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Zusammenfassung

Neben wissenschaftlichen und technologischen Fortschritten war die Weiterentwicklung
des globalen Beobachtungssystems einer der wichtigsten Faktoren, die in den letzten Jahren
zur Verbesserung der numerischen Wettervorhersage (engl. Numerical Weather Prediction,
kurz NWP) beigetragen haben. Die Anfangsbedingungen einer Vorhersage werden in der
Regel durch Datenassimilationssysteme bereitgestellt, wobei die neuste Kurzfristvorhersage
mit einer Auswahl atmosphärischer Beobachtungen kombiniert wird. Das Fehlen globaler
Windprofilbeobachtungen stellt derzeit eine der größten Einschränkungen in der meteo-
rologischen Datenassimilation dar; insbesondere in Regionen und für räumliche Skalen, in
denen eine schwache geostrophische Masse-Wind-Kopplung vorherrscht. Die Doppler Wind
Lidar (DWL) Satellitenmission Aeolus der Europäischen Weltraumorganisation (engl. Eu-
ropean Space Agency, kurz ESA) liefert einen neuartigen Datensatz von Windprofilen mit
quasi-globaler Abdeckung, der diese Datenlücke im aktuellen globalen Beobachtungssys-
tem schließen soll. Ziel dieser Arbeit ist es, den Einfluss der Aeolus Beobachtungen auf
die numerische Wettervorhersage abzuschätzen und somit den potenziellen Nutzen von
derartigen satellitengestützten DWL-Missionen zu demonstrieren.

Eine entscheidende Voraussetzung für die Verwendung meteorologischer Beobachtungen
in NWP-Datenassimilationssystemen ist die Kenntnis und Charakterisierung ihrer Fehler.
Daher wird im ersten Teil dieser Arbeit eine Validierungsstudie zur Untersuchung der
Qualität der Aeolus Windprofile durchgeführt. Hierbei ermöglichen Vergleiche mit drei
unabhängigen Referenzdatensätzen - kollokierte Radiosonden Beobachtungen sowie Model-
läquivalente des globalen ICOsahedral Nonhydrostatic (ICON) Modells des Deutschen Wet-
terdienstes (DWD) und des Integrated Forecast System (IFS) Modells des Europäischen
Zentrums für mittelfristige Wettervorhersage (ECMWF) - eine umfassende Abschätzung
der systematischen und zufälligen Fehler der Aeolus Beobachtungen. Darüber hinaus
werden die systematischen Fehler auf ihre Abhängigkeiten hin untersucht und Korrek-
turansätze getestet, die in Datenassimilationssystemen im Rahmen der Qualitätskontrolle
eingesetzt werden können. Abweichungen zwischen den Radiosonden- und modellbasierten
Validierungsergebnissen, die bei der Bestimmung des zufälligen Fehlers auftreten, sind
hauptsächlich auf Unterschiede der räumlichen und zeitlichen Repräsentativität zurück-
zuführen. Die einzelnen Komponenten des Repräsentativitätsfehler können mithilfe von
hochauflösenden regionalen Modellsimulationen abgeschätzt werden und somit bei der Er-
mittlung des Aeolus Instrumentenfehlers berücksichtigt werden. Die Ergebnisse liefern
wichtige Informationen über das Ausmaß und die vertikale Struktur des Rayleigh- und
Mie-Windfehlers von Aeolus, die als Grundlage für den zugewiesenen Beobachtungsfehler
bei der Datenassimilation dienen.
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Der zweite Teil dieser Arbeit untersucht, inwiefern die numerische Wettervorhersage
von der Assimilation der neuartigen DWL-Beobachtungen des Aeolus Satelliten profi-
tiert. Dazu wird ein Beobachtungssystem Experiment basierend auf dem operationellen
globalen Assimilationssystem ICON am DWD mit und ohne Assimilation von Aeolus
Beobachtungen analysiert. Neben globalen Statistiken werden Regionen und Zeiträume
mit besonders ausgeprägtem Einfluss genauer betrachtet, um die dynamischen Prozesse, die
dem insgesamt positiven Einfluss zugrunde liegen, zu verstehen. Die größten Auswirkungen
der Assimilation von Aeolus Beobachtungen treten in der 2-3-tägigen Wind- und Temper-
aturvorhersage in der tropischen oberen Troposphäre und unteren Stratosphäre sowie in
der südlichen Hemisphäre auf. Der Einfluss der Aeolus Beobachtungen auf der Nord-
halbkugel ist weniger ausgeprägt, aber im Vergleich zu anderen Beobachtungssystemen
immer noch relativ groß. Diese Dissertation bespricht drei Beispiele atmosphärischer
Phänomene, welche dynamische Szenarien für eine signifikante Reduzierung von Vorher-
sagefehlern darstellen: Der Wechsel der Oszillationsphase zweier großräumiger tropischer
Zirkulationssysteme - der quasi-zweijährige Schwingung (engl. Quasi-Biennial Oscillation,
kurz QBO) und der El Niño-Southern Oscillation (ENSO) - und die Wechselwirkung von
tropischen Wirbelstürmen, die einen extratropischen Übergang durchlaufen und dabei mit
dem Wellenleiter der mittleren Breiten interagieren. Die gefundenen Hinweise auf dy-
namische Veränderungen und Prozesse im Zusammenhang mit dem besonders hohen Ein-
fluss von Aeolus auf die numerische Wettervorhersage liefern wichtige Informationen für
die Weiterentwicklung von Beobachtungs- und NWP-Systemen und werden als Grundlage
für zukünftige Studien über Möglichkeiten zur Verbesserung von NWP Vorhersagen durch
zusätzliche Beobachtungen dienen.



Abstract

Along with scientific and technological developments, the advancement of the Global Ob-
serving System (GOS) has been one of the most important factors contributing to the in-
crease in numerical weather forecasting (NWP) skill in recent years. The initial conditions
of a forecast are provided by data assimilation systems, combining the latest short-range
forecast with a selection of atmospheric observations. One of the current major limitations
is the lack of global wind profile observations, particularly in regions and for spatial scales
where geostrophic mass-wind coupling is weak. The European Space Agency’s (ESA)
Doppler Wind Lidar (DWL) satellite mission Aeolus provides a novel data set of wind
profiles with quasi-global coverage intended to fill this gap in the GOS. This thesis aims to
assess the impact of the Aeolus observations in NWP to demonstrate the potential value
of such satellite-based DWL missions.

A crucial prerequisite for using meteorological observations in NWP data assimilation
systems is the knowledge and characterization of their errors. Therefore, in the first part
of this work, a validation study is conducted to investigate the quality of the Aeolus wind
profiles. Comparisons with three independent reference data sets - collocated radiosonde
observations as well as model equivalents of the global ICOsahedral Nonhydrostatic (ICON)
model of the German Weather Service (DWD) and the Integrated Forecast System (IFS)
model of the European Centre for Medium-Range Weather Forecasts (ECMWF) - enable a
comprehensive estimation of the systematic and random errors of the Aeolus observations.
In addition, the systematic errors are examined for their dependencies, and correction
approaches that can be used in data assimilation systems as part of quality control are
tested. Discrepancies between the radiosonde and model-based validation results that
occur in determining the random error are mainly due to differences in spatial and temporal
representativeness. The representativeness error components can be estimated using high-
resolution regional model simulations and thus can be taken into account in determining the
Aeolus observational error. The results provide important information on the magnitude
and vertical structure of the Aeolus Rayleigh and Mie wind error, which serves as the basis
for the assigned observational error in the data assimilation.

The second part of this thesis examines how numerical weather forecasting benefits from
the assimilation of the novel DWL observations from the Aeolus satellite. For this purpose,
an Observing System Experiment (OSE) based on the operational global assimilation sys-
tem of ICON at DWD with and without the assimilation of Aeolus observations is analyzed.
Besides global impact statistics, regions and periods with particularly pronounced impact
are investigated further to understand the underlying dynamics leading to the overall ben-
eficial impact. The largest impact of assimilating Aeolus observations occurs in the 2-3 day
wind and temperature forecast in the tropical upper troposphere and lower stratosphere
and in the Southern Hemisphere. The influence of the Aeolus observations in the Northern



x

Hemisphere is less pronounced but still relatively large compared to other observing sys-
tems. Furthermore, this thesis illustrates three examples of atmospheric phenomena that
constitute dynamical scenarios for significant forecast error reduction: the change of the
oscillatory phase of two large-scale tropical circulation systems - the quasi-biennial oscilla-
tion (QBO) and the El Niño–Southern Oscillation (ENSO) - and the interaction of tropical
cyclones undergoing extratropical transition (ET) with the midlatitude waveguide. These
indications of dynamical changes and processes related to the particularly high impact of
Aeolus on NWP forecasts provide important information for the advancement of observing
and NWP systems and will serve as the basis for future studies on opportunities to improve
NWP forecasts by additional observations.
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Chapter 1

Introduction

1.1 State of the art

1.1.1 Importance of atmospheric wind observations for NWP

Along with temperature, pressure, and humidity, wind is one of the fundamental variables
that describe the physical state of the atmosphere. A familiar characteristic of winds is
that they change from hour to hour, day to day, and from place to place. This variability
on a wide range of temporal and spatial scales associated with weather systems, storms,
or fronts is of great importance for meteorological forecasting (Goody and Walker, 1972).
The average overall structure of large-scale atmospheric motion is usually defined as the
general circulation. It results from the differential solar heating between the equatorial
regions and the poles in conjunction with the Earth’s rotation. Due to mutual interactions,
the general circulation is closely related to variable winds on smaller scales. Variations
in small-scale atmospheric phenomena can significantly change the average flow pattern,
mainly associated with the evolution of atmospheric waves. On the other hand, there are
a variety of stationary or seasonal wind systems on Earth that can affect the small-scale
weather pattern. In the following, an overview of the main wind-driven dynamical processes
in the atmosphere is first given to illustrate the general importance of wind observations.
Then, the role and need for direct wind field information in Numerical weather prediction
(NWP) are discussed.

Atmospheric wind-driven dynamical processes

In the tropics, seasonally varying monsoon circulations play an important role in the annual
evolution of precipitation and temperature patterns. The major monsoon systems around
the equator are the Indian, East Asian, and West African Monsoons, which are associated
with the latitudinal variation of the Intertropical Convergence Zone (ITCZ). Their variabil-
ity may be significantly related to jet streams such as the Tropical Easterly Jet (TEJ) in the
upper troposphere and the mid-level African Easterly Jet (AEJ). Furthermore, one of the
main sources of tropical predictability on the weekly to monthly time scale is the intrasea-
sonal wave-like convective system Madden-Julian Oscillation (MJO). Besides the tropics,
the MJO can also impact the weather in the extratropics by inducing Rossby waves. An-
other central teleconnection system on the interannual time scale is the El Niño-Southern
Oscillation (ENSO). It manifests as changes in the east-west circulation over the tropical
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Pacific Ocean and leads to large-scale redistribution in oceanic temperature precipitation
patterns. The shift in the ENSO conditions is associated with a major change in the wind
patterns and can affect the extratropics through various tropospheric and stratospheric
pathways. In the stratospheric layer around the equator, the two- to three-year cycle in
downward propagating zonal wind, referred to as the Quasi-Biennial Oscillation (QBO), is
an essential interacting circulation system. It is suggested that wave-mean flow interactions
of upward propagating waves from the troposphere drive this large-scale circulation. Both
the ENSO and the QBO can potentially impact the variability of the Indian Monsoon and
the activity of tropical cyclones. The QBO is also important for the dynamics in the polar
regions due to teleconnections via the global stratospheric circulation.

The extratropics are generally dominated by a westerly flow. Within the westerly
tropospheric jets, large-scale turbulent disturbance movements can occur, controlling the
high and low pressure systems in the middle latitudes. These disturbances are essentially
planetary Rossby waves that are mainly forced by momentum due to interactions with
orography like the Rocky Mountains or the Himalayas, irregularities in the temperature and
pressure gradient, or interactions with smaller-scale dynamical systems. The meandering
air currents tend to move eastward, which is associated with the formation of cyclogenesis
and anticyclogenesis downstream. Furthermore, Rossby waves can also control the track of
high and low pressure systems at the Earth’s surface. They are instrumental in transporting
heat from the tropics to the poles and cold air to the tropics to return the atmosphere to
balance.

The significant steering influences of the general atmospheric circulation on weather
changes of different magnitudes can become very severe and have consequences for the
population. Therefore, it is particularly necessary to observe the large-scale flow. In addi-
tion, observations of the wind field in regions of rapid changes in wind, such as in frontal
zones or during the development stages of storm systems, are of great importance. Such
wind systems typically influence the occurrence and distribution of extensive precipitation.
Because the associated wind shear occurs both horizontally and vertically, leading to in-
teractions and couplings with the jet stream, densely distributed information on profiles of
wind speed and direction is essential.

The need for wind observations for Numerical Weather Prediction

Numerical weather prediction is based on computational models that describe the main
physical processes in the atmosphere and their effects on the time evolution of the model
variables, such as temperature, pressure, wind, and humidity. They consist of a set of
discretized flow equations based on the conservation of momentum, mass, and energy.
Furthermore, parameterization schemes are used to approximate the impact of small-scale
structures that cannot be explicitly represented on the model grid. The initial state from
which an NWP model is run is called the analysis and is the "best" estimate of the current
atmospheric state in the given model space. From this, the prediction of a future state
is derived through numerical integration. Since the atmosphere is a non-linear, chaotic
system (Lorenz, 1963), the forecast quality depends strongly on the accuracy of the initial
state. The concept that determines the best estimate of the initial state by combining
a background forecast with the collection of atmospheric observations weighted by their
errors is termed data assimilation.
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Over the past 40 years, NWP skill has steadily improved. Fig. 1.1 shows that the
forecast skill in the range from 3 to 10 days has increased by about one day per decade
(Bauer et al., 2015). Besides scientific and technological developments, one of the major
contributing factors is the increase in observational information and its effective use. Par-
ticularly, the advanced operational assimilation of satellite observations since the 1990s
shows beneficial impact (Eyre et al., 2020). Due to the global coverage provided by satel-
lites, the forecast skill of the Northern and Southern Hemispheres has been increasingly
converging. However, despite these advances in the observing system in recent years, data
assimilation is still a highly under-determined problem. The degrees of freedom in current
NWP models are typically a factor of ten larger than the number of available observations.
Moreover, the measured variables are not always directly related to the basic variables of
the model, and their partitioning is strongly biased toward mass-based observations. In
particular, the lack of direct wind observations is a major challenge for NWP.

Figure 1.1: Anomaly correlation between the 500-hPa geopotential height forecasts
(three-, five-, seven- and ten-day) and the verifying analysis, with respect to the
climatology as a measure for forecast skill [%]. Shown for the extratropical Northern and
Southern Hemispheres as a running mean from 1981 to 2014. From Bauer et al. (2015).

In the absence of direct wind observations, typically, the geostrophic adjustment theory
is used to indirectly derive some information about the large-scale wind field from obser-
vations of temperature and pressure. However, this theory is limited to a certain extent.
To illustrate the relative importance of directly measured wind data, the definition of the
Rossby radius of deformation is useful. It describes the horizontal length scale at which
the wind and mass field are approximately in geostrophic balance. Simplified, the Rossby
radius of deformation R can be expressed as:

R =

√
gh

f
=

√
gh

2Ωsin(Φ)
, (1.1)

with g being the gravitational acceleration and h being the vertical scale of an atmospheric
motion system. The denominator represents the Coriolis parameter f with Ω being the
Earth’s angular velocity and Φ being the latitude. At horizontal length scales smaller
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than R, the mass field adjusts to equilibrium with the wind field. At horizontal length
scales larger than R, the large-scale wind field can only be derived from the mass field
information with reasonable accuracy. Close to the equator, where the Coriolis parameter
converges to zero, R goes to infinity. There, the coupling between mass and wind is mainly
determined by atmospheric wave features rather than geostrophic balance. In addition to
latitude, the geostrophic mass-wind coupling also depends on the spatial scales, which is
illustrated for the extratropics in Fig. 1.2. The wind field primarily dominates horizontally
small-scale (L ≪ R) and vertically deep structures (large h), shown as the open white area.
This corresponds mainly to orographically determined flow features or circulation systems,
such as fronts at higher latitudes. In summary, for NWP, direct information on the wind
field is particularly important for determining tropical dynamics at all scales as well as
smaller-scale structures at higher latitudes.

Figure 1.2: The straight diagonal line represents the Rossby radius of deformation (R)
for a latitude of Φ = 45◦ as a function of the horizontal and vertical scale. It separates the
range within the wind field dominates (open white area), and the range within the mass
field dominates (shaded grey area). From ESA (1999).

1.1.2 Deficiencies in the global observing system

The Global Observing System (GOS), coordinated by the World Meteorological Organi-
zation (WMO), consists of a wide variety of observation methods that provide routinely
available data for NWP data assimilation. The types of currently used wind observations
can be roughly grouped into single-level surface, single-level upper-air, and multi-level
upper-air data. They are described below, along with their individual deficiencies. Over-
all, the most significant limitation is the lack of availability of direct wind data on a global
scale.

Information on surface winds is relatively abundant over both land, and the oceans,
e.g., scatterometer wind vectors from satellites, synoptic wind reports from land stations
and ships or moored and drifting buoys. However, none of these observations can provide
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crucial information about the vertical profile of atmospheric winds.

(a) AMV winds (b) Aircraft observations

(c) Radiosonde observations (d) ATOVS radiances

Figure 1.3: Geographical data coverage of the observations assimilated at DWD: (a)
AMV winds, (b) aircraft observations, (c) radiosonde observations, and (d) observations of
radiances from satellites using the instrument ATOVS. The coverage is valid for 07
September 2020 00 UTC (± 1.5 h). From
https://rcccm.dwd.de/DE/leistungen/nwv_obsloc/nwv_obsloc.html

Atmospheric motion vectors (AMVs) derived from tracking cloud and water vapor struc-
tures in geostationary or polar orbiting satellite imagery observe the wind field in upper-air
single-levels with nearly global coverage (Fig. 1.3a). At Deutscher Wetterdienst (DWD),
every 6 h, about 500.000 observations of AMVs are available. However, due to several error
sources, the amount of AMV observations actually used in NWP is much lower. AMVs
exhibit deficiencies because of the assumption that the tracked features are advected by
the atmospheric flow, which does not always have to be true. Furthermore, uncertainties
of their height assignment can lead to significant systematic and correlated errors (Fol-
ger and Weissmann, 2014). Another mainly single-level observation type is wind reports
from aircraft. They can only provide information about the vertical atmospheric structure
during ascents and descents. The observations are very accurate, but the coverage is in-
sufficient since most of the data is available at cruise level along the main air traffic routes
(Fig. 1.3b).

The primary source of accurate vertical profiles of the wind field are radiosondes, pilot
balloons, or radar wind profilers. However, predominantly, they are concentrated over

https://rcccm.dwd.de/DE/leistungen/nwv_obsloc/nwv_obsloc.html
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continents in the Northern Hemisphere (Fig. 1.3c). Only a few profiles are available over
the oceans or the Southern Hemisphere.

The largest proportion of assimilated global observations consists of microwave and
infrared radiance data from satellite sounders. An example of the spatial (and temporal)
coverage of the Advanced TIROS (Television Infra-red Observing System) Operational
Vertical Sounder (ATOVS) is shown in Fig. 1.3d with a million observations within 3
h. However, they mainly provide information on the atmospheric mass field in terms of
temperature or humidity. This poses a particularly strong restriction for regions of weak
geostrophic balance.

Fig. 1.4 shows the proportion of all active observations (used in the assimilation) in the
global model at DWD for a 24-h period in 2022. It can be seen that the radiances clearly
dominate the observing system, accounting for ∼64% of the total observations. Winds
from scatterometers, satellite imagery, and GNSS signals together constitute about 18%.
Conventional observations from aircraft reports, radiosondes, surface stations, buoys, pilot,
and wind profilers represent ∼7% of the total number of observations. The proportion of
assimilated wind profiles from the spaceborne lidar of the Aeolus mission is about 2%.

Figure 1.4: Percentage of the total number of assimilated observations in the global
ICON model at DWD for a 24-h period from 15 July 2022 (3 h assimilation window). The
numbers in brackets in the following description of the acronyms are the total numbers of
assimilated observations. RAD = satellite radiances (polar orbit + geostationary)
(3.571.007), GPSRO = GNSS Radio Occultation (444.121), AIREP = aircrafts (AIREP,
AMDAR, ACARS) (420.178), SCATT = scatterometer and alimeter (294.945), SYNOP =
synoptic wind reports from land stations and ships (227.444), SATOB = satellite winds
(AMVs) (215308), TEMP = radiosondes (134.941), WLIDAR = ADM Aeolus winds
(116.387), DRIBU = buoys (15.315), PILOT = pilot and wind profiler (10.610), GPSGB
= GNSS ground-based wind observations (7.458).
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1.1.3 Wind profile observations from space - historical scientific
and technological background

Already in 1995, space programs recognized that an Atmospheric Dynamics Mission (ADM)
would be needed to meet the requirements of the current GOS and the Global Climate
Observing System (GCOS) (ESA, 1995). Potential ways to measure wind profiles globally
from space have been extensively studied since the 1970s. In the 1980s, the first basic con-
cepts for an operational space-based facility, a Laser Atmospheric Wind Sounder (LAWS,
(Baker et al., 1995)), were defined and designed by the National Aeronautics and Space
Administration (NASA). However, it turned out that bringing such wind vector observing
systems into space would be extremely complex. Inspired by the LAWS concept, in 1989,
the European Space Agency (ESA) published its first report concerning a Doppler Wind
Lidar (DWL) providing single-component wind Line-of-sight (LOS) measurements (ESA,
1989). Lorenc et al. (1992) showed that the assimilation of a single horizontal line-of-
sight (HLOS) wind component relative to an instrument line-of-sight (LOS) direction can
improve forecasting skills significantly.

Several early scientific studies (e.g., Courtier et al. (1992), Lorenc et al. (1992)) sup-
ported the basic hypothesis that DWL information positively impacts data assimilation
systems used for NWP, which led to the foundation for a DWL-ADM mission. Over the
years, global atmospheric measurements of wind profiles and, thus, the mission gained in-
creasing importance. In the sixth edition of the guide to meteorological instruments and
methods of observation 1996, the WMO gave top priority to wind profile measurements
and stated that the “realization of their requirements would represent a major step for-
ward in improving the quality of atmospheric flow analyses” (WMO, 1996). In addition,
they noted that global wind profiles are “essential for operational weather forecasting at
all scales and latitudes” (WMO, 1996, Chapter 3 p.295) and emphasized the impeding
progress due to the deficiencies in the current GOS and GCOS (WMO, 1998). Finally,
in 1999, the now-called ADM-Aeolus mission was selected to be one of ESA’s Earth Ex-
plorer Core missions as part of the Living Planet Program to observe Earth’s winds from
space. The development of satellite-based wind profile systems has become a priority for
the future GOS. In WMO (2012), it was stated that the current GOS is too much geared
towards measuring atmospheric mass, particularly satellite instruments, even though the
average impact of wind observations is higher both on a single instrument and on a ‘per
observation’ basis.

In parallel with the mission’s technical development, scientific and campaign activi-
ties were carried out to evaluate the potential of ADM-Aeolus observations for NWP. The
importance of wind profile observations for medium-range forecast quality over Europe
has been motivated by Cress and Wergen (2001). They performed observing system ex-
periments (OSEs) by withholding existing wind profile observations over North America,
demonstrating a significant impact on the forecast quality over Europe after 11 days of as-
similation. Žagar et al. (2004a) and Žagar et al. (2004b) emphasized the importance of an
appropriate mass–wind relationship in the tropics, showing that direct wind measurements
are much more efficient in reconstructing the structure of equatorial waves than mass field
observations. Further comparisons between assimilating mass and wind field data from
Horányi et al. (2015a) showed that large improvements from the Aeolus observations are
mainly to be expected in the upper troposphere and lower stratosphere. Adding simulated
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ADM Aeolus-like lidar observations to the GOS has been found to be beneficial for NWP
by several studies (e.g., Marseille et al. (2008b), Stoffelen et al. (2006), Tan et al. (2007),
Žagar (2004)). Particularly, these studies demonstrated a reduction in forecast errors for
poorly predicted severe events (Marseille et al., 2008b,a), in the 500 hPa average medium-
range wind forecast over the Northern Hemisphere (Stoffelen et al., 2006), for the analysis
and forecasts over oceans (Tan et al., 2007) and for tropical wave dynamics (Žagar, 2004).
In addition to the usefulness of Aeolus DWL HLOS wind data, the sensitivity of forecast
quality with respect to random and systematic errors in HLOS wind measurements was ad-
dressed. Horányi et al. (2015b) showed that increased systematic errors (even small biases
of the order of 1 m s−1) can deteriorate the forecast quality and have a much larger influ-
ence than random errors. Therefore, they noted that particularly at the equator and top
of the atmosphere, where observational biases, but also the impact of Aeolus is expected
to be large, biases should be minimized.

