ∈ N0[t]

as the Poincaré polynomial of N .

5.2.12 Example. If N equals F2(i), we have P (N, t) = ti for example. Thus it
makes even more sense to think about Tate motives as the most basic material.
We generally have that P (M(X), t) = P (X, t) holds, no matter if X is motivically
decomposable or not.

5.2.13 Definition. (Shift polynomials) Let us assume we are given a motivic
decomposition M(X) = ⊕

Ni into indecomposable summands. We pick one
summand Ni. Now consider a motive N , which is isomorphic to Ni up to a Tate
shift, but has starting point zero (i.e. we basically ignore the Tate shift of Ni). If
a polynomial O(N, t) = ∑

ait
i in N0[t] has the property that each ai equals the

number of Tate shifts of N in codimension i, which occur in M(X), we say that
O(N, t) codes the shifts of N in M(X).

5.2.14 Example. For example we consider M(X) = A⊕B(2)⊕A(4). In this case
we have O(A, t) = 1 + t4 and O(B, t) = t2. Observe that P (X, t) − P (B, t)t2 is
necessarily the product of O(A, t) = 1 + t4 and P (A, t).

In other words, the polynomial P (N, t) tells us howN looks, while the polynomial
O(N, t) tells us which shifts of N are contained in M(X).

5.2.15 Definition. (Tate polynomials) If in the definition of shift polynimals, N
is the trivial Tate motive Fp, we write T (X/k, t) instead of O(N, t) and call it the
Tate polynomial of X over k. Sometimes we omit the field k, if there is no danger
of confusion.

5.2.16 Definition. (Subpolynomials) Two symmetric polynomials s(t),
f(t) ∈ N0[t] are called subpolynomials of a symmetric polynomial

P (t) =
n∑
i=0

ait
i ∈ N0[t],

if P (t)− f(t)s(t) is symmetric and contained in N0[t].

5.2.17 Example. Our definition of subpolynomials may look a bit strange at first
sight. Take for example O(t) = 1 + t2 + t3 + t5. It has the obvious subpolynomials
1, t2, t3, t5 in the usual sense. However by the definition, s(t) = 1 + t is also a
subpolynomial of O(t) in our sense, as s(t)t2 = t2 + t3. No subpolynomial of O(t) in
our sense would be 1+t2 +t3, since it is not symmetric. But of course r(t) = 1+t2 is
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a subpolynomial of O(t) in our sense, since r(t)1 = 1+t2 is symmetric and contained
in O(t).

Now consider P (X, t) = P (M(X), t) = 1+t+t2+t3+2t4+t5+t6+t7+t8 for some
projective variety X, and some motive N , with P (N, t) = 1+ t. ThenM(X) cannot
be decomposed completely into shifts of N , since P (X, t)/P (N, t) is not in N0[t].
There is simply no subpolynomial s(t) of P (X, t), such that s(t)P (N, t) = P (X, t).
We can think of M(X) as a bread board. The indecomposable motivic summands
of M(X) are like patch cables. But they are not limited to connecting only two
ports (i.e. generators in Ch(X)) in general. More examples follow in Section 5.5.

5.2.18 Remark. Note that for any indecomposable motivic summand N ' (X, ρ),
the Poincaré polynomial of N is symmetric if X is a projective, homogeneous G-
variety for some semisimple algebraic group G. By modifying [Zhy, Prop. 2.3.1]
(simply changeM(X)(i) to N ' (X, ρ)) this holds for any motivic decomposition of
M(X) into indecomposable motivic summands itself, meaning a motivic summand
N of M(X) starting in codimension i either has an isomorphic counterpart N∗ in
M(X), which starts in codimension dim(X)− i− dim(N) or it is sitting in the very
middle of the decomposition. By sitting in the middle, we mean that the rational
numbers i+ dim(N)

2 and dim(X)
2 coincide. An indecomposable motivic summand N of

M(X) can only sit in the middle, if the relation dim(N) ≡ dim(X) mod 2 holds.

5.2.19. In general many questions in conjunction with motives are unanswered.
One is whether there are so called phantom summands. A phantom summand is
a motive over k, which vanishes over some field extension L/k. For Chow motives
of projective, homogeneous varieties this can not happen, since the Rost nilpotence
theorem (in short RNT) below is known to hold in the case.

Also by the definition of Poincaré polynomials, it follows that for projective,
homogeneous varieties two motives over k become isomorphic over k if and only
if their Poincaré polynomials coincide. Since for any Poincaré polynomial P (N, t)
we consider, P (N, 1) is finite, this allows the following conclusion. In any possibly
infinite tower of field extensions of k, there are only finitely many steps, such that a
motive decomposes further than in the step before, until it is split. This motivates
the Section 5.4 on shells.

5.2.20 Rost Nilpotence Theorem. ([CGM, Section 8]) Let X be a projective,
homogeneous variety over k. Then for every field extension L/k, the kernel of
the natural ring homomorphism ker(End(M(X/k)) → End(M(X/L))) consists of
nilpotent correspondences.

5.2.21 Remark. (Uniqueness of a decomposition) In [S06, Corollary 5.6] an
example was established, showing that at least for Chow motives with integer
coefficients a motivic decomposition is not unique in general. Also no canceling
rule holds for motives with integer coefficients in general, i.e. the relation
M ⊕N 'M ⊕N ′ does not imply that N ' N ′ holds (see [CPSZ, Remark 2.8]).
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The property of unique decompositions, which naturally implies that the canceling
rule holds, is also called the Krull-Schmidt property.

Luckily the Krull-Schmidt property is known to hold for all Chow motives mod
p of projective, homogeneous varieties by [CM]. Taking also the RNT into account,
we see that the motives of all varieties considered by us behave in a good way.
By that we mean that every indecomposable motivic summand N over k will
map to one motivic summand over L/k (i.e. it will stay indecomposable) or it
will decompose into smaller indecomposable motivic summands, whose Poincaré
polynomials exactly add up to the Poincaré polynomial of N over k (i.e. we can
virtually lift several motivic summands at once to the base k, where they are glued)
and on top this all happens in a unique way.

5.2.22. Another mystery about motives, is their possible structure (i.e. Poincaré
polynomials). Besides the symmetry the Poincaré polynomial of a motive, not much
is known. Consider the easiest imaginable case of a motive which splits into exactly
two Tate motives over some field extension. Such motives are called binary.

5.2.23 Binary summand Theorem. ([Shells, Corollary 7.6]) Let k be a field with
char(k) = 0 and let N be an indecomposable direct summand of the motive of a
smooth projective variety X such that over k(X) the motive N splits as F2 ⊕ F2(a).
Then a = dim(N) = 2n − 1 for some n ∈ N0.

5.3 Upper motives

In this section, we present facts on upper motives, which have been introduced
by Karpenko. He has proven that for the motives of projective, homogeneous
G-varieties the possible indecomposable motivic summands are very limited and
depend on G. Finding them boils down to determining the so called upper motives
of the projective, homogeneous G-varieties.

5.3.1 Definition. Let G be a semisimple algebraic group and let X be a projective,
homogeneous G-variety over a field k. An indecomposable motivic summand of
M(X), which has its starting point in codimension 0, is called the upper motive of
X. We denote the upper motive of X by U(X).

5.3.2. We emphasize that by [Kar13, Remark 2.13] the upper motive is unique up
to motivic isomorphism. Using the notion of the upper motive, one can express
motivic indecomposability briefly by stating that M(X) ' U(X) holds.

5.3.3 Remark. There are two very well known facts concerning the zero cycles
of any smooth projective variety X, which we use several times. The first one is
that the upper motive of X is isomorphic to Fp if and only if X has a zero cycle
γ of degree d coprime to p. Unfortunately it does not follow that X is isotropic
then, as an example for certain G-varieties of unitary groups G shows (see [Pa]).
The second fact is that in case X has a zero cycle of degree coprime to p, it then
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becomes isotropic over a field extension L/k of degree coprime to p. For quadrics
the following statement holds.

5.3.4 Springer’s Theorem. ([EKM, Corollary 18.5]) Let L/k be a finite field
extension of odd degree. Suppose that q/k is an anisotropic quadratic form over
k. Then q/L is anisotropic.

5.3.5 Remark. Combining this result with the basic knowledge that a variety
which is anisotropic and has a zero cycle of odd degree becomes isotropic over a
field extension of odd degree, we conclude that any anisotropic quadric does not
have a zero cycle of odd degree. We will refer to this conclusion as Springer’s
theorem, too.

5.3.6 Definition. Let G0 denote a split algebraic group over k. Consider the group
G ' ξ(G0) for some fixed ξ ∈ H1(k,G0) and let X be the projective, homogeneous
G-variety ξ(G0/PΘ). We define

#M(X/k) := {N ∈ Obj(Mk) | N ∈M(X/k) indecomposable} mod Fp(1).

By the mod Fp(1) expression we mean that we ignore the Tate shift of N . In case
there is no danger of confusion, we will suppress the base field k in the notation.
Also we define

#G/k := ⋃
Θ⊂∆(G) #M(X).

5.3.7. Often we omit the base field k in the notation and simply write #G for #G/k.
As #G depends solely on ξ, we write #G/L for a field extension L/k, when res(ξ)L/k
is considered for twisting. The class of U(X) is always contained in #M(X). In
case G is split, every projective, homogeneous G-variety X has #M(X) = {Fp}.

5.3.8. Unfortunately #M(−) behaves counter intuitive in the sense, that #M(X/k)
can contain more, as many as, or less elements than #M(X/L). For example if
M(X/k) is indecomposable, but splits into at least two motivic summands over L,
which are not isomorphic up to Tate shift. Overall #M(−) does measure the motivic
diversity of X depending on ξ. Karpenko proved this result about #G, which is of
highest importance to us.

5.3.9 Theorem. ([Kar13, Theorem 3.5]) (Karpenko’s theorem) Let G be a
semisimple algebraic group of inner type over k and let X be a projective,
homogeneous G-variety. Then each indecomposable motivic summand in M(X) is
isomorphic to a shift U(Y )(i) of the upper motive of some projective, homogeneous
G-variety Y , such that the Tits index of G over k(X) is contained in the Tits index
of G over k(Y ).
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5.3.10. Karpenko’s theorem heavily restricts the number of possible elements of
#G. Although it is loosely bounded by 2rank(G0), as this is the maximal number
of G-varieties of the form G/PΘ, we will find out in the last chapters that there
are never a lot of elements in #G, for G being of type E7. Also we see that
the theorem does not require Y to be different from X, i.e. it may happen that
an element U(X) ∈ #G does only have one representative X. Establishing the
structure of the upper motives of all projective, homogeneous G-varieties is the key
step in calculating the whole motivic decompositions of all projective, homogeneous
G-varieties.
5.3.11. The decompositions of the motives of the projective, homogeneous E6-
varieties mod 3, established in [Shells] show that knowing the Tits index of a group
is not enough to calculate #G (see [Shells, Table 8.A along with Table 10.A]). In
fact another invariant Jp, which we introduce in Chapter 6., is needed to distinguish
between the anisotropic cases.
5.3.12. Lastly we cite a key result concerning upper motives, which interacts very
well with Karpenko’s theorem. In order to prove it, one needs some more definitions
which we have not introduced, since we do not need them. We are content with
naming a source, where more background is given. Note, that the theorem holds for
Chow groups with Fp coefficients.
5.3.13 Theorem. ([Zhy, Corollary 3.3.7.]) Let G be a semisimple algebraic group
of inner type over k and let X, Y be projective, homogeneous G-varieties. Then X
has a zero cycle of degree one over k(Y ) and vice versa if and only if U(X) ' U(Y )
holds over k.

5.4 Shells

This section very briefly introduces the the concept of shells. It was originally
introduced by Vishik during the research on Chow motives of quadrics. Later it was
further developed in [Shells] and successfully used to provide a complete motivic
decomposition of the projective, homogeneous E6-varieties mod 3. The work [Shells]
is the main inspiration for this whole thesis. Interestingly we will barely use shells
explicitly, except for our final main result proven in the last chapter.
5.4.1 Definition. (Shells) Let Θ be a subset of vertices of the Dynkin diagram
∆(G) of a semisimple algebraic group G of inner type over k. In analogy to [Shells,
4.] define the big shell SH≤Θ(X) of a projective, homogeneous G-variety X as the
union for all i of the cycles b ∈ Chi(X) such that

1. b is rational over k(XΘ) and

2. there is an a ∈ Chi(X) rational over k(XΘ) such that deg(ab) = 1 ∈ Fp

We call SH≤Θ(XΘ) the first shell. Further we define the small shell SHΘ(X) as
the union of all i for all cycles b ∈ Chi(X) such that b is the starting point of an
indecomposable direct summand in M(X) isomorphic to a Tate shift of U(XΘ).
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5.4.2. This definition may become a bit more understandable, if one recalls that it
is inspired from Vishik’s research on the motives of quadrics. Consider some group
of type Bn or Dn defined by a anisotropic quadratic form q. Passing from k to the
generic point of the anisotropic quadric Xq makes it isotropic and thus some Tate
motives occur in M(Xq) over the function field of Xq. All Tate motives come from
copies of the upper motive of Xq. This is because firstly M(Xq/k) contains no Tate
motives by Springer’s theorem. But secondly, by the definition of the generic point,
there is no other projective, homogeneous G-variety Y , such that Xq is anisotropic
over k(Y ). On the other hand, all other projective, homogeneous G-varieties Y ,
which become isotropic over k(Xq) have the same upper motive as Xq by Karpenko’s
theorem.

Assume there are n Tate motives inM(Xq) over k(Xq). Then n must be divisible
by the number of shifts of U(Xq/k) contained in M(Xq/k). In fact it was shown by
Vishik, that there are exactly n/2 shifts of U(Xq/k) contained in M(Xq/k). The
first shell describes the starting points of these shifts.

5.4.3. Then one can consider the anisotropic kernel q′ of q over k(Xq) and pass to
k(Xq′), to calculate the next shell. More Tate motives in M(X) occur and so on. In
other words, the Tits index, which extends the concept of the Witt index, is reflected
in the algebraic cycles in the shells. The definition of shells extends further to the
case of varieties of type G/PΘ, not isomorphic to quadrics and thus from groups of
type Bn and Dn corresponding to quadratic forms to all Killing-Cartan types.

5.5 Examples of known motivic decompositions

The following examples give an overview on the progress of motivic decompositions
made during the last decades. We will also use these well known results later in many
of our arguments. So this services as basic material for some calculations done later
on. We start with Severi-Brauer varieties also proven by Karpenko. From a motivic
viewpoint Severi-Brauer Varieties turn out to be among the least complicated
varieties. For basic results about quadrics see [EKM]. For some decompositions
we provide proofs, even though they are kind of well known, but may not have been
written down properly anywhere. In the fundamental work [Kar95] some results
were obtained, which can be summarized as follows.

5.5.1 Theorem. ([Kar95]) Let D be the division algebra Brauer equivalent to A.
Then the unique motivic decomposition of M(SB(A)) is given by

M(SB(A)) = ⊕m
i=0SB(D)(ci),

with P (SB(A), t)/P (SB(D), t) = ∑m
i=0 cit

i ∈ N0[t] and m = deg(A)/ind(A). The
motive of SB(A) is indecomposable if and only if A is division.

5.5.2. Note that this result does also hold for Chow motives with Z
coefficients by some lifting argument proven in [PSZ]. In any case one has
#M(SB(A)) = #M(SB(D)). The theorem does also reveal the structure of the
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upper motive of SB(A). It is simply given by P (U(SB(A)), t) = P (U(SB(D)), t) =
(tind(A)−1)/(t−1). For generalized Severi-Brauer varieties, similar results are known
about their Chow-motives (see [Zhy]).

5.5.3. (Pfister quadrics) Consider an anisotropic n-Pfister form ϕ over k and a
field extension L/k. Since ϕ/L is hyperbolic if and only if it is isotropic, we have
#M(Xϕ) = {U(Xϕ)}. The surprising result that M(Xϕ) is actually decomposable
when X is anisotropic, was established by Rost.

5.5.4 Theorem. ([Ro98, Prop. 19]) Let ϕ be an anisotropic n-Pfister form. Then
there is an indecomposable motivic summand Rn, such that the motive of the quadric
Xϕ decomposes as

M(Xϕ) = ⊕2n−1−1
i=0 Rn(i),

with P (Rn, t) = 1 + t2
n−1−1.

5.5.5 Remark. (Rost motives) The motives Rn are widely known as (original) Rost
motives. For n = 1 this motive equals the motive of a quadratic extension of the
base field k and for n = 2 it is known that R2 is isomorphic to M(Xq) for Xq being
a hyperplane section of a 2-Pfister quadric (see [Vis04]).

5.5.6 Example. (Motivic decompositions of F4) Let us consider F4 ' G = Aut(J )
for some Albert algebra J . The mod 3 case of the motivic decompositions of the
projective, homogeneous F4-varieties was solved in [NSZ]. It turns out that it is
similar to the decomposition of Pfister quadrics, in the sense that every M(XΘ)
for Θ ⊂ ∆(F4) is decomposable and #M(XΘ) = {RJ} for some motive RJ with
P (RJ , t) = 1 + t4 + t8, when F4 is anisotropic. As the only other Tits 3-index is the
split one, there is nothing left to prove for the mod 3 case.

For the mod 2 case there are three Tits 2-indexes. AllM(XΘ) are decomposable,
with #M(XΘ) = {R3} and 4 /∈ Θ, when G is not split. The decomposition of
M(X4), when G is anisotropic was calculated in [McD09]. It is given by

M(X4) = R5
⊕⊕i∈IR3(i)

for some multiset I. Interestingly the RJ mod 3 splits into Tate motives if and only
if g3(J ) = 0 holds. An analogous relation holds for the mod 2 Rost motives R5 and
f5(J ) and R3 and f3(J ).

5.5.7. (Generalized Rost motives) The motive RJ is called generalized Rost motive.
It was originally introduced by Voevodsky (see [Voe03, Chapter 5.]) and is one of
the key ingredients in the proof to the Bloch–Kato conjecture for general n, p, as it
allows for the motive of any so called norm variety X to decompose.

By (the general) definition of these varieties there exists a non zero pure symbol
α ∈ Hn(k, µ⊗np ), which becomes zero over k(X). This marks our first point of
contact with a connection between motives and Galois cohomology. The concept of
generalized Rost motives of Voevodsky generalizes even further in Chapter 7, when
we introduce generically split varieties.
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5.5.8. (Motives of quadrics with splitting pattern [1, 2]) Consider two 2-Pfister forms
ϕ, ϕ′ with no common slot. We set q := ϕ ⊥ −ϕ′ in W (k). Quadratic forms of this
type are known as Albert forms and exclusively have splitting pattern [1, 2] by the
splitting pattern table. We need to know the motive of an anisotropic Xq for later
use. We provide a proof of its well known structure, to give an outline on the
techniques used in later proofs and to the make this thesis a bit more self contained.
Also this simple proof may give an idea why proving decomposability is usually much
harder, than proving that the motive of a projective variety is indecomposable.
5.5.9 Lemma. Let q be an anisotropic quadratic form of rank 6 with splitting pattern
[1, 2]. Then the motive of Xq is indecomposable.

Proof: Passing to k(Xq), one hyperbolic plane is split off from q, because of the
splitting pattern of q. This is the same as to say there are exactly two Tate motives
in M(Xq) over k(Xq) by [EKM, Proposition 70.1]. As dim(Xq) = 4 holds, the
motivic decomposition of M(Xq) is given by F2 ⊕M(Xq′)(1) ⊕ F2(4) over k(Xq),
with q′ denoting the anisotropic kernel of q. The remaining splitting pattern [2]
belonging to q′ indicates that q′ is a 2-Pfister form. Using Rost’s result on motives
of Pfister forms, we obtain the decomposition M(Xq) = F2⊕R2(1)⊕R2(2)⊕F2(4)
over k(Xq), with P (R2, t) = 1 + t. Now we show that none of the summands in the
decomposition can be lifted to k.

For the Tate motives this is clear, as by Springer’s theorem from [EKM, Corollary
18.5] Xq is anisotropic if and only if it has no zero cycle of odd degree over k. The
two Tate motives are glued to each other over k, because of the symmetry of the
decomposition, so U(Xq) is 4-dimensional over k. By the binary summand theorem
from [Shells, Corollary 7.6] there are no 4-dimensional binary motives. Thus, using
the symmetry of the decomposition again, both of the two summands R2(1)⊕R2(2)
in M(Xq/k(Xq)) are glued to U(Xq) over k.
5.5.10 Lemma. Let q′ be an anisotropic quadratic form of rank 12 with splitting
pattern [2, 4]. Then the unique motivic decomposition of M(Xq′) into indecomposable
motivic summands is given by

M(Xq′) = U(Xq′)⊕ U(Xq′)(1),

with P (U(Xq′), t) = 1 + t2 + t4 + t5 + t7 + t9.

Proof : Note that Pfister classified anisotropic quadratic forms of rank 12 with
splitting pattern [2, 4]. Namely, such forms are exactly of the type q′ = ϕ ⊥ −ϕ′ in
W (k), with ϕ, ϕ′ being 3-Pfister forms with exactly one common slot.

By [Vis98, Theorem 4.1] the motive of Xq′ is isomorphic to N ⊕N(1) for some
motive N . Moreover, the motive N is indecomposable. Indeed, otherwise we would
have a direct summand in the motive of our quadric starting in the second shell.
But then all its shifts within the second shell would be also direct summands of the
motive of the quadric q′. Then the upper motive of q′ would be binary of dimension
9, which contradicts the binary summand theorem.

5.5.11 Lemma. (Vishik) Let q be an anisotropic quadratic form of rank 10. Assume
its splitting pattern is equal to [1, 2, 2]. Then the motive of Xq is indecomposable.
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In case q is an anisotropic quadratic form of rank 8 with splitting pattern [2, 2],
the motive of Xq decomposes into indecomposable motivic summands as

M(Xq) = U(Xq)⊕ U(Xq)(1),

with P (U(Xq), t) = 1 + t2 + t3 + t5.

Proof: By a result of Pfister, in the rank 8 case the form q is proportional to a
difference of a 3-Pfister form and a 2-Pfister form having exactly one common slot.

Exactly as in the previous lemma we obtain a decomposition

M(Xq) = N ⊕N(1)

(see [Vis04, first part of the proof of Prop. 5.10]), and the motive N is
indecomposable, since otherwise we would get a binary motive of dimension 5.

Assume now that the form q has rank 10 and splitting pattern [1, 2, 2]. In this
case the form q corresponds to a difference of a 3-Pfister form and a 2-Pfister form
having no common slots.

By the result on the splitting pattern [2, 2], the motive of Xq decomposes as
F2 ⊕N(1) ⊕N(2) ⊕ F2(8) over k(Xq), with P (N, t) = 1 + t2 + t3 + t5 as above. It
follows from the symmetry argument and from the binary summand theorem, that
over k the motive of M(Xq) is indecomposable.

5.5.12. (Motives of involution varieties) There are very few known results about
motives of involution varieties in the literature up to this day. One is due to
Karpenko, roughly stating that all Tate motives in M(I(A, σ)) over k(I(A, σ))
come from shifts of U(SB(A)), visible over k (see ([Kar09, Prop. 4.1])). Another
known result was established in [Nes, Remark 7.2.1]. It provides an example of an
involution variety with indecomposable motive. The result holds for a twist with a
versal HSpin8-torsor.

5.5.13 Example. The result [Kar09, Prop. 4.1] of Karpenko raises the question,
how M(I(A, σ)) looks over k, if I(A, σ) remains anisotropic over the generic point
of SB(A). This is also unknown in general. However, it is known that the group
Spin(A, σ), SO(A, σ), PGO+(A, σ) or HSpin(A, σ) is anisotropic over k(SB(A))
(for char(k) 6= 2), when A is division of degree 2n.

To see this (it is originally proven in [Kar11, Thrm 5.3] by Karpenko), first
remember that I(A, σ) is a closed subvariety of SB(A) with codimension 1. It is
therefore clear that SB(A) is isotropic over k(I(A, σ)). But when A is division,
M(SB(A)) is indecomposable by Theorem 5.5.1 and thus isomorphic to U(SB(A)).
Therefore U(SB(A)) and U(I(A, σ)) can not be isomorphic, as U(SB(A)) has
dimension d = 2n − 1 and U(I(A, σ)) has at most dimension d− 1 = 2n − 2.

5.5.14. In the case of generalized involution varieties, even less is known about the
motives than for generalized Severi-Brauer varieties. This has mainly to do with the
mysterious isotropy behavior of G over k(SB(A)). In Theorem 10.4.9, we provide a
complete motivic decomposition of the projective, homogeneous HSpin12-varieties
corresponding to maximal parabolic subgroups, for the case when the motivic J-
invariant J2(G) (defined in Chapter 6) is maximal. This includes the 10-dimensional
involution variety, which turns out to have an indecomposable motive.
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5.6 The Chernousov-Gille-Merkurjev-Brosnan al-
gorithm

Most of the motivic decompositions introduced in the previous section are obtained,
by passing to a field extension L/k such that a certain anisotropic varietyX becomes
isotropic over L. Then, using the Rost nilpotence theorem, a lifting procedure
involving combinatorial arguments is performed. So calculating the decomposition
of M(X/L) is usually the first step in calculating M(X/k). There is an algorithmic
procedure, which kind of achieves this. In its full generality it is the result of the
work by Chernousov-Gille-Merkurjev (see [CGM]) and Brosnan (see [Br05]). We
refer to it the CGMB algorithm from now on. For more background on the math
involved see [Shells, Chapter 6].

5.6.1 Theorem. ([CGM, Thrm 7.4], [Br05, Thrm 7.5]) Let G be an isotropic
semisimple algebraic group, with semisimple anisotropic kernel H. Let X be a
projective, homogeneous G-variety. Then there are projective, homogeneous H-
varieties Yi such that

M(X) = ⊕
i∈IM(Yi)⊕ci(si)⊕

⊕
j∈J F⊕dip (tj)

for some multisets I, J and some numbers ci, si, dj, tj ∈ N0.

5.6.2. In the decomposition above, it is possible that there are no Tate motives at
all of course. The algorithm is implemented in the Chow maple package (see [NS06])
and can be performed by executing the command prodbases(H, P, G) to calculate
M(X), when X is a twisted form of G/P and H is the semisimple anisotropic kernel
of G. The unsatisfying fact concerning the algorithm is that it only establishes the
decomposition in the following sense. For example, it understands that a shift of
M(Y ) occurs in M(X) for some projective, homogeneous H-variety Y . But it does
not compute an actual decomposition of M(Y ) because H is anisotropic and thus
the algorithm can not be applied to M(Y ).

Chapter 6
The motivic J-invariant

In this chapter we introduce the so called motivic J-invariant. In the first section
we introduce general results about the J-invariant, after defining it. In the second
section we focus on particular cases of of the value of J in conjunction with algebraic
groups of type E7. We provide many examples in both sections, which will be
needed during the course of many proofs later on. Originally the concept of the
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J-invariant was developed by Vishik in [Vis05] in order to define a new invariant for
quadratic forms (and thus some groups of type B and D), by measuring rational
cycles in the Chow groups of quadratic Grassmannians. The generalization to
arbitrary algebraic groups was established in [PSZ], which is our main reference
for this chapter. Recently a refined version of the concept for a broad class of
generalized oriented cohomology theories in the sense of Levine–Morel has been
defined in [PS22].

6.1 Construction of the J-Invariant

6.1.1. We consider a split semisimple linear algebraic group G0 over k, with a
split maximal torus T and a Borel subgroup B of G0 containing T . Let G := ξG0
be a twist of G0 by ξ ∈ H1(k,G0). Note that G is of inner type since it is a
twisted form of a split group. We consider a twisted form of the Borel variety
X := ξ(G0/B). We need a result by Grothendieck for defining of the J-invariant
the same way as in [PSZ]. In [Gr58, p. 21, Remark 2] it is shown that the
pullback π∗ : Ch(G0/B)→ Ch(G0) of the quotient map π : G0 → G0/B is surjective.
Moreover,

Ch∗(G0) ' Fp[e1, . . . , er]/(ep
k1

1 , . . . , ep
kr

r )
for some integers r, ki and with codim ei =: di. We assume that the sequence of di
is non-decreasing.

6.1.2 Definition. (J-invariant) Let ξ ∈ H1(k,G0) and let G and X be as above. We
identify Ch(X) with Ch(G0/B) and consider the image of the following composition
of maps

J : Ch(X) res−→ Ch(X) π∗−→ Ch(G0)

Since both maps are ring homomorphisms, im(J) is a subring of Ch(G0). For
each 1 ≤ i ≤ r we set ji to be the smallest non negative integer such that im(J)
contains an element a with the greatest monomial ep

ji

i in respect to the wdegrevlex
order. Thus it is of the form

a = ep
ji

i +
∑

xM�xp
ji
i

cMe
M , cM ∈ Fp.

The r-tuple of integers (j1, . . . , jn) is then called the J-invariant of ξ modulo p
and denoted by Jp(ξ). Assume that G0 is simple and not of type D4. If G is a twist
of G0 by ξ, one can show that the J-invariant of ξ depends only on G and we denote
the J-invariant of ξ by Jp(G).

