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Abbreviations and acronyms  
 
 
ACS    acute coronary syndrome 

ADAM     a disintegrin and metalloproteinase domain containing protein 

ADP    adenosine diphosphate 

ASA    acetylsalicylic acid, Aspirin ® 

Btk    Bruton’s tyrosine kinase 

Ca2+    calcium 

CRP    collagen-related peptide 

CYP 450   cytochrome P450 

DC    dendritic cell 

DAPT    dual anti-platelet therapy  

DEP    diesel exhaust particles 

EC    endothelial cell 

ELISA    enzyme-linked immunosorbent assay 

Et al.     et alii [lat.], “and others” 

F    coagulating factor 

FcRg     fragment crystallizable receptor g-chain 

GP    glycoprotein 

GPCR    G protein- coupled receptor 

GPRP     Gly-Pro-Arg-Pro 

GPVI-Fc   recombinant dimeric GPVI-Fc fusion protein 

GPVI-His   histidine- tagged GPVI 

GPO    glycine-proline-hydroxyproline  

GPIIb-IIIa   Glycoprotein IIb-IIIa (Integrin aIIbb3) 

GPIa-IIa   Glycoprotein Ia-IIa (Integrin a2b1) 

Hom    homozygous  

ICAM-1   intercellular adhesion molecule-1  

Ig    immunoglobulin 

IL    interleukin 

ITAM    immunoreceptor tyrosine-based activation motif  

KD    dissociation constant 

kDa    kilodalton 

LAT    linker for activation of T cells 

LDL    low-density lipoprotein 

LSARLAF    Leu-Ser-Ala-Arg-Leu-Ala-Phe  
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MCP-1    monocyte chemotactic protein- 1 

MMP    matrix metalloproteinases 

mRNA    messenger ribonucleic acid 

oxLDL    oxidized low-density lipoprotein 

PCI    percutaneous coronary intervention 

PDI    protein disulfide-isomerase 

PLCg2     phospholipase Cg2 

PI3Kβ     phosphatidylinositol 3-kinase-β  

PS    phosphatidylserine  

/s    per second 

Ser    serine 

sGPVI    soluble GPVI 

SH2 domain   Src 2 homology domain 

SIM    structured illumination microscopy 

SLP76    lymphocyte cytosolic protein 2 

Src     sarcoma kinase 

Syk     spleen tyrosine kinase 

TF    tissue factor 

TFPI    tissue factor pathway inhibitor  

TXA2    thromboxane A2 

TNF-α     tumor necrosis factor  

VSMC     vascular smooth muscle cells VSMC 

VCAM-1   vascular adhesion molecule-1  

VWF    von Willebrand factor 
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Introduction 
 
 
1.1 Primary and secondary hemostasis 
 

Under physiological conditions, blood flows through the vascular system without penetration 

of the vascular wall. Traumatic injury or pathologic alterations (e.g. atherosclerosis) to the 

vessel wall compromise the integrity of the endothelium which in turn triggers a series of 

events: Firstly, bleeding into the tissue occurs and subendothelial extracellular matrix 

(containing collagen, von Willebrand factor (VWF), laminin, fibronectin and thrombospondin) 

is exposed to the bloodstream. To minimize bleeding, thrombocytes, together with soluble 

plasma components, form a clot to block further leakage.1 This mechanism is called 

hemostasis and can be sectioned into primary and secondary hemostasis.  

 

During primary hemostasis, thrombocytes form a clot over the vascular lesion by first 

adhering to the vessel wall2 and then acquiring further thrombocytes to create a temporary 

clot, termed aggregation (primary hemostatic thrombus).3 The primary hemostatic thrombus 

develops rapidly but lacks firm adhesion. A more robust thrombus develops during 

secondary hemostasis. By activation of the intrinsic and extrinsic pathways of the coagulation 

cascade, activated coagulating factors are generated in a defined chronology which leads to 

the formation of fibrin fibers. Fibrin fibers stabilize the clot and initiate the healing process, 

while fibrinolytic agents (antithrombin III, protein C and S, and tissue factor pathway inhibitor 

(TFPI)) simultaneously regulate hemostasis.  

 

These algorithms are crucial to the prevention of trauma-associated blood loss. However, 

unrestrained platelet aggregation in diseased vessels can cause vascular thrombosis, which 

in turn results in myocardial infarction, stroke or other related conditions (see 3.2. 

Atherosclerosis and atherothrombosis). 
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Figure 1: Primary and secondary hemostasis is initiated after traumatic injury of the vascular 
wall. Created with BioRender.com.4 
 
 
1.1.1 Platelets and platelet receptors 
 

Thrombocytes, also referred to as platelets, like other blood cells of the myeloid cell line 

(erythrocytes, leukocytes), originate from the bone marrow, where they are formed from 

megakaryocytes.5 With a diameter of 2-4µm, platelets are the smallest corpuscular blood 

cells. Platelets lack a cell nucleus and therefore have restricted ability to synthesize protein6- 

a phenomenon, which plays an essential role in pharmacological inhibition of platelet 

activation. Under healthy conditions, the average platelet count of an adult lies between 150 

000- 450 000/µl. The physiological lifetime of thrombocytes is 7-10 days with a daily 

regeneration rate of approximately 20%.  

When activated, thrombocytes undergo a shape change.7,8 Then the average surface is 

altered from approximately 8µm2 to 13µm2 by the formation of finger-shaped extensions of 

the plasma membrane, called pseudopodia.9 

 

Thrombocytes play a crucial role in primary and secondary hemostasis.3,10 In a first step, 

platelets decelerate and adhere to the extracellular matrix of the injured vascular wall 

(“tethering”).11 Platelet adhesion is primarily, among others, mediated by the interplay of von 

Willebrand factor (VWF) with the platelet glycoprotein GPIb-V-IX complex.12-16 This 
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interaction is characterized by a rapid “on-off-rate”, which leads to a transient but less firm 

adhesion of thrombocytes.17 VWF is a multimeric adhesive glycoprotein which has binding 

sites for collagen,18 GP Ib19,20 and integrin aIIbb3.21 VWF plays a major role under conditions 

with high shear rate as found in arterioles and arterial stenosis e.g. due to atherosclerosis. 
14,22 

The transient adhesion allows for stable binding of platelets by the collagen receptors 

glycoprotein VI (GPVI) and integrin a2b1, and therefore spreading of adhering platelets.  

