Aus der Medizinischen Klinik und Poliklinik III Klinik der Universität München

Direktor: Prof. Dr. Michael von Bergwelt

Genetische und klinische Analysen der Akuten Megakaryoblastenleukämie

Dissertation
zum Erwerb des Doktorgrades der Medizin
an der Medizinischen Fakultät der
Ludwig-Maximilians-Universität zu München

vorgelegt von

Susanne Anna-Christina Anett Raab

aus Amberg

2023

Mit Genehmigung der Medizinischen Fakultät der Universität München

Berichterstatter: Prof. Dr. Karsten Spiekermann

Mitberichterstatter: PD Dr. Christian Wichmann

Prof. Dr. Tobias Feuchtinger

Mitbetreuung durch den

promovierten Mitarbeiter: Dr. Hanna Gittinger

Dekan: Prof. Dr. med. Thomas Gudermann

Tag der mündlichen Prüfung: 04.05.2023

1.	Einleitung	1
1.1	Grundlagen der Leukämie	1
1.1.1	Klassifikation	1
1.1.2	Epidemiologie	2
1.1.3	Prognose	2
1.2	Grundlagen der Akuten Myeloischen Leukämie	3
1.2.1	Klassifikation	3
1.2.2	Epidemiologie	4
1.2.3	Klinische Symptomatik	4
1.2.4	Diagnostik	5
1.2.5	Therapie und Prognose	6
1.3	Die Entität der Akuten Megakaryoblastenleukämie	6
1.3.1	AMKL im Kindesalter	7
1.3.2	AMKL im Erwachsenenalter	8
1.4	Zielsetzung der Arbeit	9
2.	Material und Methoden	10
2.1	Studienkollektiv und Einschlusskriterien	10
2.2	Datenschutz	11
2.3	Ausgewertete Daten	11
2.4	Definitionen erhobener Parameter	
2.4.1	Ätiologie der AML	13
2.4.2	ECOG-Performance-Score	13
2.4.3	Risiko-Klassifizierungen der AML	13
2.4.4	Induktionsergebnisse und Therapieversagen	
2.4.5	Überleben	
2.5	Beschreibung der Studien und Therapien	
2.5.1	AMLCG 99	
2.5.2	AMLCG 04	17
2.5.3		
2.5.4	AMLCG Register	
2.5.5 2.5.6	Medizinische Klinik III des Klinikums der Universität MünchenAllogene Stammzelltransplantation	
2.6	Materialgewinnung und Histopathologie	
2.6.1	Knochenmarkstanzen	
2.6.2	Histopathologische Untersuchungen	20
2.7	Hochdurchsatz-Sequenzierung	
2.7.1	Material	
2.7.2	DNA-Extraktion	
2.7.3		
2.7.4	Fragmentanalyse FLT3-ITD	25
2.8		

2.9.	Statistische Methoden	
3.	Ergebnisse	
3.1	Patientenselektion	
3.2	Patientencharakteristika	
3.3 3.3.1 3.3.2	Histopathologische und immunhistochemische Beurteilung _ Morphologie Immunhistochemie	
3.4	Zytogenetik	
3.5	Molekulargenetik	
3.6	Risikoklassifikationen	
3.7 3.7.1 3.7.2 3.7.3	Behandlungsergebnisse Induktionsergebnisse Gesamtüberleben Allogene Stammzelltransplantation	
4.	Diskussion	
4.1	Diskussion der Methoden	
4.2 4.2.1	Diskussion der Ergebnisse Patientenkollektiv	
4.2.2 4.2.3	Patientenkollektiv Histopathologische und immunhistochemische Beurteilung Zytogenetik	
4.2.4	Molekulargenetik	
4.2.5 4.2.6	Risikoklassifikationen Therapien und Überleben	
5.	Zusammenfassung	
6.	Literaturverzeichnis	
7.	Anhang	
7.1	Tabellenverzeichnis	
7.2	Abbildungsverzeichnis	
7.3	Übersicht über analysierte Gene	
8.	Danksagung	
Eidess	stattliche Versicherung	

Abkürzungsverzeichnis

ABL2 engl. "Abelson murine leukemia viral oncogene homolog 1"

ALL Akute Lymphatische Leukämie allo-SZT allogene Stammzelltransplantation AMKL Akute Megakaryoblastenleukämie

AML Akute Myeloische Leukämie
AMLCG engl. "AML cooperative group"
APL Akute Promyelozyten Leukämie

Ara-C Cytarabin

ARNT engl. "aryl hydrocarbon receptor nuclear translocator"

ASXL1 engl. "additional sex-comb like 1"

AZ Allgemeinzustand

BRAF engl. "B rat fibrosarcoma"

CALR Calreticulin

CBF-AML core binding factor- AML

CD engl. "clusters of differentiation"

CEBPA engl. "CCAAT enhancer binding protein alpha"

CLL Chronische Lymphatische Leukämie CML Chronische Myeloische Leukämie

CR engl. "complete remission"

CRi engl. "complete remission with incomplete blood recovery"

DS Down-Syndrom

DNA engl. "deoxyribonucleic acid" DNMT3A DNA Methyltransferase 3A

ECOG engl. "Eastern Cooperative of Oncology Group"

ED Erstdiagnose

EM Extramedulläre Manifestationen ET Essentielle Thrombozythämie

ELN engl. "European Leukemia Network"
EZH2 engl. "enhancer of zeste homolog 2"
FAB engl. "French-American-British"

FACS engl. "fluorescence-activated cell sorting"
FFPE engl. "formalin-fixed paraffin-embedded"
FISH engl. "fluorescence in situ hybridization"

FLT3 engl. "FMS like tyrosine kinase 3"
GATA1/2 Globin Transkriptionsfaktor 1/2

gDNA engl. "genomic deoxyribonucleic acid"

GIMEMA ital. "Gruppo Italiano Malattie e Matologiche dell'Adulto"

GvHD engl. "graft versus host disease"

h engl. "hour" Hb Hämoglobin

HE Hämatoxylin-Eosin

HLA engl. "human leukocyte antigens"

IDH1/2 Isocitrat Dehydrogenase 1/2

ITD engl. "internal tandem duplication"

JAK2/3 Januskinase 2/3
KI Konfidenzintervall

KIT Proto-Onkogen Rezeptor Tyrosin-Kinase

KM Knochenmark

LDH Laktatdehydrogenase

LFL Labor für Leukämiediagnostik

MC engl. "mastocytosis"

MDS Myelodysplastisches Syndrom

MLLT11 engl. "MLLT11 transcription factor 7 cofactor"MPL Proto-Onkogen, Thrombopoietin-Rezeptor

MPN Myeloproliferative Neoplasie

n.a. engl. "not available"

NCBI engl. "National Center for Biotechnology Information"

MRC engl. "Medical Research Council"
NGS engl. "next generation sequencing"
NOS engl. "not otherwise specified"

NPM1 Nucleophosmin 1

NRAS engl. "neuroblastoma rat sarcoma"

OS engl. "overall survival"

PCR engl. "polymerase chain reaction"

PECAM engl. "platelet endothelial cell adhesion molecule"

PRRX1 engl. "paired related homeobox 1"

PTPN11 Protein Tyrosin Phosphatase Non-Rezeptor Typ 11

PV Polyzythämia vera
p-Wert lat. "probilitas"-Wert
RD engl. "resistant disease"
RFS engl. "relapse free survival"

RUNX1 engl. "runt-related transcription factor 1"

sAML sekundäre AML

SEER engl. "surveillance, epidemiology and end results"

SF3B1 Splicing Faktor 3B Untergruppe 1

SMC3/1A engl. "structural maintenance of chromosomes 3/1A" SRSF2 engl. "serine and arginine rich splicing factor 2"

STAG2 engl. "stromal antigen 2" tAML therapieassoziierte AML

TET2 engl. "ten-eleven translocation 2"
TP53 Tumorsuppressor Protein 53

U2AF1/2 engl. "U2 small nuclear RNA auxiliary factor 1/2"

V.a. Verdacht auf

WHO engl. "World Health Organization"

WT1 Wilms-Tumor Protein 1

ZRSR2 engl. "zinc finger CCCH-type, RNA binding motif, serine rich 2"

1. Einleitung

1.1 Grundlagen der Leukämie

Schon Galenos von Pergamon berichtete in medizinischen Schriften der Antike von Tumoren und Geschwüren als "karkínos", was aus dem Altgriechischen übersetzt "Krebs" bedeutet. Es wurde damit das Tier, aber auch die Krankheit bezeichnet [1, 2].

Bis zur Entdeckung von Blutkrebs jedoch sollten noch beinahe zwei Jahrtausende vergehen: im 19. Jahrhundert beschrieben John H. Bennett, ein schottischer Arzt, und Rudolf Virchow an der Universitätsklinik Charité in Berlin fast zur selben Zeit eine starke Vermehrung weißer Blutzellen bei einigen ihrer Patienten [3]. Diese litten an Abgeschlagenheit, Fieber, verschiedensten Infektionen, Blässe sowie Blutungsneigung. Meist verstarben die Patienten innerhalb weniger Wochen. Virchow nannte die Krankheit daraufhin "Leukämie", bestehend aus den griechischen Wörtern "leukós" für weiß und "haima" für Blut [4, 5].

Heutzutage stellt die Bezeichnung Leukämie einen Oberbegriff für verschiedene maligne hämatologische Erkrankungen dar. Die dieser Krebsart zu Grunde liegende Veränderung betrifft dabei eine Zellreihe und kann auf verschiedenen Reifungsebenen auftreten, führt jedoch immer zu einer unkontrollierten Vermehrung dieser Zellen. Somit wird die Bildung reifer, funktionstüchtiger Blutbestandteile – Erythrozyten, Leukozyten und Thrombozyten – im Knochenmark verdrängt. Dadurch kommt es zur Ausbildung der typischen Leukämiesymptome wie Blutarmut, Infektionsneigung und Blutungen [6, 7]. Auch können die unreifen Vorläuferzellen, sog. Blasten, aus dem Knochenmark in alle Bereiche des Körpers ausgeschwemmt werden. So kann es zur Vergrößerung von Lymphknoten, typischerweise aber auch von Milz und Leber kommen. Grundsätzlich können alle Organe von extramedullärem Befall der Leukämie betroffen sein [3].

1.1.1 Klassifikation

Unterteilen kann man die Leukämien einerseits nach deren zeitlicher Verlaufsform; so werden chronische, sich über mehrere Monate oder Jahre entwickelnde von akuten Leukämien abgegrenzt. Akute Leukämien sind gekennzeichnet durch

schnelle Verläufe, die unbehandelt meist innerhalb weniger Wochen oder Monate zum Tod führen [6].

Außerdem werden Leukämien nach der Zellreihe klassifiziert, von der die malignen Zellen abstammen: so gehen lymphatische Leukämien von Vorläuferzellen der Lymphozyten aus. Handelt es sich beim leukämischen Klon um eine Vorläuferzelle von Erythrozyten, Monozyten, Granulozyten oder Thrombozyten, so spricht man von einer myeloischen Leukämie [6, 7].

1.1.2 Epidemiologie

Jährlich erkranken rund 14 000 Menschen in Deutschland an einer Leukämie; die häufigsten Formen dabei sind mit etwa 40% die chronisch lymphatische Leukämie (CLL) und mit rund 20% die akute myeloische Leukämie (AML) [8]. Insgesamt ist die Altersgruppenverteilung je nach Leukämieform unterschiedlich; so ist die ALL bei Kindern unter 5 Jahren die häufigste Form [6]. Ab dem 5. Lebensjahr nimmt die Wahrscheinlichkeit, an einer Leukämie zu erkranken, bis zum 30. Lebensjahr ab. Danach nimmt die Erkrankungswahrscheinlichkeit mit steigendem Lebensalter beständig zu. Männer sind etwas häufiger betroffen als Frauen: 1 von 64 Männern bzw. 1 von 85 Frauen erkranken im Lauf des Lebens an Blutkrebs (Tabelle 1) [8].

Tab. 1: Anteile der verschiedenen Leukämieformen an allen Neuerkrankungen (Deutschland 2013-2014); nach Zahlen des Robert-Koch-Instituts [8].

	ALL	CLL	AML	CML	sonstige*
Männer	7%	42%	19%	7%	24%
Frauen	7%	38%	22%	8%	25%

^{*}nicht genau bezeichnete Leukämieformen

1.1.3 Prognose

Die Prognose der Erkrankung Leukämie ist je nach Form, Alter bei Auftreten der Erkrankung und verschiedenen anderen Faktoren sehr unterschiedlich; bei Patienten in den Jahren 2008-2010 aus einem Datenpool von 8 Landeskrebsregistern lag das relative 5-Jahres-Überleben für CLL-Patienten bei 76%. Verglichen dazu fällt die Prognose für AML-Patienten mit einem relativen 5-Jahres-Überleben von 24% viel schlechter aus [9].

1.2 Grundlagen der Akuten Myeloischen Leukämie

1.2.1 Klassifikation

1976 erarbeitete eine Gemeinschaft aus französischen, amerikanischen und britischen Hämatoonkologen erstmals eine zytomorphologische Einteilung der AML (Tabelle 2) [10]. Die FAB-Klassifikation stützt sich vor allem auf morphologische Kriterien, diese wurde über die Jahre erweitert und angepasst. In der Klinik ist die FAB-Einteilung teilweise weiterhin in Gebrauch, wird jedoch zunehmend von der Einteilung der WHO abgelöst (Tabelle 3). Diese berücksichtigt neben zytomorphologischen auch genetische und immunologische Merkmale und wurde zuletzt 2016 aktualisiert [11]. Das bessere Verständnis der Pathogenese der biologisch sehr heterogenen AML findet sich in der neuen Klassifikation der WHO wieder. Dadurch wird die Einteilung objektiver, reproduzierbarer und genauer. So können u.a. Therapien zielgerichtet ausgewählt werden [12].

Tab. 2: FAB-Klassifikation der AML nach Lowenberg et al. [13]

FAB- Typ	Bezeichnung	Morphologische Kennzeichen	Häufigkeit
МО	AML mit minimaler Differenzierung	Unreife Blasten ohne Granulation	3%
M1	AML ohne Ausreifung	Weniger als 10% reife Zellen	15-20%
M2	AML mit Ausreifung	>10% reife Zellen in der Myelopoese, weniger als 20% Monozyten	25-30%
M3 M3v	APL Mikrogranuläre APL	30% Promyelozyten	5-10%
M4	Akute myelomonozytäre Leukämie	Myeloische Zellen >20%, monozytäre Zellen 20 – 80%	20%
M5a M5b	Akute Monoblasten-Leukämie Akute Monozyten-Leukämie	>80% der myeloischen Zellen sind Monoblasten bzw. Monozyten	2-9%
М6	Akute Erythroleukämie	>50% aller Zellen sind Erythroblasten	3-5%
M7	Akute Megakaryoblasten Leukämie	Hochgradig pleomorphe Blasten	3-12%

Tab. 3: WHO-Klassifikation nach Arber et al. [11].

AML mit spezifischen zyto- und molekulargenetischen Veränderungen:

- AML mit t(8;21)(q22;q22.1); RUNX1-RUNX1T1
- AML mit inv(16)(p13.1q22) oder t(16;16)(p13.1;q22); CBFB-MYH11
- APL mit PML-RARA
- AML mit t(9;11)(p21.3;q23.3); MLLT3-KMT2A
- AML mit t(6;9)(p23;q34.1); DEK-NUP214
- AML mit inv(3)(q21.3q26.2) oder t(3;3)(q21.3;q26.2); GATA2, MECOM
- AML (megakaryoblastär) mit t(1;22)(p13.3;q13.3); RBM15-MKL1
- AML mit BCR-ABL1 (vorläufige Entität)
- AML mit verändertem NPM1
- AML mit biallelischen Veränderungen von CEBPA
- AML mit verändertem RUNX1 (vorläufige Entität)

AML mit Myelodysplasie-assoziierten Veränderungen

Therapieassoziierte AML

AML, nicht anders spezifiziert (NOS)

- AML mit minimaler Differenzierung
- AML ohne Ausreifung
- AML mit Ausreifung
- Akute myelomonozytäre Leukämie
- Akute erythrozytäre Leukämie
- Akute Megakaroyblastenleukämie
- Akute basophile Leukämie
- Akute Panmyelose mit Myelofibrose

Myelogenes Sarkom

Down-Syndrom-assoziierte myeloische Proliferationen

- Transiente abnormale Myelopoese
- Down-Syndrom-assoziierte myeloische Leukämie

1.2.2 Epidemiologie

Die AML kann prinzipiell in jedem Alter auftreten: rund 3,7 Erkrankungen pro 100 000 Einwohner pro Jahr kommen vor. Jedoch steigt die Inzidenz erheblich mit zunehmendem Lebensalter auf 100 Erkrankungen pro 100 000 Einwohner über 70 Jahren [14]. Der Altersmedian der AML liegt bei etwa 72 Jahren. Aufgrund der steigenden Lebenserwartung in der Bevölkerung ist somit auch mit einem Anstieg der AML-Inzidenz zu rechnen [15].

1.2.3 Klinische Symptomatik

Bei der AML führt die überschießende Vermehrung eines unreifen Zellklons aus der myeloischen Reihe zu einer Verdrängung des gesunden Knochenmarks, was zu

Leukozytopenie, Thrombozytopenie und Anämie führt. Zunächst sind die Symptome sehr unspezifisch: die Patienten beschreiben Müdigkeit und Abgeschlagenheit, auch Kurzatmigkeit und Tachykardie können auftreten; diese Symptome sind bedingt durch die Anämie. Fieberhafte Infekte sind Folgen der verminderten Anzahl an Leukozyten. Durch die Thrombozytopenie kann es zu Blutungsereignissen wie Epistaxis, Petechien oder Menorrhagien kommen. Vergrößerte Lymphknoten sowie Hepato- und Splenomegalie kommen vor, sind jedoch typischer für andere Leukämie-Arten wie die akute lymphatische Leukämie (ALL) oder die chronische myeloische Leukämie (CML) [7, 12]. Die Entwicklung der Symptomatik geschieht in kurzer Zeit und rasant fortschreitend, sodass die AML unbehandelt in jedem Fall zum Tode führt [16].

1.2.4 Diagnostik

In der Diagnostik schließt sich an Anamnese, körperliche Untersuchung und Blutuntersuchung eine Knochenmarkpunktion zur Diagnosesicherung der AML an; hier müssen mindestens 20% myeloische Blasten nachgewiesen werden, Ausnahmen stellen hier die CBF-AML und die APL dar. Mit den so gewonnen Zellen wird eine Vielzahl an Untersuchungen durchgeführt [12, 17].

Neben der Immunphänotypisierung gewannen seit 1980 auch zytogenetische Analysen in der Diagnostik einen immer größeren Stellenwert. Bald stellte sich heraus, dass die AML durch zytogenetisch sehr heterogene Aberrationen gekennzeichnet ist: so finden sich häufig numerische Aberrationen wie Monosomien oder Trisomien und auch strukturelle Veränderungen wie Inversionen und Translokationen [12].

Seit den 2000er Jahren finden auch molekulargenetische Analysen bei AML-Patienten immer mehr Einzug in die klinische Routinediagnostik. Bei 200 analysierten AML-Patienten wurden im Durchschnitt 5 rekurrente Mutationen pro Patient gefunden. In je über 20% der Fälle wurden Veränderungen in den Genen fms like tyrosine kinase 3 (FLT3), Nucleophosmin 1 (NPM1), DNA-Methyltransferase 3A (DNMT3A) oder Isocitrat Dehydrogenase 1/2 (IDH 1/2) nachgewiesen. Außerdem zeigte sich, dass eine AML-Erkrankung aus verschiedenen Klonen und Subklonen bestehen und eine Veränderung der

genetischen Identität der AML während des Krankheits- und Therapieverlaufs vorkommen kann [18-20].

1.2.5 Therapie und Prognose

Die Therapie der AML erfolgt im besten Fall an einem hämatoonkologisch spezialisierten Zentrum und im Rahmen von Therapiestudien [6].

Grundsätzlich – im Falle einer intensiven Therapie mit kurativer Absicht – unterteilt man die AML-Therapie in die Phase der Induktionstherapie mit dem Ziel einer morphologisch kompletten Remission (CR) und die Postremissionstherapie. Durch letztgenannte versucht man, die CR aufrechtzuerhalten [21].

Die Prognose der AML hängt vor allem vom Alter sowie von zyto- und molekulargenetischen Veränderungen ab. Je älter die Patienten bei Erstdiagnose sind, desto geringer ist die Wahrscheinlichkeit einer CR und desto höher ist das Risiko eines Rezidivs [12]. Bei Patienten unter 50 Jahren liegt die CR-Rate bei 70-80%; in der Altersgruppe von 50 bis 75 Jahren erreichen nur 50-60% eine CR. Bei Patienten über 75 Jahren liegt die CR-Rate nur noch bei 30-40%.

AML-Patienten unter 30 Jahren haben mit einem 5-Jahres-Überleben von 60% eine gute Überlebenschance, bei Patienten über 65 Jahren sinkt die 5-Jahres-Überlebens-Wahrscheinlichkeit auf unter 23% [22, 23].

Aufgrund der schlechten Prognose ist häufig für Patienten über 75 Jahren oder Patienten mit schweren Komorbiditäten eine intensive, hochdosierte Therapie nicht die Behandlung der ersten Wahl [23, 24]. In diesen Fällen ist meist eine rein supportive Therapie oder eine weniger intensive palliative zytoreduktive Behandlung der bessere Weg. Eine Therapieentscheidung sollte jedoch immer individuell und patientenorientiert getroffen werden [25, 26].

1.3 Die Entität der Akuten Megakaryoblastenleukämie

Die Akute Megakaryoblastenleukämie (AMKL) ist eine seltene AML-Unterform, die auf die Proliferation unreifer Megakaryoblasten zurückgeht. 1985 wurde die AMKL als AML M7 in die FAB-Klassifikation aufgenommen und so erstmals genaue Diagnosekriterien beschrieben [13]. In der WHO-Klassifikation von 2016 wird die AMKL in der Gruppe "AML, nicht anders spezifiziert" als eigene Entität klassifiziert

[11]. Die AMKL weist neben einer charakteristischen Morphologie einige Eigenschaften auf, die sie klar von anderen AML-Formen abgrenzen: so geht sie meist mit einer stark ausgeprägten Knochenmarkfibrose einher. Dies führt zu Schwierigkeiten in der Diagnosestellung, da Knochenmarkaspirationen häufig frustran verlaufen, die einzige Möglichkeit zur weiteren Diagnostik ist dadurch eine Knochenmarkstanze [27, 28]. In der Immunophänotypisierung weisen die unreifen Megakaryoblasten Positivität für die Marker CD41, CD42b und CD61 auf [29-31].

1.3.1 AMKL im Kindesalter

Mit 4-15% aller AML-Diagnosen ist die AMKL im Kindesalter keine seltene AML-Form. Eine eigene Entität, der auch in der WHO-Einteilung als "Down-Syndrom assoziierte myeloische Leukämie" Rechnung getragen wird, stellt die AML bei Kindern mit Trisomie 21, dem sogenannten Down-Syndrom (DS), dar. In 70% der Fälle ist die DS-assoziierte AML megakaryoblastisch differenziert [32, 33]. Nahezu alle Fälle von DS-AMKL treten in den ersten 5 Lebensjahren der Kinder auf [34]. Auch zytogenetisch hebt sich die DS-AMKL von der non-DS-AMKL bei Kindern ab, denn sonst häufige Aberrationen wie t(8;21) oder inv(16) kommen bei der DS-AMKL kaum vor. Insgesamt finden sich neben der konstitutionellen Trisomie 21 eher unspezifische zytogenetische Aberrationen [35]. Wenn AML-typische Veränderungen wie die Monosomie 7 vorkommen, sind diese nicht wie üblich mit einer schlechten Prognose assoziiert [33]. Molekulargenetisch sehr typisch für die DS-AMKL sind Veränderungen des Gens Globin Transkriptionsfaktor 1 (GATA1) [33, 36]. Insgesamt ist die Prognose für Kinder mit DS-AMKL mit 5-Jahres-Überlebensraten von 80% gut [36, 37].

Bei der Analyse von AMKL-Patienten im Kindesalter ohne DS zeigt sich ein verringertes Gesamtüberleben sowie geringere CR-Raten im Vergleich mit anderen kindlichen AML-Formen. In molekulargenetischen Analysen wurden chimäre Onkogene gefunden, die mit unterschiedlicher Prognose assoziiert waren. Eine häufige und für die non-DS-AMKL charakteristische zytogenetische Aberration ist die Translokation t(1;22)(p13;q13) [37-40]. Ob diese Translokation mit einem günstigen oder ungünstigen Verlauf der AMKL assoziiert ist, ist nach wie vor nicht eindeutig geklärt [35, 36, 38]. Interessanterweise fand man auch in der nicht-DS-Gruppe ein erhöhtes Vorkommen von *GATA1*-Mutationen und partieller Trisomie 21

in den leukämischen Blasten; Patienten mit diesen Merkmalen zeigten ein besseres Gesamtüberleben [31, 38].

1.3.2 AMKL im Erwachsenenalter

Mit nur 1% aller AML-Fälle stellt die AMKL im Erwachsenenalter eine Rarität dar. In der Literatur liegen verschiedene retrospektive Auswertungen dazu vor: es wurden bisher insgesamt 4 Fallserien mit AMKL-Patienten beschrieben, die zwischen 1982 und 2011 behandelt wurden [30, 41-43] (Tabelle 4).

Tab. 4: Zusammenfassung retrospektiver AMKL-Fallserien.

