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1. Abbreviations 
 

ASF African swine fever 

ASFV African swine fever virus 

ASP Afrikanische Schweinepest 

ASPV Virus der Afrikanischen Schweinepest 

BAR Barnim 

CSF Classical swine fever 

CSFV Classical swine fever virus 

DNA deoxyribonucleic acid 

EDTA ethylenediaminetetraacetic acid 

ELISA enzyme linked immunodsorbent assay 

EMA European Medical Agency 

EU European Union 

FLI Friedrich-Loeffler-Institut 

LAMP loop-mediated isothermal amplification  

LAV live attenuated vaccine 

MGF multi gene family 

MOL Märkisch-Oderland  

NRL National Reference Laboratory  

PCR  polymerase chain reaction 

PCVAD Porcine circovirus associated disease  

PRRS Porcine reproductive and respiratory syndrome  

qPCR real-time polymerase chain reaction  

RNA ribonucleic acid 

SARS-CoV2  Severe acute respiratory syndrome coronavirus type 2 

SPN Spree-Neiße  

UM Uckermark 

VICH Veterinary International Conference on Harmonization  

WOAH World Organization for Animal Health  
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2. Introduction 
 

African swine fever (ASF) has evolved into a major infectious threat to domestic and wild suid 

populations. It is caused by ASF virus (ASFV), a large and complex DNA virus, and often leads to 

high lethality in domestic pigs and wild suids outside Africa. The disease is notifiable according to 

the World Organization for Animal Health (WOAH) and in accordance with that, strict measures 

are applied in the European Union for ASF prevention and outbreak containment. Originally 

native to sub-Saharan Africa, a genotype II strain of ASFV was introduced to Georgia in 2007. A 

panzootic spread of ASFV through large parts of Europe, Asia and recently to the Americas 

followed that killed millions of pigs in the past years. The virus reached Germany in September 

2020 and still could not be eradicated from the wild boar population since then, with several 

introductions into pig farms on the record. Successful eradication was reported from other 

European countries after punctual entries, but Germany is experiencing a frontline introduction 

along the eastern border. The recent history of the German epizootic indicates that under these 

circumstances, eradication may not be successful with the available measures, i.e. fencing, 

carcass search and removal, and reduction of the wild boar population through hunting and 

trapping. Consequently, we need to optimize the strategies already at hand and close the big gap 

in the fight against ASFV, the lack of a safe and efficacious vaccine for licensing. 

Oral immunization could aid the protection of wild boar populations, which act as the reservoir 

for ASFV in Europe, and protect domestic pigs by lowering the infectious pressure in the 

environment. A small number of promising vaccine candidates has emerged after first proof-of-

concept experiments, one of them is “ASFV-G-∆MGF”. In two studies, we have taken the latter 

live attenuated vaccine candidate beyond the proof-of-concept phase and towards commercial 

licensing, assessing the efficacy upon intramuscular immunization of domestic pigs and oral 

vaccination of wild boar, exploring prospects to scale up vaccine production and investigating 

safety in an in vivo reversion to virulence study. 

Integral part of all control actions, with or without the use of vaccines, is reliable surveillance to 

inform on disease dynamics and success of control measures. To this end, virus strains involved 

in the epidemic must be characterized. Therefore, in one of the studies included in this work, 
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ASFV isolates from Germany were genomically characterized, and the identified variants of ASFV-

Germany were clustered to geographic areas. Indications for possible differences in virulence 

were investigated in a pathological study with infected wild boar carcasses from the field. 

And finally, in the European wild boar transmission cycle of ASFV, contact to carcasses plays an 

important role. Removal of succumbed animals is therefore key for effective disease control and 

reliable methods for early detection are required. The same applies to the pig sector, where 

timely implementation of control measures is of utmost importance to avoid further spread of 

the disease after introductions. Therefore, the prospects of a lateral flow device for ASFV point 

of care detection in carcasses were evaluated, and the suitability of different sample matrices for 

ASFV laboratory diagnosis was investigated, with a focus on reliability, early detection and non-

invasive sampling. 
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3. Review of Literature 

3.1  Virus taxonomy, morphology, and genome 
African swine fever virus (ASFV) belongs to the genus Asfivirus in the Asfarviridae family (Alonso 

et al., 2018), which is included in the order of Asfuvirales in the class of Pokkesviricetes. It is the 

only DNA virus that is classified as an arbovirus (Sanchez-Vizcaino, Mur, Bastos, & Penrith, 2015) 

due to the involvement of Ornithodoros ticks as competent vectors within the sylvatic cycle (Mary 

Louise Penrith & Kivaria, 2022). The virion shows a round shape with icosahedral symmetry 

(T=189-217) and a quite large size of 175 – 215 nm in diameter. The viral particle comprises 

several layers: genomic DNA and associated proteins form the nucleoid in the 70-100 nm wide 

core. The core is surrounded by the core shell, which represents the inner protein layer with a T 

= 19 capsid. Outwards, these structures are covered by the inner and outer capsid, which are each 

enveloped by a lipid membrane (inner and outer membrane). The outer envelope is acquired by 

the host cell after budding (Andres, Charro, Matamoros, Dillard, & Abrescia, 2020; Salas & Andrés, 

2012). 

The viral genome consists of linear double stranded DNA and is about 170 to 193 kilobase pairs 

(kbp) long. It contains 151 to 167 open reading frames (ORFs) with a conserved region of about 

125 kbp in the center of the genome and variable ends (L. K. D. A. G. C. Dixon, Christopher L. 

Netherton, Chris Upton, 2013). Among these variable ends, the genome encodes for five so-called 

multi gene families (MGFs). Fifty-two structural proteins and more than one hundred non-

structural proteins are reported (Salas & Andrés, 2012). Many non-structural proteins are 

required for virus replication. In addition, functions within the complex viral evasion of host 

immune responses - such as type I interferon and cell death regulation - are described (Reis, 

Netherton, & Dixon, 2017). Still, for about half of the genes of ASFV, nothing is known about their 

function (Alejo, Matamoros, Guerra, & Andres, 2018). The p72 is the major structural capsid 

protein and provides a basis for the differentiation between all 24 ASFV genotypes (Bastos et al., 

2003; Quembo, Jori, Vosloo, & Heath, 2018). The encoding gene B646L is highly conserved, 

making p72 an often-used target for diagnostic purposes (D. P. King et al., 2003; Pastor, Arias, & 

Escribano, 1990). A protein that is part of the outer envelope is CD2v (encoded by the EP402R 

gene) (Rodriguez, Yanez, Almazan, Vinuela, & Rodriguez, 1993), which is also the only protein 
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found on the surface of extracellular virions (Alejo et al., 2018). CD2v, along with pEP153R, are 

not essential for intracellular replication, but are required for the binding of infected monocytes 

to erythrocytes in the blood (hemadsorption) (Borca et al., 1998; Rodriguez et al., 1993). This 

phenomenon is probably relevant for pathogenesis in the vertebrate hosts and replication in the 

soft tick (R. J. Rowlands, Duarte, Boinas, Hutchings, & Dixon, 2009). Modifications in the genes 

encoding for CD2v and pEP153R can lead to non-hemadsorbing ASFV strains, which have naturally 

occurred in the field (Gallardo et al., 2019). 

