
Modern approaches for component-wise boosting:
Automation, efficiency, and distributed computing
with application to the medical domain

Daniel Schalk

München 2023

Modern approaches for component-wise boosting:
Automation, efficiency, and distributed computing
with application to the medical domain

Daniel Schalk

Dissertation
an der Fakultät für Mathematik, Informatik und Statistik

der Ludwig–Maximilians–Universität München

eingereicht von
Daniel Schalk
am 07.12.2022

Erster Berichterstatter: Prof. Dr. Bernd Bischl
Zweiter Berichterstatter: PDDr. Fabian Scheipl
Dritter Berichterstatter: Prof. Dr. Matthias Schmid

Tag der Disputation: 24.03.2023

Acknowledgments

This thesis would not have been possible without the help, support, guidance, and advice of many people! In
particular, I would like to express my sincere gratitude to . . .

. . . my supervisor Prof. Dr. Bernd Bischl for the seamless collaboration, trust, support, encouragement
and many advice throughout the years.

. . . PD Dr. Fabian Scheipl and Prof. Dr. Matthias Schmid for their willingness to act as the second
and third reviewer for my Ph.D. thesis.

. . . Prof. Dr. Christian Heumann and Prof. Dr. Helmut Küchenhoff for their availability to be part
of the examination panel at my Ph.D. defense.

. . . Prof. Dr. UlrichMansmann for the pleasant cooperation and support via DIFUTURE.

. . . all my coauthors, especially David Rügamer, for the supportive collaboration.

. . . collegues who have become friends over time andwithwhom I had an unforgettable time (alphabeti-
cally ordered): Ben, Christoph, Flo, Giuseppe, Janek, Jann, Julia, Julia,Martin,Matthias,Moritz,
Phillipp, Quay, Stefan.

. . . all current and formermembers ofmyworking group: Thanks for always feeling welcome, awesome
activities such as hiking, crafting, or playing cards, and, of course, drinking a lot of coffee.

. . . all remaining former and current colleagues at the Department of Statistics for the friendly atmo-
sphere, thrilling soccer matches, nice retreats, and all other activities.

. . . my family and girlfriend who always support me, tolerate my quirks, and are always there for me.

Summary

Component-wise boosting (CWB)with statisticalmodels as base learners is amethod at the intersection
of statistics andmachine learning. The advantages of CWB are its usability in high-dimensional feature
spaces, the automatic (unbiased) variable selection, and the interpretability of the partial feature effects.
However, a disadvantage of the method is the inefficient model structure, which often does not allow
for processing vast amounts of data at desirable rates or requires toomuchmemory. Furthermore, even
thoughCWB is a user-friendlymethod, setting up the algorithmmay require a high level of expertise.

The first part of this thesis addresses adapting CWB to the demands arising from these disadvantages.
Thus, within this thesis, the internal structure of CWBwas adjusted to increase its efficiency. First, the
optimizer of CWB, a functional gradient descent, was extended to include Nesterov’s momentum and
accelerates CWB’s fitting. Second, a more efficient data structure for numerical features reduces the
required memory and further accelerates the fitting process. Furthermore, combining AutomatedMa-
chine Learning (AutoML) concepts with CWB in a framework called Autocompboost helps users to
benefit fromCWB.Compared tootherAutoMLsystems,Autocompboost focuses on the interpretabil-
ity of the estimated model. The framework allows the user to assess the required model complexity and
explain the decision-making process.

The second part of this work deals with the model estimation of CWB and the evaluation of binary
classification models on distributed data. Here, the data are distributed across different sites and con-
tain confidential information, making pooling of the data into one data set impossible. To fit CWB to
distributed data, the fitting completely relies on aggregated data, so re-identifying individual data is im-
possible. Additionally, a server-specific adjustment of the estimated partial feature effects compensates
for inhomogeneities in the individual data sets. Furthermore, updating evaluation procedures to this
multi-site setup is essential. Thus, this thesis also deals with a technique to evaluate binary classifica-
tion models by analyzing the receiver operating characteristics (ROC) curve on distributed data. The
underlying method, computed in a distributed manner, is the ROC-GLM and allows an estimation of
the ROC curve and the area under the curve with respective confidence intervals.

Finally, the implementations of the developed methods in the statistical programming language R con-
clude this dissertation. The package compboost contains an efficient CWB implementation, while the
package dsCWB allows fitting CWB to distributed data. Autocompboost provides the AutoML frame-
work for CWB and builds on compboost. Further, the package dsBinVal contains functionality for
distributed ROC analysis.

Zusammenfassung

Komponentenweises Boosting (engl. component-wise boosting, CWB) mit statistischen Modellen als
Basiskomponenten ist eineMethode, welche Eigenschaften aus der statistischenModellierung und des
Maschinellen Lernens in sich vereint. Vorteile von CWB sind neben der Praxistauglichkeit für hochdi-
mensionale Daten die automatische (unverzerrte) Variablenselektion sowie die Intepretierbarkeit der
Effekte der Einflussgrößen. EinNachteil derMethode ist die ineffizienteModellstruktur. Diese erlaubt
es nicht sehr große Datenmengen in adäquater Zeit zu verarbeiten. Zudem benötigt es Fachwissen für
die richtige Einstellung des Algorithmus, obwohl CWB als anwenderfreundliche Methode gilt.

Ein Schwerpunkt dieser Arbeit ist es, CWB den Anforderungen, welche sich aus diesen Nachteilen
ergeben, mit Hilfe moderner Techniken des Maschinellen Lernens entsprechend anzupassen. Eine
Effizienzsteigerung des Algorithmus wird durch die Anpassung der internen Struktur an zwei Stellen
erzielt und beschrieben. Der zugrundeliegende Optimierer, ein funktioneller Gradientenabstieg, wird
für eine beschleunigte Modellschätzung um Nesterovs Momentum erweitert. Die Nutzung einer ef-
fizienterenDatenstruktur fürmetrische Einflussgrößen reduziert zusätzlich den benötigtenArbeitsspe-
icher und beschleunigt nochmals dieModellschätzung. Damit eine größere Anwenderschaft vonCWB
profitiert, werden Konzepte des Automatischen Maschinellen Lernens (AutoML) adaptiert und ein
Framework namens Autocompboost vorgestellt. Der Fokus von Autocompboost liegt dabei auf der
Automatisierung von Datenvorverarbeitung bis hin zum Schätzen von CWB sowie der Interpretier-
barkeit des geschätzten Modells. Die dem Nutzer zur Verfügung gestellten Methoden erlauben es die
nötige Modellkomplexität zu beurteilen und gewährleisten vollständige Transparenz beim Prognos-
tizieren.

Der zweite Schwerpunkt dieser Arbeit behandelt dieModellschätzung vonCWB sowie Evaluation von
binärenKlassifikationsmodellen auf verteiltenDaten. In diesemSzenario sind dieDaten auf verschiede-
nenServern gespeichert undbeinhalten vertrauliche Informationen. Eine zentrale SammlungderDaten
ist deshalb nichtmöglich. Umdennoch einModell mit CWB zu schätzen, werden die Originaldaten so
aggregiert und verarbeitet, dass eine Re-Identifikation von Individualdaten ausgeschlossen ist. Zudem
erfolgt eine Server-spezifische Anpassung der geschätzten Effekte, welche zum Ziel hat Inhomogen-
itäten in den Daten pro Server auszugleichen. Des Weiteren wird eine Technik zur Evaluation von
binären Klassifikationsmodellenmittels ROCAnalyse auf verteiltenDaten beschrieben. Die zugrunde
liegendeMethode, welche verteilt berechnet wird, ist das ROC-GLMund erlaubt neben der Schätzung
der ROCKurve auch eine Schätzung der area under the ROC curve und dazugehörigen Konfidenzin-
tervallen.

Der praktische Zugang zu den beschriebenen Methoden ist über die statistische Programmiersprache
R gegeben und ebenfalls Teil dieser Arbeit. Während compboost eine performante CWB Implemen-
tation beinhaltet kann mit dsCWB der Algorithmus auf verteilten Daten geschätzt werden. Die Soft-
ware Autocompboost beinhaltet das AutoML Framework und baut auf compboost auf. Das Paket
dsBinVal enthält die Funktionalität für die verteilte ROCAnalyse.

Contents

I Introduction and Background 1

1 Overview 3

2 Methodological background 5
2.1 Supervised machine learning . 5
2.2 Component-wise boosting . 5

2.2.1 Base learners . 6
2.2.2 Fitting algorithm . 6
2.2.3 Important properties . 7

2.3 Model evaluation . 8
2.3.1 Performance measure . 8
2.3.2 Evaluation strategy . 9

2.4 Distributed computing . 10
2.4.1 Privacy-preserving machine learning . 10
2.4.2 Data aggregation . 11
2.4.3 Differential privacy . 11
2.4.4 Lossless distributed algorithms . 12

3 Efficiency 15
3.1 Implementations . 15
3.2 Accelerated optimization . 15
3.3 More efficient data representations . 16

3.3.1 Numerical feature representations . 17
3.3.2 Example: Memory usage for different scenarios . 19

4 Automation 21
4.1 Machine learning pipelines . 21
4.2 Accuracy–interpretability trade-off . 22
4.3 Trustworthy automated machine learning . 23

5 Distributed computing 25
5.1 Model fitting . 25
5.2 Model evaluation . 27

II Contributions 29

6 compboost 31

xii Contents

7 Accelerated Componentwise Gradient Boosting Using Efficient Data Representation and
Momentum-Based Optimization 35

8 Automatic Componentwise Boosting:An Interpretable AutoML System 83

9 Privacy-Preserving and Lossless Distributed Estimation of High-Dimensional Generalized
Additive Mixed Models 101

10 Distributed non-disclosive validation of predictive models by a modified ROC-GLM 119

11 dsBinVal: Conducting distributed ROC analysis using DataSHIELD 143

III Conclusion and Outlook 149

12 Conclusion 151

13 Outlook 153

References 155

Part I - Introduction and Background

CHAPTER 1
Overview

Over the past few years, the goal of machine learning (ML) has broadened from pure predictive per-
formance to more specific tasks. Instead of modeling an output as precisely as possible, a different
trend has arisen to interpret the model and understand its decision-making. Methods to explain com-
plex models after they have been fitted are gathered under the umbrella term interpretable ML (IML;
Molnar, 2020), also referred to as explainable artificial intelligence (XAI; Arrieta et al., 2020). Oth-
ers argue that out-of-the-box interpretable models should be used if interpreting the final model is the
goal (Rudin, 2019). A technique at the intersection of statistics and ML is component-wise (gradi-
ent) boosting (CWB; Bühlmann and Yu, 2003; Bühlmann et al., 2007), which produces interpretable
models if statistical components are used. CWB internalizes theML concept of rigorous riskminimiza-
tion for model fitting and inherits the interpretability from the underlying statistical base components.
Because of the interpretability capabilities, feasibility in high dimensional feature spaces, and automatic
feature selection, CWB is often used in practical applications – such as oral cancer prediction (Saintigny
et al., 2011), detection of synchronization in bioelectrical signals (Rügamer et al., 2018), or classifying
pain syndromes (Liew et al., 2020a,b).

But, challenges that arise from the needs of our digital society must be addressed in order for CWB to
remain a visible player in the world of ML.With the advent of big data, an algorithm nowadays should
be able to process massive amounts of data efficiently. Additionally, helping non-experts apply CWB
by automating the most critical parts helps users to understand and trust the fitted model and makes
CWBaccessible to a broader audience. Another challenge ismodel fitting and evaluation on distributed
systems. In this setting, the data set is exclusively and non-disclosively shared over multiple sites. After
providing the methodological foundations in Chapter 2, this thesis addresses the latter challenges and
focuses on three major topics.

Efficiency – Increasing CWB’s efficiency w.r.t. to runtime and memory consumption is the first ma-
jor contribution. In addition to describing the effect of implementations on efficiency, Chapter 3 in-
troduces motivations behind accelerating the fitting process and choosing more efficient data repre-
sentations. Chapter 6 (contributing article Schalk et al. (2018)) contains details about a more efficient
software for CWB, while Chapter 7 (contributing article Schalk et al. (2022a)) discusses two method-
ological improvements in detail to account for these needs.

Automation – Chapter 4 contains details about automated ML (AutoML). Therefore, a high-level
view of essential parts of AutoML is given. Further, the accuracy–interpretability trade-off is discussed
and used to argue for trustworthy AutoML. Chapter 8 (contributing article Coors et al. (2021)) intro-
duces Autocompboost, an interpretable AutoML framework, alongside explanations of methods to
help practitioners to understand the extracted information.

4 1. Overview

Distributed computing – Especially in the medical context, e.g., when data are collected collabora-
tively at several hospitals, preserving patient privacy is key. Hence, Chapter 5 outlines challenges and
techniques of distributed computing regarding model fitting and evaluation. Chapter 9 (contributing
article Schalk et al. (2023a)) then proposes a distributed version of CWB. Chapter 10 (contributing
article Schalk et al. (2022b)) further describes methods to distributively analyze the receiver operating
characteristic (ROC) curve. Themethods are implemented in an R package dsBinVal (cf. Chapter 11,
contributing article Schalk et al. (2023b)).

CHAPTER 2
Methodological background

The methodological details underpinning both the work presented in Chapters 3, 4, and 5 as well as
the contributed articles are first introduced here. The basic ML terms and assumptions are introduced
in Section 2.1, followed by details about CWB in Section 2.2. Elaborations on model evaluation in
Section 2.3 and the distributed data setup in Section 2.4 complete this chapter.

2.1 Supervised machine learning

In supervised ML, a p-dimensional covariate or feature vector x = (x1, . . . , xp) originates from a fea-
ture spaceX = (X1× . . .×Xp) ⊆ Rp. Respectively, the response or outcome value y is sampled from
a target space Y . ML aims to find the unknown relationship f : X → R. To that end, n observations
(x(i), y(i)), i = 1, . . . , n, are drawn (conditionally) independently from anunknownprobability distri-
butionPxy on the joint spaceX ×Y and assembled into a data setD = {(x(1), y(1)), . . . , (x(n), y(n))}.
An inducer, learner, or algorithm I : D × Λ → F with hyperparameters (HPs) λ ∈ Λ estimates the
unknown relationship f ∈ F by calculating f̂ = Iλ(D). Internally, the inducer minimizes the em-
pirical riskRemp(f̂ | D) = n−1

∑
(x,y)∈D L(y, f̂(x)) given a loss function L : Y × R → R and data

set D. This process is called empirical risk minimization. In the following, x and y denote arbitrary
members of X and Y . Additionally, throughout this thesis, the HPs are assumed to be fixed or auto-
matically selected by wrapping the inducer with HP optimization (HPO; see, e.g., Feurer and Hutter,
2019) (unless stated otherwise).

2.2 Component-wise boosting

CWB uses an iterative algorithm to estimate a model that corresponds to a generalized additive model
(GAM; Hastie, 2017)

g(E[Y |x]) = f(x) = f0 +
K∑
k=1

bk(x) (2.1)

with link function g, random variable Y for the response with outcome y, offset f0 ∈ R, and base
learners bk, k ∈ {1, . . . , K}, to model the additive terms. The choice of the base learners varies from
simple univariate linear regression to more complex learners such as trees. In this thesis, the choice of

6 2. Methodological background

base learners is restricted to statistical models that are parametrized by base learners bk(x|θk). This sec-
tion addresses the base learners, explains the basic CWB algorithm, and discusses important properties
of a model estimated with CWB. Further, themodel defined in Equation (2.1) also allows the inclusion
of tensor product base learners to account for interactions. Adding more flexibility also enables esti-
mating generalized additive mixed models (GAMMs; see, e.g., Wood, 2017) and is further clarified in
Chapter 5.

2.2.1 Base learners

The kth base learner bk : X → R is used to model the contribution of one or multiple features to f
and is parameterized with θk ∈ Rdk , dk ∈ N. Each base learner uses a generic basis representation
gk : X → Rdk , x 7→ gk(x) = (gk,1(x), . . . , gk,dk(x))T and is linear in the parameters, i.e., bk(x|θk) =
gk(x)Tθk. Given a data set with n observations, a design matrix Zk := (gk(x(1)), . . . , gk(x(n)))T ∈
Rn×dk is attached to the base learner bk and is used to fit this base learner. Note that base learners are
typically not defined on the whole feature space, but rather on a subset dom(bk) ⊆ X . For example,
a common choice for CWB is to define p base learners with bk modeling the kth feature xk ∈ Xk to
estimate univariate contributions.

Four typical base learners mainly used in this work are (penalized) linear base learners, spline base learn-
ers, categorical or random effects base learners, and row-wise tensor product base learners. These base
learners are outlined in more detail in Chapter 9. Further, most base learners require setting HPs λk.
For example, using a P-spline (Eilers and Marx, 1996) requires choosing the degree of the basis func-
tions, the number of knots, the order of differences for penalizing, and a penalty parameter αk that
controls the smoothness of the spline. Hence, base learners are defined by their design matrix Zk and
a potential penalty matrix Kk ∈ Rdk×dk . For most base learners, the penalty matrix Kk already in-
cludes αk without explicitly stating so. For example, P-splines uses Kk = αkD

T
kDk with Dk rep-

resenting the penalized differences or Kk = αkIdk with identity matrix Idk ∈ Rdk×dk for ridge re-
gression. Estimating θk with a given response vector y = (y(1), . . . , y(n))T ∈ Rn and the L2-loss
(L2(y, bk(x|θk)) = (y − bk(x|θk))

2) yields the least squares estimator θ̂k = (ZTkZk +Kk)
−1ZTky.

2.2.2 Fitting algorithm

A model fit by CWB is an ensemble consisting of M ∈ N updates added iteratively. The iterative
algorithm is initialized by setting the offset f0 (cf. Equation (2.1)) as loss-optimal constantmodel f̂ [0] =

argminc∈RRemp(c|D). Further updates b̂[m] in iterationm ∈ N are constructed according to gradient
descent in function space with

f̂ [m+1] = f̂ [m] + νb̂[m] (2.2)

and learning rate ν > 0 to control the size of a model update. To calculate the model update b̂[m], the
functional gradient∇fL(y, f) is evaluated at the current model estimate f = f̂ [m] afterm iterations.
Thenegative functional gradient is expressed as pseudo residuals r[m](i) = −∇fL(y

(i), f(x(i)))|f=f̂ [m−1] ,

2.2 Component-wise boosting 7

i ∈ {1, . . . , n}. Instead of adding r[m] = (r[m](1), . . . , r[m](n))T to f̂ [m] as a model update, the pseudo
residuals are projected onto the column space spanned by the basis representation of the respective base
learners b1, . . . , bK by fitting them all to r[m] w.r.t. theL2-loss. Hence, the goal is to minimize the sum
of squared errors (SSE), which results in the least squares estimator:

θ̂
[m]
k = argminθ∈Rdk

n∑
i=1

(
r[m](i) − bk(x(i)|θ)

)2
= argminθ∈Rdk

SSEk(r
[m],θ)

= (ZTkZk +Kk)
−1ZTkr

[m] (2.3)

The base learner b̂[m](x) = bk[m](x|θ̂[m]) used for updating themodel in iterationmwith index k[m] =

argmink∈{1,...,K} SSEk(r
[m], θ̂

[m]
k) is chosen as the base learner that minimizes the SSE. This updating

scheme is repeatedM times or until an early stopping criterion is met. This early stopping criterion can
range from observing the risk improvement on a validation data set to simpler criteria, such as stopping
after exhausting a time budget. Choosing a sufficiently small learning rate ν ∈ [0.01, 0.1] was shown
to give fast convergence (see, e.g., Bühlmann et al., 2007). Algorithm 1 assembles all the steps required
to fit CWB.

Algorithm 1Vanilla CWB algorithm

InputTrain dataD, learning rate ν, number of boosting iterationsM , loss function L,
base learners b1, . . . , bK

OutputModel f̂ = f̂ [M] defined by fitted parameters or coefficient vectors θ̂[1], . . . , θ̂[M]

1: procedureCWB(D, ν, L, b1, . . . , bK)
2: Initialize: f0 = f̂ [0](x) = argminc∈RRemp(c|D)
3: whilem ≤M do

4: r[m](i) = − ∂L(y(i),f(x(i)))
∂f(x(i))

∣∣∣∣
f=f̂ [m−1]

, ∀i ∈ {1, . . . , n}

5: for k ∈ {1, . . . , K} do
6: θ̂

[m]
k = (ZTkZk +Kk)

−1 ZTkr[m]

7: SSEk =
∑n

i=1(r
[m](i) − bk(x(i)|θ̂[m]

k))2

8: k[m] = argmink∈{1,...,K} SSEk

9: f̂ [m](x) = f̂ [m−1](x) + νbk[m](x|θ̂[m]

k[m])

10: return f̂ = f̂ [M]

2.2.3 Important properties

Restricting the base learners to be linear in the parameters enables adding up base learners bk of the same
type with different parameter vectors θ̂′

k and θ̂∗
k by bk(x|θ̂′

k) + bk(x|θ̂∗
k) = bk(x|θ̂′

k + θ̂∗
k). Hence, the

estimated coefficient vector θ̂k =
∑M

m=1 1{k}(k
[m])θ̂

[m]
k is the sum of all estimated coefficients when

bk was selected. The selection in iterationm is expressed by the indicator function 1{k}(k
[m]), which is

8 2. Methodological background

1 if k[m] = k and 0 otherwise. Computing θ̂k gives an estimate of the partial feature effect by bk(x|θ̂k)
and allows interpretation. Note that interpreting the feature effect is possible for uni- and bivariate
effects by interpreting the parameter estimates or visualizing the effect and becomes more challenging
or impossible if the base learner models more than two features.

Further, the estimated coefficients θ̂1, . . . , θ̂K converge to the maximum likelihood solution (see, e.g.,
Schmid andHothorn, 2008) of Equation (2.1) forM →∞ if the lossL corresponds to a negative log-
likelihood. Optimizing CWB conducts blockwise coordinate gradient descent updates by adjusting
one coefficient vector θ̂k as a block per iteration. Hence, CWB can be fitted in high dimensional feature
spaces with p� n, since only one base learnermust be fit to the pseudo residuals r[m] at a time. For the
same reason, an intrinsic feature selection is given by design because one base learner is either updated
or newly added to the ensemble. The number of selected features depends on the number of iterations
and requires early stopping to not select features based on fitting a base learner to noise. Additionally,
incorporating regularization into all base learners can enforce equal degrees of freedom and yield a fair
selection by restricting the flexibility of all base learners to be equal (cf. Chapter 7 (Appendix A.2) or
Hofner et al., 2011).

2.3 Model evaluation

Throughout the contributing articles, evaluating models is essential for comparing different ML algo-
rithms. Evaluating models w.r.t. their future performance on new unseen data consists of two parts:
first, the performance measure, and second, the evaluation strategy.

2.3.1 Performance measure

The performance measure ρ : Rn × Yn → R, ŷ, y 7→ ρ(ŷ, y) is a function to measure the similarity
between predictions ŷ = (f̂(x(1)), . . . , f̂(x(n)))T and outcomes y of size n. For the sake of notation,
throughout this section, ρ̃ is used as performance measure ρ̃(f̂D,D∗) = ρ(ŷ∗, y∗) to better highlight
the difference between a data setD used for training f̂D = Iλ(D) and a (potentially different) data set
D∗ to calculate ρ on (y∗, x∗) ∈ D∗ with ŷ(i)∗ = f̂D(x(i)∗), i = 1, . . . , |D∗|. The performancemeasure
ρ is task-specific and crucial for translating the practical endpoint into a quantitative measure. It is
important to distinguish the performance measure ρ̃ from the empirical riskRemp with loss function
L. Point-wise loss functions, such as the loss L, can be used to construct a performance measure by
setting ρ̃(f̂D,D) = Remp(f̂D|D), whereas not all performance measures imply a loss function. Since
implementations are often restricted in their choice of L, it is more common to have a performance
measure ρ̃ different from the empirical riskRemp. At the same time, evaluating a model is derivative-
free and, hence, possible for arbitrary performancemeasures. It is noteworthy that havingnon-matching
measures ρ̃ 6= Remp is one facet of the inductive bias (Gordon and Desjardins, 1995).

It is also important to differentiate between performance measures for specific tasks. For binary classi-
fication with f̂ predicting a score, a threshold t is used to transform f̂ into discrete classes ĉt as a binary
rule with ĉt(x) = 1]−∞;t](f̂(x)) (in the case of 0-1-encoding). Hence, a classifier ĉt is based on the

2.3 Model evaluation 9

score f̂ and the threshold t. The same holds for transforming scores f̂ into π̂ ∈ [0; 1] to allow inter-
preting the predictions as probabilities1. Specific measures exist for each prediction type. For example,
the accuracy, F1 score, or in general, all measures obtained from the confusion matrix (Stehman, 1997)
rely on discrete classes ĉt. Evaluating π̂ depends on the score f̂ and a transformation to squash f̂ into
[0; 1]. Measures based on π̂, for example, are the Brier score (Brier et al., 1950) or the log loss. More
comprehensive explanations can be found in Casalicchio (2019).

One measure based on scores f̂ and subject of Chapter 10 is the area under the ROC curve (AUC).
The AUC is a measure of discrimination and can be interpreted as the probability that the score of
a randomly selected positive outcome has a higher score and hence a higher rank than the score of a
randomly selected negative outcome (Fawcett, 2006). The ROC curve is built as a curve in the ROC
space (FPR(t),TPR(t)) with threshold t ∈ R, false positive rate FPR(t) = P(f̂(X) > t | Y =

0), and true positive rate TPR(t) = P(f̂(X) > t | Y = 1). In this probabilistic formulation,
Y is the underlying random variable of a binary outcome y, and f̂(X) is also a random variable of
an estimated score (Pepe, 2000) with random vector X . An alternative formulation is to define the
ROC curve as ROC(t0) = TPR(FPR−1(t0)) with t0 ∈ [0; 1]. The AUC is then given as AUC =∫ 1

0
ROC(t0) dt0. Estimating the ROC curve is done by calculating the empirical TPR and FPR as

T̂PR(t|D) = n−1
1

∑
x∈D | y=1 1{1}(ĉt(x)) and F̂PR(t|D) = n−1

0

∑
x∈D | y=0 1{1}(ĉt(x)), with n1

and n0 as the number of ones and zeros in the binary response y. Respectively, the AUC is estimated
by using the empirical TPR and FPR in ÂUC =

∫ 1

0
R̂OC(t0) dt0 with R̂OC = T̂PR ◦ F̂PR

−1
.

Note that each task type requires specific performance measures suited for the task. For example, it is
common practice for multiclass classification to have a one-vs-rest or one-vs-one approach to break the
evaluation down to multiple binary problems, evaluate them, and return the average as performance
measure (cf., e.g., Flach, 2012, Chapter 3.1).

2.3.2 Evaluation strategy

The model evaluation aims to estimate the generalization error (GE; cf., Bischl et al., 2012), i.e., the
performance ρ of a model f̂ trained onD when processing new unseen data. Calculating the estimate
ĜEresub = ρ̃(f̂D,D)with f̂D fit and evaluated on the training dataD is often called resubstitution error.
Because of fitting and estimating on the same data set, the resubstitution error does not represent the
performance of the model predicting new data and is optimistically biased. The most straightforward
technique to estimate the GE is to split the data randomly intoDtrain andDtest withD = Dtrain ∪Dtest,
Dtrain ∩ Dtest = ∅, and ntrain = |Dtrain|, ntest = |Dtest| observations in the respective data sets. This
scheme is known as hold-out splitting with ntest as a fraction, e.g., 0.33, of n. The GE estimation is
conducted by calculating ĜEholdout = ρ̃(f̂Dtrain ,Dtest). Since this is a valid scheme, the disadvantage is
that neither the evaluation nor the training uses all observations. Depending on the size of the training
and test data set, holdout splitting can introduce a high variance or a pessimistic bias of the estimated

1After transforming f̂ to p̂, it is still a score that was calculated, often, without underlying probability theory to back up
the interpretation as probabilities.

10 2. Methodological background

GE.Therefore,more complex schemes aim tobalance this bias–variance trade-offby repeatedly splitting
the data setD into multiple train and test data sets {(Dtrain,k,Dtest,k) | k = 1, . . . , K}.

Theperformancemeasure is then evaluated for all train–test combinations, yieldingK estimates ĜEk =

ρ̃(f̂Dtrain,k ,Dtest,k), k = 1, . . . , K . The overall estimate for the GE is typically aggregated by the average
ĜE = K−1

∑K
k=1 ĜEk. Hence, the whole process of model evaluation requires defining the perfor-

mance measure ρ and a resampling strategy. Prominent resampling strategies are sub-sampling, cross-
validation, or bootstrapping. For further information about resampling strategies, nested resampling,
and theoretical details, see Bischl et al. (2012).

2.4 Distributed computing

The last concept introduced for this thesis is distributed computing. Distributed computing is an am-
biguous term and may mean executing computations in parallel, like heavy matrix operations (see, e.g.,
Choi et al., 1994; Buluc and Gilbert, 2008), or laying out computations to one or multiple servers (see,
e.g., Bekkerman et al., 2011; Verbraeken et al., 2020). Throughout this work, the term “distributed
computing” is used to mean computing on non-disclosed data sets that are shared over multiple sites
and exclusively located at individual sites. Hence, the data are unavailable to the analyst or user.

Distributingdata tomultiple sites is usually distinguishedbetweenhorizontally andvertically distributed
data (cf, e.g., Li et al., 2016). This thesis exclusively addresses horizontally distributed data. For horizon-
tally distributeddata, thedata setD is partitioned intoS data setsDs = {(x(1)s , y

(1)
s), . . . , (x(ns)

s , y
(ns)
s)},

s = 1, . . . , S, withns observations. The jth feature vector at sites is denotedbyxs,j = (x
(1)
s,j , . . . , x

(ns)
s,j)T.

Respectively, the response vector at site s is denoted by ys. Each observation (xs, ys) ∈ Ds originates
from a site-specific data distribution Pxy,s and is exclusively located at the corresponding site s. The
data sets are mutually exclusive Ds ∩ Dl = ∅ ∀l, s ∈ {1, . . . , S}, l 6= s, and the union of all data
sets give the whole data set D =

⋃S
s=1Ds. The distributed setup in this work requires a host (e.g.,

the analyst’s machine) to control the communication with and between all sites to conduct distributed
computations. In the following, Section 2.4.1 discusses the term “privacy-preserving” in more detail.
Two common approaches, data aggregation (Section 2.4.2) and differential privacy (DP; Section 2.4.3)
are also concerned. Finally, the term lossless is defined in Section 2.4.4.

2.4.1 Privacy-preserving machine learning

Dealing with the host–site setup, site s is not allowed to communicate parts of its data set Ds to the
host. Sending information from the sites to the host must ensure that reverse-engineering parts of the
data at the host is not possible. Hence, the main challenge of distributed model fitting is to find an
algorithm Iλ(D1, . . . ,DS) that can estimate f̂ under certain restrictions. These restrictions are in-
ferred by security mechanisms that must be applied to protect the data by guaranteeing the avoidance
of privacy breaches. In this setup, the host is vulnerable because it collects all information, processes
it, and sends it to the sites. Hence, if an unauthorized third party infiltrates the host, it must be en-
sured that no raw data are either directly or indirectly (e.g., via reconstruction) leaked. This algorithm

2.4 Distributed computing 11

is then called privacy-preserving. The methods used in this work to achieve privacy preservation are di-
rectly incorporated into the algorithm and allow it to use that algorithm also for other distributed data
sets. It is noteworthy that methods like k-anonymity (Sweeney, 2002) or ℓ-diversity (Machanavajjhala
et al., 2007) aim to anonymize data to use that anonymized data set for modeling. However, this always
requires preprocessing data before using it with a specific algorithm.

2.4.2 Data aggregation

A possible means to allow communication of information is to share aggregated values. For example,
one could define that communicating the sum of a feature is not problematic as long as it consists of at
least q values. Then, each site calculates as =

∑ns

i=1 x
(i)
s,j and communicates as to the host if ns ≥ q.

The host adds up all partial sums to obtain the overall sum
∑S

s=1 as. The value q is also known as a
privacy level and is often used as a privacy parameter in frameworks such as DataSHIELD (Gaye et al.,
2014). The privacy level describes the minimal number of values required for an aggregation to allow
sharing of the result. Aggregating data is used in more complex routines, such as calculating a linear
model (LM), to ensure privacy.

Example: Distributed LM – Consider a design matrix Z and response vector y. The estimated co-
efficients in the LM are θ̂ = (ZTZ)−1ZTy. Karr et al. (2005) presented a secure distributed LMbased on
simple aggregations. They split Z and y into Z = (ZT1, . . . ,ZTS)T and y = (yT1, . . . , yTS)T to decompose
the cross-products ZTZ and ZTy into sums of site terms ZTZ =

∑S
s=1 Z

T
sZs and ZTy =

∑S
s=1 Z

T
sys.

The design matrix Zs and response vector ys are located at site s. For the distributed LM, they first
calculate Fs = ZTsZs and us = ZTsys at site s. Next, both aggregations Fs and us are communicated
to the host and summed up to F =

∑S
s=1 Fs and u =

∑S
s=1 us. Finally, the parameter estimates

are calculated by θ̂ = F−1u, again at the host. In this procedure, the host only sees aggregated values
and cannot reconstruct parts of the raw data if the privacy level is met. To account for aggregations
outputting multiple values, e.g., here the parameter vector, the privacy level qmust be adjusted by mul-
tiplying q with the number of parameters p. Algorithm 2 summarizes the distributed LM and extends
it by adding a penalty matrixK ∈ Rp×p.

2.4.3 Differential privacy

In general, DP allows sharing information about a data set without revealing information concerning
individuals in that data set. In contrast to data aggregation, an approach byDP is to add noise to a value
obtained by a randomizedmechanismM : X 7→ Y with domainX (e.g.,X = Rp) and target domain
Y (e.g., Y = R in regression). DP aims to preventM from attacks that aim to re-identify individuals
who may be in the ground data set (Dwork et al., 2006b). DP was introduced by Dwork et al. (2006a)
formally as (ε, δ)-DP, which is given if – for any subset of outputsR ⊆ Y – the inequality

P (M(x) ∈ R) ≤ exp(ε)P (M(x′) ∈ R) + δ (2.4)

holds for two adjacent inputs x, x′ ∈ X . Multiple ways exist to define adjacent inputs. Throughout
this thesis, adjacent inputs are identified by first converting two input vectors x and x′ to a histogram

12 2. Methodological background

Algorithm 2Distributed LM fitting with penalty. The line prefixes [S] and [H] indicate whether the
operation is conducted at the sites ([S]) or at the host ([H]).

Input Site design matrices Z1, . . . ,ZS , response vectors y1, . . . , yS and an optional penalty
matrixK .

Output Estimated parameter vector θ̂l.
1: procedure distLM(Z1, . . . ,ZS, y1, . . . , yS,K)
2: for s ∈ {1, . . . , S} do
3: [S] Fs = ZTsZs

4: [S]us = ZTsys
5: [S]Communicate Fs andus to the host
6: [H] F =

∑S
s=1 Fs +K

7: [H]u =
∑S

s=1 us

8: [H] return θ̂ = F−1u

representation x̃ ∈ Np and x̃′ ∈ Np. Then, the inputs are considered to be adjacent if the ℓ1-norm of x̃
and x̃′ is equal to one: adjacent x, x′ ⇔ ‖x̃ − x̃′‖1 = 1 (Dwork et al., 2014). In (ε, δ)-DP, the value
of ε controls howmuch privacy is guaranteed. The value of δ is the probability that (ε, 0)-DP is broken
(also known as ε-DP and the original definition proposed by Dwork et al. (2006b)).

Applying DP in ML, the objective is to protect the estimated model f̂ by adding noise η. Hence, the
randomizedmechanism is given byM(x) = f̂(x)+ η. In this work, the Gaussianmechanism (Dwork
et al., 2014) is used to protectM. Therefore, the noise η follows a normal distributionN (0, τ 2). It has
been previously shown (p. 471;Dwork et al., 2014) that the requirement for (ε, δ)-DP (Equation (2.4))
is satisfied if the variance is set to any value τ ≥ c∆2(f̂)/ε with c2 > 2 ln(1.25/δ), ε ∈ (0, 1), and
∆2(f̂) the ℓ2-sensitivity of f̂ measured as∆2(f̂) = maxadjacent x, x′ ‖f̂(x)− f̂(x′)‖2. Thus, in practice,
the ℓ2-sensitivity of the model f̂ is required to determine possible values for ε and δ. Then, the amount
of noise η is controlled by choosing ε and δ and using τ = c∆2(f̂)/εwith c =

√
2 ln(1.25/δ).

The introduction of noise is always accompanied by the drawback of an approximation error by using
M instead of f̂ . Hence, using DP in practice (e.g., for a distributed ROC analysis, cf., Chapter 10
(contributed article Schalk et al. (2022b))) requires assessing if an approximating distributed algorithm
is still usable or not (Jayaraman and Evans, 2019). This assessment relies on studying the effect of ε and
δ on inaccuracies of a distributed algorithm.

2.4.4 Lossless distributed algorithms

As stated above for DP, estimating algorithms in a distributed and privacy-preserving fashion does not
always allow finding an exact distributed pendant. Finding an exact algorithm in that context is also
called lossless estimation (Luo et al., 2022). Throughout this work, a distributed fitting procedure fit
on the distributed data setsD1, . . . ,DS is lossless if the model parameters of the original algorithm fit-
ted on the pooled data setD are the same as for the distributed approach. For example, the distributed

2.4 Distributed computing 13

LM distLM (Algorithm 2) gives the same parameter estimates θ̂ as calculating the least squares estima-
tor θ̂∗ = (ZTZ + K)−1ZTy on the pooled data set. Hence, θ̂ = θ̂∗ induces that distLM is a lossless
distributed algorithmof theLM.Respectively, if a function f̂(x|θ) is parameterizedbyθ, then the func-
tions f̂(x|θ̂) and f̂(x|θ̂∗) are equal, as are the empirical risksRemp(f̂(.|θ̂)|D) andRemp(f̂(.|θ̂∗)|D).

CHAPTER 3
Efficiency

Adownside ofCWB that occurs in practice is its computational complexityw.r.t. runtime andmemory
consumption. For bigger data sets, this can be a reason not to use CWB. This chapter introduces the
problem on two different levels. First, in Section 3.1, the state-of-the-art software of CWB, its draw-
backs, and potential solutions on the software side are shortly introduced. Second, the effect of opti-
mization routines and data representations are outlined in Section 3.2 and 3.3.

3.1 Implementations

The most commonly used software for CWB is mboost (Hothorn et al., 2010, 2020) and is imple-
mented in the statistical software R (R Core Team, 2022). The implementation provides a wide range
of base learners and is flexibly extendible. Thus, mboost was constantly extended by advanced tech-
niques such as modeling functional data (Brockhaus et al., 2020), boosting location scale and shape
models (Hofner et al., 2016), or probing (Thomas et al., 2017). However, one of the problems of
mboost is the extensive information stored during fitting. Storing that information can not only ex-
ceed the available memory but also inflate the runtime of the model fitting. Therefore, fitting CWB
with mboost to massive amounts of data is often not even feasible on modern workstations.

Chapter 6 introduces a software called compboost that provides an efficient implementation of CWB.
Increasing the efficiency on the software side means using a faster core language, e.g., C^+, concentrat-
ing on the basic parts required for training, and making use of modern and optimized software such as
OpenMP (Dagum andMenon, 1998) for parallel computations or Armadillo (Sanderson and Curtin,
2016, 2018) for matrix operations. Benchmarks conducted in Chapter 7 compared, among others,
compboostwith mboost and showed a speedup of up to 4. Incorporating the adaptions introduced in
Section 3.2 and 3.3 further increases that speedup up to a factor of 32.

3.2 Accelerated optimization

One of the possible methodological adaptations already mentioned is to use faster optimization rou-
tines. Nowadays, the palette of gradient descending methods ranges from simple gradient descent vari-
ants like stochastic gradient descent to methods aiming to accelerate the convergence, such as Adaptive
Moment Estimation (ADAM; Kingma and Ba, 2014). Another of these methods is Nesterov’s accel-
erated gradients (NAG; Nesterov, 1983) applied to gradient descent, also called Nesterov momentum.
Thesemethods, originally designed for optimization in parameter spaces, can be extended to functional

16 3. Efficiency

gradient descent. Hence, gradient boosting can also benefit from NAG to accelerate the fitting pro-
cess, as presented by Biau et al. (2019). Lu et al. (2020) outlined that the latter approach may diverge
in certain situations. As a solution, they propose an improved algorithm called Accelerated Gradient
Boosting Machine (AGBM).

Instead of updating only the primary model f̂ , as termed in AGBM, an additional momentum model
ĥ is fitted. The full updating scheme contains a third model sequence ĝ = (1 − ϑm)f̂ + ϑmĥ as con-
vex combination of f̂ and ĥ with weight ϑm = (m + 1)−1. The primary model is updated based on
that sequence via f̂ [m] = ĝ[m] + νb̂[m]. The base component b̂[m] added to f̂ [m] is fitted to the pseudo
residuals r[m] w.r.t. to ĝ[m] instead of f̂ [m]. Finally, a second base learner b̂[m]

cor is fitted to so-called error-
corrected pseudo residuals defined as c[m](i) = r[m](i) + m

m+1
(c[m−1](i) − b̂

[m−1]
cor (x(i))), i = 1, . . . , n,

ifm > 1 and c[m] = r[m] ifm = 0. These error-corrected pseudo residuals contain the information
of all previous iterations and are used to update the momentum model ĥ[m] = ĥ[m−1] + γν/ϑmb̂

[m]
cor

with momentum parameter γ ∈ (0, 1]. The acceleration of AGBM is due to the momentum sequence
and the inclusion of the second base learner b̂[m]

cor fit to c[m] in each iteration. Nevertheless, fitting a sec-
ond base learner doubles the computational complexity in each iteration. Hence, obtaining a runtime
improvement requires accelerating the fitting by a factor of at least 2.

Applying the idea of AGBM toCWB is presented in Chapter 7 and assembled in amethod called accel-
erated CWB (ACWB). The objective of ACWB is not to improve CWB’s predictive performance, but
rather to increase the runtime without sacrificing predictive performance. Because AGBM ensembles
trees as base learners, the model updates are allocated as tree predictions. In contrast, ACWB also re-
quires updating the model parameters in each iteration to estimate partial feature effects and maintain
the advantages of CWB described in Section 2.2.3. Further, ACWB can perform worse than CWB in
certain situations due to aggressive acceleration. To address this shortcoming, Chapter 7 also presents
a second algorithm called hybrid CWB (HCWB). HCWB starts with a burn-in stage using ACWB for
rapidly finding a good, but potentially not the best, model and then continues with CWB to fine-tune
the model estimate. For HCWB, it is then possible to use a higher momentum value to benefit from
greater acceleration in the beginning. At the same time, ACWB should be used with a smaller mo-
mentum value to not overshoot a good solution. As shown in benchmarks on six different data sets,
ACWB and HCWB yield an average speedup of 3.5 and 2.4, despite fitting a second base learner in
each iteration and without losing predictive power when compared to CWB.

3.3 More efficient data representations

In addition to runtime, the second aspect of computational complexity addressed in this thesis is the
memory consumption of CWB. Two stages are distinguished for a better understanding of how CWB
allocates memory.

Initialization – During initialization, all base learners compute data required to estimate parame-
ters. This phase is executed before conducting Algorithm 1 and prepares all base learners for estimating
parameters θ̂[m]. Hence, during initialization, the kth base learner stores the design matrix Zk ∈ Rn×dk

3.3 More efficient data representations 17

with ndk (numerical) values. Note that fitting CWB can be sped up by storing, e.g., the Cholesky de-
composition of ZTkZk +Kk, since its inverse is required for calculating θ̂

[m]
k (cf. Equation (2.3)). How-

ever, calculating the inverse matrix is independent of iteration m, and hence, all parts for conducting
that operation can be reused in each iteration. Thus, amatrix of size dk×dk may also be stored per base
learner during the initialization phase. In this thesis, this pre-allocation is referred to as caching.

Fitting – As described in Algorithm 1, the fitting phase uses the objects created during the initializa-
tion and estimates θ̂[m] in each iteration. Therefore, the stored data are the selected base learner θ̂[m].
Further, depending on the implementation, pseudo residuals r[m] or the current model predictions
ŷ(i) = f̂ [m](x(i)), i ∈ {1, . . . , n}, may also be stored. It may be beneficial to store these objects for
every iteration to run diagnostics after or during the training. However, storing additional data further
increases memory consumption and can slow down the fitting process.

The following considersmethods that aim to reduce thememory loadof thebase learners inCWB.Here,
the focus is on numerical features, since categorical features can be stored very efficiently as integers. The
handling of categorical features is shortly explained and should act as a first example of how alternative
data representations are used to represent the full design matrix Zk by a reduced representation.

A categorical feature representation – Usually, the designmatrixZk of a base learner bk modelling
a categorical feature x(i)

k ∈ {1, . . . , G} with G classes uses a dummy or one-hot encoding (Tutz and
Gertheiss, 2016). The one-hot encoding relies on basis functions g(xk) = (1{1}(xk), . . . ,1{G}(xk))

T.
Here, the categorical feature already contains information about the non-zero index and, hence, it is
not necessary to fully build Zk. Thus, the one-hot encoding requires just storing n integer values as
representative of Zk. Using a double-valued design matrix without a sparse matrix representation (cf.
Section 3.3.1) requires storing Gn double values. Instead of applying Equation (2.3), which requires
O(n3) operations, a simple loop over i = 1, . . . , n that updates θ̂

k,x
(i)
k
← θ̂

k,x
(i)
k

+ n−1

k,x
(i)
k

y(i) starting

with θ̂
k,x

(i)
k

= 0 and n
k,x

(i)
k
the number of observations associated with class x(i)

k merely requiresO(n)
operations to estimate the parameter vector θ̂k as group means (if no penalty is applied).

