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1 Introduction 

The present cumulative thesis provides a summary of my research activities in 

metabolomics studies of type 2 diabetes (T2D). The focus of my metabolomics 

research has been to identify novel metabolite biomarkers of (pre-) diabetes (Wang-

Sattler et al, 2012) and factors that influence T2D such as age (Yu et al, 2012; Chat et 

al, 2019), smoking (Wang-Sattler et al, 2008; Xu et al, 2013) and alcohol drinking 

(Jaremek et al, 2013) as well as to characterize the effects of metformin intake (Xu et 

al, 2015; Brandmaier et al, 2015; Adam et al, 2016; Adam et al, 2017).  

1.1 Type 2 diabetes 

T2D is a lifelong, incapacitating disease affecting multiple organs (WHO, 2016). 

The International Diabetes Federation (IDF) estimates that 463 million adults (20-79 

years) are living with diabetes worldwide (IDF Diabetes Atlas 2019). The prevalence 

of diabetes is rapidly increasing and it is projected that 693 million people will suffer 

from diabetes by 2045 (Roden et al, 2019). T2D is defined as increased blood glucose 

level, i.e. hyperglycaemia, due to pancreatic β‐cell dysfunction, impaired insulin 

secretion and insulin resistance (Stumvoll et al, 2005; Buse et al, 2009).  

 

Figure 1 A simplified development of diabetes from healthy state toward complications of T2D 

 

A state of pre-diabetes (i.e., impaired fasting glucose and/or impaired glucose 

tolerance (IGT)) with only slightly elevated blood glucose levels may precede T2D for 

years (Figure 1). The development of T2D in pre-diabetic individuals can be delayed 

or prevented by dietary changes and increased physical activity (Knowler et al, 2002; 

Tuomilehto et al, 2001). Pre-diabetic individuals can be divided in two subgroups: 

those that progress to developing diabetes or those that return to normoglycaemia. 

Both subgroups have a similar annualized conversion rate of 5%–10% (Tabak et al, 

2012). Therefore, the early detection of pre-diabetes is thus of crucial importance for 

the development of personalized strategies to prevent T2D. 

Both T2D and pre-diabetes are associated with devastating chronic 

complications including macrovascular disease (e.g. cardiovascular disease, which is 
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the major cause of death in western countries) and microvascular disorders leading to 

damage of the small blood vessels of the kidney (nephropathy), eye (retinopathy) and 

peripheral nerves (neuropathy). These complications impose an immense burden on 

the quality of life of the patients (ADA, 2020). Novel means to prevent these 

devastating diabetic complications are urgently needed. Therefore, the aims of my 

research focused on the identification of candidate biomarkers of pre-diabetes and 

T2D using metabolomics approach.  

1.2 Metabolomics 

Metabolomics is still a relatively new approach for studying metabolic changes 

connected to disease development and progression, as well as for finding predictive 

biomarkers to enable early interventions (Nicholson et al, 2003; Gieger et al, 2008; Illig 

et al, 2010). The central dogma of molecular biology states that DNA makes RNA and 

RNA makes protein (Crick 1970). The metabolome is downstream of the proteome and 

is dependent of the genetic background, physiological conditions, lifestyle and 

environmental factors (Figure 2). While the genome informs about ‘what can happen’, 

the metabolome reflects ‘what has happened and is happening’.  

 

 

Figure 2 The metabolome is a major determinant of the visible phenotypes 

 

The metabolome is comprised of all small molecules that can found within a 

biological sample such as blood. These molecules include endogenous metabolites 

that are the intermediary products of metabolism associated with energy storage and 

utilization (e.g. building blocks of proteins, carbohydrates and lipids, regulators of gene 

expression, signaling molecules) as well as exogenous metabolites (e.g. drugs, food 

additives, toxins) (Suhre et al, 2011). The metabolome, as the entirety of metabolites, 



 4 

is a real-time functional portrait of the cell’s or the organism’s states and interaction 

with environment (Newgard et al, 2009; Walker et al, 2019).  

Linking metabolic profiles to a given phenotypic outcome is therefore an efficient 

and highly promising tool for capturing the complexity of the metabolic process and 

identifying healthy and disease-linked states (He et al, 2012; Wischart et al, 2019). As 

metabolic changes occur already before the appearance of a clinical phenotype, they 

are very useful in identifying the early indicators and assessing the pre-clinical stages 

of disease. As detection of pre-clinical phenotypes is the key for preventive therapy, 

metabolomics studies are of enormous value in current medical research with a great 

impact on clinical applications. 

2 Stringent quality control of metabolite profiles  

The power of metabolomics lies in its ability to detect and measure numerous 

small molecules in a single approach. However, as the complicated analytical 

conditions are not optimized for each quantified metabolite with the current technology, 

stringent quality control of metabolite profiles is necessary for a reliable identification 

of candidate biomarkers.  

2.1 Quantification of serum samples 

During my metabolomics research, we have primarily analyzed metabolite 

profiles of blood samples of the population-based cohort, KORA (Kooperative 

Gesundheitsforschung in der Region Augsburg) (Wichmann et al, 2005). The 

metabolomics measurements have been performed in the Metabolomics Platform of 

the Genome analysis center, Helmholtz Zentrum München (Römisch-Margl et al, 2011; 

Zukunft et al, 2018). 

 

Table 1 Measurement of serum samples of KORA S4 and F4 participants using targeted approaches 

 KORA S4 KORA F4 
No. of samples 1608 1068 952 1060 

Time of measurements Mar. - Apr.2011 Aug.-
Sep.2008 

Nov.-
Dec.2008 

Mar. 2009 

Batch no. of measurement - 1 2 3 

Used AbsoluteIDQTM kits p180 p150 

Targeted (used) no. of metabolites 188 (140) 163 (131) 

 

The serum samples from participants obtained at baseline (KORA S4) and 

follow-up (KORA F4) were measured with targeted approaches (Mittelstrass et al, 

2011; Wang-Sattler et al, 2012). In KORA, 188 and 163 metabolites were 
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simultaneously measured with the Biocrates  AbsoluteIDQTM p180 Kit (KORA S4) and 

p150 Kit (F4) (Table 1).  

2.2 Quality control of metabolite profiles in KORA S4 and F4  

Stringent quality control procedures are briefly outlined below and details can be 

found in our publications (Wang-Sattler et al, 2012; Yu et al, 2012). Since the 

measurements of KORA S4 and F4 samples were conducted with two different kits at 

different time points corresponding to different batches, we had to apply separate 

quality control procedures.  

For KORA S4, at each kit plate, five reference (human plasma pooled material, 

Seralab) and three zero (PBS) samples were measured in addition to the serum 

samples. To ensure data quality, each metabolite had to meet two criteria: 1) its 

coefficient of variance in the reference samples had to be smaller than 25%; 2) 50% 

of all measured sample concentrations for the metabolite had to be above the limit of 

detection, defined as 3 × median of the zero samples. In total, 140 metabolites passed 

the quality control (Wang-Sattler et al, 2012). 

  

Figure 3 Metabolite concentrations of two duplicated measurement for 144 KORA F4 samples 

 

For KORA F4, as we did not quantify the reference samples for each kit plate, 

we have re-measured 144 samples randomly selected from 3 batches (Figure 3). Each 

metabolite had to meet three criteria: 1) the average value of its coefficient of variance 

in the 3 quality controls (provided by the manufacturer on each kit plate) had to be 

smaller than 25%; 2) 90% of all measured sample concentrations for the metabolite 

had to be above the limit of detection; and 3) the correlation coefficient between two 

duplicate measurements of the metabolite in 144 re-measured samples had to be 

above 0.5. In total, 131 metabolites passed the three quality controls (Yu et al, 2012; 

Figure 3 and Table 1).  

A total of 123 metabolites was measured in both KORA S4 and F4 studies, 

including sum of hexoses, 20 acylcarnitines, 14 amino acids, 13 sphinomyelins, 33 

diacyl phosphatidycholines, 34 acyl-alkyl phosphatidycholines and 8 

lysophosphatidylcholines (LPCs) (Xu et al, 2013). 
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3 Metabolomics characterization of factors influencing T2D  

T2D is a chronic and complex disease that is caused not only by genetics but also 

environmental and physiological factors including nutrition (Knowler et al, 2002; Roden 

et al, 2019). Using the targeted and non-targeted metabolomics data from the KORA 

studies, we have investigated various factors that influence development of T2D 

including age, smoking, alcohol consumption and usage of metformin.  

3.1 Human serum metabolite profiles are age dependent 

Increased age is one of the largest risk factors for many chronic diseases. The 

American Diabetes Association (ADA) recommended that the testing for pre-diabetes 

and / or T2D should begin at the age of 45 years (ADA 2020). For diabetes, it has 

shown that the two most frequent T2D subgroups are those related with moderate age 

and moderate obesity (average prevalence of 39.6% and 21.0%, respectively) 

(Ahlqvist et al, 2018).  

We have identified chronological age-related metabolites that were 

independent of BMI using the KORA F4 study which has a wide age range from 32 to 

81 years (Yu et al, 2012, Figure 4).  

 

 

Figure 4 Heat maps of mean residuals for each year of age in men and women, respectively. 

To investigate the “true” age-related metabolites, we have specifically excluded 

participants with major metabolic diseases (e.g. hypertension, T2D, obesity), adjusted 

for BMI and conducted sex-separated analyses. Our results indicate the age 

dependency of metabolic profiles that could reflect different aging processes due to 
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oxidative stress, alterations in cell morphology, beta oxidation capacity, and vascular 

function.  

This study was however limited by: 1) its cross-sectional study design; 2) 

metabolite profiles that were related to chronological age but not to biological / 

physiological age; 3) limited replication conducted only in women from the TwinsUK 

study (Yu et al, 2012).  

  Recently, we had the possibility to analyze the longitudinal data of healthy 

individuals from two independent human cohorts (Chat et al, 2019). We identified 

aging-associated metabolites that were independent of chronological age and 

deepened our understanding of the long-term metabolite changes during aging. In this 

study, we attempted to overcome the limitations of our previous age study and 

conducted sex-stratified longitudinal analyses with two-time-point metabolomics data 

of the same person. We also adjusted for baseline chronological age besides other 

confounders using generalized estimation equation models. Moreover, we replicated 

our discoveries in both women and men of the CARLA-Study (Cardiovascular Disease, 

Living and Ageing in Halle) (Chat et al, 2019). Finally, we applied stringent exclusion 

criteria and used only ‘healthy participants’ in both discovery and replication studies 

(Figure 5).  

 

 

Figure 5 Flow diagram showing the inclusion and exclusion procedures of the study population in KORA (A) and in 
CARLA (B). 

 

In addition to aging, lifestyle plays a prominent role in the development of T2D. 

We therefore characterized the influence of smoking and alcohol consumption on the 

metabolite concentration.  
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3.2 Smoking cessation reversed smoking-related changes in metabolites  

Tobacco use increases the risk of death from many chronic diseases (e.g. 

ischemic heart disease, cancer and T2D). In 2016, cigarette smoking caused over 7.1 

million deaths (5.1 million in men, 2.0 million in women) (The Tobacco Atlas, 2018). 

Based on the targeted metabolomics approaches, we identified smoking-associated 

metabolites in a pilot study with KORA F3 (Wang-Sattler et al, 2008) and a longitudinal 

investigation using two-time-point data of KORA S4 to F4 (Xu et al, 2013).   

In the KORA F3 study, we analyzed 198 metabolites in 283 serum samples of 

male participants (aged 55 - 79 years). We found 23 smoking-associated lipid 

metabolites (e.g. diacyl-phosphatidylcholines, PC aa C34:1). Except for 3 acyl-alkyl-

phosphatidylcholines (e.g. PC ae C40:6), their levels were higher in smokers 

compared to former and non-smokers (see box plots in Figure 6).  

 

 

Figure 6 Smoking associated pathways of the glycerophospholipid- and ether lipid metabolism. 

 

We further found consistently reduced ratios of PC ae Cx:y to PC aa Cx:y in 

smokers. The synthesis of these phospholipids is regulated by the enzyme 

alkylglycerone phosphate (alkyl-DHAP) synthase (AGPS) involved in the ether lipid 

and glycerophospholipid metabolism (Figure 6). Notably, our results were consistent 

with the strong down-regulation of AGPS expression in smokers in the study that 

analyzed gene expression in human lung tissues (Gruber et al, 2006). Our data 
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suggested that smoking is associated with plasmalogen-deficiency disorders, caused 

by reduced or abolished activity of the peroxisomal AGPS. Our findings provide new 

insight into the pathophysiology of smoking addiction. Activation of the enzyme alkyl-

DHAP synthase by small molecules could provide novel routes for smoking therapy. 

The pilot study was limited by its cross-sectional study design with a relatively small 

number of smokers (28 men) and metabolite quantification performed solely in men 

(Wang-Sattler et al, 2008). 

We followed this up by an extended analysis in KORA S4 with a larger sample 

of smokers (125 men, 70 women) and confirmed a part of the findings from the pilot 

study and suggested additional metabolites (Xu et al, 2013).  Among the 23 smoking-

related metabolites identified in the pilot study, 11 metabolites were measured using 

the AbsoluteIDQTM p180 kit in KORA S4, of which 5 were validated in men. Additionally, 

6 metabolites were identified in female smokers and 3 metabolites were found both in 

female and male smokers. Furthermore, 4 metabolites in smokers (3 acyl-alkyl-PCs in 

men, one in women) showed a significant association with pack years.  

 

 

Figure 7 Residues of 2 metabolites concentration in relation to smoking cessation time (A) and changes of smokers, 
former smokers and never smokers from baseline S4 to 7-year follow-up F4 (B). 

 

More specifically, our longitudinal analysis using two-time-point data (31 

smokers, 146 never smokers and 30 quitters, people who were smokers in baseline 

KORA S4 but former smokers in seven-years follow up F4) showed that smoking-

associated metabolite changes are reversible after smoking cessation (Xu et al, 2013, 

see Figure 7). 
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3.3 Alcohol-induced metabolomic differences  

Harmful use of alcohol causes 3 million deaths every year. Alcohol consumption 

is the world's third largest risk factor for disease burden and is a causal factor for more 

than 200 diseases including T2D (WHO 2018). In the KORA F4 study, daily alcohol 

consumption was estimated by a detailed questionnaire filled by each study participant 

according to their past week alcohol use, separated to weekdays and weekend days. 

We have categorized the study participants according to their daily alcohol intake into 

two categories, light drinkers (LD, women < 20g/day and men < 40g/day) and 

moderate-to-heavy drinkers (MHD, women ≥ 20g/day and men ≥ 40g/day). We have 

also included alcohol abstainers (alcohol intake of 0 g/day) and separated them into 

those with or without lipid-lowering medications (Jaremek et al, 2013, see plots A & B 

in Figure 8).  

 

 

 

In addition to the regression analysis (adjusted for age, BMI, smoking, HDL and 

triglyceride), we applied machine learning (e.g. random forest) and selected 10 / 5 

independent metabolites in men / women that significantly differed in concentration 

between MHD and LD (see plots A & B in Figure 8). For these metabolites, the 

respective area under the Receiver Operating Characteristic curves (AUC) were 

81.2% / 67.9% in men / women, respectively (see plot C in Figure 8). These AUC 

values provide a good to moderate sensitivity and specificity for the discrimination of 

MHD to LD (Jaremek et al, 2013). 

Figure 8 Heatmap of alcohol consumption in men (A) and women (B) and AUC values (C)  
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3.4 Effects of metformin usage 

Metformin is used as a first-line oral medication to treat patients with pre- 

diabetes and T2D for more than 50 years. However, the underlying mechanism is not 

fully understood. Here, we used both targeted and non-targeted metabolomics 

approaches to investigate the effects of metformin usage (Xu et al, 2015; Brandmaier 

et al, 2015; Adam et al, 2016; Adam et al, 2017).   

3.4.1 Metformin lowers the levels of 3 metabolites and LDL cholesterol 

To study the effect of metformin intake on the metabolite profiles of KORA S4 

and F4 participants, we first excluded the T2D patients treated with both metformin 

and insulin. We found that metformin treatment was associated with significantly 

decreased levels of 3 acyl-alkyl PCs in T2D patients and replicated the findings in two 

independent Dutch cohorts (the Erasmus Rucphen Family study, ERF, and the 

Netherlands Twin Register, NTR) (Xu et al, 2015). The longitudinal examination of T2D 

patients that started metformin treatment during the follow-up of 7 years further 

confirmed that the decrease in these 3 metabolites was related to metformin therapy.  

 

 

Figure 9 Mediation analyses. A: The association 
between metformin and LDL-C without consideration 

of the 3 metformin-associated metabolites. B: The 
results of the mediation analysis; the red cross 

indicates that the direct association between 
metformin and LDL-C is not significant anymore. 

 

 

By mediation analysis using the prospective data of 912 KORA participants, we 

found that the reduction in LDL-C levels in metformin-treated T2D patients was partially 

mediated by the three acyl-alkyl PCs (Figure 9).  

To identify the genes associated with the three metabolites, we applied 

phenotype set enrichment analysis in a subset of KORA F4 individuals (n= 1,809) with 

available genotyping and metabolite profiles. Blood concentrations of these three acyl-

alkyl PCs were significantly associated with several single nucleotide polymorphisms 

(SNPs) that were enriched in the transcribed or flanking regions of 17 genes. By 

building a gene-metabolite interaction network, we identified the organ-specific AMPK 

pathway that could be one of the underlying mechanisms of metformin activity. The 

activity of the AMPK complex in the hypothalamus is inhibited by leptin and metformin, 

whereas its activity in the liver is activated by metformin and leptin (see the right part 

of Figure 10). Our network results suggested that metformin intake could activate 

AMPK and consequently suppress the enzyme activities of fatty acid desaturases 
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(FADS), which would reduce the circulating levels of the 3 acyl-alkyl PCs and LDL-C. 

Our findings that metformin intake lowers the levels of the harmful LDL-C furthermore 

suggest its potential benefit in the prevention of cardiovascular disease (Xu et al, 2015; 

Brandmaier et al, 2015). 

3.4.2 Metformin effect on non-targeted metabolite profiles in T2D patients and in 

multiple murine tissues  

The non-targeted metabolomics data of KORA S4 and F4 were measured with the 

Metabolon analytical technologies (Metabolon, Inc., Durham, NC). In this study, we 

used 363 metabolites in the baseline KORA S4, and 353 metabolites in the 7-year 

follow-up F4 study. The number of overlapping metabolites in KORA S4 and F4 was 

312 (Adam et al, 2016). Based on the cross-sectional and longitudinal investigations, 

and adjustments for multiple covariates such as age, BMI, lifestyle, clinical 

measurements and medication usage, we found that lower value of citrulline was 

significantly associated with metformin treatment (Adam et al, 2016).  

 

Figure 10 Effects of metformin - Lowered LDL-C and enhancing NO production 

 

To corroborate our findings, we further analyzed four murine tissues from the 

Mouse200 intervention study including metformin treatment. In mice, we could validate 

the significantly lower citrulline values due to metformin treatment in plasma, skeletal 

muscle and adipose tissue but not in the liver. The reduced values of citrulline are most 

likely the result of metformin’s pleiotropic effects on the interlocked urea and nitric 

oxide cycles (see the left part of Figure 10). The translational data derived from multiple 

murine tissues corroborated and complemented the findings from the human cohort 

(Adam et al, 2016; Adam et al, 2017).  
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4 Identification of novel metabolite biomarkers of (pre-) diabetes 

We used both cross-sectional and prospective KORA studies to identify reliable 

candidate metabolite biomarkers of pre-diabetes and T2D, and to understand 

diabetes-related metabolic pathways by metabolite-protein networks (Wang-Sattler et 

al, 2012). Additionally, we have replicated our results in the European Prospective 

Investigation into Cancer and Nutrition (EPIC)‐Potsdam cohort (Floegel et al, 2013). 

4.1 Identification of independent candidate biomarkers 

To avoid the potential influence of anti-diabetic medication (e.g. metformin), 

participants with known T2D diagnosis were excluded from our analysis. In our logistic 

regression analysis, we have adjusted for many known diabetes risk indicators (e.g. 

age, sex, BMI, smoking, alcohol consumption, systolic blood pressure, HDL 

cholesterol, HbA1C, fasting glucose and fasting insulin). Furthermore, to identify unique 

and independent biomarker candidates, we employed two additional approaches (the 

non‐parametric random forest and the parametric stepwise selection).  

 

 

Figure 11 Identified three metabolites in three groups: participants with normal glucose tolerance (NGT), impaired 
glucose tolerance (IGT) and newly diagnosed T2D (dT2D). 

 

We identified three metabolites (glycine, LPC (18:2) and acetylcarnitine C2) that 

had significantly altered levels in IGT individuals as compared to those with normal 

glucose tolerance (NGT) in both cross-sectional KORA S4 and F4 studies (Figure 11).  
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4.2 Glycine and LPC 18:2 predict risk of IGT and T2D 

Using the prospective KORA S4 → F4 cohort, we further investigated the 

predictive value for IGT and T2D of the  identified metabolites. We calculated the AUC 

values for each metabolite, each T2D risk indicator and their combinations (Table 2). 

By comparing the baseline metabolites concentrations of 118 incident IGT individuals 

with 471 NGT controls, the highest AUC value was obtained with age (0.580) among 

11 tested risk indicators. Our results further confirmed that age was the leading risk 

factor in predicting the future onset of pre-diabetes. For the same comparison, the AUC 

value of LPC (18:2) was 0.610, which even bigger than age (Table 2).  

 

Table 2 AUC values for each metabolite and each diabetes risk indicator and their combinations. 

 118 incident IGT vs.  
471 NGT 

91 incident T2D vs.   
885 non-T2D 

Metabolite   
Glycine 0.546 0.604 
LPC 18:2 0.610 0.606 
C2 0.521 0.530 
Glycine + LPC (18:2) + C2 0.622 0.635 

Single T2D risk indicator   
Age 0.580 0.629 
Sex 0.519 0.584 
BMI 0.576 0.685 
Physical activity 0.550 0.530 
Alcohol intake 0.501 0.505 
Smoking 0.527 0.512 
Systolic BP 0.569 0.583 
HDL cholesterol 0.544 0.652 
HbA1c 0.538 0.688 
Fasting glucose 0.575 0.735 
Fasting insulin 0.562 0.707 

Combined T2D risk indicators   
age, sex, BMI, physical activity, 
alcohol intake, smoking, Systolic 
BP, HDL cholesterol, HbA1C, 
Fasting glucose and fasting insulin 

0.656 0.818 

Metabolites combined with T2D 
risk indicators 

  

Glycine + LPC (18:2) + C2 + 
combined T2D risk indicators 

0.682 0.828 

 

When 91 incident T2D participants were compared with 785 people who 

remained diabetes-free during the 7-year follow-up, fasting glucose had the highest 

AUC value (0.735) for T2D. The AUC values of combined T2D risk indicators were 

0.656 and 0.818 for IGT and T2D, respectively. Addition of the 3 identified metabolites 

to the combined T2D risk indicators, the AUC values increased 2.6% ( = 0.682 - 0.656) 

and 1.0% (= 0.828 - 0.818) for IGT and T2D, respectively. Our identified three 

metabolites improved prediction of IGT and/or T2D (see Table 2).  
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4.3 Replicated 4 out of the 5 amino acids in nested case-control setting 

Based on prospective nested case-control study design in the Framingham 

Offspring Study, five branched-chain and aromatic amino acids were identified as 

predictors of T2D (Wang et al, 2011). In our population-based prospective investigation 

of 843 KORA individuals,  we conducted linear regression analysis between baseline 

metabolite concentrations (KORA S4) and follow-up 2-h glucose values after oral 

glucose tolerance test (KORA F4). We found that none of the previously reported five 

amino acids were significantly associated with T2D, indicating that they cannot predict 

risk of glucose tolerance in the population-based settings (Wang-Sattler et al, 2012).  

To replicate the identified five amino acids (Wang et al, 2011), we specifically 

matched our baseline samples to the incident cases of T2D in the KORA study using 

the same method described in Wang et al, 2011 (i.e. matched for age, BMI and fasting 

glucose). We replicated four out of the five amino acids (isoleucine, leucine, valine and 

tyrosine) excepted for phenylalanine. In contrast, phenylalanine, but none of these four 

amino acids, was identified to be significantly associated with risk of T2D in the 

population-based EPIC-Potsdam study (Floegel et al, 2013).  

As expected, the three IGT-specific metabolites did not significantly differ 

between the matched case-control samples, because the selected controls were 

enriched with individuals accompanied by high-risk features such as obesity and 

elevated fasting glucose as described by Wang et al (Wang et al, 2011). In fact, the 91 

matched controls included about 50% pre-diabetic individuals, which is significantly 

higher than in the general population (about 15%). Most likely, concentration changes 

in these amino acids occur at a later stage of T2D progression (IGT to T2D) whereas 

the metabolites identified in our studies may be more suitable for early disease stage 

(NGT to IGT)  (Wang-Sattler et al, 2012). 

4.4 Metabolite-protein interaction networks 

To investigate the underlying molecular mechanisms of the three identified 

metabolites in relation to T2D, we explored their associations with 46 T2D-related 

genes, which were known at that time, by protein-metabolite interaction networks 

(Szklarczyk et al, 2011; Wishart et al, 2009). Specifically, we have manually checked 

for the biochemical links between each metabolite with pathway-related proteins and 

T2D-related genes and identified a network of seven T2D-related genes and four 

enzymes (see Figure 12).  

Our network results suggest that the observed decrease in glycine in pre-

diabetics and diabetics may result from insulin resistance. The enzyme 5-

aminolevulinate synthase 1 (ALAS-H) catalyzes the condensation of glycine and 
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succinyl-CoA into 5-aminolevuinate acid (ALA). Lower circulating values of glycine in 

individuals with IGT and T2D could potentially reflect an altered activity of ALAS-H. 

Production of ALA is the first step in heme biosynthesis and ALA deficiency has been 

recently reported to cause IGT and insulin resistance (Saitoh et al, 2018). Moreover, 

two double-blind and randomized placebo-controlled trials conducted in Hawaii and 

Japan suggested that the oral supplementation with ALA can protect from mild 

hyperglycemia and help prevent T2D (Rodriguez et al, 2012; Higashikawa et al, 2013).  

 

 

Figure 12 The identified 3 metabolites linked with 7 T2D-related genes  

 

Acetylcarnitine is produced by the mitochondrial matrix enzyme, CrAT from 

carnitine and acetyl-CoA, a molecule that is both a product of fatty acid β-oxidation 

and glucose oxidation and can be used by citric acid cycle for energy generation. The 

positive association between C2 metabolite and pre-diabetes found in our studies may 

be a consequence of impaired mitochondrial β-oxidation. Mitochondrial dysfunction 

has been proposed as a central cause of insulin resistance (Kim et al, 2008; 

Fazakerley et al, 2018).  

Decreased concentration of LPC (18:2) was also found to be biomarkers of 

myocardial infarction in the KORA S4 study, and this metabolite was replicated in 

KORA S2 and AGES- REFINE (Age, Gene/Environment Susceptibility and the Risk 

Evaluation For Infarct Estimates) - Reykjavik studies (Ward-Caviness et al, 2017). 

Currently, we are investigating this metabolite using multi-levels of OMICs data to 

deeper understand LPC (18:2) related pathophysiological pathways.  
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5 Summary and future perspective 

5.1 Summary of 14 pleiotropic metabolite biomarkers  

We have separately identified a number of candidate metabolite biomarkers of 

pre-diabetes, T2D, metformin intake, aging, smoking and alcohol drinking. Taken 

together, 14 metabolites were associated with more than two of these investigated 

influencing factors of diabetes and / or with (pre-) diabetes (Table 3).  

 

Table 3 Overview of 14 pleiotropic metabolite biomarkers 

Metabolites 
Pre-

diabetes 
T2D 

Metformin 
intake 

Aging Smoking 
Alcohol 
drinking 

C2  
  

 
  

Glycine   
    

LPC (18:2)   
 

  
 

Isoleucine  
 

 
 

  

Leucine  
 

 
 

  

Valine  
 

 
 

  

Phenylalanine       

Tryosine  
 

 
 

  

PC ae C38:6   
   

 

Arginine   
   

 

Ornithine   
   

 

PC aa C34:1    
   

PC ae C40:6    
   

PC ae C34:3          

 

Lower blood concentration of LPC (18:2) was detected in individuals with pre-

diabetes and T2D, and was significantly associated with aging and smoking (Wang-

Sattler et al, 2012; Chat et al, 2019; Xu et al, 2013). Furthermore, higher PC aa C34:1 

but lower PC ae C40:6 levels were consistently associated with aging, smoking and 

alcohol drinking (Chat et al, 2019; Xu et al, 2013; Jaremek et al, 2013). As we reported 

in our pilot study of smoking, the synthesis of these phospholipids is regulated by the 

enzyme AGPS (Wang-Sattler et al, 2008; Figure 6). The reported down-regulation of 

AGPS expression in lung tissues of smokers led us to conclude that smoking could be 

related with plasmalogen-deficiency disorders, caused by reduced or abolished activity 

of the peroxisomal AGPS (Gruber et al, 2006; Wang-Sattler et al, 2008). Additionally, 

the Agps’s gene expression was found significantly decreased in the aged murine 

cerebellum, which consequently influences several downstream cellular processes, 

including synthesis of  plasmalogens (Popesco et al, 2008).  

Phenylalanine and three branched chain amino acids (isoleucine, leucine and 

valine) exhibited opposite associations with T2D and aging (Wang et al, 2011; Wang-

Sattler et al, 2012; Floegel et al, 2013; Chat et al, 2019). This suggests that lower 
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concentration of those amino acids may be protective for T2D, but harmful for 

longevity. The contradictory effects of these amino acids should be further elucidated 

using causality approaches before considering their supplementation to patients with 

diabetes. Tryosine was positively associated with T2D and aging, and these results 

may suggest lower concentration of tryosine is protective for both T2D and aging 

(Wang et al, 2011; Chat et al, 2019).  

Increased level of ornithine was associated with aging and smoking (Chat et al, 

2019; Xu et al, 2013, Table 3). We additionally observed the ornithine level decreased 

by 14.8% in quitters compared with smokers during a 7-years follow-up, suggesting a 

normalization of its level after smoking cessation (Xu et al, 2013). Furthermore, 

metformin treatment lowered ornithine levels in T2D patients (Adam et al, 2016). 

Therefore, our results suggest that metformin exert pleiotropic effects on human 

metabolism. Indeed, apart from being a safe, effective and globally affordable glucose-

lowering medication for the treatment of (pre-) diabetes, metformin therapy appears to 

protect from cancer, inflammation, and age-related pathologies and was proposed as 

a potential geroprotector in translational aging research (Piskovatska et al, 2019).  

5.2 Summary  

We conducted stringent quality control of metabolite profiles to identify reliably 

and robust candidate biomarkers of pre-diabetes and T2D. This enabled us to 

systematically characterize numerous factors that influence T2D onset and 

progression such as age, smoking, alcohol consumption and metformin usage. Our 

identified metabolite biomarkers (glycine, LPC (18:2) and C2) might precede other 

metabolites (branched-chain and aromatic amino acids) in the ability to detect pre-

diabetes and monitor T2D progression.  

5.3 Future perspective 

My future research will focus on the investigation of complications of diabetes (e.g. 

chronic kidney diseases) using newly available multi-time-point and multi-levels of 

OMICs data (e.g. genomics, epigenomics, transcriptomics, proteomics and 

metabolomics). This will enable us to conduct causality analysis (e.g. mendelian 

randomization) and deepen the understanding of our identified candidate biomarkers 

including the 14 pleiotropic metabolites. Furthermore, additional types of “big data” 

include personalized clinical phenotypes further increasing the dimensions and 

complexity of ‘personalized OMICs data’. Novel methods for integration of 

personalized OMICs data will be a challenging for me. My final goal to translate our 

discoveries into personalized healthcare, a future without diabetes.   



 19 

6 References 

ADA, American Diabetes Association, Standards of Medical Care in Diabetes – 2020. 

Diabetes care 2020 Jan; 43 (Suppl 1): S1-S2. doi: 10.2337/dc20-Sint. 

Adam J, Brandmaier S, Leonhardt J, Scheerer MF, Mohney RP, Xu T, Bi J, Rotter M, 

Troll M, Chi S, Heier M, Herder C, Rathmann W, Giani G, Adamski J, Illig T, Strauch 

K, Li Y, Gieger C, Peters A, Suhre K, Ankerst D, Meitinger T, Hrabe de Angelis M, 

Roden M, Neschen S, Kastenmüller G, Wang-Sattler R*. (2016) Metformin Effect 

on Non-Targeted Metabolite Profiles in Patients with Type 2 Diabetes and Multiple 

Murine Tissues. Diabetes. 65(12):3776-3785. doi: 10.2337/db16-0512. 

*Correspondence  

Adam J, Brandmaier S, Troll M, Rotter M, Mohney RP, Heier M, Adamski J, Li Y, 

Neschen S, Kastenmüller G, Suhre K, Ankerst D, Meitinger T, Wang-Sattler R*. 

(2017) Response to Comment on Adam et al. Diabetes 66(5):e3-e4. doi: 

10.2337/dbi17-0010.  

Ahlqvist E, Storm P, Käräjämäki A, Martinell M, Dorkhan M, Carlsson AC, Vikman P, 

Prasad RB, Mansour Aly D, Almgren P, Wessman M, Shaat N, Spégel P, Mulder H, 

Lindholm E, Melander O, Hansson O, Malmqvist U, Lernmark A, Lahti K, Forsén T, 

Tuomi T, Rosengren AH, Groop L. (2018) Novel subgroups of adult-onset diabetes 

and their association with outcomes: a data-driven cluster analysis of six variables. 

Lancet. Diabetes Endocrinol. 6(5):361-369. doi: 10.1016/S2213-8587(18)30051-2.  

Buse JB, Caprio S, Cefalu WT, Ceriello A, Del Prato S, Inzucchi SE, McLaughlin S, 

Phillips GL 2nd, Robertson RP, Rubino F, Kahn R, Kirkman MS. (2009) How do we 

define cure of diabetes? Diabetes Care. 32(11):2133-5. doi: 10.2337/dc09-9036. 

Brandmaier S, Xu T, Illig T, Suhre K, Adamski J, Wang-Sattler R*. (2015) Response 

to comment on Xu et al. Effects of Metformin on Metabolite Profiles and LDL 

Cholesterol in Patients With Type 2 Diabetes. Diabetes Care 38(12):e216-7. 

doi:10.2337/dci15-0022.  

Chak CM, Lacruz ME, Adam J, Brandmaier S, Covic M, Huang J, Meisinger C, Tiller 

D, Prehn C, Adamski J, Berger U, Gieger C, Peters A, Kluttig A, Wang-Sattler R*. 

(2019) Ageing Investigation Using Two-Time-Point Metabolomics Data from KORA 

and CARLA Studies. Metabolites 9(3). pii: E44. doi: 10.3390/metabo9030044.  

Crick F (1970). Central dogma of molecular biology. Nature 227 (5258): 561–3. 