Viral proteins can be divided by their time of appearance after infection of the host cell. The p30 

protein, for instance, is found abundantly at an early phase of the infection, leading to strong 

antibody response to this highly immunogenic protein (Afonso et al., 1992). Other examples of 

early proteins are p15 and p22 (Alejo et al., 2018). The previously described p72 as well as p54, a 

structural protein with an essential role in morphogenesis, are examples for proteins of the later 

phases (Y. Wang et al., 2021). Protein p72 is also one of the highly immunogenic proteins within 

ASFV replication and therefore often targeted in indirect diagnostic systems (Liu et al., 2019). 

Primary replication takes place in the cells of the mononuclear-phagocytic system, which are 

entered through clathrin-mediated and dynamin-dependent endocytosis or macropinocytosis 

(Galindo et al., 2015; Hernaez & Alonso, 2010; Sanchez et al., 2012). 

 

3.2  Clinical presentation, transmission, and pathogenesis 
African swine fever can result in variable clinical signs and disease courses. While some strains 

lead to mild or even clinically inapparent forms, most isolates are virulent and cause a disease 

that is usually deadly for Eurasian wild boar and domestic pigs (S. scrofa and S. scrofa domesticus). 

In contrast, in pig species native to sub-Saharan Africa, e.g., warthogs (genus Phacochoerus) and 

bushpigs (Potamochoerus larvatus), the disease is usually clinically inapparent, but viremia is 

reported (Montgomery, 1921; Oura, Powell, Anderson, & Parkhouse, 1998; Thomson, 1985). 

African swine fever is characterized primarily by the occurrence of fever (hence the name) and 

can lead to a broad range of clinical signs, usually beginning with a reduction in liveliness and 

appetite. In an acute course, after an incubation time of usually 2 to 7 days (J. Pikalo, Zani, Huhr, 
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Beer, & Blome, 2019; Sanchez-Cordon et al., 2019), anorexia and apathia are observed in most 

animals and clinical signs worsen throughout the disease course. Respiratory distress, cyanosis 

around the ears or eyes, insecurities in gait and diarrhoea are also frequently observed. In general, 

the number and severity of clinical signs tends to increase until death at 7 to 10 days after 

infection with highly virulent strains. The disease cannot be clinically differentiated from Classical 

swine fever (CSF), which is interesting because the latter is caused by a non-related RNA virus of 

the species Pestivirus C of the genus Pestivirus, family Flaviviridae (Simmonds et al., 2017). Most 

known ASFV strains, including the genotype II strains involved in the current panzootic, lead to 

the previously described acute form (Blome, Gabriel, Dietze, Breithaupt, & Beer, 2012; Gabriel et 

al., 2011; Guinat, Gubbins, et al., 2016; Pietschmann et al., 2015; J. Pikalo et al., 2020). However, 

highly virulent strains can cause death in a peracute course without any clinical signs (Blome, 

Gabriel, & Beer, 2013). On the other hand, chronic infections are reported, especially after mild 

or primarily inapparent infections (Sun et al., 2021). Clinically, these are usually characterized by 

lameness, reduced weight gain and reproduction rates and increased susceptibility to bacterial 

infections (Gallardo et al., 2015). No influence of age or sex of pigs is proven for the outcome of 

infections with highly virulent strains, however, indications for an influence of the hygienic status 

of animals were recently reported (Radulovic et al., 2022). 

In the absence of Ornithodoros ticks as in Europe, the virus normally enters the body via the oral 

or the oronasal route. This route of infection proved to be significantly less efficient but also more 

variable than parenteral transmission. While McVicar (1984) assumes about 104 infectious units 

are needed for an oronasal infection, other studies showed that significantly lower doses (even 

below 10) can be sufficient (Pietschmann et al., 2015), especially when the virus is ingested in 

liquids (Niederwerder et al., 2019). There are indications that age and health status of the animal 

have an impact on this otherwise statistical event of successful infection. As to be expected for 

an arbovirus, blood was proven an especially effective agent for transmission (Guinat, Gogin, et 

al., 2016; J. Pikalo et al., 2019). Further, infected animals shed the virus via all body secretions 

and saliva, nasal discharge, urine and feces can also play a role in transmission, however less 

effectively due to significantly lower viral load than in blood (Gabriel et al., 2011; Petrov, Forth, 

Zani, Beer, & Blome, 2018; Pietschmann et al., 2015).  
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For the highly virulent ASFV strains circulating in wild boar populations of Europe, infection is 

sustained by the so-called boar-habitat infection cycle (Chenais, Ståhl, Guberti, & Depner, 2018; 

Probst, Globig, Knoll, Conraths, & Depner, 2017). The disease usually leads to a rather quick death 

of infected animals, and carcasses can be infectious for a very long time under favourable 

conditions due to the high tenacity of the virus. Contact of wild boar to succumbed conspecifics 

can lead to infection of novel individuals and maintenance of the infectious cycle. This model of 

disease dynamics theorizes the occurrence of carcasses as an important factor for transmission, 

however it is known that direct contact of naive with diseased individuals can be sufficient for 

transmission. The exact role of the different infection routes in the European wild boar scenario 

is not known (Chenais et al., 2019).  

After infection, primary replication takes place in lymphatic tissues of the pharynx and the nose, 

in the tonsil and in regional lymph nodes (Greig, 1972). Viremia then leads to generalization with 

a particular high replication in organs with high presence of monocytes or lymphocytes, as in the 

spleen (J. Pikalo et al., 2019). In blood, 90% of the virus is associated with erythrocytes for 

hemadsorbing strains (McVicar, 1984), forming an ideal transport vessel for this in its historically 

endemic area arthropod-borne virus. High viral presence in blood, loss of lymphocytes and the 

excessive activation of proinflammatory signal pathways (“cytokine storm”) are postulated to 

ultimately lead to hemolysis and impaired hemostatis in infected animals, contributing to the 

clinical picture of a hemorraghic fever (Basler, 2017; Gomez-Villamandos, Bautista, Sanchez-

Cordon, & Carrasco, 2013; Karalyan et al., 2012). This is also mirrored by pathological lesions 

observed after acute courses of the disease. Enlarged and hemorrhagically activated lymph 

nodes, often with marbled or even ebony appearance, are a key finding. This is often 

complemented by petechia in kidneys, in the urinary bladder, the epicardium, pericardium, pleura 

or the gastric mucosae (J. Pikalo et al., 2020; Sanchez-Vizcaino, Mur, Gomez-Villamandos, & 

Carrasco, 2015; Sehl et al., 2020). Another typical finding that is less frequently observed under 

experimental conditions is an enlarged spleen with rounded edges (splenomegaly) (Montgomery, 

1921). However, especially peracute disease courses can also produce sparse macroscopic 

lesions, often limited to findings in the lymph nodes with no further observations. In chronically 

infected animals, arthritis, necrotic lesions in skin and tonsil, as well as pleural or pericardial 
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adhesions are often observed. Here, bacterial secondary infections play a role in the 

manifestation of lesions (Moulton & Coggins, 1968; Pan, Moulton, & Hess, 1975). 

Due to the unspecific clinical course, a number of differential diagnoses must be considered, 

among them CSF, Aujezky’s disease, Porcine reproductive and respiratory syndrome (PRRS), 

Porcine circovirus associated disease (PCVAD), bacterial septicaemias and poisoning, for instance 

with mercury (OIE, 2021). 