3.3.1 Numerical feature representations

Sparse matrices – Using sparse matrices (see, e.g., Duff et al., 1989) can reduce the allocated mem-
ory of a design matrix Zk. The memory reduction depends on the sparsity or the number of non-zero
elements of the matrix Zk. The goal of sparse data formats is to store the matrix dimensionality (n, dk)
and the non-zero elements (v(1), . . . , v(n∗

k)) with n∗
k < dkn entries. The respective row and column

locations (i, j)(l), l = 1, . . . , n∗
k, are stored as two integer vectors (i(1), . . . , i(n

∗
k)) and (j(1), . . . , j(n∗

k)).
The matrix is then fully defined by tuples (i(l), j(l), v(l)), l = 1, . . . , n∗

k. This encoding is used for the
coordinate list (COO; Shahnaz et al., 2005) format. Another widely used sparse matrix format, e.g.,
by the R package Matrix (Bates et al., 2022) or the C^+ library Armadillo (Sanderson and Curtin,
2016), is the compressed sparse column (CSC; Barrett et al., 1994, Section 4.3.1) format. The objective
here is not to store each row and column index individually, but all row indices (i(1), . . . , i(n∗

k)) and a
vector, also referred to as a column pointer, (j(1), j(2), . . . , j(dk+1)), with j(1) = 0, specifying where
to split the value and row vectors to obtain the column entries. Column l is then obtained by values

18 3. Efficiency

(v(j
(l)+1), . . . , v(j

(l+1))) and, respectively, rows (i(j(l)+1), . . . , i(j
(l+1))). All other entries of the matrix

are set to zero. If the lth column is empty, it is expressed by two equal values j(l) = j(l+1). For example,
a n× 5matrix with n∗

k = 10 and column pointer (0, 2, 5, 5, 6, 10) defines the matrix according to:

column: 1 2 3 4 5
values: v(1), v(2), v(3), v(4), v(5), v(6), v(7), v(8), v(9), v(10)

row indices: i(1), i(2), i(3), i(4), i(5), i(6), i(7), i(8), i(9), i(10)

column pointer: 2 5 5 6 10

Using sparse data representations not only reduces the required memory, but also gains faster matrix
multiplications (see, e.g., Davis, 2006, Chapter 2.8), as efficiently accessing the columns is possible. An
example of applying sparse matrices is representing the P-spline basis in a model. First, the memory is
reduced, since each row usually contains d∗k < dk non-zero elements. Second, using optimized matrix
operations speeds up the fitting of the P-spline.

Binning numerical features – Sometimes in practice, when dealing with massive amounts of data,
the fitting may crash due to the lack of memory – even when using an efficient categorical and sparse
data representation. Lang et al. (2014) usedbinning to discretize feature vectors to increase the efficiency
of multilevel structured additive regression. To bin a numerical feature xk into n∗ values, they used a
simple grid of design points zk = (z

(1)
k , . . . , z

(n∗)
k)T with elements z(i)k = min(xk) + (i − 1)/(n∗ −

1)(max(xk) − min(xk)), i = 1, . . . , n∗ ∈ N. Binning is then accomplished by replacing each value
x
(i)
k with its closest design point z(i)k . The index vector indk = (ind(1)k , . . . , ind(n)k)T represents this

assignment with elements

ind(i)k =


1 x

(i)
k ∈ [z

(1)
k ; z

(2)
k −m(1)]

l if x
(i)
k ∈ (z

(l)
k −m(l−1); z

(l)
k +m(l)]

n∗ x
(i)
k ∈ (z

(n∗)
k −m(n∗−1); z

(n∗)
k]

wherem(l) = 0.5(z
(l+1)
k −z(l)k) is half the distance of the lth design point z(l)k to its right neighbor z(l+1)

k .
The feature vector xk is then represented by the n∗ design points zk and assignments indk with x

(i)
k ≈

z
(ind(i)k)

k . Wood et al. (2017) applied binning to fit GAMs to – as they call extremely large amounts of
data – gigadata. They also argue that the best approximation is achieved by setting n∗ =

√
n. Building

on that, Li andWood (2020) presented optimized cross-product operations of designmatrices based on
binned features. Besides the memory reduction, these operations further speed up the runtime.

Consequently, binning is also a suitable extension forCWBbecause it uses the same base representation
as the additive terms in GAMs and an individual treatment of base learners. Treating base learners indi-
vidually means that it is possible to use, e.g., sparse matrices tomodel P-splines for base learner bj , while
base learner bk builds on a dense design matrix for polynomial regression. Treating both base learners
differently does not affect one or the other because fitting CWB only relies on the contribution to the
overall prediction f̂ of one base learner at a time.

As shown in simulations outlined in Chapter 7, it is possible to save memory up to a factor of 5 for data
sets with just numerical features. Further, binning in the pure numerical case can reduce the runtime
by a factor of 4 - 6.

3.3 More efficient data representations 19

3.3.2 Example: Memory usage for different scenarios

The following example provides an intuition for the required memory during initialization in different
scenarios. To that end, consider a data set D with p numerical and no categorical features. For each
scenario,K designmatricesZ1, . . . ,ZK (one per feature), pseudo residualsr[m], and predictions ŷ[m] =

(f̂ [m](x(1)), . . . , f̂ [m](x(n)))T are stored. Further, integer values require iint and double values idbl bytes.
Hence, storing the pseudo residuals and predictions requires 2nidbl bytes. For simplicity, it is assumed
that dk = d, ∀k ∈ {1, . . . , K}, and each feature is modeled as a P-spline with d∗k non-zero elements in
each row of Zk. Further, sparse matrices use the COO format with two integer-sized vectors d∗kn and
one double-sized vector storing d∗kn elements. Hence, d∗knidbl + 2d∗kni

int bytes are allocated per sparse
design matrix. Table 3.1 contains the estimated memory consumption for different scenarios. These
estimates are calculated by setting1 iint = 4, idbl = 8,K = p, n∗ =

√
n and d = 24with d∗k = 5. The

scenarios considered are:

(1) Each design matrix Zk is stored as dense matrix, no caching:

mem1(n, p) = Kndidbl + 2nidbl bytes values
= 192pn+ 16n bytes

(2) Each design matrix Zk is stored as dense matrix, with caching:

mem2(n, p) = Kndidbl +Kd2idbl + 2nidbl bytes values
= 192pn+ 4608p+ 16n bytes

(3) Each design matrix Zk is stored as sparse matrix, with caching:

mem3(n, p) = K(d∗kni
dbl + 2d∗kni

int) +Kd2idbl + 2nidbl bytes
values
= 80pn+ 4608p+ 16n bytes

(4) Each design matrix Zk is stored as sparse matrix with binning, with caching:

mem4(n, p) = K(d∗kn
∗idbl + 2d∗kn

∗iint + niint) +Kd2idbl + 2nidbl bytes
values
= p(80

√
n+ 4n) + 4608p+ 16n bytes

Table 3.1 contains thememory consumption for these four scenarioswithn ∈ {100, 10000, 1000000}
and p ∈ {10, 50, 100, 500}. Using caching (difference between (1) and (2)) has a relevant impact for
small n and large p. The difference between using sparse matrices over dense matrices (difference be-
tween (2) and (3)) has a more relevant impact, whereas binning helps to reduce the allocated memory
further. It is noteworthy that these examples are calculated based on the minimal possible amount of
data needed to be stored during initialization. Forn = 1000000 and p = 500, amachinemust allocate
about 40 GB of RAM for scenario (3), while it is just 2 GB for scenario (4). This difference can make it
1This parameter setting is an often-used default for P-splines with cubic splines, second order penalty differences, and 20
knots.

20 3. Efficiency

feasible to fit CWB on notebooks instead of usingmore powerful workstations or servers. Implementa-
tions often save additional information, such as parameter estimates or the pseudo residuals/predictions
for each iteration. Hence, these numbers cannot be transferred one-to-one to real-world applications.
Nevertheless, it illustrates the effectiveness of efficient data representations. A comparison of different
data representations on simulated data using compboost reveals memory savings of up to a factor of 5
(cf. Chapter 7). To underpin the effectiveness of binning, Chapter 7) also shows three larger example
data sets (≈ 3GB) for which fitting CWB is not possible without binning.

p = 10 p = 50 p = 100 p = 500

n = 100

(1): 0.18MB (1.52)

(2): 0.23MB (1.88)

(3): 0.12MB (1)

(4): 0.06MB (0.47)

(1): 0.92MB (1.52)

(2): 1.14MB (1.89)

(3): 0.6MB (1)

(4): 0.28MB (0.46)

(1): 1.83MB (1.52)

(2): 2.27MB (1.89)

(3): 1.2MB (1)

(4): 0.56MB (0.46)

(1): 9.16MB (1.52)

(2): 11.35MB (1.89)

(3): 6.01MB (1)

(4): 2.77MB (0.46)

n = 10000

(1): 18.46MB (2.36)

(2): 18.51MB (2.36)

(3): 7.83MB (1)

(4): 0.65MB (0.08)

(1): 91.71MB (2.38)

(2): 91.93MB (2.39)

(3): 38.52MB (1)

(4): 2.66MB (0.07)

(1): 183.26MB (2.38)

(2): 183.7MB (2.39)

(3): 76.89MB (1)

(4): 5.17MB (0.07)

(1): 915.68MB (2.39)

(2): 917.88MB (2.39)

(3): 383.82MB (1)

(4): 25.24MB (0.07)

n = 1000000

(1): 1846.31MB (2.37)

(2): 1846.36MB (2.37)

(3): 778.24MB (1)

(4): 54.21MB (0.07)

(1): 9170.53MB (2.39)

(2): 9170.75MB (2.39)

(3): 3830.18MB (1)

(4): 210.03MB (0.05)

(1): 18325.81MB (2.4)

(2): 18326.25MB (2.4)

(3): 7645.09MB (1)

(4): 404.8MB (0.05)

(1): 91567.99MB (2.4)

(2): 91570.19MB (2.4)

(3): 38164.43MB (1)

(4): 1962.95MB (0.05)

Table 3.1: Memory consumption for different scenarios (1) to (4). The number in brackets after the
allocated MB is the relative memory consumption when compared to scenario (3). Scenario
(3) is used as reference since mboost, as well as compboost, applies it as default. For example,
having n = 10000 and p = 100 (scenario (2)) requires 2.39 times more memory than
scenario (3). The scenario with binning requires just 7 % of the memory, or about 14 times
less memory than scenario (3).

CHAPTER 4
Automation

Nowadays,more people, firms, and institutions show a steadily growing interest in data analytics, where
easy access toML algorithms attracts them to utilizeML to gain value from their data. However, not all
users are experts in the field of ML, and many do not understand the algorithmic details to satisfyingly
develop abespokemodel for their needs. AutoML (Hutter et al., 2019) aims to automate preprocessing,
model selection, and postprocessing by solving the Combined Algorithm and Hyperparameter Selec-
tion (CASH) problem (Thornton et al., 2013). In practice, users must choose an AutoML framework,
the objective or performance measure to optimize, set constraints for the optimization, and finally feed
the framework with a data set. To that end, all pre- and postprocessing steps and supported model
classes of an AutoML framework are defined by experts, i.e., the developer of the framework, and opti-
mized with HPO. Existing AutoML frameworks are, e.g., Auto-WEKA (Kotthoff et al., 2017), Auto-
sklearn (Feurer et al., 2015), or autoxgboost (Thomas et al., 2018). These frameworks are able to achieve
high predictive performance due to using black boxmodels and optimizing for the best objective. How-
ever, in most cases, AutoML does not generally lend itself to the generation of highly interpretable or
explainable1 models.

In the following, ML pipelines (Section 4.1) and the trade-off between model performance and inter-
pretability (Section 4.2) are briefly discussed. Section 4.3 argues for the need for AutoML systems that
promote interpretability. Building on this chapter, Chapter 8 introduces a prototype for an AutoML
framework called Autocompboost that is based on CWB and yields fully explainable models.

4.1 Machine learning pipelines

Using data requires handling, e.g., missing values (Van Buuren, 2018) or outliers (John, 1995), but
grouping levels of categorical features or accounting for underrepresented classes may also be neces-
sary. In this thesis, the data setD is a result of preprocessing raw dataDr and the input to the inducer
to fit a model f̂ = Iλ(D)withHPsλ. Hence, a preprocessing operator fop transforms the raw data set
Dr into the training dataD = fop(Dr|θop). The operator fop is defined by parameters θop and can be
trained as result of a process f̂op = Iop,λop(Dr)with additionalHPsλop ∈ Λop. To provide an example,
during imputation with the mean, the average of the jth feature in the raw data setDr is stored in θ̂op as
the result of Iop,λop and is used to prepare new data sets for training. Therefore, a new raw data setD∗

r

is transformed toD∗ = f̂op(D∗
r |θ̂op) based on specific rules defined by θ̂op, such as imputing missing

values with the mean of the raw data setDr.
1Throughout this work, interpretable and explainable are treated as exchangeable synonyms.

22 4. Automation

Further, multiple preprocessing operators fop,1, . . . , fop,K can be composed to one operator fop =
fop,1 ◦ · · · ◦ fop,K . For example, detecting outliers with fop,1, grouping categorical features with fop,2,
and using a principal component analysis for feature extraction with fop,3 are assembled to give fop =

fop,1 ◦ fop,2 ◦ fop,3. Each operator fop,k is attached with a parameter vector θ̂op,k, and therefore, fop is
defined by θ̂op = {θ̂op,1, . . . , θ̂op,K}. Respectively, the HPs of fop are λop = {λop,1, . . . ,λop,K}with
λop,k ∈ Λop,k. Transforming raw data according to f̂op is especially crucial during evaluation when the
data set is repeatedly split into several data subsets for training and testing (cf. Section 2.3).

Hence, the ML pipeline is the arrangement of the preprocessing and model fitting as nodes in a linear
graph (cf., e.g., Bischl et al., 2021, Section 5.1)2, starting with fitting f̂op = Iop,λop(Dr) and finishing
with fitting f̂ = (Iλ ◦ f̂op)(Dr). Note that the whole process for predicting new dataD∗

r requires pass-
ingD∗ through thewhole trained pipeline, startingwithD∗ = f̂op(D∗

r |θ̂op) and calculating predictions
with f̂(x∗), ∀x∗ ∈ D∗. Formalizing that process allows conducting HPO to find a good performing
configuration for {λop,λ} and requires optimizing over a complex space Λop,1 × · · · × Λop,K × Λ.
Because of that complex HP space, optimizing an ML pipeline is tough and requires black box op-
timization (Bischl et al., 2021). Therefore, fitting AutoML systems is a computationally demanding
task.

4.2 Accuracy–interpretability trade-off

As described above, AutoML frameworks often aggressively optimize an ML pipeline to achieve high
predictive performance. A cost for obtaining high predictive performance is to use black box models
that are not interpretable. This can create tension between accuracy and explainability (Freitas, 2019;
Drozdal et al., 2020; Xanthopoulos et al., 2020) and is often referred to as the accuracy–interpretability
trade-off. However, accurate prediction is often not the primary goal. Thus, high-performing non-
interpretable frameworks are not applicable for practitioners who solely aim for explaining their model.
Explainability is especially important in fields with a high impact on people’s lives, such as health, fi-
nance, insurance, or education. Therefore, to solve that problem, ongoing research focuses on using
black box models and their high predictive power in combination with making them interpretable by
postprocessing using IML (Molnar, 2020) also referred to as XAI (Arrieta et al., 2020). These meth-
ods aim to recover interpretability by, e.g., decomposing the model prediction (Ribeiro et al., 2016),
estimating partial feature effects (see, e.g., Molnar, 2020, Chapter 8.1), or evaluating feature impor-
tance (Lundberg and Lee, 2017). Thus, combining black box models with IML can circumvent the
accuracy–interpretability problem by fitting high-performing models and relying on post-hoc explana-
tions. Nevertheless, regardless of the advantages of IML, Rudin (2019) assert that explaining black box
models is not reliable and can harm society and effort should instead be spent on using inherently inter-
pretable models. The author argues that often not enough details are provided to understand what the
black box is doing or that explanations can become overly complicated and, hence, are prone to human
errors.
2MLpipelines can also account for postprocessing operations, e.g., calibrating probabilities or threshold tuning (cf., Bischl
et al., 2021, Section 4.5), by adding a postprocessing operator which is not further discussed in this work. For additional
details and explanations about the concept of ML pipelines see, e.g., Pfisterer (2022).

4.3 Trustworthy automated machine learning 23

4.3 Trustworthy automated machine learning

As described, AutoML is a valuable tool to help non-expert practitioners create proper models for their
data by optimizing ML pipelines. Nevertheless, if interpretability is desired, these models often re-
quire techniques from IML to understand their behavior. But, adding a potentially error-prone layer of
complexity requires knowledge about these methods and trust that explanations gained from IML ade-
quately capture the underlying processes. Estimating the future model performance is usually included
in the evaluation during HPO, but generating trust in the interpretability capabilities of an AutoML
framework should be treated as equally important. Hence, it is beneficial to knowwhether interpretable
models are sufficient for modeling a given task. Notably, some AutoML systems, e.g., Auto-WEKA,
optimize multiple models from simple interpretable ones (such as (generalized) LMs) to more complex
ones (such as Random Forests (Breiman, 2001) or AdaBoost (Freund and Schapire, 1997)) and output
the performance. This performance can indicate whether it is worth using a black box model over a
simpler interpretable model to gain a satisfying level of performance. However, fitting many models is
computationally demanding, and the increase in complexity is due to automatically changing themodel
class by the framework without letting the user control for complexity.

Thus, slightly increasing complexity and assessing the predictive performance for each increase gives a
finer resolution of the required complexity for a given task. For example, tracing the risk improvement
Remp(f̂

[m]|D)−Remp(f̂
[m−1]|D) in each iteration when using boosting can act as a proxy for the im-

portance of a new component b̂[m]. Further, in each iteration, the new component b̂[m] may add more
complexity to the model. When using, e.g., CWB as a fitting engine, complexity can be increased by in-
cluding a new feature, switching from linear to non-linear effects, including new pairwise interactions,
or even boosting decision trees (Friedman, 2001) – which then enables accounting for higher-order in-
teractions. To that end, the importance of the complexity added by b̂[m] can be quantified w.r.t. to
predictive performance. Hence, assessing each step and preparing the information in a readable and
intuitive manner helps the user to understand the fitting procedure and indicates how cautiously in-
terpretable base models can be used. Further, if interpretable models are not sufficient to achieve a
desired predictive performance, it is reasonable to switch to performance-based AutoML frameworks.
Chapter 8 introduces Autocompboost as an example of an AutoML framework that provides a com-
plexity assessment based on CWB. Autocompboost further combines interpretable base components
with trees to represent the full range of complexity from simple models – e.g., by just using univariate
linear feature effects – to complex black box models by adding trees. This range allows assessing the
gain in performance with increasing complexity on a fine grid and can improve practitioners’ trust in
the returned model.

CHAPTER 5
Distributed computing

The last extension ofCWBpresented in this thesis is to add the ability to fitCWB todistributed data. As
described in Section 2.4, the distributed data setsD1, . . . ,DS are shared acrossS sites and exclusively lo-
cated there. When analyzing data, merging the different data sets into a pooled data setD = ∪Ss=1Ds is
strictly prohibited. A practical reason for this prohibition could be data security to protect the privacy
of individuals in a data set. A prominent real-world scenario of distributed data sets is the collabora-
tion of hospitals to understand the behavior of their patients for a specific treatment. Here, sharing
parts of the data infringes on patient privacy and is legally forbidden. This need for security gave rise
to privacy-preserving techniques such as federated learning (McMahan et al., 2017), the integration of
encryption (Bost et al., 2014; Sun et al., 2020; Fang andQian, 2021), orDP in data analysis (Abadi et al.,
2016; Jayaraman and Evans, 2019; Gong et al., 2020).

The novel distributed techniques presented in this thesis were developed in collaborationwith theData
Integration for FutureMedicine (DIFUTURE) consortium (Prasser et al., 2018) as part of the German
Medical Informatics Initiative1 (MII). The consortium aims to provide digital tools for individual treat-
ment decisions and prognosis and conduct distributed data network studies. A use case is to develop a
score to understand the treatment of multiple sclerosis patients. These patients are located at different
hospitals that are part of DIFUTURE. Specific challenges for that use case are the model development
and evaluation in a distributed fashion. In the following, Section 5.1 gives more details about model
fitting in a distributed context. Subsequently, Section 5.2 introduces model evaluation in the context
of distributed data. Throughout this section, the medical context is used as an example to motivate
different aspects of distributed analyses.

5.1 Model fitting

A challenge when fitting an algorithm to distributed data is to incorporate security mechanisms – e.g.,
data aggregation, DP, or encryption – into the fitting process so that the final model can be accurately
estimated, ideally in a lossless manner. However, this might not be possible for complex algorithms. For
example, Jayaraman and Evans (2019) studied the effect of the privacy parameters (ε, δ) in DP on the
accuracy of different models and argued that meaningful privacy must be calibrated for each algorithm
independently. Hence, defining an algorithm as privacy-preserving means accounting for privacy using
one or multiple privacy mechanisms. Privacy-preserving algorithms in distributed computing ranges

1www.medizininformatik-initiative.de

www.medizininformatik-initiative.de

26 5. Distributed computing

from simple LMs (Karr et al., 2005) or ridge regression (Chen et al., 2018) to trees, support vector ma-
chines, random forests (Li et al., 2020), AdaBoost (Lazarevic andObradovic, 2001; Gambs et al., 2007),
or neural networks (Mohassel and Zhang, 2017).

However, finding a privacy-preserving alternative of an algorithm may not be sufficient to adequately
model distributed data (Cunha et al., 2021). As set up in Section 2.4, the data setsDs are heterogeneous,
and this heterogeneity is induced by potentially different data distributionsPxy,s. Hence, a distributed
algorithm should be able to account for these different distributions. For example, the population of
patients treated in one hospital can be substantially different from those at another hospital. Reasons
can be, for example, regional aspects (hospitals are in different countries or urban vs. rural regions), the
type of hospital (private or university), or different devices used tomeasuremedical indicators. Itmay be
reasonable to consider fitting differentmodels f̂s at each site s to account for heterogeneities. However,
learning common patterns as main effects between all sites is beneficial for several reasons. New sites
that did not contribute to the training can use the model with the main effects for predicting their data.
Further, a feature effect may already be fully explained by a common main effect and does not require
site-specific corrections. In this scenario, adding the site-specific effect is unnecessary to keep the model
as simple as possible. Thus, a model should be able to model main effects that are common between all
sites as well as site-specific correction for the sites.

Furthermore, especially in medicine, e.g., when selecting the treatment for a patient based on a model,
understanding the decision-making of thatmodel is critical. Hence, accessing the interpretations for the
model is often desired. Therefore, this thesis deals with adjusting CWB to make it privacy-preserving
and account for heterogeneities. Thus, the model given in Equation (2.1) is extended to

g(E[Y |x, s]) = f(x) = f0 +
K∑
k=1

(
bk(x|θk) +

S∑
j=1

1{s}(j)bk,j(x|θk,j)

)
(5.1)

with site-specific terms bk,s, s = 1, . . . , S to account for different data distributions and indicator
function 1{s}(j) = 1 if j = s and 0 otherwise. Another view on this decomposition is to express it
as a GAMM. Thus, the effect of base learner bk corresponds to the fixed effect of feature k while bk,s is
a smooth random effect of feature k to account for site s that acts as a statistical unit. To that end, the
repeatedmeasurements are given byDs. Zhu et al. (2020), Luo et al. (2022), and Yan et al. (2022) tackle
the issue of data heterogeneity by using a linear random component to estimate a privacy-preserving
and lossless (general) linear mixed model ((G)LMM). Nevertheless, the linear component may need to
be more flexible for adequate modeling.

Chapter 9 describes how CWB can be used as a fitting engine for GAMMs in a distributed fashion for
estimating (5.1). For the distributed CWB algorithm, it is sufficient to rely on aggregations similar to
the distributed LM (Algorithm 2) for a distributed base learner estimation. The site-specific effects are
included as row-wise tensor products to account for heterogeneities. Further, the presented distributed
CWB algorithm preserves all advantages of CWB and thus allows a selection between the fixed and
random effects. For example, suppose a fixed effect is sufficient for modeling, and no site-specific cor-
rection is required. In that case, the selection properties of the distributed CWB algorithm account for
only selecting the fixed effect and ignoring the random component.

5.2 Model evaluation 27

5.2 Model evaluation

The principles frommodel evaluation in non-distributed systems (Section 2.3) also apply to distributed
data sets and become more complicated for several reasons. Data sets are distributed, so conducting re-
sampling and performance evaluation of distributed data must comply with all safety mechanisms. For
example, sharing prediction scores can already be enough to reconstruct training data (Wang and Kurz,
2022). On the other hand, sharing ρ̃(f̂ ,Ds) is usually allowed if ns is larger than or equal to the privacy
level q (cf. Section 2.4.2) and can be used to calculate performance measures that are based on a point-
wise loss functionL. For example, calculating themean squared error (MSE) –which is based on point-
wise computing the L2-loss in a distributed fashion – is done by sharing ls =

∑
(x,y)∈Ds

L2(y, f̂(x))
and calculating MSE(f̂ ,D) = n−1

∑S
s=1 ls with n =

∑S
s=1 ns. In general, models can be evaluated

on distributed data sets by calculating the performance measure ρ̃(f̂ ,Ds) per site and averaging all site
performance measures. Nevertheless, for some measures, this does not reliably estimate the global per-
formance and can be biased towards single sites. A reason could be that the calculation of the global
performance measure is not decomposable into point-wise operations, or one site requires specific in-
formation from other sites – e.g., the AUC requires all scores and true outcomes from all sites.

Hence, a measure for which the evaluation with distributed data sets becomes even more complicated
is the AUC. In contrast to point-wise losses, calculating the AUC requires processing the whole data
set. In the case of the AUC, it is necessary to merge all scores and the true 0-1-outcomes to calculate
global ranks and respective TPR and FPR values. Relying on aggregations is insufficient for the AUC,
and special treatment is required for a distributed calculation. Chapter 10 presents a distributed ver-
sion to calculate the ROC curve, AUC, and confidence intervals for the AUC. The estimation is based
on approximating the ROC curve with the ROC-GLM (Pepe, 2003). Calculating the ROC-GLM
distributively and preserving privacy is accomplished by incorporating data aggregations and DP. In
general, distributed model evaluation must still be further researched. However, conducting an evalu-
ation using performance measures based on point-wise loss functions can be securely conducted using
data aggregations, while more complex loss functions, such as the AUC, require special treatment.

Part II - Contributions

CHAPTER 6
compboost: Modular Framework forComponent-Wise

Boosting

Contributing article

Schalk, D., Thomas, J., and Bischl, B. (2018). compboost: Modular framework for component-wise
boosting. Journal of Open Source Software, 3(30):967

Declaration of contributions

Daniel Schalk worked with Janek Thomas on the underlying software design. Furthermore, Daniel
Schalk implemented themethod, created thefirst benchmark, andwrote the central part of themanuscript.

Contribution of the coauthors

Janek Thomas was heavily involved in the initial software design as well as the creation of the R-API.
All co-authors helped revise the manuscript.

Note:

The publication followed the master thesis1 of Daniel Schalk. The development of the R package is an
ongoing process. In the master thesis, the first stable version was developed, which contained the basic
algorithm. The functional scope of this first version included three loss functions (absolute, quadratic,
and binomial loss) as well as the possibility to define own loss functions, two basic components for
effect modeling (linear and P-spline), and an optimization method. After the master thesis, this func-
tionality was extended. New loss functions (Huber and Poisson loss) and basic components (dummy
coding, centered splines, tensor products) were added. In addition, the API was extended to provide
new visualization capabilities that facilitate the interpretation of the model. Fundamentally, the inter-
nal structures have also been revised to allow more efficient data processing using sparse file formats.
According to the JOSS publication, the software was extended to include parallelizedmodel estimation
and additional optimizers and base components. In 2019, compboost was also presented at UseR in
Toulouse2.

1https://epub.ub.uni-muenchen.de/59109/1/MA_Schalk.pdf
2https://youtube.com/watch?v=nOMSQJU51Tk&ab_channel=RConsortium

https://epub.ub.uni-muenchen.de/59109/1/MA_Schalk.pdf
https://youtube.com/watch?v=nOMSQJU51Tk&ab_channel=RConsortium

compboost: Modular Framework for Component-Wise
Boosting
Daniel Schalk1, Janek Thomas1, and Bernd Bischl1

1 Department of Statistics, LMU MunichDOI: 10.21105/joss.00967

Software
• Review
• Repository
• Archive

Submitted: 14 August 2018
Published: 12 October 2018

License
Authors of papers retain copyright
and release the work under a Cre-
ative Commons Attribution 4.0 In-
ternational License (CC-BY).

Summary

In high-dimensional prediction problems, especially in the p ≫ n situation, feature selec-
tion is an essential tool. A fundamental method for problems of this type is component-
wise gradient boosting, which automatically selects from a pool of base learners – e.g. sim-
ple linear effects or component-wise smoothing splines (Schmid & Hothorn, 2008) – and
produces a sparse additive statistical model. Boosting these kinds of models maintains
interpretability and enables unbiased model selection in high-dimensional feature spaces
(Hofner, Hothorn, Kneib, & Schmid, 2012).
The R (Team, 2016) package compboost, which is actively developed on GitHub (https://
github.com/schalkdaniel/compboost), implements component-wise boosting in C++ using
Rcpp (Eddelbuettel, 2013) and Armadillo (Sanderson & Curtin, 2016) to achieve efficient
runtime behavior and full memory control. It provides a modular object-oriented system
which can be extended with new base-learners, loss functions, optimization strategies, and
stopping criteria, either in R for convenient prototyping or directly in C++ for optimized
speed. The latter extensions can be added at runtime, without recompiling the whole
framework. This allows researchers to easily implement more specialized base-learners,
e.g., for spatial or random effects, used in their respective research area.
Visualization of selected effects, efficient adjustment of the number of iterations, and
traces of selected base-learners and losses to obtain information about feature importance
are supported.
Compared to the reference implementation for component-wise gradient boosting in R,
mboost (Hothorn, Buehlmann, Kneib, Schmid, & Hofner, 2017), compboost is optimized
for larger datasets and easier to extend, even though it currently lacks some of the large
functionality mboost provides. A detailed benchmark against mboost can be viewed on
the project homepage and on GitHub.
The modular design of compboost allows extension to more complicated settings like func-
tional data or survival analysis. Further work on the package should include parallelized
boosting, better feature selection, faster optimization techniques such as momentum and
adaptive learning rates, as well as better overfitting control.

References

Eddelbuettel, D. (2013). Seamless r and c++ integration with rcpp. Springer.
doi:10.1007/978-1-4614-6868-4
Hofner, B., Hothorn, T., Kneib, T., & Schmid, M. (2012). A framework for unbiased
model selection based on boosting. Journal of Computational and Graphical Statistics,
20(4), 956–971. doi:10.1198/jcgs.2011.09220

Schalk et al., (2018). compboost: Modular Framework for Component-Wise Boosting. Journal of Open Source Software, 3(30), 967.
https://doi.org/10.21105/joss.00967

1

Hothorn, T., Buehlmann, P., Kneib, T., Schmid, M., & Hofner, B. (2017). mboost: Model-
based boosting. Retrieved from https://CRAN.R-project.org/package=mboost
Sanderson, C., & Curtin, R. (2016). Armadillo: A template-based c++ library for linear
algebra. Journal of Open Source Software, 1(2), 26. doi:10.21105/joss.00026
Schmid, M., & Hothorn, T. (2008). Boosting additive models using component-wise p-
splines. Computational Statistics & Data Analysis, 53(2), 298–311.
Team, R. C. (2016). R: A language and environment for statistical computing. Vienna,
Austria: R Foundation for Statistical Computing. Retrieved from https://www.R-project.
org/

Schalk et al., (2018). compboost: Modular Framework for Component-Wise Boosting. Journal of Open Source Software, 3(30), 967.
https://doi.org/10.21105/joss.00967

2

CHAPTER 7
Accelerated Componentwise Gradient Boosting Using

Efficient Data Representation and Momentum-
Based Optimization

Contributing article

Schalk, D., Bischl, B., and Rügamer, D. (2022a). Accelerated componentwise gradient boosting us-
ing efficient data representation and momentum-based optimization. Journal of Computational and
Graphical Statistics

Declaration of contributions

Daniel Schalk transferred themethodological concepts of the improved optimization algorithm and the
more efficient data representation to CWB. For this purpose, he constructed the essential theory and
formulated the algorithms. The adaptations in the software compboost, the simulation study, and the
comparison to state-of-the-artmethodswere also implemented solely by him. Daniel Schalk formulated
main parts of the publication, interpreted the results, and created all figures.

Contribution of the coauthors

DavidRügamer assisted in interpreting the theoretical andmethodological findings as well as the results
of the simulation study and benchmark comparison. Bernd Bischl and David Rügamer helped with
editing the manuscript.

Accelerated Componentwise Gradient
Boosting using Efficient Data Representation

and Momentum-based Optimization

Daniel Schalk, Bernd Bischl and David Rügamer
Department of Statistics, LMU Munich

Abstract

Componentwise boosting (CWB), also known as model-based boosting, is a vari-
ant of gradient boosting that builds on additive models as base learners to ensure
interpretability. CWB is thus often used in research areas where models are employed
as tools to explain relationships in data. One downside of CWB is its computational
complexity in terms of memory and runtime. In this paper, we propose two techniques
to overcome these issues without losing the properties of CWB: feature discretization
of numerical features and incorporating Nesterov momentum into functional gradient
descent. As the latter can be prone to early overfitting, we also propose a hybrid
approach that prevents a possibly diverging gradient descent routine while ensur-
ing faster convergence. Our adaptions improve vanilla CWB by reducing memory
consumption and speeding up the computation time per iteration (through feature
discretization) while also enabling CWB learn faster and hence to require fewer it-
erations in total using momentum. We perform extensive benchmarks on multiple
simulated and real-world data sets to demonstrate the improvements in runtime and
memory consumption while maintaining state-of-the-art estimation and prediction
performance.

Keywords: Binning, Data Structures, Functional Gradient Descent, Machine Learning,
Nesterov Momentum

1

1 Introduction

Model-based or componentwise boosting (CWB; Bühlmann and Yu, 2003) applies gradient

boosting (Freund et al., 1996) to statistical models by sequentially adding pre-defined com-

ponents to the model. These components are so-called base learners of one or multiple

features. If interpretable base learners are used (e.g., univariate splines), the full CWB

model remains interpretable and allows for the direct assessment of estimated partial fea-

ture effects. Further advantages of CWB are its applicability in high-dimensional feature

spaces (“p � n situations”), its inherent variable selection, and unbiased feature selec-

tion (Bühlmann and Yu, 2003; Hofner et al., 2011). It is also possible to derive inference

properties of boosted estimators to quantify uncertainty using post-selection inference pro-

cedures (Rügamer and Greven, 2020). These properties make CWB a powerful method

at the intersection of (explainable) statistical modelling and (black-box prediction) ma-

chine learning. For this reason, CWB is frequently used in medical research, e.g., for oral

cancer prediction (Saintigny et al., 2011), detection of synchronization in bioelectrical sig-

nals (Rügamer et al., 2018), or classifying pain syndromes (Liew et al., 2020). In contrast,

many other gradient boosting methods such as XGBoost (Chen and Guestrin, 2016) solely

focus on predictive performance and (mainly) use tree-based base learners with higher-order

interactions. As a consequence, these procedures require techniques from interpretable ma-

chine learning (see, e.g., Molnar, 2020) to explain their resulting predictions.

Various versions of the original CWB algorithm have been developed, e.g., CWB for

functional data (Brockhaus et al., 2020), boosting location, scale and shape models (Hofner

et al., 2016), or probing for sparse and fast variable selection (Thomas et al., 2017). CWB’s

computational complexity in terms of memory and runtime is, however, a downside often

encountered in practice. The high consumption of RAM of the current state-of-the-art

implementation mboost (Hothorn et al., 2020) can considerably exceed the capacity of

modern workstations. This makes CWB less attractive or even infeasible for medium- to

large-scale applications. In this paper, we focus on two internal structures of CWB and

propose improvements to mitigate these problems.

2

Our contributions and related literature. Our first contribution (Section 3.1) is

a novel CWB modification to reduce memory consumption in large data situations. To

the best of our knowledge, we are the first to derive the complexity of CWB and also the

first to suggest improvements to reduce computational costs. Based on a recently proposed

idea to fit generalized additive models (GAMs) on large data sets (Li and Wood, 2020),

we describe adaptions of matrix operations for CWB to operate on discretized features.

We refer to this approach as binning. Binning is a discretization technique for numerical

features and can drastically reduce runtime and memory consumption when fitting GAMs,

especially when coupled with specialized matrix operations. In contrast to Li and Wood

(2020), we use binning within each base learner rather than processing the model matrix

of all features. This makes the use of binning particularly beneficial for CWB.

In Section 3.2, we further adapt a novel optimization technique called Accelerated Gra-

dient Boosting Machine (AGBM; Lu et al., 2020). AGBM allows incorporation of Nesterov

momentum for gradient boosting in the function space. Based on AGBM, we propose a new

variant of CWB for faster convergence while still preserving CWB’s interpretability. The

adaption perfectly fits to the general optimization scheme of CWB. However, the accelera-

tion based on Nesterov momentum is known to diverge in certain cases (Wang et al., 2020).

We thus also propose a refinement of AGBM in our algorithm Hybrid CWB (HCWB) to

overcome premature divergence of the gradient descent routine.

These proposed adaptions can be applied to CWB independently of each other and are

both implemented in the software package compboost (Schalk et al., 2018). In a simulation

study in Section 4, we study their effect both separately and combined. Finally, we conduct

benchmark experiments in Section 4 to compare our proposed CWB variants with vanilla

CWB, the CWB implementation mboost, XGBoost, and the recently published Explainable

Boosting Machine (EBM) within the interpretML framework (Nori et al., 2019).

2 Componentwise Gradient Boosting

This section introduces the main concepts and properties of CWB as well as our notation.

3

2.1 Terminology

Consider a p-dimensional feature space X = (X1×. . .×Xp) and a target space Y . We assume

an unknown functional relationship f between X and Y . ML algorithms try to learn this

relationship using a data set D =
((
x(1), y(1)) , . . . , (x(n), y(n))) with n observations drawn

independently from an unknown probability distribution Pxy on the joint space X×Y . Let f̂

be the estimated model fitted on the training data to approximate f and P = {1, . . . , p} an

index set for all p features. The vector xj = (x(1)
j , . . . , x

(n)
j)T ∈ X refers to the jth feature.

x and y are arbitrary members of X and Y , respectively. Given f and a loss function

L : Y × R → R+
0 , we assess the fitting quality of the model on the data set D using the

empirical risk Remp(f) = n−1∑
(x,y)∈D L(y, f(x)). We further denote the test data as Dtest

with D ∩ Dtest = ∅, which is an additional data set held back for performance evaluation.

In case early stopping or parameter tuning is performed, we split D into a training data set

Dtrain ⊂ D, which is used to train the model and a validation data set Dval ⊂ D, which is

used for determining, e.g., the stopping iteration or the model’s performance for validation.

If none of these subroutines is used, we refer to D as training data (as in Algorithm 2).

2.2 Base Learner

A base learner bk : X → R is used to model the contribution of one or multiple features to

the estimated model f̂ . Possible base learners range from simple models like a linear model

on one feature to complex models such as deep decision trees including many features.

While the presented adaptions for CWB work also for multivariate base learners such as

tensor product splines, we restrict ourselves to univariate functions bk(x,θ) = gk(x)Tθ,θ ∈

Rdk , for demonstration purposes. The function gk : R → Rdk is a generic representation

for modeling alternatives such as linear effects, categorical effects or smooth effects. For

smooth effects, numerical features are transformed using a basis representation gk(x) =

(Bk,1(x), . . . , Bk,dk
(x))T with dk basis functions, e.g., via univariate penalized B-splines (P-

Splines; Eilers and Marx, 1996). This generic representation defines a design matrix Zk =

(gk(x(1)
j), . . . , gk(x(n)

j))T ∈ Rn×dk given by a feature vector xj ∈ Rn. Note that the base

4

learner bk implicitly selects the feature(s) on which it operates without explicitly denoting

the feature(s). In this paper with univariate base learners, exactly one feature is passed

to the generic representation gk. An important property induced by the choice of a linear

base learner is that two base learners of the same type bk(x,θ) and bk(x,θ∗) sum up to

one base learner of the same type:

bk(x,θ) + bk(x,θ∗) = bk(x,θ + θ∗). (1)

During boosting, CWB selects its next component from a pre-defined set of base-learners

B = {bk}k∈{1,...,K}, where K often equals the number of features p.

2.3 Componentwise Boosting

CWB estimates f̂ using an iterative steepest descent minimization in function space. f̂ [m]

denotes the prediction model after m iterations. In each step, the pseudo residuals r[m](i) =

−∂L(y(i),f(x(i)))
∂f(x(i))

∣∣∣
f=f̂ [m−1]

, i ∈ {1, . . . , n} indicate a functional gradient, evaluated at training

data points, where changing the outputs of f̂ [m] reduces the overall loss of our current

model, w.r.t. to the given loss L the most. CWB initializes f̂ [m] with a loss-optimal

constant model – also called an offset or intercept. In the mth iteration, all base learners

in B are fitted against r[m] via L2-loss, and the best candidate is selected to additively

update f [m], controlled by a learning rate ν. This procedure is repeated M times or until a

convergence criterion is met (e.g., using early stopping as described in Section 3.2.3). The

details of CWB are given in Algorithm 1 in Appendix A.1.

Due to property (1) of linear base learners and the additive model update of CWB, the

estimated parameter of each base learner can be summed up after M iterations, and each

aggregated parameter θ̂k =
∑M

m=1
∑K

k=1 1{k=k[m]}θ̂
[m] with its base representation gk can

be interpreted as a partial effect of the feature modeled by base learner bk.

2.4 Computational Complexity of CWB

The computational complexity of CWB is directly related to the computational complexity

of fitting each base learner. All linear base learners b1, . . . , bK must solve a system of linear

5

equations ZT
kZkθk = ZT

k r
[m]. For simplicity, assume that all base learners have the same

number of parameters, i.e., dk = d. Such systems are usually Cholesky decomposed with

ZT
kZk = LkL

T
k , and complexity O(d3). Taking into account additional matrix operations

ZT
kZk with d2n, ZT

k r
[m] with dn, and forward/backward solving with (d2−d)/2 operations,

this yields a complexity ofO(d2n+d3). When applied to all K base learners in M iterations,

this yields O(MK(d2n + d3)) (neglecting operations such as the calculations of pseudo

residuals r[m] and sum of squared errors SSEk, or finding the best base learner k[m]).

The above can be accelerated considerably by pre-calculating the (expensive) Cholesky

decomposition once for every base learner before boosting. This reduces the computational

complexity of CWB to O(K(d2n + d3)). When taking also the forward/backward solving

and calculation of ZT
k r

[m] as operations per iteration into account, the complexity when

caching heavy operations reduces to O(K(d2n+ d3) +MK(d2 + dn)).

3 A more Efficient Componentwise Boosting

3.1 Binning

In order to make CWB feasible for large data sets and reduce computational resources in

general, we propose to combine CWB with binning. While the primary goal of binning is

to reduce the memory consumption by representing numerical feature via discretization,

this method can also accelerate the model fit.

3.1.1 Discretizing numerical Features

Binning discretizes a numerical feature into a smaller number of design point values. Usu-

ally, binned values are constructed as an equally spaced grid Lang et al. (2014) z(i)
j =

min(xj) + (i − 1)/(n∗ − 1)(max(xj) − min(xj)), i = 1, . . . , n∗ and then replace each value

x
(i)
j with its closest design point z(i)

j . The number of design points n∗ can be chosen arbi-

trarily. Wood et al. (2017) argue that the trade-off between data size and statistical error

due to imprecise feature values is most adequate for n∗ =
√
n.

Design points and index vector. Instead of storing the discretized feature vector

6

x̃j = (x̃(1)
j , . . . , x̃

(n)
j)T ∈ Rn, it is sufficient to store the n∗ values of zj as well as an additional

index vector indk = (ind(1)
k , . . . , ind

(n)
k)T (i.e., the assignment of each discretized feature

value to its bin x̃(i)
k = z

(ind
(i)
k)

j). The index vector is calculated by setting ind(i)
k = 1 if x(i)

j ∈

[z(0)
j ; z(1)

j + m2] and ind
(i)
k = l if x(i)

j ∈ (z(l−1)
j −m1; z(l)

j + m2], where m1 = (z(l)
j − z

(l−1)
j)/2

and m2 = (z(l+1)
j − z(l)

j)/2 is half the distance of a design point to its left/right neighbor.

Hence, binning can be seen as a hash map where the index vector indk is the hash function,

the design points zj are the keys, and xj are the entries.