In autumn 2003, during the North Atlantic “Observing System Research and Pre-
dictability Experiment” (THORPEX) Regional Campaign (A-TReC), the airborne Doppler
lidar system of the Deutsches Zentrum für Luft- und Raumfahrt (DLR) onboard of the Fal-
con research aircraft was used for targeted wind observations. 1612 wind profiles with 5-10
km horizontal and 100 m vertical resolution were measured and compared to 33 side-by-
side dropsondes, providing an experimental basis for the deployment of spaceborne DWL
systems (Weissmann et al., 2005). A mean standard deviation of the DWL observations
of 0.75–1 m s−1 was estimated, slightly higher than the general observational error of
dropsondes. However, lidar winds are expected to be more representative of model wind
fields since the representativeness error (that dominates the total error in data assimilation
(Weissmann et al., 2005)) of a line measurement is comparatively small compared to a
point measurement (Frehlich and Sharman, 2004). The A-TReC lidar wind profiles were
assimilated at the European Centre for Medium-Range Weather Forecasts (ECMWF) to
evaluate the impact of the additional measurements above the Atlantic Ocean within a
2-week OSE, including eight flights (Weissmann and Cardinali, 2007). Considering instru-
mental and representativeness errors, the assigned observation error was assumed to be
1-1.5 m s−1. Since this is smaller than the observation error of most conventional obser-
vations in data assimilation at ECMWF, the lidar wind profiles were weighted relatively
strongly. Weissmann and Cardinali (2007) found a significant impact on the analyses (40%
higher than dropsondes) and on forecasts up to 4 days. On average, the quality of the
48–96-h forecast of 500-hPa over Europe was reduced by 3%. This motivated the use of
DWL instruments at research flights during the THORPEX Pacific Asian Regional Cam-
paign (T-PARC) in 2008. For the first time, the development of tropical cyclones was
sampled by airborne DWL systems. The wind profile measurements of a three-hour in-
terval covering the early development of the tropical storm Nuri were assimilated into the
Weather Research and Forecasting model (WRF), showing improvements in the surface
maximum wind forecast and reductions in the track forecast error (Pu et al., 2010). A
larger data set of an 11-day period, including 2500 DWL wind profiles during the evolution
of Typhoon Sinlaku in the western North Pacific, was obtained from the DWL onboard
the DLR Falcon aircraft. The observations were assimilated at ECMWF as well as in the
global models of the Naval Research Laboratory (NRL). At ECMWF, the 12–120-h track
forecast error was reduced by 9% on average (Weissmann et al., 2012). In addition, the
mean quality of the 500- and 1000-hPa geopotential height forecast was increased for both
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an area around the recurvature of Sinlaku and an area covering the extratropical transi-
tion and interaction with the midlatitude dynamics. The impact was comparable to other
aircraft observations but below that of radiosondes, wind profilers, AMVs, SYNOP, and
scatterometer surface winds. At NRL, only higher impact was measured from synthetic TC
bogus observations, total precipitable water derived from satellites, and Advanced SCAT-
terometer (ASCAT) surface wind data. Even though the ADM-Aeolus winds have larger
errors and a lower measurement resolution, the results of Weissmann et al. (2012) indicate
that a DWL provides an important source of wind information for NWP, particularly in
poorly observed regions during the development of tropical cyclone systems.

Altogether, the research activities of the past few years have been instrumental in
understanding the important role that space-based DWL plays for NWP applications and
serve as the basis and motivation for the ADM-Aeolus satellite mission.

1.1.4 Aeolus mission objectives

On 22 August 2018, the Aeolus satellite was launched successfully by ESA from the Eu-
ropean spaceport in Kourou, French Guiana. Since 3 September 2018, it provides vertical
wind profiles with global coverage in Near Real Time. Aeolus is expected to last until 2023,
exceeding its nominal 3-year mission lifetime.

The long-term goal is to demonstrate the DWL technique’s capability for measuring
wind profiles from space. The three-dimensional global wind field observations along the
instrument LOS are intended to compensate for the deficiencies of the current GOS and
GCOS. Besides increased skill in NWP, the mission is also expected to contribute to some
of the main issues of the World Climate Research Programme (WCRP), i.e., validation and
improvement of climate models and thus quantification of climate variability. Progresses
in climate research are closely linked to progress in the understanding and representation
of atmospheric dynamics in operational weather forecasting.

The key benefits expected from Aeolus that are essential for this thesis can be highlighted
as follows (ESA, 1999, 2008, 2016):

➣ the comprehensive observation of the large-scale flow will improve modeling and
understanding of tropical dynamics, especially tropical circulation systems,

➣ improvements in the initial state in the tropics, the Southern Hemisphere, and over
oceans, where direct wind measurements are rare, will lead to better analysis quality
and increased forecasting skill,

➣ better detection of the small-scale wind field (especially vertical wind shear) will
improve the short-range forecast of severe and intense storm developments,

➣ improvements in the characterization of planetary-scale waves will increase the medium-
range forecasts for the extratropical region,

➣ better detection of atmospheric wave activities will lead to better analysis of scale
interactions and teleconnection processes,

➣ the high vertical measurement coverage of the wind observations will improve the
forecasts of stratospheric dynamics.
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1.2 Research goals and outline of the thesis

A completely new data set of wind observations is available from the Aeolus mission, filling
a significant gap in the global measuring network. This thesis aims to contribute to the
optimal use of the Aeolus wind observations in NWP models and to evaluate the expected
benefits for NWP using the global data assimilation system of the ICOsahedral Nonhydro-
static (ICON) model of Deutscher Wetterdienst (DWD).

The research questions that are addressed in this thesis can be summarized as follows:

1 What are the characteristics of the systematic and random errors of the Aeolus
wind observations, and how can the Aeolus observational error be estimated?

2 How can the systematic errors be corrected to optimize the use of the Aeolus wind
observations in data assimilation?

3 What is the relative benefit of the Aeolus observations in the framework of the
global assimilation system at DWD? Does Aeolus fulfill the expected contribution
to the GOS?

4 Which dynamical scenarios and processes are related to the particularly high
impact of Aeolus on NWP forecasts?

To answer research question 1 and 2, the first part of this thesis is concerned with
the validation of the HLOS wind profiles. The validation study is conducted for the mis-
sion’s initial phase before the operational use of the data. It provides the basis for the
assimilation of these novel observations in the global data assimilation system at DWD.
For a comprehensive characterization of the systematic and random errors, the Aeolus
HLOS wind profiles are compared to three independent reference data sets: collocated
radiosonde wind profiles from the GOS and model equivalents from the ICON model of
DWD and the ECMWF Integrated Forecast System (IFS) model around the collocation
points. Because radiosonde observations are rare in the Southern Hemisphere and tropical
band, the validation statistics initially focus on the Northern Hemisphere midlatitudes.
These regional validation results are then placed in a global context, using only the model
equivalents for an additional global statistic. To determine the Aeolus observational error
within the validation study, the representativeness errors of the different comparisons have
to be estimated. For this purpose, analysis data from the regional Consortium for Small-
scale MOdeling (COSMO) model of DWD and high-resolution ICON Large Eddy Model
(LEM) simulations are used to compute the individual components contributing to the
uncertainties due to representativeness. The systematic differences are further examined
for their dependencies, and then possible bias correction approaches that can be used for
the assimilation are tested.

The second part of this thesis investigates the impact of the Aeolus HLOS wind ob-
servations in the ICON model to address research question 3 and 4. Therefore, an
impact study based on an OSE of a three-month summer period is analyzed. The OSE
consists of two continuous assimilation cycles, with and without the assimilation of Aeolus
observations, using the operational setting of the global assimilation system of the ICON
model with a corresponding cycled ensemble run. First, a global overview of the systematic
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changes in the analysis and forecast between the two assimilation runs is provided. The
impact of Aeolus HLOS winds on the short- and medium-range forecast is examined using
a selection of conventional observations and ECMWF Reanalysis 5th Generation (ERA5)
reanalysis as verification data. In addition to the statistical impact overview, specific pe-
riods and regions of particularly pronounced impact are investigated to better understand
the underlying dynamic aspects leading to the improvements. Potential pathways for sig-
nificant forecast error reduction through the assimilation of Aeolus wind observations are
identified. The focus is on the change in phase of the large-scale tropical circulation systems
QBO and ENSO, and the midlatitudes, where spatiotemporal surveys show large forecast
error reduction following the extratropical transition (ET) of tropical cyclones and their
interaction with the midlatitude waveguide.

Structure of the thesis:

The first section of Chapter 2 summarizes the basic principles of the Aeolus observations,
including the measurement concept of DWLs, and the specific characterization of the Aeolus
instrument and HLOS wind data. Furthermore, the main changes in the Aeolus data set
during the mission that are relevant for this thesis are outlined. The second section of
Chapter 2 provides a general introduction to data assimilation methods relevant to the
DWD data assimilation system, including the Three-Dimensional Variational Assimilation
and the Ensemble Kalman Filtering technique. Subsequently, a description of the DWD
global data assimilation system and an overview of the main observation error components
in data assimilation is given. Chapter 3 introduces the data sets, the experimental set-up,
and the statistical methods for the validation of the Aeolus wind observations and for the
impact evaluation. Chapter 4 is the first part of the main results of the thesis. Systematic
and random error estimates are determined by comparing the Aeolus observations with
collocated radiosonde observations and model equivalents from the DWD ICON and the
ECMWF IFS model. Furthermore, the Aeolus observational error is evaluated, which
includes the estimation of representativeness errors. Systematic error dependencies are
then further investigated, and a simple correction approach is tested. Chapter 5 is the
second part of the main results of the thesis. It evaluates the impact of the Aeolus wind
observations in the ICON model using a three-month OSE based on the operational settings
of the DWD global assimilation system. Global statistical analyses of systematic changes
in the analysis and forecast error are provided. Furthermore, specific high-impact time
periods and regions are identified, and the dynamics behind the forecast error reduction
are discussed. Chapter 6 summarizes the main conclusions of the thesis and provides an
outlook on possible continuing research.



12 1. Introduction



Chapter 2

Basic principles

2.1 Aeolus observations

This section outlines the fundamentals of the Aeolus observations. The description of
wind lidar observations, particularly DWLs, is mainly based on Weitkamp (2005) and
Reitebuch (2012b). The specific design of the Aeolus instrument ALADIN is explained
using information from Reitebuch (2012a), Reitebuch et al. (2020) and Lux et al. (2021).
An overview of all Aeolus data products and the scientific data processing levels is provided
by the ADM-Aeolus Science Report (ESA, 2008). The algorithms developed for the wind
profile retrievals are explained in Rennie et al. (2020) and Tan et al. (2008).

2.1.1 DWL ALADIN measurement concept

Backscatter lidar observations

In lidar remote sensing, a short laser pulse is emitted at a specified wavelength, and the
signal backscattered from the atmosphere is received in a time-resolved manner. The
wide range of interaction processes of the actively emitted photons with the atmosphere’s
constituents enable detailed evaluations of atmospheric variables, such as temperature,

Figure 2.1: Schematic illustration of the principle setup of a backscatter lidar system.
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pressure, humidity, and wind, as well as the determination of trace gases, aerosol, and cloud
layers (Weitkamp, 2005). Lidar systems can be deployed from ground-based, airborne,
ship-borne, balloon-borne, or space-based platforms. Essentially, a lidar consists of a laser
transmitter and a receiving device. Fig. 2.1 shows the schematic of a basic lidar set up.
The wavelength of the laser typically ranges from 250 nm to 11 µm. On the receiving end,
first, a telescope collects the backscattered photons, and then the signal is analyzed with
an optical receiver and recorded with a detector.

The emitted laser signal interacts with air molecules, aerosols, and cloud particles
through scattering and absorption processes. The scattering takes place with different
intensities in all directions so that a small part returns backward to the lidar and can be
detected. Primarily, this is elastic scattering, meaning the wavelength remains unchanged
during the scattering process. However, a distinction is made between the scattering from
particles with sizes comparable to the wavelength of the radiation (Mie scattering) and
the scattering from particles that are very small compared to the wavelength (Rayleigh
scattering). The power of the total scattered signal P (λ, r) [W] received by the detector
of the lidar operating at a certain wavelength λ as function of distance r is described by
the lidar equation. In simplified form, the lidar equation reads (Weitkamp, 2005):

P (λ, r) = K︸︷︷︸
(1)

·G(r)︸︷︷︸
(2)

· β(λ, r)︸ ︷︷ ︸
(3)

·T 2(λ, r)︸ ︷︷ ︸
(4)

. (2.1)

The factors (1) and (2) are fully determined by the lidar instrument; the factors (3) and
(4) cover the information about the atmosphere. The constant K summarizes the signal
transmission, containing the laser pulse energy, the temporal pulse length, the speed of
light, the area of the telescope, and overall system efficiency. G(r) describes the range-
dependent terms of the measurement geometry, including a term ∝ 1

r2
as the strength of

the signal decreases with distance. β(λ, r) is the backscatter coefficient at distance r. It
determines the strength of the lidar signal by describing the probability of how much light
is scattered back towards the receiver. It can be written as the sum of the molecular and
the particulate scattering coefficient:

β(λ, r) = βmol(λ, r) + βaer(λ, r). (2.2)

The term T (λ, r) is the atmospheric transmission that takes values between 0 and 1 and
describes how much light gets lost on the way from the lidar to the target at the emitted
wavelength λ at a distance r. It contains the extinction coefficient, which is the sum of all
transmission losses that can occur because of scattering or absorption by molecules and
particles. In addition to the factors described above, the receiver detects a background sig-
nal from the sun, the moon or other light sources in the atmosphere. The error contribution
due to the background signal must be determined before further evaluations.

Principles of Doppler Wind Lidars

To measure wind speed, most lidars rely on the Doppler effect phenomenon. Suppose
particles move in the viewing direction of the laser, the wavelength of the scattered light is
shifted, and the frequency change of the received signal relative to that emitted (Doppler
shift) can be used to determine the line-of-sight wind.
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For electromagnetic waves, the frequency is linked to the wavelength via the speed of
light. If a laser with wavelength λ0 and frequency f0 =

c
λ0

emits light into the atmosphere
and the relative velocity along the LOS is v, then the frequency observed by moving
particles is:

f1 =
v + c

λ0

= f0(1 +
v

c
). (2.3)

The backscattered light that is detected by the lidar receiver is again shifted to:

f2 =
v + c

λ1

= f1(1 +
v

c
) = f0(1 +

v

c
)2 ≈ f0(1 + 2

v

c
). (2.4)

The quadratic term v2

c2
is neglected since v is much smaller than the speed of light c. The

total shift in frequency or wavelength is then:

∆f = f2 − f0 = 2f0
v

c
(2.5)

∆λ = λ2 − λ0 = −2λ0
v

c
(2.6)

If an observer moves towards the lidar, which corresponds to a positive LOS velocity,
the wavelength is shifted to smaller wavelengths, also called “blue shift”. Negative LOS
velocity leads to a shift towards larger wavelengths (“red shift”). For a LOS speed of 1 m
s−1 and c ≈ 2.998·108 m s−1 the relative Doppler shift ∆f

f0
is 6.68·10−9. To detect such small

changes in the frequency, high technical requirements in terms of measurement instrument
accuracy must be met.

The mean movement of all particles within a certain atmospheric volume, which is
defined as wind, is superimposed by individual thermal molecular motion (Brownian mo-
tion). In dilute gases, the wavelength of the laser is relatively small in comparison to the
mean free path of gas molecules in the measurement volume so that thermal agitation is
to be taken into account. This causes Doppler broadening in the backscatter return signal.
The broadening can be approximately described by a Gaussian distribution with standard
deviation:

σν =

√
kT

m
, (2.7)

where k is the Boltzmann constant, m is the particle’s mass, and T is the atmospheric tem-
perature. Because of their higher mass, the Gaussian velocity distribution is several orders
of magnitude narrower for aerosols and cloud particles than for molecules. When den-
sity is larger, in addition to agitation, the collision between molecules becomes important.
This can excite waves that scatter the laser light, known as Rayleigh-Brillouin scattering
(Gu and Ubachs, 2014, Witschas et al., 2012). Therefore, temperature and pressure affect
the Doppler shift’s broadening properties and, thus, the backscattered signal’s spectrum.
Fig. 2.2 shows the schematic of the backscatter spectrum originating from a laser emitting
pulses with λ0 = 355 nm. For atmospheric temperatures of 15◦C the Full-Width at Half
Maximum (FWHM), which typically defines the spectral bandwidth, is about 1.6 pm for
the broadband Rayleigh scattering from molecules and 21 fm, i.e., several orders of magni-
tude narrower, for aerosol and cloud particle Mie scattering. The mean wind speed of an
air volume corresponds to the parallel shift of both the Mie and the Rayleigh spectrum and
is described by the mean of the distribution directly reflected in the Doppler wavelength
shift.
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Figure 2.2: Spectrum of Mie and Rayleigh backscattered signal from a DWL with a
laser operating at 355 nm for LOS wind speed of 0 m s−1 (dotted line) and a LOS wind
speed of 180 m s−1 (solid line). The abscissa displays the corresponding shift in
wavelength on the top. σν is the standard deviation, and FWHM indicates the Full-Width
at Half Maximum of the Rayleigh spectrum. From Reitebuch (2012b).

DWL systems are usually either based on coherent or direct detection to retrieve the
LOS speed. Coherent detection lidars operate in the near-infrared (1.5-1.6, 2 and 10 µm)
and are commercially available nowadays. The return signal is mixed with the radiation
from a local oscillator, and the resulting beat signal is measured. The signal amplitude and
frequency information is determined with high accuracy and precision, requiring no addi-
tional parameters or calibration. However, due to its small-bandwidth detection principle,
coherent DWLs rely on aerosol and cloud particle backscatter and are, therefore, primarily
used for wind measurements in the atmospheric boundary layer. Compared to coherent
detection lidars, direct detection DWLs are also suitable for measurements in upper at-
mospheric levels. They are based on an optical spectral analyzer, typically a bandpass
filter or interferometer, to gain information about the Doppler shift, allowing for both the
Rayleigh and Mie spectrum analysis. A possibility to realize the filter technique is the
double-edge filter method that uses two bandpass filters symmetrically placed around the
Rayleigh spectrum with maximum transmission around the inflection points. The ratio
of transmitted signal through each filter is used to determine the Doppler shift. Calibra-
tion is needed because of the sensitivity to atmospheric temperature and pressure of the
Rayleigh backscatter signal (Rayleigh-Brillouin scattering) and its dependence on the ac-
tual filter transmissions. The two filters can be realized with a Fabry-Perot interferometer
and are used with laser wavelengths in the ultraviolet (UV) (355 nm), visible (532 nm), and
near-infrared (1064 nm). Besides the double-edge method, the single-edge filter technique
can be applied for direct-detection lidars to specify narrow bandwidth absorption lines.
However, this method is limited since only absorption lines that occur in the transmission
wavelength of the laser can be measured. In addition to the filter techniques, fringe imag-
ing is a common implementation on direct-detection wind lidars to determine the Doppler
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shift. E.g., Fabry-Perot or Fizeau interferometers are used to measure the displacement of
interference patterns which are imaged onto a detector with pixel-wise spectral channels
such as a charge-coupled device (CCD).
The first airborne direct-detection DWL was developed between 2003 and 2005 at DLR
and the European Aeronautic Defence and Space Company (EADS-Astrium) as an air-
borne prototype for the Aeolus instrument ALADIN. The so-called ALADIN Airborne
Demonstrator (A2D) is, like ALADIN, composed of complementary receiver channels us-
ing the double-edge and fringe-imaging technique. It delivered valuable information for
instrument validation and optimization of the wind retrieval and related quality-control
algorithms (Lux et al., 2020, Reitebuch et al., 2009).

Aeolus DWL ALADIN specific design

The spaceborne direct-detection DWL ALADIN onboard the Aeolus satellite operates at a
wavelength of 354.9 nm. Laser light in the UV spectral region allows for wind observations
at higher altitudes, dominated by Rayleigh scattering, which is inversely proportional to
the fourth power of wavelength. A detailed schematic of the instrument from Lux et al.
(2021) is displayed in Fig. 2.3. ALADIN consists of two fully redundant switchable laser
transmitters (FM-A and FM-B). The laser light is emitted at a frequency of 50.5 Hz via
the same primary and secondary mirror of the 1.5 m diameter Cassegrain-type telescope
that collects the backscatter signal. A beam splitter (BS) separates a small fraction of
the laser beam that is directed to the receiver to determine the frequency of the outgoing
signal and further calibrate the receiver spectrometer. This is called the internal reference
path signal (INT). The other fraction of the laser signal interacts with the atmospheric
constituents. The backscatter return enters the transmit-receive optics (TRO) and is then
superimposed on the INT. A dual channel receiver analyzes the Doppler shift to measure the
frequency from the narrowband Mie and the broadband Rayleigh backscatter separately.
Both channels use a direct-detection method. The spectrometer of the Rayleigh channel is
based on the double-edge technique realized by two Fabry-Perot interferometers. The Mie
spectrometer relies on the fringe-imaging technique using a Fizeau interferometer. Two
identical Accumulation Charge-Coupled Devices (ACCDs) with a 16 x 16-pixel imaging
zone detect the Rayleigh and Mie signals. The binned charges of the 16 rows are stored,
representing one vertical range gate for the backscatter signal. The memory zone allows
for a number of 24 range bins in total. The range bins can be varied along orbit from a
minimum vertical resolution of 250 m to 2000 m and thus adjusted to the needs of science
applications and NWP. Typically, the uppermost measurement altitude is about 17-25 km.
Horizontally, a minimum along-track resolution of 2.9 km (temporal resolution of 0.4 s) is
achieved by accumulating 20 laser pulses and referred to as one “measurement”. Further
processing of the different Aeolus products is applied on-ground.

2.1.2 Level-2B wind processing

The Aeolus level-2B (L2B) wind product contains the HLOS wind observations suitable for
use in NWP. The operational L2B processing is performed in near-real-time at ECMWF.
To control the horizontal resolution and achieve a sufficient signal-to-noise ratio, the mea-
surements are grouped according to a scene-classification procedure into a type “clear”
or “cloudy” (Rennie et al., 2020, Tan et al., 2008). Therefore, measurement-scale optical
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Figure 2.3: Schematic of the direct-detection Doppler wind lidar ALADIN. From (Lux
et al., 2021).
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properties, e.g., scattering ratio or particle extinction coefficient, are used to determine
how much particulate and molecular backscatter contributes to the signal of an accumu-
lated measurement bin. Due to the dual-channel receiver, four wind observation types are
available: Rayleigh-clear and -cloudy with a horizontal average length of about 90 km, and
Mie-clear and -cloudy, which represent a horizontal mean of 10 km (since 5 March 2019).
A key step within the L2B processing chain is the correction for temperature and pressure-
dependent Doppler broadening in the molecular backscatter signal (Rayleigh–Brillouin cor-
rection). This uses a series of auxiliary files containing information about, e.g., geolocation,
calibration, and error estimates for several variables, as well as a prior (AUX_MET) data
of atmospheric temperature and pressure from a short-range forecast (Šavli et al., 2021).
In addition, the L2B processor provides several output data, such as uncertainty estimates
or quality flags for the wind observations that are useful for data assimilation systems.

