
Witness-Based Validation of Verification Results
with Applications to Software-Model Checking

Dissertation
an der Fakultät für Mathematik, Informatik und Statistik

der Ludwig-Maximilians-Universität München

eingereicht von

Matthias Dangl

9. März 2022

1. Gutachter: Prof. Dr. Dirk Beyer

2. Gutachter: Prof. Dr. Stefan Leue

3. Gutachter: Prof. Dr. Andreas Podelski

Tag der mündlichen Prüfung: 15.12.2022

Abstract

In the scientific world, formal verification is an established engineering technique to
ensure the correctness of hardware and software systems. Because formal verification is
an arduous and error-prone endeavor, automated solutions are desirable, and researchers
continue to develop new algorithms and optimize existing ones to push the boundaries of
what can be verified automatically. These efforts do not go unnoticed by the industry.
Hardware-circuit designs, flight-control systems, and operating-system drivers are just a
few examples of systems where formal verification is already part of the quality-assurance
repertoire. Nevertheless, the primary fields of application for formal verification are mainly
those where errors carry a high risk of significant damage, either financial or physical,
because the costs of formal verification are considered to be too high for most other
projects, despite the fact that the research community has made vast advancements
regarding the effectiveness and efficiency of formal verification techniques in the last
decades. We present and address two potential reasons for this discrepancy that we
identified in the field of automated formal software verification.
(1) Even for experts in the field, it is often difficult to decide which of the multitude

of available techniques is the most suitable solution they should recommend to solve
a given verification problem. Moreover, even if a suitable solution is found for a given
system, there is no guarantee that the solution is sustainable as the system evolves.
Consequently, the cost of finding and maintaining a suitable approach for applying formal
software verification to real-world systems is high. (2) Even assuming that a suitable and
maintainable solution for applying formal software verification to a given system is found
and verification results could be obtained, developers of the system still require further
guidance towards making practical use of these results, which often differ significantly
from the results they obtain from classical quality-assurance techniques they are familiar
with, such as testing.

To mitigate the first issue, using the open-source software-verification framework
CPAchecker, we investigate several popular formal software-verification techniques such
as predicate abstraction, Impact, bounded model checking, k -induction, and PDR, and
perform an extensive and rigorous experimental study to identify their strengths and
weaknesses regarding their comparative effectiveness and efficiency when applied to a
large and established benchmark set, to provide a basis for choosing the best technique
for a given problem.

To mitigate the second issue, we propose a concrete standard format for the representa-
tion and communication of verification results that raises the bar from plain "yes" or "no"
answers to verification witnesses, which are valuable artifacts of the verification process
that contain detailed information discovered during the analysis. We then use these verifi-
cation witnesses for several applications: To increase the trust in verification results, we
first develop several independent validators based on violation witnesses, i.e. verification
witnesses that represent bugs detected by a verifier. We then extend our validators to also
verify the verification results obtained from a successful verification, which are represented
by correctness witnesses. Lastly, we also develop an interactive web service to store and
retrieve these verification witnesses, to provide online validation to quickly de-prioritize
likely wrong results, and to graphically visualize the witnesses, as an example of how
verification can be integrated into a development process. Since the introduction of our

3

proposed standard format for verification witnesses, it has been adopted by over thirty
different software verifiers, and our witness-based result-validation tools have become
a core component in the scoring process of the International Competition on Software
Verification.

4

Zusammenfassung

In der Welt der Wissenschaft gilt die Formale Verifikation als etablierte Methode, die
Korrektheit von Hard- und Software zu gewährleisten. Da die Anwendung formaler
Verifikation jedoch selbst ein beschwerliches und fehlerträchtiges Unterfangen darstellt,
ist es erstrebenswert, automatisierte Lösungen dafür zu finden. Forscher entwickeln daher
immer wieder neue Algorithmen Formaler Verifikation oder verbessern bereits existierende
Algorithmen, um die Grenzen der Automatisierbarkeit Formaler Verifikation weiter und
weiter zu dehnen. Auch die Industrie ist bereits auf diese Anstrengungen aufmerksam
geworden. Flugsteuerungssysteme, Betriebssystemtreiber und Entwürfe von Hardware-
Schaltungen sind nur einzelne Beispiele von Systemen, bei denen Formale Verifikation
bereits heute einen festen Stammplatz im Arsenal der Qualitätssicherungsmaßnahmen
eingenommen hat. Trotz alledem bleiben die primären Einsatzgebiete Formaler Verifikation
jene, in denen Fehler ein hohes Risiko finanzieller oder physischer Schäden bergen, da
in anderen Projekten die Kosten des Einsatzes Formaler Verifikation in der Regel als zu
hoch empfunden werden, unbeachtet der Tatsache, dass es der Forschungsgemeinschaft
in den letzten Jahrzehnten gelungen ist, enorme Fortschritte bei der Verbesserung der
Effektivität und Effizienz Formaler Verifikationstechniken zu machen. Wir präsentieren
und diskutieren zwei potenzielle Ursachen für diese Diskrepanz zwischen Forschung und
Industrie, die wir auf dem Gebiet der Automatisierten Formalen Softwareverifikation
identifiziert haben.

