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Zusammenfassung

Die Quantenelektrodynamik (QED) bildet die Grundlage aller anderen Quantenfeldtheori-
en, auf denen das Standardmodell der Teilchenphysik aufgebaut ist. Derzeit ist klar, dass
unser fundamentales Naturverständnis unvollständig ist, sodass erwartet wird, dass das Stan-
dardmodell um neue Teilchen oder Wechselwirkungen verändert oder erweitert werden muss.
Eine Möglichkeit, diese Grenzen der Grundlagenphysik zu erforschen, ist die Durchführung
von Präzisionsmessungen. Diese Arbeit untersucht die Präzisionslaserspektroskopie von Deu-
terium, wo die Übergangsenergien zwischen verschiedenen Energiezuständen des an den Kern
gebundenen Elektrons mit Techniken wie ultrastabilen Lasern und dem Frequenzkamm ge-
nau gemessen werden können. Aufgrund der Einfachheit der wasserstoffähnlichen Atome
können ihre Energieniveaus anhand der QED-Theorie für gebundene Zustände genau berech-
net werden, und mit dem Experiment mit der relativen Genauigkeit in der Größenordnung
von 10−12 verglichen werden. Ein solcher Vergleich zwischen Theorie und Experiment ist mit
der Bestimmung von Naturkonstanten verbunden, die als Parameter in die Theorie eingehen.
Erst wenn mehr unabhängige Messungen als Parameter vorliegen, kann die Theorie überprüft
werden.

Der Vergleich zwischen Theorie und Laser-Spektroskopie im Deuterium betrifft die Ryd-
berg-Konstante R∞ und den Deuteronen-Ladungsradius rd. Dies erfordert mindestens zwei
Messungen der verschiedenen Übergangsfrequenzen, um diese Konstanten zu bestimmen, und
mehr Messungen, um die Theorie zu testen. Im Gegensatz zum Wasserstoff gibt es bei Deu-
terium nur wenige ausreichend genaue Messungen der Übergänge. In dieser Arbeit wird die
erste Untersuchung des 2S-6P-Übergangs in Deuterium vorgestellt, die mit der bestehenden
Frequenzmessung des 1S-2S-Übergangs kombiniert werden kann, um R∞ und rd zu erhal-
ten. Zusammen mit der Messung des 2S-2P-Übergangs von myonischem Deuterium stellt
diese Bestimmung einen Theorietest dar. Ein solcher Vergleich ist wichtig, um die anhal-
tende Diskrepanz zwischen dem Ergebnis aus myonischem Deuterium und dem Durchschnitt
früherer Daten aus elektronischem Deuterium, sowie die Spannungen zwischen den jüngsten
Ergebnissen aus der Wasserstoffspektroskopie, zu beleuchten.

Im Gegensatz zu Wasserstoff wird die Präzisionsspektroskopie des 2S-6P-Übergangs in
Deuterium durch die gleichzeitige Anregung unaufgelöster Hyperfeinstruktur-Komponenten
erschwert, was zur unaufgelösten Quanteninterferenz führen kann. Diese Arbeit untersucht die
möglichen systematischen Effekte, die mit dieser Komplikation verbunden sind. Zusammen
mit analytischen störungstheoretischen Modellen werden Supercomputersimulationen durch-
geführt, um diese Effekte zu analysieren. Es wird gezeigt, dass die Quanteninterferenz für
alle 2S-nP-Übergänge in Deuterium stark unterdrückt wird, wodurch Präzisionsmessungen
dieser Übergänge möglich werden. Darüber hinaus wird ein weiterer Effekt in Deuterium im
Vergleich zu Wasserstoff untersucht, der sich aus der Lichtkraft ergibt, die auf die Atome in
der stehenden Welle des Spektroskopielichts wirkt. Trotz zusätzlicher Zustandsvielfalt durch
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die gleichzeitige Anregung unaufgelöster Hyperfeinkomponenten wird gezeigt, dass diese soge-
nannte “Lichtkraftverschiebung” mit dem gut verstandenen Effekt im Wasserstoff vergleichbar
ist.

Die größte Herausforderung bei der Messung des 2S-6P-Ein-Photonen-Übergangs in Deu-
terium ist die Doppler-Verschiebung erster Ordnung. Ein großer Teil dieser Arbeit befasst
sich daher mit dem verbesserten aktiven faserbasierten Retroreflektor (AFR), der eine Technik
zur Unterdrückung dieser Verschiebung darstellt. Der zentrale Teil des AFR ist der Faser-
kollimator, der für die Erzeugung hochwertiger gegenläufiger Laserstrahlen erforderlich ist.
Die Entwicklung und Charakterisierung eines solchen Kollimators für die nahe ultraviolette
Wellenlänge des 2S-6P-Übergangs ist eine der wichtigsten Errungenschaften des verbesser-
ten AFR. Die Ergebnisse dieser Arbeit können für andere Anwendungen von Interesse sein,
bei denen eine hohe Strahlqualität oder wellenfront-zurückverfolgende Strahlen wichtig sind.
Darüber hinaus werden die Einschränkungen der AFR untersucht, die sich aus polarisations-
erhaltenden Singlemode-Fasern ergeben. Neben anderen Verbesserungen wurde eine Polari-
sationsüberwachung der Spektroskopielaserstrahlen implementiert. Es werden verschiedene
Charakterisierungsmessungen vorgestellt, um die Leistungsfähigkeit des verbesserten AFR zu
demonstrieren.

Schließlich wird in dieser Arbeit eine vorläufige Messung des 2S-6P-Übergangs in Deute-
rium vorgestellt. Für diese Messung wurde ein neuer Kryostat in die Apparatur eingebaut,
der die Stabilität des Spektroskopiesignals durch reduzierte Temperaturschwankungen ver-
bessert. Die Erzeugung des kryogenen Deuterium-Atomstrahls wurde in Abhängigkeit von
der Düsentemperatur analysiert, was eine wichtige Studie für künftige Spektroskopiemessun-
gen darstellt. Darüber hinaus wurden für die Präzisionsmessung verschiedene systematische
Effekte untersucht, darunter die Fehlausrichtung des Atomstrahls und die elektrischen Streu-
felder. Es wird gezeigt, dass eine Präzisionsmessung des 2S-6P-Übergangs in Deuterium mit
einer ähnlichen Unsicherheit wie in Wasserstoff machbar ist. Nach der vorläufigen Unsicher-
heitsabschätzung kann die 2S1/2-6P1/2-Übergangsfrequenz in Deuterium auf 1.7 kHz bestimmt
werden, was einer relativen Genauigkeit von 2.3×10−12 entspricht. Zusammen mit der 1S-2S-
Messung kann dieses Ergebnis bereits die genauesten Bestimmungen des Deuteronenradius
und der Rydberg-Konstante aus dem elektronischen Deuterium ermöglichen, sodass die Un-
sicherheiten für die Rydberg-Konstante und den Deuteronenradius δR∞ ' 5 × 10−5 m−1

bzw. δrd ' 0.002 fm betragen. Dieses Ergebnis bildet die Grundlage für eine zukünftige
Präzisionsmessung, bei der die 2S-6P-Übergangsfrequenz mit ähnlicher Genauigkeit wie bei
Wasserstoff bestimmt werden soll, was δR∞ ' 2×10−5 m−1 und δrd ' 0.0007 fm entsprechen
würde. Der Vergleich mit dem Ergebnis von myonischem Deuterium würde es dann erlauben,
die QED-Theorie für gebundene Zustände auf dem Niveau von 9× 10−13 zu testen.



Abstract

Quantum electrodynamics (QED) forms the basis for all other quantum field theories, upon
which the Standard Model of particle physics is constructed. Currently, it is clear that our
fundamental understanding of nature is incomplete, such that the Standard Model is expected
to be modified or extended by new particles or interactions. One way to explore these frontiers
of fundamental physics is to perform precision measurements. This thesis studies the precision
laser spectroscopy of deuterium, where the transition energies between different energy states
of the electron bound to the nucleus can be accurately measured with techniques such as
ultra-stable lasers and the frequency comb. Due to the simplicity of hydrogen-like atoms,
their energy levels can be precisely calculated from bound-state QED and confronted with
the experiment with the relative accuracy on the order of 10−12. Such a comparison between
theory and experiment is linked to the determination of fundamental constants, which enter
the theory as parameters. Only if more indepedendent measurements are available than there
are parameters, the theory can be tested.

The comparison between theory and laser spectroscopy in deuterium concerns the Ryd-
berg constant R∞ and the deuteron charge radius rd. This requires at least two different
transition frequency measurements to determine those constants, and more measurements
to test the theory. Contrary to hydrogen, only few accurate enough transition frequency
measurements are available in deuterium. This thesis presents the first study of the 2S-6P
transition in deuterium, which can be combined with the existing 1S-2S transition frequency
measurement to obtain R∞ and rd. Together with the 2S-2P transition measurement from
muonic deuterium, this determination provides a theory test. Such a comparison is important
to shine light on the persisting discrepancy between the result from muonic deuterium and
the average of previous data from electronic deuterium, as well as tensions between the recent
results from hydrogen spectroscopy.

In contrast to hydrogen, precision spectroscopy of the 2S-6P transition in deuterium is
complicated by the simultaneous excitation of unresolved hyperfine components, possibly lead-
ing to unresolved quantum interference. This thesis studies the possible systematic effects
associated with this complication. Along with analytical perturbative models, supercomputer
simulations are performed to analyze these effects. It is shown, that quantum interference is
strongly suppressed for all 2S-nP transitions in deuterium, making precision measurements of
these transitions possible. Furthermore, another effect is studied in deuterium compared to
hydrogen, which arises from the light force acting on the atoms in the standing wave of the
spectroscopy light. Despite additional state manifolds from the simultaneous excitation of un-
resolved hyperfine components, it is shown that this so-called “light force shift” is comparable
to the well understood effect in hydrogen.

The main challenge of measuring the one-photon 2S-6P transition in deuterium is the
first-order Doppler shift. Therefore, a large part of this thesis contributes to the improved
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active fiber-based retroreflector (AFR), which is a technique to suppress this shift. The
central part of the AFR is the fiber collimator, which is required to produce high-quality
counter-propagating laser beams. Designing and characterizing such a collimator for the near
ultra-violet wavelength of the 2S-6P transition is one of the main achievements of the improved
AFR. The results of this work can be of interest to other applications where a high beam
quality or wavefront-retracing beams are important. Furthermore, the limitations of the AFR
arising from single-mode polarization-maintaining fibers are investigated. Along with other
improvements, a polarization monitor of the spectroscopy laser beams has been implemented.
Various characterization measurements are presented to demonstrate the performance of the
improved AFR.

Finally, this thesis presents a preliminary measurement of the 2S-6P transition in deu-
terium. For this measurement, a new cryostat has been installed in the apparatus, which
improves the stability of the spectroscopy signal due to reduced temperature fluctuations.
The cryogenic deuterium atomic beam generation has been analyzed in dependence on the
nozzle temperature, which is an important study for future spectroscopy measurements. Fur-
thermore, for the precision measurement different systematic effects have been investigated,
including the atomic beam misalignment and the stray electric fields. It is demonstrated
that a precision measurement of the 2S-6P transition in deuterium with a similar uncertainty
than in hydrogen is feasible. According to the preliminary uncertainty budget, the 2S1/2-
6P1/2 transition frequency in deuterium can be determined to 1.7 kHz, which corresponds
to 2.3 × 10−12 relative accuracy. Together with the 1S-2S measurement, already this result
can enable the most accurate determinations of the deuteron radius and the Rydberg con-
stant from the electronic deuterium with the uncertainties on the Rydberg constant and the
deuteron radius of δR∞ ' 5 × 10−5 m−1 and δrd ' 0.002 fm, respectively. This result sets
the stage for a future precision measurement, where the 2S-6P transition frequency is ex-
pected to be determined with the similar accuracy as in hydrogen, which would correspond
to δR∞ ' 2 × 10−5 m−1 and δrd ' 0.0007 fm. The comparison to the result from muonic
deuterium would then allow to test bound-state QED at the level of 9× 10−13.
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Chapter 1

Introduction

Our fundamental understanding of nature is incomplete. On the cosmological scale, one of the
most prominent problems of fundamental physics is that we lack the understanding of 95% of
the matter-energy density in the universe (see e.g. [1]). Among these 95% of unknown content,
approximately 69% of the total matter-energy density are attributed to dark energy (which
is described by the cosmological constant and could be interpreted as the vacuum energy),
and 26% to dark matter. Furthermore, we do not understand how the remaining 5% baryonic
matter were produced. The early universe was in a hot dense state, where radiation dominated
the total energy content. As the universe expanded and cooled down, approximately equal
amounts of matter and antimatter should have been produced. However, we do not find
any significant amount of antimatter in our universe [2]. Besides, much less visible matter
compared to light should have been formed, quantified by the baryon-to-photon ratio η which
is measured to be η∼ 10−9 but deviates by several orders of magnitude from the expected
value around η∼ 10−18 (see e.g. [3]). Another problem for fundamental physics is the non-zero
mass of neutrinos, which is observed in neutrino oscillations [4]. Furthermore, fundamental
physics is challenged by the vacuum energy discrepancy between the established contribution
from particle physics (such as the Higgs field) and the many orders of magnitude smaller
observed value in cosmology, which is referred to as the “cosmological constant problem” [5].
To solve the above and other problems, particle physics expects undiscovered particles or
interactions beyond the known particles and interactions, which are described by the current
theory called the “Standard Model”.

At the present stage of fundamental physics, it is an open question how the Standard
Model needs to be modified or extended. The complementary approaches for addressing this
puzzle can be classified into three categories. One way is to study interactions at highest
possible energies, where potentially new particles are produced directly (“high-energy fron-
tier”). Another way is to explore exotic phenomena, which in theory are expected to be
rare or forbidden (“intensity frontier”). Yet another way is to look for tiny deviations from
theoretical predictions (“precision frontier”). New particles could for instance be responsible
for modified potentials, which are probed by low-energy precision measurements.

This thesis aims to contribute to the “precision frontier” of physics, specifically to the
precision laser spectroscopy of hydrogen and deuterium, which are some of the simplest atomic
systems where theory and experiment can be most accurately compared [6, 7, 8]. Precision
physics of simple atoms can be sensitive to light new particles [9], which are not accessible
by high-energy experiments due to the ultra-weak coupling of these particles. Precision laser
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spectroscopy of hydrogen was accompanied by the invention of the frequency comb technique,
which revolutionized the field of optical frequency metrology and enabled even more accurate
spectroscopy measurements [10, 11, 12]. Throughout the last decade, hydrogen spectroscopy
has continued to be a fruitful building block of fundamental physics [13, 14, 15, 12, 16].
Further examples of simple atomic systems, which are important for fundamental physics,
are helium ions [17], helium atoms [18], molecular hydrogen ions [19, 20, 21, 22], as well as
exotic atoms such as muonic atoms [23], positronium [24], muonium [25], antiprotonic helium
[26], antihydrogen [27], or antihydrogen molecular ions [28].

In general, other areas of searches for new physics using techniques of atomic, molecular
and optical (AMO) physics include for instance the following experiments: atom interferom-
etry for the determination of the fine-structure constant [29, 30] or the test of the equiva-
lence principle [31], Penning trap measurements of the magnetic moment of the free electron
or positron [32, 33], precision measurements of masses and magnetic moments in ion traps
[34, 35, 36, 37, 38], searches for electric dipole moments of particles [39] such as the neutron
[40] or the electron [41], certain type of dark matter searches with nuclear magnetic resonance
measurements [42], isotope shift spectroscopy for constraints on other types of dark matter
candidates [43], optical clock comparisons for tests of Lorentz invariance [44], searches of
exotic interactions using quantum sensors [45], and many others (see [46] for a review).

Tests of Quantum Electrodynamics (QED) and fundamental constants

So far, we know four fundamental interactions (forces) which govern the behavior of matter:
the electromagnetic interaction, the weak interaction, the strong interaction, and gravity. The
fundamental description of the first three forces is rooted in Quantum Field Theory (QFT),
upon which the Standard Model is constructed (see e.g. [47]). Gravity is described by General
Relativity, which is a classical theory. One of the greatest successes of the Standard Model is
the explanation how the electromagnetic and weak interactions originate from the same force
(electroweak interaction) described by the Weinberg-Salam theory. The electroweak theory
relies on the spontaneous symmetry breaking mechanism predicting the existence of the Higgs
boson, which was gloriously discovered at the Large Hadron Collider in 2012 [48, 49]. Though
the strong interaction is incorporated into the Standard Model using the framework of QFT
(Quantum Chromodynamics theory), it is an open question how it can be unified with the
electroweak force, which is explored by possible Grand Unified Theory models. How gravity
is related to the other forces is an even more challenging problem, since in the first place, it
is an open question whether spacetime is quantized. Hints for answering these questions may
be accompanied by the discovery of further particles.

At low energies, for instance in the field of atomic physics which concerns this thesis, the
dominant force is electromagnetic, which is described by Quantum Electrodynamics (QED),
whereas other forces are often negligible or to a certain extent can effectively be expressed in
parameters or functions. QED forms the basis for all other quantum field theories and makes
most accurate predictions on precisely measurable quantities such as the magnetic moment
of the free electron [50, 51, 52] or the energy levels of simple atoms [6, 7]. Thereby, one may
claim that QED provides most accurate tests of the Standard Model [53]. Such comparisons
of theory and experiment require accurate determinations of fundamental constants such
as the Rydberg constant R∞, the electron mass me or the fine structure constant α, which
directly or indirectly enter the theory as parameters. Therefore, precision tests of fundamental
physics are closely related to the determination of fundamental constants. Typically, only a
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combination of several measurements provides a theory test. For example, in order to test
QED with the mentioned electron-magnetic-moment-experiment, other measurements for the
determination of α are involved, for instance rubidium or cesium atom interferometry [30, 29]
combined with the Rydberg constant R∞ from hydrogen or deuterium spectroscopy [14, 54]
together with atomic masses from ion trap cyclotron frequency measurements [55] and the
electron mass. The latter can either be obtained from the measurement of the electron
magnetic moment bound to the carbon nucleus [35] or from precision spectroscopy of HD+

ions [19, 20] combined with proton and deuteron mass measurements [36, 56, 37].

Test of bound-state QED using hydrogen and deuterium spectroscopy

It is important to distinguish between the QED theory describing free particles (e.g. the mag-
netic moment of the free electron mentioned above), and the so-called “bound-state QED”,
which describes a relativistic quantum bound problem [6]. While both QED theories orig-
inate from the same Lagrangian, bound-state QED has a more complicated structure and
involves various effective approaches. Simple atomic systems provide an ideal platform to
determine fundamental constants and to test QED in this regime of a bound state between
particles. Atomic hydrogen and deuterium are the simplest stable atoms. Laser spectroscopy
of these atoms measures the difference between certain energy levels of the bound electron.
To this end, the laser frequency is swept over the resonance, which brings the electron from
one state to another. From the measured resonance line of the corresponding transition, the
energy difference between the initial and excited state can be deduced. QED calculations for
these energy levels depend on mainly four parameters, namely the Rydberg constant R∞, the
proton or deuteron root-mean-square charge radii rp or rd, the fine structure constant α, as
well as the electron-to-proton or electron-to-deuteron mass ratios. The latter two constants
are determined from other experiments, for instance from atom interferometry and ion trap
experiments mentioned above. For spectroscopy, we are left with two parameters, namely
the nuclear size and the Rydberg constant. Therefore, at least two different transitions need
to be measured in order to determine both constants. Further transition measurements then
test the theory.

One way to visualize the theory test in hydrogen and deuterium is presented in Fig. 1.1.
Due to its narrow natural linewidth of only 1.3 Hz and the two-photon first-order Doppler-free
spectroscopy, the 1S-2S transition is the most accurately measured transition in hydrogen and
deuterium [57, 13, 54]. Combining this result with another transition measurement (shown
on the left scale in Fig. 1.1) yields the Rydberg constant and the proton or deuteron radii.
Fig. 1.1(a) shows the data from hydrogen spectroscopy, where black points show the values up
to the year 2010 (radiofrequency measurements [58, 59, 60] with squared black markers and
optical frequency measurements [61, 62, 63, 64, 65, 66] with circular markers). The average
of all these values, which contributed to the Committee on Data for Science and Technology
(CODATA) 2014 recommended values [72] for the Rydberg constant and the proton radius,
is shown in gray (“2014 world data”). In 2010, for the first time, spectroscopy of muonic
hydrogen succeeded [73], where the electron is replaced by the 207 times heavier muon. Since
the muon is closer to the proton, the energy levels are more sensitive to the proton radius,
and thus such a measurement gives the most precise value [67] which is shown in magenta.
However, this measurement was four standard deviations (4σ) discrepant with the previous
data, which gave rise to the so-called “proton radius puzzle”.

The “proton radius puzzle” triggered several new measurements in the last years, which are
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Figure 1.1: Rydberg constant and proton or deuteron charge radii extracted from precision spec-
troscopy of hydrogen or deuterium, in (a) or (b), respectively. Each point (except “2014 world
data”) is a combination of the 1S-2S transition measurement in hydrogen or deuterium [57, 13, 54]
with a second transition measurement shown on the left scale. Data points up to the year 2010
[58, 59, 60, 61, 62, 63, 64, 65, 66] are shown in black and are averaged in “2014 world data” (in gray).
These values are in 4.0σ or 3.2σ discrepancy with the results from muonic hydrogen [67] or deuterium
[68, 69] (shown in magenta), which has been called the “proton radius puzzle”. Recent spectroscopic
measurements from regular (electronic) hydrogen [14, 15, 70, 12, 16] are shown in green, and overall
tend to agree with the muonic hydrogen. However, the most recent 2S-8D measurement deviates from
muonic hydrogen by 3.1σ, which leaves room to speculate about physics beyond the Standard Model
[16], and motivates further measurements. In contrast to hydrogen, so far no recent results are avail-
able in deuterium, and a similar discrepancy with muonic deuterium persists. While the recent thesis
by Lothar Maisenbacher [71] covers the work on the 2S-6P transition measurement in hydrogen, this
thesis contributes towards the result on the Rydberg constant and deuteron radius from the 2S-6P
transition in deuterium.

shown in green. The first value came from the 2S-4P transition measurement [14], performed
with the predesessor apparatus discussed in this thesis. This result agreed with muonic
hydrogen. However, the subsequent result from the 1S-3S measurement [15] gave the larger
proton radius. The same transition was measured with a different technique in our group and
favors the small radius [12]. Furthermore, the recent radiofrequency Lamb shift measurement
agrees with muonic hydrogen [70]. However, the most recent result from the 2S-8D transition
deviates from muonic hydrogen by three standard deviations (3.1σ) [16]. This discrepancy
illustrates how the spectroscopy of simple atoms is used to test physics beyond the Standard
Model, and suggests to speculate about undiscovered bosons which provide an additional
coupling between the nucleus and the proton [16]. Such a modified potential could affect
certain states more strongly than others, which would effectively result in a Rydberg constant
depending on the principal quantum number n [16, 74, 9]. More data is needed to shine light
on this discrepancy, with higher n states being more sensitive for contraints on new physics
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[74]. This motivates further measurements of 2S-nP transitions in hydrogen and deuterium.

Fig. 1.1(b) gives the overview of data from deuterium spectroscopy. Less data points are
available compared to hydrogen, with only a few optical frequency measurements [62, 64, 65].
Only less accurate radiofrequency measurements are available in deuterium as compared to
hydrogen [75, 76] (not shown in Fig. 1.1(b)). In 2016, a result from muonic deuterium was
published [68]. The uncertainty on the deuteron radius value mainly originates from the
theory on nuclear structure corrections (“polarizability”), with the latest result from theory
[77] yielding the shown value (in magenta) for the deuteron radius in Fig. 1.1(b), which
deviates by 3.2σ from the average value of electronic deuterium. Contrary to hydrogen, no
recent results are available from electronic deuterium, such that further measurements are
needed to resolve the discrepancy.

Link to nuclear physics and electron scattering experiments

The effect of the finite proton or deuteron charge radius, upon which the energy state of an
electron surrounding a proton or a deuteron depends, is only the first-order nuclear structure
effect. Depending on the isotope and the level of accuracy, higher-order nuclear structure
effects need to be taken into account. The electron can also excite the nucleus, which in turn
modifies its energy state. This in-elastic nuclear structure effect is called “polarizability”.
Since the muon is closer to the nucleus, the nuclear structure effects including the polarizabil-
ity are greatly enhanced in muonic atoms. Furthermore, the nuclear structure contribution is
larger in deuterium than in hydrogen. For muonic deuterium, the theory is therefore limiting
the extraction of the deuteron radius. In fact, the muonic deuterium measurement triggered
various theory refinements and improved the understanding of certain terms, which were ini-
tially [78] thought to be smaller than after further theory calculations [79, 80, 69, 77]. This
illustrates how the spectroscopy of simple atomic systems is linked to nuclear physics. For
electronic hydrogen, the first-order nuclear structure effect due to the finite proton radius
dominates the contribution of nuclear structure effects. However, for electronic deuterium,
the higher-order nuclear structure effects significantly contribute to the theoretical prediction
of the energy levels [81, 8]. Therefore, similar to muonic deuterium, precision spectroscopy of
electronic deuterium is interesting for insights into nuclear forces.

The proton and deuteron radii can also be measured with electron scattering experiments,
which provides another link to nuclear physics. In these experiments, the same charge radius
as measured in spectroscopy is related to the slope of the form factor at zero momentum
transfer [82]. The challenge here is that the experiment cannot be performed at zero momen-
tum transfer, such that an extrapolation is needed to extract the charge radius. Models from
nuclear physics can be used to constrain the extrapolation [83]. For the proton radius, new
measurements [84, 85] or re-analysis of the old measurements [86, 87] are available with an
uncertainty comparable to some recent electronic hydrogen values, with a tendency to agree
with the value from muonic hydrogen. In contrast to the proton radius, no recent results are
available for the deuteron radius, and the older data [88] is not accurate enough to distinguish
between the “small radius” from muonic deuterium and the “large radius” from electronic
deuterium. Future scattering experiments [89] promise more accurate results. In general,
the comparison of the charge radii from spectroscopy and scattering provides an important
link between different fields of physics and tests the understanding of nuclear interactions.
Such comparisons are interesting especially in light of planned muon scattering experiments
[90, 91]. Furthermore, the recently measured magnetic moment of the muon [92], which chal-
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lenges the Standard Model prediction, strengthens the motivation to check for consistency of
the theory using the results of different experiments with muons.

In the future, it may be even possible to calculate the nuclear charge radii directly from
Quantum Chromodynamics (QCD). One approach for solving QCD problems numerically is
called “Lattice QCD”. Though the results are currently not accurate enough, rough values
for the proton radius are already available from Lattice QCD calculations [93, 94].

Consistency of Rydberg constant determinations

Owing to the precision spectroscopy of simple atoms, the Rydberg constant is the most accu-
rately measured constant of nature, currently known with a fractional uncertainty of 2×10−12

[8]. Comparing the Rydberg constant from different atomic systems is therefore a powerful
theory test. For example, from Fig. 1.1, we can compare the Rydberg constant as determined
from hydrogen spectroscopy to the value from deuterium spectroscopy. This comparison ef-
fectively tests the isotope shift theory, which links the proton and deuteron radii [95, 79]:
Fig. 1.1(a) and (b) can be overlapped using the same Rydberg constant axis such that the
deuteron radius is also determined from hydrogen spectroscopy and the proton radius is also
determined from deuterium spectroscopy. Note that the upper scale for the Rydberg constant
is identical between Fig. 1.1(a) and (b), demonstrating that the Rydberg constant agrees be-
tween muonic hydrogen and muonic deuterium. More data is needed to check for the Rydberg
constant consistency between electronic hydrogen and electronic deuterium. Interestingly, the
data before 2014 agrees between electronic hydrogen and electronic deuterium, with a similar
discrepancy to the results from muonic atoms. New deuterium measurements, with uncer-
tainty comparable or more accurate than the recent hydrogen measurements, are especially
interesting in light of the tension from the recent 2S-8D transition measurement in hydrogen
[16]. Speculating about a modified potential caused by undiscovered bosons, such potential
could be different between hydrogen and deuterium, e.g. if these bosons couple to neutrons
differently than to protons.

The comparison of the Rydberg constant from different simple atomic systems becomes
increasingly interesting in light of the progress in the field of experimental atomic physics
as well as in the field of precise QED calculations. One example is the comparison of the
energy levels in hydrogen and antihydrogen, which has become possible only a few years ago
[96, 27]. It is anticipated that precision spectroscopy of antihydrogen can reach the similar
level of accuracy as in hydrogen, thereby possibly shining light on one of the most pressing
problems of fundamental physics – the matter-antimatter-asymmetry of the universe. Light
antinuclei, such as the antideuteron, have been produced [97] and in principle, it is thinkable
that the technological progress will one day also allow the spectroscopy of antideuterium.
What is more close to the not-too-distant future, is the comparison of the Rydberg constant
from less exotic two-body atomic systems such as positronium and muonium, though these
systems are even more interesting for a QED test in terms the recoil contributions to their
hyperfine structure [98, 99, 24, 25]. Furthermore, there are promising efforts towards the
laser spectroscopy of helium ions (He+) [100, 17]. Together with the value for the nuclear
charge radius from muonic helium [101], the measurement of the 1S-2S transition in He+

would yield the Rydberg constant from helium. Recently, there has been also an impressive
progress on three-body QED calculations [102, 103, 104, 105, 106, 107], such that systems
like hydrogen, deuterium or tritium molecular ions (H+

2 , D+
2 , T+

2 ), deuterated molecular
hydrogen ions (HD+) or similar ions with other isotopes (HT+, DT+), helium atoms (He) or
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lithium ions (Li+) are already playing [108, 21, 19, 18, 22], or will play an important role in
the framework of determining fundamental constants and QED tests. Also four-body QED
calculations seem to be within reach [109]. Ultimately, it is important to test the consistency
of theory by redundantly comparing the results from different systems, where the Rydberg
constant can serve as a common playground. As for hydrogen and deuterium spectroscopy,
the goal is to measure as many transitions as possible with an interesting enough accuracy to
compare the Rydberg constant within the same system, and to other systems.

Contribution and structure of this thesis

This thesis contributes towards the result for the Rydberg constant and deuteron radius
from the 2S-6P transition measurement in deuterium. The 2S-6P measurement in hydrogen
with nearly the same apparatus is treated in the recent thesis by Lothar Maisenbacher [71].
Since the 2S-6P spectroscopy of deuterium is similar to hydrogen, this thesis focuses on
the differences to what has not been treated already in [71]. Regarding the experimental
apparatus, the main contribution of this thesis is the improved active fiber-based retroreflector
(AFR), which is used to suppress the first-order Doppler shift. The improved AFR presented
here was also used to measure the 2S-6P transition in hydrogen. The results are summarized
in the corresponding publication [110], but are extended here to topics which have been
omitted or only briefly discussed in [110].

This thesis is structured as follows. In Chapter 2, we discuss the theory and simulations of
the 2S-6P transition in atomic deuterium, which are needed to understand and evaluate the
spectroscopy measurement. The 2S-nP transitions in deuterium are compared to hydrogen.
In contrast to hydrogen, simultaneous excitation of unresolved hyperfine components can not
be avoided in deuterium due to the different nuclear spin and the selection rules. Focusing
on the differences to the 2S-nP transitions in hydrogen, the complications arising from this
simultaneous excitation of unresolved transition lines are investigated. Furthermore, the
light force shift is analyzed for the 2S-6P transitions in deuterium. This important effect is
associated with the standing wave of two counter-propagating laser beams, which are used to
suppress the first-order Doppler shift in the AFR.

Chapter 3 presents the apparatus for probing the 2S-6P transitions in deuterium. After
an overview of the experiment, the laser systems including the laser frequency measurement
using a frequency comb are described. The numerical modeling of the time-resolved signal
in our apparatus is summarized, which is essential to interpret the measurement results in
dependence on the mean velocity of atoms, thereby analyzing velocity-dependent effects in
the transition frequency measurement. Accurate characterizations of magnetic and electric
fields, which are also an important part of the experiment, are presented. The electric field
inside the interaction region is measured in-situ using the specially designed fluorescence de-
tector. Finally, the generation of a cryogenic deuterium atomic beam is discussed. Differences
between hydrogen and deuterium are here responsible for a modified temperature dependence
of the spectroscopy signal, such that the deuterium measurement needs to be performed at a
different temperature compared to hydrogen. The temperature dependence of the 2S-6P spec-
troscopy signal and of the velocity distribution are investigated for deuterium. Compared to
the 2S-6P measurement in hydrogen, the apparatus has been upgraded to a high-performance
cryostat, which is also presented here.

The improved active fiber-based retroreflector (AFR) for first-order Doppler shift sup-
pression is part of the whole apparatus, but can be viewed as a separate topic, which is
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presented in Chapter 4 following the corresponding publication [110]. Since the first-order
Doppler shift is the dominant effect when probing the 2S-6P transitions in hydrogen and deu-
terium, this part of the apparatus is most decisive for an accuracte precision measurement
of the transition frequencies. The central part of the AFR is the fiber collimator, which is
required to produce high-quality counter-propagating laser beams. Minimizing aberrations
produced by the collimator turned out to be particularly challenging for the near ultra-violet
(UV) wavelength as required for the 2S-6P transition at 410 nm. Much work has been in-
vested to design a four-lens collimator, which produces a laser beam with a beam quality
limited only by the not exactly Gaussian beam profile from the fiber. The topic of aligning
the collimator to minimize astigmatism is greatly shortened in [110], but is expanded in this
thesis. Furthermore, other improvements such as the improved retroreflection control and the
intensity stabilization are presented. In the process of improving the AFR setup, it was found
that Rayleigh backscattering in fiber is responsible for an etalon effect, which is important
to suppress in our spectroscopy apparatus. This topic was only briefly mentioned in [110],
and is therefore treated in detail in this thesis. Finally, a large part of Chapter 4 is dedicated
to the polarization monitor of the laser light as seen by atoms during spectroscopy. This
topic turned out to be more complicated than initially thought, such that a correction was
published [111]. Here, the complications of the polarization monitor are explained in detail.

Chapter 5 presents the preliminary measurement of the 2S-6P transition in deuterium,
which was conducted in July 2021. The main purpose of this measurement was the feasibility
study for planning a future precision measurement campaign. The preliminary measurement
included the temperature characterization of the cryogenic deuterium atomic beam, which
is presented along with the apparatus in Chapter 3. Furthermore, around 500 precision
spectroscopy line scans were acquired. The preliminary analysis demonstrates the feasibility
of the future measurement with a similar uncertainty as the 2S-6P transition measurement
in hydrogen. Moreover, already the preliminary measurement may be used to extract the
transition frequency with an uncertainty lower than the average of all the previous data in
electronic deuterium. So far the preliminary analysis has been performed with a blind offset
in the data, such that no value for the Rydberg constant and the deuteron radius is given
here. However, the anticipated uncertainty for adding a new data point to Fig. 1.1(b) is
presented in Chapter 6, which concludes this thesis.



Chapter 2

Theory and Simulations of the
2S-6P Transition in Atomic
Deuterium

In this chapter we refer to the theory and present simulations of the 2S-6P transition in atomic
deuterium, which are needed to understand and evaluate the spectroscopy measurement.
Much of the theory for probing the 2S-6P transition in atomic deuterium is identical to
hydrogen which has been treated in great detail in the thesis by Lothar Maisenbacher [71].
Therefore, we here focus on the differences between the 2S-6P transition in hydrogen and
deuterium.

First, a brief overview of the state-of-the-art bound-state QED theory calculations for en-
ergy levels in hydrogen and deuterium is given in Section 2.1. Then, the properties of 2S-nP
transitions in hydrogen and deuterium are compared in Section 2.2. In contrast to probing the
2S-nP transition hydrogen, simultaneous excitation of unresolved hyperfine components can
not be avoided in deuterium due to the different nuclear spin and the selection rules. This
complicates the situation and requires to consider three possible imperfections introduced
in Section 2.3: the initial state population asymmetry, the residual circularly polarized light
fraction, and a possible detection imbalance of fluoresence photons. Following two effects need
to be discussed for the 2S-6P transitions in deuterium due to the simultaneous excitation of
unresolved hyperfine components. First, the resonance lineshape as well as a possible line cen-
ter shift for the simulataneous excitation of different unresolved hyperfine transitions, which
is discussed in Section 2.4. Second, the possible quantum interference between unresolved
components, which is discussed in Section 2.5.

One of the leading systematic uncertainties when probing the 2S-6P transitions in atomic
deuterium with our apparatus is associated with the standing wave of two counter-propagating
laser beams, which are used to suppress the first-order Doppler shift. The standing light wave
produces a light force acting on atoms, which consequently distorts the observed resonance
line. This effect, which we denote as the light force shift, is treated in Section 2.6.

2.1 Theory of energy levels in hydrogen and deuterium

The quantum mechanics basics of one-electron atoms are derived in the famous book by H.
A. Bethe and E. E. Salpeter [112], originally published in 1957. Since then, much progress
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has been made in theory. The state-of-the art bound-state QED calculations for hydrogen
and deuterium are summarized in [81] and the CODATA1 2018 review [8]. Older, but in some
aspects more detailed reviews are for example [113, 6]. Even more details on the bound-state
QED theory can for example be found in the books by M. I. Eides, H. Grotch and V. A. She-
lyuto [7], as well as the recently published book by U. Jentschura and G. S. Adkins [114].
Numerical tabulation of the transition energies can be for instance found in [115, 116]. Here,
we give a brief overview of the theory, summarizing and comparing different contributions to
the 1S1/2-2S1/2 and 2S1/2-6P1/2 transition energies in hydrogen and deuterium.

In the following, we do not consider the hyperfine structure, which arises from the in-
teraction of the nuclear magnetic dipole moment with the magnetic field generated by the
electron. The hyperfine structure is discussed and tabulated in detail in [116, 117, 115], and
does not contribute significantly to the theory uncertainty for the prediction of the energy
levels2. In this section, we consider the centroid energy EnlJ averaged over the corresponding
hyperfine state energies EnlJF , which is defined as [81]:

EnlJ =

∑
F (2F + 1)EnlJF∑

F (2F + 1)
. (2.1)

In the above equation, n is the principal quantum number, l is the orbital angular momentum
quantum number of the electron, J is the total angular momentum quantum number of the
electron (obtained by adding the electron spin to its orbital angular momentum), and F is the
total angular momentum of the atom (obtained by adding the nuclear spin to the total angular
momentum of the electron). The centroid energy EnlJ of an electron bound in hydrogen or
deuterium can then be written as:

EnlJ = hcR∞

(
− 1

n2
+ fnlJ(α,

me

mN
, . . . ) +

δl0
n3

(
CNS r

2
N + Cpol + h.o.n.e.

))
. (2.2)

The pre-factor hcR∞, where h is Planck’s constant, c the speed of light, and R∞ the Rydberg
constant, converts the energy to SI units. The first term in brackets, −1/n2, is the dominant
(“gross”) structure of principal quantum number states from the Coulomb potential, already
heuristically postulated by N. Bohr in 1913 by using a resonance condition with the de-
Broglie wavelength of the electron, and later derived from the Schrödinger equation. The
second term fnlJ summarizes all further point-like interaction effects, including relativistic
effects, nuclear recoil efects, and QED effects, which mainly depend on the fine-structure
constant α and the electron-to-nucleon mass ratio me/mN (other constants enter only with
insignificant accuracy). The mass ratios and α can be accurately determined from other

1Committee on Data for Science and Technology.
2See [116, 115] for the review of off-diagonal contributions to the hyperfine Hamiltonian, which were first

calculated in [118] (see also [119, 59] and note that in [59] the off-diagonal contribution for the 2P levels is
misprinted as 0.0025 kHz which should be 2.5 kHz). The resulting shifts from off-diagonal contributions to
the hyperfine centroid are tabulated for hydrogen in Table 1 of [116] and for deuterium in Table 1 of [117].
This shift ∆νo.-d.

HFS vanishes for the S levels, and is on the order of 10-20 Hz for the 6P1/2 and 6P3/2 levels
in deuterium. Another contribution for deuterium levels with j > 1/2 is the electric quadrupole hyperfine
structure shift ∆νquad

HFS , which does not enter the hyperfine centroid, but is important when considering the
individual hyperfine transitions. Both ∆νo.-d.

HFS and ∆νquad
HFS are given in Table 2.4 and Table 2.5 for the transitions

discussed in this thesis.
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experiments [37, 30, 29, 19, 36]. Their recommeded values are [8]:

me/mp = 5.446 170 214 87(33)× 10−4,

me/md = 2.724 437 107 462(96)× 10−4,

α = 7.297 352 569 3(11)× 10−3. (2.3)

The third term in Eq. (2.2) summarizes the nuclear structure effects, and is present only
for states with zero angular momentum (S-states where l = 0). All nuclear effects have the
same scaling ∝ 1/n3. The leading term for accounting the nuclear structure is the finite
nuclear size effect (elastic nuclear structure effect), which depends on the constant pre-factor
CNS given by [120, 81, 8]

CNS =
4m2

ec
2

3~2
α2 =

4α2

3λ̄2
C

' 4.8× 10−10 [fm−2], (2.4)

where λ̄C is the reduced Compton wavelength of the electron, and on the mean-square nuclear
charge radius r2

N , defined as:

r2
N ≡ 〈r2

N 〉 =

∫
r2ρN (~r)d3~r = −6~2 dGE

dq2

∣∣
q2=0

. (2.5)

It has been shown [82] that, as the above equation states, the definition of r2
N based on the

nuclear charge distribution ρN (~r) is equivalent to the definition based on the electric form
factor GE , where q is the momentum transfer between the electron and the proton. The form
factor can be measured in electron scattering experiments. However, note that the charge
radius is defined at zero momentum transfer (q2 = 0), which is impossible to reach in the
experiment (the electron cannot scatter from the proton without any momentum transfer,
i.e. it does not scatter if no momentum is transferred). Instead, the measurement results for
q2 > 0 need to be extrapolated to q2 = 0, such that experiments with q2 as low as possible
are advantageous. Models from nuclear physics can be used to constrain the extrapolation
[83]. For the proton radius, new measurements [84, 85] or re-analysis of the old measurements
[86, 87] are available. For the deuteron radius, only older less accurate data [88] and proposals
for the future [89] are available from scattering experiments.

In muonic atoms, the electron is replaced by the 207 times heavier muon (me → mµ '
207me), such that the finite size effect is increased compared to electronic atoms (note that
CNS ∝ m2

e). Therefore, most accurate results for the charge radii of the proton and the
deuteron are obtained from the spectroscopy of muonic atoms [67, 68], which contribute most
significantly for the CODATA 2018 recommended values [8]:

rp = 0.8414(19) fm, rd = 2.127 99(74) fm. (2.6)

Together with the 1S-2S transition in hydrogen, which is, due to its narrow linewidth and the
first-order Doppler-free two-photon spectroscopy, measured most accurately in both hydrogen
and deuterium [57, 13, 54], the charge radii from muonic atoms thus dominantly contribute
to the recommended value for the Rydberg constant [8]:

R∞ = 10 973 731.568 160(21) m−1. (2.7)
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We shall also remark that the combination of the 1S-2S isotope shift measurement and theory
precisely links deuteron and proton radii [95, 79]:

r2
d − r2

p = 3.820 70(31) fm2. (2.8)

As has been pointed out in the introduction, converting the proton radius to the deuteron
radius and vice versa within the comparison of the spectroscopy results between hydrogen
and deuterium, corresponds to testing the consistency of the Rydberg constant determination
in hydrogen and deuterium (overlapping Fig. 1.1(a) and (b) using the same Rydberg constant
scale), which may also be called a test of the isotope shift theory resulting from the comparison
of nuclear structure effects.

The second term Cpol accounting for nuclear effects in Eq. (2.2) is the leading term for the
so-called “polarizability”, which accounts for the excitation of the nucleus (inelastic nuclear
structure effect). Furthermore, there are higher order nuclear structure effects (h.o.n.e). We
will see below, that for electronic hydrogen only the leading order finite size effect is important,
whereas other nuclear effects including polarizability are below the current level of theory
uncertainty. However, for electronic deuterium, the polarizability cannot be neglected. For
all muonic atoms, including muonic hydrogen, all nuclear effects are much larger, such that
even higher order nuclear effects need to be carefully investigated [78].

The leading order for EnlJ is given by the relativistic Dirac equation:

EnlJ ≈ ED = mec
2

1 +
α2(

n− J − 1/2 +
√

(J + 1/2)2 − α2
)2


−1/2

−mec
2

=
mec

2α2

2

(
− 1

n2
+ α2 3 + 6J − 8n

4(1 + 2J)n4
+O(α4)

)
, (2.9)

where in the last step we expanded the equation in series of α. From the Dirac equation, we
see how the binding energy of the electron in an atom is linked to its rest mass energy mec

2.
In fact, the Dirac enery includes the electron’s rest mass energy, which has been substracted
above. Comparing Eq. (2.9) with Eq. (2.2), it is amusing to realize how mec

2 is manifested in
the Rydberg constant (which was empirically found by J. Rydberg in the year 1888, 17 years
before Einstein derived the equivalence of energy and mass):

hcR∞ = mec
2 × α2

2
. (2.10)

Since 2019, h and c are fixed constants of nature [8], such that the measurement of the
Rydberg constant is directly linked to measurements of the electron mass me and the fine
structure constant α.

Eq. (2.9) demonstrates that the order for fine-structure effects is α2 ×O(α2), i.e. 10−5 of
the binding energy. However, there is an effect which is larger than the fine-structure, namely
the nuclear recoil effect. The leading contribution of the nuclear recoil can be understood
classicaly: due to the finite nuclear mass mN , the electron moves not around the nucleus, but
both the electron and the nucleus move around their center-of-mass. We can account for this
effect by simply considering the motion of the electron in the center-of-mass frame, which
requires to replace the electron’s mass me by the reduced mass mred:

me → mred =
memN

me +mN
. (2.11)
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Therefore, the leading order for the recoil effect is simply the subsitution of the binding energy
hcR∞ = mec

2α2/2 by hcR∞mred/me = mredc
2α2/2, which is ∼5.4 × 10−4 for hydrogen and

∼2.7× 10−4 for deuterium. This is the leading order difference in transition energies between
hydrogen and deuterium. In fact, this is how the isotope deuterium was discovered: H. Urey
and colleages observed two lines in spectroscopic measurements [121]1.

The Dirac equation, Eq. (2.9), predicts that states with same n and J but different l have
the same energy (Eq. (2.9) does not depend on l). In 1947, Lamb and Retherford measured
[123] a difference between the 2S1/2 and 2P1/2 states in hydrogen, thereby disproving this
prediction. This so-called “Lamb shift” is explained by QED effects, i.e. the interaction
with quantum vacuum fluctuations. Today, these effects are precisely calculated, and the
theory uncertainty is being constantly improved. The state-of-the-art calculation of the 1S1/2

ground state in hydrogen and deuterium, following [81, 8], is evaluated in Table 2.1. Fig. 2.1
exemplarily pictures some of the Feynman diagrams for the different effects. Table 2.2 and
Table 2.3 summarize and compare the contributions of different effects between the 1S1/2-
2S1/2 and 2S1/2-6P1/2 transition frequencies of hydrogen and deuterium.

It is important to recall that theory does not make predictions on numerical values, but
rather on expressions which depend on parameters, which we may call “fundamental con-
stants” or “constants of nature”. In Table 2.1, Table 2.2 and Table 2.3, the theory result is
evaluated for the CODATA 2018 values of the constants α, me/mp or me/md, R∞ and rp
or rd, as listed in Eq. (2.3), Eq. (2.6) and Eq. (2.7). The uncertainty on the total theory
predicition is composed from the uncertainty arising from constants, and the theory uncer-
tainty. It shall be remarked that the uncertainty in α and the mass ratios do not significantly
contribute to the total uncertainty, i.e. the uncertainty from R∞ and rN dominates the overall
uncertainty from constants, as well as the total uncertainty. The theory uncertainty is listed
in Table 2.1 for the individual effects following [8], which is dominated by the 2-loop QED
correction2.

Furthermore, it shall be remarked that the calculation of the 1S1/2-2S1/2 transition fre-
quency in Table 2.2 has a total uncertainty of around 7 kHz, whereas the measurement has an
uncertainty of only 10 Hz (hydrogen) or 25 Hz (deuterium) [54]. However, this does not mean
that the theory must be improved in order to be confronted better with the experiment. In
fact, it is the opposite case: the experiments determining the fundamental constants must
be improved in order to be more accurately confronted with theory. This again illustrates
the mentioned situation above: the “theoretical prediction” of transition frequencies involves
experimental values of fundamental constants. Note that if we wish to consistently “predict”
a certain transition frequency, the measured value of this transition should not be indirectly
included into constants entering this calculation. For example, if we predict the 1S-2S tran-
sition frequency, the determination of the Rydberg constant entering the calculation should
not involve the 1S-2S transition measurement itself, but only other transition measurements.

1Following [122], an interesting historic remark: already in the year 1919, Otto Stern hypothesized that
hydrogen, which was found to have an atomic mass of 1.0079 atomic units, was a mixture of two isotopes. Otto
Stern and his colleage M. Volmer were then trying to find an ∼1% admixture of a heavy hydrogen with mass of
2 to explain the ∼1% higher mass. However, the result was negative. In principle, their idea was qualitatively
correct, but they were quantitatively wrong, since the atomic mass of 1.0079 is not purely explained by the
heavier hydrogen isotope, and the percentage of deuterium atoms in naturally occuring hydrogen is only around
0.015%.

2The theory uncertainty for the 2-loop QED correction has been improved by the recent work [124] not
included in the CODATA 2018 review published in [8]. With the result of [124], the 2-loop QED uncertainty
is improved to the same order as the 3-loop QED [125].
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Figure 2.1: Examples of Feynman diagrams for different effects contributing to the energy levels of
hydrogen and deuterium. The horizontal axis represents time and the vertical axis represents space.
For each diagram, the upper line represents the electron (e−) and the bottom line represents the
nucleus (N). The title in each subfigure names the effect according to the contributions in Table 2.1,
Table 2.2 and Table 2.3. Furthermore, the leading order of magnitude in powers of the fine-structure
constant α (including the additional factor α2 from the Rydberg constant according to Eq. (2.10)),
and for some cases the other relevant paramater (electron-to-nucleus mass ratio me/mN , mean-square
charge radius r2

N , polarizability coefficient C̃pol) are given. All diagrams except (f) and (g) consider
point-like interactions, with the blue cross denoting the Coulomb vertex. Here, exemplary diagrams
with only one Coulomb vertex are shown, whereas for each effect also diagrams with many Coulomb
vertices are present. Straight gray wavy curves denote the Coulomb exchange photons between e− and
N . (a) and (b) show the nuclear recoil effects, where the in addition to the Coulomb exchange photon,
the blue wavy curve denotes the transverse photon. (c) shows the self-energy of the bound electron, and
(d) the effect of vacuum polarization, where the Coulomb exchange is for example affected by eletron-
positron, muon-antimuon, or hadron-antihadron pairs. The analogue of the electron self-energy also
occurs for the nucleus, which is shown in (h). Both (c) and (d) are called “1-loop QED” effects, and
can also occur with more loops: (e) shows an example of the 2-loop vacuum polarization. (f) and (g)
show nuclear structure effects. (f) is an example of an elastic nuclear structure effect, also called finite
nuclear size effect, which accounts for the finite charge radius of the nucleus. (g) is an example of
inelastic nuclear structure effect (“nuclear polarizability”): the nucleus is excited, here accompanied
by the two-photon exchange (higher order terms involve more exchange photons, e.g. three-photon
exchange).

Otherwise, we would use the measurement of the same transition, which we aim to calculate.
In Table 2.2 and Table 2.3 the CODATA 2018 values of fundamental constants are used. For
the 2S-6P transition (Table 2.3), no measurement of the same transition enters the CODATA
2018 adjustment of constants. For the 1S-2S transition (Table 2.2), the 1S-2S measurement is
included in the CODATA 2018 adjustment of constants. In principle, the 1S-2S measurement
should then be excluded from the adjustment of constants in order to make the prediction of
this transition frequency. However, this would not substantially change the calculated values
since other accurate measurements are available (e.g. 1S-3S measurement combined with the
nuclear charge radii from muonic atoms). Besides, Table 2.2 and Table 2.3 mainly serve the
purpose to show the contributions of different effects to the transition frequencies.
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Hydrogen 1S1/2 state energy Deuterium 1S1/2 state energy

(in units of hcR∞) (in units of hcR∞)

Dirac (with me → mred) −0.999 468 985 371 2 −0.999 740 940 061 6
Rel. nuclear recoil −6.50853× 10−9 −3.26245× 10−9

Radiative recoil −3.75(22)× 10−12 −1.88(11)× 10−12

1-loop QED
self-energy 2.5482499× 10−6 2.5502410× 10−6

vacuum-polarization −6.52969× 10−8 −6.535025× 10−8

µ+µ− vacuum-pol. −1.54× 10−12 −1.54× 10−12

hadronic vacuum-pol. −1.03× 10−12 −1.03× 10−12

2-loop QED 2.2098(29)× 10−10 2.2116(29)× 10−10

3-loop QED 5.5(2.9)× 10−13 5.5(2.9)× 10−13

Finite nuclear size
∝ α4 3.3654× 10−10 2.15437× 10−9

∝ α5 −1.26(5)× 10−14 −4.6(8)× 10−14

∝ α6 1.66× 10−13 9.53× 10−13

∝ α7 −1.1(4)× 10−15 −1.0(3)× 10−15

Nuclear polarizability
∝ α5 −2.1(4)× 10−14 −6.62(7)× 10−12

∝ α6 1.2(1.2)× 10−13 −1.6(1.2)× 10−13

Nuclear self-energy 1.40(5)× 10−12 3.7(1)× 10−13

Total −0.999 466 508 373 4 −0.999 738 456 067 2
Theory uncertainty 4.8× 10−13 4.5× 10−13

Uncert. from constants 2.4× 10−12 2.4× 10−12

Total uncertainty 2.5× 10−12 2.5× 10−12

Table 2.1: Contribution of different effects to the theoretical prediction for the hyperfine centroid
energy of the 1S1/2 state in hydrogen and deuterium, following [8, 81]. See Fig. 2.1 for the corresponding
examples of Feynman diagrams. Theory does not predict numerical values, but expressions in terms
of fundamental constants. Here, the results have been evaluated for their values (mainly α, me/mp

or me/md, and rp or rd) according to [8]. The uncertainty is therefore combined from the theory
uncertainty and the uncertainty from the measured values of fundamental constants. Note that the
terms are evaluated in units of hcR∞ and hence are independent of R∞. However, we include the
relative uncertainty in R∞ in the “uncertainty from constants”. The total uncertainty is dominated
by the relative uncertainty from the Rydberg constant R∞ and the uncertainty from the proton or
deuteron radii rp and rd, whereas the contribution of the uncertainty from α, me/mp or me/md is
negligible. For each effect individually, only the theory uncertainty is given.

The first term in Table 2.1 is the evaluation of the Dirac energy from Eq. (2.9) with
the replacement me → mred to account for the leading order recoil effect. This predicts
the energy correctly up to the relative fraction of ∼10−5. Next we list the relativistic and
higher order nuclear effects1, which contribute in leading order a binding energy fraction of
α2 × me/mN ∼ 10−8 for hydrogen (the contribution is two times lower for deuterium due

1The second term in Eq. (8) of [6] or Eq. (5) of [81], plus the Barker-Glover correction (last terms in Eq. (9)
and (10) of [8]), plus the relativistic and higher order terms from Eq. (11) and (12) of [8].
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Hydrogen 1S1/2-2S1/2 (Hz) Deuterium 1S1/2-2S1/2 (Hz)

Dirac (with me → mred) 2 466 068 518 610 695 2 466 739 533 830 044
Rel. nuclear recoil 20 264 021 10 156 580
Radiative recoil 10 781 5398

1-loop QED
self-energy −7 312 058 467 −7 317 770 941
vacuum-polarization 187 963 502 188 116 977
µ+µ− vacuum-pol. 4435 4438
hadronic vacuum-pol. 2976 2978

2-loop QED −635 541 −636 062
3-loop QED −1594 −1596

Finite nuclear size
∝ α4 −968 758 −6 201 601
∝ α5 36 133
∝ α6 −470 −2702
∝ α7 3 29

Nuclear polarizability
∝ α5 59 19 058
∝ α6 −344 473

Nuclear self-energy −4034 −1059

Total 2 466 061 413 187 299 2 466 732 407 522 147
Theory uncertainty 1396 1271
Uncert. from constants 6437 6395
Total uncertainty 6587 6520

Table 2.2: Similar to Table 2.1, here showing the contribution of different effects to the theoretical
prediction for the hyperfine centroid transition frequency of the 1S1/2-2S1/2 transition in hydrogen and
deuterium. Theoretical expressions have been evaluated for values of fundamental constants according
to [8], here mainly R∞, α, me/mp or me/md, and rp or rd. The total uncertainty is dominated by the
uncertainty from the Rydberg constant R∞ and the uncertainty from the proton or deuteron radii rp
and rd, whereas the contribution of the uncertainty from α, me/mp or me/md is negligible.

to higher mass). Fig. 2.1(a) shows an example of the corresponding diagram. The recoil
correction involves an exchange of virtual photons, which happen at different points in time.
This is indicated by non-vertical blue wavy curves, which denote the so-called transverse
photons [113, 114].

It is interesting to realize, that for the one-photon 2S1/2-6P1/2 transition, the contribution
of the relativistic nuclear recoil approximately corresponds to the recoil shift (see Eq. (2.81)
and compare Table 2.3 with Table 2.4). This may illustrate the similar physics of the phe-
nomenon: whereas for the internal energy state it is the virtual photon which produces a
recoil shift of the energy state, for the probed transition frequency, it is the real photon which
produces the recoil and thererby changes the kinetic energy of the atom.

Within the recoil, it is also possible that vacuum fluctuations occur, which is called “ra-
diative nuclear recoil”, with an example of self-energy shown in Fig. 2.1(b). These corrections
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Hydrogen 2S1/2-6P1/2 (Hz) Deuterium 2S1/2-6P1/2 (Hz)

Dirac (with me → mred) 730 691 021 696 054 730 889 842 123 184
Rel. nuclear recoil 1 129 173 566 917
Radiative recoil 1540 771

1-loop QED
self-energy −1 071 679 859 −1 072 517 882
vacuum-polarization 26 853 088 26 875 014
µ+µ− vacuum-pol. 634 634
hadronic vacuum-pol. 425 425

2-loop QED −90 477 −90 551
3-loop QED −236 −236

Finite nuclear size
∝ α4 −138 394 −885 943
∝ α5 5 19
∝ α6 −74 −433
∝ α7 <1 4

Nuclear polarizability
∝ α5 8 2722
∝ α6 −49 68

Nuclear self-energy −584 −153

Total 730 689 977 771 255 730 888 796 074 559
Theory uncertainty 199 181
Uncert. from constants 1532 1529
Total uncertainty 1545 1539

Table 2.3: Similar to Table 2.2, here showing the contribution of different effects to the theoretical
prediction for the hyperfine centroid transition frequency of the 2S1/2-6P1/2 transition in hydrogen and
deuterium according to [8]. Note that in deuterium, nuclear polarizability is an order of magnitude
larger than the theory uncertainty, whereas in hydrogen the polarizability is negligible. Therefore,
precision spectroscopy of deuterium also probes inelastic nuclear effects.

are of order α4me/mN ∼ 10−12 of the binding energy, and hence also a factor of two smaller
for deuterium.

One-loop QED effects are classified into the electron self-energy, Fig. 2.1(c), and vacuum-
polarization, Fig. 2.1(d). Note that here only the simplest diagrams with only one Coulomb
vertex (blue cross) are depicted, whereas different higher-order diagrams with many Coulomb
vertices also need to be evaluated. The one-loop self-energy is the dominant effect for the
Lamb-shift, and is of order α3 ln(α2)/π∼ 10−6 of the binding energy. The similar self-energy
effect for the nucleus1 (see Fig. 2.1(h)) is of order α(me/mN )2α3 ln(α2)∼ 10−12, and due to
the 1/m2

N dependency around a factor of 4 smaller for deuterium. The one-loop vacuum-
polarization (see Fig. 2.1(d)) from electron-positron (e+e−) pairs contributes with a fraction
α3/π∼ 10−7. Note that also muon-antimuon (µ+µ−) pairs and hadronic pairs in the loop

1There is some ambiguity with this correction, since the self-energy also contributes to the nuclear charge
radius and nuclear magnetic moment [81, 126].
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contribute a small but significant fraction of ∼10−12 each, which is above the total theory
uncertainty.

An example of the two-loop QED effect are two consecutive particle-antiparticle pairs
within the Coulomb exchange, see Fig. 2.1(e). However, two-loops open many other possibili-
ties for a variety of combinations, see for example Fig. 8 in [113] or Figs. 3 and 6 in [78]. They
can be divided into three parts: the two-loop self-energy, the two-loop vacuum polarization
(with one example shown in Fig. 2.1(e)), and the mixed self-energy and vacuum-polarization
[81]. Note that also many Coulomb vertices are possible. All two-loop QED effects are of order
α4/π2∼ 10−10 of the binding energy. The uncertainty on these effects is dominanting the total
theory uncertainty in the tabulation presented here based on [8]. Recent results [124] improve
the 2-loop QED uncertainty, such that for the next CODATA review the theory uncertainty
is expected to be smaller. The three-loop QED effects are of order α5/π3∼ 10−13 − 10−12,
which is on the edge of the current theory uncertainty.

The nuclear structure effects are classified into elastic (finite nuclear size) and inelastic
(nuclear polarizability) effects. As for the elastic part, the point-like Coulomb vertex is
replaced by the interaction with the nucleus of finite size rN , symbolically represented by
the blue circle in Fig. 2.1(f). The leading order contributes a binding energy fraction of
α2r2

N/λ̄
2
C∼ 10−10 for hydrogen, and ∼ 10−9 for deuterium. Higher orders involve an exchange

of two or more photons. Interestingly, the two-photon exchange is suppressed [81], such that
the next-order contribution from the three-photon exchange is larger than the lower order
from the two-photon exchange. For hydrogen, the higher order finite size effects are below
the overall theory uncertainty. However, for deuterium, the three-photon contribution to the
finite size effect is significant.

If two or more photons are exchanged with the nucleus, an inelastic process can occur,
where the nucleus gets excited1, as illustrated in Fig. 2.1(g). This process depends on nuclear
physics effects, which are summarized by the coefficient Cpol in Eq. (2.2). For hydrogen, the
polarizability effects are negligible. However, for deuterium, the polarizability coefficient was
calculated to be significant [81]2:

E
(5)
pol(D) = hcR∞

δl0
n3
Cpol = −21.78

δl0
n3
h kHz± 1%, (2.12)

which is for the ground state on the order of ∼10−11 of the binding energy. Therefore,
precision spectroscopy of electronic deuterium at this level of accuracy is sensitive to nuclear
excitations.

Let us now consider the case of determining the constants R∞ and rN from the com-
bination of the 1S1/2-2S1/2 and 2S1/2-6P1/2 transition frequency measurements in hydrogen

or deuterium, with the experimental values ν1S-2S
exp and ν2S-6P

exp , respectively. We then have a
system of two equations:

ν1S-2S
exp = cR∞

(
A− 7

8
CNS r

2
N

)
, ν2S-6P

exp = cR∞

(
B − 1

8
CNS r

2
N

)
, (2.13)

where the right-hand side is the theory prediction for the energy differences, with the constants

1Examples of these processes are p→ n+ π+ → p or p→ ∆→ p.
2We follow the notation of [81], where the subscript (5) denotes the order in α including the factor α2 from

the Rydberg constant. The lowest order for polarizability is with a two-photon exchange, with a contribution
proportional to α2 × α3 = α5.
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A and B for hydrogen or deuterium given by:

A(H) = 0.749 598 747 888 87(80), B(H) = 0.222 104 887 328 38(10), (2.14)

A(D) = 0.749 802 708 922 81(78), B(D) = 0.222 165 321 553 87(10). (2.15)

For the above numerical values, the values for the constants α and me/mp or md/mp have
been used from [8] (other constants do not enter with significant accuracy). The uncertainty
contribution from these constants is negligible, such that the uncertainty in the above values
solely originates from the theory.

The equation system Eq. (2.13) gives the following solutions for R∞ and rN :

cR∞ =
ν1S-2S

exp − 7ν2S-6P
exp

A− 7B
, rN = 2

√
2

CNS

√
B ν1S-2S

exp −Aν2S-6P
exp

ν1S-2S
exp − 7 ν2S-6P

exp

. (2.16)

With the above expressions, we can derive the uncertainty on the constants, δR∞ and δrN ,
from the uncertainties on the measured transition frequencies, δν1S-2S

exp and δν2S-6P
exp . Since

the 1S-2S frequency is measured most accuratly, we assume its uncertainty to be negligible
compared to the uncertainty of the 2S-6P transition frequency measurement. Therefore, only
the derivatives ∂R∞/∂ν

2S-6P
exp and ∂rN/∂ν

2S-6P
exp need to be evaluated, which yields:

δR∞ '
1

1− 7/n2

7 δν2S-nP
exp

c
, δrN '

1

1− 7/n2

3 δν2S-nP
exp

CNS cR∞ rN
, (2.17)

where we derived the general result for the 2S-nP or 2S-nD transitions1. Measuring tran-
sitions with higher n improves the uncertainty on the Rydberg constant and the proton
radius for the same uncertainty in the measured transition frequency, but already for n = 6,
the prefactor in the above equations for δR∞ and δrN is 1.24, which is close to the lowest
possible value of 1. Currently, the uncertainty of the recommended value for the Rydberg
constant is δR∞ = 0.000 021 m−1. From the above equation we find that measuring the
2S-6P transition to δν2S-6P

exp < 0.7 kHz corresponds to the uncertainty in the Rydberg con-
stant below this value. The uncertainty on the deuteron radius from muonic deuterium is
δrd = 0.000 78 fm, which corresponds to measuring the 2S-6P transition to approximately the
same accuracy of δν2S-6P

exp ∼ 0.7 kHz. The average of all previous electronic deuterium measure-
ments [72] gives the uncertainty in the deuteron radius of δrd = 0.0025 fm, which corresponds
to δν2S-6P

exp ∼ 2.3 kHz.

1For this general result, we simply need to plug in A ' 3/4 and B ' 1/22− 1/n2 into the evaluation of the
derivatives ∂R∞/∂ν

2S-6P
exp and ∂rN/∂ν

2S-6P
exp : note that Eq. (2.13) remains valid for 2S-nP and 2S-nD transitions

(but with a different B) because of zero nuclear size effect of P and D levels. For example, evalutating the

formula for n = 8 with ν
2S-nP/D
exp = 2.0 kHz in hydrogen yields δrp = 0.0051 fm and δR∞ = 0.000 052 m−1 which

agrees with the values in the recent 2S-8D measurement in hydrogen [16]. For the 1S-2S measurement combined
with 1S-nS or 2S-nS measurement, the right equation of Eq. (2.13) is different, such that the prefactor for δR∞
and δrN becomes 1/(1−7/n2+6/n3), e.g. for 1S-2S with 1S-3S the factor is 2.25, such that the 1S-3S transition
needs to be measured two times more accurate than the 2S-6P transition to reach the same sensitivity to R∞
and rN .
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2.2 2S-nP transitions in hydrogen and deuterium

Here, only a concise summary of the properties of the 2S-nP transitions in hydrogen and
deuterium is given, with a focus on the comparison between hydrogen and deuterium. For
details on various topics which are identical between hydrogen and deuterium, see Chapter 2
of [71].

2.2.1 General properties

The 2S-nP transitions in hydrogen and deuterium are dipole-allowed one-photon transitions
between the metastable 2S level (lifetime of 121.5 ms) and the short-lived nP level (e.g. for
6P state the lifetime is 41 ns) at the transition wavelengths between 365 nm (n = ∞) and
656 nm (n = 3). The transitions have a low saturation intensity and thus a small ac-Stark
shift1. Combined with the 1S-2S transition frequency measurement, the sensitivity to the
Rydberg constant and nuclear radius determinations increases with measuring higher 2S-nP
transitions, as has been discussed in Eq. (2.17). Furthermore, the natural linewidth ΓnP

decreases with higher n states as ΓnP ∝ n−3, which is attributed to the n−3-scaling of the
transition probability from the nP state to the lower states, see Sec. 63 in [112]. However,
the sensitivity to stray electric fields (quadratic dc-Stark shift for very weak electric fields)
scales as n7, such that, depending on the residual electric fields in the detection region,
higher n states are more challenging to measure accurately. This scaling can be explained
as following: according to second-order perturbation theroy, the quadratic dc-Stark shift (for
very weak electric fields) is proportional to µ2/ε, where µ is the dipole moment and ε the
energy separation betweeen the energy levels, which are mixed through the electric field (see
for instance problem 7.12 in [127]). For the 2S1/2-nP1/2 transitions, the dc-Stark shift mainly
originates from the nP1/2 state perturbing the nS1/2 state or vice versa. The dipole moment
between nP1/2 and nS1/2 levels scales as µ ∝ n2 (see Eq. (63.5) in [112]), whereas the energy
separation between these states (lowest order Lamb shift) scales as ε ∝ n−3 (see Eq. (21.3) in
[112]), resulting in the n7-scaling of the dc-Stark shift (see also discussion below Eq. (55.8)
in [112], as well as for our case Sec. 2.4. of [71]). For the 2S-6P transition measurement,
an accurate control and measurement of stray electric fields is necessary, as discussed in
Section 3.5.

For n < 10, the natural linewidth of the 2S-nP transitions ΓnP lies in the MHz range,
e.g. Γ4P∼ 13 MHz, Γ6P∼ 4 MHz, Γ9P∼ 1 MHz. As we derived from Eq. (2.17), the transitions
need to be measured with the accuracy in the kHz range in order to determine R∞ and rN
with a low enough uncertainty, which corresponds to determining the resonance line center
to ∼ 10−4 ΓnP. This requires to study various possible effects which shift and/or distort the
resonance, as for instance the Doppler shift, quantum inferference or the light force shift.

The level schemes (including the hyperfine structure) for preparing the 2S state and prob-
ing the 2S-nP transitions with our apparatus are compared between hydrogen and deuterium
in Fig. 2.2. In contrast to hydrogen with a nuclear spin number of I = 1/2, deuterium has
a nuclear spin number of I = 1, which leads to a different hyperfine level structure. The
transitions for the preparation of the 2S state are shown in pink, whereas the probed 2S-
nP transitions are shown in blue. The excitation takes place with linearly polarized light,

1The ac-Stark coefficient for the 2S-6P transition is on the order of 10−4 Hz/(W/m2) [71], such that an
average intensity of I2S-6P∼P2S-6P/(πW

2
0 )∼ 2 W/m2 (with our laser beam parameters P2S-6P = 30µW and

W0 = 2.2 mm) results in an ac-Stark shift below 1 mHz.
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Figure 2.2: Level scheme for probing the 2S-nP transitions in hydrogen in deuterium. The preparation
of the 2S initial states is shown in pink. While in hydrogen there is only one initial 2S1/2 state, in
deuterium a superposition of two initial 2S1/2,mF = ±1/2 states is prepared. The excited 2S-nP
transitions with linear polarization along the quantization axis (π transitions) are depicted in blue:
while the selection rules in hydrogen forbid the transition to the F=0 level, the analogous transitions
to the F=1/2 levels are allowed in deuterium. The Lyman series decays to the ground state from the
nP levels are shown in red (σ± channels) and blue (π channels). Note that the separation between
the states is not to scale: nP hyperfine states are not resolved (∆HFS � ΓnP ) whereas the nP fine
structure states are largely separated (∆FS � ΓnP ).

which drives the π transitions. Curved arrows represent the different decay channels from the
excited nP states manifold to the 1S ground states (σ± decays in red and π decays in blue).

For hydrogen, starting from the 1SF=0
1/2 ground state, only the single mF=0 initial state

is present, from which the two-photon transition to the 2SF=0
1/2 level at 243 nm wavelength

can be excited. Since the hyperfine splitting of the 1S and 2S levels is much larger than the
linewidth Γ2S of the 1S-2S transition1 and the hyperfine splitting of the 2S state manifold
(∼ 0.2 GHz) is much smaller than the hyperfine splitting of the 1S state manifold (∼ 1.4 GHz),
the F = 1 states are unaffected by the excitation laser. Probing the one-photon transitions
2SF=0

1/2 → nPF=1
1/2 and 2SF=0

1/2 → nPF=1
3/2 is also achieved without exciting any other levels

since the F=0 → F=0 and F=0 → F=2 transitions are forbidden by selection rules due
to angular momentum conservation [127]. Therefore, only the quantum interference between
the resolved fine-structure components nPF=1

1/2 and nPF=1
3/2 separated by ∆FS ' 104 ΓnP is

present. This resolved quantum interference was thoroughly studied in the 2S-4P transition
measurement in hydrogen [14, 71]. Effects from the residual circularly polarized light of the
linear excitation polarization do not lead to other systematic line shifts except the Zeeman
shift, which can be estimated from the upper limits on the circularly polarized light fraction
and the magnetic field in the interaction region [14, 71].

To probe the analogous transitions in deuterium, one has to consider the simultaneous
excitation of hyperfine transitions. In constrast to hydrogen, two mF= ± 1/2 initial states

1In our apparatus, the observed linewidth is Γ2S∼ 4 kHz, which is much larger than the natural linewidth
of 1.3 Hz due to the broadening caused by the ac-Stark shift and the second-order Doppler shift.
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are prepared. The two unresolved hyperfine nP levels, separated1 by ∆HFS1/2
' 0.13 ΓnP

and ∆HFS3/2
' 0.026 ΓnP, are excited simultaneously because in contrast to the analogous

case in hydrogen, the F = 1/2 → F = 1/2 transitions are allowed since they do not vio-
late angular momentum conservation [127]. Furthermore, probing the 2S-nP transitions in
deuterium requires careful investigation of the unresolved quantum interference between the
two hyperfine state manifolds. Examination of these effects requires to consider the initial
state population asymmetry, the circularly polarized light fraction of the imperfect linearly
polarized excitation light, and the polarization sensitivity of the detector. In the next section
all these three imperfections are defined through normalized dimensionless quantities with
values ranging from −1 to +1, but typically around zero.

Table 2.4 and Table 2.5 summarize and compare the atomic properties of the 2S-6P1/2

and 2S-6P3/2 transitions in hydrogen in deuterium, respectively. The unperturbed transition

frequency νA,0 is calculated from the QED prediction of the hyperfine centroid νHFS centr.
A,0 based

on [8] discussed in the previous section (see Table 2.3), in combination with the hyperfine
splittings for the 2S and 6P states from [116], which are added to or substracted from the
hyperfine centroid transition frequency with a fraction according to the multiplicity of the
corresponding states. For the 2SF=0

1/2 → 6PF=1
1/2 transition in hydrogen, we find:

νA,0(H,2SF=0
1/2 → 6PF=1

1/2 ) = νHFS centr.
A,0 +

3

4
×∆HFS,2S +

1

4
×∆HFS1/2

+ ∆νo.-d.
HFS , (2.18)

where νHFS centr.
A,0 = 730 689 977 771 255 Hz is the hyperfine centroid from Table 2.3, and

∆HFS,2S = 177 556 838.2(3) Hz, ∆HFS1/2
= 2 191 470(22) Hz (2.19)

are the hyperfine splittings of the 2S1/2 and 6P1/2 states in hydrogen [116], respectively. Note

that small off-diagonal hyperfine structure shift ∆νo.-d.
HFS needs to be taken into account for the

calculation of the specific hyperfine transitions, as first calculated in [118]. This shift is zero
for the S states, and is given by the following expression for the nPF=1

j states [118, 116, 115]:

∆νo.-d.
HFS ' (j − 1)

2α2cR∞
9n3

(
µp
µB

)2

C2
〈IL〉, (2.20)

where µp/µB ' 1.521×10−3 is the ratio of the proton magnetic moment to the Bohr magneton
[8], and C2

〈IL〉 = 2/9 is a constant arising from the matrix elements (see Eq. (16) in [118]).

The frequency of the 2S
F=1/2
1/2 → 6P

F=1/2
1/2 transition in deuterium is given by:

νA,0(D,2S
F=1/2
1/2 → 6P

F=1/2
1/2 ) = νHFS centr.

A,0 +
4

6
×∆HFS,2S −

4

6
×∆HFS1/2

+ ∆νo.-d.
HFS , (2.21)

where νHFS centr.
A,0 = 730 888 796 074 559 Hz is the hyperfine centroid from Table 2.3, and

∆HFS,2S = 40 924 454(7) Hz, ∆HFS1/2
= 504 942(5) Hz (2.22)

are the hyperfine splittings of the 2S1/2 and 6P1/2 states in deuterium [116], respectively. Fol-

lowing [118], the off-diagonal hyperfine structure shift ∆νo.-d.
HFS is calculated similar to Eq. (2.20)

1Note that the small hyperfine corrections, namely the off-diagonal hyperfine structure shift ∆νo.-d.
HFS and

(for 6P3/2 levels) the electric quadrupole hyperfine shift ∆νquad
HFS , are not taken into account in the level scheme

of Fig. 2.2 and the corresponding definition of hyperfine splittings, but included in the calculated transition
frequencies νA,0 in Table 2.4 and Table 2.5.
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Hydrogen Deuterium

Transition 2SF=0
1/2 → 6PF=1

1/2 2S
F=1/2

1/2 → 6P
F=1/2

1/2 2S
F=1/2

1/2 → 6P
F=3/2

1/2

Transition freq. νA,0 (kHz) 730 690 111 486.7 730 888 823 020.9 730 888 823 525.8
6P1/2 HFS splitting ∆HFS1/2

(Hz) 2 191 470 504 942

Off-diag. HFS shift ∆νo.-d.
HFS (Hz) −92 −9 −22

Quadrupole HFS shift ∆νquad
HFS (Hz) 0 0 0

Dipole moment µ (e a0) − 9
512

√
105 3

512

√
105 −

√
8× 3

512

√
105

eff. value: sgn(d1d2)
√
d2

1 + d2
2 − 9

512

√
105

Dipole moment µ (10−30 C m) −1.527 140 0.509 046 −1.439 801
effective value 1.527 140

Rabi freq. Ω0

(rad/s (W/m2)−1/2) 2π × 63 263.5 2π × 21 087.8 2π × 59 645.4
effective value 2π× 63 263.5

Natural linewidth Γ6P (Hz) 3 894 977 3 898 157 3 898 157
Decay rates (dcy/s):
γe-2S (to 2S manifold) 2π × 461 496 2π× 454 814 2π× 454 814
γei (to initial state(s)) 2π × 153 471 2π×(16 845+33 690) 2π× (134 760+67 379)

effective value 2π×(121 658+63 636)
Γe-1S (to 1S manifold) 2π × 3 433 481 2π× 3 443 342 2π× 3 443 343
Γdet (detected Ly-ε) 2π × 3 136 549 2π× 3 139 110 2π× 3 139 110

Mass of the atom (kg) 1.673533× 10−27 3.344495× 10−27

Reduced electron mass (kg) 9.104426× 10−31 9.106902× 10−31

Recoil shift ∆νrec (Hz) 1 176 026 588 785
Recoil velocity vrec (m/s) 0.965016 0.483 010

Table 2.4: Atomic properties of the 2S1/2-6P1/2 transitions in hydrogen and deuterium. The transitions
are assumed to be driven with linearly polarized light as shown in the corresponding level scheme of
Fig. 2.2. The values for the transition frequencies νA,0 are calculated from the hyperfine centroids given
in Table 2.3 (based on [8]) in combination with the hyperfine structure (HFS) splittings ∆HFS1/2

and

small off-diagonal hyperfine structure shifts ∆νo.-d.
HFS following [116]. The electric quadrupole hyperfine

structure shift ∆νquad
HFS vanishes for hydrogen (since the proton does not have any quadrupole moment),

and is also zero for the j = 1/2 states in deuterium [117]. The calculations of required matrix elements
are based on [128, 129] using non-relativistic quantum mechanics. Note that the written precision of
numbers exceeds the available and required accuracy, but is given for possible future comparison of
simulations.

by replacing µp/µB by the ratio µd/µB ' 4.67 × 10−4 of the deuteron magnetic moment to

the Bohr magneton [8]. For the nP
F=1/2
j levels, C2

〈IL〉 = 2/9 (same as in hydrogen), and for

the nP
F=3/2
j levels, C2

〈IL〉 = 5/9. Compared to hydrogen, this shift is around an order of
magnitude smaller due to the smaller magnetic moment of the nucleus.

The 2S-6P3/2 can be calculated in a similar way, or from 2S-6P1/2 transitions together
with the fine-structure splitting ∆FS. However, for the 2S-6P3/2 transitions in deuterium,

the electric quadrupole hyperfine structure shift ∆νquad
HFS (evaluated from Eq. (1) of [117],

which follows the derivation in [128]) has to be taken into account in the calculation of νA,0
(for hydrogen this shift vanishes due to the zero quadrupole moment of the nucleus, and for
j = 1/2 this shift vanishes even in the presence of the quadrupole moment [117]).

The transition frequencies νA,0 differ between hydrogen and deuterium approximately
by ∼ 199 GHz. In leading order this difference is determined by a larger reduced electron
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Hydrogen Deuterium

Fine-structure splitting ∆FS (Hz) 405 164 408 406 034 692

Transition 2SF=0
1/2 → 6PF=1

3/2 2S
F=1/2

1/2 → 6P
F=1/2

3/2 2S
F=1/2

1/2 → 6P
F=3/2

3/2

Transition freq. νA,0 (kHz) 730 690 516 651.3 730 889 229 561.0 730 889 229 660.1
6P3/2 HFS splitting ∆HFS3/2

(Hz) 875 992 99 983

Off-diag. HFS shift ∆νo.-d.
HFS (Hz) 92 9 22

Quadrupole HFS shift ∆νquad
HFS (Hz) 0 519 −415

Dipole moment (e a0)
√

2× 9
512

√
105 −

√
8× 3

512

√
105

√
10× 3

512

√
105

eff. value: sgn(d1d2)
√
d2

1 + d2
2

√
2× 9

512

√
105

Dipole moment (10−30 C m) 2.159 701 −1.439 801 1.609 746
effective value 2.159 701

Rabi freq. Ω0

(rad/s (W/m2)−1/2) 2π × 89 468.1 2π × 59 645.4 2π × 66 685.5
effective value 2π× 89 468.1

Natural linewidth Γ6P (Hz) 3 894 983 3 898 162 3 898 162
Decay rates (dcy/s):
γe-2S (to 2S manifold) 2π × 461 497 2π× 454 815 2π× 454 815
γei (to initial state(s)) 2π × 306 073 2π× (134 760+269 520) 2π× (168 450+84 225)

effective value 2π×(153 477+166 578)
Γe-1S (to 1S manifold) 2π × 3 433 486 2π× 3 443 347 2π× 3 443 347
Γdet (detected Ly-ε) 2π × 3 136 552 2π× 3 139 112 2π× 3 139 111

Mass of the atom (kg) 1.673533× 10−27 3.344495× 10−27

Recoil shift ∆νrec (Hz) 1 176 027 588 786
Recoil velocity vrec (m/s) 0.965016 0.483 010

Table 2.5: Similar to Table 2.4, here showing the atomic properties of the 2S-6P3/2 transitions in
hydrogen and deuterium. The transition frequencies differ from the 2S-6P1/2 transitions in Table 2.4
by the fine-structure splitting ∆FS as defined in Fig. 2.2, as well as by the small off-diagonal hyperfine
structure shift ∆νo.-d.

HFS and (for deuterium) the electric quadrupole hyperfine structure shift ∆νquad
HFS ,

which does not vanish for the j = 3/2 states in deuterium and has been evaluated following [117].

mass of factor 2.7× 10−4, as has been discussed in the previous section. For deuterium, the
two hyperfine transitions (separated by the hyperfine splitting) are tabulated separately and
effective values for modeling the two hyperfine transitions as a single transition are given for
the dipole moments and the decay rates.

Note that the given precision for the numbers in Table 2.4 and Table 2.5 exceeds the
available and required accuracy, but is given here for comparisons of underlying simulations.
The uncertainty on the prediction of the transition frequencies in discussed in Table 2.3. The
hyperfine splittings are known with an uncertainty below 10 Hz [116]. The uncertainty on the
decay rates and the natural linewidths is more difficult to estimate. Here, the decay rates are
calculated within the dipole approximation from the Einstein coefficients

γ21 ≡ A21 =
4αω3

12

3e2c2
|µ12|2, (2.23)

where α is the fine-structure constant, e is the elementary charge, c is the speed of light, ω12 is
the angular transition frequency between the two levels under consideration and µ12 the dipole
moment of the corresponding transition [130]. The transition frequencies ω12 are obtained for
each pair of corresponding levels from the energies based on QED calculations as for instance
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compiled in [116]. The relative uncertainty on the decay rates is estimated to be few parts
in 10−5 (e.g. around 100 Hz for the total decay rate), mainly due to relativistic corrections to
the dipole moments, whereas electric quadrupole and magnetic dipole transitions should have
a smaller effect for the case of 6P levels1. An example of relativistic calculations of transition
probabilities is presented in [131].

After the transition frequencies, the hyperfine splittings as well as off-diagonal and electric
quadrupole hyperfine shifts, Table 2.4 and Table 2.5 list the absolute values of the transition
dipole moment µ ≡ |~µ|, which are calculated from the matrix elements using the angular
and radial parts of the wavefunction for the corresponding states [128, 129]. Note that this
calculation uses non-relativistic quantum mechanics, such that the values are accurate only
up to relativistic effects. The given numbers are calculated for the level scheme from Fig. 2.2,
i.e. for the corresponding π transitions driven by linearly polarized light. For deuterium, we
give the effective value calculated from the quadrature sum of the values for the two hyperfine
transitions. This effective value is exactly the same as for hydrogen, as expected: if we
consider the two hyperfine transitions effectively as a single transition, we neglect the hyperfine
structure arising from nuclear spin, such that the properties of hydrogen and deuterium must
be the same (up to the difference in the reduced electron mass which does not enter here).

Using the transition dipole moments, we can calculate the Rabi frequency Ω = ~µ · ~E/~,
which quantifies the coupling between the incoming field ~E and the atomic dipole on reso-
nance. If we assume the polarization of the incoming field to be aligned with the driven dipole
transition, we can relate the Rabi frequency to the absolute value of the dipole moment µ
and the intensity I of the exciting light field as [127]:

Ω =
µ| ~E|
~

=
µ

~

√
2I

c ε0
≡ Ω0 ×

√
I, (2.24)

where c is the speed of light and ε0 is the permittivity of free space. In the above equation we
defined the intensity-normalized Rabi frequency Ω0, which is listed in Table 2.4 and Table 2.5.
In the low excitation regime, the number of excited atoms on resonance is proportional to Ω2

and thus scales linearly with the intensity [127].

Next, Table 2.4 and Table 2.5 list the decay rates. The total decay rate yields2 the natural
linewidth of the transition Γ6P, and is composed of the decay rate γe-2S to the 2S manifold
and the decay rate Γe-1S to the 1S manifold: Γ6P = γe-2S + Γe-1S.

A fraction of the decay rate γe-2S is responsible for the decay back to the initial state(s),
which we denote as γei. For hydrogen, γei is the decay rate back to the 2SF=0

1/2 state, which is

the only initial state. For deuterium, there are two mF= ± 1/2 initial states in the 2S
F=1/2
1/2

manifold. Therefore, γei is a sum of the π decay to the same mF state and the σ decay to
the other mF state. The back decay to the initial states is particularly important to analyze
the light force shift discussed in Section 2.6, see Fig. 2.18 and Table 2.6. Weighted with the
squared dipole moments of the two hyperfine transitions, d2

1 ≡ d2
F=1/2 and d2

2 ≡ d2
F=3/2, we

can also define an effective back decay rate, see Fig. 2.18 and Eq. (2.80). These effective
values are approximately the same for hydrogen and deuterium, though slightly higher for
deuterium than for hydrogen.

1Private communication with Savely Karshenboim.
2Note that whereas the decay rate is given in number of decays per second, the natural linewidth is given

in Hertz, such that there is a difference of the factor 2π.
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The decay rate Γe-1S to the 1S ground state can either happen via intermediate states
(decay cascade) or directly from the 6P state manifold to the 1S state manifold with an
emission of a single Lyman-ε photon at a wavelength of 94 nm. These Lyman-ε decays are
shown in Fig. 2.2. In our apparatus, these decays are responsible for ∼99% of the signal [71],
such that the corresponding decay rate is listed separately as Γdet.

Finally, Table 2.4 and Table 2.5 compares the recoil shift between hydrogen and deuterium.
Due to the two times larger mass of deuterium, the recoil shift is approximately a factor of
two smaller in deuterium. However, for precision spectroscopy of the 2S-nP transitions this
difference is of no advantage since the recoil shift is precisely known anyway, and the frequency
is precisely corrected by this value without increasing the uncertainty of the measurement.
Understanding the origin of the recoil shift brings us to the discussion of the resonance
condition for the interaction of light with the atom, which we consider next.

2.2.2 Resonance condition

Our goal is to measure the internal energy level difference predicted by the bound-state QED
as outlined in Section 2.1, here specifically between the 6P state and the 2S state. This
difference is quantified by the unperturbed transition frequency of the atom νA,0. However,
an incoming laser beam photon with a frequency νL,0 carries energy and momentum, such that
when the atom absorbs the photon, not only its internal electronic energy state is changed,
but also the external (kinetic) energy and momentum. Evaluating the relativistic energy and
momentum conservation in the case of one-photon transitions for an atom with mass mA,
velocity vector ~v in the laboratory frame (speed v ≡ |~v|), and the laser beam with wave
vector ~k in the laboratory frame, yields the resonance condition [132]:

νL,0 = νA,0

 √
1− v2/c2

1− ~k · ~v/(2πνL,0)
× 1

1− hνA,0

2mA c2

 = νA,0

( √
1− β2

1− β cosα
× 1

1− ε

)
, (2.25)

where in the second step we defined β = v/c, ε = hνA,0/(2mAc
2), and α as the angle between

the atomic beam and the laser beam (in the laboratory frame). The above equation can be
expanded as a series in β and ε, which gives:

νL,0 = νA,0

(
1 + β cosα+ β2(−1/2 + cos2 α) +O(β3)

)
×
(
1 + ε+ ε2 +O(ε3)

)
(2.26)

' νA,0 + νA,0 β cosα+ νA,0
β2

2

(
−1 + 2 cos2 α

)
+ νA,0 ε, (2.27)

where in the second step we kept all terms up to second order in β and first order in ε, but
neglected mixed terms with βε. This is justified by comparing the orders of magnitude of
β and ε to our accuracy goal of ∼10−12 νA,0: the typical velocity of atoms in our apparatus
is v∼ 200 m/s which corresponds to β∼ 10−6. For the 2S-6P transition frequency of νA,0 '
731 THz and the mass of the deuterium atom mA ' 3.3×10−27 kg we find ε∼ 10−9. Therefore,
terms up to O(β2) are still on the order of interest, while terms with O(ε2) or O(ε β) can
safely be neglected since they lead to shifts below 1 Hz.

The leading shift of νA,0 relative to νL,0 in Eq. (2.27) is the first-order Doppler shift ∆νD:

∆νD = νA,0 β cosα = νA,0
v cosα

c
= νA,0

v sin δα

c
= κ v, (2.28)



2.3 Imperfections important for 2S-nP transitions in deuterium 27

where we introduced δα = α−90◦ and the Doppler slope κ. Since the full collinear first-order
Doppler shift is of the order 10−6 νA,0, whereas we aim for a factor of 106 smaller uncertainty
goal, from all the effects, the first-order Doppler shift is most crucial in our apparatus. To
suppress the first-order Doppler shift in our experiment, we reduce the velocity of atoms using
a liquiud-helium cryostat to the typical velocity of v∼ 200 m/s. Furthermore, we align the an-
gle α as good as possible to α ' 90◦ and use two counter-propagating beams generated in the
active fiber-based retroreflector (AFR), which is treated in Chapter 4. Moreover, we always
measure the Doppler slope κ with the time-resolved detection technique (see Section 3.1.1),
which allows to measure the transition frequency for groups of atoms with different mean
velocities v.

The second term in Eq. (2.27) is the second-order Doppler shift ∆νSOD:

∆νSOD = νA,0 β
2

(
−1

2
+ cos2 α

)
= νA,0

β2

2
cos 2α ' − v2

2c2
νA,0, (2.29)

where we approximated for our case of α ' 90◦. For v∼ 200 m/s, the above equation yields a
shift of ∆νSOD ' −0.16 kHz, which needs to be taken into account in the uncertainty budget.

Finally, the last term in Eq. (2.27) is identified with the recoil shift:

∆νrec = νA,0 ε =
hν2

A,0

2mDc2
. (2.30)

The recoil shift is known with a much better accuracy than required. In our case, the recoil
shift is on the order of a MHz. As evident from the above equation, the fractional uncertainty
in ∆νrec corresponds to the quadrature sum of the fractional uncertainties in mD and νA,0.
Therefore, in order to determine the recoil shift to <1 Hz, we need to know mD and νA,0 only
with a fractional uncertainty of ∼10−6 (h and c are exact). The mass of the deuterium atom
mD is composed of the deuteron mass md, the electron mass me, and the binding energy.
Both md and me are known to 3 × 10−10 in kilograms, but with an order of mangitude
higher accuracy in atomic units [8]. Typically, if possible, atomic masses should always be
evaluated in atomic units through mass ratios, in order not to loose accuracy. However, for
the evaluation of the recoil shift here, even the masses in kilograms have an uncertainty, which
is low enough by several orders of magnitude. The binding energy of the deuterium atom in
the 2S excited state contributes 2 × 10−9 to the total mass, and can therefore be neglected
(note, however, that the constribution of the binding energy is larger than the uncertainty in
md +me).

2.3 Imperfections important for 2S-nP transitions in deuterium

2.3.1 Initial state population asymmetry

The 1S
F=1/2
1/2 ground state in deuterium has two mF = ±1/2 sub-levels. As shown in Fig. 2.2,

we prepare two initial states for probing the 2S-nP transitions, namely the 2S
F=1/2
1/2 ,mF =

±1/2 states. We define the population asymmetry parameter ι of these initial states i1 ≡
2S

F=1/2
1/2,mF=−1/2 and i2 ≡ 2S

F=1/2
1/2,mF=+1/2 with corresponding populations Ni1 and Ni2 as:

ι =
Ni2 −Ni1

Ni2 +Ni1
, (2.31)
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such that ι = ±1 corresponds to the maximal population asymmetry (all the population in
the mF = +1/2 or mF = −1/2 state), and ι = 0 corresponds to no population asymmetry.
As shown below in Section 2.4 and Section 2.5, the population asymmetry ι 6= 0 can lead in
combination with residual circular polarization or an imbalance of decay channel detection
to a systematic line shift. Furthermore, even for perfectly linear polarization, the population
asymmetry leads to a Zeeman shift, which we analyze in the following.

In the presence of a weak1 magnetic field B, the energy of the state with quantum numbers
l, J , F , mF is shifted by the Zeeman energy [127]:

∆EZ = mF gFµBB, (2.32)

where µB = e~/(2me) ' h × 1.4 MHz/G is the Bohr magneton, and the Landé gF factor is
determined from the gJ factor as:

gF '
F (F + 1) + J(J + 1)− I(I + 1)

2F (F + 1)
gJ , gJ '

3

2
+
S(S + 1)− l(l + 1)

2J(J + 1)
, (2.33)

where I = 1 is the nuclear spin number for deuterium, and S = 1/2 is the spin number of the
electron. The Zeeman splittings relevant for the 1S-2S and 2S-nP transitions in our case are
visualized in Fig. 2.3.

For l = 0, J = 1/2, F = 1/2 we find from the above equation gF = −2/3, such that the
mF = ±1/2 states of the 1S1/2 and 2S1/2 manifolds are separated by 2

3 µBB ' 2π×934 kHz/G.
However, as shown in Fig. 2.3(a), the 1S-2S transition is insensitive to the magnetic field since
both levels shift equally. Note that the two-photon transitions with circularly polarized light
(σ± transitions) are forbidden by angular momentum conservation, such that residual circular
polarization of the linearly polarized 1S-2S excitation light does not couple the different
mF = 1/2 and mF = −1/2 states.

