Aus dem Institut für Epidemiologie Helmholtz Zentrum München

Direktor: Prof. Dr. Annette Peters

Multi-omics of Chronic Kidney Disease in Individuals with Prediabetes or Type 2 Diabetes in the Era of Precision Health

Dissertation zum Erwerb des Doktorgrades der Humanbiologie an der Medizinischen Fakultät der Ludwig-Maximilians-Universität zu München

> vorgelegt von Jialing Huang

> > aus

Guangdong, China

Jahr

2023

Mit Genehmigung der Medizinischen Fakultät der Universität München

Berichterstatter:	Prof. Dr. Annette Peters
Mitberichterstatter:	Prof. Dr. Peter Weyrich
	Prof. Dr. Maciej Lech
Mitbetreuung durch den	
promovierten Mitarbeiter:	Dr. Rui Wang-Sattler
Dekan:	Prof. Dr. med. Thomas Gudermann
Tag der mündlichen Prüfung:	08.03.2023

Affidavit

Street

Zip code, town, country

I hereby declare, that the submitted thesis entitled:

Multi-omics of Chronic Kidney Disease in Individuals with Pre-diabetes or Type 2 Diabetes in the Era of Precision Health

.....

is my own work. I have only used the sources indicated and have not made unauthorised use of services of a third party. Where the work of others has been quoted or reproduced, the source is always given.

I further declare that the submitted thesis or parts thereof have not been presented as part of an examination degree to any other university.

Munich, 10.03.2023

Jialing Huang

place, date

Signature doctoral candidate

Table of content

Affiday	/it	.I
Table o	of content	Π
List of	abbreviations	V
List of	publicationsV	۲V
Contril	bution to papers	п
Contrib	ution to paper IV	Π
Contrib	ution to paper IIV	Π
Contrib	ution to paper III (Apendix)V	Π
Summa	aryVI	П
Zusam	menfassung	X
1.	Background	1
1.1	Precision health and multi-omics techniques	1
1.2	The global burden of CKD and the contribution from (pre-) T2D	1
1.3	Complex biological processes of hyperglycemia-related CKD	2
1.4	Current omics studies in (hyperglycemia-related) CKD	2
1.5	Inadequate early detection of CKD	4
1.6	Discrepancies of (candidate) biomarkers' effects for kidney disease	5
1.7	Paucity of systematic biological understanding of hyperglycemia-related CKD	5
2.	Contributing papers	6
3.	Rationale	7
4.	Methods	7
4.1	Study population	7
4.2	Definition of hyperglycemia	8
4.3	Definitions of kidney traits	8
4.4	Multi-omics techniques in study population	9
4.5	Mouse study	9
4.6	Statistical analyses	0
5.	Results 1	.2
5.1	Paper I ⁶⁹ 1	2
5.2	Paper II ⁷⁰	3
5.3	Paper III 1	3
6.	Discussion 1	.5
6.1	Early detection of CKD in hyperglycemia 1	5
6.2	Interaction and condition-specific effects of (candidate) biomarkers for kidney traits 1	5

6.3	Improve systematic biological understanding to contribute to precision health	16	
6.4	Limitation	18	
7.	Conclusion	18	
8.	References	19	
Paper I		24	
Paper II		47	
Apendix A: Paper III			
Acknowledgements			

List of abbreviations

2-h glucose	Two hour post load glucose
2SMR	Two-sample MR
ACEIs	Angiotensin-converting enzyme inhibitors
ACs	Acylcarnitines
ADA	American Diabetes Association
AdaBoost	Adaptive boosting
AKI	Acute kidney injury
ANOVA	Analysis of variance
ARBs	Angiotensin receptor blockers
AUC	Receiver operating characteristic curve
CKD	Chronic kidney disease
CKD eGFRcrea	$eGFR_{crea}$ -based CKD defined as $eGFR_{crea} < 60 \text{ ml/min}/1.73 \text{ m}^2$
CKD _e GFRcrea-cys	eGFR-based CKD defined as eGFR $< 60 \text{ ml/min}/1.73 \text{ m}^2$, which was calculated from serum creatinine and cystatin C.
CKD-EPI	Chronic Kidney Disease Epidemiology Collaboration
CKD _{UACR}	UACR-based CKD defined as UACR \geq 30 mg/g.
CRP	C-reactive protein
db/db	Leptin-receptor deficient mouse model
DKD	Diabetes kidney disease
DMMONs	Directed mediating multi-omics networks
DMOIN	Different levels of multi-omics integration network
ECM	Extracellular matrix protein
EGF	Epidermal growth factor
eGFR	Estimated glomerular filtration rate
eGFR _{crea}	Estimated glomerular filtration rate calculated serum creatinine.
EWAS	Epigenome-wide association studies
FG	Fasting glucose
GGM	Gaussian graphical model
GPS	Genome-wide polygenic score
GWAS	Genome-wide association studies

HbA _{1C}	Glycated haemoglobin
IGFBP2	Insulin-like growth factor binding protein 2
IPW	Inverse probability weighting
IVW	Inverse variance weighted
KIM1	Kidney injury molecule1
MOIN	Multi-omics integration network
MR	Mendelian randomization
MR-PRESSO	MR pleiotropy residual sum and outlier
MWAS	Metabolome wide association studies
NGAL	Neutrophil gelatinaseassociated lipocalin
NGT	Normal glucose tolerance
PC aa	Phosphatidylcholine diacyl
PWAS	Proteome wide association studies
QC	Quality control
QN	Quantile normalization
RAS	Renin-angiotensin system
RF	Random forest
SD	Standard deviation
SM	Sphingomyelin
SVM	Support vector machine
T2D	Type 2 diabetes
T2DCKD	T2D-related CKD
TWAS	Transcriptome wide association studies
UACR	Urinary albumin-creatinine ratio
UKBB	UK biobank cohort
WHO	World Health Organization
WT	Wild type

List of publications

This thesis consists of the following papers:

Huang J, Huth C, Covic M, Troll M, Adam J, Zukunft S, et al. Machine Learning Approaches Reveal Metabolic Signatures of Incident Chronic Kidney Disease in Individuals With Prediabetes and Type 2 Diabetes. *Diabetes*. 2020;69(12):2756-65.

Huang J, Covic M, Huth C, Rommel M, Adam J, Zukunft S, et al. Validation of Candidate Phospholipid Biomarkers of Chronic Kidney Disease in Hyperglycemic Individuals and Their Organ-Specific Exploration in Leptin Receptor-Deficient db/db Mouse. *Metabolites*. 2021;11(2):89.

Huang J, et al. Multi-omics landscape of chronic kidney disease in individuals with prediabetes or type 2 diabetes: from associations towards precision medicine. (manuscript)

Contribution to papers

Contribution to paper I

I was responsible for conceptualization, data analyses, and writing the paper.

Contribution to paper II

I was responsible for conceptualization, data analyses, and writing the paper.

Contribution to paper III (Apendix)

I was responsible for conceptualization, data analyses, and writing the manuscript.

Summary

Precision health entails disease risk assessment for individuals, early detection of preclinical conditions, and the implementation of preventive and therapeutic strategies. Multi-omics techniques enable detailed molecular and physiological profiling, thereby advancing towards the goal of precision health. Globally, chronic kidney disease (CKD) affects approximately 9.1% of the general population. Diabetes mellitus is a leading cause of CKD, and the prevalence and burden of (pre) diabetes-related CKD are increasing worldwide. CKD is a multifactorial disease manifested by an assortment of pathological processes. Although various aspects of CKD have been investigated, currently established risk factors have limited predictive power, the effects of proposed (candidate) biomarkers are inconsistent across studies, and the systematic biological mechanism is still uncertain, especially in individuals with (pre-) T2D, a hyperglycemic population at high risk for CKD.

Based on multi-omics (i.e., genotyping, DNA methylation, gene expression, proteomics, metabolomics) and clinical assessment data of the longitudinal population-based KORA (Cooperative Health Research in the Region of Augsburg) cohort, this thesis aims to contribute to improving precision health of CKD in hyperglycemic individuals by enhancing early detection, illustrating the condition-specific effects of identified candidate biomarkers, and expanding our knowledge of the systematic biology.

This thesis first proposed a concise prediction model demonstrating superior predictive capacity for incident CKD in hyperglycemic individuals, consisting of seven predictors (age, fasting glucose, total cholesterol, estimated glomerular filtration rate (eGFR) values, urinary albumin-creatinine ratio (UACR) values, sphingomyelin (SM) C18:1, and phosphatidylcholine diacyl (PC aa) C38:0). A genome-wide polygenic score (GPS) for eGFR (GPS_{eGFR}) values was constructed using *KORA Follow Up 4* individuals and replicated in the UK biobank cohort, which demonstrated consistent improvement in prediction of incident CKD in hyperglycemia and improved the performance on top of these seven predictors. Moreover, 120 multi-omics molecules of prevalent CKD in hyperglycemia were identified, of which 64 (two CpGs, two RNAs, 46 proteins and 14 metabolites) were successfully replicated. In multi-omics prediction, supplementing current suggested predictor sets with omics levels from GPS_{eGFR}, candidate proteins and metabolites was found to improve the prediction performance of future CKD in hyperglycemia.

To determine if the effects of candidate biomarkers of CKD (prevelant/incident) were specific for hyperglycemia, their interaction effects were investigated. SM C18:1 and PC aa C38:0 of CKD (prevalent and incident), and 58 of 64 multi-omics candidates of prevalent CKD were only significant in the hyperglycemic subgroup, particularly SM C18:1, indicating that these molecules may have an interaction effect on CKD with glycemic status.

To better elucidate the intricate biological processes of hyperglycemia-related CKD, we constructed eight subnetworks for T2D-related CKD (T2DCKD) and categorized our identified multi-omics candidates into them. In hyperglycemia, 18 of 64 replicated candidates with prevalent CKD were associated with GPS_{eGFR} and demonstrated mediation effects with GPS_{eGFR} and eGFR. Bi-directional two-sample Mendelian randomization supported that 19 candidates may have a causal relationship with kidney traits (CKD, eGFR, and UACR). These genetic evidence support that the revealed candidate biomarkers may be part of the upstream/downstream pathways of CKD, eGFR or UACR. In addition, 64 replicated candidates were classified based on their directions of eGFR/UACR, and their potentially involved pathophysiological T2DCKD processes were displayed within each group. Different groups of candidate biomarkers presented diverse relationships of kidney phenotypes (kidney function or kidney damage) and distinct patterns of underlying pathogenetic processes, which will help to improve insights of identifying personalized therapeutic targets for hyperglycemia-related CKD.

The connections between candidate biomarkers from different omics levels and whether they share the same pathways are still unresolved. To enlarge our knowledge of this topic, this thesis utilized Gaussian graphical modeling and causal mediation analyses to examine how different levels of omics molecules (i.e., CpGs, RNAs, proteins and metabolites) that were associated with CKD in hyperglycemia interacted with one another. Thus, potential new causal links, relevant molecular pathways, and probable key drivers of the pathways were identified. In addition, three distinct subgroups of CKD patients with hyperglycemia were identified using three potential novel proteins (i.e., NBL1, EFNA5 and JAM2), confirming that distinct dominant pathological processes in distinct subgroups of CKD patients could result in distinct theoretical therapeutic targets.

In conclusion, this thesis demonstrates that multi-omics profiles can aid in the early detection of future CKD, the identification of subgroups of susceptible populations, and the advancement of systematic biological understanding of CKD in the hyperglycemic population. This thesis delves into the complex multi-omics landscape of CKD in hyperglycemia and demonstrates how multi-omics profiles can provide important contributions towards precision health.

Zusammenfassung

Präzisionsgesundheit umfasst die Bewertung des Krankheitsrisikos individuell für ein Individuum, die frühzeitige Erkennung präklinischer Zustände, sowie die Umsetzung präventiver und therapeutischer Strategien. Multi-omics-Techniken ermöglichen eine detaillierte molekulare und physiologische Profilerstellung und bringen so das Ziel der Präzisionsgesundheit voran. Weltweit sind etwa 9,1 % der Bevölkerung von chronischen Nierenerkrankungen (CKD) betroffen. Diabetes mellitus ist eine der Hauptursachen für CKD, und die Prävalenz und Belastung durch (prä-)diabetesbedingte CKD nehmen weltweit zu. CKD ist eine multifaktorielle Erkrankung, die sich durch eine Reihe von pathologischen Prozessen manifestiert. Obwohl verschiedene Aspekte der CKD untersucht wurden, haben bedingte etablierte Risikofaktoren nur eine begrenzte Vorhersagekraft, die Auswirkungen der vorgeschlagenen Biomarker (-Kandidaten) sind in verschiedenen Studien uneinheitlich, und der systematische biologische Mechanismus ist immer noch ungewiss, insbesondere bei Personen mit (Prä-) T2D, eine hyperglykämische Bevölkerung mit hohem CKD-Risiko.

Auf der Grundlage von Multi-omics (d.h. Genotypisierung, DNA-Methylierung, Genexpression, Proteomics, Metabolomics) und klinischen Beurteilungsdaten der bevölkerungsbasierten KORA-Kohorte (Kooperative Gesundheitsforschung in der Region Augsburg) soll diese Arbeit einen Beitrag zur Verbesserung der Präzisionsgesundheit von CKD bei hyperglykämischen Personen leisten, indem sie die Früherkennung verbessert, die Bedingungsspezifisch Auswirkungen identifizierter Kandidaten-Biomarker veranschaulicht und unser Wissen über die Systembiologie erweitert.

In der vorliegenden Arbeit wurde zunächst ein prägnantes Modell entwickelt, das bei hyperglykämischen Personen eine überdurchschnittliche Vorhersagekraft für das Auftreten von CKD aufweist und sieben Variablen umfasst (Alter, Nüchternglukosestatus, Gesamtcholesterin, geschätzte glomeruläre Filtrationsrate (eGFR), Urin-Albumin-Kreatinin-Verhältnis (UACR), Sphingomyelin (SM) C18:1 und Phosphatidylcholin-Diacyl (PC aa) C38:0). Dabei wurde ein genomweiter polygener (polygenetischen) Score (GPS) für eGFR-Werte (GPS_{eGFR}) unter Verwendung von *KORA Follow Up 4*-Individuen konstruiert und in der britischen Biobank-Kohorte repliziert, was eine konsistente Verbesserung der Vorhersage von CKD-Inzidenzen bei Hyperglykämie aufzeigte und dies zusätzlich zu diesen sieben Vorhersagevariablen verbesserte. Darüber hinaus wurden 120 Multi-omics-Moleküle, identifiziert, die für prävalente CKD bei Hyperglykämie in Frage kommen, von denen 64 (zwei CpGs, zwei RNAs, 46 Proteine und 14 Metaboliten) erfolgreich repliziert wurden. Bei der Multi-omics-Vorhersage zeigte sich, dass die Ergänzung der derzeit vorgeschlagenen Variablen durch omics-Werte von GPS, Protein- und Metabolitenkandidaten die Vorhersageleistung für zukünftige CKD bei Hyperglykämie noch weiter verbessert.

Um festzustellen, ob die Auswirkungen der Biomarkerkandidaten für CKD (Prävalenz/Inzidenz) spezifisch für Hyperglykämie sind, wurden ihre Interaktionseffekte untersucht. Des Weiteren waren SM C18:1 und PC aa C38:0 für CKD (prävalent und inzident), sowie 58 von 64 Multiomics-Kandidaten für prävalente CKD nur in der hyperglykämischen Untergruppe signifikant, insbesondere SM C18:1, was darauf hindeutet, dass diese Moleküle möglicherweise einen Interaktionseffekt auf CKD mit dem glykämischen Status haben.

Um die komplizierten biologischen Prozesse der Hyperglykämie-bedingten CKD besser zu verstehen, konstruierten wir acht Subnetzwerke für T2D-bedingte CKD (T2DCKD) und klassifizierten unsere identifizierten Multi-omics-Kandidaten in diesen. Bei Hyperglykämie, 18 von den 64 replizierten Kandidaten waren mit der GPSeGFR assoziiert und zeigten Mediationseffekte mit GPS_{eGFR} und eGFR. Die bidirektionale Mendelsche Randomisierung mit zwei Stichproben ergab, dass 19 Kandidaten eine kausale Beziehung zu Nierenparametern (CKD, eGFR und UACR) haben könnten. Diese genetischen Beweise sprechen dafür, dass die entdeckten Biomarkerkandidaten Teil der vor- / nachgelagerten Pfade von CKD, eGFR oder UACR sein könnten. Es wurden 64 replizierte Kandidaten auf der Grundlage ihrer Richtung der eGFR/UACR klassifiziert und ihre potenziell beteiligten pathophysiologischen T2DCKD-Prozesse innerhalb jeder Gruppe dargestellt. Verschiedene Gruppen von Biomarker-Kandidaten zeigten unterschiedliche Beziehungen von Nieren-Phänotypen (Nierenfunktion oder Nierenschäden) und unterschiedliche Muster der zugrunde liegenden pathogenetischen Prozesse, die zur Verbesserung der Einblicke in die Identifizierung personalisierter therapeutischer Ziele für Hyperglykämie-bedingte CKD beitragen werden.

Die Zusammenhänge zwischen Biomarkerkandidaten aus verschiedenen Omics-Ebenen und die Frage ob sie dieselben Signalwege nutzen, sind noch nicht geklärt. Um dies besser zu verstehen wurden in dieser Arbeit Gaußsche grafische Modellierung und kausale Mediationsanalysen eingesetzt, um zu untersuchen, wie verschiedene Ebenen von Omics-Molekülen (d. h. CpGs, RNAs, Proteine und Metaboliten), die mit CKD bei Hyperglykämie assoziiert waren, miteinander interagierten. So wurden potenzielle neue kausale Zusammenhänge, relevante molekulare Pfade und mögliche Schlüsselfaktoren dieser Pfade identifiziert. Weiterhin wurden drei verschiedene Untergruppen von CKD-Patienten mit Hyperglykämie anhand von drei potenziellen neuen Proteinen (i.e., NBL1, EFNA5 and JAM2) identifiziert. Dies bestätigt, dass verschiedene dominante pathologische Prozesse in verschiedenen Untergruppen von CKD-Patienten zu verschiedenen theoretischen therapeutischen Zielen führen können.

Zusammenfassend zeigt die vorliegend Dissertation, dass Multi-omics-Profile bei der Früherkennung von Nierenerkrankungen, der Identifizierung von Untergruppen anfälliger Bevölkerungsgruppen, sowie zu einem systematischen und biologischen Verständnis von CKD in der hyperglykämischen Bevölkerung signifikant beitragen können. Diese vorliegende Arbeit befasst sich mit der komplexen Multi-omics Landschaft von CKD bei Hyperglykämie und zeigt weiter, wie Multi-omics-Profile zur Präzisionsgesundheit beitragen können.

1. Background

1.1 Precision health and multi-omics techniques

Large-scale multi-omics profiling together with clinical measurements can provide a more complete understanding of the biological processes underlying disease, allowing for improvement of personalized risk prediction, patient stratification, and assignment of molecularly specific treatments, thereby enabling precision health. Zierer et al.¹ identified seven models representing distinct aspects of aging in participants from Twins UK cohort through integration of epigenomics, transcriptomics, glycomics and metabolomics with disease traits. This study demonstrate age-related disease is interconnected and that integrating omics data can reveal novel molecular networks underlying complex phenotypes. Through deep profiling of transcriptomics, metabolomes, cytokines, proteomics and microbiome, Zhou et al.² provided essential insights into the pathways and responses that differ between glucose-dysregulated and healthy individuals during health and disease. This study also identified early personal molecular signatures of onset of type 2 diabetes (T2D) in one individual, such as high-sensitivity C-reactive protein (CRP). Another study ³ from the same cohort have reported the identification of over 67 clinically actionable health discoveries and multiple molecular pathways relevant to metabolic, cardiovascular, and oncologic pathophysiology through integration of clinical measures, genome, immunome, transcriptome, proteome, metabolome, microbiome and wearable monitoring. This study concluded that deep longitudinal profiling can result in actionable health discoveries that contributed to precision health. Liu et al.⁴ identified five subgroups of hepatocellular carcinoma with distinct molecular signatures and each with a different survival rate through integrating data on genomic copy number variations, genomic methylation, transcriptome and small transcriptome. These studies show that multi-omics profiles have capacity to inform precision health of disease.

1.2 The global burden of CKD and the contribution from (pre-) T2D

Chronic kidney disease (CKD) affects approximately 9.1% of the general population worldwide ⁵. CKD is also associated with substantial mortality worldwide. According to World Health Organization (WHO) global health estimates, CKD claimed 1.5% of deaths worldwide, 1.1% of disability-adjusted life-years and 1.3% of life years lost in 2012 ⁶. The burden of CKD has continued to grow as the global all-age mortality rate from CKD increased by 41.5% from 1990 to 2017, totaling 1.2 million deaths in 2017 ⁵. Moreover, in 2017, 1.4 million additional deaths from cardiovascular disease were attributed to impaired kidney function ⁵.

Diabetes mellitus is a leading cause of CKD, which accounts for 30% to 50% of all CKD cases when compared to other established risk factors for CKD ⁶. Diabetes also contributed the most disability-adjusted life-years for CKD in absolute terms in 2017. Only in 2017, CKD caused by T2D resulted in 8.1 million disability-adjusted life-years. Moreover, T2D was the only cause of CKD to show a significant increase in the age-standardised disability-adjusted life-years rate, which increased by 9.5% between 1990 and 2017 ⁵. Additionally, undiagnosed diabetes and pre-

diabetes have been related with a high prevalence of CKD in US, European and Asian populations ⁷⁻¹⁰.

1.3 Complex biological processes of hyperglycemia-related CKD

CKD is a multifactorial disease characterized by a variety of pathological processes. A single process can have an effect on multiple phenotypes and/or other processes involved in the pathogenesis of CKD, for instance, the renin-angiotensin system, which regulates blood pressure and causes hypertension, also increases inflammation and renal fibrosis¹¹. Ectopic lipid accumulation and incomplete fatty acid beta-oxidation caused by mitochondrial dysfunction contribute to the development of kidney diseases ¹². Adipose tissue and adipokines have been shown to have a direct relationship with kidney disease and contribute more than other biological elements ¹³ to the regulation of T2D-related CKD (T2DCKD). Convincing evidence suggested that the formation and accumulation of advanced glycation end products is mediating progressive changes in kidney structure and loss of kidney function ¹⁴. The intrarenal renin-angiotensin system (RAS) plays a crucial role in regulating glomerular hemodynamics and hypertrophy and sclerosis of glomeruli¹⁴. Hyperglycemia drives the process of excessive deposition of extracellular matrix protein (ECM) that is a hallmark of diabetes kidney disease (DKD) ¹⁵. Increased ECM deposition can lead to thickening of the glomerulus and tubule basement membrane, and increased mesangial matrix eventually results in glomerular sclerosis and tubulointerstitial fibrosis ¹⁶. Activation of innate immunity (NLRP3 inflammasome, TLR signaling, and cellular responses (such as macrophage activation)) has been shown to coordinate kidney inflammation in DKD ¹⁷. Abnormal angiogenesis is a well-defined complication of DKD¹⁸. Hypoxia and oxidative stress in the kidney are the main inducers of angiogenesis. It promotes angiogenesis to counteract hypoxia¹⁹ by upregulating VEGF and its receptor KDR²⁰. Patients with CKD or DKD exhibit distinct pathological processes and respond differently to various treatments, requiring the development of targeted theoretical therapeutic strategies for different subgroups of CKD patients.

1.4 Current omics studies in (hyperglycemia-related) CKD

The search for effective prevention strategies and optimal therapeutic targets for CKD is fraught with difficulties due to the disease's molecular complexity and complications. The availability of large-scale omics data sets (e.g., genomics, epigenetics, transcriptomics, proteomics, and metabolomics) has revolutionized biology and resulted in the emergence of systematic approaches for advancing our understanding of the biological processes underlying CKD and related kidney traits in order to benefit prevention, develop biomarkers and drugs.

Genotyping. Genome-wide association studies (GWAS) have identified a multitude of genetic variants associated with CKD and related kidney traits, igniting interest in the use of genetic information to study their biology, causality and improve prediction ²¹⁻²⁵. Mendelian randomization (MR) ²⁶ is used to estimate the causality of an observed association, which used genetic variants as instruments to overcome the limitations (i.e. confounding and reverse causality) of classical epidemiological studies. Through aggregating genome-wide genetic variants into a single score

that reflects an individual's disease risk, genome-wide polygenic score (GPS) ²⁷ captures the polygenic structure of complex diseases, including kidney disease. These two GWAS-based approaches open up new avenues for studying CKD and related kidney traits.

Methylation. Increasing evidence suggests that epigenetic mechanism involving DNA methylation, histone modifications and non-coding RNAs contribute to the regulation of DKD characteristics such as an accumulation of extracellular matrix ²⁸. Numerous epigenome-wide association studies (EWAS) in populations with CKD or DKD have advanced our understanding of the epigenetic mechanisms underlying CKD and DKD, revealing that methylation changes were associated with ageing, inflammation, cholesterol ²⁹, renal fibrosis ³⁰, mitochondrial function ³¹ or oxidative stress pathways ³², etc. However, many of these early EWAS of kidney disease were constrained by cross-sectional designs with relative small sample sizes and the absence of longitudinal follow-up and replication studies 28 . A EWAS with a large sample size (N = 4,859) has highlighted epigenetic variation associated with kidney function. It identified and replicated 19 CpG sites associated with estimated glomerular filtration rate (eGFR) or CKD, five of which were also associated with renal fibrosis in biopsies from CKD patients and demonstrated consistent DNA methylation changes in the renal cortex ³³. Another study showed that changes of kidney cytosine methylation could improve the estimation of kidney function decline in patients with DKD, and that the methylation probes associated with kidney functional decline and injury were located in regulatory regions of the kidney, which are associated with changes in gene expression 34 . A 2021 meta-analyses of EWAS for eGFR (N = 33,605) and UACR (N = 15,068) provided causal evidence for the effect of methylation at PHRF1, LDB2, CSRNP1 and IRF5 on kidney function via two-sample MR (2SMR)³⁵.

Gene expression. Gene expression biomarkers of kidney diseases have been identified using a variety of human samples such as kidney biopsies, urine or circulatory blood ³⁶. Urinary epidermal growth factor (EGF) protein was an independent risk predictor for CKD progression and was capable of improving the prediction of disease events in populations with CKD on top of standard clinical variables. EGF expression in the tubulointerstitial compartment has been proposed as a predictive biomarker of eGFR ³⁷. Another transcriptome study reported 96 genes were upregulated in glomerular gene expression profile of individuals with diabetes-related kidney disease, while over 500 genes such as insulin-like growth factor binding protein 2 (IGFBP2) were downregulated ³⁸. Patients with CKD stage 4-5 had higher gene expression levels of *COX6C, COX7C, ATP5ME*, and *UQCRH* in peripheral blood mononuclear cells compared to those with CKD stage 2-3 or non-CKD ³⁹. In all stages of DKD, increased serum levels of VEGF, MCP-1, EGF and FGF-2 were observed ⁴⁰.

Proteomics. Numerous novel biomarkers for kidney disease have been published, with the majority of these biomarkers being proteins. It reflects the fact that proteins integrate genomic information and environmental influences, are involved in nearly all biological processes, and represent the targets for the majority of drugs ⁴¹. Several proteins have been proposed and validated to be novel biomarkers of kidney disease in varying degrees. For instance, different studies have demonstrated that concentrations of serum cystatin C is superior to serum creatinine for assessment of GFR ⁴²⁻⁴⁴. When serum cystatin C was added to serum creatinine and albuminuria, the

predictive accuracy for all-cause mortality and end-stage renal disease was increased ⁴⁵. Additionally, higher plasma levels of IL6 were observed in elderly patients with renal insufficiency ⁴⁶ and patients with stage 3-5 CKD ⁴⁷, but IL6 was not significantly associated with eGFR ⁴⁷. Elevated plasma levels of resistin were associated with CKD, reduced eGFR and the presence of inflammatory biomarkers ⁴⁸. Moreover, levels of circulatory adiponectin elevated in patients with endothelial dysfunction and stage \geq 3 CKD ⁴⁹. However, adiponectin levels were not associated with renal function in men with T2D ⁵⁰. Although circulatory levels of several proteins have shown potential to be used as biomarkers of kidney disease, some candidate markers have not been replicated. A number of biomarkers support the role of (chronic) inflammation in CKD, however, their utility as markers of CKD itself is debatable. It could be a reflection of the complex and multifactorial characteristics of CKD. Moreover, discrepancies between studies of particular biomarkers, such as adiponectin, may reflect the fact that relationships with CKD occur only in very specific situations ⁴¹.

Metabolomics. The associations between metabolite profiles and CKD have been widely investigated in general and T2D population ⁵¹⁻⁵³. For instance, the kidney plays a role in biosynthesis of carnitine and its excretion into plasma and urine ⁵⁴. Acylcarnitines (ACs) concentrations indicate beta-oxidation of fatty acids ⁵⁵. The occurrence of ACs in serum, plasma and urine is indicative of mitochondrial dysfunction. Higher plasma concentrations of ACs occurred in individuals with reduced eGFR ⁵⁶. Another example is that several lipid classes (sphingolipids, fatty acids, sterols and glycerolipids) show potential as biomarkers for CKD. The most common lipids of sphingolipids are sphingomyelins in humans. Moreover, multiple metabolites such as amino acids and lipid metabolites (choline, lysophosphatidylcholines 18:2 and 18:1) were identified to be significantly associated with incident CKD in Framingham Heart Study ⁵⁷.

1.5 Inadequate early detection of CKD

With the global increasing prevalence and burden of (pre)diabetes-related CKD, early detection of CKD predisposition in this high risk population can improve the opportunity to effectively prevent and manage this microvascular complication of diabetes. Currently, elevated urinary albumin-creatinine ratio (UACR) and reduced eGFR are used to diagnose CKD ⁵⁸. According to the report, UACR, eGFR, age, and gender were highly predictive of the progression of CKD ⁵⁹. Moreover, albuminuria and eGFR are the most important variables for predicting the occurrence and progression of early CKD in individuals with T2D. However, even when combined with age and gender, their predictive power is moderate, with an externally verified c-statistic of 0.68 ⁶⁰. Due to the incapacity of traditional risk factors for accurately predicting of CKD in individuals with T2D, there is an urgent need for identifying more sensitive and specific biomarkers on top of baseline eGFR and UACR and proposing a suitable combination of predictors to improve early detection of CKD in (pre) diabetes. Moreover, whether multi-omics profiles could improve predictive performance on top of traditional risk factors is required to be explored.

1.6 Discrepancies of (candidate) biomarkers' effects for kidney disease

Some potential markers have been described in a single publication and their association with kidney disease appears to be moderate. It may reflect the complicated and multifactorial nature of CKD. For example, the proposed biomarker may perform well and be appropriate for use in children (who are less likely to have comorbidities) or in individuals with a well-defined cause of kidney injury, but not in conditions such as sepsis, where the onset of kidney injury is difficult to define ⁴¹. Furthermore, the overlap in biomarker concentrations observed in different conditions casts doubt on their diagnostic utility ⁴¹. IL18 was described as a valuable and sensitive urinary biomarker in the context of acute kidney injury (AKI) in a cohort of 124 children admitted to paediatric intensive care units and mechanically ventilated ⁶¹. However, the encouraging correlations between neutrophil gelatinase-associated lipocalin (NGAL), kidney injury molecule-1 (KIM-1), or IL18 and kidney disease have not been replicated in other reports, most notably in the context of AKI 62-65. Differences between studies regarding these biomarkers most likely reflect their associations with kidney disease that occur in very specific circumstances. The heterogeneity indicates that a large number of (candidate) biomarkers for CKD have strong interaction effects, implying that their effects on CKD are subgroup- or condition-specific ⁴¹. To benefit from personalized CKD management, it is critical to investigate the interaction effects and conditionspecific effects of the identified (candidate) biomarkers.

1.7 Paucity of systematic biological understanding of hyperglycemiarelated CKD

Given that not all hyperglycemic individuals develop CKD and that not all patients with CKD follow the same disease trajectory, it is critical to investigate their mechanisms of action in order to improve patient stratification and accelerate targeted screening and treatment programs. Previous studies as described above have examined various aspects of CKD or DKD. However, few studies have systematically integrated various types of data including genome, epigenome, transcriptome, proteome, metabolome, and phenome to study CKD in individuals with pre- or T2D. Using multi-omics techniques to investigate CKD will give a more detailed understanding of its pathophysiology. CKD is a multifactorial disease with multiple pathological processes. Although omics studies have proposed many (candidate) biomarkers of CKD or its related kidney traits, their specific roles in diabetes-related CKD remain uncertain. Due to the complex pathogenesis of CKD, identifying more sensitive and specific biomarkers that target the disease's pathological processes can help us better understand the disease and possibly prevent or treat it earlier.

Most proposed (candidate) biomarkers currently use observational data and do not investigate causality. Extending observation estimates to causality will increase the possibility to excavate the "true" relationship and directions between these candidates and kidney traits, which is critical to turning candidates into biomarkers. CKD is polygenic disease and the GPS can capture the major genetic information of phenotypes, which is helpful to identify individuals under high genetic risk and investigate whether the circulatory levels of phenotype-associated-omics molecules

are genetically determined. Moreover, GPS can also support investigating how genetic information flow between omics molecules and phenotypes.

Since most (candidate) biomarkers are discovered in a single omics study, the potential interplay among the molecules from different omics levels has few been discussed, e.g. ACs were found to associate with CKD and DKD, but the potential mediating proteins still need to be discovered. The crosstalk among these molecules can help determine they share a pathway and identify the key driver of the pathway. It not only can improve the biological understanding of the disease processes of CKD, but also can help improve personalized prevention and drug discovery by tackling the key driver of the specific pathway.

Even when eGFR and UACR are normal, there may be pathological molecular changes in the kidneys of individuals at risk of CKD ⁶⁶. Current CKD treatments, such as RAS blockade, focus on delaying disease progression rather than reversing pathological damage ⁶⁷. As a result, it is critical to identify biomarkers capable of identifying early pathological changes, predicting eGFR and/or UACR values, and elucidating relevant pathological processes. A panel of multiple protein biomarkers covering many pathophysiological processes underlying DKD may be more reliable and accurate to predict progression of kidney disease ⁴¹. In light of the multiple pathogenic processes involved, a holistic approach is the only rational strategy for preventing CKD progression ⁶⁸. Therefore, it is important to classify (candidate) biomarkers based on their potential directions with eGFR and UACR, as well as their potential involvement in specific T2DCKD pathological processes. Thus, changes in molecular profiles within a subgroup represent potentially distinct changes in eGFR/UACR values (kidney function or kidney damage) and associated pathological processes, which may contribute to the identification of personalized therapeutic targets for hyperglycemia-related CKD. Moreover, CKD patients' medication response heterogeneity varies greatly. CKD patients with hyperglycemia necessitates the development of distinct theoretical therapeutic strategies. Therefore, the ability of multi-omics profiles to classify hyperglycemiarelated CKD into subgroups and the unique patterns in each subgroup require to be explored to benefit for targeted therapy.

2. Contributing papers

This cumulative thesis comprises three papers.

Paper I: Machine Learning Approaches Reveal Metabolic Signatures of Incident Chronic Kidney Disease in Individuals With Prediabetes and Type 2 Diabetes ⁶⁹.

Paper II: Validation of Candidate Phospholipid Biomarkers of Chronic Kidney Disease in Hyperglycemic Individuals and Their Organ-Specific Exploration in Leptin Receptor-Deficient db/db Mouse ⁷⁰.

Paper III: Multi-omics landscape of chronic kidney disease in individuals with prediabetes or type 2 diabetes: from associations towards precision medicine (Huang *et al.*).

3. Rationale

The overall objectives of this thesis are to improve early detection, understanding of the condition-specific effects of (candidate) biomarkers and systematic biological understanding of CKD in individuals with pre- or T2D using multi-omics techniques. The ultimate goal is to improve precision health of hyperglycemia-related CKD. Three studies were conducted to pursue the following specific research question.

- Paper I aims to identify circulatory metabolite signatures and the best combination of predictors constructed with metabolites and clinical variables to improve early detection of incident CKD specific for hyperglycemia.
- (2) Paper II aims to gain a better biological understanding of the complex metabolic interactions between different organs for candidate biomarkers proposed by paper I for hyperglycemia-related CKD using animal models, and to investigate if these metabolites are associated with the later stage of hyperglycemia-related CKD characterized by reduced eGFR.
- (3) Paper III aims to advance systematic biological understanding of molecules' alterations and mechanisms underlying hyperglycemia-related CKD by utilizing multi-omics techniques and to contribute to precision health for hyperglycemia-related CKD.

4. Methods

4.1 Study population

KORA is a population-based study that consists of health surveys and subsequent follow-up examinations of individuals living in the Augsburg region of southern Germany ⁷¹. The details of study design, sampling method and data collection have been previously described ⁷¹. An overview of KORA study is summarized in Figure 1. Between 1999 and 2001, KORA S4 examined 4,261 individuals. Between 2006 and 2008, the first follow-up (F4) was conducted on 3,080 individuals. Between 2013 and 2014, 2,269 participants were examined in the second follow-up (FF4). KORA S3 (1994-1995) and its follow-up (F3, 2004-2005) examined 4,856 and 3,006 individuals, respectively. Each baseline and follow-up examination included a self-administered questionnaire, physical examinations, and a collection of various biological samples. All study participants gave written informed consent. The KORA study was approved by the ethics committee of the Bavarian Medical Association, Munich, Germany.

Paper I was a longitudinal study analyzing 1,838 participants from F4 and FF4. The human study section of paper II was a cross-sectional study involving 1,907 FF4 participants. Paper III included a cross-sectional design for analyzing data from F4, and a longitudinal design of analyzing data of S4 \rightarrow F4, and F4 \rightarrow FF4, respectively. Part of the results of paper III were replicated in the F3 study (Figure 1).

Figure 1. Overview of the baseline surveys and follow-up examinations of KORA study, but does not include the telephone interview-based General Health Follow-up.

4.2 Definition of hyperglycemia

Hyperglycemia was defined using WHO and American Diabetes Association (ADA) criteria, respectively.

Paper I and paper II used the WHO criteria. Individuals with hyperglycemia and normal glucose tolerance (NGT) were classified using the WHO criteria based on their fasting glucose (FG) and two hour post load glucose (2-h glucose) values ⁷². Hyperglycemic group included participants with pre-diabetes and newly diagnosed T2D (i.e., FG \geq 110 mg/dl and/or 2-h glucose \geq 140 mg/dl), as well as known T2D that was diagnosed by physician validated self-reporting and/or current use of anti-diabetes agents ⁷³.

Given the increasing burden of (pre) diabetes-related CKD, paper III extended the WHO hyperglycemic standard to the American Diabetes Association (ADA), which may detect more hyperglycemic-induced CKD signals. Individuals with hyperglycemia and NGT were classified using the ADA diagnostic criteria based on their FG, 2-h glucose and glycated haemoglobin (HbA₁c) values ⁷⁴. Hyperglycemic group comprised participants with pre-diabetes and newly diagnosed T2D (i.e., FG \geq 100 mg/dl or 2-h-glucose \geq 140 mg/dl or HbA₁c \geq 5.7%), as well as known T2D that was diagnosed by physician validated self-reporting and/or current use of anti-diabetes agents ⁷³.

4.3 Definitions of kidney traits

The eGFR was calculated from serum creatinine (mg/dl) and cystatin C (mg/dl) (IDMS and IFCC standardized values) using the Chronic Kidney Disease Epidemiology Collaboration (CKD-EPI) equation ⁷⁵. CKD was defined as an eGFR < 60 ml/min/1.73 m² or a UACR >= 30 mg/g ⁷⁶.

Other definitions of eGFR and CKD were also used in this thesis and were denoted by symbols, including eGFR_{crea} (eGFR was calculated from serum creatinine (mg/dL) (IDMS standardized values) using the CKD-EPI equation ⁷⁵, CKD_{eGFRcrea-cys} (eGFR-based CKD defined as eGFR < 60 ml/min/1.73 m²) ⁷⁶, CKD_{eGFRcrea} (eGFR_{crea}-based CKD defined as eGFR_{crea} < 60 ml/min/1.73 m²) ⁷⁶, and CKD_{UACR} was defined as an UACR >= 30 mg/g ⁷⁶.

4.4 Multi-omics techniques in study population

4.4.1 Genotyping

The Affymetrix Axiom Array was used to genotype the KORA S4/F4 individuals. Imputation was performed on 541,422 autosomal SNPs following rigorous quality control (QC). The haplo-types were inferred using Shapeit v2. Minimac3 on the Michigan Imputation Server with the 1000G phase 3 reference panel was used to complete the imputation.

4.4.2 DNA Methylation

The DNA methylation levels of KORA F4 individuals were determined using Illumina HumanMethylation450 BeadChip array as previously described ⁷⁷. The methylation data was preprocessed in accordance with the CPACOR pipeline ⁷⁸ and background correction was performed using R package minfi ⁷⁹. Normalization was accomplished through the use of the quantile normalization (QN) and beta-mixture quantile normalization pipelines. The CpG methylation proportion was reported as a beta-value, a continuous variable ranging from 0 to 1.

4.4.3 Gene expression

The Illumina HumanHT-12 v3 Expression BeadChip was used to determine gene expression levels of KORA F4 individuals ⁸⁰. Expression data were log2-transformed and QN with the Bioconductor package lumi.

4.4.4 Proteomics

SOMAscan Assay was used to measure the proteomics data of KORA F4 individuals. SOMAscan platform has been described in detail elsewhere ^{81,82}.

4.4.5 Targeted Metabolomics

Absolute*IDQ*TM p150 Kit (BIOCRATES Life Sciences AG, Innsbruck, Austria) ⁸³ were used to measure serum samples from participants in the KORA F4 study. The Absolute*IDQ*TM p180 Kit (BIOCRATES) was used to measure serum samples from participants in the KORA FF4 study.

4.5 Mouse study

Paper II contained multi-tissue data from a mouse study in which male 8-week (±3d) old wild type (WT) mice (N = 10) and the leptin-receptor deficient mouse model (db/db) mice (BKS.Cg-*Dock7^m*+/+ *Lepr^{db}*/J, N = 10) were used. The District Government of Upper Bavaria (Regierung von Oberbayern, Gz.55.2-1-54-2531-70-07, 55.2-1-2532-153-11) approved the animal experiments. Absolute*IDQ*TM p180 Kit (BIOCRATES Life Sciences AG, Innsbruck, Austria) was used to determine metabolite values in plasma, liver, lung, adrenal glands, adipose tissue, cerebellum and testis samples, and Absolute*IDQ*TM p150 Kit (BIOCRATES) was used to determine the metabolite values in urine.

4.6 Statistical analyses

4.6.1 Paper I 69

Candidate biomarkers of incident CKD in hyperglycemia were identified from 125 targeted metabolites through three-step feature selection that included multivariable logistic regression adjustment of confounders, priority-lasso ⁸⁴ filtering and stepwise Akaike information criterion selection.

Four sensitivity analyses of candidate biomarkers were conducted: 1) Nearest-neighbor propensity score matching in nested case-control study design. 2) Investigating whether the predictive effects of candidate biomarkers for incident CKD was specific for hyperglycemia. 3) Exploration of interaction effects of candidate biomarker with glucose levels for incident CKD. 4) Examination of associations of candidate biomarkers with incident CKD_{eGFRcrea-cys} and CKD_{UACR} separately in hyperglycemic participants with multivariable logistic regression.

The three-step feature selection with 100 random repeats of 10-fold cross-validation was performed to develop the set of metabolite and clinical predictors for incident CKD in hyperglycemia. The receiver operating characteristic curve (AUC) values of developed predictors were compared with the established prediction model. The predictive models of predictors' set were established with three machine learning algorithm (support vector machine (SVM)⁸⁵, random forest (RF)⁸⁶ and adaptive boosting (AdaBoost)⁸⁷) using training data and the AUC values of respective model were computed for the testing data only. In total, 100 repeats of 10-fold cross-validations including 1000 times of three-step feature selection were performed, resulting the best set of predictors for incident CKD in hyperglycemia, which was defined from the most frequently selected set of metabolites and clinical variables.

4.6.2 Paper II ⁷⁰

Inverse probability weighting (IPW)⁸⁸ for continuous exposures of the generalized propensity score approach was used to provide a more reliable estimate of metabolite-outcome associations in participants of the KORA FF4 study. Multivariable linear regression was used to estimate the generalized propensity score, in which each metabolite was regressed on covariates, respectively ⁸⁹. The corresponding estimated generalized propensity scores were then used to calculate the inverse probability weights of each metabolite ⁸⁸. Weighted multivariable linear and logistic regression with applying corresponding inverse probability weights were performed to analyze metabolite association with eGFR_{crea} and CKD _{eGFRcrea} in hyperglycemic individuals of KORA FF4, respectively. Weighted multivariable logistic regression after IPW was used to analyze the association between metabolites and CKD _{eGFRcrea} in NGT individuals of KORA FF4.

The Mann-Whitney U test was used to assess the statistical differences in clinical and metabolic parameters between db/db and WT mice. Differences in the tissue-specific concentration of creatinine and the two candidate metabolite biomarkers between db/db and WT mice were assessed by the student *t*-test.

4.6.3 Paper III

Briefly, the discovery CKD - EWAS, transcriptome-, proteome-, and metabolome-wide association studies (TWAS, PWAS, MWAS) were performed with multivariable logistic regression to examine the associations between CpG / RNA / protein / metabolite and prevalent CKD in hyperglycemic individuals of KORA F4. The replication of identified candidates was also used multivariable logistic regression. I examined the associations between omics candidates and kidney traits in hyperglycemia using linear regression for eGFR or UACR values and logistic regression for incident CKD.

I constructed a multi-omics integration network (MOIN) using Gaussian graphical model (GGM) ⁹⁰ according to the (extended) Bayesian information criterion and clustered the different levels of MOIN (DMOIN) using Markov Cluster Algorithm. The mediation analyses of multi-omics molecules with three time points of kidney traits were conducted in accordance with the outline of Baron and Kenny ⁹¹, and the mediating effect was determined using a non-parametric casual mediation analysis ⁹². The *P*-value of mediation effect was calculated by bootstrapping with 1,000 resamples. Using the defined criteria, the best direction for each mediating triangle was determined. I then mapped the best direction(s) of mediation with DMOIN to generate the directed mediating multi-omics networks (DMMONs) to inspect the direction in which nephrogenic effects may potentially pass through each connected edge of our DMOIN.

I constructed GPS of eGFR with KORA F4 individuals using effect size estimates for SNPs on eGFR values derived from 42 European ancestor studies' GWAS meta-analyses ²³. GPS was built using an additive model with PRSice-2 ⁹³ and finally with the effects of 162,818 SNPs. Our GPS_{eGFR} were replicated using the same SNPs in UK biobank cohort (UKBB) and KORA S4 testing individuals. The association between GPS_{eGFR} and eGFR was evaluated with linear regression in three studies. The associations between GPS_{eGFR} and kidney traits in hyperglycemia were examined using linear regression for eGFR values and logistic regression for CKD. The associations between GPS_{eGFR}-associated-candidates and kidney traits following the outline of Baron and Kenny ⁹¹ and the mediating effect was evaluated with a non-parametric casual mediation analysis ⁹² as well.

I used bi-directional 2SMR to assess the potential causality between replicated proteins/metabolite and kidney traits (CKD, eGFR and UACR values). Our primary MR analysis method was robust adjusted profile score ⁹⁴. The heterogeneity of the SNP instruments was determined with Cochran's *Q* statistic of inverse variance weighted (IVW) and MR-Egger, and the horizontal pleiotropic effect of the involved SNPs was tested with the intercept of the MR-Egger and global test of MR pleiotropy residual sum and outlier (MR-PRESSO) ⁹⁵. When there was evidence of potential violations of heterogeneity or horizontal pleiotropy (*P* < 0.05), I conducted additional outlierscorrected MR analyses (IVW-radial ⁹⁶ and MR-PRESSO) to address the issues.

I investigated the prediction of incident CKD in hyperglycemic individuals of KORA F4 with multi-omics molecules using 100 random repeats of bootstrapping to assess the predictive performance of various combinations of omics levels. Their predictive performance was evaluated using

AUC in testing data. Priority-Lasso was used to select predictors for combinations containing omics candidates. Predictive models were built with RF.

I classified KORA F4 CKD patients with hyperglycemia using various combinations of biomarkers and candidates with Uniform Manifold Approximation and Projection, and identified three distinct groups of CKD patients with three potential novel proteins. The difference among identified groups was determined using the analysis of variance (ANOVA) test for numeric variables with a normal distribution and the Kruskal-Wallis test for those with a skewed distribution. The categorical variables were compared among groups using Pearson chi-squared test or fisher exact test when any theoretical frequency was less than one. The Cochran–Armitage test was also applied when applicable.

5. Results

5.1 Paper I 69

This paper addresses the first aim of this thesis.

Due to the fact that traditional risk factors are insufficient to accurately predict CKD in hyperglycemic individuals, there is an urgent need to identify more sensitive and specific biomarkers in addition to baseline eGFR and UACR and propose a suitable combination of predictors to improve early detection of CKD in (pre) diabetes.

Of 125 analyzed metabolites, this longitudinal study revealed two (sphingomyelin (SM) C18:1 and phosphatidylcholine diacyl (PC aa) C38:0) metabolites presenting significant risk effects of incident CKD in individuals with pre- or T2D after three-step feature selection.

I further illustrated the specificity of the risk effects of two metabolites for hyperglycemia by metabolite-glucose interaction analysis as their risk estimates of incident CKD were significant only in hyperglycemic group and the top tertile of fasting and 2-h glucose, respectively. Notably, SM C18:1 demonstrated strong interaction effects with glucose, as it showed significant multiplicative interaction effects with glycemic status and 2-h glucose, and its effect size estimate of incident CKD has turned to reverse association in other groups compared to the ones in the hyperglycemic subgroup and the top tertile of fasting and 2-h glucose, respectively. It indicated the risk effect of SM C18:1 for future CKD were specific for a subgroup of pre- or T2D individuals with relatively high glucose values, which suggests that a subgroup of susceptible population within pre- or T2D individuals for future CKD may can be represented by molecules like SM C18:1.

The median AUC values of our developed sets of predictors constructed with metabolites and clinical variables outperformed the reference predictors in all three machine learning algorithms (i.e. SVM, RF, Ada) with 100 times of 10-fold cross-validation. The best set of predictors for incident CKD were further identified, consisting of two metabolites (SM C18:1, PC aa C38:0)

and five clinical variables (age, total cholesterol, fasting glucose, eGFR and UACR). The seven variables were the most important ones.

5.2 Paper II ⁷⁰

This paper addresses the second aim of this thesis.

The finding of this animal and cross-sectional human study is that the two metabolites (i.e., SM C18:1 and PC aa C 38:0) discovered by paper I associate with further stages of hyperglycemiarelated CKD evolution including i) early changes characterized with glomerular hyperfiltration (8-week-old db/db mice) and ii) later changes characterized with kidney dysfunction (i.e., reduced $eGFR_{crea}$) (KORA FF4 study).

The organ distribution of the two metabolites was investigated in an 8-week-old db/db mouse model that mimics early human CKD development. The db/db mice exhibited early diabetic nephropathy-associated changes such as glomerular hyperfiltration and hypertrophy. In comparison to WT mice, db/db mice had significantly lower concentrations of both SM C18:1 and PC aa C38:0 in their urine and adipose tissue, but significantly higher concentrations in their lungs. Additionally, SM C18:1 was significantly accumulated in the plasma and liver of db/db mice, whereas PC aa C38:0 was significantly higher in the adrenal glands.

In hyperglycemic individuals, the concentrations of SM C18:1 and PC aa C38:0 were found to be inversely associated with eGFR_{crea} and positively associated with prevalent CKD _{eGFRcrea}, respectively. Moreover, neither SM C18:1 nor PC aa C38:0 were significantly associated with prevalent CKD _{eGFRcrea} in NGT individuals. These findings further supported that the two lipids' risk associations for CKD _{eGFRcrea} characterized by reduced kidney function are hyperglycemia-specific.

5.3 Paper III

This manuscript addresses the third aim of this thesis.

In conjunction with clinical measurements, large-scale multi-omics profiling can provide a more comprehensive understanding of the biological processes underlying disease, thereby contributing to precision medicine.

I reported high throughput EWAS, TWAS, PWAS and MWAS with prevalent CKD in individuals with pre- or T2D of KORA F4, and identified 120 multi-omics candidates. I built GPS of eGFR using KORA F4 individuals and successfully replicated it in UKBB and S4 testing samples.

We constructed eight T2DCKD subnetworks based on literature search and classified the identified candidates or their corresponding genes/proteins into these processes. We successfully replicated 64 of 120 candidates with CKD in Qatar Biobank, Qatar Metabolomics Study on Diabetes, KORA F3 or KORA FF4 studies. Out of 64 replicated candidates, all were associated with eGFR or UACR values (current or follow-up) in KORA F4 hyperglycemic individuals, 11 of which may be novel candidates of CKD, 18 of which were associated with GPS_{eGFR} and demonstrated mediation effects of direction of GPS_{eGFR} \rightarrow candidate \rightarrow eGFR and/or GPS_{eGFR} \rightarrow eGFR \rightarrow candidate. Bi-directional 2SMR supported that 19 replicated proteins/metabolites may have a causal relationship with kidney traits (CKD, eGFR and UACR) in one/both direction(s). I further classified 64 replicated candidates into 14 subgroups based on various evidence with eGFR and UACR values, and presented the potentially involved pathophysiological T2DCKD processes for each subgroup. A subgroup of susceptible high-risk individuals may be represented by a subgroup of their molecular profiles, which may provide insight into the identification of personalized therapeutic targets for hyperglycemia-related CKD.

I examined the potential interplay among four-level multi-omics molecules of CKD in hyperglycemia. This section included three main parts of results. I build MOIN with 101 molecules from five omics levels using GGM to uncover potential crosstalk among molecules. The generated DMOIN resulted ten sub-clusters, which confirmed the established link among molecules and revealed potential new ones, such as Tyr negatively linking with protein IGFBP2. I then performed mediation analyses between different levels of molecules and kidney traits to ascertain the potential best direction(s) of each examining mediating triangle. These exhaustive mediation explorations identified 565 potential best mediation directions, pointing to a complex omic landscape of regulatory interactions between molecules and kidney traits. When the kidney trait was served as an independent variable (X) or outcome (Y), our results showed that our candidate proteins and three known biomarkers were major mediators in connecting other omics candidates to kidney traits in both directions. Furthermore, I mapped our DMOIN with best mediation directions' results from mediation analyses to generate the DMMONs, which contributed to inspect the direction of nephrogenic effects that could be transmitted through each connected edge. Our DMMONs revealed the potential directions of connected molecule pairs and their associated kidney traits, e.g. part of the nephrogenic effects of molecules may operate via an indirect path possibly through their connected molecules. Our DMMOINs also showed potential to reveal causal links, e.g. IL19 \rightarrow RNA *SLC22A4* \rightarrow CKD.

Our multi-omics prediction results indicated adding omics levels on top of reference predictors improved prediction performance for future CKD in hyperglycemia, and the omics levels with added predictive values were GPS, candidate proteins, and metabolites instead of candidate RNAs and CpGs. However, except for GPS, this improvement was limited for ref₄ (i.e., seven predictors proposed by paper I), indicating the superior discriminatory ability of this predictor set for future CKD in hyperglycemia that we previously suggested. Moreover, I discovered that GPS_{eGFR}'s predictive effect on future CKD in hyperglycemia, specifically future CKD_{eGFR}, is consistent, stable, and independent of baseline eGFR and UACR values. Furthermore, I used three potential novel proteins to identify three distinct subgroups of CKD patients with hyperglycemia, which presented distinct characteristics and underlying pathological mechanisms.

Overall, along with elucidating biological concepts, our study presents a complex multi-omic landscape of CKD in hyperglycemia and sheds light on how to integrate multi-omics molecular profiles to contribute to precision health of hyperglycemia-related CKD.

6. Discussion

6.1 Early detection of CKD in hyperglycemia

To improve early detection of CKD in hyperglycemia, paper I proposed a parsimonious prediction model for incident CKD specific for hyperglycemic individuals, consisting of seven predictors (age, FG, total cholesterol, eGFR values, UACR values, SM C18:1 and PC aa C38:0). Paper III confirmed the superiority of this combination of predictors and discovered that the GPS_{eGFR} I developed could enhance this combination's performance. Additionally, paper III discovered that adding omics levels from GPS, candidate proteins, and metabolites to current reference predictors that even included baseline eGFR and UACR values could improve prediction performance for future CKD in hyperglycemia. Moreover, our GPS_{eGFR} demonstrated superior improvement of predictive effect on future CKD in hyperglycemia, particularly CKD_{eGFR}. Therefore, this thesis contributes to improve personalized prediction of future CKD in hyperglycemic individuals.

6.2 Interaction and condition-specific effects of (candidate) biomarkers for kidney traits

CKD is a complex and multifactorial disease. Discrepancies between studies on certain biomarkers (such as NGAL, KIM-1, or adiponectin) most likely reflect associations with kidney disease that occur in very specific circumstances ⁴¹. For example, adiponectin levels were inversely correlated with eGFR in 406 CKD patients and 88 healthy controls ⁴⁹, but were not linked to kidney function in another study of 733 men with T2D ⁵⁰. Many (candidate) biomarkers for CKD have strong interaction effects, implying that their effects on CKD are subgroup- or condition-specific ⁴¹. This thesis substantiated this claim and investigated the specific effects of proposed candidates. Paper I identified two metabolites with hyperglycemia-specific predictive risk effects for incident CKD as defined by eGFR and UACR. SM C18:1 in particular demonstrated strong interaction effects with glucose levels, and its effect size estimates of incident CKD shifted in the negative direction in other glucose groups when compared to the hyperglycemic subgroup and the top tertile of fasting and 2-h glucose, respectively (Figure 2). Paper III confirmed SM C18:1's strong interaction effects with glycemic status for incident CKD. It indicated that a subgroup of pre- or T2D individuals with high glucose levels was found to be more susceptible to future CKD when presented with high levels of SM C18:1. Moreover, paper III reported 64 replicated candidate biomarkers of prevalent CKD, 58 of which were not FDR significant in NGT individuals, implying that their effects on prevalent CKD were hyperglycemic-specific. This thesis demonstrated that the interaction effects of multi-omics molecules on CKD show potential to contribute to stratify CKD patients or individuals at high risk of developing CKD using their specific markers.

Additionally, the effects of (candidate) biomarkers may be kidney traits specific. Several biomarkers support the involvement of (chronic) inflammation in CKD, but their utility as a marker of CKD is less clear ⁴¹. Plasma levels of oxidative stress biomarkers (protein carbonyl groups, free F2 isoprostane, and reduced thiol content of proteins) and inflammatory biomarkers (CRP and IL6) were significantly increased in 60 patients with CKD (stages 3–5) compared to healthy individuals. However, eGFR was not found to be significantly associated with any of these biomarkers. Although plasma levels of IL6 were found to be significantly higher in elderly patients with renal insufficiency ⁴⁶ and in patients with stage 3-5 CKD ⁴⁷, IL6 was not found to be significantly associated with eGFR ⁴⁷. In this thesis, paper II demonstrated that SM C18:1 and PC aa C38:0 were associated with the later stage of hyperglycemia-associated CKD characterized by reduced kidney function (i.e., reduced eGFRcrea) (hyperglycemic individuals in cross-sectional study). In the cross-sectional study, two metabolites were associated with reduced kidney function in which eGFR values were calculated using serum creatinine rather than serum cystatin C or their combination. This could be explained as follows: 1) As demonstrated in paper III, serum creatinine significantly mediated the relationship between SM C18:1 and follow-up eGFRcrea; 2) two metabolites were predicting incident CKD in hyperglycemia independently of baseline eGFR (calculated from Cystatin C and creatinine) and UACR.

This thesis demonstrates the critical importance of examining the interaction and condition specific effects of candidate biomarkers of kidney traits in order to aid in the discovery of personalized biomarkers for hyperglycemia-related CKD.

Figure 2. Stratified associations of SM C18:1 and PC aa C38.0 with incident CKD according to glucose status⁶⁹.

6.3 Improve systematic biological understanding to contribute to precision health

Because CKD is a multifactorial disease, a single process can affect multiple phenotypes and/or other processes in CKD pathogenesis. Numerous candidates I identified existed in multiple T2DCKD subnetworks constructed in this thesis, illustrating the intricate network of pathways involved in hyperglycemia-related CKD. RAS blockade is currently the mainstay of CKD therapy, but not all patients respond ⁹⁷. CKD patients with hyperglycemia have distinct pathological processes, necessitating the development of distinct theoretical therapeutic strategies. In this thesis, I used omic candidates to stratify CKD patients, which proved to be more effective than eGFR and UACR. This thesis demonstrated that distinct theoretical therapeutic targets may be required for different subgroups of CKD patients, owing to their distinct dominant pathological processes.

The GPS_{eGFR} I constructed identified not only individuals with a high genetic predisposition, but also 11 candidate biomarkers of CKD for the hyperglycemic population's tail, which formed a group strongly suggesting that eGFR has a strong genetic effect on their circulatory levels. Thus, it may help explain why some individuals develop CKD at an early age, given that risk factors for CKD are classified as genetic, behavioral, and environmental, with genetics possibly being the most important factor for those individuals. Our identified omic molecules and GPS demonstrated the ability to identify CKD subgroups of various dominant pathological processes and CKD subgroups of increased genetic risk respectively, enabling more personalized treatment and prevention strategies for CKD in hyperglycemia.

eGFR and UACR are not etiological markers for CKD ⁶⁶. Even if their values remain normal, individuals at risk of CKD may have pathological molecular changes ⁹⁸. Current CKD therapies, such as RAS blockade, aim to slow disease progression rather than reverse pathological damage ⁶⁷. A better understanding of the pathological processes that underpin biomarkers, and their potential effects on processes and eGFR and UACR values, may help improve CKD prevention and treatment. Lesson learned from clinical trials in which drugs targeting a single process, such as transforming growth factor β 1 blockade, failed but drugs targeting the RAS succeeded, owing to the fact that targeting RAS promotes multiple mechanism ⁶⁸. Given the multiple pathogenic processes involved, a holistic approach is the only rational strategy for preventing CKD progression ⁶⁸. Paper III identified and replicated multi-omics candidates of CKD, and extended their observational associations to causality, shedding new light on genetic evidence-based directions via 2SMR. Our 2SMR results also attributed CKD observational signals to specific kidney traits (CKD, eGFR and UACR). Because MR causality does not imply a specific molecular mechanism, our mediation results for 2SMR-supported causal molecules examined the possible mechanism. Aside from corroboration, our GPS_{eGFR} mediation results suggested a potential causal direction not revealed by 2SMR. Early intervention appears to be the most effective way to prevent organ damage manifested by albuminuria and/or decreased eGFR 98. A panel of multiple protein biomarkers representing the numerous pathophysiological processes underlying DKD may be more reliable and accurate in predicting kidney disease progression ⁹⁸. In our study, I classified our candidate biomarkers based on their potential directions with eGFR and UACR with and without genetic evidence, and further provided their potential involvement in (several) T2DCKD pathological processes to elucidate biological pathways. Thus, a subgroup of susceptible highrisk individuals may be represented by a subgroup of their molecular profiles, providing critical insight into the identification of personalized therapeutic targets for hyperglycemia-related CKD. Additionally, our subgroups of omic candidates are consistent with a truly translatable biomarker discovery methodology that prioritizes not only clinically evident stages of disease, but also very early disease stages, when therapeutic interventions can still slow or stop disease progression.

This thesis also did intensive exploration of interplay among multi-omics molecules of CKD in hyperglycemia and revealed potential new causal links, relevant molecular pathways, and potential key drivers of the pathways. The crosstalk between molecules can aid in providing insight into whether they share a pathway and identifying the pathway's key driver. For example, paper III demonstrated that well-defined CKD biomarkers (CST3, creatinine, urine albumin, or EGFR) may act as mediators between the eight ACs and their associated kidney traits. Our DMMONs

could deduce potential causal links from multi-omics pairs, e.g., it supported the hypothesis that $IL19 \rightarrow IL1B \rightarrow SLC22A4 \rightarrow$ ergothioneine \rightarrow increased risk of proteinuria/ higher blood urea nitrogen levels/ decreased GFR values. Numerous molecules, such as cystatin C, creatinine, urine albumin and Tyr, were identified as centers in DMMONs, which connected information between kidney traits and other molecules. Therefore, the crosstalk of multi-omics molecules has the potential to advance not only biological understanding of the disease processes of hyperglycemia-related CKD, but also personalized prevention and drug discovery by addressing the key driver of the specific pathway.

6.4 Limitation

I acknowledge that studies in this thesis are observational-based, limiting our ability to confirm that our findings are indeed true biological signals. Consequently, additional longitudinal cohort studies with a large sample size, as well as interventional studies, are required to confirm our findings.

7. Conclusion

In conclusion, this thesis describes a complex multi-omic landscape of CKD in hyperglycemia and demonstrates how multi-omics profiles can inform precision health by improving early detection of CKD in hyperglycemia, examining the interaction and condition-specific effects of candidate biomarkers, and advancing systematic biological understanding.

8. References

- 1. Zierer, J., *et al.* Exploring the molecular basis of age-related disease comorbidities using a multi-omics graphical model. *Sci Rep* **6**, 37646 (2016).
- 2. Zhou, W., *et al.* Longitudinal multi-omics of host-microbe dynamics in prediabetes. *Nature* **569**, 663-671 (2019).
- 3. Schussler-Fiorenza Rose, S.M., *et al.* A longitudinal big data approach for precision health. *Nat Med* **25**, 792-804 (2019).
- 4. Liu, G., Dong, C. & Liu, L. Integrated Multiple "-omics" Data Reveal Subtypes of Hepatocellular Carcinoma. *PLoS One* **11**, e0165457 (2016).
- 5. Bikbov, B., *et al.* Global, regional, and national burden of chronic kidney disease, 1990-2017: a systematic analysis for the Global Burden of Disease Study 2017. *Lancet (London, England)* **395**, 709-733 (2020).
- 6. Webster, A.C., Nagler, E.V., Morton, R.L. & Masson, P. Chronic Kidney Disease. *Lancet* (*London, England*) **389**, 1238-1252 (2017).
- Plantinga, L.C., *et al.* Prevalence of chronic kidney disease in US adults with undiagnosed diabetes or prediabetes. *Clinical journal of the American Society of Nephrology : CJASN* 5, 673-682 (2010).
- 8. Melsom, T., *et al.* Prediabetes and Risk of Glomerular Hyperfiltration and Albuminuria in the General Nondiabetic Population: A Prospective Cohort Study. *American journal of kidney diseases : the official journal of the National Kidney Foundation* **67**, 841-850 (2016).
- 9. Markus, M.R.P., *et al.* Prediabetes is associated with microalbuminuria, reduced kidney function and chronic kidney disease in the general population: The KORA (Cooperative Health Research in the Augsburg Region) F4-Study. *Nutrition, metabolism, and cardiovascular diseases : NMCD* **28**, 234-242 (2018).
- 10. Li, W., *et al.* Risk of chronic kidney disease defined by decreased estimated glomerular filtration rate in individuals with different prediabetic phenotypes: results from a prospective cohort study in China. *BMJ Open Diabetes Res Care* **8**, 130 (2020).
- 11. Siragy, H.M. & Carey, R.M. Role of the intrarenal renin-angiotensin-aldosterone system in chronic kidney disease. *Am J Nephrol* **31**, 541-550 (2010).
- 12. Opazo-Ríos, L., *et al.* Lipotoxicity and Diabetic Nephropathy: Novel Mechanistic Insights and Therapeutic Opportunities. *Int J Mol Sci* **21**(2020).
- 13. Vahdat, S. The complex effects of adipokines in the patients with kidney disease. *J Res Med Sci* **23**, 60 (2018).
- 14. Fukami, K., *et al.* AGEs activate mesangial TGF-beta-Smad signaling via an angiotensin II type I receptor interaction. *Kidney Int* **66**, 2137-2147 (2004).
- 15. Mason, R.M. & Wahab, N.A. Extracellular matrix metabolism in diabetic nephropathy. *J Am Soc Nephrol* **14**, 1358-1373 (2003).
- 16. Hu, C., *et al.* Insights into the Mechanisms Involved in the Expression and Regulation of Extracellular Matrix Proteins in Diabetic Nephropathy. *Curr Med Chem* **22**, 2858-2870 (2015).
- 17. Tang, S.C.W. & Yiu, W.H. Innate immunity in diabetic kidney disease. *Nat Rev Nephrol* **16**, 206-222 (2020).
- 18. Nakagawa, T., Sato, W., Kosugi, T. & Johnson, R.J. Uncoupling of VEGF with endothelial NO as a potential mechanism for abnormal angiogenesis in the diabetic nephropathy. *J Diabetes Res* **2013**, 184539 (2013).
- 19. Honda, T., Hirakawa, Y. & Nangaku, M. The role of oxidative stress and hypoxia in renal disease. *Kidney Res Clin Pract* **38**, 414-426 (2019).
- 20. Terman, B.I., *et al.* Identification of the KDR tyrosine kinase as a receptor for vascular endothelial cell growth factor. *Biochem Biophys Res Commun* **187**, 1579-1586 (1992).
- 21. McDonough, C.W., *et al.* A genome-wide association study for diabetic nephropathy genes in African Americans. *Kidney Int* **79**, 563-572 (2011).
- 22. Mooyaart, A.L., *et al.* Genetic associations in diabetic nephropathy: a meta-analysis. *Diabetologia* **54**, 544-553 (2011).

- 23. Wuttke, M., *et al.* A catalog of genetic loci associated with kidney function from analyses of a million individuals. *Nature genetics* **51**, 957-972 (2019).
- 24. Tin, A., *et al.* Large-scale whole-exome sequencing association studies identify rare functional variants influencing serum urate levels. *Nat Commun* **9**, 4228 (2018).
- 25. Pattaro, C., *et al.* Genetic associations at 53 loci highlight cell types and biological pathways relevant for kidney function. *Nat Commun* **7**, 10023 (2016).
- 26. Burgess, S., Scott Ra Fau Timpson, N.J., Timpson Nj Fau Davey Smith, G., Davey Smith G Fau Thompson, S.G. & Thompson, S.G. Using published data in Mendelian randomization: a blueprint for efficient identification of causal risk factors.
- 27. Khera, A.V., *et al.* Genome-wide polygenic scores for common diseases identify individuals with risk equivalent to monogenic mutations. *Nature genetics* **50**, 1219-1224 (2018).
- 28. Kato, M. & Natarajan, R. Epigenetics and epigenomics in diabetic kidney disease and metabolic memory. *Nat Rev Nephrol* **15**, 327-345 (2019).
- 29. Bomotti, S.M., *et al.* Epigenetic markers of renal function in african americans. *Nurs Res Pract* **2013**, 687519 (2013).
- 30. Ko, Y.A., *et al.* Cytosine methylation changes in enhancer regions of core pro-fibrotic genes characterize kidney fibrosis development. *Genome Biol* **14**, R108 (2013).
- 31. Swan, E.J., Maxwell, A.P. & McKnight, A.J. Distinct methylation patterns in genes that affect mitochondrial function are associated with kidney disease in blood-derived DNA from individuals with Type 1 diabetes. *Diabet Med* **32**, 1110-1115 (2015).
- 32. Wing, M.R., *et al.* DNA methylation profile associated with rapid decline in kidney function: findings from the CRIC study. *Nephrol Dial Transplant* **29**, 864-872 (2014).
- 33. Chu, A.Y., *et al.* Epigenome-wide association studies identify DNA methylation associated with kidney function. *Nat Commun* **8**, 1286 (2017).
- 34. Gluck, C., *et al.* Kidney cytosine methylation changes improve renal function decline estimation in patients with diabetic kidney disease. *Nat Commun* **10**, 2461 (2019).
- 35. Schlosser, P., *et al.* Meta-analyses identify DNA methylation associated with kidney function and damage. *Nat Commun* **12**, 7174 (2021).
- 36. Cañadas-Garre, M., Anderson, K., McGoldrick, J., Maxwell, A.P. & McKnight, A.J. Genomic approaches in the search for molecular biomarkers in chronic kidney disease. *Journal of Translational Medicine* **16**, 292 (2018).
- 37. Ju, W., *et al.* Tissue transcriptome-driven identification of epidermal growth factor as a chronic kidney disease biomarker. *Sci Transl Med* **7**, 316ra193 (2015).
- 38. Baelde, H.J., *et al.* Gene expression profiling in glomeruli from human kidneys with diabetic nephropathy. *American journal of kidney diseases : the official journal of the National Kidney Foundation* **43**, 636-650 (2004).
- 39. Granata, S., *et al.* Mitochondrial dysregulation and oxidative stress in patients with chronic kidney disease. *BMC Genomics* **10**, 388 (2009).
- 40. Perlman, A.S., *et al.* Serum Inflammatory and Immune Mediators Are Elevated in Early Stage Diabetic Nephropathy. *Ann Clin Lab Sci* **45**, 256-263 (2015).
- 41. Mischak, H., Delles, C., Vlahou, A. & Vanholder, R. Proteomic biomarkers in kidney disease: issues in development and implementation. *Nat Rev Nephrol* **11**, 221-232 (2015).
- 42. Hojs, R., Bevc, S., Ekart, R., Gorenjak, M. & Puklavec, L. Serum cystatin C as an endogenous marker of renal function in patients with mild to moderate impairment of kidney function. *Nephrol Dial Transplant* **21**, 1855-1862 (2006).
- 43. O'Riordan, S.E., *et al.* Cystatin C improves the detection of mild renal dysfunction in older patients. *Ann Clin Biochem* **40**, 648-655 (2003).
- 44. Grubb, A., *et al.* A cystatin C-based formula without anthropometric variables estimates glomerular filtration rate better than creatinine clearance using the Cockcroft-Gault formula. *Scand J Clin Lab Invest* **65**, 153-162 (2005).
- 45. Peralta, C.A., *et al.* Detection of chronic kidney disease with creatinine, cystatin C, and urine albumin-to-creatinine ratio and association with progression to end-stage renal disease and mortality. *Jama* **305**, 1545-1552 (2011).
- 46. Shlipak, M.G., *et al.* Elevations of inflammatory and procoagulant biomarkers in elderly persons with renal insufficiency. *Circulation* **107**, 87-92 (2003).

- 47. Oberg, B.P., *et al.* Increased prevalence of oxidant stress and inflammation in patients with moderate to severe chronic kidney disease. *Kidney Int* **65**, 1009-1016 (2004).
- 48. Axelsson, J., *et al.* Elevated resistin levels in chronic kidney disease are associated with decreased glomerular filtration rate and inflammation, but not with insulin resistance. *Kidney Int* **69**, 596-604 (2006).
- 49. Yilmaz, M.I., *et al.* Serum visfatin concentration and endothelial dysfunction in chronic kidney disease. *Nephrol Dial Transplant* **23**, 959-965 (2008).
- 50. Lin, J., Hu, F.B. & Curhan, G. Serum adiponectin and renal dysfunction in men with type 2 diabetes. *Diabetes Care* **30**, 239-244 (2007).
- 51. Hocher, B. & Adamski, J. Metabolomics for clinical use and research in chronic kidney disease. *Nat Rev Nephrol* **13**, 269-284 (2017).
- 52. Goek, O.N., *et al.* Metabolites associate with kidney function decline and incident chronic kidney disease in the general population. *Nephrol Dial Transplant* **28**, 2131-2138 (2013).
- Solini, A., *et al.* Prediction of Declining Renal Function and Albuminuria in Patients With Type 2 Diabetes by Metabolomics. *The Journal of clinical endocrinology and metabolism* 101, 696-704 (2016).
- 54. Pearson, D.J. & Tubbs, P.K. ACETYL-CARNITINE IN HEART AND LIVER. *Nature* **202**, 91 (1964).
- 55. Pande, S.V. A mitochondrial carnitine acylcarnitine translocase system. *Proc Natl Acad Sci U S A* **72**, 883-887 (1975).
- 56. Goek, O.N., *et al.* Serum metabolite concentrations and decreased GFR in the general population. *American journal of kidney diseases : the official journal of the National Kidney Foundation* **60**, 197-206 (2012).
- 57. Rhee, E.P., *et al.* A combined epidemiologic and metabolomic approach improves CKD prediction. *J Am Soc Nephrol* **24**, 1330-1338 (2013).
- 58. Levin, A., *et al.* Kidney disease: Improving global outcomes (KDIGO) CKD work group. KDIGO 2012 clinical practice guideline for the evaluation and management of chronic kidney disease. *Kidney International Supplements* **3**, 1--150 (2013).
- 59. Tangri, N., *et al.* A predictive model for progression of chronic kidney disease to kidney failure. *Jama* **305**, 1553-1559 (2011).
- 60. Dunkler, D., *et al.* Risk Prediction for Early CKD in Type 2 Diabetes. *Clinical journal of the American Society of Nephrology : CJASN* **10**, 1371-1379 (2015).
- 61. Washburn, K.K., *et al.* Urinary interleukin-18 is an acute kidney injury biomarker in critically ill children. *Nephrol Dial Transplant* **23**, 566-572 (2008).
- 62. Wagener, G., *et al.* Urinary neutrophil gelatinase-associated lipocalin and acute kidney injury after cardiac surgery. *American journal of kidney diseases : the official journal of the National Kidney Foundation* **52**, 425-433 (2008).
- 63. Metzger, J., *et al.* Urinary excretion of twenty peptides forms an early and accurate diagnostic pattern of acute kidney injury. *Kidney Int* **78**, 1252-1262 (2010).
- 64. Siew, E.D., *et al.* Urine neutrophil gelatinase-associated lipocalin moderately predicts acute kidney injury in critically ill adults. *J Am Soc Nephrol* **20**, 1823-1832 (2009).
- 65. Haase, M., Bellomo, R., Story, D., Davenport, P. & Haase-Fielitz, A. Urinary interleukin-18 does not predict acute kidney injury after adult cardiac surgery: a prospective observational cohort study. *Crit Care* **12**, R96 (2008).
- 66. Eddy, S., Mariani, L.H. & Kretzler, M. Integrated multi-omics approaches to improve classification of chronic kidney disease. *Nat Rev Nephrol* **16**, 657-668 (2020).
- 67. Sanz, A.B., *et al.* Advances in understanding the role of angiotensin-regulated proteins in kidney diseases. *Expert Rev Proteomics* **16**, 77-92 (2019).
- 68. Ruiz-Ortega, M., Rayego-Mateos, S., Lamas, S., Ortiz, A. & Rodrigues-Diez, R.R. Targeting the progression of chronic kidney disease. *Nat Rev Nephrol* **16**, 269-288 (2020).
- Huang, J., *et al.* Machine Learning Approaches Reveal Metabolic Signatures of Incident Chronic Kidney Disease in Individuals With Prediabetes and Type 2 Diabetes. *Diabetes* 69, 2756-2765 (2020).
- 70. Huang, J., *et al.* Validation of Candidate Phospholipid Biomarkers of Chronic Kidney Disease in Hyperglycemic Individuals and Their Organ-Specific Exploration in Leptin Receptor-Deficient db/db Mouse. *Metabolites* **11**, 89 (2021).

- 71. Holle, R., Happich, M., Löwel, H. & Wichmann, H.E. KORA--a research platform for population based health research. *Gesundheitswesen* **67 Suppl 1**, S19-25 (2005).
- 72. World Health, O. & International Diabetes, F. Definition and diagnosis of diabetes mellitus and intermediate hyperglycaemia : report of a WHO/IDF consultation. (World Health Organization, Geneva, 2006).
- 73. Wang-Sattler, R., *et al.* Novel biomarkers for pre-diabetes identified by metabolomics. *Molecular systems biology* **8**, 615 (2012).
- 74. Association, A.D. 2. Classification and Diagnosis of Diabetes: Standards of Medical Care in Diabetes—2021. *Diabetes Care* **44**, S15-S33 (2020).
- 75. Inker, L.A., *et al.* Estimating glomerular filtration rate from serum creatinine and cystatin C. *N Engl J Med* **367**, 20-29 (2012).
- 76. Stevens, P.E., Levin, A. & Kidney Disease: Improving Global Outcomes Chronic Kidney Disease Guideline Development Work Group, M. Evaluation and management of chronic kidney disease: synopsis of the kidney disease: improving global outcomes 2012 clinical practice guideline. *Ann Intern Med* **158**, 825-830 (2013).
- 77. Zeilinger, S., *et al.* Tobacco smoking leads to extensive genome-wide changes in DNA methylation. *PLoS One* **8**, e63812 (2013).
- 78. Lehne, B., *et al.* A coherent approach for analysis of the Illumina HumanMethylation450 BeadChip improves data quality and performance in epigenome-wide association studies. *Genome Biol* **16**, 37 (2015).
- 79. Aryee, M.J., *et al.* Minfi: a flexible and comprehensive Bioconductor package for the analysis of Infinium DNA methylation microarrays. *Bioinformatics* **30**, 1363-1369 (2014).
- Schurmann, C., *et al.* Analyzing illumina gene expression microarray data from different tissues: methodological aspects of data analysis in the metaxpress consortium. *PLoS One* 7, e50938 (2012).
- 81. Gold, L., *et al.* Aptamer-based multiplexed proteomic technology for biomarker discovery. *PLoS One* **5**, e15004 (2010).
- 82. Kraemer, S., *et al.* From SOMAmer-based biomarker discovery to diagnostic and clinical applications: a SOMAmer-based, streamlined multiplex proteomic assay. *PLoS One* **6**, e26332 (2011).
- 83. Römisch-Margl, W., *et al.* Procedure for tissue sample preparation and metabolite extraction for high-throughput targeted metabolomics. *Metabolomics* **8**, 133-142 (2012).
- 84. Klau, S., Jurinovic, V., Hornung, R., Herold, T. & Boulesteix, A.L. Priority-Lasso: a simple hierarchical approach to the prediction of clinical outcome using multi-omics data. *BMC bioinformatics* **19**, 322 (2018).
- 85. Chang, C.-C. & Lin, C.-J. LIBSVM: A library for support vector machines. *ACM Trans. Intell. Syst. Technol.* **2**, 1-27 (2011).
- 86. Liaw, A. & Wiener, M. Classification and Regression by randomForest. *R News* **2**, 18-22 (2002).
- 87. Culp, M., Johnson, K. & Michailides, G. ada: An R Package for Stochastic Boosting. *Journal of Statistical Software* 017(2006).
- 88. Naimi, A.I., Moodie, E.E., Auger, N. & Kaufman, J.S. Constructing inverse probability weights for continuous exposures: a comparison of methods. *Epidemiology* **25**, 292-299 (2014).
- 89. Robins, J.M., Hernán, M.A. & Brumback, B. Marginal structural models and causal inference in epidemiology. *Epidemiology* **11**, 550-560 (2000).
- 90. Krumsiek, J., Suhre, K., Illig, T., Adamski, J. & Theis, F.J. Gaussian graphical modeling reconstructs pathway reactions from high-throughput metabolomics data. *BMC Syst Biol* **5**, 21 (2011).
- 91. Baron, R.M. & Kenny, D.A. The moderator-mediator variable distinction in social psychological research: conceptual, strategic, and statistical considerations. *J Pers Soc Psychol* **51**, 1173-1182 (1986).
- 92. Tingley, D., *et al.* Mediation: R Package for Causal Mediation Analysis. *Journal of Statistical Software* **59**(2014).

- 93. Euesden, J., Lewis, C.M. & O'Reilly, P.F. PRSice: Polygenic Risk Score software. *Bioinformatics* **31**, 1466-1468 (2015).
- Zhao, Q., Wang, J., Bowden, J. & Small, D. Statistical inference in two-sample summarydata Mendelian randomization using robust adjusted profile score. *Annals of Statistics* 48(2018).
- 95. Verbanck, M., Chen, C.Y., Neale, B. & Do, R. Detection of widespread horizontal pleiotropy in causal relationships inferred from Mendelian randomization between complex traits and diseases. *Nature genetics* **50**, 693-698 (2018).
- 96. Bowden, J., *et al.* Improving the visualization, interpretation and analysis of two-sample summary data Mendelian randomization via the Radial plot and Radial regression. *Int J Epidemiol* **47**, 1264-1278 (2018).
- 97. Perico, N., Benigni, A. & Remuzzi, G. Present and future drug treatments for chronic kidney diseases: evolving targets in renoprotection. *Nat Rev Drug Discov* 7, 936-953 (2008).
- 98. Pena, M.J., Mischak, H. & Heerspink, H.J. Proteomics for prediction of disease progression and response to therapy in diabetic kidney disease. *Diabetologia* **59**, 1819-1831 (2016).
Paper I

- Title:Machine Learning Approaches Reveal Metabolic Signatures of Incident ChronicKidney Disease in Individuals With Prediabetes and Type 2 Diabetes
- Authors: Jialing Huang, Cornelia Huth, Marcela Covic, Martina Troll, Jonathan Adam, Sven Zukunft, Cornelia Prehn, Li Wang, Jana Nano, Markus F. Scheerer, Susanne Neschen, Gabi Kastenmüller, Karsten Suhre, Michael Laxy, Freimut Schliess, Christian Gieger, Jerzy Adamski, Martin Hrabe de Angelis, Annette Peters, and Rui Wang-Sattler

Journal: Diabetes

- Status: Published
- Volume: 69
- **Page:** 2756-2765
- **Year:** 2020
- doi: 10.2337/db20-0586

Machine Learning Approaches Reveal Metabolic Signatures of Incident Chronic Kidney Disease in Individuals With Prediabetes and Type 2 Diabetes

Jialing Huang,^{1,2,3} Cornelia Huth,^{2,3} Marcela Covic,^{1,2,3} Martina Troll,^{1,2} Jonathan Adam,^{1,2} Sven Zukunft,⁴ Cornelia Prehn,⁴ Li Wang,^{1,2,5} Jana Nano,^{2,3} Markus F. Scheerer,⁶ Susanne Neschen,⁶ Gabi Kastenmüller,⁷ Karsten Suhre,⁸ Michael Laxy,⁹ Freimut Schliess,¹⁰ Christian Gieger,^{1,2,3} Jerzy Adamski,^{4,11,12} Martin Hrabe de Angelis,^{3,6,12} Annette Peters,^{2,3} and Rui Wang-Sattler^{1,2,3}

Diabetes 2020;69:2756-2765 | https://doi.org/10.2337/db20-0586

Early and precise identification of individuals with prediabetes and type 2 diabetes (T2D) at risk for progressing to chronic kidney disease (CKD) is essential to prevent complications of diabetes. Here, we identify and evaluate prospective metabolite biomarkers and the best set of predictors of CKD in the longitudinal, population-based **Cooperative Health Research in the Region of Augsburg** (KORA) cohort by targeted metabolomics and machine learning approaches. Out of 125 targeted metabolites, sphingomyelin C18:1 and phosphatidylcholine diacyl C38:0 were identified as candidate metabolite biomarkers of incident CKD specifically in hyperglycemic individuals followed during 6.5 years. Sets of predictors for incident CKD developed from 125 metabolites and 14 clinical variables showed highly stable performances in all three machine learning approaches and outperformed the

currently established clinical algorithm for CKD. The two metabolites in combination with five clinical variables were identified as the best set of predictors, and their predictive performance yielded a mean area value under the receiver operating characteristic curve of 0.857. The inclusion of metabolite variables in the clinical prediction of future CKD may thus improve the risk prediction in people with prediabetes and T2D. The metabolite link with hyperglycemia-related early kidney dysfunction warrants further investigation.

Chronic kidney disease (CKD) affects approximately 9.1% of the general population worldwide (1). From 1990 to 2017, the global all-age mortality rate due to CKD increased by 41.5%, resulting in 1.2 million deaths only in 2017 (1).

¹Research Unit of Molecular Epidemiology, Helmholtz Zentrum München – German Research Center for Environmental Health, Neuherberg, Germany

²Institute of Epidemiology, Helmholtz Zentrum München – German Research Center for Environmental Health, Neuherberg, Germany

- ³German Center for Diabetes Research (DZD), München-Neuherberg, Germany ⁴Research Unit of Molecular Endocrinology and Metabolism, Helmholtz Zentrum München – German Research Center for Environmental Health, Neuherberg, Germany
- ⁵Department of Scientific Research and Shandong University Postdoctoral Work Station, Liaocheng People's Hospital, Shandong, P. R. China
- ⁶Institute of Experimental Genetics, Helmholtz Zentrum München German Research Center for Environmental Health, Neuherberg, Germany
- ⁷Institute of Bioinformatics and Systems Biology, Helmholtz Zentrum München German Research Center for Environmental Health, Neuherberg, Germany
- ⁸Department of Physiology and Biophysics, Weill Cornell Medicine Qatar, Doha, Qatar
- ⁹Institute of Health Economics and Health Care Management, Helmholtz Zentrum München – German Research Center for Environmental Health, Neuherberg, Germany
- ¹⁰Profil Institut für Stoffwechselforschung GmbH, Neuss, Germany

¹¹Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore

¹²Chair of Experimental Genetics, Center of Life and Food Sciences Weihenstephan, Technische Universität München, Freising, Germany

Corresponding author: Rui Wang-Sattler, rui.wang-sattler@helmholtz-muenchen .de

Received 3 June 2020 and accepted 29 September 2020

This article contains supplementary material online at https://doi.org/10.2337/ figshare.13022624.

S.Z. is currently affiliated with the Institute for Vascular Signalling, Centre for Molecular Medicine, Goethe University, Frankfurt am Main, Germany.

M.F.S. is currently affiliated with Medical Affairs & Pharmacovigilance, Bayer AG, Berlin, Germany.

S.N. is currently affiliated with Sanofi Aventis Deutschland GmbH, Frankfurt am Main, Germany.

^{© 2020} by the American Diabetes Association. Readers may use this article as long as the work is properly cited, the use is educational and not for profit, and the work is not altered. More information is available at https://www.diabetesjournals.org/content/license.

Among the established risk factors for CKD, diabetes accounts for 30–50% of all CKD cases (2), and its microvascular complication, diabetic nephropathy, is the leading cause of end-stage kidney disease (3). Moreover, undiagnosed diabetes and prediabetes have been related to high prevalence of CKD in U.S., European, and Asian populations (4–7). Early screening of hyperglycemic individuals at risk of developing CKD is therefore crucial for effective prevention and management of incident CKD in the framework of an integrated personalized diabetes management (8).

Increased urinary albumin-to-creatinine ratio (UACR) and reduced estimated glomerular filtration rate (eGFR) are two clinical biomarkers of kidney-related structural damage and functional decline used to diagnose CKD (9). UACR, eGFR, age, and sex were reported to be highly predictive for progression of CKD (10). Albuminuria and eGFR were also found to be the most important variables to predict onset and progression of early CKD in individuals with type 2 diabetes (T2D). However, their predictive ability was modest with an externally validated c-statistic of 0.68 even in combination with age and sex (11). Since the traditional risk factors for CKD are insufficient for reliable prediction of CKD in individuals with T2D, there is an urgent need for more sensitive and specific biomarkers for CKD prognosis in prediabetes and T2D management.

A comprehensive individual profiling by means of metabolomics is a promising approach to discover previously unconsidered associations between metabolic signatures and clinical outcomes such as obesity, prediabetes, and T2D (12–19). Several studies have investigated the metabolite profiles of CKD, both in the general population and populations with T2D (20–22). However, to the best of our knowledge, none of them have explored the metabolites associated with future development of CKD in people with prediabetes or T2D.

In this study, we applied priority-Lasso and multivariate logistic regression (MLR) to identify metabolites associated with incident CKD in the population-based adult cohort KORA (Cooperative Health Research in the Region of Augsburg) (23,24).

Using three machine learning approaches (support vector machine [SVM], random forest [RF], and adaptive boosting [AdaBoost]), we furthermore assessed the predictive power of predictor sets constructed with metabolites and clinical phenotypes and compared their performance with the typically used clinical algorithm for CKD. We finally presented the best set of predictors for incident CKD in individuals with prediabetes or T2D.

RESEARCH DESIGN AND METHODS

Study Design and Participants

We investigated the two follow-ups of the longitudinal cohort KORA survey 4, conducted in the area of Augsburg, Southern Germany. The first follow-up (F4) involved 3,080 individuals (aged 32–81 years) examined between 2006 and 2008. For the second follow-up (FF4), 2,269 participants were examined from 2013 to 2014 (23). Because the metabolomics data and the clinical variables of CKD (eGFR and UACR) were measured in the F4 study, we used F4 as baseline.

Individuals with hyperglycemia and normal glucose tolerance (NGT) were classified according to baseline fasting and 2-h postload glucose (2-h glucose) values with the World Health Organization diagnostic criteria (25). The hyperglycemic group comprised participants with prediabetes and newly diagnosed T2D (i.e., fasting glucose \geq 110 mg/dL or 2-h-glucose glucose \geq 140 mg/dL), as well as known T2D that was diagnosed by physician-validated self-reporting and/or current use of antidiabetes agents (13,23).

We examined 2,142 individuals who participated in both KORA F4 and FF4. Exclusion criteria were 1) nonfasting samples (n = 5 at F4), 2) missing eGFR and UACR (n = 16 at F4, n = 64 at FF4) or covariate values (n = 19 at F4), and 3) diagnosis for type 1 diabetes (n = 6 at F4), unclear type of diabetes (n = 21 at F4), or CKD (n = 173 at F4). The remaining data set comprised 385 hyperglycemic participants and 1,453 individuals with NGT (Fig. 1 and Table 1). The hyperglycemic participants were used to identify candidate metabolite biomarkers for incident CKD and to develop and evaluate sets of metabolite and clinical predictors. The NGT participants were used for sensitivity analyses of candidate biomarkers.

All study participants gave written informed consent. The KORA study was approved by the ethics committee of the Bavarian Medical Association, Munich, Germany.

Outcome Definition

The eGFR was calculated from serum creatinine (mg/dL) and cystatin C (mg/dL) (isotope dilution mass spectrometry– standardized and International Federation of Clinical Chemistry and Laboratory Medicine–standardized values) using the Chronic Kidney Disease Epidemiology Collaboration (CKD-EPI) equation (26). Non-CKD was defined as an eGFR \geq 60 mL/min/1.73 m² and an UACR <30 mg/g at both F4 and FF4 (9). Incident cases of CKD were defined as no CKD at baseline (F4) but reduced kidney function (eGFR <60 mL/min/1.73 m²) or kidney damage (UACR \geq 30 mg/g) at follow-up (FF4).

Metabolite Quantification and Normalization

The serum samples from participants in the KORA F4 study were measured with the AbsoluteIDQ p150 kit (biocrates life sciences ag, Innsbruck, Austria) (24,27). In total, 3,061 serum samples of the F4 study were quantified for 163 metabolites in 38 randomly distributed kit plates (Supplementary Table 1). Each plate also contained three quality control (QC) samples (sex-mixed human plasma provided by the manufacturer) and one zero sample (PBS).

Identical QC procedures were used (13). Each metabolite met two criteria: 1) average value of the coefficient of variance in the three QCs <25% and 2) 50% of all measured

Figure 1—Study design. Fig. S1 and Tables S1–S10 refer to Supplementary Fig. 1 and Supplementary Tables 1–10 and are available in the Supplementary Material.

sample concentrations equal to or above three times the median of the 38 zero samples. In total, 125 metabolites passed the criteria and were used in the subsequent analysis (Supplementary Table 1). For minimization of the plate effect, metabolite concentrations were adjusted for the plate normalization factors. For each metabolite, the plate normalization factors were calculated by division of the mean of QC sample values in each plate with the mean of all QC sample values in 38 plates. As shown in Supplementary Fig. 1, plate normalization efficiently corrected the interplate variations in metabolite concentration.

For comparability between different metabolites, their concentrations were natural-log transformed and scaled to a mean value of 0 and SD of 1.

Three-Step Feature Selection

Since feature reduction is an important aspect of predictive modeling, we defined a three-step feature selection procedure. In order to decrease the false positive rate of the final discovery, we firstly used MLR adjusted for the two sets of covariates based on medical knowledge (11). The basic model was adjusted for age, sex, BMI, systolic blood pressure (BP), smoking status, triglyceride, total cholesterol, HDL cholesterol, and fasting glucose. The full model was additionally adjusted for the use of lipid-lowering, antihypertensive, and antidiabetes medication and for baseline eGFR and UACR (Fig. 1). Metabolites that were significantly associated with incident CKD in the full model (P < 0.05) were retained.

Secondly, we applied the machine learning method priority-Lasso to deal with multicollinearity of included variables and to retain metabolite and clinical variables with nonzero coefficients. Priority-Lasso is a Lasso-based intuitive procedure that uses prior knowledge of the study outcome by defining the blocks of different types of predictor variables (28). We defined 14 clinical variables in the full model as block 1, whereas the metabolites retained

	Hyperglycemic participants		NGT participants			
Clinical variables	Incident CKD, N = 85	Non-CKD, N = 300	P	Incident CKD, N = 115	Non-CKD, N = 1,338	P
Age, years	67.78 ± 8.78	59.44 ± 9.39	1.29E-10	60.97 ± 12	50.05 ± 10.82	4.81E-20
Male sex, %	55.29	58.00	0.656	46.09	46.64	0.910
BMI, kg/m ²	30.11 ± 4.58	29.74 ± 4.80	0.522	27.39 ± 4.51	26.29 ± 4.09	0.007
HbA _{1c} (%)	6.06 ± 0.86	5.82 ± 0.57	0.004	5.49 ± 0.29	5.33 ± 0.30	3.71E-08
HbA _{1c} (mmol/mol)	42.81 ± 9.32	40.14 ± 6.24	0.004	36.56 ± 3.24	34.76 ± 3.39	1.03E-07
Fasting glucose, mg/dL	116.02 ± 28.6	110.23 ± 18.82	0.031	93.61 ± 7.42	91.4 ± 7.56	0.003
2-h glucose, mg/dL	173.59 ± 43.17^{a}	159.82 ± 39.87^{a}	0.019	102.7 ± 20.68	96.37 ± 20.53	0.002
Systolic BP, mmHg	132.01 ± 18.72	128.78 ± 17.16	0.135	124.73 ± 18.42	117.69 ± 15.87	9.59E-06
Diastolic BP, mmHg	75.14 ± 9.53	78.25 ± 9.47	0.009	76.36 ± 10.51	74.81 ± 9.3	0.089
Triglyceride, mg/dL	130.0 (93–186)	133.5 (94.8–195.3)	0.859	107 (75–143)	91 (63–130)	0.220
Total cholesterol, mg/dL	212.87 ± 38.32	225.2 ± 39.7	0.012	219.39 ± 40.24	213.45 ± 37.75	0.108
HDL cholesterol, mg/dL	51.87 ± 11.64	51.66 ± 13.66	0.897	57.06 ± 15.27	58.00 ± 14.70	0.514
LDL cholesterol, mg/dL	130.64 ± 35.47	144.77 ± 34.47	0.001	138.45 ± 35.56	134.03 ± 33.84	0.180
Baseline eGFR, mL/min/1.73 m ²	78.42 ± 13.6	90.48 ± 12.48	2.18E-11	83.13 ± 15.85	$\textbf{98.38} \pm \textbf{12.79}$	1.39E-25
Follow-up eGFR, mL/min/1.73 m ²	57.5 ± 18.3	81.67 ± 13.12		66.68 ± 19.32	89.5 ± 13.48	
Baseline UACR, mg/g	10.22 (4.8–15.0)	5.45 (3.8–9.1)	2.54E-07	7.16 (4.7–13.8)	4.64 (3.2–7.2)	3.81E-13
Follow-up UACR, mg/g	14.47 (6.02–41.02)	5.54 (3.34–9.47)		18.51 (5.4–54.1)	4.22 (2.9–6.6)	
Smoking, % Nonsmoker Former smoker Current smoker	47.06 47.06 5.88	41.33 48.00 10.67	0.321 Ref. 0.558 0.159	41.74 41.74 16.52	42.15 38.57 19.28	0.699 Ref. 0.676 0.607
Medication usage, % Lipid lowering Antihypertensive Antidiabetes	30.59 71.76 16.47	11.33 42.67 11.33	3.20E-05 4.49E-06	15.65 50.43	6.28 16.07	2.78E-04 8.88E-17

Data are means \pm SD for quantitative variables or median (25th–75th percentile) unless otherwise indicated. KORA participants were classified according to their hyperglycemic status at baseline (F4) and incident CKD status at follow-up (FF4). Unless indicated, variables show baseline measurements. *P* values were calculated by univariate logistic regression. *P* values shown in boldface type represent statistical significance at 0.05 level. ^aIn the hyperglycemic participants, 2-h glucose levels were only available in 61 individuals with incident CKD and 254 individuals without CKD.

after the first-step screen were defined as block 2. The penalization parameters λ in each block were determined as values with maximum area under the receiver operating characteristic curve (AUC) estimated in a 10-fold cross validation.

Thirdly, we used logistic regression with backward stepwise selection according to the Akaike information criterion (*AIC*) to select for the most strongly associated variables with incident CKD and reduce model complexity (Fig. 1).

After the three-step feature selection, the selected metabolites from the 385 hyperglycemic individuals were regarded as candidate biomarkers.

Sensitivity Analyses of Candidate Biomarkers

We conducted four sensitivity analyses to reduce the possibility of chance findings (Fig. 1): 1) A nearest-neighbor propensity score matching in nested case-control study

design was used to balance case and control subjects on conventional risk factors of CKD. MLR analysis was used to generate propensity scores using incident CKD as outcome and covariates from the full model. The caliper was defined as 0.1. After one-to-one propensity score matching, we investigated the association of candidate biomarkers with incident CKD by conditional logistic regression. 2) We investigated whether the predictive effect of candidate biomarkers for incident CKD was dependent of the hyperglycemic status. We examined the association of the candidate biomarkers with incident CKD in 1,453 normoglycemic participants by MLR. 3) We explored the interaction effects of candidate biomarkers with glucose levels for incident CKD in 1,838 individuals and performed a stratified analysis by MLR. We next examined the multiplicative interaction effects between candidate biomarkers and glucose groups by adding related multiplicative terms in the MLR models. The significance of interaction terms was tested by ANOVA LRT test. 4) We examined the association of candidate biomarkers with UACR-based (UACR \geq 30 mg/g) and eGFR-based (eGFR <60 mL/min/1.73 m²) incident CKD separately in hyper-glycemic participants.

Development and Evaluation of Predictor Sets

We performed the three-step feature selection with 100 random repeats of 10-fold cross validation to develop the sets of metabolite and clinical predictors for incident CKD in hyperglycemia (Fig. 1). Their predictive performances were evaluated using AUC. The AUC values of developed predictors were compared with the established prediction model consisting of age, sex, eGFR, and UACR (10,11). These four clinical variables were used as reference predictors.

In each 10-fold cross validation, the data from 385 hyperglycemic individuals were randomly partitioned into 10 nonoverlapping subsets. Each of these 10 subsets was regarded in turn as testing data, whereas the remaining nine subsets were used as training data (Fig. 1). In each iteration, a set of metabolite and clinical variables for incident CKD was identified with the three-step feature selection procedure using one of the training data sets. The identified predictor set and the reference predictors were used to develop respective prediction models with SVM. In this way, two prediction models were built using one training data set. The AUC values of the respective two models were computed for the testing data only (Fig. 1). The average AUC value over 10 iterations of one 10-fold cross validation was calculated and finally presented. For assessment of the robustness of the predictive results, the predictive models were furthermore built using another two machine learning approaches (i.e., RF and AdaBoost) and the corresponding AUC values were reported.

SVM models were fitted with the R e1071 package (29). The kernel parameter was defined as radial (i.e., Gaussian radial basis function). RF models were fitted with the R randomForest package, which implements Breiman's classic algorithm (30). The two RF parameters, nTree (i.e., the number of trees to grow for each forest) and mTry (the number of input variables randomly chosen at each split), were set to 600 and the default setting (floor of square root of the number of features), respectively. The R ada package was used to fit the AdaBoost models (31). The three AdaBoost parameters loss (i.e., loss function), type (type of boosting algorithm to perform), and iter (number of boosting iterations to perform) were set to ada (corresponding to the default boosting under exponential loss), discrete (discrete boosting), and 200, respectively.

In total, we performed 100 repeats of 10-fold cross validations including 1,000 times of three-step feature selection. The most frequently selected set of metabolites and clinical variables among these 1,000 selection rounds was subsequently defined as the best set of predictors for incident CKD in hyperglycemia. All statistical analyses were performed in R (version 3.5.0), and two-sided P value <0.05 was considered as statistically significant.

Data and Resource Availability

The KORA F4/FF4 data sets are not publicly available because of data protection agreements but can be provided on request through the KORA-PASST (project application self-service tool [www.helmholtz-muenchen.de/kora-gen]).

RESULTS

Baseline Characteristics of Study Participants

Among 1,838 eligible, non-CKD participants of the KORA F4 study, 200 individuals developed CKD during a mean follow-up of 6.5 years (Fig. 1 and Table 1). Incident CKD was diagnosed more frequently in hyperglycemic participants (22.1%) than in individuals with NGT (7.9%) (Table 1). Compared with non-CKD individuals, the incident CKD case subjects in hyperglycemic and NGT groups were significantly older and had significantly higher baseline values of HbA_{1c}, fasting and 2-h glucose, and UACR, whereas their baseline eGFR values were significantly lower. They also self-reported a significantly higher intake of antihypertensive and lipid-lowering medication (Table 1).

Identification of Metabolite Biomarkers for Incident CKD in Hyperglycemia

Of 125 analyzed metabolites in 385 hyperglycemic participants, the baseline values of 13 metabolites were nominally associated (P < 0.05) with incident CKD, both in basic and full MLR models (Fig. 2A and Supplementary Table 2). Among the 13 metabolites, nine corresponded to sphingomyelins (SMs) and SM C18:1 remained significant after stringent Bonferroni correction (Fig. 2A and Supplementary Fig. 2). Of the 13 metabolites, 4 metabolites were selected by priority-Lasso and 2 (SM C18:1 and phosphatidylcholine diacyl [PC aa] C38:0) remained significant after stepwise AIC selection (Fig. 1). The relative concentrations of the two metabolites were significantly higher in 85 incident CKD case subjects in comparison with 300 non-CKD individuals (Fig. 2B). For example, a SD increase in the In-transformed SM C18:1 concentration at baseline was associated with a 122% increased odds of CKD at follow-up (full model P = 3.315E - 04) (Supplementary Table 2).

The results of the three-step feature selection thus identified two metabolites, SM C18:1 and PC aa C38:0, as candidate biomarkers of incident CKD in hyperglycemic individuals.

Sensitivity Analyses Consolidate the Candidate CKD Biomarkers

Propensity score matching in 385 hyperglycemic individuals resulted in 62 one-to-one matched incident CKD and non-CKD pairs. All covariates from the full model showed similar characteristics between the case and matched control subjects (Supplementary Table 3), and the two candidate biomarkers showed significant risk associations with incident CKD (Supplementary Table 4).

Both metabolites were not significantly associated with incident CKD in 1,453 normoglycemic individuals, i.e., when 115 incident CKD case subjects were compared with 1,338 non-CKD individuals who were both NGT at baseline (Table 1, Supplementary Table 5, and Fig. 2*B*). This result indicates that the two candidate biomarkers of incident CKD are specific for hyperglycemia.

Their specificity for hyperglycemia was further confirmed by metabolite-glucose interaction analysis. The risk estimates of SM C18:1 and PC aa C38:0 association with incident CKD were significant only in the hyperglycemic subgroup as well as in the top tertile of fasting and 2-h glucose, respectively (Supplementary Table 5). Moreover, SM C18:1 demonstrated significant multiplicative interaction effects with glycemic status and 2-h glucose (Fig. 3 and Supplementary Table 5).

The fourth sensitivity analysis aimed to address the UACR- and eGFR-based outcomes separately. Among 385 hyperglycemic participants, 32 and 65 developed incident CKD according to UACR and eGFR criteria, respectively. Both metabolites showed consistently significant risk effects for the UACR-based incident CKD in hyperglycemic participants, both in basic and in full MLR

(Supplementary Table 6). Moreover, SM C18:1 was a significant predictor for eGFR-based incident CKD in the basic MLR (Supplementary Table 6).

Superior Discrimination Ability and the Best Set of Predictors of Incident CKD in Hyperglycemia

During 100 times of 10-fold cross-validation, the median AUC values of our developed sets of predictors (i.e., metabolites and clinical variables) were stable in all three machine learning algorithms with corresponding values >0.813 (Fig. 4 and Supplementary Table 7). In comparisons with the reference predictors (age, sex, eGFR, UACR), the median AUC value of our developed sets of predictors increased by 2.5% and reached 0.825 (95% CI 0.801-0.849 [SVM algorithm]) (Supplementary Table 7), thereby outperforming the reference predictors in 97 out of 100 times of 10-fold cross validation (Supplementary Table 7). The improvement remained consistent after application of the other two machine learning approaches, RF (2.9% absolute increase in median AUC value) and AdaBoost (1.6%) (Supplementary Table 7). These results suggest that our developed sets of predictors outperform the established clinical predictors for incident CKD.

We further identified the best set of predictors for incident CKD, which consisted of two metabolites (SM

Figure 2—Serum metabolite associations with incident CKD. A: Volcano plot of the association results for 125 metabolites with incident CKD in hyperglycemic individuals. Odds ratios and *P* values are from logistic regression analysis adjusted for age, sex, BMI, systolic BP, smoking status, triglyceride, total cholesterol, HDL cholesterol, fasting glucose, use of lipid-lowering drugs, antihypertensive, and antidiabetes medication, and baseline values of eGFR and UACR. The upper and the lower interrupted lines represent Bonferroni-corrected and uncorrected (P = 0.05) significance levels, respectively. B: Mean residuals (with SEs) of SM C18:1 and PC as C38:0 for non-CKD and incident CKD in hyperglycemic and NGT individuals, respectively. Metabolite residuals were calculated with linear regression models adjusted for age, sex, BMI, systolic BP, smoking status, triglyceride, total cholesterol, HDL cholesterol, HDL cholesterol, HDL cholesterol, BC and Incident CKD in hyperglycemic and NGT individuals, respectively. Metabolite residuals were calculated with linear regression models adjusted for age, sex, BMI, systolic BP, smoking status, triglyceride, total cholesterol, HDL cholesterol, and fasting glucose.

C18:1 and PC aa C38:0) and five clinical variables (age, total cholesterol, fasting glucose, eGFR, and UACR). This set was the most frequently selected set: 113 times over 1,000 selection rounds (Supplementary Table 8). Moreover, these seven variables were the most important ones, and metabolites SM C18:1 and PC aa C38:0 were selected 857 and 593 times over these 1,000 rounds (Supplementary Table 9). The mean AUC value of the best set of predictors for incident CKD was 0.857, which was 4.8% higher than the corresponding AUC value of the full model containing 14 clinical variables including two known CKD biomarkers, eGFR and UACR (Supplementary Table 10).

DISCUSSION

This longitudinal study revealed significant accumulation of sphingo- and glycerophospholipids (SM C18:1 and PC aa C38:0) in individuals with prediabetes and T2D up to 6.5 years before their clinical onset of CKD. These candidate metabolite biomarkers of incident CKD were specific for hyperglycemic state, i.e., individuals with increased fasting and/or 2-h glucose levels. Highly stable performances of the sets of predictors for incident CKD developed from 125 metabolites and 14 clinical variables were furthermore independently confirmed with three machine learning algorithms. The best set of predictors consisted of the two metabolites (SM C18:1 and PC aa C38:0) and five clinical variables (age, total cholesterol, fasting glucose, eGFR, and UACR) and showed the best predictive power for early discrimination of hyperglycemic individuals at high risk of progressing to CKD.

Despite the relatively low coverage of our targeted metabolomics approach, i.e., lack of ceramides and other sphingolipids, our results support evidence on SM accumulation in glomerular diseases of genetic and nongenetic origin (32). Out of 125 analyzed metabolites comprising amino acids, acylcarnitines, hexoses, and glycerophosphoand sphingolipids (Supplementary Table 1), SMs represented the majority of metabolites associated with incident CKD in hyperglycemic participants (P < 0.05) (Fig. 2A). Increased SM levels in relation to CKD were also reported in individuals with type 1 diabetes (33) and T2D (34), except for the nontargeted lipidomic study of type 1 diabetes (35). Isomer annotation of the top significant metabolite, SM C18:1, in our study revealed that it may consist of several sphingoid backbones (d16:1, d18:0, d18:1, d18:2, and d19:1) bound to mainly saturated or monounsaturated fatty acyls with 16-18 carbons (36). A similar preference for saturated fatty acyl chains was found for PC aa C38:0 and PC aa C42:0, two diacyl PCs with positive association trends with incident CKD (Fig. 2A).

Circulatory levels of several other metabolites associated with CKD in our study (SM C16:0, SM C16:1, SM C24:1, and PC aa C38:0) have previously been shown to positively associate with coronary artery disease mortality (37). SM C16:0 and SM C16:1 were also found to be positively associated with myocardial infarction (38). Moreover, higher plasma SMs were found in patients with coronary artery disease and causally related to progression of atherosclerosis lesions in animal models (39,40). The PC aa C32:2 that showed an inverse association with incident CKD in our study was previously found to be protective for coronary artery disease mortality (37). These observations suggest that metabolic alterations associated with incident CKD may also reflect underlying

Figure 3—Stratified associations of candidate biomarkers with incident CKD according to glucose status. Associations of SM C18:1 and PC aa C38:0 with incident CKD stratified by hyperglycemic status (*A*) and each tertile of fasting glucose (*B*) and 2-h glucose (*C*) values. Regression coefficients in NGT and first and second tertile of fasting and 2-h glucose were adjusted for age, sex, BMI, systolic BP, smoking status, triglyceride, total cholesterol, HDL cholesterol, fasting glucose, use of lipid-lowering drug and antihypertensive medication, and baseline values of eGFR and UACR. Regression coefficients in the hyperglycemic group and the top tertile of fasting and 2-h glucose were additionally adjusted for antidiabetes medication.

Figure 4—Prediction performance of incident CKD in hyperglycemic individuals in three machine learning approaches. The box plots show the AUC values of two models applying three machine learning approaches over 100 times of 10-fold cross validation. Reference predictors: baseline age, sex, eGFR, and UACR. Developed sets of predictors: combination of metabolites and clinical variables, which were identified by the three-step feature selection in each round. For the resampling rounds, in each iteration of each 10-fold cross validation, the three-step feature selection procedure was conducted and metabolites and clinical variables were selected for the training data. The set of selected metabolites and clinical variables and the reference predictors were used to develop respective prediction models with the three approaches in the training data. The AUC values were computed for the test data only. The 10 AUC values of each model of each approach were averaged to produce a single estimate that was displayed in box plots. The procedure of 10-fold cross validation was randomly repeated 100 times, which generated 100 cross validation AUC values of each prediction model for each approach.

cardiovascular disease, for which CKD is an independent risk factor (41).

Circulatory accumulation in SMs and saturated PCs in individuals with prediabetes and T2D may also reflect early stages of diabetic nephropathy such as mesangial matrix expansion, podocyte injury, and glomerular enlargement (42). The SM (d18:1/16:0) was reported to accumulate in the enlarged glomeruli of diabetic and obese mice and was detected in the glomeruli and vasculature of human kidney (43). The SM (d18:1/16:0) is one of the possible isomers for SM C16:0 that was positively associated with incident CKD in our study (Fig. 2A) and highly correlated with our top hit, SM C18:1 (Pearson correlation coefficient = 0.66, P < 2.2e-16) (Supplementary Fig. 2). Renal accumulation in SM (d18:1/16:0) was related to reduced enzyme activity of AMPK in the diabetic kidney glomeruli, mitochondrial dysfunction, and CKD progression (43).

The altered levels of certain SM and PC species in hyperglycemic individuals at increased risk for CKD could be caused by fluctuations in their fatty acid profile, which influences the first rate-limiting step in de novo SM synthesis, due to nutritional oversupply, dyslipidemia (44), or gut microbiome (45). The severity of CKD correlates with increased levels of saturated and monounsaturated fatty acids (46), and enzymes involved in de novo synthesis and the ceramide-SM homeostasis such as SM synthase 2 (SMS2) show fatty acyl chain specificity and may determine the regional expression of SM species in the kidney (47). Reduction of SM levels in the plasma membranes and lipoproteins improves whole-body insulin sensitivity (48), and SMS2 inhibition was suggested as a potential therapeutic target for controlling inflammatory responses and atherosclerosis (49,50). Whether SMS2 inhibition could prevent the development of CKD in hyperglycemic individuals requires further investigation.

The current predictive models for CKD mainly rely on clinical variables (10,11,51,52). Our study demonstrates that two candidate metabolite biomarkers, in combination with five clinical variables, yield the best performing set of predictors for incident CKD in hyperglycemic individuals. Furthermore, we show the power of appropriate combination of state-of-the-art machine learning and classical statistical approaches to reveal novel biomarkers and improve the performance of classical clinical predictors of CKD. The three-step feature selection, which we define in this study, was able to capture as few predictors as possible but achieve better predictive performance, which fulfills the ideal setting of clinical practice. Many epidemiological studies have used inappropriate ways to evaluate the performance of the identified variables, in which, for example, certain variables were selected from the whole data set and then the predictive performance was only evaluated on those selected variables using resampling approaches on the same data set (53). Consequently, this could have potentially strongly overestimated the predictive performance because the testing data set has been included as part of the whole data set to perform variable selection and it cannot be regarded as the testing data set anymore (53). In our study, we used cross validation in a combination with three-step feature selection and applied stringent internal validation procedures to evaluate the performance of the identified sets of predictors. In each round, the variable selection was only conducted for the training data and the performance evaluation was only performed for the testing data. In this way, we were able to attain accurate and unbiased internal AUC estimates. Given these advantages as described above, the consistent improvement of our developed sets of predictors on top of four established reference predictors in all three machine learning algorithms can be regarded as significant progress.

Our study has several additional advantages. We used a well-characterized, population-based human cohort that allows for adjustment for the influence of demographic parameters, medication, and other clinical variables. Our stringent QC of metabolite profiles and adjustment for plate effects reduced the noise among all 3,061 measured samples. We performed sensitivity analyses to confirm the candidate metabolite biomarkers and investigate their interaction with glycemia.

A limitation of our study is the missing replication (of 10 international human cohorts, none included at least 50 incident CKD cases in hyperglycemia and metabolites we measured). Discriminatory power of the candidate biomarkers and the best set of predictors cannot be generalized due to lack of external validation. Thus, we are aware that larger prospective studies are needed to validate our discoveries.

In summary, we identified two candidate metabolite biomarkers and the best set of predictors for incident CKD that are specific for individuals with prediabetes and T2D. This study demonstrates the value of metabolomics and appropriate combination of predictors in the improvement of accurate detection of hyperglycemic individuals with enhanced risk for CKD. With rising worldwide prevalence and burden of (pre)diabetes-related CKD, combining metabolite and clinical predictors is a promising approach for effective predictions of future CKD in the framework of an integrated personalized diabetes management.

Acknowledgments. The authors express appreciation to all KORA study participants for donating their blood and time. The authors thank the field staff in Augsburg conducting the KORA studies. The authors are grateful to the staff (J. Scarpa, K. Faschinger, N. Lindemann, A. Ludolph, S. Jelic, and B. Langer) from the Institute of Epidemiology and the Genome Analysis Center Metabolomics Platform, and KORA-PASST Platform at Helmholtz Zentrum München – German Research Center for Environmental Health, who helped in the sample and data logistics, and metabolomics measurements. Additionally, the authors thank Dr. Anne-Laure Boulesteix from the Institute of Medical Information Processing, Biometry and Epidemiology, Ludwig-Maximilians-University of Munich, Germany, for tips on statistical methods.

Funding. The KORA study was initiated and financed by Helmholtz Zentrum München – German Research Center for Environmental Health, which is funded by the German Federal Ministry of Education and Research (BMBF) and by the State of Bavaria. Furthermore, KORA research was supported within the Munich Center of Health Sciences (MC-Health), Ludwig-Maximilians-Universität, as part of LMUinnovativ. Part of this project was supported by European Union Seventh Framework Programme (EU FP7) grant HEALTH-2013-2.4.2-1/602936 (Project CarTarDis) and the European Institute of Innovation and Technology (EIT) Health–supported 19076 and 20679 iPDM-G0 "Integrated Personalized Diabetes Management Goes Europe" innovation project. EIT Health is supported by the EIT, a body of the European Union. K.S. is supported by Biomedical Research Program funds at Weill Cornell Medicine - Qatar, a program funded by the Qatar Foundation. **Duality of Interest.** M.F.S. was employed at Helmholtz Center Munich during his PhD thesis and is currently employed in the CardioRenal Medical Department of Bayer AG. No other potential conflicts of interest relevant to this article were reported.

Bayer AG was not involved in work related to data and manuscript generation. **Author Contributions.** J.H. conceived the study, analyzed the data, and wrote the manuscript. C.H. researched cohort data and edited the manuscript. M.C. contributed to pathway analysis and wrote the manuscript. M.T. researched data and edited the manuscript. J. Adam edited the manuscript. S.Z. researched data. C.P. researched metabolomics data. L.W. edited the manuscript. J.N. edited the manuscript. M.F.S. researched data and edited the manuscript. S.N. researched data. G.K. researched metabolomics data. K.S. researched metabolomics data. M.L. reviewed the manuscript. F.S. edited the manuscript. C.G. researched cohort data. J.Adam. researched metabolomics data. M.H.d.A. researched data. A.P. researched cohort data. R.W.-S. designed the study, researched metabolomics data, and wrote the manuscript. R.W.-S. is the guarantor of this work and, as such, had full access to all the data in the study and takes responsibility for the integrity of the data and the accuracy of the data analysis.

Prior Presentation. Parts of this study were presented in abstract form at the 15th Annual Conference of the Metabolomics Society The Hague, the Netherlands, 23–27 June 2019, and at the 7th DZD Diabetes Research School, Barcelona, Spain, 14–16 September 2019.

References

1. Bikbov B, Purcell CA, Levey AS, et al.; GBD Chronic Kidney Disease Collaboration. Global, regional, and national burden of chronic kidney disease, 1990-2017: a systematic analysis for the Global Burden of Disease Study 2017. Lancet 2020;395:709–733

 Webster AC, Nagler EV, Morton RL, Masson P. Chronic kidney disease. Lancet 2017;389:1238–1252

 Alicic RZ, Neumiller JJ, Johnson EJ, Dieter B, Tuttle KR. Sodium-glucose cotransporter 2 inhibition and diabetic kidney disease. Diabetes 2019;68:248–257
 Plantinga LC, Crews DC, Coresh J, et al.; CDC CKD Surveillance Team. Prevalence of chronic kidney disease in US adults with undiagnosed diabetes or prediabetes. Clin J Am Soc Nephrol 2010;5:673–682

5. Melsom T, Schei J, Stefansson VT, et al. Prediabetes and risk of glomerular hyperfiltration and albuminuria in the general nondiabetic population: a prospective cohort study. Am J Kidney Dis 2016;67:841–850

6. Markus MRP, Ittermann T, Baumeister SE, et al. Prediabetes is associated with microalbuminuria, reduced kidney function and chronic kidney disease in the general population: the KORA (Cooperative Health Research in the Augsburg Region) F4-Study. Nutr Metab Cardiovasc Dis 2018;28:234–242

 Li W, Wang A, Jiang J, et al. Risk of chronic kidney disease defined by decreased estimated glomerular filtration rate in individuals with different prediabetic phenotypes: results from a prospective cohort study in China. BMJ Open Diabetes Res Care 2020;8:e000955

8. Ceriello A, Barkai L, Christiansen JS, et al. Diabetes as a case study of chronic disease management with a personalized approach: the role of a structured feedback loop. Diabetes Res Clin Pract 2012;98:5–10

 Levin A, Stevens PE, Bilous RW, et al.; Kidney Disease Improving Global Outcomes (KDIGO) CKD Work Group. KDIGO 2012 clinical practice guideline for the evaluation and management of chronic kidney disease. Kidney Int Suppl 2013;3: 1–150 10. Tangri N, Stevens LA, Griffith J, et al. A predictive model for progression of chronic kidney disease to kidney failure. JAMA 2011;305:1553–1559

Dunkler D, Gao P, Lee SF, et al.; ONTARGET and ORIGIN Investigators. Risk prediction for early CKD in type 2 diabetes. Clin J Am Soc Nephrol 2015;10:1371–1379
 Floegel A, Stefan N, Yu Z, et al. Identification of serum metabolites associated with risk of type 2 diabetes using a targeted metabolomic approach. Diabetes 2013;62:639–648

13. Wang-Sattler R, Yu Z, Herder C, et al. Novel biomarkers for pre-diabetes identified by metabolomics. Mol Syst Biol 2012;8:615

14. Wang TJ, Larson MG, Vasan RS, et al. Metabolite profiles and the risk of developing diabetes. Nat Med 2011;17:448-453

15. Chen GC, Chai JC, Yu B, et al. Serum sphingolipids and incident diabetes in a US population with high diabetes burden: the Hispanic Community Health Study/ Study of Latinos (HCHS/SOL). Am J Clin Nutr 2020;112:57–65

 Carayol M, Leitzmann MF, Ferrari P, et al. Blood metabolic signatures of body mass index: a targeted metabolomics study in the EPIC cohort. J Proteome Res 2017;16:3137–3146

17. Leal-Witt MJ, Ramon-Krauel M, Samino S, et al. Untargeted metabolomics identifies a plasma sphingolipid-related signature associated with lifestyle intervention in prepubertal children with obesity. Int J Obes 2018;42:72–78

18. Razquin C, Toledo E, Clish CB, et al. Plasma lipidomic profiling and risk of type 2 diabetes in the PREDIMED trial. Diabetes Care 2018;41:2617–2624

 Alderete TL, Jin R, Walker DI, et al. Perfluoroalkyl substances, metabolomic profiling, and alterations in glucose homeostasis among overweight and obese Hispanic children: a proof-of-concept analysis. Environ Int 2019;126:445–453

20. Hocher B, Adamski J. Metabolomics for clinical use and research in chronic kidney disease. Nat Rev Nephrol 2017;13:269–284

21. Goek ON, Prehn C, Sekula P, et al. Metabolites associate with kidney function decline and incident chronic kidney disease in the general population. Nephrol Dial Transplant 2013;28:2131–2138

22. Solini A, Manca ML, Penno G, Pugliese G, Cobb JE, Ferrannini E. Prediction of declining renal function and albuminuria in patients with type 2 diabetes by metabolomics. J Clin Endocrinol Metab 2016;101:696–704

 Herder C, Kannenberg JM, Huth C, et al. Proinflammatory cytokines predict the incidence and progression of distal sensorimotor polyneuropathy: KORA F4/ FF4 study. Diabetes Care 2017;40:569–576

 Chak CM, Lacruz ME, Adam J, et al. Ageing investigation using two-timepoint metabolomics data from KORA and CARLA studies. Metabolites 2019;9:44
 World Health Organization, International Diabetes Federation. *Definition and Diagnosis of Diabetes Mellitus and Intermediate Hyperglycaemia: Report of a WHO/ IDF Consultation.* Geneva, World Health Org., 2006

 Inker LA, Schmid CH, Tighiouart H, et al.; CKD-EPI Investigators. Estimating glomerular filtration rate from serum creatinine and cystatin C. N Engl J Med 2012; 367:20–29

27. Römisch-Margl W, Prehn C, Bogumil R, Röhring C, Suhre K, Adamski J. Procedure for tissue sample preparation and metabolite extraction for high-throughput targeted metabolomics. Metabolomics 2012;8:133–142

 Klau S, Jurinovic V, Hornung R, Herold T, Boulesteix AL. Priority-Lasso: a simple hierarchical approach to the prediction of clinical outcome using multiomics data. BMC Bioinformatics 2018;19:322

29. Chang C-C, Lin C-J. LIBSVM: a library for support vector machines. ACM Trans Intell Syst Technol 2011;2:1–27

30. Liaw A, Wiener M. Classification and regression by randomForest. R News 2002;2:18–22

 Culp M, Johnson K, Michailides G. ada: an R package for stochastic boosting. J Stat Softw 2006;17:1–27

32. Merscher S, Fornoni A. Podocyte pathology and nephropathy - sphingolipids in glomerular diseases. Front Endocrinol (Lausanne) 2014;5:127 Mäkinen VP, Tynkkynen T, Soininen P, et al. Sphingomyelin is associated with kidney disease in type 1 diabetes (The FinnDiane Study). Metabolomics 2012; 8:369–375

 Liu JJ, Ghosh S, Kovalik JP, et al. Profiling of plasma metabolites suggests altered mitochondrial fuel usage and remodeling of sphingolipid metabolism in individuals with type 2 diabetes and kidney disease. Kidney Int Rep 2016;2:470–480
 Tofte N, Suvitaival T, Ahonen L, et al. Lipidomic analysis reveals sphingomyelin and phosphatidylcholine species associated with renal impairment and allcause mortality in type 1 diabetes. Sci Rep 2019;9:16398

 Annotation of potential isobaric and isomericlipid species analyzed using theMxP®Quant 500 Kit. Available from https://www.biocrates.com/wp-content/ uploads/2020/02/Biocrates_Q500_isomers_isobars.pdf

37. Sigruener A, Kleber ME, Heimerl S, Liebisch G, Schmitz G, Maerz W. Glycerophospholipid and sphingolipid species and mortality: the Ludwigshafen Risk and Cardiovascular Health (LURIC) study. PLoS One 2014;9:e85724

 Floegel A, Kühn T, Sookthai D, et al. Serum metabolites and risk of myocardial infarction and ischemic stroke: a targeted metabolomic approach in two German prospective cohorts. Eur J Epidemiol 2018;33:55–66

 Jiang XC, Paultre F, Pearson TA, et al. Plasma sphingomyelin level as a risk factor for coronary artery disease. Arterioscler Thromb Vasc Biol 2000;20:2614–2618
 Li Z, Basterr MJ, Hailemariam TK, et al. The effect of dietary sphingolipids on plasma sphingomyelin metabolism and atherosclerosis. Biochim Biophys Acta 2005;1735:130–134

41. Cai Q, Mukku VK, Ahmad M. Coronary artery disease in patients with chronic kidney disease: a clinical update. Curr Cardiol Rev 2013;9:331–339

 Alicic RZ, Rooney MT, Tuttle KR. Diabetic kidney disease: challenges, progress, and possibilities. Clin J Am Soc Nephrol 2017;12:2032–2045

 Miyamoto S, Hsu C-C, Hamm G, et al. Mass spectrometry imaging reveals elevated glomerular ATP/AMP in diabetes/obesity and identifies sphingomyelin as a possible mediator. EBioMedicine 2016;7:121–134

 Torretta E, Barbacini P, Al-Daghri NM, Gelfi C. Sphingolipids in obesity and correlated co-morbidities: the contribution of gender, age and environment. Int J Mol Sci 2019;20:5901

 Johnson EL, Heaver SL, Waters JL, et al. Sphingolipids produced by gut bacteria enter host metabolic pathways impacting ceramide levels. Nat Commun 2020;11:2471

46. Czumaj A, Śledziński T, Carrero JJ, et al. Alterations of fatty acid profile may contribute to dyslipidemia in chronic kidney disease by influencing hepatocyte metabolism. Int J Mol Sci 2019;20:2470

47. Sugimoto M, Wakabayashi M, Shimizu Y, et al. Imaging mass spectrometry reveals acyl-chain- and region-specific sphingolipid metabolism in the kidneys of sphingomyelin synthase 2-deficient mice. PLoS One 2016;11:e0152191

48. Li Z, Zhang H, Liu J, et al. Reducing plasma membrane sphingomyelin increases insulin sensitivity. Mol Cell Biol 2011;31:4205–4218

 Fan Y, Shi F, Liu J, et al. Selective reduction in the sphingomyelin content of atherogenic lipoproteins inhibits their retention in murine aortas and the subsequent development of atherosclerosis. Arterioscler Thromb Vasc Biol 2010;30:2114–2120
 Adachi R, Ogawa K, Matsumoto SI, et al. Discovery and characterization of selective human sphingomyelin synthase 2 inhibitors. Eur J Med Chem 2017;136: 283–293

 Ravizza S, Huschto T, Adamov A, et al. Predicting the early risk of chronic kidney disease in patients with diabetes using real-world data. Nat Med 2019;25: 57–59

 52. Echouffo-Tcheugui JB, Kengne AP. Risk models to predict chronic kidney disease and its progression: a systematic review. PLoS Med 2012;9:e1001344
 53. Boulesteix AL, Wright MN, Hoffmann S, König IR. Statistical learning approaches in the genetic epidemiology of complex diseases. Hum Genet 2020;139: 73–84

SUPPLEMENTAL MATERIAL

Full Title: Machine learning approaches reveal metabolic signatures of incident chronic kidney disease in individuals with prediabetes and type 2 diabetes

Supplementary Tables

Table S1. Metabolite panel of baseline KORA F4 study

The abbreviations and biochemical names of 163 metabolites are shown in the first and second column, respectively. The third column shows the missing rate of each metabolite among 3,061 KORA F4 individuals. The missing rate was defined as the number of no reported values divided by the number of all measured values. The fourth column presents the arithmetic means of the coefficients of variance (CV) of 114 quality controls samples (i.e. three on each kit plate). The percentage of individuals equal to or above the limit of detection (LOD) among 3,061 KORA F4 participants is shown in the fifth column. The sixth column presents the mean value of metabolite concentration (μ M) in 3,061 KORA F4 participants after adjusting for plate effects. The last column shows the status (used/excluded) for each metabolite.

Metabolite	Biochemical name	Missing	CV	Equal to	Mean Concen-	Application
		Rate (%)	(%)	or above	tration (µM)	
CO	Carnitine	0.0	7.50	99.97	35.89	Used
C10	Decanoylcarnitine	0.0	12.40	98.30	0.36	Used
C10:1	Decenoylcarnitine	0.0	10.45	36.20	0.17	Excluded
C10:2	Decadienylcarnitine	0.0	15.61	58.58	0.04	Used
C12	Dodecanoylcarnitine	0.0	10.63	89.51	0.13	Used
C12:1	Dodecenoylcarnitine	0.0	13.51	2.16	0.15	Excluded
C12-DC	Dodecanedioylcarnitine	0.0	15.71	0.00	0.06	Excluded
C14	Tetradecanoylcarnitine	0.0	11.80	47.60	0.05	Excluded
C14:1	Tetradecenoylcarnitine	0.0	20.10	99.97	0.15	Used
C14:1-OH	Hydroxytetradecenoylcarnitine	0.0	17.88	76.54	0.02	Used
C14:2	Tetradecadienylcarnitine	0.0	11.19	99.44	0.03	Used
C14:2-OH	Hydroxytetradecadienylcarnitine	0.0	24.24	44.10	0.01	Excluded
C16	Hexadecanoylcarnitine	0.0	10.02	99.97	0.12	Used
C16:1	Hexadecenoylcarnitine	0.0	10.39	2.48	0.04	Excluded
С16:1-ОН	Hydroxyhexadecenoylcarnitine	0.0	17.20	1.31	0.01	Excluded
C16:2	Hexadecadienylcarnitine	0.0	19.46	77.56	0.01	Used
С16:2-ОН	Hydroxyhexadecadienylcarnitine	0.0	20.19	1.08	0.01	Excluded
С16-ОН	Hydroxyhexadecanoylcarnitine	0.0	21.99	3.23	0.01	Excluded
C18	Octadecanoylcarnitine	0.0	12.52	99.90	0.05	Used
C18:1	Octadecenoylcarnitine	0.0	13.30	99.93	0.13	Used
C18:1-OH	Hydroxyoctadecenoylcarnitine	0.0	25.50	1.14	0.01	Excluded
C18:2	Octadecadienylcarnitine	0.0	11.00	99.97	0.05	Used
C2	Acetylcarnitine	0.0	9.62	99.97	8.26	Used
C3	Propionylcarnitine	0.0	10.28	99.97	0.40	Used
C3:1	Propenonylcarnitine	0.0	37.84	0.49	0.01	Excluded
С3-ОН	Hydroxypropionylcarnitine	0.0	98.90	7.64	0.03	Excluded
C4	Butyrylcarnitine	0.0	11.20	99.97	0.23	Used
C4:1	Butenylcarnitine	0.0	35.99	10.42	0.02	Excluded
C4-OH (C3-DC)	Hydroxybutyrylcarnitine	0.0	34.81	9.64	0.09	Excluded
C5	Valervlcarnitine	0.0	15.83	99.97	0.12	Used
C5:1	Tiglylcarnitine	0.0	26.40	1.83	0.03	Excluded
C5:1-DC	Glutaconvlcarnitine	0.0	51.54	13.92	0.02	Excluded
C5-DC (C6-OH)	Glutarylcarnitine (Hydroxyhexa-	0.0	36.29	58.05	0.03	Excluded
C5-M-DC	Methylglutarylcarnitine	0.0	48.62	3.82	0.03	Excluded

С5-ОН (С3-DС-	Hydroxyvalerylcarnitine	0.0	24.31	14.05	0.04	Excluded
C6 (C4:1-DC)	Hexanoylcarnitine (Fumaryl-	0.0	14.19	87.62	0.07	Used
C6:1	Hexenoylcarnitine	0.0	36.13	3.50	0.02	Excluded
C7-DC	Pimelylcarnitine	0.0	29.31	73.21	0.05	Excluded
C8	Octanoylcarnitine	0.0	9.73	50.38	0.23	Used
C8:1	Octenoylcarnitine	0.0	8.45	99.22	0.09	Used
C9	Nonaylcarnitine	0.0	33.00	92.98	0.05	Excluded
Arg	Arginine	0.0	7.58	99.97	115.89	Used
Gln	Glutamine	0.0	14.28	99.97	619.01	Used
Gly	Glycine	0.0	8.35	99.97	307.70	Used
His	Histidine	0.0	10.50	99.97	98.28	Used
Met	Methionine	0.0	14.82	99.97	32.03	Used
Orn	Ornithine	0.0	11.33	99.97	81.47	Used
Phe	Phenylalanine	0.0	8.87	99.97	62.25	Used
Pro	Proline	0.0	10.15	100.00	176.09	Used
Ser	Serine	0.0	9.34	99.97	128.46	Used
Thr	Threonine	0.0	11.20	99.97	106.03	Used
Trp	Tryptophan	0.0	7.45	99.97	82.62	Used
Tyr	Tyrosine	0.0	8.61	99.97	85.47	Used
Val	Valine	0.0	15.51	100.00	277.00	Used
xLeu	Leucine/Isoleucine	0.0	9.48	100.00	213.92	Used
PC aa C24:0	Phosphatidylcholine diacyl C24:0	0.0	24.13	78.93	0.15	Used
PC aa C26:0	Phosphatidylcholine diacyl C26:0	0.0	38.23	11.43	1.08	Excluded
PC aa C28:1	Phosphatidylcholine diacyl C28:1	0.0	9.78	99.97	3.38	Used
PC aa C30:0	Phosphatidylcholine diacyl C30:0	0.0	12.24	99.97	4.74	Used
PC aa C30:2	Phosphatidylcholine diacyl C30:2	95.52	75.42	4.34	0.06	Excluded
PC aa C32:0	Phosphatidylcholine diacyl C32:0	0.0	12.23	99.97	15.21	Used
PC aa C32:1	Phosphatidylcholine diacyl C32:1	0.0	12.32	99.97	21.98	Used
PC aa C32:2	Phosphatidylcholine diacyl C32:2	0.07	20.80	99.90	3.95	Used
PC aa C32:3	Phosphatidylcholine diacyl C32:3	0.0	9.92	99.97	0.48	Used
PC as $C34:1$	Phosphatidylcholine diacyl C34:1	0.0	11.05	99.97	240.08	Used
PC as $C34:2$	Phosphatidylcholine diacyl C34:2	0.0	10.87	99.97	19 07	Used
PC as $C34:3$	Phosphatidylcholine diacyl C34:3	0.0	14.65	99.97	18.07	Used
PC as $C34.4$	Phosphatidylcholine diacyl C34.4	0.0	10.15	99.97	2.27	Used
PC aa C30.0	Phosphatidylcholine diacyl C36:1	0.0	0 1/	99.97	53.80	Used
PC aa C36:2	Phosphatidylcholine diacyl C36:2	0.0	9.14 8.32	99.97	232.62	Used
PC aa C36:3	Phosphatidylcholine diacyl C36:3	0.0	10.63	99.97	150.39	Used
PC aa C36:4	Phosphatidylcholine diacyl C36:4	0.0	11.05	100.00	220.61	Used
PC aa C36:5	Phosphatidylcholine diacyl C36:5	0.0	13.45	99.97	29.52	Used
PC aa C36:6	Phosphatidylcholine diacyl C36:6	0.0	15.13	99.97	1.13	Used
PC aa C38:0	Phosphatidylcholine diacyl C38:0	0.0	15.09	99.97	3.29	Used
PC aa C38:1	Phosphatidylcholine diacyl C38:1	0.10	19.94	99.84	0.87	Used
PC aa C38:3	Phosphatidylcholine diacyl C38:3	0.0	7.21	99.97	54.08	Used
PC aa C38:4	Phosphatidylcholine diacyl C38:4	0.0	6.64	99.97	119.83	Used
PC aa C38:5	Phosphatidylcholine diacyl C38:5	0.0	9.96	99.97	62.43	Used
PC aa C38:6	Phosphatidylcholine diacyl C38:6	0.0	10.27	99.97	90.66	Used
PC aa C40:1	Phosphatidylcholine diacyl C40:1	0.0	15.62	9.05	0.47	Excluded
PC aa C40:2	Phosphatidylcholine diacyl C40:2	0.0	13.75	99.97	0.36	Used
PC aa C40:3	Phosphatidylcholine diacyl C40:3	0.0	12.85	99.97	0.66	Used
PC aa C40:4	Phosphatidylcholine diacyl C40:4	0.0	7.60	100.00	4.17	Used
PC aa C40:5	Phosphatidylcholine diacyl C40:5	0.0	6.43	99.97	11.53	Used
PC aa C40:6	Phosphatidylcholine diacyl C40:6	0.03	6.22	99.97	28.76	Used
PC aa C42:0	Phosphatidylcholine diacyl C42:0	0.0	13.59	99.97	0.60	Used
PC aa C42:1	Phosphatidylcholine diacyl C42:1	0.0	15.38	99.97	0.30	Used
PC aa C42:2	Phosphatidylcholine diacyl C42:2	0.0	15.10	99.97	0.21	Used
PC aa C42:4	Phosphatidylcholine diacyl C42:4	0.0	12.77	99.97	0.22	Used
PC aa C42:5	Phosphatidylcholine diacyl C42:5	0.0	10.74	99.97	0.43	Used
PC aa C42:6	Phosphatidylcholine diacyl C42:6	0.0	10.85	62.53	0.63	Used
PC ae C30:0	Phosphatidylcholine acyl-alkyl	0.0	31.78	99.71	0.48	Excluded
PC ae C30:1	Phosphatidylcholine acyl-alkyl	4.57	46.30	94.09	0.24	Excluded
PC ae C30:2	Phosphatidylcholine acyl-alkyl	0.0	17.44	92.22	0.16	Used

PC ae C32:1	Phosphatidylcholine acyl-alkyl	0.0	10.34	99.97	2.85	Used
PC ae C32:2	Phosphatidylcholine acyl-alkyl	0.0	12.20	99.97	0.75	Used
PC ae C34:0	Phosphatidylcholine acyl-alkyl	0.0	11.28	99.97	1.73	Used
PC ae C34:1	Phosphatidylcholine acyl-alkyl	0.0	11.88	99.97	10.56	Used
PC ae C34:2	Phosphatidylcholine acyl-alkyl	0.0	12.38	99.97	12.67	Used
PC ae C34:3	Phosphatidylcholine acyl-alkyl	0.0	9.93	99.97	8.38	Used
PC ae C36:0	Phosphatidylcholine acyl-alkyl	0.0	40.89	99.97	1.10	Excluded
PC ae C36:1	Phosphatidylcholine acyl-alkyl	0.0	12.61	99.97	8.40	Used
PC ae C36:2	Phosphatidylcholine acyl-alkyl	0.0	13.72	99.97	15.19	Used
PC ae C36:3	Phosphatidylcholine acyl-alkyl	0.0	12.59	99.97	8.59	Used
PC ae C36:4	Phosphatidylcholine acyl-alkyl	0.0	11.60	99.97	20.88	Used
PC ae C36:5	Phosphatidylcholine acyl-alkyl	0.0	9.39	99.97	13.85	Used
PC ae C38:0	Phosphatidylcholine acyl-alkyl	0.0	12.57	99.97	2.48	Used
PC ae C38:1	Phosphatidylcholine acyl-alkyl	0.0	14.05	99.97	0.82	Used
PC ae C38:2	Phosphatidylcholine acyl-alkyl	0.0	13.49	99.97	2.15	Used
PC ae C38:3	Phosphatidylcholine acyl-alkyl	0.0	10.85	99.97	4 34	Used
PC ae C38:4	Phosphatidylcholine acyl-alkyl	0.0	12.38	99.97	15 73	Used
PC ae C38:5	Phosphatidylcholine acyl-alkyl	0.0	11.10	100.00	19.96	Used
PC ae C38:6	Phosphatidylcholine acyl-alkyl	0.0	9.18	99.97	8 70	Used
PC as $C40:0$	Phosphatidylcholine acyl-alkyl	0.0	8.03	1 14	10.25	Excluded
PC as $C40.0$	Phosphatidylcholine acyl-alkyl	0.0	12.62	1.14	1.68	Lised
$PC \approx C40.1$	Phosphatidyleholine acyl-alkyl	0.0	11.02	99.97	2.10	Used
PC at $C40:2$	Phosphatidylcholine acyl-alkyl	0.0	11.52	99.97	2.10	Used
PC ae C40:3	Phosphatidylcholine acyl-alkyl	0.0	10.04	99.97	1.14	Used
PC ae C40:4	Phosphatidylcholine acyl-alkyl	0.0	10.50	99.97	2.39	Used
PC ae C40.5		0.0	0.00	99.97	5.57	Used
PC ae C40:6	Phosphatidylcholine acyl-aikyl	0.0	11.23	99.97	5.06	
PC ae C42:0	Phosphatidylcholine acyl-alkyl	0.0	18.33	14.80	0.52	Excluded
PC ae C42:1	Phosphatidylcholine acyl-alkyl	0.0	13.91	99.97	0.38	Used
PC ae C42:2	Phosphatidylcholine acyl-alkyl	0.0	17.58	99.97	0.68	Used
PC ae C42:3	Phosphatidylcholine acyl-alkyl	0.0	11.87	99.97	0.87	Used
PC ae C42:4	Phosphatidylcholine acyl-alkyl	0.03	9.99	99.97	1.01	Used
PC ae C42:5	Phosphatidylcholine acyl-alkyl	0.0	7.27	99.93	2.36	Used
PC ae C44:3	Phosphatidylcholine acyl-alkyl	0.0	13.32	99.97	0.11	Used
PC ae C44:4	Phosphatidylcholine acyl-alkyl	0.0	11.71	99.97	0.43	Used
PC ae C44:5	Phosphatidylcholine acyl-alkyl	0.0	7.15	99.97	2.12	Used
PC ae C44:6	Phosphatidylcholine acyl-alkyl	0.0	7.73	99.97	1.38	Used
lysoPC a C14:0	lysoPhosphatidylcholine acyl C14:0	0.0	26.82	42.21	3.21	Excluded
lysoPC a C16:0	lysoPhosphatidylcholine acyl C16:0	0.0	10.69	99.97	94.07	Used
lysoPC a C16:1	lysoPhosphatidylcholine acyl C16:1	0.0	10.01	99.97	2.90	Used
lysoPC a C17:0	lysoPhosphatidylcholine acyl C17:0	0.0	13.05	99.97	1.72	Used
lysoPC a C18:0	lysoPhosphatidylcholine acyl C18:0	0.0	10.27	99.97	25.96	Used
lysoPC a C18:1	lysoPhosphatidylcholine acyl C18:1	0.0	11.29	99.97	19.22	Used
lysoPC a C18:2	lysoPhosphatidylcholine acyl C18:2	0.0	9.42	99.97	27.22	Used
lysoPC a C20:3	lysoPhosphatidylcholine acyl C20:3	0.0	10.95	99.97	2.38	Used
lysoPC a C20:4	lysoPhosphatidylcholine acyl C20:4	0.0	9.34	99.97	6.77	Used
lysoPC a C24:0	lysoPhosphatidylcholine acyl C24:0	0.0	21.21	8.04	0.36	Excluded
lysoPC a C26:0	lysoPhosphatidylcholine acyl C26:0	0.0	32.22	59.85	0.54	Excluded
lysoPC a C26:1	lysoPhosphatidylcholine acyl C26:1	0.0	10.71	0.00	2.02	Excluded
lysoPC a C28:0	lysoPhosphatidylcholine acyl C28:0	0.0	27.17	46.46	0.48	Excluded
lysoPC a C28:1	lysoPhosphatidylcholine acyl C28:1	0.0	22.50	99.84	0.62	Used
lvsoPC a C6:0	lysoPhosphatidylcholine acyl C6:0	0.03	43.89	25.48	0.02	Excluded
SM (OH) C14:1	Hydroxysphingomyeline C14:1	0.03	12.85	99.97	6.18	Used
SM (OH) C16:1	Hydroxysphingomyeline C16:1	0.0	8.72	99.97	3.35	Used
SM (OH) C22:1	Hydroxysphingomyeline C22.1	0.0	14.23	99.97	13 43	Used
SM (OH) C22:2	Hydroxysphingomyeline C22:2	0.0	13.12	99.97	11 40	Used
SM (OH) C22:2 SM (OH) C24:1	Hydroxysphingomyeline C22:2	0.0	17.05	99.97	1 34	Used
SM C16:0	Sphingomyelin C16:0	0.0	12.05	99.97	105 08	Used
SM C16:1	Sphingomyelin C16.1	0.0	11.52	99.07	15 07	Used
SM C18.0	Sphingomyelin C10.1	0.0	0.20	90.07	13.77 73.16	Used
SM C18.1	Sphingomyelin C10.0	0.0	10.86	100.00	11 25	Used
SM C20.2	Sphingomyelin C10.1	0.07	15.00	00.00	0.29	Used
SM C20.2	Sphingomyelin C20.2	12 61	13.33	55.9U	0.38	Useu Excluded
SIVI C22:3	Springomyenn C22.5	45.01	00.99	55.90	0.22	Excluded

Paper	I				38	
SM C24:0	Sphingomyelin C24:0	0.0	14.33	99.97	21.68	Used
SM C24:1	Sphingomyelin C24:1	0.0	15.01	100.00	52.40	Used
SM C26:0	Sphingomyelin C26:0	0.0	57.33	99.97	0.32	Excluded
SM C26:1	Sphingomyelin C26:1	0.0	22.75	99.97	0.42	Used
H1	Sum of Hexoses	0.0	6.33	99.97	5197.44	Used

Table S2. List of 26 metabolites significantly associated with incident chronic kidney disease

in either basic or full model in hyperglycemic individuals

Odds ratios (*ORs*) with 95% *CI* and *P*-values of multivariable logistic regression are shown. The basic model was adjusted for age, sex, BMI, systolic blood pressure, smoking status, triglyceride, total cholesterol, HDL cholesterol, and fasting serum glucose. The full model was additionally adjusted for use of lipid lowering drugs, antihypertensive and anti-diabetic medication, baseline estimated glomerular filtration rate and urinary albumin-to-creatinine ratio. *P*-values shown in bold represent statistical significance at 0.05 level. **Abbreviations**: SM, sphingomyelin; PC aa, phosphatidylcholine diacyl; PC ae, phosphatidylcholine acyl-alkyl.

Metabolites	Basic Mod	Basic Model		lel
	OR (95% CI)	<i>P</i> -value	OR (95% CI)	<i>P</i> -value
C10	1.42 (1.03 - 1.98)	3.317E-02	1.24 (0.86 - 1.80)	2.495E-01
C12	1.49 (1.09 - 2.05)	1.268E-02	1.35 (0.95 - 1.92)	9.131E-02
C14:1	1.37 (1.04 - 1.83)	2.919E-02	1.36 (0.99 - 1.89)	5.751E-02
C18	1.44 (1.06 - 1.98)	2.331E-02	1.30 (0.92 - 1.84)	1.376E-01
C18:1	1.44 (1.07 -1.97)	1.892E-02	1.39 (0.99 - 1.96)	6.293E-02
C6 (C4:1-DC)	1.41 (1.05 -1.89)	2.244E-02	1.25 (0.90 - 1.75)	1.884E-01
C8	1.39 (1.02 -1.90)	3.948E-02	1.21 (0.85 - 1.71)	2.919E-01
Arginine	1.40 (1.07 -1.89)	2.154E-02	1.25 (0.93 - 1.73)	1.577E-01
Proline	1.38 (1.01 -1.89)	4.453E-02	1.39 (0.98 - 1.97)	6.337E-02
PC aa C32:2	0.72 (0.56 - 0.93)	1.275E-02	0.74 (0.56 - 0.99)	3.690E-02
PC aa C38:0	1.51 (1.12 - 2.07)	8.059E-03	1.56 (1.12 - 2.21)	1.043E-02
PC aa C42:0	1.41 (1.04 - 1.92)	2.686E-02	1.40 (1.01 - 1.96)	4.801E-02
PC ae C38:6	1.41 (1.01 - 1.99)	4.573E-02	1.40 (0.96 - 2.06)	8.386E-02
PC ae C40:5	1.42 (1.04 - 1.95)	3.009E-02	1.32 (0.94 - 1.88)	1.181E-01
PC ae C40:6	1.54 (1.12 - 2.14)	9.600E-03	1.57 (1.10 - 2.27)	1.358E-02
PC ae C42:5	1.43 (1.06 - 1.96)	2.234E-02	1.29 (0.92 - 1.81)	1.457E-01
SM (OH) C14:1	1.50 (1.06 - 2.13)	2.277E-02	1.56 (1.07 - 2.32)	2.382E-02
SM (OH) C16:1	1.59 (1.14 - 2.24)	6.923E-03	1.63 (1.14 - 2.39)	9.614E-03
SM (OH) C22:2	1.58 (1.09 - 2.33)	1.880E-02	1.50 (1.00 - 2.30)	5.674E-02
SM C16:0	1.91 (1.29 - 2.91)	1.811E-03	1.82 (1.17 - 2.91)	9.378E-03
SM C16:1	1.91 (1.29 - 2.88)	1.557E-03	1.85 (1.19 - 2.94)	7.145E-03
SM C18:0	1.86 (1.34 - 2.63)	2.839E-04	1.80 (1.26 - 2.63)	1.754E-03
SM C18:1	2.25 (1.54 - 3.39)	4.976E-05	2.22 (1.46 - 3.49)	3.315E-04
SM C20:2	1.40 (1.05 - 1.93)	3.045E-02	1.51 (1.10 - 2.14)	1.411E-02
SM C24:1	1.62 (1.15 - 2.31)	7.066E-03	1.57 (1.08 - 2.33)	2.061E-02
SM C26:1	1.41 (1.05 - 1.93)	2.564E-02	1.57 (1.13 - 2.23)	8.215E-03

Table S3. Baseline characteristics of propensity scores matched case-control hyperglycemic individuals

Clinical variables of incident CKD patients (= cases) matched with non-CKD participants (= controls) are shown. Mean \pm standard deviation is provided when appropriate; *P*-values were calculated by univariate conditional logistic regression. *P*-values shown in bold represent statistical significance at 0.05 level. **Abbreviations:** CKD, chronic kidney disease; eGFR, estimated glomerular filtration rate; UACR, urinary albumin-to-creatinine ratio.

Clinical variables	Incident CKD	Non-CKD	<i>P</i> -value
	N = 62	N = 62	
Age, years	65.81 ± 9.3	65.48 ± 7.62	0.777
Sex, Male, n (%)	54.84	64.52	0.261
BMI, kg/m ²	30.53 ± 4.84	29.79 ± 3.97	0.335
Fasting glucose, mg/dl	112.68 ± 27.31	114.32 ± 19.32	0.676
Systolic blood pressure, mmHg	130.03 ± 19.79	130.83 ± 16.38	0.819
Triglyceride, mg/dl ^a	136.5 [99.5 - 186]	129 [93.5 - 182.75]	0.784
Total cholesterol, mg/dl	215 ± 38.05	211 ± 33.11	0.481
HDL cholesterol, mg/dl	51.81 ± 11.59	51.66 ± 14.29	0.951
eGFR, mL/min/1.73 m ²	80.17 ± 14.79	81.95 ± 10.92	0.339
UACR, mg/g ^a	8.89 [4.44 - 13.41]	6.8 [4.85 - 14.36]	0.842
Smoking, %			
Non-smoker	43.55	41.94	Reference
Former smoker	50	53.23	0.704
Current smoke	6.45	4.84	0.729
Medication usage, %			
Lipid-lowering	19.35	25.81	0.396
Antihypertensive	62.9	61.29	0.842
Anti-diabetic	14.52	16.13	0.796

^a values are presented as median [25th-75th percentile].

Table S4. Results of sensitivity analyses - the two metabolites significantly associated with incident chronic kidney disease in the propensity scores matched case-control hyperglyce-mic individuals

Odds ratios (*ORs*) per standard deviation (SD) with 95% *CI* and *P*-values of conditional logistic regression results are shown. *P*-values shown in bold represent statistical significance at 0.05 level. **Abbreviations**: SM, sphingomyelin; PC aa, phosphatidylcholine diacyl.

	SM C18:1	PC aa C38:0
OR (95% CI), per SD	1.77 (1.14 - 2.73)	1.71 (1.12 - 2.62)
<i>P</i> - value	0.011	0.014

Table S5. Results of sensitivity analyses - interaction effects of the two metabolites with different glucose subgroups

Odds ratios (*OR*s) with 95% *CI* and *P*-values of multivariate logistic regression results are shown. *P*_{interaction} represents *P*-value of multiplicative interaction effects between metabolite and different glucose groups. *P*-values shown in bold represent statistical significance at 0.05 level. **Abbrevi-ations**: SM, sphingomyelin; PC aa, phosphatidylcholine diacyl; NGT, normal glucose tolerance; 2-h glucose, two hour post load glucose.

	SM C18:1				PC aa C38:0	
Group	OR (95% CI)	P - values	P interaction	OR (95% CI)	P - values	Pinterac- tion
Glycemic status			1.774E-03°			0.417 °
NGT ^a	0.76 (0.57 - 1.01)	0.057		1.21 (0.95 - 1.55)	0.124	
Hyperglycemia ^b	2.22 (1.46 - 3.49)	3.315E-04		1.56 (1.12 - 2.21)	0.010	
Fasting glucose			0.241 ^d			0.609 ^d
1st tertile ^a	0.78 (0.46 - 1.36)	0.372		1.13 (0.73 - 1.77)	0.579	
2nd tertile ^a	0.84 (0.56 - 1.27)	0.412		1.33 (0.94 - 1.88)	0.106	
Top tertile ^b	1.50 (1.08 - 2.11)	0.019		1.49 (1.10 - 2.03)	0.010	
2-h glucose			0.010 ^e			0.538 ^e
1st tertile ^a	0.55 (0.33 - 0.92)	0.023		1.22 (0.79 - 1.87)	0.369	
2nd tertile ^a	0.74 (0.48 - 1.14)	0.172		1.27 (0.87 - 1.88)	0.231	
Top tertile ^b	1.58 (1.07 - 2.37)	0.022		1.60 (1.17 - 2.23)	0.004	

^a with adjustments for age, sex, BMI, systolic blood pressure, smoking status, triglyceride, total cholesterol, HDL cholesterol, fasting glucose, use of lipid lowering drugs, antihypertensive medication, baseline estimated glomerular filtration rate and baseline urinary albumin-to-creatinine ratio.

^b with adjustment for the covariates shown in ^a as well as use of anti-diabetic medication.

^c The model setting : logit(*P*) = $\beta_0 + \beta_1$ *metabolite + β_2 *glycemic status + β_3 * metabolite * glycemic status + β_4 *covariates + ε . The covariates including the covariates shown in ^a as well as use of anti-diabetic medication.

^d The model setting : $logit(P) = \beta_0 + \overline{\beta_1}$ *metabolite $+ \beta_2$ * three tertiles group of fasting glucose $+ \beta_3$ * metabolite * three tertiles group of fasting glucose $+ \beta_4$ *covariates $+ \varepsilon$. The covariates included the covariates shown in ^a as well as use of anti-diabetic medication except fasting glucose.

^e The model setting : logit(P) = $\beta_0 + \beta_1$ *metabolite + β_2 * three tertiles group of 2-h glucose + β_3 * metabolite * three tertiles group of 2-h glucose + β_4 *covariates + ε . The covariates included the covariates shown in ^a except fasting glucose.

Table S6. Results of sensitivity analyses - association of two candidate biomarkers with UACR- and eGFR- based incident CKD in hyperglycemic participants

Odds ratios (*OR*s) with 95% *CI* and *P*-values of each metabolite with UACR-based and eGFRbased incident CKD in basic and full multivariable logistic regression models are shown, respectively. UACR-based incident CKD was defined as UACR \geq 30 mg/g at follow-up (FF4). eGFRbased incident CKD was defined as eGFR < 60 ml/min/1.73 m² at follow-up (FF4). Basic model was adjusted for age, sex, BMI, systolic blood pressure, smoking status, triglyceride, total cholesterol, HDL cholesterol and fasting glucose. Full model was additionally adjusted for use of lipid lowering drugs, antihypertensive and anti-diabetic medication, baseline eGFR and UACR. *P*-values shown in bold represent statistical significance at 0.05 level. **Abbreviations**: CKD, chronic kidney disease; eGFR, estimated glomerular filtration rate; UACR, urinary albumin-tocreatinine ratio; SM, sphingomyelin; PC aa, phosphatidylcholine diacyl.

	SM (C18:1	PC aa C38:0		
	Basic model	Full model	Basic model	Full model	
UACR- base					
<i>P</i> -value	0.024	0.040	0.022	0.004	
OR (95 % CI), per SD	1.79 (1.10 - 3.03)	1.80 (1.05 - 3.25)	1.66 (1.08 - 2.58)	2.17 (1.31 - 3.76)	
eGFR- base	d incident CKD (N	= 65) & non-CKD	(N = 320)		
<i>P</i> -value	0.008	0.107	0.061	0.247	
<i>OR</i> (95 % <i>CI</i>), per SD	1.77 (1.17 - 2.75)	1.50 (0.93 - 2.5)	1.38 (0.99 - 1.94)	1.25 (0.86 - 1.85)	

Table S7. Comparison of the predictive performances of two sets of predictors of incident chronic kidney disease in hyperglycemic individuals with three machine learning approaches

The median AUC (95% *CI*) of three machine learning approaches over 100 random repeats of 10-fold cross validation are shown. Reference predictors consists of baseline age, sex, estimated glomerular filtration rate and urinary albumin-to-creatinine ratio. Developed sets includes combined metabolites and clinical variables that were selected by the three-step feature selection in each round. **Abbreviation**: AUC, area under the receiver operating characteristic curve.