While integrin a2b1 is primarily important for adhesion of platelets to collagen, GPVI was 

found to be relevant as a signaling receptor in the activation of platelets by collagen.23,24 

Binding of GPVI to its ligands leads to a shift of a2b1 and aIIbb3 integrin on the platelet 

surface from a low- to a high- affinity state, which enables further ligand binding.25 26 

 

GPVI signaling leads mainly to the release of thromboxane A2 (TXA2) and secretion of 

granule contents such as adenosine diphosphate (ADP)3,27,28. Both function as secondary 

positive-feedback mediators; ADP promotes further platelet activation via G protein–coupled 

receptors (GPCRs) P2Y1
29 and P2Y12

30. Thromboxane A231 derives from arachidonic acid, 

which is converted by cyclooxygenase-1 and thromboxane- synthase and activates the 

GPCRs, TPα and TPβ, on the platelet surface.32 

Activation of integrin αIIbβ3 leads to binding of fibrinogen and in turn to platelet 

aggregation.33 Unlike integrin a2b1, αIIbβ3 is crucial for hemostasis. Genetic deficiency or 

dysfunction of this integrin results in impaired adhesion and absence of aggregation and 

underlies Glanzmann thrombasthenia, an inherited autosomal recessive bleeding disorder.34 

 

Besides the collagen-induced activation of platelets35 through exposure of extracellular 

matrix within the vascular wall, platelets can be activated by thrombin, triggered by the 

stimulation of coagulation factors such as tissue factor (TF).36 Tissue factor, a 47 kDa 

membrane-associated protein, is expressed on various cells of the arterial wall, including 

fibroblasts, VSMCs and monocytes, where its secretion can be stimulated chemically.37,38 It 

is unclear whether functionally significant amounts of the protein can be found on platelets.39 

When TF comes into contact with plasma FVIIa, the coagulation cascade is initiated, 

resulting in the formation of thrombin which stimulates both platelets and fibrin formation to 

develop into a platelet-rich thrombus. Thrombin stimulated platelet activation can occur 

independently of endothelium disruption, VWF40 or GPVI41.  
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Figure 2: Mechanisms of platelet activation, adhesion and aggregation on collagen after injury 
to the vascular endothelium.  
1. Platelets decelerate and adhere to the extracellular matrix of the injured vascular wall mediated by 
transient interaction of the GPIb-V-IX complex and immobilized VWF on collagen. 2. Stable adhesion 
of platelets via binding of integrin a2b1 and GPVI to collagen. During platelet activation, GPVI dimers 
are formed from monomers. 3. GPVI-dependent signal transduction initiates platelet activation. 
“Inside-out-signaling” of integrin a2b1 and αIIbβ3 leads to a shift from a low- to a high- affinity state, 
and release of secondary agonists ADP and TXA2. 4. Binding of fibrinogen via integrin αIIbβ3 results 
in platelet aggregation. ADP and TXA2 promote further activation of platelets via stimulation of P2Y12- 
and TXA2-receptors. GPVI= glycoprotein VI; ADP= adenosine diphosphate; TXA2= thromboxane A2, 
VWF = von Willebrand factor. Created with BioRender.com42 and modified with permission from 
Jamasbi et al43. 
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1.1.2 Coagulation cascade: Generation of fibrin 
 
In the human organism, coagulation comprises both cellular (platelets) and soluble (proteins) 

elements. During secondary hemostasis, cross-linked fibrin is produced by means of a 

coagulation cascade involving two separate, initial pathways. Fibrin, as mentioned earlier, is 

necessary to form a stable blood clot after vessel wall injury. The two pathways are 

the contact activation pathway (intrinsic pathway)44 and the tissue factor pathway (extrinsic 

pathway, see above)45, the latter being the more dominant pathway.46 Most coagulating 

factors (F) are serine proteases that cleave downstream proteins. On the contrary, tissue 

factor (FIII), FV, FVIII are categorized as glycoproteins and FXIII is a transglutaminase. All 

coagulation factors circulate as inactive enzyme precursors (zymogens); their activation is 

indicated by an additional “a” added to the Roman numbering.47,48 

A thorough explanation of the cascade is far beyond the scope of this introductory 

paragraph. Instead, a simplified diagram will be provided (see Figure 3). Furthermore, it is 

crucial to understand that the distinction between the two pathways is entirely arbitrary and 

relies on laboratory testing.49 The role of the contact activation pathway is still under debate. 

While some data suggests that it plays a more prominent role in initiating clot formation50, 

elsewhere it is claimed to be more relevant in congenital immunity and inflammatory 

processes.51  
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Figure 3: Coagulation cascade.  
Tissue factor pathway (extrinsic) 1. TF forms a complex with circulating factor FVIIa, which 
activates FIX and FX. 2. FVII is activated by thrombin, FXIa, FXII, and FXa. 3. Tissue factor pathway 
inhibitor (TFPI) inhibits activation of FX by means of TF-FVIIa. 4. FXa and FVa form the 
“prothrombinase complex” to transform prothrombin into thrombin. 5. Thrombin is generated and has 
the highest positive feedback potential. It activates FV and FVIII (which forms a complex with FIX). 6. 
FVIIIa and FIXa build the tenase complex and again activate FX.48,52 
Contact activation pathway (intrinsic) 1. The primary complex is formed on collagen by high-
molecular- weight kininogen (HMWK)53, prekallikrein and FXII (Hageman factor). 54-56 2. Prekallikrein is 
converted to kallikrein and FXII is activated. 3. FXIIa converts FXI to FXIa, which activates FIX57. 4. 
FIXa, with its co-factor FVIIIa, forms the tenase complex, which converts FX to FXa. Both pathways 
merge to become the final common pathway58,59, in which thrombin converts fibrinogen into fibrin and 
activates FV, FVIII and FXIII.47 Continued activation of FVIII and FIX promotes the prothrombotic state 
of the coagulation cascade. Regulation to prevent overstimulation and thus pathologic blood clotting is 
secured by the anticoagulant pathways including, amongst others, protein C and S, thrombomodulin, 
tissue factor pathway inhibitor, and antithrombin.48 Created with BioRender.com.60 
 
 
 

In the final steps of the coagulation cascade, the insoluble polymer fibrin is formed from 

fibrinogen by thrombin-induced proteolytic cleavage. Fibrinogen has a molecular weight of 

340 kDa and comprises two repeats of three polypeptides: the Aa, Bb and g chains.61 These 

six chains form a dimeric structure with a central E-region flanked by two D-regions62 on 

each side. Cleavage of fibrinogen at distinct sites of the central E domain at the N-termini of 

the a and the b chains result in the release of fibrinopeptides A and B.63 Hence, 

polymerization sites are exposed and interact with the D-region of adjacent fibrinogen 

molecules.64 FXIIIa initiates cross-linking of fibrin fibrils, thereby increasing clot stability and 

resistance to fibrinolysis.65,66 
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1.2 Atherosclerosis and atherothrombosis  
 
 
Atherosclerosis is a systemic arterial disease characterized by local lipid accumulation in 

the intima, which leads to inflammation, smooth muscle cell proliferation, fibrous matrix 

accumulation,  and plaque formation.67 After erosion or rupture of an atherosclerotic plaque, 

uncontrolled platelet deposition can occur and result in partially or totally occlusive arterial 

thrombosis - referred to as atherothrombosis. Its primary clinical manifestations are 

ischemic heart disease68, ischemic stroke, and peripheral arterial disease69. 