Binning reduces the amount of required storage for variables. Instead of storing the

n × dk matrix Zk, a reduced n∗ × dk matrix Z̃b
k = (gk(z(1)

j), . . . , gk(z(n∗)
j))T based on bins

zj is stored. kk is used to assign the ith row Z̃b
k(i) = gk(z(i)

j)T, i = 1, . . . , n∗ to the ith row

Z̃k(i) = gk(x̃(i)
k)T, i = 1, . . . , n of the discretized feature x̃j by Z̃k(i) = Z̃b

k(ind(i)
k). Note

that the same lookup can also be applied to categorical features without binning.

An analogy to binning are sparse data matrices, a widely used data representation.

Similar to binning, sparse data matrices choose another representation by storing the row

and column index of only the non-zero elements and the corresponding values (see, e.g.,

Duff et al., 1989). Using sparse matrices has two major advantages. First, this approach

incurs reduced memory load, and second, optimized algorithms can be used to calculate

matrix operations much faster. A specific example where sparse matrices are used in the

context of CWB is to store the base representation Zk of P-spline base learners, since Zk

contains mainly zeros. The fitting process is also accelerated, as ZT
k r

[m] is calculated for

just the non-zero elements.

3.1.2 Matrix multiplications on binned Features

When fitting a penalized base learner in CWB, the two matrix operations ZT
kWkZk +λDk,

with a symmetric penalty matrix Dk ∈ Rdk×dk , and ZT
kWkr

[m] are required. We assume

the weight matrix to be diagonal Wk = diag(wk) with elements wk = (w(i)
k , . . . , w

(n)
k)T and

set wk to a vector of ones if no weights are used, i.e., Wk ≡ In. While λDk is not affected

by binning, ZT
kWkZk and ZT

kWkr
[m] can be computed more efficiently on the binned design

matrix. Algorithm 1 describes corresponding matrix operations using the index vector kk

7

and reduced design matrix Z̃b
k.

Algorithm 1 Calculation of Z̃T
kWkZ̃k and Z̃T

kWkr
[m] on binned design matrix Z̃b

k and
weight matrix Wk = diag(wk).

Input: Design matrix Z̃b
k, weight vector wk, pseuro residuals r[m], and index vector indk

Output: Z̃T
kWkZ̃k and Z̃T

kWkr
[m]

1: procedure binMatMat(Z̃b
k,Wk, indk,wk)

2: Initialize with zero matrix U = 0dk×n∗

3: for i ∈ {1, . . . , n} do
4: U(ind

(i)
k) += wi,jZ̃

b
k(k(i)

k)
5: return UZ̃b

k

6: end procedure

1: procedure binMatVec(Z̃b
k, r[m], indk,wk)

2: Initialize with zero vector u = 0n∗

3: for i ∈ {1, . . . , n} do
4: u(ind

(i)
k) += w

(i)
k r[m](i)

5: return Z̃bT
k u

6: end procedure

The matrix U and vector u act as intermediate results and are used for the final

matrix-matrix and matrix-vector operation on the reduced design matrix Z̃b. Due to the

discretization, the number of matrix product operations reduces fromO(nd2) toO(n∗d2+n)

when using a diagonal weight matrix (Li and Wood, 2020).

CWB applies binning on a base learner level. Therefore, each base learner that uses

binning individually calculates the bin values zj, the reduced design matrix Z̃b
k, and the

index vector indk. The binMatMat in Algorithm 1 is first used in CWB when calculating

the Cholesky decomposition L of Z̃T
kWkZ̃k and then caches results for later usage. To

calculate θ̂[m] in each iteration, binMatVec in Algorithm 1 is used.

3.1.3 Computational Complexity when applied in CWB

Using Algorithm 1, the number of operations for calculating Z̃T
kWkZ̃k reduces fromK(d2n+

d3) to K(n∗d2 + n + d2). In comparison to a routine without binning, this is a reduction

in operations if n∗ < n(d2 − 1)/d2 and d > 1. A similar result holds during the fit-

ting process when applying binMatVec of Algorithm 1. Here, binning requires n + dn∗

operations, whereas a calculation with dense matrices requires dn operations. This is a

reduction in operations if n∗ < n(d− 1)/d and d > 1. Applying this for all K base learners

in each of the M iterations yields a complexity of O(MK(d2 + dn∗ + n). All in all, we

obtain a computational complexity of O(K(d2n∗ + n + d3) + MK(d2 + dn∗ + n)) instead

of O(K(d2n+ d3) +MK(d2 + dn)). For the important case of P-spline base learners with

8

d = 20 as a typical choice of basis dimension and n∗ =
√
n, the conditions for a reduction

in operations are fulfilled (see also Section 4 for the effect of binning in practice).

3.2 Accelerating the Fitting Process of CWB

In risk minimization, standard gradient descent can evolve slowly if the problem is ill-

conditioned (Ruder, 2016). To reduce this problem, momentum adds a fraction of the previ-

ous gradient to the update step for an accelerated fitting procedure (Qian, 1999). A further

extension is Nesterov accelerated gradient (NAG; Nesterov, 1983), also known as Nesterov

momentum. NAG performs a look ahead on what the gradient descent step is doing and

adjusts the update step to improve convergence. To incorporate NAG into CWB, we follow

Lu et al. (2020) and introduce a second base learner b
k

[m]
cor

that is fitted to the so-called error-

corrected pseudo residuals c[m](i) = r[m](i) + m
m+1(c[m−1](i)− b

k
[m−1]
cor

(x(i), θ̂
[m]
cor), i ∈ {1, . . . , n}.

Due to the recursive definition, the error-corrected pseudo residual c[m](i) at iteration m

contains information of all previous pseudo residuals. The sequence {b
k

[1]
cor
, . . . , b

k
[m]
cor
} of

base learners then accumulates to the momentum model h[m] = h[m−1] + ηmbk
[m]
cor

, where

ηm = βγϑ−1
m is the learning rate of the momentum model. This learning rate contains the

momentum parameter γ ∈ R+ and a sequence ϑm = 2/(m + 1), which is later used to

combine the primary model f and momentum model h. In contrast to standard CWB,

the pseudo residuals r[m](i) = −∂L(y(i),f(x(i)))
∂g(x(i))

∣∣∣
g=g[m−1]

, i ∈ {1, . . . , n} are calculated as

the gradient w.r.t. a convex combination g[m] = (1 − ϑm)f [m] + ϑmh
[m] of the primary

model f [m] and the momentum model h[m]. The primary model f [m] = g[m−1] + βbk[m] is

calculated by adding the new component bk[m] to the combined model g[m]. Algorithm 2

summarizes the accelerated CWB (ACWB) algorithm. For simplicity, the loop to select the

optimal base learner (lines 5 – 8 of Algorithm 1 Appendix A.1) is summarized as procedure

findBestBaselearner(r,B), which returns a tuple (θ̂[m], k[m]) of the estimated parameters θ̂[m]

and the index k[m] of the best base learner from set B of base learners.

9

Algorithm 2 ACWB algorithm with input and output.
Input Data D, learning rate ν, momentum parameter γ, number of boosting

iterations M , loss function L, set of base learner B
Output Prediction model f̂ [M] defined by fitted θ̂[1], . . . , θ̂[M] and θ̂[1]

cor, . . . , θ̂
[M]
cor

1: procedure ACWB(D, ν, γ, L,B)
2: Initialize f̂ [0](x) = arg min

c∈R
Remp(c,D); ĥ[0](x) = f̂ [0](x); ĝ[0](x) = f̂ [0](x);

3: for m ∈ {1, . . . ,M} do
4: ϑm = 2

m+1
5: ĝ[m](x) = (1− ϑm)f̂ [m−1](x) + ϑmĥ

[m−1](x)

6: r[m](i) = − ∂L(y(i),f(x(i)))
∂g(x(i))

∣∣∣∣
g=ĝ[m]

, ∀i ∈ {1, . . . , n}

7: (θ̂[m], k[m]) = findBestBaselearner(r[m],B)
8: f̂ [m](x) = ĝ[m](x) + νbk[m](x, θ̂[m])
9: if m > 1 then

10: c[m](i) = r[m](i) + m
m+1

(
c[m−1](i) − b

k
[m−1]
cor

(x, θ̂[m]
cor

)
, ∀i ∈ {1, . . . , n}

11: else
12: c[m] = r[m]

13: end if
14: (θ̂[m]

cor , k
[m]
cor) = findBestBaselearner(c[m],B)

15: ηm = γνϑ−1
m

16: ĥ[m](x) = ĥ[m−1](x) + ηmbk
[m]
cor

(x, θ̂[m]
cor)

17: end for
18: return f̂ = f̂ [M]

19: end procedure

3.2.1 Retaining CWB Properties

ACWB fits a second base learner b
k

[m]
cor

in order to accelerate the fitting process with

the momentum model h. In addition to the fitting trace for the primary model Θf =

{θ̂[1], . . . , θ̂[M]}, another fitting trace Θh = {θ̂[1]
cor, . . . , θ̂

[M]
cor } is also stored for the mo-

mentum model. Consequently, ACWB contains twice as many base learners as CWB

after m iterations. Despite the more complex fitting routine, the parameters for ACWB

can still be additively updated. Suppressing the iteration m for readability, we assign

(1−ϑm)θ̂f +ϑmθ̂h as the current θ̂g, update θ̂f to θ̂g + β(0 · · · θ̂[m]T · · · 0)T, and update θ̂h

to θ̂h + ηm(0 · · · θ̂[m]T
cor · · · 0)T. The initial parameters θ̂f and θ̂h for m = 0 are set to zero.

An additive aggregation of parameters is important to retain interpretable additive partial

effects and allows for much faster predictions.

10

3.2.2 Computational Complexity of ACWB

As derived in Section 2.4, the complexity of CWB is O(K(d2n+ d3) +MK(d2 + dn)) and

hence scales linearly in the number of rows n and number of base learners K. By fitting a

second base learner in each iteration, the complexity for ACWB during the fitting process is

doubled compared to CWB, while costs for expensive pre-calculation steps do not change.

This results in a complexity of O(K(d2n+ d3) + 2MK(d2 + dn)).

3.2.3 A Hybrid CWB Approach

Algorithm 3 HCWB as a combination of ACWB and CWB. Remp(f |Dval) denotes the
empirical risk calculated on validation data Dval.

Input Data D = Dtrain ∪ Dval, learning rate ν, momentum parameter γ, number
of boosting iterations M , patience parameter pat0, loss function L, set of base
learner B

Output Prediction model f̂ [M] defined by parameters θ̂[1], . . . , θ̂[M] and θ̂[1]
cor, . . . , θ̂

[M]
cor

1: procedure HCWB(D, ν, γ, pat0, L,B)
2: m = 0
3: for m = 1, . . . ,M do
4: if pat0 < pat then
5: f̂ [m] = updateACWB(f̂ [m−1],Dtrain, ν, γ, L,B)
6: if Remp(f̂ [m]|Dval) > Remp(f̂ [m−1]|Dval) then pat += 1 else pat = 0
7: else
8: f̂ [m] = updateCWB(f̂ [m−1],Dtrain, ν, L,B)
9: end if

10: end for
11: return f̂ = f̂ [m]

12: end procedure

It is well known that excessive training boosting can lead to overfitting (see, e.g., Grove and

Schuurmans, 1998; Jiang et al., 2004). This can be controlled by stopping the algorithm

early, which works irrespective of using gradient descent with or without NAG. However,

as shown recently by Wang et al. (2020, Theorem 4), gradient methods with NAG might

diverge for noisy convex problems. Whereas inexact gradients induced by noise terms in-

fluence the convergence rates only by an additional constant when using no acceleration,

NAG potentially diverges with a rate that increases with the number of iterations. To over-

11

Optimal stopping
ACWB

0

3

6

9

12

0 1000 2000 3000
Iterations

V
al

id
at

io
n

lo
ss

CWB

ACWB

HCWB

Figure 1: Exemplary course of the empirical risk for different CWB variations on a test set. The vertical

dashed line indicates the optimal iteration found by ACWB. All methods are trained for 3000 iterations.

come this issue, we propose a hybrid approach by starting the fitting process with ACWB

on data Dtrain ⊂ D until it is stopped early using a validation set Dval (Dval ∩ Dtrain = ∅

and Dval ∪ Dtrain = D). Thereafter, the training is continued to fine-tune the predictions

using the classical CWB on all available data D until M iterations are reached (or, alterna-

tively, using again a train-validation split and early stopping). Algorithm 3 describes this

hybrid approach. The update routines updateCWB and updateACWB describe the fitting

component of the respective algorithms (CWB; Algorithm 1 Appendix A.1 lines 4 – 10,

ACWB; Algorithm 2 lines 4 – 16). The example shown in Figure 1 depicts the behavior of

our proposed adaption. After early stopping ACWB, we can continue to further decrease

the validation error, whereas continuing training with acceleration (ACWB) increases the

validation error. HCWB thus improves the performance of ACWB while requiring less

iterations compared to CWB with a similar validation error. In Section 4.1, we investigate

computational advantages of the hybrid approach in terms of runtime, memory consump-

tion, and estimation properties. Appendix B.3 further demonstrates how the reduction

in space complexity of binning allows users to fit CWB even on very large data sets with

reasonable computing resources (e.g., with millions of observations and a data size of ≈ 3

GB using only 32 GB of RAM). Without binning, the model allocates too much memory

during its initialization and subsequently crashes.

12

4 Experiments

We study the efficacy of the proposed improvements on simulated and real-world data (cf.

Appendix B.5). All CWB variants (CWB, ACWB, and HCWB) are either denoted with

(nb) if no binning is applied, or (b) if binning is used. The hyperparameters (HPs) of our

proposed algorithm are the amount of binning, the momentum rate γ, and the patience

parameter pat0. Further HPs for all CWB variants (including vanilla CWB) are the learning

rate ν, the degrees of freedom df, and the number of boosting iterations M . As simulation

studies and real-world applications have different purposes, we will define separate HP

tuning schemes for both but set the number of bins to n∗ =
√
n, as suggested by Wood

et al. (2017), and the patience parameter to pat0 = 5 for all experiments. HPs defining

the flexibility of base learners such as number of bases or the degree of basis functions for

P-Spline base learners are set to 20 base functions and degree 3, respectively.

In Section 4.1, we first use simulated data to investigate the following hypotheses:

H1 (memory and runtime efficiency of binning): Compared to CWB (nb), binning

reduces memory consumption and runtime.

H2 (partial effects of binning): Compared to CWB (nb), using CWB (b) does not

deteriorate the estimation quality of partial effects.

H3 (iterations and partial effects of accelerated methods): Compared to CWB

(nb), ACWB (nb) and HCWB (nb) require fewer iterations to achieve almost identical

partial effect estimates.

H4 (scaling behaviour of ACWB/HCWB): Empirical runtimes of binning and ACWB

follow the previously derived complexity conditions and thus scale efficiently with an

increasing number of observations and base learners.

In addition to the simulation study, we conduct a comparison of CWB and HCWB on real-

world data sets in Section 4.2. Here, we investigate the following experimental questions:

EQ1 (implementation comparison with the state-of-the-art software mboost):

Compared to mboost, our implementation compboost is less time-consuming.

13

EQ2 (algorithmic comparison of accelerated methods): When compared to vanilla

CWB (nb), the prediction performance of the five proposed CWB variants (CWB

(b), ACWB/HCWB (b)/(nb)) does not deteriorate while yielding faster runtimes.

EQ3 (comparison with state-of-the-art algorithms) The prediction performance of

ACWB (b) and HCWB (b) is competitive with state-of-the-art boosting algorithms

while yielding notably faster runtimes.

All simulations and benchmarks are conducted using R (R Core Team, 2021) version 3.6.3

on three identical servers with 32 2.60 GHz Intel(R) Xeon(R) CPU e5-2650 v2 proces-

sors. Reproducibility is ensured by providing a Docker image with pre-installed software

and benchmark code. References to GitHub containing our software compboost and the

benchmark source code with results are referenced in the Supplementary Material.

4.1 Numerical Experiments on Simulated Data

4.1.1 Simulation Setup

We define the number of informative and noise features as p and pnoise, respectively. Numer-

ical features xj are simulated by drawing the minimum value xj,min from a uniform distri-

bution U [0, 100] and the maximal value xj,max = xj,min +ρk, where ρk also follows a uniform

distribution U [0, 100]. The n feature values xj are simulated i.i.d. from U [xj,min, xj,max].

All feature effects are simulated as non-linear effects using splines. The spline basis Zk for

the simulation is created using feature xj with splines of order 4 and 10 base functions. To

obtain unique splines for each xj, we sample τk ∼ N10(0, 9) and define the jth feature effect

as ηk = Zkτk. Each of the pnoise noise features ẋj are drawn from a standard normal distri-

bution. The final data set is given as D = {(x(i)
1 , . . . , x

(i)
p , ẋ

(1)
1 , . . . , ẋ

(i)
pnoise , y

(i)) | i = 1, . . . , n}

with target vector y ∼ Nn(η, diagn (σ̂2(η)/SNR2)), where SNR is the signal-to-noise ratio,

η =
∑p

j=1 ηk and σ̂(η) the sample variance of η. Different values of SNR can be used to

test CWB on regression tasks of varying hardness.

The experimental design is defined on a grid with n ∈ {5000, 10000, 20000, 50000, 100000},

p ∈ {5, 10, 20, 50}, pnoise,rel ∈ {0.5, 1, 2, 5} with pnoise = p · pnoise,rel, and SNR ∈ {0.1, 1, 10}.

14

The choices of n, p, and pnoise are particularly relevant for memory and runtime investiga-

tions (H1) and (H4). For each combination of experimental settings, we draw 20 different

target vectors for statistical replications of each scenario. When measuring the memory

consumption, we only use one statistical replication of each configuration, as the memory

consumption is almost identical for all repetitions of one configuration. We use valgrind

(Nethercote and Seward, 2007) to measure the allocated memory. For memory and runtime

comparisons and thus also for complexity considerations, the number of boosting iterations

is set to 200. In order to assess the estimation performance of partial effects (H2) and (H3),

we use the mean integrated squared error MISE = 1
p

∑p
j=1
∫ max(xj)

min(xj) (bk(x,θk)− bk(x, θ̂k))2dx

between the estimated base learner bk(x, θ̂k) and the true effect bk(x,θk) given by the

randomly generated spline.

For performance comparisons, we use CWB with early stopping based on a large, noise-

free data set. This ensures correct early stopping and allows us to draw conclusions on

CWB’s estimation performance without additional uncertainty induced by finding the op-

timal stopping iteration. We evaluate different momentum learning rates on a uniform grid

from 10−1 to 10−7. For CWB as well as for ACWB and HCWB, we set the learning rate

to ν = 0.05 as suggested in the literature (Bühlmann et al., 2007) and ensure unbiased

feature selection (see Appendix A.2) by setting the degrees of freedom of each base learner

to df = 5, which provides just enough flexibility for our simulated non-linear functions.

The number of boosting iterations are fixed for H1 and dynamically found for H2 and H3.

4.1.2 Results

H1 (memory and runtime efficiency of binning). Figure 2 illustrates the faster run-

time as well as the savings in memory consumption w.r.t. n and p. With binning, CWB is

four times faster for smaller data sets and up to six times faster for larger data sets. For

smaller data sets, binning improves the memory consumption only slightly. Improvements

do become large enough to be meaningful when the model is trained on larger data sets

and/or more features, consuming only up to a seventh of the original memory usage. Ap-

pendix B.7.1 contains an empirical verification of the computational complexity reported

15

in Section 3.1.3 using the results from H1.

Equal memory
1
2

4

50
00

10
00

0

20
00

0

50
00

0

10
00

00

Number of rows
(log scale)

M
em

or
y

sa
vi

ng
s

Equal runtime
1
2

4

6

50
00

10
00

0

20
00

0

50
00

0

10
00

00

Number of rows
(log scale)

S
pe

ed
up

Number of
features

7

10

15

30

60

100

150

300

Figure 2: Relative memory savings (left) and speedup as relative runtime (right) when binning is applied

compared to no binning (H1). Memory savings and speedup are defined as a ratio of memory or time used

by the original algorithm without binning divided by the memory consumption or runtime when binning is

applied. The dashed horizontal line indicates an equal memory consumption or runtime of both methods.

H2 (partial effects of binning). The left plot of Figure 3 shows one exemplary

comparison of the true effect, the estimated effect using binning, and the estimated effect

without binning. The MISE is visualized by the shaded area between the true and esti-

mated function. As shown on the right in Figure 3, there is no notable difference between

the MISE whether binning is applied or not. In order to also examine the efficacy of binning

in particularly challenging data situations, Appendix B.1 investigates how (highly) skewed

feature distributions and outliers affect the partial effects estimation performance. Exper-

iments show that binning works equally well compared to no binning for skewed feature

distributions, which can be attributed to the equidistant bin values that naturally preserve

the underlying distribution. Results further suggest that binning can break down if outliers

occur. But this effect is only observable in small sample size situations, whereas we mainly

propose this technique for large amount of samples.

H3 (iterations and partial effects of accelerated methods). Figure 4 (left) shows

the difference of MISE values of CWB compared to HCWB and ACWB. As hypothesized,

partial effect estimation of ACWB is inferior to CWB due to its acceleration and potentially

16

Feature 3 Feature 4

Feature 1 Feature 2

60 70 80 90 16 18 20 22 24 26

90 10
0

11
0

10
0

11
0

12
0

13
0

14
0

−2
−1

0
1
2
3

−2
−1

0
1

−2.5

0.0

2.5

5.0

−2
−1

0
1
2

x

P
ar

tia
l e

ffe
ct

Truth No Binning Binning

S
N

R
 = 0.1

S
N

R
 = 1

S
N

R
 = 10

5000
10000

20000
50000

100000

0

100

200

300

0
5

10
15
20

0.0
0.5
1.0
1.5
2.0

Number of rows (log scale)
M

IS
E

Binning No binning

Figure 3: Left: Exemplary estimated partial and true effects for 100000 observations, 4 features, and

a SNR of 0.1. The MISE of the curves are 49.08 for CWB and 49.10 for CWB with binning. Right:

Comparison of the MISE when using binning vs. no binning.

stopping too early or overshooting the optimal solution. This difference is negligible for

small momentum values, but not for higher values. It is worth noting that the SNR in

this cases is rather large, potentially undermining the effect of residual-correcting base

learners of ACWB. Based on the given results, we recommend a default momentum value

of γ = 0.0034 for ACWB, yielding small MISE differences while simultaneously maximizing

the speedup. In contrast, HCWB performs as strongly as CWB or even better for settings

with more noise (smaller SNR). The right pane of Figure 4 shows the relative ratio of

early stopping iterations between CBW and HCWB or ACWB. In almost all cases, the

accelerated versions require fewer iterations than CWB. This is especially striking for higher

momentum values, and hence we suggest a default of γ = 0.037 for HCWB. In settings

with moderate or large SNR, HCWB requires as many iterations as CWB.

H4 (scaling behavior of ACWB/HCWB). Next, we empirically investigate run-

times to scrutinize our derivations in Section 3.1.3 and 3.2.2. To this end, we use the

17

ACWB HCWB

S
N

R
 = 0.1

S
N

R
 = 1

S
N

R
 = 10

1 8 64 51
2

0.
25

0.
50

1.
00

2.
00

4.
00

0
5

10
15

−15
−10

−5
0

−30
−20
−10

0

Speedup

M
IS

E
 d

iff
er

en
ce

Momentum

(9.42e−05,0.000311]

(0.000311,0.00103]

(0.00103,0.0034]

(0.0034,0.0112]

(0.0112,0.0371]

(0.0371,0.1]

Figure 4: Left: MISE difference between CWB and ACWB/HCWB for partial effect estimation for

different momentum values (colors) and SNR (rows). A negative difference indicates that CWB has a

lower MISE and therefore a better estimation. Right: Multiplicative factor of iterations needed to train

CWB compared to ACWB/HCWB, categorized by the momentum parameter (colors) and SNR (facets). A

value of 10 indicates that ACWB/HCWB requires 10 times fewer iterations than CWB until convergence.

available runtimes, fit a model for each complexity statement to the given data, and com-

pare the estimates to the theoretically derived factors in our complexity analyses. The full

results are given in Appendix B.7. In summary, for both binning and ACWB, fitted models

yield an (almost) perfect fit with an R2 of 1 and 0.975, respectively, thus underpinning our

complexity estimates with only smaller deviations from theoretical numbers. In particu-

lar, this confirms the presumed speedup when using binning and the efficiency of ACWB,

scaling linearly in n and K.

4.2 Benchmark on Real-World Data

4.2.1 Setup

Algorithms: We compare our CWB variants with XGBoost (Chen et al., 2018) and

EBM (Nori et al., 2019). XGBoost represents an efficient and well-performing state-of-

the-art implementation of gradient boosting with tree base learners (Friedman and Hastie,

2001). EBM is used to compare against a recent and interpretable boosting method. Like

18

CWB, EBM is based on additive models with additional pairwise interactions, but instead

uses a different fitting technique based on a round robin selection of base learners. Although

the model can be interpreted by looking at partial effects, some other key features of CWB

such as unbiased feature selection cannot be directly transferred to EBM.

Benchmark settings: For performance comparisons in EQ2 and EQ3, we use the

area under the ROC curve (AUC) based on a 5-fold cross validation (CV). Additionally, we

employ nested resampling to ensure unbiased performance estimation (Bischl et al., 2012)

for EQ3. In the inner loop, models are tuned via Hyperband (Li et al., 2017) with the

number of boosting iterations as budget parameter. We start at 39 iterations and double

iterations until 5000 iterations are reached. This results in 314 different HP configurations

for each learner. Each of these HP configuration is evaluated using a 3-fold CV (the inner

CV loop). A table with all learners, corresponding software packages, and HP spaces from

which each HP configuration is sampled is given in Appendix B.4.

Used software: All experiments are executed using R (R Core Team, 2021). The pack-

ages used for the benchmark are mlr3 (Lang et al., 2019) as a machine learning framework

with extensions, including mlr3tuning (Becker et al., 2021) for tuning, mlr3pipelines

(Binder et al., 2021) for building pre-processing pipelines such as imputation or feature

encoding, and mlr3hyperband (Becker et al., 2021). The package interpret, which im-

plements EBM, was used by calling the Python implementation (Nori et al., 2019) using

reticulate (Ushey et al., 2020) to run EBM with its full functionality. The HP space of

XGBoost is defined as the “simple set” suggested in Thomas et al. (2018).

4.2.2 Results

EQ1 (implementation comparison with the state-of-the-art CWB implemen-

tation mboost). A comparison of our vanilla CWB implementation compboost with the

state-of-the-art implementation mboost already reveals a speedup of 2 to 4 using compboost

(by outsourcing various functionalities to C++). When additionally using acceleration meth-

ods and binning, an increase of the speedup up to a factor of 30 for MiniBooNE and Albert

can be achieved. As CWB (nb) in compboost and mboost implement the same algorithm,

19

they are equivalent in their predictive performance. Full details are given in Appendix B.9.

EQ2 (algorithmic comparison of accelerated methods). As shown in Figure 5,

HCWB learns faster than CWB due to the acceleration and higher momentum. Perfor-

mance improvements of ACWB take longer but surpass CWB on four out of the six data

sets. As expected, the AUC of ACWB starts to decrease after the optimal number of

boosting iterations is reached, while HCWB corrects this overly aggressive learning behav-

ior by switching to CWB. The runtime of ACWB is about twice as high as for CWB due

to the second error-correcting base learner fitted in each iteration (Algorithm 2 line 14).

Traces for binning look similar to no binning but do exhibit shorter training times, which

underpins the effectiveness of binning.

Adult
n: 48842, p: 14

MiniBooNE
n: 130064, p: 50

Albert
n: 425240, p: 78

Spam
n: 4601, p: 57

Christine
n: 5418, p: 1636

Namao
n: 34465, p: 112

20 40 60 80 10
0

20
0
30

0
40

0
50

0
10

00

20 40 50 10
0
15

0
20

0 50 10
0
15

0

0.90
0.92
0.94
0.96
0.98

0.60

0.65

0.70

0.65
0.70
0.75
0.80

0.875
0.900
0.925
0.950
0.975

0.86
0.90
0.94
0.98

0.80
0.84
0.88
0.92

Training time (seconds, square root scale)

Te
st

 A
U

C

No binning

Binning

Learner

CWB

ACWB

HCWB

Figure 5: Test AUC traces of all CWB variants over 5000 boosting iterations without early stopping.

Each trace is calculated as an average over the 5 runs in the 5-fold CV.

Figure 6 additionally shows test AUC and runtimes of all CWB variants when using

early stopping based on a validation data set Dval (defined as 30% of D). To check if

performance changes between different models are significant, we use the resulting AUC

values and compute a beta regression with learners as covariates and the AUC as a response

variable (see Appendix B.11). Both ACWB (p-value = 0.4122) and HCWB (p-value =

0.6927) do not yield a significantly smaller AUC value. Furthermore, results show that

20

binning does also not have a significant effect on the performance (p-value = 0.9594). At

the same time, binning improves the runtime by an average speedup of 1.5 for all three CWB

variants (cf. Appendix B.10 Table 4). ACWB and HCWB even yield further improvements

with an average speedup of 3.8 and 2.38, respectively.

Adult
n: 48842, p: 14

MiniBooNE
n: 130064, p: 50

Albert
n: 425240, p: 78

Spam
n: 4601, p: 57

Christine
n: 5418, p: 1636

Namao
n: 34465, p: 112

5 10 15 20 50 10
0

15
0

20
0

25
0

10
0

20
0

5 10 15 0 30 60 90 12
0 30 60 90

0.96

0.97

0.98

0.730
0.731
0.732
0.733

0.76
0.77
0.78
0.79
0.80

0.971
0.972
0.973
0.974
0.975

0.955
0.960
0.965
0.970
0.975
0.980

0.910

0.912

0.914

Training time (seconds)

Te
st

 A
U

C

No binning

Binning

Learner

CWB

ACWB

HCWB

Figure 6: Scatter plot of average AUC values and training times for all CWB variants (color / symbol).

Horizontal and vertical boxes indicate the 25- and 75%-quantile, and colored lines indicate the possible

range of values. Shaded areas additionally highlight the 25- and 75%-quantiles of CWB (nb) to facilitate

easy comparison of other CWB variants with this baseline.

EQ3 (comparison with state-of-the-art algorithms). Figure 7 shows that state-

of-the-art algorithms benefit from their more complex model structure by also considering

complex feature interactions (EBM allows for interactions by design, while XGBoost uses

tree base learners, which induce more complex interactions with larger tree depth). The

improvement in AUC of these methods compared to CWB is only practically relevant for

the data set Christine, which shows an AUC increase of 3.42% for XGBoost. The AUC

improvement for all other tasks is (notably) smaller than 3%, even though our approach uses

a fully interpretable model. In terms of runtime, ACWB (b) and HCWB (b) outperform

XGBoost and EBM on most data sets. On Spam and Christine, XGBoost is faster than

our algorithms, which we attribute to their small sample size. In general, ACWB (b) and

21

HCWB (b) are 4.62 times faster than EBM and 1.66 times faster than XGBoost. The total

runtimes are reported in Appendix B.12 Table 7.

Adult
n: 48842, p: 14

MiniBooNE
n: 130064, p: 50

Albert
n: 425240, p: 78

Spam
n: 4601, p: 57

Christine
n: 5418, p: 1636

Namao
n: 34465, p: 112

2 4 6 8 10 15 20 25 30 50 100 150

1 2 3 0 50 100 150 5 10 15

0.980
0.985
0.990
0.995

0.735
0.740
0.745
0.750
0.755

0.78
0.80
0.82

0.975
0.980
0.985

0.96
0.97
0.98
0.99

0.915
0.920
0.925
0.930

Tuning time (hours)

Te
st

 A
U

C

Learner

ACWB (b)

hCWB (b)

EBM

XGBoost

Figure 7: AUC and training time of ACWB (b), HCWB (b), XGBoost, and EBM.

The given results further demonstrate the speed up of our approach in a real-world

application that includes tuning costs. E.g., for the Albert data set binned HCWB has a

total tuning time of 5.5 days (26.3 hours on average times five outer folds). In contrast,

CWB without binning would result in a total tuning time of 38.4 days (based on the

reported speedup in EQ2). Hence, with our adaptions, we are able to reduce the total

tuning time from over a month, which many users might deem as unacceptable, to under

a week.

5 Conclusion

Adaptions to CWB presented in this paper can notably improve the use of computational

resources, reducing runtimes by up to a factor of 6 and memory usage up to factor of 4.

Incorporating binning with equally spaced design points efficiently leverages CWB’s base

learner structure with one feature per base learner. Benchmark results show that binning

reduces the training time without impairing the predictive performance. The proposed ac-

celerated CWB algorithm (ACWB) is furthermore a natural extension of CWB and provides

a faster training procedure at the expense of a potential deterioration of predictive perfor-

22

mance when not stopped properly. Our alternative hybrid solution (HCWB) accounts for

this and presents no drawbacks in comparison to the standard CWB algorithm. However,

HCWB does incur slightly longer runtimes compared to ACWB. In practice, HCBW yields

good out-of-the-box performance, while ACWB does not require an additional validation

data set and can thus be beneficial in low sample size regimes.

Practical recommendations for hyperparameters. In practice, CWB and the

proposed variants in this work yield good performance out-of-the-box by choosing a learning

rate ν ∈ [0.01, 0.1] (see, e.g., Bühlmann et al., 2007), a moderate number of bases functions

per spline, e.g., 20, and equal degrees of freedom (e.g., df = 8, see Appendix A.2 for more

details) for all splines. Our experiments further show that good momentum defaults are

γ = 0.0034 for ACWB and γ = 0.037 for HCWB. The number of boosting iterations M can

be found by early stopping. This leaves no or only M as tuning parameter and puts CWB

on a similar level of practicability as other fitting routines for GAMs. While our provided

defaults should work well in most cases, users that want to tune HPs are referred to our

experimental section, where we provide meaningful ranges for all parameters, in particular

the momentum, and show how much can be gained from tuning these values.

Future research will investigate how the proposed framework can be used and further

improved for more complex additive models structures in both the predictors as well as in

the outcome, e.g., for functional regression models.

ACKNOWLEDGMENT

This work was supported by the German Federal Ministry of Education and Research (BMBF) under

Grant No. 01IS18036A and Federal Ministry for Research and Technology (BMFT) under Grant FKZ:

01ZZ1804C (DIFUTURE, MII). The authors of this work take full responsibilities for its content.

DISCLOSURE STATEMENT

The authors report there are no competing interests to declare.

SUPPLEMENTARY MATERIAL

23

Appendix: Descriptions of possible categorical feature representations with a short comparison w.r.t.

runtime and memory consumption as well as class selection properties in the presence of noise. The

Appendix further contains empirical validation of the computational complexity estimates as given

in Section 2.4 and 3.1.3. The appendix also contains a figure for the full benchmark.

Source code of compboost: github.com/schalkdaniel/compboost (Commit tag of the snapshot used

in this paper: c68e8fb32aea862750991260d243cdca1d3ebd0e)

Benchmark source code: https://github.com/schalkdaniel/cacb-paper-bmr

Benchmark Docker: Docker image with pre-installed packages to run the benchmark and access results

for manual inspection: hub.docker.com/repository/docker/schalkdaniel/cacb-paper-bmr

References

Becker, M., S. Gruber, J. Richter, J. Moosbauer, and B. Bischl (2021). mlr3hyperband: Hyperband for

’mlr3’. R package version 0.1.2.

Becker, M., M. Lang, J. Richter, B. Bischl, and D. Schalk (2021). mlr3tuning: Tuning for ’mlr3’. R

package version 0.8.0.

Binder, M., F. Pfisterer, L. Schneider, B. Bischl, M. Lang, and S. Dandl (2021). mlr3pipelines: Prepro-

cessing Operators and Pipelines for ’mlr3’. R package version 0.3.4.

Bischl, B., O. Mersmann, H. Trautmann, and C. Weihs (2012). Resampling methods for meta-model

validation with recommendations for evolutionary computation. Evolutionary computation 20 (2), 249–

275.

Brockhaus, S., D. Rügamer, and S. Greven (2020). Boosting functional regression models with fdboost.

Journal of Statistical Software 94 (10), 1–50.

Bühlmann, P., T. Hothorn, et al. (2007). Boosting algorithms: Regularization, prediction and model

fitting. Statistical science 22 (4), 477–505.

Bühlmann, P. and B. Yu (2003). Boosting with the L2 loss: regression and classification. Journal of the

American Statistical Association 98 (462), 324–339.

Chen, T. and C. Guestrin (2016). Xgboost: A scalable tree boosting system. In Proceedings of the 22nd

acm sigkdd international conference on knowledge discovery and data mining, pp. 785–794.

Chen, T., T. He, M. Benesty, V. Khotilovich, and Y. Tang (2018). xgboost: Extreme Gradient Boosting. R

package version 0.6.4.1.

Duff, I. S., R. G. Grimes, and J. G. Lewis (1989). Sparse matrix test problems. ACM Transactions on

Mathematical Software (TOMS) 15 (1), 1–14.

Eilers, P. H. and B. D. Marx (1996). Flexible smoothing with B-splines and penalties. Statistical science,

89–102.

24

Freund, Y., R. E. Schapire, et al. (1996). Experiments with a new boosting algorithm. In icml, Volume 96,

pp. 148–156. Citeseer.

Friedman, J. and T. Hastie (2001). Greedy function approximation: a gradient boosting machine. Annals

of Statistics, 1189–1232.

Grove, A. J. and D. Schuurmans (1998). Boosting in the limit: Maximizing the margin of learned ensembles.

In AAAI/IAAI, pp. 692–699.

Hofner, B., T. Hothorn, T. Kneib, and M. Schmid (2011). A framework for unbiased model selection based

on boosting. Journal of Computational and Graphical Statistics 20 (4), 956–971.

Hofner, B., A. Mayr, and M. Schmid (2016). gamboostLSS: An R package for model building and variable

selection in the GAMLSS framework. Journal of Statistical Software 74 (1).

Hothorn, T., P. Buehlmann, T. Kneib, M. Schmid, and B. Hofner (2020). mboost: Model-based boosting.

R package version 2.9-2.

Jiang, W. et al. (2004). Process consistency for adaboost. The Annals of Statistics 32 (1), 13–29.

Lang, M., M. Binder, J. Richter, P. Schratz, F. Pfisterer, S. Coors, Q. Au, G. Casalicchio, L. Kotthoff, and

B. Bischl (2019). mlr3: A modern object-oriented machine learning framework in R. Journal of Open

Source Software.

Lang, S., N. Umlauf, P. Wechselberger, K. Harttgen, and T. Kneib (2014). Multilevel structured additive

regression. Statistics and Computing 24 (2), 223–238.

Li, L., K. Jamieson, G. DeSalvo, A. Rostamizadeh, and A. Talwalkar (2017). Hyperband: A novel bandit-

based approach to hyperparameter optimization. The Journal of Machine Learning Research 18 (1),

6765–6816.

Li, Z. and S. N. Wood (2020). Faster model matrix crossproducts for large generalized linear models with

discretized covariates. Statistics and Computing 30 (1), 19–25.

Liew, B. X., D. Rugamer, A. Stocker, and A. M. De Nunzio (2020). Classifying neck pain status using scalar

and functional biomechanical variables – Development of a method using functional data boosting. Gait

& posture 76, 146–150.

Lu, H., S. P. Karimireddy, N. Ponomareva, and V. Mirrokni (2020). Accelerating Gradient Boosting

Machines. In International Conference on Artificial Intelligence and Statistics, pp. 516–526.

Molnar, C. (2020). Interpretable Machine Learning. Lulu.com.

Nesterov, Y. (1983). A method for solving the convex programming problem with convergence rate O(1/k2).

Nethercote, N. and J. Seward (2007). Valgrind: a framework for heavyweight dynamic binary instrumen-

tation. ACM Sigplan notices 42 (6), 89–100.

Nori, H., S. Jenkins, P. Koch, and R. Caruana (2019). Interpretml: A unified framework for machine

learning interpretability. arXiv preprint arXiv:1909.09223 .

Qian, N. (1999). On the momentum term in gradient descent learning algorithms. Neural networks 12 (1),

145–151.

25

R Core Team (2021). R: A Language and Environment for Statistical Computing. Vienna, Austria: R

Foundation for Statistical Computing.

Ruder, S. (2016). An overview of gradient descent optimization algorithms. arXiv preprint

arXiv:1609.04747 .

Rügamer, D., S. Brockhaus, K. Gentsch, K. Scherer, and S. Greven (2018). Boosting factor-specific

functional historical models for the detection of synchronization in bioelectrical signals. Journal of the

Royal Statistical Society: Series C (Applied Statistics) 67 (3), 621–642.

Rügamer, D. and S. Greven (2020). Inference for L2-Boosting. Statistics and Computing 30, 279–289.

Saintigny, P., L. Zhang, Y.-H. Fan, A. K. El-Naggar, V. A. Papadimitrakopoulou, L. Feng, J. J. Lee, E. S.

Kim, W. K. Hong, and L. Mao (2011). Gene expression profiling predicts the development of oral cancer.

Cancer Prevention Research 4 (2), 218–229.

Schalk, D., J. Thomas, and B. Bischl (2018). compboost: Modular Framework for Component-wise

Boosting. Journal of Open Source Software 3 (30), 967.

Thomas, J., S. Coors, and B. Bischl (2018). Automatic gradient boosting. In International Workshop on

Automatic Machine Learning at ICML.

Thomas, J., T. Hepp, A. Mayr, and B. Bischl (2017). Probing for sparse and fast variable selection with

model-based boosting. Computational and mathematical methods in medicine 2017.

Ushey, K., J. Allaire, and Y. Tang (2020). reticulate: Interface to ’Python’. R package version 1.18.

Wang, B., T. M. Nguyen, A. L. Bertozzi, R. G. Baraniuk, and S. J. Osher (2020). Scheduled restart

momentum for accelerated stochastic gradient descent. arXiv preprint arXiv:2002.10583 .

Wood, S. N., Z. Li, G. Shaddick, and N. H. Augustin (2017). Generalized additive models for gigadata: mod-

eling the UK black smoke network daily data. Journal of the American Statistical Association 112 (519),

1199–1210.

26

Supplementary Material for Accelerated
Component-wise Gradient Boosting using

Efficient Data Representation and
Momentum-based Optimization

Daniel Schalk, Bernd Bischl and David Rügamer
Department of Statistics, LMU Munich

A Further Theoretical Details

A.1 Vanilla CWB Algorithm

Algorithm 1 Original CWB algorithm given the input and output.
Input Train data D, learning rate ν, number of boosting iterations M , loss function

L, set of base learner B
Output Prediction model f̂ [M] defined by fitted parameters θ̂[1], . . . , θ̂[M]

1: procedure CWB(D, ν, L,B)
2: Initialize: f̂ [0](x) = arg minc∈RRemp(c)
3: for m ∈ {1, . . . ,M} do

4: r[m](i) = − ∂L(y(i),f(x(i)))
∂f(x(i))

∣∣∣∣
f=f̂ [m−1]

, ∀i ∈ {1, . . . , n}

5: for k ∈ {1, . . . , K} do
6: θ̂[m] = arg minθ∈Rdk

∑n
i=1
(
r[m](i) − bk(x(i),θ)

)2

7: SSEk =
∑n

i=1(r[m](i) − bk(x(i), θ̂[m]))2

8: end for
9: k[m] = arg mink∈{1,...,K} SSEk

10: f̂ [m](x) = f̂ [m−1](x) + νbk[m](x, θ̂[m])
11: end for
12: return f̂ = f̂ [M]

13: end procedure

1

A.2 Unbiased Feature Selection
CWB also can incorporate penalties into each base learner. A bigger penalization could lead
to inflexible base learners having a disadvantage in being able to fit the pseudo residuals
compared to other base learners. This leads to a preference of selecting flexible base learner
more often than inflexible ones. Hence, it is desirable to allow for a fair selection between
more and less flexible base learners (Hofner et al., 2011). Let bk be a penalized regression
model base learner with design matrix Zk, penalty matrix Dk ∈ Rdk×dk , an optional
diagonal weight matrix Wk ∈ Rn×n as well as an optional smoothing parameter λ ∈ R.
Additionally, we assume that Wk and Dk are symmetric and can be decomposed into
Wk = (W 1/2

k)TW
1/2
k and Dk = (D1/2

k)TD
1/2
k . The reason for that decomposition becomes

clear when solving the objective to fit penalized base learner to the pseudo residuals:

θ̂[m] = arg min
θ∈Rdk

(∥∥∥r[m] −W 1/2
k Zkθ

∥∥∥2

2
+ λ

∥∥∥D1/2
k θ

∥∥∥2

2

)
. (1)

Here, ‖ · ‖ denotes the Euclidean norm. The fitted pseudo residuals r̂[m]
k ∈ Rn are given by

r̂
[m]
k = Zk(ZT

kWkZk + λDk)−1ZT
kWkr

[m] = Hk(λ)r[m] (2)

where the decompositions D1/2
k and W 1/2

k are aggregated to Dk and Wk.