Fig. 2.3(b) shows the Zeeman splittings for the 2S1/2-nP1/2 transition. The gF factors
are: gF = −2/9 for the nP1/2(F = 1/2) state and gF = +2/9 for the nP1/2(F = 3/2) state. If
no asymmetry between the mF = ±1/2 states is present (ι = 0), there is no total shift of the
resonance line, since the shifts for the mF = +1/2 and mF = −1/2 initial states compensate
each other. By weighting the shift of each corresponding hyperfine transition with the squared
dipole matrix elements including a population asymmetry ι between the mF = ±1/2 inital
states, we find the following shift:

∆νι,Z,2S-6P1/2
=

34

81

µBB

h
ι ' ι× 0.59 kHz/mG. (2.34)

For the 2S1/2-nP3/2 transition, the gF factors of the F = 1/2 and F = 3/2 state manifolds
are different in magnitude, as illustrated in Fig. 2.3(c). Similar to the above equation we find:

∆νι,Z,2S-6P3/2
=

361

405

µBB

h
ι ' ι× 1.25 kHz/mG. (2.35)

In the 2S-6P interaction region, the magnetic field is below 1 mG. Therefore, for our accuracy
goal, the Zeeman shift from the initial state asymmetry becomes significant only for large
asymmetry ι > 0.1. Such asymmetry is orders of magnitude above the expected value as
shown below.

1The weak-field limit is valid for µBB � ∆HFS, where ∆HFS is the hyperfine splitting: B � 70 mG for the
6P3/2 state, B � 0.4G for 6P1/2 state, B � 30G for 2S state and B � 240G for 1S state. For the 1S-2S
transition we thus can use the weak-field limit even in the presence of the earth’s magnetic field. For the 2S-6P
transition, in our apparatus the magnetic field is compensated and shielded to below 1 mG (see Section 3.4)
such that the weak-field limit is also valid.
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Figure 2.3: Zeeman shifts of the corresponding levels for the (a) 1S1/2-2S1/2, (b) 2S1/2-nP1/2 and
(c) 2S1/2-nP3/2 transitions driven with linearly polarized π light according to the scheme shown in
Fig. 2.2 (the F = 5/2 state manifold of the nP3/2 levels is not shown in (c) because this state manifold
is not addressed). In the weak magnetic field B, the levels are shifted proportional to µBB according
to Eq. (2.32), where µB is the Bohr magneton. The 1S1/2-2S1/2 transition is unaffected, since both
levels shift equally. For the 2S1/2-6P1/2 and 2S1/2-6P3/2 transitions there is a total Zeeman shift if
there is a population asymmetry ι 6= 0 in the initial mF = ±1/2 states, see Eq. (2.34) and Eq. (2.35).

The population asymmetry could arise from some spin-polarizing effects in the nozzle
during the formation of the atomic beam. However, our nozzle is symmetric, such that only
the magnetic field breaks the symmetry by introducing an energy difference of ∆Eι = 2

3µBB in
the mF = ±1/2 initial states. Assuming a Boltzmann distribution, we can make an estimate
of the population asymmetry as following:

Ni1

Ni2
= exp

(
− ∆Eι
kBTN

)
' 1− 2µBB

3kBTN
, (2.36)

where kB is the Boltzmann constant and TN is the nozzle temperature. Combining the above
equation with Eq. (2.31), we find:

ι ' µBB

3kBTN
∼ 3× 10−7, (2.37)

where for the numerical value we used TN∼ 7 K and B∼ 0.1 G (magnetic field at the nozzle).
In the above estimation we assume that the atoms are thermalized in the nozzle. Though we
observe some deviation from the thermalized velocity distribution of atoms (see Section 3.6.2),
to the leading order the assumption of thermalized atoms is justified.

In the future, one may determine ι experimentally, which is discussed in Appendix A.4.2.
Appendix A.2 discusses possible ways to generate an increased initial state asymmetry on
purpose for future studies of systematic uncertainty effects associated with ι.

2.3.2 Circularly polarized light

The fraction of circularly polarized light S3/S0 is directly obtained from the Stokes parameters
(see Appendix A.1). Here, to be more concise in some equations, we will also denote the
circularly polarized fraction as s:

s ≡ S3/S0 =
IRHC − ILHC

IRHC + ILHC
, (2.38)
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where S0 is the total intensity, and S3 the circularly polarized intensity defined as the dif-
ference between the intensity of right- and left-handed circularly polarized light, IRHC and
ILHC. Note that s is the only one parameter needed to describe the polarization state of a
fully polarized light if one does not care about the linear polarization rotation angle.

We investigated the sources of polarization imperfections and developed a polarization
monitor in the apparatus, see Section 4.6. As shown in Fig. 4.30, s is always below 10%
in our setup, with typical values around s∼ 5%. However, it is also possible to extract
spectroscopy line scans with lower circularly polarized fraction.

Similar to the initial state asymmetry, a residual circular polarization introduces a Zeeman
shift. To compute the Zeeman shift of imperfect π linearly polarized light, it is helpful to
rotate the quantization basis (as shown below in Fig. 2.8), where linearly polarized light is a
superposition of σ− and σ+ light. The excitation rate of driving the σ− and σ+ transitions is
proportional to the intensity of left-handed (IRHC) and right-handed (ILHC) polarized light,
whose difference is directly linked to s. Weighting the corresponding hyperfine transitions
with s and the squared dipole matrix elements (see Table A.1), the following Zeeman shifts
of the 2S-6P1/2 and 2S-6P3/2 transitions are obtained:

∆νs,Z,2S-6P1/2
=

28

81

µBB

h
s ' s× 0.48 kHz/mG, (2.39)

∆νs,Z,2S-6P3/2
=

181

162

µBB

h
s ' s× 1.56 kHz/mG. (2.40)

For s< 0.1 we obtain Zeeman shifts from residual circular polarization of below 50 Hz (2S-
6P1/2 transition) and below 160 Hz (2S-6P3/2 transition).

The total Zeeman shift is in leading order the sum of the Zeeman shift from the popula-
tion asymmetry (Eq. (2.34) and Eq. (2.35)) and the Zeeman shift from the residual circular
polarization fraction above:

∆νZ,2S-6P1/2
= ∆νι,Z,2S-6P1/2

+ ∆νs,Z,2S-6P1/2
' (ι× 0.59 kHz + s× 0.48 kHz)/mG, (2.41)

∆νZ,2S-6P3/2
= ∆νι,Z,2S-6P3/2

+ ∆νs,Z,2S-6P3/2
' (ι× 1.25 kHz + s× 0.56 kHz)/mG. (2.42)

With the estimate from Eq. (2.37), we find ι � s, such that the Zeeman shift contribution
from non-zero ι can be neglected compared to the contribution from non-zero s.

Unlike in hydrogen, imperfect linear polarization does not only lead to a Zeeman shift,
but may also shift the measured line center as we discuss in Section 2.4. However, this effect
is suppressed by ι.

2.3.3 Detection imbalance of σ± and π decays

In comparison to hydrogen, much more decay channels give rise to the signal of the 2S-nP
transition measurement in deuterium. The contribution of different σ+, σ−, and π decay
channels is only symmetric if the initial states mF = ±1/2 are equally populated. If not, a
possible polarization sensitivity of the detector could lead to a systematic shift. Therefore, a
possible detection imbalance of the decay channels is discussed.

To understand how the different decay channels are related to the possible polarization
sensitivity of the detector, consider an atom in an excited state which can decay to three
different final states via σ+, σ− and π decay channels, see left of Fig. 2.4. The projected
value of the total atomic angular momentum mF onto the quantization axis ẑ does not
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Figure 2.4: Angular distribution and polarization of emitted fluorescence light from an atom. On
the left, the considered level scheme is drawn: the atom is in an excited state with projected angular
momentum mF and decays via σ+, σ− and π decay to three possible final states with mF unchanged,
or changed by ±1. The specific value of mF does not matter, as an example we choose mF = 1/2
and illustrate the ~/2 unit of projected angular momentum onto the quantization axis ẑ with a single
curved arrow. Choosing spherical coordinates with azimuthal angle ϕ and inclination θ for the emitted
light propagation vector k̂, we can restrict the emission pattern to the x̂ẑ-plane due to the symmetry
of the problem. The intensity of emitted light is proportional to 1 + cos2 θ for σ± decays (red) and to
sin2 θ for the π decay (blue). The polarization of σ± light is fully right- or left-circular at the poles
(S3/S0 = ±1) and fully horizontally polarized for θ = π/2 (S1/S0 = 1). Light from the π decay is
fully vertically polarized (S1/S0 = −1).

matter for this discussion, only the difference ∆mF = {−1, 0,+1} from the excited to the
three final states is relevant1. To be specific for the case of deuterium, consider that the atom
is in the excited state with mF = 1/2. With ẑ as the quantization axis and the atom being
at the origin of our coordinate system, due to the symmetry we can restrict ourselves to the
x̂ẑ-plane as shown on the right of Fig. 2.4, i.e. in spherical coordinates we set the azimuthal
angle ϕ = 0. Denoting k̂ as the direction of fluorescence light propagation, the inclination
angle θ is the angle between ẑ and k̂. Note that in our experimental setup (see Fig. 3.1) the
ẑ axis from Fig. 2.4 does not necessarily correspond to the vertical axis of the fluorescence
detector: the orientation of the x̂ẑ-plane from Fig. 2.4 relative to the fluorescence detector
depends on the rotation angle of the linear polarization of excitation light.

The circular polarization fractions (S3/S0)π and (S3/S0)σ± of fluorescence light from the
π and σ± decays, respectively, can be derived (see Appendix A.3) to be the following:

(S3/S0)π = 0, (S3/S0)σ± = ± 2 cos θ

1 + cos2 θ
. (2.43)

This result is illustrated on the right of Fig. 2.4: σ± decays emit left- or right-handed circular

1In fact, it may seem counter-intuitive why ∆mF (and not ∆ml) is responsible for the dipole emission
pattern: note that the nuclear spin and the electronic spin do not have a dipole moment. However, the total
angular momentum eigenstates obtain a dipole moment due to the coupling to the orbital angular momentum.
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polarized light (S3/S0 = ±1) in the directions parallel to the quantization axis (θ = 0), and
linear polarization orthogonal to the quantization axis (θ = 90◦). As expected from angular
momentum conservation, the π decay does not emit any light for θ = 0 and all the light is
linearly polarized. For θ = 90◦, linearly polarized light emitted from the π and σ± decays is
orthogonal to each other.

The practical property of Stokes parameters is that they can simply be added1 for su-
perimposed light with different polarizations. Therefore, if all the decays contribute equally,
all the relative Stokes parameters add up to zero for all values of θ. The total intensity is
independent of θ, such that the fluorescence light is completely unpolarized everywhere and
is emitted isotropically. The same is true if the sum of squared matrix elements of σ+ and
σ− decays is twice as large as the value from the π decay. For deuterium, this is the case
for the Lyman decays from the nP1/2 excited states but not from the nP3/2 excited states.
Note also that in particular cases, the coherences between the emitted fluorescence photons
should be taken into account. For example, if the π fluorescence is described in the different
quantization basis, it corresponds to the coherent superposition of σ+ and σ− light, which,
due to interference, leads to the same emission pattern as the π fluorescence. In the above
consideration, we assume no coherence between the fluorescence light from the different decay
channels.

One may ask whether one could ignore the polarization sensitivity of the detector, if the
emitted fluorescent light is fully unpolarized everywhere. However, the possible systematic
bias comes from the different detection efficiencies for individual decays. Though in total
the signal from all the decay channels results in unpolarized light, the contribution from
each individual decay channel consists of polarized light. One can imagine the polarization-
sensitive detector as a partial polarizer: for example, a vertical linear polarizer placed at
θ = 90◦ transmits more signal from the π decays than from σ± decays. If their signal
lineshape is different, this could lead to a systematic shift.

In general, the detector could be polarization-sensitive in two ways: it could respond
asymmetrically to the right- vs left-handed circular polarization and/or to horizontal vs ver-
tical linear polarizations. The first case can be described in the worst case scenario of the
detection imbalance of σ+ and σ− decays, whereas the detection imbalance of σ± vs π decays
represents the upper limit for the second case. Defining the detection quantum efficiencies of
light from σ+, σ−, and π decays as ξ+, ξ−, and ξπ, the dimensionless sensitivities ξ◦ and ξ|,
can be defined as:

ξ◦ =
ξ+ − ξ−

ξ+ + ξ−
, ξ| =

ξ± − ξπ

ξ± + ξπ
, (2.44)

where in the latter case ξ± = ξ+ = ξ−.

Note that since the polarization of light from σ± decays varies, the above definitions repre-
sent the upper limit of the polarization-sensitive detector. If more vertically than horizontally
polarized light is detected, then the asymmetry in π vs σ± detection would be maximal for
θ = π/2, smaller for other values of θ and vanish at the poles. If we detect more right-handed
circular polarized light than left-handed, we would see more signal from σ+ decay at the
north pole (θ = 0), no signal difference at the equator where only linear polarized light can
be emitted (θ = π/2), and less signal from σ+ at the south pole (θ = π) so that the opposite
contribution from the poles would add to zero leading to an unbiased result on average. In

1Relative Stokes parameters must be weighted with corresponding intensities and normalized afterwards
[133].
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general, the polarization sensitivity of the detector can be complicated and depend on the
angle θ.

In our apparatus, the detector is built of aluminum, which quickly forms an oxidized layer
[134, 135], such that the active area of detector is composed of aluminum oxide. The signal
mainly originates from the photoemission of Lyman-ε fluorescence photons with a wavelength
of 93.8 nm, which corresponds the photon energy of 13.2 eV. In the field of angle-resolved
photoemission spectroscopy, it is well known that the photoelectric effect can strongly de-
pend on the polarization of incident light producing the photoelectrons [136, 137]. On the
first glance, one may think that the photoelectric effect depends only on the relative amount
of s- and p-polarization of the incident light1, but not on the handedness of light. However,
studies have shown that the photocurrent can also depend on the sign of the circularly po-
larized fraction of light, which is referred to as the circular dichroism asymmetry [136, 137].
Unfortunately, no data on the presence or absence of circular dichroism asymmetry from
photoemission on oxidized aluminum seems to be available. In some materials such an asym-
metry has been reported to be as large as 24% [138], such that in our case one could make the
most conservative assumption of ξ◦ < 0.3. However, as shown in Section 2.5, together with
the estimated asymmetry on the population of initial states, the line shift due to unresolved
quantum interference is negligible even for the maximum detection imbalance of ξ◦ = 1.

As discussed in Section 2.5, unresolved quantum interference vanishes for π decays, such
that ξ| does not need to be considered for possible line shifts in our case. Nevertheless, for
possible future considerations, here we briefly discuss a possible estimation of the upper limit
on ξ|, which is related to the difference in the photoemission between s- and p-polarized
light. There are studies on the polarisation sensitivity of the photoemission between s- and
p-polarized X-rays on oxidized aluminum with energies 65−150 eV [139, 140]. These studies
show a polarization-sensitive modulation M of the photocurrent of up to |M | ∼ 25%. The
results of [140] show that this modulation can be described by the differences in the s- and
p-state Fresnel reflectivities Rs and Rp, such that M = (Rp − Rs)/(2 − Rs − Rp). In our
case, we may assume a refractive index of n∼ 1.6 + i× 1.2 based on the value for crystalline
oxidized aluminum (sapphire) in [141] (similar to the value from [142]). M is then calculated
depending on the incidence angle from Rp and Rs according to the Fresnel equations with
the given complex refractive index. In our case, the detector is composed of two aluminum
cylinders centered around the interaction region, each with a length of l∼ 85 mm and a radius
of r = 28 mm (see Section 3.5). The fluorescence photons originate in the center of the
detector, such that they hit the top or bottom cylinder walls with a maximum incidence
angle of 90◦− arctan(r/l)∼ 70◦ w.r.t. the normal of the interface. This incidence angle yields
a modulation |M | ∼ 30%, with smaller values for smaller incidence angles (M is zero for zero
incidence angle where Rs is always equal to Rp). This value can be used as an upper limit on
ξ| (interestingly, this value coincides with the upper limit on ξ◦ from the discussion above).
In reality, ξ| is expected to be smaller since most fluorescence photons have smaller incidence
angles, and the polarization depends on the incidence angle as shown in Appendix A.3, which
can be used together with the detector geometry to obtain a lower limit on ξ|. In the future,
it may be possible to explore the polarization-sensitivity of our detector by generating a large
initial state population asymmetry, see Appendix A.2.

1As shown in Appendix A.3.1, the amount of s- and p-polarization is exactly the same for σ+ and σ−

fluorescence (see Eq. (A.18)), whereas the amount of s- and p-polarization is different between σ± and π
fluorescence (compare Eq. (A.17) with Eq. (A.18)).
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2.4 Simultaneous excitation of unresolved hyperfine levels

Here, we consider the simultaneous excitation of the unresolved F = 3/2 and F = 1/2
hyperfine levels for the 2S1/2-nP transitions. We neglect in this section the effects from the
decay to final states, which may lead to quantum interference as discussed in Section 2.5.

2.4.1 Sum of two unresolved resonances

Consider a signal I given by the sum of two Lorentzian functions (Lorentzian doublet) with
center frequencies separated by ∆HFS, identical linewidths Γ � ∆HFS, but different ampli-
tudes D2

1 and D2
2:

I = L(ν0, D1,Γ) + L(ν0 + ∆HFS, D2,Γ), (2.45)

where the Lorentzian function L is defined as:

L(ν0, D,Γ) =
D2

(δ − ν0)2 + (Γ/2)2
. (2.46)

Fig. 2.5 illustrates the corresponding level scheme on the top. On the bottom, the total signal
is plotted in red (L1 +L2) with individual contributions shown in blue (L1 = L(ν0, dD1)) and
orange (L2 = L(ν0 + ∆HFS, D2)). The parameters were chosen to be similar to the case of

the deuterium 2S
F=1/2
1/2 -nP1/2 transition with D2

1 = 8D2
2 and ∆HFS = 0.13Γ.

In the following, we first discuss why using Eq. (2.45) (Lorentzian doublet fit function)
for fitting the typical data with noise is only possible if both the dipole ratio D2

2/D
2
1 and the

hyperfine splitting ∆HFS are known. For 2S-nP transitions the dipole ratio D2
2/D

2
1 is subject

to possible deviations. Therefore, we then discuss the single Lorentzian fit function for the
description of data, which can be used even if the dipole ratio D2

2/D
2
1 cannot be assumed to

be exactly known.
For our experimental data we typically use the Voigt fit function (see Eq. (2.73)), which

includes the Doppler broadening of the resonance. For the sake of clarity, here we keep the
discussion to the case of the Lorentzian fit functions only. The conclusions made here are
also valid for the Voigt (doublet) fit functions, though the fit deviations from Fig. 2.7 then
depend on the broadening and need to be evaluated separately (see Fig. 2.14).

2.4.1.1 Lorentzian doublet fit function

Since the hyperfine splitting ∆HFS is precisely known, we can consider using the Lorentzian
doublet fit function with ∆HFS as a fixed parameter (or a fit function which accounts for
both resolved quantum interference and unresolved quantum interference with known ∆HFS,
e.g. Eq. 7 and Eq. 12 in [143]). However, for a typical signal with noise as in our experiment,
such a fit is not reliable unless the ratio D2

2/D
2
1 is also given as a fixed parameter. For

D2
1/D

2
2 � 1 or D2

1/D
2
2 � 1, the Lorentzian doublet is equivalent to a single Lorentzian. If

the ratio D2
2/D

2
1 is not fixed, the small function differences between a single Lorentzian and

a Lorentzian doublet can vanish in the noise, such that the fit cannot reliably distinguish
between a single Lorentzian and a sum of two Lorentzians. This is demonstrated in Fig. 2.6,
where a simulation is performed with the signal according to Eq. (2.45) including shot noise.
In Fig. 2.6(a), the simulation is performed for 107 peak counts and in Fig. 2.6(b) for 104 peak
counts, which represents the typical count rate in our experiment. The upper plots show an
example of a simulated signal for a single line scan along with Lorentzian (blue solid curve)
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Figure 2.5: Illustration of the signal composed from two unresolved Lorentzian resonances with ampli-
tudes D2

1 and D2
2 separated by ∆HFS and with identical linewidths Γ� ∆HFS according to Eq. (2.45).

On the top, the level scheme is shown. The bottom plots show the individual Lorentzian signal con-
tributions (blue and orange) as well as the total signal from the sum of the two Lorentzians (red)
which are plotted against the laser detuning δ = νL− ν0, where νL is the laser frequency and ν0 is the
center frequency of the first resonance (blue dashed vertical line). The center frequency of the second
resonance is ν0 + ∆HFS (orange dashed vertical line). The total signal (sum of two Lorentzians) is well
approximated by a single Lorentzian with a center frequency at νc = ν0 + D2

2∆HFS/(D
2
1 + D2

2) (red
dashed vertical lines). The fit residuals from a Lorentzian fit to the total signal on the bottom plot
reveal the deviations from this approximation.

and Lorentzian doublet (red dashed curve) fits. Below the signal, the average fit residuals for
1000 simulated line scans are shown for the Lorentzian (blue) and Lorentzian doublet (red)
fit functions.

When fitting the total signal with a single Lorentzian function, the residuals are on the
10−3 level of the peak amplitude. The relative noise is given by 1/

√
N where N is the number

of counts, and hence is above the 10−3 level for N < 106. It is therefore expected that if
the signal drops well below this level, the Lorentzian doublet fit function does not produce
reliable results: the sum of two Lorentzians then equally represents a single Lorentzian such
that the fitted amplitude ratio is either D2

1/D
2
2 � 1 or D2

1/D
2
2 � 1. The averaged residuals

hence show a false structure. As a consequence, the Lorentzian doublet fit cannot reliably
determine the center frequency, which is demonstrated in the upper histograms of Fig. 2.6(b),
where the number of occurences for the difference νc,fit − νc is shown for 1000 simulated line
scans. The difference νc,fit − νc is distributed in the range between −1/9 ∆HFS ' −0.014Γ
and 8/9 ∆HFS ' 0.116Γ, i.e. the fit finds the center frequency anywhere between the first
resonance and the second resonance. The bottom histograms show the results for the fitted
ratio D2

1/D
2
2 for the Lorentzian doublet fit. Whereas for 107 peak counts (left) the fit reliably
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Figure 2.6: Simulated signal from two unresolved Lorentzian resonances as shown in Fig. 2.5 with
shot noise. As in Fig. 2.5, the signal is modelled by Eq. (2.45) with D2

1 = 8D2
2 and ∆HFS = 0.13Γ.

Two different functions are used to fit the simulated signal: a single Lorentzian (shown in blue, 3 fit
parameters: amplitude D, center frequency νc,fit, linewidth Γ), and a Lorentzian doublet with fixed
separation ∆HFS and same linewidth (shown in red, 4 fit parameters: dipole strengths D1, D2, ν0,fit,
Γ). In (a) the simulation is performed for 107 peak counts, in (b) for 104 peak counts. The upper
plot shows an example of one simulated resonance line. Below, the averaged fit residuals for 1000
simulated resonance lines are plotted. The upper histograms show the frequency difference νc,fit − νc,
where νc,fit is the fitted resonance center frequency (for the Lorentzian doublet νc,fit = ν0,fit + νc) and
νc is defined center frequency from Eq. (2.48). The legend shows the mean values of this frequency
difference along with the standard error. Using the sum of Lorentzians as a fit function can reliably
reproduce the correct line center frequency for signals with 107 peak counts, but it fails for 104 peak
counts which is also observed in the averaged fit residuals and in the fitted dipole ratio shown in the
bottom histogram.

finds the correct ratio, for 104 peak counts (right), the fitted ratio is mostly D2
1/D

2
2 � 1.

It shall be remarked, that the histograms in (b) clearly reveal a non-Gaussian distribution,
which also demonstrates the unreliability of the fit. Therefore, for experimental data one
would notice the problem with the fit by looking at the distribution of the fit results.
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If both the ratio D2
1/D

2
2 and the hyperfine splitting ∆HFS are known, then the Lorentzian

doublet fit function (or similar functions representing unresolved resonances) with fixed pa-
rameters D2

1/D
2
2 and ∆HFS can be used to fit the data. The 2S-8D transitions in hydrogen

are such an example [16]1. In contrast to the 2S-nP transitions in deuterium, there are no
possible deviations (e.g. due to circular polarization) from the amplitude ratio, such that it
can be fixed to the known value for the fit to the data. For 2S-nP transitions in deuterium,
the symmetry may be broken due to the possible population asymmetry between mF = −1/2
and mF = +1/2 initial states such that the observed line center may depend on polarization
as discussed in the next section. Therefore, in the following we discuss the single resonance fit.
However, as discussed below, the polarization imperfections and the population asymmetry
are expected to be small in our case. The results with the single resonance fit (which does
not assume any fixed amplitude ratio) function can then be compared to the results with the
doublet fit function with a fixed amplitude ratio. If the population asymmetry combined with
the polarization imperfections are small, the results should agree.

2.4.1.2 Single Lorentzian fit function

For ∆� Γ, the sum of two Lorentzians can be approximated by a single Lorentzian:

L(ν0, D1,Γ) + L(ν0 + ∆HFS, D2,Γ) ≈ L
(
νc, D

2
1 +D2

2,Γ
)
. (2.47)

The center frequency of this single Lorentzian is given by

νc = ν0 +
D2

2

D2
1 +D2

2

∆HFS, (2.48)

which we define as the line center of the resonance line composed of two unresolved resonance
lines.

Note that the center frequency from Eq. (2.48) does not correspond to the hyperfine
centroid as defined in Eq. (2.1). The hyperfine centroid of the nP1/2 levels is 2∆HFS/3 above

the nP
F=1/2
1/2 states (or ∆HFS/3 below the nP

F=3/2
1/2 states), since there are four nP

F=3/2
1/2

hyperfine sublevels and two nP
F=1/2
1/2 hyperfine sublevels (see Fig. 2.2). The hyperfine centroid

definition simply counts the number of hyperfine sublevels, which does not take into account
any excitation scheme. For the excitation of the unresolved hyperfine levels, the observed
center frequency depends on the dipole moments of the corresponding transitions (D1 and
D2 in the above equation).

Furthermore, it shall be remarked, that when we discuss “shifts” of the center frequency
from Eq. (2.48) (e.g. “shifts” due to imperfect polarization in Section 2.4.2 or unresolved
quantum interference as in Section 2.5), these “shifts” are linked to the definition of the center
frequency, and thus may be called “apparent” shifts. Note that whenever the lineshape is
asymmetric, as in our case, the center frequency is a matter of definition, and thus also the
associated shifts of the center frequency. Different positions at the line can shift differently, as
for example in the case of resolved quantum interference [144, 143]. Therefore, it is important
to consistently use the same definition of the “center frequency” when discussing the “shifts” of

1In [16], following transitions are studied: the 2SF=1
1/2 -8DF=2,3

5/2 and 2SF=1
1/2 -8DF=1,2

3/2 transitions with a natural

linewidth of Γ ' 572 kHz and hyperfine separation of ∆HFS ' 143 kHz (8D5/2) or ∆HFS ' 222 kHz (8D3/2),
which is a fraction of 0.25 or 0.39 of the natural linewidth.
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Figure 2.7: Difference νc,fit − νc in the line center frequency of the signal modelled by the unresolved
Lorentzian doublet according to Eq. (2.45), where νc,fit is the line center of the single Lorentzian fit to
the signal and νc is the line center defined in Eq. (2.48). On the left, the difference νc,fit−νc is shown in
dependence on the separation ∆HFS for D2

1 = 8D2
2 (in blue, corresponding to the deuterium 2S-nP1/2

transition) and D2
1 = 1.25D2

2 (in orange, corresponding to the deuterium 2S-nP3/2 transition). On the
right, the difference νc,fit − νc is shown in dependence on the ratio D2

2/D
2
1 for ∆HFS = 0.13Γ (in blue,

corresponding to the deuterium 2S-nP1/2 transition) and ∆HFS = 0.026Γ (in orange, corresponding
to the deuterium 2S-nP3/2 transition). In both plots, the values for ∆HFS or D2

2/D
2
1 corresponding to

the 2S-nP1/2 or 2S-nP1/2 transition are marked with blue or orange dashed vertical lines, respectively.

the center frequency and when applying these examinations to experimental data. If the exact
(asymmetric) lineshape would be used, some “shifts” may in fact not be present at all since
they are “absorbed” into the lineshape function. However, as discussed above, in our case the
(symmetric) lineshape is advantageous for fitting the data. Therefore, we carefully examine
all possible “shifts” associated with such a function, associated with a specifix definition of
the center frequency as in Eq. (2.48).

In the example of Fig. 2.5 with D2
1 = 8D2

2 and ∆HFS = 0.13Γ, we find νc = ν0+8∆HFS/9 '
ν0 + 0.15556 Γ, which is shown in Fig. 2.5 as a red dashed vertical line. The center frequency
of the first resonance (ν0) is shown as a blue dashed vertical line, and the center frequency of
the second resonance (ν0 + ∆HFS) is shown as a orange dashed vertical line. The maximum
signal is at νmax ' ν0 + 0.11685Γ, and thus deviates from νc by 12.9× 10−4 Γ.

In Fig. 2.5, the total signal (red) is fitted with a single Lorentzian function (black dashed
curve). On the bottom, the fit residuals demonstrate the deviations from the total signal
fitted with a single Lorentzian. The fitted center frequency of the single Lorentzian is νc,fit '
ν0+0.11589Γ, and thus deviates by 3.3×10−4 Γ from νc. Fig. 2.7 shows the difference νc,fit−νc
in dependence on the line separation ∆HFS (left) and the dipole ratio D2

2/D
2
1 (right), with

the cases of D2
1 = 8D2

2 and ∆HFS = 0.13Γ (corresponding to the 2S-nP1/2 transition) or
D2

1 = 1.25D2
2 and ∆HFS = 0.026Γ (corresponding to the 2S-nP3/2 transition) marked by

dotted vertical lines in blue or in orange, respectively. Since the hyperfine splitting for the
2S-nP3/2 transition is smaller and the dipole ratio close to one, the difference νc,fit − νc is
smaller.

The deviations of the fitted center frequency νc,fit to νc can be simulated and taken into
account. Though these simulations need to include some assumption on the dipole ratio
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D2
2/D

2
1, the calculated deviation does not strongly depend on the exact number as shown in

Fig. 2.7. In our case, the deviations are included in the ‘Big Model’ simulations described
in Section 2.5.3 and Section 3.3.2, which use the same fit function and the sampling as in
the experiment. Note that since the fit function does not perfectly describe the signal shape,
the difference νc,fit − νc may depend on the sampling of the resonance. For the densely
spaced equidistant sampling which is used here1, the dependence on the sampling is on the
level of ∼ 10−5 Γ and thus negligible. For experimental data with less sampling points, this
dependence can be larger.

2.4.2 Line center shift due to imperfect polarization combined with asym-
metry of initial states

Comparing the simplified scheme in Fig. 2.5 to the detailed level structure of 2S
F=1/2
1/2 -nP

transitions, we find that both resonances (associated with D1 and D2) are composed of two
resonances each from the two inital states mF = ±1/2 of the 2S states (i1 and i2), which is
shown on the left of Fig. 2.8. We define the hyperfine center frequency (orange in Fig. 2.8)
as in Eq. (2.48):

νc = ν0 + η∆HFS, (2.49)

where ν0 is the resonance frequency of the 2S
F=1/2
1/2 -nP

F=1/2
1/2 transition, and η is the fraction

of the hyperfine splitting ∆HFS, by which the 2S
F=1/2
1/2 -nP

F=3/2
1/2 pulls the total resonance line

center. If no imperfections are present, η is given by η = D2
2/(D

2
1 + D2

2), where D1 and
D2 are determined by dipole matrix elements of the corresponding transitions. If the initial
states are being populated unequally (non-zero ι introduced in Section 2.3.1), there is no
line shift unless the energy of the mF = ±1/2 states is unequal (Zeeman shift discussed in
Section 2.3.1). However, if in addition to non-zero ι there is a residual circular polarized
fraction of the excitation light (non-zero s), there is a line shift, which we examine in the
following.

Consider first the excitation of nP levels by perfect linear polarization in the basis where
this light is orthogonal to the quantization axis driving the transitions with no change of
projected angular momentum, i.e. ∆mF = 0. This corresponds to π excitation light which

is represented in the left of Fig. 2.8 driving the 2S
F=1/2
1/2 → nPF=1/2 (i1 → e1, i2 → e3) and

2S
F=1/2
1/2 → nPF=3/2 (i1 → e2, i2 → e4) transitions. Rotating the quantization basis by 90

degrees results in the right level scheme of Fig. 2.8, where the linear polarization is represented
by the coherent superposition of σ+ and σ− light. This basis is helpful for the examination of
polarization imperfections: the strengths of driving the σ− and σ+ transitions is proportional
to the intensity of left-handed (IRHC) and right-handed (ILHC) polarized light. The residual
circular polarized fraction s is proportional to the difference of the right- and left-handed
polarized light. The effect of driving the corresponding transitions with a slight imbalance
due to the difference IRHC − ILHC is then derived in Appendix A.4. This calculation yields
for the hyperfine center fractions η1/2 and η3/2 of the 2S-nP1/2 and the 2S-nP3/2 transitions,
respectively:

η1/2 =
8 + 4 s ι

9 + 3 s ι
' 8

9
+

4

27
s ι, η3/2 =

5 + 2.5 s ι

9− 1.5 s ι
' 5

9
+

10

27
s ι. (2.50)

1For simulations of Fig. 2.5, the line was equidistantly sampled between ±2.5Γ with a frequency spacing of
0.1Γ.
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Figure 2.8: Level scheme for driving the 2S
F=1/2
1/2 -nP transitions (valid for both nP1/2 and nP3/2 levels)

with linearly polarized light in two different quantization bases (the energy differences between the
levels are not to scale). On the left, the quantization basis is chosen such that linearly polarized light
drives the π transitions with ∆mF = 0. On the right, the quantization basis is rotated by 90◦, such
that linearly polarized light equally drives the σ− and σ+ transitions. This basis is helpful to examine
the line shift due to the residual circular polarization, which causes a small imbalance between driving
the σ− and σ+ transitions. The hyperfine splitting of nP levels is denoted by ∆HFS and the resonance
line center frequency νc = ν0 + η∆HFS of the total resonance line is defined as in Eq. (2.48), where ν0

is the resonance frequency of the 2S
F=1/2
1/2 -nP

F=1/2
1/2 transition, and η is the fraction of the hyperfine

splitting by which the 2S
F=1/2
1/2 -nP

F=3/2
1/2 transition increases the total resonance line center.

As expected from symmetry, the hyperfine center does not shift if either the mF = ±1/2
initial states are populated equally (ι = 0) or the polarization is perfectly linear (s = 0). The
hyperfine center is shifted only if both imperfections are present. This result is exemplarily
illustrated in Fig. 2.9 for the 2S-nP1/2 transition. In Fig. 2.9(a), the observed hyperfine center
is plotted as a function of the circular polarization fraction s = S3/S0 for maximal possible
asymmetry, i.e. the initial state mF = −1/2 (ι = −1, solid curve) or mF = 1/2 (ι = 1,
dashed curve). For ι = −1 and s = −1 as well as for ι = +1 and s = +1, only the upper
(F = 3/2) hyperfine component is excited (η = 1). For s = 0 (perfect linear polarization),
the hyperfine center fraction is η1/2 = 8/9. This is the same hyperfine center as for equal
initial state population ι = 0 for all possible polarizations, see Fig. 2.9(b). In Fig. 2.9(c), the
initial states are populated with an asymmetry ι = 1/3 and the hyperfine center varies by
∼ 0.1 ∆HFS between fully right- and left-handed circular polarization.

From Eq. (2.50), the line center shifts ∆νιs,1/2 (2S-nP1/2 transition) and ∆νιs,3/2 (2S-
nP3/2 transition) from the imperfect polarization combined with the population asymmetry
are:

∆νιs,1/2 ' 0.019 ιsΓnP ' ιs× 75 kHz (2.51)

∆νιs,3/2 ' 0.010 ιsΓnP ' ιs× 37 kHz, (2.52)

where the numerical values are given for the 2S-6P transitions (see Table 2.4 and Table 2.5
for values of Γ6P, ∆HFS1/2

, and ∆HFS3/2
). The line shift is around two times smaller for the

2S-nP3/2 transition compared to the 2S-nP1/2 transition. For the 2S-nP1/2 transition, the line
shift is smaller than 10−4 Γ6P ∼ 0.4 kHz, if the product of initial state population asymmetry
and circular polarization fraction is smaller than ιs > 0.005. As discussed in Section 4.6, the
residual circular polarization fraction s is accurately monitored in our setup and is typically
s∼ 5%, such that the initial state population asymmetry has to be ι > 10% in order to satisfy
the above condition. As discussed in Eq. (2.37), ι is expected to be many orders of magnitude
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Figure 2.9: Illustrating the result of Eq. (2.50) for the hyperfine center fraction η1/2 of the 2S-nP1/2

transitions in deuterium. The hyperfine center in units of the hyperfine splitting ∆HFS (fraction η1/2)
is plotted in dependence on the circular polarization fraction s ≡ S3/S0, where the fully left-handed
circular polarization (s = −1) driving σ− transitions is shown in red, and fully right-handed (s = +1,
σ+ excitation) in blue. The upper level schemes illustrate the driven transitions. In (a), the case of
maximal initial state population asymmetry is shown: solid curve represents the mF= − 1/2 initial
state (ι = −1) and dashed curve the mF= + 1/2 initial state (ι = 1). In (b), both states are equally
populated (ι = 0), and the hyperfine center is independent of circular polarization s. In (c), two times
more atoms are in the mF= + 1/2 initial state than in the mF=− 1/2 state (ι = 1/3). This results in
a hyperfine center shift of around 0.1 ∆HFS between fully right- and left-handed circular polarization.

smaller (ι < 10−6), leading to negligible line shifts below 1 Hz according to Eq. (2.51).

2.5 Quantum interference between unresolved transitions

In this section, we include the decay to the final state, which has been neglected in the pre-
vious section. It is well known that in quantum mechanics, different paths from the same
initial state to the same final state interfere. For the spectrscopy of the 2S-nP transitions in
hydrogen and deuterium, this effect is present when considering the excitation from the same
inital state accompanied by the decay to the same final state over different excited states
originating from the fine structure and hyperfine structure of the nP state manifold. The
fine structure leads to the resolved quantum interference, which is the same for hydrogen and
deuterium. Here, the focus lies on the effect of quantum interference between the unresolved
hyperfine transitions. In other atomic systems, quantum interference between partially re-
solved hyperfine components has been observed to cause large line shift, which may limit the
precision spectroscopy [145, 146]. For the case of 2S-nP transitions in deuterium, we show
that quantum interference between unresolved components is highly suppressed, which makes
the precision spectroscopy possible with a similar uncertainty than in hydrogen.

We first consider a simple “toy model” to intuitively demostrate the phenomenon of quan-
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tum interference and compare the resolved and unresolved case. Then the unresolved quantum
interference for 2S-nP transitions in deuterium is evaluated within the perturbative quantum
mechanical model. It is found that unresolved quantum interference is doubly suppressed.
This suppression is confirmed by the full quantum mechanical model (“Big Model”), which
concludes this section.

2.5.1 Simple “toy model”

Consider two interferring dipoles emitters with strengths D1 = | ~D1| and D2 = | ~D2|, resonance
frequencies ν1 = ν0 and ν2 = ν0 + ∆, as well as identical linewidths Γ. Here, we assume for
simplicity that the dipoles are aligned ( ~D1 · ~D2 = D1D2). The signal can then be modelled
as following:

I =
∣∣∣ D1

(δ − ν0) + iΓ/2
+

D2

(δ − ν0 −∆) + iΓ/2

∣∣∣2. (2.53)

The above equation can be decomposed into the following terms: two Lorentzians with the
two center frequencies ν0 and ν0 + ∆ and a quantum interference term:

I = L(ν0, D1,Γ) + L(ν0 + ∆, D2,Γ) +Q(ν0, D1, D2,∆,Γ), (2.54)

where the quantum interference term is given by (see also [143]):

Q(ν0, D1, D2,∆,Γ) = 2D1D2
(δ − ν0)(δ − ν0 −∆) + (Γ/2)2

((δ − ν0)2 + (Γ/2)2)((δ − ν0 −∆)2 + (Γ/2)2)
. (2.55)

Fig. 2.10 demostrates the effect of quantum interference in two regimes: (a) ∆� Γ (resolved
quantum interference), and (b) ∆ � Γ (unresolved quantum interference). The total signal
from Eq. (2.54) is shown in red, the Lorentzian from the first resonance (L1) in blue, the
Lorentzian from the second resonance (L2) in orange, and the quantum interference term (Q)
in gray. Note that when relating the dipole emitters to atoms, D1D2 can be either positive or
negative, depending on the signs of D1 and D2. Therefore, two cases with both signs of the
quantum intereference term are shown (+Q and −Q, solid and dashed curves, respectively).

In the case of resolved quantum interference, Q has a dispersive form. The contribution
of quantum interference distorts the resonance line. This distortion has a distinctive shape,
since the quantum interference term has opposite sign contributions below and above the
line centers of L1 and L2. Therefore, the resolved quantum interference can be accounted
for by using a corresponding fit function (e.g. Fano-Lorentzian). Indeed, only one additional
parameter, that takes any solid detection angle into account, is needed to describe the ef-
fect of resolved quantum interference. For the 2S-nP transitions in hydrogen and deuterium,
the resolved quantum intereference occurs between the two fine-structure components (2S-
nP1/2 and 2S-nP3/2 transitions, recall Fig. 2.2). Note that compared to Fig. 2.10(a) the line
seperation between the 2S-nP1/2 and 2S-nP3/2 transitions is an order of magnitude larger
(∆∼ 100Γ), such that the quantum interference is much smaller than in Fig. 2.10(a). The
“rule of thumb” line shift due to the resolved quantum interference (when using a fit function
which does not automatically take the resolved quantum interference into account) is approx-
imately ∆νres. QI∼Γ2/(2∆) [143], such that the line shifts can be on the order of 5× 10−3 for
the 2S-6P transition. This effect has been studied in great detail in the 2S-4P measurement
in hydrogen, see [14, 71] for details, and [143] for a review. For the 2S-6P measurement, the
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Figure 2.10: Comparison of resolved and unresolved quantum interference using the simple “toy model”
for the signal from Eq. (2.54). The total signal (red curves) is a sum of three terms: the Lorentzian
of the first resonance (L1, blue curves), the Lorentzian of the second resonance (L2, orange curves),
and the quantum interference cross term (Q, gray curves). The latter can have different signs, such
that two cases are shown,+Q (solid curves) and −Q (dashed curves). (a) In the case of resolved
quantum interference (∆� Γ, here ∆ = 10Γ), the quantum interference term has a dispersive shape,
and therefore leads to distinctive distortions of the total signal, which can be taken into account by
using a corresponding fit function. (b) In the case of unresolved quantum interference (∆ � Γ, here
∆ = 0.1Γ), the quantum interference term appears as another Lorentzian resonance (see Eq. (2.56)),
such that the signal shape is not clearly distinguished from the signal without quantum interference.

effect of resolved quantum intereference is minimized by aligning the polarization of the ex-
citation light to the “magic angle” (see [71] for details). In this thesis, the resolved quantum
intereference is not further discussed, since this effect is the same in deuterium as in hydrogen.

In the case of unresolved quantum interference (∆ � Γ), one can easily prove using a
computer algebra system, that the quantum interference term from Eq. (2.55) can be approx-
imated by a Lorentzian with a center frequency at ν0 + ∆/2 and dipole strength 2

√
D1D2:

Q(ν0, D1, D2,∆,Γ) ' sgn(D1D2)L
(
ν0 + ∆/2, 2

√
D1D2

)
. (2.56)

Therefore, the quantum interference term appears in first order like another Lorentzian with
a dipole strength D3 = 2

√
D1D2 and a resonance frequency ν3 = ν0 + ∆/2 lying exactly

between the two resonances frequencies of the dipoles D1 and D2. The total signal is therefore
approximately given by a sum of three Lorentzians:

I ' L(ν1, D1) + L(ν2, D2) + L(ν3, D3). (2.57)

We already showed in Eq. (2.47) that a sum of two Lorentzians with resonance frequencies
separated by much smaller values than their linewidth is approximated by a single Lorentzian
with a center frequency given by Eq. (2.48):

νc, no QI = ν0 +
D2

2

D2
1 +D2

2

∆. (2.58)
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By mathematical induction, it is clear that any number n > 2 of unresolved Lorentzian
resonances is also approximated by the single Lorentzian resonance. Therefore, the lineshape
with unresolved quantum interference does not have distinctive features compared to the case
with no quantum interference.

The line center of the single Lorentzian, which approximates n unresolved Lorentzians, is
given by:

νc,n = ν0 +

∑n
i=1D

2
i ∆i∑n

i=1D
2
i

, (2.59)

where D2
i is the amplitude of the ith Lorentzian and ∆i is the difference between the line

center of the ith Lorentzian to the 1st Lorentzian, which we assume to have the line center
ν0 such that ∆1 = 0. In Eq. (2.57) we have three Lorentzians with ∆1 = 0, ∆2 = ∆ and
∆3 = ∆/2 with D3 = 2

√
D1D2. The line center with unresolved quantum interference is then

given by:

νc,with QI = ν0 +
2D1D2∆/2 +D2

2∆

D2
1 + 2D1D2 +D2

2

= ν0 +
D2

D1 +D2
∆. (2.60)

Comparing Eq. (2.60) with Eq. (2.58), we see unresolved quantum interference leads to a
different line center for D1 6= D2. For example, for D2

2 = 9D2
1 without quantum interference,

the line center is at νc, no QI = ν0 + 0.9 ∆ independent of the signs of D1 and D2. With
quantum interference, the line center is either νc, with QI = ν0 + 0.75 ∆ for sgn(D1D2) = +1 or
νc, with QI = ν0 + 1.5 ∆ for sgn(D1D2) = −1).

For D1 = −D2, Eq. (2.60) is singular. In this case, quantum interference largerly cancels
the total signal (L1 + L2 ≈ −Q). Evaluating Eq. (2.54) for D1 = −D2 ≡ D, we find:

ID1=−D2 =
D2

(Γ/2)2 + (δ − ν0)2
× ∆2

(Γ/2)2 + (δ − ν0 −∆)2
. (2.61)

Near the resonance (δ ' ν0), for ∆� Γ, the total signal is therefore damped by ∆2/(Γ/2)2.
The signal shape is non-Lorentzian, but symmetric around δ = ν0 + ∆/2.

The simple “toy model” illustrates that unresolved quantum interference can have severe
effects on the line center of the total signal. Furthermore, the line shape does not have
distinctive properties as in the case of resolved quantum interference, but appears simply as
the sum of Lorentzians as in the case of no quantum interference which has been discussed in
Section 2.4. Therefore, for noisy data (as has been discussed in Fig. 2.6(b)), the line center
can not be determined unless the amplitude ratio and the separation between unresolved
lines is given as a known parameter to the fit. Fortunately, we find that for 2S-nP transitions
in deuterium, the effect of unresolved quantum interference is largerly suppressed, which
makes it possible to determine the line center, and thereby determine the energy difference
between 2S and nP levels. We can model and understand this suppression from the quantum
mechanical perturbative model, which we discuss in the following.

2.5.2 Quantum mechanical perturbative model

Using quantum mechanical perturbation theory, one can derive the amplitude of the scattered
light by an atom, which is excited by the electromagnetic wave of frequency νL from an initial
state |i〉 to the excited state |e〉 (having transition frequency νei) and decays to the final state
|f〉 to be the following [143]:

Se,i→fq,p ≡ dp(i→ e) dq(e→ f)

νL − νei + iΓe/2
, (2.62)
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where dp(i → e) and dq(e → f) are the dipole moments from the initial to the excited and
from the excited to the final states, respectively (see Eq. (A.37) and Eq. (A.49)). p and
q denote the spherical components of the emitting and exciting polarization, respectively
(p = 0 and q = 0 corresponds to π-polarized light, whereas p = ±1 and q = ±1 corresponds
to σ±-polarized light). The linewidth Γe is given by the inverse lifetime of the excited state
|e〉.

If the excitation takes place with one of the standard polarizations (e.g. as in our case
with linearly polarized light which drives the π transitions, i.e. p = 0), the signal is given by
[143]:

I(θ) ∝
∑
f

[
sin2 θ

∣∣∣∑
e

Se,i→f0,p

∣∣∣2 +
1 + cos2 θ

2

(∣∣∣∑
e

Se,i→f+1,p

∣∣∣2 +
∣∣∣∑
e

Se,i→f−1,p

∣∣∣2)] , (2.63)

where θ is the polar angle for the detected signal in the spherical coordinates w.r.t. the corre-
sponding quantization axis (see Fig. 2.4). Note that since the emitted intensity is rotationally
symmetric for each of the spherical components q, the dependence on the azimuthal angle
does not enter the above equation. If the detector collects all the light (i.e. polarization in-
sensitive detector with a solid angle of 4π), quantum interference vanishes unless the excited
states have different principal quantum numbers. Furthermore, even if this condition is not
fulfilled, there is a certain value of the angle θ (“magic angle”), for which the contribution
of quantum interference cancels. For the resolved quantum interference in our experiment,
this angle can be determined from “Big Model” simulations including the simulated detector
efficiency (see Fig. 6.8 in [71]). For the case of unresolved quantum interference between
the hyperfine components of 2S-nP deuterium transitions, we find that the contribution of
quantum interference exactly vanishes for π decays and is doubly suppressed for σ decays,
which we show in the following.

The signal contributions of the three decay channels π (q = 0) and σ± (q = ±1) are
added incoherently in Eq. (2.63), and hence we consider them independently. The signal
contributions of the different final states also enter Eq. (2.63) as an incoherent sum. Therefore,

for each of the two initial states i1 (2S
F=1/2
1/2 , mF = −1/2) or i2 (2S

F=1/2
1/2 , mF = +1/2), we

only need to evaluate the interference between the two hyperfine states e1 and e2 (mF = −1/2,
nPF=1/2 and nPF=3/2) or e3 and e4 (mF = 1/2, nPF=1/2 and nPF=3/2). Consider first the
π decays shown in Fig. 2.11. We exemplarily consider the initial state i1, from which the
excitation to e1 (blue arrow) and e2 (orange arrow) takes place. Fig. 2.11(a) shows the decay

to the final state f1 (2S
F=1/2
1/2 , mF = −1/2), and Fig. 2.11(b) to the final state f4 (2S

F=3/2
1/2 ,

mF = −1/2). The contribution from each final state to the signal then corresponds to the
model from Eq. (2.54) with D1 ≡ D1,f and D2 ≡ D2,f given by:

D1,f = d0(i→ e1) d0(e1 → f), D2,f = d0(i→ e2) d0(e2 → f). (2.64)

Evaluating the above matrix elements (see Table A.1 and Table A.2), we find that the product
D1,fD2,f is equal in magnitude but opposite in sign for f1 and f4:

D1,f1D2,f1 = −D1,f4D2,f4 . (2.65)

Since the quantum interference term is proportional to D1D2 (see Eq. (2.55)), the two quan-
tum interference terms add exactly to zero. Therefore, the unresolved quantum interference
vanishes for the π decays of the 2S-nP transitions in deuterium.
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Figure 2.11: Level scheme for evaluating the unresolved quantum interference (QI) for π decays of the

2S-nP transitions in deuterium. The atom is excited from the initial state i1 (2S
F=1/2
1/2 , mF = −1/2)

to the two excited states of the nP hyperfine state manifold e1 (blue) and e2 (orange). The decay

occurs either to the final state f1 (1S
F=1/2
1/2 , mF = −1/2) as shown in (a), or to the final state f4 as

shown in (b). The signal with unresolved quantum interference corresponds in both cases to the model
from Eq. (2.54) with D1 ≡ D1,f and D2 ≡ D2,f given by Eq. (2.64). The product D1D2 is equal in
magnitude but opposite in sign for the two final states f1 and f4, such that their quantum interference
contribution (see Eq. (2.55)) is exactly opposite. Since the signal contribution from different final
states adds incoherently to the total signal (see Eq. (2.63)), the quantum interference from the two
final states adds to zero. Therefore, the unresolved quantum interference for π decays of 2S-nP
transitions in deuterium vanishes.

Fig. 2.12 shows the level schemes for the σ± decays. Fig. 2.12(a) and (b) consider the
decays from the states e1 and e2, which have been excited from the initial state i1. While

there is only one possible final state for the σ+ decay, namely the 1S
F=3/2
1/2 , mF = −3/2

state which we denote as f3, there are two possible final states for the σ− decay, 1S
F=1/2
1/2 ,

mF = 1/2 and 1S
F=3/2
1/2 , mF = 1/2 states, which we denote as f2 and f5. Note that the σ+

and σ− signal contributions enter the total signal from Eq. (2.63) with the same prefactor.
Therefore, the total quantum interference contribution can be analyzed simply by adding the
products D1,fD2,f for each final state. Evaluating the corresponding matrix elements (see
Table A.1 and Table A.2), we find that the contribution from the σ− decay exacly cancels
the contribution from the σ+ decay since

D1,f3D2,f3 = −(D1,f2D2,f2 +D1,f5D2,f5). (2.66)

In the experiment, this cancellation is present independent of the detector geometry if the σ+

fluorescence photons are detected with the same quantum efficiency as the σ− fluorescence
photons, i.e. for a detector which does not distinguish between left- and right-handed circularly
or elliptically polarized fluorescence light. Furthermore, there is an additional cancellation
from the symmetry of the initial states. Fig. 2.12(c) and (d) consider the decays from the
states e3 and e4, which have been excited from the initial state i2. The quantum interference
contribution for the same decay channel, but different initial state then also cancels, since

D1,f3D2,f3 = −(D1,f1D2,f1 +D1,f4D2,f4) and D1,f2D2,f2 +D1,f5D2,f5 = −D1,f6D2,f6 .
(2.67)
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Figure 2.12: Similar to Fig. 2.11, here showing the level scheme for evaluating the unresolved quantum
interference (QI) for σ± decays of the 2S-nP transitions in deuterium. (a) and (b) show the excitation

from the i1 initial state with σ+ and σ− decays to the final states f3 (1S
F=3/2
1/2 , mF = −3/2) and f2

as well as f5 (1S
F=1/2
1/2 as well as 1S

F=3/2
1/2 , mF = 1/2). The quantum interference contribution from

f3 is exactly equal to the combined contribution from f2 and f5 with the opposite sign, such that the
unresolved quantum interference from σ± decays vanishes as long as the σ− fluoresence is detected with
the same efficiency as the σ+ fluorescence (i.e. polarization insensitive detector). Similar cancellation
occurs when combining the contribution from the same decay component but the different initial state
i2, which is shown in (c) and (d). Therefore, the unresolved quantum interference σ± decays of 2S-nP
transitions in deuterium is doubly suppressed.

Therefore, only if the states i1 and i2 are unequally populated (state asymmetry ι intro-
duced in Section 2.3.1) and the detector detects σ− photons with a different efficiency than
σ+ photons (detection imbalance ξ◦ introduced in Section 2.3.3) there is an effect from un-
resolved quantum interference. The hyperfine center fractions η1/2 and η3/2 of the 2S-nP1/2

and the 2S-nP3/2 transitions are then calculated to be (see Appendix A.4.3):

η1/2 =
24 + 8ξ◦ι

27 + 15ξ◦ι
' 8

9
− 16

81
ξ◦ι, η3/2 =

15 + 13ξ◦ι

27 + 21ξ◦ι
' 5

9
+

4

81
ξ◦ι. (2.68)

The line center shifts ∆νιξ◦,1/2 (2S-nP1/2 transition) and ∆νιξ◦,3/2 (2S-nP3/2 transition) due
to the detection imbalance combined with the population asymmetry are then:

∆νιξ◦,1/2 ' −0.026 ιξ◦ΓnP ' −ιξ◦ × 100 kHz,

∆νιξ◦,3/2 ' 0.0013 ιξ◦ΓnP ' ιξ◦ × 5 kHz, (2.69)

where the numerical values are given for the 2S-6P transitions for values of ∆HFS1/2
and

∆HFS3/2
from Table 2.4 and Table 2.5. The line shift is a factor of 20 times smaller for the

2S-nP3/2 transition compared to the 2S-nP1/2 transition. For the 2S-nP1/2 transition, the line
shift is smaller than 10−4 Γ6P ∼ 0.4 kHz, if the product of initial state population asymmetry
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and circular polarization fraction is smaller than ιξ◦ > 0.004. As argued in Section 2.3.3,
the most conservative estimation of the detection imbalance is ξ◦ < 0.3. Furthermore, as
discussed in Eq. (2.37), ι is expected to be many orders of magnitude smaller (ι < 10−6),
leading to negligible line shifts below 1 Hz according to the above equation even for the
maximal detection imbalance of ξ◦ = 1.

2.5.3 Full quantum mechanical treatment (“Big Model”)

The full quantum mechanical treatment of light interaction with an atom is based on the
Liouville-von Neumann equation (also called the master equation in Lindblad form), and
is for instance derived in [147]. Here we follow the summary from [143]. The Lioville-von
Neumann equation reads:

∂ρ

∂t
=

1

i~

[
Ĥ, ρ

]
− L̂ρ, (2.70)

where ρ ≡ ρ(t) is the density matrix describing the time evolution of atomic states. The
Hamiltonian Ĥ describes the atomic part and the coherent atom-light interaction:

Ĥ =
∑
n

|n〉〈n|~ωn +
~
2

∑
j

(
Ŝ+
j Ωje

iωLt + Ŝ−j Ω∗je
−iωLt

)
, (2.71)

where the first sum accounts for all atomic states |n〉 having an energy ~ωn, and the second
sum describes the interaction of the coherent laser field at frequency ωL for all possible
transitions j with projection operators S+

j (terms |i〉〈e| for the transition from state |i〉 to

state |e〉) and its complex conjugate S−j (terms |e〉〈i|). The Rabi frequencies Ωj are given
by the electric field of the laser and the dipole matrix elements for each transition j, see
Eq. (2.24). The spontaneous emission caused by the interaction with the vacuum field is
described by the Lindblad operator:

L̂ρ =
1

2

∑
ij

Γij

(
Ŝ+
i Ŝ
−
i − 2Ŝ−j ρŜ

+
i + ρŜ+

i Ŝ
−
j

)
, (2.72)

where Γij =
√

ΓiΓj~εi ·~εj are the cross damping (quantum interference) decay constants given
by the decay constants Γi and Γj , as well as the spherical unit vectors along the corresponding
dipole moment ~εi and ~εj , for the transitions i and j, respectively. The projection operators Ŝ+

i

and Ŝ−i are given by terms |e〉〈f | and |f〉〈e| for each spontaneous decay i from an excited state
|e〉 to the final state |f〉. In the experiment of this thesis, there are two counter-propagating
laser beams, such that in our case a second laser field is added to Eq. (2.71). These and other
theoretical details are thoroughly discussed in Sec. 2.3 of [71].

The implementation of Eq. (2.70) for the description of our experiment is based on Arthur
Matveev’s so far unpublished work (“Master Equation Derivation with External Declaration
(MEDWED) code”). In general, the 2S1/2-6P excitation and resulting decays in deuterium
involve N = 234 sub-levels, which results in N2 = 54756 entries of the density matrix ρ and
thus this much coupled differential equations. Using a computer algebra system1, the number
of equations is reduced to those with non-zero time evolution (i.e. those that lead to non-
zero populations or coherences of states). For perfect linear polarization (π excitations only),

1The algorithm developed by Arthur Matveev was implemented on two computer algebra systems: Wolfram
Mathematica 11.2 and the GiNaC C++ library.
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the number of equations is reduced to 1442. The imperfections of polarization described by
the circular polarized fraction s ≡ S3/S0 can be modelled as a superposition of σ+ and σ−

excitations (see Fig. 2.8), which results in 4229 equations. The initial population asymmetry
ι (see Section 2.3.1) in the 2S1/2, mF = −1/2 and 2S1/2, mF = +1/2 states is implemented
as the initial condition of the corresponding density matrix entries1.

Here we exemplarily show the simulations of the 2S1/2-6P1/2 transition with two counter-
propagating beams crossing the atomic beam at an angle of δα = 1 mrad. The atomic
velocity is set to 250 m/s, the 2S-6P laser power is P2S-6P = 10 µW with a beam radius
W0 ' 2.2 mm. To account for the broadening of the resonance line (here mainly due to the
two overlapping resonances with oppposite Doppler shifts originating from the forward- and
backward propagating beams), as for experimental data, we use a Voigt function for fitting
the simulated signal:

V(δ, ν0, A,ΓL,ΓG, y0) =
A

Re [w(ib)]
Re [w(a+ ib)] + y0,

with a = −2
√

ln 2

ΓG
(δ − ν0) and b =

√
ln 2

ΓL

ΓG
, (2.73)

where w(z) ≡ e−z
2

erfc(−iz) is the Faddeeva function (given by the complex complementary
error function erfc). ΓL and ΓG are the Lorentzian and Gaussian linewidths. The total full-
width-half-maximum (FWHM) linewidth ΓF of a Voigt line shape is approximately given by2

[148]:

ΓF ' 0.5346 ΓL +
√

0.2166Γ2
L + Γ2

G. (2.74)

The “Big Model” includes all possible levels and excitations. Therefore, if we consider
different decay channels separately, the resolved quantum intereference between the 2S1/2-
6P1/2 and 2S1/2-6P3/2 fine-structure components is present. To account for this effect, we
also fit the simulated signal with what we call the “Fano-Voigt” function [14, 143] with an
asymmetry parameter η̃:

FV(δ, ν0, A,ΓL,ΓG, y0, η̃) =
A

Re [w(ib)]
(Re [w(a+ ib)] + 2 η̃ Im [w(a+ ib)]) + y0. (2.75)

Fig. 2.13 shows the simulation results for the case of perfect linear polarization of excitation
light (s = 0), no detection imbalance between σ+ and σ− fluorescence (ξ◦ = 0), and an initial
state asymmetry of ι = 0.25. Since s = 0 and ξ◦ = 0, any value if ι gives the same result.
Fig. 2.13(a) shows the signal from π decays, Fig. 2.13(b) the combined signal from σ+ and σ−

decays, and Fig. 2.13(c) the total signal (sum of π, σ+, and σ− decay signals). Since ξ◦ = 0,
no effect of unresolved quantum interference is predicted by the perturbative model, which
is confirmed by the “Big Model” results. The Fano-Voigt fit result for the hyperfine center is
νc,fit = 450.3(1) kHz in agreement between all the decay channels within ∼0.1 kHz. Eq. (2.68)
or Eq. (2.50) predict for ξ◦ = 0 or s = 0 a hyperfine center of νc = 8∆HFS1/2

/9 ' 448.84 kHz

1More specifically, ρ7,7 = (1 − ι)/2 and ρ8,8 = (1 + ι)/2, where ρ7,7 is the density matrix entry describing
the population in the 2S1/2, mF = −1/2 state and ρ8,8 in the 2S1/2, mF = +1/2 state (there are six 1S1/2

states such that the 2S1/2 level numbering starts with index 7).
2Here we give the expression of the “modified Whiting form” from [148] (coefficients C1 = 1.0692, C2 =

0.86639, C3 = 1.0 in Eq. (4a) of [148]), which results in a maximum inaccuracy of 0.02% of the width ΓF over
the whole range of ΓL and ΓG as stated in [148].
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Figure 2.13: Full quantum mechanical model (“Big Model”) simulations of the 2S1/2-6P1/2 transition
in deuterium (see Table 2.4 for parameters) for a single atomic trajectory. The simulated signal is
shown for the signal from π decays in (a), for the combined signal from σ+ and σ− decays in (b), and
for the total signal in (c), which is the sum of signals from (a) and (b). The atomic velocity is set to
250 m/s, and the simulation is performed with two counter-propagating beams, which cross the atomic
beam at an angle of δα = 1 mrad. The spectroscopy laser parameters are: laser power P2S-6P = 10 µW,
beam radius W0 ' 2.2 mm. The detection imbalance between σ+ and σ− is set to zero, ξ◦ = 0. Perfect
linear polarization is assumed for the excitation (s ≡ S3/S0 = 0). Since both ξ◦ = 0 and s = 0, the
simulation results are independent of the population asymmetry ι between the 2S1/2,mF = ±1/2
initial states. The signal is fitted with a Voigt (blue) or Fano-Voigt (orange) functions, with residuals
shown in the bottom plots (in (c) the blue and orange residuals points overlap). The center frequency

of the fit gives the hyperfine center νc,fit for the detuning δ, which is counted from the 2S
F=1/2
1/2 -6P

F=1/2
1/2

transition frequency (corresponding to νc = η1/2 ∆HFS1/2
, i.e. ν0 ≡ 0 in Eq. (2.49)). The Voigt fit gives

a center frequency affected by the resolved quantum interference, which vanishes for the total signal.
The Fano-Voigt fit gives a result free from resolved quantum interference, thereby showing that the
contribution of unresolved quantum interference vanishes for ξ◦ = 0 and ι = 0 as predicted by the
perturbative model, which yields a hyperfine center of 8/9 × 504.94 kHz ' 448.84 kHz (the ∼ 1.5 kHz
offset is due to the fit of two unresolved resonances, see Fig. 2.14).

(in the following, we set the resonance frequency of the 2S
F=1/2
1/2 -6P

F=1/2
1/2 transition to zero,

ν0 ≡ 0). The ∼1.5 kHz difference between νc and νc,fit originates from the fit of a single
resonance function to two unresolved resonances, which can be calculated similar to Fig. 2.7
for the Voigt and Fano-Voigt functions. This correction depends on the broadening ΓG, which
is evaluated in Fig. 2.14(a) for the case of 2S-nP1/2 transitions (∆HFS = 0.13ΓL, D2

1 = 8D2
2)

and in Fig. 2.14(b) for the case of 2S-nP3/2 transitions (∆HFS = 0.026ΓL, D2
1 = 1.25D2

2). For
the simulation of the 2S-6P1/2 transitions from Fig. 2.13, where ΓG ' 0.44ΓL, the deviation is
calculated to be 3.76× 10−4 ΓnP ' 1.47 kHz (Fano-Voigt fit) and 2.16× 10−4 ΓnP ' 0.84 kHz
(Voigt fit). The remaining differences to the “Big Model” simulation are below 0.1 kHz.

Fig. 2.15 examines the hyperfine center shift due to unresolved quantum interference for
ι = 0.25 and non-zero ξ◦. The signal from the σ+ decays is multiplied with the factor
kξ = ξ+/ξ− and then summed with the signal from the σ− decays, i.e. the detector has a
sensitivity of ξ+ for σ+ photons and ξ− for σ− photons, such that a factor kξ more (for kξ > 1)
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Figure 2.14: Similar to Fig. 2.7, here the difference νc,fit−νc in the line center frequency with the Voigt
(blue) and Fano-Voigt (orange) fit functions is shown, where νc,fit is the line center of the single Voigt
or Fano-Voigt fit to the signal and νc is the line center defined in Eq. (2.48). The correction depends on
the broadening ΓG, which is here evaluated in (a) for the case of 2S-nP1/2 transitions (∆HFS = 0.13ΓL,
D2

1 = 8D2
2) and in (b) for the case of 2S-nP3/2 transitions (∆HFS = 0.026ΓL, D2

1 = 1.25D2
2).
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Figure 2.15: Similar to Fig. 2.13 (same simulation parameters), here evaluating the “Big Model”
simulation for the non-zero detection imbalance ξ◦ between the signal from the σ+ and σ− decays,
which in combination with non-zero population asymmetry ι results in a line shift due to unresolved
quantum interference. (a) As an example, the total signal for ι = 0.25 and ξ◦ = −0.2 is shown, where
the fit yields a hyperfine center shifted by ∼5 kHz compared to ξ◦ = 0 in Fig. 2.13(c), which is in
agreement with the prediction from the perturbative model. (b) The hyperfine center νfit,c from the
Fano-Voigt fit to the simulated signal (blue curve) is shown in dependence on ξ◦ for ι = 0.25, and is
compared to the prediction of the perturbative model (black dotted curve). The 1.5 kHz offset due
to the single Fano-Voigt fit to two unresolved resonances (see Fig. 2.14) is added to the perturbative
prediction from Eq. (2.68).

or less (for kξ < 1) σ+ photons are detected than σ− photons. The factor kξ converts to ξ◦
according to Eq. (A.55). In Fig. 2.15(a), the total signal is shown for ι = 0.25 and ξ◦ = −0.2.
The perturbative model predicts according to Eq. (2.69) a shift of ∆νιξ◦,1/2 ' 5 kHz, in
agreement with the “Big Model” simulation. Fig. 2.15(b) shows the fitted hyperfine center
νc,fit from the Fano-Voigt fit to the simulated “Big Model” signal (blue curve) in dependence
on ξ◦, which confirms the perturbative model prediction (black dotted curve). The 1.5 kHz
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Figure 2.16: Similar to Fig. 2.13 (same simulation parameters), here the “Big Model” simulations of
the 2S1/2-6P1/2 transition in deuterium are shown with an initial state asymmetry ι and a different
circular polarization fraction s ≡ S3/S0. (a) Perfect linear polarization (s = 0) results in a hyperfine
center independent of the state asymmetry ι, even for maximally asymmetric case of ι = 1 shown
here. (b) Fully left-handed circular polarization drives only the σ+ transitions, resulting in a hyperfine
center of νc = 2/3×∆HFS1/2

' 336.6 kHz according to Eq. (2.50), in agreement with the “Big Model”
simulation, taking the 0.8 kHz (Voigt fit) and 1.5 kHz (Fano-Voigt fit) fit corrections into account. (c)
Fully right-handed circular polarization addresses only the F = 3/2 hyperfine component of the 6P1/2

state (recall Fig. 2.8), such that the hyperfine center corresponds to νc = ∆HFS1/2
' 505 kHz. (d)

ι = 0.2 and s = −0.1 results in a line shift of ∆νιs,1/2 ' 1.5 kHz compared to the case s = 0 or ι = 0,
in agreement with the prediction from Eq. (2.51).

offset due to the fit of two unresolved resonances with a single Fano-Voigt function is added
to the perturabative model prediction from Eq. (2.68).

Fig. 2.16 shows the “Big Model” simulations with a non-zero circular polarization s ≡
S3/S0 of the 2S-6P excitation light in combination with the initial state asymmetry ι, which
has been discussed in Section 2.4.2. For reference, Fig. 2.16(a) shows the case s = 0 for
ι = 1, which gives the same result as any non-zero s with ι = 0 or any non-zero ι with
s = 0. In Fig. 2.16(b), only the σ− excitation takes place from the 2S1/2, mF = +1/2
initially populated state (s = −1, ι = 1). According to Eq. (2.50), the hyperfine center is
νc = 2/3 × ∆HFS1/2

' 336.6 kHz, which agrees with the “Big Model” simulation taking the
0.8 kHz (Voigt fit) and 1.5 kHz (Fano-Voigt fit) fit corrections into account. In Fig. 2.16(c),
only the σ+ excitation takes place from the 2S1/2, mF = +1/2 initially populated state (s = 1,
ι = 1). Recalling the right level scheme in Fig. 2.8, only the F = 3/2 hyperfine component is
excited. Therefore, the hyperfine center is νc = ∆HFS1/2

. In Fig. 2.16(d), both imperfections
are small, ι = 0.2 and s = −0.1, resulting in a line shift of ∆νιs,1/2 ' 1.5 kHz in agreement
with the prediction from Eq. (2.51).

In conclusion, the “Big Model” confirms the double suppression of unresolved quantum
interference as well as the double suppression of the line shift due to residual circular polariza-
tion. Both effects are suppressed by the small initial state asymmetry factor ι. Additionally,
the line shift due to unresolved quantum interference is multiplied by the detection imbal-
ance of the detector ξ◦, such that the effect is suppressed by the combined factor ι × ξ◦,
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with Eq. (2.69) predicting the magnitude of the line shift. The line shift due to residual
polarization s is suppressed by the combined factor ι× s, which is calculated with Eq. (2.51).

2.6 Light force shift

To suppress the first-order Doppler shift of the 2S-6P transition, our experiment uses two
counter-propagating beams, which cross the atomic beam at an angle of approximately 90◦.
The details and challenges of achieving the Doppler suppression with such a method are
discussed in Chapter 4, which also discusses the possible residual first-order Doppler effect
due to imperfections of this technique. Here, we assume a perfect standing wave formed by
the two counter-propagating beams (i.e. we assume perfect cancellation of the Doppler effect)
and discuss only the effect of the light force acting on the atoms. The standing wave can be
viewed as a light grating causing diffraction of an atomic matter wave, just like a mechanical
grating causes diffraction of a light wave. The interaction of the atom with this grating causes
a shift of the observed resonance line, which we call the light force shift (LFS).

The LFS for the 2S-6P transition in hydrogen has been thoroughly treated in the thesis of
Lothar Maisenbacher, see Ch. 3 of [71]. For details, for instance on the coherence properties
of atoms and the quantum mechanical description of the atomic beam, we refer to this thesis.
Here, the main conclusions on the LFS are summarized and the focus lies on the differences
to the 2S-6P transition in deuterium. Based on the work described in [71], in this thesis the
LFS model is extended to deuterium and the results are compared to hydrogen.

Nozzle

Deuterium atoms

Aperture

1S-2S
preparation

laser

2S-6P spectroscopy laser

Fluorescence
Lyman photon

7 K

Figure 2.17: The basic scheme of the 2S-6P deuterium spectroscopy experiment as relevant for the
theoretical consideration of the light force shift (not to scale). Deuterium atoms escape from the
orifice (radius r1 = 1 mm) of a copper nozzle (cooled to TN∼ 7K) along the z direction, where they
are excited into the initial 2S state |i〉 by the 1S-2S preparation laser (243 nm wavelength, shown in
purple). An aperture (width 2r2 = 1.2 mm) is placed L1 = 154 mm after the nozzle to constrain the
atomic beam. Following the distance L2 = 50 mm after the aperture, the atoms are excited by two
counter-propagating beams of the 2S-6P spectroscopy laser (410 nm wavelength, 1/e2 intensity radius
W0 = 2.2 mm, shown in blue) into the excited 6P state |e〉. These two counter-propagating beams
form an intensity standing wave (light grating) in the x direction with periodicity of 205 nm. The atom
momentum in this direction, px ≡ p0, determines the diffraction effect of the atomic matter wave on
the light grating, which modifies the interaction and leads to the light force shift while probing the
2S-6P transition. The wiggly line shows a fluorescence photon of the Lyman decay from the 6P excited
state |e〉 to the 1S ground state |f〉, which serves as a signal for the experiment. Figure adapted from
[71], where the light force shift for the 2S-6P transition in hydrogen is treated in detail, and upon
which the extension of the LFS model to deuterium is based here.
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2.6.1 Experimental scheme as relevant for modeling the light force shift

The basic scheme of the experiment as relevant for the theoretical consideration of the LFS is
shown in Fig. 2.17. Deuterium atoms are guided into a T-shaped copper nozzle at a temper-
ature of TN∼ 7K and escape through an orifice with r1 = 1 mm radius. The complications
of the atomic beam formation (see Section 3.6.1) are not important for the discussion here.
Fig. 2.17 shows the x-z plane of the experiment, where the atom has a momentum (px, py,
pz). The atomic beam is formed along the z direction, where the 1S-2S preparation laser
(purple) excites the atoms from the 1S ground state |f〉 to the 2S initial state |i〉. An aperture
with width 2r2 = 1.2 mm, which is placed at a distance of L1 = 154 mm after the nozzle,
constraints the beam, such that only atoms with pz � px, py are probed. After a further
distance of L2 = 50 mm the atoms reach the interaction region where the 2S-6P transition is
probed. The atoms are excited from the initial 2S state |i〉 into the excited 6P state |e〉. This
excitation is achieved by the intensity standing wave (periodicity of 205 nm) formed in the
x direction by two counter-propagating beams of the spectroscopy laser (410 nm wavelength,
1/e2 intensity radius W0 = 2.2 mm). The Lyman decay from the 6P state |e〉 to the 1S ground
state |f〉 produces fluorescence photons which serve as a signal to probe the 2S-6P transition.

The decisive parameter for the description of the LFS is the momentum in the x direction,
which we denote as px ≡ p0. We can restrict the momentum state to the x direction of the
standing wave for the following reasons. First, consider the dipole potential produced by the
counter-propagating laser beams. Even though the light grating is only present along the x
direction, the light wavevector ~KL is not everywhere exactly parallel to the x axis because
the laser beams follow a caustic. However, the contribution of the wavevector along y and
z, KL,y and KL,z, is much smaller than along x, KL,y,KL,z � KL,x ≡ KL. Second, consider
spontaneous emission, which can randomly change the momentum state of the atom in all of
the three spatial directions. However, the change in the y position of the atom due to the
recoil produced by the emission of photons is negligible compared to the beam size. Along the
atomic beam axis z, the velocity vz ∼ 50 . . . 250 m/s is much larger than the recoil velocity
vrec ∼ 0.5 m/s, such that the photon recoil does not significantly change vz and hence the
interaction time stays approximately the same.

2.6.2 Transverse coherence length

The description of the light force on atoms is often treated semi-classically, where atoms
are described as classical well-localized particles, as for example to describe laser cooling
[149]. Furthermore, this treatment successfully describes other experiments, for instance the
observation of laser confinement of neutral atoms in a standing wave of light, as well as their
channeling into paths between the peaks of the standing wave [150]. However, the description
of our experiment requires another approximation, where atoms are almost delocalized and are
approximated as plane waves. Which description is applicable to the experiment is determined
by the coherence properties of atoms compared to the properties of the interaction with the
light grating, which we discuss in the following.

The transverse coherence length lc,t,2 of atoms in the 2S-6P interaction region, i.e. after a
distance of L = L1 + L2 after the nozzle, is given by (see Eq. (3.24) of [71]):

lc,t,2 '

√
l2c,t,0 +

(
1

π

L

r1
λdB

)2

' 1

π

L

r1
λdB ∼ 50 . . . 300 nm, (2.76)
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where lc,t,0 ∼ λdB,th is the coherence length of atoms at the nozzle, which approximately
corresponds to thermal de Broglie wavelength λdB,th = h/

√
2πmDkBTN ' 0.5 nm of deuterium

atoms with mass mD at the nozzle temperature TN (h is the Planck constant and kB is the
Boltzmann constant). The de Broglie wavelength λdB = h/(mD v) ∼ 1 . . . 4 nm for velocities
v ∼ 50 . . . 250 m/s (see Table 3.2) is similar to λdB,th. The factor L/r1 can be thought of as the
geometrical enhancement during propagation, where L = 204 mm is the total distance from
the nozzle to the interaction region. This enhancement of the coherence length is described by
the van Cittert-Zernike theorem, which explains how an incoherent source appears coherent
in the far field [151]. The intermediate aperture increases the coherence length by a factor√

1 + (L2 r1)2/(Lr2)2 ' 1.1 (see Eq. (3.31) of [71]), which is close to one and therefore has a
negligible effect in our case (L2/L ' 0.25 and r1/r2 = 1.67).

The transverse coherence length lc,t,2 is comparable to the periodicity of the grating
(λ2S-6P/2 = 205 nm):

lc,t,2 ≈
λ2S-6P

2
. (2.77)

Therefore, it is not appropriate to describe the atoms as classical localized particles. Instead,
the atoms must be treated quantum mechanically as delocalized waves. For the quantum
mechanical description of an atom in the context of the light force shift, the atomic state
should then be described in a combined basis |n〉|p〉, where the internal electronic energy
state of the atom |n〉 is combined with the external momentum state |p〉. As described above,
we can restrict the description of the momentum state to the x direction, such that the
combined state is |n〉|p〉x. The interaction of light with the atoms changes both, the internal
and external states: an absorbed or emitted photon changes the external momentum state
by the photon momentum ~KL, but also drives the transitions between the internal energy
levels. The energy difference between the combined states is then determined not only by the
internal electronic energy difference, but also by the kinetic energy difference, which depends
on the number of photon recoils.

2.6.3 Transverse momentum coherence

An atom with a defined momentum state corresponds to a plane wave which is fully delo-
calized. In reality, the atomic beam is localized, which corresponds to a superposition of
many plane waves following a certain momentum distribution, thereby forming a localized
wave packet. However, the coherence between different momentum states can be neglected
in our case, and we can treat the superposition of many momentum states as an incoherent
sum. This simplification is justified in the following by considerung the transverse momentum
coherence scale.

It is important to note that the transverse momentum coherence scale is, in constrast to the
transverse coherence length, not enhanced during propagation [71]. Without an intermediate
aperture, the transverse momentum coherence scale pc,t,2 in the interaction region is then
equal to the transverse momentum coherence scale pc,t,0 at the nozzle. An intermediate
aperture modifies pc,t,0 by the factor of

√
r2

1 + r2
2/r2 ' 2 (with r1 = 1 mm, r2 = 0.6 mm). The

expression for pc,t,2 can be obtained from the quantum mechanical description of the atomic
beam using the first-order correlation function and the Wigner function which describes the
quasiprobability distribution in the position and momentum space [71]:

pc,t,2 '
√
r2

1 + r2
2

r2
pc,t,0 '

√
r2

1 + r2
2

r2
× 2 ~
r1
∼ mD × 1.2× 10−4 m/s. (2.78)
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Intuitively, this momentum coherence scale (i.e. maximum momentum difference two states
can have to still interfere) approximately corresponds to the estimate from the Heisenbergs
uncertainty principle with pc,t,0 r1 ∼ h.

The momentum coherence determines the visibility of interference created by the initial
momentum difference between the two interfering paths. In our case, this relates to the
question whether two different initial momentum states of atoms interfere, or whether they
can be treated independently. The tranverse momentum scale of the atom-light interaction
is given by the photon momentum ~KL = mDvrec∼mD × 0.5 m/s, where KL = 2π/λ2S-6P is
the wavenumber of the 2S-6P spectroscopy laser beams of λ2S-6P = 410 nm wavelength, and
vrec the recoil velocity. The transverse momentum coherence scale pc,t,2 is several orders of
magnitude smaller than this characteristic momentum scale of the light force:

pc,t,2 � ~KL. (2.79)

Therefore, different initial momentum states do not interfere and can be treated as an incoher-
ent superposition: the density matrix in momentum space can be approximated as diagonal
because the coherence between different initial momentum states rapidly drops to zero. The
light force shift can thus be modelled as an incoherent sum of fully delocalized atoms, i.e. plane
waves with a certain initial momentum p0 along the x direction of the light grating. We only
need to consider the case of the light force shift for a single atom with a certain p0 and can
then simply sum the signal contributions of Ntraj (classical) atom trajectories as described in
Section 3.3.1.

2.6.4 Simplified level scheme for modeling the light force shift

We now consider the light force shift for the 2S-6P transition of a single deuterium atom with
a certain initial momentum p0 along the x direction of the light grating. After the derivation
of the level scheme, we model the light force shift using the optical Bloch equations. As will
be shown below, the leading order LFS is independent of the possible backdecay to the initial
state. However, for our uncertainty goal, the effect of the backdecay to the same initial state
makes a significant difference, and is crucial to be included into the model. Therefore, we
examine the level scheme with possible backdecays to the initial states.

2.6.4.1 Internal initial and excited states with effective backdecay rates

First, let us examine the level scheme of the involved internal initial and excited states.
Recalling Fig. 2.2, our 2S-6P transition frequency measurement in deuterium involves two
initial 2SF=1/2

1/2 states: mF = −1/2 and mF = +1/2. From each of the two initial states

two 6P states are excited: 6PF=1/2

J and 6PF=3/2

J , where J = 1/2 or J = 3/2 gives the probed
fine-structure component. The involved initial and excited states are visualized in Fig. 2.18.
From each of the excited states there are two backdecays to the 2SF=1/2

1/2 states: π backdecays

to the same mF initial state with rates γF=1/2

ei and γF=3/2

ei , and σ backdecays to the other mF

initial state with rates γF=1/2

ei2
and γF=3/2

ei2
, respectively for the decays from the 6PF=1/2

J and

6PF=3/2

J excited states. It is important to realize that the mixture of the mF = −1/2 and
mF = +1/2 initial states is incoherent, such that we can treat these states independently.
Since the level scheme is symmetric under swapping the mF = −1/2 and mF = +1/2 states,
their excitation and decay patterns are equivalent, as illustrated by the left and center level
schemes in Fig. 2.18.
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Furthermore, we consider the F = 1/2 and F = 3/2 excited states effectively as a single
excited state1, as illustrated in the right scheme of Fig. 2.18. In our case we consider the weak
excitation regime (Ω t)2 � 1, such that the excitation rate is proportional to Ω2 ∝ d2, where
Ω is the Rabi frequency, t the interaction time and d2 the squared dipole moment. Therefore,
the effective π and σ backdecay rates, γei and γei2 , need then to be weighted according to the
squared dipole moments d2

F=1/2 and d2
F=3/2 for the transitions to the F = 1/2 and F = 3/2

states:

γei =
d2
F=1/2γ

F=1/2
ei + d2

F=3/2γ
F=3/2
ei

d2
F=1/2 + d2

F=3/2

, γei2 =
d2
F=1/2γ

F=1/2
ei2

+ d2
F=3/2γ

F=3/2
ei2

d2
F=1/2 + d2

F=3/2

. (2.80)

For J = 1/2, the squared dipole moment ratio is d2
F=3/2/d

2
F=1/2 = 8 (see Table 2.4), and for

J = 3/2 it is d2
F=3/2/d

2
F=1/2 = 10/8 (see Table 2.5). The backdecay rates are summarized

in Table 2.6, where the effective decay rates γei and γei2 , as well as the total backdecay rate
γei +γei2 are also given normalized to the total decay rates Γ1/2 = 3 898 157 Hz (J = 1/2) and
Γ3/2 = 3 898 162 Hz (J = 3/2) (see discussion below Eq. (2.23) regarding the uncertainty of
these values). For both the 2S1/2-6P1/2 and 2S1/2-6P3/2 transitions in deuterium, the total
effective backdecay fractions of 4.75% and 8.21% are similar to, but slightly higher than, the
corresponding values for hydrogen (3.89% and 7.78%, respectively).

The involved internal initial and excited states are then reduced to the rightmost level
scheme in Fig. 2.18. Note that we cannot reduce the scheme to only two levels, since the σ
backdecay brings the atom into a different initial state, not the same initial state from which
the atom has been excited. Starting from an initial state |i〉, the atoms are excited to the
state |e〉, from which a π backdecay to |i〉, or a σ backdecay to another state |i2〉 are possible.
If the σ backdecay occurs, the atoms can be excited from |i2〉 to a second excited state |e2〉.
We make the approximation that only one backdecay occurs: if a σ backdecay to |i2〉 occured
and the atoms are excited to |e2〉, no further backdecays from |e2〉 to |i〉 or |i2〉 occur. The
approximation of using only a single backdecay has been verified for hydrogen [71] with the
Monte Carlo Wavefunction Method (MCWM) [152], where the number of backdecays is not
limited2.

2.6.4.2 Level scheme with combined internal and external states

As discussed above, to examine the light force shift we need to model the atomic state as a
combination of the electronic energy level (internal state) and the momentum of the atom
(external state). In hydrogen, there is only one initial and excited energy state involved,
which leads to only one possible backdecay state manifold. Compared to hydrogen, the
situation in deuterium is complicated by two possible backdecay state manifolds. The level
scheme with these two possible backdecay state manifolds is shown in Fig. 2.19. Here, the

1Note that the effects of quantum interference between the unresolved hyperfine components F = 1/2 and
F = 3/2 are investigated separately using the “Big Model” described in Section 2.5.3. The light force shift
is almost identical for the two different hyperfine components. However, at some level of accuracy, also the
quantum interference between the unresolved hyperfine components of different momentum states may play
a role. To investigate this, the states shown in Fig. 2.19 can be extended in the future by considering both
hyperfine components.

2The difference in the light force shift between the MCWM model and the optical Bloch equations with
only one possible backdecay was found to be less than 30 Hz, corresponding to less than 4% of the light force
shift, see Sec. 3.4.1 of [71].
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Figure 2.18: Initial and excited states for modeling the light force shift of the 2SF=1/2

1/2 -6PJ transitions

in deuterium. Recalling Fig. 2.2, two initial states with mF = ±1/2 are involved. From each of the
two excited state manifolds 6PF=1/2

J and 6PF=3/2

J , where J = 1/2 or J = 3/2 identifies the probed

fine-structure component, there are two possible backdecays to the 2S
F=1/2
1/2 states: π backdecays to

the same mF state (shown as blue wiggly arrows, decay rates γF=1/2

ei and γF=3/2

ei ) and σ backdecays to

the other mF state (shown as red wiggly arrows, backdecay rates γF=1/2

ei2
and γF=3/2

ei2
). Since the two

initial states are in an incoherent superposition, considering the excitation from only one of the initial
states is sufficient due to the symmetry, which is illustrated by the equivalence of the left and center
level schemes. Furthermore, the two excited states can be modelled effectively as a single excited
state, with the effective backdecay rate weighted according to Eq. (2.80). Then the left and center
level schemes are reduced to the right level scheme: starting from an initial state |i〉, the atoms are
excited to the state |e〉, from which a π backdecay to |i〉, or a σ backdecay to another state |i2〉 are
possible. After a σ backdecay, the atoms can be excited from |i2〉 to a second excited state |e2〉.

π backdecay rates (Hz) σ backdecay rates (Hz) Total backdecay rate (Hz)

γ
F=1/2
ei γ

F=3/2
ei γei γ

F=1/2
ei2

γ
F=3/2
ei2

γei2 γei + γei2

J = 1/2 16 845 134 760 121 658 33 690 67 379 63 636 185 294
=̂ 3.12% =̂ 1.63% =̂ 4.75%

J = 3/2 134 760 168 450 153 477 269 520 84 225 166 578 320 055
=̂ 3.94% =̂ 4.27% =̂ 8.21%

Table 2.6: Backdecay rates for the 2S
F=1/2
1/2 -6PJ transitions in deuterium according to the level schemes

shown in Fig. 2.18. The effective backdecay rates γei and γei2 are obtained with the weighting of the
dipole moments, see Eq. (2.80), and correspond to the rightmost level scheme of Fig. 2.18. These
effective backdecay rates as well as the total effective backdecay rate γei + γei2 are also listed in
percentage of the total decay rates Γ1/2 = 3 898 157 Hz (J = 1/2) and Γ3/2 = 3 898 162 Hz (J = 3/2).
The total effective backdecay rates in deuterium are slightly higher compared to hydrogen (3.89% for
J = 1/2 and 7.78% for J = 3/2). Note that the written precision of numbers exceeds the available
and required accuracy, but is given for possible future comparison of simulations (see discussion below
Eq. (2.23) regarding the relative uncertainty of the decay rates, which is on the order of few parts in
10−5, i.e. the numbers in this table are correct approximately up to the fifth digit).

number of occuring backdecays in each of the two backdecay state manifolds is limited to one
(NBD,max = 1). Note that NBD,max = 1 refers to the maximum number of backdecays for a
single atom, but there are two possible different backdecays, namely σ or π backdecay, which
can happen. The number of photon recoils is limited1 to two (Nk,max = 2). This results in
3 × (2Nk,max + 1) = 15 initial and excited states, plus 8 final states. These 23 states are

1In [71], Nk,max = 4 was used, and with the MCWM model a difference (at the resonance p0 = ~KL

where the LFS is maximal) of only less than 5 Hz to the case Nk,max = 3 is reported. Here, we find that the
optical Bloch equations model with Nk,max = 2 produces values which differ by less than 5% to the case with
Nk,max = 3.
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Figure 2.19: Simplified level scheme for modeling the light force shift of the 2S
F=1/2
1/2 -6PJ transitions

in deuterium (not to scale). The atomic state is a combination of the internal states |n〉 (2S initial
states |i〉 and |i2〉, 6P excited states |e〉 and |e2〉, and final state |f〉) with the external momentum state
|p〉x along the x direction of the light grating produced by the counter-propagating laser beams driving
the 2S-6P transition (indicated by solid arrows, equal Rabi frequencies Ω+ = Ω−). The atomic state
is therefore described in a combined basis |n〉|p〉x. The interaction with laser light changes the initial
atomic momentum p0 by the recoil momentum ±~KL, where KL is the wavenumber. The ladder
of states in principle continues to an infinite number of subsequent momentum changes, but is here
limited to maximally two photon recoils. The level scheme is shown here in the laboratory frame for
the case of p0 = 0 and zero laser detuning such that the laser light is resonant with the transitions
|i〉|p0 = 0〉x → |e〉| ± ~KL〉x (#1 → #7 and #1 → #11). The dotted horizontal lines mark the laser
detuning for other transitions. From the excited states |e〉, the atom can spontaneously decay to the
initial states |i〉 (π backdecay with rate γei from Table 2.6) or |i2〉 (σ backdecay with rate γei2 from
Table 2.6) as illustrated in Fig. 2.18. This randomly changes the atomic momentum by ∆pD,1 or
∆pD,2 ∈ [−~KL, ~KL] distributed according to Eq. (2.82) and Eq. (2.83). Furthermore, the atom
can spontaneously decay to the final states |f〉 with a rate Γef, which contributes to the signal (the
momentum state does not matter for |f〉 because these states are not coupled by the laser beam).

numbered from #1 to #23.

Consider first the state manifold where no backdecay occurs (center of Fig. 2.19 in black).
The atoms start in the internal state |i〉 with a momentum p0 along the x axis such that the
state is |i〉|p0〉x (state #1). The arrows represent the two counter-propagating laser beams
having equal Rabi frequencies Ω+ ≡ Ω−, which drive the transitions to the internal excited
state |e〉. The change of the internal state by the absorption or stimulated emission of these
photons changes the atomic momentum by the photon momentum ±~KL = ±hνL/c, where
KL = 2π/λ2S-6P = 2πνL/c is the wavenumber of the counter-propagating 2S-6P spectroscopy
laser beams of wavelength λ2S-6P and frequency νL . This momentum change corresponds to
a change in velocity by vrec = ~KL/mD ' 0.5 m/s (recoil velocity), where mD is the mass
of the deuterium atom. Because of energy conservation, the energy levels are shifted by the
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kinetic energy difference h∆νrec = mDv
2
rec/2, where ∆νrec is the recoil shift:

∆νrec =
mDv

2
rec

2h
'

hν2
A,0

2mDc2
. (2.81)

In the last step, we set the laser frequency νL to be approximately the same as the frequency
νA,0 corresponding to the unperturbed energy difference hνA,0 between the 2S and 6P levels
(|i〉 and |e〉). More energy is required for the excitation from |i〉 to |e〉 than the energy
difference hνA,0 to account for the increase in the kinetic energy of the atom. We here define
the laser detuning ∆ν2S-6P to be the detuning from the frequency νA,0 + ∆νrec, such that for
zero detuning the recoil shift is taken into account. In Fig. 2.19, the level structure is shown
for ∆ν2S-6P = 0 and p0 = 0, such that there is no Doppler shift when driving the transitions
starting from the |i〉|p0 = 0〉x state, and the laser frequency is on resonance for the transitions
|i〉|p0 = 0〉x → |e〉| ± ~KL〉x (#1 → #7 and #1 → #11).

Stimulated emission from the excited state |e〉 to the initial state |i〉 increases the momen-
tum of the atom further by ±~KL, such that the atom is in the states |i〉|p0 ± 2~KL〉x (#14
and #19). For p0 = 0, these states are shifted in energy by h × 4∆νrec relative to the state
|i〉|p0 = 0〉x (state #1), since the kinetic energy increases by mD(2vrec)

2/2 = h×4∆νrec. As a
result, the laser is not on resonance anymore with the transitions |i〉|±2~KL〉x → |e〉|±~KL〉x
(#14→ #7 and #19→ #11), but is shifted from the resonance by 4∆νrec which is indicated
by the dashed horizontal lines. Thus, no resonant population transfer into states |i〉|±2~KL〉x
(#14 and #19) is possible. However, as we will see below, for a certain values of p0, the two-
photon transitions to these states can become resonant and lead to a large LFS.

From the excited states |e〉|p0 ± ~KL〉x (#7 and #11), the atom can either decay with a
rate Γef to the final states1 |f〉 (#8 and #12) giving rise to the signal (wiggly black dashed
arrows), or via a π backdecay (with a rate γei, wiggly dotted blue arrows) to the states |i〉
(#6 and #10), or via a σ backdecay (with a rate γei2 , wiggly dotted red arrows) to the states
|i2〉 (#9 and #13).

The decays from the excited 6P states |e〉 to the 1S ground states |f〉 are responsible for
the signal, which in simulations is obtained from the population of all the excited states |e〉.
The total decay rate Γ = Γe-1S + γe-2S from the 6P levels is a sum from the decay rate Γe-1S

to the 1S manifold and the decay rate γe-2S to the 2S manifold (2SF=1/2

1/2 and 2SF=3/2

1/2 states),
see Table 2.4 and Table 2.5. Note that we here restrict the decay channels of the 6P states
|e〉 only to the decays to the 2SF=1/2

1/2 states |i〉 and the 1S ground state |f〉, i.e. the decays to

the 2SF=3/2

1/2 levels with the rate γe-2S − (γei + γei2) are not included. This approximation is

justified by the fact that the 2SF=1/2

1/2 and 2SF=3/2

1/2 states are separated by 41 MHz � Γ, such

that the 2SF=3/2

1/2 states are only off-resonantly coupled to the 6P state manifold (see Fig. 2.2).
For the simulations of the light force shift, the decay rate Γef is set to the difference between
the total decay rate and the total effective backdecay rate: Γef = Γ − (γei + γei2). Thereby,
the linewidth of the excited levels matches the natural linewidth Γ.