 

3.3  Laboratory Diagnosis 
The variable clinical course stresses laboratory investigation as the only reliable option for the 

diagnosis of ASF. The full set of accredited diagnostic methods is presented in the compilation of  

methods on the national level (FLI, ("Afrikanische Schweinepest: Amtliche Methode und 

Falldefinition," 2021)), by the EU reference laboratory on EU level (detailed standard operating 

procedures provided at asf-referencelab.info/asf/en/procedures-diagnosis/sops, last visited 

August 27th 2022), and in the WOAH Manual of Diagnostic Tests and Vaccines for Terrestrial 

Animals (OIE, 2021) on the international level. 

In Germany, confirmatory diagnosis performed by the National Reference Laboratory (NRL) for 

ASF is routinely based on genome detection by real-time PCR (qPCR) and different options are 

available. The WOAH recommends multiple qPCR protocols, among them the assay published by 

D. P. King et al. (2003), which detects the highly conserved B646L gene encoding for p72. Another 

is the protocol published by Tignon et al. (2011). Both assays are accredited in the German NRL 

and are used along with licensed and accredited qPCR kits (13 commercial qPCR kits for ASFV 

genome detection are currently licensed in Germany). The use of a WOAH-recommended assay 

or a licensed commercial kit is mandatory for diagnostic purposes in Germany. In detail, a licensed 

kit has to be used in accordance with §11 of the German Animal Health Act (Gesetz zur 

Vorbeugung vor und Bekämpfung von Tierseuchen, TierGesG). To comply with international 

requirements, WOAH-recommended assays are added e.g. for primary outbreaks. Recently, a 

study has shown that all 12 of the commercial kits licensed at the time in Germany and the WOAH-

recommended protocols are comparable in terms of sensitivity, safety and precision (Jutta Pikalo 
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et al., 2022). Therefore, a broad set of proven diagnostic tools for ASFV genome detection are 

available and can be applied based on technical preferences and requirements on internal 

controls.  

African swine fever virus is the only known pig pathogen to cause hemadsorption in infected 

macrophage cultures (Malmquist, 1960; Sierra et al., 1991), hence virus isolation and 

confirmation of infectivity can be routinely based on this phenomenon (OIE, 2021). For non-

hemadsorbing strains, immunoflourecent staining of the p72 antigen is a suitable alternative 

(Carrascosa, Bustos, & de Leon, 2011). Field strains are usually unable to grow on routinely used 

immortalized cell lines without lengthy adaptation that leads to major changes in the viral 

genome and therefore primary macrophages must be used for virus cultivation. This necessity 

represents a major pitfall for diagnostic laboratories, as the ongoing production of primary cell 

lines is labor-intensive and complicates standardization between experiments. Only very recently, 

immortalized cell lines promising equal characteristics for virus cultivation have been reported 

and commercialized (Masujin et al., 2021; Portugal, Goatley, Husmann, Zuckermann, & Dixon, 

2020). 

For serological detection of ASFV, three enzyme linked immunodsorbent assays (ELISAs) are 

licensed in Germany: the p72 specific INGEZIM PPA COMPAC® (Ingenasa) (Pastor et al., 1990), the 

p32, p62 and p72 specific ID Screen® African Swine Fever Indirect ELISA (IDvet) and the ID Screen® 

African Swine Fever Competition (IDVet) for p32 antibody detection. For confirmatory purposes, 

the immunoperoxidase assay can be performed (standard protocol SOP/CISA/ASF/IPT/1 provided 

by the European Reference laboratory for ASF with modifications regarding cell and virus type, 

asf-referencelab.info/asf/images/ficherosasf/PROTOCOLOS-EN/2021_UPDATE/SOP-ASF-IPT-

1_2021.pdf, visited June 26th 2022). Another confirmatory method is immunoblotting (Cubillos et 

al., 2013). 

In addition to these laboratory-dependent methods, a number of point-of-care options for ASFV 

diagnosis have arisen, aiming primarily on regions with lesser developed diagnostic infrastructure. 

Lateral flow devices for antibody and antigen detection are published and commercialized for 

pen-side conditions, using fresh EDTA-blood samples (Sastre, Gallardo, et al., 2016; Sastre, Perez, 
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et al., 2016). In addition, a number of portable PCR devices for mobile genome detection have 

recently been described (Yang Wang et al., 2021; Zurita et al., 2022). 

 

3.4  Distribution, Control and Surveillance 
The historically endemic area of ASF was sub-Saharan Africa. While genotype I strains spread to 

North Africa, Europe, the Caribbean and Brazil in the mid of the 20th century, by the beginning of 

the 21st century, eradication in the Americas and mainland Europe was successful and the 

presence of ASF was limited to Africa with the exception of Sardinia (L. K. Dixon, Stahl, Jori, Vial, 

& Pfeiffer, 2020). Here, genotype I strains were endemic for more than 43 years and seropositive 

animals are still found, however the last virus detection dates back to 2019, and the island is 

under consideration for declaration of ASF eradication (Cappai et al., 2022; Loi et al., 2019).  

In 2007, an ASF strain belonging to genotype II, which was circulating in Mozambique, 

Madagascar, and Zambia beforehand, was introduced into Georgia (R. J. M. Rowlands, V.; Heath, 

L.; Hutchings, G.; Oura, C.; Vosloo, W.; Dwarka, R.; Onashvili, T.; Albina, E.; Dixon, L.K., 2008). 

Subsequently, the disease spread successively through Europe and Asia, reaching the major pork 

producer China in 2018 (X. Zhou et al., 2018) and eventually Germany in 2020 (Sauter-Louis et al., 

2020) and as a result globally caused the death of millions of pigs with enormous economic losses 

for producers. Recently, ASF reached the Americas in the Dominican Republic and Haiti (Gonzales 

et al., 2021), the virus now being present in 4 out of 5 continents. The disease has an enormous 

economic significance for pig farmers, but at the same time affects wild pig populations, causing 

suffering and even threatening some particular rare species in Asia with extinction, e.g. the 

Bornean bearded pig (Sus barbatus) (Ewers, Nathan, & Lee, 2021; Luskin et al., 2021).  
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Figure 1: Current distribution of ASFV in Europe, source: 
fli.de/de/aktuelles/tierseuchengeschehen/afrikanische-schweinepest/karten-zur-afrikanischen-
schweinepest/ (visited September 18th, 2022) 

 

Viruses of the recent genotype II panzootic were first reported in the European Union from the 

Baltic states and Poland in 2014 (see Table 1) and have successively spread westwards since then 

(Sauter-Louis et al., 2021), with one of the most recent introductions into mainland Italy (Iscaro 

et al., 2022). The current spread of the disease is depicted in Figure 1. The Czech Republic 

(Semerád, 2019) and Belgium (Claeyes, 2020) are examples of countries that have managed to 

eradicate the disease after a punctual entry into wild boar populations, however, countries with 

(ongoing) frontline introductions into wild boar as Germany have not been able to bring the 

epizootic to a halt. Internationally, losses in domestic pigs were especially high in Asia (You et al., 

2021), but many European countries report a high infection pressure from the wild boar 

population that constantly threatens to cause spillovers to the domestic pig sector (Sauter-Louis 
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et al., 2021). More than 4200 cases are confirmed from Germany in five federal states as of now. 

Most of these cases affect wild boar, but introductions to pig farms have occurred several times. 