Common examples forD1/2
k is the identity matrixD1/2

k = In ∈ Rdk×dk used for the ridge re-
gression or the second order difference matrixD1/2

k (i) = (0, . . . , 0, 1,−2, 1, 0, . . . , 0), D1/2
k ∈

Rdk−2×dk , with i − 1 zeros before 1, −2, and 1, used for P-splines. Common exam-
ples for Wk is using observational weights on the diagonal Wk = diag

(
w

(1)
k , . . . , w

(n)
k

)
and W 1/2

k = diag
(√

w
(1)
k , . . . ,

√
w

(n)
k

)
or correcting for heteroscedasticity with Wk =

diag(1/σ2
1, . . . , 1/σ2

n) andW 1/2
k = diag(1/σ1, . . . , 1/σn) correcting for an observational based

variance.

In order to ensure an unbiased selection of base learners of different complexity, the degrees
of freedom of the j-th base learner fit r̂[m]

k are used and set equally for each base learner.
Two common versions of degrees of freedom are defined via the trace of the hat matrix
Hk(λ) (see, e.g., Buja et al., 1989):

df1 = tr(Hk(λ)), (3)
df2 = tr(2Hk(λ)−Hk(λ)Hk(λ)). (4)

The one-to-one relationship allows to define equal flexibility of each base learner in practice
by defining the respective penalization such that all base learners have the same degrees
of freedom. In general, there is no analytic solution for solving (3) or (4) for λ and the
problem must be solved numerically. A naive uniroot search is in many cases too expensive
since λ is part of the inverse matrix (ZT

kWkZk+λDk)−1 in (2) which would then have to be

2

calculated for every λ value anew. To avoid this, the Demmler-Reinsch-Orthogonalization
(DRO; Ruppert, 2002) is used.
Flexibility considerations. Choosing equal degrees of freedom might seem restrictive as
some additive components naturally require more flexibility (e.g., EKG data) than others
(e.g., growth curves). While a better performing model can certainly be found when tun-
ing the degree values of all non-linear model terms, this is not only impractical but also
unnecessary in many cases. Due to the greedy variable selection of CWB, additive terms
that require more degrees of freedom will automatically be selected more often during the
fitting process. On the other hand, the early stopping of boosting will ensure that terms
with less required flexibility will get selected less often. Therefore, by setting a common,
sufficiently large degree of freedom for all splines, the algorithm will automatically select
covariates with a more rough signal more often and thereby allow for enough flexibility,
while covariates with smoother effects will naturally be selected less frequent and thereby
subject to more shrinkage.

A.3 Categorical Features
Categorical features xj consisting of cj classes {1, . . . , cj}. These classes do not necessar-
ily need to be encoded as integer values, but we keep this formalization due to simplicity
and unified notation. For example, a categorical feature for three different prescribed medi-
cations consists of three classes 1 = Medication 1, 2 = Medication 2, and 3 = Medication 3.

The basic idea of efficient categorical feature representations is to make use of the number
of classes cj which is much smaller than the number of observations n. Working on the
number of classes allows us to fit base learner of categorical features faster and with less
memory usage than operating on the instances. We describe two common representation
for CWB, highlight their advantages, and how to interpret the estimated base learner.

A.3.1 Ridge Representation

One possibility to include categorical features into a base learner is to make use of techniques
applied in linear models. The usual way to encode categorical features is to use a dummy-
encoding represented by a binary model matrix Xj ∈ Rn×cj with elements Zj(i, k) =
1{x(i)

j =k}, k ∈ {1, . . . , cj}. To obtain the regression coefficients of a base learner with
categorical feature xj, we use ridge regression (Hoerl and Kennard, 1970) and solve

θ̂[m] = arg min
θ∈Rcj

‖r[m] −Xjθ‖2
2 + λ‖θ‖2

2 (5)

where λ ∈ R+ is a penalty which additionally shrinks the coefficients. Equation (5) can be
solved analytically with solution θ̂[m] = (ZT

j Zj + λIcj)−1ZT
j r

[m] where Icj ∈ Rcj×cj is the
identity matrix. Advantages of this representation are:

Efficient fitting procedure that analytically calculates the inverse of XT
jXj + λIcj

by making use of the diagonal structure. The inverse is calculated as diag((nj,1 +

3

λ)−1, . . . , (nj,cj +λ)−1) where the elements nj,k =
∑n

i=1 1{x(i)
j =k} correspond to the car-

dinality of class k of the j-th feature. Instead of storing the binary matrix Xj which
requires at least 2n integer values for a sparse data format, we store cj double values
representing the diagonal. Additionally, we do not have to calculate the inverse in
each iteration. Furthermore, the matrix multiplication u = Xjr

[m] can be efficiently
calculated by group means uk =

∑n
i=1 1{xi,j=k}r

[m](i), k ∈ {1, . . . , cj}.
Explicit calculation of the degrees of freedom to conduct an unbiased feature selec-

tion between base learners even if the base learners are not from the same type (e.g.
comparison of spline and ridge base learner). The calculation is done by making use of
the diagonal structure. As mentioned in Section A.2 we have to use the DRO which in
turn requires a singular value decomposition (SVD) to calculate the degrees of freedom.
Because of the diagonal structure, it is not necessary to calculate the SVD explicitly.
The degrees of freedom are directly given as function of the number of observations:

df1 =
cj∑
k=1

nj,k
(nj,k + λ) (6)

df2 =
cj∑
k=1

nj,k(nj,k + 2λ)
(nj,k + λ)2 . (7)

Number of base learner to loop over is independent from the number of classes. Using
the ridge representation constructs one base learner per categorical feature. Therefore,
the number of base learners and the complexity of the model does not increase with
increasing numbers of classes cj as it is for the binary representation in the next section.

A.3.2 Sparse binary Representation

Instead of having one base learner per feature, another representation can be applied on
the class level. Therefore, each class k ∈ {1, . . . , cj} of the categorical feature xj is a new
base learner containing a binary vector just for that class. The model matrix Xj then is
of dimension n × 1 and contains ones at the respective entries and otherwise zeros. The
parameter estimate is again calculated using the method of least squares

θ̂
[m]
j,k = (XT

jXj)−1XT
j r

[m] = n−1
j,k

n∑
i=1

1{xi,j=g}r
[m](i). (8)

Following this definition, the coefficient θ̂j,k is a scalar representing the k-th class mean of
feature j. Advantages of this representation are as follows:
Automated class selection within the categorical feature. Compared to updating mech-

anisms where all parameter are updated at once (i.e., as for the ridge representation)
the binary representation selects just one class per iteration. This yields an automatic
class selection induced by the fitting process. Further information about importance
of classes can then be derived from the trace on how the classes are selected. This is
also helpful when one of the classes does not contain information and therefore should
not be selected.

4

A sparser model is obtained due to individual class selections within one categorical
feature.

B Further Experimental Findings and Details

B.1 Robustness of Binning
In order to illustrate the robustness of binning in challenging data setups, we conduct two
simulation studies in the following. Our first study investigates the behavior of binning
when the feature distribution is (highly) skewed, the second study examines the influence
of outliers on binning.

B.1.1 Binning with Skewed Feature Distribution

We first study the application of binning on features with a (highly) skewed distribu-
tion and its influence on the estimation quality of feature effects. We therefore sam-
ple a feature x using a Beta(α, β) distribution and simulate its non-linear effect as ex-
plained in Section 4.1.1. To simulate differently skewed feature distributions, we vary
the Beta distribution’s shape parameters using α ∈ {1, 3, 5, 7, 9} and β ∈ {1, 3, 5, 7, 9}.
For each setting we draw n ∈ {500, 1000, 5000, 10000} observations and repeat the ex-
periment 50 times. Figure 1 exemplary shows the Beta distribution for four different
(α, β) values as well as the empirical skewness measured by the method of moments, i.e.,
n−1∑n

i=1(x(i) − x̄)3/((n− 1)−1∑n
i=1(x(i) − x̄)2)3/2 with average feature value x̄.

0.0

2.5

5.0

7.5

0.0 0.5 1.0
x

B
et

a(
1,

9)
 D

en
si

ty

Skewness: 1.47

0

1

2

3

0.0 0.5 1.0
x

B
et

a(
3,

9)
 D

en
si

ty

Skewness: 0.59

0.0

0.5

1.0

1.5

2.0

2.5

0.0 0.5 1.0
x

B
et

a(
5,

5)
 D

en
si

ty

Skewness: 0

0

1

2

3

0.0 0.5 1.0
x

B
et

a(
9,

3)
 D

en
si

ty

Skewness: −0.59

Figure 1: Densities for different beta distributions.

We train CWB with and without binning and compare the two models’ estimation perfor-
mance using the MISE as in Section 4.1.1. Figure 2 visualizes the relative change in MISE
value when using binning compared to no binning (i.e., subtracting the MISE when using
binning from the MISE when using no binning and dividing by the MISE without binning).
A value of −0.1, e.g., indicates that binning performs 10% worse than no binning. While
larger deviations from zero can be observed, the relative change in MISE fluctuates around
zero with no particular trend in one direction. Based on these results we expect binning
to be robust for skewed feature distributions.

5

n: 500 n: 1000 n: 5000 n: 10000

(−
2,

−
1]

(−
1,

−
0.

5]
(−

0.
5,

−
0.

1]
(−

0.
1,

0.
1]

(0
.1

,0
.5

]
(0

.5
,1

]
(1

,2
]

(−
2,

−
1]

(−
1,

−
0.

5]
(−

0.
5,

−
0.

1]
(−

0.
1,

0.
1]

(0
.1

,0
.5

]
(0

.5
,1

]
(1

,2
]

(−
2,

−
1]

(−
1,

−
0.

5]
(−

0.
5,

−
0.

1]
(−

0.
1,

0.
1]

(0
.1

,0
.5

]
(0

.5
,1

]
(1

,2
]

(−
2,

−
1]

(−
1,

−
0.

5]
(−

0.
5,

−
0.

1]
(−

0.
1,

0.
1]

(0
.1

,0
.5

]
(0

.5
,1

]
(1

,2
]

−0.25

0.00

0.25

Skewness

R
el

at
iv

e
ch

an
ge

 o
f M

IS
E

Figure 2: Relative change of the MISE for different data sizes and skewed distributions.

B.1.2 Binning with Outliers

To investigating the effect of outliers in features, we simulate a feature x and set n ·
q random feature values to extreme values, where q ∈ [0, 1) represents the proportion
of outliers in the data. Outlier values are defined by maxi(x(i)) + msd · σx + ε, where
maxi(x(i)) is the empirical maximum of all simulated feature values without outliers, σx
the empirical standard deviation of values, msd the factor that controls the distance of
outliers to the maximum value, and ε ∼ N (0, σx) a normal distributed additional variation.
We use a Beta(2, 2) distribution (which has a true standard deviation of around 0.22).
We investigate outlier factors msd ∈ {4, 16, 64}, with amounts q ∈ {0.01, 0.05, 0.1}, and
n ∈ {500, 1000, 5000, 10000}. While non-outlier feature values have values between 0 and
1, outliers have a value of ≈ 2 for msd = 4, ≈ 4.5 for msd = 16, and ≈ 14 for msd = 64.
As in the previous simulation study, we compare the estimation performance of CWB with
and without binning by computing the relative change in MISE (visualized in Figure 3) by
repeating every experiment 50 times. We observe that for smaller number of observations
(n = 500) and msd = 64, binning shows notably worse estimation performance compared to
no binning. For increasing n, the estimation performance of CWB with binning improves
as the number of bins also increases and becomes sufficiently large. While our results show
that binning fails for smaller data sets, we want to highlight that binning is primarily used
in big data settings as the runtime and memory improvement are negligible for small data
sets.

B.2 Simulation Study - Categorical Features
We do not compare the two categorical encodings explained in this paper since there is no
state-of-the-art encoding to compare with. Instead, we want to highlight their computa-
tional properties and also how to interpret the estimated base learner with the respective
encoding.

6

n: 500 n: 1000 n: 5000 n: 10000

q: 0.01
q: 0.05

q: 0.1

4 16 64 4 16 64 4 16 64 4 16 64

−2.0
−1.5
−1.0
−0.5

0.0
0.5

−2.0
−1.5
−1.0
−0.5

0.0

−2.0
−1.5
−1.0
−0.5

0.0

Outlier distance as multiplicative of sd

R
el

at
iv

e
ch

an
ge

 o
f M

IS
E

Figure 3: Relative change of MISE values for different data sizes, outlier proportions and
the outlier distance measured in multiples of the features standard deviation.

As shown in Figure 4, the ridge encoding is much faster in terms of runtime and memory.
The effect can be explained by again looking at the structure of the base learners. Using
the binary encoding requires to fit as many base learners as classes in the feature. The
high memory consumption when using binary base learner can be explained by looking at
the metadata the base learner stores. Each binary base learner holds a vector of indexes
to calculate the group mean in each iteration. The reason for that is to not loop over all
n feature values in each iteration for each binary base learner but just over the subset of
feature values corresponding to the specific class. In contrast, the ridge base learner stores
one vector with the number of observations per class and uses the original feature value to
calculate the group means.

The binary encoding surpasses the ridge encoding in terms of filtering non-informative
classes. As we can see in Figure 5, the binary encoding is able to filter non-informative
classes while the ridge representation does not filter them. Note that the points for the ridge
encoding are all placed at (0, 0) due to the simultaneous updating of all class parameter.
In contrast, the binary representation updates just one class parameter per iteration. The
cost for a better TNR comes with the risk of not selecting important features (higher FNR)
for a higher SNR. Hence, the binary encoding has a very conservative selection process,
but if a class is selected it was likely selected due to a signal present in the data.

As shown in Figure 6, the MSE of the estimated parameter and the true ones is small for a
smaller SNR but increases for more complex situations. The MSE of the binary encoding
is slightly better as for the ridge representation but is slightly worse for the high SNR
case. Even though the small MSE of the parameter of non-informative classes, they appear

7

Binary Ridge

C
lasses: 5

C
lasses: 10

C
lasses: 20

50
00

10
00

0

20
00

0

50
00

0

10
00

00
50

00

10
00

0

20
00

0

50
00

0

10
00

00

0

100

200

300

0

100

200

300

0

100

200

300

Number of rows
(log10 Scale)

R
un

tim
e

in
 m

in
ut

es

Number of
features

10

40

75

100

150

300

Binary Ridge

C
lasses: 5

C
lasses: 10

C
lasses: 20

50
00

10
00

0

20
00

0

50
00

0

10
00

00
50

00

10
00

0

20
00

0

50
00

0

10
00

00

0

500

1000

1500

2000

0

500

1000

1500

2000

0

500

1000

1500

2000

Number of rows
(log10 Scale)

U
se

d
m

em
or

y
in

 M
B

Number of
reatures

10

40

75

100

150

300

Figure 4: Runtime in seconds (left). Memory consumption in megabyte (right).

in the model and therefore increase the complexity. This is especially the case for ridge
regression. A strategy to overcome this issue is to set a threshold for which the smaller
parameters are set to zero. As we can see in Figure 6, this cutoff does not affect the MSE
but leads to a better TNR than ridge regression (see Figure 5). The challenge now is
to accordingly set this cutoff value to not cut parameters too aggressively and therefore
ignore informative classes. Figures 5 and 6 contains this strategy for a cutoff of 0.01, 0.5,
and 1. As we can see, the TNR is improves while the FNR gets worse. Looking at Fig-
ure 6 in the context of Figure 5, we can explain the higher MSE for binary base learner for
a SNR of 0.1 due to the higher FNR and therefore a higher MSE on the not selected classes.

To summarize the results, it is much faster and more memory friendly to use the ridge
representation. The drawback of the ridge representation is the risk of wrongly selecting
non-informative classes. Despite the fact that we can cut off classes, the way binary encod-
ing selects classes is more natural. If computational resources are an issue, we suggest to
use the ridge representation while the binary representation gives us a sparser model and
a more precise selection of classes.

B.3 Modelling Big Data with Binning
One of the primary goals of using binning is to scale CWB to big data applications. Al-
though computational resources become cheaper and cheaper, fitting models on larger data
sets is still infeasible with common laptops or smaller servers. We showcase this by fitting
CWB to three large data sets that are publicly available, using a machine with 32 GB of
RAM. The data sets are:

• The HIGGS data set (Baldi et al., 2014) known from physics and available in the UCI
Machine Learning Repository (Dua and Graff, 2017). The size of the data set is 2.4

8

S
N

R
: 0.1

S
N

R
: 1

S
N

R
: 10

0.0 0.2 0.4 0.6 0.8 1.0

0.0
0.2
0.4
0.6
0.8
1.0

0.0
0.2
0.4
0.6
0.8
1.0

0.0
0.2
0.4
0.6
0.8
1.0

FNR

T
N

R
Binary

Ridge

Ridge (cutoff <0.01)

Ridge (cutoff <0.5)

Ridge (cutoff <1)

Figure 5: Fraction of being able to filter non-informative classes (TNR; class was not
selected and true parameter is zero) and wrongly filtering informative classes (FNR; class
was not selected but true parameter is not zero). One point in the figure corresponds to
the median of the 20 replications of one configuration. The optimal point would be in the
left upper corner at (0, 1), meaning that all non-informative classes were filtered and all
informative classes were selecting all classes with a signal. The contour lines are the two
dimensional empirical 0.95 quantiles.

GB. It contains n = 11× 106 observations and 29 numerical features. The goal is to
distinguish between a signal process which produces Higgs bosons and a background
process.

• The NYC Yellow Taxi Trip data set contains taxi rides in New York. The data set is
available on Kaggle1 (Version 2) with rides from January to March 2016. The original
data is publicly at https://www1.nyc.gov/site/tlc/about/tlc-trip-record-data.
page. The goal is to predict the total amount of costs for a taxi ride. The data set
contains n = 24.3 × 106 observations with 22 features from which 22 are numeric.
The data set size is 3.3 GB.

• FEMA’s National Flood Insurance Policy Database contains national flood insurance
policy transactions. For our demonstration, we use properties built between 1990 and
2010. The data set is available on Kaggle2 (Version 2). The original data are available
at https://www.fema.gov/about/reports-and-data/openfema. The goal of this
task is to predict the total insurance premium of a policy. The data set contains
n = 14.5× 106 observations and 50 features from which 29 are numeric. The size of
the data set is 3.4 GB.

For each data set we choose a spline base learner with 20 basis functions for every numerical
feature. As most of the memory is allocated during the initialization of CWB, we train

1https://www.kaggle.com/datasets/elemento/nyc-yellow-taxi-trip-data
2https://www.kaggle.com/datasets/lynma01/femas-national-flood-insurance-policy-database

9

S
N

R
: 0.1

S
N

R
: 1

S
N

R
: 10

M
SE

M
SE o

f

no
ise

 cl
as

se
s

M
SE o

f

inf
or

m
at

ive
 cl

as
se

s

0
10
20
30
40

0
10
20
30
40

0
10
20
30
40

M
S

E
Binary

Ridge

Ridge (cutoff <0.01)

Ridge (cutoff <0.5)

Ridge (cutoff <1)

Figure 6: MSE of the estimated parameter the true ones. The MSE is shown for all
parameter (MSE), parameters corresponding to noise classes, and parameter corresponding
to informative classes (MSE of informative classes)

the model for just 50 iterations using the above data sets. In order to investigate the
differences in memory consumption we train the model twice using the exact same setup,
one time with binning and once without binning. Figure 7 visualizes the traces of allocated
memory during the data import and the model fitting phase. For all data sets, CWB
can be successfully used to fit the model when binning is activated. Without binning, the
initialization process allocates too much memory and the CWB routine crashes.

B.4 Algorithms in Benchmark

Algorithm Software Hyperparameter space

CWB/ACWB/HCWB (nb)
CWB/ACWB/HCWB (b) compboost

df ∈ [2, 10]
df cat ∈ [2, 10]
learning rate ∈ [0.001, 0.5]

XGBoost xgboost (Chen et al., 2018)

eta ∈ [0.001, 0.5]
max depth ∈ {1, . . . , 20}
colsample bytree ∈ [0.5, 1]
colsample bylevel ∈ [0.5, 1]
subsample ∈ [0.3, 1]
lambda ∈ {2λ | λ ∈ [−10, 10]}
alpha ∈ {2α | α ∈ [−10, 10]}

EBM interpret (Nori et al., 2019) learning rate ∈ [0.001, 0.5}

Table 1: Algorithm name, software package, HP space, and number of outer evaluations of all modeling
techniques compared in the benchmark.

10

RAM limit

Memory used by background processes

Initialization
crashes

Start initialization

Start fitting

Initialization crashes

Start initialization

Start fitting

Initialization crashes

Start initialization

Start fitting

Higgs New York Taxi Flood Insurance

0 100 200 300 0 200 400 600 800 0 200 400 600 800

0

10

20

30

Seconds

R
A

M
 (

in
 G

B
)

a aBinning No binning

Figure 7: Memory traces of CWB with and without binning for the three data sets. The
memory limit (32 GB) is depicted as a dashed horizontal line. The fitting process of CWB
crashes once the trace of the allocated memory reaches this limit.

Table 1 gives an overview of all methods used in our benchmarks and their corresponding

hyperparameter spaces.

B.5 Used Real World Data Sets

Data sets: We use 6 data sets from OpenML (Vanschoren et al., 2013; Casalicchio et al.,

2017) for binary classification and provide descriptive statistics in Table 2. The data sets

are pre-processed by imputing missing values in numerical features with the median, in

categorical features with the mode, and then removing constant features from the data3.

B.6 Picture of varying Degrees of Freedom and Number of Bins

To get further insights how the choice of number of bins affects the performance, we conduct

the benchmark with n∗ = n1/4. Additionally, we choose different values for the degrees of
3Note that we keep thing simple here by applying all preprocessing to the complete data sets, which

does not affect the validity of our comparison experiments. In proper applied work, such pre-processing

should be embedded into cross-validation.

11

Data set Data ID # Samples
Features

Numeric Categorical

Spam 44 4601 57 0

Christine 41142 5418 1599 37

Namao 1486 34465 83 29

Adult 1590 48842 6 8

MiniBooNE 41150 130064 50 0

Albert 41147 425240 26 52

Table 2: Key characteristics of the used data sets.

freedom. The results are shown in Figure 8.

B.7 Empirical Assessment of Computational Complexity

B.7.1 Binning

Modeling the time as proxy for the computational complexity as calculated in Section

2.4 for CWB and 3.1.3 for CWB with binning confirmes our complexity estimates with

O(K0.989(d2.014n1.030 +d2.985) +M1.025K1.006(d2.040 +d0.992n0.982)) for CWB and respectively

O(K1.034(d1.989(n∗)0.994 + n0.956 + d3.065) + M1.020K0.992(d2.000 + d1.005(n∗)0.998 + n0.993)) for

CWB with binning. Figure 9 shows the fitted curves. Additionally, a scale parameter

v = 3.989 · 107 for CWB and v = 1.072 · 107 for CWB with binning was estimated to

account for different scales of seconds and number of operations. The R-square of the

fitted curves is 1 for CWB and 0.999 for CWB with binning.

B.7.2 ACWB

Following our derivations in Section 3.2.2, we expect the runtime of ACWB to scale linear

with the number of observations n as well as the number of base learners K. Therefore, we

model the time as proxy for the computational complexity. The fit confirms our complexity

estimates with O(K0.861(d2.165n0.835 +d2.742)+2M0.769K1.002(d1.904 +d1.134n1.087)). Figure 10

shows the fitted curves. Additionally, a scale parameter v = 2.273 · 107 was estimated to

account for different scales of seconds and number of operations. The R-square of the fitted

12

Figure 8: MISE of binning when applied with n∗ = n1/2 and n∗ = n1/4 as well as df ∈

{5, 7, 9}.

curves is 0.9779. As shown, ACWB scales efficiently with O(n) and O(K). Considering

the complexity of HCWB, it is sufficient to know O(HCWB) = aO(CWB)+bO(ACWB) =

O(ACWB). It is worth noting that the empirical and theoretical claims do not show how

fast the algorithms are in practice due to the use of early stopping procedures as well as the

simplification of just considering numerical features with dk = d and using a fixed number

of iterations.

B.8 Hyperband Schedule

Table 3 contains the schedule used for all algorithms to tune the HPs.

B.9 EQ1: Figure of comparing compboost with mboost

Figure 11 visualizes the speedup of CWB/ACWB/HCWB implemented in compboost when

compared with the CWB implementation of mboost. It should be noted that there is no

13

0

1000

2000

3000

10 30 100 300
d (log scale)

Ti
m

e
in

 s
ec

on
ds

CWB
Computational complexity

0

200

400

600

10 30 100 300
d (log scale)

Ti
m

e
in

 s
ec

on
ds

CWB with binning

n 5000 10000 20000 50000 100000

Figure 9: Fitted curves based on computational complexity with time used as proxy and response variable.

The number of rows and base learner are used as input.

0

50

100

150

200

25000 50000 75000 100000
n

R
un

tim
e

(in
 m

in
ut

es
) K

10
20
40
100
150
300

Figure 10: Fitted curves based on computational complexity with fitting time of ACWB

used as proxy and response variable. The number of rows n and base learners K are used

as input.

data available for the Christine data set since it was not possible to train CWB using

mboost for this data set.

B.10 EQ2: Relative Speedup and AUC Improvement

Table 4 shows the speedup of our CWB variants when compared with vanilla CWB.

B.11 EQ2: Summary of GLM and ANOVA on the AUC

Conducting the GLM with the AUC as response contains the task, learner (CWB variant),

and a binary variable if binning was applied. Additionally, interactions between binning

and the learner are included. The model formula is given by

auc ∼ task + binning + optimizer + binning ∗ learner.

Table 5 and 6 contains the R output of the beta regression and the corresponding ANOVA.

14

MiniBooNE
n: 130064, p: 50

Albert
n: 425240, p: 78

Spam
n: 4601, p: 57

Namao
n: 34465, p: 112

Adult
n: 48842, p: 14

2.5
5.0
7.5

10.0
12.5

0

10

20

30

0
10
20
30
40
50

2

4

6

8

0
10
20
30

S
pe

ed
up

No binning Binning Learner CWB ACWB HCWB

Figure 11: Speedup of our CWB variants compared to the state-of-the-art implementation

mboost. Values on the y-axis visualize the speedup calculated as the runtime of mboost

divided by the runtime of our implementations.

B.12 EQ3: Table of the Renchmark Result

15

References
Baldi, P., P. Sadowski, and D. Whiteson (2014). Searching for exotic particles in high-energy physics with

deep learning. Nature communications 5 (1), 1–9.
Buja, A., T. Hastie, and R. Tibshirani (1989). Linear smoothers and additive models. The Annals of

Statistics, 453–510.
Casalicchio, G., J. Bossek, M. Lang, D. Kirchhoff, P. Kerschke, B. Hofner, H. Seibold, J. Vanschoren,

and B. Bischl (2017). OpenML: An R package to connect to the machine learning platform OpenML.
Computational Statistics 32 (3), 1–15.

Chen, T., T. He, M. Benesty, V. Khotilovich, and Y. Tang (2018). xgboost: Extreme Gradient Boosting. R
package version 0.6.4.1.

Dua, D. and C. Graff (2017). UCI machine learning repository.
Hoerl, A. E. and R. W. Kennard (1970). Ridge regression: Biased estimation for nonorthogonal problems.

Technometrics 12 (1), 55–67.
Hofner, B., T. Hothorn, T. Kneib, and M. Schmid (2011). A framework for unbiased model selection based

on boosting. Journal of Computational and Graphical Statistics 20 (4), 956–971.
Nori, H., S. Jenkins, P. Koch, and R. Caruana (2019). Interpretml: A unified framework for machine

learning interpretability. arXiv preprint arXiv:1909.09223 .
Ruppert, D. (2002). Selecting the number of knots for penalized splines. Journal of computational and

graphical statistics 11 (4), 735–757.
Vanschoren, J., J. N. van Rijn, B. Bischl, and L. Torgo (2013). Openml: Networked Science in Machine

Learning. SIGKDD Explorations 15 (2), 49–60.

16

Bracket Stage Budget #HP configurations

7 0 39 128

7 1 78 64

7 2 156 32

7 3 312 16

7 4 625 8

7 5 1250 4

7 6 2500 2

7 7 5000 1

6 0 78 74

6 1 156 37

6 2 312 18

6 3 625 9

6 4 1250 4

6 5 2500 2

6 6 5000 1

5 0 156 43

5 1 312 21

5 2 625 10

5 3 1250 5

5 4 2500 2

5 5 5000 1

4 0 312 26

4 1 625 13

4 2 1250 6

4 3 2500 3

4 4 5000 1

3 0 625 16

3 1 1250 8

3 2 2500 4

3 3 5000 2

2 0 1250 11

2 1 2500 5

2 2 5000 2

1 0 2500 8

1 1 5000 4

0 0 5000 8

Table 3: The schedule used by Hyperband for HP optimization. The total number of tried

HP configuration (314) is given by accumulating the number of HP configurations in each

bracket at stage 0.

17

Learner / Spam Christine Namao Adult MiniBooNE Albert

Binning ∆t dAUC ∆t dAUC ∆t dAUC ∆t dAUC ∆t dAUC ∆t dAUC

CWB (b) 1.014 0.000 2.003 -0.002 1.482 0.000 1.363 0.000 1.866 0.000 1.375 0.000

ACWB (nb) 3.147 -0.013 9.072 0.003 3.505 -0.016 1.173 0.001 2.893 0.003 2.963 0.002

ACWB (b) 3.277 -0.012 15.476 -0.001 6.554 -0.012 1.500 0.001 6.435 0.003 3.950 0.001

HCWB (nb) 1.451 -0.005 2.008 -0.009 0.940 -0.003 2.582 0.001 3.936 0.002 3.388 0.001

HCWB (b) 1.989 -0.006 1.502 0.001 1.422 -0.004 3.856 0.001 6.627 0.002 7.547 0.000

Table 4: Relative speedup (∆t) and AUC improvement (dAUC) of the 5 CWB variants

compared to CWB (nb). The AUC improvement is calculated as AUClearner−AUCCWB (nb).

Estimate Std. Error z value Pr(> |z|)

(Intercept) 3.5672 0.0310 115.1075 0.0000

task168908 -2.1910 0.0297 -73.7020 0.0000

task7592 -1.1963 0.0319 -37.5123 0.0000

task168335 0.0456 0.0393 1.1593 0.2463

task189866 -2.5422 0.0294 -86.5780 0.0000

task9977 0.3423 0.0425 8.0538 0.0000

binningBinning -0.0011 0.0220 -0.0510 0.9594

learnerACWB -0.0180 0.0220 -0.8200 0.4122

learnerhCWB -0.0087 0.0220 -0.3952 0.6927

binningBinning:learnerACWB -0.0035 0.0311 -0.1115 0.9112

binningBinning:learnerhCWB 0.0025 0.0311 0.0796 0.9366

Table 5: Summary results of the GAM.

df Chi.sq p-value

task 5 20785.3355 0.0000

binning 1 0.0026 0.9594

learner 2 0.6727 0.7144

binning:learner 2 0.0370 0.9817

Table 6: Results of the ANOVA applied on the GLM.

18

Algorithm
Data set

Spam Christine Namao Adult MiniBooNE Albert

AUC

ACWB (b) 0.969 ± 0.009 0.794 ± 0.019 0.98 ± 0.001 0.915 ± 0.002 0.974 ± 0.001 0.735 ± 0.001

hCWB (b) 0.969 ± 0.009 0.797 ± 0.016 0.978 ± 0.001 0.916 ± 0.002 0.975 ± 0.001 0.735 ± 0.001

EBM 0.986 ± 0.005 0.814 ± 0.012 0.994 ± 0.000 0.928 ± 0.001 0.978 ± 0.000 0.747 ± 0.000

XGBoost 0.99 ± 0.002 0.823 ± 0.016 0.996 ± 0.000 0.929 ± 0.001 0.987 ± 0.000 0.756 ± 0.001

Runtime

(in hours)

ACWB (b) 2.823 ± 0.008 17.741 ± 0.274 3.884 ± 0.009 1.665 ± 0.022 7.419 ± 0.027 24.74 ± 0.193

hCWB (b) 2.832 ± 0.009 27.361 ± 0.266 3.978 ± 0.026 1.511 ± 0.021 7.476 ± 0.047 26.249 ± 0.228

EBM 3.711 ± 0.103 164.228 ± 0.441 15.668 ± 0.000 8.172 ± 0.426 28.183 ± 0.751 148.927 ± 0.000

XGBoost 0.911 ± 0.010 6.053 ± 0.582 3.829 ± 0.117 3.975 ± 0.224 15.401 ± 0.3 96.727 ± 5.029

Table 7: Average and standard deviation of AUC values as well as runtimes (in hours) for the 5 outer

folds of our experiments.

19

CHAPTER 8
Automatic Componentwise Boosting:An Interpretable

AutoML System

Contributing article

Coors, S., Schalk, D., Bischl, B., and Rügamer, D. (2021). Automatic componentwise boosting: An
interpretable automl system. ECML-PKDDWorkshop on Automating Data Science

Declaration of contributions

Daniel Schalk was significantly involved in the method development and implementation. For this, he
designed the basic concept with Stefan Coors and developed large parts of the prototype. Furthermore,
he refined the software and implemented visualization techniques to interpret the model. He wrote
the theoretical basis for CWB and the text passages explaining the methodology in the manuscript. In
addition, he helped revise all sections.

Contribution of the coauthors

Stefan Coors and Daniel Schalk were substantially involved in implementing the method. Addition-
ally, Stefan Coors was responsible for conducting the benchmark to compare Autocompboost with
established AutoML systems. In addition, Stefan Coors andDavid Rügamer assisted in fine-tuning the
methodology. All co-authors were equally involved in the preparation of the manuscript.

Automatic Componentwise Boosting:
An Interpretable AutoML System

Coors Stefan1[0000−0002−7465−2146], Schalk Daniel1[0000−0003−0950−1947], Bischl
Bernd1[0000−0001−6002−6980], and Rügamer David1[0000−0002−8772−9202]

Department of Statistics, LMU Munich, Germany
{firstname.lastname}@stat.uni-muenchen.de

Abstract. In practice, machine learning (ML) workflows require vari-
ous different steps, from data preprocessing, missing value imputation,
model selection, to model tuning as well as model evaluation. Many of
these steps rely on human ML experts. AutoML – the field of automating
these ML pipelines – tries to help practitioners to apply ML off-the-shelf
without any expert knowledge. Most modern AutoML systems like auto-
sklearn, H20-AutoML or TPOT aim for high predictive performance,
thereby generating ensembles that consist almost exclusively of black-
box models. This, in turn, makes the interpretation for the layperson
more intricate and adds another layer of opacity for users. We propose
an AutoML system that constructs an interpretable additive model that
can be fitted using a highly scalable componentwise boosting algorithm.
Our system provides tools for easy model interpretation such as visualiz-
ing partial effects and pairwise interactions, allows for a straightforward
calculation of feature importance, and gives insights into the required
model complexity to fit the given task. We introduce the general frame-
work and outline its implementation autocompboost. To demonstrate the
frameworks efficacy, we compare autocompboost to other existing sys-
tems based on the OpenML AutoML-Benchmark. Despite its restriction
to an interpretable model space, our system is competitive in terms of
predictive performance on most data sets while being more user-friendly
and transparent.

Keywords: Interpretable ML · Boosting · AutoML · Splines · Ad-
ditive Models · Deep Trees · Variable Selection.

1 Introduction and Related Work
Machine learning (ML) models achieve state-of-the-art performances in many
different fields of application. Their increasing complexity allows them to be
adapted well to non-trivial data generating processes. However, applying ML
in practice is usually accompanied with many more hurdles that require both
time and expert knowledge. Challenges in the application of ML are, amongst
others, proper data preprocessing, missing value imputation, and hyperparam-
eter optimization (HPO). This so-called ML pipeline is usually non-trivial and
requires a “human in the loop”. AutoML systems (Gijsbers et al., 2019) such

2 S. Coors et al.

as Auto-WEKA (Kotthoff et al., 2019), Auto-sklearn (Feurer et al., 2019), or
autoxgboost (Thomas et al., 2018) attempt to automate ML pipelines based on
well-defined routines. Human expert knowledge is encoded into an automated
process to reduce input from the end user. Automation can also be more time-
efficient and superior in predictive performance. To this end, many AutoML
systems do not limit themselves to one type of ML model but instead try to
solve, e.g., a Combined Algorithm Selection and Hyperparameter Optimization
problem (CASH; Kotthoff et al., 2019). Results of AutoML systems are thus
usually large ensembles of different models. Recent frameworks like AutoGluon-
Tabular (Erickson et al., 2020) and Auto-PyTorch Tabular (Zimmer et al., 2021)
even incorporate deep neural networks in their systems to further increase the
model complexity.

Allowing AutoML systems to build complex ensembles of models increases
the likelihood of the automated system to work well on most given data sets
without further user input. The complexity of these ensembles, however, makes
it harder for practitioners to understand the model’s decision process – an aspect
of applied ML that is often at least as important as the predictive performance
itself. This results in AutoML systems often not being adopted in practice (Droz-
dal et al., 2020) and leads researchers in the field of AutoML to raise the ques-
tion of a trade-off between predictive performance and interpretability (Pfisterer
et al., 2019; Freitas, 2019; Xanthopoulos et al., 2020). In this work, we hypoth-
esize that this model complexity is in many cases unnecessary; an interpretable
AutoML system performs equally well on most tasks, yet without the need to use
additional interpretation tools or the uncertainty about the model’s decisions.

1.1 Our Contribution

We propose a scalable and flexible solution to both automate the ML pipeline
targeted by most of the existing AutoML systems and to provide an inher-
ently interpretable model that 1) does not require post-model fitting explanation
methods, 2) automatically yields all the characteristics to understand the final
chosen model, while 3) yielding (close to) state-of-the-art performance on most
practical use cases. Our methodological contribution based on a novel stage- and
componentwise boosting algorithm is accompanied by an application as well as
benchmark experiments to underline the idea and efficacy of our approach. We
have implemented our AutoML system in the R (R Core Team, 2021) package
autocompboost available on GitHub1.

2 Automatic Componentwise Boosting
In the following, we explain our framework in two steps. First, Section 2.1 de-
scribes the details of our proposed algorithm to fit models based on the pre-
processed data. The second part (Section 2.2) is concerned with the automation
of applying the algorithm to a given task.

1 github.com/Coorsaa/autocompboost

Automatic Componentwise Boosting: An Interpretable AutoML System 3

2.1 Fitting Engine
Instead of using an ensemble of different models, we propose using componen-
twise boosting (CWB; Bühlmann and Yu, 2003) as a fitting engine. CWB uses
additive models as base learners iteratively fitted to pseudo residuals in each
boosting iteration with a learning rate ν ∈ R+. Due to the additivity of these
updates and the structure of the base learners (linear models, splines, tensor-
products splines), an interpretable model is obtained. Due to its componentwise
nature, CWB also comes with an inherent feature selection mechanism, sim-
ilar to the Lasso (Meinshausen et al., 2007). CWB can therefore be used for
high-dimensional feature spaces (n � p situations) and, when penalized prop-
erly, without a biased base learner selection towards more flexible terms (Hofner
et al., 2011). Further advantages and extensions are given in Appendix A.

Instead of using the vanilla CWB algorithm, we propose a novel stagewise
procedure that has all the advantages of CWB but allows practitioners to better
control overfitting and provides further insights into the modeled relationships.
Stagewise model fitting We define the final model f to be a combination of
three parts: i) univariate (linear + non-linear), ii) pairwise interactions, and
iii) deep interactions, resulting in f(x) = funi(x) + fpint(x) + fdeep(x), fitted
in three consecutive stages. The number of boosting iterations of each stage
is dynamically selected by early stopping. Hence, if no risk improvement on a
validation set is observed κ consecutive times (our default: κ = 2), the fitting
proceeds to the next stage.

In the first stage, we use CWB on all available features x ∈ Rp to explain
as much information as possible through univariate (partial) effects fj defined
on each single feature xj and aggregated in funi(x) =

∑p
j=1 fj(xj). If xj is a

numerical feature, fj is decomposed into a linear and a non-linear part, and
CWB can choose to select either one or both. The linear part bj,lin consists
of an intercept and a linear feature effect. The non-linear part bj,nlin describes
the deviation from this linearity using a penalized B-spline effect (Eilers and
Marx, 1996b) centered around the linear effect. Centering the non-linear effect
allows equal degrees-of-freedom to be defined for both base learners bj,lin and
bj,nlin, ensuring a fair selection between these two parts and an unbiased analysis
of variance. Categorical features are included as linear effects using a dummy-
encoding.

The second stage builds the model part fpint containing pairwise interactions
fij to model the interaction between features xi and xj , i 6= j in x. We initialize
the model using the predictions f̂uni(x) from the first stage as an offset and start
with the corresponding pseudo residuals. These interactions are included using
bivariate interactions of categorical variables, varying coefficient models (Hastie
and Tibshirani, 1993) for mixed categorical-numerical interactions, and penal-
ized tensor-product splines (Wood, 2017) for bivariate numerical interactions.
For larger p, considering all possible pairwise interactions is infeasible. We use a
filtering technique to include the ψ · 100% most frequently selected interactions
I for ψ ∈ (0, 1] in a random forest (RF) selection step (Breiman, 2001). The
RF uses 500 trees and tree depth of two to allow the selection of only pair-

4 S. Coors et al.

wise interactions. We then use CWB again to fit fpint =
∑

(i,j)∈I fij(xi, xj) and
refine the set of possible interactions due to its selective nature. As for the uni-
variate model, the degrees-of-freedom are set equal for each fij to ensure a fair
interaction selection. We note that the result of this stage is still interpretable,
and bivariate interactions can, e.g., be visualized in a surface plot as shown in
Section 4.

A final third stage is used to explain the remaining variance left after the
second stage. In contrast to the previous two stages, we use here a black-box
model fdeep(x) =

∑Mdeep
m=1 Tm(x) including Mdeep deep trees Tm as base learners.

As for the second stage, the third stage starts with the pseudo residuals obtained
after the second stage. This stage is able to represent deeper interactions and
non-smooth feature effects. We can understand this stage as a measure of com-
plexity needed to fit the given data and also as a measure of uncertainty about
stages one and two. The smaller the fraction needed for stage three in the final
model, the higher our confidence is with respect to the model’s interpretation.
2.2 The Bigger Picture
Our framework consists of three blocks composed into an AutoML pipeline.
These blocks are data preprocessing, data modelling, and HPO (illustrated in
Fig. 1 as blue frames). The first preprocessing block is automatically determined
by the underlying task. This includes the removal of constant features, feature
encoding, and collapsing levels of high cardinal factors. It also implements an
automatic imputation of missing values (see Appendix D for details). The second
block contains the model fitting (Section 2.1), while the third block is formed
by HPO. We use Hyperband (Li et al., 2018) here, but the framework allows
using any other tuning algorithm. Common applications of Hyperband are using
the number of iterations as a multifidelity budget parameter. In our three-stage
approach, we determine the number of boosting iterations in each stage using
early stopping. Hence, instead of the boosting iterations, a subsampling rate is
used as budget parameter. More specifically, multiple candidate models are fitted
on a fraction of the complete data set based on the current subsampling rate and
only the most promising candidates are used further for larger fractions. Due to

Fig. 1: autocompboost’s standard ML pipeline.

Automatic Componentwise Boosting: An Interpretable AutoML System 5

the choice of the fitting algorithm, another advantage is the rather small HPO
search space, consisting only of HPs ν ∈ [0.001, 0.5] and ψ ∈ [0.01, 0.2].

2.3 Implementation

The proposed framework is implemented in the R package autocompboost based
on compboost (Schalk et al., 2018) and the mlr3 ecosystem (Lang et al., 2019).
Model fitting is executed in C++, naturally allowing for fast and parallel comput-
ing. The task-specific ML pipeline is defined via mlr3pipelines (Binder et al.,
2021), while HPO is based on Hyperband (Li et al., 2018) using mlr3hyperband.

3 Benchmark
To demonstrate that the proposed framework can keep up with performances
of state-of-the-art AutoML frameworks, we run our system on the OpenML
AutoML Benchmark (Gijsbers et al., 2019). The benchmark is open-source –
allowing for easy and fair comparisons – and includes 39 data sets. For the com-
parison, each AutoML system is trained for 1 hour on each outer resampling fold
(10 fold cross-validation). More details can be found in Appendix E. Note that
the dataset portfolio only contains classification tasks, while our framework can
also be used without any restrictions for other types of tasks such as regression
with different loss functions and modelling count, functional, or survival data. On
a selection of 29 datasets, we run four different autocompboost configurations –
with and without deep interactions, both with and without HPO. Additionally
to the AutoML systems, Gijsbers et al. (2019) provide results for a (tuned and
non-tuned) random forest and a constant predictor. We added a glmnet model,
tuned for 1 hour via random search to the comparison. The results are shown
in Figure 2 below and in detail in Table 2 in Appendix E. Results indicate that
autocompboost is in most tasks very competitive to other existing systems.

Fig. 2: Benchmark results across all datasets for different AutoML systems (Auto-
WEKA, TPOT, H2O-AutoML, auto-sklearn), RF (tuned and with default val-
ues) as an ML model with good out-of-the-box performance, a GLM with elastic
net regularization as a comparable interpretable model, as well as four vari-
ants of our framework (ACWB). Left: boxplots of AUC performances for binary
classification tasks. Right: log-loss results for multiclass classification tasks.

6 S. Coors et al.

4 Interpreting the framework
autocompboost automatically provides three important ways to interpret the fi-
nal model: 1) the required complexity based on the decomposition of the model’s
three stages; 2) feature or variable importance (VIP); 3) the estimated partial
effects fj and fij of the first and second stage. For the sake of illustration, we
use the Adult data set described in detail in Appendix G.
Required model complexity During training, the train and validation risk is logged
for each stage. This allows inference about the required model complexity by
calculating the percentage of explained risk per stage. The explained risk of the
univariate stage can be further decomposed into risk reduction by linear and
non-linear effects. In particular, the fraction of explained risk within stages one
and two divided by the total explained risk describes the degree to which the
interpretable model contributes to the final predictions.