The π and σ backdecays open additional state manifolds (shown in red), where again
the atomic internal and external states are changed by the interaction with the counter-
propagating laser beams. Similar to the state manifold with no backdecay, we consider only
momentum changes with up to two photon recoils (Nk,max = 2). The backdecays occur via
the spontaneous emission following the radiation pattern of the π or σ decays in all spatial

1Since the final states are not coupled by the laser beam, their momentum state is of no interest and is
therefore left out.
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directions. For the light force shift, only the projection onto the x direction matters. We
denote the momentum change along x due to the spontaneous backdecay as ∆pD,1 (π back-
decay) and ∆pD,2 (σ backdecay). The values are in the range ∆pD,1,∆pD,2 ∈ [−~KL, ~KL]
with normalized probability densities of (see Appendix A.3.3):

N x̂
π (∆pD,1) =

3

8

(
1 + ∆p2

D,1/(~KL)2
)

(π backdecays), (2.82)

N x̂
σ±(∆pD,2) =

3

16

(
3−∆p2

D,2/(~KL)2
)

(σ± backdecays), (2.83)

for |∆pD,1/(~KL)| ≤ 1 or |∆pD,2/(~KL)| ≤ 1, and N x̂
π (∆pD,1) = 0 or N x̂

σ±(∆pD,2) = 0 else.
We first discuss the LFS for certain values of p0 for fixed ∆pD,1 and ∆pD,2. Next, we evaluate
the LFS as a function of ∆pD,1 and ∆pD,2. Finally, we average the LFS over ∆pD,1 and ∆pD,2

according to the probability densities from above, and evaluate the result as a function of
p0. This result then corresponds to the LFS for a given atomic trajectory1 with a certain p0.
As discussed in Section 2.6.3, in our case the LFS for an atomic beam can be modelled as
an incoherent sum of delocalized atoms, i.e. plane waves with a certain initial momentum p0

along the x direction of the light grating. The signal contributions of Ntraj atom trajectories
(each having a certain value of p0) can then simply be summed to obtain the LFS for an
atomic beam, analogous to the ‘Big Model’ simulations described in Section 3.3.2.

2.6.5 Light force shift simulation results for single atomic trajectories

2.6.5.1 Light force shift for certain values of initial atomic momentum

We will see below that the effect of backdecay significantly affects the light force shift only
for p0 & 1.2~KL (which for example corresponds for vz = 200 m/s to the transverse angles
of δα ' vx/vz = p0/(mDvz) & 2.9 mrad). Though the contribution of the backdecay is
important for our accuracy goal, its effect is (for p0 & 1.2~KL) only on the order of few
kHz, which is less than a fraction of 10−3 of the natural linewidth (3.9 MHz). To discuss the
effect of the light force shift for p0 . 1.2~KL, which is predominantly produced by the state
manifold with no backdecay, we therefore first fix the values ∆pD,1 and ∆pD,2 to some specific
numbers (∆pD,1 = −0.86 ~KL and ∆pD,2 = −0.34 ~KL, which are two exemplary values from
the set of four points used below for the Gaussian quadrature to average over the backdecay
momenta).

The level scheme in Fig. 2.19 is used to derive the optical Bloch equations (master equa-
tion in the Lindblad form), which have been introduced in Section 2.5.3. Note that they
include possible quantum interference between the states shown in Fig. 2.192, but not the
effects from other electronic states, which are not taken into account in the LFS model, but
instead evaluated with the ‘Big Model’ (e.g. resolved quantum interference between the fine-
structure components or unresolved quantum interference between the hyperfine-structure
components).

1Note that since the “trajectory” has a certain p0, such a “trajectory” is in fact not localized. However, we
may still call such a case a “trajectory”, since, as discussed in Section 2.6.3, in our case the localized atomic
beam can be described as an incoherent sum of many delocalized “trajectories”, each with a certain p0.

2For example, the time evolution of the coherence between the states #7 and #11, ∆ρ7,11/∆t (where ρi,j
is the density matrix entry for states #i and #j) depends on the product of the coherence ρ6,10 and the cross-
damping constant γ6,10 between the states #6 and #10, which is a manifestation of quantum interference
(cross-damping).
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Figure 2.20: Similar to Fig. 2.19, but showing only state manifolds with no backdecay. The laser
detuning ∆ν2S-6P (gray dash-dotted line) is defined from the resonance frequency νA,0 +∆νrec between
the 2S (|i〉) and 6P (|e〉) states for zero p0, i.e. including the recoil shift. The detuning is here chosen
to be ∆ν2S-6P = −2∆νrec. Three cases of initial transverse momentum of the atom p0 are shown: (a)
zero p0 (as in Fig. 2.19) where no Doppler shift is present, (b) p0 = ~KL where the Doppler shift is
±2∆νrec, and (c) p0 = 3~KL resulting in a Doppler shift ±6∆νrec (see Eq. (2.85)). For the chosen
detuning, the case in (b) shows a resonance of the one-photon transition between the states #1 and
#7. Note that the two-photon transition between the states #1 and #14 is on resonance independent
of the detuning, which originates from the equal energies of states #1 and #14 (where the two photon
recoils lead to the reversed velocity of the atom but with the same magnitude such that its kinetic
energy remains unchanged). This case corresponds to the Bragg condition of an atomic matter wave
diffracted by the light grating, thereby resulting in a large light force shift. For other values of p0, the
states #1 and #14 always have different energies, and the resulting light force shift is much smaller.
The corresponding simulations of resonance lines along with the values for the light force shift ∆ν0,LFS

are shown in Fig. 2.21.

The energy between the states is determined by the internal electronic state energy dif-
ference and the kinetic energy difference. Therefore, the first-order Doppler shift and the
recoil shift are intrinsically included in the LFS model. Recall that we here define the laser
detuning ∆ν2S-6P to be the detuning from the frequency νA,0 + ∆νrec, i.e. for zero detuning
the recoil shift is taken into account. Fig. 2.20 illustrates three specific cases of the energy
differences between the levels for the state manifold with no backdecay.

Fig. 2.20(a) shows the case p0 = 0 which corresponds to the center level scheme of Fig. 2.19.
In constrast to Fig. 2.19, the detuning is here exemplarily set to ∆ν2S-6P = −2∆νrec, and thus
below the resonance. Since the transverse velocity of the atom is zero, there is no Doppler shift
of the transitions |i〉|0〉x → |e〉|±~KL〉x (#1→ #7 and #1→ #11). The levels |i〉|± 2~KL〉x
(#14 and #19) are shifted in frequency by 4∆νrec since the atomic velocity increases by
±2vrec and thus the shift due to the increase in kinetic energy is mD(2vrec)

2/2 = h× 4∆νrec.
Since Ω+ = Ω− ≡ Ω, the level scheme is symmetric and can effectively be reduced to only
three levels. This corresponds to a Λ system in the context of electromagnetically induced
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Figure 2.21: Examples of simulated resonance lines of the 2S
F=1/2
1/2 -6P1/2 transition in deuterium with

the light force shift model for the three cases of p0 shown in Fig. 2.20. The simulation points (black
markers) were obtained by numerically solving the optical Bloch equations using the level scheme
in Fig. 2.19 with ∆pD,1 = −0.86 ~KL and ∆pD,2 = −0.34 ~KL, P2S-6P = 30 µW, W0 = 2.2 mm,
v = 200 m/s. For the case of zero p0 shown in (a), the light force shift (LFS) can be estimated using
Eq. (2.84), resulting in ∆ν0,LFS ' −1 kHz. This agrees with the result from the fitted line center using
the Voigt (solid blue curve) fit function. The bottom plot shows the residuals, which are for the case
of zero p0 on the level 0.01% (not seen on the shown scale). For non-zero p0, two Doppler-shifted
resonance lines appear, though for p0 . 2~KL there are only partially resolved. Therefore, in (b)
and (c) the signal is also fitted with Voigt doublet (orange dashed curve) fit function, and the LFS
is calculated from the weighted mean of the two center frequencies according to Eq. (2.86). In (b),
the initial transverse atom momentum is equal to the recoil momentum, which results in a resonance
shown in Fig. 2.20(b) for the red-shifted transition and leads to a large LFS around 100 kHz. In (c), for
p0 = 3~KL, the Doppler-shifted peaks are well separated, and the small LFS of few kHz is dominated
by the backdecay (as demonstrated in Fig. 2.23 below).

transparency [153]1. In our case, as first pointed out by Lothar Maisenbacher2, one can
analytically derive from this Λ model that the light force shift ∆ν0,LFS of an atom with

1In the notation of Fig. 5 in [153], our case corresponds to: |1〉 = |i〉|0〉x (state #1), |3〉 = |e〉| ± ~KL〉x
(states #7 and #11), |2〉 = |e〉| ± 2~KL〉x (states #14 and #19), equal probe and control Rabi frequencies
Ωp = Ωc = Ω, detunings ∆1 = ω31 − ωp = ∆ν2S-6P and ∆2 = ω32 − ωc = 4∆νrec + ∆1, equal decay rates
Γ31 = Γ32 = Γef. Though the initial level scheme is the same, for electromagnetically induced transparency,
typically the case ∆1 = ∆2 with Ωc � Ωp is considered, which is not our case. However, as pointed out
by Lothar Maisenbacher (private communication, unpublished), our case can be related to the approximated
solution found in [153], where the probe field is treated as a weak perturbation to the system (such that no
significant amount of population is transferred into state |3〉). The absorption is given by the imaginary part
of the linear susceptibility χ(1), from which for our case the light force shift can be deduced.

2Private communication (unpublished).



64 2. Theory and Simulations of the 2S-6P Transition in Atomic Deuterium

transverse velocity much smaller than the recoil velocity (p0 � ~KL) is given by:

∆ν0,LFS(p0 � ~KL) = − |Ω|2

16 ∆νrec
× 1

1− p2
0/(~KL)2

. (2.84)

The above equation predicts a negative shift for p0 ' 0. Interestingly, one may expect a
negative shift from the “naive” semi-classical picture: for negative detunings ∆ν2S-6P < 0,
the light force drives the atoms to positions where the intensity has a maximum, whereas
for positive detunings ∆ν2S-6P > 0, the atoms are attracted to the intensity minima (see
discussion below Eq. (3.16) in [149]). Therefore, there are more atoms for ∆ν2S-6P < 0 which
interact with the intensity maxima, and the signal has a maximum for ∆ν2S-6P < 0 such that
the center frequency is shifted towards the negative frequency, which results in a negative
light force shift ∆ν0,LFS < 0.

The simulated resonance line of the 2S
F=1/2
1/2 -6P1/2 transition in deuterium for zero p0 is

shown in Fig. 2.21 (black points). The 2S-6P laser parameters are P2S-6P = 30 µW and W0 =
2.2 mm, which results in an average intensity of I2S-6P∼P2S-6P/(πW

2
0 )∼ 2 W/m2, yielding the

Rabi frequency Ω∼ 90 kHz together with Ω0 from Table 2.4 and Eq. (2.24). With ∆νrec '
589 kHz the above equation predicts ∆ν0,LFS(p0 = 0)∼ − 1 kHz, which is in agreement with
the value from Fig. 2.21(a), where the light force shift ∆ν0,LFS is given by the center frequency
of the Voigt fit function. The fit residuals shown in the bottom are on the level of 0.01% (not
resolved on the shown scale), demonstrating that the lineshape is well described by the Voigt
function. This shows that, if the atomic beam can be collimated such that p0 � ~KL for all
possible atomic trajectories, the LFS is a small effect, which can easily be evaluated. However,
for our atomic beam this is not the case, such that there are trajectories with p0 & ~KL. This
case requires a careful detailed examination of the LFS as presented in this thesis. In the
future, it may be possible to collimate the atomic beam better using electrostatic quadrupole
fields, which quench the metastable 2S atoms inside the 1S-2S preparation laser beam without
clipping the laser beam, thereby reducing the LFS.

For non-zero p0, the levels |e〉|p0± ~KL〉x (#7 and #11) are shifted in opposite directions
by the first-order Doppler shift given by

∆νD = ±vx
νA,0
c

= ±p0
νA,0
cmD

= ±p0
vrec

h
= ±2N~K∆νrec, (2.85)

where in the last step we expressed the initial momentum in terms of N~K photon recoils,
p0 = N~K~KL. We can then use a Voigt doublet fit function (sum of two Voigt functions
with different center frequencies), and characterize the LFS ∆ν0,LFS as the mean from the two
center frequencies ν0,− and ν0,+ weighted with the amplitudes A− and A+ of the red-shifted
and blue-shifted resonances:

∆ν0,LFS =
A−ν0,− +A+ν0,+

A− +A+
. (2.86)

The two Doppler-shifted resonances are well resolved if their separation 2|∆νD| is larger than
the natural linewidth: 2|∆νD| & Γ2S-6P = 3.9 MHz. This condition corresponds to p0 & 2~KL,
such that 2|∆νD| ' 8∆νrec ' 4.7 MHz > Γ2S-6P. For p0 . 2~KL, the two Doppler-shifted
resonances are only partially resolved.

For p0 = ~KL, the energy of the state #14 (|i〉| − ~KL〉x) after two recoils reducing the
transverse velocity of the atom is equal to the energy of the initial state #1 (|i〉|~KL〉x),
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since the kinetic energy remains unchanged, as shown in Fig. 2.20(b). The red-shifted one-
photon transition from state #1 to state #7 is resonant for the detuning ∆ν2S-6P = −2∆νrec.
However, the two-photon transition from state #1 to state #14 is resonant independent of
the detuning (which corresponds to the two-photon Raman process), such that the atoms
can be efficiently pumped from the state #1 (|i〉|~KL〉x) into the state #14 (|i〉| − ~KL〉x).
This situation corresponds to the Bragg condition for an atomic wave which is resonantly
diffracted on the light grating. Fig. 2.21(b) shows the simulated resonance line for this case:
since the signal originates from the number of atoms in the excited states #7 and #11 (|e〉|0〉x
and |e〉|2~KL〉x), more atoms contribute to the signal for positive detuning than for negative
detuning. For negative detuning1, the atoms are most efficiently “pumped” into the state
#14 (|i〉| − ~KL〉x). Consequently, the LFS is largest for atoms with p0 near ~KL, here on
the order of ∆ν0,LFS∼ 100 kHz.

The level scheme in Fig. 2.20(c) shows the case p0 > ~KL exemplarily for p0 = 3~KL. Since
all the involved states have different energies, there is no detuning for which two transitions
can be resonantly excited2. Consequently, the LFS is smaller again as shown in Fig. 2.21(c).
The two Doppler-shifted peaks are well resolved here. Note that the Voigt doublet (orange)
fit function does not describe the signal shape perfectly as residuals on the level of 0.1% are
clearly visible. From Fig. 2.23, which is discussed below, we will see that the for p0 & 1.2~KL

the LFS is caused by the possible backdecays to the initial state, whereas for p0 . 1.2~KL

the effect of backdecay is negligible.

2.6.5.2 Light force shift as a function of backdecay momenta

Let us now consider the LFS as a function of the backdecay momenta ∆pD,1 ∈ [−~KL, ~KL] to
the π backdecay state manifold and ∆pD,2 ∈ [−~KL, ~KL] to the σ backdecay state manifold.
Fig. 2.22 shows the LFS as a function of ∆pD,1 in (a) and as a function of ∆pD,2 in (b), where
the backdecay momentum to the other state manifold is fixed at −0.5~KL (dashed curve),
zero (solid curve), or 0.5~KL (dotted curve). Different colors represent different values of
initial transverse momentum: p0 = 0 (blue), p0 = 0.5~KL (orange), and p0 = 3~KL (red).

For p0 < ~KL, it is possible that in the level structure of the backdecay state manifolds
(red in Fig. 2.19) two states have the same energy. In this case, a resonant behavior of the LFS
can occur similar to the state manifold with no backdecay for p0 = ~KL shown in Fig. 2.20(b).
Therefore, for ∆pD,1 = −p0 and ∆pD,2 = −p0, a resonance in the LFS is visible. However,
since the backdecay manifold is only a “second-order” effect of the overall LFS, the resonance
changes the LFS by < 5 kHz, which is small compared to the “first-order” effect of the LFS for
p0 = ~KL, where ∆ν0,LFS∼ 100 kHz. Because the effective σ backdecay rate (with momentum
change described by ∆pD,2) is around a factor of two smaller (see Table 2.6) than the effective
π backdecay rate (with momentum change described by ∆pD,1), the influence of the resonance
is smaller in (b) than in (a). Averaged over the whole range of ∆pD,1 or ∆pD,2, the resonance
does not contribute significantly to the average value. Apart from the resonance, the LFS
stays approximately constant as ∆pD,1 or ∆pD,2 are varied, and is approximately equal to

1Note that the state population dynamics is more complicated as may seem at a first glance: for ∆ν2S-6P =
−2∆νrec, atoms are efficiently brought into the state #7, but in this case also the losses to the ground state are
largest. The “pumping” from state #1 into state #14 can be analyzed by evaluating the population in state
#14. This analysis shows that the population in state #14 is maximal for negative detunings ∆ν2S-6P < 0,
but not necessarily for ∆ν2S-6P = −2∆νrec.

2Note that here we only consider states with the momentum change by max. ±2~KL. If states with larger
momentum changes are inclluded in the model, there are more possible resonances.
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Figure 2.22: Light force shift ∆ν0,LFS of the 2S
F=1/2
1/2 -6P1/2 transition in deuterium as a function of

the π and σ backdecay momenta, ∆pD,1 and ∆pD,2, respectively. The simulations were performed by
numerically solving the optical Bloch equations using the level scheme in Fig. 2.19 with parameters
P2S-6P = 30 µW, W0 = 2.2 mm, vz = 200 m/s. In (a), ∆pD,1 is varied while ∆pD,2 is fixed to −0.5~KL

(dashed curve), zero (solid curve), or 0.5~KL (dotted curve). In (b), the situation is reversed and
∆pD,2 is varied while ∆pD,1 is fixed. Three cases of the initial transverse momentum p0 are shown in
different colors: p0 = 0 (blue), p0 = 0.5~KL (orange), and p0 = 3~KL (red). For p0 = 0, ∆ν0,LFS is
determined from a Voigt fit to the simulated resonance line (as in Fig. 2.21(a)), whereas for the latter
two cases with p0 > 0, ∆ν0,LFS is determined from Eq. (2.86) using a Voigt doublet fit. For p0 < ~KL,
a resonant behavior of the LFS is visible for ∆pD,1 = −p0 and ∆pD,2 = −p0, where a resonant level
structure is formed in the backdecay state manifold similar to the case p0 = ~KL for the state manifold
with no backdecay (see Fig. 2.20(b)).

the value with the backdecay not taken into account (where only the state manifold with no
backdecay is considered). As the comparison of the LFS with and without backdecay taken
into account demonstrates below (see Fig. 2.23), for p0 . 0.8~KL the backdecay changes the
LFS only by a small fraction of the overall LFS.

For p0 ' ~KL, the LFS is dominated by the resonant Bragg diffraction discussed in
Fig. 2.20(b) and Fig. 2.21(b), such that the LFS is largest in this regime. For the chosen
parameters (P2S-6P = 30 µW, W0 = 2.2 mm, vz = 200 m/s), the value of the LFS is around
100 kHz for p0 = ~KL. The backdecay state manifolds play an even less significant role in
this regime compared to p0 . 0.8~KL, and therefore this case is not considered in Fig. 2.22
as the LFS is mostly independent of ∆pD,1 and ∆pD,2 (see also Fig. 2.23 below).

For p0 & 1.2~KL, the backdecay is the dominant contribution to the LFS (as demonstrated
in Fig. 2.23 below). Fig. 2.22 exemplarily shows for p0 = 3~KL (red curves) that the LFS
smoothly changes by few kHz as ∆pD,1 or ∆pD,2 are varied.
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Figure 2.23: Light force shift ∆ν0,LFS (LFS) of the 2S1/2-6P1/2 transition in deuterium (blue solid
curves) and hydrogen (green solid curves) as a function of the initial transverse momentum of the atom
p0, which is given in units of the photon momentum ~KL. The LFS is determined from Eq. (2.86),
using a Voigt doublet function to fit the resonance lines simulated by numerically solving the optical
Bloch equations with the level scheme from Fig. 2.19 with parameters P2S-6P = 30 µW, W0 = 2.2 mm,
vz = 200 m/s. For each value of p0, the result was averaged over the backdecay momenta according
to the probability density for the corresponding radiation pattern, see Eq. (2.82) and Eq. (2.83)
(for hydrogen, only the π backdecay occurs). Gray and black dotted lines show the results with no
backdecay, i.e. when only the state manifold with no backdecay (black in Fig. 2.19) is included into
the equations. From the comparison in (a) between the LFS with and without backdecay it is clear
that the backdecay significantly influences the LFS only for p0 & 1.2~KL. The slightly higher effective
backdecay rates in deuterium (see Table 2.6) lead to a slightly increased LFS compared to hydrogen for
p0 & 1.2~KL. For p0 ≈ 0, the LFS is around a factor of two larger for deuterium compared to hydrogen
due to the smaller recoil shift (see Table 2.4) and the scaling according to Eq. (2.84). In (b), the LFS
around the sharp resonance for p0 = ~KL (where the backdecay has no significant effect) is smaller in
deuterium compared to hydrogen, which is also related to the smaller recoil shift as described in the
main text.

2.6.5.3 Light force shift averaged over the backdecay momenta

To compute the LFS for an atom with a given p0, the LFS from Fig. 2.22 needs to be averaged1

over the backdecay momenta ∆pD,1 and ∆pD,2 using probability densities from Eq. (2.82) and
Eq. (2.83). These results are shown in Fig. 2.23 and Fig. 2.24.

Fig. 2.23 compares the LFS of the 2S1/2-6P1/2 transition between deuterium and hydrogen,
each with (blue and green solid curves) and without (gray and black dotted curves) the
backdecay. Note that the effective Rabi frequencies are the same2 in hydrogen and deuterium
(see Table 2.4). Therefore, the simulations were performed for the same parameters of the
2S-6P laser beam (power P2S-6P = 30 µW, waist W0 = 2.2 mm), and the same z-velocity of

1The averaging can be efficiently performed with a Gaussian quadrature using only four points (at ∆pD,1/2 '
±0.34 ~KL and ∆pD,1/2 ' ±0.86 ~KL). However, if at these points a resonance is present (e.g. for p0 ' 0.34~KL

or p0 ' 0.86~KL), this averaging leads to artifacts.
2This is true for low laser powers, i.e. in the low excitation regime, which we consider here. For higher laser

powers, because of its higher Rabi frequency, the 2S
F=1/2

1/2 -6P
F=3/2

1/2 transition in deuterium saturates at lower

power compared to the 2S
F=1/2

1/2 -6P
F=1/2

1/2 transition. Therefore, as soon as saturation plays a role, the effective

Rabi frequency for the 2S
F=1/2

1/2 -6P1/2 in deuterium may be different compared to the Rabi frequency of the
2S1/2-6P1/2 transition in hydrogen. Here we neglect these saturation effects.
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the atom vz = 200 m/s.

The results without backdecay (gray and black dotted curves) were obtained by including
only the black center level scheme from Fig. 2.19 (state manifold with no backdecay) into the
optical Bloch equations. Fig. 2.23(a) shows that for p0 & 1.2~KL, the backdecay significantly
contributes to the LFS. For p0 & 3~KL, the LFS is nearly zero if the backdecay is ignored,
whereas with backdecay the LFS stays at 2 − 3 kHz. Since the effective backdecay rates in
deuterium (see Table 2.6) are slightly higher compared to hydrogen, the LFS is also slightly
higher in deuterium in this regime.

For p0 ≈ 0, the LFS scales with 1/∆νrec, see Eq. (2.84). Due to the two times larger mass
of the atom and thus two times smaller recoil shift (see Eq. (2.81)), the LFS is two times larger
for deuterium for zero p0. However, for p0 ' ~KL, the smaller recoil shift leads the smaller
LFS in deuterium compared to hydrogen, as shown in Fig. 2.23(b). This can be intuitively
understood by recalling Fig. 2.20(b): for the larger recoil shift in hydrogen, the separation
between the two Doppler-shifted resonances is larger for p0 = ~KL. Therefore, the misbalance
in the signal between the red- and blue-shifted resonances due to the resonant behavior of the
LFS is expected to lead to a larger shift of the center frequency compared to the case where
the separation between the resonance lines is smaller in deuterium. However, note that due to
the larger mass of deuterium, the LFS resonance at p0 = ~KL occurs approximately at a two
times smaller transverse angle δα ' vx/vz = p0/(mDvz) (for vz = 200 m/s: δα ' 4.8 mrad for
hydrogen and δα ' 2.4 mrad for deuterium). Therefore, in an atomic deuterium beam with
an angular spread of around ±5 mrad, such as in our experiment, more atoms are subject to
this large shift compared to hydrogen (see Fig. 3.11(c) for a typical distribution of δα in our
atomic beam).

Fig. 2.24(a) and (b) show how the LFS depends on the velocity vz of atoms along the
z direction perpendicular to the light grating along x. Since the transverse velocity vx is
much smaller than vz (p0 . 4~KL corresponds to vx . 4 m/s for hydrogen and . 2 m/s for
deuterium), vz approximately corresponds to the speed of the atoms v ≈ vz. Smaller atomic
speeds lead to a longer interaction time with the light grating, such that the LFS is generally
larger for smaller vz (i.e. compare the red curve for vz = 100 m/s with the green curve for
vz = 250 m/s). However, for p0 . 0.8~KL, the LFS is mostly independent of vz being even
slightly smaller for slower atoms.

Fig. 2.24(c) and (d) compare the LFS between the 2S1/2-6P1/2 (solid curves, crossed mark-
ers) and the 2S1/2-6P3/2 (dotted curves, circular markers) transitions in deuterium. Further-
more, the result is shown for different laser powers to demonstrate that the LFS increases with
higher laser power as intuitively expected (and predicted by Eq. (2.84) for the case of zero
p0). Since the effective dipole moment is

√
2 larger for the 2S1/2-6P3/2 transition compared to

2S1/2-6P1/2 transtion (compare Table 2.4 with Table 2.5), the laser power is chosen a factor
of two smaller for the 2S1/2-6P3/2 transition compared to the 2S1/2-6P1/2 transition, such
that the Rabi frequencies are equal for the two transitions. As expected from the discussion
of the backdecay contribution in Fig. 2.23, the LFS is almost equal for the 2S1/2-6P3/2 and
2S1/2-6P1/2 transitions in the regime p0 . 1.2~KL where the backdecay does not significantly
contribute to the result. In the opposite regime, for p0 & 1.2~KL, where the backdecay is the
dominant contribution, the LFS is approximately twice as large for the 2S1/2-6P3/2 transition
compared to the 2S1/2-6P1/2 transition (for equal Rabi frequencies, i.e. compare the same
colors). Recalling Table 2.6, this difference originates from the two times higher effective
backdecay rate.
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Figure 2.24: Similar to Fig. 2.23, here showing the light force shift of the 2S
F=1/2
1/2 -6P1/2 and 2S

F=1/2
1/2 -

6P3/2 transitions in deuterium for different velocities and laser powers. In (a) and (b), the LFS

is evaluated for the 2S
F=1/2
1/2 -6P1/2 transition for the laser power of P2S-6P = 30 µW (beam waist

W0 = 2.2 mm) for different velocities, ranging from 100 m/s (red) to 250 m/s (green). The LFS is
larger for lower velocities due to the longer interaction time in the light grating. In (c) and (d), the
LFS is simulated for the 2S-6P1/2 (solid curves, crossed markers) and 2S-6P3/2 (dotted curves, circular
markers) transitions for three different laser powers. The laser powers are chosen a factor of 2 smaller
for the 2S-6P3/2 transition to compensate for the

√
2 larger dipole moment (compare Table 2.4 and

Table 2.5), thereby equalizing the Rabi frequencies for the 2S1/2-6P1/2 and 2S1/2-6P3/2 transitions.
The LFS is then equal for the 2S-6P1/2 and 2S-6P3/2 transitions for p0 . 1.2~KL where the backdecay
does not significantly influence the result. For p0 & 1.2~KL the LFS is approximately a factor of 2
larger for the 2S-6P3/2 transition due to the larger backdecay rate (see Table 2.6).

2.6.6 Light force shift simulation results for an atomic trajectory set

In the previous section, the light force shift has been calculated for a single atomic trajectory
in dependence on the speed and transverse momentum assigned to the trajectory. In order to
model the light force shift for the atomic beam, first a Monte Carlo simulation of trajectories is
performed, as described in Section 3.3.1. Then, for each of the trajectories the signal resonance
line is simulated using the optical Bloch equations with the level scheme from Fig. 2.18. The
total signal is then calculated from the incoherent sum of individual trajectory signals. The
simulation is performed for the time-resolved detection (see Section 3.1.1), such that the total
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Figure 2.25: Light force shift of the 2S
F=1/2
1/2 -6P1/2 transition in hydrogen (green) and deuterium

(blue) for the Monte Carlo simulation of atomic beam trajectories (see Section 3.3.1). For each of the
106 trajectories, the signal is calculated from a single trajectory with a certain speed and transverse
momentum using the optical Bloch equations with the level scheme from Fig. 2.18. The total time-
resolved signal from all trajectories is summed from the signal of individual trajectories and grouped
into 16 delays, each having a certain mean speed (see Table 3.2). The simulation parameters are
TN = 7.1 K, vcutoff = 100 m/s, P1S-2S = 1.5 W, ∆ν1S-2S = 0.8 kHz, along with the fixed parameters
from Table 3.1. Similar to Fig. 2.23, gray and black dotted lines show the results with no backdecay,
i.e. when only the state manifold with no backdecay (black in Fig. 2.19) is included into the equations.

signal is grouped into 16 delays, each having a certain mean speed (see Table 3.2). Fig. 2.25
exemplarily shows the result of such simulation with following parameters: nozzle temperature
TN = 7.1 K, cutoff-velocity vcutoff = 100 m/s, 1S-2S intra-cavity laser power P1S-2S = 1.5 W,
1S-2S frequency detuning ∆ν1S-2S = 0.8 kHz, along with the fixed parameters from Table 3.1.
The light force shift simulation is performed for hydrogen (green) and deuterium (blue). In
order to directly compare hydrogen and deuterium, the same trajectory set has been used
for hydrogen and deuterium1. For deuterium, because of the smaller recoil velocity, there
are more atoms with p0 > ~KL, which experience a positive shift. The light force shift is
therefore shifted towards the positive frequency shift compared to hydrogen. Furthermore,
the light force shift for deuterium is similar to the case for hydrogen with an offset angle,
where a similar situation occurs with more atoms subject to a positive shift (see Fig. 6.6 of
[71]). Similar to Fig. 2.23, gray and black dotted lines in Fig. 2.25 show the results with
no backdecay, i.e. when only the state manifold with no backdecay (black in Fig. 2.19) is
included into the equations. For deuterium, the backdecay has less effect because more atoms
experience a larger shift near the resonance, which is independent of the backdecay.

1Note that for the typical simulation parameter set for hydrogen, the trajectory distribution is very similar
to deuterium, since for hydrogen the nozzle temperature is typically set to TN = 4.8 K, which compensates the
mass difference between the two isotopes (compare Fig. 3.11 with Fig. 5.4. from [71]).



Chapter 3

Hydrogen and Deuterium 2S-6P
Spectrometer Apparatus

This chapter presents the apparatus for performing precision spectroscopy of the 2S-nP tran-
sitions in hydrogen and deuterium. The apparatus is based on the work of several generations
of doctoral students, since the late 1980s, and has been used for various transition frequency
measurements, as for instance the celebrated 1S-2S measurement [57]. Starting from 2011,
the apparatus was modified to measure the 2S-4P transition, culminating in the important
result for the proton radius puzzle [14]. Since 2015, the apparatus was upgraded for the
2S-6P transition. Many details of this apparatus have been covered in the recent thesis by
Lothar Maisenbacher [71], which is referenced wherever some part is described only in brevity
here. In this thesis, the focus lies on the specific differences for the deuterium measurement,
while other parts are presented as an overview. Furthermore, the improved active fiber-based
retroreflector, which is integrated into the apparatus for the suppression of the first-order
Doppler shift, is detailed in the next chapter, since it presents a major contribution of this
thesis and can be treated as a separate topic.

Section 3.1 sets the stage for the rest of the chapter: after the main components of the
apparatus are summarized, the key technique of the time-resolved detection for selecting
different velocity groups of atoms is explained. Thereafter, the vacuum assembly of the
apparatus is presented.

Section 3.2 covers the 1S-2S (243 nm, see Section 3.2.1) and 2S-6P (410 nm, see Sec-
tion 3.2.2) laser systems of the experiment. These narrow linewidth lasers along with the hy-
drogen maser-referenced frequency comb measurement of laser frequencies (see Section 3.2.3)
are the major ingredients of precision spectroscopy.

The numerical modeling of the experiment, outlined in Section 3.3, is necessary to simu-
late the mean velocity of the atoms contributing to the signal observed in the time-resolved
detection, and therefore is crucial to the whole apparatus. Furthermore, simulations allow to
study various systematic effects.

Magnetic and electric fields may lead to systematic Zeeman and dc-Stark shifts, which
disturb the precision spectroscopy. Therefore, Section 3.4 describes the magnetic field sup-
pression and presents measurements of the magnetic field in the interaction region. Section 3.5
presents the fluorescence detector, which is also used for in-situ measurements of stray electric
fields in the interaction region. In addition, Section 3.5.3 shows the observed non-linearity
of the fluorescence detector during the deuterium 2S-6P measurement in July 2021, which is
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important for the interpretation of the measured amplitude ratio of the time-resolved signal
delay groups.

In Section 3.6, the formation of the cryogenic deuterium atomic beam in the metastable
2S state is discussed. This part of the apparatus reveals the main experimental differences be-
tween hydrogen and deuterium spectroscopy. As explained in Section 3.6.1 and demonstrated
in Section 3.6.2, the formation of the cryogenic hydrogen and deuterium atomic beams is
highly sensitive to the nozzle temperature, with a different optimal temperature for the two
isotopes. To this end, a high performance liquid-helium flow cryostat has been installed in
February 2020 in the apparatus, which is described in Section 3.6.3.

3.1 Overview of the apparatus and vacuum system

Fig. 3.1 schematically presents an overview of the hydrogen and deuterium 2S-nP experiment
(not to scale). Hydrogen (H) or deuterium (D) atoms (symbolized by black arrows) are
injected into a T-shaped copper nozzle NZ which, depending on the isotope, is cooled to a
temperature around 5-7 K using a liquid helium-flow cryostat (see Section 3.6 for details).
Atomic beam apertures are properly placed to constrain the atomic beam emerging from the
nozzle with a diameter of 2.0 mm. The entrance aperture EA is a circular aperture with a
fixed diameter of 2.4 mm placed at a distance of 69.0 mm after the nozzle. As described in
Section 3.1.2 and shown in Fig. 3.3 in more detail, this entrance aperture separates the high-
vacuum region from the main chamber region. Another aperture VA is placed at a distance
of 153.6 mm after the nozzle, which has a fixed height of 2.0 mm and a variable width typically
aligned to 1.2 mm.

The atomic beam is superimposed with the 1S-2S preparation laser beam PB with a
wavelength of 243 nm which excites the ground state atoms into the metastable 2S state. To
enhance the laser power and enable the Doppler-free two-photon excitation from counter-
propagating beams, a cavity is formed by the input coupler (also called incoupler) IC and
output coupler (also called outcoupler) OC mirrors separated by 355 mm. The incoupler is
a flat mirror with a reflectance of ∼ 97% (transmission 1.7(1)%, and ∼ 1% losses), while the
outcoupler is a curved HR mirror with a radius of 4 m and a reflectance of ∼ 99% (transmission
of ∼ 1× 10−4, and ∼ 1% losses), which results in a 1/e2 beam waist radius of around 0.3 mm.
The power enhancement of PE∼ 30 − 40 leads to around 1 − 2 W of 243 nm laser power
inside the cavity for 30-50 mW input power before the cavity and a finesse of F ∼ 150− 200,
which strongly depends on the degradation of the mirrors throughout the experiment time (to
prevent the degradation, the cavity mirrors can be flushed with oxygen in the future, which
requires differential pumping). The 1S-2S 243 nm cavity is treated in detail in Section 3.2.1.1.

The 410 nm laser beam for the 2S-6P excitation emerges from a polarization-maintaining
(PM) fiber SF and is collimated using a four-lens collimator SC resulting in a 1/e2 beam
width radius of 2.2 mm. The 2S-6P excitation takes place in the spectroscopy region SR
where the 2S-6P laser beam crosses the atomic and 243 nm beams at a distance of 204 mm
from the nozzle. The crossing angle is set to approximately 90◦ in order to suppress the
first-order Doppler shift. Furthermore, the beam is retroreflected by the high-reflectivity
(HR) mirror HR in order to additionally suppress the Doppler shift. This retroreflection
is precisely adjusted and actively stabilized, such that the above parts form the improved
active-fiber based retroreflector (AFR) which is treated in Chapter 4.

The signal originates mainly from Lyman-ε fluorescence photons produced by the decay
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Figure 3.1: Schematic overview of the hydrogen and deuterium 2S-6P spectroscopy experiment (not to
scale). Note the coordinate system in the upper right corner of the figure for comparison with Fig. 3.3
for a drawing of the vacuum assembly, Fig. 3.4 for the photograph of the vacuum assembly as well as
Fig. 4.2 for a detailed drawing of the active fiber-based retroreflector. Hydrogen (H) or deuterium (D)
atoms (indicated by black arrows) escape from the copper nozzle NZ and are constrained by the atomic
beam apertures EA and VA , where the width of the latter is variable (indicated by gray arrows).
The atomic beam is superimposed with the 243 nm preparation laser beam PB for the Doppler-free
two-photon 1S-2S excitation inside the 243 nm cavity formed by the incoupler IC and outcoupler OC
mirrors. The 410 nm laser beam for the 2S-6P excitation, taking place in the region SR where both
laser beams cross, emerges from the polarization-maintaining (PM) fiber SF and is collimated with
the four-lens collimator SC . The 2S-6P laser beam crosses the atomic beam at an angle of 90◦ and
is retroreflected by the high-reflectivity HR mirror to suppress the first-order Doppler-shift. These
are the key ingredients of the active fiber-based retroreflector (AFR) treated in Chapter 4. The 2S-
6P spectroscopy signal emerges from the fluorescence photons γ (mainly with a wavelength of 94 nm
arising from the decay of the short-lived 6P state with a lifetime of 41 ns to the 1S ground state), which
passes the Faraday-cage mesh and hits the aluminum wall of the cylindrical detector. The electron
e− generated by the photoelectric effect is pulled into the channeltron electron multiplier (CEM),
resulting in a measurable electronic pulse either at the top detector TD or at the bottom detector
(not shown here). The key technique of the experiment is to perform this detection time-resolved and
triggered to the chopper wheel which periodically stops the 1S-2S excitation, see Section 3.1.1. The
signal is divided into subsequent delay time groups, thereby probing different velocity groups of atoms.

from the short-lived 6P state to the 1S ground state (branching ratio of 88%) which have
a wavelength of 94 nm in the extreme ultraviolet. These photons reach the cylindrical alu-
minum detector walls (diameter 26.2 mm) through the Faraday-cage meshes, which shield the
interaction region from electric fields arising from the high-voltage applied to the channel-
tron electron multipliers (CEM). Through the photoelectric effect, the fluorescence photons
eject electrons from the aluminum, which are pulled into the CEM and ultimately result in
electronically counted pulses. Only the top detector TD is shown in Fig. 3.1.

The key technique of the experiment, invented by D. Leibfried [154], is to periodically
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Figure 3.2: Time-resolved detection of the deuterium 2S-6P fluorescence signal. (a) The purple line
shows the 243 nm transmission (in a.u.) over the delay time τ : the 1S-2S excitation is periodically
stopped with a frequency of 160 Hz resulting in a time period of 3125 µs when no more 2S atoms are
being generated. Starting from the time point when the laser light is switched off (τ = 0 µs), the
channeltron electron multiplier (CEM) detectors are switched on, with the signal being counted in
5 µs bins over the delay time (black data points). The counts are summed over 160 chopper cycles
corresponding to 1 s, and then grouped into 16 delays, with the delays 2 (blue), 13 (orange), and 16
(red) marked here. (b) The time-resolved detection from (a) is repeated for 30 different frequency
detunings (the data in (a) shows the signal on resonance), resulting in resonance lines (‘line scans’)
for each delay. Different delays correspond to different velocity groups of atoms: longer delays (longer
waiting times after the 2S excitation is blocked) correspond to atoms with lower mean velocity v
since the faster 2S atoms escape the detection region. The mean velocity is obtained from numerical
modelling of the experiment, see Section 3.3 and Table 3.2.

block the 1S-2S excitation beam by a chopper wheel and to record the time-resolved signal
during the triggered time periods (delays) when the 1S-2S laser light is blocked. As soon as
the 1S-2S excitation light is blocked, the faster 2S atoms begin to escape the 2S-6P interaction
region, such that with increasing delay times slower 2S atoms are probed. Grouping the signal
into subsequent delay times allows then to access different velocity groups of probed atoms,
which is described in the next section.

3.1.1 Time-resolved detection

Fig. 3.2 demonstrates the time-resolved detection of the 2S-6P fluorescence signal. The chop-
per is operated at a frequency of 160 Hz, resulting in a ‘bright’ phase of 3125 µs, where the
243 nm light is on, and a ‘dark’ phase of 3125 µs, where the 243 nm light is off. The purple
line in Fig. 3.2(a) shows the transmission of the 243 nm cavity (in a.u.) over the delay time
τ which is here defined such that the bright phase lasts from τ = −3125 . . . 0 µs and the dark
phase from τ = 0 . . . 3125 µs.

During the bright phase the detectors are switched off using a high-voltage (HV) switch,
since the high count rate on the order of 10 Mcts/s from photoionization of 2S atoms (pro-
ducing 1.7 eV electrons) would otherwise saturate the detectors (see Sec. 4.6 in [71]). There is
a small delay of 2 µs of the falling chopper trigger such that the HV switch rises at τ = 2 µs.
The rise-time of the CEM is on the order of 5 µs.

The signal is recorded in 1024 time bins with 5 µs each (black data points) ranging from
τ = 0 . . . 3125 µs in the dark phase and τ = −3125 . . .−1130 µs in the bright phase to verify
the detector switching (not shown here). The signal is summed over 160 chopper cycles
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corresponding to 1 s gate time. Starting from τ = 10 µs to τ = 2560 µs the signal of the dark
phase is grouped into 16 delays, with delay 2 (blue), 13 (orange), and 16 (red) examplary
marked in Fig. 3.2(a). The data for the remaining time of the dark phase does not show any
signal, but is nevertheless always recorded.

The detection in Fig. 3.2(a) is shown examplary for the frequency point on resonance,
and is repeated for 30 different frequency points to measure the resonance line (‘line scan’)
of the 2S-6P transition, as shown in Fig. 3.2(b). Thereby, a resonance line center frequency
is determined for each delay corresponding to different velocity groups of atoms. As soon as
the 243 nm laser beam is blocked and hence the 2S excitation is stopped, the 2S atoms start
to escape the detection region such that longer delay times correspond to slower atoms. To
find the mean velocity of atoms for each delays, numerical modelling of the experiment is
used, see Section 3.3 and Table 3.2 for the summary of the delay times and mean velocities
of atoms for a given parameter set.

Much effort was provided by Lothar Maisenbacher to write the data acquision software
in Python (‘Pythonic Hydrogen’) which controls the apparatus and records the time-resolved
data from the detectors, as well as photodetector voltages along with various auxiliary signals.
This software as well as many important details of triggering and high-voltage switching of
the detectors are described in Sec. 4.6 and 4.7 of his thesis [71].

3.1.2 Vacuum system

The vacuum assembly of the experiment is shown in Fig. 3.3 on a to-scale 3D engineering
drawing, while Fig. 3.4 shows a photograph of the assembled vacuum chamber. Note the
coordinate systems in corners of Fig. 3.1 (schematic overview), Fig. 3.3 (drawing of the vacuum
assembly), Fig. 3.4 (photograph) as well as Fig. 4.2 (detailed drawing of the active fiber-based
retroreflector) for comparison between the figures.

The cylindrical vacuum chamber has a diameter of 50 cm and a usable height of 33 cm, and
is pumped with a turbo pump1 to achieve a pressure of typically 10−6 mbar. The bottom part
of the chamber, separated from the upper part by the chamber floor FL , bears a cryopump2

CP which continuously cycles helium with an external compressor to cool the charcoal-
coated layers to the temperature of 19 K and thereby freeze common residual gases or remove
hydrogen and deuterium gas by cryosorption [155]. These compressing cycles occur on a
timescale of 1 s and lead to large vibrations on the whole setup. Therefore, the cryopump
needs to be periodically switched on and off on a timescale of ∼5 min during spectroscopy
measurements, such that data is only taken when the cryopump is off. The cryopump pumps
the high-vacuum region enclosed by the high-vacuum enclosure HV . This region is separated
from the main chamber vacuum by the circular entrance aperture EA of 2.4 mm diameter
and 1.0 mm length, as well as the output aperture OA of 7 mm diameter and 13 mm length.
However, to reduce the pressure in the main chamber before the start of experiment, as well
as to efficiently pump out the accumulated hydrogen or deuterium in the cryopump after the
operation of the experiment, the cryopump (high-vacuum) region is connected with the main

1Magnetically levitated turbo-pump, Pfeiffer HiPace 700 M, SN 16341623, with pumping speed / compres-
sion ratio of 685 l/s / > 1011 for nitrogen and 480 l/s / 2 × 105 for hydrogen. This pump was installed on
23.01.2020 to replace the similar hybrid bearing version (Pfeiffer HiPace 700, SN 1440995). The turbo pump
is connected to the Pfeiffer ACP40 multi-stage roots pump with 37 m3/h peak pumping speed at 1 mbar (also
the Edwards XDS35i scroll pump was used during the maintenance of ACP40).

2Leybold RPK 10000 with a pumping speed of 104 l/s for hydrogen and nitrogen, and 29×103 l/s for water.
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Figure 3.3: 3D engineering drawing of the hydrogen and deuterium spectrometer apparatus, see text
for description. The cylindrical vacuum chamber has a diameter of 50 cm. Note the coordinate system
in the upper right corner of the figure for comparison with Fig. 3.1 for a schematic overview, Fig. 3.4
for the photograph of the vacuum assembly as well as Fig. 4.2 for a detailed drawing of the active
fiber-based retroreflector. For even more details of the vacuum assembly, see Sec. 4.2 and Figs. 4.1
and 4.2 of [71]. AA α alignment actuator, AM variable aperture actuator, BD bottom detector,
BW 243 nm Brewster’s window, CP cryopump, CS cryostat, DT dissociator discharge tube, EA
high-vacuum entrance aperture, EB spacer bellows for the 243 nm enhancement cavity (EC), EM EC
mounting brackets to the optical table, ER EC spacer Invar rods, ET EC spacer tubes, FC 1S-2S
Faraday cage, FL cylindrical vacuum chamber floor, HV high-vacuum enclosure, IC piezo-actuated
243 nm incoupling mirror, MS magnetic shield, MW dissociator microwave cavity, NZ copper nozzle,
OA high-vacuum output aperture, OC 243 nm outcoupling mirror, PB atomic beam and 1S-2S
preparation laser beam, SB 2S-6P spectroscopy 410 nm laser beam, SR 2S-6P spectroscopy region,
TD top detector, TT polytetrafluoroethylene (PTFE or ‘Teflon’) tubing, VA variable aperture.

region via an additional bypass tube (seen in the lower right corner of Fig. 3.4) which can be
opened with a dedicated valve. When no hydrogen or deuterium is injected in the chamber, the
cryopump typically reduces the pressure in the high-vacuum region to ∼5× 10−8 mbar, while
with1 a hydrogen or deuterium flow2 of 0.35 mln/min the pressure is typically ∼2×10−7 mbar.
In the cryopump region, the hot cathode ion pressure gauge which is directly attached to the
chamber produces ∼100 cts/s background at the bottom detector and is therefore switched

1For the used hot cathode pressure gauges (Leybold ITR 200, ITR 90) there is a calibration factor of 2.4
between nitrogen and hydrogen. Therefore, with no hydrogen the value for nitrogen is most applicable, while
with hydrogen-dominated pressure the value is ∼2.4 × 8 × 10−8 mbar. Though there are differences in the
behavior of hot cathode gauges between hydrogen and deuterium [156], the relative factor between the actual
and measured pressure values is on the order of few percent [157], and therefore within the ±15% accuracy of
our pressure gauges.

2The unit mln/min gives the volumetric flow in ml/min referenced to normalized conditions defined to be
at a temperature of 0◦C and pressure of 1013.25 mbar. This is close to the conditions before the gas dosing
valve to the discharge, where the flow is measured.
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Figure 3.4: Hydrogen and deuterium spectrometer vacuum assembly photograph, see text for de-
scription. Note the coordinate system in the lower right corner of the figure as well as in the upper
photograph of the cryostat cold head for comparison with Fig. 3.1 for a schematic overview, Fig. 3.3
for the drawing of the vacuum assembly as well as Fig. 4.2 for a detailed drawing of the active fiber-
based retroreflector. AA α alignment actuator, AM variable aperture actuator, CC magnetic field
compensation coils, CS cryostat, DE detector electrodes connections, ER spacer Invar rods of the
243 nm enhancement cavity (EC), ET EC spacer tubes, FL cylindrical vacuum chamber floor, HR
high-reflectivity mirror of the active fiber-based retroreflector (AFR), HV high-vacuum enclosure, IC
piezo-actuated 243 nm incoupling mirror, MS magnetic shield, NZ copper nozzle, OC 243 nm out-
coupling mirror, SC four-lens fiber collimator of the AFR, SF polarization-maintaining fiber of the
AFR, TD top detector, TT polytetrafluoroethylene (PTFE or ‘Teflon’) tubing, TS nozzle tempera-
ture sensor, QB 2S-4P quench laser blade (for a possible future hydrogen/deuterium 1S-2S as well as
2S-6P deuterium initial state asymmetry measurements).

off during the measurement. Therefore, a second similar pressure gauge is attached via two
right-angle bends which produces a negligible background of < 1 cts/s and is kept on during
the measurement1.

The high-vacuum region is magnetically shielded with a high-permeability (mu-metal)
magnetic shield MS of 1 mm thickness2. Furthermore, the magnetic field compensation coils
CC placed outside the vacuum chamber (only shown in Fig. 3.4) reduce the magnetic field

1For typical measurement conditions, i.e. with operating cryopump, cold nozzle, and hydrogen/deuterium
flow of 0.35 mln/min, the directly attached pressure gauge measures a factor of 0.6 − 0.7 lower pressure than
the one connected over two right-angles.

2Custom manufacturing by Meca Magnetic. The mumetal has a permeability of 3−4×105 (for a continuous
field) and consists of 80% nickel, 15% iron, and 5% molybdenum (with < 1% traces of carbon, silicon and
manganese).
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inside the 2S-6P spectroscopy region SR to below 1 mG for the most critical x direction and
below 2 mG for other directions, as described in Section 3.4 and shown in Fig. 3.13. There
are two coils, which are arranged approximately in the Helmholtz configuration, for each of
the three directions (in Fig. 3.4 only the coils for the x and z directions are visible, since the
coil wires for the y direction are wrapped around the cylindrical vacuum chamber).

The hydrogen or deuterium molecules are supplied from gas cylinders1 connected through
pressure regulators2, safety devices3, leak-tight connections and valves4, a flowmeter5 , and a
gas dosing valve6 to the microwave dissociator discharge tube7 DT . The atoms are generated
by splitting the molecules in the dissociator microwave cavity MW (see [158] for a similar
design). The discharge is ignited using a high-voltage high-frequency pulse with a small
Tesla coil8, which is held near the discharge tube. The microwave radiation at 2.45 GHz is
supplied by a solid-state microwave generator9, which produces 40 W of power and monitors
the reflection (optimized to < 1 W by adjusting the microwave cavity). The microwave cavity
is constantly cooled to −30 · · · − 10 ◦C with cold nitrogen gas. At the end of the discharge
tube, a polytetrafluoroethylene (PTFE or ‘Teflon’) tube is inserted which has an orifice of
0.3 mm diameter and 2.1 mm length. With the typical deuterium gas flow of 0.35 mln/min,

1Hydrogen: 6.0 purity (> 99.9999% purity with ≤ 0.5 ppm N2, ≤ 0.5 ppm O2, ≤ 0.5 ppm H2O, ≤ 0.1 ppm
Hydrocarbons, ≤ 0.1 ppm CO, ≤ 0.1 ppm CO2), 2 l / 200 bar (0.356 m3 filling volume) bottle by Linde
(10100419). Deuterium: 99.96% purity (according to test sheet around ∼0.03% hydrogen impurities from
residual H2 and HD molecules and < 10 ppm other impurities: 99.97 atom % D from mass spectrometry,
chemical purity 99.999%, < 0.6 ppm Ar/O2, 0.7 ppm N2, < 0.1 ppm CO, 0.9 ppm CO2, 0.2 ppm CH4+C2H6,
0.7 ppm H2O), 0.5 l / 20 bar bottle (10 l filling volume) by Sigma Aldrich (368407-25L-EU),

2Spectron Gas Control Systems two-stage pressure regulator FM53-L-200-1,5-DIN1-M-M-O-A-B-H2 with
the valve DV-V6M-3-A for hydrogen, and Sigma Aldrich single-stage (0-22 psig delivery pressure, CGA 180
inlet size, Z512958-1EA) for deuterium (in the future it can be replaced by the two-stage regulator FM53-L-
200-1,5-CGA180-M-M-DVV6MAV-A-B-D2).

3Spectron Gas Control Systems (Model DG91NH) according to the EN 730-1, ISO 5175, AS 4603 norms,
opening pressure 10 mbar. These safety devices are mounted after the deuterium and hydrogen pressure
regulators and protect against sudden and creeping gas return (NV), flashback (flame arrestor, FA) and
burnback (temperature controlled cutoff-valve, TV).

4The leak rate substantially improved from ∼10−5 l/s to be ∼10−7 l/s after replacing all stainless steel
integral nonnet needle valves (Swagelok SS-1RS4) by stainless steel bellows sealed valves (Swagelok SS-4H2).
Before opening the hydrogen or deuterium valves, the whole connection line is pumped out using a separate
turbo pump (Leybold TURBOVAC 90 iX) to a pressure < 10−5 mbar monitored with a Leybold TTR 101 N
pressure gauge. With hydrogen or deuterium in the line the pressure regulators are adjusted such that this
pressure gauge shows around 0.9-1.1 bar.

5Bronkhorst F-110C-005-AAD-33-V, accuracy ±0.01 mln/min. The calibration factor of 1.006 between
hydrogen and deuterium is close to 1 since only the product of density and heat capacity enters the measurement
principle: deuterium has a factor of ∼2 higher density but also a factor of ∼2 lower heat capacity than hydrogen.

6Pfeiffer Vacuum EVN 116.
7Inner diameter of 7.25 mm, outer diameter 9.3 mm, length 250 mm, made from crystalline sapphire (Al2O3)

which has a better thermal conductivity compared to fused quartz used in [158]. A metallic layer may build up
in the tube over time depending on the operation conditions of the discharge. Then the tube can be cleaned
with 5% NaOH in deionized water.

8Electro-Technic Products BD-10ASV high-frequency generator: 20-50 kV ouput voltage, 500 kHz output
frequency, max 0.1 mA output current.

9SAIREM GMS 200.
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a pressure around 3 mbar is measured in the discharge region1. The atoms are then guided
through teflon tubings TT to the T-shaped copper nozzle NZ (through-hole with diameter
of 2.0 mm and length 8.0 mm, and a blind hole of 4.0 mm diameter in the bottom). A short
teflon spacing tube with 0.45 mm wall thickness forms a 0.2 mm gap to thermally isolate the
nozzle.

The copper nozzle is attached with brass screws and a thin layer of thermal grease2 to the
cold head of the liquid-helium flow cryostat3 CS . The cryostat is mounted on the chamber
lid which is lifted up in Fig. 3.4, and is therefore only visible out of focus in the top of Fig. 3.4
with disconnected teflon tubings. A photograph of the cold head of the cryostat from the
different perspective is inserted, showing the nozzle with the attached temperature sensor4

TS . Another temperature sensor5 monitors the temperature inside the cryostat. The cryostat
is mounted on a manipulator6 providing ±15 mm motion in the x and z directions and 50 mm
in the y direction, which enables to align the nozzle with the 243 nm (1S-2S) preparation laser
beam PB parallel to the atomic beam.

The 243 nm beam enters the vacuum chamber through the 243 nm Brewster’s window BW .
The laser beam is then guided into the 243 nm enhancement cavity (EC), formed by the piezo-
actuated7 243 nm incoupling mirror8 IC and the outcoupling mirror9 OC , see Section 3.2.1.
Both mirrors are mounted on remotely controlled mirror mounts10. The important property
of the vacuum assembly is that the EC is attached to the optical table via mounting brackets
EM , while the rest of the setup (including the active fiber-based retroreflector) sits on the
laboratory floor and is therefore subject to more mechanical noise. The whole EC setup is
held together by spacer tubes ET and Invar rods ER attached to the two mounting brackets

1This is the reading value of the Leybold TTR 101 N pressure gauge which has a calibration factor depending
on the gas and the pressure (below 10 mbar the measurement is performed with the Pirani sensor). Between
1 . . . 3 mbar reading value the calibration factor for hydrogen is 0.7 . . . 0.5 (the actual pressure is lower than
the reading value). The thermal conductivity of the deuterium gas is ∼

√
2 lower due to the mass difference

[159, 160], such that the reading value is a factor of ∼
√

2 higher and the correction factor for the reading value
in this pressure range is close to unity, 1.0 . . . 0.7. This agrees with the observation that for 0.35 mln/min of
hydrogen the reading value is around 2 mbar (together with the correction factor leading to the same actual
pressure of ∼3 mbar). In the future, this pressure gauge can be replaced by the more accurate gauge based on
the capacitative pressure measurement independent of the gas species (e.g. Leybold CTR 100 N).

2Apiezon N.
3Advanced Research Systems ARS LT3-B, customized design.
4LakeShore DT-670-BO-1.4L, SN D6076038, accuracy ±12 mK in the range 1 . . . 10 K. Four Manganin 36

AWG are soldered to the sensor to provide the electrical connection. Special care needs to be taken to wrap the
wires the cryostat cold head to reduce Joule heating depositing through the sensor. The wrapped wires need
to touch the cold cryostat head which is achieved by fixing the wire with dental floss (Oral-B EssentialFloss).

5LakeShore DT-670B-SD.
6UHV Design TTX63-63-50-H.
7For the 2S-6P deuterium measurement, the piezo-mirror design was modified to achieve higher bandwidth,

see Appendix A.5, for a possible future upgrade of the apparatus which requires to increase the cavity length.
8Custom order by Layertec: substrate SQ1-E248, plane/plane, diameter 7.75(-0.10) mm, thickness

4.0(±0.1) mm, wedge=30(±10)′, surface form tolerance according to the ISO 10110 on both sides 3/0.2(0.2)
(λ/10 power and λ/10 irregularity with λ = 546 nm), side 1 (wedged side): AR(0◦, 243 nm)<0.3% (target
<0.2%); side 2 (ˆ): PR(0◦, 243 nm) =98.3(±0.5)%, T(0◦,243 nm)∼1.5(±0.5)%. Coating material: AlO2+SiO2,
top layer of coating SiO2, coating process: ion beam sputtering (IBS).

9Custom order by Layertec: substrate SQ1-E248, plane/curved, diameter 12.7(-0.1) mm, thickness
6.35(±0.1) mm, wedge=30(±10)′, surface imperfection tolerance 5/1x0.025 L1x0.001, surface form tolerances
3/0.2(0.2) and 3/-(0.2) (λ/10 reg.), side 1: AR(0◦, 243 nm)<0.3%, side 2 (ˆ): radius 4 m(±5%) CC, HR(0◦,
243 nm) >99.5%, T(0◦,243 nm)= 0.01− 0.001%. Same coating material and process as for input coupler.

10Newport Picomotor Actuator Piezo Mirror Mount, Pint-Sized, Center Mount, 0.5 inch diameter, UHV
compatible, Model 8885-UHV.
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(only one side is shown in Fig. 3.3). The spacer bellows EB suppress the mechanical noise
coupling between the EC and the rest of the vacuum setup. In the future, the part of the
setup mounted on the high-vacuum enclosure may be also attached to these rods such that
the sensitive active fiber-based retroreflector is subject to less vibrations. However, this may
influence the stability of the EC which needs to be tested.

After the atoms enter the magnetically shielded high-vacuum region, they pass the 1S-2S
Faraday cage FC . This is especially important if the apparatus is used to measure the 1S-2S
transition. In this case, a 2S-4P laser blade QB (shown only in Fig. 3.4) quenches the atoms
from the 2S state to the ground state right before they enter the Faraday cage, such that
the 2S atoms are only generated in the electrically and magnetically shielded region. For the
2S-6P measurement, this quench laser blade is not operated. However, the 2S-4P blade may
also be used with circular polarized light for possible future deuterium initial state asymmetry
measurements, as described in Appendix A.2.

After the 1S-2S Faraday cage, the atomic beam is constrained using the variable aperture
VA , which has a fixed height of 2.0 mm and a variable width (typically set to 1.2 mm) as
well as adjustable horizontal centering. The two slits of this aperture are controlled using
two remotely controlled variable aperture actuators1 AM (only one is shown in Fig. 3.3).
The position of the apertures is calibrated on each day using an auxiliary laser beam (from a
Helium-Neon-Laser2), which propagates in the opposite direction of the 243 nm and atomic
beams (see Sec. 4.5.3 of [71] and Clarissa Kroll’s Bachelor’s thesis [161] for more details).
This auxiliary laser beam is aligned with the 243 nm laser beam using two circular apertures
placed outside of the vacuum chamber before each of the two Brewster’s windows. The same
auxiliary laser beam is also used for nozzle imaging purposes (see Sec. 4.5.2.5 of [71])3.

After having passed the variable aperture, the atoms enter the cylindrical 2S-6P fluores-
cence detector, which is not only used to detect the fluorescence signal, but also to apply
electric field inside the detection region (the voltage is supplied by the detector electrodes
connections DE ). Applying and reversing the electric fields in each of the three spatial direc-
tions allows for an in-situ determination of the electric field, see Section 3.5 and Fig. 3.14. The
photoelectrons are collected at the top and bottom channeltron electron multipliers (CEMs),
also denoted as ‘top detector’ TD and ‘bottom detector’ BD throughout this thesis. Inside
the detector, the atomic beam crosses the 2S-6P spectroscopy laser beam SB , which emerges
from the polarization-maintaining fiber SF , is collimated by the four-lens fiber collimator
SC , and retroreflected by the high-reflectivity mirror HR . These are the main parts of the
active fiber-based retroreflector (AFR) for the suppression of the first-order Doppler shift,
treated in detail in Chapter 4 (see Fig. 4.2 for the detailed vacuum assembly drawing of the
AFR). The whole AFR setup including the fluorescence detector can be rotated against the

1Thorlabs Z 806 V, absolute on-axis accuracy 42 µm, bi-directional repeatability 1.5 µm. The conversion
factor between the horizontal position of the blade and the motor position was determined to be 2.61(1), i.e.
the absolute horizontal blade position accuracy is ∼2.6 × 42µm ' 110 µm. However, the absolute position
is anyway calibrated on each measurement day using an auxiliary laser beam. Typically, the scatter of the
determined blade position from calibration is ∼20µm.

2Thorlabs HNLS008L-EC.
3Fot the 2S-6P hydrogen measurement, the nozzle imaging was also used for the alignemnt of the nozzle

relative to the 243 nm beam. However, for the 2S-6P deuterium measurement, the new ARS LT3-B cryostat
on an accurate UHV Design manipulator was installed. The nozzle was then aligned using the scaling on the
cryostat manipulator.
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atomic beam by the α alignment actuator1 AA to adjust the angle between the atomic beam
and 2S-6P laser beam close to 90◦ such that α = 90◦ + δα with δα� 1◦ (see Section 5.3).

Since the 243 nm cavity is mounted to the optical table, whereas the rest of the setup,
including the AFR setup, sits on the laboratory floor, the alignment of chamber w.r.t. the
243 nm cavity is necessary. This is achieved by adjusting the feet of the vacuum chamber,
while placing a lens cleaning tissue and a beam camera on a specially designed mount at
two points: first, the lens cleaning tissue is placed directly after the incoupler mirror IC
with the beam camera put between the entrance aperture EA and the variable aperture
VA (with the 1S-2S Faraday cage being removed), and second, the lens cleaning tissue is
placed directly before the entrance aperture while the beam camera is placed between the
high-vacuum output aperture OA and the outcoupler mirror OC . The lens cleaning tissue
scatters the laser light such that the boundaries of the apertures are visible on the beam
camera. On the other hand, with the lens cleaning tissue being removed, the position of the
243 nm beam is determined. By iteratively adjusting the alignment at the two points, the
243 nm beam is finally aligned to the apertures and thus to the whole apparatus. During the
measurement, the nozzle is aligned with the 243 nm beam by measuring the 243 nm cavity
transmission signal while adjusting the manipulator of the cryostat2.

3.2 1S-2S/2S-6P laser systems and frequency comb

An important ingredient for precision laser spectroscopy is a stable laser, preferrably with a
linewidth much smaller than the uncertainty goal. Furthermore, the laser frequency needs to
be accurately measured. For the 2S-6P measurement in deuterium, two lasers are required:
one laser at 243 nm which drives the two-photon 1S-2S transition (Section 3.2.1), and the
other at 410 nm which drives the 2S-6P transition (Section 3.2.2). Both laser systems are
very similar: the master lasers are external cavity semiconductor diode lasers (ECDL) in the
infrared (at 972 nm and at 820 nm), which are stabilized to ultra low expansion glass (ULE)
Fabry-Pérot cavities for achieving a sub-hertz linewidth. The laser frequency is doubled once
(for 410 nm) or twice (for 243 nm) using non-linear crystals in second harmonic generation
(SHG) cavities. The power of the 243 nm laser is enhanced in the in-vacuum enhacement
cavity where the 1S-2S excitation takes place. This cavity also provides counter-propagating
beams for the first-order Doppler-free two-photon excitation of the 1S-2S transition. The
410 nm laser serves for the active fiber-based retroreflector covered in Chapter 4. The in-
frared laser frequency is measured with an ultra-low noise frequency comb, provided with a
frequency standard from a passive hydrogen maser. The maser is continuously compared to
the Coordinated Universal Time (UTC), which is based on the International Atomic Time
(TAI), using the Global Positioning System (GPS), see Section 3.2.3.

The research on our narrow linewidth lasers has been reported in [162, 163, 164]. Many
details on the 243 nm enhancement cavity, including the discussion on mirror degradation
and the chopper-triggered stabilization of cavity length and intracavity power, are treated in

1Thorlabs Z825BV with following key specifications: absolute on-axis accuracy 130µm, bi-directional re-
peatability <1.5µm, backlash <8 µm, home location repeatability <2 µm, min. repeatable incremental move-
ment 0.2 µm. The actuator rotates the AFR by 16.7 mrad ' 0.96◦ per 1 mm linear movement (for approxi-
mately orthogonal angle α ≈ 90◦ between the atomic beam and the 2S-6P laser beam).

2For the 2S-6P hydrogen measurement with the old cryostat, the nozzle was aligned using the nozzle imaging
from the auxiliary alignment laser (see Sec. 4.5.2.5 of [71]), since the cryostat was not mounted on an accurate
manipulator.
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the thesis by Lothar Maisenbacher, see Sec. 4.3 in [71]. The optical setup of the 410 nm laser
system is largely part of the active fiber-based retroreflector, see Chapter 4 for details. Here,
only an overview of the laser systems is given, with a focus on the differences between the
hydrogen and deuterium setups.

3.2.1 243 nm laser system for 1S-2S excitation

The scheme of the 243 nm laser system (called ‘FP1’ in our laboratory) is shown in Fig. 3.5.
The master laser is an extended cavity diode laser (ECDL), producing 32 mW of laser power at
a wavelength of λ = 972.274 nm for deuterium spectroscopy. The laser cavity of 23 cm length
consists of a grating and a laser diode in the Littrow configuration [162], with an electro-
optical modulator (EOM)1 placed inside the laser cavity (intra-cavity EOM). The infrared
light is amplified by the tapered amplifier (TA)2 to 2.7 W (for 4.0 A TA current). Optical
isolators are placed before and after the TA to avoid reflections back into the TA and the
master laser. Around 80 mW are split off for the frequency stabilization and determination
unit, see dashed box in Fig. 3.5.

The two electrodes of the intra-cavity EOM as well as a piezoelectric element of the grating
mount are used to stabilize the master laser to the ultra low expansion glass (ULE) Fabry-
Pérot (FP) reference cavity (finesse FFP1∼ 400 000, free spectral range FSRFP1 ' 1.9326 GHz)
[163]. This stabilization is achieved through the Pound-Drever-Hall technique [165, 166], with
a modulation EOM and a reflection photodetector placed before the cavity (not shown in
Fig. 3.5), producing the error signal used for ‘locking’ (stabilizing) the master laser3.

The light is sent to the FP reference cavity setup through a polarization-maintaining
(PM) fiber, which is subject to acoustic and thermal noise. This noise is compensated by
the ‘Fiber noise AOM’ using a similar4 scheme as in [167]. This AOM is operated in the
−1st diffraction order, resulting in a frequency change of ∆ν = −ffiber = 39 337 184 Hz.
Another AOM is placed in the setup (“Scan AOM”) for two reasons: first, the master laser
frequency required for the 1S-2S transition needs to match one of the ULE FP reference

1Gsänger Optoelektronik GmbH, PM 25, potassium dideuterium phosphate (KD*P) crystal. The company
Gsänger was first bought by Linos AG, which in turn was integrated into Qioptiq Photonics GmbH, where
now the PM 25 phase modulator is available.

2Toptica TA unit (as part of the TA-FHG pro 15025 system), article number TA-0970-3000-1, serial number
212207, production date 09.12.2019, polarization type TE. The TA was replaced in December 2019 (as part of
the overall upgrade of the Toptica 243 nm system), including an upgrade of power supply for up to 5 A, and
new mechanics for better longtime stability.

3The Fabry-Pérot cavity EOM and photodetector signals for Pound-Drever-Hall locking are connected via
RF transformers (Mini-Circuits FTB-1-1*A15+) to the phase detector (Mini Circuits ZRPD-1, 1-100 MHz),
whose output is fed into the Toptica Fast Analog Linewidth Control (FALC 110) module. The main output
of this ‘lockbox’ provides feedback to the first electrode (bandwidth ∼ 1 MHz) of the intra-cavity master laser
EOM, while a separate lockbox (MPQ-made by H. Brückner) can be used to provide a lower-frequency feedback
(bandwidth ∼ 100 kHz). The slow drifts of the laser cavity length are compensated by the feedback to the
piezoelectric element of the grating (either by the unlimited intergrator of the FALC 110 module or by an
additional MPQ-made ‘lockbox’)

4In contrast to [167], the same AOM is used for detecting and correcting the phase noise. To this end, a
beamsplitter is placed after the ‘Fiber noise AOM’, such that one part of the diffracted light is retroreflected
and passes this AOM a second time on the returning path. After the backpropagation through the fiber, the
light (whose frequency is shifted by −2× ffiber) is superimposed with the reflection of the fiber tip before the
propagation through the fiber. From this beat note the error signal is derived for the feedback loop, which
compensates the noise on a single pass through the ‘Fiber noise AOM’ (whose frequency is controlled with a
voltage controlled oscillator supplied by the output signal of the lockbox).
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Figure 3.5: Laser system scheme for driving the 1S
F=1/2
1/2 − 2S

F=1/2
1/2 transition in deuterium at 243 nm

(‘FP1’ laser system). The extended cavity diode laser (ECDL) serves as the master laser for the system
and is amplified by a tapered amplifier (TA). Most of the light is guided to the two second harmonic
generation (SHG) units, which double the frequency twice to produce 243 nm light. The 243 nm light
is guided to the 243 nm enhancement cavity in vacuum, whose intensity is stabilized with the dedicated
acousto-optic modulator (AOM), whereas for the length stabilization the Pound-Drever-Hall (PDH)
technique with an electro-optic modulator (EOM) is used. A small fraction of the infrared light is
split off for frequency stabilization to the Fabry-Pérot (FP) reference cavity, and for the frequency
determination with a wavemeter and a frequency comb, where the light is guided through single-mode
(SM) or polarization-maintaining (PM) fibers. The frequency of the laser is matched to the resonance
of the FP reference cavity with the “Scan AOM”, which is also used to scan the laser frequency over
the 1S-2S resonance. Another AOM is used for cancellation of the fiber noise. The differences to
hydrogen are marked in red, with the configuration for hydrogen (‘H’) written in parantheses in blue.
The master laser is at the lower wavelength for deuterium compared to hydrogen, which requires a
different “Scan AOM” configuration to match the laser frequency to the FP reference cavity resonance.

cavity resonances (separated by FSRFP1 ' 1.9326 GHz). This AOM shifts the laser frequency
accordingly. Second, this AOM is used to scan the frequency over the 1S-2S resonance, which
is here possible due to the small scan range within the tuning range of the master laser (the
typical linewidth of the 1S-2S transition is around 5 kHz which translates into 5/8∼ 0.6 kHz
for the infrared light due to the two-photon excitation plus two SHG units).

The differences to hydrogen are marked in red in Fig. 3.5, with the configuration for hy-
drogen (‘H’) written in parantheses in blue. The master laser needs to be at the longer wave-
length for hydrogen, separated from deuterium by ∼ 0.264 nm or 83.78 GHz ' 43.35×FSRFP1.
Therefore, to match the laser frequency to the FP reference cavity resonance, a different “‘Scan
AOM” configuration is required for deuterium compared to hydrogen. While for deuterium
the “Scan AOM” is operated in the single-pass configuration in the +1st diffraction order
(at fD

FP1,Scan ' 383 MHz), for hydrogen the same AOM is operated in the double-pass con-

figuration in the −1st diffraction order (at fH
FP1,Scan ' 434 MHz), such that the difference is

fD
FP1,Scan + 2× fH

FP1,Scan ' 0.65 FSRFP1 and a 44×FSRFP1 larger resonance frequency of the
ULE FP reference cavity is used for deuterium compared to hydrogen.

Before the “Scan AOM”, a fraction of light is guided via a single-mode fiber to the waveme-
ter1 for a coarse wavelength measurement to match the correct resonance of the ULE FP

1HighFinesse WS7-60 wavelength meter, absolute accuracy ±60 MHz (for 420-1100 nm) solid state, super
precision, USB version, with the MC4-780P multichannel option (single-mode, four inputs) such that the same
wavelength meter can be used simultaneously for up to four different lasers.
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reference cavity. After the “Scan AOM”, around 1 mW of laser light is guided to the beat
detection unit of the frequency comb for a precise frequency measurement (see Section 3.2.3).

Most of the infrared laser light after the TA is guided to the two second harmic generation
(SHG) units (part of the commercial system1) for the production of 243 nm laser light. The
first SHG uses a lithium triborate (LBO) crystal for frequency conversion, and is locked using
the PDH technique with a modulation of the master laser current2. The second SHG uses a
β-barium borate (BBO) crystal, and is also locked using the PDH technique, but with the
modulation signal (at 5 MHz) from a dedicated EOM placed after the first SHG cavity. Two
pairs of cylindrical lenses after each SHG collimate the laser beam. The output 243 nm laser
beam of up to 120 mW power is slightly elliptical with major and minor beam waists (1/e2

intensity radius) of 121 µm and 134 µm with waist positions around 20 cm before the output
of the laser system enclosure.

3.2.1.1 243 nm enhancement cavity in vacuum

Since the 243 nm laser power is not sufficient to excite enough atoms into the metastable 2S
state, the power is enhanced in the 243 nm enhancement cavity. Furthermore, the counter-
propagating beams in the cavity automatically provide the setup for the first-order Doppler-
free two-photon excitation of the 1S-2S transition.

The optical setup for the 243 nm enhancement cavity in the spectroscopy apparatus is
shown in Fig. 3.6. The 120 mW output beam power from the laser system can be reduced
with a half-waveplate in combination with a Glan-Laser polarizer3 and a beam dump4. Then
the light is modulated by the electro-optical modulator5 (EOM) for the Pound-Drever-Hall
stabilization of the 243 nm cavity. Thereafter, the beam is guided through a pair of lenses, first
with f = 75 mm and then with f = 100 mm focal lengths, for two reasons. First, this telescope
enables to adjust the mode matching to the 243 nm cavity6. Second, the intermediate focus

1Toptica TA-FHG pro 15025 system. This system was upgraded in December 2019, where the second SHG
unit for the UV light production was entirely replaced by the new model, which is more stable and can provide
more 243 nm laser power. In order for this new SHG unit to meet the requirements, the TA was replaced to
garantee up to 3 W of 972 nm light (for max. TA current of 4.26 A), such that up to 1.5 W of 486 nm light can
be produced after the first SHG unit. Furthermore, the EOM for Pound-Drever-Hall locking of the second
SHG was replaced by a new model which can sustain high powers at 486 nm.

2The internal oscillator of the Pound-Drever-Hall PDD 110 module of the Topica system modulates the
seed laser current at 19.66 MHz, and receives the reflection photodiode signal to produce an error signal. This
error signal is guided to two control modules (FALC 110 and PID 110) to stabilizy the first SHG cavity length
(a fast and a slow piezo).

3Thorlabs GLB10 Glan-Laser alpha-BBO Polarizer with MgF2 anti-reflection coating, providing up to 80%
transmission at 243 nm.

4Thorlabs BT600/M, 200 nm-3 µm, 80 W max average power (CW only).
5Qubig PM8-UV-45F, resonant high-Q electro-optic phase modulator, reflection and transmission at 235 nm

R < 0.5% and T > 90%, laser intensity < 0.5 W/mm2 (at 223 nm), required RF power for full modulation
27 dBm (at 235 nm). fixed resonance frequency fFP1,PDH = 45 MHz. The EOM is driven by 10 dBm RF power
produced by the Rigol DG 1032 Z function generator.

6For an estimation of the required lenses and distanced for mode-matching, the online ‘Mode Matching
Calculator’ from Peter Beyersdorf’s Laboratory Optics site (laboratoryoptics.com) is useful. Further calcu-
lations can then performed for example with the ‘reZonator’ software (rezonator.orion-project.org). With an
input beam of 125 µm beam waist radius, with a 74 cm distance from the waist position to the f = 75 mm lens,
which is separated by 187 mm from the subsequent f = 100 mm lens, the beam waist after the telescope lies
163 cm after the second lens (position of the input coupler for the 243 nm cavity) with a 1/e2 intensity waist
radius of ∼ 300 µm matching the TEM00 mode of the cavity.
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Figure 3.6: Optical setup for the 243 nm enhancement cavity in vacuum (not to scale), see main text
for description. λ/2: half-waveplate, AOM: acousto-optic modulator, APD: avalanche photodiode
detector, BP: beam sampler, BS: beamsplitter, EOM: electro-optic modulator, PD: photodetector,
PDH: Pound-Drever-Hall rechnique, ROC: radius of curvature.

allows to precisely overlap an auxiliary trigger laser1 at the optical chopper2. Since various
feedback loops are triggered to the chopper, the trigger laser continously provides the trigger
signal independent of the 243 nm laser which occasionally ‘falls out of lock’. The trigger
signal is distributed to various devices, e.g. for the intracavity intensity and cavity length
stabilizations (see [71] for details).

The intracavity intensity stabilization is achieved using the cavity transmission signal
(from the ‘Fast (transmission) PD’ in Fig. 3.6) for generating the error signal, with the
feedback applied3 to the power produced by the signal generator4 to drive the AOM5 serving
here as an actuator: the diffracted laser beams are blocked, while the non-diffracted beam is
transmitted. The RF power delivered to the AOM actively changes the power ratio between
the diffracted and non-diffracted beams such that the power in the 243 nm cavity is kept
stable.

The cavity length is stabilized using the Pound-Drever-Hall technique with an avalanche
photodiode detector6 (‘PDH APD’ in Fig. 3.6) measuring the reflection from a beam sampler.
On the forward propagating path, the reflection from this beam sampler is used to monitor the
incoming 243 nm power (‘Input power PD’ in Fig. 3.6). The feedback for length stabilization

1Thorlabs CPS 405 (wavelength 405 nm with 4.5 mW laser power).
2Stanford Research Systems SR 540 (O 540 RCH head and O 5402530 blade), with New Focus 3501 controller

set to 160 Hz. The rise and fall times due to finite focus size and slot width are ∼3µs, which is the same order
of the jitter of switching time of the laser beams. The imperfections of the chopper lead to a ∼5 µs variation
of the 3125 µs long chopper cycles.

3Vescent Photonics D2-125 Laser Servo is used as the ‘lockbox’.
4Rohde und Schwarz GmbH, SMC 100 A signal generator, where the amplitude modulation feature (3 dB

bandwidth of 50 kHz) is employed in a feedback loop. The output of the signal generator is amplified by the
Mini-Circuits Model ZHL-1-2W+ radio frequency amplifier.

5IntraAction ASM-1101M3 AOM, 110 MHz center frequency, active medium: UV-grade fused silica, broad-
band UV AR coating, transmission of 98% at 243 nm.

6Thorlabs APD430A2/M.
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is provided1 to the piezo-actuated incoupling mirror (IC). To increase the feedback bandwidth
for a possible future upgrade to the longer cavity, the design of the mirror mount was modified,
see Appendix A.5.

An auxiliarly alignment laser2 is aligned with the 243 nm laser beam using the front and
back irises before the vacuum chamber. For the alignment of the variable aperture, the
‘Alignment PD’ measures the transmitted laser power while scanning the aperture distances.
The alignment laser serves also for the purpose of nozzle imaging. In this case, an additional
lens is placed in the beam path (‘Removable lens’ in Fig. 3.6), and an additional mirror
(‘Removable mirror’) guides the transmitted light to the nozzle image sensor3. During the
spectroscopy measurement, the alignment laser is blocked with a shutter.

The power P1S-2S (per direction) circulating in the 243 nm cavity is monitored by the
transmission signal from the ‘integrating sphere PD’, which captures approximately half of
the transmission after a 50:50 beamsplitter (while the other half is detected by the ‘Fast trans-
mission PD’ for cavity length stabilization). The voltage on the photodetectors is calibrated
for conversion to optical power with a separate measurement of the transmitted power. This
measurement is typically performed several times during the measurement campaign. The
power inside the cavity is then calculated using the separately characterized transmittance
of the outcoupling mirror, the Brewster’s window and the steering mirror. For this mea-
surement, the powermeter4 is placed right before the beamsplitter, but after an additional
steering mirror. The total transmittance was determined by measuring the power before the
outcoupler mirror (in the opened vacuum chamber with the incoupler mirror being removed)
and the transmitted power through the outcoupler mirror, the Brewster’s window and the
steering mirror. This measurement was performed with 35.5 mW before the outcoupler mir-
ror, and the transmission was measured to 2.0 µW, which yields TOCTpath = 5.6(5) × 10−5,
where TOC is the transmission of the outcoupler mirror5 and Tpath the combined coefficient of
the transmission of the Brewster’s window and the reflection of the steering mirror. During
the spectroscopy measurement, this transmission coefficient can then be used to deduce the
intra-cavity power while the cavity is locked. Note that a factor of two needs to be taken into
account due to the duty cycle of the chopper, e.g. for Ptr,meas = 40 µW measured transmitted
average power, the deduced power circulating in the 243 nm cavity during the bright phase is
P1S-2S = 2×Ptr,meas/(TOCTpath) ' 1.4(1) W. The intra-cavity power can also be deduced from
the measured input power combined with the power enhancement from the measured finesse
together with the incoupler transmission. However, the finesse measurement may be affected
by the rapid degradation of the mirrors when the cavity is locked, and recovery thereafter, as
discussed below.

1Using a Vescent Photonics D2-125 Laser Servo ‘lockbox’.
2Thorlabs Helium-Neon laser, HNLS008L-EC, 0.8 mW at 633 nm, polarized.
3UI-3380CP-M-Gl by IDS Imaging Development Systems, with cover glass removed by Eureca Messtechnik.
4Newport 843-R Power Meter with Newport 818-UV/DB UV Enhanced Silicon Diode Sensor (calibrated

March 2022), calibration uncertainty ±2% at 243 nm, uniformity over the sensor area ±2%, linearity ±0.5%,
minimum measurable power 20 pW, maximum measurable power 1500 mW (with attenutator) and 5 mW
(without attenutator in the wavelength range 200-400 nm). According to the manual, especially for UV mea-
surements, the power meter and the sensor need to be calibrated annually to achieve the specified uncertainty.

5The separately characterized transmittance of the outcoupling mirrors from the same order was measured
to TOC ∼ 9.5 × 10−5, with an uncertainty of ∼10% depending of the mirror position. This measurement
was performed with the Newport 843-R Power Meter with Newport 918D-UV-OD3R UV sensor (without
attenuator), which was not calibrated since 2017. However, comparison to the newly calibrated sensor and
other power meters agreed with the 918D-UV-OD3R UV sensor (without attenuator) within 5%, which is
lower than the uncertainty depending on the mirror position.
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The 243 nm enhancement cavity is formed by a flat1 (rIC =∞) incoupling mirror (IC) and
a concave outcoupling mirror with a radius of rOC ' 4 m. The cavity length is LEC = 358 mm,
leading to a free spectral range of FSR = c/(2LEC) = 419 MHz. The waist size is given by
[168]:

w0 =

√
λLEC

π

√
rOC/LEC − 1 ' 297(10) µm. (3.1)

The ±5% uncertainty in the curvature radius results in an uncertainty of ±10 µm on w0.
The resonant frequencies νq,nm of the TEMq,nm Hermite-Gaussian modes [169] are given

by [168]:

νq,nm =

(
q + (n+m+ 1)

arccos
√

1− LEC/rOC

π

)
FSR, (3.2)

where q, n,m are the integer mode numbers. The cavity is operated on the fundamen-
tal TEMq,00 mode. The higher-order modes are separated by (arccos

√
1− LEC/rOC)/π '

0.097(2) FSR (with uncertainty due to the 5% tolerance of rOC), such that the number of
the first transverse modes per FSR is 10.3(2) and the TEMq,nm modes with n+m = 10 and
n+m = 11 are out of resonance with the TEMq,00 mode.

The finesse of the cavity, F = FSR/δνFWHM where δνFWHM is the full width at half
maximum of the circulating intensity at resonance, can be calculated from the reflectances of
the incoupling and outcoupling mirrors, RIC and ROC respectively, as [168]:

F =
π
√√

RICROCTEC

1−
√
RICROCTEC

, (3.3)

where we took into account the single-path intensity transmission (round-trip field trans-
mission) of the medium TEC into account. In the following we set TEC = 1, but note that
for instance misalignment of the apparatus could lead to clipping losses on apertures or the
nozzle through-hole such that TEC < 1. In the case of ideal alignment of the apparatus, the
rectangular aperture of 1.2 mm × 2.0 mm (which is the size of the variable aperture) results
in TEC ' 10−4 (see Fig. 4.13 of [71]).

For the given mode-matching ηmode, the power enhancement PE = Pin/Pcirc, where Pin is
the power before the cavity and Pcirc the circulating power inside the cavity, is given by [168]:

PE =
Pin

Pcirc
=

ηmode TIC

(1−
√
RICROCTEC)2

= ηmodeTIC
4F4

π2
(
π −
√

4F2 + π2
)2 , (3.4)

where in the last step the factor
√
RICROCTEC was expressed through the finesse F using

Eq. (3.3). For optimal mode-matching, the power enhancement and finesse are therefore
linked only through the transmission of the input coupler TIC. The measurement of the
finesse, TIC and ηmode thus gives the value for the power enhancement.

For the UV mirrors, typically a significant fraction of light is absorbed and scattered in
the mirror. Therefore, the reflectance and transmittance coefficients are related by

RIC + TIC +AIC = 1 and ROC + TOC +AOC = 1, (3.5)

1It was found that the used ring piezo (PI Ceramic GmbH, PD080.31, 2µm range, thickness 2.5 mm, inner
diameter 4.5 mm, outer diameter 8.0 mm) can distort the flat mirror curvature to a radius of up to rIC'−50 m
for 60 V applied voltage. For our cavity geometry, assuming a flat incoupling mirror translates in this case into
an effective change of the outcoupling mirror radius from rOC ' 4.0 m to rOC ' 4.35 m.
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Figure 3.7: Finesse and power enhancement for the 243 nm enhancement cavity, according to Eq. (3.4)
and Eq. (3.3) with approximation Eq. (3.6), such that only the total absorbance AOC +AIC is relevant.
The outcoupler transmittance is set to TOC = 0.01% (which is negligible compared to TIC such that
the results do not change significantly with zero TOC). For all the plots, the impedance matched
case TIC = TOC + AIC + AIC is marked with corresponding colored points for each scenario. (a) For
different values of AOC + AIC the finesse and power enhancement are plotted in dependence on TIC,
thereby visualizing the effects of mirror design uncertainty in TIC: especially for lower absorbance of
AOC + AIC = 0.5% (blue curve), a lower TIC than designed for the impedance matched case (blue
marker) would result in a sharp drop of the power enhancement. (b) For different values of TIC,
the finesse and power enhancement are plotted in dependence on AOC + AIC, thereby visualizing the
effect of mirror degradation (increasing losses over time). Given the design uncertainty in TIC and
AOC + AIC, as well as increasing AOC + AIC over time, it is advantageous to choose the overcoupled
case TIC > TOC +AOC +AIC.

where AIC and AOC are the fractions of absorbed or scattered intensity in the incoupling and
outcoupling mirrors, respectively. Since TIC, TOC, AIC, AOC � 1, the factor

√
RICROCTEC,

which enters the finesse and the power enhancement, can be approximated as:√
RICROCTEC ' TEC

(
1− AIC +AOC

2
− TIC + TOC

2

)
. (3.6)

Therefore, in the leading order, both the finesse and power enhancement depend only on
the sum of the absorption coefficients AIC + AOC, but not on how the total absorbance is
distributed among the two mirrors. The measurement of finesse and power enhancement can
thus not distinguish between incoupler and outcoupler losses. The finesse measurement can
also not distinguish between the individual transmittances, while the power enhancement
depends on TIC which enters Eq. (3.4) in addition to the above factor.

For the design of the mirrors, two challenges are important to consider: first, the design
uncertainty in the coefficients, and second, the degradation of mirrors, i.e. the increase of
coefficients AIC +AOC over time. If the coefficients are exactly known and would not change
over time, the optimal design leading to maximum power enhancement is achieved for an
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impedance matched cavity. In this case, the intensity transmission coefficient of the incouping
mirror is equal to the sum of all of the other losses, excluding the input coupling [168]: TIC =
TOC +AOC +AIC, assuming no intra-cavity losses (medium losses), i.e. for TEC = 1. However,
due to the uncertainty in the coefficients and the mirror degradation, it is advantageous to
aim for an overcoupled cavity, i.e. TIC > TOC + AOC + AIC. If the TIC turns out to be
smaller than expected, and the absorption coefficients are underestimated and/or increase
over time, the power enhancement is lower initially than in the ideal impedance-matched
case, but higher for increasing losses and/or lower TIC. This is illustrated in Fig. 3.7, where
in (a) the finesse and power enhancement are shown for various values for AIC + AOC as a
function of TIC (visualizing the effect of design uncertainty), and in (b) for various TIC as a
function of total mirror losses AIC +AOC (visualizing the effect of mirror degradation). The
impedance matched case is marked with points in each graph. For a detailed discussion of
mirror degradation, see Sec. 4.3.3 of [71].

The finesse F can be measured by scanning the cavity length with the piezo of the in-
coupling mirror while recording the transmission and the Pound-Drever-Hall (PDH) error
signals, which is demostrated in Fig. 3.8. The transmission Tq,nm of the cavity resonances is
fitted with a Lorentzian:

Tq,nm ∝
(δνFWHM/2)2

∆ν2 + (δνFWHM/2)2
, (3.7)

where δνFWHM is the full width half maximum of the resonance and ∆ν = ν−ν0 is the detuning
from the resonance at the frequency ν0 with the laser frequency ν. Scanning the cavity
length can here be considered equivalent to detuning the laser frequency. The comparison of
amplitudes for higher order modes to the fundamental mode in Fig. 3.8(a) yields the mode-
matching of ηmode ' 0.95. The fit for two neighboring TEMq,00 and TEMq+1,00 resonances
(see Fig. 3.8(a)) yields the separation in the resonance frequencies ν0, determining the free
spectral range to FSR ' 11.37 V (in units of piezo voltage1), which along with the full width
half maximum δνFWHM ' 0.075(4) V yields F = FSR/δνFWHM ' 152(8). The accuracy this
finesse measurement is limited by the non-linearity of the piezo on the order of 20%.

A more accurate way to determine the finesse can be to fit the PDH error signal, which
is given by [168]:

VPDH ∝ J0(β)J1(β)
ν2
m

δν3
FWHM

×
∆ν − 4∆ν(∆ν+νm)(∆ν−νm)

δν2
FWHM(

1 + 4 ∆ν2

δν2
FWHM

)(
1 + 4 (∆ν+νm)2

δν2
FWHM

)(
1 + 4 (∆ν−νm)2

δν2
FWHM

) , (3.8)

where J0 and J1 are the Bessels functions of the first kind of order 0 and 1 with an input
parameter β (modulation index), and νm = 45 MHz the known modulation frequency. The
fit yields νm in units of applied piezo voltage, which can be used to convert the piezo voltage
to frequency. Along with FSR = c/(2LEC) = 419 MHz from the known cavity length LEC =
358 mm, the value for the finesse is then determined from the data in Fig. 3.8(a) to F ' 143(2).
Yet another way is to use the mode spacing from Eq. (3.2) of 0.097(2)× FSR with the given
cavity length and curvature radius (with the uncertainty dominated by the curvature radius
tolerance). The mode separation is best measured with misaligned coupling into the cavity,
where the higher-order modes are more pronounced, as shown in Fig. 3.8(b). For lower piezo
voltages, the spacing between the TEMq,00 and the TEMq,01 (degenerate with TEMq,10) modes

1The 11.37 V separation of the TEMq,00 and TEMq+1,00 is equal to the wavelength λ = 243 nm, which
approximately agrees with the 2µm travelling range of the piezo for 100 V applied voltage.
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Figure 3.8: Finesse measurement of the 243 nm enhancement cavity: the cavity transmission signal
(from the ‘Fast transmission PD’ in Fig. 3.6) and the Pound-Drever-Hall (PDH) error signal (from the
‘PDH APD’ signal mixed with the ‘PDH EOM’ signal) are measured while scanning the cavity length
with the piezo of the incoupling mirror. In (a) the cavity is optimally aligned such that the higher-
order modes are suppressed. The finesse can be determined from the Lorentzian fits of the TEMq,00

and TEMq+1,00 resonances: the separation in the resonance frequencies ν0 approximately yields the
free spectral range FSR ' 11.37 V (in units of piezo voltage), which along with the full width half
maximum δνFWHM ' 0.075(4) V yields F = FSR/δνFWHM ' 152(8), with limiting uncertainty from
the non-linearity of the piezo. Alternatively, the piezo voltage scale can be converted to frequency from
the fit of the PDH error signal according to Eq. (3.8), which yields the known modulation frequency
νm = 45 MHz to obtain δνFWHM ' 2.93(3) MHz. Along with FSR = c/(2LEC) = 419 MHz from the
known cavity length LEC = 358 mm, the value for the finesse is F ' 143(2). Yet another way to
determine the finesse is from the spacing of higher-order modes, which is calculated from the cavity
length and the curvature radius to ∼ 0.097(2) FSR (see Eq. (3.2)). The finesse measurement is then
performed with the misaligned cavity incoupling shown in (b), where the higher-order modes are more
pronounced. The spacing between the TEMq,00 and the TEMq,01 (degenerate with TEMq,10) modes
is 1.05 V which yields F ' 146(3), in agreement with the other methods.

is 1.05 V which yields F ' 146(3), in agreement with the other methods. For higher voltages
this finesse measurement method might also be affected by the curvature distortion of the
piezo mirror1.