Algorithms	Models	Median AUC (95% <i>CI</i>)	Absolute in- crease in median pre- diction	Outperform times over 100 times
Support Vector Machine	Reference predictors Developed sets	0.800 (0.783 - 0.816) 0.825 (0.801 - 0.849)	2.5%	97
Random Forest	Reference predictors Developed sets	0.789 (0.771 - 0.807) 0.818 (0.794 - 0.836)	2.9%	100
Adaptive Boosting	Reference predictors Developed sets	0.798 (0.781 - 0.813) 0.814 (0.787 - 0.832)	1.6%	87

Table S8. The total selected times for three most frequently selected sets of metabolites and clinical variables over 1000 selection rounds in 100 times of 10-fold cross validation

The three most frequently selected sets of metabolites and clinical variables, as well as their total selected times over 1000 selection rounds are shown. **Abbreviations:** eGFR, estimated glomerular filtration rate; UACR, urinary albumin-to-creatinine ratio; SM, sphingomyelin; PC aa, phosphatidylcholine diacyl.

Sets of metabolites and clinical variables	Selected times
SM C18:1, PC aa C38:0, age, total cholesterol, fasting glucose, eGFR, UACR	113
SM C18:1, age, total cholesterol, fasting glucose, eGFR, UACR	78
SM C18:1, PC aa C38:0, proline, age, total cholesterol, fasting glucose, eGFR, UACR	67

Table S9. The selected times for 15 most important variables over 1000 selection rounds in100 times of 10-fold cross validation

Out of 125 metabolites and 14 clinical variables, 15 most frequently selected variables and their total selected times over 1000 selection rounds are shown. **Abbreviations:** UACR, urinary albumin-to-creatinine ratio; eGFR, estimated glomerular filtration rate; SM, sphingomyelin; PC aa, phosphatidylcholine diacyl.

Variables	Selected times
UACR	1000
eGFR	1000
Age	999
Total cholesterol	996
Fasting glucose	942
SM C18:1	857
PC aa C38:0	593
Triglyceride	270
Proline	229
PC aa C32:2	156
Tyrosine	129
SM C26:1	109
C18:1	108
PC aa C36:4	92
Use of lipid lowering drugs	81

Table S10. Predictive performance of the best set of predictors and the full model of incident CKD in hyperglycemia

Mean AUC values of the best set of predictors and the full model of incident CKD in hyperglycemia are shown. The mean AUC value of the best set of predictors was the average value of the AUC values of the 113 selected times, in which the models were fitted with support vector machine. The average AUC value of the full model was obtained using logistic regression with 10 times of 10-fold cross validation. **Abbreviations:** CKD, chronic kidney disease; AUC, area under the receiver operating characteristic curve; UACR, urinary albumin-to-creatinine ratio; eGFR, estimated glomerular filtration rate; SM, sphingomyelin; PC aa, phosphatidylcholine diacyl.

Models	Mean AUC	Absolute increase in mean prediction
The best set of predictors (i.e., SM C18:1, PC aa C38: 0, age, total cholesterol, fasting glu- cose, eGFR and UACR)	0.857	
The full model (i.e., age, sex, BMI, systolic blood pressure, smoking status, tri- glyceride, total cholesterol, HDL cholesterol, fasting glucose, use of lipid lowering drugs, antihypertensive and anti-diabetic medica- tion, eGFR and UACR	0.809	4.8%

Supplementary Figures

Figure S1. Technical normalization across the study

Comparison of before and after normalization of plate effect of metabolite data using phosphatidylcholine diacyl (PC aa) C34:2 as an example. Metabolite concentration drifts at 38 plates were independently corrected by conducting plate effect normalization in quality controls samples (QCs, shown in plots A and B) and KORA F4 individual samples (plots C and D).

Figure S2. Correlation of nine sphingomyelins in 385 hyperglycemic participants

Pearson's correlation coefficients values of nine sphingomyelins (SMs) in 385 participants with pre-diabetes and T2D are shown. Both the size of the cycle and intensity of color indicate the degree of correlation between the metabolites. The numeric values of Pearson's correlation coefficients are shown in the bottom triangle.

Paper II

- Title: Validation of Candidate Phospholipid Biomarkers of Chronic Kidney Disease in Hyperglycemic Individuals and Their Organ-Specific Exploration in Leptin Receptor-Deficient db/db Mouse
- Authors: Jialing Huang, Marcela Covic, Cornelia Huth, Martina Rommel, Jonathan Adam, Sven Zukunft, Cornelia Prehn, Li Wang, Jana Nano, Markus F. Scheerer, Susanne Neschen, Gabi Kastenmüller, Christian Gieger, Michael Laxy, Freimut Schliess, Jerzy Adamski, Karsten Suhre, Martin Hrabe de Angelis, Annette Peters, Rui Wang-Sattler
- Journal: Metabolites
- Status: Published
- **Volume:** 11
- **Page:** 89
- Year: 2021
- **doi:** 10.3390/metabo1102008

Article Validation of Candidate Phospholipid Biomarkers of Chronic Kidney Disease in Hyperglycemic Individuals and Their Organ-Specific Exploration in Leptin Receptor-Deficient db/db Mouse

Jialing Huang ^{1,2,3}, Marcela Covic ^{1,2,3}, Cornelia Huth ², Martina Rommel ^{1,2}, Jonathan Adam ^{1,2}, Sven Zukunft ^{4,5}, Cornelia Prehn ⁶, Li Wang ^{1,2,7}, Jana Nano ^{2,3}, Markus F. Scheerer ^{8,9}, Susanne Neschen ^{8,10}, Gabi Kastenmüller ¹¹, Christian Gieger ^{1,2,3}, Michael Laxy ¹², Freimut Schliess ¹³, Jerzy Adamski ^{4,14,15}, Karsten Suhre ¹⁶, Martin Hrabe de Angelis ^{3,8,15}, Annette Peters ^{2,3} and Rui Wang-Sattler ^{1,2,3,*}

- Research Unit of Molecular Epidemiology, Helmholtz Zentrum München, 85764 Neuherberg, Germany; jialing.huang@helmholtz-muenchen.de (J.H.); marcela.covic@helmholtz-muenchen.de (M.C.); martina.troll@helmholtz-muenchen.de (M.R.); jonathan.adam@helmholtz-muenchen.de (J.A.); wlrst@126.com (L.W.); christian.gieger@helmholtz-muenchen.de (C.G.)
- ² Institute of Epidemiology, Helmholtz Zentrum München, 85764 Neuherberg, Germany; cod.huth@gmail.com (C.H.); jana.nano@helmholtz-muenchen.de (J.N.); peters@helmholtz-muenchen.de (A.P.)
- ³ German Center for Diabetes Research (DZD), 85764 München-Neuherberg, Germany;
- hrabe@helmholtz-muenchen.de
- Research Unit of Molecular Endocrinology and Metabolism, Helmholtz Zentrum München,
- 85764 Neuherberg, Germany; zukunft@vrc.uni-frankfurt.de (S.Z.); adamski@helmholtz-muenchen.de (J.A.) ⁵ Centre for Molecular Medicine, Institute for Vascular Signaling, Goethe University,
- 60323 Frankfurt am Main, Germany 6 Matabalamics and Protoomics Care Facility, Helmholtz Zan
- Metabolomics and Proteomics Core Facility, Helmholtz Zentrum München, 85764 Neuherberg, Germany; prehn@helmholtz-muenchen.de
- ['] Liaocheng People's Hospital—Department of Scientific Research, Shandong University Postdoctoral Work Station, Liaocheng 252000, China
- Institute of Experimental Genetics, Helmholtz Zentrum München, 85764 Neuherberg, Germany; markus@scheerer-home.de (M.F.S.); susanne.neschen@mail.com (S.N.)
- ⁹ Bayer AG, Medical Affairs & Pharmacovigilance, 13353 Berlin, Germany
- ⁰ Sanofi Aventis Deutschland GmbH, Industriepark Hoechst, 65929 Frankfurt am Main, Germany
- ¹¹ Institute of Computational Biology, Helmholtz Zentrum München, 85764 Neuherberg, Germany;
- g.kastenmueller@helmholtz-muenchen.de ¹² Institute of Health Economics and Health Care Management, Helmholtz Zentrum München,
- 85764 Neuherberg, Germany; michael.laxy@helmholtz-muenchen.de
- ¹³ Profil, 41460 Neuss, Germany; Freimut.Schliess@profil.com
- ¹⁴ Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117597, Singapore
- ⁵ Chair of Experimental Genetics, Center of Life and Food Sciences Weihenstephan, Technische Universität München, 85353 Freising, Germany
- ¹⁶ Department of Physiology and Biophysics, Weill Cornell Medical College in Qatar (WCMC-Q),
- Education City, Qatar Foundation, Doha P.O. Box 24144, Qatar; karsten@suhre.fr
- Correspondence: rui.wang-sattler@helmholtz-muenchen.de; Tel.: +49-89-3187-3978; Fax: + 49-89-3187-2428

Abstract: Biological exploration of early biomarkers for chronic kidney disease (CKD) in (pre)diabetic individuals is crucial for personalized management of diabetes. Here, we evaluated two candidate biomarkers of incident CKD (sphingomyelin (SM) C18:1 and phosphatidylcholine diacyl (PC aa) C38:0) concerning kidney function in hyperglycemic participants of the Cooperative Health Research in the Region of Augsburg (KORA) cohort, and in two biofluids and six organs of leptin receptor-deficient (db/db) mice and wild type controls. Higher serum concentrations of SM C18:1 and PC aa C38:0 in hyperglycemic individuals were found to be associated with lower estimated glomerular filtration rate (eGFR) and higher odds of CKD. In db/db mice, both metabolites had a significantly lower concentration in urine and adipose tissue, but higher in the lungs. Additionally, db/db mice had significantly higher SM C18:1 levels in plasma and liver, and PC aa C38:0 in adrenal glands.

Citation: Huang, J.; Covic, M.; Huth, C.; Rommel, M.; Adam, J.; Zukunft, S.; Prehn, C.; Wang, L.; Nano, J.; Scheerer, M.F.; et al. Validation of Candidate Phospholipid Biomarkers of Chronic Kidney Disease in Hyperglycemic Individuals and Their Organ-Specific Exploration in Leptin Receptor-Deficient db/db Mouse. *Metabolites* 2021, *11*, 89. https:// doi.org/10.3390/metabo11020089

Academic Editor: Vladimir V. Tolstikov Received: 15 December 2020 Accepted: 29 January 2021 Published: 3 February 2021

Publisher's Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Copyright: © 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https:// creativecommons.org/licenses/by/ 4.0/). This cross-sectional human study confirms that SM C18:1 and PC aa C38:0 associate with kidney dysfunction in pre(diabetic) individuals, and the animal study suggests a potential implication of liver, lungs, adrenal glands, and visceral fat in their systemic regulation. Our results support further validation of the two phospholipids as early biomarkers of renal disease in patients with (pre)diabetes.

Keywords: chronic kidney disease; prediabetes and type 2 diabetes; diabetic nephropathy; reduced kidney function; leptin receptor-deficient mouse; high-fat-diet; liver; lungs; metabolomics

1. Introduction

Diabetic nephropathy is the leading cause of chronic kidney disease (CKD) and endstage kidney disease [1]. Early screening of persons with prediabetes or type 2 diabetes (T2D) for CKD predisposition can increase the opportunity to effectively prevent and manage this microvascular complication of diabetes in the framework of more personalized diabetes management [2]. However, targeted screening is important to assure the efficient allocation of health care resources [3].

Traditional markers for CKD are unable to accurately predict the development of CKD in individuals with T2D. Urinary albumin-to-creatinine ratio (UACR) and estimated glomerular filtration rate (eGFR) were found to be the most important variables to predict the onset and progression of early CKD in individuals with T2D in a large randomized clinical trial with a follow-up period of 5.5 years. However, even when combined with age and sex (i.e., a set of four clinical variables: age, sex, eGFR, and UACR), their predictive ability was found to be modest with an externally validated c-statistic of 0.68 [4].

Metabolomics is still a relatively new approach for studying metabolic changes connected to disease development and progression, as well as for finding predictive biomarkers to enable early interventions [5–8]. Using baseline metabolite profiles of a population-based Cooperative Health Research in the Region of Augsburg (KORA) cohort, we have recently discovered two candidate metabolite biomarkers (sphingomyelin (SM) C18:1 and phosphatidylcholine diacyl (PC aa) C38:0) for incident CKD that were specific for hyperglycemic individuals with prediabetes or T2D [9]. SM C18:1 and PC aa C38:0 were identified from 125 targeted metabolites through three-step feature selection that included multivariate logistic regression adjustment, priority-lasso filtering and stepwise Akaike information criterion selection. These two metabolites were in combination with five clinical variables (age, total cholesterol, fasting glucose, eGFR, and UACR) identified as the best set of predictors for incident CKD. Their predictive performance yielded a mean area value under the receiver operating characteristic curve of 0.857 and outperformed the performance of 14 known risk factors of CKD [9]. However, physiological mechanisms leading to circulatory accumulation of these new candidate biomarkers during the pathogenesis of diabetes-related CKD have not yet been delineated.

Altered serum levels of phospholipids in hyperglycemic individuals under higher risk of developing CKD [9] might indicate early alterations not only in the kidneys [10] but also other organ systems [11]. Insufficient elimination of a large number of potentially toxic organic metabolites from the vascular bed into the urine during CKD affects multiple body systems and organs [12]. Biological exploration of the emerging biomarkers is necessary towards a better understanding of the complex metabolic interactions between the circulatory, musculoskeletal and respiratory systems in CKD and their potential clinical application in diagnostics [12]. Moreover, animal models reflecting the pathogenetic evolution of diabetes-related CKD allow for direct analysis of organ-specific metabolite patterns during aggravation of the disease. The leptin-receptor deficient mouse model (db/db) was shown to exhibit a very consistent and robust increase in albuminuria and mesangial matrix expansion. It is therefore a well-established model for human diabetic nephropathy [13,14]. In this study, we evaluated the associations of SM C18:1 and PC aa C38:0 with eGFR values and risk of CKD with the recently generated targeted metabolites profiles of KORA FF4 study in participants with hyperglycemia. Furthermore, we examined creatinine, SM C18:1, and PC aa C38:0 levels in two biofluids (plasma, urine) and six tissues (liver, lungs, adrenal glands, adipose tissue, cerebellum, and testis) of db/db and wild type (WT) mice under high-fat diet (HFD) to explore organ-specific variations and discuss the potential link to various clinical symptoms. Our findings provide first insights into the potential involvement of several organs in the systemic accumulation of these metabolite biomarkers during CKD pathogenesis.

2. Results

2.1. Associations of the Two Metabolites with eGFR and CKD in Hyperglycemic Individuals 2.1.1. Characteristics of the KORA FF4 Study Participants

Among 1907 eligible KORA FF4 participants, 168 individuals had CKD (8.8%). As expected, hyperglycemic participants were diagnosed more frequently to have CKD (16.3%) than individuals with normal glucose tolerance (NGT) (6.1%) (Table 1). The cases of CKD in hyperglycemic and NGT groups were significantly older and had significantly higher values of creatinine and UACR than non-CKD individuals in each group. The self-reported intake of antihypertensive and lipid-lowering medication was also significantly higher in cases of CKD. Compared to non-CKD individuals, the cases of CKD in the NGT group had also significantly higher values of BMI, triglycerides, glycated hemoglobin (HbA_{1C}), fasting glucose, and 2-h post-load glucose (2-h glucose) (Table 1).

2.1.2. Inverse Associations of the Two Metabolites with eGFR in Hyperglycemic Individuals

The inverse association between eGFR and the concentrations of SM C18:1 and PC aa C38:0 in hyperglycemic individuals was significant in all three weighted regression models (adjusted for imbalanced, basic and full model covariates) after applying inverse probability weighting (IPW). For example, a SD increase in the ln-transformed SM C18:1 concentration was associated with a 1.76 mL/min/1.73 m² decrease in eGFR in the full model ($p = 2.499 \times 10^{-3}$; Table 2).

2.1.3. Associations of the Two Metabolites with CKD Are Specific for Hyperglycemia

The CKD cases with hyperglycemia had higher relative concentrations of the two metabolites (SM C18:1, PC aa C38:0) than non-CKD individuals (Figure 1). The concentrations of SM C18:1 and PC aa C38:0 were significantly positively associated with CKD in hyperglycemic individuals in all three models after IPW (Table 3). One SD increase in the ln-transformed SM C18:1 or PC aa C38:0 concentration was associated with a 99% or 71%, respectively, increased odds of CKD in hyperglycemic participants (full model $p = 4.482 \times 10^{-4}$ and 1.578 × 10⁻³, respectively, Table 3).

As a sensitivity analysis, we tested the associations of the two metabolites with CKD in normoglycemic KORA participants. Both SM C18:1 and PC aa C38:0 were not significantly associated with CKD in NGT individuals in all three models after IPW (Table 3). As shown in Figure 1, normoglycemic individuals with diagnosed CKD did not show any significant differences in their relative metabolite concentration when compared to healthy NGTs. These results further confirmed that the risk associations of the two lipids are specific for hyperglycemia. **Table 1.** Characteristics of the KORA FF4 participants according to their hyperglycemic status. Mean \pm standard deviation is provided for quantitative variables if not indicated otherwise. *p*-values express the difference between CKD cases and non-CKD controls in hyperglycemic and NGT participants, respectively. *p*-values were calculated by univariate logistic regression if not indicated otherwise. *p*-values shown in bold represent statistical significance at the 0.05 level. Abbreviations: CKD, chronic kidney disease; HbA_{1C}, glycated hemoglobin; HDL, high-density lipoprotein; LDL, low-density lipoprotein; NGT, normal glucose tolerance; 2-h glucose, 2-h post-load glucose; BP, blood pressure; eGFR, estimated glomerular filtration rate; UACR, urinary albumin-to-creatinine ratio.

THE REP. IN MAN. IN	Hyperglycem	ic Participants		NGT Par	ticipants	
Clinical Variables	CKD n = 83	Non-CKD <i>n</i> = 427	<i>p</i> -Value	CKD n = 85	Non-CKD <i>n</i> = 1312	<i>p</i> -Value
Age, years	74.36 ± 7.66	64.32 ± 10.53	1.003×10^{-12}	72.05 ± 8.23	55.47 ± 10.53	$3.255 imes 10^{-27}$
Sex, male, %	49.4	57.61	1.686×10^{-1}	48.24	43.9	4.361×10^{-1}
BMI, kg/m^2	29.25 ± 4.3	30.16 ± 5.02	1.228×10^{-1}	28.11 ± 4.94	26.52 ± 4.37	1.415×10^{-3}
HbA _{1C} (%)	5.74 ± 0.42	5.73 ± 0.54	7.552×10^{-1}	5.56 ± 0.32	5.3 ± 0.32	$7.958 imes 10^{-12}$
Fasting glucose, mg/dL	112.55 ± 20.44	$111.3\pm16.37^{\text{ b}}$	$6.440 imes 10^{-1}$	96.79 ± 7.68	94.02 ± 7.3	$1.130 imes 10^{-3}$
2-h glucose, mg/dL	164.43 ± 38.98 ^b	160.63 ± 46.66 ^b	3.724×10^{-1}	103.16 ± 21.18	95.89 ± 19.9	3.232×10^{-3}
Systolic BP, mmHg	120.31 ± 22.27	124.78 ± 18.03	4.847×10^{-2}	116.65 ± 18.23	115.85 ± 16.06	6.617×10^{-1}
Diastolic BP, mmHg	68.27 ± 11.15	74.93 ± 10.55	$5.054 imes 10^{-7}$	69.41 ± 10.14	73.06 ± 8.95	$3.048 imes 10^{-4}$
Triglyceride, mg/dL ^a	121.11 (93.44–157.4)	128 (92.98–178.27)	$9.711 imes 10^{-1}$	109 (78–143.79)	93 (70–127.46)	$1.492 imes 10^{-2}$
Total cholesterol, mg/dL	208.58 ± 41.45	220.93 ± 42.16	$1.533 imes10^{-2}$	211.48 ± 43.58	218.59 ± 37.7	9.597×10^{-2}
HDL cholesterol, mg/dL	61.12 ± 18.42	59.78 ± 17.54	$5.303 imes 10^{-1}$	65.63 ± 18.42	68.57 ± 18.75	$1.612 imes 10^{-1}$
LDL cholesterol, mg/dL	126.3 ± 35.49	140.65 ± 37.2	$1.456 imes 10^{-3}$	130.94 ± 37.34	135.83 ± 34.05	$2.025 imes 10^{-1}$
Creatinine, mg/dL	1.24 ± 0.21	0.89 ± 0.15	3.916×10^{-21}	1.25 ± 0.28	0.86 ± 0.16	$6.345 imes 10^{-31}$
eGFR, mL/min/1.73 m ²	50.5 ± 7.87	81.33 ± 11.9	3.645×10^{-47c}	50.97 ± 8.01	86.92 ± 12.69	$5.563 imes10^{-54c}$
UACR, mg/g ^a Smoking, %	9.76 (5.73–26.07)	5.43 (3.39–9.86)	$1.180 imes 10^{-7}$ $7.394 imes 10^{-3}$	7.33 (4.44–15.38)	4.26 (2.94–7.07)	$rac{1.604 imes 10^{-8}}{8.080 imes 10^{-5}}$
Nonsmoker	55.42	43.79	Ref.	40	41.54	Ref.
Former smoker	40.96	42.39	2.789×10^{-1}	56.47	40.4	1.086×10^{-1}
Current smoker	3.61	13.82	$1.028 imes 10^{-2}$	3.53	18.06	$8.628 imes 10^{-3}$
Medication usage, %						
Lipid-lowering	34.94	22.48	$1.684 imes 10^{-2}$	32.94	7.7	$2.377 imes 10^{-12}$
Antihypertensive	84.34	47.07	$1.367 imes10^{-8}$	69.41	19.97	$2.272 imes 10^{-19}$

^a Values are presented as median (25th–75th percentile); ^b In the hyperglycemic participants, 2-h glucose values were only available in 68 individuals with CKD and 398 individuals without CKD; one non-CKD individual had no fasting glucose values; ^c p-values calculated with Mann–Whitney U test.

Table 2. Associations of the two candidate metabolites with eGFR in hyperglycemic individuals. Regression coefficients with 95% *CI* and *p*-values of weighted multivariable linear regression after inverse probability weighting are shown. The basic model was adjusted for age, sex, BMI, systolic blood pressure, triglyceride, total cholesterol, HDL cholesterol, and HbA_{1C}. The full model was additionally adjusted for smoking status, use of lipid-lowering drugs, and antihypertensive medication, and urinary albumin-to-creatinine ratio. *p*-values shown in bold represent statistical significance at the 0.05 level. Abbreviations: *CI*, confidence interval; eGFR, estimated glomerular filtration rate; SM, sphingomyelin; PC aa, phosphatidylcholine diacyl.

	SM C18:1		PC aa C38:0		
Models	Effect Estimate (95% CI)	<i>p</i> -Value	Effect Estimate (95% CI)	<i>p</i> -Value	
Adjusted imbalanced covariates	-1.51 (-2.92 to -0.1) ^a	$3.624 imes 10^{-2}$	-1.82 (-3.04 to -0.59) ^b	$3.757 imes 10^{-3}$	
Basic model Full model	-1.83 (-2.98 to -0.68) -1.76 (-2.9 to -0.62)	$\begin{array}{c} {\rm 1.879\times 10^{-3}}\\ {\rm 2.499\times 10^{-3}}\end{array}$	-1.91 (-3.11 to -0.72) -1.81 (-2.99 to -0.63)	$\begin{array}{c} {\bf 1.784\times 10^{-3}}\\ {\bf 2.607\times 10^{-3}}\end{array}$	

^a with adjustments for sex, systolic blood pressure, total cholesterol, smoking status, and use of antihypertensive medication; ^b with adjustments for age, HDL cholesterol, and smoking status.

Figure 1. Stratified associations of the two candidate metabolites with CKD according to hyperglycemic and normoglycemic status. Mean relative residuals (with standard errors) of SM C18:1 and PC aa C38:0 for non-CKD and CKD in hyperglycemic and NGT individuals are shown, respectively. Metabolite relative residuals were calculated with linear regression models adjusted for age, sex, BMI, systolic blood pressure, triglyceride, total cholesterol, HDL cholesterol, HbA_{1C}, smoking status, the use of lipid-lowering, antihypertensive medication, and urinary albumin-to-creatinine ratio. *p* values were calculated with multivariable logistic regression using CKD as outcome and adjusting covariates mentioned above. Abbreviations: CKD, chronic kidney disease; SM, sphingomyelin; PC aa, phosphatidylcholine diacyl; NGT, normal glucose tolerance.

Table 3. Associations of the two candidate metabolites with CKD in hyperglycemic and NGT individuals. Odds ratios (*ORs*) with 95% *CI* and *p*-values of weighted multivariable logistic regression after inverse probability weighting are shown. The basic model was adjusted for age, sex, BMI, systolic blood pressure, triglyceride, total cholesterol, HDL cholesterol, and HbA_{1C}. The full model was additionally adjusted for smoking status, use of lipid-lowering drugs, and antihypertensive medication, and urinary albumin-to-creatinine ratio. *p*-values shown in bold represent statistical significance at the 0.05 level. Abbreviations: *CI*, confidence interval; CKD, chronic kidney disease; SM, sphingomyelin; PC aa, phosphatidylcholine diacyl; NGT, normal glucose tolerance.

Metabolites	Models	NGT Parti	cipants	Hyperglycemic Participants		
Wielabolites	Models	OR (95% CI)	p-Value	OR (95% CI)	<i>p</i> -Value	
SM C18:1	Adjusted imbalance covariates	0.96 (0.77–1.21) ^a	7.233×10^{-1}	1.46 (1.09–1.97) ^b	$1.169 imes 10^{-2}$	
0111 01011	Basic model	1.05 (0.82-1.35)	6.986×10^{-1}	1.93 (1.38-2.78)	2.251×10^{-4}	
	Full model Adjusted	1.14 (0.86–1.51)	3.733×10^{-1}	1.99 (1.37–2.96)	$4.482 imes 10^{-4}$	
PC aa C38:0	imbalance covariates	0.98 (0.78–1.23) ^c	8.438×10^{-1}	1.61 (1.2–2.17) ^d	$1.487 imes 10^{-3}$	
r e uu coolo	Basic model Full model	1.12 (0.87–1.46) 1.19 (0.91–1.58)	$\begin{array}{l} 3.752 \times 10^{-1} \\ 2.142 \times 10^{-1} \end{array}$	1.68 (1.24–2.29) 1.71 (1.23–2.41)	$\begin{array}{c} 8.723 \times 10^{-4} \\ 1.578 \times 10^{-3} \end{array}$	

^a with adjustments for BMI, systolic blood pressure, smoking status, and urinary albumin-to-creatinine ratio; ^b with adjustments for sex, systolic blood pressure, total cholesterol, smoking status, and use of antihypertensive medication; ^c no additional adjustment; ^d with adjustments for age, HDL cholesterol, and smoking status.

2.2. Organ-Specific Trends of the Candidate Biomarkers in Diabetic Mice 2.2.1. Characteristics of the Mouse Model

Organ trends of the two phospholipids were explored in the db/db mouse model that mimics the early human CKD development. After 5 weeks of HFD, the 8-week-old db/db mice were obese and had significantly higher heart, kidney and liver weight when compared with WT controls of the same age and diet (Table 4). Furthermore, their blood levels of glucose, insulin, cholesterol, and C-reactive protein were significantly higher confirming that db/db mice developed hyperglycemia, dyslipidemia and inflammation.

5 of 16

diet. Values are mean \pm SD. *p*-values were calculated by Mann–Whitney *U* test. *p*-values shown in bold represent statistical significance at the 0.05 level. Abbreviations: db/db, leptin receptor-deficient mouse model; HDL, high-density lipoprotein; LDL, low-density lipoprotein.

Table 4. Phenotypic and metabolic variables in db/db and wild type mice after 5 weeks of a high-fat

Clinical Variables	db/db Mice n = 10	Wild Type Mice n = 10	<i>p</i> -Value
Body weight, g	47.87 ± 2.37	21.97 ± 0.58	$1.796 imes10^{-4}$
Kidney weight, g	0.20 ± 0.02	0.16 ± 0.02	$2.057 imes10^{-4}$
Liver weight, g	2.56 ± 0.3	1.02 ± 0.09	$1.083 imes10^{-5}$
Heart weight, g	0.14 ± 0.01	0.12 ± 0.01	$4.871 imes10^{-4}$
Blood glucose, mg/dL	421.60 ± 41.24	106.7 ± 16.88	$1.806 imes10^{-4}$
Plasma insulin, µg/L	7.76 ± 2.33	1.03 ± 0.4	$1.083 imes 10^{-5}$
Triglyceride, mg/dL	224.78 ± 106.51	122.24 ± 24.52	5.869×10^{-2}
Total cholesterol, mg/dL	153.24 ± 16.14	100.58 ± 12.16	$1.817 imes10^{-4}$
HDL cholesterol, mg/dL	125.28 ± 13.12	84.28 ± 8.65	$1.083 imes 10^{-5}$
LDL cholesterol, mg/dL	18.76 ± 3.67	14.5 ± 2.08	$8.127 imes 10^{-3}$
C-reactive protein, mg/L	13.12 ± 3.27	5.36 ± 1.12	$1.786 imes10^{-4}$
Plasma creatinine ^a , mg/dL	0.05 ± 0.01	0.08 ± 0.01	$2.076 imes10^{-4}$
Plasma albumin, g/dL	3.10 ± 0.34	2.56 ± 0.13	$5.509 imes 10^{-4}$

^a The clinical chemistry-measured creatinine values are reported here.

Their significantly elevated kidney weight indicated renal hypertrophy, which occurs in the early stage of diabetic nephropathy development [15] and is one of the early markers of morphological changes in renal tissue [16]. It has been shown that 8-week old diabetic mice present glomerular hypertrophy and significantly bigger glomerular tuft surface area compared to nondiabetic mice [17]. Glomerular hyperfiltration and hypertrophy are early features of diabetic nephropathy [15].

2.2.2. Analysis of Creatinine in Eight Murine Tissues

Creatinine concentration in biofluids (plasma, urine) and organs (liver, lungs, adrenal gland, visceral adipose tissue, testis, cerebellum) was determined by targeted metabolomics. In plasma, creatinine was also measured with clinical chemistry. Pearson's correlation coefficient of plasma creatinine concentrations measured with both methods was 0.923 (*p*-value = 6.938×10^{-9}), showing a very high correlation between clinical chemistry- and mass spectrometry (MS)-based methods.

In addition to plasma, significantly lower values of creatinine were also detected in the urine, liver and lungs of db/db mice (Table 5). Our observation of approximately 40% lower plasma creatinine (Table 4) and its negative trend in the urine of db/db mice suggests impaired creatine biosynthesis, protein catabolism and glomerular hyperfiltration.

Taken together, our 8-week old db/db mice fed with HFD during 5 weeks reflected characteristic changes of early diabetic nephropathy, such as glomerular hyperfiltration and hypertrophy, as evidenced by significantly lower plasma and urinary creatinine levels and higher kidney weight. Moreover, their phenotypic and metabolic data show obesity, hyperglycemia, dyslipidemia, and inflammation, confirming previous reports about insulin resistance and fatty liver (steatosis) in db/db mice of similar age [13,14,18–20].

2.2.3. Organ-Specific Trends of the Two Metabolites

As compared to WT mice, significantly higher concentrations of both SM C18:1 and PC aa C38:0 were found in the lungs of db/db mice, whereas significantly lower concentrations

were found in urine and adipose tissue (Figure 2, Table 5). Furthermore, SM C18:1 was significantly accumulated in plasma ($p = 3.160 \times 10^{-4}$) and liver ($p = 1.288 \times 10^{-5}$), whereas PC aa C38:0 was significantly higher in adrenal glands ($p = 9.695 \times 10^{-4}$, Table 5) of db/db mice. The concentrations of both metabolites in cerebellum and testis were comparable (Table 5).

Table 5. Biofluid- and tissue-specific trends of creatinine and two candidate CKD metabolites. Results of *t* statistic and *p*-values of two biofluids and six tissues between 10 db/db and 10 WT mice on a high-fat diet are shown. *p*-values shown in bold represent statistical significance at the 0.05 level. Abbreviations: CKD, chronic kidney disease; db/db, leptin receptor-deficient mouse model; WT, wild type mice; SM, sphingomyelin; PC aa, phosphatidylcholine diacyl.

Tissue	Crea	atinine	SM C18:1		PC aa C38:0	
	t Statistic	<i>p</i> -Value	t Statistic	<i>p</i> -Value	t Statistic	p-Value
Plasma	-5.68	2.284×10^{-5}	4.71	3.160×10^{-4}	0.35	7.327×10^{-1}
Urine ^a	-9.20	9.396×10^{-8}	-2.39	4.193×10^{-2}	-4.56	4.516×10^{-4}
Liver	-9.21	5.298×10^{-8}	6.00	$1.288 imes 10^{-5}$	0.19	8.499×10^{-1}
Lung	-3.54	2.531×10^{-3}	2.46	2.440×10^{-2}	3.60	2.173×10^{-3}
Adrenal glands b	1.33	2.098×10^{-1}	0.16	8.745×10^{-1}	4.11	$9.695 imes 10^{-4}$
Adipose tissue ^c	-0.49	6.308×10^{-1}	-3.70	$1.763 imes10^{-3}$	-2.36	3.856×10^{-2}
Cerebellum	-0.37	7.164×10^{-1}	1.18	2.543×10^{-1}	1.46	1.605×10^{-1}
Testis	2.05	5.560×10^{-2}	-0.52	6.069×10^{-1}	-0.28	7.849×10^{-1}

^a For SM C18:1, n = 7 in db/db, n = 9 in WT. For PC aa C38:0 and creatinine, n = 9 in db/db, n = 9 in WT. ^b For creatinine, n = 9 in db/db, n = 9 in WT. ^c For creatinine, n = 9 in db/db, n = 10 in WT.

Figure 2. Analysis of creatinine and two candidate metabolites in murine biofluids and tissues. Mean relative concentrations (with standard errors) of the metabolites (creatinine, SM C18:1, and PC aa C38:0) in murine plasma, urine, liver, lung, adrenal tissue, adipose tissue, cerebellum, and testis. * N = 7 in db/db for SM C18:1. [†] For creatinine, N = 9 in db/db, N = 9 in WT. [‡] N = 9 in db/db for creatinine. Abbreviations: db/db, leptin receptor-deficient mouse model; WT, wild type mice; SM, sphingomyelin; PC aa, phosphatidylcholine diacyl.

3. Discussion

According to the natural history of diabetic nephropathy, the early stage displays normal kidney function (normal GFR) and is clinically unsuspicious. It is followed by a transient period of glomerular hyperfiltration (increased GFR) that later normalizes and slowly decreases towards a steep GFR decline at a relatively later stage [21]. Our initial discovery in the longitudinal human cohort showed predictive effects of elevated serum levels of SM C18:1 and PC aa C38:0 for incident CKD in hyperglycemic individuals with normal baseline kidney function [9]. The finding of this animal and cross-sectional human study is that these metabolites associate with further stages of hyperglycemia-related CKD evolution including (i) early changes characterized with glomerular hyperfiltration (8-week-old db/db mice) and (ii) later changes characterized with reduced eGFR (KORA FF4 study).

This cross-sectional KORA FF4 study revealed significant associations between serum levels of SM C18:1 and PC aa C38:0 with decreased eGFR in individuals with prediabetes or T2D. Their associations with kidney function were independent of systolic blood pressure, blood lipids, HbA_{1C}, and UACR suggesting that these two candidate phospholipids biomarkers are independent risk factors for CKD. Both metabolites, SM C18:1 and PC aa C38:0, are phospholipids that are known to regulate inflammation and fibrosis and their alterations in diabetes and metabolic syndrome occur in multiple body systems [11]. Besides hyperglycemia-related CKD [9], metabolomics studies have revealed that plasma PC aa C38:0 was positively associated with coronary artery disease mortality [22] and systemic alterations in SM levels were also predictive of T1D [23], T2D [24], and myocardial infarction [25]. As these outcomes are risk factors or subsequent outcomes for hyperglycemia-related CKD, further studies are necessary to provide insights into the disease-specificity of emerging phospholipid biomarkers before their application in clinical diagnostics. Since not all patients with diabetes develop CKD and not all patients with CKD follow the same disease trajectory, it is also important to explore their mechanisms of actions for better patient stratification and to accelerate targeted screening programs.

Glomerular hyperfiltration is a hallmark of kidney dysfunction in diabetes. The flowrelated effects of glomerular and tubular changes caused by glomerular hyperfiltrationrelated mechanical stress play a major role in the pathogenesis of the glomerular disease, and reduction of hyperfiltration is a crucial therapeutic target in diabetes-induced CKD [26]. In young diabetic mice (6–10 weeks), exert supraphysiological GFR and increased creatinine clearance have been reported [17,27]. As a potential effect of glomerular hyperfiltration in our 8-week-old db/db mice, we observed lower plasma and urinary levels of creatinine. Creatinine is a toxic byproduct of phosphocreatine metabolism and is excreted by glomerular filtration and proximal tubular secretion with little to no reabsorption. Besides the plasma and urine in our db/db mice, lower concentrations of creatinine were also found in the liver and lungs, which could be explained by reduced creatine biosynthesis and/or phosphocreatine energy metabolism in skeletal muscle and other organs. The influence of known factors affecting serum creatinine values (age, sex, ethnicity, muscle mass, protein diet, and intake of drugs [28]) was minimal as these factors were controlled for in our mouse study. Diabetic mice display skeletal mass reduction already at 5 weeks of age and before T2D onset [29] and low serum creatinine in T2D patients indicates muscle loss and predicts T2D independently of glomerular filtration [30,31]. Taken together, creatinine measurements in our 8-week-old db/db mice are suggestive of not only altered kidney function, e.g., glomerular hyperfiltration, but also high-energy phosphate metabolism.

Our db/db mice displayed significantly higher levels of both metabolites, SM C18:1 and PC aa C38:0, in the lungs than WT mice. This could indicate lung dysfunction as PCs and SMs are key components of pulmonary surfactant and their dysregulation was linked with respiratory failure [32]. The db/db mice are prone to pulmonary edema [33] and asthma-related symptoms such as airway hyperresponsiveness [34]. Sphingomyelin synthase 2 (SMS2) deficiency attenuates inflammation and ameliorates recovery after lung injury in mice [35]. Lung dysfunction is common, but clinically less managed, comorbidity

in patients with CKD [36]. Despite some earlier and controversial evidence on better adult respiratory distress syndrome (ARDS) survival in T2D patients, it has been urged to investigate lung dysfunction in T2D patients [37].

The epididymal adipose tissue in db/db mice displayed lower concentrations of SM C18:1 and PC aa C38:0 (Figure 3). In line with our findings, reduced adipose tissue levels of certain SMs and PCs have also been detected in 30-week old db/db mice [38]. The phospholipid metabolism in white adipose tissue and residing macrophages of obese animals is largely perturbed [39]. We speculate that the lower adipose levels of SM C18:1 and PC aa C38:0 could be due to increased efflux of SM- or PC-containing lipoproteins by the ATP-binding cassette transporter ABCG1 [40] that is upregulated in obese mice [41].

Figure 3. Organ-specific trends of SM C18:1 and PC aa C38:0 in a mouse model of diabetic nephropathy and potential interorgan crosstalk inferred from literature (interrupted lines, references in discussion). Abbreviations: ABCG1, ATP-binding cassette subfamily G member 1; RCT, reverse cholesterol transport; SMS2, sphingomyelin synthase 2; VLDL, very-low-density lipoprotein; LDL, low-density lipoprotein; SM, sphingomyelin; PC, phosphatidylcholine.

Higher hepatic levels of SM C18:1 in db/db mice could be the consequence of fatty liver related upregulation in SMS2 activity [42], which determines hepatic and plasma SM values [43]. SMS2 activity promotes fatty acid uptake and liver steatosis [42], whereas SMS2 deficiency prevents HFD-induced liver steatosis [44] and increases insulin sensitivity [45]. The liver is the central hub of phospholipid synthesis and recycling via lipoprotein particles such as LDL/VLDL (approx. 70% of plasma SMs) and HDL (30%) (Figure 3).

Our observation of higher concentration of PC aa C38:0 in the adrenal glands might be related with reduced biosynthesis of polyunsaturated fatty acids in adrenals of db/db mice [46]. These mice also display an increased synthesis of adrenal steroids [19], which can stimulate PC synthesis in the lungs [47] (Figure 3).

Biofluids such as blood and urine provide insights into interorgan metabolic crosstalk and kidney activity, respectively. Similarly to creatinine, the lower urinary levels of SM C18:1 and PC aa C38:0 in db/db mice may reflect altered glomerular filtration as well as phospholipid accumulation in the kidney tissue as was shown in HFD-fed db/db mice [48]. SMs accumulate in the glomeruli of diabetic and HFD-fed mice might promote CKD [49]. Diabetic kidney disease in db/db mice manifests around 8 weeks of age with albuminuria and increased glomerular surface area, resembling the early stage of human diabetic nephropathy, and is followed by a progressive increase in mesangial matrix and hypertrophy [13,50]. The kidneys modulate HDL metabolism and their early dysfunction could impair reverse cholesterol transport and additionally contribute to lower urinary concentrations of the two phospholipids (Figure 3). In summary, this detailed assessment of two biofluids and six tissues in a well-characterized mouse model of diabetic nephropathy indicates altered levels of SM C18:1 and PC aa C38:0 in the liver, lungs, adrenal gland, adipose tissue, and urine. Of these, the lungs appear especially interesting due to phospholipid implication in various pulmonary diseases and injuries [51]. At the current stage of knowledge, it is unclear but possible (based on literature) that these organs could also contribute to the circulatory regulation of SM C18:1 and PC aa C38:0.

This study has several limitations and advantages. Limited availability of the mouse data did not allow us to analyze kidney tissue nor validate metabolite profiles by histological analysis. Compared with humans, the difference in the genetic background of db/db mice that causes hyperglycemia and diabetic nephropathy may confound metabolite profiles. Therefore, multiorgan contribution to systemic dysregulation of SM C18:1 and PC aa C38:0 and their potential functional implication in kidney function (by feeding experiments in diabetic mouse models) require further investigations. One of strengths of our study is the validation of two candidate biomarkers of incident CKD not only in a cross-sectional human study, but also in multiorgan mouse models with hyperglycemia and obesity. Our study provides first insights into multistage CKD association, early stage characterized with glomerular hyperfiltration (8-week-old db/db mice), and later stage characterized with reduced eGFR (KORA FF4 study), as well as potential multiorgan contribution to circulatory regulation of the two phospholipid metabolites for CKD.

4. Materials and Methods

4.1. Study Participants, Outcome Definition

The KORA FF4 study was conducted in the area of Augsburg, Southern Germany. All study participants gave written informed consent. The KORA study was approved by the ethics committee of the Bavarian Medical Association, Munich, Germany.

Individuals with hyperglycemia and NGT were classified according to fasting glucose and 2-h glucose values using the World Health Organization diagnostic criteria. Hyperglycemic group comprised participants with prediabetes and newly diagnosed T2D (i.e., fasting glucose $\geq 110 \text{ mg/dL}$ and/or 2-h-glucose $\geq 140 \text{ mg/dL}$), as well as known T2D that was diagnosed by physician validated self-reporting and/or current use of antidiabetes agents [8].

We examined 2218 individuals who had metabolite measurements and excluded 311 participants in the analysis including (1) nonfasting samples (n = 15); (2) missing eGFR, UACR, or covariate values (n = 37); (3) diagnosis for type 1 diabetes (n = 5), unclear type of diabetes mellitus (n = 69) or age equal to or greater than 85 (n = 23) or self-reported use of antidiabetic medication (n = 162). The remaining dataset comprised 510 hyperglycemic participants and 1397 individuals with NGT (Table 1). The hyperglycemic individuals were used to study the associations of eGFR and CKD with the two metabolites. The NGT individuals served as a sensitivity analysis of the associations of CKD with the two metabolites.

The eGFR was calculated from serum creatinine (mg/dL) (IDMS standardized values) using the Chronic Kidney Disease Epidemiology Collaboration (CKD-EPI) equation [52]. CKD was defined as an eGFR < $60 \text{ mL/min}/1.73 \text{ m}^2$ [53].

4.2. Mouse Study

We used male 8-week (\pm 3 d) old WT mice (n = 10) and db/db mice (BKS.Cg-Dock7^m+/+ Lepr^{db}/J, n = 10, Figure 4). The animals were bred and housed in a temperatureand humidity-controlled environment in compliance with FELASA (the Federation of Laboratory Animal Science Associations) protocols [54]. Animal experiments were approved by the District Government of Upper Bavaria (Regierung von Oberbayern, Gz.55.2-1-54-2531-70-07, 55.2-1-2532-153-11). 57

Figure 4. Scatter plots of phenotypic and metabolic variables in db/db and wild type mice fed with a high-fat diet. Abbreviations: HDL, high-density lipoprotein; LDL, low-density lipoprotein; db/db, leptin receptor-deficient mouse model; WT, wild type mice.

From an age of 3 weeks, all mice were fed with HFD (S0372-E010, ssniff Spezialdiäten, Soest, Germany) [54]. After receiving vehicle (5% solutol and 95% hydroxyethylcellulose), all mice were fasted for 4 h before biofluid and organ collection. Urine was collected individually with absorbing tissue pads. Blood samples were collected from lateral tail veins. Liver, epidydimal adipose tissue, cerebellum, lung, adrenal, and testis samples were immediately dissected and freeze-clamped after sacrification with an isoflurane overdose [54]. All samples were stored at -80 °C until further analyses.

4.3. Metabolite Quantification and Normalization

Serum samples from participants in the KORA FF4 study were measured with the Absolute*IDQ*TM p180 Kit (BIOCRATES Life Sciences AG, Innsbruck, Austria). Metabolite concentrations were adjusted for plate normalization factors (NFs) to minimize the plate effect. For each metabolite, the plate NFs were calculated by dividing the mean of reference samples in each plate with the mean of all reference samples in all measured plates. Metabolite concentrations were natural-log transformed and scaled to a mean value of zero and standard deviation (SD) of one to ensure comparability between the metabolites.

In the mouse study, creatinine, SM C18:1 and PC aa C38:0 values in plasma, liver, lung, adrenal glands, adipose tissue, cerebellum, and testis samples were determined with the Absolute IDQ^{TM} p180 Kit (BIOCRATES Life Sciences AG, Innsbruck, Austria) and in urine with the Absolute IDQ^{TM} p150 Kit (BIOCRATES). Tissue homogenization, extraction solvents, assay preparation, and LC-MS/MS measurements have been described elsewhere [55]. Since each tissue sample from db/db and WT mice was measured on the same kit plate, we did not conduct plate correction. Metabolite concentrations were natural-log transformed and then scaled to a mean value of zero and SD of one for each tissue.

11 of 16

4.4. Statistical Analysis

IPW for continuous exposures of the generalized propensity score approach was applied to reduce the confounding effects and provide a more reliable estimate of metabolite–outcome associations in participants of the KORA FF4 study [56]. The IPW-adjusted analysis improved the balance between two metabolites and covariates, e.g., all of the absolute Spearman's correlation coefficients between PC aa C38:0 and covariates were below 0.1, both in hyperglycemic and NGT individuals (Figure 5).

Figure 5. Inverse probability weighting improves metabolite–covariate balance. The absolute values of Spearman's correlation coefficients for SM C18:1 or PC aa C38:0 with various covariates before and after IPW in hyperglycemic and NGT individuals of KORA FF4 are shown. The interrupted lines represent 0.05 (**left**) and 0.1 (**right**) absolute value of Spearman's correlation coefficients. Abbreviations: IPW, inverse probability weighting; SM, sphingomyelin; PC aa, phosphatidylcholine diacyl; NGT, normal glucose tolerance. HbA_{1c}, glycated hemoglobin; BP, blood pressure; UACR, urinary albumin-to-creatinine ratio.

We defined two sets of covariates. The basic model included age, sex, BMI, systolic blood pressure, triglyceride, total cholesterol, HDL cholesterol, and HbA_{1c}. The full model was additionally adjusted for smoking status, use of lipid-lowering drugs and
antihypertensive medication, and UACR. The values of UACR, HbA_{1C} and triglyceride were natural log-transformed before analysis due to their right-skewed distribution.

Generalized propensity scores were estimated with multivariable linear regression in which each metabolite was regressed on covariates from the full model, respectively [57]. The inverse probability weights for each metabolite were then calculated using the corresponding estimated generalized propensity scores [56]. The balance between each metabolite and covariate before and after IPW was estimated by Spearman's correlation coefficients. Their imbalance was defined using stringent criteria, i.e., with absolute Spearman's correlation coefficient greater than 0.05.

Metabolite association with eGFR and CKD in hyperglycemic individuals of KORA FF4 was analyzed with weighted multivariable linear and logistic regression with applying corresponding inverse probability weights, respectively. As a sensitivity analysis, metabolite association with CKD was analyzed in NGT individuals of KORA FF4 with weighted multivariable logistic regression after IPW.

Statistical differences in clinical and metabolic parameters between db/db and WT mice were assessed with the Mann–Whitney *U* test. Differences in tissue-specific concentration of creatinine and two candidate metabolite biomarkers between db/db and WT mice were assessed with Student's *t*-test.

A two-sided p-value < 0.05 was considered statistically significant. All statistical analyses were performed using R version 4.0.3.

5. Conclusions

This study provides biological insights into our recent discovery of SM C18:1 and PC aa C38:0 as predictive metabolites for incident CKD in hyperglycemic individuals [9]. The cross-sectional analysis showed that the inverse association of both phospholipids with glomerular filtration in hyperglycemic individuals was independent of systolic blood pressure, cholesterol, triglycerides, HbA_{1C}, and UACR. Multiorgan analysis in a well-characterized mouse model of early diabetic nephropathy revealed a possible contribution of lungs, liver, adipose tissue, and adrenal glands in their systemic regulation and CKD progression. As a remarkable example of interdisciplinary collaboration, this human and animal study corroborated our initial discovery and provided insights into a relationship with kidney function and the potential implication of other organs. This study contributes to human validation of SM C18:1 and PC aa C38:0 as new biomarkers for early identification of persons with (pre)diabetes with increased risk of CKD and serves as a step ahead towards risk stratification and improved targeted screening programs for CKD. In-depth molecular phenotyping of these novel metabolite predictors of CKD is warranted.

Author Contributions: Conceptualization, J.H. and R.W.-S.; methodology, J.H., M.C., C.H., M.R., J.A. (Jonathan Adam), L.W., J.N., S.Z., C.P., M.F.S., K.S.; formal analysis, J.H.; data curation, S.Z., C.P., M.F.S., S.N., G.K., C.G.; writing—original draft preparation, J.H., M.C., R.W.-S.; writing—review and editing, C.H., M.R., J.A. (Jonathan Adam), J.N., M.F.S., M.L., F.S.; visualization, J.H., M.C., L.W., R.W.-S.; supervision, J.A. (Jerzy Adamski), M.H.d.A., A.P., R.W.-S.; funding acquisition, M.L., F.S., J.A. (Jerzy Adamski), M.H.d.A., A.P., R.W.-S.; funding acquisition, M.L., F.S., J.A. (Jerzy Adamski), M.H.d.A., A.P., R.W.-S.; funding acquisition of the manuscript.

Funding: Part of this research was supported by the 19076 and 20679 iPDM-GO "Integrated Personalized Diabetes Management goes Europe" innovation project supported by EIT Health. EIT Health is supported by the EIT, a body of the European Union. K.S. is supported by Biomedical Research Program funds at Weill Cornell Medical College in Qatar, a program funded by the Qatar Foundation. The KORA study was initiated and financed by the Helmholtz Zentrum München—German Research Center for Environmental Health, which is funded by the German Federal Ministry of Education and Research (BMBF) and by the State of Bavaria. Furthermore, KORA research was supported within the Munich Center of Health Sciences (MC-Health), Ludwig-Maximilians-Universität, as part of LMUinnovativ. 60

Institutional Review Board Statement: The study was conducted according to the guidelines of the Declaration of Helsinki, and ap-proved by the Institutional Review Board of KORA-Study Group (PV K119/17g).

Informed Consent Statement: Informed consent was obtained from all subjects involved in the study.

Data Availability Statement: The KORA FF4 data sets are not publicly available because of data protection agreements but can be provided upon request through the KORA-PASST (Project application self-service tool, www.helmholtz-muenchen.de/kora-gen).

Acknowledgments: We express our appreciation to all KORA study participants for donating their blood and time. We thank the field staff in Augsburg conducting the KORA studies. The KORA-Study Group consists of A. Peters (speaker), L. Schwettmann, R. Leidl, M. Heier, B. Linkohr, H. Grallert, C. Gieger, J. Linseisen and their coworkers, who are responsible for the design and conduct of the KORA studies. We are grateful to Julia Scarpa and Katharina Faschinger from the Metabolomics Platform of the Genome Analysis Center for performing metabolomic measurements. For the mouse study, we thank the staff of the Institute of Diabetes and Regeneration Research (Anett Seelig, Jürgen Schultheiß), Institute of Experimental Genetics (Moya Wu, Gerhard Przemeck), and the animal caretaker staff of the German Mouse Clinic for excellent technical assistance.

Conflicts of Interest: M.F.S was employed at Helmholtz Center Munich during his Ph.D. thesis and is currently employed in the CardioRenal Medical Department of Bayer AG, however, the company was not involved in work related to data and manuscript generation.

References

- Alicic, R.Z.; Neumiller, J.J.; Johnson, E.J.; Dieter, B.; Tuttle, K.R. Sodium-Glucose Cotransporter 2 Inhibition and Diabetic Kidney Disease. Diabetes 2019, 68, 248–257. [CrossRef] [PubMed]
- GBD Chronic Kidney Disease Collaboration; Bikbov, B.; Purcell, C.; Levey, A.S.; Smith, M.; Abdoli, A.; Abebe, M.; Adebayo, O.M.; Afarideh, M.; Agarwal, S.K.; et al. Global, regional, and national burden of chronic kidney disease, 1990-2017: A systematic analysis for the Global Burden of Disease Study 2017. *Lancet* 2020, 395, 709–733. [CrossRef]
- 3. Manns, B.; Hemmelgarn, B.; Tonelli, M.; Au, F.; Chiasson, T.C.; Dong, J.; Klarenbach, S.; Alberta Kidney Disease, N. Population based screening for chronic kidney disease: Cost effectiveness study. *BMJ* **2010**, *341*, c5869. [CrossRef] [PubMed]
- 4. Dunkler, D.; Gao, P.; Lee, S.F.; Heinze, G.; Clase, C.M.; Tobe, S.; Teo, K.K.; Gerstein, H.; Mann, J.F.; Oberbauer, R.; et al. Risk Prediction for Early CKD in Type 2 Diabetes. *Clin. J. Am. Soc. Nephrol.* **2015**, *10*, 1371–1379. [CrossRef] [PubMed]
- Nicholson, J.K.; Wilson, I.D. Opinion: Understanding 'global' systems biology: Metabonomics and the continuum of metabolism. Nat. Rev. Drug Discov. 2003, 2, 668–676. [CrossRef] [PubMed]
- Gieger, C.; Geistlinger, L.; Altmaier, E.; Hrabe de Angelis, M.; Kronenberg, F.; Meitinger, T.; Mewes, H.W.; Wichmann, H.E.; Weinberger, K.M.; Adamski, J.; et al. Genetics meets metabolomics: A genome-wide association study of metabolite profiles in human serum. *PLoS Genet.* 2008, 4, e1000282. [CrossRef]
- Suhre, K.; Shin, S.Y.; Petersen, A.K.; Mohney, R.P.; Meredith, D.; Wagele, B.; Altmaier, E.; CardioGram; Deloukas, P.; Erdmann, J.; et al. Human metabolic individuality in biomedical and pharmaceutical research. *Nature* 2011, 477, 54–60. [CrossRef] [PubMed]
- 8. Wang-Sattler, R.; Yu, Z.; Herder, C.; Messias, A.C.; Floegel, A.; He, Y.; Heim, K.; Campillos, M.; Holzapfel, C.; Thorand, B.; et al. Novel biomarkers for pre-diabetes identified by metabolomics. *Mol. Syst. Biol.* **2012**, *8*, 615. [CrossRef]
- Huang, J.; Huth, C.; Covic, M.; Troll, M.; Adam, J.; Zukunft, S.; Prehn, C.; Wang, L.; Nano, J.; Scheerer, M.F.; et al. Machine Learning Approaches Reveal Metabolic Signatures of Incident Chronic Kidney Disease in Individuals with Prediabetes and Type 2 Diabetes. *Diabetes* 2020, 69, 2756–2765. [CrossRef]
- Fornoni, A.; Merscher, S.; Kopp, J.B. Lipid biology of the podocyte–new perspectives offer new opportunities. *Nat. Rev. Nephrol.* 2014, 10, 379–388. [CrossRef]
- Russo, S.B.; Ross, J.S.; Cowart, L.A. Sphingolipids in obesity, type 2 diabetes, and metabolic disease. *Handb. Exp. Pharmacol.* 2013, 373–401. [CrossRef]
- 12. Lisowska-Myjak, B. Uremic toxins and their effects on multiple organ systems. *Nephron Clin. Pract.* 2014, 128, 303–311. [CrossRef] [PubMed]
- Sharma, K.; McCue, P.; Dunn, S.R. Diabetic kidney disease in the db/db mouse. Am. J. Physiol Renal Physiol 2003, 284, F1138–F1144. [CrossRef] [PubMed]
- Kim, N.H.; Hyeon, J.S.; Kim, N.H.; Cho, A.; Lee, G.; Jang, S.Y.; Kim, M.K.; Lee, E.Y.; Chung, C.H.; Ha, H.; et al. Metabolic changes in urine and serum during progression of diabetic kidney disease in a mouse model. *Arch. Biochem. Biophys.* 2018, 646, 90–97. [CrossRef] [PubMed]
- Yamamoto, Y.; Maeshima, Y.; Kitayama, H.; Kitamura, S.; Takazawa, Y.; Sugiyama, H.; Yamasaki, Y.; Makino, H. Tumstatin peptide, an inhibitor of angiogenesis, prevents glomerular hypertrophy in the early stage of diabetic nephropathy. *Diabetes* 2004, 53, 1831–1840. [CrossRef] [PubMed]

61

Metabolites 2021, 11, 89

- Cingel-Ristić, V.; Schrijvers, B.F.; van Vliet, A.K.; Rasch, R.; Han, V.K.; Drop, S.L.; Flyvbjerg, A. Kidney growth in normal and diabetic mice is not affected by human insulin-like growth factor binding protein-1 administration. *Exp. Biol. Med. (Maywood)* 2005, 230, 135–143. [CrossRef]
- 17. Cohen, M.P.; Lautenslager, G.T.; Shearman, C.W. Increased urinary type IV collagen marks the development of glomerular pathology in diabetic d/db mice. *Metabolism* 2001, *50*, 1435–1440. [CrossRef] [PubMed]
- Trak-Smayra, V.; Paradis, V.; Massart, J.; Nasser, S.; Jebara, V.; Fromenty, B. Pathology of the liver in obese and diabetic ob/ob and db/db mice fed a standard or high-calorie diet. Int. J. Exp. Pathol. 2011, 92, 413–421. [CrossRef]
- Hofmann, A.; Peitzsch, M.; Brunssen, C.; Mittag, J.; Jannasch, A.; Frenzel, A.; Brown, N.; Weldon, S.M.; Eisenhofer, G.; Bornstein, S.R.; et al. Elevated Steroid Hormone Production in the db/db Mouse Model of Obesity and Type 2 Diabetes. *Horm. Metab. Res.* 2017, 49, 43–49. [CrossRef]
- Chocian, G.; Chabowski, A.; Zendzian-Piotrowska, M.; Harasim, E.; Łukaszuk, B.; Górski, J. High fat diet induces ceramide and sphingomyelin formation in rat's liver nuclei. *Mol. Cell Biochem.* 2010, 340, 125–131. [CrossRef]
- Tonneijck, L.; Muskiet, M.H.; Smits, M.M.; van Bommel, E.J.; Heerspink, H.J.; van Raalte, D.H.; Joles, J.A. Glomerular Hyperfiltration in Diabetes: Mechanisms, Clinical Significance, and Treatment. J. Am. Soc. Nephrol. 2017, 28, 1023–1039. [CrossRef] [PubMed]
- Sigruener, A.; Kleber, M.E.; Heimerl, S.; Liebisch, G.; Schmitz, G.; Maerz, W. Glycerophospholipid and sphingolipid species and mortality: The Ludwigshafen Risk and Cardiovascular Health (LURIC) study. *PLoS ONE* 2014, 9, e85724. [CrossRef] [PubMed]
- Tofte, N.; Suvitaival, T.; Trost, K.; Mattila, I.M.; Theilade, S.; Winther, S.A.; Ahluwalia, T.S.; Frimodt-Moller, M.; Legido-Quigley, C.; Rossing, P. Metabolomic Assessment Reveals Alteration in Polyols and Branched Chain Amino Acids Associated With Present and Future Renal Impairment in a Discovery Cohort of 637 Persons with Type 1 Diabetes. *Front. Endocrinol.* 2019, 10, 818. [CrossRef] [PubMed]
- Razquin, C.; Toledo, E.; Clish, C.B.; Ruiz-Canela, M.; Dennis, C.; Corella, D.; Papandreou, C.; Ros, E.; Estruch, R.; Guasch-Ferre, M.; et al. Plasma Lipidomic Profiling and Risk of Type 2 Diabetes in the PREDIMED Trial. *Diabetes Care* 2018, 41, 2617–2624. [CrossRef] [PubMed]
- Floegel, A.; Kuhn, T.; Sookthai, D.; Johnson, T.; Prehn, C.; Rolle-Kampczyk, U.; Otto, W.; Weikert, C.; Illig, T.; von Bergen, M.; et al. Serum metabolites and risk of myocardial infarction and ischemic stroke: A targeted metabolomic approach in two German prospective cohorts. *Eur. J. Epidemiol.* 2018, 33, 55–66. [CrossRef] [PubMed]
- Chagnac, A.; Zingerman, B.; Rozen-Zvi, B.; Herman-Edelstein, M. Consequences of Glomerular Hyperfiltration: The Role of Physical Forces in the Pathogenesis of Chronic Kidney Disease in Diabetes and Obesity. *Nephron* 2019, 143, 38–42. [CrossRef] [PubMed]
- 27. Gartner, K. Glomerular hyperfiltration during the onset of diabetes mellitus in two strains of diabetic mice (c57bl/6j db/db and c57bl/ksj db/db). *Diabetologia* **1978**, *15*, 59–63. [CrossRef] [PubMed]
- Campion, C.G.; Sanchez-Ferras, O.; Batchu, S.N. Potential Role of Serum and Urinary Biomarkers in Diagnosis and Prognosis of Diabetic Nephropathy. Can. J. Kidney Health Dis. 2017, 4, 2054358117705371. [CrossRef]
- Ostler, J.E.; Maurya, S.K.; Dials, J.; Roof, S.R.; Devor, S.T.; Ziolo, M.T.; Periasamy, M. Effects of insulin resistance on skeletal muscle growth and exercise capacity in type 2 diabetic mouse models. Am. J. Physiol. Endocrinol. Metab. 2014, 306, E592–E605. [CrossRef]
- 30. Kashima, S.; Inoue, K.; Matsumoto, M.; Akimoto, K. Low serum creatinine is a type 2 diabetes risk factor in men and women: The Yuport Health Checkup Center cohort study. *Diabetes Metab.* 2017, 43, 460–464. [CrossRef]
- Harita, N.; Hayashi, T.; Sato, K.K.; Nakamura, Y.; Yoneda, T.; Endo, G.; Kambe, H. Lower serum creatinine is a new risk factor of type 2 diabetes: The Kansai healthcare study. *Diabetes Care* 2009, 32, 424–426. [CrossRef] [PubMed]
- Hallman, M.; Spragg, R.; Harrell, J.H.; Moser, K.M.; Gluck, L. Evidence of lung surfactant abnormality in respiratory failure. Study of bronchoalveolar lavage phospholipids, surface activity, phospholipase activity, and plasma myoinositol. *J. Clin. Invest.* 1982, 70, 673–683. [CrossRef] [PubMed]
- Papinska, A.M.; Soto, M.; Meeks, C.J.; Rodgers, K.E. Long-term administration of angiotensin (1-7) prevents heart and lung dysfunction in a mouse model of type 2 diabetes (db/db) by reducing oxidative stress, inflammation and pathological remodeling. *Pharmacol. Res.* 2016, 107, 372–380. [CrossRef] [PubMed]
- Lu, F.L.; Johnston, R.A.; Flynt, L.; Theman, T.A.; Terry, R.D.; Schwartzman, I.N.; Lee, A.; Shore, S.A. Increased pulmonary responses to acute ozone exposure in obese db/db mice. *Am. J. Physiol. Lung Cell Mol. Physiol.* 2006, 290, L856–L865. [CrossRef] [PubMed]
- Gowda, S.; Yeang, C.; Wadgaonkar, S.; Anjum, F.; Grinkina, N.; Cutaia, M.; Jiang, X.C.; Wadgaonkar, R. Sphingomyelin synthase 2 (SMS2) deficiency attenuates LPS-induced lung injury. Am. J. Physiol. Lung Cell Mol. Physiol. 2011, 300, L430–L440. [CrossRef]
- 36. Mukai, H.; Ming, P.; Lindholm, B.; Heimburger, O.; Barany, P.; Stenvinkel, P.; Qureshi, A.R. Lung Dysfunction and Mortality in Patients with Chronic Kidney Disease. *Kidney Blood Press Res.* **2018**, *43*, 522–535. [CrossRef]
- Kolahian, S.; Leiss, V.; Nürnberg, B. Diabetic lung disease: Fact or fiction? *Rev. Endocr. Metab. Disord.* 2019, 20, 303–319. [CrossRef]
 Giesbertz, P.; Padberg, I.; Rein, D.; Ecker, J.; Höfle, A.S.; Spanier, B.; Daniel, H. Metabolite profiling in plasma and tissues of ob/ob and db/db mice identifies novel markers of obesity and type 2 diabetes. *Diabetologia* 2015, 58, 2133–2143. [CrossRef]
- Dahik, V.D.; Frisdal, E.; Le Goff, W. Rewiring of Lipid Metabolism in Adipose Tissue Macrophages in Obesity: Impact on Insulin Resistance and Type 2 Diabetes. Int. J. Mol. Sci. 2020, 21, 5505. [CrossRef]

- Kobayashi, A.; Takanezawa, Y.; Hirata, T.; Shimizu, Y.; Misasa, K.; Kioka, N.; Arai, H.; Ueda, K.; Matsuo, M. Efflux of sphingomyelin, cholesterol, and phosphatidylcholine by ABCG1. J. Lipid Res. 2006, 47, 1791–1802. [CrossRef]
- Edgel, K.A.; McMillen, T.S.; Wei, H.; Pamir, N.; Houston, B.A.; Caldwell, M.T.; Mai, P.O.; Oram, J.F.; Tang, C.; Leboeuf, R.C. Obesity and weight loss result in increased adipose tissue ABCG1 expression in db/db mice. *Biochim. Biophys. Acta* 2012, 1821, 425–434. [CrossRef] [PubMed]
- Li, Y.; Dong, J.; Ding, T.; Kuo, M.S.; Cao, G.; Jiang, X.C.; Li, Z. Sphingomyelin synthase 2 activity and liver steatosis: An effect of ceramide-mediated peroxisome proliferator-activated receptor gamma2 suppression. *Arterioscler. Thromb. Vasc. Biol.* 2013, 33, 1513–1520. [CrossRef] [PubMed]
- Liu, J.; Zhang, H.; Li, Z.; Hailemariam, T.K.; Chakraborty, M.; Jiang, K.; Qiu, D.; Bui, H.H.; Peake, D.A.; Kuo, M.S.; et al. Sphingomyelin synthase 2 is one of the determinants for plasma and liver sphingomyelin levels in mice. *Arterioscler. Thromb. Vasc. Biol.* 2009, 29, 850–856. [CrossRef] [PubMed]
- Mitsutake, S.; Zama, K.; Yokota, H.; Yoshida, T.; Tanaka, M.; Mitsui, M.; Ikawa, M.; Okabe, M.; Tanaka, Y.; Yamashita, T.; et al. Dynamic modification of sphingomyelin in lipid microdomains controls development of obesity, fatty liver, and type 2 diabetes. *J. Biol. Chem.* 2011, 286, 28544–28555. [CrossRef] [PubMed]
- Li, Z.; Zhang, H.; Liu, J.; Liang, C.P.; Li, Y.; Li, Y.; Teitelman, G.; Beyer, T.; Bui, H.H.; Peake, D.A.; et al. Reducing plasma membrane sphingomyelin increases insulin sensitivity. *Mol. Cell Biol.* 2011, *31*, 4205–4218. [CrossRef]
- Igal, R.A.; Mandon, E.C.; de Gómez Dumm, I.N. Abnormal metabolism of polyunsaturated fatty acids in adrenal glands of diabetic rats. Mol. Cell Endocrinol. 1991, 77, 217–227. [CrossRef]
- Gross, I.; Ballard, P.L.; Ballard, R.A.; Jones, C.T.; Wilson, C.M. Corticosteroid stimulation of phosphatidylcholine synthesis in cultured fetal rabbit lung: Evidence for de novo protein synthesis mediated by glucocorticoid receptors. *Endocrinology* 1983, 112, 829–837. [CrossRef]
- Decleves, A.E.; Zolkipli, Z.; Satriano, J.; Wang, L.; Nakayama, T.; Rogac, M.; Le, T.P.; Nortier, J.L.; Farquhar, M.G.; Naviaux, R.K.; et al. Regulation of lipid accumulation by AMP-activated kinase [corrected] in high fat diet-induced kidney injury. *Kidney Int.* 2014, 85, 611–623. [CrossRef]
- Miyamoto, S.; Hsu, C.C.; Hamm, G.; Darshi, M.; Diamond-Stanic, M.; Declèves, A.E.; Slater, L.; Pennathur, S.; Stauber, J.; Dorrestein, P.C.; et al. Mass Spectrometry Imaging Reveals Elevated Glomerular ATP/AMP in Diabetes/obesity and Identifies Sphingomyelin as a Possible Mediator. *EBioMedicine* 2016, 7, 121–134. [CrossRef]
- 50. Soler, M.J.; Riera, M.; Batlle, D. New experimental models of diabetic nephropathy in mice models of type 2 diabetes: Efforts to replicate human nephropathy. *Exp. Diabetes Res.* **2012**, *2012*, 616313. [CrossRef]
- Becker, K.A.; Riethmuller, J.; Seitz, A.P.; Gardner, A.; Boudreau, R.; Kamler, M.; Kleuser, B.; Schuchman, E.; Caldwell, C.C.; Edwards, M.J.; et al. Sphingolipids as targets for inhalation treatment of cystic fibrosis. *Adv. Drug Deliv. Rev.* 2018, 133, 66–75. [CrossRef] [PubMed]
- Inker, L.A.; Schmid, C.H.; Tighiouart, H.; Eckfeldt, J.H.; Feldman, H.I.; Greene, T.; Kusek, J.W.; Manzi, J.; Van Lente, F.; Zhang, Y.L.; et al. Estimating glomerular filtration rate from serum creatinine and cystatin C. N. Engl. J. Med. 2012, 367, 20–29. [CrossRef] [PubMed]
- Stevens, P.E.; Levin, A.; Kidney Disease: Improving Global Outcomes Chronic Kidney Disease Guideline Development Work Group, M. Evaluation and management of chronic kidney disease: Synopsis of the kidney disease: Improving global outcomes 2012 clinical practice guideline. Ann. Intern. Med. 2013, 158, 825–830. [CrossRef] [PubMed]
- Neschen, S.; Scheerer, M.; Seelig, A.; Huypens, P.; Schultheiss, J.; Wu, M.; Wurst, W.; Rathkolb, B.; Suhre, K.; Wolf, E.; et al. Metformin supports the antidiabetic effect of a sodium glucose cotransporter 2 inhibitor by suppressing endogenous glucose production in diabetic mice. *Diabetes* 2015, 64, 284–290. [CrossRef] [PubMed]
- 55. Zukunft, S.; Prehn, C.; Röhring, C.; Möller, G.; Hrabě de Angelis, M.; Adamski, J.; Tokarz, J. High-throughput extraction and quantification method for targeted metabolomics in murine tissues. *Metabolomics* **2018**, *14*, 18. [CrossRef]
- Naimi, A.I.; Moodie, E.E.; Auger, N.; Kaufman, J.S. Constructing inverse probability weights for continuous exposures: A comparison of methods. *Epidemiology* 2014, 25, 292–299. [CrossRef]
- Robins, J.M.; Hernán, M.A.; Brumback, B. Marginal structural models and causal inference in epidemiology. *Epidemiology* 2000, 11, 550–560. [CrossRef]

Apendix A: Paper III

Title: Multi-omics landscape of chronic kidney disease in individuals with prediabetes or type 2 diabetes: from associations towards precision medicine.

Authors: Jialing Huang, Marcela Covic, Gisela Fobo, Corinna Montrone, Zhi Zhao, Arthur Gilly, N William Rayner, Cornelia Huth, Barbara Thorand, Margit Heier, Sonja Kunze, Melanie Waldenberger, Harald Grallert, Gabi Kastenmüller, Jerzy Adamski, Martina Müller-Nurasyid, Konstantin Strauch, Thomas Meitinger, Wolfgang Koenig, Christian Herder, Wolfgang Rathmann, Michael Roden, Johannes Graumann, Freimut Schliess, Christian Gieger, Andreas Ruepp, Eleftheria Zeggini, Karsten Suhre, Annette Peters*, Rui Wang-Sattler*

Status: Manuscript

Multi-omics landscape of chronic kidney disease in individuals with prediabetes or type 2 diabetes: from associations towards precision medicine

Jialing Huang^{1,2}, Marcela Covic¹, Gisela Fobo³, Corinna Montrone³, Zhi Zhao⁴, Arthur Gilly², N William Rayner², Cornelia Huth⁵, Barbara Thorand^{5,6}, Margit Heier^{5,7}, Sonja Kunze¹, Melanie Waldenberger¹, Harald Grallert¹, Gabi Kastenmüller⁸, Jerzy Adamski^{3,9}, Martina Müller-Nurasyid^{10,11}, Konstantin Strauch^{10,11}, Thomas Meitinger¹², Wolfgang Koenig¹³, Christian Herder^{6,14}, Wolfgang Rathmann^{6,15}, Michael Roden^{6,14}, Johannes Graumann¹⁶, Freimut Schliess¹⁷, Christian Gieger¹, Andreas Ruepp³, Eleftheria Zeggini^{2,18}, Karsten Suhre¹⁹, Annette Peters^{5,11,20,21*}, Rui Wang-Sattler^{1,2,6,21*}

¹ Research Unit of Molecular Epidemiology, Institute of Epidemiology, Helmholtz Zentrum München, German Research Center for Environmental Health (HMGU). Neuherberg, Germany

² Institute of Translational Genomics, HMGU, Neuherberg, Germany

³ Institute of Experimental Genetics, HMGU, Neuherberg, Germany

⁴ Institute for Cancer Research, Department of Cancer Genetics, Oslo University Hospital, Oslo, Norway; Centre for Biostatistics and Epidemiology (OCBE), Faculty of Medicine, University of Oslo, Oslo, Norway

⁵ Institute of Epidemiology, HMGU, Neuherberg, Germany

⁶German Center for Diabetes Research (DZD), München-Neuherberg, Germany.

⁷ KORA Study Centre, University Hospital of Augsburg, Augsburg, Germany

⁸ Institute of Computational Biology, HMGU, Neuherberg, Germany

⁹ Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore; Institute of Biochemistry, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia.

¹⁰ Institute of Genetic Epidemiology, HMGU, Neuherberg, Germany; Institute of Medical Biostatistics, Epidemiology and Informatics, University Medical Center, Johannes Gutenberg University, Mainz, Germany

¹¹ Institute for Medical Information Processing, Biometry and Epidemiology, Faculty of Medicine, Ludwig-Maximilians-University (LMU), Munich, Germany

¹² Institute of Human Genetics, Klinikum rechts der Isar, Technical University of Munich (TUM), Munich, Germany.

¹³ Deutsches Herzzentrum München, TUM, Munich, Germany, German Centre for Cardiovascular Research (DZHK), partner site Munich Heart Alliance, Munich, Germany and Institute of Epidemiology and Medical Biometry, University of Ulm, Ulm, Germany ¹⁴ Institute for Clinical Diabetology, German Diabetes Center, Leibniz Center for Diabetes Research at Heinrich Heine University Düsseldorf, Düsseldorf, Germany; Department of Endocrinology and Diabetology, Medical Faculty and University Hospital Düsseldorf, Heinrich Heine University, Düsseldorf, Düsseldorf, Germany

¹⁵ Institute for Biometrics and Epidemiology, German Diabetes Center, Leibniz Center for Diabetes Research at Heinrich Heine University, Düsseldorf, Germany.

¹⁶ Institute of Translational Proteomics, Department of Medicine, Philipps-Universität Marburg, Marburg, Germany

¹⁷ Profil Institut für Stoffwechselforschung GmbH, Hellersbergstraße 9, Neuss, Germany

¹⁸ Klinikum Rechts der Isar, TUM, TUM School of Medicine, Munich, Germany

¹⁹ Department of Physiology and Biophysics, Weill Cornell Medicine-Qatar, Doha, Qatar

²⁰ Department of Environmental Health, Harvard School of Public Health, Boston, USA.

²¹ These authors contributed equally

*Correspondence and requests for materials should be addressed to A.P. & R.W.-S. (E-mails: peters@helmholtz-muenchen.de; rui.wang-sattler@helmholtz-muenchen.de)

Abstract

Precision medicine relies on molecular signatures informing the assessment of individual disease risks, the identification of sub-clinical diseases, and the initiation of personalized prevention and treatment measures. Multi-omics signatures enable a detailed molecular and physiological profiling of an individual's health and disease. Chronic kidney disease (CKD) is a multifactorial condition involving complex pathogenetic processes. We used the longitudinal population-based KORA cohort for a five-level multi-omics (genotyping, DNA methylation, transcriptomics, proteomics, and metabolomics) and clinical assessment of risk signatures prognosticating CKD, thereby covering a 13-year follow-up of individuals. Multi-omics analysis identified 120 candidate biomarkers of CKD in hyperglycemia, of which 64 were replicated and 11 were potentially novel. Our constructed genome-wide polygenic score (GPS) of the estimated glomerular filtration rate (eGFR) showed a strong association with eGFR in the KORA and UK biobank cohorts. Integrating evidence from the association of various omics signatures with eGFR and urinary albumin to creatinine ratio (UACR) phenotypes, genetic analyses (Mendelian Randomization and GPS), and hypothesized pathogenetic traits underlying diabetes-related CKD, we classified 64 replicated candidates into subgroups and connected them to kidney traits to provide insight into their possible roles in personalized management of hyperglycemia-related CKD.

By investigating the interplay between multi-omics markers in hyperglycemia, e.g. by causal mediation analysis, we unraveled novel regulatory interactions between molecular pathways and kidney pathogenetic traits. Moreover, GPS, candidate proteins, and metabolites can improve the prognosis of future CKD in individuals with hyperglycemia. We identified three potentially novel

proteins that classify CKD patients with hyperglycemia into three subgroups more effectively than eGFR and UACR, confirming that distinct pathogenetic traits are predominant in different subgroups of CKD patients, which opens the possibility for personalized prevention and treatment measures targeting distinct molecular pathways towards clinically overt CKD. Altogether, our study presents a systematic multi-omics landscape of CKD in hyperglycemia and demonstrates how to integrate multi-omics profiles for applications to precision medicine.

Keywords

Multi-omics; chronic kidney disease; diabetic kidney disease; prediabetes, type 2 diabetes; causality; Mendelian Randomization; genome-wide polygenic score; precision medicine; prediction.

Introduction

Multi-omics and computational methods show a high potential to improve precision medicine. By combining multi-omics profiling and clinical assessment of a large longitudinal cohort, one can assess individuals' health status comprehensively, identify deviations from baseline and follow the progression of illness, reveal differences between disease cases and healthy controls, and explore the underlying pathophysiological mechanism and pathway, all of which may improve the precision of disease detection and treatment. Despite this promise, few studies have used emerging technologies such as multi-omics profiling in prospective population-based cohorts to identify prognostic disease markers and improve disease management. Commonly, a multi-omics approach is claimed when using up to two levels of omics analysis ¹. While a longitudinal follow-up study reported it used deep multi-omics profiling, the employed sample size (109 individuals) remained limited ².

Chronic kidney disease (CKD) affects approximately 9.1% of the global population ³. Diabetes accounts for 30–50% of all CKD cases ⁴, and undiagnosed diabetes and prediabetes have been associated with a high prevalence of CKD in various populations ^{5,6}. We have explored targeted metabolite profiles of CKD in people with pre-diabetes and type 2 diabetes (T2D) and identified two candidate metabolite biomarkers of incident CKD and a set of predictors ^{7,8}. Early detection of sub-clinical CKD would contribute to improving CKD prevention, care and management, thus reducing morbidity, mortality, and healthcare costs.

CKD is a multifactorial condition driven by diverse and highly networked pathological processes. It is therefore critical to investigate the specific roles of molecular hallmarks of diabetes-related CKD by means of multi-omics analyses. Due to the complex pathogenetic traits of CKD, identifying sensitive and specific biomarkers that reflect its pathogenetic diversity can improve understanding of the disease and possibly prevent or treat it more precisely at earlier stages. A number of studies have identified omics signatures at a single omics level, and few have examined the underlying interactions between these omics signatures at multiple levels. Exploring the correlations between multi-level omics signatures is necessary to better understand the diversity of individual pathogenetic traits underlying the complex molecular regulation of CKD.

Currently, most proposed biomarkers are based on observational data. To determine the "true" relationship and directionality between such omics profiles and clinical traits, two-sample Mendelian Randomization (2SMR) is a valid approach. The genome-wide polygenic score (GPS) can identify individuals at high genetic risk and signatures at other omics levels that reflect the translation of genetic information into phenotypes. Out of a large number of omics molecules, those that show dominance in the prediction of early CKD when added to currently proposed predictors remain unknown. Also, it is essential to investigate ways to maximize the utility of multi-omics molecular profiles to improve CKD early detection. Moreover, the ability of omics molecules to subtype hyperglycemia-related CKD and the unique patterns in each subgroup need to be explored to benefit for targeted prevention and therapy.

In the present study, individuals from the population-based adult KORA (Cooperative Health Research in Augsburg) cohort have been longitudinally profiled using clinical laboratory tests and multi-omics assessments⁹. The study had three objectives (Extended Data Fig.1). We first sought to identify subgroups of omics signatures we identified and replicated for hyperglycemia-related CKD based on various evidence that included omics signatures-associated phenotypes (i.e., eGFR and urinary albumin to creatinine ratio (UACR)), genetic evidence (i.e., MR and GPS), and knowledge on potential pathophysiologies of diabetes-related CKD. We further suggest potentially novel candidate biomarkers of CKD in hyperglycemia. Second, we examined the potential interplay among multi-omics molecules (i.e., candidates and established biomarkers) of CKD in hyperglycemia to explore the directionality of nephrogenic effects in the connected molecular pathways, potential new causal links, and relevant molecular traits. Third, we explored the prediction of incident CKD and subtyping CKD patients in hyperglycemia using multi-omics profiles. For the prediction part, we proposed cut-off omics levels, the dominant predictive molecules on top of current suggested predictors and highlighted the GPS we built and replicated.

Along with shedding new light on the mechanisms of CKD, our study presents a complex multiomics landscape for the disease in hyperglycemia and provides deep insight into the effective integration of multi-omics profiles for personalized disease management.

Fig. 1

Results

Identification and replication of multi-omics signatures of CKD associated with kidney traits in hyperglycemia

In a total of 1,401 individuals with prediabetes and T2D, the KORA F4 study contains 166, 206, 59, and 282 CKD cases, for which quality control (QC)-passed epigenomic, transcriptomic, proteomic, and metabolomic-data are available, respectively. Compared with non-CKD individuals, CKD cases were significantly older and displayed higher values of BMI, HbA_{1C}, FG, UACR (current F4 and follow-up FF4), as well as lower eGFR values (Supplementary Table 1). They also self-reported significantly higher anti-hypertensive and anti-diabetic mediation.

From these hyperglycemic subcohorts, we identified 120 CKD-associated candidates (20 CpG sites, 20 RNAs, 63 proteins and 17 metabolites) using epigenome-, transcriptome-, proteome-, and metabolome-wide association studies (EWAS, TWAS, PWAS, MWAS), respectively (Figs. 1a-1d, Supplementary Tables 2-5). These associations were independent of age, sex, body mass index (BMI), systolic blood pressure (BP), smoking status, triglycerides, total cholesterol, high-density lipoprotein (HDL) cholesterol, fasting glucose (FG), use of lipid-lowering, antihypertensive and anti-diabetic medication (defined as full model). The strongest significant CKD-associated CpG site was cg22872478 (*LYSMD2*), while the top two significant RNAs were gene expression *TFE3* (ILMN_1764826) and *SLC22A4* (ILMN_1685057). In the proteomic data, CST3 and EGFR were the most significant positive and negative molecules associated with CKD, respectively. Of the identified 17 metabolites, 14 were acylcarnitines, with Tyr being the most significant negative metabolite.

Of the 120 candidate biomarkers, 114 molecules interacted with hyperglycemia, while two metabolites (C14:1-OH and C16) and four proteins (CST3, FSTL3, CTSH and RELT) were also significantly associated (FDR < 0.05) with CKD in individuals with normal glucose tolerance (NGT) of KORA F4 (Supplementary Table 6). To explore potential networks underpinning these 120 candidate biomarkers, we subjected them to CIDeR-based multifactorial interaction network analyses ¹⁰. We further found that 87 of 120 candidates or their corresponding genes/proteins were functionally involved in eight T2D-related CKD (T2DCKD) subnetworks: Tyr in diabetic kidney disease (DKD) (T2DCKDtyr), mitochondrial dysfunction (T2DCKDmito), innate immune response in DKD (T2DCKDinna), adipokine influence on DKD (T2DCKDadipo), reninangiotensin system (RAS) dysfunction in DKD (T2DCKDras), extracellular matrix deposition and renal fibrosis (T2DCKDfibri), advanced glycation end-products (T2DCKDage) and angiogenesis (T2DCKDangi) (Extended Data Fig. 2, Supplementary Figs. 1-7, Supplementary Tables 7-14).

Aiming to replicate our findings in additional studies exhibiting omics-data with CKD, we achieved replication for two CpGs, two RNAs in the KORA F3 study, 46 proteins in the Qatar Biobank (QBB)¹¹ or the Qatar Metabolomics Study on Diabetes (QMDiab) studies, as well as 14 metabolites in the KORA F3 or FF4 studies (Supplementary Tables 2-5). Taken together, 64 candidates were replicated.

Merging the 64 replicated candidates and 87 molecules involved in eight T2DCKD subnetworks resulted in a set of 97 (i.e. 7 CpGs, 14 RNAs, 62 proteins and 14 metabolites, Fig. 1e, Supplementary Table 15) that were considered as the extended replicated set. It comprises two groups: group 1 with 56 candidates overall negatively associated with eGFR, positively associated with UACR and CKD in hyperglycemia, and group 2 with 41 candidates inversely associated (Fig. 1f). For instance, proteins CST3 and EGFR were the top candidates and representative omics molecules in group 1 and 2, respectively. Protein CST3 showed the strongest negative associations with eGFR values F4 and FF4, while protein EGFR achieved the largest positive regression coefficients. Notably, only protein EGFR was associated with F4 and FF4 eGFR and UACR in hyperglycemia after FDR correction (Extended Data Fig. 3a). Moreover, four proteins (GHR, EGFR, CST3 and B2M) and three metabolites (C12, C14:1 and C18:1) associated with incident CKD in hyperglycemia when using the fully adjusted model and accounting for multiple testing (Extended Data Fig. 3b, Supplementary Table 15).

Fig. 2

a Different levels of multi-omics integration network (DMOIN)

Integration of four-level omics molecules in hyperglycemia to explore potential interplay across distinct omics levels

Multi-omics integration network (MOIN). Generating an optimal Gaussian Graphical Modeling (GGM) with 101 molecules from four omics levels revealed a potential crosstalk beyond analyte classes (Supplementary Table 16). Intra-omics were found to be more highly associated than interomics connections (Extended Data Fig. 4). To investigate inter-omics associations, the edges of the integrated network from different analyte classes were used to construct different levels of MOIN (DMOIN), from which ten sub-clusters emerged using the Markov Cluster Algorithm (MCL) (Fig. 2a), with the largest cluster (cluster 1, 31 nodes) primarily representing subnetworks related to T2DCKDinna and -mito. Cluster 1 included three well-known biomarkers as cluster hubs, with protein B2M displaying the strongest positive correlation with CST3. Furthermore, six (C10:2, C12, C5, C14:2, C14:1-OH and C6) of the eight acylcarnitines preserved in the network exhibited positive linkages to CST3 or creatinine, while C16 and C12 had negative linkages to protein EGFR, which itself was negatively related to urine albumin and CST3. The second largest cluster (cluster 2) had eight nodes. One of the cores, SLC22A4, functioning as a transporter for acylcarnitines ¹² and ergothioneine ¹³, was negatively associated with IL19, SPINT1 and NOTCH1, and positively associated with urine albumin, IGFBP2, and TNFRSF1A. Notably, the T2DCKDmito subnetwork included SLC22A4 and its four associated omics candidates (IL19, RPS6KA5, NOTCH1, and IGFBP2). Subnetwork T2DCKDtyr regulation was placed into the third largest cluster (cluster 3), including five of the network's seven nodes. Tyr correlated positively with PLAT and ACY1, and negatively with IGFBP2. Tyr's role in the DMOIN network appears distinct from the majority of acylcarnitines, which agreed that they belonged to two distinct clusters based on associations with eGFR and UACR values in hyperglycemia (Fig. 1f).

Candidate proteins and three known biomarkers identified as main mediators connecting omics signatures and kidney traits in hyperglycemia. To identify mediators among different levels of molecules and three time-point (S4 / F4 / FF4) kidney traits (CKD, eGFR and UACR), as well as reveal the optimal mediation directions, we performed causal mediation analysis in three parts (Supplementary Fig. 8). When analyzing part 1 (candidate & candidate & kidney trait, see "Online method"), 640 out of 994 tested mediating triangles were eligible mediating results when kidney trait was used as independent variable (X) or outcome (Y) (Fig. 2b, Extended Data Fig. 5a). Of these 640, 82 were found to be the only best direction (best only1) for the triangles they derived from, and 30 were observed with two possible best directions (best has2) for the corresponding triangles. We further found that 77 of 82 (94%) candidate proteins acted as mediators between candidates (particularly metabolites) and kidney traits (e.g., metabolite \rightarrow protein \rightarrow kidney trait, Fig. 2b, Extended Data Fig. 5a, Supplementary Table 17).

For the part 2 (candidate & known biomarkers & kidney trait) analysis, 165 FDR significant molecule pairs between the three known biomarkers and 96 candidates were found, with 72 candidates linked to CST3, 58 to creatinine, and 35 to urine albumin. Of 2,354 tested mediating triangles, 1,534 eligible mediating results were found when the kidney trait was used as X or Y, 191 and 148 of which were found as the best only1 and best has2 for the triangles they derived from, respectively. When one of three known biomarkers acted as a mediator (candidate \rightarrow known

biomarkers \rightarrow kidney trait, and kidney trait \rightarrow known biomarkers \rightarrow candidate), a majority (187 of 191) represented best directions (Fig. 2b, Extended Data Fig. 5b, Supplementary Table 18). Additionally, in the part 3 (2-mets & kidney traits) analysis, SM C18:1 \rightarrow creatinine \rightarrow follow-up eGFRcr (eGFR was calculated from serum creatinine FF4) values and PC aa C38:0 \rightarrow CTSH \rightarrow follow-up eGFRcr were found as the best direction in the corresponding triangles (Supplementary Table 19).

Moreover, for candidate \rightarrow kidney trait \rightarrow candidate, only the kidney trait eGFR were kept after structural equation modeling (SEM)¹⁴ and contained best mediation directions (Extended Data Fig. 5c). The best directions were found for known biomarkers \rightarrow CKD \rightarrow candidate, as well as candidate \rightarrow eGFR / UACR \rightarrow known biomarkers, respectively (Extended Data Fig. 5d).

Taken together, the causal mediation analysis identified 565 best mediation directions, pointing to a complex omics network of regulatory interactions between different levels of molecules and kidney traits. When the kidney trait was served as an X or Y in mediating triangles, the results showed that our candidate proteins and three known biomarkers were major mediators in connecting other omics candidates to kidney traits in both directions.

Directed mediating multi-omics networks reveal potential causal links and relevant molecular pathways. To increase the possibility of identifying potential causal links and relevant molecular pathways, we mapped our DMOIN with the best mediation directions' results from the causal mediation analyses to generate a directed mediating MOIN (DMMOINs) (Fig. 2c, Extended Data Fig.6, Supplementary Table 20). When CKD was identified as potentially causal X in the mediating triangles, the directed network had 25 nodes and 30 edges with CST3 as the center, followed by creatinine. CST3 served as a mediator to connect 13 molecules and CKD. Interestingly, CST3-B2M, CST3-C1QBP, CST3-CTSH and CST3-NBL1 presented both directions (Extended Data Fig. 6a). When CKD was identified as outcome Y in the mediating triangles, CST3 also represented as the center of the directed network (22 nodes and 22 edges) and served as a mediator to connect 10 molecules and CKD, such as EGFR \rightarrow CST3 \rightarrow CKD. We further found that there were 27 and 39 edges in the directed networks when eGFR was served as X or Y in the mediating triangles, respectively (Fig. 2c, Extended Data Fig. 6b). We observed unique mediation directions such as eGFR \rightarrow EGFR \rightarrow C16 (Extended Data Fig. 6b), C16 \rightarrow EGFR \rightarrow eGFR and PC as C38:0 \rightarrow CTSH \rightarrow eGFR (Fig. 2c). Moreover, connections between C10:2 or C5 and CKD or eGFR were linked by CST3 and creatinine (Extended Data Figs. 6a, 6b). Interestingly, three proteins (EGFR, GHR and IGFBP2) mediated effects of UACR (as X) to metabolite C18:1, while urine albumin was the key hub connecting five molecules and UACR (as Y). DMMOINs were also generated when eGFR or UACR were served as mediators, but not for CKD (Extended Data Fig. 6).

Overall, the directed networks revealed potential causality (see "discussion") in connections between molecule pairs and their associated kidney traits.

Identifying the high genetic risk population for CKD and elucidating the role of omics signatures using GPS_{eGFR}

We built GPS for eGFR (GPS_{eGFR}) using reported effect size of SNPs from the CKDGen study with 567,460 European individuals (after first eliminating KORA F4 effects to avoid overfitting) in 2,757 KORA F4 individuals using 162,818 uncorrelated SNPs (LD $r^2 < 0.1$). We found that the GPS_{eGFR} strongly positively associated with eGFR values (P = 2.233E-81, Extended Data Fig. 7a)

in F4, and this association was successfully replicated in the UK biobank (UKBB) ($\beta = 2.541, P < 2E-16$, Fig. 3a) and testing samples of KORA S4 (non-overlapping individuals, P = 3.969E-40, Extended Data Fig. 7b). The GPS_{eGFR} showed normal distribution in F4 population and S4 testing samples, excepted for the tail part of GPS_{eGFR}, there was a trend toward an increase in eGFR values following an increase in GPS_{eGFR} values in the general (Extended Data Fig. 7a) and hyperglycemic population (Fig. 3b) of F4, and this trend was validated in S4 testing samples (Extended Data Fig. 7b).

We next analysed the associations between GPS_{eGFR} and eGFR values (current F4 and follow-up FF4), both prevalent and incident CKDcrcc (eGFR-based CKD) and CKD (eGFR- and UACR-based CKD) adjusted for the full model in hyperglycemia, respectively. We found that GPS_{eGFR} showed highly significant increase in eGFR values (*P*-value = 2.829E-44) and its follow-up (*P* = 6.270E-19), with an SD increase in GPS_{eGFR} associated with 4.96 and 4.47 increased values, respectively (Fig. 3c). GPS_{eGFR} showed highly significant negative association with CKDcrcc (*P* = 1.196E-08) and incident CKDcrcc (*P* = 1.211E-07), and the effects were consistent for both prevalent and incident CKD (Fig. 3c).

Of 64 replicated candidates of EWAS, TWAS, PWAS and MWAS, 13 proteins and five metabolites were significantly associated with GPS_{eGFR} in hyperglycemic individuals after adjustment for multiple testing (Fig. 3d, Supplementary Table 21). All 18 GPS_{eGFR} associated candidates were significantly associated with both current and follow-up eGFR values (Supplementary Table 15). The eGFR-candidate associations and the GPS_{eGFR}-candidate associations were all directionally concordant. Protein CST3 had the strongest significance with eGFR (P = 3.888E-80 for current, and P = 1.985E-49 for its follow-up) as well as GPS_{eGFR} (P = 2.533E-04). Moreover, of 18 GPS_{eGFR} associated candidates, proteins CST3 and B2M and metabolite C12 demonstrated significant associations with incident CKD in hyperglycemia adjusted for the full model (Extended Data Fig. 3b, Supplementary Table 15).

Interestingly, the relationship between GPS_{eGFR} and eGFR was not linear. Indeed, the effect was estimated to be much stronger at the distribution's extremes, which was replicated in the test samples of S4 (Extended Data Fig. 7b) and consistent with the previous report ¹⁵. The tail effect occurs when the ratio of the effect of the tails to the effect of the overall distribution is greater than one. Both in general and hyperglycemic population, individuals in the first decile of the GPS_{eGFR} distribution exhibited much lower eGFR values than those in other deciles (Fig. 3b, Extended Data Fig. 7), indicating that they were a potential high genetic predisposition subpopulation of developing reduced eGFR values.

To assess this tail effect for the 18 GPS_{eGFR} associated candidates, we stratified the hyperglycemic KORA F4 population according to GPS_{eGFR} deciles. We found a steeper slope for 15 candidate measures at the lower and/or upper extremes of the distribution (Fig. 3e, Supplementary Fig. 9). Additionally, GPS_{eGFR} had a greater than 5-fold effect on 12 candidates (TNFRSF1A, FSTL3, ADAMTS13, RETN, B2M, ERP29, JAM2, NBL1, SPOCK2, C8, C10 and C12) in the 5% tail of the population compared to the full data (Fig. 3f, Supplementary Fig. 10, Supplementary Table

23). Therefore, we observed 11 candidates (TNFRSF1A, FSTL3, ADAMTS13, C8, RETN, B2M, ERP29, JAM2, C10, SPOCK2 and C12) exhibiting strong tail effects with GPS_{eGFR}, not only by presenting a steeper slope regarding eGFR at the extremes of the distribution of GPS_{eGFR}, but also by showing strong tail effects for the associations with GPS_{eGFR}. It demonstrated that extreme GPS_{eGFR} may strongly influence these 11 candidates' levels in hyperglycemia (Figs. 3e-f, Supplementary Figs. 9-10).

With the generated GPS_{eGFR} as potentially causal X, we performed mediation analyses to examine potential mediation effect of kidney traits with 18 identified GPS_{eGFR}-associated candidates. Using eGFR and CKD from three time points (S4 / F4 / FF4), the mediation results indicated that 11 candidates (protein TNFRSF1A, SPOCK2, IGFBP6, NBL1, JAM2, ERP29, RETN, ADAMTS13, SCARF1, metabolite C10:2 and C12) showed both directions for eGFR (e.g., GPS_{eGFR} \rightarrow eGFR S4 \rightarrow TNFRSF1A and GPS_{eGFR} \rightarrow TNFRSF1A \rightarrow eGFR F4/FF4). The value of eGFR S4 mediated 98.57% effect between GPS_{eGFR} and TNFRSF1A. Five candidates (CST3, B2M, RELT, FSTL3 and C14:1-OH) were identified as mediators for eGFR F4 / FF4. Two metabolites (C10 and C8) were found as outcomes for eGFR S4 / F4. Regarding CKD, six candidates (RELT, SPOCK2, FSTL3, ERP29, SCARF1, C12, C10, C8 and C14:1-OH) were identified as mediators for CKD F4/FF4. Strikingly, none of the 18 candidates had significant mediation effects when CKD F4 was used as a mediator, whereas 10 candidates significantly mediated by eGFR F4 (Fig. 3g, Supplementary Table 22).

Potential causal associations between circulating proteins / metabolites and kidney traits

Elucidating causal disease pathways can contribute to develop reliable treatment strategies. We performed a bidirectional 2SMR analysis ¹⁶ to identify proteins and metabolites that may play a causal role in the development of kidney traits and reverse, respectively (Fig. 4, Supplementary Tables 24-26).

Of 46 proteins and 14 metabolites that were successfully validated in QBB / QMDiab and in KORA F3 / FF4 study, respectively, we identified suitable genetic instruments for 44 proteins and 13 metabolites (Supplementary Tables 24, 26). Our robust adjusted profile score (RAPS) analysis revealed significant (FDR < 0.05) associations of three candidates (protein SOD2 and metabolites Tyr and C8:1) to CKD, nine candidates to eGFR, and six metabolites to UACR (Fig. 4). Among the candidates with significant MR estimates, eight (IGFBP6, ESAM, EPHA2, Tyr, C8:1, C5, C18:1, and C14:2) for eGFR and five (C5, C2, C18:1, C14:2, and C12) for UACR showed significant evidence of heterogeneity and/or horizontal pleiotropy. We further used outliers-corrected MR analyses to control heterogeneity and horizontal pleiotropy in these MR estimates. Accordingly, four (Tyr, C8:1, C5 and C14:2) out of eight for eGFR values, two (C5 and C14:2) of five for UACR values consistently reached FDR significance with outliers-corrected IVW/Wald ratio or MR_PRESSO outliers-corrected using the SNPs after removing outliers, respectively.

Additionally, ERBB3-to-UACR and C10:2-to-eGFR reached FDR significance with outlier-corrected Wald ratio.

In the case of protein to kidney trait, a second set of genetic instruments summarized by Zheng *et al* ¹⁷ was available and 23 of 46 proteins had available MR estimates for either CKD, eGFR, or UACR (Supplementary Table 25). We found that five of 23 proteins (CGA;LHB, PLAT, ADAMTS13, SCARF1 and IGF2R) were nominally significant using the first set, their causal estimates were all directionally consistent using the second set. With the second set of instruments, seven proteins (ESAM, CGA;LHB, CTSH, PLAT, HAVCR2, PLG and B2M) were associated (P < 0.05) with at least one kidney trait, all except ESAM were estimated consistently with the first set. Moreover, CGA;LHB and PLAT were significant in the first set. Additionally, the second set revealed that proteins B2M and PLG had FDR associations (B2M-to-CKD, B2M-to-eGFR, B2M-to-UACR, and PLG-to-eGFR). The first set had no available instruments for B2M but yielded a consistent causal estimate that was not significant for PLG-to-eGFR.

In summary, the associations of four candidates (SOD2, B2M, Tyr, and C8:1)-to-CKD, seven candidates (SOD2, B2M, Tyr, C8:1, C5, C14:2, and C10:2)-to-eGFR, and five candidates (B2M, ERBB3, C8:1, C5, and C14:2)-to-UACR were suggested to be affected by genetic predisposition.

We next investigated the reverse direction, i.e., whether a genetic predisposition to kidney traits affects blood protein and/or metabolite levels. We identified suitable genetic instruments of kidney traits on 46 proteins and 11 metabolites. The 2SMR analyses indicated a significant (RAPS, FDR < 0.05) effect of CKD on three proteins (TNFRSF1A, SPOCK2 and MMP1); of eGFR on 14 candidates (10 proteins and four metabolites); of UACR on protein MMP1, respectively (Fig. 4, Supplementary Table 24, 26). Of which, CKD/eGFR-to-SPOCK2, UACR-to-MMP1 showed significant evidence of heterogeneity or horizontal pleiotropy of the genetic instruments. The corresponding outliers-corrected MR analyses indicated that CKD-to-SPOCK2 and eGFR-to-SPOCK2 consistently reached FDR significance. Additionally, IL19-to-eGFR reached FDR significance with outlier-corrected IVW. In summary, three proteins (TNFRSF1A, SPOCK2 and MMP1) were identified as being influenced by genetic predisposition from CKD, 15 candidates including 11 proteins (UNC5C, TNFRSF1B, TNFRSF1A, TNFRSF119, SPOCK2, RETN, RELT, IGFBP6, FSTL3, CTSH and IL19) and four metabolites (C8:1, C2, C14:2 and C10:2) were from eGFR.

We further compared 2SMR (RAPS and outliers-corrected analyses when required) and observational estimates from KORA for all proteins and metabolites that were indicated as presenting genetic predisposition on kidney traits in either direction. Our causal estimates for all three CKD-to-protein, 15 eGFR-to-protein/metabolite were directionally consistent with corresponding observational estimates for prevalent CKD and current eGFR values, respectively, supporting that these candidates' levels may be altered downstream of the kidney trait or its heritability (Fig. 4, Supplementary Table 24, 26).

For three (B2M, Tyr, and C8:1) of the four candidates to CKD causal estimates, the same was true as for the observed estimates of incident CKD. Consistent estimates between causal and follow-up estimates were also found for three (B2M, Tyr, and C8:1) of seven candidates to eGFR, and four (B2M, ERBB3, C8:1 and C14:2) of five candidates to UACR, respectively. However, the follow-up estimates for SOD2-to-CKD/eGFR, C14:2-to-eGFR and C10:2-to-eGFR were inconsistent with their causal estimates and instead all directionally consistent with their

CKD/eGFR to candidate causal estimates (Fig. 4, Supplementary Tables 24-26), two of which (eGFR-to-C14:2 and eGFR-to-C10:2) were statistically significant (FDR < 0.05).

Taken together, after these steps to reduce false-positive findings, we discovered that three candidate biomarkers (B2M, Tyr and C8:1) were potentially causal for developing CKD, while CKD may have a causal effect on three proteins (TNFRSF1A, SPOCK2, and MMP1). The three candidates (B2M, Tyr and C8:1) were potentially causal on eGFR values, while a reverse direction was observed on 15 candidate biomarkers (11 proteins: UNC5C, TNFRSF1B, TNFRSF1A, TNFRSF119, SPOCK2, RETN, RELT, IGFBP6, FSTL3, CTSH, IL19 and four metabolites: C8:1, C2, C14:2, and C10:2), with C8:1 presenting in both directions (C8:1-to-eGFR and eGFR-to-C8:1). Two proteins (B2M and ERBB3) and two metabolites (C8:1 and C14:2) may have a potentially causal role on UACR values.

Five-level multi-omics prediction in hyperglycemia to reveal the optimal cut-off omics levels and dominant molecules

We next investigated the prediction of incident CKD in 751 hyperglycemic individuals of KORA F4 using multi-omics (e.g., GPS_{eGFR} , 62 proteins, 14 metabolites, 7 CpGs and 14 RNAs) to explore cut-off omics levels, and propose the dominant predictive molecules on top of current suggested predictors (i.e., four distinct sets of reference predictors)^{7,18}.

Overall, we found that GPS_{eGFR} , candidate proteins and metabolites improved predictive performance with increasing mean area under the receiver operating characteristic curve (AUC) values in testing data compared to ref sets (i.e., ref₁, ref₂ and ref₃, Fig. 5, Supplementary Table 27). The mean AUC value increased when adding more omics levels except for candidate CpGs and RNAs. For example, in the four levels (combination of ref_GPS_{eGFR}_Proteins_Metabolites) analysis for ref₃ (i.e., sex, age, eGFR and UACR), adding GPS_{eGFR}, 10mics and 20mics to ref₃ increased the mean AUC value from 0.729 to 0.760, 0.769 and 0.781, respectively. In the five levels analysis (i.e., combination of ref_GPS_{eGFR}_Proteins_Metabolites), mean AUC value of five levels' omics compared to four levels' omics, a slight improvement was observed for ref₁, but decrease were detected for ref₂, ref₃ and ref₄, respectively (Fig. 5b). a Prediction of incident CKD in hyperglycemia of ref1 (age, sex) with addition of either GPS or one omics

b Prediction of incident CKD in hyperglycemia with multiple levels of omics

50

100

Percentage of selecting as top 5 dominant features (%)

25

Additionally, we observed that sample size was a strong influence factor for the predictive performance (Fig. 5, Supplementary Table 27). One of the potential reasons could be the built predictive models may have become less stable with a smaller sample size. For example, in the combination of ref3_GPSeGFR_Proteins / Metabolites analyses, mean AUC values were 0.731, 0.765, 0.778 for ref₃, ref₃ + GPS_{eGFR} and ref₃ + GPS_{eGFR} + Proteins in the mean sample size of 418 as training and 155 as testing samples, whereas mean AUC values were 0.802, 0.822, 0.824 for ref_3 , $ref_3 + GPS_{eGFR}$ and $ref_3 + GPS_{eGFR} + Metabolites$ in the mean sample size of 680 (training sample) and 251 (testing samples).

Moreover, the top five selected predictors using the priority-Lasso for each combination from two to five omics levels and each reference set (from ref₁ to ref₄, Supplementary Table 28) were presented. For both ref₁ and ref₂, proteins CST3 and EGFR were 100% selected as the top five features in the defined combinations (see "Online Method") and identified as the dominant molecules for prediction (Fig. 5c). For both ref₃ and ref₄ by including baseline eGFR and UACR values in the reference sets, CST3 and EGFR were no longer the most frequently selected features as eGFR and UACR values represent their main information. In this case, protein GHR, metabolite C5 and PC aa C38:0 were consistently selected as the top five features (Fig. 5c). Compared to our DMMOINs results (Fig. 2), the effects of GHR / PC aa C38:0 on incident CKD may not be directly mediated by CST3, creatinine, or urine albumin, which further supported their predictive effects for incident CKD were independent of baseline eGFR and UACR values.

Additionally, our built GPS_{eGFR} improved predictive performance for incident CKD in hyperglycemia on top of all four reference sets. The improvement was most noticeable for incident CKDcrcc (Fig. 5d, Supplementary Table 29), e.g., the median AUC increased by 5.9%, 3.4%, 1.9% and 1.7% when GPS_{eGFR} was added to the four sets of references, respectively. This further proved our GPS_{eGFR} contained a large amount of eGFR information.

Subgroup of CKD patients in hyperglycemia using three potential novel biomarkers

We classified CKD patients with hyperglycemia using various combinations of biomarkers and candidates (Supplementary Fig.11, Supplementary Table 30) and identified three distinct groups of CKD patients by using three potential novel proteins (i.e., NBL1, EFNA5, and JAM2) (Fig. 6a). From group 1 (g1) to g3, median levels for all three proteins consistently got higher, while eGFR and natural log-transformed UACR median levels got lower, whereas g3 CKD patients had higher median uric acid levels than g1 and g2 (Fig. 6b).

Additionally, the levels of other four clinical variables and 28 candidate biomarkers varied significantly among the three groups (Supplementary Fig.12, Supplementary Table 31). From g1 to g3, the percentage of CKD defined by eGFR and the use of antihypertensive therapy got higher, while the percentage of CKD defined by UACR got lower (Fig. 6c, Supplementary Table 32). Eight, two, and ten candidates were identified as dominant molecules for g1, g2, and g3 (Fig. 6d), respectively, with T2DCKDinna being the top likely involved pathological process for g1 and g3, and T2DCKDras, -angi, and -adipo being the top likely involved pathological processes for g2 (Fig. 6e). One of the key processes for g2's dominant candidates was T2DCKDras, which may explain why the percentage of g2's patients taking angiotensin receptor blockers (ARBs) or angiotensin-converting enzyme inhibitors (ACEIs) was lowest among three groups, but the percentage of eGFR decline > 30% and UACR increase > 30% were also lowest in g2, implying

that g2 CKD patients could be more sensitive to anti-RAS treatment. The reasons for the highest percentage of eGFR declines > 30% and UACR increases > 30%, and the lowest baseline UACR levels in g3 CKD patients may include the following: 1) the lowest average baseline eGFR values; 2) these patients followed the classical developing model of DKD, with mild proteinuria at the onset and then increasing proteinuria and progression of GFR decline; and 3) the predominant pathological processes in these patients were not RAS, resulting in severe CKD progression despite a high rate of anti-RAS treatment. The current mainstay of CKD therapy is RAS blockade with ARBs and/or ACEIs, which decreases glomerular hyperfiltration and albuminuria and retards the decline in kidney function ¹⁹. However, not all patients with CKD or DKD respond to RAS blockade ¹⁹. The distinct dominant pathological processes observed in three subgroups of CKD patients corroborated this phenomenon and suggested that therapeutic targets focusing on T2DCKDinna, -angi, -mito, and -tyr processes in g1 patients, -ras, -angi, and -adipo processes in g2 patients, and -inna, -angi, and -fibri processes in g3 patients, may have beneficial effects. Our findings shed new light on the subtyping of hyperglycemia-related CKD using omics molecules and demonstrated the distinct characteristics of these subgroups. Furthermore, the three potentially novel proteins have the potential to subgroup CKD patients even more effectively than eGFR and UACR.

JAM2

ģ2 g3

Fig. 6

a Subgroup of patients with 3 identified candidates

2

1.5

0.5

-0.5

-1

1

0

EFNA5

gŻ

ġ3

g1

Discussion

Our study identified 120 multi-omics candidate biomarkers prognosticating CKD in hyperglycemia, 87 were found to be involved in T2D-related CKD networks and 64 have been replicated. All 64 were associated with eGFR or UACR values (current or follow-up), with 57 of them predicting follow-up eGFR or UACR values in hyperglycemia significantly. Previously, 53 of these 64 candidates were reported to be associated with CKD or related kidney traits. However, published studies may report effect size estimates for candidates in a different direction compared with those in KORA and our replication studies. For instance, IL19 was found to be decreased in KORA and two independent studies' CKD patients while it was reported to be increased in DKD patients ²⁰. Additionally, 11 of 64 may represent novel omics markers prognosticating CKD in pre-or T2D individuals, with the protein JAM2, NBL1, and SCARF1 being associated with our GPS_{eGFR}. As a result, our data not only confirmed previously established associations, but also revealed novel candidates.

Eight maps of T2DCKD depicting the pathological mechanism. Although many studies have identified potential CKD biomarkers, their roles in underlying pathological processes of T2DCKD have not been thoroughly studied. Our eight T2DCKD subnetworks, which included 87 identified candidate biomarkers of CKD, illustrated the complex interwoven network of pathways involved in hyperglycemia-related CKD. Each process in DKD pathogenesis can affect multiple phenotypes and/or other processes, and many candidate genes/proteins are represented in multiple subnetworks.

The T2DCKDtyr subnetwork presented how Tyr and its metabolism were involved in DKD development/progression and extracellular matrix (ECM) deposition. DKD is characterized by dysregulation of ECM proteins ²¹. Tyr may increase Triiodothyronine, which inhibits ECM deposition. We observed that CKD patients had lower concentration of Tyr compared to non-CKD individuals in hyperglycemia, and lower levels of Triiodothyronine could be expected and consequently, lead to deposition of ECM in CKD patients. Moreover, lower levels of Tyr could yield in lower Dopamine levels, which could result in lower glomerular filtration, higher albuminuria, and higher risk of DKD among others (Extended Data Fig. 2).

The subnetwork T2DCKDmito involved 35 candidate biomarkers. Anomalies in serum lipids and ectopic lipid accumulation in the kidney due to mitochondrial dysfunction are associated with the development of kidney diseases ²². Incomplete fatty acid beta-oxidation results in acylcarnitine accumulation in CKD patients, indicating mitochondrial dysfunction ²³. We found 13 replicated acylcarnitines all showed increased levels in CKD patients, confirming this observation. T2DCKDmito involved C16 and C12 due to the possibility that incomplete fatty acid beta-oxidation could increase their levels, with C16 possibly increasing *PTGS2* gene expression. *PTGS2* may boost the inflammatory response (Supplementary Fig. 1).

The T2DCKDadipo (Supplementary Fig. 3) included three adipokines (ADIPOQ, RETN, and FSTL3) and one leptin receptor (LEPR) from our candidate proteins. Adipose tissue and

adipokines have been linked to kidney disease more than other biological components ²⁴. Circulatory adiponectin levels can slow CKD progression in CKD patients ²⁴. Serum levels of protein RETN are increased in CKD patients²⁴, and FSTL3 is involved in dyslipidemia and the inflammatory response ²⁵. These studies support our findings that CKD patients had significantly higher levels of all three adipokines than non-CKD individuals.

T2DCKDage used seven candidates (C2, CGA;LHB, FN1, B2M, AMH, MMP1, and HVCR2). Evidence supports that inhibiting advanced glycation can slow the progression of experimental DKD ²⁶. T2DCKDras had 22 candidates. The intrarenal RAS is implicated in regulating glomerular hemodynamics, and glomerular hypertrophy and sclerosis. Angiotensin II type 1 receptor antagonists and angiotensin converting enzyme inhibitors have been shown to slow DKD progression in patients with type 1 diabetes or T2D ²⁶.

T2DCKDfibri's subnetwork contained 29 candidates. Hyperglycemia accelerates the deposition of ECM proteins in DKD ²¹. Deposition of ECM thickens glomerular and tubular basement membranes, whereas increased mesangial matrix causes glomerular sclerosis and tubulointerstitial fibrosis ²⁷. The largest subnetwork, T2DCKDinna, included 40 identified candidate biomarkers. Activation of innate immunity contributes to kidney inflammation in DKD. Several studies suggest an association between the progression of DKD and pro-inflammatory pathways, including the NLRP3 inflammasome, TLR signaling, and the complement system ²⁸. T2DCKDangi had 32 candidates. Abnormal angiogenesis is a well-defined complication of DKD ²⁹. Angiogenesis is primarily induced by hypoxia and oxidative stress in the kidney via upregulation of VEGFA to counteract hypoxia ³⁰.

Ascertain the function of 11 potential novel candidates. The eight T2DCKD networks show potential to infer the relevant DKD pathways for the potential novel candidates of CKD (Extended Data Fig. 8). Nine of 11 (*LYSMD2*, *NAPA*, *TFE3*, NBL1, CTSV, CLEC4M, IGF2R, RET, JAM2, SCARF1, and EFNA5) are included in the T2DCKD networks. For example, T2DCKDmito (Supplementary Fig. 1) involved three candidates (EFNA5, IGF2R, and *NAPA*). Silencing EFNA5 may increase *BCL2* expression ³¹, which has been shown to inhibit apoptosis ³². Our data showed elevated EFNA5 levels in CKD patients. IGF2R regulates CD36 activity ³³, facilitating long-chain fatty acid transport and tubular toxicity ²². We observed CpG site (cg23314866) that was negatively associated with CKD, annotating to gene *NAPA*. The function of *NAPA* was reported to reduce AMPK activity and affect mitochondrion organization ³⁴. Dysregulated AMPK was observed in the kidney of DKD patients ³⁵. That may explain why our study observed a negative link between *NAPA* (cg23314866) methylation and CKD in hyperglycemia.

Genetic drivers. It is important to note that our studies used GPS_{eGFR} and 2SMR as genetic drivers to elucidate the role of CKD-associated omics molecules to kidney traits (CKD, eGFR, and UACR) to extend observational associations to causality.

GPS. With the effect sizes of SNPs for eGFR values from the largest consortium of GWAS studies of European ancestors, we built a GPS for eGFR and validated it externally in the UKBB and

internally in the KORA S4 testing samples. All three studies observed a strong correlation between GPS_{eGFR} and eGFR, indicating that our findings are most likely true positives. In hyperglycemic population, our GPS_{eGFR} showed strong associations with eGFR and its follow-up, CKD and incident CKD, and 18 of our candidate biomarkers of CKD. The GPS_{eGFR}-associated omics molecules contained CST3, a protein with a well-established association with eGFR and CKD, and various other CKD-related proteins such as B2M. Eleven of the 18 candidates showed an augmented effect for individuals at population's tail, with several being critical in the development/progression of T2DCKD. For instance, the proteins TNFRSF1A, RETN, FSTL3, and B2M play essential pathogenetic physiological roles in T2DCKD innate immunity (Supplementary Fig. 2), primarily by increasing the activity of the NF-kappaB complex complex ^{24,36} and macrophage activation ²⁵, enhancing HLA-G interaction ³⁷, and participating in the MHC class I complex ³⁸. Extreme GPS_{eGFR} identified 11 candidate biomarkers of CKD in addition to high genetic predisposition individuals, but not any of the other 53 replicated candidates. The 11 candidates formed a set that suggests that the genetic factors of eGFR have a pronounced effect on their circulatory levels. Thus, it may help explain why some individuals develop CKD at an early age, given that the driving factors for CKD can be genetic, behavioral, and environmental, with genetics possibly being the most important for those individuals. Using our GPS_{eGFR} to identify individuals with a high genetic risk of developing CKD may help improve personalized management of CKD in hyperglycemia. We found that these 18 candidates had distinct characteristics because they showed different mediation directions with GPS_{eGFR} and eGFR/CKD, implying their distinct roles (mediator, outcome, or both) in the pathway by which genetic drivers of eGFR ultimately reach GFR and CKD.

2SMR. 2SMR suggested 19 of 60 replicated proteins and metabolites to be causal for kidney traits (CKD/eGFR/UACR) in one or both directions. All 19 candidates associated with CKD or related traits according to literature. Our 2SMR results not only confirm previous findings, but also extend observational associations to causality and shed new light on genetic evidence-based directions. Since the current definition of CKD is predominately based on eGFR and/or UACR values, our 2SMR results attribute the observational signals of CKD to various kidney traits (CKD, eGFR and UACR). For example, 2SMR results suggested that B2M, Tyr, and C8:1 are causal to CKD and eGFR, while B2M and C8:1 are also causal to UACR. T2DCKDinna and -age processes may involve B2M. Because MR causality does not imply a specific molecular mechanism, we also displayed the mediation results for the candidates of MR supported causality from our data to further investigate the potential mechanism. Mediation results for candidate \rightarrow kidney trait (Extended Data Fig. 9c) and kidney trait \rightarrow candidate (Extended Data Fig.9d) were presented. For example, the proteins IGFBP2, ACY1, and SPOCK2 may act as mediators between Tyr and follow-up eGFR values. Our mediation results may shed light on how these 2SMR-supported causal molecules reach phenotypes. Taken together, our 2SMR is the first to our knowledge that systematically investigates the causal relationships between candidate proteins and metabolites and various kidney traits in bi-directions, particularly in the field of targeted metabolomics, and the evidence with mediation results is further provided.

GPS&2SMR. Statistical power and reverse causality are two of the limitations for all MR studies

¹². Some candidates with a 2SMR supported direction of CKD/eGFR-to-candidate may also have a GPS_{eGFR} supported direction of candidate-to-CKD/eGFR. Eight (B2M, TNFRSF1A, SPOCK2, IGFBP6, RETN, RELT, FSTL3, and C10:2) of the 18 GPS_{eGFR} associated candidates (Figs. 3g, 4) may be causally linked to kidney traits suggested by 2SMR. Interestingly, all eight candidates were potentially causal for eGFR by 2SMR. Another example, the results of 2SMR and GPS_{eGFR}'s mediation suggested B2M-to-CKD and CKD-to-TNFRSF1A, moreover, GPS_{eGFR}'s mediation results implied the opposite direction as well. Although GPS_{eGFR}'s mediation evidence isn't as strong as that from 2SMR, it not only agreed with the 2SMR results but also suggested possible causal directions that the 2SMR didn't reveal.

Classifying multi-omics signatures into subgroups. eGFR and UACR are not etiological markers for CKD and do not reflect its underlying pathophysiology, particularly in the early stages of disease ³⁹. Even when their values remained normal, there may be pathological molecular changes in the kidneys of individuals at risk of CKD ⁴⁰. Current treatments for CKD focus on delaying the progression of the disease rather than reversing the underlying pathogenetic process ⁴¹. A published simulation study combining clinical trials of patients with T2D demonstrated that intervention in the earliest stages of disease was most effective at delaying the onset of End-Stage Renal Disease (ESRD)⁴². These findings suggest that the most effective preventative treatment would be to intervene early, prior to organ damage manifested by albuminuria and/or decreased eGFR⁴⁰. Therefore, novel diagnostic methodologies are required to determine which individuals would benefit most from early treatment. Identifying high-risk individuals whose eGFR and albuminuria remain normal but who display molecular pathogenetic traits is critical but challenging. As a result, it is essential to identify biomarkers capable of identifying early pathogenetic changes, prognosticating eGFR and/or UACR deterioration, and elucidating the underlying pathogenetic processes. Lesson learned from clinical trials in which drugs targeting a single biomarker, such as transforming growth factor β 1 blockade, failed and drugs targeting a molecular node like RAS succeeded because multiple actions of the RAS promote kidney cell injury, inflammation, and fibrosis ⁴³. A panel of multiple protein biomarkers covering the numerous pathogenetic processes underlying DKD may be most appropriate to reliably and accurately predict progression of kidney disease ⁴⁴. Therefore, of the concurrent contributions of several pathogenic processes, a holistic and initially agnostic approach integrating multiple omics levels and clinical outcome assessment for the identification of prognostic signatures is one of the most promising strategies for preventing and treating CKD⁴³.

In our study, we classified our replicated candidates based on their potential directions with eGFR and UACR with and without genetic evidence support (Extended Data Fig.8a, Supplementary Table 33), and further provided their potential involvement in (several) T2DCKD pathological processes to elucidate biological pathways (Extended Data Fig.8b). Thus, a subgroup of molecular profiles indicating specific changes of kidney traits may represent a subgroup of susceptible high-risk individuals for CKD development. For instance, the key omic candidate biomarkers in the group of eGFR \rightarrow candi \rightarrow eGFR with genetic evidence support were TNFRSF1SA and FSTL3, and the relevant processes in this group included T2DCKDinna, -mito, -fibri, -angi, -adipo, and -tyr.

Targeting molecular candidates in this group may have an effect on these six pathological processes and eGFR values. Moreover, our subgrouping of omic candidates is in line with a truly translatable biomarker discovery methodology, which should prioritize not only clinically evident stages of disease, but also on very early stages of disease when therapeutic interventions can still slow or stop disease progression.

Reveal new underlying links from interplay. Our MOIN can shed light on how the candidate biomarkers were related to kidney traits. For instance, cg22872478 (LYSMD2) linked to urine albumin and protein EGFR, and protein NBL1 connected to CST3 in our network. These connections could be the potential paths linking these two of 11 potential novel candidates to CKD. Furthermore, our results agreed with previous reports in which 13 replicated acylcarnitines were increased in patients with CKD, DKD, or ESRD (Supplementary Table 5). But how acylcarnitines contribute to CKD and its complications remains uncertain. Our MOIN retained all 13 acylcarnitines (Extended Data Fig.4), eight of which were associated with CKD biomarkers CST3, creatinine, urine albumin, or EGFR. It suggested that these four biomarkers could act as mediators between the eight acylcarnitines and their associated kidney traits. Our DMMION (Fig.2c, Extended Data Fig.6) confirmed this suggestion by categorizing the eight acylcarnitines into several groups based on their mediators. Additionally, a randomized clinical trial found that carnitine can lower serum CST3 levels ⁴⁵. C2, C3, C16, C18, and C18:1 positively correlate with serum CST3⁴⁶. Another example given, CTSH was included in four T2DCKD subnetworks, namely T2DCKDinna, -ras, -tyr, and -angi. CTSH can stimulate angiogenesis ⁴⁷, the toll-like receptor 3 signaling pathway ⁴⁸, and renin ⁴⁹. In our previous study, PC aa C38:0 predicted incident CKD in hyperglycemia ⁷. Notably, CTSH was not only strongly associated with PC aa C38:0 in our MOIN, but also acted as a mediator between PC aa C38:0 and follow-up eGFRcr values in our DMMOIN, suggesting that CTSH may be a component of the pathway by which PC aa C38:0 exerts its nephrogenic effects.

Deep mechanism exploration of potential causal links. Our DMMOIN could deduce potential causal links from multi-omics pairs. We conducted mechanism exploration on several pairs of the network to show this capability. For instance, out of six mediating tests, two directions were suggested as best for the mediating triangle of protein IL19, RNA *SLC22A4*, and CKD (Extended Data Fig.9a). RNA *SLC22A4* mediated 54.1% effect of protein IL19-to-CKD and 55.2% effect of CKD-to-protein IL19. The underlying mechanism of IL19 \rightarrow *SLC22A4* \rightarrow CKD could be that low levels of IL19 (found in CKD patients in our data) could increase IL1B levels, which could increase *SLC22A4* expression (consistent with our findings) ⁵⁰. Increased *SLC22A4* gene expression may also be a result of metabolic acidosis, a common phenotype in CKD ⁵¹. CKD may also increase *SLC22A4* expression. However, *SLC22A4* activity is decreased in CKD patients and at acidic pH ^{52,53}. *SLC22A4* is a transporter for ergothioneine. High expression but low activity of *SLC22A4* may result in low ergothioneine levels, which are associated with increased proteinuria, high BUN levels, low GFR, and expanded mesangial matrix ⁵⁴. Each is a CKD phenotype or its progression. Additionally, CKD may also cause ergothioneine deficiency ⁵⁵. Interestingly, urine albumin mediated the effect of RNA *SLC22A4* on UACR (Extended Data Fig.6), but only in the

direction of UACR as outcome in our data. This evidence supported the hypothesis that $IL19 \rightarrow IL1B \rightarrow SLC22A4 \rightarrow ergothioneine \rightarrow increased risk of proteinuria/ higher blood urea nitrogen levels/ decreased GFR values. For the direction of CKD <math>\rightarrow SLC22A4 \rightarrow IL19$, it may be explained by the possibility that CKD could increase SLC22A4 expression, which would affect T2D activity and, in turn, IL19 levels (Extended Data Fig. 9b, Supplementary Table 34).

Another example is Tyr, which was potentially causal to eGFR by 2SMR (Fig.4b). We also discovered that proteins IGFBP2, ACY1, and SPOCK2 mediated Tyr's effects on follow-up eGFR values in our data (Extended Data Fig. 9c). The possible mechanism regarding IGFBP2 mediating Tyr and eGFR could be explained as followed (Extended Data Fig.9e). A: It has been reported that higher levels of Tyr increase L-DOPA levels ⁵⁶, which can result in decreased IGFBP2 levels ⁵⁷. In analogy, this suggests that in a reverse situation, i.e., low levels of Tyr can induce high levels of IGFBP2, resulting in a decline in GFR values ⁵⁸. B: CKD causes low Tyr levels ⁵⁹ and a disturbed protein metabolism is observed in patients with CKD ⁶⁰. Low Tyr levels may result in a lower protein synthesis rate, comparable to a protein restriction state, causing elevated IGFBP2 levels resulting in lower GFR values ^{60,61}. Both pathways support our findings that IGFBP2 mediated between Tyr and follow-up eGFR values, as well as the reverse associations between Tyr and IGFBP2, IGFBP2 and follow-up eGFR values, respectively.

Cut-off omics levels and dominant candidate markers of multi-omics prediction. Our multiomics prediction results indicated that adding GPS, candidate proteins, and metabolites to the reference predictors improved predictive performance for future CKD in hyperglycemia. In contrast, this improvement was consistent for GPS but limited for candidate proteins or metabolites when they were added to ref₄ (i.e., seven predictors), which indicated the superior discriminatory ability of this predictor set that we previously suggested⁷ for future CKD in hyperglycemia and followed the concept of a best combination of predictors. Instead of trying to find the best combination of multi-omics predictors, here, we summarized the dominant omics molecules based on whether they exhibited extra predictive values of future CKD in the extended hyperglycemic population in addition to various reference predictors, e.g., C5, GHR and PC aa C38:0 were the dominant predictive markers on top of reference predictors including baseline eGFR and UACR.

Moreover, we discovered that GPS_{eGFR} improved predictive performance on future CKD in hyperglycemia on top of all four reference sets, notably CKDcrcc, and that this improvement was consistent and independent of baseline eGFR and UACR values, suggesting that it may contribute to more personalized prediction of future CKD in hyperglycemia.

Limitation. While our study provides a wealth of molecular data, it has several limitations that necessitate further investigation. First, the extensive analyses of multi-omics molecules in hyperglycemia relied on candidate biomarkers identified from cross-sectional association studies (EWAS, TWAS, PWAS, and MWAS). Because our discovery study only included 1401 individuals with prediabetes and T2D and the incomplete profiling of multi-omics data, it is possible that some omics molecules with true signals were missed. Similarly, limited data of 751 hyperglycemic patients were used for the prediction part, additional longitudinal studies with

larger sample sizes and more complete measurements of multi-omics profiles are required to corroborate our conclusions. Second, in all replication studies for candidate biomarkers, except one (KORA FF4 for replicating metabolites), the replication analyses of candidate biomarkers and CKD were conducted on the general population, with CKD defined solely by eGFR values. Candidates specific to UACR signals and hyperglycemia may not be replicated. So, we combined both published and replicated candidates in some sections of our analyses. Third, because there were multiple omics techniques for profiling omic molecules, each type of analyte class had platform-specific errors. Furthermore, statistical power is one common limitation for MR studies ¹⁶. We used both sets of genetic instruments as well as three kidney traits, and consistently observed that protein CST3 was associated with CKD and negatively associated with eGFR values. The insufficient power (only one genetic instrument was available in the two sets) and the fact that the eGFR values were derived from creatinine, which did not include information from cystatin C measurements, may be the causes of the borderline significance of MR results of CST3. The number of putative causal relationships of eGFR-to-candidate was much larger than the one of candidate-to-eGFR from our 2SMR results, which may be because the sample size for the study of genetic instruments for eGFR was over half a million, whereas the sample size for the studies of genetic instruments for proteins or metabolites was only a few thousand individuals. We used stringent criteria to select MR instruments and a recent advanced MR approach that was robust to pleiotropy, conducted outlier-corrected analyses in cases of potential assumption violation, and reported associations of FDR significance and consistency with observational estimates. However, inference of causality should still be explained cautiously due to several limitations of MR validity ^{16,62}. Finally, our KORA study was observational with a baseline and two follow-ups, so there was approximately 6.5-year gap between visits, indicating that unknown confounding factors might have influenced the findings of omics molecules and kidney traits at different time points, despite adjusted for 12 confounding variables covering various aspects (e.g., physiological factor, lifestyle, clinical measurements, and medication usage).

Conclusion. Our findings demonstrate a complex omic landscape in the development and progression of CKD in individuals with prediabetes or T2D. Additionally, we show how omic molecules associated with CKD exhibit distinct properties in relation to the complex processes of hyperglycemia-related CKD. These deep multi-omics measurements allow us to investigate the early and specific signs of CKD development in hyperglycemia, enabling more effective prevention and treatment of CKD in the context of integrated personalized diabetes management.

References

- 1. Misra, B.B., Langefeld, C.D., Olivier, M. & Cox, L.A. Integrated Omics: Tools, Advances, and Future Approaches. *J Mol Endocrinol* (2018).
- 2. Schussler-Fiorenza Rose, S.M., *et al.* A longitudinal big data approach for precision health. *Nat Med* **25**, 792-804 (2019).
- 3. Bikbov, B., *et al.* Global, regional, and national burden of chronic kidney disease, 1990-2017: a systematic analysis for the Global Burden of Disease Study 2017. *Lancet (London, England)* **395**, 709-733 (2020).
- 4. Webster, A.C., Nagler, E.V., Morton, R.L. & Masson, P. Chronic Kidney Disease. *Lancet (London, England)* **389**, 1238-1252 (2017).
- 5. Plantinga, L.C., *et al.* Prevalence of chronic kidney disease in US adults with undiagnosed diabetes or prediabetes. *Clinical journal of the American Society of Nephrology : CJASN* **5**, 673-682 (2010).
- 6. Melsom, T., et al. Prediabetes and Risk of Glomerular Hyperfiltration and Albuminuria in the General Nondiabetic Population: A Prospective Cohort Study. *American journal of kidney diseases : the official journal of the National Kidney Foundation* **67**, 841-850 (2016).
- 7. Huang, J., *et al.* Machine Learning Approaches Reveal Metabolic Signatures of Incident Chronic Kidney Disease in Individuals With Prediabetes and Type 2 Diabetes. *Diabetes* **69**, 2756-2765 (2020).
- 8. Huang, J., *et al.* Validation of Candidate Phospholipid Biomarkers of Chronic Kidney Disease in Hyperglycemic Individuals and Their Organ-Specific Exploration in Leptin Receptor-Deficient db/db Mouse. *Metabolites* **11**, 89 (2021).
- 9. Herder, C., et al. Proinflammatory Cytokines Predict the Incidence and Progression of Distal Sensorimotor Polyneuropathy: KORA F4/FF4 Study. *Diabetes care* **40**, 569-576 (2017).
- 10. Lechner, M., *et al.* CIDeR: multifactorial interaction networks in human diseases. *Genome Biology* **13**, R62 (2012).
- 11. Al Thani, A., *et al.* Qatar Biobank Cohort Study: Study Design and First Results. *Am J Epidemiol* **188**, 1420-1433 (2019).
- 12. Ringseis, R., Wen, G. & Eder, K. Regulation of Genes Involved in Carnitine Homeostasis by PPARα across Different Species (Rat, Mouse, Pig, Cattle, Chicken, and Human). *PPAR Res* **2012**, 868317 (2012).
- 13. Ben Said, M., *et al.* A mutation in SLC22A4 encoding an organic cation transporter expressed in the cochlea strial endothelium causes human recessive non-syndromic hearing loss DFNB60. *Hum Genet* **135**, 513-524 (2016).
- 14. Fox, J. Structural equation modeling with the sem package in R. *Structural Equation Modeling* **13**, 465-486 (2006).
- 15. Khera, A.V., *et al.* Genome-wide polygenic scores for common diseases identify individuals with risk equivalent to monogenic mutations. *Nat Genet* **50**, 1219-1224 (2018).
- 16. Davey Smith, G. & Hemani, G. Mendelian randomization: genetic anchors for causal inference in epidemiological studies. *Hum Mol Genet* **23**, R89-98 (2014).
- 17. Zheng, J., *et al.* Phenome-wide Mendelian randomization mapping the influence of the plasma proteome on complex diseases. *Nat Genet* **52**, 1122-1131 (2020).
- 18. Tangri, N., *et al.* A predictive model for progression of chronic kidney disease to kidney failure. *Jama* **305**, 1553-1559 (2011).
- 19. Perico, N., Benigni, A. & Remuzzi, G. Present and future drug treatments for chronic kidney diseases: evolving targets in renoprotection. *Nat Rev Drug Discov* **7**, 936-953 (2008).
- 20. Li, L., *et al.* The association between interleukin-19 concentration and diabetic nephropathy. *BMC Nephrol* **18**, 65 (2017).

- 21. Mason, R.M. & Wahab, N.A. Extracellular matrix metabolism in diabetic nephropathy. *J Am Soc Nephrol* **14**, 1358-1373 (2003).
- 22. Opazo-Ríos, L., *et al.* Lipotoxicity and Diabetic Nephropathy: Novel Mechanistic Insights and Therapeutic Opportunities. *Int J Mol Sci* **21**(2020).
- 23. Devarshi, P.P., McNabney, S.M. & Henagan, T.M. Skeletal Muscle Nucleo-Mitochondrial Crosstalk in Obesity and Type 2 Diabetes. *Int J Mol Sci* **18**(2017).
- 24. Vahdat, S. The complex effects of adipokines in the patients with kidney disease. *J Res Med Sci* **23**, 60 (2018).
- 25. Runhua, M., Qiang, J., Yunqing, S., Wenjun, D. & Chunsheng, W. FSTL3 Induces Lipid Accumulation and Inflammatory Response in Macrophages and Associates With Atherosclerosis. *J Cardiovasc Pharmacol* **74**, 566-573 (2019).
- 26. Fukami, K., *et al.* AGEs activate mesangial TGF-beta-Smad signaling via an angiotensin II type I receptor interaction. *Kidney Int* **66**, 2137-2147 (2004).
- 27. Hu, C., *et al.* Insights into the Mechanisms Involved in the Expression and Regulation of Extracellular Matrix Proteins in Diabetic Nephropathy. *Curr Med Chem* **22**, 2858-2870 (2015).
- 28. Tang, S.C.W. & Yiu, W.H. Innate immunity in diabetic kidney disease. *Nat Rev Nephrol* **16**, 206-222 (2020).
- 29. Nakagawa, T., Sato, W., Kosugi, T. & Johnson, R.J. Uncoupling of VEGF with endothelial NO as a potential mechanism for abnormal angiogenesis in the diabetic nephropathy. *J Diabetes Res* **2013**, 184539 (2013).
- 30. Honda, T., Hirakawa, Y. & Nangaku, M. The role of oxidative stress and hypoxia in renal disease. *Kidney Res Clin Pract* **38**, 414-426 (2019).
- 31. Worku, T., *et al.* Regulatory roles of ephrinA5 and its novel signaling pathway in mouse primary granulosa cell apoptosis and proliferation. *Cell Cycle* **17**, 892-902 (2018).
- 32. Kennedy, A., *et al.* Antiobesity mechanisms of action of conjugated linoleic acid. *J Nutr Biochem* **21**, 171-179 (2010).
- 33. Qiao, X.R., Wang, L., Liu, M., Tian, Y. & Chen, T. MiR-210-3p attenuates lipid accumulation and inflammation in atherosclerosis by repressing IGF2. *Biosci Biotechnol Biochem* **84**, 321-329 (2020).
- 34. Wang, L. & Brautigan, D.L. α -SNAP inhibits AMPK signaling to reduce mitochondrial biogenesis and dephosphorylates Thr172 in AMPK α in vitro. *Nat Commun* **4**, 1559 (2013).
- 35. Juszczak, F., Caron, N., Mathew, A.V. & Declèves, A.E. Critical Role for AMPK in Metabolic Disease-Induced Chronic Kidney Disease. *Int J Mol Sci* **21**(2020).
- 36. Waschke, K.A., *et al.* Tumor necrosis factor receptor gene polymorphisms in Crohn's disease: association with clinical phenotypes. *Am J Gastroenterol* **100**, 1126-1133 (2005).
- 37. HoWangYin, K.Y., *et al.* Multimeric structures of HLA-G isoforms function through differential binding to LILRB receptors. *Cell Mol Life Sci* **69**, 4041-4049 (2012).
- 38. Saigi, M., Alburquerque-Bejar, J.J. & Sanchez-Cespedes, M. Determinants of immunological evasion and immunocheckpoint inhibition response in non-small cell lung cancer: the genetic front. *Oncogene* **38**, 5921-5932 (2019).
- 39. Eddy, S., Mariani, L.H. & Kretzler, M. Integrated multi-omics approaches to improve classification of chronic kidney disease. *Nat Rev Nephrol* **16**, 657-668 (2020).
- 40. Pena, M.J., Mischak, H. & Heerspink, H.J. Proteomics for prediction of disease progression and response to therapy in diabetic kidney disease. *Diabetologia* **59**, 1819-1831 (2016).
- 41. Sanz, A.B., *et al.* Advances in understanding the role of angiotensin-regulated proteins in kidney diseases. *Expert Rev Proteomics* **16**, 77-92 (2019).
- 42. Schievink, B., *et al.* Early renin-angiotensin system intervention is more beneficial than late intervention in delaying end-stage renal disease in patients with type 2 diabetes. *Diabetes Obes Metab* **18**, 64-71 (2016).

- 43. Ruiz-Ortega, M., Rayego-Mateos, S., Lamas, S., Ortiz, A. & Rodrigues-Diez, R.R. Targeting the progression of chronic kidney disease. *Nat Rev Nephrol* **16**, 269-288 (2020).
- 44. Mischak, H., Delles, C., Vlahou, A. & Vanholder, R. Proteomic biomarkers in kidney disease: issues in development and implementation. *Nat Rev Nephrol* **11**, 221-232 (2015).
- 45. Yaghubi, E., *et al.* Effects of l-carnitine supplementation on cardiovascular and bone turnover markers in patients with pemphigus vulgaris under corticosteroids treatment: A randomized, double-blind, controlled trial. *Dermatol Ther* **32**, e13049 (2019).
- 46. Hirschel, J., *et al.* Relation of Whole Blood Amino Acid and Acylcarnitine Metabolome to Age, Sex, BMI, Puberty, and Metabolic Markers in Children and Adolescents. *Metabolites* **10**(2020).
- 47. Gocheva, V., Chen, X., Peters, C., Reinheckel, T. & Joyce, J.A. Deletion of cathepsin H perturbs angiogenic switching, vascularization and growth of tumors in a mouse model of pancreatic islet cell cancer. *Biol Chem* **391**, 937-945 (2010).
- 48. Okada, R., Zhang, X., Harada, Y., Wu, Z. & Nakanishi, H. Cathepsin H deficiency in mice induces excess Th1 cell activation and early-onset of EAE though impairment of toll-like receptor 3 cascade. *Inflamm Res* **67**, 371-374 (2018).
- 49. Luetscher, J.A., Bialek, J.W. & Grislis, G. Human kidney cathepsins B and H activate and lower the molecular weight of human inactive renin. *Clin Exp Hypertens A* **4**, 2149-2158 (1982).
- 50. Maeda, T., Hirayama, M., Kobayashi, D., Miyazawa, K. & Tamai, I. Mechanism of the regulation of organic cation/carnitine transporter 1 (SLC22A4) by rheumatoid arthritis-associated transcriptional factor RUNX1 and inflammatory cytokines. *Drug Metab Dispos* **35**, 394-401 (2007).
- 51. Gottier Nwafor, J., Nowik, M., Anzai, N., Endou, H. & Wagner, C.A. Metabolic Acidosis Alters Expression of Slc22 Transporters in Mouse Kidney. *Kidney Blood Press Res* **45**, 263-274 (2020).
- 52. Tamai, I., *et al.* Cloning and characterization of a novel human pH-dependent organic cation transporter, OCTN1. *FEBS Lett* **419**, 107-111 (1997).
- 53. Wu, X., *et al.* Structural and functional characteristics and tissue distribution pattern of rat OCTN1, an organic cation transporter, cloned from placenta. *Biochim Biophys Acta* **1466**, 315-327 (2000).
- 54. Dare, A., Channa, M.L. & Nadar, A. L-ergothioneine and its combination with metformin attenuates renal dysfunction in type-2 diabetic rat model by activating Nrf2 antioxidant pathway. *Biomed Pharmacother* **141**, 111921 (2021).
- 55. Shinozaki, Y., *et al.* Impairment of the carnitine/organic cation transporter 1-ergothioneine axis is mediated by intestinal transporter dysfunction in chronic kidney disease. *Kidney Int* **92**, 1356-1369 (2017).
- 56. Taveira-da-Silva, R., da Silva Sampaio, L., Vieyra, A. & Einicker-Lamas, M. L-Tyr-Induced Phosphorylation of Tyrosine Hydroxylase at Ser40: An Alternative Route for Dopamine Synthesis and Modulation of Na+/K+-ATPase in Kidney Cells. *Kidney Blood Press Res* **44**, 1-11 (2019).
- 57. Charbonnier-Beaupel, F., *et al.* Gene expression analyses identify Narp contribution in the development of L-DOPA-induced dyskinesia. *J Neurosci* **35**, 96-111 (2015).
- 58. Tönshoff, B., Blum, W.F., Wingen, A.M. & Mehls, O. Serum insulin-like growth factors (IGFs) and IGF binding proteins 1, 2, and 3 in children with chronic renal failure: relationship to height and glomerular filtration rate. The European Study Group for Nutritional Treatment of Chronic Renal Failure in Childhood. *J Clin Endocrinol Metab* **80**, 2684-2691 (1995).
- 59. Kopple, J.D. Phenylalanine and tyrosine metabolism in chronic kidney failure. *J Nutr* **137**, 1586S-1590S; discussion 1597S-1598S (2007).
- 60. Garibotto, G., *et al.* Amino acid and protein metabolism in the human kidney and in patients with chronic kidney disease. *Clin Nutr* **29**, 424-433 (2010).
- 61. Smith, W.J., Underwood, L.E. & Clemmons, D.R. Effects of caloric or protein restriction on insulinlike growth factor-I (IGF-I) and IGF-binding proteins in children and adults. *J Clin Endocrinol Metab* **80**, 443-449 (1995).
62. Holmes, M.V., Ala-Korpela, M. & Smith, G.D. Mendelian randomization in cardiometabolic disease: challenges in evaluating causality. *Nat Rev Cardiol* **14**, 577-590 (2017).

Acknowledgements

We express our appreciation to all KORA study participants for donating their blood and time. We thank the field staff in Augsburg conducting the KORA studies. We are grateful to the staff (J. Scarpa, K. Faschinger, N. Lindemann) from the Institute of Epidemiology and the Genome Analysis Center Metabolomics Platform at the Helmholtz Zentrum München, who helped in the sample logistics, data and straw collection, and metabolomic measurements. Additionally, we thank the staff (e.g. A. Ludolph, S. Jelic and B. Langer) from the Institute of Genetic Epidemiology at the Helmholtz Zentrum München, and the platform KORA-PASST, for their help with KORA data logistics.

Author contributions

J.H., A.P. & R.W.-S. conceived the study; J.H. analyzed the data; A.G., W.R. & K.S. performed replication analyses; J.H., G.F., C.M. & A.R. generated networks and conducted pathway analysis; M.C., Z.Z., C.H., B.T., M.H., S.K., M.W., H.G., G.K., J.A., M.M.-N., K.S., T.M., W.K., C.H., W.R., M.R., J.G., F.S., C.G., E.Z., K.S., A.P. & R.W.-S. contributed to omics data generation and interpretation; J.H. & R.W.-S. wrote the manuscript. All authors revised the manuscript critically for important intellectual content and final approved of the version to be submitted.

Funding

The KORA study was initiated and financed by the Helmholtz Zentrum München – German Research Center for Environmental Health, which is funded by the German Federal Ministry of Education and Research (BMBF) and by the State of Bavaria. Data collection in the KORA study is done in cooperation with the University Hospital of Augsburg. Furthermore, KORA research was supported within the Munich Center of Health Sciences (MC-Health), Ludwig-Maximilians-Universität, as part of LMUinnovativ.

The German Diabetes Center is funded by the German Federal Ministry of Health (Berlin, Germany) and the Ministry of Culture and Science of the State of North Rhine-Westphalia (Dusseldorf, Germany). This study was supported in part by a grant from the German Federal Ministry of Education and Research to the German Center for Diabetes Research (DZD). The diabetes part of the KORA F4 study was funded by a grant from the German Research Foundation (DFG; RA 459/3-1).

Part of this study was supported by the funding from the European Union's Horizon 2020/ Horizon Europe research and innovation programmes: The DeTecT2D & 210997-iPDM-GO EIT Health Innovation Project were supported by EIT Health which is co-funded by the European Union; The Innovative Medicines Initiative 2 (IMI2), project CARDIATEAM funded under the Grant Agreement No. 821508. Part of this research has been conducted using data from the UK Biobank, a major biomedical database (www.ukbiobank.ac.uk) with the project ID No. 10205. K.S. is supported by Biomedical Research Program funds at Weill Cornell Medical College in Qatar, a program funded by the Qatar Foundation.

Online methods

Study participants and design

Study design. We investigated the longitudinal cohort KORA survey 4 (S4) and its two follow-ups, conducted in the area of Augsburg, Southern Germany. Baseline S4 study involved 4,261 individuals (aged 25–74 years) examined between 1999 and 2001. The first follow-up (F4) consisted of 3,080 individuals (aged 32–81 years) examined between 2006 and 2008. In the second follow-up (FF4), 2,269 participants were examined from 2013 to 2014 ⁹. All study participants gave written informed consent. The KORA study was approved by the ethics committee of the Bavarian Medical Association, Munich, Germany.

Because multi-omics profiles (i.e. epigenetics, transcriptomics, proteomics, and metabolomics) were measured with blood samples collected in the F4 survey, we identified candidate multi-omics biomarkers for CKD in hyperglycemic F4 participants and constructed GPS of eGFR values in the whole F4 population. The identified omics candidates of CKD were replicated in the KORA F3, KORA FF4, QBB, and QMDiab studies, and the constructed GPS of eGFR values was replicated in the UKBB and KORA S4 (non-overlapping individuals compared to those used for constructing GPS) studies, respectively. External replication was used in the KORA F3, QBB, QMDiab, and UKBB studies, whereas internal validation was used in the KORA S4 and FF4 studies.

Study participants. Exclusion criteria for KORA F4 participants used to identify candidate biomarkers of CKD in hyperglycemia included the following: 1) withdrawal of participation agreement (n = 3); 2) missing eGFR or UACR values (n = 36); 3) diagnosis of type 1 diabetes (n = 8), unclear type of diabetes mellitus (n = 75), or drug-induced diabetes (n = 1); 4) individuals with NGT (n = 1,556). The remaining dataset included 1,401 hyperglycemic participants, 968, 677, 518, and 1,378 of whom had QC-passed measurements of epigenetics, transcriptomics, proteomics, and metabolomics, respectively, and served as a discovery dataset to identify candidate biomarkers of CKD. The NGT participants were used for sensitivity analysis of the identified candidate biomarkers. Unless otherwise specified, the subsequent analyses involving the identified candidate biomarkers in KORA S4/F4/FF4 were conducted in a hyperglycemic setting.

The longitudinal analysis for F4 \rightarrow FF4 was conducted in F4 hyperglycemic individuals who had QC-passed omics profiles and available FF4 kidney traits measurements. In the case of incident CKD, 751 hyperglycemic individuals were available, including 558, 277, 441 and 744 individuals with QC-passed epigenetic, transcriptomic, proteomic, and metabolomic data, respectively. For the S4 \rightarrow F4 analysis, we used the same exclusion criteria as the ones in F4, resulting in 841 hyperglycemic individuals, of whom 448, 488, 209 and 572 individuals had QC-passed measurements of epigenetics, transcriptomics, proteomics, and metabolomics, respectively.

Among 2,916 KORA F4 individuals with genetic data, 159 were excluded due to relatedness or missing eGFR values, leaving 2,757 individuals for use in constructing the GPS of eGFR. Except for the construction and replication of GPS and the analysis of

 $eGFR \sim GPS_{eGFR} + age + sex + PC_{1-4}$, where PC_{1-4} is the first four principal components of the genotyping data, all other analyses involving GPS were conducted in hyperglycemic individuals as stated above.

Definition of hyperglycemia and kidney traits

Hyperglycemia. Individuals with hyperglycemia and NGT were classified according to fasting and two-hour post load glucose (2-h glucose) values and HbA_{1C} using the ADA diagnostic criteria ⁶³. The hyperglycemic group comprised participants with pre-diabetes and newly diagnosed T2D (i.e., fasting glucose $\geq 100 \text{ mg/dl}$ or 2-h-glucose $\geq 140 \text{ mg/dl}$ or HbA_{1C} $\geq 5.7\%$), as well as known T2D that was diagnosed by physician validated self-reporting and/or current use of anti-diabetes agents ⁹.

Definition of kidney traits. The eGFR was calculated from serum creatinine (mg/dl) and cystatin-C (mg/dl, IDMS and IFCC standardized values) using the Chronic Kidney Disease Epidemiology Collaboration (CKD-EPI) equation ⁶⁴. CKD was defined as an eGFR < 60 ml/min/1.73 m² or a UACR \ge 30 mg/g ⁶⁵. Incident cases of CKD consisted of participants that were non-CKD at F4 but had reduced kidney function (eGFR < 60 ml/min/1.73 m²) and/or kidney damage (UACR \ge 30 mg/g) at FF4.

Other definitions of eGFR and CKD were used in part of the study's analyses and were denoted by symbols, including CKDcrcc (eGFR-based CKD defined as eGFR < 60 ml/min/1.73 m²) ⁶⁵, and eGFRcr (eGFR was calculated from serum creatinine, mg/dL, IDMS standardized values) using the CKD-EPI equation ⁶⁴. Therefore, incident cases of CKDcrcc consisted of participants who were non-CKDcrcc at F4 but had reduced kidney function (eGFR < 60 ml/min/1.73 m²) at FF4.

Since kidney traits were available from three time points (S4/F4/FF4) in the KORA cohort and multi-omics profiles were measured with blood samples collected at the F4 survey, incident CKD, follow-up eGFR, eGFRcr, UACR values were only defined in the analysis of F4-to-FF4 in this study. The value of the follow-up kidney trait was interchangeable with the value of kidney trait FF4. The time point of the kidney trait was indicated, e.g. eGFR S4 meant eGFR values from S4. If not indicated, it meant the kidney trait was measured in F4.

Omics profiling and data normalization

Genotype. The Affymetrix Axiom Array was used to genotyping KORA S4/F4 individuals, of whom 2,916 had visit in F4. After thorough QC, 541,422 autosomal SNPs were used for imputation. Shapeit v2 was used to infer the haplotypes. The imputation was completed using Minimac3 on the Michigan Imputation Server with the 1000G phase 3 reference panel. Exclusion criteria of SNPs or individuals were: 1) SNPs with minor allele frequency (MAF) < 0.02 or Hardy-Weinberg equilibrium (HWE) P < 5e-10 or missing genotype data (geno > 0.01); 2) individuals with high rates of genotype missingness (mind > 0.01) or individuals with high or low heterozygosity rates or individuals with relatedness > 0.125. Finally, there were 8,170,777 SNPs and 2,770 individuals in KORA F4 that passed QC and were used in building GPS of eGFR.

Epigenetics. The DNA methylation levels were measured with Illumina HumanMethylation450 BeadChip array as previously described ⁶⁶. Data preprocessing of methylation data was carried out in accordance with the CPACOR pipeline ⁶⁷, and R package minfi ⁶⁸ was used for background correction. If the detection *P* value was ≥ 0.01 or the number of beads was ≤ 3 , probes were set to NA. Samples were excluded if the detection rate was <0.95. Quantile normalization (QN) and beta-mixture quantile normalization (BMIQ) pipelines were performed for normalization. The CpG methylation proportion was reported as a β -value, which was a continuous variable ranging from 0 to 1. CpG sites with β -values \geq mean $\pm 5 \times$ standard deviation (SD) were identified as outliers and replaced as NA. CpG sites on the sex chromosome or with missing rate > 10% were excluded. There were 461,767 CpG sites and 1,727 individuals passed QC. The remaining methylation data were further processed to account for technical effects and cell type confounding: beta values of each CpG site were adjusted for 30 principal components from control probes and white blood cell proportion estimates (6 Houseman variables), and the remaining residuals of beta values were used in the subsequent analysis.

Additionally, the CpGs with SNPs in the probe-binding sequence were checked and flagged for the identified candidate CpGs based on CpG-SNP pairs where any of the sources indicated that the SNP had a MAF ≥ 0.05 in Europeans from Illumina ⁶⁹, 1000G phase 3 ⁷⁰, KORA F4 Affymetrix Axiom data (*data not shown*), and Chen *et al.* 2013 ⁷¹ (based on 1000G). Cross-specific probes were checked and flagged for the identified candidate CpGs as well from two previously published lists: Chen *et al.* 2013 ⁷¹ and Price *et al.* 2013 ⁷².

Transcriptomics. Gene expression levels were determined using the Illumina HumanHT-12 v3 Expression BeadChip⁷³. Expression data were log2-transformed and QN using the Bioconductor package lumi. Samples with fewer than 6000 detected genes or with an RNA integrity number (RIN) < 7 or that did not cluster according to their gender were excluded from further analysis. RNAs with QC comments for probe mapping not marked as "Good" provided by the manufacturer (Illumina) were excluded. RNA values \geq mean ±5×SD were identified as outliers and replaced as NA, and 0.05% of NA data points were imputed with the k-nearest neighbors algorithm (KNN). There were 28,962 RNAs and 976 individuals passed QC. The residuals of RNA values after adjusting storage time, RIN values and amplification plate to remove potential technical effects were used in the subsequent analysis.

Proteomics. The proteomics data were measured with SOMAscan Assay. Details of the SOMAscan platform have been described elsewhere ^{74,75}. One thousand individuals in KORA F4 had SOMAscan protein measurements for 1,129 protein SOMAmer probes. Thirty-four probes and one individual were identified as unqualified and excluded based on the SOMAscan QC. Probe values $\geq \text{mean} \pm 5 \times \text{SD}$ were identified as outliers and replaced as NA, and 0.3% of NA data points were imputed with KNN. There were 1,095 probes and 999 individuals passed QC.

Metabolomics. The serum samples from participants in the KORA F4 study were measured using AbsoluteIDQTM p150 kit (BIOCRATES Life Sciences AG, Innsbruck,

Austria) ⁷⁶. In total, 3,061 serum samples of the F4 study were quantified for 163 metabolites in 38 randomly distributed kit plates. The QC and adjustment of plate effects of metabolites were described previously ⁷. Metabolites values \geq mean \pm 5×SD were identified as outliers and replaced as NA, and 0.09 % of the data points were imputed with KNN. In particular, non-fasting samples were excluded for the analysis of metabolite data. Briefly, there were 125 metabolites and 3,027 individuals kept.

Furthermore, the values of proteins and metabolites were natural-log transformed. For comparability purpose, the values of CpG sites, RNAs, proteins, and metabolites were scaled to a mean value of 0 and a SD of 1 and were used in analysis if not indicated otherwise.

Identification of multi-omics signatures of CKD in hyperglycemia, their replication, and associations with other kidney traits

Preprocessing of clinical variables. The full model included the following covariates: age, sex, BMI, systolic BP, smoking status, triglycerides, total cholesterol, HDL cholesterol, FG, use of lipid-lowering, antihypertensive and anti-diabetic medication. One individual at KORA F4 had a measured UACR value as 9066.038 mg/g, which was deemed to be an extreme value and was replaced with the second maximum value using the winsorizing procedure. The values of UACR, FG, HbA_{1C}, triglycerides, creatinine, CST3, and urine albumin were natural log-transformed prior to analysis due to their right-skewed distribution. All numeric clinical variables were scaled to have a mean value of 0 and a SD of 1 and were used in the subsequent analysis unless otherwise specified.