2.1.3 Overview: Satellite orbit and measurement geometry

The Aeolus satellite flies approximately 320 km above the terminator in a sun-synchronous,
nearly polar orbit. It, therefore, always crosses a given point on the Earth’s surface at
the same local mean solar time. The local equatorial crossing time is 06 and 18 UTC,
representing sunrise and sunset. The DWL onboard the Aeolus satellite is pointing 35◦

off-nadir towards the night side of the Earth. Measurements along the terminator pointing
in anti-sun direction benefit from the minimized impact of solar background radiation.
Aeolus flies at 7.7 km s−1 providing a quasi-global coverage within seven days (111 orbits)
(Fig. 2.4).

Figure 2.4: Aeolus satellite orbits after seven days. From https://www.esa.int/
Applications/Observing_the_Earth/FutureEO/Aeolus/Aeolus_satellite

The orbits are spatially separated by about 18-19◦, which corresponds to ∼2000 km in the
tropics and ∼1000 km in the midlatitudes. The LOS of the instrument is 90◦ relative to
the satellite’s flight direction to ensure that the satellite velocity does not contribute to
the measured Doppler frequency shift.

https://www.esa.int/Applications/Observing_the_Earth/FutureEO/Aeolus/Aeolus_satellite
https://www.esa.int/Applications/Observing_the_Earth/FutureEO/Aeolus/Aeolus_satellite
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Fig. 2.5 displays a sketch of the measurement geometry of Aeolus. The LOS wind
consists of a horizontal and vertical wind component (Fig. 2.5a):

vLOS = vHLOS cosα− vw sinα, (2.8)

with α being the elevation of the satellite-to-target pointing vector, vHLOS being the hori-
zontal projection of the LOS wind (HLOS), and vw being the vertical wind (Krisch et al.,
2022). Because of the curvature of the Earth, α is ∼ 52-54◦, which is a bit smaller than
expected from the sketch (Fig. 2.5).

(a) vertical

(b) ascending (c) descending

Figure 2.5: Measurement geometry of Aeolus (according to Krisch et al. (2022)): (a)
vertical along LOS plane for satellite track direction into the paper plane and horizontal
plane for (b) ascending and (c) descending orbits, respectively, for track angles of 10◦ from
the north.

For better illustration the vertical wind in Fig. 2.5a is extraordinary strong. However, typ-
ically vw is much smaller than vHLOS and thus assumed to be negligible in the formulation
for the HLOS wind within the L2B processing chain. This assumption might cause errors
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in certain conditions, such as strong convection or gravity waves, and at small horizontal
scales where horizontal and vertical velocity can be of the same order of magnitude.
The HLOS wind can be written as a linear function of the zonal u and meridional v wind
component using the azimuth angle θ, which is defined as the angle of the LOS pointing
vector of the laser projected onto the horizontal plane measured clockwise from north.

vHLOS = −u sin(θ)− v cos(θ). (2.9)

θ is provided as part of the observation geolocation information by the L2B product,
being typical ∼260◦ for ascending and ∼100◦ for descending orbits. As the DWL LOS
direction is perpendicular to the satellite–Earth relative velocity, the HLOS winds outside
the polar regions mainly correspond to the zonal wind direction. The westerly winds in
the midlatitudes and tropics are measured as positive HLOS for ascending and as negative
HLOS winds for descending orbits. At higher latitudes, the meridional wind dominates
the HLOS winds.

2.1.4 Main changes in the Aeolus L2B data set during the mission

Because Aeolus is a novel Earth Explorer mission, the processing algorithms have been
evolving a lot since launch. The multiple updates of the Payload Data Ground Segment
(PDGS) baseline cause different data quality for different time periods. Furthermore,
the instrument performance, particularly the laser FM-A performance, is not constant,
affecting the atmospheric path signal, the receive path efficiency, and the detector. A
complete, consistently processed data set with uniform processor settings was not yet
available for the evaluations of this thesis. The main changes in the L2B data from the
satellite launch to the end of September 2020 are highlighted in the timeline in Fig. 2.6.

Figure 2.6: Timeline from the Aeolus launch in August 2018 to September 2020 to
mark the main changes in the L2B data set, including periods of different processor
baselines 2B02-2B10 (color-coded).

During the Commissioning Phase (CP, from launch until the end of January 2019),
the range bin settings for Rayleigh and Mie were kept fix with a thickness of 250 m near
the surface, 1 km in the mid-troposphere and 2 km in the lower stratosphere up to a
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maximum measurement height of around 20 km. After the CP, the range bin setting was
changed to be more appropriate for NWP. In particular, the vertical sampling around the
jet stream has been increased. Further optimizations in the range bin setting in the tropics
and extratropics were applied in April 2020.

In March 2019, the maximum horizontal averaging length scale of the Mie winds has
been changed. During the CP, the horizontal resolution was the same for both Rayleigh
and Mie (∼90 km). Therefore, the number of observations was about four times more for
Rayleigh-clear than Mie-cloudy wind observations in the upper troposphere (Šavli et al.,
2019). In order to increase the signal-to-noise ratio of cloud returns, the horizontal resolu-
tion of the Mie winds has been increased to ∼10-20 km.

Already at the beginning of the mission, it turned out that several range bins are affected
by increased dark current rates (hot pixels) for specific ACCD detector pixels causing large
biases in the HLOS winds. A correction using so-called Down Under Dark Experiment
(DUDE) calibration data was implemented into the Aeolus operational processor chain
(Weiler et al., 2020) on 14 June 2019.

An important intervention was the switch from laser FM-A to FM-B end of June 2019.
The FM-A laser UV output energy decreased significantly at a rate of about 0.5-1 mJ per
week between December 2018 and May 2019. This led to the decision to use the second
laser, FM-B, which showed a better overall performance. Reasonable FM-B calibration
files have been used operationally since 2 August 2019.

The updated baseline 2B10 introduced a major improvement in the HLOS winds sys-
tematic errors. On 20 April 2020, a near-real-time (NRT) bias correction was applied in
the L2B processor. The bias correction uses linear correlations between O-B (observation-
background) statistics from ECMWF and temperatures from the telescope primary mirror
M1 to reduce biases that showed significant differences between ascending and descending
orbit phases (Weiler et al., 2021).

The Aeolus observations have been operationally assimilated at ECMWF since January
2020 and at DWD since May 2020. Later in 2020, Météo-France and the UK Meteorological
Office (Met Office) also began the operational assimilation of the Aeolus HLOS winds.

2.2 Data assimilation

The general task of data assimilation is to determine an optimal estimate for the true
state of the atmosphere xt. Data assimilation algorithms usually start from an a-priori
estimate obtained from earlier measurements and forecasts, the so-called background or
first guess forecast state xb. This background state is adjusted using observational data yo

to get a new, improved estimate, the analysis xa. To find the best compromise, the various
errors of each information source and their error covariances have to be taken into account
(e.g., observation instrument errors, representativeness errors, background forecast errors).
Each NWP model is linked to its specific data assimilation system, which must be adapted
to the specific spatial and temporal scales of atmospheric processes and the observations
available at each scale. This section first gives an overview of the theoretical background
of data assimilation methods relevant to the DWD data assimilation system. Attention is
drawn to the different elements that go into the core assimilation algorithms and to the
particular algorithms themselves, namely the Three-Dimensional Variational Assimilation
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(3D-Var) and Ensemble Kalman Filtering (EnKF/LETKF). Subsequently, the global data
assimilation system of the DWD is specifically discussed. The description is mainly based
on Hólm (2008), Kalnay (2003), Rhodin et al. (2022) and van Leeuwen (2016). Table 2.1
provides an overview of the important variables and operators that are used in this section.

Variable Description

xt true atmospheric state
xa analysis state
xa analysis ensemble mean
Xa analysis ensemble perturbation matrix
xb background state
xb background ensemble mean
Xb background ensemble perturbations
yo observation vector
yb mean background observation ensemble (ensemble space)
Yb background observation ensemble perturbations (ensemble space)
B background error covariance matrix
H nonlinear observation operator
H linear observation operator matrix
R observation error covariance matrix
K Kalman gain matrix
J cost function
M nonlinear model operator
Q forecast model error covariance
L tangent linear model matrix
I identity matrix
A analysis error covariance matrix
Pa sample estimate of analysis error covariance matrix
P̃a sample estimate of analysis error covariance matrix (ensemble space)
Pb sample estimate of background error covariance matrix
W weight matrix
w weight vector

Table 2.1: Overview of variable and operator definitions for Sec. 2.2

Forecast model state:
Given X = Rn being the model space and x ∈ X being the model’s state vector, xt ∈ X

denotes the true state of the atmosphere and xa ∈ X is the estimate of the true state
(analysis). The background state for the estimation of a new analysis (ti) defined as a
previous forecast (ti−1) is:

xb(ti) = Mi−1[x
a(ti−1)], (2.10)

where M : X → X is the nonlinear model operator.
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Observations:
Given Y = Rm being the observation space, the observations yo ∈ Y are:

yo = H(xt) + ϵo, (2.11)

where H : X → Y is the observation operator that calculates the model equivalents for the
observed quantities and ϵo describes the observation error. For in-situ point-observations,
the observation operator is comparatively easy performing bi-linear horizontal and vertical
interpolation. More complex observation operators are required for e.g. satellite radiance,
which use a radiative transfer model that calculates the outgoing radiation at the top of
the atmosphere in the observed spectral interval from the atmospheric temperature and
humidity profile as well as surface temperature.

Errors in data assimilation:
The errors in data assimilation (background ϵb, observation ϵo and analysis ϵa error) are
defined as follows:

ϵb = xb − xt, ϵo = yo −H(xt), ϵa = xa − xt. (2.12)

Because the true atmospheric state and, thus, the errors are unknown, only assumptions
about their statistical properties can be made. Usually, they are assumed to be Gaussian
distributed and free of bias:

E(ϵb) = E(ϵo) = E(ϵa) = 0, (2.13)

Furthermore, the observation and model errors are considered to be uncorrelated:

E(ϵoϵTb ) = 0. (2.14)

The respective covariance matrices are:

B = E(ϵbϵTb ) [n× n], R = E(ϵoϵTo ) [m×m], A = E(ϵaϵTa ) [n× n], (2.15)

with the variances E(ϵ2i ) = σ2
i on the diagonal.

The covariances in the observation error covariance matrix R are usually neglected
in operational data assimilation, which is a valid assumption as observation errors are
typically considered to be uncorrelated. However, if measurements are not independent
(e.g. if they are derived using the same remote sensing instrument), then R should not be
diagonal. The observation error consists of the instrument error Rinstr., the operator error
Roperator and the representativeness error Rrepr. (more details are provided in Sec. 2.2.4).

The covariances in the background error covariance matrix B are generally spatially
correlated between variables. The role of B is to ensure a physically consistent analysis
update. It depends on the atmospheric conditions, however, methods such as 3D-Var
assume this matrix to be constant over time, which is a rough assumption. The background
error covariance matrix can rarely be represented explicitly and is one of the greatest
challenges in data assimilation systems.
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2.2.1 Three-dimensional variational assimilation

Variational methods seek the best analysis estimate by iterative minimization techniques
finding the minimum of a given cost function that measures the model-to-observation misfit.
This can be performed either for basic time steps separately (3D-Var) or for the trajectories
of the system state in time (4D-Var) when the assimilation of observations within a time
window is combined into a large minimization problem. Here, we focus on the 3D-Var
algorithm.

To find the optimal analysis xa, a set of observations yo has to be compared to the
background field xb:

d = yo −H(xb). (2.16)

d is the innovation or observational departure.
Lorenc (1986) introduced the three dimensional cost function J of the state x, that has to
be minimized to find the optimal analysis xa as the distance between x and xb weighted
by the inverse of B plus the distance between x and yo weighted by the inverse of R:

J(x) =
1

2
(x− xb)TB−1(x− xb)︸ ︷︷ ︸

Jb

+
1

2
[yo −H(x)]TR−1[yo −H(x)]︸ ︷︷ ︸

Jo

. (2.17)

The minimum is attained for x = xa :

∇xJ(x
a) = 0. (2.18)

In general, the observation operator H will be a nonlinear operator. However, using Taylor
series expansion, H can be linearized around the background state xb:

yo −H(x) = yo −H[xb + (x− xb)] = [yo −H(xb)]− H(x− xb), (2.19)

with H being the Jacobian matrix containing the first-order partial derivatives hij =
∂Hi

∂xj
.

Substituting Eq. (2.19) into the cost function J(x) yields a quadratic function of the
analysis increment (x− xb) that can be minimized directly. The gradient ∂J

∂x
with respect

to the control variables x reads:

∂J

∂x
= HTR−1[H(x)− yo] + B−1(x− xb), (2.20)

Setting Eq. (2.20) to zero leads to a set of linear equations which can be solved for the
3D-Var analysis state xa:

xa = xb + (B−1 + HTR−1H)−1HTR−1(yo −Hxb), (2.21)
xa = xb + K(yo −Hxb), (2.22)

where K = (B−1 + HTR−1H)−1HTR−1. (2.23)

K is the optimal weight matrix or the so-called Kalman gain. Formally, this is the solution
of the 3D var problem. However, the multiplication of such large matrices is of high
computational cost. Therefore, in practice, an iterative minimization algorithm determines
the minimum of the cost function. At DWD, an iterative Newton method is used that
searches for the minimum of the cost function by accounting for the nonlinearities that
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cause the actual cost function to be only approximately quadratic. The Newton method
implies a linearization of the observation operator and a quadratic approximation of the
observation cost function. For the linear solution step, a preconditioned conjugate gradient
method is employed.

To complete the 3D-Var algorithm, the background error covariance matrix B must be
determined in addition to the observation error covariance R. The specification of the back-
ground error covariance matrix B determines how information from observations is spread
to nearby grid points and levels. Error cross-correlations between variables always need to
be included in B to ensure that observations of one model variable produce dynamically
consistent increments in the other model variables. On large scales in the extratropical re-
gions, e.g., the geostrophic wind balance translates into a strong correlation between wind-
and mass-field errors. In 3D-Var, B typically is estimated climatologically with additional
physical principles. At DWD, the so-called NMC method (named for the National Meteo-
rological Center, now called the National Centers for Environmental Prediction (NCEP))
is used. This method estimates the forecast or background error covariance as averaged
differences between forecasts of different lengths but verified at the same time (Parrish
and Derber, 1992). However, all background errors are assumed to be statistically sta-
tionary and not flow-dependent, which in fact, is not true in NWP. 4D-Var algorithms
that assimilate the observations at the correct time additionally allow for the evolution of
B. Therefore, they use implicitly flow-dependent structure functions within the assimila-
tion window (Thépaut et al., 1993). Nonetheless, the algorithm itself does not provide an
estimate of the background error covariance for the next assimilation cycle. Fully flow-
dependent estimates of the uncertainty of the forecast can be derived using ensemble data
assimilation methods. The principles of the EnKF algorithm that is used as one of the core
modules in the global data assimilation system at DWD are described in the following.

2.2.2 Ensemble Kalman Filter

The EnKF uses an ensemble of assimilation cycles to sample-estimate and predict the
forecast uncertainty to then find an estimate of the true atmospheric state (ensemble mean)
and its errors (ensemble spread). In general, three steps are required: In the analysis
step, the analysis is computed from the current observations and a background ensemble.
Then, the analysis ensemble is produced by resampling (resampling step) followed by the
forecast step in which the analysis ensemble members are propagated forward to obtain
a new forecast/background ensemble.

Assuming an ensemble consisting of Ne members, the forecast ensemble xb
e(ti) at time

ti is:
xb
e(ti) = Mi−1[x

a
e(ti−1)], e = 1, ..., Ne. (2.24)

The ensemble mean simply gives the most likely background state:

xb =
1

Ne

Ne∑
e=1

xb
e. (2.25)
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With the background ensemble perturbation matrix Xb = [xf
1 − Xb, ...,xf

Ne
− Xb] of di-

mension n×Ne, the background ensemble error covariance matrix can be written as:

Pb =
1

Ne − 1
Xb(Xb)T . (2.26)

The analysis must determine a state estimate xa with covariance matrix:

Pa =
1

Ne − 1
Xa(Xa)T , (2.27)

where Xa = [xa
1 − xa, ...,xa

Ne
− xa] is the analysis ensemble perturbation matrix. The

analysis mean should meet the following equation:

xa = Xb + K[yo −H(Xb)], (2.28)

with K being the ensemble Kalman Gain that uses the background ensemble error covari-
ance matrix as an approximation for the full background error covariances:

K = PbHT [R + H(Pb)THT ]−1. (2.29)

Except for Pb instead of B Eq. (2.23) and Eq. (2.29) are identical.
The first type of EnKF for atmospheric applications proposed by Evensen (1994) and
further elaborated by Burgers et al. (1998) and Houtekamer and Mitchell (1998) uses per-
turbed observation ensembles to obtain xa

i . Perturbed observations can be created by
adding noise with zero mean onto actual or model-predicted observations for each mem-
ber. Due to the additional Gaussian observation spread normalizing the ensemble update,
a stochastic filter can deal with nonlinearity to some extent. However, it introduces ad-
ditional sampling noise and is only affordable for small ensembles. The second type of
EnKF algorithms are deterministic filters, also called Ensemble Square Root Kalman Fil-
ters (EnSRF), that use an ensemble approximating the analysis error covariance matrix Pa

to generate an analysis ensemble. Deterministic EnKFs mainly vary in how the transform
matrix T is calculated in the analysis step:

Xa = XbT. (2.30)

Using Eq. (2.26), Eq. (2.27) and Eq. (2.29), the analysis error covariance matrix can be
written as:

Pa = [I − KH]Pb, (2.31)

Xa(Xa)T = Xb{I − (Xb)THT [(Ne − 1)R + HXb(Xb)THT ]−1HXb}(Xb)T , (2.32)

or by defining model observation perturbations as:

S = HXb, (2.33)

in a simpler form:

Xa(Xa)T = Xb{I − (ST [(Ne − 1)R + SST ]−1S}(Xb)T . (2.34)
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Let F be the innovation matrix:

F = [(Ne − 1)R + SST ]−1, (2.35)

the square root of
TTT = I − STFS, (2.36)

determines the analysis ensemble perturbation matrix.
A common square root filter is the Ensemble Transform Kalman Filter (ETKF) (Bishop

et al., 2001). The ETKF solves the problem computationally efficiently by transforming it
from high-dimensional model space into the low-dimensional ensemble space.
In general, the analysis update for the ETKF is written as

→ ensemble analysis mean
xa = Xb + Xbw, (2.37)

→ ensemble analysis perturbations

Xa = XbW (2.38)

, where w is the weight vector that minimizes the ETKF-cost function in the Ne-dimensional
ensemble space. Assuming a linear observation operator H, the ETKF 3D cost function
reads:

J(w) = (Ne − 1)(wTw)︸ ︷︷ ︸
Jb

+(yo − yb − Y bw)TR−1(yo − yb − Y bw)︸ ︷︷ ︸
Jo

, (2.39)

with the background observation ensemble mean yb = Hxb and perturbations Y b = HXb.
Due to the transformation, the minimization can be computed explicitly:

w = P̃a(Y b)TR−1(yo − yb), (2.40)

with
P̃a = [(Ne − 1)I + (Y b)TR−1Y b]−1. (2.41)

Re-transformation gives the analysis error covariance matrix in model space:

Pa = XbP̃a(Xb)T . (2.42)

The analysis ensemble perturbation weight matrix W is then computed via:

W = [(Ne − 1)P̃a]
1
2 . (2.43)

A specification of the ETKF is the Local Ensemble Transform Kalman Filter (LETKF)
(Hunt et al., 2007). Local means that the analysis is independently computed locally on
a reduced analysis grid for each grid point. This makes the LETKF computationally very
efficient since it is easy to parallelize.
For atmospheric applications, localization is necessary because the number of observations
m as well as the model dimension n is much larger than the degrees of freedom of the
analysis state vector in the LETKF provided by the ensemble size Ne. Therefore, all
observations within a defined area of influence that can significantly impact the analysis
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are included and weighted using a localization function such as the distance-based damping
Gaspari-Cohn function (Gaspari and Cohn, 1999). Further, localization reduces spurious
correlations due to limitations in the ensemble size.

2.2.3 Global data assimilation system at DWD

The NWP model ICON, developed by DWD and the Max Planck Institute for Meteorology
(MPI-M), has been operationally run at DWD since 2015. It is based on the non-hydrostatic
system of equations in the global domain (Zängl et al., 2015). In the current operational
version, the atmosphere is resolved by a grid of 13 km horizontal mesh size and 90 layers
in the vertical. The core module of the global data assimilation system is a Hybrid Varia-
tional Ensemble Kalman Filter(VarEnKF), which consists of a LETKF and a 3D-Var data
assimilation system. The computationally efficient 3D-Var scheme has the advantage of
a well-developed background error covariance model. However, it is static. The LETKF,
on the other hand, provides flow-dependent background error covariances, but in general,
they are tainted by sampling error. Challenges are mainly caused by localization and the
assimilation of nonlinear measured signals such as satellite radiances. The VarEnKF com-
bines the localized ensemble background error covariance matrix from the LETKF Pb

EnKF

with the static 3D-Var covariance matrix Pb
NMC used formerly in the 3D-Var:

Pb = αPb
EnKF + βPb

NMC , α+ β = 1 (2.44)

In the DWD hybrid data assimilation system, the weights are α = 0.7 and β = 0.3. This
combination consistently considers temporal background error covariances with the model
dynamics, generating a stable analysis state that incorporates more information from the
observations than the pure 3D-Var could (Rhodin et al., 2022). The LETKF is based on a
40-member ensemble with a lower resolution of 40 km and a horizontal localization radius
of 300 km. The assimilation is carried out with a 3 h cycling (00, 03, . . . , 18, 21 UTC). A
3 h short-term forecast serves as background field that is adjusted using all observations
within ± 1.5 h around the corresponding time step to generate the analysis field from
which the next forecast is initialized. In the global VarEnKF, the observation operator is
directly applied to the model forecast within the core data assimilation module.

Because measurements of atmospheric fields inevitably contain errors, the data must
pass quality checks before they are incorporated into the assimilation algorithms. A first
guess check compares the departures of the model equivalents from the observations to
respective prescribed standard deviation values. Furthermore, observation data with an
observation error that is too large are excluded. Observation thinning can be performed
to remove redundant information due to correlations of spatially and temporally dense
observation sets. In general, these kind of tests can only identify gross errors. Therefore,
VarEnKF additionally applies variational quality control (VarQC) that handles remain-
ing outliers. In data assimilation algorithms, the observation errors are assumed to be
Gaussian, which is not necessarily true. VarQC assumes more realistic probability density
functions for observation errors. At DWD, the modified Huber norm is used. The resulting
nonlinearities in the observation cost function can then be accounted for by solving with
the Newton method as described in section 2.2.1. Finally, the weight given to the obser-
vation as part of VarQC, together with the quality control steps, defines the observation
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status (e.g., accepted, active, rejected, passive).
Ideally, the combination of the background and the observations that passed the quality

checks minimizes the variance of the analysis with respect to the unknown true atmospheric
state (Rhodin et al., 2022). This requires optimal observation and background error co-
variance matrices, which, however, are not exactly known. Therefore, data assimilation
schemes use approximations of the error covariances. The optimization method in the
3D-Var scheme is based on Desroziers and Ivanov (2001) and Chapnik et al. (2004) and
relies on the assumption that the background and observation error covariance matrices B̃
and R̃, as specified in the assimilation system (Eq. (2.15)), can be brought closer to the
optimal matrices B and R by a scaling relation:

B = sbB̃, R = soR̃. (2.45)

The scaling coefficients sb and so are tuned based on an optimality criterion for the cost
function at its minimum, assuming that the correlations are accurately represented in
the initially considered error covariances. It is important to note that the tuning is not
performed during the assimilation and only offline when necessary.

2.2.4 Observation error components in data assimilation

Adequate assimilation of an observation system requires a detailed quantification of its
errors or uncertainties. As already mentioned, the observation error consists of three main
components that need to be considered:

1. Measurement or instrument error: is the error associated with the measuring
device, occurring during the measurement process.

