
Surface phonon polaritons in silicon
carbide nanostructures revealed by

near-field imaging and spectroscopy

Andrea Mancini

München 2023





Surface phonon polaritons in silicon
carbide nanostructures revealed by

near-field imaging and spectroscopy

Andrea Mancini

Dissertation

an der Faculty of Physics

der Ludwig–Maximilians–Universität

München

vorgelegt von

Andrea Mancini

München, den 9/1/2023



Erstgutachter: Prof. Dr. Stefan A. Maier

Zweitgutachter: Prof. Dr. Rainer Hillenbrand

Tag der mündlichen Prüfung: 23/2/2023
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Zusammenfassung

Die Beugungsgrenze stellt eine untere Grenze für die Mindestgröße dar, auf die das Licht im
freien Raum fokussiert werden kann. Um die Intensität der Licht-Materie-Wechselwirkung
zu erhöhen, werden traditionell metallische Antennen eingesetzt, die sich durch eine signifi-
kante Verstärkung und Beschränkung des Oberflächenfeldes auszeichnen. Diese Effekte sind
eine Folge des Vorhandenseins freier Elektronen, die sich gegen das äußere elektromagneti-
sche Antriebsfeld bewegen. Die höchste Feldeinschränkung für Edelmetallantennen wird im
sichtbaren Bereich durch die Anregung von gemischten Photonen-Elektronen-Zuständen,
den so genannten Oberflächenplasmonen-Polaritonen, erreicht. Die Leistung bei optischen
Frequenzen wird jedoch durch hohe Verluste aufgrund des Eindringens des elektromagneti-
schen Feldes in das Material und der Verlustleistung durch Elektron-Elektronen-Streuung
begrenzt.

Der Einschluss von Feldern im Subwellenlängenbereich kann auch in Materialien mit
starken polaren Bindungen realisiert werden. In diesem Fall sind es nicht die freien Elektro-
nen, die sich gegen das treibende Feld bewegen, sondern die Gitterschwingungen, die Pho-
nonen. Analog zu den Oberflächenplasmonen-Polaritonen gibt es in diesen Materialien auch
Oberflächenphononen-Polaritonen. Diese Anregungen treten in einem engen Frequenzbe-
reich auf, der zwischen einem transversalen und einem longitudinalen optischen Phonon
liegt. Der Zerfallsmechanismus von Phonon-Polaritonen hängt mit der Phonon-Phonon-
Streuung zusammen, die im Vergleich zur Elektron-Elektron-Streuung ein viel langsamerer
Prozess ist, was die Lebensdauer dieser Zustände erhöht.

In dieser Arbeit untersuchen wir die lokalisierten und sich ausbreitenden Modi von
Oberflächenphonon-Polaritonen in verschiedenen Siliziumcarbid-Nanostrukturen. Silizium-
carbid wurde als Material ausgewählt, da es geringe Verluste und einen breiten Frequenz-
bereich aufweist, in dem Oberflächenphonon-Polaritonen angeregt werden können. Beson-
deres Augenmerk wird auf die Untersuchung des Nahfeldverhaltens dieser verschiedenen
Systeme gelegt, die mittels optischer Nahfeldmikroskopie mit Streuung untersucht wird.
Im ersten Kapitel geben wir einen Überblick über die Gemeinsamkeiten und Unterschiede
zwischen Oberflächenplasmonen und Oberflächenphononenpolaritonen. Anschließend wer-
den einige theoretische Methoden beschrieben, die im weiteren Verlauf der Arbeit für die
numerische Lösung der Maxwell-Gleichungen bei zwei- und dreidimensionalen Problemen
verwendet werden. Im dritten Kapitel werden einschlägige experimentelle Methoden vorge-
stellt, wobei ein besonderes Augenmerk auf die Nahfeldmikroskopie und ihre allgemeinen
Prinzipien gelegt wird.



vi Zusammenfassung

In Kapitel 4 berichten wir über die Nahfeldmessungen an einer Siliziumkarbid-Metasurface.
Wir zeigen auf, wie die Anwesenheit der AFM-Spitze, die für die Nahfeldmessungen verwen-
det wird, die Reaktion des Systems stört. In Kapitel 5 beschreiben wir hoch eingeschlossene
Oberflächenphonon-Polaritonen, die in schwebenden Siliziumkarbid-Dünnschichten ange-
regt werden können. Die Dispersion dieser Oberflächenmoden wird durch Nahfeldspektro-
skopie ermittelt. Im letzten Kapitel zeigen wir, wie die in Kapitel 5 beschriebenen hoch
eingeschlossenen Polaritonen zur Erzeugung von Phonon-Polariton-Wirbeln verwendet wer-
den können, die durch Nahfeldspektroskopie sichtbar gemacht werden.



Summary

The diffraction limit poses a lower bound to the minimum size to which light can be
squeezed by free-space focusing. To increase the intensity of light-matter interactions,
metallic antennas featuring high surface field enhancement and confinement have been
traditionally employed. These effects are a consequence of the presence of free-electrons
that move against the external electromagnetic driving field. The highest field confine-
ment for noble metal antennas is achieved in the visible thanks to the excitation of mixed
photon-electron states named surface plasmon polaritons. However, performances at op-
tical frequencies are limited by high losses due to penetration of the electromagnetic field
inside the material and dissipation through electron-electron scattering.

Subwavelength field confinement can also be realized in materials with strong polar
bonds. In this case, it is not the free-electrons moving against the driving field, but the
lattice vibrations, or phonons. Analogous to surface plasmon polaritons, surface phonon
polaritons exist in these materials. These excitations exist in a narrow frequency range
bounded between a transverse and a longitudinal optical phonon. The decay mechanism
of phonon polaritons is associated with phonon-phonon scattering which is a much slower
process compared to electron-electron scattering, enhancing the lifetime of these states.

This work is focused on exploring surface phonon polariton modes in different silicon
carbide nanostructures. Silicon carbide is the material of choice as it features low losses
and a wide frequency region where surface phonon polaritons can be excited. Particular
attention is given to the investigation of the near-field response of these different systems,
which is probed through scattering-scanning near field optical microscopy. In the first
chapter an overview of the similarities and differences between surface plasmon polaritons
and surface phonon polaritons is given. In chapter 2, several theoretical methods used in
the rest of the work for the numerical solution of Maxwell’s equations in two and three-
dimensional problems are presented. Relevant experimental methods are introduced in
chapter 3, with an in-depth description of near-field microscopy and its general principles.

Chapter 4 reports on the near-field measurements of a silicon carbide metasurface.
The perturbation introduced by the AFM tip used for the near-field measurements on the
response of the system is analyzed. Chapter 5 describes highly confined surface phonon
polaritons that can be excited in suspended silicon carbide thin-films. The dispersion of
these surface modes is retrieved through near-field spectroscopy. The final chapter shows
how the highly confined polaritons described in chapter 5 can be used to generate phonon-
polariton vortex which are revealed though near-field imaging.
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Chapter 1

Introduction

1.1 Confining light below the diffraction limit

Optical imaging and spectroscopy have been fundamental tools for the scientific progress in
many research fields, including solid state physics, astronomy, chemistry and biology. Since
the discovery of the wave nature of electromagnetic (em) radiation, physicists realized that
diffraction posed a lower limit to the resolution of optical systems. In 1873 Ernst Abbe
formulated the concept of diffraction limit, stating that the minimum distance d between
two objects so that they can be resolved in a microscope depends on the wavelength of the
employed em radiation [1]:

d =
λ

2n sin θ
(1.1)

where λ/n is the wavelength of light in a material with refractive index n and θ the
half-angle of the focusing cone. Due to diffraction, the image of a single point dipole source
appears as an interference pattern referred to as point spread function, which depends on
the numerical aperture (NA = n sin θ) of the focusing objective [1]. The point spread
function for two different NA at λ = 500 nm and n = 1 is shown in Figure 1.1 a) (for
details see Appendix A). Diffraction through the finite-sized circular aperture of a telescope
analogously puts a lower limit to the angular resolution for astronomical observations. The
wavelength of visible light is between 400 nm and 700 nm, meaning that with a conventional
microscope it is possible to resolve many biological entities, like cells and bacteria, whose
size is on the order of microns. However, the resolution is not enough for smaller objects
like viruses, proteins or single molecules. With the rise of nanotechnology, not only many
natural phenomena are too small to be investigated with standard optical microscopes, but
also artificial structures now require different imaging techniques. One straightforward way
to increase the resolution is to reduce the employed wavelength as suggested by eq. 1.1.
This recipe can be applied not only to em radiation, but also to massive particles thanks
to the particle-wave duality of quantum mechanics. Following this principle, electron
microscopes are routinely employed to achieve a resolution on the order of nanometers [2].
Since the De-Broglie wavelength is inversely proportional to the mass of the particle, even
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higher resolutions can be achieved by using massive ions [3,4]. However, all these solutions
pose a much greater technological challenge compared to conventional optical microscopes
and often work only under specific conditions (i.e. vacuum, conductive materials, etc...).
Moreover, one is often constrained to use light at specific wavelengths to probe particular
excited states of a specimen. For example, vibrational modes of molecules and phonons
in solids lye in the infrared (IR) range, while electronic transitions are typically found
at visible and UV frequencies [5, 6]. Therefore, overcoming the diffraction limit has been
a central topic in optics, and fundamental steps in this direction have been made both
through far-field [7] and near-field [8, 9] techniques.

a)

b)

NA = 0.9 NA = 0.4

5 μm 5 μm

Point spread
function

Intensity at
focal plane

Figure 1.1: Calculated point spread function a) and field intensity at the focal plane b)
for two different NAs at a wavelength of λ = 500 nm. Details of the equations used for the
plots can be found in Appendix A.

On top of limiting the spatial resolution achievable by microscopes and telescopes, dif-
fraction also poses a lower limit on the volume in which light can be confined. When
focusing light through an objective, the focal spot size is on the order of (λ/n)3 [1]. In
Figure 1.1 b) the field intensity I = |E|2 (in the paraxial approximation [1], for details see
Appendix A) in the focal plane is shown for two different objective NAs. The inability to
shrink light below a certain size is detrimental, for example, for reducing the size of on-chip
photonic integrated circuits [10,11] and to achieve strong light-matter interactions [12]. An-
other case of technological relevance is in mid-IR sensing, where the vibrational fingerprint
allows the discrimination between different molecular species [13]. However, due to the
dimensional mismatch between molecules and mid-IR wavelengths (2.5 µm to 10 µm), their
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absorption cross-section is extremely small [12]. As a consequence, only relatively large
amount of molecules can be probed by techniques relying on far-field focusing. The same
argument applies to Raman spectroscopy, which is also a chemically selective technique
associated with extremely small scattering cross sections [14]. Shrinking light to sub-
wavelength volumes allows increased sensitivity of IR and Raman spectroscopies, which
are both active research areas in the field of nanophotonics.

1.2 Optical response of metals and polar dielectrics

Since the advent of modern nanofabrication techniques, it has been clear that subwavelength
em confinement could be achieved by borrowing the radiofrequency (RF) antenna concept
and scale it down to the nanoscale. As RF antennas are made of metals, the natural choice
in the development of optical nanoantennas has been to use the same class of materials,
leading the development of the field of Plasmonics [15]. The term comes from the col-
lective excitation of mixed light-electron surface states named Surface Plasmon Polaritons
(SPPs). Since the early 2000s a large amount of effort has been dedicated to the develop-
ment of different types of plasmonic antennas. However, the material choice has been quite
limited, as the need for low optical losses and chemical stability restricted most research to
the use of gold. Even neglecting its scarcity and high price which hamper possible large-
scale commercial applications, the community realized that even in gold the fundamental
material losses are too high for a number of applications initially envisioned [16,17,18,19].
The need to find alternative viable materials has led to the investigation of graphene [20],
doped semiconductors [21] and non-noble metal [19] as alternative plasmonic platforms.
The em response of metals (and more generally of any plasmonic material) is characterized
by the presence of electrons in the conduction band that can freely move and polarize in the
opposite direction of the incoming field, resulting in a very low penetration of em radiation
inside the material. This behavior manifests itself as a negative real part of the dielectric
function Re(ε) < 0, suggesting that alternative materials characterized by Re(ε) < 0 can
also be used for the fabrication of em antennas. This is the case for polar dielectrics (or
ionic crystals), which feature a Re(ε) < 0 region related to the strong absorption of an IR
active transverse optical phonon [22]. We will review in more details is section 1.3 and 1.4
the reason why Re(ε) < 0 is the key ingredient to obtain subwavelength em confinement.

In ionic crystals, the coulomb force between the oppositely charged ions holds the
lattice together. Examples of polar dielectrics are silicon carbide (SiC), gallium phosphide
(GaP) and indium arsenide (InAs). Contrary to metals, in polar dielectrics the microscopic
charges polarizing against the incoming field are the polar bonds in the material. Here light
strongly couples to lattice vibrations, resulting in the existence of collective excitations
named Surface Phonon Polaritons (SPhPs), which share many features with SPPs. To
understand the properties of SPhPs ans SPPs, in the following we briefly describe the
optical response of metals and polar dielectrics.

The em response of a material is determined by the dielectric function, relating the
field in the material D(r, t) to the external one E(r, t). In Fourier space [23]:
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a) b)

Figure 1.2: Dielectric function from the Drude model eq. 1.3 a) describing the em response
of free-electrons (γ = ωp/2, ε∞ = ωp/5) and b) from the Lorentz model eq. 1.5 describing
the em response in the presence of a transverse optical phonon (ωLO = 3ωTO/2, γ =
ωTO/200, ε∞ = ωTO/500).

Di(q, ω) = εi,jEj(q, ω) (1.2)

If the material is isotropic, the dielectric function is a scalar quantity, and if nonlocal
effects are neglected only a function of frequency ε(ω). The em behaviour of an electron
plasma can be described through the Drude model [6], while resonant processes, such as
the excitation of electronic or vibrational states, are described with the Lorentz model.
The dielectric functions associated with the Drude and Lorentz models are shown in 1.1
a) and b), respectively. The response of metals often deviates from a pure Drude response
due to the presence of interband transitions at energies below the plasma frequency ωp.
The Drude model dielectric function is described by the following equation:

ε(ω) = ε∞ −
ω2
p

ω2 − iγω
(1.3)

where γ is the inverse of the mean time between electron collisions and determines losses
in the material, while ε∞ offsets the baseline level of ε to take into account for interband
transitions at higher frequencies ω > ωp. The plasma frequency depends on the electron
density n and effective mass m∗ as:

ωp =

√
ne2

ε0m∗ (1.4)
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where e is the electron charge and ε0 the vacuum permittivity. The effective mass of
an electron depends on the conduction band curvature of the material [6]. The plasma
frequency represents the frequency below which electrons can follow the external driving
field, while above it electrons ”lag” behind the driving field. At ω > ωp the material
does not behave anymore as a metal, optically speaking. On the other side for ω → 0,
metals behave like perfect conductors, for which Re(ε(ω)) is formally infinitely negative.
The electron density n in eq.1.4 is the main factor determining the plasma frequency
of a material. Consequently, metals usually have ωp in the visible or UV range (n ∼
1022−1023 cm−3), while doped semiconductors in the far to near infrared region depending
on the doping level (n ∼ 1023 − 1029 cm−3). An interesting case is the one of graphene,
where the electron density can be tuned upon application of an external voltage bias [24].

The response of polar dielectrics close to an optical phonon can be described by a
Lorentz-type function, which in this case takes the following form:

ε(ω) = ε∞

(
1 +

ω2
LO − ω2

TO

ω2
TO − ω2 − iγω

)
(1.5)

where ε∞ and γ have the same meaning as in the Drude model, while ωTO and ωLO are
the frequencies of a transverse (TO) and longitudinal (LO) optical phonons. The region
with Re(ε) < 0 is called the Reststrahlen (RS) band, which is bounded below by a TO
phonon and above by a LO phonon. As the optical response of polar dielectrics depends on
their phonon structure, we summarize here some features of lattice vibrations in crystals.

In any three dimensional crystal with p atoms in the primitive cell there are 3p phonon
modes, out of which three are acoustic and 3(p − 1) are optical. The acoustic phonon
dispersion ω(k) is characterized by a linear dispersion close to the k = 0 point. As the
photon momentum is small compared to the lattice momentum (approximately 4 orders
of magnitude smaller considering a mid-IR wavelength of 10 µm and a lattice spacing
of 10 Å), photo-excitation of a phonon can only happen at the k = 0 point, and hence
acoustic phonons cannot directly interact with light. Conversely, optical phonons have non
zero energy even at the k = 0 point. For each phononic branch, there is one longitudinal
and two transverse modes, however many of these are often degenerate due to symmetries
in the crystal structure. As light is a transverse wave, only TO phonons can directly
absorb photons, which is why Im(ε) in Figure 1.2 b) is large close to the TO phonon but
not to the LO phonon. However, not all TO phonons directly interact with light, as a
change in dipole moment is needed for absorption of em waves. Therefore, TO phonons in
non-polar lattices do not absorb IR light, as a displacement of the ions does not produce
any change in the dipole moment. Neglecting losses, a general relation can be established
between the frequency of LO and TO phonons at k = 0, the so called Lyddane-Sachs-Teller
relationship [27]:

ω2
LO

ω2
TO

=
ε(ω = 0)

ε∞
(1.6)

As a consequence, non-polar dielectric have degenerate LO and TO phonons, as the
absence of IR absorption results in ε(ω = 0) = ε∞, where ε∞ is considered as the value
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a) b)
Silicon Carbide

polar

Si
C C

Diamond
non polar

Figure 1.3: Unit cell and phonon band structure for SiC a) and diamond b). Red lines
are calculated phonon dispersion while markers are experimental data. Adapted from [25]
and [26].

of the dielectric function at high frequencies, but below the onset of interband transitions.
An example of phonon band structures for a ionic crystal (silicon carbide, 3C polytype)
and a non-polar dielectric (diamond), are shown in Figure 1.3 [25, 26]. As shown in the
inset, both crystal structures are of the zincblende type, which is a face-centered-cubic
lattice with two atoms in the basis. Consequently, we expect 3 acoustic phonon modes and
3 optical modes, 2 of which are TO and one LO. As predicted by the Lyddane-Sachs-Teller
relationship, SiC features a splitting on the LO and TO energies at the Γ point, while
the phonon branches in diamond are degenerate, as shown in Figure 1.3. Due to the high
symmetry of the cubic lattice, the two TO phonon bands in SiC are degenerate along all
the k-space directions.

In polar dielectrics featuring a RS band, the presence of a TO phonon does not result
in an absorption peak in the IR spectrum. Since in the RS band Re(ε) < 0, we expect a
metallic-like behaviour, resulting in a high reflectivity region. This can be seen in Figure
1.4 for the case of SiC, which features a RS band in the 10 µm to 12.5 µm range. At the
same time, both TO and LO phonons can be detected in Raman experiments, where only
a change in polarizability is needed. In Figure 1.4 the Raman spectra of SiC is reported,
showing two distinct peaks corresponding to the TO and LO phonons delimiting the RS
band.

In this work we investigate the em response of different nanostructures supporting
SPhPs in the mid-infrared. We choose silicon carbide (SiC) as the material platform
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Wavelength (μm)

Figure 1.4: IR and Raman spectra of bulk SiC. Adapted from [22].

as it is one of the most common polar dielectrics with a wide RS band and low losses,
and is already an established material in the field of power electronics [28] and quantum
optics [29]. Particular attention is given to the study of near-field effects of SPhPs, which we
investigate through the employment of scattering scanning optical microscopy (sSNOM).

1.3 Subwavelength field confinement: surface waves

In the previous section we discussed the optical response of metals and polar dielectrics,
which are both characterized by having frequency regions where Re(ε) < 0. Here we discuss
how Re(ε) < 0 is a necessary condition to achieve subdiffractional field confinement when
exciting surface waves at the boundary of two semi-infinite slabs. We start by considering
the fact that the diffraction limit can be understood as a manifestation of Heisenberg
uncertainty principle [30]:

∆x∆px ≥ ℏ
2

(1.7)

The momentum of a photon is ∆px = ∆kxℏ/2π. We consider here for simplicity a 2-
dimensional case where a beam propagating in vacuum in the y direction is focused in the
x direction by an objective. The spread of momentum in the x direction is then related to
the numerical aperture of the objective, since kmin

x = 0 and kMAX
x = k0NA. In the ideal case

of an infinitely extended objective, NA = 1. Then, kMAX
x = k0 = 2π/λ. By substituting in

eq. 1.7 we obtain:

∆x ≥ λ

2
(1.8)

Which is the diffraction limit expressed in eq. 1.1. We see therefore that to overcome
the diffraction limit we would need to have a larger spread in the photon momentum with
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x

a) b)

Figure 1.5: a) Sketch of the TIR phenomena associated with the creation of evanescent
waves in the medium with lower refractive index. b) Electric field profile at the materials
boundary at TIR condition, highlighting the same spatial variation on both sides of the
interface. Adapted from [31].

kMAX
x > k0. However, k2

0 = k2
x + k2

y, and as long as kx and kx are real numbers, which
is the case for free-space propagating light, the diffraction limit holds. Conversely, if ky
is imaginary, the spatial spread of the field in the x direction can be confined under the
diffraction limit since kx > k0. An imaginary k-vector is associated with an exponentially
damped field since E = exp (ik · r). The existence of these so called evanescent-waves is
connected in general to the presence of a material boundary. The region close to the surface
where these exponentially decaying fields are present is called the near-field, as these fields
components do not propagate and cannot be observed in the far-field far away from the
interface.

We now consider the simplest case of material interface, where two semi-infinite slabs
occupy the whole 2-dimensional space. The easiest way to produce an evanescent wave
is to consider two dielectric medium exhibiting total internal reflection (TIR) when light
comes from the medium with the higher refractive index n2 > n1 above the critical angle
θc = arcsin(n1/n2) as shown in Figure 1.5 a). For continuity reasons, the field in medium
n1 cannot be zero right after the interface, and as such one expects an evanescent wave to
be present. For the same continuity argument, the field in medium 1 has the same spatial
modulation of the one in medium 2, which is governed by the free-space wavelength and
does not allow breaking of the diffraction limit in the x direction, as can be seen in Figure
1.5. At the same time, the evanescent field in the z direction is routinely used in TIR
fluorescence microscopy, which allows reduction of background signal from fluorophores
far away from the interface. However, no field enhancement is associated with the TIR
phenomena, as the field intensity from the surface scales as I(z) = I0 exp(−z/d) where
d is a critical decay distance and I0 is the intensity below the surface from the incoming
free-space light in medium n2 [31].
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Evanescent waves at the material boundary shown if Figure 1.5 can also be achieved
through the excitation of surface waves (SW). SW propagate along the interface and fea-
ture exponentially decaying fields in the perpendicular direction. The existence of surface
states at the interface between two mediums can be derived analytically from Maxwell’s
equations applying continuity relations for the E and H field [15]. The SW condition is
enforced by demanding the field components to be exponentially decaying in the direction
z perpendicular to the material interface Ei,j(z), Hi,j(z) ∝ exp(−kiz), where the index j
runs over the field components, and i over the two mediums 1 and 2. To have exponentially
decaying fields the real part of the wavevectors has to be positive Re(ki) > 0. From this
condition and the continuity of the fields one gets that no transverse electric (TE) SW can
exist at the boundary. Only transverse magnetic (TM) SW can exist, given that the real
part of the dielectric function of the two slabs have opposite signs [15]:

k1
k2

= −ε1
ε2

(1.9)

Therefore, SW withing a single boundary can only occur between a dielectric with
Re(ε) > 0 and a material with Re(ε) < 0. We consider from now the medium 1 to be the
dielectric and medium 2 to be the one with Re(ε) < 0. The two k-vectors in the z direction
satisfy the following equations [15]:

k2
i = β2 − k2

0εi (1.10)

where β is the wavevector of the SW in the propagation direction and is given by

β = k0

√
ε1ε2

ε1 + ε2
(1.11)

These relationship work for all materials with Re(ε) < 0, regardless of their microscopic
details. Indeed, SW described by eq. 1.10 can exist in metals for ω < ωp, in which case
they are named surface plasmon polaritons (SPP), and in polar dielectrics in the RS band,
where they are named surface phonon polaritons (SPhP). In Figure 1.6 the dispersion
for both SSP and SPhP calculated with the dielectric functions shown in Figure 1.2 are
reported. For simplicity we excluded here the imaginary part of the dielectric function and
we considered the dielectric slab to be vacuum. A sketch of the electric field at the material
boundary is shown in the inset of Figure 1.6 a). The em field is exponentially decaying in
the z direction in both materials, with a strong confinement in the ”metallic” one, while
propagating in the x direction at the material interface. The dispersion for SPP and SPhP
is similar, a divergence of the wavevector is found at the condition Re(ε(ω)) = −1 (or in
general at Re(ε(ω)) = −εenv, where εenv is the dielectric function of the dielectric slab).
For Re(ε) ≪ 0 in both cases the dispersion approaches the light line ω = ck0, where the
SW behaves similarly to a free-space photon with poor confinement in both the x and z
directions. The main difference is that since the SW condition is valid only for frequencies
where Re(ε) < 0, there is no lower energy bound for the existence of SSP, while SPhPs only
exist above the TO frequency. An important feature of both SPP and SPhP dispersion
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Figure 1.6: Dispersion for SPPs a) and SPhPs b) in vacuum. In the inset in a) a sketch of
the field at the material boundary is shown. Adapted from [32].

curves is that they lie on the right of the light line. This means that conservation of energy
and momentum cannot be fulfilled, and free-space photons cannot excite the SW. The
additional momentum needed for excitation can be provided in a variety of ways, such as
with gratings or by excitation with near-field sources [15].