Fazakerley DJ, Minard AY, Krycer JR, Thomas KC, Stöckli J, Harney DJ, Burchfield 

JG, Maghzal GJ, Caldwell ST, Hartley RC, Stocker R, Murphy MP, James DE (2018) 

Mitochondrial oxidative stress causes insulin resistance without disrupting oxidative 

phosphorylation. J Biol Chem. 293(19):7315-7328. doi: 10.1074/jbc.RA117.001254.  

https://www.ncbi.nlm.nih.gov/pubmed/?term=Buse%20JB%5BAuthor%5D&cauthor=true&cauthor_uid=19875608
https://www.ncbi.nlm.nih.gov/pubmed/?term=Caprio%20S%5BAuthor%5D&cauthor=true&cauthor_uid=19875608
https://www.ncbi.nlm.nih.gov/pubmed/?term=Cefalu%20WT%5BAuthor%5D&cauthor=true&cauthor_uid=19875608
https://www.ncbi.nlm.nih.gov/pubmed/?term=Ceriello%20A%5BAuthor%5D&cauthor=true&cauthor_uid=19875608
https://www.ncbi.nlm.nih.gov/pubmed/?term=Del%20Prato%20S%5BAuthor%5D&cauthor=true&cauthor_uid=19875608
https://www.ncbi.nlm.nih.gov/pubmed/?term=Inzucchi%20SE%5BAuthor%5D&cauthor=true&cauthor_uid=19875608
https://www.ncbi.nlm.nih.gov/pubmed/?term=McLaughlin%20S%5BAuthor%5D&cauthor=true&cauthor_uid=19875608
https://www.ncbi.nlm.nih.gov/pubmed/?term=Phillips%20GL%202nd%5BAuthor%5D&cauthor=true&cauthor_uid=19875608
https://www.ncbi.nlm.nih.gov/pubmed/?term=Robertson%20RP%5BAuthor%5D&cauthor=true&cauthor_uid=19875608
https://www.ncbi.nlm.nih.gov/pubmed/?term=Rubino%20F%5BAuthor%5D&cauthor=true&cauthor_uid=19875608
https://www.ncbi.nlm.nih.gov/pubmed/?term=Kahn%20R%5BAuthor%5D&cauthor=true&cauthor_uid=19875608
https://www.ncbi.nlm.nih.gov/pubmed/?term=Kirkman%20MS%5BAuthor%5D&cauthor=true&cauthor_uid=19875608
https://www.ncbi.nlm.nih.gov/pubmed/?term=How+Do+We+Define+Cure+of+Diabetes%3F+Buse
https://www.ncbi.nlm.nih.gov/pubmed/?term=Fazakerley%20DJ%5BAuthor%5D&cauthor=true&cauthor_uid=29599292
https://www.ncbi.nlm.nih.gov/pubmed/?term=Minard%20AY%5BAuthor%5D&cauthor=true&cauthor_uid=29599292
https://www.ncbi.nlm.nih.gov/pubmed/?term=Krycer%20JR%5BAuthor%5D&cauthor=true&cauthor_uid=29599292
https://www.ncbi.nlm.nih.gov/pubmed/?term=Thomas%20KC%5BAuthor%5D&cauthor=true&cauthor_uid=29599292
https://www.ncbi.nlm.nih.gov/pubmed/?term=St%C3%B6ckli%20J%5BAuthor%5D&cauthor=true&cauthor_uid=29599292
https://www.ncbi.nlm.nih.gov/pubmed/?term=Harney%20DJ%5BAuthor%5D&cauthor=true&cauthor_uid=29599292
https://www.ncbi.nlm.nih.gov/pubmed/?term=Burchfield%20JG%5BAuthor%5D&cauthor=true&cauthor_uid=29599292
https://www.ncbi.nlm.nih.gov/pubmed/?term=Burchfield%20JG%5BAuthor%5D&cauthor=true&cauthor_uid=29599292
https://www.ncbi.nlm.nih.gov/pubmed/?term=Maghzal%20GJ%5BAuthor%5D&cauthor=true&cauthor_uid=29599292
https://www.ncbi.nlm.nih.gov/pubmed/?term=Caldwell%20ST%5BAuthor%5D&cauthor=true&cauthor_uid=29599292
https://www.ncbi.nlm.nih.gov/pubmed/?term=Hartley%20RC%5BAuthor%5D&cauthor=true&cauthor_uid=29599292
https://www.ncbi.nlm.nih.gov/pubmed/?term=Stocker%20R%5BAuthor%5D&cauthor=true&cauthor_uid=29599292
https://www.ncbi.nlm.nih.gov/pubmed/?term=Murphy%20MP%5BAuthor%5D&cauthor=true&cauthor_uid=29599292
https://www.ncbi.nlm.nih.gov/pubmed/?term=James%20DE%5BAuthor%5D&cauthor=true&cauthor_uid=29599292
https://www.ncbi.nlm.nih.gov/pubmed/?term=Mitochondrial+oxidative+stress+causes+insulin+resistance+without+disrupting+oxidative+phosphorylation


 20 

Floegel A, Stefan N, Yu Z, Mühlenbruch K, Drogan D, Joost HG, Fritsche A, Häring 

HU, Hrabe de Angelis M, Peters A, Roden M, Prehn C, Wang-Sattler R, Illig T, 

Schulze MB, Adamski J, Boeing H, Pischon T. (2013). Identification of serum 

metabolites associated with risk of type 2 diabetes using a targeted metabolomic 

approach. Diabetes 62(2):639-48. doi: 10.2337/db12-0495. 

Gieger C, Geistlinger L, Altmaier E, Hrabé de Angelis M, Kronenberg F, Meitinger T, 

Mewes HW, Wichmann HE, Weinberger KM, Adamski J, Illig T, Suhre K. (2008) 

Genetics meets metabolomics: a genome-wide association study of metabolite 

profiles in human serum. PLoS Genet. 4(11):e1000282. doi: 

10.1371/journal.pgen.1000282.  

Gruber MP, Coldren CD, Woolum MD, Cosgrove GP, Zeng C, Barón AE, Moore MD, 

Cool CD, Worthen GS, Brown KK, Geraci MW. (2006) Human lung project: 

evaluating variance of gene expression in the human lung. Am J Respir Cell Mol 

Biol 35: 65-71. doi: 10.1165/rcmb.2004-0261OC. 

He Y, Yu Z, Giegling I, Xie L, Hartmann AM, Prehn C, Adamski J, Kahn R , Li Y, Illig T, 

Wang-Sattler R#,*, Rujescu D#. (2012) Schizophrenia shows a unique 

metabolomics signature in plasma. Transl Psychiatry 2:e149. doi: 

10.1038/tp.2012.76. doi: 10.1038/tp.2012.76. #Equal contribution  

Higashikawa F1, Noda M, Awaya T, Tanaka T, Sugiyama M. (2013) 5-aminolevulinic 

acid, a precursor of heme, reduces both fasting and postprandial glucose levels in 

mildly hyperglycemic subjects. Nutrition. 29(7-8):1030-6. doi: 

10.1016/j.nut.2013.02.008. 

Illig T, Gieger C, Zhai G, Römisch-Margl W, Wang-Sattler R, Prehn C, Altmaier E, 

Kastenmüller G, Kato BS, Mewes HW, Meitinger T, de Angelis MH, Kronenberg F, 

Soranzo N, Wichmann HE, Spector TD, Adamski J, Suhre K. (2010) A genome-wide 

perspective of genetic variation in human metabolism. Nat Genet 42: 137-141. doi: 

10.1038/ng.507. 

Jaremek M, Yu Z, Mangino M, Mangino M, Mittelstrass K, Prehn C, Singmann P, Xu T, 

Dahmen N, Weinberger K, Suhre K, Peters A, Döring A, Hauner H, Adamski J, Illig 

T, Spector T, Wang-Sattler R*. (2013) Alcohol-induced metabolomic differences in 

humans. Transl. Psychiatry 3:e276. doi: 10.1038/tp.2013.55.  

Kim JA, Wei Y, Sowers JR. (2008) Role of mitochondrial dysfunction in insulin 

resistance. Circ Res.102(4):401-14. doi: 10.1161/CIRCRESAHA.107.165472. 

Knowler WC, Barrett-Connor E, Fowler SE, Hamman RF, Lachin JM, Walker EA, 

Nathan DM; Diabetes Prevention Program Research Group. (2002) Reduction in 

the incidence of type 2 diabetes with lifestyle intervention or metformin. N Engl J 

Med 346: 393-403. doi: 10.1056/NEJMoa012512. 

https://www.ncbi.nlm.nih.gov/pubmed/?term=Higashikawa%20F%5BAuthor%5D&cauthor=true&cauthor_uid=23759263
https://www.ncbi.nlm.nih.gov/pubmed/?term=Noda%20M%5BAuthor%5D&cauthor=true&cauthor_uid=23759263
https://www.ncbi.nlm.nih.gov/pubmed/?term=Awaya%20T%5BAuthor%5D&cauthor=true&cauthor_uid=23759263
https://www.ncbi.nlm.nih.gov/pubmed/?term=Tanaka%20T%5BAuthor%5D&cauthor=true&cauthor_uid=23759263
https://www.ncbi.nlm.nih.gov/pubmed/?term=Sugiyama%20M%5BAuthor%5D&cauthor=true&cauthor_uid=23759263
https://www.ncbi.nlm.nih.gov/pubmed/23759263
https://www.ncbi.nlm.nih.gov/pubmed/?term=Kim%20JA%5BAuthor%5D&cauthor=true&cauthor_uid=18309108
https://www.ncbi.nlm.nih.gov/pubmed/?term=Wei%20Y%5BAuthor%5D&cauthor=true&cauthor_uid=18309108
https://www.ncbi.nlm.nih.gov/pubmed/?term=Sowers%20JR%5BAuthor%5D&cauthor=true&cauthor_uid=18309108
https://www.ncbi.nlm.nih.gov/pubmed/?term=18309108


 21 

Mittelstrass K, Ried JS, Yu Z, Krumsiek J, Gieger C, Prehn C, Roemisch-Margl W, 

Polonikov A, Peters A, Theis FJ, Meitinger T, Kronenberg F, Weidinger S, Wichmann 

HE, Suhre K, Wang-Sattler R, Adamski J, Illig T. (2011) Discovery of sexual 

dimorphisms in metabolic and genetic biomarkers. PloS Genet 7(8):e1002215. doi: 

10.1371/journal.pgen.1002215.  

Newgard CB, An J, Bain JR, Muehlbauer MJ, Stevens RD, Lien LF, Haqq AM, Shah 

SH, Arlotto M, Slentz CA, Rochon J, Gallup D, Ilkayeva O, Wenner BR, Yancy WS 

Jr, Eisenson H, Musante G, Surwit RS, Millington DS, Butler MD, Svetkey LP. (2009) 

A branched-chain amino acid-related metabolic signature that differentiates obese 

and lean humans and contributes to insulin resistance. Cell Metab 9: 311-326. doi: 

10.1016/j.cmet.2009.02.002. 

Nicholson JK, Wilson ID. (2003) Opinion: understanding 'global' systems biology: 

metabonomics and the continuum of metabolism. Nat Rev Drug Discov 

Aug;2(8):668-76. doi: 10.1038/nrd1157. 

Piskovatska V, Stefanyshyn N, Storey KB, Vaiserman AM, Lushchak O. (2019) 

Metformin as a geroprotector: experimental and clinical evidence. Biogerontology. 

20(1):33-48. doi: 10.1007/s10522-018-9773-5.  

Popesco MC, Lin S, Wang Z, Ma ZJ, Friedman L, Frostholm A, Rotter A. (2008) Serial 

analysis of gene expression profiles of adult and aged mouse cerebellum. Neurobiol 

Aging. 5:774-88. doi: 10.1016/j.neurobiolaging.2006.12.006. 

Roden M, Shulman GI. (2019) The integrative biology of type 2 diabetes. Nature. 

Dec;576(7785):51-60. doi: 10.1038/s41586-019-1797-8.  

Römisch-Margl W, Prehn C, Bogumil R, Röhring C, Suhre K, Adamski J. (2012) 

Procedure for tissue sample preparation and metabolite extraction for high-

throughput targeted metabolomics. Metabolomics volume 8, Issue 1, pp 133–142. 

Rodriguez BL, Curb JD, Davis J, Shintani T, Perez MH, Apau-Ludlum N, Johnson C, 

Harrigan RC. (2012) Use of the dietary supplement 5-aminiolevulinic acid (5-ALA) 

and its relationship with glucose levels and hemoglobin A1C among individuals with 

prediabetes. Clin Transl Sci. 5(4):314-20. doi: 10.1111/j.1752-8062.2012.00421.x.  

Saitoh S, Okano S, Nohara H, Nakano H, Shirasawa N, Naito A, Yamamoto M, Kelly 

VP, Takahashi K, Tanaka T, Nakajima M, Nakajima O. (2018) 5-aminolevulinic acid 

(ALA) deficiency causes impaired glucose tolerance and insulin resistance 

coincident with an attenuation of mitochondrial function in aged mice. PLoS 

One.13(1):e0189593. doi: 10.1371/journal.pone.0189593. 

Suhre K, Shin SY, Petersen AK, Mohney RP, Meredith D, Wägele B, Altmaier E; 

CARDIoGRAM, Deloukas P, Erdmann J, Grundberg E, Hammond CJ, de Angelis 

MH, Kastenmüller G, Köttgen A, Kronenberg F, Mangino M, Meisinger C, Meitinger 

https://www.ncbi.nlm.nih.gov/pubmed/?term=Piskovatska%20V%5BAuthor%5D&cauthor=true&cauthor_uid=30255224
https://www.ncbi.nlm.nih.gov/pubmed/?term=Stefanyshyn%20N%5BAuthor%5D&cauthor=true&cauthor_uid=30255224
https://www.ncbi.nlm.nih.gov/pubmed/?term=Storey%20KB%5BAuthor%5D&cauthor=true&cauthor_uid=30255224
https://www.ncbi.nlm.nih.gov/pubmed/?term=Vaiserman%20AM%5BAuthor%5D&cauthor=true&cauthor_uid=30255224
https://www.ncbi.nlm.nih.gov/pubmed/?term=Lushchak%20O%5BAuthor%5D&cauthor=true&cauthor_uid=30255224
https://www.ncbi.nlm.nih.gov/pubmed/30255224
https://www.ncbi.nlm.nih.gov/pubmed/?term=Popesco%20MC%5BAuthor%5D&cauthor=true&cauthor_uid=17267076
https://www.ncbi.nlm.nih.gov/pubmed/?term=Lin%20S%5BAuthor%5D&cauthor=true&cauthor_uid=17267076
https://www.ncbi.nlm.nih.gov/pubmed/?term=Wang%20Z%5BAuthor%5D&cauthor=true&cauthor_uid=17267076
https://www.ncbi.nlm.nih.gov/pubmed/?term=Ma%20ZJ%5BAuthor%5D&cauthor=true&cauthor_uid=17267076
https://www.ncbi.nlm.nih.gov/pubmed/?term=Friedman%20L%5BAuthor%5D&cauthor=true&cauthor_uid=17267076
https://www.ncbi.nlm.nih.gov/pubmed/?term=Frostholm%20A%5BAuthor%5D&cauthor=true&cauthor_uid=17267076
https://www.ncbi.nlm.nih.gov/pubmed/?term=Rotter%20A%5BAuthor%5D&cauthor=true&cauthor_uid=17267076
https://www.ncbi.nlm.nih.gov/pubmed/17267076
https://www.ncbi.nlm.nih.gov/pubmed/17267076
https://www.ncbi.nlm.nih.gov/pubmed/?term=Rodriguez%20BL%5BAuthor%5D&cauthor=true&cauthor_uid=22883608
https://www.ncbi.nlm.nih.gov/pubmed/?term=Curb%20JD%5BAuthor%5D&cauthor=true&cauthor_uid=22883608
https://www.ncbi.nlm.nih.gov/pubmed/?term=Davis%20J%5BAuthor%5D&cauthor=true&cauthor_uid=22883608
https://www.ncbi.nlm.nih.gov/pubmed/?term=Shintani%20T%5BAuthor%5D&cauthor=true&cauthor_uid=22883608
https://www.ncbi.nlm.nih.gov/pubmed/?term=Perez%20MH%5BAuthor%5D&cauthor=true&cauthor_uid=22883608
https://www.ncbi.nlm.nih.gov/pubmed/?term=Apau-Ludlum%20N%5BAuthor%5D&cauthor=true&cauthor_uid=22883608
https://www.ncbi.nlm.nih.gov/pubmed/?term=Johnson%20C%5BAuthor%5D&cauthor=true&cauthor_uid=22883608
https://www.ncbi.nlm.nih.gov/pubmed/?term=Harrigan%20RC%5BAuthor%5D&cauthor=true&cauthor_uid=22883608
https://www.ncbi.nlm.nih.gov/pubmed/22883608
https://www.ncbi.nlm.nih.gov/pubmed/?term=Saitoh%20S%5BAuthor%5D&cauthor=true&cauthor_uid=29364890
https://www.ncbi.nlm.nih.gov/pubmed/?term=Okano%20S%5BAuthor%5D&cauthor=true&cauthor_uid=29364890
https://www.ncbi.nlm.nih.gov/pubmed/?term=Nohara%20H%5BAuthor%5D&cauthor=true&cauthor_uid=29364890
https://www.ncbi.nlm.nih.gov/pubmed/?term=Nakano%20H%5BAuthor%5D&cauthor=true&cauthor_uid=29364890
https://www.ncbi.nlm.nih.gov/pubmed/?term=Shirasawa%20N%5BAuthor%5D&cauthor=true&cauthor_uid=29364890
https://www.ncbi.nlm.nih.gov/pubmed/?term=Naito%20A%5BAuthor%5D&cauthor=true&cauthor_uid=29364890
https://www.ncbi.nlm.nih.gov/pubmed/?term=Yamamoto%20M%5BAuthor%5D&cauthor=true&cauthor_uid=29364890
https://www.ncbi.nlm.nih.gov/pubmed/?term=Kelly%20VP%5BAuthor%5D&cauthor=true&cauthor_uid=29364890
https://www.ncbi.nlm.nih.gov/pubmed/?term=Kelly%20VP%5BAuthor%5D&cauthor=true&cauthor_uid=29364890
https://www.ncbi.nlm.nih.gov/pubmed/?term=Takahashi%20K%5BAuthor%5D&cauthor=true&cauthor_uid=29364890
https://www.ncbi.nlm.nih.gov/pubmed/?term=Tanaka%20T%5BAuthor%5D&cauthor=true&cauthor_uid=29364890
https://www.ncbi.nlm.nih.gov/pubmed/?term=Nakajima%20M%5BAuthor%5D&cauthor=true&cauthor_uid=29364890
https://www.ncbi.nlm.nih.gov/pubmed/?term=Nakajima%20O%5BAuthor%5D&cauthor=true&cauthor_uid=29364890
https://www.ncbi.nlm.nih.gov/pubmed/29364890
https://www.ncbi.nlm.nih.gov/pubmed/29364890


 22 

T, Mewes HW, Milburn MV, Prehn C, Raffler J, Ried JS, Römisch-Margl W, Samani 

NJ, Small KS, Wichmann HE, Zhai G, Illig T, Spector TD, Adamski J, Soranzo N, 

Gieger C. (2011) Human metabolic individuality in biomedical and pharmaceutical 

research. Nature 477(7362):54-60. doi: 10.1038/nature10354. 

Stumvoll M, Goldstein BJ, van Haeften TW. (2005) Type 2 diabetes: principles of 

pathogenesis and therapy. Lancet. 365(9467):1333-46. doi: 10.1016/S0140-

6736(05)61032-X. 

Szklarczyk D, Franceschini A, Kuhn M, Simonovic M, Roth A, Minguez P, Doerks T, 

Stark M, Muller J, Bork P, Jensen LJ, von Mering C. (2011) The STRING database 

in 2011: functional interaction networks of proteins, globally integrated and scored. 

Nucleic Acids Res. 39: D561-568. doi: 10.1093/nar/gkq973. 

Tabak AG, Herder C, Rathmann W, Brunner EJ, Kivimaki M. (2012) Prediabetes: a 

high-risk state for diabetes development. Lancet; 379(9833):2279-90. doi: 

10.1016/S0140-6736(12)60283-9. 

Tuomilehto J, Lindström J, Eriksson JG, Valle TT, Hämäläinen H, Ilanne-Parikka P, 

Keinänen-Kiukaanniemi S, Laakso M, Louheranta A, Rastas M, Salminen V, 

Uusitupa M; Finnish Diabetes Prevention Study Group. (2001) Prevention of type 2 

diabetes mellitus by changes in lifestyle among subjects with impaired glucose 

tolerance. N Engl J Med 344: 1343-1350. doi: 10.1056/NEJM200105033441801. 

Walker DI, Valvi D, Rothman N, Lan Q, Miller GW, Jones DP. (2019) The metabolome: 

A key measure for exposome research in epidemiology. Curr Epidemiol Rep. 6:93-

103.  

Wang TJ, Larson MG, Vasan RS, Cheng S, Rhee EP, McCabe E, Lewis GD, Fox CS, 

Jacques PF, Fernandez C, O'Donnell CJ, Carr SA, Mootha VK, Florez JC, Souza 

A, Melander O, Clish CB, Gerszten RE. (2011) Metabolite profiles and the risk of 

developing diabetes. Nat Med 17: 448-453. doi: 10.1038/nm.2307. 

Wang-Sattler R*, Yu Z, Herder C, Messias AC, Floegel A, He Y, Heim K, Campillos M, 

Holzapfel C, Thorand B, Grallert H, Xu T, Bader E, Huth C, Mittelstrass K, Döring A, 

Meisinger C, Gieger C, Prehn C, Roemisch-Margl W, Carstensen M, Xie L, 

Yamanaka-Okumura H, Xing G, Ceglarek U, Thiery J, Giani G, Lickert H, Lin X, Li 

Y, Boeing H, Joost H, Hrabé de Angelis M, Rathmann W, Suhre K, Prokisch H, 

Peters A, Meitinger T, Roden M, Wichmann HE, Pischon T, Adamski J, Illig T. (2012) 

Novel biomarkers for pre-diabetes identified by metabolomics. Mol. Syst. Biol. Sep 

25;8:615. doi: 10.1038/msb.2012.43.  

Wang-Sattler R*, Yu Y, Mittelstrass K, Lattka E, Altmaier E, Gieger C, Ladwig KH, 

Dahmen N, Weinberger KM, Hao P, Liu L, Li Y, Wichmann HE, Adamski J, Suhre K, 

Illig T. (2008) Metabolic profiling reveals distinct variations linked to nicotine 

https://www.ncbi.nlm.nih.gov/pubmed/?term=Stumvoll%20M%5BAuthor%5D&cauthor=true&cauthor_uid=15823385
https://www.ncbi.nlm.nih.gov/pubmed/?term=Goldstein%20BJ%5BAuthor%5D&cauthor=true&cauthor_uid=15823385
https://www.ncbi.nlm.nih.gov/pubmed/?term=van%20Haeften%20TW%5BAuthor%5D&cauthor=true&cauthor_uid=15823385
https://www.ncbi.nlm.nih.gov/pubmed/15823385?dopt=Abstract
https://www.ncbi.nlm.nih.gov/pubmed/?term=Walker%20DI%5BAuthor%5D&cauthor=true&cauthor_uid=31828002
https://www.ncbi.nlm.nih.gov/pubmed/?term=Valvi%20D%5BAuthor%5D&cauthor=true&cauthor_uid=31828002
https://www.ncbi.nlm.nih.gov/pubmed/?term=Rothman%20N%5BAuthor%5D&cauthor=true&cauthor_uid=31828002
https://www.ncbi.nlm.nih.gov/pubmed/?term=Lan%20Q%5BAuthor%5D&cauthor=true&cauthor_uid=31828002
https://www.ncbi.nlm.nih.gov/pubmed/?term=Miller%20GW%5BAuthor%5D&cauthor=true&cauthor_uid=31828002
https://www.ncbi.nlm.nih.gov/pubmed/?term=Jones%20DP%5BAuthor%5D&cauthor=true&cauthor_uid=31828002
https://www.ncbi.nlm.nih.gov/pubmed/31828002


 23 

consumption in humans--first results from the KORA study. PLoS One: 

2008;3(12):e3863. doi: 10.1371/journal.pone.0003863. 

Ward-Caviness CK, Xu T, Aspelund T, Thorand B, Montrone C, Meisinger C, Dunger-

Kaltenbach I, Zierer A, Yu Z, Helgadottir IR, Harris TB, Launer LJ, Ganna A, Lind L, 

Eiriksdottir G, Waldenberger M, Prehn C, Suhre K, Illig T, Adamski J, Ruepp A, 

Koenig W, Gudnason V, Emilsson V, Wang-Sattler R*, Peters A. (2017) 

Improvement of myocardial infarction risk prediction via inflammation-associated 

metabolite biomarkers. Heart. 103(16):1278-1285. doi: 10.1136/heartjnl-2016-

310789. 

WHO, Global report on diabetes. 2016 

WHO, Global status report on alcohol and health. 2018 

Wichmann HE, Gieger C, Illig T. (2005) KORA-gen--resource for population genetics, 

controls and a broad spectrum of disease phenotypes. Gesundheitswesen 67 Suppl 

1: S26-30. doi: 10.1055/s-2005-858226. 

Wishart DS, Knox C, Guo AC, Eisner R, Young N, Gautam B, Hau DD, Psychogios N, 

Dong E, Bouatra S, Mandal R, Sinelnikov I, Xia J, Jia L, Cruz JA, Lim E, Sobsey 

CA, Shrivastava S, Huang P, Liu P, Fang L, Peng J, Fradette R, Cheng D, Tzur D, 

Clements M, Lewis A, De Souza A, Zuniga A, Dawe M, Xiong Y, Clive D, Greiner R, 

Nazyrova A, Shaykhutdinov R, Li L, Vogel HJ, Forsythe I. (2009) HMDB: a 

knowledgebase for the human metabolome. Nucleic Acids Res. 37: D603-10. doi: 

10.1093/nar/gkn810. 

Xu T, Holzapfel C, Dong X, Bader E, Yu Z, Prehn C, Perstorfer K, Jaremek M, 

Roemisch-Margl W, Rathmann W, Li Y, Wichmann HE, Wallaschofski H, Ladwig 

KH, Theis F, Suhre K, Adamski J, Illig T, Peters A, Wang-Sattler R*. (2013) Effects 

of smoking and smoking cessation on human serum metabolite profile: results from 

the KORA cohort study. BMC Med. Mar 4;11:60. doi: 10.1186/1741-7015-11-60.  

Xu T, Brandmaier S, Messias AC, Herder C, Draisma HH, Demirkan A, Yu Z, Ried JS, 

Haller T, Heier M, Campillos M, Fobo G, Stark R, Holzapfel C, Adam J, Chi S, Rotter 

M, Panni T, Quante AS, He Y, Prehn C, Roemisch-Margl W, Kastenmüller G, 

Willemsen G, Pool R, Kasa K, van Dijk KW, Hankemeier T, Meisinger C, Thorand 

B, Ruepp A, Hrabé de Angelis M, Li Y, Wichmann HE, Stratmann B, Strauch K, 

Metspalu A, Gieger C, Suhre K, Adamski J, Illig T, Rathmann W, Roden M, Peters 

A, van Duijn CM, Boomsma DI, Meitinger T, Wang-Sattler R*. (2015) Effects of 

Metformin on Metabolite Profiles and LDL Cholesterol in Patients With Type 2 

Diabetes. Diabetes Care 2015 Oct;38(10):1858-67. doi: 10.2337/dc15-0658. 

Yu Z, Zhai G, Singmann P, He Y, Xu T, Prehn C, Römisch-Margl W, Lattka E, Gieger 

C, Soranzo N, Heinrich J, Standl M, Thiering E, Mittelstraß K, Wichmann HE, Peters 

https://www.ncbi.nlm.nih.gov/pubmed/?term=Ward-Caviness%20CK%5BAuthor%5D&cauthor=true&cauthor_uid=28255100
https://www.ncbi.nlm.nih.gov/pubmed/?term=Xu%20T%5BAuthor%5D&cauthor=true&cauthor_uid=28255100
https://www.ncbi.nlm.nih.gov/pubmed/?term=Aspelund%20T%5BAuthor%5D&cauthor=true&cauthor_uid=28255100
https://www.ncbi.nlm.nih.gov/pubmed/?term=Thorand%20B%5BAuthor%5D&cauthor=true&cauthor_uid=28255100
https://www.ncbi.nlm.nih.gov/pubmed/?term=Montrone%20C%5BAuthor%5D&cauthor=true&cauthor_uid=28255100
https://www.ncbi.nlm.nih.gov/pubmed/?term=Meisinger%20C%5BAuthor%5D&cauthor=true&cauthor_uid=28255100
https://www.ncbi.nlm.nih.gov/pubmed/?term=Dunger-Kaltenbach%20I%5BAuthor%5D&cauthor=true&cauthor_uid=28255100
https://www.ncbi.nlm.nih.gov/pubmed/?term=Dunger-Kaltenbach%20I%5BAuthor%5D&cauthor=true&cauthor_uid=28255100
https://www.ncbi.nlm.nih.gov/pubmed/?term=Zierer%20A%5BAuthor%5D&cauthor=true&cauthor_uid=28255100
https://www.ncbi.nlm.nih.gov/pubmed/?term=Yu%20Z%5BAuthor%5D&cauthor=true&cauthor_uid=28255100
https://www.ncbi.nlm.nih.gov/pubmed/?term=Helgadottir%20IR%5BAuthor%5D&cauthor=true&cauthor_uid=28255100
https://www.ncbi.nlm.nih.gov/pubmed/?term=Harris%20TB%5BAuthor%5D&cauthor=true&cauthor_uid=28255100
https://www.ncbi.nlm.nih.gov/pubmed/?term=Launer%20LJ%5BAuthor%5D&cauthor=true&cauthor_uid=28255100
https://www.ncbi.nlm.nih.gov/pubmed/?term=Ganna%20A%5BAuthor%5D&cauthor=true&cauthor_uid=28255100
https://www.ncbi.nlm.nih.gov/pubmed/?term=Lind%20L%5BAuthor%5D&cauthor=true&cauthor_uid=28255100
https://www.ncbi.nlm.nih.gov/pubmed/?term=Eiriksdottir%20G%5BAuthor%5D&cauthor=true&cauthor_uid=28255100
https://www.ncbi.nlm.nih.gov/pubmed/?term=Waldenberger%20M%5BAuthor%5D&cauthor=true&cauthor_uid=28255100
https://www.ncbi.nlm.nih.gov/pubmed/?term=Prehn%20C%5BAuthor%5D&cauthor=true&cauthor_uid=28255100
https://www.ncbi.nlm.nih.gov/pubmed/?term=Suhre%20K%5BAuthor%5D&cauthor=true&cauthor_uid=28255100
https://www.ncbi.nlm.nih.gov/pubmed/?term=Illig%20T%5BAuthor%5D&cauthor=true&cauthor_uid=28255100
https://www.ncbi.nlm.nih.gov/pubmed/?term=Adamski%20J%5BAuthor%5D&cauthor=true&cauthor_uid=28255100
https://www.ncbi.nlm.nih.gov/pubmed/?term=Ruepp%20A%5BAuthor%5D&cauthor=true&cauthor_uid=28255100
https://www.ncbi.nlm.nih.gov/pubmed/?term=Koenig%20W%5BAuthor%5D&cauthor=true&cauthor_uid=28255100
https://www.ncbi.nlm.nih.gov/pubmed/?term=Gudnason%20V%5BAuthor%5D&cauthor=true&cauthor_uid=28255100
https://www.ncbi.nlm.nih.gov/pubmed/?term=Emilsson%20V%5BAuthor%5D&cauthor=true&cauthor_uid=28255100
https://www.ncbi.nlm.nih.gov/pubmed/?term=Peters%20A%5BAuthor%5D&cauthor=true&cauthor_uid=28255100
https://www.ncbi.nlm.nih.gov/pubmed/?term=Improvement+of+myocardial+infarction+risk+prediction+via+inflammation-associated+metabolite+biomarkers


 24 

P, Suhre K, Li Y , Adamski J, Spector TD*, Illig T*, Wang-Sattler R*. (2012) Human 

serum metabolic profiles are age dependent. Aging cell, Dec;11(6):960-7. doi: 

10.1111/j.1474-9726.2012.00865.x.  

Zukunft S, Prehn C, Röhring C, Möller G, Hrabě de Angelis M, Adamski J, Tokarz J. 

(2018) High-throughput extraction and quantification method for targeted 

metabolomics in murine tissues. Metabolomics. 14(1):18. doi: 10.1007/s11306-017-

1312-x.  

 

7 Acknowledgement 

I am very grateful to:  

Prof. Dr. Annette Peters for being my mentor. Though having many obligations and 

duties as director of the EPI and speaker of KORA cohort amongst others, she was 

always available for discussion and support. I am grateful for supporting me and my 

group with constructive comments and being the official promoter of my doctoral 

students.  

 

Prof. Dr. Konstantin Strauch, as being my mentor and providing me the opportunity 

to teach the ‘Genetic Epidemiology’ course since 2011. Although he is currently 

working at the University of Mainz, he continues to support me as member of my 

‘Fachmentorat’.  

 

PD Dr. Andreas Lechner, as member of my ‘Fachmentorat’. Especially, being a 

medical doctor he provided very valuable input on the relevance and importance of 

translational research. He also strongly supported me during the EU EIT Health 

project DeTecT2D.  

 

I thank the current and past members of my group:  

Marcela Covic, Stefan Brandmaier, Tao Xu, Jonathan Adam, Zhonghao Yu, 

Ying He, Markus Rotter, Erik Bader, Choiwai Maggie Chat, Marta Jaremek, 

Jialing Huang and Li Wang for their hard work, collaboration, joint achievement 

and celebration (e.g. Chinese food & German cakes), as well as many other 

interactions and support, such as help with translation of complicated German 

documents, and exchange about different cultures and backgrounds.  

 

I am grateful to the board members of KORA and data-owners of the OMICs data:  



 25 

Christian Gieger, Harald Grallert, Melanie Waldenberger, Gabi Anton, Cornelia 

Huth, Barbara Thorand, Margit Heier, Christa Mesinger, Wolfgang Rathmann, 

Erich Wichmann, Birgit Linkohr, Jerzy Adamski, Karsten Suhre, Thomas Illig, 

Thomas Meitinger for design and conducting the KORA cohort and / or generating 

multi-time-point and multi-levels OMICs data, which enabled my research.  

 

I am grateful to my colleagues:  

Brigitte Fröhlich, Astrid Glaser, Susanne Vogt, Antonia Flaquer, Anne Quante, 

Susanne Breitner, Nadine Lindemann, Hans Demski, Pamela Matias Garcia, 

Mohamed Elhadad, Rory Wilson, Maike Groenewold, Natascha Strauss, 

Humberto Chavez Moruno, Conny Prehn, Julia Scarpa, Werner Römisch-

Margl, Gabi Karstenmüller, Monica Campillos, Anja Ludolph, Heilmaier 

Herbert, Thomas Hendel, Anni Paulini, Liane Thaller, Gabriele Kölbl, Angelika 

Andreas for their great support, collaboration and joint teaching, as well as many 

small, but very helpful business matters (ordering print paper and get signatures).  

 

I thank  

 Yixue Li, Wei He, Hong He, Yashu Wang, Shen Chi, Lifang Mu, Peijian Zou, 

Yang Wang, Wensi Vennekate, Siwei Zhang, Xu Dong for their support and 

encouragement.  

 

Finally, I thank 

  My parents and my five sisters for their love and encouragement, and last 

but not least, I thank Katharina and Michael for encouragement and much more… 

  



 26 

8 Enumerate papers  

8.1  Yu Z, …, Wang-Sattler R*, Human serum metabolic profiles are age 

dependent. Aging Cell 11(6):960-7 (2012) 

  https://doi.org/10.1111/j.1474-9726.2012.00865.x 
 

8.2  Xu T, …, Wang-Sattler R*, Effects of smoking and smoking cessation on 

human serum metabolite profile: results from the KORA cohort study. BMC Med. 11:60 

(2013) 

 https://doi.org/10.1186/1741-7015-11-60 

 

8.3  Jaremek M, …, Wang-Sattler R*, Alcohol-induced metabolomic differences in 

humans. Transl. Psychiatry 3:e276 (2013) 

https://doi.org/10.1038/tp.2013.55 

 

8.4  Xu T, …, Wang-Sattler R*, Effects of Metformin on Metabolite Profiles and LDL 

Cholesterol in Patients With Type 2 Diabetes. Diabetes Care 38(10):1858-67 (2015) 

 https://doi.org/10.2337/dc15-0658 

 

8.5  Adam J, …, Wang-Sattler R*, Metformin Effect on Non-Targeted Metabolite 

Profiles in Patients with Type 2 Diabetes and Multiple Murine Tissues. Diabetes 65(12): 

3776-85 (2016) 

 https://doi.org/10.2337/db16-0512 

 

8.6 Wang-Sattler R*, …, Illig T, Novel biomarkers for pre-diabetes identified by 

metabolomics. Mol. Syst. Biol. 8:615 (2012) 

 https://doi.org/10.1038/msb.2012.43 

 

https://doi.org/10.1111/j.1474-9726.2012.00865.x
https://doi.org/10.1186/1741-7015-11-60
https://doi.org/10.1038/tp.2013.55
https://doi.org/10.2337/dc15-0658
https://doi.org/10.2337/db16-0512
https://doi.org/10.1038/msb.2012.43


Human serum metabolic profiles are age dependent

Zhonghao Yu,1* Guangju Zhai,2,3* Paula Singmann,1* Ying
He,4,5 Tao Xu,1 Cornelia Prehn,6 Werner Römisch-Margl,7

Eva Lattka,1 Christian Gieger,8 Nicole Soranzo,2,9 Joachim
Heinrich,10 Marie Standl,10 Elisabeth Thiering,10 Kirstin
Mittelstraß,1 Heinz-Erich Wichmann,10,11,12 Annette
Peters,1,13,14 Karsten Suhre,7,15,16 Yixue Li,4,5 Jerzy
Adamski,6,17 Tim D. Spector,2† Thomas Illig,1,18† and Rui
Wang-Sattler1†

1Research Unit of Molecular Epidemiology, Helmholtz Zentrum München,

85764 Neuherberg, Germany
2Department of Twin Research and Genetic Epidemiology, King’s College

London, London, UK
3Discipline of Genetics, Faculty of Medicine, Memorial University of

Newfoundland, St John’s, NL, Canada
4Shanghai Center for Bioinformation Technology, 200235 Shanghai, China
5Key Lab of Systems Biology, Shanghai Institutes for Biological Sciences,

Chinese Academy of Sciences, 200031 Shanghai, China
6Genome Analysis Center, Institute of Experimental Genetics, Helmholtz

Zentrum München, 85764 Neuherberg, Germany
7Institute of Bioinformatics and Systems Biology, Helmholtz Zentrum

München, 85764 Neuherberg, Germany
8Institute of Genetic Epidemiology, Helmholtz Zentrum München, 85764

Neuherberg, Germany
9Wellcome Trust Sanger Institute Genome Campus, Hinxton, UK
10Institute of Epidemiology I, Helmholtz Zentrum München, 85764

Neuherberg, Germany
11Institute of Medical Informatics, Biometry and Epidemiology, Chair of

Epidemiology, Ludwig-Maximilians-Universität, Munich, Germany
12Klinikum Grosshadern, Munich, Germany
13Institute of Epidemiology II, Helmholtz Zentrum München, 85764

Neuherberg, Germany
14Department of Environmental Health, Harvard School of Public Health

Adjunct Associate Professor of Environmental Epidemiology, Boston, MA, USA
15Faculty of Biology, Ludwig-Maximilians-Universität, 82152

Planegg-Martinsried, Germany
16Department of Physiology and Biophysics, Weill Cornell Medical College in

Qatar, 24144 Education City–Qatar Foundation, Doha, Qatar
17Institute of Experimental Genetics, Life and Food Science Center

Weihenstephan, Technische Universität München, 85354 Freising-

Weihenstephan, Germany
18Hannover Unified Biobank, Hannover Medical School, 30625 Hannover,

Germany

Summary

Understanding the complexity of aging is of utmost importance.