Fig. 3: Explained risk per stage and iteration mapped to the percentage of ex-
plained risk per stage as an indicator for the required complexity. Here, 53.6 %
of the risk is explained by the funi, 28.6 % by fpint, and 17.9 % using deep trees.

Variable importance Similar to the overall risk reduction, the VIP is the risk
reduced per feature, for which we make use of the base learner structure (details
are given in Appendix C). The VIP allows the user to investigate which feature
in the model is able to reduce the risk and to what extent.
Explaining the model’s decision-making Our routine provides two ways to ex-
plain the model’s decision-making. The first visualizes the partial effects and
pairwise interactions (Figure 4). The second shows how each feature contributes
to the prediction score for a new observation (Figure 5 in Appendix G).

Fig. 4: VIP (left) of stages one and two and Partial effects (right) of two numerical
features with their decomposition into linear and non-linear effect (right, top), a
categorical feature (right, bottom left), and an interaction (right, bottom right).

Automatic Componentwise Boosting: An Interpretable AutoML System 7

Acknowledgements
This work has been partially supported by the German Federal Ministry of Ed-
ucation and Research (BMBF) under Grant No. 01IS18036A and by the Federal
Ministry for Research and Technology (BMFT) grant FKZ: 01ZZ1804C (DIFU-
TURE, MII). The authors of this work take full responsibilities for its content.

References
Binder, M., F. Pfisterer, M. Lang, L. Schneider, L. Kotthoff, and B. Bischl (2021).

mlr3pipelines - flexible machine learning pipelines in r. Journal of Machine
Learning Research 22 (184), 1–7.

Breiman, L. (2001). Random forests. Machine learning 45 (1), 5–32.
Brockhaus, S., D. Rügamer, and S. Greven (2020). Boosting functional regression

models with fdboost. Journal of Statistical Software 94 (10), 1–50.
Bühlmann, P. and B. Yu (2003). Boosting with the L2 loss: regression and

classification. Journal of the American Statistical Association 98 (462), 324–
339.

Drozdal, J., J. D. Weisz, D. Wang, G. Dass, B. Yao, C. Zhao, M. J. Muller, L. Ju,
and H. Su (2020). Trust in automl: Exploring information needs for establish-
ing trust in automated machine learning systems. CoRR abs/2001.06509.

Eilers, P. H. and B. D. Marx (1996a). Flexible smoothing with B-splines and
penalties. Statistical science, 89–102.

Eilers, P. H. C. and B. D. Marx (1996b). Flexible smoothing with B-splines and
penalties. Statistical Science 11 (2), 89 – 121.

Erickson, N., J. Mueller, A. Shirkov, H. Zhang, P. Larroy, M. Li, and A. Smola
(2020). Autogluon-tabular: Robust and accurate automl for structured data.

Feurer, M., A. Klein, K. Eggensperger, J. T. Springenberg, M. Blum, and F. Hut-
ter (2019). Auto-sklearn: efficient and robust automated machine learning. In
Automated Machine Learning, pp. 113–134. Springer, Cham.

Freitas, A. A. (2019, August). Automated machine learning for studying the
trade-off between predictive accuracy and interpretability. In Third IFIP In-
ternational Cross-Domain Conference for Machine Learning and Knowledge
Extraction (CD-MAKE 2019), Volume 11713, pp. 48–66. Springer.

Freund, Y., R. E. Schapire, et al. (1996). Experiments with a new boosting
algorithm. In icml, Volume 96, pp. 148–156. Citeseer.

Gijsbers, P., E. LeDell, S. Poirier, J. Thomas, B. Bischl, and J. Vanschoren
(2019). An open source automl benchmark. arXiv preprint arXiv:1907.00909
[cs.LG]. Accepted at AutoML Workshop at ICML 2019.

Hastie, T. and R. Tibshirani (1993). Varying-coefficient models. Journal of the
Royal Statistical Society: Series B (Methodological) 55 (4), 757–779.

Hofner, B., T. Hothorn, T. Kneib, and M. Schmid (2011). A framework for
unbiased model selection based on boosting. Journal of Computational and
Graphical Statistics 20 (4), 956–971.

Hofner, B., A. Mayr, and M. Schmid (2016). gamboostLSS: An R package for
model building and variable selection in the GAMLSS framework. Journal of
Statistical Software 74 (1).

8 S. Coors et al.

Jamieson, K. and A. Talwalkar (2016). Non-stochastic best arm identification
and hyperparameter optimization. In Proceedings of the 19th International
Con-ference on Artificial Intelligence and Statistics (AISTATS), pp. 240–248.

Kotthoff, L., C. Thornton, H. H. Hoos, F. Hutter, and K. Leyton-Brown (2019).
Auto-weka: Automatic model selection and hyperparameter optimization in
weka. In Automated Machine Learning, pp. 81–95. Springer, Cham.

Lang, M., M. Binder, J. Richter, P. Schratz, F. Pfisterer, S. Coors, Q. Au,
G. Casalicchio, L. Kotthoff, and B. Bischl (2019, dec). mlr3: A modern object-
oriented machine learning framework in R. Journal of Open Source Software.

Lang, M., B. Bischl, and D. Surmann (2017, feb). batchtools: Tools for r to work
on batch systems. The Journal of Open Source Software 2 (10).

Li, L., K. Jamieson, G. DeSalvo, A. Rostamizadeh, and A. Talwalkar (2018).
Hyperband: A novel bandit-based approach to hyperparameter optimization.
Journal of Machine Learning Research 18 (185), 1–52.

Liew, B. X., D. Rugamer, A. Stocker, and A. M. De Nunzio (2020). Classi-
fying neck pain status using scalar and functional biomechanical variables –
Development of a method using functional data boosting. Gait & posture 76,
146–150.

Meinshausen, N., G. Rocha, and B. Yu (2007). Discussion: A tale of three
cousins: Lasso, L2Boosting and Dantzig. The Annals of Statistics 35 (6), 2373
– 2384.

Pfisterer, F., J. Thomas, and B. Bischl (2019). Towards human centered automl.
R Core Team (2021). R: A Language and Environment for Statistical Computing.

Vienna, Austria: R Foundation for Statistical Computing.
Rügamer, D., S. Brockhaus, K. Gentsch, K. Scherer, and S. Greven (2018).

Boosting factor-specific functional historical models for the detection of syn-
chronization in bioelectrical signals. Journal of the Royal Statistical Society:
Series C (Applied Statistics) 67 (3), 621–642.

Rügamer, D. and S. Greven (2020). Inference for L2-Boosting. Statistics and
Computing 30, 279–289.

Rügamer, D., C. Kolb, and N. Klein (2021). Semi-structured deep distributional
regression: Combining structured additive models and deep learning.

Saintigny, P., L. Zhang, Y.-H. Fan, A. K. El-Naggar, V. A. Papadimitrakopoulou,
L. Feng, J. J. Lee, E. S. Kim, W. K. Hong, and L. Mao (2011). Gene expres-
sion profiling predicts the development of oral cancer. Cancer Prevention
Research 4 (2), 218–229.

Schalk, D., J. Thomas, and B. Bischl (2018). compboost: Modular Framework
for Component-wise Boosting. Journal of Open Source Software 3 (30), 967.

Thomas, J., S. Coors, and B. Bischl (2018). Automatic gradient boosting. In
International Workshop on Automatic Machine Learning at ICML.

Thomas, J., T. Hepp, A. Mayr, and B. Bischl (2017). Probing for sparse and
fast variable selection with model-based boosting. Computational and math-
ematical methods in medicine 2017.

Wood, S. N. (2017). Generalized additive models: an introduction with r. Chap-
ter 5.6, pp. 227–237. CRC press.

Automatic Componentwise Boosting: An Interpretable AutoML System 9

Xanthopoulos, I., I. Tsamardinos, V. Christophides, E. Simon, and A. Salinger
(2020). Putting the human back in the automl loop. In Proceedings of the
Workshops of the EDBT/ICDT 2020 Joint Conference, Copenhagen, Den-
mark, March 30, 2020, Volume 2578 of CEUR Workshop Proceedings. CEUR-
WS.org.

Zimmer, L., M. Lindauer, and F. Hutter (2021). Auto-pytorch tabular: Multi-
fidelity metalearning for efficient and robust autodl.

10 S. Coors et al.

A Componentwise boosting
CWB (Bühlmann and Yu, 2003) uses gradient boosting (Freund et al., 1996) by
sequentially adding one base learner bk out of a set of base learners B = {bk | k =
1, . . . ,K} to the model. The objective of boosting is to minimize the empirical
risk

Rf (D) =
∑

(x,y)∈D

L(y, f(x))

w.r.t. a prediction model f with loss function L and data

D =
((
x(1), y(1)

)
, . . . ,

(
x(n), y(n)

))
containing the target vector (y(1), . . . , y(n))T ∈ Rn and features

xj = (x(1)
j , . . . , x

(n)
j)T ∈ Rn.

The collection of features is denoted as observations x(i) = (x(i)
1 , . . . , x

(i)
p)T ∈ Rp.

The prediction model f̂ [m] after m boosting iterations is defined using an
additive structure

f̂ [m](x) = f̂ [m−1](x) + νbk[m](x|θ̂[m]),

, where the best-performing base learner bk[m](x|θ̂[m]) out of all base learners
in B is added in each iteration m. To obtain an interpretable model, bk(x|θk)
is parametrized by a structured additive model with parameter θk ∈ Rdk and
estimate θ̂[m]

k in iteration m. The offset of the model f [0] = arg minc∈RRc(D) is
found by choosing the constant c that minimizes the risk. To find the best base
learner k[m] ∈ {1, . . . ,K} in iteration m, each base learner bk is fitted to the
so-called pseudo residuals r[m] with

r[m](i) = −
∂L
(
y(i), f

(
x(i)))

∂f(x(i))

∣∣∣
f=f̂ [m−1]

,

i = 1, . . . , n. Therefore, the sum of squared errors

SSE[m]
k (θk) =

n∑
i

(bk(x(i)|θk)− r[m](i))2

is minimized to find the best parameter estimates θ̂[m]
k = arg minθk

SSE[m]
k (θk)

for all bk ∈ B. The index k[m] = arg mink∈{1,...,K} SSE[m]
k (θ̂[m]

k) of the best model
is then chosen by the smallest SSE. The parameter of the corresponding base
learner of this iteration is defined as θ̂[m] = θ̂

[m]
k[m] .

A base learner bk selects the feature(s) of the input vector x = (x1, . . . , xp)T ∈
Rp required for modelling, e.g., the univariate linear regression model or splines.

Automatic Componentwise Boosting: An Interpretable AutoML System 11

This can be one feature xi, but also two features xi and xj for tensor splines2.
This allows estimating the partial feature effects as linear combination of feature
(or its basis representation) and the effect θ̂k.

The iterative boosting process is performed until a predefined number of
boosting iterations is reached. Another option is to use stopping mechanisms,
such as early stopping, or using a time budget for a dynamic stopping of the
fitting process. We denote the number of boosting iterations used to fit the model
with M ∈ N.
Parameter aggregation After fitting CWB, the whole model is defined by the
sequence of selected base learners with estimated parameters {θ̂[1], . . . , θ̂[M]}.
We restrict the base learner to be linear in these parameters bj(x|θj) = xTθj .
Therefore, two base learners bj∗(x|θ̂[m]) and bj∗(x|θ̂[m′]) of the same type j∗
with parameter vectors θ̂[m] and θ̂[m′] can be aggregated to bj∗(x|θ̂[m] + θ̂[m′]).
This is further used to obtain parameter estimates for all base learners by cal-
culating θ̂j = ν

∑M
m=1

∑K
k=1 1{j=k[m]}θ̂

[m] and is key for an inherent partial
effects estimation and interpretation. The partial effect of the j-th feature fj(x)
is defined as aggregated base learner bj(x|θ̂j).
Extensions and applications CWB allows optimization of arbitrary differentiable
loss functions and can thus be used for, e.g., multiclass classification, interval or
survival regression, and probabilistic forecasts. It is also possible to quantify the
epistemic uncertainty of CWB (Rügamer and Greven, 2020). Many other exten-
sions of the CWB algorithm exist, such as CWB for functional data (Brockhaus
et al., 2020), boosting location, scale and shape models (Hofner et al., 2016),
or probing for sparse and fast variable selection (Thomas et al., 2017). Because
of its interpretability properties, CWB is used in medical research, e.g., for oral
cancer prediction (Saintigny et al., 2011), detection of synchronization in bio-
electrical signals (Rügamer et al., 2018), or classifying pain syndromes (Liew
et al., 2020).

B Univariate model
The first stage of our fitting procedure uses only univariate models, and each
of the p features is included as separate base learner. Categorical features are
included using a dummy encoding with a ridge penalty. Hence, if a categorical
base learner is selected, all group parameters are updated at once. Numerical
features are included by decomposing their effect into a linear and a non-linear
effect. Hence, for each numerical feature xj , two base learners bj,lin and bj,centered
are defined. The parameter vector θj,lin = (αj , βj)T of bj,lin contains a feature-
specific intercept αj and a slope βj . The centered base learner bj,centered uses
a B-spline basis (Eilers and Marx, 1996a), where the parameter vector γj ∈
Rpj contains the weights of the pj B-spline basis functions B1(xj), . . . , Bpj (xj).

2 It is also possible to model more complex dependencies with a base learner, e.g., when
using tree base learners. In this paper with a focus on interpretability, we restrict
ourselves to regression models that can be represented by linear feature effects (after
a B-spline basis function evaluation).

12 S. Coors et al.

The B-spline basis is then centered around the linear effect to subtract the
linear part from the basis. The non-linear base learner is then estimated using
penalized least squares with a P-spline penalty. The partial effect fj of the
numerical feature xj is thus given as sum of the two univariate base learners
fj = bj,lin + bj,centered.

C Variable importance
The VIP of feature j is defined as

VIPj =
Muni∑
m=1

(R
f̂

[m−1]
uni

(D)−R
f̂

[m]
uni

(D))1(k[m] = j).

The same formula is applied to calculate the VIPij for interactions (i, j) ∈ I and
f̂pint. For the Adult data, as shown in Figure 4, the two most important features
during the univariate fitting stage are the marital status (marital.status) and
a numeric representation of the education status (education.num), with the
marital status reducing the risk twice as much as the education status. The
dominating interaction is between age (age) and capital gain (capital.gain).

D The Bigger Picture
Missing factors in our framework are by default imputed by their mode, while
missing numeric values are sampled from all possible values with probabilities
according to their empirical distribution. Hyperband, the algorithm used for
HPO, can best be understood as repeated execution of the successive halving
procedure (Jamieson and Talwalkar, 2016).

E Benchmark setup
The original OpenML AutML benchmark consists of 39 datasets. Small- and
medium-sized datasets are trained for 1 and 4 hours respectively, large datasets
for 4 and 8 hours. The benchmark was initially run on Amazon Web Services
m5.2xlarge (8 CPUs) instances inside a docker container. For our benchmark,
we focus on the small to medium datasets with details described in Table 1.

We use the infrastructure of the Leibniz Supercomputing Centre (LRZ), oper-
ated by the Bavarian Academy of Sciences and Humanities. Using the R-package
batchtools (Lang et al., 2017), our batch jobs ran on 8 core Haswell-based
CPUs and 16Gb memory. On larger datasets and, in particular, multiclass tasks,
autocompboost trained longer than 1 hour due to a preliminary and rather in-
efficient implementation using a one-versus-rest fitting procedure. Moreover, the
benchmark results reveal that the implemented HPO method still offers potential
for improvement.

Automatic Componentwise Boosting: An Interpretable AutoML System 13

ID Name # Instances # Features # Classes # Missings # Numeric Features

3 kr-vs-kp 3196 37 2 0 0
12 mfeat-factors 2000 217 10 0 216
31 credit-g 1000 21 2 0 7
53 vehicle 846 19 4 0 18

3917 kc1 2109 22 2 0 21
3945 KDDCup09 appetency 50000 231 2 8024152 192
7592 adult 48842 15 2 6465 6
9952 phoneme 5404 6 2 0 5
9977 nomao 34465 119 2 0 89

10101 blood-transfusion-service-center 748 5 2 0 4
14965 bank-marketing 45211 17 2 0 7

146195 connect-4 67557 43 3 0 0
146212 shuttle 58000 10 7 0 9
146606 higgs 98050 29 2 9 28
146818 Australian 690 15 2 0 6
146821 car 1728 7 4 0 0
146822 segment 2310 20 7 0 19
146825 Fashion-MNIST 70000 785 10 0 784
167120 numerai28.6 96320 22 2 0 21
168329 helena 65196 28 100 0 27
168330 jannis 83733 55 4 0 54
168331 volkert 58310 181 10 0 180
168335 MiniBooNE 130064 51 2 0 50
168337 guillermo 20000 4297 2 0 4296
168338 riccardo 20000 4297 2 0 4296
168908 christine 5418 1637 2 0 1599
168909 dilbert 10000 2001 5 0 2000
168911 jasmine 2984 145 2 0 8
168912 sylvine 5124 21 2 0 20

Table 1: 30 small to medium sized datasets of the OpenML AutoML Benchmark.

14
S.C

oors
et

al.

Metric Dataset ACWB ACWB deep ACWB deep no HPO ACWB no HPO autosklearn autoweka glmnet h2oautoml randomforest tpot tunedrandomforest

AUC Australian 0.926 0.911 0.922 0.927 0.935 0.929 0.929 0.940 0.937 0.932 0.934
AUC KDDCup09 appetency 0.705 0.714 0.724 0.734 0.834 0.808 0.792 0.830 0.786 0.824 0.786
AUC MiniBooNE 0.963 0.965 0.958 0.955 0.985 0.961 0.936 0.987 0.982 0.981 0.982
AUC adult 0.900 0.904 0.911 0.911 0.930 0.908 0.904 0.926 0.909 0.927 0.909
AUC bank-marketing 0.854 0.898 0.897 0.855 0.937 0.827 0.909 0.937 0.931 0.934 0.931
AUC blood-transfusion 0.755 0.750 0.749 0.725 0.757 0.741 0.754 0.756 0.686 0.724 0.689
AUC christine 0.788 0.791 0.802 0.793 0.830 0.802 0.800 0.826 0.806 0.813 0.810
AUC credit-g 0.763 0.755 0.760 0.768 0.783 0.753 0.786 0.789 0.795 0.786 0.796
AUC guillermo 0.786 0.780 0.752 0.753 0.901 0.878 0.771 0.910 0.903 0.819 0.903
AUC higgs 0.745 0.746 0.761 0.762 0.793 0.677 0.680 0.814 0.803 0.802 0.803
AUC jasmine 0.841 0.848 0.849 0.843 0.884 0.861 0.849 0.888 0.888 0.885 0.889
AUC kc1 0.790 0.791 0.793 0.795 0.840 0.814 0.799 0.836 0.836 0.841 0.842
AUC kr-vs-kp 0.976 0.999 0.998 0.994 1.000 0.976 0.995 1.000 0.999 1.000 1.000
AUC nomao 0.985 0.984 0.988 0.989 0.996 0.984 0.988 0.996 0.995 0.995 0.995
AUC numerai28.6 0.528 0.528 0.527 0.526 0.529 0.520 0.529 0.532 0.520 0.525 0.521
AUC phoneme 0.906 0.909 0.920 0.919 0.963 0.957 0.813 0.968 0.965 0.969 0.966
AUC riccardo 0.949 0.956 0.756 0.847 1.000 0.996 1.000 0.999 0.992 1.000
AUC sylvine 0.972 0.973 0.977 0.974 0.990 0.975 0.966 0.990 0.983 0.992 0.984

log-loss Fashion-MNIST 0.608 0.589 0.613 0.615 0.354 0.581 0.407 0.294 0.361 0.651 0.362
log-loss car 0.553 0.200 0.312 0.427 0.010 0.243 0.161 0.002 0.144 0.000 0.047
log-loss connect-4 0.837 0.787 0.812 0.793 0.426 0.741 0.606 0.345 0.495 0.400 0.478
log-loss dilbert 0.377 0.283 0.424 0.433 0.097 584.504 0.146 0.052 0.328 0.217 0.329
log-loss helena 3.977 3.921 3.925 3.998 3.447 14.102 2.922 2.800 3.550 3.245 3.559
log-loss jannis 0.870 0.871 0.854 0.857 0.705 1077.099 0.832 0.681 0.728 0.732 0.729
log-loss mfeat-factors 0.267 0.245 0.152 0.173 0.099 0.627 0.106 0.105 0.234 0.138 0.201
log-loss segment 0.392 0.307 0.232 0.273 0.060 0.501 0.325 0.047 0.084 0.052 0.069
log-loss shuttle 0.087 0.028 0.024 0.059 0.001 0.015 0.118 0.000 0.001 3.444 0.001
log-loss vehicle 0.637 0.583 0.546 0.546 0.395 2.105 0.423 0.353 0.497 0.414 0.486
log-loss volkert 1.499 1.476 1.411 1.471 0.945 1.110 1.177 0.821 0.980 1.011 0.979

Table 2: Results of the benchmark experiment based on 29 datasets (see Table 1). Results are presented as mean scores of
a 10-fold crossvalidation. Best scores are presented as bold numbers. For the binary and multiclass classification tasks, the
results are given by the AUC and the log-loss, respectively.

Automatic Componentwise Boosting: An Interpretable AutoML System 15

F Required model complexity
During model training of autocompboost for the three described stages, we
denote the number of boosting iterations of each stage with Muni, Mpint, and
Mdeep. Furthermore, the empirical risk of the intercept model R0 = Rf̂ [0](D),
the univariate modelRuni = R

f̂
[Muni]
uni

(D), the pairwise interaction modelRpint =
R

f̂
[Mpint]
pint

(D), and the deep interaction model Rdeep = R
f̂

[Mdeep]
deep

(D) is logged. We
define the fraction of explained risk per stage with

ρuni = (R0 −Runi)/δR
ρpint = (Rint −Rpint)/δR
ρdeep = (Rpint −Rdeep)/δR

with δR = R0−Rdeep. The value of ρ indicates how much of the overall explained
risk is explained by stage the respective stage. Hence, ρ is an indicator of how
much complexity of the model is required to obtain different levels of prediction
accuracy.

G Application
Adult data set The Adult data was collected by the Census bureau. The binary
classification task is to predict whether an adult earns more than $50,000. The
given features are, for example, education, hours of work per week, or marital
status. The predicted scores f̂ ∈ R are mapped via the logistic function s(f̂) =
(1 + exp(−f̂))−1 ∈ (0, 1) to (0, 1), which can be interpreted as probabilities for
the positive class of earning more than $50,000. Hence, a predicted partial effect
greater than zero favors the prediction of the positive class.

Required model complexity Figure 3 demonstrates that, for the Adult data, 53.6
% of the risk is already explained by the univariate model and 28.6 % by the
pairwise interactions. Including deep trees into the model accounts for another
17.9 % explained risk.

Explaining the models decision making Figure 4 (middle) shows how partial
effects of both numerical and categorical features can be visualized. In our ex-
ample, the effect of the feature age shows both linear and non-linear effects. The
second most important feature education.num only selects the linear compo-
nent.

Pairwise interactions fij are visualized by plotting the effect surface in the
two feature dimensions. Figure 4 demonstrates this, showing that especially
younger adults with large capital gain likely have earnings greater than $50,000
per year.

If the third stage has a significant contribution for explaining the final model
fit, interpretation based on the first two stages must be performed with caution
due to two reasons. First, the major part of the model’s prediction stems from
the black box model, and interpreting the structured partial effects alone is likely
to be misleading. Second, a potential overlap in the hypothesis space between

16 S. Coors et al.

the interpretable stages and the black box stage might yield to an identifiability
issue (see, e.g., Rügamer et al., 2021).
Prediction decomposition autocompboost also allows the user to better under-
stand the system’s decision-making process when a new observation x0 is used
to predict the score f̂(x̃). In this case, it can visualize the contribution of all uni-
variate effects by calculating fj(x̃j), pairwise interactions with fij(x̃i, x̃j), and
the black box part fdeep(x̃). Figure 5 shows this decomposition. The contribution
of the black box part is summarized as “deep trees” contribution.

Deep trees
Interaction: capital.gain (0), age (42)

Interaction: capital.loss (0), relationship (Not−in−family)
Interaction: education.num (12), age (42)

Interaction: education.num (12), capital.gain (0)
Interaction: hours.per.week (40), capital.gain (0)

Interaction: marital.status (Divorced), capital.loss (0)
age (42)

capital.gain (0)
capital.loss (0)

education.num (12)
hours.per.week (40)

marital.status (Divorced)
occupation (Prof−specialty)

offset
relationship (Not−in−family)

−0.4 −0.2 0.0 0.2
Contribution to predicted value

Univariate

Pairwise interactions

Deep trees

Score: −1.53 Probability: 0.18 Predicted label: <=50K
Prediction

Fig. 5: Decomposition of how a new predicted score is calculated.

User-friendly interface To further simplify the use of autocompboost, the previ-
ous explained techniques can be interactively visualized in a dashboard. Thereby,
the user automatically obtains a pre-selection of important features, effects, and
corresponding visualizations by only a few clicks. It is also possible to move
the whole autocompboost pipeline into the dashboard, i.e., perform 1) task-
creation, 2) data modelling and 3) interpretation in order to make interpretable
ML models available to experienced ML users as well as a larger group of non-ML
experts.

CHAPTER 9
Privacy-Preserving and Lossless Distributed Estimation

ofHigh-DimensionalGeneralizedAdditiveMixed
Models

Contributing article

Schalk, D., Bischl, B., and Rügamer, D. (2023a). Privacy-preserving and lossless distributed estimation
of high-dimensional generalized additive mixed models. arXiv preprint arXiv:2210.07723

At the time the thesis was handed in, the article was in review at the journal Statistics and Computing.

Declaration of contributions

Daniel Schalk developed themethodology, constructed the theory, and implemented it in anRpackage1.
With this package, he created the application example and the comparison to state-of-the-art approaches
as well as all graphics and tables. The publication and interpretation of the results were mainly written
by him, except for specific sections (see the contribution of the co-authors).

Contribution of the coauthors

David Rügamer worked out the connection to GAMMs, wrote the corresponding text passages, and
assisted in setting the algorithm parameters for comparison with state-of-the-art approaches and inter-
preting the results. Bernd Bischl and David Rügamer helped with revising the manuscript.

1https://github.com/schalkdaniel/dsCWB

https://github.com/schalkdaniel/dsCWB

Privacy-Preserving and Lossless Distributed Estimation of

High-Dimensional Generalized Additive Mixed Models

Schalk Daniel1,2*, Bischl Bernd1,2 and Rügamer David1,2,3

1*Department of Statistics, LMU Munich, Munich, Germany.
2Munich Center for Machine Learning (MCML).

3Department of Statistics, TU Dortmund, Dortmung, Germany.

*Corresponding author(s). E-mail(s): daniel.schalk@stat.uni-muenchen.de;
Contributing authors: bernd.bischl@stat.uni-muenchen.de;

david.ruegamer@stat.uni-muenchen.de;

Abstract

Various privacy-preserving frameworks that respect the individual’s privacy in the analysis of data
have been developed in recent years. However, available model classes such as simple statistics or
generalized linear models lack the flexibility required for a good approximation of the underlying
data-generating process in practice. In this paper, we propose an algorithm for a distributed, privacy-
preserving, and lossless estimation of generalized additive mixed models (GAMM) using component-
wise gradient boosting (CWB). Making use of CWB allows us to reframe the GAMM estimation as
a distributed fitting of base learners using the L2-loss. In order to account for the heterogeneity of
different data location sites, we propose a distributed version of a row-wise tensor product that allows
the computation of site-specific (smooth) effects. Our adaption of CWB preserves all the important
properties of the original algorithm, such as an unbiased feature selection and the feasibility to fit
models in high-dimensional feature spaces, and yields equivalent model estimates as CWB on pooled
data. Next to a derivation of the equivalence of both algorithms, we also showcase the efficacy of
our algorithm on a distributed heart disease data set and compare it with state-of-the-art methods.

Keywords: Distributed Computing, Functional Gradient Descent, Generalized Linear Mixed Model,
Machine Learning, Privacy-preserving Modelling

1 Introduction

More than ever, data is collected to record the
ubiquitous information in our everyday life. How-
ever, on many occasions, the physical location
of data points is not confined to one place (one
global site) but distributed over different locations
(sites). This is the case for, e.g., patient records
that are gathered at different hospitals but usu-
ally not shared between hospitals or other facilities
due to the sensitive information they contain. This

makes data analysis challenging, particularly if
methods require or notably benefit from incorpo-
rating all available (but distributed) information.
For example, personal patient information is typ-
ically distributed over several hospitals, while
sharing or merging different data sets in a central
location is prohibited. To overcome this limita-
tion, different approaches have been developed to

1

ar
X

iv
:2

21
0.

07
72

3v
2

 [
st

at
.M

L
]

 1
0

M
ar

 2
02

3

2

directly operate at different sites and unite infor-
mation without having to share sensitive parts of
the data to allow privacy-preserving data analysis.

Distributed Data

Distributed data can be partitioned vertically
or horizontally across different sites. Horizon-
tally partitioned data means that observations
are spread across different sites with access to
all existing features of the available data point,
while for vertically partitioned data, different sites
have access to all observations but different fea-
tures (covariates) for each of these observations.
In this work, we focus on horizontally partitioned
data. Existing approaches for horizontally parti-
tioned data vary from fitting regression models
such as generalized linear models (GLMs; Wu
et al, 2012; Lu et al, 2015; Jones et al, 2013;
Chen et al, 2018), to conducting distributed eval-
uations (Boyd et al, 2015; Ünal et al, 2021;
Schalk et al, 2022b), to fitting artificial neural
networks (McMahan et al, 2017). Furthermore,
various software frameworks are available to run
a comprehensive analysis of distributed data. One
example is the collection of R (R Core Team, 2021)
packages DataSHIELD (Gaye et al, 2014), which
enables data management and descriptive data
analysis as well as securely fitting of simple statis-
tical models in a distributed setup without leaking
information from one site to the others.

Interpretability and Data Heterogeneity

In many research areas that involve critical
decision-making, especially in medicine, meth-
ods should not only excel in predictive perfor-
mance but also be interpretable. Models should
provide information about the decision-making
process, the feature effects, and the feature impor-
tance as well as intrinsically select important
features. Generalized additive models (GAMs; see,
e.g., Wood, 2017) are one of the most flexible
approaches in this respect, providing an inter-
pretable yet complex models that also allow for
non-linearity in the data.

As longitudinal studies are often the most
practical way to gather information in many
research fields, methods should also be able to
account for subject-specific effects and account for
the correlation of repeated measurements. Fur-
thermore, when analyzing data originating from

different sites, the assumption of having iden-
tically distributed observations across all sites
often does not hold. In this case, a reasonable
assumption for the data-generating process is a
site-specific deviation from the general population
mean. Adjusting models to this situation is called
interoperability (Litwin et al, 1990), while ignor-
ing it may lead to biased or wrong predictions.

1.1 Related Literature

Various approaches for distributed and privacy-
preserving analysis have been proposed in recent
years. In the context of statistical models, Karr
et al (2005) describe how to calculate a lin-
ear model (LM) in a distributed and privacy-
preserving fashion by sharing data summaries.
Jones et al (2013) propose a similar approach for
GLMs by communicating the Fisher information
and score vector to conduct a distributed Fisher
scoring algorithm. The site information is then
globally aggregated to estimate the model param-
eters. Other privacy-preserving techniques include
ridge regression (Chen et al, 2018), logistic regres-
sion, and neural networks (Mohassel and Zhang,
2017).

In machine learning, methods such as the naive
Bayes classifier, trees, support vector machines,
and random forests (Li et al, 2020a) exist with
specific encryption techniques (e.g., the Paillier
cryptosystem; Paillier, 1999) to conduct model
updates. In these setups, a trusted third party is
usually required. However, this is often unrealistic
and difficult to implement, especially in a medi-
cal or clinical setup. Furthermore, as encryption
is an expensive operation, its application is infea-
sible for complex algorithms that require many
encryption calls (Naehrig et al, 2011). Existing
privacy-preserving boosting techniques often focus
on the AdaBoost algorithm by using aggregation
techniques of the base classifier (Lazarevic and
Obradovic, 2001; Gambs et al, 2007). A different
approach to boosting decision trees in a federated
learning setup was introduced by (Li et al, 2020b)
using a locality-sensitive hashing to obtain simi-
larities between data sets without sharing private
information. These algorithms focus on aggregat-
ing tree-based base components, making them
difficult to interpret, and come with no inferential
guarantees.

3

In order to account for repeated measure-
ments, Luo et al (2022) propose a privacy-
preserving and lossless way to fit linear mixed
models (LMMs) to correct for heterogeneous site-
specific random effects. Their concept of only shar-
ing aggregated values is similar to our approach,
but is limited in the complexity of the model and
only allows normally distributed outcomes. Other
methods to estimate LMMs in a secure and dis-
tributed fashion are Zhu et al (2020), Anjum et al
(2022), or Yan et al (2022).

Besides privacy-preserving and distributed
approaches, integrative analysis is another tech-
nique based on pooling the data sets into one and
analyzing this pooled data set while considering
challenges such as heterogeneity or the curse of
dimensionality (Curran and Hussong, 2009; Baze-
ley, 2012; Mirza et al, 2019). While advanced from
a technical perspective by, e.g., outsourcing com-
putational demanding tasks such as the analysis of
multi-omics data to cloud services (Augustyn et al,
2021), the existing statistical cloud-based meth-
ods only deal with basic statistics. The challenges
of integrative analysis are similar to the ones tack-
led in this work, our approach, however, does not
allow merging the data sets in order to preserve
privacy.

1.2 Our Contribution

This work presents a method to fit generalized
additive mixed models (GAMMs) in a privacy-
preserving and lossless manner1 to horizontally
distributed data. This not only allows the incorpo-
ration of site-specific random effects and accounts
for repeated measurements in LMMs, but also
facilitates the estimation of mixed models with
responses following any distribution from the
exponential family and provides the possibility to
estimate complex non-linear relationships between
covariates and the response. To the best of our
knowledge, we are the first to provide an algorithm
to fit the class of GAMMs in a privacy-preserving
and lossless fashion on distributed data.

Our approach is based on component-wise gra-
dient boosting (CWB; Bühlmann and Yu, 2003).
CWB can be used to estimate additive models,

1In this article, we define a distributed fitting procedure as
lossless if the model parameters of the algorithm are the same
as the ones computed on the pooled data.

account for repeated measurements, compute fea-
ture importance, and conduct feature selection.
Furthermore, CWB is suited for high-dimensional
data situations (n � p). CWB is therefore often
used in practice for, e.g., predicting the develop-
ment of oral cancer (Saintigny et al, 2011), classi-
fying individuals with and without patellofemoral
pain syndrome (Liew et al, 2020), or detecting
synchronization in bioelectrical signals (Rügamer
et al, 2018). However, there have so far not
been any attempts to allow for a distributed,
privacy-preserving, and lossless computation of
the CWB algorithm. In this paper, we propose
a distributed version of CWB that yields the
identical model produced by the original algo-
rithm on pooled data and that accounts for site
heterogeneity by including interactions between
features and a site variable. This is achieved by
adjusting the fitting process using 1) a distributed
estimation procedure, 2) a distributed version of
row-wise tensor product base learners, and 3) an
adaption of the algorithm to conduct feature selec-
tion in the distributed setup. We implement our
method in R using the DataSHIELD framework and
demonstrate its application in an exemplary med-
ical data analysis. Our distributed version of the
original CWB algorithm does not have any addi-
tional HPs and uses optimization strategies from
previous research results to define meaningful val-
ues for all hyperparameters, effectively yielding a
tuning-free method.

The remainder of this paper is structured as
follows: First, we introduce the basic notation,
terminology, and setup of GAMMs in Section 2.
We then describe the original CWB algorithm
in Section 2.3 and its link to GAMMs. In
Section 3, we present the distributed setup and our
novel extension of the CWB algorithm. Finally,
Section 4 demonstrates both how our distributed
CWB algorithm can be used in practice and how
to interpret the obtained results.

Implementation

We implement our approach as an R package using
the DataSHIELD framework and make it available
on GitHub2. The code for the analysis can also be
found in the repository3.

2github.com/schalkdaniel/dsCWB
3github.com/schalkdaniel/dsCWB/blob/main/usecase/

analyse.R

4

2 Background

2.1 Notation and Terminology

Our proposed approach uses the CWB algorithm
as fitting engine. Since this method was initially
developed in machine learning, we introduce here
both the statistical notation used for GAMMs as
well as the respective machine learning terminol-
ogy and explain how to relate the two concepts.

We assume a p-dimensional covariate or fea-
ture space X = (X1× . . .×Xp) ⊆ Rp and response
or outcome values from a target space Y. The goal
of boosting is to find the unknown relationship f
between X and Y. In turn, GAMMs (as presented
in Section 2.2) model the conditional distribu-
tion of an outcome variable Y with realizations
y ∈ Y, given features x = (x1, . . . , xp) ∈ X . Given
a data set D =

{(
x(1), y(1)

)
, . . . ,

(
x(n), y(n)

)}
with n observations drawn (conditionally) inde-
pendently from an unknown probability distri-
bution Pxy on the joint space X × Y, we aim
to estimate this functional relationship in CWB
with f̂ . The goodness-of-fit of a given model
f̂ is assessed by calculating the empirical risk
Remp(f̂) = n−1

∑
(x,y)∈D L(y, f̂(x)) based on a

loss function L : Y ×R → R and the data set D.
Minimizing Remp using this loss function is equiv-
alent to estimating f using maximum likelihood
by defining L(y, f(x)) = −`(y, h(f(x))) with log-
likelihood `, response function h and minimizing
the sum of log-likelihood contributions.

In the following, we also require the vector

xj = (x
(1)
j , . . . , x

(n)
j)T ∈ Xj , which refers to the

jth feature. Furthermore, let x = (x1, . . . , xp) and
y denote arbitrary members of X and Y, respec-
tively. A special role is further given to a subset
u = (u1, . . . , uq)>, q ≤ p, of features x, which will
be used to model the heterogeneity in the data.

2.2 Generalized Additive Mixed
Models

A very flexible class of regression models to
model the relationship between covariates and the
response are GAMMs (see, e.g., Wood, 2017).
In GAMMs, the response Y (i) for observation
i = 1, . . . , ns of measurement unit (or site) s is
assumed to follow some exponential family distri-
bution such as the Poisson, binomial, or normal
distributions (see, e.g., McCullagh and Nelder,

2019), conditional on features x(i) and the real-
ization of some random effects. The expectation
µ := E(Y (i)|x(i),u(i)) of the response Y (i) for
observations i = 1, . . . , ns of measurement unit (or
site) s in GAMMs is given by

h−1(µ(i)) = f (i)

=
∑
j∈J1

x
(i)
j βj +

∑
j∈J2

u
(i)
j γj,s +

∑
j∈J3

φj(x
(i)
j).

(1)

In (1), h is a smooth monotonic response function,
f corresponds to the additive predictor, γj,s ∼
N (0, ψ) are random effects accounting for hetero-
geneity in the data, and φj are non-linear effects
of pre-specified covariates. The different index sets
J1,J2,J3 ⊆ {1, . . . , p} ∪ ∅ indicate which fea-
tures are modeled as fixed effects, random effects,
or non-linear (smooth) effects, respectively. The
modeler usually defines these sets. However, as we
will also explain later, the use of CWB as a fit-
ting engine allows for automatic feature selection
and therefore does not require explicitly defin-
ing these sets. In GAMMs, smooth effects are
usually represented by (spline) basis functions,
i.e., φj(xj) ≈ (Bj,1(xj), . . . , Bj,dj

(xj))
>θj , where

θj ∈ Rdj are the basis coefficients corresponding
to each basis function Bj,dj

. The coefficients are
typically constrained in their flexibility by adding
a quadratic (difference) penalty for (neighboring)
coefficients to the objective function to enforce
smoothness. GAMMs, as in (1), are not limited to
univariate smooth effects φj , but allow for higher-
dimensional non-linear effects φ(xj1 , xj2 , . . . , xjk).
The most common higher-dimensional smooth
interaction effects are bivariate effects (k = 2) and
can be represented using a bivariate or a tensor
product spline basis (see Section 2.3.1 for more
details). Although higher-order splines with k > 2
are possible, models are often restricted to bivari-
ate interactions for the sake of interpretability and
computational feasibility. In Section 3, we will fur-
ther introduce varying coefficient terms φj,s(xj) in
the model (1), i.e., smooth effects f varying with a
second variable s. Analogous to random slopes, s
can also be the index set defining observation units
of random effects J2. Using an appropriate dis-
tribution assumption for the basis coefficients θj ,
these varying coefficients can then be considered
as random smooth effects.

5

2.3 Component-Wise Boosting

Component-wise (gradient) boosting (CWB;
Bühlmann and Yu, 2003; Bühlmann et al, 2007)
is a an iterative algorithm that performs block-
coordinate descent steps with blocks (or base
learners) corresponding to the additive terms in
(1). With a suitable choice of base learners and
objective function, CWB allows efficient optimiza-
tion of GAMMs, even in high-dimensional settings
with p � n. We will first introduce the concept
of base learners that embed additive terms of the
GAMM into boosting and subsequently describe
the actual fitting routine of CWB. Lastly, we
will describe the properties of the algorithm and
explain its connection to model (1).

2.3.1 Base Learners

In CWB, the lth base learner bl : X → R is
used to model the contribution of one or mul-
tiple features in the model. In this work, we
investigate parametrized base learners bl(x,θl)
with parameters θl ∈ Rdl . For simplicity, we
will use θ as a wildcard for the coefficients
of either fixed effects, random effects, or spline
bases in the following. We assume that each base
learner can be represented by a generic basis
representation gl : X → Rdl , x 7→ gl(x) =
(gl,1(x), . . . , gl,dl

(x))T and is linear in the parame-
ters, i.e., bl(x,θl) = gl(x)Tθl. For n observations,
we define the design matrix of a base learner bl
as Zl := (gl(x

(1)), . . . , gl(x
(n)))T ∈ Rn×dl . Note

that base learners are typically not defined on the
whole feature space but on a subset Xl ⊆ X . For
example, a common choice for CWB is to define
one base learner for every feature xl ∈ Xl to model
the univariate contributions of that feature.

A base learner bl(x,θl) can depend on HPs
αl that are set prior to the fitting process. For
example, choosing a base learner using a P-spline
(Eilers and Marx, 1996) representation requires
setting the degree of the basis functions, the order
of the difference penalty term, and a parameter λl
determining the smoothness of the spline. In order
to represent GAMMs in CWB, the following four
base learner types are used.

(Regularized) linear base learners

A linear base learner is used to include linear
effects of a features xj1 , . . . , xjdl into the model.
The basis transformation is given by gl(x) =
(gl,1(x), . . . , gl,dl+1(x))T = (1, xj1 , . . . , xjdl)

T. Lin-
ear base learners can be regularized by incorpo-
rating a ridge penalization (Hoerl and Kennard,
1970) with tunable penalty parameter λl as an
HP αl. Fitting a ridge penalized linear base
learner to a response vector y ∈ Rn results
in the penalized least squares estimator θ̂l =
(ZT

l Zl + Kl)
−1ZT

l y with penalty matrix Kl =
λlIdl+1, where Id denotes the d-dimensional iden-
tity matrix. Often, an unregularized linear base
learner is also included to model the contribution
of one feature xj as a linear base learner with-
out penalization. The basis transformation is then
given by gl(x) = (1, xj)

T and λl = 0.

Spline base learners

These base learners model smooth effects using
univariate splines. A common choice is penal-
ized B-splines (P-Splines; Eilers and Marx,
1996), where the feature xj is transformed
using a B-spline basis transformation gl(x) =
(Bl,1(xj), . . . , Bl,dl

(xj))
T with dl basis functions

gl,m = Bl,m, m = 1, . . . , dl. In this case, the
choice of the spline order B, the number of basis
functions dl, the penalization term λl, and the
order v of the difference penalty (represented by
a matrix Dl ∈ Rdl−v×dl) are considered HPs αl

of the base learner. The base learner’s parameter
estimator in general is given by the penalized least
squares solution θ̂l = (ZT

l Zl + Kl)
−1ZT

l y, with
penalization matrix Kl = λlD

>
l Dl in the case of

P-splines.

Categorical and random effect base
learners

Categorical features xj ∈ {1, . . . , G} with G ∈
N, G ≥ 2 classes are handled by a binary
encoding gl(x) = (1{1}(xj), . . . ,1{G}(xj))

T with
the indicator function 1A(x) = 1 if x ∈ A
and 1A(x) = 0 if x /∈ A. A possible alter-
native encoding is the dummy encoding with
ğl(x) = (1,1{1}(xj), . . . ,1{G−1}(xj))

T with refer-
ence group G. Similar to linear and spline base
learners, it is possible incorporate a ridge penal-
ization with HP αl = λl. This results in the
base learner’s penalized least squared estimator

6

θ̂l = (ZT
l Zl+Kl)

−1ZT
l y with penalization matrix

Kl = λlIG. Due to the mathematical equiva-
lence of ridge penalized linear effects and random
effects with normal prior (see, e.g., Brumback
et al, 1999), this base learner can further be used
to estimate random effect predictions γ̂j when
using categorical features uj and thereby account
for heterogeneity in the data.