2. Operator error: is the error introduced by the computation of the observation
operator that usually involves assumptions and approximations to pass from model to
observation space. E.g., for the assimilation of radiation observations, H(x) contains
a complete radiative transfer model whose uncertainties must be considered.

3. Representativeness error: is the error due to unresolved scales and processes.
The observed value of a meteorological variable at a single point in space and time
is represented in the model as a spatial and temporal average over a grid box. On
the other hand, observations corresponding to volume or line measurements are often
treated as single-point measurements in the model. Interpolation errors within the
observational operator also contribute to the representativeness error. Furthermore,
errors associated with imperfections in quality control or pre-processing procedures
can introduce representativeness errors (Janjic et al., 2018).

The representativeness and operator errors are often larger than the measurement errors.
However, measurement errors are relatively well understood and estimated since they can
show proportionality to the measured values (Doviak and Zrnić, 1993).



Chapter 3

Data and methodology

3.1 Data sets and methods for the Aeolus HLOS wind
validation study

The following provides a description of the data sets, their processing, and statistical
methods relevant for the validation study in Chapter 4. The validation of the Aeolus
HLOS winds is performed using three different reference data sets:

1. radiosonde wind observations,

2. ECMWF IFS model equivalents,

3. DWD ICON model equivalents.

To avoid gross outliers in the validation statistics, various thresholds for quality control of
the Aeolus HLOS wind observations are applied. Since the Rayleigh and Mie channel of
the DWL onboard the Aeolus satellite differ in their sensitivity to error sources, they are
treated separately in the evaluation. The largest errors that can occur when comparing
spatially and temporally offset observations or dealing with model equivalents are due to
representativeness. Typically, the estimation of representativeness errors is based on high-
resolution data that are ideally independent of specific weather conditions. In this thesis,
a data set of the COSMO-DE analysis as well as ICON Large Eddy Model simulation are
used.

3.1.1 Evaluation period and region

The validation study of this thesis concentrates on comparisons of Aeolus HLOS and ra-
diosonde wind observations as well as model equivalents over the time period from 10
September 2018 to 9 January 2020. This covers the Aeolus mission’s CP, various process-
ing changes to improve the data quality, and the laser switch from FM-A to FM-B (see
timeline Sec. 2.1.4). After 9 January 2020, the operational use of the HLOS winds at
ECMWF started, implying that the background is no longer independent of past Aeolus
winds.

Since the radiosonde observations from the GOS are rare in the Southern Hemisphere
and polar regions (Fig. 1.3c), the validation results are compared for the midlatitudinal
band 23.5−65◦ of the Northern Hemisphere. Additionally, model-only global statistics were
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performed to place the regional validation results in a global context. The comparisons
concentrate on pressure levels above 800 hPa to exclude stronger influences on the HLOS
winds of vertical velocity from convection and turbulence in the boundary layer and to
avoid any ground return contamination. Furthermore, levels above 80 hPa are excluded
due to the small number of collocation pairs.

3.1.2 Collocated radiosonde observations

Radiosonde observations generally provide very accurate information on the true wind
profiles. The observation errors between different radiosondes can be assumed to be un-
correlated. Given that radiosonde wind data are direct in situ measurements, the inherent
errors (e.g., instrument errors) are small compared to errors of satellite-based instruments.
That makes them well suited to serve as reference data set for the true atmospheric state
for validating the Aeolus HLOS winds.

At ECMWF, radiosonde feedback files are created from the Observational Data Base
(ODB) at the end of the IFS analysis and archived in the Meteorological Archival and
Retrieval System (MARS). The radiosonde station reports are provided in two formats:
Binary Universal Format for the Representation of meteorological data (BURR) and al-
phanumeric reports. For stations where ECMWF is assimilating BUFR data (87 % of the
radiosonde data), the balloon drift is considered by splitting data into groups of 15 min.
Radiosonde feedback files from alphanumeric reports (13 % of the radiosonde data) only
contain the time and position of the radiosonde’s launch, but not the time and position of
the individual wind observations. Insufficient coverage of the radiosonde drift during the
sounding and the ascent time can cause additional errors. Seidel et al. (2011) evaluated
characteristic values of average drift distances to be 5 km in the mid-troposphere, 20 km
in the upper troposphere, and 50 km in the lower stratosphere, tending to be larger in
midlatitudes than in the tropics. A few individual radiosondes are found to drift up to 200
km. Estimates of the ascent time of the balloon range from 5 min, when it reaches 850
hPa, up to 1.7 h at 10 hPa. For the definition of collocation criteria for the comparisons
with radiosondes, these characteristics should be taken into account.
In this thesis, all radiosonde observations that are within

➣ 120 km horizontal,

➣ 90 min temporal,

➣ 500 m vertical

distance from the Aeolus measurements are used for the validation statistics. For each
location, the radiosonde HLOS wind component is computed as a linear function of the
zonal wind component u and the meridional wind component v following Eq. (2.9). To
achieve a sufficiently large data set, statistics for one day are based on a running mean
over seven days.

3.1.3 DWD ICON and ECMWF IFS model equivalents

For a more comprehensive global assessment, the validation results of Aeolus winds with
radiosondes are supplemented by a comparison to model equivalents from the global model
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ICON of DWD and the ECMWF IFS model. Observation feedback files store the model
equivalents H(xb), together with the original observations yo and the quality flag infor-
mation in order to evaluate offline diagnostics in observation space. For the validation,
the departures of the model equivalents from the observations (O-B departures) that were
screened by the data assimilation system but did not influence the analysis are used.

The deterministic first guess forecast xb from the operational version of the ICON
model is determined from the 3D-Var system with approximately 13 km horizontal grid
spacing. Therefore, all observations within the observation window (± 1.5 h around the
analysis time) are assumed to be valid at the analysis time. The ECMWF operational data
assimilation system is based on the 4D-Var technique with a grid spacing of approximately
9 km. Therefore, in contrast to the ICON model, the observations are used at their actual
time.

To ensure comparable data sets for the radiosonde and the ECMWF and DWD model
validation of the Aeolus winds, only the nearest O-B value per radiosonde collocation is
used for the statistics for the midlatitudes on the Northern Hemisphere. A similar approach
of limited regions and limited time periods is chosen for the model-only global validation.
O-B departures statistics are calculated for regions of 10◦ latitude x 10◦ and over periods
of seven days before they are averaged for the whole globe. This way, the influence of
horizontal and temporal fluctuations of systematic errors on the random errors is reduced.

Due to the homogeneous spatial and temporal distribution of the model data in contrast
to the radiosonde observation, the O-B departures serve as a basis for further investigations
of bias dependencies.

3.1.4 Quality control criteria for the Aeolus HLOS wind observa-
tions

The Aeolus data set is the L2B HLOS wind product from the NRT PDGS processing using
baseline 2B02-2B07. The data are obtained from the observation feedback files. To ensure
meaningful validation results, various quality control criteria are applied:

➣ only observations with valid overall confidence flags are used,

➣ only the observation types Rayleigh-clear and Mie-cloudy winds are used, as they
are generally of better quality than the other two observation types (from now on
referred to as Rayleigh and Mie),

➣ Rayleigh winds with range-bin thicknesses of 250 m are rejected because of excessive
noise,

➣ Rayleigh winds with a horizontal accumulation length < 60 km and Mie winds with
horizontal accumulation length < 5 km are rejected due to a large amount of outliers
in observation departure statistics,

➣ HLOS winds geometric height has been increased by 250 m for the observations until
26 February 2019 due to an error in the star-tracker calibration affecting the LOS
pointing knowledge,

➣ Rayleigh winds with an L2B processor estimated observation error > 8 m s−1 are
excluded,
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➣ Mie winds with an L2B processor estimated observation error > 6 m s−1 are excluded,

➣ specific range-bins that are affected by hot pixels are excluded from the validation
statistic before the implementation of the correction scheme into the operational
processor chain.

(a) Rayleigh

(b) Mie

Figure 3.1: Temporal evolution of collocated observation pairs available for the
radiosonde comparison and the random differences in terms of the scaled MAD [m s-1] for
(a) Rayleigh and (b) Mie HLOS wind observations. Different colors display different
thresholds for the L2Bp estimated observation error.
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L2Bp estimated observation error threshold

The L2B processor estimated observation error is an essential measure of the quality con-
trol criteria. Applying an L2Bp estimated error threshold for Rayleigh and Mie HLOS
wind observations avoids gross outliers in the validation. For optimal use of the Aeolus
observations, the threshold should ensure that a sufficient amount of collocated data can
be used without introducing inconsistencies in data quality. A very strict L2Bp estimated
error threshold decreases the random differences but would also reduce the number of Ae-
olus observations usable for the validation statistics. Fig. 3.1 illustrates this relation for
Rayleigh and Mie, showing all collocated observation pairs available for the radiosonde
comparison for the validation period (collocation criteria are defined in Sec. 3.1.2) to-
gether with the random differences (in terms of scaled median absolute deviation (MAD),
see Sec. 3.1.6). During the CP, the influence of the L2Bp estimated error threshold is
small. However, for the time before the switch from laser FM-A to FM-B (March - July
2019), different L2Bp estimated error thresholds lead to large differences in the number
of available collocation pairs, especially for the Rayleigh observations. It turned out that
the L2Bp estimated error had a bug in the baselines 2B02-2B04. Due to large UV so-
lar background noise, it overestimated the error in daylight conditions. In particular, the
Rayleigh wind random error depends on the solar background radiation. Thus, the effect
is much stronger than for the Mie wind observations. During the summer months 2019 in
the Northern Hemisphere, the L2Bp estimated errors are all too large, meaning a quality
control with a threshold, e.g. 6 m s-1 for the Rayleigh wind observations becomes a stricter
quality control for this period. After the switch to laser FM-B towards the winter season
and with updated baselines, the differences between different L2Bp estimated error thresh-
olds become smaller. However, a too low threshold still will lead to strong deviations in
the number of comparable observations. Based on a trade-off, a threshold of 8 m s-1 for
Rayleigh and 6 m s-1 for Mie is assumed to be a reasonable choice to ensure consistent
validation statistics.

3.1.5 Representativeness errors

The knowledge of the representativeness errors is key to determining the Aeolus observa-
tional error of the Aeolus winds. The validation statistics include several representativeness
error sources:

Firstly, representativeness errors arise due to different measurement geometries of the
compared data sets. Whereby the Aeolus HLOS wind observations correspond to line
measurements, the NWP models treat the Aeolus HLOS winds as point measurements.
Radiosonde observations can also be interpreted as a point measurement.

The estimation of the representativeness error for the comparison of radiosonde and
the Aeolus data includes three further error sources:

➣ the spatial and temporal difference resulting from the collocation criteria,

➣ the spatial and temporal difference resulting from the displacement during the ra-
diosonde ascents when radiosonde data from alphanumeric reports are assimilated,

➣ the temporal offset value for the grouping time interval when accounting for balloon
drift in BUFR data.
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Data sets for the estimation of the representativeness errors

The different components of the representativeness errors are estimated using analysis data
of the COSMO limited-area model for Germany (COSMO-DE) of five seven-day periods
(February, April, June, October, and December 2016). The COSMO-DE model covers
Germany, Switzerland, Austria, and parts of other neighboring states and has a horizontal
grid spacing of 2.8 km and 50 levels in the vertical. The data are only used up to 12
km to avoid influences of large model errors and uncertainties of the simulation in the
stratosphere. To determine the effect of unresolved scales in the COSMO-DE analyses, the
results are compared to a three-day (3 to 6 June 2016) high-resolution ICON Large Eddy
Model (ICON-LEM) simulation centered over Germany with 150 m horizontal resolution
and 150 levels in the vertical. This way, an offset value is calculated, which is added to
the representativeness errors. The entire procedure for estimating the representativeness
errors is outlined in the results chapter (section 4.2.1).

3.1.6 Statistical metrics

For the Aeolus HLOS wind validation using the NWP models as reference, the systematic
observation error can be estimated as:

E(ϵHLOS) = E(yHLOS −H(xb)) + E(ϵb) ≈ E(yHLOS −H(xb)), (3.1)

with the HLOS observation operator H following Eq. (2.9). For long validation periods and
large spatial scales, the systematic model error is usually small compared to that of Aeolus
observations. Thus, the mean systematic difference between the Aeolus observations and
the background (O-B departure) can be referred to as bias:

BIAS ≈ 1

N

N∑
i=1

vHLOS
diff =

1

N

N∑
i=1

(yHLOS
i −H(xb

i)), (3.2)

where i represents the time step and N is the number of compared data points. However,
in certain conditions, such as in jet stream regions, the tropical upper troposphere, and
the stratosphere, Aeolus HLOS bias estimates based on NWP monitoring statistics should
be treated with caution.
For the Aeolus HLOS wind validation using radiosonde observations as reference, the bias
can be estimated according to:

BIAS ≈ 1

N

N∑
i=1

vHLOS
diff =

1

N

N∑
i=1

(HLOSL2B
i − HLOSRadiosonde

i ). (3.3)

To quantify the random deviations, the standard deviation

σ =

√√√√ 1

N-1

N∑
i=1

(vHLOS
diff − BIAS)2, (3.4)
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as well as the scaled MAD

scaled MAD = 1.4826 ∗ median(|vHLOS
diff − median(vHLOS

diff )|), (3.5)

is determined for the three reference data sets. The MAD is a robust measure for the vari-
ability of the Aeolus HLOS winds, being more resilient to single outliers than the standard
deviation. In the case of a normally distributed data set, the MAD value multiplied by
1.4826 (scaled MAD) is identical to the standard deviation (Ruppert and Matteson, 2015).

3.2 Data sets and methods to assess the impact of Ae-
olus HLOS wind assimilation

3.2.1 Experimental set up

Observing system experiment (OSE)

An effective way to assess the impact of an existing observation network in an NWP model
is to conduct an OSE (Bouttier and Kelly, 2001, Kelly and Thépaut, 2007). In an OSE,
two continuous assimilation cycles are performed: A control run which typically uses the
operational model and observation set, and an experimental run in which the observation
type of interest is either added or removed. Comparisons of the resulting analyses and
corresponding forecasts then serve as the basis for a systematic impact study.

In this thesis, the impact of the Aeolus L2B HLOS wind observations is assessed using
the operational version of the global model ICON at DWD (Sec. 2.2.3) at its full resolu-
tion (13 km). The control run (CTRL) is performed without the Aeolus but with all other
operationally used observation types assimilated. In the experimental run (EXP_A), the
Rayleigh and Mie HLOS wind observations are assimilated in addition to all other obser-
vation types. Both assimilation experiments were conducted with a corresponding cycled
LETKF ensemble run to provide individual background error covariance estimates for the
experiments. For EXP_A, the model background winds u and v are interpolated to the
Aeolus observation geolocation point (latitude, longitude, and height) and transformed
to the Aeolus HLOS wind equivalents using the observation operator following Eq. (2.9).
Thus, the HLOS winds are assumed as point observations with neglected vertical velocity.
This is a reasonable approach since the effective model resolution of ICON is between 80
and 100 km in the horizontal and between a few hundred meters (lower troposphere) up to
2 km (stratosphere) in the vertical, which is approximately the same size as the averaging
length scale of the Rayleigh HLOS winds. The Mie winds’ averaging box is about a factor
of 10 smaller, but no thinning is applied.

Random observation error estimates

Figs. 3.2a and 3.2b display the random error estimates of the Aeolus HLOS wind observa-
tions in the OSE as function of altitude, including the observation error provided by the
L2B processor σ(ϵO_L2B), the observation error assigned in the assimilation σ(ϵO_ass) and
the standard deviation of the O-B departures σ(O−B). The latter consists of the random
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error estimate of the Aeolus winds σ(ϵO) and the background model error σ(ϵb):

σ(O −B) ≈
√
σ(ϵO)2 + σ(ϵb)2 (3.6)

Together with the assigned observation error, the background model error determines
how closely the analysis field is drawn to the Aeolus observations compared to the back-
ground. Low assigned observation errors and large model errors allow Aeolus wind obser-
vations to have a more significant impact. The background model error shows the largest
values at around 150 hPa for the Mie wind model equivalents and around 300 hPa for the
Rayleigh wind model equivalents. The assigned observation error in the OSE is smallest in
the middle troposphere and increases towards lower and stratospheric levels. It is derived
based on the Desroziers method (Desroziers et al., 2005) and used in a table-driven format
for specific pressure levels (Fig. 3.2c). Between these levels, it is interpolated.

(a) Rayleigh (b) Mie (c) assigned observation error

Figure 3.2: Random error estimates of the Aeolus Rayleigh (a) and Mie (b) HLOS wind
observations as function of pressure [hPa] for 01 July 2020 to 30 September 2020,
including: the background model error σ(ϵb) (green), the L2B estimated observation error
σ(ϵO_L2B) (purple), the assigned observation error σ(ϵO_ass) (black), the standard
deviation of the O-B departures σ(O −B) (orange) and the random error estimate when
combining σ(ϵO_ass) and σ(ϵb) (red). Table (c) displays the values of the assigned
observation error σ(ϵO_ass) for specific pressure levels.

The assigned observation error is generally larger than the observation error estimated
by the L2B processor, which does not include the uncertainties due to representativeness.
These differences are more pronounced for Mie winds than for Rayleigh winds. However,
the increase of σ(ϵO_ass), σ(ϵO_L2B) and σ(O−B) with height agrees relatively well, indi-
cating a higher precision of Aeolus observations in the mid-troposphere compared to upper
levels. Both the Rayleigh estimated L2B error and the standard deviation of O-B depar-
tures appear to be increased at pressure levels between 300 and 400 hPa. The Rayleigh
wind random errors, among other things, depend on the atmospheric path signal and are
therefore influenced by the signal accumulation (vertical and horizontal). In summer 2020,
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the range bin setting in the tropics ±30◦ latitude (VENUS) and the range bin setting
in the extratropics > 30◦N and between -30◦ and -60◦S (BRC_518_1) was adjusted by
increasing the vertical sampling around the jet stream between 5 – 10 km. Improvements
from the optimized range bin setting are mainly expected from the higher number of Mie
observations since clouds usually generate high levels of noise at these levels. The larger
random errors in the Rayleigh winds are probably related to these smaller range bins.

For a consistency check on how well the assigned observation error represents σ(ϵO) in
the assimilation system, it is combined with the background model error as follows:

σconsistency_check =
√
σ(ϵO_ass)2 + σ(ϵb)2 (3.7)

Ideally, this corresponds to the standard deviation of the O-B departures. The profiles of
σ(O−B) and σconsistency_check match quite well for Rayleigh winds, except for small discrep-
ancies in the discussed levels with increased vertical resolution and above the tropopause,
where either the assigned observation error or the ensemble spread is too small. The Mie
winds show deviations of about 1 m s−1 indicating that slightly too low weight is assigned
to them. Usually, the Mie observations tend to be more precise compared to Rayleigh
because the backscatter signal from clouds is about an order of magnitude larger than
during clear-sky conditions, and Mie observations are not affected by Doppler broadening
due to Brownian motion. The VarQC included in the DWD assimilation system can partly
compensate for inconsistencies in the assigned observation error. It operates during the
iterative minimization as part of the solution of the variational problem and reduces the
weight of observations with large deviations compared to its statistical expectation. It is
more active for observations with low assigned errors and less active in the case of large
assigned errors. Therefore, the resulting VarQC weight of Rayleigh winds is smaller than
that of Mie winds (not shown). Overall, the data quality and monitoring statistics are
fairly constant throughout the OSE period.

Quality control settings and bias correction for the OSE

Since the quality control criteria for the validation study (Sec. 3.1.4) are found to be
reasonable, they also serve as the quality control basis for the OSE. The impact of the
Rayleigh and Mie HLOS wind observations in the ICON model is assessed for a three-
month period during the Northern Hemisphere summer, July 2020 - October 2020. The
Aeolus data of this period are processed using the baseline 2B10, including an NRT bias
correction method. During the first part of the mission, validation studies showed large
systematic differences, which vary seasonally, spatially, and with orbital phase - particularly
pronounced for the Rayleigh wind observations (Sec. 4.3). The operationally implemented
bias correction is based on a multiple linear regression method of ECMWF O-B statistics
and the thermistors of the telescope M1-mirror, eliminating most part of the bias. However,
the DWD system still shows a small residual bias that depends on altitude for the Rayleigh
wind observations.

Fig. 3.3 shows the mean departures between the HLOS wind observations (O) and the
short-range forecast model equivalent HLOS winds (B). For both orbit phases, a bias with
negative values in the troposphere and positive values around the tropopause and in the
lower stratosphere is apparent for the Rayleigh wind observations (Figs. 3.3a and 3.3b). The
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height-dependency is assumed to be related to the atmospheric background temperature
used for the Rayleigh–Brillouin correction (Šavli et al., 2021). However, the investigations
of this effect are still in progress. In total, the magnitude of the mean O-B departure is
small (< ±1 m s−1), but to further optimize the assimilation of the Aeolus HLOS winds in
the ICON model, an additional model-based bias correction is implemented for the OSE.
The bias correction uses the approach outlined in Sec. 4.3.1 and is a function of latitude
conducted for specific height levels: surface-850 hPa, 850-500 hPa, 500-200 hPa, 200-70
hPa, 70-5 hPa. It is based on the previous seven days and applied to the HLOS winds
separately for ascending and descending orbits.

(a) Rayleigh ascending (b) Rayleigh descending (c) Mie

Figure 3.3: Mean O-B departures (bias) as function of pressure [hPa] of the Aeolus
HLOS Rayleigh ascending (a) and descending (b) winds for 01 July 2020 to 30 September
2020 - without bias correction (orange dashed line) and with bias correction (green solid
line) - and for the Aeolus HLOS Mie winds (c) separately for ascending (cyan) and
descending (blue).

For levels below 500 and above 200 hPa, this bias correction reduces the differences
between Aeolus winds and NWP model background winds to almost zero, thus eliminating
the height dependency of the bias. On average, the residual absolute systematic deviations
are about 0.2 m s−1, i.e., half as large as without the model-based bias correction. The Mie
bias is not as much related to the atmospheric background temperature and thus does not
show a height dependency. After the M1-mirror-temperature-dependent bias correction,
the additional model-based bias correction does not improve the Mie HLOS winds further.
Whereas the Aeolus Rayleigh wind bias does not differ significantly between ascending and
descending orbits, the Aeolus Mie bias (Fig. 3.3c) exhibits a dependence on the orbit phase.
A similar pattern can be seen in the weekly monitoring routine at ECMWF, suggesting
that these systematic errors are Aeolus and not model biases. According to Marseille et al.
(2022), the systematic Mie errors are due to imperfections of the data in the absolute
instrument calibration tables, which serve as input for the on-ground wind processing
algorithms. An updated calibration table for the Mie channel based on NWP model winds
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that reduces the bias and is part of the operational processing chain since 01 July 2021.
However, the processor baseline of the OSE period is an older version. The magnitude of
the absolute bias of the assimilated Mie winds is about 0.2 m s−1 for ascending and 0.3 m
s−1 for descending orbits, thus, comparable to the Rayleigh wind bias.

3.2.2 Verification data and methods

For assessing the systematic impact of the Aeolus HLOS wind observations, analysis fields
and the forecast errors of the CTRL and EXP_A experiment are compared. In general,
forecast errors are defined as the differences between the forecast provided by an NWP
model and the true atmospheric state. Typically, either NWP analyses at the time the
forecast is valid or a statistically significant sample of observational data of other observa-
tion types is used to represent a reliable proxy for the ”truth”. However, it should be noted
that these proxies contain their own errors depending on the choice of the verification data.
For example, the error of short-range forecasts is likely correlated with that of the analysis
leading to potential systematic errors in such a verification, especially if the same modeling
system is used (Geer et al., 2010).

In this thesis, short-term forecasts up to 36 h are verified against measurements from
a selection of other observation types (radiosondes, aircraft, GPSROs, and AMVs). These
observations are, to a large extent, independent of the evaluated forecasts.