The confinement of the SW can be evaluated in both the propagation and perpendicular
directions by taking the inverse of the wavevector. In Figure 1.7 we plot the ratio between
the SW wavelength and the free-space wavelength λ0/λSPhP and the decay length of the
field in the dielectric side δ = 2π/k1. At the same time, we plot the value of Re(ε).
Subwavelength confinement is achieved in both cases for frequencies where the dielectric
function is close to zero. A direct consequence of this is that for SPP and SPhPs the high
confinement region is found in different wavelength ranges, being in the visible for SPPs in
metals and in the mid to far infrared range for SPhPs. In this treatment we disregarded
the imaginary part of the dielectric function. For real materials, the maximum in-plane
k-vector is limited by the nonzero value of Im(ε) which consequently puts a lower limit on
the achievable confinement. For non-negligible losses the kSW dispersion shown in Figure
1.6 does not diverge at Re(ε) = −1, but bends back towards the light line [15]. In general
the k-vector is a complex quantity and a propagation length for the SW can be defined
as L = 1/2Im(kSW ). Higher confinement comes at the price of a lower propagation length
due to higher field penetration in the material, associated with stronger losses.

From this discussion it is evident that from an electromagnetic point of view the be-
haviour of SPPs and SPhPs is very similar. However, as it will be described in following
sections, there are fundamental quantitative and qualitative differences between these SW.

To reach the conclusion that a material with Re(ε) < 0 is necessary to support SWs, we
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a) b)

Figure 1.7: SW confinement for SPPs a) and SPhPs b) in both the direction of propagation
λ0/λSW and the direction perpendicular to the interface λ0/δSW . Strong confinement is
achieved where Re(ε) is close to zero.

considered in only the simple case of two-semi infinite slabs. It is worth mentioning that in
more complex geometries SW can also be supported by purely dielectric architectures. This
is for example the case for Bloch surface waves, where an heterostructure of alternating
dielectric layers results in the existence of SW [33]. Even though SW can be excited in this
configuration, the maximum wavevector of Bloch surface waves β = 2πnSW/λ0 is limited
by the highest refractive index of the dielectric stack 1 < nSW < nMAX [33].

1.4 Subwavelength field confinement: resonators

In the previous section we highlighted how the presence of a Re(ε) < 0 material is necessary
to sustain SW at the boundary between two semi-infinite slabs, allowing for subdiffrac-
tional field confinement. The importance of negative permittivity can be also understood
for resonators, independently of the detailed geometry of the system, from an energy con-
servation point of view [34]. We consider an optical cavity with a length that is a multiple
of the wavelength, where standing waves can be formed. Both the electric E and mag-
netic field H then have a spatial dependence in the confinement direction z of the form
sin(2πz/λ). The system is sketched in Figure 1.8 a, b). The total em energy is periodically
exchanged between the electric field energy uE ∼ ε|E|2/2 and the magnetic field energy
uH ∼ |H|2µ/2, where µ is the magnetic permeability of the material. We consider in the
following the fields to have a harmonic time dependence. From Maxwell equations E and
H are orthogonal. Then we get that the third Maxwell equation:
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a) b)

c)
d)

Figure 1.8: Self sustaining oscillations of the electric a) and magnetic b) fields in a resonator
larger than the wavelength. For subwavelength structures the energy balance between
electric c) an magnetic fields d) is not fulfilled anymore, leading to leakage radiation outside
of the resonator. Adapted from [34].

∇× E = −µ
∂H

∂t
(1.12)

is solved if |H| =
√
ε/µ|E|. By substituting this relationship in the equations for the

electric and magnetic energies, we see as expected that both have the same value uE = uH .
This means that energy is periodically exchanged between the electric and magnetic fields
without losses, and self-sustaining oscillations are possible [34]. Note that the same result
can be obtained by repeating the same procedure with the 4th Maxwell equation:

∇×H = ε
∂E

∂t
(1.13)

Now if the resonator size a is smaller than the wavelength, the spatial dependence will
be of the form sin(πz/a), as shown in Figure 1.8 c, d). Then from eq.1.13 we can write
that the magnitude of the fields are related by:

|H| = 2a

λ

√
ε

µ
|E| (1.14)

The magnetic energy can then be expressed as a function of the electric energy as:
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uH =

(
2a

λ

)2

uE (1.15)

For a deeply subwavelength resonator we have a ≪ λ and therefore uH ≪ uE. In
this case we have an energy imbalance, meaning that self-sustaining oscillations are not
possible. This statement is nothing else than another from of the diffraction limit, saying
that squeezing the light in a resonator is possible only down to a dimension a = λ/2. Initial
energy stored in the resonator will be lost due to leakage radiation to the environment,
as shown in Figure 1.8 c) by the outgoing arrows. In materials with Re(ε) < 0, the
energy balance can be restored by considering the kinetic energy uk associated with the
movement of free-charges uE = uH+uK . These are electrons in metals and the ionic bonds
in polar dielectrics. The kinetic term naturally adds in phase with the magnetic term, as
currents are also out of phase with the electric field. From this argument, it follows that
subwavelength resonators are inevitably lossy, as energy is stored almost half of the time
as kinetic energy, which is lost at a rate commensurable with the scattering rate γ of the
oscillating charges [34].

By applying the same reasoning used before for the subwavelength resonator, but using
eq.1.12 instead of eq. 1.13, an apparent contradiction arises, as one gets uE ≪< uH in
this case. This just means that the situation can also be treated from the opposite side, to
restore energy balance one needs to have a source of additional potential energy oscillating
in phase with E. However it is less straightforward how this can be done, other than just
rising the value of uE by increasing ε until the diffraction limit condition again applies [34].

1.5 Surface plasmon\phonon polaritons

In the previous sections we highlighted the need for materials with Re(ε) < 0 to achieve
subwavelength confinement, and introduced SPP and SPhPs. While the dispersion curves
for both types of SW are similar, many differences exist between the two, which we sum-
marize in the following.

The first obvious difference is that, as can be seen from Figure 1.6, SSP exist at every
wavelength below ωp, while SPhP exist only in the Reststrahlen band. Moreover, if one is
interested in deep subwavelength confinement, the wavelength of operation has to be close
to Re(ε) = 0, as shown in Figure 1.7. This in not only true for surface modes, but also
for localized resonances. For example, a simple rod antenna of length L has the lowest
order resonance at λres = L/2 for Re(ε) ≪ 0. Only when the permittivity approaches zero
this simple relationship breaks down and subwavelength resonators become possible [35].
From the energy balance point of view, the Re(ε) ≪ 0 condition corresponds to a low
amount of energy stored as electron kinetic energy, only negligibly affecting the balance
between electric and magnetic energy. The result is that the minimum size of a resonator
is only slightly smaller than what determined by the diffraction limit. In turn, this means
that losses are low at long wavelengths in metallic antennas, as only a small amount of
energy is lost by electron collisions. While SPhPs naturally exist only in the mid-infrared
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Figure 1.9: a) Figure of merit calculated from eq. 1.16 for two noble metals (Au, Ag), a
doped semiconductor (n-InGaAs) and a polar dielectric (SiC). b) Maximum of the figure
of merit for a selection of materials supporting both SPP and SPhP as a function of the
frequency where the maximum is achieved. Adapted from [22]

(MIR) range, noble metal plasmonic structures produce the highest confinement at visible
frequencies [36]. The different wavelength ranges can be bridged by doped semiconductors,
which can have ωp in the MIR [21], facilitating a direct comparison between SPP and SPhP.

The main property that has led to extensive study of SPhP is the lower losses in polar
dielectrics. As we have seen from the energy balance approach in section 1.4, independently
of the resonator shape the losses are determined by the scattering rate of the oscillating
charges in the material. For noble metals, the intrinsic scattering rate is on the order of
1014 s−1, while for doped semiconductors it can be an order of magnitude less due to the
lower electron density [37]. However, the higher skin depth of doped semiconductors leads
to comparable or even grater losses than in noble metals [37]. In this regard, SPhP offer
great advantage since the loss mechanism is not related to electron-electron scattering but
to phonon-phonon scattering, which is a much slower process. While SPP have lifetimes
on the order of tens of femtoseconds, SPhP can reach three order of magnitude longer
lifetimes of tens of picoseconds.

1.5.1 SPhP and SPP comparison

A number of figure of merits can be established to compare the properties of localized and
surface resonances among different material platforms. We start here by considering surface
waves, for which a common figure of merit (FOM) is the ratio between the propagation
length L and the out-of plane confinement of the mode in the dielectric side δ. This
figure of merit is chosen because the confinement for a certain material choice can be
tuned arbitrarily by reducing the thickness of the dielectric layer in a metal-insulator-
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metal (MIM) arrangement. By normalizing to the wavelength of operation, the FOM for
SW can be expressed as [22]:

FOMSW =
Lp/λ

2δ/λ
≈ |Re(ε)|3/2

Im(ε)
(1.16)

Eq. 1.16 is plotted in Figure 1.9 a) for the two most common noble metals (Ag and
Au), a highly doped semiconductor (n-InGaAs) and a polar dielectric (SiC, polytype 4H)
supporting SPhPs. The frequency range is the one of the RS band of SiC. It can be
seen that SPhP in SiC do not outperform conventional noble metals, and only have the
drawback of the limited frequency range. Even though the losses in SiC are much lower
than for the plasmonic systems and the SPhP lifetime greatly increased, the FOM is
low due to the low group velocity of SPhPs. The group velocity of a SW is calculated
as vg = ∂ω/∂k, and consequently vg is small for SPhP due to their strong dispersion,
balancing the increased lifetime. In Figure 1.9 b) the maximum of eq. 1.16 is reported
for many materials supporting both SPPs and SPhPs. For each material the maximum of
the FOM is reported together with the frequency value where such maximum is achieved.
From this figure one can conclude that no particular advantage of SPhPs over SPP in
metals or doped semiconductors can be clearly established.

On the other hand, the argument that the SW performance of a material can be es-
timated regardless of the confinement, misses the fact that the scaling of the k-vector for
the MIM or IMI insulator-metal-insulator (IMI) geometries is not a linear function of the
dielectric layer or metal film thickness. We consider here for example the IMI geometry
for a SiC and a gold thin films in an homogeneous medium. For simplicity we analyze here
only the lower energy mode arising in the MIM geometry due to hybridization of the top
and bottom SW in a thin film [15]. As we are far away from interband transitions, for
the dielectric function of gold we use a simple Drude model with ωp = 70 500 cm−1 and
γ = 150 cm−1 [38]. For the SiC dielectric function we use values taken from the literat-
ure [39]. In Figure 1.10 a) we show the calculated SPhP wavelength for a 200 nm SiC film
suspended in vacuum. Such films can be experimentally realized and are even commer-
cially available as millimeter-scale free-standing membranes [39]. To achieve a comparable
level of confinement in the propagation direction with a gold film, its thickness has be of
only 0.2 nm, as shown in Figure 1.10 a). This means that while theoretically the same
confinement can be reached with a gold film, this is not actually feasible. Regardless of the
difficulty of actually achieving such a small film thickness, at such sub-nanometer scales
quantum effects start to play a role [40], invalidating this simple treatment based exclus-
ively on Maxwell’s equations. In Figure 1.10 b) we plot the ratio of the propagation length
L to the SW wavelength λSW for the same films as in a). Even if the same confinement
could be achieved, the losses for SPP are much higher, and the intensity decays a factor of
e before completing even a single oscillation. In Figure 1.10 b) we calculate the FOM as
defined in eq. 1.16 for the SiC and gold thin films. While the FOM in the bulk case slightly
favours gold over SiC (see Figure 1.9 a), in the thin film case it is the opposite. This shows
that the FOM used for a semi-infinite surface does not capture the correct behaviour for
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Figure 1.10: a) Calculated wavelength for SPhP in a 200 nm SiC film and SPP in a 0.2 nm
Au film. In both cases the films are suspended in vacuum as shown in the inset in b). b)
Calculated ratio between the propagation length L and SW wavelength λSW for the films
in a). c) Calculated FOM from eq. 1.16 for the thin films.

the IMI geometry.

1.5.2 LSPhP and LSPP comparison

In the previous section we compared propagating modes in different materials with Re(ε) <
0. We review here the properties of localized resonances in plasmonic (LSPP) and phononic
(LSPhP) antennas. To evaluate the intrinsic material properties we consider a deeply sub-
wavelength a ≪ λ spherical antenna of radius a. The polarizability of a sphere in vacuum
in the quasi-electrostatic approximation (i.e. the driving field is considered constant over
the whole particle) has a simple analytical expression [15]:

α = 4πa3
ε− 1

ε+ 2
(1.17)

Eq. 1.17 has a maximum at Re(ε(ω)) = −2, the so-called Fröhlich condition. It can
be shown that the quality factor (Q) of an electrostatic mode depends on the resonant
wavelength, but is independent of the detailed geometry of the resonator [22]. The Q
factor can then be expressed only in terms of the dielectric function of the material:
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Figure 1.11: a) Calculated Q-factor in the electrostatic limit for LSPhP in polar dielectrics
(SiC and GaAs) ans LSPP in a doped semiconductor (InGaAs) and a noble metal (Ag), as
a function of Re(ε). b) Q-factor at the Fröhlich condition for materials supporting LSPP
(metals, metal alloys and doped semiconductors) and LSPhP (polar dielectrics).

Q =
ωdRe(ε)/dω

2Im(ε)
≈ ω

γ
(1.18)

where the approximation is valid for γ ≪ ωLO −ωTO for LSPhP and γ ≪ ωp for LSPP.
The Q-factor in different material platforms can then be compared, as shown in Figure
1.11 a) as a function of the real part of the permittivity. The advantage of using materials
supporting phonon polaritons is then clear in this case, as the Q-factor for LSPhP (4H-SiC
and GaAs) is much higher than for LSPP in doped semiconductors (InGaAs) and noble
metals (Ag). The Q-factor for a selection of materials is shown in 1.11 b) at the Fröhlich
condition. Almost all polar-dielectrics outperform even the best plasmonic materials, while
having resonance frequencies in the mid to far-IR region. Even though the Q-factor for
LSPhP resonances is roughly one order of magnitude higher than for LSPP at similar
frequencies, it has been shown that the increase in field enhancement and Purcell factor is
not as high. This has been explained by considering that a large amount of energy in the
SPhP antenna is stored as potential energy of the ions, which does not contribute to the
enhancement of the external field and has no analogue in LSPP resonators [37].

1.5.3 Anisotropy

Until now we discussed the propagation of SW in isotropic systems, where the the dielectric
tensor εi,j is diagonal and all its terms are equal. However, there are materials in which
the diagonal elements εi,i can have different values. In dielectric materials, this is the
origin of birifringence, which is the principle on which waveplates are built. The difference
in the refractive index along different crystal directions introduces a phase delay between
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orthogonal polarizations which depends on the relative angle between the crystal axis
and the polarization direction. In materials supporting SPhPs and SPPs, if not all the
terms are equal in magnitude, SW propagating in different directions will have different
wavelengths. In momentum space, the wavevector surface is a sphere for isotropic materials,
and an ellipsoid for anisotropic materials with all the diagonal elements εi,i < 0. More
interestingly, it can also happen that for a certain frequency range some terms of the
dielectric tensor are positive and some are negative, resulting in a k-vector surface which has
the shape of an hyperboloid [42]. Hyperbolic response can arise from various combinations
of Drude and Lorentz responses along different crystal directions, as shown in Figure 1.12 a)
when considering only 2 independent components of the dielectric tensor. [42]. Howevever,
for plasmonic materials such hyperbolic iso-momentum curves have been only recently
observed in thin films of tungsten ditelluride (WTe2) in the mid-IR [43], but no direct
imaging of hyperbolic SPPs has been carried so far. On the other hand exfoliated hBN,
which is one of the most common materials for phonon polaritons, exhibits out-of plane
hyperbolicity [44]. Since SPhP arise from the phonon structure of the lattice, anisotropic
behaviour can be expected in a wide range of materials exhibiting highly anisotropic unit
cells. 2D materials have attracted considerable attention in this context since they feature
high anisotropy in the out-of plane direction, which allows exfoliation, and can also feature
in-plane anisotropy. In-plane hyperbolic response has been recently discovered in different
phononic materials, including α-MoO3 [45, 46] and α-V2O5 [47], where anisotropic SPhP
propagation was demonstrated through real-space near-field imaging. Recent experiments
increased even more the possibility of engineering the phonon polariton response by twist-
angle of stacked 2D materials [41] and by employing crystals with nonzero off-diagonal
elements of the dielectric tensor [48, 49], which have, at the moment, no counter part in
plasmonic systems. In Figure 1.12 b-d) the response of a heterostructure made by stacking
two layers of α-MoO3 with a certain twist angle between the layers is shown [41]. The
in-plane dispersion has a topological transition from hyperbolic to elliptical as a function
of twist angle. At a certain ”magic angle” the SPhP are launched in a single direction,
corresponding to the presence of ”flat bands” in the in-plane dispersion, as shown in Figure
1.12 c, d). The topological transition is determined by the number of intersections between
the in-plane dispersions of the individual layers, as shown by the dashed lines in Figure
1.12 d) and the value of NACP .

It is worth mentioning that, while anisotropy can be obtained in artificial metamaterials
and metasurfaces, the maximum in-plane momentum of the SW is in this case limited by
the size of the artificial unit cell [43].



1.5 Surface plasmon\phonon polaritons 19

a)

b)

c)

d)

Figure 1.12: a) Different ways to obtain hyperbolic response in a natural material by a
combination of Drude-Drude, Drude-Lorentz and Lorentz-Lorentz responses. The regions
of hyperbolic response are higlighted in blue and red. b) Topological transition in the
SPhP dispersion of two layers of α-MoO3 as a function of the twist angle. c) Simulated out
of plane electric field Re(Ez) of a dipole emitting above the α-MoO3 heterostructure as a
function of twist angle and d) corresponding amplitude of the fourier transform. Dashed
lines indicate the dispersion of the individual layers, while the red line is the heterostructure
dispersion. Adapted from [41].
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Chapter 2

Theory

Maxwell’s equations describe electromagnetic fields, and all the phenomena investigated in
this work can be described through their application with certain boundary conditions and
material discontinuities. Analytical solutions of Maxwell’s equations exist only for a very
limited number of examples, and often numerical solutions are required. We review first
the solution of Maxwell equations in layered stacks of uniform materials, which for example
describe the behaviour of anti-reflection coatings based on thin-film interference. In the
context of this work, layered geometries are of relevance to understand the properties of
SPhP in complex heterostructures. We then move to arbitrary three dimensional geomet-
ries where numerical methods have to be used, and in particular we highlight the differences
between finite difference time domain (FDTD) and finite element methods (FEM).

2.1 Maxwell equations in 2D layered geometries

2.1.1 Single interface

When light encounters a material boundary it gets reflected back into the initial medium
and refracted inside the second one. The intensity of reflected and refracted lights depend
on the refractive index of the materials and on the angle of incidence of light with respect
to the normal direction of the surface. The refractive index n̂ = n + ik serves the same
purpose of the dielectric function (ε = ε1 + iε2) to describe the em response of a material.
These two quantities are related by:

ε1 = n2 − k2

ε2 = 2nk
(2.1)

The problem can be solved by considering a plane wave incident with an angle θi on
the discontinuity and imposing various boundary conditions. The electric E and magnetic
H fields for a plane wave can be written as:
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Transverse Electric (TE) Transverse Magnetic (TM)a) b)

θi
θr θt

θi
θr θt

Figure 2.1: Scheme for the transmitted and reflected waves for TE a) and TM b) incidence
at an interface between two materials with different refractive index. Adapted from [23].

Ei = E0ie
i(qi·r−ωit)

Hi = nqi × Ei

(2.2)

where nqi is the unit vector in the direction of qi and i is the material index. A
series of boundary conditions can be enforced on the fields in eq. 2.2 to derive the Fresnel
coefficients for the reflected and transmitted light. First of all the frequency of the wave
is the same for all components (ωi = ωt = ωr), and the phase term at the interface must
be the same (qi · r = qr · r = qt · r). The indexes i, r, t indicate the incident, reflected
and transmitted parts. From these relations one can conclude that light is reflected at the
same angle of incidence, and derive Snell’s law for refraction of light:

sin(θi)

sin(θt)
=

n̂t

n̂i

(2.3)

Continuity at surface of the normal components of D and B and of the tangential
components of E and H is used to derive Fresnel’s equations [23]. The transmission and
reflection coefficients are different for TM waves (E has a component perpendicular to the
surface) and TE waves (E is parallel to the surface). The difference between TE and TM
incidence is illustrated in Figure 2.1. The Fresnel coefficients read [23]:
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rTE =
n̂1 cos θi − n̂2 cos θt
n̂1 cos θi + n̂2 cos θt

tTE =
2n̂1 cos θi

n̂1 cos θi + n̂2 cos θt

rTM =
n̂2 cos θi − n̂1 cos θt
n̂2 cos θi + n̂1 cos θt

tTM =
2n̂1 cos θi

n̂2 cos θi + n̂1 cos θt

(2.4)

Together with Snell law, eqs. 2.4 can be rewritten as only a function of the incidence
angle θi. The Fresnel coefficients in 2.4 are complex quantities as they describe both
the change in amplitude and phase of the electric field at the boundary. The well know
phenomena of total internal internal reflection and polarized reflectivity at the Brewster
angle are described by eq. 2.4.

The intensity of the reflected light can be calculated as the square of the corresponding
Fresnel coefficient R = |r|2, and the transmitted portion is obtained as T = 1 − R − A,
where A represent absorption losses. In the special case of normal incidence there is no
difference between TE and TM incidence. If one of the materials is vacuum as in most
experiments, the reflectivity can be written as [23]:

R =

∣∣∣∣1− n̂

1 + n̂

∣∣∣∣2 = (1− n)2 + k2

(1 + n)2 + k2
(2.5)

and the associated phase shift ϕr is

tanϕr =
−2k

1− n2 − k2
(2.6)

2.1.2 Layered systems

The discussion carried in the previous section for the reflection and transmission at a single
interface can be extended to multilayer systems. In the case of multiple interfaces, the
incident light can interfere with the reflection from subsequent layers, resulting in thin-film
interference effects. This is a particularly strong effect for multilayers of thickness larger
than the wavelength but smaller than the skin depth, so that a considerable amount of light
is reflected at each interface. The simplest version of a multilayer system is constituted by
three different materials with two interfaces, with the material in the middle characterized
by a thickness T . The problem can be solved for isotropic and homogeneous mediums by
casting Maxwell equation in matrix form [50].