Up to this day, cardiovascular disease is the leading cause of death and long-term 

morbidity.70 Although cardiovascular death rates have significantly decreased in developed 

countries, rates have been rising in developing countries, with now about 80% of the burden 

localized in low- to middle-income countries. In developed countries - despite optimal 

treatment involving highest technology and secondary prevention therapies - recurrent 

events are reported in 10% of all patients in the first 12 months following an acute coronary 

syndrom.71 According to the Global Burden of Diseases, Injuries, and Risk Factor Study 

2015, cardiovascular disease affected about 422 million people and caused an estimated 

17.9 million deaths worldwide in 2015, hence 31% of all global deaths. Epidemiologists 

estimate that by 2030, approximately 23.6 million people will die each year as a 

consequence of cardiovascular diseases.72 

The complex mechanisms of atherosclerosis and atheroprogression are still not 

completely understood. Despite controversial findings, the hypothesis of “response-to-

injury”73,74 appears to be widely accepted. Furthermore, atherosclerosis is considered a 

chronic inflammatory disease as signs of inflammation can be found throughout all stages of 

atheroprogression.75 

In early-stage atherosclerosis, endothelial injury, hemodynamic turbulances76, and abnormal 

lipid metabolism67 mediate the atherogenic process and lead to inflammatory changes in 

endothelial cells (ECs). Activated ECs attract cells of the immune system (lymphocytes and 

monocytes) by displaying various signaling proteins on their surface, among others, 

monocyte chemoattractant protein-1 (MCP-1)77,78, interleukin-8 (IL-8)79, vascular adhesion 

molecule-1 (VCAM-1), intercellular adhesion molecule-1 (ICAM-1)80, E-selectin and P-

selectin.81,82 Leukocytes and monocytes83 adhere to the endothelial cells, infiltrate the arterial 

wall and cause inflammation which results in further endothelial dysfunction. Various cells 

and cytokines facilitate the inflammatory process, including lymphocytes (T and B cells), 

macrophages, dendritic cells (DCs), vascular smooth muscle cells (VSMCs), ILs and tumor 

necrosis factor (TNF-α).  

Lipoproteins, foremost LDL (low-density lipoprotein), accumulate in the intimal layer of the 

vessel wall; oxidative stress leads to the production of oxidized LDL (oxLDL)84 which 
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stimulates secretion of cytokines, chemokines and growth factors. Monocytes differentiate 

into macrophages and by ingestion oxLDL85 transform into foam cells. VSMCs can 

degenerate into macrophage-like cells, which can- by overconsumption of lipoproteins- turn 

into foam cells, like other macrophages.86 Foam cells typically occur in the “fatty streak”, an 

early, primarily asymptomatic sign of atherosclerosis. 

 

In late-stage atherosclerosis, macrophages secrete matrix metalloproteinases (MMPs),87 

which degrade collagen fibers,88,89 allowing increased platelet adhesion onto these modified 

fibers.90,91 Further secretion of chemokines and growth factors stimulates proliferation of 

VSMCs, building the fibroatheroma.  

In contrast to the physiological activation of platelets during primary hemostasis due to 

vessel wall injury, plaque rupture or –erosion92 can lead to intraluminal thrombosis, a 

pathological process termed atherothrombosis. After rupture of an atherosclerotic plaque, 

plaque components, including highly thrombogenic fibrillar collagen I and III and plaque 

tissue factor, are exposed to the bloodstream. Other compounds like VWF, laminin, 

fibronectin, vitronectin, thrombospondin, fibrinogen, fibrin, lysophosphatidic acid, and oxLDL 

stimulate further platelet adhesion and activation.93,94 Studies have shown that 

atherosclerotic arteries have a much higher thrombogenic potential compared to healthy 

vessels. One explanation may be the modification of collagen I and III. In plaque lesions, the 

latter are degraded by matrix-metalloprotease -2,95 which entails a drastically increased 

platelet response.90 

 

Stable atherosclerotic plaques typically exhibit a solid fibrous cap with large quantities of 

VSMCs and extracellular matrix and a relatively small prothrombogenic, lipid rich core96. The 

fibrous cap prevents exposure of the core to the bloodstream: “The thinner the fibrous cap, 

the higher the risk of plaque rupture”.97 Robustness of an atherosclerotic plaque is 

determined by tissue composition36,98 rather than the extent of luminal stenosis.97,99-101 

Destabilization of the atherosclerotic plaque underlies various mechanisms. T-cell mediated 

Interferon-g secretion diminishes the synthesis of collagen I and III by VSMCs, and 

extracellular matrix is degraded involving formation of MMPs by stimulated 

macrophages.88,89,102 Plaque rupture is estimated to be accountable for 60-75% of all acute 

coronary syndromes. 
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1.3 Antiplatelet agents 
 
 
Antiplatelet therapy is one of the main therapeutic caterpillars for patients with acute 

coronary syndrome planned for percutaneous coronary intervention and represents a key 

measure in the primary and secondary prevention of cardiovascular events. Antiplatelet 

agents target either enzymes or platelet receptors essential to the development of arterial 

thrombosis. 

 

Low-dose acetylsalicylic acid (Aspirin®, ASA), an irreversible cyclooxygenase inhibitor, is 

a well-established antiplatelet agent. Via acetylation of a serine residue (Ser529) of 

cyclooxygenase 1 and 2, ASA impairs the synthesis of prostaglandin G2  and H2, leading to 

an impaired generation of thromboxane A2 for the platelet lifetime. Subsequently, platelet 

activation through the thromboxane receptor is blocked. Aspirin® proved to be efficient in 

primary and secondary prevention of ischemic events. A reduction of up to 20% of such 

events in high-risk patients compared to placebo was observed in large meta-analyses.103-105 

 

P2Y12 receptor antagonists are mainly used in conjunction with Aspirin ®, a combination 

also referred to as dual antiplatelet therapy (DAPT),106 in patients with acute coronary 

syndrome and after percutaneous coronary intervention (PCI) to prevent in-stent 

thrombosis.107  

P2Y12 receptor antagonists inhibit ADP-mediated platelet activation. P2Y12 

receptor antagonists are comprised of thienopyridines (ticlopidine, clopidogrel and prasugrel) 

and nucleoside-nucleotide derivatives (ticagrelor, cangrelor). Thienopyridines are prodrugs 

that rely on conversion to active metabolites by the hepatic cytochrome P450 (CYP P450). 