Discovery. The discovery CKD - EWAS, TWAS, PWAS, and MWAS was performed, respectively, using the following logistic regression models: CKD ~ (β value) CpG / RNA / protein / metabolite + full model. The top 20 significant CpG sites, top 20 RNAs, FDR significant proteins and metabolites consisted of the candidates' set.

We also investigated the associations of our identified candidate biomarkers with CKD in individuals with NGT of KORA F4 using logistic regression with the fully adjusted model except for anti-diabetic medication. Additionally, we conducted exhaustive literature research to cluster corresponding genes/proteins of candidates identified by EWAS, TWAS and PWAS, as well as candidate metabolites into distinct pathophysiology of T2D-related CKD.

Replication. We replicated our identified candidate biomarkers in additional studies. In the KORA F3 study, we replicated CpG sites and RNAs; in the QBB and QMDiab studies, we replicated proteins; and in the KORA F3 and KORA FF4 studies, we replicated metabolites.

Replication in KORA F3. The top 20 CpG sites, top 20 RNAs and FDR significant metabolites of CKD in hyperglycemia were replicated in KORA F3. In KORA F3, 481, 376, and 375 individuals had epigenetic, transcriptomic, and metabolomic measurements, respectively.

The DNA methylation levels were measured with Illumina HumanMethylation450 BeadChip, and the background correction was done with R package minfi ⁶⁸. If the detection *P* value was ≥ 0.01 or the number of beads was ≤ 3 , probes were set to NA. Samples were excluded if the detection rate was < 0.95. DNA methylation levels were normalized with QN + BMIQ pipeline. The effects of control probes and white blood cells at the CpG site were adjusted in the same way as described previously in KORA F4, and the white blood cell proportion estimates here were derived from Horvath variables. The transcriptomics data were measured using Illumina HumanWG-6 v2 expression BeadChip, and the expression data were log2-transformed and loess normalized. The AbsoluteIDQ p150 kit was used to measure the targeted metabolites of serum samples. CpG sites with beta values and RNA values >= mean ± 5×SD were identified as outliers and replaced as NA, which was then imputed with KNN, respectively. The plate effect of metabolites was addressed by including plate number as a covariate in the regression models, which are listed below, and metabolite concentrations were natural log transformed.

HbA_{1C} and triglycerides values were natural log transformed. The values of CpG sites, RNAs, proteins, and metabolites and all numeric clinical variables were scaled to a mean value of 0 and a SD of 1. The eGFR was calculated from serum creatinine (mg/dl) (IDMS standardized values) using the CKD-EPI equation ⁶⁴. CKD was defined as an eGFR < 60 ml/min/1.73 m^{2 65}.

The set of covariates defined as full model₂ included all of those in the full model except for FG that was replaced by HbA_{1C}. Since only 13 CKD cases of 481 individuals had methylation measurements, the association between CpG candidates and CKD was estimated using nearest-neighbor propensity score matching in a case-control study design. Propensity scores were generated using a classification tree with CKD as the outcome and covariates from the full model₂ except for BMI and smoking status (13 CKD cases contained NA for these two variables). After 1:4 propensity score matching, we used conditional logistic regression to investigate the association of candidate CpG sites with CKD. For candidate RNAs and metabolites, the following logistic regression models were used, respectively: CKD ~ RNA + full model₂, and CKD ~ metabolite + full model₂ + plate number.

Replication in KORA FF4. The identified candidate metabolites of CKD were replicated in hyperglycemic participants of FF4 as well. Individuals with hyperglycemia and NGT were classified according to the same ADA diagnostic criteria as in F4. Among 2,218 individuals who had metabolite measurements in FF4, after excluding non-fasting samples (n = 15), samples contained missing eGFR, UACR, or covariate values (n = 51), individuals with other or unclear types of diabetes (n = 64), and individuals with NGT (n = 940). The remaining dataset comprised of 1,148 hyperglycemic participants and was used in the replication analysis.

The clinical variables were preprocessed in the same way as in the F4, except that no UACR values were treated as extreme values and replaced. Serum samples from participants in the FF4 study were measured with the Absolute IDQ^{TM} p180 Kit. The plate effect adjustment, outlier detection and processing, NA imputation, scaling of metabolite

concentrations, and definition of CKD were identical to those described previously in the F4 study. The following logistic regression models were used: CKD ~ metabolite + full model.

Replication in QBB and QMDiab. The QBB is a prospective, population-based cohort study that was established in 2012¹¹. The QMDiab is a cross-sectional case-control study that was conducted in 2012 at Hamad Medical Corporation's Dermatology Department. The SOMAscan platform was used to quantify protein measurements in both QBB and QMDiab studies. The CKD was defined as an eGFR $< 60 \text{ ml/min}/1.73 \text{ m}^{2.65}$. The eGFR in QBB and QMDiab was calculated from serum creatinine (mg/dL) using the CKD-EPI equation ⁶⁴. Additionally, there were clinical biochemistry eGFR values in the QMDiab study reported from the medical results. The CKD in QMDiab was defined as eGFR < 60 ml/min/1.73 m² that was calculated from serum creatinine or reported from clinical biochemistry. There were ten CKD cases in the QBB study while 2,915 individuals were non-CKD. In QMDiab, there were 19 CKD cases and 350 non-CKD individuals. The replication of candidate proteins in QBB and QMDiab used the following logistic regressions: $CKD \sim protein + age + sex + BMI + study-specific covariates.$ The studyspecific covariates in QMDiab consisted of diabetes status, the first three principal components (PCs) of the genotyping data (genoPC1, genoPC2, and genoPC3) and the first three PCs of the proteomics data (somaPC1, somaPC2, and somaPC3). The protein values in QBB were inverse normal scaled and in QMDiab were natural-log and Z score transformed.

Definition of extended replicated set. Candidate biomarkers of CKD identified by EWAS, TWAS, PWAS and MWAS were considered as replicated if they yielded P < 0.05 in replication studies and had the same direction of regression coefficients in replications as in the discovery. If two replication studies were conducted on one candidate, candidates which met this criterion in either study were considered replicated.

The union of replicated candidates and candidate biomarkers that were involved in eight T2DCKD subnetworks comprised of the extended replicated set. Notably, the replicated set and the extended replicated set had distinct purposes, with the former aiming to provide strengthened evidence such as causal support for candidates to become biomarkers and conclude on the potential novel ones based on our discovery, whereas the latter was primarily used to investigate the interplay of omic molecules and improve the understanding of the underlying mechanism. Therefore, the replicated set was used in the GPS and 2SMR analyses, while the extended replicated set was used in the multi-omics integration and prediction investigations.

Associations between candidate biomarkers and other kidney traits. To ascertain the source of the signals from the candidates of CKD in hyperglycemia, we examined the associations between the extended replicated set with UACR and eGFR values, respectively. The following linear regression models were used: UACR / eGFR (F4/FF4) \sim (ß value) CpG / RNA / protein / metabolite + full model.

Among 751 hyperglycemic individuals who were included in the analysis while the outcome was incident CKD (F4-to-FF4), the following logistic regression models were

used for the candidates from the extended replicated set: incident CKD ~ (β value) methylation / RNA / protein / metabolite + full model.

Integration and causal mediation analysis of four-level omics signatures in hyperglycemia

Multi-omics integration network (MOIN). To reveal potential novel connections among omics molecules and explore the potential underlying pathway, we performed a data driven approach with GGM to build a network with the extended replicated set (except for SOMAmer probe CST3), and three known biomarkers for CKD (CST3, creatinine and urine albumin), as well as two candidate metabolite biomarkers of incident CKD in hyperglycemia (SM C18:1 and PC aa C38:0)⁷. Using these 101 molecules, a network was built with an optimal GGM by minimizing the (extended) Bayesian information criterion (EBIC) of unregularized GGM models⁷⁷ using "qgraph" R package with hyperglycemic individuals of KORA F4. Selecting unregularized GGMs according to EBIC has been shown to converge to the true model⁷⁸. Briefly, the algorithm starts to run glasso to obtain 100 models, then refit all models without regularization and choose the best one according to EBIC. Each node in the network represents one omics molecule and each edge between two nodes reflected their partial relationship with considering the effects of all the other molecules in the network. The residuals of the omics molecules after removing the effects of full model were used to build the GGM network.

To further investigate the underlying relationship of molecules from different analyte classes, we filtered the network with edges that only connected nodes from different omics groups. CpGs, RNAs, proteins, metabolites, three known biomarkers were defined as distinct groups separately. MCL-cluster was further performed to the DMOIN to present different sub-clusters.

Causal mediation analysis of multi-omics with three time points of kidney traits. To determine whether certain molecules are involved in the pathway by which other omics molecules exert their nephropathic effects, or in other directions, we conducted causal mediation analyses to determine the optimal direction in each mediating triangle (Supplementary Fig. 8).

The mediation analyses consisted of three parts: 1) candidate & candidate & kidney traits: using 97 candidates from the extended replicated set; 2) candidate & known biomarkers & kidney traits: using 96 candidates (excluded SOMAmer probes CST3 from the extended replicated set) and three known biomarkers; 3) 2-mets & molecules & kidney traits: using two metabolites (SM C18:1 and PC aa C38:0) and other molecules (i.e., three known biomarkers and the extended replicated set except for metabolites). All three parts mediation analyses were conducted separated with three time points of kidney traits (CKD, eGFR and UACR) (Supplementary Fig. 8). Note, here we only conducted the mediation's exploration for omics molecules' pairs that belonged to different omics groups in each part. Three known biomarkers were defined as one group. Three time points kidney traits included eGFR values S4 / F4 / FF4, UACR values F4 / FF4, CKDcrcc S4, CKD F4, and incident CKD (F4-to-FF4). In the part of 2-mets analysis, kidney traits also included eGFRcr values S4 / F4 / FF4 ⁸.

Following the outline of Baron and Kenny⁷⁹, the pairwise relationship of the compounds (independent variable X, mediator M and outcome Y) consisting one possible mediating triangle was firstly examined and eligibility criteria of one mediating triangle is that if X, M and Y pairwise associated with each other. In detail, the spearman correlation coefficients were calculated for each pair of two omics molecules from different levels in each part using the values of residuals after removing the effects of the full model. The relationship between each of 102 molecules (i.e., 97 from extended replicated set, three known biomarkers and two metabolites) and each of eight kidney traits was examined, respectively. These included CKD (i.e., CKD F4 / incident CKD) ~ molecule + full model using logistic regression for F4/FF4, UACR / eGFR (i.e., eGFR / eGFRcr) ~ molecule + full model using linear regression for F4/FF4, and molecule ~ CKDcrcc / eGFR (i.e., eGFR or eGFRcr) + full model using linear regression for S4. The FDR was calculated per omics level per outcome within each part. Clinical variables CST3 and creatinine were not included in the investigation between UACR values and molecules, and urine albumin was excluded from the analysis between eGFR values and molecules, respectively. The significantly connected molecule pairs (FDR < 0.05) and their associated kidney trait (FDR < 0.05) were included into the mediation analyses to consist as one mediating triangle. In the case of CKD F4, those 97 candidates were regarded to be associated with CKD F4 as they were discovered from the relationships with CKD F4.

After eligible mediating triangles were resulted, the mediating effect was evaluated with the non-parametric casual mediation analysis adjusted for the full model. The mediation analysis was used a nonparametric causal mediation analysis using the R mediation package 80 . The mediation analysis decomposes the total effect of exposure on the outcome into the 1) indirect effect through the mediator of interest and 2) direct effect or through a mediator other than the one in the study. The effect estimates of each association between X and Y in individuals with mediators were compared. The proportion of mediation effect was calculated as mediate effect dividing total effect (sum of direct effect and mediate effect) of the exposure. The *P*-value of mediation effect was calculated by bootstrapping with 1,000 resamples.

In each mediating triangle, to test all possible directions to figure out its best potential direction, the bi-mediation analyses were conducted for kidney trait in the KORA S4 (only used as X, e.g., kidney trait \rightarrow omics₁ \rightarrow omics₂) or FF4 (only used as Y, e.g., omics₁ \rightarrow omics₂) \rightarrow kidney trait) which was the longitudinal setting, while six mediation tests were performed for kidney trait in the KORA F4 which was cross-sectional setting (Supplementary Fig. 8).

In the cross-sectional analysis (the kidney trait in F4), we further conducted the SEM to reveal the suitable position of the kidney trait in the mediating triangle since it contained six possibilities. We tested the same six models defined in mediation analyses for kidney trait in F4 (Supplementary Fig. 8). In short, for each possible causal system, the SEM method creates a hypothetical covariance structure of the model and compares this with the empirical covariance structure, and rejects the model if a lack of fit is found. In determining whether the model is an acceptable fit, we used the criteria, namely: (1) Goodness of fit test $P \ge 0.05$; (2) 0.9 < Goodness of Fit Index ≤ 1 ; (3) Root Mean Square

Error Approximation ≤ 0.1 . If multiple models fitted the data, a given model was regarded as "best fit" if its Akaike Information Criterion (*AIC*) was at least one unit smaller than the next smallest *AIC*, otherwise all fitted models were reported and participated in the next selection. All SEM analyses are run in R using the "sem" package. We ran the analysis for each triangle separately. The residuals after removing the effects of the full model of each omics molecule were used to run the SEM.

To get the eligible mediation results, (1) the mediation results with mediating proportions outside the range of 0-100% were excluded; (2) in the case of kidney trait in KORA F4, the results were further filtered based on the results of SEM. The eligible mediation results were involved in the selection of the best direction (s). In each mediating triangle, we used the same criteria to select its best direction, namely: (1) the lowest mediating *P* value and its FDR < 0.05; (2) $10\% \le$ mediating proportion $\le 100\%$. If multiple directions fulfilled the criteria, the direction was deemed "best mediation direction" if its mediating proportion was at least 20% larger than the next largest mediating proportion, otherwise all fitted directions were deemed as "best mediation direction". The best mediation direction(s) in each mediating triangle was reported.

The eligible mediation results were visualized as scatter plots separately from the type of kidney trait and its position in the mediating triangle for candidate & candidate & kidney trait and candidate & known biomarkers & kidney trait to present the overall pattern.

Directed mediating multi-omics integration networks. To inspect the direction of how nephropathic effects potentially go through in each connected edge of our DMOIN built with GGM, we mapped mediation results of the best direction(s) with it to generate the DMMOINs.

Briefly, we mapped the results of best mediation direction(s) with the DMOIN for each time point (i.e., S4, F4 and FF4) and type of kidney trait (i.e., CKD, eGFR and UACR values) separately. If there were multiple mediating connections for the directed connected edges (i.e., for the case of the mediation part of 2-mets when the kidney traits were eGFR and eGFRcr), the result of maximum mediating proportion was selected. Among the overlapped part, if the mediation direction consisted of the results from both kidney trait in F4 (cross-sectional design) and in S4 / FF4 (longitudinal design), those in S4 or FF4 would be selected to present in the network based on the strength of the evidence. The DMMOINs were finally visualized separately based on the position of the kidney trait within the triangle (X, M and Y) and the type of kidney trait (CKD, eGFR and UACR).

Genome-wide polygenic score of eGFR

Quality control of effect size data of SNPs. The effect size estimates for SNPs on eGFR values were derived from the GWAS meta analysis results of 42 European ancestor studies ⁸¹ (N = 567,460). The result included effect size estimates of 8,885,712 SNPs for eGFR values. Since KORA F4 was included in this meta analysis, to avoid overfitting, we first excluded its effect from the result of the meta analysis and then recalculated the regression coefficient, standard error and *P*-value of each SNP for eGFR values. We secondly excluded SNPs with MAF < 0.01 or ambiguous SNPs. There were 6,722,832

SNPs passed quality control and contained corrected effect size estimates for eGFR values.

*Construction of GPS*_{eGFR}. To ensure independence, the overlapped SNPs from the effect size data and genotyping data of KORA F4 were further dealt with strand flipping, deletion of mismatching SNPs, and LD clumping (SNPs with LD $r^2 < 0.1$ were kept). The GPS was constructed with adjusting age, sex, and the first four principal components (PC₁₋₄) of the genotyping data. There were 2,757 of 2,770 individuals in the KORA F4 study with available eGFR values, who were used to build GPS of eGFR. The GPS was constructed using an additive model with PRSice-2 ⁸². Finally, our GPS of eGFR values was constructed with the effects of 162,818 SNPs. Then, the GPS_{eGFR} values were scaled to have a mean of 0 and a SD of 1 in the subsequent analysis unless indicated otherwise.

Replication of GPS_{eGFR}. We replicated our GPS_{eGFR} in the UKBB and the KORA S4 testing individuals (individuals who had genotyping and phenotype data from KORA S4 but were not involved in the GPS development). The GPS of eGFR values were calculated using the same 162,818 SNPs.

Replication in UKBB. UK Biobank is a large-scale biomedical database and research resource that contains in-depth genetic and health information from half a million UK participants. Genome-wide genotyping was carried out using the UK Biobank Axiom Array. Around 850,000 variants were measured directly, while over 90 million variants were imputed using the Haplotype Reference Consortium and UK10K + 1000 Genomes reference panels. The eGFR was calculated from serum creatinine (mg/dl) and cystatin-C (mg/dl) using the CKD-EPI equation ⁶⁴. In a single visit, black ancestry was defined as any ancestry with an African or Caribbean component (UK Biobank codes 2001, 2002, 4001,4002, 4003, 4). Since there were three visits in UKBB, the black ancestry used in this replication was defined as samples that consistently answered one of the above categories whenever they reported ancestry. Finally, the GPS_{eGFR} in the UBKK was constructed with 463,814 individuals using the same 162,818 SNPs with the provided effect size.

Replication in KORA S4 testing samples. KORA S4 contained 681 independent individuals with genotyping data and available eGFR values. They were different individuals from the 2,757 KORA F4 participants used to construct the GPS for eGFR, and thus can be used as validation data for our constructed GPS. One of the 681 individuals contained an extreme eGFR value (510.52 ml/min/1.73 m²) and was excluded before the analysis. Subsequently, 680 individuals were used in this replication.

Associations of GPS_{eGFR} with eGFR. The GPS_{eGFR} values in both replication studies were scaled to have a mean of 0 and a SD of 1. In each study, the association between eGFR and GPS_{eGFR} was analyzed using linear regression as follows: eGFR ~ GPS_{eGFR} + age + sex + PC₁₋₄. The density distribution of GPS_{eGFR}, the stratification plot, and the regression fitting plot between eGFR and GPS_{eGFR} were plotted, respectively. The eGFR values used in the relationship with GPS were on their original scale to show the direct relationship between GPS and eGFR.

Associations of GPS_{eGFR} with kidney traits in hyperglycemia. To investigate whether the associations between GPS_{eGFR} and different kidney traits were consistent in hyperglycemic individuals, we used cross-sectional (F4) and longitudinal design

(F4 \rightarrow FF4) to analyse the associations between GPS_{eGFR} and kidney traits (eGFR, CKDcrcc and CKD) using linear/logistic regressions adjusted for the full model in KORA F4 hyperglycemic individuals, respectively. The stratification plot between eGFR and GPS in the hyperglycemic participants was plotted.

Associations of GPS_{eGFR} with replicated molecules and GPS's tail effect in hyperglycemia. Additionally, we examined the associations between GPS and replicated candidates using linear regression models as (beta value) methylation / RNA / protein / metabolite ~ GPS_{eGFR} + full model. To investigate whether there was a tail effect of GPS_{eGFR} on its associated candidates, we stratified the hyperglycemic KORA F4 population based on GPS_{eGFR} deciles to plot their relationship. Moreover, to investigate whether their associations exhibited a similar tail effect, the different effect sizes and significance levels at various percentiles of the GPS_{eGFR} distribution for all GPS associated candidates with adjusting full model were compared, including 5th, 15th, 25th, 35th and 45th percentiles and the full data set.

Mediation between GPS_{eGFR} , GPS associated molecules and kidney traits in hyperglycemia. To investigate whether GPS-associated candidates are part of the pathway by which GPS exerts its nephropathic effects, and kidney traits are a component of the pathway through which GPS connects to candidates. We conducted mediation analysis using three time points of kidney traits.

Three time points kidney traits included eGFR values (S4 / F4 / FF4), CKDcrcc S4, CKD F4, incident CKD (F4-to-FF4). GPS_{eGFR} (used only as causal X), each of its associated candidates and their associated kidney trait were constituted as one mediating triangle and then included in the mediation analyses. Each mediating triangle included the following testing direction(s):

1) kidney trait in S4: GPS \rightarrow kidney trait \rightarrow candidate.

2) kidney trait in F4: GPS \rightarrow candidate \rightarrow kidney trait and GPS \rightarrow kidney trait \rightarrow candidate.

3) kidney trait in FF4: GPS \rightarrow candidate \rightarrow kidney trait.

We used the same criteria as the one in the section on causal mediation analysis to determine the best direction for each mediating triangle, except that the lower limit of the mediating proportion here was set to 0%.

Causality analysis with bi-directional 2SMR

We performed causal inference using bi-directional 2SMR methods to evaluate the potential causality of replicated proteins/metabolites-to-kidney traits and kidney traits-to-replicated proteins/metabolites. The kidney traits included CKD, eGFR and UACR values.

Genetic instruments and data harmonization. To assess the effect of protein-to-kidney trait, we identified protein instruments (first set) from Sun *et al.* study ⁸³ (N = 3,301) and Emilsson *et al.* study ⁸⁴ (N = 5,457). To evaluate the effect of metabolite levels on kidney traits, we extracted the corresponding SNP-exposure estimates from Dramisa *et al.* study (N = 7,478) ⁸⁵ and Lotta *et al.* study (N = 16,828) ⁸⁶, respectively. We extracted the corresponding SNP-outcome estimates from CKDGen meta-analysis ^{81,87}. We selected instruments for proteins and metabolites to have $P < 1 \times 10^{-6}$ and clumped them for LD to ensure independence (10,000 kb pairs apart, $r^2 < 0.01$). We further eliminated SNPs

associated with more than one protein or metabolite, respectively. There were available genetic instruments for 44 of 46 replicated proteins, and for 13 of 14 replicated metabolites, respectively.

For the direction of kidney trait-to-protein, we identified CKD, eGFR and UACR instruments in the European population of CKDGen meta-analysis (N = 480,698 for CKD, N = 567,460 for eGFR, and N = 547,361 for UACR) 81,87 and extracted the corresponding SNP-outcome estimates from the Sun et al. study ⁸³ and Suhre et al. study ⁸⁸. To evaluate the effect of kidney trait-to-metabolite, we used SNP-outcome estimates from the Dramisa *et al.* study ⁸⁵ and Shin *et al.* study ⁸⁹(N = 7,824). We selected CKD, eGFR and UACR instruments that had genome-wide significance ($P < 5 \times 10^{-8}$) and clumped them for LD (10,000 kb pairs apart, $r^2 < 0.01$), respectively. After clumping, there were 24 CKD, 266 eGFR and 64 UACR instruments available. We further eliminated SNPs with potential horizontal pleiotropy traits (e.g. BP, hypertension, T2D, cholesterol and BMI) in the GWAS catalog ⁹⁰ and PhenoScanner ⁹¹. Moreover, SNPs associated with UACR related traits were eliminated while exposure was eGFR, and SNPs associated with eGFR related traits were eliminated while exposure was UACR, respectively. We downloaded all variant association results from the GWAS catalog (last access: 2021-06-08) and PhenoScanner (last access: 2021-06-10). After these filtration steps and elimination of potentially horizontal pleiotropy SNPs, 17 CKD, 195 eGFR and 30 UACR instruments were used as genetic instruments.

In the case that a specific instrument was not available in the outcome dataset, we used LD tagging ($r^2 > 0.8$) to locate proxy SNPs via "TwoSampleMR" R-package while outcome studies were available in IEU GWAS database or via LDlink using "LDlinkR" R-package while outcome studies were not available in IEU GWAS database 92 . Before performing the MR analysis, the exposure and outcome data were harmonized by aligning the SNPs on the same effect allele for the exposure and outcome. In the case of palindromic SNPs, allele frequency information was used to infer the forward strand where possible. The ambiguous SNPs were excluded from the MR analysis.

In summary, [8-16] CKD, [63-193] eGFR and [8-29] UACR instruments were used in MR analysis for kidney trait-to-protein. In the case of kidney trait-to-metabolite, [9-12] CKD, [105-162] eGFR and [19-25] UACR instruments were available for MR analysis. For protein/metabolite-to-kidney trait, [1-14] protein instruments and [1-4] metabolite instruments were used, respectively.

MR analyses and definitions of causality supported by MR. Our primary MR analysis method was RAPS because it is robust to systematic and idiosyncratic pleiotropy and provides unbiased estimates when there are many weak instruments ⁹³. The heterogeneity of the SNP instruments was determined with Cochran's *Q* statistic of IVW and MR-Egger, and the horizontal pleiotropic effect of the involved SNPs was tested with the intercept of the MR-Egger and global test of MR-PRESSO ⁹⁴. MR-PRESSO is a robust method to detect horizontal pleiotropy and outliers. If there was evidence of potential violations of heterogeneity or horizontal pleiotropy (P < 0.05), we conducted additional outliers-corrected MR analyses to address the issues. We utilized IVW-radial ⁹⁵ to detect outliers of potential heterogeneity and performed outliers-corrected MR analyses with IVW/Wald

ratio using SNPs after removing outliers or the top significant SNP when IVW-Radial was not applicable. Moreover, we applied MR-PRESSO to identify outliers of potential horizontal pleiotropy and used MR-PRESSO outliers-corrected to conduct MR analyses using SNPs after removing the pleiotropic instruments.

Additionally, for the direction of protein-to-kidney trait, the protein instruments summarized from Zheng *et al.* study ¹⁷ were used as a second set of instruments, with 23 of 46 replicated proteins containing suitable genetic instruments. The MR estimates were also analyzed with RAPS.

MR-supported causal was defined as either one:

1) RAPS FDR < 0.05, and no evidence of heterogeneity and horizontal pleiotropy; 2) FDR < 0.05 of outliers-corrected analyses when there was indication of heterogeneity and horizontal pleiotropy;

3) In the case of protein-to-kidney for the second set of instruments, RAPS FDR < 0.05, and significance of RAPS of the first set of instruments if instruments from the first set were available.

Finally, we compared the MR (RAPS, and outliers-corrected analyses when available) and observational estimates for all proteins and metabolites identified as MR-supported causal in either direction in the MR analysis.

To further investigate how these MR-supported causal proteins and metabolites connect to kidney traits, e.g., whether any potential mediators were revealed from our data, we presented their best direction(s) of mediation results from DMMOINs if available based on candidate \rightarrow kidney trait and kidney trait \rightarrow candidate, respectively.

All MR analyses were conducted using R packages: MendelianRandomization ⁹⁶, TwoSampleMR ⁹⁷, RadialMR ⁹⁵, mr.raps ⁹³ and LDlinkR ⁹⁸.

Pathway analysis

Eight T2DCKD subnetworks.

The pathogenesis of T2DCKD is a rather complex process. To figure out the potential roles of our candidates in different pathological processes of T2DCKD and benefit for personalized medicine, we have clustered the genes/proteins of our candidate CpGs/RNAs/proteins and candidate metabolites into eight subnetworks. The interaction networks were built by manual curation and literature mining using the CIDeR database ¹⁰ and the resulting graphs were edited with the yED software (yWorks GmbH, Tübingen, Germany). Nodes in the networks were analysed for physical and regulatory interactions and association with CKD. Information about all interactions between network objects was obtained by reading and manual annotation of experimental findings from relevant publications, primarily peer-reviewed "small-scale experiment" literature. Details of the interactions as well as respective literature references are available in Supplemental Tables 7-14.

Potential relevant molecular pathways from multi-omics. We used the DMMOIN to inspect potential causal links from multi-omics molecules and the potential mediators for MR supported causal candidates. The underlying pathway analysis for these potential

causal links was explored with CIDeR database as well. The example of IL19&SLC22A4&CKD and Tyr&IGFBP2&eGFR were given in discussion.

Prediction of incident CKD in hyperglycemia with multi-omics

Multi-omics prediction. To identify the dominant molecules and optimal cut-off number of omics levels used in the prediction of incident CKD in hyperglycemia, we performed 100 runs by bootstrapping individuals to evaluate predictive performance of various combinations of omics levels using GPS_{eGFR} and 97 candidates of the extended replicated set (62 proteins, 14 metabolites, 7 CpGs and 14 RNAs). Their predictive performance was evaluated using AUC. To assess the robustness of the improvement, we defined four sets of reference predictors, ref₁ included age and sex; ref₂ included variables from the full model; ref₃ included age, sex, eGFR and UACR ¹⁸; ref₄ included age, FG, total cholesterol, SM C18:1, PC aa C38:0, eGFR and UACR⁷. We tested the following combinations: 1) two levels (ref + one level of omics: ref_GPS, ref_CpGs, ref_RNAs, ref Proteins and ref Metabolites); 2) three levels (ref + two levels of omics: ref_GPS_CpGs, ref_GPS_RNAs, ref_GPS_Proteins and ref_GPS_Metabolites); 3) four levels (ref + three levels of omics: ref_GPS_Proteins_Metabolites and ref_GPS_CpGs_Metabolites); 4) five levels (ref + four levels of omics: ref_GPS_CpGs_ Proteins Metabolites).

In the longitudinal analysis for F4 \rightarrow FF4, among 751 hyperglycemic individuals, there were 558 individuals with methylation data measurement. The missing values of the CpG sites in the extended replicated set of these 558 individuals were imputed with KNN and used in the prediction part.

Due to the incomplete sample size of different omics levels, we used bootstrapping to define training data and testing data. Among 751 individuals, after bootstrapping (replacement selection), the samples randomly selected (in bag) were used as training data, and the samples not selected (out of bag) were used as testing data. The numeric variables in the training data were scaled to a mean value of 0 and SD of 1, and the numeric variables in the testing data were scaled using the mean and SD value of the corresponding variable in the training data to avoid data leakage. We used the priority-Lasso ⁹⁹ to select predictors for combinations that included candidates from the extended replicated set. When the reference sets were ref₁, ref₂ and ref₃, SM C18:1 and PC aa C38:0 were also included in the predictor selection process.

To determine the optimal number of omics levels for prediction and to account for the influence of available sample size in each combination, we built predictive models with random forest (RF) by increasing the number of omics levels used in each combination. For when we selected predictors from the combination example. of ref_GPS_proteins_metabolites, the non-missing records of training data of these variables were used as corresponding training data, the non-missing records of testing data of these variables were used as corresponding testing data. As for the block order in priority-Lasso, ref + GPS was defined as block 1 and was forced into the model (not penalized), while the order of blocks (2 and 3) of proteins and metabolites was defined by cross-validation. The number of maximal coefficients in each block except block 1 was set to 5. The

penalization parameters λ in each block except block 1 were determined by maximizing AUC estimated in a 10-fold cross-validation. The selected proteins and/or metabolites together with ref + GPS were used to develop prediction models with RF. Under the combination of ref_GPS _proteins _metabolites, the respective RF models for 1) ref, 2) ref + GPS, 3) ref + GPS + selected proteins, 4) ref + GPS + selected metabolites, and 5) ref + GPS + selected proteins + selected metabolites were built. In this way, five prediction models were built using training dataset for this combination. The AUC values of respective models were computed for the testing data only.

RF models were fitted with the "randomForest" R-package, which implements Breiman's classic algorithm ¹⁰⁰. The two RF parameters, nTree (i.e., the number of trees to grow for each forest) and mTry (i.e., the number of input variables randomly chosen at each split), were set to 600 and the default setting (floor of square root of the number of features), respectively.

In total, we performed 100 runs of bootstrapping, i.e., the procedure described above was randomly repeated 100 times. The AUC values of RF models with identical omics numbers (ref, ref + GPS, ref + GPS + 10mics, etc) in each omics combination for each reference set were averaged and presented.

Identification of dominant molecules. To identify the dominant molecules of candidate proteins and metabolites for predicting incident CKD in hyperglycemia on top of various reference predictors, and to determine whether their predictive ability is independent of baseline eGFR and UACR values, we calculated the percentage of each candidate (protein or metabolite) that was selected as one of the top five dominant features from different combinations (i.e., ref_Proteins, ref_Metabolites, ref_GPS_Proteins, and ref_GPS_Metabolites and ref_GPS_Proteins_Metabolites) in all four ref sets. The objective here was different from that of mediation analysis, which sought to identify correlated molecules that were potentially involved in the same pathway to aid in biological understanding. By contrast, the former was searching for uncorrelated molecules but potentially interactive with one another to benefit the prediction of the outcome, which aided in personalized prediction. Additionally, the selected times and mean coefficients of priority-Lasso of the top five selected predictors for each combination for each reference set were presented.

 GPS_{eGFR} for incident CKDcrcc. We investigated the improvement of GPS_{eGFR} on top of reference sets for incident CKDcrcc in hyperglycemia. Briefly, the model building and AUC values calculation were as above. The boxplots of AUC values of the 100 runs for ref and ref + GPS in each reference set were presented.

Subgroup of CKD patients in hyperglycemia

We classified KORA F4 CKD patients with hyperglycemia using various combinations of variables (biomarkers, candidates and GPS) with uniform manifold approximation and projection (UMAP), and identified three distinct groups of CKD patients with three potential novel proteins. The number of CKD patients used for classification depends on the complete cases of the variables used. After classifying the groups, we explored their distinct patterns.

This study compared three potential novel proteins, numeric variables in the full model, serum LDL cholesterol, diastolic BP, 2-h glucose, HbA_{1C}, uric acid, creatinine, CST3, urine albumin, urine creatinine, eGFR, UACR values and candidates involved in eight T2DCKD processes among the generated classified groups. Variables with normal distribution were tested with the ANOVA and those with skewed distribution (HbA_{1C}, FG, triglyceride, creatinine, CST3, urine albumin, urine creatinine and UACR) were tested with the Kruskal-Wallis test. Pairwise comparison of numeric variables among groups was done by the Tukey's test for variables with normal distribution and the Dunn's test for variables with skewed distribution, respectively. The mean levels (scale values) of candidates in each classified group were visualized with heatmap, and the presented candidates were significant ones among groups from three potential novel proteins and candidates of eight T2DCKD processes.

The categorical variables (gender, prediabetes or T2D, eGFR based CKD, UACR based CKD, eGFR categories, UACR categories, CKD risk, eGFR decline > 30%, UACR increase > 30%, use of anti-hypertensive, ARBs, ACEIs, ARBs or ACEIs, anti-diabetic and lipid-lowering medication) were compared between groups using Pearson's chi-squared test or Fisher's exact test (when any theoretical frequency was less than one). The Cochran–Armitage test for trend was also applied if a variable with two categories and another ordinal variable with k categories, respectively.

Data and resource availability

The project agreement for this study was granted under K027/19g. The informed consent given by KORA study participants does not cover data posting in public databases. However, data are available upon request through the KORA-PASST (Project application self-service tool, <u>www.helmholtz-muenchen.de/kora-gen</u>) by means of a project agreement subject to approval by the KORA Board.

References

- Huang, J., et al. Machine Learning Approaches Reveal Metabolic Signatures of Incident Chronic Kidney Disease in Individuals With Prediabetes and Type 2 Diabetes. *Diabetes* 69, 2756-2765 (2020).
- 8. Huang, J., et al. Validation of Candidate Phospholipid Biomarkers of Chronic Kidney Disease in Hyperglycemic Individuals and Their Organ-Specific Exploration in Leptin Receptor-Deficient db/db Mouse. *Metabolites* **11**, 89 (2021).
- 9. Herder, C., et al. Proinflammatory Cytokines Predict the Incidence and Progression of Distal Sensorimotor Polyneuropathy: KORA F4/FF4 Study. *Diabetes care* **40**, 569-576 (2017).
- 10. Lechner, M., et al. CIDeR: multifactorial interaction networks in human diseases. *Genome Biology* **13**, R62 (2012).
- 11. Al Thani, A., et al. Qatar Biobank Cohort Study: Study Design and First Results. Am J Epidemiol **188**, 1420-1433 (2019).
- 17. Zheng, J., *et al.* Phenome-wide Mendelian randomization mapping the influence of the plasma proteome on complex diseases. *Nat Genet* **52**, 1122-1131 (2020).
- 18. Tangri, N., *et al.* A predictive model for progression of chronic kidney disease to kidney failure. *Jama* **305**, 1553-1559 (2011).
- 63. Association, A.D. 2. Classification and Diagnosis of Diabetes: Standards of Medical Care in Diabetes—2021. *Diabetes care* **44**, S15-S33 (2020).
- 64. Inker, L.A., *et al.* Estimating glomerular filtration rate from serum creatinine and cystatin C. *The New England journal of medicine* **367**, 20-29 (2012).
- 65. Stevens, P.E., Levin, A. & Kidney Disease: Improving Global Outcomes Chronic Kidney Disease Guideline Development Work Group, M. Evaluation and management of chronic kidney disease: synopsis of the kidney disease: improving global outcomes 2012 clinical practice guideline. *Ann Intern Med* **158**, 825-830 (2013).
- 66. Zeilinger, S., *et al.* Tobacco smoking leads to extensive genome-wide changes in DNA methylation. *PLoS One* **8**, e63812 (2013).
- 67. Lehne, B., *et al.* A coherent approach for analysis of the Illumina HumanMethylation450 BeadChip improves data quality and performance in epigenome-wide association studies. *Genome Biol* **16**, 37 (2015).
- 68. Aryee, M.J., *et al.* Minfi: a flexible and comprehensive Bioconductor package for the analysis of Infinium DNA methylation microarrays. *Bioinformatics* **30**, 1363-1369 (2014).
- 69. Human methylation450 dbsnp137. (Illumina).
- 70. Auton, A., et al. A global reference for human genetic variation. *Nature* **526**, 68-74 (2015).
- 71. Chen, Y.A., *et al.* Discovery of cross-reactive probes and polymorphic CpGs in the Illumina Infinium HumanMethylation450 microarray. *Epigenetics* **8**, 203-209 (2013).
- 72. Price, M.E., *et al.* Additional annotation enhances potential for biologically-relevant analysis of the Illumina Infinium HumanMethylation450 BeadChip array. *Epigenetics Chromatin* **6**, 4 (2013).
- 73. Schurmann, C., *et al.* Analyzing illumina gene expression microarray data from different tissues: methodological aspects of data analysis in the metaxpress consortium. *PLoS One* 7, e50938 (2012).
- 74. Gold, L., *et al.* Aptamer-based multiplexed proteomic technology for biomarker discovery. *PLoS One* **5**, e15004 (2010).
- 75. Kraemer, S., *et al.* From SOMAmer-based biomarker discovery to diagnostic and clinical applications: a SOMAmer-based, streamlined multiplex proteomic assay. *PLoS One* **6**, e26332 (2011).
- 76. Römisch-Margl, W., et al. Procedure for tissue sample preparation and metabolite extraction for high-throughput targeted metabolomics. *Metabolomics* **8**, 133-142 (2012).

- 77. Krumsiek, J., Suhre, K., Illig, T., Adamski, J. & Theis, F.J. Gaussian graphical modeling reconstructs pathway reactions from high-throughput metabolomics data. *BMC Syst Biol* **5**, 21 (2011).
- 78. Foygel, R. & Drton, M. Extended Bayesian Information Criteria for Gaussian Graphical Models. in *NIPS* (2010).
- 79. Baron, R.M. & Kenny, D.A. The moderator-mediator variable distinction in social psychological research: conceptual, strategic, and statistical considerations. *J Pers Soc Psychol* **51**, 1173-1182 (1986).
- 80. Tingley, D., et al. Mediation: R Package for Causal Mediation Analysis. Journal of Statistical Software **59**(2014).
- 81. Wuttke, M., *et al.* A catalog of genetic loci associated with kidney function from analyses of a million individuals. *Nat Genet* **51**, 957-972 (2019).
- 82. Euesden, J., Lewis, C.M. & O'Reilly, P.F. PRSice: Polygenic Risk Score software. *Bioinformatics* **31**, 1466-1468 (2015).
- 83. Sun, B.B., et al. Genomic atlas of the human plasma proteome. *Nature* **558**, 73-79 (2018).
- 84. Emilsson, V., et al. Co-regulatory networks of human serum proteins link genetics to disease. *Science* **361**, 769-773 (2018).
- 85. Draisma, H.H.M., *et al.* Genome-wide association study identifies novel genetic variants contributing to variation in blood metabolite levels. *Nat Commun* **6**, 7208 (2015).
- 86. Lotta, L.A., *et al.* A cross-platform approach identifies genetic regulators of human metabolism and health. *Nat Genet* **53**, 54-64 (2021).
- 87. Teumer, A., et al. Genome-wide association meta-analyses and fine-mapping elucidate pathways influencing albuminuria. *Nat Commun* **10**, 4130 (2019).
- 88. Suhre, K., *et al.* Connecting genetic risk to disease end points through the human blood plasma proteome. *Nat Commun* **8**, 14357 (2017).
- 89. Shin, S.Y., *et al.* An atlas of genetic influences on human blood metabolites. *Nat Genet* **46**, 543-550 (2014).
- 90. Buniello, A., *et al.* The NHGRI-EBI GWAS Catalog of published genome-wide association studies, targeted arrays and summary statistics 2019. *Nucleic Acids Research* **47**, D1005-D1012 (2019).
- 91. Staley, J.R., *et al.* PhenoScanner: a database of human genotype–phenotype associations. *Bioinformatics* **32**, 3207-3209 (2016).
- 92. Elsworth, B., et al. The MRC IEU OpenGWAS data infrastructure, (2020).
- Zhao, Q., Wang, J., Bowden, J. & Small, D. Statistical inference in two-sample summarydata Mendelian randomization using robust adjusted profile score. *Annals of Statistics* 48(2018).
- 94. Verbanck, M., Chen, C.Y., Neale, B. & Do, R. Detection of widespread horizontal pleiotropy in causal relationships inferred from Mendelian randomization between complex traits and diseases. *Nat Genet* **50**, 693-698 (2018).
- 95. Bowden, J., et al. Improving the visualization, interpretation and analysis of two-sample summary data Mendelian randomization via the Radial plot and Radial regression. Int J Epidemiol **47**, 1264-1278 (2018).
- 96. Yavorska, O.O. & Burgess, S. MendelianRandomization: an R package for performing Mendelian randomization analyses using summarized data. *Int J Epidemiol* **46**, 1734-1739 (2017).
- 97. Hemani, G., *et al.* The MR-Base platform supports systematic causal inference across the human phenome. *Elife* **7**(2018).
- 98. Myers, T.A., Chanock, S.J. & Machiela, M.J. LDlinkR: An R Package for Rapidly Calculating Linkage Disequilibrium Statistics in Diverse Populations. *Frontiers in Genetics* **11**(2020).
- 99. Klau, S., Jurinovic, V., Hornung, R., Herold, T. & Boulesteix, A.L. Priority-Lasso: a simple hierarchical approach to the prediction of clinical outcome using multi-omics data. *BMC Bioinformatics* **19**, 322 (2018).

100. Liaw, A. & Wiener, M. Classification and Regression by randomForest. *R News* **2**, 18--22 (2002).

Legends of Figure

Figure 1. Multi-omics signature associations with CKD, eGFR and UACR values in hyperglycemia

a-d, volcano plots of 4-level omics associations (P < 0.05) with CKD in hyperglycemic individuals of KORA F4. Odds ratios and *P*-values were from logistic regression analysis adjusted for full model (incl. age, sex, BMI, systolic BP, smoking status, triglyceride, total cholesterol, HDL cholesterol, fasting glucose, use of lipid lowering drugs, antihypertensive and anti-diabetic medication). The dashed lines represent FDR-corrected significance levels at 5%. Points with triangle shape represent replicated in additional study while those with circle shape represent not replicated.

e, venn plot of candidates used in T2D-related CKD subnetworks, replicated candidates, and FDR significant (FDR < 0.05) candidates from extended replicated set with eGFR (F4 or FF4) or UACR (F4 or FF4) values in hyperglycemic individuals of KORA F4. Extended replicated set was the union of candidates used in T2D-related CKD subnetworks and replicated candidates.

f, heatmap of regression coefficients for 97 omics molecules from extended replicated set with eGFR F4, follow-up eGFR, UACR F4, follow-up UACR, CKD F4 and incident CKD in hyperglycemic individuals of KORA F4. Regression coefficients were from linear regression analysis for eGFR and UACR values and from logistic regression analysis for CKD, which were all adjusted for full model.

Abbreviations: CKD, chronic kidney disease; eGFR, estimated glomerular filtration rate; UACR, urinary albumin-to-creatinine ratio; EWAS, TWAS, PWAS and MWAS, epigenome-, transcriptome-, proteome- and metabolome-wide association studies.

Figure 2. Interplay of four-level multi-omics molecules in hyperglycemia

a, DMOIN after clustering by the Markov Cluster Algorithm was presented. MOIN constructed with residuals of 96 candidates (extended replicated set except for SOMAmer probe CST3), three known biomarkers (CST3, creatinine, and urine albumin), and two metabolites (SM C18:1 and PC aa C38:0) using GGM, and then retained the edges connecting omics molecules belonging to different omics groups (i.e., GpGs, RNAs, Proteins, Metabolites, eGFRbiom and UACRbiom) and their corresponding nodes to get DMOIN. The residuals of omics molecules were calculated using linear regression models adjusted for full model (incl. age, sex, BMI, systolic BP, smoking status, triglyceride, total cholesterol, HDL cholesterol, fasting glucose, use of lipid lowering drugs, antihypertensive and anti-diabetic medication).

B, Scatter plots of mediation results of candidates and omic molecules (candidates and three known biomarkers) and eGFR values, in which each point represent the result of one mediation analysis. Each mediation analysis was adjusted for full model. Direction represents the omics type of one candidate to the omics type of another candidate within each triangle of mediation analysis. In the case of known biomarkers were involved, the color of points represents the position of one of three known biomarkers within each mediating triangle. The bigger size of points represents the direction was selected as best direction within the mediating triangle it comes from. The dashed lines represent FDR-corrected significance levels at 5%.

c, DMMOIN of eGFR (as Y), which is an overlapping network of DMOIN (a) and best mediation direction(s) of mediation results (b) and Supplementary Table 19 when eGFR was identified or treated as outcome in mediating triangle. Each edge represents one best mediation direction, e.g., B2M \rightarrow CST3 represents B2M \rightarrow CST3 \rightarrow eGFR. The width of the edge represents the mediation proportion in the corresponding mediation analysis.

In a, c, the color of the edge represents the weight of the correlation between two nodes calculated by GGM and the color of the node represents the omics group of the node.

Abbreviations: GGM, Gaussian graphical modeling; MOIN, multi-omics integration network; DMOIN, different levels of multi-omics integration network; DMMOIN, directed mediating multi-omics networks; eGFR, estimated glomerular filtration rate; UACR, urinary albumin-to-creatinine ratio; mito, T2DCKDmito subnetwork; adipo, T2DCKDadipo subnetwork; age, T2DCKDage subnetwork; angi, T2DCKDangi subnetwork; inna, T2DCKDinna subnetwork; ras, T2DCKDras subnetwork; tyr, T2DCKDtyr subnetwork; fibri, T2DCKDfibri subnetwork; EWAS, TWAS, PWAS, MWAS, epigenome-, transcriptome-, proteome-, and metabolome-wide association studies; candi, candidate.

Figure 3. GPS_{eGFR} in UKBB replication and hyperglycemic KORA F4 individuals, and its association and mediation with kidney traits and candidate biomarkers.

a, Density plot of GPS_{eGFR} in UKBB.

b, Stratification plots of GPS_{eGFR} decile and eGFR values in hyperglycemic population of KORA F4.

c, Forest plot of regression coefficients with 95% *CI* and *P*-values of GPS_{eGFR} with eGFR values (current and follow-up), *ORs* with 95% *CI* and *P*-values of GPS_{eGFR} with CKD (prevalent and incident) and eGFR-based CKD (prevalent and incident) in hyperglycemic population of KORA F4 is shown, respectively. Regression coefficients were from linear regression models for eGFR values and *ORs* were from logistic regression models for CKD, which all adjusted for full model (incl. age, sex, BMI, systolic BP, smoking status, triglyceride, total cholesterol, HDL cholesterol, fasting glucose, use of lipid lowering drugs, antihypertensive and anti-diabetic medication).

d, Volcano plot of associations between replicated candidates and GPS_{eGFR} in hyperglycemic individuals of KORA F4 is shown. Regression coefficients and *P*-values were from linear regression models adjusted for full models. The dashed lines represent FDR-corrected significance levels at 5%.

e, Scale values of candidate protein JAM2 in stratification of the KORA F4 hyperglycemic individuals according to GPS_{eGFR} deciles. The centers are the mean scale values of JAM2 and the error bar are the 95% confidence intervals.

f, Regression coefficients with 95% *CI* of GPS_{eGFR} to candidate protein JAM2 in full multivariable linear regression model using different percentile of sample size of hyperglycemic individuals of KORA F4 are shown, respectively. The centers represent the regression coefficients, while the error bars represent the 95% confidence intervals. Extreme GPS_{eGFR} is a strong risk factor for decreasing JAM2 levels in hyperglycemic individuals of KORA F4. The effect from linear regression model of GPS_{eGFR} on JAM2 is over fivefold in the extreme 5% of the sample when compared to the full data.

g, Scatter plots of mediation proportion (%) and sign of mediate & direct FDR significance of mediation results (average mediate effect FDR < 0.05) of each mediating triangle in a full adjusted nonparametric causal mediation analysis are shown, respectively. The triangle was composed of GPS_{eGFR} , GPS_{eGFR} associated candidate and kidney trait (eGFR values or CKD). The shape of the point represents the type of mediator (i.e., kidney trait or candidate) in the corresponding triangle. When kidney traits in KORA F4, candidate and kidney trait were used as potential mediator in each mediation analysis, respectively, and the best mediation result of them was shown.

Abbreviations: GPS_{eGFR}, genome-wide polygenic score of eGFR values; CKD, chronic kidney disease; eGFR, estimated glomerular filtration rate; CKDcrcc, eGFR-based CKD that was defined as eGFR < 60 ml/min/ 1.73 m^2 ; UKBB, UK biobank.

Figure 4. Two-sample MR evidence is suggestive of relationships between kidney traits (i.e., CKD, eGFR, UACR) and candidates (i.e., proteins and metabolites) in both directions.

a,b, Scatter plots of results of bi-directional two sample MR of replicated proteins and metabolites and kidney traits (i.e., CKD, eGFR, UACR), respectively. The dashed lines represent FDR-corrected significance levels at 5%.

Abbreviations: MR, Mendelian randomization; CKD, chronic kidney disease; CKDcrcc, CKD was defined by eGFR < 60 ml/min/1.73 m²; eGFR, estimated glomerular filtration rate; UACR, urinary albumin-to-creatinine ratio; IVW, inverse variance weighted; RAPS, robust adjusted profile score; MR-PRESSO, MR pleiotropy residual sum and outlier. Zh, genetic instruments of proteins selected from Zheng et al. ¹⁷.

Figure 5. Multi-omics prediction of incident CKD in hyperglycemic individuals of KORA F4.

a, Mean AUC values of predictive models built by ref_1 and $ref_1 + GPS/one$ omics within each two levels of omics combination for ref_1 over 100 times bootstrapping.

b, Mean AUC values of predictive models built by different levels of omics predictors within each omics combination for each reference set over 100 times bootstrapping.

In a-b, omics predictors (metabolites, proteins, RNAs, or CpGs) were selected by priority lasso in the corresponding omics combination for each reference set in each round in the training data. Within each omics combination, the set of selected and reference predictors were used to develop respective prediction models according to the increment of numbers of levels of omics predictors, e.g., if the omics combination selected predictors from five omics levels, the prediction models using predictors of ref, ref + GPS, ref + GPS + 10mics, ref + GPS + 20mics, ref + GPS + 30mics were built accordingly using training data, respectively. The AUC values were computed for the test data only. The mean AUC values of each predictive model of 100 times bootstrapping for each combination within each reference set were displayed in the plot. The mean values of samples size of training and testing data over 100 times bootstrapping are presented, e.g., 680 + 251 in two levels for ref₁ represent 680 is mean values of training samples size and 251 is mean values of testing samples size. **c**, The percentage of proteins and metabolites that were selected as the top five dominant features from combination of ref_Proteins, ref_Metabolites, ref_GPS_Proteins, ref_GPS_Metabolites, and ref_GPS_Proteins_Metabolites in four reference sets. The percentage was calculated as the number of selecting as the top five dominant features dividing the number of participating selection for each candidate.

d, Boxplots of AUC values of predictive models built by ref, and ref + GPS in four reference sets for incident CKDcrcc in hyperglycemia over 100 times bootstrapping, respectively. The AUC values were computed for the test data.

ref₁: baseline age, sex; ref₂: baseline age, sex, BMI, systolic BP, smoking status, triglyceride, total cholesterol, HDL cholesterol, fasting glucose, use of lipid lowering drugs, antihypertensive and anti-diabetic medication; ref₃: baseline age, sex, eGFR and UACR; ref₄ included age, FG, total cholesterol, SM C18:1, PC aa C38:0, eGFR and UACR.

Abbreviations: AUC, area under the receiver operating characteristic curve; GPS, genome wide polygenic score of eGFR values; CKD, chronic kidney disease; eGFR, estimated glomerular filtration rate; UACR, urinary albumin-to-creatinine ratio; CKDcrcc, eGFR-based CKD that was defined as eGFR < 60 ml/min/1.73 m².

Figure 6. Three potential novel biomarkers subgroup CKD patients with hyperglycemia and the unique pattern exploration in each group.

a, Scatter plot showed KORA F4 CKD patients with hyperglycemia were clustered into three groups based on the first and second components of UMAP using three potential novel proteins. $g_1: N = 22; g_2: N = 14; g_3: N = 23.$

b, Boxplots of values of three potential novel proteins, eGFR, natural log-transformed of UACR and uric acid across three groups of KORA F4 CKD patients with hyperglycemia.

c, Barcharts of percentage(s) of male, taking anti-hypertensive, ARBs or ACEIs medication, eGFR categories, UACR categories, eGFR decline > 30% and UACR increase > 30% in each group, respectively.

d, Heatmap of mean levels (scale value) of candidates in each subgroup was showed, and the presented candidates were the significant ones among three groups, which were from three potential novel proteins and 87 candidates used in eight processes. +, the relative average levels of the candidate in this group over 1.5 times of the relative average levels of this candidate of three groups; -, the relative average levels of this candidate in this group. The candidates marked with + / - were indicated as dominant candidates for this group.

e, The relative percentage of involved processes of the dominant candidates for each group. Relative % of one process = the number of dominant candidates involved in the specific process / the number of dominant candidates in this group.

The values of clinical variables here were not scaled and the values of candidates here were scaled.

Abbreviations: ARBs, taking angiotensin 2 receptor blockers; ACEIs, taking angiotensinconverting enzyme inhibitors; eGFRcla, eGFR categories; UACRcla, UACR categories; CKD, chronic kidney disease; eGFR, estimated glomerular filtration rate; UACR, urinary albumin-tocreatinine ratio; mito, T2DCKDmito subnetwork; adipo, T2DCKDadipo subnetwork; age, T2DCKDage subnetwork; angi, T2DCKDangi subnetwork; inna, T2DCKDinna subnetwork; ras, T2DCKDras subnetwork; tyr, T2DCKDtyr subnetwork; fibri, T2DCKDfibri subnetwork.

Extended Data

Extended Data Fig. 1. Study overview.

Abbreviations: CKD, chronic kidney disease; eGFR, estimated glomerular filtration rate; UACR, urinary albumin-to-creatinine ratio; GPS, genome-wide polygenic score; UKBB, UK biobank; 2SMR, two-sample Mendelian randomization; QBB, Qatar Biobank study; QMDiab, Qatar Metabolomics Study on Diabetes; T2DCKD, T2D related CKD; Cr, cross-sectional association; Long, longitudinal association; mito, T2DCKDmito subnetwork; adipo, T2DCKDadipo subnetwork; age, T2DCKDage subnetwork; angi, T2DCKDangi subnetwork; inna, T2DCKDfibri subnetwork; ras, T2DCKDras subnetwork; tyr, T2DCKDtyr subnetwork; fibri, T2DCKDfibri subnetwork; DMOIN, different levels of multi-omics integration network; DMMOIN, directed mediating multi-omics networks.

Extended Data Fig. 2 T2DCKDtyr

Extended Data Fig. 2. T2DCKDtyr subnetwork

Tyr-related T2DCKD activity network, which was built by literature research.

Abbreviations: T2DCKD, T2D related CKD; CKD, chronic kidney disease.

Extended Data Fig. 3

Extended Data Fig. 3. Protein EGFR associated with eGFR and UACR values and incident CKD associated candidates in KORA F4 hyperglycemic individuals.

a, scatter plots of protein EGFR (scale value) with scale values of eGFR F4, follow-up eGFR, UACR F4, follow-up UACR, respectively. The regression fitted lines were shown and the corresponding slopes were calculated with adjusting for the full model (incl. age, sex, BMI, systolic BP, smoking status, triglyceride, total cholesterol, HDL cholesterol, fasting glucose, use of lipid lowering drugs, antihypertensive and anti-diabetic medication).

b, volcano plot of omics molecules from extended replicated set with incident CKD in hyperglycemic individuals of KORA F4. Regression coefficients were from logistic regression analysis for incident CKD, which were adjusted for the full model. The dashed line represents FDR-corrected significance level (5%). FDR of each omics molecule was calculated within each omics level.

Abbreviations: CKD, chronic kidney disease; eGFR, estimated glomerular filtration rate; UACR, urinary albumin-to-creatinine ratio.

Extended Data Fig. 4

Extended Data Fig. 4. Multi-omics integration network

Multi-omics integration network built with residuals of 96 candidates (extended replicated set except for SOMAmer probe CST3), three known biomarkers (CST3, creatinine, and urine albumin), and two metabolites (SM C18:1 and PC aa C38:0) using GGM. The residuals of omics molecules were calculated with linear regression models adjusted for the full model (i.e., age, sex, BMI, systolic BP, smoking status, triglyceride, total cholesterol, HDL cholesterol, fasting glucose, use of lipid-lowering drugs, antihypertensive and anti-diabetic medication). The color of the edge represents the weight of the correlation between two nodes and the color of the node represents the omics group of the node.

Abbreviations: GGM, Gaussian graphical modeling; eGFR, estimated glomerular filtration rate; UACR, urinary albumin-to-creatinine ratio.

Extended Data Fig. 5

Extended Data Fig. 5. Candidate proteins and three known biomarkers identified as main mediators.

a, Scatter plots of mediation results of candidates and candidates and kidney traits (as X or Y). Direction represents the direction of the omics types of the corresponding two candidates in the mediating triangle.

b, Scatter plots of mediation results of candidates and three known biomarkers (CST3, creatinine and urine albumin) and kidney traits (as X or Y). The colors of the points represent the position of the known biomarker in the triangle of mediation analysis.

c, Scatter plots of mediation results of candidate \rightarrow eGFR \rightarrow candidate. Direction represents the direction of the omics types of the corresponding two candidates in the mediating triangle.

d, Scatter plots of mediation results of candi \rightarrow kidney trait \rightarrow known and known \rightarrow kidney trait \rightarrow candi. Known biomarkers include CST3, creatinine and urine albumin.

Each point represents the result of one mediation analysis. Each mediation analysis was adjusted full model (i.e., age, sex, BMI, systolic BP, smoking status, triglyceride, total cholesterol, HDL cholesterol, fasting glucose, use of lipid lowering drugs, antihypertensive and anti-diabetic medication). Kidney traits include CKD, eGFR and UACR. The bigger size of points represents the direction was selected as best direction in the mediating triangle it belongs to. X, M, Y represent independent variable, mediator and outcome in the mediating triangle: $X \rightarrow M \rightarrow Y$, respectively. The dashed lines represent FDR-corrected significance levels at 5%.

Abbreviations: CKD, chronic kidney disease; eGFR, estimated glomerular filtration rate; UACR, urinary albumin-to-creatinine ratio; candi, candidate.

Kidney trait -> omics1 -> omics2 omics1 -> Kidney trait -> omics2 omics1-> omics2 -> Kidney trait

Extended Data Fig. 6. Directed mediating multi-omics networks

DMMOINs are overlapped networks of DMOIN (Fig. 2a) and best mediation direction(s) of mediation results (Supplementary Tables 17-19) separating for each kidney trait and the position of kidney trait in the mediating triangle. Each edge represents one best mediation direction, e.g., B2M \rightarrow CST3 when kidney trait was eGFR and the position of kidney trait was X in mediating triangle, it represents eGFR \rightarrow CST3 \rightarrow B2M.

The width of the edge represents the mediation proportion in each mediation analysis. The color of the edge represents the weight of the correlation between two nodes calculated by GGM and the color of the node represents the omics group of the node.

Abbreviations: GGM, Gaussian graphical modeling; DMMOIN, directed mediating multi-omics integration networks; CKD, chronic kidney disease; eGFR, estimated glomerular filtration rate;

UACR, urinary albumin-to-creatinine ratio; EWAS, TWAS, PWAS and MWAS, epigenome-, transcriptome-, proteome- and metabolome-wide association studies.

Extended Data Fig. 7

Extended Data Fig. 7. Genome-wide polygenic score of eGFR values in discovery KORA F4 cohort and KORA S4 testing samples.

a, Distribution of GPS_{eGFR} in KORA F4 general population. eGFR values in stratification of the KORA F4 individuals according to GPS_{eGFR} deciles. Scatter plots of GPS_{eGFR} and eGFR values in general population of KORA F4. The slope of regression fitted line was calculated with adjusting for age, sex, and the first four principal components of genetic data.

b, Distribution of GPS_{eGFR} in KORA S4 testing samples. Stratification plot of GPS_{eGFR} decile and eGFR values in KORA S4 testing samples. Scatter plots of GPS_{eGFR} and eGFR values in KORA S4 testing samples. The slope of regression fitted line was calculated with adjusting for age, sex, and the first four principal components of genetic data.

Abbreviations: GPS, genome-wide polygenic score of eGFR values; eGFR, estimated glomerular filtration rate.

Extended Data Fig. 8 64 replicated candidates Genetic support No genetic (i.e.MR, GPS) support Directions with eGFR Long and Cr asso with and/or UACR eGFR and/or UACR in KORA wo directions(ol) one direction(uni) two directions(ol) one direction(uni) b processes (key) omics potential novel group eGFR->candi->eGFR TNFRSF1A,FSTL3 NBL1, JAM2, SCARF1 eGFR->candi->UACR C14:2,C8:1 (uni) eGFR->candi TNFRSF1B,CTSH (uni) candi->eGFR CST3 • (uni) candi->UACR ERBB3 (uni) candi->eGFR&UACR B2M GHR,IGF2R,MMP1* EFNA5,CLEC4M,RET,CTSV,IGF2R eGFR-Cr&Long EGFR UACR-Cr&Long eGFR-Cr&UACR-Long EGFR UACR-Cr&eGFR-Long GHR CLEC4M,CTSV (uni) eGFR-Cr PLAT (uni) UACR-Cr NAPA LYSMD2,NAPA (uni) eGFR&UACR-Cr NOTCH1 TFE3 (uni) eGFR-Long FGF9

Extended Data Fig. 8. Characteristics of replicated multi-omics candidates of CKD with hyperglycemia according to eGFR and/or UACR values-based evidence.

a, Diagram depicting the subdivision of 64 replicated candidates based on different supporting evidence with eGFR and/ or UACR values.

b, The key omics candidates, potential novel candidates identified from our study, and processes involved in eight subnetworks in each group are presented. Green and purple colors denote groups defined by genetic evidence support with eGFR and/or UACR from 2SMR or GPS, and associations (i.e., cross-sectional and longitudinal) with eGFR and/or UACR from the KORA study, respectively. Candidates that were annotated to the most T2DCKD processes were defined

as the key omics candidates in each group. If there were no candidates annotated to eight processes in a group, the omics candidates in this group were shown in the cell of "key omics."

* MMP1: MMP1 was potentially causal with CKD by 2SMR, but no causal relationship was supported for eGFR or UACR.

Abbreviations: 2SMR, two-sample Mendelian randomization; GPS, genome wide polygenic score of eGFR values; CKD, chronic kidney disease; eGFR, estimated glomerular filtration rate; UACR, urinary albumin-to-creatinine ratio; ov: candidates in this group may overlap with other groups in case of two directions; uni: candidates in this group were unique with other groups in case of one direction; Cr, cross-sectional association; Long, longitudinal association; mito, T2DCKDmito process; adipo, T2DCKDadipo process; age, T2DCKDage process; angi, T2DCKDangi process; inna, T2DCKDinna process; ras, T2DCKDras process; tyr, T2DCKDtyr process; fibri, T2DCKDfibri process; T2DCKD, T2D related CKD.

Extended Data Fig. 9. Potential relevant molecular pathways revealed from multi-omics molecules: examples given.

a, Mediation results between SLC22A4, IL19 and CKD F4.

b, Pathway exploration of IL19 \rightarrow *SLC22A4* \rightarrow CKD and CKD \rightarrow *SLC22A4* \rightarrow IL19.

c, Hierarchical plot of overlapped DMMOINs and candidates that were MR-supported causal to kidney trait.

Extended Data Fig. 9

d, Hierarchical plot of overlapped DMMOINs and candidates that were suggested MR-supported causal from kidney trait.

In c and d, the edges within each mediating triangle are presented. Only one edge will be presented if there are multiple edges linking two nodes from different mediating triangles. The color of edges represents the direction of KORA observational association between two nodes.

e, Pathway exploration of Tyr \rightarrow IGFBP2 \rightarrow GFR.

Abbreviations: GGM, Gaussian graphical modeling; DMMOIN, directed mediating multiomics networks; MR, Mendelian randomization; CKD, chronic kidney disease; CKDcrcc, CKD was defined by eGFR < 60 ml/min/1.73 m²; eGFR, estimated glomerular filtration rate; TWAS, PWAS and MWAS, transcriptome-, proteome- and metabolome-wide association studies.

SUPPLEMENTAL MATERIAL

Full Title: Multi-omics landscape of chronic kidney disease in individuals with prediabetes or type 2 diabetes: from associations towards precision medicine

Supplementary Tables

Supplementary Table 1. Characteristics of the discovery study participants

KORA F4 hyperglycemic participants used for EWAS, TWAS, PWAS and MWAS were classified according to their CKD status, respectively. KORA F4 participants used for building GPS of eGFR are shown. Mean \pm standard deviation or median [25th–75th percentile] is provided for quantitative variables if not indicated otherwise. Unless indicated, *P*-values express the difference between CKD cases and non-CKD controls and were calculated by univariate logistic regression. *P*-values shown in bold represent statistical significance at 0.05 level.

Abbreviations: CKD, chronic kidney disease; HbA_{1c}, glycated hemoglobin; HDL, high-density lipoprotein; LDL, low-density lipoprotein; 2-h glucose, two hour post load glucose; BP, blood pressure; eGFR, estimated glomerular filtration rate; UACR, urinary albumin-to-creatinine ratio; EWAS, TWAS, PWAS, MWAS, epigenome-, transcriptome-, proteome-, and metabolome-wide association studies; GPS, genome-wide polygenic score.

					Ну	perglycemic individual	ls of KORA F4 (N = 140	1)					General population of KORA F4
Clinical.variables		EWAS			TWAS			PWAS			MWAS		Genotyping
	CKD	Non-CKD	p-value	CKD	Non-CKD	p-value	CKD	Non-CKD	p-value	CKD	Non-CKD	p-value	
Sample Size (n)	166	802		206	471		59	459		282	1096		2757
Age, years	67.95 ± 7.2	62.68 ± 8.37	1.373E-12	73.55 ± 5.33	69.79 ± 4.89	4.718E-16	65.42 ± 7.25	60.91 ± 7.51	3.361E-05	69.71 ± 9.86	60.75 ± 10.95	1.245E-28	56.3 ± 13.22
Sex, male, %	60.24	54.86	2.046E-01	52.43	52.65	9.566E-01	61.02	54.25	3.263E-01	54.26	56.66	4.679E-01	48.1
BMI, kg/m2	30.85 ± 5.39	29.29 ± 4.72	2.404E-04	30.31 ± 4.94	29.28 ± 4.42	8.016E-03	30.66 ± 5.44	29.08 ± 4.72	2.056E-02	30.31 ± 5.25	29.12 ± 4.73	3.234E-04	27.58 ± 4.82
HbA1c (%)	6.24 ± 1.12	5.81 ± 0.57	9.844E-10	6.14 ± 0.94	5.87 ± 0.64	5.816E-05	6.2 ± 1.21	5.77 ± 0.5	4.654E-05	6.14 ± 0.99	5.79 ± 0.58	2.188E-11	5.55 ± 0.62
Fasting glucose, mg/dl	120.25 ± 33.16	106.76 ± 19.7	3.503E-09	116.78 ± 31.31	108.39 ± 22.1	2.321E-04	118.98 ± 32.1	106.2 ± 17.25	3.075E-05	116.22 ± 31.17	106.38 ± 19.62	3.673E-09	98.34 ± 19.63
2-h glucose, mg/dl	143.7 ± 56.68	134.81 ± 41.72	5.198E-02	145.05 ± 52.09	139.89 ± 42.1	2.400E-01	135.1 ± 50.33	134.08 ± 42.16	8.856E-01	141.11 ± 51.33	132.66 ± 42.55	1.436E-02	112.25 ± 39.19
Systolic BP, mmHg	132.4 ± 24.26	128.29 ± 17.49	1.092E-02	131.04 ± 25.3	129.95 ± 17.47	5.173E-01	130.27 ± 22.56	127.35 ± 17.86	2.533E-01	130.19 ± 23.12	127.58 ± 17.33	3.698E-02	122.21 ± 18.38
Diastolic BP, mmHg	75.43 ± 11.9	76.94 ± 9.9	8.561E-02	72.39 ± 11.42	74.74 ± 9.52	5.939E-03	76.08 ± 11.58	77.42 ± 9.53	3.224E-01	73.58 ± 11.46	76.95 ± 9.91	1.256E-06	75.06 ± 9.91
Triglyceride, mg/dl	146 [99.25 - 204]	122 [89 - 176]	2.169E-01	129.5 [92 - 182.5]	117 [88 - 161]	2.206E-01	135 [96 - 194.5]	120 [87 - 179]	7.512E-01	128.5 [94.25 - 185.5]	121 [87 - 171]	6.986E-01	104 [72 - 150]
Total cholesterol, mg/dl	213.24 ± 43.57	223.08 ± 40.21	4.976E-03	213.53 ± 42.5	221.72 ± 40.53	1.804E-02	210.03 ± 34.62	223.15 ± 40.87	1.904E-02	211.71 ± 42.69	220.86 ± 40.04	8.075E-04	216.02 ± 39.71
HDL cholesterol, mg/dl	50.17 ± 13.07	53.93 ± 13.77	1.399E-03	51.35 ± 12.96	54.58 ± 13.84	4.925E-03	49.63 ± 12.79	54.41 ± 14.3	1.531E-02	50.64 ± 13.1	53.16 ± 13.75	5.951E-03	56.05 ± 14.47
LDL cholesterol, mg/dl	133.42 ± 35.98	142.26 ± 36.18	4.389E-03	133.75 ± 34.56	140.79 ± 35.26	1.695E-02	133.88 ± 29.04	141.68 ± 36.31	1.135E-01	133.24 ± 34.82	141.57 ± 35.55	4.769E-04	135.99 ± 34.9
eGFR, mL/min/1.73 m ²	65.7 ± 21.26	87.06 ± 13.36	2.216E-33	60.77 ± 16.88	80.77 ± 11.57	2.387E-33	69.21 ± 21.17	88.5 ± 13.1	1.210E-14	65.8 ± 20.09	88.41 ± 14.21	2.135E-54	90.36 ± 18.31
Follow-up eGFR, mL/min/1.73 m	56.66 ± 21.52	76.32 ± 16.2	1.744E-20 a	52.79 ± 17.82	69.12 ± 14.59	2.008E-14 a	57.13 ± 21.54	77.64 ± 15.43	5.622E-18 a	58.26 ± 21.73	78.82 ± 16.91	1.152E-28 a	83.26 ± 18.39
UACR, mg/g	38.66 [12.44 - 79.27]	6.02 [3.91 - 10.71]	1.163E-29	38.64 [12.71 - 88.43]	7.1 [4.38 - 12.07]	2.831E-25	36.31 [9.57 - 69.35]	5.63 [3.85 - 9.14]	1.872E-14	40.61 [13.91 - 79.89]	6.02 [3.87 - 10.54]	3.265E-49	5.98 [3.67 - 11.84]
Follow-up UACR, mg/g	23.45 [8.52 - 132.35]	5.74 [3.68 - 10.68]	4.800E-31 a	23.54 [9 - 150.46]	6.17 [3.87 - 13.19]	3.477E-18 a	23.51 [8.52 - 113.92]	5.68 [3.62 - 10.64]	6.711E-22 a	25.57 [9.75 - 131.98]	5.45 [3.36 - 9.92]	1.841E-46 a	4.85 [3.14 - 9.37]
Smoking, %			7.111E-01		'	3.974E-01		'	8.475E-01		•	5.717E-01	0.15
Non-smoker	39.16	42.52	Ref.	45.15	50.32	Ref.	38.98	42.7	Ref.	40.43	42.34	Ref.	41.28
Former smoker	48.19	45.01	4.111E-01	48.06	42.89	1.995E-01	47.46	43.79	5.659E-01	46.81	43.89	4.407E-01	40.88
Current smoker	12.65	12.47	7.253E-01	5.83	6.79	8.997E-01	13.56	13.51	8.275E-01	12.06	13.78	6.873E-01	17.7
Medication usage, %													
Lipid-lowering	32.53	18.95	1.044E-04	27.67	25.48	5.041E-01	30.51	15.9	6.630E-03	27.3	17.52	1.947E-04	12.84
Antihypertensive	76.51	44.64	1.172E-12	79.61	56.05	7.460E-09	77.97	39.22	2.171E-07	74.11	41.79	1.055E-20	31.08
Anti-diabetic	28.31	9.85	6.380E-10	22.33	12.74	1.481E-03	25.42	8.06	8.149E-05	23.05	8.58	4.851E-11	5.8
ata are means ± SD for quantitative variab assified according to their CKD status. P-v	les or median [25th-75th alues were calculated by	percentile] unless otherwi univariate logistic regressi	se indicated. Hypergly on if not indicated oth	cemic participants of KO erwise. a. P-values calcu	RA F4 were lated								

Supplementary Table 2. CKD - EWAS results in hyperglycemic individuals of KORA: top 20 CpGs and their replication

ORs with 95% *CI*, *P*-values of top 20 CpGs with prevalent CKD in discovery study of hyperglycemic individuals of KORA F4 and the replication study of KORA F3 are shown, respectively. In the discovery study, *ORs* and *P*-values were from logistic regression analysis adjusted for age, sex, BMI, systolic blood pressure, smoking status, triglyceride, total cholesterol, HDL cholesterol, fasting glucose, use of lipid lowering drugs, antihypertensive and anti-diabetic medication.

Abbreviations: CKD, chronic kidney disease; *OR*s, odds ratios; T2DCKDmito, T2D-related CKD subnetwork of mitochondrial dysfunction; angi, T2D-related CKD subnetwork of angiogenesis; fibri, T2D-related CKD subnetwork of extracellular matrix deposition and renal fibrosis; inna, T2D-related CKD subnetwork of innate immune response; adipo, T2D-related CKD subnetwork of adipokine influence.

Rank	cg ID	UCSC		Discovery cohort : KORA F4 OP = OP = 5% (L () $OP = 5%$ (L = a value				potential involed	Replicati	on cohort : KORA	F3 (general po	pulation)	Replicated	Reported	
		Ref/Nearest Gene	Note of CpGs with SNPs in the probe-binding sequence And cross-specific probes	OR	OR 95% CI (L	.) OR 95% CI (U)	<i>p</i> -value	processes of T2D- related CKD	OR	OR 95% CI (L)	OR 95% CI (U)	<i>p</i> -value		associations with CKD or related kidney traits for replicated candidates	Extended replicated set
1	cg22872478	LYSMD2		0 66	0 55	0 78	3.386E-06		0 49	0 24	0 99	4.748E-02	yes	no	yes
2	cg12650490	LYL1		1 58	1 30	1 92	3.544E-06	T2DCKDangi	0 8	0 47	1 38	4 291E-01	no	-	yes
3	cg12837173	MEG9		0 65	0 54	0 78	5.413E-06		1 11	0 55	2 24	7 734E-01	no	-	no
4	cg04070692	TUBGCP2		0 64	0 53	0 78	8.060E-06		1 21	0 66	2 22	5 436E-01	no	-	no
5	cg11072723	ERP29		0 69	0 58	0 81	1.085E-05		0 76	0 36	1 62	4 801E-01	no	-	no
6	cg06655560	ZDHHC16		1 54	1 27	1 86	1.174E-05		1	0 51	1 97	9 973E-01	no	-	no
7	cg26796069	MAF1		0 68	0 57	0 80	1.189E-05		1 05	0 55	2 01	8 790E-01	no	-	no
8	cg15604682	ALKBH4	with SNPs in the probe-binding sec	1 53	1 26	1 85	1.435E-05		0 74	0 42	13	2 928E-01	no	-	no
9	cg02599385	TLN2		0 71	0 60	0 83	1.535E-05	T2DCKDfibri	1	0 54	1 82	9 876E-01	no	-	yes
10	cg23314866	NAPA		0 66	0 54	0 79	1.541E-05	T2DCKDmito	0 12	0 02	0 53	5.782E-03	yes	no	yes
11	cg18524934	NEURL3		0 68	0 57	0 81	1.571E-05	T2DCKDinna	0 88	0 44	1 79	7 297E-01	no	-	yes
12	cg03498175	ACSL1		1 76	1 38	2 31	1.676E-05	T2DCKDadipo,-mito	0 89	0 49	16	6 901E-01	no	-	yes
13	cg19719475	UBE2E1		0 67	0 56	0 81	1.782E-05		0 72	0 41	1 27	2 597E-01	no	-	no
14	cg20923676	ALS2CR8	cross specific probe	1 56	1 28	1 93	1.981E-05		0 88	0 52	1 48	6 243E-01	no	-	no
15	cg07546360	LOC400931		0 65	0 53	0 79	2.052E-05		1	0 55	1 81	9 976E-01	no	-	no
16	cg03251287	<u>NR1H2</u>		0 35	0 21	0 55	2.081E-05		11	0 5	2 41	8 197E-01	no	-	no
17	cg04766136	CCDC39		1 44	1 22	1 71	2.107E-05	T2DCKDmito	0 95	0 5	1 78	8 623E-01	no	-	yes
18	cg04671476	MGAT1		0 67	0 56	0 81	2.402E-05		1 39	0 6	3 23	4 474E-01	no	-	no
19	cg19497517	PLEC1		0 66	0 54	0 80	2.404E-05		1 38	0 73	2 61	3 205E-01	no	-	no
20	cg04022194	HTRA3		1 53	1 26	1 86	2.427E-05		1 42	0 81	2 49	2 235E-01	no	-	no

Supplementary Table 3. CKD - TWAS results in hyperglycemic individuals of KORA: top 20 RNAs and their replication

ORs with 95% *CI*, *P*-values of top 20 RNAs with prevalent CKD in discovery study of hyperglycemic individuals of KORA F4 and the replication study of KORA F3 are shown, respectively. In the discovery study, *ORs* and *P*-values were from logistic regression analysis adjusted for age, sex, BMI, systolic blood pressure, smoking status, triglyceride, total cholesterol, HDL cholesterol, fasting glucose, use of lipid lowering drugs, antihypertensive and anti-diabetic medication.

Abbreviations: CKD, chronic kidney disease; *ORs*, odds ratios; T2DCKDmito, T2D-related CKD subnetwork of mitochondrial dysfunction; T2DCKDadipo, T2D-related CKD subnetwork of adipokine influence; T2DCKDangi, T2D-related CKD subnetwork of angiogenesis; T2DCKDinna, T2D-related CKD subnetwork of innate immune response; T2DCKDras, T2D-related CKD subnetwork of renin-angiotensin system dysfunction; T2DCKDtyr, T2D-related CKD subnetwork of Tyr; T2DCKDfibri, T2D-related CKD subnetwork of extracellular matrix deposition and renal fibrosis.

Rank	name	Matched CHR	Matched Gene		Discovery cohort : KORA F4 pote		potential involed processes of T2DCKD	Rep	lication cohort	: KORA F3 (general p	opulation)	Replicated	Reported associations		
				OR	OR 95% CI (L)	OR 95% CI (U)	p-value		OR	OR 95% CI (L)	OR 95% CI (U)	p-value	-	with CKD or related kidney traits for	Extended replicated set
1	ILMN_1764826	Х	TFE3	1 59	1 30	1 95	7.304E-06	T2DCKDadipo,-fibri,-inna	2 14	1 42	3 29	3.349E-04	yes	no	yes
2	ILMN_1685057	5	SLC22A4	1 56	1 28	1 91	1.196E-05	T2DCKDmito	1 41	1 01	1 99	4.190E-02	yes	PMID: 33907247	yes
3	ILMN_1806818	6	MCM3	0 65	0 53	0 79	2.388E-05	T2DCKDinna	0 70	0 48	1 02	6 310E-02	no	-	yes
4	ILMN_1811195	19	ZNF211	0 67	0 55	0 80	3.065E-05		1 42	0 96	2 13	7 828E-02	no	-	no
5	ILMN_1683942	5	PCDHB2	1 49	1 23	1 80	3.980E-05		1 28	0 86	1 90	2 210E-01	no	-	no
6	ILMN_1809859	17	PCGF2	1 47	1 22	1 78	4.899E-05	T2DCKDangi	-	-	-	-	-	-	yes
7	ILMN_1812070	7	ABCB1	0 67	0 55	0 81	5.311E-05	T2DCKDras	1 1 1	0 76	1 62	5 771E-01	no	-	yes
8	ILMN_1687495	21	SLC37A1	0 68	0 56	0 82	6.996E-05		1 25	0 85	1 85	2 515E-01	no	-	no
9	ILMN_2211780	4	SLC25A4	0 69	0 57	0 83	7.154E-05	T2DCKDmito	-	-	-	-	-	-	yes
10	ILMN_1731206	5	NKD2	1 47	1 21	1 80	1.191E-04	T2DCKDfibri	1 41	0 96	2 08	7 902E-02	no	-	yes
11	ILMN_1740171	2	DUSP11	0 69	0 58	0 83	1.200E-04	T2DCKDinna	1 40	0 95	2 10	9 356E-02	no	-	yes
12	ILMN_1838187	12	SYT1	1 45	1 20	1 76	1.512E-04		1 03	0 71	1 50	8 707E-01	no	-	no
13	ILMN_1656563	2	PAX8	1 45	1 20	1 76	1.513E-04	T2DCKDfibri,-tyr,-angi	0 69	0 43	1 05	1 030E-01	no	-	yes
14	ILMN_2244653	1	CDC14A	1 44	1 19	1 74	1.548E-04	T2DCKDmito	-	-	-	-	-	-	yes
15	ILMN_1772645	7	AGK	0 70	0 58	0 84	1.592E-04	T2DCKDmito,-angi	1 09	0 74	1 62	6 487E-01	no	-	yes
16	ILMN_1712613	10	PNLIPRP2	1 44	1 19	1 75	1.669E-04	T2DCKDadipo	-	-	-	-	-	-	yes
17	ILMN_2205032	Х	MAGEE1	0 70	0 58	0 84	1.944E-04		-	-	-	-	-	-	no
18	ILMN_2396292	7	ZNF655	0 70	0 58	0 84	2.383E-04		-	-	-	-	-	-	no
19	ILMN 1812281	6	ARG1	1 40	1 17	1 69	2.598E-04	T2DCKDinna	1 28	0 90	1 80	1 647E-01	no	-	yes
20	ILMN_1810228	1	TTF2	0 71	0 59	0 85	2.679E-04	T2DCKDinna	0 91	0 60	1 36	6 393E-01	no	-	yes

Supplementary Table 4. CKD - PWAS identified 63 proteins in hyperglycemic individuals of KORA and their replication

ORs with 95% CI, P-values and FDR of 63 proteins (FDR < 0.05) with prevalent CKD in discovery study of hyperglycemic individuals of KORA F4, and regression coefficients, standard error and P-values of 63 proteins with prevalent CKD in replication studies of QBB and QMDiab are shown, respectively. In the discovery study, ORs and P-values were from logistic regression analysis adjusted for age, sex, BMI, systolic blood pressure, smoking status, triglyceride, total cholesterol, HDL cholesterol, fasting glucose, use of lipid lowering drugs, antihypertensive and anti-diabetic medication.

Abbreviations: CKD, chronic kidney disease; *ORs*, odds ratios; T2DCKDmito, T2D-related CKD subnetwork of mitochondrial dysfunction; T2DCKDadipo, T2D-related CKD subnetwork of adipokine influence; T2DCKDage, T2D-related CKD subnetwork of advanced glycation end products; T2DCKDangi, T2D-related CKD subnetwork of angiogenesis; T2DCKDinna, T2D-related CKD subnetwork of innate immune response; T2DCKDras, T2D-related CKD subnetwork of renin-angiotensin system dysfunction; T2DCKDtyr, T2D-related CKD subnetwork of extracellular matrix deposition and renal fibrosis.

Daul	Comold	Entre Constructed	TownstEallNorm			Dimension	whent - KODA F4		extential involution of T2DCFD		Dealisation	and and a OPP			n	anliantian ashart . (OMD:-L	Doublested sugar 1	Departed essentiations	
Kalik	Soliaiu	EntrezGenesymbol	Targetrunvanie	OR	OR 95% CL (I) OR 95%CL	n-value	FDR	potential involed processes of 12DCRD	OR	OR 95% CL (L)	OR 95% CI	n-value	OR	OR 95%	OR 95% CI (II)	n-value	Replicated overa 1	with CKD or related	Extended replicated
				on	01 55 70 (1	(U)	p - ruide			0.	on 357001 (L)	(U)	produce	0A	CI (L)	01 55 7001 (0)	p - runa		kidney traits for	set
1	SL001777	CST3	Cystatin-C	2.98	2.09	4 38	5.404E-09	5.917E-06	T2DCKDras -adino -mito -fibri -inna -tvr -angi	18.24	5.48	60.75	2.234E-06	8.46	3.00	23.88	5.534E-05	VPS	MID: 31 01049	VPS
2	SL002644	EGFR	Enidermal growth factor recentor	0.34	0.23	0.50	1 193E-07	5 237E-05	T2DCKDras -mito -fibri -inna	0.49	0.24	0.98	4.478E-02	0.70	0.34	1.44	3.32 E-01	VPS	PMID: 24705402	ves
3	SL000283	B2M	Beta-2-microglobulin	2.52	1.81	3.61	1.435E-07	5 237E-05	T2DCKDageinna	9.05	3.45	23.77	7.734E-06	4.13	1.70	10.04	1.790E-03	ves	PMID: 31701049	ves
4	SL003522	ERP29	Endoplasmic reticulum resident protein 29	2.74	1.87	4.14	6.477E-07	1.773E-04	T2DCKDtyr	3.79	1.80	7.96	4.456E-04	2.63	1.46	4.75	1.282E-03	yes	PMID:33888746	yes
			Tumor necrosis factor receptor superfamily member						· · ·											
5	SL001992	TNFRSF1A	1A	1.96	1.48	2.64	3 884E-06	8.506E-04	T2DCKDadipo,-fibri,-inna,-angi	7.18	2.97	17.35	1.167E-05	2.27	1.39	3.71	1.120E-03	yes	PMID: 26200946	yes
			Complement component 1 Q subcomponent-binding																	
6	SL008177	C1QBP	protein, mitochondrial	0.44	0.30	0.62	5.343E-06	9.750E-04	T2DCKDmito,-fibri,-inna	0.70	0.34	1.42	3.236E-01	1.06	0.54	2.08	8.627E-01	no	-	yes
7	SL005156	NBL1	Neuroblastoma suppressor of tumorigenicity 1	1.85	1.42	2.43	6.509E-06	1 018E-03		8.03	3.12	20.65	1.553E-05	8.79	2.90	26.63	1.217E-04	yes	no	yes
8	SL002519	ERBB3	Receptor tyrosine-protein kinase erbB-3	0.42	0.28	0.60	8 286E-06	1 134E-03	T2DCKDras,-mito,-angi	0.32	0.16	0.67	2.367E-03	0.34	0.14	0.83	1.826E-02	yes	PMID:33888746	yes
9	SL005160	ESAM	Endothelial cell-selective adhesion molecule	2.08	1.52	2.92	1 030E-05	1 135E-03	T2DCKDadipo,-angi	5.57	2.46	12.63	3.937E-05	2.03	0.90	4.58	8.808E-02	yes	PMID:29804241	yes
			Tumor necrosis factor receptor superfamily member																	
10	SL001800	INFRSFIB	IB	1.98	1.47	2./1	1 03/E-05	1 135E-03	12DCKDadipo,-non,-nna,-angi	4.31	1.98	9.38	2.252E-04	1.19	0.72	1.95	4.980E-01	yes	PMID: 26200946	yes
11	SL005172	GFBP0	Insulin-like growin factor-binding protein 6	2.11	1.52	2.98	1 295E-05	1 189E-05	T2DCKDmito,-angi T2DCKDma fikai anai	12.00	4.24	34.55	5.000E-00	0.22	3.19	0.72	1.982E-00	yes	PMID:22837797	yes
12	SL006910	LANN	Catnepsin L2	0.39	0.25	0.59	1.4/0E-05	1 189E-05	T2DCKDras,-non,-angi	2.40	0.22	7.71	3.081E-02	0.25	0.07	0.73	1.294E-02 4.490E-02	yes	B0 DMID-26410521	yes
15	SL004040	CLECAM	C trave location domain formities 4 membras M	0.40	0.25	2.59	1.51/1-05	1 189E-03	T2DCKDinn,-Illia	0.26	0.10	0.71	3.475E-03	2.08	0.27	3.30	4.400E-03	yes	FMID:20410551	yes
14	51.005156	CLEC4M	C-type recuri domani family 4 member M	0.49	0.35	0.07	1.5201-05	1 189E-03	T2DCKDIIIB	0.30	0.19	0.71	2.773E-03	0.08	0.57	1.27	2.2976-01	yes	10 DA 000 2200074/	yes
15	SL0104/1	SPOCK2	Testican-2	0.50	0.30	0.68	2 001E-05	1.505E-03	T2DCKDIIDII	0.31	0.15	0.65	1.775E-03	0.18	0.00	0.48	0.503E-04	yes	PMID: 55888740	yes
10	SL001815	SOD2	Superoxide dismutase [Min], mitochondriai	2.01	0.57	0.09	3 208E-05 2 570E 05	2 195E-05 2 200E-02	T2DCKDras,-adipo,-mito	0.44	0.25	0.80	1.592E-02	2.06	0.25	1.13	9.042E-02	yes	PMID: 54001/0/	yes
17	31.000340	CISH	Tumor pacrocis factor receptor superfamily member	2.01	1.45	2.03	5.570£-05	2 29912-03	12DC KD1as,-mila,-tyr,-angi					5.90	1.01	8.00	3.070E-04	yes	FMID: 55000740	yes
18	ST 005213	RFLT	191	2.00	1.45	2.81	3 832F-05	2 331E-03	T2DCKDinna	5.12	2 35	11.16	4.013E-05	2.78	1.29	6.03	9 387F-03	ves	PMID-31011203	205
10	ST 000506	CCALLER	Lutainizing bormona	4 20	2.10	0.14	4 611E-05	2.657E-03	T2DCKDrag adino ana angi	3.71	1.16	11.80	2 738E-02	1.27	0.54	2.00	5 006E 01	yes	PMID-32475064	yes
20	ST 000324	ESTI 3	Eulerinzing normone	2.02	1.46	2.00	5 138E.05	2 812E 02	T2DCKDadino mito fibri inna	4.45	1.10	10.27	4 696E-04	66.61	8.92	502.10	4.605E.05	yes	PMID-28330062	yes
20	SL007324	II 22R A1	Interleukin-22 recen or subunit alpha-1	1.62	1.40	2.90	6 841F-05	3 567E-03	T2DCKDfibri -inna -angi	4.45	1.55	10.27	4.07012-04	0.78	0.36	1.73	5.483E-01	Jes no	1 MID: 20007702	yes
	52507000	1.221011	meredan 22 receptor subtain apra 1	1.02	1.27	2.00	0 0412 02	5.5072 05	TEDEREDHOTT, Hand, ungi					0.10	0.50	1.1.5	5.46512 01	105		Jea
22	SL003679	IGF2R	Cation-independent mannose-6-phosphate receptor	0.50	0.35	0.70	7 657E-05	3 811E-03	T2DCKDras,-mito,-fibri,-inna,-angi	0.50	0.27	0.93	2.740E-02	1.62	0.82	3.21	1.672E-01	yes	no	yes
23	SL005168	GHR	Grow h hormone receptor	0.46	0.31	0.67	9 172E-05	4.367E-03	T2DCKDras,-mito,-inna,-tyr,-angi	0.41	0.19	0.89	2.442E-02	0.61	0.29	1.26	1.792E-01	yes	PMID:31352157	yes
24	SL004338	FGF20	Fibroblast growth factor 20	0.34	0.20	0.58	1 012E-04	4 616E-03	T2DCKDtyr	0.17	0.07	0.40	4.976E-05	0.58	0.20	1.66	3.08 E-01	yes	PMID: 34193611	yes
25	SL005230	UNC5C	Netrin receptor UNC5C	1.89	1.37	2.65	1.424E-04	6 237E-03	· ·	3.18	1.49	6.80	2.767E-03	8.67	2.32	32.42	1.317E-03	yes	PMID: 33888746	yes
			Proto-oncogene tyrosine-protein kinase receptor																	
26	SL010378	RET	Ret	0.49	0.33	0.71	2 045E-04	8 612E-03	T2DCKDras	0.44	0.21	0.93	3.159E-02	0.51	0.24	1.08	7.878E-02	yes	no	yes
27	SL006694	CNDP1	Beta-Ala-His dipeptidase	0.60	0.46	0.79	2 239E-04	9 079E-03	T2DCKDfibri					1.48	0.73	3.00	2.763E-01	no	-	yes
28	SL003201	KDR	Vascular endo helial grow h factor receptor 2	0.56	0.41	0.76	2 645E-04	9.400E-03	T2DCKDras,-fibri,-inna,-angi	0.44	0.20	0.97	4.167E-02	0.56	0.29	1.08	8.55 E-02	yes	PMID:32982792	yes
29	SL005574	ACY1	Aminoacylase-1	0.48	0.31	0.70	2 693E-04	9.400E-03	T2DCKDtyr	0.43	0.21	0.91	2.698E-02	0.38	0.18	0.79	9.613E-03	yes	PMID:33838163	yes
30	SL004260	RETN	Resis in	1.69	1.28	2.25	2 696E-04	9.400E-03	T2DCKDadipo,-mito,-inna	2.27	1.21	4.26	1.076E-02	1.59	0.93	2.72	9.207E-02	yes	PMID: 32173772	yes
31	SL005703	NOTCH1	Neurogenic locus no ch homolog protein 1	0.56	0.40	0.76	2.723E-04	9.400E-03	T2DCKDmito,-fibri,-inna,-angi	0.72	0.37	1.39	3.230E-01	0.26	0.08	0.88	2.981E-02	yes	PMID:26119175	yes
32	SL000521	MMP1	Interstitial collagenase	1.77	1.30	2.42	2.747E-04	9.400E-03	T2DCKDras,-adipo,-age,-inna,-angi	2.13	1.05	4.32	3.558E-02	0.95	0.50	1.80	8.749E-01	yes	PMID:19506087	yes
33	SL002654	EPHA2	Ephrin type-A receptor 2	1.70	1.28	2.29	3 037E-04	1 008E-02	T2DCKDras,-fibri,-inna,-angi	4.77	2.05	11.12	2.916E-04	8.81	2.66	29.19	3.677E-04	yes	PMID: 34475336	yes
34	SL012698	KIR2DL4	Killer cell immunoglobulin-like receptor 2DL4	1.62	1.25	2.13	3.354E-04	1 077E-02	T2DCKDinna	0.72	0.38	1.36	3.130E-01	0.74	0.38	1.44	3.787E-01	no	-	yes
35	SL005193	JAM2	Junctional adhesion molecule B	1.73	1.29	2.36	3.441E-04	1 077E-02	T2DCKDangi	4.04	1.82	9.00	6.273E-04	3.56	1.49	8.48	4.178E-03	yes	no	yes
36	SL000087	IL6	Interleukin-6	1.48	1.19	1.84	3.724E-04	1 133E-02	T2DCKDras,-adipo,-mito,-inna,-angi	0.75	0.39	1.44	3.870E-01	1.56	0.81	3.00	1.844E-01	no	-	yes
37	SL010348	FN1	Fibronectin Fragment 4	0.57	0.42	0.78	3 945E-04	1 168E-02	T2DCKDras,-adipo,-age,-mito,-fibri,-tyr	0.53	0.27	1.02	5.769E-02	0.52	0.22	1.22	1.309E-01	no	-	yes
38	SL005221	SCARF1	Scavenger receptor class F member 1	1.74	1.29	2.39	4.358E-04	1 227E-02	T2DCKDinna	1.95	1.06	3.61	3.268E-02	0.89	0.33	2.40	8.159E-01	yes	no	yes
39	SL000053	PLAT	Tissue-type plasminogen activa or	0.45	0.29	0.70	4.380E-04	1 227E-02	T2DCKDras,-fibri,-tyr,-angi	0.49	0.25	0.95	3.473E-02	0.51	0.25	1.05	6.832E-02	yes	PMID: 15249548	yes
40	SL002086	FCN3	Ficolin-3	0.57	0.42	0.78	4.481E-04	1 227E-02	T2DCKDfibri,-inna					0.91	0.45	1.83	7.894E-01	no		yes
41	SL000268	PLG	Angiostatin	0.57	0.41	0.78	4 843E-04	1 293E-02	T2DCKDmito,-fibri,-tyr,-angi	0.43	0.20	0.91	2.636E-02	1.14	0.60	2.19	6.828E-01	yes	PMID:34548389	yes
42	SL005187	IL3RA	Interleukin-3 receptor subunit alpha	1.58	1.21	2.05	5.389E-04	1.405E-02		0.75	0.37	1.49	4.055E-01	1.23	0.41	3.73	7.099E-01	no		no
43	SL003184	LEPR	Leptin receptor	0.64	0.50	0.83	6 633E-04	1 689E-02	T2DCKDadipo,-mito,-inna	0.98	0.54	1.77	9.363E-01	0.58	0.35	0.94	2.593E-02	yes	PMID: 25034792	yes
44	SL007281	MAPK12	Mitogen-activated protein kinase 12	1.72	1.26	2.37	7 158E-04	1.744E-02	T2DCKDinna	1.13	0.8	2.23	7.141E-01	0.94	0.36	2.44	8.911E-01	no	-	yes
45	SL005201	AMH	Muellerian-inhibiting factor	0.59	0.43	0.79	7 168E-04	1.744E-02	T2DCKDras,-age,-inna	0.39	0.20	0.75	4.711E-03	1.88	0.76	4.66	1.75 E-01	yes	PMID: 33623676	yes
16	CT 004073	73/700/210	Tumor necrosis factor receptor superfamily member	1.15	1.16	1.01	0 5300 04	2.0467-02	mbowber -	2.00	1.24	c 20	((77E A)	1.17	0.00	1.00	5 550E 01		D. 00. 21011202	
40	SL004805	INFRSF19	19	1.45	1.10	1.81	8./39E-04	2.046E-02	12DCKDilbri	2.88	1.54	6.20	6.657E-03	1.17	0.69	1.98	5.558E-01	yes	PMID: 51011205	yes
47	51.002755	PAPTA	Papparysin-1 Mediator of PNA polymetrize II transcription	1.09	1.25	2.32	8 906E-04	2 040E-02	12DCKDinna	2.55	1.28	5.00	7.451E-05	1.22	0.62	2.51	5.000E-01	yes	PMID:27519211	yes
48	SI 010328	MEDI	submit 1	1.60	1.20	2.11	8 968F-04	2.046E-02	T2DCKDmito_inna_tvr					1 37	0.62	3.05	4 3985-01	80		Yos
40	SL000466	ICERPS	Inculin like growth factor binding protain ?	1.00	1.20	2.07	1 167E-03	2 607E 02	T2DCKDrar adino mio trr anzi					1.07	0.94	3.05	1 201E 01	10		yes
50	SL006919	RPS6K 45	Ribosomal protein S6 kinase alpha-5	1.52	1.30	2.07	1 10/E-03	2 626E-02	T2DCKDras,-auto	0.89	0.45	1.73	7.238E-01	2.65	0.58	12.14	2.092E-01	no		yes
51	SL000717	FENA5	Enbrin A5	1.59	1.20	2.12	1 406E-03	2 0201-02	T2DCKDmite into tr	2.70	1.41	5.14	2 601E-03	7.10	1.04	26.01	2.078E.03	Tor		yes
52	SL004160	NTRK2	BDNF/NT-3 growth factors recentor	0.60	0.43	0.82	1.411E-03	2.971E-02	T2DCKDras -tvr -angi	0.53	0.28	0.98	4.276E-02	1.22	0.57	2.60	6 101E-01	VPS	PMID:25885044	ves
53	SL004354	II.19	Interleukin-19	0.57	0.40	0.80	1.445E-03	2 986E-02	T2DCKDmito -inna -anei	0.89	0.48	1.65	7.069E-01	0.44	0.22	0.91	2.692E-02	ves	PMID:28201997	yes
54	SL003849	FGF9	Fibroblast growth factor 9	0.41	0.23	0.68	1.506E-03	3 054E-02	T2DCKDanai	0.38	0.20	0.73	3.936E-03	1.28	0.78	2.11	3 2975-01	Ves	PMID: 33145306	ves
55	SL003049	BMP1	Bone morphogene ic protein 1	0.56	0.39	0.00	1.717F-03	3.419E-02	T2DCKD6bri -anei	1.08	0.55	2.11	8 214E-01	0.74	0.42	1.29	2.819E-01	705		yes
56	SL003774	SFMA3F	Sone mappingene te protein 1	0.63	0.47	0.80	1.893E-03	3.702F-02	T2DCKDanai	0.77	0.33	1.40	3 996E-01	0.66	0.92	1.27	3.423E-01	80		yes
50	56510470	SEARSES	A disintegrin and metalloproteinase wi h	0.00	0.47	3.04	1 0752-05	3.7021202	120-CADangi	5.11	0.40	1.40	5.7701201	0.00	0.20		5.4431-01	100		,
57	SL006610	ADAMTS13	thrombospondin motifs 13	0.63	0.47	0.84	1 977E-03	3.798E-02	T2DCKDfibri,-angi	0.42	0.21	0.84	1.482E-02	0.33	0.16	0.67	2.401E-03	yes	PMID:20307901	yes
58	SL004258	ADIPOQ	Adiponectin	1.83	1.26	2.72	2 047E-03	3 865E-02	T2DCKDras,-adipo,-mito,-fibri,-inna,-anzi	1.13	0.61	2.08	6.955E-01	1.44	0.77	2.70	2.569E-01	no	-	yes
59	SL007547	HAVCR2	Hepatitis A virus cellular receptor 2	1.71	1.22	2.42	2 122E-03	3 938E-02	T2DCKDage,-mito,-inna	2.77	1.35	5.68	5.306E-03	1.67	0.64	4.33	2.904E-01	yes	PMID:31011203	yes
60	SL006119	TFF3	Trefoil factor 3	1.55	1.17	2.05	2 250E-03	4 106E-02	T2DCKDmito,-tyr	6.78	2.25	20.42	6.636E-04	2.02	1.29	3.14	1.930E-03	yes	PMID: 26200946	yes
61	SL011049	MASP1	Mannan-binding lectin serine protease 1	0.59	0.42	0.83	2.509E-03	4.503E-02	T2DCKDfibri,-inna	0.51	0.27	0.97	3.920E-02	0.56	0.21	1.52	2.540E-01	yes	PMID: 29604259	yes
62	SL004645	SPINT1	Kunitz-type protease inhibitor 1	0.62	0.45	0.84	2 608E-03	4.535E-02	T2DCKDfibri	0.65	0.31	1.36	2.500E-01	0.80	0.38	1.69	5.570E-01	no	-	yes
63	SL000478	II.2	Interleukin-2	0.67	0.52	0.87	2 609E-03	4.535E-02	T2DCKDinna	0.99	0.52	1.89	9.750E-01	1.24	0.60	2.57	5.592E-01	no	-	yes

Supplementary Table 5. CKD - MWAS identified 17 metabolites in hyperglycemic individuals of KORA and their replication

ORs with 95% *CI*, *P*-values and FDR of 17 metabolites (FDR < 0.05) with prevalent CKD in discovery study of hyperglycemic individuals of KORA F4 and the replication studies of KORA F3 and of hyperglycemic individuals of KORA FF4 are shown, respectively.

In the discovery study, *OR*s and *P*-values were from logistic regression analysis adjusted for age, sex, BMI, systolic blood pressure, smoking status, triglyceride, total cholesterol, HDL cholesterol, fasting glucose, use of lipid lowering drugs, antihypertensive and anti-diabetic medication.

Abbreviations: CKD, chronic kidney disease; ORs, odds ratios; T2DCKDmito, T2D-related CKD subnetwork of mitochondrial dysfunction; T2DCKDtyr, T2D-related CKD subnetwork of Tyr.

Rank	Metabolite	Biochemical name		Discovery cohort : KORA F4 hyperglycemic individuals po				potential involed	Repl	ication cohor	t : KORA F3	(general	Repli	cation cohort :	KORA FF4	hyerglycemic		Reported associations	Estended
			OR	OR 95% CI (L	.) OR 95% CI (U)	p-value	FDR	processes of T2DCKD	OR	OR 95%	OR 95% CI	p-value	OR	OR 95% CI	OR 95%	p-value	Replicated	with CKD or related	Extended
										<i>CI</i> (L)	(U)			(L)	<i>CI</i> (U)		overall	kidney traits for	replicated set
1	С14:1-ОН	Hydroxytetradecenoylcarnitine	1.41	1.21	1.66	2.160E-05	2.700E-03		1.66	1.10	2.56	1.783E-02	1.65	1.37	1.98	1.143E-07	yes	MID 29519950	yes
2	C2	Acetylcarnitine	1.40	1.19	1.64	5.475E-05	3.422E-03	T2DCKDage	1.62	1.10	2.46	1.749E-02	1.42	1.18	1.71	1.902E-04	yes	PMID 33428023	yes
3	C14:2	Tetradecadienylcarnitine	1.35	1.15	1.59	2.943E-04	9.148E-03		1.79	1.14	2.89	1.400E-02	1.60	1.31	1.94	2.771E-06	yes	PMID 30173364	yes
4	C10:2	Decadienylcarnitine	1.32	1.14	1.53	2.971E-04	9.148E-03		1.49	1.01	2.25	4.817E-02					yes	PMID 30173364	yes
		Hexadecanoylcarnitine, or																	
5	C16	Palmitoylcarnitine	1.35	1.15	1.59	3.705E-04	9.148E-03	T2DCKDmito	1.15	0.79	1.68	4.730E-01	1.33	1.10	1.60	2.947E-03	yes	PMID 26200946	yes
6	C14:1	Tetradecenoylcarnitine	1.31	1.13	1.52	4.948E-04	9.148E-03		1.29	0.89	1.90	1.908E-01	1.41	1.18	1.69	2.034E-04	yes	PMID 30173364	yes
7	Tyr	Tyrosine	0.76	0.65	0.89	5.324E-04	9.148E-03	T2DCKDtyr	0.64	0.42	0.97	3.436E-02	0.92	0.77	1.10	3.842E-01	yes	PMID 29142974	yes
8	C12	Dodecanoylcarnitine, or	1.33	1.13	1.57	5.855E-04	9.148E-03	T2DCKDmito	1.79	1.18	2.82	8.081E-03	1.69	1.40	2.05	8.961E-08	yes	PMID 16168195	yes
9	C8:1	Octenoylcarnitine	1.29	1.11	1.50	8.036E-04	1.006E-02		1.57	1.07	2.34	2.324E-02					yes	PMID 30173364	yes
10	C10	Decanoylcarnitine	1.32	1.12	1.56	8.764E-04	1.006E-02	T2DCKDmito	1.59	1.08	2.42	2.328E-02	1.48	1.23	1.78	2.649E-05	yes	PMID 29519950	yes
11	C6(C4:1-DC)	Hexanoylcarnitine (Fumarylcarnitine)	1.32	1.12	1.55	8.850E-04	1.006E-02	T2DCKDmito	1.73	1.19	2.66	7.733E-03					yes	PMID 29142974	yes
12	C18:1	Octadecenoylcarnitine	1.30	1.11	1.53	1.336E-03	1.392E-02		1.24	0.83	1.86	2.982E-01	1.20	1.01	1.43	4.172E-02	yes	PMID 16168195	yes
13	C18 2	Octadecadienylcarnitine	1.29	1.10	1.51	1.604E-03	1.543E-02		1.22	0.81	1.87	3.521E-01	1.16	0.97	1.40	1.033E-01	no	-	no
14	C5	Valerylcarnitine	1.29	1.10	1.53	2.331E-03	2.082E-02		1.51	1.05	2.23	2.961E-02	1.47	1.23	1.77	3.138E-05	yes	PMID 29142974	yes
15	SM C24 0	Sphingomyeline C24 0	0.75	0.62	0.91	2.948E-03	2.457E-02		0.78	0.51	1.23	2.737E-01	0.86	0.69	1.08	1.946E-01	no	-	no
16	SM (OH) C22 1	Hydroxysphingomyeline C22 1	0.76	0.63	0.91	3.368E-03	2.631E-02		0.79	0.50	1.29	3.409E-01	0.92	0.74	1.15	4.721E-01	no	-	no
17	C8	Octanoylcarnitine	1.26	1.07	1.47	4.287E-03	3.152E-02	T2DCKDmito	1.62	1.11	2.46	1.867E-02	1.41	1.18	1.68	1.123E-04	yes	PMID 30173364	yes

Supplementary Table 6. Association of identified candidates with CKD in KORA individuals with NGT to investigate whether there were interactions with hyperglycemia.

ORs with 95% *CI*, *P*-values of 120 candidates with prevalent CKD in KORA F4 individuals with NGT. *ORs* and *P*-values were from logistic regression analysis adjusted for age, sex, BMI, systolic blood pressure, smoking status, triglyceride, total cholesterol, HDL cholesterol, fasting glucose, use of lipid lowering drugs, antihypertensive medication. FDR was calculated for each omics type.

Abbreviations: CKD, chronic kidney disease; ORs, odds ratios; NGT, normal glucose tolerance.

omics label	omics.type	OR (95% CI)	<i>P</i> -value	FDR
TLN2	CpGs	1.203 (0.855 to 1.824)	3.337E-01	6.673E-01
NR1H2	CpGs	0.917 (0.54 to 1.072)	5.477E-01	7.332E-01
ACSL1	CpGs	0.93 (0.698 to 1.282)	6.365E-01	7.488E-01
HTRA3	CpGs	0.96 (0.719 to 1.286)	7.808E-01	8.239E-01
TUBGCP2	CpGs	0.784 (0.568 to 1.078)	1.355E-01	5.172E-01
MGAT1	CpGs	1.472 (1.067 to 2.056)	2.072E-02	3.480E-01
CCDC39	CpGs	0.653 (0.432 to 0.952)	3.480E-02	3.480E-01
ZDHHC16	CpGs	1.282 (0.951 to 1.725)	1.016E-01	5.079E-01
LOC400931	CpGs	0.869 (0.686 to 1.144)	2.645E-01	6.613E-01
ERP29	CpGs	1.204 (0.855 to 1.755)	3.132E-01	6.673E-01
LYL1	CpGs	0.919 (0.643 to 1.214)	6.042E-01	7.488E-01
MEG9	CpGs	1.104 (0.832 to 1.481)	5.016E-01	7.332E-01
ALKBH4	CpGs	0.987 (0.719 to 1.337)	9.363E-01	9.363E-01
NEURL3	CpGs	0.785 (0.622 to 1.027)	5.303E-02	3.535E-01
PLEC1	CpGs	0.956 (0.692 to 1.314)	7.827E-01	8.239E-01
UBE2E1	CpGs	0.901 (0.656 to 1.239)	5.173E-01	7.332E-01
ALS2CR8	CpGs	1.267 (0.922 to 1.772)	1.551E-01	5.172E-01
LYSMD2	CpGs	1.244 (0.911 to 1.761)	1.967E-01	5.620E-01
NAPA	CpGs	1.102 (0.804 to 1.526)	5.499E-01	7.332E-01
MAF1	CpGs	1.119 (0.794 to 1.605)	5.302E-01	7.332E-01
PAX8	RNAs	0.864 (0.595 to 1.232)	4.311E-01	7.185E-01
PCDHB2	RNAs	1.018 (0.718 to 1.446)	9.178E-01	9.661E-01
SLC22A4	RNAs	1.37 (0.928 to 2.022)	1.115E-01	2.787E-01
SLC37A1	RNAs	0.826 (0.574 to 1.183)	2.976E-01	5.707E-01
PNLIPRP2	RNAs	0.928 (0.65 to 1.319)	6.749E-01	8.602E-01
NKD2	RNAs	1.076 (0.754 to 1.544)	6.882E-01	8.602E-01
DUSP11	RNAs	0.655 (0.45 to 0.943)	2.435E-02	1.492E-01
TFE3	RNAs	1.535 (1.048 to 2.286)	3.027E-02	1.492E-01
AGK	RNAs	0.63 (0.41 to 0.95)	3.020E-02	1.492E-01
MCM3	RNAs	0.673 (0.46 to 0.965)	3.544E-02	1.492E-01
PCGF2	RNAs	1.065 (0.721 to 1.576)	7.503E-01	8.828E-01
TTF2	RNAs	0.807 (0.547 to 1.188)	2.764E-01	5.707E-01
ZNF211	RNAs	0.912 (0.62 to 1.334)	6.378E-01	8.602E-01
ABCB1	RNAs	0.882 (0.597 to 1.294)	5.219E-01	8.030E-01
ARG1	RNAs	1.475 (1.02 to 2.134)	3.729E-02	1.492E-01
SYT1	RNAs	0.956 (0.67 to 1.347)	7.991E-01	8.879E-01
MAGEE1	RNAs	0.679 (0.437 to 1.046)	8.059E-02	2.647E-01
SLC25A4	RNAs	0.8 (0.515 to 1.232)	3.139E-01	5.707E-01
CDC14A	RNAs	1.005 (0.7 to 1.431)	9.781E-01	9.781E-01
ZNF655	RNAs	0.731 (0.502 to 1.044)	9.264E-02	2.647E-01

PLAT	Proteins	0.867 (0.515 to 1.436)	5.840E-01	7.516E-01
IGFBP2	Proteins	2.337 (1.271 to 4.477)	7.879E-03	6.426E-02
CST3	Proteins	2.176 (1.359 to 3.569)	1.471E-03	2.317E-02
EFNA5	Proteins	1.147 (0.725 to 1.84)	5.630E-01	7.516E-01
ERBB3	Proteins	0.599 (0.351 to 1.003)	5.541E-02	1.841E-01
LAYN	Proteins	1.489 (0.986 to 2.219)	5.155E-02	1.841E-01
TNFRSF1A	Proteins	1.933 (1.175 to 3.218)	9.713E-03	6.799E-02
EGFR	Proteins	0.599 (0.368 to 0.945)	3.164E-02	1.525E-01
IGFBP6	Proteins	1.634 (1.033 to 2.54)	3.080E-02	1.525E-01
FGF20	Proteins	0.999 (0.621 to 1.385)	9.962E-01	9.962E-01
FGF9	Proteins	0.682 (0.354 to 1.067)	1.797E-01	3.652E-01
SPINT1	Proteins	0.845 (0.551 to 1.3)	4.390E-01	6.286E-01
NBL1	Proteins	1.473 (1.015 to 2.122)	3.735E-02	1.525E-01
GHR	Proteins	0.604 (0.347 to 1.03)	6.897E-02	1.960E-01
CGA LHB	Proteins	1.118 (0.56 to 2.338)	7.572E-01	8.467E-01
ESAM	Proteins	1.894 (1.212 to 2.994)	5.452E-03	6.426E-02
JAM2	Proteins	1.417 (0.916 to 2.173)	1.120E-01	2.715E-01
CLEC4M	Proteins	0.839 (0.554 to 1.251)	3.958E-01	5.799E-01
IL19	Proteins	0.91 (0.615 to 1.338)	6.326E-01	7.815E-01
RETN	Proteins	1.397 (0.899 to 2.158)	1.327E-01	3.097E-01
IL2	Proteins	0.652 (0.421 to 1.013)	5.552E-02	1.841E-01
TNFRSF1B	Proteins	1.689 (1.041 to 2.813)	3.755E-02	1.525E-01
ADAMTS13	Proteins	0.608 (0.395 to 0.923)	2.076E-02	1.308E-01
RET	Proteins	0.99 (0.592 to 1.583)	9.679E-01	9.835E-01
ACY1	Proteins	0.7 (0.4 to 1.203)	2.050E-01	3.991E-01
BMP1	Proteins	0.704 (0.427 to 1.154)	1.655E-01	3.516E-01
CTSV	Proteins	0.673 (0.408 to 1.071)	1.073E-01	2.704E-01
FN1	Proteins	0.824 (0.542 to 1.24)	3.563E-01	5.501E-01
FSTL3	Proteins	2.669 (1.6 to 4.686)	3.079E-04	6.465E-03
B2M	Proteins	1.923 (1.193 to 3.163)	8.159E-03	6.426E-02
ADIPOQ	Proteins	0.831 (0.461 to 1.489)	5.340E-01	7.476E-01
CNDP1	Proteins	0.769 (0.498 to 1.218)	2.491E-01	4.484E-01
MASP1	Proteins	0.948 (0.592 to 1.487)	8.209E-01	8.917E-01
IL22RA1	Proteins	1.157 (0.773 to 1.544)	3.857E-01	5.785E-01
KDR	Proteins	0.788 (0.516 to 1.212)	2.710E-01	4.548E-01
IGF2R	Proteins	1.469 (0.979 to 2.258)	7.127E-02	1.960E-01
PLG	Proteins	0.928 (0.595 to 1.438)	7.383E-01	8.467E-01
CTSH	Proteins	2.63 (1.702 to 4.143)	1.704E-05	1.074E-03
FCN3	Proteins	0.675 (0.443 to 1.055)	7.298E-02	1.960E-01
RPS6KA5	Proteins	0.664 (0.423 to 1.009)	6.363E-02	1.960E-01

MED1	Proteins	0.589 (0.312 to 0.987)	7.468E-02	1.960E-01
PAPPA	Proteins	1.417 (0.897 to 2.259)	1.377E-01	3.099E-01
IL3RA	Proteins	1.037 (0.664 to 1.474)	8.586E-01	9.168E-01
IL6	Proteins	0.706 (0.351 to 1.216)	2.743E-01	4.548E-01
TFF3	Proteins	1.325 (0.866 to 1.951)	1.674E-01	3.516E-01
EPHA2	Proteins	1.069 (0.686 to 1.666)	7.661E-01	8.467E-01
NTRK2	Proteins	0.983 (0.644 to 1.504)	9.358E-01	9.665E-01
AMH	Proteins	1.091 (0.729 to 1.638)	6.720E-01	8.142E-01
MMP1	Proteins	1.025 (0.693 to 1.497)	8.970E-01	9.419E-01
C1QBP	Proteins	0.891 (0.576 to 1.342)	5.907E-01	7.516E-01
ERP29	Proteins	1.314 (0.864 to 2.037)	2.090E-01	3.991E-01
MAPK12	Proteins	0.887 (0.558 to 1.337)	5.916E-01	7.516E-01
SOD2	Proteins	0.616 (0.385 to 0.972)	3.873E-02	1.525E-01
KIR2DL4	Proteins	0.93 (0.568 to 1.39)	7.557E-01	8.467E-01
NOTCH1	Proteins	0.926 (0.599 to 1.428)	7.289E-01	8.467E-01
RELT	Proteins	2.619 (1.601 to 4.44)	1.927E-04	6.069E-03
SCARF1	Proteins	1.211 (0.806 to 1.836)	3.580E-01	5.501E-01
TNFRSF19	Proteins	1.711 (1.148 to 2.502)	6.264E-03	6.426E-02
HAVCR2	Proteins	0.839 (0.618 to 1.239)	3.105E-01	5.016E-01
UNC5C	Proteins	1.276 (0.829 to 1.874)	2.366E-01	4.385E-01
SEMA3E	Proteins	1.759 (1.058 to 3.003)	3.278E-02	1.525E-01
LEPR	Proteins	1.128 (0.769 to 1.901)	5.965E-01	7.516E-01
SPOCK2	Proteins	0.804 (0.538 to 1.183)	2.741E-01	4.548E-01
C10	Metabolites	1.09 (0.867 to 1.369)	4.580E-01	4.866E-01
C10:2	Metabolites	1.366 (1.076 to 1.735)	1.045E-02	5.924E-02
C12	Metabolites	1.187 (0.938 to 1.501)	1.521E-01	2.350E-01
C14:1	Metabolites	1.261 (0.987 to 1.608)	6.249E-02	1.518E-01
C14:1-OH	Metabolites	1.576 (1.237 to 2.019)	2.703E-04	4.595E-03
C14:2	Metabolites	1.174 (0.923 to 1.495)	1.928E-01	2.521E-01
C16	Metabolites	1.53 (1.188 to 1.977)	1.071E-03	9.105E-03
C18:1	Metabolites	1.31 (1.027 to 1.672)	2.978E-02	1.013E-01
C18:2	Metabolites	1.277 (1.003 to 1.627)	4.782E-02	1.355E-01
C2	Metabolites	1.212 (0.963 to 1.527)	1.013E-01	2.154E-01
C6(C4:1-DC)	Metabolites	1.198 (0.953 to 1.503)	1.204E-01	2.275E-01
C5	Metabolites	1.178 (0.925 to 1.502)	1.851E-01	2.521E-01
C8	Metabolites	1.137 (0.909 to 1.415)	2.540E-01	3.084E-01
C8:1	Metabolites	1.048 (0.834 to 1.316)	6.833E-01	6.833E-01
SM (OH) C22:1	Metabolites	0.811 (0.611 to 1.085)	1.514E-01	2.350E-01
SM C24:0	Metabolites	0.705 (0.525 to 0.946)	1.994E-02	8.474E-02
Tyr	Metabolites	1.123 (0.885 to 1.427)	3.429E-01	3.886E-01

Supplementary Table 7. Interaction of connected edges in T2DCKDtyr subnetwork and the based literatures.

Abbreviations: T2DCKDtyr, T2D-related CKD subnetwork of Tyr.

Enhight	Interaction type	Object	Ang log	Ana Mad	PMID	Organian	Diagona
ти	Interaction type	Transino	Arg_loc	Arg_mou	26241219	Mammalia	Matshalia
	decreases_quantity of	Tyrosine			26241316	Maninana	Metabolic
TH	increases_quantity of	Dopamine			26241318	Mammalia	Metabolic
Tyrosine	increases_quantity of	Dopamine			26241318	Mammalia	Metabolic
							Nephropathy, diabetic;
					23781310		Diabetes mellitus, type II;
IGFBP2	increases_activity of	Nephropathy, diabetic				Homo sapiens	Insulin resistance
		thyroid hormone			30599477		Thyroid dyshormonogenesis
TG	increases_activity of	generation			30377777	Homo sapiens	1
		Glomerulopathy with			19768355		Cardiovascular disease;
FN1	affects_activity of	fibronectin deposits 2			18208335	Homo sapiens	Renal
FGF20	increases_activity of	kidney development			22698282	Homo sapiens	Developmental
		Chronic kidney			24400755		Diabetes mellitus, type II;
CST3	increases activity of	disease	in T2D patients		24409655	Homo sapiens	Chronic kidney disease
							Diabetes mellitus, type II;
CST3	affects activity of	glomerular filtration	in T2D patients		24409655	Homo saniens	Chronic kidney disease
ECE20	increases expression of	TTI	in 12D patients		15474354	Mammalia	Neurological
FGF20	Increases_expression of	TH Tomaina	In neuronal stem cens		15474354	Manunalia	Neurological
1H TTT	decreases_quantity of	Tyrosine	in neuronal stem cens		154/4554	Mammana	Neurological
TH	increases_quantity or	Dopamine	in neuronal stem cells		154/4354	Mammalia	Neurological
Chronic kidney disease	decreases_quantity of	Tyrosine	in plasma		17513431	Mammalia	Chronic kidney disease
Triiodothyronine	increases expression of	CTSH			21217776	Homo sapiens	Cancer
Triiodothyronine	increases_quantity of	CTSH			21217776	Homo sapiens	Cancer
		thyroid hormone			26610751		
TPO	increases activity of	generation			26610/51	Mammalia	Metabolic
		Bener					
Thuroid-stimulating hormone	affects expression of	ΤΡΩ			26610751	Mammalia	Metabolic
Deleventia hidrary diagona 5	allects_expression of	CTEU	in an animal tahulaa		2840260	Detter norma al ano	Deleventia hidrory diagona 5
Polycystic kidney disease 5	decreases_activity of	CISH	in proximal tubules		8840209	Rattus norvegicus	Polycystic kidney disease 5
		increased urine			29660205		
Triiodothyronine	affects_activity of	protein level			2700-200	Homo sapiens	Nephropathy, diabetic
				via the catalytic			
				activity of thyroid	26610751		
Tyrosine	increases_quantity of	Triiodothyronine		peroxidase		Mammalia	Metabolic
_ •		·					
Thyroid-stimulating hormone	increases quantity of	PLAT	in thyroid follicular cells		12065237	Homo sapiens	Metabolic
Ingrote control of the						10110	ine di betti
Thuroid-stimulating hormone	increases quantity of	Angiostatin	in theroid follicular cells		12065237	Homo saniens	Metabolic
Thyrolu-sumulating normone	Increases_quantity of	Aligiosiauli			7690051	FIOIDO Sapiens	Endersing Developmental
Thyroxine	affects_quantity or	IGFBr2	in fetus		/089951	Sus scrota	Endocrine; Developmental
			in the developing				
			hippocampus and		29762250		
Thyroxine	increases_quantity of	EFNA5	hippocampal neurons			Rattus norvegicus	Neurological; Endocrine
			in the developing				
			hippocampus and		29762250		
Trijodothvronine	increases quantity of	EFNA5	hippocampal neurons			Rattus norvegicus	Neurological: Endocrine
Trijodothvronine	increases expression of	CHR	in henatic carcinoma cells		10195688	Homo sanjens	Cancer
THIOdodiyiOnne	Increases_expression of	Ulix	in apoplactic thyroid		10195000	Homo sapiens	Calleer
		لمسمله لمتحسبات	In anapiasuc uiyroiu		26459216		Do to since Threadd
		thyroid gland	carcinoma cell line		26458516		Endocrine; Inyroid
TFF3	affects_activity of	development	8305C			Homo sapiens	carcinoma
Triiodothyronine	decreases_expression of	NTRK2	in hyrotropic cells		10978336	Mus musculus	Neurological; Cancer
		Thyroid-stimulating			20621416		
Nephropathy, diabetic	increases_quantity of	hormone	in blood		30631410	Homo sapiens	Nephropathy, diabetic
Nephropathy, diabetic	decreases quantity of	Trijodothyronine	in blood		30631416	Homo sapiens	Nephropathy, diabetic
Trijodothvronine	affects activity of	domerular filtration	III D.OOU		30631416	Homo sanjens	Nephropathy, diabetic
FPD29	increases activity of	TC			11884402	Pattus norvegicus	Hypothyroidism
EKF 27	Increases_activity of	10			1100-++02	Ratius noi vegicus	Hypoulyfoldisin
					24055022		
		Thyroid-stimulating		together with	24055033		
MED1	increases_expression of	hormone		Triiodothyronine (13)		Mus musculus	Endocrine
		thyroid gland			25350068		
PAX8	increases_activity of	development			23330000	Mammalia	Endocrine
				in cooperation with	110/0201		
PAX8	increases expression of	TG	in thyroid cells	TTF1 (NKX2-1)	11069301	Rattus norvegicus	Endocrine
NTRK2	affects activity of	glomerular filtration			25885044	Homo saniens	Chronic kidney disease
NIKK2	ancets_activity of	fotty acid bata			2500504.	Homo suprens	Childhic klancy discuse
Triisdathuranina	increase entirity of	fally actu beta-	in known adinosa tissua		30209975	Mars mucculus	Endescine: Matabolio
Trilodothyronine	increases_activity of	oxidation	In brown adipose tissue			Mus musculus	Endocrine; Metabolic
Triiodothyronine	decreases_quantity of	Tyrosine	in brown adipose tissue		30209975	Mus musculus	Endocrine; Metabolic

Dopamine	decreases_activity of	Nephropathy, diabetic			23207723	Mammalia	Nephropathy, diabetic
Dopamine	decreases_activity of	albuminuria			23207723	Mammalia	Nephropathy, diabetic
Dopamine	decreases_activity of	response to oxidative stress			22688335	Mammalia	Renal
Dopamine	increases_activity of	glomerular filtration	in kidney		22688335	Mus musculus	Nephropathy, diabetic
Dopamine	decreases_quantity of	FN1	in kidney		22688335	Mus musculus	Nephropathy, diabetic
Dopamine	decreases_activity of	Nephropathy, diabetic			22688335	Mus musculus	Nephropathy, diabetic
response to oxidative stress	increases_quantity of	Nitrotyrosine			17513431	Mammalia	Chronic kidney disease
				on plasma proteins, in the presence of	17513431		
Tyrosine	increases_quantity of	Nitrotyrosine		oxygen species		Mammalia	Chronic kidney disease
CS13	affects_activity of	glomerular filtration			15966508	Homo sapiens	Endocrine; Renal
thyroid hormone generation	affects quantity of	CST3	in serum		15966508	Homo sapiens	Endocrine Renal
Dopamine	decreases_quantity of	Nitrotyrosine			23207723	Mammalia	Nephropathy, diabetic
ТРО	affects_activity of	TG	in the thyroid gand		30886364	Mammalia	
TG	increases_activity of	thyroid hormone generation	in the thyroid gand		30886364	Mammalia	
thyroid hormone generation	increases_quantity of	Triiodothyronine	in the thyroid gand		30886364	Mammalia	
thyroid hormone generation	increases_quantity of	Thyroxine	in the thyroid gand		30886364	Mammalia	
Thyroid-stimulating hormone	increases activity of	thyroid hormone generation			28153798	Mammalia	Endocrine
Nephropathy, diabetic	increases quantity of	Nitrotyrosine			10792615	Homo sapiens	Nephropathy, diabetic
Thyroxine	affects activity of	Nephropathy, diabetic			29196928	Homo sapiens	Nephropathy, diabetic
Nephropathy, diabetic	decreases quantity of	Angiostatin	in kidnev		16394111	Rattus norvegicus	Nephropathy, diabetic
Angiostatin	decreases activity of	renal glomerulus	in kidnev		16394111	Rattus norvegicus	Nephropathy, diabetic
PAX8	decreases activity of	polvuria			32381599	Mus musculus	Renal
GHR	increases activity of	glomerular filtration	in kidnev		31352157	Mammalia	Nephropathy, diabetic
Triiodothyronine	decreases_activity of	extracellular matrix assembly			21307121	Homo sapiens	Nephropathy, diabetic
ACY1	affects_quantity of	Tyrosine	in kidney		14927637	Sus scrofa	Renal; Metabolic
Dopamine	decreases_activity of	macrophage activation	in adipose tissue		23207723	Mammalia	Nephropathy, diabetic
Tyrosine	increases quantity of	Thyroxine		via the catalytic activity of thyroid peroxidase	26610751	Mammalia	Metabolic
			in bovine aortic endothelial cells (BAEC), murine melanoma cells (B16F10) or human ovariancarcinoma cells	by binding to tPA			
Angiostatin	decreases_activity of	PLAT	(OVCA 429)	(PLAT)	10229661	Mus musculus	Cancer
Angiostatin	decreases_activity of	PLAT			21899046	Homo sapiens	Hematological

Supplementary Table 8. Interaction of connected edges in T2DCKDmito subnetwork and the based literatures.

Abbreviations: T2DCKDmito, T2D-related CKD subnetwork of mitochondrial dysfunction.

Subject	Interaction type	Object	Arg loc	Arg_Mod	PMID Organism	Disease
ADIPOO	increases activity of	fatty acid beta-oxidation	in muscle	0-	12368907 Mus musculus	Diabetes mellitus type II: Insulin resistance
	nereases_activity of	hary dele bear oxidation	in majore		12500507 mas masculas	Diabetes mellitus, type II; Fatty liver disease.
FASN	increases activity of	lipid biosynthetic process	in white adipose tissue		18522830 Mus musculus	nonalcoholic: Insulin resistance
	hiereases_activity of	npiù biosynitette process	in white unpose tissue	if II 6 is overexpressed in	10522050 Mills Hillseulds	nonaleonone, notarin resistance
11.6	decreases expression of	PPAPGC1A	in skalatal muscla	ekalatal muscla	18437347 Mus musculus	Dishatas mallitus, tuna II: Insulin rasistanca
11.0	decreases_expression of	ITARGEIA	in sketetar musere	skeretari musere	10457547 Mus Indsculus	Diabetes mellitus, type II; Obasity: Fatty liver
ADIPOO	increases expression of	PPARGCIA	in adjnose tissue		17717599 Mus musculus	disease nonalcoholic: Insulin resistance
incomplete fatty acid beta-	nereuses_expression of	111 Hoom	in dupose ussue		TTTTTS / THUS HEISEURUS	discuse, nonarconorie, insum resistance
oxidation	increases quantity of	Hexanovlcarnitine C6			18945875 Mammalia	Diabetes mellitus type II Insulin resistance
incomplete fatty acid beta-	nicrouses quantity of	Tiesanoyieurnatie eo			10343073 1144444	biabeles iteritais type it insumitesistance
oxidation	increases quantity of	Octanovlcarnitine C8			18945875 Mammalia	Diabetes mellitus, type II: Insulin resistance
incomplete fatty acid beta-	_1 ,					
oxidation	increases quantity of	Decanoylcarnitine C10			18945875 Mammalia	Diabetes mellitus, type II; Insulin resistance
incomplete fatty acid beta-						
oxidation	increases_quantity of	Lauroylcarnitine C12			18945875 Mammalia	Diabetes mellitus, type II; Insulin resistance
incomplete fatty acid beta-						
oxidation	increases_quantity of	Tetradecanoylcarnitine C14			18945875 Mammalia	Diabetes mellitus, type II; Insulin resistance
incomplete fatty acid beta-						
oxidation	increases_quantity of	Palmitoylcarnitine C16			18945875 Mammalia	Diabetes mellitus, type II; Insulin resistance
						Diabetes mellitus, type II; Obesity; Insulin
Diabetes mellitus, type II	increases_activity of	incomplete fatty acid beta-oxidation			19369366 Homo sapiens	resistance
						Metabolic syndrome; Diabetes mellitus, type
						II; Fatty liver disease, nonalcoholic; Insulin
SREBF1c	increases_activity of	lipid biosynthetic process	in liver		22941588 Mammalia	resistance
SLC22A4	is localized in	mitochondrial outer membrane			23150726 Mammalia	Diabetes mellitus, type II; Insulin resistance
MDH2	affects_activity of	tricarboxylic acid cycle			20567778 Mammalia	Diabetes mellitus, type II; Insulin resistance
PPARGC1A	interacts (colocalizes) with	MED1			14636573 Homo sapiens	Diabetes mellitus, type II; Insulin resistance
PPARGC1A	affects_expression of	SOD2			17055439 Mus musculus	Diabetes mellitus, type II; Insulin resistance
PPARGC1A	affects_expression of	SLC25A4			17055439 Mus musculus	Diabetes mellitus, type II; Insulin resistance
BCL2	decreases_activity of	apoptotic process			19954947 Mammalia	Diabetes mellitus, type II; Insulin resistance
PPARA	increases_activity of	fatty acid beta-oxidation	in mitochondria, in peroxisomes		19531645 Mammalia	Diabetes mellitus, type II; Insulin resistance
						Diabetes mellitus, type II; Fatty liver disease,
PTGS2	increases_activity of	inflammatory response			25729473 Mammalia	nonalcoholic; Insulin resistance
						Diabetes mellitus, type II; Nephropathy,
ADIPOQ	decreases_activity of	NADPH oxidase complex	in kidney		28402446 Mammalia	diabetic; Insulin resistance
HAVCR2	decreases_quantity of	Reactive oxygen species	in nonalcoholic fatty liver disease		30862474 Mammalia	Nephropathy, diabetic
CCDC39	affects activity of	cilium assembly			21131972 Homo sapiens	Ciliopathy
ADIPOQ	increases activity of	ACSL1	in 3T3-L1 adipocytes		20667975 Mus musculus	Diabetes mellitus, type II; Insulin resistance
ACSL1	increases activity of	AMPK	in 3T3-L1 adipocytes		20667975 Mus musculus	Diabetes mellitus, type II: Insulin resistance
	_ ,		1			Diabetes mellitus, type II: Obesity: Insulin
RETN	affects activity of	CD36	in L6 myoblast cells		16137686 Rattus norvegicus	resistance
				via decreased		Diabetes mellitus, type II: Obesity: Insulin
RETN	decreases activity of	AMPK	in L6 myoblast cells	phosphorylation	16137686 Rattus norvegicus	resistance
Reactive oxygen species	increases quantity of	FN1			26719364 Mammalia	Nephropathy, diabetic
EGER	increases expression of	ACSL1			22238402 Homo sapiens	Diabetes mellitus, type II: Insulin resistance
EGFR	increases expression of	ADIPOO			22238402 Homo sapiens	Diabetes mellitus, type II: Insulin resistance
FRBB3	decreases expression of	CD36			22238402 Homo saniens	Diabetes mellitus, type II: Insulin resistance
EENAS	affaata avprassion of	PCI 2	in overien gronulese colle		20610874 Mus musculus	Infortility
Camitina	decreases quantity of	CST3	in corum		31360185 Homo sanians	Immunological
SI C2244	increases_quantity of	Comiting	in serum		22150726 Manualia	Diskets welling the U. Institution
SLC22A4	increases_transport of	Carniune A sub-sub-site			23150726 Mammalia	Diabetes mellitus, type II; Insulin resistance
SLC22A4	increases_transport of	Acylcarniune			23130726 Mammana	Diabetes mentus, type ii; insurin resistance
IGFBP2	decreases_activity of	lipid biosynthetic process	in visceral adipose tissue		253/05/6 Homo sapiens	Obesity
IGFBP2	decreases_expression of	SREBFIC	in visceral adipose tissue		25370576 Homo sapiens	Obesity
IGFBP2	decreases_expression of	FASN	in visceral adipose tissue		25370576 Homo sapiens	Obesity
IGFBP2	decreases_expression of	PPARG	in visceral adipose tissue		25370576 Homo sapiens	Obesity
IGFBP2	decreases_expression of	ADIPOQ	in visceral adipose tissue		25370576 Homo sapiens	Obesity
Reactive oxygen species	increases_expression of	IGFBP6	in skin fibroblasts		15958393 Homo sapiens	Cardiovascular disease
TFF3	decreases_expression of	PPARGC1A	in hepatocytes		24086476 Mus musculus	Diabetes mellitus, type II; Insulin resistance
TFF3	increases_activity of	cilium assembly	in airway epithelial cells		17008636 Homo sapiens	Lung disease
IL19	increases_expression of	PPARG	in VSMC, but not in EC		27053520 Homo sapiens	Cardiovascular
GHR	increases_quantity of	Reactive oxygen species	in podocytes		21067510 Mammalia	Nephropathy, diabetic
NAPA	decreases_activity of	AMPK	in HEK293T cells		23463002 Homo sapiens	Diabetes mellitus, type II; Insulin resistance
NAPA	affects activity of	mitochondrion organization			23463002 Homo sapiens	Diabetes mellitus, type II: Insulin resistance
Reactive oxygen species	affects activity of	RPS6KA5		via p38 MAPK	16531007 Rattus norvegicus	Diabetes mellitus, type II: Insulin resistance
70 m F		mitochondrial ATP transmembrane				, , , ,
SLC25A4	increases_activity of	transport			27693233 Homo sapiens	Cardiomyopathy
SOD2	decreases_quantity of	Reactive oxygen species	in wounds		30362661 Mus musculus	Nephropathy, diabetic
CPT2	decreases quantity of	Acylcarnitine			33013450 Mammalia	Neuropathy, diabetic
fatty acid beta-oxidation	increases quantity of	Acetyl-CoA			33013450 Mammalia	Neuropathy, diabetic
Acetyl-CoA	increases activity of	tricarboxylic acid cvcle			33013450 Mammalia	Neuropathy, diabetic
tricarboxylic acid cycle	increases activity of	oxidative phosphorylation			33013450 Mammalia	Neuropathy, diabetic
oxidative phosphorylation	increases mantity of	ATP			33013450 Mammalia	Neuropathy, diabetic
PPARGC1A	increases activity of	mitochondrion organization			33013450 Mammalia	Nephropathy, diabetic
ACSU	affacts activity of	linidosis	in kidnev		33013450 Mermolio	Nanhronathy diabatic
DDADA	increases averagion of	CD36	in kidney		33013450 Mammalia	Nanhronathy diabatic
AMBK	increases_expression of	DDADCC1A			22012450 Mammalia	Neckson star disk stic
AMPK	increases_activity of	PPAKGUIA			55015450 Mammalia	ivepiropatny, diabetic
linidorie	increase activity of	etrace	in kidney		33013450 Memoria	Nanhronathy diabatic
lipidosis	increases_activity of	abnormal mits -b d-i-1 1 1	in kidney		22012450 Manimana	Nonheamathy dist-+-
DDA DC	increases_activity of	aonormai mitocnondriai physiology	in Kidney		2175420 Mammalia	Nonbronothy dist-+-
Pr'ARU	increases_expression of		in rik-2 cells		31/34839 Mammalia	Neckson die 1
INALIPH oxidase complex	increases_quantity of	Reactive oxygen species			51/54839 Mammalia	ivepiropatny, diabetic
oxidative phosphorylation	increases_quantity of	Reactive oxygen species			31754839 Mammalia	Nephropathy, diabetic
AGK	is_part_of	TIM22 complex	in mitochondrial inner membrane		28867158 Mammalia	Sengers syndrome
		protein insertion into mitochondrial			20057150	
11M22 complex	increases_activity of	inner membrane			2886/158 Mammalia	Sengers syndrome
AGK	artects_activity of	lipid biosynthetic process	in mitochondria		2886/158 Mammalia	Sengers syndrome
CPTIA	1s localized in	mitochondrial outer membrane			32226789 Mammalia	Nephropathy, diabetic
CPITA	decreases_quantity of	Carmtine			32226789 Mammalia	Nephropathy, diabetic
CPT1A	increases_quantity of	Acylcarnitine			32226789 Mammalia	Nephropathy, diabetic
CETTA		A	across the outer mitochondrial		22226780	Manhamatha dist :
Cr'IIA	increases_transport of	Acylcarniune	memorane		32220789 Mammalia	ivephropathy, diabetic
CP12	is localized in	mitochondrial inner membrane			32226789 Mammalia	Nephropathy, diabetic
CPT2	decreases_quantity of	Acylcarnitine	in mitochondrial matrix		32226789 Mammalia	Nephropathy, diabetic
CPT2	increases_quantity of	Acyl-CoA	in mitochondrial matrix		32226789 Mammalia	Nephropathy, diabetic
fatty acid beta-oxidation	decreases_quantity of	Acyl-CoA	in mitochondrial matrix		32226789 Mammalia	Nephropathy, diabetic
fatty acid beta-oxidation	increases_quantity of	Acetyl-CoA	in mitochondrial matrix		32226789 Mammalia	Nephropathy, diabetic
tricarboxylic acid cycle	decreases_quantity of	Acetyl-CoA	in mitochondrial matrix		32226789 Mammalia	Nephropathy, diabetic
PPARGC1A	affects_activity of	fatty acid beta-oxidation			32226789 Mammalia	Nephropathy, diabetic
C1QBP	is localized in	mitochondrial matrix	in HeLa cells, in fibroblasts		11083468 Homo sapiens	Cancer

-						
CLOBP	affects activity of	oxidative phosphorylation			28942965 Homo saniens	Combined oxidative phosphorylation deficiency
EPBB3	interacts (colocalizes) with	EGER			24520002 Homo sapiens	Cancer
EKBES ESTI 3	increases expression of	CD36	in macronhages		31815860 Mus musculus	Cardiovascular disease
GHR	increases_expression of	fatty acid beta-ovidation	in macrophages		0308741 Homo saniens	Diabatas mallitus tuna II: Insulin resistance
IGE2P	affects activity of	CD36	in THP-1 calls		31680642 Homo sapiens	Cardiovascular disease
LEPR	increases activity of	fatty acid beta-ovidation	in adinose tissue		32733634 Mus musculus	Diabatas mallitus, type II: Insulin resistance
LEIR	increases avprassion of	PPARGC1A	in adipose tissue		32733634 Mus musculus	Diabetes mellitus, type II, Insulin resistance
LEPR	increases expression of	CD36	in adipose tissue		32733634 Mus musculus	Diabetes mellitus type II: Insulin resistance
LEPR	affects activity of	IAK2	in utipose ussue	via phosphorylation	32733634 Mus musculus	Diabetes mellitus, type II; Insulin resistance
IAK2	affects activity of	AMPK		via phosphorylation	32733634 Mus musculus	Diabetes mellitus, type II; Insulin resistance
NOTCH1	decreases expression of	PPARGC1A	in renal tubular enithelial cells	···· [····]····)····	28751525 Mus musculus	Chronic kidney disease
NOTCH1	decreases expression of	CPT1A	in tenan tabatai epitaentai eenis		28751525 Mus musculus	Chronic kidney disease
NOTCH1	decreases expression of	BCI 2			28751525 Mus musculus	Chronic kidney disease
NOTCHI	decreases activity of	fatty acid beta-oxidation			28751525 Mus musculus	Chronic kidney disease
Angiostatin	decreases expression of	BCI 2			19465692 Mus musculus	Cancer
Angiostatin	increases expression of	THBS1			19465692 Mus musculus	Cancer
Angiostatin	interacts (colocalizes) with	MDH2	in mitochondria		19465692 Mus musculus	Cancer
1 ingrossium	merices (corocumes) with	mone	in HUVEC cells, in A2058 tumor		1) 105072 Mus musculus	caneer
Angiostatin	decreases quantity of	ATP	cells		19465692 Homo saniens	Cancer
Angiostatin	affects activity of	oxidative phosphorylation	in HUVEC cells		19465692 Homo sapiens	Cancer
IGEBP2	affects expression of	BCL2			21821709 Mus musculus	Cancer
IGFBP6	increases expression of	BCL2	in neurons		28044240 Rattus porvegicus	Cardiovascular disease
Tetradecanovlcarnitine	increases expression of	PTGS2	in RAW 264.7 macrophages		24760988 Mus musculus	Diabetes mellitus, type II: Insulin resistance
Palmitovlcarnitine C16	increases expression of	PTGS2	in RAW 264.7 macrophages		24760988 Mus musculus	Diabetes mellitus type II Insulin resistance
Stearoylcarnitine	increases expression of	PTGS2	in RAW 264.7 macrophages		24760988 Mus musculus	Diabetes mellitus type II Insulin resistance
Tetradecanovlcarnitine	increases expression of	11.6	in RAW 264.7 macrophages		24760988 Mus musculus	Diabetes mellitus type II: Insulin resistance
Tetradecanovlcarnitine	increases quantity of	Reactive oxygen species	in RAW 264.7 macrophages		24760988 Mus musculus	Diabetes mellitus, type II: Insulin resistance
Tetradecanovlcarnitine	increases activity of	inflammatory response	in RAW 264.7 macrophages		24760988 Mus musculus	Diabetes mellitus, type II: Insulin resistance
CDC14A	affects activity of	cilium assembly	in hTERT-RPE1 cells		30467237 Homo saniens	Cilionathy
PPARA	increases activity of	cilium assembly	in RPE1 cells, in A549 cells, in HK2 cells		29771182 Homo sapiens	Ciliopathy
PPARA	increases_activity of	autophagy	in RPE1 cells, in A549 cells, in HK2 cells		29771182 Homo sapiens	Ciliopathy
PPARA	increases_activity of	autophagy			29771182 Mus musculus	Ciliopathy
autophagy	increases_activity of	cilium assembly			29771182 Mus musculus	Ciliopathy
Palmitic acid	decreases expression of	SOD2	in monocytes		21035442 Homo sapiens	Diabetes mellitus type II Insulin resistance
Oleic acid	decreases expression of	SOD2	in monocytes		21035442 Homo sapiens	Diabetes mellitus type II Insulin resistance
Carnitine	decreases_activity of	NADPH oxidase complex		in L-NAME-treated animals	23223967 Rattus norvegicus	Cardiovascular disease
Angiotensin II	increases_expression of	CST3	in aortic smooth muscle cells		31668507 Homo sapiens	Cardiovascular disease
Angiotensin II	increases_activity of	EGFR	in glomerular mesangial cells	via phosphorylation	11737589 Mus musculus	Chronic kidney disease
						Diabetes mellitus, type II; Insulin resistance;
Angiotensin II	increases_activity of	NADPH oxidase complex	in kidney		28402446 Mammalia	Nephropathy, diabetic
						Diabetes mellitus, type I; Diabetes mellitus,
SREBF1c	increases_expression of	FASN	inliver		10940327 Mammalia	type II; Hypothyroidism; Insulin resistance
LEP	increases_activity of	LEPR	in hypothalamus		8782827 Mus musculus	Diabetes mellitus, type II; Insulin resistance
				via increased fatty acid beta-		
ACSL1	decreases quantity of	Oleic acid	in kidney in mitochondria	oxidation	33013450 Mammalia	Nephropathy diabetic
				via increased fatty acid beta-		
ACSL1	decreases_quantity of	Palmitic acid	in kidney, in mitochondria	oxidation	33013450 Mammalia	Nephropathy, diabetic

Supplementary Table 9. Interaction of connected edges in T2DCKDinna and the based literatures.

Abbreviations: T2DCKDinna, T2D-related CKD subnetwork of innate immune response.

			_				
Subject	Interaction type	Object	Arg_loc	Arg_Mod	PMID	Organism	Disease
TNF	interacts (colocalizes) with	TNFRSF1A			15842589	Homo sapiens	Inflammatory bowel disease
TNF	interacts (colocalizes) with	TNFRSF1B			15842589	Homo sapiens	Inflammatory bowel disease
				after binding with TNF-			
TNFRSF1A	increases_activity of	NF-kappaB complex		alpha	15842589	Homo sapiens	Inflammatory bowel disease
NF-kappaB complex	increases_expression of	IL6			31942046	Mammalia	Nephropathy, diabetic
				via decreased NF-kappaB			
ADIPOQ	decreases_expression of	IL6		activity	30181742	Mammalia	Chronic kidney disease
RETN	increases_activity of	NF-kappaB complex			30181742	Mammalia	Chronic kidney disease
RETN	increases_expression of	IL6			30181742	Mammalia	Chronic kidney disease
AMH	affects activity of	NF-kappaB complex	in lung cancer		27396341	Mus musculus	Cancer
		complement activation,					
FCN3	increases_activity of	lectin pathway			11907111	Homo sapiens	Hematological; Immunological
HAVCR2	increases activity of	macrophage activation			30862474	Mus musculus	Nephropathy, diabetic
RELT	increases activity of	NF-kappaB complex			11313261	Homo sapiens	Hematological
		toll-like receptor 3					Immunological: Multiple
CTSH	increases activity of	signaling nathway	in splenocytes		29470604	Mus musculus	sclerosis
			in Hub-7 and PLC				
			heantocellular				Cancer: Hepatocellular
AGK	increases activity of	NF-kappaB complex	carcinoma cells		25474138	Homo saniens	carcinoma
B2M	is part of	MHC class I complex	curentonia conto		31253869	Mammalia	Lung cancer: Immunological
CLOBP	increases activity of	complement activation			11850136	Mammalia	Inflammation: Immunological
CLOBP	affects activity of	T cell activation			16177118	Mammalia	Immunological
стоы	aneets_activity of	toll like recentor 4	in macrophages and		1017/110	wianimana	miniatological
CLORR	offoots potivity of	signaling pathway	dondritio collo	via activation of DI2V	16177119	Homo conione	Immunological
CIQBP	increases estimity of	signating pathway	dendrific certs	VIa activation of PISK	16177118	Monumelia	
milate minute response	Increases_activity of	complement activation	· · · · · · · · · · · · · · · · · · ·		101//118	waninana	minunoiogicai
DEDIA 5		770 IF	in ovarian granulosa		00510074		T. C. 1991
EFNA5	affects_expression of	TNF	cells		29619874	Mus musculus	Intertility
dendritic cell differentiation	affects_quantity of	CST3			15829557	Homo sapiens	Immunological
CST3	decreases_activity of	CTSH			3202963	Homo sapiens	Metabolic
		complement activation,					
CLEC4M	increases_activity of	lectin pathway			16978536	Mammalia	Immunological
			in airway epithelial				
EPHA2	decreases_activity of	NLRP3	cells	via Tyr phosphorylation	32352641	Mus musculus	Inflammation; Lung disease
		toll-like receptor 3					
EGFR	increases_activity of	signaling pathway			22810896	Homo sapiens	Immunological
GHR	increases_activity of	NLRP3 inflammasome			26876170	Mus musculus	Immunological
macrophage activation	increases_expression of	IGF2R			30657605	Mus musculus	Immunological
B2M	interacts (colocalizes) with	HLA-G			22802125	Mammalia	Immunological
KIR2DL4	interacts (colocalizes) with	HLA-G			10190900	Homo sapiens	Immunological
		complement activation,					2
MASP1	increases activity of	lectin pathway			24935208	Mammalia	Hematological: Immunological
		1					
MED1	increases expression of	PPARG	in macrophages		28642237	Mus musculus	Atherosclerosis: Cardiovascular
							· · · · · · · · · · · · · · · · · · ·
PPARG	affects activity of	macrophage activation			28642237	Mus musculus	Atherosclerosis: Cardiovascular
toll-like receptor 4 signaling		naerophage acu varion	in U937 mononuclear		20012237	indo mascaras	
nathway	increases quantity of	MMP1	cells		21952248	Homo saniens	Obesity: Immunological
paulway	increases_quantity of	toll-like recentor 4	cons		21)52240	riono supiens	obesity, ininiatiological
innate immune response	increases activity of	signaling pathway			21052248	Homo caniene	Obesity Immunological
DUSD11	intereases activity of	MAD2W7	in meansphages	ofter stimulation with LDS	21706022	Mue mucoulue	Immunological
toll like recentor 4 signaling	micraets (colocalizes) with	MAI JK/	minacrophages	and summation with Li 5	52170025	wius musculus	miniatological
pothway	increases estivity of	MAD2W7			22706022	Mommolio	Immunological
tall libs accounter 4 signaling	Increases_activity of	MAL2K/	in mode or too of To AN		32790023	waniinana	minulological
ton-like receptor 4 signaling	in anno 10 anti-site of	NOTCHI	in podocytes of IgAN	often etimulation with I DC	20220705	Home continue	Banal, Immunala si sal
NOTCHI	increases_activity of	NUICHI	patients	after sumulation with LPS	29230703	Homo sapiens	Renar; infinunological
NOICHI	Increases_activity of	NF-kappaB complex	in podocytes	after sumulation with LPS	29230705	Homo sapiens	Renal; Immunological
CONDEL		ton-like receptor 4			0.57.57070		
SCARFI	increases_activity of	signaling pathway			25767073	Mammalia	Immunological
		toll-like receptor 3					
SCARF1	increases_activity of	signaling pathway			25767073	Mammalia	Immunological
toll-like receptor 4 signaling							
pathway	increases_activity of	NF-kappaB complex			25767073	Mammalia	Immunological
toll-like receptor 3 signaling							
pathway	increases_activity of	NF-kappaB complex			25767073	Mammalia	Immunological
			in colorectal cancer				
TNFRSF19	affects_activity of	NF-kappaB complex	cell lines		24623448	Homo sapiens	Cancer; Inflammation
NF-kappaB complex	increases_quantity of	IL6			23664135	Mammalia	Immunological
NF-kappaB complex	increases_quantity of	TNF			23664135	Mammalia	Immunological
DUSP11	decreases_activity of	macrophage activation		after stimulation with LPS	32796023	Mus musculus	Immunological
							-
				via downregulation of ROS			
HAVCR2	decreases quantity of	NLRP3		production, in NASH mice	29735977	Mus musculus	Immunological
NLRP3	increases activity of	NLRP3 inflammasome			29735977	Mus musculus	Immunological
innate immune response	increases activity of	macrophage activation			28760771	Mammalia	Nephropathy, diabetic
innate immune response	increases activity of	NI RP3 inflammasome			28760771	Mammalia	Nephropathy diabetic
make manare response	usos_activity 01	toll-like recentor 3			20700771		reparticipanty, diabout
innate immune response	increases activity of	signaling nathway			25300542	Mammalia	Immunological
mane manane response	uses_activity 01	toll like recentor 4			25509545		
innate immune recooner	increases activity of	signaling pathway			25200542	Mammalia	Immunological
made minune response	increases_activity of	signaring pathway			23309343	wammana	minullological

		complement activation,					
innate immune response	increases_activity of	lectin pathway			28760771	Mammalia	Nephropathy, diabetic
MCM3	increases_activity of	NF-kappaB complex			31208444	Homo sapiens	Cancer
complement C1q	interacts (colocalizes) with	C1QBP			11859136	Mammalia	Inflammation; Immunological
TNF	increases_expression of	PAPPA	in mesangial cells		27519211	Homo sapiens	Nephropathy, diabetic
			on the surface of NK				
IL2	increases_quantity of	KIR2DL4	cells		14500636	Homo sapiens	Immunological
KIR2DL4	interacts (colocalizes) with	HLA-G			22934097	Mammalia	Immunological
			in peripheral blood				Immunological; Diabetes
IL2	increases_activity of	T cell activation	mononuclear cells		3110074	Homo sapiens	mellitus
		dendritic cell					
IL19	increases activity of	differentiation			15827959	Homo sapiens	Immunological
IL22	decreases activity of	NLRP3 inflammasome			28726774	Mus musculus	Renal; Immunological
toll-like receptor 4 signaling							
pathway	increases quantity of	II 22	from dendritic cells		24459235	Mus musculus	Inflammation: Immunological
II.22RA1	interacts (colocalizes) with	II 22			24459235	Mus musculus	Inflammation: Immunological
toll-like receptor 4 signaling							
nathway	increases quantity of	TNF			28933050	Mammalia	Nenhronathy diabetic
П 19	increases quantity of	TNF	in monocytes		12370360	Mus musculus	Inflammation
П 10	increases quantity of	TNE	in human HanG2calls		23468852	Mammalia	Penal
iL1)	increases_quantity of	1141	in numan riepozeens	via hinding to ClaPn the	23400052	Ivianiikana	Renai
ADIBOO	interests (anless lines) with	CD02		via binding to Ciqkp, the	10061970	Hanna anniana	Immunal a si sal
ADIPOQ	interacts (colocalizes) with	CD93		receptor for C1q	10961870	Homo sapiens	Immunological
CD93	interacts (colocalizes) with	complement C1q			10961870	Homo sapiens	Immunological
			in nucleus, in RAW-				
			264 / cells, in bone				
			marrow-derived				
			macrophages, in				
macrophage activation	increases activity of	TFE3	microglia		27171064	Mus musculus	Bacterial infection
LEPR	increases_activity of	T cell activation			25917102	Mus musculus	Immunological
				in response to activation			
HLA-G	affects_activity of	T cell activation		via KIR2DL4	22934097	Mammalia	Immunological
							Immunological; Chronic kidney
IL2	increases_activity of	T cell activation		via activation of STAT5	29619880	Homo sapiens	disease
toll-like receptor 4 signaling	r						
pathway	increases activity of	TFE3	in RAW-264 7 cells		27171064	Mus musculus	Bacterial infection
TFE3	affects expression of	TNF	in RAW-264 7 cells		27171064	Mus musculus	Bacterial infection
11.6	affects activity of	T cell activation			28363692	Mammalia	Nephropathy, diabetic
			in peripheral blood				· · · · · · · · · · · · · · · · · · ·
TNEPSE1B	increases activity of	NE kappaB complex	mononuclear cells		30104686	Homo sanians	Inflammation
IT I KOI I D	increases_activity of	The kappan complex	in repai tubular		50104000	riono supiens	
TNE	increases expression of	LAVN	anithalia		26410521	Mue mucaulue	Chronia kidnov disaasa
TNE	increases_expression of		in KMDC 1 anlla		26410531	I I ama anni ana	Changing hidragy disease
1101	increases_expression of	LAIN	in closeler eritheliel		20410551	Homo sapiens	Chilonic Kidney disease
			trma II aslla (T7				
		NELEDI A	type if certs (17		15025521		x 1.
TNF	increases_expression of	NEURL3	cells)		15936/21	Mus musculus	Lung disease
NEURL3	affects_activity of	Notch signaling pathway	in embryonic lungs		25904058	Mus musculus	Lung disease; Developmental
T1F2	interacts (colocalizes) with	CDC5L	in HeLa cells		12927788	Homo sapiens	Cancer
			in HeLa and HCT-				
CDC5L	interacts (colocalizes) with	ATR	116 cells		19633697	Homo sapiens	Cancer
ATR	increases_activity of	DNA damage checkpoint			15210935	Mammalia	Metabolic
MCM3	increases_activity of	DNA damage checkpoint			15210935	Homo sapiens	Cancer
ATR	affects_activity of	MCM3			15210935	Homo sapiens	Cancer
			in nucleus and				
ATR	increases_activity of	DNA damage checkpoint	mitochondria		32984322	Mammalia	Cancer
			in the stromal				
			vascular fraction				
			cells of adipose				
ADIPOO	increases expression of	ARG1	fissue		20028977	Mus musculus	Inflammation
			in the stromal				
			vascular fraction				
			cells of adipose				
ADIBOO	offorte activity of	meananham activation	ticeno		20028077	Mue mucaulue	Inflommation
Abii OQ	aneets_activity of	inacrophage activation	in the strenges1		20028777	wius muscurus	Innanination
			in the subman				
			vascular fraction				
			cells of adipose				
ADIPOQ	increases_quantity of	AKGI	ussue		20028977	Mus musculus	Inflammation
		1.D.C.I	in renal tissue and			Kattus	
macrophage activation	increases_quantity of	ARGI	serum		32179955	norvegicus	Renal
			in proximal tubule				
ATR	increases_activity of	DNA damage checkpoint	cells		31589169	Homo sapiens	Inflammation; Renal
FSTL3	increases_activity of	macrophage activation			31815869	Mus musculus	Cardiovascular disease
FCN3	interacts (colocalizes) with	MASP1			11907111	Homo sapiens	Hematological; Immunological
TNF	increases_quantity of	KDR			9705358	Homo sapiens	Amyotrophic lateral sclerosis

Supplementary Table 10. Interaction of connected edges in T2DCKDadipo and the based literatures.