For the deuterium 2S-6P measurement, mirrors coated with aluminum oxide (AlO2 +SiO2

coating layers) were used, in the hope that these coatings perform better than those with
hafnium oxide (HfO2 + SiO2 coating layers) used previously. The mirrors are specified for

1It was found that the ring piezo (PI Ceramic GmbH, PD080.31, 2 µm range (for 0-100 V applied voltage),
thickness 2.5 mm, inner diameter 4.5 mm, outer diameter 8.0 mm, 300 nF capacity) can distort the flat mirror
curvature to a radius of up to rIC'−50 m for 60 V applied voltage. For our cavity geometry, assuming a
flat incoupling mirror translates in this case into an effective change of the outcoupling mirror radius from
rOC ' 4.0 m to rOC ' 4.35 m.
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TIC = 1.5 ± 0.5%, RIC = 98.3 ± 0.5%, TOC∼ 0.01% and ROC > 99.5%. The transmittances
of the mirrors were measured to be TIC = 1.7(1)% and TOC = 9.5(1.0) × 10−5. However,
the measured finesse and power enhancement were lower than the expected values from the
calculations based on mirror specifications. In the beginning of the deuterium measurement
campaign, the finesse was F ∼ 165 and dropped to F ∼ 145 after seven measurement days,
corresponding to

√
RICROCTEC = 0.9786 . . . 0.9811 and an increase in the total mirror losses

from AIC + AOC ' 2.1% to 2.6% according to Eq. (3.6) (assuming no intra-cavity losses,
i.e. TEC = 1, and with TIC = 1.7% and TOC = 0.01%). When the cavity mirrors were
just installed, a finesse of F ∼ 190 was observed which results in AIC + AOC ' 1.6%. The
total absorption of AIC +AOC ∼ 2% is higher than expected. Assuming that the absorption
coefficients are equal for both mirrors, the reflectance of the outcoupler mirror is only ROC ∼
99.0% which is lower than the specified ROC > 99.5%. For the hafnium oxide coated mirrors
used for the hydrogen 2S-6P campaign, the total absorption was initially only AIC + AOC ∼
0.5%, with a similar total degradation by 1 − 2%. The outcoupling mirror was specified to
ROC > 99.9% such that the deduced ROC ' 99.7% (before degradation) also did not meet
the specification.

Along with measured TIC = 1.7(1)% and ηmode ' 0.95, using Eq. (3.4), the finesse values
F ∼ 145 . . . 165 yield a power enhancement of 35(2) . . . 45(2). However, the power enhacement
determined from the input power and the transmitted power was measured to be lower at
PE ∼ 26(5) . . . 31(5). A similar discrepancy was also observed during the second run of the
hydrogen 2S-6P measurement campaign (see Fig. 4.9 in [71]). This discrepancy could originate
from the rapid degradation of the cavity when it is locked, and a recovery when the cavity
is unlocked or scanned during finesse measurements. The more direct intra-cavity power
measurement from the transmitted power (when the cavity is locked) seems more reliable.
However, effects like power-dependent absorption in the coating of the outcoupler mirror, or
thermal-induced birefringence in the mirror, which may lead to higher reflection losses at the
Brewster’s window, could in principle also disturb the power measurement from the cavity
transmission. Further characterization is needed to resolve this discrepancy.

In the future, the degradation of mirrors can be prevented by upgrading the apparatus
with differential pumping to flush the mirrors with oxygen. Furthermore, recently it was
reported that mirrors with fluoride coatings instead of oxide coatings are much more robust
against mirror degradation [170]. The order for fluoride coated mirrors for our experiment is
currently in progress.

3.2.2 410 nm laser system for 2S-6P excitation

The laser system for the 410 nm wavelength of the 2S-6P excitation (called ‘FP3’ in our
laboratory) is very similar to the 1S-2S laser system, see Fig. 3.9 for the setup. The master
laser is also an external cavity diode laser (ECDL) in the Littrow configuration as described
in [164], with a 20 cm cavity length between the grating and the diode. The output light
of 820 nm wavelength is amplified using a commercial tapered amplifier1 (TA) to 1.1 W (for
2.2 A TA current). Most of the infrared light is sent to the second harmonic generation (SHG)
cavity, which produces up to 150 mW of 410 nm light in a lithium triborate (LBO) crystal.
The cavity is constantly flushed with oxygen to reduce humidity and prevent the degradation

1Toptica TA-0808-2000-1, operating current up to 3050 mA, polatization type TE (horizontal), negative
polarity, output power up to 2 W, center wavelength 805 nm with 26 nm gain width (10 dB below peak), with
two collimating lenses Thorlabs C230TME-B.
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Figure 3.9: Laser system scheme for driving the 2S
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transitions in deuterium at 410 nm (‘FP3’ laser system). Similar to the 243 nm laser system from
Fig. 3.5, the extended cavity diode laser (ECDL) serves as the master laser for the system and is
amplified by a tapered amplifier (TA). Most of the light is guided to the second harmonic generation
(SHG) unit for producing 410 nm light, which is used for 2S-6P spectroscopy with the active fiber-
based retroreflector (AFR), see Fig. 4.1 and Chapter 4 for details. Two electro-optic modulators
(EOM) serve as actuators for the two intensity stabilizations, see Section 4.5. In contrast to the
243 nm laser system, because of the much larger required scanning range, the frequency is scanned
with a separate acousto-optic modulator (AOM) at 410 nm. Spectrocopy light can also be guided
through an additional AOM to address the J = 3/2 (6P3/2) fine-structure state manifold (δJ,3/2 = 1).
If the J = 1/2 (6P1/2) fine-structure state manifold is addressed, this AOM is bypassed (δJ,3/2 = 0).
The frequency stabilization and determination unit is similar to Fig. 3.5, with two differences: first, no
fiber noise cancellation is applied (due to the lower requirements on the laser spectrum), and second, to
match the frequency of the laser to the Fabry-Pérot reference cavity resonance, an ‘Offset AOM’ with
a fixed frequency is placed after some part of the light is split for the frequency comb. The differences
to hydrogen are marked in red, with the configuration for hydrogen (‘H’) written in parantheses in
blue. Due to the lower wavelength for deuterium compared to hydrogen, a different ‘Offset AOM’
configuration is required to match the Fabry-Pérot reference cavity resonance.

of the crystal (as opposed to the commercial SHG cavities of the 243 nm laser system which
are sealed and contain desiccants). The cavity length is stabilized by the Hänsch-Couillaud
technique [171, 166], which makes use of the polarization-sensitivity of the cavity reflection.

The frequency stabilization and determination unit of the 2S-6P laser system (dashed box
in Fig. 3.9) differs from the 1S-2S laser system (recall Fig. 3.5) in two points. First, the laser
frequency is matched to the resonance of the ultra low expansion glass Fabry-Pérot (ULE
FP) reference cavity by the “Offset AOM” (operated at a fixed frequency) after some light
is split for the frequency comb. In constrast to the narrow 1S-2S transition, the much larger
scan range for the broader 2S-6P transition (typical linewidth ∼ 10 MHz which translates into
5 MHz for the infrared light before the SHG unit) exeeds the tuning range of the master
laser such that a separate “Scan AOM” is required. Second, no fiber noise cancellation is
implemented due to the lower requirements on the laser spectrum.

The differences to hydrogen are marked in red in Fig. 3.9, with the configuration for
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hydrogen (2SF=0
1/2 − 6PF=1

1/2 and 2SF=0
1/2 − 6PF=1

3/2 transitions) written in parantheses in blue.
The master laser needs to be at the longer wavelength for hydrogen, separated from deuterium
by ∼ 0.223 nm or 99.36 GHz ' 51.4×FSRFP3, where FSRFP3 ' 1.9321 GHz is the free spectral
range of the ULE FP reference cavity. Therefore, to match the laser frequency to the FP
reference cavity resonance, a different ‘Offset AOM’ configuration is required for deuterium
compared to hydrogen. While for deuterium the ‘Offset AOM’ is operated in the single-pass
configuration in the +1st diffraction order (at fD

FP3,Offset = 296.6 MHz), for hydrogen the

same AOM can be operated in the double-pass configuration in the −1st diffraction order (at
fH

FP3,Offset = 410 MHz), such that the difference is fD
FP3,Offset +2×fH

FP3,Offset ' 0.6 FSRFP3 and
a 51×FSRFP3 higher resonance frequency of the ULE FP reference cavity is used for deuterium
compared to hydrogen. Alternatively, the deuterium laser frequency can be achieved with
the double-pass configuration using the +1st diffraction order, but replacing the AOM by a
different model1 such that it operates at fD

FP3,Offset ' 148.3 MHz.

After the SHG unit, the 410 nm light is sent via 11 m long polarization-maintaining (PM)
fiber to the optical setup which is shown in Fig. 4.1 of Chapter 4 in more detail. Two
electro-optic modulators (EOM 1 and 2) are used for the intensity stabilization discussed in
Section 4.5. The laser frequency is scanned in the ±50 MHz range with the “Scan AOM”2,
which is operated at the center frequency 350 MHz in the double-pass configuration (such
that the scan range is ±25 MHz for the AOM frequeny). An additional AOM (“Fine-structure
AOM”, only shown in Fig. 3.9, but not in Fig. 4.1) can shift the frequency by 406 MHz (which
differs between hydrogen and deuterium by ∼ 1 MHz, see Table 2.5) to address the J = 3/2
(6P3/2) fine-structure state manifold. If the J = 1/2 (6P1/2) state manifold is addressed,
this AOM is bypassed. The polarization switching and polarimetry unit (PSPU) enables to
switch the linear polarization (rotate the linear polarization rotation angle by 90◦) as well as
to deduce the circular polarization fraction of light in the spectroscopy region. The 410 nm
light is guided via the 0.8 m long PM fiber to the active fiber-based retroreflector vacuum
setup, which is treated in Chapter 4.

Due to the n−2-scaling of the gross energy level structure in hydrogen and deuterium,
the 1S-3S transition frequency is approximately equal to four times the 2S-6P transition
frequency. Therefore, the laser system described above is also used as a reference for the
1S-3S hydrogen experiment [12]. For this purpose, a fraction of 820 nm light is splitted via
a fused fiber splitter before guiding the light to the frequency comb (not shown in Fig. 3.9),
and transferred to the neighboring 1S-3S laboratory.

1For the single-pass configuration, the following AOM was used: IntraAction, ATM-3501A2, S/N 441235,
center frequency f0 = 350 MHz, frequency shifting bandwidth f0/2 = 175 MHz, acousto-optical material:
tellurium dioxide TeO2, sound velocity V = 4260 m/s (longitudinal), beam separation λ × f0/V = 67 mrad
(for λ = 820 nm). It was suspected that etalon effects lead to increased noise of the laser in the single-pass
configuration (which later turned out to be due to the non-optimal master laser parameters for the desired
wavelength, though). The AOM was replaced for the double-pass configuration using the following model:
Gooch and Housego, Model 3200-1214, S/N 176327, center frequency 200 MHz, bandwidth 100 MHz, tellurium
dioxide TeO2.

2Brimrose TEF-350-100-400, center frequency 350 MHz, bandwidth 100 MHz.



94 3. Hydrogen and Deuterium 2S-6P Spectrometer Apparatus

3.2.3 Laser frequency determination with a frequency comb

The laser frequencies are determined using the optical frequency comb metrology [10, 172,
173]. The commercial frequency comb1 used in our apparatus is based on the figure 9® mode
locked femtosecond erbium-doped fiber laser (1560±20 nm center wavelength) [174, 175] with
an erbium doped fiber amplifier (EDFA) and two high bandwidth electro-optic modulators
[176] for controlling the repetition rate fRRE and carrier envelope offset fCEO. An integrated
stepper motor and a piezo transducer allow to change the laser cavity length for modifying
the repetition rate in the 4 MHz range around fRRE ' 250 MHz, while an integrated actuator
enables to tune fCEO within ±250 MHz.

Extension modules spectrally broaden the light and double the frequency in all-fiber-
coupled second harmonic generation units to reach the 972 nm and 820 nm wavelength of
the 1S-2S and 2S-6P laser systems. Fiber-based beat detection units (BDUs) spectrally
filter the frequency comb light and superimpose it with the laser light from the 1S-2S or
2S-6P laser systems. Unfortunately, the fiber bragg grating filter of these BDUs can only
be tuned in the range 820.5 nm . . . 820.8 nm and 972.4 nm . . . 972.7 nm which does not cover
the deuterium wavelengths. Therefore, a free-space beat detection setup was built for the
deuterium measurement.

The 10 MHz frequency reference is provided by the passive hydrogen maser2, which is
distributed3 to all frequency synthesizers (e.g. those for driving AOMs which change the laser
frequency) and the frequency comb. The maser frequency is continuously compared against
the Coordinated Universal Time (UTC), which is based4 on the International Atomic Time
(TAI5), with a Global Positioning System (GPS) receiver. Since the atomic time is defined at
sea level, the fractional frequency offset relative to UTC, ∆f/f(UTC), is linked to the shift
relative to the caesium standard of the International System of Units (SI), ∆f/f(Cs), with
the gravitational redshift at the height of h ' 482 m above sea level at MPQ in Garching, the
gravity of Earth g ' 9.8 m/s2 and the speed of light c as:

∆f/f(Cs) = ∆f/f(UTC)− h g
c2
' ∆f/f(UTC)− 5.3× 10−14. (3.9)

The fractional frequency offset of the maser is steered relative to the caesium standard, such
that ∆f/f(Cs) is kept below 10−13, which translates into the uncertainty of ∼ 70 Hz for the
2S-6P transition frequency and ∼ 250 Hz for the 1S-2S transition frequency. This uncertainty

1Menlo Systems FC1500-250-ULN Optical Frequency Comb with ultra-low-noise peformance, with following
key specifications: comb spacing 250 MHz (4 MHz tuning range), stability: 2× 10−16 in 1 s, 3× 10−18 in 1000 s
(or same as reference, whichever applies first), phase noise on both the carrier envelope offset and repetition rate
(for optical lock) below 100 mrad (integrated 2 MHz . . . 100 Hz). Additional ports: 2x HMP-VIS high power
measuring port at 972 nm and at 820 nm (> 3mW in 3 nm, fiber-coupled), HMP-NIR high power measuring
port at 1029-1033 nm (> 3mW in 4 nm, fiber-coupled), M-VIS supercontinuum port from 600-973 nm (free
space), up to 3 measuring ports at 1560 nm for future upgrades.

2Passive Hydrogen Maser Clock T4Science pHMaser 1008, Allan deviation (1 Hz bandwidth): 5×10−13 (at
1 s), 9× 10−15 (at 1 h), 4× 10−15 (at 1 day).

3The 10 MHz signal is guided from the maser room to the experiment laboratory using M17/75-RG 214
cables to frequency distribution amplifiers, e.g. TimeTech High Performance Frequency Distribution Amplifier
5 to 100 MHz.

4Due to leap seconds, the UTC time is at the time of thesis writing (year 2022) exactly 37 seconds behind
TAI, with the last leap second applied in 2017.

5Temps Atomique International (french). The TAI is based on the network of hundreds of caesium atomic
clocks worldwide.
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can be further reduced with GPS corrections within the appropriately chosen time window1.
The frequencies fFP1,ECDL and fFP3,ECDL of the 1S-2S and 2S-6P master lasers, respec-

tively, are given by:

fFP1,ECDL = 2 fCEO +NFP1 × fRRE + fFP1,beat − fFP1,Scan, (3.10)

fFP3,ECDL = 2 fCEO +NFP3 × fRRE + fFP3,beat, (3.11)

where fFP1,beat and fFP3,beat are the beat note frequencies between the frequency comb and
the laser light, fFP1,Scan is the “Scan AOM” frequency (see Fig. 3.5, defined to be always
positive, i.e. the sign from the AOM configuration is taken into account in the above equation
but not in fFP1,Scan) which shifts the frequency of the master laser before it is sent to the
frequency comb (contrary to the 2S-6P master laser which is probed directly by the frequency
comb, see Fig. 3.9). NFP1 = 1 233 368 and NFP3 = 1 461 777 are the comb mode numbers next
to the two laser frequencies, which can be determined by the wavemeter. Note that there is
a factor of two in fCEO due to the second harmonic generation of the frequency comb light.

The carrier-envelope offset frequency fCEO is stabilized to fCEO = −45 MHz. The repe-
tition rate fRRE can also be stabilized to fRRE = 250 MHz, which is denoted as the ‘radio
frequency (RF) lock’ of the frequency comb. Alternatively, one of the comb lines can be
stabilized to one of the narrow linewidth lasers, while the repetition rate needs then to be
measured. This approach is called ‘optical lock’ of the frequency comb. The accuracy of the
absolute frequency determination is the same for both methods, limited by the accuracy of
the 10 MHz maser reference. However, the advantage of the optical lock is that the comb lines
will have the same linewidth as the narrow linewidth laser, for our lasers around 1 Hz (while
for the RF lock the comb lines have typically a linewidth of hundreds of kHz). Our ultra-low-
noise frequency comb transfers the comb linewidth over a spectral range larger than 200 nm:
if the frequency comb is optically locked to a narrow linewidth laser at 1033 nm (from the
neighboring He+ spectroscopy laboratory), the comb lines for the beat notes with the 1S-2S
and 2S-6P lasers at 820 nm and 972 nm have also a narrow linewidth around 1 Hz. This allows
to optimize the feedback loops for the laser stabilizations by observing the noise on the beat
notes with the frequency comb. During the deuterium 2S-6P measurement campaign in July
2021, the frequency comb was optically locked to the narrow linewidth laser from the helium
laboratory at 1032.87 nm (beat note with the frequency comb at fHe,beat = +19.737 MHz,
mode number NHe = 1 161 003). The spectrum of the beat notes fFP1,beat and fFP3,beat is
similar to [162, 163]: at 30 kHz resolution bandwidth, the carrier frequency is superimposed
on the ∼ 5 MHz noise pedestal with a signal-to-noise ratio of ∼ 40 dB. Outside this noise
pedestal the signal-to-noise ratio improves by ∼ 15 dB (to ∼ 55 dB).

The radio frequencies fCEO, fRRE, fFP1,beat, fFP3,beat are redundantly measured with
commercial high precision counters2 [177]. The CEO frequency fCEO = −45 MHz is stabilized
but also measured for redundancy. The repetition rate of fRRE ' 250 MHz is measured in two
redundant ways: first, the 4th harmonic of fRRE at around 1 GHz is mixed with 980 MHz, such

1If the maser counts a too large (small) frequency, the measured hydrogen transition frequency needs to be
increased (decreased) by the same relative factor, which may seem counter-intuitive.

2K+K Messtechnik FX 80 (input frequency range up to 55 MHz) and FXE (input frequency range up to
130 MHz) frequency counters. These counters require a square wave signal with 1− 5 V level (TTL signal) as
input signals. Therefore, the RF signal from the beat notes is converted to the TTL signal using a circuit
based on the Philips SA5214 postamplifier with link status indicator (minimum input signal peak-to-peak
voltage 12 mV, maximum operating frequency 75 MHz). We typically denote the latter component as the
“comparator”.
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Figure 3.10: Determination of laser frequencies with a frequency comb (July 22, 2021). (a) Measure-
ment of the beat note of the 1S-2S laser at 972 nm with the frequency comb at fFP1,beat ' 50.7 MHz
(note the axis offset of 50.729 MHz). (b) Measurement of the beat note of the 2S-6P laser at 820 nm
with the frequency comb at fFP3,beat ' −98.7 MHz, which is mixed with 55 MHz to count the fre-
quency around 43.7 MHz (note the axis offset of 55+43.085 MHz). (c) Measurement of the frequency
comb repetition rate fRRE ' 250 MHz (note the axis offset of 250 MHz). The shown value for fRRE has
been deduced from the 40th harmonic of fRRE at ∼ 10 GHz, which is mixed with 9.980 121 089 GHz
such that a frequency ∼ 19.88 MHz is counted. (d) Time difference of the passive hydrogen maser
(providing the frequency reference for all devices including the frequency comb) against the Coordi-
nated Universal Time (UTC) from a comparison with a Global Positioning System (GPS) receiver.
The linear fit yields a fractional frequency offset of ∆f/f(UTC) ∼ −3.5×10−14, which translates into
the fractional frequency offset to the caesium standard of the International System of Units (SI) of
∆f/f(Cs) ∼ −8.8× 10−14 according to Eq. (3.9).

that the frequency around 20 MHz is measured. Second, the 40th harmonic of fRRE at around
10 GHz is mixed with 9.980 121 089 GHz (this crooked number is chosen to avoid noise from
interference of signals) supplied by an auxiliary signal generator1 to measure the frequency
around 19.88 MHz. The sign of the beat notes fFP1,beat and fFP3,beat can be determined by
slightly changing fRRE while observing the effect on the beat note frequency: for increasing
fRRE the absolute value of the beat note frequency decreases if the sign of the beat note is
positive, and increases if the sign of the beat note is negative. The beat note with the 2S-6P
laser is at around fFP3,beat ' −98.1 MHz which is too high to be measured directly with
our counters. Therefore, the signal is mixed with 55 MHz such that a beat frequency around
43.1 MHz is counted. The beatnote with the 1S-2S laser is around fFP1,beat ' 50.7 MHz and
is counted directly.

Fig. 3.10 exemplarily shows the measurement of the radiofrequencies needed to determine
the master laser frequencies of the 1S-2S (at 972 nm) and 2S-6P (at 820 nm) lasers according

1Agilent E 8257 D, Analog Signal Generator, 250 kHz-20 GHz.
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to Eq. (3.10) and Eq. (3.11). Fig. 3.10(a) and (b) show the measurement of fFP1,beat and
fFP3,beat, and (c) the deduced fRRE from the 40th harmonic of the repetition rate mixed
with ∼ 10 GHz. Note that an increase in noise is visible in Fig. 3.10(a) in the last two hours
of the data, which is attributed to polarization drifts in the fiber resulting in drifts of the
signal-to-noise ratio of the beat signal. This can be improved in the future with a modified
beat detection setup of the 1S-2S laser, which has a better signal-to-noise ratio of the beat
note and which is less sensitive to polarization drifts. The laser frequency of both master
lasers drifts within the shown measurement day on the order of ∼ 1 kHz/10 h. While it is
typically observed that the 1S-2S laser drifts almost linearly, the 2S-6P laser shows a non-
linear drift, which remains to be investigated1. The repetition rate drifts by ∼ 1 mHz/10 h
due to the ∼ 3 kHz/day drift of the 1033 nm laser to which the frequency comb is optically
locked. Fig. 3.10(d) shows the time difference between the maser and UTC from the GPS
receiver data. The absolute offset of ∼ 2 ms is irrelevant since only the slope matters for the
fractional frequency offset. For this data, the linear fit yields a fractional frequency offset of
∆f/f(UTC) ∼ −3.5 × 10−14, which translates into ∆f/f(Cs) ∼ −8.8 × 10−14 according to
Eq. (3.9).

From the laser frequency measurement of the infrared 1S-2S and 2S-6P master lasers, the
1S-2S and 2S-6P frequency as seen by atoms is given by:

f1S-2S = 2× 2× 2× fFP1,ECDL = 8× fFP1,ECDL, (3.12)

f2S-6P = 2× fFP3,ECDL + 2× fFP3,Scan + δJ,3/2fFP3,FS, (3.13)

where for the 1S-2S frequency we accounted for two SHG units (doubling the laser frequency
twice) to reach 243 nm and an additional factor of two due to the two-photon transition.
For the frequency of the one-photon 2S-6P transition, only one SHG unit is present. The
two additional terms account for the frequencies of the double-passed “Scan AOM” and the
“Fine-structure AOM” (δJ,3/2 = 0 if the 2S1/2-6P1/2 transition is probed and δJ,3/2 = 1 if the
2S1/2-6P3/2 transition is probed), see Fig. 3.9.

3.3 Numerical modeling of the time-resolved signal

Numerical modeling is an important part of the experiment for various reasons. One major
reason for the necessity of simulations is the determination of the different mean velocities
of atoms for the different delays from the time-resolved detection (see Section 3.1.1). Other
reasons involve the study of systematic effects such as quantum interference. The simula-
tions of the 2S-6P deuterium signals are composed of several steps: first, from the geometry
constraints of the apparatus, random trajectories of atoms are generated. Along with these
Monte-Carlo trajectory simulations, the 1S-2S excitation is simulated, as described in Sec-
tion 3.3.1. Next, the 2S-6P excitation is simulated with the so-called “Big Model” which
involves all possible (intermediate) states, decays and excitations (see Section 3.3.2). Finally,
as demonstrated in Section 3.3.3, the 1S-2S simulations for a given trajectory set are com-
bined with the 2S-6P “Big model” simulations, leading to the experimental 2S-6P signal with
the expected speed distribution of the flux and the mean velocity for each delay.

1This could be related to temperature drifts in the cavity after the laser is switched on together with the
non-optimal cavity temperature where the linear expansion coefficient does not vanish.
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Table 3.1: Range of parameters used for the Monte Carlo simulation of the trajectories of metastable
2S deuterium atoms. The parameters are classified into three groups: the geometry of the apparatus,
the speed distribution of the flux of ground state (1S) atoms where the atomic mass includes the
information on the isotope, and the properties of the 1S-2S preparation laser beam. Typically, 106

trajectories are simulated (‘trajectory set’), with single values for each parameter. Various trajectory
sets with different parameter sets according to the given experimental range are simulated to match
the different experimental conditions during the measurement campaign. For comparison to hydrogen
2S-6P, see Table 5.3 in [71].

Parameter Value

Geometry
Nozzle orifice radius r1 1.0 mm
Distance L1 from nozzle orifice to variable aperture 153.6 mm
Width d2 = 2r2 of variable aperture along x-axis 1.2 mm
Height d2,y = 2r2,y of variable aperture along y-axis 2.0 mm
Distance L from nozzle orifice to 2S-6P spectroscopy laser beam 204.0 mm

Speed distribution of the flux of ground state (1S) atoms

Speed distribution of the flux p(v) dv ∝ v3e
− mDv2

2kBTN e−
vcutoff

v dv
Angular distribution p(θ) dΩ ∝ cos(θ) dΩ
Nozzle temperature TN 7.1 K. . . 7.4 K
Cutoff speed vcutoff 60 m/s. . . 150 m/s

1S-2S preparation laser
Beam waist radius w1S-2S (1/e2 intensity radius) 297 µm
Distance of waist to nozzle orifice 0.0 mm
Intracavity power P1S-2S (per direction) 0.9 W. . . 1.5 W

Detuning from 1S
F=1/2
1/2 − 2S

F=1/2
1/2 resonance ∆ν1S-2S 0.3 kHz. . . 2.0 kHz

Chopper frequency fchop (equal slit width) 160 Hz

The numerical modeling procedure is the same as for hydrogen and is treated in detail
in Ch. 5 of [71]. Here, many details are left out and only a brief overview with exemplary
simulations for the deuterium 2S-6P measurement is given.

3.3.1 Simulations of metastable atomic beam trajectories

The numerical modeling starts with Monte-Carlo simulations of atomic trajectories along with
the simulation of the 1S-2S excitation, thus simulating the atomic beam in the metastable 2S
state. The parameters for these simulations are summarized in Table 3.1. The parameters
are grouped into three categories: the geometry of the apparatus, the speed distribution of
the flux of the ground state (1S) atoms, and the 1S-2S preparation laser properties.

The geometry of the apparatus is given by the nozzle orifice radius r1 = 1.0 mm, the
distance L1 = 153.6 mm from the nozzle orifice to the variable aperture, along with its
variable width set to d2 = 1.2 mm (in the experiment routinely aligned to this optimal value)
and fixed height d2,y = 2.0 mm, as well as the distance L = 204 mm from the nozzle orifice
to the 2S-6P spectroscopy region. Note that the circular high-vacuum entrance aperture (EA
in Fig. 3.1, Fig. 3.3, Fig. 3.4) placed at 69 mm after the nozzle orifice does not matter here
because its diameter of 2.4 mm is larger than the dimensions of the variable aperture.
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The next category of parameters describes the speed distribution of the flux of ground
state (1S) atoms emerging from the nozzle. In our apparatus, the atoms are generated in
the copper nozzle, which is cooled for deuterium spectroscopy to TN ∼ 7 K using a liquid-
helium flow cryostat. The speed and angular distribution is assumed to be the same over the
whole area of the nozzle. The geometrical T-shaped nozzle design1 is inevitable in our setup
where the atomic beam needs to be collinear with the 1S-2S preparation beam. However,
the speed distribution of the flux of atoms emerging from such a nozzle is distorted from
the Maxwell-Boltzmann distibution, particularly for slow atoms as has been studied in [178].
Furthermore, other effects such as the “Zacharias effect” from intra-beam collisions, where fast
atoms “kick out” slow atoms from the beam, lead to the depletion of slow atoms [179, 180].
For a discussion of the cryogenic deuterium atomic beam formation, see Section 3.6.1. Here,
these effects are taken into account with an effective model, where the speed distribution of
the flux for an effusive beam [181, 182] is multiplied with an exponential cutoff factor [180].
The probability p(v) of a flux of atoms with the speed interval between v and v+dv (which is
proportional to the number of atoms that pass through the cross section of the atomic beam
with these speeds per unit of time) is then assumed to be

p(v) dv ∝ v3e
− mDv

2

2 kBTN e−vcutoff/v dv, (3.14)

where vcutoff is a parameter characterizing the bottleneck of slow atoms, kB the Boltzmann
constant, TN the nozzle temperature, and mD the mass of deuterium atoms. The probability
distribution from Eq. (3.14) can be normalized, here we show the proportionality dependence
only. For atomic beam modelling, the joint spatial, angular and speed distribution of the flux
is required. For an effusive beam such as here, the relation

p(θ) dΩ ∝ cos θ dΩ = cos θ × 2π sin θ dθ (3.15)

can be assumed [181, 182], where dΩ = 2π sin θ dθ is the surface element of a unit sphere, and
p(θ) is the probability to find the atom between the angle θ (w.r.t. the normal of the plane
of the orifice) and θ + dθ.

For each trajectory, the simulation of the 1S-2S excitation is performed by numeri-
cally solving the Optical Bloch Equations, including the ac-Stark shift and the second-order
Doppler shift of the transition frequency. The parameters for this simulation are the beam
waist radius (1/e2 intensity radius) w1S−2S = 297 µm, the zero distance of the waist to the noz-
zle orifice, the intracavity power P1S−2S (per direction, i.e. the total power from both counter-

propagating beams in the cavity is 2×P1S−2S), and the detuning from the 1S
F=1/2
1/2 −2S

F=1/2
1/2

resonance ∆ν1S-2S. The latter two parameters are varied within the typical experimental con-
ditions. Furthermore, the chopper frequency fchop = 160 Hz is an input parameter along with
an assumption of equal slit width of the chopper wheel slits.

As an example, the analysis of 107 trajectories for a given set of parameters (TN = 7.2 K,
vcutoff = 65 m/s, P1S-2S = 0.9 W, ∆ν1S-2S = 0.3 kHz, along with the other fixed parameters from
Table 3.1) is shown in Fig. 3.11. All three figures show the resulting number of 2S atoms
(solid lines), with the underlying distribution of ground state (1S) atoms shown in dashed
lines (scaled to envelope the 2S distribution). Each distribution is exemplarily shown for 6
out of 16 different delays in a separate color for each delay. For each delay i, the delay times τi

12.0 mm diameter through-hole combined with a 4.0 mm diameter blind hole in a 10.0 mm × 8.0 mm rect-
angular block of copper. See [71] for a technical drawing and details.
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Figure 3.11: Monte Carlo simulation of the trajectories of 2S metastable deuterium atoms, based on
the work described in Sec. 5.2 of [71]. For comparison to hydrogen, see Fig. 5.4 in [71]. The parameters
are TN = 7.2 K, vcutoff = 65 m/s, P1S-2S = 0.9 W, ∆ν1S-2S = 0.3 kHz, along with the fixed parameters
from Table 3.1. All results are exemplarily shown with different colors for 6 out of 16 delays (see
Table 3.2 for the delay times). All figures show the resulting simulated number of 2S atoms in solid
lines, while the distribution of ground state (1S) atoms is shown in dashed lines (scaled to envelope
the 2S distribution). The total number of simulated trajectories is 107. (a) Distribution of the atomic
speed v for the 1S and 2S atoms, with the mean speed v written in the legend (see also Table 3.2).
For longer delays, the maximum velocity vmax ' L/τ is visible for the 1S atoms (dashed lines), where
L = 204 mm is the distance from the nozzle to the 2S-6P spectroscopy region and τ the delay time.
(b) Distribution of the transverse velocity vx along the 2S-6P spectroscopy laser beams (x direction),
with the full width half maximum (FWHM) of the 2S atoms distributions ∆vx(2S) written first in
the legend, and the FWHM of the 1S atoms distributions ∆vx(1S) written in the parantheses in the
legend. (c) Distribution of the transverse angle δα from the z axis to the x axis. The distribution
for the ground state (1S) atoms is given only by the geometry and thus identical for all delays up to
the scale factor, which has been here adjusted to envelope the 2S distribution. See main text for the
explanation of the dip for vx and δα around zero in (b) and (c).

(with the corresponding delay durations ∆τi) including the main results of the simulation are
summarized in the first columns of Table 3.2. For a given delay, there is a maximum velocity
vmax ' L/τ of atoms which can contribute to the signal. This is visible in Fig. 3.11(a),
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which shows the speed distribution of the flux of ground state (1S) and 2S atoms: for ground
state atoms, a sharp drop is visible at vmax for longer delays. This drop is not visible in
the speed distribution of the flux of 2S atoms, where the number of atoms is almost zero
for even lower velocities than vmax. The mean velocity of 1S atoms, v(1S), is higher than
that of 2S atoms, v(2S), with corresponding values written in the legend of Fig. 3.11(a) and
in Table 3.2. Fig. 3.11(b) shows the distribution of the transverse velocity along the 2S-6P
spectroscopy laser beams (x direction), with the full width half maximum (FWHM) of the 2S
atoms distributions ∆vx(2S) written first in the legend (see also Table 3.2), and the FWHM of
the 1S atoms distributions ∆vx(1S) written in the parantheses in the legend. The distribution
of the transverse angle δα from the z axis to the x axis (given by δα = arctan(vx/vz) ' vx/v)
is shown in Fig. 3.11(c). Note that the distribution for the ground state (1S) atoms is given
only by the geometry and thus identical for all delays up to the scale factor, which has been
here adjusted to envelope the 2S distribution.

In Fig. 3.11(b) and (c), the dip in the number of 2S atoms for vx and δα around zero is
due to the circumstance that atoms with trajectories parallel to the 1S-2S laser beam have a
smaller probability to be excited (if close to the edge or outside of the 1S-2S laser beam) or
a larger probability to be ionized (if close to the center of the 1S-2S laser beam) as compared
to atoms crossing the 1S-2S laser beam at an angle. Note also that this mechanism depends
on the mean speed of atoms and is more pronounced for fast atoms (smaller delays). This
phenomenon is related to the discussion in Section 5.3 (see Fig. 5.7).

3.3.2 Simulations of the 2S-6P fluoresence (“Big Model” simulations)

We call the 2S-6P excitation simulations “Big Model” simulations since they include all pos-
sible intermediate states with all excitation and decay paths. These simulations are based
on Arthur Matveev’s so far unpublished work, which has also been used in Section 2.5.3 to
verify the results of the perturbative quantum mechanical model for the effect of quantum
interference between unresolved hyperfine components. The fluorescence from the 2S1/2-6P1/2

(or 6P3/2) excitation involves 234 sub-levels, which generally results in 2342 = 54756 coupled
differential equations (Optical Bloch Equations or “Master Equations”) for calculating the
time evolution of the system. However, many of the possible excitation and decay paths do
not contribute and the number of equations can be greatly reduced to those which result
in a non-zero time evolution. Here, the simulations are performed with linear polarization
only, and with no asymmetry between the mF = ±1/2 initial sub-states of the 2S1/2 initial
state manifold, such that the number of equations reduces to 1442. Still the simulations
remain numerically extensive and are performed on the supercomputer Raven1 of the Max
Planck Computing and Data Facility. The code is written in C++ with the routine using the
eight-order Dormand-Prince method for solving the equations (Dopr853 from [183]).

For a Gaussian laser beam of certain power, each atomic trajectory through the laser
beam can be transformed into an equivalent trajectory crossing the center of the laser beam

1The supercomputer Raven (in operation since June 2021) has the following key performance properties:
1592 CPU compute nodes, processor type: Intel Xeon IceLake-SP (Platinum 8360Y), processor base frequency:
2.4 GHz, 72 cores per node (each with 2 hyperthreads, thus 144 logical CPUs per node), main memory (RAM)
per node: 256 GB (1524 nodes), 512 GB (64 nodes), 2048 GB (4 nodes), theoretical peak performance per node
(FP64, ‘double precision’ (DP)): 2.4 GHz × 32 DP Flops/cycle × 72 = 5530 GFlop/s, total theoretical peak
performance (FP64): 5530 GFlop/s × 1592 = 8.8 PFlop/s, CPU nodes interconnected with a Mellanox HDR
InfiniBand network (100 Gbit/s) using a pruned fat-tree topology with four non-blocking islands. In addition,
192 GPU-accelerated nodes are available.
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under a certain angle with possibly lower laser power. Therefore, the simulation of the 2S-6P
fluorescence for a given set of atomic trajectories requires to vary only three parameters: the
speed of the atom, the 2S-6P excitation laser power (the laser beam radius W0 ' 2.2 mm
is a fixed input parameter), and the crossing angle. The simulations are performed for the
following ranges of these parameters, respectively: 25 . . . 1000 m/s in 25 m/s steps, 5 . . . 50 µW
in 5 µW steps, and 0.5 . . . 15.5 mrad in 1 mrad steps. This “simulation grid” thus consists of
40× 10× 16 = 6400 parameter sets or resonance lines which need to be simulated. Since the
supercomputer Raven has 72 cores per node, it is advantageous to parallelize the computation
for a multiple of 72 frequency points. For 72 frequency points the parallelized simulation (on
one CPU node with 72 cores) takes ∼ 7.5 h = 540 coreh for the whole range of velocities with
a given laser power and crossing angle. As expected from the velocity-dependent integration
time, the computation time for each individual resonance line strongly depends on the velocity:
for 25 m/s atoms the single resonance line is calculated in ∼ 100 min, for 50 m/s atoms in
∼ 50 min, and for 1000 m/s atoms in only ∼ 3 min. The total computation time for 160
parameter sets of laser powers and crossing angles is ∼ 7.5 h × 160 = 1200 h = 86.4 kcoreh.
With 16 CPU nodes simultaneously, the computation time on Raven reduces to ∼ 75 h. After
the simulation grid has been calculated, for each decay channel, the results are interpolated
to create a “dense grid”, for instance with 101 laser power points, 64 crossing angle points,
and 196 velocity points.

3.3.3 Simulation of the time-resolved experimental 2S-6P signal

To simulate the experimental time-resolved 2S-6P fluorescence signal, the 2S trajectory sim-
ulations from Section 3.3.1 are combined with the 2S-6P simulation grid from Section 3.3.2.
The trajectories are first grouped for each delay into 200 speed bins of 5 m/s width from
0 . . . 1000 m/s. For a given trajectory set, each speed bin in each delay contains the corre-
sponding number of 2S atoms. Using the results of the 2S-6P simulation dense grid, for each
2S-6P frequency detuning, in each speed bin for each delay the fluoresence signal is then
calculated, thereby yielding the interpolated grid connected to a certain trajectory set. Since
the 2S-6P simulations from Section 3.3.2 are performed for each decay channel separately, for
the given linear polarization angle of the 2S-6P laser beam, the detection efficiency can be
included in this calculation (see Secs. 4.6 and 5.3 of [71]). In the next step, the resonance
lines are fitted with a given line shape function to determine the amplitude in each speed
bin for each delay. Therefore, the end result for the mean velocity in each delay depends on
the fit function and the frequency sampling, though this dependence is typically negligible
compared to the sensitivity on other input parameters1. For each delay, the resonance line
amplitudes in each speed bin give the speed distribution of the flux.

Fig. 3.12(a) exemplarily shows the resulting speed distribution of the flux of atoms con-
tributing to the 2S-6P signal for the same trajectory set as in Fig. 3.11 (parameters TN = 7.2 K,
vcutoff = 65 m/s, P1S-2S = 0.9 W, ∆ν1S-2S = 0.3 kHz, along with the fixed parameters from Ta-
ble 3.1). Only the dominant Lyman-ε signals are taken into account here, with equal weights
of the three spherical components (which corresponds to a detector measuring the fluoresence
into the whole solid angle (“4π detector”) with equally distributed detection efficiency). The
calculation is performed for the 2S-6P laser power of 30 µW. The speed distribution of the

1Using a Lorentzian function instead of the Voigt function typically results in mean velocity changes on
the order of ∼ 1 m/s. Sampling the line not around the center, but shifted by ∼ 0.5 MHz (on the order of the
recoil shift), results in a mean velocity change on the order of ∼ 0.1 m/s.
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Figure 3.12: Simulation of the 6P speed distribution of the flux, which is the distribution of atoms
contributing to the 2S-6P fluorescence signal. This simulation has been obtained from the 2S trajectory
set simulation shown in Fig. 3.11 combined with the 2S-6P ‘Big Model’ simulations for the 2S-6P laser
power of 30 µW. For each delay, the number of 2S atoms from a given trajectory set simulation is
grouped into 200 speed bins with 5 m/s width. The resulting resonance lines from the combination with
2S-6P simulations are then fitted with a Voigt line shape function, which yields the shown amplitudes
for each speed bin and delay. Only the dominant Lyman-ε signals (all three spherical components) have
been taken into account here. For comparison to hydrogen 2S-6P and more details on the simulation
procedure, see Sec. 5.5 and Fig. 5.5 in [71]. (a) The speed distribution of the flux of 6P atoms is
exemplarily shown for 8 out of 16 delays, each with its own color. The points mark the mean speed,
which is also written in the legend along with the delay times (see also Table 3.2). (b) The relative
amplitude to delay 2 is shown as a function of the mean speed v in each delay, either summed over the
whole duration of delay (Ai/A2, blue circular markers), or normalized to the duration of delay ∆τi
(Ai∆τ2/(A2∆τi), orange square markers), see also the two last columns in Table 3.2. (c) The mean
speed v (blue circular markers) and the full width half maximum (FWHM) of the speed ∆v (orange
square markers) is plotted versus the delay number.

flux is exemplarily shown for 8 out of 16 delays, each in its own color. The points mark the
mean speed v, which is also written in the legend along with the corresponding delay times
τ . Fig. 3.12(b) shows the relative signal amplitude for each delay as a function of the mean
speed, either summed over the whole duration of the delay, or normalized to the duration of
the delay. Fig. 3.12(c) shows the mean speed v (blue circled markers) and the full width half
maximum (FWHM) of the speed, ∆v, as a function of the delay number.
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Table 3.2: Speed distribution of the flux for the 16 delays i with delay times τi and durations ∆τi,
for following parameters: TN = 7.2 K, vcutoff = 65 m/s, P1S-2S = 0.9 W, ∆ν1S-2S = 0.3 kHz, along with
the other fixed parameters from Table 3.1. Together with the distance L from the nozzle orifice to
the 2S-6P spectroscopy region, the delay time determines the maximum speed vmax ≈ L/τ of atoms
that can contribute to the signal. The mean speed is different for the ground state atoms, v(1S),
for atoms in the 2S excited state, v(2S), and for atoms contributing to the 2S-6P fluoresence signal,
v(6P) ≡ v (where the 1S-2S and 2S-6P excitations are combined). See Fig. 3.11(a) for visualizations of
v(1S) and v(2S), and Fig. 3.12(a) and (c) for visualizations of v(6P) ≡ v. Furthermore, the transverse
velocity full width half maximum (FWHM) of 2S atoms, ∆vx(2S), is given (see Fig. 3.11(b)). The last
two columns give the relative signal amplitudes, either summed over the whole duration of delays, or
normalized to the duration of delays, see Fig. 3.12(b) for visualization. For comparison to hydrogen
2S-6P and more details, see Tables 5.1, 5.4 and 5.5 in [71].

Delay
i

τi
(µs)

∆τi
(µs)

vmax

(m/s)
v̄(1S)
(m/s)

v̄(2S)
(m/s)

∆vx(2S)
(m/s)

v̄
(m/s)

Ai

A2

Ai∆τ2
A2∆τi

1 10. . . 60 50 >1000 334.8 282.5 2.90 237.1 1.03 1.03
2 60. . . 110 50 >1000 334.8 281.5 2.89 235.8 1.00 1.00
3 110. . . 160 50 >1000 334.8 279.6 2.87 233.9 0.97 0.97
4 160. . . 210 50 >1000 334.8 276.1 2.84 231.3 0.92 0.92
5 210. . . 260 50 971 334.8 269.9 2.78 227.4 0.87 0.87
6 260. . . 310 50 785 334.5 260,7 2.69 222.1 0.81 0.81
7 310. . . 360 50 658 331.9 249.3 2.56 215.4 0.74 0.74
8 360. . . 410 50 567 324.0 236.7 2.41 207.5 0.67 0.67
9 410. . . 510 100 498 310.9 218.4 2.19 194.7 1.11 0.56

10 510. . . 610 100 400 277.6 195.0 1.92 177.3 0.84 0.42
11 610. . . 710 100 334 245.0 174.8 1.69 161.4 0.63 0.31
12 710. . . 910 200 287 217.3 152.2 1.44 142.3 0.80 0.20
13 910. . . 1210 300 224 175.5 124.5 1.15 118.0 0.59 0.10
14 1210. . . 1510 300 169 135.2 100.5 0.91 96.6 0.27 0.04
15 1510. . . 2010 500 135 109.9 81.6 0.73 79.1 0.18 0.02
16 2010. . . 2560 550 101 83.7 64.3 0.57 63.1 0.07 0.01

Table 3.2 gives the delay times and durations along with 1S-2S trajectory simulation
results (visualized in Fig. 3.11), the mean speed v of atoms contributing to the 2S-6P signal
(visualized in Fig. 3.12(a) and (c)), as well as the relative amplitudes (normalized to delay
2) in each delay (visualized in Fig. 3.12(b)). The mean speed of ground state atoms v(1S) is
higher than the mean speed of 2S atoms v(2S): for slower atoms, the longer interaction time
with the 1S-2S laser increases the excitation probability, thus shifting the speed distribution
of the flux to lower speeds. Similarly, the mean speed of 6P atoms v(6P) ≡ v is lower than
v(2S).

Note that Fig. 3.11, Fig. 3.12 and Table 3.2 present only an example for a certain param-
eter set. For the analyis of the experiment, the parameters need to be chosen such that they
closely match the experimental conditions. The mean speed v, which is decisive for the 2S-6P
spectroscopy analysis, varies depending on the experimental conditions during the measure-
ment. Apart from obvious conditions, such as different 1S-2S and 2S-6P laser powers, also the
speed distribution of the flux may change over time. The comparison of the simulated and
measured relative signal amplitudes in the different delays allows to obtain some information
on the velocity distribtion, specifically the cutoff-speed vcutoff, as discussed in Section 3.6.2



3.4 Magnetic field suppression and measurement 105

and visualized in Fig. 3.22 and Fig. 3.23.

Compared to the hydrogen 2S-6P spectroscopy, the simulations yield very similar results
(see Fig. 5.5 in [71]). This is mainly due to the fact that for hydrogen the optimal nozzle
temperature is around TN ' 5 K, while for deuterium the temperature is higher at TN ' 7 K,
as discussed in Section 3.6.1. Therefore, the effect of higher mass for deuterium is compensated
by the higher temperature.

3.4 Magnetic field suppression and measurement

Minimizing the magnetic field in the 2S-6P interaction region is crucial for suppressing the
Zeeman shift, with the x direction along the 2S-6P spectroscopy laser beam being most de-
cisive. Therefore, the high-vacuum region is magnetically shielded with a high-permeability
(mu-metal) magnetic shield MS of 1 mm thickness1. To further minimize the magnetic field,
the vacuum chamber is surrounded by three pairs of coils in the approximate Helmholtz
configuration (one pair for each of the three spatial directions). In Fig. 3.4, part of the com-
pensation coils CC is visible for the x and z direction, which are made of ribbon cables. The
compensation coils for the y direction are wrapped around the cylindrical vacuum chamber.

Without the magnetic shield and with compensation coils switched off, the magnetic field
in the interaction point is (Bx, By, Bz) = (−508.6(3),−707.1(3),−11.1(3)) mG. With the
magnetic shield, but with compensation coils switched off, the magnetic field in the interaction
point was measured to be (Bx, By, Bz) = (−12.5(3),−111.0(3),−38.4(3)) mG. The magnetic
shield is therefore most effective in the most important x direction, while the suppresion in
the y direction suffers from the ∼7 cm hole needed for the detector, whereas in the z direction
no large magnetic field is present (such that the value in this direction is even increased due
to the overall change in the magnetic field vector). With magnetic shield and compensation
coils switched on (in the optimized configuration) the magnetic field in the interaction point
is reduced to (Bx, By, Bz) = (+0.1(3),+1.0(3),−1.8(3)) mG. The results of the magnetic field
measurements in the interaction region within ±1.5 cm distance from the interaction point
are shown in Fig. 3.13, with the magnetic shield and with the optimized coil compensation
configuration. For this configuration, the currents on the three pairs of (x, y, z) coils are kept
at (−1.200,−0.610, 0.414) A, while the supplied voltages of around (14.1, 4.4, 11.2) V may
slightly vary depending on the temperature. Fig. 3.13 demonstates that the magnetic field
values for the x direction (Bx), which is most important for the Zeeman shift of the 2S-6P
spectroscopy measurement, are below 1 mG within three times the 1/e2 beam diameter (beam
radius W0 = 2.2 mm) of the 410 nm spectroscopy laser beam (±0.7 cm around the interaction
point).

The magnetic field inside the detection region is measured with a fluxgate magnetometer
probe2, with the cylindrical detector (shown in Fig. 3.14) being removed. All other com-

1Custom manufacturing by Meca Magnetic. The mu-metal has a permeability of 3−4×105 (for a continuous
field) and consists of 80% nickel, 15% iron, and 5% molybdenum (with < 1% traces of carbon, silicon and
manganese).

2Bartingtom Magnetometer Mag13MC60, conversion factor 60.24 mG/mV, absolute accuracy with various
crosschecks (e.g. rotation) was found to be ∼ 0.3 mG. In the future, the Stefan Mayer Instruments FLUXMAS-
TER probe can be used in addition to probe the magnetic field with a similar accuracy along the x direction
with the detector being in place. This probe is small anough to be inserted into the 15 mm diameter tube
(from the side where the HR mirror and the PMT of the AFR are mounted), but measures in one direction
only.
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Figure 3.13: Measurement of the magnetic field in the ±1.5 cm region around the 2S-6P interaction
point. Data points show the values for the magnetic field values Bx, By, Bz in the direction along the
2S-6P spectroscopy beam x (blue), vertical direction y (orange), and atomic beam direction z (red),
respectively, according to the coordinate system definition as shown e.g. in Figs. 3.1, 3.3, 3.4, or 4.2.
The different markers and lines (quadratic fit to the data) signify the directional distance from the
interaction point: x (circular markers, solid lines), y (triangular markers, dotted lines), and z (cross
markers, dashed lines). The absolute accuracy on each data point is ∼ 0.3 mG. The values for Bx

(most important for the Zeeman shift of the 2S-6P spectroscopy measurement) are below 1 mG within
three times the 1/e2 beam diameter of the 410 nm spectroscopy laser beam (±0.7 cm).

ponents in the vacuum assembly are mounted in place. Closing the vacuum chamber lid or
moving the illumination lamp near the chamber changes the values in each of the three di-
rections by < 0.4 mG. All components in the high-vacuum region as well as all possible other
components are made from non-magnetic materials such as titanium screws. No magnetic
materials are used in the detector (also the small M1×15 screws holding the detector together
are made from titanium).

The compensation coils can also be used to apply a larger magnetic field for systematic
uncertainty checks. However, due to the magnetic shield, the maximum amplitude is sig-
nificantly smaller than the earth’s magnetic field. Along the x direction, with a maximum
achievable current through the x-coils between −3 A and 3 A, the magnetic field Bx was
measured to vary between −20 mG and 50 mG.

Though the magnetic field is not measured in-situ during the measurement, another probe1

is mounted on the outside wall of the vacuum chamber (at ∼20 cm distance from the 2S-6P
spectroscopy region), which monitors the magnetic field inside the magnetically compensated
region. Therefore, any magnetic field changes, i.e. due to a current change in the compensa-
tion coils, are immediately noticed. With the compensation coils switched off, this probe mea-

1LakeShore FP-2X-250-ZS05M Hall probe, accuracy ∼5 mG.
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sures1 the magnetic fields (Bx, By, Bz) = (−386(5),−965(5),+257(5)) mG, while with com-
pensation coils switched on the values are (Bx, By, Bz) = (+262(5),−760(5),+685(5)) mG.
These values varied by less than 30 mG over the time period of more than two years.

3.5 Fluorescence detector and in-situ stray electric field mea-
surement

The fluorescene detector serves not only the purpose of detecting the 2S-6P fluorescence
photons, but also for an in-situ stray electric field measurement which is crucial to place
a limit on the quadratic dc-Stark shift for the precision spectroscopy. The quadratic dc-
Stark shift of 2S-nP transitions scales approximately as ∝ n7 (see discussion in the beginning
of Section 2.2.1). For the 2S-4P measurement, an estimate of the dc-Stark shift was made
without an in-situ measurement, while for the 2S-6P transition measurement, such an estimate
is not sufficient.

The stray electric field in the interaction region is determined from the varying quadratic
dc-Stark shift of the 2S-6P resonance with exactly reversed applied electric fields in the inter-
action region. Therefore, first the fluorescence detector assembly along with the possibility
to apply electric fields is described. Second, the procedure to measure the stray electric fields
is given, along with an example measurement.

Much more details on the detector are found in Sec. 4.6 of [71], while here only an overview
is presented. More specifically, [71] covers also the details for the operation of the channeltron
electron multipliers (CEMs), the saturation of CEMs due to photoionization of 2S atoms in
the bright phase, the high-voltage gain switching of CEMs, as well as simulations of detection
efficiencies.

3.5.1 Fluorescence detector assembly

Fig. 3.14(a) shows the photograph of the whole assembled detector lying on the table. The
detector consists of two aluminum cylinders (each with inner radius of 28 mm and ∼85 mm
length) and an electrode section in the center. The cylinders serve the purpose of emit-
ting photoelectrons from 94 nm fluorescence photons hitting their inner walls. While for the
previous 2S-4P measurement graphite coated copper cylinders were used, for the 2S-6P mea-
surement the material was replaced by aluminum which has a substantially higher yield for
94 nm photons. The top part of the detector is enclosed with an aluminum cap, see left of
Fig. 3.14(a), with a hole for the top channeltron electron multiplier2 (CEM) TD . The bottom
part of the detector, shown in Fig. 3.14(b), is enclosed by a graphite-coated mesh on a copper

1The apparatus in the lab is oriented such that the z axis as defined e.g. in Fig. 3.4 points in the north-
north-east direction, the x axis in the west-west-north direction, and the y axis to the top. The magnetic field
in the lab usually points towards the bottom north-east direction: negative sign for the x and y directions,
and positive sign for the z direction. Outside the MPQ building, the values in the same coordinate system
are approximately (Bx, By, Bz) = (+0.18(5),−0.44(5),+0.12(5)) G, which corresponds to the bottom north
direction (positive sign for x in contrast to the lab). Therefore, the building or the surroundings of the lab
significantly change the earth’s magnetic field direction. However, the magnetic field in the lab stays stable
within 30 mG over more than two years.

2Photonis MAGNUM Channeltron Model 5901 Extended Dynamic Range (EDR) version. For the pre-
liminary 2S-6P deuterium in July 2021, the top CEM was Serial No. CEM3Y6N0-02, date 02-Apr-19, voltage
2232 V, bias current 181 µA, gain 6.4 × 107, dark count 0 cts/min@3kV, FWHM/V0 47%. Bottom CEM:
CEM3Y6N0-03, 21-Mar-19, 2360 V, 290µA, 6.4× 107, 59 cts/min@3kV, FWHM/V0 89%.
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Figure 3.14: Fluorescence detector assembly. (a) The assembled detector lying on the table, along
with the top channeltron electron muliplier (CEM) TD . The detector consists of the top and bot-
tom aluminum cylinders with an electrode section in the center. Visible are two electrodes and the
corresponding connections for applying the voltages U+z and U−x, as well as the cable bundle of all
the seven (±x, ±y, ±z, ground) electrode connections DE . (b) Details of the bottom part of the
detector. The graphite-coated wire mesh enables pumping through the bottom part of the cylinder.
This mesh is attached to a copper mount to which the ground is connected. The bottom CEM BD is
shown with the three connections required for the operation: input Vin, flap Vflap and collector Vcoll

voltages (see text for details). Photograph (c) shows how the top detector is connected in the vacuum
setup (variable aperture motors AM are labelled for comparison to Fig. 3.4). Figure part (d) gives the
circuit for the collector, which is put at a high voltage Vcoll and at the same time captures the signal
pulses (counts) current Icts (see text for details). Photographs (e) and (f) show the half-assembled
detector in two perspectives. In (e) the four graphite-coated ring electrodes (quarter segments of a
ring) for applying voltages along the 2S-6P spectroscopy laser beam (U±x) and along the atomic beam
(U±z) are shown in detail, with an isolation gap in between, polyimide sleeves for the screws, and
polyimide spacers for isolating the bottom electrode. (f) The bottom electrode (applied voltage U−y)
is made of the spherical segment of a graphite-coated wire mesh.

mount to ensure the pumping of the detection region. The detector ground is connected to
the bottom copper mount shown in Fig. 3.14(b).

In Fig. 3.14(b), the bottom CEM BD is labelled with the three connections (same for the
top CEM) to show how the CEM is connected. The part of the CEM facing the inner detector
region is put under the input voltage Vin = 270 V to create electric fields which collect the
electrons. A significantly higher output voltage Vout is needed to produce secondary electrons,
thereby multiplying the primary electrons by a gain of GCEM ∼ 5 × 107 for the CEMs used
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here. What matters for the multiplication is then the bias voltage Vbias ' Vout−Vin. Between
Vin and Vout there is a resistance Rchan. The output voltage is supplied via the flap voltage
Vflap connection, with a resistance Rbias between Vflap and Vout. This resistance is specified to
be 10−20% of the total CEM resistance RCEM = Rbias+Rchan ∼ 15−20 MΩ. Here, we assume
Rbias ' 0.15RCEM which leads to Vbias = 0.85(Vflap − Vin). For the top CEM, the applied
flap voltage during the preliminary 2S-6P deuterium measurement was Vflap = 2.20−2.25 kV,
and for the bottom CEM Vflap = 2.4 − 2.7 kV. The CEMs are tested each time before the
experiment is started by measuring the pulse height distribution. Depending on the specific
CEM and the day, the applied voltage may vary. Sometimes, it was observed that ‘spiking’
of the bottom CEM occurs, i.e. occasional bursts of much higher count rate. In this case,
lowering the voltage usually solves the problem. The bottom CEM is also affected by the
cryopump which cools the CEM and affects the resistance RCEM. For more details on the
operation of the CEMs, see Sec. 4.6.2. of [71].

The pulses emerging from the CEM are collected on an electrically isolated collector,
which is placed under the voltage Vcoll (the electrons flow over a short gap which corresponds
to a capacitor between Vcoll and Vout). Vcoll is 200 V higher than Vflap such that Vcoll =
Vflap + 0.2 kV This voltage is applied via a current-limiting 270 kΩ resistor. The pulse current
Icts = N eGGEM, where N is the number of pulses per second and e is the electron charge,
is split off with a 470 pF capacitor and transmitted through a 50 Ω resistor to match the
output impedance to the coaxial signal cable (thereby avoiding reflections). Furthermore, the
capacitor is connected to the grounded shield of the Vcoll cable through a 1 MΩ resistor to
discharge leakage currents through the capacitor which may lead to a high-voltage on the
signal connection. This circuit is shown in Fig. 3.14(d), while Fig. 3.14(c) shows how this
circuit is built into a vacuum-compatiple epoxy to connect the top CEM using a push-on
connector1 in the vacuum assembly.

Fig. 3.14(e) and (f) show the center electrode section of the half-assembled detector in
more detail. The four ring electrodes (quarter segments of a ring) make it possible to apply the
voltage along the 2S-6P spectroscopy beam (U±x) and the atomic beam (U±z). The circular
apertures for the 2S-6P spectroscopy beam have a diameter of 15 mm, while rectangular
apertures with dimensions 16.5 mm × 7.0 mm clear the way for the atomic beam and the
1S-2S preparation laser beam. The ring electrodes are isolated between each other with a
0.5 mm gap, and with polyimide spacers2 from the top and bottom electrodes (the top part
is disassembled). The electrodes are held together with the rest of the detector by M1×15
titanium screws with polyimide sleeves for isolation3.

Fig. 3.14(f) shows the bottom wire mesh4 made from 30.5 µm-diameter stainless steel

1Allectra, part no. 360-PPO-1.0.
2DuPont Vespel polyimide-based plastic. The spacers are 0.5 mm thick and hidden from the inner region,

i.e. recessed from inner walls by 3 mm. More details along with a technical drawing of the detector are found
in Sec. 4.6.1 of [71].

3The cylindrical 5 mm copper rings separating the electrode section from the aluminum cylinders (visible
between the polyimide spacers and the aluminum cylinders in Fig. 3.14(a) and (e)) are in place for historical
reasons. For some 2S-6P hydrogen measurements, additional blocking meshes were installed to prevent charged
particles to enter the top and bottom regions of the detector by applying corresponding voltages [71]. These
blocking meshes were then removed, but the aluminum cylinders were kept the same such that the 5 mm copper
rings were needed to keep the same height of the detector. In principle, they can be removed by making each
of the two aluminum cylinders 5 mm longer.

4TWP Inc., 50 Mesh T316 Stainless High Transparency, 0.0012” (30.48 µm) wire diameter, opening
477.52µm (88%), part number 050X050T0012.
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wires spaced 508 µm apart, which is initially flat and bent into the shape of a spherical
segment. (Only one wire mesh is visible in Fig. 3.14(f) since the other one is not mounted
in the half-assembled detector.) Altogether the electrodes form a Faraday cage for shielding
the spectroscopy region from electric fields, for instance from the field created by the input
voltages of the CEMs. The coating with colloidal graphite1 suppresses stray electric fields
due to accumulating charges on isolating oxide layers on metals, contact potentials, or surface
contaminations. The graphite coating reduces the mesh transparency from 88% to 70%−80%.

Unfortunately, the graphite coating of the electrodes makes the assembly of the detector
very sensitive to accidential shorts between the electrodes. Furthermore, some graphite could
fall in between the gaps and short some electrodes even during the operation of the experiment
(e.g. due to strong cryopump vibrations). Therefore, the resistance between all electrodes is
checked each time before the spectroscopy measurement. Typically, the resistances between
the individual electrodes or between each electrode and the ground are > 100 MΩ. The
resistance between the vacuum feedthrough cable shield and the ground is typically ∼0.5 Ω.
During the preliminary 2S-6P deuterium measurement in July 2021, the connection between
the bottom electrode and the side electrode towards the fiber collimator (i.e. between the
electrodes for applying U−x and U−y) was measured to be between 2 − 4 MΩ, which is still
not considered as a short, but is an indication of a short-circuit risk. However, any short
between the electrodes would also be observed in the in-situ electric field measurement which
is performed during a measurement day several times.

3.5.2 In-situ stray electric field measurement

The six electrodes of the fluorescence detector give the possibility to apply2 approximately
uniform electric fields in each of the three spatial directions. When applying opposite voltages
of the same magnitude to two corresponding electrodes, the electric field in the 5 mm radius
sphere centered at the 2S-6P interaction point was simulated to have < 10% deviations from
the mean electric field in this region for each of the three spatial directions [71].

Applying an electric field F leads to the quadratic dc-Stark shift of the resonance frequency
as:

ν0(F ) = β̃dc(F −∆F )2 + ν0(F = 0 V/m), (3.16)

where ν0(F ) is the resonance frequency with the applied electric field F , ∆F is the stray
electric field which we wish to measure, ν0(F = 0 V/m) the resonance frequency with zero
applied field, and β̃dc the effective quadratic dc-Stark coefficient. Measuring the resonance
frequency as a function of the applied electric field determines β̃dc and ∆F , from which the
dc-Stark shift ∆νdc,2S-6P due to the stray electric field ∆F in the corresponding direction is

1Spray can by Kontakt Chemie Graphit 33 (part no. 76009-AC)
2For ±1 V applied to one of the pairs of (x,y,z) electrodes (e.g. for x direction: U±x = ±1 V, U±y = U±z =

0 V), the electric field at the center was simulated [71] to be (Fx,0, Fy,0, Fz,0) = (18.99, 43.47, 19.65) V/m (e.g.
for the x direction with U±x = ±1 V, U±y = U±z = 0 V: Fx,0 = 18.99 V/m, Fy,0 = Fz,0 = 0). The voltages are
applied by the National Instruments NI-9264 Analog Output Module with cDAQ-9181 chassis, which provides
max. output of ±10 V. To adjust the desired maximum resulting electric field approximately according to the
full range for each direction, the voltage is applied through different voltage dividers (500 kΩ/50 kΩ divider
providing a ratio around 1:0.09 for the y direction, and 500 kΩ/150 kΩ divider providing a ratio around 1:0.23
for the x and z directions), resulting in the electric fields (Fx,0, Fy,0, Fz,0) = (4.332, 3.934, 4.483) V/m (values
from measured resistance ratios combined with simulations for the resulting center field from the electrodes)
for applied voltages ±1 V from the analog output module.
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given as:
∆νdc,2S-6P = β̃dc ∆F 2. (3.17)

For details and corresponding theory, see Sec. 2.4 of [71]. For the discussion here, it
is important to note that in general the dc-Stark shift depends on the state structure (i.e.
how the electric field couples different levels), as well as on how the signal is detected and the
resonance frequency is determined. The observed shift of the transition may not correspond to
the combined shift of the involved energy levels. For example, for the 2S1/2-6P3/2 transition,
the dc-Stark shift results mostly from the coupling of the 6P3/2 level with the 6D3/2 levels.
Since the 6P3/2 and 6D3/2 levels are separated by less than the linewidth of the 2S-6P3/2

transition, the observed resonance splits into several components. However, for the 2S1/2-
6P1/2 transition, the situation is much simpler since the dc-Stark shift of the 6P1/2 level
results mostly from coupling to the 6S1/2 levels which are separated by multiple linewidths
of the 2S1/2-6P1/2 transition. To a good approximation, the observed dc-Stark shift of the
single 2S1/2-6P1/2 resonance is then equal to the dc-Stark shift of the 6P1/2 level minus the
(more than three orders of magnitude smaller) dc-Stark shift of the inital 2S1/2 level. For the
sake of simplicity, the discussion here is limited to the case of the 2S1/2-6P1/2 transition only.

Fig. 3.15 shows the stray electric field measurements in each of the three spatial directions:
(a) and (b) show the measurements in the x direction, (c) and (d) in the y direction, (e) and
(f) in the z direction. On the left, the resonance line scans of the 2S1/2-6P1/2 transition in
deuterium are shown for the case of no applied field (in blue, same data for all directions),
as well as for maximum positive (orange) and negative (red) applied field. Each resonance
line is fitted with a Voigt fit function (see Eq. (2.73)) to determine the center frequency ν0,
which is shifted on the order of 1 − 3 MHz with maximally applied field. Only the data for
the first delay is shown here as an example. For the analysis on the right, the Doppler-
extrapolated frequency ν0,e is used, which is determined from the center frequency ν0(v)
together with the mean velocity v of each delay (see Table 3.2), assuming linear velocity
dependence: ν0(v) = ν0,e+κ v. This frequency determination is shown in Chapter 5, Fig. 5.2.
Even though the velocity-dependent shifts (e.g. Doppler-shift or light force shift) in the
apparatus are typically on the kHz-level compared to the MHz-shifts with applied electric
field, this procedure makes the measurement of stray electric fields independent of possible
velocity-dependent shifts.

To determine the stray electric field ∆F , the center frequencies ν0,e are plotted against the
applied electric field and fitted with a quadratic function, from which according to Eq. (3.16)
the values for β̃dc and ∆F are determined (see the legend of the right plots). For the measure-
ments shown here, the stray electric fields are compatible with zero within the uncertainty
of ∼ 0.1 V/m. During the hydrogen 2S-6P measurement campaign, on some days it was ob-
served that a stray electric field in the y direction on the order of ∼ 0.5 V/m is present. Such
an electric field is suspected to originate from the temperature gradient along the detector,
leading to a thermoelectric voltage through the Seebeck effect1. The data for the whole deu-
terium 2S-6P measurement campaign from July 2021 is shown in Fig. 5.8 and discussed in
Section 5.4. Also in this data set, stray electric fields, which are not compatible with zero,
mostly occur only in the y direction and are on the same order of ∼ 0.5 V/m.

1Note that the Seebeck effect is only present with dissimilar materials, which can be viewed as a temperature-
dependent contact potentials. The contact potentials of the electrodes are suppressed with a colloidal graphite
coating (which may be imperfect), while the aluminum is left uncoated as explained in Section 3.5.1. The
aluminum walls can be assumed to have an oxidized layer. It remains to be investigated how exactly the
Seebeck effect and contact potentials may be manifested in our detector.
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(a)Bottom detector:
Fx, 0=-43 V/m: ν0=-2648(14) kHz

Fx, 0=43 V/m: ν0=-2637(30) kHz

Fx, 0=0 V/m: ν0=-18(16) kHz

Top detector:
Fx, 0=-43 V/m: ν0=-2673(17) kHz

Fx, 0=43 V/m: ν0=-2616(18) kHz

Fx, 0=0 V/m: ν0=10(13) kHz
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(b)

Top detector:
β̃dc = -1406(6) Hz/(V/m)2

ΔF = 0.15(8) V/m
Δνdc, 2S − 6P = -31(32) Hz

Bottom detector:
β̃dc = -1411(10) Hz/(V/m)2

ΔF = 0.0(1) V/m
Δνdc, 2S − 6P = -1(8) Hz
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(d)

Top detector:
β̃dc = -1456(8) Hz/(V/m)2

ΔF = -0.07(8) V/m
Δνdc, 2S − 6P = -7(16) Hz

Bottom detector:
β̃dc = -1435(11) Hz/(V/m)2

ΔF = -0.0(1) V/m
Δνdc, 2S − 6P = -2(13) Hz
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(e)Bottom detector:
Fz, 0=-22 V/m: ν0=-813(17) kHz

Fz, 0=22 V/m: ν0=-810(19) kHz

Fz, 0=0 V/m: ν0=-18(16) kHz

Top detector:
Fz, 0=-22 V/m: ν0=-840(19) kHz

Fz, 0=22 V/m: ν0=-784(22) kHz

Fz, 0=0 V/m: ν0=10(13) kHz
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(f)

Top detector:
β̃dc = -1601(26) Hz/(V/m)2

ΔF = -0.0(1) V/m
Δνdc, 2S − 6P = -3(19) Hz

Bottom detector:
β̃dc = -1530(40) Hz/(V/m)2

ΔF = 0.3(2) V/m
Δνdc, 2S − 6P = -178(258) Hz

Figure 3.15: Example of in-situ stray electric field measurements in the x (figs. (a) and (b)), y (figs. (c)
and (d)), and z (figs. (e)-(f)) directions. The left plots exemplarily show the 2S1/2-6P1/2 deuterium
resonance line scans (delay 1) with no applied electric field (faint blue, same data for all directions),
and with negative (red) or positive (orange) applied electric field given in the legend along with the
Voigt fit result for the center frequency ν0. The right plots show the Doppler-extrapolated frequency
ν0,e versus the applied electric field, along with quadratic fits to the data from the top and bottom

detectors. The fit results for the effective dc-Stark coefficient β̃dc, the deduced stray electric field ∆F
as well as the dc-Stark shift with no applied electric field ∆νdc,2S-6P are given in the legend.
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The background mainly1 originates from the 2S atoms, which are quenched into the ground
state, emitting a Lyman-α photon at a wavelength of 121 nm. Though with a lower efficiency,
these photons also produce photoelectrons in the aluminum walls of the detector. The 2S
atoms can be for instance quenched by intra-beam collisions, hitting the atomic beam aperture
edges, as well as by electric fields. The latter reason is responsible for the fact that the
background increases while the signal decreases when applying an electric field. This effect
is more pronounced for the z direction along the atomic beam, where the atoms are subject
to the higher electric field as soon as they enter the detector region. Therefore, even for the
factor of two smaller applied electric field in the z direction, see Fig. 3.15(e), the signal is
smaller and the background is larger compared to the x direction, see Fig. 3.15(a).

It is instructive to compare the signal and background between the top detector (solid
curves) and bottom detector (dashed curved) in the left plots in Fig. 3.15. There is an overall
∼10% difference in the count rate for the top and bottom detectors due to the slightly different
properties of the detectors, which is not of interest here. However, comparing the signal and
background values for the opposite applied electric field between the top and bottom detectors,
their values are the same for x and z directions, but different for the y direction. Both the
signal and background decrease or increase by approximately the same amount depending
on the direction of the field. This is attributed to the fact that an applied vertical field
accelerates photolectrons from within the inner regions towards the top or bottom detector
(depending on the direction of the electric field). Thereby, the count rate is increased on
one detector while decreased on the other detector, with the behavior being reversed for the
opposite electric field.

While the right plots in Fig. 3.15 show the stray electric field with five applied electric
field values, typically only line scans with the two highest applied electric fields are measured
(with three resonance line scans for each sign of the applied electric field). This procedure
optimizes the trade-off between the overall uncertainty in the determination of electric fields
and the required measurement time. The line scans for zero applied electric field are typically
taken from previously measured precision line scans.

3.5.3 Non-linearity of the channeltron electron multipliers (CEMs)

Here we consider the non-linearity of the channeltron electron multipliers (CEMs), which
give rise to the signal in our fluorescence detector. This non-linearity is revealed in the
measurement of the fluorescence signal in dependence on the 2S-6P laser power P2S-6P. Note
that here we do not consider the non-linearity in the measurement P2S-6P, which is assumed
to be linear (justified by the specifications of the photodetectors having <2% non-linearity,
which is smaller than the non-linearity the CEMs discussed here). However, the signal scales
non-linearly with P2S-6P due to the saturation of the 2S-6P resonance, which complicates the

1For the experimental conditions here (2S-6P spectroscopy laser power of P2S-6P ' 30µW, 1S-2S laser
power P1S-2S ' 1.5 W, nozzle temperature 7.1 K, variable aperture set to 1.2 mm), the total background (for
all delays) with no applied electric field is ∼4% of the total signal (5.8(1) kcts for the top detector (TD) and
5.5(1) kcts for the bottom detector (BD) for all delays in 1 s or 160 chopper cycles), of which ∼90% originates
from 2S atoms, while ∼10% is due to scattering of 243 nm photons. This was checked by detuning the 1S-2S
(243 nm) laser out of resonance (which removed ∼90% background, leaving 0.5(1) kcts at TD and 0.6(1) kcts
at BD) and blocking the 1S-2S (243 nm) laser light (which removes the remaining ∼10% of the background,
leaving only 3±2 cts at TD and 10±5 cts at the BD). The background significantly increases with larger atom
flows, suggesting that intra-beam collisions and collision with the residual gas in the chamber are important
(see Sec. 4.5.2.4. in [71]).
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Figure 3.16: Deuterium 2S-6P fluorescence signal counts in dependence on the 2S-6P laser power for
delay 2 and 13 as well as for the top and bottom detector. This measurement reveals the (relative)
non-linearity of the detectors. (a) The signal counts from 160 chopper cycles (equal to 1 second) are
shown as a function of the 2S-6P laser power for delay 2 (top detector in blue, bottom detector in
orange) and 13 (top detector in purple, bottom detector in red). (b) The signal ratio of the bottom
detector divided by the top detector reveals their relative non-linearity: for linear (or exactly the
same non-linear) behavior of the detectors, the signal ratio should be independent of the count rate
or the 2S-6P laser power, which is not the case here. As expected, the relative non-linearity is more
pronounced for the delay 2 (blue circled markers, solid line) with higher count rate as compared to
delay 13 (purple crossed markers, dashed line) with lower count rate. In (c) and (d) the signal for each
detector is normalized to the signal at highest laser power, with the data from delay 2 shown in (c) and
delay 13 shown in (d). Only the interpolation for the data from (a) is shown for clarity. The crossed
markers show the simulation points of the signal dependence on the laser power (normalized to the
highest power in each delay), performed with the procedure described in Section 3.3. The comparison
between measurement and simulations places a limit on the absolute non-linearity for each detector.
Dashed blue lines show the interpolation of the simulation result within the ±7% uncertainty of the
laser power calibration, which is in excellent agreement for both detectors for delay 13. For delay
2, the bottom detector is slightly outside the expected curve, which demonstrates the non-linearity
of ∼ 10% of the bottom detector already anticipated from the relative non-linearity in (b). The top
detector can only be confirmed to be linear within the ±7% power calibration uncertainty.

discussion on the non-linearity of the CEMs. Therefore, simulations of the 2S-6P signal as
a function of P2S-6P (which include saturation effects of the 2S-6P resonance) are compared
to the measured signal, thereby allowing to extract some information on the non-linearity of
CEMs. Furthermore, the non-linearity of the CEMs can be examined by comparing the signal
ratio of the top to bottom CEMs of the fluorescence detector in the different delays. This is
because the non-linearity of the CEMs depends on the signal amplitude, which is different
between the delays (fast atoms, i.e. small delays, give rise to higher signal than slow atoms,
i.e. large delays).

Let us first consider the origin of the possible non-linearity of CEMs. The electron pulses
from the CEM give rise to the average signal current Icts = N eGCEM, where N is the number
of pulses per second, e the electron charge, and GCEM the gain of the CEM. The bias current
Ibias = Vbias/Rchan (where Vbias = Vout − Vin is the bias voltage and Rchan the resistance
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between Vout and Vin) flows in the same direction1. Since the electrons need to be supplied
by the bias current, the signal current cannot exceed the bias current, and the gain starts to
decrease at Icts∼ 0.1 Ibias [184], which corresponds to a certain count rate Nsat where the CEM
begins to saturate. For count rates close to Nsat, the CEM is thus expected to be non-linear.
In our case Ibias∼ 0.1 mA (with RCEM∼ 20 MΩ, Vbias∼ 0.85(Vflap − Vin)∼ 2 kV), such that
Nsat∼ 2 Mcts/s (with GCEM∼ 5×107). Indeed, this value corresponds to the highest observed
count rate: we observe ∼ 15 kcts in delay 2 (with a duration of ∆τ = 50 µs) for 160 chopper
cycles corresponding to 1 second, such that the count rate is ∼ 15 kcts/∆τ/160∼ 2 Mcts/s.

The non-linearity of the CEMs of our fluorescence detector is visible in Fig. 3.16, where
the 2S-6P fluorescence signal is measured versus the 2S-6P (410 nm) laser power P2S-6P. The
measurement of P2S-6P is assumed to be linear. Fig. 3.16(a) shows the signal counts for the
delay 2 and 13 (in 1 s or 160 chopper cycles) for the top (blue and purple) and bottom CEM
(orange and red). The ratio between the bottom and the top CEM is plotted in Fig. 3.16(b), in
blue for delay 2 (circled markers, solid interpolation line) and in purple for delay 13 (squared
markers, dashed interpolation line). If the CEMs are both linear (or both have exactly the
same non-linearity), the ratio should be independent of the laser power and the same for all
delays, solely given by the relative constant gain ratio of the CEMs. However, this is not
the case, meaning that the relative non-linearity between the CEMs is present (either both
CEMs have a different non-linearity, or one of the CEMs is linear while the other is not). As
expected, the non-linearity is more pronouced for the higher count rate in delay 2, where the
ratio changes by ∼ 10% between high and low laser powers.

While Fig. 3.16(a) and (b) only demonstrates the relative non-linearity between the CEMs,
Fig. 3.16(c) and (d) explores the absolute non-linearity for each of the CEMs. The non-
linearity would be most easily characterized with a known linear signal source, which is here
not easily available. Despite the assumption of the linearity in the measurement of P2S-6P, the
signal is expected to scale non-linearly with P2S-6P due to saturation of the 2S-6P resonance.
Therefore, only the comparison between the simulated signal, which includes the saturation,
and observed signal can give evidence on the absolute non-linearity of each CEM. For this
comparison, the experimental data from Fig. 3.16(a) is normalized to the highest power in
each delay (Fig. 3.16(c) for delay 2 and Fig. 3.16(d) for delay 13). Only the interpolated
data curves but not the data points are shown for clarity. The simulation is performed with
the procedure described in Section 3.3, with parameters P1S-2S = 1.0 W, ∆ν1S-2S = 0.75 kHz,
TN = 7.1 K, vcutoff = 120 m/s and other fixed parameters from Table 3.1 for seven 410 nm laser
power values between 5 . . . 35 µW (crossed markers). The observed experimental background
of ∼ 4% is added on top of the background-free simulation results. The simulation results
are then interpolated and normalized in each delay to the signal at the highest experimental
laser power at 37 µW. The interpolated curves at ±7% laser power calibration uncertainty
are shown as dashed blue curves. For both delays, the simulation is in agreement for the top
CEM, and for delay 13 (with lower count rate) the normalized signal for both CEMs is also
in agreement with the simulation as well as with each other (the data for the bottom CEM is
shown as dashed red curve to make the overlap with the top CEM data visible). Therefore,
the top CEM for both delays as well as the bottom CEM for delay 13 can be judged to be
linear within the ±7% laser power calibration uncertainty. However, for the delay 2 with
higher count rate, the bottom CEM disagrees with the top CEM and the data is outside the

1Note that the electrons flow in the opposite direction since the technical flow direction of the current is
defined to be in the direction of positive charges.
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Figure 3.17: Variation of the relative signal amplitude between the top and bottom detector (CEM)
within a measurement day as well as between two measurements days. (a) Measured signal amplitude
relative to delay 2 (Ai/A2, see blue points in Fig. 3.12(b) for an exemplary simulation) as a function
of the delay number (see Table 3.2 for the definition of delays), with the same legend as in (b) where
the relative amplitude is normalized to the duration of the delay (Ai∆τ2/(A2∆τi), see orange points
in Fig. 3.12(b) for an exemplary simulation) is shown for the last two delays (No. 15 and 16) as a
function of the delay time. The error bars show the variation within a measurement day (also discussed
in Fig. 3.23), whereas the solid and dashed lines with different colors compare two measurement days.
(c) and (d) show the background-to-amplitude ratio (BAR). In (e) and (f) the relative amplitude ratio
between the bottom and top CEMs is shown, with a clear light blue line for the average of measurement
day 1 and a clear bright blue line for the average of the measurement day 3. Faint lines show the data
for each resonance line scan within a measurement day. The changing amplitude ratios between the
bottom and top CEM for different delays reveal their relative non-linearity (similar to Fig. 3.16(b)),
while the difference between the two measurement days demonstrates that this non-linearity is not the
same for each day.

simulation curve. This confirms the ∼ 10% relative non-linearity in Fig. 3.16(b), and suggests
that the non-linearity of the bottom CEM is mainly responsible for the observed relative
non-linearity.

The non-linearity of the CEMs may change between the measurement days as well as
within a measurement day, which is demonstrated in Fig. 3.17. In Fig. 3.17(a), the signal
amplitude Ai/A2 relative to delay 2 is shown versus the delay number for the top and bottom
CEMs and two measurement days (day 1 and day 3), with the same legend as in Fig. 3.17(b)
and (c). This relative amplitude is important for the comparison between simulations and
measurements to gain insight on the speed distribution of the flux, as discussed in Section 3.6.2
and Fig. 3.22. In Fig. 3.17(b), the relative signal amplitude is normalized to the duration
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of the delay, Ai∆τ2/(A2∆τi), and is plotted as a function of delay time for the last two
delays, which are most significant for the determination of the cutoff-velocity vcutoff from the
comparison to simulations. The difference between the top and bottom CEMs illustrates the
effect of the non-linearity on Ai/A2, which also manifests in the background-to-amplitude ratio
(BAR) shown in Fig. 3.17(c) and (d). Especially for the first delay, the BAR is affected by the
stronger non-linearity on day 1. Fig. 3.17(e) and (f) show the amplitude ratio relative to delay
2 between the bottom and top CEMs for measurement day 1 and 3, which gives the relative
non-linearity between the CEMs similar to Fig. 3.16(b) (note that here the ratio is normalized
to delay 2 as compared to Fig. 3.16(b) where the ratio is not normalized). If the CEMs were
linear (or had exactly the same non-linearity), this ratio would be one for all delays. The
increase of the ratio by 10−20% to longer delays thus shows the relative non-linearity between
the CEMs. Faint lines show the data for each resonance line scan within a measurement day,
and thus demonstrate how the non-linearity varies within a measurement day. Clear light
blue lines (day 1) bright blue lines (day 3) show the average of each measurement day. On
day 1, the average relative non-linearity is ∼ 20%, whereas on day 3 it is lower at ∼ 10% (in
agreement with Fig. 3.16 where the data is also from day 3).

The difference in the CEM behavior mainly originates from different operation voltages,
which are optimized on each measurement day. However, the operation voltages are typically
not changed within a measurement day (only if the ‘spiking’ behavior is observed which
requires to reduce the voltages). The variation in the non-linearity is then attributed to
changing RCEM over time due to the temperature change (particularly for the bottom CEM
which is close to the cryopump). The data from Fig. 3.17 demonstrates that an uncertainty
of 10−20% from the non-linearity of the CEMs has to be taken into account when comparing
the measured and simulated amplitude ratios, as for instance to deduce the cutoff-velocity,
which is treated in Section 3.6.2.

3.6 Cryogenic deuterium atomic beam

The first ingredient to suppress velocity-dependent effects, such as the first-order Doppler shift
for measuring the 2S-6P transition frequency in deuterium, is to reduce the velocity of atoms.
At room temperature (T ∼ 300 K) the mean velocity1 of deuterium atoms in thermal equi-
librium (following the Maxwell-Boltzmann distribution) is around vth =

√
8 kB T/(πmD) ∼

1.8 km/s, where kB is the Boltzmann constant and mD the mass of a deuterium atom. Re-
ducing the temperature to T ∼ 7 K results in vth ∼ 270 m/s.

The cryogenic atomic beam formation in our apparatus is thoroughly covered in Sec. 4.5
of [71], including details on the dissociation fraction, the nozzle design, and various effects
playing a role in the atomic beam formation. Here, only an overview is given, and the differ-
ences to deuterium are added. More specifically, the optimal temperature point for generating
the maximum number of cryogenic deuterium atoms is shifted to higher temperatures around
the nozzle temperature TN ∼ 7 K as opposed to hydrogen where TN ∼ 5 K is optimal. As
shown in Section 3.6.1, this is mainly due to the freezing of deuterium, which is necessary
to suppress recombination and occurs at higher temperatures compared to hydrogen. This

1For the Maxwell-Boltzmann distribution, the root mean square velocity is a factor of
√

3/(8π) ' 1.09
higher than the mean velocity. For an effusive beam emerging from a small hole in the thermal container,
the speed distribution of the flux is obtained from multiplication with a factor v (arising from the fact that
the probability for an atom to escape through the hole scales with v) such that the mean speed is a factor of
3π/8 ' 1.18 higher than that of an atom following the Maxwell-Boltzmann distribution [182].
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difference is predicted by the model and is experimentally confirmed, where hydrogen and
deuterium freezing is observed by the drop of pressure for a constant flow. Section 3.6.2
studies the temperature dependence of the deuterium 2S-6P spectroscopy signal, demonstat-
ing the optimal temperature region for maximizing the deuterium spectroscopy signal in our
apparatus. Furthermore, the comparison of measured and simulated relative amplitudes for
different delays is presented, which gives some information about the speed distribution of
the flux, specifically the cutoff-velocity vcutoff from Section 3.3.

From the following discussion in Secs. 3.6.1-3.6.2, it becomes clear that the deuterium 2S-
6P signal is highly sensitive to temperature. Temperature fluctuations on the nozzle lead to
atomic flux fluctuations, which results in excess scatter of the count rate for resonance line
scans during spectroscopy measurements. Therefore, the high tempereature sensitivity of the
atomic beam formation requires the best possible temperature stability of the cryostat. To
this end, a high performance liquid-helium flow cryostat with a specified temperature stability
< 2 mK has been installed in February 2020, described in Section 3.6.3. However, achieving
such high temperature stability above the base point of around 4.5 K turned out to be more
challenging since the cryostat did not perform as expected. Nevertheless, the preliminary
deuterium 2S-6P measurement could be carried out with an acceptable temperature stability
around 10 mK similar to the hydrogen 2S-6P measurement campaign.

3.6.1 Cryogenic atomic beam generation: differences between hydrogen
and deuterium

In addition to the complex dynamics of the atomic beam generation in a T-shaped nozzle,
the generation of hydrogen H or deuterium D atoms is complicated by the fact that these
atoms prefer the energetically favorable molecule state, H2 or D2 (or HD for a mixture or
isotopic impurities). The recombination probability for hydrogen on copper, γCu

H , increases
strongly below 20 K, reaching up to γCu

H ∼ 20% per collision for a temperature around 5-10 K
[185]. For deuterium, one might expect a similar recombination rate on copper from the
underlying models [186, 187] (measurements seem to be available only at temperatures above
room temperature [188, 189]). Even though the emerging atoms from the T-shaped nozzle
undergo only a few collisions with the walls, such a high recombination rate significantly
reduces the number of atoms. On the other hand, the recombination rate on solid H2 or D2

is lower than for copper, though the values also increase with decreasing temperature. The
recombination rate decreases as soon as the copper walls are covered with solid H2 or D2,
such that the number of emerging atoms is expected to rise as soon as hydrogen or deuterium
begins to freeze on the nozzle. Below a certain optimal temperature, the signal is then again
expected to decrease because of the increase in the recombination rate on solid H2 or D2.

In Fig. 3.18 the vapor pressure of solid H2 or D2 is shown (blue curves, left scale), based
on the data from [190]. The vapor pressure for deuterium (dashed curve) is shifted to higher
temperatures by ∼2 K compared to hydrogen (solid curve). The pressure in the nozzle was
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Figure 3.18: The saturated vapor pressure (blue curves, left scale, data from [190]) of solid H2 (solid
curve) and D2 (dashed curve) drops below the nozzle pressure (dotted line, in our nozzle estimated to be
around 10−4 mbar for the flow of 0.35 ml/min) at ∼5 K for hydrogen and at ∼7 K for deuterium. These
temperatures are approximately optimal for the production of H or D atoms, because a solid H2 or D2

layer can then form to suppress the higher recombination on the copper walls. At lower temperatures,
the recombination of H or D atoms on solid H2 or D2 (right scale, orange solid or dashed curves,
respectively) exponentially increases with lower temperature such that less atoms become available.
The recombination coefficients γH2

and γD2
are given per partial pressure of hydrogen PH or deuterium

PD, estimated to be roughly around 10−5 mbar inside the nozzle. The recombination curve for hydrogen
using Eq. (3.18) is based on the adsorption energy εa/kB = 38± 5 K from [158, 191] with the resulting
uncertainty shown as the faint region, whereas no data is available for deuterium. However, [158, 191]
qualitatively suggest a larger adsorption energy of D on D2 which shifts the hydrogen curve to higher
temperatures. The question mark indicates that the recombination curve for deuterium is speculative.

simulated1 to be around 10−5 . . . 10−4 mbar. When the vapor pressure drops below the nozzle
pressure, a solid H2 or D2 layer forms on the nozzle walls. According to Fig. 3.18, this
occurs at ∼5 K for hydrogen and at ∼7 K for deuterium. These temperatures approximately
correspond to the optimal temperatures for the number of atoms leaving the nozzle: above
this temperature, no solid H2 or D2 layer is formed, such that the atoms recombine on copper
nozzle walls. Below this temperature, also the recombination on solid H2 or D2 increases,
thereby diminishing the number of atoms.

The recombination coefficient γ is shown in Fig. 3.18 with the orange curves using the
right scale. This coefficient is given by [158]

γ = 4KS2 n/vth with KS2 = K0
S2 T

−1/2 e−2εa/(kBT ), (3.18)

where n is the number density of atoms, vth =
√

8 kB T/(πm) is the thermal mean speed of
atoms with mass m. KS2 is the temperature-dependent surface recombination rate of second

1Simulations performed with COMSOL Multphysics 5.5.0.036. For the simulation, a certain nozzle temper-
ature TN, volume flow Q of H2 or D2, vacuum chamber pressure outside the nozzle Pchamber, and dissociation
fraction αdis = NH/(NH + 2NH2) (where NH is the number of H or D atoms and NH2 the number of H2 or
D2 molecules) are assumed. For example, for TN = 8 K, QD2 = 0.35 ml/min, Pchamber = 2.3 × 10−6 mbar
and αdis = 0.1, the partial pressure of D atoms is simulated to be PD ∼ 4 × 10−6 mbar and of D2 molecules
PD2 ∼ 3 × 10−5 mbar. The poorely known αdis makes the simulation of partial pressures uncertain up to a
factor of ∼5 (see [71] for a discussion of αdis). Furthermore, the simulation does neither include the adsorption
on the walls, nor the recombination. However, the simulation can still provide an order of magnitude estimate.
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order and εa the adsorption energy of atoms on the surface. For recombination of H atoms
on solid H2, K0

S2 ' 8.4× 10−28 m4 K1/2 s−1 and εa/kB = 38± 5 K [158, 191]. Using the ideal
gas law, the number density is related to the partial pressure of the corresponding atomic
species as n = P/(kB T ). For example, using the above relations for hydrogen at T = 5 K,
one finds γH2 ' nH × 2 × 10−23 m3 ' PH × 30 mbar−1. The temperature dependence of the
recombination coefficient per partial pressure γH2/PH for H atoms on solid H2 is shown as a
solid orange curve (right scale) in Fig. 3.18. Note that due to the exponential dependence on
the adsorption energy εa, its uncertainty of ±5 K results in an order of magnitude uncertainty
on γH2 , marked as faint region in Fig. 3.18. No data of recombination coefficients of D on D2

is available to the knowledge of the thesis author. However, [158, 191] qualitatively suggest a
larger adsorption energy of D on D2. Assuming the same value for K0

S2, a larger value for εa
shifts the hydrogen curve to higher temperatures, which is exemplarily shown as dashed curve
for εa = 50 K along with the question mark indicating that this curve is speculative. Given
the approximately simulated partial pressure of deuterium atoms of PD ∼ 10−5 . . . 10−6 mbar,
the recombination coefficient rises to the percent level (γD2 ∼ 10−2) around 5 K.

The freezing of hydrogen or deuterium on the nozzle walls also leads to clogging of the
nozzle over time such that the 1S-2S preparation laser beam is clipped after a certain oper-
ation time. Therefore, after a certain time, this requires to ‘unfreeze’ the nozzle by heating.
Typically, the cryostat is heated up to room temperature since we also regularly observe
that impurities freeze on the nozzle1, where some of them unfreeze only between 200 K and
300 K. We refer to the time duration between the start of the hydrogen or deuterium gas
flow with a cold nozzle and heating up the nozzle (when the nozzle begins to clip the 1S-
2S laser beam) as a “freezing cycle”. Note that the clogging of the nozzle also changes the
pressure inside the nozzle, which in turn changes the nozzle dynamics. Therefore, also the
spectroscopy signal slowly changes over the time of the freezing cycle. For hydrogen, the
freezing cycle was typically 2 hours long (at a nozzle temperature of TN = 4.8 K with a flow
of 0.35 mln/min, 2.0 mm × 4.0 mm T-shaped nozzle, 300 µm diameter orifice after the dis-
charge). For deuterium, the freezing cycle was observed to be much longer, around 7 hours
(nozzle temperature TN = 7.0 − 7.2 K, all other parameters were the same). Since the va-
por pressure curves in Fig. 3.18 differ by the same ∼ 2 K difference as the optimal nozzle
temperature difference (TN ' 5 K for hydrogen vs TN ' 7 K for deuterium), this suggests
that the recombination curve for deuterium is shifted by less than 2 K. For the same vapor
pressure of D2 as for H2, the recombination rate would then be lower, which could explain
the slower accumulation of solid D2 on the nozzle walls. However, this reasoning assumes
the same nozzle pressure and dissociation fraction from the discharge to the nozzle, which
could differ for hydrogen and deuterium. Furthermore, the dissociation fraction at the nozzle
is probably only around 10% (see Sec. 4.5.2. of [71] for discussion), such that there are much
more molecules than atoms in the nozzle already without the recombination on the nozzle
walls.

The freezing of hydrogen and deuterium is also observed by measuring the pressure in
the vacuum chamber for a constant flow, while cooling down the nozzle. Fig. 3.19(a) shows
the cooldown with hydrogen, and Fig. 3.19(b) the cooldown with deuterium. The upper

1Note that due to these impurities, the nozzle may not be entirely covered with a solid layer of hydrogen
or deuterium snow during the operation of the experiment. It remains to be investigated how these impurities
may affect the generation of the atomic beam.