The derivation of the matrix formulation in quite lengthy, so we only briefly summarize
it here. In the case of TE waves with incidence in the yz plane, where z is the direction
of stratification, one has Ez = Ey = 0. A single second order differential equation can be
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n1

n2

n3

θ1

θ2

θ3

θ2

a) b)
n1 = 1
n2 = 4
n3 = 2

θ1

T

Figure 2.2: a) Scheme for a three layer system with n1 < n3 < n2. Multiple reflections are
shown as gray arrows. b) Reflectivity for a three layer system as calculated from eq. 2.17
for two different thicknesses of the middle layer for θ1 = 0.

written for Ex starting from Maxwell equations, which can be shown to have a solution of
the form [50]:

Ex = U(z)ei(k0αy−ωt) (2.7)

where U(z) is an unknown function of z and α = n sin θ where θ in the incidence angle.
Analogously it can be shown that for the H field:

Hy = V (z)ei(k0αy−ωt)

Hz = W (z)ei(k0αy−ωt)
(2.8)

The problem is then reduced to finding the unknown functions U(z), V (z) and W (z).
The functions U(z) and W (z) are related by αU + εW = 0, so that the problem is reduced
to the solution of two independent second order differential equations for U(z) and V (z).
The value of the functions U(z), V (z) and their initial value U(0), V (0) are related by a
2× 2, matrix which depends on the properties of the material [50]:

Q0 = MQ (2.9)

where

Q0 =

[
U(0)
V (0)

]
, Q =

[
U(z)
V (z)

]
(2.10)

The advantage of this formulation, which goes under the name of transfer-matrix
method, is that the effect of multiple layers can be expressed as the product of the
matrices characteristic of each layer. If we consider a series of N layers extending from
0 ≤ z ≤ z1, z1 ≤ z ≤ z2, · · · zN−1 ≤ z ≤ zN one has:
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Q0 = M(zN)Q(zN) (2.11)

where M(zN) = M1(z1)M2(z2−z1) · · ·M2(zN −zn−1). It can be shown that for a single
layer the characteristic matrix has the form [50]:

M(z) =

[
cos(k0nz cos(θ)) − i

p
sin(k0nz cos(θ))

−ip sin(k0nz cos(θ)) cos(k0nz cos(θ))

]
, (2.12)

where p =
√
ε cos(θ). We consider for simplicity a non-magnetic medium with µ = 1.

According to eq. 2.7, the electric field depends only on the function U . Therefore for TE
waves, U0 = A+R represents the sum of the reflected R and incident A amplitudes of the
electric field, while U(z) = T represents the transmitted part. Then by applying eq. 2.7:[

U0

V0

]
=

[
m11U(z) +m12V (z)
m21U(z) +m22V (z)

]
(2.13)

where mij are the elements of the characteristic matrix. For continuity of the fields
at the boundary one also has that the electric and magnetic fields are related by H =√
εk̂ × E, where k̂ is the unit vector in the propagation direction. Then one has for the

field amplitudes V (z) = ptU(z) = ptT and V0 = pr(A − R), where the indexes r and
t indicate the two mediums where light is reflected and transmitted. Therefore one can
write:

A+R = (m11 + ptm12)T

pr(A−R) = (m21 + ptm22)T
(2.14)

From these the reflection and transmission coefficients can be retrieved as:

r =
R

A
=

(m11 + ptm12)pr − (m21 + ptm22)

(m11 + ptm12)pr + (m21 + ptm22)

t =
T

A
=

2pr
(m11 + ptm12)pr + (m21 + ptm22)

(2.15)

In the case of z = 0 (i.e. a single interface), eq. 2.4 for TE waves is recovered, as the
matrix elements are m11 = m22 = 1 and m12 = m21 = 0. The solution for TM waves is
obtained by substitution of the p terms with q =

√
1/ε cos(θ). For a three layer system

(indicated with indexes 1, 2, 3), where a film of thickness T is sandwiched between two
layers as shown in Figure 2.2 a), the matrix elements according to eq. 2.11 are:

m11 = m22 = cos β, m12 = − i

p2
sin β, m21 = −ip2 sin β (2.16)

where β = 2πn2T cos(θ2)/λ0 and pj = nj cos(θj). The angles of the transmitted wave
in each medium are indicated as θj. By substituting the matrix elements in eq. 2.15 the
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reflection and transmission coefficients can be expressed as a function of the single interface
coefficients r12, r23 and t12, t23 as [50]:

r =
r12 + r23e

2iβ

1 + r12r23e2iβ

t =
t12 + t23e

iβ

1 + r12r23e2iβ

(2.17)

The reflectivity and transmissivity of the three layer system are then simply R = |r|2
and T = p3|t|2/p1. TM and TE coefficients are obtained by considering the appropriate
single interface TE and TM coefficients r, t in eqs. 2.17.

An interesting phenomena related to multilayer films is the thin film interference effect.
As can be understood from simply applying Snell law to the multilayer shown in Figure
2.2 a), due to different optical paths of the reflected rays in the upper medium, either
constructive or destructive interference can be achieved. Neglecting phase retardation due
reflection and transmission at the interfaces, constructive interference is achieved whenever
mλ = 2n2T cos(θ2). If plotted against the inverse of the wavelength, the periodicity of the
fringes in a spectrum is given by:

∆ =
1

2n2T cos(θ2)
(2.18)

If the refractive index of the materials in the stack is known, from the periodicity of the
fringes the film thickness can be inferred. An example of the effect of thin-film interference
on the spectrum of a three-layer system is shown in Figure 2.2 b) for two different film
thicknesses.

2.1.3 Extension to anisotropic materials

The transfer-matrix formalism summarized in the previous section can be used to compute
the reflectivity and transmissivity of an arbitrary number of layers. However it cannot treat
anisotropic materials, which are often interesting in the study of phonon polartions [44,45].
A formalism that can treat at the same time isotropic and anisotropic layers (with diagonal
dielectric tensors) has been recently developed [51]. The method has been conceived to
simulate experiments employing the Otto geometry, where light is coupled into a high
index-prism in total internal reflection. The prism is brought close to the interface under
study, so that the sample is excited by the exponential tail of the TIR in the prism, allowing
the investigation of high in-plane momenta surface waves. This method can be used to
predict SWs dispersions in complex stacks of layered anisotropic materials.

The main difference from the previous treatment is that the dielectric constant relating
the field inside the material to the total field is not a scalar constant but a diagonal
matrix. Therefore the effect of a layer cannot be described anymore by a 2 × 2 matrix,
but a 4× 4 matrix has to be considered. The incident field is assumed to lie in the x− z
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plane and the wavevector in each layer i can be written as ki = ω/c(
√
εinc sin(θ), 0, qi),

where εinc is the isotropic dielectric function of the incident medium and θ is the angle
of incidence. Then, Maxwell’s equations considering harmonic time dependencies and
neglecting nonlinear effects can be written as [51]:

R


Ex

Ey

Ez

Hx

Hy

Hz

 = −iω


Dx

Dy

Dz

Bx

By

Bz

 (2.19)

where R is a 6× 6 matrix representing the spatial derivatives in Maxwell’s equations,
while temporal derivatives have been already computed, giving the −iω term. It can be
shown that the normal components Ez and Hz can be solved in terms of the other four
field components, and Maxwell’s equations can be rewritten as:

∂

∂z


Ex

Hy

Ey

−Hx

 = i
ω

c
∆


Ex

Hy

Ey

−Hx

 (2.20)

where ∆ is a 4×4 matrix which is related in a non-straightforward way to the material
parameters of the layer [51]. For each layer i, the 4 eigenvalues of∆(i) are the z-components
of the wavevector qij. One can rewrite the previous equation as:

qij∆(i) = Ψij∆(i) (2.21)

where Ψ = (Ex, Hy, Ey,−Hx). Here j = 1, 2, 3, 4 represents the different values of the
wavevector due to different polarizations and propagation directions. The sign of qij dis-
tinguishes transmitted and reflected components. From the eigenvalues qij an appropriate
4 × 4 matrix A can be defined so that the in-plane fields of a layer can be related to the
fields at the previous layer [51]:

Ai−1Ei−1 = AiEi (2.22)

where E = (Ep
tr, E

s
tr, E

p
rfl, E

s
rfl) so that the fields are distinguished by their polarization

(p, s equivalent to TM and TE) and if they are reflected or transmitted. The full transfer
matrix can then be expressed as:

ΓN = A−1
0 TtotAN+1 (2.23)

where

Ttot =
N∏
i=1

Ti =
N∏
i=1

AiPiA
−1
i (2.24)
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Figure 2.3: a) Dispersion of the SPhP on a semi-infinite SiC surface in vacuum calculated
through the transfer-matrix method. Im(rpp) is shown in the colorbar. Vertical dashed
lines indicate the in-plane momentum used for the calculations in b) and c), while red
circles indicate the frequency of the SPhP at the corresponding momentum. Calculated
absolute value of the out-of plane component of the field |Ez| for in plane-momentum
kx = 1000 cm−1 b) and kx = 1500 cm−1 c).

and Pi is the 4×4 propagation matrix of layer i where the diagonal matrix elements are
given by pij = exp(−iωqijdi/c), while the rest of the elements are 0. The in-plane electric
fields at each interface can be calculated through eq. 2.22, and the fields at the top and
bottom of the stacks are related by:

E−
0 = ΓNE

+
N+1 (2.25)

where the + and − indicate the field at the upper or lower side of each interface. From
the transfer matrix ΓN the reflection and transmission coefficients can be calculated [51].
Each coefficient describes the reflected and transmitted for a determined input polarization
and output polarization. The reflection coefficients are overall four: rss, rsp, rpp, rps and the
reflectivity is calculated as usual as the square modulus of the coefficients Rkl = |rkl|2.
Similarly, one also has four transmission coefficients tss, tsp, tpp, tps. Since no reflected fields
are present at the bottom of the stack, E+

N+1 can be written as:
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E+
N+1 =


tpp + tsp
tss + tps

0
0

 (2.26)

The fields at each point z of layer i can then be calculated by applying the propagation
matrix Pi(z) to the fields at the interface:

Ei(z) = Pi(z)E
−
i (2.27)
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Figure 2.4: Transfer-matrix calculated dispersion along the [100] a) and [001] b) crystal
direction for a 100 nm thick α-MoO3 film in vacuum. In-plane dispersion of the same film
for ω = 925 cm−1 c) and ω = 990 cm−1.

This formalism can be therefore used to investigate the properties of unpatterned
layered systems supporting surface wave excitations. An example of the results that can be
obtained from the transfer-matrix approach are shown in Figure 2.3 for a semi-infinite SiC
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surface. The dispersion of the SPhP is investigated by sweeping the in-plane wavevector
at the top layer. The imaginary part of rpp is the quantity of interest, as SPhP require TM
polarization for their excitation and it has been shown to reproduce well the dispersion
of SPhPs. On the right of the light line the dispersion of the single SPhP interface can
be identified by following the maxima of Im(rpp). In Figure 2.3 b, c) we also plot the
absolute value of the out-of plane field component Ez for two different in-plane momentum
(kx = 1000 cm−1 in b) and kx = 1500 cm−1 in c) as a function of wavelength and z co-
ordinates. It can be seen that the wavenumber of the maximum field follows the dispersion
reported in Figure 2.3 a), as highlighted from the red circles.

 kx
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y

 kx  kx  kx  kx
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pp
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θ° = 0 θ° = 30 θ° = 70 θ° = 80 θ° = 90

Figure 2.5: Transfer-matrix calculated in-plane dispersion at 925 cm−1 for two stacked
150 nm thick α-MoO3 films. The in-plane dispersion is shown for various twist angles θ.
Scale bar is 10 kx/k0.

The example of a single SiC surface is not particularly interesting, as analytical solu-
tions exist for this simple geometry. The advantage of the transfer-matrix method is that
more complicated geometries can be investigated. For example, for α-MoO3 the dispersion
for SPhPs has an analytical expression only in the high-momentum limit due to the ad-
ditional difficulty of non-isotropic permittivity [52]. The dispersion along both crystalline
orientations for α-MoO3 can be easily computed with the matrix-transfer method as shown
in Figure 2.4 a,b) for the [100] and [001] crystal directions [46]. The dispersion is for a
100 nm thick film with vacuum on both sides. The dielectric function of α-MoO3 is modeled
with three different Lorentz oscillators along the x, y, z directions with values taken from
Ref. [53]. The in-plane part of the dielectric function can be expressed as a function of the
rotation angle θ as ε⊥ = εx cos

2 θ+εy sin
2 θ [54]. Then, the momentum angular distribution

can be calculated by sweeping the total in-plane momentum and rotation angle at a single
frequency. The resulting Im(rpp(k⊥, θ)) can be plotted against kx, ky as shown in Figure
2.4 c,d) for 925 cm−1 and 980 cm−1. In this way the transition from hyperbolic to elliptical
SPhPs due to relative change of sign of the in-plane components of the dielectric tensor at
different wavelengths can be clearly visualized. With the transfer-matrix method is also
possible to calculate the response of twisted layers of α-MoO3. In Figure 2.5 the in-plane
response of a twisted α-MoO3 bilayer in vacuum is shown at 925 cm−1 for various twist
angles. Each layer is 150 nm thick and θ represents the twist angle, analogously to what
shown in Figure 1.12. The transition from hyperbolic to canalized SPhPs can be visualized
in Figure 2.5, confirming that the transfer-matrix method can accurately reproduce the
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SPhP behaviour in complex anisotropic stacks.

2.2 Maxwell equations in arbitrary 3D geometries

In the previous section we have seen how the transfer-matrix method is a powerful tool
to investigate surface waves in highly complex stack of layered materials. However, to
solve Maxwell’s equations in arbitrary three-dimensional geometries fully numerical models
have to be employed. Two of the most common methods are finite difference time domain
(FDTD) and finite element methods (FEM). In both cases the three dimensional space
is discretized by subdivision in finite units of space, the so called mesh of the simulation.
Maxwell’s equations are solved in each unit of space and the continuity of the fields is
ensured at the boundaries of the single cells. FDTD and FEM models differ in the type
of algorithms employed to solve Maxwell’s equations, with consequences on the type of
mesh that can be used to discretize the space. In the following we briefly introduce both
methods and summarize the differences between them.

2.2.1 Finite difference time domain method

The working principle the FDTD method to solve Maxwell’s equations can be illustrated
for simplicity in a one dimensional problem [55]. We consider as an example a lossless
transmission line characterized by an inductance L and a conductance C per unit length.
The current I(x, t) and voltage V (x, t) across the transmission line is expressed by a system
of first order differential equations:

∂I(x, t)

∂x
= −C

∂V (x, t)

∂t
∂V (x, t)

∂x
= −L

∂I(x, t)

∂t

(2.28)

By combining the two equations, the voltage can be described by a second order dif-
ferential equation that has the form of the wave equation [55]:

∂2V (x, t)

∂x2
= LC

∂2V (x, t)

∂t2
(2.29)

While eq. 2.29 has analytical solutions in the form of backward and forward traveling
waves, we are here interested in finding an approximate numerical solution f(x, t). The
first-order space and time derivatives of the function f(x, t) can be approximated via the
“finite-difference” method. The Taylor expansion of f at points x±∆x/2 reads:

f

(
x± ∆x

2

)
= f(x)± ∂f(x)

∂x

∆x

2
+

∂2f(x)

∂x2

(
∆x

2

)2
1

2!
± ∂3f(x)

∂x3

(
∆x

2

)3
1

3!
+ · · · (2.30)
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By subtracting the expressions for x + ∆x/2 and x − ∆x/2 and normalizing by the
small increment ∆x one gets:

f (x+∆x/2)− f (x−∆x/2)

∆x
=

∂f(x)

∂x
+∆x2∂

3f(x)

∂x3

1

24
· · · (2.31)

By rearranging the terms, the first order derivative of f can then be written as:

∂f(x)

∂x
≈ f (x+∆x/2)− f (x−∆x/2)

∆x
+O

(
∆x2

)
(2.32)

Which is known as the central difference approximation of the first-order derivative.
The approximation is said to be second order accurate since the error decays as ∆x2.
From eq. 2.31 it can be seen that the amplitude of the error is proportional to ∂3f(x)/∂x3,
meaning that quickly varying solutions for which the derivative is large need small values of
∆x to produce reliable solutions. In the context of em problems the rate of space-variation
of the solutions depends on the wavelength of the problem, meaning that ∆x ≪ λ is
required. To have second order accuracy it is important that f in eq. 2.31 is evaluated
symmetrically around x, so that the even partial derivatives disappear in eq. 2.32.

The central difference approximation can be applied to the derivatives in eq. 2.28,
obtaining two equations that are second order accurate in (x, t):

I(x+∆x/2, t)− I(x−∆x/2, t)

∆x
= −C

V (x, t+∆t/2)− V (x, t−∆t/2)

∆t
V (x+∆x/2, t)− V (x−∆x/2, t)

∆x
= −L

I(x, t+∆t/2)− I(x, t−∆t/2)

∆t

(2.33)

These equations can be discretized by considering V and I at discrete (x, t) with uni-
formly spaced intervals (∆x,∆t). However, to have that eq. 2.33 are consistent, V and I
cannot be evaluated in the same point in time and space. This can be solved by separating
them in both time and space by ∆x/2 and ∆t/2 with the following staggered time and
space-sampling:

V
n+ 1

2
i = V

(
i∆x,

(
n+

1

2

)
∆t

)
I i
n+ 1

2
= I

((
i+

1

2

)
∆x, n∆t

) (2.34)

where i and n are integer numbers. Applying this discrete sampling to eq. 2.28 and
considering that the initial values of V

n−1/2
i and Ini+1/2 are known at time n for all i,

recursive expressions can be written as:

V
n+ 1

2
i = V

n− 1
2

i − ∆t

C∆x

(
In
i+ 1

2
− In

i− 1
2

)
In+1
i+ 1

2

= In
i+ 1

2
− ∆t

L∆x

(
V

n+ 1
2

i+1 − V
n+ 1

2
i

) (2.35)
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This scheme represents and explicit differential operator as V, I can be calculated from
their values at the previous time interval and only involve local spatial samples. The
solution can be constructed starting from the known initial values V

n−1/2
i and Ini+1/2, from

which V
n+ 1

2
i can be calculated for all i. After the voltage is updated at time n + 1/2, the

current can be calculated at time n + 1 for all i, and so on in what is referred to as a
leap-frog strategy.

The recursive recipe outlined in eq. 2.35 is not always stable for any arbitrary choice
of the intervals ∆x,∆t. For stability in this context it is meant that the energy in the
system remains bounded when the energy input into the system is finite [55]. For the one
dimensional transmission line it can be shown that the recursive solution for I, V is stable
given that c∆t ≤ ∆x, where c is the propagation speed in the line. This means that the
time step must small enough so that the space covered by the waver in the time ∆t is
smaller than the space interval ∆x.

Figure 2.6: Illustration of the electric and magnetic fields in a Yee cell for the implement-
ation of the FDTD method. Adapted from [55].

The application of the central difference approximation to the full three dimensional
solution of Maxwell equation was first proposed by Yee in 1966 [55]. The same approach
used for the one dimensional transmission line is used in this case: the space is divided in
a uniform rectangular grid where each point can be described as (i∆x, j∆y, k∆z) and the
time coordinate is uniformly discretized as t = n∆t with i, j, k, n integers. Any function
evaluated in this 4-dimensional grid can the be expressed as fn

i,j,k from the space-time
integer indexes. In this uniform grid, the projections of the electric field on the grid edges
are sampled in the edges middle, while the magnetic field is sampled in the middle of the
faces, as shown in Figure 2.6. In this way, the fields E and H are staggered in space in
the same way it was required for the implementation for the transmission line. The fields
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can be determined by considering the third and fourth Maxwell equations, which together
constitute six equations from which the six field components can be computed:

∂B

∂t
= −∇× E−M

∂D

∂t
= ∇×H− J

(2.36)

The projections of eqs. 2.36 along the x axis are:

µ
∂Hx

∂t
=

∂Ey

∂z
− ∂Ez

∂y
−Mx

ε
∂Ex

∂t
=

∂Hz

∂y
− ∂Hy

∂z
− Jx

(2.37)

and analogous equations can be written for the other axes. The central difference
approximation can then be applied to evaluate the partial derivatives in eq. 2.37, assured
that the E and H fields are also staggered in time. In the end six recursive equations
can be written to fully solve Maxwell equations, where the electric field components are
calculated at times n + 1/2, from which the magnetic field can be evaluated at time
n + 1 [55]. Additionally, continuity of the fields has to be enforced at the boundaries
of different materials to ensure that the obtained numerical solutions follow Maxwell’s
equations. Moreover, a criterion must be established to assign a value to ε and µ for faces
and edges at the boundaries of different materials. A solution which can be proven to be
stable, is to assign at each edge and face at the material boundary the average between
the ε and µ of the fours faces or edges adjacent to it [55]. To correctly reproduce the
response of objects whose geometry does not conform to a rectangular grid (like a sphere),
conformal methods have been developed which give a better approximation compared to
the staircase method (only a single material per cell) without the need for increased mesh
resolution. The Yee algorithm can also be extended to include non-uniform Cartesian grids
and to correctly compute the response of dispersive materials [55].

As for the one dimensional case, it can be shown that the Yee algorithm produces stable
solutions given that [55]:

∆t <
1

c

1√
1

∆x2 +
1

∆y2
+ 1

∆z2

(2.38)

Another difficulty of FDTD simulations is the treatment of the boundaries of the sim-
ulation region. While periodic boundary conditions can be implemented in a straightfor-
ward way, absorbing boundary conditions so that no em waves are reflected require special
treatment. Absorbing boundaries with minimal reflections are achieved with the use of
the so called perfectly matched layer (PML) technique, which supports both isotropic and
anisotropic materials [55]. PML boundaries are also suited to absorb both propagating
components and evanescent parts of em fields.
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2.2.2 Finite element method

The finite element method (FEM) is an approach to solve partial differential equations
with defined boundary conditions. The FEM can be applied to many relevant problems
in physics and engineering and has found applications in structural analysis, heat transfer,
fluid flow, mass transport, and electromagnetism [56]. A general boundary-value problem
can be defined by a differential equation in a domain Ω:

Lϕ = f (2.39)

where L is a differential operator and f the excitation or forcing function. ϕ is the
unknown function solving the differential equation with certain boundary conditions at
the boundary Γ of the domain Ω. In the solution of three dimensional Maxwell equations
the differential operator L takes the form of the coupled wave equations 2.36 for E and H.
Here the fields are assumed to have harmonic time dependence and the time derivatives
are simply computed as ∂E/∂t = iωE. The boundary problem outlined by eq. 2.39
can be solved in different ways, of which the more common ones are the Ritz and the
Galerkin methods [56]. The Ritz method is based on the variational principle, and we do
not discuss it further. In the following we outline the Galerkin method, belonging to the
family of weighted residual methods. We consider an approximate solution ϕ̃, from which
a residual r can be defined as

r = Lϕ̃− f ̸= 0 (2.40)

The best approximation ϕ̃ is the one that minimizes the residual r at all point on the
domain Ω. this condition can be written as:

Ri =

∫
Ω

ωir dΩ = 0 (2.41)

where Ri is named the weighted residual integral i and ωi are chosen weighting functions
defined over the whole domain Ω. In Galerkin’s method the weighting function ωi are
chosen to be the same as those used to construct the approximate solution:

ϕ̃ =
N∑
j=1

cjωj (2.42)

where cj are constant coefficients to be determined. Eq. 2.41 can be rewritten by using
eq. 2.40 as:

Ri =

∫
Ω

(
ωiL{ω}T{c} − ωif

)
dΩ = 0 (2.43)

This can be rewritten as a matrix equation:

[S]{c} = {b} (2.44)
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where the matrix elements are

Sij =
1

2

∫
Ω

(ωiLωj + ωjLωi) dΩ (2.45)

and

bi =
1

2

∫
Ω

ωif dΩ (2.46)

The application of Galerkin’s method can be illustrated in a one-dimensional problem
[56]. We consider two infinite parallel plates at x = 0 and x = 1 with potential ϕ = 0V and
ϕ = 1V respectively. The space in between is filled by a medium with constant permittivity
ε and a space-varying electric charge ρ(x) = −(x+ 1)ε C/m3. We look here for a solution
in the interval 0 ≤ x ≤ 1. The solution is found through Poisson equation:

d2ϕ

dx2
= x+ 1 (2.47)

with the boundary conditions ϕ|x=0 = 0 and ϕ|x=1 = 1. Eq. 2.47 admits the analytical
solution ϕ(x) = x3/6 + x2/2 + x/3. Eq. 2.47 can be written in the form of the boundary
problem 2.39 with L = d2/dx2 and f = x+1. The weighted residual equation for Galerkin’s
method following eq. 2.40 is: ∫ 1

0

ωi

(
d2ϕ̃

dx2
− x− 1

)
dx = 0 (2.48)

The boundary problem has only two conditions at x = 0 and x = 1, therefore in 2.48
we have i = 1, 2. To proceed with the solution, the functions ωi (which are also used to
construct ϕ̃) have to be chosen. A simple choice is to take a polynomial expansion for the
approximate solution:

ϕ̃(x) = c1 + c2x+ c3x
2 + c4x

3 (2.49)

Applying the boundary conditions ϕ̃|x=0 = 0 and ϕ̃|x=1 = 1 to 2.49:

ϕ̃(x) = x+ c3(x
2 − x) + c4(x

3 − x) (2.50)

Then we take the ωi functions associated to the coefficients c3 and c4 to be determined:

ω1 = x2 − x

ω2 = x3 − x
(2.51)

Now the approximate solution ϕ̃(x) and the two functions ω1 and ω2 can be substituted
in 2.48. From the evaluation of the definite integral, two algebraic equations are obtained:
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c3
3
+

c4
2
− 1

4
= 0

c3
2
+

4c4
5

− 23

60
= 0

(2.52)

from which the coefficients c3 = 1/2 and c4 = 1/6 can be determined. In this case the
exact analytical solution is recovered. It can be shown that this happens as long as the
trial functions constitute a complete basis for the problem [56].