For the verification of longer forecast lead times, ERA5 reanalysis data are used as
analyses. The ERA5 output is produced using the 4D-Var data assimilation of the ECMWF
IFS at a horizontal resolution of 31 km and with 137 vertical model levels up to the height
of 80 km (from 1000 hPa to 1 hPa, with 40 levels below 5 km) (Hersbach et al., 2020). As
ERA5 reanalyses are based on a different model with different resolution compared to the
OSE, they provide a relatively independent data source. The higher vertical resolution of
ERA5 allows finer details of atmospheric phenomena to be resolved, such as a more realistic
representation of atmospheric waves and their interaction with the mean flow, which is
especially crucial for the study of QBO in Sec. 5.2.1. Furthermore, ERA5 assimilates a
partly different set of observations than the global data assimilation system in the ICON
model (e.g., more satellite radiances) and does not use the Aeolus observations. It is well
known that NWP models in the stratosphere are typically subject to large uncertainties.
ERA5 was found to have a cold bias in the lower stratosphere and a warm bias near the
stratopause (Hersbach et al., 2020). However, the increased number of assimilated GPSRO
bending angles in ERA5 since 2006 has significantly reduced this model bias, increasing
confidence in using the stratospheric reanalyses for verification (Laloyaux et al., 2020a).

The forecast error of an experiment X is calculated as:

eXi = forecastXi − analysisYi . (3.8)

For this study, X is either the CTRL or the EXP_A run, Y is the verification data
(observation or ERA5 reanalysis data), and i represents the time step when the forecast and
analysis are valid, respectively. The root-mean-squared error (RMSE) of the experiment
X determines how strongly the forecast deviates from the verification data:

RMSE(eX) =

√
(eXi )

2 . (3.9)
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Depending on the requested dependency, the mean (denoted by the overbar in Eq. (3.9))
is either calculated over time, pressure level, latitude or longitude, or over several dimen-
sions. Improvement or degradation of the forecast quality through the assimilation of
Aeolus observations can then be assessed by the differences between RMSE(eEXP_A) and
RMSE(eCTRL). Because the RMSE depends on the magnitude of forecasts and observa-
tions, all results are additionally verified by calculating the normalized RMSE differences:

ediff =
RMSE(eEXP_A)−RMSE(eCTRL)

RMSE(eCTRL)
. (3.10)



Chapter 4

Results: Validation of Aeolus HLOS
wind observations

A crucial prerequisite for using meteorological observations in NWP data assimilation
systems is a comprehensive knowledge of their errors. Typically, the performance of a me-
teorological data set is characterized by comparisons with high-quality and well-established
measurements from other observation systems. Radiosonde observations generally provide
very accurate information on the true wind profiles with small errors (e.g., instrument
errors) compared to satellite-based instruments. However, radiosondes are predominantly
concentrated over Northern Hemisphere continents. Therefore, the validation study of the
Aeolus HLOS wind observations presented in this chapter additionally includes compar-
isons with model equivalents from the DWD global model ICON and the ECMWF IFS
system. Using a similar approach to calculate the systematic and random differences of the
observation and model-based comparisons (Sec. 3.1.3), it is possible to produce compara-
ble regional and global validation statistics. Since the DWL onboard the Aeolus satellite
measures both molecular (Rayleigh) and particulate (Mie) backscatter, and these differ in
their sensitivity to systematic and random sources of error, the validation is performed sep-
arately for Rayleigh and Mie. Furthermore, differences were found depending on whether
the satellite is in the ascending (instrument pointing eastward) or descending (instrument
pointing westward) phase of its polar orbit; therefore, the statistics are split accordingly.
In particular, four main topics are covered in this chapter:

➣ the temporal evolution of the systematic and random differences,

➣ the determination of the Aeolus observational error, including the estimation of the
representativeness errors of the validation

➣ the investigation of bias dependencies,

➣ an approach to correct for the bias.

4.1 Temporal evolution of systematic and random dif-
ferences

Fig. 4.1 and Fig. 4.2 display the temporal evolution of the Aeolus HLOS wind systematic
and random differences when using radiosonde observations and model equivalents from
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the ECMWF IFS and the DWD ICON model around the collocated radiosonde locations as
reference data sets. An overview of the mean absolute systematic differences and the mean
scaled MAD values over the whole validation period is provided by Table 4.1. In addition
to the validation around the radiosonde collocation pairs on the Northern Hemisphere
midlatitudes, the results of the model-only validation on a global scale are listed.

Assessing the temporal evolution of the systematic differences, it is apparent that the
quality of the Aeolus observations varies a lot over time. To some extent, this is caused
by six different processor baselines and several updates of the calibration files during the
selected time period, which makes the data partly inconsistent and incompatible. Right
after the Aeolus launch, the Rayleigh wind observations of the ascending phase exhibit neg-
ative systematic differences, whereas the systematic differences of the descending phase are
positive. With time, the systematic differences increase for both orbit phases. Comparing
Rayleigh and Mie, the temporal evolution is relatively similar until the laser switch in June
2019. In January 2019, the satellite’s GPS unit experienced a restart anomaly that caused
the ALADIN instrument to be in stand-by mode for about one month (grey shaded area).
After the stand-by period, the systematic differences reach their maxima. For the Rayleigh
wind observations of the ascending orbit phase, the maximum is at the end of February
2019, with values up to 4 m s−1. The Rayleigh descending and the Mie wind observations
reach the maximum systematic differences later, around April 2019. Related to an update
of the processor setting file end of May, the systematic differences show a sharp decline
for both channels and orbit phases. For the Rayleigh wind observations, the decrease is
about 4 to 5 m s−1, resulting in negative values, while the Mie wind systematic differences
fluctuate around zero. Overall, the Mie wind observations show stronger fluctuations in
the systematic differences than Rayleigh for the first part of the validation period. This
is probably linked to the sparser coverage of the Mie winds and the higher variability and
larger model error when clouds are present. After the switch to the second laser FM-B,
which caused a second longer period without data, the validation study continues when
the new calibration files were implemented. After the laser switch, the strong fluctuations
in the systematic differences of the Mie wind observations are reduced. They show quite
constant and very small values for late summer and autumn. In contrast, the systematic
differences of the Rayleigh wind observations are still relatively large in these months.
Furthermore, they differ between the two orbit phases. The Rayleigh wind observation of
the descending orbital phase exhibit positive systematic differences between 2 and 3 m s−1

in August 2019, tending to negative during the respective processor baseline period. The
systematic differences of the ascending orbit vary between -3 and 0 m s−1. Towards the end
of 2019, when the systematic differences of the Rayleigh wind observations are negative for
both orbit phases, a sharp increase occurs in mid-December. This is caused by a manual
L2B processor bias correction of +4 m s−1 in the Rayleigh wind product to compensate
for a global average bias drift.
The three different reference data sets agree very well in estimating the bias, raising confi-
dence that the results are not determined by model biases. The small discrepancies in the
validation of the Mie wind observations are likely due to uncertainties and differences in
NWP models in cloudy regions. In total, the mean absolute systematic differences of the
validation against radiosonde observations and DWD model equivalents are quite close,
whereas the systematic differences when comparing the HLOS wind observations to IFS
model equivalents are slightly smaller. This is probably due to different assimilated observa-
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(a) Rayleigh ascending

(b) Rayleigh descending

Figure 4.1: Temporal evolution of the bias estimate, and scaled MAD of Rayleigh (a)
ascending and (b) descending HLOS winds for the Northern Hemisphere (23.5− 65◦N),
using collocated radiosonde observations (purple) and model equivalent statistics (O-B)
around the collocation points of the ECMWF IFS model (orange) and the ICON model of
DWD (green). The background colors indicate the different processor baselines.
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(a) Mie ascending

(b) Mie descending

Figure 4.2: Same as Fig. 4.1, but for Mie wind observations.
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tion data sets at ECMWF and DWD. At the ECMWF, the number of assimilated satellite
observations, which typically strongly influence the background state, is higher than at
the DWD. Consequently, radiosonde observations potentially have a higher weighting in
the DWD’s assimilation system than at the ECMWF. The globally derived mean absolute
systematic differences of the Rayleigh wind observations, which are based on O-B statis-
tic of limited areas (10◦ latitude x 10◦ longitude) and periods (seven days), are slightly
smaller compared to the model validation results of the restricted areas on the Northern
Hemisphere. However, for the Mie wind observations, the global statistic shows mainly
larger values.
Besides the observed temporal changes in the quality of the Aeolus Rayleigh and Mie wind
observations, the discrepancies between the ascending and descending orbit phase, mainly
for the Rayleigh channel, are a challenging issue for using these data in NWP models.
Thus, to reduce the Aeolus HLOS wind bias of -3 up to 5 m s−1, a bias correction scheme
is required that considers both seasonal and orbit phase variations.

Rayleigh ascending Rayleigh descending

systematic diff. 1.4826*MAD systematic diff. 1.4826*MAD

Radiosondes NH 1.70 5.20 1.95 5.05
ECMWF NH 1.65 4.59 1.77 4.43
DWD NH 1.69 4.82 1.89 4.64

ECMWF global 1.47 4.51 1.73 4.41
DWD global 1.48 4.77 1.76 4.69

Mie ascending Mie descending

systematic diff. 1.4826*MAD systematic diff. 1.4826*MAD

Radiosondes NH 1.45 4.08 1.85 4.13
ECMWF NH 1.36 3.17 1.46 3.34
DWD NH 1.48 3.40 2.06 3.72

ECMWF global 1.66 2.89 1.78 2.90
DWD global 1.67 3.00 2.21 3.07

Table 4.1: Overview of the Aeolus HLOS wind mean absolute systematic differences [m
s−1] and the mean scaled MAD values [m s−1] as estimates for the mean absolute bias and
random error. The values are averaged from 10 September 2018 to 09 January 2020 over
the Northern Hemisphere (23.5− 65◦N), restricted to the radiosonde collocation areas (3
top-most rows). In addition, the bottom rows show the values for a global model-only
statistic.

The random differences of the Rayleigh wind observations calculated based on model
O-B statistics vary between 3 and 6 m s−1 within the considered validation period. For the
comparison with radiosonde observations, the random differences are larger, ranging from 4
up to 7 m s−1. This can be explained by the larger representativeness errors associated with
radiosondes. Besides the higher spatial resolution of a radiosonde observation compared
to the resolution of a global NWP model, representativeness errors arise from the chosen
collocation criteria and the spatial and temporal displacement during the radiosonde as-
cents (Sec. 3.1.5). These error sources are considered in the estimation of the Aeolus wind
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observational error in the following Sec. 4.2. Comparing the two NWP models, the mean
scaled MAD calculated with the ECMWF model is, on average, about 0.25 m s−1 smaller
than when using O-B statistics of the DWD global model. Likely, this is the result of
neglecting the temporal evolution within the assimilation window in the DWD system. On
a global scale, the mean scaled MAD values are slightly smaller than the model validation
results of the restricted areas in the Northern Hemisphere.
For the wind observations of both channels, an increase in the scaled MAD occurs from
the Aeolus launch until the laser switch in summer 2019. Overall, the random differences
for the Rayleigh are larger than for the Mie wind observations because the return signal
from clouds is typically stronger and further not affected by Doppler broadening. Also,
the increase during the laser FM-A period is much stronger for the Rayleigh wind obser-
vations. Mainly, the larger random differences are associated with the energy decrease of
the FM-A laser over time. However, the Rayleigh HLOS wind random error also depends
on other factors influencing the atmospheric path signal. Besides the output laser pulse
energy, the solar background noise can impact the data quality. Probably, this is another
contribution to the strong increase in random differences during the early Northern Hemi-
sphere summer. The laser switch and new improved calibration files led to a successful
reduction of 1-1.8 m s−1 in the random differences of the Rayleigh wind observations. The
Mie return signal primarily depends on the presence of aerosols or hydrometeors and not
on the laser energy. Therefore, the random differences are almost unchanged after the laser
switch. Since mid-October 2019, the random differences again show a slight increase for
both channels. Nevertheless, the increase is much smaller compared to the period before
the laser FM-B phase.

4.2 Aeolus HLOS wind validation error estimates

The total variance of the difference between radiosonde observations and Aeolus HLOS
winds σ(ϵval_RS), represented by the squared scaled MAD, is generally the sum of the
variance resulting from the Aeolus wind observational error σ(ϵo_A), the variance resulting
from the radiosondes wind observational error σ(ϵo_RS), and the variance caused by the
representativeness error σ(ϵr_RS). Therefore, the Aeolus wind observational error from the
radiosonde validation can be estimated using the following formula:

σ(ϵo_A) =
√
σ(ϵval_RS)2 − σ(ϵo_RS)2 − σ(ϵr_RS)2 (4.1)

For the comparison with model equivalents, the model representativeness error σ(ϵr_ECMWF )

and σ(ϵr_DWD) are used and σ(ϵo_RS)
2 is replaced by the model errors σ(ϵb_ECMWF ) and

σ(ϵb_DWD):

σ(ϵo_A) =
√
σ(ϵval_ECMWF )2 − σ(ϵb_ECMWF )2 − σ(ϵr_ECMWF )2 (4.2a)

σ(ϵo_A) =
√
σ(ϵval_DWD)2 − σ(ϵb_DWD)2 − σ(ϵr_DWD)2 (4.2b)
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4.2.1 Representativeness error

To achieve an estimate of the representativeness error, COSMO-DE analyses of different
seasons of the year 2016 are used. The model representativeness error is calculated by
comparing the point-like measurement geometry of the HLOS wind model equivalents
with the measurement geometry of the Aeolus observations. An Aeolus observation can be
regarded as the average value of a 90 km line for the Rayleigh winds and Mie winds till
5 March 2019, and as the average value of a 10 km line for the Mie winds after 5 March
2019. As the Aeolus HLOS winds mainly correspond to the zonal wind component, only
the differences in u between a single point and a horizontal line average are determined.
The calculation is performed for the whole COSMO-DE model domain, and the values
are averaged over the height levels corresponding to the Aeolus range bin setting weighted
by the mean number of Aeolus wind measurements of the Rayleigh and the Mie channel
(Fig. 4.3a). The resulting representativeness error for the IFS and ICON model is 0.50
m s−1 for the Rayleigh wind observations, 0.52 m s−1 for the Mie wind observations with
90 km horizontal resolution, and 0.12 m s−1 for the Mie wind observations with 10 km
horizontal resolution.

As radiosonde observations can also be regarded as point measurements, the same
approach is used to assess the contribution of different measurement geometries to the
radiosonde representativeness error. However, an additional error source is caused by the
spatial and temporal displacement of radiosondes. Therefore, it is necessary to distinguish
between radiosondes for which the actual position at every height level is available (87 %)
and those reports that only provide the launch position and time (13 %).
For both cases, the temporal and the spatial part of the representativeness error, resulting
from the collocation criteria, has to be considered. The error due to the spatial displace-
ment is assessed by determining the differences between a point and a line measurement
as the weighted mean over distances up to 120 km in east-west and north-south direc-
tion. Then, the weighted average over altitude is calculated accordingly to the model
representativeness error. To account for the temporal displacement, a time offset value
is estimated by assessing the representativeness error of the appropriate spatial displace-
ment. The mean wind velocity over the validation period (16.19 m s−1) and the temporal
collocation criteria of 90 min results in a spatial displacement of 82 km, which corresponds
to a representativeness error of 1.32 m s−1 for both channels with 90 km horizontal res-
olution and 1.46 m s−1 for the Mie winds with 10 km horizontal resolution. For the 13
% of the radiosonde data without the drift information, additionally, an error component
due to the spatial displacement up to 50 km and an error component due to the temporal
displacement during the radiosonde ascents of up to 90 min has to be considered. For the
87 % of the radiosondes with the drift information, a temporal offset value for the 15 min
time interval into which the data are grouped must be taken into account. Those parts
of the representativeness error are calculated accordingly to the parts resulting from the
collocation criteria using the COSMO-DE analyses. To determine the overall contribution,
the variances of the three different error components are summed up:

σ(ϵr_RS) =

√
σ(ϵcolloc.r )2 + 0.13 · σ(ϵdriftr )2 + 0.87 · σ(ϵBUFR

r )2, (4.3)
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with:

σ(ϵcolloc.r ) = σ(∆x = 120km) + σ(∆t = 90min ≈ 82km),

σ(ϵdriftr ) = σ(∆x = 50km) + σ(∆t = 90min ≈ 82km),

σ(ϵBUFr
r ) = σ(∆t = 15min ≈ 14km)

As a last step, the effect of unresolved scales in the COSMO-DE analyses is assessed using
the high-resolution ICON-LEM simulation. Fig. 4.3a displays the differences between a
point and a line measurement averaged and weighted over distances up to 200 km as a
function of altitude for the ICON-LEM and COSMO-DE data of the same date. The
COSMO-DE model underestimates the representativeness error compared to the ICON-
LEM simulation. On average, the offset value between the two models is 0.20 m s−1. This
offset value is added to the sum of the variances of the different error components, resulting
in a representativeness error of 2.48 m s−1 for the Rayleigh winds, 2.49 m s−1 for the Mie
winds with 90 km horizontal resolution and 2.66 m s−1 for the Mie winds with 10 km
horizontal resolution. Fig. 4.3b additionally shows the representativeness error caused by
the different measurement geometries as function of distance for specific altitude ranges. As
expected, the representativeness error and the differences between COSMO-DE and ICON-
LEM increase significantly with distance. It is largest around the tropopause, where wind
gradients are typically strongest and smallest in the mid-troposphere. Fig. 4.3b underlines
the importance of considering the representativeness errors in the Aeolus Cal/Val activities
when comparing the HLOS winds with other spatially and temporally offset observations.

4.2.2 Model error and radiosonde wind observational error

The IFS and ICON model errors are derived from the ensemble data assimilation first
guess error stored in the feedback files. It provides an appropriate measure for spatial and
temporal variation of the background error. It should be noted that values taken for the
IFS model errors are only valid at the start of the 4D-Var window as they increase during
the 12-hr window. The model error estimates are determined for the latitudinal band
between 23.5 and 65◦N (Table 4.2) and globally (Table 4.3). NWP models, in general,
tend to exhibit higher uncertainty in cloudy than in clear sky areas; thus, the model error
is larger for Mie than for Rayleigh wind observations. For both observation channels, the
ICON model error is on average more than 1 m s−1 larger than the IFS model error.
Possible reasons for this could be differences in model properties, such as model resolution
and typical uncertainties in NWP models, e.g., errors in the stratospheric circulations or in
the distribution of clouds in the upper troposphere (Giorgetta et al., 2018, Laloyaux et al.,
2020b). However, this issue is not within the scope of the thesis.

The radiosonde observational error σRS is assumed to be 0.7 m s−1. The value is
chosen based on the estimated measurement uncertainty of the GCOS Reference Upper-Air
Network (GRUAN) for the wind speed, which was determined to be 0.4-1 m s−1 (Dirksen
et al., 2014).
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(a) ICON-LEM vs. COSMO altitude

(b) ICON-LEM vs. COSMO distance

Figure 4.3: (a) Representativeness error estimated with differences between a point and
a 90 km line measurement (weighted mean over distances up to 200 km) as function of
altitude for an ICON-LEM simulation (black dotted line) and COSMO-DE analyses (black
dashed line), shown together with the proportion of observations of the Rayleigh
(turquoise) and Mie (red) wind observations; (b) Representativeness error estimated with
differences between a point and a 90 km line measurement as function of distances for an
ICON-LEM simulation (dotted lines) and COSMO-DE analyses (dashed lines) for different
height levels (different colors).
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4.2.3 Aeolus wind observational error

Finally, using the validation results from Sec 4.1 together with the estimated representa-
tiveness and model or observation error components, the Aeolus instrument error σ(ϵo_A)

is determined. Table 4.2 shows the values of σ(ϵo_A) for the validation with radiosonde
observations and model equivalents for the latitudinal band between 23.5 and 65◦N for the
Rayleigh and Mie channel, separated for the ascending and descending orbit phase. Table
4.3 additionally displays the results of the global model-only statistic.

Rayleigh Mie (90 km) Mie (10 km)

ascending descending ascending descending ascending descending

σ(ϵr_RS) 2.48 2.48 2.49 2.49 2.66 2.66
σ(ϵo_RS) 0.70 0.70 0.70 0.70 0.70 0.70
σ(ϵval_RS) 5.20 5.05 3.61 3.62 4.33 4.38
σ(ϵo_A) 4.52 4.34 2.52 2.55 3.34 3.41

σ(ϵr_ECMWF ) 0.50 0.50 0.52 0.52 0.12 0.12
σ(ϵb_ECMWF ) 0.80 0.81 1.02 1.05 1.15 1.11
σ(ϵval_ECMWF ) 4.59 4.43 2.49 2.79 3.52 3.63
σ(ϵo_A) 4.49 4.33 2.21 2.53 3.32 3.45

σ(ϵr_DWD) 0.50 0.50 0.52 0.52 0.12 0.12
σ(ϵb_DWD) 2.40 2.96 2.37 2.41 2.65 2.56
σ(ϵval_DWD) 4.82 4.64 2.98 3.21 3.72 3.98
σ(ϵo_A) 4.15 3.54 1.73 2.06 2.46 3.05

Table 4.2: Overview of the estimated Aeolus wind observational errors σ(ϵo_A) and the
single components of the calculation: representativeness errors (σ(ϵr_RS), σ(ϵr_ECMWF ),
σ(ϵr_DWD)), radiosonde observational error (σ(ϵo_RS)), ECMWF and DWD model errors
(σ(ϵb_ECMWF ), σ(ϵb_DWD)) and random differences from the validation (σ(ϵval_RS),
σ(ϵval_ECMWF ), σ(ϵval_DWD)) [m s−1] for the Rayleigh and Mie winds for the ascending
and descending orbital pass for the northern hemisphere (23.5− 65◦N), restricted to the
radiosonde collocations.

Rayleigh Mie (90 km) Mie (10 km)

ascending descending ascending descending ascending descending

σ(ϵr_ECMWF ) 0.50 0.50 0.52 0.52 0.12 0.12
σ(ϵb_ECMWF ) 0.91 0.91 1.20 1.18 1.30 1.28
σ(ϵval_ECMWF ) 4.51 4.41 2.20 2.24 3.23 3.24
σ(ϵo_A) 4.39 4.29 1.77 1.83 2.95 2.97

σ(ϵr_DWD) 0.50 0.50 0.52 0.52 0.12 0.12
σ(ϵb_DWD) 2.34 2.37 2.44 2.39 2.65 2.56
σ(ϵval_DWD) 4.77 4.69 2.65 2.73 3.18 3.24
σ(ϵo_A) 4.13 4.02 0.89 1.21 1.75 1.98

Table 4.3: Same as Table 4.2, but for the global model-only statistics

Overall, the Aeolus wind observational error estimates are fairly close when comparing
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the IFS and radiosonde validation results. However, due to the differences in the model
error in the DWD and ECMWF assimilation system, the Aeolus wind observational error
estimates based on the DWD model equivalents are about 0.5 m s−1 smaller. Furthermore,
discrepancies between the three validation results might be caused by uncertainties in the
estimation of the representativeness errors, which are based on averaged values of analyses
only covering the area around Germany at certain time periods. When only considering the
comparisons with IFS model equivalents and radiosonde observations, the Rayleigh wind
observation error estimate is between 4.3 m and 4.5 m s−1. The Mie wind observation
error estimates are about 2.5 m s−1 for the observations with 90 km and about 3.4 m s−1

for the observations with 10 km horizontal resolution. For both channels, σ(ϵo_A) shows
good agreement between the ascending and descending orbit phases. Overall, the Aeolus
wind observational error of the Mie observations ascending orbit is slightly larger than that
of the descending orbit phase, and vice versa for the Rayleigh observations. Comparing
the globally derived Aeolus wind observational errors with the results of the validation
statistics of the Northern Hemisphere, smaller values occur for both the Rayleigh and the
Mie wind observational errors. It must be taken into account that the representativeness
errors considered for the global statistics are the same as for the validation of the Northern
Hemisphere, thus based on an area covering only Germany and its neighborhood.