Studie, Zeitraum	Anzahl % AMKL	Besonderheiten	CR (%)	med. OS (Wochen)	5-Jahres OS (%)
GIMEMA-Studie, 1982-1999, Pagano et al [41]	24/3603 0,6%	Chromosomale Veränderungen in 9 Pat., normaler Karyotyp bei 2 Pat.KM-Fibrose bei allen Pat.	50	40	10
ECOG-Studie, 1983-1997, Tallman et al.[42]		 für 8 Pat. zytogenetische Analysen bei 4 Pat. Aberrationen von Chromosom 3 KM-Fibrose bei allen Pat. 	50	41	n.a.
M.D. Anderson Cancer Center, 1987-2003, Oki et al. [30]	37/1837 2%	 häufig sAML-Erkrankungen viele Deletionen und Monosomien Chromosomen 3,5 und 7 AMKL an sich als negativer Prognose-Marker identifiziert 	43	23	n.a.
SEER-Analyse, 1991-2011, Giri et al. [43]	304/45564 0,7%	AMKL an sich als negativer Prognose-Marker identifiziert	n.a.	18	11

Zytogenetische Daten sind in den oben genannten Analysen unvollständig und molekulargenetische Untersuchungen fehlen weitestgehend. Die AMKL im Erwachsenenalter ist also insgesamt noch schlecht charakterisiert.

Bezüglich der Therapie der AMKL bestehen keine klaren Empfehlungen. Die bisher publizierten Daten zeigen ein schlechteres Gesamtüberleben bei ähnlichen CR-Raten; daher besteht die Herausforderung darin, die Therapie nach der Remission effektiv zu gestalten [29]. Eine Möglichkeit der Post-Remissions-Therapie ist die Stammzelltransplantation, für die bisher nur Daten von 32 AMKL-Patienten, die in den Jahren 1986 bis 2002 behandelt wurden, vorliegen. Der Stellenwert der allogenen Stammzelltransplantation (allo-SZT) als Post-Remissions-Therapie bei AMKL-Patienten ist noch nicht bestätigt [44].

1.4 Zielsetzung der Arbeit

Mit nur ungefähr 1% aller AML-Diagnosen stellt die AMKL des Erwachsenen eine sehr seltene Untergruppe dar [45]. Bisher publizierte Daten sehen die AMKL selbst als negativ prognostischen Faktor an [30, 43]. Im Gegensatz zur AMKL im Kindesalter fehlt jedoch die zyto- und molekulargenetische Charakterisierung dieser Subgruppe [39, 46]. Daher ist auch die Aussagekraft der bisher publizierten Daten zur Prognose nur eingeschränkt verwertbar. Auch der Stellenwert der allogenen Stammzelltransplantation in dieser Untergruppe ist nicht geklärt.

In diesem Projekt sollte daher die Entität der AMKL genauer und umfassender charakterisiert werden. Wesentliche Zielsetzungen der vorliegenden Arbeit waren dabei

- 1) die Quantifizierung der Häufigkeit von histopathologischen Fehldiagnosen und Analyse dieser Problematik,
- die Erhebung der klinischen, zyto- und molekulargenetischen Daten zur besseren Beschreibung der Patientengruppe,
- 3) die Auswertung der Überlebensdaten und Bewertung der allo-SZT.

2. Material und Methoden

2.1 Studienkollektiv und Einschlusskriterien

Das Studienkollektiv bestand aus Patienten, bei denen zwischen September 2000 und November 2016 eine AMKL diagnostiziert wurde. Der Großteil der in die Analysen eingeschlossenen Patienten wurde in Studien der AMLCG Studiengruppe behandelt. Des Weiteren konnten Patienten aus dem AMLCG Register identifiziert werden. Hier bestand eine enge Kooperation mit der AMLCG Studienzentrale in Münster, welche die dokumentierten klinischen und genetischen Daten zur Verfügung stellte. Darüber hinaus konnten einige Patienten aus der Patientendatenbank für Pathologie des Instituts und des Labors für Leukämiediagnostik des Klinikums der Universität München identifiziert werden. In diesen Fällen erfolgte die Auswertung aus vorliegenden Patientenakten des Klinikums der Universität München.

Kriterien für den Einschluss in die Auswertungen waren das Vorliegen einer neu diagnostizierten AMKL und ein Mindestalter von 18 Jahren.

In dieser retrospektiven Datenauswertung erfolgte ebenso die molekulargenetische Charakterisierung anhand verfügbarer Knochenmarks- oder Blutproben.

Für alle Patienten lag eine Einwilligung für die Auswertung klinischer Daten vor. In den Aufklärungsbögen der AMLCG 99 und der AMLCG 08 Studien sowie bei Einschluss in das AMLCG Register willigten die Patienten in die Auswertung ihrer klinischen Daten und genetischer Analysen ein. Patienten, die außerhalb der Studien behandelt wurden, willigten auf Formblättern des Labors für Leukämiediagnostik in die Auswertung der klinischen Daten und genetischer Analysen ein. Für Patienten, die in der AMLCG 04 Studie behandelt wurden, lag keine Einwilligung für genetische Analysen vor, weshalb bei diesen Patienten nur klinische Daten ausgewertet wurden.

Für dieses Projekt wurde ein Ethikvotum der Ethikkommission (Nr. 625-16) der medizinischen Fakultät der LMU München eingeholt.

2.2 Datenschutz

Zur Gewährleistung des Datenschutzes wurden persönliche Daten nur auf den internen Rechnern des Klinikums der Universität München gespeichert. Die Auswertung der Daten erfolgte doppelt pseudonymisiert.

2.3 Ausgewertete Daten

Im Rahmen dieser Arbeit wurden krankheitsbezogene Daten ausgewertet, die innerhalb der verschiedenen Studien und im AMLCG Register erfasst wurden. Außerdem wurden zusätzliche Arztbriefe und Untersuchungsbefunde aus den jeweils behandelnden Zentren angefordert. Bei den Patienten, die im Klinikum Großhadern behandelt wurden, wurde auf die Patientenakten des Klinikums zurückgegriffen. Tabelle 5 zeigt die erhobenen Parameter.

Tab. 5: Übersicht über die erhobenen Parameter.

Alter bei ED Behandelnde Klinik Vorerkrankungen Datum der ED AZ bei ED Ätiologie der AMKL Extramedulläre Manifestationen Leukozytenzahl Hämoglobinwert Thrombozytenzahl LDH-Wert Quick-Wert Blasten im KM Zytogenetik Molekulargenetik Zytomorphologie Immunphänotypisierung Histologie Immunhistochemie Details zum Krankheitsverlauf Details zum Krankheitsverlauf Therapiebezogene Details Alter bei ED Behandelnde Klinik Vorerkrankungen Az bei ED Atiologie der AMKL Extramedulläre Manifestationen Leukozytenzahl Hämoglobinwert Thrombozytenzahl LDH-Wert Quick-Wert Blasten im KM Zytogenetik Zytomorphologie Immunphänotypisierung Histologie Immunhistochemie Datum der CR Datum des Rezidivs Datum des Todes/letzten Kontakts Vorphase-Therapie Induktionstherapie Anzahl Induktionskurse Induktionstherapie Datum der allo-SZT Therapieschema allo-SZT	Persönliche Daten	Geschlecht
Vorerkrankungen Vorerkrankungen Datum der ED AZ bei ED Ätiologie der AMKL Extramedulläre Manifestationen Leukozytenzahl Hämoglobinwert Thrombozytenzahl LDH-Wert Quick-Wert Blasten im KM Zytogenetik Molekulargenetik Zytomorphologie Immunphänotypisierung Immunphänotypisierung Immunphänotypisierung Datum der CR Datum des Rezidivs Datum des Todes/letzten Kontakts Vorphase-Therapie Induktionstherapie Anzahl Induktionskurse Induktionstherapie Datum der allo-SZT Therapieschema allo-SZT Therapieschema allo-SZT	Personliche Daten	Alter bei ED
Krankheitsdetails Krankheitsdet	Gosundhoitchezogone Daten	Behandelnde Klinik
Krankheitsdetails AZ bei ED Ätiologie der AMKL Extramedulläre Manifestationen Leukozytenzahl Hämoglobinwert Thrombozytenzahl LDH-Wert Quick-Wert Blasten im KM Zytogenetik Molekulargenetik Zytomorphologie Immunphänotypisierung Histologie Immunhistochemie Details zum Krankheitsverlauf Details zum Krankheitsverlauf Therapiebezogene Details AZ bei ED Ätiologie der AMKL Extramedulläre Manifestationen Leukozytenzahl Hämoglobinwert Thrombozytenzahl LDH-Wert Quick-Wert Blasten im KM Zytogenetik Molekulargenetik Zytomorphologie Immunphänotypisierung Histologie Immunhistochemie Datum der CR Datum der CR Datum des Rezidivs Datum des Todes/letzten Kontakts Vorphase-Therapie Induktionstherapie Anzahl Induktionskurse Induktionsergebnis Post-Induktionstherapie Datum der allo-SZT Therapieschema allo-SZT	Gesundheitsbezogene Daten	Vorerkrankungen
Atiologie der AMKL Extramedulläre Manifestationen Leukozytenzahl Hämoglobinwert Thrombozytenzahl LDH-Wert Quick-Wert Blasten im KM Zytogenetik Molekulargenetik Zytomorphologie Immunphänotypisierung Histologie Immunhistochemie Details zum Krankheitsverlauf Details zum Krankheitsverlauf Therapiebezogene Details Atiologie der AMKL Extramedulläre Manifestationen Leukozytenzahl Hämoglobinwert Thrombozytenzahl LDH-Wert Quick-Wert Blasten im KM Zytogenetik Molekulargenetik Zytomorphologie Immunphänotypisierung Histologie		Datum der ED
Atiologie der AMKL Extramedulläre Manifestationen Leukozytenzahl Hämoglobinwert Thrombozytenzahl LDH-Wert Quick-Wert Blasten im KM Zytogenetik Molekulargenetik Zytomorphologie Immunphänotypisierung Histologie Immunhistochemie Details zum Krankheitsverlauf Details zum Krankheitsverlauf Therapiebezogene Details Atiologie der AMKL Extramedulläre Manifestationen Leukozytenzahl Hämoglobinwert Thrombozytenzahl LDH-Wert Quick-Wert Blasten im KM Zytogenetik Molekulargenetik Zytomorphologie Immunphänotypisierung Histologie Immunhistochemie Datum der CR Datum des Rezidivs Datum des Todes/letzten Kontakts Vorphase-Therapie Induktionstherapie Anzahl Induktionskurse Induktionsergebnis Post-Induktionstherapie Datum der allo-SZT Therapieschema allo-SZT	Kronkhoita dotaila	AZ bei ED
Laborchemische Parameter bei Diagnosestellung LDH-Wert Quick-Wert Blasten im KM Zytogenetik Molekulargenetik Zytomorphologie Immunphänotypisierung Histologie Immunhistochemie Details zum Krankheitsverlauf Details zum Krankheitsverlauf Therapiebezogene Details LDH-Wert Quick-Wert Blasten im KM Zytogenetik Molekulargenetik Zytomorphologie Immunphänotypisierung Histologie Immunhistochemie Datum der CR Datum des Rezidivs Datum des Todes/letzten Kontakts Vorphase-Therapie Induktionstherapie Anzahl Induktionskurse Induktionsergebnis Post-Induktionstherapie Datum der allo-SZT Therapieschema allo-SZT	Krankheitsuetans	Ätiologie der AMKL
Laborchemische Parameter bei Diagnosestellung LDH-Wert Quick-Wert Blasten im KM Zytogenetik Molekulargenetik Zytomorphologie Immunphänotypisierung Histologie Immunhistochemie Details zum Krankheitsverlauf Details zum Krankheitsverlauf Details zum Krankheitsverlauf Therapiebezogene Details Hämoglobinwert Thrombozytenzahl LDH-Wert Quick-Wert Blasten im KM Zytogenetik Molekulargenetik Zytomorphologie Immunphänotypisierung Histologie Immun der CR Datum der CR Datum der Rezidivs Datum des Rezidivs Datum des Todes/letzten Kontakts Vorphase-Therapie Induktionstherapie Induktionskurse Induktionskurse Induktionstherapie Datum der allo-SZT Therapieschema allo-SZT		Extramedulläre Manifestationen
Laborchemische Parameter bei Diagnosestellung LDH-Wert Quick-Wert Blasten im KM Zytogenetik Molekulargenetik Zytomorphologie Immunphänotypisierung Histologie Immunhistochemie Datum der CR Datum des Rezidivs Datum des Rezidivs Datum des Todes/letzten Kontakts Vorphase-Therapie Induktionstherapie Anzahl Induktionskurse Induktionsergebnis Post-Induktionstherapie Datum der allo-SZT Therapieschema allo-SZT		Leukozytenzahl
bei Diagnosestellung LDH-Wert Quick-Wert Blasten im KM Zytogenetik Molekulargenetik Zytomorphologie Immunphänotypisierung Histologie Immunhistochemie Datum der CR Datum des Rezidivs Datum des Todes/letzten Kontakts Vorphase-Therapie Induktionstherapie Anzahl Induktionskurse Induktionstherapie Datum der allo-SZT Therapieschema allo-SZT		Hämoglobinwert
Quick-Wert Blasten im KM Zytogenetik Molekulargenetik Zytomorphologie Immunphänotypisierung Histologie Immunhistochemie Datum der CR Datum des Rezidivs Datum des Todes/letzten Kontakts Vorphase-Therapie Induktionstherapie Anzahl Induktionskurse Induktionsergebnis Post-Induktionstherapie Datum der allo-SZT Therapieschema allo-SZT	Laborchemische Parameter	Thrombozytenzahl
Blasten im KM Zytogenetik Molekulargenetik Zytomorphologie Immunphänotypisierung Histologie Immunhistochemie Datum der CR Datum des Rezidivs Datum des Todes/letzten Kontakts Vorphase-Therapie Induktionstherapie Anzahl Induktionskurse Induktionstherapie Datum der allo-SZT Therapieschema allo-SZT	bei Diagnosestellung	LDH-Wert
Spezielle Untersuchungsbefunde Histologie Immunhistochemie Datum der CR Datum des Rezidivs Datum des Todes/letzten Kontakts Vorphase-Therapie Induktionstherapie Anzahl Induktionskurse Induktionsergebnis Post-Induktionstherapie Datum der allo-SZT Therapieschema allo-SZT		Quick-Wert
Spezielle Untersuchungsbefunde Molekulargenetik Zytomorphologie Immunphänotypisierung Histologie Immunhistochemie Datum der CR Datum des Rezidivs Datum des Todes/letzten Kontakts Vorphase-Therapie Induktionstherapie Anzahl Induktionskurse Induktionstherapie Datum der allo-SZT Therapieschema allo-SZT		Blasten im KM
Zytomorphologie Immunphänotypisierung Histologie Immunhistochemie		Zytogenetik
Immunphänotypisierung Histologie Immunhistochemie Datum der CR Datum des Rezidivs Datum des Todes/letzten Kontakts Vorphase-Therapie Induktionstherapie Anzahl Induktionskurse Induktionsergebnis Post-Induktionstherapie Datum der allo-SZT Therapieschema allo-SZT		Molekulargenetik
Histologie Immunhistochemie Datum der CR Datum des Rezidivs Datum des Todes/letzten Kontakts Vorphase-Therapie Induktionstherapie Anzahl Induktionskurse Induktionsergebnis Post-Induktionstherapie Datum der allo-SZT Therapieschema allo-SZT	Spazialla Untareuchungshafunda	Zytomorphologie
Immunhistochemie Datum der CR Datum des Rezidivs Datum des Todes/letzten Kontakts Vorphase-Therapie Induktionstherapie Anzahl Induktionskurse Induktionsergebnis Post-Induktionstherapie Datum der allo-SZT Therapieschema allo-SZT	Speziene Ontersachangsberande	Immunphänotypisierung
Details zum Krankheitsverlauf Datum der CR Datum des Rezidivs Datum des Todes/letzten Kontakts Vorphase-Therapie Induktionstherapie Anzahl Induktionskurse Induktionsergebnis Post-Induktionstherapie Datum der allo-SZT Therapieschema allo-SZT		Histologie
Details zum Krankheitsverlauf Datum des Rezidivs Datum des Todes/letzten Kontakts Vorphase-Therapie Induktionstherapie Anzahl Induktionskurse Induktionsergebnis Post-Induktionstherapie Datum der allo-SZT Therapieschema allo-SZT		Immunhistochemie
Datum des Todes/letzten Kontakts Vorphase-Therapie Induktionstherapie Anzahl Induktionskurse Induktionsergebnis Post-Induktionstherapie Datum der allo-SZT Therapieschema allo-SZT		Datum der CR
Vorphase-Therapie Induktionstherapie Anzahl Induktionskurse Induktionsergebnis Post-Induktionstherapie Datum der allo-SZT Therapieschema allo-SZT	Details zum Krankheitsverlauf	Datum des Rezidivs
Induktionstherapie Anzahl Induktionskurse Induktionsergebnis Post-Induktionstherapie Datum der allo-SZT Therapieschema allo-SZT		Datum des Todes/letzten Kontakts
Anzahl Induktionskurse Induktionsergebnis Post-Induktionstherapie Datum der allo-SZT Therapieschema allo-SZT		Vorphase-Therapie
Therapiebezogene Details Induktionsergebnis Post-Induktionstherapie Datum der allo-SZT Therapieschema allo-SZT		Induktionstherapie
Therapiebezogene Details Post-Induktionstherapie Datum der allo-SZT Therapieschema allo-SZT		Anzahl Induktionskurse
Datum der allo-SZT Therapieschema allo-SZT		Induktionsergebnis
Therapieschema allo-SZT	Therapiebezogene Details	Post-Induktionstherapie
·		Datum der allo-SZT
Frankris der alle S7T		·
Eigebilis dei allo-321		Ergebnis der allo-SZT
Komplikationen der allo-SZT		Komplikationen der allo-SZT

2.4 Definitionen erhobener Parameter

2.4.1 Ätiologie der AML

Ätiologisch unterscheidet man die de novo AML von der sekundären und therapieassoziierten AML. Die sekundäre AML (sAML) entsteht auf dem Boden einer anderen hämatologischen Grunderkrankung, z.B. eines myelodysplastischen Syndroms. Weiterhin kann eine AML durch Chemotherapie oder Bestrahlung entstehen, also therapieassoziiert (tAML) sein. Tritt die AML unabhängig von einer Erkrankung des Knochenmarks oder einer toxischen Therapie auf, liegt eine primäre Form, auch de novo AML genannt, vor [47].

2.4.2 ECOG-Performance-Score

Der Allgemeinzustand von Patienten wird im klinischen Alltag anhand des Eastern Cooperative Oncology Group (ECOG)-Performance-Scores erfasst (Tabelle 6) [48].

Tab. 6: ECOG-Performance-Score.

Grad	Aktivitätsumfang
0	Normale, uneingeschränkte Aktivität
1	Einschränkung bei körperlicher Anstrengung, aber gehfähig;
	leichte körperliche Arbeit möglich
2	Gehfähig, Selbstversorgung möglich, keine Arbeitsfähigkeit;
	kann mehr als 50% der Wachzeit aufstehen
3	Selbstversorgung nur begrenzt möglich;
	über 50% der Wachzeit an Bett oder Stuhl gebunden
4	Völlige Pflegebedürftigkeit, keine Selbstversorgung möglich;
	völlig an Bett oder Stuhl gebunden
5	Tod

2.4.3 Risiko-Klassifizierungen der AML

Verschiedene Forschungsgruppen und -netzwerke haben in den letzten Jahrzehnten Analysen zur prognostischen Relevanz von zyto- und molekulargenetischen Veränderungen in der AML veröffentlicht [49]. Hierdurch konnten genetisch definierte Subgruppen mit unterschiedlicher Prognose identifiziert und Empfehlungen zur Behandlung erarbeitet werden.

Das Medical Research Council (MRC) schlägt eine Risikostratifizierung vor, die ausschließlich auf zytogenetischen Veränderungen beruht. Patienten mit definierten zytogenetischen Aberrationen werden in drei prognostische Risikogruppen unterteilt: günstig, intermediär und ungünstig. Patienten mit normalem Karyotyp werden der intermediären Risikoklasse zugewiesen (Tabelle 7).

Als aberrant bezeichnet man einen zytogenetischen Befund, sobald eine Abweichung – egal welcher Art - vom normalen Karyotyp vorliegt. Sobald jedoch vier oder mehr nicht zusammenhängende strukturelle oder numerische Aberrationen vorliegen, bezeichnet man den Karyotyp als komplex-aberrant [50].

Nach der MRC-Einteilung gilt ein Karyotyp als günstig, wenn eine oder mehr als günstig klassifizierte Aberrationen vorliegen. D.h. auch bei Vorliegen einer ungünstigen Veränderung erfolgt bei gleichzeitigem Vorliegen einer günstigen Veränderung die Einordnung in die günstige Risikogruppe.

Tab. 7: Risiko-Klassifikation nach MRC. Modifiziert nach Grimwade, et al. [51].

Risikogruppe	Genetische Aberrationen
Günstig	t(8;21)(q22;q22)
	inv(16)(p13;q22); t(16;16)(p13;q22)
	t(15;17)(q22;q21)
Intermediär	Aberrationen, die weder als günstig noch als ungünstig gelten, inkl. normale Karyotypen
Ungünstig	Aberrationen 3q [außer t(3;5)(q21~25;q31~35)]
	inv(3)(q21q26); t(3;3)(q21;q26)
	del(5q); add(5q); Monosomie 5
	del(7q); add(7q); Monosomie 7
	t(6;11)(q27;q23)
	t(10;11)(p11~13;q23)
	Aberrationen 11q23 [außer t(9;11)(p21~22;q23);
	(11;19)(q23;p13)]
	t(9;22)(q34;q11)
	Aberrationen 17p; Monosomie 17
	komplex-aberrante Karyotypen (4 oder mehr nicht zusammenhängende Aberrationen)

Im Jahr 2010 veröffentlichte das European Leukemia Network (ELN) erstmals Empfehlungen zur Diagnose und zum Management der AML [52]. 2017 wurden diese Empfehlungen den neuesten klinischen und wissenschaftlichen Erkenntnissen angepasst [53]. Diese umfassen neben zytogenetischen auch molekulargenetische Veränderungen. Auch in dieser Einteilung werden die Patienten in die Risikogruppen günstig, intermediär und ungünstig eingeteilt (Tabelle 8).

Tab. 8: Risiko-Klassifikation nach ELN (2017). Modifiziert nach Döhner et al. [53].

Risikogruppe	Genetische Aberrationen
Günstig	t(8;21)(q22;q22.1); RUNX1-RUNX1T1
	inv(16)(p13.1q22) oder t(16;16)(p13.1;q22); CBFB-MYH11
	mutiertes NPM1 ohne FLT3-ITD oder mit FLT3-ITD ^{niedrig} (*)
	biallelisch mutiertes CEBPA
Intermediär	mutiertes NPM1 und FLT3-ITD ^{hoch} (*)
	Wildtyp NPM1 ohne FLT3-ITD oder mit FLT3-ITD ^{niedrig} (*)
	(ohne genetische Aberrationen, die als ungünstig gelten)
	t(9;11)(p21.3;q23.3); MLLT3-KMT2A (**)
	zytogenetische Aberrationen, die nicht als günstig oder
	ungünstig gelten
Ungünstig	t(6;9)(p23;q34.1); <i>DEK-NUP214</i> ; t(v;11q23.3); verändertes
	KMT2A
	t(9;22)(q34.1;q11.2); BCR-ABL1
	inv(3)(q21.3q26.2) / t(3;3)(q21.3;q26.2); GATA2,
	MECOM(EVI1)
	-5 oder del(5q); -7; -17/abn(17p)
	Komplex-aberranter Karyotyp, monosomaler Karyotyp Wildtyp <i>NPM1</i> und <i>FLT3-ITD</i> (*)
	mutiertes RUNX1, mutiertes ASXL1 (***), mutiertes TP53

^(*) niedrig = Mutant-Wildtyp-Allel-Quotient <0,5; hoch = Mutant-Wildtyp-Allel-Quotient ≥ 0,5

^(**) in Anwesenheit seltenerer als ungünstig eingestufter Aberrationen hat die Mutation t(9;11)(p21.3)(q21.3;q23.3) Vorrang; d.h. sie gibt den Ausschlag für eine Einstufung in die intermediäre Risikogruppe

^(***) nur als ungünstig einzustufen, wenn keine als günstig eingestuften Aberrationen vorliegen, d.h. in Anwesenheit günstiger Veränderungen geben diese den Ausschlag für eine Einstufung in die günstige Risikogruppe

Als komplex-aberrant werden in der ELN-Klassifikation Karyotypen mit drei oder mehr nicht zusammenhängenden Chromosomen-Aberrationen ohne das Vorliegen einer der folgenden Translokationen oder Inversionen bezeichnet: t(8;21), inv(16) oder t(16;16), t(9;11), t(v;11)(v;q23.3), t(6;9), inv(3) oder t(3;3) oder AML mit *BCR-ABL1*. Als monosomalen Karytoyp bezeichnet man das Vorliegen einer einzelnen Monosomie, außer X oder Y, assoziiert mit mindestens einer zusätzlichen Monosomie oder strukturellen Chromosomen-Aberration.

2.4.4 Induktionsergebnisse und Therapieversagen

Zur Beurteilung des Ansprechens auf die Induktionstherapie und des Therapieversagens wurden verschiedene Begrifflichkeiten anhand der von Cheson et al. publizierten Kriterien verwendet [54]:

Eine vollständige Remission (CR) liegt vor, wenn weniger als 5% Blasten im Knochenmark, keine Blasten mit Auerstäbchen und kein extramedullärer Befall nachweisbar sind. Die absolute Neutrophilenzahl muss über 1000/µl liegen, die Thrombozytenzahl über 100 000/µl. Der Patient muss unabhängig von Erythrozyten-Transfusionen sein.

Eine CR mit unvollständiger Erholung der Blutbildung (CRi) liegt vor, wenn weniger als 5% Blasten im Knochenmark, keine Blasten mit Auerstäbchen und kein extramedullärer Befall nachweisbar sind, aber weniger als 1000/µl Neutrophile oder weniger als 100 000/µl Thrombozyten vorliegen. Dies entspricht somit einer morphologisch kompletten Remission mit inkompletter Regeneration des Blutbildes.

Eine Persistenz der Leukämie, also "resistant disease" (RD), besteht, wenn nach der Therapie weiterhin mehr als 5% Blasten im Knochenmark, Blasten im peripheren Blut oder extramedulläre Manifestationen (EM) der Leukämie vorliegen.