Abbreviations: T2DCKDadipo, T2D-related CKD subnetwork of adipokine influence.

Subject	Interaction type	Object	Arg_loc	Arg_Mod	PMID	Organism	Disease
			in adipose tissue, in liver, in				
			muscle in pancreas in				Diabetes mellitus type II: Insulin resistance:
LED		Compared to the contraction	masere, in panereas, in		100 40227	Manualla	Diabetes mellitas, type II, Insum resistance,
LEP	increases activity of	fatty acid beta-oxidation	pancreatic islet		10940327	Mammana	Diabetes menitus type i Hypothyroidism
hyperglycemia	decreases expression of	LEPR	in adipose tissue		15536073	Mus musculus	Diabetes mellitus type II Insulin resistance
							Diabetes mellitus, type II; Obesity; Insulin
I FP	decreases activity of	hyperglycemia			7624776	Mus musculus	resistance
LED	lacereases_activity of	I EDD	In them with a taxonic		0702007	Mas musculus	Disk-tes welling tone II. Insulin assistants
LEP	increases_activity of	LEPK	in hypothalamus		8/8282/	Mus musculus	Diabetes mellitus, type II; Insulin resistance
							Glaucoma, primary open angle; Diabetes
		abnormal mitochondrial					mellitus, type II; Insulin resistance;
SOD2	affects activity of	physiology			22138560	Mammalia	Developmental
3002	anects_activity of	physiology			22138500	waninana	Developmental
hyperglycemia	decreases_quantity of	ADIPOQ			2416/545	Homo sapiens	Diabetes mellitus, type II; Insulin resistance
							Diabetes mellitus, type II; Insulin resistance;
SOD2	decreases quantity of	Reactive oxygen species			22117616	Mammalia	Cancer
RETN	decreases activity of	AMPK			25841249	Mammalia	Diabetes mellitus, type II: Insulin resistance
REIN .	decreases_activity of	AWI K			23841249	wanimana	Diabetes mentus, type II, insumi resistance
TNF	interacts (colocalizes) with	INFRSFIA			15842589	Homo sapiens	Inflammatory bowel disease
TNF	interacts (colocalizes) with	TNFRSF1B			15842589	Homo sapiens	Inflammatory bowel disease
		long-chain fatty-acyl-CoA					Diabetes mellitus, type II: Cardiovascular
ACSI 1	increases, activity of	biosynthetic process			24853887	Mammalia	disaasa: Inculin rasistanca: Cancar
LED	increases_activity of	Interesting process			24653667	Manimana	Di la sulli resistance, cancer
LEP	increases_expression of	IGFBP2			20074524	Mus musculus	Diabetes mellitus, type II; Insulin resistance
IGFBP2	decreases activity of	hyperglycemia			20074524	Mus musculus	Diabetes mellitus type II Insulin resistance
							Diabetes mellitus, type II: Nephropathy,
ADIPOO	increases, activity of	AMPK		via ADIPOP1	28402446	Mammalia	diabatic: Inculin registance
ADIIOQ	Increases_activity of	AWII K			20402440	waniinana	Di la contra di contra di la co
				via ADIPORT and			Diabetes mellitus, type II; Nephropathy,
ADIPOQ	decreases_quantity of	Reactive oxygen species		AMPK	28402446	Mammalia	diabetic; Insulin resistance
	,	<i>70</i> 1					Diabetes mellitus, type II: Nephropathy
1 DIDOO	1				20102115	. v.	Blabeles lielinas, type II, replitoplaily,
ADIPOQ	decreases_activity of	abnormal podocyte physiology			28402446	Mammalia	diabetic; Insulin resistance
							Diabetes mellitus, type II; Nephropathy,
ADIPOO	decreases activity of	NADPH oxidase complex	in kidney		28402446	Mammalia	diabetic: Insulin resistance
		1					Dishatas mallitus, type II: Nanhronathy
10000							Diabetes mentus, type ii, Nephropauly,
ADIPOQ	decreases_activity of	NF-kappaB complex	in kidney		28402446	Mammalia	diabetic; Insulin resistance
							Diabetes mellitus, type II; Nephropathy,
Angiotancin II	increases, activity of	NE kannaB complex	in kidney		28402446	Mammalia	diabatic: Inculin registance
Angiotensin n	Increases_activity of	м-каррав сопрієх	III Kidiley		20402440	waniinana	Di la contra di la
							Diabetes mellitus, type II; Nephropathy,
ADIPOQ	decreases_expression of	FN1	in kidney		28402446	Mammalia	diabetic; Insulin resistance
-							Diabetes mellitus, type II: Nephropathy
1	1	NADDU	1		29402446	M	dish stise Incention and in a sistence
nypergiycemia	increases_activity of	NADPH oxidase complex	in mesangiai celis		28402440	Mammana	diabetic; insuiti resistance
							Diabetes mellitus, type II; Nephropathy,
ADIPOO	increases expression of	NOS3			28402446	Mammalia	diabetic Insulin resistance
	1						Dishetes mellitus, tune II: Nenhronathy
10000							blabeles mentus, type II, rephropauly,
ADIPOQ	affects_activity of	lipid metabolic process			28402446	Mammalia	diabetic; Insulin resistance
							Diabetes mellitus, type II; Nephropathy,
Nephropathy, diabetic	increases quantity of	RETN	in blood serum		32173772	Homo sapiens	diabetic: Insulin resistance
1 1 55	=1 5			via decreased NE			
10000				via decreased INF-			an 1 11 1
ADIPOQ	decreases_expression of	TNF		kappaB activity	30181742	Mammalia	Chronic kidney disease
				via decreased NF-			
ADIPOO	decreases expression of	Пб		kappaB activity	30181742	Mammalia	Chronic kidney disease
LEDD	increases estivity of	TCEP1		happad acu my	20191742	Mommolio	Chronic hidney disease
LEPR	increases activity of	IGFBI			30181742	Mammana	Chronic kidney disease
LEPR	increases_quantity of	Collagen IV			30181742	Mammalia	Chronic kidney disease
LEPR	increases activity of	Phosphatidylinositol 3-kinase			30181742	Mammalia	Chronic kidney disease
RETN	increases expression of	VCAMI			30181742	Mammalia	Chronic kidney disease
ADIDOO	hereases_expression of	VCAMI			20101742	Manualia	Changie hidrory disease
ADIPOQ	decreases_expression of	VCAMI			30181742	Mammana	Chronic kidney disease
RETN	increases_activity of	NF-kappaB complex			30181742	Mammalia	Chronic kidney disease
RETN	increases expression of	IL6			30181742	Mammalia	Chronic kidney disease
DETN	increases expression of	TNE			20191742	Mammalia	Chronia hidrox diasasa
KEIN	increases_expression of	1101			50101742	waninana	Chionic Runey disease
			in retinal microvascular				
MMP1	increases_quantity of	VEGFA	endothelial cells		27261371	Homo sapiens	Retinopathy, diabetic
hyperglycemia	decreases expression of	SOD2	in mesangial cells		26052839	Homo sapiens	Renal
Angiotansin II	increases, expression of	CST3	in aortic smooth muscle calls		31668507	Homo capiene	Cardiovaccular disease
Angiotensin n	increases_expression of	1 1 1 1	in aortic shioour muscre cens		51008507	riono sapiens	Cardiovasculai disease
		decreased renal glomerular					
VCAM1	increases_activity of	filtration rate			32953797	Homo sapiens	Nephropathy, diabetic
NADPH oxidase							Diabetes mellitus, type II; Nephropathy.
complex	increases quantity of	Reactive oxygen species			32008346	Mammalia	diabetic: Insulin resistance
N 1 A 1	mercuses_quality of	reactive oxygen species			52090540		dauseae, mourni resistdike
Nephropathy, obesity-							
related	decreases expression of	ACSL1	in kidney		31488013	Homo sapiens	Obesity
ACSL1	affects activity of	linidosis	in HK-2 cells		31488013	Homo saniens	Obesity
ADIBOO	increases estivity of	ACEL 1	in 2T2 I 1 adingorates		20667075	Mus emeculus	Dishatas mallitus, trma II, Insulia registance
ADIFOQ	increases_activity of	ACOLI	III 51 5-L1 adipocytes		2000/9/3	Ivius muscurus	Diabetes meritus, type ii, insumi resistance
ACSL1	increases_activity of	AMPK	in 3T3-L1 adipocytes		20667975	Mus musculus	Diabetes mellitus, type II; Insulin resistance
Insulin	increases activity of	ACSL1	in 3T3-L1 adipocytes	via FATP1 and ACSL1	20667975	Mus musculus	Diabetes mellitus type II Insulin resistance
			,	via decreased		Rattus	Diabetes mellitus type II: Obesity: Inculin
DETN	4	A MOV	in LC muchland	abaarbaard. "	1010700		Diaceas mentus, type II, Obesity, IISullil
KEIN	decreases_activity of	AMPK	in L6 myoblast cells	pnosphorylation	16137686	norvegicus	resistance
ACSL1	increases_activity of	fatty acid beta-oxidation			20620995	Mus musculus	Diabetes mellitus, type II; Insulin resistance
hyperglycemia	increases expression of	IGFBP2	in MES-13 cells		18392786	Mus musculus	Nephropathy, diabetic
Angiotensin II	increases expression of	IGEBP2	in MES-12 calls		19202704	Mus proceeding	Nenhronathy disbetic
Angiotensin II	mcreases_expression of	TOLDE2	m MEG-15 Cells		16392/86	IVIUS IIIUSCUIUS	Prepinopany, diabete
ADIPOQ	affects_quantity of	ESAM			29804241	Homo sapiens	Diabetes mellitus, type II; Insulin resistance
hyperglycemia	decreases_activity of	ESAM			19323980	Mus musculus	Nephropathy, diabetic
		abnormal elomerular filtration					
EGAM	- 00	homina gromerular mulation			102220000	Mar	Nanhanastan diskada
ESAM	arrects activity of	partier function			19323980	wus musculus	rephropathy diabetic
							Diabetes mellitus, type II; Nephropathy,
Nephropathy, diabetic	increases quantity of	Luteinizing hormone			32475064	Homo sapiens	diabetic; Insulin resistance
ra spany, anothe						sins suprens	Diabetes mellitus tuna II: Manhaonothu
							Diabetes mennus, type II; Nephropatny,
Luteinizing hormone	increases_activity of	macroalbuminuria			32475064	Homo sapiens	diabetic; Insulin resistance
Luteinizing hormone	affects_quantity of	VEGFA	in kidney		32065170	Mammalia	Nephropathy, diabetic
ADIPOO	decreases quantity of	Luteinizing hormone	in LbetaT2 cells		18006641	Mus musculus	Diabetes mellitus, type II: Insulin resistance
ADTROO	accreases_quantity of	A M M	in Locuriz cents		244071-1	TT	Cash around hast diag
ADIPOQ	increases_expression of	MMPI	in dermai fibroblasts		2440/161	Homo sapiens	Gran-versus-host disease
CST3	interacts (colocalizes) with	ADIPOQ			28321013	Homo sapiens	Cardiovascular disease

ADIPOQ	increases_expression of	SOD2	in monocytes	21035442	Homo sapiens	Diabetes mellitus, type II; Insulin resistance
TFE3	affects_expression of	ADIPOQ		28483914	Mus musculus	Diabetes mellitus, type II; Insulin resistance
						Diabetes mellitus, type II; Nephropathy,
ACE	affects_quantity of	ADIPOQ	in blood plasma	15711099	Homo sapiens	diabetic; Insulin resistance
			in bone marrow-derived			
TFE3	affects expression of	IL6	macrophages	27171064	Mus musculus	Bacterial infection
LEPR	interacts (colocalizes) with	LEP		30181742	Mammalia	Chronic kidney disease
FSTL3	increases_activity of	lipidosis	in macrophages	31815869	Mus musculus	Cardiovascular disease
					Rattus	
LEP	increases_expression of	PNLIPRP2	in AR4-2J cells	17010228	norvegicus	Cancer
						Retinopathy, diabetic; Diabetes mellitus, type
						II; Cardiovascular disease; Nephropathy,
						diabetic; Neuropathy, diabetic; Myocardial
						infarction; Insulin resistance; Stroke,
ACE	increases quantity of	Angiotensin II		20809236	Mammalia	ischemic
FSTL3	increases_quantity of	TNF	in macrophages	31815869	Mus musculus	Cardiovascular disease

Supplementary Table 11. Interaction of connected edges in T2DCKDras and the based literatures.

Abbreviations: T2DCKDras, T2D-related CKD subnetwork of renin-angiotensin system dysfunction.

Subject	Interaction type	Object	Arg_loc	Arg_Mod	PMID	Organism	Disease
							Retinopathy, diabetic; Diabetes mellitus, type II;
							Cardiovascular disease; Nephropathy, diabetic;
							Neuropathy, diabetic; Myocardial infarction; Insulin
ACE	increases quantity of	Angiotensin II			20809236	Mammalia	resistance; Stroke, ischemic
Angiotensin (1-7)	decreases expression of	IL6	in cardiac muscle		19166939	Rattus norvegicus	Diabetes mellitus, type II; Insulin resistance
Angiotensin II	increases expression of	FN1		via CYBB	16720735	Mus musculus	Diabetes mellitus, type II: Insulin resistance
Aldosterone	increases expression of	FN1		via CYBB	16720735	Mus musculus	Diabetes mellitus, type II; Insulin resistance
ABCB1	increases transport of	Aldosterone			21967062	Mammalia	Diabetes mellitus type II Insulin resistance
IGFBP2	decreases activity of	hyperglycemia			20074524	Mus musculus	Diabetes mellitus type II Insulin resistance
Angiotensin II	increases expression of	IGF2R		via AGTR1	24786827	Rattus norvegicus	Cardiovascular disease
Angiotensin II	interacts (colocalizes) with	AGTR2	in HEK293 cells		21542804	Homo sapiens	Cardiovascular disease
							Diabetes mellitus, type II: Cardiovascular disease:
REN	increases activity of	IGF2R			30934934	Mammalia	Insulin resistance
			from extracellular space into cell in				
			cardiomyocytes, in fibroblasts, in vascular				Diabetes mellitus, type II: Cardiovascular disease:
IGE2R	increases transport of	Prorenin	smooth muscle cells		30934934	Mammalia	Insulin resistance
Angiotensin II	increases quantity of	PLAT	in extracellular space		12091055	Homo sapiens	Cardiovascular disease
Angiotensin (1-7)	decreases quantity of	PLAT	in extracellular space		12091055	Homo sapiens	Cardiovascular disease
AGTR1	increases quantity of	Aldosterone	in adrenal glomerulosa cells		1338730	Pattus porvegicus	Chronic kidney disease
ACTR1	increases quantity of	ECEP	in adrenar gioneraiosa cens		21525726	Mammalia	Obasity Cancer
humaraluaamia	increases_activity of	VDP			16426404	Ros tourus	Cardiovacaular
Appelgrycenia Appelgrycenia	increases_expression of	KDR	in medianeter		26062200	II	Vanharantha diabatia
Angiotensin II	increases_expression of	KDK DLAT	in podocytes		26063200	Homo sapiens	Nephropathy, diabetic
nypergrycemia	increases_quantity or	PLAI	mesangiai celis		7924884	Homo sapiens	Nephropathy, diabetic
AMH	affects quantity of	Prorenin		in pregnancy	32853347	Homo sapiens	Preeclampsia
AGIRI	affects expression of	FNI	in mesangial cells		15569303	Rattus norvegicus	Nephropathy diabetic
ABCB1	affects_activity of	REN	in blood plasma		1/3/2036	Homo sapiens	Cardiovascular disease
CISH	increases_activity of	REN			6/5668/	Homo sapiens	Cardiovascular disease
Angiotensin II	increases_expression of	CTSV	in aortic smooth muscle cells		31668507	Homo sapiens	Cardiovascular disease
Angiotensin II	increases_expression of	CST3	in aortic smooth muscle cells		31668507	Homo sapiens	Cardiovascular disease
Angiotensin II	increases expression of	FN1	in glomerular mesangial cells		11737589	Mus musculus	Chronic kidney disease
EGFR	affects_expression of	FN1	in glomerular mesangial cells		11737589	Mus musculus	Chronic kidney disease
Angiotensin II	increases_activity of	EGFR	in glomerular mesangial cells	via phosphorylation	11737589	Mus musculus	Chronic kidney disease
ERBB3	interacts (colocalizes) with	AGTR2			10710290	Homo sapiens	Cardiovascular disease
Angiotensin (1-7)	decreases_activity of	EGFR	in aortic smooth muscle cells	via MAS1	26536590	Rattus norvegicus	Diabetes mellitus, type II; Insulin resistance
Angiotensin (1-7)	decreases activity of	ERBB3	in aortic smooth muscle cells		26536590	Rattus norvegicus	Diabetes mellitus type II Insulin resistance
hyperglycemia	increases activity of	ERBB3	in aortic smooth muscle cells		26536590	Rattus norvegicus	Diabetes mellitus type II Insulin resistance
hyperglycemia	increases_quantity of	FN1	in MES-13 cells		18392786	Mus musculus	Nephropathy, diabetic
Angiotensin II	increases_expression of	IGFBP2	in MES-13 cells		18392786	Mus musculus	Nephropathy, diabetic
ACE	affects_expression of	EPHA2			18463147	Rattus norvegicus	Cardiovascular disease
Luteinizing hormone	increases quantity of	Aldosterone			24297486	Homo sapiens	Cardiovascular disease
GHR	affects quantity of	Angiotensin (1-7)	in heart in kidney		22947377	Mus musculus	Cardiovascular disease
GHR	affects_quantity of	MAS1	in heart, in kidney		22947377	Mus musculus	Cardiovascular disease
GHR	affects_quantity of	ACE2	in heart, in kidney		22947377	Mus musculus	Cardiovascular disease
GHR	affects_quantity of	AGTR1	in heart, in kidney		22947377	Mus musculus	Cardiovascular disease
Angiotensin II	decreases expression of	MMP1	in cardiac fibroblasts in cardiac myocytes		18296491	Homo sapiens	Cardiovascular disease
Angiotensin II	increases_expression of	MMP1	in cardiac myocytes		18296491	Homo sapiens	Cardiovascular disease
Angiotensin II	increases_activity of	NTRK2			28549782	Rattus norvegicus	Cardiovascular disease
Angiotensin II	increases_activity of	RET			19961928	Mus musculus	Developmental
ACE	affects activity of	RPS6KA5	in kidney		21377515	Rattus norvegicus	Cardiovascular disease
AGTR1	affects activity of	RPS6KA5	in kidney		21377515	Rattus norvegicus	Cardiovascular disease
Angiotensin (1-7)	increases expression of	SOD2	in cardiomvocytes		28411231	Rattus norvegicus	Cardiovascular disease
- · · ·							Diabetes mellitus, type II; Nephropathy, diabetic;
ACE	affects quantity of	ADIPOO	in blood plasma		15711099	Homo sapiens	Insulin resistance
ERBB3	interacts (colocalizes) with	EGER			24520092	Homo sapiens	Cancer
Angiotensin II	increases activity of	AGTR1			25003613	Mammalia	Nephropathy, diabetic
ACE2	decreases quantity of	Angiotensin II			30978131	Mammalia	Cardiovascular disease
ACE	decreases quantity of	Angiotensin I	in kidnev		10065122	Mammalia	Nephropathy diabetic
Renin	increases quantity of	Angiotensin I	in name y		10585461	Mammalia	Nephropathy, diabetic
Prorenin	increases quantity of	Panin			12684512	Homo sanians	Nephropathy, diabetic
hyperglycemia	decreases avpression of	SOD2	in merangial cells		26052820	Homo sapiens	Panal
hyperglycemia	increases activity of	EGER	in neonigini cono	via phoephorylation	16105020	Homo sapiens	Nenbronathy diabetic
Angiotensin (1-7)	increases activity of	MASI	in HEK203 cells	via priospiioi yrauoli	27217404	Homo sapiens	Cardiovascular disease
ACE2	increases delivity of	Angiotansin (1.7)	in hidray	at pautral to basis -U	2/21/404	Mus musculus	Endoarina
ACL2	increases_quantity of	Augrotensin (1-7)	III KIUIR Y	at neutral to basic pH	20092110	ivius musculus	Lauocime

Supplementary Table 12. Interaction of connected edges in T2DCKDfibri and the based literatures.

Abbreviations: T2DCKDfibri, T2D-related CKD subnetwork of extracellular matrix deposition and renal fibrosis.

Subject	Interaction type	Object	Arg loc	Arg Mod	PMID	Organism	Disease
TNFRSF1A	affects expression of	VEGEA			18413601	Mus musculus	Amyotrophic lateral sclerosis
TNE	interests (aslesslines) with	TNERGEIA			15942590	Home conione	Informatory housed disease
TINF	interacts (colocalizes) with	INFRSFIA			15842589	Homo sapiens	Inflammatory bowel disease
INF	interacts (colocalizes) with	INFRSFIB			15842589	Homo sapiens	Inflammatory bowel disease
				by mediating the binding of TNF to			
TNFRSF1B	affects_activity of	TNFRSF1A		TNFRSF1A	15842589	Homo sapiens	Inflammatory bowel disease
ACV1	affects activity of	TGFB1			28454420	Homo saniens	Colorectal cancer
Thromhin	decreases quantity of	Fibringen			20101120	Mammalia	COVID 19: Cardiovascular disease
Thrombin m	decreases_quantity of	Fibiliogen			32346763	Maningina	COVID-19, Cardiovascular disease
Thrombin	increases_quantity of	Fibrin			32348783	Mammalia	COVID-19; Cardiovascular disease
Fibrinogen	increases quantity of	Fibrin		via proteolytic activity of thrombin	32348783	Mammalia	COVID-19; Cardiovascular disease
				via proteolytic activity of PLAT and			
Plasminogen	increases quantity of	Plasmin		PLAU	32348783	Mammalia	COVID-19: Cardiovascular disease
DIAT	increases quantity of	Bloomin		to eather with DLATI	22240702	Mammalia	COVID 10; Cardiovascular disease
FLAT	increases_quantity of	Flashin		logetier with FLAO	32346763	wanniana	COVID-19, Cardiovascular disease
PLAT	decreases quantity of	Plasminogen		together with PLAU	32348783	Mammalia	COVID-19; Cardiovascular disease
			in HEC-1A cells, in Ishikawa				
SPOCK2	decreases expression of	MMP2	cells		30832559	Homo sapiens	Cancer
							Nephropathy, diabetic: Insulin resistance:
A DIDOO	depression of	ENI	in bideore		28402446	Mammalia	Dishatas mallitus, tona II
ADIPOQ	decreases expression of	FINI	In kidney		28402440	Mammalia	Diabetes mellitus type ii
KDR	interacts (colocalizes) with	VEGFA	in CMT-3 cells		1417831	Canis lupus familiaris	Cardiovascular
hyperglycemia	increases expression of	KDR			16436494	Bos taurus	Cardiovascular
Thrombin	increases_expression of	KDR	in aortic endothelial cells		11807828	Bos taurus	Cardiovascular
			in umbilical vein endothelial				
Thrombin	increases appreciate of	KIDB	aalla		10446165	Home conione	Cordiananalar
Theomotic Theomotic Theorem	increases_expression of	KDK	cens		10440103	Homo sapiens	Cardiovascular
PLAT	increases_quantity of	Plasmin			/924884	Mammalia	Nephropathy, diabetic
ADAMTS13	decreases quantity of	Fibrinogen	in plasma		28495930	Mus musculus	Nephropathy diabetic
ADAMTS13	decreases quantity of	FN1	in the glomerular compartment		28495930	Mus musculus	Nephropathy, diabetic
Thrombin	increases quantity of	EN1	in macanchumal stam calls		24636779	Homo caniane	Hematological
Thromoth	mercases quantity of	1111	in mescachynai stem cents		24030778	nomo sapiens	ricinatological
			in cultured murine tubular				
TGFB	increases expression of	NOTCH1	epithelial cells.		26119175	Mammalia	Nephropathy diabetic
IGF2R	interacts (colocalizes) with	Plasminogen			22613725	Mammalia	Hematological
ICE2P	increase quantity of	Plaemin			22612725	Mammalia	Hamatological
IGF2K	mercases quantity or	FIASIIIII			22013/25	nyianinkilla	richatological
FS1L3	decreases_quantity of	FNI	in mesangial cells	under high-glucose condition	26629006	Kattus norvegicus	Nephropathy, diabetic
FCN3	interacts (colocalizes) with	MASP1			11907111	Homo sapiens	Hematological; Immunological
							Nephropathy diabetic: Diabetes mellitus turne
Comosina	damagana martin d	ENI	in made and as		1004000	Home conion	IL Diskates multitus tra - 1
Carnosine	decreases quantity of	FNI	in podocytes		16046297	Homo sapiens	II; Diabetes mellitus type I
MMP1	decreases_quantity of	Collagen			10703682	Mammalia	Nephropathy, diabetic
MMP2	decreases quantity of	Collagen			10703682	Mammalia	Nenbronathy diabetic
han analyza and a	inomono annosion of	ENI	in meconoial calls		26052820	Home conione	Damal .
nypergiycemia	increases expression of	FNI	in mesangiai celis		20052839	Homo sapiens	Kenai
TNFRSF1A	affects_quantity of	Fibrin	in hepatocytes		20218879	Mus musculus	Hematological
Laminin	increases activity of	extracellular matrix assembly			11801598	Mammalia	Renal
LAMC1	is part of	Laminin			11801598	Mammalia	Renal
TEP2	is_puit_or	LANCI	5	and a state of the	11001500	D. u.	Devel
IFE5	increases expression of	LAMCI	in mesangiai celis	together with SMAD5	11801598	Kattus norvegicus	Kenai
Collagen	increases_activity of	extracellular matrix assembly			10703682	Mammalia	Nephropathy, diabetic
Fibrin	increases activity of	extracellular matrix assembly			25867016	Mammalia	Hematological
ECN3	increases, activity of	MASPI			11007111	Homo caniane	Hematological: Immunological
ICIO	increases_activity of	NINDI I			11907111	Tiono sapiens	richaological, ininalological
IGF2R	interacts (colocalizes) with	Plasminogen	in monocytes		10092105	Homo sapiens	Inflammation
CST3	decreases_activity of	CTSB	in cardiac fibroblasts		20489058	Rattus norvegicus	Cardiovascular disease
CTSB	decreases quantity of	FN1	in cardiac fibroblasts		20489058	Rattus norvegicus	Cardiovascular disease
EN1	increases, activity of	extracellular matrix accombly	in fibroblacte		20489058	Mammalia	Cardiovascular diseases
CTEN	hereuses_deuvity of	Di'			10162001	TT	Carl and a linear
CISV	decreases quantity of	Plasminogen	in cornea		18163891	Homo sapiens	Cardiovascular disease
			in monocyte-derived				
CTSV	decreases quantity of	ELN	macrophages		15192101	Homo sapiens	Atherosclerosis: Cardiovascular disease
Plaemin	decreases, quantity of	Fibrin			32348783	Mammalia	COVID 19: Cardiovascular disease
1 lashini	decreases quantity of	1 Iom			32346765		COVID-19, Cardiovascular disease
CIQBP	decreases_quantity of	Pibrin			100/5865	Homo sapiens	Hematological
ELN	increases activity of	extracellular matrix assembly			24680817	Mammalia	Cancer; Cardiovascular disease
extracellular matrix assembly	increases activity of	fibrosis			29482391	Mammalia	Liver disease, chronic
							Nenhronathy diabetic: Diabetes mellitus type
Charlen (a			1.00.1.000		rephropauly, diabetic, brabetics meritals, type
CNDPI	decreases_quantity of	Carnosine	in blood serum		16046297	Homo sapiens	II; Diabetes mellitus, type I
TGFB1	increases expression of	FN1	in diabetic kidney		8603776	Mus musculus	Nephropathy diabetic
BMP1	increases quantity of	Collagen			29482391	Mammalia	Liver disease, chronic
MASP1	increases quantity of	Fibrin	in normal citrated plasma		22536427	Homo sapiens	Hematological: Immunological
EGER	affacts avarageion of	EN1	in domandar measurial ast		11727500	Mue mueculue	Chronic kidnay disaasa
LOIA	ancets_expression or	1111	in giomerurar mesangiar certs		11/3/389	ivius musculus	chronic klulley uisease
Angiostatin	decreases quantity of	Plasmin			19916923	Homo sapiens	Hematological
Plasminogen	increases_quantity of	Plasmin		through proteolytic activity of PLAT	28837538	Mammalia	Cancer
Plasminogen	increases quantity of	Angiostatin			28837538	Mammalia	Cancer
			in bovine aortic endothelial cells (BAEC), murine melanoma cells (B16F10) or human ovariancarcinoma cells (OVCA				
Angiostatin	decreases activity of	PLAT	429)	by binding to tPA (PLAT)	10229661	Mus musculus	Cancer
PLAT	increases quantity of	Plasmin			28837538	Mammalia	Cancer
Anniostatin	decreases activity of	PLAT			21800044	Homo caniane	Hamatological
rangiostatui	accreases acuvity or	i Litti			21899046	rionio sapiens	rematological
MASPI	increases_quantity of	Pibrin			24935208	Mammalia	Hematological; Immunological
EPHA2	increases quantity of	Laminin	in HK-2 cells		27228995	Homo sapiens	Chronic kidney disease
TGFB1	decreases expression of	PAX8	in FRTL-5 cells		11145590	Rattus norvegicus	
			in renal glomerular macanaial				
H 22	4	ENI	in ream gromerular mesangial		A084	M	In the second
11.22	decreases_quantity of	PIN1	cens		28726774	Mus musculus	immunological; Kenal
IL22RA1	interacts (colocalizes) with	IL22			24459235	Mus musculus	Inflammation; Immunological
			in renal glomerular mesangial				
humanglucamia	increases quantity of	EN1	calle		28726774	Mue mucculue	Immunological: Panal
nypergiyeenna	mercases quantity or	1111 TOTOD 1	COIS		28/20//4	ivius muscurus	ninimilioingical, Keital
1NFRSF19	interacts (colocalizes) with	1GFBR1	in HEK293T cells		29735548	Homo sapiens	Cancer
TNF	increases_expression of	LAYN	in renal tubular epithelia		26410531	Mus musculus	Chronic kidney disease
TGFB	interacts (colocalizes) with	TGFBR1			29735548	Homo sapiens	Cancer
NOTCHI	increases expression of	ENI			29751526	Mue mueculue	Chronic kidnay disaasa
NOICHI	increases_expression of	rini			28/51525	ivius musculus	Cinonic kidney disease
Angiostatin	decreases quantity of	TGFB1	in kidney		16394111	Rattus norvegicus	Nephropathy diabetic
TGFB1	increases_quantity of	FN1			16394111	Homo sapiens	Renal
Angiostatin	decreases activity of	TGFB1			16394111	Homo saniens	Renal
man	decreases_activity of	DODD			10394111	nono sapiens	D. C.
IGFA	interacts (colocalizes) with	EGFR			15064403	Mammalia	Cancer
				by accelerating TGFalpha processing			
NKD2	increases activity of	TGFA		and cell-surface delivery	15064402	Canis lunus familiaris	Renal
	increases_activity of		· · · · · · · · · · · · · · · · · · ·	and cerr surface derivery	1.5004405	Cano rupus raminaris	
			in serum-tree cultured				
			conditioned medium of a human				
			gastric carcinoma cell line MKN				
SPINT1	decreases activity of	HGFAC	45		10219059	Mammalia	Cancer

HGFAC	increases activity of	HGF		during kidney development	11032833 Mus musculus	Developmental; Renal
TLN2	increases_activity of	extracellular matrix assembly	in NIH3T3 cells		22306379 Mus musculus	Metabolic
TLN2	interacts (colocalizes) with	LAYN			29723415 Homo sapiens	Cancer; Metabolic
HGF	decreases quantity of	Collagen	in glomeruli		15882257 Homo sapiens	Renal
NOTCH1	increases_quantity of	Collagen			28751525 Mus musculus	Chronic kidney disease
hyperglycemia	decreases expression of	FSTL3	in mesangial cells		26629006 Rattus norvegicus	Nephropathy diabetic
hyperglycemia	decreases_quantity of	FSTL3	in mesangial cells		26629006 Rattus norvegicus	Nephropathy, diabetic
			in profibrogenic hepatic			
TGFB1	increases_quantity of	CST3	stellate cells		16521186 Rattus norvegicus	Inflammation
TGFB1	increases quantity of	CST3	in smooth muscle cells		10545518 Homo sapiens	Cardiovascular

Supplementary Table 13. Interaction of connected edges in T2DCKDage and the based literatures.

Abbreviations: T2DCKDage, T2D-related CKD subnetwork of advanced glycation end products.

Subject	Interaction type	Object	Arg loc	Arg Mod	PMID	Organism	Disease
Subject	interaction type	Advanced glycation end-	Ing_loc	nig_nou	1.0110	Organishi	Insulin resistance: Diabetes
Reactive oxygen species	increases_quantity of	product			10783895	Bos taurus	mellitus, type II
hyperglycemia	increases_quantity of	Advanced glycation end- product			10082470	Mammalia	Insulin resistance; Diabetes mellitus, type II
hyperglycemia	increases_quantity of	Glycated hemoglobin			10082470	Mammalia	Insulin resistance; Diabetes mellitus, type II
AGER	increases activity of	NF-kappaB complex			10082470	Mammalia	Insulin resistance; Diabetes mellitus, type II
					10260266		Insulin resistance; Diabetes
Acetylcarnitine	increases_quantity of	Glycated hemoglobin			19369366	Homo sapiens	mellitus, type II; Obesity
Advanced glycation end-					26900135		Insulin resistance; Diabetes
product	increases_activity of	Nephropathy, diabetic				Mammalia	mellitus, type II; Obesity
AGER	increases quantity of	Reactive oxygen species			22582044	Mammalia	mellitus, type II
Advanced glycation end-	interacts (colocalizes)	58 1					Insulin resistance; Diabetes
product	with	AGER			31861217	Mammalia	mellitus, type II
		Advanced glycation end-			31861217		Insulin resistance; Diabetes
hyperglycemia	increases_quantity of	product		in T1D and in T2D	51001217	Mammalia	mellitus, type II
Advanced glycation end-				in women habituated to	31861217		Insulin resistance; Diabetes
product	affects_quantity of	AMH		high AGE consumption		Mammalia	mellitus, type II
AMH	affects_activity of	NF-kappaB complex	in lung cancer		27396341	Mus musculus	Cancer
Advanced glycation end-	increases quantity of	Angiotongin II			15569303	Rattus	Nanhronathy dishatia
Advanced divication and	increases_quantity of	Angiotensin n				Pattus	Nephropauly, diabetic
product	increases expression of	FN1	in mesangial cells		15569303	norvegicus	Nenhronathy diabetic
product	increases_expression of	1111	in nonalcoholic fatty liver			norvegieus	rtepinopauly, ulabelle
HAVCR2	decreases_quantity of	Reactive oxygen species	disease		30862474	Mammalia	Nephropathy, diabetic
HAVCR2	decreases activity of	NLRP3 inflammasome	in nonalcoholic fatty liver disease		30862474	Mammalia	Nephropathy, diabetic
HAVCR2	affects activity of	NF-kappaB complex	in macrophages		30862474	Mammalia	Nephropathy, diabetic
Nephropathy, diabetic	increases quantity of	HAVCR2	in renal macrophages		30862474	Mus musculus	Nephropathy, diabetic
Advanced glycation end-			in peritoneal macrophages				· · · · · · · · · · · · · · · · · · ·
product	increases_quantity of	HAVCR2	and bone marrow cells		30862474	Mus musculus	Nephropathy, diabetic
protein glycation	increases quantity of	B2M-AGE			11792765	Homo saniens	Insulin resistance; Nephropathy, diabetic; Diabetes mellitus, type II
protein grycaron	increases_quality of	extracellular matrix			11792765	Tiono suprens	Insulin resistance; Nephropathy, diabetic;
B2MAGE	increases_activity of	disassembly				Homo sapiens	Diabetes mellitus, type II
B2MAGE	increases_expression of	TNF			8113390	Homo sapiens	Chronic kidney disease
B2MAGE	increases_expression of	IL1B			8113390	Homo sapiens	Chronic kidney disease
B2MAGE	increases_activity of	monocyte chemotaxis			8113390	Homo sapiens	Chronic kidney disease
B2MAGE	increases_expression of	MMP1	in synovial fibroblasts		8113390	Homo sapiens	Chronic kidney disease
B2MAGE	increases_expression of	TGFB1	in macrophages		10652049	Homo sapiens	Chronic kidney disease
B2MAGE	increases_expression of	TNF	in macrophages		10652049	Homo sapiens	Chronic kidney disease
protein glycation	increases_quantity of	Advanced glycation end- product			22117616	Mammalia	Insulin resistance; Cancer; Diabetes mellitus, type II
		-					Insulin resistance;
Advanced glycation end-					32098346		Nephropathy, diabetic;
product	increases_quantity of	Collagen IV				Mammalia	Diabetes mellitus, type II
Glycated hemoglobin	increases quantity of	Advanced glycation end- product			10082470	Mammalia	Insulin resistance; Diabetes mellitus, type II
Nephropathy, diabetic	increases expression of	AGER	in kidney		24371263	Homo sapiens	Nephropathy, diabetic
Advanced glycation end-							A A 5.
product	affects_activity of	Luteinizing hormone	in KGN cells		28914097	Homo sapiens	Polycystic ovary syndrome 1
Luteinizing hormone	increases_activity of	ERK1 and ERK2 cascade	in KGN cells		28914097	Homo sapiens	Polycystic ovary syndrome 1
Advanced glycation end- product	decreases_activity of	ERK1 and ERK2 cascade	in KGN cells		28914097	Homo sapiens	Polycystic ovary syndrome 1
Advanced glycation end-					19760771		
product	increases_activity of	NLRP3 inflammasome			28/00//1	Mammalia	Nephropathy, diabetic

Supplementary Table 14. Interaction of connected edges in T2DCKDangi and the based lit-

eratures. Abbreviations: T2DCKDangi, T2D-related CKD subnetwork of angiogenesis.

Subject	Interaction type	Object	Arg loc	Arg Mod	PMID	Organism	Disease
TNFRSFIA	affects expression of	VEGEA	ing_loc		18413601	Mus musculus	Amvotrophic lateral sclerosis
TNF	increases quantity of	KDR			9705358	Homo saniens	Amyotrophic lateral sclerosis
IN	increases quantity of	KDK			7705558	riono sapiens	Cancer: Metabolic syndrome: Diabetes mellitus
11.6	increases activity of	angioganasis			21012508	Mammalia	type II: Inculin registance
TNE	interacts (colocalizes) with	TNEPSELA			15842580	Homo caniane	Inflammatory howal disease
TNE	interacts (colocalizes) with	TNEPSEIR			15842589	Homo sapiens	Inflammatory bowel disease
KDR	interacts (colocalizes) with	VEGEA	in CMT-3 cells		1417831	Canis lupus familiaris	Cardiovascular
KDR	increases activity of	angiogenesis	in CMT-3 cells		1417831	Canis lupus familiaris	Cardiovascular
hyperglycemia	increases expression of	KDR			16436494	Bos taurus	Cardiovascular
nypergrycenna	nereuses_expression of	illoit.	in retinal microvascular		10150191	Dos manas	Cardiovascular
MMP1	increases quantity of	VEGEA	endothelial cells		27261371	Homo saniens	Retinonathy diabetic
CTSV	decreases quantity of	Plasminogen	in cornea		18163891	Homo sapiens	Cardiovascular disease
CTSV	decreases activity of	angiogenesis	in cornea		18163891	Homo saniens	Cardiovascular disease
CTSH	increases activity of	angiogenesis	in pancreatic islet cell cancer		20731543	Mus musculus	Cancer
NF-kappaB complex	increases expression of	VEGEA	F		25474138	Mammalia	Cancer: Hepatocellular carcinoma
			in Huh-7 and PLC heaptocellular				
AGK	increases activity of	angiogenesis	carcinoma cells		25474138	Homo sapiens	Cancer: Hepatocellular carcinoma
			in Huh-7 and PLC heaptocellular				
AGK	increases activity of	NF-kappaB complex	carcinoma cells		25474138	Homo sapiens	Cancer: Hepatocellular carcinoma
			in Huh-7 and PLC heaptocellular				
NF-kappaB complex	increases quantity of	VEGFA	carcinoma cells		25474138	Homo sapiens	Cancer: Hepatocellular carcinoma
SEMA3E	interacts (colocalizes) with	PLXND1			19940264	Mammalia	Hematological
SEMA3E	decreases activity of	VEGFA	in HUVECs		19940264	Homo sapiens	Hematological
SEMA3E	decreases expression of	DLL4	in retinal vasculature		21724832	Mus musculus	Ophtalmological
DLL4	increases activity of	NOTCHI			17259973	Mus musculus	Ophtalmological
NOTCHI	affects activity of	angiogenesis		together with DLL4	17259973	Mus musculus	Ophtalmological
VEGFA	increases expression of	DLL4	in angiogenic sprouts	- C	17296940	Mus musculus	Ophtalmological
			in the subcutaneous site and				
			femoral defect site after 6 weeks				
NOTCHI	affects_expression of	KDR	of surgery		29674611	Rattus norvegicus	Bone
VEGFA	increases_expression of	DLL4	in HUVECs		21724832	Homo sapiens	Ophtalmological
SEMA3E	decreases expression of	DLL4	in HUVECs		21724832	Homo sapiens	Ophtalmological
VEGFA	increases_expression of	PLXND1	in angiogenic blood vessels		21724832	Mus musculus	Ophtalmological
JAM2	increases_activity of	VEGFA	in HUVECs		25911611	Homo sapiens	Hematological
			in coronary artery endothelial				~
ADIPOQ	affects activity of	VEGFA	cells (HCAECs)		18267956	Homo sapiens	Cardiovascular
ADAMTS13	increases expression of	VEGFA	in HUVECs		24950743	Homo sapiens	Hematological
ADAMTS13	increases activity of	KDR	in HUVECs		24950743	Homo sapiens	Hematological
							Nephropathy, diabetic; Diabetes mellitus, type II;
Reactive oxygen species	increases activity of	NF-kappaB complex			32098346	Mammalia	Insulin resistance
Angiostatin	decreases activity of	angiogenesis			21899046	Mammalia	Cardiovascular
Angiostatin	decreases activity of	angiogenesis			19916923	Homo sapiens	Hematological
Plasminogen	increases quantity of	Angiostatin			28837538	Mammalia	Cancer
			in bovine aortic endothelial cells				
			(BAEC), murine melanoma cells				
			(B16F10) or human				
			ovariancarcinoma cells (OVCA				
Angiostatin	decreases activity of	PLAT	429)	by binding to tPA (PLAT)	10229661	Mus musculus	Cancer
IGFBP6	decreases activity of	angiogenesis	in vascular endothelial cells	o, company control (control)	21618524	Homo saniens	Cancer
IGFBP6	decreases activity of	angiogenesis	in vascular chaothernar corns		30117676	Mammalia	Inflammation
Π 19	increases activity of	angiogenesis		during inflammation	20966397	Homo saniens	Cardiovascular
П.19	increases activity of	angiogenesis	in isolated aortic rings	also in the absence of hypoxia	27053520	Mus musculus	Cardiovascular
							Retinonathy diabetic: Diabetes mellitus type II:
EPHA2	decreases activity of	angiogenesis			16400034	Bos taurus	Insulin resistance
I YI I	increases expression of	ANGPT2	in HIVECs		22792348	Homo saniens	Hematological
IVII	increases activity of	angiogenesis	in HUVECs		22792348	Homo sapiens	Hematological
FSAM	increases activity of	angiogenesis	in no rides		12819200	Mus musculus	Cancer
HIFIA	increases expression of	VEGEA	in breast cancer cells		21602890	Homo saniens	Breast cancer
PCGE2	interacts (colocalizes) with	HIELA	in breast cancer cells		21602890	Homo sapiens	Breast cancer
PAX8	decreases activity of	angiogenesis	in gastric cancer cell lines		30021604	Homo sapiens	Gastric cancer
I utainizing hormona	affacts quantity of	VEGEA	in kidney		32065170	Mammalia	Nanhronathy diabatic
Laternizing normone	anects_quantity of	VEGFA	III Kidiley	via lowering the level of HIE1	32003170	waninana	Nephropauty, drabene
				alpha resultin in down-			
				regulation of VEGE			
PCGE2	decreases activity of	angiogenesis	in breast cancer cells	transcription	21602890	Homo saniens	Breast cancer
CST3	decreases quantity of	VEGEA	in oreast cancer cens	uaiseripuon	28560705	Pattue porvagicue	Naurological: Parkinson diseasea
NTRK2	affects expression of	VEGEA	in osteoblasts		28098876	Rattus norvegicus	Bone
HIFIA	increases expression of	NTRK2	in Kelly cells		17374610	Homo saniens	Cancer
ERBB3	increases quantity of	VEGFA	in HUVECs		31934129	Homo sapiens	Cancer
			in ovarian cancer cell lines PA1				
FGF9	increases expression of	KDR	SKOV3 and IOSE		29904943	Homo sapiens	Cancer
/			in ovarian cancer cell lines PA1		27704743		
EGE9	increases expression of	VEGEA	SKOV3 and IOSE		29904943	Homo saniens	Cancer
BMP1	affects activity of	GH1	in HEK293 cells		17548836	Homo sapiens	Endocrine
GHR	increases activity of	angiogenesis	in renal cell carcinoma cells		30229899	Homo sapiens	Cancer: Renal
GHR	interacts (colocalizes) with	GHI			30229899	Mammalia	Cancer: Renal
SOD2	decreases quantity of	Reactive oxygen species	in wounds		30362661	Mus musculus	Nephronathy diabetic
			in FM-516 and WM-35		2 3 3 6 2 3 0 1		
HIF1A	increases quantity of	IGFBP2	melanoma cells		23233738	Homo sapiens	Cancer
IGEBP2	increases activity of	angiogenesis	in HuVECs		23233738	Homo saniens	Cancer
HIFLA	increases expression of	IGEBP6	in vascular endothelial cells		21618524	Homo sapiens	Cancer
hypoxia	increases activity of	HIF1A	in vascular endothelial cells		21618524	Homo sapiens	Cancer
IGE2R	interacts (colocalizes) with	Plasminogen	in serum		21273553	Homo saniens	Cardiovascular
Plasminogen	increases_activity of	angiogenesis	in thoracic aortas		11557572	Mus musculus	Cardiovascular
PLAT	increases activity of	angiogenesis	in thoracic aortas		11557572	Mus musculus	Cardiovascular
Angiostatin	decreases activity of	angiogenesis			20687922	Mammalia	Nephropathy, diabetic
IGF2R	affects activity of	angiogenesis	in HUVECs		21273553	Homo sapiens	Cardiovascular
ANGPT2	increases activity of	angiogenesis	in HUVECs		22792348	Homo sapiens	Hematological
				via production of PRI -	22172340		
BMP1	affects activity of	angiogenesis	in HUVECs	fragments	17548836	Homo sapiens	Endocrine
					1.546050		
TNFRSF1B	affects expression of	VEGFA	in adenocarcinoma SW1116 cells		26693061	Homo sapiens	Cancer
	and a capicosion of			via conversion of inactive	25075001		
PLAT	increases activity of	Plasminogen		plasminogen to active plasmin	28837538	Mammalia	Cancer
П 228 41	increases activity of	angiogenesis	in muscle	r.m.ninogen to acuve prasilili	30236062	Mus musculus	Cardiovascular disease
HIFLA	decreases expression of	SOD2	in kidney cell line		23611774	Homo sapiens	Cancer: Renal
	accreases_expression or	0002	m samey cen mit		23011775	полю зарісно	Patinopathy diabatic: Diabatas mallitus to T
EDUAD	dooroogo optivite of	KDR			16400024	Pos temms	Reunopatny, diabetic; Diabetes mellitus, type II;
LA FIAZ	uccreases activity of	NL/K	I		10400034	DOS LAULUS	mounti (Colotalice

Supplementary Table 15. Associations of identified candidates from extended replicated set with eGFR, UACR values and incident CKD in hyperglycemia.

Regression coefficients with 95% *CI*, *P*-values and FDR of candidates in extended replicated set with eGFR values (current and follow-up), UACR values (current and follow-up) and incident CKD in hyperglycemic individuals of KORA F4 are shown, respectively. *ORs* with 95% *CI* were additionally shown when outcome was incident CKD. Regression coefficients were from linear regression analysis for eGFR and UACR values and from logistic regression analysis for CKD, which all adjusted for age, sex, BMI, systolic blood pressure, smoking status, triglyceride, total cholesterol, HDL cholesterol, fasting glucose, use of lipid lowering drugs, antihypertensive and anti-diabetic medication. FDR was calculated within each omics type and kidney trait.

Abbreviations: CKD, chronic kidney disease; eGFR, estimated glomerular filtration rate; UACR, urinary albumin-to-creatinine ratio. OR, odds ratio.

											Follow-up						
					Follow-up eGFR.Estimate	Follow-up eGFR.p-				UACR	UACR.Estimate (95%	Follow-up		incident CKD.Estimate (95%			
omics.label	omics.type	eGFR F4.Estimate (95% CI)	eGFR F4.p-value	eGFR F4.FDR	(95% CI)	value	Follow-up eGFR.FDR	UACR F4.Estimate (95% CI)	UACR F4.p-value	F4.FDR	CI)	UACR.p-value	Follow-up UACR.FDR	CI)	incident CKD.OR (95% CI)	incident CKD.p-value	incident CKD.FDR
C10	Metabolites	-0.174 (-0.214 to -0.135)	1.585E-17	1.109E-16	-0.147 (-0.2 to -0.093)	8.312E-08	1.164E-06	0.062 (0.003 to 0.121)	3.875E-02	7.749E-02	-0.004 (-0.072 to 0.064)	9.142E-01	9.142E-01	0.249 (0.019 to 0.48)	1.283 (1.019 to 1.615)	3.373E-02	9.183E-02
C10:2	Metabolites	-0.178 (-0.215 to -0.141)	1.691E-20	2.367E-19	-0.117 (-0.168 to -0.066)	6.984E-06	1.956E-05	0.009 (-0.046 to 0.065)	7.383E-01	8.257E-01	-0.025 (-0.089 to 0.039)	4.425E-01	7.965E-01	0.087 (-0.13 to 0.302)	1.091 (0.879 to 1.353)	4.296E-01	4.626E-01
C12	Metabolites	-0.175 (-0.215 to -0.135)	3.042E-17	1.420E-16	-0.143 (-0.196 to -0.089)	2.223E-07	1.243E-06	0.071 (0.011 to 0.13)	1.962E-02	5.493E-02	0.012 (-0.056 to 0.08)	7.249E-01	8.821E-01	0.327 (0.098 to 0.559)	1.386 (1.103 to 1.749)	5.401E-03	4.414E-02
C14:1	Metabolites	-0.117 (-0.155 to -0.079)	1.678E-09	2.136E-09	-0.102 (-0.155 to -0.049)	1.816E-04	3.178E-04	0.081 (0.026 to 0.136)	4.066E-03	1.423E-02	0.029 (-0.037 to 0.095)	3.834E-01	7.965E-01	0.299 (0.075 to 0.53)	1.349 (1.077 to 1.698)	9.877E-03	4.609E-02
C14:1-OH	Metabolites	-0.165 (-0.204 to -0.127)	9.408E-17	3.293E-16	-0.123 (-0.175 to -0.07)	4.789E-06	1.676E-05	0.045 (-0.012 to 0.102)	1.230E-01	1.565E-01	0.013 (-0.053 to 0.079)	7.064E-01	8.821E-01	0.228 (0.005 to 0.454)	1.256 (1.005 to 1.574)	4.592E-02	9.183E-02
C14:2	Metabolites	-0.166 (-0.205 to -0.127)	2.691E-16	7.536E-16	-0.112 (-0.165 to -0.059)	3.972E-05	7.944E-05	0.052 (-0.006 to 0.11)	7.622E-02	1.186E-01	0.026 (-0.042 to 0.093)	4.551E-01	7.965E-01	0.272 (0.043 to 0.506)	1.313 (1.044 to 1.658)	2.067E-02	7.235E-02
C16	Metabolites	-0.09 (-0.131 to -0.049)	1.858E-05	2.168E-05	-0.07 (-0.126 to -0.015)	1.334E-02	1.436E-02	0.118 (0.059 to 0.177)	1.023E-04	7.164E-04	0.073 (0.003 to 0.142)	4.083E-02	2.858E-01	0.23 (-0.006 to 0.471)	1.259 (0.994 to 1.602)	5.825E-02	9.481E-02
C18:1	Metabolites	-0.081 (-0.121 to -0.04)	9.275E-05	9.989E-05	-0.081 (-0.135 to -0.027)	3.345E-03	4.683E-03	0.107 (0.048 to 0.165)	3.502E-04	1.634E-03	0.083 (0.015 to 0.151)	1.632E-02	2.285E-01	0.325 (0.094 to 0.561)	1.384 (1.098 to 1.752)	6.305E-03	4.414E-02
C2	Metabolites	-0.149 (-0.189 to -0.109)	3.483E-13	5.419E-13	-0.079 (-0.134 to -0.025)	4.140E-03	5.269E-03	0.067 (0.009 to 0.126)	2.466E-02	5.754E-02	0.036 (-0.032 to 0.104)	3.019E-01	7.965E-01	0.138 (-0.086 to 0.362)	1.148 (0.918 to 1.437)	2.268E-01	2.887E-01
C6(C4:1-DC) Metabolites	-0.167 (-0.207 to -0.127)	6.269E-16	1.254E-15	-0.12 (-0.175 to -0.065)	2.184E-05	5.096E-05	0.059 (-0.001 to 0.118)	5.210E-02	9.117E-02	0.028 (-0.042 to 0.098)	4.325E-01	7.965E-01	0.198 (-0.033 to 0.43)	1.219 (0.968 to 1.537)	9.231E-02	1.292E-01
C5	Metabolites	-0.16 (-0.201 to -0.119)	4.603E-14	8.055E-14	-0.103 (-0.158 to -0.047)	2.980E-04	4.635E-04	-0.007 (-0.067 to 0.054)	8.257E-01	8.257E-01	-0.008 (-0.079 to 0.062)	8.191E-01	8.821E-01	0.232 (-0.01 to 0.477)	1.261 (0.99 to 1.611)	6.095E-02	9.481E-02
C8	Metabolites	-0.163 (-0.202 to -0.124)	5.665E-16	1.254E-15	-0.139 (-0.192 to -0.087)	2.663E-07	1.243E-06	0.048 (-0.009 to 0.106)	1.013E-01	1.418E-01	0.01 (-0.057 to 0.077)	7.780E-01	8.821E-01	0.234 (0.011 to 0.458)	1.264 (1.011 to 1.58)	3.944E-02	9.183E-02
C8:1	Metabolites	-0.122 (-0.16 to -0.084)	3.964E-10	5.549E-10	-0.022 (-0.073 to 0.03)	4.105E-01	4.105E-01	0.008 (-0.048 to 0.064)	7.795E-01	8.257E-01	-0.014 (-0.079 to 0.051)	6.741E-01	8.821E-01	0.034 (-0.184 to 0.252)	1.035 (0.832 to 1.287)	7.584E-01	7.584E-01
TLN2	CpGs	0.054 (0.009 to 0.098)	1.838E-02	5.945E-02	0.024 (-0.034 to 0.081)	4.182E-01	4.879E-01	-0.106 (-0.167 to -0.046)	6.107E-04	1.425E-03	-0.011 (-0.082 to 0.06)	7.567E-01	7.567E-01	0.002 (-0.248 to 0.271)	1.002 (0.781 to 1.311)	9.891E-01	9.891E-01
ACSL1	CpGs	-0.043 (-0.089 to 0.002)	5.927E-02	1.037E-01	-0.024 (-0.08 to 0.033)	4.135E-01	4.879E-01	0.066 (0.004 to 0.127)	3.586E-02	3.586E-02	0.029 (-0.041 to 0.099)	4.123E-01	6.081E-01	-0.031 (-0.233 to 0.178)	0.97 (0.792 to 1.195)	7.686E-01	8.966E-01
CCDC39	CpGs	-0.053 (-0.1 to -0.007)	2.548E-02	5.945E-02	-0.048 (-0.107 to 0.01)	1.053E-01	3.686E-01	0.075 (0.012 to 0.139)	2.002E-02	2.336E-02	0.029 (-0.042 to 0.1)	4.197E-01	6.081E-01	0.054 (-0.207 to 0.301)	1.055 (0.813 to 1.351)	6.770E-01	8.966E-01
LYL1	CpGs	-0.024 (-0.073 to 0.025)	3.352E-01	3.352E-01	-0.026 (-0.086 to 0.035)	4.044E-01	4.879E-01	0.122 (0.055 to 0.188)	3.282E-04	1.149E-03	0.053 (-0.02 to 0.126)	1.554E-01	6.081E-01	-0.132 (-0.4 to 0.125)	0.876 (0.67 to 1.133)	3.236E-01	8.966E-01
NEURL3	CpGs	0.04 (-0.007 to 0.088)	9.833E-02	1.147E-01	0.042 (-0.021 to 0.104)	1.912E-01	4.460E-01	-0.078 (-0.142 to -0.013)	1.877E-02	2.336E-02	0.025 (-0.052 to 0.102)	5.212E-01	6.081E-01	0.047 (-0.204 to 0.304)	1.048 (0.816 to 1.355)	7.175E-01	8.966E-01
LYSMD2	CpGs	0.04 (-0.007 to 0.087)	9.833E-02	1.147E-01	0.005 (-0.057 to 0.066)	8.822E-01	8.822E-01	-0.163 (-0.226 to -0.099)	6.788E-07	4.751E-06	-0.025 (-0.1 to 0.049)	5.041E-01	6.081E-01	-0.051 (-0.291 to 0.196)	0.95 (0.748 to 1.216)	6.807E-01	8.966E-01
NAPA	CpGs	0.054 (0.008 to 0.101)	2.173E-02	5.945E-02	0.051 (-0.009 to 0.111)	9.391E-02	3.686E-01	-0.101 (-0.164 to -0.038)	1.743E-03	3.050E-03	-0.039 (-0.113 to 0.034)	2.945E-01	6.081E-01	-0.137 (-0.367 to 0.087)	0.872 (0.693 to 1.091)	2.352E-01	8.966E-01
PAX8	RNAs	-0.048 (-0.107 to 0.012)	1.151E-01	1.239E-01	-0.001 (-0.087 to 0.085)	9.885E-01	9.885E-01	0.055 (-0.032 to 0.142)	2.141E-01	2.286E-01	-0.004 (-0.12 to 0.112)	9.434E-01	9.434E-01	-0.048 (-0.36 to 0.261)	0.953 (0.698 to 1.298)	7.590E-01	9.774E-01
SLC22A4	RNAs	-0.05 (-0.11 to 0.01)	1.004E-01	1.172E-01	-0.085 (-0.169 to -0.001)	4.763E-02	1.461E-01	0.282 (0.196 to 0.367)	1.949E-10	2.729E-09	0.204 (0.092 to 0.316)	4.041E-04	5.657E-03	-0.038 (-0.344 to 0.271)	0.963 (0.709 to 1.311)	8.095E-01	9.774E-01
PNLIPRP2	RNAs	-0.055 (-0.113 to 0.002)	6.071E-02	7.727E-02	-0.015 (-0.09 to 0.061)	7.044E-01	7.696E-01	0.063 (-0.022 to 0.147)	1.477E-01	1.723E-01	-0.052 (-0.153 to 0.05)	3.181E-01	4.048E-01	-0.296 (-0.586 to -0.016)	0.744 (0.557 to 0.984)	4.042E-02	5.659E-01
NKD2	RNAs	-0.086 (-0.145 to -0.027)	4.311E-03	7.544E-03	-0.057 (-0.135 to 0.022)	1.579E-01	2.710E-01	0.117 (0.031 to 0.204)	7.855E-03	1.290E-02	0.108 (0.003 to 0.213)	4.292E-02	1.394E-01	0.117 (-0.161 to 0.4)	1.125 (0.851 to 1.492)	4.101E-01	9.774E-01
DUSP11	RNAs	0.164 (0.107 to 0.222)	2.649E-08	3.709E-07	0.092 (0.009 to 0.175)	2.933E-02	1.461E-01	-0.053 (-0.139 to 0.033)	2.286E-01	2.286E-01	-0.175 (-0.286 to -0.065)	2.019E-03	9.672E-03	-0.17 (-0.496 to 0.152)	0.844 (0.609 to 1.164)	3.021E-01	9.774E-01
TFE3	RNAs	-0.066 (-0.126 to -0.007)	2.969E-02	4.618E-02	-0.016 (-0.101 to 0.07)	7.147E-01	7.696E-01	0.192 (0.105 to 0.279)	1.682E-05	7.847E-05	0.115 (0 to 0.231)	4.979E-02	1.394E-01	-0.221 (-0.553 to 0.104)	0.802 (0.575 to 1.11)	1.868E-01	9.774E-01
AGK	RNAs	0.09 (0.035 to 0.146)	1.537E-03	3.713E-03	0.053 (-0.022 to 0.129)	1.667E-01	2.710E-01	-0.078 (-0.16 to 0.004)	6.356E-02	8.089E-02	-0.091 (-0.193 to 0.011)	7.946E-02	1.827E-01	-0.074 (-0.355 to 0.207)	0.928 (0.701 to 1.229)	6.023E-01	9.774E-01
MCM3	RNAs	0.094 (0.034 to 0.155)	2.169E-03	4.338E-03	0.059 (-0.026 to 0.143)	1.742E-01	2.710E-01	-0.248 (-0.335 to -0.161)	3.205E-08	2.244E-07	-0.178 (-0.291 to -0.065)	2.073E-03	a	-0.056 (-0.366 to 0.259)	0.945 (0.693 to 1.295)	7.240E-01	9.774E-01
PCGF2	RNAs	-0.011 (-0.068 to 0.046)	7.068E-01	7.068E-01	-0.041 (-0.118 to 0.037)	3.058E-01	4.281E-01	0.117 (0.034 to 0.2)	5.747E-03	1.149E-02	0.058 (-0.047 to 0.164)	2.774E-01	4.048E-01	0.111 (-0.174 to 0.399)	1.118 (0.84 to 1.491)	4.443E-01	9.774E-01
TTF2	RNAs	0.116 (0.059 to 0.173)	7.464E-05	5.225E-04	0.081 (0 to 0.162)	4.985E-02	1.461E-01	-0.137 (-0.222 to -0.052)	1.591E-03	3.712E-03	-0.058 (-0.168 to 0.052)	3.037E-01	4.048E-01	0.004 (-0.305 to 0.319)	1.004 (0.737 to 1.375)	9.774E-01	9.774E-01
ABCB1	RNAs	0.098 (0.04 to 0.156)	9.705E-04	3.397E-03	0.094 (0.012 to 0.176)	2.396E-02	1.461E-01	-0.155 (-0.24 to -0.07)	3.512E-04	1.229E-03	-0.05 (-0.16 to 0.059)	3.663E-01	4.273E-01	-0.069 (-0.376 to 0.234)	0.934 (0.687 to 1.264)	6.577E-01	9.774E-01
ARG1	RNAs	-0.098 (-0.156 to -0.04)	9.503E-04	3.397E-03	-0.068 (-0.157 to 0.021)	1.334E-01	2.710E-01	0.113 (0.027 to 0.198)	1.009E-02	1.413E-02	0.103 (-0.017 to 0.222)	9.136E-02	1.827E-01	0.048 (-0.278 to 0.371)	1.049 (0.758 to 1.449)	7.692E-01	9.774E-01
SLC25A4	RNAs	0.09 (0.034 to 0.146)	1.591E-03	3.713E-03	0.076 (-0.001 to 0.152)	5.217E-02	1.461E-01	-0.141 (-0.223 to -0.059)	7.936E-04	2.222E-03	-0.076 (-0.179 to 0.027)	1.479E-01	2.588E-01	-0.009 (-0.287 to 0.269)	0.991 (0.751 to 1.308)	9.472E-01	9.774E-01
CDC14A	RNAs	-0.058 (-0.117 to 0)	5.116E-02	7.163E-02	-0.04 (-0.123 to 0.044)	3.491E-01	4.443E-01	0.117 (0.03 to 0.204)	8.291E-03	1.290E-02	0.046 (-0.066 to 0.158)	4.216E-01	4.540E-01	-0.017 (-0.338 to 0.303)	0.983 (0.713 to 1.353)	9.178E-01	9.774E-01
Tyr	Metabolites	0.024 (-0.015 to 0.063)	2.289E-01	2.289E-01	0.073 (0.021 to 0.125)	5.828E-03	6.799E-03	-0.117 (-0.173 to -0.061)	4.502E-05	6.303E-04	-0.05 (-0.116 to 0.016)	1.379E-01	6.434E-01	-0.093 (-0.317 to 0.131)	0.911 (0.728 to 1.14)	4.146E-01	4.626E-01
PLAT	Proteins	0.089 (0.011 to 0.167)	2.506E-02	2.878E-02	0.089 (0.002 to 0.176)	4.411E-02	5.065E-02	-0.124 (-0.227 to -0.02)	1.940E-02	5.729E-02	-0.088 (-0.194 to 0.019)	1.068E-01	5.032E-01	-0.167 (-0.548 to 0.201)	0.846 (0.578 to 1.223)	3.804E-01	5.023E-01
IGFBP2	Proteins	-0.167 (-0.24 to -0.094)	8.720E-06	1.638E-05	-0.239 (-0.32 to -0.159)	7.855E-09	2.117E-08	0.14 (0.042 to 0.239)	5.445E-03	2.597E-02	0.094 (-0.008 to 0.197)	7.015E-02	4.200E-01	0.514 (0.158 to 0.882)	1.672 (1.171 to 2.417)	5.269E-03	6.534E-02
CST3	Proteins	-0.551 (-0.598 to -0.504)	3.888E-80	2.411E-78	-0.511 (-0.571 to -0.451)	1.985E-49	1.231E-47	0.052 (-0.038 to 0.142)	2.596E-01	3.576E-01	0.062 (-0.032 to 0.155)	1.960E-01	6.383E-01	0.769 (0.396 to 1.163)	2.158 (1.485 to 3.201)	8.144E-05	5.049E-03
EFNA5	Proteins	-0.213 (-0.272 to -0.155)	3.653E-12	1.416E-11	-0.237 (-0.304 to -0.171)	5.965E-12	2.465E-11	0.005 (-0.077 to 0.087)	9.049E-01	9.197E-01	0.008 (-0.078 to 0.094)	8.558E-01	9.498E-01	0.278 (-0.026 to 0.594)	1.32 (0.974 to 1.811)	7.847E-02	2.239E-01
ERBB3	Proteins	0.193 (0.129 to 0.257)	6.628E-09	1.957E-08	0.14 (0.066 to 0.214)	2.266E-04	3.798E-04	-0.126 (-0.213 to -0.038)	5.193E-03	2.597E-02	-0.074 (-0.164 to 0.017)	1.092E-01	5.032E-01	-0.306 (-0.645 to 0.024)	0.736 (0.525 to 1.024)	7.213E-02	2.239E-01
LAYN	Proteins	-0.215 (-0.272 to -0.157)	8.370E-13	3.460E-12	-0.24 (-0.303 to -0.176)	5.264E-13	2.967E-12	0.062 (-0.018 to 0.142)	1.292E-01	2.075E-01	0.032 (-0.052 to 0.117)	4.519E-01	7.004E-01	0.259 (-0.029 to 0.549)	1.295 (0.971 to 1.731)	7.771E-02	2.239E-01
TNFRSF1A	Proteins	-0.303 (-0.357 to -0.249)	1.193E-25	1.479E-24	-0.311 (-0.371 to -0.25)	6.192E-22	8.298E-21	0.046 (-0.034 to 0.126)	2.548E-01	3.576E-01	0.041 (-0.043 to 0.124)	3.377E-01	6.392E-01	0.204 (-0.081 to 0.487)	1.226 (0.922 to 1.628)	1.571E-01	3.089E-01
EGFR	Proteins	0.254 (0.19 to 0.318)	3.881E-14	1.851E-13	0.259 (0.186 to 0.332)	1.214E-11	4.426E-11	-0.221 (-0.31 to -0.133)	1.197E-06	7.423E-05	-0.18 (-0.272 to -0.089)	1.268E-04	7.864E-03	-0.509 (-0.846 to -0.184)	0.601 (0.429 to 0.832)	2.488E-03	3.856E-02

IGFBP6	Proteins	-0.368 (-0.428 to -0.308)	1.691E-29	2.621E-28	-0.354 (-0.422 to -0.285)	6.692E-22	8.298E-21	0.063 (-0.027 to 0.154)	1.712E-01	2.527E-01 0.047 (-0.046 to 0.141)	3.214E-01	6.392E-01	0.3 (-0.03 to 0.626)	1.35 (0.971 to 1.87)	7.166E-02	2.239E-01
FGF20	Proteins	0.121 (0.063 to 0.178)	4.049E-05	6.277E-05	0.154 (0.091 to 0.217)	1.991E-06	4.749E-06	-0.064 (-0.141 to 0.014)	1.070E-01	1.928E-01 -0.021 (-0.101 to 0.059)	6.070E-01	7.840E-01	-0.249 (-0.63 to 0.021)	0.78 (0.533 to 1.022)	1.334E-01	2.851E-01
FGF9	Proteins	0.058 (-0.004 to 0.121)	6.637E-02	6.974E-02	0.079 (0.009 to 0.148)	2.713E-02	3.235E-02	-0.063 (-0.147 to 0.02)	1.365E-01	2.082E-01 -0.012 (-0.097 to 0.073)	7.795E-01	9.294E-01	-0.101 (-0.433 to 0.171)	0.904 (0.648 to 1.186)	5.046E-01	5.996E-01
SPINT1	Proteins	0.082 (0.02 to 0.143)	9.404E-03	1.143E-02	0.039 (-0.03 to 0.108)	2.654E-01	2.789E-01	-0.102 (-0.184 to -0.02)	1.478E-02	4.581E-02 -0.005 (-0.089 to 0.079)	9.087E-01	9.541E-01	0.096 (-0.187 to 0.39)	1.101 (0.83 to 1.478)	5.126E-01	5.996E-01
NBL1	Proteins	-0.241 (-0.298 to -0.184)	7.486E-16	4.641E-15	-0.258 (-0.321 to -0.194)	1.359E-14	9.360E-14	0.034 (-0.047 to 0.115)	4.069E-01	5.256E-01 0.045 (-0.038 to 0.128)	2.834E-01	6.392E-01	0.221 (-0.061 to 0.497)	1.247 (0.941 to 1.644)	1.183E-01	2.768E-01
GHR	Proteins	0.157 (0.085 to 0.228)	2.036E-05	3.506E-05	0.178 (0.098 to 0.257)	1.444E-05	3.087E-05	-0.167 (-0.263 to -0.071)	7.015E-04	7.249E-03 -0.152 (-0.251 to -0.053)	2.670E-03	8.278E-02	-0.683 (-1.052 to -0.332)	0.505 (0.349 to 0.718)	1.930E-04	5.982E-03
CGA LHB	Proteins	-0.249 (-0.357 to -0.141)	7.420E-06	1.438E-05	-0.225 (-0.345 to -0.104)	2.919E-04	4.763E-04	0.046 (-0.101 to 0.193)	5.371E-01	6.403E-01 -0.002 (-0.152 to 0.148)	9.819E-01	9.819E-01	0.238 (-0.284 to 0.783)	1.269 (0.753 to 2.189)	3.812E-01	5.023E-01
ESAM	Proteins	-0.204 (-0.263 to -0.145)	2.965E-11	1.021E-10	-0.236 (-0.301 to -0.171)	3.557E-12	1.696E-11	0.093 (0.011 to 0.174)	2.621E-02	7.066E-02 0.049 (-0.036 to 0.134)	2.576E-01	6.392E-01	0.422 (0.109 to 0.743)	1.525 (1.115 to 2.103)	8.934E-03	9.232E-02
JAM2	Proteins	-0.238 (-0.291 to -0.184)	2.243E-17	1.545E-16	-0.216 (-0.277 to -0.156)	8.221E-12	3.186E-11	0.02 (-0.056 to 0.096)	6.080E-01	6.966E-01 0.018 (-0.061 to 0.097)	6.512E-01	8.240E-01	0.363 (0.073 to 0.67)	1.437 (1.076 to 1.955)	1.721E-02	1.185E-01
CLEC4M	Proteins	0.169 (0.111 to 0.227)	2.079E-08	5.155E-08	0.133 (0.066 to 0.199)	1.046E-04	1.908E-04	-0.103 (-0.183 to -0.023)	1.146E-02	4.180E-02 -0.045 (-0.127 to 0.037)	2.779E-01	6.392E-01	-0.24 (-0.527 to 0.04)	0.786 (0.59 to 1.041)	9.558E-02	2.370E-01
IL19	Proteins	0.138 (0.079 to 0.197)	5.103E-06	1.055E-05	0.143 (0.077 to 0.21)	2.452E-05	4.905E-05	-0.072 (-0.152 to 0.007)	7.561E-02	1.465E-01 -0.006 (-0.088 to 0.076)	8.900E-01	9.541E-01	-0.228 (-0.523 to 0.059)	0.796 (0.593 to 1.061)	1.238E-01	2.768E-01
RETN	Proteins	-0.181 (-0.238 to -0.125)	5.914E-10	1.833E-09	-0.226 (-0.289 to -0.163)	5.657E-12	2.465E-11	0.059 (-0.019 to 0.137)	1.376E-01	2.082E-01 0.017 (-0.064 to 0.098)	6.797E-01	8.428E-01	0.071 (-0.212 to 0.35)	1.074 (0.809 to 1.419)	6.179E-01	6.605E-01
IL.2	Proteins	0.061 (0.002 to 0.12)	4.367E-02	4.834E-02	0.021 (-0.046 to 0.088)	5.331E-01	5.418E-01	-0.09 (-0.169 to -0.012)	2.471E-02	6.965E-02 -0.042 (-0.123 to 0.04)	3.168E-01	6.392E-01	0.063 (-0.22 to 0.362)	1.065 (0.802 to 1.436)	6.722E-01	7.064E-01
TNFRSF1B	Proteins	-0.277 (-0.332 to -0.222)	3.356E-21	2.973E-20	-0.302 (-0.363 to -0.241)	2.211E-20	2.284E-19	0.031 (-0.049 to 0.111)	4.456E-01	5.594E-01 0.03 (-0.053 to 0.114)	4.798E-01	7.104E-01	0.282 (-0.02 to 0.588)	1.325 (0.98 to 1.8)	6.852E-02	2.239E-01
ADAMTS13	Proteins	0.126 (0.068 to 0.183)	1.886E-05	3.341E-05	0.111 (0.047 to 0.176)	6.823E-04	1.058E-03	-0.018 (-0.095 to 0.06)	6.554E-01	7.128E-01 0.025 (-0.055 to 0.104)	5.411E-01	7.293E-01	-0.273 (-0.551 to 0.002)	0.761 (0.576 to 1.002)	5.273E-02	2.160E-01
RET	Proteins	0.064 (0.002 to 0.126)	4.469E-02	4.861E-02	0.085 (0.015 to 0.154)	1.685E-02	2.090E-02	-0.068 (-0.152 to 0.015)	1.088E-01	1.928E-01 -0.055 (-0.14 to 0.03)	2.059E-01	6.383E-01	-0.221 (-0.525 to 0.064)	0.802 (0.592 to 1.066)	1.402E-01	2.897E-01
ACY1	Proteins	0.123 (0.052 to 0.194)	6.810E-04	9.179E-04	0.157 (0.077 to 0.237)	1.315E-04	2.329E-04	-0.092 (-0.187 to 0.004)	5.967E-02	1.276E-01 -0.069 (-0.166 to 0.029)	1.673E-01	5.849E-01	-0.435 (-0.797 to -0.087)	0.647 (0.451 to 0.916)	1.580E-02	1.185E-01
BMP1	Proteins	0.132 (0.063 to 0.201)	1.811E-04	2.612E-04	0.178 (0.102 to 0.254)	5.497E-06	1.217E-05	-0.079 (-0.172 to 0.014)	9.651E-02	1.813E-01 0.005 (-0.091 to 0.102)	9.114E-01	9.541E-01	-0.21 (-0.543 to 0.115)	0.811 (0.581 to 1.122)	2.105E-01	3.527E-01
CTSV	Proteins	0.197 (0.13 to 0.264)	1.660E-08	4.677E-08	0.213 (0.138 to 0.289)	5.057E-08	1.306E-07	-0.126 (-0.218 to -0.034)	7.520E-03	3.108E-02 -0.06 (-0.155 to 0.035)	2.173E-01	6.392E-01	-0.356 (-0.71 to -0.018)	0.7 (0.492 to 0.983)	4.345E-02	2.128E-01
FN1	Proteins	0.133 (0.074 to 0.192)	1.248E-05	2.275E-05	0.11 (0.044 to 0.177)	1.156E-03	1.748E-03	-0.102 (-0.182 to -0.022)	1.236E-02	4.258E-02 -0.08 (-0.162 to 0.002)	5.464E-02	3.764E-01	-0.144 (-0.415 to 0.127)	0.866 (0.66 to 1.135)	2.959E-01	4.475E-01
FSTL3	Proteins	-0.244 (-0.302 to -0.186)	1.871E-15	1.055E-14	-0.287 (-0.351 to -0.223)	2.672E-17	2.070E-16	0.032 (-0.051 to 0.115)	4.511E-01	5.594E-01 0.027 (-0.058 to 0.112)	5.325E-01	7.293E-01	0.156 (-0.135 to 0.45)	1.169 (0.874 to 1.569)	2.930E-01	4.475E-01
B2M	Proteins	-0.43 (-0.48 to -0.379)	4.438E-50	1.376E-48	-0.384 (-0.446 to -0.323)	1.594E-30	4.943E-29	0.076 (-0.008 to 0.16)	7.506E-02	1.465E-01 0.08 (-0.008 to 0.167)	7.452E-02	4.200E-01	0.561 (0.234 to 0.9)	1.752 (1.264 to 2.46)	9.322E-04	1.927E-02
ADIPOQ	Proteins	0.009 (-0.067 to 0.084)	8.222E-01	8.222E-01	-0.046 (-0.131 to 0.038)	2.826E-01	2.921E-01	0.044 (-0.057 to 0.145)	3.904E-01	5.150E-01 0.037 (-0.066 to 0.14)	4.821E-01	7.104E-01	0.088 (-0.258 to 0.43)	1.092 (0.773 to 1.537)	6.146E-01	6.605E-01
CNDP1	Proteins	0.124 (0.067 to 0.182)	2.713E-05	4.427E-05	0.141 (0.076 to 0.205)	2.240E-05	4.630E-05	-0.127 (-0.205 to -0.05)	1.357E-03	1.202E-02 -0.086 (-0.167 to -0.004)	3.872E-02	3.691E-01	-0.187 (-0.457 to 0.083)	0.829 (0.633 to 1.086)	1.721E-01	3.137E-01
MASP1	Proteins	0.119 (0.062 to 0.177)	4.669E-05	7.060E-05	0.091 (0.027 to 0.155)	5.181E-03	6.693E-03	-0.085 (-0.162 to -0.008)	3.100E-02	7.392E-02 0.042 (-0.037 to 0.121)	2.965E-01	6.392E-01	-0.117 (-0.407 to 0.142)	0.889 (0.666 to 1.153)	4.007E-01	5.070E-01
IL22RA1	Proteins	-0.046 (-0.108 to 0.016)	1.428E-01	1.476E-01	-0.045 (-0.114 to 0.023)	1.942E-01	2.076E-01	0.083 (0.001 to 0.165)	4.830E-02	1.070E-01 0.049 (-0.035 to 0.134)	2.509E-01	6.392E-01	0.044 (-0.305 to 0.332)	1.045 (0.737 to 1.394)	7.841E-01	7.841E-01
KDR	Proteins	0.153 (0.094 to 0.213)	4.635E-07	1.064E-06	0.163 (0.096 to 0.23)	2.182E-06	5.010E-06	-0.141 (-0.221 to -0.061)	5.484E-04	6.800E-03 -0.091 (-0.173 to -0.009)	3.058E-02	3.691E-01	-0.168 (-0.45 to 0.111)	0.846 (0.638 to 1.118)	2.399E-01	3.813E-01
IGF2R	Proteins	0.138 (0.075 to 0.201)	2.099E-05	3.517E-05	0.108 (0.037 to 0.179)	2.941E-03	4.052E-03	-0.068 (-0.154 to 0.017)	1.156E-01	1.937E-01 -0.039 (-0.126 to 0.049)	3.821E-01	6.769E-01	-0.113 (-0.411 to 0.181)	0.893 (0.663 to 1.198)	4.514E-01	5.488E-01
PLG	Proteins	0.128 (0.068 to 0.189)	3.753E-05	5.966E-05	0.132 (0.063 to 0.2)	1.799E-04	3.098E-04	-0.03 (-0.112 to 0.053)	4.795E-01	5.830E-01 -0.008 (-0.093 to 0.076)	8.512E-01	9.498E-01	-0.117 (-0.413 to 0.174)	0.889 (0.662 to 1.19)	4.318E-01	5.354E-01
CTSH	Proteins	-0.317 (-0.376 to -0.258)	1.036E-23	1.071E-22	-0.301 (-0.369 to -0.234)	2.573E-17	2.070E-16	0.022 (-0.065 to 0.109)	6.179E-01	6.966E-01 0.042 (-0.047 to 0.132)	3.505E-01	6.392E-01	0.269 (-0.044 to 0.586)	1.308 (0.957 to 1.798)	9.421E-02	2.370E-01
FCN3	Proteins	0.105 (0.04 to 0.169)	1.598E-03	2.064E-03	0.104 (0.032 to 0.177)	4.880E-03	6.437E-03	-0.127 (-0.214 to -0.041)	4.012E-03	2.487E-02 -0.07 (-0.16 to 0.019)	1.217E-01	5.032E-01	-0.207 (-0.499 to 0.087)	0.813 (0.607 to 1.091)	1.652E-01	3.103E-01
RPS6KA5	Proteins	-0.08 (-0.138 to -0.022)	7.333E-03	9.093E-03	-0.063 (-0.128 to 0.003)	6.130E-02	6.910E-02	0.105 (0.027 to 0.183)	8.281E-03	3.209E-02 0.007 (-0.073 to 0.088)	8.579E-01	9.498E-01	0.144 (-0.14 to 0.421)	1.155 (0.87 to 1.524)	3.117E-01	4.602E-01
MED1	Proteins	-0.064 (-0.125 to -0.002)	4.308E-02	4.834E-02	-0.079 (-0.148 to -0.01)	2.565E-02	3.118E-02	0.114 (0.032 to 0.196)	6.638E-03	2.940E-02 0.027 (-0.058 to 0.111)	5.341E-01	7.293E-01	0.059 (-0.26 to 0.345)	1.061 (0.771 to 1.412)	6.993E-01	7.226E-01
PAPPA	Proteins	-0.117 (-0.175 to -0.06)	7.240E-05	1.069E-04	-0.134 (-0.198 to -0.07)	4.851E-05	9.114E-05	0.079 (0.001 to 0.157)	4.603E-02	1.057E-01 0.033 (-0.048 to 0.113)	4.242E-01	6.921E-01	0.121 (-0.15 to 0.401)	1.128 (0.861 to 1.493)	3.888E-01	5.023E-01
IL6	Proteins	-0.101 (-0.156 to -0.046)	3.534E-04	4.980E-04	-0.097 (-0.158 to -0.035)	2.116E-03	3.051E-03	0.082 (0.008 to 0.156)	2.976E-02	7.392E-02 0.076 (0.001 to 0.152)	4.763E-02	3.691E-01	0.159 (-0.113 to 0.404)	1.173 (0.893 to 1.497)	2.175E-01	3.548E-01
TFF3	Proteins	-0.237 (-0.297 to -0.176)	6.389E-14	2.829E-13	-0.255 (-0.322 to -0.188)	3.473E-13	2.153E-12	0.02 (-0.065 to 0.105)	6.410E-01	7.097E-01 -0.03 (-0.117 to 0.056)	4.927E-01	7.104E-01	0.265 (0.011 to 0.518)	1.303 (1.011 to 1.679)	3.845E-02	2.128E-01
EPHA2	Proteins	-0.17 (-0.229 to -0.112)	1.800E-08	4 853E-08	-0.227 (-0.291 to -0.163)	1.296E-11	4 464E-11	0.006 (-0.074 to 0.087)	8.828E-01	9 122E-01 -0.012 (-0.094 to 0.071)	7 791E-01	9.294E-01	0.088 (-0.208 to 0.381)	1 092 (0 812 to 1 463)	5 574E-01	6 400E-01
NTRK2	Proteins	0 104 (0 046 to 0 162)	4 388E-04	6.045E-04	0.069 (0.004 to 0.134)	3 799E-02	4 444E-02	-0.11 (-0.188 to -0.033)	5.345E-03	2.597E-02 -0.058 (-0.137 to 0.022)	1.538E-01	5.849E-01	-0.262 (-0.558 to 0.029)	0.769 (0.572 to 1.029)	7 943E-02	2.239E-01
AMH	Proteins	0.171 (0.112 to 0.231)	2.012E-08	5 155E-08	0.112 (0.044 to 0.179)	1.293E-03	1.908E-03	-0.101 (-0.182 to -0.02)	1.420E-02	4 581E-02 -0.067 (-0.151 to 0.017)	1.178E-01	5.032E-01	-0.207 (-0.498 to 0.081)	0.813 (0.608 to 1.084)	1.594E-01	3.089E-01
MMP1	Proteins	-0.077 (-0.138 to -0.017)	1 188E-02	1.416E-02	-0.098 (-0.165 to -0.032)	4 002E-03	5 395E-03	0.073 (-0.007 to 0.154)	7.401E-02	1 465E-01 0 043 (-0.04 to 0.126)	3.058E-01	6 392E-01	0.072 (-0.208 to 0.345)	1 075 (0 812 to 1 412)	6.091E-01	6.605E-01
CIOBP	Proteins	0.231 (0.174 to 0.288)	1.113E-14	5 750E-14	0.14 (0.074 to 0.206)	3 746E-05	7.257E-05	-0.088 (-0.169 to -0.008)	3.092E-02	7 392E-02 -0.042 (-0.125 to 0.04)	3.143E-01	6 392E-01	-0.197 (-0.491 to 0.087)	0.822 (0.612 to 1.091)	1.819E-01	3 222E-01
ERP29	Proteins	-0.22 (-0.284 to -0.157)	2.348E-11	8 563E-11	-0.232 (-0.303 to -0.161)	3 085E-10	9.563E-10	0 185 (0 098 to 0 272)	3.315E-05	6 850E-04 0 092 (0 002 to 0 182)	4 473E-02	3.691E-01	0.325 (0.006 to 0.653)	1 385 (1 006 to 1 921)	4 806E-02	2.128E-01
MAPK12	Proteins	-0.056 (-0.114 to 0.002)	6.026E-02	6.442E-02	-0.083 (-0.148 to -0.019)	1.130E-02	1.430E-02	0.175 (0.099 to 0.251)	8.402E-06	2 605E-04 0 084 (0 005 to 0 164)	3.835E-02	3.691E-01	0.37 (0.084 to 0.66)	1 448 (1 088 to 1 934)	1 140E-02	1.010E-01
SOD2	Proteins	0.154 (0.094 to 0.214)	6 919E-07	1.532E-06	0.123 (0.055 to 0.192)	4 271E-04	6 790E-04	-0.131 (-0.212 to -0.049)	1.732E-03	1 342E-02 -0.06 (-0.145 to 0.026)	1.698E-01	5.849E-01	-0.194 (-0.496 to 0.106)	0.824 (0.609 to 1.112)	2 044E-01	3 520E-01
KIR2DL4	Proteins	-0.101 (-0.16 to -0.041)	9 352E-04	1.234E-03	-0.101 (-0.168 to -0.035)	2 900E-03	4.052E-03	0.065 (-0.015 to 0.144)	1.132E-01	1.937E-01 0.034 (-0.049 to 0.117)	4 225E-01	6.921E-01	0.053 (-0.266 to 0.352)	1.055 (0.766 to 1.422)	7 338E-01	7.458E-01
NOTCH1	Proteins	0.098 (0.035 to 0.161)	2 210E-03	2 797E-03	0.047 (-0.024 to 0.117)	1.935E-01	2.076E-01	-0.148 (-0.232 to -0.065)	5 220E-04	6 800E-03 -0.024 (-0.11 to 0.062)	5.803E-01	7.655E-01	-0.139 (-0.426 to 0.151)	0.87 (0.653 to 1.163)	3.430E-01	4 833E-01
RELT	Proteins	-0.343 (-0.398 to -0.288)	2.704E-30	5 588E-29	-0.343 (-0.405 to -0.28)	1.967E-24	4.064E-23	-0.007 (-0.091 to 0.076)	8.659E-01	9 100E-01 -0.003 (-0.09 to 0.083)	9 387E-01	9 541E-01	0.381 (0.066 to 0.708)	1 464 (1 068 to 2 029)	1 947E-02	1 207E-01
SCARF1	Proteins	-0.129 (-0.185 to -0.074)	6 274E-06	1.255E-05	-0.156 (-0.217 to -0.094)	1.011E-06	2.506E-06	0.021 (-0.054 to 0.097)	5.803E-01	6 789E-01 0.031 (-0.047 to 0.108)	4 387E-01	6.975E-01	0.277 (0.008 to 0.551)	1 319 (1 008 to 1 735)	4 475E-02	2.128E-01
TNERSE10	Proteins	-0.132 (-0.187 to -0.077)	2 994E-06	6.401E-05	-0.185 (-0.245 to -0.125)	2.628E-09	7.407E-09	0.044 (-0.031 to 0.118)	2 513E-01	3 576E-01 -0.003 (-0.079 to 0.073)	9 382E-01	9.541E-01	0.195 (-0.059 to 0.448)	1 215 (0.943 to 1.565)	1.250E-01	2 768E-01
HAVCR2	Proteins	-0.188 (-0.253 to -0.123)	2.286E-08	5.452E-09	-0.227 (-0.299 to -0.125)	1 144E-09	3 378E-09	0.044 (-0.045 to 0.134)	3 332E-01	4 491E-01 0.046 (-0.047 to 0.139)	3 302E-01	6 392E-01	0.091 (-0.223 to 0.41)	1.095 (0.8 to 1.506)	5 724E-01	6.452E-01
UNCSC	Proteins	-0.198 (-0.26 to -0.137)	5.437E-10	1 774E-09	-0.239 (-0.307 to -0.17)	2 111E-11	6 887E-11	0.066 (-0.02 to 0.151)	1 305E-01	2.075E-01_0.097 (0.01 to 0.183)	2 942E-02	3.691E-01	0.277 (-0.041 to 0.6)	1 32 (0.959 to 1.822)	8 875E-02	2 370E-01
SEMA3E	Proteins	0.034 (-0.025 to 0.093)	2 531E-01	2 573E-01	0.016 (-0.05 to 0.082)	6.402E-01	6.402E-01	-0.119 (-0.197 to -0.041)	2 806E-03	1 933E-02 -0.034 (-0.114 to 0.046)	4.075E-01	6.921E-01	0.125 (-0.145 to 0.399)	1.133 (0.865 to 1.49)	3.668E-01	5.023E-01
LEPR	Proteins	0.072 (0.01 to 0.134)	2 239E-02	2.620E-02	0.062 (-0.008 to 0.131)	8.488E-02	9 397E-02	0 (-0.083 to 0.083)	9.977E-01	9 977E-01 0.01 (-0.076 to 0.096)	8 109E-01	9.486E-01	0.189 (-0.158 to 0.598)	1 208 (0 854 to 1 818)	3 239E-01	4 670E-01
SPOCK2	Proteins	0.25 (0.195 to 0.304)	4 391E-18	3.403E-17	0.23 (0.168 to 0.292)	1.421E-12	7 343E-12	-0.013 (-0.091 to 0.066)	7.493E-01	8 010E-01 0.039 (-0.042 to 0.119)	3.440E-01	6 392E-01	-0.288 (-0.589 to 0.003)	0.749 (0.555 to 1.003)	5.573E-02	2 160E-01
DI OCK2	1 10101115	(0.1) 0 (0.304)		0.4001217	0.202 (0.202 (0.202)	A	1.0.000 4.00	0.010 (0.001 10 0.000)	1.11/04/01	0.0101 01 0.033 (-0.042 10 0.113)	0	Our Failer O's	0	0.747 (0.000 0 1.000)	and the star	

Supplementary Table 16. Multi-omics integration network built with hyperglycemic KORA F4 individuals using GGM.

Weight of edges of multi-omics integration network with 101 omics molecules (i.e., the extended replicated set except for SOMAmer probe CST3, three well-defined biomarkers for CKD (CST3, creatinine and urine albumin) and two additional metabolites (SM C18:1 and PC aa C38:0)) built by GGM glasso are shown. The residuals of the omics molecules after removing the effects of full model were used to build the network. The full model included age, sex, BMI, systolic blood pressure, smoking status, triglyceride, total cholesterol, HDL cholesterol, fasting glucose, use of lipid lowering drugs, antihypertensive and anti-diabetic medication. **Abbreviations**: GGM, Gaussian graphical modeling.

source omics1	target omics?					
label	abel	source.to.target	omics1.type	omics2.type	omics.asso.type	weight
IGFBP2	GHR	IGFBP2 to GHR	Proteins	Proteins	sametype	-0.255
B2M	CST3	B2M to CST3	Proteins	eGFRbiom	diftype	0.219
C12	C8	C12 to C8	Metabolites	Metabolites	sametype	-0.213
IGFBP2	ACY1	IGFBP2 to ACY1	Proteins	Proteins	sametype	-0.201
CDC14A	UNC5C	CDC14A to UNC5C	RNAs	Proteins	diftype	0.209
SLC22A4	MCM3	SLC22A4 to MCM3	RNAs	RNAs	sametype	-0.175
TFE3	MCM3	TFE3 to MCM3	RNAs	RNAs	sametype	-0.168
PNLIPRP2	RET	PNLIPRP2 to RET	RNAs	Proteins	diftype	0.185
NKD2	KDR	NKD2 to KDR	RNAs	Proteins	diftype	0.15
MCM3	ARG1	MCM3 to ARG1	RNAs	RNAs	sametype	-0.153
PCGF2	TNFRSF1A	PCGF2 to TNFRSF1A	RNAs	Proteins	diftype	0.142
RET	ADIPOQ	RET to ADIPOQ	Proteins	Proteins	sametype	-0.146
NKD2	NBL1	NKD2 to NBL1	RNAs	Proteins	diftype	0.142
TTF2	MMP1	TTF2 to MMP1	RNAs	Proteins	diftype	0.139
PAX8	SPOCK2	PAX8 to SPOCK2	RNAs	Proteins	diftype	0.138
Tvr	PLAT	Tyr to PLAT	Metabolites	Proteins	diftype	0.134
NBL1	SPOCK2	NBL1 to SPOCK2	Proteins	Proteins	sametype	-0.134
СТЅН	RPS6KA5	CTSH to RPS6KA5	Proteins	Proteins	sametype	-0.132
IL6	SOD2	IL6 to SOD2	Proteins	Proteins	sametype	-0.129
PLAT	ESAM	PLAT to ESAM	Proteins	Proteins	sametype	-0.129
TFE3	SLC25A4	TFE3 to SLC25A4	RNAs	RNAs	sametype	-0.128
EGFR	B2M	EGFR to B2M	Proteins	Proteins	sametype	-0.126
PAX8	JAM2	PAX8 to JAM2	RNAs	Proteins	diftype	0.128
PLAT	IGFBP2	PLAT to IGFBP2	Proteins	Proteins	sametype	-0.123
SLC22A4	AGK	SLC22A4 to AGK	RNAs	RNAs	sametype	-0.119
CTSH	MAPK12	CTSH to MAPK12	Proteins	Proteins	sametype	-0.117
ESAM	SPOCK2	ESAM to SPOCK2	Proteins	Proteins	sametype	-0.112
MED1	EPHA2	MED1 to EPHA2	Proteins	Proteins	sametype	-0.112
Tyr	ACY1	Tyr to ACY1	Metabolites	Proteins	diftype	0.126
IGFBP6	Creatinine	IGFBP6 to Creatinine	Proteins	eGFRbiom	diftype	0.117
ADAMTS13	ERP29	ADAMTS13 to ERP29	Proteins	Proteins	sametype	-0.107
IGFBP2	RET	IGFBP2 to RET	Proteins	Proteins	sametype	-0.107
PNLIPRP2	IL22RA1	PNLIPRP2 to IL22RA1	RNAs	Proteins	diftype	0.109
TNFRSF1A	BMP1	TNFRSF1A to BMP1	Proteins	Proteins	sametype	-0.104
ERP29	SPOCK2	ERP29 to SPOCK2	Proteins	Proteins	sametype	-0.102
IGF2R	RPS6KA5	IGF2R to RPS6KA5	Proteins	Proteins	sametype	-0.102
PLAT	MAPK12	PLAT to MAPK12	Proteins	Proteins	sametype	-0.102
NTRK2	MMP1	NTRK2 to MMP1	Proteins	Proteins	sametype	-0.102
IL2	IL22RA1	IL2 to IL22RA1	Proteins	Proteins	sametype	-0.101
RETN	BMP1	RETN to BMP1	Proteins	Proteins	sametype	-0.098
RELT	CST3	RELT to CST3	Proteins	eGFRbiom	diftype	0.104
IL19	PAPPA	IL19 to PAPPA	Proteins	Proteins	sametype	-0.097
GHR	ADIPOQ	GHR to ADIPOQ	Proteins	Proteins	sametype	-0.094

RPS6KA5	EPHA2	RPS6KA5 to EPHA2	Proteins	Proteins	sametype	-0.094
PCGF2	ESAM	PCGF2 to ESAM	RNAs	Proteins	diftype	0.101
IGFBP2	BMP1	IGFBP2 to BMP1	Proteins	Proteins	sametype	-0.093
TFE3	AGK	TFE3 to AGK	RNAs	RNAs	sametype	-0.092
B2M	IGF2R	B2M to IGF2R	Proteins	Proteins	sametype	-0.09
SPINT1	MMP1	SPINT1 to MMP1	Proteins	Proteins	sametype	-0.087
RPS6KA5	SPOCK2	RPS6KA5 to SPOCK2	Proteins	Proteins	sametype	-0.087
CTSH	PC aa C38:0	CTSH to PC aa C38:0	Proteins	Metabolites	diftype	0.093
CGA LHB	CTSV	CGA LHB to CTSV	Proteins	Proteins	sametype	-0.085
MASP1	SCARF1	MASP1 to SCARF1	Proteins	Proteins	sametype	-0.083
JAM2	Creatinine	JAM2 to Creatinine	Proteins	eGFRbiom	diftype	0.086
SLC22A4	TNFRSF1A	SLC22A4 to TNFRSF1A	RNAs	Proteins	diftype	0.09
RPS6KA5	UNC5C	RPS6KA5 to UNC5C	Proteins	Proteins	sametype	-0.079
DUSP11	IL2	DUSP11 to IL2	RNAs	Proteins	diftype	0.09
ADAMTS13	MMP1	ADAMTS13 to MMP1	Proteins	Proteins	sametype	-0.078
LAYN	MAPK12	LAYN to MAPK12	Proteins	Proteins	sametype	-0.078
TNFRSF1B	SPOCK2	TNFRSF1B to SPOCK2	Proteins	Proteins	sametype	-0.078
LAYN	BMP1	LAYN to BMP1	Proteins	Proteins	sametype	-0.077
RPS6KA5	NTRK2	RPS6KA5 to NTRK2	Proteins	Proteins	sametype	-0.077
FN1	B2M	FN1 to B2M	Proteins	Proteins	sametype	-0.076
IGFBP6	PLG	IGFBP6 to PLG	Proteins	Proteins	sametype	-0.076
IL19	RPS6KA5	IL19 to RPS6KA5	Proteins	Proteins	sametype	-0.075
JAM2	SPOCK2	JAM2 to SPOCK2	Proteins	Proteins	sametype	-0.075
RPS6KA5	AMH	RPS6KA5 to AMH	Proteins	Proteins	sametype	-0.075
ESAM	IL19	ESAM to IL19	Proteins	Proteins	sametype	-0.072
GHR	CGA LHB	GHR to CGA LHB	Proteins	Proteins	sametype	-0.072
SLC25A4	CNDP1	SLC25A4 to CNDP1	RNAs	Proteins	diftype	0.088
C5	Creatinine	C5 to Creatinine	Metabolites	eGFRbiom	diftype	0.063
ARG1	SLC25A4	ARG1 to SLC25A4	RNAs	RNAs	sametype	-0.069
GHR	MED1	GHR to MED1	Proteins	Proteins	sametype	-0.069
PLG	SCARF1	PLG to SCARF1	Proteins	Proteins	sametype	-0.068
KDR	MAPK12	KDR to MAPK12	Proteins	Proteins	sametype	-0.067
SLC22A4	IGFBP2	SLC22A4 to IGFBP2	RNAs	Proteins	diftype	0.085
B2M	SPOCK2	B2M to SPOCK2	Proteins	Proteins	sametype	-0.064
PAX8	IL19	PAX8 to IL19	RNAs	Proteins	diftype	0.083
IGF2R	MMP1	IGF2R to MMP1	Proteins	Proteins	sametype	-0.062
ESAM	FN1	ESAM to FN1	Proteins	Proteins	sametype	-0.061
MED1	C1QBP	MED1 to C1QBP	Proteins	Proteins	sametype	-0.061
C10:2	Creatinine	C10:2 to Creatinine	Metabolites	eGFRbiom	diftype	0.053
EGFR	KIR2DL4	EGFR to KIR2DL4	Proteins	Proteins	sametype	-0.059
ERP29	SOD2	ERP29 to SOD2	Proteins	Proteins	sametype	-0.058
TFE3	ABCB1	TFE3 to ABCB1	RNAs	RNAs	sametype	-0.056
DUSP11	TFE3	DUSP11 to TFE3	RNAs	RNAs	sametype	-0.055
ESAM	ACY1	ESAM to ACY1	Proteins	Proteins	sametype	-0.055
Tyr	SPOCK2	Tyr to SPOCK2	Metabolites	Proteins	diftype	0.082

CNDP1	IL6	CNDP1 to IL6	Proteins	Proteins	sametype	-0.054
MASP1	MED1	MASP1 to MED1	Proteins	Proteins	sametype	-0.053
SLC25A4	PLAT	SLC25A4 to PLAT	RNAs	Proteins	diftype	0.08
		ADAMTS13 to				
ADAMTS13	SCARF1	SCARF1	Proteins	Proteins	sametype	-0.052
RPS6KA5	SEMA3E	RPS6KA5 to SEMA3E	Proteins	Proteins	sametype	-0.052
ERBB3	RPS6KA5	ERBB3 to RPS6KA5	Proteins	Proteins	sametype	-0.048
AMH	SCARF1	AMH to SCARF1	Proteins	Proteins	sametype	-0.048
CTSV	RPS6KA5	CTSV to RPS6KA5	Proteins	Proteins	sametype	-0.046
PAX8	TNFRSF1A	PAX8 to TNFRSF1A	RNAs	Proteins	diftype	0.08
SLC22A4	RPS6KA5	SLC22A4 to RPS6KA5	RNAs	Proteins	diftype	0.078
FSTL3	RPS6KA5	FSTL3 to RPS6KA5	Proteins	Proteins	sametype	-0.044
IL6	NOTCH1	IL6 to NOTCH1	Proteins	Proteins	sametype	-0.042
RET	MAPK12	RET to MAPK12	Proteins	Proteins	sametype	-0.039
GHR	PAPPA	GHR to PAPPA	Proteins	Proteins	sametype	-0.038
FN1	MMP1	FN1 to MMP1	Proteins	Proteins	sametype	-0.036
MMP1	NOTCH1	MMP1 to NOTCH1	Proteins	Proteins	sametype	-0.036
C14:1-OH	C18:1	C14:1-OH to C18:1	Metabolites	Metabolites	sametype	-0.036
CTSV	B2M	CTSV to B2M	Proteins	Proteins	sametype	-0.034
PAPPA	SPOCK2	PAPPA to SPOCK2	Proteins	Proteins	sametype	-0.033
TNFRSF1A	RELT	TNFRSF1A to RELT	Proteins	Proteins	sametype	-0.033
LYSMD2	EGFR	LYSMD2 to EGFR	CpGs	Proteins	diftype	0.076
JAM2	BMP1	JAM2 to BMP1	Proteins	Proteins	sametype	-0.032
RET	RPS6KA5	RET to RPS6KA5	Proteins	Proteins	sametype	-0.032
EFNA5	MED1	EFNA5 to MED1	Proteins	Proteins	sametype	-0.031
GHR	MAPK12	GHR to MAPK12	Proteins	Proteins	sametype	-0.031
IL6	C1QBP	IL6 to C1QBP	Proteins	Proteins	sametype	-0.029
C14:1-OH	ADIPOQ	C14:1-OH to ADIPOQ	Metabolites	Proteins	diftype	0.069
ERBB3	IL6	ERBB3 to IL6	Proteins	Proteins	sametype	-0.028
SOD2	SCARF1	SOD2 to SCARF1	Proteins	Proteins	sametype	-0.028
MCM3	KDR	MCM3 to KDR	RNAs	Proteins	diftype	0.068
EGFR	SCARF1	EGFR to SCARF1	Proteins	Proteins	sametype	-0.027
C10:2	RETN	C10:2 to RETN	Metabolites	Proteins	diftype	0.066
ESAM	TNFRSF1B	ESAM to TNFRSF1B	Proteins	Proteins	sametype	-0.025
C14:2	C18:1	C14:2 to C18:1	Metabolites	Metabolites	sametype	-0.025
PNLIPRP2	B2M	PNLIPRP2 to B2M	RNAs	Proteins	diftype	0.064
C5	CST3	C5 to CST3	Metabolites	eGFRbiom	diftype	0.053
BMP1	SPOCK2	BMP1 to SPOCK2	Proteins	Proteins	sametype	-0.023
EGFR	IL19	EGFR to IL19	Proteins	Proteins	sametype	-0.023
MASP1	MAPK12	MASP1 to MAPK12	Proteins	Proteins	sametype	-0.023
BMP1	PAPPA	BMP1 to PAPPA	Proteins	Proteins	sametype	-0.022
		TNFRSF1B to				
TNFRSF1B	TNFRSF19	TNFRSF19	Proteins	Proteins	sametype	-0.022
MED1	NOTCH1	MED1 to NOTCH1	Proteins	Proteins	sametype	-0.021
EGFR	MMP1	EGFR to MMP1	Proteins	Proteins	sametype	-0.02
AMH	MAPK12	AMH to MAPK12	Proteins	Proteins	sametype	-0.02
C10:2	C8	C10:2 to C8	Metabolites	Metabolites	sametype	-0.017

ARG1	ERP29	ARG1 to ERP29	RNAs	Proteins	diftype	0.062
TFE3	TTF2	TFE3 to TTF2	RNAs	RNAs	sametype	-0.016
DUSP11	CTSV	DUSP11 to CTSV	RNAs	Proteins	diftype	0.059
C18:1	IGFBP2	C18:1 to IGFBP2	Metabolites	Proteins	diftype	0.059
CTSH	UNC5C	CTSH to UNC5C	Proteins	Proteins	sametype	-0.014
CLEC4M	IL6	CLEC4M to IL6	Proteins	Proteins	sametype	-0.014
IGFBP6	JAM2	IGFBP6 to JAM2	Proteins	Proteins	sametype	-0.014
CTSV	SOD2	CTSV to SOD2	Proteins	Proteins	sametype	-0.013
EFNA5	TFF3	EFNA5 to TFF3	Proteins	Proteins	sametype	-0.012
ESAM	CLEC4M	ESAM to CLEC4M	Proteins	Proteins	sametype	-0.012
FN1	IL6	FN1 to IL6	Proteins	Proteins	sametype	-0.012
RELT	HAVCR2	RELT to HAVCR2	Proteins	Proteins	sametype	-0.012
FN1	SCARF1	FN1 to SCARF1	Proteins	Proteins	sametype	-0.011
IGFBP2	TNFRSF1B	IGFBP2 to TNFRSF1B	Proteins	Proteins	sametype	-0.011
AGK	CNDP1	AGK to CNDP1	RNAs	Proteins	diftype	0.055
TNFRSF1A	B2M	TNFRSF1A to B2M	Proteins	Proteins	sametype	-0.011
C10	C14:2	C10 to C14:2	Metabolites	Metabolites	sametype	-0.011
CTSV	C1QBP	CTSV to C1QBP	Proteins	Proteins	sametype	-0.01
LAYN	NBL1	LAYN to NBL1	Proteins	Proteins	sametype	-0.01
LAYN	RELT	LAYN to RELT	Proteins	Proteins	sametype	-0.01
TNFRSF1A	CST3	TNFRSF1A to CST3	Proteins	eGFRbiom	diftype	0.047
EPHA2	UNC5C	EPHA2 to UNC5C	Proteins	Proteins	sametype	-0.009
B2M	PAPPA	B2M to PAPPA	Proteins	Proteins	sametype	-0.008
CNDP1	SPOCK2	CNDP1 to SPOCK2	Proteins	Proteins	sametype	-0.007
RPS6KA5	C1QBP	RPS6KA5 to C1QBP	Proteins	Proteins	sametype	-0.005
TNFRSF1B	TFF3	TNFRSF1B to TFF3	Proteins	Proteins	sametype	-0.005
B2M	ERP29	B2M to ERP29	Proteins	Proteins	sametype	-0.004
EFNA5	TNFRSF19	EFNA5 to TNFRSF19	Proteins	Proteins	sametype	-0.004
EGFR	ERP29	EGFR to ERP29	Proteins	Proteins	sametype	-0.004
EGFR	IL6	EGFR to IL6	Proteins	Proteins	sametype	-0.003
ESAM	BMP1	ESAM to BMP1	Proteins	Proteins	sametype	-0.002
GHR	C1QBP	GHR to C1QBP	Proteins	Proteins	sametype	-0.002
CLEC4M	MASP1	CLEC4M to MASP1	Proteins	Proteins	sametype	-0.001
LAYN	CTSH	LAYN to CTSH	Proteins	Proteins	sametype	-0.001
GHR	ADAMTS13	GHR to ADAMTS13	Proteins	Proteins	sametype	0
AGK	MCM3	AGK to MCM3	RNAs	RNAs	sametype	0.001
PAX8	FN1	PAX8 to FN1	RNAs	Proteins	diftype	0.054
NBL1	FSTL3	NBL1 to FSTL3	Proteins	Proteins	sametype	0.002
		C14:1-OH to				
С14:1-ОН	C6(C4:1-DC)	C6(C4:1-DC)	Metabolites	Metabolites	sametype	0.002
IGFBP2	IGFBP6	IGFBP2 to IGFBP6	Proteins	Proteins	sametype	0.003
IGFBP2	FSTL3	IGFBP2 to FSTL3	Proteins	Proteins	sametype	0.004
TNFRSF1A	PAPPA	TNFRSF1A to PAPPA	Proteins	Proteins	sametype	0.004
FN1	CNDP1	FN1 to CNDP1	Proteins	Proteins	sametype	0.005
CGA LHB	CST3	CGA LHB to CST3	Proteins	eGFRbiom	diftype	0.043
CTSH	CST3	CTSH to CST3	Proteins	eGFRbiom	diftype	0.031

C10:2	CST3	C10:2 to CST3	Metabolites	eGFRbiom	diftype	0.031
ERBB3	AMH	ERBB3 to AMH	Proteins	Proteins	sametype	0.006
DUSP11	C1QBP	DUSP11 to C1QBP	RNAs	Proteins	diftype	0.046
C14:2	C8	C14:2 to C8	Metabolites	Metabolites	sametype	0.006
C12	C16	C12 to C16	Metabolites	Metabolites	sametype	0.006
EGFR	FCN3	EGFR to FCN3	Proteins	Proteins	sametype	0.007
IGFBP2	NBL1	IGFBP2 to NBL1	Proteins	Proteins	sametype	0.007
KDR	C1QBP	KDR to C1QBP	Proteins	Proteins	sametype	0.008
C1QBP	NOTCH1	C1QBP to NOTCH1	Proteins	Proteins	sametype	0.009
CTSV	NTRK2	CTSV to NTRK2	Proteins	Proteins	sametype	0.01
C6(C4:1-DC)	C8:1	C6(C4:1-DC) to C8:1	Metabolites	Metabolites	sametype	0.01
ESAM	ERP29	ESAM to ERP29	Proteins	Proteins	sametype	0.011
RETN	TNFRSF1B	RETN to TNFRSF1B	Proteins	Proteins	sametype	0.011
PLAT	AMH	PLAT to AMH	Proteins	Proteins	sametype	0.011
C16	C6(C4:1-DC)	C16 to C6(C4:1-DC)	Metabolites	Metabolites	sametype	0.011
ADAMTS13	CTSV	ADAMTS13 to CTSV	Proteins	Proteins	sametype	0.012
ERP29	CST3	ERP29 to CST3	Proteins	eGFRbiom	diftype	0.015
PAX8	EPHA2	PAX8 to EPHA2	RNAs	Proteins	diftype	0.034
C6(C4:1-DC)	CST3	C6(C4:1-DC) to CST3	Metabolites	eGFRbiom	diftype	0.015
SLC22A4	SLC25A4	SLC22A4 to SLC25A4	RNAs	RNAs	sametype	0.014
IGFBP2	ESAM	IGFBP2 to ESAM	Proteins	Proteins	sametype	0.014
IGFBP2	UNC5C	IGFBP2 to UNC5C	Proteins	Proteins	sametype	0.014
IL19	CNDP1	IL19 to CNDP1	Proteins	Proteins	sametype	0.014
RPS6KA5	NOTCH1	RPS6KA5 to NOTCH1	Proteins	Proteins	sametype	0.014
ACY1	SPOCK2	ACY1 to SPOCK2	Proteins	Proteins	sametype	0.015
RELT	Creatinine	RELT to Creatinine	Proteins	eGFRbiom	diftype	0.013
TNFRSF1A	ERP29	TNFRSF1A to ERP29	Proteins	Proteins	sametype	0.015
TNFRSF1B	BMP1	TNFRSF1B to BMP1	Proteins	Proteins	sametype	0.015
C14:1	C6(C4:1-DC)	C14:1 to C6(C4:1-DC)	Metabolites	Metabolites	sametype	0.015
RETN	CST3	RETN to CST3	Proteins	eGFRbiom	diftype	0.012
EGFR	AMH	EGFR to AMH	Proteins	Proteins	sametype	0.016
FSTL3	PAPPA	FSTL3 to PAPPA	Proteins	Proteins	sametype	0.016
LAYN	RETN	LAYN to RETN	Proteins	Proteins	sametype	0.016
MASP1	RPS6KA5	MASP1 to RPS6KA5	Proteins	Proteins	sametype	0.017
		TNFRSF1A to				
TNFRSF1A	TNFRSF19	TNFRSF19	Proteins	Proteins	sametype	0.018
C2	C8:1	C2 to C8:1	Metabolites	Metabolites	sametype	0.018
CTSH	TNFRSF19	CTSH to TNFRSF19	Proteins	Proteins	sametype	0.019
IGFBP6	PAPPA	IGFBP6 to PAPPA	Proteins	Proteins	sametype	0.019
TFF3	RELT	TFF3 to RELT	Proteins	Proteins	sametype	0.019
PLAT	CLEC4M	PLAT to CLEC4M	Proteins	Proteins	sametype	0.019
IGFBP2	B2M	IGFBP2 to B2M	Proteins	Proteins	sametype	0.02
ERBB3	NOTCH1	ERBB3 to NOTCH1	Proteins	Proteins	sametype	0.021
		TNFRSF1A to				
TNFRSF1A	HAVCR2	HAVCR2	Proteins	Proteins	sametype	0.021
MAPK12	NOTCH1	MAPK12 to NOTCH1	Proteins	Proteins	sametype	0.023
LAYN	PAPPA	LAYN to PAPPA	Proteins	Proteins	sametype	0.024

C14:2	C6(C4:1-DC)	C14:2 to C6(C4:1-DC)	Metabolites	Metabolites	sametype	0.024
CTSV	NOTCH1	CTSV to NOTCH1	Proteins	Proteins	sametype	0.025
ERBB3	IL2	ERBB3 to IL2	Proteins	Proteins	sametype	0.025
JAM2	TNFRSF19	JAM2 to TNFRSF19	Proteins	Proteins	sametype	0.025
NBL1	B2M	NBL1 to B2M	Proteins	Proteins	sametype	0.026
SPINT1	NTRK2	SPINT1 to NTRK2	Proteins	Proteins	sametype	0.026
GHR	AMH	GHR to AMH	Proteins	Proteins	sametype	0.027
IGFBP6	RETN	IGFBP6 to RETN	Proteins	Proteins	sametype	0.028
TNFRSF1B	EPHA2	TNFRSF1B to EPHA2	Proteins	Proteins	sametype	0.028
MASP1	NOTCH1	MASP1 to NOTCH1	Proteins	Proteins	sametype	0.029
ADAMTS13	MASP1	ADAMTS13 to MASP1	Proteins	Proteins	sametype	0.03
FPHA2		$\frac{1}{10000000000000000000000000000000000$	Proteins	Proteins	sametype	0.03
NRL1	CST3	NBL1 to CST3	Proteins	eGERbiom	diftype	0.05
	CNDP1	II 2 to CNDP1	Proteins	Proteins	sametype	0.000
C14·1-OH	CST3	C14·1-OH to CST3	Metabolites	eGFRbiom	diftype	0.001
C16	C2	C16 to C2	Metabolites	Metabolites	sametype	0.031
C14:1	C16	C14:1 to C16	Metabolites	Metabolites	sametype	0.031
EFNA5	ESTL3	EFNA5 to FSTL3	Proteins	Proteins	sametype	0.032
		TNFRSF19 to				0.002
TNFRSF19	HAVCR2	HAVCR2	Proteins	Proteins	sametype	0.032
NTRK2	SPOCK2	NTRK2 to SPOCK2	Proteins	Proteins	sametype	0.032
NBL1	CTSH	NBL1 to CTSH	Proteins	Proteins	sametype	0.033
JAM2	EPHA2	JAM2 to EPHA2	Proteins	Proteins	sametype	0.033
C14:2	CST3	C14:2 to CST3	Metabolites	eGFRbiom	diftype	0.005
CLEC4M	IGF2R	CLEC4M to IGF2R	Proteins	Proteins	sametype	0.034
EPHA2	NOTCH1	EPHA2 to NOTCH1	Proteins	Proteins	sametype	0.034
TNFRSF1A	CTSH	TNFRSF1A to CTSH	Proteins	Proteins	sametype	0.034
RETN	CTSH	RETN to CTSH	Proteins	Proteins	sametype	0.035
C10	C6(C4:1-DC)	C10 to C6(C4:1-DC)	Metabolites	Metabolites	sametype	0.035
CTSH	PAPPA	CTSH to PAPPA	Proteins	Proteins	sametype	0.036
LAYN	TNFRSF19	LAYN to TNFRSF19	Proteins	Proteins	sametype	0.036
LAYN	TFF3	LAYN to TFF3	Proteins	Proteins	sametype	0.036
CTSV	MASP1	CTSV to MASP1	Proteins	Proteins	sametype	0.037
IL19	IGF2R	IL19 to IGF2R	Proteins	Proteins	sametype	0.037
PLAT	ACY1	PLAT to ACY1	Proteins	Proteins	sametype	0.037
TFF3	UNC5C	TFF3 to UNC5C	Proteins	Proteins	sametype	0.038
SPINT1	NOTCH1	SPINT1 to NOTCH1	Proteins	Proteins	sametype	0.039
IGFBP6	B2M	IGFBP6 to B2M	Proteins	Proteins	sametype	0.039
C10:2	C6(C4:1-DC)	C10:2 to C6(C4:1-DC)	Metabolites	Metabolites	sametype	0.039
EPHA2	TNFRSF19	EPHA2 to TNFRSF19	Proteins	Proteins	sametype	0.04
EGFR	FGF20	EGFR to FGF20	Proteins	Proteins	sametype	0.04
GHR	KDR	GHR to KDR	Proteins	Proteins	sametype	0.04
LAYN	HAVCR2	LAYN to HAVCR2	Proteins	Proteins	sametype	0.04
ERBB3	RET	ERBB3 to RET	Proteins	Proteins	sametype	0.041
LAYN	EPHA2	LAYN to EPHA2	Proteins	Proteins	sametype	0.041
TNFRSF1A	ESAM	TNFRSF1A to ESAM	Proteins	Proteins	sametype	0.041

EFNA5	NTRK2	EFNA5 to NTRK2	Proteins	Proteins	sametype	0.042
PLAT	GHR	PLAT to GHR	Proteins	Proteins	sametype	0.042
EFNA5	CTSH	EFNA5 to CTSH	Proteins	Proteins	sametype	0.043
С14:1-ОН	B2M	C14:1-OH to B2M	Metabolites	Proteins	diftype	0.012
EFNA5	UNC5C	EFNA5 to UNC5C	Proteins	Proteins	sametype	0.044
FSTL3	CTSH	FSTL3 to CTSH	Proteins	Proteins	sametype	0.044
IL2	ADAMTS13	IL2 to ADAMTS13	Proteins	Proteins	sametype	0.044
BMP1	CTSV	BMP1 to CTSV	Proteins	Proteins	sametype	0.045
IGFBP2	RETN	IGFBP2 to RETN	Proteins	Proteins	sametype	0.045
SLC22A4	CTSV	SLC22A4 to CTSV	RNAs	Proteins	diftype	0.006
TNFRSF1A	TFF3	TNFRSF1A to TFF3	Proteins	Proteins	sametype	0.046
TNFRSF1B	PAPPA	TNFRSF1B to PAPPA	Proteins	Proteins	sametype	0.046
АМН	SOD2	AMH to SOD2	Proteins	Proteins	sametype	0.047
SOD2	NOTCH1	SOD2 to NOTCH1	Proteins	Proteins	sametype	0.047
C12	CST3	C12 to CST3	Metabolites	eGFRbiom	diftype	0.001
		C6(C4:1-DC) to SM				
C6(C4:1-DC)	SM C18:1	C18:1	Metabolites	Metabolites	sametype	0.047
IGFBP2	EFNA5	IGFBP2 to EFNA5	Proteins	Proteins	sametype	0.048
TFE3	ARG1	TFE3 to ARG1	RNAs	RNAs	sametype	0.049
ADAMTS13	RET	ADAMTS13 to RET	Proteins	Proteins	sametype	0.049
CLEC4M	SOD2	CLEC4M to SOD2	Proteins	Proteins	sametype	0.049
ERBB3	CNDP1	ERBB3 to CNDP1	Proteins	Proteins	sametype	0.049
FN1	NOTCH1	FN1 to NOTCH1	Proteins	Proteins	sametype	0.049
C6(C4:1-DC)	C5	C6(C4:1-DC) to C5	Metabolites	Metabolites	sametype	0.049
NBL1	TNFRSF19	NBL1 to TNFRSF19	Proteins	Proteins	sametype	0.05
EGFR	NTRK2	EGFR to NTRK2	Proteins	Proteins	sametype	0.05
П.19	SPOCK2	IL19 to SPOCK2	Proteins	Proteins	sametype	0.05
П.19	MASP1	IL19 to MASP1	Proteins	Proteins	sametype	0.051
MASP1	IGF2R	MASP1 to IGF2R	Proteins	Proteins	sametype	0.051
MMP1	SCARF1	MMP1 to SCARF1	Proteins	Proteins	sametype	0.051
NTRK2	SEMA3E	NTRK2 to SEMA3E	Proteins	Proteins	sametype	0.051
PLAT	FCN3	PLAT to FCN3	Proteins	Proteins	sametype	0.053
IGFBP6	CST3	IGFBP6 to CST3	Proteins	eGFRbiom	diftype	-0.011
ABCB1	CST3	ABCB1 to CST3	RNAs	eGFRbiom	diftype	-0.024
SPOCK2	CST3	SPOCK2 to CST3	Proteins	eGFRbiom	diftype	-0.029
BMP1	SOD2	BMP1 to SOD2	Proteins	Proteins	sametype	0.029
FGF20	CTSV	FGF20 to CTSV	Proteins	Proteins	sametype	0.054
TNFRSF1A	RETN	TNFRSF1A to RFTN	Proteins	Proteins	sametype	0.054
PLAT	C10BP	PLAT to C10BP	Proteins	Proteins	sametype	0.054
C18·1	GHR	C18:1 to GHR	Metabolites	Proteins	diftype	-0.01
NBI 1	UNC5C	NBL1 to UNC5C	Proteins	Proteins	sametype	0.055
CLEC4M	ACV1	CLEC4M to ACV1	Proteins	Proteins	sametype	0.055
DUSP11	CST3	DUSP11 to CST3	PNAs	eGERbiom	diftype	-0.044
205111		ADAMTS13 to			untype	-0.044
ADAMTS13	NOTCH1	NOTCH1	Proteins	Proteins	sametype	0.056
ERBB3	ADAMTS13	ERBB3 to ADAMTS13	Proteins	Proteins	sametype	0.056
C14:1	C2	C14:1 to C2	Metabolites	Metabolites	sametype	0.056
1	1	· · · · · · · · · · · · · · · · · · ·			1 · · · / I ·	

FSTL3	TFF3	FSTL3 to TFF3	Proteins	Proteins	sametype	0.057
TNFRSF1A	NBL1	TNFRSF1A to NBL1	Proteins	Proteins	sametype	0.057
ERP29	HAVCR2	ERP29 to HAVCR2	Proteins	Proteins	sametype	0.058
IGFBP2	PAPPA	IGFBP2 to PAPPA	Proteins	Proteins	sametype	0.058
PCGF2	SPOCK2	PCGF2 to SPOCK2	RNAs	Proteins	diftype	-0.014
C12	EGFR	C12 to EGFR	Metabolites	Proteins	diftype	-0.015
ADAMTS13	NTRK2	ADAMTS13 to NTRK2	Proteins	Proteins	sametype	0.06
FGF20	NTRK2	FGF20 to NTRK2	Proteins	Proteins	sametype	0.061
C10:2	C14:2	C10:2 to C14:2	Metabolites	Metabolites	sametype	0.061
C18:1	EGFR	C18:1 to EGFR	Metabolites	Proteins	diftype	-0.017
NBL1	ESAM	NBL1 to ESAM	Proteins	Proteins	sametype	0.062
IL2	RET	IL2 to RET	Proteins	Proteins	sametype	0.062
RETN	TNFRSF19	RETN to TNFRSF19	Proteins	Proteins	sametype	0.062
EGFR	IGF2R	EGFR to IGF2R	Proteins	Proteins	sametype	0.063
ERBB3	SOD2	ERBB3 to SOD2	Proteins	Proteins	sametype	0.063
PAPPA	TFF3	PAPPA to TFF3	Proteins	Proteins	sametype	0.063
EGFR	CST3	EGFR to CST3	Proteins	eGFRbiom	diftype	-0.06
SLC25A4	CTSH	SLC25A4 to CTSH	RNAs	Proteins	diftype	-0.024
FSTL3	UNC5C	FSTL3 to UNC5C	Proteins	Proteins	sametype	0.064
IL2	AMH	IL2 to AMH	Proteins	Proteins	sametype	0.064
MASP1	NTRK2	MASP1 to NTRK2	Proteins	Proteins	sametype	0.064
SPINT1	EPHA2	SPINT1 to EPHA2	Proteins	Proteins	sametype	0.065
C10:2	C14:1-OH	C10:2 to C14:1-OH	Metabolites	Metabolites	sametype	0.065
CTSH	RELT	CTSH to RELT	Proteins	Proteins	sametype	0.066
SPINT1	SEMA3E	SPINT1 to SEMA3E	Proteins	Proteins	sametype	0.066
MCM3	ERP29	MCM3 to ERP29	RNAs	Proteins	diftype	-0.026
EGFR	PLG	EGFR to PLG	Proteins	Proteins	sametype	0.067
EGFR	CLEC4M	EGFR to CLEC4M	Proteins	Proteins	sametype	0.067
FGF20	FCN3	FGF20 to FCN3	Proteins	Proteins	sametype	0.067
CGA LHB	B2M	CGA LHB to B2M	Proteins	Proteins	sametype	0.067
RET	ACY1	RET to ACY1	Proteins	Proteins	sametype	0.067
C16	EGFR	C16 to EGFR	Metabolites	Proteins	diftype	-0.028
CTSH	TFF3	CTSH to TFF3	Proteins	Proteins	sametype	0.068
FSTL3	EPHA2	FSTL3 to EPHA2	Proteins	Proteins	sametype	0.068
EGFR	SOD2	EGFR to SOD2	Proteins	Proteins	sametype	0.069
PAPPA	UNC5C	PAPPA to UNC5C	Proteins	Proteins	sametype	0.069
CTSV	CST3	CTSV to CST3	Proteins	eGFRbiom	diftype	-0.066
C16	C5	C16 to C5	Metabolites	Metabolites	sametype	0.069
KDR	IGF2R	KDR to IGF2R	Proteins	Proteins	sametype	0.07
C10:2	Tyr	C10:2 to Tyr	Metabolites	Metabolites	sametype	0.07
TTF2	SLC25A4	TTF2 to SLC25A4	RNAs	RNAs	sametype	0.071
IGFBP6	TNFRSF19	IGFBP6 to TNFRSF19	Proteins	Proteins	sametype	0.071
ADAMTS13	BMP1	ADAMTS13 to BMP1	Proteins	Proteins	sametype	0.072
JAM2	ERP29	JAM2 to ERP29	Proteins	Proteins	sametype	0.072
LAYN	TNFRSF1B	LAYN to TNFRSF1B	Proteins	Proteins	sametype	0.072

TNFRSF1A	UNC5C	TNFRSF1A to UNC5C	Proteins	Proteins	sametype	0.072
BMP1	FCN3	BMP1 to FCN3	Proteins	Proteins	sametype	0.073
CTSV	SPOCK2	CTSV to SPOCK2	Proteins	Proteins	sametype	0.073
ESAM	PAPPA	ESAM to PAPPA	Proteins	Proteins	sametype	0.073
IL19	CTSV	IL19 to CTSV	Proteins	Proteins	sametype	0.073
C2	C5	C2 to C5	Metabolites	Metabolites	sametype	0.073
RET	NTRK2	RET to NTRK2	Proteins	Proteins	sametype	0.074
C10	C10:2	C10 to C10:2	Metabolites	Metabolites	sametype	0.074
DUSP11	SLC25A4	DUSP11 to SLC25A4	RNAs	RNAs	sametype	0.075
ERBB3	BMP1	ERBB3 to BMP1	Proteins	Proteins	sametype	0.075
ERBB3	FGF9	ERBB3 to FGF9	Proteins	Proteins	sametype	0.075
C18:1	BMP1	C18:1 to BMP1	Metabolites	Proteins	diftype	-0.033
GHR	BMP1	GHR to BMP1	Proteins	Proteins	sametype	0.076
IGFBP2	CTSH	IGFBP2 to CTSH	Proteins	Proteins	sametype	0.076
NOTCH1	RELT	NOTCH1 to RELT	Proteins	Proteins	sametype	0.076
CNDP1	AMH	CNDP1 to AMH	Proteins	Proteins	sametype	0.077
ERBB3	CTSV	ERBB3 to CTSV	Proteins	Proteins	sametype	0.077
ESAM	JAM2	ESAM to JAM2	Proteins	Proteins	sametype	0.077
RPS6KA5	KIR2DL4	RPS6KA5 to KIR2DL4	Proteins	Proteins	sametype	0.077
DUSP11	Creatinine	DUSP11 to Creatinine	RNAs	eGFRbiom	diftype	-0.069
KDR	AMH	KDR to AMH	Proteins	Proteins	sametype	0.078
C14:1	SM C18:1	C14:1 to SM C18:1	Metabolites	Metabolites	sametype	0.078
IGFBP6	ERP29	IGFBP6 to ERP29	Proteins	Proteins	sametype	0.079
TTF2	Creatinine	TTF2 to Creatinine	RNAs	eGFRbiom	diftype	-0.078
DUSP11	AGK	DUSP11 to AGK	RNAs	RNAs	sametype	0.08
SLC25A4	PAPPA	SLC25A4 to PAPPA	RNAs	Proteins	diftype	-0.052
LAYN	UNC5C	LAYN to UNC5C	Proteins	Proteins	sametype	0.08
IGFBP2	LAYN	IGFBP2 to LAYN	Proteins	Proteins	sametype	0.081
SLC22A4	NOTCH1	SLC22A4 to NOTCH1	RNAs	Proteins	diftype	-0.054
C1QBP	CST3	C1QBP to CST3	Proteins	eGFRbiom	diftype	-0.111
DUSP11	CTSH	DUSP11 to CTSH	RNAs	Proteins	diftype	-0.063
ESAM	MMP1	ESAM to MMP1	Proteins	Proteins	sametype	0.083
SPINT1	SOD2	SPINT1 to SOD2	Proteins	Proteins	sametype	0.083
IGFBP6	FSTL3	IGFBP6 to FSTL3	Proteins	Proteins	sametype	0.083
IGFBP6	RELT	IGFBP6 to RELT	Proteins	Proteins	sametype	0.083
MED1	MAPK12	MED1 to MAPK12	Proteins	Proteins	sametype	0.083
С14:1-ОН	C14:2	C14:1-OH to C14:2	Metabolites	Metabolites	sametype	0.083
IL19	NTRK2	IL19 to NTRK2	Proteins	Proteins	sametype	0.084
MASP1	SPOCK2	MASP1 to SPOCK2	Proteins	Proteins	sametype	0.084
Creatinine	CST3	Creatinine to CST3	eGFRbiom	eGFRbiom	sametype	0.431
JAM2	RELT	JAM2 to RELT	Proteins	Proteins	sametype	0.085
		SLC22A4 to Urine				
SLC22A4	Urine albumin	albumin	RNAs	UACRbiom	diftype	0.09
AGK	RETN	AGK to RETN	RNAs	Proteins	diftype	-0.071
GHR	ACY1	GHR to ACY1	Proteins	Proteins	sametype	0.088
ERP29	Urine albumin	ERP29 to Urine albumin	Proteins	UACRbiom	diftype	0.082

ARG1	CTSV	ARG1 to CTSV	RNAs	Proteins	diftype	-0.079
SLC22A4	SPINT1	SLC22A4 to SPINT1	RNAs	Proteins	diftype	-0.08
PLAT	SPOCK2	PLAT to SPOCK2	Proteins	Proteins	sametype	0.09
SPINT1	MASP1	SPINT1 to MASP1	Proteins	Proteins	sametype	0.091
ERBB3	GHR	ERBB3 to GHR	Proteins	Proteins	sametype	0.092
SLC22A4	IL19	SLC22A4 to IL19	RNAs	Proteins	diftype	-0.086
IGFBP6	NBL1	IGFBP6 to NBL1	Proteins	Proteins	sametype	0.093
MAPK12	KIR2DL4	MAPK12 to KIR2DL4	Proteins	Proteins	sametype	0.093
ACY1	MASP1	ACY1 to MASP1	Proteins	Proteins	sametype	0.094
IL19	ACY1	IL19 to ACY1	Proteins	Proteins	sametype	0.094
LAYN	NOTCH1	LAYN to NOTCH1	Proteins	Proteins	sametype	0.094
MCM3	TTF2	MCM3 to TTF2	RNAs	RNAs	sametype	0.095
C16	Tyr	C16 to Tyr	Metabolites	Metabolites	sametype	0.095
IGFBP2	ADIPOQ	IGFBP2 to ADIPOQ	Proteins	Proteins	sametype	0.096
NOTCH1	SPOCK2	NOTCH1 to SPOCK2	Proteins	Proteins	sametype	0.096
С14:1-ОН	C2	C14:1-OH to C2	Metabolites	Metabolites	sametype	0.096
IGFBP2	NOTCH1	IGFBP2 to NOTCH1	Proteins	Proteins	sametype	0.097
IL2	FN1	IL2 to FN1	Proteins	Proteins	sametype	0.097
JAM2	HAVCR2	JAM2 to HAVCR2	Proteins	Proteins	sametype	0.097
RETN	PAPPA	RETN to PAPPA	Proteins	Proteins	sametype	0.098
PLG	AMH	PLG to AMH	Proteins	Proteins	sametype	0.099
NBL1	EPHA2	NBL1 to EPHA2	Proteins	Proteins	sametype	0.099
NBL1	SCARF1	NBL1 to SCARF1	Proteins	Proteins	sametype	0.099
IGFBP6	ESAM	IGFBP6 to ESAM	Proteins	Proteins	sametype	0.099
C14:2	C2	C14:2 to C2	Metabolites	Metabolites	sametype	0.1
C18:1	Urine albumin	C18:1 to Urine albumin	Metabolites	UACRbiom	diftype	0.055
IGFBP6	CTSH	IGFBP6 to CTSH	Proteins	Proteins	sametype	0.101
RPS6KA5	IL6	RPS6KA5 to IL6	Proteins	Proteins	sametype	0.101
PLAT	FGF9	PLAT to FGF9	Proteins	Proteins	sametype	0.101
IL19	NOTCH1	IL19 to NOTCH1	Proteins	Proteins	sametype	0.103
IGFBP2	TFF3	IGFBP2 to TFF3	Proteins	Proteins	sametype	0.104
ARG1	NTRK2	ARG1 to NTRK2	RNAs	Proteins	diftype	-0.097
TNFRSF1A	EPHA2	TNFRSF1A to EPHA2	Proteins	Proteins	sametype	0.104
NOTCH1	SEMA3E	NOTCH1 to SEMA3E	Proteins	Proteins	sametype	0.106
TNFRSF1A	FSTL3	TNFRSF1A to FSTL3	Proteins	Proteins	sametype	0.107
B2M	RELT	B2M to RELT	Proteins	Proteins	sametype	0.108
PNLIPRP2	CLEC4M	PNLIPRP2 to CLEC4M	RNAs	Proteins	diftype	-0.106
MASP1	FCN3	MASP1 to FCN3	Proteins	Proteins	sametype	0.11
EFNA5	NOTCH1	EFNA5 to NOTCH1	Proteins	Proteins	sametype	0.111
IL2	BMP1	IL2 to BMP1	Proteins	Proteins	sametype	0.111
TNFRSF1A	IGFBP6	TNFRSF1A to IGFBP6	Proteins	Proteins	sametype	0.111
C14:2	C8:1	C14:2 to C8:1	Metabolites	Metabolites	sametype	0.112
ERP29	MAPK12	ERP29 to MAPK12	Proteins	Proteins	sametype	0.113
GHR	NTRK2	GHR to NTRK2	Proteins	Proteins	sametype	0.115
SLC25A4	IL22RA1	SLC25A4 to IL22RA1	RNAs	Proteins	diftype	-0.111

TNFRSF1B	CTSH	TNFRSF1B to CTSH	Proteins	Proteins	sametype	0.117
NTRK2	TNFRSF19	NTRK2 to TNFRSF19	Proteins	Proteins	sametype	0.117
Tyr	PC aa C38:0	Tyr to PC aa C38:0	Metabolites	Metabolites	sametype	0.118
IL2	PLG	IL2 to PLG	Proteins	Proteins	sametype	0.121
RETN	RELT	RETN to RELT	Proteins	Proteins	sametype	0.123
IL22RA1	CTSH	IL22RA1 to CTSH	Proteins	Proteins	sametype	0.124
ERBB3	KDR	ERBB3 to KDR	Proteins	Proteins	sametype	0.125
TFF3	AMH	TFF3 to AMH	Proteins	Proteins	sametype	0.126
EGFR	Urine albumin	EGFR to Urine albumin	Proteins	UACRbiom	diftype	-0.046
		MCM3 to Urine				
MCM3	Urine albumin	albumin	RNAs	UACRbiom	diftype	-0.093
MASPI	EPHA2	MASPI to EPHA2	Proteins	Proteins	sametype	0.128
SM C18:1	PC aa C38:0	C38:0	Metabolites	Metabolites	sametype	0.129
NTRK2	NOTCH1	NTRK2 to NOTCH1	Proteins	Proteins	sametype	0.13
EPHA2	ERP29	EPHA2 to ERP29	Proteins	Proteins	sametype	0.134
SEMA3E	SM C18:1	SEMA3E to SM C18:1	Proteins	Metabolites	diftype	-0.135
AMH	NOTCH1	AMH to NOTCH1	Proteins	Proteins	sametype	0.137
PCGF2	SOD2	PCGF2 to SOD2	RNAs	Proteins	diftype	-0.136
PNLIPRP2	PLAT	PNLIPRP2 to PLAT	RNAs	Proteins	diftype	-0.138
GHR	CNDP1	GHR to CNDP1	Proteins	Proteins	sametype	0.139
RPS6KA5	MED1	RPS6KA5 to MED1	Proteins	Proteins	sametype	0.139
EFNA5	EPHA2	EFNA5 to EPHA2	Proteins	Proteins	sametype	0.141
LAYN	FSTL3	LAYN to FSTL3	Proteins	Proteins	sametype	0.141
MCM3	SLC25A4	MCM3 to SLC25A4	RNAs	RNAs	sametype	0.142
PCGF2	FGF20	PCGF2 to FGF20	RNAs	Proteins	diftype	-0.143
Tyr	IGFBP2	Tyr to IGFBP2	Metabolites	Proteins	diftype	-0.152
MAPK12	SCARF1	MAPK12 to SCARF1	Proteins	Proteins	sametype	0.142
RELT	TNFRSF19	RELT to TNFRSF19	Proteins	Proteins	sametype	0.143
TNFRSF1B	FSTL3	TNFRSF1B to FSTL3	Proteins	Proteins	sametype	0.143
ERBB3	PLG	ERBB3 to PLG	Proteins	Proteins	sametype	0.145
C10:2	PC aa C38:0	C10:2 to PC aa C38:0	Metabolites	Metabolites	sametype	0.145
ADIPOQ	EPHA2	ADIPOQ to EPHA2	Proteins	Proteins	sametype	0.147
RPS6KA5	ERP29	RPS6KA5 to ERP29	Proteins	Proteins	sametype	0.149
MCM3	ABCB1	MCM3 to ABCB1	RNAs	RNAs	sametype	0.15
NKD2	KIR2DL4	NKD2 to KIR2DL4	RNAs	Proteins	diftype	-0.158
NEURL3	NAPA	NEURL3 to NAPA	CpGs	CpGs	sametype	0.151
FGF20	SPOCK2	FGF20 to SPOCK2	Proteins	Proteins	sametype	0.151
ESAM	UNC5C	ESAM to UNC5C	Proteins	Proteins	sametype	0.152
DUSP11	TTF2	DUSP11 to TTF2	RNAs	RNAs	sametype	0.153
RPS6KA5	MAPK12	RPS6KA5 to MAPK12	Proteins	Proteins	sametype	0.155
ERBB3	EGFR	ERBB3 to EGFR	Proteins	Proteins	sametype	0.158
EFNA5	JAM2	EFNA5 to JAM2	Proteins	Proteins	sametype	0.161
EFNA5	LAYN	EFNA5 to LAYN	Proteins	Proteins	sametype	0.161
CLEC4M	AMH	CLEC4M to AMH	Proteins	Proteins	sametype	0.163
NOTCH1	UNC5C	NOTCH1 to UNC5C	Proteins	Proteins	sametype	0.163
EGFR	KDR	EGFR to KDR	Proteins	Proteins	sametype	0.164

LAYN	JAM2	LAYN to JAM2	Proteins	Proteins	sametype	0.167
FN1	SOD2	FN1 to SOD2	Proteins	Proteins	sametype	0.168
IGFBP2	FN1	IGFBP2 to FN1	Proteins	Proteins	sametype	0.17
SLC22A4	TFE3	SLC22A4 to TFE3	RNAs	RNAs	sametype	0.171
FN1	IGF2R	FN1 to IGF2R	Proteins	Proteins	sametype	0.172
B2M	CTSH	B2M to CTSH	Proteins	Proteins	sametype	0.174
BMP1	PLG	BMP1 to PLG	Proteins	Proteins	sametype	0.175
FSTL3	RELT	FSTL3 to RELT	Proteins	Proteins	sametype	0.176
C2	C6(C4:1-DC)	C2 to C6(C4:1-DC)	Metabolites	Metabolites	sametype	0.177
B2M	TFF3	B2M to TFF3	Proteins	Proteins	sametype	0.178
GHR	FCN3	GHR to FCN3	Proteins	Proteins	sametype	0.179
EGFR	FN1	EGFR to FN1	Proteins	Proteins	sametype	0.181
ADIPOQ	NTRK2	ADIPOQ to NTRK2	Proteins	Proteins	sametype	0.183
EFNA5	SPINT1	EFNA5 to SPINT1	Proteins	Proteins	sametype	0.184
TFE3	MMP1	TFE3 to MMP1	RNAs	Proteins	diftype	-0.168
EFNA5	IL2	EFNA5 to IL2	Proteins	Proteins	sametype	0.187
EFNA5	RELT	EFNA5 to RELT	Proteins	Proteins	sametype	0.187
C14:1	C14:1-OH	C14:1 to C14:1-OH	Metabolites	Metabolites	sametype	0.193
AGK	TTF2	AGK to TTF2	RNAs	RNAs	sametype	0.195
EGFR	CNDP1	EGFR to CNDP1	Proteins	Proteins	sametype	0.196
SLC22A4	ARG1	SLC22A4 to ARG1	RNAs	RNAs	sametype	0.197
C14:1-OH	C16	C14:1-OH to C16	Metabolites	Metabolites	sametype	0.198
PLAT	TNFRSF1A	PLAT to TNFRSF1A	Proteins	Proteins	sametype	0.2
IL22RA1	IL6	IL22RA1 to IL6	Proteins	Proteins	sametype	0.202
C12	C14:1-OH	C12 to C14:1-OH	Metabolites	Metabolites	sametype	0.205
NEURL3	LYSMD2	NEURL3 to LYSMD2	CpGs	CpGs	sametype	0.206
RET	TFF3	RET to TFF3	Proteins	Proteins	sametype	0.208
KDR	FCN3	KDR to FCN3	Proteins	Proteins	sametype	0.208
NKD2	PLG	NKD2 to PLG	RNAs	Proteins	diftype	-0.178
TNFRSF1B	B2M	TNFRSF1B to B2M	Proteins	Proteins	sametype	0.209
EPHA2	HAVCR2	EPHA2 to HAVCR2	Proteins	Proteins	sametype	0.211
C5	Tyr	C5 to Tyr	Metabolites	Metabolites	sametype	0.212
CDC14A	JAM2	CDC14A to JAM2	RNAs	Proteins	diftype	-0.218
IL19	ADAMTS13	IL19 to ADAMTS13	Proteins	Proteins	sametype	0.219
		KIR2DL4 to				
KIR2DL4	TNFRSF19	TNFRSF19	Proteins	Proteins	sametype	0.225
ABCB1	SLC25A4	ABCB1 to SLC25A4	RNAs	RNAs	sametype	0.234
AGK	SLC25A4	AGK to SLC25A4	RNAs	RNAs	sametype	0.235
C12	C14:1	C12 to C14:1	Metabolites	Metabolites	sametype	0.235
C14:1	C18:1	C14:1 to C18:1	Metabolites	Metabolites	sametype	0.239
AGK	ABCB1	AGK to ABCB1	RNAs	RNAs	sametype	0.24
C18:1	C2	C18:1 to C2	Metabolites	Metabolites	sametype	0.243
GHR	RET	GHR to RET	Proteins	Proteins	sametype	0.254
SPINT1	CTSV	SPINT1 to CTSV	Proteins	Proteins	sametype	0.265
		TNFRSF1B to				
TNFRSF1B	HAVCR2	HAVCR2	Proteins	Proteins	sametype	0.267
C12	C14:2	C12 to C14:2	Metabolites	Metabolites	sametype	0.268
EFNA5	NBL1	EFNA5 to NBL1	Proteins	Proteins	sametype	0.273
-------------	---------------	-------------------	-------------	-------------	----------	--------
TNFRSF1B	UNC5C	TNFRSF1B to UNC5C	Proteins	Proteins	sametype	0.273
FGF20	FGF9	FGF20 to FGF9	Proteins	Proteins	sametype	0.281
EGFR	NOTCH1	EGFR to NOTCH1	Proteins	Proteins	sametype	0.283
AMH	C1QBP	AMH to C1QBP	Proteins	Proteins	sametype	0.287
		TNFRSF1A to				
TNFRSF1A	TNFRSF1B	TNFRSF1B	Proteins	Proteins	sametype	0.287
ESAM	SCARF1	ESAM to SCARF1	Proteins	Proteins	sametype	0.302
CLEC4M	FN1	CLEC4M to FN1	Proteins	Proteins	sametype	0.319
C6(C4:1-DC)	C8	C6(C4:1-DC) to C8	Metabolites	Metabolites	sametype	0.323
C10:2	C8:1	C10:2 to C8:1	Metabolites	Metabolites	sametype	0.331
CLEC4M	C1QBP	CLEC4M to C1QBP	Proteins	Proteins	sametype	0.364
C14:1	C14:2	C14:1 to C14:2	Metabolites	Metabolites	sametype	0.372
		LYSMD2 to Urine				
LYSMD2	Urine albumin	albumin	CpGs	UACRbiom	diftype	-0.125
C10	C12	C10 to C12	Metabolites	Metabolites	sametype	0.436
C16	C18:1	C16 to C18:1	Metabolites	Metabolites	sametype	0.544
C10	C8	C10 to C8	Metabolites	Metabolites	sametype	0.827

Supplementary Table 17. Best mediation directions of causal mediation analysis of omics candidates & candidates & three times points of kidney traits.

Within each identified best mediation direction, spearman correlation coefficients, *P*-values and FDR of each pair (FDR < 0.05) of residuals of omics candidates, and regression coefficients and *P*-values of omics candidates with kidney traits in hyperglycemic individuals of KORA F4 are shown, respectively. Residuals of omics candidates were calculated with linear regression analysis for full model (incl. age, sex, BMI, systolic blood pressure, smoking status, triglyceride, total cholesterol, HDL cholesterol, fasting glucose, use of lipid lowering drugs, antihypertensive and anti-diabetic medication).

The mediation proportion (%), average mediating effect with 95% *CI*, *P*-values and FDR, average direct effect with 95% *CI*, *P*-values and FDR of the identified best direction(s) of mediating triangles in a nonparametric causal mediation analysis are shown, respectively. Each mediation analysis was adjusted for the full model. FDR of mediating effect and direct effect were calculated for each kidney trait.

Abbreviations: CKD, chronic kidney disease; eGFR, estimated glomerular filtration rate; UACR, urinary albumin-to-creatinine ratio; CKDcrcc, eGFR-based CKD that was defined as $eGFR < 60 \text{ ml/min}/1.73 \text{ m}^2$.