Fig. 4.4 displays the height dependency of σ(ϵo_A) for Rayleigh and Mie wind observa-
tions. The large differences between the validation results using the ICON model and the
validation results using radiosonde observations or the IFS model are mainly concentrated
on pressure levels above 500 hPa. There, the Aeolus wind observational error estimates
based on the ICON model decrease towards the tropopause, whereas the other two esti-
mates increase. Around and above the tropopause, the three independent σ(ϵo_A) estimates
of the Rayleigh wind observations show a similar behavior again. The discrepancies in the
Mie wind observational error estimate are overall larger, which underlines the assumption
that uncertainties in the representation of clouds in the NWP models cause them.
Altogether, Fig. 4.4 shows that for using the Aeolus observations in data assimilation, the
observational error assigned in the assimilation system should increase towards the upper
troposphere and lower stratosphere for both Rayleigh and Mie. Aeolus observations there
should be weighted less because of the overall larger Aeolus observational error but also
because of the discrepancies due to model and representativeness errors.

4.2.4 Comparison and classification of the validation error esti-
mates

The results for the radiosonde and the model-based validation around the small selected
regions around radiosonde collocation points are found to be slightly larger compared to
the Aeolus observational error estimates of Witschas et al. (2020) and Iwai et al. (2021).
Witschas et al. (2020) compared the Aeolus wind observations with a 2-µm DWL during the
validation campaigns WindVal III and AVATAR-E (Aeolus Validation Through Airborne
Lidars in Europe) over Europe in late autumn 2018 and early summer 2019. By excluding
the 2-µm DWL observation error, an Aeolus observational error of 3.9-4.3 m s−1 (2.0 m s−1)
for the Rayleigh (Mie) wind observations was determined (Witschas et al., 2020). Iwai et al.
(2021) compared the Aeolus wind observations with GPS radiosondes over Japan during
baseline 2B02 and 2B10 periods. By taking the radiosonde representativeness error from
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Figure 4.4: The Aeolus wind observational error σ(ϵo_A) as function of altitude [hPa]
for the Rayleigh and Mie observations, separately for ascending and descending orbit
phase, estimated for the Northern Hemisphere (23.5− 65◦N), using collocated radiosonde
observations (purple) and model equivalent statistics (O-B) around the collocation points
of the ECMWF IFS model (orange) and the ICON model of DWD (green).

this study into account, they estimated the Aeolus observational error to be 3 -4 m s−1

(2-3 m s−1) for the Rayleigh (Mie) wind observations. The differences can be caused by a
variety of factors, including different lengths of validation periods and, therefore, different
sample sizes. Furthermore, Iwai et al. (2021) used the representativeness error estimate
based on the COSMO-DE model area for their study over Japan which may bias the
results. Other validation studies covering the period considered here have not considered
representativeness or observational error components. Lux et al. (2020) found a random
error estimate of 5.9 m s−1 for the Rayleigh wind observations during the WindVal III
for comparisons with the A2D; Baars et al. (2020) used radiosonde during the Polarstern
research vessel cruise from Bremerhaven to Cape town in November/December 2018 to
determine the random error of the Rayleigh (Mie )wind observation being 4.8 m s−1 (1.6
m s−1); and Bedka et al. (2021) analyzed research flights over the Eastern Pacific Ocean
in April 2019 with a heterodyne detection DWL and a water vapor lidar onboard which
revealed a random error estimate of 5.1 m s−1 (4.7 m s−1) for the Rayleigh (Mie) wind
observations. These results are in the range of the random differences displayed in Sec. 4.1,
suggesting that uncertainties in the determination of the contributing error components
primarily cause differences in estimations of the Aeolus observational error. Rennie and
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Isaksen (2020) estimated the Aeolus observational error using the ECMWF model on a
global base by subtracting a background u wind error of 1.6 m s−1, resulting in a σ(ϵo_A)

of 4-5 m s−1 (3 m s−1) for the Rayleigh (Mie). The global statistics in this study are based
on a region-constrained and short-period approach, particularly to avoid the random error
estimates being affected by horizontal and temporal variations in bias. This probably
results in the slightly smaller values of the globally derived Aeolus wind observational
error. However, given that the representativeness and the model error estimates exhibit
several uncertainties and the subtracted bias varies a lot, the discrepancies are within the
range of the uncertainty of the estimates.

4.3 Rayleigh wind observation bias dependencies and
correction approaches

According to ESA (2016), the accuracy of the Aeolus HLOS wind observations on a global
scale is required to be 0.7 m s−1 to ensure a positive impact in NWP. However, the sys-
tematic differences found in Sec. 4.1 are much larger and fluctuate strongly with time. In
particular, the estimates of Rayleigh wind observations show discrepancies between orbital
phases in addition to temporal variations. To better understand Rayleigh bias and find
a suitable bias correction scheme for data assimilation application, bias dependencies for
different time periods are investigated on a global scale.

4.3.1 Rayleigh wind bias dependence on latitude and orbit phase

Fig. 4.5 displays the Rayleigh wind bias as a function of latitude, separately for the ascend-
ing and descending orbit phases. The values are binned into 10◦ latitude bins. Results are
shown for March and August 2019. The bias estimates based on the two different NWP
models correspond well along the climate zones. Larger discrepancies only appear in the
tropics and subtropics. The comparison of Aeolus winds with inhomogeneously distributed
radiosonde observations overall shows good agreement as well. Outliers, as around 20◦ S
or 85◦ N, are mainly related to small sample sizes.
Representative for the winter and spring, Fig. 4.5a is chosen to show that the bias is fairly
constant with latitude in these seasons. Small differences between the orbital phases occur
in the Southern Hemisphere and the subtropical region of the Northern Hemisphere. From
40◦ N up to the north pole, almost no deviation between ascending and descending orbit
is visible. End of summer, in August 2019 (Fig. 4.5b), the bias varies with latitude with
an amplitude of 4-5 m s−1. As seen in Sec. 4.1 for the summer and autumn seasons, large
differences between the orbit phases exist, particularly outside of the tropics. Between the
subtropical region and the poles, the bias for the descending orbit is positive, whereas the
bias for the ascending orbit has a negative sign.
The results indicate that besides the satellite’s orbit phase and the season, the latitudi-
nal position of the satellite seems to influence the Aeolus Rayleigh wind bias. Before the
launch of Aeolus, thermal fluctuations affecting the DWL instrument were considered as
one of the possible sources of bias. Fluctuations in long-wave and solar radiation can cause
small changes in the direction of the received laser light from the atmosphere, to which
the spectrometers are sensitive, causing apparent frequency shifts and hence a wind bias.
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(a) March 2019 (b) August 2019

Figure 4.5: Rayleigh HLOS wind bias as a function of latitude for ascending (dotted
line) and descending (dashed line) orbit phase, calculated with model equivalents of the
ECMWF IFS (orange) and the DWD ICON model (green). In purple (point markers:
ascending, cross markers: descending), comparison results with collocated radiosonde
observation are shown. Values are binned into latitude bins of 10◦. (a): March 2019; (b):
August 2019.

The detected bias dependencies can potentially be related to changes in the top of the at-
mosphere temperature. The latitude variations and orbit differences are largest during the
Northern Hemispheric summer, which is the season with the largest latitude gradient in the
asymmetric radiative response. During the Southern Hemispheric summer, the gradient is
less strong, and the bias dependencies and orbit phase differences are less pronounced.

A simple bias correction approach as a function of latitude, separately for ascending and
descending orbit phases, is applied to eliminate systematic differences for the validation
period. For latitude bins of 10◦, the O-B departures from the previous seven days are
averaged using the following weights (with i=0 being the current day):

wi =
1

1+i
7∑

j=1

( 1
1+j)

, i = 1, ..., 7. (4.4)

The resulting correction values are subtracted from the O-B departure of the day under con-
sideration, and the residuals are averaged for each month of the validation period (Fig. 4.6).
Considering the effect of the orbit phase differences, this is done separately for the ascend-
ing and descending satellite pass. To estimate if the model bias matters, three different
configurations are tested, which differ regarding the correction values: the bias correction
values are based on the same model; the bias correction value is calculated with the other
NWP model; the bias correction value is an average value of the two NWP models. After
applying the bias correction, a temporal variation, as seen in Sec. 4.1 for the systematic
differences, is still apparent in the residuals. As the bias correction approach is essentially
temporal and spatial smoothing, it is suggested that fast changes in the systematic errors
are one source of the bias. At the beginning of the Aeolus mission, the correction is quite
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efficient. In spring 2019, when the latitude dependence is comparably weak and the bias
comparably high, a residual up to over 1 m s−1 remains. After the processor update in
May 2019, when the Rayleigh ascending wind bias tends to be negative, also the residual
bias exhibits a negative sign. Differences between the two models regarding the sign of
the remaining bias are visible in September 2018 for the ascending orbit and in December
2019.

(a) Rayleigh ascending

(b) Rayleigh descending

Figure 4.6: Residual after a latitude-dependent bias correction, separately for Rayleigh
ascending (a) and descending (b) orbit phase averaged over one month. On the left
(orange), the ECMWF IFS model residuals, and on the right side, the DWD ICON model
residuals (green) are displayed. The correction values are either based on the previous
week of the model equivalents of the own model (dark-filled markers) or the other NWP
model (unfilled marker) or an average value of both models (light-filled markers).

Although remaining systematic differences - in particular in phases with large temporal
bias changes - are still apparent, the correction can clearly decrease the bias. In total, the
bias is reduced by almost 1 m s−1 for the ICON model and even more than 1 m s−1 for the
IFS model (Table 4.4). A correction based on the previous seven days of the own model
yields a comparable mean absolute residual bias for the IFS and the ICON model. Correct-
ing the IFS model with the correction values calculated with the ICON model results in
the lowest overall remaining bias and the largest reduction. In contrast, the ICON model
O-B statistic shows worse results when applying the IFS model information to correct
the latitude-dependent error. Altogether, no significant differences between the individual
methods were found (following a Student’s t-distribution), again indicating that model
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biases do not have a dominant effect on the bias assessment. On average, the absolute
remaining bias of the Rayleigh wind observations is about 0.37-0.59 m s−1.

ascending descending

IFS ICON IFS ICON

without bias correction 1.41 1.28 1.64 1.54
correction value based on IFS model 0.43 0.53 0.44 0.59
correction value based on ICON model 0.37 0.43 0.42 0.48
correction value based on (IFS,ICON) 0.39 0.48 0.43 0.52

Table 4.4: Mean absolute residual bias [m s−1] of the ECMWF IFS and the DWD
ICON model after a latitude-dependent bias correction for three different configurations
for the period from September 2018 to January 2020.

Assume that variations in long-wave and solar radiation and the associated response of
the telescope’s thermal control system are related to bias. In that case, it is supposed that,
additionally, variations of the bias with longitude are present. Therefore, in the following
Sec. 4.3.2, also the longitude-dependent Rayleigh bias component is examined, and it is
tested whether a two-dimensional (latitude-longitude) bias correction approach can further
reduce the remaining bias.

4.3.2 Rayleigh wind bias dependence on latitude, longitude and
orbit phase

Fig. 4.7 shows latitude-longitude plots of the Aeolus Rayleigh HLOS wind bias for May and
October 2019. Since the two NWP models agree very well in assessing the Rayleigh wind
bias, only the results using the ECMWF IFS model are shown. In May, when the orbit
phase and latitude dependencies are less pronounced, small fluctuations with longitude
are visible in the tropical and subtropical regions of the Northern Hemisphere. For the
ascending orbit phase, these patches of larger bias values appear to be related to land-sea
distribution. This connection is also visible in October 2019 for the ascending orbit phase.
Furthermore, it seems that the bands of pronounced bias values in the tropics match with
the Intertropical Convergence Zone (ITCZ), which moves further north from the equator
during the northern summer and further south towards the southern summer. The large
bias of the descending orbit in May on the Southern Hemisphere in the midlatitudes might
be related to the subtropical jet. The three gaps around 60◦S are due to a technical issue
at ECMWF. In October, the bias overall changed from positive to negative except for the
descending orbit in the tropics and subtropics of the Southern Hemisphere.
Altogether, the results show that the bias dependencies are very scene dependent. There
are indications that the source of bias is related to radiative variations, including land-
sea distribution, seasonal variations and asymmetries in radiative response along latitude.
However, no solid connection can be identified.

To examine the magnitude of the influence of the longitude component on the bias cor-
rection approach described above, it is repeated considering both geographic dimensions.
Therefore, the Aeolus HLOS O-B statistics of the previous seven days as a function of
latitude and longitude are averaged and weighted using bin sizes of 10◦. Fig. 4.8 shows the
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(a) Rayleigh ascending May 2019 (b) Rayleigh descending May 2019

(c) Rayleigh ascending October 2019 (d) Rayleigh descending October 2019

Figure 4.7: Rayleigh HLOS wind bias as a function of latitude and longitude for
ascending and descending orbit phase, calculated with model equivalents of the ECMWF
IFS for May 2019 (a,b) and October 2019 (c,d). Values are binned into latitude and
longitude bins of 10◦.

(a) Rayleigh ascending (b) Rayleigh descending

Figure 4.8: Residual after a latitude-dependent bias correction (diamond marker) and a
two-dimensional latitude-longitude-dependent bias correction (cross marker) averaged over
one month, using the ECMWF IFS model equivalents. (a) for the Rayleigh ascending, and
(b) for descending orbit phase.
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resulting residual bias based on the ECMWF IFS model averaged over each month. To get
an impression of how strong the longitudinal bias variation is, the results are compared to
the one-dimensional latitude-dependent correction approach from Sec. 4.3.1.
The mean absolute remaining bias for both correction formulations is provided in Table 4.5.
Overall, the residual has been decreased by almost 50 % when considering the longitude
dependence for ascending and descending satellite orbit phase. Main improvements occur
for the bias correction in late winter and early spring, where a one-dimensional correction
approach is not that effective. However, right after the mission’s start, in May 2019 and
at the end of the year, the remaining bias is increased when considering the longitudi-
nal dimension. The one-dimensional latitude-dependent correction approach has almost
removed the bias in these months.

type of bias correction ascending descending

latitude 0.43 0.44
latitude - longitude 0.25 0.23

Table 4.5: Mean absolute residual bias [m s−1] after a latitude and a latitude-longitude
bias correction approach using the ECMWF IFS model for the time period from
September 2018 to January 2020.

4.4 Concluding remarks on the validation of Aeolus HLOS
wind observations

Validation statistics of the Aeolus HLOS wind observations for the initial phase of the mis-
sion have been performed based on comparisons with radiosonde observations and model
equivalents from DWD’s ICON model and ECMWF’s IFS system. This allowed system-
atic and random differences to be characterized on a regional (Northern Hemisphere mid-
latitudes) and global basis.

The mean absolute systematic difference has been found to be about 1.8 m s−1 for the
Rayleigh winds and 1.6 m s−1 for the Mie wind observations. The mean random difference
is 3-5 m s−1 for the Rayleigh channel and 3-4 m s−1 for the Mie channel. The discrepancies
found between the radiosonde and model-based random error validation results are mainly
due to differences in spatial and temporal representativeness. Both the systematic and
random errors are higher than expected before the launch. Mie wind errors are smaller
overall compared to Rayleigh wind errors but show larger differences between the three
validation statistics due to uncertainties when clouds are present. By estimating the rep-
resentativeness errors, the observational error of Aeolus could be evaluated. The estimated
representativeness error for comparison with radiosonde observations is about 2.5 m s−1,
which emphasizes the importance of considering the sources of representativeness error
when comparing HLOS winds with other spatially and temporally offset observations. The
resulting observational Aeolus wind error overall increases in the upper troposphere and
lower stratosphere, with the largest discrepancies between the validation reference datasets
occurring around the tropopause. Therefore, it is suggested that less weight be given to
the Aeolus observations in the assimilation there.
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Further investigation of the systematic differences of the Rayleigh channel revealed
several dependencies. The Aeolus wind bias varies with season, orbital phase, latitude,
and longitude. These detected bias dependencies are expected to be related to long-wave
and solar radiation fluctuations and the radiative response. It has been shown that a
simple bias correction approach as a function of latitude, separately for the ascending and
descending satellite orbit phase based on the last seven days, can reduce the bias. Including
both geographic dimensions in the bias correction further reduces the residual by nearly
50%.

In (Rennie et al., 2021), a bias correction similar to the here presented scheme has
been used manually via look-up tables of the mean(O-B) from the previous week versus
argument of latitude (orbit phase angle) and longitude. The bias correction has been
applied for both Rayleigh and Mie wind observations. However, the Mie biases are smaller
and more stable and thus not changed much by the correction scheme. In 2020, it became
clear that there is a link between the Rayleigh bias and the ALADIN telescope primary
(M1) mirror temperatures. The M1 mirror’s onboard thermal control mechanism varies
in response to the top of atmosphere radiation. Therefore, a bias correction has been
developed at ECMWF, as part of the Aeolus Data Innovation and Science Cluster (DISC),
using a multiple linear regression method of ECMWF O-B statistics and the thermistors
of the telescope M1 mirror (Rennie et al., 2021, Weiler et al., 2021). This successfully
eliminated most part of the bias. On 20 April 2020, the M1 temperature bias correction
was operationally implemented in the L2B processor. However, some small residual biases
still exist after the implementation, so several NWP centers have implemented additional
model-based bias corrections. At DWD, a latitude-dependent correction scheme (according
to Sec. 4.3.1) for specific height levels is used to further improve the impact of the Aeolus
observation in the assimilation system of the ICON model (Sec. 3.2). Furthermore, the
assigned observation error is chosen accordingly to the estimated Aeolus wind observational
error in Sec. 4.2.3. A detailed examination of the Aeolus impact at DWD is provided in
the following main results part of this thesis (Chapter 5).
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Chapter 5

Results: Impact of Aeolus HLOS wind
assimilation in the global model ICON

To assess the impact of Aeolus HLOS wind observations in the operational global assimila-
tion and forecasting system of DWD, an OSE for three months has been performed using
the global model ICON based on the general operational settings (Sec. 3.2). This chapter
consists of two main parts: First, a global overview of the systematic changes in the analy-
sis and impact on forecast errors is provided (Sec. 5.1). The second part focuses on regions
and time periods with a particularly strong influence of the Aeolus wind observations and
discusses indications of dynamical changes and processes related to the positive impact
(Sec. 5.1).

5.1 A global statistical overview

5.1.1 Systematic changes in the analysis

Fig. 5.1 shows the systematic changes in the analysis of the zonal wind component due
to the Aeolus observations (EXP_A - CTRL) for 100, 250, and 600 hPa. Positive values
indicate that Aeolus observations tend to make the zonal wind component more westerly;
negative values indicate a strengthening of the easterly flow. Additionally, the absolute
mean analysis differences between the CTRL run of the OSE and ERA5 are shown, pro-
viding a qualitative estimate of the structure of systematic analysis errors.

Altogether, the most pronounced systematic influence of the Aeolus observations oc-
curs around key atmospheric circulation systems, strong large-scale wind regimes, and
convectively active areas in the tropics, where uncertainties in the analysis are systemat-
ically larger, and the background forecast does not represent the associated atmospheric
phenomena well. Furthermore, it is apparent that increased influence is related to a low
number of other collocated observing networks, e.g., oceanic regions.

In the mid-troposphere, the trend of making the zonal wind more westward is strongest
around the Indian Ocean and slightly less above the West Pacific and the East Pacific
Ocean south of the equator. West winds are accelerated in the equatorial East Pacific.
The strengthening of easterlies around the west coast of Africa is probably related to the
mid-level African Easterly Jet (AEJ), which was found to be strongly influenced by the
Aeolus HLOS winds, especially the northern part (Borne et al., 2022). Uncertainties in



64 5. Results: Impact of Aeolus HLOS wind assimilation in the global model ICON

(a) 100 hPa

(b) 250 hPa

(c) 600 hPa

Figure 5.1: Mean analysis difference (EXP_A - CTRL) of the zonal wind component U
(left column) and absolute mean difference of the zonal wind component between the
CTRL analysis and the ERA5 reanalysis (right column) at (a,b) 100 hPa, (c,d) 250 hPa
and (e,f) 600 hPa for 01 July 2020 to 30 September 2020. Note different color scales for
100 hPa compared to 250 and 600 hPa.

the Indian Ocean are likely to be associated with the synoptic-scale monsoon circulation
system in the lower troposphere, which typically lasts from June to September.

At 250 hPa, the Aeolus observations largely influence the zonal wind field in the East
Pacific, where also systematic analysis errors are increased. Changes in the analysis due
to the assimilation of HLOS winds occur as strengthening of easterlies. These changes in
the upper level are presumably related to modifications in the zonal Walker circulation,
which in turn is connected to the state of ENSO. The state of ENSO switched during the
OSE period, suggesting that associated changes in the convective pattern at the coast of
South America and Indonesia are the dynamical source of the strong influence. Further-
more, enhanced influence of Aeolus observations in the upper troposphere is found in the
Mid-Atlantic Ocean and the polar regions, but with fluctuations in the sign of the mean
differences.

At the level of the tropical tropopause, the mean zonal wind analysis is particularly
modified around the equator (note that the color scale is different from the lower levels).
There, the strengthening of westerlies dominates. Only at the edge of the tropics and
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above the Indian Ocean are easterly winds accelerated when including the Aeolus obser-
vations. The analysis changes in the surrounding of the Indian Ocean probably represent
an amplification of the upper-level Tropical Easterly Jet (TEJ) that develops in the upper
atmosphere during the Asian monsoon. Compared to the ERA5 reanalysis, the TEJ region
is characterized by large systematic analysis errors. Besides the tropics, an influence of the
Aeolus observations is again visible in the Southern Hemisphere’s polar region.

Since the pattern of changes in the mean zonal wind analysis due to Aeolus is quite
constant with time in the troposphere, it has been concentrated on the mean over the
whole OSE period. The picture looks different at the stratospheric levels. Fig. 5.2 shows
the same as the left column of Fig. 5.1, but separately for (a) July to mid of August and
(c) mid of August to September at 50 hPa. Between 70 and 10 hPa, typically, the quasi-
biennial oscillation (QBO) of the equatorial zonal wind between easterlies and westerlies
takes place by downward propagation of the successive wind regime with a period of 22 to
34 months. In winter 2019/2020, the QBO phase change from westerly to easterly winds
was disrupted, and an eastward zonal-mean jet subsequently emerged above the shallow
westward layer (Anstey et al., 2021). In 2020 the normal QBO cycling manifested again
as a westerly jet. The OSE period covers the alternation between 50 and 30 hPa, where
the QBO westerly phase evolved mid of August. In the time before the emergence of the
westerly jet at 50 hPa (Fig. 5.2a), the Aeolus observations tend to accelerate the easterlies
around the equator. However, the magnitude of the influence is much weaker than in
the second half of the OSE period, during the QBO westerly phase (Fig. 5.2b). Those
equatorial west winds are strengthened to a large extent by the Aeolus observation. The
ability of Aeolus to measure this reversal is investigated in more detail in Sec. 5.2.1.

(a) 50 hPa: 01 Jul 2020 - 15 Aug 2020 (b) 50 hPa: 15 Aug 2020 - 30 Sep 2020

Figure 5.2: Mean analysis difference (EXP_A - CTRL) of the zonal wind component U
at 50 hPa for (a) 01 July 2020 to 15 August 2020 and (b) 15 August 2020 to 30 September
2020.

5.1.2 Short-range forecast impact: Observation-based verification

The impact of the Aeolus HLOS winds on the quality of short-range forecasts up to 36 h is
verified by the fit to observations from radiosondes (TEMP), aircraft (AIREP), GPSROs,
and AMVs. The relative mean differences in RMSE between EXP_A and the CTRL run as
functions of altitude are shown in Fig. 5.3, separately for the tropics, the Northern and the
Southern Hemisphere. The size of each compared sample is presented by the grey line in
the subplots alongside. Additionally, the average values of the changes in forecast error are
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(a) TEMP (b) AIREP

(c) AMV (d) GPSRO

Figure 5.3: The relative mean differences in 3-36 h forecast RMSE [%] between the
EXP_A and the CTRL run as functions of altitude for 01 July 2020 to 30 September
2020, verified against (a) radiosonde (TEMP) and (b) aircraft (AIREP) for the zonal (U)
and meridional (V) wind component and the temperature (T), against (c) AMV for U and
V and against (d) GPRSO observations for the bending angle (BA), separately for the
tropics, the northern (NH) and southern (SH) hemisphere. The gray lines in the subplots
alongside present the number of observations.