Von einem Rezidiv der Leukämie spricht man, wenn nach Erreichen einer CR einer der folgenden Punkte zutrifft: ein Anstieg der Blasten im KM über 5%, das Auftreten von Blasten im peripheren Blut oder das Auftreten einer extramedullären Manifestation.

Als Tod in der Induktion ist ein Tod unter der Induktionstherapie oder weniger als 7 Tage nach deren Ende ohne Erhebung des Induktionsergebnisses definiert.

2.4.5 Überleben

Das Gesamtüberleben (OS) wurde bei den Studienpatienten ab dem Tag der Randomisierung in die jeweilige Studie berechnet [55]. Dieser Tag kennzeichnet üblicherweise auch den Beginn der Induktionstherapie. Bei den Patienten aus der Medizinischen Klinik III des Klinikums Großhadern wurde das OS ab dem Tag des Beginns der Induktionstherapie berechnet. Patienten ohne Ereignis wurden am Datum des letzten Kontakts zensiert.

Das Rezidiv-freie Überleben (RFS) wurde vom Datum der CR bis zum Eintreten eines Rezidivs oder des Todes berechnet [55]. Patienten ohne Ereignis wurden am Datum des letzten Kontakts zensiert.

2.5 Beschreibung der Studien und Therapien

2.5.1 AMLCG 99

In der AMLCG 99 Studie (ClinicalTrials.gov identifierNCT00266136) wurden 3375 Patienten mit neu diagnostizierter AML oder Hochrisiko-Myelodysplastischem Syndrom (MDS) randomisiert [25]. Die Studie sollte Antwort auf verschiedene Fragestellungen geben: das Hauptaugenmerk lag darauf, einen Unterschied zwischen einer intensiveren Induktionstherapie im Vergleich zur Standardinduktion zu untersuchen. Deshalb erhielten die Patienten des experimentellen Arms im ersten Induktionszyklus das intensivere Schema TAD, im Standardarm wurde das HAM-Schema (zur Erklärung s. Tabelle 9) verabreicht. Im zweiten Induktionszyklus erhielten alle Patienten HAM [56].

Eine weitere Fragestellung der AMLCG 99 Studie bezog sich auf die Art der Konsolidierungsstrategie: Patienten erhielten entweder eine allo-SZT oder eine Konsolidierungschemotherapie [25, 57]. 21 der analysierten Patienten wurden in der AMCLCG 99 Studie behandelt.

2.5.2 AMLCG 04

In der AMLCG 04 Studie (European Leukemia Trial Register LN_AMLINT_2004_230) wurden 172 Patienten randomisiert. Es wurde untersucht, ob durch eine zeitliche Dosisintensivierung der Induktionstherapie eine bessere Wirksamkeit erreicht werden kann; den Patienten wurde das S-HAM-Schema als

Induktionstherapie verabreicht. Bei diesem Schema wird mit zwei viertägigen Induktionsblöcken im Abstand von zwei Wochen behandelt [58]. Drei der analysierten Patienten wurden in der AMLCG 04 Studie behandelt.

2.5.3 AMLCG 08

In der AMLCG 08 Studie (ClinicalTrials.gov identifier NCT01382147) wurden 396 Patienten randomisiert [59]. Im experimentellen Arm wurde den Patienten die dosisintensivierte Induktionstherapie nach dem S-HAM-Schema verabreicht. Im Standardarm wurde Patienten unter 60 Jahren TAD-HAM, Patienten über 60 Jahren HAM-HAM als Induktionstherapie verabreicht. Patienten, die keine allo-SZT erhielten, bekamen als Konsolidierungstherapie das TAD9-Regime [60].

Zwei der analysierten Patienten wurden in der AMLCG 08 Studie behandelt.

2.5.4 AMLCG Register

Das AML-Register der AML Cooperative Group besteht seit dem Jahr 2009. Patienten, bei denen in den teilnehmenden Zentren eine AML diagnostiziert wird, werden in diesem Register systematisch erfasst. So können auch außerhalb von klinischen Studien Patientenfälle dokumentiert und nachbeobachtet werden. Die Therapie der Patienten, die im AMLCG Register erfasst werden, erfolgt jeweils individuell nach Vorgabe des behandelnden Arztes.

Insgesamt wurden 9 Patienten aus dem AMLCG Register analysiert: vier der Patienten erhielten als Induktionstherapie S-HAM, ein Patient erhielt TAD-HAM und ein weiterer eine Induktionschemotherapie nach dem 7+3-Schema [61]. Ein Patient erhielt keine aggressive Induktionstherapie, sondern eine palliative zytoreduktive Therapie mit Cytarabin. Bei zwei Patienten wurde eine primäre allo-SZT durchgeführt.

2.5.5 Medizinische Klinik III des Klinikums der Universität München

Drei der analysierten Patienten wurden außerhalb des AML-Registers in der Medizinischen Klinik III des Klinikums der Universität München behandelt und erhielten Induktionstherapien nach Vorgabe des jeweils behandelnden Arztes. Einer der hier behandelten Patienten erhielt das 7+3-Schema und ein zweiter eine

palliative zytoreduktive Therapie mit Cytarabin. Bei dem dritten Patienten wurde direkt eine primäre allo-SZT durchgeführt.

Tab. 9: Verwendete Therapie-Schemata.

Schema	Dosierung		Tag	Intervall
TAD/TAD-9				
Cytarabin	100 mg/m ²	i.v.	Tag 1+2	kontinuierlich
	100 mg/m ²	i.v.	Tag 3 – 8	alle 12 h
Thioguanin	100 mg/m ²	p.o.	Tag 3 – 9	alle 12 h
Daunorubicin	60 mg/m ²	i.v.	Tag 3 – 5	alle 24 h
HAM				
Cytarabin	3000 mg/m² (*)	i.v.	Tag 1 – 3	alle 12h
Mitoxantron	10 mg/m ²	i.v.	Tag 3 – 5	alle 24 h
S-HAM				
Cytarabin	3000 mg/m² (*)	i.v.	Tag 1+2, 8+9	alle 8 h
Mitoxantron	10 mg/m ²	i.v.	Tag 3+4, 10+11	alle 24 h
7+3				
Cytarabin	100 mg/m ²	i.v.	Tag 1 – 7	kontinuierlich
Daunorubicin	60 mg/m ²	i.v.	Tag 3 – 5	alle 8 h
PalliativeTherapie				
Cytarabin	100 mg/m ²	i.v.	täglich	mehrere Tage

^(*) Patienten über 60 Jahre sowie Patienten aus dem AMLCG Register und dem Klinikum der Universität München erhielten i.d.R. nur 1000 mg/m² Ara-C.

2.5.6 Allogene Stammzelltransplantation

Bei der allogenen Stammzelltransplantation (allo-SZT) werden hämatologische Stammzellen von einem Spender auf einen Empfänger transplantiert; Spender und Empfänger sind hierbei nicht dieselbe Person. Beim Spender kann es sich entweder um einen Familien- oder einen Fremdspender handeln [62]. Der Spender wird u.a. durch Typisierung der Human Leukocyte Antigens (HLA)-Gene ausgewählt. Dabei handelt es sich um eine Gruppe von Genen, welche entscheidend für die Kompatibilität der Stammzellen von Spender und Empfänger sind. HLA-Identität kann nur bei verwandten Spendern vorliegen; bestimmte HLA-Genorte müssen hierbei komplett identisch sein [63, 64].

Kann kein HLA-identer Familienspender gefunden werden, so kann eine HLA-kompatible Fremdspende in Betracht gezogen werden. Als HLA-kompatibel

bezeichnet man hierbei die Übereinstimmung von mindestens 9 aus 10 bedeutenden HLA-Genloci [63].

Bei frustraner HLA-identer Familienspendersuche und HLA-kompatibler Fremdspendersuche kann eine HLA-haplo(=halb)-idente Familienspende erfolgen; dies bedeutet, dass die HLA-Gene zu 50% identisch sind [65]. Diese Konstellation liegt z.B. bei Eltern und deren Kindern vor.

Vor der allo-SZT wird i.d.R. eine sog. Konditionierungstherapie durchgeführt: durch die antineoplastische und immunsuppressive Wirkung einer direkt vor der Transplantation durchgeführten Chemo- und/oder Radiotherapie soll eine Abstoßungsreaktion verhindert werden [66].

2.6 Materialgewinnung und Histopathologie

2.6.1 Knochenmarkstanzen

Es wurden nach Sichtung der klinischen Daten 42 Patienten für dieses Projekt identifiziert. Zur weiteren Sicherung der Diagnose, zum Vergleich der histopathologischen Befunde und zur Präparation von gDNA wurden, soweit möglich, die Knochenmarkstanzen zum Zeitpunkt der Erstdiagnose angefordert. Es konnten Knochenmarkstanzen von 25 Patienten aus 16 pathologischen Instituten in ganz Deutschland identifiziert werden.

Von insgesamt 17 Patienten konnte keine Knochenmarkstanze untersucht werden: bei 7 Patienten waren die Knochenmarkstanzen in den entsprechenden pathologischen Instituten nicht mehr verfügbar und bei 3 Patienten befand sich auf dem histopathologischen Präparat nicht mehr ausreichend Gewebe. Bei 7 Patienten lagen keine Informationen darüber vor, ob eine Knochenmarkstanze bei Erstdiagnose durchgeführt wurde.

2.6.2 Histopathologische Untersuchungen

Um Gewebeproben unter einem Lichtmikroskop untersuchen zu können, ist es notwendig, dünne Schnitte mit speziellen Schneideinstrumenten, den Mikrotomen, anzufertigen. Diese Schnitte sind etwa 5-20 µm dick und werden auf einen Glasobjektträger aufgebracht [67]

Um verschiedene Komponenten auf den von Natur aus farblosen Geweben zu unterscheiden, setzt man in der Histologie Färbemethoden ein. Die angewandten Farbstoffe gehen je nach chemischen Eigenschaften Verbindungen mit bestimmten Zellstrukturen ein und färben sie somit an [67]. Als Standardfärbung wurde der Farbstoff Hämatoxylin-Eosin (HE) verwendet.

Zur weiteren Untersuchung der Schnitte wurde die Immunhistochemie eingesetzt, welche auf dem Prinzip der Antigen-Antiköper-Bindung basiert: antigene Strukturen im Gewebe lassen sich mit Antikörpern darstellen. Hier unterscheidet man zwischen direkten und indirekten Methoden. Bei der direkten Methode werden die Moleküle, die für die Farbreaktion verantwortlich sind – z.B. fluoreszierende Farbstoffe – direkt an den Primärantikörper gebunden. Hingegen werden bei der indirekten Methode chemische Reaktionen zwischengeschaltet [67]. Im Rahmen dieser Analysen wurde die Avidin-Biotin-Komplex-Methode eingesetzt, wobei es sich um eine indirekte Methode handelt [68].

Zur genaueren Charakterisierung und Identifizierung der Zellen wurden 5 gebräuchliche Primärantikörper verwendet:

CD42b, auch bekannt als Glykoprotein IB alpha, ist ein Rezeptor für den von-Willebrandt-Faktor sowie Thrombin [69]. Das Oberflächenprotein kommt auf Thrombozyten, Megakaryoblasten und Megakaryozyten vor, welche der CD42b-Antikörper entsprechend anfärbt. In der Pathologie wird dieser Antikörper zur Diagnose der AMKL und zur Differenzierung der AMKL von der akuten Panmyelose mit Myelofibrose verwendet [70].

Das Oberflächenprotein CD61, welches auch als Integrin beta 3 bekannt ist, bildet mit verschiedenen anderen Oberflächenproteinen Rezeptoren für unter anderem Fibrinogen, Plasminogen, Prothrombin und den von-Willdebrandt-Faktor [71]. CD61 kommt auf Thrombozyten, Megakaryozyten, myeloischen Vorläuferzellen und Endothelzellen vor; der Marker kann neben der AMKL-Diagnostik auch zur Quantifizierung von Thrombozyten bei thrombozytopenen Patienten verwendet werden [72].

Weiterhin wurde ein Antikörper gegen CD31 verwendet, welches auch als *platelet* endothelial cell adhesion molecule (PECAM1) bekannt ist [73]. Dieses Oberflächenmolekül spielt unter anderem eine Rolle in der inflammatorischen

Leukozytenmigration und ist der sensitivste Marker für Endothelzellen in Paraffinschnitten [30, 71].

CD34 wird von hämatopoetischen Progenitorzellen und Endothelzellen exprimiert [71]. CD34-Antikörper finden in der Hämatopathologie Anwendung zur Blastenquantifizierung, werden u.a. jedoch auch in der Dermatopathologie und bei der Untersuchung von Weichgewebstumoren verwendet [74].

Das Zinkfingerprotein GATA1 ist ein nukleärer Transkriptionsfaktor. Die GATA-Faktoren spielen eine wichtige Rolle in der Entstehung erythroider und megakaryozytärer Vorläuferzellen. Der Antikörper gegen GATA1 färbt Zellen der erythroiden und megakaryozytären Abstammungslinien sowie Mastzellen. Dieser Antikörper wird u.a. in der Diagnostik der Differenzierung der AMKL sowie der Erythroblastenleukämie verwendet [75]. Die genaue Bezeichnung der verwendeten Antikörper zeigt Tabelle 10.

Tab. 10: Verwendete Antikörper.

Antikörper/Klone	Hersteller
Hämatoxylin-Eosin	Euromex
CD34/QBEnd/10	Cell Marque
CD42/SP219	Spring
GATA1/4F5	Cell Marque
CD31/JC70A	Agilent

Bei der histopathologischen Beurteilung der Gewebeschnitte wurde eine quantitative Einteilung der Retikulinfaserfibrose vorgenommen (Tabelle 11) [76].

Tab. 11: Einteilung der Retikulinfaserfibrose, modifiziert nach Thiele et al. [76].

Fibrosegrad	Beschreibung
0	vereinzelt eingestreute Retikulinfasern ohne Überschneidungen,
	entspricht normalem Knochenmark
1	lockeres Retikulinfasernetzwerk mit vielen Überschneidungen,
I	v.a. perivaskulär
	diffuse, dichte Retikulinfaservermehrung mit ausgedehnten
2	Überschneidungen, teils mit fokalen Retikulinfaserbündeln oder
	fokaler Osteosklerose
	diffuse, dichte Retikulinfaservermehrung mit ausgedehnten
3	Überschneidungen mit ausgeprägten Kollagenfaserbündeln,
	oft assoziiert mit ausgedehnter Osteosklerose

Für vorliegende Arbeit bestand eine Kooperation mit dem Institut für Pathologie der medizinischen Fakultät der LMU München: die histopathologischen Beurteilungen und Auswertungen wurden von Prof. Dr. med. Hans-Peter Horny durchgeführt, ebenso stellte er die Bilder und Dokumentation zur Verfügung (s. Ergebnisteil 3.3). Die Bearbeitung der Knochenmarkstanzen, der Zuschnitt und die immunhistochemischen Färbungen wurden von Mitarbeitern des Instituts für Pathologie durchgeführt.

2.7 Hochdurchsatz-Sequenzierung

Die in diesem Kapitel genannten Arbeiten wurden wie beschrieben im Labor für Leukämiediagnostik des Klinikums Großhadern von Dr. med. Hanna Gittinger, Susanne Raab, Mitgliedern der Arbeitsgruppe Translational Leukemia Genetics und medizinisch-technischen Assistenten des LFL durchgeführt.

2.7.1 Material

Tab. 12: Verwendete Geräte und Reagenzien.

Geräte	Hersteller, Katalog-Nr.
Zentrifuge	Heathrow Scientific
Thermomixer	Eppendorf ThermoStat plus
Vortexer	Life technologies Vortex-Genie 2
PCR-Thermocycler	Biometra
2100 Bioanalyzer Platform, Consumables	Agilent Technologies
Gel Electroph.Platform, Consumables	Agilent Technologies
MiSeq Next Generation Sequencer	Illumina Technologies
QIAmpMinElute® Columns	Qiagen, <i>57414</i>
96-well plates	Applied Biosystems, N8010560
8-well striptubes	Agilent technologies, 410092
8-well stripcaps	Agilent technologies, 410096
12-well striptubes	Agilent technologies, 410082
12-well stripcaps	Agilent technologies, 4190086
Qbit2.0 Fluorometer	Life Technologies, Q32857
Qubit Assay Tubes	Life Technologies, Q32856
DNA LoBindTubes	Life Technologies, 0030108035
Reagenzien	Hersteller, Katalog-Nr.
GeneRead DNA FFPE Tissue Kit	QIAGEN, 180134
Deparaffinization Solution	QUIAGEN, 19093
NGS FFPE QC Kit	Agilent Technologies, G9700A
Qubit dsDNA HS Assay Kit	Life Technologies, Q32850
Haloplex HS Kit, Probe design Custom panel	Agilent Technologies, G9931B
Dynabeads My One Streptavidin T1	Life Technologies, 65601
Agencourt AM Pure XP Kit	BeckmanCoulterGenomics, A63881
High Sensitivity DNA Kit	Agilent Technologies, 5067-4626
MiSeq Reagent Kit V2	Illumina, <i>MS102-2001</i>
Nucleasefreies Wasser	Ambion, AM9939
Ethanol (100%)	
10 M NaOH	
19 M Tris-HCI (pH 8,5)	

2.7.2 DNA-Extraktion

DNA wurde aus peripherem Blut, Knochenmark oder aus Knochenmark-Stanzen vor Therapieeinleitung gewonnen. Peripheres Blut und Knochenmark wurde nach publizierter Methode aufbereitet [18].

Für die Aufbereitung der Knochenmarkstanzen wurde das GeneRead DNA FFPE Tissue Kit (Qiagen®, Hilden, Deutschland) entsprechend Protokollvorgaben verwendet [77].

2.7.3 Sequenzierung

Es erfolgte eine amplicon-basierte, für formalin-fixierte, paraffin-eingebettete (FFPE) Proben optimierte Hochdurchsatz-Sequenzierung. Hierfür wurde ein zu analysierendes Genset zusammengestellt, welches häufig in myeloischen Neoplasien mutierte Gene und Gen-"Hotspots" abdeckt (s. Anhang 7.3). Es wurde entsprechend der Protokollvorgaben des Herstellers gearbeitet (Haloplex HS Kit, Probe Design Custom Panel, Agilent Technologies) [78].

Die Anreicherung wurde mittels 2100 Bioanalyzer Platform und entsprechenden Verbrauchsmitteln nach den Vorgaben des Agilent 2100 Bioanalyzer quantifiziert [79].

Die Sequenzierung wurde auf einem MiSeq Next Generation Sequencer von IlluminaTechnologies durchgeführt. Die Auswertung der bei der Sequenzierung generierten Daten wurde nach dem von Metzeler et al. publizierten Schema durchgeführt [18].

2.7.4 Fragmentanalyse FLT3-ITD

Zur Bestimmung der *FLT3-internal tandem duplication* (*FLT3-ITD*)-Ratio wurde eine *FLT3-ITD*-Fragmentanalyse entsprechend der publizierten Methode durchgeführt [80].

2.8 Software

Zur Aufbereitung und Speicherung der Daten wurden verschiedene Software-Programme verwendet (Tabelle 13).

Tab. 13: Verwendete Software-Programme.

Programm	Verwendung
Microsoft Word (Office 2016)	Textverarbeitung
Microsoft Excel (Office 2016)	Datenverarbeitung
EndNote (Version X8)	Literaturverwaltung
InkScape (Version 0.92.4)	Grafikerstellung
IBM SPSS Statistics 24	Statistische Datenanalyse
R (Version 3.4.1)	Statistische Datenanalyse
IGV Browser (Version 2.4)	Visualisierung der Sequenzdaten

2.9. Statistische Methoden

Die statistischen Analysen wurden mit den Programmen IBM SPSS Statistics 24 und R Version 3.4.1 durchgeführt [81, 82].

Die statistischen Vergleiche erfolgten mittels zweiseitigem t-Test und log-rank-Test. Überlebensanalysen (Gesamtüberleben, Rezidivfreies Überleben) wurden mittels Kaplan-Meier-Schätzer berechnet.

Statistische Signifikanz wurde bei einem Wert p≤0,05 angenommen.

3. Ergebnisse

3.1 Patientenselektion

Für die vorliegende Arbeit wurden retrospektiv Patienten identifiziert, bei denen im Zeitraum September 2000 bis November 2016 eine AMKL beschrieben wurde. In den AMLCG Studien (n=4691) handelte es sich in 0,8% der Fälle um eine AMKL und im AMLCG Register (n=826) handelte es sich in 1,1% der Fälle um eine AMKL. Bei 10 Patienten der medizinischen Klinik III des Klinikums Großhadern ergab sich der Verdacht auf eine AMKL. So erfüllten zunächst insgesamt 53 Patienten die beschriebenen Einschlusskriterien (s. Methodenteil 2.1).

Nach Evaluierung von klinischer Dokumentation, Laborergebnissen und pathologischen Befunden wurden hiervon 11 Patienten ausgeschlossen. Bei 6 Patienten lag keine AML, sondern eine CML in Blastenkrise mit megakaryozytärer Differenzierung vor. Vier Patienten erfüllten die Kriterien für ein MDS, jedoch nicht für eine AML. Bei einem anderen Patienten lag zwar eine AML, jedoch laut Dokumentation keine megakaryozytäre Differenzierung vor.

Im nächsten Schritt wurden, wenn vorhanden, aus den vorliegenden Knochenmarkstanzen histologische Schnitte und immunhistochemische Färbungen angefertigt. Nach deren Begutachtung durch Prof. Horny wurden weitere vier Patienten aus den Analysen ausgeschlossen: bei drei Patienten lag zwar eine AML, jedoch keine AMKL vor und in einem Fall handelte es sich um eine systemische Mastozytose (MC) mit assoziierter hämatologischer Neoplasie.

Somit konnten die Datensätze von insgesamt 38 Patienten ausgewertet werden: 21 Patienten aus der AMLCG 99 Studie, drei Patienten aus der AMLCG 04 Studie, zwei Patienten aus der AMLCG 08 Studie, 9 Patienten aus dem AMLCG Register sowie drei Patienten aus dem Klinikum der Universität München (Abbildung 1).

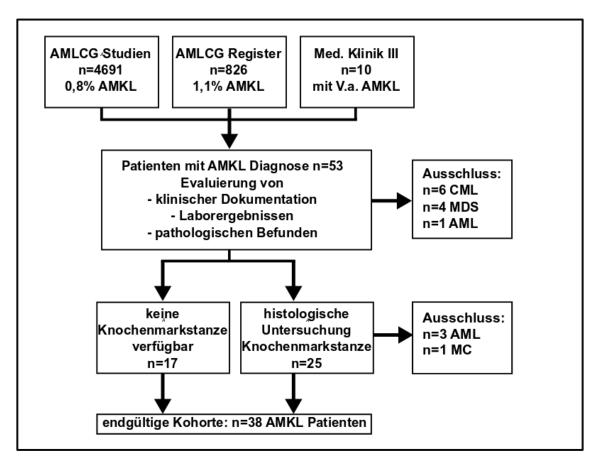


Abb. 1: Überblick über den Prozess der Patientenselektion.

3.2 Patientencharakteristika

Das finale Patientenkollektiv umfasste 38 Patienten. Das mediane Alter lag zum Zeitpunkt der Erstdiagnose bei 58 Jahren und 34,2% waren Frauen. 66,7% hatten einen ECOG-Score von 0 oder 1 und 33,3% einen ECOG von 2 oder 3. Es zeigte sich zudem mit 39,5% ein hoher Anteil an sekundärer und therapieassoziierter AMKL in dieser Kohorte: vor der AMKL-Diagnose lag bei 7 Patienten ein MDS und bei 4 Patienten eine myeloproliferative Neoplasie (MPN) vor; für einen Patienten fehlten genauere Informationen zur Art der hämatologischen Vorerkrankung. Zwei Patienten hatten vor der AMKL-Diagnose eine immunsuppressive Therapie mit Methotrexat und ein Patient die Bestrahlung eines Karzinoms erhalten. Bei diesen Patienten wurde die AMKL als therapieassoziiert gewertet. In 17,0% der Fälle wurden bei Diagnose der AMKL auch extramedulläre Manifestationen dokumentiert. Die mediane Leukozytenzahl (3,7 G/I) sowie der mediane Blastenanteil (37,5%) waren eher niedrig.

Tabelle 14 gibt Auskunft über die klinischen und laborchemischen Patientencharakteristika inklusive fehlender Werte.

Tab. 14: Patientencharakteristika.

Variable	n=38
Alter	[Jahre]
Median	58
Verteilung	21 – 80
Geschlecht	Anzahl (%)
weiblich	13 (34,2)
AML-Entstehungsform	Anzahl (%)
de-novo AML	23 (60,5)
sAML	12 (31,6)
tAML	3 (7,9)
ECOG-Performance-Status	Anzahl (%)
0	10 (27,8)
1	14 (38,9)
2	10 (27,8)
3	2 (5,6)
fehlende Werte	2
Extramedulläre Manifestation	Anzahl (%)
Vorhanden	6 (17,0)
fehlende Werte	3
Leukozytenzahl	[G/I]
Median	3,7
Verteilung	0,4 - 87,7
fehlende Werte	2
Hämoglobin-Wert	[g/dl]
Median	8,4
Verteilung	5,1 – 10,9
fehlende Werte	2
Thrombozytenzahl	[G/I]
Median	50,5
Verteilung	0,1 - 176,0
fehlende Werte	2
LDH	[U/I]
Median	394,5
Verteilung	121,0 – 14696,0
fehlende Werte	3
Quick-Wert	[%]
Median	77,0
Verteilung	42,0 - 107,0
fehlende Werte	6
Blasten im KM	[%]
Median	37,5
Verteilung	20,0 - 90,0
fehlende Werte	8

3.3 Histopathologische und immunhistochemische Beurteilung

3.3.1 Morphologie

In dem untersuchten Patientenkollektiv zeigte sich in allen Fällen ein stark texturgestörtes Knochenmark mit unterschiedlich starker Vermehrung blastärer, zumeist atypisch anmutender Zellen. In allen Fällen zeigte sich eine hochgradige Verminderung der normalen Hämatopoese. Auch konnte man ausnahmslos eine Retikulinfaserfibrose feststellen, die jeweils unterschiedlich stark ausprägt war (s. Methodenteil, 2.6.2): 5 von 21 (23,8%) Patienten hatten eine Fibrose Grad 1, in 10 von 21 Fällen (47,6%) fand sich eine Fibrose Grad 2 und 6 von 21 Patienten (28,6%) hatten mit Grad 3 eine sehr stark ausgeprägte Retikulinfaserfibrose (Abbildung 2).