This can now be addressed by the novel and powerful approach

of metabolomics. However, to date, only a few metabolic studies

based on large samples are available. Here, we provide novel and

specific information on age-related metabolite concentration

changes in human homeostasis. We report results from two popu-

lation-based studies: the KORA F4 study from Germany as a

discovery cohort, with 1038 female and 1124 male participants

(32–81 years), and the TwinsUK study as replication, with 724

female participants. Targeted metabolomics of fasting serum

samples quantified 131 metabolites by FIA-MS ⁄ MS. Among these,

71 ⁄ 34 metabolites were significantly associated with age in

women ⁄ men (BMI adjusted). We further identified a set of 13

independent metabolites in women (with P values ranging from

4.6 · 10)04 to 7.8 · 10)42, acorr = 0.004). Eleven of these 13 metab-

olites were replicated in the TwinsUK study, including seven

metabolite concentrations that increased with age (C0, C10:1,

C12:1, C18:1, SM C16:1, SM C18:1, and PC aa C28:1), while histidine

decreased. These results indicate that metabolic profiles are age

dependent and might reflect different aging processes, such as

incomplete mitochondrial fatty acid oxidation. The use of meta-

bolomics will increase our understanding of aging networks and

may lead to discoveries that help enhance healthy aging.

Key words: age; aging; epidemiology; metabolomics; popula-

tion-based study.

Introduction

Life expectancy in humans has dramatically increased throughout the

world (Ferrucci et al., 2008). This process entails great challenges for

world population in terms of health and economics, and complex social

issues emerge, in particular for the future of healthcare systems, as aging

is often accompanied by disabilities and diseases such as cardiovascular

diseases, chronic lower respiratory tract disease, Alzheimer’s disease,

chronic joint symptoms, arthritis, and diabetes (Butler et al., 2008;

Wijsman et al., 2011). Thus, understanding the physiology of aging is of

tremendous importance to allow populations to grow old, disease-free

and with a good quality of life.

Aging is a very complex process because many transformations happen

to the human organisms that affect all levels, from organ systems to cell

organelles, and lead to a wide variety of altered functions. However, this

process is incompletely understood. Genetic and environmental influ-

ences seem to be involved, but other approaches and insights are needed

(Karasik et al., 2005; Piper & Bartke, 2008; Kerber et al., 2009; Deelen

et al., 2011). Popular theories of aging include those implicating free radi-

cals, accumulation of glycated proteins (AGEs), involvement of chronic

low-grade inflammation, altered action of several hormones or chromo-

some telomere shortening (Szibor & Holtz, 2003; Franceschi et al., 2007;

Yan et al., 2007; Jiang et al., 2008; Simm et al., 2008; Perheentupa &

Huhtaniemi, 2009). Nonetheless, the largest volume of knowledge stems

from non-human studies. Based on genetic studies in animal models,

there are several complex pathways known to be involved in aging mech-

anisms that also are clearly linked to metabolism (Toth & Tchernof, 2000;

Dennis et al., 2009; Feltes et al., 2011; Partridge et al., 2011).
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Metabolomics is a key technology of modern systems biology that

focuses on obtaining an integral depiction of the current metabolic status

of an organism, associated with physiological and pathophysiological

processes (Psychogios et al., 2011). Numerous small molecules are mea-

sured that can be both endogenous and exogenous. These ideally repre-

sent the whole range of intermediate metabolic pathways and may serve

as biomarkers, indicating distinct physiological and ⁄ or pathophysiological

states of an organism (He et al., 2012). Metabolomics is therefore a valu-

able tool for investigating in a single approach all the various ways in

which metabolism is influenced, and then linking these influences to the

phenotypic outcome of interest, thus a very promising tool for capturing

the complexity of the aging process.

Only a few aging studies with metabolomics analyses have been con-

ducted in animal models (in rats, mice and dogs) (Williams et al., 2005;

Wang et al., 2007; Nevedomskaya et al., 2010). The very few published

results on aging in adult humans have been small. A study of 269 individ-

uals (both men and women) analyzed the human plasma metabolome

with age using NMR and thus obtaining a very different set of metabolites

to the current study (Lawton et al., 2008; Orešič, 2009). Nikkilä and col-

leagues performed a metabolomics study on early childhood, following

59 children from birth to an age of 4 years, and identified previously

unknown metabolic changes with age (Nikkila et al., 2008).

The objectives of the current study were to characterize the metabolic

profile of a large group of subjects with a wide age range (32–81 years)

and identify metabolites relates to chronological age independent of BMI.

Such metabolites may subsequently be investigated in future studies

to establish whether they associate with health conditions and aging

mechanisms.

Results

Study population

Individuals without metabolic diseases (e.g. hypertension, type 2 diabetes

and obesity) were used in both studies of the Cooperative Health

Research in the Region of Augsburg () (Holle et al., 2005; Wichmann

et al., 2005) and the UK Adult Twin Registry (TwinsUK) (Spector &

Williams, 2006; Moayyeri et al., 2012). KORA F4 sample involved 1038

women and 1124 men, aged 32–81 years (Table 1). Women and men of

the KORA participants were about the same average age (54 years old)

and had comparable mean BMIs (around 26 kg m)2). The TwinsUK

contained 742 women, aged 19–82 years, with a mean age of 58 years

and BMI of about 26 kg m)2. Comparing the discovery KORA women

with the replication TwinsUK individuals, KORA women are about 4 years

younger and have a slightly higher BMI (Table 1).

Serum concentrations of 163 metabolites were measured in all fasting

participants; the 163 metabolites and their characteristics are summa-

rized in Table S1 (Supporting information).

Discovery of age-associated metabolites: general analyses

procedure

Owing to prior results from KORA F4, which showed strong metabolic

differences between women and men (Mittelstrass et al., 2011), we

conducted strictly sex-separated analyses. Furthermore, we found that

the BMI was significantly correlated with both age (Pearson’s r = 0.26,

P = 2.2 · 10)16) and metabolite concentrations (Table S1) in KORA F4.

To investigate the ‘true’ age-related metabolites, BMI was adjusted in

subsequent analyses, and residuals of metabolite concentrations from

linear regression against BMI were used in the graphs. We first plotted

heat maps of mean residuals for 131 metabolites for each year of age as

an explorative tool. Second, we used linear regression models for each

metabolite at individual level to identify age-related metabolites. More-

over, as some of these metabolites correlated with each other, especially

for the same classes (Fig. S1), we employed two additional statistical

methods, the nonparametric random forest and the parametric stepwise

selection methods, to identify unique and independent biomarker

candidates. Finally, the set of age-related metabolites were replicated in

the TwinsUK study. Smoother plots of this subset of metabolites were

displayed to characterize age-associated changes regarding metabolite

concentrations (Figs S3–S5).

Heat map of KORA F4 revealed association between age

and metabolite

We display heat maps of normalized mean metabolite residuals for each

year of age in both women and men. The resulting heat map for women

displayed a clear increase in metabolite concentrations with respect to

age in KORA F4, in particular with most acylcarnitines (ACs) and diacyl

phosphatidylcholines (PC aa), while others showed gradual decreases

with age, for example, for most amino acids (AAs) (Fig. 1). A similar trend

for most ACs and AAs were also observed in the heat map for men; how-

ever, most of the Lyso PCs decreased with age in men. In general, the

results of heat maps of women and men showed different patterns of

changes and clusters (the heat map result of men is shown in Fig. S2).

Identification of a metabolite set for age

We performed multiple linear regression analysis between metabolite

concentrations and age with BMI as covariate. In the discovery cohort, we

found 71 metabolite concentrations in women and 34 metabolites in

men that were significantly associated with age (P values < 3.8 · 10)4).

As some of these metabolites are expected to correlate with each other,

we employed two additional statistical methods (the nonparametric ran-

dom forest and the parametric stepwise selection, see below) to identify

independent biomarker candidates. Of the 71 ⁄ 34 metabolites, 13 ⁄ 12

were found to contain independent information in women and men,

respectively (mean concentrations, beta and P values for women are

shown in Table 2, and for men in Table S2) (Supporting information). Five

metabolites (C12:1, C18:1, His, Trp, and PC ae C36:1) were found both

in women and men.

Smoother plots were drawn to characterize the trends and courses of

metabolite concentration changes with age in women (Fig. S3) and men

(Fig. S4). The smoothing method was ‘loess’, which is a locally weighted

regression robust against a small fraction of outliers. As already stated for

the heat map, some metabolite concentrations showed increasing, while

some showed decreasing, trends with age, but smoother plots provided

deeper insight. For example, the larger proportion of the identified

metabolites showed linear associations with age for both women and

Table 1 Population characteristics of KORA F4 and Twins UK

KORA F4 TwinsUK

Males Females Females

N 1124 1038 742

Age (years)† 53.6 ± 12.5 54.1 ± 13.1 57.7 ± 10.6

BMI (kg m)2)† 25.9 ± 3.9 27.1 ± 3.2 25.6 ± 3.7

†Values of age and BMI are shown mean ± standard deviation (SD).
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men, with the exception of three metabolites in women (PC ae C42:4, PC

ae 42:5, and PC ae C44:4) and one in men (Gln), which exhibited a

decrease around age of 51.

Replication of the metabolite set in the TwinsUK

For replication purpose, we used an independent sample of 742 women

subjects derived from the TwinsUK cohort, for whom fasting serum

metabolomics data were available. The metabolites showed comparable

mean concentrations in both studies. Among the 13 age-related metabo-

lites found in the KORA study, 11 metabolites were well replicated in the

TwinsUK sample, with P < 0.004 for the significance level after adjust-

ment for multiple testing with the Bonferroni correction method

(Table 2), and the effect direction was the same as in the discovery sam-

ple (except for one metabolite, PC ae C36:1), with borderline significance

in the TwinsUK sample (P = 2.00 · 10)03). We also drew smoother plots

for the TwinsUK sample and obtained similar curve shapes (with the

exception of PC ae C36:1) (Fig. S5).
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Fig. 1 Heat map of the fold standard deviation changes between ages, and clustering of these changes, over all ages in 1038 women from KORA F4. The heat map shows

changes of x-fold standard deviation from the overall mean concentration for each age year in a color-coded way. Green squares represent a decrease, and red squares an

increase. Gray boxes represent groups of metabolites with similar changes with number of metabolites in parentheses. Metabolite names in red indicate our set of 13

metabolites. AA, amino acid; AC, acylcarnitines; PC aa, phosphatidylcholinediacyl; PC ae, phosphatidylcholine acyl-alkyl; and lyso PC a, lysophosphatidylcholine acyl.
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Furthermore, we analyzed both study samples in a meta-analysis,

which virtually gave the same results as in the KORA female sample alone.

All 13 metabolites of the marker set were significant, with P values

ranging from 5.18 · 10)6 to 3.87 · 10)32.

Discussion

We found strong associations between age and the human metabolome

and identified 11 metabolites that associated with age in women in both

discovery and replication cohort. Our finding of 12 metabolites associated

with age in men was not yet tested for confirmation.

The extent of sexual dimorphism in the metabolome has recently been

shown (Mittelstrass et al., 2011), stressing the need for sex stratification.

Even accounting for the lack of a replication sample, the results in men

are less impressive for unclear reasons. Lifestyle and different life experi-

ences probably play prominent roles in this. Nonetheless, five metabolites

could be identified in both men and women in the discovery cohort, so

that these may be considered to be metabolites associated with aging in

the population as a whole.

We explored biological alterations that might have led to the observed

changes in metabolite concentrations and could link our observations to

common aging theories. As we had excluded participants with major

metabolic diseases, we assume that our findings may be representative

for the general aging population.

Phospholipids are major components of cell membranes. Changes in

the cellular membrane that include a G protein coupled receptor may

relate to aging, which affects at least G protein activity, cell morphology,

and cell homeostasis (Naru et al., 2008).A common feature of cellular

senescence is an increased cell surface. Naru et al. (2008) found that

senescent cells had a higher uptake of PC species with long-chain fatty

acid residues. Additionally, the number of special lipid rafts, termed

caveolae, increased with senescence. Presumably, PC species were inte-

grated into caveolae, which contain caveolin-1 as a crucial component

capable of cell cycle suppression at the G0 ⁄ G1 phase. Thus, altered

consumption of phospholipids because of specific membranaceous

demands could be associated with senescence, possibly involving the

scavenger receptor SR-BI as the major mediator of selective phospholipid

(PC, SM, and PE) uptake from particles as HDL and LDL (Engelmann &

Wiedmann, 2010),

Sphingomyelins are further important components of cell membranes,

especially neuronal cells, as they influence membrane fluidity and can

promote signal transduction. While both Ichi et al. (2009) and Corre et al.

(2010) reported the connection between oxidative stress and sphingomy-

elin metabolism, in their studies, oxidative stress was shown to accelerate

degradation of sphingomyelins to ceramide, which would be inconsistent

with our observation that elderly subjects had elevated SM levels. How-

ever, another study identified cells that had adapted to chronic oxidative

stress by altering sphingomyelin metabolism and making major changes

in membrane composition, leading to stabilization (Clement et al., 2009).

The observed SM level elevations might indicate that aging humans have

effective mechanisms to protect cells from oxidative stress, accompanied

by changes in SM metabolism and incorporation of SM into cell

membranes.

Elevated serum levels of acylcarnitines could be due to different

underlying causes. AC species are found as a consequence of incom-

pletely oxidized fatty acids because of an excess of beta oxidation

capacity and related pathways (i.e. higher rate of substrate use than

energy demand, with accumulated acyl-CoA converted to AC that

then exits cells and tissues), but also as a consequence of oxidative

stress (Noland et al., 2009). Acylcarnitines in turn show up in the

blood. A recent rodent study suggested increased AC levels in blood

could be healthy (Noland et al., 2009). In the study, Wistar rats main-

tained on a high-fat diet exhibited diminished carnitine and increased

AC levels in skeletal muscle cells because of perturbations in mito-

chondrial fuel utilization, for example, they had incomplete fatty acid

oxidation. Supplemented carnitine led to AC efflux, which in turn

showed up in blood accompanied by improved metabolism and glu-

cose tolerance. Thus, the carnitine shuttle system is considered to be a

prominent factor in maintaining mitochondrial performance and

glucose homeostasis.

Table 2 Potential biomarkers for aging in women from KORA F4 and TwinsUK

Marker

Discovery sample Replication sample

KORA F4 females TwinsUK females Meta-analysis

Mean† ± SD b� (SE) P value§ Mean ± SD b (SE) P value§ b (SE) P value§

C0 32.93 ± 6.79 0.45 (0.05) 2.77E)19 38.29 ± 9.38 0.26 (0.04) 5.30E)10– 0.33 (0.03) 1.04E)26

C10:1 0.15 ± 0.05 79.67 (6.69) 7.96E)31 0.19 ± 0.06 24.15 (6.38) 7.53E)05– 50.59 (4.62) 6.08E)28

C12:1 0.14 ± 0.04 105.20 (8.06) 2.93E)36 0.17 ± 0.05 28.64 (8.60) 1.00E)03– 69.4 (5.88) 3.87E)32

C18:1 0.12 ± 0.03 118.02 (10.86) 3.65E)26 0.19 ± 0.05 33.09 (7.51) 5.40E)06– 60.57 (6.18) 1.07E)22

His 97.41 ± 13.67 )0.18 (0.02) 3.15E)13 98.22 ± 28.93 )0.10 (0.02) 2.90E)06– )0.14 (0.01) 4.18E)23

Trp 80.2 ± 8.85 )0.24 (0.04) 1.29E)10 86.66 ± 16.63 )0.035 (0.03) 0.18 )0.11 (0.02) 5.81E)06

PC aa C28:1 3.56 ± 0.89 4.65 (0.36) 2.10E)35 4.17 ± 1.27 1.54 (0.33) 2.10E)06– 2.96 (0.24) 4.59E)34

PC ae C36:1 8.94 ± 2.05 2.15 (0.15) 7.75E)42 12.14 ± 5.23 )0.31 (0.16) 2.00E)03 1 (0.11) 6.75E)20

PC ae C42:4 1.08 ± 0.25 )6.44 (1.39) 4.25E)06 1.18 ± 0.46 )5.84 (1.13) 1.20E)07– )6.08 (0.88) 4.13E)12

PC ae C42:5 2.49 ± 0.50 )2.42 (0.69) 4.57E)04 2.71 ± 0.98 )2.57 (0.52) 3.20E)07– )2.52 (0.42) 1.38E)09

PC ae C44:4 0.46 ± 0.11 )15.23 (3.05) 6.76E)07 0.51 ± 0.18 )10.56 (2.52) 1.00E)05– )12.45 (1.94) 1.45E)10

SM C16:1 16.80 ± 2.97 1.27 (0.11) 4.89E)28 19.58 ± 4.79 0.38 (0.09) 1.00E)05– 0.74 (0.07) 3.74E)26

SM C18:1 11.96 ± 2.56 1.32 (0.13) 3.36E)22 12.38 ± 3.50 0.42 (0.12) 1.00E)03– 0.33 (0.03) 1.04E)26

†Mean concentration in lM from serum.
�ß estimate represents changes per year of age, adjusted for BMI.
§Corrected significance level of acorr = 0.004 (correction for 13 tests according to Bonferroni method).

–Replication succeeded for these markers.
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The observed higher levels of AC with advanced age might indicate

that the aging processes counteract oxidative damage from the

mitochondria via the carnitine-acylcarnitine shuttle.

The metabolic fate of the amino acid histidine has two possible routes.

Its presence in blood at higher ages could indicate an advanced tissue

demand. The first histidine-consuming pathway is its metabolism to the

biogenic amine histamine by a decarboxylation step. Histamine is involved

in local immune responses and can act as neurotransmitter. However, to

our knowledge, an association between histidine or histamine and

immunosenescence has not been reported so far. The second metabolic

pathway that consumes histidine produces carnosine. This dipeptide from

beta-alanine and L-histidine is found in virtually all tissues, in particular in

skeletal muscle cells and different brain cells (Derave et al., 2010). Owing

to its antioxidant characteristics, carnosine is considered to be a natural

anti-aging substance capable of suppressing oxidative damage, glycation

of proteins, and scavenging toxic age-related molecules (Hipkiss, 2010).

For instance, carnosine was shown to capture lipoxidation products and

prevent protein cross-linking (Zhu et al., 2009). Assuming that histidine

levels are lower owing to its consumption by carnosine biosynthesis with

advancing age, decreased histidine in our study might reflect a response

to oxidative stress.

Aging is understood as a continuous and dynamic remodeling

process of the human organism accompanied by numerous losses and

gains on different levels, including intermediate metabolism and cell

function (Barbieri et al., 2009). Our results of a large number of age-

associated metabolites and the replicated set of 11 most representative

ones might reflect these processes and allow us to draw a more integral

picture of the aging organism. Overall, we observed age-dependent dif-

ferences in PC, SM, AC, and AA levels that might be linked to altered

cell membrane composition, mitochondrial metabolism, and counteract-

ing oxidative stress.

While the present study was large in participant number and metaboli-

cally well characterized, it should be noted that metabolite profiles were

related to chronological not physiological age and that only a cross-sec-

tional study design was used. It is also not yet known whether the

changes in the 11 confirmed metabolites represent neutral changes with

age, changes causal to physiological aspects of aging or beneficial

responses to damaging agents. Further research on the metabolic

surrounding of the metabolite set could eventually lead to early determi-

nation of a person’s potential for healthy aging at beginning of the

remodeling process.

In summary, we identified a set of 11 significantly associated and repli-

cated markers for age in women using the German KORA and TwinsUK

studies. Literature gives indications that these markers might be linked to

aging processes such as oxidative stress, alterations in cell morphology,

beta oxidation capacity, and vascular function. This study shows the

power of metabolomics to better understand the phenotype of aging in

the human population and to link this knowledge in functional studies to

aging pathways.

Experimental procedures

Sample Source

KORA is a population-based research platform with subsequent follow-

up studies in the fields of epidemiology, health economics, and health-

care research (Holle et al., 2005; Wichmann et al., 2005). It is based on

interviews and medical and laboratory examinations, as well as biological

samples. Four surveys were conducted with 18 079 participants who live

in the city of Augsburg (Southern Germany) and 16 surrounding towns

and villages. KORA S4 consists of representative samples from 4261 indi-

viduals who live in Augsburg, who were examined during 1999–2001.

During the years 2006–2008, 3080 participants took part in a follow-up

(KORA F4) survey of the one conducted 7 years ago. For all studies, we

obtained written consent from participants and approval from the ethics

committee of the Bavarian medical association.

To avoid the potential influences from type 2 diabetes, hypertension

and obesity, we excluded a total of 918 subjects from KORA F4 for subse-

quent analyses, resulting in 2162 subjects aged 32–81 years. Among the

excluded were 20 experimental failures, 18 nonfasting subjects, 332 type

2 diabetics, 80 subjects without fasting glucose or 2 h glucose measure-

ment, 77 subjects with systolic blood pressure > 160 mmHg, and 153

subjects with BMI > 35 kg m)2. Further removals followed during statisti-

cal analyses (n = 239, see statistical section below).

Sampling

Blood was drawn into serum gel tubes in the morning between 8:00 and

10:30 am after a fasting period of at least 8 h. Tubes were gently inverted

twice, followed by 30 min resting at room temperature to obtain com-

plete coagulation. For serum collection, blood was centrifuged at 2750 g

at 15 �C for 10 min. Serum was frozen at )80 �C until execution of met-

abolic analyses.

Metabolite measurements

The targeted metabolomics approach was based on measurements with

the AbsoluteIDQTM p150 kit (BIOCRATES Life Sciences AG, Innsbruck,

Austria), allowing simultaneous quantification of 163 metabolites. The

method conforms with FDA-Guidelines ‘Guidance for Industry – Bioana-

lytical Method Validation (May 2001)’, which implies proof of reproduc-

ibility within a given error range. The assay procedures and nomenclature

have been described previously in detail (Zhai et al., 2010; Mittelstrass

et al., 2011; Römisch-Margl et al., 2011; Yu et al., 2011). Metabolite

measurements were adjusted for batch effect as we have described

previously (Mittelstrass et al., 2011).

To ensure data quality, each metabolite had to meet the three same cri-

teria we used before (Mittelstrass et al., 2011): (i) average value of the

coefficient of variance (CV) for the metabolite in the three QCs should be

smaller than 25%; (ii) 90% of all measured sample concentrations for the

metabolite should be above the limit of detection (LOD); and (iii) the cor-

relation coefficient between two duplicate measurements of the metabo-

lite in 144 re-measured samples should be above 0.5. In total, 131

metabolites passed the three quality controls, and the final metabolomics

dataset contained the sum of hexoses (H1), 14 amino acids (AA), 24 acyl-

carnitines (AC), 13 sphingomyelins (SMs), 34 diacyl phosphatidylcholines

(PC aa), 37 acyl-alkyl PCs (PC ae), and eight lyso PCs. Table S1 (Support-

ing information) summarizes the characteristics of all 163 metabolites

measured in KORA F4.

Statistics

Removal of outliers

To detect outliers, concentrations obtained for the remaining 131 metab-

olites were first scaled to have a mean of zero and a standard deviation

(SD) of one and projected onto the unit sphere, and Mahalanobis dis-

tances for each individual were then calculated using the Robust principal

components algorithm (Filzmoser et al., 2008) and were calculated sepa-

rately for men and women. For each group, the mean Mahalanobis dis-
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tance plus three times variance were defined as the cut-off. About 239

individuals whose distances were greater than these cut offs were

identified as outliers.

Residuals of metabolite concentrations

To avoid the influence of BMI when plotting the concentration of

metabolites, we used the residuals from the linear regression model

rather than use the absolute concentration. Log-transformed metabo-

lite concentrations were treated as dependent, and the BMI as an

independent, variable in the linear regression model, and the residuals

from the model were used as the residuals for each metabolite

concentrations. Regressions were performed for women and men

separately.

Heat map

Correlations were calculated for each metabolite pairs, and values were

displayed using heat map. For participants with the same age, mean val-

ues were calculated for residuals from linear regression against BMI for

each metabolite. These values were then scaled to a mean of 0 and a

standard deviation of 1, to display a heat map that showed the changes

of the metabolite concentrations with the increase of age; the color

change in the heat map represents the concentration deviation from the

mean value.

Linear regression analysis

Linear regression was applied to model the relationship between age

and the concentration of each metabolite, with BMI used as covari-

ate. Metabolite concentrations were log-transformed to achieve nor-

mality. Regressions were done for men and women separately. To

handle false discovery rates from multiple comparisons, the cut point

for significance was calculated according to the Bonferroni correction,

at a level of 3.8 · 10)4 (for a total use of 131 metabolites at 5%

level).

Smoother plots

Smoother plots were drawn for each metabolite of the set of metabo-

lites with the R function ‘qplot’ (package ‘ggplot2’) using the options

geom = smooth, method = loess, and span = 0.5, producing smoother

plots with locally weighted regression (loess) applying a smoothing

span of 0.5, which results in medium smoothing. The method com-

putes outlier robust locally weighted regression fitted values by fitting

local polynomials, using weights and results in the (loess) curve as

shown in our smoother plots. Further information about the method

has been previously published (Cleveland & Devlin 1988). For better

visualization, plots were truncated to observations between the first

and 99th percentiles.

Criteria for metabolite selection

Multivariate linear regression, random forest, and a stepwise selection

of linear regression methods were applied: metabolites were chosen

if they both were significant in linear regression for every single

metabolite, adjusting for BMI and also for the top 30 most important

variables in random forest method, in which both the 131 metabo-

lites and BMI were severed as variables. The chosen metabolites with

BMI as co-variable were further selected based on a stepwise selec-

tion of multi-variables linear regression according to the Akaike infor-

mation criterion (AIC) value.

All calculations were done with R statistical platform, version 2.12

(http://www.r-project.org/).

Replication

TwinsUK is a UK-wide twin registry sample of 11 000 adults, founded

in 1993 with the aim to explore the genetic epidemiology of com-

mon adult diseases (Spector & Williams, 2006). The cohort has been

tested to be generalizable to UK population singletons, with no popu-

lation stratification for a wide variety of musculoskeletal, CVD, or

metabolic traits (Andrew et al., 2001). Over 7000 twins have

attended detailed clinical examinations, with a wide range of pheno-

types, over the last 18 years. Blood samples were taken after at least

6 h fasting at each visit. Samples were immediately inverted three

times, followed by 40 min resting at 4 �C, to obtain complete coagu-

lation. Samples were then centrifuged for 10 min at 1439 g. Serum

was removed from the centrifuged tubes as the top, yellow, clear

layer of liquid. Aliquot in 4 · 1.5 mL skirted microcentrifuge tubes

was then stored in a –45 �C freezer until sampling. About 1237 twins

were selected for the targeted metabolomic profiling for either osteo-

arthritis or genetic studies. Metabolites were measured using the

same metabolomics platform (Biocrates metabolomic assay kit; BIO-

CRATES Life Sciences AG, Innsbruck, Austria) and following an identi-

cal protocol as for the KORA study, at the Genome Analysis Centre

of the Helmholtz Centre Munich (Zhai et al., 2010). To replicate the

KORA F4 study, data on the 13 age-related metabolites identified in

the KORA F4 aging study were retrieved, and the association

between age and these 13 serum metabolites were analyzed by

robust regression modeling that takes into account twin relatedness.

Of the data on a total of 1237 individuals with metabolomic data

available, 44 men were excluded. Following the KORA F4 study’s

exclusion criteria, we further excluded 64 individuals with systolic

blood pressure > 160 mmHg, 14 individuals with type 2 diabetes, 45

individuals with BMI > 35 kg m)2, and 328 individuals for whom no

data for blood pressure, fasting serum glucose levels, or diabetes

diagnosis data were available. A total of 742 female individuals were

included in the final analysis.

Meta-analysis

For the meta-analyses of KORA and TwinsUK women, a fixed effects

model was used.
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Abstract

Background: Metabolomics helps to identify links between environmental exposures and intermediate biomarkers
of disturbed pathways. We previously reported variations in phosphatidylcholines in male smokers compared with
non-smokers in a cross-sectional pilot study with a small sample size, but knowledge of the reversibility of smoking
effects on metabolite profiles is limited. Here, we extend our metabolomics study with a large prospective study
including female smokers and quitters.

Methods: Using targeted metabolomics approach, we quantified 140 metabolite concentrations for 1,241 fasting
serum samples in the population-based Cooperative Health Research in the Region of Augsburg (KORA) human
cohort at two time points: baseline survey conducted between 1999 and 2001 and follow-up after seven years.
Metabolite profiles were compared among groups of current smokers, former smokers and never smokers, and
were further assessed for their reversibility after smoking cessation. Changes in metabolite concentrations from
baseline to the follow-up were investigated in a longitudinal analysis comparing current smokers, never smokers
and smoking quitters, who were current smokers at baseline but former smokers by the time of follow-up. In
addition, we constructed protein-metabolite networks with smoking-related genes and metabolites.

Results: We identified 21 smoking-related metabolites in the baseline investigation (18 in men and six in women,
with three overlaps) enriched in amino acid and lipid pathways, which were significantly different between current
smokers and never smokers. Moreover, 19 out of the 21 metabolites were found to be reversible in former
smokers. In the follow-up study, 13 reversible metabolites in men were measured, of which 10 were confirmed to
be reversible in male quitters. Protein-metabolite networks are proposed to explain the consistent reversibility of
smoking effects on metabolites.

Conclusions: We showed that smoking-related changes in human serum metabolites are reversible after smoking
cessation, consistent with the known cardiovascular risk reduction. The metabolites identified may serve as
potential biomarkers to evaluate the status of smoking cessation and characterize smoking-related diseases.
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Background
Smoking is responsible for 90% of all lung cancers,
accounts for 25% of cancer deaths worldwide [1-3] and
is a significant risk factor for cardiovascular disease
(CVD) [4-7]. The benefits of smoking cessation are
remarkable. Risk of CVD is reduced in former smokers
(FS) compared with current smokers (CS) [8-10]; mor-
tality and future cardiac events both decline in FS
[11,12]. Nevertheless, for cancers, especially for adeno-
carcinoma, the risk remains high in FS compared with
never smokers (NS) [13,14]. Studies have made attempts
to find the molecular basis for the influence of smoking
and smoking cessation on cardiovascular risks. For
instance, smoking is associated with the increase of sev-
eral CVD-related inflammatory markers, for example, c-
reactive protein and fibrinogen [15-17], and smoking
cessation could largely reduce the level of these markers
[18]. However, there is also evidence that other molecu-
lar changes associated with smoking are permanent, for
example, loss of heterozygosity and hypermethylation in
the promoter regions of cancer-related genes [19-23].
The metabolomics approach provides a functional read-

out of activities located downstream of the gene expres-
sion level that are more closely related to the physiological
status [24] and, thus, may be particularly useful for the
study of environmental influences, namely the ‘exposome’
[25]. Studying a strong environmental factor, for example
a lifestyle-related exposure to smoking, may be considered
a very powerful approach for understanding the links
between environmental exposure and the metabolome. In
human lung epithelial cells, it has been shown that meta-
bolite concentration changes in various pathways, for
example, the urea cycle and polyamine metabolism and
lipid metabolism under smoke exposure [26]. In a pilot
study with 283 male participants from the Cooperative
Research in the Region of Augsburg (KORA) F3 in Ger-
many, we have shown that levels of diacyl-phosphatidyl-
cholines (PCs) were higher in 28 CS compared with 101
NS, except for acyl-alkyl-PCs [1]. The reduced ratios of
acyl-alkyl-to diacyl-PCs in CS may be regulated by the
enzyme alkyl-dihydroxyacetone phosphate in both ether
lipid and glycerophospholipid pathways [1]. However, little
has been reported about the reversibility of the metabolite
profile upon smoking cessation, which is important for
comprehensive understanding of smoking effects. It is also
known that metabolite profile is different between men
and women [25], but whether lifestyle factors such as
smoking may induce different metabolite patterns in men
and women is still unknown.
In this study, we analyzed the association between

smoking and the concentration of metabolites in 1,241
serum samples from the KORA baseline survey 4 (S4)
and follow-up (F4) study, aiming to extend the knowl-
edge of smoking-associated metabolites beyond our pilot

study by including female CS at two time points over
seven years, to investigate whether smoking-associated
changes in metabolite profile are reversible after smok-
ing cessation, and to provide insights into the patho-
physiological consequences of smoking in protein-
metabolite networks.

Methods
Ethics statement
Written informed consent was obtained from KORA S4
and F4 participants. The KORA study was approved by
the ethics committee of the Bavarian Medical Association
in Munich, Germany.

Study population
The KORA surveys are population-based studies con-
ducted in the Region of Augsburg in Germany [27,28].
Four surveys were conducted with 18,079 participants
recruited from 1984 to 2001. The S4 consists of 4,261
individuals (25 to 74 years old) examined from 1999 to
2001. From 2006 to 2008, 3,080 participants (with an age
range of 32 to 81 years) took part in the F4 survey. Each
participant completed a lifestyle questionnaire providing
information on a number of parameters including smok-
ing status (current, former, never). Serum samples for
metabolomics analysis were collected in parallel in the
KORA S4 and F4 survey as described elsewhere [29-31].
For metabolite profiles, serum samples from 1,614 peo-

ple aged 55 to 74 years old were available [29]. Participants
with non-fasting status (N = 216) or missing values (N =
22) were excluded from the analysis. We further excluded
145 people in KORA S4 and 116 people in the longitudi-
nal data of KORA S4 ® F4, whose spouses were CS, to
rule out passive smoking effects. Furthermore, metabolite
concentrations of serum samples from 1,036 participants
were measured in both KORA S4 and F4.

Metabolite measurements
Liquid handling of serum samples (10 μl) was performed
with Hamilton star robot (Hamilton Bonaduz AG, Bona-
duz, Switzerland) and prepared for quantification using
the AbsoluteIDQ P180 and P150 kits (BIOCRATES Life
Science AG, Innsbruck, Austria) for the KORA S4 and F4
surveys, respectively. This allowed simultaneous quantifi-
cation of 188 or 163 metabolites using liquid chromato-
graphy and flow injection analysis mass spectrometry as
described previously [32,33]. The complete analytical
process was monitored by quality control steps, reference
samples and the MetIQ software package, which is an
integral part of the Absolute IDQ kit.
Because the two datasets were generated by different

platforms, different quality control processes were intro-
duced. The metabolite data quality control procedure for
the KORA S4 samples was described in our recently
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published work [29]. There were 140 metabolites that
passed the two quality controls: one hexose, 21 amino
acids, eight biogenic amines, 21 acylcarnitines, 13 sphingo-
myelins (SMs), eight lysoPCs, 33 diacyl-PCs (PC aa Cx:y)
and 35 acyl-alkyl-PCs (PC ae Cx:y). Lipid side chain com-
position is abbreviated as Cx:y, where × denotes the num-
ber of carbons in the side chain and y the number of
double bonds. The precise position of the double bonds
and the distribution of the carbon atoms in different fatty
acid side chains cannot be determined with this technol-
ogy. Concentrations of all analyzed metabolites are
reported in μmol/L (μM). The data cleaning procedure for
the KORA F4 samples has previously been described in
detail [24,30]. In total, 121 metabolites were measured in
both S4 and F4, and used for the prospective study.

Statistical analysis
Differences in population characteristics (CS, FS and
NS) were tested by a two-tailed student’s t-test. The
metabolite concentrations were log transformed for nor-
malization. We tested cross-sectional association of each
metabolite with smoking using logistic regression mod-
els adjusted for age, body mass index (BMI) and alcohol
consumption (see Figure 1). To correct for multiple test-
ing, false discovery rate (FDR) was calculated using the
Benjamini-Hochberg method [34] and the cut-off for
statistical significance was set at FDR <0.05.
Linear regression models were used to investigate

whether smoking intensities measured in pack years and
cessation time are associated with metabolite concentra-
tions. In the case of CS, the years of smoking were cal-
culated as the time period from starting smoking until
the start of the survey. Pack year was calculated as the
number of cigarettes per day multiplied by smoking
duration and divided by 20 [35]. Cessation time (in
years) was calculated according to the questionnaire.
The models contained the log-transformed metabolite
concentrations as the dependent variable and the smok-
ing intensities as the explanatory variable, with age, BMI
and alcohol consumption as covariates. Every unit
change of one covariate corresponds to a relative change
of the metabolite concentration by Δ (%):

� = (exp(βi) − 1) × 100%

where bi indicates the estimate of ith covariate in the
model.
To assess the role of smoking cessation for the quit-

ters, who were CS at S4 but FS at F4, we fitted the lin-
ear mixed models to the longitudinal data of KORA S4
® F4. The models contained the fixed effect of smoking
status (CS, FS and NS), age, BMI and alcohol consump-
tion with a random effect assigned to each participant.
All calculations were performed in R (version 2.14.1).