6.1.3. (Notation and remarks) If the Dynkin diagram of a split semisimple group
admits a symmetry it is possible that twisting with different torsors ξ, ξ′ results in
isomorphic groups, but Jp(ξ) 6= Jp(ξ′) holds. Otherwise this can not happen. The
issue arises, e.g., for groups G of type PGO+

8 (see [QSZ, 2.]). But we mostly do not
consider such groups and keep writing Jp(G).
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As any group G of inner type is split over k if and only if X has a rational point
over k, the Jp-invariant is normalized in the sense that it is zero, when G is split.
Often we will suppress ξ or G in the notation and just write Jp. If all entries of Jp
are zero, we write Jp = 0.

The values of Jp(G), which can potentially occur for any type of G, are
summarized in a table in [PSZ, at end of section 4.]. We will refer to it as the
Jp-table. The primes p for which Jp(G) is not always zero, are in fact the torsion
primes of the respective type. Note the differences of potential values of J2(G)
between simply connected and adjoint groups of type E7. The dependencies among
the ji, which were established in [PSZ] using Steenrod operations, are very helpful
to us. In general it is unknown, if all theoretically possible values presented in the
Jp-table do actually occur for some of the group types. We list the following essential
properties of the J-invariant, which to prove takes too much effort to perform here.

6.1.4 Theorem. Let G be a semisimple algebraic group of inner type over a base
field k, p a prime integer and Jp(G) = (j1, . . . , jr). Then the following properties
hold

1. (transfer argument) If L/k is a field extension of degree coprime to p then
Jp(G/k) = Jp(G/L) holds.

2. (cut off) Let H be the semisimple anisotropic kernel of G. Then
Jp(G) = Jp(H) holds. Also in case Jp(H) has only s < r entries, the r − s entries
unique to Jp(G) are zero.

3. (decrease) If L/k is a field extension then (ji)L ≤ (ji)k holds for all
1 ≤ i ≤ r.

4. (triviality 1.) Jp(G) is zero if and only if G splits over a field extension of
k of degree coprime to p.

5. (triviality 2.) Assume that G does not have simple components of type E8
and that Jp(G) is zero for all p. Then G is split.

Proof: For the first statement see [PSZ, Proposition 5.18 (ii)]. The second statement
is [PSZ, Corollary 5.19]. In the reference it is formulated in terms of the generalized
Rost motive RJ from [PSZ, Theorem 5.17] (it is denoted by Rp(G) there). For
the third and fifth statement see [GSV, Proposition 3.9, 1. and 2.]. The fourth
statement is essentially [PSZ, Corollary 6.7].

6.1.5. From the properties above, we see that the J-invariant behaves intuitive
in any aspect relating field extensions. Remembering the definition of Tits p-
indexes, it becomes clear that considering p-special fields is a potentially good way
of simplification of many calculations involving Jp. Also the properties 1. and 4.
reveal a connection between zero cycles of coprime to p degree in the Chow groups
of the projective, homogeneous G-varieties and the value of Jp(G). This will come
into play in some proofs later on and in the next chapter.

6.1.6 Example. (J-invariant of G2) Let G be an algebraic group of type G2. From
the Jp-table we see, that p = 2 is the only prime, for which Jp is not always zero.
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Also there are only two possibilities for J2(G). Considering that there are only two
possible Tits indexes for G and taking into account the property 5. above, we see
that the Tits index of G does exactly correspond to the value of J2(G). We obtain
J2(G) = (1) in case G is anisotropic and J2(G) = (0) in case G is split.
6.1.7 Example. (J-invariant of F4) Now let us consider an algebraic group G of
type F4. From the Jp-table we see, that there are two possibilities for the value of
J2(G) and also J3(G). There are three Tits 2-indexes and two Tits 3-indexes. One
can deduce whether G is split or not just by looking at the values of J2(G) and
J3(G) by the property 5. In case G is not split and J3(G) = (0), one necessarily
has that J2(G) = (1). The condition J3(G) = (0) is fulfilled if k is a 2-special field
for example by the property 4. of the J-invariant. The exact Tits index however
can not be deduced from knowing that J2(G) = (1) and J3(G) = (0) holds, but of
course vice versa. In case J2(G) = (0) holds, the value of J3(G) indicates whether
G is split or not as there is only one Tits index corresponding to each value, similar
to groups of type G2.
6.1.8 Example. (J-invariant of E6) For groups G of type E6 the Jp-table reveals
that p = 3 is the prime for which things are the most complicated. Let us assume
that J2(G) is zero. In [Shells, Table 10.A] we see that, in contrast to the F4 mod 2
case, the Tits index of G can in fact be deduced from knowing J3(G) but not vice
versa.
6.1.9 Remark. Let G be a split semisimple algebraic group, Q some parabolic
subgroup of G. Let C denote the commutator [L,L] of the Levi subgroup of Q (see
[Hum2, 30.2]). By [GSV2, Lemma 2.3] we can identify Ch∗(C) with Ch∗(Q). If we
also use the result of [PS22, Lemma 6.2], then there is a right exact sequence of
graded rings

Ch∗(G/Q)→ Ch∗(G) � Ch∗(C)→ 0.

6.2 The J-Invariant of E7

In this small section we discuss some observations and cite results we need later in
Chapter 8., to calculate the values of the J-invariant in conjunction with the Tits
index for adjoint groups of type E7.
6.2.1. (Values of Jp(E7)) We reproduce the E7 part from the Jp-table for the readers
convenience. The numbers ki are the maximal value for each component ji of
Jp(G), while the di are the exceptional p-degrees (and thus the codimensions of
the generators of Ch(G)).

G p ki di Restrictions
Esc

7 2 1, 1, 1 3, 5, 9 j1 ≥ j2 ≥ j3
Ead

7 2 1, 1, 1, 1 1, 3, 5, 9 j2 ≥ j3 ≥ j4
E7 3 1 4

We see that there are eight theoretically possible values for J2(G) in case G has
type Ead

7 , including the value zero. For J3(G) there are only two possibilities,
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including the value zero. Assuming J2(G) is zero and taking into account the Tits
classification this shows that J3(G) = (1) in case G has anisotropic kernel of type
E6 and J3(G) = 0 if G is split, by property 5. and because other Tits 3-indexes do
not exist.

We see that for groups of type E7 the modulo 2 case is the case of actual interest.
Also because there are only seven Tits 2-indexes. For later we need a theorem on the
relation of the index of the Tits algebra of an Ead

7 and the values of its J2-invariant.

6.2.2 Theorem. ([GSV, Proposition 4.2]) Let G be an adjoint semisimple algebraic
group of inner type over k. Let p be a prime integer and J2(G) = (j1, . . . , jr). Then
ji = 0 holds for all i with di = 1 if and only if the indexes of all Tits algebras of G
are coprime to p.

6.2.3 Corollary. Let G be an adjoint semisimple algebraic group of type E7 with
Jp(G) = (j1, j2, j3, j4). Then j1 = 0 holds if and only if the Tits algebra of G is split.

Proof: Checking the Ead
7 mod 2 row in the Jp-table, shows that the only di with

di = 1 is d1. Also every group of type E7 has only one possibly non trivial Tits
algebra up to Brauer equivalence by Remark 3.7.5. The claim follows by applying
the theorem above.

6.2.4 Remark. Let H be the semisimple anisotropic kernel of an adjoint algebraic
group of type E7. If H is of type D6 it is a halfspin group HSpin12. This can
be derived by a careful combinatorial analysis of the root data. In fact, it is easy
to exclude the cases SO12 and PGO+

12 using the Jp-table, as groups of type SO12
(resp. PGO+

12) have k1 (resp. k2) parameter equal to 3, while groups of type E7 in
general have each ki equal to 1, and by Remark 6.1.9 the canonical homomorphism
Ch∗(E7)→ Ch∗(D6) must be surjective.

6.2.5 Example. Let q be an anisotropic quadratic form of rank 8. Assume that
q has trivial discriminant and Clifford invariant (see [EKM, §14]). It is then
necessarily isometric to a 3-Pfister form ϕ by the Arason–Pfister Hauptsatz (see
[EKM, Thrm. 6.18]).

We consider the group G ' SO(q). By consulting the Jp-table and because of
the [GSV, Proposition 4.2], we see that J2(G) = (0, j2) holds, as the Tits algebras of
G are trivial. As j2 is either 1 or 0 and G is anisotropic by our assumption, j2 can
not be zero, since this would mean that G is split by property 5. of the J-invariant.
Thus J2(G) = (0, 1) holds.

If we look at this example from the viewpoint of a Spin group, i.e., if we take G
of type Spin(q), then by the same considerations things are easier and J2(G) = (1)
holds.

Finally, from the PGO+(q) viewpoint, i.e., in the case of G = PGO+(q),
one has J2(G) = (0, 0, 1), as there are two generators in Ch1(G) in this case (i.e.
d1 = d2 = 1).

The key take away of this example is, that for any D4 defined by a anisotropic
3-Pfister form the parameter ji of the J-invariant which corresponds to the di with
di = 3, has the value 1, while all others are zero.
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6.2.6 Example. (Quadratic forms of even rank with splitting pattern [1, 2, 2] or
[2, 2]). Consider an anisotropic quadratic form q := ϕ3 ⊥ −ϕ2 in W (k), with
ϕ3, ϕ2 being 3-Pfister resp. 2-Pfister forms having one or none common slots. We
consider G ' SO(q), as well as the quadrics Xq and Xϕ2 . We have seen in the
proof of Lemma 5.5.11 that q has splitting pattern [1, 2, 2] or [2, 2], depending on
the number of common slots of ϕ3, ϕ2.

When we pass to k(Xϕ2), the class of ϕ2 becomes trivial in Br(k), because
ϕ2 becomes hyperbolic. Since ϕ2 is supposed to not divide ϕ3, the Witt class of
q becomes isomorphic to ϕ3. Thus H := Gan/k(Xϕ2) is given by SO(ϕ3) and
J2(H) = (0, 1) holds as in the example before. By property 3. of the J-invariant,
we have J2(G/k) = (∗, 1). The Brauer class of ϕ2 is isomorphic to the Tits algebra
of ω5 and ω6, thus by Theorem 6.2.2 we have J2(G/k) = (1, 1) in both cases.

6.2.7 Example. (Quadratic forms with splitting pattern [1, 2, 2] or [2, 2] in E7)
Consider an adjoint group G of type E7 with semisimple anisotropic kernel D5×A1
(compare the Tits classification). In this case one can associate with this group an
anisotropic quadratic form q of rank 10 with splitting pattern [1, 2, 2] (see [Tits90] for
this result). Thus, using property 2. of the J-invariant and the previous example,
we obtain in this case that J2(G) = (1, 1, 0, 0) holds.

If we pass to k(Xq), then q becomes isotropic and its anisotropic kernel q′ has
splitting pattern [2, 2]. In this case the semisimple anisotropic kernel of G is of type
D4 × A1, and we can repeat the argument and see that J2(G/k(Xq)) = (1, 1, 0, 0)
holds. It follows that for the enveloping E7, we have j1 = j2 = 1, and j3 = j4 = 0 in
both cases.

6.2.8 Example. (D6 in E7) Let us consider an adjoint group of type E7. By the
Tits classification one of the possibilities for its semisimple anisotropic kernel is to
be of type D6. Consulting the Jp-table, we see that for any group of type D6, the
J2-invariant has at most three non zero entries. Using the cut off property, we can
deduce that any adjoint E7 with anisotropic kernel D6 has J2 = (j1, j2, j3, 0). In
fact the same considerations for the other possible Tits indexes, show that every
isotropic E7 has j4 = 0. Also each entry of J2 is bounded by the restrictions shown
in the Jp-table for adjoint groups of type E7.

6.2.9. In general it is unknown how Jp(G) changes under field extension of degree
divisible by p, for any algebraic group G. In the Example 6.2.6 the first value j1
of J2(G) changed by passing to k(SB(A)) ' k(Xϕ2) as a consequence of [GSV,
Proposition 4.2]. The fact that only j1 (i.e. the value ji for which di = 1 holds)
changed, is no coincidence. It turns out that this is a general phenomenon as recently
proven by Zhykhovich.

6.2.10 Theorem. ([Zhy22, Theorem 4.1]) Let G be an algebraic group of inner type
over k and let A be a Tits algebra of G. Assume that Jp(G/k) = (j1, . . . , jn). We
denote the value of ji over k(SB(A)) by j′i. Then ji = j′i if di > 1 holds for the
exceptional p-degree di.
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6.2.11 Corollary. Let G be an adjoint algebraic group of type E7 with Tits algebra
A and Jp(G) = (j1, j2, j3, j4). Then over k(SB(A)) one has Jp(G) = (0, j2, j3, j4).

Chapter 7
Generically split varieties

In this chapter we introduce the so called generically split varieties. These varieties
are completely understood in terms of their motivic decompositions. They mark the
most basic case in terms of motivic decompositions. It turns out (see [PSZ]) that for
the generically split varieties of an algebraic group G, one can completely deduce
the motivic decomposition just from knowing the value of Jp(G). This allows us
to tell which projective, homogeneous E7-varieties may have a somehow surprising
motive and which ones do not. In the second section we briefly discuss the so called
coaction ρ, originally introduced in [PS22]. It recently has been discovered that
there is a deep connection between shifts of the upper motive of X occurring in a
motivic decomposition of a projective, homogeneous G-variety X, the value of Jp(G)
and the coaction ρ on Ch(G0).

7.1 Definitions and properties

7.1.1 Definition. Let G be an algebraic group over k and let X be a projective,
homogeneous G-variety. We say that X is a generically split variety for G, if G
splits over k(X). We usually use the abbreviation GSV.

7.1.2. The first GSV which may come to mind is the Borel variety X of any algebraic
group G (of inner type). This illustrates, that for every G there is a natural GSV
attached to it. We have already encountered other examples of GSVs, such as the
Severi-Brauer variety SB(A) for A being a CSA. The property which makes SB(A)
a GSV for G ' PGL1(A) or G ' SL1(A), is the statement of [GSz, Remark 5.3.7],
as PGL1(A) is split if and only if A is trivial in Br(k).

7.1.3. Considering the whole theory of splitting patterns of quadratic forms, it
comes apparent that for groups G of type Bn and Dn, the G-variety X1 is not
always a GSV. If G is however given by a n-Pfister form ϕ with n ≥ 2, it follows
from the defining property of Pfister forms of only being anisotropic or hyperbolic,
that Xϕ ' X1 splits G.

7.1.4. In Example 6.2.5 and Example 6.2.6, we have seen that for groups of type
Dn ' SO(q) for example, the value of J2(G) is reflected in the splitting pattern of
q. This suggests a connection between the motivic J-invariant of an algebraic group
G of type Dn and the GSV property of the G-variety X1. It turns out that in fact
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the GSV property of any variety XΘ is linked to the motivic J-invariant of G via
the motivic decomposition of M(XΘ), for all inner types of algebraic groups G.

7.1.5 Theorem. ([PSZ, Theorem 5.17]) Let G be a semisimple linear algebraic group
of inner type over a field k, let p be a prime integer and let J = (j1, . . . , jr) denote
the motivic J-invariant of G modulo p. Let X be an anisotropic generically split,
projective, homogeneous G-variety. Then the motive of X decomposes uniquely in
indecomposable motivic summands as

M(X) =
⊕
i≥0
RJ(i)⊕ci ,

with P (RJ , t) =
r∏
i=1

1− tdipji

1− tdi ,

and the integers ci are the coefficients of the quotient∑
i≥0

cit
i = P (Ch(X), t)/P (RJ , t).

7.1.6. The numbers di appearing in the statement above, are the exceptional p-
degrees, which can also be found in the Jp-table for each group type. As all other
parameters in the statement are also well known and contained in the Jp-table, the
question for the motivic decomposition is completely settled not just in theory, but
specifically. As for the motivic decomposition of any GSV, we are done.

One may ask which values of Jp(G) make a projective, homogeneous G-variety
a GSV, depending on the type of G. These questions, including the E7 case, where
completely answered in [GSV2, Theorem 3.3]. We refer to these results as the GSV-
table. The next question to answer is, how many distinguishable cases (i.e. twists)
of a variety exist, which are not GSV? We widely settle this in the chapter about
phases.

7.1.7 Remark. We would like to point out that the striking theorem above is a
corollary of many results, which we will not discuss for the sake of brevity. One
noteworthy thing however to keep in mind is, that the theorem describes many
generic points of motivic summands and thus rational cycles in Ch(X). The result
[GSV, Theorem 5.5] does show that these generic points are in fact the only rational
cycles in Ch(X) for any GSV X over k. This may shed a bit more light on the
motivation behind proving Theorem 6.2.2.

If di = 1 and ji = 0 holds, the monomial t is not part of P (RJ , t) and thus
it is necessarily the generic point of RJ(1) in M(X) and therefore rational. The
Theorem 6.2.2 shows, that the exact opposite is also true, i.e. h (represented by t)
is not rational if ji = 1 holds for the respective i.

7.1.8. (Generalized Rost motives again) Let us assume that ∑r
i=1 ji = 1 holds for

Jp(G) = (j1, . . . , jr) and p = 2. Then the generalized Rost motive RJ coincides
with the original, binary Rost motive, which appears in the decomposition of any
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anisotropic Pfister quadric as in Example 5.5.4. For odd primes p (and the same
sum relation of the ji), one obtains the generalized Rost motive of Voevodsky. If∑r
i=1 ji > 1, we are confronted with even more general generalized Rost motives.
We will usually also refer to RJ just as Rost motive and emphasize if it is binary.

Note also that the theorem implies that #M(X) = {RJ} holds, if X is a GSV.
Remember the example of most of the projective, homogeneous F4-varieties. As X
naturally is always a GSV for groups G of inner type, it also follows that the class
of RJ is always contained in #G.

7.1.9 Lemma. Let G be a non split algebraic group of type E7, with J-invariant
J2(G) and the Tits algebra A. Then G splits over the function field of SB(A) if and
only if J2(G) = (1, 0, 0, 0) holds.

Proof: If J2(G) has the desired value then by Theorem 6.2.2, G splits over k(SB(A)).
If on the other hand one has that SB(A) splits G, it follows from the proof of [Shells,
Proposition 10.7] that ind(A) = 2 holds and J2(G) has the desired value.

7.1.10 Example. (E7 mod 3) Checking the Tits classification, it becomes clear
that every group G of type E7 mod 3 is either split or has anisotropic kernel of type
E6. As also shown in the GSV-table, it follows that every anisotropic projective,
homogeneous G-variety mod 3 is necessarily a GSV. Therefore, concerning motivic
decompositions there are no more open questions about E7 mod 3.

7.1.11 Example. (E6 mod 3) Here is an illustration on how the property of being
a GSV is often used in proofs. The [Shells, Table 8.A], shows the possible values
of J3(G) for any adjoint group G of inner type E6. The Poincaré polynomials of
RJ depending on J3(G) are contained in [Shells, Table 8.B]. Assume G is versal
with Tits algebra A. Over k we automatically have J3(G) = (2, 1). Let us pass to
k(SB(A)). We obtain that j1 = 0 by Theorem 6.2.2. But SB(A) can not split G,
since its Poincaré polynomial does not coincide with P (R(2,1), t). By Theorem 6.2.2,
we obtain that J3(G) = (0, 1) holds over k(SB(A)). If G would be isotropic but not
split, then by the Tits classification its anisotropic kernel would be of type A2

2. But
in this case the Tits algebra of G would not be trivial. Thus it is anisotropic, which
shows that the respective line in the [Shells, Table 8.A] can be obtained fairly easy.

7.2 The coaction of Ch(G/P )

In this small section we give a short definition of the coaction ρ of algebraic groups
G from [PS22]. We use it later on for calculating some Rost motives in certain
motivic decompositions, as it is connected to the value of Jp(G), by a main result
(namely [PS22, Theorem 6.4]) established by Petrov and Semenov. We explain this
connection and introduce some techniques around calculating the J-invariant out of
the coaction and vice versa, which are all related to this main result.

7.2.1 Definition. Let G0 be a split semisimple group over k and let E
be a G0-torsor. We write J for the bi-ideal in Ch∗(G0) generated by
Im(Ch>0(E) res−→ Ch>0(G0)) (here we identify Ch∗(E) and Ch∗(G0), see [PS22,
Section 4]). We define the bialgebra H∗ := Ch∗(G0)/J .
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Let X be a smooth projective cellular variety with a G0-left action. We define
the structure of a right H∗-comodule on Ch∗(X) as the composition

ρ : Ch∗(X)→ Ch∗(G0 ×X)→ Ch∗(G0)⊗Ch(pt) Ch∗(X)→ H∗⊗Ch(pt) Ch∗(X),

where the first map is the pullback of the action of G0 on X. We will omit the
grading on the Chow ring in the future to simplify the notation. For a cycle β in
Ch(X) we write ρ(β) > a⊗ b to indicate that the cycle a⊗ b is a summand of ρ(β).

7.2.2. This definition is adopted from [PS22, Definition 4.6] and [PS22, Definition
4.10]. The definitions given in the reference are valid for any oriented cohomology
theory A∗ in the sense of Levine-Morel (compare [LM, Remark 2.4.14(2)]), like
Ch∗(−) for example. This explains why ours looks a bit different, while it is actually
less general. Note that the coaction is a multiplicative map, since all intermediate
maps in its definition are ring homomorphisms. It follows from the definition of J
above, that H∗ and Ch∗(G0) coincide when the considered torsor is versal, because
in this case its Chow ring is just Fp.

This means if the values of ρ(xi) for each generator xi of Ch∗(X) are known
when one considers versal torsor, one can easily deduce the behavior of ρ in the
other cases, in which and Jp(G) is usually not maximal. We give an example how
this works after the following lemma.

7.2.3 Lemma. ([PS22, Lemma 7.1 and 7.2]) Consider the split form of SOn for
n = 2m + 2 or n = 2m + 1. We have Ch∗(SOn) ' F2[e1, . . . , em]/(e2

i = e2i) with
codim ei = i if i ≤ m and ei = 0 if i > m.

Let h, l be generators of Ch∗(X1), where h is the class of a hyperplane section
of the quadric X1 and l is the class of a maximal totally isotropic subspace in X1.
Consider the coaction ρ of Ch∗(SOn) on Ch∗(X1). Then the following holds.

ρ(l) = ∑m
i=1 ei ⊗ hm−i + 1⊗ l.

7.2.4 Example. We consider a split group G0 of type SO14 over k. The Chow ring
of G0 has three generators e1, e3, e5 by the Jp-table. We focus on G0/P1 =: X1. It is
well known that Ch(X1) is generated by h, l, satisfying h7 = 0, l2 = pt ∈ Ch12(X1)
(see [EKM]). By the Jp-table the maximal value of J2(G) is given by (3, 2, 1). Using
the lemma above, we see that in this case

ρ(l) = e1 ⊗ h5 + e2
1 ⊗ h4 + e3 ⊗ h3 + e4

1 ⊗ h2 + e5 ⊗ h+ e2
3 ⊗ 1 + 1⊗ l

holds. Assume now that we are given some inner twist G of G0 over k, such that
J2(G) = (0, 2, 1) for example. Then all powers of e1 are modded out of Ch(G0) by J ,
when considering H∗ = Ch(G0)/J . Concretely, e1 is now zero in H∗, which means
that the summands of the form ei1 ⊗ b become zero, too. Thus

ρ(l) = e3 ⊗ h3 + e5 ⊗ h+ e2
3 ⊗ 1 + 1⊗ l

holds in this case.
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7.2.5 Lemma. ([PS22, Lemma 4.12]) Let β be a rational cycle in Ch(X). Then
ρ(β) = 1⊗ β ∈ H∗⊗Ch(pt)Ch(X) holds.

7.2.6. One may ask whether the converse statement of the lemma above is true in
general. In Lemma 10.3.7 we show, that at least for the variety E7/P1 there is a
case when a cycle β is not rational, but gets mapped onto 1 ⊗ β by ρ. The lemma
above will be needed a lot later. Further below we prove some lemmas as examples
for the application of the coaction. One of the most important results of [PS22] is
the discovery of the following theorem, which is crucial for our future calculations.

7.2.7 Theorem. ([PS22, Theorem 6.4]) Let P be a parabolic subgroup of a split
semisimple algebraic group G0 over a field k and let ξ be a G0-torsor over k.
Let ρ denote the coaction of H∗ on Ch∗(G0/P ) and let J = (j1, . . . , jr) denote
the motivic J-invariant mod p. Every summand of the Chow motive M(ξ(G0/P ))
with coefficients Fp which is isomorphic to a Tate shift of RJ has a generic point
α ∈ Ch∗(G0/P ) such that for some β ∈ Ch∗(G0/P ) we have

ρ(β) = EJ ⊗ α + ∑
ai ⊗ bi

for some ai, bi with codim(ai) < codim(EJ), where EJ = ep
j1−1

1 · · · epjr−1
r . Conversely,

for every β of this form there is a summand of the Chow motive M(ξ(G0/P )) with
coefficients Fp which is isomorphic to a Tate shift of RJ and whose generic point
is α.

7.2.8. The cycle EJ in the theorem above reflects the value of Jp(G) in a one to
one manner. So, if we completely know the coaction on Ch(X), we can tell whether
there are Rost motives in M(X) just by looking at Jp(G). Also, for excluding
the possibility of Rost motives in M(X), it is enough to know whether Ch(X) has
less generators than Jp(G) has entries and that ρ can not send a generator xi of
Ch(X) to a cycle containing a summand of the form eiej ⊗ α for i 6= j. This can
sometimes be concluded from the codimensions of the generators of Ch(X) and
Ch(G), because ρ naturally preserves codimensions. To make the theorem above
more comprehensible, see the following example on how ρ(β) defining a Rost motive
(via the theorem above) behaves under field extensions.

7.2.9 Example. Let us consider a non split adjoint group G of type E7 over k. The
G-variety X3 is a GSV in case the Tits algebra of G is trivial. In the chapter about
phases we will see that J2(G) equals (0, 1, 1, 1), (0, 1, 1, 0) or (0, 1, 0, 0), corresponding
to the anisotropic kernels E7, D6 and D4 respectively.

Since X3 is a GSV, the quotient P (X3, t)/P (RJ , t) codes the shifts of RJ in
M(X3) in these cases. The copy RJ(m) in M(X) with the highest shift m is
necessarily unique, because the ending point of RJ(m) is the cycle pt ∈ Chd(X3)
with d = dim(X3).

We can use [PS22, Theorem 6.4] to conclude that there is a cycle β ∈ Ch(X3),
with ρ(β) = EJ ⊗ αm + ∑

a⊗ b, with αm denoting the starting point of RJ(m).
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It is easy to see that the cycle β is pt, as the codimension of EJ generally equals
the dimension of RJ . Here is an illustration of the situation for some imaginative
GSV X and a imaginative Rost motive RJ .

~ ~ ~ ~ ~ ~ ~ ~
�

RJ RJ(m)

Ch0(X) Chd(X)

X h .... .... α
ρ(−)

pt

Thus m = 30 for J2(G) = (0, 1, 1, 1) and RJ(30) with generic point
α30 is contained in M(X3/k) and defined by pt via ρ, since codim(e3e5e9) =
dim(R(0,1,1,1)) = 17 and dim(X3) = 47 holds.

Now comes the surprise. When we pass to L/k, such that J2(G/L) = (0, 1, 1, 0)
holds (see Lemma 8.2.2 for the existence) and codim(e3e5) = dim(R(0,1,1,0)) = 8,
then we can show by the very same considerations as above that R(0,1,1,0)(39) is
contained M(X3/L) and that its generic point α39 is in fact also defined by β = pt
via ρ(pt).

Generally for any GSV, if pt defines a Rost motiveRJ(m) over k, it defines a Rost
motive RJ ′(l) over L/k and l = m + codim(EJ)− codim(EJ ′). So if the J-invariant
decreases over L, the same cycle pt defines a Rost motive of lower dimension and
generic point of higher codimension over L.

7.2.10. Another conclusion from the example is that for any X (not necessarily a
GSV), ρ(pt) contains all summands of the form EJ ⊗ αi, such that one can derive
from the EJ exactly for which values of the J-invariant, the GSV property applies to
X (provided EJ strictly has the biggest codimension in the sense of [PS22, Theorem
6.4]). Saying this in a different way, if we know an exact formula for ρ(pt) for
a projective, homogeneous G-variety X, then we can tell for which values of the
J-invariant the variety X is a GSV for a group G.

7.2.11 Lemma. Let G be an algebraic group of type E8, with J2(G) = (1, 1, 1, 1).
Then the Chow motive of the projective, homogeneous G-variety X8 contains no
shifts of Rost motives.

