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Zusammenfassung

Während des gravitativen Kollapses eines Objekts bleibt der Drehimpuls erhalten. Im Fall
eines endlichen Drehimpulses im System kann sich eine rotierende Scheibe bilden, die durch
die Rotation stabilisiert wird. Aufgrund der Einfachheit dieses Mechanismus sind Scheiben
allgegenwärtig in der Astrophysik, beispielsweise als protoplanetare Scheiben, Akkretions-
scheiben um Schwarze Löcher oder Spiralgalaxien. Insbesondere kalte Gasscheiben sind al-
lerdings schwierig numerisch zu simulieren, da die Rotationsgeschwindigkeit deutlich über
der Schallgeschwindigkeit liegt und bereits geringe Ungenauigkeiten in der verwendeten nu-
merischen Methode zu einem unphysikalischem Wachstum von Fluidinstabilitäten führen
können. Dies ist besonders dann problematisch, wenn man echte, physikalische Instabi-
litäten in diesen Systemen analysieren möchte.

Eine Methode, die im Prinzip besonders geeignet für die Analyse von Scheibensyste-
men sein sollte, ist die Berechnung der magnetohydrodynamischen Gleichungen auf einem
mitbewegten Gitter, wie sie in dem kosmologischen Code AREPO realisiert ist. Hierdurch
kann die Überschallströmung des Gases aufgrund der Rotationsgeschwindigkeit in die Be-
wegung des Gitters aufgenommen und dadurch eliminiert werden. Die Bewegung und per-
manente Verzerrung der Gitterzellen aufgrund differentieller Rotation führt jedoch in der
ursprünglichen Version von AREPO zu numerischem Rauschen, was die Nützlichkeit des
Codes für kalte Scheiben deutlich reduziert hat. Das Ziel dieser Arbeit war es zunächst,
die Ursache des Rauschens zu ermitteln und zu beheben. Anschließend sollte evaluiert wer-
den, wie gut die verbesserte Methode kalte Scheiben beschreiben kann, insbesondere in
Situationen, in denen Turbulenz durch Magnetfelder oder durch die Wechselwirkung von
Strahlungskühlung und Gravitation erzeugt wird.

Im Rahmen dieser Arbeit habe ich zuerst die sogenannte “Shearing-Box” Näherung
in AREPO entwickelt, die es ermöglicht, einen kleinen Teil einer rotierenden Scheibe mit
sehr hoher Auflösung zu simulieren. Im Gegensatz zu Implementierungen in anderen Codes
bietet meine Lösung eine adaptive Gitterauflösung sowie vollständige Translationinvarianz.
Daneben konnte ich durch eine präzisere numerische Integration der Flussfunktion über die
Grenzflächen aneinanderstoßender Zellen das Rauschen auf Zellebene beheben und damit
die Genauigkeit des Codes für Scherströmungen stark erhöhen.

Auf Basis dieser Verbesserungen habe ich anschließend die magnetische Rotationsin-
stabilität (MRI) in der Shearing-Box und die dabei auftretenden magnetischen Dynamo-
Effekte analysiert. Sowohl im linearen als auch im nichtlinearen Bereich habe ich gute
Übereinstimmung mit früheren Ergebnissen in der Literatur gefunden, die mit statischen
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Gittercodes erzielt wurden. In einer weiteren Studie habe ich eine Codeerweiterung ent-
wickelt, welche die Gravitationskräfte zwischen Massenelementen innerhalb der Simula-
tionsregion unter Einbeziehung der speziellen Randbedingungen der Shearing-Box und
ohne Auflösungsbeschränkungen berechnen kann. Mit Hilfe des sogenannten β-Kühlens
konnte ich zeigen, dass bei schwachem Strahlungskühlen unter Eigengravitation und Sche-
rung ein gravitoturbulenter Zustand entsteht, während sich bei effizienterem Kühlen Frag-
mente aus kollabierenden Gaswolken herausbilden können. Schließlich habe ich die so-
genannte Rossby-Wellen-Instabilität in globalen, zweidimensionalen Scheibensimulationen
analysiert. Hierbei konnte ich sowohl im linearen als auch im nichtlinearen Bereich gute
Übereinstimmung mit der Literatur erzielen.

Die Entwicklung der Shearing-Box-Näherung und die Beseitigung des Rauschens auf
Gitterebene in dem Verfahren mit einem bewegten Gitter ermöglicht vielfältige Forschungs-
anwendungen in der Zukunft. Einerseits kann die Wechselwirkung verschiedener Instabi-
litäten in Scheiben mit Hilfe der Shearing-Box präzise analysiert werden, andererseits sind
nun auch globale Simulationen von ganzen Scheiben mit der Methode des bewegten Gitters
möglich. Dieses Verfahren ermöglicht wesentlich größere Zeitschritte und geringere Advek-
tionsfehler als herkömmliche Methoden mit stationären Gittern. Auch können Teile einer
galaktischen Scheibe mit meiner Shearing-Box Methode in einem “Zoom” Modus simuliert
werden, wobei insbesondere die geometrisch flexible, adaptive Auflösung der Methode von
Vorteil ist.



Abstract

During the gravitational collapse of an object, the angular momentum is conserved. In
the case of a finite angular momentum in the system, a rotating disk can form, stabilized
by the rotation. Due to the simplicity of this mechanism, disks are ubiquitous in astro-
physics, with prominent examples being protoplanetary disks, accretion disks around black
holes, or spiral galaxies. However, cold gas disks in particular are difficult to be simulated
numerically because the rotational velocity is much larger than the speed of sound and
even small inaccuracies in the used numerical method can lead to the unphysical growth of
fluid instabilities. This is particularly problematic when one tries to analyze real, physical
instabilities in these systems.

A method that in principle should be particularly suitable for the analysis of disk
systems is the solution of the magnetohydrodynamic equations on a moving mesh, as
realized in the cosmological code AREPO. This allows the supersonic flow of the gas due
to the rotational velocity to be included in the mesh motion and thereby to be eliminated.
However, the motion and constant distortion of the grid cells due to differential rotation
introduce numerical noise in the original version of AREPO, which has significantly reduced
the usefulness of the code for cold disks. The goal of this work was first to identify and
remove the origin of this “grid noise”, and second to evaluate how well the improved
method can describe cold disks, especially in situations where turbulence is generated by
magnetic fields or by the interaction of radiative cooling and gravity.

As part of this thesis, I first implemented the so-called “shearing-box” approximation
in AREPO, which allows a small portion of a rotating disk to be simulated at very high
resolution. Unlike implementations in other codes, my solution provides an adaptive spa-
tial resolution as well as full translation invariance. Additionally, by integrating the flux
function more precisely over the interfaces of neighbouring cells, I was able to remove the
grid noise, greatly increasing the accuracy of the code for shear flows.

Based on these improvements, I analyzed the magnetorotational instability (MRI) in the
shearing box and the magnetic dynamo effects that one can observe. In both the linear and
nonlinear regimes, I found good agreement with previous results in the literature obtained
with static grid codes. In a further line of work, I have developed a code extension that can
compute gravitational forces between mass elements within the simulation box, including
the special boundary conditions of the shearing box and without resolution constraints.
Using the so-called β-cooling, I was able to show that weak radiative cooling in combination
with self-gravity and shear can produce a gravito-turbulent state, while more efficient
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cooling can produce fragments in the form of collapsing gas clouds. Finally, I analyzed the
so-called Rossby wave instability in global, two-dimensional disk simulations. Here I was
able to obtain good agreement with the literature in both the linear and nonlinear regimes.

The development of the shearing-box approximation and the elimination of the grid
noise in the moving mesh method allows a variety of research applications in the future.
On the one hand, the interaction of different fluid instabilities in disks can be precisely
analyzed using the shearing box, and on the other hand, global simulations of entire disks
are now possible using the moving mesh method. This approach allows much larger time
steps and smaller advection errors than conventional methods with stationary grids. Also,
parts of a galactic disk can be simulated with my shearing box method in a “zoom”
mode, where the geometrically flexible, adaptive resolution of the method is a particular
advantage.



Chapter 1

Introduction

On large scales, the evolution of the universe is dominated by the attractive force of gravity,
which is described by Einstein’s theory of general relativity. This force can amplify relative
overdensities in dense regions, which explains how small perturbations observed in the
cosmic microwave background radiation can form giant structures like the cosmic web.
During gravitational collapse, when matter falls into an overdensity due to its gravitational
attraction, several conservation laws must be upheld. These include the total momentum
and energy, as well as angular momentum. During a collapse, material releases gravitational
energy, which must be converted either into macroscopic kinetic energy or microscopic
energy (thermal energy). If the material only interacts through gravity (such as dark
matter), it is unable to rid itself of small-scale, random motion, resulting in the formation
of an extended object, like a dark matter halo. In contrast, baryonic matter can lose
thermal energy by emitting radiation, which allows it to cool over time. However, also in
this case, a remaining constraint coming from the conservation laws is the conservation of
angular momentum. The material can then settle into a differentially rotating disk, with
the rotational axis approximately aligned with the total angular momentum vector.

This process of disk formation due to angular momentum conservation can occur on
many different scales, including the formation of galactic disks, disks around massive black
holes, disks around protostars, and disks around protoplanets. It is thus of central impor-
tance for structure formation in the universe.

1.1 Overview of different rotationally supported disk

systems

Rotationally supported disks are characterized by an approximate equilibrium between the
centrifugal, gravitational, pressure and magnetic forces. In most systems, the former two
are the dominant ones, and the latter two can be treated as perturbations. When a system
is axisymmetric, we can define the rotation curve vrot(r), which gives the equilibrium
rotation velocity as a function of radius r. Closely related is the rotational frequency
Ω(r) = vrot(r)/r, which is connected to the orbital time via T (r) = 2π/Ω(r). In many
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Figure 1.1: Contribution of the different components of the Milky Way to its rotation curve.
The dark matter halo dominates for R > 12kpc. Figure from Kafle et al. (2014).

cases, the gravitational field is dominated by a central object with mass M , such as a
protostar or a massive black hole. In this case one finds a so-called Keplerian orbit with:

vrot(r) =
√
GM/r, (1.1)

Ω(r) =
√
GM/r3. (1.2)

We introduced here the gravitational constant G = 6.674 × 10−11m3 · kg−1 · s−2 (Haynes,
2014). The rotational frequency and velocity both decrease with radius, while the specific
angular momentum for a circular orbit,

l =
√
GMr, (1.3)

increases. This means that matter must lose angular momentum to come closer to the
central object and eventually be accreted. We will return to this condition, which is an
important constraint in accretion disks, later on.

Disks also exist in systems with multiple compact objects, such as binary systems (so-
called circumbinary disks) or systems without a central compact object but an extended
source of the gravitational field, like galactic disks. In the latter case, the dominant com-
ponent of the gravitational force changes with distance from the centre of mass. In Fig. 1.1
we give as an example the rotation curve for our Milky Way galaxy, and in the following,
we will discuss a number of different disk systems.
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Figure 1.2: Illustration of the structure of the Milky Way. Figure from O’Connell (2018).

1.1.1 Galactic disks

Galactic disks can be found in spiral as well as in lenticular galaxies. In the following,
we will concentrate on the former case, since spirals still contain a significant amount of
gas that is of special interest in this thesis. In contrast to elliptical galaxies, their stellar
mass is dominated by a flat, rotating disk of stars embedded in the interstellar gas. A
superimposed spiral pattern gives this type of galaxy its name and our own Milky Way
galaxy is a prominent example for this class. We refer to Mo et al. (2010) for an overview
of galaxy formation and a discussion of the influence of the cosmological environment. We
also take the data about the Milky Way used below from Mo et al. (2010).

The majority of the Milky Way’s baryonic mass can be found in the disk that contains
stars as well as gas. The stellar component can be divided into a thin disk with mass
≈ 5× 1010M⊙ and vertical scale height of 0.3 kpc, and a thick disk of mass ≈ 1× 1010M⊙
and vertical scale height of 3 kpc. The thin disk rotates faster than the thick disk and most
of the star formation happens in the disk. Around ≈ 5× 109M⊙ of cold gas can be found
between the stars in the interstellar medium (ISM). In the centre of the galaxy, one can
find a supermassive black hole with a mass of 2× 106M⊙, which is surrounded by a stellar
bulge with ≈ 1010M⊙. The bulge mostly contains old stars (Population II) and only has
a very small star formation rate. The disk and the bulge are surrounded by a stellar halo
which has similar properties to the bulge but only 3% of its mass and a radius of at least
40 kpc. The halo contains mostly old stars, including globular clusters, and is metal-poor.
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Figure 1.3: A comparison of the observation (left) of the photon ring around M87 with the
results of a general relativistic MHD simulation (middle) and a blurred image obtained from the
simulation (right). Figure from Event Horizon Telescope Collaboration et al. (2019a).

The total mass of the galaxy is dominated by the dark matter halo, which is not directly
observable. From the rotation curve one infers a mass of around 1012M⊙ and a radius of
more than 100kpc for the dark matter halo. In Fig. 1.2 we give a schematic illustration of
the structure of the Milky Way.

Although only a small part of the mass can be found in the interstellar medium, its
evolution is of special interest since from it new stars can form. Massive stars have only
a short lifetime, and therefore their evolution is tightly coupled to the evolution of the
ISM. Self-gravity as well as shocks can form over-densities in the gas that can induce the
formation of molecular gas. In these molecular clouds, denser regions can further increase
their density and finally collapse under their own gravitational attraction. This leads to
the formation of protostars that can accrete more mass from the surrounding cloud and
which are surrounded by a protostellar disk. The newborn stars inject energy into the
ambient medium through winds as well as radiation, which can disperse the molecular
cloud. Massive stars explode as supernovae at a later time, which injects energy and
newly formed metals into the ISM. Overall, star formation is thought to be a self-regulated
process where higher star formation leads to more feedback, causing a reduction of the star
formation rate.

Following the formation of single stars and their feedback requires a resolution which is
typically not feasible in simulations of full disks. One solution is to only simulate a small
part of the ISM (Walch et al., 2015; Kim & Ostriker, 2017) but even this is computationally
very expensive, and of course requires accurate numerical methods.
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1.1.2 AGN accretion disks

Recently, it became for the first time possible to visually prove the existence of a black
hole at the centre of the M87 galaxy (Event Horizon Telescope Collaboration et al., 2019b).
The compact object in the heart of this galaxy belongs to the family of supermassive black
holes (SMBH), whose masses can vary from 105M⊙ to several billion solar masses. SMBHs
can grow by accreting mass from the surrounding interstellar medium or by merging with
other black holes. Due to angular momentum conservation, the infalling gas will form an
accretion disk. Turbulent motion in the disk leads to an effective viscosity which transports
angular momentum outwards, allowing matter to sink towards the black hole. During the
accretion, the gravitational energy is converted into kinetic and thermal energy, which can
be further converted into radiation. The maximum luminosity possible by accretion can
be estimated by the Eddington luminosity:

Ledd =
4πGMc

κ
, (1.4)

whereM is the mass of the black hole and κ is the opacity. For ionized hydrogen one finds:

Ledd ≈ 3.2× 104
(
M

M⊙

)
L⊙, (1.5)

where L⊙ stands for the solar luminosity (Rybicki & Lightman, 1986). Above this luminos-
ity, the radiation pressure becomes too large and outflows are generated. Strong magnetic
fields in the disk can fuel powerful jets (Liska et al., 2020) that can influence the physics of
galaxies on large scales. Especially close to the black hole general relativistic effects have
to be modelled (see Fig. 1.3), whereas further away the black hole can still be approxi-
mated by a point mass with Newtonian gravity. A good understanding of accretion disks
is essential to unravel the growth of SMBHs and their backreaction on the galaxy through
jets and outflows.

1.1.3 Protostellar and protoplanetary disks

Stars can form when an over-dense core in a molecular cloud collapses under its own
self-gravity. Most of the mass ends up in the central object while some of the material
forms a rotating envelope. The envelope flattens over time, leading to the formation of a
protoplanetary disk. However, this disk only forms if angular momentum transfer is not
too efficient, which can be the case when one considers strong magnetic fields that can be
described by the ideal magnetohydrodynamics (MHD) approximation. This phenomenon
is called the magnetic braking catastrophe and can be circumvented by taking into account
nonideal MHD effects, which are necessary because protoplanetary disks are typically cold
close to the mid-plane and have a low ionization fraction (Wurster et al., 2016).

The disk can grow further by inflows from the envelope whereas mass loss can occur
through accretion onto the central object and outflows. To achieve accretion of rotationally
supported material, angular momentum must be transferred outwards in the disk, which
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Figure 1.4: Different stages in the evolution of a protoplanetary disk. Some of the gas (blue)
gets accreted onto the central object while at the same time, FUV photons evaporate gas. Small
dust particles start to grow and settle in the mid-plane. After the evaporation of the gas a debris
disk forms. Figure from Williams & Cieza (2011).
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requires some form of viscosity, such as turbulence (see section 1.2.3 for a more in-detailed
discussion). Especially at the beginning of their evolution, disks can be quite massive (up
to 10% of the total mass of the central object, Armitage, 2011), which can also trigger
gravitational instability. The disk is typically cold in the mid-plane. Further away from
the star, the MRI can be quenched, so that it is only active on the surface of the disk
and close to the star. This leads to the definition of the “dead zone”, where resistivity
prevents the MRI from growing and which contains only a small amount of turbulence.
The gas disk eventually disperses over time due to accretion onto the central object and
photoevaporation by radiation from the central object, with a typical lifetime of 5 to 10
million years (Ribas et al., 2015).

Protoplanetary disks are considered to be the main birthplace of planets. The relatively
low lifetime of the gas disk itself requires a rather fast formation and growth of those
planets. In general, there are two main mechanisms for forming protoplanets: through
direct collapse or through core accretion. Direct collapse occurs when a part of the disk
becomes unstable to gravitational instability and collapses into a bound object. This
requires a massive enough disk and efficient thermal relaxation to prevent the collapse
from being stopped by thermal pressure. It is therefore especially likely to happen after
the formation of the disk and at the outskirts of the disk, where some massive planets were
found and can therefore be explained by the direct collapse scenario. One example is HR
8799 with 4 planets with masses 5 to 10 times the mass of Jupiter at radii between 15AU
and 70AU (Marois et al., 2008). Since the protoplanet would have a similar composition
as the disk its mass would be dominated by the gas. This makes it hard to explain the solid
core expected even in gas giants (Kreidberg et al., 2014) as well as their typically higher
metallicity in comparison to the ISM (Bolton et al., 2017). Additionally, only massive
protoplanets form and gravitational instability cannot explain the formation of Earth-like
planets. One solution could be the inwards migration of planets that can change their
composition and also their size.

Another mechanism to form protoplanets is through core accretion (CA). Protoplane-
tary disks contain around 1% of their mass as dust particles, which can collide and stick
to each other, leading to the formation of larger and larger particles. After reaching a
diameter of around 1 km they are massive enough to become self-gravitating such that
they can focus more and more mass into collisions. An envelope consisting of gas can also
form around them, which can explain the formation of gas giants. However, one problem
with this theory is that collisions between dust particles can also lead to destruction rather
than growth, which becomes more likely for larger particles and is especially severe for
meter-sized objects. Additionally, those larger dust particles can decouple from the gas
motion and orbit with a Keplerian velocity around the central object. Since gas orbits
typically with a slightly lower velocity, this leads to a frictional force and a deacceleration
of the dust, causing it to migrate inwards and fall into the central object. This leads to
the so-called radial drift barrier, which can be overcome if a local pressure minimum exists
within the disk (Dullemond, 2013).

For example, these can be rings or also vortices, in which dust particles can be efficiently
trapped until their concentration becomes large enough to trigger a gravitational collapse.
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The CA mechanism is typically used to explain the formation of Earth-like planets and gas
giants in the inner part of the disk. In reality, both processes might play a role. For a more
detailed discussion and review of the problem of planet formation, we refer to Armitage
(2011) and in Fig. 1.4 we illustrate the typical evolution of a protoplanetary disk.

1.2 Mathematical description of a rotationally sup-

ported disk

In this section, we introduce the equations to describe the evolution of a gas disk interacting
with a magnetic field. We will use the fluid approximation, which means that the gas has
to be collisional so that the velocity distribution of gas particles follows a Maxwellian
distribution. To achieve a high enough number of collisions, the mean free path as well as
the time between collisions have to be significantly smaller than the length and time scales
of interest. Those are given for a disk by the radius or scale height as well as the orbital
frequency Ω−1.

In accretion disks, these conditions are typically fulfilled, especially close to the mid-
plane (Lesur, 2020). The fluid approximation allows us to define a density ρ, velocity v,
as well as pressure P at any point x in space. In general, it is possible to have several
fluid species with individual densities and velocities that are coupled to each other via
interaction terms. But in this thesis, we will concentrate on the single-fluid case, which
means that fluid quantities are described in terms of, for example, the total density ρ and
the velocity at the centre of mass of resolution elements. The evolution of these quantities
is given by the Euler equations if one neglects viscous effects.

We also do not follow the evolution of the radiation field but in some cases allow for a
simplified cooling description. In addition to the normal properties of a gaseous fluid, there
exists a magnetic field B, whose interaction with the fluid can be described by the Maxwell
equations. We will use the so-called ideal magnetohydrodynamics (MHD) approximation,
which assumes that the resistivity due to collisions can be neglected. In this case, the
magnetic field lines are frozen into the fluid, which means they have to move along with
the fluid.

1.2.1 The ideal MHD equations

The ideal MHD equations in the Heaviside–Lorentz unit system considered in this thesis
can be written as

∂U

∂t
+∇ · F (U) = Sgrav,self + Sgrav,ext + Q̇. (1.6)

Here, we introduced the state vector U , the flux vector F , the source term Sgrav,self due
to the gravitational force of the fluid itself, the source term Sgrav,ext describing the gravi-
tational force from an external object such as, e.g., a central object, and finally the source
term Q̇ describes cooling and heating processes. In more explicit form, these terms are
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given by:

U =


ρ
ρv
ρe
B

 , F (U) =


ρv

ρvvT + P −BBT

ρev + Pv −B(v ·B)
BvT − vBT

 ,

Sgrav,self =


0

−∇ϕself

−(∇ϕself) · v
0

 , Sgrav,ext =


0

−∇ϕext

−(∇ϕext) · v
0

 , Q̇ =


0
0

H − L
0

 , (1.7)

where we introduced the density ρ, velocity v, specific energy e = u+ 1
2
v2+ 1

2ρ
B2, magnetic

field strength B, pressure P = pgas +
1
2
B2, gravitational potential ϕself due to the fluid

itself, an external gravitational potential ϕext, a heating term H as well as a cooling term L.
The specific energy consists of a kinetic component 1

2
ρv2 as well as a thermal component

u, and a magnetic contribution 1
2ρ
B2. Similarly, the pressure P is given as the sum of a

thermal component pgas and a magnetic component 1
2
B2.

To close the equations we require an equation of state (EOS) that connects the thermal
pressure with the density and the thermal energy. In this thesis, we use the adiabatic
equation of state

pgas = (γ − 1)ρu (1.8)

of an ideal gas, where we introduced the adiabatic index γ (the ratio of specific heats). For
a mono-atomic gas, it is typically γ = 5/3. The adiabatic sound speed

cs =
√
γP/ρ, (1.9)

gives the phase velocity of ordinary adiabatic sound waves. Another option we sometimes
use is an isothermal equation of state

pgas = c2sρ, (1.10)

where the isothermal sound speed cs is constant. In this case, we effectively assume that
the heating and cooling effects are efficient enough to keep the temperature of the gas
constant. This means that in equation (1.6) the energy component needs not to be evolved
explicitly and can be omitted.

The gravitational potential due to the disk itself can be calculated by solving the Poisson
equation:

ϕ = 4πGρ. (1.11)

The external potential of a point-mass with mass M (i.e. ρ = δ(x)M), the most common
case we analyze in this thesis, is given by:

ϕext(r) = −GM
r
. (1.12)
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One can integrate equation (1.6) over a volume V to better understand the naming
conventions we used. The vector Q =

∫
V
U contains the conserved quantities mass, mo-

mentum, energy as well as magnetic flux. The vector F describes how those quantities
move in space and time but does not change the global conservation ofQ. The source terms
on the other hand can change the total Q in the system (note that Q is only conserved in
an isolated system). The gravitational force can add momentum as well as kinetic energy
to the system but does not influence directly the mass distribution or the magnetic field.
The heating and cooling terms can change the thermal energy of the gas and therefore the
total energy. We note that one can also change the definition of the total energy to contain
the gravitational potential energy. Since all gravitational forces we take into account origi-
nate from a potential, in this case, the new total energy is conserved and the gravitational
source terms can be incorporated in the flux term.

1.2.2 Equilibrium state

To analyse the evolution of disks it is useful to use cylindrical coordinates. In the following,
we will use the polar angle φ and two-dimensional radius r =

√
x2 + y2 as well as the

vertical coordinate z. We choose the rotation axis to be parallel to the z-direction and
x = y = z = 0 as the centre of rotation. An isolated disk is in equilibrium if all the time
derivatives in equation (1.6) vanish and we will concentrate on axisymmetric discs (no
dependency on φ) around a central object of mass M . We will also first neglect magnetic
fields and self-gravity, and so find the momentum equation:

∂v

∂t
+ (v · ∇)v = −1

ρ
∇P −∇ϕext. (1.13)

The vertical component of this equation is, under the equilibrium assumption vz = 0 and
∂vz/∂z = 0,

1

ρ

∂P

∂z
= −∇ϕext = − GM

r2 + z2
z√

r2 + z2
. (1.14)

This equation can be simplified by assuming a vertically isothermal disc with sound speed
cs = cs(r):

c2s
ρ

∂ρ

∂z
= − GM

r2 + z2
z√

r2 + z2
(1.15)

with the solution

ρ(z) = C exp

[
GM

c2s (r
2 + z2)1/2

]
. (1.16)

The integration constant C is determined by the mid-plane density ρ0. If we consider
regions close to the mid-plane (z = 0), we can use the approximation z ≪ r and Ω =√
GM/r3 to rewrite equation (1.16):

ρ(z) = ρ0 exp
[
−z2/

(
2H2

)]
. (1.17)
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We introduced here the scale height H = cs/Ω, which is a measure of how fast the density
declines with z. The mid-plane density can be expressed as a function of the surface density
Σ(r) =

∫
z
ρ(z):

ρ0(r) =
1√
2π

Σ(r)

H(r)
. (1.18)

If we allow for self-gravity, the disk becomes more compact.
The radial component of equation (1.13) with vr = 0 = ∂vr/∂t is given by

v2ϕ
r

=
GM

r2
+

1

ρ

∂P

∂r
(1.19)

close to the mid-plane (z ≪ r). Typically, the pressure decreases as a function of the
radius close to the mid-plane, which means that the last term is negative and gas typically
orbits with slightly smaller velocity than a point mass (see equation 1.1). This becomes
especially important if one takes into account dust particles since they are not affected by
the pressure term and therefore orbit with the Keplerian velocity.

The radial distribution of the surface density Σ(r) as well as the sound speed profile
cs(r) cannot be determined by the momentum equation alone but instead depends on the
thermodynamic evolution of the disk. In the equilibrium case, there is additionally an
equilibrium between cooling and heating effects.

1.2.3 Temporal evolution with the α viscosity model

Especially accretion disks are not in prefect equilibrium, instead matter is moving inwards
to be accreted onto the central object. Since for an approximate Keplerian orbit the angular
momentum per unit mass

l =
√
GMr (1.20)

is increasing with increasing distance to the central object, matter has to lose angular
momentum to be able to move to smaller orbits.

The angular momentum transport requires some kind of torque, and one natural option
for this would be some type of viscous friction between neighbouring rings of the disk. The
viscosity would deaccelerate the inner ring and accelerate the outer ring, which is equivalent
to a net transport of angular momentum. In the case of a geometrically thin, axisymmetric
disk this leads to the disk evolution equation (Pringle, 1981):

∂Σ

∂t
=

3

r

∂

∂r

[
r1/2

∂

∂r

(
νΣr1/2

)]
, (1.21)

which describes the time dependence of the surface density Σ in the presence of a kinematic
viscosity ν. The diffusive nature of this equation becomes clear if one starts with the mass
m being concentrated in a small part of the disk, Σ(r, t = 0) = δ(r − r0)

m
2πr0

. Its solution
is given by:

Σ(x, τ) =
m

πr20τx
1/4

exp

[
−1 + x2

τ

]
I1/4

(
2x

τ

)
, (1.22)
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Figure 1.5: The surface density Σ(x, τ) as a function of the nondimensional radial coordinate
x and temporal coordinate τ = 12νr−2

0 t. At τ = 0, all mass is concentrated in x = 1 and Σ(x, τ)
is given as the solution of equation (1.21).

where we introduced the modified Bessel-function of the first kind I1/4, the dimensionless
radius x = r/r0, and the new time variable τ = 12νr−2

0 t. We show in Fig. 1.5 the time
evolution of Σ and see how mass moves inwards while angular momentum gets transported
outwards.

An interesting quantity to consider is the viscous time scale τvis = R2/ν. Armitage
(2011) finds τvis ≈ 1013 yr for a protoplanetary disk if ν is given by the molecular viscosity.
This time scale is much larger than the lifetime of such a disk and it is clear that other
processes have to be responsible for the angular momentum transfer. Shakura & Sunyaev
(1973) circumvent this problem by parameterizing the viscosity:

ν = αcsH (1.23)

as a product of the sound speed cs and the scale height H. α is a free parameter and can
be adjusted to match observations. This parametrization is motivated by the assumption
that the effective viscosity is caused by subsonic turbulence, but the question of the source
of this turbulence remains open. We will discuss in section 1.3 further fluid instabilities
that can be responsible for this turbulence.

In general, α is related to the radial stress

Wrϕ = αP , (1.24)

where we use time and space averaged values. The stress itself can be written as a sum of
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Figure 1.6: The local Cartesian coordinate system used in the Hill’s approximation rotating on
a circular orbit. Figure from Lesur (2020).

hydrodynamic, magnetic and gravitational terms:

Wrϕ = ρvr (vφ − vrot)−BφBr +
1

4πG

∂ϕ

∂r

∂ϕ

∂φ
. (1.25)

1.2.4 Hill’s approximation

Because for most disks the scale height H is much smaller than the radius r, one can
try to separate the local dynamics on the scale of order the scale height from the global
evolution in the radial direction. This leads to the idea of Hill’s approximation (Hill, 1878;
Goldreich & Lynden-Bell, 1965), which was later employed in numerical realizations of
the so-called shearing-box approximation (Hawley et al., 1995). We first fix a radius r0
at which we are interested in the local dynamics and calculate the local angular velocity
Ω0 = Ω(r0). Now we define a Cartesian coordinate system (x, y, z) that rotates with Ω0,
so that x corresponds to the radial direction, y to the azimuthal direction and z to the
vertical direction. In Fig. 1.6 we show an example for this coordinate system.

After performing a coordinate transformation into the rotating, accelerated frame, one
finds additional terms, namely the Coriolis force as well as the centrifugal force, which
both can be written as new source terms on the right-hand side of equation (1.6):

Scor =


0

−2ρΩ0êz × v
0
0,

 , Scentr =


0

ρΩ0R
2êr

ρΩ0R
2êr · v
0

 . (1.26)

The centrifugal force depends on the cylindrical radius r =
√
(r0 + x)2 + y2 and can be
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derived from a potential ϕc = −Ω2
0r

2/2. The effective potential around a point source with
mass M is given by:

ϕeff = ϕc + ϕext = −Ω2
0

2

[
(r0 + x)2 + y2

]
− GM√

(r0 + x)2 + y2 + z2
(1.27)

and can be expanded as:

ϕeff,Hill = Ω2
0

[
−3r20

2
− 3

2
x2 +

1

2
z2 +O

(
H3

r0

)]
. (1.28)

In Hill’s approximation, with the assumption H ≪ r0, only the first non-trivial terms are
kept. The resulting potential does not depend on y and is also independent of r0 except
in the constant term. There are also no cross-terms such as xz, and this simplicity makes
Hill’s approximation especially suited for analytical and numerical studies. Higher order
expansions of ϕeff contain curvature terms ∝ 1/r0 as well as cross terms which makes the
handling of the equations much more tedious.

In Fig. 1.7 we show a comparison between the full and the approximated potential.
The Hill potential has a symmetry x→ −x, which means that no centre of attraction can
be defined, and importantly, no accretion rates can be measured in the shearing box. The
full potential has an asymptotical value of −3Ω2

0r
2
0/2 for z → ∞ at x = r0

(√
3− 1

)
which

is absent in the Hill potential. This means that in the reduced potential no outflows can
reach z → ∞, which implies a dependence on the vertical box size for outflows. We note
that, for example, Brandenburg et al. (1996) used a higher-order expansion of equation
(1.27), which breaks the symmetry x→ −x and allows a measurement of accretion, albeit
with the cost of higher computational complexity.

Hill’s approximation can be generalized to central potentials with equilibrium rotational
profiles Ω ∝ r−q, where q = 3/2 for the Keplerian case. The final equations in Hill’s
approximation are given by:

∂U

∂t
+∇ · F (U) = Sgrav,e + Scor + Sgrav,self + Q̇, (1.29)

with the state vector U , flux function F , a source term accounting for self-gravity Sgrav,self ,

and a heating/cooling term Q̇, as already defined in equation (1.7). The Coriolis force Scor

is defined in equation (1.26), and the source term of the effective external gravitational
that follows from Hill’s potential is given by:

Sgrav,e =


0

ρΩ2
0 (2qxêx − zêz)

ρΩ2
0v · (2qxêx − zêz)

0

 . (1.30)

In the case that the external potential does not originate from a central potential and Ω(r)
is not a pure power law, one can still define the shear parameter

q = −d lnΩ
d ln r

∣∣∣∣
r=r0

, (1.31)
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Figure 1.7: The effective potential in a rotating system as a function of the radial (x) and
vertical (z) coordinate. The left side shows the full potential while the right side shows Hill’s
approximation.

which now depends on the radius one is interested in. In this case, the vertical potential
has to be modified to represent the actual physical system.

A closer inspection of equation (1.29) shows that the Coriolis and tidal forces cancel
each other for a purely azimuthal velocity field:

vy0 = −qΩ0x. (1.32)

This linear shear flow corresponds to a radial dependence of the rotational velocity in a
global disk, and the linearity is a consequence of the property of Hill’s approximation to
only keep the lowest order terms in the expansion. Hill’s approximation can be further
simplified by neglecting the gravitational term in the z-direction in equation (1.29). This
so-called unstratified or small shearing box assumes a box size L ≪ H close to the mid-
plane and further simplifies the numerical treatment. In contrast to that, the system with
the gravitational term in the z-direction is called a large or stratified shearing box. We refer
to Regev & Umurhan (2008) for a detailed discussion of the assumptions and restrictions
for both shearing box types. Although the shearing box does not allow the measurement
of accretion rates, one can still measure

Wxy = ρvx(vy − vy0)−BxBy +
1

4πG

∂ϕ

∂x

∂ϕ

∂y
, (1.33)

which is equivalent to the radial stress term in (1.25).

1.3 Instabilities as a source of effective viscosity

As previously discussed in section 1.2.3, accretion requires some kind of viscosity to trans-
port angular momentum. One potential source of effective viscosity is turbulence within
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the disk, which can be generated by different instabilities associated with the rotational mo-
tion. In this section, we analyze the stability of accretion disks using analytical methods.
While a global stability analysis is possible in certain cases with the Wentzel-Kramers-
Brillouin (WKB) approximation, it is often more complex. Instead, we will focus on the
shearing box model we derived in section 1.2.4 to analyze the local stability of the disk’s
motion.

1.3.1 Hydrodynamical stability

We start with the purely hydrodynamical case and concentrate on the evolution of a point
particle in Hill’s potential. Its evolution is given by:

d

dt
v =

2qΩ2
0x+ 2Ω0vy
−2Ω0vx
−Ω2

0z

 , (1.34)

where the vertical equation describes an oscillation around the mid-plane with frequency
Ω0. The equation for the y-component of the velocity can be integrated and one obtains

L = vy + 2Ω0x, (1.35)

which is equivalent to the angular momentum in the shearing box approximation (Lesur,
2020). If we start with a particle at x = 0 and a purely radial motion, we find L = 0 and
the evolution of the radial velocity simplifies to

d2x

dt2
= −2Ω2

0 (2− q)x, (1.36)

which describes for q < 2 a harmonic oscillator with the so-called epicycle frequency

κ2 = 2Ω2
0 (2− q) . (1.37)

For the special case q = 3/2 we find κ = Ω0, which leads to the well-known result that
orbits for the two body problem are closed. For q > 2 the system is unstable to the
so-called centrifugal instability, which is equivalent to results already found by Rayleigh
(1917), namely that for

d (ΩR2)

dR
< 0 (1.38)

an axially symmetric, incompressible and inviscid fluid is unstable. The criterion might
be fulfilled for jets launched from accretion disks and can be generalized to relativistic
hydrodynamics (Gourgouliatos & Komissarov, 2018). We refer to Klahr et al. (2018) for a
derivation of the Rayleigh criterion using the Euler equations (1.6) for an unstratified disk.
The linear stability of the flow for q = 3/2 does not mean that no non-linear or subcritical
instabilities exist. The question of the existence of subcritical instabilities led to a plethora
of numerical and experimental studies that however did not find one for Reynolds number
of several 105. We refer to Fromang & Lesur (2019) for a more detailed overview of the
stability of purely hydrodynamic Keplerian shear flows. In stratified and also nonisothermal
disks new instabilities can emerge, which we discuss further in section 1.3.5.
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1.3.2 Magnetorotational instability

The stability properties of a Keplerian flow drastically change if we add an external mag-
netic field. We will start with an incompressible fluid in an unstratified shearing box
with a constant vertical magnetic field, B0 = B0êz. We now add small axisymmet-
ric perturbations with wavevector k = (0, 0, kz) to the ground state, using the ansatz
v = (0, vy0, 0)+w exp [σt+ ikzz] and B = B0+b exp [σt+ ikzz]. We can plug these terms
into equation (1.29) to find:

kzwz = 0, (1.39)

kzbz = 0, (1.40)

σw = i
kzB0

ρ
b+ 2Ω0uyêx − (2− q)Ω0uxêy, (1.41)

σb = i(kzB0)w − qΩ0bxêy. (1.42)

The first equation follows from the incompressibility and simplifies to wz = 0. The remain-
ing four equations can be written as a matrix equation:

σ −2Ω0 −ikzB0

ρ
0

(2− q)Ω0 σ 0 −ikzB0

ρ

−ikzB0 0 σ 0
0 −ikzB0 qΩ0 σ



wx

wy

bx
bz

 = 0, (1.43)

which only has a nontrivial solution if the matrix on the left hand side is not invertible,
which means its determinant is 0. This leads to the dispersion relation

σ4 + σ2
(
2k2zv

2
A + 2(2− q)Ω2

0

)
+ k2zv

2
A

(
k2zv

2
A − 2qΩ2

0

)
= 0, (1.44)

where we introduced the Alfvén velocity vA = B0/
√
ρ. For q < 2, the quadratic term

is always positive and therefore the constant term has to be negative so that a solution
with a real σ exists. This condition is fulfilled for perturbations with kz < Ω0/va

√
2q, and

therefore the disc becomes unstable on large enough scales independent of the magnitude
of the external magnetic field.

In Fig. 1.8 we show σ as a function of vAkz. We see that σ(kzvA) takes a maximum
at kzvA =

√
2qΩ0/2 with σmax = 0.75Ω−1, which means that if the disk is unstable the

perturbations grow on the order of the orbital time. Considering the long lifetime of, e.g.,
protostellar disks (several 100 orbits at r = 100AU around a solar-type star, Laughlin
& Bodenheimer, 1994) we do not expect to observe any disc in the linear phase but in-
stead have to take into account the nonlinear regime of this so-called magnetorotational
instability (MRI). The eigenvectors of the matrix problem (1.43) are called channel modes
and become unstable to parasitic instabilities which stop the exponential growth. This
break down leads to the creation of turbulence and a nonlinear, saturated state can form.
The saturation of the MRI for different setups will be further analyzed and discussed in
Chapter 3.
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Figure 1.8: The linear growth rate σ of channel modes of the MRI as a function of the vertical
wavenumber kz and the vertical Alfvén velocity vA.