Clopidogrel is characterized by a delayed onset of action and exhibits significant 

interpersonal variability of pharmacodynamics und –kinetics. In some patients, clopidogrel 

does not have a reliable antithrombotic effect, also referred to as high “on-treatment platelet 

reactivity”.108-112 Ticagrelor - due to greater bioavailability and less response variability113- and 

prasugrel114 have been proven to be superior to clopidogrel in patients with acute coronary 

syndrome.115 In a recent study, however, the rate for primary endpoint, defined as a 

combination of the events, death, myocardial infarction, or stroke, was reduced by 36% 

under prasugrel in comparison to ticagrelor treatment.116 Therefore, an amendment of the 

guidelines for acute coronary syndrome is currently under debate.117 

 

Glycoprotein IIb/IIIa receptor antagonists inhibit binding of fibrinogen to activated 

platelets, resulting in impaired aggregate formation. Approved agents are abciximab, 
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tirofiban, and eptifibatide. Glycoprotein IIb/IIIa receptor antagonists are associated with an 

increased bleeding risk and are indicated for high-risk patients with acute coronary syndrome 

(ACS) undergoing or following PCI with serious risk for thrombosis or ASA/ P2Y12 

receptor antagonists- intolerance.107 

 

Currently available antiplatelet drugs inhibit mechanisms pivotal for both, hemostasis and 

thrombosis. All agents mentioned above, have been associated with bleeding, adverse 

reactions118 and mortality.119 Up to this day, bleeding forms a serious limitation of current 

therapeutic approaches. Unfortunately, one principle is applicable to all agents mentioned 

above- the more effective the antithrombotic effect, the higher the risk of impaired 

hemostasis, resulting in increased hemorrhagic events. 

 

Thus, there is the need for the evolution of more targeted therapeutic options with powerful 

antithrombotic effect and reduced hemorrhagic risk. New antiplatelet approaches, such as 

inhibitors of protein disulfide-isomerase (PDI), phosphatidylinositol 3-kinase-β (PI3Kβ), 

activated GPIIb/IIIa and GPVI, are currently under investigation either in preclinical or early-

phase clinical trials.112,120 

Inhibition of GPVI in platelet interaction with collagen, fibrin, and fibrinogen was investigated 

in this dissertation. Under normal rheological conditions, GPVI plays a minor role in 

hemostasis, while GPVI signaling is pivotal in atherothrombosis, making it a promising novel 

target for anti-atherothrombotic therapy121 (see GPVI as novel antiplatelet target). 
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1.4 Glycoprotein VI (GPVI) 
 
1.4.1 GPVI- structure and signal transduction 
 
Platelet GPVI, a 60-65 kDa type I transmembrane glycoprotein and member of the 

immunoglobulin (Ig) superfamily, is the collagen receptor essential for collagen-mediated 

platelet activation, adhesion, thrombus formation, growth, and stability122 and plays a pivotal 

role in maintaining vascular integrity.123 GPVI is solely expressed on platelets and 

megakaryocytes.124-126 

On the surface of resting platelets, GPVI is present as a monomer as well as a dimer and 

upon platelet stimulation dimerization increases.127-129 Dimeric glycoprotein VI (GPVI) binds 

with much higher affinity to glycine-proline-hydroxyproline (GPO) sequence repeats in 

collagen fibers (KD for collagen type I and III, 42 nM and 58 nM, respectively) than 

monomeric GPVI (KD for collagen type I and III, 8 µM and 14 µM, respectively)127.   

Besides collagen, binding of laminin130, fibronectin131, vitronectin,132 and adiponectin133 to 

GPVI has been demonstrated.130-132,134 Non-physiologic ligands are rattlesnake venom toxin, 

alborhagin,135 and triple-helical collagen-related peptide (CRP), containing glycine-proline-

hydroxyproline (GPO) repeat motif.136 Notably, GPVI has shown to be activated by a group of 

ligands with little structural similarity, including large polysaccharides (fucoidan, dextran 

sulfate), diesel exhaust particles (DEP) and small peptides like LSARLAF (Leu-Ser-Ala-Arg-

Leu-Ala-Phe) and histones.137  

 

The transmembrane part of GPVI is non-covalently bound to the fragment crystallizable 

receptor g-chain (FcRg), which serves as signaling subunit. The FcRg-homodimer comprises 

two covalently linked FcRg-chains. The Src family kinases Fyn and Lyn138 are associated 

with the FcRg-chain. Upon GPVI activation, the kinases initiate tyrosine phosphorylation of 

the immunoreceptor tyrosine-based activation motif (ITAM) of the FcRg-chain.139,140 

Subsequently, they bind to the tandem SH2 domains (“Src 2 homology domain”) of the 

tyrosine kinase Syk, leading to its activation.  

 

Downstream adapters and signaling enzymes, such as LAT (linker of activated T cells), 

SLP76 (lymphocyte cytosolic protein 2),141 PI3-kinase (phosphoinositide 3-kinase), Btk 

(Bruton’s tyrosine kinase) are set in motion, leading to the activation of the main effector 

enzyme PLCg2 (phospholipase Cg2).142 This leads to protein kinase C activation and 

mobilization of intracellular Ca2+ stores, resulting in the secretion of ADP from dense 

granules and thromboxane formation from arachidonic acid, activation of integrin αIIbβ3 and 

shape change of platelets.  
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Figure 4: Structural features of the GPVI dimer and GPVI-mediated signal transduction 
FcRg-chain= Fc-receptor-g-chain, Ig= immunoglobulin; ITAM= immunoreceptor tyrosine-
based activation motif, PPP= proline-rich region; Lyn/Fyn= Syk family kinases Lyn/Fyn; Syk= 
spleen tyrosine kinase with 2 Src-homology domains, LAT= linker of activated T cells, 
SLP76= lymphocyte cytosolic protein, PI3K= phosphoinositide 3-kinase, Btk= Bruton’s 
tyrosine kinase, PLCg2= phospholipase Cg2. Created with BioRender.com. 
 

 
 
 
1.4.2 GPVI and atherothrombosis 
 
In healthy blood vessels, platelet adhesion and aggregation onto collagen are mediated by 

the two central collagen receptors- integrin α2β1 and GPVI. Platelets use both receptors to 

achieve stable platelet adhesion upon interaction with collagen of injured healthy arteries 

under arterial flow. 

Atherothrombosis- arterial thrombosis driven by human atherosclerotic plaque- however, 

seems to be solely sustained by GPVI.143-145 Collagen in atherosclerotic plaques generates  

significantly higher thrombus burden compared to collagen in healthy blood vessels. 

Interaction of collagen and platelets could be influenced by structural differences of the 

collagen fibers.90 As mentioned before, collagen in atherosclerotic plaques is cleaved by 

specific metalloproteinases, which are overexpressed in those lesions due to inflammation. 

These small and diffuse cross-linked collagen fragments might have an increased 

thrombogenic potential.95 
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It was demonstrated that thrombus formation on human atherosclerotic plaque mainly occurs 

in two steps. In a first, rapid step, platelet adhesion and aggregation onto plaque collagen are 

mediated by GPVI. In a second step, thrombin and fibrin formation occurs, driven by TF.146  

These findings suggest that inhibition of GPVI could be a promising therapeutic target for the 

prevention of atherothrombosis due to erosion or rupture of an atherosclerotic lesion.  