Description Description <thdescription< th=""> <thdescription< th=""></thdescription<></thdescription<>						omics.a					kidney.t	:			D							Estimate.omi	р-		р-
Difference Difference <thdifference< th=""> Difference Differen</thdifference<>		omics1.l	omics2.l			sso.typ	spearcor			kidney.tra	a rait.posi	i		time.point.k	Proportion.m edia(%)	Avg.media	Avg.media.	Avg.media.	Avg.direct	Avg.direct.	Avg.direct	. cs1.kidney.tr	value.omics1.	Estimate.omics2.	value.omics2.
NE Normality Norma	triangle	abel	abel	omics1.type	omics2.type	e	p-v:	alue Fl	DR	it	tion	Mediation.direction	omics.direction	idney.trait	cua(70)	(95% CI)	p-value	FDR	(95% CI)	p-value	FDR	ait	kidney.trait	kidney.trait	kidney.trait
1 1							1.20	NIE				C10 to CNDB1 to CVD	Matabalita to	hidnory troit		0.006 (0.001			0.011 (-						
PC0 Data		2 C10	CNDP1	Metabolites	Proteins	diftyne	-0 143 03	ЛЕ- 4	661E-02	CKD E4	v	F4	Protein	in E4	36.57	0.006 (0.001 to 0.013)	8 0E-03	2 766E-02	0.019 to	5.08E-01	5 990E-01	0.278	8 764E-04	-0.507	2 239E-04
Chi Data		2 010	CIUDIT	Metabolites	Trotenis	untype	-0.145 05	7.	.00112-02	CRD14		14	Tiokin		50.57	10 0.015)	0.02-05	2.7001-02	0.034 (-	5.001-01	5.7701-01	0.270	0.7042-04	-0.507	2.23712-04
TOM Number Ausballe Paral Output Optimize Optimiz							2.1	13E-				C10 to eGFR F4 to	Metabolite to	kidney trait		0.135 (0.073			0.045 to						
No.		7 C10	B2M	Metabolites	Proteins	diftype	0.187 05	3.	.609E-03	eGFR F4	М	B2M	Protein	in F4	79.61	to 0.2)	0.0E+00	0.000E+00	0.111)	3.92E-01	4.136E-01	-0.174	1.585E-17	-0.43	4.438E-50
CMNP CMNP Mashedin abs Aligne Mashedin Mashedin<																			-0.075 (-	· · · · ·	1		r		_
V_CMP C10 Machadar a P4 30.99 A112 C10 Machadar a P4 30.99 A110 C10							1.20	01E-				CNDP1 to eGFR F4 to	Protein to	kidney trait		-0.033 (-0.061	l		0.159 to -						
1 1		9 CNDP1	C10	Proteins	Metabolites	diftype	-0.143 03	4.	.661E-02	eGFR F4	М	C10	Metabolite	in F4	30.39	to -0.013)	2.0E-03	5.231E-03	0.003)	4.40E-02	5.803E-02	0.124	2.713E-05	-0.174	1.585E-17
9 1 1 1 1 1 1 2 1												C10 to aCEP E4 to	Matabolita to	kidney trait		0.041 (0.075			-0.098 (-						
J) DEM C10 Process Maskoline diffy D11 Process Maskoline Mary value Outpoint		9								eGFR F4	м	CNDP1	Protein	in F4	29.51	to -0.013)	2.0E-03	5.231E-03	0.204 10 -	4.40E-02	5.803E-02				
D B M D P Merile Mashes B M D P Merile Mashes B M D P Merile Mashes D P Merile D P Merile <thd merile<="" p="" th=""> <thd merile<="" p="" th=""> <thd< td=""><td></td><td>-</td><td></td><td></td><td></td><td></td><td></td><td>-</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>0.011 (-</td><td></td><td></td><td></td><td></td><td></td><td>-</td></thd<></thd></thd>		-						-											0.011 (-						-
10 CM Note:in Metaboline diffy 0.216 0.231 0.200-0 0.311 0.312-0 0.332-0 0.312-0 0.332-0 0.332-0 0.332-0 0.332-0 0.332-0 0.332-0							2.1	13E-					Protein to	kidney trait		0.139 (0.052			0.278 to						
1 1	1	0 B2M	C10	Proteins	Metabolites	diftype	0.187 05	3.	609E-03	CKD F4	Х	CKD F4 to B2M to C10	Metabolite	in F4	92.74	to 0.24)	0.0E+00	0.000E+00	0.311)	9.18E-01	9.381E-01	0.925	1.435E-07	0.278	8.764E-04
																	ſ	ſ	0.002 (-	ſ					
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $													Metabolite to	kidney trait		0.013 (0.005			0.031 to						
1 1		0						-		CKD F4	Y	C10 to B2M to CKD F4	Protein	in F4	88.85	to 0.024)	0.0E+00	0.000E+00	0.041)	8.54E-01	8.980E-01		-		
1 1 C10 C73 Meabolies Protein 0.000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.000000 0.000000 0.00000							1.25	87E-				C10 to eGER E4 to	Metabolite to	kidney trait		0 151 (0 084			0.022 (- 0.039 to						
TARKE TARKE LUSE LUSE <thluse< th=""> LUSE LUSE <t< td=""><td></td><td>1 C10</td><td>CST3</td><td>Metabolites</td><td>Proteins</td><td>diftype</td><td>0.192 05</td><td>2.</td><td>.783E-03</td><td>eGFR F4</td><td>м</td><td>CST3</td><td>Protein</td><td>in F4</td><td>87.33</td><td>to 0.213)</td><td>0.0E+00</td><td>0.000E+00</td><td>0.082)</td><td>4.60E-01</td><td>4.723E-01</td><td>-0.174</td><td>1.585E-17</td><td>-0.551</td><td>3.888E-80</td></t<></thluse<>		1 C10	CST3	Metabolites	Proteins	diftype	0.192 05	2.	.783E-03	eGFR F4	м	CST3	Protein	in F4	87.33	to 0.213)	0.0E+00	0.000E+00	0.082)	4.60E-01	4.723E-01	-0.174	1.585E-17	-0.551	3.888E-80
I TNRS I Description Logs Logs Description Logs Logs Description Logs Logs <thlogs< th=""> Logs <thlogs< th=""> <thlogs< th=""> <thlogs< th=""></thlogs<></thlogs<></thlogs<></thlogs<>						51													0.013 (-						
13 C102 F1A Metabolities Proteins diffye 0.141 E0 C0XP 3 4.141 E0 C0XP 4 Proteins in F4 52.18 to 0.033 6.0E-3 2.106 C10 0.031 (TNFRS				1.0	15E-				C10 2 to TNFRSF1A to	Metabolite to	kidney trait		0.006 (0.001			0.014 to						
In RDE NUMBER Neuroine drippe 0.115 1.41E-0 CRR P4 M Cho 2 to CRF P4 Metabeline Metabelin	1	3 C10 2	F1A	Metabolites	Proteins	diftype	0.145 03	4.	.141E-02	CKD F4	Y	CKD F4	Protein	in F4	32.18	to 0.013)	6.0E-03	2.166E-02	0.04)	3.42E-01	4.241E-01	0.276	2.971E-04	0.675	3.884E-06
Interse Control of control			-														ſ	ſ.	0.031 (-	ĺ.			ſ		[
In Chi 2 Fix Metabolines Indices CMP Fix Protein Indices Fix Decision CALLON CALLON <thc< td=""><td>I .</td><td>C C10 2</td><td>TNFRS</td><td>Martellar</td><td>Destalas</td><td>1.0</td><td>0.145 02</td><td>15E-</td><td>1415.02</td><td>CED E4</td><td></td><td>C10 2 to eGFR F4 to</td><td>Metabolite to</td><td>kidney trait</td><td>70.62</td><td>0.083 (0.039</td><td>0.05.00</td><td>0.0005.00</td><td>0.041 to</td><td>4 205 01</td><td>4.47CE 01</td><td>0.176</td><td>1 601E 20</td><td>0.202</td><td>1 1025 25</td></thc<>	I .	C C10 2	TNFRS	Martellar	Destalas	1.0	0.145 02	15E-	1415.02	CED E4		C10 2 to eGFR F4 to	Metabolite to	kidney trait	70.62	0.083 (0.039	0.05.00	0.0005.00	0.041 to	4 205 01	4.47CE 01	0.176	1 601E 20	0.202	1 1025 25
1 R R R R R R No No <td>-</td> <td>6 C10 2</td> <td>FIA</td> <td>Metabolites</td> <td>Proteins</td> <td>antype</td> <td>0.145 05</td> <td>4.</td> <td>.141E-02</td> <td>egrk f4</td> <td>NI</td> <td>INFROFIA</td> <td>Protein</td> <td>in F4</td> <td>12.03</td> <td>to 0.129)</td> <td>0.0E+00</td> <td>0.000E+00</td> <td>0.108)</td> <td>4.28E-01</td> <td>4.4/0E-01</td> <td>-0.178</td> <td>1.091E-20</td> <td>-0.505</td> <td>1.193E-25</td>	-	6 C10 2	FIA	Metabolites	Proteins	antype	0.145 05	4.	.141E-02	egrk f4	NI	INFROFIA	Protein	in F4	12.03	to 0.129)	0.0E+00	0.000E+00	0.108)	4.28E-01	4.4/0E-01	-0.178	1.091E-20	-0.505	1.193E-25
17 RELT C10.2 Proteins Meabolites diffy 0.000 0.0000							5.8	28E-				CKD F4 to RELT to	Protein to	kidney trait		0.112 (0.043			0.207 to						
17 10<		7 RELT	C10 2	Proteins	Metabolites	diftype	0.177 05	7.	.693E-03	CKD F4	x	C10 2	Metabolite	in F4	56.02	to 0.209)	2.0E-03	9.169E-03	0.365)	5.60E-01	6.528E-01	0.694	3.832E-05	0.276	2.971E-04
1 1						51													0.008 (-						
17 17 <th< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>C10 2 to RELT to CKD</td><td>Metabolite to</td><td>kidney trait</td><td></td><td>0.009 (0.003</td><td></td><td></td><td>0.019 to</td><td></td><td></td><td></td><td></td><td></td><td></td></th<>												C10 2 to RELT to CKD	Metabolite to	kidney trait		0.009 (0.003			0.019 to						
10 C102 CST3 Metabolites Proteins diftype 0.11 C102 CST3 vertice Metabolites No C102 vertice Metabolites No No C102 vertice Metabolites No No <t< td=""><td>1</td><td>7</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>CKD F4</td><td>Y</td><td>F4</td><td>Protein</td><td>in F4</td><td>53.9</td><td>to 0.018)</td><td>2.0E-03</td><td>9.169E-03</td><td>0.036)</td><td>5.44E-01</td><td>6.378E-01</td><td></td><td></td><td></td><td></td></t<>	1	7								CKD F4	Y	F4	Protein	in F4	53.9	to 0.018)	2.0E-03	9.169E-03	0.036)	5.44E-01	6.378E-01				
1 1																			-0.034 (-						
19 CH2 CH3 Metabolites Fromins In P4 From In P4 From Outperform <		0 010 0	COTO	Markellar	Destalas	1:0	0.101.05	12E-	7025 02	CED E4	v	C10 2 to CS13 to eGFR	Metabolite to	kidney trait	72.44	-0.094 (-0.136	0.05.00	0.0005.00	0.075 to	1.24E.01	1 (14E 01	0.176	1 (01E 20	0.551	2 0005 00
19 10 <th< td=""><td></td><td>9 C10 2</td><td>CS15</td><td>Metabolities</td><td>Proteins</td><td>antype</td><td>0.191 05</td><td>2.</td><td>.785E-05</td><td>egrk f4</td><td>r</td><td>F4</td><td>Protein</td><td>in F4</td><td>/5.44</td><td>to -0.05)</td><td>0.0E+00</td><td>0.000E+00</td><td>0.009)</td><td>1.54E-01</td><td>1.014E-01</td><td>-0.178</td><td>1.091E-20</td><td>-0.551</td><td>3.888E-80</td></th<>		9 C10 2	CS15	Metabolities	Proteins	antype	0.191 05	2.	.785E-05	egrk f4	r	F4	Protein	in F4	/5.44	to -0.05)	0.0E+00	0.000E+00	0.009)	1.54E-01	1.014E-01	-0.178	1.091E-20	-0.551	3.888E-80
19 10 <th< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>C10 2 to eGFR F4 to</td><td>Metabolite to</td><td>kidney trait</td><td></td><td>0.118 (0.055</td><td></td><td></td><td>0.056 (0.004</td><td></td><td></td><td></td><td></td><td></td><td></td></th<>												C10 2 to eGFR F4 to	Metabolite to	kidney trait		0.118 (0.055			0.056 (0.004						
1 1 1 1 5 5 5 5 5 5 5 5 6 1 1		9								eGFR F4	М	CST3	Protein	in F4	67.64	to 0.178)	0.0E+00	0.000E+00	to 0.107)	3.40E-02	4.645E-02				
21 C10 B2M Metabolites Proteins diftype 0.15 0.4 3.07E-0 C10 2 to B2M Metabolites 9.06E-03 0.022 0.022 0.022 0.022 0.022 0.022 0.022 0.022 0.022 0.022 0.027 0.027 0.037 </td <td></td> <td>0.003 (-</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>																			0.003 (-						
21 C10 2 B2M Metabolites Proteins diftype 0.153 0.4 3.107E-02 CKD F4 Y F4 Protein in F4 79.92 0.021 2.0E-03 9.169E-03 0.029 7.72E-01 8.333E-01 0.276 2.971E-04 0.025 2.971E-04 0.025 2.971E-04 0.025 2.971E-04 0.025 2.971E-04 0.0276 2.971E-04 0.0276 2.971E-04 0.026 0.017 0.107 0.107 0.107 0.107 0.107 0.107 0.107 0.107 0.107 0.107 0.107 0.107 0.107 0.107 0.107 0.007							5.54	46E-				C10 2 to B2M to CKD	Metabolite to	kidney trait		0.012 (0.005			0.022 to						
25 RETN C10 2 Proteins Metabolites listli- diftype listli- 0.4 listli- 1.474E-02 CKD F4 v RETN to C10 2 Protein to Metabolite Metabolites in F4 46.627 to 178 0.0092 (0.028) 0.0092 (0.028) 0.0092 (0.028) 0.0092 (0.028) 0.017 (- 0.017 (- 0.017 (-) 0.494E-01 5.876E-01 0.525 2.696E-04 0.207 (2- 0.027) 0.0091 (0.099 (-) 0.017 (- 0.017 (-) 0.0091 (0.099 (-) 0.017		1 C10 2	B2M	Metabolites	Proteins	diftype	0.153 04	3.	.107E-02	CKD F4	Y	F4	Protein	in F4	79.92	to 0.021)	2.0E-03	9.169E-03	0.029)	7.72E-01	8.333E-01	0.276	2.971E-04	0.925	1.435E-07
28 ETN 0.10 0.												CKD E4 to DETN	Dentsin to	1. day and the		0.002 (0.022			0.107 (-						
2 Relative City Fronting City		5 RETN	C10.2	Proteins	Metabolitas	diftype	0.165.04	+1E-	474E-02	CKD F4	x	CND F4 to REIN to	Protein to Metabolite	in E4	46.27	0.092 (0.028 to 0.178)	0.0E+00	0.000E±00	0.1/2 to 0.395)	4.94E-01	5 876E-01	0.525	2 696E-04	0.276	2 971E-04
TNFRS C10 2 Proteins Metabolites diftype 0.6 6.887- 0.40 0.00 model 0.000 mmodel		JKEIN	C10 2	Tiotems	wietabornes	untype	0.105 04	1.	.4741-02	CKD14	^	010 2	Wietabonite	m14	40.27	10 0.178)	0.01+00	0.000L+00	0.072 (-	4.941-01	5.870E=01	0.52.	2.0901-04	0.270	2.97112-04
27 F19 C10 2 Proteins Metabolites diftype 0.15 0.4 3.460-20 eGR F4 M to C10 2 Metabolites in F4 30.28 to 0.067) 0.0E+00 0.017/0 6.40E-02 7.961E-02 0.132 2.994E-06 0.178 1.691E-20 29 C10 2 B2M Metabolites Proteins diftype 0.15 0.4 3.107E-02 eGR F4 M Metabolites in F4 30.28 to 0.067) 0.0E+00 0.00E+00 0.017 6.40E-02 7.961E-02 0.132 2.994E-06 0.178 1.691E-20 29 C10 2 B2M Metabolites Metabolites in F4 30.28 to 0.067) 0.0E+00 0.00E+00 0.019 to 0 1.48E-01 1.742E-01 0.178 1.691E-20 0.43 4.438E-50 32 UNCSC C10 2 Proteins Frotein to Frotein to Frotein to Frotein to Frotein to 6.00F(0.018 0.0E+00 0.00E+00 0.02F+0 0.183 to 0.178 1.42E-04 0.267 2.971E-04 0.437 4.438E-50 32 UNCSC		TNFRS					6.8	87E-				TNFRSF19 to eGFR F4	Protein to	kidnev trait		0.031 (0.009			0.009 to						
20 Description Readolities Proteins diftype 5.546e 5.546e S.547e Cl0 2 to eGRR F4 Metabolities Rideo train Rideo train <td>2</td> <td>7 F19</td> <td>C10 2</td> <td>Proteins</td> <td>Metabolites</td> <td>diftype</td> <td>0.15 04</td> <td>3.</td> <td>.460E-02</td> <td>eGFR F4</td> <td>М</td> <td>to C10 2</td> <td>Metabolite</td> <td>in F4</td> <td>30.28</td> <td>to 0.067)</td> <td>0.0E+00</td> <td>0.000E+00</td> <td>0.147)</td> <td>6.40E-02</td> <td>7.961E-02</td> <td>-0.132</td> <td>2.994E-06</td> <td>-0.178</td> <td>1.691E-20</td>	2	7 F19	C10 2	Proteins	Metabolites	diftype	0.15 04	3.	.460E-02	eGFR F4	М	to C10 2	Metabolite	in F4	30.28	to 0.067)	0.0E+00	0.000E+00	0.147)	6.40E-02	7.961E-02	-0.132	2.994E-06	-0.178	1.691E-20
2 2 2 82M Metabolites proteins difuge 5.546E- 0.00																			0.051 (-						
29:0102 BZM Metabolites Proteins diftype 0.153 0.4 3.107E-02 eGR F4 M BZM Protein in F4 67.51 0.162 0.000E+00 0.123 1.48E-01 1.742E-01 0.178 1.691E-20 0.043 4.438E-50 32 UNCSC C102 Proteins Metabolites proteins Kidney trait n F4 67.51 0.162 0.000E+00 0.123 1.48E-01 1.742E-01 0.178 1.691E-20 0.043 4.438E-50 32 UNCSC Proteins Metabolites protein to Lift Kidney trait n F4 67.51 0.162 0.000E+00 0.123 1.48E-01 1.742E-01 0.178 1.691E-20 0.043 4.438E-50 32 UNCSC Proteins Metabolite to Lift	1						5.54	46E-				C10 2 to eGFR F4 to	Metabolite to	kidney trait	_	0.105 (0.05 to			0.019 to						
32 UNCSC C10 2 Proteins Metabolites 6,728E- 04 0,678 to UNCSC to D Protein to 0,183 to D kidney trait 0,076 (0.018) 0.183 to D 0,087 to D 0,183 to D 0,015 (-10) to UNCSC to D 0,007 (0,002) 0,007 (0,002) 0,001 (-10) to UNCSC to D 0,007 (-10) to UNCSC to UNC		9 C10 2	B2M	Metabolites	Proteins	diftype	0.153 04	3.	.107E-02	eGFR F4	М	B2M	Protein	ın F4	67.51	0.162)	0.0E+00	0.000E+00	0.123)	1.48E-01	1.742E-01	-0.178	1.691E-20	-0.43	4.438E-50
32 UNCSC C10 2 Proteins Metabolites offset							67	28E.				CKD E4 to UNC5C to	Protein to	kidney troit		0.076/0.019			0.124 (-						
32 10000 1000 1000 1000		2 UNC5C	C10.2	Proteins	Metabolites	diftype	0 15 04	20E- 3	447E-02	CKD F4	x	C10 2	Metabolite	in F4	38.02	to 0.16)	0.0E+00	0.000E+00	0.185 10	4 42E-01	5 351E-01	0.637	1 424E-04	0.276	2 971E-04
32 CKD F4 Y CKD F4 CKD F4 Protein kidney trait in F4 0.007 (0.002 30.72 to 0.014) 0.012 to 0.00E+00 0.012 to 0.002E+00 0.012 to 0.042 3.06E-01 3.853E-01	- ·	2 onese	010 2	1.15001115	memorines	antype	0.15 04	5.		CAD14		0102	manonic		53.02		5.01100	5.0001100	0.015 (-		5.5511201	0.057		5.270	2.7712-04
32 CKD F4 Y CKD F4 Protein in F4 30.72 to 0.014) 0.0E+00 0.002E+00 0.042) 3.06E-01 3.853E-01												C10 2 to UNC5C to	Metabolite to	kidney trait		0.007 (0.002			0.012 to						
	1	2								CKD F4	Y	CKD F4	Protein	in F4	30.72	to 0.014)	0.0E+00	0.000E+00	0.042)	3.06E-01	3.853E-01				

				1			1	1							1		0.027.((
						4.0755				CIA to CED E4 to	Marchaller	1.1.4		0 127 (0 074			0.037 (-						
	~					4.9/5E-				C12 to eGFK F4 to	Metabolite to	kidney trait		0.137 (0.074			0.023 to						
35	C12	CST3	Metabolites	Proteins	diftype	0.201 06	1.416E-03	eGFR F4	м	CST3	Protein	ın F4	78.84	to 0.2)	0.0E+00	0.000E+00	0.099)	2.40E-01	2.680E-01	-0.175	3.042E-17	-0.551	3.888E-80
																	0.055 (-						
						3.094E-				C12 to eGFR F4 to	Metabolite to	kidney trait		0.122 (0.064			0.029 to						
39	C12	B2M	Metabolites	Proteins	diftype	0.184 05	4.663E-03	eGFR F4	М	B2M	Protein	in F4	69.03	to 0.186)	0.0E+00	0.000E+00	0.128)	1.74E-01	2.002E-01	-0.175	3.042E-17	-0.43	4.438E-50
	ADAM					7.029E-				ADAMTS13 to eGFR	Protein to	kidney trait		-0.031 (-0.057			-0.077 (-						
43	TS13	C12	Proteins	Metabolites	diftype	-0.15 04	3.463E-02	eGFR F4	м	F4 to C12	Metabolite	in F4	28.76	to -0.011)	0.0E+00	0.000E+00	0.159 to 0)	4.80E-02	6.171E-02	0.126	L886E-05	-0.175	3.042E-17
					and pro-					C12 to eGER E4 to	Metabolite to	kidney trait		-0.04 (-0.074			-0.1 (-0.194						
42								CED E4		ADAMETC12	Durate in	in E4	29.66	-0.04 (-0.074	0.05.00	0.0005.00	-0.1 (-0.194	4 905 02	C 171E 02				
43	-							eGFK F4	M	ADAMIS15	Protein	1n F4	28.00	to -0.014)	0.0E+00	0.000E+00	10 0)	4.80E-02	0.1/1E-02				
																	-0.057 (-						
						6.018E-				C12 to eGFR F4 to	Metabolite to	kidney trait		-0.071 (-0.115			0.151 to						
45	C12	C1QBP	Metabolites	Proteins	diftype	-0.152 04	3.212E-02	eGFR F4	M	C1QBP	Protein	in F4	55.37	to -0.033)	0.0E+00	0.000E+00	0.05)	2.82E-01	3.017E-01	-0.175	3.042E-17	0.231	1.113E-14
																	-0.052 (-						
										C1OBP to eGFR F4 to	Protein to	kidnev trait		-0.055 (-0.093			0.147 to						
45								eGFR F4	м	C12	Metabolite	in F4	51.71	to -0.023)	0.0E+00	0.000E+00	0.042)	2.82E-01	3.017E-01				
																	0.037 (
						2 090E				C14.1 to P2M to aCEP	Matabalita to	hidney tooit		0.071 (0.11			0.007 (-						
		D014		n		5.069E-	4 6 6 9 7 9 9	OFD F4		C14 I to B2W to eOFK	Nietabolite to	kidney u an	65.50	-0.071 (-0.11	0.05.00	0.0005.00	0.095 10	1 205 01	1 0705 01	0.117	CTOT 00	0.42	4 42012 50
50	C14 1	B2M	Metabolites	Proteins	diftype	0.184 05	4.663E-03	eGFR F4	Y	F4	Protein	1n F4	65.59	to -0.032)	0.0E+00	0.000E+00	0.017)	1.70E-01	1.970E-01	-0.117	1.6/8E-09	-0.43	4.438E-50
																	-0.029 (-						
						1.082E-				C14 1 to CST3 to eGFR	Metabolite to	kidney trait		-0.079 (-0.122			0.081 to						
62	C14 1	CST3	Metabolites	Proteins	diftype	0.171 04	1.155E-02	eGFR F4	Y	F4	Protein	in F4	73.1	to -0.035)	0.0E+00	0.000E+00	0.02)	2.44E-01	2.705E-01	-0.117	1.678E-09	-0.551	3.888E-80
																	0.045 (-						
										C14.1 to eGER F4 to	Metabolite to	kidney trait		0.1 (0.04 to			0.013 to						
67								eGER E4	м	CST3	Protein	in F4	68 73	0.162)	0.0E+00	0.000E±00	0.101)	1.42E-01	1.684E-01				
02		ADIDO				0.COOF		COLUT	101	CI14 2 to ADIDOO to	Matchalltonto	1.1.4	00.75	0.007 (0.002	0.01100	0.0001100	0.001 (0.02	1.421-01	1.0041.01				
		ADIPO				8.023E-				C14 2 to ADIPOQ to	Metabolite to	kidney trait		0.007 (0.002			0.001 (-0.03					0.004	
96	C14 2	Q	Metabolites	Proteins	diftype	0.147 04	3.809E-02	CKD F4	Y	CKD F4	Protein	ın F4	87.89	to 0.014)	6.0E-03	2.166E-02	to 0.036)	8.72E-01	9.099E-01	0.299	2.943E-04	0.604	2.047E-03
																	0.075 (-						
						1.873E-				C14 2 to eGFR F4 to	Metabolite to	kidney trait		0.113 (0.058			0.007 to						
98	C14 2	B2M	Metabolites	Proteins	diftype	0.188 05	3.428E-03	eGFR F4	М	B2M	Protein	in F4	60.28	to 0.171)	0.0E+00	0.000E+00	0.15)	6.20E-02	7.840E-02	-0.166	2.691E-16	-0.43	4.438E-50
																	0.044 (-						
						1.319E-				C14 2 to eGFR F4 to	Metabolite to	kidnev trait		0.128 (0.068			0.011 to						
102	C14.2	CST3	Metabolites	Proteins	diftype	0 192 05	2 783E-03	eGER E4	м	CST3	Protein	in E4	74.57	to (1192)	0.0E+00	0.000E±00	0.101)	1 38E-01	1.650E-01	-0.166	2 691E-16	-0.551	3 888E-80
102	1014 2	0015	Metabolites	Trotems	untype	0.172 05	2.7051-05	01114	101	6515	Trotem		74.57	10 0.172)	0.02100	0.0002100	0.055 (1.502-01	1.0501-01	-0.100 1	2.0711-10	-0.551	5.0001-00
						7 4445				CIC ++ KDD ++ + CED	Marchaller	1.1.4		0.024 (0.042			-0.055 (-						
						7.444E-				C16 to KDR to eGFR	Metabolite to	kidney trait		-0.024 (-0.043			0.122 to						
106	C16	KDR	Metabolites	Proteins	diftype	-0.149 04	3.476E-02	eGFR F4	Y	F4	Protein	1n F4	30.55	to -0.008)	4.0E-03	9.344E-03	0.012)	9.60E-02	1.166E-01	-0.09	1.858E-05	0.153	4.635E-07
																	0.007 (-						
						7.444E-				C16 to KDR to UACR	Metabolite to	kidney trait		0.022 (0.006			0.082 to						
107	C16	KDR	Metabolites	Proteins	diftype	-0.149 04	3.476E-02	UACR F4	Y	F4	Protein	in F4	75.01	to 0.045)	4.0E-03	3.600E-02	0.099)	8.74E-01	8.740E-01	0.118	1.023E-04	-0.141	5.484E-04
										UACR F4 to KDR to	Protein to	kidney trait		0.021 (0.005	-		0.007 (-0.08	1					
107								UACR F4	x	C16	Metabolite	in F4	74.94	to 0.042)	4.0E-03	3.600E-02	to 0.095)	8.74E-01	8.740E-01				
									-					,		-	-0.023 (-	1	-				-
						1 241E				C16 to ECEP to aCEP	Matabolita to	kidney trait		0.056 (0.004			0.025 (-						
100	C16	ECED	Matabalit	Destains	difference.	0.212.06	7.051E.04	CED E4	v	E4	Drotain	in E4	70.01	-0.030 (=0.084	0.05.00	0.0005.00	0.020	4.46E.01	4 611E 01	0.00	1 959E 05	0.254	2 991E 14
108	C10	EGFK	metabolites	FIOteIns	untype	-0.213 00	7.951E-04	COFK F4	1	Г Ч	FIOTEIN	m r4	/0.91	10-0.029)	0.0E+00	0.000E+00	0.039)	4.40E-01	4.011E-01	-0.09	1.6J8E-05	0.254	3.001E-14
											L .						-0.041 (-						
										eGFR F4 to EGFR to	Protein to	kidney trait		-0.091 (-0.139			0.16 to						
108								eGFR F4	Х	C16	Metabolite	in F4	68.79	to -0.046)	0.0E+00	0.000E+00	0.068)	4.46E-01	4.611E-01				L
																	-0.103 (-						
						1.050E-				eGFR F4 to BMP1 to	Protein to	kidney trait		-0.029 (-0.058			0.222 to						
112	BMP1	C16	Proteins	Metabolites	diftype	-0.145 03	4.141E-02	eGFR F4	x	C16	Metabolite	in F4	22.23	to -0.006)	6.0E-03	1.249E-02	0.006)	6.40E-02	7.961E-02	0.132	1.811E-04	-0.09	1.858E-05
	-				51										1		-0.042 (-	r	+ · · ·				· · · ·
						0.642E				C16 to C10PP to CEP	Matabolita to	kidney trait		0.036 (0.064			0.109.10						
117	C16	CLOPP	Matabalit	Destains	difference.	0.146 04	4 1415 02	CED E4	v	E4	Drotain	in E4	46.12	-0.030 (-0.004	0.05.00	0.0005.00	0.108 10	1.04E.01	2 215E 01	0.00	1 959E 05	0.221	1 112E 14
11/	C10	CIÚRA	wietabolites	FIOteIns	untype	-0.140 04	4.141E-02	COFK F4	1	Г4	FIOTEIN	m r 4	40.13	10-0.012)	0.0E+00	0.000E+00	0.023)	1.94E-01	2.215E-01	-0.09	1.6J8E-05	0.231	1.113E-14
																	-0.034 (-						
						7.070E-				C18 1 to IGFBP2 to	Metabolite to	kidney trait		-0.027 (-0.046			0.097 to						
119	C18 1	IGFBP2	Metabolites	Proteins	diftype	0.175 05	8.234E-03	eGFR F4	Y	eGFR F4	Protein	in F4	43.95	to -0.011)	0.0E+00	0.000E+00	0.029)	2.82E-01	3.017E-01	-0.081 9	9.275E-05	-0.167	8.720E-06

																-0.061 (-						
									eGFR F4 to IGFBP2 to	Protein to	kidney trait		-0.048 (-0.084	1		0.168 to						
119								eGFR F4 X	C18 1	Metabolite	in F4	43.85	to -0.017)	0.0E+00	0.000E+00	0.054)	2.82E-01	3.017E-01				
																-0.04 (-						
						7.380E-			C18 1 to CNDP1 to	Metabolite to	kidney trait		-0.021 (-0.04			0.103 to						
120	C18 1	CNDP1	Metabolites	Proteins	diftype	-0.149 04	3.476E-02	eGFR F4 Y	eGFR F4	Protein	in F4	34.35	to -0.007)	2.0E-03	5.231E-03	0.02)	2.14E-01	2.425E-01	-0.081 9	0.275E-05	0.124	2.713E-05
																-0.072 (-						
									eGFR F4 to CNDP1 to	Protein to	kidney trait		-0.037 (-0.07			0.183 to						
120								eGER E4 X	C18 1	Metabolite	in F4	33 71	to -0.013)	2 0E-03	5 231E-03	0.037)	2 14E-01	2.425E-01				
120								COLUTE A	0101	Metabolite		55.71	10-0.015)	2.01-05	5.2512-05	0.005 (2.146-01	2.42512-01				
						1.014E			C19 1 to ECED to	Matabalita to	hidnory tooit		0.056 (0.086			-0.005 (-						
101	C10.1	ECED	Marketter	Destation	1:0	0.200 00	0.00000.04	CED E4 V	CI8 I DEGEK ID	Due to bu	kidney trait	01.6	-0.030 (-0.080	0.05.00	0.0005.00	0.00710	9.1CE 01	9.2COF 01	0.001	2755 05	0.254	2 001E 14
121	C18 I	EGFK	Metabolites	Proteins	annype	-0.209 06	9.808E-04	egrk F4 1	egrk F4	Protein	1n F4	91.0	to -0.029)	0.0E+00	0.000E+00	0.052)	8.10E-01	8.208E-01	-0.081 5	0.275E-05	0.254	3.881E-14
																-0.01 (-						
									eGFR F4 to EGFR to	Protein to	kidney trait		-0.1 (-0.152 to) 		0.131 to						
121								eGFR F4 X	C18 1	Metabolite	in F4	91.01	-0.054)	0.0E+00	0.000E+00	0.099)	8.16E-01	8.268E-01				
																0.029 (-						
						7.800E-			UACR F4 to GHR to	Protein to	kidney trait		0.027 (0.008			0.073 to						
122	GHR	C18 1	Proteins	Metabolites	diftype	-0.148 04	3.569E-02	UACR F4 X	C18 1	Metabolite	in F4	47.99	to 0.052)	6.0E-03	3.600E-02	0.121)	5.50E-01	6.050E-01	-0.167	7.015E-04	0.107	3.502E-04
									C18 1 to GHR to UACE	Metabolite to	kidney trait		0.027 (0.007			0.03 (-0.072						
122								UACR F4 Y	F4	Protein	in F4	47.39	to 0.053)	6.0E-03	3.600E-02	to 0.121)	5.50E-01	6.050E-01				
						1.914E-			UACR F4 to EGFR to	Protein to	kidney trait		0.047 (0.02 to			0.01 (-0.09						
123	EGFR	C18 1	Proteins	Metabolites	diftype	-0.209 06	9.808E-04	UACR F4 X	C18 1	Metabolite	in F4	82.8	0.077)	0.0E+00	0.000E+00	to 0.103)	7.98E-01	8.229E-01	-0.221	.197E-06	0.107	3.502E-04
									C18 1 to EGFR to	Metabolite to	kidney trait		0.046 (0.019			0.01 (-0.091						
123								UACR F4 Y	UACR F4	Protein	in F4	82.68	to 0.079)	0.0E+00	0.000E+00	to 0.102)	7.98E-01	8.229E-01				
																0.001 (-						
						7 380E-			C18.1 to CNDP1 to	Metabolite to	kidnev trait		0.008 (0.002			0.028 to						
129	C18 1	CNDP1	Metabolites	Proteins	diftyne	-0 149 04	3 476E-02	CKD F4 Y	CKD F4	Protein	in F4	87.75	to 0.016)	2 0E-03	9 169E-03	0.031)	9 22E-01	9 381E-01	0.265	336E-03	-0.507	2 239E-04
12)	0101	CIUDIT	Metabolites	Trotems	untype	-0.149 04	5.4701-02		CRD14	Tiotem	m14	07.75	0.010)	2.01-05	J.10JE-05	0.034 (7.220-01	7.5012-01	0.205	1.5501-05	-0.507	2.23712-04
						7 380E			UACE E4 to CNDP1 to	Protein to	kidney trait		0.023 (0.003			0.054 (=						
122	CNIDD1	C19 1	Destains	Matabalitas	d:frme	0.140.04	2 4765 02	UACD E4 V	C12 1	Mataholita	in E4	20.92	0.023 (0.003	1 45 02	4 400E 02	0.122)	4.56E.01	5 274E 01	0.127	257E 02	0.107	2 502E 04
152	CNDFI	C18 1	FIOTEIIIS	Metabontes	untype	-0.149 04	5.470E-02	UACK F4 A	C18 1	Metabolite	III F4	39.65	10 0.048)	1.4E=02	4.400E-02	0.125)	4.30E-01	3.374E-01	-0.127	1.557E-05	0.107	5.502E-04
						7.0705			UACD EAST ICEDDA	Destate	tot during and to		0.024 (0.004			0.032 (-						
100	CEDDO	G10.1	n			7.070E-	0.0045.00	VILOP PA V	UACR F4 to IGFBP2 to	Protein to	kidney trait	12.0	0.024 (0.004	1 45 00	1 1005 00	0.071 to	1005 01	5 6 6 7 7 0 1	0.14		0.107	0.5005.04
133	IGFBP2	C18 1	Proteins	Metabolites	diftype	0.175 05	8.234E-03	UACK F4 X	C18 1	Metabolite	1n F4	42.9	to 0.049)	1.4E-02	4.400E-02	0.126)	4.98E-01	5.66/E-01	0.14 3	0.445E-03	0.107	3.502E-04
																-0.068 (-						
						6.822E-			eGFR F4 to BMP1 to	Protein to	kidney trait		-0.041 (-0.077			0.177 to						
135	BMP1	C18 1	Proteins	Metabolites	diftype	-0.176 05	8.234E-03	eGFR F4 X	C18 1	Metabolite	in F4	37.83	to -0.012)	2.0E-03	5.231E-03	0.045)	2.34E-01	2.633E-01	0.132 1	.811E-04	-0.081	9.275E-05
																-0.039 (-						
									C18 1 to BMP1 to	Metabolite to	kidney trait		-0.023 (-0.042	2		0.102 to						
135								eGFR F4 Y	eGFR F4	Protein	in F4	36.9	to -0.006)	2.0E-03	5.231E-03	0.026)	2.34E-01	2.633E-01				
							ſ							ſ		-0.036 (-	ſ.	r I	ſ			
						7.800E-			C18 1 to GHR to eGFR	Metabolite to	kidney trait		-0.025 (-0.047	1		0.098 to						
137	C18 1	GHR	Metabolites	Proteins	diftype	-0.148 04	3.569E-02	eGFR F4 Y	F4	Protein	in F4	40.84	to -0.009)	0.0E+00	0.000E+00	0.024)	2.66E-01	2.886E-01	-0.081 9	0.275E-05	0.157	2.036E-05
																-0.065 (-						
1									eGFR F4 to GHR to	Protein to	kidney trait		-0.044 (-0.083	3		0.172 to						
137								eGFR F4 X	C18 1	Metabolite	in F4	40.7	to -0.015)	0.0E+00	0.000E+00	0.042)	2.66E-01	2.886E-01				
														1	-	0.038 (-	1					
						4.091E-				Metabolite to	kidney trait		0.12 (0.055 to			0.043 to						
162	C8	B2M	Metabolites	Proteins	diftype	0.181 05	5.823E-03	eGFR F4 M	C8 to eGFR F4 to B2M	Protein	in F4	75.69	0.182)	0.0E+00	0.000E+00	0.114)	3.68E-01	3.910E-01	-0.163	5.665E-16	-0.43	4.438E-50
					yrs											0.013 (-					0.1.5	
						1.222E-				Metabolite to	kidnev trait		0.135 (0.067			0.044 to						
164	C8	CST3	Metabolites	Proteins	diftype	0.169 04	1.182E-02	eGFR F4 M	C8 to eGFR F4 to CST	Protein	in F4	91.04	to 0.202)	0.0E+00	0.000E+00	0.072)	6.34E-01	6.467E-01	-0.163	5.665E-16	-0.551	3.888E-80
							7		20.00100000			21.04		-	7	0.001.(-	7		0.105		0.001	
						1.025E-			C8 to UNC5C to CKD	Metabolite to	kidney trait		0.007 (0.002			0.032 to						
166	C8	UNC5C	Metabolites	Proteins	diffune	0 145 03	4 141E-02	CKD F4 V	F4	Protein	in F4	80.14	to 0.014)	2 0E-03	9 169E-03	0.036)	9 14E-01	9 381E-01	0.22	1.287E-03	0.637	1.424E-04
100		Shese	memorines	. 1000105	anype	0.145 05	×141E*02	CRD 1 + 1	1 7	. Iowin		07.14		2.01-03	7.1076-05	0.084 (7.146-01	2.5012-01	0.23		0.057	
						1.0250			C8 to aCEP E4 to	Matabolita to	kidney troit		0.052 (0.021			0.004 (- 0.003 to						
1.07	CO	INCES	Martin	Destation	1.0	0.145 02	4 1 41 1 00	CED E4	LO TO COPK P4 TO	Distantia	kidney trait	20.24	0.052 (0.021	0.05.00	0.0005.00	0.005 10	C 00E 02	7.6505.00	0.1-22	COT 10	0.100	5 427E 10
167	U8	UNCSC	ivietabolites	Proteins	antype	0.145 03	4.141E-02	egrk F4 M	UNCSC	Protein	1n F4	58.34	to 0.089)	0.0E+00	0.000E+00	0.1/4)	0.00E-02	7.650E-02	-0.163	0.005E-10	-0.198	5.45/E-10

																	0.326 (
						4	146E-				Protein to	kidney trait		-0.12 (-0.211			-0.520 (-						
208 PL	AT T	vr Proteins	Metab	olites	diftype	0 24 08	8	3 541E-05 CKD F4	x	CKD F4 to PLAT to Tyr	· Metabolite	in F4	26.95	to -0.045)	0.0E+00	0.000E+00	0.046)	1 40E-02	2 231E-02	-0 791	4 380E-04	-0.27	5 324E-04
20011		ji Tioteinij		Jointes	antype	0.2100		5.5 112 05 010 11			metabolite		20.95	10 0.015)	0.02100	0.0002100	-0.32 (-	1.102 02	2.2312 02	0.771	1.5001 01	0.27	5.5212 01
						8	465E-			CKD F4 to IGEBP2 to	Protein to	kidney trait		-0 127 (-0 234			0.617 to -						
215 IG	BP2 T	vr Proteins	Metab	olites	diftype	-0.283 11	1	1.084E-07 CKD F4	x	Tvr	Metabolite	in F4	28.36	to -0.047)	0.0E+00	0.000E+00	0.037)	2.40E-02	3.510E-02	0.652	1.167E-03	-0.27	5.324E-04
		,								-)-							-0.323 (-						
						4.	.680E-			CKD F4 to ACY1 to	Protein to	kidnev trait		-0.124 (-0.21			0.611 to -						
217 AC	Y1 T	vr Proteins	Metab	olites	diftype	0.286 11	1	1.084E-07 CKD F4	x	Tvr	Metabolite	in F4	27.71	to -0.057)	0.0E+00	0.000E+00	0.048)	2.20E-02	3.264E-02	-0.744	2.693E-04	-0.27	5.324E-04
					51												-0.026 (-						
	S	POCK				0.177 6.	.005E-			Tvr to SPOCK2 to CKD	Metabolite to	kidnev trait	25.15	-0.009 (-0.017			0.049 to -						
218 Tv	2	Metabol	tes Protei	ins	diftype	05	5	7.693E-03 CKD F4	Y	F4	Protein	in F4		to -0.002)	0.0E+00	0.000E+00	0.001)	4.20E-02	5.929E-02	-0.27	5.324E-04	-0.689	2.061E-05
																	-0.166 (-						
SL	C22					3.	796E-			CKD F4 to SLC22A4 to		kidney trait		-0.205 (-0.364			0.57 to						
292 A4	п	.19 RNAs	Protei	ins	diftype	-0.242 04	4	2.431E-02 CKD F4	x	IL19	RNA to Protein	in F4	55.22	to -0.07)	0.0E+00	0.000E+00	0.248)	4.04E-01	4.980E-01	0.445	1.196E-05	-0.555	1.445E-03
																	-0.022 (-						
										IL19 to SLC22A4 to		kidney trait		-0.026 (-0.048			0.066 to						
292								CKD F4	Y	CKD F4	Protein to RNA	in F4	54.1	to -0.008)	0.0E+00	0.000E+00	0.037)	4.18E-01	5.106E-01				
																	-0.191 (-						
						1.	.047E-			CKD F4 to NTRK2 to		kidney trait		-0.059 (-0.124			0.492 to						
380 NT	RK2 N	APA Proteins	CpGs		diftype	0.149 03	3	4.141E-02 CKD F4	х	NAPA	Protein to CpG	in F4	23.52	to -0.011)	6.0E-03	2.166E-02	0.079)	1.94E-01	2.595E-01	-0.518	1.411E-03	-0.422	1.541E-05
																	-0.066 (-						
						1.	.047E-			UACR F4 to NTRK2 to		kidney trait		-0.017 (-0.038			0.15 to						
381 NT	RK2 N	APA Proteins	CpGs		diftype	0.149 03	3	4.141E-02 UACR F4	х	NAPA	Protein to CpG	in F4	20.54	to -0.003)	8.0E-03	4.062E-02	0.028)	1.68E-01	2.218E-01	-0.11	5.345E-03	-0.101	1.743E-03
						1.	412E-	CKDcrcc		CKDcrcc S4 to CST3 to	Protein to	kidney trait		0.461 (0 to			0.007 (-						
552 CS	T3 C	10.2 Proteins	Metab	olites	diftype	0.191 05	5	2.783E-03 S4	х	C10 2	Metabolite	in S4 (as X)	98.45	0.793)	4.0E-03	4.800E-02	1.371 to 1.5)	9.32E-01	9.320E-01	1.962	2.259E-04	0.792	1.423E-04
												kidney trait					-0.097 (-						
						1.	.007E-			C14 1 to IGFBP2 to	Metabolite to	in FF4 (as		-0.032 (-0.054			0.174 to -						
718 C1	41 IC	GFBP2 Metabol	tes Protei	ins	diftype	0.145 03	3	4.141E-02 eGFR FF4	Y	Follow-up eGFR	Protein	Y)	24.59	to -0.013)	0.0E+00	0.000E+00	0.018)	1.60E-02	2.109E-02	-0.102	1.816E-04	-0.239	7.855E-09
												kidney trait					-0.058 (-						
						7.	.070E-			C18 1 to IGFBP2 to	Metabolite to	in FF4 (as		-0.04 (-0.068			0.132 to						
719 C1	81 IC	GFBP2 Metabol	tes Protei	ins	diftype	0.175 05	5	8.234E-03 eGFR FF4	Y	Follow-up eGFR	Protein	Y)	40.91	to -0.018)	0.0E+00	0.000E+00	0.016)	1.30E-01	1.409E-01	-0.081	3.345E-03	-0.239	7.855E-09
												kidney trait					0.024 (-						
						-0.283 8.	465E-			Tyr to IGFBP2 to	Metabolite to	in FF4 (as	68.13	0.052 (0.025			0.046 to						
720 Ty	IC	GFBP2 Metabol	tes Protei	ins	diftype	11	1	1.084E-07 eGFR FF4	Y	Follow-up eGFR	Protein	Y)		to 0.086)	0.0E+00	0.000E+00	0.088)	5.06E-01	5.060E-01	0.073	5.828E-03	-0.239	7.855E-09
						l l						kidney trait			1	ſ	-0.113 (-						
C1	4 1-					5.	.995E-			C14 1-OH to IGFBP2 to	Metabolite to	in FF4 (as		-0.027 (-0.047			0.191 to -						
721 OH	I IC	GFBP2 Metabol	tes Protei	ins o	diftype	0.152 04	4	3.212E-02 eGFR FF4	Y	Follow-up eGFR	Protein	Y)	19.16	to -0.01)	2.0E-03	5.273E-03	0.032)	4.00E-03	6.187E-03	-0.123	4.789E-06	-0.239	7.855E-09
						ſ						kidney trait			ſ	ſ	0.034 (-		1 Contraction of the second se				
						4.	.975E-			C12 to CST3 to incident	Metabolite to	in FF4 (as		0.012 (0.003			0.006 to						
722 C1	2 C	ST3 Metabol	tes Protei	ins e	diftype	0.201 06	6	1.416E-03 CKD FF4	Y	CKD	Protein	Y)	25.46	to 0.024)	4.0E-03	1.800E-02	0.083)	1.08E-01	1.606E-01	0.327	5.401E-03	0.769	8.144E-05
						l l						kidney trait			[[0.027 (-		Í				
						1.	.082E-			C14 1 to CST3 to	Metabolite to	in FF4 (as		0.011 (0.003			0.013 to						
723 C1	41 C	ST3 Metabol	tes Protei	ins	diftype	0.171 04	4	1.155E-02 CKD FF4	Y	incident CKD	Protein	Y)	29.44	to 0.022)	4.0E-03	1.800E-02	0.08)	1.82E-01	2.047E-01	0.299	9.877E-03	0.769	8.144E-05
						Í						kidney trait					-0.056 (-						
						1.	.082E-			C14 1 to CST3 to	Metabolite to	in FF4 (as		-0.072 (-0.115	l		0.12 to						
724 C1	41 C	ST3 Metabol	tes Protei	ins o	diftype	0.171 04	4	1.155E-02 eGFR FF4	Y	Follow-up eGFR	Protein	Y)	56.27	to -0.035)	0.0E+00	0.000E+00	0.007)	1.00E-01	1.137E-01	-0.102	1.816E-04	-0.511	1.985E-49
												kidney trait			.[[-0.069 (-		Í				
C6	(C4					7.	.462E-			C6(C4 1-DC) to CST3	Metabolite to	in FF4 (as		-0.061 (-0.106	2.00	-	0.123 to -	A AOF	0.000		a 10/E 25		1.00575.10
725 1-I	лс) С	S13 Metabol	tes Protei	ins	aittype	0.149 04	4	5.476E-02 eGFR FF4	Y	to Follow-up eGFR	Protein	Y)	46.97	to -0.021)	2.0E-03	5.2/3E-03	0.009)	2.20E-02	2.836E-02	-0.12	2.184E-05	-0.511	1.985E-49
						ĺ.	222F			00 · 0070 · D *		kidney trait		0.070 (0.117			-0.074 (-						
	~					1.	222E-	1 1000 00 000 000		C8 to CST3 to Follow-	Metabolite to	in FF4 (as	40.20	-0.072 (-0.117	2.05.02	5 050E C2	0.131 to -	1 605 05	2 1005 02	0	0.000		1 0055 40
726 C8	C	S13 Metabol	tes Protei	ins o	aiftype	0.169 04	4	1.182E-02 eGFR FF4	Ŷ	up eGFR	Protein	Y)	49.28	to -0.028)	2.0E-03	5.273E-03	0.014)	1.60E-02	2.109E-02	-0.139	2.663E-07	-0.511	1.985E-49
												kidney trait					-0.074 (-						
						4.	.975E-			C12 to CST3 to Follow-	Metabolite to	in FF4 (as		-0.082 (-0.125	2.00	-	0.13 to -	A 105 00	0.0505.00		2 222E		1.00575.10
727 C1	2 C	S13 Metabol	tes Protei	ins o	aiftype	0.201 06	5	1.416E-03 eGFR FF4	Ŷ	up eGFR	Protein	Y)	52.41	to -0.041)	2.0E-03	5.273E-03	0.013)	2.40E-02	3.059E-02	-0.143	2.223E-07	-0.511	1.985E-49
							2105			G14.0 . 00770 .		kidney trait		0.000 (0.10			-0.059 (-						
						1.	.319E-	-		C14 2 to CST3 to	Metabolite to	in FF4 (as		-0.082 (-0.125	0.00	0.0007 01	0.122 to	5 AOF	C 2 407 02		0.070E 0.5		1.0057.10
728 C1	42 C	S13 Metabol	tes Protei	ins o	aiftype	0.192 05	>	2./83E-03 eGFR FF4	Y	Follow-up eGFR	Protein	Y)	58.05	to -0.038)	0.0E+00	0.000E+00	0.001)	5.20E-02	6.349E-02	-0.112	3.972E-05	-0.511	1.985E-49

												kidney trait					-0.073 (-						
						1.2	287E-			C10 to CST3 to Follow-	 Metabolite to 	in FF4 (as		-0.084 (-0.127			0.129 to -						
729	C10	CST3	Metabolites	Proteins	diftype	0.192 05	5 2.	.783E-03	eGFR FF4 Y	up eGFR	Protein	Y)	53.38	to -0.04)	0.0E+00	0.000E+00	0.013)	1.80E-02	2.346E-02	-0.147	8.312E-08	-0.511	1.985E-49
												kidney trait					-0.055 (-						
	C14 1-					2.5	596E-			C14 1-OH to CST3 to	Metabolite to	in FF4 (as		-0.086 (-0.129			0.115 to						
730	OH	CST3	Metabolites	Proteins	diftype	0.207 06	5 1.	.068E-03	eGFR FF4 Y	Follow-up eGFR	Protein	Y)	61.16	to -0.045)	0.0E+00	0.000E+00	0.008)	8.20E-02	9.418E-02	-0.123	4.789E-06	-0.511	1.985E-49
												kidnev trait					-0.06 (-						
						1.4	412E-			C10.2 to CST3 to	Metabolite to	in FF4 (as		-0.091 (-0.134			0.124 to						
731	C10.2	CST3	Metabolites	Proteins	diftyne	0 191 05	5 2	783E-03	eGER FE4 V	Follow-up eGFR	Protein	Y)	60.09	to -0.05)	0.0E±00	0.000F+00	0.004)	7.00E-02	8 202E-02	-0.117	6.984E-06	-0.511	1 985E-49
7.51	010 2	0015	Metabolites	Trotems	untype	0.171 05	, 2.	1051-05	COLK114 1	ronow-up cor R	Trotein	1) kidney troit	00.07	10-0.05)	0.02100	0.0001100	0.115 (7.001-02	0.2021-02	-0.117	0.7041-00	-0.511	1.7051-47
		TNEDC				1.0	0150			CIO 2 ++ TNEDGELA ++	Marthallin	in FE4 (as		0.026 (0.067			0.179.4						
722	C10.2	TINFKS	Martin	Dentstan	1.0	0.145.02	015E-	1415.02	CED FEA V	C10 2 to INFRSFIA to	Desta in	in FF4 (as	22.0	-0.036 (-0.067	2.05.02	2 7055 02	0.1/8 to -	0.005.00	0.0005.00	0.117	C 00 4E 0C	0.211	C 102E 22
/32	C10 2	FIA	Metabolites	Proteins	antype	0.145 03	5 4.	.141E-02	egrk FF4 1	Follow-up eGFK	Protein	1)	23.9	to -0.008)	2.0E-02	2.795E-02	0.045)	0.00E+00	0.000E+00	-0.117	0.984E-00	-0.511	0.192E-22
												kidney trait					0.039 (-						
						8.0	028E-			C12 to EGFR to	Metabolite to	in FF4 (as		0.009 (0.002			0.001 to						
734	C12	EGFR	Metabolites	Proteins	diftype	-0.196 06	5 2.	.057E-03	CKD FF4 Y	incident CKD	Protein	Y)	19.04	to 0.019)	6.0E-03	2.160E-02	0.089)	6.20E-02	1.047E-01	0.327	5.401E-03	-0.509	2.488E-03
												kidney trait					0.027 (-						
						1.9	914E-			C18 1 to EGFR to	Metabolite to	in FF4 (as		0.01 (0.002 to			0.013 to						
735	C18 1	EGFR	Metabolites	Proteins	diftype	-0.209 06	5 9.	.808E-04	CKD FF4 Y	incident CKD	Protein	Y)	27.29	0.023)	4.0E-03	1.800E-02	0.079)	2.10E-01	2.224E-01	0.325	6.305E-03	-0.509	2.488E-03
												kidney trait					-0.049 (-						
						1.9	914E-			C18 1 to EGFR to	Metabolite to	in FF4 (as		-0.049 (-0.077			0.118 to						
736	C18 1	EGFR	Metabolites	Proteins	diftype	-0.209 06	5 9.	808E-04	eGFR FF4 Y	Follow-up eGFR	Protein	YD	49.8	to -0.023)	0.0E+00	0.000E+00	0.023)	1.68E-01	1.788E-01	-0.081	3.345E-03	0.259	1.214E-11
												kidney trait					-0.098 (-						
	C6(CA					4.0	077E-			C6(C4 1-DC) to EGER	Metabolite to	in FE4 (as		-0.033 (-0.058			0.165 to -						
737	1-DC)	EGER	Metabolites	Proteins	diftyne	-0.156.04	1 2	547E-02	eGER FE4 V	to Follow-up eGFR	Protein	V)	24.95	to -0.000 (-0.000)	2 0E-03	5 273E-03	0.027)	1.00E-02	1 381E-02	-0.12	2 184E-05	0.259	1 214E-11
151	I-DC)	LOPK	wietabonites	Trotems	untype	-0.150 04	+ 2.	.J47L=02	COLK114 1	to ronow-up cork	Trotein	1) hidney troit	24.93	10=0.009)	2.01-03	5.2751-05	0.027)	1.00L=02	1.5811-02	-0.12	2.1641-05	0.239	1.2146-11
							0205			CIA & ECED & E-II-	Marchaller	in FE4 (as		0.045 (0.000			-0.111 (-						
	~ ~	n on the				8.0	028E-			C12 to EGFR to Follow	- Metabolite to	in FF4 (as		-0.045 (-0.069			0.18/ to -						
738	C12	EGFR	Metabolites	Proteins	diftype	-0.196 06	5 2.	.057E-03	eGFR FF4 Y	up eGFR	Protein	Y)	28.7	to -0.024)	0.0E+00	0.000E+00	0.038)	8.00E-03	1.146E-02	-0.143	2.223E-07	0.259	1.214E-11
												kidney trait					-0.099 (-						
	C14 1-					2.9	917E-			C14 1-OH to EGFR to	Metabolite to	in FF4 (as		-0.042 (-0.066			0.174 to -						
739	OH	EGFR	Metabolites	Proteins	diftype	-0.206 06	5 1.	.068E-03	eGFR FF4 Y	Follow-up eGFR	Protein	Y)	29.7	to -0.019)	0.0E+00	0.000E+00	0.024)	1.40E-02	1.888E-02	-0.123	4.789E-06	0.259	1.214E-11
												kidney trait			·		-0.034 (-						
						1.2	241E-			C16 to EGFR to Follow	 Metabolite to 	in FF4 (as		-0.051 (-0.081			0.106 to						
740	C16	EGFR	Metabolites	Proteins	diftype	-0.213 06	5 7.	.951E-04	eGFR FF4 Y	up eGFR	Protein	Y)	60.35	to -0.024)	0.0E+00	0.000E+00	0.048)	3.62E-01	3.651E-01	-0.07	1.334E-02	0.259	1.214E-11
										•		kidney trait					-0.098 (-	•	*		•		•
						1.3	250E-			C14.1 to EGFR to	Metabolite to	in FF4 (as		-0.03 (-0.059			0.165 to -						
741	C14 1	EGER	Metabolites	Proteins	diftyne	-0 169 04	1 1	182E-02	eGFR FF4 Y	Follow-up eGFR	Protein	Y)	23 59	to -0.006)	1.2E-02	1 933E-02	0.023)	1 20E-02	1.638E-02	-0.102	1 816E-04	0.259	1 214E-11
,	0111	Loin	metabornes	Troteins	unippe	0.105 01		1021 02	Contrin 1	ronow up corre	Tioum	kidney trait	25.57	10 0.000)		-	0.049 (-	F	0.102	-	0.207	
						0.172 80	0665			Turn to ECE20 to Follow	Matabalita to	in EE4 (as	25.00	0.027 (0.012			0.049 (*						
742	True	ECEDO	Matabalitas	Destains	differmo.	0.175 0.5	500L*	007E 02	CED EEA V	Tyr to FOF20 to Follow	- Metabolite to	11114 (as	55.00	to 0.051)	0.05.00	0.000E.00	0.019 10	1.62E.01	1 740E 01	0.072	5 9295 02	0.154	1 001E 06
/42	1 yı	FGF20	Metabonites	FIOtems	untype	05	, <u>9</u> .	.98/E-05	COLK LLA	иреогк	FIOIEIII	1)		10 0.031)	0.0E+00	0.000E+00	0.108)	1.02E-01	1.740E-01	0.075	5.828E-05	0.134	1.991E-00
												kidney trait					0.024 (-						
	a	~				7.8	800E-			C18 I to GHR to	Metabolite to	in FF4 (as		0.013 (0.003			0.016 to					0.000	
743	C18 1	GHR	Metabolites	Proteins	diftype	-0.148 04	1 3.	.569E-02	CKD FF4 Y	incident CKD	Protein	Y)	35.18	to 0.027)	2.0E-03	1.800E-02	0.074)	2.42E-01	2.420E-01	0.325	6.305E-03	-0.683	1.930E-04
							ſ					kidney trait			ſ	ſ	-0.069 (-		1				
						7.8	800E-			C18 1 to GHR to	Metabolite to	in FF4 (as		-0.029 (-0.052			0.143 to						
744	C18 1	GHR	Metabolites	Proteins	diftype	-0.148 04	4 3.	.569E-02	eGFR FF4 Y	Follow-up eGFR	Protein	Y)	29.49	to -0.01)	0.0E+00	0.000E+00	0.007)	7.60E-02	8.816E-02	-0.081	3.345E-03	0.178	1.444E-05
						0.100 1.2	274E-			Tyr to GHR to Follow-	Metabolite to	in FF4 (as	24.26	0.026 (0.01 to	1	1	0.05 (-0.013						·
745	Tyr	GHR	Metabolites	Proteins	diftype	0.169 04	4 1.	182E-02	eGFR FF4 Y	up eGFR	Protein	Y)	34.30	0.046)	0.0E+00	0.000E+00	to 0.11)	1.20E-01	1.313E-01	0.073	5.828E-03	0.178	1.444E-05
	-									-		kidnev trait			•		0.045 (-	•			-		*
						-0.147 8.4	540E-			Tyr to ESAM to Follow	Metabolite to	in FF4 (as	41.21	0.031 (0.008			0.017 to						
746	Tvr	ESAM	Metabolites	Proteins	diftype	04	1 3.	809E-02	eGFR FF4 Y	up eGFR	Protein	Y)		to 0.058)	4.0E-03	9.098E-03	0.101)	1.80E-01	1.898E-01	0.073	5.828E-03	-0.236	3.557E-12
, 40	- ,.				Lingpo	04				-r - 01 K		-/ kidney trait				10701 05	-0.115 (-			0.075		0.2.50	
						1.0	941E			C10.2 to PETN to	Matabolita to	in FE4 (as		0.036 (0.05			0.18 to						
747	C10.2	DETN	Matabalit	Destains	difference.	0.165.04	0+1E-	474E 02	CED EEA V	Eallow up aCED	Destain	m FF4 (as	22.00	-0.050 (-0.00	0.05.00	0.000E.00	0.10 10 -	0.005.00	0.0005.00	0.117	6 084E 06	0.000	5 657E 10
/4/	010 2	KEIN	metabolites	r10teins	untype	0.165 04	+ 1.	.4/4E-02	COLK LLA	FOROW-UP COPK	riotein	1)	23.96	0.016	0.0E+00	0.000E+00	0.043)	0.00E+00	0.000E+00	-0.11/	0.984E-00	-0.226	3.03/E-12
	ADAM	G12				7.0	029E-	1000 00	OFF FEA V	ADAMIS13 to Cl2 to	Protein to	in FF4 (as	10.00	0.016 (0.004	2.05.02	5 0707 63	0.1 (0.045 to	0.005.00	0.0005.00	0.1	6 000E 04		2 2225 07
748	1813	CI2	Proteins	Metabolites	diftype	-0.15 04	+ 3.	.463E-02	eGFR FF4 Y	Follow-up eGFR	Metabolite	Y)	13.48	to 0.032)	2.0E-03	5.273E-03	U.161)	0.00E+00	0.000E+00	0.111	6.823E-04	-0.143	2.223E-07
												kidney trait			[ĺ		[[
	ADAM					5.0	058E-			ADAMTS13 to C10 2	Protein to	in FF4 (as		0.018 (0.005			0.097 (0.042						
749	TS13	C10 2	Proteins	Metabolites	diftype	-0.154 04	4 3.	.014E-02	eGFR FF4 Y	to Follow-up eGFR	Metabolite	Y)	15.87	to 0.036)	2.0E-03	5.273E-03	to 0.156)	0.00E+00	0.000E+00	0.111	6.823E-04	-0.117	6.984E-06

										C14 1-OH to		kidney trait				-0.126 (-					
	C14 1-	ADAM					6.443E-			ADAMTS13 to Follow-	Metabolite to	in FF4 (as	-0.014 (-0.029			0.203 to -					
750	OH	TS13	Metabolites	Proteins	diftype	-0.151	04	3.369E-02	eGFR FF4 Y	up eGFR	Protein	Y)	10.33 to -0.004)	8.0E-03	1.473E-02	0.05)	2.00E-03	3.412E-03	-0.123 4.789E-06	0.111 6.823	3E-04
												kidney trait				0.044 (-					
						0.286	4.680E-			Tyr to ACY1 to Follow-	Metabolite to	in FF4 (as	41.93 0.032 (0.013			0.021 to					
751	Tyr	ACY1	Metabolites	Proteins	diftype		11	1.084E-07	eGFR FF4 Y	up eGFR	Protein	Y)	to 0.057)	0.0E+00	0.000E+00	0.106)	2.28E-01	2.383E-01	0.073 5.828E-03	0.157 1.315	5E-04
												kidney trait				-0.07 (-					
							6.822E-			C18 1 to BMP1 to	Metabolite to	in FF4 (as	-0.028 (-0.053			0.144 to					
752	C18 1	BMP1	Metabolites	Proteins	diftype	-0.176	05	8.234E-03	eGFR FF4 Y	Follow-up eGFR	Protein	Y)	29.04 to -0.008)	6.0E-03	1.160E-02	0.009)	7.00E-02	8.202E-02	-0.081 3.345E-03	0.178 5.497	7E-06
												kidney trait									
		C14 1-					2.522E-			BMP1 to C14 1-OH to	Protein to	in FF4 (as	0.018 (0.004			0.154 (0.055					
753	BMP1	OH	Proteins	Metabolites	diftype	-0.162	04	1.874E-02	eGFR FF4 Y	Follow-up eGFR	Metabolite	Y)	10.67 to 0.038)	1.6E-02	2.379E-02	to 0.237)	8.00E-03	1.146E-02	0.178 5.497E-06	-0.123 4.789	9E-06
										•		kidnev trait				-0.063 (-					
							1.050E-			C16 to BMP1 to Follow	- Metabolite to	in FF4 (as	-0.022 (-0.045			0.141 to					
754	C16	BMP1	Metabolites	Proteins	diftype	-0.145	03	4.141E-02	eGFR FF4 Y	un eGFR	Protein	Y)	25.96 to -0.004)	1.0E-02	1.681E-02	0.013)	1.14E-01	1.259E-01	-0.07 1.334E-02	0.178 5.497	7E-06
												kidney trait									
		C14 1-					4 480F-			FN1 to C14 1-OH to	Protein to	in FE4 (as	0.016 (0.004			0.099 (0.033					
755	FN1	OH	Proteins	Metabolites	diftyne	-0.155	04	2 732E-02	eGER FE4 Y	Follow-up eGFR	Metabolite	Y)	13.84 to 0.034	2 0E-03	5 273E-03	to 0 161)	2 00E-03	3 412E-03	0 11 1 156E-03	-0 123 4 789	9E-06
155		0.11	Tiotenis	metabornes	untype	0.155	01	2.7528.02		ronow up corre	metabolite	kidney troit	15.01 (5 0.05 1)	2.02 05	5.2752 05	0.126 (2.002 05	5.1122 05	0.11 111502 05	0.125 1.705	200
										C14.1 OF to EN1 to	Metabolite to	in EE4 (ac	0.014 (0.03			-0.120 (-					
755									CED EE4 V	Eellow up aCEP	Dectain	W)	10.12 to 0.002)	2 OF 02	5 272E 02	0.203 10 -	2 00E 02	2 412E 02			
/55									egrk ff4 1	Follow-up eGFK	Protein	1)	10.13 to -0.003)	2.0E-05	5.273E-03	0.049)	2.00E-05	3.412E-03			
							2 00 15			G10 - D014		kidney trait	0.000 (0.001			0.038 (-					
750	C12	DOM	Marchallara	Destains	1.0	0.104	3.094E-	4 662E 02	CVD FE4 V	C12 to B2M to incident	Desta in	in FF4 (as	18 20 + 0.010)	0.05.02	2 4005 02	0.002 10	C 40E 02	1.047E.01	0.227 5 401E 02	0.5(1.0.22)	20.04
/50	CI2	B2M	Metabolites	Proteins	diftype	0.184	05	4.663E-03	CKD FF4 Y	CKD	Protein	Y)	18.29 to 0.019)	8.0E-03	2.400E-02	0.091)	6.40E-02	1.04/E-01	0.327 5.401E-03	0.561 9.322	2E-04
												kidney trait				0.029 (-					
							3.089E-			C14 I to B2M to	Metabolite to	in FF4 (as	0.01 (0.002 to			0.011 to					
757	C14 1	B2M	Metabolites	Proteins	diftype	0.184	05	4.663E-03	CKD FF4 Y	incident CKD	Protein	Y)	25.92 0.021)	1.2E-02	2.700E-02	0.083)	1.58E-01	2.031E-01	0.299 9.877E-03	0.561 9.322	2E-04
												kidney trait				0.029 (-					
						-	5.578E-			C18 1 to B2M to	Metabolite to	in FF4 (as	0.011 (0.002			0.015 to					
758	C18 1	B2M	Metabolites	Proteins	diftype	0.152	04	3.107E-02	CKD FF4 Y	incident CKD	Protein	Y)	27.2 to 0.023)	1.0E-02	2.571E-02	0.082)	1.78E-01	2.047E-01	0.325 6.305E-03	0.561 9.322	2E-04
												kidney trait				-0.077 (-					
	C6(C4						3.112E-			C6(C4 1-DC) to B2M	Metabolite to	in FF4 (as	-0.053 (-0.094			0.14 to -					
759	1-DC)	B2M	Metabolites	Proteins	diftype	0.159	04	2.044E-02	eGFR FF4 Y	to Follow-up eGFR	Protein	Y)	40.89 to -0.018)	0.0E+00	0.000E+00	0.015)	1.00E-02	1.381E-02	-0.12 2.184E-05	-0.384 1.594	4E-30
												kidney trait				-0.039 (-					
						:	5.578E-			C18 1 to B2M to	Metabolite to	in FF4 (as	-0.059 (-0.101			0.105 to					
760	C18 1	B2M	Metabolites	Proteins	diftype	0.152	04	3.107E-02	eGFR FF4 Y	Follow-up eGFR	Protein	Y)	59.84 to -0.019)	0.0E+00	0.000E+00	0.027)	2.62E-01	2.690E-01	-0.081 3.345E-03	-0.384 1.594	4E-30
												kidney trait				-0.095 (-					
							3.094E-			C12 to B2M to Follow-	Metabolite to	in FF4 (as	-0.061 (-0.1 to			0.16 to -					
761	C12	B2M	Metabolites	Proteins	diftype	0.184	05	4.663E-03	eGFR FF4 Y	up eGFR	Protein	Y)	39.14 -0.025)	0.0E+00	0.000E+00	0.028)	8.00E-03	1.146E-02	-0.143 2.223E-07	-0.384 1.594	4E-30
												kidney trait				-0.064 (-					
	C14 1-						3.408E-			C14 1-OH to B2M to	Metabolite to	in FF4 (as	-0.077 (-0.115			0.133 to					
762	OH	B2M	Metabolites	Proteins	diftype	0.204	06	1.091E-03	eGFR FF4 Y	Follow-up eGFR	Protein	Y)	54.55 to -0.043)	0.0E+00	0.000E+00	0.004)	6.40E-02	7.733E-02	-0.123 4.789E-06	-0.384 1.594	4E-30
												kidney trait				-0.093 (-					
							5.546E-			C10 2 to B2M to	Metabolite to	in FF4 (as	-0.058 (-0.092			0.153 to -					
763	C10 2	B2M	Metabolites	Proteins	diftype	0.153	04	3.107E-02	eGFR FF4 Y	Follow-up eGFR	Protein	Y)	38.31 to -0.023)	0.0E+00	0.000E+00	0.029)	4.00E-03	6.187E-03	-0.117 6.984E-06	-0.384 1.594	4E-30
										•		kidnev trait				-0.065 (-					
							3.089E-			C14 1 to B2M to	Metabolite to	in FF4 (as	-0.063 (-0.108			0.131 to					
764	C14 1	B2M	Metabolites	Proteins	diftype	0.184	05	4.663E-03	eGFR FF4 Y	Follow-up eGFR	Protein	Y)	49.43 to -0.027)	0.0E+00	0.000E+00	0.006)	6.60E-02	7.893E-02	-0.102 1.816E-04	-0.384 1.594	4E-30
												kidney trait				-0.075 (-	0.002 02				
							1 873E-			C14.2 to B2M to	Metabolite to	in FE4 (as	-0.067 (-0.106			0.143 to -					
765	C14.2	B2M	Metabolites	Proteins	diftype	0.188	05	3 428E-03	eGFR FF4 Y	Follow-up eGFR	Protein	Y)	47 41 to -0.033)	0.0E+00	0.000E+00	0.007)	2 60E-02	3 278E-02	-0 112 3 972E-05	-0 384 1 59/	4F-30
,05	014 2	192111	memorines	1.0001115	antype	0.100	05	5.42012-05		1 010W-up cor ic		- / kidney trait	+7.41 (0-0.033)	5.01100	510001100	-0.098 (-	2.001-02	5.27012-02	-0.112 5.7720-05	-0.504 1.594	
							2 113F			C10 to B2M to Follow	Metabolite to	in FE4 (as	-0.059 (0.097			0.164 to .					
744	C10	POM	Matabolitas	Proteine	diffunc	0.187	05	3 600E 02	CEP FEA V	un aCED	Protain	V)	-0.059 (-0.097	2 OF 03	5 273E 02	0.022)	2 00E 02	3 412E 02	0 147 8 312E 09	0 384 1 50/	4E 20
/00	010	DZIVI	wietabonites	1 TOLEHIS	antype	0.18/	05	5.009E-03	COLK LL4 1	upeork	1 TOTEIII	1) Iridaari taalit	57.4 10 -0.021)	2.0E=03	5.275E-03	0.055)	2.00E-03	5.412E-03	-0.14/ 0.312E-08	-0.364 1.394	+L-30
							4.001E			C9 to D2M to Eall	Matabalita ta	in EE4 (as	0.055 / 0.005			-0.09 (-					
7/7	Co	DOM	Matabalit	Destains	differen-	0.191	4.091E-	5 000E 00	CED EE4 V	Co to B2IM to PolloW-	Distance to	m FF4 (as	-0.035 (-0.095	6 0E 02	1 1605 02	0.155 10 -	1.00E.02	1 291E 02	0 120 2 662E 07	0.204 1.504	4E 20
/6/	10	B2IVI	wietadonties	FIOTEINS	antype	0.181	7.2005	5.823E-03	COPK PP4 1	CIR 1 to CNIDD1	FIOTEIN Match allies t	1)	58.15 t0 -0.017)	0.0E-05	1.100E-02	0.02)	1.00E-02	1.581E-02	-0.139 2.003E-07	-0.384 1.594	4E-30
7.00	C10.1	CNIDD	Marchatt	Destation	1:0	0.170	7.380E-	2 47/1 02	CED FEA V	C18 I to CNDP1 to	Nietabolite to	in FF4 (as	-0.02 (-0.038	C OF 02	1.1000.000	-0.0/8 (-	5 005 02	C 170E 02	0.001 2.2455.02	0.141 2.24	00.05
/69	C18 1	CNDPI	wietabolites	Proteins	diftype	-0.149	04	3.4/6E-02	eork FF4 Y	ronow-up eGFR	Protein	1)	19.93 to -0.004)	0.0E-03	1.160E-02	0.151 to 0)	5.00E-02	0.1/0E-02	-0.081 3.345E-03	0.141 2.240	0E-05

							-	-							-	-		-	-		-		
							- corp	1		T ALCON		kidney trait		0.011 (0.001	ſ	ſ	0.065 (0.001						
771	T	MACDI	Markellar	Destains	1:0	0.153	5.525E-	2 1075 02	CED FEA V	Tyr to MASP1 to	Metabolite to	in FF4 (as	13.86	0.011 (0.001	1.05.02	1 (91E 02	0.065 (0.001	5 005 02	C 170E 02	0.072	5 9395 02	0.001	5 101E 02
//1	Tyr	MASPI	Metabolites	Proteins	diffype		04	3.10/E-02	eGFR FF4 Y	Follow-up eGFR	Protein	Y)		to 0.026)	1.0E-02	1.681E-02	to 0.127)	5.00E-02	6.170E-02	0.073	5.828E-03	0.091	5.181E-03
	C14.1						1 222E			C14.1 OH to KDB to	Matabalita to	in EE4 (as		0.021 (0.027			-0.119 (-						
777	04	KDP	Matabolitas	Proteins	diffune	0 160	1.525E- 04	1 1825 02	CEP FEA V	Eollow up aGEP	Protain	III FF4 (as	14.08	-0.021 (-0.037	2 OF 03	5 272E 03	0.195 10 -	4 00E 03	6 187E 03	0.123	4 789E 06	0.163	2 182E 06
112	2.01	KDK	Metabolities	FIOLEIIIS	untype	-0.109	V4	1.162E-02	COFK FF4 I	ronow-up eork	FIOIEIII	1) kidney trait	14.98	10-0.007)	2.0E-05	5.275E-05	0.048)	4.00E-03	0.18/E-05	-0.123	4.7896-00	0.105	2.182E-00
							7 4446			C16 to KDP to Follow	Matabolita to	in EE4 (ac		0.021 (0.041			0.141.to						
773	C16	KDR	Metabolites	Proteins	diffyne	-0 149	04	3 476E-02	eGER FE4 V	un eGFR	Protein	V)	25.22	to -0.005)	1.0E-02	1.681E-02	0.014)	1.06E-01	1 194E-01	-0.07	1 334E-02	0.163	2 182E-06
115	, 010	RDR	Metabolites	Trotenis	untype	-0.147	7	5.47012-02	COLUTE I	up cor R	Tiotem	kidnev trait	25.22	. 10 -0.005)	1.01-02	1.0012-02	0.038 (-	1.002-01	1.1942-01	-0.07	1.5546-02	0.105	,
						-0.16	2.805E-			Tyr to TFF3 to Follow-	Metabolite to	in FF4 (as	49 7	0.038 (0.017			0.029 to						
776	5 Tvr	TFF3	Metabolites	Proteins	diftype	0.10	04	1.936E-02	eGFR FF4 Y	up eGFR	Protein	Y)		to 0.063)	0.0E+00	0.000E+00	0.096)	2.58E-01	2.672E-01	0.073	5.828E-03	-0.255	3.473E-13
												kidney trait					,					,	
		C14 1-					1.285E-			AMH to C14 1-OH to	Protein to	in FF4 (as		0.019 (0.005			0.094 (0.017						
777	AMH	OH	Proteins	Metabolites	diftype	-0.142	03	4.886E-02	eGFR FF4 Y	Follow-up eGFR	Metabolite	Y)	16.86	to 0.039)	4.0E-03	9.098E-03	to 0.166)	8.00E-03	1.146E-02	0.112	1.293E-03	-0.123	4.789E-06
	C14 1-						2.817E-			C14 1-OH to C1QBP to	Metabolite to	in FF4 (as		-0.017 (-0.037		·	-0.123 (-0.2		-		•		·
778	в он	C1QBP	Metabolites	Proteins	diftype	-0.16	04	1.936E-02	eGFR FF4 Y	Follow-up eGFR	Protein	Y)	12.39	to -0.004)	4.0E-03	9.098E-03	to -0.045)	2.00E-03	3.412E-03	-0.123	4.789E-06	0.14	3.746E-05
												kidney trait									,		
							6.018E-			C1QBP to C12 to	Protein to	in FF4 (as		0.014 (0.001			0.125 (0.059						
779	C1QBP	C12	Proteins	Metabolites	diftype	-0.152	04	3.212E-02	eGFR FF4 Y	Follow-up eGFR	Metabolite	Y)	10.16	i to 0.032)	2.4E-02	3.164E-02	to 0.192)	0.00E+00	0.000E+00	0.14	3.746E-05	-0.143	2.223E-07
							·	1				kidney trait			1		-0.063 (-		1		·	1	,
							9.642E-			C16 to C1QBP to	Metabolite to	in FF4 (as		-0.021 (-0.041			0.141 to						
780) C16	C1QBP	Metabolites	Proteins	diftype	-0.146	04	4.141E-02	eGFR FF4 Y	Follow-up eGFR	Protein	Y)	25.15	to -0.006)	4.0E-03	9.098E-03	0.014)	1.10E-01	1.227E-01	-0.07	1.334E-02	0.14	3.746E-05
							r i	ſ				kidney trait			ſ	ſ	-0.097 (-				r i i i i i i i i i i i i i i i i i i i		
							5.828E-			C10 2 to RELT to	Metabolite to	in FF4 (as		-0.054 (-0.084			0.162 to -						
781	C10 2	RELT	Metabolites	Proteins	diftype	0.177	05	7.693E-03	eGFR FF4 Y	Follow-up eGFR	Protein	Y)	35.95	to -0.025)	0.0E+00	0.000E+00	0.026)	2.00E-03	3.412E-03	-0.117	6.984E-06	-0.343	1.967E-24
								ſ				kidney trait			ſ .	ſ	-0.13 (-		1		ſ		
		TNFRS					6.887E-			C10 2 to TNFRSF19 to	Metabolite to	in FF4 (as		-0.021 (-0.043			0.194 to -						
782	2 C10 2	F19	Metabolites	Proteins	diftype	0.15	04	3.460E-02	eGFR FF4 Y	Follow-up eGFR	Protein	Y)	14.19	to -0.006)	6.0E-03	1.160E-02	0.057)	0.00E+00	0.000E+00	-0.117	6.984E-06	-0.185	2.628E-09
							1.0255			CO. INICEC. D.		kidney trait		0.000 / 0.000			-0.112 (-						
							1.025E-			C8 to UNC5C to Follow	Metabolite to	in FF4 (as		-0.033 (-0.061			0.184 to -						
783	5 C8	UNC5C	Metabolites	Proteins	diftype	0.145	03	4.141E-02	eGFR FF4 Y	up eGFR	Protein	Y)	22.84	to -0.012)	4.0E-03	9.098E-03	0.04)	2.00E-03	3.412E-03	-0.139	2.663E-07	-0.239	2.111E-11
							C 729E			CIO 2 ++ UNICEC ++	Marchaller	kidney trait		0.02 (0.052			-0.121 (-						
704	1 C10.2	UNICEC	Matabalitas	Destains	difference	0.15	0./28E-	2 447E 02	CED EE4 V	Eallow up aCER	Protein	in FF4 (as	20.12	-0.05 (-0.052	2 OF 02	5 272E 02	0.185 to -	0.005.00	0.000E.00	0.117	6 08/E 06	0.220	2 111E 11
/84	+ C10 2	UNCSC	wietadoffies	FIOteIns	unype	0.15	04	5.447E-02	COLK LLA	ronow-up eGFK	FIOIEIII	1) bidnov troit	20.12	. 10 -0.01)	2.0E-03	5.273E-05	0.051)	0.00E+00	0.000E+00	-0.117	0.964£-00	-0.239	2.111E-11
		SDOCK				0.177	6 005E			Turn to SDOCK2 to	Matabalita to	in EE4 (or	52.45	0.04 (0.015 to			0.026 (
785	Tur	2	Matabolitas	Proteins	diffune	0.177	0.005E-	7 603E 03	CEP FEA V	Follow up aGEP	Protein	m rr4 (as	52.45	0.04 (0.015 to	2 OF 03	5 272E 03	0.050 (-	2 02E 01	2 071E 01	0.073	5 828E 02	0.23	1 421E 12
765	, 1 yi	4	wiciabonites	TIOCHIS	untype		05	1.073E-03	COLK 1/F4 I	ronow-up eork	riotem	1)		0.007)	2.01-03	5.273E-05	0.027 10 0.1)	2.741-01	2.7/1E-01	0.075	5.6266-05	0.23	1.4211512

Supplementary Table 18. Best mediation directions of causal mediation analysis of omics candidates & known biomarkers & three times points of kidney traits.

Within each identified best mediation direction, spearman correlation coefficients, P-values and FDR of each pair (FDR < 0.05) of residuals of omics candidates and three known biomarkers (CST3, creatinine, urine albumin), and regression coefficients and P-values of omics molecules with kidney traits in hyperglycemic individuals of KORA F4 are shown, respectively. Residuals of omics molecules were calculated with linear regression analysis for full model (incl. age, sex, BMI, systolic blood pressure, smoking status, triglyceride, total cholesterol, HDL cholesterol, fasting glucose, use of lipid lowering drugs, antihypertensive and anti-diabetic medication).

The mediation proportion (%), average mediating effect with 95% *CI*, *P*-values and FDR, average direct effect with 95% *CI*, *P*-values and FDR of the identified best direction(s) of mediating triangles in a nonparametric causal mediation analysis are shown, respectively. Each mediation analysis was adjusted for the full model. FDR of mediating effect and direct effect were calculated per kidney trait.

Abbreviations: CKD, chronic kidney disease; eGFR, estimated glomerular filtration rate; UACR, urinary albumin-to-creatinine ratio; CKDcrcc, eGFR-based CKD that was defined as $eGFR < 60 \text{ ml/min}/1.73 \text{ m}^2$.

VINT OUT COLSPAN VINT OUT COLSPAN <th< th=""><th></th><th></th><th></th><th>р- р-</th></th<>				р- р-
ibit ibit<		kidney.		Estimate.o value.omic Estimate.o value.omic
intrine bel ome: ome: op: 1	omics1.J	omics.asso. trait.po Mediation. time.point.k	Proportion. Avg.media Avg.media Avg.media.F Avg.direct Avg.direct. Avg.direct	t. mics1.kidn s1.kidney. mics2.kidn s2.kidney.
Line Line <thlin< th=""> Line Line L</thlin<>	e abel	pe omics2.type type spearcor p-value FDR kidney.trait sition direction dney.trait	media(%) (95% CI) .p-value DR (95% CI) p-value FDR	ey.trait trait ey.trait trait
Line Line <thlin< th=""> Line <thline< th=""> Li</thline<></thlin<>		Urine		
bit bit< bit bit bit <td></td> <td>albumin to</td> <td>0 048 (-</td> <td></td>		albumin to	0 048 (-	
1 albem C10 UACRison Meabolies offinity 99072 749E-03 558E-02 CR0 in pressure 012 0 800 940600 940600 0111 480.0 161410 1558 4 2961-33 0 3 C10 C73 Meabolies CFR16 Minipressure CR17 Minipressure 00004 <t< td=""><td>Urine</td><td>CKD F4 to kidney trait</td><td>(0 012 to 0 015 to</td><td></td></t<>	Urine	CKD F4 to kidney trait	(0 012 to 0 015 to	
3 C10 CST3 Metabolites GFRBiom difye 0.218 3764E-16 6 377E-15 GFR F4 M CST3 Metabolites GFRBiom difye 0.218 3764E-16 6 377E-15 GFR F4 M CST3 Metabolites GFR F4 <td>1 albumin</td> <td>m Metabolites diffype 0.072.7.459E-03.1.568E-02. CKD F4 M C10 in F4</td> <td>50 12 0 086) 4 0E-03 9 406E-03 0 111) 1 48E-01 1 641E-0</td> <td>1 1 585 4 296E-43 0 278 8 764E-04</td>	1 albumin	m Metabolites diffype 0.072.7.459E-03.1.568E-02. CKD F4 M C10 in F4	50 12 0 086) 4 0E-03 9 406E-03 0 111) 1 48E-01 1 641E-0	1 1 585 4 296E-43 0 278 8 764E-04
3 0			0 172	
3 C10 CST3 Meabalize cGFRbiom diffype 0.218 374E-16 6 377E-15 cGFR 4 M CT0 in F4 92.87 0.01 0.000E+00 0.037 2 66-01 3 43E-01 -0.174 5 83E-17 4 C10 CST3 Meabalize cGFRbiom diffype 0.218 3 74E-16 6 377E-15 CKD F4 Y CKD F4 0.023 0.000E+00 0.000E+00<		eGER E4 to kidney trait	(0.134 to 0.008 to	
Image: constraint of the second of	3 C10	tes eGERbiom diffune 0.218.3.764E-16.6.377E-15. eGER E4 M CST3 in E4	92 87 0 21) 0 0E+00 0 000E+00 0 037) 2 66E-01 3 463E-0	1 -0 174 1 585E-17 -0 78 0 000E+00
4 C10 CST3 Meabolites coFRbio diftype 0.218 3 r64-16 6 377E-15 CKD F4 CRD F4 in F4 91.48 0.033 0 0005-00	5 010			01/4150521/ 0700002100
4 C10 CST3 Meubolines eGFRbiom diftye 0 218 3 764E-16 6 677E-15 CKD F4 Y CKD F4 X CCD F4 X 0 0005-0 00005-0 00000-00 00005-0 00005-0 00005-0 00005-0 00005-0 00005-0 00005-0 00005-0 0005-0 00005-0 00005-0 0005-0 <t< td=""><td></td><td>CST3 to kidney trait</td><td>0 034 0 008 (- (0 024 to</td><td></td></t<>		CST3 to kidney trait	0 034 0 008 (- (0 024 to	
4 Cho Cs13 initialities CHCM in F4 CHCD F4 F	4 C10	to a CEDition difference 0.018 2.764E 16 6.277E 15 CVD E4 V CVD E4 i E4		1 0.278 8.764E.04 1.427 1.040E.20
4 5 6 7 6 6 6 7 6 7 6 7	4 C10	$\begin{array}{c} \text{correl} \text{corre} \text{correl} \text{correl} \text{correl} \text{correl} \text{correl} \text{correl} $	0.002 0.002 0.000E+00 0.0028) 4.70E-01 4.888E-0	0 278 8 704E-04 1 437 1 040E-29
4 1		CKD F4 to	0 203 0 054 (-	
4 CRD F4 X C10 in F4 7/9 13 (2 24) 0 000-00 0 008-00 0 188 4 04-01 4 184-01 - Creatini 8 Creatini 0 R Creatini 0 R 0 000-00		CS13 to kidney trait		
Creating	4	CKD F4 X C10 in F4	79 13 0 264) 0 0E+00 0 000E+00 0 188) 4 04E-01 4 184E-0	1
Creating Metabolites offRbiom diftye 0.14 0.0276 0.0005 /0		C10 to	0 025 0 015 (-	
8 C10 ne Metabolites ofFRbiom diftype 0 184 6 438E-12 6 617E-11 CKD F4 V 0 CKD F4 0 00E-00		Creatinine kidney trait	(0 016 to 0 005 to	
8 1	8 C10	eGFRbiom diftype 0 184 6 433E-12 6 617E-11 CKD F4 Y to CKD F4 in F4	62 88 0 034) 0 0E+00 0 000E+00 0 035) 1 46E-01 1 624E-0	0 278 8 764E-04 1 153 1 412E-24
No No<		CKD F4 to	0 148 0 108 (-	
8 1		Creatinine kidney trait	(0 096 to 0 018 to	
Image: Construint of the construction of th	8	CKD F4 X to C10 in F4	57 89 0 204) 0 0E+00 0 000E+00 0 235) 9 00E-02 1 071E-0	1
Image: Creating in the series in th		C10:2 to	0 027 0 011 (-	
18 C102 ne Metabolites oGFRbiom diftype 0 206 1 449E-14 1 89TE-13 CKD F4 (KD F4) (R4) 0 127 0 036 0 00E-00 0 002E-00 0 000E-00 0 000E-0		Creatinine kidney trait	(0 018 to 0 01 to	
18 18 <th< td=""><td>18 C10:2</td><td>tes eGFRbiom diftype 0 206 1 449E-14 1 897E-13 CKD F4 Y to CKD F4 in F4</td><td>71 72 0 036) 0 0E+00 0 000E+00 0 028) 3 26E-01 3 422E-0</td><td>i 0 276 2 971E-04 1 153 1 412E-24</td></th<>	18 C10:2	tes eGFRbiom diftype 0 206 1 449E-14 1 897E-13 CKD F4 Y to CKD F4 in F4	71 72 0 036) 0 0E+00 0 000E+00 0 028) 3 26E-01 3 422E-0	i 0 276 2 971E-04 1 153 1 412E-24
18		CKD F4 to	0 187 0 098 (-	
18 18 10 10 100 100 100 1000 000000000000000000000000000000000000		Creatinine kidney trait	(0 127 to 0 049 to	
20 C10:2 CST3 Metabolites eGFRbiom diftype 0.24 1 527E-19 4 398E-18 CKD F4 Y C10:2 to CKD F4 Metabolites 0.034 (0.024 to 0.0E+00 0.0E+00 0.000E+00 0.000E+00 0.002(- 0.017 to 0.0017 to 0.000E+00 8 64E-01 8 675E-01 0.276 2 971E-04 1 20 - - - - - - - 0.02(- 0.017 to 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.001(- 0.0017 to 0.000E+00 8 64E-01 8 675E-01 0.276 2 971E-04 1 20 - - - - - - - - 0.02(- 0.0017 to 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.0013(- 0.000E+00 - 0.013(- 0.000E+00 0.000E+00 0.000E+00 0.	18	CKD F4 X to C10:2 in F4	65 55 0 254) 0 0E+00 0 000E+00 0 237) 1 92E-01 2 082E-0	1
20 C102 CST3 Metabolites eGFRbiom diftype 0.24 1.527E-19 4.398E-18 CKD F4 Y CKD F4 m F4 94.8 0.040 0.0240 0.000E+00 0.000E+00 0.000E+00 0.017 8.64E-01 8.675E-01 0.027 8.64E-01 8.675E-01 0.027 8.975E-01 0.027 9.975E-01 0.037 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.0016 0.0016 0.016 0.016 0.016 0.016 0.016 0.016 0.016 0.016 0.016 0.016 0.016 0.016 0.016 0.016 0.016 0.016 <td></td> <td>C10:2 to</td> <td>0 034 0 002 (-</td> <td></td>		C10:2 to	0 034 0 002 (-	
20 C10:2 CST3 Metabolites eGFRbiom diftype 0 241 1 527E-19 4 398E-18 CKD F4 Y CKD F4 in F4 94 82 0 044 0 0E+00 0 000E+00 0 021 8 64E-01 8 67E-01 0 276 2 971E-04 2 20 20 20 20 20 20 20 20 20 20 20 20 20 0 000E+00 0 0013 (- 0 000E+00 0 0013 (- 0 000E+00 0 00		CST3 to kidney trait	(0 024 to 0 017 to	
x = 1 x = 1 <th< td=""><td>20 C10:2</td><td>tes eGFRbiom diffype 0.241 1.527E-19 4.398E-18 CKD F4 Y CKD F4 in F4</td><td>94 82 0 044) 0 0E+00 0 000E+00 0 021) 8 64E-01 8 675E-0</td><td>1 0 276 2 971E-04 1 437 1 040E-29</td></th<>	20 C10:2	tes eGFRbiom diffype 0.241 1.527E-19 4.398E-18 CKD F4 Y CKD F4 in F4	94 82 0 044) 0 0E+00 0 000E+00 0 021) 8 64E-01 8 675E-0	1 0 276 2 971E-04 1 437 1 040E-29
20 100 100 100 100 100 0088 to 000000000000000000000000000000000000		CKD F4 to	0.235 0.051 (-	
20 Image: Construction of the constructi		CST3 to kidney trait	(0.167 to 0.088 to	
20 20 20 20 20 20 20 20 20 20 20 20 20 2	20	CKD E4 X C10:2 in E4	82 2 0 304) 0 0E+00 0 000E+00 0 191) 5 46E 01 5 596E-0	1
23 C10:2 CST3 Metabolites eGFRbiom diftype 0.241 1 527E-19 4 398E-18 eGFR F4 M CST3 in F4 93 33 0.216 0.0E+00 0.008 to 0008 to<	20			·
23 C10:2 CST3 Metabolites eGRbiom diftype 0.24 1.527:-19 4.398:-18 eGRF 4 M CST3 in F4 0.1136 ib 0.0140 0.000:00 0.000:00 <td></td> <td>CEP E4 to kidney trait</td> <td>0 175 0 015 (°</td> <td></td>		CEP E4 to kidney trait	0 175 0 015 (°	
25 C10:2 CS15 Metabolites eGFRbiom diftype 0 241 152/E19 4 398E-18 eGFR F4 M CS15 In F4 9353 0 210 0 000E+00 0 000E+00 0 00530 2 30E-01 5 288E-01 0.18 1691E-20 24 Creatini creatini ne Metabolites eGFRbiom diftype 0 206 1 449E-14 1 897E-13 eGFR F4 M Creatini in F4 97 80 0 215) 0 00E+00 0 000E+00 0 0004 - 0 004 (- 0 004 (- 0 004 (- 0 004 (- 0 004 (- 0 002 (- 0 000E+00	22 (10.2	COPR P4 to Kidney unit		1 0 179 1 001E 20 0 79 0 000E 00
24 C10:2 ne Metabolites eGFR biom diftype 0 206 1 449E-14 1 897E-13 eGFR F4 M Creatinine in F4 978 0 174 0 0004 (-0) 0 0004 (-0) 0 002 to 0 02 to <	25 C10:2	$\begin{array}{c} \text{eork r4} & \text{w} \\ \text{cork r4} \\ \text{cork r4} \\ \text{w} \\ \text{w} \\ \text{cork r4} \\ \text{w} \\ \text{cork r4} \\ \text{w} \\ \text{cork r4} \\ \text{w} \\ \text{w} \\ \text{cork r4} \\ \text{w} \\ \text{w} \\ \text{cork r4} \\ \text{w} \\ \text{cork r4} \\ \text{w} \\ \text{cork r4} \\ \text{w} \\ \text{w} \\ \text{w} \\ \text{cork r4} \\ \text{w} \\ \text{w} \\ \text{w} $	95 55 0 210) 0 0E+00 0 000E+00 0 055) 2 50E-01 5 288E-0	-01/81091E-20 -0780000E+00
Creating Coreating Coreating <thcoreating< th=""> Coreating <thcoreating< th=""> <thcoreating< th=""> <thcor< td=""><td></td><td></td><td>0 1/4 0 004 (-</td><td></td></thcor<></thcoreating<></thcoreating<></thcoreating<>			0 1/4 0 004 (-	
24 C10:2 ne Metabolites cOFRbiom diffye 0 200 1 489/E-13 eGFR F4 M Creatinine 1 69/E -13 0 000/E+00 0 00/E+00	AL 610 A	eUFR F4 to kidney trait		
Creatinine0 2430 02 (-to eGFR F4kidney trait(0 136 to0 104 to	24 C10:2	tes eGFRbiom diffype 0.206 1.449E-14 1.89/E-13 eGFR F4 M Creatinine in F4	9/80215) 00E+00 0000E+00 003) //8E-01 8185E-0	-0 1/8 1 691E-20 -0 726 0 000E+00
to eGFR F4 kidney trait (0 136 to 0 104 to		Creatinine	0 243 0 02 (-	
		to eGFR F4 kidney trait	(0 136 to 0 104 to	
24 eGFR F4 M to C10:2 in F4 92 45 0 347) 0 0E+00 0 000E+00 0 147) 7 78E-01 8 185E-01	24	eGFR F4 M to C10:2 in F4	92 45 0 347) 0 0E+00 0 000E+00 0 147) 7 78E-01 8 185E-0	1
C12 to 0 037 0 007 (-		C12 to	0 037 0 007 (-	
CST3 to kidney trait (0 027 to 0 014 to		CST3 to kidney trait	(0 027 to 0 014 to	
37 C12 CST3 Metabolites eGFRbiom diftype 0 248 1 196E-20 4 304E-19 CKD F4 Y CKD F4 in F4 84 87 0 048) 0 0E+00 0 000E+00 0 028) 5 90E-01 6 034E-01 0 288 5 855E-04 1	37 C12	tes eGFRbiom diftype 0 248 1 196E-20 4 304E-19 CKD F4 Y CKD F4 in F4	84 87 0 048) 0 0E+00 0 000E+00 0 028) 5 90E-01 6 034E-0	0 288 5 855E-04 1 437 1 040E-29
CKD F4 to 0 222 0 043 (-		CKD F4 to	0 222 0 043 (-	
CST3 to kidney trait (0 164 to 0 084 to		CST3 to kidney trait	(0 164 to 0 084 to	
37 CKD F4 X C12 in F4 83 85 0 29) 0 0E+00 0 000E+00 0 172) 5 30E-01 5 437E-01	37	CKD F4 X C12 in F4	83 85 0 29) 0 0E+00 0 000E+00 0 172) 5 30E-01 5 437E-0	1
C12 to -0 165 (0 01 (-		C12 to	-0 165 (0 01 (-	
CST3 to kidney trait 0 201 to - 0 031 to		CST3 to kidney trait	0 201 to - 0 031 to	
42 C12 CST3 Metabolites eGFRbiom diftype 0 248 1 196E-20 4 304E-19 eGFR F4 y eGFR F4 in F4 94 01 0 13) 0 0E+00 0 000E+00 0 011) 3 24E-01 4 039E-01 -0.175 3 042E-17	42 C12	tes eGFRbiom diftype 0 248 1 196E-20 4 304E-19 eGFR F4 Y eGFR F4 in F4	94 01 0 13) 0 0E+00 0 000E+00 0 011) 3 24E-01 4 039E-0	1 -0 175 3 042E-17 -0 78 0 000E+00

Unit Unit Ansale Ange <											Urine										
Dire Dire <thdire< th=""> Dire Dire <thd< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>albumin to</td><td></td><td>0.052</td><td></td><td></td><td>0.043 (-</td><td></td><td></td><td></td><td></td><td></td></thd<></thdire<>											albumin to		0.052			0.043 (-					
I bissum Circ UCR10 Maskes diago 1 style 1 sty	T Inima										CKD E4 to	hidaar taait	0.016 to			0.043 (-					
3 Johnson 1 Dia Marka Dia Marka <thdia marka<="" th=""> <thdia marka<="" th=""> <t< td=""><td>Urine</td><td>010</td><td>LLL ODL :</td><td></td><td></td><td>0.073</td><td>7 4025 02</td><td>1.5.575.00</td><td>OVD D4</td><td></td><td>CKD F4 to</td><td>kidney trait</td><td>(0 016 to</td><td>1.05.00</td><td>0.40 (75.02</td><td>0 014 to</td><td>1.205.01</td><td>1 5005 01</td><td>1 505 4</td><td>20 CE 12</td><td>0.000 5.0555.04</td></t<></thdia></thdia>	Urine	010	LLL ODL :			0.073	7 4025 02	1.5.575.00	OVD D4		CKD F4 to	kidney trait	(0 016 to	1.05.00	0.40 (75.02	0 014 to	1.205.01	1 5005 01	1 505 4	20 CE 12	0.000 5.0555.04
C110 C110 Maxbells GFRiss diag 0.00 0.0000 0.000 0.000 <t< td=""><td>47 albumir</td><td></td><td>UACKDIOM</td><td>Metabolites</td><td>antype</td><td>0072</td><td>7 402E-03</td><td>1 50/E-02</td><td>CKD F4</td><td>M</td><td>C12</td><td>1n F4</td><td>54 /2 0 09)</td><td>4 0E-05</td><td>9 406E-03</td><td>0 101)</td><td>1 32E-01</td><td>1 500E-01</td><td>1 585 4</td><td>290E-43</td><td>0 288 5 855E-04</td></t<>	47 albumir		UACKDIOM	Metabolites	antype	0072	7 402E-03	1 50/E-02	CKD F4	M	C12	1n F4	54 /2 0 09)	4 0E-05	9 406E-03	0 101)	1 32E-01	1 500E-01	1 585 4	290E-43	0 288 5 855E-04
SC141 CST3 Masshalm CGT8m Marphy MB CSD Fi M CSD											C14:1 to		0.027			0 013 (-					
32 (12) CN3 Mashalte C480xm dippe 0 199 990x-11 1057 10 CM3 100 0000xm 0000x 0000x0											CST3 to	kidney trait	(0 018 to			0 008 to					
1 1 1 0	52 C14:1	CST3	Metabolites	eGFRbiom	diftype	0 191	9 890E-13	1 055E-11	CKD F4	Y	CKD F4	in F4	67 62 0 035)	0 0E+00	0 000E+00	0 036)	2 46E-01	2 619E-01	0 268 4	948E-04	1 437 1 040E-29
3 1											CKD F4 to		0 171			0 139 (-					
52 .											CST3 to	kidney trait	(0 114 to			0 016 to					
A A A A A A A A A B	52								CKD F4	Х	C14:1	in F4	55 09 0 236)	0 0E+00	0 000E+00	0 289)	7 60E-02	9 187E-02			
B B											C14:2 to		0 035			0 006 (-					
15 CH2 CN3 Meabeline offere 0											CST3 to	kidnev trait	(0.025 to			0.016 to					
3 1	95 C14:2	CST3	Metabolites	eGFRbiom	diftype	0 244	5 241E-20	1 677E-18	CKD F4	Y	CKD F4	in F4	84 4 0 045)	0.0E+00	0 000E+00	0.03)	6 26E-01	6 350E-01	0 299 2	943E-04	1 437 1 040E-29
Image: bit in the state in the sta										-	CKD E4 to		0.215			0.074 (-				,	
10 10 10 10 10 10 10 10 10000000 1000000											CST2 to	kidnov troit	(0.157 to			0.068 to					
30 10<	05								CVD E4	v	C14.2	in E4	74 47 0 281)	0.05.00	0.0000	0 214)	2 29E 01	2 5 45 1 01			
P CH2 CT3 Maabalase offer biase	93								CKD F4	Λ	C14:2	ШГ4	74 47 0 281)	0 0E+00	0 000E+00	0 214)	5 36E-01	5 545E-01			
9 C142 C873 Meababilis of RPA is in Figure 10 0 199 0 199 0 199 0 0000-00 0 101 2 000-00 0 3386-00 0 3062-09 1-16 0 78 0 0000-00 113 C16 albamin Meababilis Meababilis Meababilis Meababilis Meababilis Meababilis 0 1000-00 00000-00 0015 0 0000-00 0000-00 0000-00 0000-00 0000-00 0000-00 0000-00 0000-00 0000-00 0000-00 0000-00 0000-00 0000-00 00000-00 00000-00 0000-00											C14:2 to		-0 155 (-			-0 011 (-					
99 CH-2 CST Metabolins ofFRHsion diffye 0 2472 2478 4 95 0 0 000E-00 0 000E-00 0 0 0 0 </td <td></td> <td>CST3 to</td> <td>kidney trait</td> <td>0 19 to -</td> <td></td> <td></td> <td>0 031 to</td> <td></td> <td></td> <td></td> <td></td> <td></td>											CST3 to	kidney trait	0 19 to -			0 031 to					
113 Class Mashesis UACR8ine difty 0.13 8.456.07 6CB CAC CAC 0.0026 0.0006 0.0007 <	99 C14:2	CST3	Metabolites	eGFRbiom	diftype	0 244	5 241E-20	1 677E-18	eGFR F4	Y	eGFR F4	in F4	93 57 0 122)	0 0E+00	0 000E+00	0 01)	2 60E-01	3 396E-01	-0 166 2	2 691E-16	-0 78 0 000E+00
Ins Lrine albomin Meabolise albomin Meabolise (0) Meabolise (0)<											C16 to										
Image Vince Vince <th< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>Urine</td><td></td><td>0 026</td><td></td><td></td><td>0 015 (-</td><td></td><td></td><td></td><td></td><td></td></th<>											Urine		0 026			0 015 (-					
113 C16 Membain		Urine									albumin to	kidney trait	(0 016 to			0 007 to					
I I	113 C16	albumi	Metabolites	UACRbiom	diftype	0 133	8 435E-07	3 626E-06	CKD F4	Y	CKD F4	in F4	63 79 0 038)	0 0E+00	0 000E+00	0 04)	1 80E-01	1 960E-01	033	3 705E-04	1 585 4 296E-43
13 13 14 15<											CKD F4 to										
13 14 15 16 16 16<											Urine		0.147			0 139 (-					
113 113 113 1144 114 114 <th1< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>albumin to</td><td>kidnev trait</td><td>(0.074 to</td><td></td><td></td><td>0.011 to</td><td></td><td></td><td></td><td></td><td></td></th1<>											albumin to	kidnev trait	(0.074 to			0.011 to					
113 113 113 113 114 113 113 114 113 114 115 115 115 115 115 116 117 113 114 115 116 100 100 105 105 105 105 105 105 105 105 <td>112</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>CKD E4</td> <td>v</td> <td>C16</td> <td>in E4</td> <td>51 28 0 228)</td> <td>0.05:00</td> <td>0.000E+00</td> <td>0 302)</td> <td>7 205 02</td> <td>9 779E 02</td> <td></td> <td></td> <td></td>	112								CKD E4	v	C16	in E4	51 28 0 228)	0.05:00	0.000E+00	0 302)	7 205 02	9 779E 02			
Unine Unine <th< td=""><td>115</td><td>_</td><td></td><td></td><td></td><td></td><td></td><td></td><td>CKD F4</td><td>Λ</td><td>C10</td><td>III F4</td><td>51 58 0 228)</td><td>0 0E+00</td><td>0 000E+00</td><td>0 302)</td><td>7 20E-02</td><td>8 //8E-02</td><td></td><td></td><td></td></th<>	115	_							CKD F4	Λ	C10	III F4	51 58 0 228)	0 0E+00	0 000E+00	0 302)	7 20E-02	8 //8E-02			
Urine 118 Urine allownia Membolites Urine Urine Urine 118 Urine allownia Urine biol (Minu) Urine (Minu) Urine Urine (C18:1 to					0.000 /					
Urine Urine <th< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>Urine</td><td></td><td>0 026</td><td></td><td></td><td>0 008 (-</td><td></td><td></td><td></td><td></td><td></td></th<>											Urine		0 026			0 008 (-					
118 C18: abumin Metabolites UACRbiom diftype 0127 2 547.60 1019-05 CKD F4 Y CKD F4 in F4 75 63 0038) 006+00 0000-00 013 4 444E-01 0 265 1 336-03 1 585 4 296E43 118		Urine									albumin to	kidney trait	(0 017 to			0 011 to					
118 1	118 C18:1	albumi	n Metabolites	UACRbiom	diftype	0 127	2 547E-06	1 019E-05	CKD F4	Y	CKD F4	in F4	75 63 0 038)	0 0E+00	0 000E+00	0 03)	4 30E-01	4 444E-01	0 265 1	336E-03	1 585 4 296E-43
118 <td></td> <td>CKD F4 to</td> <td></td>											CKD F4 to										
118											Urine		0 166			0 077 (-					
118 .											albumin to	kidney trait	(0 099 to			0 071 to					
131 C18:1 CST3 Metabolites eGFRbiom diftype 014 1998E-07 9280E-07 CKD F4 Y CKD F4 mF4 527 0020 0006-00 00440 126E-01 1440E-01 0265 1336E-03 1437 1407E-29 131 C18:1 rF4 527 0021 0006-00 00440 126E-01 1440E-01 0265 1336E-03 1437 1407E-29 131 C18:1 rF4 43.09 0105 0042 00440 126E-01 1440E-01 0265 1336E-03 1437 1407E-29 133 ababains c2 UACRbin Metabolites diftype 0077 4233E-03 754E-03 CKD F4 M C2 in F4 7578 0089 20E-03 252E-03 0098 140E-01 1568E-01 158 296E-43 0334 5475E-05 138 abamin c2 UACRbin Metabolites diftype 0077 233E-03 CKD F4 F4 7578 00895 20E-03 252E-03 00989 140E-01 1568E-01 1	118								CKD F4	х	C18:1	in F4	68 37 0 248)	0 0E+00	0 000E+00	0 229)	3 26E-01	3 422E-01			
131 C18:1 CS73 Metabolites eGFRbiom diftype 0 1 9 280E-07 CKD F4 Y CS73 bit CCD F4 0 001 bit DCD F0 0 000E+00 0 000E+00<											C18:1 to		0.02			0.018 (-					
131 C18:1 CST3 Metabolites eGFRbiom diftype 0 14 1 98E-07 9280E-07 CKD F4 Y CKD F4 in F4 52.7 0 029 0 00E+00 0 00E+00 </td <td></td> <td>CST3 to</td> <td>kidnev trait</td> <td>(0.011 to</td> <td></td> <td></td> <td>0.005 to</td> <td></td> <td></td> <td></td> <td></td> <td></td>											CST3 to	kidnev trait	(0.011 to			0.005 to					
131 131 14 131 14 131 14 131 14	131 C18-1	CST3	Metabolites	eGEPhiom	diffune	0.14	1 008E-07	9 280E-07	CKD F4	v	CKD F4	in E4	52 7 0 029)	0.0E+00	0.000E+00	0.044)	1.26E-01	1.440E-01	0.265.1	336E-03	1 437 1 040E-20
131 14 15 15 16	151 €10.1		memorines	SOI ROIOIII	antype	0.14	. ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	2001-07	CILD 14		CKD F4 to		0.105	0.01100	0.0001+00	0.135 (1 201-01	1 ++01-01	0 200 1	. 5501-05	1 457 1 0401-27
131 131 <td></td> <td>CST2 45</td> <td>kidnor: tesit</td> <td>0 105</td> <td></td> <td></td> <td>0 012 -</td> <td></td> <td></td> <td></td> <td></td> <td></td>											CST2 45	kidnor: tesit	0 105			0 012 -					
131 131 131 140 141 1	121								OVD D4	v	CS1510	kidney trait	(0.048 to	0.05.00	0.0005 .00	0.012 to	C 000 00	0.2115.02			
Urine 138 urine albumin Urine C2 UACRbiom Metabolites diftype 0 077 233E-03 0754E-03 CKD F4 M C2 0 077 0 019 to 0 019 to 0 005 0 085 <t< td=""><td>131</td><td></td><td></td><td></td><td></td><td></td><td>-</td><td></td><td>CKD F4</td><td>х</td><td>C18:1</td><td>1n F4</td><td>43 69 0 169)</td><td>0 0E+00</td><td>0 000E+00</td><td>0 281)</td><td>6 80E-02</td><td>8 311E-02</td><td></td><td></td><td></td></t<>	131						-		CKD F4	х	C18:1	1n F4	43 69 0 169)	0 0E+00	0 000E+00	0 281)	6 80E-02	8 311E-02			
Urine Urine Metabolites diftype 0.077 4.233E-03 9.754E-03 CKD F4 M C2 0.057 0.042 (- 0.019 to) 0.042 (- 0.013 to) 0.014 (- 0.013 to) 0.000 (- 0.000 to)											Urine								Í		ĺ
Urine 138 Urine albumin C2 UACRbiom Metabolites diftype 0 077 4 233E-03 CKD F4 M CCD F4 to C2 kidney trait in F4 C019 to 00980 2 0E-03 5 252E-03 0013 to 0980 1 40E-01 1 568E-01											albumin to		0 057			0 042 (-					
138 albumin C2 UACRbiom Metabolites diftype 0 077 2 33E-03 9 754E-03 CKD F4 M C2 in F4 57 81 0 098) 2 0E-03 5 252E-03 0 098) 1 40E-01 1 568E-01 1 5585 4 296E-43 0 0334 5 475E-05 140 C2 CST3 Metabolites eGRBiom diftype 0 205 2 225E-14 2 670E-13 eGFR F4 Y eGFR F4 in F4 9681 0 100 0 000E+00 0 000E+00 <td>Urine</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>CKD F4 to</td> <td>kidney trait</td> <td>(0 019 to</td> <td></td> <td></td> <td>0 013 to</td> <td></td> <td></td> <td></td> <td></td> <td></td>	Urine										CKD F4 to	kidney trait	(0 019 to			0 013 to					
140 C2 CST3 Metabolites eGFRbiom diftype 0 205 2 225E-14 2 670E-13 eGFR F4 Y C2 to CST3 kidney trait to eGFR F4 96 81 0 11/0 0 0000E+00	138 albumir	C2	UACRbiom	Metabolites	diftype	0 077	4 233E-03	9 754E-03	CKD F4	М	C2	in F4	57 81 0 098)	2 0E-03	5 252E-03	0 098)	1 40E-01	1 568E-01	1 585 4	296E-43	0 334 5 475E-05
140 C2 CST3 Metabolites eGFRbiom diftype 0 205 2 225E-14 2 670E-13 eGFR F4 Y C2 to CST3 kidney trait 0 186 to - 0 000E+00 0 000E+00 0 025 to 0 000E+00 0 000E+00 0 025 to 0 0100 6 28E-01 6 930E-01 -0.149 3 483E-13 -0.78 0 000E+00 141 CST3 C2 eGFRbiom Metabolites diftype 0 205 2 225E-14 2 670E-13 CKD F4 X CST3 to C2 inF4 0 192 0 192 0 000E+00 0 000E+00 0 000E+00 0 09(- 0 09(- 0 09(- 0 000E+00 0 000E+00 0 09(- 0 09(- 0 000E+00								r					-0 144 (-			-0 005 (-					
140 C2 CST3 Metabolites eGFRbiom diftype 0.205 2.25E-14 2.670E-13 eGFR F4 Y to eGFR F4 in F4 96.81 0.11 0.00E+00 0.000E+00 0.010 6.28E-01 6.930E-01 -0.149 3.483E-13 -0.78 0.000E+00 141 CST3 C2 eGFRbiom Metabolites diftype 0.205 2.25E-14 2.670E-13 CKD F4 X CST3 to C2 in F4 0.110 0.00E+00 0.000E+00 0.010 6.28E-01 6.930E-01 -0.149 3.483E-13 -0.78 0.000E+00 141 CST3 C2 eGFRbiom Metabolites diftype 0.205 2.25E-14 2.670E-13 CKD F4 X CST3 to C2 in F4 68.08 0.259 0.0E+00 0.000E+00 0.026 1.96E-01 2.123E-01 1.440E-29 0.334 5.475E-05 141 C C4 C4 C4 C4 C4 C4 C4 0.022 0.0400 0.000E+00 0.035 1.96E-01 2.123E-01 1.440E-29 0.334 5.475E-05 0.022 <td></td> <td>C2 to CST3</td> <td>kidney trait</td> <td>0 186 to -</td> <td></td> <td></td> <td>0 025 to</td> <td></td> <td></td> <td></td> <td></td> <td></td>											C2 to CST3	kidney trait	0 186 to -			0 025 to					
141 CST3 C2 eGFRbiom Metabolites diftype 0 205 2 225E-14 2 670E-13 CKD F4 K CKD F4 to CST3 to C2 kidney trait in F4 0 192 (0 136 to 0 00E+00 0 09 (- 0 045 to 0 000E+00 0 09 (- 0 045 to 0 000E+00 1 96E-01 2 123E-01 1 437 1 040E-29 0 334 5 475E-05 141	140 C2	CST3	Metabolites	eGFRbiom	diftype	0 205	2 225E-14	2 670E-13	eGFR F4	Y	to eGFR F4	in F4	96 81 0 11)	0 0E+00	0 000E+00	0 016)	6 28E-01	6 930E-01	-0 149 3	3 483E-13	-0 78 0 000E+00
141 CST3 C2 eGFRbiom Metabolites diftype 0.205 2 225E-14 2 670E-13 CKD F4 X CKD F4 to CST3 to C2 Kidney trait (0.136 to 0.035 to 0.0259) 0.0E+00 0.000E+00 0.025(to 0.0250) 1 96E-01 2 123E-01 1 437 1 040E-29 0.033 5 475E-05 141 - - - - - - - - 0.032 0.000E+00 0.000E+00 0.030 1 96E-01 2 123E-01 1 437 1 040E-29 0.334 5 475E-05 141 - - - - - - - - 0.032 0.000E+00 0.000E+00 0.035 1 96E-01 2 123E-01 1 437 1 040E-29 0.334 5 475E-05 141 - - - - - - - 0.032 0.015 (- 0.015 (- 0.007 to 0.007 to 0.007 to 0.007 to 0.007 to 0.000 to <td< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td>-</td><td></td><td></td><td></td><td></td><td></td><td>0.192</td><td></td><td></td><td>0.09.(-</td><td></td><td></td><td></td><td></td><td></td></td<>							-						0.192			0.09.(-					
141 CST3 C2 eGRbiom Metabolites diftype 0 205 2 225E-14 2 670E-13 CKD F4 X CST3 to C2 in F4 66 08 0 259 0 00E+00 0 000E+00 0 2005 1 96E-01 1 437 1 040E-29 0 334 5 475E-05 141 <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>CKD F4 to</td><td>kidnev trait</td><td>(0.136 to</td><td></td><td></td><td>0.045 to</td><td></td><td></td><td></td><td></td><td></td></t<>											CKD F4 to	kidnev trait	(0.136 to			0.045 to					
141 CS15 C2 CCI P4 X CS15 C2 0505 0 020 1 96E-01 2 125E-01 1 437 1 040E-29 0 032 141	141 CST2	c7	CEPhior	Matabalitaa	diffund	0.205	2 225E 14	2 670E 12	CVD F4	v	CST2 to C2	in E4	68 08 0 250	0.05.00	0.000E.00	0 226)	1.06E.01	2 122E 01	1 427 1	040E 20	0 224 5 4755 05
141 141 <td>141 (515</td> <td>C2</td> <td>COFROIOM</td> <td>wietaborries</td> <td>untype</td> <td>0 205</td> <td>2 223E-14</td> <td>2 0/0E-13</td> <td>CKD F4</td> <td>Λ</td> <td>C31510 C2</td> <td>- шГ4</td> <td>00 00 0 239)</td> <td>0 0E+00</td> <td>0000E+00</td> <td>0.220)</td> <td>1 90E-01</td> <td>2 123E-01</td> <td>1 45 / 1</td> <td>040E-29</td> <td>0 334 3 473E-03</td>	141 (515	C2	COFROIOM	wietaborries	untype	0 205	2 223E-14	2 0/0E-13	CKD F4	Λ	C31510 C2	- ш Г 4	00 00 0 239)	0 0E+00	0000E+00	0.220)	1 90E-01	2 123E-01	1 45 / 1	040E-29	0 334 3 473E-03
141 CZ to CST3 kidney trait (0 022 to 0 007 to 141 CKD F4 Y to CKD F4 in F4 68 06 0 043) 0 0E+00 0 038) 1 82E-01 1 978E-01													0.032			0 015 (-					
141 CKD F4 Y to CKD F4 in F4 68 06 0 043) 0 0E+00 0 000E+00 0 038) 1 82E-01 1 978E-01											C2 to CST3	kidney trait	(0 022 to			0 007 to					
	141	1							CKD F4	Y	to CKD F4	in F4	68 06 0 043)	0 0E+00	0 000E+00	0 038)	1 82E-01	1 978E-01			

									C5 to eGER		0.156			0.004.(-					
	Creatini								E4 to	kidney trait	0 150	0		0 004 (-					
154 C5	creatin	Matabalitas	CEPhiom	diffume	0.182 1.204E 11	1 110E 10	CEP E4	м	Croatinina	in E4	07 77 0 2)		0.000E+00	0.02210	8 10E 01	8 420E 01	0.16	4 602E 14	0 726 0 000E 00
154 C5	ne	wietabornes	CONTROLOUT	untype	0 182 1 204E-11	1 1196-10	COLK 1.4	IVI	Creatinine	111 1.4	97 77 0 2)	0.05+00	00001+00	0.015 (8 101-01	8 42912-01	-010	4 003E-14	-07200000E+00
									Creatinine	1.1.1	0 181			0.005 (-					
154							GED E4		to eGFK F4	kidney trait	(0.093)	0	0.0005.00	0 096 to	0.105.01	0.4205.01			
154						_	eGFR F4	M	to C5	1n F4	92 2 0 282)	0 0E+00	0 000E+00	0 129)	8 10E-01	8 429E-01		-	
									C5 to		0 024			0 008 (-					
	Creatini								Creatinine	kidney trait	(0 016 1	0		0 013 to					
155 C5	ne	Metabolites	eGFRbiom	diftype	0 182 1 204E-11	1 119E-10	CKD F4	Y	to CKD F4	in F4	74 28 0 034)	0 0E+00	0 000E+00	0 031)	4 60E-01	4 734E-01	0 258	2 331E-03	1 153 1 412E-24
									CKD F4 to		0 139	Í	ſ	0 075 (-	Í	- í			
									Creatinine	kidney trait	(0 088 1	o		0 06 to					
155							CKD F4	Х	to C5	in F4	64 95 0 202)	0 0E+00	0 000E+00	0 214)	2 60E-01	2 762E-01			
											0 157	r i	r i	0 003 (-	- T				
									C5 to eGFR	kidney trait	(0 117)	o		0 02 to					
156 C5	CST3	Metabolites	eGFRbiom	diftype	0 182 1 247E-11	1 122E-10	eGFR F4	М	F4 to CST3	in F4	97 96 0 203)	0 0E+00	0 000E+00	0 025)	7 78E-01	8 185E-01	-0 16	4 603E-14	-0 78 0 000E+00
									CST3 to		0 192		·	0 02 (-					
									eGFR F4 to	kidney trait	(0 068 1	o		0 121 to					
156							eGFR F4	М	C5	in F4	90 46 0 312)	0 0E+00	0 000E+00	0 155)	7 78E-01	8 185E-01			
						•					0.029	-	•	0.004 (-	•			•	
									C5 to CST3	kidnev trait	(0.019)	0		0.019 to					
157 C5	CST3	Metabolites	eGFRhiom	diftype	0 182 1 247E-11	1 122E-10	CKD F4	Y	to CKD F4	in F4	89 08 0 04)	0.0E+00	0.000E+00	0.025)	7 32E-01	7 380E-01	0 258	2 331E-03	1 437 1 040E-29
107 00	0.51.5	incubornes	COLICION	untype	0.102.1.2.112.11	11222 10	0.001	-	0.01011		0.165			0.049 (-	/ 522 01	1 5002 01	0 200	2 3312 03	1 107 1 0 102 25
									CKD E4 to	kidney trait	(0.106)	0		0.085 to					
157							CKD F4	v	CST2 to C5	in E4	77 02 0 220)		0.000E+00	0 185)	4.68E.01	4 811E 01			
157						-	CKD I4	Λ	CS1510C5	111 1.4	77030229)	0.05+00	00001+00	0.012 (4 081-01	4 011E-01		-	
									C8 to Urine		0.015			0 013 (-					
	Urine								albumin to	kidney trait	(0 005	0		0 007 to					
160 C8	albumin	Metabolites	UACRbiom	diftype	0 079 3 532E-03	8 270E-03	CKD F4	Y	CKD F4	1n F4	52 78 0 025)	0 0E+00	0 000E+00	0 036)	2 16E-01	2 334E-01	0 23	4 287E-03	1 585 4 296E-43
											0 161		Í	0 014 (-	Í				
									C8 to eGFR	kidney trait	(0 122 1	o		0 007 to					
161 C8	CST3	Metabolites	eGFRbiom	diftype	0 213 1 922E-15	3 076E-14	eGFR F4	М	F4 to CST3	in F4	92 2 0 2)	0 0E+00	0 000E+00	0 035)	2 24E-01	3 018E-01	-0 163	5 665E-16	-0 78 0 000E+00
									C8 to		0 023	r i	r i	0 009 (-	- T				
	Creatini								Creatinine	kidney trait	(0 015	o		0 009 to					
165 C8	ne	Metabolites	eGFRbiom	diftype	0 179 2 374E-11	2 072E-10	CKD F4	Y	to CKD F4	in F4	71 69 0 032)	0 0E+00	0 000E+00	0 03)	3 50E-01	3 667E-01	0 23	4 287E-03	1 153 1 412E-24
									CKD F4 to		0 144		r	0 09 (-	r				
									Creatinine	kidney trait	(0 088 1	o		0 043 to					
165							CKD F4	х	to C8	in F4	61 5 0 202)	0 0E+00	0 000E+00	0 224)	1 74E-01	1 897E-01			
						•					0.032	-	•	0.004 (-	•			•	r
									C8 to CST3	kidnev trait	(0.022)	0		0.016 to					
168 C8	CST3	Metabolites	eGFRhiom	diftype	0.213 1.922E-15	3.076E-14	CKD F4	v	to CKD F4	in F4	89 86 0 041)	0.0F+00	0.000E+00	0.023)	7 28E-01	7 347E-01	0.23	4 287E-03	1 437 1 040E-29
100 00	6515	Metabolites	cornolin	untype	0 213 1 7228 13	5 070E 14	CILD I 4	-	10 CILD 14		0,00,0041)	C OL 100	00001100	0.035 (7 202 01	1 54712 01	0.25	4 2072 05	1457 10402 25
									CKD E4 to	kidnov troit	0.2 (0.1	15		0 000 (-					
1.69							CVD F4	v	CKD F4 10	kidney trait	02(01	43	0.0005.00	0 105 10	5 0 4E 01				
108						-	CKD F4	Λ	CS15 to C8	III F4	85 29 to 0 265) 0.0E+00	0 000E+00	017)	5 94E-01	0 009E-01		-	
									C8:1 to		-011(-			-0.012 (-					
									CST3 to	kidney trait	0 144 to)-		0 028 to					
169 C8:	I CST3	Metabolites	eGFRbiom	diftype	0 166 6 150E-10	4 428E-09	eGFR F4	Y	eGFR F4	1n F4	90 16 0 074)	0 0E+00	0 000E+00	0 007)	2 36E-01	3 147E-01	-0 122	3 964E-10	-0 78 0 000E+00
									C8:1 to				ĺ	0 017 (-	Í	Í			
									eGFR F4 to	kidney trait	0 12 (0	08		0 002 to					
169							eGFR F4	Μ	CST3	in F4	87 49 to 0 159	0 00000000000000000000000000000000000	0 000E+00	0 038)	8 80E-02	1 325E-01			

							1			C9.1.4		0.110			0.005 (
										C8:1 to		0 119			0.005 (-					
	Creatini									eGFR F4 to	kidney trait	(0.08 to			0 019 to					
170 C8:1	ne	Metabolites	eGFRbiom	diftype	0 141	1 648E-07	7 910E-07	eGFR F4	М	Creatinine	in F4	96 28 0 158)	0 0E+00	0 000E+00	0 029)	7 46E-01	7 979E-01	-0 122 3 964E-10	-0 726	0 000E+0
										C8:1 to		0 025			0 011 (-					
										CST3 to	kidney trait	(0 015 to			0 008 to					
171 C8:1	CST3	Metabolites	eGFRbiom	diftype	0 166	6 150E-10	4 428E-09	CKD F4	Y	CKD F4	in F4	68 57 0 034)	0 0E+00	0 000E+00	0 031)	2 42E-01	2 582E-01	0 257 8 036E-04	1 437	1 040E-2
										CKD F4 to		0.158			0.11.(-					
										CST2 to	kidnov troit	(0.002 to			0.041 to					
171								CVD F4	v	C31510	in E4	50.04 0.000	0.05.00	0.0005.00	0.04110	1.520.01	1 (925 01			
1/1	_							CKD F4	А	08:1	1n F4	59 04 0 225)	0 0E+00	0 000E+00	0.25)	1 52E-01	1 085E-01			
										C8:1 to		0 019			0 014 (-					
	Creatini									Creatinine	kidney trait	(0 011 to			0 005 to					
172 C8:1	ne	Metabolites	eGFRbiom	diftype	0 141	1 648E-07	7 910E-07	CKD F4	Y	to CKD F4	in F4	56 38 0 026)	0 0E+00	0 000E+00	0 034)	1 48E-01	1 641E-01	0 257 8 036E-04	1 153	1 412E-2
										CKD F4 to		0 119								
										Creatinine	kidnev trait	(0.064 to			0 15 (0 013					
172								CKD F4	v	to C8:1	in E4	44 24 0 179)	0.0E+00	0.000E+00	to 0 294)	4.00E-02	5 107E-02			
172	_			-				CKD14	Λ	0 00.1	11114	44 24 0 177)	0.01+00	0.0001+00	0.0204)	4 001-02	517712-02			
										CS13 to		0.098			0 039 (-					
	PNLIPR									CKD F4 to	kidney trait	(0 03 to			0 048 to					
175 CST3	P2	eGFRbiom	RNAs	diftype	0 09	1 987E-02	3 692E-02	CKD F4	М	PNLIPRP2	in F4	71 52 0 171)	0 0E+00	0 000E+00	0 13)	3 92E-01	4 072E-01	1 437 1 040E-29	0 365	1 669E-0
										Urine										
										albumin to		0 077			0 059 (-					
Urine										CKD F4 to	kidnev trait	(0.027 to			0.027 to					
176 albumi	NKD2	UACRhiom	RNAs	diffype	0.139	3 386E-04	1.016E-03	CKD F4	м	NKD2	in F4	56 62 0 131)	2 0E-03	5 252E-03	0 142)	1 70E-01	1 856E-01	1 585 4 296E-43	0 388	1 191F-0
170 0100010	I INED2	Chertolom	111115	untype	0 135	5 500E 04	10102 05	CRD 14		Craatinina	1111 4	0.081	2 01 05	5 2521 05	0.064 (I /OL OI	1 0501 01	1 303 4 2902 43	0.500	1 1712 0
a .:												0.081			0.004 (-					
Creatir	1									to CKD F4	kidney trait	(0.029 to			0 01 / to					
177 ne	NKD2	eGFRbiom	RNAs	diftype	0 11	4 437E-03	1 014E-02	CKD F4	М	to NKD2	in F4	56 1 0 139)	2 0E-03	5 252E-03	0 148)	1 22E-01	1 396E-01	1 153 1 412E-24	0 388	1 191E-0
						r	ſ			NKD2 to			1	ſ.					í	
										Urine		0 114			0 003 (-					
	Urine									albumin to	kidnev trait	(0 039 to			0 039 to					
178 NKD2	albumin	RNAs	UACRbiom	diffyne	0.139	3 386E-04	1.016E-03	UACR F4	Y	UACR F4	in F4	97 49 0 197)	2.0E-03	7 459E-03	0.047)	8 82E-01	9 221E-01	0 117 7 855E-03	0.925	0.000E+0
170111102	urounn	14.1.5	chertorom	untype	0.55	· · · · ·	10102 05	ener i	-	NKD2 to		0.00		1 1072 00	0.014 (-	, 2212 01	0111 10552 05	0 7 20	7
	0									CED E4 (c	1.1.1 and the second second second	0.027.0			0 014 (-					
	Creatin		arm.					000 04		EGFK F4 10	kidney trait	(003710			0 02 10					0.00070.0
179 NKD2	ne	RNAs	eGFRbiom	diftype	0 11	4 437E-03	1 014E-02	eGFR F4	М	Creatinine	1n F4	86 81 0 147)	0 0E+00	0 000E+00	0 046)	4 38E-01	5 175E-01	-0 086 4 311E-03	-0 726	0 000E+0
						ſ	ſ			DUSP11 to		-0 038 (-	ſ	1	-0 03 (-	ſ.			í	
	Creatini									Creatinine	kidney trait	0 058 to -			0 059 to -					
180 DUSP1	1 ne	RNAs	eGFRbiom	diftype	-0 134	5 571E-04	1 604E-03	CKD F4	Y	to CKD F4	in F4	56 17 0 018)	0 0E+00	0 000E+00	0 004)	2 40E-02	3 291E-02	-0 364 1 200E-04	1 1 5 3	1 412E-2
										CKD F4 to		-0 177 (-			-0.192.(-					
										Creatinine	kidnev trait	0.299 to -			0.404 to -					
190								CVD E4	v	to DUCD11	in E4	47.04.0.071)	0.05.00	0.0000	0.006)	4 405 02	5 625E 02			
180	_			-		-		CKD I'4	л	DUCDIN	1111.4	4/ 94 0 0/1)	0 0L+00	0.00012+00	0.000)	4 401-02	5 055E-02			,
										DUSP11 to		0 151			0 014 (-					
										CST3 to	kidney trait	(0 084 to			0 012 to					
181 DUSP1	1 CST3	RNAs	eGFRbiom	diftype	-0 18	2 999E-06	1 183E-05	eGFR F4	Y	eGFR F4	in F4	91 76 0 223)	0 0E+00	0 000E+00	0 042)	3 42E-01	4 236E-01	0 164 2 649E-08	-0 78	0 000E+0
										DUSP11 to		-0 182 (-	ſ	1	-0 023 (-		ſ –			
										eGFR F4 to	kidney trait	0 268 to -			0 057 to					
181								eGFR F4	М	CST3	in F4	88 78 0 103)	0 0E+00	0 000E+00	0 012)	1 94E-01	2 651E-01			
						r	•			DUSP11 to		-0.17.(-			-0.027 (-					r
	Crootini									CEP E4 to	kidnov troit	0.252 +-			0.068 to					
100 DUCD	1 creaum	DNA	CEDIC	1.6	0.124	5 5710 04	1 (04E 02	CED E1		COL K F4 10	Kuncy trait	0 235 10 -	0.05.00	0.00000.000	0.008 10	2.575.01	2.2550.01	0.164.0.6405.00	0.724	0.000
182 DUSP	1 ne	KINAS	eGFRbiom	aittype	-0 134	55/1E-04	1 604E-03	eGFR F4	M	Creatinine	1n F4	86 31 0 097)	0 0E+00	0 000E+00	0 017)	2 36E-01	3 355E-01	0 164 2 649E-08	-0 /26	0 000E+0
										DUSP11 to		0 14	[i i	0 024 (-	Í	ĺ			
										Creatinine	kidney trait	(0 072 to			0 006 to					
182								eGFR F4	Y	to eGFR F4	in F4	85 34 0 206)	0 0E+00	0 000E+00	0 056)	1 14E-01	1 677E-01			
						r	•			DUSP11 to		-0 044 (-	1	1	-0 025 (-					r
										CST3 to	kidney trait	0.067 to -			0.055 to					
192 DI 100	1 (1972)	DNAG	CEDLine	diffume	0.10	2 000 0 0	1 1925 05	CVD F4	v	CKD E4	in E4	62 60 0.022	0.05.00	0.0000	0.002	7 605 02	0.1975.02	0.264 1.2005 04	1 427	1.0405.24
105 00581	i Coro	MINAS	COFRDIOM	untype	-0.18	2 799E-00	1 103E-03	CKD F4	1	CKD F4	ш Г4	03 08 0 023)	0 0E+00	0 000E+00	0.002)	/ OUE-02	7 10/E-02	-0 504 1 200E-04	1 4 3 /	1 040E-29

											CKD F4 to		-0 195 (-			-0 175 (-		ſ		
											CST3 to	kidney trait	0 32 to -			0 393 to				
183									CKD F4	x	DUSP11	in F4	52 71 0 085)	0.0E+00	0.000E+00	0.036)	8 80E-02	1.050E-01		
							•	•			TEE3 to				-		-			
											UACR F4 to		0 147			0.005 (-				
		Urino									Urino	kidnov troit	(0.070 to			0.034 to				
104	TEE2	. II	DNA	UACDL	1.0	0.141	2.0150.04	9 5225 04			of the	in E4	(007910	0.00	0.0005.00	0 0 34 10	9.0CT 01	0.7475.01	0 100 1 (000 05	0.025 0.0005.00
184	TFE3	albumin	RNAs	UACRBIOM	diffype	0 141	2 815E-04	8 533E-04	UACR F4	м	albumin	1n F4	96 83 0 221)	0 0E+00	0 000E+00	0.045)	8 06E-01	8 /4/E-01	0 192 1 682E-05	0 925 0 000E+00
											AGK to		-0 101 (-			-0 01 (-				
											eGFR F4 to	kidney trait	0 172 to -			0 038 to				
186	AGK	CST3	RNAs	eGFRbiom	diftype	-0 099	1 094E-02	2 218E-02	eGFR F4	М	CST3	in F4	90 97 0 033)	0 0E+00	0 000E+00	0 02)	5 70E-01	6 381E-01	0 09 1 537E-03	-0 78 0 000E+00
											AGK to		0 082			0 009 (-				
											CST3 to	kidney trait	(0 025 to			0 015 to				
186									eGFR F4	Y	eGFR F4	in F4	90 18 0 136)	0 0E+00	0 000E+00	0 032)	4 68E-01	5 446E-01		
							•				AGK to		-0.094 (-			-0.017 (-				
		Creatini									eGER E4 to	kidnev trait	0.162 to -			0.052 to				
197	ACK	no	DNAG	CEPhiom	diffumo	0.007	1 251E 02	2 485E 02	CEP E4	м	Craatinina	in E4	85 0 022)	0.015 .00	0.000E+00	0.010)	2 69E 01	4 515E 01	0.00 1 527E 02	0.726 0.000E+00
107	AUK	ne	KINAS	CONTROLOU	untype	-0 097	1 231E-02	2 465E-02	COLK 1.4	IVI	Creatiline	1111'4	85 0 032)	0.05+00	0.000E+00	0.019)	3 08E-01	4 515E-01	0.09 1.33712-03	-07200000E+00
											CS13 to		-0 093 (-			-00/9(-				
											CKD F4 to	kidney trait	0 159 to -			0 17 to				
188	CST3	AGK	eGFRbiom	RNAs	diftype	-0 099	1 094E-02	2 218E-02	CKD F4	М	AGK	in F4	54 06 0 033)	4 0E-03	9 406E-03	0 024)	1 40E-01	1 568E-01	1 437 1 040E-29	-0 357 1 592E-04
											CST3 to		-0 103 (-			-0 058 (-				
											CKD F4 to	kidney trait	0 177 to -			0 142 to				
190	CST3	MCM3	eGFRbiom	RNAs	diftype	-0 088	2 343E-02	4 191E-02	CKD F4	М	MCM3	in F4	63 93 0 041)	0 0E+00	0 000E+00	0 04)	2 22E-01	2 381E-01	1 437 1 040E-29	-0 428 2 388E-05
											MCM3 to									
											UACR F4 to		-0 19 (-			-0.007 (-				
		Urine									Urine	kidnev trait	0.268 to -			0.052 to				
101	MCM2	olhumin	DNAG	UACPhiom	diffumo	0.17	1 020E 05	3 802E 05	UACE EA	м	alburrin	in E4	06 67 0 117)	0.015 .00	0.000E+00	0.04)	7 58E 01	8 717E 01	0.248 2.205E 08	0.025.0.000E+00
191	WICIVIS	aiouiiiii	KINAS	UACKDIOIII	untype	-017	1 030E-03	3 802E-03	UACK 14	IVI	arbuinin	1111'4	900/011/)	0.05+00	0.000E+00	0.04)	7 38E-01	8 /1/E-01	-0 248 5 20512-08	0.923 0.000E+00
											MCM3 to		0.005 /			0.000 /				
											Urine		-0 035 (-			-0 039 (-				
		Urine									albumin to	kidney trait	0 05 to -			0 07 to -				
192	MCM3	albumin	RNAs	UACRbiom	diftype	-0 17	1 030E-05	3 802E-05	CKD F4	Y	CKD F4	in F4	47 35 0 021)	0 0E+00	0 000E+00	0 007)	2 00E-02	2 801E-02	-0 428 2 388E-05	1 585 4 296E-43
											CKD F4 to									
											Urine		-0 16 (-			-0 223 (-				
											albumin to	kidnev trait	0 269 to -			0 432 to -				
192									CKD F4	x	MCM3	in F4	41 78 0 067)	0.0E+00	0.000E+00	0.018)	3 20E-02	4 230E-02		
						_					Creatinine		-0.088 (-			-0.067.(-				
	Curatini										to CVD E4	hidney tooit	-0.000 (-			0.155.40				
100	Creatini	1000	OF DI -	DATA		0.001	1.0405.00	2 5025 02	OVD F4		to CKD F4	kidney trait	0 146 to -	0.05.00	0.0005.00	0 155 to	1 405 01	1.5 (0) 01	1 152 1 4125 24	0.400 0.0000 0.0
193	ne	MCM3	eGFRbiom	RNAs	diffype	-0 091	1 848E-02	3 502E-02	CKD F4	M	to MCM3	1n F4	56 5 0 032)	0 0E+00	0 000E+00	0 025)	1 40E-01	1 568E-01	1 153 1 412E-24	-0 428 2 388E-05
							[ſ			MCM3 to		-0 105 (-		Í	-0 009 (-	Í	[
											eGFR F4 to	kidney trait	0 19 to -			0 038 to				
194	MCM3	CST3	RNAs	eGFRbiom	diftype	-0 088	2 343E-02	4 191E-02	eGFR F4	Μ	CST3	in F4	92 01 0 037)	2 0E-03	4 401E-03	0 021)	5 46E-01	6 221E-01	0 094 2 169E-03	-0 78 0 000E+00
							•	r			MCM3 to		0 083	1	1	0 012 (-				
		Creatini									Creatinine	kidnev trait	(0 029 to			0 019 to				
195	MCM3	ne	RNAs	eGFRbiom	diffyne	-0.091	1 848E-02	3 502E-02	eGFR F4	Y	to eGFR F4	in F4	87 55 0 147)	2.0E-03	4 401E-03	0.041)	4 54E-01	5 299E-01	0.094 2.169E-03	-0.726 0.000E+00
170	memo		10.010	cornolom	unijpe	0.031	10102 02	5 5022 02	COINCI I	-	MCM3 to		-0.098 (-		. 1012 05	-0.017 (-	101201		0 07 1 2 107 2 05	072000002100
											CED FA (1.1.1 and the second second second	-0058(-			-0017 (-				
											eGFK F4 to	kidney trait	01/5 to -			0 055 to				
195							r		eGFR F4	М	Creatinine	1n F4	85 03 0 033)	2 0E-03	4 401E-03	0 016)	3 24E-01	4 039E-01		
							[ſ			TTF2 to		0 113		Í	0 003 (-	Í	Í		ſ
		Creatini									Creatinine	kidney trait	(0 048 to			0 026 to				
196	TTF2	ne	RNAs	eGFRbiom	diftype	-0 104	7 237E-03	1 555E-02	eGFR F4	Y	to eGFR F4	in F4	97 81 0 18)	0 0E+00	0 000E+00	0 03)	8 38E-01	8 697E-01	0 116 7 464E-05	-0 726 0 000E+00
					-		r	r			Urine				1					
											albumin to		-0 073 (-			-0 061 (-				
	Urine										CKD F4 to	kidnev trait	0 128 to -			0 147 to				
107	alhumin	TTF2	UACRhiem	RNAs	diffype	-0.002	1 745E-02	3 328E-02	CKD F4	м	TTE?	in F4	54 64 0 018)	1.6E-02	2 854E-02	0.016)	1 14E-01	1 315E-01	1 585 4 296F-43	-0 346 2 679E-04
197	arounni	1112	CACICOIOIII	1111/10	unype	-0.092	1 7451-02	5 5201-02	CADIT	141	1112		54 04 0 018)	1 012-02	2 0040-02	0010)	1 140-01	1 5151-01	1 305 4 270E-45	0.540 2.0776-04

										TTF2 to									
										UACR F4 to	,	-0 105 (-			-0 007 (-				
		Urine								Urine	kidney trait	0 171 to -			0 047 to				
198	TTF2	albumin	RNAs	UACRbiom	diftype	-0 092 1 745E-02	3 328E-02	UACR F4	М	albumin	in F4	93 39 0 045)	0 0E+00	0 000E+00	0 033)	7 10E-01	8 447E-01	-0 137 1 591E-03	0 925 0 000E+00
										TTF2 to		-0 031 (-			-0 033 (-				
		Creatini								Creatinine	kidney trait	0 05 to -			0 063 to -				
199	TTF2	ne	RNAs	eGFRbiom	diftype	-0 104 7 237E-03	1 555E-02	CKD F4	Y	to CKD F4	in F4	48 16 0 012)	0 0E+00	0 000E+00	0 004)	2 20E-02	3 038E-02	-0 346 2 679E-04	1 153 1 412E-24
										ABCB1 to		-0 108 (-			-0 027 (-				
										eGFR F4 to	kidney trait	0 171 to -			0 052 to -				
200	ABCB1	CST3	RNAs	eGFRbiom	diftype	-0 119 2 139E-03	5 601E-03	eGFR F4	М	CST3	in F4	80 14 0 048)	0 0E+00	0 000E+00	0 001)	4 20E-02	6 892E-02	0 098 9 705E-04	-0 78 0 000E+00
										ARG1 to		0 102			0 016 (-				
		Creatini								eGFR F4 to	kidnev trait	(0 039 to			0 023 to				
203	ARG1	ne	RNAs	eGFRbiom	diftype	0 102 8 454E-03	1 752E-02	eGFR F4	М	Creatinine	in F4	86 8 0 175)	0 0E+00	0 000E+00	0 053)	4 10E-01	4 905E-01	-0 098 9 503E-04	-0 726 0 000E+00
										ARG1 to		0.109			0.006.(-				
										eGFR F4 to	kidnev trait	(0.044 to			0.025 to				
204	ARG1	CST3	RNAs	eGFRbiom	diftype	0.089 2.207E-02	3 973E-02	eGFR F4	м	CST3	in F4	95 12 0 186)	0.0E+00	0.000E+00	0.033)	7 84E-01	8 226E-01	-0.098 9 503E-04	-0.78 0.000E+00
201		0010	10.010	COI Itoloini	unijpe	0 007 2 2072 02	5 7752 02	COLUCT 1		CST3 to		0.001	0.01100	0.0001100	0.075.(-	/ 012 01	0 2202 01	0 000 0 0002 01	0.0000000000000000000000000000000000000
										CKD F4 to	kidney trait	(0.027 to			0.014 to				
205	CST2	APGI	oCEPhiom	DNAG	diffumo	0.080 2.207E 02	2 072E 02	CVD F4	м	APC1	in E4	54.60 0 167)	8 OE 02	1.664E.02	0 157)	1.04E.01	1 214E 01	1 427 1 040E 20	0 24 2 508E 04
205	0.515	AKOI	COI KOIOIII	ICINA5	untype	0 007 2 2071-02	5 7751-02	CRD 14	141	SI C25 A4 to	111.1.4	0.1.(0 0L-05	1 0041-02	0.026 (1041-01	1 2141-01	1437 10401-27	0.54 2.5781-04
	SI C25A									aCEP E4 to	, kidnov troit	-01(-			-0 020 (-				
206	A SLC25A	CET2	DNA	CEDhiam	difference.	0 121 1 724E 02	4 555E 02	CED E4	м	CET2	in E4	70.66 0.025)	0.05.00	0.000E.00	0.002)	7.600.00	1.167E.01	0.00 1 501E 02	0.78 0.000E .00
206	4	CSIS	KINAS	COFROIDIII	untype	-0 121 1 724E-05	4 333E-03	EOLK L4	IVI	LST5	III F4	0.020	0.0E+00	0 000E+00	0.002)	7 00E-02	1 10/E-01	0.09 1.391E-03	-0 /8 0 000E+00
										IGFBP2 to		0.029			0.025 (-				
		aama		or the second se						CS13 to	kidney trait	(0 014 to	0.017.00	0.0007	0 01 / to				
222	IGFBP2	CST3	Proteins	eGFRbiom	diftype	0 222 3 600E-07	1 620E-06	CKD F4	Y	CKD F4	1n F4	54 22 0 051)	0 0E+00	0 000E+00	0 0 /9)	2 46E-01	2 619E-01	0 652 1 167E-03	1 437 1 040E-29
										CKD F4 to		0 19			0 222 (-				
										CST3 to	kidney trait	(0 082 to			0 035 to				
222								CKD F4	Х	IGFBP2	in F4	46 18 0 317)	0 0E+00	0 000E+00	0 472)	6 80E-02	8 311E-02		
							ſ			EFNA5 to		0 195			0 026 (-	1			l l
										eGFR F4 to	kidney trait	(0 133 to			0 011 to				
225	EFNA5	CST3	Proteins	eGFRbiom	diftype	0 287 3 780E-11	3 202E-10	eGFR F4	М	CST3	in F4	88 32 0 259)	0 0E+00	0 000E+00	0 063)	1 36E-01	1 949E-01	-0 213 3 653E-12	-0 78 0 000E+00
							ſ			EFNA5 to		0 029			0 002 (-	1	1		
										CST3 to	kidney trait	(0 014 to			0 029 to				
228	EFNA5	CST3	Proteins	eGFRbiom	diftype	0 287 3 780E-11	3 202E-10	CKD F4	Y	CKD F4	in F4	92 18 0 048)	0 0E+00	0 000E+00	0 044)	9 12E-01	9 148E-01	0 533 1 406E-03	1 437 1 040E-29
							-			Urine							1		
										albumin to		-0 082 (-			-0 04 (-				
	Urine									CKD F4 to	kidney trait	0 161 to -			0 135 to				
231	albumin	ERBB3	UACRbiom	Proteins	diftype	-0 102 2 064E-02	3 770E-02	CKD F4	Μ	ERBB3	in F4	67 36 0 033)	0 0E+00	0 000E+00	0 066)	4 48E-01	4 615E-01	1 585 4 296E-43	-0 877 8 286E-06
										ERBB3 to		-0 177 (-			-0 026 (-				
										eGFR F4 to	kidney trait	0 245 to -			0 054 to				
234	ERBB3	CST3	Proteins	eGFRbiom	diftype	-0 258 2 829E-09	1 771E-08	eGFR F4	М	CST3	in F4	87 42 0 115)	0 0E+00	0 000E+00	0 007)	9 80E-02	1 453E-01	0 193 6 628E-09	-0 78 0 000E+00
										ERBB3 to		0 168			0 025 (-	-			
										CST3 to	kidnev trait	(0 11 to			0 005 to				
234								eGFR F4	Y	eGFR F4	in F4	87 14 0 223)	0 0E+00	0 000E+00	0 056)	9 40E-02	1 405E-01		
•				_		-	•			LAYN to		0 196			0.026 (-	-	-	· · · · · ·	-
										eGFR F4 to	kidnev trait	(0.131 to			0.01 to				
235	LAYN	CST3	Proteins	eGFRbiom	diftype	0 295 8 726E-12	8 666E-11	eGFR F4	м	CST3	in F4	88 23 0 264)	0.0E+00	0.000E+00	0.064)	1 78E-01	2 468E-01	-0 215 8 370E-13	-0 78 0 000E+00
255				- 01 1010111	Lingpo	· · · · · · · · · · · · · · · · · · ·	·			EGER to		00 25 0 204)				- /02/01	- 100L 01	0 210 0 5702 15	F
										LOFK O		-0.174.(-			-0.028 (-				
		Urino								Urine Urine	kidney trait	0.26 %			0.082 to				
244	ECED	albumin	Drotaine	UACPhice	diffumo	0.155 4.251E.04	1 2275 02		M	albumin	in E4	86 10 0 1)	0.05.00	0.000E.00	0.022	2 025 01	2 051E 01	0.221 1.107E.04	0.025 0.0000 .00
244	LOLK	arounin	1 10101115	UACKDIOIII	untype	-0 155 4 251E-04	1 23/12-03	UACK 14	111	arounnin	1111.1.4	00 17 0 1)	0.000000	000000000000000000000000000000000000000	0 022)	2 746-01	5 9516-01	-0 221 1 17/12-00	0 925 0 000E+00

											EGFR to											
											Urine		-	-0 173 (-			-0 048 (-					
											albumin to	kidney trait	(0 27 to -			0 099 to					
244									UACR F4	Y	UACR F4	in F4	78 2 0	0 085)	0 0E+00	0 000E+00	0 005)	7 20E-02	1 419E-01			
											IGEBP6 to		(0 339			0.01.(-					
											eGER E4 to	kidney trait		(0.263 to			0.034 to					
250	ICEDDA	COT2	Ductoine	CEDhiam	difference.	0.427	2 7905 25	2 009E 22	CED E4	м	CET2	in E4	07.17	0 412)	0.017 .00	0.000E.00	0.059)	6 69E 01	7 2465 01	0.269	1 601E 20	0.78 0.0000 .00
230	Югвго	CSIS	Proteins	COFREIOIII	untype	0 457	2 789E-23	2 008E-25	EOFK F4	IVI	CS15	111 F4	9/1/0	0 415)	0.0E+00	0 000E+00	0.058)	0 08E-01	7 240E-01	-0 308	1 091E-29	-0 /8 0 000E+00
											CS13 to		(04/4			0 052 (-					
											eGFR F4 to	kidney trait	((0 263 to			0 178 to					
250									eGFR F4	M	IGFBP6	in F4	90 19 0	0 661)	0 0E+00	0 000E+00	0 322)	6 68E-01	7 246E-01			
											IGFBP6 to		(0 337			0 012 (-					
		Creatini									eGFR F4 to	kidney trait	((0 264 to			0 045 to					
251	IGFBP6	ne	Proteins	eGFRbiom	diftype	0 403	1 655E-21	6 807E-20	eGFR F4	М	Creatinine	in F4	96 68 (0 417)	0 0E+00	0 000E+00	0 068)	6 68E-01	7 246E-01	-0 368	1 691E-29	-0 726 0 000E+00
											Creatinine		(0 432			0.039 (-					
											to eGFR F4	kidnev trait		(0.289 to			0.154 to					
251									CEP E4	м	to ICEPP6	in E4	01 72	0 508)		0.000E+00	0 211)	6 69E 01	7 246E 01			
231									COLK 1.4	IVI	ICEDDC ()	1111'4	91720	0 3 7 6)	0.05+00	0.0005+00	0.211)	0.095-01	7 2401-01			
											IGFBP6 to			0 044			0.017 (-					
											CS13 to	kidney trait	((0.023 to)			0 025 to					
253	IGFBP6	CST3	Proteins	eGFRbiom	diftype	0 437	2 789E-25	2 008E-23	CKD F4	Y	CKD F4	in F4	72 35 0	0 07)	0 0E+00	0 000E+00	0 057)	4 34E-01	4 480E-01	0 748	1 293E-05	1 437 1 040E-29
											CKD F4 to		(0 409			0 209 (-					
											CST3 to	kidney trait	((0 248 to			0 049 to					
253									CKD F4	Х	IGFBP6	in F4	66 16 (0 61)	0 0E+00	0 000E+00	0 46)	9 40E-02	1 112E-01			
											Creatinine		-	-0.068 (-			-0.082.(-					
	Creatini										to CKD F4	kidnev trait		0.14 to -			0.182 to					
254	no	EGE20	eGERbiom	Proteine	diffune	0 147	8 276E-04	2 337E-03	CKD F4	м	to EGE20	in E4	15 18 (0 024)	0.0E+00	0.000E+00	0.027)	1 38E-01	1.558E-01	1 153	1.412E-24	-1.071 1.012E-04
254	inc	10120	COI KOIOIII	TIOCHIS	untype	-0147	8 270E-04	2 33712-03	CKD14	IVI	ECE20 4	111.1.4	45 10 0	0.024)	0 OL+00	00002+00	0.005 (1 362-01	1 3382-01	1 155	14121-24	-10/110121-04
											FGF20 to		(0 116			0 005 (-					
											CST3 to	kidney trait	((0 055 to			0 016 to					
256	FGF20	CST3	Proteins	eGFRbiom	diftype	-0 273	3 105E-10	2 293E-09	eGFR F4	Y	eGFR F4	in F4	95 96 (0 245)	0 0E+00	0 000E+00	0 035)	6 18E-01	6 879E-01	0 121	4 049E-05	-0 78 0 000E+00
											FGF20 to		-	-0 111 (-			-0 028 (-					
											eGFR F4 to	kidney trait	(0 251 to -			0 064 to -					
256									eGFR F4	М	CST3	in F4	80 11 0	0 048)	0 0E+00	0 000E+00	0 01)	4 00E-03	7 529E-03			
							•	-			Urine			,	1		/	-			•	
											albumin to			-0.051 (-			-0.086 (-					
	Urino										CKD E4 to	kidnov troit		0.12 to			0.10 to					
250	Unite	CDDPT	UACDL	Destation	1.0	0.000	2 4925 02	4 41 45 02	CVD F4		CKD I'4 IU	kiulicy uait	27.20	0 12 10 -	2 25 02	4 7795 02	0 19 10	0.405.02	1 1125 01	1 505	4 20 CE 42	0.470 2.0000 02
259	albumin	SPINTI	UACKBIOM	Proteins	ainype	-0 099	2 485E-02	4 414E-02	CKD F4	IVI	SPINTI	1n F4	37 29 0	0 003)	3 2E-02	4 //8E-02	0017)	9 40E-02	1 112E-01	1 585	4 296E-43	-04/8 2 008E-03
											SPINT1 to											
											UACR F4 to	•	-	-0 081 (-			-0 026 (-					
		Urine									Urine	kidney trait	(0 146 to -			0 075 to					
260	SPINT1	albumin	Proteins	UACRbiom	diftype	-0 099	2 483E-02	4 414E-02	UACR F4	Μ	albumin	in F4	75 63 (0 02)	6 0E-03	1 762E-02	0 021)	2 80E-01	3 864E-01	-0 102	1 478E-02	0 925 0 000E+00
						1	,				SPINT1 to		-	-0 075 (-			-0 011 (-				•	
											eGFR F4 to	kidnev trait	(0 137 to -			0 039 to					
261	SPINT1	CST3	Proteins	eGFRbiom	diftype	-0 134	2 412E-03	6 202E-03	eGFR F4	м	CST3	in F4	86.8 (0.019)	1 4E-02	2 572E-02	0.017)	4 28E-01	5.073E-01	0.082	9 404E-03	-0 78 0 000E+00
201	51 11 11	0010	TIOUTID	Correcton	unijpo	0151	- 1122 05	-			CST2 to		0000	0.062 (7		0.100 (. 202 01	-	0 002	101205	010000000000000000000000000000000000000
											CKDEA	kidnor tesit		0 128 40			0 240 40					
0	COTTO	ODD IT:	OEDI :			0.121	A 41AE 02	C 202E C2	OVD D4		CKD F4 10	i D4		0 138 10 -	1.00.00	2 1075 62	0 249 10	0.005.63	1.1510.61	1.427	1.0.405.00	0.450 0.6005.00
262	CS13	SPINT1	eGFRbiom	Proteins	diftype	-0 134	2 412E-03	o 202E-03	CKD F4	м	SPINTI	1n F4	36 19 (0 008)	1 8E-02	3 15/E-02	0.021)	9 80E-02	1 151E-01	1 437	1 040E-29	-0 4 /8 2 608E-03
								1			NBL1 to		-	-0 22 (-		1	-0 021 (-	1	Ĩ		[
											CST3 to	kidney trait	0	0 288 to -			0 054 to					
266	NBL1	CST3	Proteins	eGFRbiom	diftype	0 373	2 378E-18	5 708E-17	eGFR F4	Y	eGFR F4	in F4	91 18 0	0 154)	0 0E+00	0 000E+00	0 012)	2 34E-01	3 131E-01	-0 241	7 486E-16	-0 78 0 000E+00
							r				Urine											
											albumin to		_	-0 068 (-			-0 057 (-					
	Urine										CKD F4 to	kidnev trait		0 138 to -			0.154 to					
269	alhumin	GHR	UACRhiom	Proteins	diffyne	-0.102	2.068E-02	3 770E-02	CKD F4	м	GHR	in F4	54 33 0	0 024)	0.0F+00	0.000E+00	0.038)	2 20E-01	2 370E-01	1 585	4 296F-43	-0.781 9.172E.05
200	arounin	SIIK	CACKOIOIII	TOUTIN	antype	-0.102	2 0000-02	5 1101-02	CADIA	191	JIIK		54 55 0	0.024)	0.01100	000000000000000000000000000000000000000	0 0 0 0 0 0 0 0 0	2 2015-01	2 5701-01	1 305	- 2701-43	5761 7172E-05

						-		-						-	-			-		-	
											GHR to										
											UACR F4 to)	-0 132 (-			-0 001 (-					
		Urine									Urine	kidney trait	0 22 to -			0 06 to					
269	GHR	albumin	Proteins	UACRbiom	diftype	-0 102 2	2 068E-02	3 770E-02	UACR F4	Μ	albumin	in F4	99 08 0 048)	2 0E-03	7 459E-03	0 056)	9 70E-01	9 700E-01	-0 167	7 015E-04	0 925 0 000E+00
							·	r			GHR to		0 149			0 008 (-					
											CST3 to	kidney trait	(0 091 to			0 033 to					
272	GHR	CST3	Proteins	eGFRbiom	diftype	-0 207 2	2 243E-06	9 156E-06	eGFR F4	Y	eGFR F4	in F4	94 99 0 207)	0 0E+00	0 000E+00	0 046)	7 68E-01	8 147E-01	0 157	2 036E-05	-0 78 0 000E+00
					21						GHR to		-0 144 (-			-0 034 (-	r				
											eGFR F4 to	kidnev trait	0 212 to -			0.073 to					
272									eGFR F4	м	CST3	in F4	80 86 0 074)	0.0E+00	0.000E+00	0.003)	6 60E-02	1 034E-01			
								-			Creatinine		-0.061 (-		-	-0.076 (-	r			-	
	Creatini										to CKD E4	kidney trait	0.119 to -			0.18 to					
273	no	GHP	eGEPhiom	Proteins	diffune	-0.124 5	5 0/0E-03	1 136E-02	CKD F4	м	to GHP	in E4	44.42 0.022)	0.0E+00	0.000E+00	0.027)	1.56E-01	1 722E-01	1 153	1.412E-24	0 781 0 172E 05
273	ne	OIIK	COLIMI	Trotenis	untype	-0124	0476-05	11501-02	CKD14	191	CCALID	11114	44 42 0 022)	0.05+00	F 0000E+00	0.027)	1 301-01	17221-01	1 155	F 412L-24	-0 781 7 172E-05
	CCA										to aCED E4	hidaar taait	0 25			0.020 (-					
27	LUD	COTTO	D	CIEDL :	110	0.001	1015 00	1 2 4 2 5 0 7	CED E4		LO EGFK F4	kidney trait	(0 137 10	0.05.00	0.0005.00	0 033 10	0.000.01	4 5155 01	0.040	5 100E 0.C	0.70 0.0005 0
270	LHB	CS15	Proteins	eGFKblom	ainype	0 234 8	8 IUIE-08	4 242E-07	eGFK F4	M	to CS13	1n F4	89 94 0 34)	0 0E+00	0 000E+00	0.086)	3 08E-01	4 515E-01	-0 249	7 420E-06	-0 /8 0 000E+00
											CGA LHB		-0 213 (-			-0 036 (-					
											to CS13 to	kidney trait	0 323 to -			0 089 to					
276									eGFR F4	Y	eGFR F4	in F4	85 39 0 123)	0 0E+00	0 000E+00	0 02)	1 96E-01	2 669E-01			
											ESAM to		-0 179 (-			-0 024 (-					
											CST3 to	kidney trait	0 235 to -			0 057 to					
279	ESAM	CST3	Proteins	eGFRbiom	diftype	0 276 1	1 940E-10	1 510E-09	eGFR F4	Y	eGFR F4	in F4	88 05 0 123)	0 0E+00	0 000E+00	0 007)	1 56E-01	2 202E-01	-0 204	2 965E-11	-0 78 0 000E+00
											ESAM to		0 186			0 03 (-					
											eGFR F4 to	kidney trait	(0 121 to			0 004 to					
279									eGFR F4	Μ	CST3	in F4	85 95 0 251)	0 0E+00	0 000E+00	0 063)	8 60E-02	1 300E-01			
								r			JAM2 to		0 024			0 019 (-					
		Creatini									Creatinine	kidney trait	(0 012 to			0 012 to					
283	JAM2	ne	Proteins	eGFRbiom	diftype	0 331 1	1 313E-14	1 801E-13	CKD F4	Y	to CKD F4	in F4	56 32 0 039)	0 0E+00	0 000E+00	0 056)	2 56E-01	2 722E-01	0 55	3 441E-04	1 153 1 412E-24
											CKD F4 to		0 302			0 289 (-					
											Creatinine	kidnev trait	(0 153 to			0 043 to					
283									CKD F4	х	to JAM2	in F4	51 14 0 477)	0 0E+00	0 000E+00	0 638)	1 04E-01	1 214E-01			
						-		-			JAM2 to		0.027			0.009 (-				•	
											CST3 to	kidnev trait	(0.013 to			0.019 to					
285	IAM2	CST3	Proteins	eGFRbiom	diftype	0 341 2	2 148E-15	3 257E-14	CKD F4	Y	CKD F4	in F4	75 15 0 043)	0.0E+00	0.000E+00	0.048)	5 72E-01	5 856E-01	0.55	3 441E-04	1 437 1 040E-29
										-	CKD F4 to		0 353			0.239 (-	*				
											CST3 to	kidnev trait	(0.176 to			0.115 to					
285									CKD F4	v	IAM2	in E4	59.63 0.56)	0.0E+00	0.000E+00	0 595)	2 22E-01	2 381E-01			
200						-			01014		IAM2 to		0.215	F OLITOU	0001100	0.029.(-		2 3011 01		-	-
		Creatini									aGER EA to	kidney treit	(0.151 %)			0.012 to					
286	TAM2	no	Protoine	CEPhiom	diffumo	0 221 1	1 212E 14	1 901E 12	CEP E4	м	Craatinina	in E4	89 21 0 278)	0.05.00	0.000E+00	0.066)	1 70E 01	2 282E 01	0.229	2 242E 17	0.726.0.000E.00
200	JAIVIZ	ne	FIOIEIIIS	COLKDIOIII	untype	0.551	1 313E-14	1 80112-13	COLK 1.4	IVI	CLEC4M4a	1111.4	0.149	0.05+00	0.00011+00	0.000)	1 70E-01	2 382E-01	-0 238	2 2431-17	-0 720 0 000E+00
	CLECA										CET2 4	kidnor toolt	0.004			0.000 to					
200	CLEC4	00700	D	CIEDL :	110	0.007	0.0575.06	0.1565.06	CED E4		CS1510	kidney trait	(0 094 10	0.05.00	0.0005.00	0.00910	1 725 01	0.4005.01	0.1.00	0.0705.00	0.70 0.0005 0
290	M	CS15	Proteins	eGFKbiom	ainype	-0 207 2	2 25 /E-06	9 156E-06	eGFK F4	r	eGFK F4	1n F4	8/ 68 0 201)	0 0E+00	0 000E+00	0 048)	1 /2E-01	2 402E-01	0 169	2 079E-08	-0 /8 0 000E+00
											CLEC4M to		-0 155 (-			-0 023 (-					
									0000		eGFR F4 to	kidney trait	0 215 to -	0.07	0.0007	0 052 to	1.000				
290								-	eGFR F4	м	CST3	1n F4	86 98 0 093)	0 0E+00	0 000E+00	0 006)	1 20E-01	1 739E-01		-	
						i í					IL19 to		-0 012 (-								
											CST3 to	kidney trait	0 022 to -			-0 02 (-0 04	L I				
293	IL19	CST3	Proteins	eGFRbiom	diftype	-0 182 3	3 397E-05	1 179E-04	CKD F4	Y	CKD F4	in F4	38 25 0 005)	0 0E+00	0 000E+00	to 0 004)	1 06E-01	1 235E-01	-0 555	1 445E-03	1 437 1 040E-29
						1		í .			IL19 to		-0 128 (-	Í	ſ	-0 007 (-	Í	ſ I		[
											eGFR F4 to	kidney trait	0 189 to -			0 033 to					
294	IL19	CST3	Proteins	eGFRbiom	diftype	-0 182 3	3 397E-05	1 179E-04	eGFR F4	Μ	CST3	in F4	94 98 0 066)	0 0E+00	0 000E+00	0 025)	6 36E-01	6 998E-01	0 138	5 103E-06	-0 78 0 000E+00