It is easy to understand the physical origin of the linear regime of the MRI for this
simple setup. If one imagines a vertical field line in a homogeneous disk and slightly
displaces two fluid packages that are connected by the line to a smaller and larger radius,
the field line gets stretched by the shear due to the flux freezing condition. This leads to
a magnetic tension which will decelerate the inner fluid parcel and accelerate the outer
fluid parcel, which is equivalent to an outwards transport for angular momentum. This
increases the distance between the fluid elements and increases the shearing rate of the
field line, which in turn leads to exponential growth (see also Fig. 1.9).

We performed our analysis for an unstratified box and allowed kz to be a continuous
parameter. The approximation of an unstratified disk breaks down if the wavelength of
the perturbation becomes larger than one scale height, and therefore the minimum kz we
allow is kz,min = 2π/H. If the magnetic field is therefore larger than vA =

√
2qΩ0H/(2π),

the disk becomes stable to this instability.
In the previous calculation, we assumed kx = 0 but one can show that this kind of

perturbation corresponds to the fastest growing modes (Lesur, 2020). We also assumed
that ky = 0, since otherwise the perturbations might temporarily grow but for t→ ∞ would
finally die out (Lesur, 2020). We note that non-axisymmetric modes nevertheless play an
important role in the nonlinear regime since they allow for transient (nonmodal) growth
(Squire & Bhattacharjee, 2014). If we would allow for a net radial magnetic field, the
average azimuthal magnetic field would start to continuously grow in time. But we could
also perform this study with an additional net azimuthal field which does not influence
the linear growth of the channel modes. We note that the MRI can also be studied in a
global system in which additional magnetic instabilities exist, that depend on the explicit
curvature terms (Ebrahimi & Pharr, 2022).

So far we only analyzed the case that the disk can be described by the ideal MHD ap-
proximation. Especially in cold accretion disks such as protoplanetary disks the ionization
rate is small and nonideal effects have to be taken into account. The most prominent ones
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Figure 1.9: Sketch of the magnetorotational instability with an external vertical magnetic field.
The field line gets stretched by the shear which leads to a magnetic force deaccelerating the inner
fluid parcel and accelerating the outer fluid parcel. This leads to an angular momentum transfer
outwards. Figure from Armitage (2022).

relevant in this case are the Ohmic and ambipolar diffusion as well as the Hall effect.

Their strength depends on the magnetic field strength as well as on density, and they
are therefore relevant in different areas of the disk (see Fig. 1.10). We refer to Lesur (2020)
for the full dispersion relation of the linear MRI with nonideal MHD and also for an in-
depth discussion. In general, Ohmic diffusion leads to a damping of all perturbations and
is especially efficient for small-scale perturbations. It can even fully suppress the MRI for
weak enough fields. Ambipolar diffusion also acts as a resistivity and reduces the growth
rates of perturbations, but in this case, oblique modes with kx ̸= 0 can have the largest
growth rates. There exists a branch with kx ̸= 0 which always has a positive growth rate
even for kx, kz → ∞.

The Hall effect is only dispersive, and its effect depends on the orientation of the
rotational axis relative to the vertical magnetic field. If they are parallel one finds the
so-called Hall shearing instability (HSI), which always allows for a maximum growth rate
0.75Ω−1 but moves the growth rates to smaller k. In the anti-aligned case, one finds the
ion-cyclotron instability, which moves the instability to larger k. This difference between
the instabilities becomes especially important if Ohmic diffusion additionally exists. It
can efficiently suppress the growth of the ion-cyclotron instability whereas the HSI is less
affected by it.

The strengths of the different nonideal MHD effects depend on the microscopic com-
position of the disk and are sensitive to the radiation field and temperature distribution.
Their exact importance in the evolution of disks is therefore uncertain and one often relies
instead on simplified models where constant nonideal MHD coefficients are assumed.
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Figure 1.10: Importance of different nonideal MHD effects as a function of magnetic field
strength and density of neutrals computed for an electron-ion plasma with T < 100K. The blue
and green lines correspond to typical values found close to the mid-plane of protoplanetary disks
for different plasma β. Figure from Lesur (2020)
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1.3.3 Gravitational instability

Self-gravity is another mechanism which can lead to instability and the creation of tur-
bulence. In this section, we do not take into account the magnetic field although recent
studies showed that the gravitational instability and the MRI can interact with each other
(Riols & Latter, 2018; Löhnert & Peeters, 2022). This can lead to a stronger magnetic
field amplification which can also be observed in global simulations (Deng et al., 2020).

We start with the Euler equations (1.6) without any external gravitational potential
and an isothermal equation of state. As the initial state, we use a constant density ρ0 with
background velocity v0 and constant sound speed cs0. We add small perturbations ρ1 and
v1 to the initial state and linearize the equations:

∂ρ1
∂t

+ ρ0∇ · v1 + v0 · ∇ρ1 = 0, (1.45a)

∂v1

∂t
+ v0 · ∇v1 = −∇ϕ1 −

1

ρ0
∇p = −∇ϕ1 −

1

ρ0
c2s∇ρ1. (1.45b)

We assume a uniform, infinite background and therefore set ϕ0 = 0. The equations can be
further simplified by transforming into the rest frame of the background, which leads to
v0 = 0. We then take a temporal derivative of (1.45a) and a spatial derivative of (1.45b),
and use Poisson’s equation ∇2ϕ1 = 4πGρ1:

∂2ρ1
∂t2

+ ρ0
∂

∂t
∇ · v1 = 0, (1.46a)

∇ · ∂v1

∂t
= −∇2ϕ1 −

1

ρ0
c2s∇2ρ1 = −4πGρ1 −

1

ρ0
c2s∇2ρ1. (1.46b)

By plugging (1.46b) into (1.46a) we find:

∂2ρ1
∂t2

= 4πGρ1ρ0 + c2s∇2ρ1. (1.47)

We expand ρ1 in Fourier modes ρ1 =
∑

k A(k) exp [i (k · x+ ωt)] and get:

ω2 = c2sk
2 − 4πGρ0. (1.48)

For k2 < k2J = 4πGρ0
c2s

the perturbations grow exponentially and the background state is
unstable. This leads to the definition of the Jeans length

λJ =
2π

kj
= cs

(
π

Gρ0

)1/2

, (1.49)

and of the Jeans mass

MJ =
4π

3
ρ0

(
λJ
2

)3

=
π5/2

6

(
c2s
G

)3/2

ρ
−1/2
0 . (1.50)
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It is important to note that all structures larger than the Jeans length become unstable
and so violate the assumption of a static background (the so-called ”Jeans swindle”).

In a rotating disc, one additionally has to take into account the shear of the rotational
motion. It becomes especially important for large perturbations, which are otherwise the
most unstable ones. Furthermore, the disk only has a finite size in the z-direction. To
simplify the calculations we will use the shearing box approximation and additionally the
thin disc approximation. This assumes that all of the mass of the disc is concentrated
in the mid-plane, and instead of solving for the density we solve for the surface density
Σ =

∫ inf

− inf
ρ dz. We will use an isothermal equation of state and additionally only take into

account axisymmetric perturbations (i.e. ∂/∂y = 0, for non-axisymmetric perturbations
see section 4.7.1). The linearized equations are given by:

∂Σ1

∂t
= −Σ0∇ · (v1), (1.51)

∂vx1
∂t

= 2Ω0vy1 −
c2s
Σ0

∂Σ1

∂x
− ∂ϕ1

∂x
, (1.52)

∂vy1
∂t

= qΩ0vx1 − 2Ω0vx1, (1.53)

∇2ϕ1 = 4πGΣ1δ(z), (1.54)

and all equations except the last one are two-dimensional. Quantities with subscript 0
correspond to the background state while quantities with subscript 1 correspond to per-
turbations. We use the Ansatz

Σ1

vx1
vy1
ϕ1

 = ei(kxx−ωt)


Σ1,c

vx1,c
vy1,c

ϕ1,ce
−kx|z|

 , (1.55)

which leads to ϕ1,c = 2πGΣ1,c/kx. The full equations take the form of a matrix problem ω −Σ0kx 0
−c2skx/Σ0 + 2πG ω −2iΩ0

0 (2− q)Ω0i ω

Σ1,c

vx1,c
vy1,c

 = 0, (1.56)

which only has a non-trivial solution if the determinant of the matrix on the left hand side
vanishes. The dispersion relation following from this condition is given by:

ω2 = c2sk
2
x − 2πGkxΣ0 + 2(2− q)Ω2

0. (1.57)

As one might expect it is quite similar to the dispersion relation (1.48) of the Jeans instabil-
ity. On small scales, the term k2xc

2
s stabilizes the disk, while the destabilizing term 2πGkxΣ0

now additionally depends on kx and therefore becomes weaker for larger wavelengths. This
is a consequence of the finite size of the disk in the z-direction. With these two terms, the
disk would still become unstable for small enough kx but there is additionally the constant
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Figure 1.11: The stability of a self-gravitating, isothermal disk as a function of the Toomre
parameter Q and the wavelength of the perturbation. The boundaries of the stable and unstable
regime are given in equation (1.58).

term 2(2 − q)Ω2
0, which further stabilizes the disk for q < 2. Especially for small kx this

term dominates and therefore large perturbations get stabilized by the rotation. We can
define the Toomre parameter Q = Ω0

√
2 (2− q)cs/(πGΣ0) and find the condition Q < 1,

such that there exists a kx for which the disk becomes unstable. The range of allowed kx
becomes larger if we decrease the Toomre Q:

Ω0

√
2 (2− q)

cs

(
1

Q
−
√

1

Q2
− 1

)
≤ kx ≤

Ω0

√
2 (2− q)

cs

(
1

Q
+

√
1

Q2
− 1

)
, (1.58)

which we also visualize in Fig. 1.11. We note that the same criteria can also be derived by
performing a global stability analysis using the WKB approximation (Binney & Tremaine,
2008).

The analysis can also be generalized to a fully three-dimensional disk, for which one
finds instability only for smaller Toomre numbers between 0.6 and 0.7 (Nipoti, 2023). The
stratification in this case leads to a smoothing of the gravitational force which can stabilise
the system. If the disk itself is not isothermal, the compression due to the gravitational
collapse generates heat which can stabilize the system. In this case, a turbulent state can
form and we refer to Chapter 4 for an in-depth numerical study of this problem.



24 1. Introduction

1.3.4 Rossby wave instability

The vorticity

ω = ∇× v, (1.59)

is an important quantity to describe the structure of hydrodynamic flows. By applying the
rotation operator to the momentum equation and ignoring magnetic fields, it follows:

∂

∂t

(
ω

ρ

)
+ (v · ∇)

(
ω

ρ

)
=

(
ω

ρ
· ∇
)
v +

1

ρ3
∇ρ×∇P (1.60)

When the equation of state is barotropic, meaning that the pressure is a function of density
only, the last term disappears, as density gradients are parallel to pressure gradients in this
case. In this special scenario, the quantity ω/ρ is conserved and simply advected by the
flow. This means that vortices once formed can survive for a long time. Jupiter’s Great
Red Spot is a prominent example for this phenomenon.

One possible way to create vortices is the Rossby wave instability (RWI, Lovelace
et al., 1999; Armitage, 2011). It is a linear instability that can be triggered by the presence
of sharp boundaries in a disk. More specifically, one can define a generalized potential
vorticity

L =
ΩΣ

κ2
S2/γ, (1.61)

where we introduced the entropy S = P/Σγ and used the epicycle frequency κ and the
adiabatic coefficient γ. A necessary condition to trigger the RWI is the existence of an
extremum of L. It is hard to define a sufficient condition and we refer to Ono et al.
(2016) for a more detailed discussion of the problem. Massive planets can carve gaps into
protoplanetary disks which lead to an extremum in L, but also the boundary between the
dead zone and an active MRI region can trigger the RWI.

If the RWI is triggered, it results in the formation of several anticyclonic vortices that
often merge into a single large vortex. The vortex can trigger density waves, which can
transport angular momentum. For a more in-depth study of the RWI with numerical
simulations, we refer to Chapter 5.

1.3.5 Further instabilities

Besides the instabilities we discussed in the previous sections and which we will analyse
in this thesis in more depth numerically, there exist a plethora of different additional
instabilities that rely, e.g., on the stratification, thermal structure or interaction of different
disk components. We refer to Klahr et al. (2018) for a mathematical description of several
of them and only shortly summarize the physical origin of a subset of them.

A prominent example is the vertical shear instability (VSI, Arlt & Urpin, 2004; Nelson
et al., 2013), which requires that the angular frequency Ω(r, z) has a vertical gradient. In
this case, a fluid parcel can move along the iso-surface of angular momentum and gain
kinetic energy, which leads to its acceleration and linear instability. This effect is also
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Figure 1.12: Illustration of the mechanism behind the vertical shear instability (VSI). If there
are radial temperature gradients, Ω(r, z) depends on the vertical coordinate z and contours of
constant Ω bent inwards. Since in disks around a central object Ω ∝ R−1.5 holds, the specific
kinetic energy of the rotation Ω2R2 ∝ R−1 decreases with radius. In contrast the specific angular
momentum ΩR2 ∝ R0.5 increases with radius. In one moves a fluid parcel upwards it will follow
the line of constant angular momentum upwards (black line). It has at the same time a higher
kinetic energy than its surrounding which means it accelerates and will move further on the black
line. This leads to an instability. We obtained the figure from Klahr et al. (2018).
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sketched in Fig. 1.12. If the system is not locally isothermal, the stratification can lead
to buoyant forces, which hinder the growth of the instability. A fast thermal relaxation to
the background temperature is therefore required to reduce this effect.

Another instability that depends on the thermal structure of the disk is the convective
overstability (Klahr & Hubbard, 2014). Let us assume that the entropy decreases as
a function of radius and that there exists a finite time scale for thermal relaxation. If
we now perturb the position of a fluid parcel in the radial direction, it will undergo an
epicyclic oscillation. While the parcel moves outwards, its temperature is larger than
the surrounding area, and thus it feels a buoyancy force pointing outwards. If thermal
relaxation is efficient enough, it reaches the equilibrium temperature at its point of return,
but its temperature is now lower than its environment while moving inwards. This leads
to a buoyancy force pointing inwards, so that the amplitude of the oscillation increases. If
the thermal relaxation is too efficient, the temperature difference between the fluid parcel
and its environment is too small during its motion, and the instability cannot grow.

The finite amplitude of the convective overstability can trigger the subcritical baro-
clinic instability (Klahr & Bodenheimer, 2003; Petersen et al., 2007a,b; Lyra, 2014), which
generates and amplifies vortices. The introduction of dust grains in addition to the gas
allows for further instabilities such as the streaming instability (Youdin & Johansen, 2007;
Johansen & Youdin, 2007), which we will however not discuss in this thesis.

1.4 Numerical methods

As we have shown in the last section, analytical methods are useful to understand the
existence and growth of instabilities. But after some time their linear, exponential growth
ends when nonlinear terms become important. To analyze this nonlinear regime, numerical
methods are typically required to solve the equation (1.6). There exist many different
methods, but they can typically be divided into Lagrangian and Eulerian methods. In
the first one, one is interested how a specific part of the fluid evolves and one typically
discretizes mass, which means one follows the evolution of particles. Smoothed-particle
hydrodynamics (SPH, Gingold & Monaghan, 1977; Lucy, 1977; Springel, 2010b; Price,
2012) or the meshless finite mass (MFM, Hopkins, 2015) method are frequently used
examples for Lagrangian methods. In the Eulerian case, one is interested in how the fluid
properties at a specific position in space change and one discretizes typically the volume.
Both types of methods have their advantages and disadvantages. We will use in this thesis
a hybrid method that is approximately Lagrangian but uses mostly algorithms one can
typically find in Eulerian methods.

1.4.1 Finite volume method on a static grid

In this section, we describe the finite volume method on a static, uniform Cartesian grid
with grid size ∆x. Our starting point is the state vector U (see equation 1.7), which we
integrate for each cell i over its volume Vi. We end up with the vector Qi =

∫
Vi
U of
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conserved quantities in this cell, which corresponds to the total mass, momentum, energy
and magnetic flux. We assume now that the state vector Ui within the cell is constant,
which meansUi = Qi/Vi holds. The temporal change ofQi can be calculated by integrating
equation (1.6) over the volume Vi. We find:

∂Qi

∂t
= −

∫
Vi

∇ · F (U) +

∫
Vi

S = −
∫
∂Vi

F (U) · n+

∫
Vi

S, (1.62)

where we used in the second step Gauss’s theorem, introduced the normal vector n and
the sum of all source terms S. The flux function defines how the conserved quantities
are exchanged between neighbouring cells while the source terms can change the global
amount of conserved quantities. The flux and source terms can be calculated and applied
separately in discrete time integration schemes (so-called operator splitting), and we will
come back to this later when we discuss the time integration. To calculate the effect of the
flux function on Qi, we first have to find its value at any point of the boundary of each cell
and afterwards perform the integration. The integral over the surface of each cell can be
written as a sum of integrals over the interfaces Aij between the cell and its neighbours j:

Ii(t) =

∫
∂Vi

F (U) · n =
∑
j

∫
∂Aij

F (U ) · nij =
∑
j

Iij. (1.63)

To get the state at the interface which we require to calculate the flux, we have to solve
a so-called Riemann problem. The input to the Riemann problem are the left and right
states of the two adjacent cells, and it then returns the state at the interface. We refer to
Toro (2013) for a detailed introduction and discussion of Riemann solvers.

Since the state vectors within the cells are constant, the flux function is also constant
on an interface. The integral Iij is therefore just equal to F (Uij)Aij. The volume integrals
over the source terms can be calculated by evaluating the source terms within a cell and
multiplying it with Vi. We now discussed how to calculate the right side of the equation
(1.62) and how we can integrate the equation over a time interval ∆t. We then find:

Qi(t0 +∆t) = Qi(t0)−
∫ t0+∆t

t0

Ii(t) dt+

∫ t0+∆t

t0

S Vi dt (1.64)

and thus have to approximate the time integral of the form
∫ t0+∆t

t0
Ii(t)dt . The simplest

approach would be the use of the first-order forward Euler method:∫ t0+∆t

t0

Ii(t)dt ≈ Ii (t0)∆t. (1.65)

This method is however only first-order in time, which means the error in this integral is
proportional to ∆t2. If one decreases the time step by a factor of 2, the error per time step
decreases by a factor of 4 but at the same time, the number of time steps doubles. This
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means that the global error to perform the time integration over a fixed amount of time is
proportional to ∆t. A better choice would be to approximated the time integral by:∫ t0+∆t

t0

Ii(t)dt ≈ [Ii (t0) + Ii (t0 +∆t)]
∆t

2
, (1.66)

which is second-order accurate (error per time step is proportional to ∆t3). However, this
approximation is inconvenient sinceQ(t+∆t) depends on Ii (t0 +∆t) and vice versa, which
means we end up with an implicit equation. As we will show later, this can be overcome
if one does not use the actual state Ui(t0 +∆t) for the flux calculation but instead uses a
linear extrapolation from U(t0) to the time t0 +∆t. Other possibilities include the use of
a higher-order time integration method taken from the family of Runge-Kutta schemes.

Too large time steps can destabilize the integration, and one therefore introduces a
maximum allowed time step

∆ti = Ccourant
∆x

cs,i +
√
v2x,i + v2y,i + v2z,i

, (1.67)

where the Courant number Ccourant is a constant smaller than 1. A better spatial resolution
therefore also requires a better temporal resolution.

To accurately model the time integration of source terms and fluxes, we use the Strang
splitting. This is second-order accurate in time. We first calculate the source terms and
apply them for half a time step. The new values for Ui are then used to perform the
flux integration with a full-time step according to approximation (1.66), and afterwards
we apply the source term again for another half time step.

One can show that for the assumption of a uniform state within a cell, the errors for
smooth problems are proportional to ∆x. The method is therefore only first-order accurate,
but one can construct higher-order schemes by assuming that U can be described by a
higher-order polynomial within each cell. In the simplest case, one assumes it is a linear
function, which leads to a second-order accurate scheme. Note that the linear gradients in
space can also be used to calculate time derivatives of U , which can in turn be employed
to extrapolate U (t0 +∆t) (see equation (2.10)). In contrast to discontinuous Galerkin
schemes (Cockburn et al., 2012) one does not follow the evolution of the linear gradient
within a cell in a finite volume method but instead calculates in each time step a new
gradient estimate based on the values of the neighbours. To calculate the integral (1.63)
one can then extrapolate U to the interface and use the two extrapolated values from both
cells as inputs for the Riemann problem. To avoid the introduction of new extrema, which
can lead to oscillations one has to use a so-called flux limiter (see also section 2.4.3). Since
U is not constant anymore over the interface, also the flux is not a constant function on the
interface which complicates the evaluation of the integral Iij. An approximation typically
performed in Cartesian grid codes is to assume the flux to be constant over the face and
just evaluate it at the middle of the interface. In Chapter 2 we will show that this can be
problematic for unstructured meshes.
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The scheme we discussed so far only allows for a constant spatial resolution. This can
be problematic in astrophysics since one might want to resolve only a small part of the
simulation box with a high resolution. In this case one can use adaptive mesh refinement
(AMR, Berger & Colella, 1989) which allows splitting cells into 8 equally sized, smaller
cells. This scheme can be applied recursively, and one can introduce more or less arbitrary
criteria to trigger the splitting of cells.

Although AMR also allows one to zoom in on regions of interest, it can become hard
to split cells early enough if the region of interest is moving rapidly through space. The
method we described in this section is also not Galilei invariant at the discretized level,
which means that if one adds a constant velocity boost to the whole system the numerical
evolution might change even though the physics is invariant. Additionally, if one considers
cold flows one can observe stochastic heating or cooling. The reason is that thermal energy
is only defined as the difference between the total energy and the sum of the kinetic and
magnetic energy. If the kinetic energy dominates the total energy, this creates a situation
where small relative errors in the kinetic energy can lead to large relative errors in the
thermal energy. Furthermore, as we have seen in equation (1.67), the maximum allowed
time step depends on the local fluid velocity relative to the mesh. The moving mesh
method we will discuss in the next section allows for a less restrictive time step criterion
and can also help to overcome the other problems of a static finite volume code.

1.4.2 Moving mesh method

The moving mesh method was introduced by Springel (2010a) in astrophysics and imple-
mented in the AREPO code, which we exclusively use in this thesis. It is based on the
Voronoi tesselation, which discretizes space into non-overlapping Voronoi cells. The start-
ing point is a set of mesh-generating points. For each mesh-generating point, one introduces
a Voronoi cell that consists of all points in space that are closer to this mesh-generating
point than to any other mesh-generating point. In Fig. 1.13 we show an example of a
Voronoi mesh in two dimensions. As in the case of a static grid, we define again the vector
of conserved quantitiesQi per cell i. The evolution ofQi is given by equation (1.62), and in
general all equations from the previous section are still valid for the Voronoi mesh including
the introduction of a linear gradient within a cell. As we will discuss in section 2.4.2 the
approximation to only evaluate the flux at the middle of an interface and multiplying the
result with the area of the interface can however lead to local numerical noise. This can
be circumvented by using a higher-order approximation of the surface integral.

The important feature of the moving-mesh method is that it allows the mesh-generating
points (and therefore indirectly the Voronoi cells) to move in space. Their velocities can
be chosen arbitrarily but one typically sets them equal to the fluid velocity of each cell.
Sometimes it is advantageous to add additional small velocity components to improve the
geometrical regularity of mesh cells. The motion of the interfaces with velocity w requires
the introduction of a new advection term

∫
∂Vi

UwT ·n on the right side in equation (1.62).
One can absorb this term into solving the Riemann problem on each interface in the rest
frame of an interface, which also makes the method Galilei invariant.
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Figure 1.13: An example for a Voronoi mesh in two dimensions. The red points are the mesh-
generating points and periodic boundary conditions were used. The figure was obtained from
Springel (2010a).
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In general, the moving mesh method is quasi-Lagrangian, which means that the mesh
moves approximately with the fluid but small mass fluxes between cells are still allowed.
This reduces advection errors and naturally leads to a higher resolution in dense regions.
If one requires an even higher local resolution one can also merge and split cells. Another
advantage is that in the time step criterion (2.29) one only has to take into account the
sound speed and can neglect the velocity of the fluid relative to the mesh. This becomes
especially important in cold disks, where the total velocity from the rotation is much larger
than the sound speed.

1.5 Challenges in modelling rotating disks and over-

view of this thesis

Although the dynamics of rotating disks is on the largest scales determined by the rota-
tion, small-scale effects such as turbulence or stellar feedback are crucial to model their
long-term evolution. This is very challenging and expensive for numerical simulations, as
both scales must be followed with high accuracy and resolution. Analytical models can
typically only be used to estimate average values or the linear growth of instabilities, and
therefore cannot be used to represent the full physics present in such disks. One solu-
tion to separate the two scales is the shearing box approximation we discussed in section
1.2.4, which allows simulations of local patches of a disk with high resolution. In the
past, mostly two different numerical methods were used: The Lagrangian SPH method for
global simulations, and the Eulerian finite volume method for shearing box simulations.
SPH requires artificial viscosity and thermal conduction to resolve fluid instabilities and
offers in general lower accuracy than the finite volume method but does not suffer from
artificial heating if the energy is dominated by the kinetic energy. This is crucial for global
simulations, as otherwise the rotational motion could artificially heat the disk, influencing
fragmentation and other physical processes. Especially codes using static grids suffer from
this problem, as the rotational motion leads to a continuous advection of material over the
grid. Finite volume methods generally offer higher accuracy than SPH when large bulk
velocities are absent, making them attractive for shearing box simulations, since the bulk
of the background shear can be removed by using the orbital advection scheme (Masset,
2000).

For a comparison of local and global simulations, it would however be useful to be
able to use the same numerical algorithms. Recently, the Lagrangian MFM method has
been used successfully in both global and shearing box simulations (Deng et al., 2017,
2019, 2020, 2021). This method combines the particle nature of SPH with a more accurate
force calculation using a Riemann solver, making it a hybrid between SPH and static,
finite volume schemes. However, Deng et al. (2019) also showed that it still suffers from
large numerical resistivity preventing it from sustaining MRI turbulence in shearing box
simulations without an average magnetic field.

Another method that tries to combine the advantages of a Lagrangian method with
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those of a finite volume algorithm is the moving mesh method we discussed in the last
section. Since the mesh moves with the flow, most of the rotational motion can be absorbed
into the mesh motion which reduces artificial heating and advection errors. Additionally,
this approach allows for full second-order convergence in space and time, as it uses the
same algorithms as static, finite-volume methods. However, this method has been rarely
applied to accretion disks thus far, as it has previously suffered from small noise on the
grid scale, reducing its accuracy. In studies of circumbinary disks, this problem has been
circumvented by using a locally isothermal disk with viscosity, which washes out the noise
and prevents artificial heating (Miranda et al., 2017; Muñoz et al., 2019, 2020). Another
option to prevent this problem is to restrict the mesh motion to the analytical rotational
motion, increasing the symmetry in the mesh. This method was implemented in the DISCO

code (Duffell, 2016) but it offers less flexibility, especially if the flow patterns significantly
deviate from the imposed mesh motion.

The goal of this thesis is to assess how well the moving mesh method as implemented in
the AREPO code can describe important processes that might be of importance for the evo-
lution of accretion disks. The focus will be on studying the linear and nonlinear evolution of
the magnetorotational, gravitational, and Rossby wave instabilities, as well as developing
new algorithms to improve the accuracy of the code for these physics applications.

The thesis is structured as follows: In Chapter 2 we describe the first implementation
of the shearing box approximation on a moving mesh code. We extensively test the im-
plementation and realize several improvements in the code that remove the noise that was
previously observed on the grid scale. In Chapter 3 we apply the method from the previ-
ous chapter to the problem of the growth and saturation of the MRI, and we compare our
results with those found in the literature, finding generally good agreement. We extend
the shearing box in Chapter 4 by implementing a self-gravity solver based on the TreePM
method and by applying it to the gravitational instability in cold disks. Depending on the
cooling efficiency we find a gravito-turbulent state or the formation of bound fragments.
In Chapter 5 we perform global, two-dimensional simulations of a rotating disk with an
axisymmetric overdensity. The system is unstable to the Rossby wave instability and we
compare its linear growth rate with analytic expectations. In the nonlinear regime of evo-
lution, we find the merging of several vortices into a single one. Finally, at the end of the
thesis, we summarise in Chapter 6 our results and discuss possible extensions of the work
and future research directions.



Chapter 2

Simulating cold shear flows on a
moving mesh

This work has been published in the Monthly Notices of the Royal Astronomical Society,
Volume 515, Issue 1, Pages 525-542.

Rotationally supported, cold, gaseous disks are ubiquitous in astrophysics and appear
in a diverse set of systems, such as protoplanetary disks, accretion disks around black
holes, or large spiral galaxies. Capturing the gas dynamics accurately in these systems is
challenging in numerical simulations due to the low sound speed compared to the bulk ve-
locity of the gas, the resolution limitations of full disk models, and the fact that numerical
noise can easily source spurious growth of fluid instabilities if not suppressed sufficiently
well, negatively interfering with real physical instabilities present in such disks (like the
magnetorotational instability). Here, we implement the so-called shearing-box approxima-
tion in the moving-mesh code AREPO in order to facilitate achieving high resolution in
local regions of differentially rotating disks and to address these problems. While our new
approach offers manifest translational invariance across the shearing-box boundaries and
offers continuous local adaptivity, we demonstrate that the unstructured mesh of AREPO
introduces unwanted levels of “grid-noise” in the default version of the code. We show
that this can be rectified by high-order integrations of the flux over mesh boundaries.
With our new techniques we obtain highly accurate results for shearing-box calculations of
the magnetorotational instability that are superior to other Lagrangian techniques. These
improvements are also of value for other applications of the code that feature strong shear
flows.

2.1 Introduction

Computer simulations are one of the main methods to understand the nonlinear evolution
of gaseous flows in accretion disks and other differentially rotating systems. However,
following key local instabilities such as the magnetorotational instability (MRI) (Velikhov,
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1959; Chandrasekhar, 1960; Fricke, 1969; Balbus & Hawley, 1991) requires high resolution,
which makes global simulations overly expensive. But the MRI is by no means the only
instability of interest. For example, in protoplanetary disks, the Rossby wave instability
appears (Lovelace et al., 1999), and radially stratified disks give rise to a variety of further
instabilities that may drive turbulence in the disk (e.g. Klahr & Hubbard, 2014). In the
context of the interstellar medium, differential shear is also considered an important source
of turbulence, but one that is challenging to capture accurately in global disk models as a
result of the limited resolution available in such calculations.

A general difficulty in the numerical treatment of rotationally supported gas flows lies
in the “coldness” of the gas relative to the rotational bulk motion. The gas velocities in
the rest frame of the disk are dominated by the coherent rotational motion and can be far
higher than the involved sound speeds, making the flow formally highly supersonic. This
causes small timesteps and large advection errors in standard finite-volume hydrodynamical
grid codes. On the other hand, standard Lagrangian methods such as smoothed particle
hydrodynamics (SPH) are prone to seed spurious instabilities in the disks due to their
inherent, comparatively large numerical noise.

An interesting alternative lies in the use of a local approximation (Hill, 1878; Goldreich
& Lynden-Bell, 1965) as realized in the shearing box approach, that was first applied in
Hawley et al. (1995) to the MRI. The equations describing the evolution of the system
are here expressed in a local, Cartesian reference frame that is co-rotating with the local
angular velocity Ω0 = Ω(r0) at a radius r0 in the disk. This is typically combined with
imposing periodic boundaries in the azimuthal direction (i.e. one covers only a region
∆y = r0∆ϕ), and a special ‘shear-periodic’ boundary condition in the radial direction (i.e.
one only covers a radial region ∆r). The transformation to a non-inertial frame of reference
leads to two new source terms compared to the standard ideal magnetohydrodynamical
(MHD) equations: The Coriolis force and the centrifugal force. The latter can also be
written as an effective gravity force, defined as the difference of the external gravitational
force and the centrifugal force. This effective force cancels for an equilibrium solution with
a linear shear flow in the azimuthal direction, corresponding to a plain differential rotation
in the disk. Fluid instabilities around this “cold ground state” can then be studied with
high accuracy with Eulerian methods.

The shearing box approximation is only valid as long as the size of the used box,
Lr = ∆r, is much smaller than r0. As a result, it does not readily allow for measurements
of global disk properties such as the net mass accretion rates, or radial density and tem-
perature profiles (Regev & Umurhan, 2008). Despite these limitations, it has become a
very important standard method to analyze the nonlinear saturation of the MRI (Hawley
et al., 1995). In particular, due to its much lower computational cost compared to global
disk models, it allows the exploration of large parameter spaces, and thus ultimately yields
important predictions for full simulations as well. For example, Riols & Latter (2018,
2019) found that gravoturbulence can act as a dynamo and amplify MHD fields even in
the presence of strong resistivity, a result later confirmed by Deng et al. (2020) using global
simulations.

So far simulations with the shearing box approximation have mostly employed Eulerian
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codes that require a special mapping of the fluid states at the radial boundary conditions.
Examples for such implementations are the finite volume codes ATHENA (Stone et al.,
2008; Stone & Gardiner, 2010), PLUTO (Mignone et al., 2007) and RAMSES (Fromang
et al., 2006), or the finite difference codes PENCIL (Brandenburg et al., 2020) and ZEUS

(Stone & Norman, 1992a,b; Hawley et al., 1995).

Although Lagrangian methods have often been used for global disk simulations due to
their lower advection errors, they have only rarely been used for shearing box simulations,
despite the fact that they in principle allow for a translationally invariant implementation of
the radial boundary conditions. One reason is that particle-based methods have problems
sustaining MRI turbulence without a net magnetic field, as shown by Deng et al. (2019)
with the GIZMO code (Hopkins, 2015). However, Wissing et al. (2022) demonstrated
recently that some SPH implementations are able to sustain the turbulence after all, which
is a prerequisite for more complicated shearing box studies.

In this work, we present the first implementation of the shearing box approximation
in a moving-mesh code, specifically the AREPO code (Springel, 2010a; Weinberger et al.,
2020), which can be viewed as a hybrid method between a static grid code and a Lagrangian
particle method. A full implementation of the shearing box approximation consists of the
source terms and a treatment of the special radial boundary conditions. In contrast to
Eulerian codes, the moving-mesh approach allows a fully translationally invariant imple-
mentation of the radial boundary conditions at the discretized level of the equations, so
that the radial boundaries are manifestly indistinguishable from interior regions of the flow.
Another advantage is that the moving-mesh approach retains its ability to continuously
and seamlessly adjust the local resolution, making it particularly suitable for calculations
of fragmentation and local gravitational collapse. Interestingly, our results for the ground-
state of the shearing-box show that the default version of AREPO produces comparatively
large ‘grid-noise’ errors when the mesh becomes geometrically completely unstructured due
to strong local shear. We found that these errors can be eliminated, however, with a novel
high-order flux integration that we develop as part of this chapter.

This chapter is structured as follows: In Section 2.2 we summarize the most important
ingredients of the moving mesh method as currently implemented in AREPO. In Section 2.3
we present our implementation of the source terms and boundary conditions for the shear-
ing box. We show in Section 2.4 that the vanilla version of AREPO leads to significant
noise in the ground state, discuss several improvements that reduce this noise and show
that they can also improve the results in other problems such as the simulation of a full
cold Keplerian disk. In Section 2.5 we run several test problems for the shearing box and
show that our implementation converges with close to second-order, as expected. Finally,
we show in Section 2.6 that AREPO is able to sustain MRI turbulence for several hundred
orbits without a background magnetic field and compare our results to those from Shi
et al. (2016) obtained with the ATHENA code. In Section 2.7 we summarize our results
and present our conclusions.



36 2. Simulating cold shear flows on a moving mesh

2.2 Ideal magnetohydrodynamics in AREPO

The moving-mesh code AREPO (Springel, 2010a; Weinberger et al., 2020) solves the ideal
magnetohydrodynamical (MHD) equations on an unstructured Voronoi mesh using the
finite volume method (Pakmor et al., 2011; Pakmor & Springel, 2013). The computational
mesh is constructed using mesh-generating points that can move with an arbitrary velocity,
but which is typically close to the fluid velocity. Due to this movement, the Voronoi mesh
changes its structure and topology in time and the method becomes manifestly Galilei-
invariant when the mesh motion is tied to the fluid motion itself.

The ideal MHD equations in differential form can be expressed as:

∂U

∂t
+∇ · F (U) = 0, (2.1)

which exposes the hyperbolic conservation law for the mass, momentum, energy and inte-
grated magnetic field. U defines here the conserved quantities and F is the flux function.
The flux function is defined in a local rest frame by:

U =


ρ
ρv
ρe
B

 , F (U) =


ρv

ρvvT + P −BBT

ρev + Pv −B(v ·B)
BvT − vBT ,

 , (2.2)

where ρ, v, e, B, P are the density, velocity, total energy per mass, magnetic field strength
and pressure, respectively. The total energy density e = u + 1

2
v2 + 1

2ρ
B2 consists of the

thermal energy per mass u, the kinetic energy density 1
2
v2 and the magnetic field energy

density 1
2ρ
B2. The pressure P = pgas +

1
2
B2 has a thermal and a magnetic component.

The system of equations is closed by the equation of state (EOS), which expresses pgas as
a function of the other thermodynamical quantities. We shall adopt the usual ideal gas
EOS, pgas = (γ − 1)ρu, with an adiabatic index γ.

The ideal MHD equations fulfill the condition ∇ · B = 0 for all times if the initial
field is divergence-free. This property of the continuum equations is unfortunately lost in
discretized versions of the equations, unless elaborate constrained transport formulations
are used that can retain the divergence-free conditions also at the discrete level. In this
chapter, we will instead use the Dedner scheme (Dedner et al., 2002) for divergence control
as implemented in Pakmor et al. (2011). It diffuses away local deviations of the divergence
constraint and damps them. We note that in many studies with AREPO the Powell scheme
(Powell et al., 1999) as implemented in Pakmor & Springel (2013) is used instead, but all
results except those in Section 2.6 are insensitive to the details of the divergence cleaning.
We therefore defer a comparison between the two methods in the context of the shearing
box to a future chapter. We set the parameter ch required in the Dedner approach to the
maximum signal speed in the system, and choose cp =

√
2chr in proportion to the cell

radius r (see Pakmor et al. (2011) for details).
The ideal MHD equations are discretized on the cells of the dynamic Voronoi mesh.

Volume averages of the conserved quantities for a cell i can be calculated by integrating
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U over the corresponding volume Vi:

Qi =

∫
Vi

U . (2.3)

By integrating equation (2.1) over Vi and applying Gauss’s law we find for the change of
Qi:

dQi

dt
=

∫
∂Vi

F (U) · n̂. (2.4)

n̂ is the outward normal on the surface ∂Vi of cell i. The temporal evolution of Qi over
one time step of size ∆t can therefore be written as:

Qn+1
i = Qn

i +

∫ t0+∆t

t0

dt

∫
∂Vi

F (U) · n̂. (2.5)

The time integral is discretized in AREPO using a second-order accurate hybrid between
a Runge–Kutta method and the MUSCL-Hancock scheme (see Pakmor et al., 2016b). By
defining I(t) =

∫
∂Vi

F (U) · n̂, equation (2.5) can be approximated by:

Qn+1
i = Qn

i +
∆t

2
[I(t0) + I(t0 +∆t)] . (2.6)

The integral I(t) can be expressed as a sum of integrals Iij over all outer faces of the
cell. Such a face integral is then approximated as

Iij(t) =

∫
Aij

F (U) · n̂ijdAij ≈ AijF [U(f)] · n̂ij, (2.7)

where U(f) is the state at the geometric centre f of the face, and Aij is the interface
between cell i and j.