(1) Sogar Fachleuten fällt es oft schwer, zu entscheiden, welche der zahlreichen verfüg-
baren Methoden sie als vielversprechendste Lösung eines gegebenen Verifikationsproblems
empfehlen sollten. Darüber hinaus gibt es selbst dann, wenn eine passende Lösung für ein
gegebenes System gefunden wird, keine Garantie, dass sich diese Lösung im Laufe der
Evolution des Systems als Nachhaltig erweisen wird. Daher sind sowohl die Wahl als auch
der Unterhalt eines passenden Ansatzes zur Anwendung Formaler Softwareverifikation
auf reale Systeme kostspielige Unterfangen. (2) Selbst unter der Annahme, dass eine
passende und wartbare Lösung zur Anwendung Formaler Softwareverifikation auf ein
gegebenes System gefunden und Verifikationsergebnisse erzielt werden, benötigen die
Entwickler des Systems immer noch weitere Unterstützung, um einen praktischen Nutzen
aus den Ergebnissen ziehen zu können, die sich oft maßgeblich unterscheiden von den
Ergebnissen jener klassischen Qualitätssicherungssysteme, mit denen sie vertraut sind,
wie beispielsweise dem Testen.

Um das erste Problem zu entschärfen, untersuchen wir unter Verwendung des Open-
Source-Softwareverifikationsystems CPAchecker mehrere beliebte Formale Softwarever-
ifikationsmethoden, wie beispielsweise Prädikatenabstraktion, Impact, Bounded-Model-
Checking, k-Induktion und PDR, und führen umfangreiche und gründliche experimentelle
Studien auf einem großen und etablierten Konvolut an Beispielprogrammen durch, um
die Stärken und Schwächen dieser Methoden hinsichtlich ihrer relativen Effektivität und
Effizienz zu ermitteln und daraus eine Entscheidungsgrundlage für die Wahl der besten
Lösung für ein gegebenes Problem abzuleiten.

Um das zweite Problem zu entschärfen, schlagen wir ein konkretes Standardformat zur
Modellierung und zum Austausch von Verifikationsergebnissen vor, welches die Ansprüche
an Verifikationsergebnisse anhebt, weg von einfachen "ja/nein"-Antworten und hin zu
Verifikationszeugen (Verification Witnesses), bei denen es sich um wertvolle Produkte

5

des Verifikationsprozesses handelt und die detaillierte, während der Analyse entdeckte
Informationen enthalten. Wir stellen mehrere Anwendungsbeispiele für diese Verifika-
tionszeugen vor: Um das Vertrauen in Verifikationsergebnisse zu erhöhen, entwickeln
wir zunächst mehrere, voneinander unabhängige Validatoren, die Verletzungszeugen
(Violation Witnesses) verwenden, also Verifikationszeugen, welche von einem Verifikations-
werkzeug gefundene Spezifikationsverletzungen darstellen, Diese Validatoren erweitern wir
anschließend so, dass sie auch in der Lage sind, die Verifikationsergebnisse erfolgreicher
Verifikationen, also Korrektheitsbehauptungen, die durch Korrektheitszeugen (Correct-
ness Witnesses) dokumentiert werden, nachzuvollziehen. Schlussendlich entwickeln wir
als Beispiel für die Integrierbarkeit Formaler Verifikation in den Entwicklungsprozess
einen interaktiven Webservice für die Speicherung und den Abruf von Verifikationzeugen,
um einen Online-Validierungsdienst zur schnellen Depriorisierung mutmaßlich falscher
Verifikationsergebnisse anzubieten und Verifikationszeugen graphisch darzustellen. Unser
Vorschlag für ein Standardformat für Verifikationszeugen wurde inzwischen von mehr als
dreißig verschiedenen Softwareverifikationswerkzeugen übernommen und unsere zeugen-
basierten Validierungswerkzeuge sind zu einer Kernkomponente des Bewertungsschemas
des Internationalen Softwareverifikationswettbewerbs geworden.

6

Acknowledgements

At a superficial level, this thesis appears to simply be the product of five years of my
research. At a closer look, however, my work has been influenced by many people who I
either had the privilege of working or living with, not only the last five years, but in some
cases also long before. I am deeply grateful to all of them, and even though I cannot list
all of them, I will try my best to mention the most influential ones.
I am grateful to the office administrators at our chair in Passau, Eva Veitweber

and Eva Reichhart, and in Munich, Marianne Diem, to our technician, photographer,
drone operator, and social-event manager Anton Fasching, to Prof. Dr. Rolf Hennicker,
Prof. Dr. Mila Majster-Cederbaum, and Prof. Dr. Dr. h.c. Martin Wirsing, who, like
Marianne Diem and Anton Fasching, could not have been more welcoming to all of us
when our group moved from Passau to Munich, to our student research assistants in
Passau, Alexander Driemeyer, Sebastian Ott, Nils Steinger, and Thomas Stieglmeier, and
in Munich, Thomas Bunk, Alexander Koos, and Balthasar Schüß, and to my academic
colleagues, Karlheinz Friedberger, who I shared an office with in Passau and whose office
was right across the hallway from mine in Munich, which was very conducive for bouncing
ideas off each other, Dr. Marie-Christine Jakobs, who has already begun extending my
work and finding new applications of it in her own research, Nian-Ze Lee, who provided
very valuable feedback on my most recent papers, Thomas Lemberger, who kept me
company during many long and uncomfortable train rides between Passau and Munich,
Martin Spießl, my successor in several scientific and administrative duties at the chair,
Andreas Stahlbauer, who laid the groundwork for the implementation of verification
witnesses, and Dr. Philipp Wendler, without whom CPAchecker would not be such a
reliable and extensible basis for my research and that of many others. I am grateful to
Prof. Dr. Stefan Leue and Prof. Dr. Andreas Podelski, who have kindly agreed to review
this thesis. My supervisor and mentor, Prof. Dr. Dirk Beyer, deserves special emphasis.
He has imprinted in me an urge to tenaciously strive for nothing short of perfection and
leads by example, he always knew exactly which tasks to assign to me to ultimately
further my academic progress, often long before I realized it, and he was always available
to advise me on my research or my career.
Even despite of all the clerical and academic support I received, I must admit that I

could not have sustained my efforts in completing this work, had I not had the tremendous
moral support by my friends, who helped me escape reality every now and then, and my
family: my sisters, with their inspiring strength and confidence, my mother, who kept
reminding me that “no-one needs to be a doctor”, my father, who had encouraged me to
pursue computer science when I was an adolescent and who consequently always patiently
listened to my technical and academic drivel, my magnificent and adorable bunnies Fritz,
Frieda, Fred and Fonsi, and, most of all, my loving wife Vreni and my wonderful son
Xaver, who always support me with their affection.