Row-wise tensor product base learners

This type of base learner is used to model a pair-
wise interaction between two features xj and xk.
Given two base learners bj and bk with basis
representations gj(x) = (gj,1(xj), . . . , gj,dj

(xj))
T

and gk(x) = (gk,1(xk), . . . , gk,dk
(xk))T, the

basis representation of the row-wise tensor
product base learner bl = bj × bk is
defined as gl(x) = (gj(x)T ⊗ gk(x)T)T =
(gj,1(xj)gk(x)T, . . . , gj,dj

(xj)gk(x)T)T ∈ Rdl with
dl = djdk. The HPs αl = {αj ,αk} of a row-wise
tensor product base learner are induced by the
HPs αj and αk of the respective individual base
learners. Analogously to other base learners, the
penalized least squared estimator in this case is
θ̂l = (ZT

l Zl+Kl)
−1ZT

l y with penalization matrix
Kl = τjKj ⊗ Idk

+ Idj
⊗ τkKk ∈ Rdl×dl . This

Kronecker sum penalty, in particular, allows for
anisotropic smoothing with penalties τj and τk
when using two spline bases for gj and gk, and
varying coefficients or random splines when com-
bining a (penalized) categorical base learner and
a spline base learner.

2.3.2 Fitting Algorithm

CWB first initializes an estimate f̂ of the addi-
tive predictor with a loss-optimal constant value
f̂ [0] = argminc∈RRemp(c). It then proceeds and
estimates Eq. (1) using an iterative steepest
descent minimization in function space by fit-
ting the previously defined base learners to the
model’s functional gradient ∇fL(y, f) evaluated

at the current model estimate f̂ . Let f̂ [m] denote
the model estimation after m ∈ N iterations. In
each step in CWB, the pseudo residuals r̃[m](i) =
−∇fL(y(i), f(x(i)))|f=f̂ [m−1] for i ∈ {1, . . . , n}
are first computed. CWB then selects the best-
fitting base learner from a pre-defined pool of
base-learners denoted by B = {bl}l∈{1,...,|B|} and
adds the base learner’s contribution to the pre-
vious model f̂ [m]. The selected base learner is

chosen based on its sum of squared errors (SSE)
when regressing the pseudo residuals r̃[m] =
(r[m](1), . . . , r[m](n))T onto the base learner’s fea-
tures using the L2-loss. Further details of CWB
are given in Algorithm 1 (see, e.g., Schalk et al,
2022a).

Controling HPs of CWB

Good estimation performance can be achieved by
selecting a sufficiently small learning rate, e.g.,
0.01, as suggested in Bühlmann et al (2007), and
adaptively selecting the number of boosting iter-
ations via early stopping on a validation set. To
enforce a fair selection of model terms and thus
unbiased effect estimation, regularization param-
eters are set such that all base learners have
the same degrees-of-freedom (Hofner et al, 2011).
As noted by Bühlmann et al (2007), choosing
smaller degrees-of-freedom induces more penaliza-
tion (and thus, e.g., smoother estimated function
for spline base learners), which yields a model with
lower variance at the cost of a larger bias. This
bias induces a shrinkage in the estimated coeffi-
cients towards zero but can be reduced by running
the optimization process for additional iterations.

Algorithm 1 Vanilla CWB algorithm

Input Train data D, learning rate ν, number of
boosting iterations M , loss function L,
set of base learner B

Output Model f̂ [M] defined by fitted parameters
θ̂[1], . . . , θ̂[M]

1: procedure CWB(D, ν, L,B)

2: Initialize: f̂ [0](x) = argminc∈RRemp(c)
3: for m ∈ {1, . . . ,M} do
4: r̃[m](i) = −∇fL(y(i), f(x(i)))|

f=f̂ [m−1] ,

∀i ∈ {1, . . . , n}
5: for l ∈ {1, . . . , |B|} do

6: θ̂
[m]
l =

(
ZT

l Zl +Kl

)−1
ZT

l r̃
[m]

7: SSEl =
∑n

i=1(r̃[m](i) − bl(x(i), θ̂
[m]
l))2

8: end for
9: l[m] = argminl∈{1,...,|B|} SSEl

10: f̂ [m](x) = f̂ [m−1](x) + νbl[m](x, θ̂
[m]

l[m])
11: end for
12: return f̂ = f̂ [M]

13: end procedure

7

2.3.3 Properties and Link to
Generalized Additive Mixed
Models

The estimated coefficients θ̂ resulting from run-
ning the CWB algorithm are known to converge
to the maximum likelihood solution (see, e.g.,
Schmid and Hothorn, 2008) forM →∞ under cer-
tain conditions. This is due to the fact that CWB
performs a coordinate gradient descent update
of a model defined by its additive base learn-
ers that exactly represent the structure of an
additive mixed model (when defining the base
learners according to Section 2.3.1) and by the
objective function that corresponds to the neg-
ative (penalized) log-likelihood. Two important
properties of this algorithm are 1) its coordinate-
wise update routine, and 2) the nature of model
updates using the L2-loss. Due to the first prop-
erty, CWB can be used in settings with p �
n, as only a single additive term is fitted onto
the pseudo-residuals in every iteration. This not
only reduces the computational complexity of the
algorithm for an increasing number of additive
predictors (linear instead of quadratic) but also
allows variable selection when stopping the rou-
tine early (e.g., based on a validation data set), as
not all the additive components might have been
selected into the model. In particular, this allows
users to specify the full GAMM model without
manual specification of the type of feature effect
(fixed or random, linear or non-linear) and then
automatically sparsify this model by an objec-
tive and data-driven feature selection. The second
property, allows fitting models of the class of gen-
eralized linear/additive (mixed) models using only
the L2-loss instead of having to work with some
iterative weighted least squares routine. In partic-
ular, this allows performing the proposed lossless
distributed computations described in this paper,
as we will discuss in Section 3.

2.4 Distributed Computing Setup
and Privacy Protection

Before presenting our main results, we now intro-
duce the distributed data setup we will work
with throughout the remainder of this paper. The
data set D is horizontally partitioned into S data

sets Ds =
{(
x

(1)
s , y

(1)
s

)
, . . . ,

(
x

(ns)
s , y

(ns)
s

)}
, s =

1, . . . , S with ns observations. Each data set Ds

is located at a different site s and potentially
follows a different data distributions Pxy,s. The
union of all data sets yields the whole data set
D = ∪Ss=1Ds with mutually exclusive data sets
Ds ∩ Dl = ∅ ∀l, s ∈ {1, . . . , S}, l 6= s. The vector
of realizations per site is denoted by ys ∈ Yns .

In this distributed setup, multiple ways exist to
communicate information without revealing indi-
vidual information. More complex methods such
as differential privacy (Dwork, 2006), homomor-
phic encryption (e.g., the Paillier cryptosystem;
Paillier, 1999), or k-anonymity (Samarati and
Sweeney, 1998) allow sharing information without
violating an individual’s privacy. An alternative
option is to only communicate aggregated statis-
tics. This is one of the most common approaches
and is also used by DataSHIELD (Gaye et al, 2014)
for GLMs or by Luo et al (2022) for LMMs.
DataSHIELD, for example, uses a privacy level that
indicates how many individual values must be
aggregated to allow the communication of aggre-
gated values. For example, setting the privacy
level to a value of 5 enables sharing of sum-
mary statistics such as sums, means, variances,
etc. if these are computed on at least 5 elements
(observations).

Host and Site Setup

Throughout this article, we assume the 1, . . . , S
sites or servers to have access to their respective
data set Ds. Each server is allowed to communi-
cate with a host server that is also the analyst’s
machine. In this setting, the analyst can poten-
tially see intermediate data used when running
the algorithms, and hence each message communi-
cated from the servers to the host must not allow
any reconstruction of the original data. The host
server is responsible for aggregating intermediate
results and communicating these results back to
the servers.

3 Distributed
Component-Wise Boosting

We now present our distributed version of the
CWB algorithm to fit privacy-preserving and loss-
less GAMMs. In the following, we first describe
further specifications of our setup in Section 3.1,
elaborate on the changes made to the set of base

8

learners in Section 3.2, and then show how to
adapt CWB’s fitting routine in Section 3.3.

3.1 Setup

In the following, we distinguish between site-
specific and shared effects. As effects estimated
across sites typically correspond to fixed effects
and effects modeled for each site separately are
usually represented using random effects, we use
the terms as synonyms in the following, i.e., shared
effects and fixed effects are treated interchange-
ably and the same holds for site-specific effects
and random effects. We note that this is only for
ease of presentation and our approach also allows
for site-specific fixed effects and random shared
effects. As the data is not only located at dif-
ferent sites but also potentially follows different
data distributions Pxy,s at each site s, we extend
Eq. (1) to not only include random effects per
site, but also site-specific smooth (random) effects
φj,s(xj), s = 1, . . . , S for all features xj with
j ∈ J3. For every of these smooth effects φj,s
we assume an existing shared effect fj,shared that
is equal for all sites. These assumptions – par-
ticularly the choice of site-specific effects – are
made for demonstration purposes. In a real-world
application, the model structure can be defined
individually to match the given data situation.
However, note again that CWB intrinsically per-
forms variable selection, and there is thus no need
to manually define the model structure in practice.
In order to incorporate the site information into

the model, we add a variable x
(i)
0 ∈ {1, . . . , S} for

the site to the data by setting x̃(i) = (x
(i)
0 ,x(i)).

The site variable is a categorical feature with S
classes.

3.2 Base Learners

For shared effects, we keep the original struc-
ture of CWB with base learners chosen from a
set of possible learners B. Section 3.3.1 explains
how these shared effects are estimated in the dis-
tributed setup. We further define a regularized
categorical base learner b0 with basis transfor-
mation g0(x0) = (1{1}(x0), . . . ,1{S}(x0))T and
design matrix Z0 ∈ Rn×S . We use b0 to extend B
with a second set of base learners B× = {b0×b | b ∈
B} to model site-specific random effects. All base
learners in B× are row-wise tensor product base

learners bl× = b0 × bl of the regularized categor-
ical base learner b0 dummy-encoding every site
and all other existing base learners bl ∈ B. This
allows for potential inclusion of random effects for
every fixed effect in the model. More specifically,
the lth site-specific effect given by the row-wise
tensor product base learner bl× uses the basis
transformation gl× = g0 ⊗ gl

gl×(x̃) = g0(x0)T ⊗ gl(x)T

= (1{1}(x0)gl(x)T︸ ︷︷ ︸
=gl×,1

, . . . ,1{S}(x0)gl(x)T︸ ︷︷ ︸
=gl×,S

)T,

(2)

where the basis transformation gl is equal for all S
sites. After distributed computation (see Eq. (4)
in the next section), the estimated coefficients
are θ̂l× = (θ̂Tl×,1, . . . , θ̂

T
l×,S)T with θ̂l×,s ∈ Rdl .

The regularization of the row-wise Kronecker base
learners not only controls their flexibility but also
assures identifiable when additionally including a
shared (fixed) effect for the same covariate. The
penalty matrix Kl× = λ0K0⊗Idl

+IS⊗λl×Kl ∈
RSdl×Sdl is given as Kronecker sum of the penalty
matrix of the categorical site effect and the penalty
matricesK0 andKl with respective regularization
strengths λ0, λl× . As K0 = λ0IS is a diago-
nal matrix, Kl× is a block matrix with entries
λ0Idl

+ λl×Kl on the diagonal blocks. Moreover,
as g0 is a binary vector, we can also express the
design matrix Zl× ∈ Rn×Sdl as a block matrix,
yielding

Zl× = diag(Zl,1, . . . ,Zl,S), Kl×

= diag(λ0Idl
+ λl×Kl, . . . , λ0Idl

+ λl×Kl),
(3)

where Zl,k are the distributed design matrices of
bl on sites s = 1, . . . , S.

3.3 Fitting Algorithm

We now describe the adaptions required to allow
for distributed computations of the CWB fitting
routine. In Sections 3.3.1 and 3.3.2, we show the
equality between our distributed fitting approach
and CWB fitted on pooled data. Section 3.3.3
describes the remaining details such as distributed
SSE calculations, distributed model updates, and
pseudo residual updates in the distributed setup.

9

Section 3.4 summarizes the distributed CWB algo-
rithm and Section 3.5 elaborates on the commu-
nication costs of our algorithm.

3.3.1 Distributed Shared Effects
Computation

Fitting CWB in a distributed fashion requires
adapting the fitting process of the base learner bl
in Algorithm 1 to distributed data. To allow for
shared effects computations across different sites
without jeopardizing privacy, we take advantage
of CWB’s update scheme, which boils down to a
(penalized) least squares estimation per iteration
for every base learner. This allows us to build upon
existing work such as Karr et al (2005) to fit linear
models in a distributed fashion by just communi-
cating aggregated statistics between sites and the
host.

In a first step, the aggregated matrices Fl,s =
ZT

l,sZl,s and vectors ul,s = ZT
l,sys are computed

on each site. In our privacy setup (Section 2.4),
communicating Fl,s and ul,s is allowed as long as
the privacy-aggregation level per site is met. In
a second step, the site information is aggregated
to a global information Fl =

∑S
s=1 Fl,s +Kl and

ul =
∑S

s=1 ul,s and then used to estimate the

model parameters θ̂l = F−1
l ul. This approach,

referred to as distFit, is explained again in detail
in Algorithm 2 and used for the shared effect com-

putations of the model by substituting θ̂
[m]
l =(

ZT
l Zl +Kl

)−1
ZT

l r̃
[m] (Algorithm 1 line 6) with

θ̂
[m]
l = distFit(Zl,1, . . . ,Zl,S , r̃

[m]
1 , . . . , r̃

[m]
S ,Kl).

Note that the pseudo residuals r̃
[m]
k are also

securely located at each site and are updated
after each iteration. Details about the dis-
tributed pseudo residuals updates are explained
in Section 3.3.3. We also note that the com-
putational complexity of fitting CWB can be
drastically reduced by pre-calculating and stor-
ing (ZT

l Zl + Kl)
−1 in a first initialization step,

as the matrix is independent of iteration m, and
reusing these pre-calculated matrices in all subse-
quent iterations (cf. Schalk et al, 2022a). Using
pre-calculated matrices also reduces the amount of
required communication between sites and host.

Algorithm 2 Distributed Effect Estimation.
The line prefixes [S] and [H] indicate whether the
operation is conducted at the sites ([S]) or at the
host ([H]).

Input Sites design matrices Zl,1, . . . ,Zl,S ,
response vectors y1, . . . ,yS and
an optional penalty matrix Kl.

Output Estimated parameter vector θ̂l.

1: procedure distFit(Zl,1, . . . ,Zl,S ,y1, . . . ,yS ,Kl)
2: for s ∈ {1, . . . , S} do
3: [S] Fl,s = ZT

l,sZl,s

4: [S] ul,s = ZT
l,sys

5: [S] Communicate Fl,s and ul,s to the host
6: end for
7: [H] Fl =

∑S
s=1 Fl,s +Kl

8: [H] ul =
∑S

s=1 ul,s

9: [H] return θ̂l = F−1
l ul

10: end procedure

3.3.2 Distributed Site-specific Effects
Computation

If we pretend that the fitting of the base learner
bl× is performed on the pooled data, we obtain

θ̂l× =
(
ZT

l×Zl× +Kl×

)−1

ZT
l×y

=

 (ZT
l,1Zl,1 + λ0Idl

+Kl)
−1ZT

l,1y1

...
(ZT

l,SZl,S + λ0Idl
+Kl)

−1ZT
l,SyS

 ,

(4)

where (4) is due to the block structure, as
described in (3) of Section 3.2. This shows that the
fitting of the site-specific effects θ̂l× can be split
up into the fitting of individual parameters

θ̂l×,s = (ZT
l,sZl,s + λ0Idl

+Kl)
−1ZT

l,sys. (5)

It is thus possible to compute site-specific effects
at the respective site without the need to share any
information with the host. The host, in turn, only
requires the SSE of the respective base learner
(see next Section 3.3.3) to perform the next iter-
ation of CWB. Hence, during the fitting process,
the parameter estimates remain at their sites and
are just updated if the site-specific base learner is
selected. This again minimizes the amount of data
communication between sites and host and speeds

10

up the fitting process. After the fitting phase, the
aggregated site-specific parameters are communi-
cated once in a last communication step to obtain
the final model.

3.3.3 Pseudo Residual Updates, SSE
Calculation, and Base Learner
Selection

The remaining challenges to run the distributed
CWB algorithm are 1) the pseudo residual calcu-
lation (Algorithm 1 line 4), 2) the SSE calculation
(Algorithm 1 line 7), and 3) base learner selection
(Algorithm 1 line 9).

Distributed pseudo residual updates

The site-specific response vector ys containing
the values y(i), i ∈ {1, . . . , ns} is the basis
of the pseudo residual calculation. We assume
that every site s has access to all shared effects
as well as the site-specific information of all
site-specific base learners bl× only containing

the respective parameters θ̂l×,s. Based on these
base learners, it is thus possible to compute a

site model f̂
[m]
s as a representative of f̂ [m] on

every site s. The pseudo residual updates r̃
[m]
s

per site are then based on f̂
[m]
s via r̃

[m](i)
s =

−∇fL(y(i), f(x(i)))|
f=f̂

[m−1]
s

, i ∈ {1, . . . , ns}
using Ds. Most importantly, all remaining steps
of the distributed CWB fitting procedure do not

share the pseudo residuals r̃
[m]
s in order to avoid

information leakage about ys.

Distributed SSE calculation and base
learner selection

After fitting all base learners bl ∈ B and bl× ∈ B×
to r̃

[m]
s , we obtain θ̂

[m]
l , l = 1, . . . , |B|, and θ̂

[m]
l×

,

l× = 1×, . . . , |B×|. Calculating the SSE distribu-
tively for the lth and l×

th base learner bl and bl× ,
respectively, requires calculating 2S site-specific
SSE values:

SSEl,s =

ns∑
i=1

(
r̃[m](i)
s − bl(x(i)

s , θ̂
[m]
l)

)2

=

ns∑
i=1

(r̃[m](i) − gl(x(i))Tθ̂
[m]
l)2,

SSEl×,s =

ns∑
i=1

(
r̃[m](i)
s − bl×(x(i)

s , θ̂
[m]
l×

)
)2

=

ns∑
i=1

(r̃[m](i)
s − gl(x(i))Tθ̂

[m]
l×,s)

2.

The site-specific SSE values are then sent to the
host and aggregated to SSEl =

∑S
s=1 SSEl,s. If

privacy constraints have been met in all previous
calculations, sharing the individual SSE values is
not critical and does not violate any privacy con-
straints as the value is an aggregation of all ns
observations for all sites s.

Having gathered all SSE values at the host
location, selecting the best base learner in the cur-
rent iteration is done in the exact same manner as
for the non-distributed CWB algorithm by select-
ing l[m] = argminl∈{1,...,|B|,1×,...,|B|×} SSEl. After

the selection, the index l[m] is shared with all sites
to enable the update of the site-specific models

f̂
[m]
s . If a shared effect is selected, the parame-

ter vector θ̂
[m]

l[m] is shared with all sites. Caution
must be taken when the number of parameters of
one base learner is equal to the number of obser-
vations, as this allows reverse-engineering private
data. In the case of a site-specific effect selection,
no parameter needs to be communicated, as the
respective estimates are already located at each
site.

3.4 Distributed CWB Algorithm
with Site-Specific Effects

Assembling all pieces, our distributed CWB algo-
rithm is summarized in Algorithm 3.

3.5 Communication Costs

While the CWB iterations themselves can be per-
formed in parallel on every site and do not slow
down the process compared to a pooled calcu-
lation, it is worth discussing the communication
costs of distrCWB. During the initialization, data
is shared just once, while the fitting phase requires
the communication of data in each iteration. Let
d = maxl dl be the maximum number of basis
functions (or, alternatively, assume d basis func-
tions for all base learners). The two main drivers of
the communication costs are the number of boost-
ing iterations M and the number of base learners
|B|. Because of the iterative nature of CWB with
a single loop over the boosting iterations, the
communication costs (both for the host and each
site) scale linearly with the number of boosting

11

Algorithm 3 Distributed CWB Algorithm.
The line prefixes [S] and [H] indicate whether the operation is conducted at the sites ([S]) or at the
host ([H]).

Input Sites with site data Dk, learning rate ν, number of boosting iterations M , loss
function L, set of shared effects B and respective site-specific effects B×

Output Prediction model f̂

1: procedure distrCWB(ν, L,B,B×)
2: Initialization:
3: [H] Initialize shared model f̂

[0]
shared(x) = argminc∈RRemp(c)

4: [S] Calculate Zl,s and Fl,s = ZT
l,sZl,s, ∀l ∈ {1, . . . , |B|}, s ∈ {1, . . . , S}

5: [S] Set f̂
[0]
s = f̂

[0]
shared

6: for m ∈ {1, . . . ,M} or while an early stopping criterion is not met do
7: [S] Update pseudo residuals:

8: [S] r̃
[m](i)
s = −∇fL(y(i), f(x(i)))|

f=f̂
[m−1]
s

, ∀i ∈ {1, . . . , ns}
9: for l ∈ {1, . . . , |B|} do

10: [H] Calculate shared effect: θ̂
[m]
l = distFit(Zl,1, . . . ,Zl,S ,y1, . . . ,yS ,Kl)

11: [H] Communicate θ̂
[m]
l to the sites

12: for k ∈ {1, . . . , S} do
13: [S] Fit lth site-specific effect: θ̂

[m]
l×,s = (Fl,s + λ0Idl

+Kl)
−1Zl,sr̃

[m]
s

14: [S] Calculate the SSE for the lth shared and site-specific effect:

15: [S] SSEl,s =
∑ns

i=1(r̃[m](i) − gl(x(i))Tθ̂
[m]
l)2

16: [S] SSEl×,s =
∑ns

i=1(r̃
[m](i)
s − gl(x(i))Tθ̂

[m]
l×,s)2

17: [S] Send SSEl,s and SSEl×,s to the host
18: end for
19: [H] Aggregate SSE values: SSEl =

∑S
s=1 SSEl,s and SSEl× =

∑S
s=1 SSEl×,s

20: end for
21: [H] Select best base learner: l[m] = argminl∈{1,...,|B|,1×,...,|B|×} SSEl

22: if bl[m] is a shared effect then

23: [H] Update model: f̂
[m]
shared(x) = f̂

[m−1]
shared(x) + νbl[m](x, θ̂

[m]

l[m])

24: [H] Upload model update θ̂
[m]

l[m] to the sites.
25: end if
26: [S] Update site model f̂

[m]
s via parameter updates θ̂l[m] = θ̂l[m] + νθ̂

[m]

l[m]

27: end for
28: [S] Communicate site-specific effects θ̂1× , . . . , θ̂|B|× to the host

29: [H] Add site-specific effects to the model of shared effects f̂
[M]
shared to obtain the full model f̂ [M]

30: [H] return f̂ = f̂ [M]

31: end procedure

iterations M , i.e., O(M). For the analysis of com-
munication costs in terms of the number of base
learners, we distinguish between the initialization
phase and the fitting phase.

Initialization

As only the sites share Fl,s ∈ Rd×d, ∀l ∈
{1, . . . , |B|}, the transmitted amount of values

is d2|B| for each site and therefore scales lin-
early with |B|, i.e., O(|B|). The host does not
communicate any values during the initialization.

Fitting

In each iteration, every site shares its vector

ZT
l,sr̃

[m]
s ∈ Rd, ∀l ∈ {1, . . . , |B|}. Over the course

of M boosting iterations, each site therefore shares
dM |B| values. Every site also communicates the
SSE values, i.e., 2 values (index and SSE value)

12

for every base learner and thus 2M |B| values for
all iterations and base learners. In total, each site
communicates M |B|(d+ 2) values. The communi-
cation costs for all sites are therefore O(|B|). The
host, in turn, communicates the estimated param-
eters θ̂[m] ∈ Rd of the |B| shared effects. Hence,
dM |B| values as well as the index of the best
base learner in each iteration are transmitted. In
total, the host therefore communicates dM |B|+M
values to the sites, and costs are therefore also
O(|B|).

4 Application

We now showcase our algorithm on a heart disease
data set that consists of patient data gathered all
over the world. The data were collected at four
different sites by the 1) Hungarian Institute of
Cardiology, Budapest (Andras Janosi, M.D.), 2)
University Hospital, Zurich, Switzerland (William
Steinbrunn, M.D.), 3) University Hospital, Basel,
Switzerland (Matthias Pfisterer, M.D.), and 4)
V.A. Medical Center, Long Beach, and Cleveland
Clinic Foundation (Robert Detrano, M.D., Ph.D.),
and is thus suited for a multi-site distributed
analysis. The individual data sets are freely avail-
able at https://archive.ics.uci.edu/ml/datasets/
heart+disease (Dua and Graff, 2017). For our
analysis, we set the privacy level (cf. Section 2.4)
to 5 which is a common default.

4.1 Data Description

The raw data set contains 14 covariates, such as
the chest pain type (cp), resting blood pressure
(trestbps), maximum heart rate (thalach), sex,
exercise-induced angina (exang), or ST depression
(i.e., abnormal difference of the ST segment from
the baseline on an electrocardiogram) induced
by exercise relative to rest (oldpeak). A full
list of covariates and their abbreviations is given
on the data set’s website. After removing non-
informative covariates and columns with too many
missing values at each site, we obtain ncleveland =
303, nhungarian = 292, nswitzerland = 116, and
nva = 140 observations and 8 covariates. A table
containing the description of the abbreviations of
these covariates is given in Table 1 in the Sup-
plementary Material B.1. For our application, we
assume that missing values are completely at ran-
dom and all data sets are exclusively located at

each sites. The task is to determine important risk
factors for heart diseases. The target variable is
therefore a binary outcome indicating the presence
of heart disease or not.

4.2 Analysis and Results

We follow the practices to setup CWB as men-
tioned in Section 2.3.2 and run the distributed
CWB algorithm with a learning rate of 0.1 and a
maximum number of 100000 iterations. To deter-
mine an optimal stopping iteration for CWB, we
use 20 % of the data as validation data and set
the patience to 5 iterations. In other words, the
algorithm stops if no risk improvement on the vali-
dation data is observed in 5 consecutive iterations.
For the numerical covariates, we use a P-spline
with 10 cubic basis functions and second-order dif-
ference penalties. All base learners are penalized
accordingly to a global degree of freedom that we
set to 2.2 (to obtain unbiased feature selection)
while the random intercept is penalized according
to 3 degrees of freedom (see the Supplementary
Material B.2 for more details). Since we are mod-
elling a binary response variable, h−1 is the inverse
logit function logit−1(f) = (1 + exp(−f))−1. The
model for an observation of site s, conditional on
its random effects γ, is given in the Supplementary
Material B.3.

Results

The algorithm stops after mstop = 5578 itera-
tions as the risk on the validation data set starts
to increase (cf. Figure 1 in the Supplementary
Material B.4). Out of these 5578 iterations, the
distributed CWB algorithm selects a shared effect
in 782 iterations and site-specific effects in 4796
iterations. This indicates that the data is rather
heterogeneous and requires site-specific (random)
effects. Figure 1 (Left) shows traces of how and
when the different additive terms (base learners)
entered the model during the fitting process and
illustrates the selection process of CWB.

13

0.4294

0.1262

0.1024
0.0762

0.0

0.1

0.2

0.3

0.4

0 2000 4000
Iteration

P
ro

po
rt

io
n

of
ad

de
d

ba
se

 le
ar

ne
rs

a

a

a

a

age (site)

cp (site)

oldpeak (site)

sex (site)
thalach

exang
restecg

sex
age

trestbps
cp

oldpeak

0 300 600 900 1200
VIP

Fig. 1: Left: Model trace showing how and when
the four most selected additive terms entered the
model. Right: Variable importance (cf. Au et al,
2019) of selected features in decreasing order.

The estimated effect of the most important
feature oldpeak (cf. Figure 1, Right) found is
further visualized in Figure 2. Looking at the
shared effect, we find a negative influence on the
risk of heart disease when increasing ST depres-
sion (oldpeak). When accounting for site-specific
deviations, the effect becomes more diverse, par-
ticularly for Hungary.

−0.3
−0.2
−0.1

0.0

−2.5 0.0 2.5 5.0
oldpeak

P
ar

tia
l f

ea
tu

re
ef

fe
ct

Shared effect

−0.5
0.0
0.5

−2.5 0.0 2.5 5.0
oldpeak

P
ar

tia
l f

ea
tu

re
ef

fe
ct

Site effects

−0.5

0.0

0.5

−2.5 0.0 2.5 5.0
oldpeak

P
ar

tia
l f

ea
tu

re
ef

fe
ct

Shared + site effects
cleveland

hungarian

switzerland

va

Fig. 2: Decomposition of the effect of oldpeak

into the shared (left) and the site-specific effects
(middle). The plot on the right-hand side shows
the sum of shared and site-specific effects.

In the Supplementary Material B.5 and B.6,
we provide the partial effects for all features and
showcase the conditional predictions of the fitted
GAMM model for a given site.

Comparison of Estimation Approaches

The previous example shows partial feature effects
that exhibit shrinkage due to the early stopping of
CWB’s fitting routine. While this prevents overfit-
ting and induces a sparse model, we can also run
CWB for a very large amount of iterations without
early stopping to approximate the unregularized
and hence unbiased maximum likelihood solution.
We illustrate this in the following by training
CWB and our distributed version for 100000 iter-
ations and compare its partial effects to the ones
of a classical mixed model-based estimation rou-
tine implemented in the R package mgcv (Wood,
2017).

Results of the estimated partial effects of
our distributed CWB algorithm and the original

CWB on pooled data show a perfect overlap (cf.
Figure 3). This again underpins the lossless prop-
erty of the proposed algorithm. The site-specific
effects on the pooled data are fitted by defining
a row-wise Kronecker base learner for all features
and the site as a categorical variable. The same
approach is used to estimate a GAMM using mgcv

fitted on the pooled data with tensor products
between the main feature and the categorical site
variable. A comparison of all partial feature effects
is given in the Supplementary Material B.7 show-
ing good alignment between the different methods.
For the oldpeak effect shown in Figure 3, we
also see that the partial effects of the two CWB
methods are very close to the mixed model-based
estimation, with only smaller differences caused by
a slightly different penalization strength of both
approaches. The empirical risk is 0.4245 for our
distributed CWB algorithm, 0.4245 for CWB on
the pooled data, and 0.4441 for the GAMM on the
pooled data.

cleveland hungarian switzerland va

−2.5 0.0 2.5 5.0 −2.5 0.0 2.5 5.0 −2.5 0.0 2.5 5.0 −2.5 0.0 2.5 5.0
−3
−2
−1

0
1

oldpeakP
ar

tia
l f

ea
tu

re
 e

ffe
ct

compboost

dsCWB

mgcv

oldpeak
Aggregated site−specific feature effects

Fig. 3: Comparison of the site-specific effects
for oldpeak between the distributed (dsCWB) and
pooled CWB approach (compboost) as well as
estimates of from mgcv.

5 Discussion

We proposed a novel algorithm for distributed,
lossless, and privacy-preserving GAMM estima-
tion to analyze horizontally partitioned data. To
account for data heterogeneity of different sites we
introduced site-specific (smooth) random effects.
Using CWB as the fitting engine allows esti-
mation in high-dimensional settings and fosters
variable as well as effect selection. This also
includes a data-driven selection of shared and
site-specific features, providing additional data
insights. Owing to the flexibility of boosting and
its base learners, our algorithm is easy to extend
and can also account for interactions, functional

14

regression settings (Brockhaus et al, 2020), or
modeling survival tasks (Bender et al, 2020).

An open challenge for the practical use of our
approach is its high communication costs. For
larger iterations (in the 10 or 100 thousands),
computing a distributed model can take several
hours. One option to reduce the total runtime is to
incorporate accelerated optimization recently pro-
posed in Schalk et al (2022a). Another driver that
influences the runtime is the latency of the tech-
nical setup. Future improvements could reduce
the number of communications, e.g., via multi-
ple fitting rounds at the different sites before
communicating the intermediate results.

A possible future extension of our approach is
to account for both horizontally and vertically dis-
tributed data. Since the algorithm is performing
component-wise (coordinate-wise) updates, the
extension to vertically distributed data naturally
falls into the scope of its fitting procedure. This
would, however, require a further advanced techni-
cal setup and the need to ensure consistency across
sites.

Declarations

The authors declare that they have no known com-
peting financial interests or personal relationships
that could have appeared to influence the work
reported in this paper.

References

Anjum MM, Mohammed N, Li W, et al (2022)
Privacy preserving collaborative learning of gen-
eralized linear mixed model. Journal of Biomed-
ical Informatics 127:104,008

Au Q, Schalk D, Casalicchio G, et al (2019)
Component-wise boosting of targets for
multi-output prediction. arXiv preprint
arXiv:190403943

Augustyn DR, Wycíslik L, Mrozek D (2021)
Perspectives of using cloud computing in inte-
grative analysis of multi-omics data. Briefings
in Functional Genomics 20(4):198–206. https:
//doi.org/10.1093/bfgp/elab007, URL https://
doi.org/10.1093/bfgp/elab007

Bazeley P (2012) Integrative analysis strategies
for mixed data sources. American Behavioral
Scientist 56(6):814–828

Bender A, Rügamer D, Scheipl F, et al (2020)
A general machine learning framework for sur-
vival analysis. In: Joint European Conference on
Machine Learning and Knowledge Discovery in
Databases, Springer, pp 158–173

Boyd K, Lantz E, Page D (2015) Differential
privacy for classifier evaluation. In: Proceed-
ings of the 8th ACM Workshop on Artificial
Intelligence and Security, pp 15–23

Brockhaus S, Rügamer D, Greven S (2020) Boost-
ing functional regression models with fdboost.
Journal of Statistical Software 94(10):1 – 50

Brumback BA, Ruppert D, Wand MP (1999)
Variable selection and function estimation in
additive nonparametric regression using a data-
based prior: Comment. Journal of the American
Statistical Association 94(447):794–797

Bühlmann P, Yu B (2003) Boosting with the L2
loss: regression and classification. Journal of the
American Statistical Association 98(462):324–
339

Bühlmann P, Hothorn T, et al (2007) Boost-
ing algorithms: Regularization, prediction and
model fitting. Statistical science 22(4):477–505

Chen YR, Rezapour A, Tzeng WG (2018)
Privacy-preserving ridge regression on dis-
tributed data. Information Sciences 451:34–49

Curran PJ, Hussong AM (2009) Integrative data
analysis: the simultaneous analysis of multiple
data sets. Psychological methods 14(2):81

Dua D, Graff C (2017) UCI machine learning
repository. URL http://archive.ics.uci.edu/ml

Dwork C (2006) Differential privacy. In: Inter-
national Colloquium on Automata, Languages,
and Programming, Springer, pp 1–12

Eilers PH, Marx BD (1996) Flexible smoothing
with B-splines and penalties. Statistical science
pp 89–102

15

Gambs S, Kégl B, Aı̈meur E (2007) Privacy-
preserving boosting. Data Mining and Knowl-
edge Discovery 14(1):131–170

Gaye A, Marcon Y, Isaeva J, et al (2014)
Datashield: taking the analysis to the data, not
the data to the analysis. International journal
of epidemiology 43(6):1929–1944

Hoerl AE, Kennard RW (1970) Ridge regression:
Biased estimation for nonorthogonal problems.
Technometrics 12(1):55–67

Hofner B, Hothorn T, Kneib T, et al (2011) A
framework for unbiased model selection based
on boosting. Journal of Computational and
Graphical Statistics 20(4):956–971

Jones EM, Sheehan NA, Gaye A, et al (2013)
Combined analysis of correlated data when data
cannot be pooled. Stat 2(1):72–85

Karr AF, Lin X, Sanil AP, et al (2005) Secure
regression on distributed databases. Journal
of Computational and Graphical Statistics
14(2):263–279

Lazarevic A, Obradovic Z (2001) The distributed
boosting algorithm. In: Proceedings of the sev-
enth ACM SIGKDD international conference
on Knowledge discovery and data mining, pp
311–316

Li J, Kuang X, Lin S, et al (2020a) Privacy
preservation for machine learning training and
classification based on homomorphic encryption
schemes. Information Sciences 526:166–179

Li Q, Wen Z, He B (2020b) Practical feder-
ated gradient boosting decision trees. In: Pro-
ceedings of the AAAI conference on artificial
intelligence, pp 4642–4649

Liew BX, Rügamer D, Abichandani D, et al
(2020) Classifying individuals with and with-
out patellofemoral pain syndrome using ground
force profiles – Development of a method using
functional data boosting. Gait & Posture 80:90–
95

Litwin W, Mark L, Roussopoulos N (1990) Inter-
operability of multiple autonomous databases.

ACM Computing Surveys (CSUR) 22(3):267–
293

Lu CL, Wang S, Ji Z, et al (2015) Webdisco: a
web service for distributed cox model learning
without patient-level data sharing. Journal of
the American Medical Informatics Association
22(6):1212–1219

Luo C, Islam M, Sheils NE, et al (2022) Dlmm
as a lossless one-shot algorithm for collabora-
tive multi-site distributed linear mixed models.
Nature Communications 13(1):1–10

McCullagh P, Nelder JA (2019) Generalized linear
models. Routledge

McMahan B, Moore E, Ramage D, et al (2017)
Communication-efficient learning of deep net-
works from decentralized data. In: Artificial
intelligence and statistics, PMLR, pp 1273–1282

Mirza B, Wang W, Wang J, et al (2019) Machine
learning and integrative analysis of biomedical
big data. Genes 10(2):87

Mohassel P, Zhang Y (2017) Secureml: A system
for scalable privacy-preserving machine learn-
ing. In: 2017 IEEE symposium on security and
privacy (SP), IEEE, pp 19–38

Naehrig M, Lauter K, Vaikuntanathan V (2011)
Can homomorphic encryption be practical? In:
Proceedings of the 3rd ACM workshop on Cloud
computing security workshop, pp 113–124

Paillier P (1999) Public-key cryptosystems based
on composite degree residuosity classes. In:
International conference on the theory and
applications of cryptographic techniques,
Springer, pp 223–238

R Core Team (2021) R: A Language and Envi-
ronment for Statistical Computing. R Founda-
tion for Statistical Computing, Vienna, Austria,
URL https://www.R-project.org/

Rügamer D, Brockhaus S, Gentsch K, et al
(2018) Boosting factor-specific functional
historical models for the detection of syn-
chronization in bioelectrical signals. Journal
of the Royal Statistical Society: Series C

16

(Applied Statistics) 67(3):621–642. https:
//doi.org/https://doi.org/10.1111/rssc.12241,
URL https://rss.onlinelibrary.wiley.com/doi/
abs/10.1111/rssc.12241

Saintigny P, Zhang L, Fan YH, et al (2011) Gene
expression profiling predicts the development
of oral cancer. Cancer Prevention Research
4(2):218–229

Samarati P, Sweeney L (1998) Protecting pri-
vacy when disclosing information: k-anonymity
and its enforcement through generalization and
suppression

Schalk D, Bischl B, Rügamer D (2022a) Accel-
erated componentwise gradient boosting using
efficient data representation and momentum-
based optimization. Journal of Computational
and Graphical Statistics 0(ja):1–27. https:
//doi.org/10.1080/10618600.2022.2116446,
URL https://doi.org/10.1080/10618600.2022.
2116446

Schalk D, Hoffmann VS, Bischl B, et al (2022b)
Distributed non-disclosive validation of pre-
dictive models by a modified roc-glm. arXiv
preprint arXiv:220310828

Schmid M, Hothorn T (2008) Boosting addi-
tive models using component-wise p-splines.
Computational Statistics & Data Analysis
53(2):298–311

Ünal AB, Pfeifer N, Akgün M (2021) ppaurora:
Privacy preserving area under receiver oper-
ating characteristic and precision-recall curves
with secure 3-party computation. ArXiv 2102

Wood SN (2017) Generalized additive models: an
introduction with R. Chapman and Hall/CRC

Wu Y, Jiang X, Kim J, et al (2012) G rid binary lo
gistic re gression (glore): building shared models
without sharing data. Journal of the American
Medical Informatics Association 19(5):758–764

Yan Z, Zachrison KS, Schwamm LH, et al
(2022) Fed-glmm: A privacy-preserving and
computation-efficient federated algorithm for
generalized linear mixed models to analyze cor-
related electronic health records data. medRxiv

Zhu R, Jiang C, Wang X, et al (2020)
Privacy-preserving construction of gener-
alized linear mixed model for biomedical
computation. Bioinformatics 36(Supple-
ment 1):i128–i135. https://doi.org/10.
1093/bioinformatics/btaa478, URL https:
//doi.org/10.1093/bioinformatics/btaa478

CHAPTER 10
Distributed non-disclosive validation of predictive mod-

els by a modified ROC-GLM

Contributing article

Schalk, D., Hoffmann, V. S., Bischl, B., and Mansmann, U. (2022b). Distributed non-disclosive vali-
dation of predictive models by a modified roc-glm. arXiv preprint arXiv:2203.10828

At the time the thesis was handed in, the article was in review at the journal BMC Medical Research
Methodology.

Declaration of contributions

Daniel Schalk wrote themanuscript, implemented themethods and the simulation study, and prepared
the use case. He also created all graphics and the interpretation of the results from the simulation study
and from the use case. In addition, much effort was put into reproducibility, for which he created a
Docker container and a GitHub repository with the simulation study results. The application example
is automatically executed via GitHub every week to ensure functionality.

Contribution of the coauthors

The idea of the distributed AUC calculation originated from Prof. Dr. Ulrich Mansmann. All co-
authors provided substantial assistance in writing themanuscript and interpreting the simulation study
results.

Schalk et al.

Distributed non-disclosive validation of predictive
models by a modified ROC-GLM
Daniel Schalk1,3,4*, Verena S. Hoffmann2,3, Bernd Bischl1,4 and Ulrich Mansmann1,2,3

*Correspondence:

daniel.schalk@stat.uni-

muenchen.de

1Department of Statistics, LMU

Munich, Munich, Germany

Full list of author information is

available at the end of the article

Abstract

Background: Distributed statistical analyses provide a promising approach for
privacy protection when analyzing data distributed over several databases. This
approach brings the analysis to the data, rather than the data to the analysis.
Instead of directly operating on data, the analyst receives anonymous summary
statistics, which are combined into an aggregated result. Further, in model
development, it is key to evaluate a trained model w.r.t. to its prognostic or
predictive performance. For binary classification, one technique is analyzing the
receiver operating characteristics (ROC). Hence, we are interested to calculate
the area under the curve (AUC) and ROC curve for a binary classification task
using a distributed and privacy-preserving approach.

Methods: We employ DataSHIELD as the technology to carry out distributed
analyses, and we use a newly developed algorithm to validate the prediction score
by conducting distributed and privacy-preserving ROC analysis. Calibration curves
are constructed from mean values over sites. The determination of ROC and its
AUC is based on a generalized linear model (GLM) approximation of the ROC
curve, the ROC-GLM, as well as on ideas of differential privacy (DP). DP adds

noise (quantified by the ℓ2 sensitivity ∆2(f̂)) to the data. The appropriate choice
of the ℓ2 sensitivity was studied by simulations.

Results: In our simulation scenario, the true and distributed AUC measures differ
by ∆AUC < 0.01 depending on the choice of the differential privacy parameters.
It is recommended to check the accuracy of the distributed AUC estimator in
specific simulation scenarios when ∆2(f̂) > 0.07. Here, the accuracy of the
distributed AUC estimator may be impaired by too much artificial noise added
from DP.

Conclusions: The applicability of our algorithms depends on the sensitivity of the
underlying statistical/predictive model. The simulations carried out have shown
that the approximation error is acceptable for the majority of simulated cases. For
models with high sensitivity, the privacy parameters must be set accordingly
higher to ensure sufficient privacy protection, which affects the approximation
error. This work shows that complex measures, as the AUC, are applicable for
validation in distributed setups while preserving an individual’s privacy.

Keywords: Area under the ROC curve; Distributed computing; Medical tests;
ROC-GLM

1 Introduction

Medical research is based on the trust that the analysis of confidential patient data

follows principles of privacy protection. However, depending on the released data

Schalk et al. Page 2 of 21

and proposed diagnosis, breaches of the patient’s privacy may occur [15]. Even

when a patient gives informed consent that the researcher can have access to their

pseudonymized patient data, it is necessary to keep data in a protected environment

and to process it accordingly. As described by Arellano et al. [1], when the protection

of sensitive patient data is a key objective, privacy-preserving modelling should be

considered. Typically, multi-centre studies in medicine or epidemiology collect the

data in a central study database and perform the analyses in a specifically protected

environment following the informed consent of the study subjects. Analogously, in

big-data real-world applications, the data of interest may be provided by different

locations and may be transferred from there to a central database for analysis. How-

ever, this requires an administratively challenging and time-consuming trustworthy

data-sharing process.

Using only anonymous and aggregated data for analysis can alleviate the admin-

istrative load for data sharing. By reducing the administrative work of conventional

data sharing, the new concept of employing distributed data networks in clinical

studies makes it possible to leverage routinely collected electronic health data and

thus streamline data collection. Non-disclosing distributed analysis is an important

part of this concept, as this approach enables statistical analyses without sharing

individual patient data (IPD) between the various sites of a clinical study or sharing

IPD with a central analysis unit. Thus, non-disclosing distributed analyses protect

patient data privacy and enhance data security, making this a potentially advan-

tageous approach for medical research involving sensitive patient data. However,

innovative methods are needed to support robust multivariable-adjusted statistical

analysis without the need to centralize IPD, thereby providing better protection for

patient privacy and confidentiality in multi-database studies.