The state at the interface is taken as the solution of a Riemann problem with the
(linearly extrapolated) state of the cells i and j at this point as input. These extrapolations
are calculated based on a slope-limited piece-wise linear spatial reconstruction step in each
cell. For the calculation of I(t + ∆t), an additional first-order time extrapolation of the
fluid states by ∆t is applied. This reconstruction is done using primitive variables for
expressing the fluid state:

W =


ρ
v
pgas
B

 , (2.8)

which can be easily obtained from the conserved quantities.
The gradients of the primitive variables are estimated using a least-square fit around

every cell (see Pakmor et al., 2016b, for details) and the reconstruction takes the following
form for the left and right state:

W ′
L,R(t0 +∆t) = WL,R(t0) +

∂W

∂r

∣∣∣∣
L,R

(f − sL,R) +
∂W

∂t

∣∣∣∣
L,R

∆t, (2.9)
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Figure 2.1: The shearing of an initially Cartesian grid by the background flow (2.15). We define
Tperiod = Ω0Ly/(qLx) as the time it takes to evolve the grid into a new Cartesian grid. During
this time the geometry of the grid continuously changes while retaining a residual symmetry of
the cells (see, e.g., the red colored cells).

where s is the center of mass of each cell. ∂W
∂t

is only required in the second flux calculation
and can be obtained from the linearized ideal MHD equations:

∂

∂t


ρ
v
pgas
B

 =


−v∇ρ− ρ∇v

−∇P
ρ

− vvT +B · (∇B)

−γpgas∇ · v − v · ∇P
B · (∇v)− (∇ · v)B − v · (∇B)

 . (2.10)

As detailed in Pakmor et al. (2011) we first try, in consecutive order, the HLLD Riemann
solver (Miyoshi & Kusano, 2005), the HLL solver (Harten et al., 1983), and in case both
fail, the Rusanov solver (Rusanov, 1961).

If the mesh itself is moving with velocity vm one has to add the term UvT
m to the flux

function. The velocity of a point on the interface can then be calculated as in Springel
(2010a, their eqn. 33), to which we refer for more details. It only requires the local geometry
of the two neighbouring cells of the interface as well as their velocities. The motion of the
mesh generating points is typically kept as close as possible to the velocity of the fluid,
but AREPO also adds small additional velocity corrections to improve the local regularity
of the Voronoi mesh. We will refer to the latter as mesh regularisation in the following.
As measure for the local mesh quality we use the maximum angle under which any cell
face is seen by a mesh generating point, as described in full in Vogelsberger et al. (2012);
Weinberger et al. (2020). Unless specified otherwise, we use the parameters β = 2 and
fshaping = 0.5 as defaults for this method.

2.3 Implementation of the shearing box approxima-

tion

The local shearing box approximation (Goldreich & Lynden-Bell, 1965) solves the ideal
MHD equations in a frame that is rotating with a frequency Ω0 = Ω(r0) at radius r0.
Upon transformation into the non-inertial rotating system, the equations can be written
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Figure 2.2: Illustration of the mesh construction for the shearing box boundary conditions
in the x-direction: The inside of the yellow square represents the two-dimensional simulation
domain. All cells whose mesh generating points (blue circles) lie in the box are primary cells,
the other ones are so-called ghost cells arising as duplicates due to the boundary conditions.
During the construction of the mesh, we need to repeatedly find all mesh-generating points that
lie within a sphere of some radius r around a mesh-generating point. These are in-circle tests
for the circumspheres of triangles, carried out to make sure that the corresponding triangle is a
valid Delaunay triangle of the tessellation (see as example the red circle around a cell colored in
red). If this sphere intersects an x-boundary, we have to calculate an additional search position
by shifting the x-coordinate by ±Lx and the y-coordinate by ∓wt, see eqn. (2.3.2). For this new
position, another in-circle test has to be carried out, which may in turn return both primary
points or other shifted ghost points. Note that in our example, the interface between the red and
the green cell exists twice in the final tessellation: Once on the left hand side with the red cell as
ghost cell, and once on the right side with the green one as ghost cell. It is however sufficient to
calculate the corresponding fluxes, together with the boost of eqn. (2.22), only once.
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in Cartesian coordinates x, y, and z, with corresponding units vectors êx, êy and êz, as:

∂U

∂t
+∇ · F (U) = Sgrav + Scor. (2.11)

The left hand side is formally equivalent to equation (2.1), and the flux is still given by (2.2),
but the coordinate transformation leads to two additional source terms for the momentum
and energy equations. Sgrav contains one of the terms, the centrifugal force, as well as the
external gravitational force expanded to first order in the x- and z-directions, while Scor

represents the Coriolis force. Explicitly, they are given by:

Sgrav =


0

ρΩ2
0 (2qxêx − zêz)

ρΩ2
0v · (2qxêx − zêz)

0

 (2.12)

and

Scor =


0

−2ρΩ0êz × v
0
0

 . (2.13)

The term Sgrav depends on the shearing parameter

q = −1

2

d lnΩ2

d ln r
, (2.14)

which takes on the value q = 3/2 for a Keplerian rotation curve.
In the azimuthal y-direction one typically uses standard periodic boundary conditions.

In the z-direction, one can use periodic boundary conditions in the case of an unstratified
box (no gravitational term in the z-direction) or inflow-outflow boundary conditions for a
stratified box (gravitational field towards the z = 0 plane). The boundary conditions in
the radial direction are more complicated and will be discussed separately below.

We note that equation (2.11) admits a ‘ground state’ solution with

v0(x) = (0,−qΩ0x, 0), ρ = const., P = const., (2.15)

in the unstratified case. For a global disk simulation, this is equivalent to the intrinsic radial
dependence of the rotational velocity being given by rΩ(r) everywhere. This background
flow alone leads to a continuous shearing between neighbouring cells in the x-direction (see
Fig. 2.1).

2.3.1 Implementation of the source terms

To implement the source terms we use a second-order accurate Strang splitting scheme,
which means we first evolve the system for half a time step using the source terms, then for
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a full time step using the methods from Section 2.2, and then apply another half step for the
source terms. We apply both source terms together and actually rewrite the momentum
equation to:

Stot,mom =

2(vy − v0,y)ρΩ0

−2vxρΩ0

−ρΩ2z

 , (2.16)

because this term vanishes for the ground state solution. To conserve the total energy
accurately we first subtract the kinetic energy from the total energy, apply the momentum
source term and then add the new kinetic energy to the total energy. To avoid an unphysical
growth of the amplitude of epicycle oscillations (see section 2.5.2), we add a prediction step
for the second half step of the source terms. In practice, this means we first apply the source
term (2.16) for a half time step, calculate the new velocity and use this velocity for the
actual update of the momentum. This method is similar to the implementation the of
Crank-Nicholson time difference method in Stone & Gardiner (2010), which actually can
conserve the amplitude to machine precision.

2.3.2 Boundary conditions

While we can use the standard implementation of periodic or inflow/outflow boundary
conditions in the y- and z-directions, we have to take care of the background shear flow
(2.15) in the x-direction. This leads to the so-called shearing box boundary conditions:

f(x, y, z, t) = f(x± Lx, y ∓ wt, z, t); f = (ρ, ρvx, ρvz,B), (2.17)

ρvy(x, y, z, t) = ρvy(x± Lx, y ∓ wt, z, t)∓ ρw, (2.18)

e(x, y, z, t) = e(x± Lx, y ∓ wt, z, t)∓ ρvyvw +
ρw2

2
, (2.19)

where Lx is the box size in the (radial) x-direction, and w ≡ qΩ0Lx.
To implement standard periodic boundary conditions, AREPO uses ghost cells. During

the mesh construction, all cells closer than a specific radius r to a cell have to be found.
If this sphere of influence intersects a box boundary, the search will be continued on the
opposite boundary of the box. The cells found there will be built into the local Voronoi
mesh as a ghost cell at the original position of the cell shifted by one box length, and
the properties of the original cell are copied to the ghost cell. Updates of the conserved
quantities of such ghost cells are applied to the original cell (for details of the mesh con-
struction see Springel, 2010a). The creation of ghost cells may cause some cell interfaces to
be duplicated in the constructed tessellation (in particular also if parallelization subdivides
the fiducial global mesh into several logical pieces stored on different processors), but the
fluxes are calculated always only once, such that the conserved quantities of both involved
cells get updated only once in a manifestly conservative fashion.

The radial shearing box boundary conditions can be treated very similarly with some
extra modifications. First, if the search sphere overlaps with the box boundary, the centre
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of the search region does not only have to be shifted by ±Lx in the x-direction, but also by
∓wt in the y-direction. When copying the properties of the original cell to the ghost cells,
we have to add a velocity boost ∓w to the y-component of the velocity, as well as to the
velocity of the corresponding mesh generating point. The Riemann solver then returns the
state U(ρ,v, p,B), which can then be used to calculate the flux F (U ) that is applicable
to a real (unboosted) cell at the interface. If we are dealing with a ghost cell instead, the
conserved quantities of the corresponding original cell need to be updated with a modified
flux:

∆F = F ′(U ′(ρ,v ± wêy, p,B))∓U ′(ρ,v ± wêy,B)(wêy)
T − F (U). (2.20)

U ′ is here the state we obtain by adding the velocity shift ±wêy to U . Using equation
(2.2) for the flux, this can explicitly be expressed as:

∆F =


0

(0,±wQ1, 0)
±Q2,yw + 1/2Q1w

2

(0,∓w(B · n̂), 0)

 (2.21)

with

F (U) =


Q1

(Q2,x, Q2,y, Q2,z)
Q3

(Q4,x, Q4,y, Q4,z)

 , (2.22)

where n̂ is the normal of the interface.
Note that this boost shows that in the shearing box approximation the momentum and

energy are not conserved. Whereas the mean radial and vertical magnetic field,

⟨Bx,z⟩ =
∫
Box

Bx,zdV∫
Box

dV
= const. (2.23)

are conserved, the azimuthal field grows linear with the net radial magnetic field flux
through the radial boundary (Gressel & Ziegler, 2007):

∂ ⟨By⟩
∂t

= −w
V

∫
∂x

Bx dy dz. (2.24)

For ∇ ·B = 0, the last condition also implies that ⟨By⟩ is constant if there is no net radial
field.

On a moving mesh, cells can also leave the simulation box and reappear on the opposite
side. If this happens in the x-direction, we also have to modify the y-position and velocity
component of the cell, as well as its energy. Fig. 2.2 further illustrates the implementation of
the boundary conditions during the mesh construction. We note that this implementation
of the boundary conditions does not introduce any special treatment of the boundaries at
the level of the flux calculation, and therefore the whole simulation box stays isotropic and
translationally invariant.
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Figure 2.3: The density field at different times in a two-dimensional calculation that simulates
the ground state of the shearing box with an initially constant density, ρ = 1, using the old default
version of the AREPO code, as described in Section 2.2. The simulation seeds small ‘grid-noise’
at the level of 10−3 which is stretched by the shearing motion into vertically oriented bands. This
effect has a purely numerical origin and cannot be eliminated by resorting to finer time-stepping.

2.4 Reducing numerical noise in AREPO

In this section, we first test the accuracy of the shearing box implementation in AREPO

when the default integration method of the code is used. As this exposes an unwanted
level of ‘grid-noise’ that can influence the growth of instabilities and act as a numerical
viscosity, we then introduce several improvements to the code that substantially increase
the achieved accuracy.

2.4.1 Simulations of the ground state of the shearing box

A conceptionally simple but nevertheless highly illuminating test case of the basic code per-
formance lies in simulating the ground state (2.15) of the shearing box with an isothermal
equation of state. This state should be stable (because the shearing motion is stabilized
by the centrifugal force), and indeed, static grid codes are able to maintain this state to
machine precision on a Cartesian grid. However, the free mesh motion of AREPO allows
for the occurrence of diverse cell geometries, potentially introducing much larger deviations
from the ground state.

For testing this, we set up a two-dimensional box of size Lx = Ly = 10, density ρ = 1,
and an isothermal equation of state with sound speed cs = 1 and Ω0 = 1. The initial mesh
is created by two nested Cartesian grids with 2002 mesh-generating points, effectively
creating a hexagonal mesh. We add to these positions of the mesh-generating points some
random noise with a maximum of 5% of the lattice constant of the grid, and set the velocity
of the cells to the value of the ground state (2.15) at the centers of mass of the resulting
mesh cells. In Fig. 2.3, we show the time evolution of the computed density field. We see
that the code is not able to stably keep the imposed ground state to machine precision,
rather a time-dependent stripe pattern forms, apparently due to local noise peaks that are
subsequently sheared away by the fluid motion.
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Since there are no spatial scales in the problem that need to be resolved in the ground
state, the only sources of error are of numerical origin. If they are related to the temporal
discretization of the updates of the fluid state, the error in the density field should decrease
with the size of the time step. However, if we rerun the simulation with different Courant
coefficients (see also eqn. 2.29) and compare the L1 errors of the resulting density fields, we
find that the error does not decrease with smaller time steps sizes, i.e. it does not arise from
truncation errors of the temporal discretization and will still be present even for arbitrarily
small timesteps.

This raises the suspicion that the errors are directly related to the unstructured cell
geometries used in our calculation. To test for this possibility, we run our code with a
static grid, although this requires a special trick to deal with the shearing box boundary
conditions because the approach used for this purpose in Eulerian codes is not implemented
in our moving-mesh approach. However, we can still compute test simulations of the
shearing box with a static mesh by defining buffer zones on both sides of the simulation
domain close to the boundaries in the x-direction. In every time step, we then simply
override the fluid quantities in these regions and reset them to the analytically expected
values. In this way, we can effectively restrict the live calculation of the code to the regions
in between, allowing us to examine the sources of errors there without having to actually
solve the boundary conditions problem for stationary meshes in a clean way.

Using this approach, we find that both a stationary Cartesian mesh, as well as a sta-
tionary hexagonal mesh (formed from two nested grids of mesh-generating points), are able
to keep the ground state to machine precision after all. Furthermore, this ground state is
also maintained with this precision if we let the mesh move but prescribe the motion such
that a symmetry of the cells is always maintained (for example, in practice we start from a
Cartesian mesh and set the velocities of the mesh generating points to the initial fluid ve-
locity, and then keep them constant). In contrast, if we use asymmetric cell geometries and
a prescribed motion, this accuracy immediately breaks down. This leads to the conclusion
that the symmetry of the Cartesian/hexagonal grid is a key factor in allowing the code to
avoid the creation of local deviations from the ground state. In the next subsection, we will
see that this behaviour is ultimately not surprising, because the symmetric cell geometries
benefit from a fortuitous cancellation of flux area integration errors on opposite sides of
mesh cells. Additional effort beyond the standard integration scheme is needed to achieve
the same final accuracy also for general mesh geometries.

2.4.2 Higher order flux integration

A clear potential source for inaccuracies is the approximation (2.7) for the area integral of
the flux over a cell interface. This approximation is only exact if the flux varies linearly
across the interface. However, this condition is, for example, not fulfilled if there is a finite
velocity gradient, since in this case, the momentum flux becomes a quadratic function in
space, see eqn. (2.2). If a linear gradient in density and velocity exists, the maximum
polynomial order of the flux function occurs for the energy flux and is fourth order in
space. This ultimately means that an accurate calculation of the surface integral Iij that is
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free of truncation errors requires a method that can integrate polynomials of order up to 4
exactly (or order 3 in case of an isothermal EOS, or if density gradients can be neglected).

The approximation (2.7) can be viewed as the simplest low-order case of the general
class of Gauss-Legendre integration rules, that can be used in any dimension. In two-
dimensional simulations, the integral Iij is a line integral and can be transformed into the
form:

I =

∫ 1

−1

f(x) dx ≈
n∑

i=1

f(xi)wi, (2.25)

where f(x) represents the flux function in normalized coordinates with x ∈ [−1, 1] marking
the position on the interface. The integral can be approximated by a weighted sum of
values of f obtained at different evaluation points xi, the so-called Gauss points. For an
appropriate choice of xi and wi, the approximation can be made exact for polynomials up
to a certain order m, but achieving higher-order m also requires more function evaluations,
i.e. a higher n. In Appendix 2.8.1 we give the exact values for xi and wi as implemented
in our code, but for all test cases in this chapter, two points, n = 2, exact up to third
order polynomials, are sufficient. For every xi we require an additional reconstruction of
the states at the interface as well as a call to the Riemann solver. Since those costs are
typically significantly smaller than the mesh construction in two dimensions, we adopt this
method as the (new) default one in the AREPO code.

In three-dimensional simulations, the interfaces of cells are polygons. Although meth-
ods exist that try to find the minimum amount of evaluation points for a specified target
accuracy (e.g. Mousavi et al., 2010), there exist no general equations for polygons with
more than four edges that employ the minimum number of evaluation points needed for a
targeted exact polynomial accuracy. We, therefore, split the interface into triangles over
which we can integrate the flux accurately using standard Gauss-Legendre integration. The
triangles themselves can be easily obtained during the construction of the Voronoi mesh
from the Delaunay triangulation. For a third-order accurate method, we have to use 4
points per triangle, which means we require on average more than 15 flux evaluations per
surface integral to realize this accuracy for arbitrary cell geometries. While this sounds like
a significant cost increase, using simulations of the background shear flow (2.15) we found
an overhead of only around 110% for a naive implementation of this method. However,
we were able to reduce this overhead to around 30% by performing the time extrapola-
tion only once per face and not for every evaluation point separately, and by an explicit
vectorization of the flux calculation with AVX-2 instructions available on modern CPUs.
In Appendix 2.8.2 we discuss further details of the application of the Gauss-Legendre
integration in three dimensional Voronoi meshes.

2.4.3 Less strict slope limiter

In regions with a smooth flow, the linear reconstruction of equation (2.9) leads to a second-
order accurate method in space. But in regions with physical discontinuities, the standard
reconstruction scheme can induce under- or overshoots, and thus oscillatory behaviour,
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unless a non-linear slope limiter is applied to reduce the local gradients such that no new
extrema are introduced into the solution. As this reduces the order of the method to first-
order accuracy close to discontinuities, it is important to choose a limiting scheme that only
reduces the gradient where really required, and by the least amount needed to accurately
capture shocks and contact discontinuities, and to prevent numerical instabilities.

Thus far, AREPO by default uses the scheme from Springel (2010a): The original
estimate of the gradient of a quantity ϕ is replaced by〈

∇⃗ϕ
〉′

i
= αi

〈
∇⃗ϕ
〉
i
, (2.26)

where 0 ≤ αi ≤ 1 is the value of the limiter of the given cell. It is computed as

αi = min
j
(1, ψij), (2.27)

where ψij is here defined for every interface of the cell i as

ψij =


(ϕmax

i − ϕi)/∆ϕij for ∆ϕij > 0
(ϕmin

i − ϕi)/∆ϕij for ∆ϕij < 0
1 for ∆ϕij = 0

(2.28)

and ∆ϕij = ⟨∇ϕ⟩i · (fij − si) is the estimated change between the centroid fij of the face
and the centre of cell i, while ϕmax

i = max(ϕj) and ϕ
min
i = min(ϕj) are the maximum and

minimum values occurring for ϕ among all neighbouring cells of cell i, including i itself.
However, this scheme can lead to a too restrictive limiting of the gradient of the back-

ground shear flow (2.15) for an unstructured mesh. This can happen for special cell ge-
ometries where the face connecting two cells is displaced quite far from the line connecting
the corresponding mesh generating points. As a result, one can end up with αi < 1 even if
there is no discontinuity in the flow. But this in turn increases the local truncation error
of the solution, introducing unwanted ‘grid-noise’ into the solution. To prevent this, we
replace fij in the above formulation of the slope limiter by the mid-point 1

2
(si + sj) of the

center of mass of the cells i and j. We found that this formulation prevents post-shock
oscillations close to discontinuities in all our test simulations just as well as the original for-
mulation, while it safely avoids being triggered in situations with a uniform linear gradient
in combination with a highly irregular Voronoi mesh.

2.4.4 Improved temporal and spatial extrapolation

Equation (2.9) does not specify in which frame we perform the spatial reconstruction and
temporal extrapolation. The simplest choice would be the lab frame, in this case, s = sold
is the centre of mass at the time we calculate the gradient and not the current centre of
mass. A more natural choice would be the moving frame of the gas. In this case we use
s = sold + v∆t as the origin of the spatial reconstruction and set v = 0 in equation (2.10).
We realized through our sensitive tests that the current version of AREPO implemented



2.4 Reducing numerical noise in AREPO 47

simulation initial improvements order time
name grid enabled? integration
CO2 cart. no 2
PO2 polar no 2
CI2 cart. yes 2
PI2 polar yes 2
CI3 cart. yes 3
PI3 polar yes 3

Table 2.1: Overview of the different code configurations used for the isentropic Yee vortex test.
The simulations differ in the topology of the initial grid layout (with is either Cartesian or polar),
whether or not the improvements (but without higher-order time integration) presented in this
chapter are enabled, and finally whether a second or third order time-integration is used.
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Figure 2.4: L1 norm of the error of the density field for the Yee vortex at simulation time t = 10
when evolved with different hydrodynamical schemes, as defined in Table 2.1. Our improved
version of AREPO robustly obtains second-order convergence independent of the initial grid
geometry, whereas the old default version achieves this only for polar grids over a limited range
of resolutions.



48 2. Simulating cold shear flows on a moving mesh

the reconstruction and extrapolation in the moving frame in a slightly inconsistent way. It
transformed into the moving frame of the interface and performed the reconstruction from
the current centre of mass.

Since the velocity of the cell is close to the velocity of the gas and the velocity of
the frame is close to the velocity of the adjacent cells, this generally only leads to small
errors. These are however especially strong (and superfluous) in cases where strong mesh
regularisation motions are applied, and then can be observed in simulations of the ground
state of the shearing box as spurious noise. This noise is now eliminated in our improved
version of the code.

2.4.5 Higher-order Runge-Kutta time integration

The approximation (2.5) for the time integration is in general second order accurate, which
means that its error Et,s for a single time step scales a Et,s ∝ ∆t3 with timestep size, and
the accumulated error for the integration over a fixed time interval scales as Et,i ∝ ∆t2.
In many simulations, the total error is typically dominated by the error Ex of the spatial
discretization, which should be proportional to the square of the local cell size ∆x in
smooth flows.

This is because the size of the time step and the local spatial resolution are connected
by the stability criterion:

∆t = CCFL
∆x

vsignal
, (2.29)

where vsignal is the local signal speed and CCFL the Courant factor as a free parameter.
This implies that an increase in the spatial resolution reduces also the error of the time
integration by a comparable factor, and the whole scheme converges with second order,
typically also keeping the time integration error subdominant.

Since there are no spatial scales to resolve in the ground state of the shearing box
(see Section 2.5.1), the error in this case is however dominated by the error in the time
integration, and can be observed as noise in the unstructured grid case. To verify this and
reduce this noise if desired, we also implemented a formally third order accurate Runge
Kutta method for the integration of the ideal MHD equations:

Qn+1
i = Qn

i +
∆t

6

[
I(t0) + 4I

(
t0 +

∆t

2

)
+ I(t0 +∆t)

]
. (2.30)

This adds an extra mid-timestep evaluation of the integral I, for which we use again the
linear time extrapolation (2.10). We note that other parts of the code, for example the
source terms, are still only integrated with the second-order accurate method (2.5), which
means that if those terms are dominating the error, the error will still only decrease with
second order in time.
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Figure 2.5: The density distribution of a cold Keplerian disk evolved with different simulation
methods and at different times, as labelled. The method marked ‘old’ corresponds to the default
version of AREPO without the modifications proposed here, while the run marked ’improved’
contains all modifications except for the third order time integration. We here use a polar grid
for the initial conditions.
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Figure 2.6: A zoom into the density field for a Keplerian disk simulation at time t = 100. The
left hand side shows the disk evolved without the code improvements proposed here while the
right hand side includes the modifications. Both simulations were initialized with a polar grid
of mesh-generating points. The right simulation has much smaller, spherical, residual density
perturbations (note the different stretches of the color tables).

Figure 2.7: The same as the lower row of panels in Fig. 2.5 but for a simulation with an initially
Cartesian grid and not a polar grid. Even in this case, our improved simulation code exhibits
a drastically reduced noise level in this setup, and thus a much better long-term stability of the
cold, rotationally supported disk.
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2.4.6 Testing the accuracy improvements

Although all of the modifications of AREPO presented in this section were developed
specifically to reduce the noise of the background flow in a shearing box, they are also
useful for other applications of the code. In this subsection, we will briefly examine some
representative examples to highlight this welcome effect.

Yee vortex

The isentropic Yee vortex test consists of a rotating, quasi-stationary flow with a differen-
tially shearing velocity profile. Since the flow is smooth and free of discontinuities, it can
be used to verify second-order convergence for a non-trivial two-dimensional flow. The test
was used in Pakmor et al. (2016b) to show that the very first version of AREPO (Springel,
2010a) did not manage to guarantee full second-order convergence for this problem due
to a comparatively noisy gradient estimation scheme and inaccuracies in time integration.
Pakmor et al. (2016b) introduced improvements to both points that have since been used
by default in the code. As shown in Pakmor et al. (2016b), using this updated code the
Yee vortex then converges with second order, but this still requires a specially prepared
polar grid whereas a start from a cubical grid that is ignorant of the spherical symmetry
of the mesh motion still spoils the high convergence rate.

We here return to examining this issue and rerun the Yee vortex with and without
the improvements presented in the previous subsections. For definiteness, we use both an
initially polar grid as well as a Cartesian grid. Also, we run the test simulations with
the standard second order accurate time integration (2.5) as well as with the improved
third order accurate one (2.30). The details of the initial conditions can be found in
Appendix 2.9.1, and in Table 2.1 we give a schematic overview of the different test runs.

To measure the convergence rate we define the L1 error as

L1 =
1

V

Ncell∑
i=1

|fi|, (2.31)

where |fi| is the deviation of the density of a cell i from the theoretical value at the
coordinate of its center of mass. In Fig. 2.4, we show the error norm as a function of
spatial resolution for our different simulation schemes.

We confirm that the previous version of the AREPO code was indeed only able to
achieve second order convergence for this problem if an optimized polar grid (PO2) is used
for the initial conditions, while a Cartesian grid (CO2) shows substantially higher errors.
Interestingly, for very high resolution (51202 cells) we also find for the polar grid (PO2)
a slight decrease in the order of the method. This effect vanishes if we use our improved
formulation for the polar grid (PI2 and PI3) because this eliminates spurious activations
of the slope limiter.

If we start with a Cartesian grid instead, our new formulation (CI2) achieves second-
order convergence for low to moderate resolutions, but this becomes worse again for very
high resolution. This degradation at very high resolution can be avoided by using our new
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improved time integration accuracy (CI3), suggesting that for low to moderate resolution
the total error is dominated by errors of the spatial discretization, while for very high
resolution the total error becomes dominated by the temporal discretization. The reason
for this is presumably related to the local mesh regularization that we apply, and a faster
change of the local topology of the grid when the resolution is higher.

Keplerian disc

A challenging problem for many hydrodynamical methods is the evolution of a pressure-
less gas disk orbiting around a central object on a Keplerian orbit (Cullen & Dehnen, 2010;
Hopkins, 2015; Pakmor et al., 2016b). In particular, Hopkins (2015) reported that many
state-of-the-art SPH and mesh codes show severe problems in this test. However, using
their new MFM method they were able to evolve the disk for more than 250 inner orbits
(t = 600). Although the disk showed noise in the density evolution of the order unity, the
disk seemed to stay stable.

Pakmor et al. (2016b) used the same test to show that AREPO with his improved
gradient estimates was also able to stably evolve the disk until t = 600. But at this time
the disk started to break up at its inner boundary, and during the whole evolution, some
noise in the density profile of the disk could be observed.

We rerun this test with the improved methods presented in the previous subsections
(except for the higher-order time integration), with the exact same initial conditions as
Pakmor et al. (2016b) (for details see Appendix 2.9.2) and at a resolution of 320x320 cells.
As we show in Fig. 2.5, we reproduce their result that the original version of AREPO is
able to evolve the disk for several hundred code units, and that at around t = 600 the inner
boundary of the disk starts to break up, which only becomes worse with time. However,
the improved integration method we proposed earlier allows us to evolve the disk for a
much longer time. In fact, even at t = 800 the disk remains stable and only shows a
small increase in density at the inner edge of the disk due to a weak influence of the inner
boundary condition. In addition, the new scheme at the same time significantly reduces
the noise in the density field throughout the disk.

In Fig. 2.6 we show a zoom into the density field, including the geometry of the Voronoi
mesh at t = 100. While in the simulation with the old scheme the initial polar grid is
destroyed and the local noise has a relative size of 10%, the initial grid stays stable in
the simulation with the improved scheme. The maximum deviation from the theoretical
density field is only around 1% (observe that the color scale is stretched accordingly) and
those deviations do not take the form of local ‘grid noise’, but rather are ring-like structures
that are coherent for the whole disk.

To further analyze the sensitivity of this simulation problem to the initial grid layout,
we rerun simulations with an initial Cartesian grid of size 320 × 320 cells, once with the
old code and once with our improved method. In Fig. 2.7 we show the density distribution
at t = 800. In the simulation without the improvements proposed in this chapter, the disk
starts to break up earlier compared to the simulation started with an initial polar grid. In
contrast to this, the simulation with the improvements looks very similar to the simulation
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with an initially polar grid, and thus is insensitive to the initial grid geometry, as desired.

2.5 Test problems for the shearing box

In this section, we analyze the performance of our implementation of the shearing box
approximation in several test cases. We consider many of the problems used in Stone
& Gardiner (2010) to analyze the accuracy of the shearing box implementation in the
ATHENA code, and we employ in several cases similar initial conditions as they did. As in
Section 2.4.6 we define the L1 error of a quantity f as

L1 =
1

V

Ncell∑
i=1

|fi|, (2.32)

where |fi| is the difference of the value of a cell i from the theoretical value of f at its
center of mass.

Although the use of a perfect Cartesian grid sometimes leads to better results due to
the additional symmetry in the mesh configuration, we deliberately avoid this by adding
a random displacement of 2% of the mean particle spacing to the positions of the mesh-
generating points in the initial conditions. The background shear flow, together with mesh
regularisation motions introduced by the code, then rapidly create a fully unstructured
mesh, which is more representative for the mesh configurations encountered in realistic
production runs with AREPO. To initialize our test simulations, we set the fluid properties
of a cell to the value assumed by the continuous fields at the coordinate of the centre of
mass of the cell. If not stated otherwise, we impose a global time step for all cells. As
default shear parameters we use q = 3/2 and Ω0 = 1, and for all isothermal simulations
we use an isothermal sound speed of cs = 1.

2.5.1 Ground state of the shearing box

In Section 2.4.1 we showed that the default version of AREPO fails to accurately simulate
the ground state of the shearing box, prompting us to develop several accuracy improve-
ments of the code. We now revisit this problem in this section, but with these improvements
enabled. As a first initial step, we use an unstructured static mesh with buffer zones close to
the x-direction boundaries so that we can ignore the shear-periodic boundary conditions.
In this case, the ground state is now stable up to machine precision, implying that the fluxes
are calculated exactly by the higher-order Gauss-Legendre integration we introduced.

Next, we allow the mesh to move arbitrarily, so that the geometries of the surfaces
of the cells change continuously in time. This change does not have to be a polynomial
function in time, which means that the second-order accurate time integration scheme of
equation (2.5) is associated with small errors. These can be observed as small noise in the
velocity and density fields that lies substantially above machine precision. The noise can be
decreased by either using a smaller time step, or by using a higher-order time integration
scheme, for example the third-order Runge Kutta method we described in Section 2.4.5.
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To analyze the effect of the time step size and integration scheme, we use a two-
dimensional box of size Lx = Ly = 10, and set up a Cartesian grid with 2002 cells and
random displacements of 1% in the coordinates of the mesh-generating points. The initial
conditions are given by the ground state of the shearing box, and we run the simulation
until time t = 1000. This leads to a dynamic unstructured mesh with a quasi-stationary
equilibrium between the mesh regularisation motions introduced by the code and the ten-
dency of the local shear to degrade the local mesh regularity. We then use this “relaxed”
unstructured mesh geometry and reinitialize the fluid variables with the analytical values
of the ground state at its centre of mass to start out once more with a perfectly quiet state.
Afterwards, we let the system evolve for time t = 1 and examine how accurately the quiet
shear flow of the ground state is maintained.

We repeat this last simulation for different time step sizes, imposed here by changing
the Courant number. We then measure the average L1 error of the fluid quantities, as well
as the maximum L1 error that is realized for any of the cells. In the first row of Fig. 2.8,
we show the L1 errors of different hydrodynamic quantities as a function of the Courant
number for the second and third-order Runge Kutta schemes. We also fit the expression

L1 = A0C
A1
CFL (2.33)

to the measurements. A1 gives us the order of convergence of the corresponding fluid
quantity. As expected for a second-order method, all errors decrease with second order
for smaller time step sizes. This also shows that the error in this problem is indeed fully
dominated by errors in the time integration, not the spatial integration, because the latter
is eliminated by our higher order flux integration. The use of the third-order RK method
reduces the amplitude of the total error (A0) by about one order of magnitude, but the
convergence rates (A1) stay still close to 2 and do not approach the value of 3 we may
have expected. To further analyze this discrepancy, we have repeated the test in three
dimensions with Lx = Ly = Lz = 10 and 503 cells.

In the second row of Fig. 2.8 we show the corresponding L1 errors as a function of the
Courant number now in the three-dimensional case. We again find, as expected, A1 ≈ 2
for the second-order RK method, but now we recover a significantly better convergence
rate than 2 for the third-order RK time integration. In the latter case, the maximum
error decreases slower than the average errors, which means that for small time step sizes
relatively large local errors dominate the average error budget. The fact that the third-
order RK method does not decrease the error with full third order is a hint that the code
likely still contains some inaccuracies that more prominently show up in two dimensions,
and less so in three dimensions. One culprit might lie in the estimate of the spatial velocity
of an interface, which only takes into account the movement of the two adjacent cells and
not the movement of other neighbouring cells, even though they introduce changes in the
size of the facets.

Finally, we note again that we can completely suppress the errors in the time integration
by starting with a perfectly structured mesh like a Cartesian or hexagonal grid, and only
allow for a restricted mesh movement with v⃗mesh = (0,−qΩ0x, 0) that is independent of
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Figure 2.8: The L1 error norm of different hydrodynamic quantities (as labelled) as a function of
the time step size (here parameterized through the Courant number) at time t = 1 for simulations
of the ground state of the shearing box (for details, see Section 2.5.1). The upper row shows results
in two dimensions, the lower one in three dimensions. The panels on the left use the second order
accurate time integration of equation (2.5), the ones on the right the third order accurate method
of equation (2.30). In brackets we give the fitted values of the slope A1, see equation (2.33).
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Figure 2.9: Epicycle oscillations in the velocities vx and vy (first and second row panels) com-
pared between analytic solution (solid lines) and numerical measurements (crosses) for a simu-
lation with a resolution of 102 mesh-generating points. The temporal evolution of the epicycle
energy (equation 2.36) in the simulation is shown in the bottom panel.



2.5 Test problems for the shearing box 57

10 10
2

#cells per dimension

10
-9

10
-8

10
-7

10
-6

10
-5

10
-4

10
-3

10
-2

10
-1

L
1

Density

V
x

V
y

E
epi

N
-2

Figure 2.10: L1 norm of the error of the density field, the velocity fields vx and vy, as well as of
the epicycle energy (eqn. 2.36) for a test simulation of epicycle oscillations. The measurements
were performed at time t = 666, which corresponds to around 103 completed epicycle oscillations.
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Figure 2.11: The evolution of the total kinetic energy associated with the movement in the
x-direction for an incompressible hydrodynamic shearing wave. The black line corresponds to the
analytical solution of eqn. (2.38) while the colored lines give measurements for simulations with
different numerical resolutions, as labelled.
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Figure 2.12: The L1 error of the velocity and the kinetic energy density of the motion in
the x-direction as a function of resolution for the simulation of an incompressible hydrodynamic
shearing wave. The L1 error was averaged over the time interval 0 ≤ Ω0 t < 6.
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Figure 2.13: Strength of the magnetic field at different times in a simulation of the advection
of a magnetic field loop in a shearing box.

time. At all subsequent times, the mesh cells then still contain symmetries that cancel
truncation errors in the time integration, which typically leads to similar or even better
results than for the unstructured mesh cases. Note that this approach still removes the
background bulk velocity from the calculation of the size of the time steps, it does have
lower and spatially uniform advection errors compared to a Eulerian treatment, and the
handling of the boundaries is manifestly translationally invariant. These properties are
attractive, and thus such a scheme can be viewed as an interesting hybrid between a freely
moving mesh and a static grid code. However, we will not discuss this scheme further in
this chapter, but it might nevertheless be of interest in cases where a very small level of
numerical noise is required.

2.5.2 Epicycle oscillations

Small perturbations to the velocity of the ground state of the shearing box do not get
damped but instead lead to oscillations. In the case of q = 1.5, they correspond to elliptical
orbits in global disk simulations. If one assumes a perturbation vx = vx0 at t = 0, the
evolution of the velocities is given analytically by:

vx(t) = vx0 cos(Ωt), (2.34)
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vy(t) = −vx0

√
2− q

2
sin(Ωt). (2.35)

An important conserved quantity for these motions is the so-called epicycle energy

Eepi =

(
v2x +

2
2−q

v2y

)
2

= const. (2.36)

Obtaining this conservation numerically requires special care in the implementation of the
source terms of the shearing box.

To test for this, we add a perturbation vx0 = −0.1cs to the ground state of a two-
dimensional shearing box with Ω = 1.5 and cs = 10−3. We use a box size Lx = Ly = 10
and start with a randomly perturbed Cartesian grid. In Fig. 2.9 we show that even for
the low resolution of 102 cells the errors in the epicycle energy do not grow with time.
However, if we do not add the predictor step for the second application of the source
terms, as described in Section 2.3.1, the epicycle energy grows exponentially. In Fig. 2.10,
we show that the errors in the velocity as well as in the epicycle energy decrease with
second order in the spatial resolution, confirming that epicycle oscillations are accurately
treated by our shearing box implementation.

2.5.3 Evolution of a hydrodynamic shearing wave

To test the implementation of our boundary conditions for non-axisymmetric conditions we
simulate the evolution of a hydrodynamic shearing wave (Johnson & Gammie, 2005; Balbus
& Hawley, 2006; Shen et al., 2006). The setup follows Stone & Gardiner (2010). We use a
two-dimensional box of size Lx = Ly = 1, an isothermal equation of state with sound speed
cs = 1.29× 10−3, Ω0 = 10−3 and initial wave vector 2πk0/Lx = (−8, 2). We choose initial
amplitudes vx,0 = 10−4cs and vy,0 = −kx,0/ky,0vx,0, and a constant background density
ρ = 1.

The shearing box leads to a time-dependence of the wave (Shen et al., 2006):

kx(t) = kx0 + qΩ0ky0t, (2.37a)

vx(t) = vx,0

√
k2x,0 + k2y,0
k2x + k2y,0

cos(kx(t)x+ ky,0y), (2.37b)

vy(t) = −vx,0

√
k2x,0 + k2y,0
k2x + k2y,0

kx(t)

ky
cos(kx(t)x+ ky,0y). (2.37c)

The kinetic energy gets amplified and reaches a maximum at t = 8/(3Ω0). In Fig. 2.11, we
compare the evolution of the total kinetic energy in the x-direction for different resolutions
with the analytical value

Ekin,x =

∫ 1

0

dx

∫ 1

0

dy
1

2
ρv2x =

ρv2x,0
4

k2x,0 + k2y,0
k2x + k2y,0

. (2.38)
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For high resolution (N = 1282 and higher), we accurately recover the amplification
of the kinetic energy. At later time, the kinetic energy decreases in our simulations due
to numerical viscosity, but this effect becomes smaller if we increase the resolution, as
expected. If there are only 4 cells per initial wavelength, the numerical viscosity starts to
noticeably damp the wave already at the beginning.