Network and pathway analysis
We retrieved protein-protein interactions from the data-
bases of the Search Tool for the Retrieval of Interacting
Genes/Proteins [36] and the relationships between
enzymes and metabolites from the Human Metabolome
Database [37] to construct protein-metabolite networks
containing links between metabolites, enzymes and
smoking-related genes. Genes and metabolites were con-
nected allowing for at most one intermediate enzyme by
Dijkstra’s algorithm [38], and optimized by eliminating
edges with Search Tool for the Retrieval of Interacting
Genes/Proteins scores less than 0.7. Each edge in the
networks was manually checked. We have implemented
this method in our previous studies [29,39]. The analysis
was performed using the R package igraph [40]. The
network was visualized using Cytoscape [41]. Pathway
analysis was performed by MetaboAnalyst [42].

Results
Characteristics of participants of the cross-sectional KORA
S4
Participants were divided into three groups according to
their self-reported smoking status. Population character-
istics are shown in Table 1. On average, CS were two to
three years younger and had a lower BMI than FS and
NS. Male CS showed higher alcohol consumption than
male NS, but there was no significant difference observed
in women. Furthermore, the statistics showed differences
in lifestyle factors between men and women. Alcohol
consumption was higher in men than women (P = 1.5e-11

(CS); P = 2.2e-18 (FS); P = 9.5e-17 (NS)), and smoking
intensity (in pack years) was higher in male than in
female CS (P = 6.0e-6).

Metabolomic differences between current, former and
never smokers
We identified 18 metabolites in men and six in women
that were significantly different (FDR <0.05) between CS
and NS. Three metabolites (PC ae C34:3, PC aa C36:1
and glutamate) were identified in both men and women
showing the same pattern of variation (higher or lower)
(Table 2). Compared with FS and NS, in male CS the
concentrations of four unsaturated diacyl-PCs (PC aa
C34:1, PC aa C36:1, PC aa C38:3 and PC aa C40:4) and
five amino acids (arginine, aspartate, glutamate, ornithine
and serine) were higher, whereas three saturated diacyl-
PCs, one lysoPC and four acyl-alkyl-PCs, as well as
kynurenine showed lower concentrations. In female CS,
we found higher levels of carnitine and PC aa C32:1, and
a lower level of hydroxysphingomyeline (SM (OH))
C22:2.
Among the 21 smoking-related metabolites (18 in men

and six in women), 19 were found to be reversible (that
is, significant difference between FS and CS but without
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Table 1 Characteristics of cross-sectional KORA S4.

Current
smoker

Former
smoker

Never
smoker

Pa

Current versus former
smoker

Current versus never
smoker

Male (N = 646)

N (%) 125 (19.3%) 321 (49.7%) 200 (31.0%)

Age (years) 62.2 ±5.3 65.3 ± 5.3 64.1 ± 5.6 7.9e-08 3.0e-03

BMI (kg/m2) 27.0 ±3.6 28.9 ±3.6 27.8 ±3.4 1.5e-06 6.5e-02

Alcohol consumption (g/
day)

27.5 ±29.0 24.1 ±24.3 20.5 ±21.3 0.25 0.02

Pack yearsb 39.3 ±22.4

Quit timec (years) 23.6 ±12.6

Female (N = 595)

N (%) 70 (11.8%) 130 (21.8%) 395 (66.4%)

Age (years) 61.3 ±5.2 64.0 ±5.2 64.6 ±5.3 7.5e-04 5.9e-06

BMI (kg/m2) 27.2 ±4.5 28.7 ±5.0 28.5 ±4.6 0.029 0.02

Alcohol consumption (g/
day)

6.5 ±10.9 10.0 ±12.8 7.5 ±11.1 0.042 0.48

Pack yearsb 25.8 ±15.3

Quit timec (years) 20.9 ±13.1

The study characteristics of KORA S4 are shown separately for current, former and never smokers. Values are shown as mean ±SD when appropriate. aP-values
are calculated by student’s t-test; bcalculated as the number of cigarettes consumed per day × years of smoking/20; c the time till the survey is conducted since
the person has stopped smoking. BMI: body mass index.
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Figure 1 Flow diagram illustrating the analysis strategy. CS: current smokers; FS: former smokers; NS: never smokers.
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significant difference between FS and NS; FDR <0.05).
No irreversible metabolite was observed (that is, signifi-
cant difference between FS and NS). Serine and PC aa
C32:3 in men were not classified because their concen-
trations were not significantly different between CS and
FS or between FS and NS (Table 2). A heat map repre-
senting the concentration profiles of the 21 identified
metabolites in CS, FS and NS is shown in Figure 2,
demonstrating the reversibility of metabolites after
smoking cessation.
In women, SM (OH) C22:2 was significantly associated

with cessation time (FDR <0.05); however, there was no
such significant metabolite in men (Table S1 in Additional
file 1), indicating a non-linear relationship between cessa-
tion time and the reversion of metabolite profile. In addi-
tion, we grouped the FS by stratified cessation years (0 to
10, 11 to 20, 21 to 30, 31 to 40, over 40 years). For some
metabolites (for example, PC ae C38:0, PC aa C36:0 and

ornithine), the greatest change of concentration occurred
within the first 10 years of cessation compared with CS
(Figure 3).
Within CS, we found kynurenine and PC ae C34:3, PC

ae C38:0 and PC ae C38:6 in men, and PC aa C36:1 in
women showing significant association with pack years.
In the linear regression model, pack years showed a nega-
tive relation (parameter estimation b <0) to these five
metabolites (Table 3) (for example, one pack year
increase will lead to a decrease of the kynurenine level in
CS by 0.33%).

Prospective change of metabolite profiles (from KORA
baseline S4 to follow-up F4)
The prospective dataset included 40 CS, 432 NS and 49
quitters (people who were CS in KORA S4 but FS in
KORA F4) (Table 4). Among the 16 reversible metabolites
in men, 13 (except kynurenine, glutamate and aspartate)

Table 2 Smoking-related metabolites in KORA S4.

Metabolites CS versus NS CS versus FS FS versus NS

Odds ratio (95% CI) P Odds ratio (95% CI) P Odds ratio (95% CI) P

Men (125 versus 200) (125 versus 321) (321 versus 200)

Arginine 1.7 (1.3, 2.2) 2.6e-05a 1.3 (1.0, 1.6) 0.03a 1.2 (1.0, 1.5) 0.03

Aspartate 1.6 (1.2, 2.0) 2.5e-04a 1.4 (1.1, 1.7) 4.7e-03a 1.1 (0.9, 1.3) 0.36

Glutamate 1.6 (1.2, 2.0) 6.2e-04a 1.4 (1.1, 1.9) 0.02a 1.0 (0.8, 1.3) 0.88

Ornithine 1.4 (1.2, 1.9) 2.2e-03a 1.3 (1.1, 1.7) 8.3e-03a 1.0 (0.9, 1.2) 0.78

Serine 1.4 (1.1, 1.8) 3.5e-03a 1.2 (1.0, 1.5) 0.12 1.1 (0.9, 1.4) 0.25

Kynurenine 0.6 (0.5, 0.9) 3.2e-03a 0.7 (0.5, 0.9) 2.3e-03a 1.0 (0.8, 1.2) 0.88

PC aa C32:3 0.7 (0.5, 0.9) 6.4e-03a 0.8 (0.6, 1.0) 0.07 0.9 (0.7, 1.0) 0.12

PC aa C34:1 1.7 (1.3, 2.2) 2.0e-04a 1.7 (1.3, 2.2) 2.5e-05a 0.9 (0.8, 1.1) 0.49

PC aa C36:0 0.6 (0.5, 0.8) 3.5e-04a 0.6 (0.5, 0.8) 2.7e-04a 1.0 (0.8, 1.2) 0.72

PC aa C36:1 1.6 (1.2, 2.0) 9.4e-04a 1.6 (1.3, 2.0) 8.2e-05a 0.9 (0.8, 1.1) 0.33

PC aa C38:0 0.7 (0.5, 0.9) 2.1e-03a 0.6 (0.5, 0.8) 1.2e-04a 1.0 (0.9, 1.3) 0.64

PC aa C38:3 1.5 (1.1, 1.9) 3.4e-03a 1.3 (1.1, 1.7) 0.01a 1.0 (0.8, 1.2) 0.85

PC aa C40:4 1.5 (1.2, 2.0) 3.4e-03a 1.4 (1.1, 1.8) 3.6e-03a 1.0 (0.8, 1.2) 0.86

PC ae C34:3 0.5 (0.4, 0.7) 3.3e-06a 0.6 (0.5, 0.8) 6.0e-05a 0.9 (0.7, 1.1) 0.23

PC ae C38:0 0.7 (0.5, 0.9) 2.1e-03a 0.6 (0.5, 0.8) 6.7e-04a 1.0 (0.8, 1.2) 0.94

PC ae C38:6 0.7 (0.5, 0.9) 4.8e-03a 0.7 (0.5, 0.8) 6.6e-04a 1.0 (0.8, 1.2) 0.97

PC ae C40:6 0.6 (0.5, 0.8) 8.8e-04a 0.7 (0.5, 0.8) 8.9e-04a 0.9 (0.8, 1.1) 0.33

lysoPC a C18:2 0.7 (0.5, 0.9) 3.3e-03a 0.8 (0.6, 0.9) 0.046a 0.9 (0.7, 1.1) 0.23

Women (70 versus 395) (70 versus 130) (130 versus 395)

carnitine 1.8 (1.4, 2.4) 4.3e-05a 1.5 (1.1, 2.1) 0.01a 1.1 (0.9, 1.4) 0.32

Glutamate 1.7 (1.3, 2.2) 1.2e-04a 1.8 (1.3, 2.5) 1.1e-03a 0.9 (0.7, 1.1) 0.17

PC aa C32:1 1.5 (1.1, 1.9) 2.1e-03a 1.4 (1.0, 2.0) 0.03a 1.1 (0.9, 1.4) 0.24

PC aa C36:1 1.6 (1.2, 2.0) 1.1e-03a 1.5 (1.1, 2.0) 0.02a 1.0 (0.8, 1.2) 0.87

PC ae C34:3 0.6 (0.4, 0.8) 7.7e-04a 0.6 (0.4, 0.8) 2.5e-03a 1.0 (0.8, 1.2) 0.94

SM (OH) C22:2 0.6 (0.5, 0.8) 2.1e-03a 0.6 (0.4, 0.9) 4.9e-03a 0.9 (0.7, 1.1) 0.35

Results of pair wise comparison by logistic regression of metabolites on smoking status adjusted for age, body mass index and alcohol consumption. Men and
women were analyzed separately. We present all results with a false discovery rate (FDR) below 0.05 (in the comparison between CS and NS, the FDR was
calculated by P-value adjusted for all 140 metabolites; for CS versus FS and FS versus NS, the FDR was calculated by P-value adjusted for the number of
metabolites significantly different between CS and NS). Smoking-related metabolites found in both men and women are in bold. aa: diacyl-; ae: acyl-alkyl-; CI:
confidence interval; CS: current smokers; FS: former smokers; NS: never smokers; PC: phosphatidylcholine; lysoPC: acyl-phosphatidylcholine; SM (OH):
hydroxysphingomyeline. aFDR <0.05.
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were also measured in KORA F4 using a different kit (see
Methods). We employed a linear mixed effect model to
investigate the effects of smoking cessation on metabolite
concentrations. Among these 13 metabolites, 10 metabo-
lites showed a significant variation in quitters, with a period
of smoking cessation from one to seven years, which

indicated a reverting process. The arginine level decreased
by 11.3% and ornithine by 14.8% in quitters compared with
CS, whereas PC aa C36:0 increased by 18.5%. Figure 4
shows the prospective changes of the significant metabo-
lites. For women, the same analysis was conducted.
Because the number of female quitters was small (N = 10),
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five metabolites that were measured in both KORA S4 and
F4 showed borderline significance (P <0.05). However,
none of these metabolites was found to be significant con-
sidering FDR <0.05 (see Table 5).

Smoking effects on metabolic network
Enrichment analysis of the 21 identified smoking-related
metabolites on Kyoto Encyclopedia of Genes and Genomes
pathways showed enrichment in a set of amino acid and
lipid metabolism pathways (ether lipid, glycerophospholipid,

arginine and proline metabolism). In addition, we analyzed
the impact of the smoking-related metabolites in each path-
way by measuring their structural importance (see Meth-
ods). These metabolites had high betweenness centrality
and a strong impact on the enriched pathways (Figure 5
and Table S2 in Additional file 2).
To systematically investigate how the effects of smoking

propagate over the metabolic networks, we evaluated the
association between 175 smoking-related genes, previously
reported [23], and the 21 smoking-related metabolites we
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Figure 3 Metabolite concentration variations in relation to smoking cessation time. Taking NS as baseline, figures show the mean
residuals of metabolites in different groups of CS and FS, giving the trend of metabolite variation with cessation time. FS were grouped by
stratified cessation time (≤10, 11 to 20, 21 to 30, 31 to 40, 41+). Residuals were calculated by linear regression model (regression of metabolite
concentration on age, body mass index and alcohol consumption). aa: diacyl-; ae: acyl-alkyl-; CS: current smokers; FS: former smokers; NS: never
smokers; PC: phosphatidylcholine.
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found in this study by analyzing protein-metabolite net-
works (see Methods). In men, 15 metabolites (lysoPC a
C18:2, PC aa C32:3,PC aa C34:1, PC aa C36:0, PC aa C36:1,
PC aa C38:0, PC aa C38:3, PC aa C40:4, PC ae C34:3, PC

ae C38:0, PC ae C38:6, PC ae C40:6, arginine, glutamate
and serine) were found to be linked with 11 genes (ADH7,
AKR1B1, DHRS3, FTL, GALE, GPC1, KRAS, S100A10,
SLC7A11, SULF1, PLA2G10) by related enzymes. In
women, four metabolites (PC aa C36:1, PC ae C34:3, PC aa
C32:1 and glutamate) were closely linked with nine genes
(ADH7, AKR1B1, DHRS3, FTL, GALE, GPC1, S100A10,
SULF1, PLA2G10) (Figure 6A and Table S3 in Additional
file 3). Similar to enrichment analysis, the network in men
and in women could be generally divided into glyceropho-
spholipids and tightly associated proteins as well as amino
acids and the associated genes and enzymes. A description
of the protein-metabolite and protein-protein interactions
was listed in Table S3 in Additional file 3.
The smoking effects on the networks were reversible.

With regards to gene expressions, with the exception of
SULF1 and PLA2G10, all changes in the networks were
reversible after smoking cessation [23]. All changes in
metabolites in the network were also reversible, except
serine.

Discussion
In this study, we have used an ‘omics’ approach to
investigate the association of metabolite concentrations
with smoking, delineated the reversion of metabolite
variations after smoking cessation and demonstrated the
results using protein-metabolite networks. We identified
strong associations of various metabolites with smoking,
and confirmed part of the findings of our pilot study
[1]. Among the 23 smoking-related metabolites identi-
fied in the pilot study, 11 metabolites were measured in
this study, five of which (four unsaturated diacyl-PCs
and one acyl-alkyl-PC) were validated in men, based on
about five-fold larger CS samples. Consistent patterns of
smoking effects on metabolite profile were observed in
the current study. Among all the smoking-related meta-
bolites, in CS we found higher unsaturated diacyl-PCs,
but lower acyl-alkyl-PCs and saturated diacyl-PCs,
which may indicate generally increased levels of unsatu-
rated fatty acids in CS. Unsaturated fatty acids are more

Table 3 Smoking intensity (pack years) related to
metabolites

Metabolites b estimate of pack year Δ (%) P

(95% confidence interval)×10-3

Men

Arginine -1.1 (-3.6, 1.4) -0.11% 0.38

Aspartate 2.9 (-1.4, 7.1) 0.29% 0.20

Glutamate 2.9 (-1.2, 6.9) 0.29% 0.17

Ornithine -2.4 (-5.2, 0.3) -0.24% 0.09

Serine 1.1 (-1.3, 3.6) 0.11% 0.37

Kynurenine* -3.3 (-6.1, -0.5) -0.33% 0.02

PC aa C32:3 -1.4 (-4.3, 1.4) -0.14% 0.33

PC aa C34:1 -0.9 (-3.5, 1.6) -0.09% 0.48

PC aa C36:0 -2.3 (-4.9, 0.4) -0.23% 0.09

PC aa C36:1 -1.4 (-4.6, 1.8) -0.14% 0.39

PC aa C38:0 -2.1 (-4.9, 0.7) -0.21% 0.15

PC aa C38:3 1.2 (-1.7, 4.1) 0.12% 0.43

PC aa C40:4 1.3 (-2.5, 5.1) 0.13% 0.51

PC ae C34:3* -3.7 (-6.4, -0.9) -0.37% 0.01

PC ae C38:0* -3.6 (-6.6, -0.5) -0.36% 0.02

PC ae C38:6* -2.6 (-5.1, -0.1) -0.26% 0.04

PC ae C40:6 -1.7 (-4.4, 1.0) -0.17% 0.22

lysoPC a C18:2 -3.1 (-6.5, 0.3) -0.31% 0.07

Women

Carnitine 1.1 (-4.3, 6.5) 0.11% 0.70

PC aa C32:1 0.2 (-10.5, 10.9) 0.02% 0.97

PC aa C36:1* 6.9 (0.6, 13.2) 0.69% 0.04

PC ae C34:3 -2.7 (-7.7, 2.2) -0.27% 0.54

SM (OH) C22:2 -2.8 (-7.7, 2.2) -0.28% 0.28

Glutamate 2.2 (-7.8, 12.2) 0.22% 0.67

Results of linear regression of smoking intensity (pack years) on metabolite
concentrations in men and women, adjusted for age, body mass index and
alcohol consumption. All smoking-related metabolites presented in Table 2
are listed (*P <0.05). aa: diacyl-; ae: acyl-alkyl-; CS: current smokers; FS: former
smokers; lysoPC: acyl-phosphatidylcholine; NS: never smokers; PC:
phosphatidylcholine; SM (OH): hydroxysphingomyeline.

Table 4 Characteristics of the prospective dataset (KORA S4 ® F4).

Current smoker Former smoker Never smoker

Men (N = 207)

N (%) 31 (15.0%) 30 (14.5%) 146 (70.5%)

Age at S4 (years) 60.2 ±5.3 63.0 ±5.0 63.0 ±5.5

Alcohol consumption (S4/F4)(g/day) 27.7 ±28.2/20.4 ±28.7 29.6 ±31.6/19.3 ±21.1 22.2 ±22.8/20.2 ±19.5

BMI (S4/F4) (kg/m2) 26.8 ±2.9/26.9 ±3.3 28.5 ±3.8/28.9 ±3.9 27.6 ±3.3/27.8 ±3.4

Women (N = 314)

N (%) 18 (5.7%) 10 (3.2%) 286 (91.1%)

Age at S4 61.0 ±5.1 59.5 ±3.1 63.6 ±5.1

Alcohol consumption (S4/F4)(g/day) 7.6 ±11.6/7.4 ±11.8 4.7 ±6.7/10.7 ±14.1 7.6 ±11.2/7.3 ±11.4

BMI (S4/F4) (kg/m2) 27.9 ±5.1/27.7 ±5.3 26.9 ±3.9/27.4 ±5.1 28.6 ±4.5/28.9 ±4.7

Population characteristics were calculated based on 207 men and 314 women who participated in both the KORA S4 and F4 study. Values are provided as mean
± SD. BMI: body mass index.
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vulnerable to lipid peroxidation and influence the risk of
different diseases [43,44].

Smoking-related metabolites and cardiovascular disease
The study results implied the potential of metabolomics
in revealing the role of an environmental factor, for
example a smoking lifestyle, in the pathogenesis and
prognosis of CVD.
One study on the peripheral blood metabolite profile

showed an association of coronary artery disease and urea
cycle-related metabolites, including arginine and glutamate
[45], which were also identified in our study as smoking-
related metabolites. By scrutinizing the smoking-related
metabolites in metabolic pathways, we found further sup-
port for the pathophysiological relation between these
metabolites and CVD. Previous findings indicated that the
glutamate transporter in human lung epithelial cells,
encoded by the SLC7A11 gene, is activated in CS [23,46],
which increases the transportation of glutamate and sub-
sequently raises the levels of the downstream metabolites,
arginine and ornithine (Figure 6B). The activation of the
cysteine-glutamate transporter (encoded by SLC7A11) and
the increased glutamate level as a response to oxidative
stress is also of great importance to endothelial dysfunc-
tion involved at all stages of atherosclerotic plaque evolu-
tion, which leads to CVD [47,48].
Ether lipid and glycerophospholipid metabolisms are

associated with smoking [1,49]. The decreased level of
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Table 5 Association of reversible metabolites with
smoking status change in the prospective dataset (KORA
S4 ® F4)

b estimate of smoking status
(95% confidence interval)

P

Men

Arginine -0.12 (-0.18, -0.06) 1.4e-04a

Ornithine -0.16 (-0.24, -0.08) 2.1e-04a

PC aa C34:1 -0.09 (-0.15, -0.03) 3.3e-03a

PC aa C36:0 0.17 (0.09, 0.25) 6.4e-05a

PC aa C36:1 -0.12 (-0.18, -0.05) 8.5e-04a

PC aa C38:0 0.14 (0.06, 0.22) 3.0e-04a

PC aa C38:3 -0.04 (-0.11, 0.02) 1.7e-01

PC aa C40:4 -0.11 (-0.18, -0.03) 6.0e-03

PC ae C34:3 0.14 (0.06, 0.21) 3.5e-04a

PC ae C38:0 0.13 (0.05, 0.21) 1.8e-03a

PC ae C38:6 0.11 (0.04, 0.18) 1.5e-03a

PC ae C40:6 0.08 (0.01, 0.15) 2.1e-02

lysoPC a C18:2 0.03 (-0.06, 0.11) 5.2e-01

Women

Carnitine -0.12 (-0.20, -0.05) 1.4e-03

PC aa C32:1 -0.18 (-0.32, -0.03) 2.1e-03

PC aa C36:1 -0.11 (-0.20, -0.02) 2.0e-02

PC ae C34:3 0.09 (-0.02, 0.19) 0.95

SM (OH) C22.2 0.12 (0.02, 0.22) 1.9e-02

Result of smoking status on metabolite concentrations using linear mixed
model for S4 ® F4 longitudinal data, adjusted for age, BMI, and alcohol
consumption. PC: phosphatidylcholine; aa: diacyl-; ae: acyl-alkyl-; lysoPC:
acyl-phosphatidylcholine; SM (OH): hydroxysphingomyeline. a FDR<0.05.
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lysoPC a C18:2 reflects the inhibition of upstream synth-
esis and activation of downstream hydrolysis. As shown in
Figure 6C, upregulation of S100A10 and GPC1 inhibits
cytosolic phospholipase A2, which plays a role in the
synthesis of lyso-PCs. The lysophospholipase I isoform,
which hydrolyses lysoPC into glycerophosphocholine, is
upregulated in CS [23]. Interestingly, one recent study
showed that a disorder of phosphatidylcholine metabolism
would promote CVD [50], which may establish a link
between smoking-related phosphatidylcholine variation
and cardiovascular events. For example, the phosphatidyl-
choline hydroperoxide will promote angiogenesis in
endothelial cells that are associated with atherosclerotic
development [51].
The reversibility of metabolite concentrations in a

small time window may reveal a reduced risk of smok-
ing-related diseases after stopping smoking. Concentra-
tions of arginine and glutamate that are associated with
both smoking and coronary artery diseases quickly
returned to normal levels (within seven years) after
smoking cessation, which is in line with epidemiological
findings that the smoking effects on CVD are quickly and
largely reduced after smoking cessation [8,9,52]. The
reversed glutamate level indicates reduced oxidative
stress after smoking cessation, and the reversion of argi-
nine and ornithine reflects a reversion of functioning in
the urea cycle. Our findings provide metabolic insight
into the reduced risk of CVD after smoking cessation
and provide support for the remarkable benefits people
would gain by stopping smoking.

Concordance of reversibility in metabolic network
The protein-metabolite interaction network shows that
the reversibility of metabolite concentrations also coin-
cided with gene expression (Figure 6A). Arginine and
glutamate were quickly reversed after smoking cessation,
which was in line with the quick reversibility of SLC7A11
expression. Expression of enzyme coding genes for the
hydrolysis of diacyl-PCs and acyl-alkyl-PCs, for instance
lysophospholipase, cytosolic phospholipase A2 and S100
calcium binding protein A2, were quickly reversible and
smoking-related diacyl-PCs and acyl-alkyl PCs shared the
same reverse pattern.

Gender-specific effects of smoking
In this study, we found gender-specific effects of smoking
on metabolite profiles (Table S1 in Additional file 1).
This result supports the assumption that differences in
smoking effects on men and women are not solely based
on smoking intensity but are also gender-specific. Gluta-
mate was higher in both male and female CS, however,
the levels of arginine and ornithine were only higher in
male CS. According to a previous study of the metabolo-
mic and genetic biomarkers on sexual dimorphisms [30],
the CPS1 gene, which regulates the formation of arginine,
has a gender-specific manner in certain single nucleotide
polymorphisms, with stronger effects in women than in
men. The gender-specific genetic effect might cause a
lower efficiency in women in regard to the transforma-
tion of extra glutamate to citrulline (Figure 6C).

Strengths and limitations
We used a systematic targeted metabolomics approach
with 140 metabolites in a large population-based cohort.
Analyzing the effects of smoking and smoking cessation
in this prospective manner (follow-up of seven years)
provides more power to investigate smoking effects by
ruling out individual differences. However, our study is
based on a limited range and number of metabolites and
cannot fully represent the whole metabolome. Thus, an
improved metabolomics technique measuring more
metabolites is urgently needed for a comprehensive
understanding of both reversible and permanent effects
of smoking on human metabolism. It would be interest-
ing for future studies to also include data on other envir-
onmental factors such as diet and lifestyle, which are
known to have effects on the human metabolome [53,54].

Conclusions
Our study shows the power of the metabolomics approach
in investigating the molecular signature of lifestyle-related
environmental exposures. We demonstrated that smoking
is associated with concentration variations in amino acids,
ether lipid and glycerophospholipid metabolism at an
‘omics’ level. The smoking-related changes in the human
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(B, C) Effects of smoking on arginine and glutamate as well as on lipid metabolism. Metabolites are in regular font, protein coding genes are in
italic, gender-specific gene (CPS1) is in bold italic font. aa: diacyl-; ae: acyl-alkyl-; APOA5: apolipoprotein A-V; BDH: 3-hydroxybutyrate
dehydrogenase, type 1; cPLA2: cytosolic phospholipase A2; CS: current smokers; FS: former smokers; GIIC sPLA2: phospholipase A2, membrane
associated; LRAT: lecithin retinol acyltransferase; LYPLA1: lysophospholipase I; lysoPC: acyl-phosphatidylcholine; NOS1: nitric oxide synthase 1; NS:
never smokers; PC: phosphatidylcholine; PLA2G10: group 10 secretory phospholipase A2; SCGB1A1: uteroglobin; SDH: serine dehydratase; SLC3A2:
solute carrier family 3 member 2.
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serum metabolite profile are reversible after stopping
smoking. This indicates the remarkable benefits of smok-
ing cessation and provides a link to CVD benefits. Further-
more, linking metabolomic knowledge to other ‘omics’
approaches, for example, transcriptomics, may have the
potential to identify novel biomarkers as well as new risk
assessment tools.

Additional material

Additional file 1: Table S1: Cessation time-related metabolites in FS. FDR
was calculated by P-value adjusted for the number of smoking-related
metabolites with Benjamini-Hochberg method. aa: diacyl-; ae: acyl-alkyl-;
C0: carnitine; FS: former smokers; lysoPC: acyl-phosphatidylcholine; PC:
phosphatidylcholine; SM (OH): hydroxysphingomyeline.

Additional file 2: Table S2: Enrichment and impact of smoking-
related metabolites in Kyoto Encyclopedia of Genes and Genomes
pathways. Table shows the enrichment and impact scores of smoking-
related metabolites in Kyoto encyclopedia of Genes and Genomes
pathways. The pathway analysis consists of enrichment and a structural
impact analysis both based on Kyoto Encyclopedia of Genes and
Genomes database. The -log (P) was considered as the enrichment score.
Impact, scored between 0 and 1, indicated the pathway topological
importance of the metabolites. In particular, the parameter Total is the
total number of compounds in the pathway; the parameter Hits is the
actual number of metabolites with significant variations in the pathway;
the Raw P was the original P-value calculated from the enrichment
analysis; the FDR was calculated as the P-value adjusted using Benjamini-
Hochberg method.

Additional file 3: Table S3: Links between smoking-related
metabolites, enzymes and genes. The table describes the links showed
in Figure 6 of the main text. The smoking-related metabolites, enzymes
and genes are listed in the first and second columns. The score of
interaction is given according to the definition by the Search Tool for
the Retrieval of Interacting Genes/Proteins [1]. A reference for each link
and a short description is provided. The Column of reaction shows the
possible biochemical reaction of the corresponding link or the type of
protein interaction. The enzymes includes, phospholipase A2, membrane
associated (GIIC sPLA2), cytosolic phospholipase A2 (cPLA2), group 10
secretory phospholipase A2 (PLA2G10), lysophospholipase I (LYPLA1),
apolipoprotein A-V (APOA5), uteroglobin (SCGB1A1), lecithin retinol
acyltransferase (LRAT), nitric oxide synthase 1 (NOS1), solute carrier family
3 member 2 (SLC3A2), serine dehydratase (SDH), 3-hydroxybutyrate
dehydrogenase, type 1 (BDH). The smoking-related gene/protein
includes, S100 calcium binding protein A10 (S100A10), glypican 1 (GPC1),
sulfatase 1 (SULF1), alcohol dehydrogenase 7 (ADH7), dehydrogenase
member 3 (DHRS3), aldose reductase (AKR1B1), acetoacetyl-CoA
synthetase (AACS), V-Ki-ras2 Kirsten rat sarcoma viral oncogene homolog
(KRAS), solute carrier family 7 (SLC7A11) and three enzyme listed above,
PLA2G10, LYPLA1, SCGB1A1. The links in the network for male and
female CS are combined and listed together. Smoking-related genes are
show in italic. aa: diacyl-; ae: acyl-alkyl-; C0: carnitine; lysoPC: acyl-
phosphatidylcholine; PC: phosphatidylcholine; SM (OH):
hydroxysphingomyeline.

Abbreviations
aa: diacyl-; ae: acyl-alkyl-; BMI: body mass index; CS: current smokers; CVD:
cardiovascular disease; FDR: false discovery rate; FS: former smokers; lysoPC:
acyl-phosphatidylcholine; NS: never smokers; PC: phosphatidylcholine; SM:
sphingomyeline; SM (OH): hydroxysphingomyeline.
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Alcohol-induced metabolomic differences in humans

M Jaremek1, Z Yu1, M Mangino2, K Mittelstrass1, C Prehn3, P Singmann1, T Xu1, N Dahmen4, KM Weinberger5,6,15, K Suhre7,8,
A Peters1,9,10, A Döring11, H Hauner12, J Adamski5,13, T Illig1,14, TD Spector2 and R Wang-Sattler1

Alcohol consumption is one of the world’s major risk factors for disease development. But underlying mechanisms by which
moderate-to-heavy alcohol intake causes damage are poorly understood and biomarkers are sub-optimal. Here, we investigated
metabolite concentration differences in relation to alcohol intake in 2090 individuals of the KORA F4 and replicated results in
261 KORA F3 and up to 629 females of the TwinsUK adult bioresource. Using logistic regression analysis adjusted for age, body
mass index, smoking, high-density lipoproteins and triglycerides, we identified 40/18 significant metabolites in males/females
with P-values o3.8E� 04 (Bonferroni corrected) that differed in concentrations between moderate-to-heavy drinkers (MHD) and
light drinkers (LD) in the KORA F4 study. We further identified specific profiles of the 10/5 metabolites in males/females that
clearly separated LD from MHD in the KORA F4 cohort. For those metabolites, the respective area under the receiver operating
characteristic curves were 0.812/0.679, respectively, thus providing moderate-to-high sensitivity and specificity for the
discrimination of LD to MHD. A number of alcohol-related metabolites could be replicated in the KORA F3 and TwinsUK studies.
Our data suggests that metabolomic profiles based on diacylphosphatidylcholines, lysophosphatidylcholines, ether lipids and
sphingolipids form a new class of biomarkers for excess alcohol intake and have potential for future epidemiological and clinical
studies.
Translational Psychiatry (2013) 3, e276; doi:10.1038/tp.2013.55; published online 2 July 2013

Introduction

Alcohol consumption is the world’s third largest risk factor for
disease burden and is associated with diseases, including
neuropsychiatric disorders,1–4 cardiovascular diseases, cir-
rhosis of the liver, various cancers and fetal alcohol syndrome.
Each year, an estimated 2.5 million people die from alcohol-
related disease worldwide.5 Biomarkers for alcohol intake
include direct blood alcohol concentration, g-glutamyltrans-
ferase activity, carbohydrate deficient transferrin6 or mean
corpuscular volume of erythrocytes.7 Nevertheless, further
research is needed to understand alcohol-specific metabolic
responses and the underlying pathophysiology. For example,
identification of potential biomarkers for monitoring of alcohol
consumption or determination of pharmacotherapy targets
could facilitate early intervention for patients with specific
alcohol-related disorders.

Targeted metabolomics is a promising method that can
elucidate the effect of alcohol consumption on human
metabolism. Metabolites are products of cellular processes,
and their levels can be regarded as the ultimate response of

biological systems to genetic or environmental changes.8–11

Recent advances in metabolomic technologies have enabled
high-throughput measurement of not only one but several
compound classes simultaneously (for example, amino acids,
sugars, glycerophospholipids)12,13 resulting in a fast and more
comprehensive identification of candidate biomarkers. As far
as we are aware, no large-scale metabolic profiling analyses of
humans with alcohol consumption have yet been conducted.

The aims of the underlying study were to (1) investigate the
relation of alcohol intake and serum metabolite concentrations
in German and UK studies and (2) identify potential
biomarkers that could predict high levels of intake.

Materials and methods

KORA F4 study population. Cooperative Health Research
in the Region of Augsburg (KORA) is a population-based
research platform with subsequent follow-up studies in
the fields of epidemiology and health-care research.14–16

The KORA F4 study is the follow-up of KORA-Survey 4
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(S4, 1999/2001) conducted in 2006/2008. In all, 3080
individuals participated in the follow-up study. For 3061
individuals, metabolic data was available.17,18 From 3061
individuals, 1144 males and 946 females aged 32–81 years
were selected for further analysis after application of the
following exclusion criteria: non-fasting at examination,
diabetic, alcohol abstainer, missing data or outliers (that is,
extreme low or high values) in metabolite concentration data
(see Statistical analysis section for outlier detection calcula-
tion). Study participants were categorized according to daily
alcohol intake as light drinkers (LD; females o20 g day� 1

and males o40 g day� 1) and moderate-to-heavy drinkers
(MHD; females X20 g day� 1 and males X40 g day� 1).

KORA F3 replication data set. The KORA F3 study is a
follow-up of the KORA-Survey 3 (S3, examined in 1994/95),
conducted in 2004/05. The KORA F3 cohort is a 10-year
follow-up survey of the KORA S3 survey. A total of 2974
individuals participated in the follow-up. From 2974 indivi-
duals, 377 individuals had metabolic data available. In all,
154 males and 107 females aged 55–84 years were selected
for further analysis after the application of KORA F4
exclusion criteria. KORA F4 and KORA F3 are two
independent cohorts and do not contain common participants
and were conducted at different time points.19,20

TwinsUK replication data set. The UK Adult Twin Registry
(TwinsUK) is a UK-wide twin registry sample of 11 000 adults
founded in 1993 with the aim to explore the genetic
epidemiology of common adult diseases.21 A total of 629
individuals aged 23–73 years were selected for analysis after
the application of KORA F4 exclusion criteria. For 277
probands, high-density lipoproteins (HDL) data were
available.

Ethics statement. Written informed consent has been given
by each KORA and TwinsUK participant. The KORA studies,
including the protocols for subject recruitment and assess-
ment and the informed consent for participants, were
reviewed and approved by the local ethical committee
(Bayerische Landesärztekammer). For the TwinsUK study,
ethics approval was received from the St Thomas’ Hospital
Ethics.

Blood sampling. KORA F4 and F3 blood samples for
metabolic analysis were collected using the similar collection
procedures together with medical examinations described
previously.22–24 KORA F4 blood samples were drawn into
serum tubes in the morning between 0800 and 1030 hours
after overnight fasting. Tubes were gently inverted twice,
followed by 30-min resting at room temperature to obtain
complete coagulation. For serum collection, centrifugation of
blood was performed for 10 min (2750 g, 15 1C). Serum was
frozen at � 80 1C until execution of metabolic analyses.