7

Eidesstattliche Versicherung

Hiermit erkläre ich an Eides statt, dass diese Dissertation von mir selbstständig, ohne uner-
laubte Beihilfe angefertigt ist, keine anderen als die angegebenen Quellen und Hilfsmittel
benutzt sowie Zitate und gedankliche Übernahmen kenntlich gemacht wurden.
Die Dissertation wurde bisher keiner anderen Prüfungsbehörde vorgelegt und auch

nicht veröffentlicht.

Passau, 9. März 2022 Matthias Dangl
Ort, Datum Unterschrift

9

Contents

1. Introduction 13
1.1. Objectives . 15

1.1.1. Objective 1: Make Software Verification Applicable in Practice . . 15
1.1.2. Objective 2: Make Software Verification Useful in Practice 17

1.2. Structure . 20
1.3. Background . 20

1.3.1. Automated Software Verification 20
1.3.2. Configurable Program Analysis . 21
1.3.3. Finite Automata . 22
1.3.4. Program Representation . 22
1.3.5. Error Paths . 23
1.3.6. Test Generation . 23
1.3.7. Inductive Invariants . 24

1.4. Research Method . 25
1.4.1. Hypothesis . 26
1.4.2. Experiment Design and Execution 26
1.4.3. Replicability . 27

2. Discussion of Manuscripts 29
2.1. Boosting k -Induction with Continuously-Refined Auxiliary Invariants . . . 29
2.2. A Unifying View on SMT-Based Software Verification 30
2.3. Software Verification with PDR: An Implementation of the State of the Art 31
2.4. Strategy Selection for Software Verification Based on Boolean Features . . 31
2.5. Verification Witnesses . 32
2.6. Tests from Witnesses . 33
2.7. Verification-Aided Debugging: An Interactive Web-Service for Exploring

Error Witnesses . 34

3. Summary and Prospects 37
3.1. Summary . 37
3.2. Prospects . 38

3.2.1. Investigate Further Algorithms . 38
3.2.2. Extend Algorithm Selection . 40
3.2.3. Integrate Verification into IDEs . 41
3.2.4. Build More Tooling around Witnesses 41

Bibliography 43

A. Manuscripts 51
Boosting k -Induction with Continuously-Refined Auxiliary Invariants 51

11

Contents Contents

A Unifying View on SMT-Based Software Verification 71
Software Verification with PDR: An Implementation of the State of the Art . . 108
Strategy Selection for Software Verification Based on Boolean Features 127
Verification Witnesses . 143
Tests from Witnesses . 212
Verification-Aided Debugging: An Interactive Web-Service for Exploring Error

Witnesses . 233

12

1. Introduction

The “internet of things” is often still portrayed as a very recent, sometimes even seemingly
futuristic concept, where our refrigerators automatically order fresh groceries before we
run out of them, where an artificial intelligence replaces human medical diagnosticians,
and where the elderly or lonely of our society are supported by robots programmed to
care for and socialize with them. While these examples are, in fact, not at all futuristic,
but are all already available and being used, we do not need to look to such extremes to
see that information technology in general has already and unquestionably pervaded our
everyday lives. Consider the following questions:

• Do you own a smart phone?

• Do you use email?

• Do you use a messenger application?

• Do you use social media?

• Do you use a digital calendar, and if so, is it cloud-synchronized?

• How do you store and manage your family pictures?

• Do you track your fitness on a digital device, such as a smart watch or phone?

• Do you have a home entertainment system that allows you to stream any of hundreds
of thousands of videos or songs?

• Do you use any digital household or garden appliances such as a vacuum-cleaning
robot, a food processor, or robotic lawn mower?

• How many plastic cards do you carry in your wallet that contain RFID chips?

• Do you driver a car, or do you use public transport, such as bus, train, or metro?

All of these examples involve information technology, often to a much greater extent
than most people expect 1, and probably, at least some of them apply to you, the reader.
In today’s world, we are all affected by information technology. The continuing rise of
information technology since the latter half of the last century is changing our society
in ways we are only beginning to understand. Whether we like this development and
embrace the changes or despise, fear, and try to hide from this digital revolution: it is as
irreversible as the industrial revolution, and we must not underestimate its impact on us.
Correctly working systems can entertain us, reduce our workload, and even save lives.

Incorrectly working systems, however, can annoy us, cause delays, additional work and
expense, and even harm or kill. The ever progressing automation of increasingly more
complex tasks does not cease to re-assign jobs that only few years ago were considered to
be far too complex for machines to handle, from humans to computers.