 

1.4.3 GPVI in hemostasis 
 
While GPVI plays a significant role as collagen receptor in atherothrombosis, its impact on 

hemostasis could be dispensable. Clinical studies revealed that patients with GPVI- 

deficiency commonly exhibit mild to no bleeding tendency.147,148 Partial compensation of 

GPVI-lack or malfunction by the other major collagen receptor α2β1 in normal hemostasis 

presents one possible explanation. 

 

GPVI-defects can be acquired, resulting from anti-GPVI autoantibody-induced shedding of 

extracellular domain149-151 or internalization of GPVI152, or hereditary due to lack of GPVI-

expression or dysfunctional expression. 

Several subjects with an acquired GPVI-deficiency have been specified in literature, often 

associated with immune thrombocytopenia, impaired collagen-induced platelet aggregation 

and mild bleeding diathesis.153 Even a case of a patient with immune GPVI-deficiency and 

absence of bleeding under DAPT treatment has been reported.154 While most patients’ 

bleeding time ranged from normal to mildly prolonged,  GPVI-related defects in combination 

with severe thrombocytopenia can bear an increased risk for severe bleeding 

complications.153  

Interestingly, GPVI-related defects occur predominantly (90%) in women and are often 

associated with other autoimmune disorders, including systemic lupus erythematosus,155 

Sjogren’s syndrome,156  and autoimmune thyroid disease.157  

 

Congenital GPVI deficiency has not yet been researched thoroughly. Today only three 

reports of patients with inherited GPVI-deficiency exist. As in patients with acquired GPVI-

deficiency, affected individuals presented with minor to moderate bleeding tendency.158 

In Chile three families with congenital GPVI-deficiency due to a homozygous (hom) 2 bp 

insertion within the GP6 gene have been identified.159 GP6hom platelets lack the full protein, 

while a normal platelet count is maintained. The GP6hom platelets showed abolished 

spreading and aggregate formation onto collagen and non-collagen surfaces (VWF, laminin, 

and rhodocytin) and impaired exposure of phosphatidylserine (PS), partially reduced 

thrombin generation and serotonin secretion, whilst adhesion was unaffected. Homozygous 
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patients showed a mild bleeding tendency and heterozygous family members were 

asymptomatic. 

There are estimated to be about 4000 GP6hom individuals in Chile.160 The preservation of 

adhesion to collagen by integrin α2β1 may explain the mild bleeding disposition of GP6hom 

subjects and may possibly be causative for a significant number of unreported cases. 

Whether these patients benefit from antithrombotic protection remains unclear.159  
 
The clinical observations of minor or no bleeding in GPVI-deficient patients are supported by 

many studies of GPVI-deficient mouse models. Konishi et al. showed that FcR g-chain- 

deficient- platelets fail to express GPVI in mice, resulting in protection against arterial 

thrombosis without an increase in bleeding.145 Also, mice platelets that were genetically 

FcRγ- or GPVI-deficient (Gp6−/−)161 or temporarily GPVI-depleted by administration of 

JAQ1,152,162 exhibited a loss of collagen-induced platelet response and moderate-to-strong 

prevention of thrombosis. An increase of bleeding time was, however, only sporadically 

observed.152,163 164  

In hemostasis, inhibition of GPVI function may be largely compensated due to the highly 

redundant function of other integrins and platelet receptors: While GPVI is critical for  

aggregation and PS exposure121,162 of platelets adhering to collagen; adhesion and shaping 

of small aggregates on collagen is secured by the integrin α2β1.165 Also platelet adhesion 

(but not aggregate formation, see above) to the injured vascular wall mediated by receptors 

for VWF (GPIb-IX-V), rhodocytin (CLEC-2), and laminin (α6β1) is not impaired by the lack or 

inhibition of GPVI.160 In addition, vascular wall injury leads to the exposure of negatively 

charged phospholipids resulting in tissue factor-induced thrombin formation. Together these 

mechanisms could be accountable for the comparatively mild predisposition of GP6hom 

subjects.160  

While there is broad agreement that inhibition or loss of GPVI entails a moderate to normal 

hemostasis, mechanisms by which hemostasis is secured in the absence of GPVI have not 

been fully understood. 
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1.4.4 GPVI as novel anti-atherothrombotic target 
 
Under normal rheological conditions, GPVI plays a minor role in hemostasis, while GPVI-

signaling in atherothrombosis is pivotal and constitutes a promising novel objective for anti-

atherothrombotic treatment.121 

GPVI is only expressed on platelets and megakaryocytes allowing high cell specificity while 

diminishing potential side effects.124-126 On the surface of resting platelets, GPVI is present as 

a monomer as well as a dimer, and upon platelet stimulation, dimerization increases.127,166,167 

Therefore, targeting GPVI is not only highly platelet-specific but might also preferentially 

inhibit platelet activation by ruptured or eroded plaques as demonstrated by static and flow 

trials employing human atherosclerotic plaque material.143,144,146,168 

In several cardiovascular diseases, platelet GPVI expression is higher and relies on the 

GPVI-genotype. In healthy humans, about 6000-10,000 GPVI copies per cell can be 

found.169,170 Higher levels of  GPVI can be found in patients with stroke and transient 

ischemic attack.171 In patients with large artery disease or stroke, soluble GPVI levels are 

significantly elevated,  suggesting that platelet function is regulated by metalloproteinase-

induced shedding of GPVI.172 Obese patients also have higher levels of GPVI, which 

correlate with a stronger platelet response to collagen fibers and CRP.173 Multiple studies link 

GPVI polymorphisms, such as GPVI T13254C174 and GPVI 13254CC175 genotypes, to a 

greater risk of acute coronary thrombosis. 

 

In patients with coronary heart disease, expression of GPVI at the protein and mRNA stage 

was found to be elevated and amplified GPVI surface expression was observed in patients 

with acute myocardial events, suggesting a role for GPVI expression to serve as biomarker 

for imminent myocardial infarction.176 Since regulation of GPVI expression underlies DNA 

methylation, the degree of CpG methylation in the GPVI- promoter region of the gene is 

under investigation as a possible future biomarker of coronary heart disease.177   

These clinical observations further consolidate the idea that GPVI could be a promising 

target to prevent acute cardiovascular events. Multiple pharmacological approaches have 

emerged in the past years. While GPVI-antibodies act systemically by inhibiting GPVI on all 

circulating platelets, GPVI-Fc probably acts locally at the side of plaque rupture or erosion by 

shielding collagen binding sites, leaving circulating platelets unaffected.178,179 

Revacept® is  a dimeric GPVI-Fc fusion protein and acts as a “lesion-directed competitive 

antagonist” to platelet GPVI, shielding GPVI epitopes exposed to the bloodstream after 

erosion or rupture of an atherosclerotic plaque. Revacept®  is being studied in a phase II trial 