In the TwinsUK study, similar collection procedure was
used as that in the KORA study. TwinsUK blood samples were
taken after at least 6 h of overnight fasting. The samples were
immediately inverted three times, followed by 40-min resting
at 4 1C to obtain complete coagulation. The samples were
then centrifuged for 10 min at 2000 g. Serum was removed

from the centrifuged brown-topped tubes as the top, yellow,
translucent layer of liquid. Four aliquots of 1.5 ml were placed
into skirted micro centrifuge tubes and then stored in a
� 45 1C freezer until sampling.25

Metabolite measurements. Metabolomic analysis was per-
formed on 3061 subjects from the KORA F4 study, 377
subjects from the KORA F3 study and 629 TwinsUK study.
Comparison of metabolite concentrations (that is, compar-
ison between LD and MHD) was conducted within the same
cohort and within the same site of collection. The targeted
metabolomic approach was based on flow injection analysis
coupled with electrospray ionization tandem mass spectro-
metry measurements by AbsoluteIDQ p150 assay (BIO-
CRATES Life Sciences AG, Innsbruck, Austria). The method
of AbsoluteIDQ p150 assay has been proven to be in
conformance with FDA-Guideline ‘Guidance for Industry—
Bioanalytical Method Validation (May 2001)’,26 which implies
proof of reproducibility within a given error range. The assay
procedures of the AbsoluteIDQ p150 kit as well as the
metabolite nomenclature have been described in detail
previously.2,27 Data evaluation for quantification of metabo-
lite concentrations and quality assessment is performed with
the MetIQ software package, which is an integral part of the
AbsoluteIDQ kit. Internal standards serve as reference for
the calculation of metabolite concentrations. To ensure data
quality, each metabolite had to meet the three criteria
described previously:17,19 (1) average value of the coefficient
of variance for the metabolite in the three quality controls
should be smaller than 25%; (2) 90% of all the measured
sample concentrations for the metabolite should be above
the limit of detection; and (3) the correlation coefficient
between two duplicate measurements of the metabolite
in 144 re-measured samples should be above 0.5. In total,
131 metabolites passed the three quality controls, and the
final metabolomics data set contained the sum of hexoses
(H1), 14 amino acids, 24 acylcarnitines, 13 sphingomyelins,
34 diacylphosphatidylcholines (PCs), 37 acyl-alkyl-phospha-
tidylcholines and 8 lysophosphatidylcholines (lysoPCs).
Supplementary Table S1 summarizes the characteristics of
163 metabolites measured in KORA F4.

Statistical analysis. Statistical analysis was performed with
the open source software R (version 2.14.1). To detect
outliers, concentrations obtained for the 131 metabolites
were first scaled to zero mean and unity s.d. and were
projected onto the unit sphere, and Mahalanobis distances
for each individual were then calculated using the robust
principal components algorithm.28 Calculations were done
separately for males and females. For each group, the mean
Mahalanobis distance plus three times variance were defined
as the cutoff. Missing values were imputed using the R
package ‘mice’.29 Metabolite concentrations were logarith-
mized for all subsequent analysis steps. Shapiro–Wilk test30

was applied on single metabolites to check for normal
distribution of metabolites in the study population in order to
choose proper follow-up tests. Mann–Whitney test31 was
applied for the comparison of two variables not satisfying
normal distribution. Fisher’s exact test32 was applied for
comparing binomial proportions.
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Logistic regression33 was applied on each of the 131
metabolites to investigate associations of metabolites
between MHD and LD. P-values were corrected according
to the Bonferroni correction, at a level of 3.8E� 4 (for a total
use of 131 metabolites at the 5% level). To further select
candidate biomarkers, two additional methods were
applied:2,8 the random forest selection34 and the stepwise
selection, which assess the metabolites as a group. Between
the two groups, the random forest was first used to select the
metabolites among the 30 highest ranking variables of
importance score, allowing the best separation of the
individuals from different groups. Age, body mass index
(BMI), smoking, HDL and triglycerides were also included in
this method with all the metabolites. We further selected the
metabolites using stepwise selection on the logistic regres-
sion model. Metabolites with significantly different concentra-
tions between the compared groups in logistic regression, and
which were also selected using random forest, were used in
this model along with all the covariates. Akaike’s Information
Criterion was used to evaluate the performance of these
subsets of metabolites used in the models. The model with
minimal Akaike’s Information Criterion was chosen. The area
under the receiver-operating characteristic curves (AUC) was
used to evaluate the models.

Heat maps were used to illustrate the trends of metabolite
concentrations with increasing alcohol consumption. Alcohol
consumption data were split into alcohol consumption cate-
gories increasing by 5 g day� 1. A matrix of mean metabolite
concentrations was calculated for each alcohol consumption
category for significant male/female-specific metabolites from
logistic regression. In the same procedure, step hierarchical
clustering with Euclidean distance was applied on the
metabolite concentration matrix to generate a hierarchical
dendogram clustering metabolites with similar mean metabolite
concentrations. For the meta-analysis of the combined KORA
F4 and KORA F3 studies, a fixed effect model was used.

Results

Description of the study populations. Based on previous
results from KORA F4, which showed strong metabolomic
differences between men and women,19 we conducted strictly
sex-separated analyses. For both sexes, we classified our
probands into two groups according to daily alcohol con-
sumption of LD and MHD and compared MHD with LD
(Table 1). Alcohol abstainers (ND; defined as alcohol intake of
0 g day� 1) were included (view Supplementary Table S3 for
description of the ND group, view Supplementary Table S4
for sensitivity analysis). In general, age and BMI was
comparable between MHD and LD. A significantly lower
age could be observed in MHD of KORA F3 males and
TwinsUK participants (P-value 1.3E� 02 and 1.6E� 02,
respectively). BMI was significantly increased in MHD in
male KORA F4 participants (P-value 3.3E� 03). The propor-
tion of smokers was significantly higher in MHD in KORA F4
male and TwinsUK female populations (P-values 1.0E� 04
and 1.3E� 02, respectively). In all the three studies, there
was a significant increase in HDL in MHD compared with LD
(P-values 7.1E� 12–1.3E� 02). Except in KORA F3, the T
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mean HDL was increased, but P-value was not significant.
Significant increase of mean triglyceride concentration could
be observed in KORA F4 male MHD only (P-value 3.4E� 02).

Analysis of global metabolite concentration differences
between MHD and LD. We identified 40 metabolites in
males and 18 metabolites in females using logistic regression
analysis (adjusted for age, BMI, smoking, HDL and triglycer-
ides) that significantly differed (P-value o3.8E� 4) in
concentration between MHD and LD in the KORA F4 study
(view Supplementary Table S2 for detailed P-values and
direction). To illustrate the trend of metabolite levels with
increasing 5 g day� 1 alcohol consumption increments, heat
maps were displayed based on normalized mean metabolite
residuals for each of the 40/18 male/female metabolites.
Hierarchical clustering with Euclidean distance was used in
order to find similar metabolite groups. The final clusterogram
(display of dendogram and heat map) resulted in two main
clusters C1 and C2 both in males and females (Figure 1). C1
consists of metabolites that increase in concentration with
increasing alcohol consumption (high in MHD and low in LD).
In contrast, C2 consist of metabolites that decrease in
concentration with increasing alcohol consumption (low in
MHD and high in LD). PC aa Cx:ys, ether lipids (PC ae
Cx:ys), lysoPC a Cx:ys and sphingomyelins (SMs) occurred

in both males and females. Only the acylcarnitine C16:1
occurred in males. All PC ae Cx:ys and SMs were decreased
in MHD in males and females. PC aa Cx:ys were increased in
MHD compared with LD in males and females (except PC aa
C32:3, which was decreased in MHD in females). All lysoPC
a Cx:ys were increased in MHD in males and females (except
lysoPC a C17:0).

The logistic regression analysis was based on each single
metabolite, and some of these 40/18 male/female metabolites
are expected to correlate with each other. To find more
specific and independent metabolites that best separate MHD
from LD as potential biomarkers for alcohol-consumption, we
further applied Random Forest and Stepwise Selection
method. Ten metabolites in males (PC aa C32:1, PC aa
C36:1, PC aa C36:5, PC aa C40:4, PC ae C40:6, lysoPC a
C17:0, lysoPC a C18:1, SM (OH) C22:1, SM (OH) C22:2, SM
(OH) C16:1) and five metabolites in females (PC aa C34:1, PC
ae C30:2, PC ae C40:4, lysoPC a C16:1, lysoPC a C17:0)
were further selected (Figure 1). To evaluate the model of the
combination of the 10/5 male/female specific metabolites with
covariates (that is, how good does the logistic regression
model adjusted for age, BMI, smoking, HDL and triglycerides
distinguish between MHD and LD), the AUC was calculated.
The AUC value in males was 0.812 and in females 0.679
(Figure 1).

Figure 1 Alcohol-specific metabolomic profiles. Clusterograms show 40 and 18 metabolite concentrations in relation to alcohol consumption in light drinkers (LD) and
moderate-to-heavy drinkers (MHD) in (a) males and (b) females, respectively. The additional two-column clusterogram shows the effect of lipid-lowering medication (that is,
statins, fibrates, herbal-based lipid-lowering agents) on metabolite concentrations in non-drinkers (ND). Relative concentration of metabolites are represented by x-fold s.d.
from overall mean concentrations for groups of alcohol consumption of 5 g day� 1. Horizontal axis displays the alcohol concentration in g day� 1, while vertical axis represent
hierarchical clustering. The 10/5 most significant metabolites separating MHD from LD in males/females are highlighted in blue and pink. (c) Graphic shows receiver operating
characteristic (ROC) curves for the set of most significant 10/5 metabolites in males (PC aa C32:1, PC aa C36:1, PC aa C36:5, PC aa C40:4, PC ae C40:6, lysoPC a C17:0,
lysoPC a 18:1, SM (OH) C22:1, SM (OH) C22:2, SM (OH) C16:1) and females (PC aa C34:1, PC ae C30:2, PC ae C40:4, lysoPC a C16:1, lysoPC a 17:0). ROC curve
displayed as dotted/crossed line represent marker performance in males/females. The area under the ROC curve was calculated for the combined metabolite panel with
adjustment for age, body mass index, smoking status, high-density lipoproteins and triglycerides.

Alcohol-induced metabolomic differences
M Jaremek et al

4

Translational Psychiatry



Replication analysis in two independent cohorts.
Replication analysis of the most significant 10 alcohol-related
metabolites in males and five metabolites in females found in
KORA F4 discovery sample was performed in two indepen-
dent KORA F3 and TwinsUK cohorts (Tables 2 and 3). In
males, 3 out of 10 metabolites (that is, PC aa C32:1, PC aa
C36:1, SM (OH) C16:1) could be replicated in KORA F3
(Table 2). In females, two out of five metabolites could be
replicated (Table 3); one metabolite in KORA F3 (that is, PC
ae C30:2) and one metabolite (that is, PC aa C34:1) in
TwinsUK. In the TwinsUK population, only females were
available for replication analysis. In all, 629 TwinsUK
participants met the inclusion criteria and were eligible for
the replication analysis; however, only for 277 participants
HDL and triglyceride data were available for the same time
point. In TwinsUK, we performed the replication analysis using
277 and 629 study participants. In the first replication analysis
on 277 participants, logistic regression adjusted for age, BMI
and smoking, HDL and triglyceride resulted in no significant
P-values. When we increased the sample size to 629 and
used the logistic regression model adjusted for age, BMI and
smoking, the metabolite PC aa C34:1 could be replicated.

Additionally, we pooled data from the KORA F4 discovery
and KORA F3 replication samples and conducted a meta-

analysis with a fixed effect model in order to investigate the
combined effect of alcohol on metabolite concentrations. In
the meta-analysis, the replication succeeded for all 10
metabolites in men and 5 metabolites in women. This
indicates that due to the small sample size in TwinsUK and
KORA F3 cohorts the previous replication could not be
achieved for all metabolites. Nevertheless, the trends of
metabolite concentrations (as stated by the comparison of
means of metabolite concentrations between MHD and LD in
Tables 2 and 3) for all 10 and 5 metabolites are consistent with
the trends in the discovery across all studies. For example, the
metabolite lysoPC a C18:1 was not replicated in KORA F3 and
TwinsUK, still the mean metabolite concentration is higher in
MHD compared with LD throughout the KORA F4, KORA F3
and TwinsUK studies.

Discussion

In the current study, we used a targeted metabolomics
approach and identified, as well as partly replicated, alcohol-
related metabolites in German and UK human studies. Our
results suggest that alcohol affects mostly the sphingolipid,
glycerophospholipid and ether lipid metabolism. A schematic
overview of the observed alcohol-specific metabolic

Table 2 Results of logistic regression analysis of alcohol-specific metabolites in males

Discovery KORA F4 (n¼ 1144) Replication KORA F3 (n¼ 154)
Meta analysis discoveryþ replication

fixed effects (n¼ 1298)

Metabolite

LDa

mean±s.d.
(mM)b

MHDc

mean±s.d.
(mM)b P-valued,e

LD
mean±s.d.

(mM) b

MHD
mean±s.d.

(mM) b P-valued,f

LD
mean±s.d.

(mM) b

MHD
mean±s.d.

(mM) b P-valued,f

PC aa C32:1 19.3±9.2 31.0±16.9 1.1E� 18 20.7±9.7 35.0±16.5 7.3E�05 19.4±9.2 31.6±16.8 8.6E�23
PC aa C36:5 28.7±12.9 36.6±17.6 3.9E� 07 31.8±19.8 44.0±278 4.9E�02 29.0±13.9 37.7±19.5 5.6E�08
PC aa C40:4 4.0±1.2 4.9±1.6 1.2E� 07 3.7±1.0 4.7±1.5 1.6E�02 4.0±1.2 4.8±1.6 2.8E�09
PC aa C36:1 51.4±11.9 59.7±16.4 6.6E� 06 53.0±11.2 66.6±15.9 9.9E�04 51.5±11.8 60.7±16.5 9.9E�09
lysoPC a C17:0 1.7±0.5 1.5±0.5 5.4E� 10 1.6±0.4 1.3±0.4 3.4E�02 1.7±0.5 1.5±0.5 4.1E�11
lysoPC a C18:1 20.0±5.5 22.7±7.4 1.6E� 05 18.5±4.9 20.9±5.0 1.3E�01 19.9±5.4 22.5±7.1 3.9E�06
PC ae C40:6 4.9±1.2 4.4±1.1 4.3E� 10 5.4± 1.3 5.0±1.1 3.5E�02 4.9±1.2 4.5±1.1 1.5E�10
SM(OH) C16:1 3.1±0.7 2.7±0.7 6.8E� 12 2.7±0.7 2.4±0.6 2.0E�03 3.0±0.7 2.6±0.7 1.2E�13
SM(OH) C22:1 12.6±2.5 11.4±2.9 3.4E� 09 10.0±2.5 9.3±2.1 1.2E�02 12.3±2.6 11.1±2.9 4.4E�10
SM(OH) C22:2 10.2±2.1 9.1±2.3 4.0E� 13 8.1±2.1 7.7±1.7 2.3E�02 9.9±2.2 8.9±2.3 1.3E�13

Abbreviations: LD, light drinkers; MHD, moderate-to-heavy drinkers.
aAlcohol consumption o40 g day� 1 males, o20 g day� 1 females. bMean and s.d. of the metabolite concentration from serum. cAlcohol consumption X40 g day�1

males, X20 g day� 1 females. dLogistic regression analysis adjusted for age, body mass index, smoking, high-density lipoproteins and triglycerides. eSignificance
level o0.00038 (Bonferroni corrected). fSignificance level o0.005 males (Bonferroni corrected). Significant P-values are represented in bold.

Table 3 Results from logistic regression analysis of alcohol-specific metabolites in females

Discovery KORA F4 (n¼946) Replication KORA F3 (n¼107)
Meta analysis discoveryþ replication

fixed effect (n¼1053)a Replication TwinsUK (n¼ 277)

Metabolite

LDb

mean±s.d.
(mM)c

MHDd

mean±s.d.
(mM)c P-valuee,f

LD
mean±s.d.

(mM)c

MHD
mean±s.d.

(mM)c P-valuee,g

LD
mean±s.d.

(mM)c

MHD
mean±s.d.

(mM)c P-valuee,g

LD
mean±s.d.

(mM)c

MHD
mean±s.d.

(mM)c P-valuee,g

PC aa C34:1 241.1±52.9 259.4±56.3 1.0E� 04 274.8±72.8 308.5±73.6 5.8E� 02 244.6±56.2 263.7±59.6 6.6E�05 311.5±98.8 350.4±121.0 9.4E� 03h

lysoPC a C16:1 2.8±0.9 3.1±1.0 4.7E� 05 2.5±1.0 3.04±0.9 5.2E� 02 2.7±0.8 3.1±1.0 6.2E�06 4.21±1.5 4.24±1.7 7.3E� 01
lysoPC a C17:0 1.8±0.5 1.6±0.5 2.8E� 04 1.6±0.5 1.4±0.4 2.3E� 02 1.7± 0.5 1.6±0.4 7.7E�05 2.3± 0.9 2.2±0.7 5.6E� 01
PC ae C30:2 0.17±0.04 0.16±0.04 4.0E� 05 0.17±0.03 0.15±0.04 2.5E� 03 0.16± 0.04 0.15±0.03 4.2E�06 0.2± 0.1 0.2±0.1 7.8E� 01
PC ae C40:6 5.4±1.3 5.0±1.2 2.4E� 07 6.1±1.5 5.4±1.4 2.2E� 02 5.4±1.3 5.0±1.2 1.7E�08 7.5±2.7 7.4±2.7 9.9E� 01

Abbreviations: LD, light drinkers; MHD, moderate-to-heavy drinkers.
aMeta analysis consist of KORA F4 discovery, KORA F3 and TwinsUK replication data sets. bAlcohol consumptiono40 g day�1 males,o20 g day� 1 females. cMean
and s.d. of the metabolite concentration from serum. dAlcohol consumption X40 g day� 1 males, X20 g day�1 females. eLogistic regression analysis adjusted for
age, body mass index, smoking, high-density lipoproteins and triglycerides. fSignificance level o0.00038 (Bonferroni corrected). gSignificance level o0.01 females
(Bonferroni corrected). hLogistic regression analysis adjusted for age, BMI, smoking with n¼ 629 study participants. Significant P-values are represented in bold.
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differences and the potential underlying mechanisms is
depicted in Figure 2 and are discussed below.

The underlying mechanism for lower sphingomyelin con-
centrations (SM(OH)C16:1, SM(OH)C22:1, SM(OH)C22:1) in
MHD compared with LD could be attributed to acid sphingo-
myelinase (ASM) activity. ASM catalyzes the hydrolysis of
sphingomyelins by cleaving the phosphodiester bond of
sphingomyelins generating ceramide and phosphorylcho-
line,35,36 which is again reassembled to phosphatidylcholine.3

Enzymatic dysfunction of ASM results in Niemann–Pick
disease A (NPD-A, OMIM 257200) and B (NPD-B, OMIM
607616), a lipid storage disease characterized by accumula-
tion of sphingomyelins within the endo-lysosomal compart-
ment.37 Interestingly, this mechanism is reciprocal when
alcohol is administered. Several studies investigating cellular
response to alcohol in vitro and in vivo have provided
evidence that alcohol stimulates the ASM activity leading to
accumulation of ceramide and decrease of sphingomye-
lins.36,38–41 A recent in vivo study on patients with alcohol
dependence reported alcohol-induced release of phosphoryl-
choline from sphingomyelins in the peripheral blood cells
confirming alcohol-induced activation of ASM.42

There is a direct correlation between PC concentrations
and phosphatidylethanol (PEth). PEth is a clinical biomarker
of the past 1–2 weeks of moderate-to-heavy alcohol con-
sumption.43 PEth is a unique phospholipid that is synthesized
only in the presence of ethanol and is directly formed from PCs
by the enzyme phospholipase D44–46 that catalyzes the
exchange of ethanol for choline in PCs.46 Different PEth
molecular species have a common phosphoethanol head

group onto which two fatty acid moieties derived from PCs are
attached. A study by Helander and Zheng47 has shown that
PEth-16:0/18:1 (34:1) was the most predominant molecular
species accounting for 37% of all PEth species. A recent study
by Nalesso et al.48 compared the occurrence of different PEth
species between heavy drinkers and social drinkers (defined
as daily alcohol intake 60–300 and 0–20 g day� 1, respec-
tively). Interestingly, PEth 16:0/18:1 (34:1), PEth 18:0/18:1
(36:1) and PEth 16:0/16:1 (C32:1) were most abundant in
heavy drinkers. This may be consistent with our findings
in which PC aa C34:1 in female, PC aa C36:1 and PC aa 32:1
in male had higher concentration in MHD compared with that in
LD. We hypothesize that concentrations of specific PC species
can be used as surrogate biomarkers for PEth to distinguish
MHD from LD. However, PEth measurements are out of scope
of this study. Dedicated and parallel measurements of PC aa
C34:1 and PEth (34:1) would be required in order to investigate
whether PC aa C 34:1 can be a substitute PEth (34:1).

lysoPCs are derived from PCs49 and have been reported to
have cytotoxic effects.50 They accumulate in alcohol-related
conditions as in atherosclerosis51 or ischaemia.52 LysoPCs
originate from several metabolic pathways, as part of the
production is attributed to the transesterification of PCs and
free cholesterol catalysed by the enzyme lecithin-cholesterol
acyltransferase (LCAT), where LCAT hydrolyses the sn-2 acyl
group and subsequently transfers and esterifies the fatty acid
to free cholesterol.53 A study by Goto et al.,54 investigating
clinical alcoholics, reported an increase of LCAT concentra-
tion in individuals with alcohol intake of 430 g day� 1. Another
metabolic pathway generating lysoPC species is attributed to

Figure 2 Schematic overview of metabolite concentration differences in moderate-to-heavy drinkers (MHD) compared with light drinkers (LD) in males and females. Ten/five
metabolites that best discriminate MHD from LD in males/females are shown. Yellow and blue boxes represent male- and female-specific alcohol-related metabolites identified in this
study. Combined yellow-blue boxes represent metabolites identified both in males and females. Bold black arrows represent observed higher or lower of metabolite concentration in
MHD compared with LD in the discovery. Replicated metabolites are marked by a star. Thin black arrows represent the higher or lower of alcohol-related analytes in MHD reported in
earlier publications. Red boxes represent alcohol-related enzymes and red arrows represent the effect on the respective enzyme activity or concentration reported in previous
publications in MHD. ASM, acid sphingomyelinase; LCAT, lecithin-cholesterol acyltransferase; PAF, platelet-activating factor; PLA2, phospholipase A2; PLD, phospholipase D.
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the enzyme phospholipase A2, which catalyzes the hydrolysis
of an ester bond at the sn-2 position of 1,2-sn-diacylglyceroIs
yielding lysoPCs and free fatty acids,55 which are esterified
into fatty acid ethyl esters that have been reported as alcohol
marker to distinguish social from heavy drinkers or alcohol-
dependent individuals.56,57

Fatty acids with uneven number of carbons (that is, C15:0
and C17:0) are produced by bacterial flora of human
intestine.58 It is known that alcohol acts as a disinfectant
which kills bacteria. Thus a possible explanation for the lower
concentrations of lysoPC a C17:0 in MHD could be that
alcohol consumption leads to the disruption of the respective
intestinal bacterial microflora in the gut which thus influences
lysoPC a C17:0 levels in human blood. On the other hand, the
fatty acid C17:0 is also found in the bacterial flora of
ruminants.59,60 A study by Wolk et al.61 revealed that portions
of the fatty acids C15:0 and C17:0 in adipose tissue reflected
milk fat consumption in women. An earlier study62 investigat-
ing associations of reported alcohol intake with dietary habits
in probands from the EPIC cohort found that alcohol
consumers had a lower intake of dairy products than
abstainers. This is consistent with another French cohort of
the EPIC study,63 which found that high alcohol intake was
associated with lower consumption of dairy products in both
genders compared with moderate alcohol consumption. Thus
another plausible explanation to the lower concentrations of
lysoPC a C17:0 in MHD in our study could be based on lower
intake of dairy products. Based on the above findings and
explanations, lysoPC a C17:0 might also be a dietary
biomarker associated with distinguished dietary behavior of
MHD compared with LD rather than a biomarker for alcohol-
induced toxic or inflammatory mechanisms.

Ether lipids (for example, PC ae C30:2 and PC ae C40:6) have
a role as precursor of platelet-activating factor.64,65 Platelet-
activating factor is an important mediator in hemostasis and has
an important role in platelet aggregation (that is, thrombotic
effects). A number of studies indicate that ethanol directly affects
hemostasis via a number of mechanisms, including platelet
aggregation and activation.66–69 This mechanism is still not fully
understood; however, based on our results, it can be hypothe-
sized that reduced platelet-activating factor levels in response to
moderate-to-heavy alcohol consumption might form a bottleneck
in the process of platelet activation leading to poor platelet
aggregation and to alcohol-related hemorrhagic events. This is
supported by studies from the United States and Sweden
showing that the baseline incidence of acute upper gastro-
intestinal bleeding increased by threefold as alcohol consump-
tion increased from p1 drink to 420 drinks per week.70

Conclusion and outlook. Our study provides new insights
into the impact of alcohol consumption on human metabo-
lism. Our results suggest that metabolomic profiles based on
PCs, lysoPCs, ether lipids and sphingolipids form a new
class of biomarkers for alcohol consumption. This may be of
great value for the clinical assessment of alcohol use,
alcohol-specific disease detection and drug-therapy monitor-
ing. Side effects of alcohol consumption on specific organs
as liver could be investigated by future studies using an
association study analysing metabolite concentrations in
relation to concentrations of liver biomarkers as, for example,

g-glutamyltransferase.71 The current analysis is based on a
targeted metabolomics approach that is limited to a subset of
131 currently known metabolites in human (for example,
lipid metabolism, amino acid metabolism). A study using a
broader metabolomics approach that quantifies a bigger
number of metabolites would be needed to investigate
alcohol effects on other areas of metabolism. Further
research is needed to elucidate the exact underlying mech-
anisms. A prospective study in large sample would help
validate the predictive potential of these results.

Conflict of interest

The authors declare no conflict of interest.

Acknowledgements. We express our appreciation to all KORA and
TwinsUK study participants for donating their blood and time. We thank the field
staff in Augsburg conducting the KORA studies. The KORA Study group consists of
A. Peters (speaker), J. Heinrich, R. Holle, R. Leidl, C. Meisinger, K. Strauch and
their co-workers, who are responsible for the design and conduct of the KORA
studies. We thank the staff from the Institute of Epidemiology at the Helmholtz
Zentrum München and the Genome Analysis Center Metabolomics Platform who
helped in the sample logistics, data and straw collection and metabolomic
measurements and especially J. Scarpa, K. Sckell, B. Hochstrat, F. Scharl,
N. Lindemann, H. Chavez and A. Sabunchi. Part of this project was supported by
the German Federal Ministry of Education and Research (BMBF) by funding the
project ‘Metabolomics of ageing’ (FKZ: 01DO12030), the German Center for
Diabetes (DZD) and the NGFN, as well as by EU FP7 Grant HEALTH-2009-2.2.1-3/
242114 (Project OPTiMiSE). The TwinsUK study was funded by the Wellcome
Trust, EU FP7 Grant HEALTH-F2-2008-201865-GEFOS and the FP-5 GenomEUt-
win Project (QLG2-CT-2002-01254). The study also received support from the
Department of Health via the National Institute for Health Research (NIHR)
comprehensive Biomedical Research Centre award to Guy’s and St Thomas’ NHS
Foundation Trust in partnership with King’s College London. KS is supported by
‘Biomedical Research Program’ funds at Weill Cornell Medical College in Qatar, a
program funded by the Qatar Foundation. TDS is an NIHR senior Investigator.

1. Kaddurah-Daouk R, Bogdanov MB, Wikoff WR, Zhu H, Boyle SH, Churchill E et al.
Pharmacometabolomic mapping of early biochemical changes induced by sertraline and
placebo. Translational Psychiatry 2013; 3: e223.

2. He Y, Yu Z, Giegling I, Xie L, Hartmann AM, Prehn C et al. Schizophrenia shows a unique
metabolomics signature in plasma. Translational Psychiatry 2012; 2: e149.

3. Kaddurah-Daouk R, McEvoy J, Baillie RA, Lee D, Yao JK, Doraiswamy PM et al.
Metabolomic mapping of atypical antipsychotic effects in schizophrenia. Mol Psychiatry
2007; 12: 934–945.

4. Oresic M, Hyotylainen T, Herukka SK, Sysi-Aho M, Mattila I, Seppanan-Laakso T et al.
Metabolome in progression to Alzheimer’s disease. Translational Psychiatry 2011; 1: e57.

5. World Health O. Global status report on alcohol and health Geneva, Switzerland, 2011.
6. Kapur A, Wild G, Milford-Ward A, Triger DR. Carbohydrate deficient transferrin: a marker

for alcohol abuse. BMJ 1989; 299: 427–431.
7. Peterson K. Biomarkers for alcohol use and abuse—a summary. Alcohol Res Health 2004;

28: 30–37.
8. Wang-Sattler R, Yu Z, Herder C, Messias AC, Floegel A, He Y et al. Novel biomarkers for

pre-diabetes identified by metabolomics. Mol Syst Biol 2012; 8: 615.
9. Fiehn O. Metabolomics—the link between genotypes and phenotypes. Plant Mol Biol 2002;

48: 155–171.
10. Krug S, Kastenmuller G, Stuckler F, Rist MJ, Skurk T, Sailer M et al. The dynamic range of

the human metabolome revealed by challenges. FASEB J 2012; 26: 2607–2619.
11. Suhre K, Shin SY, Petersen AK, Mohney RP, Meredith D, Wagele B et al. Human metabolic

individuality in biomedical and pharmaceutical research. Nature 2011; 477: 54–60.
12. Griffiths WJ, Koal T, Wang Y, Kohl M, Enot DP, Deigner HP. Targeted metabolomics for

biomarker discovery. Angew Chem Int Ed Engl 2010; 49: 5426–5445.
13. Dudley E, Yousef M, Wang Y, Griffiths WJ. Targeted metabolomics and mass

spectrometry. Adv Protein Chem Struct Biol 2010; 80: 45–83.
14. Holle R, Happich M, Lowel H, Wichmann HE. KORA—a research platform for population

based health research. Gesundheitswesen 2005; 67(Suppl 1): S19–S25.
15. Lowel H, Doring A, Schneider A, Heier M, Thorand B, Meisinger C. The MONICA Augsburg

surveys—basis for prospective cohort studies. Gesundheitswesen 2005; 67(Suppl 1): S13–S18.

Alcohol-induced metabolomic differences
M Jaremek et al

7

Translational Psychiatry



16. Wichmann HE, Gieger C, Illig T. KORA-gen—resource for population genetics, controls and
a broad spectrum of disease phenotypes. Gesundheitswesen 2005; 67(Suppl 1): S26–S30.

17. Yu Z, Zhai G, Singmann P, He Y, Xu T, Prehn C et al. Human serum metabolic profiles are
age dependent. Aging Cell 2012; 11: 960–967.

18. Xu T, Holzapfel C, Dong X, Bader E, Yu Z, Prehn C et al. Effects of smoking and smoking
cessation on human serum metabolite profile: results from the KORA cohort study. BMC
Med 2013; 11: 60.

19. Mittelstrass K, Ried JS, Yu Z, Krumsiek J, Gieger C, Prehn C et al. Discovery of sexual
dimorphisms in metabolic and genetic biomarkers. PLoS Genet 2011; 7: e1002215.

20. Yu Z, Kastenmuller G, He Y, Belcredi P, Moller G, Prehn C et al. Differences between
human plasma and serum metabolite profiles. PLoS One 2011; 6: e21230.

21. Moayyeri A, Hammond CJ, Valdes AM, Spector TD. Cohort profile: TwinsUK and Healthy
Ageing Twin Study. Int J Epidemiol 2012; 42: 76–85.

22. Wang-Sattler R, Yu Y, Mittelstrass K, Lattka E, Altmaier E, Gieger C et al. Metabolic
profiling reveals distinct variations linked to nicotine consumption in humans—first results
from the KORA study. PLoS One 2008; 3: e3863.

23. Illig T, Gieger C, Zhai G, Romisch-Margl W, Wang-Sattler R, Prehn C et al. A genome-wide
perspective of genetic variation in human metabolism 63. Nat Genet 2010; 42: 137–141.

24. Jourdan C, Petersen AK, Gieger C, Doring A, Illig T, Wang-Sattler R et al. Body fat free
mass is associated with the serum metabolite profile in a population-based study. PLoS
One 2012; 7: e40009.

25. Zhai G, Wang-Sattler R, Hart DJ, Arden NK, Hakim AJ, Illig T et al. Serum branched-chain
amino acid to histidine ratio: a novel metabolomic biomarker of knee osteoarthritis. Ann
Rheum Dis 2010; 69: 1227–1231.

26. Health USDo, Human S, Food, Drug A, Center for Drug E, Research. Guidance for
Industry—Bioanalytical Method Validation 2001.

27. Römisch-Margl W, Prehn C, Bogumil R, Röhring C, Suhre K, Adamski J. Procedure for
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Effects ofMetformin onMetabolite
Profiles and LDL Cholesterol in
Patients With Type 2 Diabetes
DOI: 10.2337/dc15-0658

OBJECTIVE

Metformin is used as a first-line oral treatment for type 2 diabetes (T2D). How-
ever, the underlying mechanism is not fully understood. Here, we aimed to com-
prehensively investigate the pleiotropic effects of metformin.

RESEARCH DESIGN AND METHODS

We analyzed both metabolomic and genomic data of the population-based KORA
cohort. To evaluate the effect of metformin treatment on metabolite concentra-
tions, we quantified 131metabolites in fasting serum samples and usedmultivari-
able linear regressionmodels in three independent cross-sectional studies (n = 151
patients with T2D treated with metformin [mt-T2D]). Additionally, we used linear
mixed-effect models to study the longitudinal KORA samples (n = 912) and per-
formed mediation analyses to investigate the effects of metformin intake on
blood lipid profiles. We combined genotyping data with the identified metformin-
associated metabolites in KORA individuals (n = 1,809) and explored the underlying
pathways.

RESULTS

We found significantly lower (P < 5.0E-06) concentrations of three metabolites
(acyl-alkyl phosphatidylcholines [PCs]) when comparing mt-T2D with four control
groups whowere not using glucose-lowering oral medication. These findings were
controlled for conventional risk factors of T2D and replicated in two independent
studies. Furthermore, we observed that the levels of thesemetabolites decreased
significantly in patients after they started metformin treatment during 7 years’
follow-up. The reduction of these metabolites was also associated with a lowered
blood level of LDL cholesterol (LDL-C). Variations of these three metabolites were
significantly associated with 17 genes (including FADS1 and FADS2) and controlled
by AMPK, a metformin target.

CONCLUSIONS

Our results indicate that metformin intake activates AMPK and consequently
suppresses FADS, which leads to reduced levels of the three acyl-alkyl PCs and
LDL-C. Our findings suggest potential beneficial effects of metformin in the pre-
vention of cardiovascular disease.

Type 2 diabetes (T2D) is a chronic disease with diminished response to insulin and
relative insulin deficiency (1). Patients with T2D mostly take metformin as first-line
oral treatment to lower their glucose levels and to improve insulin sensitivity (2).
Despite metformin’s use as an antihyperglycemic agent for more than 50 years, its
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primary mode of action is not yet com-
pletely understood (3). Inside a cell,
metformin apparently inhibits complex
I of themitochondrial electron transport
chain and thereby reduces the cellular
energy status and upregulates the cyto-
plasmic 59-AMPK pathway (3). Activated
AMPK stimulates catabolic processes
(glycolysis and fatty acid oxidation) and
inhibits anabolic pathways (gluconeo-
genesis and fatty acid synthesis). So
far, six metformin targets are docu-
mented in the DrugBank (4) database,
including the AMPK complex and five
metformin transporters. Furthermore,
metformin was reported to have several
possible pleiotropic effects, resulting in
reduced risks for both cancer (5) and
cardiovascular disease (CVD) (6), as
well as reduced levels of LDL cholesterol
(LDL-C) (7,8).
Metabolomic studies have detected

metabolite profile changes during the
development of T2D (9–12) and identi-
fied concentration differences caused
by various physiological and environ-
mental factors such as age (13), sex
(14), smoking status (15), and alcohol
consumption (16). Several metabolomic
studies attempted to unravel the physi-
ological effects of metformin (17–21).
However, they either used technologies
covering only small sets of metabolites
or examined relatively few participants
(e.g., 20 healthy volunteers [18], 15 pa-
tients [17,19], 31 patients [20], and 24

patients treated with glipizide and 23
patients with metformin [21]). As inter-
individual genetic variations contribute
to diversemetabolite profiles and different
drug responses, combining metabolomics
and genomics may help to understand the
mechanisms underlying the action of med-
ications (22–25).

In this study, we discovered metfor-
min treatment–associated metabolites
in the Cooperative Health Research in
the Region of Augsburg (KORA) cohort
(26,27). We confirmed our finding in
longitudinal KORA data and replicated
them in two independent studies: the
Erasmus Rucphen Family study (ERF)
(28) and the Netherlands Twin Register
(NTR) (29). The biologically relevant
pathways for the identified metabolites
and their associated genes were fur-
ther analyzed in organ-specific protein-
metabolite interaction networks (30,31).
Additionally, we assessed the effects of
metformin treatment on LDL-C levels.