1The typical modern car contains about 50 microprocessors, and some advanced models may contain
even up to three times that number. [52]

13

1 Introduction

It must be pointed out that there are valid reasons to oppose the increasing perva-
siveness of information technology. The automation of labor is an example of how even
computational systems that work correctly according to specification can have highly
controversial effects on our society: on the one hand, the process might ultimately make
many lives easier, but on the other hand, in the mean time, many people may loose their
income, fall into poverty, and never recover. Moreover, it can be argued that we may
experience negative effects of the automation of labor and services even on the consumer
side. There are controversies on whether computational systems will ever be able to replace
the concept of human touch that many people have come to value, especially in areas of
service that affect humans on a very personal level, such as health care and geriatrics [89].
It remains to be seen how resilient our society is to the effects of these changes. Other
controversial examples are the application of information technology for governmental
surveillance or military use cases. Objection to such applications may be motivated by
civil rights or pacifist reasons, or by fear of abuse by bad actors or authoritarian regimes.
However, even if we oppose a certain use of information technology that we cannot prevent,
we should not hope for the involved computational systems to malfunction: Given a use
of information technology we object to, the effects of a malfunction may be even more
disastrous than we might imagine the system to be if it functions correctly, even in the
hands of an ill-intentioned person or an opposing faction or organization, whether it is
because an innocent person is misclassified as a criminal by a civil surveillance system or
a rare lighting condition is misinterpreted by a missile-detection system during a time of
pre-existing political tensions, as it happened in the Soviet nuclear false-alarm incident
of 1983. Hence, whether we oppose or welcome the pervasiveness of information technology,
our least common denominator should be that we strive for correctness.

Despite the need for correctness in our increasingly more complex computational
systems, we already experience the side effects of this growing complexity: It becomes ever
more difficult to comprehend, test, and maintain the systems we develop, and the severity
of the consequences of system failures increases rapidly: Erroneous radiation-treatment
equipment has killed multiple patients, self-driving cars have already been involved in
several fatal accidents, and, as established above, the potential disaster that could be
caused by malfunctioning military missile detection or guidance systems has long moved
from fiction to being a real threat.

On the other hand, formal verification has already been established to be an effective
countermeasure to these threats, from the verification of hardware-circuit designs, over
the verification of flight-control systems, to the verification of operating-system drivers:
The more critical a system is, or the more disastrous or expensive a failure is, the more
likely we are to find formal verification in its development process. Consequently, there
should be a high demand for automated formal software verification to cope with the
large amounts of program code found in industrial settings.

However, despite the vast advancements made by the research community in the
last decades regarding the effectiveness and efficiency of formal verification techniques,
automated formal software verification has not yet crossed the line from a niche technology
to a standard industry practice [2], which is made painfully obvious by the ubiquity of
software errors we encounter in our daily lives.

14

1 Introduction 1.1 Objectives

1.1. Objectives

We identify two issues that contribute to the discrepancy between the academic success
and the apparent lack of industrial adoption of software verification, formulate objectives
to address these issues, and define and carry out tasks required to achieve these objectives.

1.1.1. Objective 1: Make Software Verification Applicable in Practice

Even for experts in the field, it is often difficult to decide which of the multitude of
available techniques is the most suitable solution they should recommend to solve a given
verification problem. How, then, should the average developer even begin to choose and
apply a solution that fits their needs?

We improve the applicability of software verification to practical problems by defining
and carrying out a set of tasks that address the issue of choosing the right solution for a
given verification task. While completing these tasks, we contribute to the understanding
of several popular algorithms for formal software verification. These contributions will
help comprehend and further extend the described techniques, they provide an example
and incentive for further comparative analysis of software-verification algorithms, and
they constitute a baseline for automated solutions for determining the best verification
technique for a given verification problem, thereby facilitating the practical application of
formal verification in the industry.

Task: Investigate k-Induction

We first consider the possibility that there may already be an software-verification
algorithm that is superior to all its alternatives: We pick a popular software-verification
algorithm, k -induction, and investigate how it can be used effectively. We define and
implement a framework for software verification with k -induction that allows us to express
all existing approaches to k -induction in a uniform, module-based, and configurable
architecture, and use it to test the following hypotheses:

• Existing variants of k -induction often use auxiliary invariants. An auxiliary-invariant
generator is necessary to make k -induction successful in practice.

• The choice of invariant generator influences the effectiveness of k -induction.

• Our implementation of k -induction is more effective than all other existing imple-
mentations of k -induction that support the same input language if we configure it to
use an invariant generator that produces weak invariants quickly and continuously
refines its precision to supply stronger invariants as time progresses.

• k -induction is competitive with two other software-verification algorithms, namely
predicate analysis and value analysis, if we configure it to use the same invariant
generator as in the previous hypothesis.

While we found no evidence to support the suggestion that k -induction might be superior
to its alternatives in general, the experiments we conduct confirm all of the above
hypothesis [22].

15

1.1 Objectives 1 Introduction

Task: Identify Strengths and Weaknesses of k-Induction and Related Approaches

Building upon the insights gained from completing our first task, we continue our in-
vestigation into k -induction by comparing it to three other, closely related approaches,
namely predicate abstraction, Impact, and bounded model checking, provide a conceptual
unifying framework to highlight their similarities, differences, strengths, and weaknesses,
give comprehensive examples of their application, and perform an extensive comparative
experimental evaluation to test the following hypotheses:

• k -induction is consistently superior to the other three techniques, independent of
the type verification task.

• Otherwise, we can identify the conceptual reasons that cause a given technique out
of the four we investigate to be more or less successful than the other three for a
given verification task.