(ISAR-PLASTER) in patients with stable coronary artery disease undergoing elective 

coronary artery intervention.180 Revacept® was well tolerated: Despite co-administration with 

standard antiplatelet therapy, the risk of bleeding did not increase.181 In line with these study 
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results, another phase II trial with patients suffering from symptomatic carotid artery stenosis 

showed that additional treatment with Revacept® alongside the recommended anti-

thrombotic treatment did not multiply the number of bleeding incidents.182 

 

 

 

1.4.5 Fibrin(ogen) as possible GPVI ligand- current state of research 
 
GPVI has long been known as a receptor for collagen. More recently, however, further 

ligands have been described, including fibronectin,131 vitronectin,132 laminin,130 the hormone 

adiponectin,133 and the transmembrane protein emmprin.183  

In 2015, prior to these studies, Mammodova et al.184 and Alshehri et al.185 first identified fibrin 

as a ligand for GPVI. Mammadova et al. described binding of recombinant dimeric GPVI to 

fibrin but not fibrinogen. Additionally, they demonstrated that GPVI binding to fibrin supports 

platelets spreading, thrombin generation and tyrosine phosphorylation of Syk and the FcRy-

chain regardless of integrin αIIbβ3.184 Alshehri et al. found that GPVI shedded from the 

surface of platelets (supposedly monomers) binds to fibrin but not fibrinogen. In mouse 

models fibrin stimulated spreading and procoagulant activity of platelets via GPVI.185 

Together these studies suggest that GPVI serves as an additional platelet receptor alongside 

integrin αIIbβ3 in fibrin-mediated thrombus growth and stabilization.184,185 Further, fibrin 

binding of GPVI was unaffected by the presence of GPRP (Gly-Pro-Arg-Pro), suggesting that 

it is independent of polymerization.185  

 

In 2017, Onselaer et al.186 found- contrary to Mammodova et al.- that recombinant dimeric 

GPVI did not bind specifically to either fibrin or fibrinogen but observed binding of monomeric 

GPVI to fibrin with an affinity constant of 302 nM, suggesting that monomeric GPVI binds 

selectively to fibrin. Furthermore, the group stated that the binding site lies within the D-

region of fibrinogen and D-Dimer, not in the E-region.186 Mangin et al.187 described binding of 

monomeric GPVI to fibrinogen, but not of dimeric GPVI, while confirmation of these results in 

mouse models failed. Direct fibrinogen/GPVI-binding was visualized by surface plasmon 

resonance and by intensified adhesion of fibrinogen to human GPVI-transfected RBL-2H3 

cells.187  

In contrast, Induruwa et al.’s work showed that it is the GPVI-dimer, not GPVI-monomer 

which recognizes fibrinogen and fibrin (through their D-domains). Their conclusions were 

based on studies with recombinant monomeric GPVI and dimeric GPVI-Fc fusion proteins 

and flow studies using the mFab-F, which inhibits dimeric GPVI on platelets. However, close 

inspection of the results showed that the recombinant dimeric GPVI bound only weakly to 
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fibrin and fibrinogen, whereas strong binding was detected with fibrinogen D-region and D-

dimer.188  

 

However, all the studies described above only used purified Fg or fibrin prepared from more 

or less purified fibrinogen. Of note, purified fibrinogen can contain fibronectin and vitronectin 

that have been described to bind GPVI, and/or IgG that is known to activate platelets. In 

none of the studies, fibrin prepared from recombinant Fg (free of contaminating plasma 

proteins) or physiologically formed fibrin (in plasma or blood) has been studied. Fibrin formed 

in plasma is known to be different from fibrin formed from purified fibrinogen. During 

coagulation of plasma, multiple plasma proteins associate with fibrin fibers. 18 non-covalently 

and 47 covalently to fibrin bound proteins (through cross-linking via FXIIIa) have been 

identified, among them fibronectin, vitronectin, VWF, plasminogen.189-192 Through 

incorporation of these plasma proteins into endogenous fibrin, fiber network structure and 

fiber morphology are altered which might result in modified platelet - activating properties for 

GPVI. 

Fibrin generation from isolated fibrinogen is another key variable for these binding studies. 

Preparation varies according to concentration and purity of fibrinogen, incubation time, and 

methods applied to deactivate thrombin.66,193 Important differences can be found in the 

recombinant GPVI-fusion proteins, as some GPVI constructs were used as monomers, some 

as dimers, varying in the transmembrane stalk region and the linker region.66 

 

Most recently, it was demonstrated that GPVI blockage resulted in disaggregation of human 

thrombi formed on collagen or on human atherosclerotic plaque.194,195 GPVI antibody-

induced disaggregation of thrombi could not be reproduced with thrombi from two 

afribrinogenemic patients implying that the interaction of GPVI and fibrinogen is pivotal.195  

In a ferric chloride injury model, normal onset of thrombosis but delayed occlusion in GPVI-

deficient mice sparked the hypothesis that thrombus stability might be secured by 

fibrin/GPVI-binding in situations where exposure of collagen was discreet.195 According to 

another study, polymerized fibrin, but not non-polymerized fibrin or fibrinogen, triggers GPVI-

shedding.196 Furthermore, fibrin was suggested to play a pivotal role in metalloproteolytic 

cleavage, which results in the release of soluble GPVI (sGPVI) into plasma through elevation 

of ADAM 10 activity.197 The same group reported that inclusion of polyanionic molecules 

impaired fibrin-mediated platelet aggregate formation, which translated into the assertion that 

GPVI/fibrin- interaction could rely on electrostatic charge. The authors of these studies 

therefore suggested that disruption of GPVI/fibrin- engagement could be possible while 

sparing the GPVI/collagen- interaction.197 
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Objectives and author’s contribution to publication I/II 
 
Publication I: Dimeric Glycoprotein VI Binds to Collagen but not to Fibrin 
 

Prior to the author’s studies, only two groups had reported that platelet GPVI binds to fibrin, 

but not to fibrinogen, and that it is involved in fibrin-induced platelet activation184,185 (see 

above). Until then, GPVI was believed to bind to plaque collagen, thereby being crucial for 

atherothrombosis after plaque rupture and erosion143,146,168 but dispensable for hemostasis 

due to compensation by major platelet collagen receptor, integrin α2ß1.198-201 

 

To further understand any potential GPVI activity in platelet activation and coagulation at the 

site of plaque rupture, binding of two recombinant dimeric GPVI-Fc fusion proteins (GPVI-

Fc1, GPVI-Fc2) onto fibrin was studied. Fibrin was formed employing purified fibrinogen 

(method 1) and also generated from endogenous fibrin in plasma (method 2) or generated by 

exposing TF to arterially flowing blood (method 3). Plasma fibrin has been shown to differ 

from fibrin derived from purified fibrinogen.202,203 Furthermore, fibrin formed by human 

atherosclerotic plaque (method 4) after perfusion with blood was surveyed.  