RESEARCH DESIGN AND METHODS

An overview of the analysis work flow is
shown in Fig. 1.

Ethics Statement
All participants gave written informed
consent. The KORA study was approved
by the ethics committee of the Bavarian
Medical Association, Germany; the ERF
study by the medical ethics board of the
ErasmusMCRotterdam, theNetherlands;

and the NTR study by the Central Ethics
Committee on Research Involving Human
Subjects of the VU University Medical
Center, Amsterdam, the Netherlands.

KORA Cohort
KORA is a population-based cohort
study conducted in Southern Germany
(26). The baseline survey 4 (KORA S4)
consists of 4,261 individuals (aged 25–
74 years) examined between 1999 and
2001. During the years 2006–2008,
3,080 participants took part in the fol-
low-up survey 4 (KORA F4). Clinical data
for each participant were retrieved from
medical records. Based on physician-
validated and self-reported diagnosis
(9,26), fasting glucose and2-hpostglucose
load, and information onmedications (Ta-
ble 1), we excluded 1) patients suffer-
ing from type 1 and steroid-induced
diabetes (n = 9), 2) patients with T2D
treated with both metformin and in-
sulin (n = 15), 3) patients taking glucose-
lowering oral medication other than
metformin (n = 25), and 4) patients lack-
ing clear informationon treatment (n = 1).
Furthermore, participants with over-
night nonfasting blood samples (n = 16)
or isolated impaired fasting glucose
(n = 112) were excluded. We previ-
ously showed that impaired fasting
glucose and impaired glucose toler-
ance (IGT) should be considered two
different phenotypes (9). In KORA F4,
we focused on five groups: 1) patients
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with metformin-treated T2D (mt-T2D),
2) patients with T2D with insulin treat-
ment (it-T2D), 3) patients with T2D
without glucose-lowering treatment (non–
antidiabetes drug treated [ndt-T2D]), 4)
participants with prediabetes with IGT,
and 5) healthy individuals with normal
glucose tolerance (NGT) (Table 1).

Replication Studies
The ERF includes 3,000 living descend-
ants of 22 couples who had at least six
children baptized in the community
church around 1850–1900. The partici-
pants are not selected based on any dis-
ease or other outcome. Details about

the genealogy of the population have
previously been provided (28).

The NTR recruits twins and their fam-
ily members to study the causes of indi-
vidual differences in health, behavior,
and lifestyle. Participants are followed
longitudinally; details about the cohort
have previously been published (29). A
subsample of unselected twins and their
family members has taken part in the
NTR-Biobank (32) in which biological
samples, including DNA and RNA, were
collected in a standardizedmanner after
overnight fasting.

Duration of diabetes and 2-h postglu-
cose levels were not available in either

the ERF or NTR study. The diagnosis of
patients with diabetes in both ERF and
NTR studies was based on self-report.
Owing to the limited number of it-T2D
patients in these two replication studies
(n = 3 and n = 9, respectively), this group
is not included in the statistical analyses
in these two replication studies.

Initially, we had contacted a third po-
tential replication study, the Estonian
Genome Center of the University of
Tartu (EGCUT). However, only two mt-
T2D participants with available meta-
bolomics data were available in this
cohort; results from the EGCUT study
are therefore not shown.

Figure 1—Flowchart of the study design.
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Blood Sampling
In the KORA cohort study, blood was
drawn into S-Monovette serum tubes
(Sarstedt AG & Co., Nümbrecht, Ger-
many) in the morning between 8:00 A.M.

and 10:30 A.M. after at least 8 h of fasting.
Tubes were gently inverted twice,
followed by 30 min resting at room tem-
perature to obtain complete coagula-
tion. For serum collection, blood was
centrifuged at 2,750 g at 158C for
10 min. Serum was filled into synthetic
straws, which were stored in liquid nitro-
gen (21968C) until the metabolomics
analyses (9,23).
In the ERF and NTR, the overnight

fasting serum samples were drawn for
metabolite profiling. Details about the
sampling in these two cohorts were de-
scribed in previous publications (28,32).

Metabolomics Measurement
The serum samples from participants in
the baseline KORA S4 and follow-up
KORA F4 study were measured with the
AbsoluteIDQp180 and AbsoluteIDQp150
kits (Biocrates Life Sciences AG, Innsbruck,
Austria), respectively. The assay procedures

were previously described in detail (27).
For KORA S4 and F4, identical quality-
control procedures (9,13), which are
explained in details in our previous pub-
lications, were used. In KORA F4, 131
metabolites of the initially targeted 163
metabolites passed all quality-control
criteria: hexose (H1), 24 acylcarnitines,
14 amino acids, 13 sphingomyelines, 34
phosphatidylcholines (PCs), diacyl (aa),
37 PCs acyl-alkyl (ae), and 8 lysoPCs. In
total, 124 metabolites overlapped be-
tween KORA S4 and F4, including H1,
21 acylcarnitines, 14 amino acids, 13
sphingomyelines, 33 PC aas, and 34 PC
aes, as well as 8 lysoPCs.

The metabolite measurements for
both replication studies (ERF and NTR)
were performed using the same platform
(AbsoluteIDQp150 kit) as in the KORA F4
study. Additionally, in ERF, PC ae C36:4,
PC ae C38:5, and PC ae C38:6 were mea-
sured in the full set of serum samples by a
targeted liquid chromatography–mass
spectrometry method. The measure-
ment is performed on a UPLC-ESI-Q-TOF
(Agilent 6530; Agilent Technologies, San
Jose, CA) mass spectrometer using

reference mass correction. Chromato-
graphic separation was achieved on an
ACQUITY UPLC HSS T3 column (1.8 mm,
2.1 * 100 mm) with a flow of 0.4 mL/min
over a 16-min gradient. The metabolites
were detected in full scan in the positive-
ion mode. The raw data were processed
using Agilent MassHunter Quantitative
Analysis software (version B.04.00; Agilent
Technologies).

Measured concentration values of all
analyzed metabolites are reported in
micromolar (mM) and were natural-log
transformed, and the distributions were
subsequently standardized with mean
of zero and an SD of 1 for all analyses
unless otherwise indicated.

Single Nucleotide Polymorphism
Genotyping, Imputation, and Genes
In KORA F4, we carried out genotyping
using the Affymetrix 6.0 GeneChip array
(Affymetrix, Santa Clara, CA). Imputation
was performed with Impute (http://
mathgen.stats.ox.ac.uk/impute/), version
0.4.2 (referenceHapMap phase 2, release
22). We only used autosomal single nu-
cleotide polymorphisms (SNPs) with a

Table 1—Characteristics of the KORA F4 cross-sectional study population

Clinical parameters NGT IGT ndt-T2D mt-T2D it-T2D

n 2,129 375 169 90 24

Age, years 52.8 (12.6) 63.9 (11.0) 66.3 (9.7) 66.8 (8.7) 69.2 (9.8)

Male 46 49 62 59 54

BMI, kg/m2 26.6 (4.3) 29.7 (4.9) 30.8 (4.4) 31.7 (5.4) 32.2 (5.9)

Waist, cm 90.5 (12.9) 99.7 (14.3) 104.6 (11.4) 106.3 (1.27) 107.2 (12.4)

Physical activity, .1 h per week 58 50 47 33 17

High alcohol intake† 17 17 18 20 8

Smoker 21 8 12 13 8

Systolic BP, mmHg 119.1 (17.4) 127.5 (18.5) 133.7 (18.6) 131.3 (18.9) 135.6 (22.7)

HDL-C, mg/dL 57.6 (14.4) 54.1 (14.0) 47.8 (12.1) 50.6 (10.5) 48.0 (9.6)

LDL-C, mg/dL 134.9 (34.3) 143.7 (35.4) 138.5 (36.5) 122.9 (29.0) 120.0 (31.6)

Triglycerides, mg/dL 110.6 (73.0) 146.0 (86.2) 175.1 (127.0) 174.4 (132.2) 142.1 (73.2)

HbA1c, % 5.4 (0.3) 5.6 (0.3) 6.3 (0.9) 6.9 (1.1) 7.3 (1.1)

HbA1c, mmol/mol 36 (3.3) 38 (3.3) 45 (9.8) 52 (12.0) 56 (12.0)

Fasting glucose, mg/dL 91.7 (7.6) 100.1 (10.6) 125.7 (29.1) 144.1 (37.1) 141.9 (39.0)

2-h postglucose load, mg/dL 97.7 (20.8) 161.7 (17.1) 214.5 (50.7)U d d

Time since diagnosis, years d d 1.0 (3.1)# 7.7 (7.1) 16.7 (7.4)

Insulin, mlU/mL 6.9 (25.9) 13.1 (64.0) 16.6 (30.1) 10.4 (10.4) 32.2 (77.8)

Statin usage 8 16 24 38 33

b-Blocker usage 12 31 43 41 63

ACE inhibitor usage 8 21 31 43 58

ARB usage 6 9 15 13 8

Metformin usage 0 0 0 100 0

Insulin therapy 0 0 0 0 100

Percentages of individuals or means (SD) are shown for each variable and each group (NGT, IGT, ndt-T2D, mt-T2D, and it-T2D). †$20 g/day for
women; $40 g/day for men. Un = 121. #For newly diagnosed T2D patients (n = 112), years since T2D diagnosis was defined as 0.
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minor allele frequency .5%, call rate
.95%, and imputation quality .0.4. For
the phenotype set enrichment analysis
(PSEA), we only mapped those SNPs to a
gene that were either in its transcribed
region or in its flanking region (110 kb
upstream, 40 kb downstream). Gene in-
formation was downloaded from the
UCSC (University of California, Santa
Cruz) genome browser (http://genome
.ucsc.edu). The SNP gene mapping was
described in detail previously (25). In to-
tal, 20,801 genes were analyzed.

Statistical Analysis
To evaluate the effect ofmetformin treat-
ment on metabolites, we used multivari-
able linear regression models with the
metabolite concentration values as out-
come and the grouping variable as pre-
dictor. Each metabolite was assessed
individually. To include potential con-
founders, we adjusted for two sets of co-
variates: 1) age and sex as the crude
model and 2) age, sex, BMI, physical ac-
tivity, alcohol intake, smoking, systolic
blood pressure (BP), levels of HDL choles-
terol (HDL-C), triglycerides, HbA1c, and
fasting glucose, as well as the use of sta-
tins, b-blockers, ACE inhibitors, and an-
giotensin receptor blockers (ARBs) as
the full model (Table 1). To account for
multiple testing, we used Bonferroni cor-
rection and considered only thosemetab-
olites with a P, 0.05/131 = 3.8E-04 to be
statistically significantly different in KORA
F4.Meta-analysis of the three studieswas
performed using random effect models,
using a restricted maximum-likelihood
estimator.
In the KORA S4 to F4 longitudinal

study, we used linear mixed-effect mod-
els. We adjusted for the two sets of
covariates as described above while
assigning a random offset to each of
the individual participant in the longitu-
dinal study. Additionally, using linear re-
gression models on the KORA data set,
including two time points (S4 n = 1,335
and F4 n = 2,763) (9), we calculated the
residues of the metabolite concentra-
tions adjusted for age, sex, BMI, physical
activity, alcohol intake, smoking, systolic
BP, HDL-C, triglyceride, fasting glucose,
and HbA1c. The significance of the
changes in the metabolite concentra-
tions between the two time points (S4
and F4) was tested using a linear mixed-
effect model with the covariates at two
time points.

PSEA is a gene-based approach to an-
alyze the associations of genome-wide
SNP data with multiple phenotypes
in a combined way (25). The significance
of enrichment was calculated based on
10,000 permutations (limited by compu-
tational restrictions), while setting the
significance level at P, 1.0E-04 (lowest
possible P value owing to the permuta-
tion number).

Mediation analysis (33) was con-
ducted to model the identified metabo-
lites as mediators for the association
between metformin treatment and
LDL-C and total cholesterol in the longi-
tudinal KORA data. The mediation ef-
fects of each single metabolite and their
summed concentration were tested with
crude and fully adjusted multivariable
linear regression models.

All statistical analyses were per-
formed in R (version 3.0.1 [http://cran
.r-project.org/]).

Pathway Analysis
With use of a bioinformatical approach, a
network was constructed by retrieving
pairwise connections between candidate
metabolites, PSEA-identified genes, inter-
mediate proteins, and known metformin
target genes (9,31). Information on protein-
protein interactions was extracted from
STITCH (30). Known metformin target
genes were retrieved from the DrugBank
(4). In our network, we only considered
the shortest paths (allowing one interme-
diate protein, confidence score .0.7)
connecting the protein encoded by the
genes identified in PSEAwith themetformin
target genes.

RESULTS

Metabolite Profiles in Three Cohorts
We quantified.130metabolites in fast-
ing serum samples from the KORA S4
and F4, ERF, and NTR studies (Fig. 1).
The discovery study, KORA F4, includes
2,129 NGT, 375 IGT, 169 ndt-T2D, 90
mt-T2D, and 24 it-T2D subjects (charac-
teristics shown in Table 1). In the longi-
tudinal study, we used samples from
912 participants without metformin
treatment at baseline (KORA S4); 43 of
them were treated with metformin at
follow-up (KORA F4 [Supplementary Ta-
ble 1]). In reference to the two replica-
tion cohorts, ERF contained 29 ndt-T2D
and 32 mt-T2D patients (characteristics
shown in Supplementary Table 2), while
NTR included 73 ndt-T2D and 29 mt-T2D

patients (characteristics shown in Sup-
plementary Table 3).

In general, patients with T2D in the
three studies were older and more fre-
quently men, with higher BMI, and took
more nonantihyperglycemic medica-
tions than the participants without di-
abetes. Among the five groups in KORA
F4, people on statin treatment had sig-
nificantly lower LDL-C levels than those
who were not taking statins (Sup-
plementary Fig. 1). When comparing
mt-T2D with ndt-T2D, lower levels of
LDL-C were observed both in the cross-
sectional (KORA F4, ERF, and NTR) and in
the longitudinal KORA studies. Follow-
ing the 43 patients, who started metfor-
min treatment after the baseline, we did
not observe significant changes in the
levels of HbA1c and fasting glucose but,
however, observed significant changes
for LDL-C and total cholesterol (Supple-
mentary Table 1).

Metabolites Associated With
Metformin Treatment
We found six metabolites including
three acyl-alkyl PCs, two diacyl (aa)
PCs, and one amino acid to have signif-
icantly lower concentrations in the 90
mt-T2D patients compared with the
169 ndt-T2D individuals in KORA F4 (Ta-
ble 2). For example, for the metabolite
PC ae C36:4, we observed that the fully
adjusted effect estimate was 20.66
with P = 4.92E-07; i.e., the PC ae C36:4
level in the mt-T2D group was 0.66 SD
lower than the ndt-T2D group.

We further investigated whether the
observed differences are specifically for
metformin treatment or just reflect the
progress of T2D in general. The concen-
trations of the six metabolites are signif-
icantly lower in mt-T2D than in the NGT
and IGT groups (Supplementary Table
4). In contrast, none of the six metabo-
lites showed a significantly different
concentration in the pairwise compari-
sons among the four groups without
metformin treatment, i.e., NGT, IGT,
ndt-T2D, and it-T2D (Supplementary
Table 4).

For sensitivity analysis, we tested the
associations of the six metabolites after
adding the duration of T2D to the fully
adjusted model. The three acyl-alkyl PCs
(PC ae C36:4, PC ae C38:5, and PC ae
C38:6), which are composed of at least
one polyunsaturated fatty acid (PUFA),
remained significantly different in the
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comparison between mt-T2D and ndt-
T2D (P , 3.8E-04) (Fig. 2A), whereas
the other three metabolites were not
significantly different anymore (Supple-
mentary Table 5). After adjustment of
the full model for 1) waist, 2) LDL-C,
and 3) the combination of LDL-C and
insulin, the effect estimates of the six
metabolites were almost unchanged
(Supplementary Table 5).

Replication and Meta-analysis
For the three acyl-alkyl PCs, we ob-
served consistent results in both repli-
cation studies (ERF and NTR); i.e.,
significantly lower levels were observed
in mt-T2D patients compared with ndt-
T2D individuals (P , 0.05) (Table 2 and
Fig. 2B and C). Additionally, a meta-
analysis of the three studies (KORA F4,
ERF, and NTR) yielded significant results
for the three replicated metabolites
(P , 3.8E-04) (Table 2). We refer to
these three highly intercorrelated me-
tabolites, which are not associated with
fasting glucose or HbA1c, as metformin
associated in the following paragraphs
(Supplementary Fig. 2).

In the longitudinal examination, we
found significantly decreased levels of
the three metformin-associated metab-
olites in patients who underwent met-
formin treatment during the follow-up
(P , 3.8E-04 using the fully adjusted
model) (Supplementary Table 6). Con-
sistent results for the three acyl-alkyl
PCs were observed in a sensitivity anal-
ysis with a subgroup of 55 ndt-T2D pa-
tients at the KORA S4, of whom 19 were
ndt-T2D patients and 36 were mt-T2D
patients in KORA F4 in the fully adjusted
model (P , 0.05) (Fig. 2D and Supple-
mentary Table 6). These prospective
findings confirmed our observations in
the cross-sectional study.

Relationship Between Metformin
Treatment, the Three Metabolites, and
LDL-C Levels
To investigate a potentially mediating
effect of the three acyl-alkyl PCs on the
associations between metformin treat-
ment and lipid profiles, we explored the
prospective data of 912 KORA partici-
pants (Supplementary Table 1). We
found that metformin treatment ac-
counts for a significant decrease of
LDL-C and total cholesterol levels, while
its influence on HDL-C and triglycerides
was not significant in both crude and
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fully adjusted models (P, 0.05) (Fig. 2E
and Supplementary Table 7). In particu-
lar, metformin was associated with a de-
crease in LDL-C levels of 11.83 mg/dL.
We therefore focused on the analysis
of LDL-C and total cholesterol.
After adding the three metabolites to

the full model, the direct association be-
tween metformin treatment and LDL-C
levels was not significant anymore

(P = 0.25) (Fig. 2F and Supplementary
Table 8A). Based on longitudinal analy-
sis, we found consistent results as
reported above (Table 2); i.e., signifi-
cantly reduced levels of the three me-
tabolites in the metformin-treated
patients were observed (e.g., for the
summed metabolite concentration P =
2.16E-05) (Fig. 2F and Supplementary
Table 8B). Furthermore, we found

significant positive associations be-
tween LDL-C and each of the three me-
tabolites, as well as their summed
concentration after adjusting for met-
formin treatment (e.g., for the summed
metabolite concentration P = 6.87E-12)
(Fig. 2F and Supplementary Table 8C).
This means that these associations of
the metformin-associated metabolites
with LDL-C are independent of metfor-
min treatment. Finally, for each of the
three metformin-associated metabo-
lites (and their summed concentra-
tion), the mediation effects on the
association between metformin treat-
ment and the LDL-C levels were signif-
icant in both models (Table 3). For
instance, the summed concentration
of the metabolites mediates 3.43 mg/dL
reduction in LDL-C level, which accounts
for 29% of the total effect of metformin
on LDL-C (Table 3).

To rule out the potential effect of sta-
tin intake, we performed a sensitivity
analysis by excluding individuals tak-
ing statin at baseline KORA S4 and/or
follow-up F4. The mediation effects of
the summed concentration were also
significant for the associations between
metformin and LDL-C level (Supplemen-
tary Table 9A). However, although the
crude and full model showed similarly
significant mediation effects for total
cholesterol (Supplementary Table 8D
and E and Table 3), after excluding statin
users from the analysis, the effects on
total cholesterol were not significant
anymore with respect to the fully ad-
justed model (P, 0.05) (Supplementary
Table 9B).

Seventeen Genes Are Linked to
Metformin-Associated Metabolites
and Pathway Analysis
To identify genes associated with the
three metabolites, we applied PSEA on
these metabolites in a subset of KORA
F4 individuals (n = 1,809) with available
genotyping data and metabolite profiles.
We found 17 geneswith an enrichmentof
SNPs in their transcribed or flanking re-
gion (P , 1.0E-4) (Supplementary Table
10). These genes belong to five clusters,
one of them containing 12 genes located
on chromosome 11. A literature search
revealed disease phenotypes associated
with these 17 genes. Six genes, namely,
FADS1, FADS2, FADS3, MYRF, BEST1 and
RAB3IL1, are associated with T2D or its
comorbidities, including retinopathy and

Figure 2—Differences in metabolite concentrations, mediation effect, and organ-specific path-
ways. Mean residuals of the concentrations (with SEs) of three identified acyl-alkyl PC metab-
olites for the NGT, IGT, ndt-T2D, mt-T2D, and it-T2D groups derived in cross-sectional analysis of
the KORA F4 are shown in A. The mean residuals of the same metabolites in ERF are illustrated
for the NGT, ndt-T2D, and mt-T2D groups in B and in NTR for the non-T2D, ndt-T2D, and mt-T2D
groups in C, respectively. D refers to the longitudinal setting of the KORA study and shows the
mean residuals of the concentrations (with SEs) of the threemetabolites with respect to changes
within the 7 years between baseline and follow-up study when people were treated with
metformin. Residuals were calculated from linear regression model with the full adjustment.
E: The association betweenmetformin and LDL-C without consideration of the threemetformin-
associated metabolites. F: The results of the mediation analysis; the red cross indicates that the
direct association between metformin and LDL-C is not significant anymore. G: An overview of
the involved pathways. The connections indicated by liver, hypothalamus, muscle, and blood
show organ specificity between genes, pathway-related proteins, and metformin drug targets as
well as metformin. The metabolites (ellipses) were connected to metformin treatment (straight
side hexagons) through genes (rounded rectangles), proteins (hexagons), andmetformin targets
(rectangles). The activation or inhibition is indicated. Plus or minus symbol next to the line
indicate positive or negative association. For further information, see Table 3 and Supplemen-
tary Tables 8 and 12.
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coronary artery diseases (for references,
see Supplementary Table 10).
To explore potentially related path-

ways, we used a bioinformatics ap-
proach, integrating the 17 identified
genes with 6 known metformin target
genes (4) into a protein-protein interac-
tion network (9,30,31). For 3 of the 17
genes, there was no record for Homo
sapiens in the STITCH (30); therefore,
we investigated the interaction of the
remaining 14 genes with the 6 metfor-
min targets (Supplementary Table 11).
AMPK was found to be linked to FADS1
and FADS2 through interacting proteins
(leptin and sterol regulatory element–
binding protein 1c [SREBP1c]). A man-
ual evaluation of these interactions
in a literature research showed organ
specificity, mainly referring to liver and
hypothalamus (Fig. 2G). The AMPK com-
plex is inhibited by leptin and metformin
in the hypothalamus, whereas it is acti-
vated by metformin and leptin in the
liver. (References for each interaction
are provided in the Supplementary
Table 12).

CONCLUSIONS

We found significant concentration dif-
ferences for three metabolites (PC ae
C36:4, PC ae C38:5, and PC ae C38:6) in
the blood of patients with T2D under
metformin treatment and replicated
them in two independent studies. We
identified SNP variations in 17 genes (in-
cluding FADS1 and FADS2) that were as-
sociated with the three metabolites.
Based on these genes, we built an in-
teraction network to investigate the

underlying mechanisms of metformin
treatment and identified the organ-specific
AMPK pathway. We further found that
the reduced LDL-C levels in metformin-
treated patients with T2D were medi-
ated partially by the three acyl-alkyl
PCs. Sensitivity analyses were performed
to consider the duration of diabetes and
statin use.

The levels of metabolites depend on
multiple modifiable factors, such as life-
style and environment (9–11,13–16).
We therefore considered a number of
confounding effects, e.g., physiological
parameters (age, sex, BMI, and systolic
BP), lifestyle (physical activity, alcohol
intake, and smoking), glucose levels
(HbA1c and fasting glucose), lipid levels
(HDL-C and triglycerides), and medi-
cation usage (statins, b-blockers, ACE
inhibitors, and ARBs). Additionally, in-
termediates or end products of metab-
olism are influenced by underlying
genetic factors (23,24). In our study,
phenotypes and genotypes are available
for each person (n = 1,809); we thus
used phenotype set enrichment analysis
(25). Our combined analysis of genetic
and metabolomic data enabled us to
identify genes associated with the three
metabolites and supported the identifi-
cation of an organ-specific pathway. The
observation of significantly lower levels
of the three metformin-associated me-
tabolites (polyunsaturated acyl-alkyl
PCs) in the mt-T2D patients can be ex-
plained by metformin’s effects on AMPK
in the liver (Fig. 2G and Supplementary
Table 12). In the hepatocyte, metformin
increases the AMP-to-ATP ratio and thus

leads to the activation of AMPK. Acti-
vated AMPK blocks SREBP1c, a tran-
scription factor controlling enzymes
involved in the fatty acid synthesis and
inhibiting the synthesis of FADS1 and
FADS2 (22). This results in a reduced
synthesis of unsaturated fatty acids
and consequently lower acyl-alkyl PCs
concentrations. Leptin occupies a cen-
tral position in the network (Fig. 2G)
and affects the FADS complex via three
different interactions. In the liver, leptin
not only activates AMPK, thereby sup-
pressing SREBP1c and downregulating
FADS1 and FADS2, but can also directly
inhibit both SREBP1c and FADS2 (34).
Metformin and leptin exert opposite ef-
fects in the hypothalamus and in the
liver (for references, see Supplementary
Table 12), but further studies are re-
quired to better understand the organ-
specific metformin effects in humans.

Recently, clinical practice guidelines
have recommended the usage of met-
formin as first-line therapy in patients
with T2D with heart failure (1,2). Our
observation of lower blood levels of
LDL-C in metformin-treated patients
points toward a beneficial effect of met-
formin for the prevention of CVD. A
meta-analysis of randomized clinical tri-
als shows that metformin treatment re-
sults in lowered LDL-C levels in newly
diagnosed T2D patients (8). Similar re-
sults were also reported in patients
without T2D in an epidemiological study
(7). Here, we observed that metformin
treatment leads to lowered LDL-C levels,
an effect mediated most likely through
metformin-mediated reduction of FADS

Table 3—Mediation effects of the three metabolites for the association between metformin treatment and reduction of LDL-C
and total cholesterol

Crude model Full model

Effect estimate
(95% CI) P Explained effect (%)

Effect estimate
(95% CI) P Explained effect (%)

LDL-C
PC ae C36:4 23.05 (24.38, 21.71) 2.21E-04 25.74 22.51 (23.71, 21.31) 1.33E-03 21.22
PC ae C38:5 22.94 (24.21, 21.67) 2.65E-04 24.82 22.36 (23.50, 21.22) 1.94E-03 19.97
PC ae C38:6 25.25 (28.11, 22.40) 1.34E-05 44.40 24.02 (26.59, 21.44) 4.55E-04 33.95
Summed concentration† 24.37 (26.37, 22.37) 1.52E-05 36.92 23.43 (25.19, 21.67) 2.95E-04 28.99

Total cholesterol
PC ae C36:4 25.00 (27.77, 22.23) 2.63E-05 26.1 23.08 (24.72, 21.45) 7.42E-04 26.5
PC ae C38:5 24.99 (27.71, 22.26) 2.33E-05 26.0 22.77 (24.25, 21.30) 1.38E-03 23.8
PC ae C38:6 26.99 (211.86, 22.13) 8.96E-06 36.4 24.16 (26.98, 21.35) 5.11E-04 35.8
Summed concentration† 26.63 (210.55, 22.71) 2.76E-06 34.6 23.87 (26.05, 21.69) 2.41E-04 33.3

The estimates of the mediation effects and P values were calculated using the longitudinal (KORA S4→F4) mediation analysis adjusted for the crude
and full model. The mediation effects for the three metformin-associated metabolites and the summed concentration are shown. †The summed
concentration refers to the overall concentration of the three metabolites (PC ae C36:4, PC ae C38:5, and PC ae C38:6).
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activity and consequently reduction of
the levels of PUFA, namely arachidonic
acid (35). It has been suggested that
lower levels of arachidonic acid leads
to an increased membrane fluidity,
thus increasing LDL-C receptor recycling
(35). This hypothesis is especially strong,
given that genetic variants assigned to
lower activity of FADS1 and -2 were sig-
nificantly associated with lower LDL-C
levels (36). While certain PCs can indeed
exert antidiabetic effects (37), further
mechanistic studies are required to
test whether lowering of these circulating
lipids contributes directly to the preven-
tion of CVDs or merely by its antidiabetic
effect (1).
Beyond its common antihyperglycemic

action and its effect in lowering LDL-C,
metformin can potentially reduce the
risk of cancer mortality and diminish the
progression of cancer (38). In the current
study, we have found the three metfor-
min-associated metabolites significantly
associated with two genes, FEN1 and
C20orf94, which are involved in DNA re-
pair (39,40). This may partly explain that
metformin has been shown to influence
the prevalence of different types of carci-
noma, such as gastrointestinal cancers
(39) and leukemia (40).
The strength of our study is that we

used three independent cohort studies
to discover and replicate our observa-
tions. Importantly, all results presented
in this study were independent of phys-
iological parameters, lifestyle, glucose
levels, lipid levels, and medication. We
combined metabolomics and genomics
data, broad literature research, and organ-
specific information from animal studies to
deepen the insight into the underlying
mechanisms.
Our findings are limited by the obser-

vational nature of cohort studies, and
the applied methods, such as the medi-
ation analysis, are of purely statistical
character, but they offer the opportu-
nity to raise new questions for experi-
mental confirmation studies, such as
randomized controlled clinical trials to
investigate, for instance, the effect of
metformin on blood lipid levels of pa-
tients without diabetes.
In the present studies (KORA, ERF, NTR),

the duration of T2D is based on self-
reported information. Moreover, neither
data on the dosage nor data on duration
and compliance of the metformin treat-
ment were available. Furthermore, it has

to be mentioned that the degree of dia-
betes severity presumably discriminates
the different groups of patients (ndt-T2D,
mt-T2D, and it-T2D), which is reflected by
their HbA1c and fasting glucose values
(Table 1). Although the investigated me-
tabolite panel does not represent the
whole human metabolome, the compre-
hensive analysis of .130 metabolites
from different classes represents a con-
siderable improvement compared with
previous technologies.

We found threemetformin-associated
metabolites, which showed no overlap
with the findings of previous studies
(17–21). This is likely to result from the use
of different sampling matrices (plasma
vs. serum), unmeasured metabolites
(asymmetric dimethylarginine), or study
design (glipizide treatment). Additional,
our study considered considerably more
potential cofounding effects in a compa-
rably larger number of individuals than
previous studies (17–21).

In conclusion, we observed thatmetfor-
min treatment reduced levels of the three
acyl-alkyl PC metabolites in patients with
T2D. This change in the metabolic profiles
may mediate lowered blood levels of LDL-C.
The underlying mechanism is most likely
the metformin-induced activation of
AMPK and the consequent suppression
of SREBP1c and FADS, which leads to re-
duced levels of PUFA and LDL-C. Our find-
ings suggest a pharmaco-epidemiologic
mechanismbywhichmetforminmayexert
beneficial effects to prevent CVD. More
importantly, our study suggests a novel
approach to identify pleiotropic effects of
medication using multilevel omics data.
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Thomas Meitinger,20,21 Martin Hrabĕ de Angelis,4,5,11 Michael Roden,5,22,23

Susanne Neschen,4,5 Gabi Kastenmüller,3 and Rui Wang-Sattler1,2,5

Metformin Effect on Nontargeted
Metabolite Profiles in Patients With
Type 2 Diabetes and in Multiple Murine
Tissues
Diabetes 2016;65:3776–3785 | DOI: 10.2337/db16-0512

Metformin is the first-line oral medication to increase
insulin sensitivity in patients with type 2 diabetes (T2D).
Our aim was to investigate the pleiotropic effect of
metformin using a nontargeted metabolomics approach.
We analyzed 353 metabolites in fasting serum samples
of the population-based human KORA (Cooperative
Health Research in the Region of Augsburg) follow-up
survey 4 cohort. To compare T2D patients treated with
metformin (mt-T2D, n = 74) and those without antidiabe-
tes medication (ndt-T2D, n = 115), we used multivariable
linear regression models in a cross-sectional study. We
applied a generalized estimating equation to confirm the
initial findings in longitudinal samples of 683 KORA par-
ticipants. In a translational approach, we used murine
plasma, liver, skeletal muscle, and epididymal adipose
tissue samples from metformin-treated db/db mice to
further corroborate our findings from the human study.
We identified two metabolites significantly (P < 1.42E-04)
associated with metformin treatment. Citrulline showed

lower relative concentrations and an unknownmetabolite
X-21365 showed higher relative concentrations in human
serum when comparing mt-T2D with ndt-T2D. Citrulline
was confirmed to be significantly (P < 2.96E-04) de-
creased at 7-year follow-up in patients who started met-
formin treatment. In mice, we validated significantly (P <

4.52E-07) lower citrulline values in plasma, skeletal mus-
cle, and adipose tissue of metformin-treated animals
but not in their liver. The lowered values of citrulline
we observed by using a nontargeted approach most
likely resulted from the pleiotropic effect of metformin on
the interlocked urea and nitric oxide cycle. The translational
data derived frommultiple murine tissues corroborated and
complemented the findings from the human cohort.

Metformin became the first-line choice for treatment of
type 2 diabetes (T2D) in the course of the UK Prospective
Diabetes Study (UKPDS) (1). Additionally, metformin has
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been reported to have other pleiotropic effects; e.g., it reduces
insulin resistance (2), improves the uptake of glucose in mus-
cle (3,4), reduces the risk for cancer (5), and lowers the values
of LDL cholesterol (LDL-C) (6). The underlying mechanism of
the reduction of LDL-C is, at least in part, due to the activa-
tion of the AMPK in the liver (7). Apart from that, AMPK
affects several processes such as nitric oxide (NO) production
by endothelial NO synthase (eNOS) (8), which is also stimu-
lated by metformin (9). However, the mode of action of
metformin is not completely understood (10–12).

Our previous study was based on a targeted metabolo-
mics approach to explore the effects of metformin on lipid
profiles in the population-based KORA (Cooperative Health
Research in the Region of Augsburg) cohort (6,13,14).
Irving et al. (15) recently reported decreased levels of argi-
nine and citrulline as an effect of insulin sensitizer therapy
in 12 metformin- and pioglitazone-treated individuals and
13 placebo-treated control subjects. Nontargeted metabo-
lomic measurements have been applied to investigate hy-
perglycemia (16,17) and the effects of metformin treatment
in individuals without diabetes (18). However, none of the
previous nontargeted metabolomics studies investigated
metformin treatment in patients with T2D.

In this study we focused on serum metabolites asso-
ciated with metformin treatment based on a nontargeted
approach in a human population from the KORA cohort.
A cross-link from human to mice was corroborated in
multiple tissues (plasma, liver, skeletal muscle, and epi-
didymal adipose tissue) from a mouse study. Biologically
relevant pathways for the identified metabolites were
analyzed using bioinformatical approaches.

RESEARCH DESIGN AND METHODS

Ethics Statement
All participants gave written informed consent. The KORA
study was approved by the ethics committee of the Bavar-
ian Medical Association, Munich, Germany.

Approval for Mouse Study
Within this study, all mice were bred and housed in a
temperature- and humidity-controlled environment in com-
pliance with Federation of European Laboratory Animal
Science Associations protocols. Animal experiments were
approved by the District Government of Upper Bavaria
(Regierung von Oberbayern, Gz.55.2–1-54–2531–70–07,
55.2–1-2532–153–11).

KORA Cohort
KORA is a population-based cohort study conducted in
southern Germany (14). The baseline survey 4 (KORA S4)
consists of 4,261 individuals (aged 25–74 years) examined
between 1999 and 2001. During the years of 2006 to
2008, 3,080 individuals took part in the follow-up survey
4 (KORA F4). Clinical data for each participant were re-
trieved from medical records. On the basis of fasting glu-
cose, 2-h postglucose load, and physician-validated and
self-reported diagnoses, KORA participants were classified
according to the World Health Organization diagnostic cri-
teria. A further grouping of patients with T2D was based
on information on medication (19,20) (Table 1). Only
participants with metabolite measurements were included
in the present analysis (Metabolon, n = 1,768 in KORA
F4). We excluded 1) participants with overnight nonfast-
ing serum samples (n = 8), 2) patients suffering from type 1
diabetes and drug-induced (e.g., via steroids) diabetes
(n = 6), 3) T2D patients treated with insulin (n = 16) or
both insulin and metformin (n = 13), and 4) patients
taking glucose-lowering oral medication other than met-
formin (n = 17). Furthermore, participants with isolated
impaired fasting glucose (IFG) (n = 77) were excluded.
We have previously shown that IFG and impaired glucose
tolerance (IGT) should be considered as two different
phenotypes (21).

In KORA F4, we focused on four groups: 1) partici-
pants with normal glucose tolerance (NGT), 2) individuals
with prediabetes with IGT, 3) T2D patients without glucose-
lowering treatment (non-antidiabetes drug treated, ndt-
T2D), and 4) metformin-treated T2D (mt-T2D) patients
(Table 1).