In Fig. 2.12 we show the average L1 error for different fluid quantities as a function
of resolution in the time interval 0 < t < 6/Ω0. As discussed earlier, for low resolution
the numerical viscosity is high and we find large deviations from the analytical solution
and a slow convergence rate. We then find a regime with seemingly faster than second-
order convergence for high resolution, while eventually the errors start to become constant.
The latter issue could be explained by the fact that the analytical solution was derived
under the assumption of incompressibility, which is not actually compatible with the small
density variations observed in our simulations.

2.5.4 Advection of a weak magnetic field loop

As a first test for the implementation of magnetic fields in the shearing box, we evolve a
dynamically unimportant magnetic field loop in a homogeneous medium in the presence
of background shear. We use a box with size Lx = 3 and Ly = 8, a background density
ρ = 1, an isothermal equation of state with sound speed cs = 1, and the parameters
Ω = 1 and q = 3/2 for describing the shearing of the box. The field loop has a radius

r = 1 with magnetic strength β = 2c2sρ0
B2

0
= 2 × 106, so the magnetic pressure is very small

compared to the thermal pressure. Besides the background shear flow, we add a velocity
vx = cs to seed an epicycle oscillation of the field loop. This allows us to also check the
implementation of the boundary conditions. We use a uniform resolution of 1800×600 cells
and add random displacements of 1% of the mean particle spacing to the mesh generating
points. In Fig. 2.13, we show the resulting β at different times. One can see no traces of
the boundary conditions, and the shape of the field loop is well preserved throughout the
evolution.

2.5.5 Evolution of a compressible magnetic shearing wave

Another sensitive MHD test for our shearing box implementation is the evolution of a
compressible magnetic shearing wave in three dimensions (Johnson, 2007; Stone & Gar-
diner, 2010). We use a box of size Lx = Ly = Lz = 0.5, an initially Cartesian grid with
a constant number of cells per dimension, and an isothermal equation of state with sound
speed cs = 1. As initial conditions we specify

ρ(x) = 1 + 5.4808210−6 cos(k0 · x), (2.39a)

v(x) =

−4.5856
2.29279
2.29279

 10−6 cos(k0 · x)−

 0
qΩ0x
0

 , (2.39b)
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Origin sim. 100 ⟨αtot⟩ 100 ⟨αM⟩ 100⟨αR⟩ ⟨B2/2⟩ /P0 ⟨ρv2/2⟩ /P0

Shi et al. (2016) 5.16 4.17 0.99 0.1301 0.0417
This work (ch0 = 0.1) 3.21 2.56 0.65 0.066 0.027
This work (ch0 = 0.2) 3.59 2.89 0.71 0.069 0.032
This work (ch0 = 0.5) 4.16 3.34 0.82 0.093 0.035
This work (ch0 = 1) 2.20 1.74 0.46 0.043 0.020
This work (ch0 = 2) 1.04 0.81 0.23 0.021 0.010
This work (ch0 = 5) 0.42 0.33 0.09 0.011 0.005

Table 2.2: A comparison of different time-averaged fluid quantities in simulations of the MRI
using a tall box without net field. We give our results for a number of different settings of
the Dedner cleaning speed (ch0) and compare them to the results from Shi et al. (2016) (their
simulation x1y4z4r32). All simulations use 32 cells per scale height and are based on identical
initial conditions. The fluid quantities are averaged over 150 orbits, starting after the first 50
orbits.

B(x)/
√
4π =

5.48082
10.962

0

 10−7 cos(k0 · x) +

0.1
0.2
0

 , (2.39c)

with a wavevector k0 = (−2, 1, 1)× 2π/L.
Due to shearing motion, the wavevector k(t) = k0 + (qΩ0t, 0, 0)× 2π/L as well as the

y-component of the average magnetic field B̂y(t)/
√
4π = 0.2− 0.1qΩ0t evolve as a function

of time. To obtain the evolution of the amplitudes of the wave we integrate the system of
differential equations given in Johnson (2007, their eqns. 13–16). In Fig. 2.14 we compare
the real part of the amplitude of the y-component of the magnetic field in our simulations,
defined as

δBy = 2

∫
V

(By − B̂y) cos[k(t)x]dx, (2.40)

with the analytic values, as a function of the employed numerical resolution.
The wave gets damped by numerical viscosity and resistivity. Both dissipative effects

decrease with increasing resolution, allowing us to follow the evolution of the wave for
longer times if the resolution is higher. To more quantitatively analyze the convergence
properties of our code, we show in Fig. 2.15 the L1 error of different quantities averaged over
the time period 0 < Ω0 t < 2, as a function of resolution. For sufficiently high resolution,
we find a close to second-order convergence in all quantities.

2.6 Nonlinear magnetorotational instability without

net field

Finally, as a first example for an application of our new shearing box implementation to an
interesting nonlinear problem we consider a simulation of the magnetorotational instability
(MRI), here without a mean magnetitic field and in an unstratified box. In a standard
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Figure 2.14: Evolution of the amplitude of the magnetic field δBy as a function of time in a
compressible MHD shearing wave test, for different numerical resolutions, as labelled.
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Figure 2.15: The L1 error norm for different fluid quantities averaged over the time period
0 < Ω0 t < 2 in a compressible MHD shearing wave test. The black dashed line shows the slope
of −2 that we would ideally expect from our code, while the actual measurements as a function
of resolution are shown by colored lines, as labelled.
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Figure 2.16: The temporal evolution of the average magnetic energy density (top left), kinetic
energy density (top right), Maxwell and Reynolds stresses (bottom left), and of the normalized
magnetic stress (bottom right) for a simulation of the magnetorotational instability (MRI) with-
out mean field and using standard Dedner divergence cleaning (i.e. ch0 = 1). The simulation
method shows a sustained quasi-stationary MRI even at moderate numerical resolution.
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box size (Lx = Lz = 1H) previous studies found a non-converged behaviour of the MRI
(Fromang & Papaloizou, 2007; Fromang et al., 2007). We therefore adopt a tall box set-
up (Ly = Lz = 4H = 4Lx) as in Shi et al. (2016) who achieved with this configuration
convergence with the ATHENA code (Stone et al., 2008; Stone & Gardiner, 2010). This
test was also used in Deng et al. (2019) to show that with a resolution of 48 particles per
scale height H = cs/Ω0, the GIZMO code (Hopkins, 2015) was not able to sustain the MRI
for more than 20 orbits.

We use a comparatively low resolution of 32 cells per scale height, an isothermal equa-
tion of state with cs = 1, and the shearing box parameters q = 3/2 and Ω0 = 1. For the
initial conditions, we use the ground state of the shearing box (2.15) with constant density
ρ = 1, a purely vertical magnetic field

B = B0 sin (2πx/Lx) êz, (2.41)

and we add uniformly distributed random noise of maximum amplitude 0.05 cs to the
initial velocities of all cells in order to seed the MRI. The initial field strength B0 is defined
by the parameter β = 2c2sρ0/B

2
0 = 400, and we use the Dedner approach for divergence

cleaning. We vary the strength of the cleaning by multiplying the standard variable ch in
the Dedner scheme with a constant prefactor ch0. Smaller values mean weaker cleaning,
and an effectively lower numerical resistivity.

To analyse the simulations we define the volume weighted average of a quantity X as

⟨X⟩ =
∫
XdV∫
dV

, (2.42)

as well as the Maxwell stress

αM = −BxBy

P0

, (2.43)

and the Reynolds stress

αR =
ρvx(vy − vy)

P0

, (2.44)

where vy denotes the background mean flow and P0 = 1 is the initial pressure. The
saturation of the MRI can be measured in terms of the relative Maxwell stress:

αmag = −⟨BxBy⟩
⟨B2⟩

, (2.45)

which goes to 0 if the MRI dies out.
In Fig. 2.16 we show the evolution of different fluid quantities relevant for the MRI.

After an initial growth of the magnetic energy, we find as expected a saturated state.
In Table 2.2 we compare several time-averaged quantities with the equivalent simulations
from Shi et al. (2016). The measured stresses and energies are all slightly smaller than
in ATHENA, which hints that the Dedner cleaning is more diffusive than the constrained
transport scheme used in Shi et al. (2016). For ch0 = 0.5 we find the strongest stresses
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in the saturated phase. For higher ch0, the stresses decrease due to a larger numerical
resistivity.

Overall, the results are very positive as they are superior compared to previous studies
of the MRI with Lagrangian techniques, and are nearly as good as those obtained with a
Eulerian constrained transport method. Given that our method uses a fully dynamic and
unstructured mesh, which does not benefit from fortuitous cancellations of truncation er-
rors, this encourages the use of the new method for more complicated physics applications.
In a future study we for example plan to further analyse this system by modifying the
resolution, the cleaning speed ch, and the initial magnetic field, and it will be especially
interesting to study the case of a stratified shearing box as well. We will also further
compare our results with the studies in Deng et al. (2019) and Wissing et al. (2022) that
both used Lagrangian techniques.

2.7 Summary and conclusions

In this work, we have focused on the technical realization of the shearing-box approximation
in the moving-mesh code AREPO. The shearing-box is ideal to achieve very high local
resolution in rotationally supported disk flows, much higher than can be readily obtained
in global disk simulations. This allows, for example, a study of the non-linear behaviour
of crucial fluid instabilities in such disks, such as the magnetorotational instability.

While the mesh construction algorithm of AREPO can be straightforwardly generalized
to cope with the special shear-periodic boundary conditions appearing in the radial direc-
tion, we found that the default version of the AREPO code produces an uncomfortably high
level of ‘grid-noise’ in the ground-state flow of the shearing box. In previous applications
of AREPO, it had often been noted that the code’s accuracy was reduced in situations with
strong shear, because here mesh faces turn rapidly, and the distortion and time variation
of the geometry of mesh cells are particularly strong. In this sense, the shearing-box is the
worst situation one can possibly imagine, because shear appears everywhere, and all the
time. In this chapter, we were thus compelled to identify the origin of these inaccuracies in
a clearer way and in more detail than had been understood before. But this then led also
the way to overcome these sources of noise and develop a significant improvement of the
accuracy of the integration scheme of AREPO. This advance is of particular importance for
cold, strongly shearing flows, but it ultimately is also beneficial for all other applications
of the code.

In particular, we found that for general unstructured Voronoi meshes it can be necessary
to integrate the fluxes over mesh faces with more than one Gauss point in order to reduce
truncation errors to a level that is achieved by symmetric cells in part through cancellation
effects on opposite sides of cells. We have also found that a minor change in the slope
limiting scheme of AREPO is helpful to avoid that the slope limiting can be needlessly
triggered in situations with highly distorted cell geometries. Finally, we rectified a minor
inconsistency in the time integration scheme when mesh regularization motions are applied
by the code. We note that to identify these improvements, examining the ground state of
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the shearing box in detail, a seemingly trivial state, proved essential.
With the newly proposed improvements in place, we have shown that AREPO is able

to very accurately simulate the shearing-box. Also, our improvements are beneficial for
other types of simulations where strong shear is present, such as the Yee vortex. An ad-
vantage compared to Eulerian schemes is that the local truncation error of our approach
is fully uniform within the shearing box, and does not increase towards the radial box
boundaries as in Eulerian methods. In fact, the calculation is fully translationally invari-
ant. When replicating multiple copies of the primary simulation domain using the (shear)
periodic boundary conditions, and sticking them together at the boundaries to cover a
larger domain, one could not tell any more where the original box boundary had been.

As a first important application, we have considered the magnetorotational instability
without a background field. AREPO is able to sustain the MRI even at comparatively
low resolution, unlike the Lagrangian MFM approach. Our results show evidence for
a somewhat higher numerical resistivity compared to the constrained transport method
used by the ATHENA code. Perhaps different methods for magnetic divergence control
can improve on this in the future, but already now AREPO should be a versatile and
flexible tool for studying disks with the shearing-box approximation, in particular due
to its ability to seamlessly increase the local resolution in situations with fragmentation
and local (gravitational) collapse. We will consider such physics problems in forthcoming
applications of the code.

2.8 Appendix: Gauss-Legendre integration

The class of Gauss-Legendre quadrature rules numerically integrates functions f(x) as a
weighted sum of the function evaluations f(xi) at different xi.

2.8.1 One dimensional integrals

In one dimension, any integral over a finite interval can be transformed into the form (2.25).
In Table 2.3 we give the corresponding evaluation points xi and weights wi up to order
P = 5.

2.8.2 Two dimensional integrals

In two dimensions, we are integrating over polygons. There exists no general equation
for polygons with more than four edges that could conveniently give us the minimum
number of evaluation points needed to integrate a polynomial of order N > 1 exactly.
For the unit square [−1, 1] × [−1, 1] one can construct such rules as tensor product of
one-dimensional Gauss-Legendre integrations. But the coordinate transformation from
a general quadrilateral to the unit square is in general nonlinear, which means that by
transforming the original polynomial to the natural variables of the unit square, one also
increases the order of the polynomial. This would in turn require a higher-order rule for the
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P xi wi

1 0 2

3 −1/
√
3 1

1/
√
3 1

5 −
√
3/5 5/9
0 8/9√
3/5 5/9

Table 2.3: The maximum order P of the polynomials that can be integrated exactly with the
corresponding evaluation points xi and weighting factors wi.

P N L1 L2 L3 wi

1 1 1/3 1/3 1/3 1
2 3 2/3 1/6 1/6 1/3
3 1 1/3 1/3 1/3 −9/16

3 3/5 1/5 1/5 25/48
4 3 0.108103018168070 0.445948490915965 0.445948490915965 0.223381589678011

3 0.816847572980459 0.091576213509771 0.091576213509771 0.109951743655322

Table 2.4: The maximum order P of the polynomials over the unit triangle that can be integrated
exactly with the corresponding evaluation points and weighting factors wi. The two coordinates
of the evaluation points can be constructed by N cyclic uses of L1, L2 and L3. The table values
are adopted from Akin (2005).

unit square, increasing the computational cost. We therefore choose a different approach
and split the original polygon into triangles. Integrals of polynomials over any triangle
can be transformed into integrals of polynomials of the same order over the unit triangle
defined by the local coordinates 0 ≤ r ≤ 1, 0 ≤ s ≤ 1− r.

The integration rule then takes the form:

I =

∫ 1

0

∫ 1−r

0

f(r, s) ds dr ≈
M∑
i=1

f(ri, si)wi. (2.46)

As in the one-dimensional case, the integral gets approximated by a weighted sum of
function evaluations f at different points (ri, si). In Table 2.4 we give the coordinates and
weights of those points that can be used to integrate polynomials of order ≤ P exactly.
For a polynomial of order 3 (e.g. the velocity flux function or the energy flux function for
constant density) we require 4 evaluations.



2.9 Appendix: Details of test problem setups 71

2.9 Appendix: Details of test problem setups

2.9.1 Yee vortex

For the setup of the Yee vortex, we follow Yee et al. (2000) and Pakmor et al. (2016b).
The mesh covers the interval [−5, 5] × [−5, 5], and we set the density ρ, velocity v and
specific energy u of each cell to the value of the continuous fields at the centres of mass of
the cells. The continuous initial conditions are given at point r = (x, y) by:

T (r) = Tinf −
(γ − 1)

8γπ2
e1−r2 , (2.47a)

ρ(r) = T
1

1−γ , (2.47b)

vx(r) = −y β
2π
e

1−r2

2 , (2.47c)

vy(r) = x
β

2π
e

1−r2

2 , (2.47d)

u(r) =
T

γ − 1
. (2.47e)

We use the parameters Tinf = 1, γ = 1.4 and β = 5.
For the setup of the Cartesian grid we use cells with side length 10/N , where N is the

linear resolution. To set-up a polar grid we use the method of Pakmor et al. (2016b): We
place the mesh-generating points in rings with size dring = 10/N . We equidistantly add
2πrring/dring new mesh-generating points in every ring at radius rring = i dring. We only add
points which lie in the simulation domain.

2.9.2 Keplerian disk

The setup is the same as in Pakmor et al. (2016b). We use a periodic box spanning the
domain [−2.5, 2.5]× [−2.5, 2.5]. The disk itself is cold, which means the pressure forces are
negligible compared to the gravitational force. As for the Yee-vortex, we again create a
polar grid as initial condition and set the density ρ, the velocity v and the specific internal
energy u to the analytic values at the centres of mass of each cell. As background medium
for r = |r| = | (x, y) | < 0.5 and r > 2 we use

ρ = 10−5, (2.48a)

v = 0, (2.48b)

u =
5γ

2ρ
× 10−5. (2.48c)

For the disk itself (0.5 < r < 2) we use

ρ = 1, (2.49a)
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v(x, y) =
1

r3/2

(
−y
x

)
, (2.49b)

u =
5γ

2ρ
× 10−5. (2.49c)

Here γ = 5/3 is the adiabatic index. As gravitational acceleration we use

g = − r

r (r2 + ϵ2)
, (2.50)

with ϵ = 0.25 for r < 0.25, and ϵ = 0 everywhere else.



Chapter 3

Simulating the magnetorotational
instability on a moving mesh with
the shearing box approximation

This work has been published in the Monthly Notices of the Royal Astronomical Society,
Volume 517, Issue 2, Pages 2639-2658.

The magnetorotational instability (MRI) is an important process in sufficiently ionized
accretion disks, as it can create turbulence that acts as an effective viscosity, mediating
angular momentum transport. Due to its local nature, it is often analyzed in the shear-
ing box approximation with Eulerian methods, which otherwise would suffer from large
advection errors in global disk simulations. In this work, we report on an extensive study
that applies the quasi-Lagrangian, moving-mesh code AREPO, combined with the Dedner
cleaning scheme to control deviations from ∇ ·B = 0, to the problem of magnetized flows
in shearing boxes. We find that we can resolve the analytical linear growth rate of the MRI
with mean background magnetic field well. In the zero net flux case, there is a threshold
value for the strength of the divergence cleaning above which the turbulence eventually
dies out, and in contrast to previous Eulerian simulations, the strength of the MRI does
not decrease with increasing resolution. In boxes with larger vertical aspect ratio we find
a mean-field dynamo, as well as an active shear current effect that can sustain MRI tur-
bulence for at least 200 orbits. In stratified simulations, we obtain an active αω dynamo
and the characteristic butterfly diagram. Our results compare well with previous results
obtained with static grid codes such as ATHENA. We thus conclude that AREPO represents
an attractive approach for global disk simulations due to its quasi-Lagrangian nature, and
for shearing box simulations with large density variations due to its continuously adaptive
resolution.
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3.1 Introduction

The molecular viscosity of diffuse gas is by several orders of magnitude too small to explain
the required amount of angular momentum transported in accretion disks. A possible
solution is an effective viscosity that can be created by turbulence in the disk, and which in
turn can be generated by different fluid instabilities (Shakura & Sunyaev, 1973; Lynden-Bell
& Pringle, 1974). Besides the gravitational instability due to self-gravity (Gammie, 2001),
there exist a plethora of other possible hydrodynamic and thermodynamic instabilities such
as the Rossby wave instability (Lovelace et al., 1999) or the convective overstability (Klahr
& Hubbard, 2014) that could be involved.

One of the most promising candidates for the main culprit is the magnetorotational
instability (MRI) (Velikhov, 1959; Chandrasekhar, 1960; Fricke, 1969; Balbus & Hawley,
1991) in ionized regions, which is a linear instability that is active in Keplerian-like shear
flows and only requires a very small seed magnetic field to get started in the limit of ideal
magnetohydrodynamics (MHD). The MRI’s linear properties are nowadays well under-
stood (Balbus & Hawley, 1991, 1992; Curry et al., 1994; Goodman & Xu, 1994; Kersalé
et al., 2004) but its nonlinear behaviour is considerably more complicated and requires
an analysis with computer simulations. Previous studies can be broadly categorized into
global simulations that simulate the whole disk and into local simulations that compute
only a small patch of the disk using the shearing sheet approximation (Hill, 1878; Gol-
dreich & Lynden-Bell, 1965). While the former allow capturing of global effects such as
accretion, and the formation of winds and jets, they are also very expensive and only allow
the analysis of a small part of the parameter space (Penna et al., 2010; Hawley et al., 2011,
2013; Parkin & Bicknell, 2013b; Duffell, 2016; Deng et al., 2020). Local simulations, in
contrast, allow much higher resolution and are also cheaper, which means a much larger
parameter space can be analyzed.

Shearing box simulations can again be split into two groups: Stratified simulations that
take the vertical gravitational force of the central object into account, and unstratified
simulations neglecting this force component so that the focus lies on approximating the
conditions in the mid-plane of the disk. An important property to characterize shearing
box simulations is the mean magnetic flux, ⟨B⟩ =

∫
V
B dV , whose radial and vertical

component is conserved both for unstratified and stratified simulations except if there are
outflows in the vertical direction. The azimuthal component on the other hand is only
conserved if there is no mean radial field. These properties motivate the definition of
simulations with net-flux (NF, ⟨B⟩ ≠ 0, Hawley et al., 1995; Sano et al., 2004; Guan
et al., 2009; Simon et al., 2009; Gong et al., 2020), and zero-net flux simulations (ZNF,
⟨B⟩ = 0, Hawley et al., 1996; Fromang & Papaloizou, 2007; Simon & Hawley, 2009; Bodo
et al., 2011). We note that this characterisation is however a simplification since in global
simulations the mean net field in patches of the disk can change.

In the vertical NF case of unstratified simulations, one can first observe an exponen-
tial growth of so-called channel modes, which are a solution to the nonlinear ideal MHD
equations. They grow until parasitic (secondary) instabilities destabilize them (Goodman
& Xu, 1994) and turbulence sets in. This turbulence alone decays but the background
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net field can revive the MRI which leads to self-sustaining cycles. For the ZNF case, this
background field is missing, and therefore perturbations in the velocity and magnetic field
have to mutually sustain each other. Since the unstratified case is statistically symmetric
it is harder to generate local mean fields, but Shi et al. (2016) nevertheless found an ac-
tive dynamo in this situation, especially in tall boxes (large vertical aspect ratio). Three
possible solutions are the stochastic α-effect (Vishniac & Brandenburg, 1997; Silant’ev,
2000; Heinemann et al., 2011), the magnetic shear current effect (Rogachevskii & Kleeorin,
2003, 2004; Squire & Bhattacharjee, 2015c) or the interplay of linear transient (nonmodal)
growth of the MRI and the nonlinear transverse cascade that redistributes energy between
different Fourier modes (Squire & Bhattacharjee, 2014; Gogichaishvili et al., 2017, 2018;
Mamatsashvili et al., 2020; Held & Mamatsashvili, 2022).

In the stratified case, the system becomes anisotropic and consists typically of a turbu-
lent, MRI unstable mid-plane surrounded by a magnetically dominated corona (Shi et al.,
2010; Guan & Gammie, 2011). A mean-field dynamo is active in the mid-plane, where the
sign of the mean field changes periodically, which leads to the typical ‘butterfly’ diagram
(Brandenburg et al., 1995; Stone et al., 1996; Hirose et al., 2006; Gressel, 2010; Davis et al.,
2010; Simon et al., 2011). Different effects such as the αω dynamo (Vishniac & Cho, 2001;
Subramanian & Brandenburg, 2004) and turbulent pumping (Gressel, 2010) have been in-
voked to explain this behaviour but also the effects already discussed for the unstratified
case can have an influence on this evolution.

Fromang & Papaloizou (2007) found that for the unstratified ZNF case in small boxes
the strength of the MRI decreases if the resolution is increased, and that for infinite res-
olution the MRI could even completely die out. However, convergence can be regained
by explicitly accounting for viscosity and magnetic diffusivity (Fromang et al., 2007), and
there seems to exist a critical magnetic Prandtl number below which the ZNF MRI dies
out. Interestingly, Shi et al. (2016) found convergence in larger boxes which they attributed
to a large-scale mean field created by the shear current effect.

In most studies of the MRI in shearing boxes, Eulerian methods were used that can
benefit from the constrained transport method (Evans & Hawley, 1988) to preserve the
condition ∇ ·B = 0 up to machine precision. But they suffer from advection errors espe-
cially in global simulations with large bulk velocities, and they also cannot easily increase
their resolution in the shearing box using adaptive mesh refinement (AMR). Lagrangian
methods on the other hand require some type of cleaning method to keep ∇·B errors small
(but see Mocz et al., 2014, for a recent implementation of constrained transport for the
moving mesh method), but they can achieve Galilei invariance and easily allow a constant
mass resolution. Deng et al. (2019) applied the particle-based MFM (Hopkins, 2015) and
SPH methods to the MRI and were able to show that MFM is able to accurately describe
the linear growth of the MRI in unstratified boxes, and also sustains MRI turbulence for
the unstratified NF case. In unstratified ZNF simulations, the turbulence died out however
for SPH as well as MFM, and while MFM was able to reproduce the butterfly diagram
for a stratified simulation with a time-varying net azimuthal field in the mid plane for
around 50 to 70 orbits, the turbulence eventually still died out. Furthermore, in stratified
simulations with SPH unphysically strong azimuthal fields grew. These findings underline
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the particular sensitivity of this problem to numerical errors of various kinds, making it
challenging to obtain accurate and robust results.

Wissing et al. (2022) performed a similar study with a modified version of standard
SPH, the so-called geometrically-averaged density SPH (GDSPH) that can improve the
accuracy of SPH in systems with large density gradients, as for example in the stratified
simulations (Wadsley et al., 2017; Wissing & Shen, 2020). Interestingly, they were able
to sustain turbulence in the unstratified ZNF case, but did not find a large-scale mean-
field dynamo in tall boxes. The authors attributed this to a missing shear current effect,
unlike found in Shi et al. (2016). In stratified simulations, they however obtained an
active αω dynamo and also reproduced the butterfly diagram for 200 orbits. These latter
results compare quite well with previous Eulerian methods, and similar to them, they also
show a dependence on the numerical Prandtl number. However, since GDSPH could not
reproduce the shear current effect, and because the geometric density averaging has been
demonstrated to be problematic in cooling flows (Springel & Hernquist, 2002), it is unclear
how universally applicable this variant of SPH is.

The moving mesh method (Springel, 2010a; Weinberger et al., 2020) is a Lagrangian
approach that tries to combine the advantages of a Galilei invariant Lagrangian method
with the high accuracy of the finite volume method typically employed in Eulerian codes.
This makes it especially interesting for global disk simulations but also for local simulations
with large density gradients that can benefit from the code’s high flexibility to continuously
adapt cell sizes, and to increase and decrease the local resolution by splitting and merging
individual computational cells. Pakmor & Springel (2013) has shown in a global simulation
that the code can accurately capture the linear growth of the MRI, but only recently in
Zier & Springel (2022a) we implemented the shearing box approximation in this code, and,
importantly, we considerably reduced its residual numerical noise by means of higher-order
flux integrations. The latter are particularly important in situations where cell shapes are
constantly distorted at a high rate, such as in strongly shearing flow.

The goal of this chapter is to analyse the performance of this improved method for
simulating the MRI in different setups, and to compare the results with those obtained
with Eulerian methods as well as Lagrangian methods described in Deng et al. (2019) and
Wissing et al. (2022). We also put a special emphasis on the tensorial turbulent transport
coefficients that allow us to understand the evolution of mean fields and therefore active
dynamo processes in more detail. The detailed verification of the code accuracy we aim for
here is clearly also a prerequisite for trusting predictions obtained with the code in planned
future global disk simulations.

This chapter is structured as follows: In Section 3.2 we introduce the moving mesh
method and especially the shearing box approximation as implemented in the AREPO code.
We also analyze the linear growth of the MRI and introduce different quantities we will
use subsequently to characterize the nonlinear, saturated state of the MRI as a function of
the divergence cleaning strength as well as numerical resolution. In Section 3.3, we discuss
unstratified shearing box simulations. We analyze both the cases with a vertical NF as
well as the case with ZNF in a standard and tall box, and show that in the latter situation
a large-scale mean-field dynamo as in Shi et al. (2016) becomes active that is created by
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the shear current effect. In Section 3.4, we run four different stratified simulations and
demonstrate a sustained and active MRI with turbulence in the mid-plane for 200 orbits,
while above the mid-plane we find a magnetically dominated corona. Finally, in Section 3.5
we discuss and summarize our results.

3.2 Numerical methods

3.2.1 The shearing box approximation

The shearing box approximation is widely used in the study of the magnetorotational in-
stability. It allows a higher spatial resolution in comparison to global disk simulations, and
additionally delivers clearly defined boundary conditions which simplify the comparison
of different studies. To implement the shearing box, we simulate a small patch of a disk
centred at radius r0. The rotational frequency of the disk at this point is given by Ω0 and
we use a Cartesian coordinate system with êx pointing in the radial direction, êy in the
azimuthal direction and êz being perpendicular to the other two unit vectors. By trans-
forming into the rotating system and linearizing the gravitational and centrifugal forces,
the governing ideal MHD equations read as follows:

∂U

∂t
+∇ · F (U) = Sgrav + Scor. (3.1)

Here, we introduced the state vector U , the flux vector F , the source terms Sgrav due
to the gravitational and centrifugal forces, and a source term Scor describing the Coriolis
force. They are given by:

U =


ρ
ρv
ρe
B

 , F (U) =


ρv

ρvvT + P −BBT

ρev + Pv −B(v ·B)
BvT − vBT

 , (3.2)

Sgrav =


0

ρΩ2
0 (2qxêx − zêz)

ρΩ2
0v · (2qxêx − zêz)

0

 , Scor =


0

−2ρΩ0êz × v
0
0

 , (3.3)

where ρ, v, e, B, P are the density, velocity, total energy per unit mass, magnetic field
strength, and pressure, respectively. The specific energy e = u+ 1

2
v2+ 1

2ρ
B2 consists of the

thermal energy per mass u, the kinetic energy density 1
2
v2, and the magnetic field energy

density 1
2ρ
B2. The pressure P = pgas+

1
2
B2 includes a thermal and a magnetic component.

The system of equations is closed by the equation of state (EOS), which expresses pgas as
a function of the other thermodynamical quantities.

In this chapter we use an isothermal EOS,

pgas = ρc2s, (3.4)
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with constant isothermal sound speed cs = 1. Sgrav depends on the shearing parameter

q = −d lnΩ
d ln r

, (3.5)

which simplifies to q = 3/2 for the Keplerian case that we exclusively discuss in this
chapter. In general, we will use Ω0 = 1 and measure lengths in units of the scale height
H = cs/Ω0. Sgrav contains an optional term that represents a gravitational force in the
z-direction. We will perform in this chapter simulations with (stratified case) and without
this term (unstratified case).

The above system allows for a ground-state solution with velocity field

v0 = (0,−qΩ0x, 0), (3.6)

at constant pressure and constant density field in an unstratified box, or with density field

ρ(z) = ρ0 exp

(
− z2

2H2

)
(3.7)

in the case of a stratified box. To close the system of equations we also have to define
boundary conditions (BCs). In the y-direction, we use standard periodic BCs, and in the
z-direction periodic BCs. In the x-direction we use the so-called shearing box BCs that are
similar to standard periodic BCs but take into account the background shear flow (3.6):

f(x, y, z, t) = f(x± Lx, y ∓ wt, z, t), f ∈ {ρ, ρvx, ρvz,B}, (3.8a)

ρvy(x, y, z, t) = ρvy(x± Lx, y ∓ wt, z, t)∓ ρw, (3.8b)

e(x, y, z, t) = e(x± Lx, y ∓ wt, z, t)∓ ρvyvw +
ρw2

2
, (3.8c)

where Lx is the box size in the x-direction and w = qΩ0Lx. The boundary conditions
therefore do not conserve the azimuthal momentum, nor the total energy or the azimuthal
component of the volume-weighted averaged magnetic field (Gressel & Ziegler, 2007):

∂ ⟨By⟩
∂t

= −w
V

∫
∂x

Bx dy dz. (3.9)

Here ∂x denotes the boundary in the x-direction, and V is the total volume of the box.
Only in the case that the magnetic field has no mean radial component and ∇ · B = 0
holds, the azimuthal field is conserved.

To solve equation (3.1) we use the moving mesh code AREPO (Springel, 2010a; Pakmor
et al., 2016b; Weinberger et al., 2020) that employs a moving, unstructured Voronoi mesh
in combination with the finite volume method. We refer to Zier & Springel (2022a) for
technical details of the implementation of the shearing box in this code. For all simulations,
we use the higher-order integration method for the flux as well as a second-order accurate
Runge-Kutta time integration scheme recently introduced in the code (Zier & Springel,
2022a).
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3.2.2 The divergence constraint of the magnetic field

A close inspection of equation (3.1) shows that if the initial conditions fulfill ∇·B = 0 this
condition will remain true for all times. Numerical schemes that only find approximate
solutions to the underlying analytical equations do not automatically fulfill this condition,
and can sometimes be prone to developing numerical instability or large errors once a sizable
divergence of the magnetic field appears. To reduce the influence of this error one can try
to either remove it somehow, or to diffuse it away from its original site. AREPO supports
both the Powell scheme (Powell et al., 1999; Pakmor & Springel, 2013) that diffuses the
error, and the Dedner cleaning (Dedner et al., 2002; Pakmor et al., 2011) approach that
advects the error away and damps it. In contrast, the constrained transport method (Evans
& Hawley, 1988; Mocz et al., 2014) avoids deviations from ∇·B = 0 to machine precision.
Although this latter approach ensures negligible errors in the divergence constraint, it
also tends to be somewhat more diffusive, and the construction of a constrained transport
updating scheme algorithm is very difficult for meshes with changing topology.

The Powell scheme adds additional source terms to the underlying MHD equations that
try to stabilize the system for the case of ∇ ·B ̸= 0:

Spowell =


0

− (∇ ·B)B
− (∇ ·B) (v ·B)

− (∇ ·B)v

 . (3.10)

The additional term in the induction equation depends on the absolute velocity v, which
unfortunately breaks the Galilei invariance of the moving-mesh method. This becomes
problematic at the radial boundary of a shearing box set-up, since here the velocity of cells
jumps discontinuously if they move through the boundary. Additionally, the source terms
can modify and even generate a mean magnetic field in the vertical and radial directions
due to this issue. This is especially problematic since according to equation (3.9) a mean
radial field will continuously amplify the azimuthal component of the magnetic field.

The Dedner scheme adds an additional scalar field ψ to the equations to be solved. The
modified induction equation and the evolution of ψ are given by:

∂

∂t

(
B
ψ

)
+∇

(
BvT − vBT + ψI

c2hB

)
=

(
0

−c2h/c2pψ

)
. (3.11)

Here ch is the velocity with which deviations from ∇ · B = 0 are diffused away, and cp
defines the time scale over which ψ decays. A larger value of ch typically leads to smaller
errors in∇·B but also to higher numerical resistivity. Both effects can in principle influence
the MRI. By default we set ch to the largest signal speed in our simulation, but we allow it
to be multiplied with a prescribed constant factor ch0 to analyze the effect of the cleaning
speed on our results.

The signal speed is set equal to the velocity

cf =

√
c2s +

B2

ρ
(3.12)
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of the fastest magneto-acoustic wave in the system. We use cp =
√
2chr, where r is the

effective radius of a cell. Since the Dedner scheme does not add any new source terms
to the induction equation, the radial and vertical mean fields are conserved to machine
precision. Although in the case of a magnetic field without a radial component the average
azimuthal field should be conserved, this is not the case for ∇ ·B ̸= 0. A larger ch can in
this case also help to reduce the magnitude of this spurious field component.

3.2.3 Linear growth of channel flows

The linear eigenmodes of the magnetorotational instability with a net vertical flux are
called channel flows. They are solutions of the nonlinear ideal MHD equations, and their
amplitude grows exponentially until parasitic instabilities destabilize them and a turbulent
flow forms (Goodman & Xu, 1994). We set up a box of size Lx = Ly = Lz = 1, initial
background field B = (0, 0, B0), an isothermal equation of state with sound speed cs = 1,
and with a background shear flow (3.6). We choose β = 2pgas/B

2
0 = 84 since in this case

the wavelength λfast = 1 of the fastest growing mode is equal to our box size, with a growth
rate given by 0.75Ω−1 (Latter et al., 2009). As perturbation seed for the initial conditions
we use:

δB = 0.001×B0 cos (2πz)
êx − êy√

2
, (3.13a)

δv = 0.001× 3

8π
sin (2πz)

êx + êy√
2

. (3.13b)

As in Deng et al. (2019), we run our simulation for t = 8Ω−1
0 and calculate the average

growth rate ssim in the simulation by using the amplitude of δB at t = 0 and at t =
8Ω−1

0 . We start with a Cartesian grid and rerun the simulation several times with different
numbers of cells. As an error measure we define e = (0.75− ssimΩ0)/0.75.

In Fig. 3.1 we show the error in the growth rate s as a function of the employed
resolution. Reassuringly, the results converge with close to third order to the analytical
value. Also, the absolute values compare well with the results from the ATHENA code
shown in Deng et al. (2019). While the two particle-based methods SPH and MFM show
larger absolute errors if we define the local resolution as the mean particle distance, MFM
still manages to show the same third-order convergence as the grid-based methods.

To formally reduce the absolute error, Deng et al. (2019) defined the local spatial
resolution in terms of the face-area weighted inter-neighbour separation, which leads to
similar results as ATHENA and AREPO. We note, however, that this still implies a larger
computational cost for the same spatial resolution, which becomes even worse than in
standard MFM since the relatively large Wendland C4 kernel with 200 neighbours had to
be used.
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Figure 3.1: The error e of the growth rate of the magnetic field of a channel flow as a function
of the resolution. The error converges with close to third order and the results compare well
with results presented in Deng et al. (2019) with the ATHENA code. We also show results
with the MFM and TSPH implementations in GIZMO if we assume that each particle represents
one resolution element. The blue-dashed line represents the results for MFM if we define the
local resolution not as the mean particle distance but as the face-area weighted inter-neighbor
separation (see Deng et al., 2019, for details).

Type Initial field Box size Base resolution Res. multiplier ch0 Section

Unstratified B0êz, β = 400 1× 6.28× 1 16× 100× 16 1, 2, 3, 4 0.1, 0.5, 1, 2, 5 3.3.1
Unstratified B0êz, β = 330 1× 4× 1 16× 64× 16 1,2,3,4 0.1, 0.5, 1, 2, 5 3.6
Unstratified B0 sin (2πx) êz, β = 400 1× π × 1 16× 50× 16 1, 2, 3, 4 0.1, 0.5, 1, 2, 5 3.3.2
Unstratified B0 sin (2πx) êz, β = 400 1× 4× 4 16× 64× 64 1, 2, 3 0.1, 0.5, 1, 2, 5 3.3.3

Stratified B0êy, β = 25
√
2× 4

√
2× 24 ≈ 1.5× 106 cells 1 0.5, 1 3.4

Stratified B0êy, β = 25
√
2× 4

√
2× 24 ≈ 3× 106 cells 1 0.5, 1 3.4

Table 3.1: Overview of all simulations discussed in this chapter. The initial field strength is
determined by the plasma beta β = 2pgas/B

2
0 . For some simulations we analyze the influence

of resolution by multiplying the number of cells of the base resolution with a constant factor in
all dimensions. We also analyze the effect of the cleaning speed ch0 of the Dedner scheme on
our results. In the stratified simulations we allow cells to merge and be split, and we enforce an
approximately constant mass per cell.
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3.2.4 Analysis and overview of simulations

To analyze our simulations we define the volume-weighted average of a quantity X as

⟨X⟩ =
∫
XdV∫
dV

, (3.14)

as well as the temporal average of X,

⟨X⟩t =
∫
Xdt∫
dt

. (3.15)

For the first quantity, we integrate over the whole simulation box if not stated otherwise,
while for the second one we typically only integrate over the time interval during which
the MRI is saturated in the nonlinear regime. For clarity, we will always mention the start
of this averaging time interval.