Variable NH Tropics SH

TEMP U −0.30 −1.20 −1.05
V −0.25 −0.70 −1.21
T −0.25 −0.69 −1.12

AIREP U −0.14 −1.07 −0.48
V −0.08 −1.57 −1.59
T −0.15 −0.99 −0.54

AMV U −0.46 −0.51 −0.70
V −0.12 −0.51 −0.75

GPSRO BA −0.59 −0.77 −1.36

Table 5.1: Averaged values of differences in 3 - 36 h forecast RMSE [%] between the
EXP_A and the CTRL run as functions of altitude for 01 July 2020 to 30 September 2020
from Fig. 5.3.
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listed in Table 5.1. Beneficial impact (represented by negative values) for radiosonde wind
and temperature observations is largest in the tropics and the Southern Hemisphere, with
a maximum around the tropopause (up to 3.5% improvement). The Northern Hemisphere,
where the number of radiosonde observations is highest, shows a smaller impact, but on
average, up to 0.3% improvement is found that also peaks at heights of the extratropical
tropopause. The fit to wind and temperature observations from aircraft, which are most
frequent at flight levels, are also mainly improved in the tropics (up to 1.6%) and to
a lower extent in the Northern Hemisphere (up to 0.2%). The impact evaluation with
respect to aircraft observations in the Southern Hemisphere suffers from a low number of
measurements. Thus, these results should be treated with caution. AMVs and GPSRO
observations, in contrast, are quite abundant in the Southern Hemisphere. On average, the
impact is 0.7% relative to AMV winds and 1.4% relative to bending angles from GPSRO
measurements. The largest improvements for AMVs are found in the lower and mid-
troposphere, where the number of compared observations is highest. Around 400-500 hPa,
the maximum impact in the tropics is 1.2%. In the Northern Hemisphere, improvements
of ∼1% occur. GPSRO impact is strongest in the mid- and lower stratosphere. At 30 hPa,
the maximum reaches eight or even more percent. At lower levels, where the sample of
compared observations is larger, the impact reaches up to 3% in the tropics. In general, the
changes in the short-range forecast errors resulting from assimilating Aeolus HLOS winds
consistently show positive impact verified with radiosonde, aircraft, AMV, and GPSRO
observations.The largest improvements are mainly found in upper atmospheric levels in
the tropics and the Southern Hemisphere, also depending on the number of measurements.
Despite the good coverage of observations on the Northern Hemisphere, Aeolus HLOS
winds nevertheless still have a comparably large impact on the short-range forecast there.

5.1.3 Medium-range forecast impact: Analysis-based verification

To evaluate the impact of the Aeolus HLOS winds on forecasts with lead times of 24-120 h,
these forecasts are verified against the ERA5 reanalysis. An overview of the forecast error
reduction in terms of relative differences in RMSE between EXP_A and the CTRL run
for the tropics, the midlatitudes, and the polar region of both hemispheres as a function
of altitude is provided in Fig. 5.4. The relative reduction of forecast error is shown for
the zonal wind component (U), geopotential (Z), temperature (T), and relative humidity
(RH). The verification with analyses can involve larger uncertainties for short lead times
as forecast errors strongly correlate with the analysis error, especially in data-sparse areas
(Geer et al., 2010). Therefore, results for 24 h should be treated with caution.

As expected and similar to the observation-based verification (Fig. 5.3), Aeolus wind
observations lead to the largest error reduction in the tropics, where winds are not con-
strained by geostrophic balance. This is evident for all four variables and for all forecast
lead times. For the zonal wind component, the forecast quality in the tropics is improved
by at least 2% and up to 8%, peaking at the tropopause height of around 100 hPa. For
temperature, the largest improvements in the tropics are in the upper troposphere, for rel-
ative humidity between 500 and 850 hPa. Besides the tropics, the forecast is, on average,
also improved in polar regions and the midlatitudes of both hemispheres. In the Southern
Hemisphere, the beneficial impact of Aeolus is predominantly below the tropopause around
the jet level and then decreases with altitude for forecast lead times of 24 to 72 h. Only
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Figure 5.4: The mean relative differences in RMSE [%] of zonal wind component (U),
geopotential (Z), temperature (T), and relative humidity (RH) as function of pressure
[hPa] for the tropics, the midlatitudes (NH midlat, SH midlat) and polar region (NH
polar, SH polar) of both hemispheres for 01 July 2020 to 30 September 2020 as function of
altitude for forecast lead times from 24 up to 120 h.
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relative humidity exhibits a second peak in the Southern Hemisphere in the stratosphere,
which aligns with the impact results when verifying against GPSROs. Presumably, the
impact on relative humidity is mainly caused by improved winds leading to improved ad-
vection of humidity and a resulting relative reduction in the humidity RMSE up to 2%. In
the midlatitudinal troposphere of the Southern Hemisphere, the RMSE is reduced up to
3% for the zonal wind and temperature and even up to 6% for geopotential. In the midlat-
itudes of the Northern Hemisphere, Aeolus observations lead to an average improvement of
up to 1%, which is again consistent with the changes in forecast errors verified against wind
and temperature observations from radiosondes, aircraft, and AMVs (Sec. 5.1.2). Towards
the polar regions, the differences in impact between forecast lead times shorter and longer
than three days become larger. Especially in the Southern Hemisphere, differences in the
sign of the impact occur with increased degradation in forecast quality for the 96 and 120
h forecast. However, this may be induced by the strong systematic differences between
ERA5 based on the IFS model and the ICON experiments in these areas (Fig. 5.1).

Spatial distribution of the Aeolus impact

In the subsequent Sec. 5.2 regions of particularly pronounced impact of the Aeolus ob-
servations and the underlying dynamical scenarios are discussed. The selection of these
regions is motivated by Fig. 5.5, which provides an overview of the spatial distribution of
the relative forecast error reduction and Table 5.2 displaying the average values for the
different climate zones.

The spatial distribution of the relative RMSE reduction reveals that above the trop-
ical tropopause, the beneficial impact is primarily located around the equatorial band
(Fig. 5.5a). The forecast errors of forecast lead times from 24 to 120 h are reduced by al-
most 5% on average. On large scales, this region is affected by the quasi-biennial oscillation
of the zonal wind, the QBO. The OSE period covers the change in the circulation state
associated with evolving westerly winds, which was strongly strengthened in the analysis
by the assimilation of Aeolus observations (Sec. 5.1.1). Sec. 5.2.1 evaluates the hypothesis
that there is a relation between the QBO phase change and the large impact of Aeolus.

Furthermore, large forecast error reduction can be found in the 300-hPa zonal wind in
the midlatitudes in the Southern Hemisphere and the tropics with an average improvement
of 1.7 -2.6%. The midlatitudes in the Southern Hemisphere overall show a fluctuating
impact pattern. However, the most pronounced forecast error reduction appears around
the storm track region downstream of South America. In the tropics, striking forecast
error reduction is located around the Eastern Pacific Ocean and the subtropical jet over
South America at 300 hPa. The large-scale dynamics there are mainly dominated by
the coupled circulation system ENSO which is characterized by the interaction between
surface temperatures and upper-level winds. Large systematic changes in the analysis over
the Eastern Pacific due to the assimilation of Aeolus observations in the OSE were found
in Sec. 5.1.1 in the form of a strengthening of easterly winds. The OSE covers the onset of
a shift in ENSO conditions which is generally associated with modifications in the tropical
circulation pattern of the zonal and vertical wind. The changes in the wind pattern are
assumed to be the dynamical source of the large Aeolus impact and are discussed in more
detail in Sec. 5.2.2).
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(a) U 50 hPa U

(b) U 300 hPa U

(c) Z 500 hPa

Figure 5.5: The mean relative differences in 24 -96 h forecast RMSE between the
EXP_A and the CTRL run [%] as function of pressure [hPa] for 01 July 2020 to 30
September 2020, (a) 50-hPa zonal wind component (U), (b) 300-hPa zonal wind
component (U), and (c) 500-hPa geopotential (Z).
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[-90◦,-65◦) [-65◦,-23.5◦) [-23.5◦,23.5◦] (23.5◦,65◦] (65◦,90◦]

U 50 hPa -0.78 -1.05 -4.84 -0.26 -0.54
U 300 hPa -1.16 -1.72 -2.64 -0.47 -1.43
Z 500 hPa -0.10 -1.71 -1.87 -0.74 -1.56

Table 5.2: Mean relative difference in 24 -120 h forecast RMSE between the EXP_A
and the CTRL run [%] averaged over the polar, midlatitude, and tropical region in the
Northern and Southern Hemisphere for 50-hPa zonal wind component (U), 300-hPa zonal
wind component (U), and 500-hPa geopotential (Z).

Further north, in the 500-hPa geopotential, large forecast error reduction occurs near
the Northern Hemisphere turning circle in the western Pacific and Atlantic. These are
regions of tropical cyclone activity in the experimental period. Furthermore, large im-
provements can be seen in the Southern Hemisphere storm track areas, such as the Indian
Ocean, the eastern side of Australia, and the region near 30◦S over South America. On
average, forecast errors are reduced by 1.9% in the tropics and by 1.7% (0.7%) in the
Southern Hemisphere (Northern Hemisphere) midlatitudes.
Overall, the mean impact pattern in the Northern Hemisphere is characterized by large
variability likely related to fluctuations of the polar jet and the associated midlatitude
circulation that partially obscures the mean error reduction. Large forecast error reduc-
tion over continents occurs over the Himalayan region, India and Eastern Asia. Moreover,
both the zonal wind on 300 hPa and geopotential on 500 hPa show large improvements of
1.4-1.6% in the polar region in the Northern Hemisphere. Aeolus’s impact in these regions
may be investigated further in future investigations. This study further examines the spa-
tiotemporal evolution of forecast error reduction in midlatitudes to better understand the
impact of Aeolus in relation to the general midlatitude circulation and to identify associ-
ated specific extratropical weather systems with a particular focus on the ET of tropical
cyclones (Sec. 5.2.3).

5.2 Investigation of links between dynamical scenarios
and particularly high impact of Aeolus on NWP
forecasts

5.2.1 Impact on tropical stratospheric wind variations (QBO)

Systematic changes in the analysis field (Sec. 5.1.1) and improvements in forecast quality of
the stratospheric zonal wind field (Fig. 5.5a) indicate an impact of the Aeolus observations
on the QBO phase change from easterly to westerly that took place in summer 2020. In
order to better monitor the QBO in 2020, Aeolus’s vertical range bin setting was adjusted
to allow for measurements up to 25 km in the tropics. This advanced setting was active
in the tropical belt ±10◦ once a week for 24h only, from Wednesday, 01:00 am UTC until
Thursday, 01:15 am UTC. Fig. 5.6 focuses on the impact of Aeolus HLOS observation
between 30 and 50 hPa around the equator, showing the time evolution. After an unusual
disruption of QBO cycling in winter 2019/2020 (Anstey et al., 2021), the regular oscillation
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Figure 5.6: Time series for the tropical belt ±10◦ latitude between 30 and 50 hPa. Top
row: the mean zonal wind (black line) and the mean analysis differences in the zonal wind
between EXP_A and CTRL (shaded grey). Middle row: the RMSE for forecast lead times
from 24 to 120 h for the CTRL (solid line) and the EXP_A (dotted line) run. Bottom
row: relative differences in RMSE between EXP_A and CTRL for forecast lead times
from 24 to 120 h.

in that stratospheric layer emerged again as an eastward jet around 20 August. The Aeolus
observations affect the change in zonal mean wind from easterly to westerly in the way
that the evolved westerly winds are strengthened in the ICON model. The forecast errors
of the CTRL run are fairly constant with time, only slightly varying between 4 and 6 m
s−1. On the other hand, the forecast errors of the EXP_A noticeably decrease with time.
The relative differences in RMSE between EXP_A and CTRL already show improvements
in the quality of the zonal wind forecast by the Aeolus observations at the beginning of the
OSE period. The reversal of the zonal wind direction is then accompanied by a marked
reduction in the RMSE for all lead times. Towards the end of September, improvements
of 10% to over 15% occur.

It should be taken into account that both the ERA5 reanalysis used for verification and
the global model ICON exhibit large uncertainties in the tropical stratosphere, probably
contributing to the pronounced impact of Aeolus observations. The QBO is mainly driven
by a combination of upward-propagating low-frequency equatorial waves and inertia-gravity
waves from the troposphere that dissipate and deposit momentum to the upper level zonal-
mean zonal winds (Shepherd et al., 2018). However, a realistic representation of the wave,
mean-flow interaction behind the QBO is typically limited by insufficient vertical model
resolution, uncertainties in parameterized processes such as tropical convection, and the
sparseness of direct wind measurements in the tropics. Given the lack of direct wind
observations in the area, the models there could be prone to biases.
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Due to QBO teleconnections with other parts of the atmospheric system such as the
polar vortex (Anstey and Shepherd, 2014, Baldwin et al., 2001, Gray et al., 2018) or
tropical oscillations as, e.g., Madden-Julian Oscillation (MJO) (Martin et al., 2021b) and
ENSO (Anstey et al., 2021), accurate prediction of the QBO by an additional observing
system might also provide a meaningful source of longer-term predictive skill outside the
tropics. Furthermore, several statistical studies showed that besides or in interaction with
the ENSO, the QBO could also modulate the tropical cyclone activities over various oceans
(Baldwin et al., 2001, Gray, 1984, Gray et al., 1992, Jury et al., 1999) and that the QBO
west phase is usually associated with enhanced deep convection, both sides of the equator.

Figure 5.7: Time series for the tropical belt ±10◦ latitude between 30 and 50 hPa. Top
row: the mean zonal wind (black line) and the mean analysis differences in the zonal wind
between EXP_A and CTRL (shaded grey), with (dotted line) and without (solid line) the
QBO range bin setting. Bottom row: relative differences in RMSE between EXP_A and
CTRL for forecast lead times from 24 to 120 h, with (dotted line) and without (solid line)
the QBO range bin setting. The distribution of the general tropical range bins (VENUS)
and the advanced QBO setting is illustrated on the right.

Both accurate Aeolus wind measurements in the stratosphere and a good capture of
upward propagating waves from the lower levels can cause the strong positive impact on
the QBO phase change. To exclude the influence of the extended special QBO range
bin setting, which amplifies the effect of the stratospheric Aeolus observations, another
experimental run, with a shorter period of 14 days, was performed. For this, the Aeolus
observations between Wednesday, 01:00 am UTC until Thursday, 01:15 am UTC were not
used in the assimilation. Fig. 5.7 displays the relevant time series from 18 August 2020
to 31 August 2020 of the analysis differences and the relative differences in RMSE for the
tropical belt ±10◦ latitude between 30 and 50 hPa. The experiment with and without the
QBO range bin setting are compared. On the right, in Fig. 5.7 the distribution of the
general tropical range bins (VENUS) and the advanced QBO setting is illustrated. The
experiment’s start covers the time when the QBO west phase manifested again. Whereas
the Aeolus experiment with the QBO range bin setting shows a large influence in the
analysis in the form of an intensification of the west winds, the exclusion of the high-
resolution stratospheric Aeolus observations leads to a weakening of the west jet after a



74 5. Results: Impact of Aeolus HLOS wind assimilation in the global model ICON

few days. Striking differences also appear in terms of forecast error for lead times from 24
to 120 h. Initially, both experiments show beneficial effects in the equatorial stratosphere,
but with time the forecast error reduction of the experiment without QBO range bin setting
decreases up to degradation of 2%. As the stratosphere is characterized by large model
uncertainties, a longer OSE would be useful to be able to draw firm conclusions. However,
it is noteworthy that even within 14 days, the elimination of observations during two days
of higher resolution Aeolus observations can have significant effects. This underscores the
importance of the range bins settings for the Aeolus mission.

5.2.2 Impact on change in the ENSO state in the Eastern Pacific

In the equatorial region, the ENSO is another important tropical oscillation pattern whose
interannual tropospheric variability influences both weather and climate on a global scale.
It is characterized by periodic fluctuations through a neutral phase between warm (El Niño)
and cold (La Niña) extremes in sea surface temperature (SST) across the equatorial Pacific
Ocean. In summer 2020, the state of ENSO changed from neutral to the La Niña state. The
ENSO phases relate to the zonal Walker circulation, that is strengthened during La Niña
events as the eastern Pacific is colder and the western Pacific is warmer than on average,
leading to an enhanced rise of warm moist air over Indonesia and South America and an
enhanced downward branch over the mid-Pacific. Fig. 5.8 displays the time evolution of
differences in 48 h forecast RMSE of the zonal wind component averaged over the equatorial
Eastern Pacific [5◦S-5◦N, 90◦W-160◦W] as a function of altitude. The shift in the ENSO
conditions is associated with a major change in the wind patterns of the tropical belt
that appear to be strongly influenced by the assimilation of Aeolus wind observations.
The three-month average equatorial Pacific SST anomaly (Oceanic Niño Index (ONI)) is
a common measure and NOAA’s primary indicator for monitoring the state of ENSO.
Around 8 August 2020, the SST anomaly, determined as the difference from the average
ERA5 reanalysis from 1985 to 2015, exceeds the -0.5 K threshold, indicating the presence of
La Niña conditions. This point in time is the beginning of a large forecast error reduction
for upper-level zonal wind. The reduction in forecast error increases over the 14 days
after the La Niña onset and extends into the middle troposphere. Enhanced improvements
continue to occur afterward and are also apparent in a shorter period before the onset. The
largest error reduction in the 48 h forecast occurs about 48 h after the strongest negative
increase in the SST anomaly, which corresponds to the initialization time.

Together with the results of Sec. 5.2.1, this suggests that Aeolus particularly reduces
uncertainty in the model representation at the beginning of variations in the large-scale
circulation systems. The better representation of the ENSO pattern, as provided by the
HLOS winds in the ICON model, is expected to have a variety of further beneficial impacts.
The fluctuations in the ENSO pattern can, for example, greatly affect the location of
tropical rainfall and wind patterns. Moreover, influences on the extratropics are possible
via the interaction with Rossby wave trains (Hoskins and Karoly, 1981), the North Atlantic
Oscillation (NAO) phase (Rogers, 1984) or the Pacific-North American Pattern (PNA)
(Horel and Wallace, 1981), but also through planetary wave activity into the stratosphere
(Iza et al., 2016).
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Figure 5.8: Relative differences in 48 h forecast RMSE of the zonal wind component [%]
between EXP_A and CTRL [5◦S-5◦N, 90◦W-160◦W] as function of forecast time and
pressure [hPa]. The black dotted line is the sea surface temperature (SST) anomaly from
ERA5 reanalysis 1985 to 2015.

5.2.3 Dynamical impact in the midlatitudes

Hovmöller diagrams are a common way of data plotting in meteorology to display both the
change over time and the spatial variability of a variable. In particular, they serve to high-
light the behavior of atmospheric waves. To identify dynamical sources of the extratropical
influence of Aeolus in the Northern Hemisphere, Fig. 5.9 represents the latitudinal average
between 25◦ and 60◦N of the 250-hPa meridional wind field and the convective precipita-
tion as a function of longitude and time from 8 July 2020 to 19 July 2020. The dashed
black contour lines display the largest error reductions in the 48 h forecast of 500-hPa
geopotential. At the beginning of the time period shown here, tropical cyclone Fay, which
originally formed from a surface low over the northern Gulf of Mexico, emerged into the
western Atlantic Ocean. The storm intensified while moving northward, reaching its peak
intensity on 10 July. Later that day, Fay made landfall over New Jersey and interacted
with the midlatitude upper-level flow. The Hovmöller diagram shows pairs of green/blue
and orange/red patches that form a clear banded pattern from 70◦-80◦W around 10 July all
the way to Europe on 15 July, representing individual troughs and ridges of an RWP. The
contour lines related to the reduction in the 48 h forecast error of the 500-hPa geopotential
are associated with this wave structure.

ET typically involves a complex interaction with the midlatitude baroclinic environ-
ment, which causes considerable changes in the characteristics of the cyclone (Grams et al.,
2013). Interactions with the midlatitude waveguide can lead to increased forecast uncer-
tainty, mainly associated with upper-level divergence, vertical wind shear, and cirrus clouds
(Jones et al., 2003). Therefore, it is expected that a good Mie wind coverage with a compar-
atively high resolution can have positive effects. In general, there is no commonly accepted
definition of ET, but various classification factors have been proposed for a typical ET
event. In Jones et al. (2003), a definition of a two-stage classification of ET based on Klein
et al. (2000) can be found. Typically, when the cyclone is affected by vertical wind shear
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Figure 5.9: Hovmöller diagram of the 250-hPa meridional wind (color shading, in m
s−1) for 4 July 2020 to 24 July 2020 and the convective precipitation averaged between
25◦ and 60◦N. The black contours are the largest differences of the 48 h forecast error of
500-hPa geopotential between EXP_A and CTRL (dashed: negative, solid: positive). The
magenta circles mark the position of cyclone Fay; the stars highlight the onset of the ET
and interaction with the midlatitude flow.

associated with the baroclinic zone, the axisymmetric structure of the tropical cyclone
around the core is distorted, resulting in an asymmetry in the wind and thermal structures
and consequently in the moisture, cloud, and precipitation fields. The upper-tropospheric
divergent outflow, which appears as a cirrus cloud shield, may directly impact the large-
scale midlatitude flow by interacting with the upstream trough of the midlatitude jet. Due
to the tropical origin, low potential vorticity (PV) is advected by the divergent flow, which
leads to a strengthening of the meridional PV gradient. This results in an amplification
of the jet streak and the development of a ridge-trough couplet downstream of the tran-
sitioning cyclone, which marks the generation of a new RWP or the modification of an
existing one (Wirth et al., 2018). The RWP then disperses further downstream and can



5.2 Investigation of links between dynamical scenarios and particularly high impact of
Aeolus on NWP forecasts 77

contribute to the development of strong cyclogenesis or atmospheric blocking anticyclones
(Riboldi et al., 2019). Therefore, ET associated with the amplification of RWPs may also
lead to high-impact weather in distant downstream regions (Keller et al., 2019). The many
different atmospheric processes involved in ET events pose a major challenge for NWP
models. They can considerably reduce the skill of the medium-range forecasts downstream
of the tropical cyclone (Jones et al., 2003).

It is suggested that the evolution of the reduction in the 48 h forecast error displayed
in the Hovmöller diagram is related to the interaction of Fay undergoing ET with the
midlatitude waveguide. The downward propagation of the forecast error reduction seems
to be similar to the group velocity of the RWP. This picture fits the theory described by
Keller et al. (2019), that uncertainties in the ability to predict ET events typically first
manifest as uncertainties in the prediction of the strengthening of the downstream ridge
and then propagate with the evolving RWP.

(a) precipitation [mm] (b) 300-hPa divergent wind
and velocity potential [106 m2

s−1]

(c) analysis difference 300-hPa
U [m s−1]

Figure 5.10: Precipitation (a), 300-hPa divergent wind (vectors) and velocity potential
(b), and the analysis differences in 300-hPa zonal wind between EXP_A and CTRL (c)
for 10 July 2020 12 UTC for the region around cyclone Fay [35◦-45◦N, 80◦-70◦W]. The
black contours represent the minimum surface pressure.