											IL19 to		0 112			0 026 (-				
											CST3 to	kidney trait	(0 052 to			0 002 to				
294	1								eGFR F4	Y	eGFR F4	in F4	80 89 0 163)	0 0E+00	0 000E+00	0 055)	5 60E-02	8 886E-02		
											RETN to		0 026			0 015 (-				
											CST3 to	kidney trait	(0 014 to			0 018 to				
296	5 RETN	CST3	Proteins	eGFRbiom	diftype	0 283	6 818E-11	5 455E-10	CKD F4	Y	CKD F4	in F4	64 0 042)	0 0E+00	0 000E+00	0 054)	3 94E-01	4 084E-01	0 525 2 696E-04	1 437 1 040E-29
											CKD F4 to		0 324			0 27 (-				
											CST3 to	kidnev trait	(0 18 to			0 102 to				
296	5								CKD F4	x	RETN	in F4	54 55 0 507)	0.0E+00	0 000E+00	0.667)	1 60E-01	1 762E-01		
											RETN to		-0.177 (-			-0.004 (-				
											CST3 to	kidnev trait	0.23 to -			0.035 to				
290	RETN	CST3	Proteins	eGFRhiom	diftype	0.283	6 818F-11	5.455E-10	eGER F4	v	eGFR F4	in F4	97 69 0 119)	0.0E+00	0.000F+00	0.027)	7.76E-01	8 185E-01	-0 181 5 914E-10	-0.78 0.000E+00
2),	/ KEIIN	0.515	Troterns	COLIMI	untype	0 205	0.0101-11	54551-10	COLKIA	1	Craatinina	11114	0.062 (0 0L+00	0.0001+00	0.070 (7 702-01	8 1851-01	-0101 5 7141-10	-0 78 0 0001+00
	Canadiai										Creatinine to CVD E4	hi da ar tacit	-0.002 (-			-00/9(-				
200	Creaum	пр	CEDHiam	Dustains	d: Or ma	0.11	1 2005 02	2 526E 02	CVD E4	м	10 CKD F4	in E4	42 72 0 000)	2 25 02	2 5995 02	0 195 10	2.26E.01	2 520E 01	1 152 1 412E 24	0.206.2.600E.02
300) ne	IL2	eGFR0i0ili	Proteins	untype	-011	1 300E-02	2 330E-02	CKD F4	IVI		III F4	43 73 0 009)	2 2E-02	5 366E-02	0.038)	2 30E-01	2 320E-01	1 135 1 412E-24	-0 390 2 009E-03
		a									IL2 to		0.055			0 006 (-				
		Creatini		CTTPL I							Creatinine	kidney trait	(0 008 to			0 026 to				
301	I IL2	ne	Proteins	eGFRbiom	diftype	-0 11	1 300E-02	2 536E-02	eGFR F4	Y	to eGFR F4	in F4	89 55 0 099)	2 6E-02	4 549E-02	0 04)	7 00E-01	7 551E-01	0 061 4 367E-02	-0 726 0 000E+00
											TNFRSF1B		0 04			0 01 (-				
	TNFRS										to CST3 to	kidney trait	(0 017 to			0 028 to				
304	4 F1B	CST3	Proteins	eGFRbiom	diftype	0 415	9 521E-23	4 570E-21	CKD F4	Y	CKD F4	in F4	80 14 0 066)	0 0E+00	0 000E+00	0 053)	6 20E-01	6 295E-01	0 684 1 037E-05	1 437 1 040E-29
											CKD F4 to		0 504			0 223 (-				
											CST3 to	kidney trait	(0 282 to			0 134 to				
304	1								CKD F4	Х	TNFRSF1B	in F4	69 38 0 772)	0 0E+00	0 000E+00	0 59)	2 22E-01	2 381E-01		
											ADAMTS1		-0 011 (-			-0 014 (-				
	ADAM										3 to CST3	kidney trait	0 021 to -			0 036 to				
307	7 TS13	CST3	Proteins	eGFRbiom	diftype	-0 161	2 551E-04	7 900E-04	CKD F4	Y	to CKD F4	in F4	43 8 0 005)	0 0E+00	0 000E+00	0 016)	3 14E-01	3 304E-01	-0 461 1 977E-03	1 437 1 040E-29
									-		CKD F4 to					,				
											CST3 to		-0.165 (-			-0.267 (-				
											ADAMTS1	kidnev trait	0.313 to -			0.704 to				
307	7								CKD F4	x	3	in F4	38 2 0 051)	0.0E+00	0.000F+00	0 115)	2 18E-01	2 354E-01		
507									CILD I 4		ADAMTS1	11114	30 2 0 051)	OBLIGO	0.0001100	0 115)	2 102 01	2 3341 01		
											2 to		0.000 (0.02 (
	ADAM	Casatiai									Creatining	hi da ar tacit	-0.009 (-			-0.02 (-				
200	ADAM	Creatin	Destains	CEDL	1:0	0.144	1.064E.02	2 001E 02	CIVD F4	37	Creatinine	kidney trait	20.7(0.002)	2.05.02	5 2525 02	0.005)	0.405.02	1 1125 01	0.461 1.0775 02	1 152 1 4125 24
305	1515	ne	Proteins	eGFRbiom	ainype	-0 144	1 064E-03	2 891E-03	CKD F4	r	to CKD F4	1n F4	30 76 0 003)	2 0E-03	5 252E-05	0.005)	9 40E-02	1 112E-01	-0461 1977E-05	1 155 I 412E-24
											ACY1 to		-0 114 (-			-0 001 (-				
			L .								eGFR F4 to	kidney trait	0 184 to -			0 035 to				
310) ACY1	CST3	Proteins	eGFRbiom	diftype	-0 111	1 212E-02	2 431E-02	eGFR F4	М	CST3	in F4	99 34 0 048)	0 0E+00	0 000E+00	0 034)	9 44E-01	9 565E-01	0 123 6 810E-04	-0 78 0 000E+00
							í .				ACY1 to		-0 114 (-		ſ	-0 001 (-	ſ	Í	Í	
		Creatini									eGFR F4 to	kidney trait	0 183 to -			0 044 to				
312	2 ACY1	ne	Proteins	eGFRbiom	diftype	-0 115	9 386E-03	1 931E-02	eGFR F4	М	Creatinine	in F4	99 27 0 048)	0 0E+00	0 000E+00	0 041)	9 80E-01	9 826E-01	0 123 6 810E-04	-0 726 0 000E+00
								r			Creatinine		-0 052 (-			-0 078 (-				
	Creatini										to CKD F4	kidney trait	0 113 to -			0 193 to				
314	1 ne	BMP1	eGFRbiom	Proteins	diftype	-0 117	8 040E-03	1 678E-02	CKD F4	М	to BMP1	in F4	39 97 0 009)	1 4E-02	2 586E-02	0 026)	1 62E-01	1 776E-01	1 153 1 412E-24	-0 574 1 717E-03
							•	-			BMP1 to		0 119			0 013 (-	r		•	
											CST3 to	kidney trait	(0 052 to			0 022 to				
315	5 BMP1	CST3	Proteins	eGFRbiom	diftype	-0 169	1 165E-04	3 686E-04	eGFR F4	Y	eGFR F4	in F4	90 03 0 186)	0 0E+00	0 000E+00	0.05)	5 30E-01	6 093E-01	0 132 1 811E-04	-0 78 0 000E+00
											BMP1 to		-0.122.(-	1	*	-0.021 (-				
											eGFR F4 to	kidney trait	0.187 to -			0.06 to				
314									eGER E4	м	CST3	in F4	85 55 0 052)	0.0E+00	0.000F+00	0.019)	3 32E-01	4 126E-01		
51.	,						•	-	COLK14	141	CTSV to		0.187	C OLTO	C COOLTOU	0.01 (-	5 521-01	- 1201-01		
											CST2 to	kidnov treit	(0.122 -			0.021 to				
211	CTEV	COTO	Destains	CEPHIN	1:0	0.040	1 1007 00	7.0475.00	CEP E4	v	CED E4	in E4	04 79 0 244)	0.00.00	0.0005.00	0.041	5 2 AT 01	6 1025 01	0.107 1.000 00	0.70 0.0000 00
319	CISV	CS13	Proteins	eGFRbiom	diftype	-0 248	1 199E-08	/ 04/E-08	eGFR F4	Y	eGFR F4	1n F4	94 /8 0 244)	0 0E+00	0 000E+00	0.041)	5 34E-01	o 103E-01	0 197 1 660E-08	-0 /8 0 000E+00

				1			r			** 1				r		r	<i>r</i>	,		
										Urine		0.050 /			0.004					
										albumin to		-0 0/2 (-			-0 084 (-					
Urii	ne									CKD F4 to	kidney trait	0 144 to -			0 188 to					
322 albi	umin FN	1 UACRb	om Proteins		diftype	-0 102 2 051E-02	3 770E-02	CKD F4	M	FN1	in F4	46 06 0 02)	8 0E-03	1 664E-02	0 017)	1 12E-01	1 298E-01	1 585	4 296E-43	-0 559 3 945E-04
						l í	ſ			FN1 to		0 129	[Í	0 004 (-	1	Í			
										CST3 to	kidney trait	(0 074 to			0 022 to					
323 FN	1 CS1	F3 Proteins	eGFRbi	om	diftype	-0 193 1 020E-05	3 802E-05	eGFR F4	Y	eGFR F4	in F4	97 05 0 185)	0 0E+00	0 000E+00	0 032)	8 10E-01	8 429E-01	0 133	1 248E-05	-0 78 0 000E+00
							r			FN1 to										
										Urine		-0 099 (-			-0 003 (-					
	Urii	ne								albumin to	kidney trait	0 164 to -			0 051 to					
325 FN	1 albu	umin Proteins	UACRb	iom	diftype	-0 102 2 051E-02	3 770E-02	UACR F4	Y	UACR F4	in F4	96 69 0 036)	2 0E-03	7 459E-03	0 04)	9 26E-01	9 396E-01	-0 102	1 236E-02	0 925 0 000E+00
							•			Creatinine		-0 067 (-		-	-0 093 (-					
Cre	atini									to CKD F4	kidney trait	0 135 to -			0 208 to					
327 ne	FN	1 eGFRbi	om Proteins		diftype	-0 133 2 624E-03	6 629E-03	CKD F4	М	to FN1	in F4	41 85 0 019)	4 0E-03	9 406E-03	0 02)	1 10E-01	1 278E-01	1 153	1 412E-24	-0 559 3 945E-04
										ESTL3 to		0 223			0.03 (-					
										eGER E4 to	kidnev trait	(0.166 to			0.016 to					
331 EST		T3 Proteins	GERbi	om	diffune	0.33 1.775E-14	2 223E-13	GER EA	м	CST3	in E4	88 28 0 278)	0.0E+00	0.000E+00	0.073)	2 00E-01	2 714E-01	0.244	1 871E-15	0.78 0.000E±00
551151		15 Hotems	COLKON	om	untype	0.55 1.77512-14	2 22512-15	COLKI4	191	P2M to	11114	0.417 (0 OL+00	0.0001+00	0.012 (2 001-01	27142-01	-0 244	10/12-15	-07800001+00
										CST2 to	hi da ar tari t	-0417(-			-0012 (-					
225 021		D 2 D	OF DI .		2.0	0.615 1.0265 54	2 0055 52	CED E4		CS13 to	kidney trait	0 46/ to -	0.015.00	0.00015.00	0.061 to	6 (2 5 01	7.0405.01	0.42	4 4205 50	0.70 0.0005 00
335 B2P	M CS	13 Proteins	eGFRbi	om	diftype	0.615 1.036E-54	2 985E-52	eGFR F4	Y	eGFR F4	1n F4	9/18/03/)	0 0E+00	0 000E+00	0 038)	6 62E-01	7 242E-01	-043	4 438E-50	-0 /8 0 000E+00
										eGFR F4 to		-0 7/8 (-				_				
										CST3 to	kidney trait	1 024 to -			-0 058 (-0 .	3				
335								eGFR F4	Х	B2M	in F4	93 05 0 533)	0 0E+00	0 000E+00	to 0 173)	6 62E-01	7 242E-01			
							ſ			MASP1 to						1				
										Urine		-0 01 (-			-0 016 (-					
	Urii	ne								albumin to	kidney trait	0 022 to -			0 036 to					
338 MA	SP1 albu	umin Proteins	UACRb	iom	diftype	-0 113 1 015E-02	2 074E-02	CKD F4	Y	CKD F4	in F4	38 12 0 003)	6 0E-03	1 338E-02	0 007)	1 40E-01	1 568E-01	-0 522	2 509E-03	1 585 4 296E-43
							r			CKD F4 to		-0 183 (-			-0 225 (-					
										CST3 to	kidney trait	0 328 to -			0 52 to					
339 CS1	ГЗ МА	SP1 eGFRbi	om Proteins		diftype	-0 157 3 603E-04	1 059E-03	CKD F4	х	MASP1	in F4	44 88 0 063)	0 0E+00	0 000E+00	0 072)	1 32E-01	1 500E-01	1 437	1 040E-29	-0 522 2 509E-03
										MASP1 to		-0.012 (-			-0.019 (-					
										CST3 to	kidnev trait	0.023 to -			0.043 to					
339								CKD F4	v	CKD F4	in F4	38 96 0 005)	0.0E+00	0.000E+00	0.002)	7 40E-02	9.000E-02			
337						-	-	CILD I 4	-	MASD1 to	11114	0.11(C OLITOO	F	0.012 (5 000E 02			
										ACED E4 to	hidmorr tooit	0.192.40			0.020 to					
242 144	CD1 CC1	F2 Destains	CEDI		d: from a	0.157.2.602E.04	1.050E.02	CED E4	м	COTK F4 10	in E4	0 165 10 -	0.05.00	0.000E.00	0 039 10	4.045.01	4.962E-01	0.110	4 6605 05	0.78 0.0000 .00
542 MA	SPI CS	15 Proteins	eorkoi	om	untype	-0 137 3 003E-04	1 039E-03	EGLK L4	IVI	CS15	ШГ4	0,102	0 0E+00	0 000E+00	0.02)	4 04E-01	4 805E-01	0 119	4 009E-03	-0 /8 0 000E+00
										MASP1 to		0 102			0 017 (-					
										CS13 to	kidney trait	(0 046 to			0 009 to					
342							_	eGFR F4	Y	eGFR F4	in F4	85 84 0 165)	0 0E+00	0 000E+00	0 052)	2 72E-01	3 517E-01			
										KDR to		0 145			0 009 (-					ſ
										CST3 to	kidney trait	(0 089 to			0 02 to					
346 KD	R CS	Γ3 Proteins	eGFRbi	om	diftype	-0 264 1 282E-09	8 789E-09	eGFR F4	Y	eGFR F4	in F4	94 19 0 201)	0 0E+00	0 000E+00	0 04)	5 56E-01	6 298E-01	0 153	4 635E-07	-0 78 0 000E+00
							·			Creatinine		-0 071 (-	ſ	[-0 066 (-					
Cre	atini									to CKD F4	kidney trait	0 14 to -			0 192 to					
348 ne	IGF	2R eGFRbi	om Proteins		diftype	-0 098 2 672E-02	4 693E-02	CKD F4	М	to IGF2R	in F4	51 67 0 025)	0 0E+00	0 000E+00	0 053)	2 92E-01	3 085E-01	1 153	1 412E-24	-0 689 7 657E-05
							•			IGF2R to		0 137		1						ľ
										CST3 to	kidney trait	(0 079 to			0 (-0 029 to	b				
351 IGF	ZR CST	Γ3 Proteins	eGFRbi	om	diftype	-0 187 1 945E-05	6 830E-05	eGFR F4	Y	eGFR F4	in F4	99 73 0 188)	0 0E+00	0 000E+00	0 033)	9 68E-01	9 756E-01	0 138	2 099E-05	-0 78 0 000E+00
									-	CKD F4 to		-0.228 (-			,			0.100		
										CST3 to	kidney trait	0.356 to -			-0.264 (-0.4	6				
352 (51	ГЗ РГС	GERbi	m Proteine		diffype	-0.261 1.881F-00	1 204E-08	CKD F4	x	PLG	in F4	46 32 0 117)	0.0F+00	0.000F+00	to 0 106)	1 70F-01	1 856F-01	1 437	1.040F-29	-0 56 4 843F 04
552 051					anype	0.201 1.001E-09	1 2042 00			PLG to		-0.015 (0001100	-0.018 (. /01 01	. 0501 01	1 +57		0.00 + 0+010-04
										CST2 to	kidnor tesit	-0.013 (-			0.026 +					
252								CVD F4	v	CS1310	in E4	46.02 0.009	0.05.00	0.000E.00	0.012	2.065.01	2 220E 01			
352								CKD F4	r	CKD F4	111 F4	46 02 0 008)	0 0E+00	0 000E+00	0.012)	∠ 00E-01	2 229E-01			

							r				CTSH to		-0 293 (-			-0 024 (-		ſ		l l
											CST3 to	kidney trait	0 346 to -			0 06 to				
356	CTSH	CST3	Proteins	eGFRbiom	diftype	0 415	8 967E-23	4 570E-21	eGFR F4	Y	eGFR F4	in F4	92 52 0 237)	0 0E+00	0 000E+00	0 015)	2 44E-01	3 231E-01	-0 317 1 036E-23	-0 78 0 000E+00
											eGFR F4 to		-0 425 (-	ſ	ľ.	-0 153 (-				
											CST3 to	kidney trait	0 639 to -			0 372 to				
356							_		eGFR F4	Х	CTSH	in F4	73 56 0 221)	0 0E+00	0 000E+00	0 094)	2 44E-01	3 231E-01		
							·				CTSH to		0 044	ľ.	r	0 005 (-				
											CST3 to	kidney trait	(0 024 to			0 025 to				
357	CTSH	CST3	Proteins	eGFRbiom	diftype	0 415	8 967E-23	4 570E-21	CKD F4	Y	CKD F4	in F4	89 7 0 071)	0 0E+00	0 000E+00	0 038)	7 72E-01	7 775E-01	073570E-05	1 437 1 040E-29
											CKD F4 to		0 465	ľ.	r	0 17 (-				
											CST3 to	kidney trait	(0 29 to			0 078 to				
357									CKD F4	Х	CTSH	in F4	73 28 0 665)	0 0E+00	0 000E+00	0 439)	1 60E-01	1 762E-01		
								r			FCN3 to		0 092		r -	0 013 (-				
											CST3 to	kidney trait	(0 041 to			0 023 to				
359	FCN3	CST3	Proteins	eGFRbiom	diftype	-0 132	2 699E-03	6 759E-03	eGFR F4	Y	eGFR F4	in F4	87 94 0 144)	2 0E-03	4 401E-03	0 047)	5 06E-01	5 853E-01	0 105 1 598E-03	-0 78 0 000E+00
							r				RPS6KA5				r		r			
											to UACR F4	L.	0 083			0 002 (-				
	RPS6K	Urine									to Urine	kidney trait	(0 021 to			0 039 to				
362	A5	albumin	Proteins	UACRbiom	diftype	0 102	2 130E-02	3 858E-02	UACR F4	М	albumin	in F4	97 53 0 146)	4 0E-03	1 314E-02	0 046)	9 02E-01	9 289E-01	0 105 8 281E-03	0 925 0 000E+00
							*	•			MED1 to				1					
											Urine		0 103			0 011 (-				
		Urine									albumin to	kidney trait	(0 027 to			0 04 to				
364	MED1	albumin	Proteins	UACRbiom	diftype	0 146	9 329E-04	2 584E-03	UACR F4	Y	UACR F4	in F4	90 57 0 194)	2 0E-03	7 459E-03	0 057)	6 74E-01	8 207E-01	0 114 6 638E-03	0 925 0 000E+00
							r				PAPPA to		0 019			0 025 (-	r		· · · · · ·	
											CST3 to	kidney trait	(0 009 to			0 01 to				
365	PAPPA	CST3	Proteins	eGFRbiom	diftype	0 193	1 121E-05	4 036E-05	CKD F4	Y	CKD F4	in F4	43 85 0 032)	0 0E+00	0 000E+00	0 067)	1 38E-01	1 558E-01	0 526 8 906E-04	1 437 1 040E-29
											CKD F4 to		0 217			0 294 (-				
											CST3 to	kidney trait	(0 083 to			0 096 to				
365									CKD F4	х	PAPPA	in F4	42 47 0 362)	0 0E+00	0 000E+00	0 681)	1 16E-01	1 334E-01		
											Urine									
											albumin to		0 089			0 014 (-				
	Urine										CKD F4 to	kidney trait	(0 019 to			0 082 to				
369	albumin	IL6	UACRbiom	Proteins	diftype	0 133	2 452E-03	6 248E-03	CKD F4	Μ	IL6	in F4	86 7 0 19)	8 0E-03	1 664E-02	0 128)	7 26E-01	7 334E-01	1 585 4 296E-43	0 395 3 724E-04
											CKD F4 to		0 335			0 117 (-				
											CST3 to	kidney trait	(0 193 to			0 12 to				
370	CST3	TFF3	eGFRbiom	Proteins	diftype	0 376	1 102E-18	2 886E-17	CKD F4	х	TFF3	in F4	74 11 0 5)	0 0E+00	0 000E+00	0 337)	3 08E-01	3 244E-01	1 437 1 040E-29	0 438 2 250E-03
											TFF3 to		0 032		•	0 012 (-	-			
											CST3 to	kidney trait	(0 016 to			0 013 to				
370									CKD F4	Y	CKD F4	in F4	72 47 0 059)	0 0E+00	0 000E+00	0 044)	3 56E-01	3 726E-01		
							•	•			TFF3 to		0 021	1		0 018 (-				
		Creatini									Creatinine	kidney trait	(0 009 to			0 004 to				
371	TFF3	ne	Proteins	eGFRbiom	diftype	0 273	2 976E-10	2 255E-09	CKD F4	Y	to CKD F4	in F4	53 85 0 038)	0 0E+00	0 000E+00	0 048)	1 30E-01	1 484E-01	0 438 2 250E-03	1 153 1 412E-24
					~1						CKD F4 to		0 196			0 255				
											Creatinine	kidney trait	(0 095 to			(0 017 to				
371									CKD F4	x	to TFF3	in F4	43 48 0 307)	0 0E+00	0 000E+00	0 479)	3 80E-02	4 970E-02		
											TFF3 to		0 216			0 028 (-				
											eGFR F4 to	kidney trait	(0 137 to			0 008 to				
373	TFF3	CST3	Proteins	eGFRbiom	diftype	0 376	1 102E-18	2 886E-17	eGFR F4	М	CST3	in F4	88 47 0 326)	0 0E+00	0 000E+00	0 07)	1 34E-01	1 927E-01	-0 237 6 389E-14	-0 78 0 000E+00
					~1						EPHA2 to		-0 165 (-	-		-0 005 (-				
											CST3 to	kidney trait	0 224 to -			0 039 to				
375	EPHA2	CST3	Proteins	eGFRbiom	diftype	0 256	3 863E-09	2 318E-08	eGFR F4	Y	eGFR F4	in F4	96 9 0 108)	0 0E+00	0 000E+00	0 028)	7 62E-01	8 128E-01	-0 17 1 800E-08	-0 78 0 000E+00
											NTRK2 to		0 102			0 002 (-				
											CST3 to	kidney trait	(0 054 to			0 028 to				
379	NTRK2	CST3	Proteins	eGFRbiom	diftype	-0 16	2 641E-04	8 091E-04	eGFR F4	Y	eGFR F4	in F4	97 74 0 151)	0 0E+00	0 000E+00	0 033)	8 56E-01	8 812E-01	0 104 4 388E-04	-0 78 0 000E+00
					yr	. 10				-										0.10 0.000 0.000

	1	1				r	r	1				,	r	1		r			
							ſ			NTRK2 to			ſ		[
										Urine	-0 012 (-			-0 018 (-					
	Urine									albumin to kidney tra	t 0 023 to -			0 037 to					
383 NTRK2	albumin	Proteins	UACRbiom	diftype	-0 13	3 103E-03	7 447E-03	CKD F4	Y	CKD F4 in F4	38 8 0 005)	4 0E-03	9 406E-03	0 002)	7 40E-02	9 000E-02	-0 518 1 411E-03	1 585 4	4 296E-43
				21		•	•			AMH to	0.156			0.015 (-					
										CST3 to kidney tra	t (0.105 to			0.017 to					
296 4141	COT2	Ductoins	CEDLine	difference.	0.222	2 500E 07	1 600E 06	CED E4	v	aCED E4 in E4	01 10 0 212)	0.05.00	0.000E.00	0.047)	4.06E.01	4 9725 01	0.171.2.012E.08	0.78 0	
380 AMII	CS15	Proteins	eGFKbiolii	untype	-0 225	5 300E-07	1 000E-00	EOLK L4	1	COFK F4 III F4	91 19 0 213)	0 0E+00	0 000E+00	0.047)	4 00E-01	4 872E-01	0 1/1 2 012E-08	-0 /8 0	000E+0
										AMH to	-0 157 (-			-0 031 (-					
										eGFR F4 to kidney tra	t 0 223 to -			0 064 to -					
386								eGFR F4	Μ	CST3 in F4	83 58 0 094)	0 0E+00	0 000E+00	0 001)	4 40E-02	7 159E-02			
						r	r			AMH to	-0 017 (-		· ·	-0 014 (-					
										CST3 to kidney tra	t 0 028 to -			0 035 to					
387 AMH	CST3	Proteins	eGFRbiom	diftype	-0 223	3 500E-07	1 600E-06	CKD F4	Y	CKD F4 in F4	54 63 0 009)	0.0E+00	0 000E+00	0.009)	1 82E-01	1 978E-01	-0 533 7 168E-04	1 437 1	1 040E-29
				and provide the second se					-	CKD E4 to	0.262 (-	0.246 (
										CKD 14 10 CET2 to bidness two	-0.202 (-			-0 240 (-					
207										CS1510 kidney tra	1 0 39 10 -	0.05.00		0 381 10					
387								CKD F4	X	AMH 1n F4	51 65 0 147)	0 0E+00	0 000E+00	0 068)	1 32E-01	1 500E-01			
										Creatinine	0 059			0 097 (-					
Creatini										to CKD F4 kidney tra	t (0.013 to			0 025 to					
389 ne	MMP1	eGFRbiom	Proteins	diftype	0 131	2 925E-03	7 199E-03	CKD F4	М	to MMP1 in F4	37 62 0 124)	1 2E-02	2 272E-02	0 229)	1 16E-01	1 334E-01	1 153 1 412E-24	0 571 2	2 747E-04
										MMP1 to	0.071			0.014 (-					
	Creatini									eGER E4 to kidney tra	t (0.013 to			0.021 to					
200 MMP1	no	Drotaine	CEPhiom	diffumo	0.121	2 025E 02	7 100E 02	CED E4	м	Croatining in E4	82 72 0 122)	2 05 02	2 547E 02	0.052)	4 195 01	4 085E 01	0.077 1 1885 02	0 726 0	
390 IVIIVIF I	ne	FIOTEIIIS	CONTROLOUT	untype	0 1 5 1	2 92512-05	7 1991-03	COLK 1.4	IVI	Creatinine III 14	83730132)	2 012-02	5 54712-02	0.033)	4 16E-01	4 96512-01	-0 077 1 1881-02	-07200	00012+0
										MMP1 to	-0 063 (-			-0 014 (-					
										Creatinine kidney tra	t 0 12 to -			0 043 to					
390								eGFR F4	Y	to eGFR F4 in F4	81 97 0 009)	2 0E-02	3 547E-02	0 017)	4 52E-01	5 292E-01			
										C1QBP to	0 205			0 026 (-					
										CST3 to kidney tra	t (0 156 to			0 005 to					
392 C10BP	CST3	Proteins	eGFRbiom	diftype	-0.35	3 087E-16	5 556E-15	eGFR F4	Y	eGFR F4 in F4	88 57 0 258)	0.0E+00	0.000E+00	0.058)	9 20E-02	1 380E-01	0 231 1 113E-14	-0.78.0	000E+0
									-	EPP29 to									
										LIACE E4 to	0.146			0.028 (
										UACK 14 10	0 140			0.024 (-					
	Urine									Urine kidney tra	t (00/5 to			0 024 to					
395 ERP29	albumin	Proteins	UACRbiom	diftype	0 141	1 329E-03	3 577E-03	UACR F4	M	albumin in F4	83 85 0 215)	0 0E+00	0 000E+00	0 079)	2 42E-01	3 479E-01	0 185 3 315E-05	0 925 0	0 000E+0
										ERP29 to									
										Urine	0 149			0 036 (-					
										albumin to kidney tra	t (0.067 to			0 01 to					
395								UACR F4	Y	UACR F4 in F4	80 78 0 231)	0 0E+00	0 000E+00	0 084)	1 52E-01	2 530E-01			
									-	ERP29 to	0.202			0.024 (-					
										aCEP E4 to kidnov tro	t (0.14 to			0.011 to					
400 EDD00	COTO	Destation	CEDI	1.6	0.261	1.0405.00	1 2045 00	CED E4		COTK 14 10 Kulley IIa	(0 14 10	0.05.00	0.0000 .00	0.0(1)	1.005.01	2 COCE 01	0.00.0.249E 11	0.70	0000
400 EKP29	CSIS	Proteins	eGFKbiom	ainype	0 261	1 840E-09	1 204E-08	eGFR F4	M	US13 In F4	89 32 0 269)	0 0E+00	0 000E+00	0.001)	1 90E-01	2 000E-01	-0 22 2 348E-11	-0 /8 0) 000E+0
										Urine									
										albumin to	-0 08 (-			-0 081 (-					
Urine										CKD F4 to kidney tra	t 0 164 to -			0 174 to					
404 albumin	SOD2	UACRbiom	Proteins	diftype	-0 103	1 965E-02	3 675E-02	CKD F4	Μ	SOD2 in F4	49 74 0 029)	2 0E-03	5 252E-03	0 012)	8 20E-02	9 816E-02	1 585 4 296E-43	-0 678 3	3 208E-05
				21						SOD2 to				,					
										LIACR E4 to	-0.103 (-			-0.02 (-					
	Urino									Urino kidrou tro	t 0.170.40			0.058 to					
404 5000	Unite	Destation	UACOL	1.6	0.102	1.0655.02	2 (75) 02	UACD E4		cline kidney tra	01/910-	2.05.02	7 4505 02	0 038 10	2.000 01	1.0000 01	0 121 1 7225 02	0.025.0	0000
400 5002	arounin	FIOLEHIS	UACKDIOM	untype	-0 105	1 903E-02	5 073E-02	UAUK F4	IVI	arodinin in F4	65 / 0 030)	2 UE-03	/ 439E-03	0.025)	3 00E-01	4 000E-01	-0 151 1 /52E-05	0.925 0	000E+0
										CST3 to	0 095			0 092 (-					
	KIR2DI	-								CKD F4 to kidney tra	t (0 014 to			0 024 to					
407 CST3	4	eGFRbiom	Proteins	diftype	0 125	4 556E-03	1 033E-02	CKD F4	Μ	KIR2DL4 in F4	50 74 0 224)	2 0E-02	3 367E-02	0 218)	1 34E-01	1 520E-01	1 437 1 040E-29	0 481 3	3 354E-04
						r													
										KIR2DL4 to	0 093			0 013 (-					
KIR2DI	Creatini									eGFR F4 to kidney tra	t (0.039 to			0.021 to					
408 4	ne	Proteine	eGERbiom	diffune	0.120	3 486E-02	8 229E-02	eGEP F4	м	Creatinine in E4	87 28 0 158)	0.0E±00	0.000E+00	0.048)	4 42E-01	5 206E-01	-0 101 0 352E-04	-0 726 0	0005+0
+00 +	1IC	1 TOICHIS	CONTROLO	untype	0 1 29	5 +00E-05	0 22912-03	COLK 1.4	11/1	creatinine in 14	07 20 0 138)	0.01700	000000000000000000000000000000000000000	0 040)	+ +2E-01	J 200E-01	-0 101 9 352E-04	-0 / 20 0	000E+00

											NOTCH1												
		Urine									to Urine			-0.141 (-			-0.008 (-						
	NOTCH	albumi									albumin to	kidney trait		0.222 to -			0.056 to						0.000E+0
411	1	n	Proteins	UACRbiom	diftype	-0.173	8.450E-05	2.734E-04	UACR F4	Y	UACR F4	in F4	94 85	0.067)	2.0E-03	7.459E-03	0.044)	8.12E-01	8.747E-01	-0.148	5 220E-04	0.925	0
											NOTCH1			-0.091 (-			-0.006 (-						
	NOTCH										to eGFR F4	kidney trait		0.159 to -			0.037 to						0.000E+0
413	1	CST3	Proteins	eGFRbiom	diftype	-0.13	3.277E-03	7.801E-03	eGFR F4	М	to CST3	in F4	94 08	0.028)	6.0E-03	1.194E-02	0.026)	7.16E-01	7.680E-01	0.098	2 210E-03	-0.78	0
											CST3 to			-0.073 (-			-0.11 (-						
		NOTCH									CKD F4 to	kidney trait		0.165 to -			0.252 to						
414	CST3	1	eGFRbiom	Proteins	diftype	-0.13	3.277E-03	7.801E-03	CKD F4	М	NOTCH1	in F4	39 92	0.014)	2.0E-02	3.367E-02	0.037)	1.44E-01	1.605E-01	1.437	1 040E-29	-0.584	2.723E-04
											RELT to			0.046			0.002 (-						
											CST3 to	kidney trait		(0.024 to			0.04 to						
418	RELT	CST3	Proteins	eGFRbiom	diftype	0.462	1.615E-28	2.325E-26	CKD F4	Y	CKD F4	in F4	95.73	0.07)	0.0E+00	0.000E+00	0.048)	9.56E-01	9 560E-01	0.694	3 832E-05	1.437	1.040E-29
											CKD F4 to			0.503			0.147 (-						
											CST3 to	kidney trait		(0.305 to			0.172 to						
418									CKD F4	х	RELT	in F4	77 33	0.744)	0.0E+00	0.000E+00	0.456)	3.88E-01	4 043E-01				
											SCARF1 to			0.021			0.017 (-						
											CST3 to	kidney trait		(0.01 to			0.011 to						
419	SCARF1	CST3	Proteins	eGFRbiom	diftype	0.229	1.554E-07	7.590E-07	CKD F4	Y	CKD F4	in F4	55	0.034)	0.0E+00	0.000E+00	0.052)	2.36E-01	2 520E-01	0.555	4 358E-04	1.437	1.040E-29
											CKD F4 to			0.266			0.295						
											CST3 to	kidney trait		(0.142 to			(0.018 to						
419									CKD F4	х	SCARF1	in F4	47 35	0.428)	0.0E+00	0.000E+00	0.576)	4.00E-02	5.197E-02				
											TNFRSF19			0.122			0.001 (-						
	TNFRSF										to eGFR F4	kidney trait		(0.054 to			0.04 to						0.000E+0
423	19	CST3	Proteins	eGFRbiom	diftype	0.294	1.165E-11	1.119E-10	eGFR F4	м	to CST3	in F4	98 83	0.216)	0.0E+00	0.000E+00	0.039)	8.78E-01	8 987E-01	-0.132	2 994E-06	-0.78	0
											TNFRSF19												
											to eGFR F4			0.121			0.02 (-						
	TNFRSF	Creatin									to	kidney trait		(0.053 to			0.016 to						0.000E+0
424	19	ine	Proteins	eGFRbiom	diftype	0.238	4.825E-08	2.573E-07	eGFR F4	м	Creatinine	in F4	86 07	0.218)	0.0E+00	0.000E+00	0.059)	2.94E-01	3.726E-01	-0.132	2 994E-06	-0.726	0
											TNFRSF19												
											to			-0.104 (-			-0.028 (-						
											Creatinine	kidney trait		0.175 to -			0.075 to						
424									eGFR F4	Y	to eGFR F4	in F4	78.76	0.055)	0.0E+00	0.000E+00	0.014)	1.70E-01	2 382E-01				
											HAVCR2 to			0.028			0.01 (-						
	HAVCR										CST3 to	kidney trait		(0.013 to			0.022 to						
425	2	CST3	Proteins	eGFRbiom	diftype	0.22	4.911E-07	2.143E-06	CKD F4	Y	CKD F4	in F4	74 32	0.048)	0.0E+00	0.000E+00	0.046)	6.06E-01	6.172E-01	0.534	2.122E-03	1.437	1.040E-29
											CKD F4 to			0.262			0.181 (-						
											CST3 to	kidney trait		(0.129 to			0.12 to						
425									CKD F4	х	HAVCR2	in F4	59.12	0.444)	0.0E+00	0.000E+00	0.487)	2.74E-01	2 907E-01				
											HAVCR2 to			-0.185 (-			-0.003 (-						
	HAVCR										CST3 to	kidney trait		0.262 to -			0.038 to						0.000E+0
426	2	CST3	Proteins	eGFRbiom	diftype	0.22	4.911E-07	2.143E-06	eGFR F4	Y	eGFR F4	in F4	98.41	0.118)	0.0E+00	0.000E+00	0.031)	8.64E-01	8 871E-01	-0.188	2 286E-08	-0.78	0
											UNC5C to			-0.18 (-	· · · · · ·		-0.018 (-						
											CST3 to	kidney trait		0.243 to -			0.053 to						0.000E+0
430	UNC5C	CST3	Proteins	eGFRbiom	diftype	0.24	3.842E-08	2.128E-07	eGFR F4	Y	eGFR F4	in F4	90 91	0.117)	0.0E+00	0.000E+00	0.014)	3.14E-01	3 953E-01	-0.198	5.437E-10	-0.78	0
											LEPR to			0.06			0.012 (-						
		Creatin									Creatinine	kidney trait		(0.019 to			0.047 to						0.000E+0
434	LEPR	ine	Proteins	eGFRbiom	diftype	-0.127	3.919E-03	9.103E-03	eGFR F4	Y	to eGFR F4	in F4	83.19	0.106)	2.0E-03	4.401E-03	0.06)	6.20E-01	6 881E-01	0.072	2 239E-02	-0.726	0

											CST3 to			-0 089 (-			-0.045 (-					
											CKD F4 to	kidney trait		0 215 to -			0.241 to					
435	CST3	LEPR	eGFRbiom	Proteins	diftype	-0.132	2.747E-03	6.820E-03	CKD F4	М	LEPR	in F4	66.17	0 014)	1.2E-02	2.272E-02	0.135)	6.16E-01	6.261E-01	1.437 1.040E-29	-0.444	6.633E-04
							Í				Creatinine			-0 063 (-			-0.079 (-					
	Creatin										to CKD F4	kidney trait		0.146 to -			0.17 to					
436	ine	LEPR	eGFRbiom	Proteins	diftype	-0.127	3.919E-03	9.103E-03	CKD F4	М	to LEPR	in F4	44.42	0 009)	1.2E-02	2.272E-02	0.015)	1.14E-01	1.315E-01	1.153 1.412E-24	-0.444	6.633E-04
											ACSL1 to											
		Urine									CKD F4 to			0 082			0.004 (-					
		albumi									Urine	kidney trait		(0 03 to			0.04 to					
441	ACSLI	n	CpGs	UACKDIOM	diftype	0.072	2.522E-02	4.455E-02	CKD F4	IVI	albumin	IN F4	95.08	0.156)	0.0E+00	0.000E+00	0.051)	8 50E-01	8.543E-01	0.567 1.676E-05	1.585	4.296E-43
											onne olhumin to			0.069			0.007/					
												kidnov trait		0 000 (0 042 to			0.007 (-					
441										м	ACSI 1	in FA	Q1 12	0 133)	0.0F±00	0.000F±00	0.004 10	8 50F-01	8 5/3F-01			
441							•	-	CKD14	IVI	ACSL1 to		51.12	0.1337	0.02100	0.0001100	0.00)	0 302-01	0.5452-01			,
		Urine									UACR F4			0.051			0 007 (-					
		albumi									to Urine	kidnev trait		(0.017 to			0.021 to					0 000F+0
442	ACSL1	n	CpGs	UACRbiom	diftype	0.072	2.522E-02	4.455E-02	UACR F4	м	albumin	in F4	87.51	0 086)	1.0E-02	2.706E-02	0.036)	6.12E-01	7.678E-01	0.066 3.586E-02	0.925	0
					,		r i i i							,			,	1	-			·
											LYL1 to											
		Urine									Urine			0.117			0.005 (-					
		albumi									albumin to	kidney trait		(0 054 to			0.034 to					0.000E+0
444	LYL1	n	CpGs	UACRbiom	diftype	0.081	1.303E-02	2.536E-02	UACR F4	Y	UACR F4	in F4	95.95	0.184)	0.0E+00	0.000E+00	0.04)	8 20E-01	8.747E-01	0.122 3.282E-04	0.925	0
															ſ							
											LYSMD2 to											
		Urine									UACR F4			-0.125 (-			-0.024 (-					
	LYSMD	albumi									to Urine	kidney trait		0.179 to -			0.059 to					0.000E+0
445	2	n	CpGs	UACRbiom	diftype	-0.143	1.099E-05	4.005E-05	UACR F4	М	albumin	in F4	83.67	0 071)	0.0E+00	0.000E+00	0.013)	1 92E-01	3.011E-01	-0.163 6.788E-07	0.925	0
											LYSMD2 to											
											Urine			-0.135 (-			-0.027 (-					
											albumin to	kidney trait		0.195 to -			0.065 to					
445									UACR F4	Y	UACR F4	in F4	83.25	0 076)	0.0E+00	0.000E+00	0.01)	1.48E-01	2.530E-01			
											CKDcrcc S4	Lista and the state		0 5 07 (0			1 264 (0)					
447	CCT2		oCERhiam	Drotoinc	diffunc	0.24	2 0425 00	2 1205 07	CKDerec SA	v		kidney trait	20 62	0 507 (0	0.05.00	0.0005.00	1.264 (0 10	2 005 02	2 0245 02	1 705 5 0645 10	1 772	6 0335 03
447	515	UNCSC	egrapioni	Proteins	untype	0 24	5.042E-00	2.1202-07	CKDUILE 34	^	UNCSC	111 34 (dS A)	20.05	10 0 918)	0.0E+00	0.000E+00	2.015)	2 00E-02	5.024E-02	1.705 5.904E-19	1.772	0.055E-05
											to LINCSC	kidnev trait		0 295 (0			1 106 (0 +	,				
447									CKDcrcc S4	x	to CST3	in S4 (as X)	21 07	to 0 634)	0.0F+00	0.000F+00	1 491)	0.00F+00	0.000F+00			
/							•	•	5.12 51 66 54		CKDcrcc S4		21.07			5.0002.00		5 552.00	F			
											to CST3 to	kidney trait		0.619 (0			1.002 (0 to	b				
448	CST3	EFNA5	eGFRbiom	Proteins	diftype	0.287	3.780E-11	3.202E-10	CKDcrcc S4	х	EFNA5	in S4 (as X)	38.21	to 1.111)	2.0E-03	2.583E-03	1.902)	0 00E+00	0.000E+00	1.705 5.964E-19	1.621	8.552E-03
					.,,						-											
											CKDcrcc S4											
											to EFNA5	kidney trait		0 361 (0			1.041 (0 to	0				
448									CKDcrcc S4	х	to CST3	in S4 (as X)	25.74	to 0.638)	2.0E-03	2.583E-03	1.374)	0 00E+00	0.000E+00			

						· · · · ·				CKDoroc C4				r	-		r			·	
										CKDCrcc S4						0.54 /					
										το						0.51 (-					
	TNFRSF	-								TNFRSF1A	kidney trait		0.891 (0			0.557 to					
449	1A	CST3	Proteins	eGFRbiom	diftype	0.442 6.3	56E-26 6.102E-24	CKDcrcc S4	х	to CST3	in S4 (as X)	63.62	to 1.856)	0.0E+00	0.000E+00	1.097)	2.30E-01	2.502E-01	2.332	3.819E-05	1.705 5.964E-19
							Í			CKDcrcc S4			0.388	ſ.	ſ	0.59		Í		í	Í
										to CST3 to	kidney trait		(0.196 to			(0.138 to					
450	CST3	C8:1	eGFRbiom	Metabolites	diftype	0.166 6.1	50E-10 4.428E-09	CKDcrcc S4	х	C8:1	in S4 (as X)	39.68	0.686)	0.0E+00	0.000E+00	1.035)	6.00E-03	1.033E-02	1.705	5.964E-19	0.986 2.594E-06
											. ,					· ·		-			
										CKDcrcc S4						0 614 (-					
		TNEDCE								to CST2 to	kidnov trait		0 062 (0			0.657 to					
451		10	CEDhiam	Ductoine	al:64	0.415.0.5	215 22 4 5705 24	CKD area CA	v			C1 0C	0.903 (0	0.05.00	0.0005.00	1.000	2 005 01	2 0425 01	1 705	E 064E 10	1 570 7 0055 07
451	515	TP	egrapioni	Proteins	untype	0.415 9.5	21E-25 4.570E-21	CKDUILL 34	^		111 54 (dS A)	01.00	10 1.515)	0.02+00	0.000E+00	1.000)	2.80E-01	2.942E-01	1.705	5.904E-19	1.576 7.905E-03
										CKDcrcc S4											
										to											
										TNFRSF1B	kidney trait		0.588 (0			0.813 (0 to)				
451								CKDcrcc S4	х	to CST3	in S4 (as X)	41.99	to 1.031)	0.0E+00	0.000E+00	1.304)	4.00E-03	7.515E-03			
										CKDcrcc S4			-0.554 (-	1							
										to CST3 to	kidnev trait		0.897 to			-1.151 (-					
452	CST3	C10BP	eGERbiom	Proteins	diftyne	-0 35 3 0	87F-16 5 556F-15	CKDcrcc S4	x	C1OBP	in S4 (as X)	32 49	0)	0 0F+00	0.000F+00	1 65 to 0)	0.00F+00	0.000F+00	1 705	5 964F-19	-1 706 2 021F-03
	00.0	0100	contoin	Troteins	untype	0.00 0.0	072 10 0.0002 10	0.000.000	~	0100		02.15	0)			1.05 10 07			1.705	5.5012 15	1.700 2.0212 00
										CKDCrCC 54			/-								
										to C1QBP	kidney trait		0.426 (0			0.975 (0 to)				
452								CKDcrcc S4	х	to CST3	in S4 (as X)	30.41	to 0.715)	0.0E+00	0.000E+00	1.286)	0.00E+00	0.000E+00			
						[[CKDcrcc S4				()	1	0.437 (-		ſ I		Í l	ſ
										to CST3 to	kidney trait		1.254 (0			0.47 to					
454	CST3	B2M	eGFRbiom	Proteins	diftype	0.615 1.0	36E-54 2.985E-52	CKDcrcc S4	х	B2M	in S4 (as X)	74.14	to 1.67)	0.0E+00	0.000E+00	1.544)	3.48E-01	3.537E-01	1.705	5.964E-19	1.691 2.622E-03
										CKDcrcc S4	. ,		,			0.479 (-					
										to B2M to	kidnev trait		0 922 (0			0 186 to					
454								CKDerec SA	v	CST2	in SA (ac V)	65 91	+o 1 527)	0.05+00	0.0005+00	0.966)	1 225 01	1 5125 01			
434								CKDCICC 34	^	CKDarras C4	111 34 (as A)	05.81	10 1.557)	0.01+00	0.0001+00	0.900)	1.222-01	1.515L-01			
										CKDUTUU 34						0.808 (-					
										to CS13 to	kidney trait		0.893 (0			0.383 to					
455	CST3	FSTL3	eGFRbiom	Proteins	diftype	0.33 1.7	75E-14 2.223E-13	CKDcrcc S4	Х	FSTL3	in S4 (as X)	50.71	to 1.379)	0.0E+00	0.000E+00	2.154)	2.12E-01	2.347E-01	1.705	5.964E-19	1.761 4.630E-03
														ſ.							
										CKDcrcc S4											
										to FSTL3 to	kidney trait		0.557 (0			0.844 (0 to	,				
455								CKDcrcc S4	х	CST3	in S4 (as X)	39.75	to 1.031)	0.0E+00	0.000E+00	1.292)	1.20E-02	1.860E-02			
										CKDcrcc S4	- (/					/					
										to NPI 1 to	kidnov trait		0 697 (0			0 714 (0 +c					
45.0		CCTO	Drataina	CERHier	al:64	0 272 2 2	705 10 5 7005 17	CKD area CA	v	CCT2		40.05	0.007 (0	0.05.00	0.0005.00	0.714 (0 10	, , , , , , , , , , , , , , , , , , , ,	4 4 2 2 5 0 2	2 5 4 4	1 0105 04	1 705 5 0045 10
450	NDLI	CSTS	Proteins	egradioni	untype	0.575 2.5	/02-10 5./002-1/	CKDUILL 34	^	015	111 54 (dS A)	49.05	10 1.156)	0.0E+00	0.000E+00	1.102)	5.00E-02	4.155E-02	2.544	1.010E-04	1.705 5.9046-15
										CKDCrcc S4											
										to CST3 to	kidney trait		0.827 (0			1.717 (0 to)				
456								CKDcrcc S4	х	NBL1	in S4 (as X)	32.51	to 1.278)	0.0E+00	0.000E+00	2.788)	0.00E+00	0.000E+00			
						Í	ĺ.			CKDcrcc S4			0.243	ſ	ſ	0.367 (-	·	[ľ.
										to CST3 to	kidney trait		(0.08 to			0.027 to					
458	CST3	C5	eGFRbiom	Metabolites	diftype	0.182 1.2	47E-11 1.122E-10	CKDcrcc S4	Х	C5	in S4 (as X)	39.87	0.452)	0.0E+00	0.000E+00	0.735)	7.40E-02	9.558E-02	1.705	5.964E-19	0.611 1.948E-03
-										CKDcrcc S4	. /		0.353	· · ·	1		T	-			
										to CST3 to	kidnov trait		(0 188 to			0 2 (-0 224					
450	сст э	C14.2	oC E Dhio	Motobaliter	diffunc	0 244 5 2	415 20 1 6775 40	CKDeres C4	v	C14-2	in SA (as V)	62 70	0.100 (0	0.05.00	0.0005.000	to 0 670	2 095 01	2 0905 01	1 705	E 064E 10	0 540 6 5375 07
459	515	C14:2	COLUDIU	wietabolites	untype	0.244 5.2	41C-20 1.0//E-18	CNDCICC 54	^	C14.2	111 34 (dS A)	03.78	0.0)	U.UE+UU	0.000E+00	(0 0.079)	3.90E-U1	3.960E-01	1.705	5.904E-19	0.349 0.53/E-03
										CKDcrcc S4			-0.509 (-			-1.415 (-					
										to CST3 to	kidney trait		0.906 to			2.88 to					
460	CST3	SOD2	eGFRbiom	Proteins	diftype	-0.198 6.3	29E-06 2.463E-05	CKDcrcc S4	Х	SOD2	in S4 (as X)	26.47	0)	0.0E+00	0.000E+00	0.844)	2.00E-01	2.255E-01	1.705	5.964E-19	-1.924 7.211E-04

										CKDcrcc S4					0.68 (-				
										to CST3 to ki	idney trait	1 011 (0			0.287 to				
461	CST3	CTSH	eGFRbiom	Proteins	diftype	0.415	8.967E-23 4.570E-21	CKDcrcc S4	х	CTSH ir	n S4 (as X)	59.8 to 1.414)	0.0E+00	0.000E+00	2.127)	2.64E-01	2.822E-01	1.705 5.964E-19	1.691 6.212E-03
										CKDcrcc S4									
										to CTSH to ki	idney trait	0.612 (0			0.789 (0 to	b			
461								CKDcrcc S4	х	CST3 ir	, n S4 (as X)	43.7 to 1.156)	0.0E+00	0.000E+00	1.213)	3 00E-02	4.133E-02		
										CKDcrcc S4	- (/	0 567			0.221 (-				
										to CST3 to ki	idnev trait	(0.321 to			0.222 to				
462	CST3	C10:2	eGFRbiom	Metabolites	diftype	0.241	1.527E-19 4.398E-18	CKDcrcc S4	x	C10:2 ir	n S4 (as X)	71.92 0 943)	0.0E+00	0.000E+00	0.678)	2 90E-01	2.997E-01	1.705 5.964E-19	0.792 1.423E-04
		010.2	combioni	metabolites	untype	012.12	10272 10 10002 10	0.120.000	~	eGFR S4 to	(0	-0 183 (-	0.02.00	0.0002.00	-0 231 (-	2 302 01	2.0072.01	21705 515012 25	01702 111202 01
										CST3 to ki	idnev trait	0.379 to -			0.465 to				
463	CST2	FENAS	eGERhiom	Proteins	diftype	0 287	3 7805-11 3 2025-10	AGER SA	x	EENA5 in	SA(ac X)	44 28 0 038)	1 OF-02	1 818F-02	0.015)	7 80F-02	1 030F-01	-0 681 1 738F-47	-0 /1/ 3 7975-05
403	10313	LINAS	CONDICITI	FIOLEIIIS	untype	0.207	3.7801-11 3.2021-10	EGIN 34	^	oGER S4 to	1 34 (as A)	44.28 0 038)	1.01-02	1.010L-02	0.013)	7 801-02	1.0301-01	-0.081 1.738L-47	-0.414 5.7571-05
										CST2 to ki	idnov troit	-0 227 (- 0 452 to			0.0374+0				
40	CCTO		•CED his m	Ductoine	al i fan un a	0.205	0 7005 10 0 0005 11	ACED 64	v			70.00 0.452 10 -	1 05 02	1 0105 00	0.374 (0	F 1CF 01	F (22F 01	0 (01 1 7205 47	0 224 2 0595 02
404	CS13	LAYN	egrapiom	Proteins	antype	0.295	8.720E-12 8.000E-11	EGEK 54	X		1 54 (as X)	70.06 0 045)	1.0E-02	1.818E-02	0.211)	5.16E-01	5.622E-01	-0.081 1./38E-4/	-0.324 2.058E-03
		THERE								EGFR 54 LO		-0 347 (-			-0.065 (-				
		INFRSF	0551							CSI3 to K	idney trait	0 527 to -			0.268 to			0.001 4 7005 47	
465	CS13	18	eGFRbiom	Proteins	diftype	0.415	9.521E-23 4.570E-21	eGFR S4	X	INFRSF1B In	n S4 (as X)	84.15 0 215)	0.0E+00	0.000E+00	0.141)	5 20E-01	5.622E-01	-0.681 1.738E-47	-0.413 1.963E-05
												-0.11 (-			-0.029 (-				
										eGFR S4 to k	idney trait	0.177 to -			0.137 to				
466	CST3	C5	eGFRbiom	Metabolites	diftype	0.182	1.247E-11 1.122E-10	eGFR S4	Х	CST3 to C5 ir	n S4 (as X)	79.4 0 037)	0.0E+00	0.000E+00	0.078)	5 96E-01	6.274E-01	-0.681 1.738E-47	-0.134 9.562E-03
												-0 09 (-			-0.119 (-				
										eGFR S4 to k	idney trait	0.155 to -			0.253 to				
467	CST3	C8	eGFRbiom	Metabolites	diftype	0.213	1.922E-15 3.076E-14	eGFR S4	х	CST3 to C8 in	n S4 (as X)	42.93 0 024)	8.0E-03	1.647E-02	0.002)	5 80E-02	7.883E-02	-0.681 1.738E-47	-0.207 4.305E-05
							ſ ſ			eGFR S4 to		0 27	ľ –		0.182 (-	ſ.			
		SPOCK								CST3 to ki	idney trait	(0.131 to			0.033 to				
468	CST3	2	eGFRbiom	Proteins	diftype	-0.335	6.329E-15 9.114E-14	eGFR S4	х	SPOCK2 in	n S4 (as X)	59.74 0.429)	0.0E+00	0.000E+00	0.379)	1.16E-01	1.437E-01	-0.681 1.738E-47	0.451 1.078E-05
										eGFR S4 to		-0 328 (-			-0.039 (-		T		ľ
										CST3 to ki	idney trait	0 516 to -			0.35 to				
469	CST3	NBL1	eGFRbiom	Proteins	diftype	0.373	2.378E-18 5.708E-17	eGFR S4	х	NBL1 ir	n S4 (as X)	89.47 0.178)	0.0E+00	0.000E+00	0.287)	8 32E-01	8.502E-01	-0.681 1.738E-47	-0.366 7.546E-04
							r r			eGFR S4 to		-0.187 (-			-0.169 (-				
										CST3 to ki	idney trait	0 349 to -			0.345 to				
470	CST3	TFF3	eGFRbiom	Proteins	diftype	0.376	1.102E-18 2.886E-17	eGFR S4	х	TFF3 in	n S4 (as X)	52.54 0 066)	0.0E+00	0.000E+00	0.021)	8.60E-02	1.095E-01	-0.681 1.738E-47	-0.356 1.477E-04
							r r			eGFR S4 to		-0.13 (-			-0.178 (-				
										CST3 to ki	idnev trait	0 22 to -			0.32 to -				
472	CST3	C8:1	eGFRbiom	Metabolites	diftype	0.166	6.150E-10 4.428E-09	eGFR S4	х	C8:1 ir	n S4 (as X)	42.16 0 049)	2.0E-03	5.385E-03	0.05)	1 00E-02	1.538E-02	-0.681 1.738E-47	-0.312 1.227E-08
							r r			eGFR S4 to	(,	-0.435 (-			-0.117 (-	· · · · ·	-		,
										CST3 to ki	idnev trait	0.625 to -			0.28 to				
473	CST2	B2M	eGERhiom	Proteins	diftype	0.615	1 0365-54 2 9855-52	AGER SA	x	B2M in	SA(ac X)	78 82 0 297)	0 0F+00	0.000E+00	0.064)	2 32F-01	2 753E-01	-0 681 1 738F-47	-0 553 5 763E-10
473	CSTS	DZIVI	CONDIDIN	Troteins	untype	0.015	1.0302-34 2.3032-32	eon s4	~	eGER S/L to	1 34 (83 7)	-0 218 (-	0.02100	0.0001100	-0.015 (-	2 322-01	2.7551-01	-0.001 1.7 302 47	-0.333 5.7032-10
		TNEDCE								CST2 to ki	idnov trait	0 220 (-			0.262 to				
17/	CST2	10	oCEPhiom	Protoinc	diftypo	0 204	1 1655 11 1 1105 10	OCER SA	v	TNEPSE10 in	SA (ac V)	02 64 0 084)	2 05 02	5 295E 02	0.203 10	9 1/E 01	9 270E 01	0 691 1 7295 47	0 222 1 8405 02
4/4	515	19	CONDICITI	TULEIIIS	untype	0.294	1.1031-11 1.1192-10	COTA 34	^	AGER \$4 to	1 J+ (as A)	55.04 0 064)	2.01-03	J.303L-05	0.2321	0.141-01	0.3791-01	-0.001 1.7302-47	-0.233 1.040E-02
										CST2 +0		0 1 4 2 4			0.075 /				
		CEICA									idnov troit	-0.143 (-			-0.075 (-				
4	CCTO		- CERL'-		116	0.001	4 0 2 0 5 4 7 0 40 2 5 4 6			CO(C4:1-D K	iuney trait	U 241 to -	0.05.00	0.0005.00	0.201 (0	2 205 01	2 7765 64	0 004 4 7005 17	0.040 4.0045.05
475	US13	1-DC)	egFKbiom	ivietabolites	aittype	0.224	4.939E-17 9.483E-16	egFK S4	X	L) ir	1 54 (as X)	65.48 0 074)	U.UE+00	U.UUUE+00	0.045)	2 36E-01	2.//6E-01	-0.681 1.738E-47	-0.219 1.804E-05

											eGER S4 to		-0 203 (-			-0.085 (-				
		HAVCR									CST3 to	kidnev trait	0 386 to	_		0.324 to				
176	C5T2	2	oCEPhiom	Protoins	diftypo	0.22	4 0115 07 2 14	E 06	OCEP SA	v		in SA (ac X)	70 52 0 062)	1 05 02	0 1025 02	0.324 (0	A 49E 01	4 079E 01	0 601 1 7205 47	0 200 4 2275 02
470	0313	2	edi Kululli	FIOLEIIIS	untype	0 22	4.9112-07 2.14	L-00	EGLIN 34	^	nAVCK2	111 34 (as x)	70.32 0 002)	4.0L-03	5.452L-03	0.144)	4.401-01	4.9782-01	-0.081 1.7381-47	-0.288 4.2371-03
											EGFR 54 LO	Links and the lit	-0 382 (-			-0.008 (-				
		07011	0.501								CS13 to	kidney trait	0 5/2 to	-		0.21 to				
477	CST3	CTSH	eGFRbiom	Proteins	diftype	0.415	8.967E-23 4.570	E-21	eGFR S4	X	CTSH	in S4 (as X)	97.97 0 233)	0.0E+00	0.000E+00	0.224)	9 52E-01	9.658E-01	-0.681 1.738E-47	-0.39 1.142E-04
											eGFR S4 to		-0 202 (-			-0.217 (-				
											CST3 to	kidney trait	0.414 to	-		0.447 to				
478	CST3	JAM2	eGFRbiom	Proteins	diftype	0.341	2.148E-15 3.25	'E-14	eGFR S4	Х	JAM2	in S4 (as X)	48.1 0 036)	1.2E-02	2.074E-02	0.044)	8 00E-02	1.047E-01	-0.681 1.738E-47	-0.419 6.408E-05
											eGFR S4 to		-0 086 (-			-0.12 (-				
											CST3 to	kidney trait	0.148 to	-		0.241 to -				
479	CST3	C12	eGFRbiom	Metabolites	diftype	0.248	1.196E-20 4.304	E-19	eGFR S4	х	C12	in S4 (as X)	41.7 0 025)	1.0E-02	1.818E-02	0.011)	3.40E-02	4.907E-02	-0.681 1.738E-47	-0.203 7.154E-05
											eGFR S4 to		-0 326 (-			-0.117 (-				
											CST3 to	kidney trait	0.498 to	-		0.321 to				
481	CST3	RELT	eGFRbiom	Proteins	diftype	0.462	1.615E-28 2.32	E-26	eGFR S4	х	RELT	in S4 (as X)	73.6 0 2)	0.0E+00	0.000E+00	0.109)	2 90E-01	3.301E-01	-0.681 1.738E-47	-0.443 3.019E-06
											eGFR S4 to		0 214			0.045 (-				
											CST3 to	kidnev trait	(0 105 to			0.142 to				
182	CST3	C1OBP	AGERhiom	Proteins	diftype	-0.35	3 087E-16 5 550	F-15	AGER SA	Y	C1OBP	in SA (as X)	82 63 0 351)	0.0F+00	0.000F+00	0.2.112.00	6 82F-01	7 073E-01	-0 681 1 7385-47	0 259 4 6065-03
402	0010	CIQDI	contoioni	Troteins	untype	0.33	5.0072 10 5.550	. 15	contro-	~	oGEP \$4 to	III 34 (US X)	0 122 (0.02.00	0.0002.00	0.079 (0 022 01	7.0752 01	0.001 1.7502 47	0.255 4.0002 05
											CCT2 to	المتحديد محمد المتعا	-0.133 (-			-0.078 (-				
402	CCTO	FCANA	CEDhiana	Drataina	al : £40	0.270	1 0 4 0 5 10 1 5 10	- 00	ACED CA	v		in CA (no V)	(2 02 0 010)	1 45 00	2 2005 02	0.272 (0	4.045.01	5 2255 01	0 001 1 7305 47	0 211 2 0705 02
483	CS13	ESAIVI	egrapiom	Proteins	antype	0.276	1.940E-10 1.510	E-09	egrk 54		ESAIVI	In 54 (as X)	63.02 0 019)	1.4E-02	2.306E-02	0.151)	4 84E-01	5.335E-01	-0.081 1.738E-47	-0.211 2.078E-02
											eGFR S4 to		-0 097 (-			-0.166 (-				
											CSI3 to	kidney trait	0.161 to	-		0.285 to -				
484	CST3	C14:2	eGFRbiom	Metabolites	diftype	0.244	5.241E-20 1.67	E-18	eGFR S4	X	C14:2	in S4 (as X)	36.81 0 033)	4.0E-03	9.492E-03	0.058)	0 00E+00	0.000E+00	-0.681 1.738E-47	-0.259 8.109E-07
											eGFR S4 to		-0 333 (-			-0.061 (-				
		TNFRSF									CST3 to	kidney trait	0.485 to	-		0.256 to				
486	CST3	1A	eGFRbiom	Proteins	diftype	0.442	6.356E-26 6.102	E-24	eGFR S4	Х	TNFRSF1A	in S4 (as X)	84.51 0 221)	0.0E+00	0.000E+00	0.136)	5 80E-01	6.152E-01	-0.681 1.738E-47	-0.394 2.573E-05
											eGFR S4 to		0 212			0.015 (-				
											CST3 to	kidney trait	(0 098 to			0.232 to				
487	CST3	SOD2	eGFRbiom	Proteins	diftype	-0.198	6.329E-06 2.463	E-05	eGFR S4	х	SOD2	in S4 (as X)	93.54 0 381)	0.0E+00	0.000E+00	0.24)	9.78E-01	9.850E-01	-0.681 1.738E-47	0.226 1.695E-02
											eGFR S4 to		-0.166 (-			-0.069 (-		_		
											CST3 to	kidney trait	0 29 to -			0.245 to				
488	CST3	SCARF1	eGFRbiom	Proteins	diftype	0.229	1.554E-07 7.590	E-07	eGFR S4	х	SCARF1	in S4 (as X)	70.69 0 058)	4.0E-03	9.492E-03	0.15)	5 22E-01	5.622E-01	-0.681 1.738E-47	-0.235 1.797E-02
											eGFR S4 to		-0 238 (-			-0.119 (-		•		
											CST3 to	kidnev trait	0 388 to	_		0 327 to				
489	CST3	FRP29	eGERhiom	Proteins	diftyne	0 261	1 840F-09 1 204	F-08	eGER S4	x	FRP29	in S4 (as X)	66 63 0 118)	0.0E+00	0.000F+00	0.097)	2 78F-01	3 217E-01	-0 681 1 738F-47	-0 356 5 110F-04
405	0010	2101 2.5	contoioni	Troteins	untype	0.201	1.0402 05 1.20	2 00	contor	~	eGER S4 to	III 34 (US X)	-0.1.(-			_0 113 (_	2.702.01	5.2172 01	0.001 1.7302 47	0.330 5.1102 04
											CST2 to	kidnov trait	-0.1 (-			0.242 to				
400	CCT 2	C10	oCERhiam	Motabalitas	diffunc	0 210	2 764E 16 6 27	E 1E	OCED 64	v	C313 10	in S4 (ac X)	46 07 0 022)	6 05 02	1 2025 02	0.242 (0 -	E 00E 02	7 0005 02	0 691 1 7395 47	0 211 2 4425 05
490	515	C10	COLUDIU	wietaboilles	untype	0.218	3.704E-10 0.37	r-13	EGLU 34	^	CED CA +-	111 34 (dS X)	40.97 0 032)	0.0E-03	1.2926-02	0.002)	5 UUE-U2	7.000E-02	-0.001 1./30E-4/	-0.211 2.443E-03
											eGFK 54 to		-0 287 (-			-0.207 (-				
				L							CST3 to	kidney trait	0.485 to	-		0.44 to				
492	CST3	FSTL3	eGFRbiom	Proteins	diftype	0 33	1.775E-14 2.22	E-13	eGFR S4	Х	FSTL3	in S4 (as X)	58.06 0.142)	0.0E+00	0.000E+00	0.039)	1 02E-01	1.275E-01	-0.681 1.738E-47	-0.495 8.577E-07
											eGFR S4 to		-0.119 (-			-0.062 (-				
		C14:1-									CST3 to	kidney trait	0.187 to	-		0.19 to				
493	CST3	ОН	eGFRbiom	Metabolites	diftype	0.229	9.246E-18 1.902	E-16	eGFR S4	Х	C14:1-OH	in S4 (as X)	65.48 0 061)	2.0E-03	5.385E-03	0.059)	2 88E-01	3.301E-01	-0.681 1.738E-47	-0.18 1.000E-03

														-0.214 (-			-0.079 (-						
											eGFR S4 to CST3	kidney trait		0.298 to -			0.224 to						
494	CST3	C10:2	eGFRbiom	Metabolites	diftype	0.241	1.527E-19	9 4.398E-18	eGFR S4	Х	to C10:2	in S4 (as X)	73.02	0.134)	0.0E+00	0.000E+00	0.052)	2.70E-01	3.150E-01	-0.681	1.738E-47	-0.295	5.422E-08
														-0.187 (-			-0.115 (-						
											eGFR S4 to CST3	kidney trait		0.332 to -			0.331 to						
495	CST3	EPHA2	eGFRbiom	Proteins	diftype	0.256	3.863E-09	2.318E-08	eGFR S4	х	to EPHA2	in S4 (as X)	61.94	0.059)	0.0E+00	0.000E+00	0.111)	3.10E-01	3.500E-01	-0.681	1.738E-47	-0.301	1.064E-03
														-0.138 (-			-0.086 (-						
											eGFR S4 to CST3	kidney trait		0.211 to -			0.207 to						
497	CST3	C2	eGFRbiom	Metabolites	diftype	0.205	2.225E-14	1 2.670E-13	eGFR S4	х	to C2	in S4 (as X)	61.41	0.076)	0.0E+00	0.000E+00	0.033)	1.60E-01	1.931E-01	-0.681	1.738E-47	-0.223	3.846E-05
					,,							. ,		-0.083 (-									
											eGFR S4 to EGFR	kidnev trait		0.157 to -			-0.43 (-0.533						
498	EGFR	CST3	Proteins	eGFRbiom	diftype	-0.371	3.615E-18	3 8.009E-17	eGFR S4	x	to CST3	in S4 (as X)	16.11	0.027)	0.0E+00	0.000E+00	to -0.321)	0.00E+00	0.000E+00	0.273	2.556E-03	-0.681	1.738E-47
														,									
											CKDcrcc S4 to												
	TNERSE	Creatin									TNERSE1A to	kidney trait		0 645 (0			0.44 (-0.2 to						
500	1 4	ino	Protoinc	oCEPhiom	diftuno	0 202	6 1655 11	5 072E 10	CKDerec SA	~	Croatining	in S4 (as X)	E0 / E	to 1 207)	0.05+00	0.0005+00	1.097)	1 405 01	1 7025 01	2 2 2 2	2 9105 05	1 /06	1 200E 17
500	IA	ine	FIOLEIIIS	edribioiii	untype	0.285	0.1051-11	1 3.0731-10	CKDUICE 34	^	Creatinine	111 34 (dS A)	35.43	10 1.397	0.01+00	0.000L+00	1.087)	1.401-01	1.7021-01	2.552	3.8191-03	1.490	1.3501-17
											CKDaras 54 to			0.164									
	.										CKDUILE 34 10			0.104			0.005 (0.000						
504	Creatin		CERL			0.464	4 0005 00		CWD		Creatinine to	kidney trait	20.04	(0.016 to	2 45 02	2 00 45 02	0.385 (-0.083	1 1 65 01	4 4605 04	4 400	4 2005 47	0 5 40	6 5375 03
501	ine	C14:2	eGFRbiom	Metabolites	diftype	0.164	1.092E-09	9 7.667E-09	CKDcrcc S4	X	C14:2	in S4 (as X)	29.81	0.367)	3.4E-02	3.904E-02	to 0.897)	1.16E-01	1.468E-01	1.496	1.390E-17	0.549	6.537E-03
											CKDcrcc S4 to			0.308									
1	Creatin										Creatinine to	kidney trait		(0.131 to			0.678 (0.21						
502 i	ine	C8:1	eGFRbiom	Metabolites	diftype	0.141	1.648E-07	7 7.910E-07	CKDcrcc S4	Х	C8:1	in S4 (as X)	31.25	0.586)	2.0E-03	2.583E-03	to 1.089)	0.00E+00	0.000E+00	1.496	1.390E-17	0.986	2.594E-06
											CKDcrcc S4 to												
	Creatin	TNFRSF									Creatinine to	kidney trait		0.532 (0			1.046 (0 to						
503 i	ine	1B	eGFRbiom	Proteins	diftype	0.181	3.809E-05	5 1.306E-04	CKDcrcc S4	Х	TNFRSF1B	in S4 (as X)	33.73	to 0.935)	0.0E+00	0.000E+00	2.049)	2.60E-02	3.749E-02	1.496	1.390E-17	1.578	7.905E-03
											CKDcrcc S4 to												
											TNFRSF1B to	kidney trait		0.335 (0			0.75 (0 to						
503									CKDcrcc S4	х	Creatinine	in S4 (as X)	30.84	to 0.646)	0.0E+00	0.000E+00	1.209)	0.00E+00	0.000E+00				
							r	1															
														0.318									
	Creatin										CKDcrcc S4 to	kidney trait		(0.153 to			0.292 (-0.114	ı					
504 i	ine	C5	eGFRbiom	Metabolites	diftype	0.182	1.204E-11	L 1.119E-10	CKDcrcc S4	х	Creatinine to C5	in S4 (as X)	52.11	0.551)	0.0E+00	0.000E+00	to 0.69)	1.68E-01	1.929E-01	1.496	1.390E-17	0.611	1.948E-03
					/1		•	·				. ,									·		•
											CKDcrcc S4 to			0.365									
	Creatin										Creatinine to	kidnev trait		(0.157 to			0 427 (0 014						
505	ine	C10.2	eGERhiom	Metabolites	diftyne	0 206	1 449F-14	1 1 897F-13	CKDcrcc S4	x	C10·2	in S4 (as X)	46.07	0.662)	0.0E+00	0.000E+00	to () 85)	4 00F-02	5 391F-02	1 496	1 390F-17	0 792	1 423E-04
505	ine	C10.2	CONDICIT	Wietabolites	untype	0.200	1.4450-14	* 1.057L-15	CKDCrCC 34	^	010.2	III 34 (83 X)	40.07	0.002)	0.02100	0.0001100	10 0.057	4.001-02	5.5511-02	1.450	1.5501-17	0.752	1.4231-04
											CKDcrcc S4 to												
		Creatin									B2M to	kidney trait		0 436 (0			0.649 (0.40						
FOC	0.014	Creatin	Ductoins	CERLIN	-1:£1	0.217	1 0055 12	2 1105 12	CKD areas C.4	~	BZIVI LU	kiuliey trait	40.22	0.450 (0	0.05.00	0.0005.00	0.049 (0.00	0.005.00	1 2055 02	1 (01	2 (225 02	1 400	1 2005 17
300	DZIVI	me	Proteins	EGERDIOM	untype	0.317	1.905E-13	2.110E-12	CKDCrcc S4	*	creatinine	111 54 (as x)	40.22	ιυ υ.812)	0.0E+00	0.000E+00	1.345)	6.00E-03	1.305E-02	1.091	2.022E-03	1.496	1.390E-17
											CKD areas C.4.4												
											CKDCrCC S4 to			0 577 /2			4451000						
											Creatinine to	Kidney trait		0.5//(0			1.115 (-0.01						
506									CKDcrcc S4	Х	B2M	ın S4 (as X)	34.09	to 0.959)	0.0E+00	0.000E+00	to 2.081)	5.40E-02	7.123E-02				

Creatir 508 ine	UNC5C eGFRbiom	Proteins	diftype	0.178	5.138E-05	5 1.721E-04	CKDcrcc S4 X	CKDcrcc S4 to Creatinine to UNC5C	kidney trait in S4 (as X)	0.453 (0 25.57 to 0.854) 0.0E+00	0.000E+00	1.319 (0 to 2.523)	0.00E+00	0.000E+00	1.496 1.390E	17 1.772 6.033E-0
508							CKDcrcc S4 X	CKDcrcc S4 to UNC5C to Creatinine	kidney trait in S4 (as X)	0.271 (0 25.02 to 0.607) 0.0E+00	0.000E+00	0.814 (0 to 1.394)	2.00E-03	4.133E-03		
509 C1QBP	Creatin ine Proteins	eGFRbiom	diftype	-0.229	1.555E-07	7.590E-07	CKDcrcc S4 X	CKDcrcc S4 to C1QBP to Creatinine	kidney trait in S4 (as X)	0.281 (0 25.86 to 0.502) 6.0E-03	7.154E-03	0.805 (0 to 1.329)	0.00E+00	0.000E+00	-1.706 2.021E	03 1.496 1.390E-1
509							CKDcrcc S4 X	CKDcrcc S4 to Creatinine to C1QBP	kidney trait in S4 (as X)	-0.355 (- 0.766 to 20.79 0)	6.0E-03	7.154E-03	-1.351 (- 1.813 to 0)	0.00E+00	0.000E+00		
Creatir 510 ine	n CTSH eGFRbiom	Proteins	diftype	0.248	1.232E-08	3 7.096E-08	CKDcrcc S4 X	CKDcrcc S4 to Creatinine to CTSH	kidney trait in S4 (as X)	0.498 (0 29.44 to 0.836) 2.0E-03	2.583E-03	1.193 (0 to 2.553)	6.00E-03	1.033E-02	1.496 1.390E	17 1.691 6.212E-0
510							CKDcrcc S4 X	CKDcrcc S4 to CTSH to Creatinine	kidney trait in S4 (as X)	0.31 (0 t 28.61 0.634)	o 2.0E-03	2.583E-03	0.775 (0 to 1.372)	0.00E+00	0.000E+00		
Creatir 511 ine	n EFNA5 eGFRbiom	Proteins	diftype	0.215	9.017E-07	3.819E-06	CKDcrcc S4 X	CKDcrcc S4 to Creatinine to EFNA5	kidney trait in S4 (as X)	0.415 (0 25.58 to 0.775) 2.0E-03	2.583E-03	1.206 (0 to 1.987)	0.00E+00	0.000E+00	1.496 1.390E	17 1.621 8.552E-0
511							CKDcrcc S4 X	CKDcrcc S4 to EFNA5 to Creatinine	kidney trait in S4 (as X)	0.249 (0 22.91 to 0.472) 2.0E-03	2.583E-03	0.836 (0 to 1.365)	0.00E+00	0.000E+00		
512 NBL1	Creatin ine Proteins	eGFRbiom	diftype	0.23	1.345E-07	6.796E-07	CKDcrcc S4 X	CKDcrcc S4 to NBL1 to Creatinine	kidney trait in S4 (as X)	0.336 (0 31.01 to 0.698) 4.0E-03	4.960E-03	0.749 (0 to 1.343)	4.00E-03	7.515E-03	2.544 1.010E	04 1.496 1.390E-1
512							CKDcrcc S4 X	CKDcrcc S4 to Creatinine to NBL1	kidney trait in S4 (as X)	0.393 (0 15.46 to 0.733) 4.0E-03	4.960E-03	2.151 (0 to 3.114)	0.00E+00	0.000E+00		
513 IGERPE	Creatin	eGERbiom	diftype	0.403	1.655E-21	6.807E-20	CKDcrcc S4 X	CKDcrcc S4 to IGFBP6 to Creatinine	kidney trait	0.343 (0 31.63 to 0 604) 0.0E+00	0.000E+00	0.742 (0 to	2.00E-03	4.133E-03	1,466 4,846F	03 1.496 1.390F-1
513			antype	0.405	1.0552-23		CKDcrcc S4 X	CKDcrcc S4 to Creatinine to IGFBP6	kidney trait	0.45 (0 t 30.67 0.793)	0 0.0E+00	0.000E+00	1.016 (0 to 1.673)	1.00E-02	1.590E-02	1.400 4.040L	1.500 1.5002-1.

											CKDcrcc S4 to									
		Creatin									FSTI 3 to	kidnev trait	0.4 (0 to			0.685 (0 to				
514	ESTL3	ine	Proteins	eGFRbiom	diftype	0.21	1.598E-06	5 6.668E-06	CKDcrcc S4	x	Creatinine	in S4 (as X)	36.88 0.78)	0.0E+00	0.000E+00	1.165)	0.00E+00	0.000E+00	1.761 4.630E-03	1.496 1.390E-1
511				conton	untype	0.21	1.5562 00	0.0002.00		~	of cut time		50.00 0.707	0.02.00	0.0002.00	1.100)	0.002.00	0.0002.00	10002 00	1.150 1.6502 1
											CKDcrcc S4 to									
											Creatinine to	kidnev trait	0 623 (0			1 138 (0 to				
514									CKDcrcc S4	x	FSTI 3	in S4 (as X)	35 39 to 1 06)	0.0F+00	0 000F+00	2 313)	6 00F-03	1 033E-02		
511										~			00.00 10 1.007	0.02.00	0.0002.00	2.010)	0.002 00	1.0001 02		
											eGFR S4 to		-0 179 (-			-0.054 (-				
	Creatin	TNERSE									Creatinine to	kidnev trait	0.31 to -			0.034 (
515	ino	10	oCEPhiom	Protoinc	diffuno	0 220	1 0255 00	2 5725 07	OCER SA	v	TNEPSE10	in S4 (ac X)	76 9 0 071)	2 05 02	E 20EE 02	0.159)	5 225 01	5 6955 01	0 549 7 0725 26	0 222 1 9405 0
515	ine	19	egradioni	FIOLEIIIS	untype	0.236	4.82JL-00	5 2.373L-07	EGEN 34	^	TINERSE15	111 34 (as A)	70.8 0.071)	2.01-03	5.585L-05	0.138)	J.32L-01	3.085L-01	-0.348 7.972L-30	-0.233 1.840L-0
		Currentin											-0.099 (-			-0.274 (-				
547		Creatin		CERL	110	0.247	4 0055 42	2 4 4 05 4 2	CED CA		eGFR 54 to BZIVI	kidney trait	0.178 t0 -	-	4 0405 03	0.398 to -	0.005.00	0.0005.00	0 550 5 7605 40	0 5 40 7 0725 2
517	BZIVI	ine	Proteins	eGFRDIOM	antype	0.317	1.905E-13	3 2.110E-12	egrk 54	X	to Creatinine	in S4 (as X)	20.58 0.027)	1.0E-02	1.818E-02	0.163)	0.00E+00	0.000E+00	-0.553 5.763E-10	-0.548 7.972E-3
											eGFR S4 to		-0.137 (-							
											Creatinine to	kidney trait	0.26 to -			-0.416 (-0.63				
517									eGFR S4	х	B2M	in S4 (as X)	24.74 0.037)	1.0E-02	1.818E-02	to -0.215)	0.00E+00	0.000E+00		
											eGFR S4 to		-0.088 (-			-0.224 (-				
	Creatin										Creatinine to	kidney trait	0.167 to -	-		0.365 to -				
519	ine	C8:1	eGFRbiom	Metabolites	diftype	0.141	1.648E-07	7 7.910E-07	eGFR S4	Х	C8:1	in S4 (as X)	28.17 0.012)	2.6E-02	3.957E-02	0.094)	0.00E+00	0.000E+00	-0.548 7.972E-36	-0.312 1.227E-0
											eGFR S4 to		-0.142 (-			-0.248 (-				
	Creatin										Creatinine to	kidney trait	0.258 to -	-		0.461 to -				
521	ine	CTSH	eGFRbiom	Proteins	diftype	0.248	1.232E-08	3 7.096E-08	eGFR S4	Х	CTSH	in S4 (as X)	36.5 0.038)	6.0E-03	1.292E-02	0.037)	2.60E-02	3.832E-02	-0.548 7.972E-36	-0.39 1.142E-0
											eGFR S4 to		-0.102 (-			-0.312 (-				
	Creatin										Creatinine to	kidney trait	0.203 to -	-		0.522 to -				
522	ine	EFNA5	eGFRbiom	Proteins	diftype	0.215	9.017E-07	7 3.819E-06	eGFR S4	х	EFNA5	in S4 (as X)	24.64 0.009)	2.2E-02	3.422E-02	0.099)	2.00E-03	3.415E-03	-0.548 7.972E-36	-0.414 3.797E-0
													-0.041 (-			-0.332 (-				
											eGFR S4 to EFNA	5 kidney trait	0.089 to -	-		0.455 to -				
522									eGFR S4	х	to Creatinine	in S4 (as X)	10.98 0.004)	2.2E-02	3.422E-02	0.23)	0.00E+00	0.000E+00		
								1											r (r
											eGFR S4 to		-0.149 (-							
	Creatin	TNFRSF									Creatinine to	kidney trait	0.286 to -	-		-0.264 (-0.48				
523	ine	1B	eGFRbiom	Proteins	diftype	0.181	3.809E-05	5 1.306E-04	eGFR S4	х	TNFRSF1B	in S4 (as X)	36.1 0.034)	1.2E-02	2.074E-02	to -0.047)	1.80E-02	2.710E-02	-0.548 7.972E-36	-0.413 1.963E-0
											eGFR S4 to		-0.065 (-			-0.308 (-				
											TNFRSF1B to	kidnev trait	0.123 to -	-		0.431 to -				
523									eGFR S4	x	Creatinine	in S4 (as X)	17.34 0.016)	1.2E-02	2.074E-02	0.207)	0.00E+00	0.000E+00		
											eGFR S4 to	. ,	-0.151 (-			-0.293 (-				
	Creatin										Creatinine to	kidnev trait	0.268 to	-		0.502 to -				
524	ine	RELT	eGFRbiom	Proteins	diftype	0.327	3.216E-14	1 3.705E-13	eGFR S4	x	RELT	in S4 (as X)	33,98 0.049)	2.0E-03	5.385E-03	0.085)	6.00E-03	9.438E-03	-0.548 7.972E-36	-0.443 3.019F-0
527						0.027						(40 / .)	-0 074 (-			-0 299 (-				
											eGER S4 to RELT	kidnev trait	0 139 to -	_		0.408 to -				
524									eGFR S4	x	to Creatinine	in S4 (as X)	19 74 0 024)	2 0F-03	5 385F-03	0 196)	0.00F+00	0.000F+00		
524							-	-	0.0111.04	~	co creatinine	54 (45 A)	_0 122 /	2.02.03	5.5052 05	-0.001/-	0.002.00			
	Creatin										eGER S/L to	kidney trait	-0.133 (-	_		0.001 (-				
526	ino	CE	oCEPhiom	Motabolitor	diftuno	0 103	1 2045 11	1 1105 10	OCER SA	v	Croatining to CE	in S4 (ac V)	0.130 (0 -	0.05+00	0.000E+00	0.103 10	0.005.01	0 0005 01	0 548 7 0725 26	0 124 0 5625 0
520	iiie	5	COLUDIO	wietabolites	untype	0.182	. 1.204E-11	1.1195-10	COLU 24	^	oCER 64 to	11 34 (dS X)	99.54 0.074)	0.02+00	0.000E+00	0.102)	9.90E-01	9.900E-01	-0.546 /.9/2E-36	-0.154 9.502E-0
	Croatia										Croatining to	kidnov troit	0.115			0.145 (0.020				
520	creatin in a	C1002	•CED his ···	Duntaina	al:64	0.000	1	7 5005 07	+ CED 64	~	creatinine to	Kuney trait	(0.02 to	1 45 02	2 2005 22	0.145 (-0.026	1 105 04	1 4405 04	0 5 40 7 0725 20	0.050 4.0005 0
528	me	CIUBP	egerbiom	Proteins	airtype	-0.229	1.555E-07	///.590E-07	ебнк 54	X	CIURN	in 54 (as X)	44.27 0.22)	1.4E-02	2.306E-02	to U.314)	1.18E-01	1.449E-01	-0.548 /.9/2E-36	0.259 4.606E-03

							,	•			eGER S/L to			-0 156 (-			-0.201/-		·		
	Creatin										Creatinine to	kidnev trait		-0.130 (-			-0.201 (-				
E 20	ino	50020	oCERhiam	Drotoinc	diffunc	0 104	0 7495 06	2 6045 05		v	EPD20	in S4 (as X)	12 71	0.271 (0 -	0.05.00	0.0005.00	0.333 (0	E 20E 02	7 1275 02	0 549 7 0725 26	0.256 5 1105 04
529	ine	ERP29	egrapioni	Proteins	untype	0.194	9.7462-00	5.094E-05	EGLK 24	^	ERP29	III 34 (dS A)	45.71	0.059)	0.0E+00	0.000E+00	0.002)	5.20E-02	7.137E-02	-0.546 7.972E-50	-0.330 5.110E-04
	.										eGFR 54 to			-0.139 (-			-0.216 (-				
	Creatin										Creatinine to	kidney trait		0.275 to -			0.386 to -				
530	ine	TFF3	eGFRbiom	Proteins	diftype	0.273	2.976E-10	2.255E-09	eGFR S4	X	TFF3	in S4 (as X)	39.15	0.03)	1.4E-02	2.306E-02	0.042)	4.00E-03	6.588E-03	-0.548 7.972E-36	-0.356 1.477E-04
											eGFR S4 to			-0.11 (-			-0.319 (-				
	Creatin										Creatinine to	kidney trait		0.19 to -			0.499 to -				
534	ine	IGFBP6	eGFRbiom	Proteins	diftype	0.403	1.655E-21	6.807E-20	eGFR S4	х	IGFBP6	in S4 (as X)	25.63	0.042)	2.0E-03	5.385E-03	0.142)	0.00E+00	0.000E+00	-0.548 7.972E-36	-0.428 3.180E-07
											eGFR S4 to			-0.067 (-	ſ	f .			ſ I		
											IGFBP6 to	kidney trait		0.122 to -			-0.305 (-0.43				
534									eGFR S4	х	Creatinine	in S4 (as X)	18.07	0.024)	2.0E-03	5.385E-03	to -0.19)	0.00E+00	0.000E+00		
											eGFR S4 to			-0.197 (-			-0.222 (-		1		
	Creatin										Creatinine to	kidnev trait		0.362 to -			0.405 to -				
536	ino	14142	eGERhiom	Proteins	diftyne	0 331	1 313F-1/	1 801F-13	AGER SA	x	10.002	in $SA(as X)$	47.05	0.056)	2 0F-03	5 385F-03	0.031)	2 00F-02	2 979F-02	-0 5/18 7 9725-36	-0 419 6 4085-05
550	inc	57 (1412	contoioni	Troteins	untype	0.331	1.5150 14	1.0012 15	contor	~	oGER \$4 to	111 S 4 (US X)	47.05	0.030	2.02 05	5.5652 05	0.224 (2.002 02	2.5752 02	0.540 7.5722 50	0.415 0.4002 05
	C										Creatizina to			-0.17 (-			-0.324 (-				
F 41	Creatin	FCTI 2	CERLIN	Destains	al:64	0.21	1 5005 00		- 050 64	v		Kiulley trait	24.42	0.297 10 -	0.05.00	0.0005.00	0.548 (0 -	4 005 00	C 5005 00	0 5 40 7 0725 26	0 405 0 5775 07
541	ine	FSIL3	eGFRDIOM	Proteins	аптуре	0.21	1.598E-06	6.668E-06	eger S4	X	FSTL3	in S4 (as X)	34.42	0.066)	0.0E+00	0.000E+00	0.113)	4.00E-03	6.588E-03	-0.548 7.972E-36	-0.495 8.577E-07
														-0.083 (-			-0.289 (-				
											eGFR S4 to FSTL3	kidney trait		0.141 to -			0.401 to -				
541									eGFR S4	Х	to Creatinine	in S4 (as X)	22.37	0.033)	0.0E+00	0.000E+00	0.195)	0.00E+00	0.000E+00		
						Í					eGFR S4 to			-0.106 (-	ſ	Í	-0.189 (-	1	Í		
	Creatin										Creatinine to	kidney trait		0.189 to -			0.337 to -				
542	ine	C10:2	eGFRbiom	Metabolites	diftype	0.206	1.449E-14	1.897E-13	eGFR S4	Х	C10:2	in S4 (as X)	35.98	0.024)	4.0E-03	9.492E-03	0.056)	1.20E-02	1.826E-02	-0.548 7.972E-36	-0.295 5.422E-08
											eGFR S4 to			-0.2 (-							
	Creatin	TNFRSF									Creatinine to	kidney trait		0.322 to -			-0.194 (-				
545	ine	1A	eGFRbiom	Proteins	diftype	0.283	6.165E-11	5.073E-10	eGFR S4	х	TNFRSF1A	in S4 (as X)	50.77	0.091)	0.0E+00	0.000E+00	0.399 to 0)	5.20E-02	7.137E-02	-0.548 7.972E-36	-0.394 2.573E-05
						Í															
														-0.031 (-							
											EGFR to CST3 to	kidney trait		0.048 to -			-0.022 (-0.05				
588	EGFR	CST3	Proteins	eGFRbiom	diftype	-0.371	3.615E-18	8.009E-17	CKD FF4	Y	incident CKD	in FF4 (as Y)	58.56	0.015)	0.0E+00	0.000E+00	to 0.017)	2.44E-01	2.519E-01	-0.509 2.488E-03	1.473 5.486E-11
														0.015							
											C14:1 to CST3 to	kidney trait		(0.008 to			0.023 (-0.004	1			
589	C14:1	CST3	Metabolites	eGFRbiom	diftype	0.191	9.890E-13	1.055E-11	CKD FF4	Y	incident CKD	in FF4 (as Y)	39.62	0.025)	0.0E+00	0.000E+00	to 0.057)	1.06E-01	1.170E-01	0.299 9.877E-03	1.473 5.486E-11
					,,							, ,		,		1			•		
														0.023							
											C12 to CST3 to	kidnev trait		(0.013 to			0 021 (-0 000	9			
501	C12	CST3	Metabolites	eGERhiom	diftyne	0.248	1 196F-20	1 30/F-10		v	incident CKD	in EE4 (as V)	51 87	0.034)	0.05+00	0.000E±00	to 0.053)	1 70F-01	1 813F-01	0 327 5 401E-03	1 473 5 486F-11
551	C12	0313	wietabolites	edition	untype	0.240	1.1502-20	4.304L-13	CKD 114		incluent CRD	iii ii 4 (as i)	51.07	0.034)	0.0L100	0.0002100	10 0.055)	1.702-01	1.0152-01	0.327 5.4012-03	1.475 5.4602-11
														0.014							
											C19:1 to CET2 to	kidnov trait		0.014			0.020 (0.00	,			
500	C10 1	CCTO	Matal	CERT I	al:64		1 0005 05	0 2005 07		V		in FF4 (and)	22.22	0.000 10	0.05.00	0.0005 - 00	0.029 (-0.002	C 005 00	C 0575 00	0.225 0.2055 02	1 472 5 4005 11
592	C18:1	513	ivietabolites	egradiom	uittype	0.14	T.998F-01	9.280E-07	CKD FF4	Ŷ	inclaent CKD	m FF4 (as Y)	33.38	0.024)	U.UE+00	0.000E+00	10 0.066)	0.00E-02	0.857E-02	0.325 6.305E-03	1.4/3 5.486E-11
														0.045 /			0.0004/				
														-0.015 (-			-0.064 (-				
											GHR to CST3 to	kidney trait		0.025 to -			0.095 to -				
593	GHR	CST3	Proteins	eGFRbiom	diftype	-0.207	2.243E-06	9.156E-06	CKD FF4	Y	incident CKD	in FF4 (as Y)	18.7	0.005)	0.0E+00	0.000E+00	0.024)	0.00E+00	0.000E+00	-0.683 1.930E-04	1.473 5.486E-11

																1						
594	MASP1	CST3	Proteins	eGFRbiom	diftype	-0.157	3.603E-04	1.059E-03	eGFR FF4	Y	MASP1 to CST3 to Follow-up eGFR	kidney trait in FF4 (as Y)	0.082 (0.035 to 89.52 0.132)	0.0E+00	0.000E+00	0.01 (-0.031 to 0.049)	6.86E-01	7.054E-01	0.091	5.181E-03	-0.642	5.894E-98
595	ADAMT S13	CST3	Proteins	eGFRbiom	diftype	-0.161	2.551E-04	7.900E-04	eGFR FF4	Y	ADAMTS13 to CST3 to Follow- up eGFR	kidney trait in FF4 (as Y)	0.078 (0.039 to 69.82 0.121)	2.0E-03	3.406E-03	0.034 (-0.013 to 0.081)	1.34E-01	1.546E-01	0.111	6.823E-04	-0.642	5.894E-98
596	C12	CST3	Metabolites	eGFRbiom	diftype	0.248	1.196E-20) 4.304E-19	eGFR FF4	Y	C12 to CST3 to Follow-up eGFR	kidney trait in FF4 (as Y)	-0.108 (- 0.144 to - 75.89 0.073)	0.0E+00	0.000E+00	-0.034 (- 0.079 to 0.01)	1.06E-01	1.242E-01	-0.143	2.223E-07	-0.642	5.894E-98
597	BMP1	CST3	Proteins	eGFRbiom	diftype	-0.169	1.165E-04	3.686E-04	eGFR FF4	Y	BMP1 to CST3 to Follow-up eGFR	kidney trait in FF4 (as Y)	0.094 (0.042 to 52.76 0.147)	0.0E+00	0.000E+00	0.084 (0 to 0.162)	5.00E-02	6.337E-02	0.178	5.497E-06	-0.642	5.894E-98
598	HAVCR 2	CST3	Proteins	eGFRbiom	diftype	0.22	4.911E-07	2.143E-06	eGFR FF4	Y	HAVCR2 to CST3 to Follow-up eGFR	kidney trait in FF4 (as Y)	-0.142 (- 0.204 to - 62.6 0.086)	0.0E+00	0.000E+00	-0.085 (- 0.152 to - 0.016)	1.80E-02	2.452E-02	-0.227	1.144E-09	-0.642	5.894E-98
599	RELT	CST3	Proteins	eGFRbiom	diftype	0.462	1.615E-28	2.325E-26	eGFR FF4	Y	RELT to CST3 to Follow-up eGFR	kidney trait in FF4 (as Y)	-0.205 (- 0.262 to - 59.83 0.158)	0.0E+00	0.000E+00	-0.138 (- 0.204 to - 0.073)	0.00E+00	0.000E+00	-0.343	1.967E-24	-0.642	5.894E-98
600	TNFRSF 19	CST3	Proteins	eGFRbiom	diftype	0.294	1.165E-11	1.119E-10	eGFR FF4	Y	TNFRSF19 to CST3 to Follow- up eGFR	kidney trait in FF4 (as Y)	-0.077 (- 0.158 to - 41.38 0.02)	1.0E-02	1.473E-02	-0.109 (- 0.162 to - 0.059)	0.00E+00	0.000E+00	-0.185	2.628E-09	-0.642	5.894E-98
601	TNFRSF 1B	CST3	Proteins	eGFRbiom	diftype	0.415	9.521E-23	4.570E-21	eGFR FF4	Y	TNFRSF1B to CST3 to Follow- up eGFR	kidney trait in FF4 (as Y)	-0.199 (- 0.261 to - 65.8 0.145)	0.0E+00	0.000E+00	-0.103 (- 0.177 to - 0.028)	6.00E-03	8.605E-03	-0.302	2.211E-20	-0.642	5.894E-98
602	РАРРА	CST3	Proteins	eGFRbiom	diftype	0.193	1.121E-05	4.036E-05	eGFR FF4	Y	PAPPA to CST3 to Follow-up eGFR	kidney trait in FF4 (as Y)	-0.1 (- 0.149 to - 74.94 0.058)	0.0E+00	0.000E+00	-0.034 (- 0.088 to 0.023)	2.66E-01	2.974E-01	-0.134	4.851E-05	-0.642	5.894E-98
603	CTSV	CST3	Proteins	eGFRbiom	diftype	-0.248	1.199E-08	3 7.047E-08	eGFR FF4	Y	CTSV to CST3 to Follow-up eGFR	kidney trait in FF4 (as Y)	0.149 (0.101 to 69.65 0.196)	0.0E+00	0.000E+00	0.065 (0.004 to 0.125)	3.40E-02	4.438E-02	0.213	5.057E-08	-0.642	5.894E-98
604	EGFR	CST3	Proteins	eGFRbiom	diftype	-0.371	3.615E-18	8.009E-17	eGFR FF4	Y	EGFR to CST3 to Follow-up eGFR	kidney trait	0.211 (0.162 to 81.7 (0.263)	0.0E+00	0.000E+00	0.047 (-0.014 to 0.11)	1.60E-01	1.836E-01	0.259	1.214E-11	-0.642	5.894E-98
605	FN1	CST3	Proteins	eGFRbiom	diftype	-0.193	1.020E-05	3.802E-05	eGFR FF4	Y	FN1 to CST3 to Follow-up eGFR	kidney trait	0.101 (0.056 to 91.77 (0.149)	0.0E+00	0.000E+00	0.009 (-0.039 to 0.054)	7.70E-01	7.881E-01	0.11	1.156E-03	-0.642	5.894E-98

606	LAYN	CST3	Proteins	eGFRbiom	diftype	0.295	8.726E-12	8.666E-11	eGFR FF4	Y	LAYN to CST3 to Follow-up eGFR	kidney trait in FF4 (as Y)	- (56.49 (-0.135 (- 0.194 to - 0.085)	0.0E+00	0.000E+00	-0.104 (- 0.173 to - 0.035)	0.00E+00	0.000E+00	-0.24 5.264E-1	-0.642 5.894E-9
607	KDR	CST3	Proteins	eGFRbiom	diftype	-0.264	1.282E-09	8.789E-09	eGFR FF4	Y	KDR to CST3 to Follow-up eGFR	kidney trait in FF4 (as Y)	72.23 (0.118 (0.071 to 0.169)	0.0E+00	0.000E+00	0.045 (-0.012 to 0.103)	1.08E-01	1.259E-01	0.163 2.182E-0	-0.642 5.894E-9
608	RETN	CST3	Proteins	eGFRbiom	diftype	0.283	6.818E-11	. 5.455E-10	eGFR FF4	Y	RETN to CST3 to Follow-up eGFR	kidney trait in FF4 (as Y)	60.61	-0.137 (- 0.183 to - 0.096)	0.0E+00	0.000E+00	-0.089 (- 0.147 to - 0.034)	4.00E-03	5.775E-03	-0.226 5.657E-1	-0.642 5.894E-9
609	KIR2DL	CST3	Proteins	eGFRbiom	diftype	0.125	4.556E-03	1.033E-02	eGFR FF4	Y	KIR2DL4 to CST3 to Follow-up eGFR	kidney trait in FF4 (as Y)	- (57.01 (-0.058 (- 0.102 to - 0.015)	4.0E-03	6.229E-03	-0.044 (-0.09 to 0.007)	9.40E-02	1.120E-01	-0.101 2.900E-0	-0.642 5.894E-9
610	C14:2	CST3	Metabolites	eGFRbiom	diftype	0.244	5.241E-20	1.677E-18	eGFR FF4	Y	C14:2 to CST3 to Follow-up eGFR	kidney trait in FF4 (as Y)	(87.39 (-0.098 (- 0.136 to - 0.064)	0.0E+00	0.000E+00	-0.014 (- 0.057 to 0.027)	4.82E-01	5.126E-01	-0.112 3.972E-0	-0.642 5.894E-9
611	. CNDP1	CST3	Proteins	eGFRbiom	diftype	-0.239	4.006E-08	2.177E-07	eGFR FF4	Y	CNDP1 to CST3 to Follow-up eGFR	kidney trait in FF4 (as Y)	80.09	0.113 (0.062 to 0.161)	0.0E+00	0.000E+00	0.028 (-0.039 to 0.086)	4.16E-01	4.467E-01	0.141 2.240E-0	-0.642 5.894E-9
612	NBL1	CST3	Proteins	eGFRbiom	diftype	0.373	2.378E-18	5.708E-17	eGFR FF4	Y	NBL1 to CST3 to Follow-up eGFR	kidney trait in FF4 (as Y)	- (63.42 (-0.163 (- 0.227 to - 0.113)	0.0E+00	0.000E+00	-0.094 (- 0.156 to - 0.043)	2.00E-03	2.966E-03	-0.258 1.359E-1	-0.642 5.894E-9
613	ESAM	CST3	Proteins	eGFRbiom	diftype	0.276	1.940E-10	1.510E-09	eGFR FF4	Y	ESAM to CST3 to Follow-up eGFR	kidney trait in FF4 (as Y)	- (57.76 (-0.137 (- 0.183 to - 0.089)	0.0E+00	0.000E+00	-0.1 (-0.164 to -0.034)	0.00E+00	0.000E+00	-0.236 3.557E-1	-0.642 5.894E-9
614	C14:1	CST3	Metabolites	eGFRbiom	diftype	0.191	9.890E-13	1.055E-11	eGFR FF4	Y	C14:1 to CST3 to Follow-up eGFR	kidney trait in FF4 (as Y)	- (77.37 (-0.079 (- 0.114 to - 0.047)	0.0E+00	0.000E+00	-0.023 (- 0.068 to 0.02)	2.90E-01	3.209E-01	-0.102 1.816E-0	-0.642 5.894E-9
615	IGEBP6	CST3	Proteins	eGERhiom	diftype	0 437	2 789F-25	2 0085-23	eGER EE4	Y	IGFBP6 to CST3 to	kidney trait	- (57 21 (-0.202 (- 0.261 to - 0.143)	0.0F+00	0.000E+00	-0.151 (- 0.215 to - 0.086)	0.00F+00	0 000F+00	-0 354 6 692E-2	-0 642 5 8945-9
			Drate		diffe	0.407	2 2075 65	1 1705 0			IL19 to CST3 to	kidney trait	57.21	0.09 (0.044 to	0.05.00	0.0005-00	0.053 (0.004	4.005.00	5.0005.00	0.142.2.4525.2	
616	01119	0055	Proteins	egfkbiom	иптуре	-0.182	3.39/E-05	1.179E-04	eger	Y	ERP29 to CST3 to	kidney trait	63 (-0.146 (- 0.2 to -	0.02+00	0.000E+00	-0.086 (- 0.153 to -	4.00E-02	5.099E-02	0.143 2.452E-0	-0.642 5.894E-9
618	EKP29	513	Proteins	egekbiom	uittype	0.261	1.840E-09	1.204E-08	eGFK FF4	Y	FOIIOW-UP EGFR	in FF4 (as Y)	62.86 (0.099)	U.UE+00	U.UUUE+00	0.023)	8.00E-03	1.132E-02	-0.232 3.085E-1	-0.642 5.894E-9

													-0.088 (-			-0.009 (-						
620 IL6	CST3	Proteins	eGFRbiom	diftype	0.103	1.937E-02	2 3.646E-02	eGFR FF4	Y	IL6 to CST3 to Follow-up eGFR	kidney trait in FF4 (as Y)	90.84	0.137 to - 0.037)	0.0E+00	0.000E+00	0.051 to 0.029)	6.36E-01	6.571E-01	-0.097 2	2.116E-03	-0.642	5.894E-98
										C14-1 OH to CST2			0.11.(0.012/						
C14·1-										to Follow-up	kidnev trait		0.11 (- 0.148 to -			-0.012 (- 0.057 to						
621 OH	CST3	Metabolites	eGFRbiom	diftype	0.229	9.246E-18	8 1.902E-16	eGFR FF4	Y	eGFR	in FF4 (as Y)	89.91	0.077)	0.0E+00	0.000E+00	0.03)	5.68E-01	5.982E-01	-0.123	4.789E-06	-0.642	5.894E-98
										EGE20 to CST2 to	kidnov trait		0.089			0.065 (0.028						
622 FGF20	CST3	Proteins	eGFRbiom	diftype	-0.273	3.105E-10	0 2.293E-09	eGFR FF4	Y	Follow-up eGFR	in FF4 (as Y)	57.68	0.193)	0.0E+00	0.000E+00	to 0.13)	0.00E+00	0.000E+00	0.154 1	1.991E-06	-0.642	5.894E-98
													-0.092 (-			-0.047 (-						
caa ca	CCT2		CERL :		0.242	4 0005 41				C8 to CST3 to	kidney trait	65.04	0.124 to -	0.05.00	0.0005.00	0.085 to -	2 005 02	2 6775 02	0.400			
623 C8	CS13	Metabolites	eGFRbiom	diftype	0.213	1.922E-15	5 3.076E-14	eGFR FF4	Y	Follow-up eGFR	in FF4 (as Y)	65.94	0.062)	0.0E+00	0.000E+00	0.007)	2.80E-02	3.677E-02	-0.139 2	2.663E-07	-0.642	.894E-98
													-0.138 (-			-0.101 (-						
										UNC5C to CST3 to	kidney trait		0.196 to -			0.168 to -						
624 UNC5C	CST3	Proteins	eGFRbiom	diftype	0.24	3.842E-08	8 2.128E-07	eGFR FF4	Y	Follow-up eGFR	in FF4 (as Y)	57.61	0.082)	0.0E+00	0.000E+00	0.034)	4.00E-03	5.775E-03	-0.239 2	2.111E-11	-0.642	5.894E-98
													-0.219 (-			-0.083 (-						
										CTSH to CST3 to	kidney trait		0.272 to -			0.153 to -						
625 CTSH	CST3	Proteins	eGFRbiom	diftype	0.415	8.967E-23	3 4.570E-21	eGFR FF4	Y	Follow-up eGFR	in FF4 (as Y)	72.55	0.168)	0.0E+00	0.000E+00	0.017)	1.20E-02	1.656E-02	-0.301 2	2.573E-17	-0.642	5.894E-98
													0 1 2 7 (
										EPHA2 to CST3 to	kidney trait		0.181 to -			-0.1 (-0.182						
626 EPHA2	CST3	Proteins	eGFRbiom	diftype	0.256	3.863E-09	9 2.318E-08	eGFR FF4	Y	Follow-up eGFR	in FF4 (as Y)	55.83	0.078)	0.0E+00	0.000E+00	to -0.025)	1.20E-02	1.656E-02	-0.227 1	1.296E-11	-0.642	5.894E-98
													0 195 /			0.125 /						
TNFRSF										CST3 to Follow-	kidnev trait		-0.185 (- 0.24 to -			-0.125 (- 0.202 to -						
628 1A	CST3	Proteins	eGFRbiom	diftype	0.442	6.356E-26	6 6.102E-24	eGFR FF4	Y	up eGFR	in FF4 (as Y)	59.6	0.133)	0.0E+00	0.000E+00	0.053)	2.00E-03	2.966E-03	-0.311 6	5.192E-22	-0.642	5.894E-98
													0.169/			0.0561						
CGA										to Follow-up	kidnev trait		-0.168 (- 0.262 to -			-0.056 (- 0.151 to						
629 LHB	CST3	Proteins	eGFRbiom	diftype	0.234	8.101E-08	8 4.242E-07	eGFR FF4	Y	eGFR	in FF4 (as Y)	75.02	0.093)	0.0E+00	0.000E+00	0.03)	2.10E-01	2.397E-01	-0.225 2	2.919E-04	-0.642	5.894E-98
																			ľ			
										GHB to CST2 to	kidnov trait		0.12			0.058 (0.000						
630 GHR	CST3	Proteins	eGFRbiom	diftype	-0.207	2.243E-06	6 9.156E-06	eGFR FF4	Y	Follow-up eGFR	in FF4 (as Y)	67.53	0.167)	0.0E+00	0.000E+00	to 0.122)	9.60E-02	1.137E-01	0.178 1	1.444E-05	-0.642	5.894E-98
						-																
											المتحد والمتعالم		-0.131 (-			-0.109 (-						
631 IGEBP2	CST3	Proteins	eGERhiom	diftyne	0 222	3 600F-07	7 1 620E-06	eGER FE4	v	Follow-up eGFR	kidney trait	54 57	0.195 to - 0.076)	0.0E+00	0.000E+00	0.178 to - 0.038)	2 00F-03	2 966F-03	-0 239 7	7 855F-09	-0 642	894F-98
031 101 01 2	CJIJ	rioteins	CONDICIN	untype	0.222	3.000L-07	1.0201-00	edikii4	'	ronow-up eor it	11114 (83.1)	54.57	0.070	0.02100	0.0002100	0.038)	2.001-03	2.5002-05	-0.235		-0.042	J.0J4L-J0
													-0.099 (-			-0.048 (-						
622 010	CCT2	Motobalitas	oCERhiam	diffunc	0.219	2 7645 10	C 277E 1E		v	C10 to CST3 to	kidney trait	67.29	0.13 to -	0.05.00	0.0005.00	0.087 to -	2 405 02	2 1005 02	0 1 4 7 9	2125.00	0.642	004E 00
052 C10	C313	wietabolites	earkbiom	untype	0.218	3.704E-10	0.3//E-15	eurk rf4	T	Follow-up edFK	111 FF4 (dS Y)	07.28	0.000j	0.0E+00	0.000E+00	0.007)	2.40E-02	5.190E-02	-0.147 8	5.512E-U8	-0.042	.094E-98
										SCARF1 to CST3			-0.108 (-			-0.047 (-						
c22 c0455	CCT2		CERL 1		0.000		7 7 5005 67			to Follow-up	kidney trait	60.55	0.151 to -	0.05.00	0.0005.00	0.097 to	7 005 65	0 6345 63	0.455			0045 00
633 SCARF1	CST3	Proteins	eGFRbiom	diftype	0.229	1.554E-07	/ /.590E-07	eGFR FF4	Y	eGFR	In FF4 (as Y)	69.56	U.U/)	U.UE+00	0.000E+00	0.004)	7.00E-02	8.621E-02	-0.156 1	1.U11E-06	-0.642	.894E-98

											C16 to CST3 to	kidney trait		-0.065 (- 0.102 to -			-0.006 (- 0.052 to						
635	C16	CS13	Metabolites	eGFRbiom	diftype	0.141 1	L.681E-07	7.935E-07	eGFR FF4	Y	Follow-up eGFR	in FF4 (as Y)	92.05	0.031)	0.0E+00	0.000E+00	0.037)	8.22E-01	8.296E-01	-0.07 1	.334E-02	-0.642 5.	894E-98
														0.067									
											FGF9 to CST3 to	kidney trait		(0.022 to			0.012 (-0.038						
636	5 FGF9	CST3	Proteins	eGFRbiom	diftype	-0.167 1	L.394E-04	4.363E-04	eGFR FF4	Y	Follow-up eGFR	in FF4 (as Y)	84.72	0.12)	6.0E-03	9.211E-03	to 0.062)	6.28E-01	6.550E-01	0.079 2	.713E-02	-0.642 5.	894E-98
														-0 14 (-			-0 098 (-						
											EFNA5 to CST3 to	kidney trait		0.189 to -			0.156 to -						
637	FNA5	CST3	Proteins	eGFRbiom	diftype	0.287 3	3.780E-11	3.202E-10	eGFR FF4	Y	Follow-up eGFR	in FF4 (as Y)	58.8	0.094)	0.0E+00	0.000E+00	0.035)	2.00E-03	2.966E-03	-0.237 5	.965E-12	-0.642 5.	894E-98
														0 118									
											PLG to CST3 to	kidney trait		(0.077 to			0.014 (-0.04						
639	PLG	CST3	Proteins	eGFRbiom	diftype	-0.261 1	L.881E-09	1.204E-08	eGFR FF4	Y	Follow-up eGFR	in FF4 (as Y)	89.25	0.167)	0.0E+00	0.000E+00	to 0.067)	6.34E-01	6.571E-01	0.132 1	.799E-04	-0.642 5.	894E-98
														0.121									
	CLEC4										to Follow-up	kidnev trait		0.121 (0.076 to			0.011 (-0.042						
640	0 M	CST3	Proteins	eGFRbiom	diftype	-0.207 2	2.257E-06	9.156E-06	eGFR FF4	Y	eGFR	in FF4 (as Y)	91.39	0.163)	0.0E+00	0.000E+00	to 0.066)	7.76E-01	7.905E-01	0.133 1	.046E-04	-0.642 5.	894E-98
											C10:2 to CST3 to	kidnev trait		-0.095 (-			-0.022 (-						
641	C10:2	CST3	Metabolites	eGFRbiom	diftype	0.241 1	L.527E-19	4.398E-18	eGFR FF4	Y	Follow-up eGFR	in FF4 (as Y)	81.51	0.132 (0 -	0.0E+00	0.000E+00	0.022)	3.66E-01	3.950E-01	-0.117 6	.984E-06	-0.642 5.	894E-98
														-0.076 (-			-0.026 (-						
											C5 to CST3 to	kidney trait		0.116 to -			0.068 to						
642	2 C5	CST3	Metabolites	eGFRbiom	diftype	0.182 1	L.247E-11	1.122E-10	eGFR FF4	Y	Follow-up eGFR	in FF4 (as Y)	74.32	0.043)	0.0E+00	0.000E+00	0.017)	2.18E-01	2.462E-01	-0.103 2	.980E-04	-0.642 5.	894E-98
														-0.152 (-			-0.135 (-						
											FSTL3 to CST3 to	kidney trait		0.208 to -			0.191 to -						
643	B FSTL3	CST3	Proteins	eGFRbiom	diftype	0.33 1	L.775E-14	2.223E-13	eGFR FF4	Y	Follow-up eGFR	in FF4 (as Y)	53.09	0.1)	0.0E+00	0.000E+00	0.068)	0.00E+00	0.000E+00	-0.287 2	.672E-17	-0.642 5.	894E-98
														0.081									
											ACY1 to CST3 to	kidney trait		(0.032 to			0.076 (0.01						
644	ACY1	CST3	Proteins	eGFRbiom	diftype	-0.111 1	L.212E-02	2.431E-02	eGFR FF4	Y	Follow-up eGFR	in FF4 (as Y)	51.36	0.129)	2.0E-03	3.406E-03	to 0.141)	2.20E-02	2.942E-02	0.157 1	.315E-04	-0.642 5.	894E-98
											SPOCK2 to CST3			0 172									
											to Follow-up	kidney trait		(0.126 to			0.058 (-0.008						
646	SPOCK2	CST3	Proteins	eGFRbiom	diftype	-0.335 6	5.329E-15	9.114E-14	eGFR FF4	Y	eGFR	in FF4 (as Y)	74.88	0.222)	0.0E+00	0.000E+00	to 0.124)	8.80E-02	1.060E-01	0.23 1	.421E-12	-0.642 5.	894E-98
								Í						0.050 /		Í	0.022/	ſ	Í	Í			
											C18-1 to CST3 to	kidnev trait		-0.059 (- 0.098 to -			-0.022 (- 0.067 to						
647	C18:1	CST3	Metabolites	eGFRbiom	diftype	0.14 1	L.998E-07	9.280E-07	eGFR FF4	Y	Follow-up eGFR	in FF4 (as Y)	73.23	0.025)	2.0E-03	3.406E-03	0.024)	3.08E-01	3.374E-01	-0.081 3	.345E-03	-0.642 5.	894E-98
																		r					
											P2M to CST2 to	kidnov troit		-0.298 (-			-0.086 (-						
649	B2M	CST3	Proteins	eGFRbiom	diftype	0.615 1	L.036E-54	2.985E-52	eGFR FF4	Y	Follow-up eGFR	in FF4 (as Y)	77.55	0.235)	0.0E+00	0.000E+00	0.007)	8.00E-02	9.689E-02	-0.384 1	.594E-30	-0.642 5	894E-98
2.13					//							. (1)		,									
											C6(C4:1-DC) to			-0.097 (-			-0.023 (-						
650	C6(C4:1	CST3	Metabolites	eGERhiom	diftyne	0 224 4	1 939F-17	9 483F-16	eGER EE4	Y	UD POLION-	kidney trait	81 21	0.131 to -	0.0F+00	0.000E+00	0.067 to 0.019)	2 90F-01	3 209F-01	-0 12 2	184F-05	-0 642 5	894F-98
0.50	,					0.224 4		2002 10					01.21		2.02.00	2.0002.00				0.12 2		0.0.2 0.	50

														0.075									
											FCN3 to CST3 to	kidney trait		(0.032 to			0.029 (-0.023						
651	FCN3	CST3	Proteins	eGFRbiom	diftype	-0.132	2.699E-03	6.759E-03	eGFR FF4	Y	Follow-up eGFR	in FF4 (as Y)	71.82	0.118)	2.0E-03	3.406E-03	to 0.084)	3.22E-01	3.492E-01	0.104	4.880E-03	-0.642	5.894E-98
														-0.15 (-			-0.105 (-						
											TFF3 to CST3 to	kidney trait		0.234 to -			0.169 to -						
652	TFF3	CST3	Proteins	eGFRbiom	diftype	0.376	1.102E-18	2.886E-17	eGFR FF4	Y	Follow-up eGFR	in FF4 (as Y)	58.88	0.092)	0.0E+00	0.000E+00	0.051)	0.00E+00	0.000E+00	-0.255	3.473E-13	-0.642	5.894E-98
														-0.134 (-			-0.083 (-						
											JAM2 to CST3 to	kidney trait		0.182 to -			0.143 to -						
653	JAM2	CS13	Proteins	eGFRbiom	diftype	0.341	2.148E-15	3.25/E-14	eGFR FF4	Y	Follow-up eGFR	in FF4 (as Y)	61.81	0.086)	0.0E+00	0.000E+00	0.028)	2.00E-03	2.966E-03	-0.216	8.221E-12	-0.642	5.894E-98
		Urino									C19:1 to Urino			0.000									
		olhumi									clo.1 to Unite	kidnov troit		0.009			0.026 (0.005						
655	C10.1	aibuiiii	Motabolitor	LIACPhiom	diftuno	0 127	2 5475 06	1 0105 05		v	incident CKD	in EE4 (or V)	20.65	0.005 10	1 05 02	1 6005 02	0.036 (0.005	2 605 02	2 2205 02	0 225	6 2055 02	0.014	2 2605 00
055	C18.1	n	Metabolites	UACKDIOIII	untype	0.127	2.347E-00	1.019E-05	CKD FF4	T	Incluent CKD	III FF4 (dS T)	20.05	0.018)	4.0E-05	1.000E-02	10 0.073)	2.00E-02	5.526E-UZ	0.525	0.303E-05	0.914	2.309E-06
		Urine									MCM3 to Urine			-0 107 (-			-0 071 (-						
		alhumi									albumin to	kidnev trait		0.181 to -			0.071 (
659	мсмз	n	RNAs	UACRbiom	diftype	-0.17	1.030E-05	3.802E-05	UACR FF4	Y	Follow-up UACR	in FF4 (as Y)	59.88	0.042)	0.0E+00	0.000E+00	0.023)	1.36E-01	1.360E-01	-0.178	2.073E-03	0.573	1.129E-59
														,									
		Urine									SLC22A4 to Urine			0.072									
	SLC22A	albumi									albumin to	kidney trait		(0.011 to			0.132 (0.03						
660	4	n	RNAs	UACRbiom	diftype	0.159	3.884E-05	1.316E-04	UACR FF4	Y	Follow-up UACR	in FF4 (as Y)	35.46	0.141)	1.6E-02	3.000E-02	to 0.223)	4.00E-03	6.000E-03	0.204	4.041E-04	0.573	1.129E-59
		Urine									EGFR to Urine			-0.092 (-			-0.088 (-						
		albumi									albumin to	kidney trait		0.142 to -			0.181 to						
661	EGFR	n	Proteins	UACRbiom	diftype	-0.155	4.251E-04	1.237E-03	UACR FF4	Y	Follow-up UACR	in FF4 (as Y)	51.06	0.048)	0.0E+00	0.000E+00	0.009)	7.40E-02	8.880E-02	-0.18	1.268E-04	0.573	1.129E-59
														0.007									
	Creatin										Creatinine to C12	kidney trait		(0.001 to			0.054 (-0.002						
662	ine	C12	eGFRbiom	Metabolites	diftype	0.159	3.494E-09	2.141E-08	CKD FF4	Y	to incident CKD	in FF4 (as Y)	11.63	0.016)	1.0E-02	3.556E-02	to 0.114)	5.80E-02	6.857E-02	0.459	6.259E-03	0.327 5	5.401E-03
											0204.64			0.010									
		Croatin									BZIVI TO	kidnov troit		0.018			0.068 (0.011						
<i>cc</i> 7	0204	Creatin	Ductoine	CERLIN	al:64	0.217	1 0055 12	2 1105 12		v	Creatinine to	kidney trait	21.10	(0.004 to	1 35 03	2 0405 02	0.068 (0.011	2 005 02	2 6675 02	0.561	0 2225 04	0.450	C 2505 02
667	BZIVI	ine	Proteins	egrapiom	antype	0.317	1.905E-13	2.110E-12	CKD FF4	ř	Incident CKD	in FF4 (as Y)	21.16	0.038)	1.2E-02	3.840E-02	(0 0.124)	2.00E-02	2.00/E-U2	0.561	9.322E-04	0.459	0.259E-03
											TNFRSF1R to			-0 091 (-			-0 211 (-						
	TNERSE	Creatin									Creatinine to	kidnev trait		0.133 to -			0.282 to -						
669	1B	ine	Proteins	eGFRbiom	diftype	0.181	3.809E-05	1.306E-04	eGFR FF4	Y	Follow-up eGFR	in FF4 (as Y)	30,11	0.051)	0.0E+00	0.000E+00	0.142)	0.00E+00	0.000E+00	-0,302	2.211E-20	-0.529	1.462E-67
005						5.101					and ap contr		50.11							5.502	23		
											Creatinine to			-0.07 (-									
											TNFRSF1B to	kidney trait		0.103 to -			-0.478 (-0.55						
669									eGFR FF4	Y	Follow-up eGFR	in FF4 (as Y)	12.79	0.036)	0.0E+00	0.000E+00	to -0.402)	0.00E+00	0.000E+00				

	Creatin								FN1 to Creatinine	kidney trait	0.0	045 005 to			0.066.(0.009								
670 FN1	ine	Proteins	eGFRbiom	diftype	-0.133 2.624E-03	3 6.629E-03	eGFR FF4	Y	eGFR	in FF4 (as Y)	40.33 0.0	0000 to 082) 3	3.0E-02	4.012E-02	to 0.118)	2.20E-02	2.942E-02	0.11	1.156E-03	-0.529 1	.462E-67		
									ERBB3 to		0.0	08											
	Creatin								Creatinine to	kidney trait	(0.	.042 to			0.06 (-0.007								
671 ERBB3	ine	Proteins	eGFRbiom	diftype	-0.176 6.339E-05	5 2.098E-04	eGFR FF4	Y	Follow-up eGFR	in FF4 (as Y)	57.17 0.1	12) (0.0E+00	0.000E+00	to 0.132)	8.00E-02	9.689E-02	0.14	2.266E-04	-0.529 1	.462E-67		
									HAVCR2 to		-0.	.074 (-			-0.153 (-								
HAVCR	Creatin								Creatinine to	kidney trait	0.1	12 to -			0.226 to -								
672 2	ine	Proteins	eGFRbiom	diftype	0.111 1.216E-02	2 2.431E-02	eGFR FF4	Y	Follow-up eGFR	in FF4 (as Y)	32.72 0.0	034) 2	2.0E-03	3.406E-03	0.086)	0.00E+00	0.000E+00	-0.227	1.144E-09	-0.529 1	.462E-67		
									KIR2DL4 to		-0.	.064 (-			-0.037 (-								
KIR2DL	Creatin								Creatinine to	kidney trait	0.1	105 to -			0.095 to								
673 4	ine	Proteins	eGFRbiom	diftype	0.129 3.486E-03	3 8.229E-03	eGFR FF4	Y	Follow-up eGFR	in FF4 (as Y)	63.35 0.0	03) (0.0E+00	0.000E+00	0.029)	2.92E-01	3.215E-01	-0.101	2.900E-03	-0.529 1	.462E-67		
									NPI 1 to		0.	007 (0.161/								
	Creatin								Creatinine to	kidnev trait	-0.1	145 to -			0.232 to -								
674 NBL1	ine	Proteins	eGFRbiom	diftype	0.23 1.345E-07	7 6.796E-07	eGFR FF4	Y	Follow-up eGFR	in FF4 (as Y)	37.68 0.0	055) (0.0E+00	0.000E+00	0.102)	0.00E+00	0.000E+00	-0.258	1.359E-14	-0.529 1	.462E-67		
	Croatin								LAYN to	kidnov trait	-0.0	.096 (-			-0.144 (-								
675 LAYN	ine	Proteins	eGFRbiom	diftype	0.194 9.148E-06	5 3.513E-05	eGFR FF4	Y	Follow-up eGFR	in FF4 (as Y)	40.09 0.0)54) (0.0E+00	0.000E+00	0.065)	0.00E+00	0.000E+00	-0.24	5.264E-13	-0.529 1	.462E-67		
										(,					,								
TNEDCE	Croatin								TNFRSF1A to	kidnov trait	-0.	.113 (-			-0.197 (-								
676 1A	ine	Proteins	eGFRbiom	diftype	0.283 6.165E-11	1 5.073E-10	eGFR FF4	Y	Follow-up eGFR	in FF4 (as Y)	36.48 0.0))76) (0.0E+00	0.000E+00	0.12)	0.00E+00	0.000E+00	-0.311	6.192E-22	-0.529 1	.462E-67		
										. ,													
									AMH to		0.0	057											
677 AMH	Creatin	Proteins	eGERhiom	diftyne	-0 131 3 0185-03	3 7 336F-03	AGER EEA	v	Creatinine to	kidney trait	(0.) 50 87 0 0	.016 to	2 0E-03	3 406E-03	0.055 (-0.016	1 22E-01	1 /15E-01	0 112	1 203E-03	-0 5 2 9 1	462E-67		
	ine	Troteins	Controlom	untype	-0.131 5.0182-03	J 7.330L-03	contria	1	ronow-up editi	11114 (83.1)	50.87 0.0	550 1	2.01-03	3.400L-03	(0 0.124)	1.221-01	1.4156-01	0.112	1.2552-05	-0.525 1	.4022-07		
									GHR to		0.0	059											
	Creatin								Creatinine to	kidney trait	(0.	012 to			0.119 (0.046								
678 GHR	ine	Proteins	eGFRbiom	diftype	-0.124 5.049E-03	3 1.136E-02	eGFR FF4	Y	Follow-up eGFR	in FF4 (as Y)	33.18 0.1	108) :	1.0E-02	1.473E-02	to 0.193)	2.00E-03	2.966E-03	0.178	1.444E-05	-0.529 1	.462E-67		
									IL19 to Creatinine		0.0	061											
	Creatin								to Follow-up	kidney trait	(0.	.025 to			0.082 (0.028								
679 IL19	ine	Proteins	eGFRbiom	diftype	-0.12 6.708E-03	3 1.475E-02	eGFR FF4	Y	eGFR	in FF4 (as Y)	42.58 0.0	099) 4	4.0E-03	6.229E-03	to 0.132)	4.00E-03	5.775E-03	0.143	2.452E-05	-0.529 1	.462E-67		
									CTSV to		0.0	159											
	Creatin								Creatinine to	kidney trait	(0.0	.019 to			0.154 (0.081								
680 CTSV	ine	Proteins	eGFRbiom	diftype	-0.122 5.518E-03	3 1.222E-02	eGFR FF4	Y	Follow-up eGFR	in FF4 (as Y)	27.73 0.0	098)	4.0E-03	6.229E-03	to 0.212)	0.00E+00	0.000E+00	0.213	5.057E-08	-0.529 1	.462E-67		
	Creatia								CTSH to	kidney trait	-0.	.121 (-			-0.18/0.246								
681 CTSH	ine	Proteins	eGFRbiom	diftype	0.248 1.232E-08	3 7.096E-08	eGFR FF4	Y	Follow-up eGFR	in FF4 (as Y)	40.12 0.0)82) (0.0E+00	0.000E+00	to -0.121)	0.00E+00	0.000E+00	-0.301	2.573E-17	-0.529 1	.462E-67		
											C14:1 OU to			0.000 (0.052.(
-----	------------	---------	--------------	-----------	---------	--------	-----------	-------------	----------	-----	-------------------	--------------------------	---------	-------------------------	---------	-----------	-------------------------	-----------	-----------	------------	---------	----------	-----------
	C14:1-	Creatin									Creatinine to	kidnev trait	-	-0.069 (- 0.099 to -			-0.053 (- 0.098 to -						
682	OH	ine	Metabolites	eGFRbiom	diftype	0.153	1.423E-08	8.037E-08	eGFR FF4	Y	Follow-up eGFR	in FF4 (as Y)	56.44 (0.039)	0.0E+00	0.000E+00	0.008)	2.00E-02	2.708E-02	-0.123 4.7	'89E-06	-0.529 1	L.462E-67
														,									
		Creatin									C12 to Creatinine	kidnev trait	-	-0.069 (- 0 101 to -			-0 073 (-0 12						
683	C12	ine	Metabolites	eGFRbiom	diftype	0.159	3.494E-09	2.141E-08	eGFR FF4	Y	eGFR	in FF4 (as Y)	48.69 0	D.039)	0.0E+00	0.000E+00	to -0.029)	4.00E-03	5.775E-03	-0.143 2.2	23E-07	-0.529 1	1.462E-67
												,											
											UNC5C to		-	-0.091 (-			-0.148 (-						
684		creatin	Proteins	eGERhiom	diftyne	0 178	5 138F-05	5 1 721E-04	eGER EE4	v	Creatinine to	kidney trait	37 94 0	0.135 to - 0.045)	0.0E+00	0.000F+00	0.218 to - 0.075)	0.00E+00	0.000E+00	-0 239 2 1	11E-11	-0 529 1	1 462E-67
004	onese		Troteins	contoioni	untype	0.170	5.1502 03	1.7212 04	contri	· ·	ronow up cont	1111 - (us 1)	57.54 0	5.0457	0.02.00	0.0002.00	0.0757	0.002.00	0.0002.00	0.235 2.1		0.525	
											C14:1 to		-	-0.052 (-									
605	~ ~ ~ ~	Creatin		CERL		0.400	0.5675.00				Creatinine to	kidney trait	54.47	0.083 to -	2 05 02	2 4005 02	-0.05 (-0.097	4 005 00	5 0005 00	0.400.4.0	465.04	0.500	
685	C14:1	ine	wetabolites	egerdiom	airtype	0.106	8.567E-05	2.742E-04	egfk ff4	Y	Follow-up eGFR	IN FF4 (as Y)	51.170	0.025)	2.0E-03	3.406E-03	to -0.003)	4.00E-02	5.099E-02	-0.102 1.8	16E-04	-0.529 1	462E-67
											TFF3 to		-	-0.102 (-			-0.154 (-						
		Creatin									Creatinine to	kidney trait	C	0.161 to -			0.235 to -						
686	TFF3	ine	Proteins	eGFRbiom	diftype	0.273	2.976E-10	2.255E-09	eGFR FF4	Y	Follow-up eGFR	in FF4 (as Y)	39.75 (0.056)	0.0E+00	0.000E+00	0.094)	0.00E+00	0.000E+00	-0.255 3.4	73E-13	-0.529 1	462E-67
											ADAMTS13 to		C	0.059									
	ADAMT	Creatin									Creatinine to	kidney trait	((0.023 to			0.052 (0.003						
688	S13	ine	Proteins	eGFRbiom	diftype	-0.144	1.064E-03	3 2.891E-03	eGFR FF4	Y	Follow-up eGFR	in FF4 (as Y)	53.05 0	0.094)	4.0E-03	6.229E-03	to 0.102)	4.00E-02	5.099E-02	0.111 6.8	23E-04	-0.529 1	1.462E-67
											MASP1 to		C	0.049									
		Creatin									Creatinine to	kidney trait	((0.009 to			0.042 (-0.009	1					
689	MASP1	ine	Proteins	eGFRbiom	diftype	-0.119	7.177E-03	3 1.554E-02	eGFR FF4	Y	Follow-up eGFR	in FF4 (as Y)	53.66 0	0.093)	1.4E-02	1.982E-02	to 0.085)	9.20E-02	1.102E-01	0.091 5.1	81E-03	-0.529 1	462E-67
														0.000									
		Creatin									Creatinine to	kidnev trait		0.098 0.062 to			0.132 (0.064						
690	SPOCK2	ine	Proteins	eGFRbiom	diftype	-0.222	3.795E-07	7 1.682E-06	eGFR FF4	Y	Follow-up eGFR	in FF4 (as Y)	42.59 0	0.139)	0.0E+00	0.000E+00	to 0.199)	0.00E+00	0.000E+00	0.23 1.4	21E-12	-0.529 1	L.462E-67
		Croatin									FGF20 to	kidnov trait	C	0.04			0 114 /0 067						
691	FGF20	ine	Proteins	eGFRbiom	diftype	-0.147	8.276E-04	1 2.337E-03	eGFR FF4	Y	Follow-up eGFR	in FF4 (as Y)	25.94 (0.113)	4.0E-03	6.229E-03	to 0.214)	0.00E+00	0.000E+00	0.154 1.9	91E-06	-0.529 1	1.462E-67
					,,,, .							,,		,									
											C5 to Creatinine		-	-0.062 (-			-0.041 (-						
602	C 5	Creatin	Motabolitor	oCEPhiom	diffuno	0 192	1 2045 11	1 1 105 10		v	to Follow-up	kidney trait	60.26 (0.096 to -	0.05+00	0.0005+00	0.086 to	1 0/15 01	1 2265 01	0 102 2 0	00E 04	0 5 20 1	1 4625 67
092	05	ine	wietabolites	edribioin	untype	0.182	1.204L-11	1.1191-10	eork rr4	I	eork	111 FF4 (d5 T)	00.30 0	5.03)	0.01+00	0.0001+00	0.007	1.041-01	1.2201-01	-0.103 2.5	00L-04	-0.329	4021-07
											JAM2 to		-	-0.122 (-			-0.094 (-						
		Creatin									Creatinine to	kidney trait	0	0.167 to -			0.169 to -						
693	JAM2	ine	Proteins	eGFRbiom	diftype	0.331	1.313E-14	1.801E-13	eGFR FF4	Y	Follow-up eGFR	in FF4 (as Y)	56.6 (J.079)	0.0E+00	U.000E+00	0.028)	U.00E+00	0.000E+00	-0.216 8.2	21E-12	-0.529 1	462E-67
											EGFR to		0	0.075									
		Creatin									Creatinine to	kidney trait	((0.035 to			0.184 (0.116						
694	EGFR	ine	Proteins	eGFRbiom	diftype	-0.134	2.287E-03	3 5.935E-03	eGFR FF4	Y	Follow-up eGFR	in FF4 (as Y)	29.07 0	0.117)	2.0E-03	3.406E-03	to 0.252)	0.00E+00	0.000E+00	0.259 1.2	14E-11	-0.529 1	462E-67

695	5 BMP1	Creatin ine	Proteins	eGFRbiom	diftype	-0.117	8.040E-03	3 1.678E-02	eGFR FF4	Y	BMP1 to Creatinine to Follow-up eGFR	kidney trait in FF4 (as Y)	0.056 (0.011 to 31.48 0.103)	1.6E-02	2.250E-02	0.122 (0.022 to 0.215)	8.00E-03	1.132E-02	0.178 5	6.497E-06	-0.529	1.462E-67
696	5 ESAM	Creatin ine	Proteins	eGFRbiom	diftype	0.188	1.885E-05	6.702E-05	eGFR FF4	Y	ESAM to Creatinine to Follow-up eGFR	kidney trait in FF4 (as Y)	-0.078 (- 0.121 to - 33.1 0.039)	0.0E+00	0.000E+00	-0.158 (-0.23 to -0.082)	0.00E+00	0.000E+00	-0.236 3	8.557E-12	-0.529	1.462E-67
697	C1QBP	Creatin ine	Proteins	eGFRbiom	diftype	-0.229	1.555E-07	7.590E-07	eGFR FF4	Y	C1QBP to Creatinine to Follow-up eGFR	kidney trait in FF4 (as Y)	0.087 (0.051 to 62.22 0.126)	0.0E+00	0.000E+00	0.053 (-0.002 to 0.106)	6.00E-02	7.432E-02	0.14 3	8.746E-05	-0.529	1.462E-67
698	B2M	Creatin ine	Proteins	eGFRbiom	diftype	0.317	1.905E-13	3 2.110E-12	eGFR FF4	Y	B2M to Creatinine to Follow-up eGFR	kidney trait in FF4 (as Y)	-0.126 (- 0.17 to - 32.76 0.085)	0.0E+00	0.000E+00	-0.258 (- 0.322 to - 0.19)	0.00E+00	0.000E+00	-0.384 1	594E-30	-0.529	1.462E-67
698	3								eGFR FF4	Y	Creatinine to B2M to Follow- up eGFR	kidney trait in FF4 (as Y)	-0.121 (- 0.167 to - 22.02 0.08)	0.0E+00	0.000E+00	-0.427 (-0.5 to -0.35)	0.00E+00	0.000E+00				
699	0 C10:2	Creatin ine	Metabolites	eGFRbiom	diftype	0.206	1.449E-14	1.897E-13	eGFR FF4	Y	C10:2 to Creatinine to Follow-up eGFR	kidney trait in FF4 (as Y)	-0.086 (- 0.119 to - 73.6 0.055)	0.0E+00	0.000E+00	-0.031 (- 0.077 to 0.017)	2.18E-01	2.462E-01	-0.117 6	.984E-06	-0.529	1.462E-67
700	CLEC4	Creatin	Protoins	oCEPhiom	diffuno	0 172	9 409E 00	2 7245 04		v	CLEC4M to Creatinine to	kidney trait	0.071 (0.032 to	0.05+00	0.0005±00	0.062 (-0.004	F 90E 02	7 2255 02	0 122 1	0465.04	0.520	1 4625 6
700	C6(C4:1	Creatin	Troteins		untype	0.175	0.4002 0.	2.7542 04			C6(C4:1-DC) to Creatinine to	kidnev trait	-0.071 (- 0.102 to -		0.0002100	-0.048 (- 0.097 to	5.002 02	7.2252 02	0.100		0.525	1.4022 07
701	-DC)	ine Creatin	Metabolites	eGFRbiom	diftype	0.162	1.813E-09	9 1.204E-08	eGFR FF4	Y	Follow-up eGFR EFNA5 to Creatinine to	in FF4 (as Y)	59.59 0.045) -0.097 (- 0.143 to -	0.0E+00	0.000E+00	0.001)	5.40E-02	6.805E-02	-0.12 2	2.184E-05	-0.529	1.462E-67
702	EFNA5	ine	Proteins	eGFRbiom	diftype	0.215	9.017E-07	7 3.819E-06	eGFR FF4	Y	Follow-up eGFR C14:2 to	in FF4 (as Y)	41.04 0.057) -0.069 (-	0.0E+00	0.000E+00	-0.043 (-	0.00E+00	0.000E+00	-0.237 5	.965E-12	-0.529	1.462E-67
703	8 C14:2	ine	Metabolites	eGFRbiom	diftype	0.164	1.092E-09	7.667E-09	eGFR FF4	Y	Follow-up eGFR	in FF4 (as Y)	61.73 0.042)	0.0E+00	0.000E+00	0.003)	7.40E-02	9.063E-02	-0.112 3	8.972E-05	-0.529	1.462E-67
704	TNFRSF 19	Creatin ine	Proteins	eGFRbiom	diftype	0.238	4.825E-08	3 2.573E-07	eGFR FF4	Y	TNFRSF19 to Creatinine to Follow-up eGFR	kidney trait in FF4 (as Y)	-0.074 (- 0.129 to - 39.98 0.038)	0.0E+00	0.000E+00	-0.111 (- 0.179 to - 0.06)	0.00E+00	0.000E+00	-0.185 2	2.628E-09	-0.529	1.462E-67
705	5 C2	Creatin ine	Metabolites	eGFRbiom	diftype	0.143	1.224E-07	7 6.295E-07	eGFR FF4	Y	C2 to Creatinine to Follow-up eGFR	kidney trait in FF4 (as Y)	-0.055 (- 0.087 to - 69.93 0.024)	4.0E-03	6.229E-03	-0.024 (- 0.074 to 0.027)	3.22E-01	3.492E-01	-0.079 4	.140E-03	-0.529	1.462E-67

		Creatin								FSTL3 to Creatinine to	kidnev trait	-0.096 (- 0.135 to -			-0.191 (- 0 252 to -				
706	FSTL3	ine Proteins	eGFRbiom	diftype	0.21	1.598E-0	5 6.668E-06	eGFR FF4	Y	Follow-up eGFR	in FF4 (as Y)	33.35 0.058)	0.0E+00	0.000E+00	0.127)	0.00E+00	0.000E+00	-0.287 2.672E-17	-0.529 1.462E-67
		Creatin								KDR to Creatinine	kidnev trait	0.057 (0.021 to			0 106 (0 051				
707	KDR	ine Proteins	eGFRbiom	diftype	-0.131	3.031E-03	3 7.336E-03	eGFR FF4	Y	eGFR	in FF4 (as Y)	35.19 0.1)	2.0E-03	3.406E-03	to 0.165)	0.00E+00	0.000E+00	0.163 2.182E-06	-0.529 1.462E-67
708	C8	Creatin ine Metabol	tes eGFRbiom	diftype	0.179	2.374E-11	L 2.072E-10	eGFR FF4	Y	C8 to Creatinine to Follow-up eGFR	kidney trait in FF4 (as Y)	-0.08 (- 0.11 to - 57.33 0.055)	0.0E+00	0.000E+00	-0.059 (- 0.102 to - 0.013)	1.00E-02	1.397E-02	-0.139 2.663E-07	-0.529 1.462E-67
700	ACV1	Creatin	eGERhiom	diftype	-0 115	9 386F-0	2 1 9315-02	AGER EE/	v	ACY1 to Creatinine to	kidney trait	0.067 (0.019 to	4.05-03	6 229E-03	0.09 (0.022 to 0 155)	1.005-02	1 397E-02	0.157.1.3156-04	-0 529 1 4625-67
710	CGA	Creatin ine Proteins	eGFRbiom	diftype	0.145	1.030E-0	3 2.825E-03	eGFR FF4	Y	CGA LHB to Creatinine to Follow-up eGFR	kidney trait in FF4 (as Y)	-0.113 (- 0.186 to - 50.1 0.046)	0.0E+00	0.000E+00	-0.112 (-0.22 to -0.014)	2.80E-02	3.677E-02	-0.225 2.919E-04	-0.529 1.462E-67
711	ERP29	Creatin ine Proteins	eGFRbiom	diftype	0.194	9.748E-06	5 3.694E-05	eGFR FF4	Y	ERP29 to Creatinine to Follow-up eGFR	kidney trait in FF4 (as Y)	-0.087 (- 0.133 to - 37.54 0.047)	0.0E+00	0.000E+00	-0.145 (- 0.211 to - 0.086)	0.00E+00	0.000E+00	-0.232 3.085E-10	-0.529 1.462E-67
		Creatin								C10 to Creatinine to Follow-up	kidney trait	-0.089 (- 0.119 to -			-0.057 (- 0.101 to -				
712	C10	ine Metabol Creatin	tes eGFRbiom	diftype	0.184	6.433E-12	2 6.617E-11	eGFR FF4	Y	eGFR RETN to Creatinine to	kidney trait	-0.074 (- 0.117 to -	0.0E+00	0.000E+00	0.012) -0.152 (- 0.211 to -	1.40E-02	1.919E-02	-0.147 8.312E-08	-0.529 1.462E-67
713	RETN	ine Proteins Creatin	eGFRbiom	diftype	0.157	3.471E-04	1.031E-03	eGFR FF4	Y	Follow-up eGFR RELT to Creatinine to	in FF4 (as Y) kidney trait	32.95 0.036) -0.135 (- 0.175 to -	0.0E+00	0.000E+00	0.087) -0.208 (- 0.278 to -	0.00E+00	0.000E+00	-0.226 5.657E-12	-0.529 1.462E-67
714	RELT	ine Proteins	eGFRbiom	diftype	0.327	3.216E-14	3.705E-13	eGFR FF4	Y	Follow-up eGFR EPHA2 to	in FF4 (as Y)	39.38 0.094) -0.073 (- 0.118 to	0.0E+00	0.000E+00	0.144) -0.154 (-	0.00E+00	0.000E+00	-0.343 1.967E-24	-0.529 1.462E-67
715	EPHA2	ine Proteins	eGFRbiom	diftype	0.149	7.322E-04	2.088E-03	eGFR FF4	Y	Follow-up eGFR	in FF4 (as Y)	-0.161 (- 0.211	0.0E+00	0.000E+00	-0.193 (-	0.00E+00	0.000E+00	-0.227 1.296E-11	-0.529 1.462E-67
717	IGFBP6	ine Proteins	eGFRbiom	diftype	0.403	1.655E-2	L 6.807E-20	eGFR FF4	Y	Follow-up eGFR	in FF4 (as Y)	45.56 0.113)	0.0E+00	0.000E+00	0.264 to -	0.00E+00	0.000E+00	-0.354 6.692E-22	-0.529 1.462E-67

Supplementary Table 19. Best mediation directions of causal mediation analysis of two metabolites & omics molecules & three times points of kidney traits.

Within each identified best mediation direction, spearman correlation coefficients, P-values and FDR of each pair (FDR < 0.05) of residuals of two metabolites and omics molecules, and regression coefficients and P-values of omics molecules with kidney traits in hyperglycemic individuals of KORA F4 are shown, respectively. Residuals of omics molecules were calculated with linear regression analysis for full model (incl. age, sex, BMI, systolic blood pressure, smoking status, triglyceride, total cholesterol, HDL cholesterol, fasting glucose, use of lipid lowering drugs, antihypertensive and anti-diabetic medication).

The mediation proportion (%), average mediating effect with 95% *CI*, *P*-values and FDR, average direct effect with 95% *CI*, *P*-values and FDR of the identified best direction(s) of mediating triangles in a nonparametric causal mediation analysis are shown, respectively. Each mediation analysis was adjusted for full model. FDR of mediating effect and direct effect were calculated per kidney trait.

Abbreviations: eGFRcr, estimated glomerular filtration rate was calculated from serum creatinine (mg/dL) (IDMS standardized values).

											kidney.										Estimate.o	р-	Estimate.o	p-
						omics.asso.t					trait.po	Mediation.	time.point.ki	Proportion.	Avg.media	Avg.media.	Avg.media	Avg.direct	Avg.direct.	Avg.direct.l	F mics1.kidn	value.omics1.l	k mics2.kidn	value.omics2.
tria	ngle o	mics1.label	omics2.label	omics1.type	omics2.type	ype	spearcor	p-value	FDR	kidney.trait	sition	direction	dney.trait	media(%)	(95% CI)	p-value	.FDR	(95% CI)	p-value	DR	ey.trait	idney.trait	ey.trait	kidne y.trait
												SM C18:1				1	1							·
												to												
												Creatinine						-0 023 (-						
												to Follow-	kidney trait		-0 054 (-0 093			0 072 to						
	668 5	SM C18:1	Creatinine	Metabolites	eGFRbiom	diftype	0 091	8 104E-04	4 646E-02	eGFRcr FF4	Y	up eGFRcr	in FF4 (as Y)	70 32	to -0 016)	0 0E+00	0 000E+00	0 028)	3 20E-01	4 267E-01	-0 077	2 097E-02	-0 61	2 626E-81
									1			PC aa				1	1			r		·		r
												C38:0 to												
												CTSH to						-0 009 (-						
												Follow-up	kidney trait		-0 048 (-0 077			0 082 to						
	774 I	PC aa C38 0	CTSH	Metabolites	Proteins	diftype	0 153	5 430E-04	4 646E-02	eGFRcr FF4	Y	eGFRcr	in FF4 (as Y)	84 35	to -0 022)	0 0E+00	0 000E+00	0 068)	8 42E-01	8 420E-01	-0 095	9 872E-04	-0 3	1 616E-15

Supplementary Table 20. Corresponding edges and nodes of directed mediating multi-omics integration networks.

The edge weight, mediation direction, and mediation proportion (%) of directed mediating multi-omics integration networks, which were generated by overlapping the different levels of multi-omics integration network and omics pairs from best mediation directions of causal mediation analysis, are shown.