To measure the angular momentum transport and the saturation level of the MRI it is
useful to calculate the Maxwell stress

αM = −BxBy

P
, (3.16)

as well as the Reynolds stress

αR =
ρvxδvy
P

, (3.17)

where P is the pressure and δvy = vy−vy,0 is equal to the velocity relative to the background
shear flow. A related quantity is the normalized magnetic stress:

αmag = −⟨BxBy⟩
⟨B2⟩

. (3.18)

As in Shi et al. (2016) and Wissing et al. (2022), we decompose the magnetic field into a
mean field B and a turbulent field b, where the first component is defined as the horizontal
average

X =

∫
X dxdy∫
dxdy

. (3.19)

While the volume integrals can be directly calculated using a Voronoi mesh, the horizontal
average is more complicated. We address this by first binning our simulation data to a
uniform Cartesian grid with typically twice the number of cells per dimension as in the
initial conditions, followed by carrying out the integral using this mesh.

As we have discussed in Section 3.2.2, our implementation of the MHD equations does
not preserve the condition ∇ · B = 0. To measure the potential impact of numerically
induced magnetic monopole errors we define the relative divergence error

ϵ∇·B,i =
(∇ ·Bi) ri

|Bi|
, (3.20)
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where ri = [3Vi/(4π)]
1/3 is the effective radius of the Voronoi cell i. In the case of ⟨Bx⟩ = 0

the mean azimuthal component ⟨By⟩ of the magnetic field can only change for ∇ ·B ̸= 0.
The evolution of ⟨By⟩ can therefore be used to measure the impact of divergence errors on
our simulation results.

Linear stability analysis leads to the definition of the quality factor (Noble et al., 2010)

Qi =
λMRI

h
=

2πvA,i

Ωh
, (3.21)

where λMRI is the characteristic wavelength, vA,i is the i-component of the Alfven velocity,
and h is the local spatial resolution. Similar to static grid codes, where h is typically set
to the grid cell size (Hawley et al., 2011; Parkin & Bicknell, 2013a), we define it here as

the effective diameter d = 2
(

V
4/3π

)1/3
of each Voronoi cell. Although Q > 6 is sufficient to

properly resolve the linear growth of the MRI (see also the previous section), Qz > 10 and
Qy > 20 are required to achieve convergence in the stresses for the case of a stratified net
flux simulation (Hawley et al., 2011).

Although the definition of Qi based on linear theory and the net flux case makes its
application to the nonlinear regime questionable (especially for the zero net flux case), it
is still a useful indicator to estimate whether the MRI can still be resolved. This applies
especially in the stratified case, where the density and therefore spatial resolution strongly
varies within the simulation box. In Table 3.1 we give an overview of all the primary
simulations performed for this chapter, together with their principal numerical parameters.

Tensorial transport coefficients

To better understand the influence of the small-scale fluctuations on the large-scale field
it is useful to use the concept of mean-field theory (Moffatt, 1978; Parker, 2019; Krause
& Rädler, 2016; Ruzmaikin et al., 1988; Brandenburg & Subramanian, 2005). In the
following, we will mostly follow the discussion in Wissing et al. (2022) to which we refer
for a more in-depth coverage. By averaging the induction equation, the evolution of the
mean magnetic field is given by:

∂B

∂t
= ∇× [(v − v0)×B] +∇× E . (3.22)

Here E is the electromotive force (EMF) generated by the fluctuations in the velocity and
magnetic field:

E = (v − v0)× b. (3.23)

By splitting the velocity and magnetic field fluctuations into components independent of
the mean-field and components linearly dependent on the applied mean-field, we can Taylor
expand this expression to leading order under the assumptions of scale separation and the
absence of correlations between the independent components of the mean magnetic field
and the velocity perturbations:

Ei = αijBj − ηijJj + .... (3.24)
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Here we introduced the mean-field current density

J = ∇×B (3.25)

and the tensorial transport coefficients α and η. Since Bz = Jz = 0, this simplifies to:

Ex = αxxBx + αxyBy − ηxxJx − ηxyJy, (3.26)

Ey = αyxBx + αyyBy − ηyxJx − ηyyJy. (3.27)

By multiplying the two equations with
{
Bx, By, Jx, Jy

}
we obtain 8 equations for the 8

components of α and η which are in general functions of height z and time t.
A direct solution of the system of linear equations leads to quite noisy measurement re-

sults, which can be improved by using the approximations αxx = αyy, ηxx = ηyy (which can
be justified as in Hubbard et al., 2009; Gressel, 2010) and αyx = 0 = ηxy, which is justified
due to Bx ≪ By (Squire & Bhattacharjee, 2015b). For the unstratified simulations, we
then determine averaged transport coefficients in the z-direction by integrating the linear
system of equations over the whole box in the z-direction, and assuming z-independent
coefficients. This leads to a single linear system of equations for each time step, and thus
gives access to the temporal evolution of the transport coefficients. With this in hand, we
perform a standard temporal average of the transport coefficients, which is equivalent to
averaging over many different realizations of the turbulent state (Squire & Bhattacharjee,
2015b).

For stratified simulations we allow nonzero αyx, ηxy and αxx ̸= αyy, as in Wissing et al.
(2022) in order to simplify a direct comparison with other studies. In this case, we assume
the transport coefficients to be independent of time, and try to calculate their structure as
a function of z. For each z-value, we solve the overdetermined system of 8×N equations for
the 7 independent transport coefficients by minimizing the residual, where N is the number
of snapshots we use for our calculation. In general, we typically have five snapshots per
orbit.

By inserting equation (3.24) into (3.22), the evolution of the averaged quantities is
given by:

∂Bx

∂t
= −∂z(αyxBx)− ∂z(αyyBy) + ∂z(ηyxJx) + ∂z(ηyyJy), (3.28)

∂By

∂t
= −qΩBx + ∂z(αxxBx) + ∂z(αxyBy)− ∂z(ηxxJx)− ∂z(ηxyJy). (3.29)

The components αxx and αyy are the main drivers of the α effect that can lead to the
well-known αω dynamo in combination with differential rotation. It requires a statistical
symmetry breaking, e.g. a stratification or a net helicity (Pouquet et al., 1976; Moffatt,
1978; Brandenburg & Subramanian, 2005). We, therefore, expect them to be zero in
our unstratified simulations and antisymmetric relative to the mid-plane in the stratified
simulations. The antisymmetric components αxy and αyx define the diamagnetic pumping
term

γz =
1

2
(αyx − αxy) (3.30)
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that describes the transport of the mean fields by the turbulent components. It is ex-
pected to be non-zero for the stratified case. The diagonal terms ηxx, and ηyy describe the
diffusion of the mean field, while the off-diagonal coefficients ηxy and ηyx are responsible
for the dynamo produced by the Ω × J effect (Rädler, 1969) and the shear current effect
(Rogachevskii & Kleeorin, 2003; Squire & Bhattacharjee, 2015c,b,a). The latter requires
ηyx < 0.

3.3 Unstratified simulations

In this section we discuss simulations without the gravitational term in the vertical direction
(see equation 3.3). We start with a uniform Cartesian grid, set the initial velocity field
to the ground state of the shearing box (3.6), and use an initially uniform density ρ = 1
with sound speed cs = 1. To seed the MRI, we add random noise of maximum amplitude
0.05 cs to the background shear flow of every cell. We characterize the strength of the
initial magnetic field with the volume-averaged plasma beta β = 2pgas/B

2.

3.3.1 Net flux

We use a box of size Lx × Ly × Lz = 1 × 6.28 × 1, which corresponds to the default case
of Hawley et al. (1995), and is also discussed in Deng et al. (2019). We set up a constant
vertical magnetic field,

B = B0êz, (3.31)

with field strength β = 400. As initial grid, we use a Cartesian mesh with 16 × 100 × 16
cells. For higher resolution realizations, we multiply the number of cells per dimension
with a constant factor.

In Fig. 3.2 we show the temporal evolution of several volume-weighted properties of the
MRI for simulations with 48 cells per scale height and different ch0. In all cases, we find
a saturated, turbulent state. The magnetic and kinetic energy as well as the Maxwell and
Reynolds stress, and the average ∇ ·B error decrease with ch0. This can be explained by
the increasing numerical resistivity in the case of stronger Dedner cleaning.

Due to the highly time-dependent behaviour of the saturated state, we show in Fig. 3.3
the volume averaged quantities additionally averaged over the last 150 orbits (starting
after 50 orbits), as a function of ch0. We also show results for four different resolutions,
although due to the computational cost we evolved the highest resolution run only for
ch0 = 1. Increasing the resolution reduces the ∇ · B error and increases the average
magnetic and kinetic energy as well as the Maxwell stress. The Reynolds stress itself is
more independent of the resolution and also of ch0, while αmag only slightly increases with
ch0 and resolution. This behaviour was also observed in small box simulations by Wissing
et al. (2022), who found for 48 cells per scale height an average value of αmag ≈ 0.65, which
is similar to our value for ch0 = 1. Our average magnetic energy (0.2 to 0.3) as well as the
Maxwell stress (0.1 to 0.2) is smaller than in Hawley et al. (1995) (0.5 and 0.3) but the
Maxwell stress compares well with results from Simon et al. (2009) (0.216 ± 0.116) that
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Figure 3.2: The temporal evolution of several volume weighted quantities for unstratified sim-
ulations with a net vertical magnetic field, box size 1× 6.28× 1 and 48 cells per scale height. We
vary the strength of the Dedner cleaning ch0, as labelled. The shown quantities are (from left to
right, and top to bottom): Magnetic field energy density, kinetic energy density, relative ∇ ·B
error, Maxwell stress, normalized Maxwell stress (3.18) and Reynolds stress. We have smoothed
the curves over 20 orbits using a Savitzky–Golay filter, and show the original unsmoothed curve
for one example case as a transparent line in the background.
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Figure 3.3: The temporal average of different quantities for unstratified simulations with a net
vertical magnetic field and box size 1× 6.28× 1, as a function of the strength ch0 of the Dedner
cleaning. All quantities are averaged over 150 orbits starting after 50 orbits. We also vary the
resolution with 16, 32, 48 and 64 cells per scale height, as labelled. For the highest resolution
we only performed one simulation with ch0 = 1 due to the high computational costs. Besides the
quantities already shown in Fig. 3.2, we also include the ratio between radial and total magnetic
field energy (top right) and the ratio of the Maxwell and Reynolds stress (bottom right).
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Figure 3.4: The time and spatially averaged transport coefficients as a function of ch0 for
unstratified simulations with background field, 48 cells per scale height resolution and box size
Lx × Ly × Lz = 1 × 6.28 × 1. The coefficients are averaged over a period of 150 orbits starting
after 50 orbits. We additionally show the statistical error of the mean value for each coefficient.
As expected, ηxx is the only coefficient differing significantly from zero.
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Figure 3.5: The temporal evolution of several volume weighted quantities for unstratified simu-
lations without a net vertical magnetic field, box size 1× 4× 1, and 48 cells per scale height. We
vary the strength of Dedner cleaning ch0. The shown quantities are (from left to right, and top
to bottom): Magnetic field energy density, kinetic energy density, relative ∇ ·B error, Maxwell
stress, normalized Maxwell stress (3.18) and Reynolds stress. We have smoothed the curves over
20 orbits using a Savitzky–Golay filter and show the original curve for one example case as a
transparent line in the background.
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Figure 3.6: The temporal average of different quantities for unstratified simulations without a
net vertical magnetic field and box size 1× 4× 1, as a function of the strength ch0 of the Dedner
cleaning. All quantities are averaged over 150 orbits starting after 50 orbits. We also vary the
resolution with 16, 32, 48 and 64 cells per scale height, as labelled. Besides the quantities already
shown in Fig. 3.5, we also display the ratio between radial and total magnetic field energy (top
right) and the ratio of the Maxwell and Reynolds stress (bottom right).
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used a weaker magnetic background field (β = 1500). The ratio of the Maxwell stress to the
Reynolds stress is between 3 and 4, and decreases with larger resistivity. This behaviour
is similar to the one reported in Wissing et al. (2022) and also compares favourably to
Hawley et al. (1995). In contrast, Simon et al. (2009) report a larger value of 7.60± 6.47.
Clearly, the previous results reported in the literature vary significantly, reflecting in part
the turbulent behaviour of the saturated state.

As we have discussed in Section 3.2.2, deviations from ∇ · B = 0 can generate a net
azimuthal field. We also measured this field in our simulations and did not find that it
decays with resolution or smaller ∇ · B error. But the energy associated with this net
field is typically smaller by a factor of at least 10−4 compared to the average magnetic
field, which is why we are confident that it does not significantly affect the general field
evolution.

Fig. 3.4 shows the average value of the transport coefficients αxx, αxy, ηxx and ηyx. As
expected, we find values close to 0 for the components of α. Also, our measurements of ηyx
are compatible with 0 considering the statistical errors. Only the turbulent diffusivity ηxx
deviates significantly from 0 with a value of around 0.04. These results are qualitatively
similar to Wissing et al. (2022) but our diffusivity is larger by a factor of around 5.

Smaller boxes typically lead to a stronger burst in the nonlinear regime of the MRI
(Bodo et al., 2008; Lesaffre et al., 2009), since fewer active (non-axisymmetric) waves can
fit in. As in Deng et al. (2019) we therefore also run some simulations in a smaller box
with size Lx × Ly × Lz = 1× 4× 1, a standard resolution of 16× 64× 16 cells and initial
β = 330. The results are very similar to the ones obtained with the standard box, and
thus we refer to Appendix 3.6 for the corresponding figures.

3.3.2 Zero net-flux

A more challenging class of setups for simulation codes are the so-called zero net flux sim-
ulations. They are defined by the condition ⟨B⟩ = 0, which means there is no background
magnetic field that can drive the MRI. We follow the setup of Deng et al. (2019) and
Wissing et al. (2022), and initialize a magnetic field as

B = B0 sin (2πx) êz, (3.32)

where the initial amplitude B0 is chosen such that the volume-averaged plasma β is β =
2pgas/B

2 = 400. We first run simulations in a standard box Lx ×Ly ×Lz = 1× π× 1, and
use initially a Cartesian grid with base resolution 16 × 50 × 16 cells. We also carried out
simulations with higher resolution by multiplying the number of cells per dimension with
a constant factor.

In Fig. 3.5 we show the temporal evolution of different volume-weighted quantities for a
resolution of 48 cells per scale height and three different Dedner cleaning strengths. While
for ch0 = 5 the MRI dies out after an initial burst we are able to sustain the MRI for at
least 200 orbits for ch0 ≤ 1. Additionally, we present in Fig. 3.6 time-averaged values of
the volume-weighted quantities as a function of ch0 and resolution. Except for the lowest
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resolution calculation we find for all simulations with ch0 ≤ 1 an active MRI whereas it
dies out for ch0 ≥ 2. The strong dependence on the numerical resistivity (set in our case
by ch0) of the MRI in simulations without net field and physical dissipation is also well
known from the literature (Fromang & Papaloizou, 2007; Deng et al., 2019; Wissing et al.,
2022). In particular, Fromang & Papaloizou (2007) showed in simulations with the finite
difference code ZEUS that by increasing the resolution the MRI turbulence will be driven
to smaller scales. Those scales are affected by the numerical viscosity and resistivity, and
thus the final results strongly depend on numerical details.

Convergence can be regained by adding a physical viscosity and resistivity (Fromang
et al., 2007). There seems to exist a critical magnetic Prandtl number Prm, which depends
on the Reynolds number, below which turbulence will die out. In our case, the magnetic
Prandtl number is given by the numerical viscosity and resistivity that cannot easily be
measured. By increasing ch0 the resistivity also increases, and the numerical Prandtl
number decreases, which explains the existence of a critical ch0 above which the turbulence
dies out.

Experiments with SPH in Wissing et al. (2022) found a critical Prandtl number of
around Prm = 2.5 above which the MRI turbulence survives. In contrast to static grid
codes, the total stress, as well as the magnetic energy, does not decrease if we increase
the resolution (see e.g. Shi et al., 2016), which is similar to SPH for a constant magnetic
Prandtl number (Wissing et al., 2022). This might be a hint that the magnetic Prandtl
number scales differently with resolution for a moving mesh code with Dedner cleaning
than for a static grid code.

For our highest resolution runs, we find a total stress α ≈ 0.01 and normalized magnetic
stress αmag ≈ 0.4, which is consistent with previous results (Hawley et al., 1995; Simon
et al., 2009; Wissing et al., 2022). Also, the ratio of Maxwell to Reynolds stress is in our
case ≈ 3.5 and agrees well with previous results with Eulerian codes (Hawley et al., 1995;
Stone et al., 1996; Hawley et al., 1999; Sano et al., 2004), while Wissing et al. (2022) found
values of around 4.5 with SPH. In our highest resolution run, we obtain a ratio of the radial
magnetic energy to the total energy of ⟨B2

x/B
2⟩ ≈ 0.15, which is close to the value of 0.14

reported in Shi et al. (2016) and higher than 0.1 as in Wissing et al. (2022).

3.3.3 Zero net-flux simulations in tall boxes

In boxes with larger vertical aspect radio (Lz/Lx ≥ 2.5) a new and more vigorous MRI
dynamo emerges. Shi et al. (2016) showed that in this case the stress becomes independent
of the resolution, which simplifies the comparison of results of different codes. We therefore
rerun the simulations from the previous subsection in a larger box, Lx×Ly×Lz = 1×4×4,
with a base resolution of 16×64×64 cells, and using the same initial field as in the smaller
box.

In Fig. 3.7 we show the temporal evolution of volume-weighted quantities for a res-
olution of 48 cells per scale height and different Dedner cleaning speeds. In contrast to
the smaller box, the MRI can sustain turbulence even for ch0 = 5. As one can see in
Fig. 3.8, only for the lowest resolution and ch0 ≥ 1 the MRI dies out, while in general
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Figure 3.7: The temporal evolution of several volume weighted quantities for unstratified sim-
ulations without a net vertical magnetic field, with a box size 1 × 4 × 4, and 48 cells per scale
height. We vary the strength of Dedner cleaning ch0, as labelled. The displayed quantities are
(from left to right, and top to bottom): Magnetic field energy density, kinetic energy density,
relative ∇ ·B error, Maxwell stress, normalized Maxwell stress (3.18) and Reynolds stress. We
have smoothed the curves over 20 orbits using a Savitzky–Golay filter. The original measurement
for one example case are included as a transparent line in the background.
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Figure 3.8: The temporal average of different quantities for unstratified simulations without a
net vertical magnetic field, for a box size 1×4×4, as a function of the strength ch0 of the Dedner
cleaning. All quantities are averaged over 150 orbits starting after 50 orbits. We also vary the
resolution by using 16, 32 or 48 cells per scale height, as labelled. Besides the quantities already
shown in Fig. 3.7, we also show the ratio between radial and total magnetic field energy (top
right) and the ratio of the Maxwell and Reynolds stress (bottom right).

Figure 3.9: The evolution of the horizontally averaged azimuthal magnetic field in simulations
with ch0 = 1 and 48 cells per scale height. Both simulations are evolved in an unstratified box
without net field. In contrast to the small box, there is a strong large scale mean field in the tall
box with comparable magnitude to the field reported in Shi et al. (2016).
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Figure 3.10: We show the evolution of the total magnetic energy and contributions of different
magnetic field components to it. We use simulations with ch0 = 1 and 48 cells per scale height.
Both simulations are computed in an unstratified box without net field. We note that the mean
vertical field (B̄z) vanishes and therefore is not shown. The mean field is fully dominated by the
azimuthal component.

Figure 3.11: The transport coefficients as a function of ch0 for unstratified simulations without
background field and a resolution of 48 cells per scale height. The coefficients are averaged in
space, and in time over 150 orbits starting at 50 orbits. We also show the statistical error of the
mean value. As expected, αxx as well as αxy vanish while we find a positive turbulent diffusivity
ηxx. The component ηyx is significantly negative, especially in the case of a tall box, which allows
the shear-current effect to be active and to generate a large scale mean field. We note that in the
standard box the turbulence dies out for ch0 ≥ 2.
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the stress is larger by a factor of more than 4 compared to the small box. The magnetic
energy and also the Maxwell and Reynolds stress have in our higher-resolution simulation
a maximum at ch0 = 0.5 and decrease with stronger numerical resistivity. The dependence
of the saturated quantities on ch0 is in this case stronger than for simulations with a net
field.

The results for ch0 = 0.5 and the ones from Shi et al. (2016) compare in general very
well for the same resolution of 32 cells per scale height. We find a total stress of α ≈ 0.042,
whereas Shi et al. (2016) measure α ≈ 0.052. But it seems that our results are already
converged with higher resolution while in their paper the stress further increases with
higher resolution. In the case of the tall box, we find as expected a strong azimuthal mean
field whose evolution is shown in Fig. 3.9. The amplitude is higher than in Wissing et al.
(2022, see their Fig. 4) and compares qualitatively well with the results in Shi et al. (2016,
see their Fig. 10).

In Fig. 3.10 we also show the distribution of the magnetic energy over the different
spatial components and subdivide it by the mean and fluctuating parts. The total magnetic
energy is dominated by the azimuthal component with a contribution of around 10% from
the radial component. The energy of the mean magnetic field is fully dominated by the
azimuthal component, which is as expected larger in the tall box simulation in comparison
to the small box simulation. The mean azimuthal field is still smaller in comparison to the
simulations in Shi et al. (2016), where it contributes around 50% of the magnetic energy.
Times of lower magnetic energy in the mean-field component are also visible in the space
diagrams in Fig. 3.9, where a large-scale magnetic field is missing (e.g. at around 80 orbits).

In Fig. 3.11 we show the spatially and temporally averaged transport coefficients. As
expected, all components of α are close to 0 while we find both in the small and the tall
box a significantly positive value for the turbulent diffusivity ηxx. Its value is around 0.003
for the standard box in the cases with sustained turbulence, and somewhat larger in the
tall box. We also find that ηyx is slightly negative in the standard box, while it becomes
more significantly negative in the tall box. These findings are consistent with the results of
Shi et al. (2016) but opposite to those of Wissing et al. (2022) who found slightly positive
values for the tall box case and vanishing values for the standard box case. This suggests
that the shear-current effect can be followed in our simulations, explaining why we get a
significant large-scale magnetic field as in Shi et al. (2016), in contrast to Wissing et al.
(2022). Our result for the magnitude of ηyx compare well with the results from Shi et al.
(2016), who equally found ηyx ≈ −10−3.

3.4 Stratified simulations

In this section, we present simulations that include the linearized vertical component of the
gravitational force of the central object as presented in equation (3.3). For an isothermal
gas the hydrostatic density profile is given by

ρ(z) = ρ0 exp

(
− z2

2H2

)
, (3.33)
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with the scale height1 H = cs/Ω0 and the mid plane density ρ0 = 1. To allow for outflows
we require a relatively large Lz. But in this case ρ(z) becomes very small which can lead
to numerical problems, which is why we introduce a density floor ρmin = 10−6 and replace
the acceleration in the vertical direction by

a =
ρ− ρmin

ρ
Ω2

0 z. (3.34)

After each time step, we set the density to ρmin for cells with ρ < ρmin and keep the velocity
and the magnetic field fixed.

AREPO allows the creation and destruction of new cells (refinement/derefinement in
the following) during run time. These processes can be triggered by more or less arbitrary
criteria, which are typically based on the mass and volume of the cells. In this section we
define a target mass mtarget and split cells with a mass higher than 2mtarget, and remove
cells with a smaller mass than 0.5mtarget. To avoid too rapid local variations in the spatial
resolution we impose a maximum allowed volume ratio of 10 between adjacent cells, and
enforce a maximum volume of 0.05 per cell. The volume-based conditions become especially
important in the low-density halo of the disk and avoid that a cell interacts with a periodic
image of itself.

Without magnetic field the density profile (3.33) in combination with the background
velocity shear profile from equation (3.6) should be stable. As in Deng et al. (2019) and
Wissing et al. (2022) we use a box of size Lx × Ly × Lz =

√
2 × 4

√
2 × 24 and an initial

magnetic field
B = B0êy, (3.35)

with plasma β = 25. We have run simulations with ch0 = 0.5 and ch0 = 1, combined with
mtarget = 10−5 (approx. 1.6× 106 cells) or mtarget = 5× 10−6 (approx. 3.2× 106 cells).

In Fig. 3.12 we show the temporal evolution of several volume averaged quantities for
our four runs averaged over the whole box, while in Fig. 3.13 we show the corresponding
plot only for cells close to the mid plane (±

√
2H). In this volume the MRI is active, so

that this filter avoids averaging over a magnetically dominated corona. In all simulations,
the magnetic field gets amplified at the onset of the MRI and saturates later on into a
turbulent state. Although the absolute energy, as well as the stresses, are dominated by
the high-density region, they are larger in the low-density region after normalizing them
with the average pressure.

In Fig. 3.14 we show additionally the temporal average of different quantities as a
function of ch0. As expected, the ∇ · B error decreases with ch0 and also with higher
resolution. The magnetic field and stress decrease for larger ch0 for the low-resolution
simulation, while for the high-resolution simulation the results seem to be approximately
independent of ch0. The total stress is around α ≈ 0.005−0.012, and the normalized stress
is αmag ≈ 0.3 − 0.4 close to the mid plane region, which agrees well with the results in
Wissing et al. (2022) for GDSPH with an artificial viscosity parameter αB = 0.5. Also, the

1We note that some studies add a factor
√
2 in the definition of the scale height (e.g. Simon et al.,

2011).
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Figure 3.12: The temporal evolution of several volume weighted quantities for stratified sim-
ulations with box size

√
2 ×

√
2 × 24, for two different resolutions (LR: mtarget = 10−5, HR:

mtarget = 5× 10−6) and two different strengths of the Dedner cleaning ch0. The shown quantities
are (from left to right, and top to bottom): Magnetic field energy density, kinetic energy den-
sity, relative ∇ ·B error, Maxwell stress, normalized Maxwell stress (3.18) and Reynolds stress.
The quantities are averaged over the whole simulation box. We have smoothed the curves over
10 orbits using a Savitzky–Golay filter, and show the original curve for one example case as a
transparent line.
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Figure 3.13: Same as Fig. 3.12, but we only consider gas close to the mid plane (±
√
2H).
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Figure 3.14: The temporal average of different quantities for stratified simulations with box
size

√
2 ×

√
2 × 24 as a function of the strength ch0 of the Dedner cleaning. All quantities are

averaged over 150 orbits starting after 50 orbits. We also vary the resolution (LR: mtarget = 10−5,
HR: mtarget = 5× 10−6). Besides the quantities already shown in Fig. 3.12 and Fig. 3.13 we also
include the ratio between radial and total magnetic field energy (top right), and the ratio of the
Maxwell and Reynolds stress (bottom right).
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magnetic energy density is similar, but we find a ratio of Maxwell to Reynolds stress of
≈ 2.6−3, in contrast to the value ≃ 4 found by Wissing et al. (2022). Hawley et al. (2011)
compared several previous stratified MRI simulations run with static grid codes (Simon
et al., 2011; Shi et al., 2010; Davis et al., 2010; Guan & Gammie, 2011) and found for the
normalized stress αmag ≈ 0.22−0.4, for the total stress α ≈ 0.01−0.03 and the ratio of the
square of the radial to total magnetic field ⟨B2

x/B
2⟩ ≈ 0.07 − 0.18 close to the mid plane

(±
√
2H for our definition of the scale height). Deng et al. (2019) found during the time

period with active MRI similarly αmag ≈ 0.4 and α ≈ 0.02 − 0.04, which were calculated
with a mass-weighted average. While our values for αmag compare well with those previous
studies our total stresses are at the lower end of the results previously reported in the
literature.

As one can see in Fig. 3.15, all our simulations show the characteristic butterfly diagram
in the horizontally averaged magnetic field. The azimuthal magnetic field gets buoyantly
transported out of the mid-plane and flips sign in the central region. This behaviour can
be observed over 100s of orbits in the inner region, whereas in the outer regions a positive
azimuthal field forms in most simulations. In Fig. 3.16 we show the volume-averaged mean
azimuthal field close to the mid-plane and its temporal Fourier transformation. We find
in all simulations an average period of 14, which is consistent with the results from Simon
et al. (2011).

There is a time lag between the radial and azimuthal fields which is characteristic of
an active αω dynamo. A positive net radial field will decrease the net azimuthal field
following the first term in equation (3.29). The net azimuthal field becomes negative and
starts to damp the radial field following the second term in equation (3.28) if αyy has a
negative gradient in the z-direction. In Fig. 3.17 we, therefore, show the horizontally and
temporally averaged transport coefficients as a function of z. Except for the low resolution
run with ch0 = 0.5, we find for all four components of α clear gradients close to the mid-
plane. All of them are antisymmetric with respect to the mid-plane position, as expected.
αyy has a negative gradient and can therefore create and amplify the radial magnetic field
if there is a mean azimuthal field as given in our simulation. This means the αω dynamo is
active in our simulations, a result that is consistent with previous findings in the literature
(Brandenburg et al., 1995; Brandenburg & Sokoloff, 2002; Brandenburg, 2008; Shi et al.,
2010; Wissing et al., 2022). αxx has a positive gradient and therefore counteracts the
rotational term for the evolution of By, but the latter one still dominates. Finally, αxy

has a positive gradient while αyx has a negative gradients, which means the diamagnetic
pumping term γz = 0.5 (αyx − αxy) is positive above the mid-plane and negative below.
The mean magnetic field, therefore, gets transported away from the mid-plane in our
simulations, which is consistent with the results in Shi et al. (2016) and Wissing et al.
(2022). Also, the absolute amplitude of 0.01 to 0.02 compares well with Shi et al. (2016)
in contrast to Wissing et al. (2022), who found |αyx| ≪ |αxy|.

We find a positive turbulent diffusivity ηxx ≈ 0.01 consistent with the results from Shi
et al. (2016) and Wissing et al. (2022), with ηyx < 0 close to the mid plane. The latter
result shows that the shear-current effect is active in our simulations, as in Shi et al. (2016),
but unlike in the results of Wissing et al. (2022). This is similar to our findings for the
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unstratified, tall box simulation without a mean magnetic field. The quantitative value of
≈ −2× 10−3 also agrees well with Shi et al. (2016).

In Figure 3.18, we show additionally several vertical profiles for the HR simulation with
ch0 = 1. In the region within a distance ±2H from the mid-plane, we find an approximately
constant Maxwell and Reynolds stress as well as uniform energy density. At the boundary
of this region, β reaches unity and the system becomes magnetically dominated further
away from the mid-plane. In the outer region, the turbulent, kinetic energy drops faster
than the magnetic energy and the system is stable to the MRI.

This all agrees qualitatively well with the results in Simon et al. (2011) though we find
a bump in the magnetic energy at the boundary between the MRI and magnetic field-
dominated domains. This can also be observed in the butterfly diagrams in Fig. 3.15.
Close to the mid-plane we always find Qz > 7, Qx > 10, and Qy > 30, which is close to
the condition Qz > 10 and Qy > 20 to reach convergence in the stresses (Hawley et al.,
2011). The spatial resolution is, as expected, highest in the high-density region close to
the mid-plane.

In summary, our simulations compare qualitatively well with previous simulations,
though the saturated stresses and magnetic energy seem to lie at the lower end of re-
ported results in the literature (Hawley et al., 2011; Deng et al., 2019; Wissing et al.,
2022). This could be explained by the problem that in our simulations the Dedner clean-
ing speed is given by the maximum signal speed in the system, which we typically find
in the corona of our disk. The maximum signal speed is on average 10 times larger than
the sound speed (see Fig. 3.19), which is close to the signal speed in the mid-plane. This
means that we typically clean the magnetic field much more strongly in the mid-plane as
would be required locally, and therefore the numerical resistivity is also (needlessly) larger.
Smaller values for ch0 would solve this problem but in this case the magnetic field evolution
in the corona tends to become unstable.

3.5 Summary and Conclusions

In this chapter, we analyzed the ability of the moving-mesh code AREPO to simulate the
linear and nonlinear stages of the magnetorotational instability using the shearing box
approximation. The code can accurately resolve the linear growth rate of channel flows
and shows close to third-order convergence in agreement with results obtained with the
static grid code ATHENA (see Fig. 3.1). The Lagrangian method MFM on the other hand
requires for similarly accurate results a much higher number of resolution elements and also
the relatively large Wendland C4 kernel with 200 neighbours, which implies much higher
computational costs.

After the exponential growth in the linear regime, the MRI saturates, and provided
it does not die out a quasi-stationary turbulent state forms that can be described by
time-averaged quantities. The exact behaviour depends on the numerical resistivity of the
code, which can be increased/decreased in our simulations by imposing a stronger/weaker
divergence cleaning. Stronger numerical resistivity leads typically to a weaker MRI, causing
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Figure 3.15: Space-time diagram of the horizontally averaged radial (left) and azimuthal (right)
magnetic field for our four stratified simulations. In all simulations, we see remnants of the
characteristic butterfly diagram, although the outer regions are dominated by a positive azimuthal
net field.
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Figure 3.16: Left panel: The temporal evolution of the volume-averaged radial and azimuthal
magnetic fields near the mid-plane (±H) for the HR simulation with ch0 = 1. For visual clarity,
we multiplied Bx with a factor of 20. As also seen in Fig. 3.15, the mean field is oscillating with a
period of around 14 orbits. There is a time lag between the radial and azimuthal fields which can
be explained with an active αω dynamo and which is consistent with results from Simon et al.
(2011). Right panel: Temporal power spectrum of the signal on the left panel, started after 50
orbits. One can see a peak for the radial and azimuthal fields for the oscillation frequency of the
butterfly diagram.
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Figure 3.17: Temporally averaged transport coefficients as a function of z for stratified simu-
lations with a net field. We averaged over 150 orbits starting after 50 orbits. Except for the low
resolution simulation with ch0 = 0.5, all simulations show clear gradients in the four components
of α close to the mid-plane at z = 0. We find an active αω dynamo (due to negative gradients
of αyy) and a transport of the mean field away from the mid-plane (due to a positive gradient in
the diamagnetic pumping term γz, see equation 3.30). The turbulent diffusivity ηxx is positive,
and the shear-current effect is active due to ηyx < 0.
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smaller average magnetic and turbulent kinetic energies as well as smaller stresses, and
therefore weaker angular momentum transport. A stronger cleaning on the other hand
also means that errors due to deviations from the condition ∇ ·B = 0 are smaller.

In unstratified simulations with a net vertical field (NF), the MRI always survives
even with strong cleaning and a rather small resolution of 16 resolution elements per scale
height. This is in contrast to unstratified simulations without net field (ZNF), in which
the MRI can die out for strong cleaning, especially for small boxes. However, a higher
resolution can help in this case to sustain the MRI and increase its strength. This is in
contrast to previous results for static grid codes, which found a non-convergence (Fromang
& Papaloizou, 2007) of the saturated quantities of the MRI with increasing resolution. The
authors explain this by a decreasing numerical Prandtl number with resolution, which also
influences the strength of the MRI. Our results on the other hand show in this respect
a more similar behavior to results obtained with SPH (Wissing et al., 2022), which hints
that the numerical Prandtl number might scale differently between static and moving mesh
codes.

We also performed unstratified ZNF simulations with larger boxes in vertical direction
similar to Shi et al. (2016). We find in this case a large-scale mean-field dynamo similar
to the results obtained with ATHENA, and in contrast to the SPH results in Wissing et al.
(2022). We attribute this to an active shear current effect, since we find for the transport
coefficient ηyx < 0, in contrast to Wissing et al. (2022) who found ηyx > 0. This dynamo
increases the strength of the MRI, and only for our lowest resolution the MRI can die out
for strong cleaning.

We furthermore carried out stratified shearing box simulations that include the vertical
component of the gravitational force of the central object. Due to their higher com-
putational cost we only performed 4 simulations with different resolutions and cleaning
strengths. In all simulations, we find an active αω dynamo with a time-varying mean field
in the mid-plane. The sign of this mean field changes with a period of around 15 orbits
and leads to the characteristic butterfly diagram in the space-time diagram of the mean az-
imuthal field (see Fig. 3.14). In all our simulations the turbulence survived for at least 200
orbits (the time we stopped the simulations), and we find a magnetically dominated corona
and an MRI-dominated mid-plane in agreement with previous results from the literature.
Curiously, we find a bump in the magnetic energy in the boundary region. The MRI is in
general a bit weaker in our runs in comparison to previous results for grid codes, and our
results are in somewhat closer correspondence to simulations with strong cleaning in SPH
(Wissing et al., 2022). We also analyzed the vertical profiles of the magnetic transport
coefficients and found good agreement with previous results in the literature, and again we
find an effective shear current effect, in contrast to Wissing et al. (2022).

To stabilize our code against divergence errors, we use the Dedner cleaning approach
with a globally constant cleaning speed equal to the largest signal speed in the simulation.
While in unstratified simulations the box is on average homogeneous and the differences
in the signal speeds are smaller, this changes in stratified simulations. Here the corona is
magnetically dominated and therefore the maximum signal speed is much larger than the
typical sound speed (see Fig. 3.19). On the one hand, this leads to a stronger than required
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Figure 3.19: Temporal evolution of the volume-averaged (left) and maximum (right) signal
speed (see equation 3.12) for our simulations in a stratified shearing box. We split the gas into
a low-density component and a high-density component that resides close to the mid-plane. The
maximum signal speed is a factor of around 3 larger in the low-density region compared to the
high-density region, and around 8 times higher than the average signal speed in the high-density
regions. Since the former sets the cleaning speed of the Dedner cleaning, our scheme applies a
much stronger cleaning in the high-density region than is in principle required locally. For visual
clarity, we have smoothed the curves over 4 orbits using a Savitzky–Golay filter.
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cleaning in the mid-plane, and therefore larger numerical resistivity and a weaker MRI. On
the other hand, this also leads to smaller time steps in the mid-plane, which makes such
simulations more expensive. We therefore plan to implement alternative cleaning methods
in future work (Tricco et al., 2016; Hopkins, 2016) that only require a local cleaning speed
in the moving-mesh case. We also note that for global disk simulations we can revert to
the standard Powell cleaning in AREPO, which does not suffer from those disadvantages.

Especially when we compare the resolution of our simulations with the one from static
grid codes, we have to note that for our moving-mesh code the computational costs per
resolution element are much larger for pure MHD simulations. Additional time has to
be spent on the construction of the Voronoi mesh and on average cells have more faces
than in a Cartesian grid which means there are more Riemann problems to solve. The
unstructured mesh requires the more expensive higher order flux integration introduced
in Zier & Springel (2022a) and also reduces the efficiency of memory accesses. Particle
methods suffer from similar overhead and we, therefore, expect similar performance. As
Deng et al. (2019) already noted the performance differences are highly problem dependent
and if additional physical effects such as self-gravity dominate the total computational
costs, the moving-mesh method will become more competitive in comparison to static grid
codes.

Our main results can be summarized as follows:

• We find close to third order convergence for linear growth rates of channel modes
with absolute errors almost identical to results obtained with ATHENA.

• The strength of the saturated state of the MRI decreases with stronger numerical
resistivity (larger cleaning speed) but deviations from ∇ ·B also decrease.

• In unstratified NF simulations the MRI does not die out even for strong cleaning and
low resolution.

• In small, unstratified ZNF simulations the MRI can die out for strong cleaning. The
strength of the MRI however increases with higher resolution in contrast to results
from static grid codes.

• In large, unstratified ZNF simulations we find a large-scale mean-field dynamo (in
agreement with Shi et al., 2016) and an active shear current effect. The former is
significantly weaker in SPH simulations presented by Wissing et al. (2022), which
could be caused by a missing shear current effect in those simulations.

• We find the characteristic butterfly diagram in stratified simulations and can sustain
turbulence for at least 200 orbits. The qualitative results compare well with previous
results in the literature, though our MRI is a bit weaker. We attribute this to a too
strong cleaning in the mid-plane due to a globally constant Dedner cleaning speed.

