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Summary

Environmental epidemiology is the scientific field studying the effects of environmental
exposures on human health outcomes, such as the effects of air pollution exposure on
cardiovascular diseases. This research proposes statistical methods that the field of envi-
ronmental epidemiology could benefit from. Most often, when addressing environmental
epidemiology questions, the data collected for statistical analyses come from observational
studies. In these studies, the assignment of participants into an exposed versus a control
group is outside the control of the investigator, as opposed to individual assignments in
randomized controlled experiments. The lack of experimental design, with a randomly
assigned exposure, typically prevents direct comparisons of exposed and control groups
because of differing background covariates distributions. Due to this design barrier, envi-
ronmental epidemiologists are mainly able to estimate associations between environmental
exposures and health outcomes instead of focus on causal effects that can only be estimated
when the conditions of a randomized experiment hold.

In the 1970s, the Rubin Causal Model (RCM) was developed and can help remedy the
constraints of observational studies. This model has been extensively used in economics;
Nobel Prizes were awarded in 2021 to professors whose scientific advances mainly rely on
the RCM. Nonetheless, the appealing properties of the RCM remain to be thoroughly
introduced to the field of environmental epidemiology by tackling valuable research ques-
tions. Therefore, this thesis illustrates how a multi-staged pipeline relying on the RCM can
be used in environmental epidemiology to construct and analyze hypothetical randomized
experiments with two studies:

1. by investigating whether an air pollution reduction intervention could have an effect
on the risk of multiple sclerosis relapses, and

2. by exploring the effects of two inhaled environmental exposures previously hypoth-
esized to be linked with the gut microbiome: air pollution exposure and cigarette
smoking.

iii



Zusammenfassung

Die vorliegende Dissertation stellt statistische Methoden vor, welche die Arbeit von Umwel-
tepidemiologen unterstützt. Die Umweltepidemiologie ist jenes wissenschaftliche Gebiet,
welches sich mit den Auswirkungen der Umwelt auf die menschliche Gesundheit befasst,
z.B. mit den Auswirkungen der Luftverschmutzung auf Herz-Kreislauf-Erkrankungen. Wenn
es um Fragen der Umweltepidemiologie geht, werden die Daten für statistische Analy-
sen meist auf Beobachtungsstudien basiert. Bei diesen Studien liegt die Einteilung der
Probanden in eine Treatment- und eine Kontrollgruppe außerhalb des Einflussbereichs
des Forschers, im Gegensatz zu randomisierten kontrollierten Experimenten. Das Fehlen
eines Versuchsplans mit einer randomisierten Zuweisung für die Testung erschwert da-
her den Vergleich zwischen Treatment- und Kontrollgruppen. Diese Barriere führt dazu,
dass Umweltepidemiologen hauptsächlich Beziehungen zwischen Umweltexpositionen und
gesundheitlichen Folgen abschätzen, anstatt sich auf kausale Effekte zu konzentrieren, die
nur erarbeitet werden können, wenn die Bedingungen eines randomisierten Experiments
gegeben sind.

In den 70er Jahren wurde das Rubin Causal Modell (RCM) entwickelt, das die Lim-
itationen von Beobachtungsstudien lösen kann. Dieses Modell wurde im Bereich der
Wirtschaftswissenschaften bereits ausgiebig genutzt; ein Nobelpreis wurde im Jahr 2021
an Professoren verliehen, deren wissenschaftliche Fortschritte hauptsächlich auf dem RCM
beruhen. Dennoch müssen die aussagekräftigen Eigenschaften des RCM in den Bereich
der Umweltepidemiologie eingeführt werden, indem nützliche Forschungsfragen angegan-
gen werden. Daher wird in dieser Dissertation anhand von zwei Studien gezeigt, wie eine
mehrstufige Pipeline, die sich auf das RCM stützt, helfen kann, hypothetische randomisierte
Experimente im Bereich der Umweltepidemiologie zu rekonstruieren und zu analysieren:

1. durch die Untersuchung, ob eine Intervention zur Verringerung der Luftverschmutzung
das Risiko eines Multiple-Sklerose-Schubs verringert; und

2. durch die Untersuchung der Auswirkungen von zwei inhalativen Umweltexpositionen,
(Luftverschmutzung und Zigarettenrauchen) auf das Darmmikrobiom.

.
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Chapter 1

Introduction

Environmental epidemiology studies the effects of environmental exposures on health out-
comes mainly with observational data. To analyze such type of data, regression models are
used, leading the field to make conclusions based on associations even though causal effects
are sought. Therefore, in this thesis, we illustrate how to rigorously conduct environmental
epidemiology with a causal inference framework based on two applications investigating:
(i) air pollution effects on multiple sclerosis relapses risk [Sommer et al., 2021], and (ii)
environment-host microbiome relationships [Sommer et al., 2022]. In both studies, we
navigate scientists through a framework testing plausible sharp null hypotheses of no ad-
verse effect of an environmental intervention. We chose a Fisherian approach and to test
sharp null hypotheses because the relationships we investigate have not been examined
with causal inference methods yet. Testing whether the exposures have any effect on the
units of our study is a good starting point before estimating causal effects and uncertainty
around them (e.g., using a Bayesian causal model), as well as before studying populations
with broader participant characteristics (e.g., ethnicity or race). The framework relies on
ideas developed in the 70s [Cochran and Rubin, 1973, Rubin, 1973, 1974, 1976] and the
Rubin Causal Model (RCM) [Holland, 1986, Imbens and Rubin, 2015]. This method was
recently made explicit to the environmental epidemiology field by Bind and Rubin [2017],
who present how to analyze observational data by constructing the ideal conditions of
randomized experiments, the “gold standard” to draw objective causal inferences on the
effects of an intervention [Rubin, 2008].

1 Causal inference in environmental epidemiology

Readers of environmental epidemiology journals are interested in finding evidence of the
effects of environmental exposures, or interventions on health outcomes. However, environ-
mental epidemiologists usually estimate associations, by regressing an observed outcome
on a function of observed covariates using observational data. Regression use in the field
is spread at least for two reasons. First, it is often unethical to randomize humans to pos-
sibly harmful environmental exposures, so observational data are mainly collected. Thus,
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Introduction 2

confounding adjustments arise post-data collection instead of by design in randomized
experiments, where the design is thought to answer a specific cause and effect question.
Second, the rise of statistical software on personalized desktops at universities in the 1980s
triggered preferences for rapid answers from regression models. This was when investi-
gators transitioned away from planned statistical analyses, thereby omitting not only the
formal definition of a causal estimand, but also the comparison of comparable groups of
treated and control units [Bind, 2019]. Therefore, causal modelling techniques to analyze
observational data are currently being introduced or re-introduced to the field to stimu-
late reporting results on the health effects of environmental interventions instead of mere
association reporting.

For decades, environmental epidemiology has suffered from the fact that association is
not causation and therefore the field recently tackled the confounding issue with methods
such as Directed Acyclic Graphs [Flanders et al., 2011, Weisskopf et al., 2015], g-estimation
methods [Moore et al., 2012], and Mendelian randomization [Relton and Davey Smith,
2015]. However, these methods omit considerations inherent to making causal statements:
for example, What randomized environmental intervention could have resulted in the data
at hand? (a conceptual stage), What quantities are compared? (a causal estimand defini-
tion), and How can the non-randomized data be analyzed as emanating from a randomized
intervention assignment? (a design stage). Posing a causal question and defining the
causal estimands as functions of the potential outcomes are key for objective causal infer-
ence [Rubin, 1974]. These ideas have been re-introduced to the air pollution epidemiology
field by Zigler et al. [2014, 2016], who argue for well-defined actions and the use of the
potential outcome framework. For years, Rubin has argued for a design stage [Rubin,
1973] and for a conceptual stage [Rubin, 2007, 2008], which was formulated more explicitly
recently by Bind and Rubin [2017, 2021a], and implemented by Sommer et al. [2018, 2021,
2022].

A multistage causal inference framework

In this thesis, we present two environmental epidemiology studies whose methodologies rely
on the construction of plausible hypothetical randomized experiments with the following
multistage framework [Bind and Rubin, 2017]:

• Conceptual stage: Formulation of a causal question involving a plausible hypothetical
intervention assigning an environmental exposure to units.

• Design stage: Reconstruction of a hypothetical randomized experiment mimicking a
data structure originating from randomly assigning an environmental exposure.

• Analysis stage: Comparison of health outcomes, with adequate statistical methods,
of units exposed to the environmental intervention to not exposed units.

• Conclusion stage: Interpretation of the results from the analysis stage and discussion
of potentially beneficial environmental interventions, as well as recommendations for
future studies.
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The conceptual stage

At the conceptual stage, the causal question has to be posed. Like in traditional exper-
imental studies, a plausible assignment of an intervention to units has to be thought of
because the goal is to assess whether that intervention has any health effects by com-
paring the health outcomes of units under the intervention to not exposed units. The
hypothetical randomized intervention assignment defines the causal estimands. The more
plausible the assignment is, the more reliable the conclusions will be [Bind and Rubin,
2021b]. While conceptualizing an experiment aiming at subsequent causal analyses, the
stable unit treatment value assumption (SUTVA) should be verified [Imbens and Rubin,
2015]. This assumption implies that the treatment given to any unit does not influence
the outcome of other units and that, each unit exposed to the intervention, is subject to
the same treatment.

The design stage

The design stage should be performed without looking at the outcome data. This stage
aims at the construction of a dataset which could have plausibly been the result of an
unconfounded intervention assignment. Unconfoundedness implies that the outcome of a
group of units under an intervention can be compared to a control group of units, because
they present, on average, “similar” background covariates, i.e., the covariates are balanced
[Imbens and Rubin, 2015]. Matching is a widely-used method to create groups that are
balanced. Finding covariate balance is an iterative process between matching and balance
diagnostic [Rubin, 2006]. After finding a satisfying covariate balance, one can analyze a
balanced data subset as if it was originated from a randomized experiment with a defined
assignment mechanism.

Notice that matching strategies were suggested in the 1950s [Cochran, 1953] and have
been operated “by hand” in occupational health settings in the 1970s [Tolonen et al., 1975,
Hernberg et al., 1976]. However, this strategy did not spread back then because powerful
computing is needed for multivariate matching and extensive balance diagnostics. When
statistical software became available on personalized computers, environmental epidemi-
ologists opted for regression modelling [Bind, 2019]. The idea of matching arose again
in environmental epidemiology when case-crossover studies became popular in the 1990s.
A case-crossover study [Maclure, 1991] compares the hypothesized hazardous exposures
(e.g., air pollution) of a unit prior to disease onset to the exposures of this unit when it
was healthy. Such design contradicts the principle of classical experimental design, since
the researcher first focuses on the outcome, i.e., disease onset, and then seeks for its envi-
ronmental causes. However, the “gold standard” to obtain objective inference, is to assign
exposures randomly to units prior to any outcome measurement. [Rubin, 2008].

The analysis stage

Researchers feel most familiar with the analysis stage because it is the closest to model-
based analyses. Before any outcome data is analyzed, the statistical analysis method to
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be conducted should be defined in a protocol. After a satisfying design stage, the effect
of the intervention should be estimated only once. Analysis methods can be Fisherian,
Neymanian, or Bayesian [Imbens and Rubin, 2015]. A Fisherian (i.e., randomization-
based) perspective [Fisher, 1935, Rubin, 1980], was chosen for our studies to circumvent
relying on assumptions or asymptotic arguments.

Randomization-based inference. The central part of the analysis stage of our
studies is the use of randomization-based hypothesis tests with plausible assignment mech-
anisms and powerful test statistics. Randomization-based inference starts with construct-
ing the null randomization distribution of a test statistic, i.e., the distribution of values
of the test statistic assuming the null hypothesis of no effect of the intervention was true
[Fisher, 1935, Bind and Rubin, 2020]. Then, the Fisher p-value, i.e., the proportion of test
statistics (under the null) that are as large or larger than the observed test statistic, can
be calculated. A small p-value indicates the results are “worth further scrutiny” because it
provides evidence for the observed test statistic to be a rare event when the null hypothesis
is true. [Edgeworth, 1885, Boring, 1919, Fisher, 1925, Wasserstein et al., 2019]. Bind and
Rubin [2020] highlight how simple and interpretable randomization-based inference and
Fisher p-value calculation can be implemented using current computers. Surprisingly, the
introduction of personal computers did not lead scientists to depart from p-value approxi-
mation based on asymptotic null randomization distribution. Therefore, in our studies, we
show how to use permutations of the conceptualized intervention assignment vectors, i.e.,
assignment vectors following the design of our hypothetical experiments, to calculate ap-
proximate Fisher p-values. Past studies explain that when the probabilities of a unit being
subject to an intervention are varying, the analysis of experiments, even when hypothetical,
should reflect their design [Rubin, 2007, 2008]. This is why Bind and Rubin [2017] argue
that p-values computed for observational studies can only be valid if the observational
study is embedded into a plausible hypothetical randomized experiment. Accordingly, we
first state a plausible randomization mechanism at the conceptual stage and implement it
in the design stage before calculating a p-value.

The conclusion stage

At the conclusion stage, one should discuss statistical evidence around the results of the
hypothetical experiment. It is the moment to, critically, propose how adverse effects could
be curtailed by introducing some hypothetical intervention such as lower air pollution lev-
els or smoking cessation. Once causality is suspected, the next step is to acquire medical
knowledge, for instance, trying to understand biological mechanisms explaining why haz-
ardous exposures cause unwanted health outcomes. When randomization-based inference
is chosen to analyze an experiment, special care should be given to the wording of the
conclusions. Alternative hypotheses should never be accepted but when p-values are small
one can reject sharp null hypotheses and hint at further scrutiny of the causal question
[Wasserstein et al., 2019]. With the suggested framework, results interpretation is trans-
parent: the assumed intervention assignment mechanism is formalized at the conceptual
and design stages and used in practice at the analysis stage, and conclusions are restricted
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to units in the balanced data subset because results variations for units with background
covariates outside our sample are unknown.

2 Two studies of adverse health effects of air pollution

Air pollution epidemiology started in the 1950s after the Great Smog of London and was
established as a field with the potential to discover new medical knowledge using data
collected from non-randomized studies. When statistical softwares became available on
individual computers of epidemiologists at universities in the 1980s, mortality was the
health outcome in the spotlight of air pollution epidemiology [Selvin et al., 1984]. Since
then, many other associations have been discovered between the exposure to air pollutants
and health outcomes including pulmonary and cardiovascular effects, blood markers (e.g.,
inflammatory, coagulation), prenatal outcomes (e.g., birth weight), and neurotoxic effects
[Rückerl et al., 2011]. Some air pollution-health associations and their underlying mech-
anisms (e.g., for cardiovascular disease) have been extensively investigated [Brook et al.,
2004]. However, other associations between environmental exposures and health outcomes
provide less consensus (e.g., autism spectrum disorder, multiple sclerosis) or are simply
not as much researched (e.g., gut microbiome). In this thesis, we focus on a neurological
health outcome: multiple sclerosis relapses, and a newly suspected intestinal outcome: the
gut microbiome [Peters et al., 2021]; two fields where environmental epidemiology research
is ongoing and for which causal inference methods could propel advances.

Contrasting findings are reported on the relationship between air pollution and multiple
sclerosis. Several epidemiological studies report significant associations [Oikonen et al.,
2003, Gregory et al., 2008, Heydarpour et al., 2014, Angelici et al., 2016, Roux et al.,
2017, Bergamaschi et al., 2017, Jeanjean et al., 2018], whereas others report no association
[Palacios et al., 2017, Chen et al., 2017]. Therefore, in our “multiple sclerosis study”
[Sommer et al., 2021], we use an Alsacian study population to test the hypothesis of effects
of a hypothetical environmental intervention on multiple sclerosis relapses and evaluate the
causal question: Does a reduction in short-term PM10 levels cause a decrease in relapse
occurrence risk for multiple sclerosis patients?

Furthermore, experimental and epidemiological studies suggest that air pollution may
have an effect on the gut microbiome [Mutlu et al., 2011, Kish et al., 2013, Li et al.,
2015, Mutlu et al., 2018, Wang et al., 2018, Alderete et al., 2018, Liu et al., 2019, Bailey
et al., 2020]. However, the lack of randomization in observational data and the complex
statistical properties of microbiome data make it challenging to make causal conclusions on
the associations between environment and microbiome. Therefore, in our “gut microbiome
study” [Sommer et al., 2022], we use the German KORA cohort study to introduce a causal
inference framework that can help investigate environment-host microbiome relationships
and evaluate the causal question: Does reducing inhaled environmental exposures alter the
human gut microbiome?.

Conceptual. In both studies we conceptualized hypothetical experiments designed to
study the effects of hypothetically randomized environmental interventions. Both studies
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analyze the effects of an air pollution reduction intervention (e.g., randomly banning cars
to be on the road during a few days a week to keep the average air pollution level below
a threshold). Additionally, the gut microbiome study assesses the effects of a smoking
prevention hypothetical experiment because, when adverse effects of smoking on a health
outcome are established, they can support the plausibility of an adverse effect of air pol-
lution.

Design. To limit confounding, both studies match units under the intervention to
not exposed units, with respect to background covariates selected based on subject matter
knowledge. We used visual and numerical balance diagnostics to compare the distribution
of units pre- and post-matching.