Our experiments show that while overall, k -induction solves more verification tasks of our
selected benchmark set than the other three approaches, we can identify subsets of tasks
where k -induction is less successful than other approaches, i.e., we refute the hypothesis
that k -induction is consistently superior. However, our experiments allow us to confirm
the second hypothesis, i.e., we can identify and explain the conceptual reasons why one
approach is more suitable than the others for a given verification task [24].

Task: Investigate PDR

We pick another popular algorithm for software verification, PDR, and investigate it. We
present an example that illustrates a scenario where PDR is superior to plain k -induction,
three data-flow analyses, and even k -induction combined with an invariant generator
that comprises the three data-flow analyses. We then define and implement an extension
of our framework for software verification with k -induction that allows us to perform
PDR as a stand-alone verification algorithm, to combine k -induction and PDR into one
algorithm that utilizes the PDR-aspect of guiding invariant discovery by leveraging failed
induction attempts, and also to use this combination as an auxiliary-invariant generator
to k -induction. Using this framework, we test the following hypotheses:

• Our extended framework is a suitable platform for implementing and evaluating
PDR-based techniques.

• By providing k -induction with our new, PDR-based invariant generator we can
improve the overall effectiveness of k -induction.

• On small programs, such as path programs, the new invariant generator is more
effective than data-flow-based techniques and is therefore well-suited for the approach
of generating path invariants [26].

• While the new PDR-based invariant generator is flexible, it is often outperformed
by simpler, data-flow-based invariant-generation techniques.

• Our implementation is competitive when compared to the best available reference
implementations.

16

1 Introduction 1.1 Objectives

Our experiments confirm the first, fourth, and fifth of these hypothesis, but not the second
or third: We determine that on the chosen benchmark set, data-flow-based techniques
are usually more efficient and, due to their efficiency, often also even more effective,
because they do not exceed resource limitations as frequently. On the other hand, we
are able to identify and explain relevant cases where our PDR-based approach was
superior. By confirming that our framework is a suitable platform for PDR and that our
implementation is competitive when compared to the available alternatives and also when
compared to state-of-the-art implementations of other verification approaches, we support
the argument that our conclusions are relevant and that the disadvantages are not caused
by an inadequate implementation [15].

Task: Use Strategy Selection to Automate the Choice of Verification Technique

Because we know after completing the previous tasks that whether or not a given
verification technique is successful depends on the type of verification task, we propose
to use algorithm selection [93] to automatically choose from a given set of strategies the
strategy that is most likely to succeed in solving a given verification task. We define four
easy-to-determine Boolean features and implement a classifier that extracts from a given
verification task a selection model based on these features and a configurable strategy
selector. We use our implementation to test the following hypotheses:

• Given a set of strategies for software verification where we know for each strategy
from our prior experience that it can be useful in practice, we can construct a
sequential combination of these strategies that is more effective than each individual
strategy.

• By classifying each verification task using our set of four Boolean features and
selecting a strategy to solve a task from a set of three verification strategies based
on this classification, we can further improve effectiveness significantly.

• The model-based selection strategy from the previous hypothesis is significantly
more effective than ignoring the classification and randomly selecting strategies
from the same set of strategies.

Our experiments confirm all three hypotheses. Consequently, we find that combinations
of verification strategies are, in general, an effective solution to solve a heterogeneous set
of verification task and that strategy selection in particular is a promising way to move
the complexity of choosing the right verification strategy for a given task from the user of
a verifier into the tool [13].

1.1.2. Objective 2: Make Software Verification Useful in Practice

Our first objective aims at making software verification applicable in practice, but even
assuming a developer were able to apply some automated software verifier to their system,
select a suitable verifier configuration, and obtain verification results, the developer would
still require further guidance towards making practical use of these results. In the best case,
verification results might be correct but still often differ vastly from the results developers
obtain from classical quality-assurance techniques they are familiar with, such as testing.

17

1.1 Objectives 1 Introduction

In the worst case, differences between the assumptions made by developers about their
system and the assumptions made by the verification tools may lead to verification results
the developers will perceive as wildly inaccurate and useless. For example, a developer
might spend hours to investigate a bug report produced by a verification tool, only to
conclude that it is a false alarm. Consequently, developers may be tempted to discard
formal verification as a waste of their own time and of computational resources that in
their opinion could be better spent on testing.
We make software verification more useful in practice by defining and carrying out a

set of tasks that address the issue of incomprehensible and incorrect verification results.
The completion of these tasks will help unite formal verification with industrial practice
as we define and implement a standard format for verification witnesses and use it to
build tools and establish processes to make software verification and its results useful
components of the software-development process.

Task: Establish a Standard Format for Verification Witnesses

We design, implement, and establish a machine-readable standard format for verification
witnesses that can be used to store, compare, communicate, explain, visualize, and
validate verification results. Verification witnesses constitute valuable artifacts of the
verification process that can be used to preserve detailed information discovered during
the analysis. We present two types of verification witnesses: violation witnesses, which
represent violation results, i.e., found bugs, and correctness witnesses, which represent
proof results. We describe verification witnesses as non-deterministic finite automata,
formally define the process of consuming witness automata, illustrate their application
using several comprehensive examples, and describe four different implementations of
witness-based validators for violation results and two different implementations of witness-
based validators for proof results. We use these implementations to test the following
hypotheses:

• The standard format for verification witnesses is machine-readable and can be used
to exchange verification witnesses between different verifiers.

• Violation-witness based validation of verification results can take considerably less
effort than verification, i.e., the violation witness successfully guides the verifier
through a considerably smaller state space.

• A high-precision violation-witness based result validator may improve the overall
effectiveness of verification if an efficient but low-precision verifier produces witnesses
and the validator rejects a substantial number of incorrect witnesses.