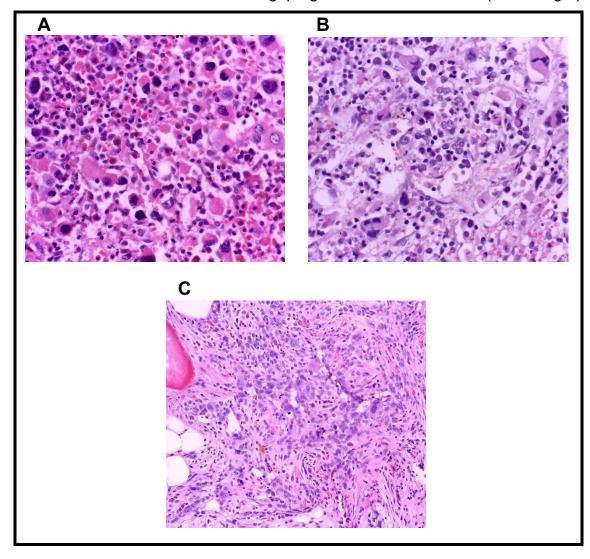


Abb. 2: Darstellung der verschiedenen Fibrosegrade A) KM-Histologie (HE-Färbung): Fibrose Grad I

B) KM-Histologie (HE-Färbung): Fibrose Grad II

C) KM-Histologie (HE-Färbung): Fibrose Grad III

Rein morphologisch ließen sich die histopathologischen Befunde in Formen der AMKL mit und ohne Ausreifung einteilen. Ausreifung wurde definiert als Vorhandensein von Megakaryozyten und anderen Reifungsstufen, anhand derer man einen Verlauf von Blasten zu ausgereiften Zellen erkennen konnte.

In 10 von 21 Fällen (47,6%) handelte es sich um eine AMKL ohne Ausreifung und in ebenfalls 10 von 21 Fällen (47,6%) um eine AMKL mit erhaltener Ausreifung (Abbildung 3). In einem Fall konnte eine Einteilung aufgrund des nicht eindeutigen Befundes nicht vorgenommen werden.

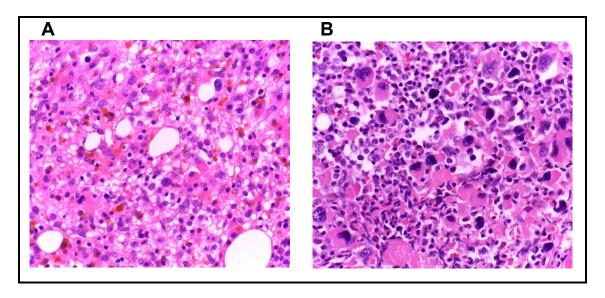


Abb. 3: Darstellung von AMKL mit und ohne Ausreifung A) KM-Histologie (HE-Färbung): AMKL ohne Ausreifung B) KM-Histologie (HE-Färbung): AMKL mit Ausreifung

3.3.2 Immunhistochemie

Richtungsweisend für die Diagnose AMKL sind immunhistochemische Untersuchungen. Nach WHO-Definition kann nur bei Positivität von mindestens 50% der blastären Zellen für einen der megakaryozytären Marker CD42b oder CD61 (s. Methodenteil 2.6.2) die Diagnose einer AMKL gestellt werden [11].

Wie oben erläutert wurden vier Patienten an dieser Stelle aus diesen Analysen ausgeschlossen, da keiner der beiden megakaryozytären Marker auf über 50% der blastären Zellen positiv war.

In allen restlichen 21 untersuchten Knochenmarkstanzen waren die blastären Zellen positiv für CD42b, in 18 von 21 (85,7%) stark positiv (über 50% der blastären Zellen).

In 19 von 21 (90,5%) Fällen färbten sich die blastären Zellen mit CD61 an, in 15 von 21 (71,4%) war der gefärbte Anteil der blastären Zellen über 50%.

Bei 12 von 21 Schnitten (57,1%) waren über 50% der blastären Zellen sowohl positiv für CD42b als auch für CD61.

Weiterhin wurden Antikörper gegen CD31 und CD34 verwendet, die Endothelzellen anfärben. In 20 von 21 Fällen (95,2%) färbten die Schnitte CD31 an, in 18 von 21 Schnitten (85,7%) war die Färbung stark ausgeprägt (über 50% der Zellen).

In 14 von 21 Schnitten (66,7%) waren die Zellen positiv für CD34, in 8 von 21 (38,1%) stark positiv.

Auf die Färbung mit dem GATA1-Antikörper als weiteren megakaryozytären Marker reagierten alle 21 Schnitte. In 18 von 21 (85,7%) war die Färbung stark positiv.

Tabelle 15 fasst die Ergebnisse aus morphologischer und immunhistochemischer Beurteilung zusammen.

Tab. 15: Übersicht über die histologischen und immunhistochemischen Merkmale.

Pat-	Fibrose-	Aus- reifung*	Ätio- logie	CD42b	CD61	CD31	CD34	GATA 1**
	grad			2				<u>-</u>
1	2	b	de novo	2	2	2	1	2
4	2	b	de novo	1	2	2	1	2
5	2	n.a.	de novo	1	2	1	2	2
13	3	а	tAML	2	1	2	0	1
14	2	b	de novo	2	0	0	0	2
17	3	b	tAML	2	1	2	0	2
20	2	b	de novo	2	2	2	1	2
21	1	а	de novo	1	2	2	1	1
24	1	а	sAML	2	2	2	0	2
26	1	а	de novo	2	2	2	0	2
27	2	а	sAML	2	2	2	0	2
28	3	а	tAML	2	2	2	1	2
29	3	а	sAML	2	1	2	0	2
30	2	а	sAML	2	2	2	2	2
30	1	b	de novo	2	0	2	2	2
32	1	b	sAML	2	2	2	2	2
33	3	b	de novo	2	2	2	2	2
34	3	а	sAML	2	1	1	2	1
35	2	а	de novo	2	2	2	2	2
36	2	b	de novo	2	2	2	1	2
38	2	b	sAML	2	2	2	2	2

^(*) a = AMKL ohne Ausreifung, b = AMKL mit Ausreifung

^{(**) 0 =} keine Anfärbung, 1 = Anfärbung von <50% d. Zellen, 2 = Anfärbung von >50% d. Zellen

Abbildung 4 zeigt Beispiele der immunhistochemischen Färbungen. Alle Bilder (A-D) stellen Beispiele für eine stark positive Anfärbung der jeweiligen Marker dar.

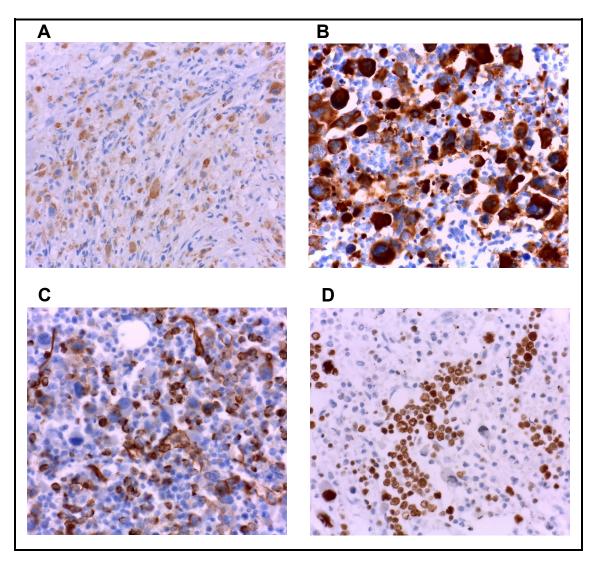


Abb. 4: Darstellung der immunhistochemischen Färbungen A) KM-Histologie: AMKL ohne Ausreifung: CD42b-Färbung B) KM-Histologie: AMKL mit Ausreifung: CD61-Färbung C) KM-Histologie: AMKL mit Ausreifung: CD34-Färbung D) KM-Histologie: AMKL mit Ausreifung: GATA1-Färbung

3.4 Zytogenetik

Zytogenetische Untersuchungen stellen eine wichtige Säule der Initialdiagnostik bei Patienten mit AML dar. Die zytogenetischen Auswertungen der Patienten aus den AMLCG-Studien und dem AMLCG-Register wurden an den jeweils behandelnden Zentren durchgeführt und aus den Studienaufzeichnungen bzw. Registerdaten übernommen (s. Methodenteil 2.3). Die zytogenetischen Untersuchungen der Patienten aus der medizinischen Klinik III des Klinikums Großhadern wurden im Labor für Leukämiediagnostik (LFL) des Klinikums Großhadern durchgeführt.

In dem untersuchten Patientenkollektiv lagen für 30 von 38 Patienten Informationen bezüglich des Karyotyps vor. Bei 8 Patienten fehlten Angaben zur Zytogenetik, da bei vier Patienten keine Informationen zur Zytogenetik vorlagen. In weiteren vier Fällen waren keine Zellen in Teilung gegangen, weshalb die Untersuchung technisch nicht durchgeführt werden konnte.

Tabelle 16 zeigt die Ergebnisse der zytogenetischen Untersuchungen in diesem Patientenkollektiv.

Tab. 16: Angabe der vollständigen Karyotypen.

Pat.	Karyotyp					
1	47,XY,+i(1)(q10),dup(3)(q21q26),der(19)t(3;19)(q25;p13)[9]/ 47,XY,					
	+i(q10)(dup1)(q11q32),dup(3)(q21q26),der(19)t(3;19)(q25;p13) [6]					
2	46,XX,inv(3)(q21q26) [17]/45,XX,inv(3)(q21q26),-7 [3]					
3	46,XX,del(7)(q22) [20]					
4	45,XY,der(7)del(7)(p15)del(7)(q11)[5]/45,XY,-7 [8]					
5	45,XY,der(1)t(1;3)(q23;?),der(3)t(3;5)(p11;?)t(1;5)(?;?)t(1;16)(?;q15),					
	der(4)t(4;11)(q21;?),del(5)(q13q34),der(6)t(6;11)(p25;?)t(6;11)(q11;?),					
	del(11)(q14q23),der(11)t(2;11)(?;p15),der(13)i(13)(q10)t(4;13)(q25;q34)					
	t(1;13)(?;q34),der(15)t(6;15)(q11;q15),-17 [13]/46, XY [3]					
6	45,XY,der(2)t(2;15)(q37;q11),i(5)(p10),inv(7)(p11q31),					
	der(11)t(11;17)(q23;q21),-15,-17,+mar [18]/46,XY [2]					
7	45,XX, t(3;8)(q26,q24),-7 [20]					
8	45,XX,inv(3)(q21q26),-7 [20]					
9	46,XY [23]					
10	46,XY,der(11)t(1;11)(q21;q25) [12]/					
	46,XY,der(11)t(1;11)(q21;q25)dup(1)(q21q42) [8]					
11	46, XY [15]					
12	keine Zellen in Teilung					

13	keine Informationen vorliegend					
14	46,XY,+1,der(1;7)(q10;p10) [20]					
15	46, XY					
16	keine Informationen vorliegend					
17	44-45,XX,-4-5,+6,der(7)t(5;7)(q22;?),+der(8)t(8;14)(q22;q?),-14,der(14) t(14;18)(p11;q11)t(5;14)(?;q32)t(4;5),der(17)t(5;17)(?;p11)t(5;8),-18, der(20)t(20;22)(q13;q?),der(21)amp(21)(q22),der(22)t(4;22)(?;q13)[cp]/46,XX[4]					
18	46, XY					
19	47,XX,+1,der(1;7)(q10;p10) [13]/48,XX,+1,der(1;7)(q10;p10),+21 [7]					
20	46, XY					
21	46, XX					
22	47, XY, +1,der (1;7)(q10;p10) [4]/46,XY [8]					
23	keine Informationen vorliegend					
24	46, XY [20]					
25	keine Zellen in Teilung					
26	46,XX,+16,der(7;16)(q10;p10) [6]/46,XX [17]					
27	48,XY,+8,+10,der(17)t(1;17)(?;p1?2)[3]/38~48,XY,sl,-X,-3,4,+4, der(4)(4pter->4q21::7q11->7q22::10q11->10qter),der(4)t(4;6) (q3?;?p23)x2,der(6)t(6;7)(q13;?q22),-7,-7,der(7;10)(p10;p10), der(9)t(4;9)(?;p2?),-12,-13,der(13)(q?),-17,der(17)(1?ter->1?::17p13->17q2?::6?->6?ter),-20,-20,-21,-22[cp4]/46,XY [6]					
28	keine Zellen in Teilung					
29	46,Y,der(X)t(X;8)(q1?;p2?1),ins(1;7)(q21;?),t(3;21)(q26;q22),t(4;6)(q?21;p 21),del(7)(q11),r(7)(?), der(8)(Xpter->Xp2?::8p2?1 ->8q21::X?->X?::8q2?3->8qter)[10]/45,Y,der(X)t(X;8)(q1?;p2?1), t(4;6)(q?21;p21),-7,r(7)(?),der(8)(Xpter->Xp2?::8p2?1->8q21::X?->X?::8q2?3->8qter),del(20)(q11)[cp2]/46,XY [2]					
30	49,XY,der(1)(9?qter->9?::1p2?->1q2?::7?->7?pter), der(7)t(1;7)(p2?;p1?3),+8,der(9)t(1;9)(q2?;q?13),+19,+21 [18]					
31	46,XY,t(9;22)					
32	43-44, XX, add(1)(p11),add(1)(q11),del(3)(q?),del(4)(p11),-5,-7,+8[9]/add(11p),der(12)-15,add(16)(q?),-17,-20,+mar [22]					
33	47,XX,t(3:3)(q21;q26),+8[13]/46,XX [9]					
34	keine Informationen vorliegend					
35	45, XX,-7 [16]/ 47,XY,+8 [3]/46,XY [1]					
36	47,XY,t(1;8)(q21;q21),dup(17)(q21),+19[8]/48,sl,+8 [3]/46,XY [3]					
37	keine Zellen in Teilung					
38	46,XY [20]					

Nur 8 von 30 Patienten (26,7%) hatten einen normalen Karyotyp, während 22 Patienten (73,3%) einen aberranten Karyotyp aufwiesen. Darunter wiesen 8 Patienten (26,7%) 4 oder mehr nicht zusammenhängende strukturelle oder numerische Veränderungen auf (komplex-aberranter Karyotyp nach MRC).

Die Chromosomen 1, 3, 5, 7, 8 und 17 waren in dieser Kohorte am häufigsten von strukturellen oder numerischen Veränderungen betroffen (Abbildung 5).

16 von 30 (53,3%) Patienten zeigten Veränderungen des Chromosoms 7, am häufigsten eine Monosomie 7, del(7q) und/oder der(1;7)(q10;p10).

In 10 von 30 Fällen (33,3%) zeigten sich strukturelle Veränderungen des Chromosoms 1 am q-Arm.

6 der 30 Patienten (20,0%) hatten eine Trisomie 8. Eine Monosomie 17 zeigte sich in 4 der 30 Fälle (13,3%). Eine Monosomie 5 und/oder del(5q) sowie inv(3)/t(3;3)(q21;q26) waren jeweils in 3 von 30 Patienten (10,0%) vorhanden.

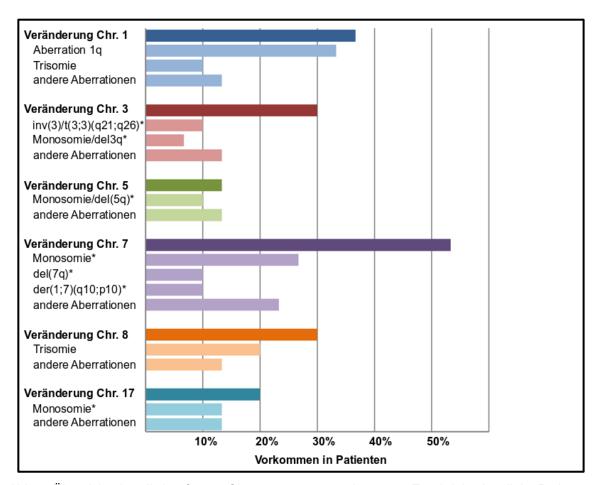


Abb. 5: Übersicht über die häufigsten Chromosomenveränderungen. Es wird der Anteil der Patienten angegeben, bei denen eine oder mehrere Veränderungen am jeweiligen Chromosom vorlag. *prognostisch ungünstig nach MRC und/oder ELN

In der Häufigkeitsverteilung lassen sich beim Vergleich der zytogenetischen Aberrationen der 30 AMKL-Patienten mit einer unselektierten AML-Patientenkohorte (5879 AML-Patienten von Grimwade et al.) einige Unterschiede erkennen [51]: grundsätzlich auffällig ist der große Anteil an komplex-aberranten Karyotypen in der AMKL-Kohorte (26,7% vs. 9,4%). Weiterhin weisen die AMKL-Patienten im Vergleich sehr häufig eine Monosomie 7 (26,7% vs. 4,7%), eine Trisomie 8 (20,0% vs. 9,3%) und deutlich weniger normale Karyotypen auf (Abbildung 6).

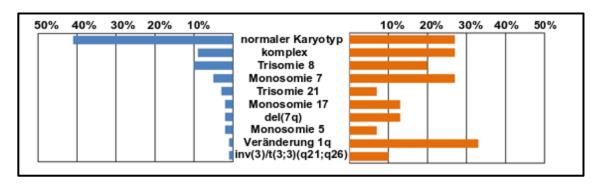


Abb. 6: Vergleich der zytogenetischen Aberrationen von 30 AMKL-Patienten (rechts) mit 5876 AML-Patienten von Grimwade et al. (links) [51].

Einen Sonderfall stellen Aberrationen des Chromosoms 1q dar, welche in der unselektierten Patientenkohorte in nur 1,4% der Fälle vorkamen. Hingegen hatten 33,3% der AMKL-Patienten Aberrationen von Chromosom 1q. Hierbei handelte es sich um insgesamt 6 Duplikationen, 3 Translokation, 1 Insertion und 1 komplexere Aberration: Duplikationen des gesamten Arms von 1q wurden in 4 Patienten identifiziert, Duplikationen der Abschnitte 1q11-32 und 1q21-42 in jeweils einem Patienten. 1q21 war die Bruchstelle von 2 Translokationen und einer Insertion. 1q23 war die Bruchstelle einer Translokation (Abbildung 7).

Es waren keine der für pädiatrische AMKL typische Translokationen dokumentiert und es ergab sich auch kein Hinweis für eine hinsichtlich DS-AMKL ähnliche Zytogenetik: zwei Patienten (6,7%) wiesen eine Trisomie 21 in Kombination mit anderen ungünstigen Markern auf und 3 Patienten (10,0%) mit komplex-aberrantem Karyotyp hatten verschiedene Aberrationen des Chromosoms 21.

Ein Patient zeigte die Translokation t(9;22) ohne dokumentierten Hinweis auf eine vorbestehende CML.

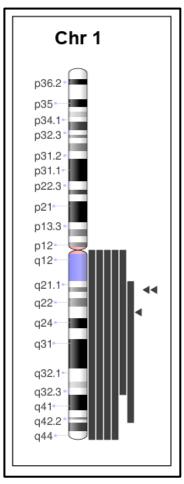


Abb. 7: Zytogenetische Aberrationen auf Chromosom 1q. Ideogramm von Chromosom 1, das strukturelle Zugewinne (Rechtecke) und Bruchstellen (Dreiecke) darstellt, die in der AMKL-Kohorte auf dem langen Arm q identifiziert wurden. Das Ideogramm wurde mit der NCBI Genome Decoration Page erstellt [83].

3.5 Molekulargenetik

Es konnten in 26 Fällen molekulargenetische Daten mittels Amplikon-basierter Hochdurchsatz Sequenzierung erhoben werden (s. Methodenteil 2.7). 47 Gene bzw. Genregionen wurden hierbei untersucht. Im Median zeigten sich 3 Mutationen (Spannweite 0-6) sowie 3 mutierte Gene (Spannweite 0-5) pro Patient.

Die am häufigsten von Mutationen betroffenen Gene waren ten-eleven translocation 2 (TET2) und Tumorsuppressor Protein 53 (TP53) in je 6 von 26 Patienten (23,1%) sowie Januskinase 2 (JAK2) und Protein Tyrosin Phosphatase Non-Rezeptor Typ 11 (PTPN11) in je 5 Patienten (19,2%). Runt-related transcription factor 1 (RUNX1) zeigte Mutationen in 4 Patienten (15,4%). Bei je 3 Patienten (11,5%) fand sich eine Mutation in NPM1 und additional sex-comb like 1 (ASXL1). Bei einem Patienten wurde eine Mutation in GATA1 nachgewiesen (Abbildung 8).

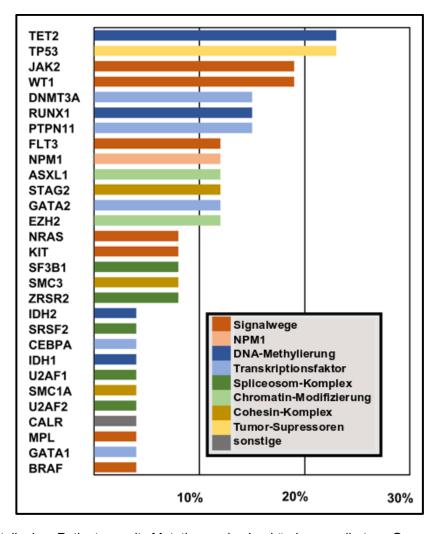


Abb. 8: Anteil der Patienten mit Mutationen in Leukämie-assoziierten Genen, die mittels Hochdurchsatz Sequenzierung identifiziert wurden. Die Farbe der Balken fasst die Gene zu Gruppen zusammen (s. Kasten rechts unten).

Um darzustellen, welche Mutationen jeweils gemeinsam auftreten, werden üblicherweise sog. "heatmaps" verwendet. Abbildung 9 bildet die am häufigsten von Mutationen betroffenen Gene und ihr gemeinsames Auftreten ab; eine Säule steht für je einen Patienten.

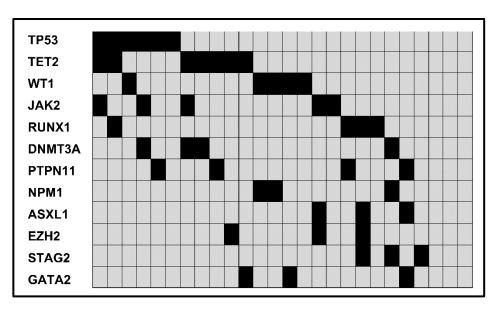


Abb. 9: Darstellung der am häufigsten von Mutationen betroffenen Gene. Eine Säule steht für je einen Patienten (n=26).

In nur 2 von 26 Fällen (7,7%) fand sich *FLT3-ITD*, beide Male mit einer niedrigen ITD zu Wildtyp Ratio (0,38 und 0,002); zwei Patienten mit normalem Karyotyp und ein Patient ohne verfügbaren Karyotyp hatten eine *NPM1*-Mutation ohne gleichzeitiges Vorliegen von *FLT3-ITD*. Bei keinem Patienten zeigten sich die prognostisch günstigen Mutationen von *bi-CCAAT enhancer binding protein alpha* (*bi-CEBPA*).

Beim Vergleich der identifizierten molekulargenetischen Mutationen der 26 AMKL-Patienten mit einer unselektierten Kohorte (664 AML-Patienten von Metzeler et al [18]) finden sich einige Unterschiede in der Häufigkeitsverteilung der Aberrationen (Abbildung 10).

Auffällig ist das vermehrte Vorkommen der nach ELN 2017 prognostisch ungünstigen *TP53*-Mutationen (23,1% vs. 9,5%) bei den AMKL-Patienten im Vergleich zu der unselektierten AML-Kohorte. Auch findet sich eine Häufung von Mutationen in *JAK2* (19,2% vs. 1,0%) sowie *TET2* (23,1% vs. 14,9%).

Im Vergleich zu den AML-Patienten wiesen die AMKL-Patienten wenige *FLT3*-Aberrationen auf (11,5% vs. 39%). Auch Mutationen in *NPM1* (11,5% vs. 33,3%),

ebenso wie *DNMT3A*-Mutationen (15,4% vs. 31,5%) waren in der AMKL-Kohorte vergleichsweise selten.

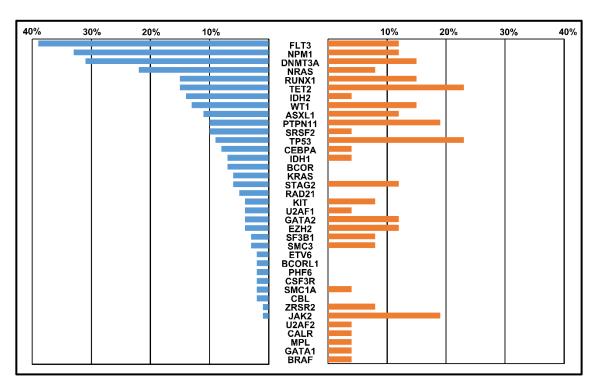


Abb. 10: Vergleich der Häufigkeit der gefundenen Mutationen von 26 AMKL-Patienten (rechts) mit 664 AML-Patienten von Metzeler et al. [18].

3.6 Risikoklassifikationen

Die MRC-Einteilung von 2010 beruht alleine auf den zytogenetischen Veränderungen der Blasten (s. Methodenteil 2.4.3) [51]. Bei 8 Patienten konnte die Einteilung nach MRC aufgrund fehlender Daten nicht erfolgen.