All in all, our results confirm the high accuracy of our moving-mesh approach for de-
manding simulations such as MRI-driven turbulence in accretion disks. Our results show
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Figure 3.20: The temporal evolution of several volume weighted quantities for unstratified
simulations with a net vertical magnetic field, for a box size 1×4×1 and 48 cells per scale height.
We vary the strength of the Dedner cleaning ch0, as indicated in the legend. The shown quantities
are (from left to right, and top to bottom): Magnetic field energy density, kinetic energy density,
relative ∇ ·B error, Maxwell stress, normalized Maxwell stress (3.18) and Reynolds stress. We
have smoothed the curves over 20 orbits using a Savitzky–Golay filter for visual clarity, and show
the original curve for one example as a transparent line.

reassuring consistency with mesh-based findings, although the relatively high numerical
resistivity of the Dedner cleaning approach compared to constrained transport approaches
shows up in some of our results. However, our method is readily applicable and well ad-
justed to global disk simulations, where it represents a very competitive alternative to
Eulerian mesh codes. Unlike in the shearing box case, in such simulations we can further-
more employ the Powell scheme for divergence control in our code, which is significantly
less diffusive. It thus appears promising to consider full accretion disk calculations that
account for the MRI with AREPO in future work.

3.6 Appendix: Net flux MRI in unstratified, smaller

box

In this appendix, we show additional results for unstratified simulations with box size
Lx × Ly × Lz = 1 × 4 × 1, a standard resolution of 16 × 64 × 16 cells, and initial plasma
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Figure 3.21: The temporal average of different quantities for unstratified simulations with a
net vertical magnetic field and box size 1× 4× 1, as a function of the strength ch0 of the Dedner
cleaning. All quantities are averaged over 150 orbits starting after 50 orbits. We also vary the
resolution by using 16, 32, 48 and 64 cells per scale height, as indicated in the legend. For the
highest resolution we only performed one simulation with ch0 = 1 due to the high computational
cost of the corresponding run. Besides the quantities already displayed in Fig. 3.20, we also give
the ratio between radial and total magnetic field energy (top right), and the ratio of the Maxwell
and Reynolds stress (bottom right).
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Figure 3.22: Temporally and spatially averaged transport coefficients as a function of the
cleaning strength ch0 for unstratified simulations with background field, 48 cells per scale height
resolution, and a box size Lx × Ly × Lz = 1× 4× 1. The coefficients are averaged over a period
of 150 orbits starting after 50 orbits. We additionally included the statistical error of the mean
value for each coefficient. As expected, ηxx is the only coefficient differing significantly from zero.



112 3. Simulating the MRI on a moving mesh

beta β = 330. In Fig. 3.20, we show the temporal evolution for three different cleaning
strengths ch0 and a resolution of 48 cells per scale height. In Fig. 3.21, we show different
spatially and temporally averaged properties describing the MRI as a function of ch0 for
different resolutions. Fig. 3.22 shows the measured transport coefficients as a function of
the cleaning strength. As in the larger box all coefficients except ηxx are compatible with
zero.



Chapter 4

Gravito-turbulence in local disk
simulations with an adaptive moving
mesh

This work has been accepted for publication in the Monthly Notices of the Royal Astro-
nomical Society.

Self-gravity plays an important role in the evolution of rotationally supported systems
such as protoplanetary disks, accretion disks around black holes, or galactic disks, as
it can both feed turbulence or lead to gravitational fragmentation. While such systems
can be studied in the shearing box approximation with high local resolution, the large
density contrasts that are possible in the case of fragmentation still limit the utility of
Eulerian codes with constant spatial resolution. In this chapter, we present a novel self-
gravity solver for the shearing box based on the TreePM method of the moving-mesh
code AREPO. The spatial gravitational resolution is adaptive which is important to make
full use of the quasi-Lagrangian hydrodynamical resolution of the code. We apply our
new implementation to two- and three-dimensional, self-gravitating disks combined with a
simple β-cooling prescription. For weak cooling we find a steady, gravito-turbulent state,
while for strong cooling the formation of fragments is inevitable. To reach convergence for
the critical cooling efficiency above which fragmentation occurs, we require a smoothing
of the gravitational force in the two dimensional case that mimics the stratification of the
three-dimensional simulations. The critical cooling efficiency we find, β ≈ 3, as well as
box-averaged quantities characterizing the gravito-turbulent state, agree well with various
previous results in the literature. Interestingly, we observe stochastic fragmentation for
β > 3, which slightly decreases the cooling efficiency required to observe fragmentation
over the lifetime of a protoplanetary disk. The numerical method outlined here appears
well suited to study the problem of galactic disks as well as magnetized, self-gravitating
disks.
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4.1 Introduction

Galactic disks, but also young protoplanetary disks as well as active galactic nuclei (AGN),
are examples of self-gravitating disks. Their stability can be described by the Toomre
parameter

Q =
csκ

πGΣ
, (4.1)

with instability to axisymmetric perturbations expected for Q < 1 (Toomre, 1964) in razor
thin disks. κ is here the epicyclic frequency (equal to the orbital frequency Ω for a circular
Keplerian orbit), cs is the sound speed, G is the gravitational constant, and Σ is the
surface density. This gravitational instability (GI) becomes therefore important in cold
and massive disks (Kratter & Lodato, 2016).

Already forQ slightly larger than unity disks typically become unstable to non-axisymmetric
perturbations (Lau & Bertin, 1978; Papaloizou & Lin, 1989; Papaloizou & Savonije, 1991),
which then heat the disk through the dissipation of spiral shocks (Cossins et al., 2009), thus
increasing the Toomre Q. If radiative cooling is present in the system, the combination of
heating and cooling can effectively yield an equilibrium with a so-called gravito-turbulent
state where Q = O(1) (Gammie, 2001; Shi & Chiang, 2014). This gravito-turbulent state
can give rise to an effective viscosity, transporting angular momentum outwards, as re-
quired for accretion (Armitage, 2011; Turner et al., 2014). If the cooling is too strong the
gravito-turbulent state is not able to generate enough heat, and the disk continues to cool.
This leads to the formation of fragments, which could be, for example, an efficient way
to form brown dwarfs, giants planets at large radii or binary stars (Boss, 1997; Kratter &
Matzner, 2006; Stamatellos & Whitworth, 2009; Helled et al., 2014; Tobin et al., 2016).

To cleanly analyze the probability of the latter process, typically a simplified cooling
description with a constant cooling time tcool = β Ω−1 and a free parameter β is used
(Gammie, 2001). We note that some studies also employ a modified version of this law,
taking into account stellar irradiation (Rice et al., 2011; Baehr & Klahr, 2015; Löhnert
et al., 2020) or even radiative transfer (Hirose & Shi, 2019). Besides the analysis of the
gravito-turbulent state as a function of β and the interaction of the GI with other insta-
bilities such as the magnetorotational instability (MRI, Riols & Latter, 2018; Löhnert &
Peeters, 2022), an important question is below which threshold value βc the disk starts to
fragment.

To answer this question, both global as well as local simulations of a small rectangular
box with high resolution orbiting with the local rotational frequency (the so-called shearing
box approximation, Hill, 1878; Goldreich & Lynden-Bell, 1965) have been performed in the
literature. While the first approach allows capturing global behaviour like accretion, the
second method allows for a higher resolution. Riols et al. (2017) found long term trends in
small shearing boxes, while Booth & Clarke (2019) argued that a box size of L > 64H in
the horizontal direction is required to avoid spurious bursts. Although the bursts observed
in smaller boxes might also occur for massive disks in global simulations (Rice et al.,
2005), the apparent dependence of the shearing box results on the box size complicates
their interpretation and direct application.
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Gammie (2001) found in local, two-dimensional simulations βc ≈ 3 and showed that
for an equilibrium state the total stress α (Shakura & Sunyaev, 1973) only depends on β
and the adiabatic index γ:

α =
4

9γ (γ − 1) β
. (4.2)

βc = 3 therefore translates for γ = 2 to a maximum stress of αmax ≈ 0.07 that a disk
can sustain. The γ = 2 in 2D can be mapped in the low-frequency limit to γ = 5/3 for
a non-self-gravitating disk and γ = 2 for a self-gravitating disk in 3D (Gammie, 2001).
Meru & Bate (2011) found in global simulations with SPH that βc increases with reso-
lution and thus was not converged. Similar results were found in local two-dimensional
simulations (Paardekooper, 2012; Baehr & Klahr, 2015; Klee et al., 2017). Furthermore,
there seems to be a stochastic component involved (Paardekooper, 2012; Young & Clarke,
2015). For a gravito-turbulent state it was found that stochastic density fluctuations can
produce over-densities that can collapse (Hopkins & Christiansen, 2013). This so-called
stochastic fragmentation allows fragmentation at arbitrary high β, although this might
become irrelevant if the probability for it to occur decreases fast enough for increasing
β. Similar results were found by Brucy & Hennebelle (2021) in global simulations with

the RAMSES code. As we will discuss further in Section 4.5.3, we expect β ∝ R
−9/2
0 in

the outer parts of protoplanetary disks (Paardekooper, 2012). This implies that only if
stochastic fragmentation can significantly increase βc it has an influence on the expected
radius at which fragmentation can occur.

Deng et al. (2017) in contrast found convergence with the MFM method in 3D and
obtained βc ≈ 3− 3.5 in global simulations, which they attributed to the missing artificial
viscosity in this method. Lately, also three-dimensional local simulation reported conver-
gence (Baehr et al., 2017; Booth & Clarke, 2019) with βc ≈ 3. Booth & Clarke (2019) also
found sometimes fragmentation for β = 3 − 5, and attributed this to stochastic fragmen-
tation, although no fragmentation was observed for larger β. Klee et al. (2019) claims to
be close to convergence in high-resolution two-dimensional simulations with βc ≈ 10.

All studies that found converged results had in common that they started with so-called
relaxed initial conditions, which means that instead of a smooth initial state an already
gravito-turbulent state obtained with simulations with higher β or lower resolution was
adopted. Otherwise, the disk might cool too fast before gravito-turbulence as a heating
source can set in and prevent prompt fragmentation (Paardekooper et al., 2011; Deng et al.,
2017; Booth & Clarke, 2019). Convergence seems easier to achieve in three-dimensional
simulations, which might be attributed to the implicit smoothing of gravitational forces
over a scale height in 3D. Young & Clarke (2015) showed in two-dimensional shearing box
simulations that an explicit smoothing of the gravitational potential over one scale height
allows again convergence with βc ≈ 3. It was argued that with this smoothing only the di-
rect fragmentation can be observed while a quasi-static collapse is not possible. But Young
& Clarke (2016) showed that even with gravitational softening effects such as stochastic
fragmentation can still be observed. Another important point affecting convergence seems
to be the accuracy of the numerical method. For example, Deng et al. (2017) point out that
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the artificial viscosity in SPH could prevent convergence while Klee et al. (2017) argued
that the limiter in finite volume methods can influence the results.

The goal of this chapter is to analyze the properties of gravito-turbulence and its conver-
gence, and especially the convergence of βc, with the moving-mesh code AREPO (Springel,
2010a; Pakmor et al., 2016b; Weinberger et al., 2020) that combines the advantage of a
Lagrangian method with the high-accuracy of finite volume methods. In contrast to SPH,
it does not require artificial viscosity, and in contrast to static grid codes, it automati-
cally increases the spatial resolution in dense regions, which makes it especially suited to
study the formation of fragments. To further increase the resolution and the numerical
accuracy, we furthermore make use of the recent implementation of the shearing box ap-
proximation described in Zier & Springel (2022a), which was already applied successfully
to the magnetorotational instability (Zier & Springel, 2022b). Applying this new numer-
ical methodology to the problem can help to resolve the remaining discrepancies in the
literature, and thus hopefully contribute to an emerging, increasingly firm understanding
of the gravito-turbulent state and its fragmentation boundary.

This chapter is structured as follows: In Section 4.2, we introduce the moving mesh
method and especially the shearing box approximation as implemented in the AREPO

code. We also describe a new solver for the Poisson equation based on the TreePM method
and introduce different quantities we will subsequently use to characterize the nonlinear,
saturated state of the gravitational instability. In Section 4.3, we discuss two-dimensional
shearing box simulations. We analyze the dependency of the saturated gravito-turbulent
state on the box size, resolution, cooling efficiency β, and a smoothing scale to mimic the
stratification in three dimensions. Subsequently, we analyze the formation of fragments as
a function of the smoothing scale and numerical resolution, and show that βc itself depends
on the smoothing length. In Section 4.4, we repeat this analysis using full three-dimensional
simulations. We find a good match between two- and three-dimensional simulations, with
βc ≈ 3, if we smooth in the former the gravitational force over half a scale-height, but due
to stochastic fragmentation we find fragments up to β = 5. In Section 4.5, we discuss the
advantages of the moving-mesh method with self-gravity when applied to this problem.
We compare the results of two- and three-dimensional simulations, and we comment on
the implications of stochastic fragmentation for the direct formation of massive planets
through disk instabilities. Finally, in Section 4.6 we summarize our results.

4.2 Methods

4.2.1 Shearing box approximation in three dimensions

The equations for the shearing box approximation (Hill, 1878; Goldreich & Lynden-Bell,
1965) can be obtained by transforming into a frame rotating with the local angular fre-
quency Ω at a radius R0. The resulting centrifugal and gravitational forces are then
expanded to first order in the local Cartesian coordinates, x (radial direction), y (az-
imuthal direction), and z (standard z-coordinate of cylindrical coordinates). The resulting
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equations in three dimensions can be written as:

∂U

∂t
+∇ · F (U) = Sgrav,e + Scor + Sgrav,self + Q̇. (4.3)

Here, we introduced a vector of conserved quantities U , the flux function F , the source
term Sgrav,e due to the external gravitational and centrifugal force, the source term Scor

due to the Coriolis force, and the source term Sgrav,self describing the self-gravity of the

gas. Finally, Q̇ describes an external cooling term. The full equations are given by:

U =

 ρ
ρv
ρe

 , F (U) =

 ρv
ρvvT + P
ρev + Pv

 , (4.4)

Sgrav,e =

 0
ρΩ2

0 (2qxêx − zêz)
ρΩ2

0v · (2qxêx − zêz)

 , (4.5)

Scor =

 0
−2ρΩ0êz × v

0

 , Sgrav,self =

 0
−ρ∇ϕ

−ρ (v · ∇ϕ)

 , (4.6)

where ρ, v, e, ϕ, and P are the density, velocity, total energy per unit mass, gravitational
potential, and pressure, respectively.

The energy density e = u + 1
2
v2 consists of a thermal component u and a kinetic

component 1
2
v2. The cooling term only modifies the total energy, and we choose

Q̇ = (0, 0,−uρ/tc), (4.7)

with tc = β/Ω. Here, β is a global constant that can be used to modify the cooling
efficiency. We note that some studies add a temperature floor to the cooling description
by replacing u by u−ufloor (Rice et al., 2011; Lin & Kratter, 2016). The temperature floor
increases the pressure support for strong cooling and therefore can stabilize small scale
perturbations. The system of equations is closed by the equation of state (EOS), which
describes the pressure as a function of other thermodynamical quantities. In this chapter,
we use an adiabatic EOS

P = ρu(γ − 1), (4.8)

with adiabatic coefficient γ = 5/3 that also defines the sound speed:

cs =
√
γP/ρ. (4.9)

Sgrav,e depends on the shearing parameter

q = −d lnΩ
d ln r

, (4.10)

which simplifies to q = 3/2 for the Keplerian case that we exclusively discuss in this
chapter. Sgrav,e contains a vertical component that leads to a stratification of the disk.
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The gravitational potential ϕ can be calculated by solving the Poisson equation

∇2ϕ = 4πGρ, (4.11)

with the gravitational constant G. We will discuss our solver for this further in Sec-
tion 4.2.3. For a velocity field

v = (0,−qΩ0x, 0), (4.12)

the x- and y-components of Sgrav,e + Scor vanish, and therefore this field corresponds to a
ground state solution.

To solve equation (4.3) we employ the hydrodynamical code AREPO (Springel, 2010a;
Pakmor et al., 2016b; Weinberger et al., 2020), which uses a moving, unstructured Voronoi
mesh in combination with the finite volume method. We refer to Zier & Springel (2022a)
for the details of the shearing box implementation without self-gravity in this code. For
all simulations, we use a higher-order integration method for the flux as well as a second-
order accurate Runge-Kutta time integration scheme. Although the moving mesh method
is quasi-Lagrangian, the mass per cell can vary significantly over time. To ensure an
approximate constant mass resolution, we therefore allow cells to be split (refined) and
merged (derefinement) if they fulfil special conditions.

In all simulations considered here, we define a target mass mtarget and in general refine
(derefine) cells with mass m > 2mtarget (m < 0.5mtarget). To avoid too rapid local vari-
ations in the spatial resolution in three-dimensional simulations, we impose a maximum
allowed volume ratio of 10 between adjacent cells, and enforce a maximum volume of 0.1H3

per cell. The volume-based conditions become especially important in the low-density halo
of the disk, and help to avoid that a cell can interact with a periodic image of itself in
regions of extremely low density.

4.2.2 Boundary conditions

In the following, we will assume a box of size Lx × Ly × Lz. In the y- and the z-direction
we use periodic boundary conditions (BCs):

f(x, y, z, t) = f(x, y ± Ly, z ± Lz, t) (4.13)

for all hydrodynamic quantities f ∈ {ρ, vx, vy, vz}. For the gravitational potential ϕ we
assume periodic BCs in the y-direction and vacuum boundary conditions in the z-direction.
We note that we could also use potentially more physical inflow-outflow BCs in the z-
direction for the hydrodynamic quantities, but by using large enough boxes in the z-
direction combined with the lack of significant outflows this should not affect our results
while simplifying the numerics.

In the x-direction the standard periodic boundary conditions have to be modified to be
compatible with the background flow of Eqn. (4.12):

f(x, y, z, t) = f(x± Lx, y ∓ wt, z, t); f ∈ {ρ, ρvx, ρvz, ϕ}, (4.14a)
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ρvy(x, y, z, t) = ρvy(x± Lx, y ∓ wt, z, t)∓ ρw, (4.14b)

e(x, y, z, t) = e(x± Lx, y ∓ wt, z, t)∓ ρvyvw +
ρw2

2
, (4.14c)

with w = qΩ0Lx. These boundary conditions are called shearing-periodic boundary condi-
tions. In Zier & Springel (2022a) we discuss the implementation of the BCs in the AREPO

code, modulo the gravitational potential ϕ, which requires special care and will be discussed
in the following.

4.2.3 Self-gravity

To determine the gravitational force on a cell we do not only have to take into account the
interactions with other cells in the primary simulation box but also those with the infinite
number of periodic replicas of the primary box. It would be very expensive to exactly
calculate the gravitational force between three-dimensional Voronoi cells (i.e. taking their
detailed geometry into account). We therefore treat them instead as point sources with
all their mass concentrated in their centre of mass. This leads to small inaccuracies in the
gravitational force between close neighbours but should not influence the main results in
this chapter, since the total gravitational force is typically much larger than the errors in the
partial forces of close neighbours. For a discussion of these errors we refer to Appendix 4.8.

In the following we concentrate on the case of periodic boundary conditions in the x-
and y-directions, and non-periodic BCs in the z-direction, which can easily be generalized
to shearing box BCs as discussed below. The gravitational potential can be written as a
sum over all Voronoi cells j, with primary position x⃗j:

ϕ(x⃗) = −
N∑
j=1

∞∑
n⃗=−∞

G

{
mj

|x⃗j − x⃗+ q⃗n⃗|+ ϵ(|x⃗j − x⃗+ q⃗n⃗|)

}
. (4.15)

Here q⃗n⃗ denotes periodic displacement vectors given by q⃗n⃗ = (nxLx, nyLy, 0), where n⃗ =
(nx, ny) are integer pairs, and the sum over n⃗ extends over all these pairs. ϵ is the gravita-
tional softening length that should only be non-zero for the closest image q⃗⋆j = q⃗⋆j (x⃗) that
minimizes |x⃗j − x⃗+ q⃗⋆j |. This enables us to rewrite the potential as

ϕ(x⃗) = −
∑N

j=1
mj

|x⃗j−x⃗+q⃗⋆j |+ϵ(|x⃗j−x⃗+q⃗⋆j |)
(4.16)

+
∑N

j=1mjψ(x⃗j − x⃗+ q⃗⋆j ),

where we have introduced a correction potential given by

ψ(x⃗) =
1

|x⃗|
−

∞∑
n⃗=−∞

{
1

|x⃗+ q⃗n⃗|

}
. (4.17)
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For our boundary conditions, this slowly converging sum can be rewritten as (Grzybowski
et al., 2000; Springel et al., 2021):

ψ(r⃗) =
1

|r⃗|
+

2α√
π
−
∑
⃗̃p

erfc(α|r⃗ − ⃗̃p|)
|r⃗ − ⃗̃p|

(4.18)

− π

LxLy

∑
k⃗ ̸=0

exp
(
i k⃗ · r⃗

)
|⃗k|

[
exp(kz) erfc

(
k

2α
+ αz

)

+exp(−kz) erfc
(
k

2α
− αz

)]
+
2
√
π

LxLy

(
exp(−α2z2)

α
+
√
π z erf(αz)

)
,

with r⃗ = (x, y, z), and k⃗ = 2π(nx/Lx, ny/Ly, 0) with integer pairs (nx, ny), and α being
an arbitrary positive number. The first sum over all periodic images converges fast in
real space due to the fast decay of the erfc-function, and we can use the standard Barnes-
Hut tree as implemented already in the code for the standard TreePM method (Springel,
2010a; Weinberger et al., 2020) to compute it. The remaining terms can be calculated in
Fourier space by multiplying the Fourier-transformed density with the appropriate Green’s
function. We determine the Green’s function in Fourier space by first setting it up in
real space with zero padding in the z-direction, and then transforming it to k-space. Our
implementation closely follows that in the public GADGET-4 code of Springel et al. (2021).

Shearing box boundary conditions

For the shearing periodic BCs, ϕ is invariant under coordinate transformations of the form:

∆x = nx

(
Lx

qΩLxt

)
+ ny

(
0
Ly

)
= nxa1 + nya2, (4.19)

with integers nx and ny. The corresponding wavevectors can be written as

k = nx
2π

Lx

+ ny
2π

Ly

(
−qΩt
1

)
= 2π

(
nx/Lx

ny/Ly

)
−
(
qΩtky
0

)
, (4.20)

where the last term is the correction for the background shear flow. In this case equa-
tion (4.18) is still valid1, but the correction term has to be added in the calculation of
|k|.

In order to still be able to use a standard FFT the density distribution ρ(x, y, z) has
to be replaced by ρ(x, y + ∆y, z) before the FFT, and ϕ has to be shifted by −∆y in

1All steps in the deviation in Grzybowski et al. (2000) are independent of the periodicity except the
Poisson summation formula. Kholopov (2007) proves that this equation also holds for non-orthogonal
periodicity, the so-called Krazer–Prym formula.
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the y-direction after the inverse FFT. ∆y = qΩx(t − t∗) depends here on the time t∗

when the system was periodic in the x-direction the last time. This idea was initially
introduced in two-dimensional simulations by Gammie (2001) and is used since then as the
default method for self-gravity in shearing boxes. As mentioned before, we use the TreePM
method to calculate the gravitational potential, which means that we split the potential
into a short-range component that can be calculated with a tree while the long-range force
can be calculated with the PM method. For the latter case, we can absorb the shift in the
y-direction for the density into the binning process of the Voronoi cells onto the uniform
PM grid, while we can first calculate the gravitational force for each Voronoi cell in periodic
coordinates and then add the correction term ∆ax = Ωq(t− t∗)ay to the radial component
of the acceleration. We note that the Green’s function in real space is a function of k,
which means that it is time-dependent for the shearing box. To avoid the computational
costs of setting up the Green’s function in each time step in real space, followed by a
Fourier transform, we could also tabulate the Fourier transform of the Green’s function in
Fourier space for a set of different times and interpolate from it. However, since in our
experiments the costs of the PM part are small we do not use this optimization in this
study.

4.2.4 Thin disk approximation in two dimensions

By defining the surface density

Σ (x, y) =

∫ ∞

−∞
ρ(x, y, z) dz, (4.21)

we can approximate the density as

ρ(x, y, z) = Σ (x, y) δ (z) (4.22)

for thin disks. To approximate a three-dimensional stratification we can furthermore
smooth the Poisson equation with a smoothing length λ (Paardekooper, 2012; Young &
Clarke, 2015):

∇2ϕ = 4πGΣδ(z − λ). (4.23)

λ should be of the order of a scale height, such that forces and structures below λ are sup-
pressed. This approximation simplifies the dynamics by turning it into a two-dimensional
problem for Σ(x, y), which significantly reduces the computational costs in comparison to
three-dimensional simulations. To apply it, we have to replace ρ by Σ in equation (4.3) -
(4.6), and remove the gravitational term in the z-direction. The calculation of the gravi-
tational potential also simplifies, since we can set z = λ in equation (4.18). Also, a pure
PM method is sufficient to solve the Poisson equation with high enough resolution.
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4.2.5 Analysis methods

To analyze the stochastic behaviour of gravito-turbulence we define the volume-weighted
average of a quantity X as:

⟨X⟩ =
∫
X dV∫
dV

, (4.24)

and the density-weighted average as:

⟨X⟩w =

∫
ρX dV∫
ρ dV

, (4.25)

the average per unit area:

⟨X⟩A =

∫
X dV∫
dV

Lz, (4.26)

as well as the temporal average of X:

⟨X⟩t =
∫
Xdt∫
dt

. (4.27)

To characterize the stability of the disk we use the two-dimensional Toomre number:

Q =
⟨c2s⟩

1/2
w Ω

πG ⟨Σ⟩
, (4.28)

where ⟨Σ⟩ = Lz ⟨ρ⟩ is its average surface density. The density-weighted r.m.s. sound

speed ⟨c2s⟩
1/2
w we use here is typically a few per cent larger than the average sound speed

⟨cs⟩w (Booth & Clarke, 2019). The total angular momentum transfer can be described by
the total stress α, which is defined as a combination of the Reynold stress Hxy and the
gravitational stress Gxy:

α =
2

3γ ⟨P ⟩
⟨Hxy +Gxy⟩ . (4.29)

They are given by

Hxy = ρvxδvy (4.30)

and

Gxy =
1

4πG

∂Φ

∂x

∂Φ

∂y
, (4.31)

respectively, where δvy is the deviation of the azimuthal velocity from the ground state
(4.12). While in two dimensions the volume average simplifies to a two-dimensional integral
for Hxy, we still require for Gxy the calculation of a three-dimensional integral:

⟨Gxy⟩2d =
〈∫ z=∞

z=−∞
Gxy

〉
xy

=
∑
k

πGkxky |Σk|2

|k|3
. (4.32)
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We calculate the Fourier sum (Gammie, 2001) with the same algorithm we use for the PM
gravity calculation, and set the density of the PM mesh equal to the initial number of cells.
The radial flux of angular momentum is the only heating source in the system, and thus
it has to counterbalance the cooling. This leads to the condition:

α =
4

9γ (γ − 1) β
, (4.33)

which has to be fulfilled if the system is in equilibrium (Gammie, 2001). Additionally, we
define the kinetic, ekin = 1

2
ρv2, and thermal energy densities, eth = P/ (γ − 1).

4.2.6 Fragmentation criterion

To decide if a self-gravitating disk is stable it is essential to first define what a fragment is.
The detailed criteria differ in the literature, and there are also differences between two and
three-dimensional simulations, but the indicators typically have in common that a fragment
should be self-gravitating and survive for a specific amount of time. Most studies in two
dimensions demand an overdensity of 100 and a survival time of several orbits (Meru &
Bate, 2011; Rice et al., 2011; Paardekooper, 2012), though Baehr & Klahr (2015) required
the surface density to be above the Roche surface density ΣRoche = 7c2s/ (HG).

The Roche surface density is typically equivalent to an overdensity of O(100) (Baehr
& Klahr, 2015) and therefore leads to similar results. In three-dimensional simulations,
Deng et al. (2017) required an overdensity of 100 and survival for one orbit while Brucy
& Hennebelle (2021) showed that combining the two criteria of an overdensity of 30 in
the surface density and explicit gravitational boundedness lead to similar results. In most
of our simulations, the formation of a fragment leads to a runaway collapse, which means
the (surface) density will drastically increase in a short amount of time. In this case,
the threshold density for a fragment only has a minor influence and we, therefore, use an
overdensity of 100 in two and three-dimensional simulations as a threshold for identifying
fragmentation. If the density decreases later and the fragments get destroyed, we call those
transient fragments and label the corresponding simulation with a ‘T’. In contrast, if the
overdensity of 100 survives for more than 5 orbits we call the simulation fragmented.

4.2.7 Initial conditions and overview of simulations

We measure times in units of Ω−1, lengths in units of

H =
πGΣ

Ω2
, (4.34)

and use in all simulations Σ = 1. Those choices imply G = 1/π in code units and

Hp = QH (4.35)

for the pressure scale height Hp. This means that H is equivalent to the pressure scale
height for a Toomre parameter Q = 1, and the orbital time is 2πΩ−1.
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While in two dimensions setting up initial conditions in equilibrium is trivial, we have
to choose the vertical structure of the temperature profile in stratified simulations. We
follow the method from Riols et al. (2017) by assuming the vertical profile to be polytropic
P = Kργ. The constant K = c2s0/

(
γργ−1

0

)
depends on the sound speed cs0 and density ρ0

in the mid plane. The equations describing hydrostatic equilibrium are given by:

K

[
1

ρ

dργ

dz

]
+ zΩ2 +

dΦ

dz
= 0, (4.36)

d2Φ

dz2
= 4πGρ, (4.37)

which we discuss further in Appendix 4.7.2. We use an initial Toomre Q = 1, and for three
dimensional simulations first evolve the system for 10Ω−1 without cooling so that through
refinement and derefinement operations a stable mesh configuration can form. We check
that the vertical profile does not change during this time. Afterwards, we add noise with
a maximum amplitude 0.05 cs0 to each component of the ground state velocity (4.12) for
each cell to seed the instability and start cooling.

The gravitational instability takes a finite amount of time to become active. In the
meantime, the disk can cool down further and might trigger prompt fragmentation. There-
fore, in many studies so-called relaxed initial conditions with already formed gravito-
turbulence were used (Paardekooper et al., 2011; Deng et al., 2017; Booth & Clarke, 2019).
Since the prompt fragmentation is resolution-dependent (see Section 4.4.3) and a higher
resolution promotes easier fragmentation, we typically first simulate gravito-turbulence for
a low resolution. We then use the final snapshot and reduce the target mass resolution set-
ting, mtarget, which causes the code to split cells until the requested resolution is achieved.
Since in some cases we have also used the final snapshots from simulations with larger β,
we will mention explicitly for each simulation which method has been used. In Table 4.1
and Table 4.3 we give an overview of all two-dimensional and three-dimensional simulations
we have carried out.

4.3 Gravitational instability in two dimensions

In this section, we first perform two-dimensional simulations in a shearing box of size L×L
using the thin disk approximation discussed in Section 4.2.4. As we have mentioned before
we allow for a smoothing scale λ (see equation 4.23) to mimic vertical stratification. For
λ = 0, arbitrary small structures are allowed to collapse if there is no implicit smoothing
such as the binning on a PM grid in our method. We typically use λ = 0.5H to analyze
the gravito-turbulent state but we note that in the literature a variety of values were
employed: Baruteau & Masset (2008) used λ = 0.5H, Müller et al. (2012) used λ = 0.6H
while Paardekooper (2012) and Young & Clarke (2015) used λ = 1H. To better understand
the influence of λ on our results we perform a parameter study in Section 4.3.3.

For better comparison of the resolution with other studies, we define the number of cells
per scale height N = [Mtot/(mtargetL

2)]1/2, where Mtot is the total mass. As an illustration
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Box size Resolution factors β λ Section

8 1, 2, 4, 8, 16 10 0.5 4.3.1
16 1, 2, 4, 8 10 0.5 4.3.1
32 1, 2, 4, 8 10 0.5 4.3.1
64 1, 2, 4 10 0.5 4.3.1
128 1, 2 10 0.5 4.3.1
32 1, 2, 4, 8 8 0.5 4.3.2
32 1, 2, 4, 8 10 0.5 4.3.2
32 1, 2, 4, 8 15 0.5 4.3.2
32 1, 2, 4, 8 20 0.5 4.3.2
32 1, 2, 4, 8 35 0.5 4.3.2
32 1, 2, 4, 8 50 0.5 4.3.2
32 1, 2, 4, 8 100 0.5 4.3.2
32 1, 2, 4, 8 15 0.125 4.3.3
32 1, 2, 4, 8 15 0.25 4.3.3
32 1, 2, 4, 8 15 1 4.3.3
32 1, 2, 4, 8 15 2 4.3.3
32 1, 2, 4, 8 1 0.125, 0.25, 0.5, 1, 2 4.3.4
32 1, 2, 4, 8 2 0.125, 0.25, 0.5, 1, 2 4.3.4
32 1, 2, 4, 8 3 0.125, 0.25, 0.5, 1, 2 4.3.4
32 1, 2, 4, 8 4 0.125, 0.25, 0.5, 1, 2 4.3.4
32 1, 2, 4, 8 5 0.125, 0.25, 0.5, 1, 2 4.3.4
32 1, 2, 4, 8 6 0.125, 0.25, 0.5, 1, 2 4.3.4
32 1, 2, 4, 8 7 0.125, 0.25, 0.5, 1, 2 4.3.4
32 1, 2, 4, 8 8 0.125, 0.25, 0.5, 1, 2 4.3.4
32 1, 2, 4, 8 9 0.125, 0.25, 0.5, 1, 2 4.3.4
32 1, 2, 4, 8 10 0.125, 0.25, 0.5, 1, 2 4.3.4

Table 4.1: Overview of all two-dimensional simulations discussed in this chapter. We use a base
resolution of 4 cells per scale height and obtain higher resolution simulations by multiplying the
number of cells per scale height with an integer number, which we give in the second column. In
the third column, we list the cooling efficiency β, and in the fourth column we state the smoothing
length λ used to smooth the gravitational force. We also compute additional simulations for the
fragmentation of the disk that can be found in Table 4.2.
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Figure 4.1: The surface density in two two-dimensional simulations with different cooling effi-
ciency β, but with the same box size L = 32H, a resolution of 32 cells per scale height, and a
smoothing with λ = 0.5H. The panel on the left hand side shows two fragments, while the panel
on the right hand side displays the typical structure of a fully developed gravito-turbulent state.

of our simulation set, we show in Fig. 4.1 the surface density in a simulation with a fully
developed gravito-turbulent state in the right panel, and a simulation where a fragment
formed in the left panel.

4.3.1 Influence of box size and resolution on gravito-turbulence

In this section, we analyse the dependence of the gravito-turbulent state on the box size
and resolution. We choose a constant β = 10, for which we find no fragmentation for
λ = 0.5H. Here we first perform simulations with the lowest resolution, and then the final
snapshots are used as the initial condition for higher-resolution simulations.

In Fig. 4.2 we show the temporal evolution of several averaged quantities for different
box sizes. In all cases we find a turbulent state, and the normalized stress α is close to
the expected one (α = 0.04). In the smallest box, the stress α is burstier, but we do not
observe any long-term trends. The larger boxes show in general a larger Toomre parameter
and also a higher maximum density.

To better analyze the influence of the resolution we show in Fig. 4.3 several time-
averaged quantities as a function of resolution and box size. Larger boxes are in general
warmer and therefore allow larger stresses as required to reach the same α. The results
for L = 64H and L = 128H are very similar and we conclude that a box size of 64H is
sufficient to reach convergence with respect to the box size in global properties. But we
note that already for L = 32H the values are close to those obtained with L = 64H but
require less computational cost. Most quantities only weakly depend on the resolution, and
it seems like 8 cells per scale height are enough to achieve convergence in most quantities.
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Figure 4.2: The temporal evolution of the Toomre parameter Q, the maximum surface density
Σ and the normalized stress α in two-dimensional simulations with 16 cells per scale height and
β = 10. We give results for four different box sizes, as labelled.

The box size dependency is well known in the literature (Booth & Clarke, 2019) and
can be explained by the suppression of long-range modes in smaller boxes. Those modes
cannot contribute to the heating of the disk, and therefore the value of the Toomre Q will
decrease further, allowing short-range modes to become unstable (Mamatsashvili & Rice,
2010) before an equilibrium between heating and cooling is established. The value of 64H
we find above which gravito-turbulence becomes independent of the box size is consistent
with the results of Booth & Clarke (2019). Also, the relatively low required resolution of
8 cells per scale height to reach convergence in global properties was reported in several
studies (Gammie, 2001; Shi & Chiang, 2014; Riols et al., 2017; Booth & Clarke, 2019).

4.3.2 Influence of cooling time on the gravito-turbulent state

To better understand the dependency of the gravito-turbulent state on the cooling effi-
ciency β, we performed a suite of simulations with a box size L = 32H and different
resolutions and different β. The box size is a compromise between the computational cost
and the aim of being independent of the box size. In Fig. 4.4 we show different time and
volume-averaged properties as a function of resolution and cooling efficiency. The thermal
energy and the Toomre parameter Q increase with increasing β, while the gravitational and
Reynolds stresses as well as the turbulent kinetic energy decrease. For a weaker cooling,
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Figure 4.3: Different time-averaged quantities as a function of the number of cells per scale
height for different box sizes in two-dimensional simulations with smoothing λ = 0.5H. We use a
cooling efficiency β = 10 and average the quantities over the time interval 250Ω−1 < t < 1000Ω−1.
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Figure 4.4: Different time-averaged quantities as a function of the cooling efficiency β for a
different number of cells per scale height in two-dimensional simulations with smoothing λ =
0.5H. We use a box size Lx = Ly = 32H, and average the quantities over the interval 250Ω−1 <
t < 1000Ω−1.
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Figure 4.5: Different time-averaged quantities as a function of the smoothing length scale λ for
a different number of cells per scale height in two-dimensional simulations with cooling efficiency
β = 15. We use a box size Lx = Ly = 32H and average the quantities over the time interval
250Ω−1 < t < 1000Ω−1.
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Res. N λ β = 1 β = 2 β = 3 β = 4 β = 5 β = 6 β = 7 β = 8 β = 9 β = 10 β = 11 β = 12 β = 13 β = 14 β = 15
4 2 no no no no no no no no no no - - - - no
8 2 no no no no no no no no no no - - - - no
16 2 T no no no no no no no no no - - - - no
32 2 T no no no no - - - - no - - - - no
4 1 18 no no no no no no no no no - - - - no
8 1 14 no no no no no no no no no - - - - no
16 1 7 T no no no no no no no no - - - - no
32 1 5 T no no no no no no no no - - - - no
4 1/2 7 16 40 92 351 no no no no no - - - - no
8 1/2 4 13 56 125 160 no no no no no - - - - no
16 1/2 3 7 12 59 56 no no no no no - - - - no
32 1/2 4 8 64 689 no no no no no no - - - - no
4 1/4 3 6 16 25 128 53 no no 383 no - - - - no
8 1/4 3 6 9 23 17 16 29 463 48 T 1185 no - - no
16 1/4 3 6 7 13 27 43 236 528 T 423 231 no no no no
32 1/4 2 4 14 15 31 202 1053 1289 no no no no no no no
4 1/8 3 6 10 22 28 40 82 511 no no - - - - no
8 1/8 2 4 7 10 19 27 20 37 65 510 106 468 no - no
16 1/8 2 4 7 10 15 15 31 93 163 560 419 1240 T T no
32 1/8 2 3 6 10 21 35 46 240 868 616 1740 560 219 316 no

Table 4.2: Time until the first fragment forms in a given simulation with constant cooling
efficiency β, starting from a gravito-turbulent state. The simulations are performed for different
resolutions and box sizes in two dimensions. Sometimes only a transient fragment forms that is
destroyed by shear again (‘T’), and in some cases, no fragmentation occurs at all (‘no’).

the turbulence has to be weaker to reach an equilibrium, and the disk can therefore be
warmer. We note that for all β the normalized stress α compares well with the expected
one, especially for higher resolution. For β = 100 we find a stronger dependence of the
Toomre parameter on the resolution, which we attribute to the quite long cooling time in
comparison to the total simulation time. The lowest resolution shows some deviations from
the other simulations, while for 8 cells per scale height the results seem to be converged
again. The Toomre numbers are slightly lower than found by Riols & Latter (2016) in
two-dimensional simulations (Q = 3 for β = 50, and Q = 2 for β = 10).