Country 
Genotype II ASFV 

first report Current status Reference 
Lithuania January 2014 affected State Food and Veterinary Service (2014) 

Poland February 2014 affected Woźniakowski et al. (2016) 
Latvia June 2014 affected Oļševskis et al. (2016) 

Estonia September 2014 affected Nurmoja et al. (2017) 
Czech Republic June 2017 resolved Semerád (2019) 

Hungary April 2018 affected EFSA et al. (2018) 
Romania May 2018 affected EFSA et al. (2018) 
Bulgaria August 2018 affected Laura Zani et al. (2019) 
Belgium September 2018 resolved Claeyes (2020) 

Slovak Republic August 2019 affected EFSA et al. (2020) 
Germany September 2020 affected Sauter-Louis et al. (2020) 

Italy (mainland) January 2022 affected Iscaro et al. (2022) 

Table 1: List of EU countries that are currently affected or have been affected by ASFV during the 
recent genotype II panzootic with the first report of ASFV and their status, adapted from Sauter-
Louis et al. (2021) 

 

The notifiable disease is fought with preventive measures as increased standards of hygiene 

(biosecurity) and restrictions in pork trade, and outbreaks lead to culling of entire herds. From a 

German perspective, ASF is notifiable on the national and international level, and a mandatory 

legal framework regulates disease control in domestic pigs and wild boar (EU Regulation 

2016/429 with its delegated legal acts and, as of now, the German Swine Fever Ordinance / 

Schweinepest-Verordnung). The implementation of measures is organized by ASF crisis centers 

on national and regional levels.  In Germany, the responsibility for animal disease control lies with 

the respective federal state.  

In recent years, surveillance could be deepened by characterization of the circulating virus strains 

by genomic analyses. Molecular characterization based on distinct genomic markers can aid in 

epidemiolocal investigations and, if functional genes are affected, provide indications for possible 

phenotypic effects. However, ASFV has several repair polymerases and its genome is proven to 

be highly stable. Consequently, the viruses from the recent Eurasian panzootic were shown to 

have very little variation with previously no indications for phenotypic differences that might play 
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a role for epidemiology (J. H. Forth, Forth, Blome, Hoper, & Beer, 2020; J. H. Forth, Forth, 

Vaclavek, et al., 2020). In 2018, an attenuated phenotype was shown for an Estonian ASFV isolate 

from 2014 (L. Zani et al., 2018), but the attenuated virus was not re-isolated in the subsequent 

years, possibly indicating a selective disadvantage in the field. Mutations with phenotypic effects 

appear to be rare and recently there was only one additional report from Europe that was fully 

characterized (Gallardo et al., 2019). However, in 2019, a mutation was identified in the viruses 

circulating in western Poland, affecting the O174L gene, which encodes for the DNA repair 

polymerase X (Mazur-Panasiuk, Walczak, Juszkiewicz, & Woźniakowski, 2020; Mazur-Panasiuk & 

Wozniakowski, 2019). A possible mutagenic function is described for Polymerase X (Showalter, 

Byeon, Su, & Tsai, 2001). Early genomic analyses from Germany in 2020 showed that all German 

ASFV isolates from wild boar share the same genomic markers in the O174L gene (Sauter-Louis et 

al., 2020), which aided in the epidemiolocal investigation of virus introduction, but stresses the 

need for in-depth genomic and phenotypic characterization of the German isolates due to the 

hypothesized mutagenic function of the gene.  

 

3.5  Vaccines 
Given the enormous economic significance of ASF, vaccine research intensified throughout the 

past years and in June 2022, the first commercialized ASFV vaccine was released in Vietnam 

(https://link.gov.vn/lkSgZsxV, visited 26th June 2022). All other countries including those of the 

EU still lack a licenced vaccine. 

First attempts to create vaccines in Europe reach back to the 1960s, where field trials were 

eventually aborted due to observations of chronic forms of disease induced by live-attenuated 

vaccines (LAV) administered then (Petisca, 1965). This serves as a reminder for the need of proper 

safety characterization of ASFV vaccines until today (Gavier-Widen, Stahl, & Dixon, 2020). 

Different approaches for ASFV vaccine development have been pursued until today (as shown in 

Figure 2), but in general, vaccine design is still hampered by the lack of fully understanding the 

complex virus-host interactions (Cadenas-Fernández et al., 2021; Muñoz-Pérez, Jurado, & 

Sánchez-Vizcaíno, 2021). Until today, it was not possible to identify single protective proteins that 
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could be targeted by a rational design for subunit vaccines or inactivated formulas. In fact, 

seroconversion is reported for protected animals that survived infection, but no complete virus 

neutralization can be achieved, so the presence of antibodies alone cannot be correlated with 

protection. Consequently, all classically inactivated formulas were unsuccessful (Revilla, Perez-

Nunez, & Richt, 2018).  

 

 

Figure 2: Overview of the different approaches for ASFV vaccine development,    obtained from 
Urbano and Ferreira (2022) 

 

Development of RNA or DNA based vaccines is also hampered by this pitfall and these approaches 

could not yet induce full protection (Argilaguet et al., 2012; Sunwoo et al., 2019). For vectored 

and subunit vaccines, advances were achieved throughout the past years, but even with the best 

result published yet, animals survived (protection from fatal outcome) but were not protected 

from severe disease (Goatley et al., 2020). Protection against challenge infection after the survival 

of infection with attenuated field strains has been reported several times (Detray, 1957; K. King 

et al., 2011; M. L. Penrith, 2009), and the suitability of attenuated field strains as vaccines is still 

under discussion. However, high levels of residual replication are observed for these candidates 

(Barasona et al., 2019; Gallardo et al., 2019), which must be regarded with caution especially in 

the context of possible induction of chronic infections. 
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Meanwhile, a number of genetically modified LAVs were reported to induce full-protection 

against highly virulent homologous challenge (Borca et al., 2020; Chen et al., 2020; Douglas P 

Gladue & Borca, 2022; D. P. Gladue et al., 2021; O'Donnell, Holinka, Gladue, et al., 2015; O'Donnell 

et al., 2017), and when comparing the different vaccine approaches, genetically modified LAVs 

represent the most promising group. Here, genes encoding known virulence factors are rationally 

targeted for deletion, creating artificially attenuated vaccine prototypes which, after inoculation, 

ideally do not cause disease but protect from subsequent virulent challenge. E.g., the multi gene 

families (MGFs), a set of multiple genes with repetitive  sequences within the ASFV genome, are 

involved in interferon regulation, and deletions in these genomic regions are reported to produce 

fully attenuated vaccine prototypes, as for “ASFV-G-∆MGF” and “HLJ/18-7GD” (Chen et al., 2020; 

Douglas P Gladue & Borca, 2022; O'Donnell, Holinka, Gladue, et al., 2015; O'Donnell et al., 2016). 

Problems were reported for some protective vaccine candidates that were incompletely 

attenuated in high doses (O'Donnell, Holinka, Krug, et al., 2015), allowed residual challenge virus 

replication (Teklue et al., 2020) or high levels of vaccine virus replication (Douglas P Gladue & 

Borca, 2022; D. P. Gladue et al., 2021). Close-to-sterile immunity and only low to moderate 

vaccine virus replication without clinical reaction of animals to the vaccine inoculation were 

reported for “ASFV-G-∆177L” (Borca et al., 2020) and “ASFV-G-∆MGF” (O'Donnell et al., 2016), as 

well as the genetically similar candidate “HLJ/18-7GD” (Chen et al., 2020). Most of the auspicious 

vaccine candidates are still in a proof-of-concept phase or results are not disclosed due to ongoing 

commercialization procedures, therefore in-depth data on safety and efficacy as demanded by 

the Veterinary International Conference on Harmonization (VICH) is not available to the public. 