Analysis. In the multiple sclerosis study, we do not reject the sharp null hypothe-
sis of no effect of an air pollution reduction intervention in the overall study population.
Nonetheless, in the subgroup of female patients with a Relapsing-Remitting multiple scle-
rosis form, a small p-value indicates that the observed intervention effect could be worth
further scrutiny. In the gut microbiome study, we emphasize the importance of choosing
powerful state-of-the-art test statistics for complex microbial genomic data. In air pollu-
tion reduction and smoking prevention hypothetical experiments, we reject the sharp null
hypotheses of no richness, α-diversity, high-dimensional mean differences, and differential
abundance for selected genera.

Conclusion. The results of our studies demonstrate that a causal inference framework
can detect, with observational data, novel hypotheses on the links between environmental
exposures and health outcomes. These new hypotheses are a good starting point for
potential novel environmental epidemiology discoveries.

3 Outlook

A central component of this thesis is the use of a Fisherian inference approach, which we
value to be a good first step to analyze untapped research questions. Our studies can be
considered as stepping stones to draw causal inferences in their respective fields because we
found hypotheses of environmental influences that are worth more scrutiny. The secondary
analyses of the multiple sclerosis study indicate that air pollution effects on women with
Relapsing-Remitting multiple sclerosis should be further studied; such subgroup of multiple
sclerosis patients has, to the best of our knowledge, not yet been analyzed by environmental
epidemiologists. It is known that men and women can react differently to air pollution
exposures [Clougherty, 2010, Oiamo and Luginaah, 2013] but to further scrutinize our new
hypothesis, a study has to be designed for this subgroup of women.

The differential abundance analyses of the smoking prevention experiment in the gut
microbiome study retains a subset of genera to be further scrutinized. These genera corre-
late with lipid metabolites, such as serum triglycerides and high-density lipoprotein, in the
same direction as previously found by Vojinovic et al. [2019]. Therefore, further studies
could be done on the pathways of smoking affecting the gut and the connection with cir-
culating metabolites and metabolic syndrome, both of which also have already been linked
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to smoking [Sun et al., 2012].
Most environmental epidemiology studies provide exposure-response curves in their

analysis. We chose instead to test the effects of single interventions to benefit from the
appealing properties of randomized experiments. Thereby, we can directly think in terms
of plausible public health interventions and potentially make applicable recommendations.
Also, until now, the air pollution-multiple sclerosis or air pollution-microbiome relation-
ships have not yet been extensively investigated (even less with causal inference methods),
so a first step is to assess, whether air pollution has any effect on the health outcomes of our
studies. If so, the next step could be the estimation of a causal dose response. This could
be done by balancing covariates along different doses of the exposure, such as suggested in
Wu et al. [2020].

At the design stage, we can only account for observed background covariates but it is
possible that the assignment mechanism depends on unobserved covariates. This means
that there could still be imbalances in unobserved covariates. Therefore, sensitivity anal-
yses of how the p-value would change, had the intervention assignment been plausibly
different, should be considered [Rosenbaum, 2010, Bind and Rubin, 2020]. However, for
that, subject-matter knowledge on the reason why “sensitivity” p-values could deviate from
the p-value calculated is needed. This idea provides material for sensitivity analyses after
implementing the framework we present in our studies.

At the analysis stages of our studies, to construct the null randomization distribu-
tion and compute the p-value, we conserve the matched-pair design of the intervention
assignment vector. This strategy enables avoiding making assumptions on the the under-
lying distribution of the data [Rubin, 1998, Bind and Rubin, 2017]. Sommer et al. [2022]
call for the development of user-friendly software functions (e.g., built in R) to perform
randomization-based inference while conserving the design of the intervention assignment.
The use of such function would permit accountability of the design stage during the analysis
of observational studies.
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A. Rantio-Lehtimäki, A. Anttinen, K. Koski, and J. P. Erälinna. Ambient air qual-
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When addressing environmental health-related questions, most often, only
observational data are collected for ethical or practical reasons. However, the
lack of randomized exposure often prevents the comparison of similar groups
of exposed and unexposed units. This design barrier leads the environmen-
tal epidemiology field to mainly estimate associations between environmental
exposures and health outcomes. A recently developed causal inference pipeline
was developed to guide researchers interested in estimating the effects of plau-
sible hypothetical interventions for policy recommendations. This article illus-
trates how this multistaged pipeline can help environmental epidemiologists
reconstruct and analyze hypothetical randomized experiments by investigating
whether an air pollution reduction intervention decreases the risk of multiple
sclerosis relapses in Alsace region, France. The epidemiology literature reports
conflicted findings on the relationship between air pollution and multiple scle-
rosis. Some studies found significant associations, whereas others did not. Two
case-crossover studies reported significant associations between the risk of mul-
tiple sclerosis relapses and the exposure to air pollutants in the Alsace region.
We use the same study population as these epidemiological studies to illus-
trate how appealing this causal inference approach is to estimate the effects of
hypothetical, but plausible, environmental interventions.

K E Y W O R D S
causal inference, environmental epidemiology, matching, multiple sclerosis, observational data

1 INTRODUCTION

The major reason for the confidence in randomized experiments is the objectivity of the decisions for exposure assignment
to compare treated and control units with similar pre-exposure covariates. Following the logic of the Rubin Causal Model,
the appealing features of randomized experiments can be transposed to observational studies to provide transparent
[Correction added on 29 January 2021 after first online publication: Correspondence details have been updated.]
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T A B L E 1 Multiple sclerosis patient characteristics

Total Cluster 1 Cluster 2

n = 353 n = 146 n = 207

Sex M F M F M F

n 98 255 38 108 60 147

(28%) (72%) (26%) (74%) (29%) (71%)

MS form (at last info.)

Relapsing-remitting (n) 80 216 27 73 53 143

(23%) (61%) (18%) (50%) (26%) (69%)

Secondary progressive (n) 18 39 11 35 7 4

(5%) (11%) (8%) (24%) (3%) (2%)

Relapses per patient (mean) 1 2 2 2 1 1

SD (2) (2) (2) (2) (2) (2)

Onset—inclusion gap (mean in years) 3 4 7 9 0.1 0.1

SD (6) (7) (8) (8) (0.5) (0.5)

Age at MS clinical onset (mean in years) 31 31 33 33 29 30

SD (11) (10) (9) (12) (10) (11)

Age at study inclusion (mean in years) 36 36 41 42 30 31

SD (11) (12) (8) (11) (9) (10)

Follow-up since inclusion (mean in years) 6 6 9 9 4 4

SD (4) (4) (1) (1) (3) (3)

Type 1—prevalent cases (n) 35 97 31 88 4 9

(10%) (27%) (21%) (60%) (2%) (4%)

Type 2—incident cases (n) 63 158 7 20 56 138

(18%) (45%) (5%) (14%) (27%) (67%)

cause and effect interpretations of statistical analyses.1,2 These ideas should be particularly appealing to environmental
epidemiology, a field for which randomized experiments are most often unethical or impractical. Bind and Rubin3 present,
with a simple illustration, a multistaged causal inference pipeline aiming at revealing results that could have been
obtained by an experiment with a plausible, randomly assigned, environmental intervention. A recent study partially fol-
lowed this pipeline: the authors constructed the nonrandomized data such that they mimic random weather variations
and estimated the effects of weather variations on violent crimes.4 However, the study examined weather variations that
cannot be interpreted as plausible interventions, thereby omitting the first, conceptual, stage of the pipeline, essential for
providing recommendations.

A few researchers have emphasized the importance of focusing on well-defined interventions in terms of potential
outcomes and on relying on the Rubin Causal Model to assess causality in air pollution epidemiology.3,5-9 For years, Rubin
has argued for a design stage10 and for a conceptual stage,2,11 which was formulated more explicitly recently by Bind and
Rubin. Here, our objective is to provide epidemiologists with a practical and thorough application of the causal pipeline
proposed by Bind and Rubin and simultaneously assess an important causal question with a complex data structure.

There is an increasing number of epidemiological studies focusing on the link between air pollution and neurological
outcomes, including multiple sclerosis (MS) relapses.12,13 MS is a demyelinating disease damaging nerve cells, giving
rise to the inability of the nervous system to communicate. MS patients occasionally experience relapses. Relapses are
characterized as episodes of neurological symptoms (eg, loss of vision, pain in body parts) that occur for at least 24 hours
and happen at least 30 days after any previous episode began.14 The causes of MS disease onset and the risk factors of
relapses occurrence are unclear but many research efforts are focusing on the influence of environmental factors on
MS.15,16 Several studies reported associations between air pollutants and MS17-23 and two studies failed to reject the null
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hypothesis,24,25 (see Web Table 1). However, study design and methodological limitations prevent a causal interpretation
for these associations.

Our illustration uses a study population already studied by Roux et al21 and Jeanjean et al,23 who observed
positive associations between air pollutants and MS relapses risk. Both concluded that further research presenting
causal relationships is needed before taking preventive environmental actions for MS patients. These studies rely on
a case-crossover strategy26 that examines whether the patient was exposed to some unusual air pollution patterns just
before or at MS relapse. Such designs are not optimal to provide causal results, as it answers the question: Were the lev-
els of air pollution higher prior to relapses? It implies that the researcher first considered the outcome, that is, relapse
occurrence, and then seeks for its environmental causes. This strategy contradicts the principle of classical experimental
designs where exposures are assigned randomly prior to measuring the outcome of interest, a method that is the “gold”
standard to obtain objective inference on the effects of an intervention.2 We will follow the steps of Bind and Rubin’s3

causal pipeline to examine the causal question: Does lowering air pollution levels reduce the risk of relapses? With this illus-
tration, we aim to engage environmental epidemiologists in: (1) discussing hypothetical interventions that could have
resulted in the observed data, (2) verifying the plausibility of the assumptions of the Rubin Causal Model, (3) choosing
an adequate data analysis strategy, and (4) interpreting the implications of their results in order to give recommendation
for further research or policies.

2 DATA

2.1 Multiple sclerosis patients data

The 353 patients in our study are part of the alSacEP network following MS diagnosed patients living in the Alsace region.
All patients records were managed with the standardized European Database for Multiple Sclerosis (EDMUS).27 We focus
on the period between 1 January 2000 and 31 December 2009. Two types (1 and 2) with two subtypes (A and B) of patients
can be distinguished in the study population (see Figure 1). For Type 1 patients, their relapse history is known from some
time post-MS onset, until the end of our study period (Type 1A), or until last patient information (Type 1B). For Type 2
patients, their relapse history is available from MS onset, until the end of our study period (Type 2A), or until last patient
information (Type 2B). In epidemiology, Type 1 patients are prevalent cases, that is, they were diagnosed with the disease
before the study period started. Type 2 patients are incident cases, that is, they are newly diagnosed during the study period.

The patients are subject to two forms of MS, the Relapsing-Remitting (RR) (NRR = 296) and the Secondary-Progressive
(SP) (NSP = 57) form. All the patients started their disease in a Relapsing-Remitting form: the relapses are followed by a
remission, that is, a time of recovery with few or no symptoms. But by the time of the study, for some, the disease shifted
to a Secondary-Progressive form: the symptoms of the relapses steadily become worse with no remission.28,29

Recorded relapses of 109 patients in the alSacEP network may present some doubtful dates, that is, uncertain or
completely unknown. Since the outcome of interest of this study is daily relapse occurrence, the analyses in this article
are restricted to patients with complete relapses history. Including the patients with inaccurate relapse recording would
add an additional source of uncertainty. To take the MS relapse definition14 into account, for each patient we exclude their
30-day period(s) post-MS onset and post-relapses from the data (see Appendix A for pre-analysis data exclusion details).
See Table 1 for the characteristics of the 353 patients included in our subsequent analyses.

2.2 Relapses in multiple sclerosis are age-, time-, and sex-dependent

Several studies have shown that relapses occurrence are age-, time-, and sex-dependent.30-32 Relapse rates decrease with
time and this decline increases in magnitude with age. Overall, women exhibit a higher relapse rate. We observed a similar
relapse rate pattern that is age-, time-, and sex-dependent in our study population (see Web Figure 1), thereby, age, disease
history, and sex should be accounted for in our analyses.

2.3 K-means clustering for patient grouping

The structure of our data implies different timings of disease history for the patients. Overall, Type 1 patients are older,
thus at a later stage of their disease progression, and have a longer follow-up period than Type 2 patients during the study
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F I G U R E 1 Multiple
sclerosis patient types with
respect to disease onset and
relapse records during the
study period of 2000-01-01 to
2009-10-01. Type 1—prevalent
cases: MS onset occurred before
the beginning of the study
(37%); Type 1A: the patient was
followed until the end of the
study, Type 1B: the patient’s last
information was before the end.
Type 2—incident cases: MS
onset occurred after the
beginning of the study (between
2000-01-01 and 2009-10-01)
(63%); Type 2A: the patient was
followed until the end of the
study, Type 2B: the patient’s last
information was before the end
[Colour figure can be viewed at
wileyonlinelibrary.com]

period (see Table B1 in Appendix B). However, some Type 1 patients resemble Type 2 patients more (and vice versa) with
respect to the characteristics: age at study inclusion, disease stage (approximated by the date difference between MS onset
and study inclusion), and follow-up duration. For example, a Type 1 patient whose disease onset occurred a year before
the beginning of study period at a young age might resemble more Type 2 patients. Therefore, we redefined our patient
groups before analyzing our data to provide stratified results taking the timing of disease progression into account. We use
the K-means clustering algorithm of Hartigan and Wong33 provided by the kmeans R function34 to create two clusters
that are homogeneous with respect to age at study inclusion, disease stage, and follow-up duration (see Table 1). The
groups were homogeneous with respect to the characteristics with two clusters, but not with three or four. In Table 1,
we can observe that Cluster 1 patients data is at a later stage of their disease, that is they are older and with a longer
onset-study inclusion gap, as compared to Cluster 2 patients (Figure 2).

2.4 Environmental data

We have meteorological variables for the Alsace region, such as the daily temperature. Air pollution concentrations of
particulate matter of 10 μm or smaller in diameter (PM10), and ozone (O3) were estimated daily at the census block
level throughout the study period using the deterministic Atmospheric Dispersion Modeling System (ADMS)-Urban air
dispersion model,35 which included background pollution concentrations, emissions inventories, meteorological data,
land use, and surface roughness.
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F I G U R E 2 Distributions of the patient characteristics for the cluster built with K-means (k = 2) [Colour figure can be viewed at
wileyonlinelibrary.com]

3 METHODS

We now present the four stages of the causal pipeline3 that we use to construct plausible hypothetical randomized
experiments to study the air pollution-MS relapse relationship:

• Stage 1: Formulation of a plausible hypothetical intervention decreasing air pollution levels to examine whether it
reduces the relapse risk for MS patients.

• Stage 2: Design the hypothetical randomized experiment as if the environmental intervention had been implemented
randomly at the census block level.

• Stage 3: Statistical analysis to estimate the relapse risk of MS patients hypothetically randomized to the environmental
intervention and test the null hypothesis of no effect of the intervention.

• Stage 4: Interpretation of the estimates obtained from the analysis.

3.1 Stage 1: Conceptualization of a plausible intervention reducing air pollution levels

3.1.1 Causal question

We are interested in the causal question: Does a reduction in PM10 levels cause a decrease in relapse occurrence risk for
Alsacian MS patients? However, it is impractical and unethical to expose MS patients to clean air and PM10 in a random-
ized controlled experiment. Therefore, we conceptualize a hypothetical experiment designed to study the effects on MS
patients of the following political intervention that reduces the air pollution exposure: The Alsace region council decides,
at the census block-level, to randomly ban some cars to ride, during a few days to keep the average PM10 level below or equal
to 15 μg∕m3. To disentangle the effects of low vs high air pollution levels on the relapse occurrence, the goal is to com-
pare the units under the intervention to units under higher levels of air pollution: average PM10 level higher or equal to
25 μg∕m3. The intervention comparison thresholds are based on the 25th and upper 75th percentiles of the 5 days moving
average PM10 distribution.

The study population consists of N patients, in S census blocks, followed during T days, where i= 1, … , N,
s= 1, … , S, and t = 1, … , T. The objective is to construct a hypothetical experiment that mimics a controlled experi-
ment, in which air pollution exposure could be believed to be randomized. We define the daily census block exposure as
the 5 days air pollution moving average. We denote Ps, t the 5-day moving average of 24-h-mean PM10 in census block s,
at day t:

Ps,t =
1
5

5∑
l=1

PM10 s,t−l. (1)
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We chose to calculate the air pollution moving average starting at lag-1 to make sure that the exposure was measured
prior to the outcome measured at lag-0. The 5-day moving average is motivated by the results from Jeanjean et al.,23 who
reported positive associations between MS relapse incidence and PM10 until lag-5.

The indicator of the intervention vs higher pollution levels for each census block s at day t is

Ws,t =

{
0 if Ps,t ≥ 25 μg∕m3,

1 if Ps,t ≤ 15 μg∕m3.
(2)

The experimental units are person days, that is, patient i in census block s at day t, with intervention indicator:
W i, s, t =W s, t. In this setting, each unit, has two binary potential outcomes: Y i, s, t(1), the relapse occurrence if W i, s, t = 1,
and Y i, s, t(0), otherwise:

Yi,s,t =

{
1 if a relapse occurred,
0 if no relapse occurred.