3.6 Cryogenic deuterium atomic beam 121

Figure 3.19: Observation of hydrogen and deuterium freezing during the cooldown of the nozzle by
measuring the pressure in the outer vacuum region POV, which is plotted versus the nozzle temperature
TN. Below a certain temperature, the vapor pressure drops below the nozzle pressure (see Fig. 3.18)
such that some fraction of incoming hydrogen or deuterium gas freezes on the nozzle, resulting in
the reduced pressure in the vacuum chamber. (a) Cooldown with hydrogen for a flow of 0.35 ml/min
(orange data points) and 1.1 ml/min (blue data points). For the smaller flow, hydrogen freezes below
TN ' 5.7 K, while for the larger flow the transition is shifted to higher temperatures due to the higher
nozzle pressure, as expected from Fig. 3.18. (b) Cooldown with deuterium: the freezing occurs at
a ∼ 2 K higher temperature compared to hydrogen, in agreement with Fig. 3.18. As for hydrogen,
the transition temperature is higher for higher flows. The second transition, which occurs at lower
temperatures around TN ∼ 6 K, originates from deuterium freezing on the outside of the cryostat cold
finger and the outside of the nozzle, where the pressure is approximately an order of magnitude lower
than inside the nozzle such that the freezing point is shifted to lower temperatures. No significant
difference is observed between the discharge being switched on (orange points) or off (red points) for
the flow of 1.1 ml/min (the discharge is off for the other flows).

plots show the outer vacuum region pressure POV (calibrated to hydrogen1) with a constant
hydrogen or deuterium gas flow as a function of nozzle temperature TN. Without any gas flow,
the pressure is POV ∼ 10−6 mbar (not shown in the figure). With the gas flow, the pressure
stays at a certain constant value (depending on the flow) above the freezing point of hydrogen
or deuterium. Below a certain temperature, the vapor pressure drops below the pressure in
the nozzle, such that some fraction of hydrogen or deuterium freezes on the nozzle walls. For
hydrogen, the pressure in the chamber starts to decreases below TN ' 5.7 K (vertical dashed

1For the used hot cathode pressure gauge (Leybold ITR 200) there is a calibration factor of 2.4 between
nitrogen and hydrogen. Therefore, with no hydrogen the value for nitrogen is most applicable, while with
hydrogen-dominated pressure the value is ∼2.4 × 8 × 10−8 mbar. Even though there are differences in the
behavior of hot cathode gauges between hydrogen and deuterium [156], the relative factor between the actual
and measured pressure values is on the order of few percent [157], and therefore within the ±15% accuracy of
our pressure gauges.
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Figure 3.20: Observation of hydrogen and deuterium freezing with a Residual Gas Analyzer (RGA),
which ionizes the atoms coming from the residual gas of the vacuum chamber and performs a mass
spectrometer measurement. The signal current from the different species of ions is grouped by the
atomic mass unit (a.u.), here shown are 1 a.u. (blue, attributed to atomic hydrogen, H), 2 a.u. (red,
attributed to molecular hydrogen or atomic deuterium, H2 or D), 3 a.u. (green, attributed to hydrogen
deuteride, HD), and 4 a.u. (orange, attributed to molecular deuterium, D2). However, the crosstalk
between neighboring channels challenges the distinction between neighboring mass species. (a) For
the cooldown with hydrogen, the most prominent 2 a.u. signal (red) shows the same freezing behavior
as in Fig. 3.19(a) for the overall pressure. The signal for the other mass species with the same freezing
pattern is mainly attributed to the crosstalk between the neighboring mass channels. (b) For the
cooldown with deuterium, the 4 a.u. signal (orange) is most prominent and shows the same freezing
behavior as Fig. 3.19(b), confirming that the freezing of molecular deuterium is responsible for the
pressure drop. The data was also taken with discharge switched on (triangle data points), showing no
significant difference to the measurement with the discharge switched off (circle data points), except
for the 3 a.u. signal, indicating the increased formation of HD molecules with the discharge. The RGA
is mounted such that gas particles need to collide with the vacuum chamber walls many times before
reaching the RGA. The deuterium atoms could then easily recombine on the way to the RGA, such
that no conclusion can be made regarding the dissociation fraction from this measurement.

blue line) for the flow of 0.35 ml/min (blue data points). For the higher flow of 1.1 ml/min
(orange data points), this transition temperature is higher at TN ' 5.9 K (vertical dashed
orange line). This is in agreement with the expectation from Fig. 3.18: for a higher nozzle
pressure, the point at which the vapor pressure starts to be below the nozzle pressure is
shifted to higher temperatures. For the same flow of deuterium instead of hydrogen, the
freezing occurs at a ∼ 2 K higher temperature, as expected from Fig. 3.18. The bottom plots
show the normalized pressure to the value above the freezing point, such that the shift in the
transition point is clearly visible. For a flow of 1.1 ml/min, the freezing behavior was also
compared between the setting with the discharge on (orange data points) and off (red data
points), where no significant difference was observed (for the other flow values, the discharge
was kept off).

For deuterium, a second drop in pressure is observed at around ∼6 K. This second pressure
drop originates from freezing of deuterium on the outside of the cryostat cold finger and the
outside of the nozzle. The pressure in the outer vacuum region is approximately an order
of magnitude lower than inside the nozzle, such that deuterium begins to freeze at lower



3.6 Cryogenic deuterium atomic beam 123

temperatures than inside the nozzle. This was verified with a cooldown without the teflon
tubing connected to the nozzle, such that deuterium does not enter the vacuum region through
the nozzle. In this case, only one transition at lower temperatures was observed. In the utilized
cryostat configuration (without pumping on the helium exhaust port), it was not possible to
cool below 4.7 K where a similar transition for hydrogen is expected. However, this can be
done in the future.

The freezing behavior was also measured with a Residual Gas Analyzer (RGA)1 for the
same flow of 1.1 ml/min of hydrogen or deuterium gas, see Fig. 3.20. The RGA distinguishes
between different species in the residual gas by ionizing the atoms and performing a mass
spectrometer measurement. The strength of signal is given by the current from the corre-
sponding ion species grouped by the atomic unit (a.u.) mass. However, the cross-talk between
the neighboring channels limits the measurement of neighboring mass species2. For hydrogen,
see Fig. 3.20(a), the RGA current is highest for 2 a.u. mass and shows the same freezing be-
havior as on the overall pressure signal in Fig. 3.19(a). For deuterium, see Fig. 3.20(b), the 4
a.u. signal shows the same freezing behavior as in Fig. 3.19(b), confirming that indeed molec-
ular deuterium is responsible for this freezing pattern. With the discharge switched on (faint
triangle data points), no significant difference in the RGA signals is observed except for the
3 a.u. signal, attributed to hydrogen deuteride molecules (HD), which could be formed in the
discharge or on the way to or inside in the RGA. The RGA is mounted through a right-angle
bend in the high-vacuum region pressure monitor port of the vacuum chamber. Therefore, in
order to make the way from the nozzle to the RGA, the atoms need to pass through several
obstacles where they could recombine. Therefore, in this setting, the 2 a.u. signal is not
reliable. For a reliable measurement of the dissociation fraction, the RGA would need to be
placed right in the way of the atomic beam. Even though the 2 a.u. signal would probably
still be unreliable due to the crosstalk with the neighboring channels, the reduction of the
4 a.u. signal when the discharge is switched on could provide a reliable measurement of the
dissociation fraction.

3.6.2 Temperature dependence of the deuterium 2S-6P spectroscopy signal

The discussion in the previous section considers only the production of ground state deu-
terium atoms. As has been discussed, the complex dynamics of the atomic beam production
in the T-shaped nozzle is further complicated by the balance between freezing of molecu-
lar deuterium on the nozzle walls and the recombination on the solid layer of deuterium.
Moreover, the latter effect is velocity-dependent, as evident from Eq. (3.18), which suggests
a different behavior for different velocity groups of atoms. On top of the ground state atomic
beam formation, the situation complicates even further when considering 2S atoms formed in
the atomic beam after the nozzle. These metastable 2S atoms are very sensitive due to the
perturbative mixing with the 2P state which quenches the atoms into the ground state. For
example, this quenching is triggered by the intra-beam collisions of atoms and collisions with
the background gas molecules. The overall temperature-dependent behavior of the metastable

1Pfeiffer Vacuum PrismaPlus QMG 220 F1, detection limit 10−12 mbar, operating pressure max. 10−4 mbar,
sensitivity for Ar 10−3 A/mbar, resolution 0.5− 2.5 a.u..

2If no hydrogen or deuterium gas is guided into the vacuum chamber, at a pressure of ∼10−6 mbar, the
current for zero mass species (0 a.u.) is around 10−12 A, resulting from the signal for 1 a.u. and 2 a.u. species
around 2 × 10−11 A. For 3 a.u. species the signal is 10−12 A, and for 4 a.u. 10−13 A. These background
measurements indicate the cross-talk signal to be a factor of 10− 100 of the neighboring mass signal.
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deuterium atomic beam production is difficult to predict quantitatively, and only rough qual-
itative arguments can be made to explain some dependencies. Therefore, to find the optimal
nozzle temperature, the temperature dependence of the deuterium 2S-6P signal has been
characterized experimentally.

Fig. 3.21 shows the measured temperature dependence of the deuterium 2S-6P spec-
troscopy signal. For this measurement, deuterium 2S-6P resonance line scans were performed
for different temperatures to extract the signal amplitude (left plots (a) and (b)) and the
background (right plots (c) and (d)). Fig. 3.21(a) shows the deuterium 2S-6P signal ampli-
tude on resonance for delay 2 (blue), delay 13 (orange) and delay 16 (red), also applicable to
other plots. Circular markers with solid curves (to guide the eye) show the data as the nozzle
temperature was decreased from TN = 7.8 K to TN = 6.3 K (in total ∼ 40 min measurement
time), indicated by solid arrows in Fig. 3.21(a). A few minutes after the lowest temperature
point, the nozzle temperature was gradually increased: crossed markers with dashed curves
show the corresponding data (in total ∼ 50 min measurement time) and the dashed arrows in
Fig. 3.21(a) indicate the direction of temperature change. The signal amplitude is maximal
for the temperature between TN ' 6.8 K (slowest atoms, delay 16) and TN ' 7.5 K (fast
atoms, delay 2) depending on the delay. The observed approximate optimal nozzle tempera-
ture TN ∼ 7 K for maximum signal confirms the prediction from Fig. 3.18. However, the exact
value of the optimal temperature for maximum signal is different depending on the velocity
group which demonstrates the complicated beam formation dynamics.

Fig. 3.21(b) shows the same data as in Fig. 3.21(a), which has been normalized to the
maximum signal amplitude for decreasing temperature (for each delay separately). After
the nozzle has been exposed to lower temperatures, the signal amplitude increases by up
to 45% when increasing the temperature back to the optimal point. This can be explained
by the fact that the solid deuterium layer is more efficiently formed on the nozzle at lower
temperatures and also reduces the recombination at higher temperatures. It has been regu-
larly observed that if the nozzle temperature is increased further above the freezing point1,
the solid deuterium layer evaporates such that the signal amplitude is lower at the optimal
temperature2.

The temperature dependence of the background is shown in Fig. 3.21(c). Most of the
background (∼90%) originates from the 2S atoms, that are quenched to the ground state,
emitting a Lyman-α photon at a wavelength of 121 nm. This quenching can be for instance
triggered by the electric field (see discussion in Section 3.5.2), by collisions with the residual
background gas, and by collisions within the atomic beam. Since the background scales with
the number of 2S atoms, a similar tendency of the temperature dependence is observed for the
background as for the 2S-6P signal. However, the temperature for the maximum background
is different from the temperature for the maximum signal. The overall behavior is complicated
since the quenching also depends on the fraction of atoms and molecules in the atomic beam.
Fig. 3.21(d) shows the background-to-amplitude ratio (BAR). For fast atoms (delay 2, blue),

1This can for instance occur later during the measurement day, when a large solid layer of deuterium
is formed on the nozzle and some solid deuterium ‘snow’ drops off the nozzle. This typically leads to a
temperature and pressure spike (lasting only for a few seconds or less). Sometimes, this is also observed on the
nozzle imaging camera. This temperature spike can be as high as TN ∼ 10 K which quickly evaporates more
of the solid deuterium such that the spectroscopy signal amplitude is decreased afterwards.

2The nozzle can then again be exposed to lower temperatures for a few minutes to build up the solid
deuterium layer. However, during the 2S-6P deuterium measurement campaign in July 2021, this was not
always possible since the base temperature of the cryostat increased over the course of the measurement day
(and also increased for each following measurement day).
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Figure 3.21: Temperature dependence of the deuterium 2S-6P signal, where from deuterium 2S-6P
resonance line scans the signal amplitudes (left) and the background levels (right) are extracted for
different nozzle temperatures TN (laser powers: P2S−6P ' 30 µW, P1S−2S ' 1.4 W). Both signal and
background levels are shown for delay 2 (blue), delay 13 (orange) and delay 16 (red). Circular markers
with solid curves (to guide the eye) show the data when the nozzle temperature is gradually decreased
from TN = 7.8 K to TN = 6.3 K (indicated by solid arrows), whereas crossed markers with dashed
curves show the subsequent measurement after the nozzle has been cooled down to TN = 6.3 K for a
few minutes and the temperature is increased to TN = 8.2 K (indicated by dashed arrows). (a) The
signal is maximized between TN ' 6.8 K (slowest atoms, delay 16) and TN ' 7.5 K (fast atoms, delay
2). (b) For each delay, the data from (a) is normalized to the maximum signal for the decreasing
temperature. After the nozzle has been exposed to lower temperatures, the signal at the optimal
temperature is higher, which is attributed to the formation of the solid layer of deuterium reducing the
recombination. (c) The background, which mainly originates from collisional quenching of metastable
2S atoms to the ground state, has a different dependence on temperature. (d) Consequently, the
background-to-amplitude ratio (BAR) also depends on temperature. No significant difference between
decreasing and increasing temperature is observed. The BAR is minimized for fast atoms (delay 2,
blue) around TN ' 7 K, whereas for slow atoms (delays 13 and 16, orange and red) the BAR continues
to drop for even lower temperatures.

the BAR is minimized to ∼4% for a temperature around TN ' 7 K, while for slow atoms
(delays 13 and 16, orange and red) the BAR slightly decreases further at lower temperatures.
Above TN ' 7.5 K the BAR strongly increases both for slow and fast atoms. Note that there
is no significant difference between decreasing (circular markers, solid curves) and increasing
temperature (crossed markers, dashed curves).

Fig. 3.21 clearly shows that the temperature dependence of the signal varies for the dif-
ferent delay: the signal is maximized for fast atoms (first delays) at higher temperatures
compared slow atoms (last delays). Therefore, also the speed distribution of the flux depends
on temperature. This is visualized in Fig. 3.22(a) and (b), which compares the observed (cir-



126 3. Hydrogen and Deuterium 2S-6P Spectrometer Apparatus

Figure 3.22: The observed time-resolved relative amplitude normalized to delay 2 (circular markers,
solid curves) for selected data from Fig. 3.21 is compared with simulations (crossed markers, dashed
lines) for different temperatures, which gives information about the temperature dependence of the
speed distribution of the flux. (a) The observed and simulated relative amplitude of each delay,
Ai/A2 (see exemplary blue curve in Fig. 3.12(b), second last column in Table 3.2) is shown with
the same legend as in (b) where the relative amplitude normalized to ∆τi (duration of delay which
is different for some delays), Ai/A2 × ∆τ2/∆τi (orange in Fig. 3.12(b), last column in Table 3.2)
is plotted. The measurement (circular markers connected by solid lines) is shown for four nozzle
temperatures: TN = 6.4 K (blue), 6.8 K (cyan), 7.2 K (orange) and 7.9 K (red). Simulations for the
same temperatures with a different non-zero cutoff-velocity vcutoff from Eq. (3.14) is shown with
crossed markers connected by dashed lines (in (b) the red and orange dashed lines almost overlap
with the solid lines). This cutoff-velocity increases by an order of magnitude from vcutoff ∼ 30 m/s
to vcutoff ∼ 300 m/s within a temperature change of only 1.5 K. For reference, the simulations with
vcutoff = 0 m/s (velocity-weighted Maxwellian distribution of an atomic beam [182]) are shown with
dotted curves for TN = 6.4 K (blue) and 7.2 K (orange) to visualize that the change in the number
of slow atoms due to the slightly different thermal velocity in negligible. The discrepancy between
simulation and experiment for the first delays is mainly attributed to the non-linearity of detectors
(see main text for discussion). (c) and (d) show the measurement of the background-to-amplitude
ratio (BAR) for temperatures in (a) and (b) along with the data for more temperature values. The
BAR decreases for lower temperatures and is approximately constant over the delays, except the first
delay and the last delays (see main text for discussion).

cular markers, solid lines) and simulated (crossed markers, dashed and dotted lines) relative
amplitudes for four different nozzle temperatures (same data as in Fig. 3.21): TN = 6.4 K
(blue), 6.8 K (cyan), 7.2 K (orange) and 7.9 K (red). In Fig. 3.22(a), the amplitude relative to
delay 2 summed over the duration of the delay, Ai/A2, is plotted (for an exemplary parameter
set, see blue curve in Fig. 3.12(b) and second last column in Table 3.2). In Fig. 3.22(b), the rel-
ative amplitude is weighted with the delay duration, Ai/A2×∆τ2/∆τi (orange in Fig. 3.12(b),
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last column in Table 3.2). The dashed lines show the simulation results with each measured
temperature as an input parameter along with a different non-zero cutoff velocity vcutoff (see
Eq. (3.14)), which was chosen such that the simulated relative amplitude matches the mea-
sured relative amplitude for slow atoms (last delays). This cutoff velocity changes by an order
of magnitude from vcutoff ∼ 30 m/s to vcutoff ∼ 300 m/s within a temperature change of only
1.5 K. To visualize that within a small temperature change, the speed distribution of the flux
changes insignificantly due to the different thermal speed, dotted lines compare the simulated
amplitude for zero vcutoff (velocity-weighted Maxwellian distribution of an atomic beam [182])
between TN = 6.4 K (blue) and 7.2 K (orange).

Even though the simulation (with a corresponding vcutoff) agrees with the measured rel-
ative signal amplitudes for slow atoms (last delays) in Fig. 3.22(b), for the first ∼10 delays
there is a 10 − 20% discrepancy in the relative ampltide as visible in Fig. 3.22(a). This is
mainly attributed to the non-linearity of the CEMs as discussed in Section 3.5.3. The discrep-
ancy for first delays (fast atoms) does not significantly influence the determination of vcutoff

from the comparison of the simulations with the measurement, since for the last delays (slow
atoms) the relative amplitude changes by more than an order of magnitude where a 20% error
does not make a big difference.

Fig. 3.22(c) and (d) show the measured background-to-amplitude ratio (BAR) for different
temperatures versus the delay number or delay time. In addition to the temperature values
from (a) and (b), more data is added here. For most delays, the BAR is approximately equal
and decreases by a factor of two from ∼8% at TN = 7.9 K to ∼4% at TN = 7.0 K, with no
further decrease for lower temperatures. However, the first and last delays are an exception.
For very fast atoms, the BAR is larger and increases again at lower temperatures reaching
more than 15% at TN = 6.4 K. One hypothesis is that these fast atoms originate from atoms
which did not thermalize with the nozzle temperature (see also discussion in Sec. 4.5.2.4. of
[71]). The slight increase of BAR for slower atoms in the last delays is expected: the velocity
of 2S atoms decreases for larger delays, while the speed distribution of the flux of ground
state atoms and molecules in the atomic beam as well as background gas particles, which are
all responsible for quenching the 2S atoms, stays the same. Therefore, the probability for
quenching the 2S atoms increases for larger delays and leads to a larger background.

The speed distribution of the flux also changes over the measurement day, as demonstrated
in Fig. 3.23. The relative amplitude is here shown for two times over the course of the
measurement day: around 1 h after the nozzle cooldown to TN = 7.1 K (at 11:34, dark blue),
and 4 h later without any warm-up in between (at 15:36, light blue). The data is shown for
both the top detector (circular markers, solid lines) and bottom detector (triangular markers,
dashed-dotted lines), revealing a 10 − 20% discrepancy in the relative amplitude originating
from the non-linearity discussed in Section 3.5.3. Fig. 3.23(e) and (f) show the amplitude
ratio (relative to delay 2) of the top and bottom detectors, which increases for larger delay
times (also observed in Fig. 3.16(b) and Fig. 3.17(e) and (f)). The ratio dependence on the
delay differs for the two times, indicating that the non-linearity varies over the measurement
day (this is attributed to changing RCEM due to temperature, since the detector voltages Vin,
Vflap and Vcoll were kept the same, see Section 3.5.3). Despite the non-linearity, which limits
the determitation of vcutoff to around ±10 m/s, the observed drop of relative amplitude for
slow atoms in Fig. 3.23(b) indicates the increase in the cutoff-velocity over the course of the
measurement day, from vcutoff ∼ 80 m/s (orange dotted line) to vcutoff ∼ 110 m/s (red dotted
line) according to simulations. This change in the speed distribution of the flux originates
from the continuous nozzle freezing, which rises the nozzle pressure, thereby modifying the
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Figure 3.23: Similar to Fig. 3.22, here showing the observed variation of the relative amplitude over
the measurement day as well as simulations (crossed markers, dotted lines) for different vcutoff and
1S-2S laser parameters (power P1S−2S and detuning ν1S−2S). The measured data is shown for two
times: in dark blue at 11:34 (∼ 1 h after the nozzle is cooled down to TN = 7.1 K) and in light blue
at 15:36 (∼ 5 h after the nozzle is cooled down, without any warm-up in between). Furthermore, the
measurement is compared between the top (solid lines) and bottom detectors (dashed-dotted lines),
revealing a 10 − 20% discrepancy in the relative amplitude due to the non-linearity of the detectors
discussed in Section 3.5.3. The bottom plots (e) and (f) compare the amplitude ratio (relative to delay
2) between the bottom and top detectors (as in Fig. 3.17), showing that the non-linearity also varies
over the measurement day. The non-linearity limits the determination of vcutoff from the comparison
between simulations and measurements to around ±10 m/s. However, as shown in (b), the drop in
the relative amplitude for the last delays over time for each detector indicates an increase in vcutoff

over time, here from vcutoff ∼ 80 m/s (orange dotted line) to vcutoff ∼ 110 m/s (red dotted line). This
is attributed to the nozzle freezing over time, which leads to an increased nozzle pressure and thus
changes the atomic beam formation dynamics. The green (P1S−2S = 1.65 W, ∆ν1S−2S = 1.2 kHz)
and gray (P1S−2S = 1.5 W, ∆ν1S−2S = 1.0 kHz) dotted lines show the sensitivity of simulations to the
1S-2S laser parameters P1S−2S and ∆ν1S−2S, each varied on the order of the experimental uncertainty
of these parameters (P1S−2S = 1.50(18) W, ∆ν1S−2S = 1.2(2) kHz). Other experimental parameters
are: deuterium flow 0.35 ml/min, TN = 7.1 K, P2S−6P ' 30 µW, variable aperture width 1.2 mm.

beam formation dynamics. Consequently, also the background-to-amplitude ratio (BAR),
which is plotted in Fig. 3.23(c) and (d) increases by 1 − 2% (for most delays from ∼4% to
∼5%). A similar behavior was observed in the hydrogen 2S-6P measurement campaign, where
vcutoff typically changes by 30− 50 m/s over the freezing cycle (see Fig. 6.1 of [71]).

Apart from the non-linearity, the comparison between the simulated and observed rela-
tive amplitudes depends on the input simulation parameters (see Table 3.1). Comparing the
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simulated relative amplitudes to the measurement gives some information about vcutoff as
discussed above, which however assumes certain values of other parameters. From the other
parameters, the 1S-2S laser power P1S−2S and the detuning ∆ν1S−2S have the most influence.
The power measurement accuracy is limited by calibration which allows to determine P1S−2S

only to 12%, while the measurement of ν1S−2S is limited to ∼0.2 kHz by the frequency refer-
ence. To illustrate the dependency on these two parameters, Fig. 3.23(a) and (b) show two
more simulations, where P1S−2S and ∆ν1S−2S have been varied on the order of the uncertainty
in these parameters, while vcutoff is kept the same: P1S−2S = 1.65 W and ∆ν1S−2S = 1.2 kHz
(green dotted line) as well as P1S−2S = 1.65 W and ∆ν1S−2S = 1.0 kHz (gray dotted line).
For these input parameter deviations, the relative amplitude varies around 10%, which is on
the same order as the non-linearity of the detectors. Therefore, the determination of vcutoff

is similarly affected on the order of 10 m/s by the uncertainty in P1S−2S and ∆ν1S−2S, with
the larger influence of the latter.

3.6.3 High performance cryostat

The high sensitivity of the deuterium 2S-6P spectroscopy signal on the temperature requires
the best possible temperature stability of the cryostat. Furthermore, the cryostat should have
a low level of vibrations in order to not disturb the sensitive active fiber-based retroreflector as
well as the 1S-2S enhancement cavity. Therefore, a high performance cryostat1 by Advanced
Research Systems (ARS) was installed in the apparatus in February 2020. Two main points
affect the vibration level and temperature stability of the cryostat: first, the stable liquid
helium flow while it is transferred from the dewar to the cryostat, and second, the efficient and
smooth heat transfer to the cold finger. ARS developed the so-called Helitran® technology
which adresses both points with a matrix heat exchanger and a coaxial transfer line [192].

Conventional helium flow cryostats have a reservoir at the cold finger which transfers
the heat from the cold finger tip to the refrigerant. The liquid helium boils in the reservoir
and the exhaust helium gas temperature is at ∼ 4.2 K independent of the cold finger tip
temperature. Only the latent heat of vaporization is then used for cooling, but not the
substantial enthalpy (∼ 1.5 J/kg) of the helium gas. Furthermore, helium bubbles may form
an insulating layer between the cup and the liquid helium (Leidenfrost effect), which disturbs
the heat transfer and leads to temperature fluctuations. When the sample is heated above
the base temperature, the sharp transition between nucleate boiling and film boiling, which is
typified by a sharp change in the heat transfer coefficient, influences the temperature stability
[193]. For liquid helium, this transition occurs at a temperature difference of ∼ 1 K between
the heated surface and the bath [194, 195], which is unfortunately in the desired regime for
deuterium spectrocopy with the nozzle temperature TN ' 7 K. The ARS cryostat replaces
the reservoir by a matrix heat exchanger. First, the matrix heat exchanger greatly increases
the area, which improves the heat transfer, and prevents larger helium bubbles from forming

1Advanced Research Systems ARS LT3-B high performance liquid helium flow cryostat, angstrom level
vibrations, high efficiency matrix heat exchanger, coaxial shield flow transfer line, orientation free, < 2 K base
temperature with exhaust port pumping, 4.2 K base temperature without pumping, temperature stability
<2 mK (with properly tuned flow), cooling power 1.5 W at 4.2 K, cooldown time 30 min, liquid helium con-
sumption rate 0.75 l/hr at 4.2 K, thermofoil heater for max. 36 W, LakeShore DT-670B-SD inner temperature
silicon diode sensor, custom disconnect plug for a second temperature sensor (LakeShore DT-670B-1.4L tem-
perature silicon diode sensor with 4” free length was supplied by ARS, and replaced by DT-670-BO-1.4L (SN
D6076038) which has a suitable mount for the nozzle.). The cryostat was customized for our apparatus with a
269 mm length from the flange to the tip, custom cold tip, and a transfer line with 8 ft ' 2.4 m flexible section.
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due to the restricted volume. Second, the exhaust helium gas passes through the exchanger,
which captures the enthalpy of the helium gas for additional cooling. For optimized flow,
the exhaust helium gas temperature corresponds to the cold finger temperature, which also
reduces the helium consumption.

To transfer the liquid helium from the dewar to the cryostat, conventional cryostats use a
superinsulated (e.g. with aluminized mylar) vacuum-jacket transfer line. However, even with
a perfect vacuum in the transfer line, the stability of the helium tip flow is limited by the heat
transferred through blackbody radiation from the environment to the core part of the transfer
line. This results in a boiling of helium, which disturbs the stable flow due to the vapor lock
effect: since the liquid helium moves through compressible pressure pockets of gas, the flow
is uneven (two-phase flow). The specially designed ‘coaxial flow’ transfer line of the ARS
cryostat addresses this problem by surrounding the core part of the transfer line (where the
tip flow is transferred) by helium with a temperature smaller than the boiling temperature
of liquid helium at 4.2 K. This is achieved by introducing a coaxial shield flow (separated
from the tip flow) with a temperature less than 4.2 K. The temperatue of the shield flow is
reduced with the help of an expansion nozzle, where a pressure differential is created by a
flow restriction. Thereby, the shield flow helium gas passing through this nozzle is cooled via
the Joule-Thompson expansion to below the boiling temperature.

The main parts of the ARS cryostat system are shown in Fig. 3.24. The liquid helium
is supplied by a liquid helium dewar1, see Fig. 3.24(a). The dewar is typically2 pressurized
to 0.2 − 0.6 bar above the atmospheric pressure to push the liquid helium into the transfer
line. This is achieved by a warm helium supply sent into the dewar (white dashed arrow).
An analogue pressure sensor on the dewar monitors the overpressure. Typically, the dewar
pressure drops by ∼ 0.1 bar on a timescale of 30−60 min, such that the dewar pressure needs
to be regularly adjusted. Liquid helium is guided into the transfer line in two separate regions,
one for the tip flow (blue arrow) and the other for the shield flow (orange arrow). Fig. 3.24(c)
shows the details of the transfer line end on the dewar side, where the tip flow input tube
and the smaller shield flow input tube are visible. The filter prevents dirt particles to block
these tubes3. The dewar side of the transfer line has the exhaust port for the returning shield
flow. After the shield flow circulated around the whole transfer line, the returning gas is
captured and guided to the flowmeter (dashed orange arrow). Furthermore, the dewar side of
the transfer line has a vacuum isolation pumping port, through which the vacuum isolation

1Cryo Anlagenbau GmbH, type CS 230 HDS, No. 8400, year 2002, filling volume 230 l, operating overpressure
max. 1.2 bar, test overpressure 3.3 bar. With this dewar, around 3.1 l liquid helium per day evaporate into the
helium recovery system.

2If the cryostat is operated with pumping the helium exhaust tip flow, the dewar also needed to be pres-
surized to 0.15 bar to achieve the tested lowest possible nozzle temperature of TN ' 2.9 K. Pumping is only
necessary to achieve nozzle temperatures below 4.4 K with this cryostat.

3Even with the filter, the transfer line should always be put at least a few cm above the dewar floor to
prevent capturing dirt particles. Our transfer line has a 20 cm extension, which is screwed onto the transfer
line end, sealed with an indium wire. The filter is then screwed onto the extension tube (also sealed with
an indium wire). The length of the dewar transfer line bayonet with extension is 139 cm, but 8.5 cm need to
be substracted for the dewar adapter which is inserted into the dewar to match the diameter of the transfer
line (the dewar adapter has also the overpressure control function with two popoff valves, one which opens
at 2.5 psi ' 0.17 bar but can be closed for cooldown, and another at 5 psi ' 0.34 bar, which we modified to
∼ 9 psi∼ 0.6 bar to operate the cryostat with higher dewar overpressure). The dewar has a depth of 140 cm,
such that with the extension and the dewar adapter, the transfer line sits around 10 cm above the dewar floor
(corresponding to ∼ 25 l of liquid helium left in the dewar when no more liquid helium can be captured by the
transfer line).
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Figure 3.24: Main components of the high performance liquid helium flow cryostat. (a) Dewar side
of the cryostat system. The liquid helium is supplied from the helium dewar which is pressurized to
0.2−0.6 bar above the atmospheric pressure using a separate warm helium supply (dashed white arrow).
The dewar pressure is monitored with an analogue pressure sensor. The transfer line is inserted into
the dewar, where liquid helium is guided into two separate regions, one for the tip flow (blue arrow)
and the other for the shield flow (orange arrow). While the tip flow is transferred to the cryostat
cold finger, the shield flow coaxially embraces the whole transfer line, and the returning shield flow is
output on the dewar side (dashed orange arrow). Furthermore, the vacuum isolation of the transfer
line is pumped and the pressure is monitored. (b) Cryostat side of the cryostat system. The cryostat
is mounted on the x/y/z manipulator which sits on the vacuum chamber lid. The transfer line brings
the tip flow of liquid helium (blue arrow) to the cold finger. Having passed through the matrix heat
exchanger, the returning tip flow is guided to the flowmeter panel (dashed blue arrow). The shield
flow passes through the whole transfer line (orange arrows). The returning shield flow (captured from
the dewar side end of the transfer line) is also guided to the flowmeter. After the flowmeters, both
returning flows are connected to guide all the helium exhaust gas to the helium recovery system.
Furthermore, the connections for the outer vent heater (white cable) as well as the 10 pin feedthrough
connection to the two temperature sensors and the inner heater are labelled. (c) Detail of the transfer
line end on the dewar side. When the filter is removed (right picture), the separate input tubes for
the shield and tip flows are visible. (d) and (e) show the cryostat side of the transfer line. In (d) the
needle valve has been removed and the transfer line end is viewed from the bottom, where the tip flow
output is visible. In (e) the needle valve is in place and the transfer line is viewed from the side. The
right pictures show the three parts of the needle valve assembly: the retaining cap, the spring, and
the needle itself.

pressure below 5 × 10−5 mbar is maintained. The pumping is performed with a small turbo
pumping station1, while a sensor2 monitors the pressure.

1Pfeiffer Vacuum, HiCube 80 Eco/MVP 0.15-4 with a HiPace turbo pump (67 l/s pumping speed) and
MVP 015-4 diaphragm pre-pump (0.75 m3/s pumping speed).

2Leybold TTR 101 N.
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Fig. 3.24(b) shows the cryostat side of the system. The cryostat is mounted on a manip-
ulator1, which is attached to the vacuum chamber lid. The transfer line provides the tip flow
via the matrix heat exchanger to the cold finger as indicated by the blue arrow. Fig. 3.24(d)
and (e) show the details of the transfer line end which supplies the matrix heat exchanger
with liquid helium. The view from the bottom in Fig. 3.24(d) shows the ∼ 0.5 mm opening
for the output of the tip flow. A needle valve can be screwed onto this transfer line end, as
shown in Fig. 3.24(e). The needle valve is composed of the needle on a copper mount, the
spring and the retaining cap (right pictures). It can be used for flow control in addition to
the valve on the tip flowmeter. If the cryostat is operated in the pumping mode (where an
additional pump is attached to the tip flow exhaust to pump the tip flow, thereby achieving
lower temperatures than 4.2 K), the tip flow can only be controlled with the needle valve since
the flowmeter connection is replaced by the pump. However, in our typical operation mode
of the cryostat without pumping, the tip flow can be controlled with the flowmeter and the
needle valve has been removed to reduce the risk of blocking the tip flow output2.

After the matrix heat exchanger, the returning flow is guided to the flowmeter panel,
see the dashed blue arrow in Fig. 3.24(b). The shield flow is coaxially guided through the
whole transfer line (orange arrow). The returning shield flow from the dewar side end of the
transfer line is guided to the second flowmeter (dashed orange arrow). Both flowmeters have
a valve which enables to control and adjust the shield and tip flows for optimal operation
of the cryostat. During the operation of the cryostat, to prevent snow and ice accumulation
on the outside, the top part of the cryostat needs to be heated with a vent heater (white
labelled cable). Typically, the returning tip flow tube from the cryostat to the flowmeter is
also heated3 to prevent accumulation of snow and ice (not shown in Fig. 3.24(b)).

The temperature of the nozzle is controlled with a temperature controller4 which reads
out the two temperature sensors (inner cryostat sensor and the nozzle sensor) and provides a
current source for the inner heater of the cryostat5. This device has a built-in PID controller6

to provide active feedback for a given set temperature of one of the sensors, with the bandwith
limited by the 10 Hz controller update rate. The 10 pin feedthrough connection for the inner
heater and the two temperature sensors, which connects the cryostat with the temperature
controller, is labelled in Fig. 3.24(b).

The intended operation of the cryostat is the following: the dewar overpressure should
be kept at 5 psi for the cooldown and then reduced to 2.5 psi when the cryostat is cold. Tip
and shield flows should then be adjusted for the desired temperature. The tip flow should
be optimized to achieve the desired stable temperature, e.g. higher temperatures require to
reduce the tip flow with the help of the needle valve or the flowmeter. The tip flow should be
adjusted such that without heating almost the desired temperature is reached. To stabilize

1UHV Design TTX63-63-50-H, providing ±15mm motion in the x and z directions and 50mm in the y
direction (in the coordinate system of our experiment).

2Great care has to be taken when working with the needle valve: since the needle is very thin, it can easily
bend if too much pressure is applied on the needle valve, and thereby block the tip flow.

3Hemi Heating (distributed by Tectra GmbH), metal braided heating tape, MB015, 200 W. This tape is
wrapped around the returning tip flow tube (which has been replaced by stainless tubes in contrast to plastic
tubes shown in Fig. 3.24(b)).

4CryoCon 32 B.
5The inner heater cable is wrapped around the copper cold tip of the cryostat and has a resistance of 36 Ω.

The current through this heater should not exceed 1 A, limiting the heating power to 36 W.
6Typically, the internal PID parameters are set to (1-10,100,0), i.e. the integrator gain is a factor of 10-100

higher than the proportional gain, and the differential gain is zero (switched off).
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the temperature, only a minimal amount of heating power should then be used. The shield
flow can also be reduced to the point where the stable tip flow can still be maintained without
introducing instabilities. However, a higher shield flow is not disadvantagous (except for the
higher helium consumption), since only a minimum amount of shield flow is needed to ensure
the stable tip flow transfer.

Unfortunately, our cryostat did not behave as intended for a so far unknown reason.
Reducing the tip flow with the flowmeter or the needle valve could not produce stable tem-
peratures above the ∼ 4.5 K base temperature at the nozzle, but resulted in slow oscillations
on a timescale of minutes with an amplitude of few Kelvin. Many different combinations of tip
and shield flows as well as the needle valve tip flow adjustment were tested, but the behavior
remained the same. It was also checked that the temperature controller does not influence
this behavior (e.g. due to non-optimal PID parameter settings). However, with a higher de-
war overpressure around 0.3− 0.6 bar excellent temperature stability could be reached below
TN∼ 5 K, with fluctuations even below 1 mK for TN∼ 4.6− 4.9 K. Lower dewar pressure de-
creases the highest possible temperature with this temperature stability. Higher temperatures
could still be reached with more heating power, but with increased temperature fluctuations.
Many tests were performed with the cryostat and the above behavior could always be repro-
duced, with the last test in March 2021 before the deuterium 2S-6P measurement campaign
in July 2021. It could be that the increased custom length of the cryostat and the longer
transfer line affect the behavior of the cryostat. Nevertheless, the cryostat performs with the
desired temperature stability below 1 mK around ∼ 4.8 K which is the required temperature
for hydrogen. For deuterium, it was planned to install stainless steel shims1 between the cold
finger of the cryostat and the nozzle to increase the nozzle temperature without increasing
the croystat temperature, and thereby ensure the temperature stability below 1 mK for the
desired temperature TN∼ 7 K for the deuterium spectroscopy.

However, when the deuterium 2S-6P measurement campaign started in July 2021, the
cryostat behaved very different than before. The cooldown time was longer (∼ 1.5 h in
July 2021 compared to ∼ 45 min in March 2021), and the nozzle could not be cooled be-
low TN∼ 6.3 K, even though nothing obvious was intentionally changed in the apparatus
compared to March 2021. One possible explanation was the partial blocking of the tip flow in
the transfer line, which could originate from dirt in the filter2. This was confirmed in August
2022, when the cryostat was tested with the new transfer line filter supplied by the manufac-
turing company. The cryostat could then again cool down the nozzle down to TN∼ 4.6 K and
behaved as in March 2021. However, in July 2021, the partial blocking of the filter lead to the
better temperature stability in the desired temperature range around TN∼ 7 K for deuterium
spectroscopy. This could point to a possible solution for better cryostat temperature stability
in the normal operation: it may be advantageous to reduce the tip flow on the dewar side
rather than on the cryostat side. However, this requires a substantional modification of the

1In 2019 with another cryostat, it was tested than thin stainless steel shims (50−200 µm thickness), placed
between the nozzle and the cold finger of the cryostat, could increase the nozzle temperature while maintaining
the same cryostat temperature. These stainless steel shims need to be annealed to reduce the magnetisation
and prevent magnetic field distortions near the nozzle.

2Sometimes, air freezes in the transfer line which blocks the tip and/or shield flows. Then the transfer line
needs to be warmed up and flushed with warm helium (which also should be done right before the transfer
line is put into the dewar). However, here the behavior was different. Several attempts were made to flush the
transfer line with warm helium from both sides, and re-insert the transfer line into the dewar. If the flow is
blocked by frozen air in the transfer line, some change in the behavior would be expected after the warm-up,
which did not occur. Therefore, most likely some dirt particles blocked the flow in the filter.
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Figure 3.25: Temperature stability of the cryostat depending on the mean nozzle temperature. (a)
and (b) show the temperature deviation from the mean nozzle temperature TN over time for different
temperatures. From the installation of the cryostat in February 2020 to the cooldown tests in March
2021 (last test before July 2021), the cryostat showed a temperature stability of below 2 mK for nozzle
temperatures below TN ≤ 4.9 K, see orange points in (a) and (b) (same data). The temperature
instability increased for higher temperatures, reaching highest fluctuations within ±100 mK (standard
deviation ∼50 mK) for TN ' 7.5 K (green points in (b)). For higher temperatures, the fluctuations
decreased again down to ±20 mK (standard deviation ∼ 10 mK) for TN ' 20 K (purple points in (b)).
During the July 2021 deuterium 2S-6P measurement campaign, the cryostat behaved very differently
(most likely due to partial blockade of tip flow in the transfer line), such that nozzle temperatures
below TN∼ 6.3 K could not be reached. However, this resulted in much better temperature stability
of ±6− 8 mK (standard deviation 3− 4 mK) for the desired temperature TN∼ 7 K for the deuterium
2S-6P spectroscopy, see black data in (a) and (b). (c) shows the standard deviation from the mean
temperature TN as a function of TN for the March 2021 data (blue points) and July 2021 data (black
points for test data at different temperatures and gray points for precision line scans data shown
below in Fig. 3.26). In (d) the corresponding heating power needed to stabilize for a certain nozzle
temperature is shown. In March 2021 no stable temperature could be reached by adjusting the tip
and shield flows on the flowmeters, such that higher temperatures could only be achieved with higher
heating power, e.g. ∼ 6 W at ∼ 7 K. On the contrary, in July 2021 the heating power was around three
orders of magnitude lower at only 5− 10 mW.

transfer line. Therefore, steel shims placed between the cryostat cold finger and the nozzle
seem to be a better solution.

The temperature stability for different temperatures is shown in Fig. 3.25 and compared
between March and July 2021 to show the different cryostat behavior described above. In (a)
and (b) the temperature deviation from the mean temperature is plotted over time, where
black data points show the temperature in July 2021 for TN ' 7.1 K, having a stability of
±6−8 mK (standard deviation 3−4 mK). On the contrary, in March 2021, the temperature
stability of ±100 mK (standard deviation 50 mK) was observed in this temperature range
(green data points in (b)). The temperature stability for TN ≤ 4.9 K was below 2 mK (stan-
dard deviation < 0.5 mK), see orange data points. Interestingly, the temperature stability
improves for higher temperatures ±20 mK (standard deviation ∼ 10 mK) for TN ' 20 K (pur-
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Figure 3.26: Mean nozzle temperature and temperature stability for deuterium 2S-6P precision scans
during the July 2021 measurement campaign (in total 603 line scans). The histogram in (a) shows
the mean nozzle temperature TN within minute-long line scans. Most line scans were performed with
a nozzle temperature stabilized to TN ' 7.1 K. However, over the course of each measurement day,
the lowest possible stable temperature which could be achieved without too much dewar overpressure
shifted from ∼ 7.1 K to ∼ 7.4 K. Therefore, the set point for the nozzle temperature was varied over
this temperature range depending on the cryostat performance. The standard deviation from the mean
nozzle temperature within the line scans is shown in (b). The mean value for this standard deviation
(vertical red line) for all line scans is 3.8 mK.

ple points in (b)). A possible origin of this behavior is the transition between nucleate and
film boiling. The temperature fluctuations are on a timescale < 1 s and cannot be further
resolved due to the limitations of the temperature controller. Most likely, the fluctuations
are on an even faster timescale, similar to the instabilities arising from the transition be-
tween the nucleate and film boiling, which are on the timescale of tens of milliseconds [196].
Fig. 3.25(c) compares the standard deviation from the mean nozzle temperature TN as a func-
tion of TN. For the March 2021 data (in blue), the standard deviation reaches its maximum
for TN ' 7.5 K, whereas for July 2021 data the fluctuations are reduced to a standard devi-
ation of 3−4 mK (in black: test data at different temepratures, in gray: precision line scans
data discuseed below in Fig. 3.26). The heating power at ∼ 7 K, see Fig. 3.25(d), is reduced
from ∼ 6 W in March 2021 to only 5−10 mW in July 2021.

Fig. 3.26 shows the mean nozzle temperature and the temperature stability for 603 preci-
sion line scans in the July 2021 deuterium 2S-6P measurement campaign. Over the course of
the measurement day, the lowest possible temperature, which could be reached without too
much overpressure in the dewar, increased from ∼ 7.1 K to ∼ 7.4 K, such that towards the end
of the measurement day the nozzle was stabilized to higher temperatures. This behavior also
changed over the course of the whole measurement campaign, such that the time duration
where the nozzle could be operated at ∼ 7.1 K decreased with each following day, and the
dewar pressure needed to be increased more regularly as well as to higher overpressures up
to 0.6 bar. The temperature stability within the minute-long line scans is shown in Fig. 3.26
(b). The mean standard deviation is 3.8 mK, which is approximately a factor of two lower
than for the hydrogen 2S-6P measurement campaign with the previous cryostat (see Fig. 4.26
in [71]). Most line scans have a standard deviation of 3.0 mK or even less. In the future, with
the help of suitable stainless steel shims placed between the cold finger and the nozzle, it is
hoped that a temperature stability < 1 mK can be reached.
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Chapter 4

Improved Active Fiber-Based
Retroreflector (AFR)

This chapter presents an improved active fiber-based retroreflector (AFR) providing high-
quality wavefront-retracing anti-parallel laser beams in the near UV, specifically for the
410 nm wavelength of the 2S-6P transition in atomic hydrogen and deuterium. The key prin-
ciple is to accurately collimate the beam from the fiber with a low-aberration collimator and
to precisely control as well as to actively stabilize the retroreflection from the high-reflectivity
(HR) mirror placed after the collimator using the signal of backcoupled light through the fiber.
The AFR is crucial for the first-order Doppler-shift suppression in the precision spectroscopy
of one-photon transitions such as the 2S-6P transition. Improving the AFR and rebuilding
the setup for the near UV is one of the major contributions of this thesis, summarized in a
corresponding publication [110]. Therefore, parts of this chapter are identical to [110]. Some
topics were not treated or shortened for [110]. Where this is the case, the corresponding
sections are added or expanded compared to [110].

The AFR was initially used for the precision spectroscopy of the 2S-4P transition in atomic
hydrogen at a wavelength of 486 nm [197, 198, 14]. It turned out that rebuilding this setup
for the 2S-6P transition measurement at a shorter wavelength of 410 nm required much more
effort than anticipated, as outlined in Section 4.1, which gives an overview of the improved
AFR setup. More specifically, it was found that designing and producing a low-aberration
fiber collimator for the near UV is much more challenging than for 486 nm. The first attempt
was a three-lens collimator, but weak aberrations produced by this collimator limited the
performance of the AFR, though they remained unobserved in the intensity distribution of
the collimated beam. The general results on characterizing these aberrations with a caustic
measurement are described in Section 4.2 and can be applied to any system where a collimated
high-quality laser beam is required. This section also reports on how the collimator design
process was extended by wave optics propagation tools, and how a four-lens collimator design
was developed for the wavelength range 380–486 nm suitable for all 2S-nP transitions in
hydrogen and deuterium with 4 ≤ n ≤ 10. The beam quality factor of M2 ' 1.02 produced
by this four-lens collimator is limited only by the not exactly Gaussian beam profile from the
single-mode fiber.

In addition to the careful study of aberrations along with a novel collimator for the near
UV, other significant improvements in the AFR are presented. A more accurate adjustment
of the distance between the fiber tip and the collimator, which is crucial to optimize the
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retroreflection, is made possible by adding a piezo actuator, as detailed in Section 4.3. This
piezo actuator also allows to characterize the AFR for optical etalons. Surprisingly, we found
that Rayleigh scattering in the fiber leads to an etalon effect as described in Section 4.4.
To suppress the intensity variation arising from this effect as well as intenstity fluctuations
from other sources, an intensity stabilization of the wavefront-retracing beams in the AFR
was implemented, discussed in Section 4.5. Moreover, to deduce the in-situ polarization in
the AFR which is especially important for precision spectroscopy of the 2S-6P transition in
deuterium, the polarization of the backcoupled light is continuously monitored, see Section 4.6.

4.1 Overview of the improved AFR setup

In the field of atomic, molecular and optical physics, different applications may require a high-
quality laser beam, for instance fluorescence microscopy [199], single atom imaging [200],
cold atom experiments [201], and quantum information research [202]. Some experiments,
for instance in atom interferometry [29, 203, 204] or the precision spectroscopy experiment
described in this thesis and others [205, 206], depend upon a retroreflection of high-quality
beams to create wavefront-retracing beams (which has also been called phase-retracing beams
in previous works [197, 198]). For this purpose, we have constructed an active fiber-based
retroreflector (AFR) that employs a beam emerging from a single-mode fiber that is colli-
mated and coupled back into the same fiber with a highly reflective mirror. By maximizing
the backcoupled light fraction, a wavefront-retracing standing wave of high quality is ob-
tained whose performance critically depends on minimizing aberrations as has already been
demonstrated for the 2S-4P hydrogen measurement [197]. Creating such a beam is especially
challenging in the far blue and near UV regions, owing to the increased sensitivity to lens
surface imperfections as well as a limited number of suitable glasses and therefore lack of
aberration-reduced composite elements such as achromatic doublets [207].

As an alternative approach to the AFR, optical cavities may provide wavefront-retracing
beams, acting naturally as a filter of beam imperfections [208, 209]. Our experiment would
require a relatively low intra-cavity power of < 30 µW to keep the power-dependent systematic
uncertainty sources (e.g. light force shift) small. This implies a very low impinging power
for a high finesse cavity. The small impinging power would yield a noisy error signal for
stabilizing the cavity length. Moreover, we need a large beam radius of W0∼ 2 mm, which
may require to operate the cavity close to the stability edge or to use special cavity geometries
[210, 211]. Therefore, we rather chose to improve our existing AFR setup.

As already outlined in Ch. 3, we use our AFR to suppress the first-order Doppler shift of
one-photon transitions in atomic hydrogen and deuterium from the metastable 2S level to nP
levels. Recalling Eq. (2.28), the first-order Doppler shift ∆νD of a single atom with velocity
~v interacting with a wave described by a local wave vector ~k is given by

∆νD = ~k · ~v/2π = v cos(α)/λ, (4.1)

where λ denotes the wavelength, v the magnitude of the atom’s velocity vector, and α its
angle with respect to the wave vector. Cooling the atoms and aligning the angle α as close as
possible to 90◦ reduces the Doppler shift. In our setup, for liquid-helium cooled atoms and our
accuracy goal of . 1 kHz, the angle deviation δα from the perpendicular case (α = 90◦ + δα)
would have to be less than δα < 1 µrad. Apart from being mechanically challenging, in our
setup such an alignment cannot be achieved due to the much larger laser and atomic beam
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divergence angles. Therefore, we further suppress the Doppler shift using two locally counter-
propagating waves with wave vectors +~k and−~k. The two beams need to fulfill this wavefront-
retracing condition everywhere along the atomic beam trajectory, and the intensities of both
beams have to be equal everywhere. The AFR helps to satisfy both conditions.

The previous setup [197] was successfully used to measure the 2S-4P transition in hydrogen
at a wavelength of 486 nm. 2S-nP transitions in hydrogen and deuterium with n > 4 bear the
potential for an even higher precision and an improved determination of the Rydberg constant
and proton/deuteron radius due to their narrower natural linewidth [120]. To this end, we
rebuilt our apparatus for the shorter wavelength of 410 nm (2S-6P transition) and have a laser
system for 380–390 nm (2S-8P, 2S-9P and 2S-10P transitions) ready to be integrated into the
apparatus for future measurements.

The general concept of an active fiber-based retroreflector (AFR) is discussed in detail in
a previous publication and thesis by Axel Beyer [197, 198]. The main idea is to collimate a
laser beam from a single-mode fiber and to use a highly reflective (HR) mirror to couple the
light back through the collimator into the same fiber. Using a beamsplitter before the fiber,
the backcoupled light fraction can be monitored and maximized by adjusting the distance
between the collimator and the fiber, as well as the tip-tilt alignment of the HR mirror. This
tip-tilt alignment is actively stabilized with piezoelectric actuators on the mirror mount1.
Maximizing the backcoupled light fraction corresponds to optimizing the wavefront-retracing
property of the beam: for a perfectly flat, fully reflective HR mirror and an aberration-free
beam, the wavefront-retracing and amplitude matching conditions are satisfied if the waist
of the collimated beam is located on the mirror, resulting in all of the optical power being
coupled back into the fiber.

The optical setup of our hydrogen spectrometer relevant to the AFR is shown in Fig. 4.1.
We start with around 100 mW of 410 nm laser light which is sent to the experiment through
an 11 m-long polarization-maintaining (PM) fiber. An acousto-optic modulator (AOM) is
used to scan the optical frequency across the atomic resonance. An electro-optic modulator
(EOM 1), in sequence with a polarizing beamsplitter (PBS) and half-waveplates, is used for
intensity control. The light is transferred via another 5 m-long PM fiber to a polarization
switching and polarimetry unit (PSPU). The intensity after this fiber is stabilized using
the signal of photodetector PD 1 in combination with EOM 1 as an actuator (1st intensity
stabilization). Additional photodetectors (PD 2, PD 3 and PD 4) monitor the intensity
out-of-loop. In the PSPU, Glan-Thompson polarizers providing PER > 50 dB improve the
polarization extinction ratio PER = Pmax/Pmin of light coupled into the last fiber, where
Pmax and Pmin are the maximal and minimal transmitted optical powers in the two orthogonal
polarization directions. Isolators in each arm suppress optical etalons, with a minimal number
of optical surfaces being placed after the isolators. The beam path of the unused polarization
is blocked by the polarimeter which is used to measure the polarization of the returning light.
In order to switch between horizontal and vertical linear polarizations, this polarimeter is
manually moved to the other arm of the PSPU. After the PSPU, the light passes through
non-polarizing beamsplitters BS 2 and BS 3.

Finally, the laser light (5–30 µW laser power) reaches the in-vacuum AFR setup via the last
80 cm-long polarization-maintaining (PM) fiber2 SF , see Fig. 4.2 for an engineering drawing.

1Radiant Dyes MDI-H with Piezo Drive. Two Newport 8301-UHV Picomotor actuators have been added
for coarse alignment.

2Vacuum-compatible Nufern PM-S405-XP fiber in a 900µm-diameter PEEK jacket, produced and AR-
coated by Diamond GmbH.
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Figure 4.1: Optical setup of the 2S-nP hydrogen apparatus relevant to the AFR. EOM: electro-optic
modulator, λ/2: half-waveplate, PBS: polarizing beamsplitter, BS: non-polarizing 50:50 beamsplitter,
AOM: acousto-optic modulator, PD: photodetector, APD: avalanche photodiode, H(2S): metastable hy-
drogen atoms in the 2S level, PMT: photomultiplier tube, z-adj. piezo: adjustment of the fiber-collimator
distance, HR mirror: highly reflective mirror. A polarimeter is placed into the unused arm of the PSPU
to analyze the polarization of the returning light, whereas the part of the returning light in the used
arm of the PSPU is blocked by the isolator.

Figure 4.2: 3D engineering drawing of the AFR assembly in vacuum for the 2S-6P hydrogen and
deuterium experiment. Note the coordinate system in the lower left corner of the figure for comparison
with Fig. 3.1 for a schematic overview of the experiment, Fig. 3.3 for a drawing of the vacuum assembly
of the whole experiment as well as Fig. 3.4 for the photograph of the vacuum assembly. AB hydrogen
atomic beam, BB base cylinder ball bearing, BR brass ring spacer between collimator lenses, CA
collimator-fiber alignment, FQ four-quadrant photomultiplier, HM horizontal (tip) precision motor

with HP piezo actuator of the HR highly reflective MM mirror mount, OR retainer with O-ring
holding collimator lens system in place, PB 1S-2S preparation laser beam, RC rotatable base cylinder,
RM collimator rotation mount, SB 410 nm spectroscopy laser beam, SC four-lens collimator, SF
polarization-maintaining fiber, SH shutter, SR hydrogen 2S-6P transition spectroscopy region, ZM
precision motor and ZP piezo actuator for fiber-collimator distance adjustment.
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The whole in-vacuum AFR setup is mounted on a rotatable cylinder RC , which sits on ball
bearings BB such that the angle between the spectroscopy laser beam SB and the metastable
atomic hydrogen beam (H(2S), AB ) collinear to the 1S-2S preparation laser beam PB can be
aligned close to 90◦. The four-lens collimator SC is mounted onto a mirror mount combined
with a manual precision rotation stage1 RM . The collimation is adjusted with the help of
a commercial fiber translation mount2 which we rebuilt for accurate distance control using
a precision motor3 ZM combined with a piezo actuator4 (z-adj. piezo / ZP ). This part is
placed onto a cage system mounted to a flexure adjustment plate5 CA needed for precise
centering between the fiber and the collimator, see Section 4.2.4. The light is retro-reflected
by the HR mirror6 HR and passes back through the fiber, where approximately one-half of
the backcoupled light is detected after BS 3 on the avalanche photodiode (backcoupling APD)
whose signal is used for the tip-tilt stabilization using piezo actuators (only the horizontal
piezo actuator HP is shown in Fig. 4.2). Another fraction of the backcoupled light is split by
BS 2, with the light then terminating either in the polarimeter or the isolator. The home-
built remotely controlled shutter SH makes it possible to block the reflected beam for a
measurement of the Doppler shifted spectroscopy signal.

The sum signal of the four-quadrant photomultiplier7 (PMT) FQ after the HR mirror
is used for intensity stabilization of the wavefront-retracing beam, with EOM 2 serving as
the actuator (2nd intensity stabilization). The PMT is mounted under an angle of ∼ 10◦ (in
order to suppress optical etalons) with an interference bandpass filter8 and scattering disk9.
The use of a position-sensitive PMT has the practical advantage of misalignment monitoring.
An angular misalignment of the HR mirror or the collimator-fiber system by 200 µrad leads
to a complete loss of the backcoupled signal [197]. If the optimal orientation of AFR is lost
(e.g. during work on the apparatus), the horizontal and vertical position signals of the PMT
help to retrieve the alignment.

4.2 Fiber collimator with minimized aberrations in the near
UV

In the AFR, the collimator plays a central role since aberrations may be imprinted on the
wavefronts of the spectroscopy laser beams. These aberrations distort the wavefronts such
that there may be no position in the collimated beam with a plane wavefront, and thus the
backward-traveling beam will not retrace the wavefronts of the forward-traveling beam. The
backcoupled light fraction is a quantity which characterizes how well the wavefront-retracing
property is maintained, because this quantity is directly linked to the overlap integral of
the forward- and backward-traveling beams. In our previous setup of the AFR at 486 nm, a
collimator design based on two achromatic lens doublets was used to minimize aberrations and

1Thorlabs POLARIS-K2S3, PRM2/M.
2Thorlabs SM1Z.
3Newport 8301-V.
4Thorlabs PK4FQP2.
5Thorlabs CP1XY.
6Custom-order from Layertec, reflectivity RHR > 99.995 %, transmission T ' 2 × 10−5, substrate with

λ/30 @ 633 nm irregularity and < 1.5�A RMS roughness.
7Hamamatsu R11265-200-M4.
8Edmund Optics 34-494, 10 nm-wide passband (FWHM), centered at 413 nm.
9Thorlabs DG10-1500-A.
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achieve a backcoupled fraction consistent with 100 % within 1 % [197]. Apart from correcting
chromatic aberrations, which are irrelevant for our single-wavelength application, achromatic
lens doublets have the advantage of reducing spherical aberration compared to a single lens,
due to the fact that there are more refractive surfaces.

With shorter wavelengths, designing and manufacturing suitable optics becomes more
challenging since fewer glass types are sufficiently transparent. We chose to work with fused
silica which has a high UV transmission down to 180 nm. In theory, aberration-free colli-
mation can be achieved with a single aspheric lens of the desired shape. To this end, we
tested custom-made aspheres 1 machined with the advanced technique of magnetorheological
finishing (MRF) [212, 213, 214]. Unfortunately, imperfections due to mid-spatial frequency
errors were still clearly visible on the collimated beam and only around 80 % of backcoupled
light fraction could be achieved. Therefore, we chose to only work with spherical lenses which
are available with smaller surface roughness.

First, at 410 nm we tested a three-lens collimator based on spherical lenses. A design
with minimized aberrations was found by following conventional ray-tracing techniques such
as optimizing the point-spread function and minimizing the optical path difference of rays,
similar to the previous two-achromats design at 486 nm [197]. However, when testing the
assembled custom-made collimator we found that residual spherical aberrations limit the
backcoupled fraction to 94.0(1.2) %. Contrary to our previous experience where collimator
imperfections were clearly visible as distortions in the collimated beam [197], aberrations of the
three-lens collimator were not visible in the intensity profiles of the collimated beam and were
revealed only by a caustic measurement, i.e. beam profile measurements at different position
within a caustic. For our application, the usual ray tracing design process was extended by
wave optics propagation tools. Finally, together with the manufacturing company2 we arrived
at a four-lens design whose optical performance was confirmed with a caustic measurement
and showed no aberrations above our detection limit. With this collimator, we achieved a
measured backcoupled light fraction of 99.3(1.2) %, consistent with 100 %. In the following
the design and characterization processes are described.

4.2.1 Characterization of aberrations: caustic measurement

In the previous setup at 486 nm, imperfections of various collimators were identified by ob-
serving distortions in the intensity profiles of the collimated beams [197]. With the three-lens
collimator designed for 410 nm, we do not observe any distortions in the collimated beam even
after propagation of several meters. However, because of the 6 % missing backcoupled light
fraction we know that the forward- and backward-traveling beams are not fully wavefront-
retracing. Aberrations may solely be imprinted on the phase of electric field and remain
imperceptible in the intensity profile within a certain propagation range. When inspecting
only the collimated beam after the collimator even up to arbitrarily large propagation dis-
tances, the corresponding aberrations may not appear as intensity distortions because only
half of the caustic is accessible. Hence, aberrations present in the phase need to be trans-
formed into distinct intensity distortions by propagation through the full caustic [215]. In
principle, one could reveal the same information from wavefront sensors. Though more so-

1Thorlabs MRF-polished diffraction-limited, high-precision aspheres AL1225H (stock item) and AL1225H-
50URAD-SP (custom order, best possible surface quality with 50µrad peak-valley slope, optimized for perfor-
mance between 380-410nm).

2B. Halle Nachfl. GmbH, Berlin, Germany.
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phisticated wavefront measurement techniques are available [216, 217, 218], the commercial
Shack-Hartmann wavefront sensor available to us was not accurate enough for this purpose
(specified wavefront measurement accuracy of λ/60 RMS at 633 nm).

The electric field Ecoll. immediately after the collimator (axial coordinate z = 0) can be
modeled with an incoming field E0, aberration-free focusing phase φfoc(r), and aberrations
imprinted by the collimator summarized in the phase term φab(r), where r denotes the radial
coordinate, as

Ecoll.(z = 0, r) = E0 exp
(
i(φfoc(r) + φab(r)

)
=

∞∑
p=0

cp LG0
p(z = 0, r; q0). (4.2)

In the above equation, the aberrated field has been decomposed with complex coefficients cp in
the complete basis of Laguerre-Gaussian modes LGl

p [169] with radial index p, azimuthal index
l and common complex beam parameter q0 = −z0 + izR with waist position z0 and Rayleigh
length zR = πw2

0/λ where w0 is the waist radius of the LG0
0 mode. Here we consider for

simplicity fully stigmatic (i.e. axially symmetric) beams such that l = 0 due to the cylindrical
symmetry of the problem. The z-dependent expression of Laguerre-Gaussian modes LG0

p

is given (up to a mode-dependent normalization constant) with q(z) = q0 + z and w(z) =

w0

√
1 + (z − z0)2/z2

R by

LG0
p(z, r; q) ∝

1

w(z)
Lp

(
2r2

w(z)2

)
exp

(
ikz − ik

r2

2q(z)
+ iϕp(z)

)
=

1

w(z)
Lp

(
2r2

w(z)2

)
exp

(
− r2

w(z)2

)
exp

(
ikz − ik

r2

2R(z)
+ iϕp(z)

)
, (4.3)

where Lp are the Laguerre polynomials1. The mode-dependent phase ϕp of LG0
p modes is

discussed below, see Eq. (4.9). In the last step we made use of the relation

1

q(z)
=

1

R(z)
− i

2

kw(z)2
with R(z) = (z − z0) +

z2
R

z − z0
, (4.4)

where R(z) is the mode-independent wavefront curvature radius. Since w(z) can be expressed
in terms of the real and imaginary parts of q(z) or simply the imaginary part of 1/q(z), all the
information about the z- and r-dependence of a given mode LG0

p is contained in this (inverse)
complex beam parameter, illustrating its prominent role for the common description of the
modes. Note that even though q0 and hence zR are the same for all modes, the actual waist
radius W0 = M w0 of higher-order modes is larger, where M is the factor defined below.

The expansion in Eq. 4.2 can be in principle performed for any q-parameter (any choice of
z0 and zR or w0). However, it is advantageous for the discussion here to set the q-parameter
such that z0 and zR have the following physical meaning: If the radius W (z) of a beam
with an arbitrary mode decomposition is defined through second moments of the transverse
intensity distribution (‘D4σ-method’ according to the ISO standard [219]), any beam radius
W (z) follows the hyperbolic propagation law [220, 169, 221],

W (z) = W0

√
1 + (z − z0)2/z2

R, with zR =
πw2

0

λ
=
πW 2

0

M2λ
, (4.5)

1The Laguerre polynomials are defined as Lp(x) =
∑∞
k=0

(
p
k

) (−1)k

k!
xk.
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such that z0 and zR (or w0 = W0/M) correspond to measurable quantities, with the factor
M entering the above equation in zR as M2 denoted as beam quality factor.

The aberration-free focusing phase and the leading spherical aberration term can be writ-
ten as

φfoc(r) = −k r
2

2 f
, φab(r) ' S

(
r4

W 4
− 2

r2

W 2

)
, (4.6)

with f being the focal distance, k the wavenumber, and W the beam radius at the position
where the aberration is imprinted. The focusing effect of the r4-term in φab(r) is compensated
by the r2-term to isolate the contribution of the aberration. Hence the parameter S charac-
terizes the strength of spherical aberration. For a thin spherical lens, a following expression
can be derived [222]:

Sthin lens =
2πW 4

λ f3
× n3 + (3n+ 2)(n− 1)2p2 + (n+ 2)q2 + 4(n2 − 1)p q

32n (n− 1)2
, (4.7)

where n is the refractive index of the lens, q is the shape factor of the lens (q = 0 for the curved-
curved spherical lens, and q = ±1 for the plano-curved or curved-plano spherical lenses), and
p is the dimensionless measure of the input and output radii of curvature of the beam relative
to the lens focal length, see [222] for details. If in our case (λ ' 410 nm, f ' 30 mm,
W ' 2.2 mm, n ' 1.5) we used a single thin plano-convex collimating lens oriented the right
way (flat surface facing the fiber, p = ±1 and q = ∓1), spherical aberrations would be as
large as S ' 4 following the analytical expression of the above equation. A plano-convex
collimating lens oriented the wrong way (curved surface facing the fiber, p = q = ±1) would
result in S ' 16, whereas a curved-curved lens would result in S ' 6.

For an impinging beam with beam quality factor M2
0 passing through optics with spherical

aberrations of strength S as defined in Eq. 4.6, the beam quality factor is modified by an
additional contribution M2

S '
√

2S as [222]

M2 =

√(
M2

0

)2
+
(
M2
S

)2
. (4.8)

In order to understand how aberrations affect the intensity profile of the propagated beam,
consider the mode-dependent phase ϕp of LG0

p modes, which corresponds to the accumulated
phase on the beam axis relative to the plane wave,

ϕp(z) = (2p+ 1)ψ(z), ψ(z) = arctan ((z − z0)/zR) , (4.9)

where ψ is the Gouy phase. Because ϕp is the only mode-dependent phase term, the Gouy
phase plays an essential role in the description of beam propagation [223, 224]. The electric
field after the collimator at a certain distance z can either be expressed by the diffraction
integral or equivalently, once written in form of the mode expansion from Eq. 4.2, directly
calculated from propagation-independent coefficients cp with q = z + q0 as

Ecoll.(z, r) =

∞∑
p=0

cp LG0
p(z, r; q). (4.10)

Aberrations imprinted in the phase remain unobservable in the intensity unless propagation
changes the phase relationship between different contributing modes according to Eq. 4.9.
Since the Gouy phase ψ is the only position-dependent parameter which affects the phase
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Figure 4.3: (a) Mode-dependent phase ϕp according to Eq. 4.9 for the first three LG0
p modes with

p = 0, 1, 2 over the normalized propagation distance (z − z0)/zR. (b) The phase difference between
the modes is given by the Gouy phase, ϕp−ϕ0 = 2pψ, and determines how aberrations present in the
phase transform into intensity. The constant phase offset between the modes has been subtracted such
that at the point where aberrations are imprinted (' −10 zR from the waist position) the difference is
zero. Propagation must cover a substantial fraction of the complete range of the Gouy phase, ∆ψ ≈ π,
to obtain the full information about aberrations from the evaluation of intensity profiles. (c) Gouy
phase change when inspecting the collimator for aberrations: in the collimated beam only a small
fraction of Gouy phase change is covered, i.e. ∆ψ � π, due to the large Rayleigh length of zR ' 30 m.
With a focusing lens (“M2 lens”) the beam is transformed such that a propagation of ±10zR around
the waist position becomes possible, ∆ψ ≈ π, and the manifestation of aberrations is observed in the
intensity profiles of a caustic measurement.

change between the LG0
p modes, we can use ψ or tanψ (see Eq. 4.9) as a parameter to

determine where aberrations present in the phase transform to intensity distortions [223].
Fig. 4.3 (a) shows the mode-dependent phase ϕp for the first three modes and Fig. 4.3 (b) the
phase difference relative to the fundamental Gaussian (LG0

0) mode, which is proportional to
the Gouy phase ψ. From Eq. (4.9) it is clear that the dimensionless distance (z − z0)/zR =
tanψ governs the propagation. The Gouy phase changes mostly within a few Rayleigh lengths
around the waist position (focus) z0. Within ±10 zR, almost the full range of phase change
(∆ψ ' 0.94π) between different modes is covered.

In our case the collimated beam has a waist radius of W0 ' 2.2 mm corresponding to
zR ' 37 m with a waist position z0 ' 29 cm � zR lying at the HR mirror. Therefore,
even if it was possible to observe propagated beam profiles up to an arbitrary large distance
after the collimator, only half of the possible phase change would be covered, ∆ψ ≈ π/2.
With practically accessible propagation distances of up to few meters, i.e. ∆z ' 0.1 zR, only a
small range of Gouy phase change is covered, ∆ψ ' 0.06π. It can be computed that spherical
aberrations with S ' −0.3 appear as clear distortions in intensity, e.g. visible as a dip in the
center of the intensity profile, after a propagation corresponding to a change in Gouy phase
by ∆ψ ≈ 0.85π [225]. In order to observe these aberrations it is necessary to transform the
beam with a dedicated lens (“M2 lens”) such that the full range of propagated beam profiles
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becomes accessible. This procedure corresponds to the commonly used M2 measurement
setup. By observing intensity profiles around the focus, all information about the beam mode
decomposition can be extracted since the complete range of the Gouy phase propagation of
∆ψ ≈ π is covered. The focal distance f of the M2-lens has to be large enough for the
used beam camera to resolve beam profiles around the focus created by the M2-lens, and to
avoid imprinting additional aberrations on the beam proportional to S ∝ kW 4/f3 as evident
from Eq. 4.7 [222, 226]. Fig. 4.3(c) illustrates the situation in our case: for an M2-lens of
f = 750 mm (S ∼ 10−4 for a plano-convex lens) propagation of ∆z ' ±10 zR is achieved such
that ∆ψ ' 0.94π.

4.2.2 Influence of the single-mode fiber profile

When discussing possible mode contributions from aberrations the question arises of how the
fiber mode may affect imperfections in the AFR. We use a polarization-maintaining step-index
single-mode fiber1 where the polarization-maintaining property is achieved through stress-
induced birefringence. The stress-inducing rods used for this purpose make the mode slightly
elliptical, for our fiber resulting in the ellipticity2 of ε ' 1.02(1). Since in our configuration
the retroreflection preserves ellipticity, we assume for simplicity fully circular symmetric fiber
modes.

For an ideal circularly symmetric weakly-guiding step-index fiber, three parameters de-
termine the linear polarization modes: wavelength λ, core radius a and numerical aperture

NA =
√
n2

clad − n2
core with refractive indices of the cladding, nclad, and the core, ncore [227].

The electric field is readily calculated from the paraxial wave equation, and the V -number
V = NA× 2π a/λ determines the number of possible solutions. For V < 2.405 only a single
solution exists such that the fiber is said to be single-mode. The electric field of this mode
is piecewise given by two Bessel functions [227, 228], the Bessel function of the first kind of
order 0 and 1, J0 and J1, respectively, and the modified Bessel function of the second kind of
order 0 and 1, K0 and K1, respectively:

| ~Efiber(r)| ∝

{
J0(kT r) for r ≤ a (core with ncore)

K0(γ r) for r ≥ a (cladding with nclad),
(4.11)

where the two constants kT and γ are given through the equation obtained from the boundary
condition at r = a:

X
J1(X)

J0(X)
= Y

K1(Y )

K0(Y )
, (4.12)

where X = a kT , Y =
√
V 2 −X2 = a γ. The electric field inside the fiber from Eq. 4.11 can be

approximated by a Gaussian. However, in the expansion of this fiber mode also higher-order
Laguerre-Gaussian modes contribute.

Figs. 4.4(a) and (b) show the calculated and measured intensity profiles from our fiber
after a propagation distance of around z ' 30 mm (corresponding to the beam profile at the
collimator with W ' 2 mm) on linear and logarithmic scales, along with a Gaussian fit to the
data. The calculated intensity profile (orange curve) is obtained using Eq. 4.11 along with

1Nufern PM-S405-XP.
2We define the ellipticity ε ≥ 1 to be the ratio between the major and minor beam widths, i.e. ε = 1

corresponds to the fully circularly symmetric case (no ellipticity).
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Figure 4.4: Measured and calculated intensity profiles from the single-mode fiber used in the AFR at
a propagation distance of 30 mm (' 1000 zR) after the fiber tip, corresponding to the position of the
collimator. Data (blue points) is depicted together with a calculation using the specified core radius
and measured NA (orange line) and a Gaussian fit (black dashed line) on a linear and logarithmic
scale in (a) and (b), respectively. The right plot (c) shows squared normalized mode coefficients |cp|2
of the calculated fiber mode corresponding to the overlap with LG0

p modes with a q-parameter that
cancels |c1|2. The overlap with the Gaussian is |c0|2 ' 0.9958.

the diffraction integral [169]:

| ~Ediffr.(r)| =
2πi

λ z
exp

(
−ik

r2

2z

)∫ ∞
0

dρ | ~Efiber(ρ)| ρ J0(kρr/z) exp

(
−ik

ρ2

2z

)
. (4.13)

Equivalently, one can decompose | ~Efiber| into the Laguere-Gaussian mode coefficients cp and
propagate the beam using an analogous expression as in Eq. 4.10. For the calculation of the
fiber mode from Eq. 4.11 with λ = 410 nm, the specified core radius of a = 1.5 µm was used
along with a measured NA of the fiber1.

On the logarithmic scale in Fig. 4.4(b) one can see that the fiber mode has larger intensity
on the wings of the beam as compared to the Gaussian. Diffraction rings are expected from
the calculation for radial distances r > 2.5W and with a relative intensity below 10−4, which
is not resolved by the data and outside the detector area. Nevertheless, the question arises
whether these rings may be relevant for the wavefront-retracing condition in the AFR. In
Fig. 4.4(c) the calculated mode composition for our fiber with a = 1.5 µm, NA = 0.10 and
λ = 410 nm is shown. The q-parameter for expansion was chosen such that the contribution
of LG0

1 mode vanishes and the overlap of the LG0
0 mode is maximized resulting in 99.58 %

overlap.

Once a circular symmetric beam (such that l = 0 for the Laguerre-Gaussian modes) is
expanded in terms of normalized mode coefficients cp, one can calculate its M2 value with

1Note that NA =
√
n2

clad − n2
core does not exactly correspond to the numerical aperture of the Gaussian

beam NAG = n sin θ by which the emerging beam from the fiber is best approximated (where n ' 1 is the
refractive index of the medium and θ = λ/(π nw0) is the divergence angle with wavelength λ and waist radius
w0, where we assumed the beam quality factor M2 = 1). Here, for the measurement of the NA parameter
of the fiber at λ = 410 nm, the theoretical diffracted fiber profiles were evaluated for different NA values
(and a specified fiber core a = 1.5µm) at various distances after the fiber and compared to the corresponding
measured profiles. From this comparison, the measured NA ' 0.100(2) value of the fiber is obtained, whereas
the emerging beam from the fiber is best approximated by the Gaussian beam with w0 ' 1.89(2) µm yielding
NAG ' 0.068(1).
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the following expression [215]

M2 =

∞∑
p=0

(2p+ 1)|cp|2. (4.14)

The above equation with the coefficients from Fig. 4.4(c) leads to a theoretical fiber-mode
beam quality factor of M2

0,Fs=∞ ' 1.024. However, note that for this number we integrated
the beam to infinity which does not correspond to the experimental situation. Using a self-
convergent-width factor of Fs = 3 as later used in the measurement, i.e. integration area
within ±3W for second-moments determination as is usually recommended [219, 229], the
contribution of higher-order modes leads to the fiber-mode beam quality of M2

0,Fs=3 ' 1.017.
Since the wavefront of the beam at the fiber tip is plane, all the coefficients cp in the

mode expansion are real. Propagation to the collimator corresponds almost to the far-field
(' 1000 zR) with a Gouy phase change of ∆ψ ' π/2. The phase shift of the LG0

p modes

relative to the LG0
0 is then ∆ϕ ' pπ which leads to a sign flip of all uneven mode coefficients.

After the backpropagation the phase differences are a multiple of almost 2π with a common
propagation phase for all modes. Therefore, the wavefront-retracing property of the AFR is
mostly not affected by contributions of higher-order LG0

p modes from the fiber mode. The
small residual effect from the fact that the propagation from the fiber tip to the collimator
does not exactly correspond to the far-field is shown later in Fig. 4.6. Apart from this effect,
due to the higher intensity at the wings of the beam, the fiber mode is more sensitive to
possible aberrations from the collimator as compared to the Gaussian beam.

4.2.3 Collimator design process

For our previous collimator at 486 nm, each of the commercial achromatic doublets exhi-
bited little spherical aberrations by itself, and the combination of two doublets found by ray
tracing turned out to satisfy the requirements of the AFR without further investigation. For
shorter wavelengths, we found that the three-lens collimator designed by ray tracing optics
alone showed residual aberrations revealed through the caustic measurement (see Fig. 4.11
introduced below). Therefore, the design process was extended by wave optic propagation
tools of the optics design software1. Ray tracing allows minimization of wavefront aberrations
within a given aperture width, with the Gaussian beam profile not easily accounted for. For
a given number of lenses a compromise has to be made between the width of the aperture
employed for minimizing the wavefront deviations and the magnitude of acceptable deviations
from the aberration-free wavefront. In the case of spherical aberrations, recalling Eq. 4.6,
deviations from the aberration-free wavefront increase as ∝ r4 such that for larger radial
distances r it becomes progressively more difficult to meet this compromise, especially at
shorter wavelength. Because the wings of a laser beam extend to large r, it is a priori unclear
which ray tracing criteria should be used.

Therefore, we followed an iterative design procedure together with the manufacturing
company2. Ray tracing was used as a guidance based on the manufacturability of lenses
and the requirement of effective focal length of f ' 30 mm. Using wave optics propagation,
the designs found in this way were evaluated with simulated intensity profiles in the caustic
measurement simulation. Furthermore, the electric field phase and amplitude were extracted
for simulations of residual Doppler shift with optical Bloch equations. Another important

1Zemax OpticStudio 15.5, Professional Edition with Physical Optics Propagation (POP) option.
2Bernhard Halle Nachfl. GmbH, Germany.
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10 mm1 2 3 4 5 6 7 8

Figure 4.5: Four-lens collimator design with blue solid rays illustrating the collimated beam from the
fiber and numbered lens surfaces from table below. Dashed rays exemplary show reflections from the
last surface (8) back into the fiber (red) and from the first surface (1) back to the HR mirror (orange).
The shown lens radii correspond to the open lens apertures.

Table 4.1: Lens surface data of the fused silica four-lens collimator design, along with the first-order
reflection analysis. For each of the surfaces the distance z from the fiber tip, the distance d to the
previous surface, and the curvature radius R are listed. The next two columns give the spatial overlap
values of first-order reflection beams with the fiber mode (z = 0), ηfiber, and with the collimated
beam ηcoll. The last column lists the beam radius Wrefl of reflections towards the HR mirror at the
spectroscopy region.

Lens surface z (mm) d (mm) R (mm) ηfiber ηcoll Wrefl (mm)
1 21.32 − 43.89 4.0× 10−6 8.2× 10−6 21
2 27.32 6.00 16.11 0.6× 10−6 1.0× 10−6 66
3 30.99 3.67 −300.00 3.5× 10−6 4.1× 10−6 30
4 34.99 4.00 42.14 2.8× 10−6 3.2× 10−6 37
5 63.16 28.17 −75.91 2.7× 10−6 3.7× 10−6 29
6 67.16 4.00 126.05 3.2× 10−6 4.5× 10−6 30
7 70.55 3.39 33.64 0.8× 10−6 0.8× 10−6 67
8 72.55 2.00 70.10 6.4× 10−6 5.2× 10−6 28

design criterion explained below is the consideration of residual reflections from lens surfaces
back to the fiber and to the spectroscopy region. After several iterations we found that three
lenses are not enough to meet our requirements and a four-lens design was needed. In order
to be able to use the same collimator for spectroscopy of all 2S-nP transitions with n ≥ 4, the
collimator was designed for wavelengths from 380 nm to 486 nm. The final collimator design
with an effective focal length of f = 31.02 mm is shown in Fig. 4.5, and Table 4.1 lists the
surface data, along with the first-order reflection analysis (see next section).

4.2.3.1 Residual reflections from lens surfaces

Even though all the collimator lenses are AR-coated for the desired wavelength1, residual
reflections can lead to performance loss of the AFR. Here, we only consider single reflections
from lens surfaces, since multiple reflections are strongly suppressed through the AR coatings.
Then, two types of reflections need to be considered. First, reflections of the forward-traveling
wave on lens surfaces back towards the fiber. The part of these reflections that is coupled back
into the fiber can disturb the tip-tilt stabilization. To reduce the influence of these reflections,
efficient coupling into the fiber needs to be avoided. This can be evaluated by calculating the
spatial overlap integral

ηfiber =

∣∣∫ E∗1E2dA
∣∣2∫

|E1|2dA
∫
|E2|2dA

, (4.15)

1Coating provided by Layertec, reflectivity RAR < 0.15% for 0–10◦ angle of incidence.
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where E1 and E2 are the electric fields of the reflected beam and the fiber mode.

The second type of reflections are reflections of the backward-traveling beam back toward
the atomic spectroscopy region and the HR mirror. These reflections can influence the spec-
troscopy in two ways. Just like the reflection toward the fiber, an optical etalon is formed with
the collimated beam, with the spatial overlap integral given by ηcoll analogous to Eq. 4.15.
This etalon with reflectivities RHR∼ 100 % and ∼RAR× ηcoll will lead to intensity variations
in the spectroscopy region that depend on length and the laser frequency, which can give
rise to systematic line shifts. However, since the laser intensity is stabilized to the signal of
the PMT behind the HR mirror, these intensity modulations are suppressed and will instead
influence the backcoupled light, possibly disturbing the tip-tilt stabilization. The reflections
can also give rise to a residual Doppler effect. The more the reflections are focused near the
spectroscopy region, either before or after the reflection of the HR mirror, the greater the
intensity imbalance between the beams as seen by the atoms. To minimize the influence of
these reflections, the design was chosen such that all reflections are diverging with a beam
radius Wrefl �W0 at the first pass through the spectroscopy region.

The last three columns in Table 4.1 give the values of the spatial overlaps ηfiber and ηcoll

as well as the beam radius Wrefl of the second type of reflections at the spectroscopy region
for all surfaces of the collimator design. All values are smaller than η < 10−5 such that with
an additional suppression from the AR coating the overlaps are < 10−8. An example of a
reflection back to the fiber from the last collimator surface is illustrated with red dashed
rays in Fig. 4.5. Orange dashed rays illustrate the reflection back to the HR mirror and
the spectroscopy region (located at zHR ' 36 cm and zatom ' 20 cm) from the first surface,
demonstrating that not only surfaces with negative curvature radii may focus the reflected
beam towards the atoms. In total, three surfaces focus the second type of reflections: surfaces
1 and 3 with foci around 1 cm before the collimator end surface, and surface 5 with focus at
2 cm after the collimator but still well before the spectroscopy region. Additionally, the highly
suppressed 28 combinations of reflections on two lens surfaces of the forward-traveling beam
lead to 26 strongly diverging and two nearly-collimated reflected beams at the spectroscopy
region.

4.2.3.2 Doppler shift simulations with optical Bloch equations

The collimator designs were evaluated using the wave optics propagation tool of our optics
design software with the fiber mode or a Gaussian beam profile as an input beam. We
extracted the electric field amplitude and phase after the collimator to perform simulations
of the residual Doppler shift in the AFR. For this purpose, optical Bloch equations were
numerically solved for our configuration of the experiment, using the atomic system for the
2S-6P transitions in hydrogen with 10 µW of laser power. We simulated individual trajectories
of atoms moving through the center of the laser beam at different angles α = 90◦ + δα, and
determine the Doppler shift ∆νD by fitting a Voigt function to the resulting fluorescence line
shape. The atomic velocity is set to v = 200 m/s which, according to Eq. (4.1), would result
in an unsuppressed collinear (α = 0◦) Doppler shift of ∆νD = 490 MHz and ∆νD = 2 MHz
for δα = 4 mrad. In the simulations, we evaluate the Doppler shift as a function of the fiber-
collimator displacement δdfc defined such that zero δdfc corresponds to the collimation with
maximized backcoupled light fraction. Because in the experimental situation the collimation
is adjusted such that the backcoupled light fraction is maximized, the Doppler shift at zero
δdfc is an important figure of merit for the AFR. No tip-tilt misalignment of the reflected
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Figure 4.6: The top graphs show the simulated Doppler shift ∆νD for the 2S-6P transition for dif-
ferent AFR configurations versus the fiber-collimator displacement δdfc. The bottom graphs show
the intensity mismatch ξcent of forward- and backward-traveling beams at their beam centers and the
backcoupled light fraction Pbc, also versus δdfc. (a) Aberration-free paraxial collimation compared to
the four-lens collimator for different angles δα. Either a Gaussian beam (dashed and dotted lines)
or the fiber mode (solid and dash-dotted lines) are used as the input beam for simulations. As a
figure of merit, the Doppler shift is evaluated at the maximal backcoupling (zero δdfc) for δα = 4 mrad
(blue points and curves), demonstrating that the four-lens collimator performs almost as well as the
aberration-free collimation. With the Gaussian beam as an input, no substantial difference is ob-
served in the simulations. On the other hand, with the fiber mode as an input, the residual shift of
∆νD ' 0.2 kHz is dominated by the fiber mode and not the aberrations from the collimator. (b) Simu-
lations for δα = 4 mrad. The four-lens collimator with the fiber mode (blue) is shown as a reference to
(a). The three-lens collimator as well as a Gaussian beam with spherical aberrations show a residual
Doppler shift of ∆νD ' 2–5 kHz, thereby limiting the performance of the AFR. This residual Doppler
shift is mainly caused by the intensity mismatch at the beam center ξcent (despite the same power of
forward- and backward-traveling beams), which vanishes for approximately the same value of δdfc as
the Doppler shift.

beam from the HR mirror is assumed here.

Fig. 4.6 (a) compares simulations of perfect paraxial collimation (described by the phase
φfoc(r) from Eq. 4.6) to the four-lens collimator. Both cases are evaluated with the Gaussian
beam and the fiber mode as input beams for different angles δα. The top graph shows
the resulting Doppler shift ∆νD. The bottom graphs show two AFR beam properties: the
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intensity mismatch of forward- and backward-traveling beams at their beam centers, ξcent, and
the backcoupled light fraction Pbc. In the perfectly orthogonal case (zero δα, gray points and
curves), the Doppler shift is strongly suppressed and found to be zero within the numerical
uncertainty independent of δdfc. For δα 6= 0, there is one value of δdfc where the Doppler
shift vanishes independent of δα for each laser beam configuration. For an aberration-free
Gaussian beam (“Gaussian, paraxial”), this value corresponds to the maximum backcoupled
light fraction (zero δdfc). As discussed in Section 4.2.2, the fiber mode mostly does not
affect the wavefront-retracing property. However, since the propagation from the fiber to the
collimator does not exactly correspond to the far field, the value of δdfc where the Doppler
shift vanishes does not exactly correspond to the point of maximal backcoupled light fraction.

Here, only single atomic trajectories are evaluated, though in the experiment a finite
atomic beam divergence of 8–10 mrad (FWHM) is present. However, as Fig. 4.6 (a) demon-
strates, the Doppler shift is approximately linear in δα within the range of interest. For a
symmetric atomic beam which is aligned such that, on average, the atoms cross the laser
beams at an offset angle δα from the orthogonal, there is for each atom with a crossing angle
of δα + δα̃ another atom with a crossing angle δα − δα̃, where δα̃ is an angle within the
beam divergence. This results in a partial cancellation of the overall Doppler shift, with the
remaining residual Doppler shift corresponding to that of a single trajectory with angle δα.
As a figure of merit for the AFR performance, we evaluate the Doppler shift at the point
of maximum backcoupling (zero δdfc) for an angular displacement of δα = 4 mrad, corre-
sponding to the typical alignment accuracy in the experiment (see blue points and lines in
Fig. 4.6 (a)). The residual Doppler shift for the aberration-free collimation with the fiber mode
is ∆νD = 0.18 kHz, while for the Gaussian beam the value is exactly zero. For the four-lens
collimator with the Gaussian beam as the input beam, we find almost no difference to the
aberration-free Gaussian beam such that ∆νD = −0.01 kHz. With the fiber mode, the differ-
ence to aberration-free collimation is slightly larger but small enough such that the overall
effect of the fiber mode dominates the residual Doppler shift of ∆νD = 0.23 kHz. Comparing
the Doppler shift with the intensity mismatch for different values of δdfc, we find that the
residual Doppler shift from the fiber mode is dominated by the induced intensity mismatch
ξcent which becomes zero for the same value of δdfc as the Doppler shift.

In Fig. 4.6 (b) several simulations are shown for δα = 4 mrad. The Gaussian beam with
spherical aberrations of S ' −0.35 (an approximate value from Eq. 4.8 according to the
measured beam quality factor shown later in Fig. 4.11) results in ∆νD = −4.68 kHz (green
line). We find again that the residual Doppler shift is mainly caused by the intensity mismatch
which vanishes approximately for the same value of δdfc. Therefore, in principle, for an
aberrated beam in the AFR one could adjust δdfc such that the Doppler shift vanishes.
However, in practice, reliable identification and adjustment of this position is challenging
unless it is the point of maximized backcoupled light fraction. For the three-lens collimator
with the Gaussian beam as input (orange line) we find ∆νD = −1.79 kHz, and with the fiber
mode as input (red line) we find ∆νD = −2.15 kHz. Though this residual Doppler shift still
corresponds to a suppression factor > 105 of the full collinear shift, its value is comparable
to the uncertainty of the previous 2S-4P result [14]. Looking at the calculated backcoupled
light fraction, we find Pbc ' 88 % for the three-lens collimator with the fiber mode which
is lower than the measured value of 94.0(1.2)%. We attribute this discrepancy to the not
exactly known fiber parameters, as well as to the approximation that the fiber has a perfect
step-index profile. Note that this may also indicate that the residual Doppler shift with the
four-lens collimator using our fiber may deviate from the simulated ∆νD = 0.23 kHz, though
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Figure 4.7: Front and side views of the collimator-fiber system assembly showing how the collimator
alignment CA w.r.t. the fiber is made possible. The front view is cut along the flexure translation
mount to show how the collimator (attached through the collimator mount, which is threaded into
the adjustable center bore) can be aligned relative to the polarization-maintaining fiber SF (attached
through the fixed cage system) in both the horizontal and vertical orientation using the two corre-
sponding fine pitch adjustment screws. Furthermore, the front view shows the rotation mount RM
which rotates the whole fiber-collimator system assembly shown in the side view. The brass ring
spacers BR between the collimator lenses ensure the accurate centering of lenses inside the collimator.
The retainer with an O-ring OR holds the collimator lens system in place without applying too much
stress on the lenses. The aperture RA blocks the reflection of the backward-travelling beam reflected
from the angle-cleaved fiber tip. Furthermore, the piezo actuator ZP for the accurate fiber-collimator
distance adjustment is labelled.

one would expect it to be smaller due to the higher observed backcoupled light fraction
within the discrepancy from the three-lens collimator. In reality, other imperfections such
as the mid-spatial frequency errors from imperfect lens polishing (‘orange-peel’ structure, see
Fig. 4.12) or residual astigmatism (see Fig. 4.9) may limit the Doppler shift suppression in
the AFR, rather than the not exactly Gaussian beam profile from the fiber. In the future,
these imperfections may also be included in the Doppler shift simulations.

Recalling Section 4.1, two effects may lead to a residual Doppler shift in the AFR: first,
non-matching wavefronts of the forward- and backward-traveling beams, and second, imbal-
ances of their intensities. Surprisingly, we find in our simulations, that the second effect
dominates the induced Doppler shift for imperfections caused by aberrations. We do not
observe significant deviations from our simulation results if, after propagation of forward-
and backward-traveling beam, the wavefront mismatch but not the intensity mismatch of
both beams is fully neglected in the spectroscopy region. Therefore, though aberrations are
initially imprinted in the wavefront of the beam, after propagation, they are effectively man-
ifested in an intensity mismatch (despite equal powers of forward- and backward-traveling
beams) in terms of their influence on the Doppler shift. For an aberration-free beam, the
fiber-collimator distance with optimal backcoupled fraction (zero δdfc) corresponds to the
same distance with balanced intensities of forward- and backward-traveling beams. In the
presence of aberrations, those distances are not the same, such that for zero δdfc there is a
residual Doppler-shift mainly due to the intensity imbalance.
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4.2.4 Collimator-fiber system assembly and alignment

Aligning and mounting the collimator w.r.t. the fiber is important because any asymmetry
present in the fiber–collimator system results in an astigmatism which distorts the wavefront-
retracing condition. Correspondingly, the lenses of the collimator need to be precisely mounted
without applying too much mechanical stress leading to deformation and stress-induced bire-
fringence. The front and side views of the collimator-fiber system assembly are shown in
Fig. 4.7. The assembly of lenses was designed by the manufacturing company such that the
lens decenter w.r.t. the optical axis is < 30 µm, achieved with brass rings (BR in Fig. 4.7)
matching the lens curvatures. A retainer with a single O-ring holds the lens system in place
without introducing too much deformation and birefringence (OR in Fig. 4.7). The fiber
and collimator mounting parts are aligned w.r.t. each other using the two fine pitch adjusters
(CA in Fig. 4.2) from a commercial flexure translation mount1. This allows to center the fiber
w.r.t. the collimator to better than 40 µm. Even though we observe tip-tilt misalignment of
the fiber-collimator assembly (see Sec. 4.3), in simulations we find that tip-tilt misalignment
does not introduce significant astigmatism as compared to decenter, so that we restrict the
alignment to the dominant case of centering only.