The same exclusion and classification criteria were used
in the longitudinal analyses. We only considered partic-
ipants with metabolite measurements in both studies (KORA
S4 and F4, n = 818), and we excluded at both time points 1)
participants with overnight nonfasting serum samples (n =
88), which included patients suffering from type 1 diabetes
or drug-induced diabetes, 2) participants taking oral glucose-
lowering medication other than metformin (n = 11), 3) par-
ticipants undergoing insulin treatment (n = 3), and 4)
participants with a missing diabetes status (n = 33). The
remaining 683 participants were ndt-T2D individuals with
prediabetes and healthy control subjects at KORA S4, 37 of
whom started metformin treatment at KORA F4.
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The data from KORA S4 and F4, including metabolite
concentrations with clinical phenotypes, are available
upon request through the platform KORA-PASST (project
application self-service tool) (www.helmholtz-muenchen
.de/kora-gen).

Blood Sampling
In the KORA cohort study, blood was drawn into Monovette
serum tubes (Sarstedt AG & Co., Nümbrecht, Germany) in
the morning between 8:00 A.M. and 10:30 A.M. after at least
8 h of fasting. Tubes were gently inverted twice, followed
by resting 30 min at room temperature to obtain com-
plete coagulation. For serum collection, blood was centri-
fuged at 2,750g at 15°C for 10 min. Serum was filled into
synthetic straws, which were stored in liquid nitrogen
(2196°C) until metabolomic analyses.

Nontargeted Metabolite Profiling
The serum samples from participants of KORA S4 and F4
were measured with the Metabolon analytical system

(Metabolon, Inc., Durham, NC). Metabolon applied a
nontargeted semiquantitative liquid chromatography–
tandem mass spectrometry (LC-MS/MS) and gas
chromatography–mass spectrometry (GC-MS) platform
for the identification of structurally named and unknown
molecules (22,23). We measured 363 (including 109 un-
known) metabolites in fasting serum samples from KORA
S4. In the 7-year KORA F4, 353 metabolites (including
107 unknown) were determined (24).

In this study, we applied the same criteria for quality
control as described by Albrecht et al. (25). In brief, me-
tabolites with more than 20% missing values were ex-
cluded, as were samples with more than 10% missing
metabolites (25). All normalized relative ion counts were
log transformed, and the remaining data were imputed
with Multivariate Imputation by Chained Equations
(MICE) (26). We used 363 metabolites in KORA S4 and
353 metabolites in KORA F4 (Supplementary Table 1).
The number of overlapping metabolites in KORA S4 and

Table 1—Characteristics of the KORA F4 cross-sectional study samples (n = 1,604)

Clinical parameters NGT IGT ndt-T2D mt-T2D

n 1,143 272 115 74

Age, years 58.9 (8.5) 63.8 (8.1) 65.1 (7.1) 66.2 (7.5)

Male, % 45 50 61 58

BMI, kg/m2 27.0 (4.3) 29.8 (4.7) 31.0 (4.8) 32.0 (5.6)

Waist, cm 92 (12.9) 100.2 (14.3) 104.9 (12.1) 106.7 (13.0)

Physical activity, % .1 h per week 63 54 48 36

High alcohol intake, %* 20 18 25 19

Smoker, % 18 8 12 15

Systolic BP, mmHg 121.6 (17.7) 129.0 (19.0) 134.3 (19.2) 130.7 (18.2)

HDL-C, mg/dL 58.9 (14.8) 54.4 (14.2) 49.6 (11.5) 50.4 (9.6)

LDL-C, mg/dL 140.7 (34.3) 144.5 (36.2) 136.6 (36.0) 124.1 (28.3)

Total cholesterol, mg/dL 223.4 (37.7) 226.4 (41.5) 214.1 (37.0) 203.8 (37.8)

Triglycerides, mg/dL 118.5 (84.6) 150.7 (89.0) 172.5 (128.7) 177.5 (140.5)

HbA1c, % 5.4 (0.3) 5.6 (0.3) 6.3 (0.9) 6.8 (1.1)

HbA1c, mmol/mol 35.7 (3.2) 38.1 (3.9) 44.91 (9.9) 51.2 (11.6)

Fasting glucose, mg/dL 93.2 (7.5) 101.2 (10.6) 126.6 (30.5) 142.0 (36.0)

2-h postglucose load, mg/dL 100.8 (20.6) 162.6 (17.5) 216.0 (50.7)†

Time since diagnosis, years 1.4 (2.6)‡ 7.4 (6.6)

Insulin, mIU/mL 7.1 (26.1) 10.1 (10.9) 14.3 (14.3) 11.6 (11.0)

Leptin, ng/mL 17.2 (19.2) 24.2 (21.3) 26.8 (21.2) 27.8 (25.0)

Statin usage, % 12 15 28 36

b-Blocker usage, % 16 31 43 38

ACE inhibitor usage, % 10 21 32 45

ARB usage, % 8 10 17 14

Insulin therapy, % 0 0 0 0

Metformin usage, % 0 0 0 100

Parental T2D, % 28 30 37 49

KORA F4 study characteristics (including solely subjects with available Metabolon measurements). Percentages of individuals or
means (SD) are shown for each variable and each group (NGT, IGT, ndt-T2D, and mt-T2D). *$20 g/day for women; $40 g/day for men.
†n = 81. ‡For newly diagnosed T2D patients (n = 74), years since T2D diagnosis was defined as 0.
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F4 was 312. Metabolite names were used according to
Shin et al. (27); however, the identity of metabolite ID
M32654 and the molecule “3-dehydrocarnitine*” could
not be confirmed. We therefore used the name X-21365
(Supplementary Table 1).

Each metabolite was standardized with a mean of zero
and an SD of one in each study after the exclusion of non-
fasting participants.

Metformin Mouse Intervention Study
Pharmacological studies were conducted in 20 male 8-week-
old diabetic BKS.Cg-Dock7m+/+ Leprdb/J (db/db) mice that were
bred and housed in a temperature- and humidity-controlled
environment in compliance with Federation of European
Laboratory Animal Science Associations protocols. To ex-
clude estrous cycle–related influences on metabolic param-
eters, only male mice were included in this study. From
age 3 weeks, all mice were fed a high-fat diet (S0372-
E010; ssniff Spezialdiäten, Soest, Germany) containing
(gm%) palm fat (13.5), sunflower oil (13.5), starch (30),
saccharose (10), casein (20), lignocellulose (5), mineral+
vitamin mix (5+2), safflower oil (0.5), and linseed oil
(0.5) to manifest a uniform diabetic phenotype. Animals
received either vehicle (5% solutol/95% hydroxyethylcel-
lulose) without (n = 10) or with metformin (300 mg/kg;
Sigma Aldrich, Taufkirchen, Germany; n = 10) via gavage
once daily between 5:00 and 6:00 P.M. before dark-phase
onset (6:00 P.M.) for 14 days. At 18 6 2 h after the last
treatment, 4-h fasted mice were sacrificed with an iso-
flurane overdose, and organs and blood were immedi-
ately collected (4). Murine plasma was prepared from
whole blood by centrifugation at 4°C, and tissues were
freeze-clamped; both were stored at 280°C until further
analyses. All samples were measured with the Metabolon
analytical system. Metabolites with more than 20% miss-
ing values were excluded, as were samples with more
than 10% missing metabolites (25). All normalized rela-
tive ion counts were log transformed, and the remaining
data were imputed with MICE (26). Linear regression
was done on metabolite values for metformin-treated mice
as the cases as well as for the nonmetformin-treated,
vehicle-gavaged mice as the controls. A metabolomics
examination was done for plasma, liver, skeletal muscle,
and epididymal adipose tissue (Table 5 and Fig. 1B).

Statistical Analysis
To evaluate the effect of metformin treatment on certain
metabolites, multivariable linear regression models were
conducted with the relative metabolite concentration
values as outcome and the grouping variable as predictor.
Each metabolite was assessed individually. To consider
potential risk factors and confounding parameters with
known effect on metabolite profiles (6,13,28–32), two
models were used: 1) adjusted for age and sex as the crude
model and 2) adjusted for age, sex, BMI, physical activity,
high alcohol intake, smoking status, systolic blood pres-
sure (BP), HbA1c, fasting glucose, HDL cholesterol (HDL-C),
and triglycerides as well as the use of statins, b-blockers,

ACE inhibitors, and angiotensin receptor blockers (ARB) as
the full model. The association of conventional risk factors
of T2D as well as other population characteristics with met-
formin treatment was calculated via x2 test for categorical
variables. Shapiro–Wilk test was applied to test continuous
variables for normal distribution (P# 0.05 for nonnormally
distributed variables, P . 0.05 for normally distributed var-
iables), followed by Student’s t test for normally distributed
continuous variables and Wilcoxon test for nonnormally
distributed continuous variables.

To account for multiple testing for the linear models,
Bonferroni correction was applied, and only metabolites
with P , 0.05/353 = 1.42E-04 were considered to be
statistically significantly different in KORA F4. In addi-
tion, we calculated the adjusted P value with the false
discovery rate (FDR) using the Benjamini-Hochberg
method, which is not as stringent as the Bonferroni cor-
rection. For the full linear models, participants were ex-
cluded because of missing information of considered
confounders. This led to 1,138 NGT (after exclusion of
five individuals because of missing confounding informa-
tion), 272 IGT, 114 ndt-T2D (after exclusion of one indi-
vidual because of missing confounding information), and
70 mt-T2D (after exclusion of four individuals because of
missing confounding information) participants.

In the KORA S4 to F4 longitudinal study (S4 → F4),
generalized estimating equations (GEE) were used to val-
idate the significant metabolites in both crude and full
models.

All statistical analyses were performed in R (version
3.2.2) (33).

Pathway Analysis
Pathways were explored using databases, considering tissue
and organ specificity. The link from observed significant
metabolites to the interacting enzymes was drawn using
the Human Metabolome Database (34). Protein–protein
interactions were analyzed with the Search Tool for the
Retrieval of Interacting Genes (35) and the Kyoto Encyclo-
pedia of Genes and Genomes (36). To consider drug-related
effects of metformin on certain targets, we used DrugBank
(37). The link between metformin targets and the protein
network was analyzed using the Kyoto Encyclopedia of
Genes and Genomes (36).

RESULTS

Population Characteristics of Human and Mouse
Studies
On the basis of the available nontargeted metabolomic
profiles, our human discovery study, KORA F4, includes
1,143 NGT, 272 IGT, 115 ndt-T2D, and 74 mt-T2D partic-
ipants (Table 1). Among the four groups, mt-T2D patients
were the oldest, were more frequently men, and had the
highest values of HbA1c, fasting glucose, triglycerides, BMI,
and waist circumference (Table 1).

The longitudinal KORA study includes samples of 683
participants without metformin treatment at baseline,
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37 of whom were treated with metformin in the 7-year
follow-up (Table 2).

From the metformin-treated mice, we obtained 10 sam-
ples for plasma, liver, and epididymal adipose tissue and

9 samples for skeletal muscle. In the same amount of
vehicle-gavaged control mice, we obtained 10 samples for
plasma, liver, epididymal adipose tissue, and skeletal
muscle.

Figure 1—Differences in relative metabolite concentrations in a human study, in a mouse study, and in organ-specific pathways. A: Mean
relative residuals of the concentrations (with SEM) of two metabolites for the NGT, IGT, ndt-T2D, and mt-T2D groups derived in cross-
sectional analysis of KORA F4. Residuals were calculated from a linear regression model with full adjustments. B: Mean relative concen-
trations (with SEM) of two metabolites in four different mouse tissues (plasma, liver, skeletal muscle, and epididymal adipose tissue). C: The
connections indicated by liver, muscle, and blood (plasma and serum) show organ specificity between metabolites, pathway-related
proteins, metformin targets, and metformin. The metabolites (ellipses) were connected to metformin treatment (straight-sided hexagons),
proteins (hexagons), and metformin targets (rectangles). The activation/stimulation is indicated with arrows. For further information, see
Tables 3–5 and Supplementary Tables 2 and 3.
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Two Metabolites Are Associated With Metformin
Treatment in a Human Cross-sectional Study
Two out of the 353 used metabolites (citrulline and
X-21365) were found to be significantly (P , 1.42E-04)
associated with metformin treatment when comparing

mt-T2D with ndt-T2D patients in the cross-sectional
KORA F4 study (Table 3 and Fig. 1A). Using multivari-
able linear regression models, we detected negative
b-estimates for both the crude (b = –0.75, P = 2.31E-
05) and full adjustment (b = –0.79, P = 2.54E-05) for

Table 2—Characteristics of the KORA S4 → F4 prospective study samples (n = 683)

Clinical parameters

KORA S4 w/o metformin§ → KORA
F4 w/o metformin§

KORA S4 w/o metformin§ → KORA
F4 w/ metformin

S4 F4 P value S4 F4 P value

n 646 646 37 37

Age, years 61.4 (4.2) 68.5 (4.2) 63.4 (3.8) 70.4 (3.9)

Male, % 51 51 54 54

BMI, kg/m2 27.9 (3.9) 28.2 (4.2) 0.2 32.8 (4.3) 32 (4.5) 0.49‖

Waist, cm 93.9 (11.0) 96.8 (11.9) 1.72E-05 106.3 (11.3) 106.7 (12.3) 0.87‖

Physical activity, %
.1 h per week 47 57 5.47E-04 32 43 0.47

High alcohol intake, %* 20 19 0.65 27 16 0.4

Smoker, % 13 8 9.00E-03 14 8 0.71

Systolic BP, mmHg 132.1 (18.7) 128.2 (19.6) 3.12E-04 144.9 (18.1) 131.6 (18.3) 2.43E-03‖

HDL-C, mg/dL 59.1 (16.3) 56.7 (14.2) 0.02 53.4 (11.8) 52.4 (7.9) 0.69‖

LDL-C, mg/dL 154.5 (40.8) 142.5 (36.9) 1.86E-08 143.5 (37.6) 123.5 (23.6) 0.02

Total cholesterol, mg/dL 245.5 (42.0) 225.2 (40.7) 2.2E-16 234.1 (41.0) 202.1 (33.6) 5.20E-04

Triglycerides, mg/dL 129.9 (76.4) 132.7 (83.4) 0.56 170.6 (169) 154.5 (159.2) 0.79

HbA1c, % 5.6 (0.3) 5.6 (0.5) 0.53 6.4 (0.9) 6.6 (0.7) 0.14

HbA1c, mmol/mol 37.6 (3.7) 38.0 (5.7) 0.53 46.8 (10.3) 48.3 (7.8) 0.14

Fasting glucose, mg/dL 99.7 (10.9) 100.7 (17.6) 0.53 130.7 (30.1) 129.6 (28.3) 0.9

2-h postglucose load,
mg/dL 115.1 (37.1) 126.9 (40.8) 8.34E-09 205.5 (76.8)

Statin usage, % 10 22 8.05E-10 8 29 0.04

b-Blocker usage, % 17 31 5.16E-09 16 29 0.27

ACE inhibitor usage, % 8 21 2.72E-11 16 51 3.18E-03

ARB usage, % 3 12 3.67E-10 3 14 0.2

Insulin therapy, % 0 0 0 0

Metformin usage, % 0 0 0 100

Parental T2D, % 25 25 47 47

Percentages of individuals or means (SD) of participants (with available Metabolon measurements for KORA S4 and F4) are shown for
each variable and each group. w/o, without; w/, with. *.40 g/day in men; .20 g/day in women. §Includes participants with NGT,
isolated IFG, IGT, and ntd-T2D. ‖Normally distributed (every other distribution is not normally distributed).

Table 3—Two human serum metabolites significantly associated with metformin treatment in a cross-sectional analyses
(KORA F4)

Crude linear model
mt-T2D (n = 74) vs. ndt-T2D (n = 115)

Full linear model
mt-T2D (n = 70)¶ vs. ndt-T2D (n = 114)¶

Metabolite b (95% CI) per SD P value FDR b (95% CI) per SD P value FDR

Citrulline 20.75 (21.09, 20.41) 2.31E-05 2.83E-04 20.79 (21.15, 20.43) 2.54E-05 2.83E-04

X-21365 0.67 (0.38, 0.96) 7.54E-06 1.42E-04 0.65 (0.34, 0.97) 5.20E-05 1.42E-04

Estimates (b) and P values for the comparison of 189 participants (74 mt-T2D and 115 ndt-T2D) were calculated using linear
regression analysis with the crude and full adjustments. Because of missing confounding information, the models with full
adjustment were based on fewer participants. Significant metabolites are highlighted in boldface type with respect to Bonferroni
correction (P , 0.05/353 = 1.42E-04) or the FDR. ¶After exclusion of individuals because of missing confounding information.
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citrulline. Hence, the relative concentration of citrulline is
significantly lower in mt-T2D compared with ndt-T2D
patients. By contrast, the relative concentration of X-21365
was significantly higher in mt-T2D patients than in ndt-T2D
patients (Table 3 and Fig. 1A). When applying the FDR, no
additional associations were found to be significant in both
crude and full models (Supplementary Table 3). When apply-
ing a significance cutoff of P , 0.05 to the comparison of
mt-T2D with ndt-T2D for the models with crude and full
adjustment, 44 additional metabolites were found, including
ornithine, arginine, and urea (Supplementary Table 3).

Five additional pairwise comparisons between the four
groups (NGT, IGT, ndt-T2D, mt-T2D) confirmed that these
two metabolites are specific for metformin treatment and
not due to the progression of the disease. The relative
concentration of citrulline was significantly lower in the
mt-T2D than in the NGT and IGT groups, whereas the
concentration of X-21365 was significantly higher (Fig. 1A
and Supplementary Table 2). Consistently, neither of the
two metabolites showed a significantly different relative
concentration in the pairwise comparisons among the
three groups without metformin treatment, i.e., NGT,
IGT, and ndt-T2D (Fig. 1A and Supplementary Table 2).

The Spearman correlation coefficient between the two
metabolites was low (r = 0.06). We observed similar asso-
ciations between the two metabolites with a number of
risk factors of T2D (20.19 , r , 0.19) when considering
189 individuals with ndt-T2D and mt-T2D in KORA F4
(Supplementary Fig. 1).

Metformin Treatment Is Associated With Decreased
Blood Citrulline Values in a Human Longitudinal Cohort
The two metformin-associated metabolites were further
investigated in the prospective KORA study. In 37 patients
who started metformin treatment during the 7-year follow-
up, citrulline was found to be significantly (Bonferroni cutoff
for two identified metabolites P, 0.05/2 = 0.025) decreased
in longitudinal in both the crude (b = –0.67, P = 2.03E-05)
and the full model (b = –0.61, 2.96E-04, Table 4). In the
same group, X-21365 was significantly increased in the
crude (b = 0.41, P = 5.62E-03) but not in the full model
(b = 0.16, P = 0.374, Table 4).

Lower Citrulline Relative Concentrations in Plasma,
Skeletal Muscle, and Epididymal Adipose Tissue
Confirmed in Metformin-Treated Mice
We observed significantly lower plasma citrulline relative
concentrations in db/db mice following daily, subchronic
metformin treatment compared with the vehicle-gavaged
control mice (b = –0.39, P = 2.56E-07, Table 5 and Fig. 1B),
which is consistent with the results observed in humans. In
addition, we found significantly lower values of citrulline in
both skeletal muscle (b = –0.35, P = 1.79E-09) and epidid-
ymal adipose tissue (b = –0.26, P = 4.52E-07). However,
citrulline values in the liver did not differ between the
metformin-treated and vehicle-gavaged non–metformin-
treated db/db animals (b = –0.02, P = 0.258, Table 5 and
Fig. 1B). Significantly different relative concentrations of
X-21365 were not found in plasma, skeletal muscle, epidid-
ymal adipose tissue, or liver of metformin-treated mice
when compared with the controls (Table 5 and Fig. 1B).

DISCUSSION

We found significantly lower values of citrulline and
significantly higher values of X-21365 in the serum of
T2D patients who underwent metformin treatment com-
pared with the nontreated patients. Additionally, using
longitudinal settings, we observed that the values of citrulline
significantly decreased in patients after they started metfor-
min treatment during the follow-up. A mouse intervention
study using metformin confirmed the lower values of
citrulline in plasma, as well as in skeletal muscle and
epididymal adipose tissue, but not in liver. Citrulline is a
nonproteinogenic amino acid, the product of anabolic and
the substrate of catabolic processes (38,39). It is synthe-
sized from arginine by releasing NO, which is involved in
the regulation of numerous processes in the nervous sys-
tem, the immune system, and the cardiovascular system
(8). Additionally, citrulline is produced from ornithine in
the urea cycle (38). We observed ornithine, urea, and argi-
nine to be lowered in human serum (Fig. 1C). Consistently,
in our previous study, which was based on a targeted
metabolomics approach, ornithine was found to be signif-
icantly lower in the metformin-treated T2D patients of the

Table 4—Citrulline remains significantly associated with metformin treatment in human serum in a longitudinal analysis (KORA
S4 → F4)

Crude GEE model
mt-T2D (n = 37) vs. nonmetformin-treated

(n = 646) participants§

Full GEE model
mt-T2D (n = 33)¶ vs. nonmetformin-treated

(n = 629)¶ participants§

Metabolite b (95% CI) per SD P value FDR b (95% CI) per SD P value FDR

Citrulline 20.67 (20.98, 20.36) 2.03E-05 1.76E-03 20.61 (20.94, 20.28) 2.96E-04 3.21E-04

X-21365 0.41 (0.12, 0.69) 5.62E-03 0.011 0.14 (20.17, 0.45) 0.374 0.024

GEE model with crude and full adjustment was used to assess the associations between metformin treatment and metabolite
serum values in the longitudinal study of 683 participants with no antidiabetes medical treatment at KORA S4. Of these participants,
37 started metformin treatment after KORA S4. Because of missing confounding information, the models with full adjustment were
based on fewer participants. Significant metabolites are highlighted in boldface type with respect to Bonferroni correction (P , 0.05/2 =
0.025) and the FDR. §Includes participants with NGT, isolated IFG, IGT, and ntd-T2D. ¶After exclusion of individuals because of missing
confounding information.
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KORA F4 study. Citrulline was not measured in the tar-
geted panel we used (6).

Metformin activates AMPK in the liver and muscle
(7,40). AMPK in turn may stimulate eNOS by its phos-
phorylation (8,41), which suggests a consequent increase
of the NO production in the NO cycle (Fig. 1C). It is
known that elevated production of NO is reflected by in-
creased values of citrulline in urine (42), as citrulline can
be used as a surrogate marker for NO (43). The decreased
values of citrulline and its precursors in blood, skeletal
muscle, and epididymal adipose tissue, as were observed
in our study, are most likely due to an accountable, in-
creased excretion of this metabolite. However, urine sam-
ples were not available in this study. To confirm this
assumption, further studies are necessary.

Furthermore, the lower values of citrulline and arginine
we observed are likely to be a consequence of the activation
of eNOS. In the NO cycle, eNOS catalyzes the reaction from
arginine to citrulline, thereby releasing NO (9,38). NO in
turn has beneficial cardiovascular effects. The reason is that
NO influences smooth muscles and activates their relaxation
(44). This underlies the clinical practice guidelines, which
have recommended the use of metformin as first-line ther-
apy in T2D patients with cardiovascular disease, mainly in
patients with observed reduced NO levels (45). Additional
intake of citrulline to compensate for the lower values of
citrulline and arginine might even increase the beneficial
effects of metformin on cardiovascular disease (46).

Additionally, citrulline is synthesized in the urea cycle,
which is strongly interlocked with the NO cycle (Fig. 1C).
In mammals, both cycles primarily take place in the liver,
but they also take place in the kidney (47). The same
accounts for the NO cycle, in which arginine also plays an
important role. In fact, similar effects of metformin on the
urea and NO cycle were mentioned by Irving et al. (15).
Their study design focused on plasma samples of 25 male
overweight or obese participants. Furthermore, all 12
metformin-treated participants were additionally treated
with pioglitazone (15). Our findings in multiple tissues of
mice that were exclusively treated with metformin and in
serum of 189 T2D patients enable a deeper understanding
of the underlying mode of action for metformin.

The observation that the citrulline values are not
affected in the liver of metformin-treated mice is pre-
sumably a consequence of the hepatic localization of the
consecutive production of citrulline in both the NO and
the urea cycle (38), which conserves a state of equilibrium.
This is in line with observations in a recent study (18).
Furthermore, significantly decreased ornithine values
were found in plasma of individuals without diabetes (18).

Apart from the NO and urea cycles, there are additional
physiological processes that produce citrulline. The metab-
olite is also synthesized from other amino acids. Examples
of such precursors are glutamine, which is converted in the
enterocytes, proline, and glutamate (38). However, we did
not observe any significant concentration difference for
these metabolites in our human cohort.
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X-21365 was not found to be significantly higher in the
fully adjusted longitudinal analyses of the KORA S4 → F4
cohort, although it was significant in both cross-sectional
analyses and in the longitudinal analyses with crude ad-
justment. In mice, we did not observe significant differ-
ences of X-21365 in any of the examined tissues. Recent
advances in the identification of metabolites spectra sug-
gest that this unknown metabolite (X-21365) might be
5-trimethylaminovalerate and therefore closely related
to the gut microbiome, which is in line with a recent study
(48). Additional studies using both blood and stool sam-
ples have to be conducted to confirm this.

The values of metabolites in humans of the KORA
study are influenced by multiple factors such as age, sex,
BMI, lifestyle, clinical measurements, and medication
(6,13,28–32). We therefore considered these factors in
the models underlying our cross-sectional discovery and
longitudinal investigations in a human cohort. Consider-
ing the mouse study, there was no need for a comparable
adjustment, as the animals were kept under strict labora-
tory conditions.

Because of the physiological similarity, we used data
from a mouse study not only to corroborate our findings
in humans but to extend our investigations on other
tissues. However, our findings are limited by the compar-
ison of metabolic analytes in two different blood matrices
and species: human serum and mouse plasma. In theory,
the analytical method could be affected by the difference in
matrix, and delicate analytes could deteriorate during the
prolonged preparation time of serum compared with that
of plasma. Therefore, a direct comparison between the
matrices serum and plasma has limitations (49). With
respect to this, we compared the serum metabolites
only within humans, the plasma metabolites only within
mice, and each mice tissue separately (50). The observa-
tional nature of cohort studies and the applied methods
are of purely statistical character, yet still they offer the
opportunity to identify unknown coherences and to de-
sign study settings to confirm underlying mechanisms.
Because of the fact that NO is below the mass cutoff
imposed on the instruments, our investigations did not
contain measurements of this chemical compound. Nev-
ertheless, our observations suggest further investigations
with a specific design to address the involvement of the
NO and urea cycle in metformin treatment.

In summary, we observed that serum values of citrulline
were reduced under metformin treatment in human
patients with T2D and, in a translational approach, also in
plasma, skeletal muscle, and epididymal adipose tissue of
diabetic mice. The underlying mechanism is most likely
the metformin-induced activation of AMPK and its
consequent increase of eNOS activity, which is linked
to citrulline by the NO cycle.
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Karsten Suhre8,21,22, Holger Prokisch7, Annette Peters10, Thomas Meitinger7,23, Michael Roden2,24, H-Erich Wichmann11,25,
Tobias Pischon4,26, Jerzy Adamski13,20 and Thomas Illig1,27

1 Research Unit of Molecular Epidemiology, Helmholtz Zentrum München, Neuherberg, Germany, 2 German Diabetes Center, Institute for Clinical Diabetology, Leibniz
Center for Diabetes Research at Heinrich Heine University, Düsseldorf, Germany, 3 Institute of Structural Biology, Helmholtz Zentrum München, Neuherberg, Germany,
4 Department of Epidemiology, German Institute of Human Nutrition Potsdam-Rehbruecke, Nuthetal, Germany, 5 Shanghai Center for Bioinformation Technology,
Shanghai, China, 6 Key Lab of Systems Biology, Bioinformatics Center, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China,
7 Institute of Human Genetics, Helmholtz Zentrum München, Neuherberg, Germany, 8 Institute of Bioinformatics and Systems Biology, Helmholtz Zentrum München,
Neuherberg, Germany, 9 Else Kroener-Fresenius-Center for Nutritional Medicine, University Hospital ‘Klinikum rechts der Isar’, Technische Universität München,
Munich, Germany, 10 Institute of Epidemiology II, Helmholtz Zentrum München, Neuherberg, Germany, 11 Institute of Epidemiology I, Helmholtz Zentrum München,
Neuherberg, Germany, 12 Institute of Genetic Epidemiology, Helmholtz Zentrum München, Neuherberg, Germany, 13 Genome Analysis Center, Institute of
Experimental Genetics, Helmholtz Zentrum München, Neuherberg, Germany, 14 Department of Clinical Nutrition, Institute of Health Biosciences, University of
Tokushima Graduate School, Tokushima, Japan, 15 Benxi Diabetes Clinic, Benxi Central Hospital, Benxi, China, 16 Institute of Laboratory Medicine, Clinical Chemistry
and Molecular Diagnostics, University Hospital Leipzig, Leipzig, Germany, 17 German Diabetes Center, Institute of Biometrics and Epidemiology, Leibniz Center for
Diabetes Research at Heinrich Heine University, Düsseldorf, Germany, 18 Institute of Diabetes and Regeneration Research, Helmholtz Zentrum München, Neuherberg,
Germany, 19 Institute for Nutritional Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China, 20 Chair of Experimental
Genetics, Technische Universität München, Munich, Germany, 21 Faculty of Biology, Ludwig-Maximilians-Universität, Planegg-Martinsried, Germany, 22 Department of
Physiology and Biophysics, Weill Cornell Medical College in Qatar (WCMC-Q), Doha, Qatar, 23 Department of Metabolic Diseases, University Hospital Düsseldorf,
Düsseldorf, Germany, 24 Klinikum rechts der Isar, Technische Universität München, Munich, Germany, 25 Institute of Medical Informatics, Biometry and Epidemiology,
Ludwig-Maximilians-Universität, Munich, Germany, 26 Molecular Epidemiology Group, Max Delbrueck Center for Molecular Medicine (MDC), Berlin-Buch, Germany and
27 Hannover Unified Biobank, Hannover Medical School, Hannover, Germany
28These authors contributed equally to this work
* Corresponding author. Research Unit of Molecular Epidemiology, Helmholtz Zentrum München, 85764 Munich-Neuherberg, Germany. Tel.: þ 49 89 3187 3978;
Fax: þ 49 89 3187 2428; E-mail: rui.wang-sattler@helmholtz-muenchen.de

Received 13.6.12; accepted 15.8.12

Type 2 diabetes (T2D) can be prevented in pre-diabetic individuals with impaired glucose tolerance
(IGT). Here, we have used a metabolomics approach to identify candidate biomarkers of pre-diabetes.
We quantified 140 metabolites for 4297 fasting serum samples in the population-based Cooperative
Health Research in the Region of Augsburg (KORA) cohort. Our study revealed significant metabolic
variation in pre-diabetic individuals that are distinct from known diabetes risk indicators, such as
glycosylated hemoglobin levels, fasting glucose and insulin. We identified three metabolites (glycine,
lysophosphatidylcholine (LPC) (18:2) and acetylcarnitine) that had significantly altered levels in IGT
individuals as compared to thosewithnormal glucose tolerance,withP-values ranging from2.4�10� 4

to 2.1�10�13. Lower levels of glycine and LPCwere found to be predictors not only for IGT but also for
T2D, and were independently confirmed in the European Prospective Investigation into Cancer and
Nutrition (EPIC)-Potsdam cohort. Using metabolite–protein network analysis, we identified seven
T2D-related genes that are associatedwith these three IGT-specificmetabolites bymultiple interactions
with four enzymes. The expression levels of these enzymes correlate with changes in the metabolite
concentrations linked to diabetes. Our results may help developing novel strategies to prevent T2D.
Molecular Systems Biology 8: 615; published online 25 September 2012; doi:10.1038/msb.2012.43
Subject Categories: metabolic and regulatory networks; molecular biology of disease
Keywords: early diagnostic biomarkers; IGT; metabolomics; prediction; T2D

Introduction

Type 2 diabetes (T2D) is defined by increased blood glucose
levels due to pancreatic b-cell dysfunction and insulin

resistance without evidence for specific causes, such as
autoimmune destruction of pancreatic b-cells (Krebs et al,
2002; Stumvoll et al, 2005; Muoio and Newgard, 2008). A state
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of pre-diabetes (i.e., impaired fasting glucose (IFG) and/or
impaired glucose tolerance (IGT)) with only slightly elevated
blood glucose levels may precede T2D for years (McGarry,
2002; Tabak et al, 2012). The development of diabetes in pre-
diabetic individuals can be prevented or delayed by dietary
changes and increased physical activity (Tuomilehto et al,
2001; Knowler et al, 2002). However, no specific biomarkers
that enable prevention have been reported.
Metabolomics studies allowmetabolites involved in disease

mechanisms to be discovered by monitoring metabolite level
changes in predisposed individuals compared with healthy
ones (Shaham et al, 2008; Newgard et al, 2009; Zhao et al,
2010; Pietilainen et al, 2011; Rhee et al, 2011; Wang et al, 2011;
Cheng et al, 2012; Goek et al, 2012). Altered metabolite levels
may serve as diagnostic biomarkers and enable preventive
action. Previous cross-sectional metabolomics studies of T2D
were either based on small sample sizes (Shaham et al, 2008;
Wopereis et al, 2009; Zhao et al, 2010; Pietilainen et al, 2011) or
did not consider the influence of common risk factors of T2D
(Newgard et al, 2009). Recently, based on prospective
nested case–control studies with relative large samples (Rhee
et al, 2011; Wang et al, 2011), five branched-chain and
aromatic amino acids were identified as predictors of T2D
(Wang et al, 2011). Here, using various comprehensive large-
scale approaches, we measured metabolite concentration
profiles (Yu et al, 2012) in the population-based (Holle et al,
2005; Wichmann et al, 2005) Cooperative Health Research
in the Region of Augsburg (KORA) baseline (survey 4 (S4))
and follow-up (F4) studies (Rathmann et al, 2009; Meisinger
et al, 2010; Jourdan et al, 2012). The results of these cross-
sectional and prospective studies allowed us to (i) reliably
identify candidate biomarkers of pre-diabetes and (ii) build
metabolite–protein networks to understand diabetes-related
metabolic pathways.

Results

Study participants

Individuals with known T2D were identified by physician-
validated self-reporting (Rathmann et al, 2010) and excluded
from our analysis, to avoid potential influence from anti-
diabetic medication with non-fasting participants and indivi-
duals with missing values (Figure 1A). Based on both fasting
and 2-h glucose values (i.e., 2 h post oral 75 g glucose load),
individuals were defined according to the WHO diagnostic
criteria to have normal glucose tolerance (NGT), isolated IFG
(i-IFG), IGT or newly diagnosed T2D (dT2D) (WHO, 1999;
Rathmann et al, 2009; Meisinger et al, 2010; Supplementary
Table S1). The sample sets include 91 dT2D patients and 1206
individuals with non-T2D, including 866 participants with
NGT, 102 with i-IFG and 238 with IGT, in the cross-sectional
KORA S4 (Figure 1A; study characteristics are shown in
Table I). Of the 1010 individuals in a fasting state who
participated at baseline and follow-up surveys (Figure 1B,
study characteristics of the KORA F4 survey are shown in
Supplementary Table S2), 876 of them were non-diabetic at
baseline. Out of these, about 10% developed T2D (i.e., 91
incident T2D) (Figure 1C). From the 641 individuals with NGT
at baseline, 18% developed IGT (i.e., 118 incident IGT) 7 years

later (Figure 1D). The study characteristics of the prospective
KORA S4-F4 are shown in Table II.

Analyses strategies

We first screened for significantly differed metabolites
concentration among four groups (dT2D, IGT, i-IFG and
NGT) for 140 metabolites with cross-sectional studies in
KORA S4, and for 131 metabolites in KORA F4. Three IGT-
specific metabolites were identified and further investigated in
the prospective KORA S4-F4 cohort, to examine whether the
baseline metabolite concentrations can predict incident IGT
and T2D, and whether they are associated with glucose
tolerance 7 years later. Our results are based on a prospective
population-based cohort, which differed from previous nested
case–control study (Wang et al, 2011). We also performed
analysis with same study design using our data. The obtained
results provided clues to explain the differences between the
two sets of biomarkers. The three metabolites were also
replicated in an independent European Prospective Investiga-
tion into Cancer and Nutrition (EPIC)-Potsdam cohort. Finally,
the relevance of the identified metabolites was further
investigated with our bioinformatical analysis of protein-
metabolite interaction networks and gene expression data.