Abbreviations: CKD, chronic kidney disease; eGFR, estimated glomerular filtration rate; UACR, urinary albumin-to-creatinine ratio; CKDcrcc, eGFR-based CKD that was defined as $eGFR < 60 \text{ ml/min}/1.73 \text{ m}^2$; eGFRcr, estimated glomerular filtration rate was calculated from serum creatinine (mg/dL) (IDMS standardized values).

kidnev.trait.	kidnev.trait.		source.omics1.	target.omics2.				omics.asso.				Proportion.
position	type	time.point.kidney.trait	label	label	source.to.target	omics1 type	omics2.type	type	weight	kidney.trait	Mediation.direction	media(%)
X	CKD	kidney trait in S4 (as X)	B2M	CST3	B2M to CST3	Proteins	eGFRbiom	diftype	0.219	CKDcrcc S4	CKDcrcc S4 to B2M to CST3	65.81
Х	CKD	kidney trait in S4 (as X)	C1QBP	CST3	C1QBP to CST3	Proteins	eGFRbiom	diftype	-0.111	CKDcrcc S4	CKDcrcc S4 to C1QBP to CST3	30.41
					Creatinine to						-	
Х	CKD	kidney trait in S4 (as X)	Creatinine	C10:2	C10:2	Metabolites	eGFRbiom	diftype	0.053	CKDcrcc S4	CKDcrcc S4 to Creatinine to C10:2	46.07
Х	CKD	kidney trait in S4 (as X)	Creatinine	C5	Creatinine to C5	Metabolites	eGFRbiom	diftype	0.063	CKDcrcc S4	CKDcrcc S4 to Creatinine to C5	52.11
					Creatinine to						CKDcrcc S4 to Creatinine to	
X	CKD	kidney trait in S4 (as X)	Creatinine	IGFBP6	IGFBP6	Proteins	eGFRbiom	diftype	0.117	CKDcrcc S4	IGFBP6	30.67
X	CKD	kidney trait in S4 (as X)	CST3	B2M	CST3 to B2M	Proteins	eGFRbiom	diftype	0.219	CKDcrcc S4	CKDcrcc S4 to CST3 to B2M	74.14
Х	CKD	kidney trait in S4 (as X)	CST3	C10:2	CST3 to C10:2	Metabolites	eGFRbiom	diftype	0.031	CKDcrcc S4	CKDcrcc S4 to CST3 to C10:2	71.92
Х	CKD	kidney trait in S4 (as X)	CST3	C14:2	CST3 to C14:2	Metabolites	eGFRbiom	diftype	0.005	CKDcrcc S4	CKDcrcc S4 to CST3 to C14:2	63.78
Х	CKD	kidney trait in S4 (as X)	CST3	C1QBP	CST3 to C1QBP	Proteins	eGFRbiom	diftype	-0.111	CKDcrcc S4	CKDcrcc S4 to CST3 to C1QBP	32.49
Х	CKD	kidney trait in S4 (as X)	CST3	C5	CST3 to C5	Metabolites	eGFRbiom	diftype	0.053	CKDcrcc S4	CKDcrcc S4 to CST3 to C5	39.87
Х	CKD	kidney trait in S4 (as X)	CST3	CTSH	CST3 to CTSH	Proteins	eGFRbiom	diftype	0.031	CKDcrcc S4	CKDcrcc S4 to CST3 to CTSH	59.8
Х	CKD	kidney trait in S4 (as X)	CST3	NBL1	CST3 to NBL1	Proteins	eGFRbiom	diftype	0.006	CKDcrcc S4	CKDcrcc S4 to CST3 to NBL1	32.51
Х	CKD	kidney trait in S4 (as X)	CTSH	CST3	CTSH to CST3	Proteins	eGFRbiom	diftype	0.031	CKDcrcc S4	CKDcrcc S4 to CTSH to CST3	43.7
					IGFBP6 to						CKDcrcc S4 to IGFBP6 to	
Х	CKD	kidney trait in S4 (as X)	IGFBP6	Creatinine	Creatinine	Proteins	eGFRbiom	diftype	0.117	CKDcrcc S4	Creatinine	31.63
Х	CKD	kidney trait in S4 (as X)	NBL1	CST3	NBL1 to CST3	Proteins	eGFRbiom	diftype	0.006	CKDcrcc S4	CKDcrcc S4 to NBL1 to CST3	49.05
					TNFRSF1A to							
X	CKD	kidney trait in S4 (as X)	TNFRSF1A	CST3	CST3	Proteins	eGFRbiom	diftype	0.047	CKDcrcc S4	CKDcrcc S4 to TNFRSF1A to CST3	63.62
					Creatinine to							
<u>x</u>	eGFR	kidney trait in S4 (as X)	Creatinine	C10:2	C10:2	Metabolites	eGFRbiom	diftype	0.053	eGFR S4	eGFR S4 to Creatinine to C10:2	35.98
X	eGFR	kidney trait in S4 (as X)	Creatinine	C5	Creatinine to C5	Metabolites	eGFRbiom	diftype	0.063	eGFR S4	eGFR S4 to Creatinine to C5	99.34
37	CED		G	ICEDDC	Creatinine to	D / 1	CEDI :	1.0	0.117	CED 04		25.62
<u>x</u>	egfk	kidney trait in S4 (as X)	Creatinine	IGFBP6	IGFBP6	Proteins	eGFRbiom	diffype	0.117	eGFK S4	eGFR S4 to Creatinine to IGFBP6	25.63
v	ACED	kidney trait in S4 (as V)	Creatinine	LAM2	LAM2	Proteins	GEDhiom	diffune	0.086	ACED SA	aGEP S4 to Creatining to IAM2	47.05
	COLK	Nulley that in 54 (as A)	Creatiline	JAWIZ	Creatinine to	Trotems	CONCOUNT	untype	0.080	CON 54	eor K 54 to creatilitie to JAW2	47.05
x	eGFR	kidney trait in S4 (as X)	Creatinine	RELT	RELT	Proteins	eGFRbiom	diftype	0.013	eGFR S4	eGFR S4 to Creatinine to RELT	33.98
x	eGFR	kidney trait in S4 (as X)	CST3	B2M	CST3 to B2M	Proteins	eGFRbiom	diftype	0.219	eGFR S4	eGFR S4 to CST3 to B2M	78.82
x	eGFR	kidney trait in S4 (as X)	CST3	C10·2	CST3 to $C10.2$	Metabolites	eGFRbiom	diftype	0.031	eGFR S4	eGFR S4 to CST3 to C10.2	73.02
x	eGFR	kidney trait in S4 (as X)	CST3	C12	CST3 to C12	Metabolites	eGFRbiom	diftype	0.001	eGFR S4	eGFR S4 to CST3 to C12	41.7
	COLIK		0010	012	CST3 to	metabolites	COLICION	untype	0.001	COLUDI		11.7
X	eGFR	kidney trait in S4 (as X)	CST3	C14:1-OH	C14:1-OH	Metabolites	eGFRbiom	diftype	0.006	eGFR S4	eGFR S4 to CST3 to C14:1-OH	65.48
X	eGFR	kidney trait in S4 (as X)	CST3	C14:2	CST3 to C14:2	Metabolites	eGFRbiom	diftype	0.005	eGFR S4	eGFR S4 to CST3 to C14:2	36.81
X	eGFR	kidney trait in S4 (as X)	CST3	C1QBP	CST3 to C1QBP	Proteins	eGFRbiom	diftype	-0.111	eGFR S4	eGFR S4 to CST3 to C1QBP	82.63
X	eGFR	kidney trait in S4 (as X)	CST3	C5	CST3 to C5	Metabolites	eGFRbiom	diftype	0.053	eGFR S4	eGFR S4 to CST3 to C5	79.4

					CST3 to							
Х	eGFR	kidney trait in S4 (as X)	CST3	C6(C4:1-DC)	C6(C4:1-DC)	Metabolites	eGFRbiom	diftype	0.015	eGFR S4	eGFR S4 to CST3 to C6(C4:1-DC)	65.48
Х	eGFR	kidney trait in S4 (as X)	CST3	CTSH	CST3 to CTSH	Proteins	eGFRbiom	diftype	0.031	eGFR S4	eGFR S4 to CST3 to CTSH	97.97
Х	eGFR	kidney trait in S4 (as X)	CST3	ERP29	CST3 to ERP29	Proteins	eGFRbiom	diftype	0.015	eGFR S4	eGFR S4 to CST3 to ERP29	66.63
Х	eGFR	kidney trait in S4 (as X)	CST3	NBL1	CST3 to NBL1	Proteins	eGFRbiom	diftype	0.006	eGFR S4	eGFR S4 to CST3 to NBL1	89.47
Х	eGFR	kidney trait in S4 (as X)	CST3	RELT	CST3 to RELT	Proteins	eGFRbiom	diftype	0.104	eGFR S4	eGFR S4 to CST3 to RELT	73.6
Х	eGFR	kidney trait in S4 (as X)	CST3	SPOCK2	CST3 to SPOCK2	Proteins	eGFRbiom	diftype	-0.029	eGFR S4	eGFR S4 to CST3 to SPOCK2	59.74
					CST3 to							
X	eGFR	kidney trait in S4 (as X)	CST3	TNFRSF1A	TNFRSF1A	Proteins	eGFRbiom	diftype	0.047	eGFR S4	eGFR S4 to CST3 to TNFRSF1A	84.51
X	eGFR	kidney trait in S4 (as X)	EGFR	CST3	EGFR to CST3	Proteins	eGFRbiom	diftype	-0.06	eGFR S4	eGFR S4 to EGFR to CST3	16.11
	CED		ICEDD (a	IGFBP6 to	D	GEDL	1.0	0.117			10.07
X	eGFR	kidney trait in S4 (as X)	IGFBP6	Creatinine	Creatinine	Proteins	eGFRbiom	diftype	0.117	eGFR S4	eGFR S4 to IGFBP6 to Creatinine	18.07
v	GED	kidney trait in S4 (as V)	DELT	Creatinina	Creatinina	Proteins	GEDhiom	diftype	0.013	ACED SA	aCEP S4 to DELT to Creatining	10.74
M	CEP	kidney trait in E4	ABCB1	CST3	ABCB1 to CST3	DNAs	eGEPhiom	diffune	0.013	ACED E4	ABCR1 to aCEP E4 to CST3	80.14
IVI	COLK	Kitiley trait in 1.4	ABCBI	0313	C10.2 to	KINAS	CONTROLOU	untype	-0.024	COPK 14	ADCD1 10 COFK 14 10 CS15	80.14
м	eGFR	kidney trait in F4	C10:2	Creatinine	Creatinine	Metabolites	eGFRbiom	diftype	0.053	eGFR F4	C10:2 to eGFR F4 to Creatinine	97.8
M	eGFR	kidney trait in F4	C10:2	CST3	C10:2 to CST3	Metabolites	eGFRbiom	diftype	0.031	eGFR F4	C10:2 to eGFR F4 to CST3	93.33
М	eGFR	kidnev trait in F4	C5	Creatinine	C5 to Creatinine	Metabolites	eGFRbiom	diftype	0.063	eGFR F4	C5 to eGFR F4 to Creatinine	97.77
М	eGFR	kidney trait in F4	C5	CST3	C5 to CST3	Metabolites	eGFRbiom	diftype	0.053	eGFR F4	C5 to eGFR F4 to CST3	97.96
					CGA LHB to							
М	eGFR	kidney trait in F4	CGA LHB	CST3	CST3	Proteins	eGFRbiom	diftype	0.043	eGFR F4	CGA LHB to eGFR F4 to CST3	89.94
					Creatinine to					CED E4		
М	eGFR	kidney trait in F4	Creatinine	C10:2	C10:2	Metabolites	eGFRbiom	diftype	0.053	COLK L4	Creatinine to eGFR F4 to C10:2	92.45
М	eGFR	kidney trait in F4	Creatinine	C5	Creatinine to C5	Metabolites	eGFRbiom	diftype	0.063	eGFR F4	Creatinine to eGFR F4 to C5	92.2
					Creatinine to					eGFR F4		
M	eGFR	kidney trait in F4	Creatinine	IGFBP6	IGFBP6	Proteins	eGFRbiom	diftype	0.117		Creatinine to eGFR F4 to IGFBP6	91.72
М	eGFR	kidney trait in F4	CST3	C5	CST3 to C5	Metabolites	eGFRbiom	diftype	0.053	eGFR F4	CST3 to eGFR F4 to C5	90.46
М	eGFR	kidney trait in F4	CST3	IGFBP6	CST3 to IGFBP6	Proteins	eGFRbiom	diftype	-0.011	eGFR F4	CST3 to eGFR F4 to IGFBP6	90.19
	CED	111	DUCDII	a	DUSP11 to	DIL	GEDL		0.070	eGFR F4		06.01
M	eGFR	kidney trait in F4	DUSPII	Creatinine	Creatinine	RNAS	eGFRbiom	diftype	-0.069	CED E4	DUSP11 to eGFR F4 to Creatinine	86.31
M	eGFR	kidney trait in F4	DUSPII	CS13	DUSP11 to CS13	RNAs	eGFRbiom	diftype	-0.044	eGFR F4	DUSP11 to eGFR F4 to CS13	88.78
M	eGFR	kidney trait in F4	ERP29	CS13	ERP29 to CS13	Proteins	eGFRbiom	diftype	0.015	eGFR F4	ERP29 to eGFR F4 to CST3	89.32
м	GED	kidney trait in E4	ICERDA	Creatinina	IGFBP0 to	Proteins	GEDhiom	diftype	0.117	eGFR F4	IGERP6 to aGEP E4 to Creatining	96.68
M	eGER	kidney trait in F4	IGFRP6	CST3	IGEBP6 to CST2	Proteins	eGERbiom	diftype	-0.011	eGER E4	IGEBP6 to eGER E4 to CST3	97.17
	COLK	Kiuncy uait III 1'4	IGI'DI U	015	IAM2 to	TIOUCHIS	COPRODUI	untype	-0.011	COLK 1.4	101 D1 0 10 COTX 14 10 COTS	77.17
М	eGFR	kidney trait in F4	JAM2	Creatinine	Creatinine	Proteins	eGFRbiom	diftype	0.086	eGFR F4	JAM2 to eGFR F4 to Creatinine	88.21

N		111 4 141 174	ECED		EGFR to Urine	D		1.0	0.046	UACR F4		96.10
M	UACR	kidney trait in F4	EGFR	Urine albumin	albumin	Proteins	UACRbiom	diftype	-0.046		EGFR to UACR F4 to Urine albumin	86.19
м	LIACR	kidney trait in E4	FRP20	Urine albumin	eRP29 to Urine	Proteins	UACRhiom	diftype	0.082	UACR F4	albumin	83 85
141	UACK				LYSMD2 to	Troteins	CACIONI	untype	0.082		I VSMD2 to UACR E4 to Urine	05.05
М	UACR	kidnev trait in F4	LYSMD2	Urine albumin	Urine albumin	CpGs	UACRbiom	diftype	-0.125	UACR F4	albumin	83.67
					MCM3 to Urine						MCM3 to UACR F4 to Urine	
М	UACR	kidney trait in F4	MCM3	Urine albumin	albumin	RNAs	UACRbiom	diftype	-0.093	UACR F4	albumin	96.67
Х	CKD	kidney trait in F4	ACY1	Tyr	ACY1 to Tyr	Metabolites	Proteins	diftype	0.126	CKD F4	CKD F4 to ACY1 to Tyr	27.71
					Creatinine to							
Х	CKD	kidney trait in F4	Creatinine	DUSP11	DUSP11	RNAs	eGFRbiom	diftype	-0.069	CKD F4	CKD F4 to Creatinine to DUSP11	47.94
					Creatinine to							
X	CKD	kidney trait in F4	Creatinine	JAM2	JAM2	Proteins	eGFRbiom	diftype	0.086	CKD F4	CKD F4 to Creatinine to JAM2	51.14
X	CKD	kidney trait in F4	CST3	C12	CST3 to C12	Metabolites	eGFRbiom	diftype	0.001	CKD F4	CKD F4 to CST3 to C12	83.85
X	CKD	kidney trait in F4	CST3	DUSP11	CST3 to DUSP11	RNAs	eGFRbiom	diftype	-0.044	CKD F4	CKD F4 to CST3 to DUSP11	52.71
X	CKD	kidney trait in F4	CST3	IGFBP6	CST3 to IGFBP6	Proteins	eGFRbiom	diftype	-0.011	CKD F4	CKD F4 to CST3 to IGFBP6	66.16
Х	CKD	kidney trait in F4	CST3	RELT	CST3 to RELT	Proteins	eGFRbiom	diftype	0.104	CKD F4	CKD F4 to CST3 to RELT	77.33
Х	CKD	kidney trait in F4	CST3	RETN	CST3 to RETN	Proteins	eGFRbiom	diftype	0.012	CKD F4	CKD F4 to CST3 to RETN	54.55
X	CKD	kidney trait in F4	IGFBP2	Tyr	IGFBP2 to Tyr	Metabolites	Proteins	diftype	-0.152	CKD F4	CKD F4 to IGFBP2 to Tyr	28.36
Х	CKD	kidney trait in F4	PLAT	Tyr	PLAT to Tyr	Metabolites	Proteins	diftype	0.134	CKD F4	CKD F4 to PLAT to Tyr	26.95
Х	CKD	kidney trait in F4	RETN	C10:2	RETN to C10:2	Metabolites	Proteins	diftype	0.066	CKD F4	CKD F4 to RETN to C10:2	46.27
Х	CKD	kidney trait in F4	SLC22A4	IL19	SLC22A4 to IL19	RNAs	Proteins	diftype	-0.086	CKD F4	CKD F4 to SLC22A4 to IL19	55.22
X	CKD	kidnev trait in F4	Urine albumin	C18:1	Urine albumin to C18:1	Metabolites	UACRbiom	diftype	0.055	CKD F4	CKD F4 to Urine albumin to C18:1	68.37
					Urine albumin to			51				
Х	CKD	kidney trait in F4	Urine albumin	MCM3	MCM3	RNAs	UACRbiom	diftype	-0.093	CKD F4	CKD F4 to Urine albumin to MCM3	41.78
Х	eGFR	kidney trait in F4	BMP1	C18:1	BMP1 to C18:1	Metabolites	Proteins	diftype	-0.033	eGFR F4	eGFR F4 to BMP1 to C18:1	37.83
Х	eGFR	kidney trait in F4	EGFR	C16	EGFR to C16	Metabolites	Proteins	diftype	-0.028	eGFR F4	eGFR F4 to EGFR to C16	68.79
Х	eGFR	kidney trait in F4	EGFR	C18:1	EGFR to C18:1	Metabolites	Proteins	diftype	-0.017	eGFR F4	eGFR F4 to EGFR to C18:1	91.01
Х	eGFR	kidney trait in F4	GHR	C18:1	GHR to C18:1	Metabolites	Proteins	diftype	-0.01	eGFR F4	eGFR F4 to GHR to C18:1	40.7
Х	eGFR	kidney trait in F4	IGFBP2	C18:1	IGFBP2 to C18:1	Metabolites	Proteins	diftype	0.059	eGFR F4	eGFR F4 to IGFBP2 to C18:1	43.85
Х	UACR	kidney trait in F4	EGFR	C18:1	EGFR to C18:1	Metabolites	Proteins	diftype	-0.017	UACR F4	UACR F4 to EGFR to C18:1	82.8
Х	UACR	kidney trait in F4	GHR	C18:1	GHR to C18:1	Metabolites	Proteins	diftype	-0.01	UACR F4	UACR F4 to GHR to C18:1	47.99
Х	UACR	kidney trait in F4	IGFBP2	C18:1	IGFBP2 to C18:1	Metabolites	Proteins	diftype	0.059	UACR F4	UACR F4 to IGFBP2 to C18:1	42.9
					C10:2 to							
Y	CKD	kidney trait in F4	C10:2	Creatinine	Creatinine	Metabolites	eGFRbiom	diftype	0.053	CKD F4	C10:2 to Creatinine to CKD F4	71.72

Y	CKD	kidney trait in F4	C10:2	CST3	C10:2 to CST3	Metabolites	eGFRbiom	diftype	0.031	CKD F4	C10:2 to CST3 to CKD F4	94.82
Y	CKD	kidney trait in F4	C14:2	CST3	C14:2 to CST3	Metabolites	eGFRbiom	diftype	0.005	CKD F4	C14:2 to CST3 to CKD F4	84.4
Y	CKD	kidney trait in F4	C5	Creatinine	C5 to Creatinine	Metabolites	eGFRbiom	diftype	0.063	CKD F4	C5 to Creatinine to CKD F4	74.28
Y	CKD	kidney trait in F4	C5	CST3	C5 to CST3	Metabolites	eGFRbiom	diftype	0.053	CKD F4	C5 to CST3 to CKD F4	89.08
Y	CKD	kidney trait in F4	CTSH	CST3	CTSH to CST3	Proteins	eGFRbiom	diftype	0.031	CKD F4	CTSH to CST3 to CKD F4	89.7
					DUSP11 to							
Y	CKD	kidney trait in F4	DUSP11	Creatinine	Creatinine	RNAs	eGFRbiom	diftype	-0.069	CKD F4	DUSP11 to Creatinine to CKD F4	56.17
Y	CKD	kidney trait in F4	DUSP11	CST3	DUSP11 to CST3	RNAs	eGFRbiom	diftype	-0.044	CKD F4	DUSP11 to CST3 to CKD F4	63.68
Y	CKD	kidney trait in F4	IGFBP6	CST3	IGFBP6 to CST3	Proteins	eGFRbiom	diftype	-0.011	CKD F4	IGFBP6 to CST3 to CKD F4	72.35
Y	CKD	kidney trait in F4	IL19	SLC22A4	IL19 to SLC22A4	RNAs	Proteins	diftype	-0.086	CKD F4	IL19 to SLC22A4 to CKD F4	54.1
					JAM2 to							
Y	CKD	kidney trait in F4	JAM2	Creatinine	Creatinine	Proteins	eGFRbiom	diftype	0.086	CKD F4	JAM2 to Creatinine to CKD F4	56.32
					MCM3 to Urine							
Y	CKD	kidney trait in F4	MCM3	Urine albumin	albumin	RNAs	UACRbiom	diftype	-0.093	CKD F4	MCM3 to Urine albumin to CKD F4	47.35
Y	CKD	kidney trait in F4	RELT	CST3	RELT to CST3	Proteins	eGFRbiom	diftype	0.104	CKD F4	RELT to CST3 to CKD F4	95.73
Y	CKD	kidney trait in F4	RETN	CST3	RETN to CST3	Proteins	eGFRbiom	diftype	0.012	CKD F4	RETN to CST3 to CKD F4	64
	GVD	111		a	TTF2 to	DIL	GEDL	1.0	0.070			10.14
Y	CKD	kidney trait in F4	TTF2	Creatinine	Creatinine	RNAs	eGFRbiom	diftype	-0.078	CKD F4	TTF2 to Creatinine to CKD F4	48.16
Y	CKD	kidney trait in F4	Tyr	SPOCK2	Tyr to SPOCK2	Metabolites	Proteins	diftype	0.082	CKD F4	Tyr to SPOCK2 to CKD F4	25.15
Y	eGFR	kidney trait in F4	C1QBP	CST3	C1QBP to CST3	Proteins	eGFRbiom	diftype	-0.111	eGFR F4	C1QBP to CST3 to eGFR F4	88.57
	GED	111	DUGDII	a	DUSP11 to	DIL	GEDL	1.0	0.070	eGFR F4		05.04
Y	eGFR	kidney trait in F4	DUSPII	Creatinine	Creatinine	RNAs	eGFRbiom	diftype	-0.069		DUSP11 to Creatinine to eGFR F4	85.34
Y	eGFR	kidney trait in F4	DUSPII	CS13	DUSP11 to CS13	RNAs	eGFRbiom	diftype	-0.044	eGFR F4	DUSP11 to CS13 to eGFR F4	91.76
v	CED	kidnov troit in E4	TTEO	Craatinina	TTF2 to	DNAG	CEDhiom	diffumo	0.078	eGFR F4	TTE2 to Creatining to aCEP E4	07.81
	UACD	hide sector in E4	C19:1	ECED		Matabalitaa	Dustsing	diffype	-0.078		C18:1 to ECEP to UACD E4	97.01
	UACK	kidney trait in F4	C18:1	CUD	C18:1 to EUFK	Metabolites	Proteins	diftype	-0.017	UACR F4	C18:1 to EGFR to UACK F4	82.08
Y	UACK	kidney trait in F4	C18:1	GHK	EPD20 to Urino	Metabolites	Proteins	antype	-0.01	UACK F4	EPD20 to Uring albumin to UACR	47.39
v	UACP	kidney trait in E4	EDD20	Urine albumin	albumin	Proteins	UACPhiom	diftype	0.082	UACR F4	EKF29 to Office aroundin to OACK	80.78
1	UACK	Kithey trait in 1.4	ERI 29		LYSMD2 to	Troterns	UACKOIOIII	untype	0.082		I VSMD2 to Urine albumin to UACR	80.78
Y	UACR	kidney trait in F4	LYSMD2	Urine albumin	Urine albumin	CnGs	UACRbiom	diftype	-0.125	UACR F4	F4	83.25
Y	CKD	kidney trait in FF4 (as Y)	C12	CST3	C12 to CST3	Metabolites	eGERbiom	diftype	0.001	CKD FF4	C12 to CST3 to incident CKD	51.87
Y	CKD	kidney trait in FF4 (as Y)	C12	EGFR	C12 to EGFR	Metabolites	Proteins	diftype	-0.015	CKD FF4	C12 to EGFR to incident CKD	19.04
Y	CKD	kidney trait in FF4 (as Y)	C18·1	EGFR	C18:1 to EGFR	Metabolites	Proteins	diftype	-0.017	CKD FF4	C18:1 to EGER to incident CKD	27.29
v	CKD	kidney trait in FF4 (as V)	C18·1	GHR	C18:1 to GHP	Metabolites	Proteins	diftype	-0.01	CKD FF4	C18:1 to GHR to incident CKD	35.18
L*	CND	(ds 1)	010.1	onix		metabolites	11000115	untype	0.01	CIDITA	CIO.I to OIIX to Includin CKD	55.10

YCKDkidney trait in FF4 (as Y)C18:1Urine albuminMetabolitesUACRbiomdiftype0.055CKDCKDCKDCKD20.65YCKDkidney trait in FF4 (as Y)EGFRCST3EGFR to CST3ProteinseGFRbiomdiftype-0.06CKD FF4EGFR to CST3 to incident CKD58.56YeGFRkidney trait in FF4 (as Y)B2MCST3B2M to CST3ProteinseGFRbiomdiftype0.219eGFR FF4B2M to CST3 to Follow-up eGFR77.55YeGFRkidney trait in FF4 (as Y)C10:2CreatinineCreatinineMetaboliteseGFRbiomdiftype0.031eGFR FF4B2M to CST3 to Follow-up eGFR73.66YeGFRkidney trait in FF4 (as Y)C10:2CST3C10:2 to CST3MetaboliteseGFRbiomdiftype0.031eGFR FF4C10:2 to CST3 to Follow-up eGFR81.51YeGFRkidney trait in FF4 (as Y)C10:2RETNC10:2 to CST3MetaboliteseGFRbiomdiftype0.031eGFR FF4C10:2 to CST3 to Follow-up eGFR81.51YeGFRkidney trait in FF4 (as Y)C10:2RETNC10:2 to CST3MetabolitesProteinsdiftype0.066eGFR FF4C10:2 to CST3 to Follow-up eGFR75.89YeGFRkidney trait in FF4 (as Y)C12CST3C12 to CST3MetabolitesProteinsdiftype0.010eGFR FF4C12 to CST3 to Follow-up eGFR75.89YeGFRkidney trait in FF4 (a	J	C10.1 to University to inside the						C10.1 to Uning					
YCKDkidney trait in FF4 (as Y)EGFRCST3EGFR to CST3ProteinseGFRbiomdiftype-0.06CKD FF4EGFR to CST3 to incident CKD58.56YeGFRkidney trait in FF4 (as Y)B2MCST3B2M to CST3ProteinseGFRbiomdiftype0.219eGFR FF4B2M to CST3 to Follow-up eGFR77.55YeGFRkidney trait in FF4 (as Y)C10:2CreatinineCreatinineMetaboliteseGFRbiomdiftype0.053eGFR FF4eGFRC10:2 to Creatinine to Follow-up eGFR73.6YeGFRkidney trait in FF4 (as Y)C10:2CST3C10:2 to CST3MetaboliteseGFRbiomdiftype0.031eGFR FF4C10:2 to CST3 to Follow-up eGFR81.51YeGFRkidney trait in FF4 (as Y)C10:2RETNC10:2 to CST3MetabolitesProteinsdiftype0.066eGFR FF4C10:2 to CST3 to Follow-up eGFR23.96YeGFRkidney trait in FF4 (as Y)C12CST3C12 to CST3MetaboliteseGFRiomdiftype0.001eGFR FF4C12 to CST3 to Follow-up eGFR75.89YeGFRkidney trait in FF4 (as Y)C12CST3C12 to EGFRMetaboliteseGFRiomdiftype0.015eGFR FF4C12 to CST3 to Follow-up eGFR75.89YeGFRkidney trait in FF4 (as Y)C12CST3C12 to EGFRMetabolitesProteinsdiftype-0.015eGFR FF4C12 to EGFR to Follow-up eGFR28.7YeGFR </td <td>20.65</td> <td>CI8:1 to Urine albumin to incident CKD</td> <td>CKD FF4</td> <td>0.055</td> <td>diftype</td> <td>UACRbiom</td> <td>Metabolites</td> <td>albumin</td> <td>Urine albumin</td> <td>C18:1</td> <td>kidney trait in FF4 (as Y)</td> <td>CKD</td> <td>Y</td>	20.65	CI8:1 to Urine albumin to incident CKD	CKD FF4	0.055	diftype	UACRbiom	Metabolites	albumin	Urine albumin	C18:1	kidney trait in FF4 (as Y)	CKD	Y
YeGFRkidney trait in FF4 (as Y)B2MCST3B2M to CST3ProteinseGFRdiftype0.219eGFRB2M to CST3 to Follow-up eGFR77.55YeGFRkidney trait in FF4 (as Y)C10:2CreatinineCreatinineMetaboliteseGFRbiomdiftype0.053eGFR FF4B2M to CST3 to Follow-up eGFR73.6YeGFRkidney trait in FF4 (as Y)C10:2CST3C10:2 to CST3MetaboliteseGFRbiomdiftype0.053eGFR FF4C10:2 to CST3 to Follow-up eGFR81.51YeGFRkidney trait in FF4 (as Y)C10:2RETNC10:2 to CST3MetabolitesProteinsdiftype0.066eGFR FF4C10:2 to CST3 to Follow-up eGFR23.96YeGFRkidney trait in FF4 (as Y)C12CST3C12 to CST3MetaboliteseGFRbiomdiftype0.001eGFR FF4C12 to CST3 to Follow-up eGFR75.89YeGFRkidney trait in FF4 (as Y)C12CST3C12 to CST3MetaboliteseGFRbiomdiftype0.001eGFR FF4C12 to CST3 to Follow-up eGFR75.89YeGFRkidney trait in FF4 (as Y)C12EGFRC12 to EGFRMetabolitesProteinsdiftype0.012eGFR FF4C12 to CST3 to Follow-up eGFR28.7YeGFRkidney trait in FF4 (as Y)C14:1-OHC14:1-OH toC14:1-OH to </td <td>D 58.56</td> <td>EGFR to CST3 to incident CKD</td> <td>CKD FF4</td> <td>-0.06</td> <td>diftype</td> <td>eGFRbiom</td> <td>Proteins</td> <td>EGFR to CST3</td> <td>CST3</td> <td>EGFR</td> <td>kidney trait in FF4 (as Y)</td> <td>CKD</td> <td>Y</td>	D 58.56	EGFR to CST3 to incident CKD	CKD FF4	-0.06	diftype	eGFRbiom	Proteins	EGFR to CST3	CST3	EGFR	kidney trait in FF4 (as Y)	CKD	Y
YeGFRkidney trait in FF4 (as Y)C10:2CreatinineC10:2 to CreatinineMetaboliteseGFRdiftype0.053eGFR FF4C10:2 to Creatinine to Follow-up eGFR73.6YeGFRkidney trait in FF4 (as Y)C10:2CST3C10:2 to CST3MetaboliteseGFRbiomdiftype0.031eGFR FF4C10:2 to CST3 to Follow-up eGFR81.51YeGFRkidney trait in FF4 (as Y)C10:2RETNC10:2 to RETNMetabolitesProteinsdiftype0.066eGFR FF4C10:2 to RETN to Follow-up eGFR23.96YeGFRkidney trait in FF4 (as Y)C12CST3C12 to CST3MetaboliteseGFRbiomdiftype0.001eGFR FF4C12 to CST3 to Follow-up eGFR23.96YeGFRkidney trait in FF4 (as Y)C12CST3C12 to CST3MetaboliteseGFRbiomdiftype0.001eGFR FF4C12 to CST3 to Follow-up eGFR75.89YeGFRkidney trait in FF4 (as Y)C12EGFRC12 to EGFRMetabolitesProteinsdiftype-0.015eGFR FF4C12 to EGFR to Follow-up eGFR28.7YeGFRkidney trait in FF4 (as Y)C14:1-OHB2MB2MMetabolitesProteinsdiftype0.012eGFR FF4c14:1-OH to B2M to Follow-upYeGFRkidney trait in FF4 (as Y)C14:1-OHB2MB2MMetabolitesProteinsdiftype0.012eGFR FF4c14:1-OH to B2M to Follow-upYeGFRkidney trait in FF4 (a	GFR 77.55	B2M to CST3 to Follow-up eGFR	eGFR FF4	0.219	diftype	eGFRbiom	Proteins	B2M to CST3	CST3	B2M	kidney trait in FF4 (as Y)	eGFR	Y
YeGFRkidney trait in FF4 (as Y)C10:2CreatinineMetaboliteseGFRdiftype0.053eGFR F4eGFReGFR73.6YeGFRkidney trait in FF4 (as Y)C10:2CST3C10:2 to CST3MetaboliteseGFRbiomdiftype0.031eGFR F4C10:2 to CST3 to Follow-up eGFR81.51YeGFRkidney trait in FF4 (as Y)C10:2RETNC10:2 to RETNMetabolitesProteinsdiftype0.066eGFR F4C10:2 to RETN to Follow-up eGFR23.96YeGFRkidney trait in FF4 (as Y)C12CST3C12 to CST3MetaboliteseGFRbiomdiftype0.001eGFR F4C12 to CST3 to Follow-up eGFR75.89YeGFRkidney trait in FF4 (as Y)C12EGFRC12 to EGFRMetabolitesProteinsdiftype-0.015eGFR F4C12 to EGFR to Follow-up eGFR28.7YeGFRkidney trait in FF4 (as Y)C14:1-OHB2MB2MMetabolitesProteinsdiftype0.012eGFR F4C14:1-OH to B2M to Follow-up54.55	-up	C10:2 to Creatinine to Follow-up						C10:2 to					
YeGFRkidney trait in FF4 (as Y)C10:2CST3C10:2 to CST3MetaboliteseGFRiomdiftype0.031eGFR FF4C10:2 to CST3 to Follow-up eGFR81.51YeGFRkidney trait in FF4 (as Y)C10:2RETNC10:2 to RETNMetabolitesProteinsdiftype0.066eGFR FF4C10:2 to RETN to Follow-up eGFR23.96YeGFRkidney trait in FF4 (as Y)C12CST3C12 to CST3MetaboliteseGFRbiomdiftype0.001eGFR FF4C12 to CST3 to Follow-up eGFR75.89YeGFRkidney trait in FF4 (as Y)C12EGFRC12 to EGFRMetabolitesProteinsdiftype-0.015eGFR FF4C12 to EGFR to Follow-up eGFR28.7YeGFRkidney trait in FF4 (as Y)C14:1-OHB2MB2MMetabolitesProteinsdiftype0.012eGFR FF4C14:1-OH to B2M to Follow-up54.55	73.6	eGFR	eGFR FF4	0.053	diftype	eGFRbiom	Metabolites	Creatinine	Creatinine	C10:2	kidney trait in FF4 (as Y)	eGFR	Y
YeGFRkidney trait in FF4 (as Y)C10:2RETNC10:2 to RETNMetabolitesProteinsdiftype0.066eGFR FF4C10:2 to RETN to Follow-up eGFR23.96YeGFRkidney trait in FF4 (as Y)C12CST3C12 to CST3MetaboliteseGFRbiomdiftype0.010eGFR FF4C12 to CST3 to Follow-up eGFR75.89YeGFRkidney trait in FF4 (as Y)C12EGFRC12 to EGFRMetabolitesProteinsdiftype-0.015eGFR FF4C12 to EGFR to Follow-up eGFR28.7YeGFRkidney trait in FF4 (as Y)C14:1-OHB2MMetabolitesProteinsdiftype0.012eGFR FF4C14:1-OH to B2M to Follow-up54.55	GFR 81.51	C10:2 to CST3 to Follow-up eGFR	eGFR FF4	0.031	diftype	eGFRbiom	Metabolites	C10:2 to CST3	CST3	C10:2	kidney trait in FF4 (as Y)	eGFR	Y
Y eGFR kidney trait in FF4 (as Y) C12 CST3 C12 to CST3 Metabolites eGFRbiom diftype 0.001 eGFR FF4 C12 to CST3 to Follow-up eGFR 75.89 Y eGFR kidney trait in FF4 (as Y) C12 EGFR C12 to EGFR Metabolites Proteins diftype -0.015 eGFR FF4 C12 to EGFR to Follow-up eGFR 28.7 Y eGFR kidney trait in FF4 (as Y) C14:1-OH B2M Metabolites Proteins diftype 0.012 eGFR FF4 C14:1-OH to B2M to Follow-up 64.55	eGFR 23.96	C10:2 to RETN to Follow-up eGFR	eGFR FF4	0.066	diftype	Proteins	Metabolites	C10:2 to RETN	RETN	C10:2	kidney trait in FF4 (as Y)	eGFR	Y
Y eGFR kidney trait in FF4 (as Y) C12 EGFR C12 to EGFR Metabolites Proteins diftype -0.015 eGFR C12 to EGFR to Follow-up eGFR 28.7 Y eGFR kidney trait in FF4 (as Y) C14:1-OH C14:1-OH to Image: C14:1-OH to B2M to Follow-up C14:1-OH to B2M to Follow-up C14:1-OH to B2M to Follow-up EGFR C14:1-OH to B2M to Follow-up S4.55	FR 75.89	C12 to CST3 to Follow-up eGFR	eGFR FF4	0.001	diftype	eGFRbiom	Metabolites	C12 to CST3	CST3	C12	kidney trait in FF4 (as Y)	eGFR	Y
Y eGFR kidney trait in FF4 (as Y) C14:1-OH B2M B2M B2M Metabolites Proteins diffype 0.012 eGFR FF4 eGFR 54.55	3FR 28.7	C12 to EGFR to Follow-up eGFR	eGFR FF4	-0.015	diftype	Proteins	Metabolites	C12 to EGFR	EGFR	C12	kidney trait in FF4 (as Y)	eGFR	Y
Y eGFR kidney trait in FF4 (as Y) C14:1-OH B2M B2M Metabolites Proteins diffype 0.012 eGFR FF4 eGFR 54.55	up	C14:1-OH to B2M to Follow-up						C14:1-OH to					
	54.55	eGFR	eGFR FF4	0.012	diftype	Proteins	Metabolites	B2M	B2M	C14:1-OH	kidney trait in FF4 (as Y)	eGFR	Y
C14:1-OH to CST3 to Follow-up	-up	C14:1-OH to CST3 to Follow-up						C14:1-OH to					
Y eGFR kidney trait in FF4 (as Y) C14:1-OH CST3 CST3 Metabolites eGFR diftye 0.006 eGFR FF4 eGFR 89.91	89.91	eGFR	eGFR FF4	0.006	diftype	eGFRbiom	Metabolites	CST3	CST3	C14:1-OH	kidney trait in FF4 (as Y)	eGFR	Y
Y eGFR kidney trait in FF4 (as Y) C14:2 CST3 C14:2 to CST3 Metabolites eGFRbiom diftype 0.005 eGFR FF4 C14:2 to CST3 to Follow-up eGFR 87.39	GFR 87.39	C14:2 to CST3 to Follow-up eGFR	eGFR FF4	0.005	diftype	eGFRbiom	Metabolites	C14:2 to CST3	CST3	C14:2	kidney trait in FF4 (as Y)	eGFR	Y
Y eGFR kidney trait in FF4 (as Y) C16 EGFR C16 to EGFR Metabolites Proteins diftype -0.028 eGFR FF4 C16 to EGFR to Follow-up eGFR 60.35	3FR 60.35	C16 to EGFR to Follow-up eGFR	eGFR FF4	-0.028	diftype	Proteins	Metabolites	C16 to EGFR	EGFR	C16	kidney trait in FF4 (as Y)	eGFR	Y
Y eGFR kidney trait in FF4 (as Y) C18:1 BMP1 C18:1 to BMP1 Metabolites Proteins diftype -0.033 eGFR FF4 C18:1 to BMP1 to Follow-up eGFR 29.04	eGFR 29.04	C18:1 to BMP1 to Follow-up eGFR	eGFR FF4	-0.033	diftype	Proteins	Metabolites	C18:1 to BMP1	BMP1	C18:1	kidney trait in FF4 (as Y)	eGFR	Y
Y eGFR kidney trait in FF4 (as Y) C18:1 EGFR C18:1 to EGFR Metabolites Proteins diftype -0.017 eGFR FF4 C18:1 to EGFR to Follow-up eGFR 49.8	eGFR 49.8	C18:1 to EGFR to Follow-up eGFR	eGFR FF4	-0.017	diftype	Proteins	Metabolites	C18:1 to EGFR	EGFR	C18:1	kidney trait in FF4 (as Y)	eGFR	Y
Y eGFR kidney trait in FF4 (as Y) C18:1 GHR C18:1 to GHR Metabolites Proteins diftype -0.01 eGFR FF4 C18:1 to GHR to Follow-up eGFR 29.49	GFR 29.49	C18:1 to GHR to Follow-up eGFR	eGFR FF4	-0.01	diftype	Proteins	Metabolites	C18:1 to GHR	GHR	C18:1	kidney trait in FF4 (as Y)	eGFR	Y
C18:1 to IGFBP2 to Follow-up	р	C18:1 to IGFBP2 to Follow-up											
Y eGFR kidney trait in FF4 (as Y) C18:1 IGFBP2 C18:1 to IGFBP2 Metabolites Proteins diftype 0.059 eGFR FF4 eGFR 40.91	40.91	eGFR	eGFR FF4	0.059	diftype	Proteins	Metabolites	C18:1 to IGFBP2	IGFBP2	C18:1	kidney trait in FF4 (as Y)	eGFR	Y
Y eGFR kidney trait in FF4 (as Y) C5 Creatinine C5 to Creatinine Metabolites eGFRbiom diffype 0.063 eGFR FF4 C5 to Creatinine to Follow-up eGFR 60.36	eGFR 60.36	C5 to Creatinine to Follow-up eGF	eGFR FF4	0.063	diftype	eGFRbiom	Metabolites	C5 to Creatinine	Creatinine	C5	kidney trait in FF4 (as Y)	eGFR	Y
Y eGFR kidney trait in FF4 (as Y) C5 CST3 C5 to CST3 Metabolites eGFRbiom diftype 0.053 eGFR FF4 C5 to CST3 to Follow-up eGFR 74.32	R 74.32	C5 to CST3 to Follow-up eGFR	eGFR FF4	0.053	diftype	eGFRbiom	Metabolites	C5 to CST3	CST3	C5	kidney trait in FF4 (as Y)	eGFR	Y
C6(C4:1-DC) to C513 to Follow-up	ow-up	C6(C4:1-DC) to CST3 to Follow-u		0.015	1.0	CEDI .	N 1 . 1.	C6(C4:1-DC) to	COTTO			CED	37
Y COLUMN KIDNEY TRAIT IN FF4 (as Y) CO(C4:1-DC) CS13 CS13 Metabolites CFR biom diffype 0.015 CFR FF4 CFR 81.21	81.21	eGFR	eGFK FF4	0.015	diffype	eGFRbiom	Metabolites		C\$13	C6(C4:1-DC)	kidney trait in FF4 (as Y)	eGFR	Y
V eGER kidney trait in FE4 (as V) CGA LHB CST3 CST3 Proteins eGERbiom diffyne 0.043 eGER FE4 eGER 75.02	75 02	eGER	eGFR FF4	0.043	diftype	eGERbiom	Proteins	CST3	CST3	CGALHB	kidney trait in FF4 (as V)	eGFR	v
V aCER kidney trait in FE4 (as V) CTSH CST3 CTSH to CST3 Proteins aCERbiom diffyre 0.031 aCER FE4 CTSH to CST3 to Follow-up aCER 72.55	GFR 72.55	CTSH to CST3 to Follow-up eGER	eGFR FE4	0.045	diffype	eGERbiom	Proteins	CTSH to CST3	CST3	CTSH	kidney trait in FF4 (as Y)	eGER	v
V aCER kidney trait in FE4 (as V) CTSV CST3 CTSV to CST3 Proteins aCERbiom diffyre 0.066 aCER FE4 CTSV to CST3 to Follow-up aCER 69.65	GFR 69.65	CTSV to CST3 to Follow-up eGFR	eGER EE4	-0.066	diftype	eGERbiom	Proteins	CTSV to CST3	CST3	CTSV	kidney trait in FF4 (as Y)	eGER	v
V aCER kidney trait in FE4 (as V) ECER CST3 ECER to CST3 Proteins aCERbiom diffyre -0.06 aCER FE4 ECER to CST3 to Follow-up aCER \$1.7	GFR 81.7	EGER to CST3 to Follow-up eGER	eGER EE4	-0.06	diftype	eGERbiom	Proteins	EGER to CST3	CST3	EGER	kidney trait in FF4 (as V)	eGER	v
V aCED lidray trait in EE4 (as V) EDD20 CST2 EDD20 to CST2 Dratains aCED him diffyrm 0.015 aCED EE4 EDD20 to CST2 to Follow up aCED 62.86	CED 62.96	EDD20 to CST2 to Follow up of F	CED EE4	0.015	diffume	oCEPhiom	Drotoing	EDD20 to CST2	CST2	EDDO	lidney trait in EE4 (as V)	CED	
I CERD6 to CS15 CS15 CS15 CS15 CS15 CS15 CS15 CS15	UTK 02.00	IGEBP6 to Creatining to Follow up	EOLK LLA	0.015	untype	eGFK010III	FIOLEIIIS	IGERP6 to		EKF29	Kiulley tiait ill FF4 (as 1)	COLK	1
Y eGER kidney trait in FE4 (as Y) IGERP6 Creatinine Creatinine Proteins eGERbiom diffyne 0.117 eGER FE4 eGER 45.56	45 56	eGFR	eGFR FF4	0.117	diftype	eGFRhiom	Proteins	Creatinine	Creatinine	IGFBP6	kidney trait in FF4 (as Y)	eGFR	Y
I COLOR RELIEVE LIGHT COLOR CO	0	IGFBP6 to CST3 to Follow-up	CONTRACT	0.117	untype	COLICION	Troterins			101 01 0	Runey unt mill (us 1)	COIN	-
Y eGFR kidney trait in FF4 (as Y) IGFBP6 CST3 IGFBP6 to CST3 Proteins eGFR biom diffype -0.011 eGFR FF4 eGFR 57.21	57.21	eGFR	eGFR FF4	-0.011	diftype	eGFRbiom	Proteins	IGFBP6 to CST3	CST3	IGFBP6	kidney trait in FF4 (as Y)	eGFR	Y
JAM2 to JAM2 to JAM2 to JAM2 to Creatinine to Follow-up	-up	JAM2 to Creatinine to Follow-up			· · · · · · · · · · · · · · · · · · ·			JAM2 to					
Y eGFR kidney trait in FF4 (as Y) JAM2 Creatinine Creatinine Proteins eGFRbiom diftype 0.086 eGFR FF4 eGFR 56.6	56.6	eGFR	eGFR FF4	0.086	diftype	eGFRbiom	Proteins	Creatinine	Creatinine	JAM2	kidney trait in FF4 (as Y)	eGFR	Y

Y	eGFR	kidney trait in FF4 (as Y)	NBL1	CST3	NBL1 to CST3	Proteins	eGFRbiom	diftype	0.006	eGFR FF4	NBL1 to CST3 to Follow-up eGFR	63.42
					PC aa C38:0 to						PC aa C38:0 to CTSH to Follow-up	
Y	eGFR	kidney trait in FF4 (as Y)	PC aa C38:0	CTSH	CTSH	Proteins	Metabolites	diftype	0.093	eGFRcr FF4	eGFRcr	84.35
					RELT to						RELT to Creatinine to Follow-up	
Y	eGFR	kidney trait in FF4 (as Y)	RELT	Creatinine	Creatinine	Proteins	eGFRbiom	diftype	0.013	eGFR FF4	eGFR	39.38
Y	eGFR	kidney trait in FF4 (as Y)	RELT	CST3	RELT to CST3	Proteins	eGFRbiom	diftype	0.104	eGFR FF4	RELT to CST3 to Follow-up eGFR	59.83
Y	eGFR	kidney trait in FF4 (as Y)	RETN	CST3	RETN to CST3	Proteins	eGFRbiom	diftype	0.012	eGFR FF4	RETN to CST3 to Follow-up eGFR	60.61
											SPOCK2 to CST3 to Follow-up	
Y	eGFR	kidney trait in FF4 (as Y)	SPOCK2	CST3	SPOCK2 to CST3	Proteins	eGFRbiom	diftype	-0.029	eGFR FF4	eGFR	74.88
					TNFRSF1A to						TNFRSF1A to CST3 to Follow-up	
Y	eGFR	kidney trait in FF4 (as Y)	TNFRSF1A	CST3	CST3	Proteins	eGFRbiom	diftype	0.047	eGFR FF4	eGFR	59.6
Y	eGFR	kidney trait in FF4 (as Y)	Tyr	ACY1	Tyr to ACY1	Metabolites	Proteins	diftype	0.126	eGFR FF4	Tyr to ACY1 to Follow-up eGFR	41.93
Y	eGFR	kidney trait in FF4 (as Y)	Tyr	IGFBP2	Tyr to IGFBP2	Metabolites	Proteins	diftype	-0 152	eGFR FF4	Tyr to IGFBP2 to Follow-up eGFR	68.13
Y	eGFR	kidney trait in FF4 (as Y)	Tyr	SPOCK2	Tyr to SPOCK2	Metabolites	Proteins	diftype	0.082	eGFR FF4	Tyr to SPOCK2 to Follow-up eGFR	52.45
					EGFR to Urine						EGFR to Urine albumin to Follow-	
Y	UACR	kidney trait in FF4 (as Y)	EGFR	Urine albumin	albumin	Proteins	UACRbiom	diftype	-0.046	UACR FF4	up UACR	51.06
					MCM3 to Urine						MCM3 to Urine albumin to Follow-	
Y	UACR	kidney trait in FF4 (as Y)	MCM3	Urine albumin	albumin	RNAs	UACRbiom	diftype	-0.093	UACR FF4	up UACR	59.88
					SLC22A4 to						SLC22A4 to Urine albumin to	
Y	UACR	kidney trait in FF4 (as Y)	SLC22A4	Urine albumin	Urine albumin	RNAs	UACRbiom	diftype	0.09	UACR FF4	Follow-up UACR	35.46

Supplementary Table 21. Associations between GPS_{eGFR} and replicated candidates in hyperglycemia.

Regression coefficients with 95% *CI*, *P*-values and FDR of GPS_{eGFR} with 64 replicated omics candidates using multivariable linear regression models in hyperglycemic individuals of KORA F4 are shown, respectively. Regression model was adjusted for age, sex, BMI, systolic blood pressure, smoking status, triglyceride, total cholesterol, HDL cholesterol, fasting glucose, use of lipid lowering drugs, antihypertensive and anti-diabetic medication. FDR shown in bold represents statistical significance at 0.05 level. FDR was calculated for each omics type.

Abbreviations: GPS_{eGFR}, genome-wide polygenic score of eGFR values; eGFR, estimated glomerular filtration rate.

X	omics.label	Estimate (95%)	p-value	FDR
GPS	C10:2	-0.089 (-0.143 to -0.035)	1.337E-03	1.216E-02
GPS	TNFRSF1A	-0.144 (-0.231 to -0.057)	1.176E-03	1.216E-02
GPS	NBL1	-0.149 (-0.235 to -0.062)	7.709E-04	1.216E-02
GPS	C14:1	-0.023 (-0.078 to 0.032)	4.074E-01	6.063E-01
GPS	JAM2	-0.152 (-0.245 to -0.059)	1.350E-03	1.216E-02
GPS	C14:2	-0.061 (-0.113 to -0.009)	2.212E-02	6.599E-02
GPS	C16	0.006 (-0.045 to 0.058)	8.045E-01	8.727E-01
GPS	C18:1	-0.001 (-0.053 to 0.051)	9.741E-01	9.741E-01
GPS	C2	-0.019 (-0.07 to 0.033)	4.835E-01	6.727E-01
GPS	C6(C4:1-DC)	-0.051 (-0.102 to 0)	4.824E-02	1.188E-01
GPS	C5	-0.039 (-0.089 to 0.011)	1.270E-01	2.390E-01
GPS	ADAMTS13	0.143 (0.055 to 0.23)	1.520E-03	1.216E-02
GPS	C8:1	-0.043 (-0.097 to 0.011)	1.211E-01	2.363E-01
GPS	LYSMD2	-0.007 (-0.073 to 0.058)	8.244E-01	8.794E-01
GPS	NAPA	-0.001 (-0.068 to 0.065)	9.660E-01	9.741E-01
GPS	SLC22A4	-0.063 (-0.144 to 0.017)	1.218E-01	2.363E-01
GPS	TFE3	-0.034 (-0.116 to 0.049)	4.209E-01	6.088E-01
GPS	Tyr	0.045 (-0.009 to 0.098)	9.949E-02	2.054E-01
GPS	PLAT	0.009 (-0.058 to 0.077)	7.875E-01	8.689E-01
GPS	C12	-0.08 (-0.131 to -0.03)	1.939E-03	1.379E-02
GPS	EFNA5	-0.095 (-0.18 to -0.009)	2.958E-02	7.888E-02
GPS	ERBB3	0.023 (-0.057 to 0.103)	5.776E-01	7.249E-01
GPS	LAYN	-0.076 (-0.162 to 0.01)	8.443E-02	1.930E-01
GPS	C8	-0.08 (-0.132 to -0.027)	2.911E-03	1.863E-02
GPS	EGFR	-0.003 (-0.08 to 0.075)	9.457E-01	9.741E-01
GPS	C10	-0.074 (-0.126 to -0.023)	4.600E-03	2.676E-02
GPS	FGF20	0.064 (-0.029 to 0.156)	1.793E-01	3.101E-01
GPS	FGF9	0.046 (-0.036 to 0.128)	2.662E-01	4.156E-01
GPS	RETN	-0.124 (-0.214 to -0.034)	7.090E-03	3.464E-02
GPS	GHR	0.03 (-0.044 to 0.103)	4.281E-01	6.088E-01
GPS	CGA LHB	-0.015 (-0.063 to 0.033)	5.519E-01	7.209E-01
GPS	ESAM	-0.101 (-0.187 to -0.015)	2.159E-02	6.599E-02
GPS	B2M	-0.116 (-0.201 to -0.032)	7.033E-03	3.464E-02
GPS	CLEC4M	0.006 (-0.083 to 0.095)	8.920E-01	9.359E-01
GPS	IL19	0.058 (-0.031 to 0.147)	1.992E-01	3.355E-01
GPS	SCARF1	-0.127 (-0.22 to -0.034)	7.578E-03	3.464E-02
GPS	TNFRSF1B	-0.091 (-0.179 to -0.003)	4.289E-02	1.098E-01
GPS	С14:1-ОН	-0.069 (-0.122 to -0.016)	1.042E-02	4.357E-02
GPS	RET	-0.017 (-0.101 to 0.068)	6.959E-01	8.098E-01

GPS	ACY1	0.019 (-0.054 to 0.092)	6.050E-01	7.446E-01
GPS	CTSV	0.066 (-0.011 to 0.142)	9.246E-02	1.972E-01
GPS	IGFBP6	-0.1 (-0.178 to -0.023)	1.089E-02	4.357E-02
GPS	ERP29	-0.101 (-0.18 to -0.022)	1.277E-02	4.809E-02
GPS	MASP1	0.032 (-0.06 to 0.125)	4.949E-01	6.739E-01
GPS	KDR	-0.016 (-0.104 to 0.073)	7.301E-01	8.331E-01
GPS	IGF2R	0.024 (-0.059 to 0.107)	5.648E-01	7.229E-01
GPS	PLG	0.046 (-0.04 to 0.133)	2.920E-01	4.449E-01
GPS	CTSH	-0.046 (-0.128 to 0.035)	2.657E-01	4.156E-01
GPS	PAPPA	-0.057 (-0.148 to 0.034)	2.157E-01	3.540E-01
GPS	TFF3	-0.072 (-0.156 to 0.011)	9.046E-02	1.972E-01
GPS	EPHA2	-0.105 (-0.191 to -0.018)	1.829E-02	6.162E-02
GPS	NTRK2	0.023 (-0.068 to 0.113)	6.239E-01	7.534E-01
GPS	AMH	0.029 (-0.057 to 0.115)	5.076E-01	6.768E-01
GPS	MMP1	-0.102 (-0.19 to -0.014)	2.372E-02	6.599E-02
GPS	FSTL3	-0.107 (-0.192 to -0.022)	1.395E-02	4.960E-02
GPS	SOD2	0.063 (-0.022 to 0.149)	1.439E-01	2.558E-01
GPS	NOTCH1	0.014 (-0.07 to 0.098)	7.420E-01	8.331E-01
GPS	CST3	-0.144 (-0.221 to -0.067)	2.533E-04	9.283E-03
GPS	RELT	-0.151 (-0.234 to -0.068)	4.048E-04	9.283E-03
GPS	TNFRSF19	-0.085 (-0.179 to 0.009)	7.531E-02	1.785E-01
GPS	HAVCR2	-0.06 (-0.139 to 0.019)	1.363E-01	2.493E-01
GPS	UNC5C	-0.097 (-0.18 to -0.014)	2.276E-02	6.599E-02
GPS	LEPR	0.019 (-0.066 to 0.105)	6.575E-01	7.793E-01
GPS	SPOCK2	0.16 (0.071 to 0.249)	4.352E-04	9.283E-03

Supplementary Table 22. Mediation results among GPS_{eGFR} and its associated candidates and kidney traits in hyperglycemia.

The mediation proportion (%), average mediating effect with 95% *CI*, *P*-values and FDR, average direct effect with 95% *CI*, *P*-values and FDR of each mediating triangle including GPS_{eGFR} , GPS_{eGFR} associated candidate and kidney trait in a nonparametric causal mediation analysis are shown, respectively. Each mediation analysis was adjusted for age, sex, BMI, systolic blood pressure, smoking status, triglyceride, total cholesterol, HDL cholesterol, fasting glucose, use of lipid lowering drugs, antihypertensive and anti-diabetic medication. FDR of mediating effect and direct effect were calculated for each kidney trait.

Abbreviations: GPS_{eGFR}, genome-wide polygenic score of eGFR values; CKD, chronic kidney disease; eGFR, estimated glomerular filtration rate; CKDcrcc, eGFR-based CKD that was defined as eGFR < $60 \text{ ml/min}/1.73 \text{ m}^2$.

				kidney.t										
				rait.posi	it			Propotion.	Avg.media_95			Avg.direct_95		
х	omics.label	omics.type	kidney.trait	ion	Mediation.direction.label1	Mediation.direction.label2	time.point.kidney.trait	media(%)	CI	Avg.media.p	Avg.media.fdr	CI	Avg.direct.p	Avg.direct.fdr
									-0 073 (-0 122			-0 033 (-0 122		ĺ.
GPS	C10	Metabolites	eGFR S4	M	GPS->eGFR S4->Candi	GPS to eGFR S4 to C10	kidney trait in S4 (as M)	68 87	to -0 028)	4 00E-03	5 333E-03	to 0 05)	4 48E-01	8 896E-01
									-0 077 (-0 101	[0 002 (-0 054 to		ĺ
GPS	C10	Metabolites	eGFR F4	М	eGFR F4 (bidirection)	GPS to eGFR F4 to C10	kidney trait in F4	103 35	to -0 055)	0 00E+00	0 000E+00	0 06)	8 84E-01	9 614E-01
									0 011 (0 002 to	[· · · · · · · · · · · · · · · · · · ·	0 255 (0 216 to	[[
				Y	eGFR F4 (bidirection)	GPS to C10 to eGFR F4	kidney trait in F4	4 16	0 02)	1 20E-02	1 234E-02	0 292)	0 00E+00	0 000E+00
									0 009 (0 to	[Í	0 226 (0 178 to	[[
GPS	C10	Metabolites	eGFR FF4	Y	GPS->Candi->Follow-up eGFR	GPS to C10 to Follow-up eGFR	kidney trait in FF4 (as Y)	3 83	0 019)	6 40E-02	6 776E-02	0 271)	0 00E+00	0 000E+00
	~ ~ ~								-0 004 (-0 016			-0 068 (-0 12 to		
GPS	C10	Metabolites	CKD F4	М	CKD F4 (bidirection)	GPS to CKD F4 to C10	kidney trait in F4	5 36	to 0 002)	1 36E-01	2 225E-01	-0 015)	6 00E-03	2 618E-02
									-0 002 (-0 005	[-0 024 (-0 043		Í
				Y	CKD F4 (bidirection)	GPS to C10 to CKD F4	kidney trait in F4	8 52	to 0)	1 60E-02	3 840E-02	to -0 002)	3 60E-02	6 171E-02
									-0 118 (-0 181	[ĺ	0 021 (-0 084 to		[
GPS	C10:2	Metabolites	eGFR S4	М	GPS->eGFR S4->Candi	GPS to eGFR S4 to C10:2	kidney trait in S4 (as M)	121 49	to -0 059)	0 00E+00	0 000E+00	0 124)	6 90E-01	9 748E-01
									-0 085 (-0 109	[ĺ	-0 004 (-0 066	[[
GPS	C10:2	Metabolites	eGFR F4	М	eGFR F4 (bidirection)	GPS to eGFR F4 to C10:2	kidney trait in F4	95 54	to -0 06)	0 00E+00	0 000E+00	to 0 055)	8 46E-01	9 614E-01
									0 013 (0 005 to	[ĺ	0 253 (0 215 to	ĺ	[
				Y	eGFR F4 (bidirection)	GPS to C10:2 to eGFR F4	kidney trait in F4	4 93	0 022)	0 00E+00	0 000E+00	0 29)	0 00E+00	0 000E+00
									0 01 (0 003 to	[0 225 (0 173 to		ĺ
GPS	C10:2	Metabolites	eGFR FF4	Y	GPS->Candi->Follow-up eGFR	GPS to C10:2 to Follow-up eGFR	kidney trait in FF4 (as Y)	4 43	0 02)	4 00E-03	9 000E-03	0 271)	0 00E+00	0 000E+00
									-0 01 (-0 032 to		[-0 054 (-0 149	[[
GPS	C10:2	Metabolites	CKDcrcc S4	М	GPS->CKDcrcc S4->Candi	GPS to CKDcrcc S4 to C10:2	kidney trait in S4 (as M)	15 77	-0 002)	6 00E-03	2 567E-02	to 0 034)	2 08E-01	2 912E-01
									-0 004 (-0 017	[Í	-0 081 (-0 14 to	۱ <u>[</u>	[
GPS	C10:2	Metabolites	CKD F4	М	CKD F4 (bidirection)	GPS to CKD F4 to C10:2	kidney trait in F4	5 1	to 0 002)	1 36E-01	2 225E-01	-0 024)	8 00E-03	2 618E-02
									-0 003 (-0 006			-0 023 (-0 043		[
				Y	CKD F4 (bidirection)	GPS to C10:2 to CKD F4	kidney trait in F4	10.76	to -0 001)	0 00E+00	0 000E+00	to -0 002)	3 20E-02	6 063E-02
									-0 066 (-0 115	Í		-0 074 (-0 169	[[
GPS	C12	Metabolites	eGFR S4	М	GPS->eGFR S4->Candi	GPS to eGFR S4 to C12	kidney trait in S4 (as M)	47 38	to -0 02)	6 00E-03	7 385E-03	to 0 014)	1 10E-01	4 400E-01
	~ ~ ~								-0 078 (-0 104			-0 002 (-0 054		[
GPS	C12	Metabolites	eGFR F4	М	eGFR F4 (bidirection)	GPS to eGFR F4 to C12	kidney trait in F4	97 67	to -0 054)	0 00E+00	0 000E+00	to 0 056)	9 38E-01	9 648E-01
									0 013 (0 004 to		[0 254 (0 214 to	[[
				Y	eGFR F4 (bidirection)	GPS to C12 to eGFR F4	kidney trait in F4	47	0 021)	0 00E+00	0 000E+00	0 291)	0 00E+00	0 000E+00
~~~~									0 011 (0 002 to		[	0 223 (0 173 to	[ <del>.</del>	
GPS	CI2	Metabolites	eGFR FF4	Y	GPS->Candi->Follow-up eGFR	GPS to C12 to Follow-up eGFR	kidney trait in FF4 (as Y)	4 89	0.023)	1 00E-02	1 800E-02	0 269)	0 00E+00	0 000E+00
ana			CUID D4						-0 004 (-0 017	1.000.01		-0 072 (-0 121	0.005.00	
GPS	CI2	Metabolites	CKD F4	м	CKD F4 (bidirection)	GPS to CKD F4 to C12	kidney trait in F4	5.66	to 0 002)	1 36E-01	2 225E-01	to -0 02)	8 00E-03	2 618E-02
									-0 003 (-0 006	[		-0 023 (-0 042		
				Y	CKD F4 (bidirection)	GPS to C12 to CKD F4	kidney trait in F4	10 91	to -0 001)	2 00E-03	1 200E-02	to -0 001)	3 60E-02	6 171E-02
~~~~									-0 003 (-0 007		[	-0 034 (-0 059	[	
GPS	C12	Metabolites	CKD FF4	Y	GPS->Candi->incident CKD	GPS to C12 to incident CKD	kidney trait in FF4 (as Y)	7 96	to 0)	4 20E-02	4 200E-02	to -0 006)	2 00E-02	2 000E-02
									-0 073 (-0 12 to	· [[0 013 (-0 088 to		[
GPS	C14:1-OH	Metabolites	eGFR S4	М	GPS->eGFR S4->Candi	GPS to eGFR S4 to C14:1-OH	kidney trait in S4 (as M)	122 27	-0 022)	4 00E-03	5 333E-03	0 099)	7 92E-01	9 748E-01
GDG	G141 077		GED D4						-0 078 (-0 103	0.005.00		0 009 (-0 049 to		
GPS	C14:1-OH	Metabolites	eGFR F4	M	eGFR F4 (bidirection)	GPS to eGFR F4 to C14:1-OH	kidney trait in F4	112 37	to -0 053)	0 00E+00	0 000E+00	0.065)	7 36E-01	9 434E-01
									0 01 (0 002 to		[0 256 (0 217 to	[
				Y	eGFR F4 (bidirection)	GPS to C14:1-OH to eGFR F4	kidney trait in F4	3 69	0 018)	8 00E-03	9 290E-03	0 294)	0 00E+00	0 000E+00
				L.		GPS to C14:1-OH to Follow-up			0 011 (0 002 to	[[0 224 (0 175 to		[
GPS	C14:1-OH	Metabolites	eGFR FF4	Y	GPS->Candi->Follow-up eGFR	eGFR	kidney trait in FF4 (as Y)	4 54	0 022)	1 60E-02	2 057E-02	0 27)	0 00E+00	0 000E+00

GPS	C14:1-OH	Metabolites	CKD F4	М	CKD F4 (bidirection)	GPS to CKD F4 to C14:1-OH	kidney trait in F4	7 82	-0 005 (-0 02 to 0 002)	1 36E-01	2 225E-01	-0 06 (-0 114 to -0 009)	2 20E-02	4 950E-02
									-0 003 (-0 006		-	-0 024 (-0 043	-	•
				Y	CKD F4 (bidirection)	GPS to C14:1-OH to CKD F4	kidney trait in F4	10 31	to -0 001)	8 00E-03	2 880E-02	to -0 003)	3 20E-02	6 063E-02
									-0 064 (-0 112			-0 063 (-0 15 to		
GPS	C8	Metabolites	eGFR S4	М	GPS->eGFR S4->Candi	GPS to eGFR S4 to C8	kidney trait in S4 (as M)	50 44	to -0 018)	1 20E-02	1 280E-02	0 024)	1 50E-01	4 800E-01
ana	G 0							01.00	-0 073 (-0 098	0.005.00	0.0007.00	-0 006 (-0 066	0.747.01	0.01472.01
GPS	C8	Metabolites	eGFR F4	M	eGFR F4 (bidirection)	GPS to eGFR F4 to C8	kidney trait in F4	91 89	to -0 051)	0 00E+00	0 000E+00	to 0 051)	8 74E-01	9 614E-01
				v	aCEP E4 (hidiraction)	GPS to C8 to aGEP E4	kidney trait in E4	4.08	0.011 (0.003 to	1.00E.02	1.001E.02	0 255 (0 217 to	0.005+00	0.000E+00
				1	eor K14 (bluitection)	015 10 C8 10 C01 K 14	Kluby trait in 14	4 00	0.007 (-0.002)	1 00E-02	1 09112-02	0 234)	0.001+00	0.000E+00
GPS	C8	Metabolites	eGFR FF4	v	GPS->Candi->Follow-up eGFR	GPS to C8 to Follow-up eGFR	kidney trait in FE4 (as Y)	3 13	0.018)	1.16E-01	1 160E-01	0 273)	0.00F+00	0.000F+00
015	20	Metabolites	COLUTY	-			kielieg uut m114 (us 1)	5 15	-0.003 (-0.015		I TOOL OF	-0.073 (-0.127		00001100
GPS	C8	Metabolites	CKD F4	м	CKD F4 (bidirection)	GPS to CKD F4 to C8	kidnev trait in F4	4 55	to 0 001)	1 44E-01	2 254E-01	to -0 018)	2 00E-03	1 800E-02
			-						-0 002 (-0 005			-0 024 (-0 043	-	-
				Y	CKD F4 (bidirection)	GPS to C8 to CKD F4	kidney trait in F4	7 37	to 0)	2 60E-02	5 506E-02	to -0 002)	3 20E-02	6 063E-02
									-0 258 (-0 354	•		0 111 (-0 005 to		
GPS	CST3	Proteins	eGFR S4	М	GPS->eGFR S4->Candi	GPS to eGFR S4 to CST3	kidney trait in S4 (as M)	175 04	to -0 173)	0 00E+00	0 000E+00	0 225)	6 20E-02	4 267E-01
									-0 219 (-0 275			0 075 (0 022 to	•	
GPS	CST3	Proteins	eGFR F4	Μ	eGFR F4 (bidirection)	GPS to eGFR F4 to CST3	kidney trait in F4	152	to -0 164)	0 00E+00	0 000E+00	0 129)	1 00E-02	1 895E-02
									0 075 (0 039 to			0 154 (0 11 to		
				Y	eGFR F4 (bidirection)	GPS to CST3 to eGFR F4	kidney trait in F4	32 69	0 111)	0 00E+00	0 000E+00	0 197)	0 00E+00	0 000E+00
									0 07 (0 035 to	_		0 161 (0 114 to		
GPS	CST3	Proteins	eGFR FF4	Y	GPS->Candi->Follow-up eGFR	GPS to CST3 to Follow-up eGFR	kidney trait in FF4 (as Y)	30 24	0 108)	0 00E+00	0 000E+00	0 21)	0 00E+00	0 000E+00
ana	00770							10.40	-0 02 (-0 054 to		0.5.575.00	-0 087 (-0 223	1.007.01	0.0105.01
GPS	CS13	Proteins	CKDcrcc S4	м	GPS->CKDcrcc S4->Candi	GPS to CKDerce S4 to CST3	kidney trait in S4 (as M)	18 42	0)	2 20E-02	2 56/E-02	to 0 038)	1 88E-01	2 912E-01
CDC	COT2	Ductoins	CVD E4	M	CVD E4 (hiding sting)	CDS to CVD E4 to CST2	1. da en tacit in E4	9.40	-0.011 (-0.056	2 195 01	2 5 1 5 1 0 1	-0 124 (-0 189	0.005.00	0.0005.00
0F5	CS15	FIOLEIIIS	CKD F4	IVI	CKD F4 (bidifection)	GFS 10 CKD F4 10 CS15	kidney trait in F4	0 49	0.011 (0.018	5 18E-01	5 515E-01	0.006 (0.027	0 00E+00	0 000E+00
				v	CKD E4 (bidirection)	GPS to CST3 to CKD E4	kidney trait in F4	65.23	to -0.005)	0.00E±00	0.000E±00	$t_0 = 0.000 (-0.027)$	6 52E-01	6 520E-01
				1	CRD 14 (bluitecubil)	G15 10 C515 10 CKD14	Kidik y trait in 1 4	05 25	-0.008 (-0.017	OODLIOO	0 000E100	-0.043 (-0.072	V 32L-01	0.520E-01
GPS	CST3	Proteins	CKD FF4	Y	GPS->Candi->incident CKD	GPS to CST3 to incident CKD	kidney trait in FF4 (as Y)	16 45	to -0.002)	2 00E-03	6 000E-03	to -0.011)	1 40E-02	2 000E-02
				-					-0 139 (-0 233			-0 002 (-0 142	-	
GPS	TNFRSF1A	Proteins	eGFR S4	М	GPS->eGFR S4->Candi	GPS to eGFR S4 to TNFRSF1A	kidney trait in S4 (as M)	98 57	to -0 059)	0 00E+00	0 000E+00	to 0 152)	9 80E-01	9 800E-01
									-0 15 (-0 197 to	•		0 006 (-0 083 to		
GPS	TNFRSF1A	Proteins	eGFR F4	М	eGFR F4 (bidirection)	GPS to eGFR F4 to TNFRSF1A	kidney trait in F4	104 23	-0 106)	0 00E+00	0 000E+00	0 089)	9 08E-01	9 614E-01
									0 04 (0 015 to			0 189 (0 134 to	•	
				Y	eGFR F4 (bidirection)	GPS to TNFRSF1A to eGFR F4	kidney trait in F4	17 58	0 07)	0 00E+00	0 000E+00	0 241)	0 00E+00	0 000E+00
						GPS to TNFRSF1A to Follow-up			0 041 (0 015 to			0 19 (0 136 to		
GPS	TNFRSF1A	Proteins	eGFR FF4	Y	GPS->Candi->Follow-up eGFR	eGFR	kidney trait in FF4 (as Y)	17 63	0 072)	2 00E-03	6 000E-03	0 246)	0 00E+00	0 000E+00
									-0 024 (-0 073	F		-0 067 (-0 201		
GPS	TNFRSF1A	Proteins	CKDcrcc S4	М	GPS->CKDcrcc S4->Candi	GPS to CKDcrcc S4 to TNFRSF1A	kidney trait in S4 (as M)	26 56	to 0)	2 20E-02	2 567E-02	to 0 065)	3 18E-01	3 710E-01
ana								6.04	-0 01 (-0 046 to		0.5155.01	-0 128 (-0 218	0.007.00	
GPS	INFRSFIA	Proteins	CKD F4	м	CKD F4 (bidirection)	GPS to CKD F4 to TNFRSF1A	kidney trait in F4	6 94	0.016)	3 22E-01	3 515E-01	to -0 03/)	8 00E-03	2 618E-02
				v	CKD E4 (hidiraction)	CPS to TNEPSEI A to CKD E4	kidney trait in E4	34.40	-0.007 (-0.013	0.00E+00	0.000E+00	-0 015 (-0 034	3 00E 01	3 554E 01
				1		GI 5 10 TIVEKSFTA 10 CKD F4	Multy uait in F4	54 49	-0.145 (-0.23 to	0 00L+00	0 000E+00	-0.023 (-0.150	5 001-01	5 554E-01
GPS	IGFRP6	Proteins	eGFR S4	м	GPS->eGFR S4->Candi	GPS to eGFR S4 to IGFRP6	kidney trait in S4 (as M)	86 /10	-0.075)	0.00E+00	0.000F+00	to 0 104)	7 50E-01	9 748F-01
010	101 01 0	. 100010	501 1 07		CI 5 / COI IC 54-/ Califu		and function of (as m)	00 49	-0 145 (-0 19 to		0 000E100	0.045 (-0.033 to	, 501.01	
GPS	IGFBP6	Proteins	eGFR F4	М	eGFR F4 (bidirection)	GPS to eGFR F4 to IGFBP6	kidnev trait in F4	144 61	-0 105)	0 00E+00	0 000E+00	0 116)	2 88E-01	4 380E-01
			- 1 - T				· · · · · · ·			1		- /	1	

								0 034 (0 009 to			0 195 (0 144 to		
				Y	eGFR F4 (bidirection)	GPS to IGFBP6 to eGFR F4	kidney trait in F4	14 95 0 063)	1 20E-02	1 234E-02	0 243)	0 00E+00	0 000E+00
						GPS to IGFBP6 to Follow-up		0 034 (0 008 to			0 197 (0 142 to		
GPS	IGFBP6	Proteins	eGFR FF4	Y	GPS->Candi->Follow-up eGFR	eGFR	kidney trait in FF4 (as Y)	14 71 0 063)	1 40E-02	2 057E-02	0 248)	0 00E+00	0 000E+00
								-0 013 (-0 043			-0 126 (-0 261		
GPS	IGFBP6	Proteins	CKDcrcc S4	М	GPS->CKDcrcc S4->Candi	GPS to CKDcrcc S4 to IGFBP6	kidney trait in S4 (as M)	9 48 to 0)	2 20E-02	2 567E-02	to -0 01)	4 00E-02	1 400E-01
								-0 007 (-0 036			-0 088 (-0 168		
GPS	IGFBP6	Proteins	CKD F4	М	CKD F4 (bidirection)	GPS to CKD F4 to IGFBP6	kidney trait in F4	7 4 to 0 011)	3 26E-01	3 515E-01	to -0 017)	1 60E-02	4 800E-02
								-0 005 (-0 01 to			-0 013 (-0 033		
				Y	CKD F4 (bidirection)	GPS to IGFBP6 to CKD F4	kidney trait in F4	27 43 -0 001)	1 20E-02	3 600E-02	to 0 013)	3 06E-01	3 554E-01
								-0 097 (-0 213			-0 155 (-0 327		
GPS	NBL1	Proteins	eGFR S4	М	GPS->eGFR S4->Candi	GPS to eGFR S4 to NBL1	kidney trait in S4 (as M)	38 61 to 0 008)	7 00E-02	7 000E-02	to 0 022)	8 00E-02	4 267E-01
								-0 109 (-0 15 to			-0 04 (-0 129 to		
GPS	NBL1	Proteins	eGFR F4	М	eGFR F4 (bidirection)	GPS to eGFR F4 to NBL1	kidney trait in F4	72 95 -0 067)	0 00E+00	0 000E+00	0 038)	2 92E-01	4 380E-01
								0 03 (0 013 to			0 199 (0 139 to		
				Y	eGFR F4 (bidirection)	GPS to NBL1 to eGFR F4	kidney trait in F4	13 23 0 054)	0 00E+00	0 000E+00	0 254)	0 00E+00	0 000E+00
								0 033 (0 014 to			0 197 (0 145 to		
GPS	NBL1	Proteins	eGFR FF4	Y	GPS->Candi->Follow-up eGFR	GPS to NBL1 to Follow-up eGFR	kidney trait in FF4 (as Y)	14 32 0 06)	0 00E+00	0 000E+00	0 253)	0 00E+00	0 000E+00
								-0 024 (-0 065			-0 179 (-0 33 to		
GPS	NBL1	Proteins	CKDcrcc S4	М	GPS->CKDcrcc S4->Candi	GPS to CKDcrcc S4 to NBL1	kidney trait in S4 (as M)	11 74 to 0)	2 00E-02	2 567E-02	-0 025)	1 80E-02	1 260E-01
								-0 009 (-0 047			-0 133 (-0 216		
GPS	NBL1	Proteins	CKD F4	М	CKD F4 (bidirection)	GPS to CKD F4 to NBL1	kidney trait in F4	6 61 to 0 015)	3 16E-01	3 515E-01	to -0 058)	0 00E+00	0 000E+00
								-0 006 (-0 013			-0 011 (-0 031		
				Y	CKD F4 (bidirection)	GPS to NBL1 to CKD F4	kidney trait in F4	35 74 to -0 002)	0 00E+00	0 000E+00	to 0 016)	4 20E-01	4 320E-01
								-0 132 (-0 234			-0 066 (-0 254		
GPS	JAM2	Proteins	eGFR S4	Μ	GPS->eGFR S4->Candi	GPS to eGFR S4 to JAM2	kidney trait in S4 (as M)	66 68 to -0 054)	2 00E-03	3 200E-03	to 0 129)	5 40E-01	8 896E-01
								-0 122 (-0 173			-0 03 (-0 128 to		
GPS	JAM2	Proteins	eGFR F4	М	eGFR F4 (bidirection)	GPS to eGFR F4 to JAM2	kidney trait in F4	79 97 to -0 075)	0 00E+00	0 000E+00	0 071)	5 80E-01	7 733E-01
								0 03 (0 011 to			0 199 (0 144 to		
				Y	eGFR F4 (bidirection)	GPS to JAM2 to eGFR F4	kidney trait in F4	13 16 0 052)	4 00E-03	5 333E-03	0 255)	0 00E+00	0 000E+00
								0 03 (0 011 to			0 201 (0 141 to		
GPS	JAM2	Proteins	eGFR FF4	Y	GPS->Candi->Follow-up eGFR	GPS to JAM2 to Follow-up eGFR	kidney trait in FF4 (as Y)	12 81 0 054)	2 00E-03	6 000E-03	0 257)	0 00E+00	0 000E+00
								-0 006 (-0 035			-0 141 (-0 227		
GPS	JAM2	Proteins	CKD F4	Μ	CKD F4 (bidirection)	GPS to CKD F4 to JAM2	kidney trait in F4	4 31 to 0 01)	3 18E-01	3 515E-01	to -0 045)	4 00E-03	2 057E-02
								-0 005 (-0 011	ſ		-0 012 (-0 033	[
				Y	CKD F4 (bidirection)	GPS to JAM2 to CKD F4	kidney trait in F4	29 85 to 0)	2 60E-02	5 506E-02	to 0 016)	3 46E-01	3 664E-01
								-0 087 (-0 13 to	ſ.		-0 037 (-0 137	[·
GPS	RETN	Proteins	eGFR F4	Μ	eGFR F4 (bidirection)	GPS to eGFR F4 to RETN	kidney trait in F4	70 32 -0 048)	0 00E+00	0 000E+00	to 0 055)	4 10E-01	5 904E-01
								0 019 (0 004 to	ſ		0 211 (0 155 to	ĺ	·
				Y	eGFR F4 (bidirection)	GPS to RETN to eGFR F4	kidney trait in F4	8 14 0 035)	8 00E-03	9 290E-03	0 267)	0 00E+00	0 000E+00
								0 025 (0 007 to	ſ		0 206 (0 148 to	[
GPS	RETN	Proteins	eGFR FF4	Y	GPS->Candi->Follow-up eGFR	GPS to RETN to Follow-up eGFR	kidney trait in FF4 (as Y)	10 78 0 047)	4 00E-03	9 000E-03	0 263)	0 00E+00	0 000E+00
								-0 006 (-0 031			-0 114 (-0 203		
GPS	RETN	Proteins	CKD F4	М	CKD F4 (bidirection)	GPS to CKD F4 to RETN	kidney trait in F4	4 79 to 0 009)	3 44E-01	3 538E-01	to -0 025)	2 00E-02	4 950E-02
								-0 004 (-0 008	ſ	Ĩ	-0 017 (-0 036	ſ	ſ
				Y	CKD F4 (bidirection)	GPS to RETN to CKD F4	kidney trait in F4	17 74 to 0)	1 60E-02	3 840E-02	to 0 008)	1 60E-01	2 304E-01
	ADAMTS	1						0 052 (0 015 to		r i i i	0 091 (-0 003 to		·
GPS	3	Proteins	eGFR F4	М	eGFR F4 (bidirection)	GPS to eGFR F4 to ADAMTS13	kidney trait in F4	36 49 0 089)	2 00E-03	2 880E-03	0 191)	5 60E-02	9 600E-02
								0 013 (0 003 to		r	0 216 (0 16 to		
				Y	eGFR F4 (bidirection)	GPS to ADAMTS13 to eGFR F4	kidney trait in F4	5 87 0 026)	4 00E-03	5 333E-03	0 273)	0 00E+00	0 000E+00

	ADAMTS1					CDS to ADAMTS12 to Follow up		0.01 (0.001 to			0.22 (0.162 to		
CPS	ADAMISI	Protoins	CEP EE4	v	GPS >Candi >Follow up aCEP	GFS to ADAM1515 to Follow-up	kidney trait in EE4 (as V)	4 44 0 024)	3 40E 02	3 825E 02	0 22 (0 102 10	0.000 000	0.000E+00
015	ADAMTEI	TIOUEIIIS	COFK 114	1	OI 5-2Calui-21010w-up eOI K	eork	kidney dait in 114 (as 1)	4 44 0 024)	3 40E-02	3 8251-02	0.127 (0.056 to	0.00000000	0.0001+00
CPS	ADAMISI	Protoins	CKD F4	м	CKD E4 (hidiraction)	GPS to CKD E4 to ADAMTS13	kidney trait in E4	2 47 0 024)	4 18E 01	4 180E 01	0 137 (0 030 10	4 00E 03	2.057E.02
015	5	TIOUEIIIS	CKD 14	IVI	CKD 14 (bluitection)	013 to CKD 14 to ADAM1313	Kluby trait III 14	0.003 (0.000	4 182-01	4 180E-01	0.017 (0.037	4 001-05	2 03712-02
				v	CKD E4 (hidiraction)	GPS to ADAMTS13 to CKD E4	kidney trait in E4	-0 003 (-0 009	1.02E.01	2 040E 01	to 0.008)	1 805 01	2 402E 01
				1	CKD14 (bluitecubil)	013 10 ADAM1313 10 CKD 14	Kidney trait in 1.4	0.177 (0.271	1022-01	2 0401-01	0.006 (0.144 to	1 801-01	2 4921-01
GPS	ESTI 3	Proteins	eGER SA	м	GPS->eCFR S4->Candi	GPS to eGER S4 to ESTL3	kidney trait in \$4 (as M)	103 61 to -0.094)	0.00E±00	0.000E+00	0 171)	9 38E-01	9 800E-01
015	15115	TIOCHIS	001 K 54	IVI	GI 5-2CGI K 54-2Callal	G15 10 CG1 K 54 10 15 1E5	Kidiley trait in 54 (as Wi)	-0.112 (-0.154	0.001100	0 0001 100	0.005 (-0.081 to	7 30L-01	7 800E-01
GPS	FSTI 3	Proteins	eGFR F4	м	eGER E4 (hidirection)	GPS to eGFR F4 to FSTI 3	kidney trait in F4	104.6 to -0.07)	0.00F+00	0.000F+00	0.093)	8 72E-01	9.614E-01
015	151125	Trotems	COLKIT		cor k i + (bluiteetion)		kidney utit in 14	0.023 (0.006 to	0.0001100	0 0001100	0 206 (0 152 to	0722 01) 014E 01
				v	eGER E4 (hidirection)	GPS to FSTI 3 to eGFR F4	kidney trait in F4	10.08 0.043)	8 00F-03	9 290F-03	0 260 (0 152 10	0.00F+00	0.000F+00
				-	cor k i + (bluiteetion)		kidney unit in 14	0.03 (0.006 to	000105) 2)0E 05	0 201 (0 146 to	0.001100	0.0001100
GPS	ESTL3	Proteins	eGFR FF4	Y	GPS->Candi->Follow-up eGFR	GPS to ESTL3 to Follow-up eGFR	kidney trait in FF4 (as Y)	12 86 0.057)	1.60E-02	2.057E-02	0 257)	0.00E+00	0.000E+00
0.5	10120	Troumb	contrin .	-			liadicy date in TT ((as T)	-0.017 (-0.048	1 002 02	2 00 / 2 02	-0.119 (-0.265	0.002100	0 0002100
GPS	ESTL3	Proteins	CKDerce S4	м	GPS->CKDerce S4->Candi	GPS to CKDerce S4 to ESTL3	kidnev trait in S4 (as M)	12 22 to 0)	5.00E-02	5 000E-02	to 0.032)	9 60E-02	2 240E-01
0.5	10120	riounis	ciliberet 5.				litulity that in 5 ((as in)	-0.008 (-0.042	0 002 02	00002.02	-0.092 (-0.17 to	2 002 02	22102 01
GPS	ESTL3	Proteins	CKD F4	м	CKD F4 (bidirection)	GPS to CKD F4 to FSTL3	kidney trait in F4	8 17 to 0 013)	3 20E-01	3 515E-01	-0.006)	4 20E-02	6 574E-02
0.5	10120	riounis	CILD I I				liadicy date in 1 1	-0.006 (-0.012	5 202 01	5 5 10 2 01	-0.012 (-0.031	1 202 02	00712 02
				Y	CKD F4 (bidirection)	GPS to ESTL3 to CKD F4	kidney trait in F4	32 12 to -0.001)	8 00E-03	2 880E-02	to 0.013)	3 22E-01	3 578E-01
								-0.23 (-0.34 to -			0 17 (0 028 to		
GPS	B2M	Proteins	eGFR S4	м	GPS->eGFR S4->Candi	GPS to eGFR S4 to B2M	kidnev trait in S4 (as M)	384 93 0 138)	0 00E+00	0 000E+00	0 315)	2 20E-02	3 520E-01
								-0 203 (-0 255	-		0 087 (0 013 to		-
GPS	B2M	Proteins	eGFR F4	м	eGFR F4 (bidirection)	GPS to eGFR F4 to B2M	kidnev trait in F4	174 59 to -0 152)	0 00E+00	0 000E+00	0 159)	3 00E-02	5 400E-02
								0 046 (0 012 to	_		0 183 (0 135 to	-	
				Y	eGFR F4 (bidirection)	GPS to B2M to eGFR F4	kidney trait in F4	20 24 0 083)	1 00E-02	1 091E-02	0 226)	0 00E+00	0 000E+00
								0 042 (0 009 to	-		0 189 (0 138 to	•	
GPS	B2M	Proteins	eGFR FF4	Y	GPS->Candi->Follow-up eGFR	GPS to B2M to Follow-up eGFR	kidney trait in FF4 (as Y)	18 05 0 077)	8 00E-03	1 600E-02	0 243)	0 00E+00	0 000E+00
					· · · ·			-0 019 (-0 058	-		-0 003 (-0 164	•	
GPS	B2M	Proteins	CKDcrcc S4	м	GPS->CKDcrcc S4->Candi	GPS to CKDcrcc S4 to B2M	kidney trait in S4 (as M)	87 13 to 0)	2 20E-02	2 567E-02	to 0 145)	9 74E-01	9 740E-01
								-0 011 (-0 052	•		-0 097 (-0 187	•	
GPS	B2M	Proteins	CKD F4	М	CKD F4 (bidirection)	GPS to CKD F4 to B2M	kidney trait in F4	10 33 to 0 017)	3 32E-01	3 515E-01	to -0 015)	2 20E-02	4 950E-02
								-0 007 (-0 013	r		-0 013 (-0 033	r	
				Y	CKD F4 (bidirection)	GPS to B2M to CKD F4	kidney trait in F4	35 56 to -0 002)	1 00E-02	3 273E-02	to 0 011)	2 64E-01	3 277E-01
								-0 006 (-0 014			-0 046 (-0 074	·	
GPS	B2M	Proteins	CKD FF4	Y	GPS->Candi->incident CKD	GPS to B2M to incident CKD	kidney trait in FF4 (as Y)	11 16 to -0 001)	3 20E-02	4 200E-02	to -0 017)	4 00E-03	1 200E-02
								-0 144 (-0 228			0 096 (-0 093 to	·	·
GPS	ERP29	Proteins	eGFR S4	Μ	GPS->eGFR S4->Candi	GPS to eGFR S4 to ERP29	kidney trait in S4 (as M)	301 11 to -0 072)	0 00E+00	0 000E+00	0 272)	2 90E-01	6 629E-01
								-0 091 (-0 124			-0 01 (-0 093 to		•
GPS	ERP29	Proteins	eGFR F4	Μ	eGFR F4 (bidirection)	GPS to eGFR F4 to ERP29	kidney trait in F4	89 67 to -0 057)	0 00E+00	0 000E+00	0 074)	7 60E-01	9 434E-01
								0 02 (0 004 to			0 209 (0 153 to		
				Y	eGFR F4 (bidirection)	GPS to ERP29 to eGFR F4	kidney trait in F4	8 86 0 039)	1 60E-02	1 600E-02	0 263)	0 00E+00	0 000E+00
								0 019 (0 002 to			0 211 (0 156 to		
GPS	ERP29	Proteins	eGFR FF4	Y	GPS->Candi->Follow-up eGFR	GPS to ERP29 to Follow-up eGFR	kidney trait in FF4 (as Y)	8 42 0 039)	3 40E-02	3 825E-02	0 267)	0 00E+00	0 000E+00
								-0 009 (-0 043			-0 085 (-0 163		
GPS	ERP29	Proteins	CKD F4	М	CKD F4 (bidirection)	GPS to CKD F4 to ERP29	kidney trait in F4	9 52 to 0 014)	3 14E-01	3 515E-01	to -0 007)	4 00E-02	6 545E-02
								-0 008 (-0 015	ſ	ſ	-0 015 (-0 032	ſ	ſ
				Y	CKD F4 (bidirection)	GPS to ERP29 to CKD F4	kidney trait in F4	33 54 to -0 001)	1 60E-02	3 840E-02	to 0 009)	2 42E-01	3 111E-01
								-0 16 (-0 261 to		ſ	0 04 (-0 082 to		ſ
GPS	RELT	Proteins	eGFR S4	Μ	GPS->eGFR S4->Candi	GPS to eGFR S4 to RELT	kidney trait in S4 (as M)	133 42 -0 081)	0 00E+00	0 000E+00	0 167)	5 56E-01	8 896E-01

								-0 151 (-0 202			0 001 (-0 075 to		
GPS	RELT	Proteins	eGFR F4	М	eGFR F4 (bidirection)	GPS to eGFR F4 to RELT	kidney trait in F4	100 36 to -0 108)	0 00E+00	0 000E+00	0 074)	9 94E-01	9 940E-01
								0 046 (0 023 to	Í	ĺ.	0 183 (0 13 to	ſ	Í
				Y	eGFR F4 (bidirection)	GPS to RELT to eGFR F4	kidney trait in F4	20 15 0 073)	0 00E+00	0 000E+00	0 237)	0 00E+00	0 000E+00
								0 052 (0 026 to			0 178 (0 123 to		
GPS	RELT	Proteins	eGFR FF4	Y	GPS->Candi->Follow-up eGFR	GPS to RELT to Follow-up eGFR	kidney trait in FF4 (as Y)	22 55 0 082)	0 00E+00	0 000E+00	0 238)	0 00E+00	0 000E+00
								-0 007 (-0 038			-0 138 (-0 214		
GPS	RELT	Proteins	CKD F4	М	CKD F4 (bidirection)	GPS to CKD F4 to RELT	kidney trait in F4	5 16 to 0 011)	3 22E-01	3 515E-01	to -0 063)	0 00E+00	0 000E+00
								-0 007 (-0 014			-0 012 (-0 031		
				Y	CKD F4 (bidirection)	GPS to RELT to CKD F4	kidney trait in F4	36 69 to -0 002)	4 00E-03	1 800E-02	to 0 014)	3 28E-01	3 578E-01
								-0 087 (-0 167			0 003 (-0 168 to		
GPS	SCARF1	Proteins	eGFR S4	М	GPS->eGFR S4->Candi	GPS to eGFR S4 to SCARF1	kidney trait in S4 (as M)	102 96 to -0 02)	8 00E-03	9 143E-03	0 174)	9 08E-01	9 800E-01
								-0 058 (-0 092			-0 069 (-0 164		
GPS	SCARF1	Proteins	eGFR F4	М	eGFR F4 (bidirection)	GPS to eGFR F4 to SCARF1	kidney trait in F4	45 86 to -0 023)	0 00E+00	0 000E+00	to 0 026)	1 50E-01	2 455E-01
								0 012 (0 003 to			0 217 (0 161 to		
				Y	eGFR F4 (bidirection)	GPS to SCARF1 to eGFR F4	kidney trait in F4	5 22 0 025)	6 00E-03	7 714E-03	0 273)	0 00E+00	0 000E+00
						GPS to SCARF1 to Follow-up		0 016 (0 003 to			0 215 (0 162 to		
GPS	SCARF1	Proteins	eGFR FF4	Y	GPS->Candi->Follow-up eGFR	eGFR	kidney trait in FF4 (as Y)	6 81 0 03)	1 20E-02	1 964E-02	0 273)	0 00E+00	0 000E+00
								-0 007 (-0 034			-0 115 (-0 198		
GPS	SCARF1	Proteins	CKD F4	М	CKD F4 (bidirection)	GPS to CKD F4 to SCARF1	kidney trait in F4	5 55 to 0 01)	3 22E-01	3 515E-01	to -0 029)	1 80E-02	4 950E-02
								-0 005 (-0 01 to			-0 015 (-0 033		
				Y	CKD F4 (bidirection)	GPS to SCARF1 to CKD F4	kidney trait in F4	25 47 -0 001)	4 00E-03	1 800E-02	to 0 009)	2 18E-01	2 907E-01
								0 181 (0 103 to			-0 092 (-0 262		
GPS	SPOCK2	Proteins	eGFR S4	М	GPS->eGFR S4->Candi	GPS to eGFR S4 to SPOCK2	kidney trait in S4 (as M)	202 79 0 268)	0 00E+00	0 000E+00	to 0 067)	2 80E-01	6 629E-01
								0 127 (0 084 to			0 033 (-0 054 to		
GPS	SPOCK2	Proteins	eGFR F4	М	eGFR F4 (bidirection)	GPS to eGFR F4 to SPOCK2	kidney trait in F4	79 28 0 168)	0 00E+00	0 000E+00	0 126)	4 60E-01	6 369E-01
								0 036 (0 017 to			0 193 (0 142 to		
				Y	eGFR F4 (bidirection)	GPS to SPOCK2 to eGFR F4	kidney trait in F4	15 74 0 06)	0 00E+00	0 000E+00	0 245)	0 00E+00	0 000E+00
						GPS to SPOCK2 to Follow-up		0 031 (0 012 to	[0 199 (0 148 to		
GPS	SPOCK2	Proteins	eGFR FF4	Y	GPS->Candi->Follow-up eGFR	eGFR	kidney trait in FF4 (as Y)	13 64 0 053)	0 00E+00	0 000E+00	0 255)	0 00E+00	0 000E+00
								0 008 (-0 011 to	r		0 146 (0 055 to		
GPS	SPOCK2	Proteins	CKD F4	Μ	CKD F4 (bidirection)	GPS to CKD F4 to SPOCK2	kidney trait in F4	5 24 0 042)	3 18E-01	3 515E-01	0 235)	4 00E-03	2 057E-02
								-0 007 (-0 014			-0 016 (-0 033		
				Y	CKD F4 (bidirection)	GPS to SPOCK2 to CKD F4	kidney trait in F4	31 65 to -0 002)	0 00E+00	0 000E+00	to 0 008)	1 60E-01	2 304E-01

Supplementary Table 23. Associations of GPS_{eGFR} with eGFR values and GPS_{eGFR}-associated candidates in different percentiles of sample size of hyperglycemic individuals.

Regression coefficients with 95% *CI*, *P*-values of GPS_{eGFR} with eGFR values, and 18 GPS_{eGFR} -associated candidates using multivariable linear regression models in different percentiles of sample size of hyperglycemic individuals of KORA F4 are shown, respectively. Regression model was adjusted for age, sex, BMI, systolic blood pressure, smoking status, triglyceride, total cholesterol, HDL cholesterol, fasting glucose, use of lipid lowering drugs, antihypertensive and anti-diabetic medication.

Abbreviations: GPS_{eGFR}, genome-wide polygenic score of eGFR values; eGFR, estimated glomerular filtration rate.

X	outcome	samplesize	_Estimate (95%)	p-value
GPS	F4 Mean eGFR	5%	0.437 (-0.01 to 0.884)	5.506E-02
GPS	F4 Mean eGFR	15%	0.415 (0.207 to 0.622)	1.156E-04
GPS	F4 Mean eGFR	25%	0.426 (0.286 to 0.565)	5.633E-09
GPS	F4 Mean eGFR	35%	0.332 (0.218 to 0.447)	2.364E-08
GPS	F4 Mean eGFR	45%	0.372 (0.277 to 0.466)	4.645E-14
GPS	F4 Mean eGFR	full data	0.273 (0.236 to 0.31)	2.829E-44
GPS	C10	5%	-0.481 (-1.087 to 0.126)	1.176E-01
GPS	C10	15%	-0.195 (-0.49 to 0.1)	1.928E-01
GPS	C10	25%	-0.134 (-0.344 to 0.076)	2.090E-01
GPS	C10	35%	-0.1 (-0.263 to 0.063)	2.305E-01
GPS	C10	45%	-0.133 (-0.263 to -0.003)	4.482E-02
GPS	C10	full data	-0.074 (-0.126 to -0.023)	4.600E-03
GPS	C10:2	5%	0.096 (-0.548 to 0.74)	7.650E-01
GPS	C10:2	15%	-0.045 (-0.341 to 0.251)	7.634E-01
GPS	C10:2	25%	-0.091 (-0.298 to 0.117)	3.907E-01
GPS	C10:2	35%	-0.051 (-0.216 to 0.114)	5.462E-01
GPS	C10:2	45%	-0.102 (-0.237 to 0.033)	1.382E-01
GPS	C10:2	full data	-0.089 (-0.143 to -0.035)	1.337E-03
GPS	C12	5%	-0.435 (-1.039 to 0.17)	1.548E-01
GPS	C12	15%	-0.325 (-0.609 to -0.042)	2.479E-02
GPS	C12	25%	-0.218 (-0.419 to -0.016)	3.434E-02
GPS	C12	35%	-0.153 (-0.311 to 0.006)	5.892E-02
GPS	C12	45%	-0.158 (-0.286 to -0.031)	1.515E-02
GPS	C12	full data	-0.08 (-0.131 to -0.03)	1.939E-03
GPS	C14:1-OH	5%	0.036 (-0.55 to 0.622)	9.027E-01
GPS	C14:1-OH	15%	-0.137 (-0.422 to 0.149)	3.453E-01
GPS	C14:1-OH	25%	-0.075 (-0.272 to 0.122)	4.540E-01
GPS	C14:1-OH	35%	-0.074 (-0.232 to 0.084)	3.581E-01
GPS	C14:1-OH	45%	-0.115 (-0.243 to 0.012)	7.572E-02
GPS	C14:1-OH	full data	-0.069 (-0.122 to -0.016)	1.042E-02
GPS	C8	5%	-0.61 (-1.239 to 0.02)	5.731E-02
GPS	C8	15%	-0.124 (-0.44 to 0.191)	4.385E-01
GPS	C8	25%	-0.104 (-0.323 to 0.115)	3.529E-01
GPS	C8	35%	-0.1 (-0.265 to 0.065)	2.344E-01
GPS	C8	45%	-0.124 (-0.255 to 0.006)	6.156E-02
GPS	C8	full data	-0.08 (-0.132 to -0.027)	2.911E-03
GPS	CST3	5%	0.097 (-1.109 to 1.302)	8.640E-01
GPS	CST3	15%	-0.252 (-0.643 to 0.138)	2.015E-01
GPS	CST3	25%	-0.212 (-0.472 to 0.048)	1.091E-01
GPS	CST3	35%	-0.017 (-0.248 to 0.214)	8.841E-01
GPS	CST3	45%	-0.129 (-0.326 to 0.068)	1.974E-01
GPS	CST3	full data	-0.144 (-0.221 to -0.067)	2.533E-04
GPS	TNFRSF1A	5%	-1.972 (-3.283 to -0.662)	6.579E-03
GPS	TNFRSF1A	15%	-0.538 (-1.069 to -0.006)	4.744E-02

GPS	TNFRSF1A	25%	-0.316 (-0.637 to 0.005)	5.345E-02
GPS	TNFRSF1A	35%	-0.091 (-0.34 to 0.159)	4.753E-01
GPS	TNFRSF1A	45%	-0.165 (-0.384 to 0.055)	1.411E-01
GPS	TNFRSF1A	full data	-0.144 (-0.231 to -0.057)	1.176E-03
GPS	IGFBP6	5%	0.158 (-1.074 to 1.391)	7.845E-01
GPS	IGFBP6	15%	-0.14 (-0.615 to 0.335)	5.576E-01
GPS	IGFBP6	25%	-0.198 (-0.49 to 0.095)	1.829E-01
GPS	IGFBP6	35%	-0.083 (-0.314 to 0.148)	4.786E-01
GPS	IGFBP6	45%	-0.132 (-0.321 to 0.056)	1.685E-01
GPS	IGFBP6	full data	-0.1 (-0.178 to -0.023)	1.089E-02
GPS	NBL1	5%	-0.849 (-2.23 to 0.531)	2.049E-01
GPS	NBL1	15%	-0.095 (-0.578 to 0.388)	6.954E-01
GPS	NBL1	25%	-0.259 (-0.574 to 0.057)	1.073E-01
GPS	NBL1	35%	-0.118 (-0.364 to 0.129)	3.472E-01
GPS	NBL1	45%	-0.218 (-0.425 to -0.011)	3.920E-02
GPS	NBL1	full data	-0.149 (-0.235 to -0.062)	7.709E-04
GPS	JAM2	5%	-1.036 (-2.235 to 0.163)	8.423E-02
GPS	JAM2	15%	-0.326 (-0.816 to 0.164)	1.885E-01
GPS	JAM2	25%	-0.447 (-0.813 to -0.08)	1.753E-02
GPS	JAM2	35%	-0.373 (-0.659 to -0.086)	1.121E-02
GPS	JAM2	45%	-0.408 (-0.656 to -0.16)	1.358E-03
GPS	JAM2	full data	-0.152 (-0.245 to -0.059)	1.350E-03
GPS	RETN	5%	-0.888 (-2.15 to 0.373)	1.509E-01
GPS	RETN	15%	-0.186 (-0.656 to 0.284)	4.325E-01
GPS	RETN	25%	-0.072 (-0.408 to 0.265)	6.739E-01
GPS	RETN	35%	-0.121 (-0.384 to 0.142)	3.648E-01
GPS	RETN	45%	-0.127 (-0.35 to 0.096)	2.620E-01
GPS	RETN	full data	-0.124 (-0.214 to -0.034)	7.090E-03
GPS	ADAMTS13	5%	1.125 (-0.4 to 2.65)	1.340E-01
GPS	ADAMTS13	15%	0.001 (-0.564 to 0.565)	9.983E-01
GPS	ADAMTS13	25%	0.119 (-0.233 to 0.471)	5.034E-01
GPS	ADAMTS13	35%	0.169 (-0.09 to 0.429)	1.991E-01
GPS	ADAMTS13	45%	0.021 (-0.199 to 0.241)	8.492E-01
GPS	ADAMTS13	full data	0.143 (0.055 to 0.23)	1.520E-03
GPS	FSTL3	5%	-1.18 (-2.155 to -0.206)	2.164E-02
GPS	FSTL3	15%	-0.273 (-0.76 to 0.214)	2.666E-01
GPS	FSTL3	25%	-0.337 (-0.653 to -0.022)	3.646E-02
GPS	FSTL3	35%	-0.199 (-0.444 to 0.046)	1.105E-01
GPS	FSTL3	45%	-0.206 (-0.421 to 0.008)	5.960E-02
GPS	FSTL3	full data	-0.107 (-0.192 to -0.022)	1.395E-02
GPS	B2M	5%	-0.798 (-2.04 to 0.443)	1.864E-01
GPS	B2M	15%	-0.246 (-0.706 to 0.214)	2.891E-01
GPS	B2M	25%	-0.148 (-0.448 to 0.152)	3.306E-01
GPS	B2M	35%	0.072 (-0.179 to 0.324)	5.707E-01
GPS	B2M	45%	-0.092 (-0.309 to 0.125)	4.042E-01

GPS	B2M	full data	-0.116 (-0.201 to -0.032)	7.033E-03
GPS	ERP29	5%	-0.689 (-2.255 to 0.877)	3.566E-01
GPS	ERP29	15%	-0.007 (-0.516 to 0.502)	9.776E-01
GPS	ERP29	25%	-0.172 (-0.493 to 0.148)	2.886E-01
GPS	ERP29	35%	-0.15 (-0.388 to 0.088)	2.152E-01
GPS	ERP29	45%	-0.218 (-0.409 to -0.028)	2.484E-02
GPS	ERP29	full data	-0.101 (-0.18 to -0.022)	1.277E-02
GPS	RELT	5%	-0.278 (-1.081 to 0.525)	4.653E-01
GPS	RELT	15%	-0.008 (-0.477 to 0.46)	9.712E-01
GPS	RELT	25%	-0.151 (-0.465 to 0.163)	3.427E-01
GPS	RELT	35%	-0.073 (-0.322 to 0.176)	5.640E-01
GPS	RELT	45%	-0.163 (-0.381 to 0.055)	1.423E-01
GPS	RELT	full data	-0.151 (-0.234 to -0.068)	4.048E-04
GPS	SCARF1	5%	-0.15 (-1.57 to 1.271)	8.223E-01
GPS	SCARF1	15%	-0.109 (-0.557 to 0.338)	6.266E-01
GPS	SCARF1	25%	0.141 (-0.182 to 0.464)	3.894E-01
GPS	SCARF1	35%	-0.08 (-0.327 to 0.168)	5.263E-01
GPS	SCARF1	45%	-0.185 (-0.399 to 0.029)	9.024E-02
GPS	SCARF1	full data	-0.127 (-0.22 to -0.034)	7.578E-03
GPS	SPOCK2	5%	0.887 (-0.507 to 2.28)	1.907E-01
GPS	SPOCK2	15%	0.396 (-0.107 to 0.9)	1.207E-01
GPS	SPOCK2	25%	0.145 (-0.165 to 0.456)	3.553E-01
GPS	SPOCK2	35%	0.132 (-0.121 to 0.385)	3.033E-01
GPS	SPOCK2	45%	0.206 (-0.014 to 0.425)	6.587E-02
GPS	SPOCK2	full data	0.16 (0.071 to 0.249)	4.352E-04

Supplementary Table 24. Two-sample MR evidence is suggestive of relationships between kidney traits (CKD, eGFR and UACR) and replicated proteins in both directions.

Results of bi-directional two-sample MR of 46 replicated proteins and kidney traits (CKD, eGFR and UACR).

Abbreviations: CKD, chronic kidney disease; eGFR, estimated glomerular filtration rate; UACR, urinary albumin-to-creatinine ratio; MR, Mendelian Randomization.

														Pi	roToKy.MRp													KyToPro.M		KyToPro.M		
	Prote n.	Seq Kidney.tr	a	ProToKy.dir	e ProToKy.st	tu ProToKy.study_kidn ProToKy.r	18		ProToKy.pv	a	ProToKy.IV	ProToKy.MR	ProToKy.MI Egger.interco	R ProToKy.Mr re preso.Global no	ess.Outliers.I dices.OR.Nu	ProToKy.outlier	ProToKy.MR.su	p KyToPro.dire	KyToPro.stu	KyToPro stu				KyToPro.pva	۱	KyToPro.IV	KyToPro.M R	R Egger interce	KyToPro Mr e preso.Global	Rpress.Outli ers.Indices.O	KyToPro.out	KyToPro.M R.supported.
Protein	Id	t	method Robust adjusted	ction	dy_pro	ey np	ProToKy.b	ProToKy.se	1	ProToKy.fdr	W Q_pval	Egger.Q_pval	pt_pval	Test Pvalue m	1	corrected	ported.Causal	ction	dy_pro	dy_k dney	KyToPro.nsnp	KyToPro b	KyToPro.se	1	KyToPro.fdr	W.Q_pval	Egger.Q_pval	pt_pval	Test.Pvalue	R.Num	ier_corrected	Causal
PLAT	2212-69	I CKD	profile score (RAPS)	Protein To CKD	Emilsson 2018	Wuttke 2019	1 -0.11	8 0.058	.206E-02	2.907E-01						before	no / nsufficient power	CKD To Protein	Suhre 2017	Wuttke 2019	8	-0.068	0.219	7.555E-01	9.6 6E-01	2 288E-01	1.630E-01	7.635E-01	0.263		before	no / insuff c ent power
DIAT	2212.60	1 aCEP	Robust adjusted profile score	Protein To	Emilsson	Works 2010	1 0.00	0.007	1665 01	6 225E 01						hafan	no / nsufficient	eGFR To	Suber 2017	Westley 2010		0.255	1 827	9 595 01	0.6.65.01	8 026E 01	8 786E 01	6 067E 01	0.906		hofee	no / insuff c ent
r LAI	2212-05	_1 COFK	Robust adjusted	COFK	2018	wunke 2019	1 0.00	2 0.002	.1005-01	0.55515-01						beibre	power	FIOCE	30010 2017	watke 2019	03	-0.355	1.827	a. 5815/01	9.0 015-01	8 9 3012-01	8.78012-01	0.9031901	0.890		beiore	power
PLAT	2212-69	_1 UACR	profile score (RAPS) Robust adjusted	Protein To UACR	Emilsson 2018	Teumer 2019	1 0.00	8 0.012	.305E-01	7.117E-01						before	no / nsufficient power	UACR To Protein	Suhre 2017	Teumer 2019	8	2.2 3	1.172	5.553E-02	2.221E-01	807 E-01	7.517E-01	5.951E-01	0.833		before	no / insuff c ent power
CST3	2609-59	_2 CKD	profile score (RAPS)	Protein To CKD	Emilsson 2018	Wuttke 2019	1 0.07	5 0.039	.217E-02	2.907E-01						before	no / nsufficient power	CKD To Protein	Suhre 2017	Wuttke 2019	8	0.015	0.233	9.7 E-01	9.786E-01	2 023E-01	.396E-01	9.537E-02	0.221		before	no / insuff c ent power
CST3	2609-59	2 eGEP	Robust adjusted profile score (PAPS)	Protein To	Emilsson 2018	Worke 2019	1 -0.00	3 0.001	\$26E-02	2 563E-01						hafam	no / nsufficient	eGFR To Protein	Subra 2017	Wettke 2019	63	0.075	1.05	9.6955-01	9.7865-01	2.7.65-01	2 513E-01	6.68 E-01	0.316		hefore	no / insuff c ent
			Robust adjusted	Destais To	Emilian												no / modificient	UACR To														no / incutfice and
CST3	2609-59	_2 UACR	(RAPS)	UACR	2018	Teumer 2019	1 -0.01	2 0.008	.53 E-01	.613E-01						before	power	Protein	Suhre 2017	Teumer 2019	8	0.033	1.2 2	9.786E-01	9.786E-01	7 660E-01	7.838E-01	3.7 0E-01	0.777		before	no / insuit c ent power
EFNA5	2615-60	2 CKD	outl ters- corrected Wald ra io	Protein To CKD	Sun 2018	Wuttke 2019	1 0.08	2 0.07	.697E-01	. 95E-01						after	no / nsufficient power															
			Robust adjusted profile score	Protein To					r								no / nsufficient	CKD To														no / insuff c ent
EFNA5	2615-60	_2 CKD	(RAPS) Robust adjusted	CKD Protein To	Sun 2018	Wuttke 2019	2 -0.0	2 0.062	. 13E-01	9. 00E-01	3.510E-02					before	power	Protein eGER To	Sun 2018	Wuttke 2019	16	0.076	0.099	. 02E-01	5.870E-01	9.720E-01	9.7 2E-01	.033E-01	0.973		before	power
EFNAS	2615-60	_2 eGFR	(RAPS) Robust adjusted	eGFR	Sun 2018	Wuttke 2019	2 0.00	2 0.002	.167E-01	6.335E-01	6.8 0E-01					belore	power	Protein	Sun 2018	Wuttke 2019	193	-1.0	0.669	1.18 E-01	.738E-01	7.798E-01	7.655E-01	7.776E-01	0.776		before	power
EFNA5	2615-60	2 UACR	profile score (RAPS)	Protein To UACR	Sun 2018	Teumer 2019	2 -0.00	8 0.012	.87 E-01	6.917E-01	6.00 E-02					before	no / nsufficient power	UACR To Protein	Sun 2018	Teumer 2019	29	-0.112	0.319	7.251E-01	7.251E-01	5. 53E-01	.93 E-01	8.270E-01	0.561		before	no / insuff c ent power
ERBB3	2617-56	35 CKD	MR- PRESSO_Outl e corrected	r Protein To CKD	Sun 2018	Wuttke 2019										before	no / nsufficient power	CKD To Protein	Sun 2018	Wuttke 2019	15	-0.092	0.123	.682E-01	9.61 E-01				0.016	1	before	no / insuff c ent power
			outl ters-																													
ERBB3	2617-56	_35 CKD	corrected In erse ariance weighter	e d														CKD To Protein	Sun 2018	Wuttke 2019	1	-0.0 5	0.119	7.0 5E-01	7.0 5E-01						after	no / insuff c ent power
ERBB3	2617-56	35 CKD	Robust adjusted profile score (RAPS)	Protein To CKD	Sun 2018	Wuttke 2019	0.01	5 0.0 2	.058E-01	9. 00E-01	3.338E-01	3. 66E-01	3.861E-01	0. 01		before	no / nsufficient power	CKD To Protein	Sun 2018	Wuttke 2019	16	-0.0 5	0.102	6.616E-01	6.668E-01	15 3E-02	1.076E-02	7. 20E-01	0.016	1	before	no / insuff c ent power
			outl ters- corrected Wald	Protein To													no / nsufficient															
ERBB3	2617-56	_35 eGFR	ra io Robust adjusted	eGFR	Sun 2018	Wuttke 2019	1 0.00	5 0.002	.7 7E-02	.122E-01						after	power	CTD T														
ERBB3	2617-56	_35 eGFR	(RAPS) outlters-	eGFR	Sun 2018	Wuttke 2019	0.00	0.002	.130E-02	1.562E-01	2.876E-02	1.988E-02	6.350E-01	0.069		before	no / nsufficient power	eGFR To Protein	Sun 2018	Wuttke 2019	193	0.68	0.67	3.10 E-01	6.668E-01	1 220E-01	1.168E-01	5.027E-01	0.125		before	no / insuff c ent power
ERBB3	2617-56	_35 UACR	corrected Wald ra io	Protein To UACR	Sun 2018	Teumer 2019	1 -0.0	3 0.01	.9 E-03	1.166E-02						after	yes same direct on of beta n KORA															
EPRB3	2617-56	35 LIACP	Robust adjusted profile score (PAPS)	Protein To	Sun 2018	Tenmer 2019	-0.01	0.009	186E-01	613E-01	1 861E-02	1 36E-01	2.179E-01	0.09		hafam	yes same direct on	UACR To Protein	Sup 2018	Taurear 2019	70	-0.137	0.319	6.668E-01	6.668E-01	5 908E-01	5 558E-01	5.628E-01	0.593		hefore	no / insuff c ent
Licobo	2017-30		Robust adjusted	Destain To	5412010	Cull 2017	-0.01	0.007	.1002-01	.0152-01	1.0011-02	1. 562-01	2.1772/01	0.07		ocusie	or configurat	CKDT	5412010	realize 2019		-0.137	0.517	0.00012-01	0.0001-01	5 90015-01	5.55015-01	5.02017-01	0.575		beibie	no (incuff o ant
LAYN	2635-61	2 CKD	(RAPS)	CKD	Sun 2018	Wuttke 2019	7 0.00	3 0.029	.236E-01	9.706E-01	8.228E-01	8.728E-01	3. 98E-01	0.831		before	power	Protein	Sun 2018	Wuttke 2019	16	0.053	0.1	5.973E-01	5.973E-01	5. 30E-01	.672E-01	9.535E-01	0.87		before	power
			outlters- corrected In erse	Protein To													no / nsufficient															
LAYN	2635-61	_2 eGFR	ariance weighter Robust adjusted	d eGFR	Sun 2018	Wuttke 2019	6 -0.00	2 0.001	.25 E-01	.752E-01				-		after	power							-	,			,	-			
LAYN	2635-61	_2 eGFR	profile score (RAPS)	Protein To eGFR	Sun 2018	Wuttke 2019	7 -0.00	0.001	.858E-01	6.335E-01	3.690E-02	1. 15E-01	1.386E-01	0.059		belore	no / nsufficient power	eGFR To Protein	Sun 2018	Wuttke 2019	193	-0.78	0.668	2. 11E-01	3.21 E-01	7 667E-01	7.856E-01	1. 57E-01	0.767		before	no / insuff c ent power
			MR- PRESSO_Outle	r Protein To						[[no / nsufficient	UACR To														no / insuff c ent
LAYN	2635-61	_2 UACR	corrected	UACR	Sun 2018	Teumer 2019	5 -0.00	0.01	.196E-01	9.715E-01				0.001 2		before	power	Protein	Sun 2018	Teumer 2019	29										before	power
LAYN	2635-61	_2 UACR	outl ters- corrected In erse ariance weighter	e Protein To d UACR	Sun 2018	Teamer 2019	0.00	9 0.008	.612E-01	3.320E-01						after	no / nsufficient power															
	2015 (1		Robust adjusted profile score	Protein To	0 2010	T	7 0.00	0.000	2075-01	(175.01	C 1015 0	1.0000 00					no / nsufficient	UACR To	0	7	20		0.727	7 7767 03		7.1625.02	1 77 17 61	7 1015 02	0.00			no / insuff c ent
LAIN	2033-01	_2 UALK	(RAPS) Robust adjusted profile score	Protein To	Sun 2018	Teumer 2019	7 0.00	\$ 0.006	.50/E-01	.615E-01	6.101E-0	1.00015-02	1. 856-01	0.001 2		beiore	no / nsufficient	CKD To	Sun 2018	Teumer 2019	29	-0.369	0.322	7.7266-02	1.9216-01	7 1526-02	1.57 E-01	7.1816-02	0.06		belore	no / insuff c ent
TNFRS	F1A 265 -19	_1 CKD	(RAPS) MR-	CKD	Sun 2018	Wuttke 2019	7 0.06	7 0.03	.285E-02	2.907E-01	1.298E-01	2.698E-01	1.595E-01	0.155		before	power	Protein	Sun 2018	Wuttke 2019	16	0.109	0.1	2.765E-01	5.530E-01	6. 61E-01	6.380E-01	3.783E-01	0.678		before	power
TNFRS	F1A 265 -19	_1 eGFR	PRESSO_Outl e corrected	r Protein To eGFR	Sun 2018	Wuttke 2019	6	0 0	.895E-01	8.788E-01				0.005 1		before	no / nsufficient power	eGFR To Protein	Sun 2018	Wuttke 2019	193										before	
[]			outl ters- corrected In erse	Protein To					,	ſ –							no / nsufficient															
TNFRS	F1A 265 -19	_1 eGFR	ariance weighter	d eGFR	Sun 2018	Wuttke 2019	6	0.001	.399E-01	9.239E-01		ļ	,	\downarrow		after	power							-	ļ	ļ	ļ	ļ	ļ			1000 01000
TNFRS	F1A 265 -19	_1 eGFR	profile score (RAPS)	Protein To eGFR	Sun 2018	Wuttke 2019	7	0.001	.336E-01	9. 0 E-01	2.625E-03	2.938E-01	1.969E-02	0.005 1		before	no / nsufficient power	eGFR To Protein	Sun 2018	Wuttke 2019	193	-1.756	0.668	8.582E-03	3. 33E-02	6. 50E-01	6.327E-01	5.513E-01	0.6 3		before	direct on of be a n KORA
			MR- PRESSO_Outle	r Protein To													no / nsufficient	UACR To						-	ſ				1			no / insuff c ent
TNFRS	F1A 265 -19	_1 UACR	corrected	UACR	Sun 2018	Teumer 2019	7									before	power	Protein	Sun 2018	Teumer 2019	27	-0.1 3	0.289	6.233E-01	7.768E-01				0.0 6	2	before	power

			outl ters- corrected In ers	e														UACR To													no / nsu ficient
TNFRSF1.4	265 -19_1	UACR	Robust adjusted	d Description														Protein	Sun 2018	Teumer 2019	27	-0.1 3	0 31 6. 79E-01	6. 79E-01						fter	power
TNFRSF1.4	265 -19_1	UACR	(RAPS) Robust adjusted	UACR	Sun 2018	Teumer 2019	7	-0.0	3 0.00	5.778E-02	237E-01	.0 7E-01	137E-01	3.335E-01	0. 33	before	power	Protein	Sun 2018	Teumer 2019	29	-0.168	0.32 5.990E-01	6.07 E-01	.556E-02	.197E-02	.586E-01	0.0 6	2	efore	power
EGFR	2677-1_1	CKD	profile score (RAPS)	Protein To CKD	Sun 2018	Wuttke 2019	2	0.0	7 0.0	5 .335E-01	8 670E-01	6.092E-02				before	no / nsufficient power	CKD To Protein	Sun 2018	Wuttke 2019	16	-0.00	0.1 9.677E-01	9.677E-01	.807E-01	7.23 E-01	6.295E-02	0. 77		efore	no / nsu ficient power
			outl ters-																												
EGFR	2677-1_1	eGFR	ariance weighte Robust adjusted	e d														Protein	Sun 2018	Wuttke 2019	178	0.2 6	0 669 7.132E-01	7.132E-01						fter	no/ nsu hcient power
EGFR	2677-1_1	eGFR	profile score (RAPS)	Protein To eGFR	Sun 2018	Wuttke 2019	2	-0.0	0.00	2 .688E-01	8 250E-01	1.33 E-01				before	no / nsufficient power	eGFR To Protein	Sun 2018	Wuttke 2019	193	0.2 2	0 671 7.187E-01	9.582E-01	7.805E-03	7.783E-03	3.519E-01	0.013	No sign ficant outlers	efore	no / nsu ficient power
			Robust adjusted profile score	Protein To													no / nsufficient	UACR To	_												no / nsu ficient
EGFK	26/7-1_1	UACK	(RAPS) outl ters- corracted Wald	Protein To	Sun 2018	Teumer 2019	2	-0.0.	52 0.01	21.1136-02	2 288E-01	3.921E-01				belore	power	Protein	Sun 2018	Teumer 2019	29	-0.166	0.32 6.0 6E-01	9.582E-01	3.755E-01	3.561E-01	. 5 E-01	0.387		etore	power
IGFBP6	2686-67_2	CKD	ra io Robust adjusted	CKD	Sun 2018	Wuttke 2019	1	-0.0	6 0.06	8 2.670E-01	. 95E-01					af er	power														
IGFBP6	2686-67_2	CKD	profile score (RAPS)	Protein To CKD	Sun 2018	Wuttke 2019	3	-1.0	2 0. 2	0 1.823E-02	2 907E-01	2.522E-0	8 550E-02	2.777E-01		before	no / nsufficient power	CKD To Protein	Sun 2018	Wuttke 2019	16	0.155	0.1 1.208E-01	1.7 8E-01	5. 38E-01	6.912E-01	1.1 9E-01	0.597		efore	no / nsu ficient power
ICEBP6	2686-67	aCER	outl ters- corrected Wald	Protein To	Sup 2018	Works 2019		-0.0	0.00	7 83 E-01	9.239E-01					afar	no / nsufficient														
IOI-BP0	2080-07_2	COLK	Robust adjusted profile score	Protein To	341 2018	walke 2019	1	-0.0		7.83 1.901	9 2391301					ai ci	no / nsufficient	eGFR To										_			yes same d rection of
IGFBP6	2686-67_2	eGFR	(RAPS)	eGFR	Sun 2018	Wuttke 2019	3	-0.0	0.00	5 1.5 6E-10	6 803E-09	5.358E-19	1 137E-01	1.103E-01		before	power	Protein	Sun 2018	Wuttke 2019	193	-3.75	0 671 2.2 2E-08	8.969E-08	5.962E-02	5.39 E-02	9.98 E-01	0.063		efore	beta in KORA
ICEPD6	2686 67 7	UACE	outl ters- corrected In ers	e														UACR To	Sum 2018	Turner 2010	26	0.216	0.228 2.045.01	2 045 01							no / nsu ficient
ici bi c	2000-07_2	. onen	Robust adjusted profile score	Protein To													no / nsufficient	UACR To	5412010	ICUIRI 2019	20	-0.510	0.550 5. 502-01	5. 902-01						iici	no / nsu ficient
IGFBP6	2686-67_2	UACR	(RAPS) Robust adjusted	UACR	Sun 2018	Teumer 2019	3	-0.0	0.01	8.0 3E-01	88 8E-01	2.007E-01	5 908E-01	3.369E-01		before	power	Protein	Sun 2018	Teumer 2019	29	-0.3 9	0 322 2.779E-01	2.779E-01	5. 50E-02	. 06E-02	6.955E-01	0.06		efore	power
FGF20	2763-66_2	CKD	profile score (RAPS)	Protein To CKD	Sun 2018	Wuttke 2019	5	-0.0	88 0.0	2.588E-02	2 907E-01	6.657E-01	9 029E-01	2.710E-01	0.685	before	no / nsufficient power	CKD To Protein	Sun 2018	Wuttke 2019	16	-0.112	0.1 2.603E-01	3. 71E-01	5. 79E-01	5.87 E-01	2. 53E-01	0.559		efore	no / nsu ficient power
FGF20	2763-66_2	eGFR	PRESSO_Outle corrected	r Protein To eGFR	Sun 2018	Wuttke 2019	5									before	no / nsufficient power	eGFR To Protein	Sun 2018	Wuttke 2019	192	1.512	0.726 3.86 E-02	5.317E-01				0.001	1	efore	no / nsu ficient power
			outl ters-																												
FGF20	2763-66_2	eGFR	corrected In ers ariance weighte	e d														eGFR To Protein	Sun 2018	Wuttke 2019	171	0.706	0 678 2.972E-01	2.972E-01						fter	no / nsu ficient power
FGF20	2763-66_2	eGFR	profile score (RAPS)	Protein To eGFR	Sun 2018	Wuttke 2019	5	0.0	0.00	1. 9E-01	250E-01	1.516E-01	1 222E-01	5.387E-01	0.237	before	no / nsufficient power	eGFR To Protein	Sun 2018	Wuttke 2019	193	1.161	0 671 8.375E-02	3.116E-01	1.068E-03	1.185E-03	2.35 E-01	0.001	1	efore	no / nsu ficient power
			Robust adjusted profile score	Protein To						r			·		r		no / nsufficient	UACR To							r	1	1	1			no / nsu ficient
FGF20	2763-66_2	UACR	(RAPS) Robust adjusted	UACR	Sun 2018	Teumer 2019	5	0.0	9 0.00	3 2.155E-01	613E-01	3. 7 E-01	2. 33E-01	6.809E-01	0.3	before	power	Protein	Sun 2018	Teumer 2019	29	+0.2 3	0.32 . 77E-01	. 77E-01	.215E-01	.098E-01	3.873E-01	0. 8		efore	power
FGF9	276 -20_2	CKD	(RAPS) Robust adjusted	CKD	Sun 2018	Wuttke 2019	3	-0.0	8 0.05	7. 77E-01	9. 00E-01	2.51 E-01	6.708E-01	3.5 5E-01		before	power	Protein	Sun 2018	Wuttke 2019	16	-0.019	0 101 8.511E-01	8.511E-01	1.231E-01	1.371E-01	2.963E-01	0.12		efore	power
FGF9	276 -20_2	eGFR	profile score (RAPS)	Protein To eGFR	Sun 2018	Wuttke 2019	3		0 0.00	2 9.801E-01	9 836E-01	5.291E-02	7 838E-02	5.172E-01		before	no / nsufficient power	eGFR To Protein	Sun 2018	Wuttke 2019	193	0.97	0.67 .582E-01	8.511E-01	1.220E-01	1.858E-01	1.387E-02	0.13		efore	no / nsu ficient power
			outl ters-																												
FGF9	276 -20_2	UACR	ariance weighte	e d						,		,						Protein	Sun 2018	Teumer 2019	25	-0.306	0.32 3.392E-01	3.392E-01	,	,	ļ	,		fter	no/ nsu hcient power
FGF9	276 -20_2	UACR	profile score (RAPS)	Protein To UACR	Sun 2018	Teumer 2019	2	-0.0	0.01	3.882E-01	6 162E-01	5.2 7E-01				before	no / nsufficient power	UACR To Protein	Sun 2018	Teumer 2019	29	-0.1 9	0 322 6. 31E-01	8.511E-01	1.635E-02	1.37 E-02	5.6 3E-01	0.016	No sign ficant outlers	efore	no / nsu ficient power
			Robust adjusted profile score	Protein To													no / nsufficient	CKD To									[_	no / nsu ficient
NBLI	29 -66_2	CKD	(RAPS) Robust adjusted	CKD Protein To	Sun 2018	Wuttke 2019	2	-0.	0.05	7.065E-01	9. 00E-01	.315E-01				before	power	Protein eGER To	Sun 2018	Wuttke 2019	16	0.105	0 099 2.925E-01	5.8 9E-01	9.236E-01	9.016E-01	6.26 E-01	0.92		efore	power
NBLI	29 -66_2	eGFR	(RAPS) Robust adjusted	eGFR	Sun 2018	Wuttke 2019	2		0 0.00	8.778E-01	9 656E-01	7.562E-01				before	power	Protein	Sun 2018	Wuttke 2019	193	-1.072	0 667 1.083E-01	.331E-01	9.701E-01	9.680E-01	5.3 5E-01	0.973		efore	power
NBLI	29 -66_2	UACR	profile score (RAPS)	Protein To UACR	Sun 2018	Teumer 2019	2	0.0	0.01	2 6.81 E-01	8 039E-01	8.392E-02				before	no / nsufficient power	UACR To Protein	Sun 2018	Teumer 2019	29	0.006	0.32 9.8 1E-01	9.8 1E-01	3.1 1E-01	2.951E-01	.591E-01	0.318		efore	no / nsu ficient power
CUP	20.0.50	CKD	Robust adjusted profile score	Protein To	E-m 2018	Works 2010		0.0		70 E 01	0.000E 01	2 255E 01	2 9205 01	07 E 01	0.76	hafan	no / nsufficient	CKD To	Sum 2018	Westley 2010	16	0.05	0.1 5.0225-01	0.2025-01	2 1675 01	5 2625 01	6.075E.02	0.227		afirm	no / nsu ficient
Onk	27 8-38_2	CKD	Robust adjusted profile score	Protein To	341 2018	wante 2019	,	0.0.	.8 0.03	5 .70 15-01	9 00013 01	3.35515-01	2 8301501	.37 1501	0.30	beiore	no / nsufficient	eGFR To	3412018	wulke 2019	10	-0.05	0.1 3.9221301	9.39315/01	3.10/15/01	5.5021501	0.07515-02	0.527		ciore	no / nsu ficient
GHR	29 8-58_2	eGFR	(RAPS) Robust adjusted	eGFR	Sun 2018	Wuttke 2019	5	-0.0	0.00	1.328E-01	173E-01	9. 71E-01	8 839E-01	7.96 E-01	0.938	before	power	Protein	Sun 2018	Wuttke 2019	193	-0.215	0 669 7. 79E-01	9.393E-01	.077E-01	3.908E-01	7.065E-01	0. 5		efore	power
GHR	29 8-58_2	UACR	profile score (RAPS)	Protein To UACR	Sun 2018	Teumer 2019	5	0.0	9 0.00	2. 19E-01	627E-01	5.953E-01	8 502E-01	2.538E-01	0.632	before	no / nsufficient power	UACR To Protein	Sun 2018	Teumer 2019	29	0.02	0 318 9.393E-01	9.393E-01	7.656E-01	7.591E-01	3.881E-01	0.8		efore	no / nsu ficient power
CGA LHB	2953-31	CKD	corrected Wald ra io	Protein To CKD	Sun 2018	Wuttke 2019	1	-0.0	57 0.02	1.668E-02	8 339E-02					afer	no / nsufficient power														
			Robust adjusted profile score	Protein To													no / nsufficient	CKD To							1						no / nsu ficient
CGA LHB	2953-31_2	CKD	(RAPS)	CKD	Sun 2018	Wuttke 2019	2	-0.0	8 0.02	.572E-02	2 907E-01	1.676E-02				before	power	Protein	Sun 2018	Wuttke 2019	16	-0.073	0 099 .660E-01	8. 2E-01	8.028E-01	8.18 E-01	3.185E-01	0.821		efore	power

			Robust adjusted profile score	Protein To					ſ		, ,							no / nsu ficient	eGFR To							·	ſ	[ſ				no / insuffc ent
CGA LHB	2953-31_2	2 eGFR	(RAPS) Robust adjusted	eGFR	Sun 2018	Wuttke 2019	2	0.001	0.001	.086E-01	5.735E-01	.8 6E-01					before	power	Protein	Sun 2018	Wuttke 2019	193	-0.107	0.666 8.7	27E-01	8.727E-01	9 992E-01	9.990E-01	9.352E-01	1		before	power
CGA LHB	2953-31_2	2 UACR	profile score (RAPS)	Protein To UACR	Sun 2018	Teumer 2019	2	-0.007	0.005	.768E-01	.613E-01	6.060E-01					before	no / nsu ficient power	UACR To Protein	Sun 2018	Teumer 2019	29	0.18	0.318 5.7	03E-01	8. 2E-01	9 328E-01	9. 70E-01	2. 20E-01	0.936		before	no / insuffc ent power
FSAM	2981-9-3	СКД	Robust adjusted profile score (RAPS)	Protein To CKD	Sun 2018	Wattke 2019	6	0.001	0.026	826E-01	9 826E-01	1 859E-01	1 133E-01	8 926E-01	0.188		before	no / nsu ficient	CKD To Protein	Sun 2018	Wuttke 2019	16	0.12	0123	95-01	1.0E-01	1.7 5E-01	1 9E-01	6.090E-01	0.18		before	no / insuff c ent
10,000	2701-7_5	cito	MR- PRESSO_Outle	r Protein To	5412010	Hance 2019	0		0.020	.02013-01	-	1.0572-01	1.15515-01	0.7202-01	0.100		octore .	no / nsu ficient	eGFR To	5412010	Walke 2017	10	0.12	0.1 2.0	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	.1 02/01	1.7 52-01	1. 75.01	0.0702-01	0.10		beiore	no / insuff c ent
ESAM	2981-9_3	eGFR	corrected	eGFR	Sun 2018	Wuttke 2019	5	-0.003	0.002	. 26E-01	6.8 3E-01				0.009	1	before	power	Protein	Sun 2018	Wuttke 2019	193										before	power
			outlters- corrected In ers	Protein To														no / nsu ficient															
ESAM	2981-9_3	eGFR	ariance weighte Robust adjusted	d eGFR	Sun 2018	Wuttke 2019		-0.002	0.002	.032E-01	5.588E-01	-	,	-	-	-	after	power						-									
ESAM	2981-9_3	eGFR	profile score (RAPS)	Protein To eGFR	Sun 2018	Wuttke 2019	6	-0.00	0.001	.217E-0	9.118E-03	9.906E-0	.338E-0	8. 29E-01	0.009	1	before	no / nsu ficient power	eGFR To Protein	Sun 2018	Wuttke 2019	193	-0.882	0.669 1.8	70E-01	.1 0E-01	.785E-01	.657E-01	5. 27E-01	0.82		before	no / insuffc ent power
FSAM	2081-0-3	UACR	Profile score (PAPS)	Protein To	Sun 2018	Teumer 2019	6	0.003	0.006	620E-01	7 1175-01	3.9E-01	3 583E-01	5 9E-01	0.391		bafore	no / nsu ficient	UACR To Protein	Sup 2018	Taumar 2019	29	-0.326	0 321 3 1	5E-01	1.05-01	9.812E-02	8 269E-02	6.00E-01	0.096		before	no / insuffc ent
10,000	2701-7_5	onen	Robust adjusted profile score	Protein To	5412010	iculti 2019		0.005	0.000	.02015-01		.5 72-01	5.56515-01	5. 92.01	0.571		beione -	no / nsu ficient	CKD To	5412010	reuner 2017		-0.520	0.521 5.1	55-01	.1 02/01	0121-02	0.2072-02	0. 002-01	0.070		beaue	no / insuffc ent
JAM2	2997-8_1	CKD	(RAPS) Robust adjusted	CKD	Sun 2018	Wuttke 2019	5	0.033	0.032	.980E-01	6.901E-01	9.797E-01	9.969E-01	5.810E-01	0.98		before	power	Protein	Sun 2018	Wuttke 2019	16	-0.05	0.1 5.8	81E-01	7.8 1E-01	71 6E-01	6. 5 E-01	9.166E-01	0.728		before	power
JAM2	2997-8_1	eGFR	profile score (RAPS)	Protein To eGFR	Sun 2018	Wuttke 2019	5	0.001	0.001	.508E-01	6.132E-01	2. 98E-01	2.901E-01	3.3 9E-01	0.293		before	no / nsu ficient power	eGFR To Protein	Sun 2018	Wuttke 2019	193	0.16	0.67 8.1	18E-01	8.118E-01	1. 16E-01	1.35 E-01	5.209E-01	0.12		before	no / insuffc ent power
			Robust adjusted profile score	Protein To														no / nsu ficient	UACR To														no / insuffc ent
JAM2	2997-8_1	UACR	(RAPS) Robust adjusted	UACR	Sun 2018	Teumer 2019	5	-0.021	0.007	.553E-03	1.123E-01	7.35 E-01	9.003E-01	3.193E-01	0.7 2		before	power	Protein	Sun 2018	Teumer 2019	29	-0.758	0.321 1.8	15E-02	7.259E-02	1 6 6E-01	1.888E-01	2.216E-01	0.179		before	power
CLEC M	3030-3_2	CKD	(RAPS)	CKD	Sun 2018	Wuttke 2019	3	0.062	0.037	.96 E-02	3.951E-01	6.860E-01	6.687E-01	5.882E-01			before	no / nsu hcient power	CKD Io Protein	Sun 2018	Wuttke 2019	16	-0.0 5	0.1 6.5	03E-01	6.503E-01	5 123E-01	.368E-01	9.731E-01	0.5 2		before	no / insuff c ent power
CLEC M	3030-3 2	eGFR	Robust adjusted profile score (RAPS)	Protein To eGFR	Sun 2018	Wuttke 2019	3	0	0.001	. 20E-01	9.836E-01	9.133E-01	6.803E-01	9.318E-01			before	no / nsu ficient power	eGFR To Protein	Sun 2018	Wuttke 2019	193	-0.767	0.67 2.5	23E-01	5.827E-01	1 969E-01	1.9 7E-01	3.69 E-01	0.201		before	no / insuffc ent power
			outl ters-																														
CLEC M	3030-3_2	UACR	corrected In ers ariance weighte	e Protein To d UACR	Sun 2018	Teumer 2019	3	-0.01	0.013	.559E-01	.559E-01						after	no / nsu ficient power															
			Robust adjusted profile score	Protein To														no / nsu ficient	UACR To														no / insuffc ent
CLEC M	3030-3_2	UACR	(RAPS) Robust adjusted	UACR	Sun 2018	Teumer 2019	3	-0.011	0.008	.799E-01	.613E-01	5.923E-02	1.851E-02	9.126E-01			before	power	Protein	Sun 2018	Teumer 2019	29	-0.222	0.318 .8	58E-01	6. 77E-01	8 117E-01	7.762E-01	7. 55E-01	0.816		before	power
IL19	3035-80_2	2 CKD	(RAPS)	CKD	Sun 2018	Wuttke 2019	7	-0.0 2	0.025	.979E-02	3.951E-01	7.501E-01	7.890E-01	3.551E-01	0.732		before	no / nsu hcient power	CKD Io Protein	Sun 2018	Wuttke 2019	16	-0.2 5	0.099 1.3	58E-02	5. 32E-02	9 92 E-01	9.893E-01	6.305E-01	0.995		before	no / insuff c ent power
			outlters- corrected In ers																eGFR To														yes same direc ion of
IL19	3035-80_2	2 eGFR	ariance weighte Robust adjusted	d															Protein	Sun 2018	Wuttke 2019	182	1.631	0.655 1.2	72E-02	2.5 3E-02						after	beta n KORA yes same
IL19	3035-80_2	2 eGFR	profile score (RAPS)	Protein To eGFR	Sun 2018	Wuttke 2019	7	0	0.001	.377E-01	8.92 E-01	9.277E-01	9.812E-01	3.270E-01	0.911		before	no / nsu ficient power	eGFR To Protein	Sun 2018	Wuttke 2019	193	1.3 2	0.67 .5	38E-02	9.077E-02	2 911E-02	2.703E-02	5.739E-01	0.027	No signif cant outlers	before	direc ion of beta n KORA
	2025 00 2		Robust adjusted profile score	Protein To	5 2010	7	-	0.000	0.005	FOCT 01	C17E 01	2 2105 01	2 10 5 01	2005.01	0.262			no / nsu ficient	UACR To	0	T 2010	20	0.726	0.22.2.0	. F.AI	2.00 5.01	2.7.05.01	202 5 01	2.5557-01				no / insuffc ent
11.19	3035-80_2	2 UACR	(RAPS) Robust adjusted	UACK	Sun 2018	Teumer 2019	7	0.008	0.005	.596E-01	.613E-01	2.310E-01	2.19 E-01	.2006-01	0.263		belore	power	Protem	Sun 2018	Teumer 2019	29	-0.326	0.32 3.0) E-01	3.09 E-01	3.7 8E-01	3.93 E-01	2.556E-01	0. 0		belore	power
RETN	30 6-31_1	I CKD	(RAPS)	CKD	Sun 2018	Wuttke 2019	9	0.001	0.022	. 85E-01	9.706E-01	6.62 E-01	5.738E-01	7.072E-01	0.673	-	before	power	Protein	Sun 2018	Wuttke 2019	16	0.112	0.099 2.6	01E-01	5.201E-01	9.761E-01	9.618E-01	8.6 2E-01	0.978		before	no / insuir c ent power
RETN	30 6-31_1	eGFR	PRESSO_Outle corrected	r Protein To eGFR	Sun 2018	Wuttke 2019	8	-0.001	0.001	.71 E-01	8.257E-01				0.001	1	before	no / nsu ficient power	eGFR To Protein	Sun 2018	Wuttke 2019	193										before	
			outl ters-								·																						
RETN	30 6-31_1	eGFR	corrected In ers ariance weighte	e Protein To d eGFR	Sun 2018	Wuttke 2019	8	-0.001	0.001	.65 E-01	7.071E-01						afier	no / nsu ficient power															
DE DI	20 6 21		Robust adjusted profile score	Protein To	5 2010	West 2010			0.001	0.75.01	7 3505 01	1 2205 02		C 2725 01	0.001			no / nsu ficient	eGFR To	0	W-sh- 2010	103	1.017	0.000		1	7777 01	(0 F 0)	C 1007 01	0.05			yes same direc ion of
REIN	30 6-31_1	I COPK	Robust adjusted	Protein To	Sun 2018	wunke 2019	9	-0.001	0.001	.8 /1:-01	7.5596-01	1.220E-03	8.5 E-0	6.272E-01	0.001	1	beiore	no / neu ficient	UACP To	Sun 2018	wunke 2019	193	-1.917	0.009 .1	55E-05	1.005E-02	./55E-01	.00 E-01	0.155E-01	0. 95		belore	no / insuffe ant
RETN	30 6-31_1	UACR	(RAPS) Robust adjusted	UACR	Sun 2018	Teumer 2019	9	0.003	0.005	.661E-01	7.117E-01	1.299E-01	9.513E-02	6.71 E-01	0.1 9		before	power	Protein	Sun 2018	Teumer 2019	29	0.112	0.32 7.2	55E-01	7.255E-01	510E-01	.068E-01	6.852E-01	0.71		before	power
TNFRSF1B	3152-57_1	I CKD	profile score (RAPS)	Protein To CKD	Sun 2018	Wuttke 2019	7	0.01	0.028	.132E-01	9. 00E-01	.661E-01	.95 E-01	3.155E-01	0.76		before	no / nsu ficient power	CKD To Protein	Sun 2018	Wuttke 2019	16	0.055	0.1 5.7	96E-01	7.036E-01	6. 56E-01	8.621E-01	6.692E-02	0.631		before	no / insuffc ent power
			Robust adjusted profile score	Protein To														no / nsu ficient	eGFR To														yes same direc ion of
TNFRSF1B	3152-57_1	l eGFR	(RAPS)	eGFR	Sun 2018	Wuttke 2019	7	-0.001	0.001	.017E-01	6.335E-01	6.5 8E-02	6. 01E-02	. 68E-01	0.087		before	power	Protein	Sun 2018	Wuttke 2019	193	-2.	0.669 3.3	21E-0	1.328E-03	6 3 6E-01	6.383E-01	2.805E-01	0.651		before	beta n KORA
			outl ters- corrected In ers																UACR To														no / insuffc ent
1NFRSF1B	3152-57_1	UACR	Robust adjusted	d Brotal T														and a new Policies	Protein	Sun 2018	Teumer 2019	26	-0.289	0.318 3.6	SE-01	3.635E-01						alter	power
TNFRSF1B	3152-57_1	UACR	(RAPS) Robust adjusted	UACR	Sun 2018	Teumer 2019	7	0	0.006	.956E-01	9.956E-01	3.659E-01	3.313E-01	. 60E-01	0. 17		before	no / nsu hcient power	Protein	Sun 2018	Teumer 2019	29	-0.2	0.321 .5	9E-01	7.036E-01	6 071E-02	.795E-02	7.898E-01	0.075		before	no / msuff c ent power
ADAMTS13	3175-51	5 CKD	profile score (RAPS)	Protein To CKD	Sun 2018	Wuttke 2019		-0.00	0.015	.9 2E-01	9.706E-01	3.75 E-01	9.9 5E-01	2.206E-01	0. 7		before	no / nsu ficient power	CKD To Protein	Sun 2018	Wuttke 2019	16	-0.1 7	0.099 1.3	9E-01	2.777E-01	9 027E-01	8.623E-01	9.995E-01	0.903		before	no / insuffc ent power
		-	Robust adjusted profile score	Protein To														no / nsu ficient	eGFR To														no / insuff c ent
ADAMTS13	3175-51_5	5 eGFR	(RAPS)	eGFR	Sun 2018	Wuttke 2019		0.001	0.001	.095E-02	2.563E-01	2.118E-01	1.078E-01	8.931E-01	0. 3		before	power	Protein	Sun 2018	Wuttke 2019	193	1.211	0.668 6.9	33E-02	2.777E-01	8 5 0E-01	8. 23E-01	8.315E-01	0.856		before	power

ADAMTS	17 2176 61 6 11ACD	Robust adjusted profile score (RADE)	Protein To	Sum 2019	Tauma 2010		0.001	0.007	05 E 01	8 020E 01	2165-01	2061E-01	6 266E 01	0.621	hafan	no / nsufficient	UACR To Deutoin	Sum 2018	Tourse 2010	20	0.15	0.210 6 2975 01	6 2975 01	5 05E 01	5 001E 01	5 21 E 01	0.550		hafan	no / insuff c ent
10.0010	ns shistip olek	Robust adjusted profile score	Protein To	5412010	realize 2017		0.001	0.005		0.0572501	.5102-01	5.0012-01	0.2002-01	0.521	beance	no / nsufficient	CKD To	5412010	realize 2017		0.15	0.515 0.5012-01	0.5572-01	5. 0515-01	5.0712-01	5.21 2.01			beiste	no / insuff c ent
RET	3220- 0_2 CKD	(RAPS) Robust adjusted	CKD	Sun 2018	Wuttke 2019	3	0.0 5	0.033	.787E-01	5.701E-01	5. 68E-01	2.720E-01	9.8 7E-01		before	power	Protein	Sun 2018	Wuttke 2019	16	-0.128	0.101 2.0 3E-01	6.971E-01	1 331E-01	1.218E-01	_573E-01	0.135		before	power
RET	3220- 0_2 eGFR	(RAPS) Robust adjusted	Protein To eGFR	Sun 2018	Wuttke 2019	3	0	0.001	.836E-01	9.836E-01	8.363E-01	5.523E-01	9.575E-01		before	no / nsufficient power	eGFR To Protein	Sun 2018	Wuttke 2019	193	-0.606	0.668 3.6 1E-01	6.971E-01	7. 86E-01	7.367E-01	5.959E-01	0.755		before	no / insuff c ent power
RET	3220- 0_2 UACR	profile score (RAPS)	Protein To UACR	Sun 2018	Teumer 2019	3	0.002	0.007	.275E-01	8.881E-01	8.322E-01	5.5 6E-01	9.1 6E-01		before	no / nsufficient power	UACR To Protein	Sun 2018	Teumer 2019	29	-0 1	0.32 7.538E-01	7.538E-01	2 296E-01	.108E-01	3. 11E-02	0.226		before	no / insuff c ent power
		Robust adjusted profile score															CKD To													no / insuff c ent
ACY1	33 3-1_ CKD	(RAPS) MR- DREESO Orde															Protein	Suhre 2017	Wuttke 2019	8	0.075	0.22 7.3 2E-01	7.3 2E-01	787E-01	6.918E-01	8.018E-01	0.796		before	power
ACY1	33 3-1_ eGFR	corrected															Protein	Suhre 2017	Wuttke 2019	62	2.586	1.929 1.850E-01	5.311E-01				0.031	1	before	power
		outl ters- corrected In ers	e														eGFR To													no / insuff c ent
ACYI	33 3-1_ eGFR	Robust adjusted	sd .														Protein	Suhre 2017	Wuttke 2019	58	3.585	1.889 5.77 E-02	5.77 E-02						after	power
ACY1	33 3-1_ eGFR	(RAPS) Robust adjusted															Protein	Suhre 2017	Wuttke 2019	63	3.026	1.87 1.055E-01	2.212E-01	270E-02	5.187E-02	1.817E-01	0.031	1	before	power
ACY1	33 3-1_ UACR	profile score (RAPS)															UACR To Protein	Suhre 2017	Teumer 2019	8	1.907	1.196 1.106E-01	2.212E-01	7 355E-01	8.008E-01	2.95 E-01	0.7 1		before	no / insuff c ent power
CTEV	276 26 A (28)	Robust adjusted profile score	Protein To	0	W. el., 2010			0.077	0775-01	5 7017 01	0705-01	6 (6 7) 01	2 2705 01	0.5.2		no / nsufficient	CKD To	0	No. 1 2010		0.000	0.1.5.1035.01	60115-01	22215-01	3 70 25 01	6 3705 01	0.77			no / insuff c ent
CISV	330 -76_2 CKD	MR- PRESSO Outle	er Protein To	Sun 2018	wunke 2019		-0.0 7	0.037	.073E=01	5.7016-01	.9795-01	0.052E-01	3.378E-01	0.5 2	beiore	no / nsufficient	eGFR To	Sun 2018	wuttke 2019	10	0.065	0.1 5.1836-01	6.911E-01	2236-01	3.792E-01	5.5796-01	0. 27		belore	no / insuff c ent
CTSV	336 -76_2 eGFR	corrected	eGFR	Sun 2018	Wuttke 2019										before	power	Protein	Sun 2018	Wuttke 2019	192	1.077	0.731 1. 2 E-01	6.196E-01				<0.001	1	before	power
CTEV	226 76 2 «CEP	outl ters- corrected In ers	e														eGFR To	Sum 2018	Wattle 2010	176	1 500	0.667.2.2825.02	2 2826 02						- 8	no / insuff c ent
CISV	330 -70_2 EUFK	Robust adjusted profile score	Protein To													no / nsufficient	eGFR To	Sun 2018	wuttke 2019	170	1.309	0.863 2.2828-02	2.2828-02						aner	no / insuff c ent
CTSV	336 -76_2 eGFR	(RAPS) Robust adjusted	eGFR	Sun 2018	Wuttke 2019		0	0.001	.50 E-01	8.92 E-01	8.379E-01	6.885E-01	7.802E-01	0.878	before	power	Protein	Sun 2018	Wuttke 2019	193	1.265	0.791 1.096E-01	.385E-01	8 563E-0	7.52 E-0	6.627E-01	<0.001	1	before	power
CTSV	336 -76_2 UACR	profile score (RAPS)	Protein To UACR	Sun 2018	Teumer 2019		0.005	0.008	.556E-01	7.117E-01	.573E-01	3.5 8E-01	5. 91E-01	0.53	before	no / nsufficient power	UACR To Protein	Sun 2018	Teumer 2019	29	0.3 9	0.319 2.733E-01	5. 67E-01	8 2 0E-01	7.938E-01	6.618E-01	0.836		before	no / insuff c ent power
ESTI 3	3 38-10 2 CKD	Robust adjusted profile score (RAPS)	Protein To CKD	Sun 2018	Wuttke 2019	3	-0.018	0.0.6	008E-01	9 00E-01	2 510E+01	9.96 F-01	3 7E-01		before	no / nsufficient	CKD To Protein	Sun 2018	Wuttke 2019	16	-0.019	0.1.8 805-01	9 380E-01	6 319E-01	5.75 E-01	6 381E-01	0.659		before	no / insuff c ent
		Robust adjusted profile score	Protein To			-										no / nsufficient	eGFR To													yes same direct on of
FSTL3	3 38-10_2 eGFR	(RAPS) Robust adjusted	eGFR	Sun 2018	Wuttke 2019	3	-0.001	0.002	.163E-01	7.632E-01	.793E-01	2.7 3E-01	7.1 9E-01		before	power	Protein	Sun 2018	Wuttke 2019	193	-2.009	0.669 2.683E-03	1.073E-02	535E-01	. 28E-01	.958E-01	0. 56		before	be a n KORA
FSTL3	3 38-10_2 UACR	(RAPS) Robust adjusted	UACR	Sun 2018	Teumer 2019	3	-0.005	0.01	.919E-01	7.235E-01	9.005E-02	9.261E-01	2.72 E-01		before	no / nsufficient power	Protein	Sun 2018	Teumer 2019	29	0.025	0.321 9.380E-01	9.380E-01	3 593E-01	3.195E-01	6.729E-01	0.3 9		before	no / mult c ent power
B2M	3 85-28_2 CKD	profile score (RAPS)															CKD To Protein	Suhre 2017	Wuttke 2019	8	0.007	0.23 9.753E-01	9.753E-01	6 636E-01	9. 3E-01	1.210E-01	0.673		before	no / insuff c ent power
	3 65 26 2 (577)	Robust adjusted profile score															eGFR To	5.1	No. 1 2010		0.007	10.1 57075.01	0.7575.01		7 0207 01	0.10 5.01	0.070			no / insuff c ent
B2M	3 85-28_2 eGFR	(RAPS) Robust adjusted															UACR To	Suhre 2017	Wuttke 2019	63	-0.803	1.9 1 6.793E-01	9.753E-01	81/IE-01	7.9296-01	8.19 E-01	0.828		belore	power
B2M	3 85-28_2 UACR	(RAPS) Robust adjusted															Protein	Suhre 2017	Teumer 2019	8	0.698	1.23 5.71 E-01	9.753E-01	8 913E-01	8.670E-01	5. 19E-01	0.897		before	power
MASP1	3605-77_ CKD	profile score (RAPS)	Protein To CKD	Sun 2018	Wuttke 2019	2	-0.061	0.059	.963E-01	6.901E-01	1.853E-02				before	no / nsufficient power	CKD To Protein	Sun 2018	Wuttke 2019	16	-0.12	0.1 2.325E-01	6.233E-01	.75 E-01	.135E-01	6.870E-01	0. 76		before	no / insuff c ent power
MASPI	3605-77 eGFR	PRESSO_Outle	er														eGFR To Protein	Sun 2018	Wuttke 2019	192	0.803	0.71.2.59 E-01	9.6215-01				0.006	ĺ.	before	no / insuff c ent
	July 1/2 Cork	outlters-															1 Ioten	5412010	Wanke 2017			0.11 2.57 2.91	5.02112-01						beiore	pond
MASP1	3605-77_ eGFR	corrected In ers ariance weighte	e sd														eGFR To Protein	Sun 2018	Wuttke 2019	177	-0.093	0.672 8.90 E-01	8.90 E-01						after	no / insuff c ent power
MASPI	3605-77 eCEP	Robust adjusted profile score (PAPS)	Protein To	Sup 2018	Wutthe 2019	,	0.003	0.002	170E-02	3 380E-01	6 37E-01				hefore	no / nsufficient	eGFR To Protein	Sun 2018	Wattle 2019	103	0.508	0.7.7 9665-01	6 233E-01	5 233E-03	676E-03	6.699E-01	0.005	ĺ.	hefore	no / insuff c ent
	July 1/2 Cork	outlters-	cca k	0412010	11000C 2017	-	0.005	0.002		5.50015-01	0. 572-01				(casic	ponei	1 Ioten	5412010	Wanke 2017	.,,,	0.500	0.1 1 0.002.01	0.2552-01	5 2552 05	.0702-05	0.0772-01			beiore	pond
MASP1	3605-77_ UACR	corrected In ers ariance weighte	e sd														UACR To Protein	Sun 2018	Teumer 2019	25	0.201	0.32 5.3 6E-01	8.90 E-01						after	no / insuff c ent power
MASPI	3605-77 UACP	Robust adjusted profile score (RAPS)	Protein To UACR	Sun 2018	Teumer 2019	2	-0.002	0.012	725E-03	91.0E-01	3 23 E-01				before	no / nsufficient	UACR To Protein	Sun 2018	Teumer 2019	20	0.162	0.322 6.1.25-01	6 233E-01	1 582E-02	1.6985-02	3 37 E-01	0.019	No s gnif cant	before	no / insuff c ent
	JAJ - 17_ ORCK	Robust adjusted profile score	Protein To	5012010		-		0.012		02-01						no / nsufficient	CKD To			29	0.102	0.522 0.7 20/01		- 50215-02						no / insuff c ent
KDR	3651-50_5 CKD	(RAPS)	CKD	Sun 2018	Wuttke 2019	8	-0.001	0.01	.283E-01	9.706E-01	.120E-01	3.572E-01	5.099E-01	0.356	before	power	Protein	Sun 2018	Wuttke 2019	16	0.03	0.1 7.632E-01	9.19 E-01	556E-01	3.869E-01	8.028E-01	0. 56		before	power
KDR	3651-50 5 eCHP	outl ters- corrected In ers ariance waidete	e Protein To	Sun 2018	Wattke 2019	7	0	0.001	33E-01	9 33E-01					after	no / nsufficient														
		Robust adjusted profile score	Protein To	500 2010			0	5.001	. 5542401	2. 2242901						no / nsufficient	eGFR To											<u> </u>		no / insuff c ent
KDR	3651-50_5 eGFR	(RAPS)	eGFR	Sun 2018	Wuttke 2019	8	0	0.001	.706E-01	9.836E-01	3.378E-02	2.052E-02	7.806E-01	0.11	before	power	Protein	Sun 2018	Wuttke 2019	193	0.872	0.669 1.925E-01	7.700E-01	979E-01	.938E-01	3.719E-01	0.518		before	power

											-																						
			outliters-							Í	[
KDR	651-50_5	5 UACR	ar ance we ghted	Protein To UACR	Sun 2018	Teumer 2019	6	-0.00	0.00	3 1 878E-01	3 320E-01						after	no / insuff c ent power															
			Robust adjusted profile score	Protein To						ſ		1			1			no / insuff c ent	UACR To					ſ			[ſ	·				no / nsufficient
KDR	651-50_5	5 UACR	(RAPS)	UACR	Sun 2018	Teumer 2019	8	-0.00	0.00	3 1. 39E-01	613E-01	1.237E-02	8.606E-03	6.336E-01	0.057		before	power	Protein	Sun 2018	Teumer 2019	29	-0.097	0.318 7.60	IE-01 9.1	9 E-01	9.02 E-01	8.909E-01	.026E-01	0.919		before	power
			outliters- corrected In erse	Protein To														no / insuff c ent															
IGF2R	676-15_3	3 CKD	ar ance we ghted Robust adjusted	CKD	Sun 2018	Wuttke 2019	12	0.00	2 0.01	3 8 577E-01	8 577E-01	-	,	,	,		after	power		_													
ICE2P	676-15	CKD	profile score	Protein To CKD	Sup 2018	Wattka 2019		0.00	2 0.01	7 8 86 E.01	9 706E-01	2 337E-02	1.52 E.02	8 833E-01	0.062		haforn	no / insuff c ent	CKD To Protein	Sup 2018	Wittka 2019	16	-0.08	0.1 23	E-01 8	79E-01	7 593E-01	9.150E-01	500E-02	0.761		before	no / nsufficient
ion and	0/0/15	, end	MR-	Dentain To	5412010	Walke 2017		0.00	2 0.01			2.00712-02	1.52 1.52	0.05515-01			leane	ponei	CED To	0412010	Walke 2017	10	-0.00			1712-01	13752-01	7.1562-01				beine	power
IGF2R	676-15_3	eGFR	corrected	eGFR	Sun 2018	Wutike 2019	12		0.00	1 8 086E-01	9 90 E-01				0.022	2	before	no / insuit c ent power	Protein	Sun 2018	Wuttke 2019	191	0.51	0.622 .693	2E-01 8.8	63E-01				0.015	2	before	power
			outliters-							ſ	1													l l									
IGF2R	676-15_3	eGFR	ar ance we ghted	Protein To I eGFR	Sun 2018	Wutike 2019	10		0	0 5 109E-01	7 071E-01						after	no / insuff c ent power	eGFR To Protein	Sun 2018	Wuttke 2019	18	0.776	0.658 2.38	7E-01 2.3	87E-01						after	no / nsufficient power
			Robust adjusted profile score	Protein To						ſ.		1	1		[ſ		no / insuff c ent	eGFR To														no / nsufficient
IGF2R	676-15_3	8 eGFR	(RAPS) Robust adjusted	eGFR	Sun 2018	Wuttke 2019	1		0	0 5. 39E-01	8 381E-01	1.716E-03	9.752E-0	9.960E-01	0.022	2	before	power	Protein	Sun 2018	Wuttke 2019	193	0.656	0.668 3.262	2E-01 8.	79E-01	1.860E-02	1.7 9E-02	.055E-01	0.015	2	before	power
IGF2R	676-15	UACR	profile score (RAPS)	Protein To UACR	Sun 2018	Teumer 2019	1	-0.00	6 0.00	2 1 560E-02	2 288E-01	2.1 6E-01	2.7 8E-01	1.957E-01	0.286		before	no / insuff c ent power	UACR To Protein	Sun 2018	Teumer 2019	29	0.051	0.321 8.7	5E-01 8.7	5E-01	2.220E-01	1.850E-01	.350E-01	0.2 8		before	no / nsufficient power
			Robust adjusted	Protein To						-	r	-						no / incuff c ant	CKDTa														no / nufficient
PLG	710- 9_2	CKD	(RAPS)	CKD	Sun 2018	Wuttke 2019	9	-0.00	9 00	2 6. 5E-01	9. 00E-01	9.36 E-01	9.35 E-01	.710E-01	0.923		before	power	Protein	Sun 2018	Wuttke 2019	16	0.051	0.101 6.162	2E-01 7.6	1E-01	2.063E-01	1.956E-01	.157E-01	0.227		before	power
n c	710 0	CER	profile score	Protein To	0	W. et . 2010		0.00			2.0007-01	1 (515.0)	6 377F 01	1 075 01				no / insuff c ent	eGFR To	0.0010	W -1 - 2010	107	0.000	0.000.200		3 5 61	1 5775 01	1 63 5 61	2075-01	0.133			no / nsufficient
PLG	710- 9_2	2 eGFR	(RAPS)	eGFK	Sun 2018	Wutike 2019	9	0.00	1 0.00	1 1 1 2E-01	3 866E-01	3.651E-01	5.277E-01	1. 8/15-01	0.3 2		beiore	power	Protein	Sun 2018	Wutike 2019	193	-0.809	0.669 2.26	/E-01 .5	3 E-01	1.573E-01	1.53 E-01	.25/E-01	0.133		before	power
			outliters- corrected In erse																UACR To														no / nsufficient
PLG	710- 9_2	2 UACR	ar ance we ghted Robust adjusted	L			_												Protein	Sun 2018	Teumer 2019	27	0.088	0.355 8.035	5E-01 8.0	35E-01						after	power
PLG	710- 9_2	UACR	profile score (RAPS)	Protein To UACR	Sun 2018	Teumer 2019	9	-0.00	5 0.00	2 13 E-01	613E-01	6.059E-01	5.903E-01	.018E-01	0.636		before	no / insuff c ent power	UACR To Protein	Sun 2018	Teumer 2019	29	0.097	0.323 7.6	IE-01 7.6	1E-01	.113E-02	.373E-02	.253E-01	0.0 8	No significant outliers	before	no / nsufficient power
			Robust adjusted profile score	Protein To														no / insuff c ent	CKD To														no / nsufficient
CTSH	737-6_3	CKD	(RAPS)	CKD	Sun 2018	Wutike 2019	6	-0.03	8 0.02	8 1.782E-01	5.701E-01	5.617E-01	8.888E-01	1.707E-01	0.637		before	power	Protein	Sun 2018	Wuttke 2019	16	0.096	0 1 3.335	5E-01 6.6	70E-01	7.573E-01	7.237E-01	.279E-01	0.763		before	power
			outliters-	Protein To														no / incuff c ant															
CTSH	737-6_3	eGFR	ar ance we ghted	eGFR	Sun 2018	Wuttke 2019		0.00	1 0.00	1512E-01	7 071E-01						after	power															
			Robust adjusted profile score	Protein To														no / insuff c ent	eGFR To														d rection of
CTSH	737-6_3	eGFR	(RAPS) Robust adjusted	eGFR	Sun 2018	Wuttke 2019	6	0.00	1 0.00	1 5 902E-01	8 381E-01	2.37 E-02	.7 1E-02	3.035E-01	0.08		before	power	Protein	Sun 2018	Wuttke 2019	193	-2.65	0.67 7.66)E-05 3.0	6 E-0	1.986E-01	1.936E-01	.32 E-01	0.21	-	before	beta in KORA
CTSH	737-6_3	UACR	profile score (RAPS)	Protein To UACR	Sun 2018	Teumer 2019	6	-0.00	2 0.00	6 7 125E-01	8 039E-01	6.863E-01	6.117E-01	5.599E-01	0.656		before	no / insuff c ent power	UACR To Protein	Sun 2018	Teumer 2019	29	-0.0 7	0.319 8.83	2E-01 8.8	32E-01	6.960E-01	7.355E-01	.0 8E-01	0.667		before	no / nsufficient power
			Robust adjusted profile score	Protein To														no / insuff c ent	CKD To														no / nsufficient
PAPPA	1 8- 9_2	2 CKD	(RAPS) MR-	CKD	Sun 2018	Wutike 2019	9	-0.01	6 0.02	6 5. 10E-01	9. 00E-01	2.087E-01	1.5 0E-01	7.187E-01	0.239		before	power	Protein	Sun 2018	Wuttke 2019	16	0.097	0 1 3.335	5E-01 6.0	77E-01	1.617E-01	1.306E-01	.601E-01	0.177		before	power
PAPPA	18-93	eGER	PRESSO_Outlier	Protein To cGFR	Sun 2018	Wuttke 2019	9										before	no / insuff c ent	eGFR To Protein	Sun 2018	Wittke 2019	192	-037	0713627	5E-01 82	05E-01				0.002	1	before	no / nsufficient
	10. 2	. conk		con	5412010	Walke 2017											leane	ponei	TIOLE	0412010	Walke 2017	172	-0.5 7	0.715 0.27							·	beine	poner
	1.0.0	CER	corrected In erse																eGFR To	0.0010	W -1 - 2010	170	0.703	0.000 2.10		175 01							no / nsufficient
PAPPA	18-9	COPK	Robust adjusted																Protein	Sun 2018	wunke 2019	1/8	-0.782	0.008 2. 1.	15-01 2.	1/E-01						aner	power
PAPPA	1 8- 9_2	eGFR	profile score (RAPS)	Protein To eGFR	Sun 2018	Wutike 2019	9	-0.00	1 0.00	1 6 068E-01	8 381E-01	6.78 E-01	6.150E-01	5.719E-01	0.68		before	no / insuff c ent power	eGFR To Protein	Sun 2018	Wuttke 2019	193	-0.5 9	0.737 .558	8E-01 6.0	77E-01	3.115E-03	2.730E-03	. 8 E-01	0.002	1	before	no / nsufficient power
			Robust adjusted profile score	Protein To						[ſ	[[ĺ	[no / insuff c ent	UACR To								·		[Í			no / nsufficient
PAPPA	1 8- 9_2	2 UACR	(RAPS)	UACR	Sun 2018	Teumer 2019	9	0.00	1 0.00	6 9 060E-01	9 271E-01	8.513E-02	7.082E-02	5.285E-01	0.072		before	power	Protein	Sun 2018	Teumer 2019	29	-0.372	0.318 2. 10	5E-01 6.0	77E-01	9.673E-01	9.651E-01	. 8E-01	0.962		before	power
			outliters- corrected In erse	Protein To														no / insuff c ent															
TFF3	721-5 _2	2 CKD	ar ance we ghted Robust adjusted	CKD	Sun 2018	Wuttke 2019		0.03	8 0.0	2 3 631E-01	539E-01	-	-	+	-		after	power							\rightarrow			-	-				
TFF3	721-5	CKD	profile score (RAPS)	Protein To CKD	Sun 2018	Wuttke 2019	5	0.07	2 0.03	3 2 9 1E-07	2 907E-01	2.252E-0?	2.515E-02	.760E-01	0.071		before	no / insuff c ent power	CKD To Protein	Sun 2018	Wuttke 2019	16	0.08	01 210	E-01 56	1 E-01	5.560E-01	5.80 E-01	.771E-01	0.56		before	no / nsufficient
			Robust adjusted	Proteir T-				5.07	5.45									no / incoff	CEP T-			10					-			-	-		no / notificity .
TFF3	721-5 _2	eGFR	(RAPS)	eGFR	Sun 2018	Wutike 2019	5	-0.00	2 0.00	1 5 126E-02	2 563E-01	2.665E-01	1.603E-01	8.800E-01	0.321		before	power	Protein	Sun 2018	Wuttke 2019	193	-1.638	0.669 1. 3	E-02 5.7	36E-02	5.862E-01	5.661E-01	.869E-01	0.625		before	power
			Robust adjusted	Protein To		L					[[[[no / insuff c ent	UACR To		L			ĺ			[no / nsufficient
TFF3	721-5 _2	UACR	(RAPS) Robust adjusted	UACR	Sun 2018	feumer 2019	5	-0.00	8 0.00	b 2 272E-01	613E-01	1.788E-01	1.80 E-01	.222E-01	0.235		before	power	Protein	Sun 2018	Teumer 2019	29	-0.29	0.318 3.619	AL-01 5.6	1 E-01	9.6 9E-01	9.518E-01	.862E-01	0.969		before	power
EPHA2	83 -61_2	CKD	profile score (RAPS)	Protein To CKD	Sun 2018	Wuttke 2019		0.06	3 0.0	8 1 881E-01	5.701E-01	1.216E-01	8.712E-01	1. 31E-01	0.203		before	no / insuff c ent power	CKD To Protein	Sun 2018	Wuttke 2019	16	-0.006	0 1 9.55	9.9	18E-01	3.871E-01	.1 7E-01	.567E-01	0. 03		before	no / nsufficient power
			MR- PRESSO_Outlier	Protein To														no / insuff c ent	eGFR To														no / nsufficient
EPHA2	83 -61_2	2 eGFR	corrected outliters-	eGFR	Sun 2018	Wuttke 2019	2	-0.00	8 0.00	2 1 831E-01	7 150E-01				0.017	2	before	power	Protein	Sun 2018	Wuttke 2019	193										before	power
EPHA?	83 -61	eGFR	corrected Wald ratio	Protein To eGFR	Sun 2018	Wuttke 2019		.0.00	6 0.00	1 296E-01	.752F-01						after	no / insuff c ent power															
	05 -01_1		Robust adjusted	Protain Tr				-0.00		. 2702-01								no / incuff c ant	aCEP To											-	-		no / nufficient
EPHA2	83 -61_2	eGFR	(RAPS)	eGFR	Sun 2018	Wutike 2019		-0.00	9 0.00	2 1. 75E-05	32 6E-0	6.320E-05	9.968E-0	3.888E-01	0.017	2	before	power	Protein	Sun 2018	Wuttke 2019	193	-0.665	0.668 3.192	2E-01 9.9	18E-01	9.082E-01	9.255E-01	.808E-02	0.91		before	power