Proof: By [DuZ10, Theorem 7] the Chow ring of X8 is generated by four cycles
h, x6, x10, x15. The subscript marks their codimension, while h is the generator of
Ch1(X8) as usual. In order for M(X8) to contain Rost motives, we need to find a
cycle β ∈ Ch(X8), such that ρ(β) > e3e5e9e15 ⊗ α holds for some α in Ch(X8) by
[PS22, Theorem. 6.4]. Note that h is rational over k since the Tits algebras of any
E8 are all split and thus by Lemma 7.2.5 we have ρ(hi) = 1⊗hi. As ρ is codimension
preserving, the e15 portion comes from x15. Also e9 can not be contributed by x6
but only by x10. This means that the e3e5 portion, which is 8-codimensional, has
to be contributed by x6, which is impossible. Note that since we use F2 coefficients,
considering any even power of the generators can not give an odd power of any ei
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under ρ. A product β consisting of even and odd powers of the generators, will
therefore always contain an even power of some ei in any summand of ρ(β), too.

7.2.12 Lemma. Consider G ' SO(q) of inner type Dm+1, m ≥ 2, with
J2(G) = (j1, . . . , jr). Then the Chow motive of the G-variety X1 contains no shifts
of Rost motives over k, in case at least two entries ji in J2(G) are nonzero.

Proof: The Chow ring of X1 is known to be generated by h ∈ Ch1(X1) and
l ∈ Chm(X1). Every cycle β ∈ Chi(X1) is either a power of h, a power of h
multiplied with l, or hm + l.

The cycle h is definitely rational. Thus we have that ρ(h) = 1 ⊗ h holds
by Lemma 7.2.5. Using the formula for ρ(l) from Lemma 7.2.3, it follows that
ρ(lha) = ∑m

i=1 ei⊗hm−i+a + 1⊗ lha holds. By Theorem 7.2.7, it follows that M(X1)
contains no Rost motives, if more than one entry in J2(G) is unequal to zero.
7.2.13 Lemma. For a projective, homogeneous G-variety X let h ∈ Ch(X) be
rational homogeneous and assume that there are homogeneous cycles α ∈ Chi(X),
β ∈ Ch(X) such that the conditions of [PS22, Theorem 6.4] are satisfied for a given
value of Jp(G). Then for all natural numbers l with βhl 6= 0, αhl 6= 0 the conditions
of the theorem are also satisfied for the cycles αhl, βhl. In particular it follows that,
if there is a Rost motive RJ(i) ∈ M(X) with generic point α, then there is a Rost
motive RJ(i+ l) ∈ M(X) with generic point αhl.

Proof: Since we assume that h is rational, we have ρ(h) = 1⊗ h by [PS22, Lemma
4.12]. In case α, β satisfy the equation and initial requirements from [PS22, Theorem
6.4] for our value of Jp, then the cycle 0 6= βhl maps to ρ(βhl) = EJ⊗αhl+

∑
ai⊗bihl,

since ρ is a homomorphism of rings. Provided αhl is not zero, the summand
EJ ⊗ αh is also not zero. The other summands ai ⊗ bi, for which initially
codim(ai) < codim(EJ) is supposed to hold, become ai ⊗ bihl. Thus the condition
on the codimensions of the ai is still satisfied, as EJ does not change either.
7.2.14. The theorem above in conjunction with [PS22, Theorem 6.4] can be thought
of as a generalization of [Shells, Theorem 4.10]. But instead of demanding b, which
is h in our case, to be from the first shell, rationality alone is enough for the theorem
to hold, provided the motive M is a Rost motive.

Chapter 8
Phases of algebraic groups of type
E7

In this section we introduce collections of invariants of an algebraic group, which we
call a phase. We calculate many possible phases for twisted forms of a split adjoint
group of type E7 mod 2.
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8.1 Definitions and properties

We have already introduced well known examples, which show that one can not
derive the motivic decomposition of the projective, homogeneous F4-varieties mod
2 or the projective, homogeneous E6-varieties mod 3 solely from the Tits index or
the J-invariant of the respective group. Additionally for some types of groups it
is possible that two groups having the same Tits index have Tits algebras with
different index (compare the Tits classification for E7). This can become an issue
when one wants to know, how the semisimple anisotropic kernel of a group changes
under a field extension, possibly of the kind k(X) for some projective variety X.
Such questions where treated in [SvB] and [MPW], [MPW2] and spawned the index
reduction formulas. The idea of index reduction was further developed in [PS07],
where Tits automata were introduced.

The results in [Shells, Table 8.A] and [Shells, Table 10.A] show how motivic
decompositions depend on the three invariants Tits index, Tits algebra and motivic
J-invariant. As groups of type E7 are even more complicated than F4 or E6 in many
aspects, this suggests that one should also consider these three invariants, when
calculating motives of projective, homogeneous E7-varieties.

8.1.1 Definition. Consider a split adjoint group G0 of type E7 and let ξ be a G0-
torsor. Let G be the twist of G0 by ξ with semisimple anisotropic kernel Gan, Tits
algebra A and motivic J2-invariant J2(G). We call the triple

p(G) := [Gan, J2(G), ind(A)]

the phase of G. We just write p sometimes. A phase is called admissible if it does
occur over some field k. Given two phases p and p′, with p occurring over k, we say
that there is a transition from p to p′ if there is a field extension L/k such that p′
occurs over L. When L is a field extension of the form L ' k(X) for some smooth
projective variety X, we say that X induces a transition to p′. The phase [∅, 0, 1] is
called split.

8.1.2. Since over a field extension all three invariants contained in a phase can only
stay the same or decrease, a phase does also behave that way. Eventually a phase will
transit to the split phase. One can extend the definition to other groups and torsion
primes, but we are only interested in Ead

7 mod 2. It is known that when twisting
a split group with a versal torsor, all invariants Gan, J2(G), ind(A), will have take
their maximal value, which gives us some kind of versal phase [E7, (1, 1, 1, 1), 8]. It
follows from the definition of a versal torsor, that the phase of a versal form can
specialize to any other admissible phase. Every GSV does induce a transition to the
split phase, for example. Figuring out how transitions to other phases are induced,
is part of our research during the coming chapters.

8.1.3 Remark. When some projective, homogeneous G-varieties Xi and Xj induce
the same transition, then it follows that the upper motive of Xi and Xj are
isomorphic, simply because then both varieties become isotropic of the generic point
of the other and therefore each have a zero cycle of odd degree then. So determining
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patterns of how phases change over a tower of fields means to determine whether
certain upper motives in a chain of transitions become isomorphic or not.

It surely would be desirable for a one to one correspondence between p(G) and
#G or #G ∪ U(SB(A)) to exist, but this is not necessarily the case, as Gan is not
a motivic invariant. Take two anisotropic quadratic forms of the same rank for
example. The motivic decompositions of their quadrics depend on their splitting
pattern and may be totally different. Also, we can not guarantee that two quadratic
forms with the same J2-invariants have the same splitting pattern. On top of that,
we do not know such a thing as an intrinsic splitting pattern depending on ξ for
groups of type E7. Indeed when a group G of type E7 is isotropic, we will see from
the individual calculations of the motives of the projective, homogeneous G-varieties,
that every admissible phase determines #G uniquely.

8.2 Phases of strongly inner E7s

This section contains the admissible phases in case G has trivial Tits algebra. It
is basically a warm up, since these phases can easily be copied from the results
in [Shells], where the simply connected case was treated. We start with the most
isotropic case D4 and work our way up to the anisotropic case.

8.2.1 Lemma. The only phase with Tits index D4 is [D4, (0, 1, 0, 0), 1].

Proof: It is known that the anisotropic kernel D4 inside a group G of type E7 is
defined by a 3-Pfister form ϕ. So if it is anisotropic, we can use Example 6.2.5
to conclude that we have J2(D4) = (0, 1). Thus by the cut off property of the
J-invariant, J2(G) = (0, 1, 0, 0) holds.

8.2.2 Lemma. The only phase with Tits index D6 and ind(A) = 1, is
[D6, (0, 1, 1, 0), 1].

Proof: By Theorem 6.2.2, we necessarily have j1 = 0, since the considered G of
type E7 is strongly inner. Any strongly inner group H of type D6 inside a E7 is
defined by a rank 12 quadratic form q, such that all Tits algebras of H are split.
Otherwise the enveloping E7 would have non trivial Tits algebras, which violates
our initial requirement. By the Tits classification, there are only two Tits indexes
more isotropic and having split Tits algebras than a D6 with split Tits algebras, for
such a group H. One is to have anisotropic kernel D4, the other one is the split one.

Since there is no splitting pattern [6] by the splitting pattern table for a quadratic
form q of rank 12, the admissible splitting pattern is [2, 4] by the same table. Such
forms are given by q = 〈〈a, b, c〉〉 ⊥ −〈〈a, d, e〉〉 in W (k), which have exactly one
common slot 〈〈a〉〉 (see [Vis04, p.79]).

In [Shells, Table 10.B], we see that J2(Spin(q)) = (1, 1) holds. From
the parameters in the Jp-table and Theorem 6.2.2 it follows that we have
J2(G) = (0, 1, 1, 0) by the cut off property.

8.2.3 Lemma. The phase [E7, (0, 1, 1, 1), 1] is admissible.
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Proof: By the comment in Example 6.2.8 any adjoint E7 is anisotropic, when it has
J2 = (0, 1, 1, 1). Since a simply connected E7 with J2 = (1, 1, 1) does exist by the
results in [Shells], it follows that an adjoint E7 with J2 = (0, 1, 1, 1) exists.

Let G0 be a split simply connected E7 and G be a twisted form of G0 by
ξ ∈ H1(k,G0), such that J2(G) = (1, 1, 1) holds. Consider its image ξ′ ∈ H1(k,G′0)
under the map induced from the covering map G0 → G′0, for G′0 being the split
adjoint E7. Twisting G′0 with ξ′, then gives the respective value for J2 and thus an
anisotropic adjoint E7.

Alternatively, take a versal form of an adjoint E7. It has J2 = (1, 1, 1, 1), as
this is the maximal value for J2. Pass to k(SB(A)). By Zhykhovich’s theorem for
example, J2 has the desired value.

8.2.4. The proofs of the lemmas above show that for the isotropic inner E7s
there is a one to one correspondence between the semisimple anisotropic kernel
of the respective group and its J2-invariant. For the anisotropic cases, note that
[E7, (0, 1, 0, 0), 1] and [E7, (0, 1, 1, 0), 1] are impossible by the results compiled in
[Shells, Table 10.B].

8.3 Phases of general E7s

Now we prove the admissibility of all of the isotropic and some of the anisotropic
phases.

8.3.1 Lemma. Adjoint groups G of type E7 with Tits index A3
1 have

J2(G) = (1, 0, 0, 0).

Proof: From the Tits classification it is known that the anisotropic kernel A3
1

occurs and the Tits algebra A of G has ind(A) = 2 in such cases. Also X7 is
necessarily a GSV in this case, as by the index reduction formula in [MPW2] one
has ind(A⊗k k(X7)) = 1 and thus the Tits classification leaves no other possibility
for the Tits index of G than the split one. By the GSV-table X7 is a GSV if and only
if j2 = 0 holds. Since G/k is not strongly inner, we have j1 6= 0 by Theorem 6.2.2.
Considering the restrictions holding for J2 by the Jp-table, this leaves (1, 0, 0, 0) as
only possibility for J2(G).

8.3.2 Lemma. Adjoint groups G of type E7 with Tits index D4 × A1 or D5 × A1
have J2(G) = (1, 1, 0, 0).

Proof: In [Tits90] it is mentioned that groups G of type E7 with anisotropic kernel
D5 × A1 or D4 × A1 exist and are classified by quadratic forms q = ϕ3 ⊥ −ϕ2 in
W (k), with ϕ3, ϕ2 being a 2- or 3-Pfister form respectively and having none (then
one has D5) or one (this gives D4) common slot. We have treated such quadratic
forms in Example 6.2.6 and Example 6.2.7. The statement of this lemma is basically
the second example. Using the cut off property, it follows that the entries j3, j4 of
J2(G) are zero.
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8.3.3 Remark. The construction of groups of type E7 with anisotropic kernel
D5 × A1 and other types can be deeply understood on the level of so called
structurable algebras. In the case above these are simply the Octonion and
Quaternion algebras. The procedure can be found in [Allison] for example. The
quadratic form q defining such groups is in fact the norm form of the difference of
the norm form f3 of the Octonion algebra O and ϕ2 of the Quaternion algebra Q
used to construct the group G.

Note that the resulting G has Q as as its Tits algebra. This holds necessarily, as
passing to k(Xϕ2) makes G have anisotropic kernel D4 being defined by ϕ3 by the
Example 6.2.6. At the same time, splitting the Tits algebra of G makes G strongly
inner, so there can not be another non zero mod 2 invariant like ϕ2 for G, since every
group of type E7 has at most one none split Tits algebra up to Brauer equivalence
by Remark 3.7.5 and ϕ3 (now defining G) lies in I3. As X3 is not a GSV when
j1 = 1, this gives the following sequence of phases and transitions

[D5 × A1, (1, 1, 0, 0), 2] X1−→ [D4 × A1, (1, 1, 0, 0), 2] X3−→ [A3
1, (1, 0, 0, 0), 2].

8.3.4. We now deal with the most complicated isotropic case, being groups of type
E7 with anisotropic kernel D6 and non split Tits algebras. Such groups can have
ind(A) = 2 or 4 for their Tits algebra A by the Tits classification. There is a
construction for each of these two cases. We thank Skip Garibaldi for explaining
the constructions, which are also shortly discussed in [DG, 4.5.1.].
8.3.5 Theorem. Adjoint algebraic groups G of type E7 with anisotropic kernel D6,
Tits algebra A and ind(A) = 2 or 4 exist and satisfy J2(G) = (1, 1, 1, 0).

Proof: By [GQ09, Rmrk. 3.3], we can use [GQ09, Theorem 3.1] to produce the groups
in question. By Remark 6.2.4 their anisotropic kernel is given by HSpin(A, σ), for
A being a degree 12 CSA and σ an orthogonal involution with trivial discriminant
and Clifford invariant (see [Inv, §8]).

Case of ind(A) = 4. For the existence of the ind(A) = 4 case, one can check
[Inv, p.148 Exercise 13]. These groups arise from degree 6 algebras B with unitary
involution τ , which induces an orthogonal involution σ on the discriminant algebra
D(B) (see [Inv, §10]). The quadratic form qσ adjoint to σ, is the difference of two
3-Pfister forms having exactly one common slot. Such forms have splitting pattern
[2, 4] by [Vis04]. They classify strongly inner groups of type E7 with anisotropic
kernel D6. Their Witt index is therefore 0, 2 or 6.

By [Kar09, Thrm 3.3], ind(A/k) divides the Witt index of qσ over k(SB(A)) in
the sense that if it does not divide any of these numbers, qσ is anisotropic over
k(SB(A)). This is obviously the case here. Thus we have that the anisotropic kernel
of G stays D6 over k(SB(A)). By Lemma 8.2.2 the value of J2(G) over k(SB(A))
equals (0, 1, 1, 0)]. The value of J2 over k is therefore at least (0, 1, 1, 0) by the
decreasing property of the J-invariant. Since A/k is not split, it is in fact at least
(1, 1, 1, ∗) by Theorem 6.2.2. By the conclusion of Example 6.2.8, j4 = 0 holds
over k.

Case of ind(A) = 2. For an existence proof in the the index 2 case, we can consider
[GQ9, Example 2.3]. In this case the Tits algebra A is Brauer equivalent to a
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Quaternion algebra Q. We can not use Karpenko’s result here. But the crucial part
in the existence proof is that the anisotropic kernel of G over k(SB(Q)) is also of
type D6. Applying the same argument as above (i.e reducing to the strongly inner
case) does prove the statement on J2(G).

8.3.6 Theorem. Adjoint groups G of type E7, with J2(G) = (1, 1, 1, 1) have a Tits
algebra A with ind(A) ∈ {2, 4, 8}. Every of these three values is admissible.

Proof: Let D be the division algebra lying under A. If G is versal, then ind(A) = 8,
which is known to be the maximal possible value. We can use Zhykovich’s theorem
and pass to k(SB(D)), to obtain [E7, (0, 1, 1, 1), 1]. When we pass from k to
k(SB4(D)) or k(SB2(D)), the index of A changes to 4 or 2 by the index reduction
formula in [SvB]. The field extension k(SB(D))/k factors through k(SB4(D)) or
k(SB2(D)), amounting to the following transitions (the ∗ symbolizes 2 or 4)

[E7, (1, 1, 1, 1), 8] SB∗(D)−−−−→ [E7, (1, 1, 1, 1), ∗] SB(D)−−−→ [E7, (0, 1, 1, 1), 1].

One may stress that G could become isotropic over L := k(SB∗(D)). But
this is impossible, as in that case passing from L to L(SB(D)) can not yield
[E7, (0, 1, 1, 1), 1] then. This would contradict the general commutativity of the
restriction map.

8.3.7. In the corollary below, we summarize the results of this section in a big
diagram. It will come in handy for anyone who enjoys a visual support for the many
proofs to come. We often show that a phase can (not) transition into another one,
when certain upper motives are (not) isomorphic. This overview should speed up
comprehending the arguments. The arrangement of the phases is carefully chosen.
We will later on show that there are some more anisotropic phases. But this does
not interfere with the representation below.
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8.3.8 Corollary. (Phase classification) Let G be an adjoint algebraic group of type
E7. Then the following phases of G are admissible. There are no other phases with
isotropic G than those shown below.

[(0, 1, 1, 1), 1]
u uu u u u u

[(1, 1, 1, 1), 8/4/2]
u uu u u u u

[(0, 1, 1, 0), 1]
u uu u u u uj

[(1, 1, 1, 0), 4/2]
u uu u u u uj

[(1, 1, 0, 0), 2]
u uu u u u uj

[(1, 1, 0, 0), 2]
u uu u u u uj j

[(0, 1, 0, 0), 1]
u uu u u u uj j j

[(1, 0, 0, 0), 2]
u uu u u u uj j j j

Proof: This table is just a summary of the results from the lemmas in the two
sections before.

8.3.9 Corollary. Let G be an anisotropic group of type E7 with J2 = (1, 1, 0, 0) or
(1, 0, 0, 0) and Tits algebra A. Then ind(A) = 2.

Proof: Surely ind(A) can not be 1, as by Lemma 6.2.2 one would have j1 = 0.
Assume that ind(A) > 2. Then over k(X1) we have ind(A) = 4, by the index
reduction formula [MPW2]. By the Tits classification the only possible anisotropic
kernel for such an isotropic G is of type D6. But for such a G one has J2 = (1, 1, 1, 0)
by the phase classification. This violates the fact, that the J-invariant can not
become bigger over field extension. All other possibilities do not violate the
requirements, as the other isotropic cases have the desired values for J2 and ind(A)
simultaneously.

8.3.10. Unlike in the case for E6 mod 3, as pointed out in the motivation subsection,
we have now found cases (the ones above) where ind(A) can be derived solely from
Jp. Note that we have not proven the existence of such groups as in the corollary
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yet. We consider the constructing of such groups in the Chapter 11 by sketching a
proof. The existence of anisotropic E7s with J2 = (1, 1, 1, 0) remains a mysterious
case though. We manage to derive some restrictions on it and calculate some motivic
decompositions in Chapter 10. But we can not prove its existence.

Chapter 9
Motivic decompositions for strong-
ly inner E7s

In this chapter we establish the motivic decomposition of all projective, homogeneous
G-varieties for an adjoint group G of type E7 with trivial Tits algebra into Chow
motives with F2 coefficients. Except for the case where G is anisotropic, these
results are already known technically as they follow rather easily by applying the
CGMB algorithm, considering Tate motives and certain polynomials and looking
into [Shells]. We solve all cases phase by phase, starting with the most isotropic case.
We include these for the sake of completion and as a reference for the calculations
in later chapters.

The results are mostly presented in tables containing many decompositions at
once. Note that in the logic which holds in the tables, the Tate polynomial T (X, t)
of a variety X is zero in case X is anisotropic. The tables consist of three pieces.
One showing the decomposition, one containing the structure of the summands and
one containing the shifting information of the summands. Sometimes the shifting
information are only given implicit, because the polynomials become too big or the
information are not of further interest to us. In case we recite them in later results,
they are stated explicitly.

When we are dealing with different values of the J-invariant in tables or proofs,
we explicitly write R(1,1,0,0) for example, instead of RJ when there is no danger of
confusion.

By the GSV-table the varieties of X2, X3, X4 and X5 are GSVs. We focus only
on the cases where PΘ is a maximal parabolic subgroup, except for P1,6. The other
non maximal cases do not provide any added value and can be derived from these
base cases easily.



60

9.1 The phase [D4,(0,1,0,0),1]

This first case is the most simple one and only needed for proofs of the other cases
where G is less isotropic.

9.1.1 Theorem. Let G have phase [D4, (0, 1, 0, 0), 1]. Then the following unique
decompositions of the Chow motives of projective, homogeneous G-varieties into
indecomposable motivic summands hold

Θ M(XΘ)
Θ ⊂ {1, 6, 7} ⊕

t∈TΘ F2(t)⊕⊕
i∈IΘRJ(i)

Any other ⊕
i∈IΘRJ(i)

Index Poincaré Polynomial
RJ (1 + t3)

Index Shift/Tate Polynomial
T1 1 + t8 + t16 + t17 + t25 + t33

T6 (1 + t8 + t16)(1 + t9)(1 + t17)
T7 (1 + t)(1 + t9)(1 + t17)
T1,6 (1 + t8)T6
I1 t(1+t+t2)(1+t6)(1+t3+t5+t8+t9+t11+t12+t15+t17+t20)
I6 t(1+t)(1+t6)(1+t+t2+2t3+t4+4t5+5t7+8t9+9t11+10t13+

9t15+10t17+9t19+8t21+5t23+4t25+t26+2t27+t28+t29+t30)
IΘ [P (XΘ, t)− TΘ]/RJ

Proof : If G has anisotropic kernel D4 over k, then by the Tits classification the only
possibility for G to become more isotropic over a field extension of k, is to become
split. Applying Karpenko’s theorem and the fact that the J2-invariant equals 0 if
and only if G is split (provided J3 = 0 holds), we see that #G/k = {F2,R(0,1,0,0)}
does hold. So all anisotropic projective, homogeneous G-varieties are GSVs in this
situation. The actual computations are straightforward. First, using the CGMB
algorithm, we calculate the Tate motives in the motive of each isotropic projective,
homogeneous G-variety XΘ. This gives us the Tate polynomials P (TΘ, t). Secondly,
we obtain the shift polynomial P (IΘ, t) describing the Rost motives contained in
M(X), by subtracting the Tate polynomial P (TΘ, t) from the Poincaré polynomial
P (XΘ, t) of XΘ and dividing the difference by P (R(0,1,0,0), t).
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9.2 The phase [D6,(0,1,1,0),1]

9.2.1 Theorem. Let G have phase [D6, (0, 1, 1, 0), 1]. Then the following unique
decompositions of the Chow motive of projective, homogeneous G-varieties into
indecomposable motivic summands hold

Θ M(XΘ)
{1} F2 ⊕ F2(33)⊕ U(X7)(8)⊕ U(X7)(16)⊕⊕

i∈I1RJ(i)
{2, 3, 4, 5} ∩Θ 6= 0 ⊕

i∈IΘRJ(i)
Any other ⊕

u∈OΘ U(X7)(u)⊕⊕
i∈IΘRJ(i)

Index Poincaré Polynomial
U(X7) (1 + t5)(1 + t2 + t4)
RJ (1 + t3)(1 + t5)

Index Shift/Tate Polynomial
O6 (1 + t8 + t16)(1 + t17)
O7 (1 + t)(1 + t17)
O1,6 (1 + t8)O6

OΘ : {2, 3, 4, 5} ∩Θ 6= 0 0
I1 t(t24 − 1)/(t− 1) + t11(1 + t+ t2 + t3)
I7 t6(1 + t)(1 + t2)(1 + t4)
IΘ [P (XΘ, t)−OΘP (U(X7), t)]/RJ

Proof :

Calculating #G: First note that by the GSV-table X7/k and X6/k are not GSVs.
Since a phase can only decrease under field extension, passing to the generic point of
X7 induces a transition to [D4, (0, 1, 0, 0), 1], as there is no other phase possible by
the phase classification. We have seen in Lemma 8.2.2 that the anisotropic kernel of
G/k is given by HSpin(q), with q having splitting pattern [2, 4]. The upper motives
of Xq/k and X7/k are isomorphic (see [Shells, Lemma 10.15], where this was already
considered). The motive of Xq/k decomposes as U(Xq/k)⊕U(Xq/k)(1), as shown in
Lemma 5.5.10, from which the structure of U(X7/k) ' U(Xq/k) follows. As X1/k is
already isotropic and the other projective, homogeneous G-varieties are either GSVs
or induce transitions to [D4, (0, 1, 0, 0), 1] as well and thus have an upper motive
isomorphic to U(Xq/k), we obtain that #G/k = {F2,U(X7),R(0,1,1,0)}.

Calculating M(XΘ): For establishing the motivic decompositions of the G-varieties
XΘ which are not GSVs, we can consider their Tate polynomials T (XΘ, t) over k(X7).
As the Tate motives come from copies of U(X7), which splits off Tate motives in
codimension 0 and 9, dividing the Tate polynomials T (X, t) by (1 + t9) gives us the
shift polynomials O(XΘ, t) coding the shifting information about U(X7) in M(XΘ).
We use the Tate motives as some kind of skeleton of the U(X7)s here. Finally we
need to subtract the product of P (U(X7), t) and O(XΘ, t) from P (XΘ, t) and divide
these differences by P (R(0,1,1,0), t).

The case of M(X1): The only case for which this does not work is X1, since X1/k
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is already isotropic. This means M(X1/k) contains Tate motives. Therefore we
need to subtract these Tate motives that are visible over k and which are coded by
(1 + t33) (input: prodbases([2, 3, 4, 5, 6, 7], [2, 3, 4, 5, 6, 7], E7) to see this), before
we proceed as in the case of the other XΘs.

9.3 The phase [E7,(0,1,1,1),1]

9.3.1. For this case the projective, homogeneous G-varieties which are not GSVs
over k, are XΘ for Θ ⊂ {1, 6, 7} by the GSV-table. Also taking the Tits
classification into account the varieties X6, X7, X6,7, X1,6,7 induce a transition to
[D4, (0, 1, 0, 0), 1] and thus have isomorphic upper motive over k. Just from looking
at the possible phases it is hypothetically possible that over k(X1) one does also
obtain [D4, (0, 1, 0, 0), 1]. To prove that this is wrong, checking the shifts of the Tate
motive in M(XΘ) over k(XΘ) is enough. We incorporate a result from [Shells] to
prove the following.

9.3.2 Lemma. Let G have phase [E7, (0, 1, 1, 1), 1]. Then the upper motives of the
projective, homogeneous G-varieties X1 and X7 are not isomorphic over k.

Proof : We first prove that X1/k has no zero cycle of odd degree.

No odd degree zero cycle on X1: Assume the opposite holds, i.e. X1/k is
anisotropic and has the desired zero cycle. Then there is a field extension L/k
of odd degree, such that X1 becomes isotropic over L. As the Jp-invariant does
not change over field extensions of degree coprime to p, the value of J2(G/L)) is
still equal to (0, 1, 1, 1). By the Tits classification an isotropic E7 mod 2 has D6 as
biggest possible anisotropic kernel (i.e. it has a k-torus of rank 1). By Example 6.2.8
every isotropic adjoint E7 has at most j4 = 0. It follows that X1/k can not have a
zero cycle of odd degree.

Main statement: By the GSV-table, X7/k is not a GSV and thus induces a
transition to [D4, (0, 1, 0, 0), 1]. Assume the upper motives of X1/k and X7/k are
isomorphic. Then X7/k does not have a zero cycle of odd degree, as otherwise X1/k
would also have one.

We now can apply [Shells, Lemma 10.8], from which it follows that F2(9) in
M(X7) over k(X7) is glued with U(X7/k). But F2(9) is not contained in M(X1)
over k(X7) by Theorem 9.1.1.

9.3.3. Our considerations show that #G/k = {U(X1),U(X7),R(0,1,1,1)} holds. Also
we see that X1 induces a transition from to [E7, (0, 1, 1, 1), 1] to [D6, (0, 1, 1, 0), 1].
This was already concluded in [Shells] for Esc

7 . We now calculate the motivic
decomposition for X7, which is surprisingly easy obtained. The structure of U(X7)
will also be used when treating the harder case of X1.

9.3.4 Theorem. Let G have phase [E7, (0, 1, 1, 1), 1]. Then the unique
decomposition of the Chow motives of the projective, homogeneous G-variety X7
into indecomposable motivic summands is given by
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M(X7) = U(X7)⊕ U(X7)(1),

with P (U(X7), t) = (1 + t2 + t4 + t6 + t8 + t10 + t12)(1 + t5)(1 + t9).

Proof: Recall that we have #G/k = {U(X1),U(X7),R(0,1,1,1)}, so ruling out the
possibility of U(X1/k) or R(0,1,1,1) occurring in M(X7/K) is our first step. By the
lemma above G has anisotropic kernel D6 over k(X1). Since the upper motive of
X7 becomes isomorphic to U(Xq) over k(X1) by Theorem 9.2.1, X7/k does not
have a zero cycle of odd degree by Springer’s theorem. Thus no copy of U(X1) can
be contained in M(X7) over k. Now we show that there are no Rost motives in
M(X7/k).