An exception is “ASFV-G-∆177L” (Borca et al., 2020), where full efficacy and comprehensive safety 

characterization (Tran et al., 2022) led to the commercialization in Vietnam for intramuscular use 

in domestic pigs. For Europe, the requirements of a vaccine are regulated by the European 

Medical Agency (EMA) and licensing is evaluated by an expert panel. So far, none of the 

candidates have been submitted for licensing with EMA yet. 

In general, future vaccination strategies will probably vary depending on the region and mode of 

application. In western Europe, biosecurity in domestic pig holdings is generally high and trade 

restrictions in vaccinated pork are to be expected (Sauter-Louis et al., 2021). Meanwhile, the 

abundant wild boar population serves as a reservoir for the virus. Likely, vaccination strategies 
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will therefore focus on wild boar. Experiences from CSF eradication in Germany raise hopes that 

a bait-based vaccination campaign could be effective (Blome, Franzke, & Beer, 2020; Blome, 

Moss, Reimann, Konig, & Beer, 2017). Safety and efficacy by oral administration are two key 

characteristics that remain to be experimentally shown for most of the LAVs with promising 

intramuscular efficacy, before prospects for future commercialization can be evaluated. For 

“ASFV-G-∆177L”, oronasal efficacy was tested (Borca, Ramirez-Medina, et al., 2021), but this 

administration route cannot easily be transferred to the oral uptake by baits, since the mucosal 

contact without inclusion of the nasal cavity is drastically reduced, with possible detrimental 

effects on vaccine uptake and efficiency. Therefore, the suitability for administration by baits 

remains to be shown also for this candidate. 

In addition, to allow creation and propagation of a standardized master seed virus and in contrast 

to the propagation in primary macrophages from a donor pig that is neither safe nor practical, 

genetic stability in an immortalized cell line has to be proven. This from a regulatory point of view 

essential data is lacking for all auspicious genetically modified LAVs except the “ASFV-G-∆177L”, 

however here the adaption to the immortalized cell line went along with a modification of the 

virus in the left variable region of the genome (Borca, Rai, et al., 2021). 
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4. Objectives  
 

I. Towards market authorization of an ASFV vaccine candidate 

a) Efficacy studies in domestic pigs and wild boar 

A licensed vaccine against ASF is still missing in Europe, but promising vaccine candidates exist. 

To put one of these candidates on the long path to licensure, we tested the efficacy of vaccine 

candidate “ASFV-G-∆MGF” upon intramuscular immunization of domestic pigs and oral 

immunization of wild boar. Furthermore, possible effects of vaccine virus production in an 

immortalized cell line were investigated. 

b) Reversion to virulence study 

Safety of live attenuated vaccines is crucial for the licensing process. For this reason, we subjected 

the vaccine candidate “ASFV-G-∆MGF” to an in vivo reversion to virulence study in accordance 

with the International Cooperation on Harmonisation of Technical Requirements for Registration 

of Veterinary Medicinal Products guidelines.  

II. Characterization of ASFV strains in Germany 

The primary aim of this study part was to characterize the ASFV strains circulating in Germany 

by whole genome sequencing. Surprisingly, the analyses revealed small but distinct differences 

among the strains from different regions and thus, those variants were followed-up by tailored 

Sanger sequencing approaches. A pathological study with wild boar carcasses from the affected 

German regions was carried out to assess phenotypic variability.  

III. Recent advances in ASFV diagnosis 

Building on sample collections from animal trials over the last years, comparative studies on the 

suitability of different diagnostic workflows in ASFV detection were carried out. Along with 

routine sample matrices, alternative sample matrices and workflows were evaluated.  

Moreover, we tested a commercial lateral flow assay for its suitability for passive surveillance in 

general and carcass testing in particular.   
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5. Results 
 

The publications are grouped according to their topic. 

The reference section of each manuscript is presented in the style of the respective journal and 

is not included at the end of this document. The numeration of figures and tables corresponds 

to the published form of each manuscript. 
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Annex to 4.2 “Safety and genetic stability of African swine fever virus 

vaccine candidate “ASFV-G-∆MGF” in an in vivo “reversion to virulence” 

study”: 

  
Figure 3: Overview of the passaging groups and the study design. Tissues used from the respective animals for 

further passaging are depicted as organs in the center. Clinical and virological results throughout the study are 

visualized on the right side. Created with BioRender.com 
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6. Discussion  
African swine fever is present in Germany since September 2020 (Sauter-Louis et al., 2020). The 

virus caused suffering and death of thousands of wild boar and domestic pigs and cost millions of 

Euros for eradication efforts. While in the German domestic pig sector, point incursions have 

occurred and were contained, the situation in wild boar is characterized by a persistent wave of 

new cases along the Polish border, with a trend to a westward spread in some regions. In this 

situation, the available measures to prevent and fight the disease, i.e. increased biosecurity, 

intensified wild boar hunting, laboratory diagnosis for early detection and, after the introduction, 

fencing, culling and timely removal of wild boar carcasses within the core restriction zones, were 

able to limit the further spread of the virus. However, as of yet, complete eradication was only 

successful in very limited areas in Germany and we have not been able to contain the epizootic 

from a cross-regional perspective. The same applies to the global ASF situation, since most 

countries affected by the recent ASFV panzootic have not been able to eliminate the disease. 

These experiences from the recent years imply that we need new and improved eradication 

measures for the situation we are facing in wild boar, but also for domestic pig holdings with low 

biosecurity. 

Towards market authorization of an ASFV vaccine candidate 

The call for a licensed vaccine against ASFV is louder than ever, rooted in the hope that a vaccine 

is the missing additional tool to regain the upper hand over the disease (Muñoz-Pérez et al., 

2021). Meanwhile, the clock for vaccine development is ticking, as millions of pigs have already 

died from ASF (L. K. Dixon et al., 2020; You et al., 2021), putting farmers’ livelihoods and people’s 

food supply at risk. At the same time, the disease causes suffering for wild boar and threatens 

some rare wild suid populations with extinction (Ewers et al., 2021; Luskin et al., 2021). In recent 

time, big advances in ASFV vaccine development were reported, but the path towards licensing 

in Europe is still long even for the most promising ASF vaccine candidates. 

In 2022, Vietnam was the first country to commercially license a vaccine against ASF (Borca et al., 

2020). This is exciting news, but for the European situation, the candidate lacks the full extent of 

comprehensive characterization required by the EMA for consideration of licensing. In addition, 
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the vaccine is still produced on primary cells, hampering standardization and constituting a 

potential safety risk. The use of the vaccine was temporarily suspended in August 2022 due to an 

increased occurrence of deaths in the vaccinated pig population with unclear connection to the 

vaccine (www.reuters.com/world/asia-pacific/vietnam-suspends-african-swine-fever-vaccine-

after-pig-deaths-2022-08-24/, visited August 28th 2022). And finally, the Vietnam-licensed 

product is designed for intramuscular use in domestic pigs, which may not fit for the German 

situation. High standards of biosecurity here provide an effective protection of pigs against wide-

spread ASF and other diseases, even without vaccination. Trade restrictions on meat from 

vaccinated pigs are to be expected, so in conclusion immunization strategies against ASF in 

Germany should probably focus on the wild boar situation.  