• The complexity of the validation of a correctness witness is related to the contents
of the witness, i.e., there are verification tasks for which a verifier can produce
witnesses such that the validation uses less resources to validate the witness than
the verifier used to verify the verification task.

Our experiments confirm all four hypotheses and therefore demonstrate that verification
witnesses are applicable to a heterogeneous set of verification tasks and to different verifiers,
that verification witnesses can be used to increase the trust in verification results [18].

18

1 Introduction 1.1 Objectives

After publishing our findings, we expect other verifiers to adopt our format to confirm
one more hypothesis:

• Our format for verification witnesses constitutes an established standard for the
representation of verification results produced by software verifiers for the C program-
ming language in the sense that the format is adopted by a wide and heterogeneous
range of such software verifiers.

Because our format is already supported by over 30 different tools [8, 9], we can confirm the
hypothesis and assert that it constitutes a tool-independent interface for verification results
that helps avoid tool lock-in and provides a mechanism for increasing and establishing
trust in the verification results of many different verifiers.

Task: Synthesize Test Cases from Verification Witnesses

We define and implement a process for synthesizing concrete (failing) test cases from
violation witnesses. We use this implementation to test the following hypotheses:

• Concrete failing test cases can be synthesized from violation witnesses.

• By executing test cases synthesized from violation witnesses we can validate in
verification results.

Our experiments confirm the hypotheses: We are able to use violation witnesses produced
by a large number of different verifiers to synthesize concrete tests. By executing these
tests, we can confirm verification results that we could not confirm using any other
available witness-based verification-result validator. Consequently, we conclude that
synthesizing tests from witnesses can bridge the gap between formal verification and
standard development practice, because a developer can analyze such a failing test case
using the tools they are already familiar with [21].

Task: Integrate Verification Witnesses into the Development Process

Lastly, we also define and implement an interactive web service to store, retrieve, validate
and visualize verification witnesses. We illustrate how such a witness management system
could become a useful component in the software-engineering process, where developers
can use an integrated validation service to quickly de-prioritize suspected false alarms
and generate graphical visualizations of witnesses that utilize verification information
to aid the debugging process. We use the implementation of the web service to test the
following hypothesis:

• Our toolchain is applicable to a large and established set of verification tasks and
can be used to store, validate, and visualize verification witnesses.

We successfully inserted a large amount of witnesses produced by several different verifiers
into the database of our toolchain, validated the witnesses, and generated reports with
graphical visualizations, thereby confirming the hypothesis [12].

19

1.2 Structure 1 Introduction

1.2. Structure

This thesis takes the form of a cumulative dissertation, i.e., it is a compilation of several
individual manuscripts. In this chapter, we introduce the topic of the thesis, motivate
our solutions, list our contributions, outline the structure of the thesis, give a high-level
overview over the basic concepts of our research and describe our research method. In the
second chapter, we list the titles of the manuscripts that comprise this thesis, discuss their
interrelations and topical relevance, and attribute this author’s share in their preparation
and writing. In the fourth chapter, we summarize the contributions and discuss future
prospects. Following the bibliography, we conclude this thesis with an appendix where we
reprint each of the manuscripts without any changes, except that we enclose their pages
with the headers and footers of this compilation to mark them with consecutive page
numbers.

1.3. Background

In the following, we introduce the field of automated software verification and give a
brief overview over recurring concepts that appear in our work. These concepts help us
define the ideas we present in our manuscripts in a consistent and scientifically accurate
formalism, so that our presentation is unambiguous and our contributions can be examined,
built-upon, and compared with related work.

1.3.1. Automated Software Verification

Formal verification is the application of formal methods to construct a mathematical
proof that a given system adheres to a given formal specification. Software verification is
the application of formal verification to a software system, whereas hardware verification
is the application of formal verification to a hardware system. Formal verification can be
performed manually, semi-automatically, i.e., interactively using some kind of verification
assistant, such as KeY [1], or fully automatic, i.e., by a verification tool. Considering the
large amounts of program code that are found in today’s real-world software systems, it can
be argued that the only affordable way to scale software verification up to the industrial
requirements, and while there is still value in manual and semi-automatic solutions, we
consider only fully automated software verification in this thesis. In automated software
verification, a verification task consists of the software system to be analyzed and the
specification the system should adhere. In this thesis, we will only consider software systems
where the source code is available, but solutions for verifying compiled executables, such
as Java byte code, also exist [67]. A specification may require the verification of safety
properties, such as whether some undesirable program location is unreachable or whether
there is some invalid pointer dereference, it may require the verification of liveness
properties, e.g., whether the program contains some infinite execution path (thereby
exhibiting a behavior that is often informally described as “hanging” or “freezing”), or
a combination of both safety and liveness properties. In this thesis, we mainly consider
solutions based on reachability analysis that address safety properties, but techniques
exist to adapt these solutions to liveness properties [96]. A verification task is processed by
a software-verification tool, also called a software verifier. The software verifier attempts

20

1 Introduction 1.3 Background

to answer whether the system satisfies or violates the specification. Consequently, the
answer produced by the verifier should either be true, i.e., a proof was found that the
system satisfies the specification, or false, i.e., a bug was found that causes the system
to violate the specification.

However, because the undecidable halting problem [100] can be reduced to solving the
software verification problem, the problem of software verification is also undecidable in
the general case. Therefore, a software verifier may not be able to solve a given verification
task and instead give up, effectively answering unknown to the question whether the
system satisfies the specification. Such a failure to solve a verification task may manifest
itself as the verification process running indefinitely or exceeding a given time limit,
exceeding the available memory resources, crashing, or simply giving up explicitly. In the
general case, it is not even possible to determine if a failure could be avoided by allocating
more computing resources.