No Rost motives: By [Kac, Table II] P (R(0,1,1,1), t) = (1+t9)P (R(0,1,1,0), t) holds.
This means that if there is a Rost motive R(0,1,1,1)(i) in M(X7/k), then there is a
Rost motive R(0,1,1,0)(i+ 9) in M(X7) over k(X1). By Theorem 9.2.1 we know that
in the decomposition ofM(X7) no pair of Rost motives with shifts i, i+9 exists over
k(X1) as P (I7, t) = t6(1 + t+ t2 + t3 + t4 + t5 + t6 + t7) holds in this case. Therefore
M(X7/k) consists only of copies of U(X7/k).

Structure of U(X7): In the decomposition of M(X7), in case G has anisotropic
kernel D6, there appear several copies of U(Xq), whose generic points are given by
O(X7, t) = (1+t)(1+t17) by Theorem 9.2.1. Using this, Karpenko’s theorem and the
symmetry of the decomposition, there are only three hypothetical possibilities for
the structure of U(X7/k). Either it splits over k(X1) as U(Xq)⊕U(Xq)(1) plus some
Rost motives, or U(Xq)⊕U(Xq)(17) plus some Rost motives, or it is isomorphic to
the whole motive of X7 and splits as shown in Theorem 9.2.1. However, passing
to k(X7) and checking the Tate motives calculated in Theorem 9.1.1, we see that
M(X7) contains F2(1), while M(X6) does not. Since by the phase classification
U(X6/k) and U(X7/k) are isomorphic over, this rules out the possibilities one and
three.
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9.3.5 Theorem. Let G have phase [E7, (0, 1, 1, 1), 1]. Then the following unique
decompositions of the Chow motives of projective, homogeneous G-varieties into
indecomposable motivic summands hold

Θ M(XΘ)
{2, 3, 4, 5} ∩Θ 6= 0 ⊕

i∈IΘRJ(i)
{7} U(X7)⊕ U(X7)(1)

Any other but {1} ⊕
u∈OΘ U(X7)(u)⊕⊕

i∈IΘRJ(i)

Index Poincaré Polynomial
U(X7) (1 + t2 + t4 + t6 + t8 + t10 + t12)(1 + t5)(1 + t9)
RJ (1 + t3)(1 + t5)(1 + t9)

Index Shift/Tate Polynomial
O6 (1 + t8 + t16)
O1,6 (1 + t8)O6

OΘ : {2, 3, 4, 5} ∩Θ 6= 0 0
IΘ [P (XΘ, t)−OΘP (U(X7), t)]/RJ

Proof: The motivic decompositions for the varieties XΘ with {1} 6= Θ ⊂ {1, 6, 7}
follow easily from the decomposition of M(X7), as their upper motives are all
isomorphic to U(X7) by the Tits classification. Also over k(X1) these varieties
remain anisotropic by Lemma 9.3.2 (and also have no zero cycle of odd degree).
Therefore no copy of U(X1) can be contained in any of their motives over k. The
Tate motives split off by U(X7) over k(X7) are encoded by

T (X7, t) := 1 + t9 + t17 + t26

and are obtained by encoding the Tate motives calculated in Theorem 9.2.1 as a
polynomial and then dividing by 1 + t as the theorem above suggests. So passing
to k(X7) and applying the CGMB algorithm to identify Tate motives, writing them
as a polynomial T (XΘ, t) and dividing by T (X7, t), one obtains a shift polynomial
O(XΘ, t) with the shifting information about the copies of U(X7/k) in M(XΘ/k).
Then subtracting the product O(XΘ, t)P (U(X7/k), t) from P (XΘ, t) and dividing
by P (R(0,1,1,1), t), gives P (IΘ, t), which encodes the shifting information about the
Rost motives in M(XΘ/k).

9.3.6. Interestingly the decomposition of M(X7) was also recently obtained in
[PS22, Proposition 8.8] by using the coaction map ρ. We explicitly listed its
decomposition in the table above to emphasize that it contains no Rost motives.
Knowing the structure of U(X7), we can finally calculate the decomposition of
M(X1/k). Also we will heavily incorporate the notion of ρ for this. First we need
to know about the generators of Ch(X1).

9.3.7 Lemma. For a split adjoint algebraic group G of type E7 and the projective,
homogeneous G-variety X1 the following holds.
Ch(G) ' F2[e1, e3, e5, e9]/〈e2

1, e
2
3, e

2
5, e

2
9〉 and Ch(X1) ' F2[h, x4, x6, x9]/〈r1, r2, r3, r4〉

for some ri ∈ F2[h, x4, x6, x9]. Let Sn(−) be the n-th Steenrod operation. Then
S2(e3) = e5, S4(e5) = e9 holds.
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Proof: The statements on the Chow rings can be found in [DuZ10, Theorem 6] and
[Kac85, Table II]. The first reference does also contain an explicit description of the
cycles. The cycle x6 for example is γ6,2, the second generator of Ch6(X1) one obtains
when executing the chow generators command from the Chow maple package. For
the Steenrod algebra action see [IKT76, Proposition 5.1].

9.3.8 Lemma. Let G be an adjoint algebraic group of type E7. Consider the
projective, homogeneous G-variety X1. Then the following holds for the coaction
map ρ on Ch(X1)

1. ρ(h) = 1⊗ h

2. ρ(x4) = e3 ⊗ h+ e1 ⊗ h3 + 1⊗ x4

3. ρ(x6) = e5 ⊗ h+ e1 ⊗ h5 + 1⊗ x6

4. ρ(x9) > e9 ⊗ 1 + 1⊗ x9

Proof:

1. By Remark 3.7.5 and Remark 5.1.11 h ∈ Ch(X1) is always rational. Therefore
we have ρ(h) = 1⊗ h by [PS22, Lemma 4.12].

2. We prove this statement for each of the two summands e1 ⊗ h3 and e3 ⊗ h
separately. The claim on 1⊗ x4 follows from [PS22, Lemma 4.12].

For the e1 ⊗ h3 case, consider Theorem 10.1.1 in the next section. There is a
Rost motive R(1,0,0,0)(3) in M(X1), when G has phase [A3

1, (1, 0, 0, 0), 2]. By [PS22,
Theorem 6.4] it follows that there is some cycle β ∈ Ch4(X1) for which ρ(β)
contains e1 ⊗ h3. Since h4 is rational, because the Tits algebra of ω1 is always
split, ρ(h4) = 1 ⊗ h4 holds by [PS22, Lemma 4.12]. Thus adding h4 to β does not
change the statement on e1 ⊗ h3. We conclude that β = x4 holds.

For the e3 ⊗ h case, simply consider Theorem 9.1.1. There is a Rost motive
R(0,1,0,0)(1) in M(X1), when G has phase [D4, (0, 1, 0, 0), 1]. By [PS22, Theorem
6.4] it follows that there is some cycle β ∈ Ch4(X1) for which ρ(β) contains e3 ⊗ h.
Since h4 is rational, because the Tits algebra of ω1 is always split, ρ(h4) = 1 ⊗ h4

holds by [PS22, Lemma 4.12]. Thus adding h4 to β does not change the statement
on e3 ⊗ h. We conclude that β = x4 holds.

3. The third statement follows by applying the total Steenrod operation to the
second statement by using the lemma above. Note that the total Steenrod operation
commutes with the coaction. It is worth noting that S2(x4) = x6, while S3(x6) 6= x9
holds.

4. We consider the pullback π∗ : Ch(G/P ) → Ch(G) of the natural projection π :
G → G/P . By [Xr20, Corollary 2.] we need to show, that π∗(x9) = e9 holds. For
this we apply the technique from Remark 6.1.9. Using the same nomenclature as
in [PS22, Lemma 6.2], we consider the right exact sequence of Chow rings of split
algebraic groups

Ch(G/Q)→ Ch(G) � Ch(C)→ 0.
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In our situation Q is P1, while G equals Ead
7 and C is of type HSpin12, by

Remark 6.2.4. By the right exactness of the sequence above, each generator e1, e3, e5
of Ch(C) has a preimage in Ch(Ead

7 ), which is generated by e1, e3, e5, e9. For
codimensional reasons and because of the relation e2

i = 0 for i = 1, 3, 5 holding
in Ch(C), the generators e1, e3, e5 ∈ Ch(Ead

7 ) map to their counterparts in terms of
codimension in Ch(C).

Thus e9 either maps to zero, or it maps to e1e3e5. In the first case we are done
by [Xr20, Corollary 2.] and because ρ(x9) can not contain e1e3e5 ⊗ 1. Otherwise
X1 would be a GSV by [PS22, Theorem 6.4] when J2 = (1, 1, 1, 0) holds. But X1 is
never a GSV, by the GSV-table.

We are left with showing that e9 does not map to e1e3e5. Assume it does. Then
the cycle e1e3e5 + e9 ∈ Ch(Ead

7 ) is mapped to 2e9 = 0 ∈ Ch(C). Its preimage
in Ch(X1) has codimension 9. Such a cycle can only be a linear combination of
x4h

5, x6h
3, x9, h

9. Now remember that e1 ∈ Ch(Ead
7 ) maps to e1 ∈ Ch(C) and

therefore h maps to zero under π∗ (this can also be seen from the fact that h is
rational and how the coaction treats such cycles), because e2

1 = 0 in Ch(G) and
Ch(C) (see Jp-table). Thus the preimage of e1e3e5 + e9 ∈ Ch(Ead

7 ) is x9. Again, this
means when J2 = (1, 1, 1, 0) holds, then X1 is a GSV. As this is a contradiction, we
have that e9 maps to zero and π∗(x9) = e9 holds.

9.3.9 Lemma. Let G have phase [E7, (0, 1, 1, 1), 1]. Then the Chow motive of the
projective, homogeneous G-variety X1 contains exactly one Rost motive in each of
the codimensions l ∈ [2 : 14], each having as generic point hl for h ∈ Ch1(X1).
These are the only Rost motives in M(X1).

Proof: Let us define β := x4x6x9. The coaction is a ring homomorphism and thus
ρ(x4)ρ(x6)ρ(x9) = ρ(β) yields. With the result from the lemma above in mind, we
set ρ(x9) = e9 ⊗ 1 + 1 ⊗ x9 + ∑

ai ⊗ bi. As ρ preserves codimensions, all of the ai
have strictly smaller codimension than codim(e9), except in case one of the ai is of
the form e1e3e5. In this case the respective bi is 1. However if e1e3e5 ⊗ 1 < ρ(x9)
would hold, we could use [PS22, Thrm 6.4] to show that the upper motive of X1 is
a Rost motive when J2 = (1, 1, 1, 0). But by the GSV-table X1 does never have a
Rost motive as its upper motive (i.e. is never a GSV). So we see that the summand
of the form ai ⊗ bi in ρ(β), for which ai has the biggest codimension, is uniquely
e3e5e9 ⊗ h2. Now the requirements for [PS22, Thrm 6.4] are fulfilled.

Using Lemma 7.2.13, we see that ρ maps hlβ to e3e5e9 ⊗ h2+l + ∑
a′i ⊗ b′i.

Considering the fact that h12β 6= 0 ∈ Ch(X1) holds and that h14 is the biggest
power of h, which is not zero, the first statement follows.

To prove that these are the only Rost motives inM(X1), observe that for fulfilling
the requirements of [PS22, Thrm 6.4] one needs to find a cycle β′ ∈ Ch(X1), which
gets mapped to ρ(β′) = e3e5e9 ⊗ γ + ∑

ai ⊗ bi, for some cycle γ ∈ Ch(X1). By the
equations of Lemma 9.3.8 it follows that β′ has the form δβ for some appropriate
cycle δ ∈ Ch(X1). By the identities holding for ρ on the generators of Ch(X1), we
see that β′ can only be non zero in case δ has 1 or some positive power of h as a
summand. As h15 = 0, this makes fifteen possibilities for such a summand in β′ if it
is a monomial. But since ρ maps hlβ to e3e5e9⊗h2+l+∑

ai⊗bi, the cycles h13β and
h14β are not suitable for β′. One could argue that maybe β multiplied by an even



67

power of x4, x6, x9 is also a cycle defining a Rost motive, because ρ(x2
i ) = 1 ⊗ x2

i

holds for i = 4, 6, 9. But checking all such combinations, we see that either x2
iβ = 0

or h2x2
i = 0 holds.

9.3.10 Theorem. Let G have phase [E7, (0, 1, 1, 1), 1]. Then the unique
decomposition of the Chow motive of the projective, homogeneous G-variety X1 into
indecomposable motivic summands is given by

M(X1) = U(X1)⊕⊕
i∈I RJ(i),

with P (I, t) = t2(t13 − 1)/(t− 1) and

P (U(X1), t) = (1 + t9)(1 + t+ t4 + t6 + t8 + t12 + t16 + t18 + t20 + t23 + t24).

Proof: The claim on the Rost motives is simply the lemma above. We have already
seen in Lemma 9.3.2, that the upper motives of X1/k and X7/k are not isomorphic.

Calculating #M(X1): We now show that no shift of U(X7) is contained in M(X1).
In the proof of Theorem 9.3.5, we see that U(X7) splits off Tate motives given by
T (U(X7), t) = 1 + t9 + t17 + t26 over k(X7). However by Theorem 9.1.1 we see that
T (X1, t) = 1 + t8 + t16 + t17 + t25 + t33 holds over k(X7). To prove the claim it is
enough to check that there is no polynomial f(t) ∈ N0[t], such that T (U(X7), t)f(t)
is a subpolynomial of T (X1, t). This proves that #M(X1/k) = {U(X1),R(0,1,1,1)}.

There is only one copy of U(X1): To show that there is only one copy of U(X1/k)
in M(X1/k), we pass to k(X1). Since the upper motives of X1/k and X7/k are
not isomorphic, G will have anisotropic kernel D6 and by Theorem 9.2.1 there are
only the two Tate motives F2,F2(33) in M(X1) over k(X1). Since X1/k has no zero
cycle of odd degree by the proof of Lemma 9.3.2, this shows that all Tate motives
in M(X1) over k(X7) come from the one and only U(X1/k).

9.3.11 Remark. The results of this section can be used to calculate all motivic
decompositions of the G-varieties of an isotropic group G of type E8, which has
anisotropic kernel of type E7.

Chapter 10
Motivic decompositions for general
E7s

This chapter deals with the motivic decomposition of the projective, homogeneous
G-varieties for G being an adjoint algebraic group of type E7 with non trivial
Tits algebra. Recall that by Corollary 6.2.3 this means that j1 = 1 does hold
for J2(G) = (j1, j2, j3, j4) over k. A highlight of this chapter is the case where G
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has anisotropic kernel D6 and is defined by HSpin(A, σ). In this case, we provide
complete motivic decompositions of the respective (generalized) involution varieties
Ii(A, σ) in Theorem 10.4.9 (for i = 5, 6 we consider the HSpin(A, σ)-varieties
Y5, Y6).

The cases of [E7, (1, 1, 0, 0), 2] and [E7, (1, 0, 0, 0), 2] are treated in a separate
chapter, because we also take in account how (some of) such groups are constructed
and strive for making that chapter a bit more self contained. Also we have not yet
proved that these phases are admissible. As a main result, we show that M(X1)
andM(X7) are indecomposable in the case of [E7, (1, 1, 1, 1), ∗]. The decompositions
of the other projective, homogeneous G-varieties for this phase are not completely
established. We only provide the partial result of showing that M(X3),M(X4)
and M(X6) contain Rost motives. Finally we provide a motivic decompositions for
M(X1) in the hypothetically existing case of an anisotropic E7 with J2 = (1, 1, 1, 0).

By the GSV-table the varietiesXΘ which are not always GSV and for which PΘ is
a maximal parabolic subgroup are X1, X3, X4, X6, X7. From the Tits classification it
is clear that the upper motives of these varieties, X and of X1,6 are the only possibly
distinct elements in #G. Thus the decompositions of all other varieties XΘ for other
Θs can be obtained from these decompositions by Karpenko’s theorem and the use
of phase transitions and checking Tate motives. We do not consider these other
cases concretely.

The tables containing the motivic decompositions are organized in the same way
as in the last chapter.
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10.1 The phase [A1 x A1 x A1,(1,0,0,0),2]

Establishing these decompositions is merely a triviality thanks to the advancements
made during the last decades. We only provide it for further referencing.

10.1.1 Theorem. Let G have phase [A3
1, (1, 0, 0, 0), 2]. Then the following unique

decompositions of the Chow motives of projective, homogeneous G-varieties into
indecomposable motivic summands hold

Θ M(XΘ)
Θ ⊂ {1, 3, 4, 6} ⊕

t∈TΘ F2(t)⊕⊕
i∈IΘRJ(i)

Any other ⊕
i∈IΘRJ(i)

Index Poincaré Polynomial
RJ (1 + t)

Index Shift/Tate Polynomial
T1 (1 + t+ t2)(1 + t6)(1 + t10)(1 + t15)
T3 (1 + t5)(1 + t9)P (T1, t)
T4 (1 + t5)(1 + t6)P (T6, t)
T6 (1 + t4 + t8)(1 + t9)(1 + t10)(1 + t15)
T1,6 (1+t+t2+t4+t5+t6+t8+t9+t10)(1+t6)(1+t9)(1+t10)(1+t15)
I1 t3(1 + t+ t2)(1 + t3 + t5 + t6 + t8 + 2t9 + t11 + t12 + t13 +

2t15 + t16 + t18 + t19 + t21 + t24)
I3 t2(1 + t+ t2)(1 + t2)(1 + t+ 3t4 + 2t5 + 2t6 + 2t7 + 3t8 +

5t9 + 6t10 + 3t11 + 4t12 + 8t13 + 7t14 + 7t15 + 7t16 + 7t17 +
7t18 + 10t19 + 7t20 + 7t21 + 7t22 + 7t23 + 7t24 + 8t25 + 4t26 +
3t27 + 6t28 + 5t29 + 3t30 + 2t31 + 2t32 + 2t33 + 3t34 + t37 + t38)

I6 t(1 + t4 + t8)(1 + t)(1 + t2 + t3 + t4 + 2t5 + t6 + 3t7 + 5t9 +
6t11 + 6t13 + 7t15 + 6t17 + 6t19 + 5t21 + 3t23 + t24 + 2t25 +

t26 + t27 + t28 + t30)
IΘ [P (XΘ, t)−P (TΘ, t)]/P (RJ , t)

Proof : By the Tits classification there is no possibility for G/k to become
more isotropic over some field extension L/k without splitting. Especially
every anisotropic projective, homogeneous G-variety is a GSV over k. Thus
#G/k = {F2,R(1,0,0,0)} holds by Karpenko’s theorem, as G/k is isotropic. Note
that since the Tits algebra A of G/k is not split by Corollary 6.2.3, one has that
U(SB(A/k)) ' R(1,0,0,0) holds, because SB(A/k) is a GSV.

The overall situation resembles the [D4, (0, 1, 0, 0), 1] case. The decompositions
of the isotropic XΘ are therefore obtained analogously. First one uses the CGMB
algorithm to determine the Tate motives in each M(XΘ) and subtracts the
polynomial encoding them from P (XΘ, t). Then all one needs to do is to divide
this difference by P (R(1,0,0,0), t) to obtain the shifts of the Rost motives contained
in M(XΘ).
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10.2 The phase [D4 x A1,(1,1,0,0),2]

The decompositions for this case are as nearly as straightforward and easily obtained
as in the (A3

1, (1, 0, 0, 0), 2) case. The results of this chapter will be needed very often
later on. We start with calculating #G and then simply use the CGMB algorithm
for providing the actual decompositions of the varieties of our interest.

10.2.1 Lemma. Let G be an adjoint algebraic group of type E7 with phase
[D4 × A1, (1, 1, 0, 0), 2]. Then the upper motives of X7 and SB(A) are isomorphic
and #G = {F2,U(X3),U(X7),R(1,1,0,0)} holds, with

P (U(X3), t) = (1 + t2 + t3 + t5)

and P (U(X7), t) = (1 + t).

Proof: The existence of the Tate motive in #G follows from the fact that G
is isotropic. Also the upper motives of X3 and X4 are isomorphic by the Tits
classification, and by the GSV-table XΘ is a GSV if and only if 2 or 5 are contained
in Θ. This means we only need to show that the upper motives of X7 and X3 are
not isomorphic and then calculate their Poincaré polynomial.

Showing that U(X3) 6= U(X7): Since SB(A) is a GSV only if J2 = (1, 0, 0, 0) holds
by Lemma 7.1.9, passing to k(SB(A)) yields the phase [D4, (0, 1, 0, 0), 1] by the phase
classification and as j1 becomes zero over k(SB(A)) by Theorem 6.2.2. Now X7 is
isotropic, while X3 is an anisotropic GSV by the GSV-table and therefore has no
zero cycle of odd degree over k(SB(A)).

Structure of U(X7): By the GSV-table X7/k is not a GSV, so passing to k(X7)
also induces a transition to [D4, (0, 1, 0, 0), 1] by the Tits classification. Thus the
upper motives of X7/k and SB(A/k) are isomorphic. As SB(A) has a zero cycle
of odd degree if and only if ind(A) = 1 holds, U(X7) has the desired Poincaré
polynomial by the main result of [Kar95] and because ind(A/k) = 2.

Structure of U(X3): The statement on the structure of U(X3) follows easily
by noting that the D4 part of the semisimple anisotropic kernel of G is defined
by a quadratic form q having splitting pattern [2, 2] by Lemma 8.3.2. Therefore
U(X3) ' U(Xq) holds. We can use Lemma 5.5.11, which states that the structure
of U(Xq) is as claimed.



71

10.2.2 Theorem. Let G have phase [D4 × A1, (1, 1, 0, 0), 2]. Then the following
unique decompositions of the Chow motives of projective, homogeneous G-varieties
into indecomposable motivic summands hold

Θ M(XΘ)
{1} ⊕

t=0,8,25,33 F2(t)⊕⊕
u∈O1 U(X3)(u)⊕ SB(D)(16)⊕⊕

i∈I1RJ(i)
{3} ⊕

u∈O3 U(X3)(u)⊕⊕
i∈I3RJ(i)

{4} ⊕
u∈O4 U(X3)(u)⊕⊕

i∈I4RJ(i)
{6} ⊕

t=0,17,25,42 F2(t)⊕⊕
u∈O6 U(X3)(u)⊕⊕

s=8,16,25,33
SB(D)(s)⊕⊕

i∈I6RJ(i)
{7} ⊕

s=0,9,17,26 SB(D)(s)⊕⊕
i∈I7RJ(i)

{1, 6} ⊕
t=0,8,17,25,25,33,42,50 F2(t)⊕⊕

u∈O1,6 U(X3)(u)⊕⊕
s∈S

SB(D)(s)⊕⊕
i∈I1,6RJ(i)

Index Poincaré Polynomial
U(X3) (1 + t2 + t3 + t5)
SB(D) (1 + t)
RJ (1 + t)(1 + t3)

Index Shift/Tate Polynomial
O1 t+ t2 + t10 + t11 + t12 + t16 + t17 + t18 + t26 + t27

O3 (1 + t+ t2)(1 + t6)(1 + t9)(1 + t10)(1 + t15)
O4 (1 + t4 + t8)(1 + t6)(1 + t9)(1 + t10)(1 + t15)
O6 t4(1 + t4 + t6 + t10 + t14 + t15 + t19 + t23 + t25 + t29)
O1,6 [T1,6 − (1 + t8)(1 + t17)(1 + t25)]/(1 + t5), for T1,6 from Theorem 10.1.1
S t8(1 + t8)2(1 + t17)
I1 t5(t20 − 1)/(t− 1)
I3 t3(1 + t)(1 + t2)(1 + t+ t2 + t3 + t4 + 3t5 + t6 + 4t7 + t8 + 7t9 + t10 +

8t11 + 10t13 + 11t15 + 12t17 + 11t19 + 10t21 + 8t23 + t24 + 7t25 + t26 +
4t27 + t28 + 3t29 + t30 + t31 + t32 + t33 + t34)

I4 [P (X4, t)−OiP (U(X3), t)]/P (RJ , t)
I6 [P (X6, t)−(1 + t17 + t25 + t42)−O6P (U(X3), t)−t8(1 + t8 + t17 +

t25)P (SB(D), t)]/P (RJ , t)
I7 t2 + t4 + t6 + t8 + t10 + t11 + t12 + t13 + t15 + t17 + t19 + t21

I1,6 [P (X1,6, t)−(1 + t8)(1 + t17)(1 +
t25)−O1,6P (U(X3), t)−P (S, t)P (SB(D), t)]/P (RJ , t)

Proof : The decompositions are all obtained in a similar way. For the Tate
motives over k one uses the CGMB method. By the lemma above (i.e. by
considering #G) there are only two non split phases one can have a transition
to. Namely [D4, (0, 1, 0, 0), 1] by passing to k(SB(A)) because of Lemma 6.2.2
and [A3

1, (1, 0, 0, 0), 2] by passing to k(X3) because of the GSV-table and the phase
classification.

Determining the copies of U(SB(A)): Note that U(X3) ' U(Xq) decomposes as
F2 ⊕ R(1,0,0,0)(2) ⊕ F2(5) over k(X3) since q has splitting pattern [2, 2]. Thus the
shifts of U(SB(A)) over k in each M(XΘ) can be computed by passing to k(SB(A)),
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checking for the Tate motives not visible over k and dividing the respective
polynomial by 1 + t. This works because the D4 part of the anisotropic kernel of
G does not change over k(SB(A)) by the phase classification and Lemma 7.1.9 and
thus X3 still has no zero cycle of odd degree as it turns into a GSV over k(SB(A)).

Determining the copies of U(X3): The shifts of U(X3) over k are computed by
passing to k(X3), checking for the Tate motives not visible over k and dividing the
respective polynomial by 1+t5. This works because SB(A) does not split over k(X3)
by the index reduction formula in [MPW2]. The Tate motives over the mentioned
field extensions were already calculated in Theorem 9.1.1 and Theorem 10.1.1.

Determining the copies of RJ : Subtracting the polynomials coding Tate motives,
shifts of U(X3) and the shifts of U(SB(A)) from the Poincaré polynomials of each
XΘ and dividing by P (R(1,1,0,0), t) yields the polynomials encoding the shifts of RJ

in M(XΘ). This works because by the lemma above there are no other elements in
#G over k.

10.3 The phase [D5 x A1,(1,1,0,0),2]

We start with a lemma which will be used very often as it allows to shorten many
proofs.

10.3.1 Lemma. Let G be an adjoint algebraic group of type E7 over k, with
J2(G) = (1, 1, ∗, ∗). Then none of the upper motives of X1, X6, X1,6 are isomorphic
to the upper motive of X3.

Proof: By Theorem 6.2.2, the Tits algebra of G/k is not split. On top of that
SB(A) is not a GSV for G/k by Lemma 7.1.9. Thus passing to k(SB(A)) yields
one of the phases [E7, (0, 1, 1, 1), 1], [D6, (0, 1, 1, 0), 1], [D4, (0, 1, 0, 0), 1], by the phase
classification. Note that even if [E7, (0, 1, 1, 0), 1] existed, this does not change the
proof.

If the anisotropic kernel of G is D4, the statement is easy to prove as X3 is an
anisotropic GSV and thus it has no zero cycle of odd degree, while the other varieties
in question are isotropic. If the anisotropic kernel of G is E7 or D6, we pass to the
generic point of X7 to also obtain anisotropic kernel D4. This works since X7 is
never a GSV when G has split Tits algebras (i.e. j1 = 0) by the GSV-table.

10.3.2 Lemma. Let G be an adjoint algebraic group of type E7 with phase
[D5 × A1, (1, 1, 0, 0), 2]. Then the upper motives of X7 and SB(A) are isomorphic
and #G = {F2,U(X1),U(X3),U(X7),R(1,1,0,0)} holds, with

P (U(X1), t) = (1 + t4)(1 + t+ t2 + t3 + t4),

P (U(X3), t) = (1 + t6)(1 + t2 + t3 + t5),

and P (U(X7), t) = (1 + t).
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Proof: The existence of the Tate motive in #G follows from the fact that G is
isotropic. Also by the lemma above the upper motives of X1 and X3 are not
isomorphic. Note further that the upper motives of X3 and X4 are isomorphic
by the Tits classification. By the GSV-table G/PΘ is a GSV if and only if 2 or 5
are contained in Θ.

Structure of U(SB(A)): Mimicking the part of the proof of Theorem 10.2.2 which
deals with the upper motives X7 and SB(A), we see that the upper motives of X7/k
and SB(A/k) are isomorphic and have the desired Poincaré polynomial.

Structure of U(X1): The upper motive ofX1 is isomorphic to the upper motive of
a quadric Xq with q having splitting pattern [1, 2, 2], because any adjoint E7 having
anisotropic kernel D5 × A1 arises as from such a q by the comment in the proof of
Lemma 8.3.2. Also M(Xq) is indecomposable by Lemma 5.5.11, which proves the
claim on U(X1).