For wild boar, oral application via baits appears to be the only feasible administration route 

(Blome et al., 2020) and the availability of an oral vaccine against ASF enables other promising 

applications. One example is the conservation context in Asia, where we also need to protect the 

endangered wild pig species from ASF (Ewers et al., 2021). And further, in the backyard farm 

setting in eastern Europe, oral vaccines could be directly distributed to farmers, forgoing without 

professional veterinary staff and bypassing a likely bottleneck in regions with a poor 

infrastructure. Similar prospects were previously discussed for CSF (Dietze, Milicevic, & Depner, 

2013).  

Classical swine fever was the European example where oral vaccination was successfully used to 

fight a disease in the wild boar population. The oral vaccine against CSF containing the C-strain 

(Kaden, Lange, Fischer, & Strebelow, 2000) was genetically safe, induced close to sterile immunity 

which was maintained over sufficiently long periods of time to eventually assist in the successful 

eradication of CSF from wild boar in Germany (Blome, Moss, et al., 2017; Rossi et al., 2015). These 

experiences raise hopes for the success of future ASFV oral vaccination strategies, however we 

should be cautious to define our expectations on ASFV vaccines for wild boar based on this model. 

While EMA defines clear requirements on the characteristics of licensable vaccines, a benefit-risk 

analysis within these requirements is needed to evaluate which candidate could be suitable for 

commercialization. 



 

137 
 

 “ASFV-G∆MGF” is one of the most promising vaccine candidates and was previously shown to 

induce full protection with very low residual vaccine or challenge virus replication. In the studies 

included in this work, we took the vaccine candidate beyond the proof-of-concept phase and 

towards more profound characterization that will provide a basis for this benefit-risk analysis to 

consider licensing. 

We could confirm the full efficacy of the vaccine after cultivation in primary macrophages for 

intramuscular application in domestic pigs in an independent experimental setup. This is 

important since experiences with ASFV have shown that clinical course, and, consequently, 

responses after challenge infection can vary depending on the experimental conditions and 

animals (J. Pikalo et al., 2020; Radulovic et al., 2022). Therefore, reproducibility of auspicious 

results under different experimental setups is key for the early evaluation of promising ASFV 

vaccine candidates. However, the necessity for cultivation of this live vaccine on primary cells 

depicts a major pitfall for commercialization in Europe, technically because of the need to up-

scale vaccine production, but also because of legislative requirements on good manufacturing 

practice and standardization. We addressed this issue by administering “ASFV-G∆MGF” after 

passage in a commercial immortalized cell line in an additional animal experiment, observing the 

same experimental outcome and high genomic stability, so it can be concluded that large-scale 

production as a requisite of future commercialization is feasible. 

Differences were observed with the oral vaccination in comparison to intramuscular vaccination, 

however. Our results indicate that the effectiveness of the single-dose oral vaccination is lower 

than single dose (O'Donnell, Holinka, Gladue, et al., 2015) or two dose intramuscular vaccination 

(see above). This is somewhat expected and was also seen with oral vaccine candidates against 

CSF (Feliziani et al., 2014). It is important to underline that the inoculation route was a proof of 

concept and no baits were applied for oral administration yet, cell culture supernatant was 

delivered directly to the animals. In our study, all animals with detectable replication of “ASFV-

G∆MGF” and seroconversion were fully protected against challenge infection, indicating that 

efficiency of oral delivery rather than vaccine efficacy should be the issue to address in the design 

of an oral immunization campaign. Here, characteristics of the vaccine candidate must be 

integrated into the campaign design. Our results indicate that a single dispense of baits would 
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probably lead to an insufficient proportion of immune animals within the population and multiple 

dispenses are necessary. Similar experiences came from the vaccination of wild boar against CSF, 

as here the best results in the field were achieved with three double vaccinations in spring, 

summer and autumn (Kaden et al., 2002; Kaden & Lange, 2004). In such a vaccination scheme, 

possibly unsuccessful single vaccine uptake may be tolerable, and repetitive uptake of baits could 

in the end likely facilitate a successfully immunized population, a prospect that should be 

addressed in future studies. At the same time, the issue of vaccine safety after overdose if 

multiple baits are taken by animals in the field must be addressed. There is, however, no 

indication that higher doses of “ASFV-G∆MGF” would be harmful (O'Donnell, Holinka, Gladue, et 

al., 2015). Evaluation and design of vaccination strategies will be possible after the vaccine 

candidate can be tested with a bait-based formulation under close-to-natural conditions.  

The corn-based baits used for CSF vaccination can be a model (Riemser Schweinepestoralvakzine; 

CEVA Tiergesundheit GmbH, former Riemser Arzneimittel) (Kaden et al., 2000; Rossi et al., 2015), 

however the suitability for ASFV vaccination remains yet to be elucidated. To begin with, the 

blister volume is limited to 1.6 mL and capacities for cultivation of future ASFV vaccines will have 

to show whether titers allowing a sufficient immunization dose in this volume can be achieved. 

Another big knowledge gap for future commercialization in Europe is vaccine safety. Here, 

profound characterization will be a legally and ethically demanded prerequisite for the licensing 

of any live vaccine candidate. When we tested “ASFV-G∆MGF” in an in vivo reversion to virulence 

study in accordance with the International Cooperation on Harmonisation of Technical 

Requirements for Registration of Veterinary Medicinal Products guidelines, upon forced animal 

passaging, a virus variant emerged that was associated with transient fever and an increased 

replication and shedding. While the emergence of a virus variant seems to underline safety as a 

critical issue for live ASF vaccines, given the highly artificial and worst-case route of inoculating 

homogenized tissue supernatants, one should still conduct a thorough benefit-risk analysis 

considering all safety and efficacy aspects when evaluating these results in the light of future 

licensing. In terms of virulence, the novel variant of the virus was still nowhere near the highly 

virulent backbone virus, causing only transient fever and no other clinical signs clearly attributable 

to the inoculation. Even the novel variant of “ASFV-G∆MGF” may therefore still represent a 
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feasible vaccine candidate. Nevertheless, further studies should elucidate the possibilities to 

enhance genetic stability, e.g. by evaluating the likelihood of mutations in different regions of the 

ASFV genome and integrating these insights in the choice of targets for rational deletion in vaccine 

design. The fact that we observed genomic deletion in combination with reverse complementary 

insertion, which was previously described for a field strain of ASFV  (L. Zani et al., 2018) is exciting 

and can help to understand mechanisms of ASFV evolution. In consequence, our findings stress 

that reversion to virulence studies are also necessary for any other live attenuated ASFV vaccine 

candidate before field application. In doing so, a worst-case transmission route should be chosen 

for evaluation of genomic stability to uncover even unlikely mutation events. After all, low 

likelihood may be compensated by sheer quantity of applications in the field.   

An additional important question that remains to be targeted in future studies is duration of 

immunity (Blome et al., 2020). No concept or vaccination strategy can be developed before we 

have the insight into the biologically possible duration of vaccine-induced protection in the 

broader ASF context. The issue of unknown prospects for duration of immunity is stressed by 

studies reported on other ASFV vaccine candidate (Sánchez-Cordón, Jabbar, Chapman, Dixon, & 

Montoya, 2020). 

In the end, we are getting closer to a licensable vaccine, but many questions are still unanswered. 