The success of Galerkin’s method to solve the boundary problem in 2.47 relies on finding
an appropriate set of trial functions defined over the entire domain that can approximate
the true solution. While in this one dimensional case the trial functions were simple poly-
nomials, for three dimensional problems where the real solution can be a rapidly varying
function, it is very difficult to find an appropriate set of trial functions. The aim of the
FEM is to subdivide the whole domain in smaller subdomains where Galerkin’s method
can be applied. If the single domains are small enough, simple trial functions can be used
for each subdomain. The solutions found in each subdomain are then interpolated with a
choice of interpolation function, usually linear or a low order polynomial. The FEM with
Galerkin’s recipe can be summarized of being comprised by the following steps [56]:

1. The whole domain is divided in smaller subdomains.

2. An appropriate interpolation function is chosen to relate the solutions found in each
subdomain.

3. A system of algebraic equations is found by applying Galerkin method.

4. A solution for the system of equations is found.

2.2.3 FDTD and FEM comparison

In the previous sections we introduced the fundamental elements of the FDTD and FEM
numerical methods to solve Maxwell’s equations in three dimensions. We briefly review
here the differences between the two methods, their advantages and shortcoming depending
the problem at hand.

A first difference is in the discretization of the three dimensional space. While the
FDTD method only allows non-uniform orthogonal gridding, there is no inherent limitation
for the way in which the domain is subdivided in FEM simulations. This means that curved
structures are generally better meshed in FEM than in FDTD. In FEM, the subdomains
usually are of triangular shape in two dimensions and are tetrahedrons in three dimensional
problems, which are well-suited to approximate arbitrarily complex shapes. As a result,
the number of mesh cells to simulate complex structures is usually lower for FEM than for
FDTD, reducing the simulation time [57]. An example of the different meshing in FEM and
FDTD simulations is shown for a three dimensional disk in Figure 2.7. The same volume
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a) b)

Figure 2.7: Example of meshing of a disk (top view) in a FDTD a) and a FEM b) simula-
tion. The FDTD model requires more than 4 times more mesh cells.

is meshed with more than 4 times the cells in the FDTD (∼ 115000 mesh cells) simulation
compared to the FEM case (∼ 25000 mesh cells), while the circular geometry is better
represented in the FEM model thanks to the non Cartesian mesh. Another important
difference between the two methods is that FDTD is a time-domain method, while the
FEM is a frequency-domain method. In a FDTD simulation a defined source excites the
system, and the time evolution is simulated step by step. This means that the transient
response of a system can be investigated, and broadband simulations are naturally included
in a single run. The frequency response in FDTD models is obtained by Fourier Transform
of the time signal. Conversely in FEM methods the time dependence is assumed to be
harmonic, so the transient response cannot be investigated. The simulations are inherently
single-wavelength, and the broadband response is obtained by combining many different
single-wavelength simulations. At the same time, FDTD struggles in simulating very high
quality factor systems, as to obtain correct results one needs to extend the simulation in
time until the fields are completely dissipated. To simulate dispersive materials in FDTD
the material response has to be fitted with an analytical model, while this is not necessary
in the FEM case [57]. In the rest of this work we use both FEM and FDTD simulations to
investigate various nanophotonic structures. For FDTD simulations the software Lumerical
is used, while for FEM simulations CST Studio is employed.



Chapter 3

Experimental Methods

In this chapter we introduce the main experimental techniques employed in this work.
We outline the general principles underlying each method. We first introduce the most
common technique used to investigate the optical response in the mid-infrared, fourier
transform infrared (FTIR) spectroscopy. We then discuss scattering-scanning near field-
microscopy (sSNOM), which is the main experimental technique employed in this thesis.
sSNOM allows imaging and spectroscopy in the near-field, overcoming the diffraction limit
and achieving deeply subwavelength resolution.

3.1 Fourier Transform Infrared Spectroscopy

In the visible range, spectra are usually acquired by using gratings. Broadband light
incident on a dispersive grating is diffracted at different angles, and the signal is then
collected on a camera. The position of the signal on the camera is then related to the
wavelength of the incoming light. However, cameras work on limited spectral ranges,
and are not routinely available in the mid-infrared. Instead, in FTIR spectroscopy an
interferometer is used to collect interferograms, from which spectra are obtained through
fourier transform (FT). An interferogram is obtained by varying the optical path difference
between the two arms of a common-path interferometer. This is achieved in the most simple
configuration employing a Michelson interferometer, where a light source is divided by a
beam splitter in two orthogonal arms. One of the two arms consists of a movable mirror
as shown in the sketch of Figure 3.1. By moving the mirror, a different optical path is
acquired in the two arms, resulting in a variable interference at the beam splitter where the
two beams are recombined. To obtain an interferogram one has to collect the interference
generated by all the possible path length differences. The intensity I(x) function of the
path difference x, is recorded by a single pixel detector.

The relationship between a spectrum and its interferogram can be understood by con-
sidering the FT of a plane wave with harmonic time dependence [23]:

E(r, t) =
1

2π

∫ +∞

−∞
B(ω)

1
2 ei(ωt−q·r) dω (3.1)
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B(ω) is the spectrum of the em field that we want to retrieve. The average intensity
at the beam splitter after the two beams are reflected back from the mirrors is:

I(r, τ) =
c

8πT

∫ T/2

−T/2

∣∣∣∣E(r, t+ τ)

2
+

E(r, t)

2

∣∣∣∣2 dt (3.2)

where τ is the time delay accumulated due to the different path lengths and T is the
period of the em field. Replacing eq. 3.1 into eq. 3.2 we get:

I(τ) =
I0
2
+

c

16π2T

∫ +∞

−∞
B(ω) cos(ωτ) dω (3.3)

where

I0 =
c

8πT

∫ T/2

−T/2

E(r, t) · E∗(r, t) dt (3.4)

From eq. 3.3 we can rearrange the terms to get:(
I(τ)− I0

2

)
16π2T

c
=

∫ +∞

−∞
B(ω) cos(ωτ) dω = 2πRe(B̃(ω)) (3.5)

The right hand side can be regarded as the real part of the FT of the spectrum B̃(ω), as
we are assuming B(ω) to be a real-valued function. The connection between the spectrum
and the interferogram is then:

B(ω) =
32πT

c

∫ +∞

−∞

(
I(τ)− I0

2

)
e−iωτ dτ (3.6)

which shows that the spectrum is proportional to the FFT of the interferogram after
subtraction of the baseline value I0/2 arising from incoherent sum of the two beams. In
a symmetric interferometer the interferogram is an even function around the zero path
difference point, so that the FT is a real-valued function. In a realistic implementation,
the time delay between the beams cannot be extended to ±∞ since the displacement of
the moving mirror is finite. As a consequence the integral in eq. 3.6 is cut-off at a certain
value τ0 = 2L/c representing the maximum time delay achievable with a mirror travelling
a distance L:

B(ω) =
32πT

c

∫ +τ0

−τ0

(
I(τ)− I0

2

)
e−iωτ dτ (3.7)

We can see how the truncation of the integral influences the measured spectrum shape.
Defining

C(τ) =
32πT

c

(
I(τ)− I0

2

)
(3.8)

eq. 3.6 can be rewritten as
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Figure 3.1: a) Sketch of a Michelson interferometer, used in FTIR spectroscopy to collect
interferograms. Effect of the finite travelling distance ∆x of the moving mirror on a trial
gaussian spectrum b). The interferogram of b) obtained by FT is the shown in c). A finite
∆x can be simulated by multiplying the interferogram by a box function, shown with
a dashed black line in d). e) FT of the truncated interferogram broadens the retrieved
spectrum (black line) and introduces ripples due to the FT spectrum of the box function.
Side ripples can be eliminated through apodization with a function having a smooth FT
spectrum.

B(ω) =

∫ +∞

−∞
C(τ)e−iωτ dτ (3.9)

Supposing the spectrum to be a delta function B(ω) = B0δ(ω − ω0), we get from the
integral in the above eq. 3.9 that C(τ) = C0e

iω0τ , where C0 = B0/2π. Computing the
spectrum from the truncated integral in eq. 3.7 and using C(τ) found above, we get

B(ω) = C0

∫ +τ0

−τ0

e−i(ω−ω0)τdτ = 2C0
sin [(ω − ω0)τ0]

(ω − ω0)τ0
(3.10)

The finite displacement of the mirror broadens the spectrum from an infinitely narrow
peak to a broader one with width ∆ν ≈ 1/2L, where ν is the frequency ω = 2πν = 2πc/λ.
The absolute resolution ∆ν is often expressed in wavenumbers, given by 1/2L with L
measured in cm. For example, a distance L = 0.25 cm corresponds to a spectral resolution
of 2 cm−1. This effect is illustrated in Figure 3.1 b-d), where a source with gaussian
spectrum is considered as shown in b). Its FT is shown in c), representing the interferogram.
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The effect of a limited ∆x is simulated by multiplication with a box function (dashed black
line) shown in c). Inverse FT of the truncated interferogram results in the black line in
e), showing a wider peak compared with the initial spectrum shown for reference in blue.
The ripples are due to the abrupt truncation of the interferogram, and come from the
FT of the box function. The resulting spectrum is the convolution between the FT of
the initial spectrum and the one of the box function. This effect can be minimized by
multipication with a function slowly going to zero with a smoother FT spectrum, in what
is called ”apodization”.
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Figure 3.2: Two dimensional sketch of the cross section of a Cassegrain reflective objective
often employed in FTIR microscopes.

In an actual FTIR experimental setup illumination is obtained using blackbody radi-
ation, providing a broadband source where the peak wavelength can be tuned through the
source temperature. The most common detectors employed in mid-IR spectroscopy are
mercury cadmium telluride (MCT) detectors, which need to be cooled with liquid nitrogen
down to 77K to suppress thermal noise. FTIR spectrometer can be coupled to a microscope
to investigate small sample regions, as in the case of arrays of optical antennas resonating
in the mid and near-IR. To achieve broadband operation, conventional refractive objectives
are avoided due to chromatic aberrations related to refractive index dispersion. Moreover,
almost all materials have absorption bands somewhere in the mid-IR. As a consequence
Cassegrain reflective metallic objectives are usually employed. A drawbacks of Cassegrain
objectives is that they produce an illumination of the sample that has an angular spread
with a nonzero average, as shown in the sketch of Figure 3.2. This can be problematic in
the measurement of samples with strong angular dispersion.
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3.2 Scattering-scanning near-field optical microscopy

The FTIR technique presented in the previous section is a far-field technique, and as such
is diffraction-limited. Mid-infrared spectroscopy is a powerful technique as each material
has its own specific vibrational fingerprint. However the spatial resolution is rather poor,
limited to several microns in size as λ ≈ 3−10µm. Higher resolution beyond the diffraction
limit is then needed for investigation of highly inhomogeneous samples.

In section 1.3 of the introduction we have seen that the diffraction limit can be cast in
the form of Heisenberg uncertainty principle, and that the resolution limit is a consequence
of all the components of the wavevector ki being real and smaller than k0. Close to a
material boundary, evanescent components of the em field with complex wavevectors exist
in the so called near-field region. The electric field from the surface along the perpendicular
direction z will have the form [1,30]:

E(kz, ky, z) = eikzzE(kz, ky, 0) (3.11)

with kz =
√

k2 − k2
x − k2

y. Then one can clearly distinguish components that will
propagate through the far field from evanescent components depending on the value of the
in-plane momentum k∥ = k2

x + k2
y:

k2 > k2
∥ → kz is real and these components propagate

k2 < k2
∥ → kz is imaginary and these components do not propagate

(3.12)

Free-space propagation of em waves acts as a low-pass filter for high in-plane wavevectors,
corresponding to components with rapid spatial variations. To overcome the diffraction
limit the high k∥ need to be measured, which corresponds to measuring the near-field re-
sponse of the system. With this formulation the connection between near-field optics and
overcoming the diffraction limit is highlighted. The question is then how to collect the
near-field response of a system.

At low frequencies where the wavelength has macroscopic dimensions on the order of
millimeters the problem of measuring the near-field response is easily solved. For RF
antennas it is actually more practical to measure the near-field response of an antenna and
then infer the far-field radiation pattern with near to far-field transformations [58]. At
RF frequencies the near-field can be directly measured through an electrical probe, which
can be scanned in a surface around the antenna to reconstruct the near-field pattern. At
optical frequencies the wavelength of em waves is at least two orders of magnitude smaller,
meaning that an appropriate probe would have to be precisely positioned very close to
the surface, which brings an additional technological challenge. More importantly, direct
measurement of the time-varying electric field at optical frequencies is not feasible because
electronic components stop working in the hundreds of GHz range. Therefore a near-
field probe operating at optical frequencies has to work by somehow carrying the high k∥
components to the far-field where it can be measured by a detector.
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We can understand how a near-field probe allows propagation of high k∥ components
to the far-field in general terms [1]. We consider the near-field source to be positioned
at coordinate −z0, while the sample lies in the z = 0 plane. We assume the effect of the
sample interaction to be represented by an operator acting only on the in-plane components
T (x, y). We consider a configuration where the signal from the source at z = −z0 is
transmitted through the sample and propagates to the detector at z = z∞. Right after
sample interaction the field is [1]:

Esample(x, y, z = 0) = T (x, y)Esource(x, y, 0) = T (x, y)Esource(x, y,−z0)e
ikz1z0 (3.13)

where kz1 is the wavevector of the wave propagating from the source to the sample.
The Fourier spectrum Êsample of the field in eq. 3.13 can be written as:

Êsample(κ∥, 0) =

∫ −∞

−∞
T̂ (κ∥ − k∥)Êsource(k∥,−z0)e

ikz1z0 dk∥ (3.14)

where k∥ = (kx, ky), Êsource is the fourier spectrum of the source field and T̂ (κ∥ − k∥)
the fourier transform of T (x, y). The field at the detector is the propagation of the field in
3.14 to z∞:

Edetector(x, y, z∞) =

∫ −∞

−∞
Êsample(κ∥, 0)e

i(κxx+κyy)eiκzz∞ dκ∥ (3.15)

Only low-in plane wavevectors will be propagated to the detector as κz =
√

κ2
0 − κ2

∥ and

the same conditions formulated in 3.12 apply, meaning that we can probe only components
for which κ2

∥ ≤ κ2
0. To understand how high-in plane components enter into the propagating

spectrum of eq. 3.15 we can rewrite the fourier spectrum of the source as [1]:

Êsource(k∥, 0) =

∫ −∞

−∞
Êsource(k̃∥, 0)δ(k̃∥ − k∥)dk̃∥ (3.16)

If the source field consists of a single spatial frequency Êsource ∝ δ(k∥−k̃∥), by substitu-

tion in eq. 3.14 and computing the integral with the delta function, one gets κ∥−k∥ = k̃∥.
Rearranging the previous equation:

κ∥ = k∥ + k̃∥ (3.17)

This indicates that the effect of the in-plane wavevector of the source k̃∥ is to shift
by the same amount the wavevector at the sample k∥. As the far-field low pass filter is

applied on κ∥, depending on the magnitude of k̃∥ different components of the spectrum T̂
will be carried to the far-field. Therefore, large spatial frequencies of the sample are com-
bined with large spatial frequencies of the probe field, such that the difference wavevector
corresponds to a propagating wave in the angular spectrum that travels towards the de-
tector. The higher the k-vector from the source, the higher in-plane components will be
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propagated in the far-field. If the source consists of focused free-space light, the maximum
in-plane component is k̃∥,max = 2πNA/λ where NA is the numerical aperture of the fo-
cusing objective and λ the operation frequency. To shift higher in-plane components into
the far-field spectrum, a near-field source with evanescent components with high in-plane
wavevector has to be used. The in-plane wavevector provided by a near-field source of
dimension L can be estimated as:

k̃∥,max ≈ π

L
(3.18)

In summary, to achieve imaging below the diffraction limit the source should be places
in the near-field so that evanescent components of the field interact with the sample.
Moreover, the smaller the near-field probe, the higher the in-plane components that will
reach the detector, improving consequently the spatial resolution.

3.2.1 Measuring the near-field at optical frequencies

Two prominent ways to probe the near-field at optical frequencies have been developed in
the last 20-30 years, both based on modifications of an atomic force microscope (AFM)
[59]. One method is based on collection or emission of light through an optical fiber
called aperture scanning near-field optical miscroscope (aSNOM), while the other is based
on collecting the scattering from an AFM tip on which light is tightly focused, named
scattering scanning near-field optical miscroscope (sSNOM). In both techniques the probe
is brought in close proximity of the surface to be investigated so that it is located in the
near-field region, typically with a distance smaller than a wavelength of the operating em
radiation. Control of the tip-sample distance is achieved by employing feedback-based
methods developed for AFM. A sketch of the two methods is shown in Figure 3.3. As both
aSNOM and sSNOM are based on an AFM setup, topographical information is typically
available during collection of the optical signal.

Both aSNOM and sSNOM are able to probe the near-field response of a sample, and
each technique has its own strengths and weaknesses. We briefly compare both techniques
in the following. In aSNOM many different configurations are possible, where the optical
fiber can be used as the illumination source or for light collection. The optical fiber is
tapered towards the aperture, and is usually coated with a metallic layer to reduce leakage
radiation in the taper. As discussed in the previous section, the resolution that can be
achieved depends on the size of the near-field source, which in this case is represented by
the aperture size and should therefore be subwavelength. During the tapering, the size of
the waveguide is continually decreasing, up to a point where the propagation constant of all
the waveguide modes become imaginary. Moreover, light passing through a subwavelength
hole of radius r in a perfectly conducting film goes down as I ∝ (r/λ)4 [60]. A more
accurate prediction of the power going through a tapered waveguide is reported in ref. [1].
Only a tiny fraction of light passes through the aperture, limiting in practice the minimum
aperture size and the spatial resolution that can be achieved in the visible to somewhere
in between 50 nm and 100 nm [1]. The advantage of this arrangement is the absence of
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a) b)

Figure 3.3: Sketch of a sSNOM a) and of an aSNOM setup b). In sSNOM light is focused
at the end of an AFM tip, and the backscattered light is collected. In aSNOM light passes
through a waveguide with a subwavelength aperture at the end, and transmitted light is
collected by an objective below the sample.

far-field background, as the illumination only comes through the evanescent field of the
subwavelength aperture.

On the other hand, sSNOM does not suffer from low signal intensity, as the near-field
source is produced by direct coupling from focused free-space light. The resolution depends
exclusively on the radius of curvature of the tip. This indicates that sSNOM has the
possibility of outperforming aSNOM at longer wavelengths, since the bottleneck for aSNOM
is the transmission through the tapered fiber, which is wavelength-independent. The main
problem in sSNOM is distinguishing the tiny fraction of light that gets backscattered by
the tip from light that goes back to the detector without having interacted with the near-
field. To enhance the near-field signal metallic tips can be used, which can produce strong
field enhancement at the tip apex when the polarization is along the tip shaft through the
rod-lighting effect [30,61]. However, the field-enhancement is not enough alone to produce
a sufficiently strong signal, as a diffraction-limited spot for λ = 10 µm is approximately
106 times larger than the near-field area below a tip with a curvature radius of 10 nm. We
will discuss in more details how background-suppression is achieved in sSNOM, allowing
mapping at a resolution higher than λ/100 at mid-infrared frequencies [1].

sSNOM is therefore generally preferred at mid and far infrared frequencies as it reaches
much higher resolution compared to aSNOM. Moreover, fiber technology in the mid-IR
is not as nearly as developed as in the visible range [62], making aSNOM impractical at
these wavelengths. On the other side, at visible wavelengths the resolution achieved by
sSNOM and aSNOM is similar, and aSNOM benefits from a simpler overall experimental
arrangement.
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3.2.2 Modeling of tip-sample interaction in sSNOM

To understand how suppression of far-field scattered light is achieved in sSNOM it is
useful to start with a model for the tip-sample interaction. The first issue of modeling
a sSNOM system is how to account for the presence of the tip without resorting to fully
three dimensional em simulations. The point dipole model (PDM) is the simplest analytical
approximations for the sample-tip interaction [63]. The sample is considered here to be
a semi-infinite flat surface with dielectric function εs. The tip is treated as a spherical
particle in the electrostatic approximation, where the polarizability has a simple analytical
expression [63]:

α = 4πa3
εp − εm
εp + 2εm

(3.19)

where the sphere radius a is chosen to be the curvature radius of the tip. εp is the
dielectric function of the probe and εm is the dielectric function of the embedding medium
in which the tip is placed (in standard conditions εm = 1). A sketch of the PDM is shown
in Figure 3.4 a). If the incident electric field Ein is polarized perpendicularly to the sample
surface, it can be shown that the dipole induced in the sphere p = αEi produces an image
dipole in the sample p′ = pβ [63], where:

β =
εs − 1

εs + 1
(3.20)

The effective polarizability of the two near-field coupled dipoles in the electrostatic
approximation is [64, 65]:

αeff =
α

1− αβ
16π(a+z)3

(3.21)

where z is the distance between the tip and the sample surface. The scattering intensity
measured at the detector is proportional to the square of the effective polarizability S ∝
|αeff |2. A better description can be obtained by considering that the tip is not only
illuminated by the directly incident light, but also by a component that is first reflected
by the sample Etip = (1 + r)Ein, where r is the appropriate Fresnel reflection coefficient.
Moreover the scattered light also gets reflected by the substrate. Therefore the signal is
proportional to S ∝ |(1 + r)2αeff |2 [64]. The PDM model has been extended to take
into account the elongated shape of the tip to provide better quantitative agreement with
experimental data [64], and has been modified to additionally account for layered samples
[65].