Structure of U(X3): Let us focus on an anisotropic groupH of typeD5 defined by
a anisotropic quadratic form q having the splitting pattern [1, 2, 2]. Using Karpenko’s
theorem we have #H = {U(Y1),U(Y2),R(1,1,0,0)} with Y1/k ' Xq/k. The upper
motives of the H-varieties Y2 and Y3 are isomorphic to U(X3). So we focus on the
H-varieties for the rest of the proof.

Passing to k(Y2) will leave H with anisotropic kernel A2
1 because of the splitting

pattern of q. Performing the CGMB algorithm (input: prodbases([1, 2], [1, 2, 3,
5], D5) for T (Y2, t) for example), we see that the polynomials encoding the Tate
motives in M(Y2) and M(Y3) over k(Y2) are given by

T (Y2, t) := (1 + t+ t2)(1 + t5)(1 + t6) and T (Y3, t) := (1 + t4)(1 + t5)(1 + t6).

Because of the splitting pattern of q, no copy of U(Y1) is contained in neither
M(Y2) nor M(Y3) over k, as otherwise they would contain a Tate motive over
k(Y1). Since U(Y2/k) ' U(Y3/k) holds, given the few elements of #H/k and since
gcd(T (Y2, t), T (Y3, t)) = (1+t5)(1+t6) in N0[t], it follows that the Tate motives which
U(Y2/k) splits off over k(Y2) are encoded by the one of the following polynomials.

Case 1. (1 + t6), Case 2. (1 + t5) or Case 3. (1 + t5)(1 + t6).

Clearly #M(Y2/k) ⊂ {U(Y2),R(1,1,0,0)} holds. The value of J2 does not change
over k(Y1), so the Rost motives R(1,1,0,0) contained in M(Y2/k) do not change either
when passing to k(Y1), as their occurrence only depends on the value of J2 and the
coaction map ρ by [PS22, Theorem 6.4]. This means that U(Y2/k) can not split off
Rost motives over k(Y1).

Now recall from Theorem 10.2.2 that the upper motive of Y2 over k(Y1) is
isomorphic to the upper motive of a quadric Xq′ with P (U(Xq′), t) = 1 + t2 + t3 + t5.
Thus we have that U(Y2/k) will exactly split as U(Xq′) ⊕ U(Xq′)(6) or become
isomorphic to U(Xq′), when passing to k(Y1). It follows that Case 1. can not be
true.

To see that Case 2. is also impossible, we show that U(Xq′)⊕ U(Xq′)(6) are glued
over k. For this we use the [DC, Thrm. 1]. In our situation we set M := M(Y1)
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and N := U(Xq′)(1). The summand U(Xq′)(1) is contained in M(Y2) over k(Y1) as
can be read off from the structure of T (Y2, t) above. We also set X := Y1, Y := Y2.

Because X is a quadric defined by a form q with splitting pattern [1, 2, 2], we see
that over k(X) the indecomposable direct summand N is contained in M . By the
theorem of De Clercq the same holds over k. But we have seen in Lemma 5.5.11
that M/k in indecomposable.

10.3.3 Theorem. Let G have phase [D5 × A1, (1, 1, 0, 0), 2]. Then the following
unique decompositions of the Chow motives of projective, homogeneous G-varieties
into indecomposable motivic summands hold

Θ M(XΘ)
{1} ⊕

u=0,25 U(X1)(u)⊕⊕
q∈O1 U(X3)(q)⊕SB(D)(16)⊕⊕

i∈I1RJ(i)
{3} ⊕

u∈O3 U(X3)(u)⊕⊕
i∈I3RJ(i)

{4} ⊕
u∈O4 U(X3)(u)⊕⊕

i∈I4RJ(i)
{6} ⊕

t=0,42 F2(t)⊕ U(X1)(17)⊕⊕
q∈O6 U(X3)(q)⊕⊕

s=8,16,25,33SB(D)(s)⊕⊕
i∈I6RJ(i)

{7} ⊕
s=0,9,17,26 SB(D)(s)⊕⊕

i∈I7RJ(i)
{1, 6} ⊕

u=0,17,25,42 U(X1)(u)⊕⊕
q∈O1,6 U(X3)(q)⊕⊕

s∈S
SB(D)(s)⊕⊕

i∈I1,6RJ(i)

Index Poincaré Polynomial
U(X1) (1 + t+ t2 + t3 + 2t4 + t5 + t6 + t7 + t8)
U(X3) (1 + t6)(1 + t2 + t3 + t5)
SB(D) (1 + t)
RJ (1 + t)(1 + t3)

Index Shift/Tate Polynomial
O1 t10(1 + t+ t2)
O3 (1 + t+ t2)(1 + t9)(1 + t10)(1 + t15)
O4 (1 + t4 + t8)(1 + t9)(1 + t10)(1 + t15)
O6 t4 + t8 + t23 + t27

O1,6 (1 + t+ t2)[(1 + t4)(1 + t6)(1 + t19)t4 − (t18 + t19)]
S t8(1 + t8)2(1 + t17)
I1 t5(t20 − 1)/(t− 1)
Ii [P (Xi, t)−OiP (U(X3), t)]/P (RJ , t) for i = 3, 4
I6 [P (X6, t)−(1 + t42)−O6P (U(X3), t)−t8(1 + t8 + t17 +

t25)P (SB(D), t)]/P (RJ , t)
I7 [P (X7, t)−(1 + t9 + t17 + t26)P (SB(D), t)]/P (RJ , t)
I1,6 [P (X1,6, t)−(1 + t17)(1 +

t25)P (U(X1), t)−O3P (U(X3), t)−P (S, t)P (SB(D), t)]/P (RJ , t)

Proof : The decompositions are obtained analogously to the procedure in
Theorem 10.2.2. By the proof of the lemma above, the phases obtained after passing
to X1, X3 or X7 are [D4×A1, (1, 1, 0, 0), 2], [A3

1, (1, 0, 0, 0), 2], [D4, (0, 1, 0, 0), 1]. The
structure of the upper motives was also calculated in the lemma.
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To obtain the structure of the decompositions, performing the CGMB algorithm
and analyzing the Tate motives over several field extensions proves the claims.
The U(X ′q) and SB(A) over k(X1), which are needed for this were calculated in
Theorem 10.2.2. Note that U(X3/k) splits as U(X ′q)⊕U(X ′q)(6) for q′ having splitting
pattern [2, 2] over k(X1).

10.3.4. Interestingly the motivic decomposition of M(X7) is the same for
[D5 × A1, (1, 1, 0, 0), 2] and [D4 × A1, (1, 1, 0, 0), 2]. This observation motivated the
author to prove the following theorem, which is a special case of Zhykhovich’s
theorem. Coincidentally this was discovered independently by the author in 2018,
only a few weeks earlier than Zhykhovich’s result.
10.3.5 Theorem. Let G be an anisotropic, adjoint group of type E7 over k, with
a non split Tits algebra A. Then J2(G) = (1, 1, 0, 0) and ind(A) = 2 hold over k if
and only if G has semisimple, anisotropic kernel D4 over k(SB(A)).

Proof: ⇐: Since SB(A) does not split G and A/k is non split, we see that by
Lemma 7.1.9 one has J2(G/k) = (1, 1, ∗, ∗). So over k(X7), the anisotropic kernel of
G is D4 by the phase classification, as X7 is not a GSV for such a value of J2 by the
GSV-table. Since by assumption it is also D4 over k(SB(A)), the upper motives of
SB(A)/k and X7/k are isomorphic. By Theorem 9.1.1 the Tate motives in M(X7)
over k(X7) are given by

T (X7, t) := 1 + t+ t9 + t10 + t17 + t18 + t26 + t27.

These Tate motives necessarily come from shifts of U(X7/k). Since U(X7/k) is
isomorphic to U(SB(A/k)), this leaves as only possibility that ind(A/k) = 2 holds,
because in general P (U(SB(A)), t) = (tind(A) − 1)/(t − 1) holds by Theorem 5.5.1.
By Karpenko’s theorem the other motives inM(X7/k) can only be Rost motives RJ

for J2 = (1, 1, ∗, ∗), as the only Tits index more isotropic than D4 is the split one.
Therefore the difference P (X7, t) − T (X7, t) has to be divisible by P (RJ , t). But this
is only the case for J2 = (1, 0, 0, 0) and J2 = (1, 1, 0, 0). The first case is impossible,
because if J2 was (1, 0, 0, 0) then G would split over k(SB(A)), contradicting our
initial assumption.

⇒: Over k(SB(A)) the value of J2 will be (0, 1, 0, 0), since SB(A) can only split G
for J2 = (1, 0, 0, 0) and j1 has to decrease to zero by Theorem 6.2.2, which means
that the anisotropic kernel of G is D4 by the phase classification.
10.3.6. Another very interesting fact, this time concerning the coaction, can be
derived from our previous results. Namely the opposite statement of [PS22, Lemma
4.12] is unfortunately wrong, as the following counter example shows.
10.3.7 Lemma. Let G be an adjoint algebraic group of type E7, with the phase
[D5 × A1, (1, 1, 0, 0), 2] over k. Consider the coaction ρ on Ch(X1) and the cycle
pt ∈ Ch33(X1). Then ρ(pt) = 1⊗ pt holds, but pt is not rational over k.

Proof: Consider the formulas for ρ established in Lemma 9.3.8 and remember that
ρ preserves codimensions. In case J2(G) = (1, 1, 0, 0) holds and because x9 has
codimension 9, ρ(x9) contains at most the following summands
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e1 ⊗ h8, e1 ⊗ x4h
4, e1 ⊗ x6h

2, e3 ⊗ h6, e3 ⊗ x4h
2, e3 ⊗ x6, e1e3 ⊗ h5, e1e3 ⊗ x4h, 1⊗

x4h
5, 1⊗ x6h

3, 1⊗ h9, 1⊗ x9.

We can only be sure about the last one, but for now we consider the possibility of
any of the other summands occurring as well. Multiplying with ρ(h14) = 1⊗h14 kills
every summand a⊗bhi, with i being positive, because h15 = 0 holds in Ch(X1). The
only cycles which survive this are e3⊗x6, 1⊗x9. Thus ρ(x9h

14) < e3⊗x6h
14+1⊗x9h

14

holds. Expanding ρ(x4)ρ(x6) = (e3 ⊗ h+ e1 ⊗ h3 + 1⊗ x4)(e1 ⊗ h5 + 1⊗ x6), gives

e1e3 ⊗ h6 + e1 ⊗ x4h
5 + e1 ⊗ x6h

3 + e3 ⊗ x6h+ 1⊗ x4x6,

by Lemma 9.3.8 and Lemma 9.3.7. Multiplying the product ρ(x4)ρ(x6) with
ρ(x9h

14), yields ρ(x4x6x9h
14) = 1 ⊗ x4x6x9h

14. Thus x4x6x9h
14 = pt ∈ Ch33(X1)

gets mapped to 1⊗ pt by ρ. In case G has phase [D5 × A1, (1, 1, 0, 0), 2], the upper
motive of X1 is isomorphic to the upper motive of an anisotropic quadric. Applying
Springer’s theorem, it follows that pt can not be rational over k.

10.3.8 Corollary. Let G be an anisotropic adjoint algebraic group of type E7 with
motivic J2-invariant J2(G). If J2(G) = (1, 1, 0, 0) holds, then none of the projective,
homogeneous G-varieties XΘ has a zero cycle of odd degree if X6 does not have one.

Proof: For the GSVs the statement is clear and by the phase classification and
Karpenko’s theorem, we can restrict our considerations to X1, X3, X6, X7 and X1,6.
An important ingredient is Lemma 10.3.1 along with the index reduction formula
from [MPW2] and the phase classification. From this it follows that over the generic
points of X1, X6 and X1,6, the anisotropic kernel of G is either D4×A1 or D5×A1.
So keep that in mind, when we pass to the respective k(XΘ). Also, let A denote the
Tits algebra of G. By Theorem 6.2.2 it is not split over k.

The case X3: By Lemma 7.1.9 passing to k(SB(A)) does not split G. By the phase
classification and the GSV-table, X3 is an anisotropic GSV over k(SB(A)) and the
claim follows.

The case X7: By the GSV-table, passing to k(X3) does not split G. We obtain A3
1 as

anisotropic kernel. Now the upper motive of X7 is isomorphic to the upper motive
of SB(A). As the Brauer class of A is not trivial, SB(A) has no zero cycle of odd
degree over k(X3).

The case X1,6: Passing to k(X1) gives us an anisotropic kernel D4×A1, while passing
to k(X6) gives us anisotropic kernel D5×A1 or D4×A1. This both follows from the
proof of Lemma 10.3.1. In the D5 ×A1 case the upper motive of X1,6 is isomorphic
to the upper motive of X1 but not to U(X6), while in the second case it is isomorphic
to the upper motive of X6. Thus we can focus our considerations on X1 and X6.

The case X1: Pass to k(X6). If G has anisotropic kernel D5 × A1, the upper
motive of X1 becomes isomorphic to the upper motive of an anisotropic quadric.
Thus by Springer’s theorem X1 can not have the discussed zero cycle over k. If the
anisotropic kernel of G isD4×A1 over k(X6), then U(X1/k) is necessarily isomorphic
to U(X6/k). One can use Lemma 10.3.1 to see this. We have found that it is enough
to show that X6 does not have the zero cycle in question.
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10.4 The phase [D6,(1,1,1,0),*]

The decompositions of the projective, homogeneous E7-varieties established in
this section can be completely concluded by knowing the upper motives of the
respective D6-varieties. The delicate premise is that the CSA A of the group
H ' HSpin(A, σ) of type D6 considered here is not split, which means that the
projective, homogeneous H-varieties are mostly involution varieties. For such a D6
a complete calculation of #H has never been provided before in the literature. So
this section may be of general interest. We derive the motivic decompositions of
the projective, homogeneous E7-varieties from these results. Also the results are
used for showing that for a versal form of HSpin(A, σ) ' D6 the motives of several
projective, homogeneous D6-varieties are indecomposable.

10.4.1 Remark. (Enumeration of nodes) Before we start, we need to fix an
orientation of the fifth and sixth node of ∆(D6) to be compliant with the references.
We embed ∆(D6) in ∆(E7) in such a way that the sixth node of ∆(D6) equals the
second node in ∆(E7) (both in Bourbaki enumeration). Let us denote the projective,
homogeneous D6-varieties by YΘ and the projective, homogeneous E7-varieties by
XΘ. Then U(X6) ' U(Y2), U(X3) ' U(Y5) and U(X2) ' U(Y6) holds. This is
especially important as only this way Y6 is always a GSV.

10.4.2. The proof of the lemma below is perfectly suited to be comprehended by
using the overview of phases in the phase classification.

10.4.3 Lemma. Let G be an adjoint algebraic group of type E7 with semisimple,
anisotropic kernel H of type D6. If J2(G) = (1, 1, 1, 0) holds, then the motive of the
projective, homogeneous H-variety Y1 is indecomposable.

Proof: For H ' HSpin(A, σ) we consider the H-variety Y1 ' I(A, σ). Passing to
L := k(SB(A)) yields the phase [D6, (0, 1, 1, 0), 1] by the proof of Theorem 8.3.5.
Now Y1 becomes isomorphic to a quadric Xq, with q having splitting pattern
[2, 4]. The decomposition of M(Y1/L) into indecomposable motivic summands was
calculated in Lemma 5.5.10 and is given by M(Y1/L) = U(Y1/L)⊕ U(Y1/L)(1).

Consider the projective, homogeneous G-variety X6/k and pass to k(X6). By the
index reduction formula in [MPW2], the index of the Tits algebra of G will be equal
to 2 over k(X6). By the Tits classification this means that the anisotropic kernel of
G either reduces to D4×A1 or A3

1. The upper motive of the G-variety X7 and thus
Y1 is in any case isomorphic to U(SB(A)) by Theorem 10.1.1 and Theorem 10.2.2.
As P (U(SB(A)), t) = 1 + t holds in both cases, we are done.

10.4.4 Lemma. Let G be a split algebraic group of type HSpin12. Then the Chow
ring of the projective, homogeneous G-variety Y2 up to codimension 9 is generated
in the root enumeration by Stembridge by the four algebraic cycles h = Z[5],
x2 = Z[6, 5], x4 = Z[1, 3, 4, 5], x5 = Z[1, 2, 3, 4, 5].
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Proof: Using the Chow maple package, we find a representation of each element in
Chi(Y2) for i < 10 by the four generators using trial and error. We do not need the
codimensions higher than 9, but with more effort one can show by the same method
that these four elements completely generate Ch(Y2). For the proof we simply give
a table of the generators of Chi(Y2) in terms of h, x2, x4, x5 for each codimension i.

i γi,1 γi,2 γi,3 γi,4 γi,5 γi,6
1 h − − − − −
2 h2 + x2 x2 − − − −
3 h3 hx2 − − − −
4 x4 h4+h2x2+

x2
2 + x4

h2x2 + x2
2 x2

2 − −

5 x5 hx4 + x5 h3x2 +
hx4 + x5

h5 − −

6 hx5 + x4x2 x4x2 hx5 +
h2x4 +
x4x2

hx5 +
h2x2

2 +
h2x4 +
x3

2 + x4x2

x3
2 −

7 h2x5 +
hx4x2 +
x5x2

x5x2 hx4x2 +
x5x2

h3x4 +
h2x5 +
x5x2

h3x4 +
h2x5 +
x5x2 + x3

2

−

8 h3x5 +
h2x4x2 +
x4x

2
2

hx5x2 +
x4x

2
2

x4x
2
2 h2x4x2 +

hx5x2 +
x4x

2
2

h4x4 +
h3x5 +
h2x4x2 +
x4x

2
2

h4x4 +
h3x5 +
h2x4x2 +
x4x

2
2 + x4

2
9 h4x5 +

h3x4x2 +
h2x5x2 +
x5x

2
2

h4x5 +
h3x4x2 +
hx4x

2
2

h4x5 +
h3x4x2 +
hx4x

2
2 +

x5x
2
2

h4x5 +
h3x4x2

h2x5x2 +
x5x4

h4x5 +
x5x4 +
x5x

2
2

10.4.5 Lemma. Let G be an algebraic group of type HSpin12. Consider the
projective, homogeneous G-variety Y2. Then the following holds for the coaction
map ρ on Ch(Y2)

1. ρ(h) = 1⊗ h

2. ρ(x2) = e1 ⊗ h+ 1⊗ x2

3. ρ(x4) > e3 ⊗ h+ 1⊗ x4

4. ρ(x5) > e5 ⊗ 1 + 1⊗ x5

Proof:

1. For first identity note that the Tits algebra assigned to ω2 = h, with
〈h〉 = Ch1(Y2) by the Tits homomorphism, is always trivial by [MT95, 2.4.5]. Thus
h is always rational and by applying [PS22, Lemma 4.12] the claim follows.
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2. Assume we are given an E7 with phase [D6, (1, 1, 1, 0), 4)]. We pass to the
the generic point of the D6-variety Y5, which is not a GSV by the GSV-table. Note
that its upper motive is isomorphic to the one of the E7-variety X3. We obtain the
phase [A3

1, (1, 0, 0, 0), 2] for the enveloping E7 over k(Y5). By the phase classification
and Karpenko’s theorem, we have #G = {F2,R(1,0,0,0)} over k(Y5).

Applying the CGMB algorithm to M(Y2) when the E7 enveloping G has phase
[A3

1, (1, 0, 0, 0), 2] (input: prodbases([2, 4, 6], [1, 2, 3, 4, 6], D6)), we see that neither
F2(1) nor F2(2) is contained in M(Y2) over k(Y5), but of course F2 as Y2 is isotropic.
So h is the starting point of a motive not isomorphic to F2(1). Thus the Rost
motive R(1,0,0,0)(1) is contained in M(Y2) over k(Y5), because #G = {F2,R(1,0,0,0)}
over k(Y5).

Thus, ρ(x2) = e1 ⊗ h+ ∑
ai ⊗ bi, since we just concluded that the generic point

of the Rost motive is h. On the other hand, by dimensional reasons and by [PS22,
Lemma 4.12] ∑

ai ⊗ bi has to be 1⊗ x2.

3. We assume that the given D6 occurs as semisimple anisotropic kernel of an
adjoint algebraic group of type E7 denoted by G′. By the phase classification, the
second entry of the motivic J2-invariant of the enveloping E7 equals 1. Thus the
projective, homogeneous E7-variety X7 is not a GSV by the GSV-table.

Passing to L := k(X7), the D6 becomes isotropic with semisimple anisotropic
kernel of type D4 and J2(G′) = (0, 1, 0, 0). Since there is only one phase which has
a smaller anisotropic kernel than D4, we have that #M(Y2/L) contains only Tate
motives and Rost motives R(0,1,0,0) by Karpenko’s theorem. We use the CGMB
algorithm (input: prodbases([1, 2, 3, 4], [1, 2, 3, 4, 6], D6)) and see that there are
only four Tate motives in M(Y2/L), given by

T (Y2, t) := (1 + t8 + t9 + t17).

Subtracting T (Y2, t) from P (Y2, t) shows that the copy of R(0,1,0,0) in M(Y2) with
smallest shift is R(0,1,0,0)(1). Our whole argument is in principle the same as in the
case above. We can apply [PS22, Theorem 6.4] to conclude that there is a cycle
β ∈ Ch4(Y2), such that ρ(β) contains e3 ⊗ h. For codimensional reasons this can
only be some sum of x4, x

2
2, h

4. By the two formulas established above, adding x2
2

or h4 to β does not change the fact that e3 ⊗ h is contained in ρ(x4). Finally, the
summand 1⊗ x4 is contained in ρ(x4) by [PS22, Lemma 4.12].

4. This proof works the same as the prove of the fourth line in Lemma 9.3.8 by
using the right exact sequence of split groups from it.

The semisimple part C of the Levi subgroup of the second parabolic subgroup is
of the form (Spin8 × SL2)/µ2 and Ch(C) has two generators e1, e3 with e2

1 = 0 and
e2

3 = 0.
By the right exactness of sequence from Lemma 9.3.8 and the codimensions of

the generators of Ch(Y2) the claim follows.

10.4.6 Lemma. Let G be an adjoint algebraic group of type E7 with Tits algebra A
and having the phase [E7, (1, 1, ∗, 0), ∗] or [D6, (1, 1, ∗, 0), ∗] over k. Then the phase
of G over k(X6) is [D4 × A1, (1, 1, 0, 0), 2].

Proof: First note that by Theorem 6.2.2 ind(A) > 1 holds. Applying the index
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reduction formula from [MPW2], we see that ind(A) = 2 holds over k(X6). By the
phase classification this leaves only two possibilities of phases that G can have over
k(X6). Either we have [D4 × A1, (1, 1, 0, 0), 2] or [A3

1, (1, 0, 0, 0), 2]. As X3 is not a
GSV by the GSV-table, the second phase is obtained over k(X3). By Lemma 10.3.1
the upper motives of X6/k and X3/k are not isomorphic, so it is impossible for G
to have [A3

1, (1, 0, 0, 0), 2] over k(X6) .

10.4.7 Lemma. Let G be an adjoint algebraic group of type E7 with semisimple,
anisotropic kernel H of type D6. If J2(G) = (1, 1, 1, 0) holds, then the unique
motivic decomposition of the projective, homogeneous H-varieties Y4 and Y5 into
indecomposable motivic summands is given by

M(Y4) = U(Y5)⊕ U(Y5)(4)⊕ U(Y5)(8)⊕⊕
i∈I4R(1,1,1,0),

M(Y5) = U(Y5)⊕ U(Y5)(1),

with P (U(Y5), t) = (1 + t2)(1 + t3)(1 + t4)(1 + t5)

and P (I4, t) = t(1 + t)(1 + t2)(1 + t4)(1 + t2 + t4).

Proof: Note that the upper motives of Y4 and Y5 are isomorphic. We will only
consider Y5. Also by the Tits classification, Karpenko’s theorem and the GSV-table
we have #M(Yi) ⊂ {U(Y5),R(1,1,1,0)} for i = 4, 5.

Tate motives in U(Y5): First we pass to the generic point of the G-variety X3.
By the phase classification and the GSV-table the E7 enveloping H has phase
[A3

1, (1, 0, 0, 0), 2]. We calculate the Tate motives in M(Y4) and M(Y5) with the
CGMB method (input: prodbases([2, 4, 6], [1, 2, 4, 5, 6], D6) for Y4 for example)
and obtain

T (Y4, t) := (1 + t4 + t8)(1 + t5)(1 + t9),

T (Y5, t) := (1 + t)(1 + t5)(1 + t9).

As gcd(T (Y4, t), T (Y5, t)) = (1 + t5)(1 + t9) ∈ N0[t] and U(Y4/k) ' U(Y5/k) holds,
M(Y5/k) contains at least U(Y5/k) ⊕ U(Y5/k)(1). We calculate which copies of F2
in T (Y5, t) come from U(Y5/k) ' U(X3/k) and code them by T (U(Y5), t). First
we pass from k to k(SB(A)) and obtain the phase [D6, (0, 1, 1, 0), 1] by the proof of
Theorem 8.3.5. Now X3 is a GSV for and thus dim(U(X3/k)) ≥ dim(R(0,1,1,0)) = 8
holds. This leaves only (1 + t9) and (1 + t5)(1 + t9) as candidates for T (U(Y5), t).
Consider the transitions

[D6, (1, 1, 1, 0), ∗] X6−→ [D4 × A1, (1, 1, 0, 0), 2] X3−→ [A3
1, (1, 0, 0, 0), 2].

The second transition holds by the GSV-table and the phase classification. For
the first one consider also Lemma 10.3.1. As there are no phantom summands
by the RNT, we can directly pass from k to k(X3) and see that the transition
to [A3

1, (1, 0, 0, 0), 2] virtually factors through [D4 × A1, (1, 1, 0, 0), 2]. Surely U(Y5)
splits completely into copies of U(Xq) (q has splitting pattern [2, 2]) andR(1,1,0,0) over
k(X6) by Theorem 10.2.2. When T (U(Y5), t) = (1 + t9) would hold, then over k(X6)
at least U(Xq)⊕U(Xq)(4) would be split off from U(Y5), since dim(U(Xq)) = 5, when
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q is anisotropic. But each shift of U(Xq) splits off two Tate motives over k(X3), so
T (U(Y5), t) contains four summands. Also F2(4) equating to t4 is not contained in
T (Y5, t). Therefore T (U(Y5), t) equals (1 + t5)(1 + t9).

There are no Rost motives in M(Y5/k): Since there are only Tate motives and
shifts of R(1,0,0,0) in M(Y5) over k(X3) by Theorem 10.1.1, we can calculate the
Rost motives in M(Y5/k(X3)) by subtracting T6 from P (Y5, t) and dividing by
P (R(1,0,0,0), t) = 1 + t. We obtain

O6(t) := t2 + t3 + t4 + t5 + t6 + 2t7 + t8 + t9 + t10 + t11 + t12.

Since M(Y5/k) contains at least U(Y5/k) ⊕ U(Y5/k)(1) and we have just seen that
T (U(Y5), t) = (1 + t5)(1 + t9) holds, it follows that U(Y5/k) splits into at least
U(Xq) ⊕ U(Xq)(9) and thus splits off at least R(1,0,0,0)(2) ⊕ R(1,0,0,0)(11) and the
mentioned Tate motives over k(X3). Note that dim(U(Y5/k)) = 14 is even, while
dim(R(1,0,0,0)) = 1. So no shift of R(1,0,0,0) is glued in the middle position of
U(Y5/k) and the number of copies of R(1,0,0,0) glued to U(Y5/k) is even. So, as
O6(1) = 12 holds, there are either two, four or six total copies of R(1,0,0,0) glued
to U(Y5/k). Twelve is impossible, since we have already concluded that M(Y5/k)
contains U(Y5/k) ⊕ U(Y5/k)(1), i.e. two sifts of U(Y5/k). Subtracting the definite
copies coded by t2(1 + t)(1 + t9) from O6(t), it remains

O6(t)− t2(1 + t)(1 + t9) = t4 + t5 + t6 + 2t7 + t8 + t9 + t10.

Remember that O6(t) does code shifts of R(1,0,0,0). So if we want to check
whether there can be shifts of R(1,1,1,0) in M(Y5/k), we need to check whether
P (R(1,1,1,0), t)/P (R(1,0,0,0), t) = (1 + t3)(1 + t5) is a subpolynomial of the difference
above, which is impossible. Thus M(Y5/k) = U(Y5/k)⊕ U(Y5/k)(1) holds.

The decomposition for M(Y4) now follows analogously by first considering
T (Y4, t) and then subtracting (1 + t4 + t8)P (U(Y5/k, t) from P (M(Y4/k), t) and
dividing by P (R(1,1,1,0), t).

10.4.8 Lemma. Let G be an adjoint algebraic group of type E7 with semisimple,
anisotropic kernel H of type D6 and Tits algebra A. Assume J2(G) = (1, 1, 1, 0)
holds. Then the motive of the projective, homogeneous H-variety Y2 decomposes
into indecomposable motivic summands as

M(Y2) ' U(Y2)⊕⊕
i∈I R(1,1,1,0)(i),

with P (U(Y2), t) = (1 + t− 2t3 + t5 + t6)(1 + t2 + t3 + t4 + t5 + t6 + t7 + t8 + t9 + t11)

and P (I, t) = t2 + t3 + t4 + t5 + t6.