(3)

3.1.2 Assumptions

To draw causal inferences in a standard setting, the stable unit treatment value assumption (SUTVA) must hold.36 This
assumption incorporates the idea that units do not interfere with one another and that for each unit there is only one
single version of each exposure. In the setting of this article, one could argue that some MS patients are still mobile enough
to receive hidden versions of the intervention on a day t. But as shown by Jeanjean et al 23, the Alsace region only presents
major air pollution contrasts between the census blocks of the main city (Strasbourg) and the surrounding ones. Thus,
in this study, we make the assumption that MS patients living in Strasbourg spend most of their time in the city and the
patients living in the more rural parts of Alsace do not spend much time in the city.

Another key component of a causal analysis is the assignment mechanism determining which units receive
which treatments; in other words, which potential outcomes are observed and which are missing.36 This study is
observational because the functional form of the assignment mechanism is unknown as opposed to a randomized
experiment where the assignment mechanism has a known functional form that is controlled by the researcher.
Therefore, the researcher has to resort to a design stage to assess the plausibility of an unconfounded assignment
mechanism.

3.2 Stage 2: Design of a reconstructed hypothetical experiment

At the design stage, the aim is to obtain a balanced subset of the observed data for which the assignment to expo-
sure can be assumed to be unconfounded, that is, the exposure assignment is independent of the potential outcomes
given the pre-exposure covariates X: Pr(W|X, Y(0), Y(1))=Pr(W|X). Unconfoundedness implies that treated and control
groups of units can be fairly compared because they are similar with respect to preexposure covariates.36 Match-
ing has been a popular method to create treated and control groups that are balanced, that is, exchangeable with
respect to their covariates.37 By creating matched groups we limit the “counfounding” of the exposure-outcome
relationship.

As we said earlier, in the definition given by McDonald et al,14 MS relapses occur for at least 24 hours and start at least
30 days after any previous episode began. This definition leads to no observation of the data on days between t and t + 30,
if Y i, s, t = 1. Therefore, we introduce a clear data indicator, defined as

Ci,s,t =

{
1 if Yi,s,t−1∶t−30 = 0,
0 if Yi,s,t−1∶t−30 ≠ 0.

(4)

The days for which Y obs
i,s,t = (Yi,s,t(0)|Ci,s,t = 1) can be observed are referred to as control days, and the days for which

Y obs
i,s,t = (Yi,s,t(1)|Ci,s,t = 1) can be observed are referred to as treated days.
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3.2.1 Within-patient pair matching to obtain a balanced subset of the data

Our within-patient matching strategy aims to limit confounding by census block-specific and patient-specific variables.
We match our units, person days, within patient: patient i in census-block s at time t under W obs

s,t = 1 with pre-exposure
covariates Xi, s, t is matched to himself at t⋆, under W obs

s,t⋆ = 0 only if Xi,s,t⋆ is “similar” to Xi, s, t.
For each unit, the vector of covariates is given by Xi,s,t = (X (1)

i,s,t,X (2)
i,s,t,X (3)

i,s,t,X (4)
i,s,t), where X (1)

i,s,t indicates the number of
days elapsed since the MS onset, X (2)

i,s,t the season, X (3)
i,s,t the ozone concentration (in μg/m3) at day t − 6, and X (4)

i,s,t the maxi-
mum temperature (in ◦C) at day t − 6. A balanced number of days elapsed since the MS onset (X (1)

i,s,t) between treated and
control days assures that, within-patient, the disease outcomes will be fairly compared at similar points in time during
the analysis (stage 3); thereby limiting confounding related to aging and disease progression of the patients. Because of
our within-patient matching strategy, we do not have to match patient-specific covariates, such as sex, bodymass index,
or smoking status. Matching on X (2)

i,s,t,X (3)
i,s,t, and X (4)

i,s,t limits the environmental confounding at the census-block level.
To ensure covariate balance, we only allow a treated unit to be matched with a control unit if the componentwise

distances between their covariate vectors are less than some prespecified thresholds 𝛿1, … , 𝛿4. For any pair of covariate
vectors Xi, s, t and Xi,s,t⋆ , we define the difference between them as

Δ(Xi,s,t,Xi,s,t⋆ ) =
{0 if |X (k)

i,s,t − X (k)
i,s,t⋆ | < 𝛿k for all k ∈ {1, 2, 3, 4},

+∞ otherwise
(5)

At this stage, the objective to create a balanced data subset for which the plausibility of the “unconfoundedness”
assumption is based on a diagnostic of our choice. We choose the thresholds according to the covariates prematching
distributions diagnostic plots (see Figure 3: the range and mean of the lag-6 ozone level (in μg/m3) are [1, 225] and 63
respectively, and the range and mean of the lag-6 maximum temperature (in ◦C) are [−10, 39] and 16 respectively). The
thresholds are: the absolute difference between the number of days elapsed since the MS onset is less than 𝛿1 = 2 years,
the seasons are identical, that is, 𝛿2 = 0, the absolute difference in lag-6 ozone level is less than 𝛿3 = 20 μg/m3, and the
absolute difference in lag-6 maximum temperature is less than 𝛿4 = 5◦C.

This constrained pair matching can be achieved by using a maximum bipartite matching38 on a graph such that: (1)
there is one node per unit, partitioned into treated nodes and control nodes; and (2) the edges are pairs of treated and
control nodes with covariates Xi, s, t and Xi,s,t⋆ ; and (3) an edge exists if and only if Δ(Xi,s,t,Xi,s,t⋆ ) < +∞. By construction,
using a maximum bipartite matching algorithm on this graph as implemented in the R package igraph produces the
largest set of matched pairs that satisfy the unit-specific proximity constraints set by our thresholds. The diagnostics for
balance show that, the within-patient pair matching algorithm described above was successful in constructing “similar”
control (polluted) and treated (clean) days (see the distributions of Xi, s, t in both groups in Figure 3). Given the available
covariates, our attempt to mimic the randomized intervention from the Alsace city council was successful at creating
comparable groups of polluted vs less polluted days.

3.3 Stage 3: Analysis of the hypothetical experiment

In this illustration, we follow a Fisherian analysis approach and perform hypothesis testing with a powerful test statistic
comparing relapse occurrence of units subject to an intervention for air pollution reduction to units subject to higher levels
of air pollution.39 We do not attempt to provide an estimate of (and uncertainty around) an estimand to avoid relying on
assumptions such as the additivity of the treatment effects, asymptotic arguments, or an imputation model, which may
be the case when drawing Neymanian or Bayesian inferences.

3.3.1 Sharp null hypothesis

The sharp null hypothesis, stating that for each unit the intervention (exposure) has no effect on “clear days” (ie, Ci = 1),
can be formally expressed as:

∀i, s, t H0 ∶ (Yi,s,t(0)|Ci,s,t = 1) = (Yi,s,t(1)|Ci,s,t = 1). (6)

The plausibility of this sharp null hypothesis can be assessed by using a randomization test.
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F I G U R E 3 Empirical distributions of the preexposure covariates before and after the design stage [Colour figure can be viewed at
wileyonlinelibrary.com]

3.3.2 Choice of test statistic

To assess the null hypothesis of no effect of the intervention, we first compute the observed value of a test statistic. We
propose to use the 𝛽1 estimated by a logistic mixed effect model as detailed below. Brillinger et al40 were pioneers to use
the coefficient of a model for the statistic for the Fisher randomization test. At this stage, to achieve larger bias reductions,
frequentist regression models can be used to remove residual confounding that was not accounted for, during the design
stage.10,41 Because the outcome of interest is a binary response whose mean is conditional on the patient i, we consider a
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logistic mixed effects model for Y i, s, t.42 The log odds of Y i, s, t depend on fixed and random effects via the following linear
predictor:

log
(Pr(Yi,s,t = 1|Ci,s,t = 1, bi)

Pr(Yi,s,t = 0|Ci,s,t = 1, bi)

)
= Ws,t𝛽1 + Ai,s,t𝛽2 + bi, (7)

where Ai, s, t is the age of patient i at MS onset.
That is, the conditional mean of Y i, s, t is related to the linear predictor by a logit link function and has randomly varying

intercepts bi taking the natural heterogeneity of units’ propensity to have a relapse. We adjust for Ai, s, t, age at onset,
because it has been observed that the younger the patient at disease onset, the higher its relapse rate.32,43,44 In Equation (7),
the 𝛽1 coefficient corresponds to the change in log odds of a relapse when a patient is subject to the air pollution reduction
intervention vs higher pollution levels. We estimate 𝛽1 using the glmer function of the R package lme4.45

3.3.3 Randomization-based inference

Here, we choose not to rely on asymptotic arguments, but instead take a Fisherian perspective (ie, randomization-based
inference).39,46 Assuming H0, the goal is to approximate the null randomization distribution of 𝛽1, 𝛽null

1 by computing the
values of the test statistic for 1000 possible exposure assignments. Because the number of assignments is very large, we
calculate an approximate P-value, that is, the proportion of computed test statistics that are as large or larger than the
observed test statistic: 1

1,000
∑1,000

r=1 �|𝛽null
1,r |≥|𝛽obs

1 |, where �|𝛽null
1,r |≥|𝛽obs

1 | = 1 when |𝛽null
1,r | ≥ |𝛽obs

1 | and, 0 otherwise. A small P-value
shows that the observed test statistic is a rare event when the null hypothesis is true. When units have varying probabilities
of being treated, the analysis of experiments, even when hypothetical, should reflect their design.2,3,11,47 In our example,
patients living in the same census block have the same intervention exposure. We consider two hypothetical interven-
tion assignment mechanisms operating at the censusblocklevel: Every day t, in each census block s, the Alsace city council
decides to impose the air pollution reduction intervention using a (1) completely randomized and (2) temporally correlated
assignment mechanism. Therefore, we generated 1000 exposure assignments at every day t, in each census block s:

1. by tossing a coin with probability Pr(W s, t = 1)= 1/2, and
2. by generating W s, t with auto-correlation: Cor(W s, t, W s, t − 1)= 0.5, where 0.5 corresponds to the air pollution correlation

of adjacent days in the data.

3.4 Stage 4: Interpretations of the results

If the null hypothesis of no difference in MS relapses between the matched groups of treated and control units is rejected,
that difference warrants further scrutiny to assess whether it can be attributed to the different air pollution levels, assum-
ing the assignment “unconfoundness” assumption holds. We can then report that the relapse risk of MS patients was or
was not reduced by the introduction of the intervention to reduce air pollution levels in the Alsace region. It is important
to note that interpretation should be restricted to units that remain in the finite sample after matching (see their detailed
characteristics in Table 1 and Figure 3). The data do not provide direct information for “unmatched” units. Cautious-
ness regarding extrapolation to units with covariate values beyond values observed in the balanced subset of the data is
necessary. The results of our analyses and associated discussion are presented next.

4 RESULTS

Our balanced subset of the data was analyzed as a whole, and within patient Clusters 1 and 2 to assure we study patients
that are in similar phases of their disease history. Recall that Cluster 1 patients are older, thus at a later stage of their disease
progression, and have a longer follow-up period than Cluster 2 patients (see Table 1). Accordingly, we anticipate Cluster
1 patients to develop fewer relapses than Cluster 2 patients, regardless of their environmental exposure. In the matched
population, we estimated the log odds of a relapse after the patients are subject to a hypothetical intervention decreasing
the air pollution levels vs higher pollution levels. These estimates and their associated approximate Fisherian P-values,
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T A B L E 2 Primary results

Control days Treated days Estimate P-valueCR P-valueTC

O 185 942 160 186

B 89 410 89 410 −0.12 .341 .485

C1 O 118 350 99 677

B 57 969 57 969 −0.04 .842 .862

C2 O 67 592 60 509

B 31 441 31 441 −0.23 .227 .384

Note: Estimates and approximate Fisherian P-values calculated in the balanced data subset (B vs original (O)) for the overall
sample and stratified by patient clusters (C1 and C2). We consider the completely randomized (CR) and temporally
correlated (TC) assignment mechanisms.

based on 1000 draws of the permuted treatment assignment are presented in Table 2. We also present the secondary results
stratified by sex and MS form, determined by the last patient information (see Table C1 in Appendix C).

The sharp null hypothesis of no effect of the intervention lowering the levels of air pollution in the overall study
population is not rejected (P-valueCR = .341 and P-valueTC = .485, see Table 2). However, in the block of female patients
with a relapsing-remitting MS form there is an indication that the observed intervention effect could be a rare event under
the null hypothesis (P-valueCR = .038 and P-valueTC = .160, see Table C1 in Appendix C). To assess the significance of this
secondary result rigorously, another study primarily focusing on this subpopulation should be conducted.

5 DISCUSSION

We have illustrated Bind and Rubin’s3 causal inference pipeline with complex environmental health data. Standard epi-
demiological approaches analyze the observed data by directly regressing an observed outcome on an exposure and
confounding covariates. Instead, before analyzing the exposure-outcome (pollution-MS) relationship, we constructed
a balanced data set in such a way that it could have plausibly come from an intervention that we conceptualized.
The objective of such approach is to borrow the appealing insights of randomized control trials in observational
studies.

During the design stage, the outcome variable is ignored and only pre-exposure covariates are considered. The cho-
sen balanced data is a subsample of units that can be used to estimate the effects of an exposure in potentially susceptible
populations. This advantage is particularly interesting for epidemiological studies because it facilitates the study of non-
modifiable risk factors (eg, race, age, sex). Omitting the outcome data until the analysis avoids “model cherry-picking”
because the effect of the intervention is estimated once, only after the design stage is successful. Nonetheless, at the design
stage, we can only consider the observed preexposure variables but the assignment mechanism could depend on unob-
served preexposure variables. In such case, it is recommended to consider sensitivity analyses of how the Fisher P-value
would change had the assignment mechanism been plausibly different, as suggested by Rosenbaum48 and further dis-
cussed by Bind and Rubin.49 Subject-matter knowledge on air pollution exposure assessment should guide the plausible
range of “sensitivity”. P-values and the reason why they could deviate from the P-value calculated with the assumed
hypothetical assignment mechanism.

Results interpretation are more transparent than with standard approaches. The assumed assignment mechanism
and underlying assumptions have to be clearly stated to obtain meaningful P-values. Standard approaches usually make
strong assumptions (eg, linearity), whose discussions are often neglected. Solely adjusting for confounders by including
them in a regression function, without a design stage, can be unreliable, especially when the pre-exposure covariates
distributions of the treated and control units are not similar. Cochran and Rubin,41 Heckman et al,50 and Rubin51 have
shown that regression models can estimate biased treatment effects when the true relationship between the covariates
and the outcome is not modeled accurately. Nonetheless, the temporal structure of our study could question the plausi-
bility of the “no hidden version of the treatment” component of the SUTVA. One could argue that the small P-values we
reported are due to air pollution exposure that happened prior to t. Therefore, with the same analysis method, we ver-
ified (in the female patients block) that the null hypothesis of no effect of the intervention was not rejected for W s, t − 1
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(estimate=−0.16, P-value = .223) and W s, t − 2 (estimate=−0.03, P-value = .843), the intervention indicators summariz-
ing the 5-day moving average of 24-h-mean PM10 in census block s, at day t − 1 and t − 2 respectively (see Equations (1)
and (2) in the Methods). Concerning the interference component of the SUTVA, omitting the 30 days post-relapse reas-
sures the absence of person days interference impacting the observed outcome. Another question that could arise due to
the temporality in our data, is whether the assignment mechanism depends on historical information of covariates and
exposures. We assure it is not the case by verifying that the covariates and exposures are balanced post-matching until lag
10 (see Web Figure 2).

In contrast to other studies interested in the effect of air pollution exposures on health outcomes, this study does not
provide any estimation of an exposure-response curve. Instead, we chose to estimate the effect of a single intervention and
provide results that can directly contribute to policy recommendations. The agency in charge of monitoring the Alsace
region air quality, Atmo Grand Est, informs and warns the citizens, medias, and local governments on the air pollution
levels. For instance, during the Summer 2019 heat wave, the local government imposed a reduction of automobile speed
of 20 km/h on the highway. These interesting interventions are intended to prevent the harmful effects of high pollution
episodes. We believe that research that is intervention oriented, as conducted in this study, should help policy makers in
better tailoring their intervention policies to prevent adverse health effects of environmental exposures. Also, until now no
environmental epidemiologists analyzed the air pollution-MS relationship with causal inference methods, so a first step
to make advances in the field is to assess, by comparing low vs high air pollution exposure, such sharp null hypothesis,
that is, whether air pollution has any effect on the units of our study. If so, a natural next step would be to work with a data
set adequate for balancing covariates along different doses of the exposure such as suggested by Wu et al9 and estimate a
causal dose response to protect populations at risk.

The null hypothesis of no effect of air pollution reduction intervention is not rejected in the overall study population,
which differs from previous studies,17-23 and highlights the statistical conclusion differences between studies using causal
inference methods vs directly modeling the observed data (eg, using regressions). The secondary analyses indicate an
effect of the intervention that is worthy of attention in the subgroup of women with relapsing-remitting MS; such question
was not examined in previous studies. The effects of air pollution may be different between men and women.52,53 It has
to be reminded that this subgroup of women was not the primary focus of our study, this result has to be confirmed in a
study designed for this subgroup.