Nach der MRC-Einteilung hatte kein Patient eine chromosomale Aberration, die als günstig eingestuft wurde. Insgesamt 10 von 30 Patienten (33,3%) wurden in die intermediäre Risikogruppe eingestuft: neben 8 Patienten mit normalem Karyotyp lagen bei zwei Patienten unspezifische Aberrationen vor. 20 von 30 Patienten (66,6%) hatten zytogenetische Aberrationen, die nach MRC als ungünstig eingestuft werden, davon hatten 8 Patienten einen komplex-aberranten Karyotyp [51].

Die in der Klinik gebräuchlichste Einteilung ist die von Döhner et al. publizierte ELN-Klassifikation (s. Methodenteil 2.4.3) [53]. Diese Klassifikation schließt neben der Zytogenetik auch molekulargenetische Marker ein. Bei 9 Patienten war die Anwendung dieser Risikoklassifikation aufgrund fehlender Daten nicht möglich. 20 der auswertbaren 29 Patienten (69,0%) wurden in die ungünstige, 6 von 29

Patienten (20,7%) in die intermediäre Kategorie eingeteilt. Im Vergleich zur Einteilung nach MRC wurden 3 Patienten (10,3%) mit normalem Karyotyp durch das Vorliegen einer *NPM1* Mutation ohne gleichzeitiger *FLT3-ITD* der günstigen Kategorie zugewiesen

Abbildung 11 zeigt einen graphischen Vergleich zwischen MRC- und ELN-Risikoklassifikation.

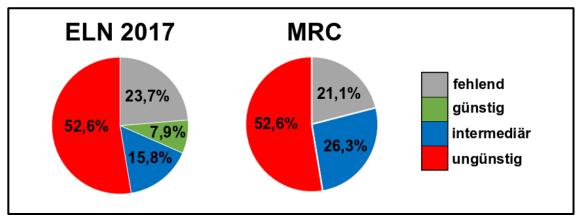


Abb. 11: Risikoklassifikation nach ELN 2017 und MRC (dargestellt sind alle 38 Patienten der AMKL Kohorte inkl. nicht auswertbarer Patienten).

3.7 Behandlungsergebnisse

3.7.1 Induktionsergebnisse

Die AMKL-Patienten wurden unterschiedlich - je nach Studie, individuellen Vorgaben und Behandlungsziel – therapiert (s. Methodenteil 2.5).

Initial erhielt ein Großteil der Patienten (86,8%) eine klassische Induktionstherapie: 14 von 38 Patienten (36,8%) wurden nach dem Schema TAD-HAM behandelt, 9 Patienten (23,7%) erhielten HAM-HAM, 7 Patienten (18,4%) wurde das S-HAM-Schema verabreicht und drei Patienten (7,9%) erhielten eine Therapie nach dem Schema 7+3.

Bei insgesamt 5 Patienten wurde keine Induktionstherapie durchgeführt: bei 3 Patienten mit MDS in der Vorgeschichte war bereits eine allo-SZT geplant, weshalb keine Induktionstherapie, sondern direkt eine allo-SZT durchgeführt wurde. Weitere zwei Patienten erhielten aufgrund der palliativen Situation lediglich eine zytoreduktive Chemotherapie mit Cytarabin.

Elf der initial intensiv behandelten 33 Patienten (33,3%) erreichten nach der Induktionstherapie eine komplette Remission, 3 eine CRi (9,1%), bei 13 Patienten (39,4%) persistierte die AMKL und 6 Patienten (18,2%) starben, bevor ein Induktionsergebnis erhoben werden konnte (s. Methodenteil 2.4.4, Abbildung 11). Betrachtet man das Induktionsergebnis der AMKL Patientenkohorte nach ELN-Risikogruppen getrennt zeigt sich Folgendes: 4 von 5 Patienten (80,0%) der intermediären Risikogruppe, jedoch nur 4 von 19 Patienten (21,0%) der ungünstigen Risikogruppe erreichten eine CR/CRi. Eine Persistenz der AMKL zeigte sich in der intermediären Risikogruppe nur bei einem Patienten, wohingegen in der ungünstigen Risikogruppe bei 10 von 19 Patienten (52,6%) eine Persistenz dokumentiert wurde und 5 von 19 Patienten (26,3%) in der Phase der Induktionstherapie verstarben. In der nach ELN 2017 günstigen Risikogruppe (n=3) erreichten die Patienten eine CR bzw. CRi. In der Gruppe der Patienten, bei denen nicht ausreichend Informationen für eine Zuordnung nach ELN 2017 vorlagen (n=7), erreichten 4 Patienten eine CR/CRi, bei 2 Patienten persistierte die AMKL und ein Patient verstarb während der Induktionsphase.

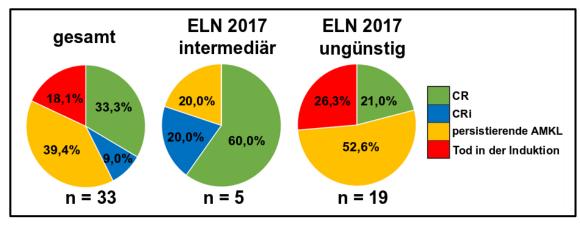


Abb. 12: Ergebnisse der Induktionstherapie

3.7.2 Gesamtüberleben

Das Gesamtüberleben in der Kohorte betrug im Median 228 Tage (95% Konfidenzintervall (KI) 150-425 Tage) (Abbildung 13).

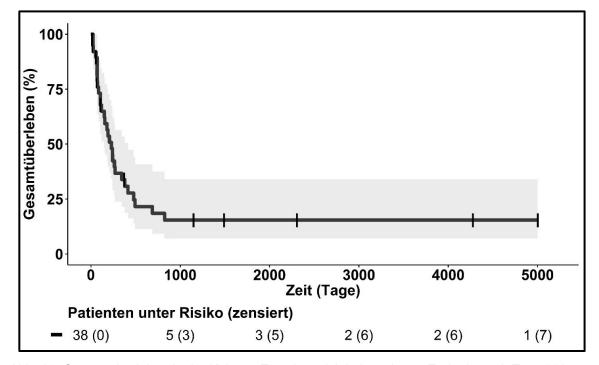


Abb. 13: Gesamtüberleben in der Kohorte. Es zeigte sich kein weiteres Ereignis nach Tag 5000.

Teilt man die intensiv behandelten Patienten nach der ELN 2017 Risikoklassifikation ein, zeigt sich ein überlegenes Gesamtüberleben für die intermediäre Risikogruppe verglichen mit der ungünstigen Risikogruppe. Das mediane Gesamtüberleben der intermediären Risikogruppe betrug 825 Tage (95% KI 228 – nicht erreicht), im Gegensatz zu der Gruppe mit ungünstigem Risikoprofil mit einem medianen Gesamtüberleben von 194 Tagen (95% KI 105 – 378) (p-Wert 0,072). Patienten, bei denen eine Zuordnung zur ELN Risikoklassifikation aufgrund fehlender Parameter nicht möglich war, hatten ein medianes Gesamtüberleben von 268 Tagen (95% KI 73 – nicht erreicht) (Abbildung 14).

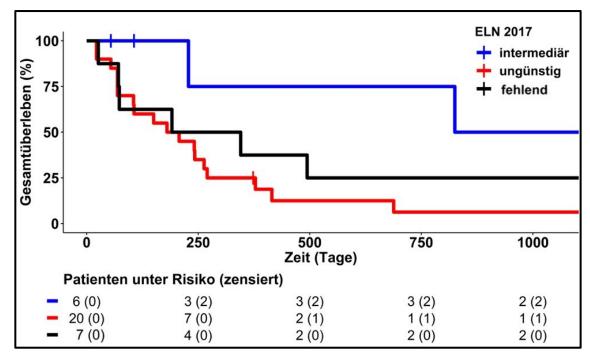


Abb. 14: Gesamtüberleben nach ELN 2017 Risikoklassifikation. Es zeigte sich kein weiteres Ereignis nach Tag 1000. Patienten, die in palliativer Indikation zytoreduktiv behandelt wurden und Patienten in der günstige Risikogruppe nach ELN 2017 (n=3) sind aufgrund kleiner Fahllzahlen nicht dargestellt.

Teilt man die Patienten der AMKL-Kohorte entsprechend der MRC Klassifikation ein, zeigt sich kein Unterschied im Gesamtüberleben zwischen der intermediären und ungünstigen Risikogruppe. Das mediane Gesamtüberleben in der intermediären Risikogruppe lag bei 228 Tagen (95% Kl 118 – nicht erreicht) und in der ungünstigen Risikogruppe bei 241,5 Tagen (95% Kl 150 – 415) (p-Wert 0,78). Patienten, die aufgrund fehlender Informationen keiner Risikogruppe zugeordnet werden konnten, hatten ein medianes Gesamtüberleben von 191 Tagen (95% Kl 26 – nicht erreicht) (Abbildung 15).

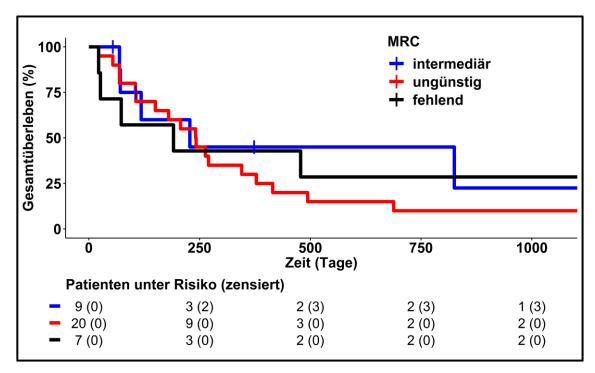


Abb. 15: Gesamtüberleben nach MRC-Risikoklassifikation. Es zeigte sich kein weiteres Ereignis nach Tag 1000. Patienten, die in palliativer Indikation zytoreduktiv behandelt wurden, sind nicht dargestellt.

Auch hinsichtlich des AMKL-Ursprungs zeigte sich kein Unterschied im Gesamtüberleben zwischen de novo- und s/t-AMKL-Formen. Patienten mit de novo- AMKL hatten ein medianes Gesamtüberleben von 241 Tagen (95% KI 180-825) und Patienten mit sekundärer oder therapie-assoziierter AMKL ein medianes Gesamtüberleben von 263 Tagen (95% KI 69 – nicht erreicht) (p-Wert 0,32) (Abbildung 16).

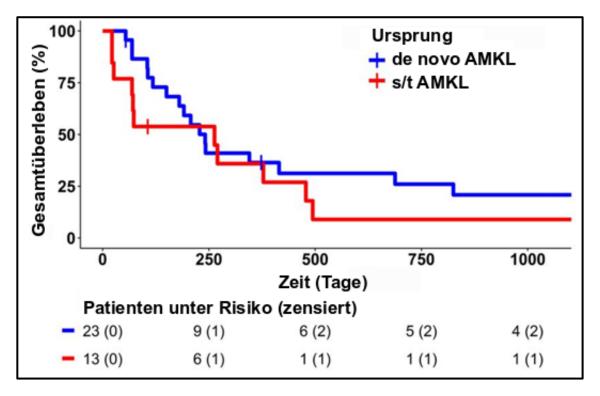


Abb. 16: Gesamtüberleben nach Ursprung der AMKL. Es zeigte sich kein weiteres Ereignis nach Tag 1000. Patienten, die in palliativer Indikation zytoreduktiv behandelt wurden, sind nicht dargestellt.

3.7.3 Allogene Stammzelltransplantation

Vierzehn Patienten der Kohorte erhielten eine allo-SZT (Tabelle 17). Da es sich bei diesem Patientenkollektiv vorwiegend um jüngere Patienten mit gutem Therapieansprechen und Allgemeinzustand handelt, ist diese retrospektive Auswertung der Daten durch den klinischen Verlauf stark beeinflusst und insbesondere im Vergleich zu den Patienten, die keine allo-SZT erhielten, verzerrt.

Im Median waren die Patienten zum Zeitpunkt der Transplantation 52 Jahre alt (Spannweite 36 - 73 Jahre).

Bei 5 von 14 Patienten (35,7%) wurde die allo-SZT in Remission durchgeführt, bei ebenfalls 5 von 14 (35,7%) Patienten erfolgte die allo-SZT bei persistierender bzw. rezidivierter AMKL. Bei drei von 14 (21,4%) Patienten mit einem MDS in der Vorgeschichte wurde eine direkte allo-SZT durchgeführt. Für einen Patienten liegen keine Informationen über den Leukämie-Status zum Transplantationszeitpunkt vor. Vier der 14 Patienten (28,6%) erhielten eine HLA-kompatible Fremdspende (Erklärung s. Methodenteil 2.5.6). 8 Patienten (57,1%) erhielten eine Stammzellspende von einem Familienmitglied, davon waren in fünf Fällen Spender und Empfänger HLA-ident und in zwei Fällen HLA-haploident. Bei drei Patienten fehlen Daten zum HLA-Status bzw. Spender.

Nach der ELN-Risikoklassifikation 2017 wurden 7 der 14 transplantierten Patienten (50,0%) der ungünstigen Risikogruppe zugeordnet. 3 von 14 Patienten (21,4%) wurden der intermediären Risikogruppe zugewiesen und ein Patient war in der günstigen Risikogruppe. Bei 3 Patienten war die Einteilung nach ELN aufgrund fehlender Daten nicht möglich.

Das mediane Gesamtüberleben nach Transplantation betrug 366 Tage (95% KI 142 – nicht erreicht). Die Zeit bis zum Rezidiv nach allo-SZT betrug im Median 189 Tage (95% KI 106 – nicht erreicht) und die kumulative Inzidenz eines Rezidivs nach allogener Stammzelltransplantation lag bei 62,0%.

Für fünf der 14 Patienten (35,7%) wurde nach der Stammzelltransplantation kein Rezidiv dokumentiert, hierunter waren 3 Patienten mit einer Nachbeobachtungszeit von mehr als 2 Jahren. Für 8 von 14 Patienten (57,1%) wurde ein Rezidiv nach allo-SZT dokumentiert, diese traten bei 7 der 8 Patienten innerhalb eines Jahres auf. Bei einem Patienten fehlen Daten zum Verlauf nach der Transplantation.

Tab. 17: Übersicht und genauere Informationen über die allo-SZT-Patienten.

Pat-	Alter bei allo-SZT [Jahre]	AMKL-Status vor allo-SZT	Spendertyp, HLA-Status	Risikoeinteilung nach ELN 2017	Rezidiv nach allo-SZT	Zeit bis zum Rezidiv nach allo-SZT [Tage]	
3	45	fehlend	fehlend	intermediär	nein		
5	42	Remission	Familie, HLA-ident	ungünstig	ja	106	
7	51	Remission	Familie, HLA-Status fehlend	ungünstig	ja	156	
9	53	Remission	Familie, HLA-ident	intermediär	nein		
17	43	Remission	n Familie, ungüns HLA-ident		ja	160	
19	41	Rezidiv/ Persistenz	Familie, HLA-haploident	ungünstig	ja	701	
22	55	Rezidiv/ Persistenz	Fremd, HLA-kompatibel	fehlend	fehlend		
25	39	direkte allo-SZT	Familie, HLA-ident	fehlend	ja	352	
27	60	direkte allo-SZT	Fremd, HLA-kompatibel	ungünstig	ja	293	
28	61	Rezidiv/ Persistenz	Fremd, HLA-kompatibel	günstig	ja	189	
30	73	Rezidiv/ Persistenz	Fremd, HLA-kompatibel	ungünstig	nein		
33	36	Rezidiv/ Persistenz	Familie, HLA-ident	ungünstig	ja	37	
34	66	Remission	fehlend	fehlend	nein		
38	52	direkte allo-SZT	Familie, HLA -haploident	intermediär	nein		

Vergleicht man das mediane Gesamtüberleben der Patienten, die eine allo-SZT erhielten, mit denjenigen, die eine ausschließlich Chemotherapie-basierte Behandlung erhielten, zeigt sich mit einem medianen Gesatmtüberleben von 366 Tagen (95% KI 142 – nicht erreicht) ein statistisch signifikant überlegenes Gesamtüberleben für die allo-SZT-Gruppe im Vergleich zu einem medianen Gesamtüberleben von 106 Tagen (95% KI 71 – 270) bei den nicht-Stammzelltransplantierten Patienten (p-Wert 0,006) (Abbildung 17).

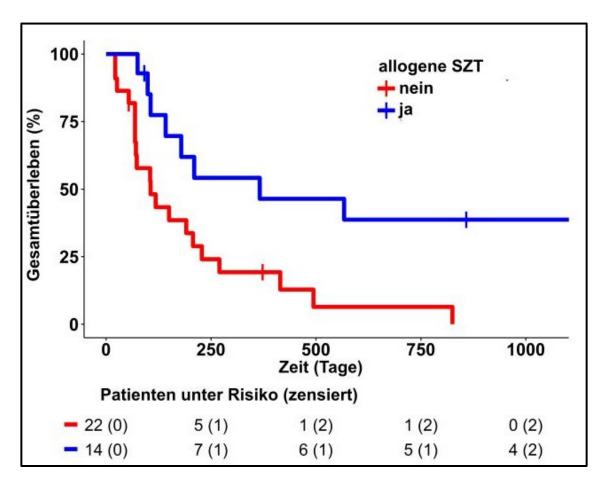


Abb. 17: Gesamtüberleben gerechnet ab dem Zeitpunkt der allo-SZT bzw. ab Diagnose/Behandlungsbeginn. Es zeigte sich kein weiteres Ereignis nach Tag 1000. 2 Patienten, die in palliativer Indikation zytoreduktiv behandelt wurden sind nicht dargestellt.

4. Diskussion

In dieser Arbeit wurden klinische, zyto- und molekulargenetische Daten von 38 Patienten mit AMKL erhoben, um die Patientengruppe mit dieser seltenen AML-Unterform besser zu charakterisieren. Außerdem erfolgte die Auswertung der Überlebensdaten und Bewertung des Stellenwerts der allo-SZT in der AMKL-Therapie.

4.1 Diskussion der Methoden

Da es sich um eine retrospektive Studie handelte, ergeben sich Limitierungen, die bei diesem Studiendesign nicht zu vermeiden sind. So führten lücken- oder fehlerhafte Dokumentation sowie fehlende Verfügbarkeit von Daten dazu, dass im Rahmen des Selektionsprozesses zahlreiche Fälle ausgeschlossen werden mussten. Für einige Patienten war es nicht möglich, den Todeszeitpunkt – oder Informationen zum Überleben – in Erfahrung zu bringen, sodass das Datum des letzten Kontakts als Endpunkt herangezogen wurde. Dadurch kann die Aussagekraft von Überlebenszeitanalysen eingeschränkt sein.

Ebenso der Retrospektivität geschuldet ist die Tatsache, dass bei 17 Patienten keine Knochenmarkstanze und damit kein Material zur histologischen Evaluation zur Verfügung stand. Einige Knochenmarkstanzen waren in den pathologischen Instituten nicht verfügbar und in anderen Fällen war das Material schon aufgebraucht. Von den 25 Patienten, deren Diagnose nochmals histologisch gesichert wurde, wurden 4 ausgeschlossen. Für die 17 Patienten ohne Knochenmarkstanze konnte die histopathologische Diagnosesicherung nicht stattfinden.

Von initial 53 identifizierten Patienten konnten nach Sichtung der Daten und Beurteilung durch einen Referenzpathologen nur 38 Patienten in die Auswertungen eingeschlossen werden. Durch die Verringerung der Fallzahlen sinkt zwar die Aussagekraft von statistischen Vergleichen, Überlebenszeitberechnungen und genetischen Profilen; durch die strikten Einschlusskriterien und die Reevaluation der Diagnosen wird die Qualität der Gesamtdaten jedoch deutlich aufgewertet.

Aufgrund fehlender Einwilligungen für genetische Analysen konnten bei 3 Patienten aus der AMLCG 04 Studie nur klinische Daten ausgewertet werden. Bei den

anderen Patienten wurde DNA für die genetischen Analysen aus asserviertem peripherem Blut, Material aus Knochenmarkaspirationen oder Knochenmarkstanzen gewonnen (s. Methodenteil 2.7.2).

Knochenmarkstanzen sind üblicherweise in Paraffin eingebettet (sog. FFPE-Material). Durch die Paraffineinbettung der Knochenmarkstanzen nimmt die DNA-Qualität ab und liegt in manchen Fällen sehr fragmentiert vor [84]. Weiterhin gibt es einen Zusammenhang zwischen zunehmender Lagerungsdauer und abnehmender Qualität der DNA [85]. Die DNA-Extraktion musste bei diesen Proben teilweise mehrmals wiederholt werden, um aussagekräftige Ergebnisse zu erhalten. Wo es möglich war, wurde deshalb zur DNA-Analyse asserviertes Material aus peripherem Blut oder Knochenmarksaspirationen verwendet, bei 9 Patienten musste jedoch DNA aus Knochenmarkstanzen gewonnen werden.

Durch die Anwendung eines für FFPE-Material optimierten DNA-Extraktionsverfahrens war es möglich, trotz der geringen AMKL-Inzidenz ein repräsentatives Studienkollektiv zu sammeln und die größte bisher publizierte AMKL-Analyse mit genetischen Daten vorzulegen.

4.2 Diskussion der Ergebnisse

4.2.1 Patientenkollektiv

Das Patientenkollektiv der Arbeit ist sehr heterogen. Mit einem medianen Alter von 58 Jahren (21-80 Jahre) sowie einem höheren Anteil an männlichen Patienten (65,8%) ähnelt das Kollektiv dem anderer publizierter AMKL-Studien [30, 31, 43]. In der Altersverteilung unterscheiden sich AMKL-Patienten nicht vom AMLCG-Studienkollektiv, jedoch scheint bei der AMKL der Anteil an erkrankten Männern höher als bei anderen AML-Formen zu sein [86]. Dies beschrieben auch schon Tallman et al. in der Analyse aus der ECOG-Studiengruppe [42].

Extramedulläre Manifestationen (EM) der AML werden in der Literatur generell bei 2-9% der Patienten beschrieben [87, 88]. Gehäuft finden sich diese mit einem Auftreten in 15,5% der Fälle bei der core binding factor-AML (CBF-AML) [89]. Jedoch fand sich auch in dieser Kohorte mit einem Vorkommen von 17,0% bei Erstdiagnose ein sehr hoher Anteil an EM. Das Auftreten von EM bei AMKL-Patienten wurde in der Literatur bisher mit 8-10% beschrieben [41, 42].

Eine der bei Patienten mit EM-AML in der Literatur am häufigsten beschriebenen genetischen Aberrationen ist die Aberration t(8;21)(q22;q22), die mit einer günstigen Prognose einhergeht [53, 90, 91]. Diese Aberration ist eine der beiden Veränderungen, die die CBF-AML zytogenetisch definiert [89].

Bezüglich der Prognose von AML-Patienten mit EM im Allgemeinen finden sich unterschiedliche Angaben in der Literatur; Solh et al. beschreiben mit einem 5-Jahres-OS von 20-30% eine im Vergleich zu non-EM-AML-Patienten schlechtere Prognose von Patienten mit gleichzeitigem medullär und extramedullär vorliegendem AML-Befall [92]. Bourlon et al. jedoch analysierten 303 AML-Patienten, von denen 39 Patienten (12,9%) eine EM bei Erstdiagnose hatten; in den Überlebensanalysen ergaben sich keine signifikanten Unterschiede zwischen der EM-AML- und der non-EM-AML-Gruppe [93].

Bei 39,5% der Patienten in dieser Kohorte entwickelte sich die AMKL sekundär auf dem Boden einer hämatologischen Vorerkrankung wie MDS, Polycythämia vera (PV), essentielle Thrombozythämie (ET) oder therapie-assoziiert nach Bestrahlung bzw. Chemotherapie in der Vorgeschichte. Eine Häufung dieser AML-Genese bei AMKL-Patienten wird in der Literatur bereits beschrieben: Oki et al. untersuchten 37 Patienten mit AMKL und beschrieben eine s/tAMKL-Rate von 78,4% [30]. Dastugue et al. dagegen fanden eine ungewöhnlich niedrige s/t-AMLKL-Rate von nur 9,5%, möglicherweise beeinflusst durch eine hohe Dunkelziffer an nicht diagnostizierten Störungen, die der AMKL vorangehen (vgl. S. 55) [31]. Die häufigste einer AMKL vorausgehende Erkrankung ist das MDS, was zu Beginn auch eine wichtige Differentialdiagnose zur AMKL darstellt und initial häufig zu Verwechslungen führt [94]. Auch in dieser Kohorte mussten im Verlauf 4 Patienten ausgeschlossen werden, bei denen nicht wie dokumentiert eine AMKL, sondern in Zusammenschau der Befunde ein MDS vorlag. Diese stellt eine mögliche Ursache für die niedrige s/t-AMKL-Rate in dieser Kohorte dar.

Auffällig bei der Sichtung der klinischen Daten war die Häufung von Patienten mit *BCR-ABL*-positiver CML in Blastenkrise, die eine megakaryoblastäre Differenzierung der Blasten aufwiesen. Diese waren in den Akten teilweise als sAMKL mit CML als Primärerkrankung dokumentiert worden. Aufgrund der in diesen 6 Fällen vorbeschriebenen CML wurden diese Patienten jedoch in der Auswertung

nicht berücksichtigt. Bereits in anderen publizierten Studien zeigte sich, dass die Unterscheidung zwischen einer CML in megakaryozytärer Blastenkrise und einer AMKL schwierig ist. Dastugue et al. und Duchayne et al. berichteten jeweils von einem Patienten mit vorbekannter CML in ihren AMKL-Kohorten, die sie auch in die Analysen einschlossen [31, 36]. Oki et al. berichtete von 3 Patienten mit AMKL und Philadelphia-Chromosom ohne Hinweis auf CML in der Vorgeschichte [30].