The scattered signal from the tip-sample interaction is only a small portion of the
scattered light reaching the detector, due to the presence of far-field background. Since
light intensity is measured at the detector, we can write:

I = |Enf + Ebg|2 = |Enf |2 + |Ebg|2 + EnfE
∗
bg + E∗

nfEbg (3.22)
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Figure 3.4: a) Sketch of the PDM, where the tip is modeled by a sphere of radius a at a
distance z0 above the sample surface. An image dipole p′ is induced in the sample, which
depends on the dielectric function εs of the sample through the parameter β. The tip
oscillates above the sample following the trace in b). The PDM is used to calculate the
scattered field from the tip (red curve) through eq. 3.21 and the z(t) shown in b). The
background field depends linearly on z, and the tip scattered far-field contribution is shown
by the blue curve. d) Demodulation of the periodic signal at higher orders nΩ diminishes
the far-field background (blue bars) much quicker than the near-field (red bars). The ratio
between the near and far-field contributions increases with the demodulation order (gray
bars).

where Enf = αeffEin and Ebg ≫ Enf is the far-field background. Scattering coefficients
are usually defined as Einc = σnfEnf and Einc = σbgEbg. To suppress far-field background
in sSNOM, the AFM is operated in tapping mode at a frequency Ω on the order of hundreds
of kHz. As the effective polarizability in eq. 3.21 depends on z, the scattered light will
also be modulated at the same frequency. The height modulation of the tip is z(t) =
z0 + A(1 + cos(Ωt)), where A is the tapping amplitude and z0 the minimum tip-sample
distance as shown in Figure 3.4 b). Plugging z(t) in eq. 3.21, αeff (t) and the scattering
coefficient σnf can be calculated. While αeff depends in a nonlinear way on z, the far-
field background radiation is approximately linearly decreasing σbg = −z(t)/λ + 1 when
z ≪ λ [66]. In Figure 3.4 c) the scattering coefficients σnf and σbg are shown for a a = 15 nm
gold tip on top of a gold surface εs = εp = −5000 + i1000 at λ = 10 µm. The tapping
amplitude (TA) is set at A = 50 nm and it assumed that the background field is 1/10
of the incident field with the near-field signal being 1/100 of the background signal. As
a consequence of the nonlinearity of αeff (z), σnf (t) is anharmonic, while σbg(t) has the
same shape of z(t). This difference allows the separation of the near-field signal from the
background. The scattering coefficients can be expressed as a Fourier series:

σ = σnf + σbg =
∞∑

n=−∞

(σnf,n + σbg,n)e
inΩt (3.23)
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a) b)

O1

O2

Figure 3.5: a) Approach curve for the signal demodulated at 2Ω for different values of
the tapping amplitude. b) Demodulation at higher orders provides good background sup-
pression when considering the sum of the near and far-field scattered fields (solid lines).
However the intensity is measured at the detector, which introduces a multiplicative back-
ground that is not suppressed by the demodulation process (dashed curves). Approach
curves are shown with demodulation Ω (red curves) and 2Ω (blue curves).

The terms σn correspond to demodulation of the signal at nΩ. The Fourier coefficients
σn are obtained by FT of the time-periodic signals and by selecting the value of the FT
at the frequency nΩ. The Fourier coefficients for the periodic signals shown in Figure 3.4
c) are reported in Figure 3.4 d). The contribution of the background quickly diminishes
for n > 1, allowing the reconstruction of the near-field signal by choosing a demodulation
order n ≥ 2. The ratio between the near-field and the background signals is also shown
in Figure 3.4 d). The higher the demodulation order n the less far-field background, at
the price of overall signal and consequently lower signal to noise ratio (SNR) in a real
experiment [67]. A similar argument can be made for the TA, with higher TA yielding
better SNR and lower TA giving better suppression of far-field radiation. In Figure 3.5 a)
the signal amplitude demodulated at 2Ω is shown as a function of the tip-sample distance
z0 (the so called approach curve) for different TA values. The curves in Figure 3.5 a)
are normalized to highlight the faster decay of the signal for lower TA, indicating better
far-field background suppression.

Demodulation to higher orders n is however not sufficient for complete far-field sup-
pression since in the signal intensity the product between near-field and background terms
appears as shown in eq. 3.22. If we consider the contribution from background scattering
coefficients σbg,n to be negligible for n ≥ 1, the demodulated intensity In at order n:

In ∝ |Enf,n|2 + Enf,nE
∗
bg,0 + E∗

nf,nEbg,0 (3.24)

which shows that demodulation at higher orders is not sufficient for complete far-field
background suppression due to the multiplicative term Ebg,0. The effect of the multiplicat-
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ive background is shown in Figure 3.5 b) by plotting the approach curves for n = 1, 2 when
the total field is given by the sum of the near-field and background fields (solid lines) or
by the square of the sum (dashed lines).When summing the fields the multiplicative back-
ground is not present, allowing background free-signal already for n = 2. When instead
considering the intensity, at n = 2 considerable background is present. We will see in the
next sections how Ebg,0 can be removed by performing interferometric measurements.

3.2.3 Pseudo-Heterodyne detection for narrowband near-field ima-
ging

narrow-band
source

Ω M

BS

PM

PM

de
te

ct
or

Ω ≈ 250 kHz
M ≈ 300 Hz

Figure 3.6: a) Sketch of the PsHet setup, a narrow-band source is coupled into an asym-
metric Michelson interferometer. A beam splitter (BS) sends half the light to a parabolic
mirror (PM) which focuses the beam on the tip oscillating at frequency Ω. The other half
of the beam is sent to the reference arm where a mirror vibrates at frequency M ≪ Ω.
Light is then focused on a detector by a PM.

As we have seen in the previous section, even by applying high-order demodulation
of the signal a multiplicative background is still present in the sSNOM signal. For a
single-wavelength source the multiplicative background contribution can be eliminated by
applying the so called pseudo-heterodyne (PsHet) interferometric technique [66]. On top
of removing the multiplicative background, implementation of the PsHet method allows
the reconstruction of the amplitude and phase of the signal. The PsHet method consists
in adding a Michelson interferometers to the sSNOM setup as sketched in Figure 3.6.
The light source is split by a beam splitter, half of the signal is focused on the tip by a
parabolic mirror and half is sent to a reference arm. As discussed for FTIR, in sSNOM
light is focused through metallic parabolic mirrors to allow operation over a wide range of
frequencies. The backscattered light from the tip recombines with the reference signal and
is sent to the detector. The light intensity reaching the detector is:

I ∝ |Enf + Ebg + Eref |2 = (Enf + Ebg + Eref )(Enf + Ebg + Eref )
∗ (3.25)

The reference arm position is modulated periodically at a frequency M ≪ Ω. We can
understand how this eliminates the multiplicative background by writing E0 = Enf + Ebg
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2Ω
2Ω + M2Ω - M

a) b)

Figure 3.7: a) The FT spectrum at the detector acquires side-peaks at nΩ + mM (here
Ω = 20M) due to presence of the modulated reference beam at f = M . b) Demodulation
at the side peaks nΩ +mM (blue curve) eliminates the multiplicative background in the
scattered intensity calculated from the PDM. The approach curve of the signal demodulated
at nΩ including the multiplicative background is shown in red.

and rewriting eq. 3.25:

I ∝ |E0|2 + |Eref |2 + E0E
∗
ref + E∗

0Eref (3.26)

For a single demodulation order n sufficiently high so that only the multiplicative
background σbg,0 is relevant while σbg,n ≈ 0 we can look at the frequency of the single
terms in eq. 3.26. The first term is the one we had in the absence of the reference beam
considered in eq. 3.23, appearing at nΩ and containing the multiplicative background.
The time-modulated reference term can be written in phasor form as:

Eref = ρei(γ sin(mM)t+ΦR) (3.27)

where γ represents the amplitude of the mirror modulation and ΦR is the average
optical path difference between the signal and reference beam. The reference field can be
expressed as its fourier series:

Eref =
∞∑

m=−∞

ρme
imMt (3.28)

The frequency dependence of the second term |Eref |2 is therefore mM ≪ Ω. The third
and fourth terms containing the product E0Eref have the same frequency. The fourth term
when demodulating the signal at order n can be written as:

E∗
0,nEref,n =

∞∑
m=−∞

(σnf,ne
−inΩt+σbg,0)ρme

imMt =
∞∑

m=−∞

ρmσbg,0e
imMt+

∞∑
m=−∞

ρmσnf,ne
i(mM−nΩ)t

(3.29)
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The reference wave with modulation f = M introduces side peaks at nΩ±mM as shown
in Figure 3.7 a). The sidebands at n > 0 do not contain the multiplicative background, as
shown in the second term of eq 3.29. Therefore demodulation at the side band frequencies
of a sufficiently high n allows near-field measurements free of far-field background [66]. The
suppression of the multiplicative background can be seen in Figure 3.7 b), where the PDM
is used to calculate the near-field scattered signal, which is summed with the background
(as in Figure 3.5) and the reference signal, and the intensity is computed. The red curve
shows the approach curve for demodulation at 2Ω, where the multiplicative background
is still present. The blue curve is obtained from demodulating the signal at 2Ω + M ,
which removes all the background contributions. The near-field signal is also enhanced by
interference with the reference signal as can be seen from eq. 3.26. Moreover, it has been
shown that by using adjacent sidebands In,m the amplitude and phase of the signal of the
complex scattered signal snf,ne

iφnf,n can recovered from [66]:

snf,n = 2.16k
√
I2n,1 + I2n,2

φnf,n = arctan

(
2.16k

In,2
In,1

) (3.30)

where k is a proportionality constant. These relationship allow the retrieval of the
complex-valued scattering assuming that the modulation depth of the reference mirror is
equal to 0.21λ [66], where λ is the wavelength of operation. As a consequence, efficient
extraction of amplitude and phase requires the use of a narrowband source. sSNOM coupled
with the PsHet technique achieves deeply subwavelength near-field imaging by scanning
the sample below the tip. Spectroscopic information can be acquired by changing the
input frequency from a tunable source such as a QCL laser [63]. However, this requires
acquisition of many images and can be time consuming. We will see in the next section that
spectroscopic characterization can be achieved by coupling an FTIR setup to the sSNOM.

3.2.4 Nano-FTIR for broadband near-field spectroscopy

We have seen in the previous section how the coupling of a Michelson interferometer with
the sSNOM allows suppression of far-field background and acquisition of both the amp-
litude and phase response of a sample. The same setup sketched in Figure 3.6 can be
used to acquire interferograms and obtain spectroscopic informations through the FTIR
technique introduced in section 3.1. While in the PsHet method the interferometer refer-
ence arm is modulated at high frequency, in the so-called nano-FTIR technique [68,69] the
mirror is moved in discrete steps to record an interferogram from which the spectroscopic
response can be retrieved by FT.

One important difference from the standard FTIR technique is that the interferometer
used in nano-FTIR is asymmetric since one of the two arms of the setup is comprised by
the sSNOM tip. As a consequence while the interferograms obtained in FTIR are always
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symmetric around the zero-path difference point, this is not the case for nano-FTIR. The
impact this has on the obtained spectrum is clear when writing the FT operation as:

Ĩ ∝
∫ ∞

−∞
I(x) cos(kx)︸ ︷︷ ︸

even

dx+ i

∫ ∞

−∞
I(x) sin(kx)︸ ︷︷ ︸

odd

dx (3.31)

Therefore if I(x) is an even function the imaginary part of the FT is zero, and a real
spectrum is recovered from the FT operation as customary in FTIR spectroscopy. In an
asymmetric configuration the obtained spectrum is instead complex valued. It has been
shown that the imaginary part of nano-FTIR spectra closely matches the absorption of the
sample, while the real part follows the reflectivity [70]. These simple relations are valid for
samples for which the parameter β = (εs − 1)/(εs + 1) is not much larger than 1, which
includes weak molecular oscillators (polymers, biological matter). Under these conditions,
coupling with an analytical model for the tip-sample interaction the local dielectric function
can be recovered from nano-FTIR spectra [70].

The multiplicative background is automatically eliminated while recording the inter-
ferogram in nano-FTIR. The intensity at the detector is described by eq. 3.25, which can
be written as:

I ∝ |Enf |2 + |Ebg|2 + |Eref |2 + (EnfE
∗
bg + EnfE

∗
ref + EbgE

∗
ref ) + c.c. (3.32)

where c.c indicates the complex conjugate of the three terms is parenthesis. If we
consider the signal demodulated at order n:

In ∝ |Enf,n|2 + (Enf,nE
∗
0 + Enf,nE

∗
ref ) + c.c. (3.33)

To obtain the spectrum the FT integral with respect to the mirror position has to be
computed. The dependence on the mirror position x appears only in the phase of the
reference arm:

Sn ∝
∫ d0

−d0

dxeiωx
[
|Enf,n|2 + (Enf,nE

∗
0 + Enf,nEref (x)

∗) + c.c.
]

(3.34)

Where ±d0 is the limit position of the reference mirror. The terms |Enf,n|2 and Enf,nE0

do not depend on x, and therefore do not contribute to the computed spectrum. The only
relevant term for the nano-FTIR spectrum is then Enf,nEref (x), which does not contain
any background contribution.

While it has been shown that nano-FTIR spectra can be acquired with a thermal
source [71], in practice coherent broadband lasers with much higher brilliance are routinely
employed to enhance the SNR and reduce the measurement time [68].
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Far and near-field spectroscopy of a
SiC metasurface
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In the introduction we discussed how
LSPhP easily outperform plasmonic anten-
nas due to the slower phonon-phonon scat-
tering mechanism. In this chapter we in-
vestigate a SiC metasurface made out of
cylindrical pillars supporting high Q-factor
LSPhP.

Arrays of SiC pillars [73, 74, 75] have
attracted considerable attention thanks to
their ease of fabrication and rich em re-
sponse, with broadly tunable modes [76],
strong interaction between propagative and

localized resonances [77, 78], and nonlinear response [79, 80, 81]. 3C is the SiC polytype
of choice due to its simple isotropic permittivity and absence of additional folded optical
phonons falling inside the RS band [82], which have been shown to perturb the LSPhP of
the pillars in the 6H polytype [73]. Additionally, the low optical losses of SiC make it one
of the best materials for fabricating antennas supporting LSPhPs [22].

As reported in more detail previously [76,77], SiC pillar structures are fabricated by dry
etching of a 3C-SiC layer through a hard mask fabricated by standard e-beam lithography,
so that the pillars are supported by a SiC substrate. The resulting pillar height and
diameter are both around 1 µm, while the interpillar spacing P, defined as the distance
between adjacent pillar centers, is varied from 2.5 µm to 6.25 µm. In Figure 4.1 a) a SEM



56 4. Far and near-field spectroscopy of a SiC metasurface

image of a portion of one of the arrays (P = 4.25 µm) is shown.

4.1 Far-field response of the SiC metasurface

The far-field optical response of the system is well understood [74] by considering the
LSPhPs resonances of a single pillar coupled to the SPhPs of the bare SiC surface. The
resonances of a single pillar in vacuum are composed of transverse modes, where the field
oscillates along the pillar width, and longitudinal modes, where the field oscillates along
the pillar height. The coupling can be described by the hybridization model, analogously
to what happens for the resonance of plasmonic particles close to a metallic surface [83].
The array periodicity also folds the dispersion of the bare SiC SPhPs at k∥ = 2π/P ,
which can lead to hybridization of LSPhPs and SPhPs modes [77]. Of particular interest
is the monopolar mode, arising from the coupling of the longitudinal dipole mode of the
pillar with the bare SiC substrate. A monopolar mode in an isolated pillar in vacuum
is forbidden by charge neutrality, which is provided in the coupled structure by the SiC
substrate with negative ε1. The charge of the monopolar mode spreads around the pillar
base, generating coupling between adjacent pillars even at ≈ 3 µm distance [76]. The
modes resulting from coupling of the transverse resonances of a pillar to the SiC surface
have been named transverse dipole (TD) modes [73,76]. While the coupling range between
individual pillars is increased by the presence of the SiC substrate, near-field interaction can
also occur between pillars in a dielectric environment. Coupling between single units of an
array can also be mediated by far-field diffractive effects named Lattice Surface Resonances
(LSRs) [84]. In previous experiments on SiC pillar arrays [73, 76], two dips in reflectivity
spectra have been associated with TD modes, which have been named transverse dipole
1 (TD1) and transverse dipole 2 (TD2). Polarization dependent measurements have been
reported [85], showing that for s-polarized light the monopolar mode cannot be excited,
as it requires an electric field component normal to the substrate, along the pillars height.
The TD modes are instead relatively insensitive to light polarization, as there is always an
electric field component parallel to the substrate surface along the pillars width.

We investigate the far-field optical response of the arrays with FTIR spectroscopy
using a Bruker Hyperion microscope in reflection mode with a 15-magnification Cassegrain
objective, which illuminates the sample with a weighted average incident angle of 25°. All
spectra are normalized with a reference spectrum obtained on a clean gold surface. In
Figures 4.1 b), c) experimental and simulated far-field spectra of arrays with different P
are reported. Simulated spectra were obtained with a commercial solver (Lumerical) in
time-domain and result from averaging s and p-polarized simluations, as in experiments
the light source is unpolarized. In order to keep the incidence angle fixed at 25° (to
match the experimental conditions) at all wavelengths we use the Broadband Fixed Angle
Source Technique (BFAST) available in Lumerical. This is necessary as some modes of the
metasurface shift with respect to the angle of incidence. The SiC dielectric function used
in the simulations follows eq. 1.5 with ε∞ = 6.6, ωTO = 797 cm−1, ωLO = 973 cm−1 and
γ = 1.4 cm−1. While the superposition principle holds only for the fields and not for the
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Figure 4.1: a) SEM image of a portion of the SiC pillar (h ≈ d ≈ 1 µm) metasurface with
spacing P = 4.25 µm. b) Experimental FTIR and c) simulated spectra of the investigated
arrays with different P . On the lower energy side, marked by a blue dashed line, the
monopolar mode (M) redshifts as P increases due to reduced interpillar mode repulsion.
At approximately ωTD1 = 920 cm−1 and ωTD2 = 955 cm−1 the first (TD1) and second
(TD2) transverse dipolar modes are marked by green and red dashed lines, respectively.
Subsequent spectra in b) and c) are vertically shifted by 0.5 for clarity.
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a) b)

Figure 4.2: a) Simulated reflectance spectra for the array with P = 2.5 µm calculated by
averaging the reflectance spectra from p-polarization and s-polarization (red curve). Com-
parison with the spectra calculated by first averaging the fields from the two simulations
which are then used to calculate the corresponding Poynting and reflectance spectra (blue
curve). b) Simulated reflectance spectra for the array with P = 2.5 µm for p-polarization
(TM, blue curve), s-polarization (TE, green curve) and their average value (red curve).

reflection spectra, we verified that for the present structure there is no difference between
averaging the spectra and constructing the spectrum by first averaging the fields and then
computing the reflected power. The reason why averaging the fields and then calculating
the corresponding spectra, or averaging the spectra directly gives the same results can be
understood as following. The reflection of the periodic structure is calculated from the
fields recorded on a monitor placed above the source plane as:

R(ω) =
1

2

∫∫
Re(P(ω)) · dS

sourcepower(ω)
(4.1)

where P = E×H is the Poynting vector and the integral is evaluated on the surface
S of the monitor recording the fields. The cross product leads to the calculation of the
energy flow in the direction perpendicular to the monitor surface. In the denominator
sourcepower(ω) normalizes the result for the injected power. We then evaluate the Poynting
vector calculated by averaging the fields from two simulations, one with p-polarization and
one with s-polarization, and we use this to calculate the reflection spectra. In the Figure 4.2
a) we compare the result obtained in this way with the one obtained by directly averaging
the reflection spectra from s and p-polarized simulations. In Figure 4.2 a) the two spectra
cannot be distinguished, justifying the averaging of the reflection spectra for the present
structure. The equivalence between the two procedures can be understood by looking at
eq. 4.1. If we name the fields for the p-polarized simulation as E1,H1 and the ones for the
s-polarized simulation as E2,H2, the question of whether averaging the reflection spectra
is a legitimate procedure is equivalent to checking the following equation:
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a) b)

Figure 4.3: a) Comparison between the reflectance spectra for the P = 2.5 µm array
obtained through frequency domain (blue lines) and time domain (red lines) simulations.
In b) the same data are shown after Fourier smoothing with n = 15 together with the
corresponding experimental data (light blue curve).

P(E1,H1) +P(E2,H2) = (E1 ×H1) + (E2 ×H2)
?
=

?
= (E1 + E2)× (H1 +H2) = P(E1 + E2,H1 +H2) (4.2)

Where the left hand side represents the averaging of the reflection from the s and p-
polarized simulations, while the right hand side represents the averaging of the fields and
the subsequent calculation of the transmission. The equation is satisfied if:

E1 ×H2 + E2 ×H1 = 0 (4.3)

This is indeed true for the input fields due to the 90 degrees in-plane rotation between
the two polarizations. If the interaction with the sample does not rotate in a different
way the field components between the s and p-polarization, E1,H2 and E2,H1 are parallel
and their cross product is null. We show in Figure 4.2 b) the reflectance spectra obtained
from s-polarized and p-polarized plane wave simulations, together with their average. The
main difference between the two polarizations is that with an s-polarized plane wave the
monopolar mode cannot be excited as it requires a component of the field parallel to the
pillar height.

Properly accounting for inhomogeneous broadening due to fabrication differences between
single structures is not a trivial process [86], as all the relevant geometrical parameters
should be randomly varied. For simplicity here we qualitatively account for inhomogen-
eous broadening by apply a smoothing procedure based on Fourier filtering with window
n = 15, which dampens the sharper features in the simulated spectra. All spectra feature
an increase in reflectivity corresponding to the SiC Reststrahlen band, while the resonances
of the system appear as dips in this high-reflectivity wavelength range. The lower energy
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resonance, marked by a blue dashed line in Figure 4.1 b) and c), can be identified as the
monopolar mode, which redshifts with increasing P due to reduced pillar repulsion [76].
By green and red dashed lines at ωTD1 = 920 cm−1 and ωTD2 = 955 cm−1 the first (TD1)
and second (TD2) transverse dipole modes are marked respectively.
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Figure 4.4: Simulated near-field maps for the monopolar mode M a), the first transverse
mode TD1 b) and the second transverse dipole mode TD2 c). For each mode the field
enhancement at the surface (left), surface charge density distribution (middle) and sketch
of the charge distribution in the x− z plane (right) are shown.

To verify the assignment of the modes in Figure 4.1 b), c) we simulate the field-
distribution at the corresponding frequencies. Time-domain simulations are slow for the
investigated structure due to the high quality factor of the resonances and, except for
Figure 4.1 c), we simulate the system in frequency-domain (with either CST Studio or
COMSOL). We check that both simulation methods give similar results, but we use the
time-domain results for the far-field spectra in Figure 4.1 as we get better agreement with
the experimental data. A comparison between the spectra obtained in frequency-domain
and time-domain for P = 2.5 µm are shown in Figure 4.3 a). The peaks in the frequency-
domain simulation (blue curve) are excessively sharp compared to the experimental data,
possibly due to a combination of inhomogeneous broadening due to fabrication imperfec-
tions and underestimation of the SiC losses determined by the parameter γ in eq. 1.5. The
peaks are broader in the time-domain simulation (blue curve), which might be due to the
fields not being zero at the end of the simulation. The same simulations are shown together
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with the experimental data (light blue curve) after smoothing with Fourier smoothing with
window n = 15. Both simulations capture the main dips appearing in the experimental
data, with a better agreement obtain from the time-domain data.

In Figures 4.4 a)-c) simulated field enhancements at the surface for the three main
resonances are reported in the left column for the array with P = 2.5 µm. The simulated
surface charge density distribution (middle column) are reported together with sketches of
the charge distributions in the x − z plane (right column). The field distribution for the
transverse dipole modes is much more confined at the pillar edges than for the monopolar
mode. For this reason we do not see any significant shift for TD1 and TD2 with varying
P . The transverse dipole modes can also shift due to interpillar coupling [76], but only for
values of P much smaller then the one analyzed in this study. From the charge distribution
it can be seen that while for the monopolar mode an increase in P induces a redshift, for
the TD1 and TD2 modes it produces a blueshift, as the interpillar interaction is attractive.
The small shoulder around ω = 935 cm−1 can be attributed to a higher order transverse
resonance, almost spectrally overlapped with the TD1 resonance.

4.2 Near-field response of the SiC metasurface

In the previous section we described the far-field response of the SiC metasurface. At the
same time, many applications of this system might require coupling with other objects
through near-field interaction, as in the case of enhance surface spectroscopies [87]. We
have seen that in the presence of surface waves the near-field behaviour of the system
can be very different from its far-field response. For example, the thermal emission form
a SiC semi-infinite surface in the near-field is quasi-monochromatic due to the presence
of evanescent SPhPs [88]. Therefore it is necessary to directly investigate the near-field
response of the SiC metasurface to be able to exploit all its possible functionalities. To
do this we employ the nano-FTIR technique introduced in section 3.2.4 to extract near-
field spectra of the SiC metasurface. The measurements are carried in a commercial setup
(neaspec).