A limitation of our study is that we had to focus on the patients for whom we had a complete disease history and omit
the patients whose relapses were recorded on a doubtful date. Ideally, we should have imputed the dates of these relapses
by following a multiple imputation procedure for outcome data as suggested by Little and Rubin.54 However, the causes
of MS relapses, a rare outcome, remain unknown, which makes their timing nearly impossible to predict accurately. This
issue motivates why we decided to analyze a complete-case subset of MS patients. Furthermore, we considered only one
pollutant, PM10, which constitutes another limitation of our study. The environmental epidemiology literature suggests
that a pollutant mixtures may be more relevant to study. Our illustration could be extended: (1) to the estimation of an
exposure-response curve to protect populations at risk, (2) to the estimation of the effects of an intervention involving
multiple exposures on the risk of MS relapse, and (3) to study effects of air pollution decrease interventions on other
health outcomes, such as stroke or asthma exacerbation.55-57
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APPENDIX A. DATA PREPROCESSING STEPS

1. All the patients in the alSacEP network for whom data are available during study period: from 1 January 2000 to 31
December 2009.
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2. We removed the patients who recorded relapses only on doubtful dates. Patients who only have their disease onset
date unclear were kept because we are analyzing relapses post-onset for all patients.

3. For each patient, we observe their daily data as from 30 days post-MS onset until their last available information. Also,
we do not observe patient data 30 days post-relapse because according to McDonald et al’s14 definition, relapses are
only recorded when they occurred at least 30 days after the last relapse.

4. We observe days where the 5 days average PM10 level are smaller or equal to 15 μg∕m3, and bigger or equal to 25 μg∕m3.
5. For six patients, because their number of observed days is small (between 9 and 33 days), no match according to our

matching criteria has been found (Table A1).

T A B L E A1 Data preprocessing

Step Npatients

1 Original data 473

2 Complete disease history 364

3 30 days post-MS onset to day of last information 355

4 Dichotomization for binary exposure 353

5 Person days matching 347

APPENDIX B. SAMPLE CHARACTERISTICS BY TYPE

T A B L E B1 Multiple sclerosis patient characteristics (in years) by Type

Mean in years (SD) Type 1 (n = 132) Type 2 (n = 221)

Onset–Inclusion gap 9 0

(8) (0)

Age at MS clinical onset 29 32

(10) (11)

Age at study inclusion 39 32

(12) (11)

Follow-up since inclusion 9 4

(1) (3)

Note: Type 1—prevalent cases: MS onset occurred before the beginning of the study. Type 2—incident cases: MS onset occurred
after the beginning of the study (between 2000-01-01 and 2009-10-01).
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APPENDIX C. RESULTS

T A B L E C1 Secondary analysis

Control days (n) Treated days (n) Estimate P-valueCR P-valueTC

M O 51 118 42 977

B 24 643 24 643 0.17 .518 .602

RR O 38 406 32 087

B 18 403 18 403 0.23 .482 .541

SP O 12 712 10 890

B 6240 6240 0.00 1.000 1.000

F O 134 824 117 209

B 64 767 64 767 −0.20 .162 .325

RR O 105 713 93 504

B 50 615 50 615 −0.32 .038 .160

SP O 29 111 23 705

B 14 152 14 152 0.19 .517 .647

Cluster 1

Control days (n) Treated days (n) Estimate P-valueCR P-valueTC

M O 32 391 25 273

B 15 312 15 312 0.21 .515 .669

F O 85 959 74 404

B 42 657 42 657 −0.11 .529 .668

Cluster 2

Control days (n) Treated days (n) Estimate P-valueB, CR P-valueB, TC

M O 18 727 17 704

B 9331 9331 −0.09 .809 .785

F O 48 865 42 805

B 22 110 22 110 −0.31 .137 .318

Note: Estimates and approximate Fisherian P-values calculated in the balanced subset (B vs original (O)). The results are stratified by MS
form (RR and SP) within sex (M and F), and by sex within patient clusters (C1 and C2). We consider the completely randomized (CR)
and temporally correlated (TC) assignment mechanisms.
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Web Figure 1: Annualized relapse rates per years at onset and patient’s current age categories.
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Web Table 1: Literature summary of the air pollution-MS relationship.

Authors Outcome Methods Epidemiological
findings

Oikenen et al. (2003)
Finland

dichotomized
monthly relapses
count

mulitvariate logistic
regression

PM associated with
MS (relapse): Higher
risk of MS relapse in
months with high-
est PM10 (average
monthly concen-
tration in highest
quartile) than low-
est PM10 (lowest
quartile).

Gregory et al. (2008)
Georgia
USA

MS prevalence rates mulitvariate linear re-
gression

PM associated with
MS (disease onset):
Higher MS prevalence
rates in counties with
higher long-term ex-
posure to PM10.

Heydarpour et
al.(2014)
Teheran
Iran

case (MS patient) -
control (not)

t-test Higher long-term ex-
posure to PM10 for
MS cases when com-
pared to randomly se-
lected controls.

Angelici et al. (2016)
Lombardy region
Italy

hospital admission
count

poisson regression MS-related hospital-
ization increases on
days preceded by one
week with average
PM10 levels in the
highest quartile.

Bergamaschi et al.
(2017)
Pavia province
Italy

inflammatory activity
(brain MRI)

logistic regression Higher PM10 levels
during days before
brain MRIs showing
inflammatory activity
in MS patients.

Jeanjean et al. (2017)
Alsace region
France

relapse occurrence case-crossover study Higher PM10 (03 ,
NO2) levels during
days before relapse
occurence.

Palacios et al. (2017)
USA
(Nurses Health Study
I and II)

MS onset multivariable Cox
proportional hazards
models

No association be-
tween average PM
exposure and MS on-
set risk.

Hong Chen et al.
(2017)
Ontario
Canada

MS cases multivariable Cox
proportional hazards
model

No association be-
tween living near ma-
jor roads and MS in-
cidence.

2

CHAPTER 2. Supplementary material 33



Web Figure 2: Temporal unconfoundedness verification.
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Abstract

Statistical analysis of microbial genomic data within epidemiological cohort studies holds
the promise to assess the influence of environmental exposures on both the host and the host-
associated microbiome. However, the observational character of prospective cohort data and
the intricate characteristics of microbiome data make it challenging to discover causal associa-
tions between environment and microbiome. Here, we introduce a causal inference framework
based on the Rubin Causal Model that can help scientists to investigate such environment-
host microbiome relationships, to capitalize on existing, possibly powerful, test statistics, and
test plausible sharp null hypotheses. Using data from the German KORA cohort study, we
illustrate our framework by designing two hypothetical randomized experiments with interven-
tions of (i) air pollution reduction and (ii) smoking prevention. We study the effects of these
interventions on the human gut microbiome by testing shifts in microbial diversity, changes
in individual microbial abundances, and microbial network wiring between groups of matched
subjects via randomization-based inference. In the smoking prevention scenario, we identify a
small interconnected group of taxa worth further scrutiny, including Christensenellaceae and
Ruminococcaceae genera, that have been previously associated with blood metabolite changes.
These findings demonstrate that our framework may uncover potentially causal links between
environmental exposure and the gut microbiome from observational data. We anticipate the
present statistical framework to be a good starting point for further discoveries on the role of
the gut microbiome in environmental health.

Summary. Environmental influences on the human gut microbiome are still to be discovered or
better understood. In this paper, we contribute to the field of microbiome research and environmen-
tal epidemiology by suggesting a stage-based causal inference framework relying on the foundations
of the Rubin Causal Model. A particularity of the framework is the use of randomization-based
inference, which we value to be a necessary exploratory inference method when tackling untapped
research questions. To illustrate the framework, we explore the effects of two inhaled environmental
exposures previously hypothesized to be linked with gastrointestinal diseases and the gut micro-
biome: air pollution exposure and cigarette smoking.
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1 Introduction

The human microbiome plays a pivotal role in maintaining a healthy physiology via multiple inter-
actions with the host. The gut microbiome, for instance, provides important metabolic capabilities
for food digestion [1, 2] and regulates immune homeostasis [3]. Although dietary interventions [4],
pathogen infections [5], and antibiotics use [6] can trigger rapid changes of gut microbial composi-
tions and can lead to dysbiotic disruptions of host-microbiome interactions, the long-term impact of
environmental exposures on the human gut microbiome remains poorly understood. In this paper,
we provide a causal inference framework for assessing such epidemiological questions and analyze a
prospective cohort with collected microbiome data. Recent technological advances, through culture-
independent analyses, have facilitated a surge in observational studies of the human microbiome
[7, 8, 9]. A common method to catalog microbial constituents is high-throughput amplicon se-
quencing [10], allowing the acquisition of gut microbiome survey data for large prospective cohort
studies. Important examples include the Human Microbiome Project [11], the British TwinsUK
study [12], the Dutch LifeLines-DEEP [13] and Rotterdam Studies [14], the Chinese Guangdong
Gut Microbiome Project [15], the American Gut Project [16], and the German KORA study [17].

Thus far, these and other studies have linked alterations in gut microbial compositions to several
common diseases, including rheumatoid arthritis, colorectal cancer, obesity, inflammatory bowel
disease (IBD), and diabetes [18]. Although environmental exposures such as particulate matter
(PM) [19] and smoking [20] are also related to these diseases, an understanding of environment-gut
microbiome relationships and their implications for disease mechanisms has remained elusive. Here,
we examine such environment-gut microbiome relationships within a causal inference framework
[21] combined with state-of-the-art statistical methods for amplicon sequence variant (ASV) data
[22]. We illustrate our analysis framework using data from the German KORA study [17] and focus
on two inhaled environmental exposures previously hypothesized to be linked with gastrointestinal
diseases and the gut microbiome: (i) particulate matter (PM) with diameter smaller or equal to 2.5
µm (PM2.5) and (ii) cigarette smoking.

Air pollution exposure has been found to be associated with gastrointestinal diseases, such as
appendicitis [23], inflammatory bowel disease [24], abdominal pain [25], and metabolic disorders [26].
Current research suggests that air pollution may impact the gut microbiome which, in turn, acts as a
“mediator” of the association between air pollution and metabolic disorders such as obesity and type
2 diabetes [27, 28, 29]. These studies found associations between nitric oxide, nitrogen dioxide [27],
PM [28], and ozone [30] exposures and the gut microbiome. Several potential pathways explain how
particles affect human health. The gut is exposed to PM through: (i) mucociliary clearance, i.e., the
self-cleaning mechanism of the bronchi, inducing inhaled PM to be cleared from the lungs to the gut,
and (ii) oral route exposure, when food and water are contaminated by PM prior to being ingested
or in the alimentary canal via inhalation [31, 32]. Results from murine studies of the effect of PM
on the gut [33, 34, 35, 36, 37] suggest that exposure to PM changes the microbial composition and
increases gut permeability, leading to higher systemic inflammation due to the unrestrained influx
of microbial products from the gut into the systemic circulation [38].

The chemical mixture of cigarette smoke inhaled into the lungs has an effect on blood markers
that, in turn, interact with the gut. Another pathway is that the toxicants of cigarette smoke swal-
lowed into the gastrointestinal tract induce gastrointestinal microbiota dysbiosis via antimicrobial
activity and regulation of the intestinal microenvironment [39]. Cigarette smoking is an inhaled
exposure that has been shown to influence the susceptibility of diseases such as IBD, colorectal
cancer, and systemic diseases [40, 41, 20]. Animal studies suggest that cigarette smoke may mediate
its effects through alterations of intestinal microbiota [42]. In humans, shifts in the gut microbiome
composition and diversity were observed after smoking cessation. These shifts were similar to pre-
viously observed shifts in obese vs. lean patients, suggesting a potential microbial link between
the metabolic function of the gut and smoking cessation [43]. Comparison of the gut microbiome
composition of smokers and never-smokers led to similar observations [44]. So far, the underlying
mechanisms of the effect of smoking on not only gut-related, but also autoimmune diseases have
not been established. It has been hypothesizes that the gut microbiome may be the missing link
between smoking and autoimmune diseases [20].
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Figure 1: The four stages of the causal inference framework [21] adapted to the exploration of
environment-gut microbiome relationships. Stage 1: Formulation of a plausible hypothetical inter-
vention (e.g., decreasing inhaled environmental exposures) to examine its impacts on the gut micro-
biome. Stage 2: Construct a hypothetical paired-randomized experiment in which the environmental
intervention been implemented randomly. Stage 3: Choose powerful test statistics comparing the
gut microbiome had the subjects been hypothetically randomized to the environmental intervention
vs. not and test the sharp null hypotheses of no effect of the intervention at different aggregation
levels of the data. Stage 4: Interpretation of the statistical analyses and recommendations for future
studies or implementation of the intervention.

Central to the present study is the investigation of the causal question: Does reducing inhaled
environmental exposures alter the human gut microbiome? As summarized in Fig 1, we answer
this question using the following four-stage analysis framework: (i) conceptualize hypothetical en-
vironmental interventions that could have resulted in the observed data at hand, (ii) design our
non-randomized data, so that the unconfoundedness assumption can be assumed, (iii) choose pow-
erful, state-of-the-art test statistics from the literature to compare human gut microbiome at different
levels of taxonomic granularity between subjects assigned to the interventions vs. not, and (iv) in-
terpret the implications of the results for recommending further studies or the studied hypothetical
intervention. The reason for using this four-stage approach is for the transparency of its assump-
tions when interpreting results. The Methods section elaborates on each of these steps. An essential
ingredient in stage (iii) of our framework is the use of a randomization-based hypothesis testing with
powerful test statistics comparing subjects under an intervention vs. not [45, 46]. We do not attempt
to provide an estimate of (and uncertainty around) an estimand to avoid relying on assumptions
such as the additivity of the treatment effects, asymptotic arguments, or an imputation model, which
may be the case when drawing Neymanian (i.e., distribution-based) or Bayesian inferences. This
Fisherian approach is a non-asymptotic first step to start shedding light on merely-touched research
questions dependent on complex data structures, such as human gut microbiome data.

The present causal inference framework relies on ideas developed in the 70s [47, 48, 49, 50] and the
Rubin Causal Model [51, 52] to analyze observational data by reconstructing the ideal conditions of
randomized experiments, the “gold standard” to draw objective causal inferences on the effects of an
intervention [53]. A formidable statistical challenge is, however, to define and test these intervention
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effects for high-dimensional taxonomically-structured microbiome relative abundance data. Here,
we adapted and advanced several state-of-the-art approaches from the statistical literature tailored
to amplicon data, ranging from tests for α-diversity in networked communities [54, 55], Microbiome
Regression-based Kernel Association Tests (MiRKAT) for β-diversity to randomization-based dif-
ferential compositional mean tests [56]. We also applied and analyzed individual taxon differential
abundance tests with taxonomic rank-dependent reference selection [57] and sparse composition-
ally robust taxon-taxon network estimation schemes [58] with novel differential edge tests [59], thus
covering a comprehensive list of archetypical microbiome data analysis tasks.

Our framework complements recent causal inference approaches for microbiome data such as
mediation methods [60, 61], graphical models [62], and Mendelian randomization [63, 64] to analyze
observational gut microbiome data. In these studies, the target for interventions is the microbiome
and the understanding of its effects on diseases, i.e., the microbiome is treated as the exposure and
diseases as outcomes. Here, we are interested in examining the effects of environmental exposures
(interventions) on the gut microbiome (“the” outcome), when only non-randomized data are avail-
able. To the best of our knowledge, no other observational study interested in environmental effects
on the gut microbiome addressed their research question using causal inference methods.

In the following, we detail the characteristics of the KORA FF4 study population and highlight
potential effects of the hypothetical interventions, air pollution reduction and smoking prevention,
on the gut microbiome. In particular, we characterize potential effects in terms of changes in
overall microbial diversity, taxon-level abundances, and microbial associations. In the smoking
prevention analysis, we identified taxa, including Ruminococcaceae (UCG-005, UCG-003, UCG-
002) and Christensenellaceae R-7-group, that are part of a stable sub-community in the microbial
association networks and have been found to contribute to circulating blood metabolites in the
LifeLines-Deep cohort [65].

2 Methods

The German KORA FF4 cohort study

The data come from the German KORA FF4 cohort study, which involves participants aged 25 to 74
years old living in the city of Augsburg [17]. The participants were subject to health questionnaires
and follow-up examinations. During the study, stool samples were collected and the gut microbiota
data for 2,033 participants were obtained with 16S rRNA gene sequencing. For each participant
we have their long-term exposure to air pollution (particulate matter). The long-term exposure
variables come from the ULTRA III study, in which air pollutants were monitored several times a
year at 20 locations within the Augsburg region. From this data, annual averages of air pollutants
were calculated using land-use regression models. The models explain the spatial variation of the
pollutants with predictor variables derived from geographic information systems (GIS). To obtain
the long-term air pollution values for each participant, land-use regression models were applied to
their residential address. Moreover, to elucidate relationships between health outcomes and diet,
dietary intake data were collected for 1,469 participants of the KORA FF4 cohort. Dietary intake
was derived using a method combining information from a food frequency questionnaire (FFQ) and
repeated 24-h food lists [66]. In brief, the usual food intake (in gram/day) was calculated as the
product of the probability of consumption of a food on a given day and the average amount of a
food consumed on a consumption day.