As a part of the German Medical Informatics Initiative[1] (MII) the Data Inte-

gration for Future Medicine (DIFUTURE) consortium [21] undertakes distributed

data network studies and provides tools as well as algorithms for non-disclosing

distributed analyses. DIFUTURE’s specific objective is to provide digital tools for

individual treatment decisions and prognosis. Therefore, the development of dis-

tributed algorithms for the discovery and validation of prognostic and predictive

rules is highly relevant for this mission. In the following paper, we investigate how

the area under the curve (AUC) confidence intervals (CIs) proposed by DeLong et al.

[5] behave if the computed AUC uses a generalized linear model (GLM) approach

of Pepe [19] in a distributed differential privacy framework.

The concept of differential privacy was operationalized by Dwork [6]. An algorithm

is considered to be differentially private if an observer cannot determine based solely

on the output whether a particular individual’s information was used in the compu-

tation. Differential privacy is often discussed in the context of ensuring protection

of patient data privacy, as differentially private algorithms are more likely to resist

identification and reidentification attacks [8] than alternative approaches.

One of the state-of-the-art of prognostic/predictive validation techniques in a bi-

nary classification setting is to calculate the receiver operator characteristic (ROC)

[1]www.medizininformatik-initiative.de

Schalk et al. Page 3 of 21

curve and its AUC in the pooled data as well as assess the quality of calibration [26].

In general, IPD transfer requires specific patient consent, and data protection laws

apply. Here, we present a non-disclosing distributed ROC-GLM, which we use to

calculate the ROC curve, its AUC, and the respective CIs. These methods and

their implementation in DataSHIELD framework [10] allow analyses in which IPD

does not leave its secured environment. This way, only noisy IPD under differential

privacy or anonymous and aggregated statistics are shared, thereby preventing the

identification of individuals. We also demonstrate that assessing the calibration of

binary classification rules is a straightforward task. Thus, non-disclosing distributed

validation of prediction and prognostic tools is a milestone in data-driven medicine

and can unlock a plethora of medical information for research.

Contribution The work herein provides new privacy-preserving algorithms adapted

to the distributed data setting for the ROC-GLM [18], the AUC derived therefrom,

and its CIs for that AUC. To validate the algorithms, we provide a simulation study

to assess estimation accuracy and to compare the results to the standard approach.

Furthermore, we apply the proposed algorithms to validate a given prognostic rule

on data of breast cancer patients.

We describe how the adjustments of the distributed ROC analysis are incorpo-

rated into (1) the ROC-GLM by using differential privacy [6] to obtain a privacy-

preserving survivor function that can be communicated without the threat of pri-

vacy breaches and (2) secure aggregations to conduct a distributed Fisher scoring

algorithm [13] to obtain parameter estimates for the ROC-GLM. In addition to the

ROC analysis to assess the discrimination of a classifier, we describe a distributed

calibration approach that respects the privacy of the individuals. Furthermore, we

introduce a distributed version of the Brier score [4] and the calibration curve [27].

2 Related literature

Boyd et al. [2] calculate the AUC under differential privacy using a symmetric

binormal ROC function. However, our approach is more general, with a possible

extension to multiple covariates. While they derive the AUC from the ROC param-

eters, we use integration techniques. We also provide CIs for the AUC. Ünal et al.

[25] use homomorphic encryption to calculate the ROC curve. Their approach does

not provide CIs or an extension to multiple covariates. To the best of our knowledge,

a modified ROC-GLM algorithm for non-disclosing distributed analyses has so far

not been developed.

3 Background

Throughout this paper, we consider binary classification, with 1 for a case with the

trait(s) of interest (i.e., “diseased”, “success”, “favorable”) and 0 for the remain-

ing cases (i.e., lacking trait(s) of interest, “healthy”, “no success”, “unfavorable”).

Furthermore, f(x) ∈ R is the true score based on a true but unknown function f

for a patient with a feature vector x of an underlying random vector X. In this

paper, this score can also express a posterior probability with f(x) ∈ [0, 1] and is

Schalk et al. Page 4 of 21

explicitly noted in the corresponding text passages. The function f is estimated by

a statistical (classification) model f̂ : Rp → R. The estimated individual score for

a subject with feature or covariate vector x ∈ Rp is f̂(x). The training data set

used to fit f̂ is denoted as D = {(x1, y1), . . . , (xn, yn)} with yi ∈ {1, 0}. The score

f̂(x) and a threshold value c ∈ R are used to build a binary classifier: 1[c,∞)(f̂(x)).

On an observational level, x1,i and x0,i indicate the ith observation that corre-

sponds to a positive or negative output y. The number of observations in D with

output 1 and 0 are denoted by n1 and n0. The set of scores that corresponds to

the positive or negative output is denoted by F1 = {f̂(x1,i) | i = 1, . . . , n1} and

F0 = {f̂(x0,i) | i = 1, . . . , n0}, with F1,i = f̂(x1,i) and F0,i = f̂(x0,i).

3.1 ROC curve and AUC

To quantify the quality of a binary classifier, we use the true positive rate (TPR)

and false positive rate (FPR) with values between 0 and 1: TPR(c) = P (f(X) ≥
c | Y = 1) and FPR(c) = P (f(X) ≥ c | Y = 0) for threshold c ∈ R [18]. These

probability functions are also known as survivor functions S1(c) = TPR(c) and

S0(c) = FPR(c). The ROC curve is defined as ROC(t) = S1(S
−1
0 (t)). The AUC

as a measure of discrimination between the two distributions of the positive and

negative class is given as AUC =
∫ 1

0
ROC(t) dt [30].

3.2 Empirical calculation of the ROC curve and AUC

The calculation of the empirical ROC curve uses the empirical survivor functions Ŝ1

and Ŝ0. These functions are based on the empirical cumulative distribution functions

(ECDF) F̂1 of F1 and F̂0 of F0: Ŝ1 = 1− F̂1 and Ŝ0 = 1− F̂0. The set of possible

values of the empirical TPR and FPR are given by S1 = {Ŝ1(f̂(x0,i)) | i = 1, . . . , n0}
and S0 = {Ŝ0(f̂(x1,i)) | i = 1, . . . , n1} and are also called placement values. These

values standardize a given score relative to the class distribution [19]. The set S1

represents the positive placement values and S0 the negative placement values.

The empirical version of the ROC(t) is a discrete function derived from the place-

ment values S1 ⊆ {0, 1/n1, . . . , (n1−1)/n1, 1} and S0 ⊆ {0, 1/n0, . . . , (n0−1)/n0, 1}.
The empirical AUC is then a sum over rectangles of width 1/n0 and height

Ŝ1(f̂(x0,i)):

ÂUC = n−1
0

n0∑
i=1

Ŝ1(f̂(x0,i)). (1)

3.3 CI for the empirical AUC

The approach proposed by [5] is used to calculate CIs. Here, the variability of

the estimated AUC from the empirical variance (var̂) of the placement values is

determined by:

var̂(AUC) =
var̂(S1)

n0
+

var̂(S0)

n1
. (2)

Schalk et al. Page 5 of 21

This approach provides a CI for the logit AUC, from which the CI for the AUC can

be derived by the logit−1 transformation:

ciα (logit (AUC)) = logit
(
ÂUC

)
± Φ−1

(
1− α

2

) √
var̂ (AUC)

ÂUC
(
1− ÂUC

) . (3)

The term Φ−1 denotes the quantile function of the standard normal distribution.

Furthermore, statistical testing can be conducted based on that CI. For example,

the hypothesis H0 : AUC ≤ a0 vs. H1 : AUC > a0 with a significance level of α

can be tested by checking whether logit (a0) > a, ∀a ∈ ciα to reject H0.

3.4 The ROC-GLM

The ROC-GLM interprets the ROC curve as a GLM [19, Section 5.5.2]: ROCg (t|γ) =
g(γh(t)), with link function g : R → [0, 1], η 7→ g(η), coefficient vector γ ∈ Rl, and

covariate vector h : R → Rl, t 7→ h(t) = (h1(t), . . . , hl(t))
T. The ROC-GLM is

an unbiased estimator of the ROC [18]. Estimating the ROC-GLM is based on

an intermediate data set DROC-GLM = {(uij ,h(tj)) | i = 1, . . . , n1, j = 1, . . . , nT }
with covariates h(tj), set of thresholds T = {t1, . . . , tnT

}, and binary response

uij ∈ {0, 1}, uij = 1(Ŝ0(F1,i),∞)(tj) = 1(−∞,F1,i](Ŝ
−1
0 (tj)). The simplest ROC-GLM

uses the two-dimensional vector h(t) with h1(t) = 1 and h2(t) = Φ−1(t). Setting the

link function to g = Φ results in the binormal form ROCg (t|γ) = Φ(γ1 + γ2Φ
−1(t))

and is represented as a probit regression with response variable uij and covari-

ate Φ−1(tj). A common strategy for choosing the set of thresholds T is to use an

equidistant grid.

The estimated ROC curve ROCg(t|γ̂) results from estimating the model param-

eters γ as γ̂. The estimated AUC from the ROC-GLM ÂUCROC-GLM is obtained

by calculating the integral ÂUCROC-GLM =
∫ 1

0
ROCg(t|γ̂) dt. Here, we use Rs

integrate function [20]. Figure 1 visualizes the ROC-GLM algorithm with all in-

dividual parts.

Model f̂

Data D

F Ŝ0 DROC-GLM

Thresholds T

ROCg

Figure 1 All parts of the ROCGLM(D) procedure, starting with the data and a model for

predicting scores Y , calculating the survivor function ŜD̄, and finally calculating intermediate data
DROC-GLM for the probit regression to obtain the parameters of the ROC-GLM ROCg .

3.5 Differential privacy

Following Dwork et al. [9], we add normally distributed noise r to a randomized

mechanism M : X 7→ Y with domain X (e.g., X = Rp) and target domain Y

Schalk et al. Page 6 of 21

(e.g., Y = R in regression) to ensure (ε, δ)-differential privacy [7]. (ε, δ)-differential

privacy is given if, for any subset of outputs R ⊆ Y, the property P (M(x) ∈ R) ≤
exp(ε)P (M(x′) ∈ R) + δ holds for two adjacent inputs[2] x,x′ ∈ X . The value

of ε controls how much privacy is guaranteed. The value of δ is the probability

that (ε, 0)-differential privacy is broken (also known as ε-differential privacy and

the original definition proposed in [8]).

Our randomized mechanism is M(x) = f̂(x) + r. Hence, the protected values of

the survivor function are F̃1 = {M(x1,i) | i = 1, . . . , n1} and not the original score

values F1. The noise r follows a normal distribution N (0, τ2). The variance is set

to any value τ ≥ c∆2(f̂)/ε with c2 > 2 ln(1.25/δ), ε ∈ (0, 1), and ∆2(f̂) is the ℓ2-

sensitivity of f̂ measured as ∆2(f̂) = maxadjacent x, x′ ∥f̂(x)− f̂(x′)∥2. In practice,

we first calculate the ℓ2-sensitivity of the prediction model f̂ to determine possible

values for ε and δ (see Section 5.3.1). Then, we control the amount of noise added

to the algorithm by choosing ε and δ, which sets the variance of the generated noise

via τ = c∆2(f̂)/ε and c =
√

2 ln(1.25/δ). Appendix A.2. contains further details

and a visualization of the Gaussian mechanism.

4 Distributed ROC-GLM

4.1 General principles

A total of K data sets are distributed over a network of K sites: D(1), . . . ,D(K).

Each data set D(k) consists of n(k) observations (x
(k)
i , y

(k)
i). The ith feature vector

of the kth site is denoted by x
(k)
.,i . The ith outcome on site k is y

(k)
i . We assume the

distributed data to be part of the full but inaccessible data set:

D =

K⋃
k=1

D(k), n = n(1) + · · ·+ n(K) (4)

Instead of calculating the ROC-GLM for one local data set, we want to calculate

the ROC-GLM on K confidential distributed data sets D(1), . . . ,D(K). All shared

information must comply with the following non-disclosing principles:

A1 Aggregated values from which it is not possible to derive original values are

shared. Therefore, an aggregation a : Rd 7→ R, v → a(v) with d ≥ q ∈ N must

be applied to allow sharing the value a(v). The value of q is a privacy level

guaranteeing that at least q values were used to gain a(v). In the distributed

setup, the aggregation a(v(k)) with n(k) unique values in v(k) shared from

each of the K sites can then be further processed. Values a(v(k)) are just

allowed to be shared if n(k) ≥ q.

A2 Differential privacy [6] is used to ensure non-disclosive IPD via a noisy repre-

sentation.

[2]In theory, multiple ways exist to define adjacent inputs. Throughout this article, adjacent inputs
are based on a histogram representation x̃ ∈ Np and x̃′ ∈ Np of two input vectors x and x′. The
definition of adjacent inputs is then given by an equal ℓ1 norm of x̃ and x̃′ to one: adjacent x, x′ ⇔
∥x̃− x̃′∥1 = 1 [cf., 9].

Schalk et al. Page 7 of 21

Example: Distributed Brier score and calibration curve Probabilistic (or scoring)

classifiers can be assessed by quantifying discrimination and calibration. While the

AUC measures discrimination, calibration is often addressed by the Brier score [4]

or a calibration curve [27]. Both can be calculated by considering criterion A1.

Brier score: The Brier score BS is defined as the mean squared error of the true

0-1-labels and the predicted probabilities of belonging to class 1. For the Brier score,

the score f̂(x) ∈ [0, 1] is given as posterior probability. The Brier score is calculated

by:

BS = n−1
n∑

i=1

(
yi − f̂(xi)

)2

(5)

Hence, having a prediction model f̂ at each of the K sites, we can calculate the

Brier score by:

1 Calculating the residuals e
(k)
i based on the true label y

(k)
i at site k and the

predicted probabilities f̂(x
(k)
i): e

(k)
i = y

(k)
i − f̂(x

(k)
i), ∀i = 1, . . . , n(k).

2 Calculating asum(e
(k)◦e(k)), with e(k) = (e

(k)
1 , . . . , e

(k)

n(k))
T ∈ Rnk , the element-

wise product ◦, and aggregation asum(v
(k)) =

∑n(k)

i=1 v
(k)
i .

3 Sending asum(e
(k)◦e(k)) and n(k) (if nk ≥ q) to the host, who finally calculates

BS = n−1
∑K

k=1 asum(e
(k) ◦ e(k)).

Calibration curve: To calculate a calibration curve, we discretize the domain of

the probabilistic classifier f̂ in [0, 1] into nbin bins (for example, nbin+1 equidistant

points pi from 0 to 1 to construct the nbin bins bl = [pl, pl+1) for l = 1, . . . , nbin − 1

and bnbin
= [pnbin

, pnbin+1] for l = nbin). The calibration curve is the set of 2-

dimensional points pcal,l = (pf l, tf l), with tf l = |Il|−1
∑

i∈Il
yi as the true fraction

of yi = 1 in bin bl and pf l = |Il|−1
∑

iIl
f̂(xj) as the predicted fraction for outcome

1 in bl. The set Il describes the observations for which the prediction f̂(xi) falls

into bin bl: Il = {i ∈ {1, . . . , n} | f̂(xi) ∈ bl}. A probabilistic classifier f̂ is well-

calibrated if the points pcal,l are close to the bisector.

In the distributed setup, the points pcal,l are constructed by applying the dis-

tributed mean to both points for each bin at each site:

1 Set all b1, . . . , bnbin
, and communicate them to the sites.

2 Calculate the values c
(k)
l,pf = asum({f̂(x(k)

i) | i ∈ I(k)
l }) and c

(k)
l,tf =

asum({y(k)i | i ∈ I(k)
l }) for all l = 1, . . . , nbin.

3 Send {(c(k)l,tf , c
(k)
l,pf , |I

(k)
l |) | k = 1, . . . ,K, l = 1, . . . , nbin} to the host if |I(k)

l | ≥ q.

4 The host calculates the calibration curve pcal,l by aggregating the elements

tf l = (
∑K

k=1 |I
(k)
l |)−1

∑K
k=1 c

(k)
l,tf and pf l = (

∑K
k=1 |I

(k)
l |)−1

∑K
k=1 c

(k)
l,pf for l =

1, . . . , nbin.

Parts of the distributed ROC-GLM Two aspects are important to construct the

distributed version of the ROC-GLM: distrROCGLM. First, the distributed version

of the empirical survivor function; Second, a distributed version of the probit re-

gression. Figure 2 shows details of the general procedure. The starting point of the

distributed ROC-GLM is the private data D(1), . . . ,D(K) on the K sites.

Schalk et al. Page 8 of 21

The global survivor function Ŝ0 is approximated by S̃0 (Section 4.2) using principle

A2. The computation of S̃0 depends on the level of privacy induced by the (ε, δ)-

differential privacy parameters (Section 3.5). The accuracy of the AUC as well

as its CI depends on the choice of ε and δ. The global survivor function S̃0 is

transmitted to each of the K sites and allows calculation of a local version of the

intermediate data set D(k)
ROC-GLM (See Section 3.4). The distributed probit regression

complies with principle A1 and produces the distributed ROC-GLM parameter

estimates (see Section 4.3). Using the ROC-GLM of these parameters, denoted by

R̃OCg, allows calculation of the approximated AUC, denoted by ÃUCROC-GLM =∫ 1

0
R̃OCg(t|γ̂) dt. Finally, the CIs can be calculated based on a variance estimation,

which also complies with principle A1 (See Section 4.4).

Model f̂

Data D(1) F (1)

R̃OCg
Data D(2)

Data D(K)

...

F (1)

F (1)

F̃ (1)

F̃ (1)

F̃ (1)

+r(1)

+r(2)

+r(K)

F̃ S̃0

D(1), T

D(1)
ROC-GLM

D(2), T

D(1)
ROC-GLM

D(K), T

D(1)
ROC-GLM

...

Figure 2 All parts of the distrROCGLM procedure calculating the distributed approximation

R̃OCg of ROCg . The starting points are the sites (here K = 3), which communicate scores with

added noise, calculate the global survivor function S̃D̄, and finally calculate the distributed probit

regression on intermediate data D(k)
ROC-GLM at each site.

4.2 Approximating the global survivor functions

The greatest challenge here is the privacy-preserving calculation of the global sur-

vivor function. It is prohibited to directly communicate score values F (k)
1 from

the local sites to the analyst. Instead, we propose to calculate an approxima-

tion S̃1: First, we set the value of ε and τ and generate a noisy representation

F̃ (k)
1 = F (k)

1 + r(k) of the original score values F (k)
1 at each site. Second, the noisy

scores are communicated to the host and pooled to F̃1 =
⋃K

k=1 F̃
(k)
1 to calculate an

approximation S̃1 of the global survivor function. Third, (ε, δ)-differential privacy

allows sharing S̃1 with all sites. Forth, the local sites calculate the global place-

ment values and create the intermediate data set to enter the distributed probit

regression.

4.3 Distributed GLM

Existing solutions for distributed computing – such as federated learning [17] – are

based on an iterative process of sharing and aggregating parameter values. Although

this approach could also be applied to GLMs, it may lead to inexact estimates for

heterogeneous data situations [29]. For distributed calculation of the GLM, we use

Schalk et al. Page 9 of 21

an approach described by [13] and adjust the optimization algorithm of GLMs –

the Fisher scoring – at its base to estimate parameters without performance loss.

This approach complies with A1.

The basis of the ROC-GLM is a probit regression (and therefore a GLM) with

E(Y | X = x) = g(xTθ) with link function g, response variable Y , and covariates X.

The Fisher scoring is an iterative descending technique θ̂m+1 = θ̂m+I−1(θ̂m)V(θ̂m)

that uses second order gradient information. The components are the score vector

V(θ̂m) = [∂ℓθ(y, x)/∂θ]θ=θ̂m
∈ Rp and the observed Fisher information I(θ̂m) =

[∂V(θ)/∂θ]θ=θ̂m
∈ Rp×p based on the log likelihood ℓθ(D) =

∑n
i=1 log(fY (yi, xi)).

A common stop criterion (as used in Rs [22] glm function) to determine whether

the Fisher scoring has converged or not is when the relative improvement |devm −
devm−1|/(|devm| + 0.1) of the deviance devm = −2 ln(ℓθ̂m(D)) is smaller than a

value a. The default value used in the glm function of R is a = 10−8.

With non-overlapping data at the K sites (each subject contributes information

only at a unique site), condition (4) is fulfilled. This implies the additive structure of

the global score vector V(θm) and Fisher information I(θm). With the site-specific

score vector Vk(θm) and Fisher information Ik(θm), it holds:

V(θ̂m) =

K∑
k=1

Vk(θ̂m) (6)

I(θ̂m) =

K∑
k=1

Ik(θ̂m) (7)

This process complies with A1 and allows estimation of the parameter vector θ̂

with the same precision as in an analysis based on data aggregated over the sites.

4.4 Distributed CIs for the AUC

A straightforward consequence from Section 4.1, is that the distributed calculation

of the global sample mean (distrAVG(v(1), . . . ,v(K))) complies with A1. Here, we

provide a distributed version of the sample variance var̂(v) = (n−1)−1
∑n

i=1(vi−v̄)2

by a two-step procedure. In the first step, the sample mean is calculated us-

ing v̄ = distrAVG(v(1), . . . ,v(K)) and shared with all K sites. In the second

step, each site calculates the aggregation avar(v
(k)) =

∑n(k)

i=1 (v
(k)
i − v̄)2, which is

further aggregated to the sample variance var̂(v) = (n − 1)−1
∑K

k=1 avar(v
(k)):

distrVAR(v(1), . . . ,v(K)). The operations distrAVG and distrVAR fulfill A1 if

n(k) ≥ q, ∀k ∈ {1, . . . ,K}.

Based on operation distrVAR, non-disclosing distributed CIs for the global AUC

can be provided. As described in Section 3.2 and Section 3.3, the calculation of

the approximated CI requires both approximated survivor functions S̃0 and S̃1 (see

Section 4.2). A distributed CI c̃iα to approximate ciα follows from Formula (3).

Schalk et al. Page 10 of 21

5 Simulation study

5.1 General considerations

It is emphasized in Section 4.3 that the survivor functions for the data at hand are

needed to build placement values and to create the data set for the probit regression

in order to estimate the ROC curve and its AUC. Based on the Gaussian mechanism,

noise is generated to create a non-disclosing distributed survivor function. The aim

of the simulation study is to understand the effect of the introduced noise (which

is necessary to conduct the distributed analysis) on the accuracy when compared

to the empirical AUC and the CI of DeLong et al. [5]. We assume that the well-

studied empirical AUC [11, 16] and CI are adequate estimators of the true AUC

of the underlying data generating process that is already attached with a certain

estimation error. Our goal is not to construct better estimates for the true AUC, but

to study the difference between our distributed approach to the estimates applied

to the pooled data.

In our simulation, we explore the bias introduced by our distributed approach.

To assess the accuracy of our distributed approach when estimating the AUC, we

measure the difference ∆AUC = AUC − ÃUCROC-GLM of the AUC obtained by

the distributed ROC-GLM ÃUCROC-GLM (Section 4.1) and the empirical AUC

(Section 3.2). Of interest is obtaining an accuracy of |∆AUC| ≤ 0.01.

For the CI, we calculate the error ∆ ciα based on the symmetric difference between

ciα proposed by DeLong et al. [5, see Section 3.3] and our non-disclosing distributed

approach c̃iα (Section 4.4). We study ∆ ciα = |c̃iα,l − ciα,l | + |c̃iα,r − ciα,r |, with
indices l and r denoting the left and right side of the CI, respectively. It is of interest

to have an error smaller than 0.01: ∆ ciα < 0.01.

We explore the following research questions:

Question 1 – Correctness of the ROC-GLM and distributed ROC-GLM

(Section 5.3.1): How can we set both privacy parameters ε and δ to reach

|∆AUC| below 0.01?

Question 2 – Correctness of the AUC CIs (Section 5.3.2): How can we set

both privacy parameters ε and δ to reach ∆ ciα below 0.01?

5.2 Data generation

The aim of the following data generation is to simulate uniformly distributed AUC

values between 0.5 and 1. (1) The data generation starts with randomly picking

n from {100, . . . , 2500}. (2) For each i ∈ {1, . . . , n}, the true prediction scores are

generated from the uniform distribution Fi ∼ U [0, 1]. Next, (3) the class member-

ship yi ∈ {0, 1} is determined by yi = 1(Fi ≥ 0.5). This results in a perfect AUC

of 1. (4) The perfect ordering of the class values with respect to individual scores

is broken by flipping labels randomly. A set of indexes I of size ⌊γn⌋ is selected for

which the corresponding labels are replaced by yi ∼ Ber(0.5), ∀i ∈ I. The fraction

γ is sampled from a U [0.5; 1] distribution. (5) For comparison, the empirical AUC is

calculated from the vector of scores F and flipped labels y. (6) The non-disclosing

distributed process described in Section 4.1 is used to calculate the ÃUCROC-GLM

Schalk et al. Page 11 of 21

and c̃i0.05. The examined values for the distributed ROC-GLM are described in

Section 5.3.1. The simulation is repeated 10000 times.

To demonstrate the effectiveness of the basic non-distributed ROC-GLM AUC

estimation, Figure 3 shows the empirical distribution of the empirical as well as

ROC-GLM-based AUC values depending on the sizes of n. The distribution of the

empirical AUC values is close to the uniform distribution over the range of 0.5 to

1. The behaviour of the distribution at the borders can be explained as follows:

To obtain an AUC value of one, it is necessary to keep all original class labels y.

However, this happens rarely, due to the randomized assignment of the observations

chosen in I. The same applies to AUC values close to 0.5. An AUC value of 0.5

appears if the class labels are completely randomized. This is also a rare event.

n in (1300, 1700] (Count: 1761) n in (1700, 2100] (Count: 1670) n in (2100, 2500] (Count: 1607)

n in (100, 500] (Count: 1691) n in (500, 900] (Count: 1618) n in (900, 1300] (Count: 1646)

0.4 0.6 0.8 1.0 0.4 0.6 0.8 1.0 0.4 0.6 0.8 1.0

0

1

2

3

0

1

2

3

AUC

D
en

si
ty

AUC (ROC−GLM) Empirical AUC

Figure 3 Densities of 10 000 simulated values of the empirical AUC and AUC from the
ROC-GLM. The densities are grouped by different data sizes n.

5.3 Results

5.3.1 Correctness of the ROC-GLM and distributed ROC-GLM

ROC-GLM Figure 3 shows a nearly perfect overlap of the empirical distributions

of the empirical as well as basic non-distributed ROC-GLM-based AUC values in

the range of values between 0.6 and 0.8. Nevertheless, the behaviour at the right

border results from the fact that the response U of the probit regression contains

only very few values of zero and mostly values of 1, resulting in an unbalanced data

situation. This impairs the numerical behaviour of the probit regression estimation.

Next, we quantify the difference between the empirical and the basic non-

distributed ROC-GLM-based AUC estimates: (AUC − AUCROC-GLM). Table 1

shows summary statistics of these differences organized by bins of the empirical

AUC of width 0.025. In Question 1, an absolute difference below 0.01 is requested,

which is fulfilled over the whole AUC range. The mean and median differences for

AUC values ranging from 0.5 to 0.95 fulfil this requirement, whereas AUC values

between 0.95 and 0.975 show slightly larger differences.

Schalk et al. Page 12 of 21

Emp. AUC (Bin) Min. 1st Qu. Median Mean 3rd Qu. Max. Sd. Count

(0.5, 0.525] −0.0044 −0.0002 0.0002 0.0003 0.0008 0.0053 0.0009 384
(0.525, 0.55] −0.0052 0.0000 0.0006 0.0006 0.0011 0.0042 0.0010 490
(0.55, 0.575] −0.0031 0.0003 0.0009 0.0009 0.0015 0.0052 0.0010 463
(0.575, 0.6] −0.0018 0.0006 0.0012 0.0012 0.0017 0.0052 0.0010 481
(0.6, 0.625] −0.0044 0.0009 0.0015 0.0014 0.0020 0.0064 0.0010 485
(0.625, 0.65] −0.0039 0.0012 0.0017 0.0017 0.0022 0.0069 0.0010 501
(0.65, 0.675] −0.0031 0.0013 0.0018 0.0018 0.0023 0.0068 0.0011 503
(0.675, 0.7] −0.0022 0.0012 0.0018 0.0018 0.0023 0.0064 0.0010 465
(0.7, 0.725] −0.0082 0.0010 0.0016 0.0016 0.0023 0.0070 0.0012 523
(0.725, 0.75] −0.0031 0.0008 0.0015 0.0014 0.0021 0.0087 0.0012 485
(0.75, 0.775] −0.0058 0.0004 0.0011 0.0010 0.0018 0.0053 0.0013 501
(0.775, 0.8] −0.0053 −0.0003 0.0004 0.0005 0.0012 0.0088 0.0015 523
(0.8, 0.825] −0.0061 −0.0013 −0.0002 −0.0004 0.0005 0.0045 0.0016 476
(0.825, 0.85] −0.0125 −0.0023 −0.0013 −0.0014 −0.0003 0.0059 0.0019 484
(0.85, 0.875] −0.0111 −0.0037 −0.0026 −0.0025 −0.0014 0.0074 0.0020 520
(0.875, 0.9] −0.0136 −0.0056 −0.0044 −0.0043 −0.0030 0.0076 0.0023 534
(0.9, 0.925] −0.0195 −0.0080 −0.0065 −0.0065 −0.0052 0.0066 0.0026 515
(0.925, 0.95] −0.0193 −0.0105 −0.0091 −0.0089 −0.0076 0.0056 0.0030 481
(0.95, 0.975] −0.0227 −0.0138 −0.0113 −0.0113 −0.0093 0.0067 0.0037 503
(0.975, 1] −0.0180 −0.0093 −0.0062 −0.0064 −0.0034 0.0013 0.0039 529

Table 1 Minimum, 0.25-quantile/1st quantile, median, mean, 0.75-quantile/3rd quantile, maximum,
standard deviation, and the differences AUC −AUCROC-GLM of the bins containing the respective
subset of the 10000 empirical AUC values. Bold values indicate that these AUC bins are not smaller
than 0.01 as demanded by Question 1. The count column indicates the number of simulated AUC
values per bin.

Distributed ROC-GLM In the following, we investigate the accuracy of the AUC

estimated by the distributed ROC-GLM. Differential privacy – a necessary com-

ponent – is determined by the parameters ε and δ. These parameters must be

determined in such a way that Question 1 holds. The data are distributed over

five sites: The simulated prediction scores F and true classes y are randomly split

into K = 5 parts F (1), . . . ,F (5) and y(1), . . . , y(5). Our simulation setting uses

ε ∈ Aε = {0.1, 0.2, 0.3, 0.4, 0.5} and δ ∈ Aδ = {0.1, 0.2, 0.3, 0.4, 0.5}. Due to the

Gaussian mechanism, we must also take the ℓ2-sensitivity into account. We assume

∆2(f̂) ∈ A∆2(f̂)
= {0.01, 0.03, 0.05, 0.07, 0.09}. For the simulation, each setting of

the grid Aε × Aδ × A∆2(f̂)
is evaluated by simulating 10000 data sets (cf. Sec-

tion 5.2) and hence obtaining 10000 ÃUCROC-GLM values that are compared to the

respective empirical AUC.

Figure 4 shows the simulation results for different ε and δ combinations. The

absolute difference of the empirical AUC on the pooled data and the AUC based

on the distributed ROC-GLM is checked for having a value below 0.01. The results

are based on 10000 simulation runs for 25 ε− δ-combinations and for each ∆2(f̂) ∈
{0.01, 0.030.05, 0.07, 0.09}.

Figure 4 reveals that the bias between empirical and distributed AUC depends

on the ℓ2-sensitivity. The smaller the sensitivity and hence the better the model

f̂ , less noise is required to ensure privacy. Correspondingly, smaller choices of pri-

vacy parameters can and should be used to ensure privacy. Based on the results,

we choose (ε, δ) = (0.2, 0.1) for ∆2(f̂) ≤ 0.01, (ε, δ) = (0.3, 0.4) for ∆2(f̂) ∈
(0.01, 0.03], (ε, δ) = (0.5, 0.3) for ∆2(f̂) ∈ (0.03, 0.05], and (ε, δ) = (0.5, 0.5) for

∆2(f̂) ∈ (0.05, 0.07]. Based on the simulation, we recommend using our distributed

approach for settings with ∆2(f̂) > 0.07 with caution, and we highlight that the

accuracy of the AUC estimator suffers because of too much generated noise.

Schalk et al. Page 13 of 21

ε
=

0.1

ε
=

0.2

ε
=

0.3

ε
=

0.4

ε
=

0.5

δ
=

0.1
δ

=
0.2

δ
=

0.3
δ

=
0.4

δ
=

0.5

0.6
0.75
0.9

0.6
0.75
0.9

0.6
0.75
0.9
0.6

0.75
0.9

0.6
0.75
0.9

A
U

C
 b

in

∆2(f) = 0.01

ε
=

0.1

ε
=

0.2

ε
=

0.3

ε
=

0.4

ε
=

0.5

δ
=

0.1
δ

=
0.2

δ
=

0.3
δ

=
0.4

δ
=

0.5

∆2(f) = 0.03

ε
=

0.1

ε
=

0.2

ε
=

0.3

ε
=

0.4

ε
=

0.5

δ
=

0.1
δ

=
0.2

δ
=

0.3
δ

=
0.4

δ
=

0.5

∆2(f) = 0.05

ε
=

0.1

ε
=

0.2

ε
=

0.3

ε
=

0.4

ε
=

0.5

δ
=

0.1
δ

=
0.2

δ
=

0.3
δ

=
0.4

δ
=

0.5

∆2(f) = 0.07

ε
=

0.1

ε
=

0.2

ε
=

0.3

ε
=

0.4

ε
=

0.5

δ
=

0.1
δ

=
0.2

δ
=

0.3
δ

=
0.4

δ
=

0.5

∆2(f) = 0.09

Accuracy unacceptable ∆AUC<0.01

Figure 4 Combinations of the privacy parameters ε and δ and their applicability. Each rectangle
contains empirical AUC bins of size 0.025 (cf. Table 1) and visualizes the mean of the absolute
difference |∆AUC| (mean absolute error, MAE) of the distributed AUC compared to the

empirical AUC per bin. Each rectangle corresponds to one simulation setting (∆2(f̂), ε, δ). The
MAE per bin is categorized according to our hypothesis, with blue visualizing an MAE ≤ 0.01
(Question 1) while red shows an unacceptable accuracy measured as MAE larger than 0.01.

5.3.2 Correctness of the AUC CIs

The respective results in terms of acceptable (ε, δ) combinations are shown in Fig-

ure 5. Acceptable (ε, δ) combinations under Question 1 are also acceptable under

Question 2. Therefore, we recommend using the more restrictive settings described

in the previous Section 5.3.1 for the AUC estimation of the distributed ROC-GLM.

6 Data analysis

In this chapter, we develop a prognostic model and validate its predictive perfor-

mance on a distributed test data set. The following presents the distributed analysis,

which is also compared to the pooled analysis (see Section 6.4). As a privacy level,

we choose a value of q = 5 (see Section 4.1, A1).

About the data The data set is provided by the German Breast Cancer Study

Group [24] and can be found in the TH.data package [12]. The data consists of

records from 686 breast cancer patients on the effect of hormonal therapy on sur-

vival. Besides the binary variable hormonal treatment (horTH), the data set pro-

vides information on age (age), menopausal status (menostat), tumor size (in mm,

tsize), tumor grade (tgrade), number of positive nodes (pnodes), progesterone

receptor (in fmol, progrec), estrogen receptor (in fmol, estrec), recurrence-free

survival time (in days, time), and censoring indicator (0- censored, 1- event, cens).

Because the data set is (by its nature) not distributed, we use 60 % (412 observa-

tions) for training the model and split the remaining 40 % (274 observations) into

5 parts D(1), . . . ,D(5) with n(1) = 56, n(2) = 49, n(3) = 60, n(4) = 49, and n(5) = 60

that are used for the distributed validation. Each split is distributed to a site to

simulate the distributed setup.

Schalk et al. Page 14 of 21

ε
=

0.1

ε
=

0.2

ε
=

0.3

ε
=

0.4

ε
=

0.5

δ
=

0.1
δ

=
0.2

δ
=

0.3
δ

=
0.4

δ
=

0.5

0.6
0.75
0.9

0.6
0.75
0.9

0.6
0.75
0.9
0.6

0.75
0.9

0.6
0.75
0.9

A
U

C
 b

in

∆2(f) = 0.01

ε
=

0.1

ε
=

0.2

ε
=

0.3

ε
=

0.4

ε
=

0.5

δ
=

0.1
δ

=
0.2

δ
=

0.3
δ

=
0.4

δ
=

0.5

∆2(f) = 0.03

ε
=

0.1

ε
=

0.2

ε
=

0.3

ε
=

0.4

ε
=

0.5

δ
=

0.1
δ

=
0.2

δ
=

0.3
δ

=
0.4

δ
=

0.5

∆2(f) = 0.05

ε
=

0.1

ε
=

0.2

ε
=

0.3

ε
=

0.4

ε
=

0.5

δ
=

0.1
δ

=
0.2

δ
=

0.3
δ

=
0.4

δ
=

0.5

∆2(f) = 0.07

ε
=

0.1

ε
=

0.2

ε
=

0.3

ε
=

0.4

ε
=

0.5

δ
=

0.1
δ

=
0.2

δ
=

0.3
δ

=
0.4

δ
=

0.5

∆2(f) = 0.09

Accuracy unacceptable ∆ciα<0.01

Figure 5 Combinations of the privacy parameters ε and δ and their applicability depending on

∆2(f̂). Each rectangle contains empirical AUC bins of size 0.025 (cf. Table 1) and visualizes the

mean of the relative error ∆ ci0.05 of the distributed CI c̃i0.05 compared to ci0.05. Blue shows
accuracy values with ∆ ci0.05 ≤ 0.01 (Question 2 applies), while red visualizes inaccuracies of
∆ ci > 0.01.

The aim is to predict the survival probability p(t|x) = P (T > t|X = x) of

surviving time point t based on covariates x. For the use case, we choose t = 730

(two years), and therefore, the goal is to validate the survival probability of a patient

after two years in the study. The predicted scores are the survival probabilities

ŷi = f̂(xi) = p̂(730|xi) with xi ∈ ∪K
k=1D(k). The corresponding binary variable yi

equals 0 if the patient dies in [0, 730] or a recurrence was observed, and yi equals 1 if

otherwise. Therefore, a high value for the survival probability ŷi ideally corresponds

to a binary outcome of 1.

About the model We choose a random forest [3] using the R package ranger [28]

as a prognostic model f̂ for the survival probability p(t|x). With the exception of

the number of trees (which is set to 20), the random forest was trained with the

default hyperparameter settings of the ranger implementation. The model formula

is given by

Surv(time, cens) ∼ horTh + age + tsize + tgrade + pnodes + progrec + estrec.

About the implementation The implementation is based on the DataSHIELD [10]

framework and is provided by an R package called dsBinVal (github.com/

difuture-lmu/dsBinVal). Further details about these methods and privacy consid-

erations can be found in the respective GitHub README.

Aim of the analysis The main goal of the analysis is to test the hypothesis that

the true AUC is significantly larger than 0.6 as the minimal prognostic performance

of the model f̂ . The significance level is set to α = 0.05:

H0 : AUC ≤ 0.6 vs. H1 : AUC > 0.6 (8)

Schalk et al. Page 15 of 21

To test the hypothesis, we estimate the AUC with ÃUCROC-GLM using the

distributed ROC-GLM as well as the approximated CI c̃i0.05. We reject H0 if

AUC > 0.6, ∀AUC ∈ c̃i0.05.

Analysis plan In the following, (1) we start in with the calculation of the ℓ2-

sensitivity (Section 6.1). Depending on the result, we set the privacy parameters ε

and δ. Next, (2) we continue with fitting the distributed ROC-GLM and calculating

the approximation of the AUC CI (Section 6.2). At this point, we are able to make

a decision about the hypothesis in equation (8). In a final step, (3) we demonstrate

how to check the calibration of the model using the distributed Brier score and

calibration curve (Section 6.3).

6.1 Choice of the privacy parameters

Given the model and the data set, the ℓ2-sensitivity is ∆2(f̂) = 0.016. Following

the results of Section 5.3.1, we use ε = 0.3 and δ = 0.4, as suggested for ∆2(f̂) ∈
(0.01, 0.03].

6.2 Calculation of the distributed ROC-GLM

The fit of the ROC-GLM results in parameter estimates of γ1 = 0.7817 and

γ2 = 1.2486. The AUC obtained from the ROC curve using these parameters is

AUCROC-GLM = 0.6875 with c̃i0.05 = [0.6051, 0.7595]. The results are visualized in

Figure 6.

AUC

0.69
0.61 0.76

0.00

0.25

0.50

0.75

1.00

0.00 0.25 0.50 0.75 1.00

FPR

T
P

R

Approximation via ROC−GLM

ROC Curve

Figure 6 ROC curve estimated by the distributed ROC-GLM.

Based on the given CI, we significantly reject H0 for H1 and hence assume the

true AUC to be greater than 0.6.

Schalk et al. Page 16 of 21

6.3 Checking the calibration

The Brier score of f̂ calculates to BS = 0.1733 and indicates a good but not perfect

calibration. We further assume our model to be not calibrated perfectly. Still, the

calibration is adequate, but the model seems to underestimate the true relative

frequencies for scores greater than 0.3. Figure 7 shows the distributed calibration

curve as well as the individual calibration curves per site. Furthermore, we observe

that the range of the calibration curve does not cover the whole range of the scores

f̂(x) ∈ [0, 1]. This indicates that our model does not predict scores close to 1. We

want to highlight that, due to privacy reasons, not all score values were included

in the calculation; aggregated values are only shared if they consist of at least 5

elements. The table in Appendix A.3 shows the number of elements per bin and

site.

0.0

0.2

0.4

0.6

0.0 0.2 0.4 0.6

Predicted

T
ru

e
fr

eq
ue

nc
y

Server

ds1

ds2

ds3

ds4

ds5

Figure 7 Calibration curve (bold line) and calibration curves of the individual sites using 10 bins.
Note that aggregated values from the site are only shared if one bin contains more than 5 values.
See Appendix A.3 for tables containing the numbers of values per bin.

6.4 Comparison with pooled data

Comparing the ROC curves using the empirical ROC and the distributed ROC-

GLM (Figure 8, left) shows a good fit of the ROC-GLM. The resulting AUC values

are ÃUCROC-GLM = 0.6875 and AUC = 0.6919 with |∆AUC| = 0.0044 < 0.01.

The CIs of the approximated CI c̃i0.05 = [0.6051, 0.7595] and the CI on the pooled

scores ci0.05 = [0.6131, 0.7608] reveals a slightly more pessimistic CI estimation in

the distributed setup. The error of the CI calculates to ∆ ci0.05 = 0.0094 < 0.01.

The distributed calibration curve shows a good overlap with the calibration curve

in areas where all data are allowed to be shared. For bins where this is not the case,

the distributed calibration curve is off. Still, the tendency of over- or underestima-

tion of the distributed calibration curve corresponds to one of the pooled curves. The

bins for which the full information was received are [0, 0.1], (0.1, 0.2], and (0.2, 0.3]

(cf. Appendix A.3 table 1). For all other bins, at least one site was not allowed to

share the aggregated values. The Brier score of the pooled and distributed approach

is equal.

Schalk et al. Page 17 of 21

AUC

0.69
0.61 0.76

0.00

0.25

0.50

0.75

1.00

0.00 0.25 0.50 0.75 1.00

FPR

T
P

R

Approximation via ROC−GLM

ROC Curve

0.0

0.2

0.4

0.0 0.2 0.4 0.6

Predicted

T
ru

e
fr

eq
ue

nc
y

Figure 8 Comparison of the empirical ROC curve with ROC curve obtained by the distributed
ROC-GLM (left). Comparison of the calibration curve when calculated on the pooled scores
compared with the distributed calibration curve (right). The thin curves are the lines on the
pooled data.

7 Reproducibility considerations

All experiments were conducted using R version 4.1.2 on a Linux machine with an

Intel(R) Core(TM) i7-8665U CPU @ 1.90GHz processor. The package used to run

the simulation was batchtools [14]. The code to reproduce all results as well as

all simulation results is available in a GitHub repository[3]. The repository contains

a README file with further details and a script to install all packages with the

respective version used when the benchmark was conducted. Furthermore, a Docker

image[4] can be installed providing a snapshot of the system at the time of the

benchmark containing R and all packages with their respective version. The Docker

image also comes with the RStudio container[5] that allows direct inspection of all

the results in a web browser.

The code to conduct the data analysis is given in a separate GitHub repository[6].

The repository contains the data, an installation of all necessary packages, as well

as code to set up the publicly available DataSHIELD server[7] to run the analysis[8].