In the following all sSNOM measurements are demodulated at the fourth harmonic
4Ω of the tip oscillation frequency and normalized to a reference spectrum obtained on
a flat silicon surface |Es4,Si|. We will indicate the normalized amplitude of the near-field
measurements as |Es4/Es4,Si|. Since it is well known that the presence of the AFM tip
can perturb the optical response of strongly resonating antennas [89,90,91], we do not use
standard nano-FTIR tips (r ≈ 40 nm), instead choosing more conventional metal-coated
AFM tips with smaller radius of curvature (Arrow-NCPt, r < 25 nm).

To understand the near-field response of the system we probed with the AFM tip
positioned either on the center of one of the pillars (position A) or on the substrate between
the pillars at approximately 800 nm from the pillar center (position B), as illustrated in the
sketch at the top of Figure 4.5. Results are reported in Figure 4.5 a) and b) for positions
A and B, respectively. Spectra in Figure 4.5 a) show that the response on the pillars is
independent of the array spacing, since we can identify two peaks, marked with green and
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Figure 4.5: Near-field measurements of the spectral response for different array periodicity
P . The spectra are collected either on a) the center of a pillar, or b) on the substrate
inside the array at ≈ 800 nm from a pillar center. The different modes are indicated with
dashed lines, using the same color code as in Figure 4.1: green for transverse dipole 1, red
for transverse dipole 2, blue for the monopole and yellow for the dark mode. Simulated
near-field enhancement spectra at 5 nm above the surface on top of a pillar c) and on the
substrate between pillars d), matching the measurement geometry. Subsequent spectra in
a)-d) are vertically shifted by 2.5; 15; 10 and 7 respectively.
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Figure 4.6: a) Near-field spectra measured on top of a pillar for different demodulation
orders nΩ at TA = 60 nm. b) Same spectra as in a) shown for varying the tapping
amplitude at 4Ω demodulation.

red dashed lines, at 920 cm−1 and 945 cm−1 for all the arrays. These match well with
the frequencies of the first (red) and second (green) transverse dipole modes measured in
the far-field at ωTD1 = 920 cm−1 and ωTD2 = 955 cm−1. The monopolar mode is absent
when measuring at position A, while it is detected when measuring on the substrate and it
appears as a lower energy peak which redshifts with increasing P , as shown in Figure 4.5 b).
The frequency of the monopolar mode in the near-field is also found to closely match that
reported in far-field measurements. Surprisingly at higher energies we see an additional
mode, subject to similar redshifts, which cannot be associated with any far-field resonance.
This is illustrated by a yellow dashed line in Figure 4.5 b). We associate this with a dark
mode which, as it has no net dipole moment, can be excited only in the presence of the
near-field illumination provided by the tip. The broad peak below 850 cm−1 in Figure
4.5 a) can be identified as a non-suppressed far-field contribution, as can be inferred from
investigation of its amplitude as a function of increasing harmonic demodulation order nΩ
and tapping amplitude as shown in Figure 4.6.

Interestingly, the signal from transverse dipoles is also detected when measuring on
position B, as shown by the presence of peaks above the monopolar mode in Figure 4.5 b).
Even though the frequency of the transverse modes is similar in Figure 4.5 a) and Figure
4.5 b), in the latter there is a small redshift with increasing P especially for TD1 (green
line), indicating some weak interpillar coupling for the transverse modes when measured
on the substrate. This feature is absent in the spectra collected at position A, indicating
that this effect is mediated by the interaction with the tip.

In Figure 4.5 c), d) we report simulated spectra (CST, frequency domain) of the near-
field amplitude at positions A and B, 5 nm above the pillar center and the SiC substrate
respectively. In these simulations the incident angle of the light is set to 45° to better
represent the experimental conditions, but no modeling of the AFM tip is attempted. In an
FTIR type of experiment, the achievable spectral resolution is inversely proportional to the
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distance over which the interferogram is recorded. Our sSNOM is equipped with a 800µm
long interferometer. We consider in the near-field simulations the finite spectral resolution
affecting the experimental data by Fourier smoothing (same as used for the far-field spectra)
the simulated spectra shown in Figures 4.5 c), d). The mode assignment in the simulated
data is supported by checking the field distribution profile at the corresponding frequency.
Simulated spectra only partially reproduce the measured data due to interaction between
the AFM tip and the LSPhP antennas. Nevertheless, we can see that for both simulations
on and off pillars in Figures 4.5 c) and d), the TD1 and TD2 transverse modes, marked
by green and red dashed curves, lie close in frequency to the corresponding experimental
data. Their relative amplitudes differ from the experimental values, and this could be
attributed to the different illumination geometry and collection efficiencies, as the AFM
tip predominantly backscatters the out-of-plane component of the field Ez. The small
shoulder that can be see at 950 cm−1 in Figure 4.5 d) could be related to the excitation of
SPhPs on the substrate at the frequency at which the SPhPs optical density of states is
maximum [74].

Strikingly, simulations do not show at all the dark mode, marked with a yellow dashed
line in Figure 4.5 b). This further suggests that this resonance is active only in the presence
of the AFM tip, which acts as a near-field source, allowing the excitation of modes with
no net dipole moment. In previous works on SiC pillars, the interaction between the
monopolar mode and the SPhP originating from folding of the SPhP dispersion due to
the array periodicity was considered [77]. We mainly do not see such an effect in this
work since the parameter space we are exploring is almost outside the range where the two
modes overlap. The only instance in which strong coupling between SPhPs and LSPhps
could happen is in the largest measured array. Indeed in Figure 4.5 d) there is a new mode
at 900 cm−1 seen for the largest pitch (black curve), which indicates a possible splitting of
the modes as a result of strong coupling. However, such an effect is not clearly observed
in the experimental data and is in general beyond the scope of this work, and it is not
discussed in the following. We now investigate further the excitation of a dark mode by
simulations in which we include the effect of the tip.

4.3 Influence of the AFM tip on the near-field re-

sponse

Accurately simulating the experimental system is a complex task. Accounting at the same
time for the local illumination from the tip and the periodic pillar array would come at high
computational expense. The exact shape of the AFM tip is a relative unknown, affecting
both excitation of pillar modes and how they radiate to the far-field detector. In order to
qualitatively investigate the effect of the tip in inducing the dark mode observed in Figure
4.5 b) we model the tip as a gold sphere with radius r = 30 nm, placed 5 nm above a single
isolated pillar. A more realistic modeling of the AFM tip should take into account its
elongated shape. However, we expect to obtain similar qualitative results using a sphere
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or a more elongated shape [72].
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Figure 4.7: a) Simulated scattering cross section of a single isolated pillar on a SiC sub-
strate. The different colors distinguish the scattering contribution from modes with differ-
ent azimuthal symmetry m. b) Simulated tip-induced scattering cross section obtained by
subtracting the far-field background. This procedure highlights the excitation of the dark
mode (DM, indicated with a yellow line in Figure 4.5) activated by the introduction of the
tip (modeled by a small metallic sphere). Map of the z component of the electric field at
the frequency of the monopole c) and of the dark mode d).

To simulate the demodulation procedure at higher harmonics of the tapping frequency
nΩ (which ensures that only light which has interacted at least once with the tip is recorded
in the far-field), we first solve for the pillar in the absence of the sphere with plane wave
excitation. We then we use this field as a background for the full simulation including
the sphere. Doing this we isolate the tip-induced scattering from the far-field. These
simulations are done in COMSOL and the background removal procedure is commonly
referred as the “scattering problem” formulation. To reduce computational resources,
the model is created in 2D-axisymmetric coordinates. Non-normal incidence at 45° for
an axisymmetric model is achieved by expanding the plane wave as a sum of cylindrical
waves [92]. In the scattering problem approach, there is a background field that is known
and Etot = Ebkgr + Erelative. The model is then solved for the Erelative field, and the
results are a good approximation of the perturbation induced by the scattering object (in
our case, the gold sphere representing the metal tip). Both results from the background
simulation and the scattering simulation are then available. The different contributions to
the scattering cross section can be distinguished from their azimuthal angular dependence
eimϕ of order m.

In Figure 4.7 a) the background far-field scattering cross section of a single pillar is
shown, while in Figure 4.7 b) the tip-induced scattering cross section resulting from the
background subtraction procedure is reported. Spectra in Figures 4.7 a), b) are normalized
to the maximum of the isolated pillar scattering cross section. The scattering contributions
are distinguished by their azimuthal symmetry order, so that it is easy to distinguish the
monopolar mode with m = 0 symmetry from the transverse dipolar modes with m = 1
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symmetry. The classification of the modes with their azimuthal number m is analogous
to the classification of the hydrogen electronic wavefunctions with respect to the quantum
number ℓ [74]. The spectra in Figure 4.7 b) show that on the red side of the monopolar
mode, another peak with m = 1 symmetry appears, which is absent in far-field meas-
urements. We associate this peak with the dark mode indicated by a yellow line in the
experimental data of Figure 4.5 b). In Figures 4.7 c), d) the z component of the electric
field in the presence of the metallic sphere is shown for the monopolar and dark modes, re-
spectively. The dark mode is polarized out of plane like the monopolar mode, but switches
polarization along the pillar axis, resulting in a zero net dipole moment and no coupling to
the far-field. The polarization switch along the axis of the pillar means that the dark mode
has an m = 1 character, similarly to the TD modes. Differently from other transverse
modes, the dark mode has high field intensity in the interpillar region, which leads to a
redshift similarly to what is experienced by the monopolar mode with increasing P. From
Figure 4.7 b) it can be seen that another peak, slightly redshifted from the first transverse
dipole, is also induced by the presence of the tip. This additional resonance arises from
the coupling of the first transverse dipolar mode with the dipole induced by the tip, but
it seems to have a lesser impact on the measured spectra, as no clear additional resonance
close to the first transverse dipolar mode is seen experimentally in Figure 4.5 a) or 4.5 b).

Finally, to obtain the spatially resolved near-field distribution we perform a point by
point measurement by collecting spectra while continuously scanning the tip, either on top
of a pillar or off pillar. We report in Figure 4.8 colorplots of the measurements obtained in
this way for the array with P = 3.25 µm. In the inset (i), the scan direction, highlighted
with a green dashed line, is plotted on top of a sketch of the corresponding portion of the
sample. In (ii) we plot three spectra obtained at different positions, marked with three
stars of different colors in both the sketches and colorplots. From Figure 4.8 a), we see
that the TD2 mode (red dot) is efficiently excited only when the tip is in the middle of
the pillar, while as we expect, the TD1 mode (green dot) shows higher intensity when
measuring on the edges of the pillar and completely disappears close to the center, in the
point marked by the red star. Referring to the simulated field enhancements of Figures 4.4
a-c), the monopole is expected to have high intensity only on the very edge of the pillar,
which is hard to experimentally probe due to the high geometrical curvature of the region,
leading to difficult sample-tip mechanical interaction. The TD2 resonance is not expected
to have a maximum at the center of the structure (see Figure 4.4 c)) as experimentally
reported, showing that the tip interaction heavily modifies the field distribution of this
mode. The asymmetry of Figure 4.8 a) with respect to the pillar center can be attributed
to the tilted illumination, which breaks the symmetry of the system. Interestingly, we
detect the presence of an additional mode only when measuring close to the side of the
pillar. By comparing its frequency with the off pillar measurements of Figure 4.5 b), we
can identify this peak as the dark monopolar mode. This resonance is detected only on
the side facing towards the illumination direction (from the right in the colorplots and in
(i)). This asymmetry is consistent with previous studies of the perturbation introduced by
the presence of an AFM tip on top of resonating antennas [89].

The colorplot in Figure 4.8 b) shows that the response of the substrate in between
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Figure 4.8: Color plots of the near-field spectra collected as a function of tip position when
scanning on top of a pillar a), or on the substrate between pillars b). In (i) three selected
spectra showing variations of spectral response in different positions are shown. In (ii) a
sketch of the line along which the data where collected is reported. The stars represent
the positions at which the spectra in (i) are taken.

pillars varies weakly with small intensity modulations. The response of the TD1 and TD2
modes is found to be stronger when scanning close to the base of a pillar, on the side facing
towards the illumination source. The intensity of the monopolar mode follows instead an
opposite trend, peaking for points equidistant from adjacent pillars. As expected from the
simulated field distributions of 4.4 a-c), the response of the monopolar mode is stronger
than that of the TD1 and TD2 modes when measuring off pillar. The weak frequency shifts
seen at different positions in both Figures 4.8 a), b) can be at least partially attributed
to coupling with the tip, as the use of conventional nano-FTIR tips with larger curvature
radius increases these shifts as shown in Figure 4.9.

To further confirm the spatial pattern of the modes measured in Figure 4.8 a), we also
perform hyperspectral imaging on top of one of the pillars as shown in Figure 4.10. To
perform hyperspectral imaging one needs to record a large number of spectra to form a 2D
map. This in principle would not be a problem in the absence of sample drift. We experi-
mented that for measurements longer than ≈ 1 hour, sample drift becomes big enough to
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Figure 4.9: Comparison of linescans on pillar (left) and off pillar (right) with nano-FTIR
tips (top row) and Arrow-NCPt tips (bottom row) for P = 3.25 µm. The larger curvature
radius of the nano-FTIR tips redshifts the peaks and causes larger spectral shifts when
measuring at different positions on the sample

lead to unreliable mapping. In order to reduce the measurement time we use nano-FTIR
tips, which produce larger signal but considerable redshifts, and we only map 1/4 of the
disk. To obtain a full image we then assume circular symmetry, which is in principle not
true due to the tilted illumination, but should provide a reasonable approximation. It has
been shown that drift-free hyperspectral imaging can be performed by periodically acquir-
ing AFM images after n spectral acquisition and use these for drift correction [93]. For
simplicity, we preferred reducing the acquisition time of the hyperspectral imaging instead
of implementing a drift correction procedure. The images reported in Figure 4.10 consist
of 15×15 pixels and the acquisition time was ≈ 45 minutes. All the modes frequencies
are redshifted in Figure 4.10 with respect to the ones reported previous figures due to the
employment of nano-FTIR tips. The gray-shaded regions in Figures 4.10 c-f) represent the
portions of the images obtained by leveraging the circular symmetry of the structure. We
find that integrating the signal over two different frequency ranges confirms that the TD1
mode shows higher response on the edges, while TD2 is stronger in the center.
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Figure 4.10: Hyperspectral imaging on top of a pillar for the array with P = 2.5 µm. To
shorten the measurements time the spectra were recorded on 1/4 of the pillar and the
full image reconstructed by circular symmetry. a) AFM of the investigated region, with
colored dots representing the positions where the spectra of b) where collected. The colored
areas represent the frequency regions used to produce images c-e). c-f) Images obtained
by integrating the spectra over different frequency ranges, illustrating the localization of
the different modes.
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4.4 Conclusions

In conclusion, we reported in this chapter on the near-field study of the spectral response of
a SiC pillar metasurface in the mid-IR by means of sSNOM. These results are of importance
for enhancing the efficiency of mid-IR emitters or for manipulation of thermal emission at
the nanoscale with phonon-polariton antennas. As the near-field spectral response of a
system supporting surface wave excitation can be in general different from the response
measured in the far-field, this study will help in the understanding of further experiments
where SiC resonators are coupled to other systems through near-field interaction. We
further employ electromagnetic simulations to understand the effect of the sSNOM tip in
modifying the response of the metasurface. Even though such effects are not related purely
to the near-field behavior of the antennas, similar perturbations can be expected to occur
when coupling the LSPhPs resonators with other strong IR emitters or resonators.
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In this chapter we discuss SPhPs in SiC
thin films, and the retrieval of their dis-
persion through near-field measurements.
As mentioned in the introduction, an in-
triguing feature of phonon polaritons is the
possibility of anisotropic propagation due
to the complex crystal structure of po-
lar dielectrics, related to the simultaneous
presence (i.e. at fixed frequency) of both
positive and negative terms in the dielec-
tric tensor [48, 94, 95, 96, 97, 98]. Thin films

of layered van der Waals (vdW) materials have attracted considerable attention as they sup-
port highly anisotropic hyperbolic and elliptical phonon polaritons, combined with extreme
subdiffractional confinement [45, 98, 99, 100, 101, 102, 103, 104]. Additionally, fabrication of
twisted vdW bilayers has increased the dispersion engineering possibilities in these novel
materials [105,106,107].

High quality crystalline vdW materials are currently obtained by exfoliation techniques,
which are difficult to scale and result in flakes with limited sizes, hampering their imple-
mentation for practical applications. While first steps towards large-scale fabrication of
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2D materials have been made via chemical-vapour-deposition and similar techniques, their
seamingless implementation is still technologically challenging [108]. Thin films of conven-
tional polar dielectrics can also produce deep subwavelength confinement of free-space light
due to SPhPs hybridization, while allowing the use of more scalable fabrication processes.
Strong confinement is achieved through the insulator-metal-insulator (IMI) configuration,
which is well known for plasmonic films [109, 110, 111, 112]. Millimiter scale free-standing
membranes of various polar dielectrics with tens of nanometer thicknesses are commercially
available (see for example Norcada Inc. or Silson Ltd), but their application as a platform
for SPhPs has yet to be explored. The presence of a solid substrate has been shown to
be an additional source of polariton damping [113,114,115], highlighting the advantage of
free-standing membranes. Silicon carbide (SiC) is an excellent material for SPhPs applic-
ations having a wide RS band and low losses [22,116,117]. Moreover, SiC is a widely used
material in quantum optics [29, 118, 119] and power electronics [28], with well established
fabrication procedures, facilitating its usage in a number of applications.
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Figure 5.1: a) Sketch of the nano-FTIR setup used in the experiments (BS, beam splitter;
MM, moving mirror; PM, parabolic mirror). The light source is an OPO laser with a DFG
module, resulting in a MIR pulse with a bandwidth of 100 cm−1. Light is focused on the
tip of an AFM by a parabolic mirror, and the back-scattered light is redirected towards a
MCT detector by passing through a beam-splitter. b) Optical image of a SiC membrane
window with a thickness of 200 nm. c) Artistic representation of SPhPs launched by both
the tip and the window edge.

Additionally, free-standing membranes of polar dielectrics have been shown to feature
enhanced in-plane thermal conductivity associated with the presence of long-propagating
SPhPs [120,121,122]. Surface pattering can be further leveraged to control the direction of
SPhPs-induced heat flow at the nano and micro scales [123,124]. Furthermore, the SiC RS
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band matches the thermal emission wavelength of objects around room temperature and
thin SiC films have been investigated in the context of enhanced near-field thermal energy
transfer [111,112,125]. A number of experiments have confirmed this effect in nanometric
gaps between polar dielectrics, where the thermal emission far exceeds the blackbody limit
due to the contribution of evanescent SPhPs [126, 127, 128]. However, the optimization
of all these applications requires fundamental knowledge of the SPhPs properties of polar
thin films, while the experimental verification of the dispersion relation in such systems is
still lacking.

We employ sSNOM to retrieve the SPhPs dispersion in SiC (polytype 3C) free-standing
membranes (100 nm and 200 nm thick). sSNOM enables direct polariton measurements,
as the presence of the tip provides the missing momentum for excitation in unpatterned
samples, while offering subwavelength spatial resolution [99, 129]. We record position-
dependent nano-FTIR spectra which allow the reconstruction of the dispersion relation at
many frequencies in a single experimental run [129, 130]. A sketch of the experimental
setup is shown in Figure 5.1a). The SiC membranes are supported by a silicon frame
∼ 400 µm thick, with a 500 µm × 500 µm square window in the center. An image of the
top of a 200 nm membrane obtained with a 10X optical microscope is shown in Figure
5.1b). When scanning on the membrane, SPhPs are launched both from the tip and from
the edge, as shown in Figure 5.1 c), producing complex interference patterns, of which we
provide a detailed study in the next sections.

5.1 SPhPs hybridization in thin films

To confirm the optical properties of the SiC membranes we first investigate their far-field
response by FTIR spectroscopy. In Figure 5.2 a) we show the analytically calculated
normal-incidence reflectivity of free-standing SiC thin films of various thicknesses T in
air, obtained from the Fresnel coefficients for a three-layer system according to eq. 2.17
where T is the SiC film thickness [23]. For decreasing T the reflectivity stays high around
the TO phonon (at 797 cm−1), while it substantially drops close to the LO phonon (at
973 cm−1). The green line indicates the response of a semi-infinite SiC surface, showing high
reflectivity in the whole RS band. Markers in Figure 5.2a) show the measured reflectivities
for the 100 nm (light blue) and 200 nm (blue) membranes. We used for the calculations of
the reflectivity the same SiC dielectric function employed in the previous chapter, which
follows eq. 1.5 with ε∞ = 6.6, ωTO = 797 cm−1, ωLO = 973 cm−1 and γ = 1.4 cm−1. The
close match between the calculated and experimental reflectivity confirms that the optical
properties of the SiC membranes can be modeled from literature values of the dielectric
function.

In plasmonic thin films the surface plasmon polariton (SPP) dispersion splits into a
lower and a higher energy mode [15], resulting from hybridization of the separate SPPs
existing at the top and bottom interfaces. The splitting becomes appreciable when the
film thickness T is reduced to values comparable to the material skin depth, on the order
of few tens of nanometers in metals [109,131]. In SPhPs thin films the skin depth is much
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Figure 5.2: a) Calculated normal incidence reflectivity for a free-standing layer of SiC of
variable thickness in air. Markers are experimentally measured quasi-normal incidence
reflectivity spectra for 100 nm (light blue) and 200 nm (blue) SiC membranes. The green
line is the reflectivity for a semi-infinite SiC surface. b) Theoretical SPhP dispersion in
free-standing SiC films of various thicknesses. The single SPhP dispersion on a semi-infinite
surface (green line) splits in films of finite thickness in a high energy mode (even mode) and
a lower energy mode (odd mode). The splitting increases as the thickness decreases. For a
range of frequencies above the green line asymptote, the even mode has two solutions. c)
Calculated ratio between the propagation length and the SPhP wavelength for the same
thicknesses in b). d) Simulated field profile at three different frequencies for a 100 nm
membrane. The even and odd modes are named with respect to the symmetry of the
electric field in the z direction normal to the SiC surface.

larger, with clear mode splitting visible already for T = 1 µm as shown in Figure 5.2 b).
The dispersion of the two modes for a film of thickness T in a homogeneous medium with
dielectric constant ε2 are given by the following implicit relations [15, 109]:

ε1k2 + ε2k1 tanh

(
−i

k1T

2

)
= 0

ε1k2 + ε2k1 coth

(
−i

k1T

2

)
= 0

(5.1)

where ε1 = ε(ω) is the dielectric function of the ”metallic” layer and ki are the
wavevectors in the z direction (as the top and bottom materials are the same k2 = k3). In
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our case ε(ω) is the SiC dielectric function. The in-plane SPhP wavevector β is related to
the out of plane wavevectors ki by:

k2
i = β2 − k2

0εi (5.2)

where where k0 is the free-space wavevector. By substituting eq. 5.2 in eq. 5.1 two
equation for the in-plane wavevectors β = kev and β = kodd of the two modes can be
written: √

k2
ev(ω, T )− k2

0ε2
k2
ev(ω, T )− k2

0ε(ω)
=

ε2
ε(ω)

× tanh

(
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2
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od(ω, T )− k2

0ε(ω)

)
(5.4)

Equation 5.3 describes the dispersion of the higher energy even mode kev, for which
the field component perpendicular to the film surface Ez is symmetric (even mode), while
equation 5.4 describes the lower energy mode kod for which Ez is antisymmetric (odd
mode). In Figure 5.2 b) the numerical solutions of equations 5.3 and 5.4 for ε2 = 1 are
reported for selected values of T , along with the dispersion for a semi-infinite SiC slab in air
(green line) and the vacuum light line ω = ck0 (black line). The energy splitting between
the odd (solid lines) and even (dashed lines) modes increases as T is reduced, as shown
in Figure 5.2 b). From Figure 5.2 b) one can see that for decreasing T the wavelength
shrinking λ0/λSphP for the odd mode is increased as the in-plane momentum increases at
any given frequency. It should be noted that the even mode branch has two solutions above
the frequency where ε(ω) = −1 (corresponding to the asymptote of the semi-infinite slab
dispersion), one close to the light line with practically no confinement, and another one at
higher k. In Figure 5.2 c) we report the calculated ratio between the SPhP propagation
length L and its wavelength λSPhP . While not showing appreciable field confinement, the
low-k even mode solution features very long propagation lengths, efficiently transporting
thermal energy and enabling the enhanced in-plane thermal conductivity reported in thin
films of polar dielectrics [120, 121, 122]. For a mode to be detectable in a polaritonic
interferometry experiment, it has to travel at least one wavelength before decaying. As a
consequence, the high-k vector even mode solution cannot be detected in our experiments
as the ratio L/λSPhP is below unity at all frequencies (see vertical dashed line in Figure
5.2 c)). In Figure 5.2 d) we show a snapshot of the simulated Re(Ez) field profiles at
three selected frequencies for a T = 100 nm membrane. In the top panel the high-k
solution of the even mode (symmetric in Ez) can be identified due to the strong wavelength
confinement and field symmetry. As it can be seen from Figure 5.2 b), this solution
is characterized by negative group velocity (dω/dk < 0). This is a consequence of the
field being concentrated in the ”metallic” region where the Poynting vector parallel to
the surface points in the negative direction (to the left in Figure 5.2 d)) [110]. The low
propagation length of this mode is associated with increased losses in the SiC film due to
the field being concentrated inside the material, which has been leveraged for enhanced
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second harmonic generation [132]. This weakly propagating mode is usually named epsilon
near zero (ENZ) mode [133] as for sufficiently small T the even mode dispersion is pushed
towards the ε(ω) = 0 line. In the two bottom panels of Figure 5.2 d) the odd mode solution
(antisymmetric in Ez) is shown for two different frequencies. From Figures 5.2 b), c) and the
simulated field profiles, one can see that there is a general trade-off between propagation
length and wavelength shrinking for the SPhPs. The Re(Ez) symmetry determines the
energy of the two modes: the charges at fixed x inside the SiC layer at the top/bottom
interfaces have the same sign in the even mode, raising the energy due to repulsion, while
they have opposite sign for the odd mode, lowering the energy due to attraction.