			Pohest adjusted							-	,	,	<i>r</i>	,	7				-	1			*	<i>r</i>	,	*	7	-			
			profile score	Protein To													no / nsufficient	UACR To												no	o / insuff c ent
EPHA2	83 -61_2	UACR	(RAPS)	UACR	Sun 2018	Teumer 2019		0.006	0.008	.662E-01	6.838E-01	5.885E-01	3.879E-01	8.805E-01	0.612	before	power	Protein	Sun 2018	Teumer 2019	29	0.003	0.32 9.918E-01	9.918E-01	20 1E-01	1.707E-01	8.276E-01	0.216	befor	re po	ower
			Robust adjusted profile score	Protein To													no / nsufficient	CKD To												00	o / insuff c ent
NTRK2	866-59_2	CKD	(RAPS)	CKD	Sun 2018	Wuttke 2019	1	-0.017	0.092	. 96E-01	9.706E-01					before	power	Protein	Sun 2018	Wuttke 2019	16	-0.177	0.1 7.625E-02	3.050E-01	62 E-01	5.802E-01	5. 33E-01	0.629	befor	re po	ower
			Robust adjusted	Desci T							1							CTD T						1	1	1		1			
NTRK2	866-59_2	eGFR	(RAPS)	eGFR	Sun 2018	Wuttke 2019	1	-0.002	0.003	.1 3E-01	8.381E-01					before	power	Protein	Sun 2018	Wuttke 2019	193	0.878	0.67 1.896E-01	3.791E-01	1. 35E-01	1.35 E-01	6.07 E-01	0.13	befor	re po	ower
			Robust adjusted														-							1						-	
NTRES	866 50 2	UACR	profile score	Protein To	Sun 2018	Tourses 2010		0.016	0.017	£19E 01	6 1615 01					hafan	no / nsufficient	UACR To Brotein	Sum 2018	Tourse 2010	20	0.078	0 221 0 050E 01	0.0505-01	1 2205 01	121 6.01	2 726E 01	0.178	hafe	no	3 / insuff c ent
NIKK2	800-39_2	UACK	(ROUTS) Robust adjusted	UNCK	3012018	Teurier 2019		-0.010	0.017	.5181501	0.10115-01				-	beable	power	Floten	3012018	Teaner 2019	2.9	+0.038	0.321 9.0391501	9.03915/01	1 2301901	1.21 1501	3.72012/01	0.138	Deloi	ie po	Jwei
			profile score	Protein To													no / nsufficient	CKD To												no	o / insuff c ent
AMH	923-79_1	CKD	(RAPS)	CKD	Sun 2018	Wuttke 2019		-0.023	0.03	.991E-01	9.150E-01	5.335E-01	3.366E-01	9.187E-01	0.559	before	power	Protein	Sun 2018	Wuttke 2019	16	-0.063	0.1 5.25 E-01	7.006E-01	7 380E-01	6.733E-01	8.395E-01	0.735	befor	re po	ower
			profile score	Protein To													no / nsufficient	eGFR To												no	o / insuff c ent
AMH	923-79_1	eGFR	(RAPS)	eGFR	Sun 2018	Wuttke 2019		-0.001	0.001	.278E-01	8.381E-01	1.236E-01	1.556E-01	.0 5E-01	0.25	before	power	Protein	Sun 2018	Wuttke 2019	193	-0.566	0.668 3.973E-01	7.006E-01	7 823E-01	7.970E-01	1.69 E-01	0.78	befor	re po	ower
			Robust adjusted	Protein To							ſ	ſ	ſ	ſ	f I		no / notificiant	UACR TO					l l	ſ							o / insuffic and
AMH	923-79_1	UACR	(RAPS)	UACR	Sun 2018	Teumer 2019		-0.006	0.008	.062E-01	6.162E-01	3. 90E-01	5.525E-01	2.8 0E-01	0.35	before	power	Protein	Sun 2018	Teumer 2019	29	0.2 5	0.32 . 31E-01	7.006E-01	5 065E-01	.689E-01	5.819E-01	0.505	befor	re po	ower
			Robust adjusted								1													1						ye	es same
MMP1	92 - 32 1	CKD	(RAPS)	CKD	2018	Wottke 2019	1	0.01	0.018	228E-01	8 670E-01					before	no / nsufficient	CKD To Protein	Subre 2017	Wuttke 2019	8	0.6.1	0.251 1.0615-02	2 122E-02	5.98 E-01	5 095E-01	6 53E-01	0.612	befo	ne be	e a nKORA
			Robust adjusted														1				-										
		CER	profile score	Protein To	Emilsson	W			0.001	7/7: 01	0.2015.01						no / nsufficient	eGFR To	0-1 2017	West: 2010			2102125 5 01	1.2007-01	C 170E 01	C 02/17 01	0.0000.01	0.61		no	o / insuff c ent
MMP1	92 -32_1	eork	(RAPS) MR-	COLK	2018	wuttke 2019	1	0	0.001	. /0E-01	8.3810-01					beiore	power	Protein	Sunre 2017	wutike 2019	63	-3.223	2.103 1.25 E-01	1.3096-01	6 1 /9E-01	5.8200-01	9.0286-01	0.61	Delor	re po	ywer
			PRESSO_Outle															UACR To												no	o / insuff c ent
MMP1	92 -32_1	UACR	corrected															Protein	Suhre 2017	Teumer 2019	7	.153	1. 6 2.970E-02	1.230E-01				0.031	1 befor	re po	ower
			outl ters-																												1
			corrected In erse															UACR To												no	o / insuff c ent
MMP1	92 -32_1	UACR	Robust adjusted															Protein	Suhre 2017	Teumer 2019	6	2.9 6	1.508 5.072E-02	5.072E-02					after	po	ower
			profile score	Protein To	Emilsson												no / nsufficient	UACR To												no	o / insuff c ent
MMP1	92 -32_1	UACR	(RAPS)	UACR	2018	Teumer 2019	1	0.006	0.00	.378E-01	.613E-01					before	power	Protein	Suhre 2017	Teumer 2019	8	3.5 7	1.386 1.0 9E-02	2.122E-02	2 358E-02	2.5 6E-02	.232E-01	0.031	1 befor	re po	ower
			Robust adjusted	Protein To													no / nsufficient	CKDTo													o/insuffcent
ERP29	983-6_1	CKD	(RAPS)	CKD	Sun 2018	Wuttke 2019	3	0.006	0.0 7	.967E-01	9.706E-01	6.076E-01	3.185E-01	9.759E-01		before	power	Protein	Sun 2018	Wuttke 2019	16	-0.0	0.1 6.912E-01	6.912E-01	5 556E-01	6.737E-01	1.399E-01	0.603	befor	re po	ower
			Robust adjusted	Dentsia To													no / northeimt	CED To													o / incutto and
ERP29	983-6_1	eGFR	(RAPS)	eGFR	Sun 2018	Wuttke 2019	3	0.001	0.002	.326E-01	8.381E-01	1.693E-01	2.706E-01	3.975E-01		before	power	Protein	Sun 2018	Wuttke 2019	193	0.816	0.669 2.225E-01	6.912E-01	3 078E-01	.330E-01	6. 97E-03	0.332	befor	re po	ower
			Robust adjusted																												
ERP29	983-6 1	UACR	(RAPS)	UACR	Sun 2018	Teumer 2019	3	0.013	0.01	.903E-01	.613E-01	.802E-01	9.779E-01	.39 E-01		before	no / nsufficient	UACR To Protein	Sun 2018	Teumer 2019	29	-0.139	0.317 6.621E-01	6.912E-01	9 831E-01	9.892E-01	2.282E-01	0.965	befor	re po	ower
			Robust adjusted														1														
6002	5000 51 1	GVD	profile score	Protein To	0	W		0.057	0.017	2007-0	3 (535.03	7 . 225 . 01	0.000	7.02 5.01			yes d f d rection	of CKD To	0	West: 2010		0.022	0.101.0.22(5.01	0.22(7:0)	1. 207-01	1 0007 01	1 00015 01	01.6		no	o / insuff c ent
5002	5008-51_1	CKD	(RAPS) MR-	CKD	Sun 2018	wuttee 2019	3	0.057	0.017	.2996-0	3.052E-02	7. 55E-01	.9 515-01	7.82 E-01		beiore	beta in KORA	Protein	Sun 2018	wutike 2019	10	-0.023	0.101 8.2266-01	8.220E-01	1. 200-01	1.880E-01	1.9886-01	0.1 6	Delor	re po	ywer
			PRESSO_Outle															eGFR To												no	o / insuff c ent
SOD2	5008-51_1	eGFR	corrected															Protein	Sun 2018	Wuttke 2019	191	0.189	0.6 8 7.706E-01	8.73 E-01				0.002	2 befor	re po	ower
			outl ters-																												1
			corrected In erse															eGFR To												no	o / insuff c ent
SOD2	5008-51_1	eGFR	Robust adjusted	1														Protein	Sun 2018	Wuttke 2019	180	0.05	0.66 9. 01E-01	9. 01E-01					after	po	ower
			profile score	Protein To													yes d f d rection	of eGFR To												no	o / insuff c ent
SOD2	5008-51_1	eGFR	(RAPS)	eGFR	Sun 2018	Wuttke 2019	3	-0.002	0.001	.556E-03	2.812E-02	9.90 E-01	9.29 E-01	9.321E-01		before	beta in KORA	Protein	Sun 2018	Wuttke 2019	193	0.31	0.669 6. 3 E-01	8.226E-01	5 570E-03	.90 E-03	7.69 E-01	0.002	2 befor	re po	ower
			profile score	Protein To													no / nsufficient	UACR To												no	o / insuff c ent
SOD2	5008-51_1	UACR	(RAPS)	UACR	Sun 2018	Teumer 2019	3	0.006	0.00	.122E-01	.613E-01	6.666E-01	8. 15E-01	5. 12E-01		before	power	Protein	Sun 2018	Teumer 2019	29	-0.15	0.32 6.295E-01	8.226E-01	3 298E-01	3.288E-01	3.39 E-01	0.371	befor	re po	ower
			Robust adjusted profile score	Protein To							í	ſ	ſ	ſ			no / nsufficient	CKDTo						ſ	í	,	,	ſ			o/insuff.cem
NOTCHI	5107-7_2	CKD	(RAPS)	CKD	Sun 2018	Wuttke 2019	3	0.03	0.039	.870E-01	8.51 E-01	.659E-01	6.136E-01	.617E-01		before	power	Protein	Sun 2018	Wuttke 2019	16	-0.015	0.099 8.799E-01	9.703E-01	8. 27E-01	7.951E-01	7.7 9E-01	0.865	befor	re po	ower
			Robust adjusted	n								r	1											1		1	T				
NOTCH	5107-7 2	eGFR	(RAPS)	eGFR	Sun 2018	Wuttke 2019	3	-0.003	0.002	.217E-02	3.380E-01	1.206E-01	9.039E-01	2.885E-01		before	no / nsufficient	Protein	Sun 2018	Wuttke 2019	193	0.025	0.67 9.703E-01	9.703E-01	9 809E-02	9.272E-02	5.580E-01	0.1	befo	no no	ower
-			Robust adjusted						51502		-		-										-				-	-		. po	-
NOTCH	5107.7.2	UACR	profile score	Protein To	Sum 2018	Tourse 2010	2	0.002	0.000	6 15 01	6 1615 01	2 7655 01	51.25.01	220E 01		hafter	no / nsufficient	UACR To Destain	Sum 2018	Tourse 2010	20	0.207	0 221 2 2805 01	0.7075-01	1.0205-01	0.007E.02	1655.01	0.111		no	o / insuff c ent
Rotent	5107-7_2	UACK	(RAPS) Robust adjusted	OACK	30n 2018	reafter 2019	3	0.008	0.009	.0 115-01	0.1010-01	5.765E-01	5.1 26/01	.5500-01		Delore	power	Protein	30n 2018	reumer 2019	29	-0.307	0.521 5.5896-01	9.7036-01	1 03915-01	9.9076-02	.1050-01		belon	ie po	Jwef
			profile score	Protein To													no / nsufficient	CKD To												no	o / insuff c ent
RELT	5115-31_3	CKD	(RAPS)	CKD	Sun 2018	Wuttke 2019	3	0.037	0.025	.329E-01	5.317E-01	1.055E-01	8.863E-02	5.933E-01		before	power	Protein	Sun 2018	Wuttke 2019	16	0.128	0.1 2.010E-01	.020E-01	265E-01	6.6 5E-01	6.30 E-02	0. 58	befor	re po	ower
1			profile score	Protein To													no / nsufficient	eGFR To												ye	irect on of
RELT	5115-31_3	eGFR	(RAPS)	eGFR	Sun 2018	Wuttke 2019	3	-0.001	0.001	.503E-01	6.132E-01	5.672E-01	8.988E-01	.823E-01		before	power	Protein	Sun 2018	Wuttke 2019	193	-2.617	0.669 9.1 6E-05	3.658E-0	5.791E-01	5.6 2E-01	6.111E-01	0.581	befor	re be	e a nKORA
			Robust adjusted profile score	Protein To							ſ	ſ	ĺ	ſ			no / nsufficient	UACR TO					ſ								o/insuff.cere
RELT	5115-31_3	UACR	(RAPS)	UACR	Sun 2018	Teumer 2019	3	0.007	0.005	.192E-01	.613E-01	2. 78E-01	3.939E-01	3.872E-01		before	power	Protein	Sun 2018	Teumer 2019	29	0.038	0.319 9.050E-01	9.050E-01	2 528E-01	2. 0E-01	3.98 E-01	0.272	befor	re po	ower
			Robust adjusted																												
SCARF1	5129-12 3	CKD	(RAPS)	CKD	2018	Wuttke 2019	1	-0.011	0.02	.922E-01	9. 00E-01					before	no / nsufficient power	CKD To Protein	Suhre 2017	Wuttke 2019	8	0.312	0.251 2.136E-01	8.5 E-01	2 567E-01	1.789E-01	8.78 E-01	0.318	befor	re po	ower
	1		Robust adjusted		1						1						•								1		1			1	
SCAPEI	5120 12 2	aCED	(PAPS)	Protein To	Emilsson 2018	Wattka 2010		0.002	0.001	989F 07	15675-01					hadan	no / nsufficient	eGFR To	Subre 2017	Wettke 2010	67	1 276	2.00 5.2695.01	9.6025-01	6 8685 01	65 0E 01	9 1065 01	0.68		no	3 / insuff c ent
SCAR-1	5127-12_3	COLK	Robust adjusted	COL	_010	** wilkC 2017	1	0.002	0.001	.78912-02	1.3021201	-		-		beibte	power	FIOICII	Sume 2017	** URINE 2019	- 03	1.320	2.09 5.2086-01	2.0021201	0 000124/1	0.5 01501	2.10012-01	0.00	belop	c po	- mul
			profile score	Protein To	Emilsson												no / nsufficient	UACR To												no	o / insuff c ent
SCARF1	5129-12_3	UACR	(RAPS)	UACR	2018	Teumer 2019	1	0.00	0.00	.020E-01	6.162E-01					before	power	Protein	Suhre 2017	Teumer 2019	8	0.068	1.358 9.602E-01	9.602E-01	2 030E-01	6.8 5E-01	5.253E-02	0.219	befor	re po	ower

			Robust adjusted profile score	Protein To						[ſ	「						no / nsufficient	CKD To					ſ		ſ	ſ	ſ	ľ	1			yes same direct on of
TNFRSF19	5131-15_3	CKD	(RAPS) Robust adjusted	CKD	Sun 2018	Wuttke 2019	2	-0.00	5 0.061	3.338E-01	9.706E-01	2.771E-01					before	power	Protein	Sun 2018	Wuttke 2019	16	0.237	0.1 1.1	816E-02	3.632E-02	6 021E-01	6.32 E-01	2.686E-01	0.611		before	be a nKORA yes same
TNFRSF19	5131-15-3	eGFR	profile score (RAPS)	Protein To cGFR	Sun 2018	Wuttke 2019	2	-0.00	0.00	097E-01	8 922E-01	8 32 E-01					before	no / nsufficient	eGFR To Protein	Sun 2018	Wuttke 2019	193	-2 628	0.669.81	619E-05	3 8E-0	2 316E-01	2 236E-01	5 000F=01	0.225		before	direct on of be a nKORA
	5151-15_5	conk	Robust adjusted	D T	5412010	Wanke 2017	-		0.00.		0.7220-01	0.52 2.01					beanc	ponei	Linco T	5412010	11 data 2017		-2.025	0.007 0.1	01712-05			2.2502501	-			beible	de l'incolet
TNFRSF19	5131-15_3	UACR	(RAPS)	UACR	Sun 2018	Teumer 2019	2	0.02	0.01	2 .060E-02	.237E-01	.339E-01					before	no / nsufficient power	UACR To Protein	Sun 2018	Teumer 2019	29	0.05	0.319 8.	66 E-01	9.526E-01	7 908E-01	7.513E-01	7.95 E-01	0.778		before	no / insuff c ent power
			Robust adjusted profile score	Protein To						1		1			1			no / nsufficient	CKD To							r	r	ſ	r	1			no / insuff c ent
HAVCR2	513 -52_2	CKD	(RAPS)	CKD	Sun 2018	Wuttke 2019	6	0.0	2 0.01	7 .292E-01	5.932E-01	.985E-01	3.636E-01	8.653E-01	0.688		before	power	Protein	Sun 2018	Wuttke 2019	16	0.013	0.099 8.9	937E-01	8.937E-01	8 978E-01	8.7 0E-01	5.877E-01	0.89		before	power
			profile score	Protein To														no / nsufficient	eGFR To														no / insuff c ent
HAVCR2	513 -52_2	eGFR	(RAPS) Robust adjusted	eGFR	Sun 2018	Wuttke 2019	6		0.00	I .577E-01	8.381E-01	6.700E-01	5.535E-01	7.022E-01	0.769		belore	power	Protein	Sun 2018	Wuttke 2019	193	-0.236	0.668 7.	2 26-01	8.937E-01	6. 88E-01	6. 7E-01	3.810E-01	0.631		belore	power
HAVCR2	513 -52_2	UACR	profile score (RAPS)	Protein To UACR	Sun 2018	Teumer 2019	6	-0.00	s 0.004	5 .756E-01	5.052E-01	8.53 E-01	8.1 3E-01	5.61 E-01	0.827		before	no / nsufficient power	UACR To Protein	Sun 2018	Teumer 2019	29	-0.589	0.321 6.	6 6E-02	2.659E-01	2. 93E-01	2.176E-01	6.589E-01	0.256		before	no / insuff c ent power
			Robust adjusted	Destain To														- (multiplicat	CKDT														-
UNC5C	5139-32_3	CKD	(RAPS)	CKD	Sun 2018	Wuttke 2019	5	-0.01	3 0.026	5 .172E-01	9. 00E-01	3.33 E-01	8.95 E-01	1. 02E-01	0.368		before	power	Protein	Sun 2018	Wuttke 2019	16	0.135	0.1 1.1	781E-01	3.561E-01	6 800E-01	7.192E-01	2.5 0E-01	0.696		before	power
			MR- PRESSO_Outle	r Protein To														no / nsufficient	eGFR To														
UNC5C	5139-32_3	eGFR	corrected outl ters-	eGFR	Sun 2018	Wuttke 2019	3	-0.00	0.00	1 .2 6E-01	6.8 3E-01				0.0	2	before	power	Protein	Sun 2018	Wuttke 2019	193								_		before	
UNCSC	5130.32 3	eCEP	corrected Wald	Protein To	Sun 2018	Wettka 2019		0.00	0.00	153E-01	7.071E-01						after	no / nsufficient															
			Robust adjusted	D										_					CED T														yes same
UNC5C	5139-32_3	eGFR	(RAPS)	eGFR	Sun 2018	Wuttke 2019	5		0.00	.278E-01	9. 0 E-01	1.059E-03	1.217E-01	8. 20E-02	0.0	2	before	no / nsuncient power	Protein	Sun 2018	Wuttke 2019	193	-2.196	0.669 1.0	035E-03	.1 1E-03	6 3E-01	.517E-01	5.396E-01	0.8		before	be a nKORA
			MR- PRESSO_Outle	r Protein To														no / nsufficient	UACR To														no / insuff c ent
UNC5C	5139-32_3	UACR	corrected	UACR	Sun 2018	Teumer 2019	5										before	power	Protein	Sun 2018	Teumer 2019	28	0.012	0.355 9.7	726E-01	9.726E-01				0.009	1	before	power
			outl ters-	Deutsia To														m / multiplicat	UACR T-														no (inceff a cost
UNC5C	5139-32_3	UACR	ariance weighte	d UACR	Sun 2018	Teumer 2019		-0.00	7 0.00	5 .915E-01	3.320E-01						after	power	Protein	Sun 2018	Teumer 2019	27	-0.093	0.33 7.5	800E-01	7.800E-01						after	power
			Robust adjusted profile score	Protein To														no / nsufficient	UACR To														no / insuff c ent
UNC5C	5139-32_3	UACR	(RAPS) Robust adjusted	UACR	Sun 2018	Teumer 2019	5	-0.0	0.00	5 .067E-02	. 2E-01	2.003E-02	2.535E-02	. 87E-01	0.078		before	power	Protein	Sun 2018	Teumer 2019	29	-0.126	0.322 6.9	953E-01	6.953E-01	1 23 E-02	1.117E-02	.751E-01	0.009	1	before	power
I FPR	5 00-52 3	скр	profile score (RAPS)	Protein To CKD	Sun 2018	Wuttke 2019	6	-0.01	3 0.01	058E-01	5 701E-01	9.632E-01	9 783E-01	5.018E-01	0.85		before	no / nsufficient	CKD To Protein	Sun 2018	Wuttke 2019	16	0.067	015	01 E-01	6.686E-01	017E-01	3 381E-01	7.6 7E-01	0 33		before	no / insuff c ent
			Robust adjusted				-					1			-											r							
LEPR	5 00-52_3	eGFR	(RAPS)	eGFR	Sun 2018	Wuttke 2019	6			.367E-01	8.381E-01	8.781E-02	6.3 9E-02	6.096E-01	0.372		before	no / nsufficient power	eGFR To Protein	Sun 2018	Wuttke 2019	193	0.5 9	0.668 .	112E-01	6.686E-01	7 172E-01	6.996E-01	9.308E-01	0.757		before	no / insuff c ent power
			Robust adjusted profile score	Protein To						1		1			1			no / nsufficient	UACR To							r	ſ	ſ	ſ	ſ			no / insuff c ent
LEPR	5 00-52_3	UACR	(RAPS)	UACR	Sun 2018	Teumer 2019	6	0.00	3 0.002	2 .039E-01	.613E-01	1.207E-01	8.722E-02	6.156E-01	0.35		before	power	Protein	Sun 2018	Teumer 2019	29	-0.015	0.32 9.0	622E-01	9.622E-01	3 287E-01	3.691E-01	1.923E-01	0.362		before	power
			outl ters-																CKD T														yes same
SPOCK2	5 91-12_3	CKD	ariance weighte	d															Protein	Sun 2018	Wuttke 2019	1	-0.276	0.109 1.	116E-02	1.67 E-02						after	be a nKORA
			Robust adjusted profile score	Protein To						ſ	ſ	ſ	ſ	ſ	Í			no / nsufficient	CKD To					Í		ſ	ſ	ſ	ſ	ſ	No s gnif cant		yes same direct on of
SPOCK2	5 91-12_3	CKD	(RAPS) MR-	CKD	Sun 2018	Wuttke 2019	6	0.0	0.02	7 .0 5E-01	9. 00E-01	9.909E-01	9.711E-01	9.399E-01	0.995		before	power	Protein	Sun 2018	Wuttke 2019	16	-0.295	0.102 3.	823E-03	7.6 6E-03	1 10 E-02	1.380E-02	3.178E-01	0.012	outliers	before	be a nKORA yes same
SPOCK2	5 91-12 3	eCEP	PRESSO_Outle	r Protein To	Sun 2018	Wettka 2019	6										hafora	no / nsufficient	eGFR To Protain	Sun 2018	Wottke 2019	190	26.5	0.732.31	\$73E.0	358E-03				<0.001	3	hafora	direct on of
DIOCKL	5 71-12,5	cont	concered	con k	5412010	Wanke 2017	0										beanc	ponei	Tiotem	5412010	11 data 2017		2.0 5	0.752 5.	013250					-0.001	5	beiore	of a arcolor
			corrected In ers																eGFR To														yes same direct on of
SPOCK2	5 91-12_3	eGFR	ariance weighte Robust adjusted	d			+		-	-									Protein	Sun 2018	Wuttke 2019	172	2. 2	0.675 3.	3 6E-0	1.00 E-03						after	be a nKORA yes same
SPOCK2	5 91-12 3	eGFR	profile score (RAPS)	Protein To eGFR	Sun 2018	Wuttke 2019	6	0.00	2 0.00	.7 6E-02	2.563E-01	2.968E-01	2.106E-01	7.017E-01	0.39		before	no / nsufficient power	eGFR To Protein	Sun 2018	Wuttke 2019	193	2.507	0.77 1	122E-03	. 89E-03	1 090E-05	1.967E-05	7.852E-0?	<0.001	3	before	direct on of be a nKORA
			MR-	Destain T.			0											and a sufficient	UACRT			- 75											an (insuff a
SPOCK2	5 91-12_3	UACR	corrected	UACR	Sun 2018	Teumer 2019	3	-0.0	0.00	.961E-01	7.8 7E-01				< 0.001	3	before	power	Protein	Sun 2018	Teumer 2019	28	0.09	0.3 9 7.	986E-01	7.986E-01				<0.001	1	before	power
			outl ters-																														
SPOCK2	5 91-12 3	UACR	corrected In ers ariance weighte	e Protein To d UACR	Sun 2018	Teumer 2019	3	-0.0	0.00	.766E-01	3.320E-01						after	no / nsufficient power	UACR To Protein	Sun 2018	Teumer 2019	25	0.66	0.33 1.0	62 E-01	1.62 E-01						after	no / insuff c ent power
	1		Robust adjusted	Destain T.			-											·	UACRT							-							-
SPOCK2	5 91-12_3	UACR	(RAPS)	UACR	Sun 2018	Teumer 2019	6	-0.01	2 0.00	5 .926E-02	.237E-01	5.27 E-07	3.619E-07	6.803E-01	< 0.001	3	before	power	Protein	Sun 2018	Teumer 2019	29	0.156	0.32 6.	265E-01	6.265E-01	10 8E-03	1.968E-03	1.8 5E-01	<0.001	1	before	power

Supplementary Table 25. Two-sample MR evidence is suggestive of relationships of replicated proteins to kidney traits (CKD, eGFR and UACR) using genetic instruments summarized from Zheng et al¹.

Results of two sample MR of 23 out of 46 replicated proteins to kidney traits (CKD, eGFR and UACR) using genetic instruments summarized by Zheng et al¹.

Abbreviations: CKD, chronic kidney disease; eGFR, estimated glomerular filtration rate; UACR, urinary albumin-to-creatinine ratio; MR, Mendelian Randomization.

Protein	Protein.SeqId	Kidney.trait	method	study_pro	study_kidney	nsnp	b	se	pval	fdr	IVW.Q_pval
			adjusted								
ADAMTS13	3175-51 5	eGER	(RAPS)	Sun	Wuttke 2019	1	0.001	0.001	8 984E-02	2 583E-01	
ADAMISIS	5175-51_5	COLK	adjusted	Sui	Wullke 2017	1	0.001	0 001	0 7041-02	2 3031-01	
			profile score								
ADAMTS13	3175-51_5	UACR	(RAPS)	Sun	Teumer 2019	1	0 003	0 004	4 245E-01	5 743E-01	
			adjusted								
	2175 51 5	CVD	profile score	a	W		0.00	0.010	7 100 01	0.1205.01	
ADAMISIS	31/5-51_5	CKD	(KAPS)	Sun	wuttke 2019	1	0.006	0 0 0 1 9	7 422E-01	8 129E-01	
			profile score								
AMH	4923-79_1	CKD	(RAPS)	Sun	Wuttke 2019	1	-0 048	0 047	3 005E-01	5 760E-01	
			adjusted								
			profile score								
AMH	4923-79_1	UACR	(RAPS)	Sun	Teumer 2019	1	0 004	0 01	6 678E-01	6 998E-01	
			adjusted								
АМН	4923-79 1	eGFR	(RAPS)	Sun	Wuttke 2019	1	-0.001	0.002	7 004E-01	7 986E-01	
			adjusted			-					
			profile score								
B2M	3485-28_2	eGFR	(RAPS)	Yao	Wuttke 2019	1	-0 016	6 0.004	4 159E-05	9 565E-04	
			adjusted								
POM	2405 20 2	UACD	(PAPS)	Vac	Taumar 2010	1	0.071	0.021	5 285E 04	1 216E 02	
D2IVI	5465-26_2	UACK	(KAPS) adjusted	1 ao	Teumer 2019	1	0071	0.021	5 285E-04	1 210E-02	
			profile score								
B2M	3485-28_2	CKD	(RAPS)	Yao	Wuttke 2019	1	0 311	0 094	9 668E-04	2 224E-02	
			adjusted								
			profile score								
CGA;LHB	2953-31 2	CKD	(RAPS)	Sun	Wuttke 2019	1	-0 057	0 025	2 125E-02	1 969E-01	
			adjusted								
CGA:LHB	2953-31 2	UACR	(RAPS)	Sun	Teumer 2019	1	-0 008	0 006	1 510E-01	3 279E-01	
,			adjusted								
			profile score								
CGA;LHB	2953-31 2	eGFR	(RAPS)	Sun	Wuttke 2019	1	0 001	0 001	1 620E-01	3 727E-01	
			adjusted								
CST3	2609-59 2	eGFR	(RAPS)	Yao	Wuttke 2019	1	-0.002	0.001	1 245E-01	3 183E-01	
0010	2007 07_2	COIN	adjusted	140	Walate 2019	-	0.001	0 001	12102 01	5 1052 01	
			profile score								
CST3	2609-59 2	UACR	(RAPS)	Yao	Teumer 2019	1	-0 008	0 006	2 239E-01	3 432E-01	
			adjusted								
CST2	2600 50 2	CVD	(PAPS)	Vac	Wattles 2010	1	0.044	. 0.03	1 240E 01	5 127E 01	
0.515	2009-39_2	CKD	(KAFS) adjusted	1 40	wulke 2019	1	0.040	5 003	1 340E-01	3 13/E-01	
			profile score								
CTSH	3737-6_3	CKD	(RAPS)	Sun	Wuttke 2019	1	-0 032	0 015	2 931E-02	1 969E-01	
			adjusted								
amatt	2525 6 2		profile score				0.000				
CISH	3/3/-6_3	UACR	(RAPS)	Sun	Teumer 2019	1	0.003	5 0.003	3 092E-01	4 445E-01	
			profile score								
CTSH	3737-6_3	eGFR	(RAPS)	Sun	Wuttke 2019	1	(0 001	5 333E-01	7 552E-01	
	_		adjusted								
			profile score								
ESAM	2981-9_3	eGFR	(RAPS)	Sun	Wuttke 2019	1	0 004	0 002	1 719E-02	1 318E-01	
			adjusted								
ESAM	2981-9-3	CKD	(RAPS)	Sun	Wuttke 2019	1	-0.089	0.044	4 682F-02	2.154E-01	
LOTIN	2701-7_3	ChD	adjusted	Jui	17 unixe 2019	1	-0.000	, 0.044		2 13+L=01	
			profile score								
ESAM	2981-9_3	UACR	(RAPS)	Sun	Teumer 2019	1	0 019	0 0 01	7 095E-02	3 116E-01	

HAVCD2	5134 52 2	aCEP	adjusted profile score	Sun	Wutthe 2010	2	0.001	0.001	3 285E 02	1 880E 01	1 539E 01
IIAVCK2	5154-52 2	COLK	adjusted	Sui	Wullke 2019	2	-0 001	0.001	5 2651-02	1 8892-01	1 5592-01
HAVCR2	5134-52 2	UACR	profile score (RAPS)	Sun	Teumer 2019	2	0.005	0.004	2.015E-01	3 432E-01	6 026E-01
11.170102	5154 52_2	ener	adjusted	Juli	Teaner 2019	2	0 005	0 004	2 0152 01	5 4522 01	0 0202 01
HAVCR2	5134-52 2	CKD	profile score	Sun	Wuttke 2019	2	0.017	0.015	2 628E-01	5 494E-01	6 961E-01
IIAVCK2	5154-52_2	CRD	adjusted	Sui	Walke 2017	2	0.017	0.015	2 020E-01	54942-01	0 9012-01
ICEAD	2676 15 2	CED	profile score	5	W. who 2010	1	0.001	0.001	8 24CE 02	2 5925 01	
IGF2K	3070-13_3	egrk	adjusted	Sun	wulke 2019	1	0.001	0.001	8 300E-02	2 385E-01	
ICEAD	2676.15.2	UL CD	profile score		T 2010		0.005	0.000	1.5705.01	2 2705 01	
IGF2R	3676-15_3	UACR	(RAPS) adjusted	Sun	Teumer 2019	1	-0 005	0 003	1 568E-01	3 279E-01	
			profile score								
IGF2R	3676-15_3	CKD	(RAPS) adjusted	Sun	Wuttke 2019	1	-0 019	0 016	2 325E-01	5 347E-01	
			profile score								
KDR	3651-50_5	UACR	(RAPS)	Sun	Teumer 2019	1	-0 008	0 005	1 219E-01	3 116E-01	
			profile score								
KDR	3651-50 5	CKD	(RAPS)	Sun	Wuttke 2019	1	-0 028	0 029	3 290E-01	5 821E-01	
			adjusted profile score								
KDR	3651-50_5	eGFR	(RAPS)	Sun	Wuttke 2019	1	0	0 001	8 986E-01	8 986E-01	
			adjusted								
LEPR	5400-52 3	UACR	(RAPS)	Sun	Teumer 2019	1	0 002	0 002	2 232E-01	3 432E-01	
			adjusted								
LEPR	5400-52_3	CKD	(RAPS)	Sun	Wuttke 2019	1	-0 012	0 009	1 856E-01	5 337E-01	
			adjusted								
LEPR	5400-52_3	eGFR	(RAPS)	Sun	Wuttke 2019	1	0	0	8 508E-01	8 894E-01	
			adjusted								
MASP1	3605-77 4	eGFR	profile score (RAPS)	Suhre	Wuttke 2019	1	0 002	0 001	7 027E-02	2 583E-01	
			adjusted								
MASP1	3605-77 4	UACR	profile score (RAPS)	Subre	Teumer 2019	1	-0.003	0.006	6 694F-01	6 998F-01	
	5005 11_4	ener	adjusted	Sunc	Teaner 2017	1	0 005	0 000	0 09412 01	0))02 01	
MASDI	2605 77 1	CKD	profile score	Subro	Wutthe 2010	1	0.001	0.02	0.760E.01	0.760E.01	
MASPI	3003-77_4	CKD	adjusted	Sunre	wulke 2019	1	0.001	0.03	9 709E-01	9 709E-01	
10.01	1021.22.1	LU CD	profile score	E 11	T 2010	2	0.01	0.007	0.0455.00	2.11.07.01	0.0505.01
MMP1	4924-32_1	UACR	(RAPS) adjusted	Folkersen	Teumer 2019	2	0.01	0.006	9 965E-02	3 116E-01	9 259E-01
			profile score								
MMP1	4924-32 1	CKD	(RAPS) adjusted	Folkersen	Wuttke 2019	2	0 023	0 028	4 224E-01	6 940E-01	8 714E-01
			profile score								
MMP1	4924-32_1	eGFR	(RAPS)	Folkersen	Wuttke 2019	2	0 001	0 001	4 665E-01	7 152E-01	5 627E-01
			profile score								
PLAT	2212-69 1	CKD	(RAPS)	Emilsson	Wuttke 2019	1	-0 118	0 056	3 424E-02	1 969E-01	
			profile score								
PLAT	2212-69_1	eGFR	(RAPS)	Emilsson	Wuttke 2019	1	0 002	0 002	3 119E-01	5 519E-01	
			adjusted profile score								
PLAT	2212-69_1	UACR	(RAPS)	Emilsson	Teumer 2019	1	0 008	0 012	5 289E-01	6 759E-01	
			adjusted								
PLG	3710-49_2	eGFR	(RAPS)	Suhre	Wuttke 2019	1	0 004	0 001	2 329E-03	2 679E-02	
			adjusted								
PLG	3710-49 2	UACR	(RAPS)	Suhre	Teumer 2019	1	-0 008	0 006	2 170E-01	3 432E-01	
			adjusted								
PLG	3710-49 2	CKD	profile score (RAPS)	Suhre	Wuttke 2019	1	0 021	0.03	4 972E-01	7 623E-01	
-			adjusted			-		2.00			
RFIT	5115-31 3	HACP	(RAPS)	Sup	Teumer 2010	1	0.01	በ በበፉ	9 001E 02	3 116F 01	
	5115-51_5	Unch	adjusted	Sull	10000012019	1	0.01	0.000	- 001E-02	5 110E-01	
DELT	5115 21 2	CER	profile score	5	W al acto		0.001	0.00	1.0215.04	2 8205 81	
KELT	5115-31-3	eGFR	(RAPS) adjusted	Sun	wuttke 2019	1	-0 001	0 001	1 831E-01	3 829E-01	
			profile score								
RELT	5115-31_3	CKD	(RAPS)	Sun	Wuttke 2019	1	0 013	0 027	6 326E-01	7 658E-01	

			1 1								
			adjusted								
RET	3220-40-2	UACR	(RAPS)	Sun	Teumer 2019	1	0.005	0 009	6.071E-01	6.982E-01	
KLI	3220=40 2	UACK	adjusted	Sui	Teumer 2019	1	0.005	0.009	0071L-01	0 9821-01	
			profile score								
RET	3220-40_2	CKD	(RAPS)	Sun	Wuttke 2019	1	0 017	0 042	6 918E-01	7 956E-01	
			adjusted								
			profile score								
RET	3220-40 2	eGFR	(RAPS)	Sun	Wuttke 2019	1	-0 001	0 002	7 291E-01	7 986E-01	
			adjusted								
RETN	3046-31 1	UACR	(RAPS)	Vao	Teumer 2019	2	0.02	0.011	7 391E-02	3 116E-01	4.018E-01
	5040-51_1	UNCK	adjusted	1 40	Teurier 2017	2	0.02	0.011	7 3711-02	5 1102-01	4 0102-01
			profile score								
RETN	3046-31_1	CKD	(RAPS)	Yao	Wuttke 2019	2	-0 064	0 053	2 263E-01	5 347E-01	1 400E-01
			adjusted								
			profile score								
RETN	3046-31_1	eGFR	(RAPS)	Yao	Wuttke 2019	2	-0 001	0 002	7 216E-01	7 986E-01	1 866E-01
			adjusted								
SCAPE1	5120 12 3	UACP	(PAPS)	Subra	Taumar 2010	1	0.008	0.004	8 115E 02	3 116E 01	
SCART	5129-12_5	UACK	adjusted	Suite	Teumer 2019	1	0.008	0.004	8 115E=02	5 1102-01	
			profile score								
SCARF1	5129-12_3	eGFR	(RAPS)	Suhre	Wuttke 2019	1	0 001	0 001	2 707E-01	5 188E-01	
			adjusted								
			profile score								
SCARF1	5129-12_3	CKD	(RAPS)	Suhre	Wuttke 2019	1	0 011	0 019	5 736E-01	7 647E-01	
			adjusted								
SPOCK2	5/191-12 3	eGER	(RAPS)	Sun	Wuttke 2019	1	0.003	0.002	7 308E-02	2 583E-01	
51 OCK2	5471-12_5	COLK	adjusted	Sui	Wullke 2017	1	0 005	0.002	7 5001-02	2 3031-01	
			profile score								
SPOCK2	5491-12_3	UACR	(RAPS)	Sun	Teumer 2019	1	-0 015	0 01	1 069E-01	3 116E-01	
			adjusted								
			profile score								
SPOCK2	5491-12_3	CKD	(RAPS)	Sun	Wuttke 2019	1	0 011	0 043	8 055E-01	8 421E-01	
			adjusted								
TNERSE19	5131-15 3	UACR	(RAPS)	Emileson	Teumer 2019	1	0.024	0.045	5.957E-01	6.982E-01	
	5151-15_5	UNCK	adjusted	Liiiiissoii	Teuner 2017	1	0.024	0 0 4 3	5 75712-01	0 7022-01	
			profile score								
TNFRSF19	5131-15 3	eGFR	(RAPS)	Emilsson	Wuttke 2019	1	0 005	0 009	5 910E-01	7 552E-01	
			adjusted								
			profile score								
TNFRSF19	5131-15_3	CKD	(RAPS)	Emilsson	Wuttke 2019	1	-0 102	0 194	5 985E-01	7 647E-01	
			adjusted								
TNEDSE1B	3152 57 1	GED	(PAPS)	Sun	Wuttles 2010	1	0.001	0.002	5 740E 01	7 552E 01	
INFRATTD	5152-57 1	COLK	adjusted	Sui	Wullke 2019	1	0.001	0.002	5 740E=01	7 3321-01	
			profile score								
TNFRSF1B	3152-57_1	CKD	(RAPS)	Sun	Wuttke 2019	1	-0 034	0 056	5 393E-01	7 647E-01	
			adjusted								
			profile score								
TNFRSF1B	3152-57 1	UACR	(RAPS)	Sun	Teumer 2019	1	-0 001	0 011	9 237E-01	9 237E-01	
			adjusted							Í	
UNCSC	5120 22 2	UACD	(PAPS)	C.m	Taumar 2010	1	0.012	0.008	1.085E.01	2 116E 01	
UNCSC	5159-52_5	UACK	(KAPS)	Sun	Teumer 2019	1	-0.015	0.008	1 085E-01	5 110E-01	
			profile score								
UNC5C	5139-32_3	CKD	(RAPS)	Sun	Wuttke 2019	1	-0 053	0 039	1 745E-01	5 337E-01	
			adjusted								
			profile score								
UNC5C	5139-32_3	eGFR	(RAPS)	Sun	Wuttke 2019	1	0 001	0 001	4 286E-01	7 042E-01	

Supplementary Table 26. Two-sample MR evidence is suggestive of relationships between kidney traits (CKD, eGFR and UACR) and replicated metabolites in both directions.

Results of bi-directional two-sample MR of 14 replicated metabolites and kidney traits (CKD, eGFR and UACR). **Abbreviations:** CKD, chronic kidney disease; eGFR, estimated glomerular filtration rate; UACR, urinary albumin-to-creatinine ratio; MR, Mendelian Randomization.

												MetToKy M	d MetToKy.)	4												KvToMet.N	KyToMet	M	
	Kidney (MatToky stu	- M-ToKy etu MatToKy n			MatToKy		MatToKy IV	MetToKy.M	R	MetToKy.M Rpress Out	i MetToKy.o	ut M-/Toky MR supports		KyToMatet	V-ToMat stu Kv	T-Mat m			V-ToMat m		KyToMat I	KyToMet M	I R	KyToMet M Rpress.Ou	nti KyToMet.o	out KyToMet.M
Metabolite	ait	method	MetToKy.direction	y_met	dy_kidney p	MetToKy b	MetToKy.se	al	MetToKy.ft	tr W.Q_pval	Egger.Q_pval	d pt_pval	Test Pvalue R.Num	d	d.Causal	KyToMet direction	dy_met	dy_kidney np	KyT	foMet b Ky	ToMet.se	al	KyToMet.fd	hr W.Q_pval	Egger.Q_pvr	al pt_pval	Test.Pvalue R.Num	d	Causal
C10	CKD	Robust adjusted profile score (RAPS)	Me abol te To CKD	Draisma 2015	Wuttke 2019	1 -0.05	55 0.1	167 7. 05E-01	8.752E-01					efore	no / insufficient power	CKD To Metabolite	Draisma 2015	Wu tke 2019	11	0.061	0.05	2 601E-01	.398E-01	5.330E-01	.678E-01	5.880E-01	0.565	before	o / nsufficient ower
C10	CED	Robust adjusted profile	2 Mashalar TaraCER	Durium 2016	Works 2010	1 0.00	00 01	0061 5205 01	16.75.01					-6	- (insufficient second	CER To Matchelia	During 2016	We der 2010	162	0.617	0.22	1 2105 01	2085-01	1.6778-01	1.6215.01	2 6225 01	0.16	hafan	o / nsufficient
C10	COFK	ou li ers-corrected	Me abore to cork	LAusin 2013	wanke 2019	1 0.00		001.320E-01	1.0 /15-01					cioic	iii / iistiic en power	COPK TO MELLOOTE	Drasan 2013	wu ike 2019	155	-0.317	0.33	12195-01	.3985-01	15//1501	1.0315-01	2.32315-01	0.15	Delote	owei
C10	UACR	In erse ariance weigh ed														UACR To Metaboli e	Draisma 2015	Teumer 2019	22	0.233	0.165	1.57 E-01	.57 E-01					after	o / nsufficient ower
		Robust adjusted profile						-	-														1	-			No s gnificar	at .	o / nsufficient
C10	UACR	ou li ers-corrected	Me abolte To UACR	Drasma 2015	Teumer 2019	-0.00	J6 0.0	/36 8.786E-01	8.786E-01					etore	no / insufficient power	UACR To Metaboli e	Drasmi 2015	Teumer 2019	25	0.151	0.155	3 299E-01	.398E-01	_370E-02	3.298E-02	8. 28E-01	0.0 6 ou lers	betore	ower
C102	CKD	Wald ratio	Me abol te To CKD	Draisma 2015	Wuttke 2019	1 -0.3	6 0.3	386 3.697E-01	5.5 6E-01					fer	no / insufficient power														
C102	CKD	score (RAPS)	Me abol te To CKD	Draisma 2015	Wuttke 2019	2 0.3	3 0.3	327 2.939E-01	8.752E-01	1.855E-02				efore	no / insufficient power	CKD To Metabolite	Draisma 2015	Wu tke 2019	12	0.037	0.023	1 073E-01	.1 7E-01	2.32 E-01	1.752E-01	8. 36E-01	0.2 5	before	o/ nsumcient ower
C10.2	CEP	ou li ers-corrected Wald ratio	Ma abol ta To aGEP	Drairon 2015	Watthe 2019	1 0.0.	33 0(01 1.608E-02	2 12E-02					for	yes difd rection of be a n	4													
C102	COFK	wait latio	Me aborie 10 eGFK	LAusin 2013	wanke 2019	1 0.03	13 0.0	1 1.008E-02	2. 1215-02					101	KORA							-	+						es same
C102	CFR	Robust adjusted profile score (RAPS)	Me abolite To eGFR	Draisma 2015	Wattke 2019	2 0.07	22 0.0	012 7 728E-02	1.005E-01	016E-03				efore	yes difd rection of be a n KORA	eGFR To Metabolie	Draisma 2015	Wurke 2019	160	.0 599	01.2	2 6E-05	783E-05	7 52E-02	6730E-02	8 718E-01	0.077	before	irection of eta in KORA
		MR-PRESSO_Ou lier				-	-																						o / nsufficient
C102	UACR	ou li ers-corrected														UACR To Metaboli e	Draisma 2015	Teumer 2019	2	0.06	0.068	3 921E-01	.55 E-01				0.019 1	before	ower
G103	ULCR	In erse ariance														ULCONT NO. 1	D : 2015	T 2010		0.077	0.01	2 2015 01	2015 01						o / nsufficient
C102	UACK	Robust adjusted profik	2													UACK TO MELDOLE	Drasma 2015	Teumer 2019	23	0.077	0.06	2 3016-01	.301E-01					aner	o/ nsufficient
C102	UACR	score (RAPS)	Me abol te To UACR	Draisma 2015	Teumer 2019	2 0.05	53 0.0)58 3.613E-01	5.219E-01	8.089E-01				efore	no / insufficient power	UACR To Metaboli e	Draisma 2015	Teumer 2019	25	0.057	0.065	3.781E-01	.0 1E-01	2.017E-02	.510E-02	9.759E-02	0.019 1	before	ower
C12	CKD	score (RAPS)	Me abol te To CKD	Lotta 2021	Wuttke 2019	3 -0.05	53 0.0	068 .352E-01	8.752E-01	2.258E-01	1.313E-01	6.778E-01		efore	no / insufficient power														
C12	CER	ou li ers-corrected	Mashalta Ta aCER	L	Westler 2010	1 0.00	02 01	00 27 55 01	2 7875 01					6	and (includent more than the second														
C12	COFK	Robust adjusted profile	2	1.000 2021	wulke 2019		0.0	0 3.7 55-01	3.7876-01					161	no / instinctent power														
C12	eGFR	score (RAPS)	Me abol te To eGFR	Lotta 2021	Wuttke 2019	3 -0.00	15 0.0	003 3.512E-02	5.707E-02	9.083E-11	6. 27E-07	5.228E-01		efore	no / insufficient power														
C12	UACR	Wald ratio	Me abol te To UACR	Lotta 2021	Teumer 2019	1 -0.02	2 0.	02 2.339E-01	2. 59E-01					fer	no / insufficient power														
C12	UACR	Robust adjusted profile score (RAPS)	Me abolite To UACR	Lotta 2021	Teumer 2019	3 0.01	92 0.0	016 1 272E-08	1.653E-07	2.838E-06	9.6825-01	12 E-01		efore	no / insufficient power														
C.12	074CA	Robust adjusted profile	2	130411 2021				10 1.2720-00	1000000	2.0301.00	7.0021701	1.2 1.01		cinc								-		-		-		-	o / nsufficient
C1 1	CKD	Robust adjusted profile														CKD To Metabolite	Draisma 2015	Wu tke 2019	9	0.022	0.028	2 5E-01	.661E-01	6.905E-01	6.105E-01	6.631E-01	0.6 8	before	ower
C1 1	eGFR	score (RAPS)														eGFR To Metabol te	Draisma 2015	Wu tke 2019	105	-0.086	0.19	6 561E-01	.561E-01	1.079E-01	1.738E-01	2.561E-02	0.109	before	ower
C1 1	UACR	Robust adjusted profile score (RAPS)														UACR To Metaboli e	Draisma 2015	Teumer 2019	19	0.151	0.077	8 6E-02	.693E-02	7.918E-01	9.171E-01	8.559E-02	0.72	before	o / nsufficient ower
61 L 011	avp	MR-PRESSO_Ou lier	-											-		CEDT MALLE	D : 0015	W. 4. 2010		0.001	0.001	2 0205 01	0015 01				0.022.1		o / nsufficient
CT I-OH	CKD	ou li ers-corrected														CKD to Metabolie	Drasma 2015	Wu ike 2019	9	0.091	0.081	2 9206-01	.991E-01				0.022 1	besore	ower
C1 1 01	CKD	In erse ariance														CKD To Matchelle	D=-i=== 2016	Weeder 2010		0.001	0.081	2 602E 01	602E-01					- 6	o / nsufficient
CT IION	CKD	Robust adjusted profile	2													CKD 10 Metabolie	Drasan 2013	wu ike 2019	,	0.091	0.031	2 3935-01	.393£-01						o / nsufficient
C1 1-OH	CKD	score (RAPS) Robust adjusted profile	Me abol te To CKD	Draisma 2015	Wuttke 2019	1 0.01	1 0.1	55 9.255E-01	9.255E-01					efore	no / insufficient power	CKD To Metabolite	Draisma 2015	Wu tke 2019	10	0.058	0.06	3 651E-01	.553E-01	2.629E-02	3.0 1E-02	3.715E-01	0.022 1	before	ower
C1 1-OH	eGFR	score (RAPS)	Me abol te To eGFR	Draisma 2015	Wuttke 2019	1 0.00	J6 0.0	J06 2.9 8E-01	2.9 8E-01					efore	no / insufficient power	eGFR To Metabol te	Draisma 2015	Wu tke 2019	152	-0 29	0.378	. 23E-01	.553E-01	7.15 E-02	8.871E-02	9.3 1E-02	0.06	before	ower
CL LOH	UACR	Robust adjusted profile score (RAPS)	Me abolite To UACR	Draisma 2015	Teumer 2019	1 0.02	1 00	033 6 672E-01	7.885E-01					efore	no / insufficient power	UACR To Metabolic	Draisma 2015	Teamer 2019	22	0.112	0.19	5 553E-01	553E-01	5 266E-01	6.653E-01	9 322E-02	0.537	before	o / nsufficient ower
		Robust adjusted profile	2			-		-	-	-	-	-												-	-	-			o / nsufficient
C1 2	CKD	ou li ers-corrected	Me abol te To CKD	Draisma 2015	Wuttke 2019	2 -0.10	J8 0.1	.31 .092E-01	8.752E-01	1.089E-01				efore	no / insufficient power ves dif d rection of be a r	CKD To Metabolite	Draisma 2015	Wu tke 2019	12	0 07	0.0 2	9 609E-02	.922E-01	5.220E-01	.32 E-01	9.883E-01	0.511	before	ower
C1 2	eGFR	Wald ratio	Me abol te To eGFR	Draisma 2015	Wuttke 2019	1 0.0	7 0.0	J08 6.25 E-09	2.81 E-08					fer	KORA														
		Robust adjusted profik						f i	í.	ſ.					yes difd rection of be a r							í.	ſ	Í	ſ	ſ			es same irection of
C1 2	eGFR	score (RAPS)	Me abol te To eGFR	Draisma 2015	Wuttke 2019	2 0.0	7 0.	.01 5.676E-06	1.8 5E-05	1.150E-07				efore	KORA	eGFR To Metabol te	Draisma 2015	Wu tke 2019	160	-0.795	0.261	2 29 E-03	.175E-03	6.055E-02	5. 60E-02	8.195E-01	0.06	before	eta in KORA
C1 2	UACR	Wald ratio	Me abol te To UACR	Draisma 2015	Teumer 2019	1 0.28	82 0.0) 7 2. 07E-09	9.095E-09					fer	n KORA	-													
c1 2	UACR	Robust adjusted profile	2 Mashala Ta UACR	Decisione 2015	T	2 0.21		062 075 06	8 1155 06	2 766E 07				-6	yes same direction of beta	4 UACD To Matchelle	D=-i=== 2015	Terrer 2010	25	0.110	0.110	2 18 E 01	6E 01	5 995 01	5 8 5 01	2 227E 01	0.597	hafan	o / nsufficient
CI 2	UNCK	ou li ers-corrected	Me aborie 10 CACK	LAusilu 2013	Teuner 2019	2 0.28	<u>, , , , , , , , , , , , , , , , , , , </u>	002. 975-00	8.11515-00	2.7005-07				ciote	IRORA	CACK TO MELIDOLE	Diasila 2013	Teuter 2019		0.119	0.119	3 18 1-01	. 35-01	5. 8815-01	5. 8 1501	3.3376-01	0.387	Deute	owei
C16	CKD	Wald ratio	Me abol te To CKD	Lotta 2021	Wuttke 2019	1 0.00	12 0.0)5 9.707E-01	9.707E-01					fer	no / insufficient power														
C16	CKD	score (RAPS)	Me abol te To CKD	Lotta 2021	Wuttke 2019	3 -0.00	05 0.0) 3 9.0 5E-01	9.255E-01	.320E-02	1.766E-02	7.909E-01		efore	no / insufficient power														
C16	CFR	ou li ers-corrected Wald ratio	Me abolite To eGFR	Lotta 2021	Wattke 2019	1 .0 OC	02 0.0	002 2 3 9E-01	3.020E-01					fer	no / insufficient power														
		Robust adjusted profile	2			-				-	-												-						
C16	eGFR	score (RAPS)	Me abol te To eGFR	Lotta 2021	Wuttke 2019	3 -0.00	0.0	/02 2.520E-02	5. 59E-02	1.085E-08	3.680E-09	8.5 IE-01		efore	no / insufficient power														
C16	UACR	Wald ratio	Me abol te To UACR	Lotta 2021	Teumer 2019	1 0.01	13 0.0	J12 2. 59E-01	2. 59E-01					fer	no / insufficient power														
C16	UACR	Robust adjusted profile score (RAPS)	Me abol te To UACR	Lotta 2021	Teumer 2019	3 0.0	0.0	J09 2.869E-01	.661E-01	3.2 8E-0	1.317E-0	8.059E-01		efore	no / insufficient power														
C101	avp	Robust adjusted profile	i	D : 2015	W1. 2010	2 0.14		170 5 6505 01	0.7520.01	2 2125 01	2.775.01	72/7 01				CEDT MALLE	D : 0015	W. 4. 2010	10	0.011	0.025	C COLD OL	0.15.01	00075-01	02 5 01	0.0000.01	0.02		o / nsufficient
C181	CKD	ou li ers-corrected	Me abolte To CKD	Drasma 2015	Wutike 2019	3 -0.10	12 0.1	.78 5.658E-01	8.752E-01	2.312E-01	2. 73E-01	.7266-01		etore	no / insufficient power	CKD To Metabolite	Drasma 2015	Wu tke 2019	12	-0.011	0.025	6 631E-01	.8 IE-01	.886E-01	.03 E-01	8.532E-01	0. 92	betore	ower
C181	CER	In erse ariance	Ma abalta Ta aCER	Derivery 2015	Westler 2010	2 0.00	00 0	01 2 787E 01	2 7875 01					6.00	- (in the intervent														
C101	COFK	Robust adjusted profile	2	LAusilu 2013	wulke 2019	2 0.00	18 0.	51 3.7872-01	3.18/15/01		-	-		161	no / instinctent power							-	-	-	-	-			o / nsufficient
C181	eGFR	score (RAPS)	Me abol te To eGFR	Draisma 2015	Wuttke 2019	3 0.03	32 0.0	008 3.722E-05	9.676E-05	1.0 7E-02	6.127E-01	2.063E-01		efore	no / insufficient power	eGFR To Metabol te	Draisma 2015	Wu tke 2019	161	-0.002	0.155	9 88 E-01	.88 E-01	2.775E-01	2.639E-01	6.179E-01	0.25	before	ower
C181	UACR	Wald ratio	Me abol te To UACR	Draisma 2015	Teumer 2019	1 0.1	13 0.0	179 9.836E-02	1. 75E-01					fer	no / insufficient power														

		Debut adjusted and b		1				1		1						1								1	1			a (multiplicate
C181	UACR	score (RAPS) M	le abolte To UACR	Draisma 2015	Teamer 2019 3	0.225	0.0 57230E-07	3 133E-06	6.8 3E-05	1.955E-03	5 000E-01			fore	no / insufficient nower	LIACR To Metaboli e	Draisma 2015	Teamer 2019	25	0.122 0	071 8 503E-02	31 E-01	8 88F-01	8 53E-01	3 899E-01	0.833	before	O/ ISulicient
		ou li ers-corrected																										
		In erse ariance																										
C2	CKD	weigh ed M	le abol te To CKD	Draisma 2015	Wuttke 2019 3	0.203	0.156 1.933E-01	5.5 6E-01					fe	er	no / insufficient power													
	-	Robust adjusted profile																							-			o / nsufficient
C2	CKD	score (RAPS) M	le abol te To CKD	Draisma 2015	Wuttke 2019	0.06	0.112 5.902E-01	8.752E-01	2.917E-02	1.351E-02	7.890E-01	0.17	et	fore	no / insufficient power	CKD To Metabolite	Draisma 2015	Wu tke 2019	12	0.006 0	031 8 516E-01	.516E-01	6. 87E-01	6. 55E-01	3.703E-01	0.671	before	ower
		MR-PRESSO_Ou lier-																										
C2	eGFR	corrected M	le abol te To eGFR	Draisma 2015	Wuttke 2019 2	0.003	0.007 7. 5 E-01	8.069E-01				0.006	2 et	fore	no / insufficient power	eGFR To Metabol te	Draisma 2015	Wu tke 2019	161								before	
		ou li ers-corrected																										
C2	eGFR	Wald ratio M	le abol te To eGFR	Draisma 2015	Wutke 2019 1	0.0	0.007 1.21 E-08	3.6 2E-08					fe	er	no / insufficient power													
																												es same
		Robust adjusted profile																										irection of
C2	eGFR	score (RAPS) M	le abol te To eGFR	Draisma 2015	Wuttke 2019	-0.009	0.00 3.387E-02	5.707E-02	5.821E-08	8.823E-07	5.137E-01	0.006	2 et	fore	no / insufficient power	eGFR To Metabol te	Draisma 2015	Wu tke 2019	161	-0.615 0	196 1 672E-03	.688E-03	8.559E-02	7.905E-02	6.579E-01	0.089	before	eta in KORA
		MR-PRESSO_Ou lier-																										o / nsufficient
C2	UACR	corrected M	le abol te To UACR	Draisma 2015	Teumer 2019 2	2 0.1	0.021 1.326E-01	3.051E-01				0.0 2	2 ef	fore	no / insufficient power	UACR To Metaboli e	Draisma 2015	Teumer 2019	25								before	ower
		ou li ers-corrected																										
C2	UACR	Wald ratio M	le abol te To UACR	Draisma 2015	Teumer 2019 1	0.2 1	0.0 1 3.032E-09	9.095E-09					fe	er	no / insufficient power													
		Robust adjusted profile																										o / nsufficient
C2	UACR	score (RAPS) M	le abol te To UACR	Draisma 2015	Teumer 2019	0.111	0.026 1.637E-05	.256E-05	7.655E-05	.122E-0	.70 E-01	0.0 2	2 et	fore	no / insufficient power	UACR To Metaboli e	Draisma 2015	Teumer 2019	25	0.118	0.09 1 87 E-01	.737E-01	6.919E-01	6.369E-01	9.576E-01	0.70	before	ower
		Robust adjusted profile																										o / nsufficient
C6(C 1-DC)	CKD	score (RAPS) M	le abol te To CKD	Lotta 2021	Wuttke 2019 1	-0.08	0.076 2.689E-01	8.752E-01					et	fore	no / insufficient power	CKD To Metabolite	Shin 201	Wu tke 2019	12	0.002 0	016 8 995E-01	.995E-01	5. 03E-01	5.273E-01	3.812E-01	0.538	before	ower
		Robust adjusted profile																										o / nsufficient
C6(C 1-DC)	eGFR	score (RAPS) M	le abol te To eGFR	Lotta 2021	Wuttke 2019 1	0.006	0.003 5.308E-02	7.667E-02					ci	fore	no / insufficient power	eGFR To Metabol te	Shin 201	Wu tke 2019	1 2	-0.196 0	103 5 683E-02	.273E-01	1.768E-01	2.196E-01	6.387E-02	0 18	before	ower
		Robust adjusted profile																										o / nsufficient
C6(C 1-DC)	UACR	score (RAPS) M	le abol te To UACR	Lotta 2021	Teumer 2019 1	-0.02	0.016 1. 05E-01	2.608E-01					ci	fore	no / insufficient power	UACR To Metaboli e	Shin 201	Teumer 2019	2	-0.019 0	0 5 6.785E-01	.995E-01	9.551E-02	7.501E-02	8.113E-01	0.108	before	ower
		Robust adjusted profile																										
C5	CKD	score (RAPS) M	le abol te To CKD	Lotta 2021	Wuttke 2019 3	-0.017	0.0 6.976E-01	8.752E-01	7.3 1E-02	3.195E-01	2.880E-01		ct	fore	no / insufficient power													
		ou li ers-corrected													yes difd rection of be a n													
C5	eGFR	Wald ratio M	le abol te To eGFR	Lotta 2021	Wuttke 2019 1	0.01	0.00 8. 29E-03	1.517E-02					fo	er	KORA													
		Robust adjusted profile													yes difd rection of be a n													
cs	eGFR	score (RAPS) M	le abol te To eGFR	Lotta 2021	Wuttke 2019 3	0.011	0.002 7.931E-10	6.081E-09	2.078E-06	3.230E-0	.963E-01		cl	lore	KORA													
<i>ar</i>	ULCD	ou h ers-corrected	L L L T LLCD	1	T 2010	0.00	0.010 1.0705.07	2.0.25.07							yes dif d rection of be a n													
CS .	UACK	Waid ratio M	te aborte To UACK	Lotta 2021	Teumer 2019 1	0.06	0.012 1.972E-07	3.9 3E-07					10	er	KUKA													
<i>ar</i>	ULCD	Robust adjusted profile	L L L T LLCD	1	T 2010	0.05	0.011 (257) 07	LOSCEOC	1 (007 03	1.00 0.00	0.75.01			-	yes did rection of be a n													
CS .	UACK	score (RAPS) M	te aborte To UACK	Lotta 2021	Teumer 2019 3	0.05	0.01 1.625E-07	1.056E-06	1.090E-03	1.22 E-02	.9 /15-01		e	lore	KUKA													1
60	avn	Robust adjusted profile		D : 0015	W -1 2010	0.071	0.107.7.17.17.01	0.7525.01						-		GEDT MALLE	D : 2015		10	0.057		200 01	2075-01	2 (525 0)	(ADE 0)	0.16		o / nsumcient
C8	CKD	Score (RAPS) M	te abolte To CKD	Drasma 2015	Wuttke 2019	-0.071	0.197 7.17 E-01	8.7526-01					ei	lore	no / insuncient power	CKD to Metabolie	Drasma 2015	wu ike 2019	12	0.057 0	0 7 2 2126-01	. 256-01	_30/E-01	3.053E-01	6. 22E-01	0. 16	besore	ower
C8	CEP	room (PAPS) M	la abolta To aGER	Desirem 2015	Watthe 2019	0.011	0.008 1 57E-01	1.6.7E-01						form	no / incufficiant neurar	eGER To Metabolite	Draisma 2015	Wu the 2019	152	.0.87 0	205 0 016E-02	966E-01	2 976E-01	3 008E-01	2 892E-01	0.302	hafura	07 Ibdilk elit
0	conte	score (rourd) in	a abora to con a	Danona 2015	Walke 2017	0.011	0.000 1. 5712-01	1.0 715-01						ione	ito / invane cin power	corre to meanore	Dimenti 2015	Wu ucc 2017	1.72	-0. 07 0	100002		2.77012-01	5.0001.01	2.0722701	0.004	beanc	Owes
		In area ariance																										o / nonfficient
C8	UACR	weigh ed														UACR To Metabolic	Draisma 2015	Teamer 2019	21	0.033 0	139 8 105E-01	105E-01					after	ower
		Robust adjusted profile																								No conifica	*	o / profficient
C8	UACR	score (RAPS) M	le abolte To UACR	Draisma 2015	Teamer 2019	-0.007	0.0.387.8E-01	8 786E-01					-	fore	no / insufficient power	UACR To Metabolic	Draisma 2015	Teamer 2019	25	0.131 0	137 3 382E-01	509E-01	3.0 3E-02	2 283E-02	8 016E-01	0.033 ou liers	* before	ower
		Robust adjusted profile													ves same direction of beta													o / nsufficient
C81	CKD	score (RAPS) M	le abol te To CKD	Draisma 2015	Wuttke 2019	0.308	0.10 3.095E-03	.02 E-02	.03 E-01	5.581E-01	3.160E-01	0.33	et	fore	n KORA	CKD To Metabolite	Draisma 2015	Wu tke 2019	12	0.022	0.0 5 809E-01	.8 E-01	1.651E-01	1.210E-01	8.252E-01	0.157	before	ower
	-	ou li ers-corrected													ves same direction of beta													
C81	eGFR	Wald ratio M	le abol te To eGFR	Draisma 2015	Wuttke 2019 1	-0.038	0.005 3.906E-12	3.515E-11					fe	er	n KORA													
								-	-		-										-			-	-			es same
1		Robust adjusted profile													yes same direction of beta													irection of
C81	eGFR	score (RAPS) M	le abol te To eGFR	Draisma 2015	Wuttke 2019	-0.028	0.005 9.355E-10	6.081E-09	1.751E-02	5.065E-02	3.589E-01	0.157	ct	fore	n KORA	eGFR To Metabol te	Draisma 2015	Wu tke 2019	161	-0.879	0.25 383E-0	.753E-03	2. 2E-01	2.398E-01	3.981E-01	0 26	before	eta in KORA
		Robust adjusted profile							-						yes same direction of beta													o / nsufficient
C81	UACR	score (RAPS) M	le abol te To UACR	Draisma 2015	Teumer 2019	-0.072	0.022 1.08 E-03	2.3 9E-03	9.129E-01	7.726E-01	9.265E-01	0.927	ct	fore	n KORA	UACR To Metaboli e	Draisma 2015	Teumer 2019	25	-0.0 6 0	11 68 E-01	.8 E-01	5.150E-01	.8 7E-01	.918E-01	0.552	before	ower
		Robust adjusted profile													yes same direction of beta													o / nsufficient
Tyr	CKD	score (RAPS) M	le abol te To CKD	Draisma 2015	Wuttke 2019 3	-0.65	0.239 6.502E-03	.226E-02	1.931E-01	5.297E-01	3.383E-01		ct	fore	n KORA	CKD To Metabolite	Draisma 2015	Wu tke 2019	12	-0.028 0	021 1 915E-01	.830E-01	3. 37E-01	2.857E-01	6.396E-01	0.331	before	ower
		ou li ers-corrected													yes same direction of beta													
Tyr	eGFR	Wald ratio M	le abol te To eGFR	Draisma 2015	Wuttke 2019 1	0.0 5	0.013 5.162E-0	1.162E-03					fe	er	n KORA													
		Robust adjusted profile													yes same direction of beta													o / nsufficient
Tyr	eGFR	score (RAPS) M	le abol te To eGFR	Draisma 2015	Wuttke 2019 3	0.052	0.011 9.790E-07	.2 3E-06	1.2 1E-02	5.529E-01	2.112E-01		et	fore	n KORA	eGFR To Metabol te	Draisma 2015	Wu tke 2019	162	0.22 0	132 9 01 E-02	.605E-01	7.293E-02	6.776E-02	6.022E-01	0.08	before	ower
		ou li ers-corrected																										
	1	In erse ariance																										o / nsufficient
Туг	UACR	weigh ed														UACR To Metaboli e	Draisma 2015	Teumer 2019	22	-00 0	061 5 110E-01	.110E-01					after	ower
-	ULCE	Robust adjusted profile	L L T LLCD				0.05 5.0555	C 07771 01	a occur e :	1.00010	6 61 6T 01			-	1	ULCONT NO. 1 C		- 2010	25				1.7.07.67	L DOCTL CT	7 6305 01	No s gnificar	*	o / nsufficient
Tyr	UACR	score (RAPS) M	le abol te To UACR	Drasma 2015	Teumer 2019 3	-0.031	0.05 5.367E-01	6.97/E-01	3.066E-01	1.892E-01	6.515E-01		et	lore	no / insufficient power	UACR To Metaboli e	Draisma 2015	Teumer 2019	25	-0.003 0	061 9 557E-01	.557E-01	1.7 9E-02	1_306E-02	7.529E-01	0.027 ou liers	before	ower

Supplementary Table 27. Multi-omics prediction of incident CKD in hyperglycemic individuals of KORA F4.

Over 100 times of bootstrapping, the mean (\pm SD) and median AUC (95% *CI*) of predictive models built by each number of levels of omics predictors for each omics combination in each reference set are shown, respectively. AUC values were calculated with random forest using testing data.

ref 1: baseline age, sex; ref 2: baseline age, sex, BMI, systolic blood pressure, smoking status, triglyceride, total cholesterol, HDL cholesterol, fasting glucose, use of lipid lowering drugs, antihypertensive and anti-diabetic medication; ref 3: baseline age, sex, eGFR and UACR; ref 4: baseline age, eGFR, UACR, total cholesterol, fasting glucose, SM C18:1 and PC aa C38:0.

Abbreviations: AUC, area under the receiver operating characteristic curve; GPS, genome wide polygenic score of eGFR values; CKD, chronic kidney disease; eGFR, estimated glomerular filtration rate; UACR, urinary albumin-to-creatinine ratio.

num.omics.l							
evels.combi ne	ref	model	combination	mean.SampleS ize.train	mean.Sample Size.test	median.95CLAUC.test	mean.SD.AUC.t est
two levels	ref1	ref	ref_Metabolites	744	274	0 694(0 639 - 0 75)	0 694 +/- 0 033
two levels	ref1	ref + 1omics	ref_Metabolites	744	274	0 7(0 629 - 0 759)	0 7 +/- 0 035
two levels	ref1	ref	ref GPS	680	251	0 708(0 647 - 0 764)	0 707 +/- 0 034
two levels	ref1	ref + 1omics	ref_GPS	680	251	0 718(0 666 - 0 774)	0 721 +/- 0 031
three levels	ref1	ref	ref_GPS_Metabolites	673	248	0 709(0 645 - 0 765)	0 708 +/- 0 033
three levels	ref1	ref + GPS	ref_GPS_Metabolites	673	248	0 722(0 658 - 0 773)	0 722 +/- 0 032
three levels	ref1	ref + GPS + 1omics	ref_GPS_Metabolites	673	248	0 732(0 68 - 0 788)	0 73 +/- 0 03
four levels	ref1	ref	ref GPS CpGs Metabolites	502	185	0 697(0 621 - 0 771)	0 694 +/- 0 043
four levels	ref1	ref + GPS	ref_GPS_CpGs_Metabolites	502	185	0 702(0 623 - 0 781)	0 7 +/- 0 041
four levels	ref1	ref + GPS + 1omics	ref_GPS_CpGs_Metabolites	502	185	0 682(0 631 - 0 758)	0 686 +/- 0 035
four levels	ref1	ref + GPS + 2omics	ref GPS CpGs Metabolites	502	185	0 684(0 61 - 0 74)	0 68 +/- 0 032
three levels	ref1	ref	ref_GPS_CpGs	507	186	0 698(0 624 - 0 764)	0 693 +/- 0 04
three levels	ref1	ref + GPS	ref_GPS_CpGs	507	186	0 708(0 631 - 0 776)	0 704 +/- 0 04
three levels	ref1	ref + GPS + 1omics	ref_GPS_CpGs ref_GPS_CpGs_Proteins_Ma	507	186	0 682(0 622 - 0 747)	0 685 +/- 0 035
five levels	ref1	ref	tabolites	390	144	0 624(0 52 - 0 709)	0 625 +/- 0 052
five levels	ref1	ref + GPS	tabolites	390	144	0 662(0 549 - 0 74)	0 658 +/- 0 053
five levels	ref1	ref + GPS + 1omics	tabolites	390	144	0 673(0 569 - 0 777)	0 673 +/- 0 055
five levels	ref1	ref + GPS + 2omics	tabolites	390	144	0 678(0 583 - 0 771)	0 678 +/- 0 053
five levels	ref1	ref + GPS + 3omics	ref_GPS_CpGs_Proteins_Me tabolites	390	144	0 685(0 606 - 0 766)	0 684 +/- 0 047
three levels	ref1	ref	ref_GPS_Proteins	418	155	0 625(0 527 - 0 708)	0 623 +/- 0 052
three levels	ref1	ref + GPS	ref_GPS_Proteins	418	155	0 662(0 565 - 0 745)	0 661 +/- 0 049
three levels	ref1	ref + GPS + 1omics	ref GPS Proteins	418	155	0 693(0 608 - 0 79)	0 694 +/- 0 052
four levels	ref1	ref	ref_GPS_Proteins_Metabolit es	413	154	0 632(0 518 - 0 711)	0 628 +/- 0 051
four levels	ref1	ref + GPS	ref_GPS_Proteins_Metabolit es	413	154	0 657(0 557 - 0 733)	0 652 +/- 0 05
four levels	ref1	ref + GPS + 1omics	ref_GPS_Proteins_Metabolit es	413	154	0 681(0 594 - 0 767)	0 679 +/- 0 051
four levels	ref1	ref + GPS + 2omics	ref_GPS_Proteins_Metabolit es	413	154	0 694(0 602 - 0 773)	0 693 +/- 0 045
three levels	ref1	ref	ref GPS RNAs	247	90	0 655(0 553 - 0 741)	0 653 +/- 0 054
three levels	ref1	ref + GPS	ref_GPS_RNAs	247	90	0 653(0 572 - 0 735)	0 659 +/- 0 045
three levels	ref1	ref + GPS + 1omics	ref_GPS_RNAs	247	90	0 6(0 485 - 0 705)	0 606 +/- 0 053
two levels	ref1	ref	ref CpGs	558	205	0 691(0 618 - 0 756)	0 687 +/- 0 04
two levels	ref1	ref + 1omics	ref_CpGs	558	205	0 661(0 586 - 0 733)	0 663 +/- 0 038
two levels	ref1	ref	ref_Proteins	440	163	0 629(0 518 - 0 706)	0 626 +/- 0 049
two levels	ref1	ref + 1omics	ref_Proteins	440	163	0 668(0 581 - 0 754)	0 671 +/- 0 05
two levels	ref1	ref	ref_RNAs	277	102	0 657(0 575 - 0 761)	0 659 +/- 0 049
two levels	ref1	ref + 1omics	ref_RNAs	277	102	0 622(0 539 - 0 694)	0 619 +/- 0 046
two levels	ref2	ref	ref_Metabolites	743	274	0 72(0 664 - 0 769)	0 718 +/- 0 028
two levels	ref2	ref + 1omics	ref_Metabolites	743	274	0 725(0 667 - 0 773)	0 724 +/- 0 028
two levels	ref2	ref	ref GPS	677	250	0 727(0 664 - 0 78)	0 726 +/- 0 03
two levels	ref2	ref + 1omics	ref_GPS	677	250	0 748(0 695 - 0 798)	0 747 +/- 0 027

three levels	ref2	ref	ref_GPS_Metabolites	672	248 0 723(0 661 - 0 779)	0 723 +/- 0 032	
three levels	ref2	ref + GPS	ref_GPS_Metabolites	672	248 0 744(0 687 - 0 796)	0 743 +/- 0 028	
three levels	ref2	ref + GPS + 1omics	ref_GPS_Metabolites	672	248 0 746(0 682 - 0 797)	0 744 +/- 0 028	
four levels	ref2	ref	ref_GPS_CpGs_Metabolites	501	184 0 689(0 614 - 0 747)	0 687 +/- 0 033	
four levels	ref2	ref + GPS	ref_GPS_CpGs_Metabolites	501	184 0 709(0 644 - 0 773)	0 707 +/- 0 033	
four levels	ref2	ref + GPS + 1omics	ref_GPS_CpGs_Metabolites	501	184 0 7(0 632 - 0 755)	0 698 +/- 0 032	
four levels	ref2	ref + GPS + 2omics	ref GPS CpGs Metabolites	501	184 0 689(0 607 - 0 753)	0 691 +/- 0 037	
three levels	ref2	ref	ref_GPS_CpGs	505	186 0 692(0 617 - 0 752)	0 69 +/- 0 033	
three levels	ref2	ref + GPS	ref_GPS_CpGs	505	186 0 712(0 644 - 0 773)	0 711 +/- 0 031	
three levels	ref2	ref + GPS + 1omics	ref GPS CpGs	505	186 0 693(0 615 - 0 771)	0 697 +/- 0 037	
five levels	ref?	ref	ref_GPS_CpGs_Proteins_Me	389	144 0 661(0 566 - 0 746)	0 661 +/- 0 045	
five levels	rof	rof CDS	ref_GPS_CpGs_Proteins_Me	380	144 0 602(0 613 0 776)	0.601 1/ 0.042	
live levels	reiz		ref_GPS_CpGs_Proteins_Me	200	144 0 692(0 615 - 0 776)	0.691 +/- 0.042	
five levels	ref2	ref + GPS + Tomics	ref_GPS_CpGs_Proteins_Me	389	144 0 685(0 606 - 0 784)	0 69 +/- 0 04 /	
five levels	ref2	ref + GPS + 2omics	tabolites ref_GPS_CpGs_Proteins_Me	389	144 0 688(0 602 - 0 788)	0 692 +/- 0 048	
five levels	ref2	ref + GPS + 3omics	tabolites	389	144 0 673(0 584 - 0 777)	0 678 +/- 0 05	
three levels	ref2	ref	ref_GPS_Proteins	416	154 0 668(0 586 - 0 748)	0 669 +/- 0 047	
three levels	ref2	ref + GPS	ref GPS Proteins	416	154 0 697(0 627 - 0 78)	0 699 +/- 0 04	
three levels	ref2	ref + GPS + 1omics	ref_GPS_Proteins ref_GPS_Proteins_Metabolit	416	154 0 705(0 63 - 0 81)	0 71 +/- 0 048	
four levels	ref2	ref	es ref GPS Proteins Metabolit	413	153 0 661(0 581 - 0 743)	0 663 +/- 0 047	
four levels	ref2	ref + GPS	es ref GPS Proteins Metabolit	413	153 0 689(0 619 - 0 769)	0 693 +/- 0 04	
four levels	ref2	ref + GPS + 1omics	es	413	153 0 696(0 601 - 0 789)	0 696 +/- 0 048	
four levels	ref2	ref + GPS + 2omics	es	413	153 0 705(0 606 - 0 777)	0 701 +/- 0 046	
three levels	ref2	ref	ref_GPS_RNAs	247	90 0 604(0 545 - 0 686)	0 607 +/- 0 041	
three levels	ref2	ref + GPS	ref GPS RNAs	247	90 0 632(0 556 - 0 711)	0 633 +/- 0 04	
three levels	ref2	ref + GPS + 1omics	ref_GPS_RNAs	247	90 0 615(0 522 - 0 683)	0 615 +/- 0 044	
two levels	ref2	ref	ref_CpGs	556	204 0 693(0 626 - 0 766)	0 69 +/- 0 035	
two levels	ref2	ref + 1omics	ref_CpGs	556	204 0 672(0 605 - 0 745)	0 674 +/- 0 038	
two levels	ref2	ref	ref_Proteins	438	162 0 67(0 586 - 0 747)	0 671 +/- 0 042	
two levels	ref2	ref + 1omics	ref_Proteins	438	162 0 689(0 605 - 0 784)	0 688 +/- 0 047	
two levels	ref2	ref	ref_RNAs	277	102 0 63(0 561 - 0 695)	0 629 +/- 0 038	
two levels	ref2	ref + 1omics	ref RNAs	277	102 0 622(0 518 - 0 688)	0 615 +/- 0 048	
two levels	ref3	ref	ref Metabolites	744	274 0 79(0 738 - 0 834)	0 788 +/- 0 026	
two levels	ref3	ref + 1omics	ref Metabolites	744	274 0 806(0 756 - 0 857)	0 806 +/- 0 027	
two levels	ref3	raf	ref GPS	680	251 0 802(0 758 - 0 855)	0.801 1/ 0.026	
two levels	nef2			680	251 0 802(0 771 0 867)	0.82 + / 0.025	
throad a start	rof2	rof	rof CDS Matcheller	680	249 0 902(0 752 - 0.95)	0 802 +/- 0 023	
inree levels	reis	ref	rei_GPS_Metabolites	673	248 0 803(0 753 - 0 85)	0 802 +/- 0 027	
inree levels	reis	ret + GPS	rei_GPS_Metabolites	673	248 0 822(0 775 - 0 868)	0 822 +/- 0 026	
three levels	ret3	ret + GPS + lomics	ret_GPS_Metabolites	673	248 0 824(0 771 - 0 874)	0 824 +/- 0 027	
four levels	ref3	ref	ref_GPS_CpGs_Metabolites	502	185 0 779(0 717 - 0 84)	0 777 +/- 0 033	
four levels	ref3	ref + GPS	ref_GPS_CpGs_Metabolites	502	185 0 8(0 728 - 0 855)	0 799 +/- 0 032	
four levels	ref3	ref + GPS + 1omics	ref_GPS_CpGs_Metabolites	502	185	0 793(0 742 - 0 848)	0 796 +/- 0 029
--------------	------	--------------------	---------------------------------------	-----	-----	----------------------	-----------------
four levels	ref3	ref + GPS + 2omics	ref_GPS_CpGs_Metabolites	502	185	0 793(0 742 - 0 844)	0 792 +/- 0 029
three levels	ref3	ref	ref_GPS_CpGs	507	186	0 785(0 72 - 0 84)	0 778 +/- 0 033
three levels	ref3	ref + GPS	ref_GPS_CpGs	507	186	0 804(0 743 - 0 852)	0 801 +/- 0 03
three levels	ref3	ref + GPS + 1omics	ref_GPS_CpGs	507	186	0 796(0 728 - 0 842)	0 793 +/- 0 031
five levels	ref3	ref	ref_GPS_CpGs_Proteins_Me tabolites	390	144	0 729(0 648 - 0 798)	0 726 +/- 0 041
five levels	ref3	ref + GPS	ref_GPS_CpGs_Proteins_Me tabolites	390	144	0 755(0 667 - 0 817)	0 756 +/- 0 039
five levels	ref3	ref + GPS + 1omics	ref_GPS_CpGs_Proteins_Me tabolites	390	144	0 765(0 686 - 0 848)	0 764 +/- 0 042
five levels	ref3	ref + GPS + 2omics	ref_GPS_CpGs_Proteins_Me tabolites	390	144	0 768(0 672 - 0 85)	0 762 +/- 0 041
five levels	ref3	ref + GPS + 3omics	ref_GPS_CpGs_Proteins_Me tabolites	390	144	0 758(0 683 - 0 817)	0 759 +/- 0 035
three levels	ref3	ref	ref_GPS_Proteins	418	155	0 731(0 65 - 0 793)	0 731 +/- 0 038
three levels	ref3	ref + GPS	ref_GPS_Proteins	418	155	0 764(0 682 - 0 83)	0 765 +/- 0 039
three levels	ref3	ref + GPS + 1omics	ref GPS Proteins	418	155	0 782(0 695 - 0 847)	0 778 +/- 0 037
four levels	ref3	ref	ref_GPS_Proteins_Metabolit	413	154	0 731(0 642 - 0 794)	0 729 +/- 0 041
four levels	ref3	ref ± GPS	ref_GPS_Proteins_Metabolit	413	154	0 759(0 675 - 0 822)	0.76 ±/- 0.04
four levels	rof2	ref + CDS + 1emics	ref_GPS_Proteins_Metabolit	413	154	0.772(0.6060.842)	0.760 +/-0.028
four levels		rel + GPS + Tomics	ref_GPS_Proteins_Metabolit	415	154	0 772(0 896 - 0 842)	0 709 +/- 0 038
four levels	ret3	ref + GPS + 2omics	es	413	154	0 /85(0 /19 - 0 842)	0 /81 +/- 0 034
three levels	ref3	ref	ref_GPS_RNAs	247	90	0 77(0 693 - 0 863)	0 773 +/- 0 042
three levels	ref3	ref + GPS	ref_GPS_RNAs	247	90	0 79(0 714 - 0 859)	0 788 +/- 0 039
three levels	ref3	ref + GPS + 1omics	ref_GPS_RNAs	247	90	0 789(0 711 - 0 853)	0 786 +/- 0 04
two levels	ref3	ref	ref_CpGs	558	205	0 775(0 713 - 0 826)	0 772 +/- 0 031
two levels	ref3	ref + 1omics	ref_CpGs	558	205	0 779(0 716 - 0 834)	0 777 +/- 0 031
two levels	ref3	ref	ref_Proteins	440	163	0 719(0 631 - 0 778)	0 718 +/- 0 039
two levels	ref3	ref + 1omics	ref Proteins	440	163	0 762(0 69 - 0 827)	0 76 +/- 0 037
two levels	ref3	ref	ref_RNAs	277	102	0 766(0 68 - 0 854)	0 767 +/- 0 041
two levels	ref3	ref + 1omics	ref_RNAs	277	102	0 778(0 699 - 0 866)	0 777 +/- 0 041
two levels	ref4	ref	ref_Metabolites	744	274	0 826(0 775 - 0 856)	0 821 +/- 0 023
two levels	ref4	ref + 1omics	ref_Metabolites	744	274	0 818(0 778 - 0 86)	0 82 +/- 0 024
two levels	ref4	ref	ref_GPS	673	248	0 826(0 779 - 0 864)	0 823 +/- 0 024
two levels	ref4	ref + 1omics	ref_GPS	673	248	0 832(0 784 - 0 878)	0 831 +/- 0 026
three levels	ref4	ref	ref GPS Metabolites	673	248	0 826(0 779 - 0 864)	0 823 +/- 0 024
three levels	ref4	ref + GPS	ref_GPS_Metabolites	673	248	0 832(0 784 - 0 878)	0 831 +/- 0 026
three levels	ref4	ref + GPS + 1omics	ref_GPS_Metabolites	673	248	0 833(0 786 - 0 869)	0 83 +/- 0 023
four levels	ref4	ref	ref GPS CpGs Metabolites	502	185	0 8(0 743 - 0 851)	0 799 +/- 0 027
four levels	ref4	ref + GPS	ref_GPS_CpGs_Metabolites	502	185	0 811(0 757 - 0 859)	0 807 +/- 0 027
four levels	ref4	ref + GPS + 1omics	ref_GPS_CpGs_Metabolites	502	185	0 803(0 753 - 0 856)	0 802 +/- 0 029
four levels	ref4	ref + GPS + 2omics	ref_GPS_CpGs_Metabolites	502	185	0 802(0 751 - 0 846)	0 804 +/- 0 026
three levels	ref4	ref	ref_GPS_CpGs	502	185	0 8(0 743 - 0 851)	0 799 +/- 0 027
three levels	ref4	ref + GPS	ref_GPS_CpGs	502	185	0 811(0 757 - 0 859)	0 807 +/- 0 027
three levels	ref4	ref + GPS + 1omics	ref_GPS_CpGs	502	185	0 804(0 742 - 0 862)	0 801 +/- 0 03

			ref GPS CpGs Proteins Me			
five levels	ref4	ref	tabolites	390	144 0 777(0 68 - 0 846)	0 775 +/- 0 039
			ref_GPS_CpGs_Proteins_Me			
five levels	ref4	ref + GPS	tabolites	390	144 0 783(0 694 - 0 849	9) 0 781 +/- 0 04
			ref_GPS_CpGs_Proteins_Me			
five levels	ref4	ref + GPS + 1omics	tabolites	390	144 0 779(0 695 - 0 836	5) 0 777 +/- 0 037
			ref_GPS_CpGs_Proteins_Me			
five levels	ref4	ref + GPS + 2omics	tabolites	390	144 0 774(0 673 - 0 83)	0 769 +/- 0 04
			ref_GPS_CpGs_Proteins_Me			
five levels	ref4	ref + GPS + 3omics	tabolites	390	144 0 77(0 658 - 0 832)	0 766 +/- 0 048
	64	c	CODE D	110	154 0 502/0 (04 0 02)	
three levels	ret4	ret	ref_GPS_Proteins	413	154 0 783(0 694 - 0 838	3) 0779 +/- 0039
41		ref + CDS	auf CDS Destains	412	154 0 785(0 606 0 85	0.785 / 0.04
three levels	re14	rei + GPS	rer GPS Proteins	413	154 0 785(0 696 - 0 85.	5) 0 785 +/- 0 04
three levels	rof/	ref CPS 1omics	raf GPS Protains	413	154 0 784(0 702 0 85	0.783 / 0.038
unce levels	1014		ref GPS Proteins Metabolit	415	134 0 784(0 702 - 0 832	2) 0783 +/= 0038
four levels	ref4	ref	es	413	154 0 783(0 694 - 0 83)	0.779 ± 0.039
iour revers	1014		ref GPS Proteins Metabolit	415	154 0 705(0 054 0 050	5) 011511 0055
four levels	ref4	ref + GPS	es	413	154 0 785(0 696 - 0 853	3) 0 785 +/- 0 04
	-		ref GPS Proteins Metabolit			
four levels	ref4	ref + GPS + 1omics	es	413	154 0 787(0 705 - 0 852	2) 0 784 +/- 0 038
			ref_GPS_Proteins_Metabolit			
four levels	ref4	ref + GPS + 2omics	es	413	154 0 782(0 717 - 0 837	7) 0 783 +/- 0 037
three levels	ref4	ref	ref_GPS_RNAs	243	89 0 787(0 716 - 0 865	5) 0 788 +/- 0 038
three levels	ref4	ref + GPS	ref GPS RNAs	243	89 0 797(0 728 - 0 867	7) 0 797 +/- 0 037
three levels	ref4	ref + GPS + 1omics	ref_GPS_RNAs	243	89 0 79(0 708 - 0 853)	0 788 +/- 0 041
two levels	ret4	ref	ref_CpGs	553	203 0 805(0 756 - 0 853	3) 0 801 +/- 0 026
4		and a lowing		552	202 0 705(0 74 0 846)	0.702 // 0.028
two ievers	rei4	rei + romics	rei CpGs	333	203 0 793(0 74 - 0 840)	0 /95 +/- 0 028
two levels	rof/	rəf	ref Proteins	136	161 0 781(0 687 0 83	3) 0.775 / 0.030
two levels	1014	lei	Tet_Flotenis	430	101 0 /81(0 08/ - 0 85.	5) 0775 +/- 0059
two levels	ref4	ref + 1omics	ref Proteins	436	161 0 776(0 686 - 0 84/	1) 0.77 ± 0.041
		ier i ronnes			101 0 770(0 000 - 0 04-	., 07777 0041
two levels	ref4	ref	ref RNAs	274	100 0 786(0 721 - 0 859	0 789 +/- 0 036
two levels	ref4	ref + 1omics	ref_RNAs	274	100 0 782(0 72 - 0 855)	0 785 +/- 0 036

Supplementary Table 28. The mean value of coefficients and the selected times and frequency of the top five selected candidates for each combination in four reference sets over 100 times of bootstrapping.

Over 100 times of bootstrapping, the mean value of coefficients, the selected times and frequency of the top five selected features using priority lasso for each omics combination in each reference set are presented. ref₁: baseline age, sex; ref₂ : baseline age, sex, BMI, systolic blood pressure, smoking status, triglyceride, total cholesterol, HDL cholesterol, fasting glucose, use of lipid lowering drugs, antihypertensive and anti-diabetic medication; ref₃: baseline age, sex, eGFR and UACR; ref₄: baseline age, eGFR, UACR, total cholesterol, fasting glucose, SM C18:1 and PC aa C38:0.

Abbreviations: GPS, genome wide polygenic score of eGFR values; CKD, chronic kidney disease; eGFR, estimated glomerular filtration rate; UACR, urinary albumin-to-creatinine ratio.

num.omics levels.					Selected.	Selected.	
combine	ref	combination	Predictor	mean.coef	Times	rate	rank
two levels	ref1	ref CpGs	NAPA	-0.113	52	0.52	1
two levels	ref1	ref CpGs	LYL1	-0.077	40	0.4	2
two levels	ref1	ref_CpGs	NEURL3	0.055	30	0.3	3
two levels	ref1	ref_CpGs	ACSL1	-0.01	28	0.28	4
two levels	ref1	ref_CpGs	CCDC39	0.062	26	0.26	5
two levels	ref1	ref_RNAs	PNLIPRP2	-0.156	55	0.55	1
two levels	ref1	ref_RNAs	NKD2	0.085	25	0.25	2
two levels	ref1	ref_RNAs	ARG1	0.051	20	0.2	3
two levels	ref1	ref_RNAs	TFE3	-0.104	19	0.19	4
two levels	ref1	ref_RNAs	DUSP11	-0.124	16	0.16	5
two levels	ref1	ref_Proteins	CST3	0.211	90	0.9	1
two levels	ref1	ref_Proteins	EGFR	-0.1	44	0.44	2
two levels	ref1	ref_Proteins	TFF3	0.092	34	0.34	3
two levels	ref1	ref_Proteins	B2M	0.096	26	0.26	4
two levels	ref1	ref_Proteins	MAPK12	0.11	21	0.21	5
two levels	ref1	ref_Metabolites	C5	0.148	79	0.79	1
two levels	ref1	ref_Metabolites	C18:1	0.109	60	0.6	2
two levels	ref1	ref_Metabolites	PC aa C38:0	0.106	54	0.54	3
two levels	ref1	ref_Metabolites	C12	0.118	45	0.45	4
two levels	ref1	ref_Metabolites	Tyr	-0.062	26	0.26	5
three levels	ref1	ref_GPS_CpGs	NAPA	-0.097	44	0.44	1
three levels	ref1	ref_GPS_CpGs	ACSL1	-0.083	39	0.39	2
three levels	ref1	ref_GPS_CpGs	LYL1	-0.101	36	0.36	3
three levels	ref1	ref_GPS_CpGs	TLN2	0.07	29	0.29	4
three levels	ref1	ref_GPS_CpGs	NEURL3	0.086	24	0.24	5
three levels	ref1	ref_GPS_RNAs	PNLIPRP2	-0.139	40	0.4	1
three levels	ref1	ref_GPS_RNAs	TFE3	-0.138	27	0.27	2
three levels	ref1	ref_GPS_RNAs	DUSP11	-0.117	23	0.23	3
three levels	ref1	ref_GPS_RNAs	PAX8	-0.098	20	0.2	4
three levels	ref1	ref_GPS_RNAs	ABCB1	-0.098	19	0.19	5
three levels	ref1	ref_GPS_Proteins	CST3	0.171	74	0.74	1
three levels	ref1	ref_GPS_Proteins	EGFR	-0.129	68	0.68	2
three levels	ref1	ref_GPS_Proteins	TFF3	0.102	32	0.32	3
three levels	ref1	ref_GPS_Proteins	FGF20	-0.096	26	0.26	4
three levels	ref1	ref_GPS_Proteins	MAPK12	0.12	25	0.25	5
three levels	ref1	ref_GPS_Metabolites	C5	0.193	90	0.9	1
three levels	ref1	ref_GPS_Metabolites	C18:1	0.13	71	0.71	2
three levels	ref1	ref_GPS_Metabolites	C6(C4:1-DC)	0.104	40	0.4	3
three levels	ref1	ref_GPS_Metabolites	C8:1	0.069	37	0.37	4
three levels	ref1	ref_GPS_Metabolites	C12	0.074	28	0.28	5
		ref_GPS_Proteins_Me					
four levels	ref1	tabolites	CST3	0.167	64	0.64	1
	61	ref_GPS_Proteins_Me					_
tour levels	retl	tabolites	EGFR	-0.148	59	0.59	2
form 101-	"of1	ret_GPS_Proteins_Me	C5	0.146	4.5	0.45	2
10ur ieveis	ren	tabonites	U	0.146	45	0.45	3

four lovals	rof1	ref_GPS_Proteins_Me	C19.1	0.14	42	0.42	4
Iour levels	ren	raf CDS Protains Ma	C18:1	0.14	43	0.45	4
four levels	ref1	tabolites	C6(C4:1-DC)	0.155	39	0.39	5
		ref GPS CpGs Meta					
four levels	ref1	bolites	C5	0.194	76	0.76	1
		ref_GPS_CpGs_Meta					
four levels	ref1	bolites	LYL1	-0.128	44	0.44	2
		ref_GPS_CpGs_Meta					
four levels	ref1	bolites	ACSL1	-0.094	38	0.38	3
		ref_GPS_CpGs_Meta					
four levels	ref1	bolites	NAPA	-0.103	37	0.37	4
	61	ref_GPS_CpGs_Meta		0.007	20	0.0	_
four levels	refl	bolites	TLN2	0.097	30	0.3	5
five levels	rof1	rel_GPS_CpGs_Prote	CST3	0 167	86	0.86	1
live levels	IeII	ref GPS CpGs Prote	CS15	0.107	80	0.80	1
five levels	ref1	ins Metabolites		-0 166	64	0.64	2
	1011	ref GPS CpGs Prote	LILI	-0.100	04	0.04	
five levels	ref1	ins Metabolites	EGFR	-0.125	57	0.57	3
		ref GPS CpGs Prote					
five levels	ref1	ins_Metabolites	C5	0.155	42	0.42	4
		ref_GPS_CpGs_Prote					
five levels	ref1	ins_Metabolites	C6(C4:1-DC)	0.174	39	0.39	5
two levels	ref2	ref_CpGs	NAPA	-0.115	50	0.5	1
two levels	ref2	ref CpGs	LYL1	-0.103	36	0.36	2
two levels	ref2	ref_CpGs	NEURL3	0.067	30	0.3	3
two levels	ref2	ref_CpGs	LYSMD2	-0.044	30	0.3	4
two levels	ref2	ref_CpGs	TLN2	-0.001	29	0.29	5
two levels	ref2	ref_RNAs	PNLIPRP2	-0.18	53	0.53	1
two levels	ref2	ref_RNAs	TFE3	-0.118	32	0.32	2
two levels	ref2	ref_RNAs	PCGF2	0.084	30	0.3	3
two levels	ref2	ref_RNAs	DUSP11	-0.147	26	0.26	4
two levels	ref2	ref_RNAs	ARG1	0.032	24	0.24	5
two levels	ref2	ref_Proteins	CST3	0.136	66	0.66	1
two levels	ref2	ref_Proteins	GHR	-0.109	44	0.44	2
two levels	ref2	ref_Proteins	EGFR	-0.087	32	0.32	3
two levels	ref2	ref_Proteins	FGF20	-0.118	29	0.29	4
two levels	ref2	ref_Proteins	MAPK12	0.097	22	0.22	5
two levels	ref2	ref_Metabolites	PC aa C38:0	0.162	85	0.85	1
two levels	ref2	ref_Metabolites	C12	0.12	56	0.56	2
two levels	ref2	ref_Metabolites	C18:1	0.105	55	0.55	3
two levels	ref2	ref_Metabolites	C5	0.112	50	0.5	4
two levels	ref2	ref_Metabolites	SM C18:1	0.069	27	0.27	5
three levels	ref2	ref_GPS_CpGs	NAPA	-0.118	40	0.4	1
three levels	ref2	ref_GPS_CpGs	ACSL1	-0.075	33	0.33	2
three levels	ref2	ref GPS CpGs	LYL1	-0.116	31	0.31	3
three levels	ref2	ref_GPS_CpGs	TLN2	0.063	26	0.26	4
three levels	ref2	ref_GPS_CpGs	NEURL3	0.096	24	0.24	5
three levels	ref2	ref_GPS_RNAs	PNLIPRP2	-0.141	44	0.44	1

three levels	ref2	ref_GPS_RNAs	DUSP11	-0.143	43	0.43	2
three levels	ref2	ref_GPS_RNAs	TFE3	-0.143	37	0.37	3
three levels	ref2	ref GPS RNAs	PCGF2	0.095	23	0.23	4
three levels	ref2	ref_GPS_RNAs	ABCB1	-0.082	19	0.19	5
three levels	ref2	ref_GPS_Proteins	EGFR	-0.127	58	0.58	1
three levels	ref2	ref_GPS_Proteins	CST3	0.117	54	0.54	2
three levels	ref2	ref GPS Proteins	GHR	-0.109	54	0.54	3
three levels	ref2	ref GPS Proteins	MAPK12	0.11	32	0.32	4
three levels	ref2	ref GPS Proteins	FGF20	-0.108	30	0.3	5
three levels	ref2	ref GPS Metabolites	C18:1	0.124	64	0.64	1
three levels	ref2	ref GPS Metabolites	C5	0.161	64	0.64	2
three levels	ref2	ref GPS Metabolites	PC aa C38:0	0.11	45	0.45	3
three levels	ref2	ref GPS Metabolites	SM C18:1	0.094	38	0.38	4
three levels	ref2	ref GPS Metabolites	C12	0.093	37	0.37	5
	1012	ref GPS Proteins Me	012	0.075	51	0.57	5
four levels	ref2	tabolites	EGFR	-0.115	56	0.56	1
		ref GPS Proteins Me					
four levels	ref2	tabolites	CST3	0.1	47	0.47	2
		ref_GPS_Proteins_Me					
four levels	ref2	tabolites	GHR	-0.12	41	0.41	3
		ref_GPS_Proteins_Me					
four levels	ref2	tabolites	MAPK12	0.11	35	0.35	4
		ref_GPS_Proteins_Me					
four levels	ref2	tabolites	FGF20	-0.118	30	0.3	5
		ref_GPS_CpGs_Meta					
four levels	ref2	bolites	C5	0.151	60	0.6	1
		ref_GPS_CpGs_Meta					
four levels	ref2	bolites	NAPA	-0.112	40	0.4	2
		ref_GPS_CpGs_Meta					
four levels	ref2	bolites	LYLI	-0.128	37	0.37	3
f1		ref_GPS_CpGs_Meta	A CGI 1	0.075	22	0.22	1
four levels	re12	bolites	ACSLI	-0.075	33	0.33	4
four lovals	rof	rel_GPS_CpGs_Meta	C12	0.114	21	0.21	5
	Tel2	ref GPS CpGs Prote	C12	0.114	51	0.51	5
five levels	rof?	ins Metabolites	CST3	0.111	54	0.54	1
	1012	ref GPS CpGs Prote	0015	0.111	54	0.54	1
five levels	ref2	ins Metabolites	LYL1	-0 181	49	0 49	2
	1012	ref GPS CpGs Prote		0.101		0.15	
five levels	ref2	ins Metabolites	EGFR	-0.127	48	0.48	3
		ref GPS CpGs Prote					-
five levels	ref2	ins Metabolites	NAPA	-0.102	32	0.32	4
		ref_GPS_CpGs_Prote					
five levels	ref2	ins_Metabolites	GHR	-0.115	32	0.32	5
two levels	ref3	ref_CpGs	LYL1	-0.101	47	0.47	1
two levels	ref3	ref_CpGs	NAPA	-0.091	45	0.45	2
two levels	ref3	ref_CpGs	TLN2	0.082	33	0.33	3
two levels	ref3	ref_CpGs	NEURL3	0.039	30	0.3	4
two levels	ref3	ref CpGs	ACSL1	0.055	29	0.29	5
two levels	ref3	ref RNAs	PNLIPRP2	-0.162	36	0.36	1
two levels	ref3	ref RNAs	TFE3	-0.096	21	0.21	2
			-		. – .		

two levels	ref3	ref_RNAs	SLC22A4	-0.07	20	0.2	3
two levels	ref3	ref_RNAs	AGK	-0.158	20	0.2	4
two levels	ref3	ref_RNAs	PCGF2	0.099	19	0.19	5
two levels	ref3	ref_Proteins	GHR	-0.135	39	0.39	1
two levels	ref3	ref_Proteins	IL2	0.1	21	0.21	2
two levels	ref3	ref_Proteins	TFF3	0.1	21	0.21	3
two levels	ref3	ref_Proteins	FGF20	-0.062	20	0.2	4
two levels	ref3	ref_Proteins	SPINT1	0.056	16	0.16	5
two levels	ref3	ref_Metabolites	PC aa C38:0	0.147	76	0.76	1
two levels	ref3	ref_Metabolites	Tyr	-0.103	38	0.38	2
two levels	ref3	ref_Metabolites	C12	0.116	37	0.37	3
two levels	ref3	ref_Metabolites	C5	0.111	35	0.35	4
two levels	ref3	ref_Metabolites	C18:1	0.086	27	0.27	5
three levels	ref3	ref_GPS_CpGs	LYL1	-0.103	57	0.57	1
three levels	ref3	ref_GPS_CpGs	TLN2	0.1	43	0.43	2
three levels	ref3	ref_GPS_CpGs	NAPA	-0.091	35	0.35	3
three levels	ref3	ref_GPS_CpGs	NEURL3	0.007	31	0.31	4
three levels	ref3	ref_GPS_CpGs	LYSMD2	0.084	31	0.31	5
three levels	ref3	ref_GPS_RNAs	AGK	-0.16	35	0.35	1
three levels	ref3	ref_GPS_RNAs	DUSP11	-0.126	32	0.32	2
three levels	ref3	ref_GPS_RNAs	PNLIPRP2	-0.132	27	0.27	3
three levels	ref3	ref_GPS_RNAs	PCGF2	0.117	23	0.23	4
three levels	ref3	ref_GPS_RNAs	TFE3	-0.141	22	0.22	5
three levels	ref3	ref_GPS_Proteins	GHR	-0.137	46	0.46	1
three levels	ref3	ref_GPS_Proteins	FGF20	-0.064	27	0.27	2
three levels	ref3	ref_GPS_Proteins	IL2	0.091	23	0.23	3
three levels	ref3	ref_GPS_Proteins	MAPK12	0.093	21	0.21	4
three levels	ref3	ref_GPS_Proteins	TFF3	0.078	19	0.19	5
three levels	ref3	ref_GPS_Metabolites	C5	0.16	46	0.46	1
three levels	ref3	ref_GPS_Metabolites	PC aa C38:0	0.132	43	0.43	2
three levels	ref3	ref_GPS_Metabolites	Tyr	-0.118	39	0.39	3
three levels	ref3	ref_GPS_Metabolites	C18:1	0.115	33	0.33	4
three levels	ref3	ref_GPS_Metabolites	C6(C4:1-DC)	0.096	33	0.33	5
		ref_GPS_Proteins_Me					
four levels	ref3	tabolites	GHR	-0.139	41	0.41	1
	~	ref_GPS_Proteins_Me		0.150	22	0.00	
four levels	ref3	tabolites	PC aa C38:0	0.156	32	0.32	2
f1		ref_GPS_Proteins_Me	C5	0.12	21	0.21	2
iour ieveis	re13	ref GPS Proteins Ma	0	0.13	51	0.31	3
four levels	ref3	tabolites	$C6(C4 \cdot 1 - DC)$	0 133	25	0.25	Л
	1015	ref GPS Proteins Me		0.155	23	0.23	+
four levels	ref3	tabolites	C8:1	0 1 3 9	25	0.25	5
1				5.157	23	0.20	5

C 1 1		ref_GPS_CpGs_Meta	1 3/1 1	0.107	-7	0.57	1
four levels	ref3	bolites	LYLI	-0.137	57	0.57	1
four lovals	rof?	ref_GPS_CpGs_Meta	C5	0.152	40	0.40	2
Iour revers	Ters	ref GPS CpGs Meta		0.132	49	0.49	Z
four levels	ref3	holites	Tyr	-0 144	47	0.47	3
	1015	ref GPS CpGs Meta	1 yı	0.144	/	0.47	
four levels	ref3	bolites	PC aa C38:0	0.124	44	0.44	4
		ref GPS CpGs Meta					
four levels	ref3	bolites	TLN2	0.122	43	0.43	5
		ref_GPS_CpGs_Prote					
five levels	ref3	ins_Metabolites	LYL1	-0.191	67	0.67	1
		ref_GPS_CpGs_Prote					
five levels	ref3	ins_Metabolites	GHR	-0.143	47	0.47	2
		ref_GPS_CpGs_Prote					
five levels	ref3	ins_Metabolites	NAPA	-0.061	38	0.38	3
	~	ref_GPS_CpGs_Prote		0.110	24	0.04	
five levels	ref3	ins_Metabolites	LYSMD2	0.112	34	0.34	4
five levels	nof?	ref_GPS_CpGs_Prote	NELIDI 2	0.020	21	0.21	5
two levels	rei5	ms_metabolites	I VL 1	0.039	51	0.51	
two levels	rel4	rel_CpGs		-0.1	45	0.45	1
two levels	rei4	ref_CpGs	ILN2	0.081	31	0.31	2
two levels	rel4	rel_CpGs	NEURLS	0.02	27	0.27	3
two levels	ref4	ref_CpGs	LYSMD2	0.062	27	0.27	4
two levels	rei4	ref_CpGs		-0.072	25	0.25	3
two levels	ref4	ref_RNAs	PNLIPRP2	-0.158	4/	0.47	1
two levels	rei4	ref_KNAs	NKD2	0.082	28	0.28	2
two levels	ref4	ref_RNAs	DUSPII	-0.097	26	0.26	3
two levels	ref4	ref_RNAs	PCGF2	0.1	23	0.23	4
two levels	ref4	ref_RNAs	IFE3	-0.108	20	0.2	5
two levels	ref4	ref_Proteins	GHK	-0.132	44	0.44	1
two levels	ref4	ref_Proteins	FGF20	-0.091	39	0.39	2
two levels	ref4	ref_Proteins	SPINT	0.101	24	0.24	3
two levels	ret4	ref_Proteins	IL2	0.106	19	0.19	4
two levels	ref4	ref_Proteins	MAPK12	0.092	17	0.17	5
two levels	ret4	ref_Metabolites	C12	0.152	53	0.53	1
two levels	ret4	ref_Metabolites	C5	0.11	43	0.43	2
two levels	ref4	ref_Metabolites	C10:2	-0.13	40	0.4	3
two levels	ref4	ref_Metabolites	C18:1	0.092	39	0.39	4
two levels	ref4	ref Metabolites	Tyr	-0.109	39	0.39	5
three levels	ref4	ref_GPS_CpGs	LYL1	-0.147	46	0.46	1
three levels	ref4	ref_GPS_CpGs	NEURL3	-0.017	30	0.3	2
three levels	ref4	ref_GPS_CpGs	ACSL1	-0.021	28	0.28	3
three levels	ref4	ref_GPS_CpGs	NAPA	-0.073	28	0.28	4
three levels	ref4	ref_GPS_CpGs	TLN2	0.123	24	0.24	5
three levels	ref4	ref_GPS_RNAs	PNLIPRP2	-0.145	37	0.37	1
three levels	ref4	ref GPS RNAs	DUSP11	-0.155	37	0.37	2
three levels	ref4	ref_GPS_RNAs	AGK	-0.138	36	0.36	3

three levels	ref4	ref_GPS_RNAs	TFE3	-0.127	24	0.24	4
three levels	ref4	ref_GPS_RNAs	PCGF2	0.13	24	0.24	5
three levels	ref4	ref_GPS_Proteins	GHR	-0.167	43	0.43	1
three levels	ref4	ref_GPS_Proteins	FGF20	-0.108	35	0.35	2
three levels	ref4	ref_GPS_Proteins	SPINT1	0.121	21	0.21	3
three levels	ref4	ref_GPS_Proteins	IL6	0.122	18	0.18	4
three levels	ref4	ref GPS Proteins	IL2	0.107	17	0.17	5
three levels	ref4	ref GPS Metabolites	C5	0.154	54	0.54	1
three levels	ref4	ref GPS Metabolites	Tvr	-0.123	45	0.45	2
three levels	ref4	ref GPS Metabolites	C18:1	0.12	37	0.37	3
three levels	ref4	ref_GPS_Metabolites	C6(C4:1-DC)	0.117	32	0.32	4
three levels	ref4	ref GPS Metabolites	C12	0.121	31	0.31	5
		ref_GPS_Proteins_Me					
four levels	ref4	tabolites	GHR	-0.162	46	0.46	1
		ref_GPS_Proteins_Me					
four levels	ref4	tabolites	FGF20	-0.096	41	0.41	2
		ref_GPS_Proteins_Me					
four levels	ref4	tabolites	C5	0.18	31	0.31	3
		ref_GPS_Proteins_Me					
four levels	ref4	tabolites	C6(C4:1-DC)	0.131	27	0.27	4
		ref_GPS_Proteins_Me					
four levels	ref4	tabolites	C8	0.139	25	0.25	5
		ref_GPS_CpGs_Meta					
four levels	ref4	bolites	LYL1	-0.133	51	0.51	1
		ref_GPS_CpGs_Meta					
four levels	ref4	bolites	C5	0.169	50	0.5	2
		ref_GPS_CpGs_Meta					
four levels	ref4	bolites	Tyr	-0.116	49	0.49	3
		ref_GPS_CpGs_Meta					
four levels	ref4	bolites	C10:2	-0.122	30	0.3	4
		ref_GPS_CpGs_Meta		0.110	•		_
four levels	ref4	bolites	C12	0.118	30	0.3	5
	64	ref_GPS_CpGs_Prote	T X 77 1	0.1.00		0.50	
five levels	ref4	ins_Metabolites	LYLI	-0.168	56	0.56	1
C 1 1	64	ref_GPS_CpGs_Prote	CUD	0.150	4.4	0.44	2
five levels	ref4	ins_Metabolites	GHR	-0.156	44	0.44	2
£11.		ref_GPS_CpGs_Prote	ECEDO	0.000	20	0.20	2
inve ievels	re14	rof CDS CrCa Drate	FGF20	-0.099	39	0.39	3
five levels	rof/	ing Matchelites	$C6(CA \cdot 1 DC)$	0 162	20	0.22	Л
Invertevels	1014	rof CDS CrCa Drota	CO(C4:1-DC)	0.103	52	0.52	4
five levels	rof1	ing Matchalitas	NELIDI 2	0.015	20	0.22	E
Invertevels	1014	ms_metabolities	INEUKLO	0.015	32	0.52	5

Supplementary Table 29. Predictive improvement of GPS_{eGFR} on top of four reference sets for incident CKDcrcc in hyperglycemic individuals of KORA F4.

Over 100 times of bootstrapping, the mean $(\pm SD)$ and median AUC (95% *CI*) of predictive models built with ref and ref + GPS for incident CKDcrcc in hyperglycemic individuals of KORA F4 are shown, respectively. The ref included ref1-4. AUC values were calculated with random forest using testing data.

ref₁: baseline age, sex; ref₂: baseline age, sex, BMI, systolic blood pressure, smoking status, triglyceride, total cholesterol, HDL cholesterol, fasting glucose, use of lipid lowering drugs, antihypertensive and anti-diabetic medication; ref₃: baseline age, sex, eGFR and UACR; ref₄: baseline age, eGFR, UACR, total cholesterol, fasting glucose, SM C18:1 and PC aa C38:0.

Abbreviations: AUC, area under the receiver operating characteristic curve; GPS, genome wide polygenic score of eGFR values; CKD, chronic kidney disease; eGFR, estimated glomerular filtration rate; UACR, urinary albumin-to-creatinine ratio; CKDcrcc, eGFR-based CKD that was defined as eGFR < 60 ml/min/1.73 m².

		mean.Sample	mean.Sample		
ref	Model	Size.train	Size.test	median.95CI.AUC.test	mean.SD.AUC.test
ref1	ref	680	251	0.745(0.663 - 0.815)	0.742 +/- 0.037
ref1	ref + GPS	680	251	0.804(0.739 - 0.855)	0.805 +/- 0.029
ref2	ref	677	250	0.767(0.703 - 0.824)	0.762 +/- 0.033
ref2	ref + GPS	677	250	0.801(0.746 - 0.839)	0.8 +/- 0.027
ref3	ref	680	251	0.857(0.811 - 0.906)	0.857 +/- 0.023
ref3	ref + GPS	680	251	0.876(0.838 - 0.917)	0.877 +/- 0.021
ref4	ref	673	248	0.863(0.819 - 0.905)	0.864 +/- 0.025
ref4	ref + GPS	673	248	0.88(0.828 - 0.919)	0.876 +/- 0.024

Supplementary Table 30. The various combinations of variables used in exploring subgrouping KORA F4 CKD patients with hyperglycemia.

combination	variables in.each.combination
combination1	eGFR,UACR
combination2	eGFR,UACR,GPS
	eGFR,UACR,GPS,C10,C10:2,C12,C14:1,C14:1-OH,C14:2,C16,C18:1,C2,C6(C4:1-DC),C5,C8,C8:1,TLN2,ACSL1,CCDC39,LYL1,NEURL3
	, LYSMD2, NAPA, PAX8, SLC22A4, PNLIPRP2, NKD2, DUSP11, TFE3, AGK, MCM3, PCGF2, TTF2, ABCB1, ARG1, SLC25A4, CDC14A, Tyr, PLAB, SLC22A4, PNLIPRP2, NKD2, DUSP11, TFE3, AGK, MCM3, PCGF2, TTF2, ABCB1, ARG1, SLC25A4, CDC14A, Tyr, PLAB, SLC22A4, PNLIPRP2, NKD2, DUSP11, TFE3, AGK, MCM3, PCGF2, TTF2, ABCB1, ARG1, SLC25A4, CDC14A, Tyr, PLAB, SLC22A4, PNLIPRP2, NKD2, DUSP11, TFE3, AGK, MCM3, PCGF2, TTF2, ABCB1, ARG1, SLC25A4, CDC14A, Tyr, PLAB, SLC2AA, SLC2AAA, SLC2AAA, SLC2AAA, SLCAAA, SLCAAA, SLCAAA, SLCAAAA, SLCAAAA, SLCAAAAAA, SLCAAAAA, SLCAAAAA, SLCAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
	AT,IGFBP2,CST3,EFNA5,ERBB3,LAYN,TNFRSF1A,EGFR,IGFBP6,FGF20,FGF9,SPINT1,NBL1,GHR,CGA LHB,ESAM,JAM2,CLEC4M,
	IL19, RETN, IL2, TNFRSF1B, ADAMTS13, RET, ACY1, BMP1, CTSV, FN1, FSTL3, B2M, ADIPOQ, CNDP1, MASP1, IL22RA1, KDR, IGF2R, PLG, IL22RA1, KDR, IL22RA1,
	CTSH, FCN3, RPS6KA5, MED1, PAPPA, IL6, TFF3, EPHA2, NTRK2, AMH, MMP1, C1QBP, ERP29, MAPK12, SOD2, KIR2DL4, NOTCH1, RELT, NOTCH
combination3	SCARF1,TNFRSF19,HAVCR2,UNC5C,SEMA3E,LEPR,SPOCK2,PC aa C38:0,SM C18:1
	C10,C10:2,C12,C14:1,C14:1-OH,C14:2,C16,C18:1,C2,C6(C4:1-DC),C5,C8,C8:1,Tyr,PLAT,IGFBP2,CST3,EFNA5,ERBB3,LAYN,TNFRSF
	1A,EGFR,IGFBP6,FGF20,FGF9,SPINT1,NBL1,GHR,CGA LHB,ESAM,JAM2,CLEC4M,IL19,RETN,IL2,TNFRSF1B,ADAMTS13,RET,
	ACY1,BMP1,CTSV,FN1,FSTL3,B2M,ADIPOQ,CNDP1,MASP1,IL22RA1,KDR,IGF2R,PLG,CTSH,FCN3,RPS6KA5,MED1,PAPPA,IL6,TF
	F3,EPHA2,NTRK2,AMH,MMP1,C1QBP,ERP29,MAPK12,SOD2,KIR2DL4,NOTCH1,RELT,SCARF1,TNFRSF19,HAVCR2,UNC5C,SEMA
combination4	3E,LEPR,SPOCK2
combination5	C10,C10:2,C12,C14:1,C14:1-OH,C14:2,C16,C18:1,C2,C6(C4:1-DC),C5,C8,C8:1,Tyr
	C14: 1, C16, C18: 1, NKD2, DUSP11, TFE3, MCM3, TTF2, ABCB1, ARG1, SLC25A4, Tyr, IGFBP2, ERBB3, EGFR, SPINT1, GHR, CLEC4M, CTSV, FRAME, CLEC4M, CL
combination6	N1,CNDP1,KDR,FCN3,RPS6KA5,MED1,NTRK2,AMH,ERP29,MAPK12,SOD2,NOTCH1
combination7	Tyr,ERBB3
	C14:1, C16, C18:1, NKD2, DUSP11, TFE3, MCM3, TTF2, ABCB1, ARG1, SLC25A4, IGFBP2, EGFR, SPINT1, GHR, CLEC4M, CTSV, FN1, CNDP1, CTSV, FN1, CTSV, FN
combination8	KDR,FCN3,RPS6KA5,MED1,NTRK2,AMH,ERP29,MAPK12,SOD2,NOTCH1
	C10,C10:2,C12,C14:1-OH,C14:2,C2,C6(C4:1-DC),C5,C8,C8:1,AGK,PLAT,CST3,EFNA5,LAYN,TNFRSF1A,IGFBP6,FGF20,FGF9,NBL1,
	CGA LHB,ESAM,JAM2,IL19,RETN,IL2,TNFRSF1B,ADAMTS13,RET,ACY1,BMP1,FSTL3,B2M,MASP1,IGF2R,PLG,CTSH,PAPPA,IL6,
combination9	TFF3,EPHA2,MMP1,C1QBP,KIR2DL4,RELT,SCARF1,TNFRSF19,HAVCR2,UNC5C,LEPR,SPOCK2
	C10,C10:2,C12,C14:1-OH,C14:2,C2,C8,C8:1,CST3,TNFRSF1A,IGFBP6,NBL1,JAM2,IL19,RETN,TNFRSF1B,ADAMTS13,FSTL3,B2M,C
combination10	TSH,MMP1,RELT,SCARF1,TNFRSF19,UNC5C,SPOCK2
	C6(C4:1-DC),C5,AGK,PLAT,EFNA5,LAYN,FGF20,FGF9,CGA
combination11	LHB,ESAM,IL2,RET,ACY1,BMP1,MASP1,IGF2R,PLG,PAPPA,IL6,TFF3,EPHA2,C1QBP,KIR2DL4,HAVCR2,LEPR
combination12	TLN2,ACSL1,CCDC39,LYL1,NEURL3,LYSMD2,NAPA,SLC22A4,PCGF2,CDC14A,SEMA3E
	GPS,C10,C10:2,C12,C14:1,C14:1-OH,C14:2,C16,C18:1,C2,C6(C4:1-DC),C5,C8,C8:1,TLN2,ACSL1,CCDC39,LYL1,NEURL3,LYSMD2,N
	APA,PAX8,SLC22A4,PNLIPRP2,NKD2,DUSP11,TFE3,AGK,MCM3,PCGF2,TTF2,ABCB1,ARG1,SLC25A4,CDC14A,Tyr,PLAT,IGFBP2,C
	ST3,EFNA5,ERBB3,LAYN,TNFRSF1A,EGFR,IGFBP6,FGF20,FGF9,SPINT1,NBL1,GHR,CGA LHB,ESAM,JAM2,CLEC4M,IL19,RETN,
	IL2,TNFRSF1B,ADAMTS13,RET,ACY1,BMP1,CTSV,FN1,FSTL3,B2M,ADIPOQ,CNDP1,MASP1,IL22RA1,KDR,IGF2R,PLG,CTSH,FCN3
	, RPS6KA5, MED1, PAPPA, IL6, TFF3, EPHA2, NTRK2, AMH, MMP1, C1QBP, ERP29, MAPK12, SOD2, KIR2DL4, NOTCH1, RELT, SCARF1, TNB, SCARF1, TSB, SCARF1, SCARF1, SCARF1, TSB, SCARF1, S
combination13	FRSF19,HAVCR2,UNC5C,SEMA3E,LEPR,SPOCK2,PC aa C38:0,SM C18:1

	C10,C10:2,C12,C14:1,C14:1-OH,C14:2,C16,C18:1,C2,C6(C4:1-DC),C5,C8,C8:1,TLN2,ACSL1,CCDC39,LYL1,NEURL3,LYSMD2,NAPA,
	PAX8,SLC22A4,PNLIPRP2,NKD2,DUSP11,TFE3,AGK,MCM3,PCGF2,TTF2,ABCB1,ARG1,SLC25A4,CDC14A,Tyr,PLAT,IGFBP2,CST3,
	EFNA5,ERBB3,LAYN,TNFRSF1A,EGFR,IGFBP6,FGF20,FGF9,SPINT1,NBL1,GHR,CGA LHB,ESAM,JAM2,CLEC4M,IL19,RETN,IL2,
	TNFRSF1B,ADAMTS13,RET,ACY1,BMP1,CTSV,FN1,FSTL3,B2M,ADIPOQ,CNDP1,MASP1,IL22RA1,KDR,IGF2R,PLG,CTSH,FCN3,RP
	S6KA5,MED1,PAPPA,IL6,TFF3,EPHA2,NTRK2,AMH,MMP1,C1QBP,ERP29,MAPK12,SOD2,KIR2DL4,NOTCH1,RELT,SCARF1,TNFRS
combination14	F19,HAVCR2,UNC5C,SEMA3E,LEPR,SPOCK2,GPS
	C10,C10:2,C12,C14:1,C14:1-OH,C14:2,C16,C18:1,C2,C6(C4:1-DC),C5,C8,C8:1,TLN2,ACSL1,CCDC39,LYL1,NEURL3,LYSMD2,NAPA,
	PAX8,SLC22A4,PNLIPRP2,NKD2,DUSP11,TFE3,AGK,MCM3,PCGF2,TTF2,ABCB1,ARG1,SLC25A4,CDC14A,Tyr,PLAT,IGFBP2,CST3,
	EFNA5,ERBB3,LAYN,TNFRSF1A,EGFR,IGFBP6,FGF20,FGF9,SPINT1,NBL1,GHR,CGALHB,ESAM,JAM2,CLEC4M,IL19,RETN,IL2,
	TNFRSF1B,ADAMTS13,RET,ACY1,BMP1,CTSV,FN1,FSTL3,B2M,ADIPOQ,CNDP1,MASP1,IL22RA1,KDR,IGF2R,PLG,CTSH,FCN3,RP
	S6KA5,MED1,PAPPA,IL6,TFF3,EPHA2,NTRK2,AMH,MMP1,C1QBP,ERP29,MAPK12,SOD2,KIR2DL4,NOTCH1,RELT,SCARF1,TNFRS
combination15	F19,HAVCR2,UNC5C,SEMA3E,LEPR,SPOCK2
	C10,C10:2,C12,C14:1,C14:1-OH,C14:2,C16,C18:1,C2,C6(C4:1-DC),C5,C8,C8:1,Tyr,PLAT,IGFBP2,CST3,EFNA5,ERBB3,LAYN,TNFRSF
	1A,EGFR,IGFBP6,FGF20,FGF9,SPINT1,NBL1,GHR,CGA LHB,ESAM,JAM2,CLEC4M,IL19,RETN,IL2,TNFRSF1B,ADAMTS13,RET,
	ACY1,BMP1,CTSV,FN1,FSTL3,B2M,ADIPOQ,CNDP1,MASP1,IL22RA1,KDR,IGF2R,PLG,CTSH,FCN3,RPS6KA5,MED1,PAPPA,IL6,TF
	F3,EPHA2,NTRK2,AMH,MMP1,C1QBP,ERP29,MAPK12,SOD2,KIR2DL4,NOTCH1,RELT,SCARF1,TNFRSF19,HAVCR2,UNC5C,SEMA
combination16	3E,LEPR,SPOCK2
	TLN2,ACSL1,CCDC39,LYL1,NEURL3,LYSMD2,NAPA,PAX8,SLC22A4,PNLIPRP2,NKD2,DUSP11,TFE3,AGK,MCM3,PCGF2,TTF2,AB
combination17	CB1,ARG1,SLC25A4,CDC14A
	C10,C12,C16,C2,C6(C4:1-DC),C8,TLN2,ACSL1,CCDC39,LYL1,NEURL3,NAPA,PAX8,SLC22A4,PNLIPRP2,NKD2,DUSP11,TFE3,AGK,
	MCM3,PCGF2,TTF2,ABCB1,ARG1,SLC25A4,CDC14A,Tyr,PLAT,IGFBP2,CST3,EFNA5,ERBB3,LAYN,TNFRSF1A,EGFR,IGFBP6,FGF2
	0,FGF9,SPINT1,GHR,CGA LHB,ESAM,JAM2,CLEC4M,IL19,RETN,IL2,TNFRSF1B,ADAMTS13,RET,ACY1,BMP1,CTSV,FN1,FSTL3,
	B2M, ADIPOQ, CNDP1, MASP1, IL22RA1, KDR, IGF2R, PLG, CTSH, FCN3, RPS6KA5, MED1, PAPPA, IL6, TFF3, EPHA2, NTRK2, AMH, MMP1, SPARA, SPA
combination18	C1QBP,ERP29,MAPK12,SOD2,KIR2DL4,NOTCH1,RELT,SCARF1,TNFRSF19,HAVCR2,SEMA3E,LEPR,SPOCK2,GPS
	C10,C12,C16,C2,C6(C4:1-DC),C8,TLN2,ACSL1,CCDC39,LYL1,NEURL3,NAPA,PAX8,SLC22A4,PNLIPRP2,NKD2,DUSP11,TFE3,AGK,
	MCM3, PCGF2, TTF2, ABCB1, ARG1, SLC25A4, CDC14A, Tyr, PLAT, IGFBP2, CST3, EFNA5, ERBB3, LAYN, TNFRSF1A, EGFR, IGFBP6, FGF2, CST3, EFNA5, ERBB3, ERB
	$0, FGF9, SPINT1, GHR, CGA\ LHB, ESAM, JAM2, CLEC4M, IL19, RETN, IL2, TNFRSF1B, ADAMTS13, RET, ACY1, BMP1, CTSV, FN1, FSTL3, STL3, STTL3, STL3, STTL3, ST$
	B2M, ADIPOQ, CNDP1, MASP1, IL22RA1, KDR, IGF2R, PLG, CTSH, FCN3, RPS6KA5, MED1, PAPPA, IL6, TFF3, EPHA2, NTRK2, AMH, MMP1, Standard Stan
combination19	C1QBP,ERP29,MAPK12,SOD2,KIR2DL4,NOTCH1,RELT,SCARF1,TNFRSF19,HAVCR2,SEMA3E,LEPR,SPOCK2
	C10,C12,C16,C6(C4:1-DC),C8,ACSL1,CCDC39,NAPA,SLC22A4,AGK,SLC25A4,CDC14A,IGFBP2,CST3,EFNA5,ERBB3,EGFR,IGFBP6,
combination20	GHR,IL19,RETN,FN1,FSTL3,ADIPOQ,IGF2R,PLG,RPS6KA5,MED1,IL6,TFF3,C1QBP,SOD2,NOTCH1,HAVCR2,LEPR
combination21	C2,CGA LHB,FN1,B2M,AMH,MMP1,HAVCR2
	TLN2, PAX8, NKD2, TFE3, PLAT, CST3, LAYN, TNFRSF1A, EGFR, SPINT1, TNFRSF1B, ADAMTS13, BMP1, CTSV, FN1, FSTL3, ADIPOQ, CNB, CNB, CARABAS,
combination22	DP1,MASP1,IL22RA1,KDR,IGF2R,PLG,FCN3,EPHA2,C10BP,NOTCH1,TNFRSF19,SPOCK2

	NEURL3, DUSP11, TFE3, MCM3, TTF2, ARG1, CST3, EFNA5, LAYN, TNFRSF1A, EGFR, GHR, CLEC4M, IL19, RETN, IL2, TNFRSF1B, FSTL3, BRANK, FSTL3, FSTL
	2M,ADIPOQ,MASP1,IL22RA1,KDR,IGF2R,CTSH,FCN3,MED1,PAPPA,IL6,EPHA2,AMH,MMP1,C1QBP,MAPK12,KIR2DL4,NOTCH1,R
combination23	ELT,SCARF1,HAVCR2,LEPR
combination24	PAX8,Tyr,PLAT,IGFBP2,CST3,EFNA5,FGF20,GHR,ACY1,FN1,PLG,CTSH,MED1,TFF3,NTRK2,ERP29
	LYL1,PAX8,AGK,PCGF2,PLAT,IGFBP2,CST3,ERBB3,TNFRSF1A,IGFBP6,FGF9,GHR,CGA LHB,ESAM,JAM2,IL19,TNFRSF1B,
combination25	ADAMTS13,BMP1,CTSV,ADIPOQ,IL22RA1,KDR,IGF2R,PLG,CTSH,IL6,EPHA2,NTRK2,MMP1,NOTCH1,SEMA3E
	ABCB1,PLAT,IGFBP2,CST3,ERBB3,EGFR,GHR,CGA LHB,RET,CTSV,FN1,ADIPOQ,KDR,IGF2R,CTSH,RPS6KA5,IL6,EPHA2,
combination26	NTRK2,AMH,MMP1,SOD2
combination27	ACSL1,PNLIPRP2,TFE3,IGFBP2,CST3,TNFRSF1A,CGA LHB,ESAM,RETN,TNFRSF1B,FN1,FSTL3,ADIPOQ,IL6,MMP1,SOD2,LEPR
combination28	TNFRSF1A,SPOCK2,IGFBP6,NBL1,JAM2,ERP29,RETN,ADAMTS13,SCARF1,C10:2,C12,CST3,B2M,RELT,FSTL3,C14:1-OH,C10,C8
combination29	TNFRSF1A,FSTL3,ADAMTS13,C8,RETN,B2M,ERP29,JAM2,C10,SPOCK2,C12
	B2M,TNFRSF1A,SPOCK2,MMP1,UNC5C,TNFRSF1B,TNFRSF19,RETN,RELT,IGFBP6,FSTL3,CTSH,IL19,ERBB3,Tyr,C8:1,C2,C14:2,C1
combination30	0:2
combination31	LYSMD2,NAPA,TFE3,CLEC4M,CTSV,EFNA5,IGF2R,JAM2,NBL1,RET,SCARF1
combination32	CLEC4M,CTSV,EFNA5,IGF2R,JAM2,NBL1,RET,SCARF1
	LYSMD2,NAPA,TFE3,CLEC4M,CTSV,EFNA5,IGF2R,JAM2,NBL1,RET,SCARF1,B2M,TNFRSF1A,SPOCK2,MMP1,UNC5C,TNFRSF1B,
combination33	TNFRSF19,RETN,RELT,IGFBP6,FSTL3,CTSH,IL19,ERBB3,Tyr,C8:1,C2,C14:2,C10:2
	CLEC4M, CTSV, EFNA5, IGF2R, JAM2, NBL1, RET, SCARF1, B2M, TNFRSF1A, SPOCK2, MMP1, UNC5C, TNFRSF1B, TNFRSF19, RETN, RELMAN, CTSV, EFNA5, IGF2R, JAM2, NBL1, RET, SCARF1, B2M, TNFRSF1A, SPOCK2, MMP1, UNC5C, TNFRSF1B, TNFRSF19, RETN, RELMAN, CTSV, EFNA5, IGF2R, JAM2, NBL1, RET, SCARF1, B2M, TNFRSF1A, SPOCK2, MMP1, UNC5C, TNFRSF1B, TNFRSF19, RETN, RELMAN, CTSV, EFNA5, IGF2R, JAM2, NBL1, RET, SCARF1, B2M, TNFRSF1A, SPOCK2, MMP1, UNC5C, TNFRSF1B, TNFRSF19, RETN, RELMAN, CTSV, EFNA5, IGF2R, JAM2, NBL1, RETN, RELMAN, TNFRSF1A, SPOCK2, MMP1, UNC5C, TNFRSF1B, TNFRSF19, RETN, RELMAN, CTSV, EFNA5, IGF2R, JAM2, NBL1, RETN, RELMAN, SPOCK2, MMP1, UNC5C, TNFRSF1B, TNFRSF19, RETN, SPOCK2, MMP1, SPOCK2, MMP1, SPOCK2, TNFRSF1B, TNFRSF1B, TNFRSF19, SPOCK2, MMP1, SPOCK2, MMP1, SPOCK2, MMP1, SPOCK2,
combination34	T,IGFBP6,FSTL3,CTSH,IL19,ERBB3,Tyr,C8:1,C2,C14:2,C10:2
	B2M, TNFRSF1A, SPOCK2, MMP1, UNC5C, TNFRSF1B, TNFRSF19, RETN, RELT, IGFBP6, FSTL3, CTSH, IL19, ERBB3, Tyr, C8: 1, C2, C14: 2, C14: 2
combination35	0:2,NBL1,EFNA5,JAM2
three identified	
candidate	
biomarkers	NBL1,EFNA5,JAM2

Supplementary Table 31. Significant numeric variables among three groups of KORA F4 CKD patients with hyperglycemia.

P-values of significant (P < 0.05) numeric variables among three groups of KORA F4 CKD patients with hyperglycemia are shown. P-values of pairwise comparison are shown as well. Variables with normal distribution were tested with anova test and those with skewed distribution (HbA1c, FG, triglyceride, creatinine, CST3, urine albumin, urine creatinine and UACR) were tested with Kruskal-Wallis test. Pairwise comparison of numeric variables among groups was done by Tukey HSD test for variables with normal distribution and Dunn's test for variables with skewed distribution, respectively.

Abbreviations: eGFR, estimated glomerular filtration rate; UACR, urinary albumin-to-creatinine ratio;2-1, g2 vs g1; 3-1, g3 vs g1; 3-2, g3 vs g2.

	annovaORk				
var	ru.p-value	2-1.p-value	3-1.p-value	3-2.p-value	distribution
NBL1	2.418E-18	1.055E-04	7.306E-12	3.803E-09	normal
EFNA5	9.607E-15	1.293E-04	7.325E-12	8.294E-06	normal
JAM2	4.838E-14	3.808E-07	7.356E-12	8.723E-03	normal
Age, years	2.581E-02	9.804E-01	4.951E-02	6.219E-02	normal
eGFR, mL/min/1.73 m ²	1.162E-06	3.030E-01	9.285E-07	1.893E-03	normal
UACR, mg/g	3.118E-02	3.037E-01	2.571E-02	3.033E-01	skewed
Creatinine, mg/dl	5.281E-05	9.916E-01	2.090E-04	7.286E-04	skewed
Cystatin C, mg/l	1.685E-05	5.037E-01	2.553E-05	1.779E-03	skewed
Urine albumin, mg/l	1.403E-03	1.226E-01	8.710E-04	1.543E-01	skewed
Uric acid, mg/dl	2.458E-02	7.039E-01	1.079E-01	3.000E-02	normal
DUSP11	4.518E-02	4.409E-01	3.222E-01	4.161E-02	normal
МСМ3	2.951E-02	2.382E-01	2.403E-02	8.336E-01	normal
ARG1	5.235E-03	1.340E-02	1.349E-02	7.864E-01	normal
IGFBP2	1.363E-02	7.608E-01	1.206E-02	1.484E-01	normal
CST3	2.515E-07	4.127E-01	2.677E-07	3.768E-04	normal
LAYN	7.864E-09	1.447E-01	6.001E-09	1.667E-04	normal
TNFRSF1A	8.485E-11	6.251E-03	4.620E-11	2.605E-04	normal
IGFBP6	5.163E-10	3.418E-01	7.610E-10	5.185E-06	normal
SPINT1	5.986E-03	2.588E-01	4.088E-03	3.770E-01	normal
CGA LHB	1.406E-02	1.014E-02	3.040E-01	1.968E-01	normal
ESAM	8.183E-05	4.509E-01	6.451E-05	1.644E-02	normal
RETN	2.075E-04	3.179E-01	1.366E-04	4.957E-02	normal
IL2	4.908E-02	1.636E-01	5.567E-02	9.752E-01	normal
TNFRSF1B	1.266E-09	1.940E-01	1.239E-09	2.712E-05	normal
BMP1	3.612E-02	6.607E-02	7.506E-02	9.366E-01	normal
FSTL3	1.746E-08	1.480E-03	8.757E-09	4.208E-02	normal
B2M	5.937E-06	6.567E-01	7.565E-06	1.319E-03	normal
CTSH	1.812E-08	1.518E-01	1.344E-08	2.866E-04	normal
MED1	1.570E-02	6.064E-02	2.302E-02	9.985E-01	normal
PAPPA	5.557E-03	8.359E-01	5.711E-03	6.854E-02	normal
TFF3	5.875E-08	2.981E-01	5.595E-08	2.357E-04	normal
EPHA2	4.898E-08	1.445E-01	3.385E-08	6.292E-04	normal
ERP29	4.051E-03	7.391E-01	2.321E-02	7.428E-03	normal
NOTCH1	7.522E-03	6.449E-01	6.073E-03	1.416E-01	normal
RELT	4.273E-11	1.752E-01	5.693E-11	2.235E-06	normal
SCARF1	1.136E-02	2.138E-01	8.487E-03	5.753E-01	normal
TNFRSF19	4.420E-03	5.868E-01	3.442E-03	1.215E-01	normal
HAVCR2	2.092E-06	1.050E-01	1.159E-06	1.210E-02	normal

Supplementary Table 32. Difference among three groups of KORA F4 CKD patients with hyperglycemia regarding rate of male, use of antihypertensive, ARBs or ACEIs medication, eGFR based CKD, UACR based CKD, eGFR categories, UACR categories, eGFR decline > 30% and UACR increase > 30%.

P-values of difference among three groups calculated using Pearson chi-squared test or fisher exact test (when any theoretical frequency was less than one) are shown. When applicable, the *P*-values calculated using the Cochran–Armitage test of testing trend of both sides, increasing and decreasing side are shown as well, respectively.

Abbreviations: ARBs, taking angiotensin 2 receptor blockers; ACEIs, taking angiotensin-converting enzyme inhibitors; eGFRcla, eGFR categories; UACRcla, UACR categories; CKD, chronic kidney disease; eGFR, estimated glomerular filtration rate; UACR, urinary albumin-to-creatinine ratio; CKDcrcc, eGFR-based CKD that was defined as eGFR < 60 ml/min/1.73 m²; CKDuacr, UACR-based CKD that was defined as UACR \geq 30 mg/g.

				chisq.OR fisher.			
var	trend.both.p-value	trend.dec.p-value	trend.incr.p-value	p-value			
Sex, male, %	4.249E-01	2.124E-01	7.876E-01	1.221E-02 a			
Antihypertensive	2.524E-02	9.874E-01	1.262E-02	7.684E-02 b			
ARBs or ACEIs	5.182E-02	9.741E-01	2.591E-02	5.547E-02 a			
CKDcrcc F4	5.607E-05	1.000E+00	2.803E-05	1.617E-04 a			
CKDuacr F4	3.862E-04	1.931E-04	9.998E-01	1.782E-03 a			
eGFRcla F4	-	-	-	1.267E-04 b			
UACRcla F4	-	-	-	1.559E-03 b			
eGFR decline >	•						
30%	2.480E-02	9.876E-01	1.240E-02	5.240E-02 b			
UACR increase >	•						
30%	2.205E-01	8.898E-01	1.102E-01	1.061E-01 a			
a, p-value calculated using Pearson chi-squared test; b, p-value calculated using fisher exact test.							

Supplementary Table 33. Characteristics of replicated multi-omics candidates of CKD in hyperglycemia based on various evidence with eGFR and/or UACR.

Groups of replicated candidates are shown, in which the groups were defined by genetic evidence support with eGFR and/or UACR from 2SMR or GPS, or associations (i.e., crosssectional and longitudinal) with eGFR and/or UACR from the hyperglycemia individuals of KORA study. The omics candidates, key omics candidates, potential novel candidates identified from our study, and processes involved in eight T2DCKD subnetworks in each group are presented. Candidates that were annotated to the most T2DCKD processes were defined as the key omics candidates in each group. If there were no candidates annotated to eight processes in a group, the omics candidates in this group were shown in the cell of "key omics".

* MMP1: MMP1 was potentially causal with CKD by our 2SMR, but no supported causal relationship for eGFR or UACR by 2SMR.

Abbreviations: 2SMR, two-sample Mendelian randomization; GPS, genome wide polygenic score of eGFR values; CKD, chronic kidney disease; eGFR, estimated glomerular filtration rate; UACR, urinary albumin-to-creatinine ratio; uni, candidates in this group were unique compared to other groups in case of one direction; Cr, cross-sectional association; Long, longitudinal association; mito, T2DCKDmito process; adipo, T2DCKDadipo process; age, T2DCKDage process; angi, T2DCKDangi process; inna, T2DCKDinna process; ras, T2DCKDras process; tyr, T2DCKDtyr process; fibri, T2DCKDfibri process; T2DCKD, T2D related CKD.

group	omics.label	(key) omics	potential novel	T2DCKD processes
	ADAMTS13,C10:2,C12,C8:1,ERP29,FST			
	L3,IGFBP6,JAM2,NBL1,RELT,RETN,SC			inna,mito,fibri,angi,adipo
eGFR->candi->eGFR	ARF1,SPOCK2,TNFRSF1A	TNFRSF1A,FSTL3	NBL1,JAM2,SCARF1	,tyr
eGFR->candi->UACR	C14:2,C8:1	C14:2,C8:1		
	C10,C2,C8,CTSH,IL19,TNFRSF19,TNFR			mito,inna,angi,fibri,ras,ad
(uni) eGFR->candi	SF1B,UNC5C	TNFRSF1B,CTSH		ipo,AGEs,tyr
				tyr,ras,adipo,mito,fibri,in
(uni) candi->eGFR	C14:1-OH,CST3,Tyr	CST3		na,angi
(uni) candi->UACR	ERBB3	ERBB3		ras,mito,angi
(uni) candi-				
>eGFR&UACR	B2M	B2M		AGEs,inna
	ACY1,AMH,C14:1,C16,C18:1,C5,C6(C4:			
	1-DC),CGA			
	LHB,CLEC4M,CTSV,EFNA5,EGFR,EPH			
	A2,ESAM,FGF20,GHR,HAVCR2,IGF2R,			
	KDR,LAYN,MASP1,MMP1,NTRK2,PAPP		EFNA5,CLEC4M,RET,CTSV	inna,ras,mito,angi,fibri,ty
eGFR-Cr&Long	A,PLG,RET,SOD2,TFF3	GHR,IGF2R,MMP1	,IGF2R	r,adipo,AGEs
UACR-Cr&Long	EGFR,SLC22A4	EGFR		mito,ras,fibri,inna
eGFR-Cr&UACR-Long	EGFR	EGFR		ras,mito,fibri,inna
	AMH,C14:1,C16,C18:1,CLEC4M,CTSV,E			ras,inna,mito,angi,fibri,ty
UACR-Cr&eGFR-Long	GFR,GHR,KDR,NTRK2,SOD2	GHR	CLEC4M,CTSV	r,adipo,AGEs
				ras,adipo,mito,fibri,inna,t
(uni) eGFR-Cr	LEPR,PLAT	PLAT		yr,angi
(uni) UACR-Cr	LYSMD2,NAPA	NAPA	LYSMD2,NAPA	mito
(uni) eGFR&UACR-Cr	NOTCH1,TFE3	NOTCH1	TFE3	fibri,inna,adipo,mito,angi
(uni) eGFR-Long	FGF9	FGF9		angi

T2DCKD-SLC2	2A4-IL19								
Subject	Subject type	Interaction type	Object	Object type	Arg_loc	Arg_Mod	PMID	Organism	Disease
Diabetes mellitus, type II	disease	increases_quantity of	IL19	gene/protein	in blood		32585310	Homo sapiens	Insulin resistance; Diabetes mellitus, type II
SLC22A4	gene/protein	increases_transport of	Ergothioneine	compound	into cells		27023905	Homo sapiens	Hearing loss
SLC22A4	gene/protein	increases_transport of	Ergothioneine	compound			20224991	Mus musculus	Inflammatory bowel disease
SLC22A4	gene/protein	increases_transport of	Ergothioneine	compound	in HEK293 cells		15795384	Homo sapiens	Inflammatory bowel disease
inflammatory response	process	increases_quantity of	IL19	gene/protein	in nonimmune cells		32667867	Mammalia	Coronary artery disease; Asthma; Immunological; Inflammation
SLC22A4	gene/protein	affects_activity of	renal interstitial fibrosis	phenotype		in streptozocin- induced diabetes	33907247	Mus musculus	Nephropathy, diabetic
Chronic kidney disease	disease	decreases_activity of	SLC22A4	gene/protein	in intestine		28754554	Mus musculus	Chronic kidney disease
metabolic acidosis	phenotype	increases_expression of	SLC22A4	gene/protein	in kidney		32062662	Mus musculus	Renal
Chronic kidney disease	disease	decreases_quantity of	Ergothioneine	drug/chemical compound	in blood	via decreased activity of intestinal SLC22A4	28754554	Mus musculus	Chronic kidney disease
Chronic kidney disease	disease	decreases_quantity of	Ergothioneine	compound	in blood		28754554	Homo sapiens	Chronic kidney disease
acute kidney injury	phenotype	increases_quantity of	IL19	gene/protein	in AKI mice		23468852	Mus musculus	Renal
IL1B	gene/protein	increases_expression of	SLC22A4	gene/protein		via the NF-kappaB signaling cascade	17142562	Homo sapiens	Rheumatic disease; Inflammation
Ergothioneine	drug/chemical compound	decreases_activity of	increased blood urea nitrogen level	phenotype		in streptozocin- induced diabetes	34346315	Rattus norvegicus	Nephropathy, diabetic
Ergothioneine	drug/chemical compound	decreases_activity of	increased urine protein level	phenotype		in streptozocin- induced diabetes	34346315	Rattus norvegicus	Nephropathy, diabetic
Ergothioneine	drug/chemical compound	decreases_activity of	expanded mesangial matrix	phenotype		in streptozocin- induced diabetes	34346315	Rattus norvegicus	Nephropathy, diabetic
IL19	gene/protein	decreases_quantity of	IL1B	gene/protein			19834971	Mus musculus	Inflammatory bowel disease; Inflammation
Ergothioneine	drug/chemical	decreases quantity of	IL1B	gene/protein	in blood		17603080	Rattus	Nephropathy diabetic
glomerulonephritis	phenotype	increases quantity of	IL1B	gene/protein	in serum		16889043	Homo sapiens	Renal
П.19	gene/protein	decreases quantity of	IL1B	gene/protein			26404542	Homo sapiens	Bone: Inflammation
SLC22A4	gene/protein	affects_activity of	Diabetes mellitus, type II	disease			30274012	Homo sapiens	Insulin resistance; Diabetes mellitus, type II
Chronic kidney disease	disease	increases expression of	SLC22A4	gene/protein	epithelial		28754554	Mus musculus	Chronic kidney disease
SLC22A4	gene/protein	decreases activity of	inflammatory response	process	-F		28754554	Mus musculus	Chronic kidney disease
	drug/chemical	accreases_activity of	decreased renal glomerular	process			2070 100 1		
Ergothioneine	compound	decreases_activity of	filtration rate	phenotype			28754554	Homo sapiens	Chronic kidney disease
metabolic acidosis	phenotype	decreases_activity of	glomerular filtration	process			31988269	Mammalia	Chronic kidney disease; Renal
metabolic acidosis	phenotype	increases_activity of	renal interstitial fibrosis	phenotype			31988269	Mammalia	Chronic kidney disease; Renal
Ergothioneine	drug/chemical compound	decreases_activity of	renal interstitial fibrosis	phenotype		in streptozocin- induced diabetes	34346315	Rattus norvegicus	Nephropathy, diabetic

Supplementary Table 34. Interactions of connected edges in T2DCKD-SLC22A4-IL19 and T2DCKD-Tyr-IGFBP2 and the based literatures.

T2DCKD-Tyr-	IGFBP2							a .	
Subject	Subject type	Interaction type	Object	Object type	Arg_loc	Arg_Mod	PMID	Organism	Disease
Chronic kidney disease	disease	decreases quantity of	Tyrosine	compound	in plasma		17513431	Mammalia	Chronic kidney disease
	drug/chemical			drug/chemical		via phenylalanine	17510401		~
Phenylalanine	compound	increases_quantity of	Tyrosine	compound		hydroxylase	17513431	Mammalia	Chronic kidney disease
				dmus/ahami aal		via nhanvlalanina			
РАН	gene/protein	increases quantity of	Tyrosine	compound		bydroxylase	17513431	Mammalia	Chronic kidney disease
	gene/protein	increases_quantity of	1 yrosnic	compound		nyuroxytase	17515451	Ivianiirania	chionic kluicy disease
				drug/chemical		via phenylalanine			
РАН	gene/protein	decreases quantity of	Phenylalanine	compound		hvdroxvlase	17513431	Mammalia	Chronic kidney disease
ACY1	gene/protein	increases quantity of	Tyrosine	compound	in kidnev		14927637	Sus scrofa	Metabolic: Renal
ACY1	gene/protein	affects activity of	protein metabolic process	process	in kidnev		18222180	Mammalia	Renal
	8 F		F	F					
	drug/chemical		3,4-Dihydroxy-L-	drug/chemical	in proximal tubule				
Tyrosine	compound	increases_quantity of	phenylalanine	compound	epithelial cells		30808844	Sus scrofa	Renal
									Insulin resistance; Nephropathy,
									diabetic; Diabetes mellitus, type
IGFBP2	gene/protein	decreases_activity of	glomerular filtration	process			23781310	Homo sapiens	П
Chronic kidney disease	disease	increases_quantity of	IGFBP2	gene/protein	in plasma		10662705	Homo sapiens	Renal; Chronic kidney disease
				drug/chemical	in hind limb	increased protein			
IGF1R	gene/protein	decreases quantity of	Tyrosine	compound	muscle	degradation	27525440	Homo saniens	Insulin resistance: Muscular
3 4-Dihydroxy-L-	drug/chemical	decreases_quantity of	1 yrosnic	compound	musere	degradation	27525440	Tionio sapiens	insum resistance, Museura
phenylalanine	compound	decreases expression of	FIGFBP2	gene/protein	in striatum		25568106	Mus musculus	Parkinson disease: Neurological
IGFBP2	gene/protein	affects quantity of	IGF1	gene/protein	in muscle		20207454	Mammalia	Renal: Muscular
IGF1	gene/protein	affects activity of	protein metabolic process	process	in muscle		20207454	Mammalia	Renal: Muscular
	gene, protein	interacts (colocalizes)	protein metabolite protess	process			20207.01		Testari, massara
IGF1R	gene/protein	with	IGF1	gene/protein			27525440	Homo sapiens	Insulin resistance; Muscular
Tvrosine	compound	affects activity of	protein metabolic process	process			20207454	Mammalia	Renal: Muscular
	1	, <u>.</u> , .	r · · · · · · · ·	1					· · · · · · · · · · · · · · · · · · ·
protein restriction	environment	decreases quantity of	IGF1	gene/protein	in serum of adults		7531712	Homo sapiens	Metabolic
					in serum of adults				
protein restriction	environment	increases_quantity of	IGFBP2	gene/protein	and children		7531712	Homo sapiens	Metabolic
Chronic kidney disease	disease	increases_quantity of	IGFBP2	gene/protein	in serum		7545697	Homo sapiens	Chronic kidney disease
IGFBP2	gene/protein	decreases activity of	glomerular filtration	process			7545697	Homo sapiens	Chronic kidney disease
IGF1	gene/protein	increases_activity of	body height	phenotype			7545697	Homo sapiens	Chronic kidney disease
IGFBP2	gene/protein	decreases_activity of	body height	phenotype			7545697	Homo sapiens	Chronic kidney disease
protein restriction	environment	affects_activity of	protein metabolic process	process			7692021	norvegicus	Metabolic

Supplementary Figures

Fig. S1 T2DCKDmito

Fig. S2 T2DCKDinna

Fig. S3 T2DCKDadipo

Fig. S4 T2DCKDras

Fig. S5 T2DCKDfibri

Fig. S7 T2DCKDangi

265

Supplementary Fig. 1-7. Seven T2DCKD subnetworks

Seven T2DCKD subnetworks including 1)T2DCKDmito, T2D-related CKD subnetwork of mitochondrial dysfunction; 2)T2DCKDinna, T2D-related CKD subnetwork of innate immune response; 3)T2DCKDadipo, T2D-related CKD subnetwork of adipokine influence; 4)T2DCKDras, T2D-related CKD subnetwork of renin-angiotensin system dysfunction; 5)T2DCKDfibri, T2D-related CKD subnetwork of extracellular matrix deposition and renal fibrosis; 6)T2DCKDage, T2D-related CKD subnetwork of advanced glycation end products; 7)T2DCKDangi, T2D-related CKD subnetwork of angiogenesis.

Supplementary Fig. 8. Diagram of the procedures of interplaying of multi-omics molecules.

Supplementary Fig. 9. Scaling values of GPS_{eGFR} -associated candidates in stratification of the KORA F4 hyperglycemic individuals according to GPS_{eGFR} deciles

Stratification plots of GPS_{eGFR} deciles and scaling values of GPS_{eGFR} -associated candidates in hyperglycemic individuals of KORA F4. The centers are the mean scaling values of omics candidates and the error bars are the 95% confidence intervals. **Abbreviations**: GPS, genome-wide polygenic score of eGFR values; eGFR, estimated glomerular filtration rate.

Supplementary Fig. 10. Extreme GPS_{eGFR} is a strong risk factor for increasing omics candidate levels and eGFR values in KORA F4 hyperglycemic individuals.

Regression coefficients with 95% *CI* of GPS_{eGFR} to eGFR and 17 omics candidates in different percentiles of sample size of KORA F4 hyperglycemic individuals are shown, respectively. Regression coefficients were from linear regression analysis adjusted for full model (incl. age, sex, BMI, systolic blood pressure, smoking status, triglyceride, total cholesterol, HDL cholesterol, fasting glucose, use of lipid lowering drugs, antihypertensive and anti-diabetic medication). The centers represent the regression coefficients, while the error bars represent the 95% confidence intervals.

Supplementary Fig. 11. Scatter plots of the corresponding first and second components of UMAP with different combinations of variables to cluster CKD patients in hyperglycemia.

Scatter plots of KORA F4 CKD patients with hyperglycemia who were classified based on the first and second components of UMAP calculated with various combinations of biomarkers and omics candidates, respectively. The used biomarkers and/or omics candidates for each combination in the classification are listed in Supplementary Table 30. In each combination, the number of CKD patients used to be classified depended on the complete cases of the used variables.

IGFBP6

g3 g1 g2 g3 ESAM ġ2 ġ3 g3 g1 TNFRSF1B 0 g3 g1 g2 g3 SCARF1 0 -2 -3

g1 g2 ġ3

g2

H

g2

ġ3

ġ3

Supplementary Fig. 12. Significant clinical variables and omics candidates across three groups of CKD patients classified by three potential novel proteins.

Boxplots of values of significant (P < 0.05) clinical variables and omic candidates across three groups of KORA F4 CKD patients with hyperglycemia classified by three potential novel proteins are shown. The examined omic candidates were from 87 candidates used in eight T2DCKD subnetworks. g1: N = 22; g2: N = 14; g3: N = 23. The values of clinical variables here were not scaled and the values of candidates here were scaling values.

References

• 1. Zheng, J., *et al.* Phenome-wide Mendelian randomization mapping the influence of the plasma proteome on complex diseases. *Nat Genet* **52**, 1122-1131 (2020).

Acknowledgements

First, I would like to thank my supervisor, Prof. Dr. Annette Peters, Director of the Institute of Epidemiology at Helmholtz Zentrum München. Throughout my studies, Prof. Dr. Peters provided me with insightful instructions and counsel.

I would like to express my gratitude to my co-supervisor, Dr. Rui Wang-Sattler, for her unwavering support and invaluable suggestions throughout the projects. She exerted a lot of effort in coordinating the projects and in making the data accessible for the studies in the thesis. She has also supported my participation in external courses and international conferences.

I would like to thank all my colleagues. Special thanks go to Dr. Marcela Covic, who assisted me greatly throughout my PhD studies. Many thanks to Dr. Li Wang for her kindness and emotional support. She always answered my questions with patience. I also appreciate the contributions of all the co-authors with whom I've collaborated.

I would like to express my profound gratitude to my family and friends for their love, trust, and encouragement.