Gut microbiome data sequencing and preprocessing

DNA Extraction, 16S rRNA Gene Amplification, and Amplicon Sequencing. Fecal DNA extrac-
tion was isolated by following the protocol of [67]. The samples were profiled by high-throughput
amplicon sequencing with dual-index barcoding using the Illumina MiSeq platform. Based on a
study providing guidelines for selecting primer pairs [68], the V3-V4 region of the gene encoding 16S
ribosomal RNA was amplified using the primers 341-forward (CCTACGGGNGGCWGCAG; bacte-
rial domain specific) and 785-reverse (GACTACHVGGGTATCTAATCC; bacterial domain specific).
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Amplification was undertaken using the Phusian High-Fidelity DNA Polymerase Hotstart as per
manufacturer’s instructions. The PCR libraries were then barcoded using a dual-index system. Fol-
lowing a round of purification with AMPure XP beads (Beckman Coulter), libraries were quantified
and pooled to 2nM. The libraries were sequenced on an Illumina MiSeq (2 x 250 bp), using facilities
provided by the Ziel NGS-Core Facility of the Technical University Muenchen (TUM).

Bioinformatics. The demultiplexed, per-sample, primer-free amplicon reads were processed by
the DADA2 workflow [22, 69] to infer sequence variants, remove chimeras, and assign taxonomies
with the Silva v128 database [70] using the naive Bayesian classifier method [71] until the genus-
level assignment and the exact matching method [72] for species-level assignment. We opted for
the high-resolution DADA2 method to infer sequence variants without any fixed threshold, thereby
resolving variants that differ by as little as one nucleotide. Amplicon sequence variants (ASVs) do
not impose the arbitrary dissimilarity thresholds that define OTUs. They provide consistent labels
because they represent a biological reality that exists outside the data being analyzed: the DNA
sequence of the assayed organism, thus they remain consistent into the indefinite future [22]. The
result of the DADA2 pipeline is two datasets: (i) a ASV count dataset, where each row specifies
how often an ASV was sequenced and (ii) a taxonomic assignment dataset, where each row specifies
the taxonomic names of an ASV. It is common to create a phylogenetic tree of the ASVs to later on
calculate microbial diversity measures such as the DivNet [55] and UniFrac [73] (see the Statistical
analysis stage of Methods Section 2). The multiple genome alignment for the phylogenetic tree
was built with the DECIPHER R package enabling a profile-to-profile method aligns a sequence set
by merging profiles along a guide tree until all the input sequences are aligned [74]. The multiple
genome alignment was used to construct the de novo phylogenetic tree using phangorn R package.
We first construct a neighbor-joining tree [75], and then fit a maximum likelihood tree using the
neighbor-joining tree as a starting point. After 16S rRNA sequencing the 2,033 stool samples from
the KORA cohort and processing the sequences with the DADA2 pipeline, we observe 15,801 ASVs
(see Fig A and Table A in S1 Text).

Causal inference framework

The four stages of the causal framework [21] that we use to construct hypothetical randomized
experiments to study the environment-microbiome relationship are the following:

1. Conceptual : Formulation of a plausible hypothetical intervention (e.g., decreasing air pollution
levels) to examine its impacts on the gut microbiome.

2. Design: Reconstruct the hypothetical randomized experiment had the environmental inter-
vention been implemented randomly.

3. Analysis: Choose valid and powerful test statistics comparing the gut microbiome had the
subjects been hypothetically randomized to the environmental intervention vs. not and test
the sharp null hypotheses of no effect of the intervention at different aggregation levels of the
data.

4. Summary : Interpretation of the statistical analyses and recommendations for future studies
and interventions.

Conceptual stage: formulation of the hypothetical randomized experiment
in terms of potential outcomes

To understand whether environmental interventions have an effect on the human gut microbiome,
the objective is to reconstruct a hypothetical experiment that mimics a controlled randomized exper-
iment [53], in which an environmental intervention could be believed to have been randomized. Let
Wi be the indicator of the assignment for subject i (i = 1, ..., N) to an environmental intervention
vs. none, where:
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Wi =

{
1 if i is under the intervention,
0 if i is not.

(1)

The composition of a human gut microbiome can be expressed as a B-dimensional vector of
the microbial abundance. We define Y b

i as the real abundance (count) of the bth bacterial taxon,
b = 1, ..., B for subject i. We define the potential outcomes of subject i as Y b

i (1), the bth taxon
abundance (count) had subject i been randomized to the environmental intervention (Wi = 1), and
Y b
i (0), had subject i not been randomized to the intervention (Wi = 0). Table 1 shows the potential

outcomes for the N subjects.

Taxa 1 2 ... B
Subjects Wi = 0 Wi = 1 Wi = 0 Wi = 1 Wi = 0 Wi = 1

1 Y 1
1 (0) Y 1

1 (1) Y 2
1 (0) Y 2

1 (1) ... ... Y B
1 (0) Y B

1 (1)
2 Y 1

2 (0) Y 1
2 (1) Y 2

2 (0) Y 2
2 (1) ... ... Y B

2 (0) Y B
2 (1)

... ... ... ... ... ... ... ... ...
N Y 1

N (0) Y 1
N (1) Y 2

N (0) Y 2
N (1) ... ... Y B

N (0) Y B
N (1)

Table 1: Potential outcomes for the subjects of the hypothetical experiment

Only one of the two potential outcomes can actually be observed for each subject: this is why
the Rubin Causal Model characterizes causal inference as a missing data problem [52], where the
observed outcome of subject-i and taxa-b can be expressed as a function of both potential outcomes:

Y b,obs
i = WiY

b
i (1) + (1−Wi)Y

b
i (0) (2)

Observed outcomes measurement

The human gut microbiome can be composed of trillions of bacteria. However, due to technology
limitations, the exact abundance and number of all strains present in a human subject cannot be
measured. To tackle this limitation, we opted for the processing of Amplicon Sequence Variants
(ASVs) from our sequencing data to approximate the true gut microbiome composition of our study
population [22, 69]. ASVs refer to individual DNA sequences recovered from a high-throughput
marker gene analysis, the 16S rRNA gene in our case. Therefore, in this study the observed outcome
under investigation is a N ×A matrix, for a = 1, ..., A ASVs, an approximation of the N ×B matrix
described above. This limitation adds another layer of missing data, i.e., we are missing the true gut
microbial composition of each subject. We define the ASV counts we measured for each subject-i
as Ca,obs

i , which corresponds to Y b∈A,obs
i plus some measurement error.

Design stage: reconstruction of the conceptualized hypothetical experi-
ment

To assess causality, randomized experiments have long been regarded as the “gold standard”. We
are interested in the effect of environmental interventions that are often unpractical or ethical to
assign randomly to humans within an experiment [21]. Therefore, we resort to a design stage
[76] with a matched-sampling strategy to construct two hypothetical randomized experiments to
assess the effects of an intervention on the changes in gut microbiome composition. The aim of
our pair-matching strategy is to achieve balance in background covariates distributions as it is
expected, on average, in randomized experiments. This approach attempts to create exchangeable
groups as if the exposure was randomly assigned to each participant given measured covariates,
to guarantee exposure assignment is not confounded by the measured background covariates. The
exposure assignment mechanism determines which units receive which exposure; in other words,
which potential outcomes are observed and which are missing [52]. The unconfoundedness of the
assignment mechanism given covariates is a key assumption of the Rubin Causal Model.
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Our pair-matching strategy aims to remove individual-specific confounding (e.g., years of age,
sex, unit of BMI). Briefly, subject i under W obs

i = 1 with pre-exposure covariates Xi is matched to
subject i⋆, under W obs

i⋆ = 0 only if Xi⋆ is “similar” to Xi. For each unit, the vector of covariates is

given by Xi = (X
(1)
i , ..., X

(k)
i ). In order to ensure covariate balance, we only allow a treated unit to

be matched with a control unit if the component-wise distances between their covariate vectors are
less than some pre-specified thresholds δ1, ..., δk. For any pair of covariate vectors Xi and Xi⋆ , we
define the difference between them as

∆(Xi, Xi⋆) =

{
0 if |X(k)

i −X
(k)
i⋆ | < δk for k = 1, ...K,

+∞ otherwise

This constrained pair matching can be achieved using a maximum bipartite matching [77] on
a graph such that: (i) there is one node per unit, partitioned into intervention nodes and control
nodes, (ii) the edges are pairs of treated and control nodes with covariates Xi and Xi⋆ , and (iii) an
edge exists if and only if ∆(Xi, Xi⋆) < +∞. By construction, using a maximum bipartite matching
algorithm on this graph as implemented in the igraph R package produces the largest set of matched

pairs that satisfy the unit-specific proximity constraints set by our thresholds. Let NE =
∑N

i=1 Wi

be the number of subjects under the environmental intervention and NC =
∑N

i=1 1−Wi the number
of control subjects, after matching.

After excluding the participants of the cohort that take antibiotics and had a cancer of the
digestive organ, the pre-matched data set consists of 1,967 participants. At this stage, the objective
is to create balanced data subsets for which the plausibility of the “unconfoundedness” assumption
is based on a diagnostic of our choice. We choose the thresholds, δ1, ..., δ7, according to the pre-
matching diagnostic plots of the covariate distributions (see Figs B-G in S1 Text). We privilege
a large dataset with balance, while assuring that the created pairs, or in other words “twins”,
are scientifically plausible, e.g., no male and female could be matched. We assume a covariate to
be balanced when its distribution is approximately the same under the exposure vs. not. The
thresholds are: the absolute differences between the amount of alcohol consumption is less than
δ1 = 25 g/day, between the body-mass-index is less than δ2 = 4 kg/m2, between age is less than
δ3 = 5 years, the diabetes status (diabetic, non-diabetic) is identical, i.e., δ4 = 0, and so are sex
(male, female), i.e., δ5 = 0, and physical activity (active, inactive), i.e., δ6 = 0. Additionally, in
the air pollution reduction experiment: the smoking status (smoker, ex-smoker, never-smoker) is
identical, i.e., δ7 = 0, and in the smoking prevention experiment: the absolute difference between
years of education is less than δ7 = 3 years.

After matching, we obtain two subsets of the data that can be analyzed as coming from two
pair-randomized experiments: (i) an air pollution (ap) reduction hypothetical experiment (Nap =
198), and (ii) a smoking prevention hypothetical experiment (Ns = 542); both data sets exhibit no
evidence against covariate imbalance (see Table 2 and Figs B-G in S1 Text).

Air pollution Smoking
NC NE NC NE

Matching PM2.5 ≥ 13.0 µg/m3 PM2.5 ≤ 10.3 µg/m3 Smoker Never smoker
Before 206 193 302 908
After 99 99 271 271

Table 2: Before and after matching number of units. The thresholds for the air pollution experiment
are based on 90th and 10th percentiles of the PM2.5 distribution.

It is well known that diet has an influence on the gut microbiome and future studies on the
gut should include dietary intake data in their analysis [78, 79]. In our study, we only have access
to dietary intake data for a portion of our samples, therefore we examine balance diagnostics in
usual nutrient intake after matching in order to maintain a large data set before matching. Figs
H-I in S1 Text show that after matching, our intervention and control units (in both hypothetical
experiments) do not exhibit imbalance with respect to the following food items: potatoes/roots,
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vegetables, legumes, fruits/nuts, dairy products, cereal products, meat, fish, egg products, fat, and
sugar. In the same way, we checked for covariate balance after matching for medication intake, also
a well-known confounder in human gut microbiome studies. Figs D and G in S1 Text show that
after matching, our intervention and control units (in both hypothetical experiments) do not exhibit
imbalance with respect to medication intake.

Statistical analysis stage: randomization-based inference

To compare the gut microbiome of subjects under the environmental intervention to control subjects,
we choose to not rely on asymptotic arguments, but instead take a Fisherian perspective (i.e.,
randomization-based inference) [45, 80]. We test sharp null hypotheses (H0) of no effect of the
intervention for any unit by choosing test statistics that account for the complex microbiome data
structure, including the additional “layer” of missing data. The ASV count data has a challenging
structure because: (i) it is high-dimensional, (ii) some ASVs have low prevalence, (iii) the ASVs
are strongly correlated, and (iv) it is compositional. ASV-count data is said to be “compositional”
because between units comparison of ASV counts might not be informative due to the limited
sequencing depth of the machine and the total number of sequenced reads varies from unit to unit
(i.e., they have no common denominator) [81].

In randomization-based inference the goal is to construct the null randomization distribution of a
test statistic assumingH0, T , by computing the values of the test statistic for all possible intervention
assignments. Because the number of assignments is very large, we calculate an approximating p-
value using Niter iterations, i.e., the proportion of computed test statistics that are as large or
larger than the observed test statistic: 1

Niter

∑Niter

l=1 1Tl≥T obs , where 1Tl≥T obs = 1 when Tl ≥ T obs,
and 0 otherwise (for two-sided tests we obtain the p-values by taking absolute value of Tl and
T obs, i.e., |Tl| and |T obs|). A small p-value shows that the observed test statistic is a rare event
when the null hypothesis is true, which indicates the results are worth further scrutiny [82]. In the
following subsections, we describe the null hypotheses we test and the test statistics we use to draw
randomization-based inferences with Niter = 10,000 possible intervention assignments following a
matched-pair design (see summary Table 3). This means that the permutations of the intervention
assignment vectors needed to calculate the Fisher p-values follow the design of our hypothetical
experiments. When units have varying probabilities of being treated, the analysis of experiments,
even when hypothetical, should reflect their design [76, 53].

analysis level data transformation test statistic
richness breakaway [83] betta regression coefficient [54]

α-diversity DivNet [55] betta regression coefficient [54]
β-diversity pairwise distance matrices MiRKAT score statistic [84]

high-dimensional means centered log ratios mean abundance difference [56]
abundance normalization by ratio [57] LogFold mean difference
correlation association matrices [58] differential associations [59]

Table 3: Data transformation and choice of test statistics.

Diversity analyses

Within Subjects Diversity.
One of the challenges of analyzing ASV-count data is working around the low prevalence of

some ASVs that are due to the limited sequencing depth of the machine and the fact that some
ASVs are not shared in the entire population (see Fig A in S1 Text). Therefore, before directly
testing within-subject diversity differences with so called “plug-in” estimates, it has been recently
suggested to start with estimating the diversity with statistical models [54]. We will follow this
idea by estimating richness with the breakaway method [83] and estimating the Shannon index for
α-diversity with the DivNet method [55].

Richness. The sharp null hypothesis of no effect of the intervention on the richness can be
written as: H0,R :

∑B
b=1 1Y b

i (0)>0 =
∑B

b=1 1Y b
i (1)>0. To estimate the richness of subject i (i.e.,
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the number of bacterial taxa present in subject i), we will estimate the total richness in subject i,
observed and unobserved, by Bi with the breakaway model [83]. Let fi,1, fi,2, ... denote the number
of bacterial taxa observed once, twice, and so on, in a subject i, and let fi,0 denote the number of
unobserved bacteria, so that Bi = fi,0+fi,1+fi,2+.... The idea behind the breakaway method is that
for each subject i, it predicts the number of unobserved bacteria, fi,0, with a nonlinear regression
model to, in turn, provide an estimate of Bi.

α-diversity. The sharp null hypothesis of no effect of the intervention on α-diversity can be
written as: H0,α :

∑B
b=1 Y

b
i (0) =

∑B
b=1 Y

b
i (1). To have estimates for indices of the α-diversity of

subject i (i.e., its total microbial abundance) and their variance, we use the DivNet method, because
it accounts for the co-occurrence patterns (i.e., ecological networks) of bacterial taxa in the microbial

community [55]. Let Zb
i = Y b

i /
∑B

b=1 Y
b
i ∈ [0, 1] denote the unknown relative abundance of taxa b in

subject i, noting that
∑B

b=1 Z
b
i = 1. As a reminder, Ca,obs

i denotes the number of times taxa a was
observed in the stool sample of subject i in our data. One of the most common α-diversity indices is
the Shannon entropy [85], which is defined as: αi,Shannon = −∑B

b=1 Z
b
i log(Zb

i ). This index captures
information about both the species richness (i.e., number of species) and relative abundances of the
species: as the number of species in the population increases, so does the Shannon index, and as the
relative abundances diverge from a uniform distribution and become more unequal, the Shannon
index decreases. In the ecological literature, researchers mostly use the following maximum likelihood

estimate of αi,Shannon (often referred to as a “plug-in” estimate): −∑A
a=1

Ca
i∑A

a=1 Ca
i

log
(

Ca
i∑A

a=1 Ca
i

)
.

It has been proven that this estimate is negatively biased [86]. Therefore, various corrections have
been proposed and are detailed in [55]. However, most of the suggested estimates are only functions
of the ASV count vectors Ca

i and do not utilize the full ASV count data matrix C and the co-
occurrence pattern, i.e., ecological network, of the ASVs. Willis and Martin [55] showed that these
networks can have substantial effects on estimates of diversity and proposed an approach, called
DivNet, to estimating diversity in the presence of an ecological network. DivNet estimates are based
on log-ratio transformations by fixing a “baseline” taxon for comparison, which are modeled by a
multivariate normal distribution to incorporate the co-occurrence structure between the taxa as the
covariance matrix. The main advantage of DivNet method is the use of information shared across
all samples to obtain more precise and accurate estimates.

Choice of test statistic. The test statistic we use to test H0,R and H0,α are the coefficient
of the intervention indicator estimated by the regression suggested by Willis et al. [54]. Using the
coefficient of a model as the test statistic of a Fisher test was introduced in the 70s [87]. At this
stage, to achieve larger bias reductions, frequentist regression models can be used to remove residual
confounding that was not accounted for, during the design stage [47, 48].