In diesem Patientenkollektiv befindet sich ebenfalls ein Patient mit der Translokation t(9;22) ohne dokumentierten Hinweis auf eine CML in der Vorgeschichte. Die CML mit megakaryoblastärer Blastenkrise wurde häufiger in Einzelfallstudien beschrieben, in denen auch diskutiert wird, ob es sich um eine AML mit Aberration t(9;22) oder um eine CML handelt [95, 96]. Die von Oki et al. vorbeschriebenen 8% BCR-ABL-positiven AMKL-Fälle konnten in diesen Analysen nicht bestätigt werden; es könnte sich um eine Verfälschung in der Literatur durch nicht vorbekannte CML-Erkrankungen in megakaryozytärer Blastenkrise handeln, die rein morphologisch nicht von einer AMKL unterschieden werden können [30].

4.2.2 Histopathologische und immunhistochemische Beurteilung

Die Diagnosesicherung der AMKL stellt eine Herausforderung dar, da aufgrund der häufig bestehenden ausgedehnten Retikulinfaserfibrose keine Knochenmarkaspiration möglich ist. In diesem Patientenkollektiv zeigte sich bei ausnahmslos allen Patienten eine Fibrose, welche in 76% der Fälle ausgeprägt vorhanden war. Das häufige Vorkommen der Fibrose wird in der Literatur regelhaft bei AMKL-Patienten beschrieben [30, 41, 42]. Eine Erklärung hierfür kann die vermehrte Produktion aktivierender Fibroblasten-Faktoren die durch megakaryozytär differenzierten Blasten bei der AMKL sein [97].

Die histopathologischen Befunde in dieser Kohorte ließen sich anhand der Blasten-Morphologie in Formen der AMKL mit und ohne Ausreifung einteilen. Auch Duchayne et al. teilten in ihren Analysen die AMKL-Patienten in vier Gruppen nach Morphologie und Differenzierungsgrad der Blasten ein [36]. Diese Einteilung weist Parallelen zur Einteilung des Referenzpathologen auf. Wie auch bei Duchayne et al. konnte jedoch in dieser Kohorte kein Korrelat zu genetischen oder prognostischen Faktoren gefunden werden; dies könnte jedoch an den geringen Patientenzahlen in den Studien liegen und sollte Gegenstand weiterer Studien sein.

4.2.3 Zytogenetik

In dieser Studie wurden die vollständigen Karyotypen von 30 Patienten analysiert. Dies stellt die größte je durchgeführte zytogenetische Analyse der AMKL beim Erwachsenen dar. Nur 8 der Patienten (26,7%) hatten einen zytogenetisch normalen Karyotyp. Weitere 8 Patienten (26,7%) hatten einen komplex-aberranten Karyotyp nach MRC (4 oder mehr nicht zusammenhängende strukturelle oder numerische Aberrationen) [51]. Diese Ergebnisse stehen im Einklang mit der AMKL-Literatur, wo in den wenigen bisher publizierten zytogenetischen Analysen ebenfalls eine hohe Rate an komplexen Karyotypen bei erwachsenen AMKL-Patienten gefunden wurde [30, 31]. Damit liegt der Anteil komplex-aberranter Karyotypen bei der AMKL höher als bei anderen AML-Subgruppen [50]. Ebenso ist der Anteil der in dieser Kohorte häufig gefundenen, prognostisch ungünstigen Aberrationen Monosomie 7/del(7q), Monosomie Monosomie 5/del(5q), 17 und inv(3) inv(3)/t(3;3)(q21;q26) höher als in einer unselektierten Patientenkohorte (s. Ergebnisteil 3.4, Abbildung 6) [51]. Diese Häufung negativer prognostischer zytogenetischer Veränderungen kann ein möglicher Grund der schlechten Prognose in vorliegender Kohorte sein. Aufgrund der kleinen Fallzahlen waren jedoch keine differenzierten Analysen bezüglich des Einflusses auf das Überleben möglich.

In dieser Kohorte am häufigsten von Aberrationen betroffen war Chromosom 7. Duchayne et al. fanden vergleichbare Häufigkeiten der genannten Veränderungen [36]. Die zytogenetischen Analysen von Oki et al. ergaben ein etwas häufigeres Auftreten von Monosomie 7 [30].

In einer unselektierten AML-Kohorte zeigten sich Aberrationen von Chromosom 7 bedeutend seltener und waren mit einer schlechten Prognose assoziiert (s. Ergebnisteil 3.4, Abbildung 6) [51].

Eine Besonderheit stellt die Aberration der(1;7)(q10;p10) dar, die zu einem Verlust des langen Arms von Chromosom 7 (del7q) und zu einem Zugewinn des langen Arms von Chromosom 1 führt (Trisomie 1q). Somit kann man diese Aberration als Variante von del(7q) sehen, sie wird aber als eigenständige, charakteristische Aberration beim MDS beschrieben und ist sehr häufig mit einer *RUNX1*-Mutation vergesellschaftet. Ob diese Aberration prognostisch auf andere Weise als del(7q)

zu werten ist, wurde in der Literatur kontrovers diskutiert [98-100]. Ganster et al. zeigten in einer Analyse von 116 MDS-Patienten, dass Patienten mit isolierter Aberration der(1;7) eine bessere Prognose als andere Chromosom 7-Aberrationen aufweisen und seltener in eine AML transformieren [101]. In der AML ist die Aberration als sehr selten beschrieben und der prognostische Wert nicht geklärt.

Dastugue et al. fanden – äquivalent zu vorliegenden Analysen – eine hohe Rate komplex-aberranter Karyotypen sowie die häufig vorkommenden Aberrationen Monosomie 7, del(7q) und Monosomie 5. Daher ist zu diskutieren, ob die AMKL womöglich viel häufiger sekundär entsteht als dokumentiert oder bisher in der Literatur angegeben. Man vermutet eine hohe Dunkelziffer an nicht diagnostizierten, der AMKL vorausgehenden Störungen, vor allem eine hohe Rate an MDS [31]. Diese Vermutung kann durch die vorliegenden zytogenetischen Analysen dieser AMKL-Kohorte untermauert werden und könnte das schlechte Outcome bei AMKL-Patienten zum Teil erklären, da die AML mit MDS-verwandten Veränderungen eine schlechtere Prognose aufweist [102].

Ein weiteres interessantes Ergebnis dieser Analysen ist die Häufung von Aberrationen betreffend Chromosom 1q: 10 Patienten (33,3%) in dieser Kohorte wiesen solche Veränderungen auf, die bei AMKL-Patienten nicht vorbeschrieben sind und nur bei etwa 1% der unselektierten AML-Patienten vorkommen [51]. In dieser Kohorte zeigten sich 6 Duplikationen, 3 Translokationen, eine Insertion und eine komplexe Aberration an 1q. Insertionen und Bruchstellen lagen in dem Bereich 1q21~1q32 (s. Ergebnisteil 3.4, Abbildung 7). Unter anderem liegen die Gene ABL2, PRRX1, ARNT und MLLT11 in diesem Bereich, die laut dem Cancer Gene Census der Cosmic Datenbank mit der Entstehung einer AML in Verbindung gebracht werden [103]. Aufgrund dieses großen Abschnitts, in dem neben den genannten auch viele weitere Gene liegen, ist auf Grundlage der aktuellen Analysen jedoch insgesamt keine Aussage über die genaue genetische Entstehung oder Begründung der schlechten Prognose der AMKL zu treffen.

In der Literatur wurden Aberrationen von Chromosom 1q in *BCR-ABL* negativen myeloproliferativen Neoplasien (MPN) sowie beim MDS bei Erwachsenen beschrieben [104, 105]. In dieser AMKL-Kohorte lag jedoch nur bei 3 von 10 Patienten mit Aberration 1q eine sAMKL vor.

Das Multiple Myelom stellt eine weitere Erkrankung dar, in der Aberrationen von Chromosom 1q vorkommen; ein Zugewinn von Chromosom 1q ist mit einer schlechten Prognose und frühzeitigem Fortschreiten der Erkrankung assoziiert [106, 107].

Aberrationen und Duplikationen von 1q wurden also bei anderen hämatologischen Neoplasien als negativ prognostischer Marker identifiziert; dies kann ein Hinweis auf eine genetische Ursache der schlechten Prognose der AMKL-Patienten sein. Allerdings wurden aufgrund der kleinen Fallzahlen in dieser Subgruppe bislang keine Auswertungen hinsichtlich des Überlebens publiziert. Vorliegende Analysen stellen die ersten Hinweise auf diesen Zusammenhang bei der AMKL dar.

Auch bei der AMKL im Kindesalter zeigen sich Aberrationen von Chromosom 1q. Bei der kindlichen DS-AMKL sind diese deutlich häufiger als bei der kindlichen non-DS-AMKL (16,0% vs. 2,0%) [108]. Silva et al. fanden bei 4 DS-AMKL-Patienten – alle mit MDS in der Vorgeschichte – unbalancierte Translokationen von Chromosom 1q [109]. Bei Blink et al. kam die Aberration dup(1q) bei 14 von 358 (4,0%) untersuchten DS-AMKL-Patienten vor und war mit einer guten Prognose assoziiert [110]. Abschließend kann der prognostische Wert dieser Aberration aufgrund kleiner Fallzahlen nicht geklärt werden, Aberrationen von Chromosom 1q scheinen jedoch eine Rolle in der Pathogenese der DS-AMKL zu spielen [109, 111].

Da die AMKL bei Kindern mit Down-Syndrom eine spezielle Untergruppe darstellt, wurden Aberrationen betreffend Chromosom 21 auch in dieser Kohorte sehr genau analysiert: nur 2 Patienten hatten eine Trisomie 21 mit weiteren prognostisch ungünstigen Markern und bei 3 Patienten war Chromosom 21 in komplexe chromosomale Aberrationen involviert. Somit gab es in diesen Analysen keinen Hinweis darauf, dass Chromosom 21 eine Rolle in der Pathogenese der AMKL beim Erwachsenen spielt.

In dieser Kohorte wurden zudem keine rekurrenten strukturellen Aberrationen wie t(1;22)(p13;q13) (*RBM15-MKL1*), t(11;12)(p15;p13) (*NUP98-KDM5A*), inv(16)(p13q24)(*CBFA2T3-GLIS2*) oder 11q23 (*KMT2A*) identifiziert, welche häufig in der kindlichen non-DS-AMKL gefunden werden [38]. Diese Ergebnisse legen nahe, dass die kindliche AMKL eine biologisch differente Erkrankung als die AMKL beim Erwachsenen darstellt.

4.2.4 Molekulargenetik

Bei 26 Patienten wurden molekulargenetische Analysen durchgeführt und 47 Gene bzw. Genregionen untersucht. Die Häufigkeiten der gefunden Mutationen unterscheiden sich teils stark von den von Metzeler et al. bei 664 unselektierten AML-Patienten identifizierten Mutationen (s. Ergebnisteil 3.5, Abbildung 9) [18].

In den bisher publizierten AMKL-Analysen mit klinischen und zytogenetischen Daten wurden kaum molekulargenetische Untersuchungen durchgeführt [30, 36, 41, 42]. McNulty et al. geben in einer 2019 veröffentlichten Übersichtsarbeit Einblicke in die Entwicklung der kindlichen AMKL, jedoch nicht in die Pathogenese der AMKL beim Erwachsenen [112]. In einer anderen Analyse wurde unter 12 erwachsenen AMKL-Patienten in 3 Fällen die Mutation MPL^{W515L} nachgewiesen [113]. Malinge et al. untersuchten 39 AMKL-Patienten und konnten bei der Analyse einzelner Exons Mutationen in den untersuchten Genen KIT, FLT3, JAK2, JAK3 und MPL nachweisen; jedoch kamen diese Mutationen nur bei der kindlichen AMKL und nicht bei den 8 untersuchten Erwachsenen vor [114]. Auch in vorliegenden Analysen konnten keine MPL-Mutationen identifiziert werden.

De Rooij et al. führten Exom-Analysen bei 24 erwachsenen AMKL-Patienten durch und fanden vor allem Mutationen in *TP53, ASXL1, DNMT3A* sowie in Genen des Cohesin-Komplexes und von Splicing-Faktoren (s. Tabelle 18) [38]. Diese Ergebnisse sind den Zahlen aus den vorliegenden Analysen sehr ähnlich.

Die vom allgemeinen AML-Kollektiv abweichende Mutationsverteilung kann an der geringeren Größe dieses AMKL-Studienkollektivs liegen. Die Zahlen von de Rooij et al. stärken vorliegende Ergebnisse, sodass ein hoher Anteil prognostisch ungünstiger Mutationen wie *TP53* typisch für die AMKL beim Erwachsenen zu sein scheint.

Tab. 18: Vergleich von molekulargenetischen Analysen.

Studie	Patienten (>18 Jahre)	Cohesin- Gene	Splicing- Faktor-Gene	TP53	ASXL1	DNMT3A
De Rooij et	24 AMKL -	16,7%	16,7%	20,8%	16,7%	12,5%
al. [38]	Patienten	10,7 70	10,7 70	20,676	10,7 70	12,576
vorliegende	26 AMKL-	22.40/	19,2%	22.00/	44 E0/	15 40/
Arbeit	Patienten	23,1%	19,2%	23,0%	11,5%	15,4%
Metzeler et	664 AML -	14.00/	10.00/	0.00/	11,0%	24.00/
al. [18]	Patienten	14,0%	19,0%	9,0%	11,070	31,0%

Vor allem die hohe Rate an *TP53*-Mutationen in vorliegenden Analysen lässt sich auch durch den großen Anteil an komplexen Karyotypen erklären: für 6 von den 8 Patienten mit komplex-aberrantem Karyotyp konnten molekulargenetische Untersuchungen durchgeführt werden. 4 von ihnen hatten eine gleichzeitig vorliegende *TP53*-Mutation. Dies deckt sich mit den Daten von Rücker et al., die bei 70% der AML-Patienten mit komplex-aberrantem Karyotyp eine *TP53*-Mutation fanden. Diese Konstellation ging mit höherem Alter, einer geringeren CR-Rate und einem kürzeren Gesamtüberleben einher [115].

Mutationen im Gen GATA1 sind charakteristisch für DS-assoziierte myeloproliferative Störungen und wurden in nahezu allen Fällen von kindlicher DS-AMKL nachgewiesen [116]. Bei der non-DS-AMKL – egal ob kindlich oder im Erwachsenenalter – kommen Mutationen von *GATA1* mit 5-10% der Fälle selten vor [117]. Auch De Rooij et al. fanden GATA1-Mutationen bei lediglich 8 der 87 untersuchten Kinder mit non-DS-AMKL sowie bei einem der 24 untersuchten Erwachsenen [38]. Es fand sich eine GATA1-Mutation bei einem Patienten, die nicht vergesellschaftet mit Aberrationen von Chromosom 21 war. Diese Ergebnisse unterstreichen erneut die genetischen Unterschiede zwischen non-DS-AMKL und DS-assoziierter AMKL.

4.2.5 Risikoklassifikationen

Die Risikoeinteilung nach ELN veranschaulicht das ungünstige genetische Risikoprofil in unserer Patientenkohorte (ungünstig: 68,9%, intermediär: 20,7%, günstig: 10,3%). Vergleicht man die ELN-Risikoeinteilung der unselektierten AML-Kohorte von Metzeler et al. zeigt sich ein mehr als dreifach erhöhter Anteil an Patienten mit ungünstigem Risikoprofil (21,0% vs. 68,9%) und im Gegenzug ein stark erniedrigter Anteil von Patienten mit günstigem Risiko (28,4% vs. 10,3%) in der AMKL-Kohorte [18]. Aufgrund der bisher fehlenden molekular- und zytogenetischen Analysen bei AMKL-Patienten ist an dieser Stelle kein Vergleich mit publizierten Patientenkollektiven möglich.

Interessant ist auch ein Vergleich der MRC-Risikoklassifikation, die nur die Zytogenetik berücksichtigt. Auch nach dieser Einteilung liegt in der AMKL-Kohorte ein ungünstiges Risikoprofil vor (ungünstig: 70,0%, intermediär: 30,0%, günstig:

0,0%). In anderen AMKL-Publikationen zeigte sich ebenfalls eine hohe Rate an ungünstigen zytogenetischen Aberrationen sowie viele komplex-aberrante Karyotypen [29]. In der unselektierten AML-Kohorte haben zum Vergleich nur 20,0% Patienten ein ungünstiges und 70,0% ein intermediäres Risiko [18]. Dies legt die Vermutung nahe, dass die schlechte Prognose der AMKL-Patienten zu großen Teilen in dem extrem ungünstigen zytogenetischen Risikoprofil begründet liegt, denn die Zytogenetik wird als starker prognostischer Marker angesehen [118, 119].

Die AMKL-Analysen zeigen erneut, dass sich die Prognoseabschätzung durch die Berücksichtigung der molekulargenetischen Veränderungen im Rahmen der ELN 2017 Einteilung im Vergleich zu der MRC Klassifikation verbessert. Dies unterstreicht die Bedeutung der umfassenden genetischen Analyse von AMKL-Patienten.

4.2.6 Therapien und Überleben

In den bisherigen Studien lagen die CR-Raten von AMKL-Patienten bei 43-50% [30, 41, 42]. Somit zeigte unsere AMKL-Kohorte mit insgesamt 33,3% CR-Rate ein schlechteres Therapieansprechen. Vor allem die hohe Rate an Patienten, bei denen die AMKL persistierte, war auffällig. So persistierte nach der Induktionstherapie bei 10 von 19 Patienten (52,6%) der ungünstigen Risikogruppe nach ELN-Klassifikation die AMKL, eine CR/CRi erreichten in dieser Risikogruppe nur 21,0% der Patienten und 26,3% der Patienten verstarben in der Induktionstherapie. In der intermediären Risikogruppe persistierte die AMKL nur bei einem von 5 Patienten (20,0%), wohingegen die restlichen 4 Patienten in dieser Gruppe (80,0%) eine CR/CRi erreichten. Ein Patient war der günstigen Risikogruppe nach ELN zugeordnet, dieser erreichte eine CR/CRi nach der Induktionstherapie.

Der Grund für diese Unterschiede im Therapieansprechen bleibt unklar, liegt aber möglicherweise an einer Verzerrung durch die retrospektive Patientenauswahl sowie an dem hohen Anteil der Patienten mit ungünstigem genetischen Risikoprofil in vorliegender Kohorte. Da in den vorangegangenen Publikationen molekulargenetische und oftmals auch zytogenetische Daten fehlen, lassen sich die Patientenkollektive hinsichtlich ihres Risikoprofils nicht gut vergleichen.

Hinsichtlich des Gesamtüberlebens sind diese Daten mit den bisher aus den Jahren 1982-2011 erhobenen Daten vergleichbar. Das mediane Gesamtüberleben von 33 Wochen liegt in dem bisher veröffentlichten Bereich von 18-41 Wochen [29, 30, 36, 41-43]. Somit ergibt sich also trotz schlechterer CR-Rate ein ähnliches Gesamtüberleben der AMKL-Patienten. Die Patienten, deren Daten in den genannten Analysen ausgewertet wurden, waren im Zeitraum 1987 bis 2003 behandelt worden [30, 36, 41, 42]. Lediglich Giri et al. analysierten Patienten, die in der weiten Zeitspanne von 1981 bis 2011 behandelt worden waren [43]. Das Patientenkollektiv der vorliegenden AMKL-Analysen wurde in den Jahren 2000 bis 2016 mit einer AMKL erstdiagnostiziert; somit wurden unsere Patienten im Vergleich zu den bisher veröffentlichen Analysen zum Großteil 20 bis 30 Jahre später behandelt. Ein denkbarer Grund für das bessere Gesamtüberleben trotz schlechterer CR-Rate in unserer Kohorte kann der medizinische Fortschritt über die Jahre, die bessere Behandlung der Therapie-Nebenwirkungen sowie die wachsende Bedeutung der allo-SZT sein.

In den vorliegenden Analysen liegt der Anteil der Patienten, die eine allo-SZT erhielten, bei 36,8%; bei einem Vergleich der Patienten, die eine allo-SZT erhalten hatten, mit denjenigen, die nur mit Chemotherapie behandelt wurden, zeigt sich ein überlegenes Gesamtüberleben für die allo-SZT-Gruppe im Vergleich zu der non-allo-SZT-Gruppe (medianes OS 366 vs. 106 Tage). Der Anteil an Patienten mit allo-SZT im Patientenkollektiv der bisher veröffentlichten Analysen liegt mit 4,2-13,5% deutlich unter unserer Rate [30, 36, 41]. Aufgrund des geringen Anteils der allo-SZT-Patienten können keine aussagekräftigen OS-Vergleiche zwischen der allo-SZT und non-allo-SZT-Gruppe in diesen Kohorten erfolgen. Jedoch könnte auch der hohe Anteil an Patienten, die eine allo-SZT erhielten, ein Grund für das bessere Gesamtüberleben trotz schlechterer CR-Raten in vorliegenden Analysen sein.

Natürlich unterliegen diese Ergebnisse einer Verzerrung durch die retrospektive Auswahl der Patienten, die transplantiert werden konnten: jene, bei denen eine allo-SZT geplant war, aber nicht durchgeführt wurde oder nicht durchgeführt werden konnte, werden nicht in der Gruppe erfasst. Zudem wurden eher fittere, jüngere Patienten mit einer allo-SZT therapiert, welche im Vergleich zu älteren Patienten in

schlechterem Allgemeinzustand ohnehin einen besseren Krankheitsverlauf haben [30].

Die Rezidivrate nach allo-SZT lag mit 61,9% in diesem Patientenkollektiv sehr hoch; Garderet et. al fanden bei 32 erwachsenen AMKL-Patienten nach allo-SZT eine Rezidiv-Rate von 28,1 % [44]. In der Literatur werden in unselektierten AML-Kohorten Rezidivraten von 15-20% in der günstigen Risikogruppe nach ELN 2017 sowie Rezidivraten von 45-55% in der ungünstigen Risikogruppe nach ELN 2017 angegeben [53, 120, 121].

Bei Betrachtung der Ergebnisse zum Therapieansprechen und Überleben wird einem vor Augen geführt, wie schlecht die Prognose von AMKL-Patienten ist. Dies liegt vor allem an der hohen Rate an primärem und sekundärem Therapieversagen in dieser Kohorte, welches sich mit einem medianen rezidivfreien Überleben von 189 Tagen (95% KI 106 – nicht erreicht) auch nach allo-SZT zeigt. Nichtsdestotrotz scheinen Patienten mit allo-SZT eine bessere Prognose gegenüber Patienten ohne allo-SZT zu haben: kein Patient, der nur mit Chemotherapie behandelt wurde, konnte eine langfristige Remission erreichen.

Giri et al. und andere sehen die AMKL als unabhängigen prognostischen Faktor an [43]. Dies kann an vorliegenden Analysen nicht belegt werden; das schlechte Therapieansprechen ist eher auf die gehäuft auftretenden ungünstigen genetischen Risikomarker zurückzuführen. Somit kann eine Konsequenz aus vorliegender Studie sein, dass für AMKL-Patienten mit ungünstigem Risikoprofil nach ELN 2017 eine direkte allo-SZT angestrebt werden sollte; das Erreichen einer Remission mit reiner Chemotherapie als Behandlung ist für diese Untergruppe sehr unwahrscheinlich, die Todesrate während der Induktionstherapie liegt hoch. Für Patienten der intermediären Risikogruppe nach ELN 2017 oder für Patienten mit fehlenden genetischen Daten sollte eine allo-SZT in erster Remission angestrebt werden.

Ein zentrales Element in der physiologischen Megakaryopoiese stellt der Mechanismus der Endomitose dar; darin kommt wiederum dem Protein Aurora Kinase A eine wichtige Rolle zu [122, 123]. Gegenstand neuerer Forschungsprojekte ist die Induktion der terminalen Differenzierung und damit die

Hemmung der Zellteilung durch Aurora Kinase A-Inhibitoren wie Dimethylfasudil oder Alisertib [124, 125]. Eine klinische Phase I Studie zeigte für den Wirkstoff Alisertib bereits positive Ergebnisse: dieses bisher nicht zugelassene Medikament führte bei Patienten mit Myelofibrose zur Reduktion der KM-Fibrose und zur Normalisierung von Megakaryozytenzahlen [126]. Es wäre denkbar, dass solche Wirkstoffe in Zukunft auch in der AMKL-Therapie Anwendung finden könnten.

Zusammenfassung 65

5. Zusammenfassung

Die AMKL ist eine seltene Unterform der AML und wird in einigen Fallstudien als unabhängiger negativer Prognose-Faktor beschrieben [30, 43]. Informationen zu zytogenetischen und molekulargenetischen Untersuchungen, welche prognose-und therapieentscheidend sind, fehlen in den bisherigen Publikationen häufig. Um diese Daten zu vervollständigen und den Stellenwert der allo-SZT in der Postremissionstherapie klarer zu charakterisieren wurden klinische und genetische Analysen bei AMKL-Patienten durchgeführt.

Es wurden retrospektiv 38 Patienten mit AMKL untersucht, die in den AMLCG Studien oder nach AMLCG-Protokollen behandelt wurden. Die zytogenetischen Auswertungen zeigten eine Häufung von ungünstigen Prognose-Markern (68,9% ungünstige Risikogruppe nach ELN) und einen hohen Anteil an strukturellen Aberrationen von Chromosom 1q (33%). Für die meisten Patienten wurde eine amplicon-basierte Hochdurchsatz-Sequenzierung kodierender Bereiche von 47 Genen bzw. Gen-Abschnitten durchgeführt. Am häufigsten fanden sich Mutationen von TP53, TET2, JAK2 (je 26%) und RUNX1 (15%).

Die CR-Rate in dieser Kohorte lag bei 33%, das mediane OS war 33 Wochen. Ein überlegenes OS von 48 Wochen hatten Patienten, die eine allo-SZT als Postremissionstherapie (n=14) erhalten hatten. Die Rezidivrate nach allo-SZT war hoch (61,9%).