Binding of recombinant dimeric GPVI-fusion proteins to fibrin was examined under static and 

arterial flow conditions. For studies under arterial flow conditions, fibrin-coated coverslips 

were mounted into parallel plate flow chambers. After perfusion with blood at a shear rate of 

600/s using a syringe suction pump, GPVI-Fc binding to fibrin and collagen fibers was 

evaluated using advanced optical imaging, including two-photon confocal laser scanning 

microscopy and structured illumination microscopy.204 

 

The results of the conducted studies were published in the scientific paper “Dimeric 

Glycoprotein VI Binds to Collagen but not to Fibrin”. 

 

Ebrahim M, Jamasbi J, Adler K, Megens RTA, M'Bengue Y, Blanchet X, Uhland K, 
Ungerer M, Brandl R, Weber C, Elia N, Lorenz R, Münch G, Siess W. Dimeric 
Glycoprotein VI Binds to Collagen but Not to Fibrin. Thromb Haemost. 2018 
Feb;118(2):351-361. doi: 10.1160/TH17-04-0302. Epub 2018 Jan 29. PMID: 29378359. 

 
 

The author’s contribution as principal author consisted of establishing protocols for fibrin 

generation, planning and execution of experiments as well as assessment and presentation 

of results. All experiments were conducted, and the respective paragraphs were written by 

the author with the exception of studies involving ELISA (Fig. 2) and human atherosclerotic 

plaque (Fig. 5), and the paragraph “Confocal Laser Scanning Microscopy” (method). A 

detailed statement of the co-authors’ contribution to the publication has been submitted. 
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Publication II: Glycoprotein VI is not a Functional Platelet Receptor for Fibrin 

Formed in Plasma or Blood 
 
Whereas binding of recombinant dimeric GPVI-Fc to different fibrins was not detected in the 

first publication204, in this publication, functional assays were performed to explore the role  of 

platelet GPVI on flow-dependent thrombus formation onto immobilized fibrinogen and 

variable types of fibrin under arterial flow conditions.192 

 

Platelet GPVI- (both monomeric and dimeric GPVI) was inhibited by pre-incubation of blood 

with two different anti-GPVI antibodies (5C4, 1A5).  Reduction of platelet coverage 

(adhesion, aggregate formation) on the different fibrins was assessed by advanced optical 

imaging, including two-photon confocal laser scanning microscopy and structured 

illumination microscopy.192 

Fibrin, similarly to the first publication204, was generated applying different methods: Fibrin 

was formed from isolated fibrinogen (referred to as “pure fibrin”) or generated more 

physiologically from endogenous fibrinogen in plasma (“plasma fibrin”) or by exposing TF to 

flowing blood (“blood fibrin”). Additionally, recombinant fibrinogen was obtained from a group 

in Japan to generate “recombinant fibrin”, as a source of fibrinogen free of other plasma 

proteins.  

Differences in protein content and covalent cross-linking mediated by FXIIIa between pure 

fibrin(ogen), recombinant fibrin(ogen) and plasma fibrin were identified by performing silver 

stainings of different fibrin(ogens). Immunoblots were conducted to examine content of 

vitronectin, fibronectin, FXIII, VWF and the gamma-chain of fibrinogen. 

 

Flow chamber experiments with different fibrinogens and fibrins were conducted and 

inhibition of platelet adhesion and aggregation after addition of anti-GPVI antibodies (5C4, 

1A5) compared to controls were evaluated.  

On the platelet surface, GPVI is present in monomeric and dimeric form. After publication I 

had shown, that dimeric GPVI does not bind to fibrin204, binding of monomeric GPVI to fibrin 

was investigated. Therefore, binding of recombinant monomeric GPVI-His to purified 

fibrinogen, pure fibrin, and fibrin fragments DD and E from pure fibrin was assessed using 

ELISA. 

To further understand the role of integrin αIIbβ3 in fibrin-mediated platelet adhesion and 

aggregate formation, flow chamber experiments using abciximab were performed. 

Subsequently, the number and size of platelet aggregates after GPVI-inhibition by 5C4 or 

abciximab versus control were measured.192 
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The results obtained from the conducted studies were published in the scientific paper 

“Glycoprotein VI is not a Functional Platelet Receptor for Fibrin Formed in Plasma or Blood”. 

 

Zhang D, Ebrahim M, Adler K, Blanchet X, Jamasbi J, Megens RTA, Uhland K, Ungerer 
M, Münch G, Deckmyn H, Weber C, Elia N, Lorenz R, Siess W. Glycoprotein VI is not a 
Functional Platelet Receptor for Fibrin Formed in Plasma or Blood. Thromb 
Haemost. 2020 Jun;120(6):977-993. doi: 10.1055/s-0040-1710012. Epub 2020 Jun 3. 
PMID: 32492725. 

 

The author’s contribution as co-author consisted of transmission of established protocols for 

fibrin generation to be used by the principal author, and planning and execution of flow 

experiments as well as assessment and presentation of the results represented in Fig. 1 A/B 

(control, 5C4), Fig. 2A (control, 5C4), Fig. 2E, Fig. 4 A/B (control/5C4), Fig. 5 A/B 

(control/5C4) (graphic modified by D. Zhang), Suppl. Fig. S1, Suppl. Fig. S2 (graphic 

modified by D. Zhang), Suppl. Fig. S3. Planning and discussion of experiments of Suppl. Fig. 

S4. Furthermore, the author initiated a cooperation with Kaketsuken (Japan) and contributed 

to the material transfer agreement regulating the non-commercial use of recombinant 

fibrinogen in the conducted studies. 

A detailed statement of the co-authors’ contribution to the publication has been submitted. 
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Summary 
 

Platelet collagen receptor glycoprotein VI (GPVI) plays a crucial role in mediating 

atherothrombosis leading to ischemia of vital organs (i.e. myocardial infarction, stroke). While 

GPVI has been known primarily as collagen receptor, recent studies led to the identification 

of fibrin and fibrinogen as novel GPVI ligands. Clinical observations of patients with GPVI-

deficiency revealed only minor bleeding tendency which translated into the assumption that 

GPVI is dispensable for hemostasis. 

Binding of platelet GPVI to fibrinogen and fibrin could have essential implications for GPVI-

targeting antithrombotic substances such as GPVI-fusion proteins and anti-GPVI antibodies 

and raise new safety concerns by directly affecting the interaction between platelets and 

fibrinogen/fibrin. 

 

In the first publication of this dissertation, binding of recombinant dimeric GPVI-Fc fusion 

proteins with Fc from either IgG1 (GPVI-Fc1, Revacept ®) or IgG2 (GPVI-Fc2) to fibrin was 

assessed under static and arterial flow conditions. 