The backward-travelling beam in the AFR is reflected by the fiber tip. This reflection
is directed towards the atoms and could potentially affect the precision spectroscopy mea-
surement. To suppress this effect, the fiber tip is cleaved under an angle of 8◦ which results
in the relative angle of 23.6◦ between the forward propagating beam from the fiber and the
reflected beam. Furthermore, the fiber tip surface is AR-coated (R < 0.1% for 405-490 nm).
In addition, an aperture is placed before the collimator, see RA in Fig. 4.2, which blocks most
of the power of this reflection. This aperture with a thickness of 1 mm has a radius of 3.6 mm
and is placed at a distance of 14.5 mm after the fiber tip, corresponding to an aperture of ∼4
times the beam diameter of the forward travelling beam at this position.

In order to perform the collimator–fiber alignment, the astigmatism (a in Eq. (4.16))
is measured through the caustic measurement setup (as shown below in Fig. 4.11). The
astigmatism is defined to be the difference in the waist positions in units of the Rayleigh
length. Note that the astigmatism is different from the ellipticity (ratio of waist radii, see
ε in Eq. (4.16)): the beam can be elliptic everywhere without being astigmatic. Here, the
astigmatism values are given as measured in the caustic measurement setup, i.e. the difference
in the waist positions after the additional focusing lens (M2-lens). Combining a linear stage2

with a beam camera3, we built a caustic measurement device without additional mirrors in
the setup and capable of performing a caustic measurement within one minute for the typical
amount of ∼ 60 different beam positions required for our astigmatism measurement. This is
described in more detail in the Bachelor thesis by Alexander Hertlein [230].

Fig. 4.8 shows the results of the four-lens collimator alignment. We have two copies of the
four-lens collimator which we named A and B, here the results of the collimator A are shown.
Fig. 4.8(a) shows two examplary alignment measurements in both horizontal (orange) and

1In the final setup Thorlabs CP1XY was used giving a range of 0.5 mm in both horizontal and vertical
alignment (decenter w.r.t. the fiber). Initially, we tried the Thorlabs CXY1 mount, having a two times larger
travel of 1 mm in both directions. However, the Thorlabs CXY1 mount turned out to be not very stable and
reliable, especially since the amount of oil needed to be reduced to make this mount (more) vacuum compatible.
The Thorlabs CP1XY mount is vacuum compatible by design and proved to be much more stable and reliable,
and the travel range of 0.5 mm is sufficient.

2Thorlabs LTS300/M.
3UI-3380CP-M-Gl by IDS Imaging Development Systems, cover glass removed by Eureca Messtechnik.
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Figure 4.8: Alignment of the four-lens collimator A. In (a) two exemplary alignment scans are shown
for each of the two directions, where for each alignment position (incrementally adjusted by the pitch
screws marked as CA in Fig. 4.7) the astigmatism (difference in the waist positions in units of the
Rayleigh length, see a in Eq. (4.16)) is measured by a caustic measurement (as shown below in
Fig. 4.11). The data is fitted with a quadratic function. In (b) all the data is shown as circles with the
radius giving the positional uncertainty and the color of the measured astigmatism value according to
the color bar on the right. The background image between the data points is obtained from the fits
to the data. The symmetry point (optimal alignment) is not known initially, and the offset in both
directions has been adjusted after the measurement for presentation purposes such that x and y are
zero for the optimal alignment. Note that the measured astigmatism depends on the coordinate frame
of the measured beam widths in the caustic measurement and hence its absolute value at the symmetry
point does not yield the information about the internal asymmetry of the collimator (Fig. 4.9 below
analyses the astigmatism independent of the coordinate frame).

vertical (blue) directions, x and y, respectively. The corresponding fine pitch adjustment screw
is rotated in incremental steps of 1/8 or 1/4 of a full revolution, where one full revolution of
the adjustment screw corresponds to a vertical or horizontal decenter of 0.167 mm (calibrated
in a separate measurement). For each position of the adjustment screw a caustic measurement
(as shown below in Fig. 4.11) is performed, yielding an astigmatism value for each alignment
position. Since the collimator is already approximately centered through the mechanics of
the whole assembly, only small values of the measured astigmatism1 in the range of ±0.15 are
observed, and the data can be fitted by a quadratic function around the optimal alignment.
For clarity, the offset in the horizontal and vertical alignment axes of Fig. 4.8 was chosen
such that the optimally centered alignment corresponds to x and y being zero. Initially, this
optimal position is unknown such that the astigmatism needs to be measured across different
values of x and y. All the data points are shown as circles in Fig. 4.8(b) on a two-dimensional
plot, with the color of a measured astigmatism value and the circle radius of the position
uncertainty (1/16 of a full revolution of the adjustment screw corresponding to 0.01 mm). As

1Note that the measured astigmatism values give the astigmatism of the beam after the M2-lens. Using
the focal length of the M2-lens (f = 750 mm), one could calculate the astigmatism of the collimated beam
before the M2-lens.
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Figure 4.9: Astigmatism of the four-lens collimators A and B for optimal alignment. In (a) the
astigmatism is plotted as a function of the image rotation angle for the beam width determination in
the caustic measurement from which the astigmatism is extracted (i.e. rotation of the x/y coordinate
frame). Data for 30 consecutive measurements for the four-lens collimator A (blue) and B (orange)
are shown as points for several values of the rotation angle, where for each measurement the data is
fitted with a sine function (faint curves). In (b) the four-lens collimator A has been physically rotated
using the rotation mount RM in Figs. 4.7 and 4.2 to confirm the analysis presented in (a). For the
rotation of 0◦ the astigmatism value of around −0.02 for the collimator A corresponds to the value
at the symmetry point from Fig. 4.8. The maximal absolute value of astigmatism for the collimator
A is 0.051(4) which is higher than 0.019(4) for the collimator B, indicating a larger stress-induced
deformation of the lenses as discussed below.

Fig. 4.8(a) demonstrates, in both directions the measured astigmatism is well approximated by
a quadratic function, such that the background image Fig. 4.8(b) can be accurately obtained
from the quadratic fits to the data.

The symmetry point in Fig. 4.8(b) corresponds to the optimal alignment of the collima-
tor. However, note that the astigmatism is not zero at this point (see discussion below for
the possible origin of the residual astigmatism due to the stress-induced deformation of the
collimator lenses). There are infinitely many alignment positions where the measured astig-
matism is zero (white region in Fig. 4.8(b)) outside the optimal alignment. This is due to
the fact that the astigmatism obtained from the caustic measurement (as shown below in
Fig. 4.11) is linked to beam width measurements along the caustic which are calculated in
a fixed coordinate system (x and y). For a beam asymmetry exactly under 45◦ to the x
and y axes, the astigmatism as obtained from the beam widths measurements along x and
y is zero no matter how large this asymmetry is. However, note that the symmetry point is
independent of the coordinate system such that the alignment of the collimator-fiber system
can be performed in any coordinate system and thus for all possible asymmetries.

Though the symmetry point of optimal alignment (where x and y are both zero in
Fig. 4.8(b) ) is independent of the coordinate system, the absolute value of the astigma-
tism at this point depends on the coordinate system. Therefore, to characterize the internal
asymmetry of the collimator (e.g. due to possible misalignment of lenses w.r.t. each other) it
is instructive to determine an astigmatism value independent of the coordinate system. This
analysis is presented Fig. 4.9. In Fig. 4.9(a) the beam camera images used to determine the
beam widths in the caustic measurement are rotated (corresponding to a rotation of the x/y
coordinate system). The data is shown for the four-lens collimator A (blue) and B (orange),
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each for 30 consecutive caustic measurements. For each caustic measurement, the images
have been rotated in the range between 0◦ and 90◦, and the extracted astigmatism value
as a function of the rotation angle is fitted with a sine. This analysis has been confirmed
by a physical rotation of the whole fiber-collimator assembly with collimator A as shown in
Fig. 4.9(b) using the rotation mount RM in Figs. 4.7 and 4.2, yielding as expected the same
results as rotating the coordinate frame of the images. The maximal absolute value of the
astigmatism is independent of the coordinate system and yields 0.051(4) for the collimator
A and 0.019(5) for the collimator B, at 55(2)◦ and 44(7)◦, respectively. As discussed below,
this indicates a larger stress-induced deformation of the lenses for the collimator A compared
to the collimator B.

The astigmatism can be simulated using the optics design software for different misalign-
ments of the lenses or tilt of the collimator. We found that the astigmatism produced by
tilting the collimator even as large as by 10◦ could always be compensated to < 0.005 by
centering, such that we decided to limit the alignment of the collimator to the dominant
case of centering only. From the simulations it was found that the astimatism is most sen-
stive to the centering of the last lens in the collimator (formed by surfaces 7-8 in Table 4.1).
The observed astigmatism of ∼0.05 would be produced by decentering this lens by 300 µm,
which is an order of magnitude larger than the specified centering within 30 µm. However,
stress-induced birefringence measurements indicate that, for optimal alignment, the residual
(coordinate frame independent) astigmatism is caused by the stress-induced deformation of
the lenses.

Fig. 4.10 shows a measurement of the stress-induced birefringence of the four-lens colli-
mator B (the one which produces less astigmatism). For this measurement, the PM fiber
has been rotated w.r.t. the collimator. At each rotation angle γ, the circular polarized
fraction S3/S0 of laser light after the collimator has been measured for both the verti-
cal (blue) and horizontal (orange) input polarization into fiber (slow and fast polarization-
maintaining axes of the PM fiber). The birefringence of the collimator δ produces a mod-
ulation S3/S0 = sin δ sin(2γ − 2γ0) + o, where γ0 gives the orientation of the birefringence
axis of the collimator and o is an offset originating from the fiber (e.g. due to stress-induced
birefringence of the connector) or polarization gradients across the lens system. The fit to
the data gives a retardance of δColl. B ∼ 0.07 rad.

For the collimator A, such a birefringence measurement was not performed for the follow-
ing reason. After the collimator A has been installed into the setup, we observed that during
the work on apparatus dust particles can be accumulated on the lens surfaces of the collimator.
In particular, dust particles can also enter the volume between the lenses through holes needed
for pumping out the inner region of the collimator. Unfortunately, the dust particles could
then not be removed, and the collimator A was sent to the company to clean the lenses of the
disassembled collimator individually. Therefore, collimator B was installed into the vacuum
setup and special care was taken to minimize the risk of accumulating dust particles on the
collimator. The time when the collimator is exposed to air outside vacuum was kept as short
as possible and a birefringence measurement was not performed. However, when first mount-
ing the collimator, a large circular polarized fraction of S3/S0 ∼ 0.3 (for vertical polarization)
and S3/S0 ∼ −0.3 (for horizontal polarization) was observed. Comparing to Fig. 4.10, that
means that the stress-induced birefringence of collimator A is δColl. A & 0.15 rad, at least twice
as large as for collimator B. This observation matches the data for the larger astigmatism of
collimator B and supports the hypothesis that the residual astigmatism is mainly caused by
stress-induced deformation of the lenses. In the future, one could use a softer O-ring (OR in
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Figure 4.10: Birefringence measurement of the four-lens collimator B. As the PM fiber is rotated
against the collimator, the circular polarized fraction S3/S0 is measured after the collimator for both
vertical (blue) and horizontal (orange) input polarization before the fiber. The data is fitted with
S3/S0 = sin δ sin(2γ − 2γ0) + o, where δ is the collimator retardance, γ the rotation of the PM
fiber w.r.t. the collimator, γ0 the orientation of the birefringence axis of the collimator and o is an
offset originating from the fiber. The fit yields a retardance of δColl. B ∼ 0.07 rad for the four-lens
collimator B.

Fig. 4.7) and/or slightly untighten the lens system while measuring the residual astigmatism.
The collimator A was then rotated by 90◦ w.r.t the fiber, which reduced the circular polarized
fraction to |S3/S0| . 0.1. This rotation could be done quickly, since the cage system of the
fiber mount assembly (see Fig. 4.7) can be easily rotated in steps of 90◦.

4.2.5 Measurement of collimator performance

We measured the collimator performance at 410 nm by analyzing intensity profiles in the
caustic measurement shown in Fig. 4.11. The beam radius W (z) is determined for the or-
thogonal x and y transverse directions according to the second-moment definition [219] with
a self-convergent-width factor [229] of Fs = 3. This beam radius determination is performed
at different positions around the focus of the M2 lens (f = 750 mm), corresponding to propa-
gation distances from −10 zR to +10 zR around the waist position. From the fit according to
Eq. 4.5 the beam waist radii W0,x and W0,y, waist positions z0,x and z0,y, and beam quality
values M2

x and M2
y are extracted. These values determine the ellipticity ε, astigmatism a,

and combined beam quality M2 as

ε = max

(
W0,x

W0,y
,
W0,y

W0,x

)
, a =

z0,x − z0,y

(zR,x + zR,y) /2
, M2 =

√
M2
xM

2
y . (4.16)

The fits and the determined parameters are shown at the upper part of Fig. 4.11. The
measured ellipticity of a few percent is in agreement with the slightly elliptical beam from our
polarization-maintaining fiber, see Section 4.2.2. The reduced astigmatism of the four-lens
collimator, a = 0.014(4), was achieved with the help of alignment described in Section 4.2.4
compared to the three-lens collimator with a = 0.216(5) where the collimator was aligned
with the help of centering the observed distortions in the intensity profiles. For the three-lens
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Figure 4.11: Caustic measurement of the three-lens and four-lens collimators at 410 nm. At the top,
the beam radius W (z), obtained from second-order moments in the x and y directions, is plotted
against the propagation distance z (with different offset for the two collimators) after the f = 750 mm
focusing lens, with a zoomed region of up to four Rayleigh lengths after the focus where distortions
due to spherical aberrations are expected. The fitted beam quality value for the three-lens collimator
is M2 = 1.124(6) due to spherical aberrations with |S| ' 0.34, whereas for the four-lens collimator
the beam quality of M2 = 1.013(5) is not limited by spherical aberrations but by the fiber mode
profile described in Section 4.2.2. At the bottom, normalized intensity profiles at selected propagation
distances A to L (from −10 zR to +10 zR, marked on the top plot) are depicted, along with reference
Gaussian beams of 1/e2 intensity radius W (z).

collimator we find M2 = 1.124(6) which corresponds to |S| = 0.33(1) according to Eq. 4.8.
Aberrations are also revealed as distortions in intensity around the focus after the M2 lens,
see bottom of Fig. 4.11 where the intensity profiles at selected positions A to L marked on the
top are shown. For the three-lens collimator we observe the characteristic intensity profiles
for a beam with spherical aberrations [225]. Note that distortions in intensity appear only in
the region between zR and 4 zR after the focus, which demonstrates that the manifestation
of aberrations cannot be readily observed in intensity of collimated beam without the caustic
measurement. In the simulations of caustic intensity profiles for the given three-lens collimator
design, we find a larger dip depth and more distorted intensity profiles than observed, which
we attribute to high sensitivity to single-mode fiber input parameters and/or the limitation
of the step-index approximation of the fiber. For the four-lens collimator, no beam profile
distortions are observed in agreement with simulations using the given lens design, and the
beam quality factor M2 = 1.013(5) is limited by the fiber profile as calculated in Section 4.2.2.
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Figure 4.12: Measured beam profile of the collimated beam in the spectroscopy region of the AFR
(12 cm after the collimator) for: (a) 3-lens collimator, (b) 4-lens collimator. A weak ‘orange-peel’
structure is visible in both beam profiles, but more pronounced on the 4-lens collimator beam profile
(note that this is only visible in the digital version of the document, but not in the printed version).
Cuts through the beam profiles are shown in (c) along with a Gaussian fit to the data (offset for 4-lens
collimator). Note that aberrations present in the phase at this position are not observed in the shown
intensity profile, but are revealed through the caustic measurement as demonstrated in Fig. 4.11.

The collimated beam intensity profiles in the spectroscopy region (corresponding to 12 cm
propagation distance after the collimator) are shown in Fig. 4.12 (a) and (b) for the three-lens
and four-lens collimator, respectively. Though no performance shortcomings of the four-lens
collimator are observed in the caustic measurement, a weak residual “orange-peel” structure
is observed on the collimated beam of both collimators, which is more pronounced for the
four-lens collimator. This structure is barely observed on cuts through intensity profiles as
shown in Fig. 4.12(c). We observed similar but much stronger deviations in beam profiles
from aspheric lenses where these mid-spatial frequency errors are more pronounced, as well
as for some other collimators1. It is important to note that these lens imperfections imprint
phase distortions which may disturb the wavefront-retracing property of the AFR. After
propagation, these phase distortions transform into intensity distortions and may introduce
a residual Doppler shift. Therefore, it is important to ensure best possible lens polishing
quality, minimizing mid-spatial frequency errors. In our case, the lens surfaces and polishing
processes responsible for deviations observed in Fig. 4.12 (b) could not yet be identified and
remain under investigation together with the manufacturer. We believe that the observed
orange-peel structure originates from residual grinding structures on some lens surface which
are not fully removed by polishing. Such beam profile distortions also play an important role
in atom interferometry [231, 30]. In these experiments, it was found that systematic errors
arising from a similar “orange-peel” structure of the beam (called “beam speckle”) could be
suppressed when the beam is propagated for a few meters which “washes out” this structure.

As discussed at the beginning of this section, the backcoupled light fraction gives an im-
portant figure of merit of the collimator performance. Compared to the three-lens collimator
with a backcoupled fraction of 94.0(1.2) %, the backcoupled light fraction of the four-lens
collimator is measured to be 99.3(1.2) %. Note that this number gives the spatial overlap of

1In particular, we have three copies of the three-lens collimator where one of the three-lens collimators
showed an even stronger “orange-peel” structure than the four-lens collimator. Here we show the profile of our
best three-lens collimator. Both four-lens collimators A and B show the same magnitude of the “orange-peel”
structure.
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Figure 4.13: Performance of the tip-tilt stabilization of the AFR (with 2nd intensity stabilization
switched on). Spectra of the in-loop error signals produced by the lock-in amplifiers (1 ms time
constant) for the horizontal and vertical (tip and tilt) feedbacks of the HR mirror are shown in (a)
and (b). The power spectrum of the backcoupled light on the ‘Backcoupling APD’ (see Fig. 4.1) is
shown in (c). All spectra are shown with tip-tilt stabilization switched on (orange line), off (blue line)
and with the laser blocked (gray line). Each faint line is a 15 s average with a resolution bandwidth of
0.25 Hz, whereas heavy lines are the average of all data. Large resonances around 30 Hz are observed
on all signals, limiting the feedback bandwidth to around 10 Hz as deduced from the in-loop error
signals.

the forward- and backward-traveling beams in the AFR, with the known transmission losses
of the beam path from the spectroscopy region to the backcoupling APD taken into account.
The uncertainty of 1.2 % is deduced from the quadrature sum of uncertainties for position-
dependent photodiode sensitivity, beamsplitter transmission, fiber attenuation, as well as AR
coating uncertainties of the fiber coupling lens, fiber tips, and collimator lenses.

Ultimately, for our experiment only the velocity-resolved spectroscopy measurement pro-
vides certainty on the suppression factor of the Doppler shift. In the preliminary analysis of
our recent precision measurement of the 2S-6P transition in hydrogen (see thesis by Lothar
Maisenbacher for details [71]) using the four-lens collimator discussed here, the Doppler shift
is consistent with zero within the uncertainty of the measurement (∼3 Hz/(m/s)). The four-
lens collimator performed also well for the preliminary measurements of the 2S-6P transition
in deuterium discussed in the following chapter.

4.3 Retroreflection control and stabilization

In order to achieve the wavefront-retracing retroreflection in the AFR, it is necessary to
adjust the distance between the fiber and the collimator (collimation distance) such that the
position of the flat wavefront of the collimated beam is at the HR mirror. Moreover, the
horizontal and vertical (tip-tilt) directions of the HR mirror need to be oriented such that the
wave vectors of the forward and backward propagating waves are antiparallel to each other.
If both conditions (collimation and tip-tilt alignment) are optimized, the backcoupled light
fraction is maximized.

The stabilization of the HR mirror tip-tilt orientation is described in detail in the previous
work [197]. In short, modulating the two piezo actuators for the tip-tilt movement of the
HR mirror mount with weak signals of different frequencies (producing maximal angular
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misalignment of ∼ ±1 µrad) and detecting this modulation in the backcoupled light with
two lock-in amplifiers, two error signals are generated which are used for the tip and tilt
stabilization feedback loops. We tried improving the bandwidth of the feedback by using
higher modulation frequencies. Mechanical resonances cause a crosstalk between the otherwise
linearly independent horizontal and vertical piezo actuators. In order to find frequencies with
minimal crosstalk between horizontal and vertical modulation, we measure the corresponding
transfer functions of the HR mirror assembly. For this measurement we use an auxiliary laser
beam reflected off the HR mirror from the back side to allow for an in-situ measurement (with
PMT being removed) under a small (' 5◦) angle, and detect the reflection with a position-
sensitive detector while sweeping the frequency of horizontal and vertical piezo actuators.
Though higher modulation frequencies of 1.52 kHz (vertical) and 2.09 kHz (horizontal) with
minimal crosstalk (typically 10–30 % amplitude ratio of horizontal to vertical error signals)
could be identified, the feedback bandwidth could not be improved due to large mechanical
resonances around 30 Hz caused by the rotatable geometry of the whole AFR setup.

Fig. 4.13 shows the performance of the tip-tilt stabilization, where in (a) and (b) the in-
loop error signals are plotted. The bandwidth of stabilization as deduced from the in-loop
error signals is around 10 Hz. However, no significant noise suppression is observed in the
spectrum of the backcoupled light shown in (c), with even a slight increase of noise visible
for low frequencies when the tip-tilt stabilization is switched on. Only a small decrease of
noise is visible on the backcoupled light for resonances around 30 Hz. Apart from Rayleigh
scattering from fiber discussed below, the unobserved noise suppression in the backcoupled
light could originate from the large amount of noise common to both directions which cannot
be suppressed due to large cross-talk. Though for inspection of this issue no out-of-loop
measurement of the tip-tilt stabilization is available in our setup, the performance of the
tip-tilt feedback is clearly observed in the backcoupled light when scanning the piezo actuator
controlling the fiber-collimator distance as described below and shown in Fig. 4.14. Likewise,
during a typical hour-long precision spectroscopy measurement, the tip-tilt feedback maintains
the retro-reflecting condition.

In the previous setup [197] the collimation distance was adjusted by using a remote-
controlled motor and maximizing the observed signal on the backcoupling APD. With this
procedure the backcoupled signal could typically be optimized within ∼ 1 %. We improved
the distance control by adding a piezo actuator to the precision motor, which is now used for
pre-alignment only. In order to determine the optimal piezo voltage, we typically scan the
applied voltage with a frequency of 1 Hz over a period of 30 s such that the fluctuations on the
backcoupling APD are averaged out, see Fig 4.14. Due to the not exactly on axis translation
of the fiber, we observe tip-tilt misalignment on the in-loop error signals shown in (c) and (d),
resulting in a large drop of the backcoupled light fraction (∼ 3 %) shown in (a) with tip-tilt
stabilization switched off (brown curves). With the tip-tilt stabilization switched on (blue
and orange curves), the drop of the backcoupled light fraction by ±0.5 % for ±1.5 µm around
δdfc = 0 agrees with simulations from Fig. 4.6. From the fitted dashed line the optimal piezo
voltage is determined, allowing to set the fiber-collimator distance to within ∼ ±0.2 µm of
the optimal value corresponding to ±0.1 % of the maximum backcoupled light fraction value.
In our setup we observe only slow drifts of the optimal collimation distance on the order of
0.2 µm per hour (correlated with temperature) such that typically an adjustment is performed
every 1–2 hours with no need of active stabilization.

The observed modulation on the backcoupled light fraction in Fig. 4.14(a) demonstrates
how in addition to the precise distance control, the piezo actuator provides the possibility
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Figure 4.14: Demonstration of the improved fiber-collimator distance control using a piezo actuator.
All plots show the recorded data when scanning the voltage of the piezo actuator with a frequency
of 1 Hz over an averaging time of 30 s. The common x-axis has been converted from the applied
voltage and leverage factor to the fiber-collimator displacement δdfc, with zero δdfc corresponding to
maximum backcoupling. In (a) the normalized signal of the backcoupled light is shown. If the tip-tilt
stabilization is switched off (brown curves), clear tip-tilt misalignment is observed on the in-loop error
signals of the tip-tilt stabilization shown in (c) and (d), leading to a large drop in the backcoupled light
fraction of ∼ 3 % in (a) over the full distance range. With tip-tilt being stabilized (blue and orange
curves), this drop is reduced to ∼ 0.5 % in agreement with simulations from Fig. 4.6. The dashed curve
in (a) shows a quadratic fit to the data with tip-tilt stabilization switched on. Clear modulation is
observed on all of the signals, originating from Rayleigh scattering inside the fiber leading to an etalon
effect. Along with the fit residuals of the backcoupled fraction in (b), the expected λ/2 modulation
is drawn (dashed gray curve) which also reveals the nonlinearity of the piezo actuator. As expected,
the modulation is stronger when the 2nd intensity stabilization (to the PMT after the HR mirror) is
switched on (orange curve), as compared to the case with intensity not stabilized (blue curve).

to inspect the AFR for optical etalons. The corresponding λ/2 modulation is depicted along
with fit residuals in (b), not exactly matching all the data due to expected nonlinearities of the
piezo actuator of ∼ 20 % over the full range. In order to avoid etalons, we use only AR-coated
optics and place all photo-detectors at large angles (& 10◦). The fiber tips are angle-cleaved
under 8◦ and AR-coated. After a thorough investigation, we found that the modulation we
observe originates from Rayleigh scattering inside the fiber. A small fraction on the order of
10−3 of the scattered light from randomly distributed scattering points inside the fused silica
of the fiber is guided backward in the fiber mode [232, 233, 234], interfering with the strong
reflection from the HR mirror. As expected, stabilizing the intensity after the fiber leads
to an increased modulation (orange curves) as compared to the case with the stabilization
switched off (blue curves). The phasor of total back scattered Rayleigh light corresponds to a
random walk due to the random distribution of scattering points. Therefore, the modulation
depth ξback of the backcoupled light increases with the square-root of the fiber length, and
we use an as short as possible fiber. More details on investigating this effect is given in the
next section.
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4.4 Etalon effect from Rayleigh backscattering in fiber

The obvious reason for the observed modulation in Fig. 4.14 would be a single Fabry-Perot
etalon in the AFR, e.g. arising from a single parasitic reflection from the coupling lens or
the fiber tips. Therefore, we first discuss this case. However, we could not identify any
single parasitic reflection in the AFR leading to such an etalon. We then found that Rayleigh
backscattering in the fiber produces multiple parasitic reflections leading to an etalon effect
responsible for the modulation observed in Fig. 4.14. We carefully investigated this effect
which is presented in Section 4.4.2. Interestingly, we find that the effective behavior of the
multiple reflections from Rayleigh backscattering in the fiber can be modelled as a single
Fabry-Perot etalon.

4.4.1 Case of a single Fabry-Perot etalon

Let us first consider a Fabry-Perot etalon from a single parasitic reflection with reflectance
R1 = r2

1 � 1 (field transmission coefficient t1 ' 1) from somewhere in the AFR between the
backcoupling APD and the HR mirror, which has reflectance R2 = r2

2 ' 1 (field transmission
coefficient t2 � 1), see Fig. 4.15(a). The length l between the parasitic reflection and the HR
mirror leads to an accumulated round-trip phase of 2φ = 2lωn/c, where n is the refractive
index (i.e. the optical path length is n l). We also take into account a transmission factor of
a2 per round-trip for the electric field (which corresponds to a half-round-trip (single path)
transmission factor in the intensity). The transmission factor of a2 < 1 mainly originates
from imperfect AR coatings as well as from the fiber attenuation in our setup1 and is ap-
proximated for our setup with the four-lens collimator to a2 ≈ 0.95. The bottom scheme in
Fig. 4.15(a) illustrates how the circulating field Ecirc, the transmitted field Etrans, as well as
the reflected field Eback can be derived from the incoming field E0 following the reflection,
transmission, absorption and phase difference factors. The backcoupling APD measures a
signal proportional to |Eback|2, and the PMT after the HR mirror measures a signal propor-
tional to |Etrans|2 ∝ |Ecirc|2. As the bottom scheme illustrates, the circulating field Ecirc is
derived2 to be [169, 168]

Ecirc = iE0t1

(
1 + a2r1r2e

i2φ + (a2r1r2e
i2φ)2 + · · ·

)
=

iE0t1
1− a2r1r2ei2φ

. (4.17)

Note that we took into account the phase difference factor [235] of exp(iπ/2) = i. For r2 ' 1
and r1 � 1 it is sufficient to keep the leading term in r1, such that the above expression
simplifies to

Ecirc ' iE0t1 + iE0t1a
2r1r2e

i2φ. (4.18)

1From the specifications of the corresponding AR coatings, we can estimate the transmission due to reflection
losses from fiber tips to be 98.4(2)%, the transmission of the collimator (8 AR-coated surfaces) to be 98.3(4)%
(note that the coupling lens transmission of 99.0(2)% does not enter the factor a since the etalon does not pass
the coupling lens multiple times). The fiber transmission from attenuation (α = 30±5 dB/km) inside the fiber
yields for a 0.8 meter-long fiber 99.4(1)%. Together these factors give a transmission factor of a2 ' 0.961(5)
(single path in the power of the field, i.e. squared amplitude). Note that this assumes perfect backcoupling from
the collimator which is a good approximation for the four-lens collimator presented in Section 4.2, but not for
the three-lens collimator where additional losses of ∼5% would need to be taken into account. Alternatively,
the modulation depth in the backcoupling can serve as a measure of the total losses in the system and hence
can be used to extract the backcoupling fraction produced by the collimator which indicates its performance.

2The same expression can be also derived from the self-consistent expression Ecirc = iE0t1 +a2r1r2e
i2φEcirc,

where Einc = iE0t1 is the incoming field in the cavity and grt = a2r1r2e
i2φ the complex round-trip gain [169].
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Figure 4.15: (a) Schematic representation of a single Fabry-Perot etalon in the AFR. An optical
resonator is formed by a parasitic reflection r1 � 1 (originating from somewhere between the Back-
coupling APD and the HR mirror) together with the HR mirror with r2 ' 1. The length l between the
parasitic reflection and the HR mirror enters the accumulated round-trip phase 2φ = 2lωn/c, where
n is the refractive index. A transmission factor of a2 per round-trip of the electric field is taken into
account, mainly originating from imperfect AR coatings and the fiber attenuation. The bottom scheme
shows how the circulating field Ecirc, the back-reflected field Eback and the transmitted field Etrans

can be derived from the interference of the reflected and transmitted fields from the incoming field E0.
The backcoupling APD measures a signal proportional to |Eback|2 and the PMT measures a signal
proportional to |Ecirc|2 since |Etrans|2 ∝ |Ecirc|2. (b) Etalon modulation depth in the circulating light
intensity (ξcirc from Eq. (4.20), orange curves) and the backcoupled intensity (ξback from Eq. (4.23))
for r2 ' 1 (HR mirror) and different transmission factors. The solid curve represents the case of our
setup with a2 ∼ 0.95 . Note that the modulation in the backcoupling vanishes for the case of no losses
(a2 = 1). In contrast to ξback, ξcirc does not strongly depend on the transmission factor. The observed
modulation depth of ξback ∼ 0.1% (red point) from the blue curve in Fig. 4.14(b) would correspond to
a parasitic reflectance of R1 ∼ 10−5 (faint red bar).

The transmitted field through the HR mirror is proportional to the circulating field:

Etrans = iat2e
iφEcirc. (4.19)

Therefore, the modulation depth detected on the PMT is equal to the modulation depth
ξcirc for the circulating field (as seen by the atoms during the spectroscopy). We define the
modulation depth ξ to be the relative peak-to-peak modulation in the light intensity, which
can be derived from the above expression where |Ecirc| reaches its maximum and minimum
values for φ = 0 and φ = π/2:

ξcirc = 2
|Ecirc,max|2 − |Ecirc,min|2

|Ecirc,max|2 + |Ecirc,min|2
=

4a2r1r2

1 + a4r2
1r

2
2

' 4a2r1, (4.20)
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where in the last step we kept the leading term for r1 � 1 and r2 ' 1.
The back-reflected field Eback is given by1:

Eback = E0r1 − E0t
2
1a

2r2e
i2φ
(

1 + a2r1r2e
i2φ + · · ·

)
= E0

(
r1 −

t21r2a
2ei2φ

1− a2r1r2ei2φ

)
. (4.21)

As in Eq. (4.18), for r2 ' 1 and r1 � 1 it is sufficient to keep the leading term in r1, such
that the above expression simplifies to:

Eback ' E0r1 − E0t
2
1a

2r2e
i2φ − E0t

2
1a

4r2
2r1e

i4φ. (4.22)

Similarly to Eq. (4.20), the modulation depth ξback in the intensity of reflected light (detected
at the backcoupling APD) yields with t21 = 1− r2

1:

ξback = 2
|Eback,max|2 − |Eback,min|2

|Eback,max|2 + |Eback,min|2
=

4a2r1r2(1− r2
1)(1− a4r2

2)

r2
1 + a4(1− 4r2

1 + r4
1)r2

2 + a8r2
1r

2
2

' 8r1(1−a2), (4.23)

where in the last step we again kept the leading order term for a2 ≈ 1, r1 � 1 and r2 ' 1
(HR mirror).

In our case (r1 � 1 and r2 ' 1) the modulation depth in the backcoupling, ξback, strongly
depends on the transmission factor a, and for the case of no losses (a2 = 1) no modulation
would be detected on the backcoupling APD (ξback = 0), see Fig. 4.15(b), where blue curves
show ξback and orange curves show ξcirc. In contrast to ξback, the modulation depth for the
circulating (or transmitted) light ξcirc seen by the atoms during spectroscopy does not strongly
depend on a. The observed modulation depth on the order of ξback ∼ 0.1% (red point) from
the blue curve in Fig. 4.14(b) would correspond to a parasitic reflectance on the order of
R1 ∼ 10−5 (faint red bar). This in agreement with a modulation on the order of ξcirc ∼ 1%
which we observed on the PMT when scanning the piezo actuator for the fiber-collimator
distance.

Note that ξback = 0 occurs only for r2 = 1 and a2 = 1, which can be intuitively understood
from energy conservation: independent of the round-trip phase 2φ, all light must be reflected
since no light is transmitted through or lost in the cavity. The opposite case of maximally
possible modulation of reflected light, ξback = 2, corresponds to an impedance matched Fabry-
Perot cavity where r1 = r2a

2 [168]. On resonance, the circulating power is then maximized
while the reflected power is exactly zero, |Eback,min| = 0. For r2 = 1, the impedance matched
cavity has r1 = a2, and for the case of no losses (a2 = 1) the impedance matched cavity has
equal mirror reflectivities r1 = r2. Therefore, our case of a2 ≈ 1 with r2 ' 1 and r1 � 1
corresponds to maximally impedance mismatched case where ξback ≈ 0. This case of a Fabry-
Perot cavity, r1 � 1 and r2 ' 1, has a finesse close to zero, as opposed to a typical Fabry-Perot
cavity with r1 ' 1 and r2 ' 1 with finesse larger than one. In the latter case the circulating
or reflected intensities obtained from Eq. (4.17) or Eq. (4.21) yield an Airy function with well
separated peaks or valleys. In our case of a finesse close to zero, this modulation becomes
simply a sinusodial modulation, as evident from Eq. (4.18) and Eq. (4.22).

It is worth realizing that for a Fabry-Perot etalon in the AFR, i.e. one strong reflection
(r2 ' 1) combined with a small parasitic reflection (r1 � 1), the dominating physical effect
does not arise from multiple reflections off the parasitic reflectance r1, but only from a single
parasitic reflection r1 of the forward- and backward-propagating beams. Therefore, only two

1We can also obtain this expression directly from Eq. (4.17) with Eback = E0r1 + it1r2a
2ei2φEcirc.
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terms need to be taken into account for the ‘circulating’ field, see Eq. (4.18), namely the
interference of a strong forward propagating field ∝ E0 with the parasitic reflection of the
backward propagating field ∝ r1r2E0. Similarly, for the backcoupled field, only three terms
dominate the behavior (see Eq. (4.22)), namely the interference of the parasitic reflection of
the forward-propagating field ∝ r1E0 with the strong reflection from the HR mirror ∝ r2E0

and the parasitic reflection of the backward-propagating field strongly reflected by the HR
mirror ∝ r1r

2
2E0. This is illustrated in the bottom of Fig. 4.15(a) where only the relevant

field contributions are shown with solid arrows for ∝ O(1)E0, while terms ∝ O(r1)E0 are
shown in a faint color. All parasitic reflections of order ∝ O(r2

1)E0 and higher (indicated by
the dashed curved arrow of fainter color) can be neglected. This realization makes it easier
in Section 4.4.2 to derive the equations for multiple parasitic reflections as is the case for
Rayleigh backscattering.

When we first observed the modulation in the AFR while scanning the piezo actuator,
the origin of this etalon effect was unknown and we investigated various possible sources
for a parasitic reflectance. The same modulation depth was also observed when scanning the
frequency of the laser. We found that the visibility and the free spectral range FSR = c/(2n l)
(where c is the speed of light, n the refractive index and l the etalon length) changes on the
time scale of seconds. The dominant FSR was compatible with an etalon length l including
the full length of the fiber1. We then suspected that parasitic reflections of the coupling lens
lead to this etalon and replaced the coupling lens by a reflective collimator using a parabolic
mirror2, which however did not remove or suppress the observed modulation. We next tested
the possible parasitic reflection from the fiber tips which are AR-coated and angle-cleaved
under 8◦ such that the reflected beam is under an angle of 24◦ w.r.t. the incoming beam. No
difference was observed with non-AR coated angle-cleaved fiber tips. Finally, after excluding
all other possible sources for parasitic reflections, we found that Rayleigh backscattering in
the fiber is responsible for the observed etalon effect, as treated in the next section.

4.4.2 Multiple etalons from Rayleigh backscattering in fiber

Rayleigh scattering is present in any medium and can be seen as the physical origin of the
refractive index. If the medium is dense and homogenous, all the light scattered not in
exactly the forward direction interferes destructively, such that the light does not scatter
laterally [236]. However, this is not the case for an optical fiber since amorphous solids
including glass are inhomogeneous. These non-homogeneities mainly originate from frozen
density fluctuations produced during fiber drawing when the melted glass cools down [228].
The fused silica fiber core then forms randomly distributed scattering points along the fiber.
The small-scale inhomogeneities in an optical fiber can be even viewed with a microscope
[237]. Rayleigh scattered light along the fiber leads to damping and is for most wavelengths
(especially in the near UV) the limiting and dominant source of fiber attenuation3, leading
to an attenuation of αs = A/λ4 with A = 0.63 dB µm4/km for pure silica [228], which yields

1The AFR setup first had a fiber with a length of l ∼ 5 m, such that we observed FSR ∼ 18(1) MHz giving
an optical length of n l ∼ 8.3(4) m which is in agreement with the fiber length plus the additional 0.3 m distance
from the fiber to the HR mirror (using the refractive index of our fused silica fiber, n = 1.51). Furthermore, the
fiber was initially not thermally isolated such that the etalon modulation changed on the timescale of seconds
rather than several minutes.

2Protected Silver Reflective FC/APC Collimator for 2 mm diameter beam, Thorlabs RC02APC-P01.
3According to [236, 238], Rayleigh scattering is usually responsible for ∼ 85% of losses for operation at

small enough optical power, whereas the remaining ∼ 15% are due to Raman and Brillouin scattering.
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αs = 22 dB/km for λ = 410 nm, close to α = 28 dB/km for low-loss silica fibers [239]1 and
in agreement with the specified value for our fiber2. Doped fibers have a higher attenuation
since doping adds additional scattering centers [236], just as increased radiation exposure also
leads to additional scattering [240]. One can estimate the attenuation from Rayleigh scattering
in fibers for both the glass and doping inhomogeneities with an analytical expression [236],
which is outside the scope of this thesis. If the total attenuation α is dominated by scattering,
α ' αs, the scattered power fraction Ps/Pin for a fiber length l (where Ps is the total scattered
power and Pin the ingoing power into the fiber) is [228]

Ps
Pin

= 1− 10−αsl/10 ' l αs
ln 10

10
∼ 5× 10−3, (4.24)

where in the last step we approximated the expression for small fiber lengths such that
Ps/Pin � 1 and used the numerical values l = 0.8 m and αs ∼ 30 dB/km. What is important
for the discussion here is the fraction η of the scattered light that is guided in the backward-
propagating direction through the fiber [228, 236]:

η =
3

8π2n2
core(w0/λ)2

∼ 10−3, (4.25)

with the numerical value given for our parameters (mode field radius w0 ' 1.7 µm, core
refractive index ncore ' 1.47, wavelength λ = 410 nm). Combining the two above equations
we can give the power fraction Rs of guided Rayleigh backscattered light from the fiber as

Rs =
Ps
Pin
× η = l × 3αs ln 10

80π2n2
clad(w0/λ)2

∼ 5× 10−6. (4.26)

One may ask whether some fraction of total scattered light is also guided in the forward-
propagating direction and adds on top of the transmitted light. However, one can argue that
Rayleigh scattering in the forward-propagating direction is not an additional term but simply
how light propagates through the medium. Rayleigh scattering can be seen classically as
oscillating dipoles re-emitting the incoming field, and the same model applies when deriv-
ing the refractive index of a medium. From this argument no additional contribution from
Rayleigh scattering is added on top of the forward propagating beam in the fiber, since it
is effectively included in the refractive index or reduced propagation velocity of the trans-
mitted field through the medium. Another possible contribution in the forward direction is
from Rayleigh scattering under a small angle w.r.t. the forward propagating mode which may
excite higher-order modes in the fiber. However, for our fiber3 the attenuation of the next

1This publication reports a total loss of 0.265 dB/km at 1310 nm which can be scaled with λ4-dependency
to 410 nm, assuming that the dominant source of attentuation is due to Rayleigh scattering.

2The model PM-S405-XP has a specified attenuation of α < 30 dB/km at 488 nm, but a newer model
PM-S405-XP+ specifies α < 50 dB/km at 405 nm. The model PM-S405-XP distributed by Schäfter+Kirchhoff
(sold under PMC-400Si-3.1-NA010) has a specified attenuation of 16.6 dB/km at 488 nm which is closer to the
limit from Rayleigh scattering at this wavelength (11.3 dB/km). Scaling this value to 410 nm yields 33.3 dB/km
which is close to the value for a similar fiber (Corning PM 40-U40D) for which the inspection report states
α = 37.2 dB/km. Therefore, it is reasonable to assume that for the PM-S405-XP fiber used in the experiment,
the attenuation is around 30−35 dB/km. The test measurements with the Corning PM 40-U40D fiber indicate
that there are ∼ 10 dB/km losses unrelated to Rayleigh scattering, such that the contribution of the attenuation
from Rayleigh scattering would be 25−30 dB/km which is closer to the Rayleigh scattering limit for pure silica.

3V-number V = 2.18, core radius a = 1.5µm, relative refractive index difference between core and cladding
of 0.25%.
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Figure 4.16: Model of Rayleigh backscattering in a fiber. The incoming field E0 is scattered at N
scattering points along the fiber with length l. At each point the backward scattered guided field is
rsE0e

iφi , where φi = xi lωn/c is the phase of the incoming field at the ith scattering center along the
fiber, with ω = 2πν where ν is the frequency of light, c is the speed of light, n is the refractive index and
xi is a length fraction of the fiber with x1 = 0, xN = 1, and xi for 1 < i < N a random number between
0 and 1. The average of total backscattered guided light through the fiber is 〈|Ebacksc.|2〉 = Nr2

s |E0|2,
where Rs = Nr2

s is the fraction from Eq. (4.26).

higher mode (LP11) can be estimated [241] to be 145 dB/m which is many orders of magni-
tude larger that αs (the attenuation of higher modes LP02, LP12, LP31, ... is even larger).
The strongly suppressed contribution from forward scattering would then predominantly arise
from scattering at the two fiber facets, which we neglect in the following model.

The order of magnitude for Rs approximately agrees with the expected value for R1

from the observed modulation discussed in the previous section, see Fig. 4.15. We shall now
explore why this is the case. Initially, we thought that Rayleigh backscattering could not
lead to a clearly observed modulation when scanning the fiber-collimator distance or the
frequency of the laser, since the interference from randomly distributed points along the fiber
should average out, not being able to produce a dominant modulation with a certain free
spectral range. However, this is not correct. For example, in gravitational wave detectors the
backscattering from the fiber produces non-reciprocal phase noise which does not average out
and requires to use a balanced detection scheme [242, 243]. Furthermore, a similar effect has
been reported to convert the phase noise of the laser into intensity noise through multiple
Rayleigh scattering events [244]. To illustrate how the scattering from randomly distributed
points leads to an observed modulation in our case, let us consider the following model.

Model for guided backscattering in the fiber

First, consider the case of back-scattering from the fiber only, i.e. without a retroreflection
from the HR mirror as in the AFR. We model the Rayleigh scattering as N randomly dis-
tributed scattering points along the fiber starting from one scattering point at the beginning
of the fiber, and one scattering point at the end of the fiber, see Fig. 4.15. With an incoming
field E0, each scattering point couples a field rsE0e

iφi backward into the fiber with a phase
φi = xi lωn/c relative to the incoming field, where l is the fiber length, ω = 2πν where ν
is the frequency of light, c is the speed of light and n is the refractive index. xi is a length
fraction of the fiber with x1 = 0, xN = 1 and xi for 1 < i < N a random number following a
uniform distribution between 0 and 1. The total backscattered field is then given by:

Ebacksc. = rsE0

N∑
i=1

ei 2φi . (4.27)



170 4. Improved Active Fiber-Based Retroreflector (AFR)

Note that the contribution of each scattering center to the total backscattered field at the
fiber input comes along with a phase factor corresponding to twice the distance xi to the
scattering center: the incoming field propagates to the ith scattering center accumulating a
phase φi, and the scattered field accumulates an additional phase φi on the backward path
to the fiber input.

The above expression corresponds to a random walk in two dimensions or the complex
plane [245, 246]. The average of the field is zero, 〈Ebacksc.〉 = 0, but the expectation value
for the squared absolute value (intensity) scales with the number of scattering centers N ,
〈|Ebacksc.|2〉 = Nr2

s |E0|2. This result can be related to the guided backscattered fraction as
Rs = Nr2

s . Assuming that the density of scattering points is constant, we expect the total
backscattered power fraction to increase linearly with fiber length l. Note that we neglect the
transmission losses from each scattering center, that is the scattered light that is not guided,
but for clarity include the total loss in the absolute value of the transmitted field in Fig. 4.16,
〈|Etrans|2〉 = 10−αsl/10|E0|2 ' (1− lαs ln 10/10)|E0|2.

The above model is evaluated in Fig. 4.17, where in (a) the backscattered power fraction
is calculated for different numbers of scattering centers N and a fiber length of 5 m assuming
the total backscattered guided fraction of Rs ∼ 2.5×10−5, thereby determining rs =

√
Rs/N .

The left plot shows the modulation when changing the frequency of light (with λ ' 410 nm)
sent through the fiber. For the simple case of only two scattering centers (N = 2, black curve),
one at the beginning of the fiber (x1 = 0) and one at the end (x2 = 1), the modulation arises
from the interference of two fields with a phase difference of lω/c. We define the free spectral
range FSR to be the frequency period of the signal modulation when the laser frequency
is detuned, which yields FSR = c/(2 l n) ' 20 MHz. The right plot shows the distribution
of free spectral ranges, obtained from a Fourier transform of the left plot. For larger N
(e.g. N = 12 in blue or N = 104 in orange) the phase difference between the interfering
fields can be < lω/c and hence FSR > c/(l n). Note that the experimentalist would still
dominantly deduce FSR ∼ c/(l n) since a typical setup makes it difficult to separate the
higher FSR components from various noise sources and drifts in the system. Fig. 4.17(b)
shows how for a fixed number of scattering centers but different fiber lengths the modulation
and the FSR spectrum relate to the fiber length.

Experimental test of the model for guided scattering in the fiber

To test the above model, we used a ∼45 m long angle-cleaved bare fiber of similar type as the
one used in our experiment1. The setup is shown in Fig. 4.18. By splitting off a light fraction
with a non-polarizing beamsplitter and detecting it on the intensity stabilization photodiode
(PD), we stabilize the power of the 410 nm laser light before the fiber to 0.2 mW. The power
launched into the fiber Pin can only be inferred from the transmitted power through the full
length fiber. The transmitted power through the full length fiber (l0 = 45 m) was measured
to be P l0trans = 81 µW. Assuming the attenuation of α = 37 dB/km from the manufacturer’s
inspection report leads to Pin = P l0trans/10−α l0/10 = 119 µW of power coupled into the fiber,
corresponding to a coupling efficiency of only ∼60% due to the non-optimal distance between
the fiber tip and the coupling lens (which was optimized to reduce the background from the
angle-cleaved fiber tip reflection as explained below). The beamsplitter is also used on the

1Distributed by Fujikura, Corning product description 03518800001 PM 40-U40D, Fujikura description
SC40-PS-U40D, Fiber ID SNOYGFK00074, specified attenuation at 410 nm is α < 50 dB/km, test result from
the Fujikara inspection report at 410 nm is α = 37.22 dB/km (no uncertainty on the value is given).
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Figure 4.17: Simulations of backscattered light from a fiber using the model from Fig. 4.16. In (a) the
fiber length is kept constant at 5 m, resulting in a fixed average value of total backscattered guided
fraction Rs ∼ 2.5 × 10−5, thereby determining rs =

√
Rs/N . The left plot shows the backscattered

fraction |Ebacksc.|2/|E0|2 evaluated for different numbers of scattering centers as a function of frequency
detuning for λ = 410 nm and n = 1.5. Having only two scattering centers (one at the beginning of
the fiber and one at the end, N = 2, black curve) produces a modulation with a free spectral range
of FSR = c/(2 l n) = 20 MHz. The right plot shows the FSR distribution obtained from a Fourier
transform of a similar left plot (using a larger frequency detuning up to 5 GHz for a denser spacing in
the FSR domain). For a larger number of scattering centers N (blue and orange) the free spectral range
distribution has a cutoff FSRmin = 20 MHz (this cutoff is smoothed out due to finite sampling points).
In (b) the number of scattering centers is kept constant, N = 104, and the fiber length is varied.
The backscattered fraction in the left plot is now normalized to the average 〈|Ebacksc.|2〉 = Rs|E0|2.
The FSR distribution on the right demonstrates how the total fiber length is manifested in the lowest
possible FSRmin = c/(2 l n).

returning path to split a fraction rBS ' 0.45 of the backscattered light from the fiber and
measure it on the backreflection photodiode1. We took the factor rBS into account along
with the power calibration, such that the given signal corresponds to the backreflected power
directly from the fiber before the beamsplitter. The backreflection from the fiber is measured
non-destructively2 for different guided fiber lengths by introducing bend loss at different

1Thorlabs PDA36A operated at 70 dB gain (5 kHz bandwidth) with a pre-amplifier of gain 100 and 3 kHz
(6 dB roll-off) low-pass filter.

2Since the fiber is very strongly bent, care has to be taken not to bend the fiber at the same positions too
often. However, since many measurements were performed with the fiber, this could not be fully prevented
such that the fiber broke several times. Fortunately, this happened closer to one of the fiber ends such that
the experiment could be restored with almost the full initial fiber length.
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Figure 4.18: Setup to measure Rayleigh backscattering in the fiber and to test the model shown in
Fig. 4.16 and Fig. 4.17. Laser light is sent through a beamsplitter to stabilize its intensity before being
coupled into an angle-cleaved bare fiber. After a certain fiber length l the fiber is strongly bent (bend
radius of < 3 mm) such that no light is guided after this point. The point where the fiber is bent is
systematically varied while the backscattered light is detected at the backreflection photodiode (PD).
The transmission monitor PD placed after the fiber is used to ensure that the fiber is bent strongly
enough such that no light is transmitted through the fiber.

positions: when strongly bending the fiber (bend radius less than 3 mm), the light escapes
into the cladding and is not guided in the core anymore.

The results for the average power measured at the backreflection PD for each (guided)
fiber length l are shown in Fig. 4.19(a). When the laser is blocked (faint diamond points)
we detect a ∼30 nW signal from the stray light as well as electronic background noise which
has been subtracted here such that with the laser blocked the signal value is around zero.
Furthermore, when the laser is unblocked, a fraction of light coupled into the fiber is reflected
from the non-AR coated angle-cleaved fiber tip (Fresnel reflection of 4% ∼ 8 µW), reaches the
edge of the coupling lens and is focused onto the backreflection PD. Care has been taken to
minimize this spurious signal to around Pbkg ∼ 10 nW by changing the distance from the fiber
tip to the coupling lens (thereby resulting in a non-optimal fiber coupling efficiency). The
approximately linear increase in the average backreflected signal for different fiber lengths is
then attributed to the backscattering, Pbacksc ' pl × l. From the linear fit (gray dotted line),
P = pl × l + Pbkg we obtain a slope of pl = 0.578 nW/m, which gives the following guided
backscattered power fraction from the fiber per meter fiber length (l = 1 m):

R410 nm
s ' pl × l

(Pin + P l0trans)/2
' 5.8× 10−6, (4.28)

in good agreement with the expected value from Eq. (4.26). Assuming η = 9.65 × 10−4

(Eq. (4.25) with ncore ∼ 1.470 and measured w0 ' 1.75(5) µm at λ = 410 nm), the above
fraction gives αs ' 26.0 dB/km. In the above equation we assumed an average power inside

the fiber Pin(
∫ l0

0 10−αl/10)/l0 ' (Pin +P l0trans)/2 for all fiber lengths. More accurately, one can
fit the backscattered power based on a Beer-Lambert law:

P = Pin × 10−(α−αs)l/10 × (1− 10−αsl/10)× η + Pbkg, (4.29)

where the launched power into the fiber is calculated from Pin = P l0trans/10−α l0/10 with mea-
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Figure 4.19: Measurement of fiber backscattering at 410 nm with the setup shown in Fig. 4.18. In (a)
the average backreflected power is shown for different (guided) fiber lengths. The blue data points are
fit linearly (gray curve), and with a more accurate model (black dotted curve) from Eq. (4.29) based
on the Beer-Lambert law. In (b) the power spectral density (PSD) is plotted for different free spectral
ranges (FSR) obtained from a Fourier transform of the time-resolved signal of backscattered light when
periodically detuning the frequency (see text for details). Data for only five fiber lengths are shown for
the sake of clarity. For each fiber length a cutoff FSR can be determined (colored points). This cutoff
FSRcutoff can be related to the maximal etalon length lcutoff from FSRcutoff = c/(2 lcutoff n) where c
is the speed of light and n the refractive index. These cutoff lengths are plotted in (c) against the
(guided) fiber length, where colored points show the data from (b) and black points show additional
data. As expected, the cutoff etalon length corresponds to the guided fiber length.

sured Ptrans for l0 ' 45 m assuming1 the value of the total attenuation α = 37 dB/km. The
factor 10−(α−αs)l/10 accounts for all other attenuation losses leading to the reduced power
in the fiber. Since the fiber length in our case is not as large such that the exponential
function deviates strongly from the linear approximation, the parameter η from the above
equation cannot be fitted reliably due to a strong correlation with αs and must be set as an
known input parameter. With η = 9.65 × 10−4 and measured Pin = 119 µW, the fit yields
αs ' 27.7 dB/km, giving R410 nm

s ' 6.4 × 10−6 for l = 1 m. The uncertainty of this mea-
surement is dominated by the accuracy of the power meter. The uncertainty of the power
measurement is estimated to be ∼ 7% from the specifications of the power meter2, yielding
an uncertainty of ∼ 1.5 dB/km for αs. The measured value for αs is close to the expected
value for pure silica, αs = A/λ4 = 22 dB/km for λ = 410 nm with A = 0.63 dBµm4/km [228].
A higher value for αs is expected due to impurities which add additional scattering centers.

We also measured the time-resolved signal of the backscattered light while periodically
detuning the laser frequency. The frequency of the light coupled into the fiber is periodically
swept with a 120 MHz span in 20 ms. From the Fourier transform of the average signal within

1Another assumption could be to identify the total attenuation only with attenuation from Rayleigh scat-
tering, α = αs (i.e. assuming that all the attenuation is caused by Rayleigh scattering) which can be then
fitted along in the above equation. However, we find that this assumption is not appropriate for our fiber. For
the fiber used here, an additional attenuation of α ∼ 10 dB/km from absorption and bend losses is present
as indicated by the data. If we assume α = αs, the fit yields α = αs ' 27.8 dB/km, which would then
be inconsistent with the value of α = 37 dB/km from the manufacturer’s inspection report at 410 nm. For
measurements at 486 nm we measured α = 27(2) dB/km. Again we would find from Rayleigh backscattering
data α = αs ' 14.4 dB/km assuming α = αs, which would then be inconsistent with the measured total
attenuation.

2Thorlabs PM160: calibration uncertainty ±5%, power linearity ±1%, active area uniformity ±1%.
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a sweep period of 20 ms, the distribution of free spectral ranges (i.e. modulation frequencies
when detuning the laser) is calculated, see Fig. 4.18(b) showing only five different fiber lengths
for clarity. The measured distribution resembles the theoretical prediction from Fig. 4.17. The
3 kHz low-pass filter in the system corresponds to a free spectral range of FSR ∼ 2 MHz, below
which the signal rapidly drops. The gray dashed curves show the background signals with
blocked laser light. For each fiber length, the cutoff free spectral range (colored marker points)
can be converted into the maximal etalon length, lmax, using FSR = c/(2n lmax), where c is
the speed of light and n ' 1.5 the fiber core refractive index. These cutoff lengths from
Fig. 4.18(b) are shown as colored points in Fig. 4.18(c). Additional data points not plotted
in Fig. 4.18(b) are shown in black as well as a linear fit to all data point taken together (gray
dashed curve). The fit yields a ratio of lmax to the fiber length l which is in agreement with
the expected ratio of one within 2%. This measurement confirms the model prediction that
the information about the fiber length is encoded in the time-resolved backscattered signal
when periodically detuning the frequency of light sent into the fiber.

We also repeated the above measurement at a longer wavelength of 486 nm. The trans-
mitted power for l0 ' 38 m was measured to be P l0trans ' 76 µW, leading to

Pin = P l0trans/10−α l0/10 ' 96 µW (4.30)

of light power coupled into the fiber assuming1 α = 27 dB/km. From the linear model we
measured pl = 0.293 nW/m which leads to the guided backscattered power fraction per meter
fiber length (l =1 m) of:

R486 nm
s ' pl × l

(Pin + P l0trans)/2
' 3.4× 10−6. (4.31)

Assuming η = 1.1 × 10−3 (Eq. (4.25) with ncore ∼ 1.465 and measured w0 ' 1.95(5) µm at
λ = 486 nm) the above fraction gives αs ' 13.4 dB/km. Fitting the data with Eq. (4.29) yields
αs ' 14.4 dB/km, giving R410 nm

s ' 3.6 × 10−6 for l = 1 m. As above, the uncertainty for
the determination of αs is dominated by the power measurement and is around ∼ 1 dB/km.
As for 410 nm, the measured value for αs is slightly higher than the expected value for pure
silica, αs = A/λ4 = 11.3 dB/km for λ = 486 nm with A = 0.63 dBµm4/km [228]. From the
scaling of Rayleigh scattering one would expect a factor of (486nm/410nm)4 ' 1.97 for the
ratio of αs at the two wavelength, which is in agreement with the observed ratio. Note that
Rs does not necessarily scale the same as αs with the wavelength. According to Eq. (4.25)
the parameter η explicitly depends on the wavelength. Typically, also the mode radius w0

depends on the wavelength which is not explicitly taken into account Eq. (4.25), but included
in the above estimation with different values of w0 for the two wavelengths. Moreover, ncore

from Eq. (4.25) also depends on the wavelength, though this dependency is negligible here.

AFR case: interference with a strong reflection

Using the above model for Rayleigh backscattering, we can now investigate its effect on the
AFR. In the AFR, the effect of Rayleigh backscattering from the fiber is combined with the
strong reflection from the HR mirror which we assume to be at a distance lHR from the fiber

1There is no specified value for the attenuation at 486 nm. However, we measured the attenuation to be
α = 27(2) dB/km from the transmission at three different fiber lengths (l ' 38 m, 5 m, 0.5 m) without changing
the fiber coupling, i.e. when the fiber broke off at l ' 5 m, 0.5 m.
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of length l with refractive index n. Each scattering center forms a Fabry-Perot etalon with
the HR mirror. We can extend the model of a single etalon in Section 4.4.1 to N Fabry-
Perot etalons by calculating the circulating field of each scattering center and taking it as the
incoming field for the next scattering center. We neglect the losses in the fiber but only take
into account a field transmission factor of a on a single path from the end of the fiber to the
HR mirror1. We then obtain the following expression:

Ecirc ' iE0e
ilωn/c ×

(
1 + a2r2rse

i2(lHRω/c+lωn/c−φ1) + (a2r2rse
i 2lHRω/c+lωn/c−φ1))2 + · · ·

)
×
(

1 + a2r2rse
i 2(lHRω/c+lωn/c−φ2) + · · ·

)
×
(

1 + a2r2rse
i 2(lHRω/c+lωn/c−φ3) + · · ·

)
× · · ·

=
iE0e

ilωn/c∏N
i=1(1− a2r2rsei2(lHRω/c+lωn/c−φi))

, (4.32)

where each sum in the parantheses multiplies the incoming field after each scattering center
by the geometrical sum analogously to Eq. (4.17). Compared to Eq. (4.17), here we consider
the circulating field at the fiber end facing the HR mirror and for clarity include the overall
phase factor eilωn/c relative to the fiber input. The optical distance from the HR mirror to
each scattering center is lHR +nl(1−xi) since we number the scattering centers from the fiber
end facing the input field (as in Fig. 4.16). The round-trip phase for each scattering center
is therefore 2(lHRω/c+ lωn/c− φi), where φi = xi lωn/c. Note that in the above calculation
we neglected the multiple scattering events of distinct scattering centers within each etalon.
However, from the discussion in Section 4.4.1 we found that for the case of a Fabry-Perot
etalon with an HR mirror (r2 ' 1) and a small parasitic reflection (r1 = rs � 1) the physical
effect of the etalon is dominated only by terms of order O(r1)E0. Therefore, we can also
neglect all other multiple scattering events of order O(r2

s)E0 in the above expression, such
that the circulating field is simply given by the interference of the incoming field with the
backscattering of the beam reflected by the HR mirror:

Ecirc ' iE0e
ilωn/c + iE0a

2r2rse
i(3ln+2lHR)ω/c

N∑
i=1

e−i 2φi . (4.33)

The power fraction |Ecirc|2/〈|Ecirc|2〉 using the above equation is evaluated in Fig. 4.20 for
different numbers of scattering centers as well as l = 0.8 m, n = 1.5, lHR = 0.3 m, λ = 410 nm,
Rs = 5 × 10−6, a2 = 0.95 and r2 = 1. Consider first the simple case of only one scattering
center at each fiber end: x1 = 0 and x2 = l (N = 2), shown in black in Fig. 4.20. For a2 ' 1
and r2 ' 1, the circulating field is proportional to:

Ecirc(N = 2) ∝ 1 + rse
i2(ln+lHR)ω/c + rse

i 2lHRω/c. (4.34)

Neglecting the terms of order O(r2
s), there are two modulation frequencies when detuning the

laser frequency: FSRmax = c/(2lHR) and FSRmin = c/(2ln + 2lHR). This is what is visible
in the right plot showing the free spectral range distribution. If we now add more scattering
centers within the fiber, the dominant interference with the strong field component produces
modulations with a free spectral range in between those two values (blue and orange points

1This is a good approximation for our short 0.8 m fiber since only 0.6% of light power is lost in the fiber
assuming 30 dB/km loss, but around 4% are lost due to imperfect AR coatings of the fiber tips and 8 surfaces
of the collimator.
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Figure 4.20: Simulations of the circulating power in the AFR with Rayleigh backscattering from a fiber
according to Eq. (4.33) with parameters l = 0.8 m, n = 1.5, lHR = 0.3 m, λ = 410 nm, Rs = 5× 10−6,
a2 = 0.95 and r2 = 1, for different number of scattering centers N . The left plot shows the modulation
whereas the right plot shows the distribution of the free spectral ranges. For N = 2 (two scattering
centers at each end of the fiber), only two modulation frequencies are present, and for more scattering
centers distributed along the fiber (blue and orange curves) the free spectral ranges lie approximately
in between these two frequencies.

for N = 12 and N = 104, respectively). The experimentalist would mainly deduce the lower
free spectral range from the simulated signal in the left plot, since modulations with a higher
free spectral range are difficult to separate from the typical noise in the setup.

Similar to Eq. (4.22) for the case of a single etalon, the backcoupled beam in the AFR
includes the interference of the strong reflection from the HR mirror with the backscattered
light before the HR mirror reflection, and with the backscattered light of the backward-
propagating beam reflected by the HR mirror:

Eback = E0rs

N∑
i=1

ei 2φi − E0a
2r2e

i2(ln+lHR)ω/c − E0a
4r2

2rse
i4(ln+lHR)ω/c

N∑
i=1

e−i 2φi . (4.35)

The different terms from Eq. (4.33) and Eq. (4.35) are visualized in Fig. 4.21(a), where
we neglect all second-order reflections of the scattering centers based on the discussion in
Section 4.4.1. Fig. 4.21(b) shows an example of the modulation for N = 104, Rs = 10−5 and
a2 = 0.95. Note that the modulation in the backcoupling is much smaller as compared to the
circulating intensity, and in fact the modulation in the backcoupling would exactly vanish for
a2 = 1 and r2 = 1 just as in the case of a single etalon. In Fig. 4.21(c) the average peak-to-
peak modulation depth 〈ξ〉 for the circulating intensity (orange points) and the backcoupled
intensity (blue points) has been calculated from the standard deviation σ of the corresponding
modulated intensity fraction:

〈ξcirc〉 = 2
√

2σ|Ecirc|2/〈|Ecirc|2〉, 〈ξback〉 = 2
√

2σ|Eback|2/〈|Eback|2〉. (4.36)

The factor 2
√

2 is justified by comparing to a single sinusoidal modulation, where the peak-
to-peak value is a factor of 2

√
2 larger than the standard deviation. The calculation has been

performed for a2 = 0.95 as a function of the total backscattering fraction Rs for fixed value
of scattering centers N = 104, thereby defining rs =

√
Rs/N . The solid curves show ξcirc

(orange) and ξback (blue) for a single etalon with r1 =
√
Rs, which match the average mod-

ulation depth well. Therefore, we find that the average modulation depth of the circulating



4.4 Etalon effect from Rayleigh backscattering in fiber 177

Figure 4.21: (a) Scheme of multiple etalons in the AFR from Rayleigh backscattering in the fiber.
The model of backscattering in the fiber of length l from Fig. 4.16 is combined with a reflection r2

from the HR mirror at a distance lHR to the fiber. Since r2 ' 1 and rs � 1, based on the discussion
of a single etalon in Section 4.4.1 and Fig. 4.15, all second-order reflection from the scattering centers
are neglected. Therefore, the circulating field has only two contributions: the incoming field and the
backscattered field from the backward-propagating beam through the fiber. The backcoupled beam has
three terms: the backscattered field from the forward-propagating beam, the backward-propagating
strong reflection of the HR mirror, and the backscattered field of the backward-propagating beam
which is reflected back by the HR mirror. No losses are assumed in the fiber but the field transmission
factor a2 ' 0.95 on the round-trip path 2lHR is taken into account. (b) Example of a modulation in the
circulating (orange) and backcoupled (blue) intensity fraction for N = 104, Rs = 10−5 and a2 = 0.95.
(c) Average modulation depth for the circulating (orange) and backcoupled (blue) intensity calculated
as a function of the total backscattered fractions Rs. The solid curves show the expectation assuming a
single etalon with R1 = Rs, same as solid curves in Fig. 4.15(b), thereby demonstrating that the etalon
effect from backscattering of the fiber can be viewed as a single etalon with the parasitic reflectance
corresponding to the total backscattered fraction.

and backcoupled field is given by the value for a single etalon (Eq. (4.20) and Eq. (4.23))
assuming a parasitic reflection of the total backscattered light fraction from the fiber:

〈ξcirc〉 = 4a2
√
Rs, 〈ξback〉 = 8

√
Rs(1− a2). (4.37)

The observed modulation (red point) leads to Rs ∼ 10−5 which is the same order of magnitude
as expected from Eq. (4.26) and measured (for a similar but different fiber) in Eq. (4.28).
The difference might be due to a higher fraction of scattered light guided into the fiber than
approximated by Eq. (4.25), where a Gaussian beam is assumed. However, a whole factor
of two is unlikely since Eq. (4.25) gave good agreement with the measurements in Eq. (4.28)
testing the backscattering model.
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It shall be noted that 〈ξback〉 strongly depends on the transmission factor which is only
estimated. Also note that 〈ξback〉 and 〈ξcirc〉 are average modulation depths, but the measure-
ment in Fig. 4.14 shows only a single modulation value from a 30 s long signal. We typically
observe that with our thermally insulated fiber, the intensity fluctuations of the backcoupled
signal due to Rayleigh scattering are on the order of ∼ 5 − 20 minutes. On the other hand,
we observe that if the fiber is intentionally heated or scrambled, the modulation averages out
over a typical fiber-collimator piezo actuator averaging time of 30 s (30 piezo actuator scans
with 1 Hz periodicity). More measurements could be performed in the future to determine
〈ξback〉 and 〈ξcirc〉 more accurately from repeated measurements throughout the day.

The average modulation depth scales with the square root of the fiber length:

〈ξback〉, 〈ξcirc〉 ∝
√
Rs ∝

√
l. (4.38)

We first observed the modulation with a longer fiber (l = 5 m) and the three-lens collimator
which has higher losses due to reduced backcoupled fraction of the collimator (a2 ' 0.9).
Therefore, in this configuration we observed a larger modulation on the order of ξback∼ 1%
and ξcirc∼ 3%, leading to the conclusion of R1 ∼ 5 × 10−5 in agreement with the expected
scaling from the above. We also tested the etalon behavior for different losses, e.g. by reducing
the backcoupled fraction with the horizontal or vertical piezo actuators on the HR mirror,
and confirmed the expected behavior: while ξcirc remained the same, ξback strongly increased
for higher losses (reduced backcoupled fraction).

To suppress the etalon effect from Rayleigh backscattering in the fiber, we therefore used a
shorter fiber length of l = 0.8 m compared to the previous setup with l = 5 m, suppressing the
modulation as seen by atoms by a factor of 2.5. However, the previous setup was used at the
wavelength of 486 nm (hydrogen 2S-4P transition measurement). Assuming the same fraction
η of scattered light coupled back into the fiber, the backscattered fraction approximately scales
as Rs ∝ 1/λ4, such that Rs(λ = 410 nm) ∼ 2Rs(λ = 486 nm) which leads to approximately the
same modulation depth with the longer fiber of the previous setup at the higher wavelength
as compared to the modified setup with a shorter fiber at the lower wavelength. To further
suppress the etalon effect from the fiber, we stabilized the circulating intensity, which is
discussed in the next section.

4.5 Intensity stabilization

Since the spectroscopy signal depends on the intensity of the exciting laser beams, it is
advantageous to implement an intensity stabilization in the AFR. Various sources like pointing
fluctuations, polarization drifts, electronic noise in the laser system or frequency-dependent
AOM efficiencies lead to intensity fluctuations already before the light reaches the AFR
fiber. In the previous setup only the intensity of this light before the fiber was stabilized
[197]. However, the intensity of the wavefront-retracing beams in the AFR is then still
affected by the coupling efficiency of the AFR fiber, subject to pointing fluctuations, as
well as by the frequency-dependent interference from the Rayleigh scattering discussed in
the previous section. In order to stabilize the intensity of the wavefront-retracing beams,
we use the summed signal of all four quadrants of the PMT behind the HR mirror (see
Fig. 4.1). Due to the low power reaching the PMT (70–400 pW) and the resulting large shot
noise, only a low-bandwidth stabilization can be achieved such that the high-bandwidth first
intensity stabilization (with PD1 in Fig. 4.1 serving as detector) is still needed to suppress
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Figure 4.22: Spectra of the PMT and PD3 photodetector signals showing the performance of the
two intensity stabilizations of the AFR, shown for active stabilization on (orange line) or off (blue
line) along with the background noise (gray line). (a): Spectrum on the out-of-loop PD3 detector
demonstrating the performance of the first high-bandwidth (∼30 kHz) intensity stabilization to PD1
(with second intensity stabilization switched off). The frequency interval up to 500 Hz is plotted with
a resolution bandwidth (RBW1) of 6.25 Hz and with RBW2 = 62.5 Hz for higher frequencies. (b) and
(c): Second intensity stabilization of wavefront-retracing beams using the PMT signal after the HR
mirror (with first intensity stabilization switched on). The in-loop PMT spectrum in (b) demonstrates
the bandwidth of around 10 Hz while additional noise is imprinted on PD3 as shown in (c).

other noise. Two electro-optic modulators1 (EOM 1 and EOM 2 in Fig. 4.1) are used as
voltage-controlled waveplates and, combined with polarizing beamsplitters, serve as actuators
for the two intensity stabilizations. A low-pass filter is placed before EOM 2 to adapt for the
lower feedback bandwidth.

Fig. 4.22 shows the performance of the two intensity stabilizations by comparing the spec-
tra for the corresponding stabilization switched on (orange line) and off (blue line). In (a) the
spectrum of the out-of-loop detector PD3 demonstrates the ∼ 30 kHz bandwidth of the first
intensity stabilization (with the second intensity stabilization switched off). The spectrum of
the PMT signal which is the in-loop detector of the second intensity stabilization is shown in
(b), where the feedback bandwidth of ∼ 10 Hz is observed from the merging point of the blue
and orange data lines. The second intensity stabilization imprints the noise of the stabilized
signal on the PMT to the light before the fiber, which is observed on the spectrum of the
PD3 signal in (c). Note that also shot noise from the PMT signal is imprinted which cannot
be fully avoided. By using a low-pass filter with a corner frequency of 80 Hz in the second
intensity stabilization, we found a compromise between a sufficient suppression of noise and
an acceptable additional imprinting of shot noise at lower frequencies.

When scanning over the atomic resonance, at each point the frequency applied to the
AOM in Fig. 4.1 is switched, thereby causing a short dead time (in our case ∼ 400 µs using
the signal generator Rohde & Schwarz SMC100A) where no light is diffracted by the AOM.
The error signal generated from noise during that dead time perturbs the feedback loops. To
avoid this, we use a pulse generator triggered to the frequency switching, which places the
feedback loops on hold during and after the dead time. This hold time is adapted to each of
the feedback loops (20 ms for 1st int. stab., 22 ms for 2nd int. stab., 50 ms for tip-tilt stab.).

1Conoptics KD*P (potassium dideuterium phosphate) Crystal Series 350-50.
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Furthermore, we implemented the possibility to automatically switch the power of the
spectroscopy laser beams by using digital step attenuators1 connected in series at the output
of the photodiodes. In this way, the signal levels of the feedback loops remain unchanged
without the need to modify the feedback loop parameters. The power switching allows us to
perform nearly simultaneous spectroscopy measurements with different laser powers, thereby
investigating the effect of light-force induced line distortions and systematic frequency shifts
in the spectroscopy measurement [205, 71].

4.6 Polarization monitor

Achieving the best possible linear polarization of the wavefront-retracing beams is important
for both the hydrogen and deuterium spectroscopy of 2S-nP transitions. For both isotopes,
the residual circularly polarized light leads to the first-order Zeeman shift which vanishes for
fully linearly polarized light. Recalling Chapter 2, for deuterium the residual circular polar-
ization may lead to a systematic shift from the simultaneous excitation of different hyperfine
components in combination with the initial state population asymmetry. The linear polar-
ization rotation angle ψ is especially important for resolved quantum interference between
the two fine structure components as has been discussed in Chapter 2. One way to achieve
a well-controlled polarization in the AFR would be to place a polarizer after the collimator.
However, such a polarizer might lead to optical etalons, wavefront distortions, and resid-
ual intensity fluctuations, and requires additional space currently not available in our setup.
Therefore, we choose to work only with a well-characterized polarization-maintaining (PM)
fiber.

In the following, we assume monochromatic, fully coherent and thus fully polarized laser
light described by a Stokes vector ~S = (S0, S1, S2, S3). Using the Stokes formalism, the
residual circularly polarized light is given by S3/S0, where S0 is the total intensity and S3

is the intensity difference between right and left circularly polarized light [133]. The linear
polarization rotation angle ψ is given by the other two Stokes parameters as tan 2ψ = S2/S1.
For fully polarized light (zero unpolarized light fraction), the polarization extinction ratio
PER of the beam (defined in the same way as for polarizers, see Section 4.1) is related to the
residual circular polarized light fraction as |S3/S0| ∼ 2

√
1/PER for PER� 1.

Since the main component of our system leading to polarization imperfections (i.e. lin-
early polarized light, which remains fully polarized but acquires a certain circularly polarized
fraction) is the polarization-maintaining (PM) fiber, we first consider the physical origin of
the polarization imperfections in Section 4.6.1. In Section 4.6.2 a model for the determi-
nation of the polarization state after the fiber from the polarization state of backcoupled
light is developed. It is found that only the absolute value of circularly polarized fraction
can be determined unless its sign or the linear polarization rotation angle are known other-
wise. Section 4.6.3 presents experimental tests of the model, and Section 4.6.4 concludes with
polarimetry data during spectrosopy measurements.

4.6.1 Limitations of the polarization-maintaining (PM) fiber

In theory, a perfectly symmetric single-mode fiber preserves polarization, but in reality man-
ufacturing imperfections (leading to a not perfectly symmetric core and cladding along the

1Mini-Circuits ZX76-31R5A-PPS+.
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whole fiber) as well as imperfections such as micro-stresses or perturbations of the environ-
ment distort the symmetry. The distorted symmetry introduces coupling between the two
(in the ideal symmetric case degenerate) orthogonally polarized modes of the fundamen-
tal (TEM00) mode which changes the polarization state along the fiber [247]. Therefore,
polarization-maintaining (PM) specialty fibers which we use in our AFR setup have been
developed.

Two different effects may lead to imperfectly preserved linear polarization in a PM fiber:
first, the alignment of the input polarization with the PM axis of the fiber and second, the
random polarization mode coupling. The first effect can in principle always be minimized,
while the latter limits the performance of PM fibers due to intrinsic properties. The imper-
fect alignment of the input polarization can be caused by not exactly matching the linear
polarization rotation angle of the input polarization with the orientation of the PM axis.
Furthermore, stress-induced birefringence of various components (e.g. the fiber connectors
or the coupling lens) can distort the launched polarization into the fiber. However, even if
the polarization launched into the fiber is perfectly linear (zero circularly polarized fraction),
and its linear polarization rotation angle is perfectly aligned with the PM axis, the outgoing
polarization will still have a small circularly polarized fraction due to random polarization
mode coupling.

In the following, we describe both effects of polarization imperfections from the PM fiber
in more detail. In our setup, we minimize imperfections due to alignment such that the im-
perfections due to random mode coupling dominate the outgoing circularly polarized fraction.

4.6.1.1 Aligning the input polarization with the polarization-maintaining axis
of the fiber

In order to achieve a high PER after a PM fiber1, it is important to use incoming light with
a high PER, and to align the linear polarization rotation angle of the incoming light to the
polarization-maintaining axis of the fiber. For our PM fiber, this alignment has to be better
than 1◦, which we achieve by placing the polarizers in the PSPU (see Fig. 4.1) on rotation
mounts. However, typically the input polarization is not limited by how accurately the linear
polarization can be rotated, but by the stress-induced birefringence of the fiber connectors
which distort the launched polarization into the fiber. Furthermore, in our setup we find that
the coupling lens as well as mirrors and beamsplitters after the polarizers may distort the input
polarization due to stress-induced birefringence. In principle, the net effect of stress-induced
birefringence of all components (including the connectors) can always be compensated. We
minimize this effect by also placing the fiber onto a rotation mount, and systematically varying
the orientation of both the polarizers and the fiber mount. For their optimal orientations,
the polarization is aligned to both the stress-induced birefringence axis of optical components
after the polarizers (such that the resulting effect from their birefringence is minimized), and
the polarization-maintaining axis of the fiber.

Let us now consider how the alignment of the input polarization influences the outgoing
polarization. Polarization-maintainting fibers feature a large instrinsic birefringence:

δPM =
2π

λ
∆n l =

2π

λ
l γ (T0 − T ), (4.39)

1Note that though the polarization-maintaining properties of the PM fiber are typically characterized by
the PER, the PM fiber does not “extinct” any polarization component (in contrast to polarizers or polarizing
fibers).
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where λ is the wavelength of light, l is the fiber length, and ∆n = nslow − nfast is the
refractive index difference between the orthogonal axes of the fiber, which are called the slow
and the fast axis depending on which refractive index is higher. For our PM fiber at room
temperature this difference is ∆n ' 2 × 10−4. For the PANDA-based PM fibers this high
birefringence is achieved through stress-inducing rods made of doped silica glass which have
a different coefficient of thermal expansion than the fiber cladding. The refractive index
difference can then be expressed by ∆n = γ(T0 − T ) where T is the temperature of the fiber,
T0 ' 600 K is the softening temperature of the stress-inducing glass rods and γ ' 5×10−7 K−1

is the thermal coefficient of the birefringence of the PM fiber [248]. Since the two orthogonal
polarization modes propagate at different velocities along the fiber, the cross-coupling between
the polarization modes averages out due to the intereference between the fields which add up
with both positive and negative phases. The prerequisite for this polarization maintenance is
that all the light is coupled into only one of the polarization modes (i.e. the incoming linear
polarization is aligned with either of the two polarization-maintaining axes of the fiber) and
that the fiber length is much longer than the beat length Lp = λ/∆n ' 2 mm (where we used
λ = 410 nm for the laser wavelength) for which the phase shift between the fast and the slow
propagating mode is equal to 2π.

For non-optimal coupling, the PM fiber is therefore described by a waveplate with re-
tardance δPM and the birefrigence axis orientation βPM. Since δPM is large (for l = 1 m
from above: δPM ∼ 103π) and fluctuating due to environmental perturbations, non-optimal
coupling (βPM 6= 0) strongly influences the polarization behavior. When coupling both po-
larization modes into the PM fiber, βPM = π/4, the outgoing polarization from the PM fiber
is extremely sensitive to stress and temperature, which makes the PM fiber ideal for either
force/pressure or temperature sensor applications [249, 250]. Instead, for optimal coupling
βPM = 0 and zero incoming circularly polarized fraction, the model predicts that the PM fiber
does not change the incoming linear polarization since a waveplate with perfectly aligned bire-
fringence axis to the incoming linearly polarized light does not change the polarization.

Fig. 4.23 shows the magnitude of typical polarization fluctuations (e.g. polarization vari-
ations due to deformation, twisting and heating of the fiber) in dependence on the relative
orientation βPM between the linear polarization rotation before the fiber and the PM axis,
corresponding to the orientation of the polarizer before the fiber. The offset was chosen
such that βPM modπ/2 ' 0 corresponds to the optimal alignment. The top plots show the
fluctuations of circularly polarized fraction S3/S0, and the bottom plots the fluctuations in
the linear polarization rotation angle ψ, with error bars representing all possible polarization
values. The left plots show the coupling into the slow axis of the fiber (βPM ' 0) and the
right plots show the coupling into the fast axis of the fiber (βPM ' π/2. For each polarizer
orientation the fiber was deformed, heated and twisted to ensure that all possible polarization
states are reached. Using the above model, for nearly optimal coupling, βPM ' 0, one finds
S3/S0 ' sin δPM × 2βPM, such that S3/S0 fluctuates between ±2βPM for all possible δPM,
see dashed curves on the upper plots. Similarly, for βPM ' 0 one finds that the linear po-
larization rotation angle ψ fluctuates between ±δPM, see dashed curves on the bottom plots.
For β ' π/4 (not shown here) all possible polarization states would be reached such that the
circularly polarized fraction fluctuates between S3/S0 = −1 and S3/S0 = +1 and the linear
polarization angle between ψ = −π/2 and ψ = +π/2.

The magnitude of polarization fluctuations for optimal alignment, as is typically the case
for connectorized fibers, depends on which fiber end the light is coupled in. In Fig. 4.23,
orange data corresponds to coupling into one fiber end (named B) and blue data correspond
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Figure 4.23: Polarization fluctuations after the fiber for different angles around the optimal coupling
into the slow (left) or fast (right) polarization-maintaining axes of the fiber, βPM ' 0 or π/2. The
top figures show the fluctuations of circularly polarized fraction S3/S0, the bottom figures show the
fluctuations of linearly polarized rotation angle ψ. Dashed curves show the maximum and minimum
values S3/S0 ∼ ±2βPM and ψ ∼ ±βPM expected from the model for non-optimal coupling described
in the text, plus a possible offset. The fluctuations are represented by error bars giving all possible
polarization values for a given polarizer orientation before the fiber. At each polarizer orientation the
fiber was deformed, twisted and heated for a few minutes to ensure that all possible polarzation states
are reached. Blue bars show the data for coupling into one fiber end A, orange bars show the data for
coupling into the other fiber end B. The polarization fluctuations are minimized but non-zero for both
fiber ends when the polarizer orientation matches the polarization maintaining axis. When coupled
into the fiber end B, the fluctuations are smaller than for the other end and show an offset of ± ∼ 0.1
in the circularly polarized fraction. This offset is attributed to the stress-induced birefringence of the
connector at the fiber end A. Therefore, when coupled into the fiber end A, the fluctuations are larger
since the stress-induced birefringence at the connector disturbs the purity of coupled polarization into
the fiber. On the other hand, the much smaller residual polarization fluctuations for coupling into fiber
end B are predominantly attributed to random polarization mode coupling which cannot be avoided
and limit the performance of PM fibers.

to coupling into the other fiber end (named A). Coupling into fiber end A produces much
stronger fluctuations as compared to coupling into fiber end B. Furthermore, the fluctuations
are in much better agreement with expectation from the model for the fiber end B (orange
dashed curve), though an offset is present. This is in agreement with what one would expected
if one of the fiber connectors has much stronger stress-induced birefringence. In this case, the
connector at fiber end A produces an offset in the circularly polarized fraction on the order
of S3/S0 ∼ ±0.1 when the light is coupled into fiber end B. The sign is opposite between the
slow and fast axes of the fiber, as expected from modelling the fiber connector as a waveplate
with a small retardance on the order of δcon ∼ 0.1 rad. For the linear polarization orientation
βcon w.r.t. the birefrigence axis, such a waveplate produces an offset of S3/S0 ∼ δcon sin 2βcon,
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resulting in S3/S0 ∼ ±δcon for orthogonal linear polarizations maximally misaligned with the
birefringence axis. If, on the other hand, light is coupled into the fiber end A, the purity of
linear polarization is decreased resulting in a reduced PER ∼ 4/β2

con ∼ 26 dB of light coupled
into the fiber. The situation is then equivalent to a misaligned linear polarization rotation
before the fiber with βPM ∼ δcon/2 ∼ 3◦, resulting in light coupled into both the fast and the
slow axis, and hence giving rise to much stronger fluctuations.

For optimal alignment of linear polarization as well as minimized or compensated stress-
induced birefringence before the fiber, the above model of the fiber (waveplate with retardance
δPM and birefringence axis βPM) predicts vanishing polarization fluctuations. However, as seen
from the orange data in Fig. 4.23, this is not the case. The origin of these residual polarization
fluctuations is called random polarization mode coupling which we discuss in the next section.

4.6.1.2 Limitation from random polarization mode coupling

Typically, for connectorized PM fibers in the near UV, the specified PER of the output po-
larization (for optimal alignment of input polarization) is around 20 dB, corresponding to
a circularly polarized fraction of |S3/S0| < 20 %. Typically, stress-induced birefringence at
the fiber connectors mostly limits the achieved extinction ratio. The resulting stress after
connectorizing the fiber cannot be fully controlled. However, in a sample of commercial,
connectorized fibers1 we find that some have a higher extinction ratio of up to 26 dB corre-
sponding to |S3/S0| < 10 %. Even for perfect coupling into a polarization-maintaining axis
of the PM fiber (βPM = 0 or βPM = π/2) and large enough fiber length (l � Lp), the linear
polarization is not perfectly maintained. The polarization-maintaining property is then lim-
ited by the cross-talk of the two polarization modes which is described by the random mode
coupling theory [251, 252]. For optimal coupling, the residual imperfections are therefore not
adequatly described by modelling the fiber as a waveplate with δPM and βPM.

The effect of random mode coupling is summarized in the parameter h describing the
rate of power transfer to the cross-polarization state, which has typically values around
h∼ 10−3 m−1. This parameter gives the ultimate limitation of polarization-maintaining prop-
erties of the bare fiber (i.e. without any connector) excluding all possible imperfections from
non-optimal input polarization. Using the h-parameter one can express the extinction ratio of
a bare PM fiber as PER = Pmax/Pmin = 2/(1− exp(−2h l)) ' 1/(h l), where Pmax and Pmin

are the maximal and minimal transmitted optical powers in the two orthogonal polarization
directions, yielding PER∼ 30 dB for a l = 1 m long fiber, in good agreement with our observa-
tions. Therefore, the polarization imperfections, which we aim to monitor, mainly arise from
random polarization mode coupling along the fiber and not from imperfect alignment of the
incoming polarization into the fiber. Note that this extinction ratio is only achieved when the
effect of mixed polarization modes coupled into the fiber is minimized. In order for this con-
dition to be satisfied, the stress-induced birefringence of fiber connectors has to be minimized
or compensated, the purity of incoming linear polarization has to be maximized, and the
incoming linear polarization rotation angle has to be aligned with a polarization-maintaining
axis of the PM fiber.

The effect of random polarization mode coupling for perfect input polarization can be

1We ordered our connectorized fibers from the company Diamond GmbH. Twice as many connectorized
fibers were ordered (6 pieces with 0.8 m length and 4 pieces with 0.4 m length) before sending the remaining
fibers with the best extinction ratio (3 pieces and 2 pieces, respectively) to the AR coating (organized by the
same company).
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modelled as follows. Consider the electric field ~E = x̂E0x cos(ωt− kz +ϕ) + ŷE0y cos(ωt− kz)
of a fully polarized plane wave traveling in the z direction with frequency ω and wavenumber
k, where E0x and E0y are the amplitudes of the orthogonal field components, and ϕ is the phase
difference between the two orthogonal components (in reality ϕ depends on z, though this is
not relevant here as we consider only a certain propagation length at the output of the fiber).
x̂ and ŷ are the unit vectors along the two orthogonal PM axes of the fiber. Let us consider
that a field ~Ein = x̂Ex,in is coupled into one of the PM axes (i.e. Ey,in = 0). At the output of the
fiber, a small part of the orthogonal field component Ey ≡ Ey,out is present, with the phase
difference ϕ = δPM corresponding to the retardance between the slow and fast axes. The
squared amplitude ratio can be related to the extinction ratio as PER = E2

x/E2
y = E2

0x/E2
0y,

with the field components E0x and E0y at the output of the fiber. From these electric field
components we can calculate the Stokes vector [133]:

~S =


S0

S1

S2

S3

 =


E2

0x + E2
0y

E2
0x − E2

0y

2 E0xE0y cosϕ
2 E0xE0y sinϕ

 . (4.40)

Using the polarization extinction ratio we can obtain the circularly polarized fraction as:

S3/S0 =
2 E0xE0y sinϕ

E2
0x + E2

0y

' 2 E0y sinϕ

E0x
= 2
√
η sin(φ0 + 2π l γ∆T /λ), (4.41)

where in the last step we used the inverse polarization extinction ratio η = 1/PER and
expressed the phase difference using δPM from Eq. (4.39) with a temperature difference ∆T
and a constant phase offset φ0.

Typical fluctuations in the circularly polarized fraction with the PM fiber used in the
AFR are shown in Fig. 4.24(a). We observe that after thermally insulating the part of the
fiber outside of vacuum, only slow polarization drifts occur. For the measurement shown
here, the vacuum chamber was openend and a polarimeter was placed after the fiber. The
fluctuations of the circularly polarized fraction are then on the timescale of 15 min, shown on
the upper plot in Fig. 4.24(a). The bottom plot shows the temperature at the fiber1. A clear
correlation between the temperature and polization is observed. At the time around 11:30 in
Fig. 4.24(a) the air around the fiber was heated up (using a heat gun) to ∼ 45◦C, resulting
in fast polarization fluctuations. The circularly polarized fraction from this time period
is plotted in Fig. 4.24(b) against the temperature around the fiber, clearly matching the
expected behaviour from the above model. Eq. (4.41) is used along with an offset (accounting
for possible stress-indunced birefringence of the connector and/or the collimator) to fit the
data with fixed l = 0.8 m and λ = 410 nm, see gray curve. The parameters η ∼ 10−3

(PER∼ 30 dB) and γ ∼ 10−7 K−1 agree with the order of magnitude for typical values [248].

1For this measurement a small temperature sensor (AD590) was placed inside the thermal insulation of the
fiber. Note that the small AD590 sensor is more sensitive to air fluctuations than typical temperature sensors
used to monitor the lab temperature (e.g. TE Connectivity HTM2500LF). In our lab, the air conditioning
system periodically exhausts cold air, such that the air temperature directly at the air conditioning outlet
periodically varies between ∼ 14◦C and ∼ 23◦C with a period of around 15 min. The sensor monitoring the
lab temperature (TE Connectivity HTM2500LF) measures temperature fluctuations of only ∼ 0.5◦C, since the
housing of the sensor acts as a low-pass filter smoothing out the air fluctuations. Therefore, the temperature
fluctuations recorded at the fiber inside the thermal isolation with the AD590 sensor are higher at around 2◦C.
If the AD590 is placed outside the thermal insulation of the fiber, the measured temperature fluctuations are
around 4◦C.
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Figure 4.24: Temperature dependence of polarization fluctuations after the PM fiber for optimal
alignment of incoming linear polarization w.r.t. the PM axis of the fiber (βPM ' 0). The residual
polarization fluctuations are then due to random mode coupling described by Eq. (4.41). In (a)
typical fluctuations of the circularly polarized fraction S3/S0 are shown on the upper plot, whereas
the lower plot shows the air temperature at the fiber against the shared time axis. At around 11:30 the
fiber was heated up to ∼ 45◦C outside the range of the shown plot. The circularly polarized fraction
for this time period is plotted in (b) against the temperature, well described by Eq. (4.41) used to
fit the data (see gray curve) for fixed l = 0.8 m and λ = 410 nm, and extract the parameters η and
γ. An offset o accounts for possible stress-induced birefringence of optical components after the fiber
(e.g. the connector and the collimator).

In principle, if the temperature along the fiber is accurately known, this temperature
dependence of polarization can be used to extract some information about the polarization
after the fiber. However, the fiber must be then also subject to the same bending, mechanical
stress and twist all the time, since small perturbations may change the random mode coupling
along the fiber and result in a shift of the phase φ0. This condition is difficult to achieve
reliably and not possible in our setup where the vacuum part of the fiber moves when the
angle between the atomic beam and the laser beam is adjusted (the rotatable cylinder RC
shown in Fig. 4.2 rotates and moves the fiber). Though some information, as for example the
sign of circularly polarized light, could still probably be extracted, a reliable determination
of S3/S0 is not possible. Therefore, in the next section we describe how to monitor the
polarization after the fiber (as seen by atoms during spectroscopy) from polarimetry of the
backcoupled light.

4.6.2 Polarization monitor model

To monitor the polarization in the AFR, we implemented polarimetry of the backcoupled
light by placing a polarimeter1 in the unused beam path before BS 2 as depicted in Fig. 4.1.
Note that the same information could be obtained from polarimetry of the light after the

1Schäfter+Kirchhoff SK010PA-UV.
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HR mirror. However, this would further increase the complexity of the setup and require an
in-vacuum polarimeter for < 100 pW of laser power. In the following, we summarize how the
measured polarization of backcoupled light relates to the polarization after the collimator in
the AFR.