Willis et al. [54] suggest to test changes in richness (Bi) and α-diversity (α̂i) with a hierarchical
regression model, assuming that richness is a function of: the intervention indicator Wi, random
variation that is not attributed to the covariates, and the standard error previously estimated with
breakaway or DivNet (because not every bacterial taxon in each subject was observed so we cannot
not know the true richness or α-diversity for any i). The regression models are built with the betta
function available in the breakaway R package [83, 54].

Between Subjects Diversity.
β-diversity. Distance-based analysis is a popular approach for evaluating the association

between an exposure and microbiome diversity. The pairwise distances, dii⋆ , for high-dimensional
data we consider are the: UniFrac (unweighted) distance [73], Jaccard index, Aitchison distance [88]
(i.e, Euclidean distance on centered log-ratio transformed data), and Gower distance [89] (on centered
log-ratio transformed data). We choose the unweighted paired UniFrac, because it is a distance
metric (i.e., a non-negative real-valued function) as opposed to the generalized UniFrac. In the same
way, the Jaccard distance was chosen as opposed to the commonly used Bray-Curtis. The sharp null
hypothesis of no effect of the intervention on β-diversity can be written as: H0,β : dii⋆(0) = dii⋆(1).

Choice of test statistic. Despite the popularity of distance-based approaches, the field
of microbiome studies suffers from technical challenges, especially in selecting the best distance.
Therefore, we use the suggested microbiome regression-based kernel association test (MiRKAT) [84]
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that uses a kernel regression and a standard variance-component score test statistic [90]. To consider
different distance measures, the optimal MiRKAT: tests H0,β for each individual kernel, obtains the
p-value for each of the tests, and then adjust for multiple comparison with a p-value with an omnibus
test. Instead, we use a fully randomization-based multiple comparison adjustment method detailed
subsequently.

Multiple comparison adjustments. We follow the fully randomization-based procedure for
multiple comparisons adjustments suggested by Lee et al. [91], which is directly motivated by the
intervention assignment actually used in the experiment. This procedure has been suggested to
have sufficient power to detect causal effects [91]. In our hypothetical experiments, we have matched
paired intervention assignments. Both the unadjusted and adjusted p-values in the procedure are
randomization-based, so do not require any assumptions about the underlying distribution of the
data. The adjusted p-values are calculated following Steps 1-4:

1. Calculate for each hypothesis h, an unadjusted p-value for the observed test statistic by taking
the proportion of computed test statistics that are as large or larger than the observed test
statistic. This procedure is detailed in the introduction of the Statistical analysis stage section.
Also, for each hypothesis h, h = 1, ..,H, and intervention assignment iteration iter, iter =
1, ..., Niter, record the vector of calculated test statistics Th,iter

β = (T 1,1
β , ..., TH,Niter

β ).

2. For each h and each iteration iter, calculate an unadjusted randomization-based p-value, with
Th,iter
β as the observed test statistic. For each iter, record the minimum p-value of the H

p-values.

3. The repetitions of Step 2 capture the joint randomization distribution of the test statistics and
thus, of the unadjusted p-values.

4. To calculate the adjusted p-values for the observed test statistics, for each h, take the propor-
tion of “minimum p-values” (recorded in Step 2) that are less than or equal to its unadjusted
p-value calculated in Step 1.

Step 2-3. essentially represent a translation of the multiple test statistics into p-values sharing a
common 0-1 scale.

Composition analyses

Compositional equivalence.
The compositionality problem means that: a change in abundance (i.e., sequenced counts) of

a taxon in a sample induces a change in sequenced counts across all taxa. This problem, among
others, leads to many false positive discoveries when comparing taxon abundances between groups.
Moreover, because the components of a composition must sum to unity, directly applying standard
multivariate statistical methods intended for unconstrained data to compositional data may result
in inappropriate and misleading inferences [88]. Therefore, we impose a centered log-ratio transfor-
mation of the compositions before testing the null hypothesis of no difference in average microbial
abundance as suggested by [56].

For the measured microbiome data C, the centered log-ratio matrices L = (Li, ..., LN ) are de-

fined by La
i = log

( Ca
i

g(Ci)

)
, where g(Ci) = (

∏A
a=1 C

a
i )

1/A denotes the geometric mean of the vector

Ci = (C1
i , ..., C

A
i ). The sharp null hypothesis of no microbiome composition difference between the

subjects under the intervention vs. not can be written as H0,M: for each subject i, Li(0) = Li(1).
Choice of test statistic. The scale invariant test statistic suggested by [56] for testing H0,M

is based on the differences L̄a,obs
E −L̄a,obs

C , where L̄a,obs
E = 1/NE

∑
i:Wi=1 L

a
i is the sample mean of the

centered log ratios for subjects under the intervention. Because microbiome data are often sparse
(i.e., only a small number of taxa may have different mean abundance), the following test statistic is

considered: TM = NENC

NE+NC
max

1≤a≤A

(L̄a,obs
E −L̄a,obs

C )2

γ̂aa
, where γ̂aa are the pooled-sample centered log-ratio

variances.
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Differential abundance
The compositional nature of the microbiome data requires to choose appropriate reference sets

with respect to which testing of changes in individual taxon relative abundances becomes feasible
[81]. A recent approach that follows this methodology is the DACOMP (differential abundance
testing with compositionality adjustment) method, proposed by [57]. DACOMP is a data-adaptive
approach that: 1) identifies a subset of non-differentially abundant (reference) ASVs (R) in a testing
dataset, and 2) tests the null of no differential abundance (DA) of the other ASVs (a) “normalized-
by-ratio” in a training dataset. First, a taxon enters the set R = (r1, ..., rF ) if it has low variance
(< 2) and high prevalence (> 90%) (see Figs L-M in S1 Text). For the analyses at the ASV
level, we chose the variance to be < 3 and the prevalence to be > 40% as thresholds in order
the have at least one reference per subject. Second, using the suggested “normalization-by-ratio”
approach, the null hypothesis to be tested for ASV a is that ASV a is not differentially abundant:

H
(a/∈R)
0,DA :

Ca
i (0)

Ca
i (0)+

∑R
f=1 C

rf
i (0)

=
Ca

i (1)

Ca
i (1)+

∑R
f=1 C

rf
i (1)

,

Choice of test statistic. To test this sharp null hypothesis, we use the LogFold change avail-
able in the dacomp package with the Compute.resample.test function. This function is useful
to perform randomization-based inference for differential abundance testing, because it enables to
directly incorporate a matrix of hypothetically randomized intervention assignments, which is an

appealing feature when researchers work with particular designs. Because we are testing H
(a/∈R)
0,DA

||A|| − ||R|| times at all taxonomic ranks, we adjust for multiple tests with the method described in
the β-diversity analysis section [91].

Partial correlation structure
For our matched intervention and control subjects, we predicted microbial association networks

using the Sparse InversE Covariance estimation for Ecological ASsociation Inference (SPIEC-EASI)

framework [58] that uses 1) centered log-ratio transformations of the observed ASV counts, Ca,obs
i ,

to perform 2) Sparse Inverse Covariance selection (with the graphical lasso method [92]), and finally
3) pick a model based on edge stability (with the StARS method [93]) to obtain a sparse inverse
covariance matrix. The non-zero entries of this matrix are proportional to the negative partial
correlations among the taxa and form the edge set in an undirected weighted graph G = (V,E).
Here, the vertex (or node) set V = v1, ..., vp represents the p genera and the edge set E ⊂ V ×V the
possible associations among them. The null hypotheses of no effect of the environmental intervention
on the observed genera network associations can be expressed as: H0,N : E(0) = E(1).

Choice of test statistic. We compare the intervention and control networks with test statistics
for the difference in genera associations individually. To generate sampling distributions of the test
statistics under H0,N, , the intervention and control labels are reassigned 10,000 times to the samples
while the matched pair structure is maintained, i.e., the assignment to intervention or control is
permuted within each pair. The SPIEC-EASI framework is then re-applied to each permuted data
set. This procedure is implemented with the Network Construction and Comparison for Microbiome
Data, NetCoMi, R package [59]. To adjust for multiple differential association tests, we use the
method described in the β-diversity and differential abundance analyses section [91].

Summary stage: interpretation of the results

If the null hypothesis of no difference in the gut microbiome between the matched groups of treated
and control units is rejected, that difference warrants further scrutiny to assess whether it can be
attributed to the different treatments, assuming the assignment “unconfoundness” assumption holds.
We can then report that the gut microbiome composition was or was not altered by the introduction
of the environmental intervention. It is important to note that interpretation should be restricted to
units that remain in the finite sample after matching (see their detailed characteristics in Figs B-I
in S1 Text). The data do not provide direct information for “unmatched” units. Caution regarding
extrapolation to units with covariate values beyond values observed in the balanced subset of the
data is necessary.
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3 Results

To illustrate our causal inference framework, we first conceptualize two hypothetical environmen-
tal interventions that potentially influence the gut microbiome: (i) an air pollution reduction, and
(ii) a smoking prevention intervention. Second, for each intervention, we construct a hypotheti-
cal matched-pair randomized experiment, aiming at satisfying the “unconfoundedness” assumption
(see Methods section). Third, we analyze the “unconfounded”/“as-if randomized” data subset with
randomization-based inference to test sharp null hypotheses of no effect of the interventions for each
unit at different taxonomic levels of the microbial ASV data. The results presented subsequently
correspond to the third stage of the framework. Fourth, causal conclusions are developed in the
Discussion section. Following the American Statistical Association statement [94, 82], we avoid
searching for “statistically significant” results with a dichotomous approach. To give structure to
our results reporting, we reject the sharp null hypotheses of no effect of an environmental inter-
vention when the p-value is lower or equal to 0.1 or, when computed, when the adjusted p-value
is lower or equal to 0.2. We are more tolerant with adjusted p-values because multiple comparison
adjustments are conservative and our study is exploring a nearly untapped field. Nonetheless, we
highly recommend to the readers interested in our research questions or result replication to exam-
ine all reported p-values in Figs and Tables, because higher p-values do not mean that an effect is
improbable, absent, false, or unimportant [82].

Characteristics of study population

Our study is based on data from the KORA FF4 study cohort [17]. Because we performed a design
stage before analyzing the data we have two study populations, one per hypothetical experiment,
which are subsets of the entire cohort (see Design stage in the Methods section). In the air pollution
reduction experiment, we analyze 99 matched pairs of subjects living in highly (PM2.5 ≥ 13.0 µg/m3)
and less (PM2.5 ≤ 10.3 µg/m3) polluted areas with similar background characteristics distributions
(Table 4 and Figs B-D and Fig H in S1 Text). The thresholds for the air pollution experiment
intervention are based on 90th and 10th percentiles of the PM2.5 distribution. We focus on the
PM2.5 pollutant, originating mainly from traffic emissions and fossil fuel combustion, for its known
penetrating effects into the lung and potential implication for the gut microbiome [27]. In the
smoking prevention experiment, we analyze 271 matched pairs of smokers and never-smokers (with
background characteristics distributions presented in Table 4 and Figs E-G and Fig I in S1 Text).
A total of 45 units are included in the balanced data subset of both hypothetical experiments.
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Air pollution (PM2.5) Smoking
≥ 13.0 µg/m3 ≤ 10.3 µg/m3 Smoker Never-Smoker

Mean St. d. Mean St. d. Mean St. d. Mean St. d.

Age 60.6 12.4 60.3 12.4 54.2 9.4 54.4 9.6
Body Mass Index 27.0 4.3 27.0 3.8 26.7 4.4 26.7 4.2
Alcohol intake (g/day) 11.3 14.1 11.5 13.9 13.0 15.6 11.6 14.3
Years of education 11.9 2.6 11.7 2.8 11.7 2.3 11.8 2.2

N % N % N % N %
Sex F 41 20.7 41 20.7 130 24.0 130 24.0

M 58 29.3 58 29.3 141 26.0 141 26.0
Smoking Ex-S. 27 13.6 27 13.6 - - - -

Never-S. 62 31.3 62 31.3 - - - -
Smoker 10 5.1 10 5.1 - - - -

Diabetes No 95 48.0 95 48.0 264 48.7 264 48.7
Yes 4 2.0 4 2.0 7 1.3 7 1.3

Phys. Activity No 36 18.2 36 18.2 125 23.1 125 23.1
Yes 63 31.8 63 31.8 146 26.9 146 26.9

Table 4: Baseline characteristics of the study population in the air pollution reduction (left table) and
smoking prevention experiments (right table). Continuous variables: mean and standard deviation
(St. d.). Categorical variables: number of samples per category (N) and proportion of category (%).

Microbial diversity analysis

A common first step in microbiome data analysis is estimating and assessing microbial diversity. We
begin by investigating the potentially causal effects of the interventions on within-subject diversity
(α−diversity) and between-subject variation (β−diversity), respectively.

Within-subject diversity

Gut bacterial richness and Shannon diversity were estimated on the ASV level with the breakaway
[83] and DivNet [55] method, respectively. Comparisons of the distributions of these estimated vari-
ables between subject under the intervention vs. not in both hypothetical experiments are shown
by boxplots in Fig 2. The small approximate Fisherian p-values based on 10,000 permutations of
the intervention assignment give us ground for rejecting the null hypotheses of no effect of an air
pollution reduction (p-valueap,richness ≈ 0.0008, p-valueap,α−div. ≈ 0.0388) and smoking prevention
(p-values,richness ≈ 0.1518, p-values,α−div. ≈ 0.0497) on the diversity of the human gut microbiome.
On average, lower diversity was observed in the subjects living in polluted areas or smokers compared
to participants living in less polluted areas or non-smokers. This diversity difference motivates the
more in-depth analyses of the gut microbiome composition presented subsequently.
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Figure 2: Richness and α-diversity. Boxplots (with median), values of the test-statistics from the
betta regression [54], and one-sided randomization-based p-values for 10,000 permutations of the
intervention assignment following a matched-pair design. (A) Boxplots of the richness. (B) Boxplots
of the α-diversity.

Between-subject variation

To estimate β-diversity indices, we calculated UniFrac, Aitchison, Jaccard, and Gower dissimilar-
ities between all possible pairs of subjects. The results are shown in Table 5. To alleviate the
problem of choosing the best dissimilarity metric for β−diversity estimation, we follow the Micro-
biome Regression-based Kernel Association Test (MiRKAT) of Zhao et al. [84] suggesting to compute
several metrics and then adjust for multiple comparisons. In both experiments, we reject the sharp
null hypotheses of no effect of the intervention on between-subject variation.

Air pollution Smoking
distance test-statistic p-value p-valueadj test-statistic p-value p-valueadj
UniFrac 12.1 0.0199 0.0506 61.5 0.0024 0.0070
Aitchison 82596.0 0.1096 0.2466 356921.5 0.0001 0.0003
Jaccard 19.4 0.0884 0.2043 84.5 0.0001 0.0003
Gower 0.2 0.0089 0.0250 0.1 0.0485 0.1204

Table 5: β-diversity. Microbiome Regression-based Kernel Association Test (MiRKAT), unadjusted
and adjusted one-sided randomization-based p-values for 10,000 permutations of the intervention
assignment following a matched-pair design.

Microbial compositions analysis

We next investigated whether shifts in microbial compositions as a whole or differences in specific
microbial taxa were observable in the hypothetical experiments. We illustrate this by designing and
analyzing sharp null hypotheses for global compositional means and differential genus abundances.

Compositional mean differences

Testing whether two study groups have the same microbiome composition can be viewed as a two-
sample testing problem for high-dimensional compositional mean equivalence. We tested sharp
null hypotheses using a test statistic developed particularly for that purpose by Cao et al. [56].
Table 6 summarizes the results for each taxonomic level. We reject the sharp null hypotheses of
gut microbiome composition equivalence for the air pollution reduction and smoking prevention
experiments. In both experiments, p-values are higher at the ASV level than at higher taxonomy
levels.
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ASV Species Genus Family Order Class Phylum

Air Pollution
nb. of taxa (p) 4,370 414 252 74 44 29 15
test statistic 12.8 12.9 11.9 8.8 8.4 8.4 8.1
p-value 0.1451 0.0722 0.0733 0.1521 0.1161 0.1021 0.0591

Smoking
nb. of taxa (p) 7,409 479 271 81 48 31 16
test statistic 13.0 14.5 13.3 11.6 8.6 9.4 10.4
p-value 0.1607 0.0302 0.0384 0.0279 0.0859 0.0440 0.0135

Table 6: Compositional equivalence test. Test statistic for high-dimensional data suggested by [56]
and one-sided randomization-based p-values for 10,000 permutations of the intervention assignment
following a matched-pair design.