8 Discussion

Distributed non-disclosing (i.e., privacy-preserving) strategies for data analysis are

highly relevant for data-driven biomedical research. Since the analyses can be con-

sidered anonymous, current legal data protection frameworks allow their use without

requesting specific consent. Protecting privacy by appropriate means is fundamen-

tal when using personal data for research. These technologies also enable taking

[3]github.com/difuture-lmu/simulations-distr-auc
[4]hub.docker.com/repository/docker/schalkdaniel/simulations-distr-auc
[5]hub.docker.com/r/rocker/rstudio
[6]github.com/difuture-lmu/datashield-roc-glm-demo
[7]Available at opal-demo.obiba.org. The reference, username, and password are available at the
OPAL documentation opaldoc.obiba.org/en/latest/resources.html in the “Types” section.
[8]We cannot guarantee the functionality of the DataSHIELD server or if it will be publicly available
forever. However, we keep the repository up-to-date by using continuous integration, which is
triggered automatically every week. This system also reports errors that occur if the analysis cannot
be conducted on the test server anymore. Further information can be found in the README file
of the repository.

Schalk et al. Page 18 of 21

part in broader network structures without additional administrative work con-

cerning data protection issues. Privacy-preserving distributed computation allows

researchers to digitally cooperate and leverage the value of their data while re-

specting data sovereignty and without compromising privacy. Besides the privacy

preservation in algorithms that are backed up with security mechanisms, it is worth

noting that software is also a key player in privacy-preserving analysis. For exam-

ple, most models fitted with the statistical software R attach data directly to the

model object. Sharing these objects without caution gives analysts direct access to

the training data [cf., e.g., 23].

International activity has been dedicated to setting up distributed non-disclosing

analysis frameworks, which implement machine learning approaches into a dis-

tributed analysis scheme. The availability of the respective algorithms is growing,

and distributed learning for data from heterogeneous clinical servers has emerged

as a hot field. However, our impression is that algorithms for distributed validation

of these learning algorithms are lacking.

In this paper, we specifically focused on the assessment of discrimination and

calibration of learning algorithms with a binary outcome. The discrimination is

estimated by a ROC curve and its AUC. We also provide CIs to the distributed

AUC estimate. The distributed estimation process is based on placement values

and survivor functions. They represent qualities of the global distribution of score

values (aggregated over all centers). To do this in a non-disclosing way, we ap-

plied differential privacy techniques. With the creation of the placement values and

the transmission of this information to the local server, we applied a distributed

version of the ROC-GLM approach to estimate the ROC curve and its AUC in

a distributed way. We used a straightforward approach for the distributed GLM

estimation. However, we acknowledge that there may be more efficient approaches,

and we will explore this aspect in future work.

Abbreviations

AUC: Area under the curve; CI: Confidence interval; DP: Differential privacy; FPR:

False positive rate; GLM: Generalized linear model; IPD: Individual patient data;

MII: Medical Informatics Initiative; ROC: Receiver operating characteristics; TPR:

True positive rate.

Declarations

Ethical Approval and consent to participate

Not applicable.

Consent to Publication

Not applicable.

Data Availability statement

The simulated datasets generated during the current study are available on GitHub,

https://github.com/difuture-lmu/simulations-distr-auc.

Conflict of interest

Schalk et al. Page 19 of 21

The authors declare no competing interests.

Funding

Not applicable.

Acknowledgment

This work was supported by the German Federal Ministry of Education and Re-

search (BMBF) under Grant No. 01IS18036A and Federal Ministry for Research

and Technology (BMFT) under Grant No. 01ZZ1804C (DIFUTURE, MII). The

authors of this work take full responsibility for its content.

Author contribution

DS wrote the manuscript, implemented the methods and the simulation study, and

prepared the use case. DS also created all graphics and the interpretation of the

results from the simulation study and from the use case. In addition, much effort

was put into reproducibility, for which DS created a Docker container and a GitHub

repository with the simulation study results. The idea of the distributed AUC calcu-

lation originated from UM. All co-authors provided substantial assistance in writing

the manuscript and interpreting the simulation study results.

Author details

1Department of Statistics, LMU Munich, Munich, Germany. 2Institute for Medical Information Processing,

Biometry and Epidemiology, LMU Munich, Munich, Germany. 3DIFUTURE (DataIntegration for Future Medicine,

www.difuture.de), LMU Munich, Munich, Germany. 4Munich Center for Machine Learning (MCML).

References

1. Arellano, A. M., Dai, W., Wang, S., Jiang, X., and Ohno-Machado, L. (2018). Privacy policy and technology in

biomedical data science. Annual review of biomedical data science, 1:115–129.

2. Boyd, K., Lantz, E., and Page, D. (2015). Differential privacy for classifier evaluation. In Proceedings of the 8th

ACM Workshop on Artificial Intelligence and Security, pages 15–23.

3. Breiman, L. (2001). Random forests. Machine learning, 45(1):5–32.

4. Brier, G. W. et al. (1950). Verification of forecasts expressed in terms of probability. Monthly weather review,

78(1):1–3.

5. DeLong, E. R., DeLong, D. M., and Clarke-Pearson, D. L. (1988). Comparing the areas under two or more

correlated receiver operating characteristic curves: a nonparametric approach. Biometrics, pages 837–845.

6. Dwork, C. (2006). Differential privacy. In International Colloquium on Automata, Languages, and Programming,

pages 1–12. Springer.

7. Dwork, C., Kenthapadi, K., McSherry, F., Mironov, I., and Naor, M. (2006a). Our data, ourselves: Privacy via

distributed noise generation. In Annual International Conference on the Theory and Applications of Cryptographic

Techniques, pages 486–503. Springer.

8. Dwork, C., McSherry, F., Nissim, K., and Smith, A. (2006b). Calibrating noise to sensitivity in private data

analysis. In Theory of cryptography conference, pages 265–284. Springer.

9. Dwork, C., Roth, A., et al. (2014). The algorithmic foundations of differential privacy. Found. Trends Theor.

Comput. Sci., 9(3-4):211–407.

10. Gaye, A., Marcon, Y., Isaeva, J., LaFlamme, P., Turner, A., Jones, E. M., Minion, J., Boyd, A. W., Newby,

C. J., Nuotio, M.-L., et al. (2014). Datashield: taking the analysis to the data, not the data to the analysis.

International journal of epidemiology, 43(6):1929–1944.

11. Hanley, J. A. and McNeil, B. J. (1982). The meaning and use of the area under a receiver operating

characteristic (roc) curve. Radiology, 143(1):29–36.

12. Hothorn, T. (2021). TH.data: TH’s Data Archive. R package version 1.1-0.

13. Jones, E. M., Sheehan, N. A., Gaye, A., Laflamme, P., and Burton, P. (2013). Combined analysis of correlated

data when data cannot be pooled. Stat, 2(1):72–85.

14. Lang, M., Bischl, B., and Surmann, D. (2017). batchtools: Tools for r to work on batch systems. The Journal

of Open Source Software, 2(10).

15. Loukides, G., Denny, J. C., and Malin, B. (2010). The disclosure of diagnosis codes can breach research

participants’ privacy. Journal of the American Medical Informatics Association, 17(3):322–327.

16. Mason, S. J. and Graham, N. E. (2002). Areas beneath the relative operating characteristics (roc) and relative

operating levels (rol) curves: Statistical significance and interpretation. Quarterly Journal of the Royal

Meteorological Society: A journal of the atmospheric sciences, applied meteorology and physical oceanography,

128(584):2145–2166.

17. McMahan, B., Moore, E., Ramage, D., Hampson, S., and y Arcas, B. A. (2017). Communication-efficient

learning of deep networks from decentralized data. In Artificial intelligence and statistics, pages 1273–1282.

PMLR.

Schalk et al. Page 20 of 21

18. Pepe, M. S. (2000). An interpretation for the roc curve and inference using glm procedures. Biometrics,

56(2):352–359.

19. Pepe, M. S. (2003). The Statistical Evaluation of Medical Tests for Classification and Prediction. Journal of

the American Statistical Association.

20. Piessens, R., de Doncker-Kapenga, E., Überhuber, C. W., and Kahaner, D. K. (2012). Quadpack: a subroutine

package for automatic integration, volume 1. Springer Science & Business Media.

21. Prasser, F., Kohlbacher, O., Mansmann, U., Bauer, B., and Kuhn, K. A. (2018). Data integration for future

medicine (difuture). Methods Inf Med, 57(S01):e57–e65.

22. R Core Team (2021). R: A Language and Environment for Statistical Computing. R Foundation for Statistical

Computing, Vienna, Austria.

23. Schalk, D., Irmak On, B., Hapfelmeier, A., Mansmann, U., and Hoffmann, V. S. (2022). Model transportability

and privacy protection. 31st International Biometric Conference,

github.com/schalkdaniel/ talk-ibc-2022/blob/main/model-transportability-and-privacy-protection.pdf .

24. Schumacher, M., Bastert, G., Bojar, H., Hübner, K., Olschewski, M., Sauerbrei, W., Schmoor, C., Beyerle, C.,

Neumann, R., and Rauschecker, H. (1994). Randomized 2 x 2 trial evaluating hormonal treatment and the

duration of chemotherapy in node-positive breast cancer patients. german breast cancer study group. Journal of

Clinical Oncology, 12(10):2086–2093.

25. Ünal, A. B., Pfeifer, N., and Akgün, M. (2021). ppaurora: Privacy preserving area under receiver operating

characteristic and precision-recall curves with secure 3-party computation. ArXiv, 2102.

26. Van Calster, B., McLernon, D. J., Van Smeden, M., Wynants, L., and Steyerberg, E. W. (2019). Calibration:

the achilles heel of predictive analytics. BMC medicine, 17(1):1–7.

27. Vuk, M. and Curk, T. (2006). Roc curve, lift chart and calibration plot. Metodoloski zvezki, 3(1):89.

28. Wright, M. N. and Ziegler, A. (2017). ranger: A fast implementation of random forests for high dimensional

data in C++ and R. Journal of Statistical Software, 77(1):1–17.

29. Yang, C., Wang, Q., Xu, M., Chen, Z., Bian, K., Liu, Y., and Liu, X. (2021). Characterizing impacts of

heterogeneity in federated learning upon large-scale smartphone data. In Proceedings of the Web Conference

2021, pages 935–946.

30. Zweig, M. H. and Campbell, G. (1993). Receiver-operating characteristic (roc) plots: a fundamental evaluation

tool in clinical medicine. Clinical chemistry, 39(4):561–577.

Schalk et al. Page 21 of 21

CHAPTER 11
dsBinVal: Conducting distributedROCanalysis using

DataSHIELD

Contributing article

Schalk, D.,Hoffmann, V. S., Bischl, B., andMansmann,U. (2023b). dsBinVal: Conducting distributed
roc analysis using datashield. Journal of Open Source Software, 8(82):4545

Declaration of contributions

The software was developed exclusively by Daniel Schalk. He also set up automatic unit tests for func-
tionality and code quality for various operating systems (Linux,Windows,macOS). Particular emphasis
was placedondata protection concepts and requirements for integrationwithDataSHIELD.Hemainly
wrote the manuscript.

Contribution of the coauthors

Verena Hoffmann advised data protection concepts on the implementation. All co-authors helped re-
vise the manuscript.

dsBinVal: Conducting distributed ROC analysis using
DataSHIELD
Daniel Schalk 1,3,4, Verena Sophia Hoffmann2,3, Bernd Bischl1,4, and Ulrich
Mansmann2,3

1 Department of Statistics, LMU Munich, Munich, Germany 2 Institute for Medical Information
Processing, Biometry and Epidemiology, LMU Munich, Munich, Germany 3 DIFUTURE
(DataIntegration for Future Medicine, www.difuture.de), LMU Munich, Munich, Germany 4 Munich
Center for Machine Learning, Munich, Germany

DOI: 10.21105/joss.04545

Software
• Review
• Repository
• Archive

Editor: Charlotte Soneson
Reviewers:

• @patRyserWelch8
• @brunomontezano
• @AnthonyOfSeattle

Submitted: 13 June 2022
Published: 21 February 2023

License
Authors of papers retain copyright
and release the work under a
Creative Commons Attribution 4.0
International License (CC BY 4.0).

Summary
Our R (R Core Team, 2021) package dsBinVal implements the methodology explained by
Schalk et al. (2022). It extends the ROC-GLM (Pepe, 2000) to distributed data by using
techniques of differential privacy (Dwork et al., 2006) and the idea of sharing highly aggregated
values only. The package also exports functionality to calculate distributed calibration curves
and assess the calibration. Using the package allows us to evaluate a prognostic model based
on a binary outcome using the DataSHIELD (Gaye et al., 2014) framework. Therefore, the
main functionality makes it able to 1) compute the receiver operating characteristic (ROC)
curve using the ROC-GLM from which 2) the area under the curve (AUC) and confidence
intervals (CI) are derived to conduct hypothesis testing according to DeLong et al. (1988).
Furthermore, 3) the calibration can be assessed distributively via calibration curves and the
Brier score. Visualizing the approximated ROC curve, the AUC with confidence intervals,
and the calibration curves using ggplot2 is also supported. Examples can be found in the
README file of the repository.

Statement of need
Privacy protection of patient data plays a major role for a variety of tasks in medical research.
Uncontrolled release of health information may cause personal disadvantages for individuals,
and the individual patient needs to be protected against personal details becoming visible to
people not authorized to know them.

In statistics or machine learning, one of these tasks is to gain insights by building statistical or
prognostic models. Prognoses on the development of severe health conditions and covariates
encoding critical health information, such as genetic susceptibility, need to be handled with
care. Furthermore, using confidential data comes with administrative burdens and mostly
requires a consent around data usage. Additionally, the data can be distributed over multiple
sites (e.g. hospitals) which makes their access even more challenging. Modern approaches
in distributed analysis allow work on distributed confidential data by providing frameworks
that allow retrieval of information without sharing of sensitive information. Since no sensitive
information is shared through the use of privacy-preserving and distributed algorithms, their
use helps to meet administrative, ethical, and legal requirements in medical research as users
do not have access to personal data.

One of these frameworks for privacy protected analysis is DataSHIELD (Gaye et al., 2014).
It allows the analysis of data in a non-disclosive setting. The framework already provides
techniques for descriptive statistics, basic summary statistics, and basic statistical modeling.

Schalk et al. (2023). dsBinVal: Conducting distributed ROC analysis using DataSHIELD. Journal of Open Source Software, 8(82), 4545.
https://doi.org/10.21105/joss.04545.

1

Within a multiple sclerosis use case to enhance patient medication in the DIFUTURE consortium
of the German Medical Informatics Initiative (Prasser et al., 2018), a prognostic model was
developed on individual patient data. One goal of the multiple sclerosis use case is to validate
that prognostic model using ROC and calibration analysis on patient data distributed across
five hospitals using DataSHIELD.

In this package we close the gap between distributed model building and the validation of
binary outcomes also on the distributed data. Therefore, our package seamlessly integrates
into the DataSHIELD framework, which does not yet provide distributed ROC analysis and
calibration assessment.

Functionality
The integration of the dsBinVal package into the DataSHIELD framework extends its function-
ality and allows users to assess the discrimination and calibration of a binary classification model
without harming the privacy of individuals. Based on privacy-preserving distributed algorithms
(Schalk et al., 2022), the assessment of the discrimination is done by the dsROCGLM() function
that calculates a ROC curve based on the ROC-GLM as well as an AUC with CI. The calibration
is estimated distributively using the functions dsBrierScore() and dsCalibrationCurve().
Additional helper functions, dsConfusion() or dsL2Sens(), can be used to calculate several
measures, e.g. sensitivity, specificity, accuracy, or the F1 score, from the confusion matrix or
the L2-sensitivity. Note that measures from the confusion matrix may be disclosive for specific
thresholds and are therefore checked and protected by DataSHIELDs privacy mechanisms.
During the call to dsROCGLM(), parts of the data set are communicated twice, first, to calculate
the ROC-GLM based on prediction scores, and second, to calculate the CI of the AUC. In
both steps, the information is protected by differential privacy to prevent individuals from
re-identification. The amount of noise generated for differential privacy is carefully chosen
based on a simulation study that takes the variation of the predicted values into account. We
refer to the README file of the repository for a demonstration and usage of the functionality.

Technical details: To ensure the functioning of our package on DataSHIELD, it is constantly
unit tested on an active DataSHIELD test instance. The reference, username, and password
are available at the OPAL documentation in the “Types” section. Parts of the tests also cover
checks against privacy breaches by attempting to call functions with data sets that do not
pass the safety mechanisms of DataSHIELD. Hence, individual functions attempt to prevent
accidental disclosures when data is not sufficient to ensure privacy.

State of the field: To the best of our knowledge, there is no distributed ROC-GLM implemen-
tation available in R. Current state-of-the-art techniques require sharing of sensitive information
from the sites and using existing implementation such as pROC (Robin et al., 2011) for the
ROC curve or standard software for the GLM to calculate the ROC-GLM (as stated by Pepe
(2000)).

Acknowledgements
This work was supported by the German Federal Ministry of Education and Research (BMBF)
under Grant No. 01IS18036A and Federal Ministry for Research and Technology (BMFT) under
Grant No. 01ZZ1804C (DIFUTURE, MII). The authors of this work take full responsibilities
for its content.

References
DeLong, E. R., DeLong, D. M., & Clarke-Pearson, D. L. (1988). Comparing the areas under

two or more correlated receiver operating characteristic curves: A nonparametric approach.

Schalk et al. (2023). dsBinVal: Conducting distributed ROC analysis using DataSHIELD. Journal of Open Source Software, 8(82), 4545.
https://doi.org/10.21105/joss.04545.

2

Biometrics, 837–845. https://doi.org/10.2307/2531595

Dwork, C., McSherry, F., Nissim, K., & Smith, A. (2006). Calibrating noise to sensitivity in
private data analysis. Theory of Cryptography Conference, 265–284. https://doi.org/10.
1007/11681878_14

Gaye, A., Marcon, Y., Isaeva, J., LaFlamme, P., Turner, A., Jones, E. M., Minion, J., Boyd,
A. W., Newby, C. J., Nuotio, M.-L., & others. (2014). DataSHIELD: Taking the analysis
to the data, not the data to the analysis. International Journal of Epidemiology, 43(6),
1929–1944. https://doi.org/10.1093/ije/dyu188

Pepe, M. S. (2000). An interpretation for the ROC curve and inference using GLM procedures.
Biometrics, 56(2), 352–359. https://doi.org/10.1111/j.0006-341x.2000.00352.x

Prasser, F., Kohlbacher, O., Mansmann, U., Bauer, B., & Kuhn, K. A. (2018). Data integration
for future medicine (DIFUTURE). Methods of Information in Medicine, 57 (S01), e57–e65.
https://doi.org/10.3414/ME17-02-0022

R Core Team. (2021). R: A language and environment for statistical computing. R Foundation
for Statistical Computing. https://www.R-project.org/

Robin, X., Turck, N., Hainard, A., Tiberti, N., Lisacek, F., Sanchez, J.-C., & Müller, M. (2011).
pROC: An open-source package for R and S+ to analyze and compare ROC curves. BMC
Bioinformatics, 12, 77. https://doi.org/10.1186/1471-2105-12-77

Schalk, D., Hoffmann, V. S., Bischl, B., & Mansmann, U. (2022). Distributed non-disclosive
validation of predictive models by a modified ROC-GLM. arXiv. https://doi.org/10.48550/
ARXIV.2203.10828

Schalk et al. (2023). dsBinVal: Conducting distributed ROC analysis using DataSHIELD. Journal of Open Source Software, 8(82), 4545.
https://doi.org/10.21105/joss.04545.

3

Part III - Conclusion and Outlook

CHAPTER 12
Conclusion

As described in Chapter I, based on the base learners, CWB is a method that produces flexible and
interpretable ML algorithms. In this thesis, three adaptions were presented to adapt CWB for modern
needs.

Increasing the efficiency in terms of runtime and memory consumption was shown in Chapter 7, lead-
ing to two major scientific contributions. First, introducing ACWB as a CWB variant with Nesterov
momentum as an optimizer can speed up the fitting process without losing performance or estimating
capabilities. Chapter 7 showed that ACWB could also worsen the performance if not stopped early.
Thus, HCWB was proposed by applying early stopping to ACWB and continuing with CWB to fine-
tune themodel. The reasoning here is to combine the fast convergence ofACWBat the beginning of the
fitting process and finishing with CWB to prevent the algorithm from overfitting. The second contri-
bution was to outline how binning can be used in combination with CWB to reduce the memory con-
sumption of the algorithm. Binning discretizes numerical features and allows the use of optimized al-
gorithms towork on that reduced representation. Simulation studies and a benchmarkwere conducted
to underpin the effectiveness of the proposed contributions. The results showed that ACWB/HCWB
and binning could tremendously improve the computational efficiency of CWB without losing per-
formance and deteriorating the capability to estimate partial feature effects and provide an (unbiased)
feature selection. The software package compboost was introduced to increase the efficiency on the
software side. To that end, compboost uses C^+ as the core language and focuses only on the essential
parts required to fit CWB.

Autocompboost, presented in Chapter 8, is a novel interpretable AutoML framework based onCWB.
Autocompboost helps non-expert users to fitCWB and apply good practices ofML.The contribution
extends beyond the implementation by providing information about required complexity, decompos-
ing predictions to understand the decision-making, and (if dropping the third stage) explaining uni-
variate partial feature effects as well as pairwise interactions. The information about the required com-
plexity is based on a three-stage construction, with CWB as the fitting engine that allows assessing the
performance gain whenever adding a new component.

Chapter 9 explains an algorithm that enables fitting CWB to distributed data. The contribution is a
distributed, privacy-preserving, and lossless CWB algorithm with site-specific corrections. Fitting the
distributed CWB algorithm relies on aggregated data communicated from the sites to ensure privacy.
The proposed algorithm also accounts for site-specific effects, defined as deviations from themain effect
that is common for all sites. This corresponds to fitting GAMMs with the sites as a statistical unit with
repeatedmeasurements. Hence, being able to fitCWBdistributivelywith site-specific effects also allows
fitting GAMMs in a distributed, privacy-preserving, and lossless fashion. The distributed algorithm

152 12. Conclusion

was compared to the state-of-the-art method on pooled data and showed similar results regarding effect
estimation while being privacy preserving and lossless.

Additionally, part of the thesis was to developmethods for distributed computing in a medical context.
The background is a study that aims to develop a treatment decision score formultiple sclerosis patients.
Evaluating the score with the AUC is one goal of the study. With this objective, Chapter 10 contributes
methods to conduct a distributed ROC analysis in a privacy-preserving fashion. Approximating the
ROC curve with the ROC-GLM allows the application of a distributed GLM estimation. During
the ROC estimation, DP and data aggregations are used as privacy mechanisms. Further, simulations
were conducted to assess the approximation error of the distributed approach depending on the privacy
parameters ε and δ as well as on the ℓ2-sensitivity of f̂ .

CHAPTER 13
Outlook

The presented extensions of CWB are realizations of many potential improvements of CWB. Future
valuable efforts may focus on efficiently incorporating pairwise interactions. Including all pairwise in-
teractions often makes fitting CWB infeasible, since 0.5p(p − 1) base learners must be added. Pre-
selecting feature combinations as potential candidates requires using domain knowledge or an external
filter to extract that information. Hence, automatically and efficiently selecting pairwise feature inter-
actions using the capabilities ofCWB in the formof base learners could highly increase the performance
while maintaining themerits of CWB.Of course, this method could be combined with binning, which
is not yet supported for base learners that model multiple features.

In the case of automation, Autocompboost is a prototype that requires further investigation to com-
bine different model classes and adequately maintain interpretability. Hence, entirely relying on the
partial feature effects estimated in stages one and two requires ensuring that the third stage does not
revert the previously estimated effects. Future work will focus on that third stage and how to com-
ply with the interpretability properties of the first two stages. Furthermore, Autocompboost would
also highly benefit from automatically and efficiently finding pairwise interactions that do not require
external intervention.

The proposed distributed CWB algorithm is restricted to only function with horizontally distributed
data. Extending the algorithm to additionally handle vertically distributed data1 highly increases the
flexibility in processing heterogeneously distributed data. An algorithm able to estimate and differen-
tiate between main and site-specific effects on both horizontally and vertically distributed data would
solve problems such as processing data with inconsistencies of collected features at the sites. Consider
an example where a specific sensor is unavailable at one or more hospitals. This requires eliminating the
feature from all data sets at these sites. Instead of removing thewhole feature from all collaborating sites,
a distributed version of CWB could account for missing features at specific sites and allows estimating
main and site-specific effects. The hospitals with the missing feature could benefit from using the main
effect while the other sites could still use their site-specific adaption for more accurate predictions.

Besides the datamodeling, the role of distributedmodel evaluationwill becomemore important as com-
puting on edge devices becomes more prominent for users of statistics andML. Therefore, developing
a theory for distributed resampling based on existing resampling strategies and backing them up with
security mechanisms is a potentially impactful future project.

Finally, all presented and future adaptions could be combined into one AutoML framework for dis-
tributed data, with Autocompboost as a starting point. The distributed CWB algorithm would work

1For vertically distributed data, the features are split and distributed over the sites instead of the observations.

154 13. Outlook

as a fitting engine and facilitates high-quality insights into the data-generating process while preserv-
ing data privacy. Furthermore, distributed evaluation allows not just estimating the performance of
the final model, but also the generation of further insights about complexity based on the supported
performance measures.

References

Abadi, M., Chu, A., Goodfellow, I., McMahan, H. B., Mironov, I., Talwar, K., and Zhang, L. (2016).
Deep learning with differential privacy. In Proceedings of the 2016 ACM SIGSAC conference on com-
puter and communications security, pages 308–318.

Arrieta, A. B., Díaz-Rodríguez, N., Del Ser, J., Bennetot, A., Tabik, S., Barbado, A., García, S., Gil-
López, S., Molina, D., Benjamins, R., et al. (2020). Explainable artificial intelligence (xai): Concepts,
taxonomies, opportunities and challenges toward responsible ai. Information fusion, 58:82–115.

Barrett,R., Berry,M.,Chan,T. F.,Demmel, J.,Donato, J.,Dongarra, J., Eijkhout,V., Pozo,R.,Romine,
C., and Van der Vorst, H. (1994). Templates for the solution of linear systems: building blocks for
iterative methods. SIAM.

Bates, D.,Maechler,M., and Jagan,M. (2022).Matrix: Sparse andDenseMatrix Classes andMethods.
R package version 1.5-1.

Bekkerman, R., Bilenko, M., and Langford, J. (2011). Scaling up machine learning: Parallel and dis-
tributed approaches. Cambridge University Press.

Biau, G., Cadre, B., and Rouvìère, L. (2019). Accelerated gradient boosting. Machine Learning,
108(6):971–992.

Bischl, B., Binder, M., Lang, M., Pielok, T., Richter, J., Coors, S., Thomas, J., Ullmann, T., Becker,
M., Boulesteix, A.-L., et al. (2021). Hyperparameter optimization: Foundations, algorithms, best
practices and open challenges. arXiv preprint arXiv:2107.05847.

Bischl, B., Mersmann, O., Trautmann, H., and Weihs, C. (2012). Resampling methods for meta-
model validation with recommendations for evolutionary computation. Evolutionary computation,
20:249–75.

Bost, R., Popa, R. A., Tu, S., andGoldwasser, S. (2014). Machine learning classification over encrypted
data. Cryptology ePrint Archive, Paper 2014/331. https://eprint.iacr.org/2014/331.

Breiman, L. (2001). Random forests. Machine learning, 45(1):5–32.

Brier, G. W. et al. (1950). Verification of forecasts expressed in terms of probability. Monthly weather
review, 78(1):1–3.

Brockhaus, S., Rügamer, D., and Greven, S. (2020). Boosting functional regression models with fd-
boost. Journal of Statistical Software, 94(10):1–50.

Bühlmann, P., Hothorn, T., et al. (2007). Boosting algorithms: Regularization, prediction and model
fitting. Statistical science, 22(4):477–505.

https://eprint.iacr.org/2014/331

156 References

Bühlmann, P. and Yu, B. (2003). Boosting with the L2 loss: regression and classification. Journal of the
American Statistical Association, 98(462):324–339.

Buluc, A. and Gilbert, J. R. (2008). Challenges and advances in parallel sparse matrix-matrix multipli-
cation. In 2008 37th International Conference on Parallel Processing, pages 503–510.

Casalicchio, G. (2019). On benchmark experiments and visualization methods for the evaluation and
interpretation of machine learning models. PhD dissertation, LMUMunich.

Chen, Y.-R., Rezapour, A., andTzeng,W.-G. (2018). Privacy-preserving ridge regression on distributed
data. Information Sciences, 451:34–49.

Choi, J., Walker, D. W., and Dongarra, J. J. (1994). Pumma: Parallel universal matrix multiplication
algorithms on distributed memory concurrent computers. Concurrency: Practice and Experience,
6(7):543–570.

Coors, S., Schalk, D., Bischl, B., and Rügamer, D. (2021). Automatic componentwise boosting: An
interpretable automl system. ECML-PKDDWorkshop on Automating Data Science.

Cunha, M., Mendes, R., and Vilela, J. P. (2021). A survey of privacy-preserving mechanisms for het-
erogeneous data types. Computer Science Review, 41:100403.

Dagum, L. and Menon, R. (1998). Openmp: an industry standard api for shared-memory program-
ming. Computational Science & Engineering, IEEE, 5(1):46–55.

Davis, T. A. (2006). Direct methods for sparse linear systems. SIAM.

Drozdal, J., Weisz, J., Wang, D., Dass, G., Yao, B., Zhao, C., Muller, M., Ju, L., and Su, H. (2020).
Trust in automl: Exploring information needs for establishing trust in automated machine learning
systems. In Proceedings of the 25th International Conference on Intelligent User Interfaces, IUI ’20,
page 297–307, New York, NY, USA. Association for ComputingMachinery.

Duff, I. S., Grimes, R. G., and Lewis, J. G. (1989). Sparse matrix test problems. ACMTransactions on
Mathematical Software (TOMS), 15(1):1–14.

Dwork, C., Kenthapadi, K., McSherry, F., Mironov, I., and Naor, M. (2006a). Our data, ourselves:
Privacy via distributed noise generation. In Annual International Conference on the Theory and Ap-
plications of Cryptographic Techniques, pages 486–503. Springer.

Dwork, C., McSherry, F., Nissim, K., and Smith, A. (2006b). Calibrating noise to sensitivity in private
data analysis. In Theory of cryptography conference, pages 265–284. Springer.

Dwork, C., Roth, A., et al. (2014). The algorithmic foundations of differential privacy. Found. Trends
Theor. Comput. Sci., 9(3-4):211–407.

Eilers, P.H. andMarx, B. D. (1996). Flexible smoothing with B-splines and penalties. Statistical science,
pages 89–102.

References 157

Fang,H. andQian, Q. (2021). Privacy preservingmachine learningwith homomorphic encryption and
federated learning. Future Internet, 13(4).

Fawcett, T. (2006). An introduction to roc analysis. Pattern recognition letters, 27(8):861–874.

Feurer, M. and Hutter, F. (2019). Hyperparameter optimization. In Automated machine learning,
pages 3–33. Springer, Cham.

Feurer, M., Klein, A., Eggensperger, K., Springenberg, J., Blum, M., and Hutter, F. (2015). Efficient
and robust automated machine learning. Advances in neural information processing systems, 28.

Flach, P. (2012).Machine learning: the art and science of algorithms thatmake sense of data. Cambridge
university press.

Freitas, A. A. (2019). Automated machine learning for studying the trade-off between predictive ac-
curacy and interpretability. In Holzinger, A., Kieseberg, P., Tjoa, A. M., and Weippl, E., editors,
Machine Learning and Knowledge Extraction, pages 48–66, Cham. Springer International Publish-
ing.

Freund, Y. and Schapire, R. E. (1997). A decision-theoretic generalization of on-line learning and an
application to boosting. Journal of computer and system sciences, 55(1):119–139.

Friedman, J. H. (2001). Greedy function approximation: a gradient boosting machine. Annals of
statistics, pages 1189–1232.

Gambs, S., Kégl, B., andAïmeur, E. (2007). Privacy-preserving boosting. DataMining andKnowledge
Discovery, 14(1):131–170.

Gaye,A.,Marcon, Y., Isaeva, J., LaFlamme, P., Turner,A., Jones, E.M.,Minion, J., Boyd,A.W.,Newby,
C. J., Nuotio, M.-L., et al. (2014). Datashield: taking the analysis to the data, not the data to the
analysis. International journal of epidemiology, 43(6):1929–1944.

Gong, M., Xie, Y., Pan, K., Feng, K., and Qin, A. (2020). A survey on differentially private machine
learning [review article]. IEEE Computational IntelligenceMagazine, 15(2):49–64.

Gordon, D. F. and Desjardins, M. (1995). Evaluation and selection of biases in machine learning. Ma-
chine learning, 20(1):5–22.

Hastie, T. J. (2017). Generalized additive models. In Statistical models in S, pages 249–307. Routledge.

Hofner, B., Hothorn, T., Kneib, T., and Schmid,M. (2011). A framework for unbiasedmodel selection
based on boosting. Journal of Computational and Graphical Statistics, 20(4):956–971.

Hofner, B., Mayr, A., and Schmid, M. (2016). gamboostLSS: An R package for model building and
variable selection in the GAMLSS framework. Journal of Statistical Software, 74(1).

Hothorn, T., Bühlmann, P., Kneib, T., Schmid,M., andHofner, B. (2010). Model-based boosting 2.0.
The Journal ofMachine Learning Research, 11:2109–2113.

158 References

Hothorn, T., Bühlmann, P., Kneib, T., Schmid, M., and Hofner, B. (2020). mboost: Model-based
boosting. R package version 2.9-7.

Hutter, F., Kotthoff, L., and Vanschoren, J. (2019). Automated machine learning: methods, systems,
challenges. Springer Nature.

Jayaraman, B. and Evans, D. (2019). Evaluating differentially private machine learning in practice. In
28th USENIX Security Symposium (USENIX Security 19), pages 1895–1912.

John, G. H. (1995). Robust decision trees: Removing outliers from databases. In KDD, volume 95,
pages 174–179.

Karr, A. F., Lin, X., Sanil, A. P., and Reiter, J. P. (2005). Secure regression on distributed databases.
Journal of Computational and Graphical Statistics, 14(2):263–279.

Kingma, D. P. and Ba, J. (2014). Adam: A method for stochastic optimization. arXiv preprint
arXiv:1412.6980.

Kotthoff, L., Thornton, C., Hoos, H. H., Hutter, F., and Leyton-Brown, K. (2017). Auto-weka 2.0:
Automatic model selection and hyperparameter optimization in weka. Journal ofMachine Learning
Research, 18(25):1–5.

Lang, S., Umlauf, N., Wechselberger, P., Harttgen, K., and Kneib, T. (2014). Multilevel structured
additive regression. Statistics and Computing, 24(2):223–238.

Lazarevic, A. and Obradovic, Z. (2001). The distributed boosting algorithm. In Proceedings of the sev-
enth ACM SIGKDD international conference on Knowledge discovery and data mining, pages 311–
316.

Li, J., Kuang,X., Lin, S.,Ma,X., andTang, Y. (2020). Privacy preservation formachine learning training
and classification based on homomorphic encryption schemes. Information Sciences, 526:166–179.

Li, Y., Jiang, X., Wang, S., Xiong, H., and Ohno-Machado, L. (2016). Vertical grid logistic regression
(vertigo). Journal of the AmericanMedical Informatics Association, 23(3):570–579.

Li, Z. and Wood, S. N. (2020). Faster model matrix crossproducts for large generalized linear models
with discretized covariates. Statistics and Computing, 30(1):19–25.

Liew, B. X., Rügamer, D., Abichandani, D., and De Nunzio, A. M. (2020a). Classifying individuals
with and without patellofemoral pain syndrome using ground force profiles – Development of a
method using functional data boosting. Gait & Posture, 80:90–95.

Liew, B. X., Rügamer, D., Stocker, A., and De Nunzio, A. M. (2020b). Classifying neck pain status
using scalar and functional biomechanical variables – Development of a method using functional
data boosting. Gait & posture, 76:146–150.

Lu, H., Karimireddy, S. P., Ponomareva, N., and Mirrokni, V. (2020). Accelerating gradient boost-
ing machines. In International Conference on Artificial Intelligence and Statistics, pages 516–526.
PMLR.

References 159

Lundberg, S.M. andLee, S.-I. (2017). Aunified approach to interpretingmodel predictions. InGuyon,
I., Luxburg, U. V., Bengio, S., Wallach, H., Fergus, R., Vishwanathan, S., and Garnett, R., editors,
Advances in Neural Information Processing Systems, volume 30. Curran Associates, Inc.

Luo, C., Islam, M., Sheils, N. E., Buresh, J., Reps, J., Schuemie, M. J., Ryan, P. B., Edmondson, M.,
Duan, R., Tong, J., et al. (2022). Dlmm as a lossless one-shot algorithm for collaborative multi-site
distributed linear mixed models. Nature Communications, 13(1):1–10.

Machanavajjhala, A., Kifer, D., Gehrke, J., and Venkitasubramaniam, M. (2007). l-diversity: Privacy
beyond k-anonymity. ACMTransactions on Knowledge Discovery from Data (TKDD), 1(1):3–es.

McMahan, B., Moore, E., Ramage, D., Hampson, S., and Arcas, B. A. y. (2017). Communication-
Efficient Learning of Deep Networks from Decentralized Data. In Singh, A. and Zhu, J., editors,
Proceedings of the 20th International Conference on Artificial Intelligence and Statistics, volume 54 of
Proceedings ofMachine Learning Research, pages 1273–1282. PMLR.

Mohassel, P. andZhang, Y. (2017). Secureml: A system for scalable privacy-preservingmachine learning.
In 2017 IEEE symposium on security and privacy (SP), pages 19–38. IEEE.

Molnar, C. (2020). Interpretable machine learning. Lulu. com.

Nesterov, Y. (1983). A method for solving the convex programming problem with convergence rate
O(1/k2).

Pepe,M. S. (2000). An interpretation for the roc curve and inference using glm procedures. Biometrics,
56(2):352–359.

Pepe, M. S. (2003). The statistical evaluation of medical tests for classification and prediction. Journal
of the American Statistical Association.

Pfisterer, F. (2022). DemocratizingMachine Learning – Contributions in AutoML and Fairness. PhD
thesis, LMUMunich.

Prasser, F., Kohlbacher, O., Mansmann, U., Bauer, B., and Kuhn, K. A. (2018). Data integration for
future medicine (difuture). Methods InfMed, 57(S01):e57–e65.

R Core Team (2022). R: A Language and Environment for Statistical Computing. R Foundation for
Statistical Computing, Vienna, Austria.

Ribeiro,M. T., Singh, S., andGuestrin, C. (2016). ”why should i trust you?” explaining the predictions
of any classifier. In Proceedings of the 22nd ACM SIGKDD international conference on knowledge
discovery and data mining, pages 1135–1144.

Rudin, C. (2019). Stop explaining black boxmachine learningmodels for high stakes decisions and use
interpretable models instead. NatureMachine Intelligence, 1(5):206–215.

Rügamer, D., Brockhaus, S., Gentsch, K., Scherer, K., and Greven, S. (2018). Boosting factor-specific
functional historical models for the detection of synchronization in bioelectrical signals. Journal of
the Royal Statistical Society: Series C (Applied Statistics), 67(3):621–642.

160 References

Saintigny, P., Zhang, L., Fan, Y.-H., El-Naggar, A. K., Papadimitrakopoulou, V. A., Feng, L., Lee, J. J.,
Kim, E. S., Hong,W. K., andMao, L. (2011). Gene expression profiling predicts the development of
oral cancer. Cancer Prevention Research, 4(2):218–229.

Sanderson, C. and Curtin, R. (2016). Armadillo: a template-based c++ library for linear algebra. Jour-
nal of Open Source Software, 1(2):26.

Sanderson,C. andCurtin, R. (2018). Auser-friendly hybrid sparsematrix class in c++. In International
Congress onMathematical Software, pages 422–430. Springer.

Schalk, D., Bischl, B., and Rügamer, D. (2022a). Accelerated componentwise gradient boosting using
efficient data representation and momentum-based optimization. Journal of Computational and
Graphical Statistics.

Schalk, D., Bischl, B., and Rügamer, D. (2023a). Privacy-preserving and lossless distributed estimation
of high-dimensional generalized additive mixed models. arXiv preprint arXiv:2210.07723.

Schalk, D., Hoffmann, V. S., Bischl, B., and Mansmann, U. (2022b). Distributed non-disclosive vali-
dation of predictive models by a modified roc-glm. arXiv preprint arXiv:2203.10828.

Schalk, D.,Hoffmann, V. S., Bischl, B., andMansmann,U. (2023b). dsBinVal: Conducting distributed
roc analysis using datashield. Journal of Open Source Software, 8(82):4545.

Schalk, D., Thomas, J., and Bischl, B. (2018). compboost: Modular framework for component-wise
boosting. Journal of Open Source Software, 3(30):967.

Schmid,M. andHothorn, T. (2008). Boosting additive models using component-wise p-splines. Com-
putational Statistics & Data Analysis, 53(2):298–311.

Shahnaz, R., Usman, A., and Chughtai, I. R. (2005). Review of storage techniques for sparse matrices.
In 2005 Pakistan SectionMultitopic Conference, pages 1–7.

Stehman, S. V. (1997). Selecting and interpreting measures of thematic classification accuracy. Remote
sensing of Environment, 62(1):77–89.

Sun, X., Zhang, P., Liu, J. K., Yu, J., and Xie, W. (2020). Private machine learning classification based
on fully homomorphic encryption. IEEE Transactions on Emerging Topics in Computing, 8(2):352–
364.

Sweeney, L. (2002). k-anonymity: Amodel for protecting privacy. International journal of uncertainty,
fuzziness and knowledge-based systems, 10(05):557–570.

Thomas, J., Coors, S., and Bischl, B. (2018). Automatic gradient boosting. ICMLAutoMLWorkshop.

Thomas, J., Hepp, T., Mayr, A., and Bischl, B. (2017). Probing for sparse and fast variable selection
with model-based boosting. Computational and mathematical methods in medicine, 2017.

Thornton, C., Hutter, F., Hoos, H. H., and Leyton-Brown, K. (2013). Auto-weka: Combined selec-
tion and hyperparameter optimization of classification algorithms. In Proceedings of the 19th ACM
SIGKDD international conference on Knowledge discovery and data mining, pages 847–855.

References 161

Tutz, G. and Gertheiss, J. (2016). Regularized regression for categorical data. Statistical Modelling,
16(3):161–200.

Van Buuren, S. (2018). Flexible imputation of missing data. CRC press.

Verbraeken, J., Wolting, M., Katzy, J., Kloppenburg, J., Verbelen, T., and Rellermeyer, J. S. (2020). A
survey on distributed machine learning. Acm computing surveys (csur), 53(2):1–33.

Wang, Q. and Kurz, D. (2022). Reconstructing training data from diverse ml models by ensemble
inversion. In Proceedings of the IEEE/CVF Winter Conference on Applications of Computer Vision,
pages 2909–2917.

Wood, S. N. (2017). Generalized additive models: an introduction with R. Chapman and Hall/CRC.

Wood, S. N., Li, Z., Shaddick, G., and Augustin, N. H. (2017). Generalized additive models for giga-
data: Modeling the u.k. black smoke network daily data. Journal of the American Statistical Associa-
tion, 112(519):1199–1210.

Xanthopoulos, I., Tsamardinos, I., Christophides, V., Simon, E., and Salinger, A. (2020). Putting the
human back in the automl loop. In EDBT/ICDTWorkshops.

Yan, Z., Zachrison, K. S., Schwamm, L. H., Estrada, J. J., and Duan, R. (2022). Fed-glmm: A privacy-
preserving and computation-efficient federated algorithm for generalized linear mixed models to an-
alyze correlated electronic health records data. medRxiv.

Zhu, R., Jiang, C., Wang, X., Wang, S., Zheng, H., and Tang, H. (2020). Privacy-preserving
construction of generalized linear mixed model for biomedical computation. Bioinformatics,
36(Supplement_1):i128–i135.

Eidesstattliche Versicherung

(Siehe Promotionsordnung vom 12. Juli 2011, §8 Abs. 2 Pkt. 5)

Hiermit erkläre ich an Eides statt, dass die Dissertation von mir selbstständig,
ohne unerlaubte Beihilfe angefertigt ist.

München, den 07.12.2022 Daniel Schalk

	I Introduction and Background
	Overview
	Methodological background
	Supervised machine learning
	Component-wise boosting
	Base learners
	Fitting algorithm
	Important properties

	Model evaluation
	Performance measure
	Evaluation strategy

	Distributed computing
	Privacy-preserving machine learning
	Data aggregation
	Differential privacy
	Lossless distributed algorithms

	Efficiency
	Implementations
	Accelerated optimization
	More efficient data representations
	Numerical feature representations
	Example: Memory usage for different scenarios

	Automation
	Machine learning pipelines
	Accuracy–interpretability trade-off
	Trustworthy automated machine learning

	Distributed computing
	Model fitting
	Model evaluation

	II Contributions
	compboost
	Accelerated Componentwise Gradient Boosting Using Efficient Data Representation and Momentum-Based Optimization
	Automatic Componentwise Boosting:An Interpretable AutoML System
	Privacy-Preserving and Lossless Distributed Estimation of High-Dimensional Generalized Additive Mixed Models
	Distributed non-disclosive validation of predictive models by a modified ROC-GLM
	dsBinVal: Conducting distributed ROC analysis using DataSHIELD

	III Conclusion and Outlook
	Conclusion
	Outlook
	References