Proof: For the claim on P (I, t) coding the Rost motives, we consider the cycles
x2x4x5h

i in Ch(Y2) for i = 0, 1, 2, 3, 4 and their image under the coaction. By
the Lemma 10.4.5 the cycle ρ(x2x4x5) contains e1e3e5 ⊗ h2 as biggest summand
in the reasoning of the requirements of [PS22, Theorem 6.4]. Since h6 6= 0 and
h7 = 0 holds in Ch(Y2), one obtains only four more shifts of R(1,1,1,0) in each of the
codimensions 2, 3, 4, 5, 6. It also follows that there can not be more than these five
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Rost motives contained in M(Y2/k), because there are no further generators of the
needed codimensions in Ch(Y2).

Structure of U(Y2): We pass to k(Y2). By Lemma 10.4.6, the resulting phase of G is
[D4 × A1, (1, 1, 0, 0), 2]. We use the CGMB algorithm on M(Y2) over k(Y2) (input:
prodbases([1, 2, 3, 4, 6], [1, 2, 3, 4, 6], D6)), which shows that the following holds

M(Y2) ' F2 ⊕M(Z1,3)(1)⊕M(Z4)(4)⊕M(Z1)(8)⊕M(Z1,3)(9)⊕ F2(17)

for some projective, homogeneous varieties ZΘ (in Bourbaki notation).
Now U(Z4) ' U(Y4) ' U(Xq), with q having splitting pattern [2, 2],

holds by Lemma 8.3.2. Subtracting all of the Poincaré polynomials P (ZΘ, t)
except for P (Z1, t) from P (Y2, t), shows that P (Z1, t) = 1 + t holds. So
M(Z1) ' U(Y1) 'M(SB(D)) for D being a division algebra with ind(D) = 2 and
Z1,3 is a GSV by the GSV-table.

The upper motives of Y1/k and Y4/k, Y5/k have been calculated above and in
Lemma 10.4.3, while Y3/k, Y6/k are GSVs by the GSV-table. From the proofs
of these lemmas we know how these decompose over k(Y2). We have that
M(Y1/k) ' U(Y1/k) splits off two shifts of the upper motive of some Severi-Brauer
variety over k(Y2).

Thus no shift of U(Y1/k) is contained in M(Y2/k), provided there are no shifts
of upper motives of Severi-Brauer varieties in M(Z4) over k(Y2). But this is clear,
as passing to the generic point of SB(A) and using Theorem 10.3.5 we obtain that
G has phase [D4, (0, 1, 0, 0), 1] and thus Y4 becomes a GSV and can not have such
motivic summands over k(Y2).

The situation is similar for U(Y5/k), which splits off U(Xq) ⊕ U(Xq)(9) by the
proof of the lemma above (look at T (Y5, t)) and has dimension 14. If we pass to
k(Y4), we necessarily obtain phase [A3

1, (1, 0, 0, 0), 2] for the E7 enveloping H. Using
the CGMB method again (input: prodbases([2, 4, 6], [1, 2, 3, 4, 6], D6)), we see
that over k(Y2)(Y4), M(Y2) has a Tate polynomial given by

1 + t4 + t8 + t9 + t13 + t17.

The four new Tate motives (i.e. not given by 1 + t17) can only come from the
summand M(Z4)(4) above, as SB(D) does not become isotropic over k(Y2)(Y4).
Since U(Y5/k) has dimension 14, we have proven that no shift of U(Y5/k) is contained
in M(Y2/k).

Finally, we show that the summandM(SB(D))(8) can not be seen over k (this is
actually only an issue if ind(A/k) = 2). We just pass to k(SB(A)) and remember the
proof of Theorem 8.3.5. It follows that H stays anisotropic and thus M(SB(D))(8)
is glued to U(Y2) over k. Also Y2 has no zero cycles of odd degree over k(SB(A)),
since by the proof of the theorem its upper motive over k(SB(A)) is isomorphic to
the one of an anisotropic quadric.
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10.4.9 Theorem. Let G be an adjoint algebraic group of type E7 with semisimple,
anisotropic kernel of type D6 given by HSpin(A, σ) and denoted by H. If
J2(G) = (1, 1, 1, 0) holds, then the unique motivic decomposition of the projective,
homogeneous H-varieties Yi, for i = [1 : 6] into indecomposable motivic summands
is given by

i M(Yi)
1 U(I(A, σ))
2 U(I(A, σ)2)⊕⊕

l∈I2RJ(l)
3, 6 ⊕

l∈IiRJ(l)
4 U(I(A, σ)4)⊕ U(I(A, σ)4)(4)⊕ U(I(A, σ)4)(8)⊕⊕

l∈I4RJ(l)
5 U(I(A, σ)4)⊕ U(I(A, σ)4)(1)

Index Poincaré Polynomial
U(I(A, σ)) (1 + t+ t2 + t3 + t4 + 2t5 + t6 + t7 + t8 + t9 + t10)
U(I(A, σ)2) (1 + t− 2t3 + t5 + t6)(1 + t2 + t3 + t4 + t5 + t6 + t7 + t8 + t9 + t11)
U(I(A, σ)4) (1 + t2)(1 + t3)(1 + t4)(1 + t5)
RJ (1 + t)(1 + t3)(1 + t5)

Index Shift/Tate Polynomial
I2 t2 + t3 + t4 + t5 + t6

Ii P (I(A, σ)i, t)/P (RJ , t) for i = 3, 6
I4 t(1 + t)(1 + t2)(1 + t4)(1 + t2 + t4)

Proof: The i = 3, 6 cases follow from the GSV-table. The other results are just
Lemma 10.4.3, Lemma 10.4.7 and Lemma 10.4.8 above.

10.4.10. It comes as a surprise is that the motive of Y5 contains no Rost motives.
Our results allow the following corollary.
10.4.11 Corollary. Let G be an adjoint algebraic group of type E7. Assume its
phase is equal to p = [D6, (1, 1, 1, 0), ∗]. Then the following statements on the
projective, homogeneous G-varieties Xi and their upper motives hold

Xi resk(Xi)/k(p) resk(Xi)/k(U(Xi/k))
X3, X4 [A3

1, (1, 0, 0, 0), 2] ⊕
t=0,5,9,14 F2(t)⊕⊕

i=2,4,6,7,9,11R(1,0,0,0)(i)
X6 [D4 × A1, (1, 1, 0, 0), 2] ⊕

t=0,17 F2(t)⊕⊕
l=4,8 U(Xq′)(l)⊕

U(SB(A))(8)⊕⊕
i∈I6R(1,1,0,0)(i)

X7 [D4, (0, 1, 0, 0), 1] ⊕
t=0,1,9,10 F2(t)⊕⊕

i=2,3,4,5R(0,1,0,0)(i)

Index Poincaré Polynomial
U(Xq′) (1 + t2)(1 + t3)
U(SB(A)) (1 + t)
R(1,0,0,0) (1 + t)
R(1,1,0,0) (1 + t)(1 + t3)
R(0,1,0,0) (1 + t3)

Index Shift Polynomial
I6 t(t12 − 1)/(t− 1)
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Proof: By the GSV-table it is clear that none of the considered varieties is a GSV.
The claim on X3 now follows from the phase classification and the calculations done
in Lemma 10.4.7.

The decomposition in the X6 case is easily derived from the proof of
Lemma 10.4.8, where I6 is named just O(t).

The statements onX7 follow from the GSV-table and the phase classification. By
the proof of Theorem 8.3.5, the upper motive of X7 becomes isomorphic to the upper
motive ofXq, with q having splitting pattern [2, 4], decomposing as U(Xq)⊕U(Xq)(1)
over k(SB(A)) by Lemma 5.5.10. Thus passing to k(SB(A)) and then passing to
k(SB(A))(X7) is the same from the motivic point of view as passing to k(X7) directly.
The claim now follows from considering the decomposition of U(Xq) after passing
to k(Xq), which is also established in the proof of Lemma 5.5.10.
10.4.12 Theorem. Let G have phase [D6, (1, 1, 1, 0), ∗]. Then the following unique
decompositions of the Chow motives of projective, homogeneous G-varieties into
indecomposable motivic summands hold

Θ M(XΘ)
{1} ⊕

t=0,33 F2(t)⊕⊕
q=1,2,17,18 U(X3)(q)⊕ U(X6)(8)⊕⊕

i∈I1RJ(i)
{3} ⊕

u∈O3 U(X3)(u)⊕⊕
i∈I3RJ(i)

{4} ⊕
u∈O4 U(X3)(u)⊕⊕

i∈I4RJ(i)
{6} ⊕

u=0,25 U(X6)(u)⊕⊕
q=10,14,18 U(X3)(q)⊕ U(X7)(16)⊕⊕

i∈I6RJ(i)
{7} U(X7)⊕ U(X7)(17)⊕⊕

i=6,8,10,12RJ(i)
{1, 6} ⊕

u=0,8,25,33 U(X6)(u)⊕⊕
q∈O1,6 U(X3)(q)⊕⊕

s=16,24 U(X7)(s)⊕⊕
i∈I1,6RJ(i)

Index Poincaré Polynomial
U(X3) (1 + t2)(1 + t3)(1 + t4)(1 + t5)
U(X6) (1 + t− 2t3 + t5 + t6)(1 + t2 + t3 + t4 + t5 + t6 + t7 + t8 + t9 + t11)
U(X7) (1 + t5)(1 + t+ t2 + t3 + t4 + t5)
RJ (1 + t)(1 + t3)(1 + t5)

Index Shift/Tate Polynomial
O3 (1 + t+ t2)(1 + t6)(1 + t10)(1 + t15)
O4 (1 + t4 + t8)(1 + t6)(1 + t10)(1 + t15)
O1,6 (t+ t5 + t9)(1 + t+ t9 + t10 + t11 + t15 + t16 + t17 + t25 + t26)
I1 t8(t2 + t3 + t4 + t5 + t6)
Ii [P (Xi, t)−OiP (U(X3), t)]/P (RJ , t) for i = 3, 4
I6 [P (X6, t)−(1 + t25)P (U(X6), t)−(t10 + t14 +

t18)P (U(X3), t)−t16P (U(X7), t)]/P (RJ , t)
I1,6 [P (X1,6, t)−(1 + t8 + t25 + t33)P (U(X6), t)−O1,6P (U(X3), t)−(t16 +

t24)P (U(X7), t)]/P (RJ , t)

Proof : We start with M(X1), by applying the CGMB algorithm. Executing
prodbases([2, 3, 4, 5, 6, 7], [2, 3, 4, 5, 6, 7], E7), we obtain

M(X1) = F2 ⊕M(Y5)(1)⊕M(Y2)(8)⊕M(Y5)(17)⊕ F2(33)

Now we can simply input the results on the motives of the projective, homogeneous
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D6-varieties Y2, Y5 proven in Lemma 10.4.7 and Lemma 10.4.8.

Calculation of M(X3) and M(X4): For the X3 and X4 decompositions, we pass
from k to the generic point of X3 and obtain phase [A3

1, (1, 0, 0, 0), 2] by the proof
of Lemma 10.4.7. As by Corollary 10.4.11, U(X3) splits off Tate motives coded by
(1 + t5)(1 + t9), the polynomials O3, O4 are obtained by dividing the polynomials T3
and T4 from Theorem 10.1.1, by (1 + t5)(1 + t9). From the Tits classification and
Karpenko’s theorem, we obtain #M(X3/k) = {U(X3), R(1,1,1,0)}. So I3, I4 can be
easily derived from O3, O4.

Calculation of M(X6) and M(X7): The decomposition of M(X6) and M(X7) are
as easily obtained of M(X1). Executing prodbases([2, 3, 4, 5, 6, 7], [1, 2, 3, 4, 5, 7],
E7) and prodbases([2, 3, 4, 5, 6, 7], [1, 2, 3, 4, 5, 6], E7), we obtain

M(X6) = M(Y2)⊕M(Y1,6)(5)⊕M(Y4)(10)⊕M(Y1)(16)⊕M(Y1,6)(17)⊕M(Y2)(25),

M(X7) = M(Y1)⊕M(Y6)(6)⊕M(Y1)(17).

Again we use the decompositions of Y1, Y2, Y4, established in Lemma 10.4.3,
Lemma 10.4.8 and Lemma 10.4.7. The other varieties occurring are GSVs by the
GSV-table. Now subtracting the polynomials of the copies of the upper motives of
Y1, Y2, Y4 from P (X6, t) and P (X7, t) and dividing by the Poincaré polynomial of
R(1,1,0,0), one obtains the shifts of the Rost motives in M(X6) and M(X7).

Additionally, the upper motives of X6/k and X1,6/k are isomorphic, as X1,6/k
does not have a zero cycle of odd degree. To see this, pass to k(SB(A)). By the proof
of Theorem 8.3.5 U(X1,6) becomes isomorphic to the upper motive of an anisotropic
quadric. Now use Springer’s theorem.

Calculation of M(X1,6): Step one is to pass to k(X6), to determine the copies
of U(X6) in M(X1,6). The polynomial encoding the F2(i) in M(X1,6) over k(X6)
is given by (1 + t8)(1 + t17)(1 + t25), by Theorem 10.2.2. The F2(i) split off by
U(X6) over k(X6) are given by 1 + t17, by Corollary 10.4.11. Dividing the first by
the second polynomial, shows that the copies of U(X6) in M(X1,6) are given by
V1,6 := (1 + t8 + t25 + t33).

Now consider the field extensions k(X6), k(X7) and k(X6)(X7). The phase of G
over k(X7) and k(X6)(X7) coincides, as the transition from k to k(X6)(X7) factors
through k(X6), where G has anisotropic kernel D4 × A1 by Corollary 10.4.11.

Therefore some of the F2(i) inM(X1,6) over k(X7) are not coming from copies of
U(X7/k), but from copies of U(X6/k). In Theorem 10.2.2 we have seen the motivic
decomposition of U(X6) over k(X6), is given by

1. ⊕
t=0,17 F2(t)⊕⊕

l=4,8 U(Xq′)(l)⊕ U(SB(A))(8)⊕⊕
i∈I6R(1,1,0,0)(i).

By Corollary 10.4.11 the upper of X3 over k(X6) is isomorphic to U(Xq′), for q′
having splitting pattern [2, 2]. However, passing to k(X7) does not makeX3 isotropic
by the same corollary, but splits the Tits algebra A of G. Therefore U(SB(A)) splits
as F2 ⊕ F2(1) over k(X7). We obtain that the F2(i), which are split off from U(X6)
over k(X7) are given by T7 := (1+ t8 + t9 + t17). The F2(i) coming from all the shifts
of U(X6) contained in M(X1,6/k), are given by the product V1,6(1 + t8 + t9 + t17).
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Subtracting this product from T1,6 given in Theorem 9.1.1 leaves

T1,7 − V1,6(1 + t8 + t9 + t17) = (t16 + t17 + t24 + 2t25 + t26 + t33 + t34).

Dividing by T7 shows, that there are two copies of U(X7) in M(X1,6/k), given by
t16 + t24. Lastly we need to calculate the copies of U(X3) inM(X1,6/k). As X7 stays
anisotropic over k(X3) by Corollary 10.4.11, we only need to consider the behavior
of U(X6) over k(X3). We proceed analogously to the case when passing to k(X7)
and consider 1. again. The F2(i) split off by U(Xq′) over k(X3) are given by (1+ t5).
After putting this into 1., we see that the F2(i) split off by U(X6) over k(X3) are
given by

1 + t4(1 + t5) + t8(1 + t5) + t17.

Multiplying with V1,6 gives the F2(i) split off from all copies of U(X6/k) inM(X1,6/k)
over k(X3). The F2(i) in M(X1,6) over k(X3) are coded by (another) T1,6 given
in Theorem 10.1.1. Also, the F2(i) split off by U(X3) over k(X3) are given by
(1 + t5)(1 + t9) by Corollary 10.4.11. Subtracting V1,6(1 + t4(1 + t5) + t8(1 + t5) + t17)
from T1,6 given in Theorem 10.1.1 and dividing by (1 + t5)(1 + t9), finally proves the
claim.

10.4.13 Remark. (More on ρ) The theorem above gives us more information on the
coaction ρ on Ch(X1). Since there are Rost motives inM(X1), in the theorem above,
we can use the results from Lemma 9.3.8 and [PS22, Theorem 6.4], to conclude that
ρ(x9) does contain e1 ⊗ h8 as summand. Also we see that the cycles x4x6x9h

l are
mapped to e1e3e5⊗ h10+l + ∑

ai⊗ bi by ρ, for l ∈ [0 : 4]. As x4x6x9h
2 is dual to h12,

we found a cycle β for which ρ(β) = EJ ⊗ β∗ + ∑
ai ⊗ bi holds, where β∗ is some

cycle dual to β.

10.5 The phase [E7,(1,1,1,1),*]

In this chapter we culminate many of the previous results into proving the motivic
indecomposability of X1 and X7, in case G has maximal J2-invariant. Unfortunately
we are unable to provide the decompositions for the other projective, homogeneous
E7-varieties, which are not GSVs. We are limited to point out several restrictions
on their motivic decompositions. We first establish a compilation of lemmas, to
generalize the index reduction formula for the G-variety X1 in the sense that we
take into account the value of J2(G) and ind(A). This completely answers the
question on the behavior of G over k(X1), when its Tits algebra has index 2. From
this formula we obtain several results about isomorphisms of some upper motives
and use it for our proofs. Similar results can also be obtained without using the
many lemmas, provided G is a versal form. This shows that in the treated cases,
the index of the Tits algebra of G is irrelevant for the motivic decomposition type.
This is not a triviality by [GSV, Theorem 4.2] and [GSV, Remark 4.3], concerning
the rationality of some algebraic cycles.
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10.5.1 Lemma. Let G be an anisotropic adjoint algebraic group of type E7 with
J2(G) = (1, 1, 1, 0). Then the only projective, homogeneous G-variety which could
have a zero cycle of odd degree is X1. If J2(G) = (1, 1, 1, 1) holds, no projective,
homogeneous G-variety has a zero cycle of odd degree.

Proof: Assume J2(G) = (1, 1, 1, 1) holds and assume that a certain XΘ has a
zero cycle of odd degree over k. By the property 1. of the motivic J-invariant,
there is a field extension L/k of odd degree such that XΘ becomes isotropic,
while J2(G/L) = (1, 1, 1, 1) holds. By Example 6.2.8 this is impossible. When
J2(G) = (1, 1, 1, 0) holds, we can repeat the argument and see that there needs to
be an isotropic group of type E7 with anisotropic kernel of type other thanD6, having
J2(G) = (1, 1, 1, 0) for Θ 6= {1} to contradict our statement. This is impossible by
the phase classification.

10.5.2 Lemma. Let G be an anisotropic adjoint algebraic group of type E7 with
J2(G) = (1, 1, ∗, ∗). Then over k(X1,6) the anisotropic kernel of G is of type D4×A1.

Proof: By the phase classification we have to rule out the possibilities of the
anisotropic kernel being D4, A

3
1 or split. However by the index reduction formula

from [MPW2] one has ind(A/k(X1,6)) = min(2, ind(A/k)), which equals 2 in our
case. Thus G does not have anisotropic kernel of type D4 or is split, as it is strongly
inner in that case. If one would obtain anisotropic kernel A3

1 over k(X1,6), the
upper motives of X1,6 and X3 would be isomorphic, since X3 is not a GSV by the
GSV-table. Now use Lemma 10.3.1 to finish the proof.

10.5.3. In sight of the phase classification, the upper lemma can be reformulated as
saying that the upper motives of X3 and X1,6 are isomorphic if and only if the value
of J2(G) equals (1, 0, 0, 0). The following lemmas imply that the same holds for the
upper motives of X3 and X1. The very next lemma shows that even if the value of
J2(G) is not maximal one needs to consider X1,6 as well for calculating #G.

10.5.4 Lemma. Let G be an anisotropic adjoint algebraic group of type E7 with
J2(G) = (1, 1, 1, ∗) or ind(A) > 2. Then U(X1) and U(X1,6) are not isomorphic.

Proof: Assuming ind(A) > 2, we have that J2 = (1, 1, 1, ∗) holds by the phase
classification. So we can ignore ind(A) for the rest of the proof. Also by the
Lemma 10.5.1, it follows that X1,6 has no zero cycles of odd degree over k.
Over k(SB(A)) the group G does not have anisotropic kernel D4 by the proof of
Theorem 8.3.5. If the anisotropic kernel of G over k(SB(A)) is D6 the claim becomes
obvious, as X1 is isotropic, but X1,6 has no zero cycle of odd degree because its
upper motives is now isomorphic to U(Xq) for a anisotropic quadratic form q by
Theorem 9.2.1. If it is E7, pass to the generic point of X1, over which the anisotropic
kernel will reduce to D6 by Lemma 9.3.2. Then apply the same argument.

10.5.5 Lemma. Let G be an anisotropic adjoint algebraic group of type E7 with
J2 = (1, 1, 1, ∗) and ind(A) = 2. Then the semisimple, anisotropic kernel of G is of
type D6 over k(X1).
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Proof: Since U(X1) and U(X1,6) are not isomorphic by the lemma above, the fact
that over k(X1,6) the anisotropic kernel of G will reduce to D4 × A1 and the index
reduction formula from [MPW2], stating that ind(A) = 2 over k(X1), we only need
to rule out the possibility of the anisotropic kernel of G becoming A3

1, by the Tits
classification. This is covered by Lemma 10.3.1, as otherwise the upper motives of
U(X3) and U(X1,6) are isomorphic.

10.5.6. This series of lemmas allows an interesting corollary. Finally the question
on the anisotropic kernel of G over k(X1) can be completely answered. Some of
the results below are already known, but we include them to provide a complete
overview. Remember that it is not known whether the phases [E7, (1, 1, 1, 0), ∗] for
∗ denoting any value in {2, 4, 8} are admissible.

10.5.7 Corollary. (Generalized index reduction formula for X1). Given an
adjoint algebraic group G of type E7 over a field k with characteristic unequal to 2,
Tits algebra A and phase p. Consider the G-variety X1 and pass to k(X1). Then
the following transitions from p to resk(X1)/k(p) hold.

p resk(X1)/k(p)
[E7, (1, 1, 1, ∗), 4/8] [D6, (1, 1, 1, 0), 4]
[E7, (1, 1, 1, ∗), 2] [D6, (1, 1, 1, 0), 2]
[E7, (1, 1, 0, 0), 2] [D4 × A1, (1, 1, 0, 0), 2]
[E7, (1, 0, 0, 0), 2] [A3

1, (1, 0, 0, 0), 2]
[E7, (0, 1, 1, 1), 1] [D6, (0, 1, 1, 0), 1]

Proof: The first line follows from the the classic index reduction formula from
[MPW2] and the phase classification, as there is only one isotropic Tits index for E7
with ind(A) = 4. The second line is proven by using the lemma above, along with
the classic index reduction formula from [MPW2] and the phase classification. The
third statement follows from Lemma 10.5.2 and noting that the upper motives of X1
and X1,6 are isomorphic in this case, because otherwise the upper motives of X1 and
X3 would be isomorphic, contradicting Lemma 10.3.1. The fourth statement follows
from the GSV-table and the phase classification. The last statement is basically
Lemma 9.3.2, along with the phase classification.

10.5.8 Theorem. Let G be an algebraic group of type E7, with J2(G) = (1, 1, 1, 1).
Then the motive of the projective, homogeneous G-variety X1 is indecomposable.

Proof: For the first step let us assume that there are no Rost motives R(1,1,1,1) in
M(X1/k). Passing to k(SB(A)) yields theG-phase [E7, (0, 1, 1, 1), 1] by Zhykhovich’s
theorem and the phase classification. In Theorem 9.3.5 we have seen that in case G
has this phase, firstly #M(X1) = {U(X1),R(0,1,1,1)} holds and that secondly there
is only one copy of U(X1) contained in M(X1). Since we assume that there are
no Rost motives in M(X1/k), all Rost motives R(0,1,1,1) occurring in M(X1) over
k(SB(A)) are glued to U(X1/k) or come from the upper motive of X3. The latter
holds since, U(X3/k) splits completely into shifts of R(0,1,1,1) over k(SB(A)), as X3 is
a GSV when j1 = 0 holds by the GSV-table. We first give a proof for showing that
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there are no Rost motives in M(X1/k) and then address the issue with U(X3/k)(i)
possibly occurring in M(X1/k).

No Rost motives: By Theorem 6.2.2 the Tits algebra A/k of G/k has index at
least 2 in case j1 = 1 holds. Using the generalized index reduction formula for
X1, it follows that over k(X1) the phase of G changes to [D6, (1, 1, 1, 0), ∗] with
∗ depending on the index of A/k. We use a lifting argument of the motivic
decomposition of X1 over k(X1) established in Theorem 10.4.12. The polynomial
P (I1, t) = t8(t2 + t3 + t4 + t5 + t6), which encodes the shifts of the Rost motives
R(1,1,1,0) contained in M(X1) over k(X1), has no subpolynomial divisible by (1 + t9)
in N0[t]. However, the Rost motive R(1,1,1,1) splits into R(1,1,1,0) ⊕ R(1,1,1,0)(9) over
k(X1). Thus no shift of the Rost motive R(1,1,1,1) is contained in M(X1/k).

There is no U(X3/k) in M(X1/k): Let us assume that at least one shift of U(X3/k)
occurs in M(X1/k). We pass to L := k(X1) again and obtain [D6, (1, 1, 1, 0), ∗]
as above. Note that P (U(X3/k), t) 6= P (U(X3/L), t) must hold, because if these
polynomials were equal, P (R(0,1,1,1), t) would divide P (U(X3/L), t) in N0[t] since X3
becomes a GSV over k(SB(A)). But this is not the case, as clearly can be seen by
comparing P (U(X3/L), t) = (1 + t2)(1 + t3)(1 + t4)(1 + t5) from Theorem 10.4.12
and P (R(0,1,1,1), t) = (1 + t3)(1 + t5)(1 + t9).

Also by Theorem 10.4.12, the following copies of U(X3/L) and U(X6/L) occur
in M(X1/L)

U(X3)(1)⊕ U(X3)(2)⊕ U(X6)(8)⊕ U(X3)(17)⊕ U(X3)(18).

We need to check any combination of gluing these and then prove that the respective
gluing is impossible. As M(X3/L) does not contain a shift of U(X6), by the same
theorem, we only need to check combinations of the U(X3)(i). By the symmetry
of the decomposition there are the following possibilities for the polynomial O1(t),
coding the shifts of U(X3/L) split off by U(X3/k) when passing to L.

1. O1(t) = (1 + t)

2. O1(t) = (1 + t16)

3. O1(t) = (1 + t+ t16 + t17)

Note that O1(t) = (1 + t17) (as well as (1 + t15)) is no option, as this means
that U(X3)(2) ⊕ U(X3)(17) is also glued and isomorphic to the upper motive of
another projective, homogeneous G-variety XΘ than X3 over k. But as U(XΘ)
becomes isomorphic to U(X3) over L, this is impossible by the results presented in
Theorem 10.4.12.

We also consider the possibility that some of the Rost motives in M(X1/L),
coded by r(t) := t8(t2 + t3 + t5 + t6), come from some U(X3/k)(i). This gives us
P (U(X3/k)) = O1(t)P (U(X3/L), t)+s(t)P (R(1,1,1,0), t) as candidate for the Poincaré
polynomial of U(X3/k), for some subpolynomial s(t) of r(t), including the possibility
s(t) = 0. But P (U(X3/k), t) must be divisible by P (R(0,1,1,1), t), becauseX3 becomes
a GSV when we pass from k to k(SB(A)). By try and error we find that none of these
polynomials divide the polynomial in question in N0[t] (since one can not establish
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the factor (1 + t9) which occurs in P (R(0,1,1,1), t)). We are done.

10.5.9 Remark. One can also use Theorem 10.3.5 for proving that there is only
one copy of U(X1/k) in M(X1/k) instead of using Zhykhovich’s theorem. It follows
that the semisimple anisotropic kernel of G over k(SB(A)) is either E7 or D6. In the
first case we are done. In the second case one concludes from the decomposition of
M(X1) in Theorem 9.2.1 that all motivic summands in M(X1), which are not Rost
motives, are glued over k. But this approach demands some deeper combinatorial
considerations.

10.5.10 Theorem. Let G be an algebraic group of type E7, with J2(G) = (1, 1, 1, 1).
Then the motive of the projective, homogeneous G-variety X7 is indecomposable.

Proof: Passing from k to k(SB(A)) yields the anisotropic kernel E7 by Zhykhovich’s
theorem and the phase classification. In Theorem 9.3.5 we have seen that M(X7) =
U(X7) ⊕ U(X7)(1) holds over k(SB(A)), with U(X7) being no Tate motive. Also,
passing from k to k(X3) yields the phase [A3

1, (1, 0, 0, 0), 2] by the GSV-table and
the phase classification. By Theorem 10.1.1, U(X7) ' U(SB(A)) with Poincaré
polynomial equal to 1 + t holds over k(X3).