4.3.3 Influence of the smoothing length on the gravito-turbulent
state

As we have mentioned before, the smoothing factor λ is used to approximate the disk
stratification in three-dimensional simulations. Smaller values allow smaller structures to
fragment and also to generate heat. We note that the use of a PM grid for the gravity solver
leads to additional smoothing that depends on the grid size. To analyze the influence of λ
on the gravito-turbulent state we ran several simulations in a box of size L = 32H with
different λ for a cooling efficiency β = 15. This larger β is required to avoid fragmentation
for small λ.

In Fig. 4.5 we show several temporal and spatially averaged values as a function of λ
and resolution. As expected, the Toomre Q, the thermal energy, and the gravitational and
hydrodynamical stresses decrease with increasing λ. This is a natural consequence of the
suppression of short-range modes by the smoothing that reduces the heating and requires
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a smaller Toomre Q to still reach an equilibrium. Since α should be constant, the cooler
disks can sustain only smaller stresses. We note that for λ ≤ 0.5H the results only weakly
depend on λ, and except for the lowest resolution we find αsim ≈ αtheory in this case. For
larger smoothing, the results depend more strongly on λ, and especially λ = 2 shows a
much smaller Toomre parameter. In this case, the smoothing is probably too strong.

4.3.4 Fragmentation

After analysing the gravito-turbulent state we will focus in this section on the regime with
stronger cooling, which might allow the formation of fragments. As already discussed in
the introduction, the formation of fragments is a stochastic process, which means there
cannot be a sharp β value below which the disk fragments and above which the disk is
perfectly stable. Nevertheless, the probability for fragmentation decreases with increasing
β, and the formation time of the first fragments can be used to qualitatively compare the
probability for fragmentation.

As Young & Clarke (2015) showed, the introduction of a constant smoothing length in
two-dimensional simulations strongly improves the convergence behaviour. We, therefore,
run simulations with different resolutions, smoothing lengths λ and cooling efficiencies. As
initial conditions, we use the results from the last section obtained with β = 15, but now
evolved the simulations with β = 10. If we do not find fragmentation in these simulations,
we take the last snapshot as the initial condition for simulations with yet smaller β. If we
find fragmentation, we run simulations with larger β and use the snapshots obtained for
β = 15 as initial conditions. In this case, we also compute simulations with β < 10 but
take an earlier snapshot of the β = 10 run as initial conditions, at a time when there is
no sign of fragmentation yet. All simulations were run for t = 2000Ω−1 or until the disk
forms long-lasting fragments.

In Table 4.2 we show the formation times of the first fragment that then collapses
further. In some cases, we only find transient fragments that get destroyed by shear. As
expected, a larger λ requires stronger cooling, and for λ = 2H we do not find fragmentation
even for β = 1. We find good convergence of the critical βc for a fixed λ if the cell size of
the PM grid is smaller than λ. Otherwise, βc increases with resolution, since the effective
smoothing decreases. As we will show in the next section, the results for λ = 0.5H compare
well with those obtained also in three-dimensional simulations. Note that the stochastic
nature of fragmentation is obvious, especially for smaller smoothing lengths.

Young & Clarke (2015) performed a similar study with the FARGO code as well as an
SPH code with smoothing over 1H, or no smoothing at all. They also found fragmentation
with smoothing for β = 2 and no fragmentation for β = 4, which is consistent with our
results. Without smoothing they reported with both methods fragmentation at β = 10−12
for a resolution of around 33 cells per scale height, which agrees very well with our results
when the smallest smoothing length (λ = 1/8H) is used.
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Box size Resolution factors β0 δt tmax [Ω
−1] Relaxed IC? Section

8 1, 2, 4 10 ∞ 1000, 1000, 500 yes 4.4.1
16 1, 2, 4 10 ∞ 1000, 1000, 250 yes 4.4.1
32 1, 2 10 ∞ 1000, 500 yes 4.4.1, 4.4.2
64 1 10 ∞ 1000 yes 4.4.1
32 1, 2 15 ∞ 1000, 250 yes 4.4.2
32 1, 2 20 ∞ 1000, 250 yes 4.4.2
32 1, 2 35 ∞ 1000, 250 yes 4.4.2
32 1, 2 50 ∞ 1000, 250 yes 4.4.2
32 1, 2 100 ∞ 1000, 250 yes 4.4.2
16 1, 2, 4 5 ∞ 100 no 4.4.3
16 1, 2, 4 10 ∞ 100 no 4.4.3
16 1, 2, 4 15 ∞ 100 no 4.4.3
16 1, 2, 4 20 ∞ 100 no 4.4.3
8 1, 2, 4 20 4π yes 4.4.3
8 1, 2, 4 20 8π yes 4.4.3
8 1, 2, 4 20 16π yes 4.4.3
32 1, 2 20 4π yes 4.4.3
32 1, 2 20 8π yes 4.4.3
32 1, 2 20 16π yes 4.4.3
8 1, 2, 4 1 ∞ 500, 500, 250 yes 4.4.3
8 1, 2, 4 2 ∞ 500, 500, 250 yes 4.4.3
8 1, 2, 4 3 ∞ 500, 500, 250 yes 4.4.3
8 1, 2, 4 4 ∞ 500, 500, 250 yes 4.4.3
8 1, 2, 4 5 ∞ 500, 500, 250 yes 4.4.3
8 1, 2, 4 6 ∞ 500, 500, 250 yes 4.4.3
8 1, 2, 4 7 ∞ 500, 500, 250 yes 4.4.3
32 1, 2 1 ∞ 500, 250 yes 4.4.3
32 1, 2 2 ∞ 500, 250 yes 4.4.3
32 1, 2 3 ∞ 500, 250 yes 4.4.3
32 1, 2 4 ∞ 500, 250 yes 4.4.3
32 1, 2 5 ∞ 500, 250 yes 4.4.3
32 1, 2 6 ∞ 500, 250 yes 4.4.3
32 1, 2 7 ∞ 500, 250 yes 4.4.3

Table 4.3: Overview of all three-dimensional simulations discussed in this chapter. We use a
mass-based derefinement/refinement scheme with target mass mtarget and only allow cell masses
0.5mtarget < mcell < 2mtarget. To compare with previous results with a fixed spatial resolution
we also introduce an effective resolution per scale height, which is defined as the uniform spatial
resolution that is required so that the same amount of cells close to the mid-plane (±3H) is
expected (for details, see Section 4.4). We use a base resolution of 4 cells per scale height and
multiply this number for a higher resolution by an integer which we state in the second column.
In the third column, we give the initial cooling efficiency β0, which can in some simulations be
a function of time (β = β0 − t/δt). We stop the simulations at time tmax, or when a collapsing
fragment forms. We typically use initial conditions with already preformed gravito-turbulence,
except in the simulations discussed in Section 4.4.3.
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N mtarget

4 2.60× 10−3

8 3.25× 10−4

16 4.07× 10−5

Table 4.4: The resolution parameter N and the corresponding target mass mtarget for three-
dimensional simulations.

4.4 Gravitational instability in three dimensions

In this section, we now discuss three-dimensional simulations, which are substantially more
expensive and therefore only allow us to analyse a smaller parameter space than in two
dimensions. To avoid cells with too small densities that can destabilize the simulation we
introduce a density floor ρmin = 10−5 in the gravity calculation, which means all gravita-
tional accelerations are multiplied with a factor (ρ− ρmin)/ρ and set to 0 for ρ < ρmin. If
a cell reaches a density below ρmin, we reinitialize it with ρ = ρmin, v = (0,−qΩ0x, 0) and
sounds speed cs = 1. Our density floor is a bit smaller than the typical values of 10−4 used
in other studies (Shi & Chiang, 2014; Riols et al., 2017; Baehr et al., 2017; Booth & Clarke,
2019), but our adaptive spatial resolution naturally decreases the resolution in low-density
gas and therefore increases the allowed time steps. This adaptive nature allows us to use
a relatively large box of 32H in the vertical direction, which is enough to ensure that the
vertical boundary conditions do not influence the dynamics close to the mid-plane.

The density floor leads over time to an increase in the total mass in the box. Though
this effect is typically small, we enforce a constant total mass in the box by multiplying at
each global time step the mass, momentum and energy of each cell by a constant factor
to renormalize the mass within the box. To set the target mass resolution, mtarget, we
measure the total massMsys in the simulation and compute the number of cells Ntot within
−3H < z < 3H, that we would expect for a constant spatial resolution with N cells per
scale height. We then define mtarget =Msys/Ntot, but typically only cite N to characterize
the resolution of our simulations. In Table 4.4 we give the corresponding mtarget values for
each used value of N .

4.4.1 Influence of box size and resolution on gravito-turbulence

As a first step, we analyze the gravito-turbulent state for β = 10 as a function of box
size and resolution, similar to Booth & Clarke (2019). In Fig. 4.6 we show the temporal
evolution of several box-averaged quantities for different box sizes. We find in all simula-
tions a gravito-turbulent state which is burstier in smaller boxes. As already discussed in
Section 4.3.1 for two-dimensional simulations, this can be explained by missing large-scale
modes in smaller boxes, but we note that the influence is even more extreme than in two
dimensions.

For a better quantitative comparison, we calculate temporal averages and show the
results in Fig. 4.7. As in two dimensions, the Toomre Q, the turbulent kinetic energy, and
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Resolution parameter N β = 5 β = 10 β = 15 β = 20
4 16 no no no
8 14 21 28.75 no
16 15 22.7 29 no

Table 4.5: Time until the formation of the first fragment in three-dimensional simulations
started with smooth initial conditions. Runs where no fragments over the simulated time span
form are designated with ‘no’. We use a box size of Lx × Ly × Lz = 16H × 16H × 32H.

the thermal energy increase with the box size. The gravitational stress also increases while
the Reynolds stress decreases, in contrast to the two dimensional case. The normalized
stress α agrees well for a resolution of 8 cells per scale height with the expected one of
α = 0.04, and the quantities seem to converge for this resolution. In general, our results
compare well with those reported in Booth & Clarke (2019). Especially the turbulent
kinetic energy, the ratio of the gravitational to the total stress and the normalized stress
α, fit almost perfectly, except for the run with Lx = Ly = 8H. But even in this case, the
difference is quite small. The Toomre parameters are similar except for the smallest box,
where it is slightly higher in our simulations, which can be understood as being due to a
hotter halo that forms in the low-density region around the midplane.

4.4.2 Influence of cooling time on gravito-turbulence

As a next step, we vary the cooling efficiency β and show in Fig. 4.8 different temporally
and spatially average quantities. We choose a box size of Lx = Ly = 32H as a compromise
between a small influence of the box size and a large computational cost. As in two
dimensions the stresses and turbulent kinetic energy decrease while the Toomre Q and
thermal energy increase with increasing β. The normalized stress α agrees well with the
expected one, though the deviations increase with β in the higher resolution runs. This
might be attributed to the shorter simulation time relative to the cooling time. As in Shi
& Chiang (2014) the gravitational stress dominates over the Reynolds stress for all β.

4.4.3 Fragmentation

Prompt Fragmentation

It is well known from global simulations (Paardekooper et al., 2011; Young & Clarke, 2015;
Deng et al., 2017) that a disk might undergo spurious fragmentation before the gravito-
turbulent state sets in. This typically happens at the boundary between the turbulent and
non-turbulent regions due to the radially dependent cooling time. Since the size of the
interface depends on the resolution it affects the convergence of βc in global simulations
(Deng et al., 2017). Booth & Clarke (2019) showed that a similar spurious fragmentation
can also be observed in local simulations when the disk can cool for a finite time until
gravito-turbulence sets in. During this time overdensities can form that can collapse. Since
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Figure 4.6: The temporal evolution of different quantities for three-dimensional simulations of
gravito-turbulence with β = 10 in boxes of different sizes (shown in different columns) and the
same resolution of initially 4 cells per scale height H. We use a Savitzky–Golay filter to smooth
the data over 5Ω−1. We show the Toomre Q (first row), energy density (2nd row), maximum
density (3rd row), absolute stresses (4th row), and normalized stress α (5th row).
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Figure 4.7: Different time-averaged quantities as a function of the number of cells per scale
height for different box sizes in three-dimensional simulations. We use a cooling efficiency β = 10
and average the quantities from t = 50Ω−1 till the end of the simulation. The solid squares are
the results from our simulations, while the opaque circles are from Booth & Clarke (2019).
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Figure 4.8: Different time-averaged quantities as a function of the cooling efficiency β, for
different numbers of cells per scale height in three-dimensional simulations. We use a box size
Lx = Ly = 32H and average the quantities from t = 50Ω−1 till the end of the simulations.

the initial overdensity depends on the resolution also the convergence in local simulations
is affected by the smoothness of the initial conditions.

Since this phenomenon crucially depends on details of the numerical schemes, we per-
formed several simulations in a box of size Lx×Ly ×Lz = 16H×16H×32H for different
resolutions and different β. In Table 4.5 we give the formation time of the first fragment.
We observe even for quite large β = 15 fragmentation, and the boundary increases with
higher resolution as also reported in Booth & Clarke (2019). In Fig. 4.9 we can see that
indeed the density strongly increases at the beginning of the simulation before it decreases
again, marking the formation of a gravito-turbulent state in some of the simulations. The
initial peak grows faster for stronger cooling and becomes larger for higher resolution. And
it is this peak that in some cases leads to a runaway collapse, while, e.g., for β = 20 and
N = 16 the overdensity gets destroyed by shear again. To avoid being influenced this
behaviour we will use in the next sections an already formed gravito-turbulent state as the
initial conditions for our simulations.

Time-dependent cooling

In this section, we use a time-dependent β(t) = β0− t/δt, which decreases linearly in time.
As was shown in Clarke et al. (2007) using global SPH simulations, the behaviour of the
system can be divided into two regimes. For fast changes of β (small δt), the gravito-
turbulent state takes longer to adjust to the new β than δt, which means fragmentation
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Figure 4.9: The temporal evolution of the maximum density in a three-dimensional box of size
Lx ×Ly ×Lz = 16H × 16H × 32H for different β and different effective resolutions N . Smooth
initial conditions are used.
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Box size Res. parameter N δt = 4π δt = 8π δt = 16π
8 4 3.29 3.57 3.68
8 8 2.63 3.52 4.46
8 16 2.63 5.22 3.26
32 4 3.03 3.50 3.09
32 8 2.48 2.39 3.22

Table 4.6: The critical cooling rate β(t) = β0 − t/δt at which we found fragmentation in
simulations with a time-dependent cooling efficiency β. We varied the change rate of β (δt) as
well as the effective number of cells per scale height (second column). The initial conditions are
taken from the saturated simulations in the last sections with β = 20 or β = 10.

gets delayed to smaller β. If δt is larger the fragmentation boundary converged to βc = 3 as
in Gammie (2001). We note that if there is a stochastic component in the fragmentation,
βc would increase for large δt since the disk would spend more time at each β, and therefore
the probability of fragmentation increases. Booth & Clarke (2019) extended this study to
local simulations in a box of size Lx = Ly = 16H and found fragmentation up to βc = 5
for δt = 16π. Their value of 4 < βc < 5 is therefore a bit larger than the values of βc ≈ 3
found in Deng et al. (2017) and Baehr et al. (2017), which they attributed to stochastic
fragmentation.

As we have seen in Fig. 4.6, a smaller box size leads to larger density fluctuations
for the same β. This should increase the probability of stochastic fragmentation since
those density peaks can become self-gravitating and collapse. We, therefore, run several
simulations in a small box (Lx = Ly = 8H) and in a larger box that is more independent
of the box size (Lx = Ly = 32H). In Table 4.6 we report the formation time of the first
fragment that undergoes a collapse, taking as initial conditions the final snapshots from the
simulations presented in the previous sections. We find in the larger box fragmentation in
the range 2.5 < β < 3.5, close to the standard βc = 3 from Gammie (2001). In the smaller
box, we can observe fragmentation even at βc = 5.22, which supports the claim that in
smaller boxes stochastic fragmentation becomes more important. In general, we find the
lowest βc for δt = 4π, which we attribute to the limited time spent in each β regime and
therefore also limited fragmentation probability.

For both box sizes, we do not find a clear trend with resolution. In Fig. 4.10 and
Fig. 4.11 we show the temporal evolution of the maximum density as a function of β in the
small and large box. One can see the runaway nature of the gravitational collapse when
the cooling is efficient enough. The density fluctuations are larger in the smaller box, and
already for higher values of β a density peak is large enough to collapse.

Relaxed initial conditions

To further analyze the question of convergence of βc with resolution, we focus in this section
on simulations with a constant β. As initial conditions, we take the last snapshot from
the simulations presented in Section 4.4.1. We again use a box of size 8H × 8H × 32H,
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Figure 4.10: The maximum density in a three-dimensional box of size Lx × Ly × Lz = 8H ×
8H × 32H for a time-dependent cooling β(t) = β0 − δt/t and different δt. We use an effective
resolution of N = 16.
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Figure 4.11: The maximum density in a three-dimensional box of size Lx × Ly × Lz = 32H ×
32H×32H, for a time-dependent β(t) = β0−δt/t and different δt. We use an effective resolution
of N = 8.
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BS N β = 1 β = 2 β = 3 β = 4 β = 5 β = 6 β = 7
8 4 3.5 5.5 6.25 61.75 109 no no
8 8 3.5 4.75 6.75 10.25 71 no no
8 16 3.5 6.0 10 63.5 93 no 212
32 4 3.5 6.25 10 no no no no
32 8 2.25 5.75 10 210.5 no no no

Table 4.7: Formation time of the first fragment (if any) if we abruptly change β from 10 to a
lower value. The simulations were performed for different resolution parameters N and box sizes
(BS) in three dimensions.

exemplary for a small box, and a box of size 32H × 32H × 32H as an example for a
larger box. In Table 4.7 we show the formation time of the first fragment that leads to
a runaway collapse. We note that we run our simulations longer than those presented in
Booth & Clarke (2019) (only till 100Ω−1), which allows a better analysis of stochastic
fragmentation.

For β ≤ 3, a fragment forms in all simulations within the cooling time scale. This is
also expected since for β <

√
2πQ/(5γ − 4) ≈ 3 the cooling is efficient enough to prevent

the formation of pressure support stabilizing the disk on small scales (Kratter & Murray-
Clay, 2011). For β = 4 we find fragmentation in the large box only after 210Ω−1 due to
stochastic fragmentation. The difference between a direct fragmentation and stochastic
fragmentation can also be appreciated in Fig. 4.12, where one can see that for β = 4 a
gravito-turbulent state forms with a random overdensity collapsing at a later time.

In the smaller box, we find stochastic fragmentation in all simulations for β = 4 and
β = 5, and even for β = 7 in the highest resolution simulation. As we show in Fig. 4.13,
this fragmentation is again triggered by random overdensities and differs from the free fall
collapse for β ≤ 3. Similar results with a higher probability of fragmentation in smaller
boxes were also found in Booth & Clarke (2019), but due to their short run time they did
not observe stochastic fragmentation for β ≥ 5.

4.5 Discussion

4.5.1 Adaptive resolution with the moving mesh method

The TreePM method we implemented in this chapter in two and three dimensions for the
shearing box allows for an adaptive spatial resolution in the calculation of gravitational
forces. This is important for Lagrangian methods, since for a pure PM method the spatial
resolution is limited by the size of the used Cartesian grid. As we have shown in Section 4.4,
the maximum overdensities found in the gravito-turbulent state without fragmentation are
around 10 times larger than the average densities close to the midplane (see also Fig. 4.6).
In this case, the adaptive spatial resolution of the Lagrangian method is only by factor two
larger than the average resolution. If the disk starts to fragment, relative overdensities of
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Figure 4.12: The temporal evolution of the maximum density in a three-dimensional box of
size Lx × Ly × Lz = 32H × 32H × 32H for different β with an effective resolution of 8 cells per
scale height.
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Figure 4.13: The temporal evolution of the maximum density in a three-dimensional box of size
Lx ×Ly ×Lz = 8H × 8H × 32H for different β, with an effective resolution of 16 cells per scale
height.
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several hundred can be found, which means that the spatial resolution is increased by a
factor of 5 or even more compared to the environment. This means that our implementation
is especially useful if one is interested in following the detailed collapse and evolution of
such fragments.

Deng et al. (2021) showed that in global simulations with ideal MHD and self-gravity
the magnetic pressure can stabilize smaller clumps and prevent them from getting destroyed
by shear. Our setup would be ideal to study such problems with higher resolution, and
by adding additional effects such as non-ideal MHD. Another possible application is the
simulation of patches of the ISM as already realized in the TIGRESS (Kim & Ostriker,
2017) and SILCC (Walch et al., 2015) projects. In the dense phase of molecular clouds, the
density can become higher by a factor of several hundred, and therefore our Lagrangian
approach would automatically yield a much higher spatial resolution in these structures.
Since molecular clouds are the birthplace of new stars, this increased resolution would
allow us to follow the feedback of individual stars.

4.5.2 Relationship between two and three-dimensional simula-
tions

Two-dimensional simulations are significantly cheaper than three-dimensional calculations
for the same resolution, which means they allow the investigation of a much larger pa-
rameter space. As already mentioned in Young & Clarke (2015), the gravitational force in
two dimensions has to be smoothed to find convergence in the critical cooling efficiency β
below which we expect fragmentation. By comparing Table 4.2 and Table 4.7 we find for
λ = 0.5H a good agreement for two and three-dimensional simulations. The value is close
to the standard scale height and is therefore naturally incorporated in three dimensions by
the stratification in the z-direction. We note that the scale height can change especially in
the case of fragmentation, which would mean that the smoothing factor would have to be
time-dependent and also non-uniform in space.

Another option to improve the convergence in two dimensions would be the introduction
of a temperature floor in the cooling description. The temperature floor would increase
the pressure support in very cold regions and therefore stabilize the disk especially on
small scales. Lin & Kratter (2016) shows using analytical methods that small-scale modes
are more unstable in 2D compared to 3D, which means a temperature floor or smoothing
would have more influence in 2D.

As we have shown in Fig. 4.3 and Fig. 4.7, the Toomre Q increases if we increase the
box size up to Lx = Ly = 64H. But only in the three-dimensional case the gravito-
turbulent state is significantly burstier in smaller boxes, while for larger boxes the box
becomes warmer in two dimensions than in three dimensions. In three dimensions and
for large boxes, the gravitational stress dominates while in the two-dimensional case the
Reynolds stress is typically as large as the gravitational stress, independent of the box size.
In both cases the average normalized stress α agrees well with the analytic estimate (4.2),
and box-averaged quantities seem to converge for Lx = Ly > 64H and a resolution of 8
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cells per scale height.
Booth & Clarke (2019) showed that on large scales the three-dimensional gravito-

turbulence becomes effectively two-dimensional because no large-scale motion in the z-
direction is possible. But on small scales below one scale height, the turbulence is genuinely
three-dimensional and cannot be studied properly with two-dimensional simulations. In
summary, we conclude that for parameter studies and the analysis of large-scale effects,
two-dimensional simulations with smoothing can be sufficient, but the results always re-
quire confirmation with full three-dimensional simulations.

4.5.3 Importance of stochastic fragmentation for planet forma-
tion

In two-dimensional simulations with a smoothing λ = 0.5H, as well as in three-dimensional
simulations, we found direct fragmentation for β ≤ 3. For larger β, a gravito-turbulent
state can form that leads to random overdensities. From time to time these overdensities
become strong enough to collapse, which means the time to onset of fragmentation is a
stochastic quantity. This stochastic component becomes obvious in the results presented
in Table 4.2, where for lower cooling efficiencies fragments might form earlier than with
the higher cooling efficiency.

For our simulations with up to tmax = 2000Ω−1 and λ = 0.5H we never find fragmen-
tation above β = 5. Direct gravitational fragmentation is typically thought to occur in the
outer parts of protoplanetary disks, where β ∝ R

−9/2
0 (Paardekooper, 2012) is expected.

This means that the case of smaller, burstier boxes with a higher probability of stochastic
fragmentation might only be applicable close to the star where β is too large to form frag-
ments. The increase for the larger boxes of βc to βc = 5 due to stochastic fragmentation
therefore only slightly increases the expected radius at which fragmentation might become
important. Protoplanetary disks are expected to only stay self-gravitating for around 105

years (see e.g. Laughlin & Bodenheimer, 1994), which is equivalent to tmax = 628Ω−1

for a position of the box at R0 = 100AU for a disk around a solar mass star. Stochastic
fragmentation, therefore, does not significantly change the results obtained for βc.

4.6 Summary and Conclusions

In this chapter, we have introduced an adaptive self-gravity solver using the TreePM
method for the shearing box in a Lagrangian code in two and three dimensions. We
have applied the new method to the problem of a self-gravitating disk with the commonly
employed, simple β cooling prescription and analyzed the resulting gravito-turbulent state
as well as gravitational fragmentation in two and three dimensions. Our main findings for
the gravito-turbulent state are:

1. A larger box size leads typically to a warmer box (larger Toomre parameter), in the
regime Lx = Ly < 64H.
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2. Box-averaged quantities converge for a resolution of 8 cells per scale height.

3. In three-dimensional simulations the gravitational stress dominates over the hydro-
dynamic stress for larger boxes, while in two dimensions they are typically of similar
size.

4. The normalized stresses agree well with those obtained analytically from an energy
conservation argument (even for weak cooling with β = 100).

Our main findings about the critical cooling rate βc below which we expect fragmentation
are:

5. To reach convergence we require a start with a developed gravito-turbulent state,
and not from smooth initial conditions.

6. Two-dimensional simulations require a fixed smoothing length λ of the gravitational
force to reach convergence.

7. For λ = 0.5H, we find good agreement between two and three dimensional simula-
tions.

8. For β ≤ 3, the disk starts to fragment on a cooling time scale.

9. For 3 ≤ β ≤ 6, we find stochastic fragmentation.

10. Stochastic fragmentation has a higher probability to occur in smaller boxes, which
exhibit a burstier gravito-turbulent state.

11. Our results are in general in good agreement with literature results obtained with
static grid codes.

The reassuring agreement between our adaptive quasi-Lagrangian moving-mesh results
with those obtained with Eulerian mesh codes for the shearing box is an important vali-
dation of our new implementation. The Lagrangian resolution adaptivity offered by our
technique is an important advantage, however, especially for tracking the fate of collapsing
fragments. We plan to focus on this question in future work. Also, we plan as a next
step to apply the implementation to disks with self-gravity and magnetic fields as well as
patches of galactic disks.

4.7 Appendix: Tests of gravity solver

In this section, we test our implementations of self-gravity for the shearing box described
in Section 4.2.3. While for the two-dimensional case there exist analytic solutions we have
to compare our results to numerical results in three dimensions.
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4.7.1 Two dimensions

For two dimensions, we follow mostly the tests already presented in Riols & Latter (2016)
and analyze the evolution of small perturbations added to the ground state of the shearing
box. We use more accurate binning onto the PM mesh presented in Appendix 4.8. In
the following, quantities with subscript 0 correspond to the value of the background state
while quantities with subscript 1 denote small perturbations to it. The linearized equations
without smoothing can be written as:
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= qΩ0x

∂Σ1
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− Σ0∇ · (v1), (4.38)
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∇2Φ1 = 2πGΣ1, (4.42)

and simplify for an isothermal EOS (P = Σc2s) to:

∂Σ1

∂t
= qΩ0x

∂Σ1

∂y
− Σ0∇ · (v1), (4.43)

∂vx1
∂t

= qΩ0x
∂vx1
∂y

+ 2Ω0vy1 −
c2s
Σ0

∂Σ1

∂x
− ∂Φ1

∂x
, (4.44)

∂vy1
∂t

= qΩ0x
∂vy1
∂y

+ qΩ0vx1 − 2Ω0vx1 −
c2s
Σ0

∂Σ1

∂y
− ∂Φ1

∂y
, (4.45)

∇2Φ1 = 2πGΣ1. (4.46)

Axisymmetric case (isothermal)

We first analyze the evolution of axisymmetric perturbations of the form:Σ1

vx1
vy1

 = ei(kxx−ωt)

Σ1,c

vx1,c
vy1,c

 , (4.47)

where the subscript c denotes the initial amplitude of the perturbation, which is uniform
in space and independent of time. Plugging this ansatz into (4.43)-(4.46) leads to the
dispersion relationship:

ω2 = k2xc
2
s + Ω2

0 − 2kxΩ0cs/Q, (4.48)

with the Toomre parameter Q = Ω0cs/(πGΣ0). The eigenvector is given by:Σ1,c

vx1,c
vy1,c

 = C0

 Σ0kx
±ω

i(2− q)Ω0

 (4.49)
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with a constant C0 defining the initial amplitude. For Q < 1 the frequency ω becomes
imaginary for wave numbers:

Ω0

cs

(
1

Q
−
√

1

Q2
− 1

)
≤ kx ≤ Ω0

cs

(
1

Q
+

√
1

Q2
− 1

)
, (4.50)

which means perturbations grow exponentially with growth rate γ2 = −ω2. For other
wavelengths, or Q > 1, the perturbations lead to an oscillation.

To test our code, we setup a box of size Lx = Ly = 2π, background density Σ0 = 1,
orbital frequency Ω0 = 1, isothermal sound speed cs = 1 and add a perturbation with
kx = 1 of the form of the eigenvector (4.49) and C0 = 10−5/ (Σ0kx). By varying G we can
also change the initial Toomre number. For Q < 1 we determine the growth rate γ of the
instability by integrating the square of the density deviations from the ground state, and
for Q > 1 we define the oscillation frequency by measuring the position of the maximum
and minimum of Σ1. For Q < 1 we stop the simulation when Σ1 grew by two orders of
magnitudes and reaches an amplitude of 10−3, while for Q > 1 we simulate until t = 5. We
use two different initial resolutions of 1282 and 5122 cells with an initial Cartesian grid.

As one can see from the results in Fig. 4.14, both resolutions accurately describe the
growth/oscillation of the perturbations away from Q = 1. Close to Q = 1 we find for the
lower resolution run a smaller growth rate/larger frequency in comparison to the analytical
result, but this deviation decreases for the higher resolution simulations.

Non-axisymmetric case (isothermal and adiabatic)

In the following, we will discuss non-axisymmetric perturbations (ky ̸= 0). In this case,
the wavevector becomes time-dependent:

(kx, ky) = (kx0 + qΩ0ky0t, ky0). (4.51)

We set up a perturbation with kx0 = −2, ky = 1 in a box of size Lx = Ly = 2π, with initial
amplitudes Σ1,c

vx1,c
vy1,c

 = 10−3

1
1
i

 , (4.52)

isothermal sound speed cs = 1 and Toomre parameter Q0 = 1.1358, which corresponds to a
gravitational constant G = 0.280252. There exists no analytical solution, which means we
have to integrate equations (4.43)-(4.46) numerically. We use different initial resolutions
and always a Cartesian grid, and compare in Fig. 4.15 the evolution of the rms velocity
fluctuations with the expected one. If we increase the resolution, our results converge to
the semi-analytical result.

We rerun these simulations with an adiabatic equation of state, which means we ad-
ditionally have perturbations in the sound speed. We choose the adiabatic coefficient
γ = 5/3, the same initial amplitude (4.52), constant background pressure P0 = 1 and
amplitude of the initial pressure perturbation P1,c = 10−3. As we show in Fig. 4.15, the
results of our code converge to ones obtained by integrating equations (4.38)-(4.42).
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Figure 4.14: For the positive ordinate we show the linear growth rate γ of an axisymmetric
perturbation as a function of the Toomre parameter Q0, while for the negative ordinate we give
the oscillation frequency −ω. The solid lines present the solution of equation (4.48) and the
symbols show results for simulations carried out with two different resolutions.
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Figure 4.15: Root mean square velocity fluctuations of a non-axisymmetric hydrodynamic
shearing wave. The upper panel shows the result for an isothermal equation of state, the lower
panel gives them for an adiabatic equation of state. The black line is the semi-analytic solution
obtained by integrating the linearized Euler equations. The coloured lines give the simulation
results for different resolutions. Our numerical results converge to the expected solution.
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4.7.2 Hydrostatic equilibrium in three dimensions

In this section, we test how well our code can sustain a vertical, hydrostatic equilibrium
following the tests of Riols et al. (2017). We first introduce the sounds speed cs0 and density
ρ0 in the midplane, which leads to the definition of the isothermal Toomre parameter,

Q2D0 =
cs0Ω

πGΣ
, (4.53)

as well as scale height H0 = cs0/Ω.
The total vertical gravitational force is the sum of the contributions of self-gravity and

the tidal potential, and only for the special cases that one of them can be neglected, an
analytic solution exists. Otherwise, we have to solve the Poisson equation and the equation
of hydrostatic equilibrium numerically. Following Riols et al. (2017), they can be combined
into the single dimensionless equation:

1

γ

d

dz

[
1

ρ

dργ

dz

]
+ 1 +

∆

Q2D0

ρ = 0, (4.54)

where we introduced the dimensionless quantities z = z/H0, ρ = ρ/ρ0 and the ratio
∆ = 4H0ρ0/Σ. By fixing Σ = 1 and a value for Q2D0 we can first start with a guess for ρ0
which gives us the initial ∆. We then solve equation (4.54) with a finite-difference method
and calculate the corresponding surface density. We compare it with our expected value,
adapt our initial guess for ρ0 and repeat the process iteratively until we find convergence
in the surface density of our profile.

As a test, we calculate the profile for Q2D0 = 1 and an isothermal equation of state
(γ = 1) as well as an adiabatic EOS (γ = 5/3). As one can see in Fig. 4.16 the additional
self-gravity compresses the disk and leads to a smaller effective scale height.

To test our self-gravity implementation we set up a box of size Lx×Ly×Lz = 1×1×12,
surface density Σ = 1, Toomre Q2D0 = 1, cs0 = 1 and an initial resolution of 20 cells per
scale height. We use a target mass of mtarget = 5 × 10−5 and allow a maximum relative
volume difference of 10 between neighbouring cells. We let the profile evolve for a time
1000Ω−1 and show in Fig. 4.16 its final shape. In the isothermal case, the code can stabilize
the profile. In the polytropic setup, the disk heats up in the low-density region which leads
to an expansion of the disk. Close to the midplane the density profile stays stable.

4.8 Appendix: Inaccuracies in the PM force

The particle-mesh method can be divided into several sub-steps:

1. Binning of mass of the Voronoi cells onto a Cartesian grid.

2. Fourier transformation of the density.

3. Multiplication with the Green’s function.
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Figure 4.16: The vertical density profile for an isothermal (left) and polytropic gas with γ = 5/3
(right) in hydrostatic equilibrium. By comparing the blue and black-dashed lines we can see
the compression of the disk by self-gravity. The red line shows measured profiles in our test
simulations at t = 1000Ω−1. In the isothermal case, our code can sustain the profile to high
quality while for the polytropic case the profile starts to broaden at the outer edge of the disk.

4. Inverse Fourier transformation.

5. Calculation of a force field by linear differencing.

6. Interpolating of forces from the Cartesian grid to the positions of the Voronoi mesh
cells.

To ensure momentum conservation we have to use for the binning onto the Cartesian grid
and for the interpolation of the force onto the Voronoi mesh the same kernel. Following
Weinberger et al. (2020) we use the cloud-in-cell (CIC) assignment, which does not take
into account the explicit geometric shape of the Voronoi cells. This can lead to the situation
that even in a medium with constant hydrodynamic density, the density is not constant
on the Cartesian grid and spurious forces can emerge. A similar effect can be observed for
the tree algorithm, in which we also do not take into account the spatial extension of the
Voronoi cells.

The physical density in a PM cell with volume Vj is given by:

ρPM,j =

∫
Vj
ρ dV∫

Vj
dV

=

∑
i ρiVi∪j∑
i Vi∪j

=

∑
i ci,jρiVi∑
i ci,jVi

, (4.55)

where i denotes the Voronoi cells, and Vi∪j is the overlap of the two cells. We introduced
here ci,j = Vi∪j/Vi, which is however very expensive to calculate due to its dependence on
Vi∪j. Since this expression represents a weighted average of densities, no new extrema can
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form. By introducing the weighting function

Wj(i) = ci,j
Vj∑
i ci,jVi

, (4.56)

equation (4.55) can be rewritten as:

ρPM,j =
∑
i

Wj(i)ρiVi/Vj. (4.57)

In the standard PM method, the weighting function gets approximated by replacing ci,j
by the CIC assignment approximation in the numerator, and evaluating the denominator
exactly, which means

∑
i ci,jVi = Vj. With this approximation, new extrema can form since

the density on the PM grid is not a simple weighted sum of the densities on the Voronoi
mesh.

As a natural extension, we could also use the CIC approximation in the denominator
of the weighting function, which means the mass, as well as the volume of a Voronoi
cell, get binned onto the mesh. This scheme is also momentum conserving if the same
weighting function is used to interpolate the forces back onto the Voronoi mesh, but it does
not conserve the mass, especially if there are empty PM cells from the CIC assignment.
We, therefore, use in all production runs the standard PM binning except for the two-
dimensional tests presented in Appendix 4.7.1.



Chapter 5

Rossby wave instability on a moving
mesh

In this chapter, I present two-dimensional, global simulations of the Rossby wave instability.
The results are not yet published in a scientific journal but I plan to submit them in the
near future.

5.1 Introduction

Recent observations of protoplanetary disks (PPDs) have revealed a variety of non-axisym-
metric distributions of dust (van der Marel et al., 2013; Long et al., 2019; Francis & van
der Marel, 2020; van der Marel et al., 2021). They suggest therefore the presence of
non-axisymmetric structures such as vortices in these disks (van der Marel et al., 2013;
Baruteau et al., 2019). These vortices are of interest both from an observational and
from a theoretical perspective. They can act as effective dust traps, locally increasing the
dust density and facilitating the formation of planetesimals through gravitational collapse
(Raettig et al., 2015, 2021). Additionally, vortices can interact with existing planets and
influence their orbital migration (Li et al., 2009; Yu et al., 2010; Lin & Papaloizou, 2010;
McNally et al., 2019). Vortices in simulations are often long living as the vortensity is
approximately conserved. Therefore, from a theoretical perspective, one would expect to
observe vortices if they are able to form (Lin & Pierens, 2018).

Several different instabilities have been proposed as potential mechanisms for the for-
mation of vortices in protoplanetary disks, including the baroclinic instability (Klahr & Bo-
denheimer, 2003), the vertical shear instability (Arlt & Urpin, 2004; Nelson et al., 2013), the
zombie vortex instability (Marcus et al., 2015), and the Rossby wave instability (Lovelace
et al., 1999). Of these, the Rossby wave instability (RWI) is of particular interest. This
instability can be triggered when disk properties change rapidly as a function of radius,
such as in regions where gaps have been created by orbiting planets (Cimerman & Rafikov,
2023) or at the boundary between a magnetically dead region and an MRI active region
(Varnière & Tagger, 2006; Lyra & Mac Low, 2012). As these regions are likely to exist
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in PPDs, the RWI is considered a likely mechanism for the formation of vortices in these
disks.

The RWI can be described in two dimensions. Lovelace et al. (1999) derived as a
necessary condition for the RWI that the background flow contains at least one extremum
in the vortensity profile:

L =
ΩΣ

κ2
S2/γ, (5.1)

where we introduced the entropy S = P/Σγ, the surface density Σ, the rotational frequency
Ω, the epicycle frequency κ, and the adiabatic coefficient γ. Ono et al. (2016) performed a
linear stability analysis in a simplified model assuming a barotropic equation of state and
an axisymmetric density variation. They derived a necessary and sufficient condition for
the RWI semi-analytically. In Ono et al. (2018) they extended this study by performing
direct simulations using the ATHENA++ code and verified the linear stability analysis.
They also investigated the saturation of the RWI and found the formation of a single,
long-living vortex that slowly migrates inwards. However, this study neglected important
physics that can have an influence on the RWI, such as self-gravity (Lovelace & Hohlfeld,
2013; Yellin-Bergovoy et al., 2016; Lin & Pierens, 2018; Rendon Restrepo & Barge, 2022),
magnetic fields (Yu & Li, 2009), viscosity (Lin, 2014), the interaction with dust (Lyra
et al., 2008, 2009), or a non-barotropic equation of state (Tarczay-Nehéz et al., 2020; Fung
& Ono, 2021; Huang & Yu, 2022). Despite these limitations, this setup is attractive for a
parameter study due to its simplicity and includes the most important physics to trigger
the RWI.