In der vorliegenden Studie konnte gezeigt werden, dass AMKL-Patienten eine extrem schlechte Prognose aufweisen. Einerseits kann diese durch das ungünstige genetische Risikoprofil der Patienten erklärt werden. Die größte Herausforderung liegt im primären und sekundären Therapieversagen, welches sich auch noch nach allo-SZT zeigt. Patienten mit allo-SZT scheinen eine überlegene Prognose zu haben. Aufgrund dessen kann das Anstreben einer direkten allo-SZT für Patienten mit ungünstigem Risikoprofil nach ELN 2017 eine Konsequenz aus vorliegender Studie sein; für Patienten mit intermediärem Risikoprofil oder mit fehlenden genetischen Daten sollte eine allo-SZT in erster Remission geplant werden.

Außerdem ist eine gezielte, wirksame Posttransplantations-Therapie notwendig. Hierfür werden neue therapeutische Optionen zur Verbesserung der Prognose dieser AML-Unterform benötigt.

Literaturverzeichnis 66

6. Literaturverzeichnis

1. Streudel, J., *Woher kommt der Name Krebs?* Deutsche Medizinische Wochenschrift, 1953. **78**: p. 1574.

- 2. Brunner, F.G., *Pathologie und Therapie der Geschwülste in der antiken Medizin bei Celsus und Galen*. 1977, Zürich: Juris-Verlag. p. 1-30.
- 3. Obrecht, J.P., *Historisches, Definition, Klassifikation und Epidemiologie der Leukämien*. Blut und Blutkrankheiten: Teil 6 Leukämien. 1978, Berlin, Heidelberg: Springer Verlag. p. 1-48.
- 4. Hiddemann, W. and C. Bartram, *Die Onkologie, Teil* 2. 2015, Berlin, Heidelberg: Springer Verlag. p. 1-16.
- 5. Piller, G., *Leukaemia a brief historical review from ancient times to 1950.* Br J Haematol, 2001. **112**(2): p. 282-92.
- 6. Gökbuget, N. *Das Krankheitsbild Leukämie*. 2015 [cited 2019 26.09.]; Available from: https://www.kompetenznetz-leukaemie.de/content/patienten/leukaemien/.
- 7. Baenkler, H. and K. Arastéh, *Hämatologie*, in *Duale Reihe Innere Medizin*, H.-W. Baenkler, K. Arastéh, and C. Bieber, Editors. 2009, Georg Thieme Verlag. p. 1141-1220.
- 8. Robert-Koch-Institut. *Leukämien*. Zentrum für Krebsregisterdaten 2017 [cited 2019 27.09.]; Available from: https://www.krebsdaten.de/Krebs/DE/Content/Krebsarten/Leukaemien/leukaemien_node.html.
- 9. Nennecke, A., A. Wienecke, and K. Kraywinkel, *Inzidenz und Überleben bei Leukämien in Deutschland nach aktuellen standardisierten Kategorien.*Bundesgesundheitsblatt Gesundheitsforschung Gesundheitsschutz, 2014. **57**(1): p. 93-102.
- 10. Bennett, J.M., et al., *Proposals for the classification of the acute leukaemias. French-American-British (FAB) co-operative group.* Br J Haematol, 1976. **33**(4): p. 451-8.
- 11. Arber, D.A., et al., *The 2016 revision to the World Health Organization classification of myeloid neoplasms and acute leukemia.* Blood, 2016. **127**(20): p. 2391-405.
- 12. Röllig, C., et al. *Akute Myeloische Leukämie*. 2018 [cited 2019 26.09.]; Available from: https://www.onkopedia.com/de/onkopedia/guidelines/akute-myeloische-leukaemie-aml/@@guideline/html/index.html.
- 13. Lowenberg, B., J.R. Downing, and A. Burnett, *Acute myeloid leukemia*. N Engl J Med, 1999. **341**(14): p. 1051-62.

14. Kraywinkel, K. and C. Spix, *Epidemiologie akuter Leukämien in Deutschland*. Der Onkologe, 2017. **23**(7): p. 499-503.

- 15. Juliusson, G., et al., Age and acute myeloid leukemia: real world data on decision to treat and outcomes from the Swedish Acute Leukemia Registry. Blood, 2009. **113**(18): p. 4179-87.
- 16. Southam, C.M., et al., A study of the natural history of acute leukemia with special reference to the duration of the disease and the occurrence of remissions. Cancer, 1951. **4**(1): p. 39-59.
- 17. Heilmeier, B., et al., [Modern leukemia diagnosis in adults]. Dtsch Med Wochenschr, 2009. **134**(23): p. 1222-6.
- 18. Metzeler, K.H., et al., *Spectrum and prognostic relevance of driver gene mutations in acute myeloid leukemia.* Blood, 2016. **128**(5): p. 686-98.
- 19. Papaemmanuil, E., H. Dohner, and P.J. Campbell, *Genomic Classification and Prognosis in Acute Myeloid Leukemia*. N Engl J Med, 2016. **375**(9): p. 900-1.
- 20. Cancer Genome Atlas Research, N., et al., *Genomic and epigenomic landscapes of adult de novo acute myeloid leukemia.* N Engl J Med, 2013. **368**(22): p. 2059-74.
- 21. Shah, A., et al., Survival and cure of acute myeloid leukaemia in England, 1971-2006: a population-based study. Br J Haematol, 2013. **162**(4): p. 509-16.
- 22. Buchner, T., et al., *Treatment of older patients with AML.* Crit Rev Oncol Hematol, 2005. **56**(2): p. 247-59.
- 23. Juliusson, G., et al., *Acute myeloid leukemia in the real world: why population-based registries are needed.* Blood, 2012. **119**(17): p. 3890-9.
- 24. Kantarjian, H., et al., Results of intensive chemotherapy in 998 patients age 65 years or older with acute myeloid leukemia or high-risk myelodysplastic syndrome: predictive prognostic models for outcome. Cancer, 2006. **106**(5): p. 1090-8.
- 25. Krug, U., et al., *Increasing intensity of therapies assigned at diagnosis does not improve survival of adults with acute myeloid leukemia*. Leukemia, 2016. **30**(6): p. 1230-6.
- 26. Kahl, C., et al., Long-term follow-up of the AML97 study for patients aged 60 years and above with acute myeloid leukaemia: a study of the East German Haematology and Oncology Study Group (OSHO). J Cancer Res Clin Oncol, 2016. **142**(1): p. 305-15.

27. den Ottolander, G.J., et al., *Megakaryoblastic leukaemia (acute myelofibrosis): a report of three cases.* Br J Haematol, 1979. **42**(1): p. 9-20.

- 28. Bevan, D., M. Rose, and M. Greaves, *Leukaemia of platelet precursors:* diverse features in four cases. Br J Haematol, 1982. **51**(1): p. 147-64.
- 29. Hahn, A.W., et al., *Acute megakaryocytic leukemia: What have we learned.* Blood Rev, 2016. **30**(1): p. 49-53.
- 30. Oki, Y., et al., Adult acute megakaryocytic leukemia: an analysis of 37 patients treated at M.D. Anderson Cancer Center. Blood, 2006. **107**(3): p. 880-4.
- 31. Dastugue, N., et al., *Cytogenetic profile of childhood and adult megakaryoblastic leukemia (M7): a study of the Groupe Français de Cytogenetique Hematologique (GFCH).* Blood, 2002. **100**(2): p. 618-26.
- 32. Zeller, B., et al., *Acute leukaemia in children with Down syndrome: a population-based Nordic study.* Br J Haematol, 2005. **128**(6): p. 797-804.
- 33. Roy, A., et al., Acute megakaryoblastic leukaemia (AMKL) and transient myeloproliferative disorder (TMD) in Down syndrome: a multi-step model of myeloid leukaemogenesis. Br J Haematol, 2009. **147**(1): p. 3-12.
- 34. Hasle, H., et al., Myeloid leukemia in children 4 years or older with Down syndrome often lacks GATA1 mutation and cytogenetics and risk of relapse are more akin to sporadic AML. Leukemia, 2008. **22**(7): p. 1428-30.
- 35. Hama, A., et al., *Acute megakaryoblastic leukaemia (AMKL) in children: a comparison of AMKL with and without Down syndrome.* Br J Haematol, 2008. **140**(5): p. 552-61.
- 36. Duchayne, E., et al., Acute megakaryoblastic leukaemia: a national clinical and biological study of 53 adult and childhood cases by the Groupe Francais d'Hematologie Cellulaire (GFHC). Leuk Lymphoma, 2003. **44**(1): p. 49-58.
- 37. Schweitzer, J., et al., *Improved outcome of pediatric patients with acute megakaryoblastic leukemia in the AML-BFM 04 trial.* Ann Hematol, 2015. **94**(8): p. 1327-36.
- 38. de Rooij, J.D., et al., *Pediatric non-Down syndrome acute megakaryoblastic leukemia is characterized by distinct genomic subsets with varying outcomes.* Nat Genet, 2017. **49**(3): p. 451-456.
- 39. Gruber, T.A. and J.R. Downing, *The biology of pediatric acute megakaryoblastic leukemia*. Blood, 2015. **126**(8): p. 943-9.

40. Masetti, R., et al., *The changing scenario of non-Down syndrome acute megakaryoblastic leukemia in children.* Crit Rev Oncol Hematol, 2019. **138**: p. 132-138.

- 41. Pagano, L., et al., *Acute megakaryoblastic leukemia: experience of GIMEMA trials.* Leukemia, 2002. **16**(9): p. 1622-6.
- 42. Tallman, M.S., et al., *Acute megakaryocytic leukemia: the Eastern Cooperative Oncology Group experience*. Blood, 2000. **96**(7): p. 2405-11.
- 43. Giri, S., et al., Acute megakaryocytic leukemia is associated with worse outcomes than other types of acute myeloid leukemia. Blood, 2014. **124**(25): p. 3833-4.
- 44. Garderet, L., et al., Hematopoietic stem cell transplantation for de novo acute megakaryocytic leukemia in first complete remission: a retrospective study of the European Group for Blood and Marrow Transplantation (EBMT). Blood, 2005. **105**(1): p. 405-9.
- 45. Hahn, A.W., et al., *Acute megakaryocytic leukemia: What have we learned.* Blood Review, 2016. **30**: p. 49-53.
- 46. Athale, U.H., et al., *Biology and outcome of childhood acute megakaryoblastic leukemia: a single institution's experience.* Blood, 2001. **97**(12): p. 3727-32.
- 47. Schaich, M., *Akute Leukämien*, in *Facharzt Hämatologie Onkologie*, K. Possinger, Editor. 2015, Elsevier: München. p. 337-363.
- 48. Oken, M.M., et al., *Toxicity and response criteria of the Eastern Cooperative Oncology Group.* Am J Clin Oncol, 1982. **5**(6): p. 649-55.
- 49. Schiffer, C.A. *Prognosis of acute myeloid leukemia*. 2017 24.08.2017 07.09.2017]; Available from: https://www.uptodate.com/contents/prognosis-of-acute-myeloid-leukemia?source=search_result&search=cytogenetics %20mrc%20aml&selectedTitle=1~150.
- 50. Zhang, Y. and M. Le Beau. *Cytogenetics in acute myeloid leukemia*. 2016 06.09.2017]; Available from: https://www.uptodate.com/contents/cytogenetics-in-acute-myeloid-leukemia?source=search_result&search=complex%20karyotype&selectedTitle=1~150#H993128835.
- 51. Grimwade, D., et al., Refinement of cytogenetic classification in acute myeloid leukemia: determination of prognostic significance of rare recurring chromosomal abnormalities among 5876 younger adult patients treated in the United Kingdom Medical Research Council trials. Blood, 2010. **116**(3): p. 354-65.

52. Döhner, H., et al., *Diagnosis and management of acute myeloid leukemia in adults: recommendations from an international expert panel, on behalf of the European LeukemiaNet.* Blood, 2010. **115**(3): p. 453-74.

- 53. Dohner, H., et al., *Diagnosis and management of AML in adults: 2017 ELN recommendations from an international expert panel.* Blood, 2017. **129**(4): p. 424-447.
- 54. Cheson, B.D., et al., Revised recommendations of the International Working Group for Diagnosis, Standardization of Response Criteria, Treatment Outcomes, and Reporting Standards for Therapeutic Trials in Acute Myeloid Leukemia. J Clin Oncol, 2003. **21**(24): p. 4642-9.
- 55. Hiddemann, W., et al., Study Protocol of the German AML Cooperative Group: S-HAM Induction Therapy + Neulasta. 2004. p. 35.
- 56. Büchner, T., et al., *Age-Related Risk Profile and Chemotherapy Dose Response in Acute Myeloid Leukemia: A Study by the German Acute Myeloid Leukemia Cooperative Group.* Journal of Clinical Oncology, 2009. **27**(1): p. 61-69.
- 57. Buchner, T., et al., Double induction containing either two courses or one course of high-dose cytarabine plus mitoxantrone and postremission therapy by either autologous stem-cell transplantation or by prolonged maintenance for acute myeloid leukemia. J Clin Oncol, 2006. **24**(16): p. 2480-9.
- 58. Braess, J., et al., Dose-dense induction with sequential high-dose cytarabine and mitoxantrone (S-HAM) and pegfilgrastim results in a high efficacy and a short duration of critical neutropenia in de novo acute myeloid leukemia: a pilot study of the AMLCG. Blood, 2009. **113**(17): p. 3903-3910.
- 59. Braess J, K.-A. Kreuzer, and K. Spiekermann, *High Efficacy and Significantly Shortened Neutropenia Of Dose-Dense S-HAM As Compared To Standard Double Induction: First Results Of a Prospective Randomized Trial (AML-CG 2008)*. Blood, 2013. **122**(21): p. 619 (abstract).
- 60. Hiddemann, W., Study Protocol AMLCG 2008 Dose-Dense Induction versus Conventional Double Induction. 2009.
- 61. Mayer, R.J., et al., *Intensive Postremission Chemotherapy in Adults with Acute Myeloid Leukemia*. New England Journal of Medicine, 1994. **331**(14): p. 896-903.
- 62. Ottinger, H.D., et al., *German consensus on immunogenetic donor search for transplantation of allogeneic bone marrow and peripheral blood stem cells.* Bone Marrow Transplant, 1997. **20**(2): p. 101-5.

63. Muller, C., J. Mytilineos, and H.D. Ottinger, *German consensus 2013 on immunogenetic donor selection criteria in allogeneic stem cell transplantation*. Transfusionsmedizin, 2014. **4**: p. 190-196.

- 64. Nunes, E., et al., *Definitions of histocompatibility typing terms.* Blood, 2011. **118**(23): p. e180-3.
- 65. Passweg, J.R., et al., Hematopoietic SCT in Europe 2013: recent trends in the use of alternative donors showing more haploidentical donors but fewer cord blood transplants. Bone Marrow Transplant, 2015. **50**(4): p. 476-82.
- 66. Renz-Polster, H. and S. Krautzig, *Basislehrbuch Innere Medizin*. Vol. 4. Auflage. 2008, München: Elsevier. 312-314.
- 67. Junqueira, L.C., J. Carneiro, and M. Gratzl, *Histologie*. Vol. 6. 2004, Heidelberg: Springer Medizin Verlag. p. 444-450.
- 68. Hsu, S.M., L. Raine, and H. Fanger, *Use of avidin-biotin-peroxidase complex (ABC) in immunoperoxidase techniques: a comparison between ABC and unlabeled antibody (PAP) procedures.* J Histochem Cytochem, 1981. **29**(4): p. 577-80.
- 69. Pernick, N. *CD Markers: CD 42b*. 2018 [cited 2018 24.02.]; Available from: http://www.pathologyoutlines.com/topic/cdmarkerscd42b.html.
- 70. Orazi, A., et al., *Acute panmyelosis with myelofibrosis: an entity distinct from acute megakaryoblastic leukemia.* Mod Pathol, 2005. **18**(5): p. 603-14.
- 71. Pathologisches Institut LMU München. *Gebräuchliche immunhistologische Marker*. 2017 [cited 11.10.2017; Available from: http://www.pathologie.med.uni-muenchen.de/010diagnostik/030 immunhisto/ihc-ak/index.html.
- 72. Pernick, N. *CD Markers: CD 61*. 2018 [cited 2019 24.02.]; Available from: http://www.pathologyoutlines.com/topic/cdmarkerscd61.html.
- 73. Stuart, L.N. *CD Markers: CD 31*. 2002 [cited 2019 25.02.]; Available from: http://www.pathologyoutlines.com/topic/cdmarkerscd31.html.
- 74. Stuart, L.N. *CD Markers: CD 34*. 2018 [cited 2019 25.02.]; Available from: http://www.pathologyoutlines.com/topic/cdmarkerscd34.html.
- 75. Lee, W.Y., O.K. Weinberg, and G.S. Pinkus, *GATA1 Is a Sensitive and Specific Nuclear Marker for Erythroid and Megakaryocytic Lineages.* Am J Clin Pathol, 2017. **147**(4): p. 420-426.
- 76. Thiele, J., et al., European consensus on grading bone marrow fibrosis and assessment of cellularity. Haematologica, 2005. **90**(8): p. 1128-32.

77. Quiagen. *Gene Read DNA FFPE Handbook*. 2014 04.09.2017]; Available from: https://www.qiagen.com/at/resources/resourcedetail?id=ee18d2c4-55d0-498a-9f02-0a4af1fd6762&lang=en.

- 78. Agilent Technologies. *Haloplex HS Target Enrichment System for Illumina Sequencing Protocol*. 2016 04.09.2017]; Available from: https://www.agilent.com/cs/library/usermanuals/public/G9931-90000.pdf.
- 79. Agilent Technologies. 2100 Expert Bioyanalyzer User's Guide. 2005 04.09.2017]; Available from: https://www.agilent.com/cs/library/usermanuals/Public/G2946-90004 Vespucci UG eBook (NoSecPack).pdf.
- 80. Kiyoi, H., et al., *Internal tandem duplication of FLT3 associated with leukocytosis in acute promyelocytic leukemia. Leukemia Study Group of the Ministry of Health and Welfare (Kohseisho).* Leukemia, 1997. **11**(9): p. 1447-52.
- 81. Field, A., *Discovering Statistics using SPSS for Windows*. 2000, London: Sage Publications.
- 82. Team, R.C. *R: A language and environment for statistical computing*. R Foundation for Statistical Computing 2018.
- 83. National Center for Biotechnology Information. *NCBI Genome Decoration Page*. 2018 [cited 2018 07.06.]; Available from: https://www.ncbi.nlm.nih.gov/genome/tools/gdp.
- 84. Menon, R., et al., Exome enrichment and SOLiD sequencing of formalin fixed paraffin embedded (FFPE) prostate cancer tissue. Int J Mol Sci, 2012. **13**(7): p. 8933-42.
- 85. Luder Ripoli, F., et al., A Comparison of Fresh Frozen vs. Formalin-Fixed, Paraffin-Embedded Specimens of Canine Mammary Tumors via Branched-DNA Assay. Int J Mol Sci, 2016. **17**(5).
- 86. Buchner, T., et al., 6-Thioguanine, cytarabine, and daunorubicin (TAD) and high-dose cytarabine and mitoxantrone (HAM) for induction, TAD for consolidation, and either prolonged maintenance by reduced monthly TAD or TAD-HAM-TAD and one course of intensive consolidation by sequential HAM in adult patients at all ages with de novo acute myeloid leukemia (AML): a randomized trial of the German AML Cooperative Group. J Clin Oncol, 2003. **21**(24): p. 4496-504.
- 87. Wiernik, P.H. and A.A. Serpick, *Granulocytic sarcoma (chloroma)*. Blood, 1970. **35**(3): p. 361-9.
- 88. Byrd, J.C., et al., *Extramedullary myeloid cell tumors in acute nonlymphocytic leukemia: a clinical review.* J Clin Oncol, 1995. **13**(7): p. 1800-16.

89. Schlenk, R.F., et al., *Individual patient data-based meta-analysis of patients aged 16 to 60 years with core binding factor acute myeloid leukemia: a survey of the German Acute Myeloid Leukemia Intergroup.* J Clin Oncol, 2004. **22**(18): p. 3741-50.

- 90. Tallman, M.S., et al., *Granulocytic sarcoma is associated with the 8;21 translocation in acute myeloid leukemia.* J Clin Oncol, 1993. **11**(4): p. 690-7.
- 91. Sugimoto, Y., et al., Acute myeloid leukemia with t(8;21)(q22;q22) manifesting as granulocytic sarcomas in the rhinopharynx and external acoustic meatus at relapse after high-dose cytarabine: case report and review of the literature. Hematol J, 2004. **5**(1): p. 84-9.
- 92. Solh, M., et al., *Extramedullary acute myelogenous leukemia*. Blood Rev, 2016. **30**(5): p. 333-9.
- 93. Bourlon, C., et al., Extramedullary disease at diagnosis of AML does not influence outcome of patients undergoing allogeneic hematopoietic cell transplant in CR1. Eur J Haematol, 2017. **99**(3): p. 234-239.
- 94. Bae, E., et al., Differential diagnosis of myelofibrosis based on WHO 2008 criteria: acute panmyelosis with myelofibrosis, acute megakaryoblastic leukemia with myelofibrosis, primary myelofibrosis and myelodysplastic syndrome with myelofibrosis. Int J Lab Hematol, 2013. **35**(6): p. 629-36.
- 95. Campiotti, L., et al., *Megakaryocytic blast crisis as first presentation of chronic myeloid leukemia*. Am J Hematol, 2007. **82**(3): p. 231-3.
- 96. Pelloso, L.A., et al., *Megakaryocytic blast crisis as a first presentation of chronic myeloid leukemia.* Eur J Haematol, 2002. **69**(1): p. 58-61.
- 97. Castro-Malaspina, H., et al., *Human megakaryocyte stimulation of proliferation of bone marrow fibroblasts.* Blood, 1981. **57**(4): p. 781-7.
- 98. Sanada, M., et al., *Unbalanced translocation der(1;7)(q10;p10) defines a unique clinicopathological subgroup of myeloid neoplasms.* Leukemia, 2007. **21**(5): p. 992-7.
- 99. Slovak, M.L., et al., Does MDS with der(1;7)(q10;p10) constitute a distinct risk group? A retrospective single institutional analysis of clinical/pathologic features compared to -7/del(7q) MDS. Cancer Genet Cytogenet, 2009. 193(2): p. 78-85.
- 100. Pozdnyakova, O., et al., Cytogenetic abnormalities in a series of 1,029 patients with primary myelodysplastic syndromes: a report from the US with a focus on some undefined single chromosomal abnormalities. Cancer, 2008. **113**(12): p. 3331-40.

101. Ganster, C., et al., Comprehensive analysis of isolated der(1;7)(q10;p10) in a large international homogenous cohort of patients with myelodysplastic syndromes. Genes Chromosomes Cancer, 2019. **58**(10): p. 689-697.

- 102. Miesner, M., et al., Multilineage dysplasia (MLD) in acute myeloid leukemia (AML) correlates with MDS-related cytogenetic abnormalities and a prior history of MDS or MDS/MPN but has no independent prognostic relevance: a comparison of 408 cases classified as "AML not otherwise specified" (AML-NOS) or "AML with myelodysplasia-related changes" (AML-MRC). Blood, 2010. **116**(15): p. 2742-51.
- 103. Wellcome Sanger Institute. *Cosmic Database*. 2018; Available from: https://cancer.sanger.ac.uk/census.
- 104. Caramazza, D., et al., *Chromosome 1 abnormalities in myeloid malignancies: a literature survey and karyotype-phenotype associations.* Eur J Haematol, 2010. **84**(3): p. 191-200.
- 105. Zhang, T., et al., *High frequency of RUNX1 mutation in myelodysplastic syndrome patients with whole-arm translocation of der(1;7)(q10;p10).* Leukemia, 2017. **31**(10): p. 2257-2260.
- 106. Rajkumar, S.V., *Multiple myeloma: 2020 update on diagnosis, risk-stratification and management.* Am J Hematol, 2020. **95**(5): p. 548-567.
- 107. Schmidt, T.M., et al., Gain of Chromosome 1q is associated with early progression in multiple myeloma patients treated with lenalidomide, bortezomib, and dexamethasone. Blood Cancer J, 2019. **9**(12): p. 94.
- 108. Forestier, E., et al., Cytogenetic features of acute lymphoblastic and myeloid leukemias in pediatric patients with Down syndrome: an iBFM-SG study. Blood, 2008. **111**(3): p. 1575-83.
- 109. Silva, M.L., et al., *Unbalanced chromosome 1 abnormalities leading to partial trisomy 1q in four infants with Down syndrome and acute megakaryocytic leukemia.* Mol Cytogenet, 2009. **2**: p. 7.
- 110. Blink, M., et al., *Normal karyotype is a poor prognostic factor in myeloid leukemia of Down syndrome: a retrospective, international study.*Haematologica, 2014. **99**(2): p. 299-307.
- 111. Hama, A., et al., *Molecular lesions in childhood and adult acute megakaryoblastic leukaemia*. Br J Haematol, 2012. **156**(3): p. 316-25.
- 112. McNulty, M. and J.D. Crispino, *Acute Megakaryocytic Leukemia*. Cold Spring Harb Perspect Med, 2019.
- 113. Hussein, K., et al., *MPLW515L mutation in acute megakaryoblastic leukaemia*. Leukemia, 2009. **23**(5): p. 852-5.

114. Malinge, S., et al., *Activating mutations in human acute megakaryoblastic leukemia*. Blood, 2008. **112**(10): p. 4220-6.