Identification of novel pre-diabetes metabolites
distinct from known T2D risk indicators

To identify metabolites with altered concentrations between
the individuals with NGT, i-IFG, IGT and dT2D, we first
examined five pairwise comparisons (i-IFG, IGT and dT2D
versus NGT, as well as dT2D versus either i-IFG or IGT) in the
cross-sectional KORA S4. Based on multivariate logistic
regression analysis, 26 metabolite concentrations differed
significantly (P-valueso3.6�10� 4) between two groups in
at least one of the five comparisons (Figure 2A; odds ratios
(ORs) and P-values are shown in Table III). These associations
were independent of age, sex, bodymass index (BMI), physical
activity, alcohol intake, smoking, systolic blood pressure (BP)
and HDL cholesterol (model 1). As expected, the level of total
hexose H1, which is mainly represented by glucose (Pearson’s
correlation coefficient value r between H1 and fasting glucose
reached 0.85; Supplementary Table S3), was significantly
different in all five comparisons. The significantly changed
metabolite panel differed from NGT to i-IFG or to IGT. Most of
the significantly altered metabolite concentrations were found
between individuals with dT2D and IGT as compared with
NGT (Supplementary Table S4A).
To investigate whether HbA1c, fasting glucose and fasting

insulin levels mediate the shown associations, these were
added as covariates to the regression analysis (model 2) in
addition tomodel 1 (Figure 2B).We observed that, under these
conditions, no metabolite differed significantly when compar-
ing individuals with dT2D to those with NGT, suggesting
that these metabolites are associated with HbA1c, fasting
glucose and fasting insulin levels (r values are shown in
Supplementary Table S3). Only ninemetabolite concentrations
significantly differed between IGTandNGT individuals (Table III;
Supplementary Table S4B). These metabolites therefore
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represent novel biomarker candidates, and are independent
from the known risk indicators for T2D. The logistic regression
analysis was based on each single metabolite, and some of
these metabolites are expected to correlate with each other. To
further assess the metabolites as a group, we employed two
additional statistical methods (the non-parametric random
forest and the parametric stepwise selection) to identify
unique and independent biomarker candidates. Out of the
nine metabolites, five molecules (i.e., glycine, LPC (18:2), LPC
(17:0), LPC (18:1) and C2) were select after random forest, and
LPC (17:0) and LPC (18:1) were then removed after the
stepwise selection. Thus, three molecules were found to
contain independent information: glycine (adjusted OR¼ 0.67
(0.54–0.81), P¼ 8.6�10� 5), LPC (18:2) (OR¼ 0.58 (0.46–
0.72), P¼ 2.1�10� 6) and acetylcarnitine C2 (OR¼ 1.38

(1.16–1.64), P¼ 2.4�10� 4) (Figure 2C). Similar results were
observed in the follow-up KORA F4 study (Supplementary
Figure S1). For instance, when 380 IGT individuals were
compared with 2134 NGT participants, these three metabolites
were also found to be highly significantly different (glycine,
OR¼ 0.64 (0.55–0.75), P¼ 9.3�10� 8; LPC (18:2), OR¼ 0.47
(0.38–0.57), P¼ 2.1�10�13; and C2, OR¼ 1.33 (1.17–1.49),
P¼ 4.9�10� 6) (Supplementary Table S5).

Predict risks of IGT and T2D

To investigate the predictive value for IGTand T2D of the three
identified metabolites, we examined the associations between
baseline metabolite concentrations and incident IGT and T2D

Table I Characteristics of the KORA S4 cross-sectional study sample

Clinical and laboratory parameters NGT i-IFG IGT dT2D

N 866 102 238 91
Age (years) 63.5±5.5 64.1±5.2 65.2±5.2 65.9±5.4
Sex (female) (%) 52.2 30.4 44.9 41.8
BMI (kg/m2) 27.7±4.1 29.2±4 29.6±4.1 30.2±3.9
Physical activity (% 41h per week) 46.7 35.3 39.9 36.3
Alcohol intakea (%) 20.2 20.5 25.2 24.2
Current smoker (%) 14.8 10.8 10.9 23.1
Systolic BP (mmHg) 131.7±18.9 138.9±17.9 140.7±19.8 146.8±21.5
HDL cholesterol (mg/dl) 60.5±16.4 55.7±15.9 55.7±15.1 50.0±15.8
LDL cholesterol (mg/dl) 154.5±39.8 152.1±37.7 155.2±38.6 146.1±44.6
Triglycerides (mg/dl) 120.7±68.3 145.0±96.0 146.6±80.0 170.6±107.1
HbA1c (%) 5.56±0.33 5.62±0.33 5.66±0.39 6.21±0.83
Fasting glucose (mg/dl) 95.6±7.1 114.2±3.7 104.5±9.7 133.2±31.7
2-h Glucose (mg/dl) 102.1±21.0 109.3±18.7 163.4±16.4 232.1±63.7
Fasting insulin (mU/ml) 10.48±7.28 16.26±9.67 13.92±9.53 17.70±12.61

NGT, normal glucose tolerance; i-IFG, isolated impaired fasting glucose; IGT, impaired glucose tolerance; dT2D, newly diagnosed type 2 diabetes; BP, blood pressure;
HDL, high-density lipoprotein; LDL, low-density lipoprotein.
Percentages of individuals or means±s.d. are given for each variable and each group (NGT, i-IFG, IGTand dT2D).
aX20 g/day for women; X40 g/day for men.

KORA S4 cross-sectional study
n=4261

Excluded:
Non-fasting (n=2863)
Missing values (n=63)
Known T2D (n=38)

A

IGT
n=238

NGT
n=866

Non-T2D (n=1206)

dT2D
n=91

i-IFG
n=102

NGT
n=641 NGT
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Incident IGT
n=118 

Non-T2D
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Follow-up F4
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Figure 1 Population description. Metabolomics screens in the KORA cohort, at baseline S4 (A), overlapped between S4 and F4 (B) and prospective (C, D). Participant
numbers are shown. Normal glucose tolerance (NGT), isolated impaired fasting glucose (i-IFG), impaired glucose tolerance (IGT), type 2 diabetes mellitus (T2D) and
newly diagnosed T2D (dT2D). Non-T2D individuals include NGT, i-IFG and IGT participants.
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using the prospective KORA S4-F4 cohort (Table II). We
compared baseline metabolite concentrations in 118 incident
IGT individuals with 471 NGT control individuals. We found
that glycine and LPC (18:2), but not C2, were significantly
different at the 5% level in both adjusted model 1 and model 2
(Table IV; Supplementary Table S6). Significant differences
were additionally observed for glycine and LPC (18:2), but not
for C2, at baseline concentrations between the 91 incident T2D
individuals and 785 participants who remained diabetes free
(non-T2D). Each standard deviation (s.d.) increment of the
combinations of the three metabolites was associated with a

33% decreased risk of future diabetes (OR¼ 0.39 (0.21–0.71),
P¼ 0.0002). Individuals in the fourth quartile of the combined
metabolite concentrations had a three-fold lower chance of
developing diabetes (OR¼ 0.33 (0.21–0.52), P¼ 1.8�10� 5),
compared with those whose serum levels were in the first
quartile (i.e., combination of glycine, LPC (18:2) and C2),
indicating a protective effect from higher concentrations of
glycine and LPC (18:2) combined with a lower concentration
of C2. With the full adjusted model 2, consistent results were
obtained for LPC (18:2) but not for glycine (Supplementary
Table S6). When the three metabolites were added to the fully

Table II Characteristics of the KORA S4-F4 prospective study samples

NGTat baseline (n¼ 589) Non-T2D at baseline (n¼ 876)

Remained NGT
at follow-up

Developed IGT
at follow-up

Remained Non-T2D
at follow-up

Developed T2D
at follow-up

N 471 118 785 91
Age (years) 62.4±5.4 63.9±5.5 62.9±5.4 65.5±5.2
Sex (female) (%) 52.2 55.9 50.8 34.1
BMI (kg/m2) 27.2±3.8 28.2±3.9 27.9±4 30.2±3.6
Physical activity (% 41h per week) 52.9 43.2 52.2 58.2
Alcohol intakea (%) 19.9 20.3 20.6 19.8
Smoker (%) 14.6 9.3 12.0 14.3
Systolic BP (mmHg) 129.6±18.2 134.2±18.7 132.4±18.6 137.8±19
HDL cholesterol (mg/dl) 61.3±16.8 58.9±16.2 60.0±16.5 51.9±12.4
LDL cholesterol (mg/dl) 153.9±38.4 156.9±42.7 154.5±39.5 157.7±41.6
Triglycerides (mg/dl) 118.1±63.9 129.5±79.0 125.0±70.0 151.2±74.2
HbA1c (%) 5.54±0.33 5.59±0.34 5.6±0.3 5.8±0.4
Fasting glucose (mg/dl) 94.7±6.9 96.6±7.1 97.7±8.8 106.1±10.1
2-h Glucose (mg/dl) 98.2±20.5 109.9±16.8 109.3±28 145.9±32.3
Fasting insulin (mU/ml) 9.91±6.48 11.79±8.83 11.0±7.6 16.2±9.6

BP, blood pressure; HDL, high-density lipoprotein; LDL, low-density lipoprotein.
Percentages of individuals or means±s.d. are given for each variable and each group.
aX20 g/day for women; X40 g/day for men.
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Figure 2 Differences in metabolite concentrations from cross-sectional analysis of KORA S4. Plots (A, B) show the names of metabolites with significantly different
concentrations in multivariate logistic regression analyses (after the Bonferroni correction for multiple testing with Po3.6� 10� 4) in the five pairwise comparisons of
model 1 and model 2. Plot (C) shows the average residues of the concentrations with standard errors of the three metabolites (glycine, LPC (18:2) and acetylcarnitine
C2) for the NGT, IGT and dT2D groups. Plot (A) shows the results with adjustment for model 1 (age, sex, BMI, physical activity, alcohol intake, smoking, systolic BP and
HDL cholesterol), whereas plots (B, C) have additional adjustments for HbA1c, fasting glucose and fasting insulin (model 2). Residuals were calculated from linear
regression model (formula: T2D statusBmetabolite concentrationþmodel 2). For further information, see Supplementary Table S4.
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adjusted model 2, the area under the receiver-operating-
characteristic curves (AUC) increased 2.6% (P¼ 0.015) and
1% (P¼ 0.058) for IGTand T2D, respectively (Supplementary

Figure S2; Supplementary Table S7). Thus, this provides an
improved prediction of IGT and T2D as compared with T2D
risk indicators.

Table III Odds ratios (ORs) and P-values in five pairwise comparisons with two adjusted models in the KORA S4

Metabolite Model 1 Model 2

OR (95% CI), per s.d. P-value OR (95% CI), per s.d. P-value

238 IGT versus 866 NGT
Glycine 0.65 (0.53–0.78) 5.6E-06 0.67 (0.54–0.81) 8.6E-05
LPC (18:2) 0.58 (0.47–0.7) 1.3E-07 0.58 (0.46–0.72) 2.1E-06
C2 1.37 (1.18–1.59) 3.8E-05 1.38 (1.16–1.64) 2.4E-04

91 dT2D versus 866 NGT
Glycine 0.47 (0.33–0.65) 1.1E-05 0.44 (0.22–0.83) 1.6E-02
LPC (18:2) 0.62 (0.44–0.85) 4.1E-03 0.61 (0.32–1.07) 1.1E-01
C2 1.17 (0.94–1.45) 1.5E-01 1.71 (1.14–2.52) 6.8E-03

91 dT2D versus 234 IGT
Glycine 0.81 (0.61–1.07) 1.5E-01 0.76 (0.51–1.1) 1.6E-01
LPC (18:2) 0.91 (0.69–1.19) 4.8E-01 0.84 (0.57–1.22) 3.7E-01
C2 0.93 (0.71–1.2) 5.9E-01 1.27 (0.87–1.86) 2.2E-01

102 i-IFG versus 866 NGT
Glycine 0.75 (0.57–0.98) 3.9E-02 0.62a 1.0Eþ 00
LPC (18:2) 0.99 (0.77–1.26) 9.6E-01 0.79a 1.0Eþ 00
C2 1.2 (0.99–1.46) 5.9E-02 0.18a 1.0Eþ 00

91 dT2D versus 102 i-IFG
Glycine 0.62 (0.43–0.87) 7.8E-03 0.62 (0.4–0.93) 2.5E-02
LPC (18:2) 0.62 (0.43–0.89) 1.1E-02 0.54 (0.33–0.84) 8.9E-03
C2 0.92 (0.66–1.27) 6.2E-01 1.23 (0.82–1.85) 3.1E-01

ORs were calculated with multivariate logistic regression analysis with adjustment for age, sex, BMI, physical activity, alcohol intake, smoking, systolic BP and HDL
cholesterol in model 1; model 2 includes those variable in model 1 plus HbA1c, fasting glucose and fasting insulin. CI denotes confidence interval.
aFasting glucose values were added as co-variants to the model 2, resulting in a perfect separation between i-IFG and NGT.

Table IV Prediction of IGTand T2D in the KORA cohort

Model Glycine LPC (18:2) C2 Glycine, LPC (18:2), C2

(A) Metabolite as continuous variable (n¼ 589)
Per s.d. 0.75 (0.58–0.95) 0.72 (0.54–0.93) 0.92 (0.73–1.14) 0.36 (0.20–0.67)
P 0.02 0.02 0.50 0.001

(B) Metabolite as categorical variable (n¼ 589)
First quartile 1.0 (reference) 1.0 (reference) 1.0 (reference) 1.0 (reference)
Second quartile 1.0 (0.80–1.46) 0.96 (0.73–1.27) 0.89 (0.66–1.23) 0.54 (0.30–0.97)
Third quartile 1.0 (0.74–1.34) 0.71 (0.51–0.99) 0.93 (0.69–1.26) 0.66 (0.37–1.18)
Fourth quartile 0.78 (0.55–1.06) 0.78 (0.54–1.12) 0.99 (0.73–1.35) 0.36 (0.19–0.69)
P for trend 0.06 0.05 0.79 0.0082

(C) Metabolite as continuous variable (n¼ 876)
Per s.d. 0.73 (0.55–0.97) 0.70 (0.51–0.94) 0.94 (0.74–1.18) 0.39 (0.21–0.71)
P 0.04 0.02 0.59 0.0002

(D) Metabolite as categorical variable (n¼ 876)
1st quartile 1.0 (reference) 1.0 (reference) 1.0 (reference) 1.0 (reference)
2nd quartile 0.87 (0.71–1.07) 0.95 (0.77–1.17) 1.05 (0.85–1.31) 0.50 (0.33–0.76)
3rd quartile 0.82 (0.67–1.01) 0.70 (0.56–0.88) 0.97 (0.78–1.19) 0.57 (0.38–0.88)
4th quartile 0.67 (0.54–0.84) 0.68 (0.54–0.88) 1.21 (0.98–1.50) 0.33 (0.21–0.52)
P for trend 0.00061 0.00021 0.19 1.8E� 05

(E) Linear regression (n¼ 843)
b Estimatesa (95% CI) � 2.47 (� 4.64, � 0.29) � 4.57 (� 6.90, � 2.24) 1.02 (� 1.11, 3.15) � 4.23 (� 6.52, � 2.31)
P 0.026 0.00013 0.59 8.8E� 05

Odds ratios (ORs, 95% confidence intervals) and P-values of multivariate logistic regression results are shown in (A) and (B) for IGT and in (C) and (D) for T2D,
respectively, whereas b estimates and P-values from linear regression analysis betweenmetabolite concentration in baseline KORA S4 and 2-h glucose values in follow-
up KORA F4 are shown in (E). All models were adjusted for age, sex, BMI, physical activity, alcohol intake, smoking, systolic BP and HDL cholesterol.
ab Estimate indicates the future difference in the glucose tolerance corresponding to the one s.d. differences in the normalized baseline metabolite concentration.
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Baseline metabolite concentrations correlate with
future glucose tolerance

We next investigated the associations between baseline
metabolite concentrations and follow-up 2-h glucose values
after an oral glucose tolerance test. Consistent results were
observed for the three metabolites: glycine and LPC (18:2), but
not acetylcarnitine C2 levels, were found to be significantly
associated, indicating that glycine and LPC (18:2) predict
glucose tolerance. Moreover, the three metabolites (glycine,
LPC (18:2) and C2) revealed high significance even in the fully
adjusted model 2 in the cross-sectional KORA S4 cohort
(Supplementary Table S8). As expected, a very significant
association (P¼ 1.5�10� 22) was observed for hexose H1 in
model 1, while no significance (P¼ 0.12) was observed for it in
the fully adjusted model 2 (Supplementary Table S8).

Prospective population-based versus nested
case–control designs

To investigate the predict value of the five branched-chain and
aromatic amino acids (isoleucine, leucine, valine, tyrosine and
phenylalanine) (Wang et al, 2011) in our study, we correlated
the baseline metabolite concentrations with follow-up 2-h
glucose values. We found none of them to be associated
significantly, indicating that the five amino acids cannot
predict risk of IGT (b estimates and P-values are shown in
Supplementary Table S9). Furthermore, none of these five
amino acids showed associations with 2-h glucose values in
the cross-sectional KORA S4 study (Supplementary Table S8).
To replicate the identified five branched-chain and aromatic

amino acids (Wang et al, 2011), we matched our baseline
samples to the 91 incident T2D using the same method
described previously (Wang et al, 2011). We replicated four out
of the five branched-chain and aromatic amino acids
(characteristics of the case–control and non-T2D samples are
shown in Supplementary Table S10; ORs and P-values are
given in Supplementary Table S11). As expected, the three
identified IGT-specific metabolites did not significantly differ

between the matched case control samples, because the
selected controls were enriched with individuals accompanied
by high-risk features such as obesity and elevated fasting
glucose as described by Wang et al (2011). In fact, the 91
matched controls include about 50% pre-diabetes individuals,
which is significantly higher than the general population
(about 15%).

Replication in the cross-sectional EPIC-Potsdam
cohort

Metabolomics data from serum samples of a randomly drawn
EPIC-Potsdam subcohort (n¼ 2500) were used for replication.
Glycine (OR¼ 0.60 (0.47–0.77), P¼ 7.4�10� 5) and LPC
(18:2) (OR¼ 0.79 (0.63–0.98), P¼ 0.037) were replicated
when 133 T2D patients were compared with 1253 individuals
with NGT at baseline (Supplementary Table S12). However,
acetylcarnitine C2 (OR¼ 0.98 (0.81–1.19), P¼ 0.858) could
not be replicated when T2D patients were compared with NGT
individuals, since the IGT participants were not available in
the data set. The absolute levels of these three metabolites
were in a similar range, with only slight differences that were
due probably to the differences of the two cohorts or to
potential batch effects of metabolomics measurements
(Supplementary Tables S12 and S15). Thus, these data
therefore provide an independent validation of the metabo-
lomics study.

Metabolite–protein interaction networks confirmed
by transcription levels

To investigate the underlying molecular mechanism for the
three identified IGT metabolites, we studied their associations
with T2D-related genes by analyzing protein-metabolite
interaction networks (Wishart et al, 2009; Szklarczyk et al,
2011). In all, 7 out of the 46 known T2D-related genes (PPARG,
TCF7L2,HNF1A, GCK, IGF1, IRS1 and IDE) were linked to these
metabolites through related enzymes or proteins (Figure 3A;
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Figure 3 Three candidate metabolites for IGT associated with seven T2D-related genes. (A) Metabolites (white), enzymes (yellow), pathway-related proteins (gray)
and T2D-related genes (blue) are represented with ellipses, rectangles, polygons and rounded rectangles, respectively. Arrows next to the ellipses and rectangles
indicate altered metabolite concentrations in persons with IGT as compared with NGT, and enzyme activities in individuals with IGT. The 21 connections between
metabolites, enzymes, pathway-related proteins and T2D-related genes were divided after visual inspections into four categories: physical interaction (purple solid line),
transcription (blue dash line), signaling regulation (orange dash line) and same pathway (gray dot and dash line). The activation or inhibition is indicated. For further
information, see Supplementary Table S12. (B) Log-transformed gene expression results of the probes of CAC, CrAT, ALAS-H and cPLA2 in 383 individuals with NGT,
104 with IGT and 26 patients with dT2D are shown from cross-sectional analysis of the KORA S4 survey. The P-values were adjusted for sex, age, BMI, physical activity,
alcohol intake, smoking, systolic BP, HDL cholesterol, HbA1c and fasting glucose when IGT individuals were compared with NGT participants.
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the list of 46 genes is shown in Supplementary Table S13). To
validate the networks, the links between metabolites,
enzymes, pathway-related proteins and T2D-related genes
were manually checked for biochemical relevance and
classified into four groups: signaling regulation, transcription,
physical interaction and the same pathway (Supplementary
Table S14).
Gene expression analysis in whole-blood samples of

participants from the KORA S4 revealed significant variations
(P-values ranging from 9.4�10� 3 to 1.1�10� 6) of transcript
levels of four enzymes, namely, carnitine/acylcarnitine
translocase (CAC), carnitine acetyltransferase (CrAT),
5-aminolevulinate synthase 1 (ALAS-H) and cytosolic phos-
pholipase A2 (cPLA2), which are known to be strongly
associated with the levels of the three metabolites
(Figure 3B). The clear relationship between changes in
metabolites and transcription levels of associated enzymes
strongly suggests that these metabolites are functionally
associated with T2D genes in established pathways.

Discussion

Using a cross-sectional approach (KORA S4, F4), we analyzed
140 metabolites and identified three (glycine, LPC (18:2) and
C2) which are IGT-specific metabolites with high statistical
significance. Notably, these three metabolites are distinct from
the currently known T2D risk indicators (e.g., age, BMI,
systolic BP, HDL cholesterol, HbA1c, fasting glucose and
fasting insulin). A prospective analysis (KORA S4-F4) shows
that low levels of glycine and LPC at baseline predict the risks
of developing IGT and/or T2D. Glycine and LPC especially
were shown to be strong predictors of glucose tolerance, even
7 years before disease onset. Moreover, those two metabolites
were independently replicated in the EPIC-Potsdam cross-
sectional study. Finally, based on our analysis of interaction
networks, and supported by gene expression profiles, we
found that seven T2D-related genes are functionally associated
with the three IGT candidate metabolites.

Different study designs reveal progression of IGT
and T2D

From a methodological point of view, our study is unique with
respect to the large sample sizes and the availability of
metabolomics data from two time points. This allowed us to
compare results generated with cross-sectional and prospec-
tive approaches directly, as well as with results from
prospective population-based cohort and nested case–control
designs. We found that individuals with IGT have elevated
concentrations of the acetylcarnitine C2 as compared with
NGT individuals only in the cross-sectional study, whereas C2
was unable to predict IGT and T2D 7 years before the disease
onset. We speculate that the acetylcarnitine C2 might be an
event with a quick effect.
Our analysis could replicate four out of the five branched-

chain and aromatic amino acids recently reported to be
predictors of T2D using nested/selected case–control samples
(Wang et al, 2011). However, the population-based prospective
study employed in our study revealed that these five amino

acids are in fact not associated with future 2-h glucose values.
It should be taken into account, however, that more pre-
diabetes individuals (B50%) were in the control group of that
study design, and that these markers were unable to be
extended to the general population (with only 0.4% improve-
ment from the T2D risk indicators as reported in the
Framingham Offspring Study) (Wang et al, 2011). Most likely,
changes in these amino acids happen at a later stage in the
development of T2D (e.g., from IGT to T2D); indeed, similar
phenomenon was also observed in our study (Supplementary
Figure S1D). In contrast, we found that combined glycine, LPC
(18:2) and C2 have 2.6 and 1% increment in predicting IGTand
T2D in addition to the common risk indicators of T2D. This
suggests they are better candidate for early biomarkers, and
specifically from NGT to IGT, than the five amino acids.

IFG and IGT should be considered as two different
phenotypes

By definition (WHO, 1999; ADA, 2010), individuals with IFG or
IGT or both are considered as pre-diabetics. Yet we observed
different behaviors regarding the change of the metabolite
panel fromNGT to i-IFG or to IGT, indicating that i-IFG and IGT
are two different phenotypes. For future studies, we therefore
suggest separating IFG from IGT.

Glycine

The observed decrease in the serum concentration of glycine in
individuals with IGT and dT2D may result from insulin
resistance (Pontiroli et al, 2004). It was already reported that
insulin represses ALAS-H expression (Phillips and Kushner,
2005). As insulin sensitivity progressively decreases during
diabetes development (McGarry, 2002; Stumvoll et al, 2005;
Faerch et al, 2009; Tabak et al, 2009), it is expected that the
expression levels of the enzyme increase in individuals with
IGT and dT2D, since ALAS-H catalyzes the condensation of
glycine and succinyl-CoA into 5-aminolevulinic acid (Bishop,
1990). This may explain our observation that glycine was
lower in both individuals with IGT and those with dT2D.
However, the level of fasting insulin in IGTand T2D individuals
was higher than in NGT participants in the KORA S4 study,
suggesting that yet undetected pathways may also play roles
here.

Acetylcarnitine C2

Acetylcarnitine is produced by the mitochondrial matrix
enzyme, CrAT, from carnitine and acetyl-CoA, a molecule that
is a product of both fatty acid b-oxidation and glucose
oxidation and can be used by the citric acid cycle for energy
generation. We observed higher transcriptional level of CrAT
in individuals with IGT and T2D, most probably due to an
activation of the peroxisome proliferator activated receptor
alpha (PPAR-a) pathway in peroxisomes (Horie et al, 1981).
Higher expression of CrATwould explain the elevated levels of
acetylcarnitine C2 in IGT individuals. Although it is not clear if
mitochondrial CrAT is overexpressed when there is increased
fatty acid b-oxidation (e.g., in diabetes; Noland et al, 2009), it
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is expected that additional acetylcarnitine will be formed by
CrAT due to increased substrate availability (acetyl-CoA),
thereby releasing pyruvate dehydrogenase inhibition by
acetyl-CoA and stimulating glucose uptake and oxidation.
An increase of acylcarnitines, and in particular of acetylcarni-
tine C2, is a hallmark in diabetic people (Adams et al, 2009).
Cellular lipid levels are increased in humans with IGTor overt
T2D who also may have altered mitochondrial function
(Morino et al, 2005; Szendroedi et al, 2007). Together, these
findings reflect an important role of increased cellular lipid
metabolites and impaired mitochondrial b-oxidation in the
development of insulin resistance (McGarry, 2002; Szendroedi
et al, 2007; Koves et al, 2008).

LPC (18:2)

In our study, individuals with IGTand dT2D had lower cPLA2
transcription levels, suggesting reduced cPLA2 activity. As a
result, a concomitant decrease in the concentration of
arachidonic acid (AA), a product of cPLA2 activity, is
expected. AA has been shown to inhibit glucose uptake by
adipocytes (Malipa et al, 2008) in a mechanism that is
probably insulin independent and that involves the GLUT-1
transporter. Therefore, our findings may point to regulatory
effects in individuals with IGT, since the inhibition of AA
production would result in an increased glucose uptake.

Limitations

While our metabolite profiles provide a snapshot of human
metabolism, more detailed metabolic profile follow-ups, with
longer time spans and more time points, are necessary to
further evaluate the development of the novel biomarkers.
Moreover, the influence from long-term dietary habits should
not be ignored, even though we used only serum from fasting
individuals (Altmaier et al, 2011; Primrose et al, 2011).
Furthermore, additional tissue samples (e.g., muscle and
adipocytes) and experimental approaches are needed to
characterize the causal pathways in detail.

Conclusions

Three novel metabolites, glycine, LPC (18:2) and C2, were
identified as pre-diabetes-specific markers. Their changes
might precede other branched-chain and aromatic amino
acids markers in the progression of T2D. Combined levels of
glycine, LPC (18:2) and C2 can predict risk not only for IGT but
also for T2D. Targeting the pathways that involve these newly
proposed potential biomarkers would help to take preventive
steps against T2D at an earlier stage.

Materials and methods

Ethics statement

Written informed consent was obtained from each KORA and EPIC-
Potsdam participant. The KORA and EPIC-Potsdam studies were
approved by the ethics committee of the Bavarian Medical Association
and the Medical Society of the State of Brandenburg, respectively.

Sample source and classification

The KORA surveys are population-based studies conducted in the city
of Augsburg and the surrounding towns and villages (Holle et al, 2005;
Wichmann et al, 2005). KORA is a research platform in the field of
epidemiology, health economics and health-care research. Four
surveys were conducted with 18 079 participants recruited from 1984
to 2001. The S4 consists of 4261 individuals (aged 25–74 years)
examined from 1999 to 2001. From 2006 to 2008, 3080 participants
(with an age range of 32–81) took part in an F4 survey. Ascertainments
of anthropometric measurements and personal interviews, as well as
laboratory measurements of persons, from the KORA S4/F4 have been
described elsewhere (Rathmann et al, 2009; Meisinger et al, 2010;
Jourdan et al, 2012).

Sampling

In the KORA cohort, blood was drawn into S-Monovettes serum tubes
(SARSTEDTAG & Co., Nümbrecht, Germany) in the morning between
0800 and 1030h after at least 8 h of fasting. Tubes were gently inverted
twice, followed by 30min resting at room temperature, to obtain
complete coagulation. For serum collection, blood was centrifuged at
2750 g at 151C for 10min. Serumwas filled into synthetic straws,which
were stored in liquid nitrogen until the metabolic analyses were
conducted.

Metabolite measurements and exclusion of
metabolites

For the KORA S4 survey, the targeted metabolomics approach was
based on measurements with the AbsoluteIDQt p180 kit (BIOCRATES
Life Sciences AG, Innsbruck, Austria). This method allows simulta-
neous quantification of 188 metabolites using liquid chromatography
and flow injection analysis–mass spectrometry. The assay procedures
have been described previously in detail (Illig et al, 2010; Römisch-
Margl et al, 2011). For each kit plate, five references (human plasma
pooledmaterial, Seralab) and three zero samples (PBS)weremeasured
in addition to the KORA samples. To ensure data quality, each
metabolite had tomeet two criteria: (1) the coefficient of variance (CV)
for the metabolite in the total 110 reference samples had to be smaller
than 25%. In total, seven outliers were removed because their
concentrations were larger than the mean plus 5� s.d.; (2) 50% of
all measured sample concentrations for the metabolite should be
above the limit of detection (LOD), which is defined as 3� median of
the three zero samples. In total, 140 metabolites passed the quality
controls (Supplementary Table S15): one hexose (H1), 21 acylcarni-
tines, 21 amino acids, 8 biogenic amines, 13 sphingomyelins (SMs), 33
diacyl (aa) phosphatidylcholines (PCs), 35 acyl-alkyl (ae) PCs and 8
lysoPCs. Concentrations of all analyzed metabolites are reported
in mM.
Measurements of the 3080 KORA F4 samples and the involved

cleaning procedure have already been described in detail (Mittelstrass
et al, 2011; Yu et al, 2012).

Gene expression analysis

Peripheral blood was drawn under fasting conditions from 599 KORA
S4 individuals at the same time as the serum samples used for
metabolic profiling were prepared. Blood samples were collected
directly in PAXgene (TM) Blood RNA tubes (PreAnalytiX). The RNA
extraction was performed using the PAXgene Blood miRNA kit
(PreAnalytiX). Purity and integrity of RNA was assessed on the
Bioanalyzer (Agilent) with the 6000 Nano LabChip reagent set
(Agilent). In all, 500ng of RNA was reverse-transcribed into cRNA
and biotin-UTP labeled, using the Illumina TotalPrep-96 RNA
Amplification Kit (Ambion). In all, 3000 ng of cRNA was hybridized
to the Illumina HumanHT-12 v3 Expression BeadChip. Chips were
washed, detected and scanned according to manufacturer’s instruc-
tions. Raw data were exported from the Illumina ‘GenomeStudio’
Software to R. The data were converted into logarithmic scores and
normalized using the quantile method (Bolstad et al, 2003). The
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sample sets comprised 383 individuals with NGT, 104 with IGTand 26
with dT2D. The known T2D individuals were removed as had been
done for the metabolomics analysis.

Data availability

Metabolite concentrations of Glycine, LPC (18:2) and C2 with T2D
status in the KORA S4 and F4 are provided (Supplementary Table S16).
Additional data from the KORA S4 and F4 studies, including the
metabolite concentrations and the gene expression with clinical
phenotypes used in this study, are available upon request from
KORA-gen (http://epi.helmholtz-muenchen.de/kora-gen). Requests
should be sent to kora-gen@helmholtz-muenchen.de and are subject
to approval by the KORA board to ensure that appropriate condi-
tions are met to preserve patient privacy. Formal collaboration and
co-authorship with members of the KORA study is not an automatic
condition to obtain access to the data published in the present paper.
More general information about KORA, including S4 and F4 study design
and clinical variables, can be found at http://epi.helmholtz-muenchen.
de/kora-gen/seiten/variablen_e.php and http:/helmholtz-muenchen.de/
en/kora-en/information-for-scientists/current-kora-studies.

Statistical analysis

Calculations were performed under the R statistical environment
(http://www.r-project.org/).

Multivariate logistic regression and linear
regression

In multivariate logistic regression analysis, ORs for single metabolites
were calculated between two groups. The concentration of each
metabolite was scaled to have a mean of zero and an s.d. of one; thus,
all reported OR values correspond to the change per s.d. of metabolite
concentration. Various T2D risk factors were added to the logistic
regression analysis as covariates. To handle false discovery rates from
multiple comparisons, the cutoff point for significance was calculated
according to the Bonferroni correction, at a level of 3.6�10� 4 (for a
total use of 140 metabolites at the 5% level). Because the metabolites
were correlated within well-defined biological groups (e.g., 8 lysoPCs,
33 diacyl PCs, 35 acyl-alkyl PCs and 13 SMs), this correction was
conservative.
Additionally, the categorized metabolite concentrations and com-

bined scores (see below) were analyzed, and the ORs were calculated
across quartiles. To test the trend across quartiles, we assigned all
individuals either the median value of the concentrations or the
combined scores, and obtained the P-values using the same regression
model.
For linear regression analyses, b estimates were calculated from the

concentration of each metabolite and the 2-h glucose value. The
concentration of eachmetabolite was log-transformed and normalized
to have a mean of zero and an s.d. of one. Various risk factors in the
logistic regressionwere added as covariates, and the same significance
level (3.6�10� 4) was adopted.

Combination of metabolites

To obtain the combined scores of metabolites, the scaled metabolite
concentrations (mean¼ 0, s.d.¼ 1) were first modeled with multi-
variate logistic regression containing all confounding variables. The
coefficients of these metabolites from the model were then used to
calculate a weighted sum for each individual. In accordance with the
decreasing trend of glycine and LPC (18:2), we inverted these values as
the combined scores.

Residuals of metabolite concentrations

To avoid the influence of other confounding factors when plotting the
concentration of metabolites, we used the residuals from a linear

regression model. Metabolite concentrations were log-transformed
and scaled (mean¼ 0, s.d.¼ 1), and the residuals were then deduced
from the linear regression that included the corresponding confound-
ing factors.

Random forest, stepwise selection methods and
candidate biomarker selection

To select candidate biomarkers, we applied two additional methods:
the random forest selection (Breiman, 2001) and the stepwise
selection, which assess the metabolites as a group.

Between two groups, the supervised classification method of
random forest was first used to select the metabolites among the 30
highest ranking variables of importance score, allowing the best
separation of the individuals fromdifferent groups. T2D risk indicators
were also included in this method with all the metabolites.

We further selected the metabolites using stepwise selection on the
logistic regression model. Metabolites with significantly different
concentrations between the compared groups in logistic regression,
and which were also selected using random forest, were used in this
model alongwith all the risk indicators. Akaike’s Information Criterion
(AIC) was used to evaluate the performance of these subsets of
metabolites used in the models. The model with minimal AIC was
chosen. The AUC was used to evaluate the models.

Network analysis

Metabolite–protein interactions from the Human Metabolome Data-
base (HMDB; Wishart et al, 2009) and protein–protein interactions in
the Search Tool for the Retrieval of Interacting Genes/Proteins
(STRING; Szklarczyk et al, 2011) were used to construct a network
containing relationships between metabolites, enzymes, other pro-
teins and T2D-related genes. The candidate metabolites were assigned
to HMDB IDs using the metaP-Server (Kastenmuller et al, 2011), and
their associated enzymes were derived according to the annotations
provided by HMDB. These enzymes were connected to the 46 T2D-
related genes (considered at that point), allowing for 1 intermediate
protein (other proteins) through STRINGprotein functional interaction
and optimized by eliminating edges with a STRING score ofo0.7 and
undirected paths. The subnetworks were connected by the shortest
path from metabolites to T2D-related genes.

Replication

The EPIC-Postdam is part of the multicenter EPIC study (Boeing et al,
1999; Riboli et al, 2002). It was drawn from the general adult
population in Potsdam and surrounding areas and consists of 27 548
participants recruited from 1994 to 1998 (Boeing et al, 1999). At
baseline, participants underwent anthropometric and BP measure-
ments, completed an interview on prevalent diseases, a questionnaire
on socioeconomic and lifestyle factors and submitted a validated food
frequency questionnaire. Follow-up questionnaires were administered
every 2–3 years (Bergmann et al, 1999).

From the EPIC-Potsdam population, a substudy of 2500 participants
was randomly selected from all participants who had provided blood
samples at baseline (n¼ 26 444). The substudy had a limited number
of fasting samples available. Therefore, non-fasting samples were also
considered. Out of the substudy, 814 participants were excluded
because of missing information on relevant covariates or missing
fasting samples. Individuals with NGT and T2D were determined
according to HbA1c categories defined by the American Diabetes
Association in 2010 (ADA, 2010).

In the EPIC-Potsdam study, 30ml of blood was drawn by qualified
medical staff during the baseline examination, immediately fractio-
nated into serum, plasma, buffy coat and erythrocytes and aliquoted
into straws. The blood samples were stored in liquid nitrogen
(at � 1961C) until the metabolic analyses.

Metabolite measurements for the EPIC-Potsdam samples were
performed using the same kit and the same method as for the KORA
F4 samples (Floegel et al, 2011).
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Calculations were performed using the Statistical Analysis System
(SAS), Version 9.2 (SAS Institute, Inc., Cary, NC, USA).

Supplementary information

Supplementary information is available at the Molecular Systems
Biology website (www.nature.com/msb).
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