While the fundamental issue of undecidability cannot be eliminated from the verification
of infinite-state systems, such as software, techniques exist to mitigate it: Software verifiers
may try to apply abstraction to a verification task, i.e., attempt to analyze it with a reduced
precision and thereby considering an overapproximation of the state space, or they may
compromise on the soundness of their analysis and consider only an underapproximation
of the state space. A popular example of the use of abstraction is interval analysis [44];
a popular example of compromising on soundness is bounded model checking [31]. However,
an imprecise software verifier may produce false alarms, i.e., its answer false is not
trustworthy. Conversely, an unsound software verifier may produce wrong proofs, i.e., its
answer true is not trustworthy. Again, techniques exist to counteract these effects. For
example, a verifier may check its own results before reporting them to the user, and if
it determines a problem, it can automatically refine its overapproximation [39] or its
underapproximation [64] before re-attempting to solve the verification task. Nevertheless,
due to the general undecidability of software verification, even these iterative refinement
techniques cannot simultaneously guarantee the termination of the verification process
within finite time and memory resources, and the correctness of the verification result.
Moreover, in practice, there are additional, mundane, causes of incorrect verification
results beyond scientific considerations: Due to the high complexity of many productively
used programming languages, existing implementations of software verifiers sometimes
lack the features to accurately model all aspects of a real-world system. In summary, we
must conclude that if we want to apply software verification in practice, where infinite
resources are not available, we will sometimes encounter inconclusive or incorrect results.

1.3.2. Configurable Program Analysis

In the field of software verification, it is often necessary to describe a program analysis.
We use the formalism of configurable program analysis (CPA) [27, 40] for this purpose,
which defines a conceptual framework to concisely express arbitrary types of program
analyses. The CPA formalism follows the software-engineering principle of separation of
concerns and enables modular compositions of reusable analysis components. It separates
the definition of the abstract domain of a program analysis from the analysis algorithm.

We use this formalism as the basis of all program analyses and verification algorithms
we research. This consistent use enables us to pinpoint the similarities and differences

21

1.3 Background 1 Introduction

between approaches, as we did for example in our comparison of the verification algorithms
predicate abstraction, Impact, bounded model checking, and k -induction, where we were
able to explain the algorithms and give detailed examples of each of them in one common
formalism based on the CPA concept, and where we present an experimental evaluation
of the algorithms using implementations in the verification framework CPAchecker, which
follow the formalism so closely that we are able to perform detailed measurements to
attribute performance differences to individual aspects of each algorithm [24]. Such a
detailed comparison would not be possible if each algorithm were only defined in a
unique, monolithic formalism, because we could not so easily determine why one approach
outperforms another on a given verification task and whether this difference is related to
a unique aspect of one of the algorithms or to an independent, unrelated optimization.
We also use the CPA formalism to define how the information stored in a verification

witness that is represented in the exchange format we propose can be extracted and
associated with the intended program locations by a consumer [19]. Again, this consistent
use makes it possible to examine the proposed technique not only in isolation but in a
larger context of existing approaches to software verification.

1.3.3. Finite Automata

A finite automaton, also called finite-state machine, is a mathematical concept that is
used to model computational systems. A finite automaton consists of at least the following
components: a finite set of states Q a system can be in, an initial state qINIT ∈ Q, a
finite set of input symbols Σ also called alphabet, a transition relation δ ⊆ Q× Σ×Q
that defines for each pair of states q, q′ ∈ Q and input symbol σ ∈ Σ whether a transition
from q to q′ exists for the input symbol σ, and a set of accepting states F ⊆ Q. At
any given time, a finite automaton is in exactly one of its states Q. Initially, this is
the initial state qINIT . The automaton switches from a state q ∈ Q to a state q′ ∈ Q
when an input symbol σ ∈ Σ is read if (q, σ, q′) ∈ δ. If a finite automaton is used
to distinguish between and a set of accepting states F . A finite automaton defines a
language that contains a sequence 〈σ1, σ2, . . . , σn〉 of n ∈ N input symbols (i.e., a word) if
there is a corresponding sequence 〈(q0, σ1, q1), (q1, σ2, q2), . . . , (qn−1, σn, qn)〉 of automaton
transitions (i.e., (qi−1, σi, qi) ∈ δ with 1 ≤ i ≤ n) where q0 = qINIT and qn ∈ F . The
concept of Büchi automata extends finite automata to infinite inputs [35]: A Büchi
automaton accepts only words that visit an accepting state q ∈ F infinitely often.
Finite automata, their extension Büchi automata, and further variants of the con-

cept of automata are a popular and recurring notion in the field of software verifica-
tion [25, 38, 40, 51, 56, 68, 69, 70, 101]. Variants of finite automata that we use are protocol
automata, which we introduce to model violation witnesses (verification witnesses for
violations), and observer automata, which are a subtype of protocol automata that we use
to model specifications and correctness witnesses (verification witnesses for proofs) [18].

1.3.4. Program Representation

All verification tasks we use in our examples and experiments consist of programs
that are written in the programming language C. We choose the concept of control-
flow automata (CFA) to model these programs. A control-flow automaton (L, lINIT , G)

22

1 Introduction 1.3 Background

comprises a set L of program locations that represent the program counter, the program-
entry location lINIT ∈ L, and a set G ⊆ L×Ops×L of control-flow edges. Each control-flow
edge, also called CFA edge, represents the flow of control from one program location to
another, during which an operation op of the set of program operations Ops is executed.