Differential taxon abundances

For compositional microbiome data, identifying sets of potentially “differentially abundant taxa” re-
lates to testing sharp null hypotheses of no difference in abundance of individual taxa with respect to
a reference set. We conducted such an analysis on the genus level for all genera present in at least 5%
of the samples. This prevalence threshold was guided by the amount of information preserved when
performing filtering, i.e., microbial abundance and the number of taxa observed per sample (see Figs
N-Q in S1 Text). We applied the Differential abundance testing for compositional data (DACOMP)
approach [57] and used two-sided tests since we lack prior knowledge on the direction of the abun-
dance changes. Fig 3 highlights the key DACOMP results for both experiments. In the air pollution
reduction experiment, we reject the sharp null hypothesis of no differential abundance only for the
Marvinbryantia genus (p-valueadj. = 0.0120) (see Table B in S1 Text). We also reject the sharp null
hypothesis of no effect of smoking prevention for eleven genera (see Fig 3 and Table C in S1 Text).
Five belong to the Ruminococcaceae family: Ruminococcaceae-UCG-002, Ruminococcaceae-UCG-
003, Ruminococcaceae-UCG-005, Ruminococcus-1, and Ruminococcaceae-NK4A214-group, three to
the Lachnospiraceae family: Lachnospira, Lachnospiraceae-NK4A136-group, and Coprococcus-1, one
to the Christensenellaceae family: Christensenellaceae-R-7-group, and two to the Mollicutes class,
which belong to the NB1-n and Mollicutes-RF9 order.
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Figure 3: Differential abundance. For each genus, adjusted two-sided randomization-based p-values
for 10,000 permutations of the smoking prevention intervention assignment following a matched-
pair design. Genera with no tip point belong to the set of reference taxa. Black circled tip point:
differentially abundant genus (Marvinbryantia) in the air pollution reduction experiment.

Microbial network analysis

To gain insights into changes in the organizational structure of the underlying microbial gut ecosys-
tem, we next calculated sparse genus-genus association networks for each exposure level and hy-
pothetical experiment and highlight the results of our randomization-based differential association
testing.

Genus-genus association networks

We used the Sparse InversE Covariance estimation for Ecological ASsociation Inference (SPIEC-
EASI) framework [58] to infer genus-genus associations in our two hypothetical experiments. We
used the glasso mode of SPIEC-EASI with default parameters (see Methods for details). Fig 4A
shows the overall structure of the learned sparse association networks for the smoking prevention
experiment (smokers (left panel) and non-smokers (right panel), respectively). Each network pos-
sesses a single large connected component consisting of 30-40 mostly Firmicutes genera (highlighted
area in Fig 4A). These connected components also included the majority of the previously identi-
fied potentially differentially abundant genera, including Ruminococcaceae (UCG-005, UCG-002),
Ruminococcus-1 , and Christensenellaceae-R-7-group (see Fig 4B for a detailed view of the connec-
tivity pattern). The genus-genus associations networks derived from the air pollution reduction
experiment showed similar overall topological features containing one large connected component of
60 genera, including Ruminococcaceae (UCG-005, UCG-003, UCG-002) and Christensenellaceae-R-
7-group among others (see also Fig R in S1 Text).
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Figure 4: Genus-genus associations of smokers and never-smokers (n = 271, p = 140). (A) Visu-
alization of the genus-genus partial correlations estimated with the SPIEC-EASI method. Edges
thickness is proportional to partial correlation, and color to sign: red: negative partial correlation,
green: positive partial correlation. Node size is proportional to the centered log ratio of the genus
abundances, and color is according to phyla. Triangle shaped nodes are differentially abundant (see
Figure 3). (B) Zoom in largest connected component and differential associations (bold genera).

Differential genus-genus associations

To identify potentially differential network associations in the intervention experiments, we coupled
the SPIEC-EASI network estimation procedure with permutations of the intervention assignment,
available in the NetCoMi R package [59] (see also Methods for details). For each hypothetical
experiment, we list the five genus-genus associations with smallest adjusted two-sided randomization-
based p-values in Table 7 and highlight these associations in Fig 4B. In the air pollution reduction
experiment, we reject the sharp null hypothesis of no differential association for two edges: the
Succinivibrio/Slackia edge (p-valueadj. ≈ 0.0661), and the Ruminiclostridium/Cloacibacillus edge
(p-valueadj. ≈ 0.1063) (see Table 7 and Fig R in S1 Text).
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Air pollution
Genus-genus associations (- : disappearance after intervention) p-valueadj
Succinivibrio/Slackia (-) 0.0661
Ruminiclostridium/Cloacibacillus (-) 0.1063
Cloacibacillus/Lachnospiraceae-FCS020-group 0.2795
Megasphaera/Alistipes 0.4147
Bacteroidales (Genus: unknown)/Prevotella-2 0.4753
Smoking
Genus-genus associations (- : disappearance after intervention) p-valueadj
Christensenellaceae-R-7/Ruminiclostridium-6 (-) 0.1585
Ruminococcaceae-UCG-010/Ruminiclostridium-6 (-) 0.1585
Ruminococcaceae-UCG-014/Flavonifractor 0.2031
Clostridiales-vadinBB60/Ruminiclostridium-6 0.2376
Ruminococcaceae-UCG-013/Faecalibacterium 0.2492

Table 7: Differential associations of genera. Smallest five adjusted two-sided randomization-based
p-values for 10,000 permutations of the intervention assignment following a matched-pair design.

In the smoking prevention experiment, we also reject the sharp null hypothesis of no differential
association for two edges: the Ruminiclostridium-6/Ruminococcaceae-UCG-010 edge (p-valueadj.
≈ 0.1585), and the Ruminiclostridium-6/Christensenellaceae-R-7-group edge (p-valueadj. ≈ 0.1585)
(see Table 7). The genera that participate in these potentially differential associations are also
highlighted in Fig 4B.

Exploring associations between genera and lipid metabolites

The gut microbiome is a substantial driver of circulating lipid levels, and prior work has shown
[95, 96, 65] that the relative abundance of several microbial families, including Christensenellaceae,
Ruminococcaceae, and the Tenericutes phylum were negatively correlated with triglyceride and pos-
itively associated with high-density lipoproteins (HDL) cholesterol. Since our analysis identified a
small interconnected group of genera, including Christensenellaceae and Ruminococcaceae, for whom
we rejected the no differential abundance hypothesis, we performed an exploratory data analysis to
investigate taxa-serum lipid measurements associations. Four lipids were measured in blood serum
samples of our study population from the KORA cohort: total, HDL, and LDL, cholesterol, as well
as triglyceride levels. Fig 5A shows the correlation between these lipids and the genera we discovered
in our hypothetical experiments. Tendencies similar to those reported in previous studies can be
observed in our data.
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Figure 5: (A) Lipid metabolites correlation with selected genera from the smoking prevention exper-
iment (green). (B) Scatterplots of high-density lipoprotein (HDL) cholesterol and triglycerides vs.
centered log-ratio transformed relative abundances of the genera Ruminococcaceae-UCG-005 and
Christensenellaceae-R-7-group.

For instance, in the smoking prevention dataset, we observed a positive correlation of Chris-
tensenellaceae R-7-group and Ruminococcaceae (UCG-005) genus abundances (under centered log-
ratio transformation) with HDL cholesterol and negative correlation with triglyceride levels, respec-
tively (see Fig 5B). Similar correlation patterns were also found for the other genera for whom we
rejected the no differential abundance hypothesis (see second and forth column in Fig 5A). Our
findings were also in line with recently reported correlation results in Vojinovic et al. [65] using the
Dutch LifeLines-DEEP cohort [13] and the Rotterdam Study [14].

Sensitivity analysis

To assess whether the pair-matching strategy chosen for the design stage influenced the conclusions of
this study, we conducted a sensitivity analysis (see Sensitivity Analysis section in S1 Text). For that,
we implemented the more commonly-used propensity score matching algorithm [97] and obtained
matched samples of: (i) 158 participants living in low PM2.5 areas and 158 participants living in
higher PM2.5 areas, and (ii) 290 smokers and 290 never smokers (see Table D and Figs T-Y in S1 Text
for the balance diagnostics). For both hypothetical randomized experiments, using propensity score
matching at the design stage results in analyzing more matched samples. The microbial diversity
analyses lead to the same conclusion for both experiments despite different design stages (see Fig
Z and Tables E-F in S1 Text). Overall, we also observe small approximate Fisherian p-values
after performing the propensity score matching, in the same way we observe small approximate
Fisherian p-values with our pair-matching strategy. The test statistics have the same direction
and magnitude. For the air pollution reduction experiment, the adjusted p-values are higher when
performing propensity score matching when checking for differential abundances, i.e., we cannot
reject the sharp null hypothesis of no differential abundance for the Marvinbryantia genus. For the
smoking prevention experiment, we can reject the sharp null of no differential abundance for the same
taxa and additional ones when performing propensity score matching compared to pair-matching
(see Table C and Table G in S1 Text).
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4 Discussion

We first discuss the results presented above, then elaborate on the statistical framework we used for
our analyses, and suggest statistical and epidemiological extensions of our work.

In the air pollution (PM2.5) reduction hypothetical experiment, we reject the sharp null hy-
potheses of no richness, no α-diversity, no β-diversity, and no high-dimensional mean differences.
We also reject the no differential abundance hypothesis for the Marvinbryantia genus, and the no
differential association hypothesis between: the Succinivibrio and Slackia genera, as well as the Ru-
miniclostridium and Cloacibacillus genera. Experiments exposing mice to PM2.5 resulted in mixed
findings concerning difference in microbial richness and diversity. This might be due to regional
differences in the chemical composition of PM2.5 as well as differences in the duration of exposure
[29]. Thus far, only one human study estimated associations between PM2.5 exposure and the gut
microbiome, and investigated the pathway of diabetes induction associated with PM exposure [28].
One of their key findings was that PM2.5 exposure reduced α-diversity (measured by Chao1 and
Shannon indices), which is consistent with our observations.

In the smoking prevention hypothetical experiment, we rejected the sharp null hypotheses of
no richness, no α-diversity, no β-diversity, and no high-dimensional mean differences. We also re-
jected the no differential abundance hypothesis for eleven genera (five of the Ruminococcaceae family,
three of the Lachnospiraceae family, one of the Christensenellaceae family, and two of the Molli-
cutes class), and the no differential association hypothesis between the Ruminiclostridium-6 and
Ruminococcaceae-UCG-010 genera, and between the Ruminiclostridium-6 and Christensenellaceae
R-7-group genera. Interestingly, the associations of Ruminococcaceae-UCG-010 and Christensenel-
laceae R-7-group with Ruminiclostridium-6 were also found to be worth further scrutiny. Their
positive associations in the genus-genus network of smokers was absent in the genus-genus network
of the never-smokers. The one study comparing the gut microbiome of smokers (n = 203) and
never-smokers (n = 288) with similar sample size has a men-only study population [44]. They did
not find any differences in α-diversity (measured with the Shannon index), whereas we conclude that
α-diversity analyses are worth further scrutiny. Lee et al.’s PERMANOVA analyses for β-diversity
differences, measured with Jaccard and weighted UniFrac distances, suggested differences. We reject
the sharp null hypothesis at the between-subject differences analysis level. In their analysis of bacte-
rial taxa on the phylum level, smokers had an increased proportion of Bacteroidetes with decreased
Firmicutes and Proteobacteria compared with never-smokers. When we compare these phyla, we do
not observe the same differences (see Fig S in S1 Text). Also, our compositional difference analyses
do not result in the same set of differentially abundant genera that were reported by Lee et al. [44].
These conflicting findings could be due to the fact that their study was done on Korean men only.
Nonetheless, it shows that there is a lack of knowledge on the effects of smoking on the human gut
microbiome and that additional scientific investigations are necessary to make causal conclusions.

Throughout the extensive statistical analyses presented in this paper, we have tested sharp null
hypotheses of no effect of an intervention on a wide range of gut microbiome outcomes, ranging from
high-level microbial diversity estimates to differential genus-genus associations. To do so, we have
performed randomization-based inference based on 10,000 permutations. This mode of inference has
been motivated by two reasons: (i) it is difficult to postulate a joint model for the potential outcomes,
and thereby provide an estimate of (and uncertainty around) a causal estimand, and (ii) it has been
shown that using the actual randomization procedure that led to the observed data helps to report
valid Fisher-exact p-values as opposed to p-values relying on approximating null randomization
distributions [46]. As an example, in our mean difference analyses, we found some differences
between the null randomization distribution of the test statistic when approximated by permuting
the intervention assignment vector and when drawn from the approximating asymptotic distribution
(see Figs J-K in S1 Text). A natural extension of this study would be to use a Neymanian or Bayesian
mode of inference to tackle the same research questions. There, simulations should support evidence
whether the approach can indeed recover the then estimated causal effects. Simulating microbiome
data requires effort so that the common properties, such as compositionality and zero-inflation, can
be preserved, but re-sampling approaches [98] and generative models [99] have been developed to
achieve this end.
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An important component of our randomization-based procedure is that the permutations of the
intervention assignment vector conserves the matched-pair design of the hypothetical randomized
experiment. This strategy has been advocated by Rubin [100] in the context of randomized trials,
and more recently by Bind and Rubin [46] in the context of hypothetical randomized experiments,
because assumptions on the underlying distribution of the data are not required. Only few R
packages were built to perform randomization-based inference while conserving the design of the
intervention assignment. Therefore, for every analysis in our study, we imported a matrix of 10,000
unique randomized intervention assignments to calculate our p-values (see https://github.com/

AliceSommer/Causal_Microbiome_Tutorial for a reproducible example on the American Gut Data
[16, 101]). Nonetheless, the DACOMP and NetCoMi R packages provide flexible functions enabling the
calculation of randomization-based p-values for our study design to test sharp null hypotheses of no
difference in taxa abundance and associations, respectively. We advocate for more development of
such user-friendly software functions permitting flexibility and accountability of the design stage of
observational studies. P-value adjustments for multiple comparison also follow a fully randomization-
based procedure, while preserving the design of the experiment. The method has proven to be more
powerful while maintaining the family-wise error rate [91].

Notice that when presenting our results, we never accepted alternative hypotheses but only
rejected sharp nulls when unadjusted and adjusted p-values were small, i.e., indicating the hypothe-
ses warrants further scrutiny [82]. In the field of microbiome data analysis, the terms differential
abundance and associations are frequently used. Researchers report “differentially abundant” and
“differentially associated” sets of taxa after testing sharp null hypotheses of no effect of an interven-
tion. This terminology implicitly implies acceptance of the alternative hypotheses. However, when
testing sharp null hypotheses we assess the amount of evidence against them in the observed data,
which does not prove the alternative hypothesis to be true.

During the design stage, the outcome variable was ignored and only pre-exposure covariates were
considered. The chosen balanced data is a sub-sample of units that can be used to estimate the ef-
fects of an intervention. Omitting the outcome data until the analysis avoids “model cherry-picking”,
because the effect of the intervention is estimated once, after a successful design stage. Nonetheless,
at the design stage, we can only consider the observed pre-exposure variables but the assignment
mechanism could depend on unobserved pre-exposure variables. In gut microbiome studies, diet is
often an unobserved confounder. For example, in this study, dietary intake data was collected for
only 1,469/2,033 (i.e., 72%) participants. We verified balance in dietary intake for our balanced data
subset (see Figs H-I in S1 Text). Even though we made sure that the observed potential confounding
covariates are fairly balanced, there could still be imbalances in other unobserved background covari-
ates, which could have an effect on our results. In such cases, Rosenbaum [102] has recommended
to consider sensitivity analyses of how the Fisher-exact p-value would change, had the intervention
assignment been plausibly different, see also Bind and Rubin [46]. Subject-matter knowledge on
the probability of the binary exposure (i.e., smoking or air pollution) given the observed and un-
observed background covariates should guide the plausible range of “sensitivity” p-values and the
reason why they could deviate from the p-value calculated based on the assumed hypothetical in-
tervention assignment. This idea provides material for an extension of the framework presented in
this study.

The framework suggested in this paper facilitates a more transparent interpretation of results
than standard approaches directly modeling the observed outcome. First, interpretation is only valid
within the range of the background covariates of the study population in the respective hypothetical
experiment (see their detailed characteristics in Table 4 and Figs B-I in S1 Text). The data do not
provide direct information for the “unmatched” units. In addition to our pair-matching strategy,
we conducted a sensitivity analysis using a propensity score matching algorithm at the design stage,
which led to more matched pairs, and thus a broader range of background covariates values (see
Table D in S1 Text). Both matching algorithms do not lead to conflicting results in the smoking
prevention experiments. In the air pollution reduction experiment, only the differential abundance
analysis does not lead to the same overall conclusion. At this stage, the researcher can decide
between a larger number of units or more similar groups of units to compare. When designing
our hypothetical experiment, we chose a pair-matching strategy, because it creates similar pairs of
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participants based on subject-matter knowledge. For example, the number of females and males in
the intervention and control groups is identical after pair-matching, whereas with propensity score
matching, these numbers slightly differ (see Table 4 and Table D in S1 Text). Note that the matching
algorithm considerations should be a priori specified before any statistical analysis is performed.
Ideally, the design stage should be conducted by a statistician who is not involved in the subsequent
statistical analysis stage. Second, the assumed assignment mechanism and underlying assumptions
have to be clearly stated to obtain meaningful p-values. Standard approaches usually make strong
assumptions (e.g., linearity), whose discussions are often neglected. Modeling the observed data and
solely adjusting for confounders by including them in a regression, without a design stage, can be
unreliable, especially when the pre-exposure covariates distributions of the control and intervention
units are not similar. For instance, Cochran and Rubin [47], Heckman et al. [103], and Rubin [104]
have shown that regression models can estimate biased treatment effects when the true relationship
between the covariates and the outcome is not modeled accurately. Dehejia and Wahba have also
shown that standard nonexperimental estimators such as regression are sensitive to the specification
used in the regression [105]. This is another reason why we opted for an inference method that does
not rely on parametric assumptions.