10.5.11 Remark. In [Hen], the structure of the Chow rings of X6 and X3 in terms
of generators and relations has been determined very recently. The first one is
generated by five elements, which we denote by h, x2, x4, x5, x9 using the usual
nomenclature. For Ch(X3) the generators are h, x2, x3, x4, x5, x9. An expression
in Weyl coordinates can also be found in the reference.

10.5.12 Lemma. Let G be an adjoint algebraic group of type E7. Consider the
projective, homogeneous G-variety X6. Then the following holds for the coaction
map ρ on Ch(X6)

1. ρ(h) = 1⊗ h

2. ρ(x2) = e1 ⊗ h+ 1⊗ x2

3. ρ(x4) > e3 ⊗ h+ 1⊗ x4

4. ρ(x5) > e5 ⊗ 1 + 1⊗ x5

5. ρ(x9) > e9 ⊗ 1 + 1⊗ x9

Proof:

1. For first identity note that the Tits algebra of ω6 is always trivial by [MT95,
2.4.5]. Thus h is always rational and by applying [PS22, Lemma 4.12] the claim
follows.

2. We consider the motivic decomposition of M(X6) in Theorem 10.1.1. We see
that there is the Rost motive R(1,0,0,0)(1) contained in it. Using [PS22, Theorem
6.4], it follows that there is a cycle β in Ch(X6), such that ρ(β) > e1 ⊗ h. Because
of codimensional reasons, x2 is an admissible choice for β.
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3. We consider the motivic decomposition of M(X6) in Theorem 9.1.1. We see
that there is the Rost motive R(0,1,0,0)(1) contained in it. Using [PS22, Theorem
6.4], it follows that there is a cycle β in Ch(X6), such that ρ(β) > e3 ⊗ h. Because
of codimensional reasons, x4 is an admissible choice for β.

4. and 5. We determine the interesting summand of the coaction for each of
these cases analogously to the last line in the proof of Lemma 9.3.8. Then C is a
central product of D5×A1. Since this C occurs as the semisimple anisotropic kernel
of Ead

7 , its Chow ring has only two generators e1, e3 by the very same arguments of
the last proof in Lemma 10.4.5.

Using the same right exact sequence as in the proof of Lemma 9.3.8, we can show
that e5, e9 in Ch(Ead

7 ) map to zero in Ch(C). Then the claim follows analogously.

10.5.13 Theorem. Let G be an adjoint algebraic group of type E7, with motivic
J2-invariant J2(G). When J2(G) equals (1, 1, 1, 1), the motive of the projective,
homogeneous G-variety X6 contains exactly one copy of U(X6). The only other
possible indecomposable motivic summands in M(X6) are shifts of the Rost motive
R(1,1,1,1).

Proof: The claim on the Rost motives follows from the lemma above and [PS22,
Theorem 6.4]. We multiply the four generators of codimension bigger than 1 and
obtain a cycle β. Now, ρ(hiβ) > EJ ⊗ h2+i holds and EJ uniquely has the biggest
codimension of all a with a⊗ b < ρ(hiβ) for i ∈ [0, 12].

For the claim on U(X6), consider the Tits algebra A of G. It is not split by
Theorem 6.2.2. We pass to L := k(SB(A)). By Zhykhovich’s theorem and the
phase classification, we obtain [E7, (0, 1, 1, 1), 1]. By Theorem 9.3.5, there are three
copies of U(X6/L) contained in M(X6/L) of which the two outer ones (in terms of
shifts) are necessarily glued over k. To see this, we pass to k(X6). By the proof of
Lemma 10.4.6 and the Tits classification, the semisimple anisotropic kernel of G is
either D5 × A1 or D4 × A1 . In the first case we have seen in Theorem 10.3.3 that
there are only two Tate motives in M(X6). Thus the claim follows. In the second
case we check Theorem 10.2.2 to see that the Tate motives inM(X6) are in this case
given by T6 := 1 + t17 + t25 + t42. But U(X6/L) has dimension 26 by Theorem 9.3.5.
Thus U(X6/k) has the same dimension as X6.

We need to show, that U(X6/L)(8) in the middle of M(X6/L), is also glued
to U(X6/k) over k. But this mostly follows from the table in Theorem 9.3.5 and
Theorem 9.3.10, which enlist the copies of U(X6/L) contained in each projective,
homogeneous G-variety over L and and from Karpenko’s theorem. The only cases
to consider are, whether U(X7/k) or U(X1,6/k) could be contained in M(X6/k).
The motive of X7 is indecomposable over k by the theorem right before the lemma
above and splits into two shifts of U(X6/L) over L. So we are left with the X1,6 case.
Let us pass to k(X6). By the proof of Lemma 10.4.6 and the Tits classification, the
semisimple anisotropic kernel of G is either D4 × A1 or D5 × A1.

In the first case the upper motives of X6 and X1,6 are isomorphic, as by using
the proof of Lemma 10.4.6 and the Tits classification again, one definitely has kernel
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D4×A1 over k(X1,6). Since we have already established that U(X6/k) has the same
dimension as X6, the summand U(X6/L)(8) is not glued to a copy of U(X1,6/k)
inside of M(X6/k), unless it is completely isomorphic U(X1,6/k).

In the second case the only possibility for U(X1,6/L)(8) to be visible inM(X6/k)
and not glued to anything else, is also to be isomorphic to U(X1,6/k). This indicates
that the dimension of U(X1,6/k) is 26. Checking Theorem 10.2.2, where G has
semisimple anisotropic kernel D4 × A1, we see that there is no such Tate motive
contained in M(X1,6).

10.5.14 Lemma. Let G be an adjoint algebraic group of type E7. Consider the
projective, homogeneous G-variety X3. Then the following holds for the coaction
map ρ on Ch(X3)

1. ρ(h) = 1⊗ h

2. ρ(x2) = 1⊗ x2

3. ρ(x3) > e3 ⊗ 1 + 1⊗ x3

4. ρ(x4) > e1 ⊗ α + 1⊗ x4, for some 0 6= α ∈ Ch3(X3).

5. ρ(x5) > e5 ⊗ 1 + 1⊗ x5

6. ρ(x9) > e9 ⊗ 1 + 1⊗ x9

Proof:

1. For first identity note that the Tits algebra of ω3 is always trivial by [MT95,
2.4.5]. Thus h is always rational and by applying [PS22, Lemma 4.12] the claim
follows.

2. In Theorem 10.1.1, we see that M(X3) does not contain R(1,0,0,0)(1), when
J2(G) = (1, 0, 0, 0). Thus by [PS22, Theorem 6.4], x2 can not contain e1 ⊗ h.

3. We consider the motivic decomposition of M(X3) in Theorem 9.1.1. By the
GSV-table, it follows that X3 is a GSV with upper motive R(0,1,0,0). Now the claim
follows from considering [PS22, Theorem 6.4] and the codimensions of the generators
of Ch(X3).

4. Assume G has the phase [D4 ×A1, (1, 1, 0, 0), 2]. We can use Theorem 10.2.2
and see that M(X3) contains a Rost motive R(1,1,0,0)(3) and that this is the Rost
motive with smallest shift in M(X3). By [PS22, Theorem 6.2] there is an cycle
β ∈ Ch7(X3), such that the ρ(β) contains a cycle e1e3 ⊗ α, with α ∈ Ch3(X3). By
the formula above, the codimensions of the generators of Ch(X3) and the fact that
3 is the smallest shift of R(1,1,0,0) in M(X3), we see that the e1 ⊗ α portion comes
from ρ(x4) and x3x4 is one choice for β. Adding other cycles of codimension 7 to
β does not change this. Note that α is equal to some sum of h3, x2h, x3, as these
are the generators of Ch3(X3). It can not be x3 by itself, as this would make x3
rational, when ever J2(G) ≤ (1, 1, 0, 0) holds component wise. This is impossible by
the formula above.
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5. and 6. We determine the interesting summand of the coaction for each of
these analogously to the last proof in Lemma 9.3.8. The parameter C is a central
product of A5 × A1. Since groups of type An have only one generator e1, we have
that Ch(C) has also only one or two generators e1, e

′
1. Using the same right exact

sequence as in the proof of Lemma 9.3.8, we can show that e5, e9 in Ch(Ead
7 ) map

to zero in Ch(C). Then the claim follows analogously.

10.5.15 Theorem. Let G be an adjoint algebraic group of type E7, with motivic
J2-invariant J2(G). When J2(G) equals (1, 1, 1, 1), the motive of the projective,
homogeneous G-variety X3 contains only shifts of U(X3) and of the Rost motive
R(1,1,1,1).

Proof: The claim on the Rost motives follows from the lemma above and [PS22,
Theorem 6.4]. We can put x3x4x5x9 into ρ(−) for example, to conclude that
R(1,1,1,1)(3) is contained in M(X3/k), if the cycles ei do not cancel out. Note that
even though we have not determined the α in ρ(x4), every possible combination of
the cycles discussed above does not contradict our result, as ρ(x3), ρ(x5), ρ(x9) all
contain ei ⊗ 1 as summand of the form a ⊗ b with a having biggest codimension.
Since the only b unequal to zero is alpha, we have that the generic point of the Rost
motive R(1,1,1,1)(3) is α (which is not zero by the lemma above).

For the claim on U(X3), consider the Tits algebra A of G. It is not split by
Theorem 6.2.2. We pass to L := k(SB(A)). By Zhykhovich’s theorem and the phase
classification, we obtain [E7, (0, 1, 1, 1), 1]. By the GSV-table, X3/L is a GSV. Thus
any indecomposable motivic summand N in M(X3/k) splits into shifts of Rost
motives over L. By Karpenko’s theorem, N is isomorphic to the shift of U(Y/k) for
some appropriate projective, homogeneous variety Y/k. As N becomes isomorphic
to R(0,1,1,1) over L, we have that Y/k is either a GSV it becomes one over L. In the
first case U(Y/k) is isomorphic to R(1,1,1,1). In the second case U(Y/k) is isomorphic
to U(X3/k), since X3 is a representative of the projective, homogeneous varieties,
which become a GSV over L.

10.5.16. (Unsolved cases) In both of the cases of M(X3) and M(X6) we are
unable to completely determine the Rost motives from the coaction. Many of the
calculations of products in the respective Chow rings crash the algorithm from the
Chow maple package. While this generally hinders us from determining the concrete
structure of the upper motives of X3 and X6, the case of X3 turns out to be very
tenacious.

Passing to all established phases and checking motivic decompositions, we can
conclude thatM(X3/k) contains at least three shifts of U(X3), coded by the shifting
polynomial (1 + t + t2)O3 for some symmetric polynomial O3 ∈ N0[t] (check the
Tate motives in Theorem 10.1.1). But it is unclear whether O3 equals 1 or maybe
(1 + t6) for example. For obtaining clarity, a lot of calculations of rational cycles are
necessary, which may also crash executing the algorithm.
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Facts on M(X4): This case works similar. Step one is to show that
#M(X4) ⊂ #M(X3), which follows from the Tits classification. We then have that
the shift polynomial of its upper motive is (1+ t4 + t8)O3, for the same O3 like in the
X3 case, which follows from comparing the Tate motives in Theorem 10.1.1. Simply
pass to k(X3), which yields phase [A3

1, (1, 0, 0, 0), 1] by the GSV-table and the phase
classification. Now check the Tate polynomials of X3 and X4 in Theorem 10.1.1 to
see it. Even if the structure of the upper motive of X3 and X4 would by given by
U(X3) = P (X3, t)/(1+ t+ t2), which is the biggest possibility in terms of dimension,
then subtracting (1 + t4 + t8)P (U(X3), t) from P (X4, t) leaves a difference with only
positive or zero coefficients. Thus there are definitely Rost motives in M(X4). But
in order to exactly determine them, we need to know the structure of U(X3).

Facts on M(X1,6): The only thing we know is that if G is versal, then there
are transitions to [D6, (1, 1, 1, 0), ∗] and [D5 × A1, (1, 1, 0, 0), 2] and thus the upper
motives of X6 and X1,6 are not isomorphic over k. As the Chow ring of X1,6 is huge
and should basically have at least the same generators as Ch(X1) and Ch(X6), it is
highly unlikely that there are no Rost motives in M(X1,6).

10.6 Conclusions on the phase [E7,(1,1,1,0),*]

In this section we use our results to establish the motivic decomposition of X1 in
the case G has the hypothetically admissible phase [E7, (1, 1, 1, 0), ∗] and satisfies
some other property. For starters, here is a simply obtainable result.

10.6.1 Lemma. If an algebraic group G has phase [E7, (1, 1, 1, 0), 8], the projective,
homogeneous G-variety X1 does not have a zero cycle of odd degree.

Proof: Let A be the Tits algebra of G. Assume X1 has a zero cycle of odd degree.
By the property 1. of the motivic J-invariant there is an odd degree extension L/k,
such that X1 becomes isotropic over L without J2(G) changing. The phase over L
is necessarily [D6, (1, 1, 1, 0), ∗] (with ∗ now being restricted to 2 or 4) by the phase
classification. But as L/k has odd degree, A can not change its index to neither 2
nor 4 over L.

10.6.2 Lemma. If the phase [E7, (1, 1, 1, 0), 8] is admissible, then [E7, (1, 1, 1, 0), 4]
is also admissible.

Proof: Assume that we are given [E7, (1, 1, 1, 0), 8] and that [E7, (1, 1, 1, 0), 4] is
not admissible. Let D be the Brauer class of the Tits algebra of G. Passing to
L := k(SB4(D)) reduces the index of D to 4 by the index reduction formula from
[SvB]. By the phase classification and since we assume that [E7, (1, 1, 1, 0), 4] is not
admissible, G/L has phase [D6, (1, 1, 1, 0), 4].

We have seen in Theorem 10.4.12 that there are exactly two Tate motives in
M(X1/L), which are F2 and F2(33). Passing from k to k(X1) also yields phase
[D6, (1, 1, 1, 0), 4] by the index reduction formula for X1 from [MPW2]. This implies
that the upper motives of SB4(D) and X1 are isomorphic over k, because X1/k
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does not have a zero cycle of odd degree by the lemma above. Thus the motives
of both varieties contain F2(33) over L and k(X1). This is impossible, since
dim(SB4(D)) = deg(P (A7/P4, t)) = 16. It follows that G remains anisotropic over
L. To see that the J-invariant does not change over L, remember Corollary 8.3.9
and the fact that ind(D) = 4 holds over L.

10.6.3 Theorem. Let G be an adjoint algebraic group of type E7 with phase
[E7, (1, 1, 1, 0), 8]. Assume that G has semisimple, anisotropic kernel D5 × A1 over
k(X6). Then the motive of the projective, homogeneous G-variety X1 decomposes
into indecomposable motivic summands as follows

M(X1) ' U(X1)⊕⊕
i∈I RJ(i),

with P (I, t) = t8(t2 + t3 + t4 + t5 + t6)

and P (U(X1), t) = P (X1, t)− P (I, t)P (RJ , t).

Proof: Passing to k(X1) yields the phase [D6, (1, 1, 1, 0), 4] by the index reduction
formula for X1 from [MPW2]. Thus the claim on the Rost motives follows by
Theorem 10.4.12 and the fact that we can lift the Rost motives to k, because of
[PS22, Theorem 6.4] and as the value of J2 is equal over k and k(X1). The other
motivic summands over k(X1) are all isomorphic to the upper motives of projective,
homogeneous D6-varieties.

Structure of U(X1): By the binary summand theorem and the lemma above, the
Tate motives F2,F2(33) in M(X1) over k(X1) are glued to other motivic summands
over k. It is clear that there is only one copy of U(X1/k) contained in M(X1/k),
since there only two Tate motives in M(X1) over k(X1).

By the Theorem 10.4.12 we can now check the possibilities of which
indecomposable motivic summands besides F2,F2(33) are split off by U(X1/k)
over k(X1) from the summands below (the Yi denote projective, homogeneous D6-
varieties)

U(Y5)(1)⊕ U(Y5)(2)⊕ U(Y2)(8)⊕ U(Y5)(17)⊕ U(Y5)(18).

When we pass from k to k(X6), we obtain anisotropic kernelD5×A1 by the initial
requirement. By Theorem 10.3.3 the upper motive of X1 over k(X6) has a Poincaré
polynomial starting with 1 + t + t2 + t3 + t4 (it is a motivically indecomposable
quadric of dimension 10). As Ch1(X1) and Ch2(X1) have F2−rank 1, this proves
that the shifts of U(Y5) above are all glued to U(X1/k).

To show that U(Y2)(8) is also glued to U(X1/k), we use a proof by contradiction.
Assume the opposite. Then by Karpenko’s theorem there is some other G-variety
Z over k, with U(Y2) as upper motive. If we compare the structures of the
elements in #G/k(X1) in Theorem 10.4.12, its clear that only X6 qualifies for Z, as
U(X6) ' U(Y2) holds over k(X6). So we can assume that U(X6/k)(8) is contained in
M(X1/k). But by Karpenko’s theorem passing to k(X6) will give us an semisimple
anisotropic kernel smaller than D6, which one obtains when passing to k(X1) by
the index reduction formula from [MPW2] (i.e. X1 and X6 both need to become
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isotropic over k(X6)). This is clearly a contradiction to our requirement on how the
kernel of G looks over k(X6).

Chapter 11
Groups of type E7 constructed
from F4 and A1

In this chapter we briefly describe the F4 × A1 construction for groups of type E7.
It was already researched in [Gar01] and is completely understood over real closed
fields. We take things one step further to arbitrary fields of characteristic zero. We
obtain many results on the output G, such as the definite value of J2(G). For some
cases the Tits index of G is determined, too. Our results may be of general interest.
For the rest of this thesis, we assume that g3(J ) = 0 holds, for any F4 ' Aut(J )
used in the F4 × A1 construction.

11.1 Constructing E7 from F4 and A1

In this section we introduce the F4×A1 construction of groups of type E7 and point
out some basics. Also we manage to determine the maximal value of J2(G) for any
group G, which is a result of the construction.

11.1.1 Definition. Let A1, F4 and E7 denote split adjoint groups of the respective
type. By [Gar01] there is an embedding of split groups F4 × A1 ↪→ E7. Applying
H1(k,−), yields a map

H1(k, F4)×H1(k,A1) −→ H1(k,E7).

Let ξ lie in the image of this map and assume G is a twist of E7 by ξ. Then we say
that G comes from the F4 × A1 construction.

11.1.2. If any of the inputs H of the construction is isotropic, the outcome G
is also isotropic, since G contains at least the same split tori of H. The hard
thing about such constructions to determine is, whether anisotropic inputs yield an
anisotropic output. A complete solution for this problem for the F4×µ2 construction
of outer algebraic groups of type 2E6 was provided in [GPet]. The authors manage
to determine the Tits index of the outcome of the F4 × µ2 construction, based on
the relation of the Galois cohomological invariants of the inputs over k. We use the
same approach of focusing on the relation of the mod 2 invariants of the F4 and the
A1 used to construct G. We refer to those as f3(J ), f5(J ) for the Albert algebra
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J defining the F4, and Q for the degree two invariant (i.e. the Tits algebra) of the
PGL1(Q), which defines the A1.

11.1.3 Remark. In the reference [Gar01], it is demanded that f3(J ) and Q have a
common slot. This property is not necessary for the construction to work in general.
It is only demanded, because the author in the reference wants to ensure that G
splits over a quadratic field extension. This is just important if one wants to restrict
the kinds of groups arising from the construction. In fact the case where f3(J ) and
Q do not have any common slots is rather interesting, as we will see in a minute. If
we demand k to be 2-special, then Theorem 3.6.6 applies and we can be sure that
F4 is isotropic if and only if f5(J ) is zero, as in this case g3(J ) is zero.

11.1.4 Remark. Note that the Tits algebra of any G coming from the F4 × A1
construction is Brauer equivalent to the Q ∈ Br(k) making up the input A1. This is
not hard to see, as the Tits algebra of F4 is split in general by Example 3.7.6. Thus
the Tits algebra of G is necessarily contributed by A1.

As a versal form of an adjoint group of type E7 has a Tits algebra with index 8
by the Tits classification, the F4 × A1 can not produce every group of type E7 as
output. It also turns out that any value of J2(G) for any G coming from the F4×A1
construction is strictly smaller compared to maximal possible value of J2(G).

11.1.5 Lemma. (Garibaldi) Let G be the output of the F4 × A1 construction.
Assume that G does not split over k(SB(Q)). Then the phase of G over k(SB(Q))
is [D4, (0, 1, 0, 0), 1].

Proof: First we consider the F4×A1 construction, with Q being already split over k.
We write Q0 for it. Then any ξ in the image of H1(k, F4)×H1(k,A1)→ H1(k,E7)
has as preimage J ×Q0. This means that ξ is solely determined by J and thus we
have a construction of E7 stemming from the embedding of F4 ↪→ E7 of split groups.
This embedding factors through E6. Any non split group of inner type E6 is known
to have anisotropic kernel D4 mod 2. Thus twisting the split E7 with ξ, means that
the resulting group G is split or does also have anisotropic kernel of type D4.

Now we assume that Q is not split over k. Extending scalars to k(SB(Q)) splits
Q, but not G by assumption. We are again in the situation where Q is split, but
the G coming from the F4 × A1 construction is not. Thus its anisotropic kernel is
of type D4 by our observation. The rest of the claim now follows from the phase
classification.

11.1.6 Theorem. Let G be the output of the F4 × A1 construction. Then the
maximal value of the J2-invariant J2(G) is equal to (1, 1, 0, 0).

Proof: By the lemma above it follows, that if Q is split, J2(G) is either (0, 1, 0, 0) or
zero. So let us assume that Q is not split. We pass to k(SB(Q)). If G splits, then
J2(G) over k is equal to (1, 0, 0, 0) by Lemma 7.1.9. If G does not split, then by the
lemma above its anisotropic kernel reduces to D4. Now we can apply Theorem 10.3.5
and are done.
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11.1.7. The proof of the theorem indicates, that for non split groups G coming
from the F4 × A1 construction only the three values (1, 1, 0, 0), (0, 1, 0, 0), (1, 0, 0, 0)
are possible for J2(G). To further decode the outcome of the construction, we now
determine the impact of cohomological invariants of the input on J2(G), before we
consider how the Tits index is effected by these. The following example from [Gar01]
marks the least complicated case.

11.1.8 Example. ([Gar01, 5.4]) Consider the F4 × A1 construction with J split
and Q not split. Since G contains the split F4 and thus a split torus of k-rank 4, its
anisotropic kernel is either A3

1 or is split, by the Tits classification. But since Q is its
Tits algebra, it is A3

1. Using the phase classification, or the fact that G necessarily
splits over k(SB(A)), it follows that J2(G) = (1, 0, 0, 0) holds over k.

11.1.9 Example. Assume k = Qp for an arbitrary prime p. It is well known that
H2+i(k, µ2) = 0 holds for any i > 0. This follows from the calculation of the so
called u invariant for quadratic forms (see [EKM, §VI]), which is known to be equal
to 4 for k = Qp. Applying the Arason–Pfister Hauptsatz (see [EKM, Thrm. 6.18]),
shows that I3 = 0 holds in this case. So over Qp, any F4 mod 2 is split, as the even
part of its Rost invariant is zero. Thus the outcome of F4×A1 construction depends
only on the choice of Q by the example above and is never anisotropic as it contains
a split torus of at least k-rank 4.

11.1.10 Lemma. Let G be the output of the F4 ×A1 construction. Assume J and
Q are both not split. If Q divides f3(J ), then J2(G) equals (1, 0, 0, 0).

Proof: Passing to k(SB(Q)) kills both, Q and f3(J ). By Theorem 3.6.6 any Albert
algebra J with g3(J ) = 0 used for the construction, is split if and only if f3(J ) = 0
holds. Thus both F4 and A1 split over k(SB(Q)) and G has k-rank of at least 5 over
k(SB(Q)). By the Tits classification, G is split by SB(Q), which makes SB(Q) a
GSV. By Lemma 7.1.9 it follows that over k one has J2(G) = (1, 0, 0, 0).

11.1.11 Remark. The upper lemma makes no statement about the Tits index of
G. How (at least) some of the isotropic Gs with J2(G) = (1, 0, 0, 0) are obtained, is
covered in the example. But how to construct the anisotropic ones in general? Over
a real closed field it is known that one has H2(k, µ2) ' Z/2Z.

Thus Q necessarily divides f3(J ), provided neither Q nor J is split. The lemma
above then applies. This case is treated in [Gar01, 6.1] and indeed in this situation
G is anisotropic if and only if f5(J ) is not zero over a real closed field. In any case
the example shows, that there are anisotropic groups coming from the F4 × A1
construction and having J2(G) = (1, 0, 0, 0), such that none of the projective,
homogeneous G-varieties has a zero cycle of odd degree. This follows since k is
real closed and thus no field extension of odd degree bigger than 1 exists.

11.1.12 Lemma. Let G be the output of the F4 ×A1 construction. Assume J and
Q are both not split. If Q and f3(J ) have one or none common slots, then J2(G)
equals (1, 1, 0, 0).

Proof: Passing to k(SB(Q)) kills only Q and leaves f3(J ) non zero (it may change
though). So G is not split. Now the same arguments of the proof of Lemma 11.1.5
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apply, to show that G has anisotropic kernel of type D4 over k(SB(Q)). Again using
Theorem 10.3.5 finishes the proof.

11.1.13. The problem of whether each G coming from the F4 × A1 construction
is anisotropic or not aside, there is another issue to deal with. By the phase
classification J2(G) takes the value (1, 1, 0, 0) in caseG has anisotropic kernelD5×A1
or D4 × A1. From [Tits90] we know that groups of type E7 having this anisotropic
kernel are given by a quadratic form q = ϕ3 ⊥ −ϕ2 ∈ W (k), which is the difference
of a 3-Pfister and a 2-Pfister form having none or one common slot. It turns out
that for any G coming from the F4 × A1 construction a similar relation exists for
f3(J ) and Q, which unsurprisingly carries over to the anisotropic kernel of G.

11.1.14 Lemma. Let G be the output of the F4×A1 construction. Assume the value
of J2(G) equals (1, 1, 0, 0) and let G be isotropic. Then the semisimple, anisotropic
kernel of G is of type D5 × A1 if f3(J ) and Q have no common slot and D4 × A1
if they have exactly one common slot.

Proof: First note that f3(J ) and Q split over the same quadratic field extension
L/k if and only if they have a common slot. Thus it is enough tho show that G
does not split over any quadratic field extension, in case f3(J ) and Q do not have
a common slot.

So let us assume that G splits over the quadratic extension L/k and f3(J ) and
Q have no common slot over k. Then Q splits over L too, because it is the Tits
algebra of G both over k and L. This means that putting the non split J /L and
the split Q/L into the F4×A1 construction, we obtain the split E7. By the proof of
Garibaldi’s lemma, this happens only if J /L is also split, as otherwise one obtains
an output with anisotropic kernelD4. This means f3(J ) and Qmust have a common
slot over k, contradicting our assumption.

11.1.15. Our last task to is to determine criteria, which control whether G is
isotropic or not. There is only a partial answer, which goes beyond the sole
consideration of f5(J ). It resulted from a discussion with Victor Petrov about the
F4×A1 construction. He suggested the consideration of the Killing form (see [Hum,
II 5.]) and pointed out that the essentials to make a proof work are already known.
Unfortunately explicitly calculating this Killing-Form is very time-consuming. We
did not perform this effortful task. This leaves us only with a remark instead of a
lemma. We give a sketch of the proof.

11.1.16 Remark. Let G be the output of the F4 × A1 construction. Assume G is
isotropic. Then f5(J ) ∪Q = 0 ∈ H7(k, µ2) holds.

Sketch of proof: Let us consider the Killing form KG of the group G of type E7
coming from the F4 × A1 construction and assume that G is anisotropic over k.
We can take [Jac, (144) on p.117] as a blueprint for KG. From the reference it is
clear that KG will incorporate the Killing forms of A1 and F4 and additionally some
constant terms or factors (i.e. an expression like 〈2, 2〉 for example).

Except for these constants, everything else is known. Concretely KG contains
the direct sum of KF4 and KA1 and the tensor product (compare with [Jac]) of
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the invariant trace forms on the 3-dimensional representation of A1 and the 26-
dimensional representation of F4.

Consideration of KA1 : Let Q′ be the quadratic form in the decomposition
Q = 〈1〉 ⊥ Q′. Its well known that KA1 is similar to Q′. Thus Q′ is also the
trace form on the 3-dimensional representation of A1.

Consideration of KF4 : We consult [Mal, Introduction]. Originally KF4 was
calculated by Serre and is known to be equal to

〈−2〉 ⊗ (f5(J ) ⊥ −f3(J )) ⊥ 〈−1,−1,−1,−1〉 ⊗ (f3(J ) ⊥ 〈−1〉).

Calculation of of KG: We conclude that KG contains a summand Q′ ⊗ f5(J ).
Assume that G is isotropic. Then KG can be calculated via [Mal, Theorem 1].
By the theorem all one needs to know to establish KG, is the Killing form of the
anisotropic kernel of G. The maximal value of J2(G) for any output of the F4 ×A1
construction is (1, 1, 0, 0). So, by the phase classification, we only need to know the
Killing forms of A1, D4, D5.