Before the light reaches the polarimeter, it passes various optical components, the fiber,
and the collimator in the forward- and backward-traveling directions. Independent of the
physical origin of polarization imperfections1, the total birefringence of all non-polarizing
components (mirrors, polarization-maintaining fiber, collimator lenses etc.) on the same path
for the forward- and backward-traveling directions can be described by the combined Mueller
matrix R̂(φ) Γ̂(δ, β), where R̂(φ) is the Mueller matrix of circular birefringence (rotator) and
Γ̂(δ, β) is the Mueller matrix of a single linear retarder (waveplate) with retardance δ and the
birefringence axis oriented at an angle β:

Γ̂(δ, β) =


1 0 0 0

0 cos2 2β + cos δ sin2 2β sin 4β sin2 δ
2 − sin 2β sin δ

0 sin 4β sin2 δ
2 cos δ cos2 2β + sin2 2β cos 2β sin δ

0 sin 2β sin δ − cos 2β sin δ cos δ

 , (4.42)

R̂(φ) =


1 0 0 0
0 cos 2φ − sin 2φ 0
0 sin 2φ cos 2φ 0
0 0 0 1

 . (4.43)

The circular birefringence matrix (rotator) is equivalent to a rotation in the plane of polar-
ization by an angle φ, and hence is the same matrix as for the coordinate transformation
for a rotated lab frame. It can be shown [253, 254] that any non-polarizing birefringent
system is described by the combined matrix R̂(φ) Γ̂(δ, β). Note that though the matrices
R̂(φ) and Γ̂(δ, β) do not commute, the order does not matter since we can always write
R̂(φ) Γ̂(δ, β) = Γ̂(δ, β′)R̂(φ′) with β′ = φ+ β and φ′ = −φ− 2β, where we used the identities
Γ̂(δ, β) = R̂(β)Γ̂(δ, 0)R̂(−β) and R̂(x)R̂(y) = R̂(x+ y).

The circular birefrigence matrix R̂(φ) does not change the circularly polarized fraction
S3/S0, but only the linear polarization rotation angle. For single-mode fibers, one finds
that the polarization plane at the output of the fiber is rotated by ∼0.07◦ per degree of the
fiber’s mechanical twist [255, 256]. For polarization-maintaining fibers, this relation is more
complicated and depends on various parameters [257]. However, the parameters φ, δ and β
are only effective parameters describing the overall polarization behaviour of the system, and
are not necessarily linked to the circular or linear birefringence of each element (e.g the fiber).
The term R̂(φ) can be non-zero even if none of the physical objects in the system exhibit
circular birefringence, e.g. when cascading multiple linear retarders.

Furthermore, it shall be remarked that the matrix R̂(φ) is similar, but not equal to the
matrix of a λ/2 waveplate, Γ̂(π, β). Though the ideal λ/2 waveplate also rotates the linear
polarization and keeps |S3/S0| unchanged, it flips the sign of S3/S0. However, one can write
R̂(φ) as a combination of two λ/2 waveplates: R̂(φ) = Γ̂(π, φ/2)Γ̂(π, 0), where the latter

1Note that we assume monochromatic, fully coherent, and fully polarized laser light. If, for example, a
pulsed laser source is used, a distinction between uniformly and non-uniformly distributed birefringence has
to be made [236]. For our case, non-uniformly distributed birefringence can always be modelled as multiple
segments of uniformly distributed birefringence [236], which is equivalent to a single birefringent element.
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β=π/50 β=π/10 β=π/4 δ=π /5 δ=π /2 δ=π s=0 s=0.5 s=0.9

Figure 4.25: Visualization of polarization changes due to linear and circular birefringence on a Poincaré
sphere, where the poles represent fully left- or right-handed circularly polarized light states (S3/S0 =

±1). (a) The state of outgoing polarization ~Sout = Γ̂(δ, β)~Sin with Γ̂(δ, β) from Eq. (4.42) represents

the effect of a linear birefringent element for horizontal linear incoming polarization, ~Sin = (1, 1, 0, 0).

The colored curves representing ~Sout are drawn for all possible values of δ and for a fixed β each.
The reached polarization states are described by circles on the Poincaré sphere, corresponding to a
rotation around a vector lying in the equatorial plane. (b) Same as (a) but with curves for all possible

values of β for a fixed δ each. (c) The state of outgoing polarization ~Sout = R̂(φ)~Sin with R̂(δ, β) from

Eq. (4.43) represents the effects of a circular birefringent element. The curves show ~Sout for all possible

values of φ for different incoming circularly polarized fraction s in ~Sin = (1,
√

1− s2, 0, s). The circular
birefringence does not change the state of circularly polarized light for any incoming polarization, but
changes only the rotation of linear polarization. Therefore, it can be viewed simply as a coordinate
transformation of the horizontal and vertical linear polarization vectors, which is a rotation around
the poles on the shown Poincaré sphere.

matrix also represents the mirror, M̂ = Γ̂(π, 0), which flips back the sign1 of S3/S0 after the
first λ/2 waveplate.

The effects of linear and circular birefringence can be visualized on the Poincaré sphere,
where the poles represent fully left- or right-handed circularly polarized light states, S3/S0 =
±1. Fig. 4.25(a) and (b) show the effect of linear birefringence described by Eq. (4.42).
In (a) the angle β is fixed at three different values (represented by different colors), while
the curves are drawn for all possible retardance values δ between 0 and 2π. The reached
polarization states are described by circles on the Poincaré sphere, resulting from a rotation
around a vector lying in the equatorial plane. In (b) the retardance δ is kept constant at
three different values, while the angle β is varied between 0 and π. The case δ = π/2
(red) represents a λ/4 waveplate capable of transforming purely linearly polarized into purely
circularly polarized light. The case of a λ/2 waveplate (δ = π) is shown in orange, which
rotates the linear polarization only. Also the circular birefringence visualized in Fig. 4.25(c)
rotates the linear polarization only. Here, the states of outgoing polarization ~Sout = R̂(φ)~Sin

with R̂(δ, β) from Eq. (4.43) describe rotations around the poles. The curves show ~Sout for

1Note that the mirror flips the sign of S3/S0 because the Stokes vector is defined in the coordinate system
referenced to the propagation direction of light. However, for the atoms the propagation direction does not
matter, such that circularly polarized light drives the same Zeeman transitions (e.g. σ+) after a reflection.
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all possible values of φ between 0 and 2π for different incoming circularly polarized fraction
s in ~Sin = (1,

√
1− s2, 0, s). The rotation around the pole in the equatorial plane for s = 0

has the same effect as δ = π (orange curve) in (b), however note the factor of two difference
in the angles β vs φ (besides, the rotation is in the opposite direction not visible here).

As we will derive below, the case of small β and arbitrary δ (blue circle in Fig. 4.25(a))
corresponds to the case of a PM fiber. The circular birefringence (rotation around the poles
as in Fig. 4.25(c)) represents the orientation of the PM axis of the fiber. If the output end
of the PM fiber is rotated (in our setup by using the rotation mount of the fiber-collimator
system, RM in Fig. 4.2), any linear polarization rotation can be reached without changing
the magnitude of circularly polarized fraction. This corresponds to transforming the horizon-
tal/vertical lab frame, visualized as rotation of the Poincaré sphere around the poles: the blue
circle Fig. 4.25(a) can then be moved in the equatorial plane by rotating the PM axis of the
fiber. Constant stress-induced birefringence at the output of the fiber (e.g. the connector or
the collimator) corresponds to a fixed rotation around a vector lying in the equatorial plane:
the blue circle then moves out of the equatorial plane towards one of the poles resulting in a
constant offset in the circularly polarized fraction as e.g. in the case of orange data in Fig. 4.23
for βPM ' 0 or ' π/2. Since the total birefringence effect can still be described by a single
waveplate combined with a rotator, R̂(φ) Γ̂(δ, β), at any instant point in time (frozen environ-
mental fluctuations) it is always possible to adjust β by rotating the input linear polarization
such that the circularly polarized fraction is zero. However, this then changes the coupling
into the PM axis of the fiber and increases the magnitude of circular polarization fluctuations
(increased radius of the circle as e.g. the red circle in Fig. 4.25(a)). Therefore, when the PM
fiber is combined with a fixed waveplate at the output of the fiber (e.g. from stress-induced
birefringence of the fiber connector), the orientation of linear input polarization before the
fiber which minimizes the magnitude of circular polarization fluctuations does not necessarily
correspond to the orientation of linear polarization which reduces the circularly polarized
fraction to zero.

In our original manuscript [110] we presented the polarization monitor model assuming
small linear birefringence δ � 1 arguing that the linear polarization is known be approxi-
mately preserved such that the outgoing circularly polarized fraction after the fiber and the
collimator, (S3/S0)atom, is small. However, we realized that δ does not have to be small in
order to preserve linear polarization, and in fact a waveplate oriented at small β and large
δ also preserves linear polarization. Since for both cases, large β and small δ, as well as
small β and large δ, the polarization of light stays approximately linear, it is a priori unclear
which assumptions can be made (unless one identifies δ with δPM which is not necessarily true
since δ is an effective parameter describing the overall polarization behavior). We therefore
perform a general calculation of the problem without any assumptions on β, δ or φ. From
this calculation we find that there is a unique solution for the absolute value (but not its
sign) of circularly polarized light fraction, |(S3/S0)atom|, if the circular polarization fraction
of outgoing light is known to not exceed |(S3/S0)atom| < 1/

√
2 which is satisfied for preserved

linear polarization. We then find that for even smaller circularly polarized light fractions,
|(S3/S0)atom| . 0.3, this solution is well approximated by the simple solution for β � 1 in
agreement with the intuitive picture and the simple model for random mode coupling from
Eq. (4.41). These corrections are summarized in the published erratum [111].
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4.6.2.1 Circularly polarized fraction

Consider first a perfect incoming horizontal or linear polarization, (S1/S0)in = ±1, (S2/S0)in =
(S3/S0)in = 0. The Stokes vector before the HR mirror as seen by atoms is given by

~Satom = R̂(φ) Γ̂(δ, β)~Sin =


1

± cos 2β cos(2β + 2φ)± cos δ sin 2β sin(2β + 2φ)
± cos 2β sin(2β + 2φ)∓ cos δ sin 2β cos(2β + 2φ)

± sin 2β sin δ

 . (4.44)

The Stokes vector of backcoupled light is given by

~Sback = Γ̂(δ,−β) R̂(φ) M̂ ~Satom = Γ̂(δ,−β) M̂ Γ̂(δ, β) ~Sin

=


1

± cos2 2β ± cos 2δ sin2 2β
∓ sin 4β sin2 δ
∓ sin 2β sin 2δ

 , (4.45)

where M̂ = Γ̂(π, 0) is the Mueller matrix of the mirror (which can be modelled as a λ/2 wave-
plate with a fixed orientation, however, note that the mirror also changes the propagation
direction which needs to be taken into account for the following matrices as described be-
low). Note that in the above expression we assume the birefringence system to be reciprocal.
Though non-reciprocal effects such as the Faraday rotation or time-dependent temperature
gradients (‘Shupe-effect’) may in principle be present [236, 258], these effects are negligible in
our case. The reciprocity of polarization-maintaining fibers can even be exploited to passively
remove birefringence fluctuations after the backprogapagation through the same fiber after a
reflection by a Faraday mirror [259]. The Mueller matrix Γ̂(δ, β) is referenced to the propaga-
tion direction and since after the reflection the laboratory coordinate system is reversed, the
linear birefringence axis angle β is reversed. However, the rotation angle φ due to circular
birefringence remains unchanged since it is always referenced to the propagation direction
[133].

Consider now the general problem of determining the circular polarization fraction before
the mirror (as seen by the atoms), (S3/S0)atom, from the measured incoming polarization
~Sin and backcoupled polarization ~Sback. Given the measured Stokes parameters of the back-
coupled light, (S2/S0)back and (S3/S0)back, we found that in general (S3/S0)atom cannot be
determined without a sign ambiguity. Furthermore, for the absolute value |(S3/S0)atom| there
are two solutions regardless of the values for δ and β:

|(S3/S0)atom|± = A±|s3|

√
s4

3 ± s2
2

(
2
√

1− s2
2 − s2

3 ± 2± s2
3

)
, (4.46)

with

A± =

√
2s2

2 + s2
3 ± s2

3

√
1− s2

2 − s2
3

2s2
3(s2

2 + s2
3)(4s2

2 + s4
3)

, (4.47)

where
s2 ≡ (S2/S0)back + (S2/S0)in, s3 ≡ (S3/S0)back − (S3/S0)in, (4.48)

where we took into account the small measured imperfections of the incoming polarization
(S2/S0)in . 0.1 and (S3/S0)in . 0.1 (e.g. in our setup between BS 2 and BS 3 in Fig. 4.1, we
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measured (S3/S0)in ' −0.024 and (S2/S0)in ' −0.036 for vertical input polarization). We
find that the inequality |(S3/S0)atom|− ≤ 1/

√
2 and |(S3/S0)atom|+ ≥ 1/

√
2 is always valid,

such that the solution |(S3/S0)atom|− is unique if the polarization is known to remain approx-
imately linear, as in the case for our AFR with a properly coupled polarization-maintaining
fiber. Furthermore, we found that the approximation of the solution |(S3/S0)atom|− for small
circularly polarized light fractions, |(S3/S0)atom| . 0.3, is equivalent to the solution within
the approximation1 β � 1:

|(S3/S0)atom|−
β�1
' 1

2

√(
(S3/S0)back − (S3/S0)in

)2
+
(
(S2/S0)back + (S2/S0)in

)2
. (4.49)

The above equation is accurate to ∼ 0.02 for |(S3/S0)atom| < 0.3. For β � 1 we then also
obtain a simple expression for δ:

δ = arctan

(
(S2/S0)back + (S2/S0)in

(S3/S0)back − (S3/S0)in

)
. (4.50)

The above expression determines δ only modulo π, which illustrates the sign ambiguity in
determining (S3/S0)atom.

Comparing S3/S0 from Eq. (4.44) with Eq. (4.41) we find that if the polarization imperfec-
tions solely arise from random mode coupling of the PM fiber, we can relate sin 2β = 2

√
η � 1

and δ = δPM which again gives an intuitive reason for β � 1. Since δPM takes any value, this
approximation also agrees with the intuitive picture that for a given waveplate with arbitrary
values of δ, a linear input polarization is only (approximately) preserved if β � 1. However, in
general not only random mode coupling, but also other effects like stress-induced birefrigence
may contribute to overall polarization imperfections. Furthermore, the model from Eq. (4.41)
describes the effect of random mode coupling only for perfect input polarization in the fiber.
In general, the effects of random mode coupling are mixed with an imperfect alignment of
the PM axis and/or impure linear polarization before the fiber.

It shall be remarked that for (S2/S0)out + (S2/S0)in � (S3/S0)back − (S3/S0)in the above
equation is approximately similar to the Eq. (10) of [110] derived with our initial approxi-
mation δ � 1, however with the important distinction that the above equation only gives
the absolute value of (S3/S0)atom. In our AFR setup we observe that this condition happens
to be usually satisfied such that the absolute value of the (in general incorrect) approxima-
tion δ � 1 is usually in agreement with the approximation β � 1 within the experimental
uncertainty.

4.6.2.2 Linear polarization rotation angle

We found that from the polarimetry of the backcoupled light it is not possible to deduce the
linear polarization angle or its variations. The polarization after back-propagation is identical
with and without including the circular birefringence term, since R̂(φ) M̂ R̂(φ) = M̂ , where M̂
is the Mueller matrix of the mirror. The linear polarization rotation angle ψatom in the AFR
is coarsely given by the orientation of the polarization-maintaining axis of the fiber, which we
align by using the rotation mount of the fiber-collimator system (RM in Fig. 4.2). Therefore,
the main effect of the linear polarization rotation from the PM fiber for optimal coupling can

1Since β can be negative, the approximation is actually |β| � 1. However, we can always choose β to be
positive, such that the results on |(S3/S0)atom| remain unaffected. Therefore, in the following we refer to this
approximation as β � 1.
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simply be described by the orientation φPM of the polarization-maintaining axis at the output
of the fiber such that φ ≈ φPM. From the polarimetry of the backcoupled light we thus would
not aim to determine the absolute value of the linear polarization rotation angle ψatom, but
only its small variations ∆ψatom. Comparing Eq. (4.44) to Eq. (4.45), this is only possible as
long as the circular birefringence φ in the system stays constant. However, recall that the
parameter φ is only an effective parameter describing the overall polarization behavior, and
is not necessarily linked to the circular birefringence of the fiber. Therefore, even though for
optimal coupling the approximation φ ≈ φPM is satisfied, the circular birefringence term φ
cannot generally be assumed to be constant such that small fluctuations of φ around φPM are
possible. This means that in general also the variations of the linear rotation angle cannot
be inferred from the backcoupled light beam.

However, even if φ could be assumed to be constant, we found that in general it would
not be possible to determine the linear polarization rotation angle changes ∆ψatom unless
δ is known to modulo 2π, or equivalently, the sign of (S3/S0)atom is known otherwise or
determined with other methods. For β � 1 and for constant φ, one finds that the change in
the linear polarization angle of the backcoupled light, ∆ψback, relates to the change ∆ψatom

as seen by the atoms as:

∆ψback ' −2 ∆ψatom (1 + cos δ) , (4.51)

with the retardance δ from Eq. (4.50). Since Eq. (4.50) determines δ only modulo π, in
general it is not possible to determine ∆ψatom unless cos δ is known without a sign ambiguity.
Furthermore, if δ ' π such that cos δ ' −1, from the above equation we find ∆ψback ' 0
such that the uncertainty on determining ∆ψatom from ∆ψback diverges around these values
of δ. Though the variations of the linear polarization rotation angle ∆ψatom cannot be in
general determined from the polarimetry of backcoupled light, from the properties of the
polarization-maintaining fiber (characterization of polarization fluctuations as in Fig. 4.23)
we know that ∆ψatom . 3◦, which is sufficient for our experiment.

4.6.3 Experimental test of the polarization monitor model

Initially, we tested our polarization model from [110] (with the incorrect approximation δ � 1)
by measuring the polarization after the collimator (which blocks the laser beam before the
HR mirror and therefore cannot be done in-situ), and comparing it to the derived result from
the subsequent measurement of the backcoupled polarization. We found good agreement with
our model. However, as demonstrated below, in our spectroscopy AFR setup we observed a
special case where the generally incorrect approximation δ � 1 is in good agreement with the
correct approximation β � 1. As we mentioned in the outlook of [110], we then explored inte-
grating circular polarization in the AFR setup. The tests with circular polarization revealed
that the polarization monitor leads to incorrect results, which drew us to rethink our model
and lead to the general treatment of the problem and detailed consideration of polarization
imperfections from the PM fiber as described in the previous sections. In order to better test
our polarization model, we then used a second polarimeter1 which is capable to measure down
to 1 nW laser power and therefore can be placed after the HR mirror to simultaneously mea-
sure the polarization as seen by atoms while measuring the backcoupling polarization with
the other polarimeter. For this measurement we removed the four-quadrant PMT shown
in Fig. 4.2. Furthermore, we increased the laser power before the HR mirror (transmission

1Thorlabs PAX1000VIS.
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Figure 4.26: Setup for testing the polarization monitor model of light collimated after a PM fiber from
polarimetry of backcoupled light. The laser light is first sent through a polarizer on a rotation mount
which purifies the linear polarization coupled into the PM fiber and adjusts its rotation angle to match
the polarization-maintaining axis of the PM fiber. After being collimated, the light is retroreflected by
a mirror while the transmission signal is measured by polarimeter 2 (direct polarimetry of polarization
before the mirror). A non-polarizing beamsplitter is placed before the fiber to split one part of the
returning laser light to measure its polarization in the polarimeter 1 (backcoupling polarimetry).

T ' 2× 10−5) to 1− 2 mW since the typical spectroscopy laser power of 5− 30 µW is too low
for a large enough transmission signal for the polarimeter.

In addition to testing the polarization monitor with a second polarimeter in our spec-
troscopy setup, we built a separate test setup where we used a less ideal polarization-
maintaining fiber (with polarization extinction ratio of ∼20 dB) to observe a significant dif-
ference between our initial and corrected models. This simple setup in shown in Fig. 4.26. We
start with the same narrow-linewidth laser at 410 nm and purify the polarization by sending
the light through a Glan-Thompson polarizer. This polarizer is placed on a rotation mount
to adjust the linear polarization rotation angle relative to the polarization-maintaining axis
of the fiber. Then the light passes a non-polarizing 50:50 beamsplitter1 which is needed to
split one part of the backward-propagating light for measuring the polarization of the back-
coupled light with the first polarimeter2. After the light is coupled into and sent through the
PM fiber, it is collimated and retroreflected by the mirror (in the test setup we used a 90:10
beamsplitter3 as a mirror). The transmission signal is measured by a second polarimeter
(polarimeter 2, “direct polarimetry”).

Typically, all mounted optics are subject to stress-induced birefringence which distorts the
polarization and needs to be characterized separately. Similar to the spectroscopy setup, also
in the test setup of Fig. 4.26 the non-polarizing beamsplitter and/or the mirror would distort
the polarimetry measurements from the first and/or the second polarimeter. To minimize
these imperfections, we mounted these optics very loosely while measuring the polarization of
transmitted or reflected light through the optic to ensure that no stress-induced birefringence
effects change the measured Stokes parameters on a level above ∼ 1%, which corresponds to
the accuracy of our polarimeters4.

1Thorlabs BSW10.
2Schäfter+Kirchhoff SK010PA-UV, the same polarimeter as used in the spectroscopy setup for measuring

the polarization of backcoupled light.
3Thorlabs BSX11.
4In principle, a more accurate self-calibrating polarimeter [260] can be used in the future for more accurate

measurements. However, though an order of magnitude more accurate, due to the precision rotation stages
required for higher accuracy, this self-calibrating polarimeter is more than two orders of magnitude slower
compared to the commercial polarimeters (∼ 100 s measurement time for a single polarization measurement
compared to < 1 s measurement time).
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In contrast to the test setup with minimized imperfections from stress-induced birefrin-
gence, in our spectroscopy setup, the imperfections from the beamsplitter and the HR mirror
are characterized separately. The effect of the beamsplitter is described in the next sec-
tion. For direct polarimetry in the spectroscopy setup, we also characterized the HR mirror
and measured that the HR mirror acts in transmission as a waveplate with a retardance of
∼ 0.35 rad. We also tested the potential birefringence effect of the coating and found no polar-
ization distortion in the HR mirror reflection (retardance < 0.005 rad), thereby demonstrating
that the stress-induced birefringence originates in the substrate. Note that if the HR mirror
would be mounted incorrectly with the HR surface facing the PMT but not the atoms, the
polarimetry of backcoupled light would not determine the polarization as seen by atoms, but
the distorted polarization within the HR mirror substrate.

Note that if the non-polarizing beamsplitter is used in reflection for backcoupling polarime-
try as shown in Fig. 4.26, then the sign of measured Stokes parameters S2/S0 and S3/S0 at
polarimeter 1 is flipped compared to the backcoupled polarization before the beamsplitter.
Just as the mirror, the beamsplitter flips the sign of S2/S0 and S3/S0 in reflection. Intuitively,
it can be understood as the change in propagation direction: whenever circular polarized light
is reflected, right-handed polarization becomes left-handed and vice versa (similar for diago-
nal and anti-diagonal linearly polarized light). This sign is important since the relative sign
between (S2/S0)back and (S2/S0)in enters Eq. (4.49). Note also that the sign of measured
Stokes parameters S1/S0 and S2/S0 depends on the orientation of the polarimeter which may
be opposite, as is the case for the two polarimeters we use from two different companies. Fur-
thermore, the relative orientation of the polarimeter needs to be aligned when the polarimeter
is moved to measure (S2/S0)in before the fiber relative to its position in Fig. 4.26 to determine
(S2/S0)back.

The results of the polarization model tests with two polarimeters as described above are
shown in Fig. 4.27(a) for the spectroscopy setup and in Fig. 4.27(b) for the test setup. On
the top, the absolute value of the circularly polarized fraction before the mirror (as seen by
the atoms in the AFR), |(S3/S0)atom|, is shown. The center plots show the variation of the
linear polarization rotation angle ∆ψatom, and the bottom plots show the deduced retardance
δ modulo π based on Eq. (4.50). The red points show the polarization deduced from the direct
measurement by polarimeter 2 placed after the mirror, the orange points show the deduced
polarization from backcoupling polarimetry using the approximation δ � 1 from Eqs. (10)-
(11) of [110], and the faint blue points the corrected model β � 1 from Eqs. (4.49) and (4.51).
Furthermore, for the test setup polarimetry the bright blue points in Fig. 4.27(b) show the
exact solution from Eqs. (4.46)-(4.47) which shows deviations from the β � 1 solution only
for |(S3/S0)atom| & 0.3. Since no significant difference between the exact solution and the
β � 1 solution is visible for |(S3/S0)atom| < 0.1, the exact solution is not shown for the
spectroscopy setup where the circularly polarized fraction is smaller than in the test setup.

The difference between the β � 1 and δ � 1 solutions for |(S3/S0)atom| in the spectroscopy
setup are only on the order of the absolute accuracy of the measurement (∼ 2%). The differ-
ences are much more pronounced in the test setup and for higher circularly polarized fractions
the δ � 1 solution can lead to incorrect results as high as ∼ 40%. Comparing to the deduced
retardance on the bottom plot, one can see that the β � 1 and δ � 1 solutions agree when
the calculated retardance is around zero which demonstrates the consistency of the measure-
ment. The disagreement is stronger for larger |(S3/S0)atom| and for |(S3/S0)atom| & 0.3 the
β � 1 approximation starts to not be a good approximation anymore, with ∼ 5% deviations
to the exact solution being observed.
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Figure 4.27: Experimental tests of the polarization monitor model according to the setup presented
in Fig. 4.26 with two simultaneous polarimeter measurements. In the left plots (a) the data from the
AFR spectroscopy vacuum setup is shown, in the right plots (b) the data from the test setup with a
less ideal PM fiber is depicted. The top plots show the data for the deduced absolute value of circularly
polarized fraction before the mirror (as seen by atoms), |(S3/S0)atom|, the center plots show the linear
polarization rotation angle changes ∆ψatom, and the bottom plots show the retardance δ modulo π
from Eq. (4.50). Red points show the data from the direct polarimetry of the mirror transmission
(e.g. polarimeter 2 in Fig. 4.26). Faint blue points show the data as deduced from the backcoupling
polarimetry (polarimeter 1 in Fig. 4.26), using the approximation β � 1 from Eqs. (4.49) and (4.51),
where for the determination of ∆ψatom in addition cos δ > 0 is assumed. Orange points show the
data as deduced from the backcoupling polarimetry using the approximation δ � 1 reported in our
original publication, Eqs. (10)-(11) of [110]. For the test setup polarimetry the data based on the exact
solution from Eqs. (4.46)-(4.47) is shown, where deviations to the approximated β � 1 solution are
only visible for higher circularly polarized fraction |(S3/S0)atom| & 0.3. As detailed in Section 4.6.2.2,
no agreement is expected for the linear polarization rotation angle monitor, and the agreement for the
spectroscopy setup is believed to be a coincidence.
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Figure 4.28: Test of polarization monitor model for circularly polarized light. Using the setup presented
in Fig. 4.26 with two simultaneous polarimetery measurements, the linear polarization before the
fiber was maximally misaligned with the PM axis of the fiber (βPM ' π/4) resulting in all possible
polarization states after the fiber (orange curve in Fig. 4.25(a)). The PM fiber was thermally isolated
for this measurement such that the polarization fluctuations are relatively slow and can be well resolved
by both polarimeters. Red data points show the direct measurement of circularly polarized fraction
|(S3/S0)atom| after the fiber. Blue and magneta points show the two solutions |(S3/S0)atom|± for the
determination of circularly polarized fraction after the fiber from polarimetry of backcoupled light
according to Eqs. 4.46-4.48. As expected, the direct measurement agrees with |(S3/S0)atom|− for
|(S3/S0)atom| < 1/

√
2 and with |(S3/S0)atom|+ for |(S3/S0)atom| > 1/

√
2.

Surprisingly, we found during polarization monitor tests in our spectroscopy setup (see
Fig. 4.27(a)) that the linear polarization angle changes determined from Eq. (4.51) with
Eq. (4.50) assuming cos δ > 0 are in good agreement with the direct measurement of ∆ψatom.
We believe that this agreement is by coincidence. However, this might also be a hint that in
some special cases, the circular birefringence term can indeed be assumed constant. In our
test setup we find strong disagreement with the direct measurement (see Fig. 4.27(b)) which
demonstrates that in general the linear polarization angle changes cannot be determined from
polarimetry of backcoupled light.

Since for the future deuterium measurements also circularly polarized light may be used,
we also tested the polarization monitor for this case. The setup from Fig. 4.26 was used with
maximally misaligned linear polarization into the PM axis of the fiber (βPM ' π/4) resulting
in all possible polarization states after the fiber (orange curve in Fig. 4.25(a)). The PM fiber
was thermally isolated for this measurement such that the polarization fluctuations are rela-
tively slow and can be well resolved by both polarimeters. The results of this measurement
are presented in Fig. 4.28, where red data points show the direct measurement of circularly
polarized fraction |(S3/S0)atom| after the fiber. Blue and magneta points show the two so-
lutions |(S3/S0)atom|± for the determination of circularly polarized fraction after the fiber
from polarimetry of backcoupled light according to Eqs. 4.46-4.48. As expected, the direct
measurement agrees with |(S3/S0)atom|− for |(S3/S0)atom| < 1/

√
2 and with |(S3/S0)atom|+

for |(S3/S0)atom| > 1/
√

2. The slight discrepancy on the order of ∼ 3−5% at the points where
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the drift of circularly polarization reverses the direction might be due to the non-reciprocity
in the system (e.g. ‘Shupe-effect’ [258]), but needs to be further investigated. The PM fiber
with maximally misaligned input polarization is very sensitive to environmental fluctuations
and hence the non-reciprocal effects may also be enhanced.

4.6.4 Polarization monitor data at the spectroscopy setup

Typically, mirrors and non-polarizing beamsplitters before the polarimeter1 are subject to
stress-induced birefringence, as well as a polarization-dependent transmission and reflectivity
(thereby acting as partial polarizers). Note that Eq. (4.49) does not include the stress-induced
birefringence of uncommon components for the forward- and backward-traveling directions,
e.g. BS 2 (see Fig. 4.1) may introduce a different retardance in transmission than in reflection.
Therefore, the remaining distinct path of the backward-traveling beam to the polarimeter
needs to be taken into account separately. If the polarizing effects can be neglected, one can
again model the total birefringence of optical components between the place where (S3/S0)in

and (S2/S0)in are measured and the polarimeter with a single waveplate of retardance δBS and
orientation βBS. For mostly horizontal or vertical linear polarization (|S1/S0| ' 1, |S2/S0| �
1, |S3/S0| � 1) as well as small δBS (in our setup δBS . 0.3 rad) and small βBS (due to
optics mounts of our setup, which mostly lead to horizontal or vertical forces due to the
corresponding orientations of the setscrews, we find βBS . 0.1 rad), the measured Stokes
parameters are related to the Stokes parameters of the backcoupled light from Eq. (4.49) as:

(S1/S0)back ' (S1/S0)meas + 2δBSβBS(S3/S0)meas,

(S2/S0)back ' (S2/S0)meas − δBS(S3/S0)meas,

(S3/S0)back ' (S3/S0)meas + δBS(S2/S0)meas − 2δBSβBS(S1/S0)meas.

(4.52)

For the incorrect polarization monitor model presented in [110], only (S3/S0)back and (S3/S0)in

need to be known in order to determine (S3/S0)atom, see Eq. (10) in [110]. However, for the
correct polarization monitor model (Eq. (4.49)) also (S2/S0)back and (S2/S0)in need to be de-
termined. While testing how well (S2/S0)back can be determined from (S2/S0)meas we found
that the polarizing effects of BS 2 from Fig. 4.1 might need to be included for a more accurate
determination of (S2/S0)back, since it was found that BS 2 has a much larger polarizing effect
of ∼ 20% as opposed to the ∼ 2% which we measured for BS 3.2 The more accurate determi-
nation of (S2/S0)back from (S2/S0)meas should then include the ∼20% polarization-dependent
transmission and reflection. Alternatively, BS 2 can be replaced by another beamsplitter (or
placed in a modified setup under a smaller incidence angle of� 45◦) such that the polarizing
effects remain negligible and Eq. (4.52) remains an accurate model.

The system with polarization-dependent transmission and reflection can be modelled as
a combination of a partial polarizer in between two different waveplates and an additional
rotator [253]. Instead, we simply measured the Mueller matrix M̂BS of the backward travelling
path. This Mueller matrix M̂BS then describes the backward travelling path between the
point where (S2/S0)in and (S3/S0)in are measured (between BS 2 and BS 3 in Fig. 4.1) and

1Compared to the test setup with only one beamsplitter on the way to polarimeter 1 for backcoupling
polarimetry, in our spectroscopy setup two beamsplitters and several mirrors are placed between the fiber and
the polarimeter (see Fig. 4.2 for the simplified scheme).

2Both BS 2 and BS 3 are Thorlabs BSW10 50:50 non-polarizing beamsplitters, but placed under different
incidence angles (∼45◦ for BS 2 and ∼10◦ for BS 3) and subject to different mechanical stresses.
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the polarimeter. Note that the backward travelling paths are different for the horizontal and
vertical polarizations, such that the corresponding Mueller matrices are different, M̂BS,H and

M̂BS,V, respectively.

The measurement of M̂BS can be performed as follows1. An auxiliary polarizer2 is placed
on a rotation mount3 with adjustable angle γ at the place where the input polarization is
characterized (between BS 2 and BS 3 in Fig. 4.1). An auxiliary laser4 at 405 nm wavelength is
placed such that the auxiliary laser beam is polarized by this auxiliary polarizer. The auxiliary
laser beam is then overlapped with the forward-traveling laser beam of the experiment, such
that the input polarization5 of the auxiliary laser beam is ~Sback = (1,− cos 2γ,− sin 2γ, 0).
For a general Mueller matrix M̂BS, the polarization at the polarimeter ~Smeas = M̂BS

~Sback is
then given by:

~Smeas =


m00 m01 m02 m03

m10 m11 m12 m13

m20 m21 m22 m23

m30 m31 m32 m33




1
− cos 2γ
− sin 2γ

0

 =


m00 −m01 cos 2γ −m02 sin 2γ
m10 −m11 cos 2γ −m12 sin 2γ
m20 −m21 cos 2γ −m02 sin 2γ
m30 −m31 cos 2γ −m32 sin 2γ

 . (4.53)

Since we are interested in the relative Stokes parameters only, we can set m00 = 1. Fitting
the above equation to the data for various angles γ (see Fig. 4.29) determines all matrix
elements except m03, m13, m23 and m33. These matrix elements can be measured by adding
a quarter waveplate to the setup with the auxiliary polarizer in order to produce fully left-
and right-handed circular polarization states ~Sback = (1, 0, 0,±1) leading to ~Smeas = (m00 ±
m03,m10±m13,m20±m23,m30±m33). From the measurement of ~Smeas the matrix elements
are extracted. Using the above methods, we measured the following matrices M̂BS,V and

M̂BS,H for the vertical and horizontal polarization paths, respectively:

M̂BS,V =


1 −0.228(1) −0.010(2) 0.001(6)

−0.230(2) 0.999(1) 0.011(14) −0.017(12)
0.008(2) 0.006(13) −0.965(1) −0.144(19)
0.005(4) −0.032(2) 0.131(8) −0.965(1)

 ,

M̂BS,H =


1 0.256(5) 0.007(9) −0.007(8)

0.258(2) 1.000(1) 0.021(2) 0.000(1)
0.003(10) −0.019(1) 0.895(1) −0.361(3)
0.000(3) −0.001(9) 0.364(6) 0.894(2)

 . (4.54)

1The matrix M̂BS can also be measured in the opposite direction along with the forward-propagating laser
beam in the setup. Then the polarizer and the polarimeter are swapped. Note that in this case not the inverse
M̂−1

BS matrix is measured but M̂BS: not only the positions are swapped, but also the propagation direction
inverting the matrix twice. This measurement can serve as a consistency check.

2Thorlabs GTH5M-A.
3Thorlabs CRM1T/M.
4Thorlabs CPS405 used with an aperture resulting in approximately the same beam width as the laser

beam of the experiment (which is important to prevent possible inconsistensies due to possible polarization
gradients).

5Care has to be taken by choosing the right sign depending on the rotation direction of γ. Furthermore,
the offset rotation angle needs to be determined separately, e.g. by placing the polarimeter directly after the
polarizer, or included in the model as an additional parameter. Here, we measured the offset angle and show
the equations only with this approach for simplicity.
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(a) Measurement of M̂BS, V
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Figure 4.29: Measurement of the Mueller matrix for the vertical (a) and horizontal (b) back-coupled
polarization paths. For this measurement, a polarizer is placed on a rotation mount with ad-
justable angle γ at the place where the input polarization is characterized (between BS 2 and BS 3
in Fig. 4.1). An auxiliary laser is placed before the polarizer and the laser beam is overlapped with
the forward-traveling laser beam of the experiment, such that the Stokes vector after the polarizer
is ~Sback = (1,− cos 2γ,− sin 2γ, 0) (here, γ is calibrated such that γ = 0 corresponds to the Stokes
parameters S1/S0 = −1, S2/S0 = S3/S0 = 0 after the polarizer). Having passed through the optical
components on the back-coupled polarization path to the polarimeter (described by Mueller matrices
M̂BS,V and M̂BS,H), the polarization changes according to Eq. (4.53). Fits of this equation (curves) to
the data (points) for the normalized Stokes parameters S1/S0 (blue), S2/S0 (red), and S3/S0 (orange)
determines all matrix elements except m03, m13, m23 and m33. The latter are measured with circularly
polarized light as described in the main text.

The measured Stokes vector ~Smeas is then related to the Stokes vector ~Sback of the back-
coupled light needed for Eq. (4.49) using the inverse of the matrix M̂BS as

~Sback = M̂−1
BS

~Smeas, (4.55)

with the measured inverse matrices M̂−1
BS,V and M̂−1

BS,H calculated from Eq. (4.54) for the
vertical and horizontal polarization paths, respectively:

M̂−1
BS,V =


1 0.228(1) −0.008(2) −0.002(3)

0.230(2) 1.000(1) 0.007(12) −0.018(13)
0.010(2) 0.013(12) −0.962(3) 0.143(19)
−0.001(5) −0.030(2) −0.131(7) −0.962(3)

 ,

M̂−1
BS,H =


1 −0.256(5) −0.004(11) 0.006(4)

−0.258(2) 1.000(1) −0.018(1) −0.009(1)
−0.008(10) 0.019(1) 0.896(1) 0.362(4)

0.003(3) −0.007(9) −0.365(6) 0.897(1)

 . (4.56)

Eq. (4.55) is a general form of Eq. (4.52) including polarizing effects. Eqs. (4.49) and (4.52)
or (4.55) allow then to monitor the circular polarization as seen by atoms from polarimetry of
backcoupled light and the characterized polarization effect of optical components before the
polarimeter. Based on the uncertainties for Stokes parameter measurements (∼ 1 %) combined
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Figure 4.30: Circularly polarized fraction |(S3/S0)atom| in the AFR (as seen by the atoms) as deduced
from polarimetry of backcoupled light according to Eqs. (4.49) and (4.55). (a) and (b) show the polar-
ization data during the hydrogen 2S-6P measurement campaign in 2019 (3035 spectroscopy line scans
from 22 measurement days), whereas (c) and (d) show the polarization data during the deuterium
2S-6P measurement campaign in 2021 (527 spectroscopy line scans from 5 measurement days). From
the histograms in (a) and (c), the circularly polarized fraction is always |(S3/S0)atom| . 10% corre-
sponding to an extinction ratio of PER & 26 dB. For most spectroscopy line scans, |(S3/S0)atom| . 5%
corresponding to PER & 32 dB. In (b) and (d), the polarimetry data is plotted versus time for several
days (from the first spectroscopy line scan of the day). Each point respresents one spectroscopy line
scan, while the different faint colors represent different measurement days, with one exemplary day
being highlighted in black (227 line scans in (b) and 167 line scans in (d)). Error bars show the varia-
tion within a line scan, which is much smaller than the ∼ 2% absolute accuracy on the determination
of |(S3/S0)atom|.

with uncertainties for matrix element of M̂BS, we estimate the absolute accuracy on deducing
(S3/S0)atom to be ∼ 2 %.

We continuously took polarimetry data during our hydrogen and deuterium 2S-6P spec-
troscopy measurement campaigns. In Fig. 4.30(a) and (b), the circularly polarized fraction
after the collimator (as seen by the atoms) is shown for the hydrogen 2S-6P measurement
in 2019, as deduced from polarimetry of the backcoupled light according to the above equa-
tions. Similar polarimetry data for the 2S-6P deuterium measurement in 2021 is shown in
Fig. 4.30(c) and (d). The histograms in Fig. 4.30(a) and (c) show the values for (S3/S0)atom

for all the days of the measurement campaign with a total number of 3035 spectroscopy
line scans in (a), and 527 spectroscopy line scans in (c). For all of the data, we observe
|(S3/S0)atom| . 10 % corresponding to PER & 26 dB. For most spectroscopy line scans,
|(S3/S0)atom| . 5% corresponding to PER & 32 dB. The time variation of polarization data
is shown in Fig. 4.30(b) and (d), where the circularly polarized fraction is plotted for each
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measurement day starting from the first spectroscopy line scan of the day, with one single
day highlighted in black. The polarization for the deuterium measurement in (c) typically
varied on a faster time scale of ∼ 15 min than for the hydrogen measurement in (b) where
the fluctuations are on the timescale of hours. This is attributed to the ambient laboratory
temperature, which unfortunately was less stable in 2021 due to the different air condition-
ing system. However, still the polarization fluctuations occured on a much larger timescale
compared to the ∼ 2 min time scale of a single line scan. The polarization within a line scan
typically fluctuates by less than |(S3/S0)atom| . 0.5 % which is smaller than the total un-
certainty of ∼ 2% on determining |(S3/S0)atom|. Due to slow drifts within a line scan and
well-known polarization deduced from in-situ monitoring, it is possible, if needed, to extract
spectroscopy data with (S3/S0)atom . 2 % corresponding to PER & 40 dB. In the future,
if the accuracy of the polarization monitor limits the uncertainty for precision spectroscopy,
a more accurate self-calibrating polarimeter [260] could be used to improve the accuracy of
polarization monitor, though such a polarimeter would be much slower and require a modifi-
cation of the setup because of its larger size.
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Chapter 5

Preliminary Measurement of the
2S-6P Transition in Atomic
Deuterium

This chapter presents the preliminary measurement of the 2S-6P transition in atomic deu-
terium, which was conducted in July 2021. The main purpose of this measurement campaign
was the feasibility study for planning a future precision measurement campaign, along with
characterization measurements. The focus lied on measuring the 2S-6P1/2 fine structure com-
ponent.

Section 5.1 presents the overview of the collected data. Over the course of the measurement
campaign, also resonance line scans of the 1S-2S transition were collected, which is discussed
in Section 5.2. The 1S-2S measurement helps to find the optimal laser frequency for the
maximum 2S-6P signal, but also serves as a consistency check of the absolute frequency
determination with a frequency comb. Furthermore, comparisons with simulations of the
1S-2S resonance line check the numerical modelling of the experiment. Section 5.3 discusses
how the atomic beam is aligned w.r.t. the counter-propagating 2S-6P laser beams in the
active fiber-based retroreflector, which also tests the numerical modelling of the experiment
and identifies nozzle misalignments. Another fraction of the measurement time is needed
for the in-situ determination of the stray electric field in the interaction region, which has
been introduced in Section 3.5.2. In this chapter, Section 5.4 presents the results of the stray
electric field measurements throughout the measurement campaign. Section 5.5 discusses
the preliminary analysis of precision line scans, along with a summary of the preliminary
uncertainty budget.

5.1 Overview of the collected data

The overview of the collected data is presented in Table 5.1. The first two columns list the
measurement day number and the date. Next, the number of 1S-2S line scans is listed (see
Section 5.2). The addressed fine-structure component is given in the column “FS”, where
6P1/2 or 6P3/2 stand for measuring the 2S-6P1/2 or 2S-6P3/2 transitions, respectively. The
power of the 2S-6P laser beams is listed in the column “P2S-6P”. The columns “δα-al. scans”
or “E-Field scans” give the number of line scans for the alignment of the angle between the
atomic beam and the 2S-6P laser beam (see Section 5.3), or the number of line scans for in-
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Table 5.1: Overview of the collected data for the preliminary measurement of the 2S-6P transition in
deuterium. “1S-2S scans”: number of 1S-2S transition line scans (see Section 5.2). “FS”: addressed
fine-structure component, where 6P1/2 or 6P3/2 stands for measuring the 2S-6P1/2 or 2S-6P3/2 tran-
sitions, respectively. “P2S-6P”: power of the 2S-6P laser beam. “δα-al. scans”: number of line scans
for the alignment of the angle α = 90◦ + δα between the atomic beam and the 2S-6P laser beam
(see Section 5.3). “E-Field scans”: number of line scans for the in-situ measurements of stray electric
field (see Section 3.5.2). “Excluded precision scans”: number of excluded precision line scans due
to corrupted data points (e.g. laser lock failure or nozzle temperature instability). “Valid precision
scans”: number of valid precision line scans entering the preliminary analysis (see Section 5.5).

Meas.
day

Date
(2021)

1S-2S
scans

FS
P2S-6P

(µW)
δα-al.
scans

E-Field
scans

Excluded
precision

scans

Valid
precision

scans

0 20.7 6 6P1/2 30 31 − (13) −
1 21.7 8 6P1/2 30 36 46 6(+35) 31
2 22.7 11 6P1/2 10, 20, 30 12 36 9, 5, 25 21, 4, 99
3 23.7 8 6P1/2 10, 20, 30 12 36 3, 1, 13 35, 19, 97

4 26.7 9
6P1/2 10, 20, 30 11 49 5, 1, 10 36, 8, 61

6P3/2 10, 15 − 10 1, 1 2, 14

5 27.7 4
6P1/2 30 19 24 1 29

6P3/2 5, 10, 15 6 24 1, 1, 10 9, 10, 81

Total
46

6P1/2

10 17 92
20 7 31
30 121 191 55 317

6P3/2

5 1 9
10 3 11
15 6 34 10 96

127 225 93 556

situ measurements of stray electric fields (see Section 3.5.2), respectively. Both “δα-al. scans”
and “E-Field scans” were performed at P2S-6P = 30 µW (2S-6P1/2) or P2S-6P = 15 µW (2S-
6P3/2) laser powers. The number of excluded precision scans (e.g. due to a failure of the
laser locks or the nozzle temperature instability) is shown next1. The last column gives the
number of precision line scans at each laser power entering the preliminary analysis discussed
in Section 5.5.

The first two days of the measurement campaign (Days 0 and 1 in Table 5.1) were mostly
used for the characterization of the apparatus, as for instance for the temperature dependence
studies of the cryogenic deuterium atomic beam, which are presented in Section 3.6. Line
scans were taken at different nozzle temperatures to investigate the temperature dependence
of the deuterium 2S-6P signal and the background (see Fig. 3.21). These line scans are listed
in paranthesis under “Excluded precision scans”. The remaining days focused on collecting
precision line scans at the 2S-6P laser power of P2S-6P = 30 µW in order to reach a low

1In principle, the so far excluded precision scans can be included in the future analysis, since mostly only a
few data points are corrupted. However, then these line scans need to be corrected for an additional possible
sampling bias.
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Figure 5.1: Mean 1S-2S intracavity power and stability for deuterium 2S-6P precision line scans during
the July 2021 measurement campaign. The histogram in (a) shows the mean 1S-2S intracavity power
P1S−2S within minute-long line scans. The uncertainty on the absolute scale of P1S-2S due to calibration
is 12%. For most line scans P1S−2S = 1.50(18) W. Over the course of the measurement campaign, the
mirrors of the 1S-2S cavity degraded, such that the experiment needed to be operated at lower 1S-2S
powers. The histogram in (b) shows the standard deviation from the mean intracavity power within
the line scans. The mean value for this deviation for all line scans is 0.5 mW (vertical red line).

statistical uncertainty of the 2S-6P1/2 transition frequency measurement within a relatively
short measurement time. Around 150 line scans were also taken at lower laser powers of
P2S-6P = 10 µW or P2S-6P = 20 µW. Furthermore, with around 150 line scans the 2S-6P3/2

transition was addressed. However, most of them were measured on the last day (Day 5) of
the measurement campaign, where the 1S-2S mirrors were re-aligned to maintain the higher
1S-2S intracavity power. This seemed to have increased the misalignment of the apparatus,
which resulted in a significant residual Doppler shift1. Therefore, Section 5.5 presents only the
preliminary analysis of the 2S-6P1/2 line scans. The last days of the measurement campaign
were also challenged by the deteriorating cryostat performance, where it became more and
more difficult to maintain the stable nozzle temperature, as discussed in Section 3.6.3. For the
future measurement campaign, it is hoped that the cryostat performance can be improved,
and the 1S-2S cavity mirror degradation can be prevented (either by upgrading the apparatus
to flush the mirrors with oxygen combined with differential pumping, and/or by using the
fluoride coatings instead of oxide coatings as discussed in Section 3.2.1.1).

The 1S-2S intracavity power P1S-2S is one of the parameters affecting the mean speed of
atoms in each delay group (see Table 3.1), and thus it is important to measure P1S-2S. Fig. 5.1
shows P1S-2S and its stability for the precision line scans. As described in Section 3.2.1.1, P1S-2S

is stabilized using a fast photodiode measuring the transmission through the cavity. The signal
on this photodiode is sensitive to pointing fluctuations, which occur on a slow timescale of
several minutes and result in signal fluctuations on the order of few percent. As a result, P1S-2S

remains stable within each line scan, while slow pointing drifts are responsible for percent-
fluctuations of P1S-2S between the line scans. The integrating sphere is mostly insensitive to
these pointing fluctuations and is used to monitor P1S-2S out-of-loop. The histogram of the
mean values for P1S-2S within each line scan, as deduced from the integrating sphere along
with calibration measurements, is shown in Fig. 5.1(a). Fig. 5.1(b) demonstrates that the

1The preliminary analysis of the 2S-6P3/2 line scans shows a Doppler slope of κ∼ 40(10)Hz/(m/s), resulting
in an average Doppler shift of ∼ 10 kHz. However, in principle, the absolute frequency can still be extracted
free from the Doppler shift using the velocity extrapolation.
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deviations from the mean power within the line scans are on average 0.5 mW, which is less
than 0.05%. The uncertainty from the calibration factor1 results in a 12% uncertainty on the
absolute scale of P1S-2S. Most line scans were measured at P1S−2S = 1.50(18) W. Over the
course of the measurement campaign, the 1S-2S cavity mirrors degraded, such that at the
end of day 4 (26.7) this power could not be maintained anymore. Therefore, some precision
line scans were taken at a lower power of P1S−2S∼ 1.3 W. As mentioned above, on day 5
(27.7) the 1S-2S cavity was re-aligned to a slightly different position on the mirror, such that
P1S−2S∼ 1.5 W could be reached again.

All the measurements were performed with a linear polarization rotation angle θL =
56.5(3.0) deg (alignment uncertainty of ±3 deg), where θL is the angle of the polarization
vector from the axis of the detector cylinder. This value of θL approximately corresponds to
the “magic angle”, where the line shifts due to the resolved quantum interference are minimal
(see Sec. 6.2.3 of [71]). Therefore, similar to the preliminary analysis of the hydrogen 2S-6P
data presented in [71], we here use the symmetric Voigt fit function (see Eq. (2.73)). The
asymmetric fit function such as the the Fano-Voigt function would result in an increased
uncertainty of the center frequency due to correlations between the additional asymmetry
parameter and the center frequency. Since the resolved quantum interference has been studied
in detail in the 2S-4P measurement [14, 71], we minimize its effect by aligning the polarization
to the magic angle and use a symmetric fit function for more accurate center frequency
determinations. The remaining small corrections of resolved quantum interference are then
taken into account with “Big Model” simulations. In the final analysis, also the asymmetric
fit functions such as the Fano-Voigt can be used for consistency checks.

Fig. 5.2(a) shows an example of the deuterium 2S-6P1/2 line scan. Different colors repre-
sent the five exemplary delays 2, 10, 13, 15, and 16. The points show the number of counts
for the top detector as a function of the laser frequency detuning ∆ν2S-6P, which we here
define such that zero ∆ν2S-6P corresponds to the laser frequency prediction from theory2 with
a random blind offset3. The error bars represent the shot noise (square root of the number of
counts). The resonance is sampled with 30 frequency detuning points4. The curves show the
Voigt fits to the data, with fit results for the center frequency ν0, the linewidths ΓF and ΓG,

1The calibration factor for P1S-2S from the signal of the integrating sphere (which was used in Fig. 5.1) is
1.74(21) W/V. These uncertainty on the calibration factor is composed from the 7.5% uncertainty in the power
measurement and the 9% uncertainty in the transmission factor TOCTpath = 5.6(5)×10−5 (see Section 3.2.1.1).

2The theory prediction (following QED theory with fundamental constants according to [8] with hyperfine

structure according to [116]) for the hyperfine center frequency of the 2S
F=1/2

1/2 -6P1/2 transition with linearly
polarized light is ν2S-6P = νA,0 (F=1/2) + η1/2∆HFS1/2

+ ∆νrec ' 730 888 824 058.5 kHz, where νA,0 (F=1/2) is the

unperturbed transition frequency of the 2S
F=1/2

1/2 -6P
F=1/2

1/2 transition, ∆HFS1/2
is the hyperfine splitting, ∆νrec

is the recoil shift (see Table 2.4 for the values of the latter three), and η1/2 = 8/9 is the fraction defined in
Eq. (2.49). As has been discussed in Table 2.3, the total uncertainty on the prediction in ∼1.5 kHz.

3The blind offset is randomly drawn from a normal distribution centered around zero with a standard
deviation of 12 kHz. The numerical value of the blind offset is encoded using the base64 python module in
characters, such that the offset is not given in numbers, but as a string of characters to the input settings of
the analysis code.

4See Sec. 5.1.3 in [71] for details on the sampling of the resonance line. Here, the same frequency detunings
∆ν2S-6P as for the hydrogen 2S-6P measurement campaign with offset angles α0 = 0 . . . 6 mrad were used (first
columns in Table 5.2 in [71]). The sign and value of ∆ν2S-6P is chosen randomly during the line scan, always
with zero ∆ν2S-6P at the beginning and at the end of the resonance line scans, which results in 30 frequency
detunings in total. Due to a mistake in the center frequency calculation (which did not take into account the
recoil shift ∆νrec), the resonance lines were sampled by ∆νrec ' 589 kHz off-center. This results in a sampling
bias of the center frequency determination, which must be taken into account through simulations and has to
be carefully investigated for the final analysis.
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Figure 5.2: Example of the deuterium 2S-6P1/2 resonance line scan. (a) The points show the number
of counts for the top detector in five selected delays (D. 2, 10, 13, 15, 16) versus the laser frequency
detuning ∆ν2S-6P (zero detuning is here defined to correspond to the theory prediction including the
recoil shift and a blind offset), with the error bars showing the shot noise. The curves show the Voigt
fits (see Eq. (2.73)) to the data, with fit results for the center frequency ν0 (relative to zero detuning),
the linewidths ΓF and ΓG (see Eq. (2.74)), as well as the reduced chi-square per degree of freedom
χ2

red given for each fit in the legend. In (b), the points show the center frequency fit results for each
delay (with the error bar deduced from the fit) versus the mean atomic speed v determined from
simulations for each delay (similar to Table 3.2 with parameters P1S-2S = 1.5 W, ∆ν1S-2S = 0.8 kHz,
vcutoff = 100 m/s, TN = 7.1 K, as well as other fixed parameters from Table 3.1). The horizontal
orange bar shows the center frequency ν0,a averaged over all velocities, with the vertical size of the
bar representing the uncertainty (the value of ν0,a and the χ2

red are given in the legend). The blue line
shows the fit to ν0 assuming a linear velocity dependence, i.e. ν0 = κ v + ν0,e, where κ is the slope
and ν0,e the extrapolated center frequency for zero v. The fit results for ν0,e and κ are given in the
legend, and the faint blue region shows the one standard deviation (1σ) uncertainty region calculated
from the covariance matrix values resulting from the fit.
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as well as the reduced chi-square per degree of freedom χ2
red given for each fit in the legend.

Slower atoms experience a smaller Doppler broadening, which is seen in the smaller value
for the Gaussian width ΓG for larger delay numbers. The increased χ2

red > 1 is attributed
to atomic flux fluctuations due to temperature fluctuations, which are the main cause of the
signal noise in our experiment (see Section 3.6). As has been demonstrated in Fig. 3.21,
faster atoms (smaller delay numbers) are more sensitive to temperature fluctuations than
slow atoms (larger delay numbers). Therefore, χ2

red is closer to one for larger delay numbers.

The points in Fig. 5.2(b) show the fit results for the center frequency ν0 in each delay as
a function of the atomic mean speed v, which is determined for each delay from simulations
(similar to Table 3.2 with parameters P1S-2S = 1.5 W, ∆ν1S-2S = 0.8 kHz, vcutoff = 100 m/s,
TN = 7.1 K, as well as other fixed parameters from Table 3.1). The orange bar is the average
ν0,a of the center frequencies from all delays, where the vertical size of the bar represents the
one standard deviation (1σ) uncertainty (values are given in the legend). The blue line is a
fit to the center frequencies assuming a linear velocity dependence as

ν0 = κ v + ν0,e, (5.1)

where κ is the slope and ν0,e the extrapolated center frequency for atoms at rest. For example,
this velocity dependence of the center frequency is present for a first-order Doppler shift
∆νD = κ v, where κ is then identified with the Doppler slope from Eq. (2.28). However, note
that also more subtle velocity-dependent effects such as the light force shift may be present,
as well as possible non-linear effects due to the misalignment of the apparatus (see Fig. 5.6).
For the example line scan in Fig. 5.2, the results for κ and ν0,e are given in the legend of
Fig. 5.2(b). The faint blue region shows the one standard deviation (1σ) uncertainty region
calculated from the covariance matrix values resulting from the fit1.

5.2 1S-2S transition line scans

The 1S-2S laser frequency needs to be accurately matched to the 1S-2S resonance in order to
achieve the maximal number of metastable 2S atoms, thereby maximizing the 2S-6P signal.
The natural linewidth of the 1S-2S transition is only 1.3 Hz, but the broadening mechanisms
due to ionization, time-of-flight, as well as the ac-Stark and second-order Doppler effects,
lead to the experimental linewidth of ∼ 4 − 5 kHz. Recalling Section 3.2.1, the 243 nm laser
light for the two-photon excitation of the 1S-2S transition originates from the master laser
at 972 nm. Therefore, the transition linewidth in units of the detuning of the master laser
is 2 × 2 × 2 = 8 times smaller (two frequency doublings and the two-photon excitation),
which is ∼ 5 kHz/8 ' 0.6 kHz. As discussed in Section 3.2.3, the master laser frequency
drifts by ∼ 0.1 kHz/h, and thus needs to be adjusted on the timescale of hours during the
measurement. During the 2S-6P measurement campaign, we regularly perform line scans of
the 1S-2S resonance and adjust the laser frequency to the maximal signal. Comparing the

1For a linear function y(x) = a + b x with fit parameters a and b, the variance in y is given by: σ2
y =

σ2
a(∂y/∂a)2 + σ2

b (∂y/∂b)2 + σab(∂y/∂a)(∂y/∂b) + σba(∂y/∂b)(∂y/∂a) = σ2
a + x2σ2

b + 2xσab, where σ2
a and σ2

b

are the variances of parameters a and b, and σab = σba are their covariances, which are determined from the
covariance matrix ((σ2

a, σab), (σba, σ
2
b )) of the fit. The 1σ uncertainty region is given by y ± σy.
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Figure 5.3: Example of the 1S-2S resonance line scans and the drift of the 1S-2S laser detuning
throughout the measurement day. (a) Solid curves show the Lorentzian fits to the data (markers
with error bars representing shot noise) on a specific day and time (22.7.2021, 15:32) from the 2S-6P
fluorescence signal in dependence on the 1S-2S Scan AOM (see Fig. 3.5) detuning as seen by atoms.
Three delays are exemplarily shown: delay 2 (D. 2, blue), delay 13 (D. 13, orange) and delay 16
(D. 16, red). The frequency offset is here chosen such that the center frequency for the delay 2 is
approximately zero at this time of the measurement day. The Lorentzian fit results for the center
frequency ν0 and the linewidth Γ are given in the legend. However, note that the Lorentzian does not
describe the data properly since the resonance lines are distorted, which is expected from simulations
(see Fig. 5.4). Faint dashed curves show the fits to the data on the same measurement day but
around 4 hours later. The center frequency is different by ∼ 2.5 kHz due to the linear drift of the laser
frequency (see Section 3.2.3). (b) The blue line shows the laser detuning relative to the prediction of
the unperturbed resonance frequency (“1S-2S theory detuning” ∆ν1S-2S) in dependence on the daytime
(the uncertainty on ∆ν1S-2S is ∼0.2 kHz due to the absolute frequency reference, see Section 3.2.3).
Gray vertical dotted lines represent the times when the 1S-2S Scan AOM was adjusted to compensate
for the drift of the laser frequency. The gray dashed line shows how ∆ν1S-2S would drift without the
adjustment of the laser detuning between the two times from (a).

measured line center to the prediction1, the detuning ∆ν1S-2S from the unperturbed resonance
frequency (“1S-2S theory detuning”) can be extracted, which is one of the input parameters
for the simulations for the determination of the mean speed in each delay (recall Table 3.1).
This detuning is on the order of ∼ 1 kHz and mainly originates from the ac-Stark and the
second-order Doppler shifts.

Fig. 5.3 shows an example of two 1S-2S resonance line scans during a measurement day,
and illustrates how the 1S-2S Scan AOM (see Fig. 3.5) is adjusted to compensate for the
drifting laser frequency. In Fig. 5.3(a), solid curves show the Lorentzian fits to the data on
a specific day and time (22.7.2021, 15:32). The signal originates from the 2S-6P fluorescence
signal, and is shown in dependence on the 1S-2S Scan AOM detuning as seen by atoms (which
is 8 times larger than the detuning of the 972 nm master laser). Different colors represent

1As discussed in Table 2.2, theory predicts the 1S-2S transition frequency only with an uncertainty of few
kHz. However, the 1S-2S frequency in deuterium has been measured more accurately, resulting in the 1S1/2-
2S1/2 hyperfine centroid frequency of ν1S-2S,centr. = 2 466 732 407 521 641(25) Hz [54]. Together with the hyper-
fine splittings of the 1S and 2S states of ∆HFS,1S = 327 384 352.5222(17) Hz and ∆HFS,2S = 40 924 454(7) Hz, the

prediction for the 1S
F=1/2

1/2 -2S
F=1/2

1/2 transition frequency with linearly polarized light excitation (see Fig. 2.2)

is ν1S-2S,centr. + 2
3
∆HFS,1S − 2

3
∆HFS,2S = 2 466 732 598 494 907(26) Hz.
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Figure 5.4: Simulation of the 1S-2S resonance from the 2S-6P fluorescence signal following the proce-
dure described in Section 3.3. (a) The simulated 2S-6P fluorescence signal is shown as crossed markers
in dependence on the 1S-2S theory detuning ∆ν1S-2S for the 1S-2S laser power of P1S-2S = 1.5 W,
nozzle temperature TN = 7.1 K, cutoff speed vcutoff = 120 m/s (for other simulation parameters see
Table 3.1). Five different delays are represented by different colors. For each delay, the legend shows
the 1S-2S theory detuning ∆ν1S2S,max, where the 2S-6P fluorescence signal is maximal. To guide
the eye, the curves show the Lorentzian fit with the center frequency ν0 given in the legend. Since
the resonance lines are distorted, the center frequency of the Lorentzian fit does not correspond to
∆ν1S2S,max. (b) ∆ν1S2S,max is shown in dependence on the delay number for three values of P1S-2S

(other parameters same as in (a)), where the case from (a), P1S-2S = 1.5 W, is represented in blue.

the three different delays, for which the fit results for the center frequency and the linewidth
are given in the legend. Note that the Lorentzian fits do not properly describe the distorted
resonance lineshapes, and hence are here only used as a rough estimate of the center frequency.
The frequency offset is chosen such that the center frequency for the delay 2 approximately
corresponds to zero for the line scan at 15:32. Faint markers with faint dashed curves show
the 1S-2S line scan around 4 hours laser during the same day. The center frequency is here
different by ∼ 2.5 kHz due to the drift of the laser frequency. The reduced amplitude is
attributed to changing atomic beam formation over time (see Section 3.6.1).

Comparing to the prediction of the unperturbed transition frequency, for the line scans
from Fig. 5.3(a), we find that the frequency with maximum signal corresponds to the 1S-2S
theory detuning of ∆ν1S-2S = 0.9(2) kHz, with the uncertainty from the absolute frequency
reference (see Section 3.2.3). At 15:32, the frequency of the “Scan AOM” has been set
such that ∆ν1S-2S = 0.3(2) kHz in order to pre-compensate the laser drift out of resonance.
Fig. 5.3(b) shows the linear drift of ∆ν1S-2S in between the laser detuning adjustments (vertical
dotted lines represent the time when the frequency of the 1S-2S scan AOM (see Fig. 3.5) is
adjusted). If the laser detuning would have been not adjusted in between the two times shown
in Fig. 5.3(a), ∆ν1S-2S would have changed by ∼ 2.5 kHz, which would result in a reduced
2S-6P fluorescence signal. With adjustments, ∆ν1S-2S is usually kept between ∆ν1S-2S =
0.5 . . . 1.5 kHz, such that the 2S-6P signal is nearly optimal. For the data analysis, one has to
bear in mind that ∆ν1S-2S is one of the parameters which affects the velocity distribution of
atoms in each delay (see Table 3.1).

It is instructive to compare the measured 1S-2S resonance lines to simulations, which
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are shown in Fig. 5.4. Fig. 5.4(a) shows the simulation of a 1S-2S resonance line scan,
where the 2S-6P fluorescence signal (crossed markers) has been simulated as described in
Section 3.3 for different ∆ν1S-2S. Other parameters are: 1S-2S laser power P1S-2S = 1.5 W,
nozzle temperature TN = 7.1 K, cutoff speed vcutoff = 120 m/s, as well as the remaining fixed
parameters from Table 3.1. Different colors exemplarily show five delays. For each delay,
one can determine the 1S-2S detuning ∆ν1S2S,max, for which the 2S-6P fluorescence signal
is maximal. These values are given in the legend. To guide the eye, solid curves show the
Lorentzian fits, with the center frequency ν0 and the linewidth Γ given in the legend. In
agreement with the measurement from Fig. 5.3(a), the resonance lineshapes are distorted.
Therefore, the Lorentzian center frequency does not correspond to ∆ν1S2S,max. Note that
since the Lorentzian function does not properly describe the lineshape, the fit result depends
on the specific sampling of simulation points and the detuning range. Nevertheless, the
approximate agreement of the resonance linewidth between the simulation in Fig. 5.4(a)
and the measurement in Fig. 5.3(a) confirms the modeling of the experiment. Furthermore,
in agreement with observations, we find the optimal detuning of ∆ν1S-2S,max∼ 1 kHz. This
agreement is also a crosscheck of the absolute laser frequency determination, where the 1S-2S
transition can be considered as a clock.

Fig. 5.4(b) shows the optimal detuning ∆ν1S-2S,max (crossed markers connected by straight
lines to guide the eye) in dependence on the delay number. Three different 1S-2S laser
power values are represented by different colors, with other simulation parameters same as in
Fig. 5.4(a). The case P1S-2S = 1.5 W from Fig. 5.4(a) is shown in blue. Between the delays,
∆ν1S-2S,max varies by ∼ 0.4 kHz, with the tendency of higher ∆ν1S-2S,max for slower atoms
(larger delay numbers). This can be attributed to the fact that slower atoms experience a
smaller second-order Doppler shift (given by Eq. (2.29) with νA,0 ' 2.47 × 1015 Hz). For
mean speeds between ∼ 60 m/s (delay 16) and ∼ 280 m/s (delay 2), the second-order Doppler
shift varies between −0.05 kHz and −1.1 kHz, which compensates the positive ac-Stark shift.
However, the general behavior is a complex interplay between various effects for each delay, for
instance between the second-order Doppler shift, the ac-Stark shift, the ionization broadening,
the time-of-flight broadening and the atomic trajectories through the approximately Gaussian
1S-2S laser beam.

Relying on the simulations, it is in principle conceivable to extract the 1S-2S transition
frequency from the acquired 1S-2S line scans during the 2S-6P measurement campaign. Note
that to extract the Rydberg constant and the deuteron radius from the 2S-6P measurement
in combination with the 1S-2S measurement (without significant reduction of uncertainty),
the 1S-2S transition frequency only needs to be known within a moderate uncertainty of
∼ 0.5 kHz. In principle, one could fit the simulated distorted resonance lineshapes to the data
for a more accurate determination of the transition frequency. For a future measurement
campaign, one may plan for additional 1S-2S line scans at different 1S-2S laser powers to
extrapolate the 1S-2S transition frequency at zero laser power, thereby additionally testing
the numerical modelling of the experiment as well as experimentally determining the ac-Stark
shift.

5.3 Alignment of the atomic beam

The active fiber-based retroreflector (AFR, see Chapter 4) needs to be accurately aligned
w.r.t. the atomic beam, such that the angle α = 90◦ + δα between the counter-propagating
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2S-6P laser beams and the atomic beam is as close as possible to 90◦, i.e. |δα| as small as
possible. Note that for the perfect AFR, any non-zero δα still leads to a complete cancellation
of the Doppler shift. However, even in the case of a perfect AFR, it is advantageous to
minimize δα to achieve the minimal linewidth of the resonance. As outlined in Chapter 4,
we try to minimize all imperfections such as spherical aberrations in the AFR. However,
some imperfections remain, such as the “orange-peel” structure of the collimated beam (see
Fig. 4.12) or the residual astigmatism (see Fig. 4.9). Therefore, in reality the AFR has only
a finite suppression factor of the Doppler shift, such that minimizing δα through accurate
alignment is important to minimize the Doppler shift.

At the beginning of each freezing cycle, the variable atomic beam apertures are calibrated
and set to the center position with the typical width of 1.2 mm using the alignment laser, which
itself is aligned to co-propagate with the 1S-2S laser beam (see Section 3.1.2). Then the nozzle
is aligned with the 1S-2S laser beam. The goal is to position the nozzle such that the 1S-2S
laser beam passes through the center of the nozzle. For the deuterium 2S-6P measurement
campaign, this positioning was performed with the help of the alignment stage of the new
cryostat. Using the cryostat alignment stage, the nozzle is moved in both horizontal and
vertical directions while the transmission of the 1S-2S laser is monitored. The positions where
the nozzle begins to clip the 1S-2S beam are identified, from which the horizontal and vertical
center positions are determined. The hydrogen 2S-6P measurement campaign was performed
with the old cryostat, which did not have an accurate alignment stage. Instead, the positioning
of the nozzle was performed with the help of the nozzle imaging system (see Sec. 4.5.2.5 of [71]).
In the beginning of the deuterium 2S-6P measurement campaign, both alignment methods
were compared. It was observed that the nozzle positioning using the nozzle imaging system
was inconsistent with the nozzle positioning using the cryostat alignment stage by ∼ 0.2 mm
in both horizontal and vertical directions, i.e. by ∼ 10% of the 2 mm nozzle diameter. If
the nozzle alignment was performed with the nozzle imaging system, for the AFR “switched
off” (with closed shutter SH in Fig. 4.2, such that only the forward-propagating 2S-6P is
present and the atoms experience the full Doppler shift) differrent velocity classes of atoms
were observed to have different Doppler slopes, as shown below. If the nozzle alignment was
performed with the cryostat alignment stage, this effect was less pronounced, such that for
the remaining measurement campaign the nozzle was aligned with the cryostat alignment
stage. The discrepancy between the two alignment methods reveals an asymmetry present
in the apparatus, which may originate from the imperfect alignment of the 1S-2S (243 nm)
cavity w.r.t. the atomic beam apertures attached to the vacuum chamber floor, as described
in Section 3.1.2. In the future, the vacuum chamber may be more reliably aligned after the
planned upgrade of the apparatus for differential pumping, where the core part of the vacuum
setup (including the AFR) will be placed on the rods holding the 1S-2S cavity ( ER spacer
Invar rods in Fig. 3.3) with special screws allowing for an accurate alignment.

After the nozzle has been aligned to the 1S-2S laser beam, the AFR is aligned w.r.t. the
atomic beam. This is achieved with the alignment actuator, which changes the angle α =
90◦ + δα between the atomic beam and the 2S-6P laser beam in the AFR (AA in Fig. 3.4
and Fig. 3.3). In the following, we denote the alignment angle which is set by the actuator
as δα̃. The goal is to find the actuator position δα̃0, which corresponds to zero δα. This can
be done in two ways. First, using a shutter before the mirror reflecting the 2S-6P laser beam
( SH in Fig. 4.2), the AFR is “switched off”, such that only the forward-propagating laser
beam is present. The atoms therefore experience the full first-order Doppler shift, which can
be measured for different actuator angles δα̃. The minimal Doppler shift then corresponds
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Avg.: δα̃0= 0.397(4)deg

Figure 5.5: Alignment of the angle α = 90◦ + δα between the atomic beam and the 2S-6P laser beam
in the AFR with two methods. (a) and (b) show the data with AFR “switched off”, where only the
forward-propagating beam is present, as illustrated by the upper scheme. In (a), the Doppler shift
∆νD is plotted versus the mean atomic speed v of each delay for different values of the alignment
angle δα̃ set by the actuator. The lines show linear fits from which the Doppler slope κ for each value
of δα̃ is determined. The red circle shows the average value for the crossing point between each pair
of the lines. The legend shows the corresponding colors for each value of δα̃, as well as the average
values of the crossing point. In (b), the Doppler slope κ as determined from the fits in (a) is plotted
versus δα̃. The linear fit κ = βD(δα̃− δα̃0) (green line) determines the actuator position δα̃0 with zero
κ, which corresponds to zero δα (α = 90◦). The theoretical prediction for βD is shown as a dotted
line. (c) shows the data with AFR “switched on”, i.e. where the Doppler shift is suppressed by the
superimposed forward- and backward-propagating laser beams. The finite atomic beam divergence
leads to the Doppler-broadened resonance linewidth Γ, which is plotted versus δα̃ for five exemplary
delays (different colors). Dashed curves show quadratic fits to the data, where the minimum determines
δα̃0 given in the legend. The dashed vertical line shows the average value for all delays. The values for
δα̃0 between the two methods in (b) and (c) disagree by ∼ 0.01 deg, which is attributed to the residual
misalignment effects discussed in Fig. 5.6 and Fig. 5.7.

to the actuator angle δα̃0 (where δα is zero). Second, with the AFR “switched on”, where
both forward- and backward-propagating beams are present, the Doppler-broadend 2S-6P
resonance linewidth Γ is measured for different actuator angles δα̃. The minimal linewidth Γ
then determines δα̃0.

An example of the α angle alignment with both methods is shown Fig. 5.5. For this
measurement, the alignment actuator is moved to the lowest value of δα̃, and then δα̃ is
incrementally increased, where for each value of δα̃ the 2S-6P resonance is measured with AFR
“switched on” and AFR “switched off”. Therefore, the actuator is incrementally moved in one
direction, which removes errors due to the absolute on-axis accuracy or backlash. In Fig. 5.5(a)
and (b) the AFR is “switched off”, i.e. the shutter blocks the backward-propagating beam.
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Fig. 5.5(a) shows the Doppler shift (relative to the theoretical prediction of the resonance line
center) for different values of δα̃ (represented by different colors) versus the mean atomic speed
v from each delay. For each value of δα̃, the Doppler slope κ from Eq. (5.1) is determined,
which is shown in Fig. 5.5(b). The green line shows the linear fit of κ = βD(δα̃−δα̃0), with fit
results for βD and the optimal angle δα̃0 given in the legend. The value of βD can be compared
to the prediction βD = −νA,0/c ' −42.55 kHz/(m/s)/deg, shown as dotted line in Fig. 5.5(b),
where νA,0 is the 2S-6P resonance frequency (see Eq. (2.28)). This comparison checks the
numerical modeling of the experiment, which determines the mean atomic speed in each
delay (see Section 3.3). However, also the conversion factor of the linear alignment actuator
to the angular scale enters the comparison, as well as possible systematic uncertainties from
misalignment of the apparatus (see below) and the systematic effects from the resonance line
fits. Here, the disrepancy between measured and calculated βD is around ∼ 3 kHz/(m/s)/deg,
which is ∼ 10% of the slope. This discrepancy is mainly attributed to systematic shifts of
resonance lines with large Doppler shifts, which are fitted with a symmetric fit function
but have a slightly asymmetric line shape1. Another check is the crossing point of linear
fits from Fig. 5.5(a). In the ideal case, all slopes should cross at zero mean speed and zero
Doppler shift. The data from Fig. 5.5(a) gives an average crossing point at −1(2) m/s, which is
compatible with zero, and 0.09(1) MHz, which disagrees with zero Doppler shift by ∼ 0.1 MHz.
However, the chi-square per degree of freedom for both horizontal and vertical average values2

is χ2
red∼ 7, which indicates a scatter due to systematic effects.

Fig. 5.5(c) shows the data with the AFR “switched on”, i.e. with both forward- and
backward-propagating beams, such that the Doppler shift is suppressed. The finite atomic
beam divergence leads to the Doppler-broadend linewidth Γ, which is plotted as a function
of δα̃ for five exemplary delays represented by different colors. The dashed curves show the
quadratic fits, from which the angle δα̃0 with minimal Γ is determined for each delay. Note
that there is a slight inconsistency of values between different delays (∼ 0.01 deg between
delay 2 and 13), which is attributed to the residual misalignment effects discussed below.
The vertical dashed line shows the average over all delays (see legend for the value). The
values for δα̃0 between the two methods (compare Fig. 5.5(b) with Fig. 5.5(c)) agree within
∼ 0.01 deg. This number approximately corresponds to the possible backlash error of the
actuator for setting δα̃0 after the alignment3.

The alignment procedure described above is also important to identify possible nozzle
misalignments in the apparatus. An example of the data where nozzle misalignment is clearly
observed is presented in Fig. 5.6. The Doppler shifts shown in Fig. 5.6(a) clearly do not
scale linearly with the mean atomic speed. In other words, different velocity groups of atoms
are subject to different Doppler slopes, such that the alignment angle for zero Doppler shift
differs between the velocity groups. Therefore, the linear fit does not adequately describe
the data. This systematic error manifests in a crossing point which is off by ∼ 1 MHz from
the expected zero Doppler shift (relative to the theoretical prediction of the resonance line

1The resonance line shape of atoms is convoluted with the speed distribution of the atomic beam, and thus
leads to line shape distortions in the case of the “AFR switched off” with large Doppler shifts, which has been
simulated to cause ∼ 10% systematic effects (see Chapter 7 in [71]).

2The uncertainties for the crossing point values given in the legend of Fig. 5.5(a) have been scaled by
√
χ2

red.
3The absolute on-axis accuracy of the alignment actuator is 0.13 mm=̂0.12 deg (see footnote in Section 3.1.2

for specification details), which is the most conservative limit on setting the actuator to δα̃0 after the alignment.
However, here only the relative accuracy w.r.t. the first alignment value of δα̃ matters. Such a relative accuracy
is not specified, but may be expected to be at least on the same order as the backlash of 8 µm.
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(c)Delay 2: δα̃0 = 0.347(2)deg

Delay 8: δα̃0 = 0.423(2)deg

Delay 11: δα̃0 = 0.461(2)deg

Delay 13: δα̃0 = 0.467(4)deg

Delay 16: δα̃0 = 0.47(3)deg

Avg.: δα̃0= 0.39(3)deg

Figure 5.6: Similar to Fig. 5.5, here showing the data where clear nozzle misalignment is observed.
The 1S-2S laser beam is estimated here to be off-center by ∼ 0.2 mm or ∼ 10% of the 2 mm nozzle
diameter. In (a), it is observed that different velocity groups of atoms experience different Doppler
slopes, such that the linear fits do not adequately describe the data. The value for δα̃0 determined in
(b) is therefore strongly subject to this systematic error, and is discrepant with the average value for
δα̃0 from (c) by ∼ 0.1 deg. The data in (c) also confirms that the angle δα̃0 differs between different
velocity groups of atoms.

center), as well as in the ∼ 0.1 deg discrepancy of the value for δα̃0 from the fit in Fig. 5.6(b)
compared to the average value of δα̃0 from Fig. 5.6(c). Furthermore, Fig. 5.6(c) confirms that
the optimal angle δα̃0 differs between the different velocity groups of atoms, i.e. the values
δα̃0 are inconsistent in between the delays (∼ 0.12 deg between delay 2 and 13 which is an
order of magnitude larger than in Fig. 5.5(c)).

The data set in Fig. 5.6 was obtained with the nozzle being aligned using the nozzle
imaging system, whereas in Fig. 5.5 the nozzle was aligned using the cryostat alignment stage1.
The cryostat alignment lead to similar alignment results as shown in Fig. 5.5 throughout the
whole measurement campaign. However, it is not fully resolved why the nozzle imaging
system did not agree with the cryostat alignment and lead to Doppler shift asymmetries2.
The difference in the nozzle position between the two alignment methods is ∼ 0.2 mm or
∼ 10% of the 2 mm nozzle diamter. In hydrogen 2S-6P test measurements similar Doppler
shift inconsistencies between velocity groups (“kink” of Doppler shifts for fast atoms) were
observed for nozzle misalignments on the order of ∼ 10% of the nozzle diameter. If the
nozzle is misaligned in the opposite direction, the “kink” also changes direction. Note that in

1The data from Fig. 5.6 is from a different measurement day than Fig. 5.5, such that the values for δα̃0 are
also subject to day-to-day fluctuation.

2One possible reason could be that the incoming 1S-2S laser beam was not aligned to the center of the
1S-2S incoupler cavity mirror, such that some asymmetries could enter the imaging of the nozzle. Another
reason could be that the atomic beam apertures are not perfectly aligned with the 1S-2S laser beam, which
leads to asymmetries of the nozzle imaging. In the hydrogen 2S-6P measurement, the higher-order modes
of the 1S-2S cavity (up to the TEMn,m modes with n + m = 10) could be used to check for the alignment
of the apertures. However, for the deuterium 2S-6P apparatus, the 1S-2S laser system was upgraded, such
that the mode-matching was modified (see Section 3.2.1). The mode-matching was optimized to minimize the
contribution of higher-order modes. However, with this better mode-matching, the higher order modes which
were used for the alignment of the vacuum chamber are not visible anymore. In the future, one may think of
worsening the mode-matching to allow for this possibility again.



216 5. Preliminary Measurement of the 2S-6P Transition in Atomic Deuterium

Figure 5.7: Illustration of aligned (a) and misaligned (b) nozzle w.r.t. the 1S-2S laser beam. Three
exemplary fans of atomic beam trajectories are drawn for each case: one fan of trajectories originating
from the center of the 1S-2S laser beam, and two fans of trajectories originating from either of the
nozzle edges. For both cases, it is assumed that the 1S-2S laser beam is perfectly aligned with the
aperture which collimates the atomic beam. Trajectories which lead to a Doppler blueshift of the
2S-6P resonance in case of the orthogonal configuration between the 2S-6P laser beam and the 1S-2S
laser beam (“blue-shifted trajectories”) are drawn in blue, and the trajectories which lead to a Doppler
redshift (“red-shifted trajectories”) are drawn in red. In (a), the nozzle is aligned such that the 1S-2S
laser beam passes through the center of the nozzle. Due to the symmetry, there is exactly the same
number of blue- and red-shifted atomic trajectories, such that the total Doppler shift is cancelled if the
1S-2S laser beam is perfectly orthogonal to the 2S-6P laser beam. The optimal angle of the 2S-6P laser
beam is equal for all speeds of atoms (α = 90◦). In (b), the nozzle is misaligned, here exaggeratedly
such that the 1S-2S laser beam passes through the edge of the nozzle. The contribution of blue- and
red-shifted trajectories is unequal, such that the orthogonal configuration between the 1S-2S and the
2S-6P laser beams is not optimal. For the case shown here, there is an angle α < 90◦ between the
1S-2S and the 2S-6P laser beams, for which the total Doppler shift of the resonance is zero. This angle
depends on the mean speed of atoms, since the excitation and ionization dynamics differ between the
various velocity groups of atoms. This situation is observed in Fig. 5.6.

Fig. 5.5(a), for values of δα̃ with large Doppler shifts, also small “kinks” are visible. However,
they are symmetric and can be explained by the non-perfect assignment of mean speeds to
the delays1. On the other hand, the asymmetric “kinks” from Fig. 5.6(a) cannot be explained
by the different assignment of mean speeds.

The effect of different Doppler slopes for different velocity groups of atoms can be under-
stood as follows. Fig. 5.7(a) illustrates the case where the nozzle is perfectly aligned, such
that the 1S-2S laser beam passes through the center of the nozzle. The 1S-2S laser beam
is here shown to be perfectly orthogonal to the 2S-6P laser beam. The aperture between
the nozzle and the 2S-6P laser beam is assumed to be perfectly aligned with the 1S-2S laser
beam. Three exemplary fans of atomic beam trajectories are drawn: one fan of trajectories
originating from the center point of the nozzle, as well as two fans of trajectories from the edge

1In fact, in the future one may use this data to correct the mean speeds in each delay and infer more
information about the velocity distribution.
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of the nozzle1. The trajectories which are oriented towards the incoming 2S-6P laser beam
experience a Doppler shift towards a higher resonance frequency (“blue-shifted trajectories”)
and are drawn in blue. The opposite case is drawn in red (“red-shifted trajectories”). If the
aperture size is smaller than the nozzle diameter, all trajectories which originate from the
edge of the nozzle are here either blue- or red-shifted, which is illustrated by the correspond-
ing color of the fan. In the perfectly symmetric case, there is an equal number of red- and
blue-shifted trajectories, such that the optimal angle (where the Doppler shift of the resulting
resonance from all trajectories is cancelled) between the 1S-2S laser beam and the 2S-6P laser
beam is α = 90◦ for both slow and fast atoms.

Fig. 5.7(b) shows the case of a misaligned nozzle, again in an exaggerated fashion, where
the 1S-2S laser beam passes close to one edge of the nozzle. There is now an imbalance
between the red- and blue-shifted trajectories. Therefore, the optimal angle α between the
1S-2S laser beam and the 2S-6P laser beam, for which the total Doppler shift is zero, is not
α = 90◦ anymore, but for the example here α < 90◦. The relative contribution between the
trajectories originating within and outside the 1S-2S laser beam depends on the excitation
and ionization dynamics, which differs between the various velocity groups of atoms. This
illustrates how atoms with different mean speeds can observe different Doppler slopes. The
angle between the 1S-2S laser beam and the 2S-6P laser beam, where the total Doppler shift
is zero, is then different depending on the velocity group, which is observed in Fig. 5.6. Slow
atoms tend to be more likely ionized if they spend too much time in the 1S-2S laser beam,
such that the signal contribution of trajectories crossing the 1S-2S laser beam under an angle
is larger than for fast atoms2. On the other hand, the signal contribution of fast atoms is
dominated by trajectories along the 1S-2S laser beam, since for fast atoms the ionization is
negligible. Therefore, with increasing speed, the center of weight of the atomic beam shifts
towards trajectories propagating along the 1S-2S laser beam.

In the case of a perfect AFR with two counter-propagating beams (perfect Doppler shift
suppression), the above nozzle misalignment does not give rise to a systematic line shift,
because the Doppler shift is cancelled independent of the atomic angle. However, as discussed
in the beginning of this section, in reality the AFR has only a finite Doppler shift suppression
factor. Therefore, nozzle misalignments can affect the 2S-6P frequency measurement. Indeed,
the precision data from Fig. 5.10 indicates a non-linear structure of the center frequency in
dependence on the mean speed, similar to what is exaggeratedly observed in Fig. 5.6.

5.4 Stray electric fields measurements

The procedure for in-situ stray electric field measurements has been explained in Section 3.5.2.
Here, Fig. 5.8 shows the results for all stray electric field data throughout the measurement
campaign. Each measurement determines the stray electric field value ∆F , the effective dc-

1Note that the situation is here greatly exaggerated for illustration purposes. In reality, only very few
atomic beam trajectories originate from the edge of the nozzle due to geometrical constraints, as there is no
direct line of sight to the nozzle walls for most of possible trajectories. The majority of atomic trajectories
originates from atom-atom collisions in the nozzle, which have a direct line of sight to the 2S-6P interaction
region.

2One way to quantify this is to calculate the average distance l1S−2S,i = T 1S-2S,i × vi, which the atom
spends in the 1S-2S for each delay i, where T 1S-2S,i is the average interaction time of those trajectories which
interacted with the laser, and vi is the mean speed. From simulations we find that l1S-2S,i rapidly drops from
l1S-2S,1∼ 0.15 m for the first delay (fast atoms) to l1S-2S,13∼ 0.04 m for the last delays (slow atoms).
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Figure 5.8: In-situ stray electric field measurement results for each measurement day. The procedure
for the determination of stray electric fields is explained in Section 3.5.2. For a given spatial direction,
each stray electric field measurement yields the stray electric field value ∆F , the effective dc-Stark
coefficient β̃dc and the dc-Stark shift ∆νdc,2S−6P. These three quantities are shown for the measure-
ments in the x, y, and z directions in (a), (b) and (c), respectively. The horizontal bars show the
weighted average results.

Stark coefficient β̃dc and the dc-Stark shift ∆νdc,2S−6P. Typically, on each measurement day
two stray electric field determinations in each of the three spatial directions are performed. In
the x and z directions, the average stray electric field is consistent with zero. In the vertical
y direction, the average value is significantly above zero: ∆F y = −0.26(3) V/m. This electric
field corresponds to a dc-Stark shift of around −0.1 kHz. Note that the average value for the
dc-Stark shift from Fig. 5.8 does not correspond to the dc-Stark shift with the average value
for the stray electric field, because the electric field enters quadratically to the dc-Stark shift
calculation.

For the preliminary uncertainty budget, it is assumed that the stray electric field is con-
stant throughout the whole measurement campaign, with the corresponding average values
∆F x, ∆F y, ∆F z as determined in Fig. 5.8. Assuming these values, we compute the dc-Stark

shift with the corresponding measured average coefficients (see Eq. (3.16)) β̃dc,x ≡ β̃dc,x,

β̃dc,y ≡ β̃dc,y, and β̃dc,z ≡ β̃dc,z as:

∆νdc,2S-6P = −
√(

β̃dc,x∆F
2
x

)2
+
(
β̃dc,y∆F

2
y

)2
+
(
β̃dc,z∆F

2
z

)2
= −98(25) Hz, (5.2)

where in the last step we gave the number with the values from Fig. 5.8. Note that this
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estimation of the dc-Stark shift gives a more conservative limit as compared to the averaged
dc-Stark shift from the bottom plots in Fig. 5.8, which would yield −20(6) Hz.

A non-zero electric field in the vertical y direction has also been repeatedly observed in
the hydrogen 2S-6P measurement campaign and is suspected to be caused by the temper-
ature gradient along the detector, as has been mentioned in Section 3.5.2. Therefore, for
the final data analysis, it may be more appropriate to correct the data for each day with
the corresponding value of the dc-Stark shift separately. During the deuterium 2S-6P mea-
surement campaign, the apparatus was not in operation for two days between measurement
day 3 and measurement day 4, which may have caused the small drop of observed dc-Stark
shift in Fig. 5.8(b). In this case, one may also divide the data into two groups (day 1-3 and
day 4-5), with separate dc-Stark shift corrections. However, as summarized in Table 5.3, the
dc-Stark shift correction is small compared to other corrections, such that for the preliminary
measurement presented here, these different ways of analyzing the dc-Stark shift do not make
a notable difference. Note that the largest observed dc-Sark shift from Fig. 5.8 is −0.3(1) kHz
(average of top and bottom detectors for the first measurement in the y direction on day 4),
which is ∼20% of the total uncertainty according to Table 5.3. However, the future deuterium
2S-6P precision measurement may reach the similar uncertainty as the hydrogen 2S-6P mea-
surement (0.6 kHz according to the preliminary analysis in [71]), where the different ways of
analyzing the dc-Stark shift would become important.

5.5 Preliminary analysis of precision line scans

Here, the preliminary analysis of the precision line scans for the 2S-6P1/2 transition mea-
surement data is presented. The majority of precision line scans was collected at the 2S-6P
laser power of P2S-6P = 30 µW (see Table 5.1), which contribute most significantly to the
result. Therefore, first we show the analysis of this data group in order to demonstrate the
analysis procedure. In total, the preliminary analysis includes 317 precision line scans at
P2S-6P = 30 µW. Two ways of performing the extrapolation for different mean speeds of
atoms of the 16 delays are presented: first, one can analyze each line scan separately (as
in Fig. 5.2), and then average the results of all line scans. This approach is carried out in
Section 5.5.1. Second, one can average the center frequencies of all line scans for each delay,
and then perform the extrapolation, which is demonstrated in Section 5.5.2. Section 5.5.3
summarizes the analysis results of the precision line scans at all laser powers along with simu-
lation corrections. Section 5.5.4 presents the preliminary uncertainty budget and corrections
for determining the hyperfine centroid of the 2S1/2-6P1/2 transition.

As introduced in Section 5.1, we here define the center frequencies ν0,a and ν0,e to be the
difference to the theoretical laser frequency prediction with a random blind offset, which is
created from a normal distribution centered around zero with a standard deviation of 12 kHz.
The numerical value of the blind offset is encoded in the analysis scripts in characters, such
that the blind offset is not given in numbers, but as a string of characters to the input settings
of the analysis code. For each line scan, as in Fig. 5.2, the center frequencies are determined
relative to the detuning of the 2S-6P1/2 transition, which is calculated from the measured
laser frequency (see Section 3.2.3) relative to the prediction including the blind offset.
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5.5.1 Extrapolation of delay center frequencies for individual line scans

As shown in the example line scan of Fig. 5.2, for each line scan one can determine the average
center frequency ν0,a over all delays, as well as the extrapolated frequency ν0,e along with the
slope κ according to Eq. (5.1). Fig. 5.9 shows the results for all 317 precision line scans at
P2S-6P = 30 µW, where the data from the top (blue markers) and bottom (orange markers)
detectors is shown along with the error bars according to the fit uncertainties. The averages
of all data from both detectors are shown as gray lines. The legends list the corresponding
averages over all line scans with the χ2

red values. The histograms on the right show the
distributions of the data from the top (blue) and botton (orange) detectors, where curves
show the normal distribution fits, with mean values µ and standard deviations σ given in
the legends. The average value for ν0,a has a statistical uncertainty of ∼ 0.2 kHz and shows
an excess scatter with χ2

red∼3. The statistical uncertainty of the average value for ν0,e is
∼ 0.7 kHz with a lower χ2

red∼1.6. The main origin of excess scatter is attributed to the atomic
flux fluctuations caused by nozzle temperature fluctuations, which are expected to have a
larger effect on ν0,a than on the extrapolation.

Note that the extrapolation depends on the mean speeds v assigned to each delay. As
explained in Section 3.3, these mean speeds are determined from simulations, which depend
on various experimental parameters (see Table 3.1). There are four parameters which vary
throughout the measurement campaign: the 1S-2S laser power P1S-2S, the 1S-2S laser detuning
∆ν1S-2S, the cutoff velocity vcutoff, and the nozzle temperature TN. For the analysis in Fig. 5.9,
these parameters are set for all line scans to be equal to P1S-2S = 1.5 W, ∆ν1S-2S = 0.8 kHz,
vcutoff = 100 m/s, TN = 7.1 K. The sensitivity of the result to these simulation parameters is
evaluated in Table 5.2, which shows the average values for ν0,e and κ for different simulation
parameter sets. The parameters are varied within the most conservative ranges P1S-2S =
1.1 . . . 1.7 W, ∆ν1S-2S = 0.0 . . . 2.0 kHz, vcutoff = 0 . . . 300 m/s, TN = 7.0 . . . 7.5 K. For each
parameter set, the mean speeds v in each delay are determined and the data analysis is
repeated. Table 5.2 lists the simulation results for v in three exemplary delays (2, 13, and
16). The last two columns in Table 5.2 give the measurement result for ν0,e and κ, which have
been determined with the corresponding delay velocities. The first row lists the result from
Fig. 5.9. Compared to other simulation parameter sets, ν0,e varies maximally by ∼ 0.5 kHz,
and κ by ∼ 4 Hz/(m/s). Therefore, even for these most conservative simulation parameter
ranges, the result for ν0,e varies only within a fraction of the total estimated uncertainty
(∼ 1.7 kHz, see Table 5.3). The result is most sensitive to the 1S-2S detuning ∆ν1S-2S, which
is measured to ∼ 0.2 kHz as discussed in Section 5.2. Therefore, for the final analysis, each
line scan can be evaluated with a different set of mean speeds according to the parameter set
which best describes the experimental condition at the corresponding measurement time.