In contrast to other studies interested in the effect of air pollution exposures on health outcomes,
this study does not provide any estimation of an exposure-response curve. Instead, we examine the
effect of interventions and provide results that can directly contribute to policy recommendations.
Until now, relationships between inhaled environmental exposures and the human gut microbiome
were not examined with causal inference methods, so a first step to make advances in the field is to
test, whether air pollution and smoking have no effect on the units of our study. If so, a potential
next step would be to work with a dataset adequate for balancing covariates along different doses
of the exposure such as suggested in [106] and estimate a causal dose-response in order to protect
populations at risk.

In the smoking prevention experiment, the subset of genera retained at the differential abundance
analysis step was linked to the serum markers triglycerides and high-density lipoprotein in previous
studies [95, 96, 65]. In our data, we observe correlations between these genera and metabolites in
the same direction than previously found by Vojinovic [65] (see Fig 5). Serum triglycerides and
high-density lipoprotein play a role in metabolic syndrome, and associations between smoking and
metabolic syndrome have also been found previously [107]. Therefore, we suggest further investiga-
tion on the pathway of cigarette smoke impacting the gut, which in turn has effects on circulating
metabolites (and metabolic syndrome). A logical next step would be to apply our framework to
other cohorts with similar amplicon data preprocessing and available pre-exposure covariates such
as the Dutch LifeLines-DEEP [13] and Rotterdam Studies [14], and observe whether our results
replicate.
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Gut microbiome data description (Amplicon Sequence Vari-
ants)

Fig A. Gut microbiome data description. Number of observed ASV per sample (top left),
sequencing depth per sample (top right), number of sequences per ASV (bottom left), number of
zero count per ASV (bottom right).

Min. 1st Qu. Median Mean 3rd Qu. Max.
nb. ASV (per sample) 31 109 135 140 168 371
nb. counts (per sample) 4,696 9,696 12,716 14,470 17,292 115,055
nb. counts (per taxa) 1 16 61 1,863 219 729,636
nb. zeros (per taxa) 122 2,030 2,033 2,016 2,033 2,033

Table A. Gut microbiome data description. Number of observed ASV per sample, sequencing
depth per sample, number of sequences per ASV, number of zero count per ASV.
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Balance diagnostics for matching

Fig B. Empirical distributions of the covariates among the subjects under the intervention vs. not
in the original (left panel) and the balanced (right panel) data for the air pollution reduction
hypothetical experiment.
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Fig C. Empirical distributions of the disease covariates among the subjects under the intervention
vs. not in the original (left panel) and the balanced (right panel) data for the air pollution
reduction hypothetical experiment.
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Fig D. Empirical distributions of the medication covariates among the subjects under the
intervention vs. not in the original (left panel) and the balanced (right panel) data for the air
pollution reduction hypothetical experiment.
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Smoking

Fig E. Empirical distributions of the covariates among the subjects under the intervention vs. not
in the original (left panel) and the balanced (right panel) data for the smoking prevention
hypothetical experiment.
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Fig F. Empirical distributions of the diseases covariates among the subjects under the
intervention vs. not in the original (left panel) and the balanced (right panel) data for the smoking
prevention hypothetical experiment.
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Fig G. Empirical distributions of the medication covariates among the subjects under the
intervention vs. not in the original (left panel) and the balanced (right panel) data for the smoking
prevention hypothetical experiment.
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Balance diagnostics for nutrition covariates after matching

Fig H. Empirical distributions of the nutrition covariates among the subjects under the
intervention vs. not in the balanced data for the air pollution reduction hypothetical experiment.

9

CHAPTER 3. Supplementary material 77



Fig I. Empirical distributions of the nutrition covariates among the subjects under the
intervention vs. not in the balanced data for the smoking prevention hypothetical experiment.
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Comparison of permutation and asymptotic null randomiza-
tion distribution

Fig J. Permutation-based (grey) and asymptotic (blue) null randomization distributions for the
air pollution reduction hypothetical experiment.
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Fig K. Permutation-based (grey) and asymptotic (blue) null randomization distributions for the
smoking prevention hypothetical experiment.
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Reference selection for DACOMP

Fig L. Reference set selection in the air pollution reduction experiment. A taxa enters the set
R = (r1, ..., rF ) if it has low variance (< 2) and high prevalence (> 90%). For the analyses at the
ASV level, we chose the variance to be < 3 and the prevalence to be > 40% as thresholds in order
the have at least one reference per subject.
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Fig M. Reference set selection in the smoking prevention experiment. A taxa enters the set
R = (r1, ..., rF ) if it has low variance (< 2) and high prevalence (> 90%). For the analyses at the
ASV level, we chose the variance to be < 3 and the prevalence to be > 40% as thresholds in order
the have at least one reference per subject.
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Fig N. Distribution of number of ASVs per sample when data is filtered at different ASV
prevalence thresholds (0%, 5%, 10%, 15%) in the air pollution reduction experiment. Red value:
minimum observed ASVs per sample.

Fig O. Distribution of the total ASV counts per sample when data is filtered at different ASV
prevalence thresholds (0%, 5%, 10%, 15%) in the air pollution reduction experiment. Red value:
minimum ASV counts per sample.
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Fig P. Distribution of number of ASVs per sample when data is filtered at different ASV
prevalence thresholds (0%, 5%, 10%, 15%) in the smoking prevention reduction experiment. Red
value: minimum observed ASVs per sample.

Fig Q. Distribution of the total ASV counts per sample when data is filtered at different ASV
prevalence thresholds (0%, 5%, 10%, 15%) in the smoking prevention experiment. Red value:
minimum ASV counts per sample.
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Kingdom Phylum Class Order Family Genus Species p-valueadj

ASV
Bacteria Firmicutes Clostridia Clostridiales Ruminococcaceae Anaerotruncus NA 0.1461 (+)

p = 515 Bacteria Firmicutes Clostridia Clostridiales Ruminococcaceae Anaerotruncus NA 0.0362 (-)

Species
Bacteria Firmicutes Clostridia Clostridiales Lachnospiraceae Blautia faecis 0.0357 (+)

p = 220 Bacteria Firmicutes Clostridia Clostridiales Lachnospiraceae Marvinbryantia NA 0.0181 (+)
Genus
p = 149

Bacteria Firmicutes Clostridia Clostridiales Lachnospiraceae Marvinbryantia NA 0.0120 (+)

Family
p = 44
Order
p = 25
Class
p = 19
Phylum
p = 10

Table B. Air pollutiion reduction experiment results. Differentially abundant taxa and adjusted
Fisher p-values for 10,000 iterations at 5% prevalence filtering. Selected adjusted p-values ≤ 0.2
(sign of abundance difference: y(1) - y(0)).

Kingdom Phylum Class Order Family Genus Species p-valueadj

ASV
p = 483

Bacteria Firmicutes Clostridia Clostridiales Ruminococcaceae Ruminococcus-1 NA 0.1250 (+)

Bacteria Firmicutes Clostridia Clostridiales Ruminococcaceae Ruminococcaceae-UCG-002 NA 0.1458 (+)
Bacteria Firmicutes Clostridia Clostridiales Lachnospiraceae Lachnospiraceae-NK4A136-group NA 0.1124 (+)

Species Bacteria Firmicutes Clostridia Clostridiales Christensenellaceae Christensenellaceae-R-7-group NA 0.0201 (+)
p = 211 Bacteria Firmicutes Clostridia Clostridiales Ruminococcaceae Ruminococcaceae-UCG-005 NA 0.1124 (+)

Bacteria Firmicutes Clostridia Clostridiales Ruminococcaceae Ruminococcaceae-UCG-003 NA 0.1297 (+)
Bacteria Firmicutes Clostridia Clostridiales Lachnospiraceae Coprococcus-1 catus 0.0392 (+)
Bacteria Tenericutes Mollicutes NB1-n NA NA NA 0.1458 (+)
Bacteria Tenericutes Mollicutes Mollicutes-RF9 NA NA NA 0.1791 (+)
Bacteria Firmicutes Clostridia Clostridiales Ruminococcaceae Ruminococcaceae-UCG-002 NA 0.1476 (+)
Bacteria Firmicutes Clostridia Clostridiales Ruminococcaceae Ruminococcaceae-UCG-003 NA 0.0127 (+)
Bacteria Firmicutes Clostridia Clostridiales Ruminococcaceae Ruminococcaceae-UCG-005 NA 0.1975 (+)
Bacteria Firmicutes Clostridia Clostridiales Ruminococcaceae Ruminococcus-1 NA 0.1691 (+)

Genus Bacteria Firmicutes Clostridia Clostridiales Ruminococcaceae Ruminococcaceae-NK4A214-group NA 0.1476 (+)
p = 140 Bacteria Firmicutes Clostridia Clostridiales Christensenellaceae Christensenellaceae-R-7-group NA 0.0611 (+)

Bacteria Firmicutes Clostridia Clostridiales Lachnospiraceae Lachnospira NA 0.0377 (+)
Bacteria Firmicutes Clostridia Clostridiales Lachnospiraceae Lachnospiraceae-NK4A136-group NA 0.1781 (+)
Bacteria Firmicutes Clostridia Clostridiales Lachnospiraceae Coprococcus-1 NA 0.0611 (+)
Bacteria Tenericutes Mollicutes NB1-n NA NA NA 0.1882 (+)
Bacteria Tenericutes Mollicutes Mollicutes-RF9 NA NA NA 0.1166 (+)
Bacteria Firmicutes Clostridia Clostridiales Christensenellaceae NA NA 0.0199 (+)

Family Bacteria Tenericutes Mollicutes NB1-n NA NA NA 0.0450 (+)
p = 41 Bacteria Tenericutes Mollicutes Mollicutes-RF9 NA NA NA 0.0512 (+)
Order Bacteria Tenericutes Mollicutes NB1-n NA NA NA 0.0375 (+)
p = 22 Bacteria Tenericutes Mollicutes Mollicutes-RF9 NA NA NA 0.0404 (+)
Class
p = 19

Bacteria Tenericutes Mollicutes NA NA NA NA 0.0039 (+)

Phylum
p = 10

Bacteria Tenericutes NA NA NA NA NA 0.0018 (+)

Table C. Smoking prevention experiment results. Differentially abundant taxa and adjusted
Fisher p-values for 10,000 iterations at 5% prevalence filtering. Selected adjusted p-values ≤ 0.2
(sign of abundance difference: y(1) - y(0)).
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Fig R. Genus-genus associations for subject under the air pollution reduction experiment vs. not
(n = 99, p = 149). (A) Visualization of the between genera partial correlations estimated with the
SPIEC-EASI method. Edges thickness is proportional to partial correlation, and color to direction:
red: negative partial correlation, green: positive partial correlation. Node size is proportional to
the centered log ratio of the genus abundances, and color is according to phyla. Triangle shaped
nodes are differentially abundant (see Figure 3). (B) Zoom in largest connected component and
differential associations (bold genera).
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Fig S. Phyla comparison.
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Sensitivity analysis

Air pollution (PM2.5) Smoking
≥ 13.0 µg/m3 ≤ 10.3 µg/m3 Smoker Never-Smoker

n = 158 n = 158 n = 290 n = 290

Mean St. d. Mean St. d. Mean St. d. Mean St. d.

Age 60.0 12.8 59.6 12.6 54.6 9.4 54.8 11.4
Body Mass Index 28.1 5.6 28.1 5.5 27.0 4.9 27.0 4.5
Alcohol intake (g/day) 15.3 17.2 16.4 20.1 15.1 19.9 14.6 18.0
Years of education 11.8 2.8 11.4 2.5 11.7 2.4 12.0 2.6

N % N % N % N %
Sex F 75 23.7 73 23.1 142 24.5 145 25.0

M 83 26.3 85 26.9 148 25.5 145 25.0
Smoking Ex-S. 60 19.0 57 18.0 - - - -

Never-S. 83 26.3 83 26.3 - - - -
Smoker 15 4.7 18 5.7 - - - -

Diabetes No 142 44.9 146 46.2 272 46.9 268 46.2
Yes 16 5.1 12 3.8 18 3.1 22 3.8

Phys. Activity No 70 22.2 66 20.9 137 23.6 127 21.9
Yes 88 27.8 92 29.1 153 26.4 163 28.1

Table D. Sensitivity analysis - Baseline characteristics of the study population in the air
pollution reduction (left table) and smoking prevention experiments (right table). Continuous
variables: mean and standard deviation (St. d.). Categorical variables: number of samples per
category (N) and proportion of category (%).
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Air pollution

Fig T. Sensitivity analysis - Empirical distributions of the covariates among the subjects under
the intervention vs. not in the original (left panel) and the balanced (right panel) data for the air
pollution reduction hypothetical experiment.
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Fig U. Sensitivity analysis - Empirical distributions of the diseases covariates among the
subjects under the intervention vs. not in the original (left panel) and the balanced (right panel)
data for the air pollution reduction hypothetical experiment.
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Fig V. Sensitivity analysis - Empirical distributions of the medication covariates among the
subjects under the intervention vs. not in the original (left panel) and the balanced (right panel)
data for the air pollution reduction hypothetical experiment.
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Smoking

Fig W. Sensitivity analysis - Empirical distributions of the covariates among the subjects
under the intervention vs. not in the original (left panel) and the balanced (right panel) data for
the smoking prevention hypothetical experiment.

24

CHAPTER 3. Supplementary material 92



Fig X. Sensitivity analysis - Empirical distributions of the diseases covariates among the
subjects under the intervention vs. not in the original (left panel) and the balanced (right panel)
data for the smoking prevention hypothetical experiment.
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Fig Y. Sensitivity analysis - Empirical distributions of the medication covariates among the
subjects under the intervention vs. not in the original (left panel) and the balanced (right panel)
data for the smoking prevention hypothetical experiment.
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Results

Fig Z. Sensitivity analysis - Richness and α-diversity. Boxplots (with median), values of the
test-statistics from the betta regression, and one-sided randomization-based p-values for 10,000
permutations of the intervention assignment following a matched-pair design.

Air pollution Smoking
distance test-statistic p-value p-valueadj test-statistic p-value p-valueadj
UniFrac 15.1 0.1950 0.3984 91.0 0.0004 0.0010
Aitchison 123180.7 0.2361 0.4658 432662.8 0.0003 0.0003
Jaccard 29.1 0.2238 0.4467 104.4 0.0001 0.0003
Gower 0.1 0.0223 0.0596 0.2 0.0046 0.0132

Table E. Sensitivity analysis - β-diversity. Microbiome Regression-based Kernel Association
Test (MiRKAT), unadjusted and adjusted one-sided randomization-based p-values for 10,000
permutations of the intervention assignment following a matched-pair design.

ASV Species Genus Family Order Class Phylum

Air Pollution
nb. of taxa (p) 5,635 595 329 100 59 36 18
test statistic 13.5 8.3 9.2 8.2 7.2 5.6 5.3
p-value 0.1070 0.5938 0.3017 0.1839 0.2046 0.3602 0.2429

Smoking
nb. of taxa (p) 7,793 595 278 84 51 31 15
test statistic 19.5 23.8 19.0 14.2 12.7 13.5 14.3
p-value 0.0048 0.0004 0.0019 0.0094 0.0108 0.0061 0.0016

Table F. Sensitivity analysis - Compositional equivalence test. Test statistic for
high-dimensional data and one-sided randomization-based p-values for 10,000 permutations of the
intervention assignment following a matched-pair design.
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Kingdom Phylum Class Order Family Genus Species p-valueadj

Bacteria Firmicutes Clostridia Clostridiales Ruminococcaceae Ruminococcaceae-UCG-002 NA 0.0129 (+)
Bacteria Firmicutes Clostridia Clostridiales Ruminococcaceae Ruminococcaceae-UCG-003 NA 0.0129 (+)
Bacteria Firmicutes Clostridia Clostridiales Ruminococcaceae Ruminococcaceae-UCG-005 NA 0.0252 (+)
Bacteria Firmicutes Clostridia Clostridiales Ruminococcaceae Ruminococcaceae-UCG-010 NA 0.0949 (+)

Genus Bacteria Firmicutes Clostridia Clostridiales Ruminococcaceae Ruminococcus-1 NA 0.0725 (+)
p = 142 Bacteria Firmicutes Clostridia Clostridiales Ruminococcaceae Ruminococcaceae-NK4A214-group NA 0.0376 (+)

Bacteria Firmicutes Clostridia Clostridiales Christensenellaceae Christensenellaceae-R-7-group NA 0.0376 (+)
Bacteria Firmicutes Clostridia Clostridiales Lachnospiraceae Lachnospira NA 0.0129 (+)
Bacteria Firmicutes Clostridia Clostridiales Lachnospiraceae Lachnospiraceae-UCG-001 NA 0.0376 (+)
Bacteria Firmicutes Clostridia Clostridiales Lachnospiraceae Lachnospiraceae-UCG-010 NA 0.1884 (+)
Bacteria Firmicutes Clostridia Clostridiales Lachnospiraceae Lachnospiraceae-NK4A136-group NA 0.0376 (+)
Bacteria Tenericutes Mollicutes NB1-n NA NA NA 0.0129 (+)

Table G. Sensitivity analysis - Smoking prevention experiment results. Differentially abundant
taxa and adjusted Fisher p-values for 10,000 iterations at 5% prevalence filtering. Selected
adjusted p-values ≤ 0.2 (sign of abundance difference: y(1) - y(0)).
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