Fibrin was generated applying different methods: Fibrin was formed from isolated fibrinogen 

(referred to as “pure fibrin”), or generated more physiologically from endogenous fibrinogen 

in plasma (“plasma fibrin”) or by exposing TF to flowing blood (“blood fibrin”). Fibrin 

generated in plasma and blood binds during the complex process of fibrin polymerization, -

branching and cross-linking various plasma proteins and thus differs from fibrin prepared 

from purified fibrinogen. Advanced optical imaging revealed that dimeric GPVI-Fc fusion 

proteins bound to collagen fibers but neither to fibrin prepared from purified fibrinogen 

obtained from three different manufacturers, nor to “plasma fibrin” or “blood fibrin” performed 

by perfusion of blood over immobilized tissue factor or human atherosclerotic plaque. 

 

In the second publication, functional in vitro studies under arterial flow conditions were 

conducted, studying the effect of anti-GPVI antibodies on fibrinogen- and fibrin-mediated 

platelet adhesion and aggregate formation. Additionally, recombinant fibrinogen was 

obtained to generate “recombinant fibrin”, as a source of fibrinogen free of other plasma 

proteins. 

On purified fibrinogen from two different suppliers, GPVI-inhibition did not impair platelet 

adhesion or aggregate formation. However, inhibition of GPVI reduced platelet aggregate 

formation, if fibrin was prepared from purified as well as recombinant fibrinogen. However, no 

significant inhibition of platelet coverage with anti-GPVI antibodies was detected on more 

physiologically generated “plasma fibrin” or “blood fibrin”.  
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The discrepancy is likely to be due to the incorporation of plasma proteins into fibrin during 

its polymerisation, branching and cross-linking in plasma or blood. This possibly shields 

epitopes (such as D-regions) recognized by platelet GPVI. Thus, GPVI is not involved in 

platelet interaction with plasma and blood fibrin. This is relevant, since the scientific literature 

showing a role of GPVI for platelet interaction with “pure” fibrin and even fibrinogen is 

continuously increasing (see 3.4.5. Fibrin(ogen) as possible GPVI-ligand-current state of 

research). 
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Zusammenfassung 
 
Der thrombozytäre Kollagen-Rezeptor GPVI spielt eine entscheidende Rolle bei der 

Entstehung von Atherothrombose als Ursache für Myokardinfarkte und Schlaganfälle. 

Bislang war GPVI als zentraler Kollagen-Rezeptor bekannt. In neueren Studien wurden 

Fibrin und Fibrinogen als GPVI-Liganden identifiziert. Zuvor hatte die Beobachtung, dass 

PatientInnen mit GPVI-Defizienz kein oder lediglich ein gering-gradig erhöhtes Blutungsrisiko 

zeigten, die Vorstellung geprägt, dass eine Hemmung von GPVI keinen Einfluss auf die 

Hämostase hat. Sollte GPVI, so wie in ersten experimentellen Studien gezeigt184,185, an der 

Interaktion von Thrombozyten mit Fibrin beteiligt sein, könnte dies schwerwiegende 

Sicherheitsbedenken (Thrombusinstabilität, Emboliegefahr) bei dem Einsatz von GPVI-

Fusionsproteinen und anti-GPVI Antikörpern zur Folge haben. 

In der ersten Publikation dieser Arbeit wurden Bindungsstudien unter statischen und 

Flussbedingungen durchgeführt und die Bindung von GPVI-Fc Fusionsproteinen (GPVI-Fc1 

und GPVI-Fc2) an Fibrin untersucht.  

Fibrin wurde mittels drei unterschiedlicher Methoden generiert: Fibrin wurde aus isoliertem 

Fibrinogen von drei unterschiedlichen Herstellern gewonnen und als „pure fibrin“ bezeichnet. 

In einem zweiten Ansatz zur Simulation physiologischerer Bedingungen wurde endogenes 

Fibrin „plasma fibrin“ und durch Exposition von immobilisiertem Tissue Faktor gegenüber 

fließendem Blut „blood fibrin“ generiert. Fibrin, das in Plasma durch Aktivierung der 

Gerinnungskaskade entsteht, bindet zahlreiche Plasmaproteine und unterscheidet sich damit 

von Fibrin, das aus isoliertem Fibrinogen hergestellt wurde. Mittels hochauflösender 

mikroskopischer Bildgebung konnte gezeigt werden, dass dimere GPVI-Fc Fusionsproteine 

an Kollagen, aber weder an Fibrin aus isoliertem Fibrinogen noch physiologisch hergestelltes 

Fibrin binden. 

 

In der zweiten Publikation wurden funktionelle Bindungsstudien unter arteriellen 

Flussbedingungen in vitro durchgeführt. Der Effekt einer GPVI-Inhibition durch anti-GPVI 

Antikörper auf Fibrinogen - und Fibrin-induzierte Thrombozytenadhäsion und –aggregation 

wurde untersucht. Zusätzlich wurde Fibrin aus rekombinant hergestelltem Fibrinogen 

generiert, um ein Plasmaprotein-freies Fibrin zu untersuchen. Eine signifikante Reduktion 

von Adhäsion und Aggregation konnte lediglich in den Versuchen mit Fibrin aus isoliertem 

oder rekombinantem Fibrinogen beobachtet werden; physiologischeres Fibrin („blood/ 

plasma fibrin“) zeigte keine Reduktion der Thrombozytenaggregatbildung. Auch auf 

isoliertem Fibrinogen ließ sich keine Hemmung der Thrombozytenadhäsion oder -

aggregation durch GPVI-Inhibition zeigen. Die Diskrepanz der Befunde könnte durch 

Inkorporation von Plasmaproteinen in die Fibrinfasern bei der Bildung von endogenem Fibrin 



 
 

  27 

und damit Maskierung von Epitopen, die für die Erkennung durch thrombozytäres GPVI 

wichtig sind, verursacht sein. Die Studie zeigt, dass GPVI für die Interaktion von 

Thrombozyten mit physiologisch gebildetem Fibrin irrelevant ist. 
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Paper I 
 
 
Ebrahim M, Jamasbi J, Adler K, Megens RTA, M'Bengue Y, Blanchet X, Uhland K, Ungerer M, 
Brandl R, Weber C, Elia N, Lorenz R, Münch G, Siess W. Dimeric Glycoprotein VI Binds to 
Collagen but Not to Fibrin. Thromb Haemost. 2018 Feb;118(2):351-361. doi: 10.1160/TH17-04-
0302. Epub 2018 Jan 29. PMID: 29378359. 
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Paper II 
 

Zhang D, Ebrahim M, Adler K, Blanchet X, Jamasbi J, Megens RTA, Uhland K, Ungerer M, 
Münch G, Deckmyn H, Weber C, Elia N, Lorenz R, Siess W. Glycoprotein VI is not a 
Functional Platelet Receptor for Fibrin Formed in Plasma or Blood. Thromb Haemost. 2020 
Jun;120(6):977-993. doi: 10.1055/s-0040-1710012. Epub 2020 Jun 3. PMID: 32492725. 
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