- 115. Rucker, F.G., et al., *TP53 alterations in acute myeloid leukemia with complex karyotype correlate with specific copy number alterations, monosomal karyotype, and dismal outcome.* Blood, 2012. **119**(9): p. 2114-21.
- 116. Yoshida, K., et al., *The landscape of somatic mutations in Down syndrome-related myeloid disorders.* Nat Genet, 2013. **45**(11): p. 1293-9.
- 117. Gruber, T.A., et al., An Inv(16)(p13.3q24.3)-encoded CBFA2T3-GLIS2 fusion protein defines an aggressive subtype of pediatric acute megakaryoblastic leukemia. Cancer Cell, 2012. **22**(5): p. 683-97.
- 118. Grimwade, D. and R.K. Hills, *Independent prognostic factors for AML outcome*. Hematology Am Soc Hematol Educ Program, 2009: p. 385-95.
- 119. Mrozek, K., N.A. Heerema, and C.D. Bloomfield, *Cytogenetics in acute leukemia*. Blood Rev, 2004. **18**(2): p. 115-36.
- 120. Loke, J., et al., The role of allogeneic stem cell transplantation in the management of acute myeloid leukaemia: a triumph of hope and experience. Br J Haematol, 2020. **188**(1): p. 129-146.
- 121. Schuurhuis, G.J., et al., *Minimal/measurable residual disease in AML: a consensus document from the European LeukemiaNet MRD Working Party.* Blood, 2018. **131**(12): p. 1275-1291.
- 122. Wen, Q., B. Goldenson, and J.D. Crispino, *Normal and malignant megakaryopoiesis*. Expert Rev Mol Med, 2011. **13**: p. e32.
- 123. Mazzi, S., et al., *Megakaryocyte and polyploidization*. Exp Hematol, 2018. **57**: p. 1-13.
- 124. Krause, D.S. and J.D. Crispino, *Molecular pathways: induction of polyploidy* as a novel differentiation therapy for leukemia. Clin Cancer Res, 2013. **19**(22): p. 6084-8.
- 125. Wen, Q., et al., *Identification of regulators of polyploidization presents* therapeutic targets for treatment of AMKL. Cell, 2012. **150**(3): p. 575-89.
- 126. Gangat, N., et al., Aurora Kinase A Inhibition Provides Clinical Benefit, Normalizes Megakaryocytes, and Reduces Bone Marrow Fibrosis in Patients with Myelofibrosis: A Phase I Trial. Clin Cancer Res, 2019. **25**(16): p. 4898-4906.

7. Anhang

7.1 Tabellenverzeichnis

Tab. 1: Anteile der verschiedenen Leukämieformen an allen Neuerkrankungen	2
Tab. 2: FAB-Klassifikation der AML nach Lowenberg et al. [13]	3
Tab. 3: WHO-Klassifikation nach Arber et al. [11].	4
Tab. 4: Zusammenfassung retrospektiver AMKL-Fallserien.	8
Tab. 5: Übersicht über die erhobenen Parameter.	12
Tab. 6: ECOG-Performance-Score	13
Tab. 7: Risiko-Klassifikation nach MRC. Modifiziert nach Grimwade, et al. [51]	14
Tab. 8: Risiko-Klassifikation nach ELN (2017). Modifiziert nach Döhner et al. [53]	15
Tab. 9: Verwendete Therapie-Schemata	19
Tab. 10: Verwendete Antikörper	22
Tab. 11: Einteilung der Retikulinfaserfibrose, modifiziert nach Thiele et al. [76]	22
Tab. 12: Verwendete Geräte und Reagenzien.	24
Tab. 13: Verwendete Software-Programme.	26
Tab. 14: Patientencharakteristika.	29
Tab. 15: Übersicht über die histologischen und immunhistochemischen Merkmale	33
Tab. 16: Angabe der vollständigen Karyotypen	35
Tab. 17: Übersicht und genauere Informationen über die allo-SZT-Patienten	50
Tab. 18: Vergleich von molekulargenetischen Analysen.	59

7.2	Abbildungsverzeichnis
-----	-----------------------

Abb. 1: Überblick über den Prozess der Patientenselektion.	28
Abb. 2: Darstellung der verschiedenen Fibrosegrade	30
Abb. 3: Darstellung von AMKL mit und ohne Ausreifung	31
Abb. 4: Darstellung der immunhistochemischen Färbungen	34
Abb. 5: Übersicht über die häufigsten Chromosomenveränderungen.	37
Abb. 6: Vergleich der zytogenetischen Aberrationen von AMKL-Patienten mitAML-Patienten.	38
Abb. 7: Zytogenetische Aberrationen auf Chromosom 1q.	39
Abb. 8: Anteil der Patienten mit Mutationen in Leukämie-assoziierten Genen.	40
Abb. 9: Darstellung der am häufigsten von Mutationen betroffenen Gene.	41
Abb. 10: Vergleich der Häufigkeit der gefundenen Mutationen von 26 AMKL-Patienten (rechts) 664 AML-Patienten von Metzeler et al. [18].) mit 42
Abb. 11: Risikoklassifikation nach ELN 2017 und MRC.	43
Abb. 12: Ergebnisse der Induktionstherapie	44
Abb. 13: Gesamtüberleben in der Kohorte.	45
Abb. 14: Gesamtüberleben nach ELN 2017 Risikoklassifikation.	46
Abb. 15: Gesamtüberleben nach MRC-Risikoklassifikation.	47
Abb. 16: Gesamtüberleben nach Ursprung der AMKL.	48
Abb. 17: Gesamtüberleben gerechnet ab dem Zeitpunkt der allo-SZT bzw. ab Diagno Behandlungsbeginn.	ose/ 51

7.3 Übersicht über analysierte Gene

Genbezeichnung	Koordinaten	Genbezeichnung	Koordinaten
ASXL1 EX14	20:31022226-31024720	RAD21 EX5	8:117870592-117870697
BCOR EX10	X:39922000-39922324	RAD21 EX6	8:117869507-117869712
BCOR EX11	X:39921393-39921646	RAD21 EX7	8:117868886-117869010
BCOR EX12	X:39916409-39916574	RAD21 EX8	8:117868406-117868527
BCOR EX13	X:39914622-39914766	RAD21 EX9	8:117866485-117866707
BCOR EX14	X:39913510-39913586	RUNX1 EX4B	21:36259141-36259393
BCOR EX15	X:39913140-39913295	RUNX1 EX5	21:36252855-36253010
BCOR EX16	X:39911363-39911653	RUNX1 EX6	21:36231772-36231875
BCOR EX3	X:39937098-39937182	RUNX1 EX7	21:36206708-36206898
BCOR EX4	X:39935708-39935785	RUNX1 EX8	21:36171599-36171759
BCOR EX5	X:39931603-39934433	RUNX1 EX9	21:36164433-36164907
BCOR EX6	X:39930891-39930943	SETBP1	18:42531710-42532150
BCOR EX7	X:39930227-39930412	SF1 EX10	11:64535044-64535316
BCOR EX8	X:39923590-39923852	SF1 EX11A	11:64534665-64534723
BCOR_EX9	X:39922862-39923205	SF1 EX12	11:64534373-64534551
BCORL1 EX3	X:129146916-129150199	SF1 EX13	11:64533291-64533627
BRAF EX11	7:140477792-140477875	SF1 EX14B	11:64532862-64532990
BRAF EX12	7:140481377-140481493	SF1 EX1A	11:64545835-64545864
BRAF EX15	7:140453076-140453193	SF1 EX2	11:64543888-64544098
CALR EX9	19:13054517-13054737	SF1 EX3B	11:64540903-64540977
CBL EX7	12:119148456-119148557	SF1 EX4	11:64537729-64537880
CBL EX8	11:119148877-119149007	SF1 EX5	11:64537437-64537525
CBL EX9	11:119149221-119149423	SF1 EX6	11:64536899-64537081
CEBPA	19:33792235-33793330	SF1 EX7	11:64536696-64536810
CSF3R EX14	1:36933416-36933573	SF1 EX8	11:64536495-64536601
_		_	
CSF3R EX16	1:36932824-36932922	SF3A1 EX1	22:30752720-30752781
CSF3R EX17	1:36931949-36932519	SF3A1 EX10	22:30735120-30735240
CSFR1 EX	5:149433623-149433797	SF3A1 EX11	22:30734779-30735023
CSFR1 EX7	5:149452855-149453066	SF3A1 EX12	22:30733680-30733886
DNMT3A EX10	2:25470897-25471131	SF3A1 EX13	22:30733016-30733169
DNMT3A EX11	2:25470451-25470628	SF3A1 EX14	22:30731642-30731742
DNMT3A EX12	2:25469911-25470037	SF3A1 EX15	22:30731457-30731527
DNMT3A_EX13	2:25469480-25469655	SF3A1_EX16	22:30730584-30730684
DNMT3A_EX14	2:25469020-25469188	SF3A1_EX2	22:30748941-30749061
DNMT3A_EX15	2:25468880-25468943	SF3A1_EX3B	22:30742302-30742508
DNMT3A_EX16	2:25468113-25468211	SF3A1_EX4	22:30740923-30741179
DNMT3A_EX17	2:25467400-25467531	SF3A1_EX5	22:30738795-30738868
DNMT3A_EX18	2:25467015-25467217	SF3A1_EX6	22:30738190-30738339
DNMT3A_EX19	2:25466758-25466861	SF3A1_EX7	22:30737682-30737874
DNMT3A_EX20	2:25464422-25464586	SF3A1_EX8	22:30736685-30736801
DNMT3A_EX21	2:25463500-25463609	SF3A1_EX9	22:30736186-30736370
DNMT3A_EX22	2:25463162-25463329	SF3B1_EX15	2:198267281-198267550
DNMT3A_EX23	2:25461990-25462094	SF3B1_EX16	2:198266710-198266854
DNMT3A_EX24	2:25459796-25459884	SF3B1_EX17	2:198266467-198266612
CSF3R_EX17 CSFR1_EX CSFR1_EX7 DNMT3A_EX10 DNMT3A_EX11 DNMT3A_EX12 DNMT3A_EX13 DNMT3A_EX15 DNMT3A_EX15 DNMT3A_EX16 DNMT3A_EX16 DNMT3A_EX17 DNMT3A_EX18 DNMT3A_EX18 DNMT3A_EX18 DNMT3A_EX20 DNMT3A_EX20 DNMT3A_EX21 DNMT3A_EX21	1:36931949-36932519 5:149433623-149433797 5:149452855-149453066 2:25470897-25471131 2:25470451-25470628 2:25469911-25470037 2:25469480-25469655 2:25469020-25469188 2:25468880-25468943 2:25468113-25468211 2:25467400-25467531 2:25467015-25467217 2:25466758-25466861 2:25463500-25463609 2:25463162-25463329 2:25461990-25462094	SF3A1_EX10 SF3A1_EX11 SF3A1_EX12 SF3A1_EX13 SF3A1_EX14 SF3A1_EX15 SF3A1_EX16 SF3A1_EX2 SF3A1_EX3B SF3A1_EX4 SF3A1_EX5 SF3A1_EX5 SF3A1_EX5 SF3A1_EX6 SF3A1_EX7 SF3A1_EX7 SF3A1_EX8 SF3A1_EX8 SF3A1_EX8 SF3A1_EX8 SF3A1_EX9 SF3B1_EX15	22:30735120-30735240 22:30734779-30735023 22:30733680-30733186 22:30733016-30733169 22:30731642-30731742 22:30731457-30731527 22:30730584-30730684 22:30748941-30749061 22:30742302-30742508 22:30740923-30741179 22:30738795-30738868 22:30738190-30738339 22:30736685-30736801 22:30736186-30736370 2:198266710-198266854

DNMT3A EX25	2:25458567-25458704	SMC1A EX1	X:53449442-53449549
DNMT3A EX26	2:25457139-25457299	SMC1A EX10	X:53432704-53432888
ETV6 EX1	12:11803063-11803094	SMC1A EX11	X:53432426-53432604
ETV6 EX2	12:11905385-11905513	SMC1A EX12	X:53432178-53432323
ETV6 EX3	12:11992075-11992238	SMC1A EX13	X:53431945-53432081
ETV6 EX4	12:12006362-12006495	SMC1A EX14	X:53430710-53430825
ETV6 EX5	12:12022359-12022903	SMC1A EX15	X:53430499-53430604
ETV6_EX6	12:12037380-12037521	SMC1A_EX16	X:53426512-53426652
ETV6 EX7	12:12038861-12038960	SMC1A EX17	X:53423393-53423537
ETV6_EX8	12:12043876-12043980	SMC1A_EX18	X:53423148-53423300
EZH2_EX10	7:148516689-148516779	SMC1A_EX19	X:53421699-53421808
EZH2_EX11	7:148514970-148515209	SMC1A_EX2	X:53441931-53442118
EZH2_EX12	7:148514315-148514483	SMC1A_EX20	X:53410019-53410174
EZH2_EX13	7:148513777-148513870	SMC1A_EX21	X:53409428-53409581
EZH2_EX14	7:148512599-148512638	SMC1A_EX22	X:53409154-53409304
EZH2_EX15	7:148512007-148512131	SMC1A_EX23	X:53407940-53408008
EZH2_EX16	7:148511052-148511229	SMC1A_EX24	X:53407542-53407651
EZH2_EX17	7:148508718-148508812	SMC1A_EX25	X:53407025-53407107
EZH2_EX18	7:148507426-148507506	SMC1A_EX3	X:53441708-53441819
EZH2_EX19	7:148506403-148506482	SMC1A_EX4	X:53440183-53440385
EZH2_EX20	7:148506164-148506247	SMC1A_EX5	X:53439851-53440088
EZH2_EX21	7:148504739-148504798	SMC1A_EX6	X:53438946-53439203
EZH2_EX3	7:148544275-148544390	SMC1A_EX7	X:53438712-53438851
EZH2_EX4	7:148543563-148543690	SMC1A_EX8	X:53436353-53436434
EZH2_EX5	7:148529727-148529842	SMC1A_EX9	X:53435994-53436200
EZH2_EX6	7:148526821-148526940	SMC3_EX1	10:112327576-112327589
EZH2_EX7	7:148525833-148525972	SMC3_EX10	10:112342321-112342400
EZH2_EX8	7:148524257-148524358	SMC3_EX11	10:112343143-112343306
EZH2_EX9	7:148523547-148523724	SMC3_EX12	10:112343600-112343720
FLT3_EX13-15	13:28608015-28608553	SMC3_EX13	10:112343942-112344154
FLT3_EX16	13:28602307-28602436	SMC3_EX14	10:112349364-112349466
FLT3_EX20	13:28592595-28592736	SMC3_EX15	10:112349651-112349749
GATA1_EX1-2	X:48649455-48650638	SMC3_EX16	10:112350171-112350330
GATA1_EX3	X:48650720-48650885	SMC3_EX17	10:112350750-112350890
GATA1_EX4	X:48651569-48651714	SMC3_EX18	10:112352832-112352981
GATA1_EX5	X:48652190-48652581	SMC3_EX19	10:112356157-112356308
GATA2_EX1	3:128205636-128205884	SMC3_EX2	10:112328697-112328771
GATA2_EX2	3:128204560-128205221	SMC3_EX20	10:112357898-112358048
GATA2_EX3	3:128202693-128202858	SMC3_EX21	10:112359413-112359570
GATA2_EX4	3:128200652-128200797	SMC3_EX22	10:112360198-112360304
GATA2_EX5	3:128199852-128200171	SMC3_EX23	10:112360781-112360888
GATA3	10:8097609-8115996	SMC3_EX24	10:112361396-112361642
HRAS_EX2	11:534203-534332	SMC3_EX25	10:112361725-112361936
HRAS_EX3	11:533757-533954	SMC3_EX26	10:112362233-112362423
IDH1_EX4	2:209113084-209113394	SMC3_EX27	10:112362584-112362760
IDH2_EX4	15:90631810-90631989	SMC3_EX28	10:112362943-112363048
JAK1_EX13	1:65313216-65313358	SMC3_EX29	10:112363990-112364060
JAK1_EX14	1:65312333-65312419	SMC3_EX3	10:112333466-112333503
JAK1_EX15	1:65311197-65311323	SMC3_EX4	10:112335095-112335161

JAK2	9:5021978-5022223	SMC3 EX5	10:112337180-112337250
JAK2	9:5029773-5029916	SMC3 EX7	10:112338387-112338464
JAK2	9:5044393-5044530	SMC3 EX8	10:112340663-112340779
JAK2	9:5050676-5050841	SMC3 EX9	10:112341682-112341856
JAK2	9:5054553-5054894	SRSF2 EX1	17:74732882-74733050
JAK2	9:5055659-5055798	STAG2 EX10	X:123181205-123181355
JAK2	9:5064873-5065050	STAG2 EX11	X:123182856-123182928
JAK2	9:5066668-5066799	STAG2_EX12	X:123184037-123184159
JAK2	9:5069012-5069218	STAG2_EX13	X:123184972-123185069
JAK2	9:5069915-5070062	STAG2_EX14	X:123185166-123185244
JAK2	9:5072482-5072636	STAG2_EX15	X:123189979-123190085
JAK2	9:5073688-5073795	STAG2_EX16	X:123191717-123191827
JAK2	9:5077443-5077590	STAG2_EX17	X:123195075-123195191
JAK2	9:5078296-5078454	STAG2_EX18	X:123195622-123195724
JAK2	9:5080219-5080390	STAG2_EX19	X:123196753-123196844
JAK2	9:5080523-5080693	STAG2_EX20	X:123196967-123197055
JAK2	9:5081715-5081871	STAG2_EX21	X:123197699-123197901
JAK2	9:5089664-5089873	STAG2_EX22	X:123199727-123199796
JAK2	9:5090436-5090580	STAG2_EX23	X:123200026-123200112
JAK2	9:5090729-5090921	STAG2_EX24	X:123200207-123200286
JAK2	9:5122994-5123131	STAG2_EX25	X:123202415-123202506
JAK2	9:5126323-5126456	STAG2_EX26	X:123205000-123205173
JAK2	9:5126674-5126801	STAG2_EX27	X:123210183-123210321
JAK3_EX1	19:17955033-17955236	STAG2_EX28	X:123211808-123211908
JAK3_EX10	19:17949979-17950112	STAG2_EX29	X:123215231-123215378
JAK3_EX11	19:17949062-17949210	STAG2_EX30	X:123217272-123217399
JAK3_EX12	19:17948731-17948882	STAG2_EX31	X:123220398-123220620
JAK3_EX13	19:17947928-17948032	STAG2_EX32	X:123224426-123224614
JAK3_EX14	19:17946723-17946870	STAG2_EX33	X:123224705-123224814
JAK3_EX15	19:17945882-17946034	STAG2_EX34	X:123227869-123227994
JAK3_EX16	19:17945370-17945540	STAG2_EX35	X:123229223-123229299
JAK3_EX17	19:17943589-17943748	STAG2_EX4	X:123156479-123156521
JAK3_EX18	19:17943318-17943527	STAG2_EX5	X:123159691-123159768
JAK3_EX19	19:17942473-17942617	STAG2_EX6	X:123164812-123164975
JAK3_EX2	19:17954576-17954719	STAG2_EX7	X:123171378-123171473
JAK3_EX20	19:17942027-17942219	STAG2_EX8	X:123176420-123176495
JAK3_EX21	19:17941302-17941439	STAG2_EX9	X:123179015-123179218
JAK3_EX22	19:17940829-17941037	TERC	3:169482388-169482910
JAK3_EX23	19:17937542-17937729	TET2_EX10	4:106193712-106194085
JAK3_EX3	19:17954179-17954310	TET2_EX11	4:106196196-106197686
JAK3_EX4	19:17953826-17953991	TET2_EX4A	4:106155091-106158607
JAK3_EX5	19:17953115-17953429	TET2_EX4C	4:106162487-106162596
JAK3_EX6	19:17952439-17952581	TET2_EX5	4:106163982-106164094
JAK3_EX7	19:17952188-17952365	TET2_EX6	4:106164718-106164945
JAK3_EX8	19:17951029-17951160	TET2_EX7	4:106180767-106180936
JAK3_EX9	19:17950276-17950482	TET2_EX8	4:106182907-106183015
KIT_EX11	4:55593573-55593718	TET2_EX9	4:106190758-106190914
KIT_EX17	4:55599227-55599368	TP53_EX10	17:7573928-7574033
KIT_EX8	4:55589741-55589874	TP53_EX11	17:7572928-7573008

KIT EX9B	4:55592014-55592226	TP53 EX2	17:7579840-7579912
KRAS EX2	12:25398199-25398328	TP53 EX3	17:7579701-7579721
KRAS EX3	12:25380159-25380356	TP53 EX4	17:7579313-7579590
KRAS EX4	12:25378527-25378733	TP53 EX5	17:7578372-7578554
MPL EX10	1:43814924-43815040	TP53 EX6	17:7578178-7578289
MPL EX11	1:43817877-43817984	TP53 EX7	17:7577500-7577608
MPL EX12	1:43818179-43818453	TP53_EX8	17:7577020-7577155
MPL EX9	1:43814504-43814683	TP53_EX9	17:7576854-7576926
NOTCH1 EX26	9:139399116-139399490	U2AF1 EX2	21:44524426-44524512
NOTCH1_EX20	9:139397625-139397792	U2AF1_EX7	21:44514766-44514898
NOTCH1_EX27	9:139396715-139396950	U2AF2 EX1	19:56166462-56166529
NOTCH1_EX28	9:139390514-139391458	U2AF2 EX10	19:56180440-56180557
NPM1 EX11	5:170834695-170834788	U2AF2_EX11	19:56180801-56181068
NPM1_EX11	5:170837522-170837579	_	19:56185291-56185444
_	1:115258662-115258791	U2AF2_EX12	
NRAS_EX_2		U2AF2_EX2	19:56170567-56170721
NRAS_EX_3	1:115256412-115256609	U2AF2_EX3	19:56171534-56171597
NRAS_EX4	1:115252173-115252373	U2AF2_EX4	19:56171873-56171995
PHF6_EX10B	X:133559232-133559360	U2AF2_EX5	19:56172395-56172565
PHF6_EX2	X:133511649-133511785	U2AF2_EX6	19:56173859-56173994
PHF6_EX3	X:133512036-133512136	U2AF2_EX7	19:56174963-56175120
PHF6_EX4	X:133527532-133527664	U2AF2_EX8	19:56179864-56179962
PHF6_EX5	X:133527940-133527982	U2AF2_EX9	19:56180027-56180168
PHF6_EX6B	X:133547519-133547687	WT1_EX1	11:32456243-32456600
PHF6_EX7	X:133547854-133547996	WT1_EX10B	11:32413519-32413610
PHF6_EX8A	X:133549047-133549252	WT1_EX11	11:32410603-32410729
PHF6_EX9	X:133551200-133551337	WT1_EX3	11:32450044-32450165
PTEN_EX1	10:89624228-89624305	WT1_EX4	11:32449503-32449604
PTEN_EX2	10:89653783-89653866	WT1_EX5	11:32439124-32439200
PTEN_EX3	10:89685271-89685314	WT1_EX6	11:32438033-32438090
PTEN_EX4	10:89690804-89690846	WT1_EX7	11:32421495-32421590
PTEN_EX5	10:89692771-89693008	WT1_EX8	11:32417804-32417953
PTEN_EX6	10:89711876-89712016	WT1_EX9	11:32414213-32414301
PTEN_EX7	10:89717611-89717776	ZRSR2_EX1	X:15808620-15808659
PTEN_EX8	10:89720652-89720875	ZRSR2_EX10	X:15838331-15838439
PTPN11_EX13	12:112926829-112926979	ZRSR2_EX11	X:15840855-15841365
PTPN11_EX3	12:112888123-112888316	ZRSR2_EX2	X:15809058-15809136
RAD21_EX10	8:117864789-117864947	ZRSR2_EX3	X:15817996-15818076
RAD21_EX11	8:117864188-117864335	ZRSR2_EX4	X:15821812-15821919
RAD21_EX12	8:117862858-117863006	ZRSR2_EX5	X:15822235-15822320
RAD21_EX13	8:117861186-117861268	ZRSR2_EX6	X:15826357-15826394
RAD21_EX14	8:117859740-117859930	ZRSR2_EX7	X:15827324-15827441
RAD21_EX2	8:117878826-117878968	ZRSR2_EX8	X:15833801-15834013
RAD21_EX3	8:117875370-117875498	ZRSR2_EX9	X:15836711-15836765
RAD21_EX4	8:117874081-117874179	_	

Danksagung 82

8. Danksagung

An dieser Stelle möchte ich mich bei allen bedanken, die zum Gelingen dieser Arbeit beigetragen haben.

An erster Stelle danke ich meinen Eltern, die mir meinen bisherigen Lebensweg ermöglicht und mich schon immer in allem unterstützt haben.

Insbesondere danke ich Herrn Prof. Dr. med. Karsten Spiekermann für die Überlassung des Themas und die Unterstützung bei diesem Projekt.

Mein allerherzlichster Dank für die herausragende, freundschaftliche Betreuung und Unterstützung in allen Bereichen geht an Frau Dr. med. Hanna Gittinger. Ohne ihre grenzenlose Motivation und Begeisterung an der Forschung wäre dieses Projekt nicht möglich gewesen.

Außerdem danke ich dem gesamten Team des Labors für Leukämiediagnostik am Klinikum Großhadern, allen voran Sebastian Tschuri, Bianca Ksienzyk, Dr. Stephanie Schneider sowie Dr. Maja Rothenberg-Thurley für ihre großartige Unterstützung zum Gelingen dieses Projektes.

Weiterhin bedanke ich mich recht herzlich bei Prof. Dr. med. Hans-Peter Horny und dem Team des pathologischen Instituts der LMU München für die Aufarbeitung, den Zuschnitt und die histopathologischen Beurteilungen der Knochenmarkstanzen.

Zu guter Letzt geht ein großer Dank an Christoph. Ohne Dich und Deine Unterstützung in technischen und fachlichen Fragestellungen, Deine immerwährend gute Laune und Motivation wäre nicht nur diese Arbeit nicht möglich gewesen.

Eidesstattliche Versicherung

Ich, Susanne Anna-Christina Anett Raab,

erkläre hiermit an Eides statt, dass ich die vorliegende Dissertation mit dem Titel

Genetische und klinische Analysen der Akuten Megakaryoblasten Leukämie

selbstständig verfasst, mich außer der angegebenen keiner weiteren Hilfsmittel bedient und alle Erkenntnisse, die aus dem Schrifttum ganz oder annähernd übernommen sind, als solche kenntlich gemacht und nach ihrer Herkunft unter Bezeichnungen der Fundstelle einzeln nachgewiesen habe.

Ich erkläre des Weiteren, dass die hier vorgelegte Dissertation nicht in gleicher oder in ähnlicher Form bei einer anderen Stelle zur Erlangung eines akademischen Grades eingereicht wurde.

München, 08.05.2023 Susanne Raab
Ort, Datum Unterschrift Doktorandin

Stand: März 2020