Fig. 5.10 focuses on the time around the onset of the ET of Fay. The contour lines are the
minimum surface pressure showing Fay making landfall. Pronounced values in the divergent
wind field of the upper troposphere (Fig. 5.10b) occur northwest of the cyclone center,
representing the poleward expanding and anticyclonically rotating outflow. Characteristic
for ET events are the regions of significant precipitation embedded in the cloud shield
apparent in Fig. 5.10a. The rain field tends to be located to the west of the cyclone center.
The Mie wind observations from Aeolus assimilated at this time cover the area of the
diverging flow very well, which could be the origin of the forecast improvements in the
Hovmöller diagram right at the beginning of the RWP development. The differences in the
zonal wind on 300 hPa (Fig. 5.10c) exhibit an increased influence of Aeolus observations
in terms of both west and east wind acceleration around the region of the interaction of
the cyclone with the large-scale flow.
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(a) 2020-07-10 12UTC: analysis

(b) 2020-07-11 12UTC: 24 h forecast

(c) 2020-07-12 12UTC: 48 h forecast

(d) 2020-07-13 12UTC: 72 h forecast

(e) 2020-07-14 12UTC: 96 h forecast
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(f) 2020-07-15 12UTC: 120 h forecast

(g) 2020-07-16 12UTC: 144 h forecast

Figure 5.11: Downstream impact of Aeolus on 500-hPa geopotential from forecast start
10 July 2020 12 UTC for the region [20◦-70◦N, 110◦W-70◦E]. (a) The differences in the
analysis of between EXP_A and CTRL for 10 July 2020 12 UTC, the white line is the
Aeolus track, the black contours are the minimum surface pressure, (b) differences in 24 h
forecast error (EXP_A - CTRL) - 11 July 2020 12 UTC, (c) differences in 48 h forecast
error - 12 July 2020 12 UTC, (c) differences in 72 h forecast error - 13 July 2020 12 UTC,
(d) differences in 96 h forecast error - 14 July 2020 12 UTC, (e) differences in 120 h
forecast error - 15 July 2020 12 UTC, (f) differences in 144 h forecast error - 16 July 2020
12 UTC. The box highlights the area of interest associated with the ET event; the grey
contour lines represent the 500-hPa geopotential from ERA5 reanalysis in 5 gpdm steps.

The forecast impact on the course of downstream development after the ET event is
displayed in Fig. 5.11 by the differences in forecast errors of the 500-hPa geopotential
between EXP_A and CTRL for lead times from 24 to 144 h. All forecasts are initialized
on 10 July 2020 12 UTC. Fig. 5.11a shows the analysis differences at this time, when
Hurricane Fay is located ahead of the upstream trough of the jet and the Aeolus track
passes directly over the cyclone and trough front. A large analysis influence is visible in
the areas around the cyclone, especially at the trough axis. The evolution of the Aeolus
impact described in the following is believed to be related to either better coverage of
upper troposphere outflow associated with the latent heat release of cyclone Fay or/and
reduction of uncertainties in the dry baroclinic upper-level flow dynamics. In the 24 h
forecast (Fig. 5.11b), only small effects of the Aeolus observations on the midlatitude flow
are visible in the region around the amplifying ridge, presumably related to the outflow.
However, due to the assimilation cycling, the effects cannot be clearly assigned, but it is
assumed that previous measurements and the cycling lead to differences in the cyclone
as well as in the jet environment. The improvements become more distinct in the 48 h
forecast (Fig. 5.11c) where the area of forecast error reduction moved towards the deepening
trough downstream. One day later (Fig. 5.11d), a distinct RWP with a ridge–trough
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couplet and cyclogenesis over the northern Atlantic Ocean developed. This cyclogenesis
and the region of the jet streak above are associated with a large reduction of 72 h forecast
error. Subsequently, the impact propagated downstream over the East Atlantic (Fig. 5.11e).
Fig. 5.11f shows a clear wave structure in the 500-hPa geopotential, from the east coast of
America to Europa. The 120 and 144 h forecast error differences (Figs. 5.11f and 5.11g)
highlight the area of increased error reduction spreading eastwards across the whole of
Europe. This spatial perspective of the individual forecast times along the wave packet
further supports the assumption that the downstream forecast improvement is related to
the Aeolus observations in the preceding ET of Fay.

The data denial experiment period includes a large part of the tropical cyclone season,
and additional ET cases associated with forecast error reduction associated with the as-
similation of Aeolus observations are detected. Fig. 5.12 shows three further examples of
Hovmöller diagrams for ET and the spatiotemporal evolution of RWPs as well as differ-
ences in 500-hPa geopotential forecast error covering the time period of Hurricane Laura
(Fig. 5.12a), Hurricane Paulette (Fig. 5.12b) and the two Typhoons Bavi and Maysak in
the western Pacific (Fig. 5.12c). As in Fig. 5.9, wave-like structures in the meridional wind
component that form or intensify around the beginning of the ET are visible. However,
the RWPs are not as pronounced as in Fay’s ET event. Furthermore, the correspondence
between the propagation velocity of the impact structures and the RWP does not seem
to be as clear. But it was found that the area around the upper-level divergent flow of
the ET examples in Figs. 5.12a to 5.12c were all well-captured by the Aeolus Mie obser-
vations during the onset of the transition (not shown here). Therefore, some impact on
the downstream development of the RWPs to Europe or for the Typhoons to America can
be assumed. The impact of Aeolus observations on tropical cyclone tracks has also been
investigated. However, no significant improvements were found. This may be related to the
lack of observations beneath clouds and consequently within and nearby the cyclone, but it
could also be due to the need for a large sample size when evaluating tropical cyclone tracks.
Apparent is the connection of all cyclones to heavy precipitation. The importance of up-
scale error growth from convective to larger atmospheric scales limiting the predictability
in NWP is discussed in several recent studies (e.g. Hohenegger and Schär, 2007, Rodwell
et al., 2013, Selz and Craig, 2015, Selz et al., 2022). Selz et al. (2022) found that latent
heat release in convective systems and the divergent component of the atmospheric flow
dominate the error growth with respect to physical processes. It is assumed that accurate
observations of the divergent wind field as expected from the Aeolus winds can reduce the
uncertainty of the initial conditions around mesoscale convective ET events, but also in
cyclogenesis regions in other parts of the world.

Fig. 5.12d shows an example of an RWP developing in the region over southern South
America, expected to be related to the clear structure of the largest forecast error reduction
in 500-hPa geopotential. Typically, in the Southern Hemisphere winter season, cyclogenesis
is associated with the subtropical jet in the lee of the Andes in South America (Hoskins
and Hodges, 2005). Berbery and Barros (2002) discussed the strong moisture transport in
winter and spring from the tropics into the La Plata River basin on the eastern side of the
Andes and the importance of the associated latent heat release for subtropical cyclogenesis
process. The increased beneficial impact of the Aeolus observations in this region along
the subtropical waveguide on the Southern Hemisphere has already been shown in the
mean forecast error reduction in 500-hPa geopotential in Sec. 5.1.3 (Fig. 5.5c). This might
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(a) Hurricane Laura (b) Hurricane Paulette

(c) Typhoon Bavi and Maysak (d) RWP South America

Figure 5.12: Same as Fig. 5.9 for the ET event of (a) Hurricane Laura, (b) tropical
cyclone Paulette, and (c) Typhoon Bavi and Maysak, and (d) an RWP development
around the cyclogenesis region over South America.
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be related to good Mie wind observations in moist areas associated with cyclogenesis,
capturing the onset or modification of orographically excited RWPs. Overall, there is
significantly less knowledge available for the storm tracks in the Southern Hemisphere than
in Northern Hemisphere, which has been observed and examined more comprehensively in
the past.

5.3 Concluding remarks on the impact of Aeolus HLOS
wind assimilation in the global model ICON

The Aeolus HLOS wind profile observations account for approximately 2% of the assimi-
lated observations at the global model ICON at DWD. Based on an OSE consisting of two
continuous assimilation runs with and without the assimilated Aeolus observations, their
impact has been investigated globally and for regions and time periods of particularly large
forecast error.

The reduction in forecast error was found to be largest in the tropical upper troposphere
and stratosphere as well as in the mid- and upper troposphere of the Southern Hemisphere.
The Northern Hemisphere shows a somewhat smaller but still beneficial impact of Aeolus
observations. The mean relative reduction in short-range forecast error when verifying
against other conventional observations was found to be between 0.1% and 0.6% in the
Northern Hemisphere and up to 1.6% in the tropics and the Southern Hemisphere. On a
global average, the forecast errors of zonal wind, temperature, and geopotential up to five
days lead time are reduced by 2-4% when assimilating the Aeolus HLOS winds. In the
upper troposphere and lower stratosphere of the tropics, where the largest impacts were
expected, improvements of even 5-8% were observed. For these regions, ECMWF (Rennie
et al., 2021) and Météo-France (Pourret et al., 2022) reported a reduction in the root
mean square error (RMSE) of about 2%, which was verified using operational analyses.
At the National Oceanic and Atmospheric Administration (NOAA) (Garrett et al., 2022),
a reduction of up to 4% was observed. The slight discrepancies compared to the impact
study with the ICON model are likely due to differences in the data assimilation systems
and the set up of the OSEs. The potential of Aeolus HLOS wind observations in NWP
models depends on the number and quality of observations but also on the description of
background error covariances in the data assimilation system that defines the spread of
observed information in model space. Furthermore, the analysis used for verification can
affect the results of the OSEs.

To better understand the underlying dynamics leading to the overall promising statisti-
cal improvements, specific dynamical changes and processes related to the positive impact
of Aeolus observations have been investigated. In the tropics, two weeks of large improve-
ment in the East Pacific west of the Peruvian coast and about five weeks in the global
equatorial band in the stratosphere particularly stand out. These regions and periods are
associated with a change in the phase of the large-scale tropical circulation systems, the
ENSO and the QBO. In addition, it has been focused on the midlatitudes, where spatiotem-
poral surveys show large forecast error reduction following the ET of tropical cyclones and
their interaction with the midlatitude waveguide. Overall, the results of this study show
potential for further investigations of the dynamical effects of the assimilation of the Aeolus
wind observations for both the higher latitudes in the Northern and Southern Hemispheres.



Chapter 6

Conclusions and Outlook

6.1 Main conclusions

Global wind profiles from the Doppler Wind Lidar (DWL) satellite mission Aeolus are an
important recent supplement to the Global Observing System (GOS). The assimilation of
the Aeolus horizontal line-of-sigh (HLOS) wind product is expected to significantly improve
the initial state in Numerical weather prediction (NWP) and thus have a beneficial impact
on the analysis and forecast. The overreaching goal of this thesis is to contribute to the
optimal use of the novel Aeolus wind observations in NWP models.

To use the Aeolus observations in NWP data assimilation, the knowledge and mini-
mization of their systematic errors are required. Furthermore, an observational error must
be assigned to the DWL wind measurements. This thesis evaluated the quality of the novel
Aeolus data set for effective use in NWP data assimilation systems through a comprehen-
sive validation analysis with independent model and observation-based reference data sets.
The estimation of the representativeness errors, which are an important contribution to
validation statistics, then allowed the determination of the Aeolus observational error.

The impact of the Aeolus observations was quantified using the ICOsahedral Nonhydro-
static (ICON) model’s global data assimilation system at Deutscher Wetterdienst (DWD).
Besides a global statistical overview showing the largest forecast error reductions in the
tropical upper troposphere and lower stratosphere, indications of atmospheric features
and dynamical scenarios constituting pathways for significant improvement have been dis-
cussed. Aeolus observations have been shown to have a particularly large impact on the
phase change of the large-scale tropical circulation systems, the Quasi-Biennial Oscillation
(QBO) and the El Niño-Southern Oscillation (ENSO), but also on the midlatitude dynam-
ics. Spatio-temporal analyses provided evidence for reducing downstream forecast errors
associated with the interaction of cyclonic systems with the midlatitude waveguide. These
results strongly motivate an Aeolus follow-on mission and the future use of space-based
DWL observations in operational NWP.

Main conclusions: Validation of Aeolus HLOS wind observations

The first research question is concerned with the characterization of the systematic
and random errors of the Aeolus wind observations as well as the estimation of the Aeolus
observational error. This was addressed by providing a comprehensive validation statistic
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using collocated radiosonde observations and two different global NWP models, the Euro-
pean Centre for Medium-Range Weather Forecasts (ECMWF) Integrated Forecast System
(IFS) and the ICON model of DWD, as reference data. All validation results around the
collocation points were compared for the midlatitudinal band 23.5−65◦ of the Northern
Hemisphere. Additionally, a model-only global statistic was used to place the regional
validation results in a global context.

A time series from the early stages of the mission showed that the systematic differ-
ences in Aeolus winds vary significantly with time, especially for the Rayleigh channel.
Furthermore, it was found that the discrepancies between the ascending and descending
orbital phases pose a challenge to the use of these data in NWP models. The three different
reference data sets showed good agreement in estimating the systematic error, suggesting
that the results are not driven by model biases. Slightly larger fluctuations in the system-
atic and random differences of the Mie wind observations compared to Rayleigh winds are
likely due to uncertainties and discrepancies in NWP models in cloudy regions. The mean
absolute systematic difference was found to be approximately 1.8 m s−1 for the Rayleigh
winds and 1.6 m s−1 for the Mie wind observations. These values are beyond Aeolus’s
mission requirements, which state that the bias should be smaller than 0.7 m s−1.

The mean random difference assessed in the validation analysis is about 3-5 m s−1

for the Rayleigh channel and 3-4 m s−1 for the Mie channel. Deviations between the
radiosonde and model-based validation results of the random error estimates are mainly
due to differences in spatial and temporal representativeness. The temporal changes in the
random difference of the Rayleigh wind observations are believed to be primarily related to
changes in the laser output energy. However, the return signal of molecular backscattering
can also be affected by factors such as Doppler broadening or solar background noise,
whereby the latter is associated with seasonal variations. The return signal from clouds
typically is stronger, primarily depending on the presence of aerosols or hydrometeors and
not on the laser energy. Thus, the random difference of the Mie wind observations is more
stable and smaller than the random difference of Rayleigh wind observations.

To meaningfully evaluate the Aeolus observational error for the validation, the repre-
sentativeness, as well as model and radiosonde observational errors, were determined. In
particular, the higher spatial resolution of a radiosonde observation compared to the reso-
lution of a global NWP model, the chosen collocation criteria, and the spatial and temporal
shift during radiosonde ascents are sources of error that led to discrepancies between model-
based validation and comparisons with radiosonde observations. The Aeolus observations
correspond to a line measurement, whereby the NWP models treat the Aeolus HLOS winds
as point measurements. Radiosonde observations can also be interpreted as a point mea-
surement. Using regional Consortium for Small-scale MOdeling (COSMO-DE) analyses
and high-resolution ICON Large Eddy Model (LEM) simulations, differences between a
point and a 90 km (Rayleigh) or 10 km (Mie) line measurement were calculated. A large
increase in the representativeness error was found with increased distance between the two
measurement geometries and for specific altitude levels where wind gradients are strong.
The results of the error estimation stress the importance of considering representativeness
error sources when comparing the HLOS winds with other spatially and temporally offset
observations. Accounting for all sources of error, the estimated Aeolus observational error
for the comparisons with the ECMWF IFS model equivalents and radiosonde observations
in the midlatitudes of the Northern Hemisphere was found to be between 4.3 and 4.5 m
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s−1 for Rayleigh and about 2.5 (3.4) m s−1 for the Mie wind observations with 90 (10) km
horizontal resolution. The Aeolus wind observational error estimates for the comparisons
with the DWD ICON model equivalents is about 0.5 m s−1 smaller, probably due to differ-
ences in the description of background error covariances in the data assimilation systems
of ECMWF and DWD. Overall, the Aeolus wind observational error showed increased val-
ues towards the upper troposphere and lower stratosphere, with the largest discrepancies
between the validation reference data sets around the tropopause. It was therefore recom-
mended to assign the errors in the data assimilation systems in such a way that less weight
is given to the observations there.

The second research question asked how systematic errors can be corrected to op-
timize the use of the Aeolus wind observations in the data assimilation. The Mie wind
bias was found to be relatively stable within the validation study. However, detailed in-
vestigations of the Rayleigh wind bias showed that it depends not only on the satellite’s
flight direction and the season but also on latitude and longitude. These detected bias de-
pendencies were expected to be related to long-wave and solar radiation fluctuations and
the associated response from the telescope’s thermal control system. The spectrometers
are very sensitive to small changes in the direction of the received laser light from the
atmosphere that can cause apparent frequency shifts and hence a wind bias. The latitude
variations and orbit differences were found to be particularly large during the Northern
Hemispheric summer, which is the season with the largest latitude gradient in the asym-
metric radiative response. A simple latitude-dependent bias correction approach based on
the previous seven days was shown to be able to reduce the bias. However, a temporal
trend of the remaining bias values still occurred. Taking both the latitude and the longi-
tude dimension into account when correcting for the Rayleigh bias, the residual could be
further reduced by nearly 50 % for the ascending and descending phases of the satellite’s
orbit. Although a near-real-time bias correction operationally implemented in April 2020
based on the linear correlations between O-B statistics from ECMWF and temperatures
from the telescope primary mirror M1 eliminates most part of the systematic error, several
NWP centers show a small residual bias. This remaining bias could be further reduced at
DWD using the latitude-dependent bias correction scheme for specific altitude levels, thus
improving the integration of the Aeolus observation in the assimilation system.

Main conclusions: Impact of Aeolus HLOS wind assimilation in the
global model ICON

The third research question that motivated this thesis is how NWP might benefit from
assimilating the novel DWL observations from the Aeolus satellite in the framework of
the global assimilation system at DWD. To address this, a three-month Observing System
Experiment (OSE) was conducted using the operational settings of the global model ICON
and quality control based on the validation study. First, the systematic differences between
the control and the Aeolus assimilation run in the analysis and the forecast errors were
assessed on a global scale. Despite large random and complex systematic errors, the results
of the global impact statistics indicate that the Aeolus observations are an important recent
addition to the operationally assimilated observing system.
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The systematic analysis influence of the Aeolus observations was found to be most
pronounced in jet regimes, around large-scale circulation systems, and convectively active
areas in the tropics. In the troposphere, the pattern of systematic changes appeared to be
fairly constant over time. However, the equatorial stratosphere showed large systematic
changes in the zonal wind analysis varying in time during the OSE period. All of these
regions have above-average systematic analysis errors and poor observational coverage.

The largest forecast error reduction was found for the 2-3 day wind and temperature
forecasts in the tropical upper troposphere and lower stratosphere and in the Southern
Hemisphere. In the Northern Hemisphere, the Aeolus HLOS wind observations were found
to have a less pronounced, but still relatively large, average impact compared to other
observing systems. The verification with other conventional observations showed a mean
relative reduction in short-range forecast error between 0.1% and 0.6% in the Northern
Hemisphere and up to 1.6% in the tropics and the Southern Hemisphere. When verify-
ing against the ECMWF Reanalysis 5th Generation (ERA5) reanalysis, forecast errors
of the zonal wind, temperature, and geopotential up to five days lead time were found to
be reduced by 2-4% on global average and even up to 5-8% around the tropical tropopause.

The fourth research question underlying this thesis concerns dynamical scenarios
and processes that are related to particularly high impact. Regions with a very large
reduction in forecast error in the OSE period were found in the equatorial band in the
lower stratosphere and around the eastern Pacific at the tropospheric jet levels. The shift
in the oscillatory phase of two important large-scale tropical circulation systems - the
QBO and the ENSO - appeared to be associated with this large forecast error reduction
due to the Aeolus observations. In August 2020, the stratospheric jet changed from east
to west, which was found to be related to an improvement in the zonal wind forecast of
about 10-15%. Further investigation suggested that the large impact in the equatorial band
around 50 hPa was largely amplified by a special QBO range bin setting that has been
adjusted to account for atmospheric winds up to altitudes of 25 km one day per week. This
would mean that the improvements are mainly due to good measurements of the upper
atmosphere and improved detection of vertically propagating waves. However, a longer
accompanying experiment would be necessary for a precise assessment, especially since the
stratosphere generally exhibits large uncertainties in NWP models.

In addition to the equatorial stratosphere, the tropical troposphere in the Pacific Ocean
was found to be characterized by large-scale dynamical variability in August 2020. As
indicated by the Oceanic Niño Index (ONI), the state of the Southern Oscillation changed
from normal to the La Niña phase during this month. The associated strengthening of
upper and middle tropospheric wind patterns in the eastern Pacific region, which is related
to the zonal Walker circulation, was favorably captured by Aeolus.

Furthermore, the influence of Aeolus observations on midlatitude dynamics has been
investigated. Although continents are already comparably well observed by other obser-
vation types, the impact study results showed that HLOS winds have a relatively large
beneficial impact. However, the spatial distribution displayed that the effects are partially
masked by fluctuations in the three-month mean flow. Systematically positive impact
particularly stood out in storm track regions in the Southern Hemisphere, but some av-
erage improvements could also be seen in the Northern Hemisphere. Hovmöller diagrams
were used to examine the spatiotemporal evolution of forecast error reduction, focusing
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on oceanic regions and the midlatitude Rossby waveguide. Several cases of improvements
associated with extratropical transition (ET) and the subsequent interaction with the mid-
latitude waveguide were found. The analysis of the tropical cyclone case Fay showed that
the Mie channel of Aeolus quite well observed the divergent outflow during the onset of
ET. Improvements in forecast quality of 500-hPa geopotential could be traced along the
developing RWP propagating to Europe. Either the better coverage of upper troposphere
outflow is linked to latent heat release or/and the reduction of uncertainties in the dry
baroclinic upper-level flow dynamics were believed to cause the positive impact on the
associated downstream development. Additional examples of ET events (Hurricanes Laura
and Paulette and Typhoons Bavi and Maysak) support and motivate the potential of space-
based lidar observation to impact the forecast quality of such scale-interacting dynamical
processes. Furthermore, large forecast error reduction was found in the Southern Hemi-
sphere around the development of an RWP likely associated with cyclogenesis in the lee of
the Andes. Overall, the dynamical scenarios presented provide a good basis to lead the way
for detailed future research on the impact of satellite-based DWL observations on NWP.

6.2 Outlook

This thesis addresses important challenges to the global observing system identified by the
scientific community. Open research questions related to the optimal use of the Aeolus
wind observations in NWP have been answered and potential pathways for a significant re-
duction of forecast errors through these additional space-based wind profile measurements
have been discussed. The overall very large reduction in forecast errors and observed
benefits for specific important dynamical systems motivate the exploitation of the Aeolus
observations and support the preparation of a follow-on mission that the European Or-
ganisation envisages for the Exploitation of Meteorological Satellites (EUMETSAT). 4%
improvements in NWP, as detected by the Aeolus observations, contribute an additional
2.6 billion euro to European GDP over a lifetime of 3.5 years (London Economics Space
Team, 2022). Consequently, follow-on Aeolus operations have the potential to build on the
existing mission success for the European society. The validation statistics of this thesis
show which error sources and dependencies a future DWL satellite mission should expect
and how these errors can be optimally reduced.

Future studies are proposed, in particular, to deepen the investigation of dynamic sce-
narios that lead to a significantly large impact of Aeolus on NWP predictions. Large-scale
convective circulation systems in the tropics, such as the QBO and the ENSO, typically
have high teleconnections with other atmospheric systems, e.g., through other oscillation
phenomena in the extratropics or wave activity. Therefore, a poor representation of the
variability of the large-scale tropical flow can lead to large uncertainties in many parts
of the world. In addition to short- and medium-range NWP, seasonal and sub-seasonal
forecasts are expected to benefit from the potential of the Aeolus observations to better
represent the initial state of fluctuations in such large-scale circulation systems. There-
fore, long-term research studies are suggested to also assess the weekly to monthly forecast
skill. In addition, a longer OSE would be required to extend the investigation of tropical
cyclone events. Tropical cyclones are not common events and the nature of sampling by
Aeolus, which is only one single instrument on one satellite, makes it difficult to obtain
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statistically significant results. Furthermore, it is proposed to deepen the investigation of
the influence of HLOS winds on the interaction of small- or mesoscale convective systems
with the upper-level baroclinic flow. Studying the influence of Aeolus on increased forecast
errors or even forecast busts associated with these scenarios, in combination with feature-
based diagnostics, would allow to evaluate the impact on the error growth representation.
So far, the causes of forecast busts in the Northern Hemisphere are much better understood
compared to the Southern Hemisphere. Therefore, a better assessment of the large impact
found in the southern parts of the world would be of great interest, such as around storm
track areas in the Indian Ocean, on the eastern side of Australia, and the region southeast
of the Andes. Other regions and features that have not yet been studied in detail but show
a large reduction in forecast error through the assimilation of Aeolus wind observations in
the OSE are the polar regions, the Himalayan region, and parts of East Asia.
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