By [Mal, proof of Theorem 2 on p. 8], the Killing forms of D4, D5 ' SO(q) do
only consist of quadratic forms made up of products of the coefficients of q. Since q
can not contain f5(J ) in any of these cases in general, because its rank is only ten,
it follows that KG does not contain Q′ ⊗ f5(J ) 6= 0, when G is isotropic.

To conclude the proof, we need to know that Q′ ⊗ f5(J ) does not cancel out
with some other summand. For showing this, one needs to compare the general
Killing form with the Killing forms of isotropic E7’s in the Witt ring (more precisely,
calculating modulo subsequent factors of powers of the fundamental ideal of the Witt
ring). But for this one needs to know the precise constants occurring in the Killing
forms. This procedure takes a lot of effort. In our concrete case, we considered
f5 ∪Q, so one needs to do checks up to I7/I8.

Note also that for a generic Tits construction the above argument is working,
since f5(J ) does not appear in the isotropic cases arising from the Tits construction
at all and can not cancel out.

The fact that the semisimple anisotropic kernel of an adjoint group of type E7
is sometimes a central product of for example D5 and A1 and thus it is not really a
SO10, is not a problem because f5(J ) is still independent of q by construction.

11.1.17 Remark. (Possibility to construct [E7, (1, 1, 1, 0), ∗]) The sketched proof
of the remark above could potentially be used for constructing groups G having the
phase [E7, (1, 1, 1, 0), ∗]. One could use (A, σ) given as in Theorem 8.3.5 as the input
for Petrov’s D6×A1 construction from [P13]. For this construction, the Quaternion
algebra Q defining the A1 needs to come from the D6. If one knew the Killing form
KD6 of the D6 ' HSpin(A, σ) defining the anisotropic kernel of the isotropic E7
and was able to prove that KE7 contains KD6 ⊗KQ, then a similar result like in the
remark could be proven.

Then G is most probably anisotropic when fn ∪ Q 6= 0, for some summand fn
of KD6 . There is hope to find such an fn, because a decomposable degree three
invariant f3 for (A, σ) as in Theorem 8.3.5 has recently been established in [MaT20,
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Thrm. 2.3], along with a concrete formula in case ind(A) = 2 holds. Passing to
k(SB(A)) then makes G having anisotropic kernel D6 defined by the form qσ adjoint
to σ as in the Theorem 8.3.5. So the claim on J2(G/k) follows, once one knows that
an anisotropic G can be constructed with such an input.

11.1.18 Remark. The Remark 11.1.16 suggests, that even over some fields where
−1 is a square, the F4×A1 construction can theoretically produce anisotropic groups
G of type E7 with J2(G) = (1, 1, 0, 0), for which #G differs. This is very interesting,
as this would mean that the phase of a group alone probably does not determine
the motivic decomposition type of an anisotropic group.

If Q and f3 have exactly one common slot and G is anisotropic, then G splits
over a quadratic field extension. Also by the index reduction formulas in [MPW]
and the phase classification, it is clear that the upper motives of X1 and X6 are
isomorphic in this case.

But if Q and f3 have no common slot and G is anisotropic, this is impossible as
G splits if and only if Q and f3 are both split. If passing to k(X6) does not change
the number of common slots of Q and f3, one can not obtain anisotropic kernel
D4 × A1, because these groups split over a quadratic field extension, since they are
defined by the quadratic form from Lemma 5.5.11.

Thus one obtains anisotropic kernel D5 × A1 over k(X6), which means that the
upper motives of X1 and X6 are not isomorphic over k. Sadly, determining the
behavior of G over k(X6) seems out of reach.

11.1.19. If we knew the exact Killing-Form of any E7 coming from the F4 × A1
construction, the proof below would be complete.

11.1.20 Remark. Let G be an anisotropic group of type E7 over k with motivic
J-invariant J2(G) = (1, 0, 0, 0), which comes from the F4 × A1 construction. Then
none of the projective, homogeneous G-varieties XΘ has a zero cycle of odd degree.

Sketch of proof: We can limit our consideration to X1, as by the GSV-table and the
phase classification, the upper motives of all XΘ which are not GSVs are isomorphic.
Assume that X1 has the demanded zero cycle. Then there is a field extension L/k
of odd degree, such that G/L is isotropic. If G/L is isotropic, it is either split or
has anisotropic kernel A3

1 by the phase classification. The first case is impossible, as
then J2(G/L) would change to zero, violating property 1. of the J-invariant. The
second case is also impossible, as by [Mal, Thrm. 1], KG/L can be calculated purely
as an orthogonal sum of the Killing form of A1 ' PGL1(Q/L). So it surely does
not contain f3(J ), unless it is zero over L.

Consider the Killing form KG/k. It contains the Killing form of F4 ' Aut(J /k)
used as input along with a Quaternion algebra Q/k as orthogonal summand, as in
the case over R in [Jac]. Then one proceeds similarly as in Remark 11.1.16 but
looking at f3(J ) instead of f5(J ). Note that since the degree of L over k is odd,
f3(J ) is still present in the Killing form over L and thus KG/L can not only be made
up of the Killing form of PGL1(Q/L).

11.1.21. Below we summarize the results on the F4 × A1 construction obtained
in this chapter. The table is to read as follows. The first three columns indicate
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whether one of the respective cohomological invariants is zero or not. In case it is
zero, we write a 0. Otherwise we write Q, f3(J ), f5(J ) to denote that the considered
invariant is not zero.

The term Slots denotes the number of common slots of f3(J ) and Q. The column
to its right contains the phase of the output G, provided G is anisotropic. Otherwise
we write a −.

The last column contains the phase of the output G, provided it is isotropic.
What exactly controls the isotropy of X6 is unclear at the moment. Zainoulline has
recently shown in [Zai, Exm. 3.4] that the (integral) canonical dimension (see [RY])
of Ead

7 is bounded by 42, which interestingly equals the dimension of X6 and X2.

11.1.22 Corollary. Let G be the output of the F4×A1 construction. Then its phase
depends on Q, f3(J ), f5(J ) in the following way

Q f3(J ) f5(J ) Slots If G is anisotropic If G is isotropic
0 f3(J ) 0 0 − [D4, (0, 1, 0, 0), 1]
0 f3(J ) f5(J ) 0 − [D4, (0, 1, 0, 0), 1]
Q f3(J ) 0 0 − [D5 × A1, (1, 1, 0, 0), 2]
Q f3(J ) 0 1 − [D4 × A1, (1, 1, 0, 0), 2]
Q f3(J ) 0 2 − [A3

1, (1, 0, 0, 0), 2]
Q f3(J ) f5(J ) 0 [E7, (1, 1, 0, 0), 2] [D5 × A1, (1, 1, 0, 0), 2]
Q f3(J ) f5(J ) 1 [E7, (1, 1, 0, 0), 2] [D4 × A1, (1, 1, 0, 0), 2]
Q f3(J ) f5(J ) 2 [E7, (1, 0, 0, 0), 2] [A3

1, (1, 0, 0, 0), 2]

Chapter 12
Motivic construction of a degree
five invariant for E7

In this final chapter we construct a Galois cohomological degree five invariant mod
2 for adjoint algebraic groups of type E7, which split over the generic point of
the Severi-Brauer variety of their Tits algebra. We do this by first calculating the
motivic decompositions for the phase [E7, (1, 0, 0, 0), 2] over k. It turns out that the
decomposition of all projective, homogeneous G-varieties that are not GSV over k
have an upper motive which is binary and 15-dimensional, provided they do not
have a zero cycle of odd degree. The calculations also incorporate results on groups
coming from the F4 × A1 construction, but do not require that G is the output of
the construction. In the case of [E7, (1, 1, 0, 0), 2] only M(X7) is calculated. But it
is not needed for the calculation of the invariant. The actual prove of existence of
the invariant is established by using several results of Voevodsky and Semenov and
can be thought of an analogue to the main result of [S16].



103

12.1 Motivic decomposition for [E7,(1,0,0,0),2]

In this section we consider the motivic decompositions in case the phase of G is
[E7, (1, 0, 0, 0), 2]. The proof of it marks the magnum opus of this thesis. The
decomposition makes an assumption on the zero cycles of X1. Remember that this
case occurs over R by [Gar01, 6.1] for example.

12.1.1 Theorem. Let G be an anisotropic group of type E7 over a field k of
characteristic zero, with motivic J-invariant J2(G) = (1, 0, 0, 0). Assume that the
projective, homogeneous G-variety X1 has no zero cycle of odd degree. Then the
upper motive of X1 is binary and has dimension 15.

Proof: We cluster this proof into four steps and set L := k(X1) throughout the
whole proof.

1. By the GSV-tableX1 is not a GSV, when J2(G) = (1, 0, 0, 0) holds. So passing
to L induces a transition to [A3

1, (1, 0, 0, 0), 2], by the phase classification. Also the
split Tits index is the only one that has more nodes circled than A3

1. We are in a
situation, where we can use the result of De Clercq (see [DC, Thrm. 1.1]), which
asserts that we can lift all Rost motives R(1,0,0,0) in M(X1/L) to k. Another way
to obtain this, would be to consider the coaction ρ, [PS22, Theorem 6.4] and the
fact that J2(G/k) = J2(G/L) holds. It follows that U(X1/k) splits completely into
Tate motives over L, since there are no other motivic summands than Rost motives
or Tate motives in the motive of any projective, homogeneous G-variety over L by
Theorem 10.1.1.

2. Consulting the GSV-table again, we see that the upper motives of all XΘ
for Θ ⊂ {1, 3, 4, 6} are isomorphic over k. Thus the arguments in the previous step
are also completely valid for X6 for example. Using Karpenko’s theorem, it follows
that any motivic summand in M(XΘ/k) is either a shift of U(X1/k) or of R(1,0,0,0).
The polynomials T1, T6 from Theorem 10.1.1, which encode the F2(i) in M(X1/L)
and M(X6/L), thus are definitely divisible by the polynomial which encodes the
F2(i), split off by U(X1/k) over L. As we have seen in the first step, this polynomial
coincides with P (U(X1/k), t). Conspicuously, gcd(T1, T6) = (1+t10)(1+t15) holds in
N0[t]. Hypothetically this leaves the possibilities 1, (1+t10), (1+t15), (1+t10)(1+t15)
for P (U(X1/k), t). The first one is impossible, since X1 is supposed to have no zero
cycle of odd degree and thus has no Tate motive as upper motive by Remark 5.3.3.
The second one contradicts the binary summand theorem.

3. When expanded, the polynomial T1 contains the monomial t6 symbolizing
the only F2(6) in M(X1/L). Considering the two possible structures of U(X1/k) in
question, this Tate motive necessarily marks the generic point of the summand
U(X1/k)(6) in M(X1/k). Thus it is clearly rational. But we do not know
for sure which cycle defines this generic point. To find out we now calculate
all rational cycles in Ch6(X1/k), which is generated by γ6,1 = z[4, 2, 5, 4, 3, 1],
x6 = γ6,2 = z[2, 6, 5, 4, 3, 1], γ6,3 = z[7, 6, 5, 4, 3, 1]. Considering the Rost motives
occurring in M(X1/L), which were also calculated in Theorem 10.1.1, we see that
R(1,0,0,0)(6) is contained one time in M(X1/k). Thus there are exactly two generic
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points in Ch6(X1/k). One of U(X1/k)(6) and one of R(1,0,0,0)(6). Using the coaction
on the generators h, x4, x6, x9 of Ch(X1) established in Lemma 9.3.8, we obtain
ρ(x4h

3) = e1 ⊗ h6 + 1 ⊗ x4h
3. Because of [PS22, Theorem 6.4], this makes h6 the

generic point of R(1,0,0,0)(6) in M(X1/k). Now comes the complicated part. We
want to show that the generic point of U(X1/k)(6) in M(X1/k) equals the cycle
γ6,1. We do this by showing that none of the cycles γ6,2, γ6,3, γ6,1 + γ6,2, γ6,1 + γ6,3 is
rational over k. Note that h6 = γ6,2 + γ6,3 is rational, since h is always rational by
Remark 3.7.5. Also note that one can express the cycle γ6,1 as γ6,2 + x4h

2. Then by
the Lemma 9.3.8, we have

ρ(γ6,2) = e1 ⊗ h5 + 1⊗ γ6,2,

ρ(γ6,3) = ρ(γ6,2 + h6) = ρ(γ6,2) + ρ(h6) = e1 ⊗ h5 + 1⊗ (γ6,2 + h6) and

ρ(γ6,1) = ρ(γ6,2 + x4h
2) = ρ(γ6,2) + ρ(x4h

2) = 1⊗ γ6,1.

It follows from Lemma 7.2.5 that the cycles γ6,2, γ6,3 can not be rational over k.
From the upper equations it follows by the same arguments, that the sums γ6,1 +γ6,2
and γ6,1 +γ6,3 can also not be rational. To finish this part of the proof, let us assume
that α := γ6,1+γ6,2+γ6,3 is rational, but γ6,1 is not. Using the identity h6 = γ6,2+γ6,3,
we see that α + h6 = γ6,1 is rational yet. Thus the subgroup of rational cycles in
Ch6(X1/k) is generated by γ6,1 and h6.

4. Analysing T1 again, we find that F2(10) is contained in M(X1/L) exactly
one time. If this Tate motive comes from a generic point over k, we are done. For
showing this, we calculate all rational cycles in Ch10(X1/k). First the generic points
of the Rost motives. By Theorem 10.1.1, there are exactly two Rost motives in
M(X1/k) starting in codimension 10. Using the coaction, we find

ρ(x6h
5) = e1 ⊗ h10 + 1⊗ x6h

5 and

ρ(x4x6h) = e1 ⊗ (h3x6 + h5x4)h+ 1⊗ x4h
6h.

This gives us the generic points h10 and h4x6 + h6x4 by [PS22, Theorem 6.4].
Using the maple Chow maple package, we find that h10 = γ10,1 + γ10,2 holds, while
the second generic point is equal to γ10,3.

Over L there are precisely three rational cycles in codimension 10, two of
which are generic points of R(1,0,0,0)(10) and one of them is the generic point of
U(X1/L)(10). If we manage to find a third rational cycle in Ch10(X1/k), which is
linearly independent from the rational cycles h10 and h4x6 + h6x4 above, then we
will automatically have a rational cycle of codimension 10 lying in the first shell,
and thus a direct summand U(X1/k)(10) by [Shells, Corollary 4.11]. This would
immediately imply that the upper motive U(X1/k) has Poincaré polynomial 1 + t15.

In step 3., we have seen that γ6,1 is rational over k. Interestingly
S4(γ6,1) = γ10,5 = [6, 5, 4, 2, 7, 6, 5, 4, 3, 1] holds. Since the Steenrod operation
conserves rationality of cycles, we have found an additional generic point. To
substantiate our result, note that the prodbases routine calculates the very same
cycle for the only Tate motive in M(X1/L) starting in codimension 10. We are
done.
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12.1.2 Theorem. Let G have phase [E7, (1, 0, 0, 0), 2] and assume that the
projective, homogeneous G-variety X1 does not a have zero cycle of odd degree.
Then the motivic decompositions of the projective, homogeneous G varieties are as
follows

Θ M(XΘ)
Θ ⊂ {1, 3, 4, 6} ⊕

u∈OΘ U(X1)(u)⊕⊕
i∈IΘRJ(i)

Any other ⊕
i∈IΘRJ(i)

Index Poincaré Polynomial
U(X1) (1 + t15)
RJ (1 + t)

Index Poincaré Polynomial
O1 (1 + t+ t2)(1 + t6)(1 + t10)
O3 O1(1 + t5)(1 + t9)
O4 O6(1 + t5)(1 + t6)
O6 (1 + t4 + t8)(1 + t9)(1 + t10)
O1,6 (1 + t+ t2 + t4 + t5 + t6 + t8 + t9 + t10)(1 + t6)(1 + t9)(1 + t10)
I1 t3(1 + t+ t2)(1 + t3 + t5 + t6 + t8 + 2t9 + t11 + t12 + t13 +

2t15 + t16 + t18 + t19 + t21 + t24)
IΘ [P (XΘ, t)−OΘ(1 + t15)]/P (RJ , t)

Proof : The proof is a simple consequence of the Theorem above and the motivic
decompositions established in Theorem 10.1.1. In the first step of the proof above it
is shown, that all Rost motives over k(X1) lift to k. Also the upper motive U(X1) of
all projective, homogeneous G-varieties, which are not GSV, splits into F2⊕F2(15).
Therefore the polynomials describing the shifts of U(X1) in the motives of these
varieties in this theorem are simply the Tate polynomials from Theorem 10.1.1
divided by 1 + t15

12.2 Motivic decomposition for [E7,(1,1,0,0),2]

We write [E7, (1, 1, 0, 0), 2]6 in case the upper motives of X1, X6 are not isomorphic
and [E7, (1, 1, 0, 0), 2]1 in case they are. Here is our only result.

12.2.1 Theorem. Let G have phase [E7, (1, 1, 0, 0), 2]1 or [E7, (1, 1, 0, 0), 2]6 over k
and let A be the Tits algebra of G. Then the unique motivic decomposition of X7
into indecomposable motivic summands is given by

M(X7) = ⊕
s=0,9,17,26 U(SB(A))(s)⊕⊕

i∈I RJ(i),

with P (I, t) = t21 + t19 + t17 + t15 + t13 + t12 + t11 + t10 + t8 + t6 + t4 + t2

and P (U(SB(A)), t) = 1 + t.

Proof: By the proof of Lemma 10.3.1, the variety X1 induces a transition to
[D4×A1, (1, 1, 0, 0), 2]. We see in Theorem 10.2.2 that the decomposition of M(X7)
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now coincides with the one from the claim. Since the value of J2(G) does not change,
all Rost motives in the decomposition lift to k by [PS22, Theorem 6.4].

To prove that the upper motive of M(X7/k) is isomorphic to U(SB(A)/k), we
only need to look at what happens when passing from k to k(X7) and to k(SB(A)).
In both cases we obtain anisotropic kernel D4 by the GSV-table (for X7) and the
Lemma 7.1.9 (for SB(A)). By Karpenko’s theorem there can not be any other
motivic summands in M(X7/k).

12.2.2. We have seen in Chapter 10 that passing to k(X6) makes the upper motives
of some quadrics appear in many motivic decompositions of the XΘ. If we could
be sure that these upper motives can not be seen over the base field, then by our
techniques applied so far, one can determine many more motivic decompositions.
But looking at groups coming from the the F4 × A1 construction, it is a possibility
that some of these upper motives can in fact be seen over the base.

12.3 Constructing the invariant

In this final section we use results established in [S16] and several other sources, to
show how the motivic decomposition obtained in the last section proves the existence
of a cohomological invariant of degree five mod 2 for groups G of type E7, that have
J2(G) = (1, 0, 0, 0). We discuss a few consequences and the relation to the F4 × A1
construction, which we know produces some of the mentioned groups.

12.3.1 Proposition. Assume k is a field of characteristic zero. Let G be an
anisotropic group of type E7 over k, which splits over the generic point of its Tits
algebra. Then there is an element h5 ∈ H5(k, µ2), such that for any field extension
L/k one has res(h5)L/k = 0 ∈ H5(L, µ2) if and only if X1 has a zero cycle of odd
degree over L.

Proof: Without loss of generality we can assume that the projective, homogeneous
G-variety X1 has no zero cycle of odd degree.

To a certain extent, we can mimic the proof from [S16]. Our tactic is to show
that the requirements of [S16, Lemma 6.1 (b)] are satisfied. For this to achieve, we
need to transform our initial starting situation. We remind the reader that the zero
cycle condition is also included in the requirements of Theorem 12.1.2.

1. We consider the motivic decomposition of M(X1) from Theorem 12.1.2. It
is valid for Chow motives with F2 coefficients. If one applies [SZ, Theorem 4.3] it
becomes valid for Chow motives with Z2 coefficients, too.

The referenced theorem requires X1 to be nilsplit, which means that the RNT
needs to hold for Chow motives with F2 coefficients and that M(X1) becomes
isomorphic to a sum of Tate motives over a finite field extension. The first condition
is known to be satisfied. The second condition is even more trivial, since we know
that G splits when its Tits algebra splits. Thus we can lift the motivic decomposition
to Z2 coefficients.
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2. Our goal is to use [S16, Lemma 8.6]. For this we need to adjust the
statement of [S16, Lemma 8.5]. It refers to certain groups of type E8 and their
Borel variety. We replace G by an adjoint group of type E7 and consider X1 and
its motivic decomposition calculated in Theorem 12.1.2. The upper motive of X1 is
not isomorphic to the upper motive of the Borel variety of G in our case. However
checking the proof of the mentioned result by Voevodsky [Voe03b, Theorem 4.4], one
finds that it is not specific to E8, Borel varieties or (as also mentioned by Semenov)
to norm quadrics. The essential requirement is that X1 has a binary upper motive
with F2 or Z2 coefficients. We can lift the decomposition ofM(X1) to Z2 coefficients
by 1. and we can apply [S16, Lemma 8.6].

Then we obtain an exact triangle X{15} → U(X1) → X → X{15}[1] in
Voevodsky’s motivic category DMeff

− (k) of effective motives with Z2 coefficients
(see [MVW06] for a deep treatment of motivic cohomology), with X denoting the
motive of the standard simplicial scheme associated with X1.

3. Let us consider X1 again. To use [S16, Theorem 6.1 (b)], we need to show,
that there is a morphism Y → X1 for Y being some ν4-variety (see [S16, Definition
2.3]). In the proof of [Shells, Lemma 7.5], a closed irreducible subvariety Y ′′ of X is
considered. It satisfies the initial conditions of [Shells, Lemma 7.5]. We replace X
by our X1.

As Y ′′ is a subvariety of X1, we have a morphism Y ′′ → X1. Now we apply
[S16, Lemma 7.1] and obtain a smooth projective irreducible variety Y which is
birational to Y ′′ and admits a morphism Y → Y ′′. It satisfies the requirements of
[Shells, Lemma 7.5], too. Patching with the other morphism, shows that there is a
morphism Y → X1.

4. We have seen that U(X1) splits as F2 ⊕ F2(15) over any quadratic field
extension that splits SB(A). Thus we can apply [Shells, Lemma 7.5], to conclude
that there is some smooth projective irreducible variety Y of dimension 15, with
U(Y ) ' U(X1). We can choose this new Y to be the Y from 3. right above, because
the Y from above does satisfy the same properties required by [Shells, Lemma 7.5].

5. Now we show that this Y is a ν4-variety (see [S16, Definition 2.3]). For this
it is enough the check that the requirements of [S16, Lemma 6.2] are satisfied by Y .
This is rather obvious, since the upper motive of Y is binary and 15-dimensional
and coincides with the dimension of Y itself. Also it is isomorphic to the U(X1)
and thus the projector defining it behaves exactly like the respective projector in
Ch(X1 ×X1) behaves over quadratic field extensions.

6. Summarizing all of the above, we have a ν4-variety Y together
with a morphism Y → X1. On top of that we can lift the motivic
decomposition of X1 to Z2 coefficients and in Theorem 12.1.2, we have seen that
U(X1)(18) ' U(X1){dim(X1)− 15} is a summand of M(X1). Since we have the
sequence from 2. in DMeff

− (k), all requirements of [S16, Theorem 6.1 (b)] are
satisfied.

12.3.2 Remark. If the characteristic of k is not zero, many ingredients for the
proof like [S16, Thrm. 6.1] can not be used.
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The requirement that G splits over k(SB(A)), does imply that the Brauer class
of A divides h5 by [OVV07, Thrm. 2.1]. This makes h5 a decomposable invariant,
just like any degree three invariant mod 2 for Ead

7 as shown by Merkurjev. By
Remark 11.1.16, on the anisotropy of groups coming from the F4×A1 construction,
one could argue that f5(J ) ∪Q is a decomposable degree seven invariant.

But this invariant, if one wants to call it that, is not reflected in the structure
of the upper motive of any projective, homogeneous G-variety, as the dimension of
the respective Rost motive is 63 and thus is simply too large to occur.

Lastly, it is worth mentioning that for classifying Ead
7 torsors mod 2 in general

one needs at least eight parameters by [RY, Theorem 8.19]).

12.3.3 Example. Let k = R hold. Then it is well known thatH5(k, µ2) is generated
by (−1)5. Assume we are given a group G of type E7 over k, for which the new
invariant h5 is defined. If G is anisotropic, then h5(G) = (−1)5 holds. If h5(G) was
zero, then X1 would have a zero cycle of odd degree by the proposition above. Also,
it would become isotropic over a field extension L/k of odd degree. This is obviously
impossible. Thus over R we have that h5(G) = 0 if and only if G is isotropic. Lastly,
if G comes from F4×A1 construction and k = R holds, then we have f5(J ) = h5(G),
for J denoting the Albert algebra used in the construction.

12.3.4. (Comparison with the Semenov invariant) We have seen that once one knows
that the upper motive of a certain variety is binary, one can conclude the existence
of the invariant without too many other requirements. Finding cases of algebraic
groups, such that a projective, homogeneous G-variety has a binary upper motive
is a challenge by itself.

In case of the Semenov invariant from [S16] a classic construction by Tits was
considered, but with a specific input. The key idea is to consider the F4 × G2
construction for E8 and choose as input pairs, coming solely from an F4, which is
reduced (i.e. g3(J ) = 0). This is achieved by considering as inputs the outputs of
the map

t : H1(k, F4) −→ H1(k, F4)×H1(k,G2),

which sends J to J × OJ , while OJ denotes the Octonion algebra lying under
J . The most analogous thing to our case is to require Q to divide f3(J ), when
considering the F4 × A1 construction.

The even part of the Rost invariant of any E8 constructed as above is two
times f3(J ) and thus zero in H3(k, µ2). The respective set of torsors is denoted
by H1(k,E8)0. The F4×A1 construction has no analogue for this, because any F4 is
simply connected and so there is no degree two invariant for J which could be killed
by Q. In the case of E8 one can use the Killing form (see [Jac]), for showing that
anisotropic outputs can even be obtained with the chosen inputs. By Remark 11.1.16
it looks very much like this is also possible for the E7 case.

Also in both cases one passes to k(X), for some projective, homogeneous G-
variety X to make G isotropic. In the E8 case it is concluded that any projective,
homogeneous G-variety is a GSV as the Rost invariant stays zero over L and by the
result [Gar01a, Theorem 0.5] on the triviality of the kernel of the Rost invariant for



109

groups of low rank, the claim follows. By the GSV-table, then J2(G/k) = (0, 0, 0, 1)
holds.

In the F4×A1 case however, G does not split over k(X) for every X and curiously
J2(G/k) = (1, 0, 0, 0) holds. The J-invariant in the E7 case is only used to lift the
Rost motives to k, while for E8 it is used to show that U(X) is binary and 15-
dimensional.

In a certain sense the F4×A1 case is more complicated, as G has one more stage
of splitting and additionally requires concrete calculations in the Chow ring of some
X. Both constructions are completely understood over R by the results in [Jac].

For any G, for which the Semenov invariant u is defined and which comes from
the F4×G2 construction, the invariant u is the f5(J ) coming from the Albert algebra
J used as input. The same relation holds for our new E7-invariant h5(G) and f5(J ),
as we will see as the final result.

12.3.5. (A conclusion on the Garibaldi invariant) The existence of our invariant
kind of has been predicted. In [GS, Remark 3.10] an invariant g for Esc

7 is defined
by proving that there is a map m : H1(k,Esc

7 )→ H1(k,E8)0, which is not trivial in
general and then composing it with the invariant u by Semenov.

If one ignores the fact that in one case one considers a simply connected E7,
while in the other case one deals with an adjoint E7, our new invariant h5 looks
like a composition of the map by Garibaldi and the invariant of Semenov. As the
comment at the end of [GS, Remark 3.10] implies, all these invariants agree for
k = R and if the Tits algebra Q is not split.

12.3.6 Theorem. Let G come from the F4 × A1 construction with the inputs
J , Q 6= 0, such that J2(G) = (1, 0, 0, 0) holds. Let h5(G) denote the new invariant
from above. Then f5(J ) = h5(G) holds.

Proof: To tackle this problem, we start with considering the generic case. Note that
it is mandatory that Q divides f3(J ), or otherwise J2(G) 6= (1, 0, 0, 0) and h5 is not
even defined. So the inputs are not totally generic.

In the generic case the variety X1 has no 0-cycles of odd degree, since we can
specialize to the real numbers, where this is the case. (Alternatively, one can argue
using the Killing form as in Chapter 11). Therefore, the invariant h5 is not zero.

On the other hand, in general, if the invariant f5 is zero, then the output of the
Tits construction gives an isotropic group of type E7. Therefore, if f5 is zero over
some field extension of the base field, then h5 is zero over this field extension as well.

The description of the kernel of the restriction homomorphism

Hn(k, µ2)→ Hn(k(X), µ2)

given in [OVV07, Theorem 2.1] applied to the case, when n = 5 and X is the norm
quadric associated to the f5-invariant, implies that h5 = f5 in the generic case.

But then specializing the h5-invariant we obtain the general case of the Tits
construction as above.
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