5.2 Polariton interferometry of the free-standing SiC

films

To experimentally reconstruct the SPhP dispersion in the membranes, we use the nano-
FTIR sSNOM technique in a commercial setup (neaspec), where a broadband source is
coupled to an AFM in an asymmetric interferometer configuration (see sketch in Figure
5.1 a), allowing the measurements of near-field spectra with subwavelength spatial res-
olution [63, 129, 130]. We use illumination from an optical parametric oscillator (OPO)
laser (Stuttgart Instruments), feeding a difference frequency generation (DFG) module,
where the MIR output is realized by DFG between the signal and idler outputs (see Meth-
ods section for more details). The bandwidth of the MIR laser pulse is approximately
100 cm−1, resulting in high signal-to-noise measurements thanks to the high power per fre-
quency [134]. This is essential as the low membranes reflectivity close to the LO phonon
leads to a very weak signal [135].

In our measurements we use the edge of the SiC window to launch and reflect SPhPs, but
equivalent experiments can also be performed by etching a slit in the membrane [39]. SPhPs
are in principle also launched outside of the window on the frame, however the presence
of the high refractive index Si substrate redshifts the odd mode and dramatically reduces
the SPhPs excitation efficiency [39]. It is well known that the measured polariton fringes
periodicity is in general different from the wavelength of the polariton itself [131,136,137].
The sSNOM signal originates from interference between propagating polaritons and directly
back-scattered light (interference between different polaritons can be neglected due to their
small intensity [131]), which can be written as:

I(x) ≈ |Ebs|2 + 2
∑
l

|Ebs||El(x)| cos((ϕbs − ϕl)(x)) (5.5)

where x is the scan direction. Here Ebs is the field directly back-scattered from the
tip, related only to the properties of the material below the tip which we consider to be
position independent. El(x) is the field of the polaritons launched by the tip, by an edge
or any other scatterer in the sample that can provide the missing momentum for polariton
excitation. The phase difference between the field back-scattered from the tip and the phase
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interfering with the tip backscattered light (black arrows). a) SPhPs radially launched
from the tip are reflected by the edge ktl = 2kSPhP . b) SPhPs are launched from the
edge and scattered by the tip and kel(θ, φ) depends on the angles θ and φ. c) Edge-
launched SPhPs are reflected as spherical waves from the tip and back-scattered from the
edge kete = 2kel. d) Edge launched SPhPs reflected by the tip and subsequently by the
edge produce a signal at kel + ktl. e) Baseline subtracted nano-FTIR amplitude spectra
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membranes. f) |FFT | of the maps in e) along the x-axis. White lines are predicted
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accumulated by the polariton ∆ϕbs,l = (ϕbs − ϕl)(x) determines the positions of maximum
and minimum constructive interference and the fringes periodicity Λ. The accumulated
phase depends not only on the polariton propagation, but also on the phase acquired in the
optical pathways for excitation and scattering of the polaritons [138, 139]. We summarize
in Figure 5.3 a-d) the main pathways producing a signal in our sSNOM experiments. Black
arrows indicate the optical path of the directly tip scattered light Ebs, while red arrows
indicate the path of the polaritons El (and of their in-out scattering optical path). The light
incident angle with respect to the surface normal direction and with the window edge are
respectively indicated as θ and φ. In Figure 5.3 a) the scheme for tip-launched polaritons
is shown. Here, SPhPs are radially launched by the tip and reflected at the edge, travelling
twice the tip-edge distance d, accumulating double the phase delay and producing fringes
at Λtl = λSPhP/2. This is the most dominant contribution in 2D materials as the tip
near-field momentum distribution matches well with the momentum of highly confined
polaritons [45]. In Figure 5.3 b) the edge-launched contribution is illustrated: polaritons
are launched by the edge and propagate towards the tip, which back-scatters them in the
far-field. The total phase difference accumulated for edge-launched polaritons is the sum
of ϕedge accumulated by the free-space light travelling towards the edge and the ϕSPhP

acquired by the SPhP when propagating from the edge to the tip, minus the free-space
phase acquired by the light directly hitting the tip ∆ϕel = ϕedge + ϕSPhP − ϕtip. The angle
β of the polariton propagation is determined by momentum conservation k0,y = kSPhP,y

along the edge direction y [131]. The polariton accumulated phase depends in this case from
(θ, φ), producing fringes with periodicity of (see Appendix A for more details) [131,136]:

Λel(θ, φ) =
λ0

− sin(θ) sin(φ) +
√
sin2(θ)(sin2(φ)− 1) + n2

(5.6)

where n = λ0/λSPhP . While the processes described in Figure 5.3 a), b) are the most
common contributions to the sSNOM signal, multiple reflections between tip and edge
are also possible [130]. In Figure 5.3 c), d) we illustrate two of these possible multiple-
interference pathways. Edge-launched polaritons can be re-launched by the tip towards
the edge, causing back-scattering towards the detector, as shown in Figure 5.3 c). The
phase accumulated by the polaritons is here doubled compared to the edge-launched case,
producing fringes with periodicity Λete = Λel/2. Finally, the edge-launched polaritons
which are re-launched by the tip can be reflected again by the edge and scattered by the
tip towards the far-field as shown in Figure 5.3 d). In this case the phase accumulation is
the sum of the phase accumulated in tip-launched polaritons and edge-launched polaritons,
leading to a fringe spacing of Λetet = (Λtl + Λel)/ΛelΛtl.

To reconstruct the SPhPs dispersion and confirm the existence of the processes de-
scribed in Figures 5.3 a-d), we record spectra along a line perpendicular to one of the
edges of the membrane. We align the membranes in order to have an angle φ between
the k-vector of the incident light and the edge of φ ≈ 65°. In Figure 5.3 e) we show the
baseline subtracted spectra obtained in this way as a function of the edge-tip distance.
In the top panel we report the result for T = 200 nm, while in the bottom panel the one
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for T = 100 nm. As anticipated in Figure 5.2 b) we see fringes with a higher spacing for
T = 200 nm than for T = 100 nm due to the larger λSPhP (smaller in-plane momentum)
in the thicker membrane. As can be seen from Figure 5.2 c), we expect the propagation
length to be similarly reduced as does the polariton wavelength (the lines for T = 100 nm
and T = 200 nm are almost overlapping). In order to retrieve the in-plane momentum
kx(ω) dispersion we fast fourier transform (FFT) each row in the maps of Figure 5.3 e)
along the x axis. We follow the procedure outlined in previous works [129, 130] to obtain
the maps of the FFT absolute value shown in Figure 5.3 f). Briefly, before performing the
FFT, we mirrored the linescans along the first column, performed baseline subtraction for
each row, applied a window function to have a smooth decrease at the edges and 0-padded
the maps to increase resolution in k space [39].

In Figure 5.3 f) several branches appear in the dispersion maps, showing the complexity
of the interference phenomena underlying the sSNOM signal in this system. From k =
2π/λ, we can reconstruct the expected dispersion related to the processes illustrated in
Figures 5.3 a-d). Predicted dispersion relations are plotted as white curves in Figure 5.3
f) for θ = 60° and φ = 65°, showing good agreement with the experimental data (solid line
for edge-launched, dashed for edge-launched-edge-scattered, dotted for tip-launched and
dot-dashed for edge-launched-tip-scattered). To confirm the accuracy of the interference
model, we performed additional measurements at different values of φ as shown in Figure
5.4. The angle φ between the illumination direction and the edge can be easily changed by
rotating the sample, while θ is kept fixed. Changing θ would require a modification of the
alignment to the parabolic mirror focusing the light on the tip, which is not easily achieved.
In the right panels of Figure 5.4 the rotation of the membrane is sketched (for clarity in
the sketch we fix the membrane and rotate the illumination direction). The dashed line
indicates the scanning direction during data acquisition. We report the measurements
for three significant membrane orientations, in Figure 5.4 a) the plane wave is incident
(almost) perpendicular to the edge, while scanning is performed in the same direction of
the k-vector. In Figure 5.4 b) the plane wave is almost parallel to the edge (note that
φ = 180° and φ = 0° produce the same periodicity in the oscillations). In Figure 5.4 c)
the plane wave is perpendicular to the edge, and we scan in the opposite direction of the
k-vector. While the tip-launched contribution stays always the same, the dispersion of the
other branches changes as predicted with the angle φ. It should also be noted that small
shifts close to φ = 90° (i.e. between φ = 65° and φ = 90°) produce negligible changes in
the predicted dispersion since d sinx/dx ≈ 0 for x close to π/2.

5.3 Retrieval of the SPhP dispersion

For further analysis we isolate the edge-launched contribution by multiplying the maps of
Figure 5.3 f) by a window function centered around the solid white lines. The resulted
windowed map is showed in Figure 5.5 a) for T = 200 nm. The edge-launched SPhPs can
be modeled as a plane wave decaying exponentially along its path due to material losses
I(x) = |Ebs|2 + Ae−xΓ/2 cos(kelx). Neglecting the signal coming from the FFT of the first
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a) b)

Figure 5.5: a) |FT | map for T = 200 nm after product with the window function to isolate
the edge-launched contribution. b) Example of the fitting of the isolated edge-launched
branch at three selected frequencies.

term (producing only a DC contribution at k = 0), the squared module of the FFT of this
function has the following form [131]:

|FFT(I(x))|2(k) = A2

2π

(Γ/2)2 + k2

(Γ/2)4 + (k2 − k2
exp)

2 + 2(Γ/2)2(k2 + k2
exp)

(5.7)

We fit the square amplitude of the windowed maps row by row with eq. 5.7 as shown for
selected frequencies in Figure 5.5 b). The extracted peak positions kexp can be compared
with the theoretical SPhP dispersion by inverting the relation kel = f(θ, φ, kSPhP ). From
eq. 5.6, the experimental wavevector measured for the edge-launched polaritons is:

kexp
el = k0

− sin(θ) sin(φ) +

√
sin2(θ)(sin2(φ)− 1) +

(
kSPhP

k0

)2
 (5.8)

Inverting this relation we get:

kSPhP = k0

√
sin2(θ)(sin2(φ)− 1) +

(
kexp
el

k0
+ sin(θ) sin(φ)

)2

(5.9)

From the kexp
el extracted through the fitting procedure shown in Figure 5.5 b), the

dispersion kSPhP can be recovered using eq. 5.9.
The data extracted in this way are plotted as green squares in Figure 5.6 a), in the

top panel for T = 200 nm and in the bottom one for T = 100 nm. The experimental
data are shown together with the analytically calculated dispersion from eqs. 5.3 and
5.4 and with the calculated imaginary part of the Fresnel reflection coefficient obtained
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Transfer matrix calculation of the imaginary part of the complex Fresnel reflection coef-
ficient Im(Rpp) for membranes of T = 200 nm (top) and T = 100 nm (bottom). Red
dashed lines are analytical solutions for the even and odd modes from equations 5.3 and
5.4. Green squares are extracted from the experimental data by fitting the isolated edge-
launched SPhPs and inverting the relation kel = f(θ, φ, kSPhP ). Thin black lines indicate
the confinement factor n = kx/k0. Amplitude b) and phase c) obtained by iFFT of the
isolated edge-launched polariton branch. White lines in b) correspond to the theoretical
value for the odd mode propagation length for different values of the damping parameter
γ, while blue lines are the experimentally extracted values of the propagation length.
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Figure 5.7: Experimental (blue lines) and theoretical values of the odd-mode SPhPs lifetime
for membranes of 100 nm a) and 200 nm b) thickness. Theoretical curves are reported
for three different values of the damping parameter γ appearing in the equation used to
calculate the SiC dielectric function.

with the transfer-matrix method [51]. The extracted experimental data closely match
the theoretically predicted values for the SPhPs dispersion in a thin film, demonstrating
the reconstruction of the SPhPs dispersion through sSNOM. Black lines in Figure 5.6
a) indicate points with constant n = λ0/λSphP , quantifying the free-space wavelength
shrinking. In Figure 5.6 b), c) we report the amplitude and phase of the inverse FFT
(iFFT) of the isolated edge-launched branch. In this case we multiply the maps of Figure
5.3 f) by a Hanning window centered around kel to obtain a smooth iFFT [39]. White lines
in Figure 5.6 b) are the theoretical propagation length L = 1/2 Im(kodd) for the odd mode,
where kodd is calculated from equation (5.4). We report the theoretical L for different
values of the damping parameter γ determining the imaginary part of the SiC dielectric
function and the SPhP damping. Experimentally, we extract the propagation length L by
fitting each row (each frequency) of Figure 5.6 b) with an exponential function [39]. We
plot the extracted values as blue lines in Figure 5.6 b) for frequencies where the exponential
fit gives reliable results. We find that the value of γ in these films has to be in between
γ = 3 and γ = 6 to reproduce the experimental data. Values as low as γ = 1.4 have been
reported for high quality bulk SiC, suggesting that improved crystal growth might lead to
longer propagating SPhPs in free-standing SiC films. From the propagation length L and
the group velocity vg = dω/dk, the SPhPs lifetime τ can be extracted as τ = L/vg, as
shown in Figure 5.7.

The average values of τ over the investigated frequency range are τ ≈ 8 ps for the
200 nm film and τ ≈ 9.5 ps for the 100 nm film. These values are comparable to what has



84 5. SPhPs dispersion retrieval in large-area free-standing SiC thin films

been reported for phonon polaritons in naturally abundant hBN [140] and α−MoO3 [45].

ω = 900 cm-1

ω = 890 cm-1

Figure 5.8: Nano-imaging of SPhPs launched on a 100 nm from a chromium strip at two
representative wavelengths. Amplitude maps are averaged row-by-row and fitted with eq.
5.10 to extract the SPhPs wavelength and propagation length.

We employed nano-spectroscopy to recover the dispersion on a large frequency range,
however nano-imaging with the PsHet technique described in section 3.2.3 usually can
achieve higher signal-to-noise by averaging over many rows in an image. For our exper-
imental setup this trade-off is not straightforward, as to obtain narrowband emission we
need to filter the laser output by employing a monochromator, which dramatically reduces
the available power. In this configuration no SPhP launching from the window edge was
detected. In order to perform nano-imaging we pattern a 5 µm wide, 20 nm thick chromium
strip on a 100 nm membrane with standard e-beam lithography, which is more efficient in
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launching SPhPs. In Figure 5.8 we report the amplitude and phase results for two rep-
resentative wavelengths (890 cm−1 and 900 cm−1). In these experiments we only observe
edge-launched SPhPs due to the strong launching efficiency of the chromium strip. To
extract the SPhP properties we average row-by-row the amplitude maps. The resulting
profile can be fit with an oscillating decaying exponential function:

y(x) = A0 + A1

(
e−x/L cos (λSPhPx+ ϕ)

)
(5.10)

We exclude from the fit the first interference fringe, where the tip strongly interacts
with the chromium strip. From the fitting and considering the membrane orientation,
the SPhP wavelength and lifetime can be extracted analogously to what was done for the
nano-FTIR data. The values extracted from the nano-imaging experiments are consistent
with what we obtained through nano spectroscopy [39].

5.4 Conclusions

In summary, in this chapter we have analyzed the SPhP dispersion in free-standing mem-
branes of SiC with thicknesses of 100 nm and 200 nm through sSNOM near-field spectro-
scopy. We have performed a detailed study on the various interference pathways leading
to the emergence of complex features in the sSNOM signal. In particular, we analyzed the
effect of multiple SPhPs reflections between the tip and window edge. By fitting the exper-
imental data we extracted the frequency-dependant SPhP momenta for both thicknesses,
which agree well with theoretical calculations. The findings are corroborated by nano-
imaging at selected frequencies. We introduced commercially available SiC free-standing
membranes as a platform for phonon polaritonics, where the polariton wavelength can be
controlled by the film thickness. We expect that novel experimental and theoretical works
in the fields of enhanced near-field energy transfer and enhanced in-plane conductivity of
free-standing SiC films could also benefit from our study and direct measurement of the
SPhP dispersion.
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Chapter 6

Near-field imaging of SPhP vortex in
free-standing SiC thin films

In this chapter we discuss the near-field imaging of optical vortex in SiC carbide thin films,
of which the dispersion was investigated in the previous chapter. SPhP vortex are created
by spin to orbital momentum conversion driven by metallic spiral patterns fabricated on
top of the SiC films. As the concept of optical vortex is closely related to the orbital
angular momentum of light, we briefly introduce it here.

6.1 Orbital angular momentum of light

As a beam of light carries a linear momentum P, one can naturally define an associated
angular momentum as L = r × P. The total angular momentum can be defied in the
paraxial approximation as the integral of the cross product between the position vector r
and the linear momentum P = E×B [141]:

j = ε0

∫
r× (E×B) · dr (6.1)

For weakly focused beams in the paraxial approximation, the total angular momentum
is given by the sum of the spin angular momentum s (SAM) and the orbital angular
momentum ℓ (OAM):

j = s+ ℓ (6.2)

The SAM is associated with a rotation of the electric and magnetic fields, and is carried
by circular polarization with possible values s = ±1 depending on the handedness. The
OAM is instead related to an optical beam having a helical wavefront that has a phase twist
along the azimuthal direction in the plane perpendicular to the propagation direction. The
phase profile of an OAM beam in such plane can be described by the simple expression eiℓθ

where θ is the azimuthal coordinate and ℓ is the azimuthal mode index. The amplitude of
the field has instead a doughnut shape, where the diameter increases with ℓ. The number
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ℓ quantifying the number of 0 to 2π phase jumps in the transverse plane is also referred
as the topological charge of the optical vortex. Beams carrying OAM can be described
by Laguerre-Gaussian (LG) modes, which are characterized by two indexes LGℓ,p and
their profiles for selected values of ℓ, p are shown in Figure 6.1. The index ℓ of the LG
modes has the role of describing the topological charge of the optical vortex, while the
index p is the radial index determining the number of oscillations. OAM beams can be
formed in many ways, ranging from simple spiral phase plates [142] to precisely engineered
metasurfaces [143].

p = 1 p = 2 p = 3

ℓ 
=

 0
ℓ 

=
 1

ℓ 
=

 2

-2 0 2
(E)|E|

0 1

Figure 6.1: Amplitude and Phase of Laguerre-Gaussian modes for selected values of the
indexes ℓ, p

An interesting properties of OAM beams is that they are mutually orthogonal (as LG
beams are orthogonal to each other) and the associated topological charge ℓ is unbounded.
As a consequence, OAM beams are a good candidate for information multiplexing [144],
where different data can be encoded in distinguished topological orders which can be
separated with minimal cross-talk due to orthogonality [141,144].

6.2 Two-dimensional optical vortex

Traditional methods for the generation and detection of OAM light states rely on bulky
free-space optics [145]. To shrink the footprint of these devices recently great attention has
been given to the possibility of on-chip manipulation of optical vortex. SPPs have been the
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main candidate to achieve such miniaturization, both for the generation [143] and detection
of OAM states [146,147]. On a more fundamental level, it has been theoretically predicted
that deeply subdiffractional optical vortex fields could induce forbidden optical transition
in quantum systems [148, 149]. A number of experimental works have demonstrated the
generation of SPP vortex by near-field mapping through both aSNOM [150, 151, 152] and
sSNOM [153, 154]. An advantage of sSNOM is that by employing the PsHet technique
described in section 3.2.3 the phase profile of the SPP vortex is obtained, which allows a
direct access to the topological charge. When only the amplitude of the field is available,
the tolopogical charge has to be inferred by the diameter of the doughnut intensity pattern.
Recently, ultrafast imaging of SPP vortex below the diffraction limit has been demonstrated
through two-photon photoemission electron microscopy [155,156].
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Figure 6.2: Amplitude and phase of the Ez SPP field at λ = 800 nm obtained through the
Huygens principle with N = 200 dipoles. The position of the dipoles is shown by the black
curves. a) Circular groove excited by radial polarization (σ = 0) yielding a SPP focus with
ℓ = 0. b) Circular groove excited by LCP (σ = 1) producing an optical vortex with ℓ = 1.
c) Archimedian spiral groove with m = 1 excited by LCP (σ = 1) producing an optical
vortex with ℓ = 2. Images size 12× 12 µm2

The generation of SPP vortex is based on interference of SPP launched by a circular
or spiral pattern that can take the form of a groove or ridge in a metal film. In the
most common case to ensure that SPPs are launched with the same intensity along the
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pattern, incident fields with radial symmetry are employed. This property is for example
shared by radially polarized, circularly polarized and OAM beams. In the case of a circular
groove/ridge, if the radius r = nλSPP is an integer multiple of the SPP wavelength, a focal
spot in the center can be created by excitation with radially polarized light. The intense
focal field in the center is obtained as all the SPPs interfere constructively at the center
with the same phase. The SPP generation process can be simulated through the Huygens
principle by positioning a number of dipoles in a circular pattern, as shown in Figure 6.2
a). The amplitude and phase simulate the Ez component of the SPP field produced by
a circular groove with n = 6 for λ = 800 nm on a gold surface with ε = −25.0 + 1.2i.
The interference pattern is obtained by placing N = 200 dipoles equally spaced in the
azimuthal direction. Each dipole located at ri emits a field given by:

Ei =
ei(kSPP·(r−ri)+φ)√

(r − ri)
(6.3)

where φi is an additional phase term. The total field is obtained by summing each
contribution:

E =
N∑
i=1

Ei (6.4)

For radial polarization all the dipoles emit in phase so that φi = 0 for all i. To
produce an optical vortex from an input radial polarization an additional phase delay can
be obtained by moving from a circular to a spiral groove. A 2π phase delay is obtained
with an Archimedian spiral in which the radius increment over 2π is given by λSPP . The
equation for such spiral is:

r(θ) = λSPP

(
mθ

2π
+ n

)
(6.5)

with θ varying between 0 and 2π. The simulation with the dipoles arranged in this
geometry is shown in Figure 6.2 b) for radial polarization. In this case a SPP vortex
is generated, with the amplitude having the typical doughnut shape while the phase is
characterized by a singularity in the center and a phase increment from 0 to 2π in the
azimuthal direction. The topological charge of the vortex is therefore ℓ = 1. The effect
of left circularly polarized (LCP) light on such a structure is shown in Figure 6.2 c). To
simulate the effect of LCP excitation each dipole emits with a phase equal to its angular
coordinate φi = θi. In this case the geometrical phase delay determined by the structure is
summed with the phase delay determined by the LCP light, producing a SPP vortex with
topological order ℓ = 2. The total angular momentum of the SPP vortex can be expressed
as:

ℓ = m+ σ (6.6)

where m indicates the geometrical order of the groove/slit used to launch SPP, and σ
the topological order of the exciting beam. For LCP and right circularly polarized (RCP)
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light σ = ±1 respectively, and higher values are obtained by high order OAM beams. The
convention is that counter-clockwise vortexes have a + charge, while clockwise vortexes
have a − sign. To give an example, excitation of the structure in Figure 6.2 c) with RCP
light would yield a SPP focus as in Figure 6.2 a) as m = 1 and σ = −1. In the following
we restrict to the case of circularly polarized excitation so that σ = ±1.
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Figure 6.3: a) SPP interference pattern for a spiral m = 9 at λ = 530 nm. The vortex
pattern is distorted by SPP damping. b) The correct SPP vortex can be obtained by
employing the corresponding vortex generator. Scale bar: 2 µm

According to eq. 6.6 to obtain vortex with higher topological charge, m can be in-
creased. This corresponds to increasing the distance between the initial and final points of
the spiral by multiples of λSPP . However this approach can introduce strong distortions
at high m due to losses as the distance traveled by the SPPs is substantially different.
The SPP interference pattern for a spiral of order m = 9 and n = 4 is shown in Figure
6.3 a). The resulting vortex is expected to have a topological charge ℓ = 10 since we
use LCP excitation. To highlight the effect of losses the field is evaluated in this case at
λ = 530 nm where ε = −4.7 + 1.9i. The position of the dipoles is shown as black curves.
In Figure 6.3 a) the vortex pattern is clearly distorted due to azimuthal losses. To solve
this problem, so called vortex generators have been proposed, which are described by the
following equation [151]:

r(θ) = λSPP

(
mod(mθ, 2π)

2π
+ n

)
(6.7)

where mod(mθ, 2π) indicates the remainder of the division of mθ by 2π. In the vor-
tex generator, instead of having a single discontinuity in the groove with ∆ = 9λSPP , 9
discontinuities with ∆ = λSPP are realized. The resulting SPP pattern is shown in Figure
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6.3 b) for m = 9 and n = 6. Since the SPP traveling distance is similar for all azimuthal
coordinates, the correct vortex pattern is obtained.
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Figure 6.4: Phase profile of an SPP vortex with ℓ = 2. On top of the shrinking of the
SPP wavelength at 530 nm, the phase profile has a different behaviour due to increased
confinement and losses of the SPP. Scale bar: 2 µm

By comparing the SPP vortex in Figures 6.2 and 6.3 an interesting difference can be
seen in the phase profile. This difference can be highlighted by simulating the same vortex
with ℓ = 2 at λ = 800 nm and λ = 530 nm as shown in Figure 6.4. While the vortex
at λ = 530 nm is characterized by a spiral phase pattern, the one at λ = 800 nm closely
resembles the one of a LG beam of order ℓ = 2 [157]. The difference in the phase profiles
in Figure 6.4 is related to the losses of the SPP and their confinement with respect to the
light line. While the vortex at λ = 800 nm is characterized by low confinement and low
losses, at λ = 530 nm the SPP dispersion is appreciably on the right of the light line. Then,
while for λ = 800 nm the vortex profile is similar to the one of a free-space propagating
beam described by one of the LG modes as shown in Figure 6.1, this is not the case for
λ = 530 nm. This has a consequence for the quantitative evaluation of the mode purity
of an optical vortex, which is checked by integrating the field profile U(r, θ) against the
reference LG functions [158,159]:

Aℓ,ℓ′,p =
|
∫∫

LGℓ,p · U∗ dr dθ|2

|
∫∫

LGℓ,p · LG∗
ℓ′,p dr dθ|2

(6.8)

In practice often the integral overlap is not done directly with the LG beams, but
with their interference with a plane wave, which is how free-space OAM beams are usually
detected [143]. Overall, this observation indicates that to quantify the OAM purity of
an optical vortex originating from highly confined SPP, LG modes cannot be used as a
reference, but an alternative set of functions have to be used.

6.3 Surface phonon polariton vortex

The principles introduced in the previous sections also apply to the generation of vortex
with mid-IR SPhPs. While SPP vortex have been extensively studied, SPhP vortex are
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still to be fully explored. Recently, hyperbolic phonon-polaritons (HPhP) vortex have been
mapped through s-SNOM in hBN films [160,161]. However, in both these works the HPhP
field was measured employing conventional reflection-mode sSNOM, which is not suited to
map complex optical fields. Due to the mechanism introduced in chapter 5, the measured
edge-launched fringes periodicity is not the same along all directions due to the different
angle φ between the exciting wavefront and the edge [39]. This inevitably distorts the
resulting HPhP field. This issue can be solved by employing transmission sSNOM, where
light is coupled from a parabolic mirror positioned below the sample, and light scattered by
the tip is sent to the parabolic mirror employed for reflection measurements [162,163]. As
the light is focused from below at normal incidence, the distortion of the fringes periodicity
due to the orientation between the launching edge and the exciting wavefront is eliminated.
This scheme has been employed to correctly map the field distribution resulting from SPP
interference producing two-dimensional vortex and skyrmions [153,154,164,165]. Moreover,
as the polarization is perpendicular to the tip shaft, tip-launched SPhP and coupling
between tip and resonant structures are minimized in this configuration [162,166].

Figure 6.5: Sketch of the near-field transmission measurementd to map SPhP vortex.
Chromium ridges are fabricated on top of a suspended SiC membrane to generate SPhP
vortex. The structure is excited from a circularly polarized beam incident from below.

Here we map SPhP vortex in suspended 100 nm SiC thin-films supporting highly con-
fined SPhPs described in chapter 5. The small thickness of the SiC membranes allows us to
measure in transmission, eliminating the artifacts discussed above. Phase and amplitude
are obtained using the PsHet method, and the signal is demodulated at the second order
n = 2. The vortex are created by launching SPhPs from Chromium (Cr) ridges fabric-
ated with conventional electron beam lithography on top of the SiC membrane as sketched
in Figure 6.5. The shape of the Cr ridges is chosen according to eq. 6.7 describing the
shape of the vortex generator. The wavelength of the SPhPs is calculated according to eq.
5.4. The laser source is the same employed in chapter 5, where the beam bandwidth is
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reduced with a monochromator as it was done for the experiments shown in Figure 5.8. A
quarter-waveplate is used to produce RCP and LCP excitation.
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Figure 6.6: Near-field amplitude and phase maps obtained at different frequencies in the
SiC RS band for vortex with ℓ = 2. The SPhP dispersion calculated through the transfer-
matrix method is shown in the background. A sketch of the Cr ridge and polarization
handedness is shown in the bottom-right corner. Due to the strong SPhP dispersion, a
small change in the excitation wavelength (from 11.6 µm to 10.7 µm) can shrink the vortex
size 5 times.

A difference between SPP and SPhP is that for the latter the dispersion is much
stronger, and the polariton wavelength strongly changes in a narrow wavelength range.
This means that by slightly tuning the excitation wavelength, vortex of very different sizes
can be obtained. This effect is shown in Figure 6.6 for vortexes with ℓ = 2 obtained by
excitation of SPhP on the SiC membrane. The launching ridge is a single Cr spiral with
m = 1 and the sample is excited with LCP light, as shown in the inset in the bottom right
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corner. The experimentally obtained amplitude and phase maps are reported for a set of
wavelengths spanning the RS band. The maps show spiral patterns with 2 arms, confirm-
ing the vortex topological order ℓ = 2. In the background the SPhP dispersion of the
thin-film odd mode (see chapter 5 for mode details) calculated through the transfer-matrix
method is reported. The maps are scaled to their real spacial size to easily visualize how
much the vortex footprint shrinks when moving from ω = 860 cm−1 to ω = 930 cm−1. An
≈ 8% reduction in the excitation wavelength results in an ≈ 80% reduction of the vortex
size. The smallest vortex measured has a confinement of λSPhP/λ0 ≈ 15.5, comparable to
what has been achieved in hBN films [161].
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Figure 6.7: The field profiles measured by sSNOM are affected by the bare-material signal
coming from the SiC film. a) Simulation of a SPhP vortex with ℓ = 2 at 900 cm−1. b)
Adding a background field representing the bare material response modifies the simulated
optical vortex profile. Scale bar: 1 µm.

By comparing the experimental near-field maps in Figure 6.6 to the theoretical calcu-
lation in Figure 6.2 c), one can see that there are clear differences. In the experimental
data both amplitude and phase show a spiral behavior. While we have seen that a spiral-
ing phase is associated with strong SPhP confinement as shown in Figure 6.6, we expect
nevertheless a doughnut distribution of the field amplitude. The discrepancy between
experimental data and theoretical predictions can be understood by considering the con-
tribution coming from the bare material response [100], which is position independent but
must be considered when comparing with the theoretical predictions. The sSNOM signal
can be written as:

Aexp(r, θ) = |ESPhP (r, θ) + Emat|
ϕexp(r, θ) = ϕ(ESPhP (r, θ) + Emat)

(6.9)
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where Aexp(r, θ) and ϕexp(r, θ) are the amplitude and phase signals obtained experi-
mentally. Since both the amplitude and phase computations are not linear operations, the
presence of the background field is not simply summed in the experimental maps. The
effect of a constant background field is shown in Figure 6.7 for a ℓ = 2 vortex. In Fig-
ure 6.7 a) the pure SPhP profile calculated through the Huygens principle is shown at
ω = 900 cm−1. The dielectric function used for SiC is the same as in chapter 5 (following
eq. 1.5), except we use here a higher dissipation term of γ = 6.6 cm−1, which better re-
produces the experimental results. The absolute value of the SPhP field is normalized to
1, and the additional background field added has the value Emat = 1eiπ/2. This field acts
in such a way that both the amplitude and phase have a spiral pattern as shown in Figure
6.7 b), reproducing well the experimental data shown in Figure 6.6.
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Figure 6.8: Near field mapping of SPhP vortex at 900 cm−1 and corresponding simulations
for a, d) ℓ = 2, b, e) ℓ = −2 and c, f) ℓ = 0. The launching ridge structure and polarization
handedness are sketched at the top for each vortex.

The topological order of the vortex can be controlled by the geometrical shape of the
Cr ridge and the polarization handedness according to eq. 6.6. In Figure 6.8 we show
experiments and simulations at ω = 900 cm−1 at which λSPhP = 1.58 µm. The value of the
topological charge can be inverted by flipping the handedness of both the spiral pattern
and the polarization handedness as shown in Figure 6.8 a, b) where we map vortex with
ℓ = 2 and ℓ = −2 respectively. Corresponding simulations are shown in Figure 6.8 d, e)
By having opposite handedness of the Cr ridge m = 1 and polarization σ = −1 a SPhP
focus can be realized, as shown in the experimental and simulated maps of Figure 6.8 c,
f).
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Figure 6.9: Near field mapping of SPhP vortex at 900 cm−1 and corresponding simulations
for a, d) ℓ = −5, b, e) ℓ = −15 and c, f) ℓ = −20. The launching ridge structure and
polarization handedness are sketched at the top for each vortex.

Thanks to the artifact-free measurements and low losses of the SPhP in the suspended
SiC membranes, we are able to map SPhP vortex with high topological orders. In Figure
6.9 a-c) we report maps of vortex with ℓ = −5, ℓ = −15 and ℓ = −20. The corresponding
simulations are shown in Figure 6.9 d-f). The background material field is chosen to better
fit the simulations to the experimental data. To the best of our knowledge, ℓ = −20
is the highest topological order ever measured in the near-field for 2-dimensional optical
vortexes [150, 151, 154, 161]. As the maximum order of the topological order is related to
the number of information channels that can be used for multiplexing, this result is an
important step for realization of on-chip generation and detection of OAM states.

As the signal coming from the bare material contribution is position-independent, FFT
filtering can be used to remove its contribution. The absolute value of the complex FFT
map for the ℓ = −2 vortex reported in Figure 6.8 b) is shown in Figure 6.10 a). The
intense spot at the center comes from the position-independent material response. The
pure vortex field can be obtained by filtering the FFT map and retaining only a ring
around the predicted SPhP wavevector as shown in Figure 6.10 b). In this way not only
the material response is eliminated, but also any defect due to dirt on the sample is removed
by filtering high-k vector components. The SPhP field can be recovered by inverse FFT
of the complex filtered map in Figure 6.10 b), as shown in Figure 6.10 c). Excellent
agreement is obtained with the simulated ℓ = −2 vortex field in Figure 6.10 d) obtained
with no additional background field. The same procedure can be applied to the high order
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Figure 6.10: a,b) Removal of the position-independent material response through filtering
of the FFT maps, where only a ring around the theoretical SPhP wavevector is retained.
The absolute value of the FFT is shown. The FFT maps are obtained from the data
reported in Figure 6.8 b) at ω = 900 cm−1. Scale bar 2kx/k0. c) Amplitude and phase
SPhP vortex maps recovered from inverse FFT of b). The retrieved field shows excellent
agreement with the corresponding simulation reported in d).

vortex shown in Figure 6.9. We consider the ℓ = −15 and ℓ = −20 vortex and show the
filtered experimental maps in Figure 6.11 a), c). The corresponding simulated amplitude
and phase maps are shown in Figure 6.11 b), d). While the experimental phase profiles
show great agreement with the theoretical maps, the experimental amplitude shows higher
intensity at the center compared to what predicted from simulations. Further analysis
should be carried to understand this discrepancy, possibly due to a non-complete removal
of the bare material contribution.

6.4 Conclusions

In summary, we presented in this chapter the amplitude and phase near-field mapping
of SPhP vortexes in suspended SiC thin films. The transmission sSNOM setup allows
reduction of artifacts arising from tilted illumination which were present in previous works
on near-field mapping of optical vortex in hBN films [161]. We analyzed the influence of
the bare material response on the vortex mapping, aloowing us to accurately reproduce
the experimental results through simulations based on the simple Huygens principle. We
also show that the pure SPhP vortex response can be recovered by FFT filtering of the
experimental data. We report, to the best of our knowledge, the highest topological order
ℓ = −20 ever recorded by near-field mapping of two-dimensional optical vortex.
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Figure 6.11: SPhP vortex field retrieved from FFT filtering at ω = 900 cm−1 for ℓ = −15
a) and ℓ = −20 c). Corresponding simulations shown in panels b), d).
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Chapter 7

Conclusions and Outlooks

This work investigates various silicon carbide (SiC) nanostructures exhibiting subwavelength
field confinement through the excitation of surface phonon polaritons (SPhP). SiC reson-
ators support long-lived resonances owing to low phonon-polariton intrinsic losses.

Chapter 4 introduces a metasurface made of cylindrical pillars supporting various high
quality factor resonances, which is probed both through far-field and near-field spectro-
scopy. For the near-field measurements a scattering-scanning near-field microscope (sS-
NOM) is employed throughout this thesis. In sSNOM a laser source is focused at the
apex of an AFM tip and the backscattered light is collected, resulting in subwavelength
spatial resolution. We provide an in-depth investigation of how the presence of the metallic
AFM tip modifies the optical response of the metasurface. The excitation of a dark-mode
through the near-field interaction with the tip is observed in the experimental result. This
new mode could be in the future further investigated by coupling the metasurface to differ-
ent mid-IR resonators or emitters for sensing [167], engineered thermal emission [78, 168]
or higher harmonic generation [80,85].

All SiC structures up to now have been fabricated through a combination of electron
beam lithography and reactive-ion etching. More freedom in the design of the optical
response could be achieved by employing three-dimensional laser printed polymer struc-
tures [169] as a soft mask with an etching rate comparable to the one of SiC. In this way
height modulation of the SiC resonators could be achieved.

Chapter 5 investigates through sSNOM highly confined SPhPs in suspended SiC mem-
branes with lifetimes comparable to what has been reported in various two-dimensional
materials [45, 140]. As SiC membranes are commercially available with millimeter lateral
sizes, these present a viable alternative to vdW films for large-scale confined SPhP ap-
plications. As the SiC Reststrahlen band partially overlaps with the one of the in-plane
anisotropic α−MoO3, coupling of the SPhPs of the two materials might lead to the gen-
eration of novel hybridized modes [170]. For future works, inverse resonators could be
fabricated by etching the SiC suspended films. Moreover, SiC membranes could be em-
ployed in a number of thermal applications, as it has been shown that SPhPs modify the
thermal conductivity of polar dielectrics [120,121,122]. As a further step, pattering of the
films surface could be implemented to achieve routing of thermal diffusion [124].
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In the last chapter, the films studied in chapter 5 are employed to generate highly
confined SPhP vortex. The topological order of the designed vortex is confirmed by map-
ping the corresponding near-field distribution through sSNOM. Investigation of the effect
of the highly dispersive SPhP wavelength on the vortex topological order will be a future
step to unlock the full potential of SPhP-based vortex [161]. A quantitative evaluation
of the quality of the produced vortex would also be a future step to better evaluate the
performance of the SiC membranes for optical vortex generation [159]. On-chip detection
of mid-infrared OAM beams could be implemented through the demonstrated highly con-
fined SPhP [141]. More complex SPhP optical states such as skyrmions could be similarly
realized and mapped in the SiC membranes [164].
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Supplementary Information

Point spread function and focal field equations

The plots shown in Figure 1.1 are calculated in the so called paraxial approximation. In
the this approximation the field is assumed to have components only orthogonal to the
propagation direction z. This assumption is valid for free-space propagating and weakly
focused beams. In this case the transverse components of the wavevector are assumed to
be small so that the following expansion can be used [1]:

kz = k

√
1−

k2
x + k2

y

k2
≈ k −

k2
x + k2

y

2k
(A.1)

In this approximation the point-spread function in the image plane for a dipole oriented
along the x-axis is [1]:

|E(x, y, z = 0)|2 ∝ NA4

λ6M2

[
2
J1(2πρ̃)

2πρ̃

]2
(A.2)

where ρ2 = x2 + y2 and ρ̃ = NAρ/Mλ. M is here the magnification of the optical
apparatus. J1 is the Bessel function of the first kind of order 1. In Figure 1.1 the PSF is
evaluated for M = 1.

In the paraxial approximation the field of a weakly focused Gaussian beam has the
following expression [1]:

E(ρ, z) = E0
ω0

ω(z)
e

ρ2

ω2(z) ei[kz−η(z)+kρ2/2R(z)] (A.3)

where:

ω(z) = ω0(1 + z2/z20)
1/2

R(z) = z(1 + z20/z
2)

η(z) = arctan(z/z0)

(A.4)
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and z0 = kω2
0/2. The focusing angle θ is related to the other quantities as θ = 2/kω0.

In Figure 1.1 the fields are evaluated at z = 10 nm for λ = 500 nm.

Derivation of fringes spacing in sSNOM polariton in-

terferometry

Figure A.1: 2D sketch for the derivation of the phase accumulated along the different
optical paths travelled during polariton excitation, propagation and scattering.

The periodicity of the sSNOM measured fringes depends on the phase accumulate
between the directly back-scattered light from the tip and the polariton pathway [39,131].
The fringes periodicity is related to the accumulated phase by Λ = 2π∆ϕ/d, where d is the
edge-tip distance. The derivation of the position-dependent accumulated phase is easier
in 2D, and the generalization in 3D is straightforward. In Figure A.1 a sketch of the 2D
geometry of the problem is reported. Here φ is the angle between the incident light k-vector
and the edge launching the polaritons. β is the polariton propagation angle with respect
to the edge and is determined by conservation of momentum along the edge direction y:

β2D = arccos
(cosφ

n

)
(A.5)

Where n = λ0/λSPhP . To evaluate the total phase accumulation, we have to describe
the phase delay in the three relevant optical pathways: from the plane wave wavefront to
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the tip BPtip, from the wavefront to the edge BPedge and from the edge to the tip BPSPhP .
From simple geometrical considerations (and remembering that in BPSPhP the wavevector
is not the free-space one but the polariton wavevector) the phase accumulated along these
three paths is: 

|BPedge|2D = k0d
(

1
tanφ

− 1
tanβ

)
cosφ

|BPtip|2D = k0
d

sinφ

|BPSPhP |2D = k0n
d

sinβ

(A.6)

The only difference in the 3D case is that |BPedge| and |BPtip| have to be projected in
the x− y plane and that the momentum conservation along y is also modified accordingly:

β3D = arccos

(
cosφ sin θ

n

)
(A.7)

|BPedge|3D = k0d
(

1
tanφ

− 1
tanβ

)
cosφ sin θ

|BPtip|3D = k0
d

sinφ
sin θ

|BPSPhP |3D = k0n
d

sinβ

(A.8)

For the edge launched polaritons the phase accumulated by the polariton optical path
with respect to the light directly backscattered by the tip is:

∆φel = |BPedge|+ |BPSPhP | − |BPtip| =

= k0d

(
− sinφ sin θ −

√
n2 − sin2 θ + sin2 θ sin2 φ

)
(A.9)

The corresponding fringes spacing Λ = 2π∆ϕ/d is therefore:

Λel =
λ0

− sinφ sin θ −
√

n2 + sin2 θ(sin2 φ− 1)
(A.10)

For the edge-launched tip-reflected edge-scattered polaritons the accumulated phase
is ∆ϕete = 2|BPedge| + 2|BPSPhP | − 2|BPtip| = 2∆ϕel, and therefore the fringes spacing
Λete = Λel/2. For the edge-launched tip-reflected tip-scattered contribution the accu-
mulated phase is ∆ϕetet = |BPedge| + |BPSPhP | − |BPtip| + 2dnk0, where the last term
corresponds to the phase accumulated by the polariton when going from the tip to the
edge and back to the tip (this is the bare tip-launched contribution). The fringes spacing
is then Λetet = λ0 (1/Λel + 1/Λtl). The predicted dispersion curves for all these processes
are simply obtained by k = 2π/Λ.
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[52] G. Álvarez-Pérez, K. V. Voronin, V. S. Volkov, P. Alonso-González, and A. Y. Nikitin,
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[89] A. Garćıa-Etxarri, I. Romero, F. J. G. de Abajo, R. Hillenbrand, and J. Aizpurua,
“Influence of the tip in near-field imaging of nanoparticle plasmonic modes: Weak
and strong coupling regimes,” Phys. Rev. B, vol. 79, no. 12, p. 125439, 2009.

[90] E. A. Muller, B. Pollard, H. A. Bechtel, R. Adato, D. Etezadi, H. Altug, and M. B.
Raschke, “Nanoimaging and control of molecular vibrations through electromagnet-
ically induced scattering reaching the strong coupling regime,” ACS Photonics, vol. 5,
no. 9, pp. 3594–3600, 2018.

[91] T. Folland, L. Nordin, D. Wasserman, and J. Caldwell, “Probing polaritons in the
mid-to far-infrared,” J. Appl. Phys., vol. 125, no. 19, p. 191102, 2019.

[92] C. Cirac̀ı, Y. Urzhumov, and D. R. Smith, “Far-field analysis of axially symmetric
three-dimensional directional cloaks,” Optics express, vol. 21, no. 8, pp. 9397–9406,
2013.

[93] I. Amenabar, S. Poly, M. Goikoetxea, W. Nuansing, P. Lasch, and R. Hillenbrand,
“Hyperspectral infrared nanoimaging of organic samples based on fourier transform
infrared nanospectroscopy,” Nature communications, vol. 8, no. 1, pp. 1–10, 2017.

[94] J. D. Caldwell, A. V. Kretinin, Y. Chen, V. Giannini, M. M. Fogler, Y. Francescato,
C. T. Ellis, J. G. Tischler, C. R. Woods, A. J. Giles, et al., “Sub-diffractional volume-
confined polaritons in the natural hyperbolic material hexagonal boron nitride,” Nat.
Commun., vol. 5, no. 1, pp. 1–9, 2014.

[95] V. M. Breslin, D. C. Ratchford, A. J. Giles, A. D. Dunkelberger, and J. C. Owrut-
sky, “Hyperbolic phonon polariton resonances in calcite nanopillars,” Opt. Express,
vol. 29, no. 8, pp. 11760–11772, 2021.

[96] W. Ma, G. Hu, D. Hu, R. Chen, T. Sun, X. Zhang, Q. Dai, Y. Zeng, A. Alù, C.-
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