And at the same time, while vaccination represents an exciting opportunity to assist disease 

eradication, the look over to the CSF situation provides a reminder that even excellent vaccines 

need to be integrated in an efficient strategy for successful eradication. Several Asian countries 

like China have been using vaccines against CSF for years and still have not been able to become 

free from the disease (Blome, Staubach, Henke, Carlson, & Beer, 2017). Reasons may lie in a 

combination of problems, e.g. with biosecurity, timely diagnosis, a working contact tracing system 

and, for the vaccines, incomplete cool chains, bad production standards resulting in 

contamination of vaccines, illegal dilution and a lack of continuity in vaccination policy (B. Zhou, 

2019). These still ongoing issues in CSF eradication stress the understatement that even if we 

have a licensed vaccine against ASF, we must not neglect the other effective measures, at 

foremost efficient surveillance and diagnosis. A vaccine must not be understood as the single 

gamechanger, but as a valuable addition to a well-kept toolbox. 



 

140 
 

Characterization of ASFV strains in Germany 

Exact insight into the distribution and the characteristics of the circulating viruses provides a basis 

for the selection of effective tools for ASF eradication. Looking at the disease dynamics in 

Germany, a continuity of cases in wild boar was observed since the introduction in 2020. A cause 

could lie in repetitive virus entries along the German-Polish border, given that western Poland is 

experiencing an ongoing ASFV situation in wild boar at the same time (Frant et al., 2022). On the 

German side, a game fence was built to reduce cross-border wild boar movements, but reports 

of sustained permeability through roads and municipalities exist. Such “frontline” introductions 

are much harder to contain than single point incursions (Sauter-Louis et al., 2021). The studies 

included in this work may hint to another relevant factor for local disease dynamics (Jan Hendrik 

Forth et al., 2022). Five genetic lineages and ten variants of ASFV-Germany  were defined based 

on genetic markers, and, if at least some of these variants are characterized by slightly less 

virulent phenotypes, as indicated by pathological analysis of wild boar carcasses (Sehl-Ewert, 

Deutschmann, Breithaupt, & Blome, 2022), our eradication strategy may have been hit on a weak 

spot. Here, in contrast to the pig sector, daily health surveillance is impossible and early detection 

relies mainly on the finding of carcasses. Since wild boar usually die within few days after infection 

with the virulent ASFV field strains and the high viral load in their cadavers represents a high risk 

to their conspecifics if they establish contact (Fischer, Hühr, Blome, Conraths, & Probst, 2020), 

the quick removal of the succumbed wild boar, together with population reduction, can provide 

a major mitigating effect on infection pressure in the ASFV affected region (O'Neill, White, Ruiz-

Fons, & Gortázar, 2020). However, for less virulent ASFV strains, animals could survive infection 

for a longer time (Gallardo et al., 2019; L. Zani et al., 2018) and direct contact between living 

individuals would gain importance as a transmission factor (M. L. Penrith & Vosloo, 2009). In vivo 

characterization of the German ASFV strains under standardized experimental conditions is 

necessary to gain more insight into the virulence and transmission properties of these virus 

variants. Should the indications for reduced virulence from the field be confirmed, the eradication 

strategy in wild boar would have to rely even more on population reduction and control.  

While the emergence of an increased genomic diversity within the German ASFV strains is a 

reason for concern, it also offers us a new tool for ASFV surveillance and eradication in Germany. 
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The clustering of the virus variants to distinct geographical regions allows molecular 

epidemiology, i.e. the possibility to trace and connect new cases to known ones based on their 

genomic markers. In Germany, ASFV affected wild boar populations are contained in restriction 

zones that must allow no passage of animals. With the tool of genomic surveillance, possible local 

weaknesses in ASFV containment can be rapidly identified and corrected. As the strategy to fight 

the disease in wild boar differs depending on the federal state and district, we can now provide a 

feedback on the effectiveness of the containment in the restriction zones, which will help to 

assess the success of measures. Further, in case of outbreaks in domestic pigs, molecular analysis 

can help to trace the introduction to regions with affected wild boar populations within Germany, 

or exclude a domestic origin. E.g., Variant III is distinctly clustered to wild boar populations of the 

districts of Märkisch-Oderland (MOL), Barnim (BAR) and Uckermark (UM). Variant IV circulates in 

wild boar in the south of district Spree-Neiße (SPN), as well as in the federal state of Saxony (Jan 

Hendrik Forth et al., 2022). Consequently, when ASFV introductions into domestic pig holdings in 

the state of Brandenburg were recorded in 2021, genomic characterization reveiled a virus of 

German variant III in two farms in MOL and variant IV in a pig holding in southern SPN, suggesting 

the local wild boar populations as a source. Following the work presented in this thesis, genomic 

analyses are now routinely applied at the NRL and the insight gained is helping epidemiologists 

and local authorities in their assessment of the situation. To accelerate the workflows for genomic 

characterization, tailored molecular assays on the basis of a padlock PCR (using the platform 

published by Zurita et al. (2022)) and qPCR are currently implemented (publication in 

preparation). 

Recent advances in ASFV diagnosis 

A third pillar among the effective measures to fight the ASF panzootic lies in early and efficient 

diagnosis. Regardless of the pathogenicity or origin of the circulating ASFV strains, succumbed 

animals represent a major infection risk for the remaining wild boar population (Fischer et al., 

2020; O'Neill et al., 2020). Control measures must be implemented as early as possible to 

successfully contain any outbreak. This stresses the need to continuously establish advances in 

laboratory methods into the workflows for ASFV diagnosis. Early and precise diagnosis can be a 

challenge in the wild boar context, where cases emerge in remote forest areas, far away from 
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laboratory capacities. The same problem applies to backyard farms in Asia, Africa or eastern 

Europe where access to full laboratory capacity is limited. Here, optimization of diagnostic 

workflows would effectively aid in disease eradication.  

One starting point for optimization would be to take analysis into the field and establish methods 

for point of care diagnosis, effectively shortening the period between emergence and clarification 

of a suspected ASF case. A practical approach for on-site diagnosis is demanded by stakeholders 

and options for molecular and antigen-based detection are published. Auspicious results have 

been reported using mobile systems for molecular point-of-care diagnosis. Here, assays based on 

PCR, as well as loop-mediated isothermal amplification (LAMP) are available and have been 

proven to be sensitive and deliver feasible results for ASFV diagnosis under field conditions (Ceruti 

et al., 2021; Daigle et al., 2021; Elnagar, Pikalo, Beer, Blome, & Hoffmann, 2021; Yang Wang et al., 

2021; Zurita et al., 2022). However, these devices usually require trained and experienced 

personnel and can hence not be conducted by farmers or other first-line stakeholders. In addition, 

acquisition costs of equipment and reagents are generally rather high, a drawback especially for 

the backyard farm application in regions of low socioeconomic standard. From an application-

related perspective, lateral flow devices are the promising option due to low costs and easy 

handling that can also be conducted by untrained personnel, as experiences from the humane 

medicine sector have shown during the SARS-CoV2 pandemic (Loeffelholz & Tang, 2020). 

Unfortunately, the results included in this work indicate lateral flow devices for ASFV antigen 

detection (Sastre, Gallardo, et al., 2016) are not reliable if viral load is not high or the sample 

matrix is of bad quality. Even for passive surveillance, e.g. to test shot wild boar after hunting, 

blood clots will likely occur before initiation of testing, which we observed to have detrimental 

effects upon sensitivity.  