To accurately model the nonlinear evolution of a vortex, a numerical method with
low numerical viscosity is necessary. One option is to use a grid geometry that is specifi-
cally tailored to the problem, such as the polar grid used in Ono et al. (2018) or special-
ized codes like DISCO (Duffell, 2016). Another option is to use a moving mesh code like
AREPO (Springel, 2010a; Weinberger et al., 2020), which allows the computational mesh
to move with the gas flow. Unlike static grid codes, AREPO is Galilei invariant and has
low advection errors, as the rotation can be incorporated into the mesh movement and
its quasi-Lagrangian nature allows for higher resolution in dense regions. However, the
irregularity of the mesh can introduce numerical errors. Indeed, the moving-mesh method
has been known to suffer from so-called grid noise, which can however be reduced by using
a higher-order flux integration as discussed in Zier & Springel (2022a).

In this Chapter, we demonstrate that AREPO can accurately simulate the linear and
nonlinear evolution of the RWI by comparing our results with those obtained by Ono et al.
(2018). This research corroborates our previous studies, which have shown that AREPO can
resolve the magnetorotational instability (MRI) and the gravitational instability (GI) with
similar accuracy to static grid codes (Zier & Springel, 2022b, 2023). Therefore, we conclude
that AREPO can be used to achieve high-accuracy simulations of disk systems, particularly
in cases where an optimized grid geometry cannot be constructed from the initial conditions
or when a spatially varying resolution is needed. This is especially relevant for studying
with high resolution the inner evolution of vortices formed by the RWI.

This Chapter is organized as follows: In Section 5.2, we present the initial conditions
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and numerical techniques utilized in this study. We also introduce a new Fourier filter
for the AREPO code, which allows for the analysis and manipulation of different Fourier
modes during runtime. In Section 5.3, we investigate the impact of resolution and accuracy
on the linear and nonlinear evolution of the RWI. We also use the Fourier filter to compare
the exponential growth rate of modes in isolation with theoretical predictions. Finally, in
Section 5.4, we summarize and discuss our results.

5.2 Disk model and numerical methods

5.2.1 Model

In the present study we use the model h10w3g1 described in Ono et al. (2016) and Ono
et al. (2018), which can be concisely summarized as follows. We consider a global, purely
hydrodynamic two-dimensional disk with surface density profile Σ(r, ϕ) and velocity v,
which rotates around a central object with mass M at (x, y) = (0, 0). The temporal
evolution of the gas can be described by the Euler equations in Cartesian coordinates,

∂U

∂t
+∇ · F = Sgrav. (5.2)

U describes the conserved variables, F (U) gives the flux function, and Sgrav is a source
term due to the central object. They are given explicitly by:

U =

(
Σ
Σv

)
;F (U) =

(
Σv

ΣvvT + P

)
;Sgrav =

(
0

−ΣGM
r2

r
r

)
(5.3)

in the local rest frame with r = (x, y). The system of equations is closed by a barotropic
equation of state:

P = S0Σ
Γ, (5.4)

where P is the pressure, S0 is the constant entropy and Γ = 5/3 is the adiabatic index. In
the following, we will use cylindrical coordinates r, ϕ, although we note that we will solve
the Euler equations using Cartesian coordinates. We use static (∂/∂t = 0), axisymmetric
(∂/∂ϕ = 0) initial conditions with a purely circular flow (vr = 0). The initial density
profile is given by:

Σ0(r) = Σback

(
1 + A0 exp

[
−1

2

(
r − rn
∆w0

)2
])

, (5.5)

where Σback = 1 describes the background density and the second term is a superimposed
Gaussian peak that can be unstable to the RWI. A0 = 0.439 gives the height of the peak,
rn = 1 the position of maximum density, and ∆w0 = 0.0632 is the width of the peak. As
in Ono et al. (2018) we define the non-dimensional parameter:

h =

√
ΓS0Σ

Γ−1
back

rnΩn

, (5.6)
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where Ωn =
√
GM/r3n is the Keplerian frequency at radius rn. The initial entropy S0 is

then given by:

S0 =
h2

Γ

(rnΩn)
2

ΣΓ−1
back

, (5.7)

which means h can be understood as a measure of the initial disk temperature. We use
h = 0.1 exclusively in this chapter. The condition ∂vr/∂t = 0 leads to the rotation profile:

vϕ,0 =

√
GM

r
+ r

dΠ0

dr
, (5.8)

with the pressure function Π0(r) = ΓS0Σ
Γ−1
0 /(Γ− 1). The initial conditions can therefore

be uniquely characterized by the parameters A0, ∆w0 and h. They also determine the
growth rate γ∗(A0,∆w0, h) of the fastest growing mode, which is, in general, a monotonous
function of A0 for fixed ∆w0 and h (Ono et al., 2016).

5.2.2 Numerical methods

To solve equation (5.2) we use the AREPO code (Springel, 2010a; Pakmor et al., 2016b;
Weinberger et al., 2020) that employs a moving, unstructured Voronoi mesh in combination
with the finite volume method. In Zier & Springel (2022a) we showed that the original
version of the code suffered from noise on the grid scale for shear flows as present in a
Keplerian disk. We, therefore, use in this paper typically the higher order flux integration
rules presented in Zier & Springel (2022a) that drastically reduce the grid noise, but in
some examples, we also use the old integration rules for comparison. We use the HLLC
Riemann solver and implement the gravity source term by using a standard Strang splitting
scheme in the time integration.

We use a natural system of units where rn = 1, M = 1, and G = 4π2, such that one
time unit is equal to the rotational period at r = rn for a purely Keplerian orbit. Our
simulations cover the disk radius of rin < r < rout with rin = 0.25 and rout = 2.6. Since
we are interested in the Rossby wave instability, which appears close to r = rn, we want
to avoid that the boundaries can influence the results. We especially want to prevent any
waves being reflected or launched at the boundaries. Ono et al. (2018) used non-reflective
boundary conditions (Godon, 1996), which are complicated to implement on a Voronoi
mesh and we, therefore, use instead a wave damping region, whose implementation we will
discuss in the next section in detail.

To ensure a constant mass resolution during the simulation time we allow the splitting
or merging (refinement and derefinement operations) of cells if their mass mi exceeds a
predefined target mass mtarget by a factor two, or falls below half of the target mass. As in
Ono et al. (2018) we want to resolve h (see equation (5.6)) by at least 25 cells. Since we
cannot guarantee a fixed spatial resolution with our refinement/derefinement strategy, we
use the background density Σback and set the target mass to mtarget = Σback (0.04h)

2.
For the initial conditions, we use a cylindrical mesh that is iteratively constructed

starting from r = rin. The radial size of each subsequent circle of cells is determined by
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calculating the density Σ(r) at the current radius r and setting ∆r =
√
mtarget/Σ(r). The

number of cells in the ϕ direction is then set to Nϕ = 2πr/∆r, which guarantees cells with
a nearly unity aspect ratio. The mesh generation ends when r = rout is reached. This
minimizes the number of initial refinement and derefinement operations, which can add
unwanted noise to the initial conditions.

Implementation of boundary conditions

To reduce the impact of the boundary on the RWI we use a multi-level approach. First,
we create two circular layers of cells that touch each other at r = rin and rotate with
the angular frequency Ω =

√
GM/r3in. Besides the cell movement, we treat the outer

layers as normal hydrodynamic cells, while we do not save the hydrodynamic state of the
inner layer. Instead, we use inflow-outflow boundary conditions for the Riemann problems
between cells from the inner and outer layers. Cells which come close to the outer layer
and can potentially penetrate the surface at r = rin are automatically derefined. For
rin < r < r1 we set the state of all cells at every time step to their initial values. This
ensures that at r = r1 the non-Lagrangian motion of the cells at r = rin does not influence
the boundaries anymore. In tests we found that this boundary treatment between freely
evolving cells and cells with fixed hydrodynamic states allows for the reflection of generated
hydrodynamic waves. We therefore add another area, r1 < r < r2, in which we relax the
hydrodynamic quantities to their initial values. In practice we use the following expression
for the relaxation:

dX

dt
= −X −X0

T (r0)
C

(
r2 − r

r2 − r1

)2

, (5.9)

with X = (Σ, vr, vϕ), X0 being the background state, the constant C = 8 is used to
describe the strength of the relaxation, and the orbital time at r = r0 is T (r0). For the
outer boundary at rout we use a similar approach with relaxation:

dX

dt
= −X −X0

T (r3)
C

(
r − r4
r3 − r4

)2

. (5.10)

We choose the radii rin = 0.2, r1 = 0.25, r2 = 0.5, rout = 2.6, r4 = 2.5 and r3 = 2.125. In
Fig. 5.1 we show an example of the different areas in our simulation, and in Appendix 5.5
we demonstrate that our implementation of the boundary conditions significantly damps
hydrodynamic waves and reduces the artefacts due to the boundaries.

Fourier filtering

To analyze the growth of instabilities it is often useful to decompose the density and
velocity fields into Fourier modes, e.g.:

Σ(r, ϕ) =
∑
m

ℜ
(
Σm(r)e

imϕ
)
. (5.11)
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Figure 5.1: Sketch of the employed strategy to reduce the effect of boundary conditions. Between
rin and r1 as well as between r4 and rout we overwrite at each time step the properties of cells with
the initial conditions. Between r1 and r2 as well as between r3 and r4 we relax the hydrodynamic
quantities over a finite time to the initial ones and between r2 and r3 we let them freely evolve.

Here Σm(r) are the Fourier coefficients, which are functions of radius r and can evolve
in time. The idea to filter specific modes in Fourier space to analyze the evolution of
individual modes of the RWI was already implemented in Ono et al. (2018) for a cylindrical
mesh in Athena++. For this mesh configuration, the Fourier coefficients can be obtained
by one fast Fourier transformation (FFT) per cell ring. On a Voronoi mesh, the Fourier
transformation is not directly possible. Instead, we additionally have to implement a
mapping from the Voronoi mesh to a regular cylindrical grid, and for our Fourier cleaning
approach, an additional mapping back to the Voronoi mesh. For the cylindrical mesh,
we use a uniform size of the cells in the radial and azimuthal directions. We choose the
number of cells in both directions, such that the cells at r = rn have an aspect ratio of 1,
which means rndϕ = dr should hold. To ensure an accurate representation of the density
and velocity fields on the cylindrical grid we demand that a Voronoi cell at r = rn with
density ρmax = 1 + A0 should be resolved by approximately 16 cells. This leads to the
condition mtarget ≈ 16ρmaxrndϕ dr = 16ρmaxdr

2 or

dr =

√
mtarget

16ρmax

. (5.12)

For the mapping of the Voronoi mesh to the cylindrical mesh, we first find for every cell
of the cylindrical mesh the Voronoi cell in which its centre lies. We then extrapolate the
density or velocity from the centre of the Voronoi cell to the centre of the cylindrical cell
using the gradient information of the code. For mapping the cylindrical mesh back to the
Voronoi mesh we perform a bilinear interpolation in cylindrical coordinates using the 4
nearest cells of the cylindrical grid.

We perform these operations for the density Σ as well as the radial velocity vr and the
azimuthal velocity vϕ. Even without modifications of the Fourier coefficients the mapping
to the cylindrical mesh and back to the Voronoi mesh is not conservative but it adds
additional noise. To reduce this noise we actually use the velocity vϕ−vkeplerian(r) instead of
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vϕ in the steps above. Also, we specifically calculate the gradients of vr and vϕ−vkeplerian(r)
for the binning to the cylindrical mesh instead of the standard gradients of vx and vy. In
Appendix 5.6 we show that the impact of the noise from this method on a simulation
without Fourier filtering is negligible.

5.2.3 Overview of simulations

In Table 5.1 we give an overview of all simulations we discuss in this chapter. We perform
simulations in which we use the Fourier filter only to measure the evolution of Fourier modes
but otherwise do not change the properties of the Voronoi cell. To better understand the
evolution of individual modes we also perform simulations with a mode-filtering for the
density Σ and the velocity components vr and vϕ, which means we decompose the fields
into their Fourier modes and set some of the Fourier coefficients to zero. We call it an
axisymmetric filter if we set all components m ̸= 0 to 0 and a single-mode filter if we
remove all modes except the axisymmetric mode and a specific mode m = k. This mode-
filtering is performed every 0.04 time units and is described in more detail in Section 5.2.2.

We also use the Fourier technique to create well-defined initial conditions. First, we
set up the grid as described above, and in simulations with a single-mode filter, we set
for the radial velocity vr,k = 10−6 vϕ,0 exp

(
[(r/rn − 1) /0.2]2

)
to trigger the instability. For

simulations without mode filtering, we add this noise to the Fourier coefficients of all modes
with 1 ≤ m ≤ 128.

5.3 Evolution of the Rossby wave instability

In Fig. 5.2 we show the temporal evolution of the surface density in our default run with-
out Fourier filtering. At approximately t = 7.5 the ring starts to become unstable leading
to the formation of five vortices, which are still connected by over-dense regions. Subse-
quently, density waves are generated which can transport angular momentum. By t = 9
the formation of five distinct vortices has been completed. Over time, the vortices continue
to merge until only one large vortex remains at t = 22. This final vortex rotates around the
central object and gradually moves closer to it. This evolution is qualitatively consistent
with the findings in Ono et al. (2018), although they reported the initial formation of four
vortices instead of five.

5.3.1 Linear growth

To quantitatively analyse the RWI we use in this section the Fourier filter to better under-
stand the exponential growth rate of different modes in the linear and weakly nonlinear
regime. In Fig. 5.3 we show the evolution of different modes in simulations in which we let
all modes evolve freely. Initially, the amplitudes of all modes are quite noisy, but later one
can observe a nearly perfect exponential growth with the expected growth rate, especially
for the fastest growing modes (m = 4, 5). The initial noise can be explained on the one
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Name mtarget Nr Nϕ Flux integration Modes Section

AllNRO 1.6× 10−5 3200 7800 2nd order all 5.3.1 & 5.3.2
AllNR 1.6× 10−5 3200 7800 4th order all 5.3.1 & 5.3.2
AllLR 6.4× 10−5 1600 3900 4th order all 5.3.1 & 5.3.2
AllHR 4× 10−6 6400 15600 4th order all 5.3.1 & 5.3.2
M1NR 1.6× 10−5 3200 7800 4th order 0, 1 5.3.1
M2NR 1.6× 10−5 3200 7800 4th order 0, 2 5.3.1
M3NR 1.6× 10−5 3200 7800 4th order 0, 3 5.3.1
M4NR 1.6× 10−5 3200 7800 4th order 0, 4 5.3.1
M5NR 1.6× 10−5 3200 7800 4th order 0, 5 5.3.1
M6NR 1.6× 10−5 3200 7800 4th order 0, 6 5.3.1
M7NR 1.6× 10−5 3200 7800 4th order 0, 7 5.3.1
M8NR 1.6× 10−5 3200 7800 4th order 0, 8 5.3.1
M9NR 1.6× 10−5 3200 7800 4th order 0, 9 5.3.1
M1NRO 1.6× 10−5 3200 7800 2nd order 0, 1 5.3.1
M2NRO 1.6× 10−5 3200 7800 2nd order 0, 2 5.3.1
M3NRO 1.6× 10−5 3200 7800 2nd order 0, 3 5.3.1
M4NRO 1.6× 10−5 3200 7800 2nd order 0, 4 5.3.1
M5NRO 1.6× 10−5 3200 7800 2nd order 0, 5 5.3.1
M6NRO 1.6× 10−5 3200 7800 2nd order 0, 6 5.3.1
M7NRO 1.6× 10−5 3200 7800 2nd order 0, 7 5.3.1
M8NRO 1.6× 10−5 3200 7800 2nd order 0, 8 5.3.1
M9NRO 1.6× 10−5 3200 7800 2nd order 0, 9 5.3.1
M0LR 6.4× 10−5 1600 3900 4th order 0 5.5
M0NR 1.6× 10−5 3200 7800 4th order 0 5.5
M0HR 4× 10−6 6400 15600 4th order 0 5.5

AllNRBin 4× 10−6 3200 7800 4th order all (with binning) 5.6

Table 5.1: Overview of all simulations performed in this chapter. A target mass resolution,
mtarget, is defined, and for the polar mesh, there are Nr cells in the radial direction and Nϕ cells
in the polar direction. We typically use the higher-order flux integration method presented in
Zier & Springel (2022a), but sometimes revert to the older second-order accurate method for
comparison. In certain simulations, a Fourier filter is utilized to allow only certain modes to
grow.
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Figure 5.2: The surface density at different times in the simulation AllNR.
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Mode m λ [Ω−1] (isolation) λ [Ω−1] (mode coupling)
1 0.103 0.478 (4 - 3)
2 0.184 -
3 0.232 -
4 0.246 -
5 0.230 -
6 0.188 -
7 0.122 0.478 (4 + 3)
8 0.04 0.492 (4 + 4)
9 0 0.476 (4 + 5)

Table 5.2: The linear growth rates λ of the Rossby wave instability for different modes. Mode
coupling can cause some modes to grow faster in the nonlinear regime, but we only present the
relevant modes that impacted our simulations.

hand by numerical noise and on the other hand by a finite amount of time until the system
finds the eigenvector with the largest growth rate. The noise becomes smaller if we increase
the resolution, and if we use the higher order flux integration from Zier & Springel (2022a).
At a later time, we can also observe a larger growth rate in the m = 1, 7, 8, 9 modes which
can be explained by the coupling of faster-growing modes in the weakly nonlinear regime.
But also for the nonlinear regime, the new higher-order flux integration leads to cleaner
results, since the old integration scheme continuously adds new noise on the grid scale.
This is especially severe for modes with smaller wavelengths. The linear regime for the
fastest-growing modes ends when the modes approximately reach an amplitude of 0.1.

To suppress the nonlinear coupling between modes we have also performed simulations
with filtering in Fourier space, which means we only allow a certain mode m and the
corresponding axisymmetric mode to evolve. In Fig. 5.4 we show the temporal evolution
of the amplitude of those modes. In all simulations except for the modes m = 8, and 9
we find a regime of exponential growth with perfect agreement with the expected growth
rate. The simulations with the less accurate flux integration show initially larger noise,
but at later times the results are very similar to those obtained with the higher order
flux integration. The growth saturates after reaching an amplitude of around 0.1. For
the m = 8 mode, we also observe a growth of the instability with both flux integration
methods. But the growth cannot be described by an exponential growth but seems to grow
faster than expected. This can be explained by the fact that the m = 8 mode is dominated
by the density waves and actually not by vortices in our simulations. The density waves
can be influenced by the inner boundary which could lead to numerical artefacts. The
m = 9 mode should be stable, but we nevertheless see some slow growth which seems to
be fuelled initially by numerical noise.

Our results with the higher order flux integration compare well with those from Ono
et al. (2018), with the exception of the m = 8 and m = 9 modes. They however also
observed initially some noise in the modes before the exponential growth starts, and the
modes also saturated when they reached an amplitude of around 0.1.
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Figure 5.3: The temporal evolution of the maximum absolute value Σm,max of the Fourier mode
Σm(r) in the radial range 0.8 < r < 1.2. We use the white noise simulations for this plot, and
allow all Fourier modes to evolve freely. The black line corresponds to the isolated linear growth
rate from semi-analytic calculations, and the green line to the linear growth rate by mode coupling
(see Table 5.2).
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Figure 5.4: The temporal evolution of the maximum absolute value Σm,max of the Fourier mode
Σm(r) in the radial range 0.8 < r < 1.2. In this plot, we show the results of simulations in
which we use the Fourier filter to only allow the evolution of the mode m and the corresponding
axisymmetric mode. The black line corresponds to the linear growth rate from semi-analytic
calculations (see Table 5.2).
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Simulation m = 5 m = 4 m = 3 m = 2 m = 1

AllNRO 8.0 - 11.4 11.4 - 12.8 12.8 - 13.4 13.4 - 20.4 20.4 -
AllLR 7 - 11.4 11.4 - 12.6 12.6 - 16.4 16.4 - 36.8 36.8 -
AllNR 7.4 - 11.6 11.6 - 12.2 12.2 - 14.8 14.8 - 22 22 -
AllHR 8.0 - 12.8 12.8 - 13.4 13.4 - 15.3 15.3 -21.6 21.6-

Table 5.3: The intervals in which we find m vortices.
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Figure 5.5: The temporal evolution of the distance between the central object and the vortices
(see equation (5.13)). One can observe in all simulations a radial migration inwards.

5.3.2 Nonlinear evolution

As we can see in Fig. 5.2, the vortices merge over time into a single vortex. As in Ono et al.
(2018) we observed the remaining vortex to migrate inwards and be finally destroyed. To
estimate the probability to observe a specific amount of vortices it is therefore important
to measure the lifetime of each individual phase. For all our simulations without a Fourier
filter we, therefore, measure the time of how long a certain number of vortices survived. We
identify the number of vortices by visual inspection and use the quantify vϕ−vkeplerian. Since
the merger of two vortices takes a finite amount of time this leads to small inaccuracies of a
few tenths of an orbit. In Table 5.3 we summarize our results for the different simulations.
The regimes with more than two orbits only last for a maximum of 4 orbits whereas two
vortices can survive for up to 20 orbits. The remaining vortex is stable and can survive
for several 100 orbits. As mentioned by Ono et al. (2018), the survival time of several
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vortices can depend on the initial phases of different Fourier modes, and we do not expect
any convergence for the survival time if we increase the resolution.

To analyse the radial migration of the remaining vortex we define its average distance
to the central object as:

rvortex =

∑
i riMi∑
iMi

, (5.13)

where the sums go over all Voronoi cells with 0.8 times the maximum density in the
simulation. This ensures that we only take into account the densest gas. In Fig. 5.5 we
show the temporal evolution of the radial coordinate and we observe in all simulations
a migration with approximately constant radial velocity. The radial migration can be
explained by the density waves we also observe in Fig. 5.2. These waves can transport
angular momentum outwards and inwards, but due to geometrical effects the outer waves
transport more angular momentum (Paardekooper et al., 2010), which causes the vortex
to lose angular momentum. The resulting migration rate depends on the size as well as the
shape of the vortex, as well as on the properties of the background disk. If we increase the
resolution the vortex migrates faster, with a distance of around 0.8 rn after 100 orbits, which
compares well with the results from Fig. 9 in Ono et al. (2018). The simulation with the less
accurate flux integration lies between the standard and low-resolution simulation, hinting
that the lower-order flux integration decreases the effective resolution of the simulation.

5.4 Discussion and summary

In this chapter, we analyzed the linear and nonlinear evolution of the Rossby wave insta-
bility in two-dimensional, global simulations of a barotropic disk with an axisymmetric
overdensity on a moving mesh. This relatively simple system is very attractive since it
allows for a linear stability analysis (Ono et al., 2016). To compare our results with the
theoretical expectations we implemented a novel Fourier filter for the moving mesh code
AREPO that maps hydrodynamic properties from a Voronoi mesh to a polar mesh on which
we can perform Fourier transformations. After modifying the Fourier coefficients we can
map the quantities back onto the Voronoi mesh. By using this filter we found almost per-
fect agreement between the linear growth rates in our simulations and the semi-analytical
ones from Ono et al. (2016). We also observed in the weakly nonlinear regime the growth
of additional modes through mode coupling. Using the more accurate flux integration from
Zier & Springel (2022a) reduced in general the initial noise and allowed us to observe the
exponential growth over a larger time interval. For the m = 8 mode, we observed larger
noise and not a perfectly exponential growth in our simulations, which we attribute to
the potential effects of the inner boundary. For all other modes, our results compare well
with those from Ono et al. (2018), which were obtained on a static, polar grid which is
specifically optimized for this problem.

In the nonlinear regime, we found that the vortices merge within approximately 20
orbits. The remaining vortex migrates inwards within several hundred orbits, due to the
interaction with density waves launched from the vortex.
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Figure 5.6: The average radial structure at time T = 20 for simulations with the axisymmetric
Fourier filter and different resolutions. The initial conditions (IC, black line) should be stable.
We show the surface density, pressure, radial velocity and the relative difference between the
orbital velocity vϕ and the Keplerian velocity vK .

We can conclude that the moving mesh method is able to resolve the RWI and gives
results of comparable quality to static grid codes on a polar mesh. The higher order
flux integration rules from Zier & Springel (2022a) reduce the noise in the disk which
can influence the initial growth of small perturbations. Although the long-term behaviour
seems to be less affected by the noise we note that this can change if one does not use a
barotropic equation of state but evolves the thermal energy of the gas. In this case, the
numerical noise can lead to artificial heating of the disk.

5.5 Appendix: Tests of boundary conditions

Both the inner and outer boundaries can reflect or generate waves, which can then interact
with the initial overdensity and impact the instability’s evolution. To minimize the effects
of boundary conditions on our results, we used a multi-level approach with a damping
region, as previously discussed in Section 5.2.2. To evaluate the precision of our methods,
we conducted several simulations in which only the axisymmetric mode was allowed to
evolve. We varied the resolution and evaluated the evolution of the initial ring-like density
enhancement. Thanks to constant noise removal, we expect the radial profiles to be stable.
The profiles for different resolutions at T = 20 are shown in Fig. 5.6.

The density enhancement shifts towards larger radii, resulting in a decrease in its am-
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Simulation m = 5 m = 4 m = 3 m = 2 m = 1

AllNR 7.4 - 11.6 11.6 - 12.2 12.2 - 14.8 14.8 - 22 22 -
AllNRBin 7.8 - 12.9 12.9 - 14.2 14.2 - 17 17 - 25.2 25.2 -

Table 5.4: The influence of the binning on a polar mesh on the formation and merging of
vortices. We give the time interval in which we observe m vortices.

plitude. As expected, the shift becomes smaller as the resolution is increased and the shape
of the peak is stable.

5.6 Appendix: Influence of Fourier filtering on results

The application of a Fourier filter affects the simulation in two ways: by eliminating certain
modes and by mapping data onto a polar grid and back. To study the impact of the latter,
which only occurs in unstructured mesh simulations, we reran our standard simulation
without filtering modes but still mapped in each global time step the hydrodynamic quan-
tities from the Voronoi mesh to the polar mesh and back. This results in approximately
1000 mappings per time unit. As shown in Fig. 5.7, there are small differences between
the two simulations in the linear regime, but both simulations accurately describe the ex-
ponential growth of the fastest-growing modes and their weakly nonlinear mode coupling.
The initial noise level is also similar in both simulations. As one can see in Table 5.4, the
vortices have a similar survival time in both simulations, and we can conclude that our
mapping between different grids is accurate.
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Figure 5.7: The temporal evolution of the maximum absolute value Σm,max of the Fourier mode
Σm(r) in the radial range 0.8 < r < 1.2. We use the white noise simulations for this plot, with
standard resolution. The only difference between the simulations is that in AllNRBin we bin
the data from the Voronoi mesh to the polar mesh and back. The black line corresponds to the
isolated linear growth rate from semi-analytic calculations, and the green line to the linear growth
rate by mode coupling (see Table 5.2).
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Chapter 6

Discussion and outlook

In this chapter, we summarize the results of the thesis and give an outlook for possible
studies in the future. For a general overview and the background of this thesis, we refer to
Section 1.5.

6.1 Summary of this thesis

The goal of this thesis was to assess how well the moving-mesh method as implemented
in the AREPO code performs in simulations of cold gas disks, and to implement new
numerical methods to extend its applicability in this field. We concentrated on studying
the growth and nonlinear evolution of important fluid instabilities in idealized simulations
that allow for a comparison with results obtained by other codes or by analytic theory.
Given that the accuracy of different physics modules in a code can vary, we selected the
magnetorotational instability, the gravitational instability, and the Rossby wave instability
as examples, which rely on the accuracy of the MHD solver, the self-gravity solver, and
the hydrodynamic solver, respectively.

As a first step, I implemented the shearing box approximation in AREPO in Chapter 2
and showed that I can achieve second-order convergence in standardised test problems. In
contrast to the previous implementations in static grid codes, the code allows a flexible
spatial resolution by merging and splitting cells and automatically allows larger time steps
due to its quasi-Lagrangian nature. In my first test simulations with the original code
version, I observed numerical noise on the grid scale for a moving mesh as well as a
static, but unstructured mesh. The main origin of this noise was the use of a second-
order accurate integration rule to integrate the flux function over the interface between
cells. I implemented higher order integration rules which can fully remove the noise on an
unstructured and static grid for a linear shear flow, which highly improves the accuracy
for a moving mesh. In particular, the removal of this grid noise is crucial to simulate cold
disks, and it was therefore also used in the subsequent projects.

In Chapter 3 I performed an extensive shearing box study of the magnetorotational
instability (MRI) in AREPO and compared its evolution with previous results from the
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literature. I showed that even in the challenging case of an unstratified, tall box without
a net field AREPO can, in contrast to other Lagrangian methods such as SPH or MFM,
sustain turbulence with a large-scale magnetic field and an active shear current effect.
Additionally, a turbulent state with the characteristic butterfly diagram forms in stratified
simulations.

In Chapter 4, I presented an adaptive self-gravity solver for the shearing box that is
based on the standard TreePM method. I analysed the gravitational instability (GI) with
a simplified cooling function that uses a fixed cooling time tcool = βΩ−1 given by a constant
β and the orbital frequency Ω. I showed that for weak cooling a gravito-turbulent state
with an equilibrium between the explicit cooling and heating through shocks forms. For
0 < β < 3 − 4 the disk always fragments on the cooling time scale while for β > 6 it is
always stable. In the intermediate regime, I observed so-called stochastic fragmentation
and the results seem to be converged with resolution.

In Chapter 5, I performed global, two-dimensional simulations of a barotropic disk with
an initially circular overdensity with a Gaussian profile. The system is unstable to the
Rossby wave instability (RWI) and allows a semi-analytical calculation of linear growth
rates. I implemented a module in AREPO that allows the analysis and modification of
Fourier modes on the fly and compared the measured growth rates with the expected
ones. In the nonlinear regime, the vortices formed by the RWI merge into one vortex
that continues orbiting around the central object while slowly migrating inwards. I found
perfect agreement with results obtained by Ono et al. (2018) using the ATHENA++ code.

The main conclusion from this thesis is that the use of the moving mesh method with
higher order flux integration rules yields results that are at least as accurate as those
produced by static grid codes, even when they use an optimized polar grid. All fluid
instabilities we discussed in this thesis can be well resolved, confirming that AREPO is a
valuable and promising tool to study cold, gaseous disks in the future. Especially if it is
not possible to create an optimized grid for a simulation ab initio, AREPO suggests itself
as the method of choice.

6.2 Future extension of this thesis

The implementation of the shearing box approximation as well as the removal of the grid
noise allows us to conduct several new research projects that were not possible before with
AREPO. To this end I also implemented a full nonideal MHD module (not reported here)
based on the diffusion solver described in Pakmor et al. (2016a), which will be useful for
follow-up projects.

A natural extension of this thesis would be local simulations of accretion disks with
self-gravity and ideal MHD to analyze the interaction of MRI and GI and the influence of
different cooling descriptions. Riols & Latter (2018) found for this case with the simple β
cooling a new, spiral wave dynamo that is different from the normal pure MRI dynamo.
In contrast, Löhnert & Peeters (2022) found a coexistence of MRI and GI for a modified
cooling function that contains a heating term. Those studies were performed with quite
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large cooling times for which no fragmentation is expected. As a next step, I could use
my nonideal MHD implementation to analyse the importance of different nonideal MHD
effects and their interaction with the GI and MRI. Deng et al. (2021) recently found in
global simulations that magnetic fields can stop the further growth of fragments which
would lead to a more realistic population of protoplanets, but it is unclear if this effect
would also be present with nonideal MHD and especially higher resolution.

Although local simulations with the shearing box approximation allow higher resolution
than global simulations, they do not allow capturing global phenomena such as accretion
and the formation of winds and jets. Especially the GI depends on the box size as long as
the size is smaller than ≈ 50 scale heights, therefore this regime might be relevant at small
radii. As an extension of my shearing box simulations, I could therefore perform similar,
global simulations and compare the results with those obtained in local simulations.

As already discussed in Section 1.1.1, modern computing resources are not powerful
enough to simulate full Milky Way-sized galaxies with high enough resolution to resolve
the Sedov-Taylor phase of individual supernovae. One possibility to circumvent this is to
perform simulations of a cubical patch of the ISM as realized in the TIGRESS and SILCC

projects. Both projects use static grid codes (ATHENA, FLASH), but only the first one
includes the galactic shear by using a shearing box, which is necessary to model the mag-
netic field realistically. Since ATHENA does not support dynamical AMR in the shearing
box, the spatial resolution is constant in the disk. SILCC also uses a constant spatial res-
olution in the standard simulations but allows zoom-in simulations for clouds with small
bulk velocities. I could implement a similar model in the AREPO code, which would make
use of my shearing box implementation including the self-gravity solver. Simpson et al.
(2016) performed already similar simulations in AREPO with a mass resolution of 10M⊙
without the shearing box. Due to improvements of the algorithms in AREPO as well as
due to the growing computational power of modern clusters, a resolution of 1M⊙ per cell
is realistic in the near term. Especially in the dense regions, this would lead to a higher
spatial resolution (0.7 pc in gas with nH = 100 cm−3) than the previous projects. By using
super refinement strategies I could perform zoom-in simulations that allow me to resolve
the details of the internal evolution of molecular clouds and especially their chemical evolu-
tion, the influence of early feedback and nonideal MHD effects. I could also further analyse
the importance of cosmic rays (CR) on the ISM and outflows, which requires the galactic
shear to realistically model the magnetic field.
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L., Boland, W., Bouman, K. L., Bower, G. C., Bremer, M., Brinkerink, C. D., Brissenden,
R., Britzen, S., Broderick, A. E., Broguiere, D., Bronzwaer, T., Byun, D.-Y., Carlstrom,
J. E., Chael, A., Chan, C.-k., Chatterjee, S., Chatterjee, K., Chen, M.-T., Chen, Y.,
Cho, I., Christian, P., Conway, J. E., Cordes, J. M., Crew, G. B., Cui, Y., Davelaar,
J., De Laurentis, M., Deane, R., Dempsey, J., Desvignes, G., Dexter, J., Doeleman,
S. S., Eatough, R. P., Falcke, H., Fish, V. L., Fomalont, E., Fraga-Encinas, R., Friberg,
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Miranda, R., Muñoz, D. J., Lai, D. (2017), Viscous hydrodynamics simulations of circumbi-
nary accretion discs: variability, quasi-steady state and angular momentum transfer ,
MNRAS, 466(1), 1170

Miyoshi, T., Kusano, K. (2005), A multi-state HLL approximate Riemann solver for ideal
magnetohydrodynamics , J. Comput. Phys., 208(1), 315

Mo, H., Van den Bosch, F., White, S. (2010), Galaxy formation and evolution, Cambridge
University Press

Mocz, P., Vogelsberger, M., Hernquist, L. (2014), A constrained transport scheme for MHD
on unstructured static and moving meshes , MNRAS, 442(1), 43

Moffatt, H. K. (1978), Magnetic field generation in electrically conducting fluids , Cam-
bridge University Press, Cambridge, London, New York, Melbourne, 2, 5

Mousavi, S., Xiao, H., Sukumar, N. (2010), Generalized Gaussian quadrature rules on
arbitrary polygons , International Journal for Numerical Methods in Engineering, 82(1),
99
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Muñoz, D. J., Miranda, R., Lai, D. (2019), Hydrodynamics of Circumbinary Accretion:
Angular Momentum Transfer and Binary Orbital Evolution, ApJ, 871(1), 84

Müller, T. W. A., Kley, W., Meru, F. (2012), Treating gravity in thin-disk simulations ,
A&A, 541, A123

Nelson, R. P., Gressel, O., Umurhan, O. M. (2013), Linear and non-linear evolution of the
vertical shear instability in accretion discs , MNRAS, 435(3), 2610



BIBLIOGRAPHY 189

Nipoti, C. (2023), Local gravitational instability of stratified rotating fluids: three-
dimensional criteria for gaseous discs , MNRAS, 518(4), 5154

Noble, S. C., Krolik, J. H., Hawley, J. F. (2010), Dependence of Inner Accretion Disk Stress
on Parameters: The Schwarzschild Case, ApJ, 711(2), 959

O’Connell, R. W. (2018), Cosmic history , http://www.faculty.virginia.edu/

rwoclass/astr1210/im/anatomy-of-the-MW.jpg, [Online; accessed 16-January-2019]

Ono, T., Muto, T., Takeuchi, T., Nomura, H. (2016), Parametric Study of the Rossby Wave
Instability in a Two-dimensional Barotropic Disk , ApJ, 823(2), 84

Ono, T., Muto, T., Tomida, K., Zhu, Z. (2018), Parametric Study of the Rossby Wave In-
stability in a Two-dimensional Barotropic Disk. II. Nonlinear Calculations , ApJ, 864(1),
70

Paardekooper, S.-J. (2012), Numerical convergence in self-gravitating shearing sheet simu-
lations and the stochastic nature of disc fragmentation, MNRAS, 421(4), 3286

Paardekooper, S.-J., Baruteau, C., Meru, F. (2011), Numerical convergence in self-
gravitating disc simulations: initial conditions and edge effects , MNRAS, 416(1), L65

Paardekooper, S.-J., Lesur, G., Papaloizou, J. C. B. (2010), Vortex Migration in Proto-
planetary Disks , ApJ, 725(1), 146

Pakmor, R., Bauer, A., Springel, V. (2011), Magnetohydrodynamics on an unstructured
moving grid , MNRAS, 418(2), 1392

Pakmor, R., Pfrommer, C., Simpson, C. M., Kannan, R., Springel, V. (2016a), Semi-
implicit anisotropic cosmic ray transport on an unstructured moving mesh, MNRAS,
462(3), 2603

Pakmor, R., Springel, V. (2013), Simulations of magnetic fields in isolated disc galaxies ,
MNRAS, 432(1), 176

Pakmor, R., Springel, V., Bauer, A., Mocz, P., Munoz, D. J., Ohlmann, S. T., Schaal, K.,
Zhu, C. (2016b), Improving the convergence properties of the moving-mesh code AREPO ,
MNRAS, 455(1), 1134

Papaloizou, J. C., Savonije, G. J. (1991), Instabilities in self-gravitating gaseous discs ,
MNRAS, 248, 353

Papaloizou, J. C. B., Lin, D. N. C. (1989), Nonaxisymmetric Instabilities in Thin Self-
gravitating Rings and Disks , ApJ, 344, 645

Parker, E. N. (2019), Cosmical magnetic fields: Their origin and their activity , Oxford
university press

http://www.faculty.virginia.edu/rwoclass/astr1210/im/anatomy-of-the-MW.jpg
http://www.faculty.virginia.edu/rwoclass/astr1210/im/anatomy-of-the-MW.jpg


190 BIBLIOGRAPHY

Parkin, E. R., Bicknell, G. V. (2013a), Equilibrium Disks, Magnetorotational Instability
Mode Excitation, and Steady-state Turbulence in Global Accretion Disk Simulations ,
ApJ, 763(2), 99

Parkin, E. R., Bicknell, G. V. (2013b), Global simulations of magnetorotational turbulence
- I. Convergence and the quasi-steady state, MNRAS, 435(3), 2281

Penna, R. F., McKinney, J. C., Narayan, R., Tchekhovskoy, A., Shafee, R., McClintock,
J. E. (2010), Simulations of magnetized discs around black holes: effects of black hole
spin, disc thickness and magnetic field geometry , MNRAS, 408(2), 752

Petersen, M. R., Julien, K., Stewart, G. R. (2007a), Baroclinic Vorticity Production in
Protoplanetary Disks. I. Vortex Formation, ApJ, 658(2), 1236

Petersen, M. R., Stewart, G. R., Julien, K. (2007b), Baroclinic Vorticity Production in
Protoplanetary Disks. II. Vortex Growth and Longevity , ApJ, 658(2), 1252
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