5.5.2 Extrapolation of averaged delay center frequencies

Another way of analyzing the data is to average the center frequencies in each delay separately
for all line scans, and then average or extrapolate over these averaged frequencies. This
analysis is presented in Fig. 5.10, where the averaged center frequency ν0 is plotted versus
the mean speed v assigned to each delay (with simulation parameters same as for the analysis
in Fig. 5.9). As expected, the delay-averaged frequency ν0,a gives exactly the same result,
though with a slightly different χ2

red. The extrapolation yields the values for ν0,e and κ, which
differ by ∼0.3 kHz and ∼2 Hz/(m/s), respectively, which are fractions of the uncertainties
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Figure 5.9: Preliminary analysis of 317 precision line scans at P2S-6P = 30 µW. Each line scan is
analyzed separately (as in Fig. 5.2) to extract the averaged center frequency ν0,a over all delays, as
well as the extrapolated frequency ν0,e together with the the Doppler slope κ from the extrapolation
according to Eq. (5.1). The mean speeds for each delay have been simulated with parameters P1S-2S =
1.5 W, ∆ν1S-2S = 0.8 kHz, vcutoff = 100 m/s, TN = 7.1 K, as well as other fixed parameters from
Table 3.1. Here, for each line scan, the results for ν0,a, ν0,e and κ are plotted versus the resonance line
scan number for the top (blue) and bottom (orange) detectors. The corresponding averages with the
χ2

red values are given in the legends. The gray lines show the average of the data from both detectors.
The histograms on the right show the distributions of the data from the top (blue) and botton (orange)
detectors, where curves show the normal distribution fits, with mean values µ and standard deviations
σ given in the legends.

from Fig. 5.9. Most importantly, the extrapolation yields a higher χ2
red∼ 2−3 compared to

χ2
red∼ 1.6 from Fig. 5.9. This might be an indicitation of a residual non-linear dependence of

the center frequency on v, which may originate from misalignment. Indeed, one may recognize
a similar non-linear structure on the data from Fig. 5.10, which is exaggeratedly present in
Fig. 5.6(a). Note that one would expect that such a small non-linear dependence would not be
observed in the analysis from Fig. 5.9, where each line scan is extrapolated individually. The
statistical uncertainty of each line scan is then much larger than the residual non-linearity,
and hence is statistically not resolved. On the other hand, when each delay is averaged



222 5. Preliminary Measurement of the 2S-6P Transition in Atomic Deuterium

Simulation parameters Simulation result for v (m/s) Measurement result
P1S-2S ∆ν1S-2S TN vcutoff in delay number ν0,e κ
(W) (kHz) (K) (m/s) 2 13 16 (kHz) (Hz/(m/s))

1.5 0.8 7.1 100 257.4 126.1 67.7 -3.68(64) 7.6(3.0)

1.1 0.0 7.0 0 242.1 116.4 61.2 -3.66(72) 8.0(3.6)
1.1 0.0 7.5 0 247.1 116.6 60.5 -3.58(70) 7.5(3.5)
1.1 0.0 7.0 300 282.9 138.7 72.5 -3.68(73) 7.0(3.1)
1.1 0.0 7.5 300 288.3 138.2 73.5 -3.60(71) 6.5(3.0)
1.1 2.0 7.0 0 223.2 120.5 66.8 -4.29(82) 11.7(4.3)
1.1 2.0 7.5 0 227.5 121.3 66.2 -4.19(81) 11.0(4.2)
1.1 2.0 7.0 300 263.3 138.8 74.7 -4.16(80) 9.4(3.6)
1.1 2.0 7.5 300 267.6 139.3 77.4 -4.07(78) 8.9(3.5)
1.7 0.0 7.0 0 258.6 119.7 61.8 -3.53(69) 7.0(3.3)
1.7 0.0 7.5 0 265.5 120.7 61.9 -3.43(67) 6.4(3.1)
1.7 0.0 7.0 300 301.9 142.4 77.4 -3.54(70) 6.0(2.8)
1.7 0.0 7.5 300 308.3 142.6 77.6 -3.45(68) 5.5(2.7)
1.7 2.0 7.0 0 244.0 125.6 67.7 -4.01(78) 9.5(3.8)
1.7 2.0 7.5 0 249.3 125.6 67.4 -3.90(76) 8.9(3.6)
1.7 2.0 7.0 300 282.0 143.3 77.5 -3.92(76) 7.9(3.2)
1.7 2.0 7.5 300 287.1 143.0 74.6 -3.83(74) 7.4(3.1)

Table 5.2: Measurement results for the extrapolated frequency ν0,e along with the slope κ (average
values of 317 line scans at P2S-6P = 30 µW for the top and bottom detectors). This extrapolation
depends on the mean speed of atoms in each delay, and thus on the simulation parameters responsible
for the simulated velocity distribution. Therefore, ν0,e and κ are evaluated for different simulation
parameter sets of the 1S-2S laser power P1S-2S, 1S-2S detuning ∆ν1S-2S, nozzle temperature TN, and
cutoff velocity vcutoff (for other simulation parameters see Table 3.1). For each set of simulation
parameters, the simulation result for the mean speed v is exemplarily given for three delays. The
first row lists the most probable case of simulation parameters (used in Fig. 5.9). Compared to this
parameter set, the result for ν0,e varies maximally by ∼ 0.5 kHz, and for κ by ∼ 4 Hz/(m/s) within the
given range of simulation parameters.

separately for all line scans, the statistical uncertainty becomes small enough to resolve the
small non-linear dependence on v.

This possible non-linear dependence of the center frequency on the mean speed of atoms
needs to be futher investigated. Note that in the simulations presented in Section 3.3, the
perfect symmetric alignment is assumed between the 1S-2S laser beam, the atomic beam
apertures, and the nozzle. As demonstrated in Section 5.3, an asymmetry present in the
apparatus can lead to the non-linear dependence of the center frequency on the mean speed
of atoms if the AFR is switched off, and thus a residual effect might be present if the AFR
is switched on but does not perfectly suppress the Doppler shift. In the future, such an
asymmetry can be included in simulations, which may help to better understand and model
these effects. For the preliminary analysis presented here, we increase the uncertainty by an

additional factor of
√
χ2

red∼
√

3 to account for the possible distortion of the extrapolation as

observed in Fig. 5.10.

The measurement results from Fig. 5.10 need to be corrected by the following three effects
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Figure 5.10: Preliminary analysis of the 317 precision line scans at P2S-6P = 30 µW (average in each
delay). The separately averaged center frequencies ν0 are shown in dependence on the mean speed in
each delay for all line scans with the top (blue circular markers) and bottom (orange square markers)
detectors. The mean speeds have been assigned for each delay with parameters P1S-2S = 1.5 W,
∆ν1S-2S = 0.8 kHz, vcutoff = 100 m/s, TN = 7.1 K, as well as other fixed parameters from Table 3.1.
The values for the delay-averaged frequency ν0,a as well as the extrapolation according to Eq. (5.1)
which yields ν0,e and κ are given in the legend (see main text for discussion).

based on simulations: the “Big Model” (BM) effects, the light force shift (LFS) and the
second-order Doppler shift (SOD), which are shown in Fig. 5.11. Fig. 5.11(a) shows the “Big
Model” (BM) simulations from the procedure described in Section 3.3. Here, the value of

the center frequency ν0,BM from the BM simulations is evaluated relative to the 2S
F=1/2
1/2 -

6P
F=3/2
1/2 hyperfine transition. Therefore, the observed hyperfine center correction of (1 −

η1/2)∆HFS,1/2 = 56.105 kHz (see Eq. (2.49)) is included in the BM correction. In order to
quantify the remaining effects, we define the shift ∆νBM-HFC, where the hyperfine center
correction are excluded from ν0,BM, as following:

∆νBM-HFC = ν0,BM + (1− η1/2)∆HFS,1/2 = ν0,BM +
1

9
∆HFS,1/2 = ν0,BM + 56.105 kHz, (5.3)

which is shown on the right axis in Fig. 5.11(a). The BM includes fit corrections as those
discussed in Fig. 2.14 (here, the Voigt fit has been used as for the experimental data). In the
BM results presented here, the signals from σ± and π decay channels are weighted equally,
i.e. no detection efficiency is taken into account, which influences the quantum interference.
For the final analysis, the detection efficiency should be taken into account as described in
Sec. 6.2.3 of [71] to appropriately take the resolved quantum interference into account, which
is expected to be on the order of ∼ 0.2 kHz based on the results from the hydrogen 2S-6P
simulations in [71]. Furthermore, here the detector is assumed to be perfectly linear. In
the future, one may also model the non-linearity of the detector, which has been treated
in Section 3.5.3. The legend in Fig. 5.11(a) gives the results on the total corrections from
the BM for ν0,a, ν0,e and κ, determined from the weighted average or extrapolation with
experimental uncertainties for the top or bottom detectors from the top plot. Similar to the
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Figure 5.11: “Big Model” (BM), light force shift (LFS) and second-order Doppler shift (SOD) simu-
lations for the 2S-6P laser power of P2S-6P = 30 µW. The mean speeds have been assigned for each
delay with parameters P1S-2S = 1.5 W, ∆ν1S-2S = 0.8 kHz, vcutoff = 100 m/s, TN = 7.1 K, as well
as other fixed parameters from Table 3.1. (a) The BM simulation gives the center frequency ν0,BM

relative to the 2S
F=1/2
1/2 -6P

F=3/2
1/2 hyperfine transition, i.e. including the observed hyperfine center shift

of (1 − η1/2)∆HFS,1/2 ' 56.105 kHz (see Eq. (2.49)). The right axis shows the shift ∆νBM−HFC (see
Eq. (5.3)), which excludes this hyperfine center shift. The BM simulation assumes perfect cancellation
of the first-order Doppler shift and does not include the second-order Doppler shift. The signals from
σ± and π decay channels are weighted equally, i.e. no detection efficiency is taken into account here.
The detector is also assumed to be perfectly linear. The legend gives the correction results for ν0,a,
ν0,e and κ, determined from the weighted average or extrapolation with experimental uncertainties
for the top detector from Fig. 5.10 (the uncertainties for the bottom detector are almost the same).
Similarly, in (b) the LFS shift simulation results are shown (see Section 2.6.6). In (c), the second-order
Doppler shift ∆νSOD is calculated from the simulated root-mean-square speed of atoms in each delay
according to Eq. (5.4).
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BM simulations, Fig. 5.11(b) shows the simulation of the light force shift (LFS) ∆ν0,LFS as
explained in Section 2.6.6.

The second-order Doppler shift (SOD) has been discussed in Section 2.2.2. For each delay,
this shift is given by

∆νSOD = −
v2

RMS

2c2
νA,0 ' −19 . . .−305 Hz, (5.4)

where vRMS is the root-mean-square speed of atoms1, and νA,0 ' 730.889 THz the (approx-
imate) 2S-6P resonance frequency. For the simulation parameters used here (first row in
Table 5.2), vRMS ' 69 . . . 274 m/s, which gives the above values for ∆νSOD for delays 16 . . . 1.

Note that the values of the simulated effects from Fig. 5.11 need to be substracted from
the measurement results from Fig. 5.10, i.e. the added correction value is of the opposite
sign of the simulated value. For example, the corrected value ν0,e(corr.) for measured value
ν0,e(meas.) is:

ν0,e(corr.) = ν0,e(meas.)−∆νBM−HFC,0,e −∆νLFS,0,e −∆νSOD,0,e. (5.5)

5.5.3 Measurement results and simulation corrections for precision line
scans at all 2S-6P laser powers

Fig. 5.12 shows the measurement results of all precision line scans (including those at P2S-6P =
10 µW and P2S-6P = 20 µW) and the corresponding simulation corrections in dependence on
the 2S-6P laser power P2S-6P. Fig. 5.12(a) shows the measurement result from the average
of the separate analysis of individual line scans as in Fig. 5.9. The error bars for ν0,a have

been scaled by
√
χ2

red =
√

2.6,
√

3.0,
√

3.3, and for ν0,e and κ by
√
χ2

red =
√

1.3,
√

1.2,
√

1.6 for

the power values P2S-6P = 10, 20, 30 µW, respectively. Note that this scaling accounts for the
excess scatter due to atomic flux caused by temperature fluctuations, but not for a possible
non-linearity in the extrapolation, which has been discussed above.

Fig. 5.12(b) shows the different contributions from simulation corrections: the Big Model
correction excluding the hyperfine center correction (BM-HFC, faint triangular markers),
the light force shift correction (LFS, faint crossed markers), and the second-order Doppler
shift correction (SOD, faint diamond markers). The total correction is the sum of these three
contributions (square markers). Each correction is calculated for the delay-averaged frequency
ν0,a (orange markers) and the extrapolation, which yields corrections for ν0,e (blue markers,
top plot) and κ (bottom plot). Note that the correction is of opposite sign compared to the
value of the simulated effect, e.g. the points in Fig. 5.12(b) for P2S-6P = 30 µW correspond to
values from Fig. 5.11 with an opposite sign, because the value for each of the effects needs to
be substracted from the measured value, such that the added correction value is of opposite
sign compared to the simulated value.

As discussed above and shown in Fig. 5.11(a), the Big Model correction ν0,BM is evalu-

ated relative to the 2S
F=1/2
1/2 -6P

F=3/2
1/2 hyperfine transition. Therefore, the observed hyperfine

center correction of (1− η1/2)∆HFS,1/2 ' 56.105 kHz (see Eq. (2.49)) dominates the values of
ν0,BM. In order to quantify the remaining effects, we therefore exclude the hyperfine center
correction from ν0,BM (see Eq. (5.3)), the value of which is shown with triangular markers
in Fig. 5.12(b). These corrections are −∆νBM-HFC,0,a ' −0.1 . . .−0.5 kHz for ν0,a (orange

1Note that vRMS is slightly different from v, here by ∼ 15 m/s for delay 2, by ∼ 4 m/s for delay 13, and by
∼ 1 m/s for delay 16.
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Figure 5.12: Simulation corrections and results for all precision line scans in dependence on the 2S-6P
laser power P2S-6P. (a) The measured delay-averaged frequency ν0,a (orange) and delay-extrapolated
frequency ν0,e (blue) from the average of the separate analysis of individual line scans (as in Fig. 5.9)
are shown on the top. The bottom plot shows the slope κ from the extrapolation. The error bars
have been scaled by

√
χ2

red =
√

2.6 . . .
√

3.3 for ν0,a, and by
√
χ2

red =
√

1.2 . . .
√

1.6 for ν0,e and κ.
(b) Different contributions of simulation corrections for the delay-averaged frequency ν0,a (orange) and
extrapolation (blue, ν0,e on the top and κ on the bottom plot): Big Model correction excl. the hyperfine
center correction (BM-HFC, faint triangular markers, see Eq. (5.3)), light force shift correction (LFS,
faint crossed markers), and second-order Doppler shift (SOD, faint diamond markers, see Eq. (5.4). The
total correction (square markers) is the sum of these three contributions. Note that the corrections are
of opposite sign compared to the values of the simulated effects, e.g. the points in (b) for P2S-6P = 30 µW
correspond to values from Fig. 5.11 with an opposite sign. (c) The measurement result from (a)
corrected by the total correction from (b) (e.g. as given in Eq. (5.5)). The horizontal bars show the
weighted averages for ν0,e and κ for all three laser powers, with the values given in the legend.

triangular markers) and −∆νBM-HFC,0,e ' −0.9 . . .−1.3 kHz for ν0,e (blue triangular mark-
ers), depending on P2S-6P. Note that these corrections include the fit correction from fitting
a single Voigt function to two unresolved hyperfine resonances (see Fig. 2.14), which is on the
order of ∼−1 kHz. This correction is mostly independent of P2S-6P. The total absolute value
of ∆νBM-HFC becomes smaller with the higher laser power, because different effects such as
the saturation and fit correction can have opposite signs. The correction on κ from the Big
Model simulations is only slightly dependent on P2S-6P between −κBM ' 4.0 . . . 4.3 Hz/(m/s),
see triangular markers in the bottom plot of Fig. 5.12(b).

The LFS correction has most influence on the power dependence of the total correction
for the slope, varying between −κLFS ' −1.5 . . .−3.6 Hz/(m/s) for the 2S-6P laser powers
between P2S-6P = 10 . . . 30 µW. The correction for ν0,a is −∆νLFS,0,a ' −0.2 . . .−0.5 kHz, and
for ν0,e is −∆νLFS,0,e ' 0.15 . . . 0.23 kHz.

The SOD shift from Eq. (5.4) results in a correction of −∆νSOD,0,a∼ 0.2 kHz for ν0,a

and −∆νSOD,0,e∼−0.16 kHz for ν0,e, which is mostly independent of P2S-6P. The speed-
dependence of ∆νSOD yields a small correction for the slope κ of −κSOD∼ 1.8 Hz/(m/s), see
diamond markers in the bottom plot of Fig. 5.12(b).
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Note that similar to Table 5.2, the simulation corrections also depend on the mean speeds
for each delay, which depend on simulation parameters. In Fig. 5.12, the same parameters as
for Fig. 5.9 (first row in Table 5.2) have been used1. For the parameter ranges in Table 5.2, the
SOD correction varies by < 0.05 kHz, the BM correction by < 0.3 kHz, and the LFS correction
also by < 0.3 kHz for ν0,e. Nevertheless, for the future analysis the corrections can be evaluated
for each line scan separately with a different set of mean speeds according to the parameter
set which best describes the experimental condition at the corresponding measurement time.

Fig. 5.12(c) shows the measurement result from Fig. 5.12(a), which has been corrected
by the total correction from Fig. 5.12(b), i.e. the correction values from (b) are added to the
measured values from (a). The horizontal bar shows the weighted averages for ν0,e and κ, with
the values given in the legend. Since the data at lower laser powers has a larger statistical
uncertainty, the result mostly corresponds to the value at P2S-6P = 30 µW from Fig. 5.9.
The uncertainty for ν0,e is 0.82 kHz. The residual slope κ is consistent with zero within
approximately two standard deviations. However, in light of a possible non-linear dependence
of the center frequency on the mean speed, which has been discussed in Section 5.5.2, the
interpretation of κ must be treated with care until this possible non-linearity has been further
investigated.

5.5.4 Preliminary uncertainty budget and corrections

Table 5.3 summarizes the preliminary uncertainty budget and corrections for the 2S1/2-6P1/2

transition frequency measurement in deuterium. The statistical uncertainty is the result for
ν0,e from Fig. 5.12(c), which is scaled by

√
3 to account for a possible non-linear dependence of

the center frequency on the mean speed of atoms, as the increased χ2
red∼ 2−3 from Fig. 5.10

may indicate (see discussion in Section 5.5.2). Note that the extrapolated frequency ν0,e

includes the linear Doppler shift, but not any possible non-linearities, which can effectively
be manifested as a speed-dependent Doppler slope.

Next the simulation corrections are listed, where the corrections for ν0,e from Fig. 5.12(b)
(blue markers) have been calculated from the weighted sum with the corresponding experi-
mental uncertainties for the three different laser powers. Of the three simulation corrections,
the second-order Doppler shift correction is the smallest with −0.16 kHz and an estimated
uncertainty of 0.05 kHz due to the possible variation of the mean speeds assigned to each
delay. The Big Model corrections excluding the hyperfine center (see Eq. (5.3)) are around
−1 kHz, and depend on the linear polarization angle θL having an uncertainty of 3◦, which is
the main origin of the uncertainty for the Big Model corrections (see Fig. 6.8 in [71]).

The light force shift simulation has been confirmed experimentally within ∼ 40% (see
Fig. 6.6 in [71]). Here, we multiply this fractional uncertainty with the ∼1.6 kHz shift between
the slowest and fastest atoms for the laser power of 30 µW (see Fig. 5.11(b)), which yields the
uncertainty of ∼0.6 kHz. In the future, it is planned to test the light force shift model more
accurately. Furthermore, here most precision line scans are taken at a higher laser power of
30 µW, and the future precision measurement can be performed at lower laser powers where
the light force shift correction is smaller.

The dc-Stark shift has been discussed in Section 5.4. In Table 5.3, the result from Eq. (5.2)

1The delay velocities also depend on the 2S-6P laser power P2S-6P, which has been set to the corresponding
value for the three laser power data groups in Table 5.2. However, this dependence is negligible compared
to the sensitivity to other parameters shown in Table 5.2: the mean speed varies by ∼ 5 m/s for delay 2, by
∼ 2 m/s for delay 13, and by ∼ 1 m/s for delay 16.
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Contribution (kHz) Correction Uncertainty

Statistical uncertainty — 1.42

Fig. 5.12(c) scaled with
√

3

“Big Model” corr. excl. HF center (BM-HFC), −∆νBM-HFC,0,e −0.99 ∼ 0.8

Light force shift (LFS), −∆νLFS,0,e 0.21 ∼ 0.6

Second-order Doppler shift (SOD), see Eq. (5.4), −∆νSOD,0,e −0.16 0.05
Stray electric fields (dc-Stark shift), see Eq. (5.2), −∆νdc,2S-6P 0.10 0.03
Blackbody-radiation-induced shift 0.27 0.08

Table I in [261] assuming T 4 scaling and T = 295(15) K
Zeeman shift 0.00 0.05

Eq. (2.41) with ι< 10−6, s< 0.1, B< 1 mG
Pressure shift 0.00 0.01
Frequency standard 0.00 0.07
Hyperfine center shift 0.00 0.00

Eq. (2.51) with ι< 10−6, s< 0.1
Unresolved quantum interference 0.00 0.00

Eq. (2.69) with ι< 10−6, ξ◦< 0.3

Total without recoil and hyperfine structure corr. −0.57 1.7

Recoil shift 588.785 0.000
Hyperfine (HF) structure corrections

HF center relative to 2S
F=1/2
1/2 -6P

F=3/2
1/2 (+1

9∆HFS,6P1/2
) 56.105 0.005

HF centroid of 6P1/2 levels (−1
3∆HFS,6P1/2

) −168.314 0.005

HF centroid of 2S1/2 levels (−2
3∆HFS,2S1/2

) −27 282.969 0.007

Off-diag. HFS shift (−∆νo.-d.
HFS) 0.021 0.000

Quadrupole HFS shift (−∆νquad
HFS ) 0.000 0.000

Total correction and uncertainty on HF centroid −26 806.942 1.7

Table 5.3: Preliminary uncertainty budget and corrections for the 2S1/2-6P1/2 transition frequency
measurement in deuterium presented in this thesis. The statistical uncertainty for ν0,e from Fig. 5.12(c)
has been scaled by a factor of

√
3 motivated by a possible non-linear dependence of the center frequency

on the mean speed as discussed in Section 5.5.2. See main text for the discussion of other contributions.

is used. The surrounding blackbody radiation induces a dynamical Stark shift of energy levels,
which has been calculated in [261]. Here, we use the result for the 6P1/2 levels from Table I
in [261], where this shift is calculated for a temperature of T = 300 K. The walls of our
vacuum chamber are at room temperature of around T = 295 K. However, the bottom of
the vacuum chamber is cooled by the cryopump, where we measure a temperature of around
285 K. We assume a temperature of 295 K with a more conservative uncertainty of 15 K, and
scale the result from Table I in [261] assuming a T 4-dependence1, which yields a correction
of 0.27(8)kHz.

The Zeeman shift is given by Eq. (2.41), with one term which depends on the initial
state asymmetry ι and another term which depends on the circularly polarized fraction s.

1In [261], the scaling is shown to be Tn with n < 4 for higher states, but here we use n = 4 which gives the
most conservative estimate on the uncertainty.
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Both terms scale linearly with the magnetic field B. Here we assume ι< 10−6 based on the
estimate from Eq. (2.37), which makes the term with ι negligible. The magnetic field in
the 2S-6P interaction region is suppressed to B< 1 mG (see Fig. 3.13). Together with the
circularly polarized fraction of s ≡ |(S3/S0)atom|< 0.1 (see Fig. 4.30), the uncertainty due to
the Zeeman shift is < 0.05 kHz.

For the pressure shift, we use the same estimate as in Sec. 6.2.4.4 of [71], giving a pressure
shift of < 0.01 kHz (see also Sec. 2.9 in supplementary materials of [14] for the discussion).

The frequency standard (passive hydrogen maser) for the laser frequency measurement
using a frequency comb (see Section 3.2.3) introduces an uncertainty of 0.07 kHz.

The hyperfine center shift (see Section 2.4) and the shift due to unresolved quantum
interference (see Section 2.5) lead to negligible shifts below 1 Hz, assuming the initial state
assymmetry of ι< 10−6 based on the estimated from Eq. (2.37). In the future, one may also
place an experimental limit on ι, as discussed in Appendix A.4.2. The measured residual
circularly polarized fraction of s ≡ |(S3/S0)atom|< 0.1 (see Fig. 4.30) further suppresses the
hyperfine center shift, and the most conservative limit on the possible polarization sensitivity
of the detector of ξ◦ < 0.3 (see Section 2.3.3) further suppresses the shift due to unresolved
quantum interference.

The recoil shift (see Eq. (2.30)) is known with an accuracy of < 1 Hz. Also the hyperfine
structure corrections have a negligible uncertainty. The hyperfine splitting of the 6P1/2 level
∆HFS,6P1/2

≡ ∆HFS,1/2 is known with an uncertainty of 5 Hz and the hyperfine splitting of
the 2S1/2 level ∆HFS,2S1/2

is known with an uncertainty of 7 Hz [116]. In order to determine
the correction for the hyperfine centroid, consider first the observed hyperfine center of the

unresolved 2S
F=1/2
1/2 -6P

F=1/2
1/2 and 2S

F=1/2
1/2 -6P

F=3/2
1/2 transitions, which has been discussed in

Section 2.4. We here choose to determine the correction for the 2S
F=1/2
1/2 -6P

F=3/2
1/2 transition

frequency, which is given by (1 − η1/2)∆HFS,1/2 = 1
9∆HFS,1/2 = 56.105 kHz. The excited

6P
F=3/2
1/2 state is 1

3∆HFS,6P1/2
above the 6P1/2 hyperfine centroid, and the initial 2P

F=3/2
1/2 state

is 2
3∆HFS,2S1/2

below the 2S1/2 hyperfine centroid. Therefore, the 2S
F=1/2
1/2 -6P

F=3/2
1/2 transition

frequency is higher by these two numbers than the 2S1/2-6P1/2 hyperfine centroid transition
frequency. Furthermore, the determination of the hyperfine centroid requires to substract
the small off-diagonal hyperfine structure shift from the measured frequency (see Table 2.4),
which has a negligible uncertainty below 1 Hz [117]. The total off-diagonal hyperfine structure

shift is calculated from the individual shifts of the two hyperfine transitions 2S
F=1/2
1/2 -6P

F=1/2
1/2

and 2S
F=1/2
1/2 -6P

F=3/2
1/2 , which are weighted with the relative strengths of these two hyperfine

transitions. Note that the electric quadrupole hyperfine structure shift ∆νquad
HFS vanishes for

the 2S1/2-6P1/2 transition, but needs to be included for the future measurement of the 2S1/2-
6P3/2 transition (see Table 2.5). The total uncertainty on the hyperfine centroid is unaffected
by all the hyperfine corrections and remains ∼ 1.7 kHz, where all uncertainty contributions
have been summed in quadrature.
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Chapter 6

Conclusion and Outlook

This thesis contributes to the precision spectroscopy of the 2S-nP transitions in hydrogen and
deuterium, with a particular focus on the 2S-6P transition in deuterium. In Chapter 1, it is
described how the precision spectroscopy of simple atomic systems is an important test of the
bound-state quantum electrodynamics theory, which is a fundamental building block of the
Standard Model. Since we know that our fundamental understanding of nature is incomplete,
there is a need to test the current state-of-the-art theories in order to find how they can
eventually be modified or extended. Moreover, there is currently an inconsistency of around
three standard deviations between the measurements in muonic deuterium and electronic
deuterium. More data is needed to strengthen or weaken this discrepancy. Furthermore,
precision spectroscopy of higher principal quantum number states can be sensitive to certain
types of new particles.

In Chapter 2, it is shown how the precision spectroscopy 2S-nP transitions in deuterium is
complicated as compared to hydrogen by the simulationeus excitation of transitions between
unresolved hyperfine components, which can also lead to the effect of unresolved quantum
interference. Possible line shifts are quantified in dependence on the possible asymmetry be-
tween initial states, the residual circularly polarized fraction of the excitation light, and the
polarization sensitivity of the fluorescence detector. It is derived and confirmed by supercom-
puter simulations that these effects are highly suppressed, which makes precision spectroscopy
possible. These results are valid for all 2S-nP transitions in deuterium. Furthermore, the light
force shift is investigated in deuterium, and is simulated to be comparable to hydrogen despite
of the complications arising from several state manifolds.

Chapter 3 explains the apparatus, which is used to measure the 2S-6P transition in deu-
terium. Since the experiment has been described in detail in the thesis by Lothar Maisen-
bacher [71], which treats the 2S-nP transitions in hydrogen, here the focus lies on the differ-
ences to deuterium and the modifications of the apparatus since 2019, as for instance the mod-
ifications of the laser systems. A particular focus is given to the cryogenic deuterium atomic
beam generation and the high performance cryostat. Furthermore, this chapter presents char-
acterization results from the test measurements with deuterium, in particular the observed
non-linearity of the fluorescence detector and the temperature dependence of the deuterium
2S-6P spectroscopy signal along with the characterization of the speed distribution of the flux
of atoms.

The main contribution of this thesis to the apparatus is the improved active fiber-based
retroreflector (AFR), which is used to suppress the first-order Doppler shift. Chapter 4 follows
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Figure 6.1: Similar to Fig. 1.1, the Rydberg constant and proton or deuteron charge radii extracted
from precision spectroscopy of hydrogen or deuterium, in (a) or (b), respectively. Here, Fig. 1.1 is
extended by the preliminary uncertainty result from the 2S-6P transition measurement in hydrogen
(see thesis by Lothar Maisenbacher [71]), and by the uncertainty results from the 2S-6P transition
measurement in deuterium which is treated in this thesis. The preliminary measurement presented
in Chapter 5 results in an uncertainty lower than the average of all the previous data from electronic
deuterium. In the future, a measurement with a comparable uncertainty as in hydrogen seems feasible,
which would be comparable to the uncertainty result from muonic deuterium.

the corresponding publication [110], which summarizes the results. Here, some topics are
treated in more detail. A particular focus lies on the etalon effect from Rayleigh backscattering
within the fiber. Furthermore, the polarization monitor is explained in detail, which turned
out to be more complicated than initially thought, such that a correction was published [111].
The improved AFR presented in this thesis can be used for all 2S-nP transitions in hydrogen
and deuterium with 4 ≤ n ≤ 10. Moreover, the results of this work can be applied not only to
precision spectroscopy, but also to other experiments where a high beam quality or wavefront-
retracing beams are important. The detailed examination of weak aberrations with a caustic
measurement, as well as the design of a fiber collimator providing a high beam quality, can
be of interest to other applications and experiments such as [30]. Likewise, the precise fiber-
collimator distance control, the intensity stabilization of wavefront-retracing beams, as well
as in-situ polarimetry of retroreflected light can be used separately from the AFR in other
optical setups. The AFR presented in this thesis has been successfully used to measure the
2S-6P transition in hydrogen, which is treated in [71], where the first-order Doppler shift was
demonstrated to be consistent with zero within the ∼ 500 Hz uncertainty of the measurement
according to the preliminary data analysis. Possible limitations of the improved AFR are
mid-spatial frequency errors of lens surfaces leading to the “orange-peel” structure on the
collimated beam profile, the residual astigmatism due to the stress applied on the lenses in
the collimator mount, as well as the not exactly Gaussian beam profile from the single-mode
fiber. In the future, some of these imperfections may be further reduced.

Chapter 5 presents the preliminary measurement of the 2S-6P transition in deuterium.
The main purpose of this measurement was the feasibility study in order to plan a future pre-
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cision measurement campaign. It is demonstrated that a precision measurement of the 2S-6P
transition in deuterium with a similar uncertainty than in hydrogen is feasible. According to
the preliminary uncertainty budget, the test measurement determines the 2S1/2-6P1/2 transi-

tion frequency in deuterium to δν2S-6P
exp ' 1.7 kHz. Together with the 1S-2S measurement, this

result can enable the most accurate determinations of the deuteron radius and the Rydberg
constant from the electronic deuterium: according to Eq. (2.17), the resulting uncertainties of
the Rydberg constant and the deuteron radius are δR∞ ' 5× 10−5 m−1 and δrd ' 0.002 fm,
respectively. This is visualized in Fig. 6.1(b). It seems feasible for a future precision measure-
ment to determine the 2S-6P transition frequency with the same accuracy as in hydrogen.
The preliminary analysis of the 2S-6P transition frequency measurement in hydrogen, which
is treated in [71], estimates an uncertainty δν2S-6P

exp ' 0.6 kHz, which would correspond to
δR∞ ' 2× 10−5 m−1 and δrd ' 0.0007 fm in deuterium.

The preliminary analysis of the 2S-6P transition measurement in deuterium has been
performed with a blind offset to the data, such that only the uncertainty is given here. It is
important to carry out different consistency checks before unblinding the data. For example,
the data can be fitted with different fit functions, which have different simulation corrections.
In particular, the Voigt doublet function with a fixed sepearation between the two unresolved
resonances can be used, along with an assumption of the fixed dipole ratio between the two
resonances. Another important point is the careful investigation of the sampling bias, with
consistency checks by using different fit functions and removing a different number of data
points to increase or decrease the sampling bias while comparing to simulations of these
different cases (similar to the 2S-4P measurement [14]). Furthermore, correlations between
various quantities should be investigated. The most important issue is the possible non-linear
velocity dependence of the center frequency, which might be caused by misalignment of the
nozzle w.r.t. the 1S-2S preparation laser beam. In the preliminary analysis, this possible
systematic effect has been taken into account by increasing the uncertainty by the factor of√

3, which corresponds to the increased χ2
red∼ 2−3 from Fig. 5.10 indicating such an effect.

In the future, numerical modelling of the experiment can be extended to account for such
misalignments, which may help to quantify the experimental data for these effects.

The preliminary measurement of this thesis focused on measuring the 2S-6P1/2 fine-
structure component of 2S-6P transitions. The future precision measurement campaign of
the 2S-6P deuterium should be equally distributed between measuring the 2S-6P1/2 and 2S-
6P3/2 fine-structure components. The combination of both transition frequencies suppresses
effects due to resolved quantum interference, as has been shown in [14] and [71]. Furthermore,
the measurement campaign could include the 1S-2S measurement in deuterium, in order to
extract the Rydberg constant and the deuteron radius from the same experiment. Another
measurement campaign can be planned to measure the light force shift in deuterium, similar
to the measurement presented in [71].

An important quantity for 2S-nP measurements in deuterium is the possible initial state
population asymmetry. The preliminary uncertainty budget uses a theoretical estimate (Sec-
tion 2.3.1). In the future, various measurements can be performed to place an experimental
limit on this quantity, possibly together with techniques creating such an asymmetry in or-
der to test the understanding of the systematic effects related to the simultaneous excitation
of different hyperfine components. Some ideas for such measurements are presented in Ap-
pendix A.2 and Appendix A.4.2.
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Appendix A

Appendix

A.1 Stokes formalism of light polarization

Here we summarize the Stokes formalism for the description of the polarization of light, see
e.g. [133] for details. We use the Stokes parameters because they are related to directly
measurable quanitities. Furthermore, the Stokes formalism gives directly the circularly po-
larization fraction, which is important in our experiment as discussed in Section 4.6.

The Stokes vector ~S is defined from four parameters which can be characterized by inten-
sities transmitted after the light passes through each of four simple configurations of optical
elements:

~S =


S0

S1

S2

S3

 =


I

I(0◦)− I(90◦)
I(45◦)− I(−45◦)
IRHC − ILHC

 . (A.1)

The total intensity S0 = I = I(0◦) + I(90◦) = I(45◦) + I(−45◦) = IRHC + ILHC, and the two
intensities of linear polarization, S1 and S2, are given in terms of intensities I(ϕ) measured
after the light passes through a perfect linear polarizer whose transmission axis is oriented
at an angle ϕ with respect to the polarization of the incoming light. The circularly polarized
intensity S3 is the difference between the intensity of right- and left-handed circularly polarized
light, IRHC and ILHC, and hence describes the amount of circular polarization present in the
light beam.1 In the context of atomic physics, S3 is very practical since it directly relates to
the rate difference in driving the σ+ and σ− one-photon transitions.

Optical elements typically change the Stokes vector. A Mueller matrix Ô transforms an
input Stokes vector into the Stokes vector for the light leaving the optical elements,

~Sout = Ô ~Sin. (A.2)

Using the Cauchy-Schwarz inequality together with averaged electric field representation of
the Stokes parameters, one finds the following relation to be true:

S2
1 + S2

2 + S2
3 ≤ S2

0 , (A.3)

1S3 can be measured by putting a quarter-waveplate before the linear polarizer. If IQWP(α, β) is the
intensity of light after the beam first passes through a perfect quarter-waveplate with the fast axis given by
the angle β and then through a linear polarizer whose axis is given by the angle α, the last Stokes parameter
is given by: S3 = IRHC − ILHC = 2IQWP(45◦, 0◦) − I where I is obtained from Eq. (A.1). A more accurate
way to determine S3 along with all other Stokes components is to use a simple rotating-waveplate polarimeter
[260].
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with equality in the case of fully polarized light. The degree of polarization P that survives
the averaging is defined as:

P =

√
S2

1 + S2
2 + S2

3

S0
≤ 1. (A.4)

In our case we deal with fully polarized light (P = 1). Typically, one is not interested in
the total intensity but rather in the dimensionless quantities S1/S0, S2/S0 and S3/S0 which
determine the polarization state of light, which is represented by relative Stokes parameters
summarized in the relative Stokes vector:

~s =

S1/S0

S2/S0

S3/S0

 . (A.5)

The linear polarization rotation angle is given by tan 2ψ = S2/S1 and the ellipticity angle by
S3/S0 = sin 2χ. The linearly polarized fraction is

L/S0 =
√

(S1/S0)2 + (S2/S0)2, (A.6)

whereas the circularly polarized fraction is simply S3/S0. The following relation is therefore
true between the linearly and circularly polarized fractions:

(L/S0)2 + (S3/S0)2 = P 2 ≤ 1. (A.7)

Because the relative intensities of circularly and linearly polarized light are summed in
quadrature, in the case of fully polarized light (P = 1) nearly complete linear polarization cor-
responds to a still substantial circular polarization (e.g. S3/S0 = 14% for L/S0 = 99%). Typi-
cally, linearly polarized light is produced by optical components (e.g. polarizes or polarization-
maintaining fibers) with a specified extinction ratio PER = Imax/Imin defined via the min-
imum (Imin) and maximum (Imax) transmitted intensities after sending the light emerging
from the optical component through a rotatable perfect polarizer, after which Imin and Imax

are measured. The fraction of circularly polarized light with the extinction ratio PER is then
given by1:

S3/S0 = ±
2
√

1/PER

1 + 1/PER
' ±2

√
1/PER +O(PER−3/2), (A.8)

where the approximation is valid for high extinction ratios PER � 1. Typically, the spec-
ified extinction ratio of polarization-maintaining fibers is around PER ' 20 dB (100 : 1)
corresponding to a substantiation circularly polarized light fraction of S3/S0 ' 20%. The
limitation typically originates from the stress-induced birefringence of the connectors, which
cannot be fully controlled during the production process. However, we found that in a pack of
several fibers, some of them may have significantly higher extinction ratios than others (where
the connector induces luckily less stress). The highest extinction ratios we observed with our

1The Stokes vector emerging from the optical component can be modelled as ~Sin = (1,
√

1− s2, 0, s), where
s ≡ S3/S0 is the residual circular polarization of light. The Stokes vector after sending the light through
the rotatable perfect linear polarizer is then ~Sout = P̂ (α)~Sin = (I(α), cos(α), sin(α), 0, where P̂ (α) is the
Mueller matrix for a perfect linear polarizer rotated by angle α (given by Eq. (36) from [260] with r = 0), and
I(α) = (cos(2α)

√
1− s2 + 1)/2 is the normalized intensity transmitted through the polarizer. The maximum

intensity is then Imax = (1 +
√

1− s2)/2 and the minimum intensity is Imin = (1 −
√

1− s2)/2, from which
PER = Imax/Imin is calculated. Inverting the equation for s and then yields Eq. (A.8).
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Nufern PM-S405-XP fibers were around PER ' 30 dB leading to maximally S3/S0 ≈ 5%.
When coupling light into the fiber, also the coupling lens may introduce some stress-induced
birefringence. Sometimes, one can partly compensate for the stress-induced birefringence of
the connector and the coupling lens by introducing slightly circular polarized light before the
coupling lens.

A.2 Generating asymmetry of the 2S states in deuterium

For future measurements of the 2S-nP transitions in deuterium, it may be advantageous to
generate an asymmetry in the 2S Zeeman sublevels in deuterium to investigate systematic
effects related to this state asymmetry. Here, two general ideas are discussed: first, through
radiofrequency (RF) radiation combined with a static magnetic field, and second, through a
circularly polarized laser beam driving the 2S-4P transition.

A.2.1 Creating asymmetry through RF radiation combined with static
magnetic field

The first idea to introduce population asymmetry is through circular polarized RF radiation
and applied static magnetic field. Consider the Zeeman splitting of the 1S and 2S hyperfine
levels illustrated in Fig. A.1. The Zeeman energy shift with the corresponding gF factor has
been introduced in Eq. (2.32) and Eq. (2.33). Since g1/2 = −g3/2, the transition (mF =
−1/2, F = 1/2)→ (mF = 1/2, F = 3/2) does not shift. In contrast, the energy difference to
the case with no magnetic field for the transition (mF = 1/2, F = 1/2) → (mF = 3/2, F =
3/2) is:

∆E = EZ3/2,3/2 − E
Z
1/2,1/2 =

4

3
µBB, (A.9)

which gives a frequency shift of around 2 MHz/G. Assuming the velocity of v ' 200 m/s and
the RF beam width of w ' 2 cm, the time-of-flight broadening is v/w ' 10 kHz. This would
require a magnetic field of larger than 5 mG which is easily achievable in our setup, where with
the compensation coils we can apply a magnetic field up to 50 mG in the horizontal direction
transversal to atomic beam. The production of circularly polarized 41 MHz radiation (which
corresponds to the wavelength of 7.3 m) could be achieved with compact split-ring resonators
(which can have orders of magnitude smaller dimensions that the resonant wavelength [262,
263]).

Note that for the 1S ground state, the approach to depopulate the sub-states is less efficient
because all the hyperfine levels of the ground state are being populated incoherently. If the
transition (F = 1/2,mF = −1/2) → (F = 3/2,mF = 1/2) is driven, nothing will change
because the same amount of atoms in the upper level is pumped down as in the lower level
pumped up. Therefore, to introduce any population asymmetry one has to make use of the
fact that the 1S-2S two-photon excitation populates only the F = 1/2 states. There are
not many 2S atoms which can be depopulated in the region after the nozzle, such that the
asymmetry introduced in the state population is small.

One could also exploit a similar spin-filtering technique as described in [264], where the
simultaneous interaction with a magnetic field, an electric field and RF radiation allows to
depopulate certain Zeeman-sublevels via the short-lived 2P1/2 state.
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A.2.2 Creating asymmetry through circular polarized 2S-4P light blade

Another possibility to introduce the initial state asymmetry is through circular polarized
excitation of 2S-nP transitions itself, see Fig. A.2 where the two initial states are labelled as
i1 and i2 and the excited states accessed by σ+ light as e3, e4 and e6. Here we can use
the different strengths of transitions from the mF = ±1/2 initial states for circular polarized
light. Calculating the relative matrix elements (see Tab. A.1) we find that the transitions
i1→ e3, i1→ e4 and i2→ e6 are driven with relative strengths of 2 : 1 : 6 for 2S-nP1/2 and
of 16 : 5 : 15 for 2S-nP3/2. Therefore, for the 2S-nP1/2 transition, i2 is depopulated twice
more than i1 (ratio 3 : 6), and for the 2S-nP3/2 transition, i1 is 1.4 times more depopulated
than i2 (ratio 21 : 15). This opposite asymmetry is advantageous since one can flip the sign
of the asymmetry between i1 and i2 simply by switching between the 2S-nP1/2 and 2S-nP3/2

transitions.

In our setup, we already have the so-called “light blade” which was installed for a possible
1S-2S measurement (see QB in Fig. 3.4). This light blade consists of an elongated beam of
486 nm light, which is resonant with the 2S-4P transition. The light blade is placed before
atoms enter the magnetically and electrically shielded region. For the 1S-2S measurement, the
idea is to depopulate most of already excited atoms, which could experience larger magnetic
and stray electric fields in the nozzle region before they enter the magnetically and electrically

Figure A.1: Level scheme of Zeeman shifted hyperfine splitting of 1S and 2S levels in deuterium. Since
the transition (mF = 1/2, F = 1/2)→ (mF = 3/2, F = 3/2) shifts by 4

3 µBB relative to the transition
(mF = 1/2, F = 1/2) → (mF = 3/2, F = 3/2), this Zeeman energy difference can be exploited to
depopulate the 2S, mF=− 1/2 state by circular polarized σ+ RF radiation of 41 MHz. Note that this
approach is less efficient for the ground state where all the six hyperfine levels are populated equally.

Figure A.2: Level schemes of the 2S-nP1/2 (left) and 2S-nP3/2 (right) transitions in deuterium with σ+

excitation light. The relative strength of transitions (squared matrix elements) is illustrated through
different thicknesses of arrows representing the excitation. For the 2S-nP1/2 transitions, two times
more atoms are excited from the mF = 1/2 initial state (i2) than from the mF = −1/2 state (i1).
For the 2S-nP3/2 transitions, the ratio is opposite with 1.4 times more atoms being depopulated from
i1. Therefore, one can introduce opposite asymmetries in the population of the initial states i1 and
i2 by driving the two different fine structure components of nP states (besides polarization switching
between σ+ and σ− light).
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shielded region. Through this quenching of 2S atoms, Stark and Zeeman shifts are minimized.
For the deuterium 2S-nP measurement, one can use this light blade in combination with a
quarter-waveplate for a similar process as described above, i.e. asymmetrical depopulation of
2S atoms with two different initial states. Implementing the polarization switching for the
2S-4P laser would allow to switch between σ+ and σ− light to flip the asymmetry. This could
be combined with frequency switching between the fine structure components (which also
flips the sign of initial state asymmetry as described above) for another cross-check.

The asymmetry introduced through 2S-nP quenching is limited by the following: some
of the atoms, which decay back to the ground state, are excited again until they reach the
detection region. Furthermoe, some of the atoms decay back to the 2S state. Which maximal
asymmetry can be reached depends on the parameters and geometry of the setup and can
be simulated with optical Bloch equations. It shall be remarked that atoms which decayed
back to the 2S state have a different momentum since they absorbed a photon. This should
be taken into account in the simulation.

In principle, it is also possible to use the spectroscopy light directly to introduce the
asymmetry first and then perform the spectroscopy measurement by separating the signals.
However, as described in Section 4.6, creating fully circular polarized light of the spectroscopy
beam comes along with the difficulties related to the ambiguity between left- and right-circular
polarized light in the polarization monitor of the backcoupled light. Furthermore, rebuilding
the setup back and forth between linear and circular polarized light can be time-consuming.
Apart from that, using the 2S-4P excitation instead of the 2S-6P (or higher transitions) would
be anyway better because of the larger line width, which allows to address more atoms. In
the procedure of creating asymmetry between the 2S Zeeman sublevels, it is important not
to remove all the 2S atoms (in contrast to the desired quenching of all 2S atoms for the 1S-2S
transition measurement). Otherwise no 2S atoms with prepared population asymmetry are
left in the beam, such that the 2S-6P signal solely comes from the 2S atoms which have
been re-excited after quenching (exactly the purpose for the 1S-2S measurement, but not for
preparing asymmetry in the 2S states for the 2S-6P measurement). Therefore, the larger line
width of the light blade transition helps to access more atoms without increasing the laser
power.

Finally, we remark that one may learn about the polarization sensitivity of the detector
from creating asymmetry between the initial states with the help of the circular polarized
2S-4P light blade. Having the time-resolved excitation and detection, one could make use of
the fact that the asymmetry of the 2S state develops gradually, so that one would see a shift
as a function of observation time if the detector is polarization-sensitive. Since we already
have the time-resolved detection, one would only have to pulse the spectroscopy laser for that
purpose. Fast polarization-switching between left- and right-handed circular polarization of
the 2S-4P light blade (as well as switching the frequency between addressing the 4P1/2 and
4P3/2 fine structure components) would reverse the asymmetry, which can be helpful to look
for polarization-sensitivity of the detector despite of the noise in the system.
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A.3 Angular distribution and polarization of atomic fluores-
cence

Here we consider the angular distribution and polarization of atomic fluorescence. Further-
more, we consider the projected momentum distribution of emitted photons onto a particular
axis (i.e. derivation of Eq. (2.82) and Eq. (2.83)). The discussion in Appendix A.3.1 and
Appendix A.3.2 mostly follows problem 3.8 from [265].

A.3.1 Angular distribution

We consider an atom in an excited state which can decay to three different final states via
σ+, σ− and π decay channels, see left of Fig. 2.4. The projected value of the total atomic
angular momentum mF onto the quantization axis ẑ does not matter for this discussion,
only the difference ∆mF = {−1, 0,+1} from the excited to the three final states is relevant.
To be specific for the case of deuterium, consider that the atom is in the excited state with
mF = 1/2. With ẑ as the quantization axis1 and the atom being at the origin of our coordinate
system, due to the symmetry we can restrict ourselves to the x̂ẑ-plane as shown on the right
of Fig. 2.4, i.e. in spherical coordinates we set the azimuthal angle ϕ = 0. Denoting k̂ as the
direction of fluorescence light propagation, the inclination angle θ is the angle between ẑ and
k̂. The vectors

ε̂s ≡ ϕ̂ = −x̂ sinϕ+ ŷ cosϕ
ϕ=0
= ŷ, (A.10)

ε̂p ≡ θ̂ = x̂ cos θ cosϕ+ ŷ cos θ sinϕ− ẑ sin θ
ϕ=0
= x̂ cos θ − ẑ sin θ (A.11)

are the s- and p-polarization components, which are the polarization components perpendic-
ular (s from the German word senkrecht) and parallel to the incidence plane (the x̂ẑ-plane in
Fig. 2.4). The basis vectors for right- and left-circular polarized light (ε̂R and ε̂L, respectively)
are then2

ε̂R = −(ϕ̂+ iθ̂)/
√

2
ϕ=0
= = −(ŷ + ix̂ cos θ − iẑ sin θ)/

√
2, (A.12)

ε̂L = (ϕ̂− iθ̂)/
√

2
ϕ=0
= = (ŷ − ix̂ cos θ + iẑ sin θ)/

√
2. (A.13)

The polarization vectors of emitted σ+, σ− and π light are:

ε̂π = ẑ, ε̂σ+ = −(x̂+ iŷ)/
√

2, ε̂σ− = (x̂− iŷ)/
√

2. (A.14)

Using the above expressions, we can derive the angular distribution of the emitted fluorescence
intensity, which is given by the sum of squared amplitudes3 of the two orthogonal electric

1Note that in our experimental setup (see Fig. 3.1) the ẑ axis from Fig. 2.4 does not necessarily correspond
to the vertical axis of the fluorescence detector: the orientation of the x̂ẑ-plane from Fig. 2.4 relative to the
fluorescence detector depends on the rotation angle of the linear polarization of excitation light.

2The imaginary unit vector represents a phase shift of π/2 in the time dependence.
3Note that in particular cases, the coherences between the emitted fluorescence photons should be taken

into account. For example, if the π fluorescence is described in the different quantization basis, it corresponds
to the coherent superposition of σ+ and σ− light, which, due to interference, leads to the same emission pattern
as the π fluorescence. Here, we assume no coherence between the fluorescence light from the different decay
channels.
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field components:

Iπ ∝ Isπ + Ipπ = |ε̂s · ε̂π|2 + |ε̂p · ε̂π|2 = sin2 θ, (A.15)

Iσ± ∝ Isσ± + Ip
σ± = |ε̂s · ε̂σ± |2 + |ε̂p · ε̂σ± |2 =

1 + cos2 θ

2
. (A.16)

In the above equation, the relative intensities Isπ and Ipπ of the s- and p-polarizations for the
π decay channel, respectively, are:

Isπ = 0, Ipπ = sin2 θ. (A.17)

The π decay channel does not contribute to s-polarization. The relative intensities Isσ± and
Ip
σ± of the s- and p-polarizations for the σ± decay channels, respectively, are:

Isσ± =
1

2
, Ip

σ± =
cos2 θ

2
. (A.18)

Note that the intensity fractions of s- and p-polarizations are the same for σ+ and σ− decays.

A.3.2 Stokes parameters

To examine the polarization of detected light, we compute the relative Stokes parameters.
From symmetry, it is clear that the second relative Stokes parameter (S2/S0), which describes
diagonal vs. anti-diagonal linear polarization, vanishes for σ± and π light:

(S2/S0)π = (S2/S0)σ± = 0. (A.19)

Note that the above equation is only valid in the chosen coordinate system, e.g. if the atoms
are excited with diagonal linear polarization, S2/S0 of emitted fluorescence light is not zero.
However, we can always rotate the coordinate system accordingly. Here, our simple choice
of the coordinate system allows to directly compute the degree of linearly polarized fraction:
the first relative Stokes parameter S1/S0 for horizontal and vertical linear polarization is then
equal to the linearly polarized fraction L/S0 (defined in Eq. (A.6)):

(L/S0)π = (S1/S0)π =
|ε̂H · ε̂π|2 − |ε̂V · ε̂π|2

Iπ
= −1, (A.20)

(L/S0)σ± = (S1/S0)σ± =
|ε̂H · ε̂σ± |2 − |ε̂V · ε̂σ± |2

Iσ±
=

1− cos2 θ

1 + cos2 θ
. (A.21)

The circular polarization fraction is then calculated to be the following:

(S3/S0)π =
|ε̂R · ε̂π|2 − |ε̂L · ε̂π|2

Iπ
= 0,

(S3/S0)σ± =
|ε̂R · ε̂σ± |2 − |ε̂L · ε̂σ± |2

Iσ±
= ± 2 cos θ

1 + cos2 θ
. (A.22)

Combining the above equations, it is instructive to check the relation between the Stokes
parameters for fully polarized light (see Eq. (A.3)):

(S1/S0)2
π + (S2/S0)2

π + (S3/S0)2
π = 1 + 0 + 0 = 1, (A.23)

(S1/S0)2
σ± + (S2/S0)2

σ± + (S3/S0)2
σ± =

(2 cos θ)2

(1 + cos2 θ)2
+ 0 +

(1− cos2 θ)2

(1 + cos2 θ)2
= 1. (A.24)
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A.3.3 Probability distributions of projected photon momenta

The angular probability distributions for the emission of π and σ± fluoresence photons are:

Nπ(θ, φ) =
3

8π
sin2 θ, (A.25)

Nσ±(θ, φ) =
3

16π

(
1 + cos2 θ

)
. (A.26)

The above equations are obtained from Eq. (A.15) and Eq. (A.16) together with the normal-
ization requirement of the angular probability distribution:∫ 2π

0
dφ

∫ π

0
sin θdθN (θ, φ) = 1. (A.27)

Now we wish to determine the probability distribution of the projected photon momenta onto
the ẑ and x̂ axes as defined in Fig. 2.4. In spherical coordinates, it is easiest to compute the
projection onto the ẑ axis, which we do first. As a next step we rotate the distribution such
that the rotated x̂ axis corresponds to the ẑ axis and repeat the calculation with the rotated
distribution.

The probability dP to find the projected momenta between the fractions z and z + dz
of the total photon momentum can be calculated from the surface area dA of the slice with
width dz,, where all the vectors giving this projected momenta lie:

dA =

∫ 2π

0
dφ

∫ θz+dz

θz

sin θdθN (θ, φ), (A.28)

where θz = arccos z and θz+dz = arccos(z+dz) correspond to the polar angles of the projected
fractions z and z + dz. Since the total area is normalized to one (A = 1), the probability
dP is equal to dP = dA/A = dA. The evaluation of the above expression for the π and σ±

distributions yields:

dPπ = dz
3

4
(1− z2) +O(dz2), (A.29)

dPσ± = dz
3

8
(1 + z2) +O(dz2). (A.30)

The probability distribution is given by dP/dz. Therefore, the normalized probability density
for having a spontaneous photon with linear momentum ∆p ∈ [−~KL, ~KL] along the ẑ axis
is:

N ẑ
π (∆p) =

3

4

(
1−∆p2/(~KL)2

)
, (A.31)

N ẑ
σ±(∆p) =

3

8

(
1 + ∆p2/(~KL)2

)
, (A.32)

where ~KL is the total photon momentum. This result is in agreement with Eq. (74) and
Eq. (75) of [152].

For the case of our experiment, as for instance for the description of the light force shift
in Section 2.6, we choose the quanzitation axis ẑ to be along the linear polarization direction,
such that the laser light drives π transitions (∆mF = 0). The quantization axis ẑ is then
perpendicular to the laser propagation direction x̂. For the evaluation of the light force shift,
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we then need to project the photon momentum onto the laser propagation direction (x̂ axis),
which is perpendicular to the quanzitation axis ẑ. This case is different from Eq. (74) and
(75) of [152] derived above, where the photon momentum is projected onto the quantization
axis ẑ. We now wish to determine the analogous expressions for the projection on the the x̂
axis. For this calculation, we rotate the distributions from Eq. (A.25) and Eq. (A.26) such
that the rotated x̂ axis corresponds to the newˆ̃z axis:

Ñπ(θ, φ) =
3

8π

(
1− cos2 φ sin2 θ

)
, (A.33)

Ñσ±(θ, φ) =
3

16π

(
1 + cos2 φ sin2 θ

)
. (A.34)

Repeating the calculation with the above distributions yields the normalized probability den-
sity for having a spontaneous photon with linear momentum ∆p ∈ [−~KL, ~KL] along the x̂
axis before rotating the distribution (for the rotated distribution this is the newˆ̃z axis):

N x̂
π (∆p) =

3

8

(
1 + ∆p2/(~KL)2

)
, (A.35)

N x̂
σ±(∆p) =

3

16

(
3−∆p2/(~KL)2

)
. (A.36)

Since the π transitions correspond to a superposition of σ± transitions in the rotated quan-
tization basis, Eq. (A.35) for π transitions corresponds to σ± transitions from Eq. (A.32),
i.e. N x̂

σ±(∆p) = N ẑ
π (∆p). Since there is no such simple correspondance for σ± transitions

(which are a combination of σ± and π transitions in the rotated quantization basis), Eq. (A.36)
is different from Eq. (A.31).
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A.4 Derivation of hyperfine center shifts for 2S-nP transitions
in deuterium

A.4.1 Derivation of the hyperfine center for imperfect polarization and
asymmetry in the initial states

The excitation amplitudes are determined from the dipole matrix elements given by (derived
from Eq. (4.120) and Eq. (4.175) in [129]):

dp(i→e) =(−1)Fe−me
(

Fe 1 Fi
−me p mi

)
× (−1)Je+I+Fi+1

{
Je Fe I
Fi Ji 1

}
× (−1)le+S+Ji+1

{
le Je S
Ji li 1

}
×
√

(2Fe + 1)(2Fi + 1)(2Je + 1)(2Ji + 1)× 〈ne, le||d||ni, li〉, (A.37)

where (· · · ) and {· · · } denote the Wigner 3-j and 6-j symbols, respectively [128, 129]. p
denotes the spherical component of exciting light (p = 0 for π-light and p = ±1 for σ±-
light). The quantum numbers for initial (subscript i) and excited (subscript e) states are:
nuclear spin I = 1, electron spin S = 1/2, principal quantum numbers ni = 2 and ne = n,
orbital angular momenta li = 0 and le = 1, spin-orbital angular momenta Ji = 1/2 and
Je = {1/2, 3/2}, total atomic angular momenta Fi = 1/2 and Fe = {1/2, 3/2} (here, we
do not consider the Fe = 5/2 state manifold since it is not addressed in our excitation
scheme, see Fig. 2.2), and projections of total atomic angular momenta mi = {−1/2, 1/2}
and me = {−3/2,−1/2, 1/2, 3/2}. According to the labelling of initial and excited states in
Fig. 2.8 we denote the dipole matrix elements in short with an abbreviated subscript iIeE
where I = {1, 2} (not to be confused with the same symbol for the nuclear spin above) and
E = {1, 2, 3, 4, 5, 6}. The last factor in Eq. (A.37), called the reduced matrix element, can be
omitted as long as the quantum numbers ne, le, ni and li do not change for the considered
transitions, which is the case here. The remaining factors (relative matrix elements) are
summarized in Tab. A.1.

We define the center frequency of the total resonance line νc = ν0 + η∆HFS as shown in

orange in Fig. 2.8, where ν0 is the resonance frequency of the 2S
F=1/2
1/2 -nP

F=1/2
1/2 transition, and

η is the fraction of the hyperfine splitting by which the 2S
F=1/2
1/2 -nP

F=3/2
1/2 transition increases

the total resonance line center:

νc = ν0 + η∆HFS. (A.38)

The fraction η can be calculated from the fraction of atoms in the F = 3/2 and F = 3/2
states of the nP level manifold, NF=3/2 and NF=1/2 respectively, as:

η =
NF=3/2

NF=1/2 +NF=3/2
, (A.39)

where NF=1/2 = Ne1 +Ne3 and NF=3/2 = Ne2 +Ne4 +Ne5 +Ne6 according to the population
in the corresponding excited states of Fig. 2.8. In the low-excitation regime, the number
of atoms brought into the excited state is proportional to the squared Rabi frequency (see
Eq. (2.24)). Therefore, the population in the excited state eE is proportional to the intensity
of excitation light I, the number of atoms in the initial states NiI , and the squared relative



A.4 Derivation of hyperfine center shifts for 2S-nP transitions in deuterium 245

iIeE Initial state Excited state Polarization Matrix element diIeE
mF F and mF p Je = 1/2 Je = 3/2

i1e1 mi = −1/2 Fe = 1/2, me = −1/2 π −1/9 2
√

2/9

i1e2 mi = −1/2 Fe = 3/2, me = −1/2 π −2
√

2/9
√

10/9

i2e3 mi = 1/2 Fe = 1/2, me = 1/2 π 1/9 −2
√

2/9

i2e4 mi = 1/2 Fe = 3/2, me = 1/2 π −2
√

2/9
√

10/9

i1e3 mi = −1/2 Fe = 1/2, me = 1/2 σ+ −
√

2/9 4/9

i1e4 mi = −1/2 Fe = 3/2, me = 1/2 σ+ −2/9
√

5/9

i1e5 mi = −1/2 Fe = 3/2, me = −3/2 σ− −2/(3
√

3)
√

5/3/3

i2e6 mi = 1/2 Fe = 3/2, me = 3/2 σ+ −2/(3
√

3)
√

5/3/3

i2e1 mi = 1/2 Fe = 1/2, me = −1/2 σ−
√

2/9 −4/9

i2e2 mi = 1/2 Fe = 3/2, me = −1/2 σ− −2/9
√

5/9

Table A.1: Relative matrix elements for the excitation of the 2S
F=1/2
1/2 -nP (li = 0, Ji = 1/2, Fi = 1/2,

le = 1) transitions in deuterium (nuclear spin I = 1, electron spin S = 1/2). The first column denotes
the abbreviation for corresponding transition according to Fig. 2.8, the second and third columns
show the three varying quantum numbers for the initial and excited states mi, Fe, me. The next
column states the corresponding polarization of the excitation light (p = ±1 corresponds to σ± and
p = 0 to π). The calculated values of the reduced matrix elements (Eq. (A.37) without the factor
〈ne, le||d||ni, li〉) for the 2S-nP1/2 (Je = 1/2) or the 2S-nP3/2 (Je = 3/2) transitions are written in the
last two columns.

matrix element diIeE :

NeE ∝ I NiI |diIeE |2. (A.40)

For the quantization basis with π-light1 (left of Fig. 2.8), we obtain:

ηπ =
Ni1|di1e2|2 +Ni2|di2e4|2

Ni1|di1e1|2 +Ni2|di2e3|2 +Ni1|di1e2|2 +Ni2|di2e4|2

=
|di1e2|2

|di1e1|2 + |di1e2|2
, (A.41)

where in the last step we assumed equal populations Ni1 = Ni2 and used the fact that the
absolute values of the matrix elements are equal for i1 and i2. With numbers from Table A.1,
we find for η1/2,π (2S-nP1/2 transition) and η3/2,π (2S-nP3/2 transition) in case of perfectly
linearly polarized light:

η1/2,π =
8

9
, η3/2,π =

5

9
. (A.42)

In the rotated quantization basis (right of Fig. 2.8), the corresponding populations of the
excited states driven by σ+ and σ− light are proportional to the right- and left-handed

1Note that when considering the excitation only, we can always choose the coordinate system such that
linear polarization of any linear polarization rotation angle drives the π transitions only (independent of the
rotation of the detector).
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circular polarization intensities IRHC and ILHC. Therefore, η is given by:

η =
ILHC(Ni1|di1e5|2 +Ni2|di2e2|2) + IRHC(Ni1|di1e4|2 +Ni2|di2e6|2)

IRHC(Ni1(|di1e3|2 + |di1e4|2) +Ni2|di2e6|2) + ILHC(Ni1|di1e5|2 +Ni2(|di2e2|2 + |di2e1|2))

=
|di1e4|2 + |di1e5|2 + (ILHC/IRHC)(Ni2/Ni1)(|di1e5|2 − |di1e4|2)

|di1e3|2 + |di1e4|2 + |di1e5|2 + (ILHC/IRHC)(Ni2/Ni1)(|di1e5|2 − |di1e4|2 − |di1e3|2)
, (A.43)

where Ni2/Ni1 = (1 + ι)/(1 − ι) and ILHC/IRHC = (1 + s)/(1 − s) according to Eq. (2.31)
and Eq. (2.38), respectively. We made use of the fact that absolute values of corresponding
relative matrix elements are equal for i1 and i2, e.g. |di2e6| = |di1e5|. In the case of small initial
population asymmetry ι or small residual circlar polarization fraction s (ι � 1 or s � 1),
Eq. (A.43) simplifies to:

η ' |di1e4|2 + |di1e5|2

|di1e3|2 + |di1e4|2 + |di1e5|2
+ 2 s ι

|di1e3|2|di1e5|2

(|di1e3|2 + |di1e4|2 + |di1e5|2)2
, (A.44)

where the first term represents the case of perfect linear polarization and is equal to Eq. (A.41).
With numbers from Table A.1 we obtain η with population asymmetry and imperfect linear
polarization for 2S-nP1/2 and 2S-nP3/2:

η1/2 =
8 + 4 s ι

9 + 3 s ι
' 8

9
+

4

27
s ι, η3/2 =

5 + 2.5 s ι

9− 1.5 s ι
' 5

9
+

10

27
s ι, (A.45)

where the approximation is valid for small initial population asymmetry or small residual
circlar polarization fraction (ι� 1 or s� 1).

A.4.2 Switching between right- and left-handed circular polarized light

Switching between right- and left-handed circular polarized light with ±sι, i.e. in the extreme
case between s = −1 and s = +1 as shown on the left of Fig. A.3, results in a shift of the
hyperfine center which we denote as ∆ι. Using Eq. (A.45), we obtain the following expression
for the 2S-nP1/2 (∆ι,1/2) and 2S-nP3/2 (∆ι,3/2) transitions:

∆ι,1/2 =
8 sι ι∆HFS1/2

27− 3 s2
ι ι

2
' 8

27
sι ι∆HFS1/2

, (A.46)

∆ι,3/2 =
20 sι ι∆HFS3/2

27− 3 s2
ι ι

2/4
' 20

27
sι ι∆HFS3/2

, (A.47)

where the approximated value is valid for small ι� 1. ∆HFS1/2
and ∆HFS3/2

are the hyperfine
splittings of the 2S-nP1/2 and 2S-nP3/2 transitions respectively. Since ∆HFS1/2

' ∆HFS3/2
/5,

where ΓnP is the natural linewidth of the 2S-nP transition (see Fig. 2.2), the shift is ap-
proximately the twice as large for the 2S-nP1/2 transition than for the 2S-nP3/2 transition:

∆ι,1/2 ' 0.039 sι ιΓnP, ∆ι,3/2 ' 0.019 sι ιΓnP. (A.48)

Eq. (A.48) allows to estimate the required measurement precision to place a limit on ι.
Fig. A.3(b) shows the shift ∆ι ≡ ∆ι,1/2 is plotted in units of 10−3 ΓnP in dependence on
the initial state population asymmetry ι. For switching between fully right- and left-handed
circular polarized light (sι = 1), the resonance line center has to be determined to better than
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Figure A.3: Shift ∆ι ≡ ∆ι,1/2 of the hyperfine center when switching the polarization of excitation light
between the left- and right-handed circular polarization for the 2S-nP1/2 transition, see Eq. (A.48). In
(a), ∆ι is illustrated for the case of fully circular polarized light for an examplary initial state population
asymmetry of ι = 1/3. In (b), ∆ι is plotted in dependence on the initial state population asymmetry ι.
For example, switching between fully left- and right-handed circular polarizations requires to determine
the line center to around 2× 10−3 ΓnP in order to place the experimental limit on ι < 0.05

2×10−3 ΓnP in order to place the experimental limit ι < 5%. Note that for this measurement
the circular polarization fraction does not need to be accurately known: 10% accuracy would
be enough, as the difference to the orange curve with sι = 0.9 illustrates.

For a measurement with fully circular polarized light, the fiber in the active fiber-based
retroreflector can be replaced by a non-polarization maintaining fiber (possibly in combination
with an in-line fiber polarization controller). However, as discussed in Section 4.6, the polar-
ization monitor does not distinguish between the right- and left-handed circular polarization.
A potentially easier way could be to make use of the existing stress-induced birefringence
of the collimator. For our collimators, we observed the retardance to be on the order of
δcoll ' 0.1− 0.3 rad (see Section 4.2.4). For one of our collimators we found that for a certain
orientation w.r.t. the fiber a circular polarization fraction of S3/S0 ≈ 0.3 could be achieved.
The sign ambiguity in the polarization monitor is then overcome by the properties of the
PM fiber which is known to produce less than 10% variation in S3/S0 for optimal alignment
(see Fig. 4.23). The collimator can then be rotated to produce circular polarization between
S3/S0 = −0.2 . . . − 0.3 and S3/S0 = +0.2 . . . + 0.3. In Fig. A.3(b), this case approximately
corresponds to sι = 0.2 (red curve), which reduces the sensitivity to the experimental limit
on ι by a factor of 6− 7 compared to the case with fully circular polarized light.

Which of the above scenarios is most suitable for the measurement of ι depends on the
statistics and the time needed to rebuilt the setup. Note that a factor of 6− 7 in sensitivity
to ι means a factor of 36 − 49 for measurement time in order to reach the same statistical
uncertainty. The scenario with mostly circular polarized light requires to replace the vacuum
fiber at least two times: first from the polarization-maintaining fiber in the setup to the non-
polarization maintaining fiber (in combination with a polarization-controller or waveplates
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before the fiber) and then back to the polarization-maintaining fiber for precision-data taking.
Furthermore, one has to repeat the alignment procedure for the collimator-fiber system each
time the fiber is replaced. In addition, due to limited space in the vacuum chamber setup,
the collimator needs to be removed from the AFR setup in order to replace the fiber. This
introduces some risk to capture dust in the collimator. Furthermore, the ambiguity between
left- and right-circular polarized light has to be handled, e.g. with additional methods such
as a thin polarizing element before the photomultiplier after the HR mirror. Therefore, it
may be more efficient to operate in the scenario with a smaller circularly polarized fraction,
i.e. use the existing setup ready for precision-data taking and invest more measurement days
for data with introduced polarization imperfections from collimator birefringenc (sι ≈ 0.2).
In order to place an experimental limit ι < 0.05, one would have to determine the line center
to better than 3× 10−4 ΓnP (see Fig. A.3(b)).

A.4.3 Derivation of the hyperfine center with quantum interference

As shown in Eq. (2.62), the evaluation of quantum interference involves the factor of the
exciting dipole matrix element from Eq. (A.37) as well as the emitting dipole matrix element
given by (analagous to Eq. (A.37)):

dq(e→f) =(−1)Ff−mf
(

Ff 1 Fe
−mf q me

)
× (−1)Jf+I+Fe+1

{
Jf Ff I
Fe Je 1

}
× (−1)lf+S+Je+1

{
lf Jf S
Je le 1

}
,

×
√

(2Ff + 1)(2Fe + 1)(2Jf + 1)(2Je + 1)〈nf , lf ||d||ne, le〉 (A.49)

where (· · · ) and {· · · } denote the Wigner 3-j and 6-j symbols, respectively [128, 129]. q
denotes the spherical component of emitting light polarization (q = 0 for π decay and q = ±1
for σ± decays). The quantum numbers for excited (subscript e) and final (subscript f) states
for our case of the decay from the nP state to the 1S1/2 ground state are: nuclear spin
I = 1, electron spin S = 1/2, principal quantum numbers ne = n and nf = 1, orbital angular
momenta le = 1 and lf = 0, spin-orbital angular momenta Je = {1/2, 3/2} and Jf = 1/2, total
atomic angular momenta Fe = {1/2, 3/2} and Ff = {1/2, 3/2}, and projections of total atomic
angular momenta me = {−3/2,−1/2, 1/2, 3/2} and mf = {−3/2,−1/2, 1/2, 3/2}. According
to the labelling of excited and final states in Fig. A.4 we denote the dipole matrix elements in
short with an abbreviated subscript eEfF where E = {1, 2, 3, 4, 5, 6} and F = {1, 2, 3, 4, 5, 6}
number the excited and final states, respectively. The factor 〈nf , lf ||d||ne, le〉 can be omitted
as long as the quantum numbers ne, le, nf and lf do not change for the considered transitions,
which is the case here. The remaining factors (relative matrix elements) are evaluated in
Table A.2.

Consider now the example shown in Fig. A.4, where the atom is excited to the states e1 and
e2 from the initial state i1. Using the quantum mechanical perturbative model, the signal for
laser excitation with only one of the standard polarizations is given by Eq. (2.63), where the
unresolved quantum interference occurs between the two paths involving the same initial and
final states but the two different excited hyperfine states e1 and e2. The contribution for the
different final states as well as different spherical components q enters the sum incoherently,
such that it corresponds to the incoherent sum of many unresolved Lorentzians which can
be approximated by a single Lorentzian with a line center according to Eq. (2.59). For the
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eEfF Excited state Final state Emitting polar. Matrix element deEfF
Fe me Ff mf q Je = 1/2 Je = 3/2

e1f1 1/2 −1/2 1/2 −1/2 π 1/9 −2
√

2/9

e1f2 1/2 σ+
√

2/9 −4/9

e1f3 3/2 −3/2 σ− 2/(3
√

3) 1/(3
√

6)

e1f4 −1/2 π 2
√

2/9 1/9

e1f5 1/2 σ+ 2/9 1/(9
√

2)

e2f1 3/2 −1/2 1/2 −1/2 π 2
√

2/9 −
√

10/9

e2f2 1/2 σ+ −2/9
√

5/9

e2f3 3/2 −3/2 σ−
√

2/3/3 2
√

2/15/3

e2f4 −1/2 π −1/9 −2/(9
√

5)

e2f5 1/2 σ+ −2
√

2/9 −4
√

2/5/9

e3f1 1/2 1/2 1/2 −1/2 σ− −
√

2/9 4/9

e3f2 1/2 π −1/9 2
√

2/9
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√
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Table A.2: Relative matrix elements for the decays from the nP excited state (le = 1) to the 1S1/2

ground state (lf = 0, Jf = 1/2) in deuterium (nuclear spin I = 1, electron spin S = 1/2). The excited
and final states are denoted as eE and fF with E = {1, 2, 3, 4, 5, 6} and F = {1, 2, 3, 4, 5, 6} according
to Fig. A.4. The first column names the corresponding decay from the eE state to the fF state. The
quantum numbers F and mF for the excited (Fe, me) and final states (Ff , mf ) are listed thereafter.
Next, the emitting polarization q is given (q = ±1 corresponds to the σ± decays and q = 0 to the
π decay). The last two columns give the value for the reduced matrix element deEfF (Eq. (A.49)
without the factor 〈nf , lf ||d||ne, le〉) for the nP1/2 (Je = 1/2) and the nP3/2 (Je = 3/2) fine-structure
components.

contribution of the unresolved quantum interference, we can use the result of Eq. (2.60) with
D1 = di1e1de1fF and D2 = di1e2de2fF for each final state F . The fractional shift η of the total
line center in units of the hyperfine splitting (see Eq. (A.38)), including unresolved quantum
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Figure A.4: Example of the level scheme for the derivation of the line center with unresolved quantum
interference for 2S-nP transitions in deuterium. The 2S1/2 (F = 1/2, mF = −1/2) state is the initial
state i1, from which the two excited nP1/2 (F = 1/2 and F = 3/2, mF = −1/2) states e1 and e2 are
driven. The π decays (blue wavy arrows) occur to the 1S1/2 (F = 1/2 and F = 3/2, mF = −1/2)
ground states (final states f1 and f4). Unresolved quantum interference for the π decays involves
terms with (di1e1de1f1)(di1e2de2f1) and (di1e1de1f4)(di1e2de2f4), where diIeE are the reduced matrix
elements from the initial state iI to the excited state eE (evaluated in Table A.1) and deEfF are the
reduced matrix elements from the excited state eE to the final state fF (evaluated in Table A.2).
Similarly, the σ± decays are shown with red wavy arrows.

interference, is then given by:

η =
S2 + SQ

S1 + S2 + 2SQ
(A.50)

with

S2 =
∑
F

(di1e2de2fF )2, S1 =
∑
F

(di1e1de1fF )2, SQ =
∑
F

di1e1de1fF di1e2de2fF . (A.51)

For the example shown in Fig. A.4, the above terms yield:

S1 = (di1e1de1f3)2 + (di1e1de1f4)2 + (di1e1de1f1)2 + kξ(di1e1de1f5)2 + kξ(di1e1de1f2)2, (A.52)

S2 = (di1e2de2f3)2 + (di1e2de2f4)2 + (di1e2de2f1)2 + kξ(di1e2de2f5)2 + kξ(di1e2de2f2)2, (A.53)

SQ = (di1e1de1f3)(di1e2de2f3) + (di1e1de1f4)(di1e2de2f4) + (di1e1de1f1)(di1e2de2f1)

+ kξ(di1e1de1f5)(di1e2de2f5) + kξ(di1e1de1f2)(di1e2de2f2), (A.54)

where we included the factor kξ describing the polarization sensitive detector, which detects
a factor kξ more σ+ than σ− photons. The factor kξ converts to the asymmetry parameter
introduced in Eq. (2.44) as follows:

kξ = (1− ξ◦)/(1 + ξ◦). (A.55)

Similarly, we can also include the excitation from the state i2 with a state asymmetry ι. With
the reduced matrix elements from Table A.2, we then find the following line center fractions
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η1/2 (nP1/2 level) and η3/2 (nP3/2 level):

η1/2 =
24 + 8ξ◦ι

27 + 15ξ◦ι
' 8

9
− 16

81
ξ◦ι, η3/2 =

15 + 13ξ◦ι

27 + 21ξ◦ι
' 5

9
+

4

81
ξ◦ι. (A.56)

The above equation shows that there is only a shift if the states i1 and i2 are unequally
populated (ι 6= 0) and the detector detects σ− photons with a different quantum efficiency
than σ+ photons (ξ◦ 6= 0), which is independent of the detector geometry. Due to the
discussed cancellation of unresolved quantum interference there is no dependence on the
detector geometry, and there is no shift proportional only to ξ◦ or only to ι.
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A.5 Piezo-mirror for the 1S-2S enhancement cavity

The possible future upgrade of the 1S-2S enhancement cavity (see Section 3.2.1.1) to differen-
tial pumping may require a higher feedback bandwidth of the cavity lock (due to the increased
cavity length and the vacuum chamber extensions for the cavity mirrors, which may be more
sensitive to vibrations). Therefore, a piezo-mirror with higher bandwidth than the previous
design was explored. Fig. A.5(a) shows the drawing for the most promising design of the
mount (new design denoted as V6), which is a modified design based on [266]. Contrary to
[266], here we require a mirror mount with a through-hole, and which has smaller dimensions.
The drawing of the previous piezo-mirror design (denoted as V0) is shown in Fig. A.5(b). The
photograph in Fig. A.5(c) shows these designs manufactured from copper or steel, where the
mirror (7.75 mm diameter, 4.0 mm thickness) is glued with TorrSeal® epoxy onto the ring-
piezo (PI PD080.31, 4.5 mm inner diameter, 8 mm outer diameter), which is in turn glued
onto the mount. The epoxy also serves as the insulator between the piezo electrodes and
the mount. The photograph in Fig. A.5(d) shows how the mirror can be glued using 3 cubic
piezos (PI PL022.31, 2x2x2 mm) similar to [266].

Fig. A.6 shows the frequency response of different configurations. As in [266], these

Figure A.5: Drawings and photographs of the previous and new designs of the piezo-mirror which
serves as the incoupling mirror for the 1S-2S enhancement cavity. (a) Drawing of the new piezo-
mirror mount design V6 (modified design from [266] with smaller dimensions and a through-hole).
(b) Drawing of the previous piezo-mirror design V0. The values of dimensions in (a) and (b) are given
in mm. (c) Photograph (side view) of the piezo-mirror mounts from (a) and (b), manufactured from
copper or stainless steel, with glued ring-piezos (PI PD080.31, 4.5 mm inner diameter, 8 mm outer
diameter) and mirrors (7.75 mm diameter, 4.0 mm thickness). (d) Photograph (top view) of the piezo-
mirror design from (a), where the mirror is glued onto the mount with 3 cubic piezos (PI PL022.31,
2x2x2 mm) similar to the configuration in [266].
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Figure A.6: Frequency response of different piezo-mirror designs. The amplitude is shown on the top
plot, the phase on the bottom plot. All curves except the gray curve show different configurations
with the ring-piezo (PI PD080.31, 4.5 mm inner diameter, 8 mm outer diameter) glued onto the mirror
(7.75 mm diameter, 4.0 mm thickness) as shown in Fig. A.5(c). This ring-piezo has a capacitance
of 300 nF, which forms a lowpass filter together with the 50 Ω output resistance of the high voltage
amplifier for the piezo (resuling in a −3 dB cutoff frequency around 10 kHz, where the phase shift is
−45 deg). The gray curve shows the response for a similar mirror glued onto the mount with three
cubic piezos (PI PL022.31, 2x2x2 mm) as in [266], having a smaller capacitance of 25 nF. For this
configuration, the response is approximately flat up to the resonance around 80 kHz, where the first
phase shift of −90 deg occurs. The frequency responses of the V0 designs from Fig. A.5(b) from copper
(red) and steel (orange) with the ring-piezo both show a resonance around 17 kHz. The V6 design
from Fig. A.5(a) has an approximately smooth response up to around 80 kHz for steel (black) or up
to around 95 kHz for copper (blue), with higher amplitude for copper. However, note that for the
configuration with the ring-piezo the lowpass behaviour might limit the bandwidth to 20 kHz, where
the phase shift reaches −90 deg (together with the phase shift of −90 deg from the integrator of the
feedback loop this results in the −180 deg phase shift).

measurements were performed by using a Michelson interferometer1. The gray curve shows
the data for the V6 mount manufactured from steel with 3 cubic piezos, whereas other curves
show the data for the V0 or V6 mounts with the ring-piezo. The ring-piezo has a capacitance
of 300 nF, which forms a lowpass filter together with the 50 Ω output resistance of the high
voltage amplifier for the piezo. This lowpass results in a−3 dB cutoff frequency around 10 kHz,
where the phase shift is −45 deg. The cubic piezos have a smaller capacitance of 25 nF, which
has the advantage of shifting the lowpass cutoff to higher frequency. For this configuration,

1The frequency response was measured with the Ono-Sokki CF-9200 FFT-Analyser with the CF-0971 signal
output module, which enables the measurement of the transfer function.



254 A. Appendix

the response is approximately flat up to the resonance around around 80 kHz, where the first
phase shift of −90 deg occurs. Note that typically the phase shift of −90 deg in the frequency
response of the piezo-mirror limits the bandwidth (without any additional techniques such
as notch filters), since the integrator adds another phase shift of −90 deg, which results in
the −180 deg total phase shift. The responses of the V0 design from Fig. A.5(b) with the
ring-piezo both from copper (red) and steel (orange) show a resonance around 17 kHz. The
V6 design from Fig. A.5(a) has an approximately smooth response up to around 80 kHz for
steel (black) or up to around 95 kHz for copper (blue). Here, the resonance has a smaller
amplitude for the mount from steel as compared to copper, which was found to be typically
the case for different designs similar to V6. For this configuration, the lowpass behavior of the
ring-piezo is limiting the bandwidth. In principle, this could be improved by a lower output
resistance of the high voltage amplifier.

Though the design with 3 cubic piezos has the best frequency response curve, it turned
out that our cubic piezos are less reliable when gluing them onto the mirror, since the small
connection leads were sensitive to break during the assembly process. In addition, it may be
necessary to compensate for the tilt resulting from the slightly different response of the three
piezos, such that three high voltage amplifiers with an adjustable gain are needed. Since in
the current configuration of the 1S-2S enhancement cavity, a locking bandwidth of around
10-20 kHz turned out to be sufficient, the V6 mount design from steel (due to the smaller
amplitude of the resonance as compared to copper) with a ring-piezo was used for now in
the apparatus. However, for the future upgrade, it may turn out to be necessary to use this
mount with 3 cubic piezos.
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on a Poincaré sphere . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 188

4.26 Setup for testing the polarization monitor model of light collimated after a PM
fiber from polarimetry of backcoupled light . . . . . . . . . . . . . . . . . . . 193

4.27 Tests of backcoupling polarimetry for linearly polarized light . . . . . . . . . 195

4.28 Test of polarization monitor model for circularly polarized light . . . . . . . . 196



258 List of Figures

4.29 Measurement of the Mueller matrices for the back-coupled polarization paths 199
4.30 Circularly polarized fraction in the AFR as deduced from polarimetry of back-

coupled light . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 200

5.1 Mean 1S-2S intracavity power and stability for deuterium 2S-6P precision line
scans . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 205

5.2 Example of the deuterium 2S-6P1/2 resonance line scan . . . . . . . . . . . . 207
5.3 Example of the 1S-2S resonance line scans and the drift of the 1S-2S laser

detuning throughout the measurement day . . . . . . . . . . . . . . . . . . . 209
5.4 Simulation of the 1S-2S resonance from the 2S-6P fluorescence signal . . . . . 210
5.5 Alignment of the angle between the atomic beam and the 2S-6P laser beam in

the AFR . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 213
5.6 Alignment of the angle between the atomic beam and the 2S-6P laser beam in

the AFR (misaligned nozzle) . . . . . . . . . . . . . . . . . . . . . . . . . . . 215
5.7 Illustration of aligned and misaligned nozzle w.r.t. the 1S-2S laser beam . . . 216
5.8 In-situ stray electric field measurement results . . . . . . . . . . . . . . . . . . 218
5.9 Preliminary analysis of the 317 precision line scans at P2S-6P = 30 µW (separate

analysis of each line scan) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 221
5.10 Preliminary analysis of the 317 precision line scans at P2S-6P = 30 µW (average

in each delay) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 223
5.11 “Big Model”, light force shift and second-order Doppler shift simulation cor-

rections for the 2S-6P laser power of P2S-6P = 30 µW . . . . . . . . . . . . . . 224
5.12 Simulation corrections and results for all precision line scans in dependence on

the 2S-6P laser power . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 226

6.1 Preliminary results on the uncertainty for the Rydberg constant and proton or
deuteron radii from precision spectroscopy of the 2S-6P transitions in hydrogen
and deuterium . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 232

A.1 Level scheme of Zeeman shifted hyperfine splitting of 1S and 2S levels in deu-
terium . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 238

A.2 Level schemes of the 2S-nP1/2 and 2S-nP3/2 transitions in deuterium with σ+

excitation light . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 238
A.3 Shift of the hyperfine center when switching the polarization of excitation light

between left- and right-handed circular polarization . . . . . . . . . . . . . . . 247
A.4 Example of the level scheme for the derivation of the line center with unresolved

quantum interference for 2S-nP transitions in deuterium . . . . . . . . . . . . 250
A.5 Drawings and photographs of the previous and new design of the piezo-mirror

(incoupler for the 1S-2S enhancement cavity) . . . . . . . . . . . . . . . . . . 252
A.6 Frequency response of different piezo-mirror designs . . . . . . . . . . . . . . 253



List of Tables

2.1 Contribution of different effects to the theoretical prediction for the hyperfine
centroid energy of the 1S1/2 state in hydrogen and deuterium . . . . . . . . . 15

2.2 Contribution of different effects to the theoretical prediction for the hyperfine
centroid transition frequency of the 1S1/2-2S1/2 transition in hydrogen and
deuterium . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

2.3 Contribution of different effects to the theoretical prediction for the hyperfine
centroid transition frequency of the 2S1/2-6P1/2 transition in hydrogen and
deuterium . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

2.4 Atomic properties of the 2S1/2-6P1/2 transitions in hydrogen and deuterium . 23
2.5 Atomic properties of the 2S-6P3/2 transitions in hydrogen and deuterium . . 24
2.6 Backdecay rates for the 2S1/2-6PJ transitions in deuterium . . . . . . . . . . 58

3.1 Parameters used for the Monte Carlo simulation of the trajectories of metastable
2S deuterium atoms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98

3.2 Speed distribution of the flux for the 16 delays including the relative signal
amplitudes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104

4.1 Lens surface data of the four-lens collimator design . . . . . . . . . . . . . . . 149

5.1 Overview of the collected data for the preliminary measurement of the 2S-6P
transition in deuterium . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 204

5.2 Variation of the measurement results for the extrapolated frequency for differ-
ent simulation parameter sets . . . . . . . . . . . . . . . . . . . . . . . . . . . 222

5.3 Preliminary uncertainty budget and corrections for the 2S1/2-6P1/2 transition
frequency measurement in deuterium . . . . . . . . . . . . . . . . . . . . . . . 228

A.1 Relative matrix elements for the excitation of the 2S1/2-nP transitions in deu-
terium . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 245

A.2 Relative matrix elements for the decays from the nP state to the 1S1/2 ground
state in deuterium . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 249



260 List of Tables



Bibliography

[1] V. Mukhanov, Physical Foundations of Cosmology. Cambridge University Press, 2005.

[2] L. Canetti, M. Drewes, and M. Shaposhnikov, “Matter and antimatter in the universe,”
New Journal of Physics, vol. 14, p. 095012, 2012.

[3] G. Börner, The Early Universe. Springer, 2002.

[4] T. Kajita, “Nobel Lecture: Discovery of atmospheric neutrino oscillations,” Reviews of
Modern Physics, vol. 88, p. 030501, 2016.

[5] S. Weinberg, “The cosmological constant problem,” Reviews of Modern Physics, vol. 61,
pp. 1–23, 1989.

[6] S. G. Karshenboim, “Precision physics of simple atoms: QED tests, nuclear structure
and fundamental constants,” Physics Reports, vol. 422, pp. 1–63, 2005.

[7] M. I. Eides, H. Grotch, and V. A. Shelyuto, Theory of Light Hydrogenic Bound States.
Springer, 2007.

[8] E. Tiesinga, P. J. Mohr, D. B. Newell, and B. N. Taylor, “CODATA recommended
values of the fundamental physical constants: 2018,” Reviews of Modern Physics, vol. 93,
p. 025010, 2021.

[9] S. G. Karshenboim, “Precision Physics of Simple Atoms and Constraints on a Light
Boson with Ultraweak Coupling,” Physical Review Letters, vol. 104, p. 220406, 2010.
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constant with an accuracy of 81 parts per trillion,” Nature, vol. 588, pp. 61–65, 2020.

[31] P. Asenbaum, C. Overstreet, M. Kim, J. Curti, and M. A. Kasevich, “Atom-
Interferometric Test of the Equivalence Principle at the 10−12 Level,” Physical Review
Letters, vol. 125, p. 191101, 2020.

[32] D. Hanneke, S. Fogwell, and G. Gabrielse, “New Measurement of the Electron Magnetic
Moment and the Fine Structure Constant,” Physical Review Letters, vol. 100, p. 120801,
2008.

[33] X. Fan and G. Gabrielse, “Driven one-particle quantum cyclotron,” Phys. Rev. A,
vol. 103, p. 022824, 2021.

[34] R. S. Van Dyck, S. L. Zafonte, S. Van Liew, D. B. Pinegar, and P. B. Schwinberg,
“Ultraprecise Atomic Mass Measurement of the α Particle and 4He,” Phys. Rev. Lett.,
vol. 92, p. 220802, 2004.
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and Light Hydrogen-Like Ions,” Annalen der Physik, vol. 531, no. 5, p. 1800324, 2019.

[82] G. A. Miller, “Defining the proton radius: A unified treatment,” Physical Review C,
vol. 99, p. 035202, 2019.

[83] Y.-H. Lin, H.-W. Hammer, and U.-G. Meißner, “Dispersion-theoretical analysis of the
electromagnetic form factors of the nucleon: Past, present and future,” The European
Physical Journal A, vol. 57, p. 255, 2021.

[84] W. Xiong, A. Gasparian, H. Gao, D. Dutta, M. Khandaker, N. Liyanage, E. Pasyuk,
C. Peng, X. Bai, L. Ye, K. Gnanvo, C. Gu, M. Levillain, X. Yan, D. W. Higin-
botham, M. Meziane, Z. Ye, K. Adhikari, B. Aljawrneh, H. Bhatt, D. Bhetuwal,
J. Brock, V. Burkert, C. Carlin, A. Deur, D. Di, J. Dunne, P. Ekanayaka, L. El-Fassi,
B. Emmich, L. Gan, O. Glamazdin, M. L. Kabir, A. Karki, C. Keith, S. Kowalski,
V. Lagerquist, I. Larin, T. Liu, A. Liyanage, J. Maxwell, D. Meekins, S. J. Nazeer,
V. Nelyubin, H. Nguyen, R. Pedroni, C. Perdrisat, J. Pierce, V. Punjabi, M. Shabestari,
A. Shahinyan, R. Silwal, S. Stepanyan, A. Subedi, V. V. Tarasov, N. Ton, Y. Zhang,
and Z. W. Zhao, “A small proton charge radius from an electron–proton scattering
experiment,” Nature, vol. 575, pp. 147–150, 2019.
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Piper, 2004.

[123] W. E. Lamb and R. C. Retherford, “Fine structure of the hydrogen atom by a microwave
method,” Phys. Rev., vol. 72, pp. 241–243, 1947.

[124] S. G. Karshenboim, A. Ozawa, and V. G. Ivanov, “Higher-order logarithmic corrections
and the two-loop self-energy of a 1s electron in hydrogen,” Phys. Rev. A, vol. 100,
p. 032515, 2019.



BIBLIOGRAPHY 271

[125] S. G. Karshenboim and V. A. Shelyuto, “Three-loop radiative corrections to the 1s
lamb shift in hydrogen,” Phys. Rev. A, vol. 100, p. 032513, 2019.

[126] U. D. Jentschura, “Proton radius, Darwin-Foldy term and radiative corrections,” The
European Physical Journal D, vol. 61, pp. 7–14, 2011.

[127] C. J. Foot, Atomic Physics. Oxford University Press, 2005.

[128] I. I. Sobelman, Introduction to the Theory of Atomic Spectra. Pergamon Press, 1972.

[129] I. I. Sobelman, Atomic Spectra and Radiative Transitions. Springer, 1992.

[130] R. Loudon, The Quantum Theory of Light. Oxford University Press, 1983.

[131] J. Baker, “Transition probabilities for one electron atoms,” Tech. Rep. NBS TN 1612,
National Institute of Standards and Technology, Gaithersburg, MD, 2008.
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[154] D. Leibfried, Präzisionsspektroskopie an atomarem Wasserstoff. PhD thesis, LMU Mu-
nich, 1995.

[155] K. Jousten, Wutz Handbuch Vakuumtechnik. Vieweg, 2004.

[156] V. Nemanic, “The influence of a hot cathode vacuum gauge on the residual gas compo-
sition,” Vacuum, vol. 70, pp. 523–530, 2003.
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und an der LMU für die wissenschaftliche und zwischenmenschliche Freude bei verschiedenen
Begegnungen wie z.B. bei Gruppenseminaren, Doktorfeiern oder zwischendurch.

In meinem privaten Umfeld gilt mein innigster und tiefster Dank meiner Ehefrau Barbara,
die mich immer bedingungslos auf allen Ebenen unterstützt hat, die ganze Doktorarbeitszeit
mitgetragen hat und mich im Herzen immer wieder ermutigt und motiviert hat. Mit wärm-
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