Our study has shown practicable sensitivity only when fresh, anticoagulant treated blood 

containing high viral loads is tested, leaving only the field testing of domestic pigs during peak 

viremia as an auspicious application, and veterinary professionals would then be required for 

blood sampling. This appears ineffective for early detection in comparison to the initiation of 

laboratory testing, which is sensitive during early phases of infection and less error-prone. In 
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Germany, we have a diagnostic infrastructure for the centralized laboratory detection of ASFV 

that usually allows clarification of suspected cases within hours after sampling if required.  

Until a feasible and reliable approach for ASFV point of care detection is available, the most 

promising approach to enhance the efficiency of diagnosis would therefore be improved sampling 

workflows. As a concretization to the guidelines by the WOAH (OIE, 2021) and the FLI compilation 

of methods ("Afrikanische Schweinepest: Amtliche Methode und Falldefinition," 2021), we have 

evaluated which sample matrices are best fit for reliable and early ASFV detection using 

laboratory methods. In the context of point of care sampling of wild boar carcasses, minimal-

invasive sampling is desired to reduce the transmission risk by cadavers if the body cavity is not 

opened, spilling blood and other potentially infectious materials in the surroundings (M. L. Penrith 

& Vosloo, 2009), but also to reduce the amount of work and time needed to sample carcasses. 

Since searching for carcasses and subsequent sampling can be extremely laborious, more efficient 

methods can aid the local authorities in their work for disease containment. We have shown that 

in a late stage of infection, all tissues with good blood circulation are feasible for ASFV genome 

detection, but sampling of peripheral organs such as ears may miss early moments of infection. 

Blood is the major carrier of infectivity during ASFV infection (McVicar, 1984). Making use of that, 

blood swabs require minimal invasivity in a carcass and represent are a good compromise 

between high sensitivity even in early stages of infection and minimal risk of environmental 

contamination.  

In conclusion, blood swabs are identified as the ideal option for field sampling of wild boar. For 

the German situation, laboratory analysis by qPCR enables reliable sensitivity even in early stages 

of ASFV infection or from decomposed wild boar carcasses. It is usually available within hours 

with the established diagnostic infrastructure and, considering superior precision, remains the 

most efficient option for ASFV detection among the currently available methods.  
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7. Summary 
 

To be successful in eradicating ASF, we should consider every option available to us, optimizing 

the measures already at hand, developing new techniques and integrating them into an effective 

strategy. In this light, we have advanced the search for a safe and efficacious vaccine candidate 

that fulfills the requirements for EMA authorization. With the new insight into promising vaccine 

candidate “ASFV-G∆MGF”, proving intramuscular efficacy, the concept of oral vaccination and 

capabilities for cultivation on permanent cells, we are getting closer towards a commercial ASFV 

vaccine. We have described genetic changes of “ASFV-G∆MGF” in a reversion to virulence study, 

but no highly virulent phenotype emerged, so the results can help to understand mechanisms of 

viral evolution and provide a basis for a benefit-risk assessment of the vaccine.  

Genomic surveillance allows us to have exact insight into disease dynamics and epidemiological 

developments. We have described five genetic lineages and ten variants of ASFV-Germany with 

their associated geographical distributions and by this means enable molecular analysis to aid in 

epidemiological investigations. Our findings indicate variable virulence of the German ASFV 

strains in wild boar, and further characterization under standardized experimental conditions will 

be important to clarify this matter.  

Irrespective of other eradication measures, diagnosis remains necessary at the highest possible 

efficiency. For optimization of the established workflows, we have defined the best suited sample 

matrices for laboratory diagnosis, pointing out blood swabs as a good compromise between 

sensitivity and low contamination for field sampling. A great challenge for the future will be how 

to enable reliable diagnosis also at the point of care and in structurally disadvantaged countries, 

as we have shown that lateral flow devices are not fit for reliable field diagnosis and laboratory 

methods are still required for precise results.  

After all, we need a combined toolbox of effective measures to regain the upper hand over ASF 

and eventually eliminate this devastating disease from wild boar and domestic pig populations in 

Germany and worldwide. 
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8. Zusammenfassung 
 

Für eine erfolgreiche ASP-Bekämpfung müssen alle uns zur Verfügung stehenden, effektiven 

Maßnahmen berücktsichtigt werden. Dabei sollte eine Optimierung bereits vorhandener 

Methoden erfolgen und gleichzeitig neue Ansätze entwickelt und in eine wirksames 

Gesamtkonzept eingebunden werden. Vor diesem Hintergrund haben wir die Suche nach einem 

sicheren und wirksamen Impfstoffkandidaten vorangetrieben, der die Anforderungen für eine 

EMA-Zulassung erfüllt. Mit den neuen Erkenntnissen über den vielversprechenden 

Impfstoffkandidaten "ASFV-G∆MGF", welche die intramuskuläre Wirksamkeit bestätigen, das 

Konzept der oralen Immunisierung belegen und Möglichkeiten zur Kultivierung auf permanenten 

Zellen beleuchten, kommen wir einem kommerziellen ASFV-Impfstoff näher. Wir haben 

genetische Veränderungen des Vakzine-Kandidaten "ASFV-G∆MGF" in einer Reversion-zu-

Virulenz Studie beschrieben, dabei aber keinen hoch virulenten Phänotyp nachgewiesen. Die 

Ergebnisse können so zum Verständnis der Mechanismen viraler Evolution beitragen und eine 

Grundlage für eine Nutzen-Risiko-Bewertung des Impfstoffs bieten.  

Die Einbeziehung genomischer Daten in die Tierseuchenüberwachung ermöglicht uns einen 

genaueren Einblick in die Krankheitsdynamik und in epidemiologische Prozesse. Wir haben fünf 

genetische Linien und zehn Varianten von ASPV-Germany mit der dazugehörigen geografischen 

Verteilung beschrieben und ermöglichen so molekulare Untersuchen, deren Ergebnisse direkt in 

epidemiologische Analysen einfließen können. Unsere Erkenntnisse deuten auf eine variable 

Virulenz der deutschen ASPV-Stämme beim Schwarzwild hin. Weitere Versuche zur 

Charakterisierung unter standardisierten Bedingungen sollten zur Klärung dieser Frage erfolgen.  

Eine möglichst effiziente Diagnostik bleibt dabei ungeachtet anderer wirksamer 

Bekämpfungsmethoden unverzichtbarer Teil der ASP-Bekämpfung. Zur Optimierung der 

etablierten Arbeitsabläufe haben wir die am besten geeigneten Probenmatrices für die 

Labordiagnose definiert, wobei wir Bluttupfer als guten Kompromiss zwischen Sensitivität und 

geringem Kontaminationsrisiko für die Probenahme im Feld hervorgehoben haben. Eine große 

Herausforderung für die Zukunft wird darin bestehen, zuverlässige ASPV-Diagnosen auch direkt 

vor Ort und in strukturell benachteiligten Ländern zu ermöglichen, da wir gezeigt haben, dass 
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Lateral-Flow-Tests für eine zuverlässige Felddiagnose nicht geeignet sind und für präzise 

Ergebnisse weiterhin Labormethoden erforderlich sind.  

Schlussendlich brauchen wir ein kombiniertes Instrumentarium an wirksamen Maßnahmen, um 

die ASP erfolgreich zu bekämpfen und diese verheerende Tierseuche in den Wild- und 

Hausschweinebeständen in Deutschland und weltweit nachhaltig zu tilgen. 
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