1.3.5. Error Paths

When a program is executed, the execution comprises a sequence of program operations.
The specific sequence of operations that is executed is determined by external influences,
also called the inputs to a program. We call a concrete sequence of such inputs a test
vector [10].

A program path is a sequence 〈(li, opi, lj), (lj , opj , lk), . . . , (lm, opm, ln)〉 of consecutive
edges from the set G of control-flow edges that starts at the program-entry location,
i.e., li = lINIT . A program path is called feasible if a test vector exists for which the
execution of the program corresponds precisely to the sequence of program operations on
the path, otherwise the path is called infeasible.
If the sequence of control-flow edges of a program path and their corresponding

operations violate a given specification, the program path represents a bug and is called
an error path. A verification task, which consists of a program and a specification, is
considered to be solved by verification if there is proof that no feasible error path exists,
or by falsification if a feasible error path is found. Therefore, an error path can be said to
constitute a counterexample to the claim that a program satisfies its specification. However,
because the term “counterexample” is widely-used for related but different concepts in
the general domain of model checking, we prefer to avoid confusion and use the term
“error path” to describe a program path that violates a specification. The notion of error
paths is an important concept in software verification, and just like there are efforts to
identify root causes [42, 60, 63, 74, 80, 92, 107] in the domain of software engineering in
general, the quality of the error reports produced by a software verifier is considered to be
significant for the user experience [5]. Hence, there is a need for helping developers find
the actual reason why an error path is feasible in their system [61, 73, 86, 95], for solutions
to visualize errors and error paths [3, 4, 12, 62, 82], and for classifying bugs [7, 55, 90, 105].
In our work on documenting verification results as witnesses, we propose to represent

an error path (or set of paths that contains error paths), i.e. a witness for a specification
violation, as a violation witness [19]. These witnesses constitute a tool-independent
machine readable interface for verification results upon which tools can be built to make
the results more useful in practice and improve the user experience.

1.3.6. Test Generation

Testing is an important measure to improve software quality [87], and in industrial
software projects there are often policies or even contractual agreements that specify
certain requirements regarding software testing, for example minimum values for code-
coverage metrics. It is also considered good practice to create test cases for known bugs in
a software system, such that there is a way to determine whether a bug is fixed and a way
to detect if the bug reappears at some later point to do further changes to the system.
Test-driven development is a popular development method that proposes to create the test
cases for a feature even before its implementation, to serve as a specification-by-example,

23

1.3 Background 1 Introduction

control implementation progress, and prevent regressions [6]. While even the successful
execution of a large test suite cannot provide the same guarantees as a mathematical proof
of safety produced by software verification, testing has certain advantages in practice: Tests
are usually quick to execute, whereas proving that a program is correct is undecidable
in the general case. Moreover, the execution and analysis of test cases does usually not
require special training and is considered a standard task in software development.
Manually creating test cases that meet specific criteria, however, can be a

time consuming task, which is why automatic test-case generation is a desirable
goal, and why many techniques and tools for automatic test-case generation ex-
ist [36, 37, 41, 45, 57, 58, 59, 65, 66, 71, 72, 81, 83, 88, 91, 97, 102]. The approach of synthe-
sizing test cases from error paths found by formal verification is more than fifteen years
old [10, 102]. Since then, there have been efforts to go one step further to create debuggable
executables with the intention to trigger a specification violation [85, 95], a recent one of
which is our approach of designing a tool that converts error paths represented in our
proposed format for verification witnesses into test harnesses, which can then be compiled
and linked with the code under analysis, and executed to show the violation [21].

1.3.7. Inductive Invariants

A first-order formula or assertion that holds at every state of a system is called an
invariant of that system. If we express a given specification as a first-order temporal-logic
assertion, the task of verifying that a given program satisfies this specification is equivalent
to checking that this assertion is an invariant of the program. Given two invariants P, P ′

where P ′ ⇒ P , we say that P ′ is stronger than P . A location invariant is an invariant
that is restricted to a certain program location, i.e., a location invariant claims that an
assertion always holds at a specific location, but it does not entail any assertions over
other program locations. A loop invariant is a location invariant where the location is a
loop head, i.e., the entry point into a loop 2. A loop invariant is an assertion that must be
true before and after every loop iteration, but this assertion need not be true at any other
program location, including any location within the loop body, as long as it is restored at
the end of the loop body.

We call a loop invariant inductive if we can prove it by induction, which entails checking
two cases called the base case and the inductive-step case. In the base case, we need
to prove that the assertion holds initially, i.e., before the first loop iteration. In the
step case, we need to prove that every loop iteration preserves the assertion, or in other
words, that if the assertion holds at the beginning of a loop iteration, it also holds
after the loop iteration. For k > 0, we can generalize to concept of inductive invariants
to k-inductive invariants, which are loop invariants that we can prove by k -induction.
k -induction generalizes (1-)induction in the following way: In the base case, we need to
prove that the assertion holds before the first k loop iterations, and in the step case,
we need to prove that given any sequence of loop iterations with length k where the
assertion holds before each iteration, the assertion must also hold after the k-th iteration.
Every k-inductive invariant is also (k + 1)-inductive. but the reverse is generally not true,
which means that (k + 1)-induction is more powerful than k -induction [104]. Given a

2Depending on the programming language, a loop may have more than entry point, but to keep our
presentation simple, we only consider loops with precisely one entry point.

24

1 Introduction 1.4 Research Method

k-inductive invariant, however, it is possible to construct a stronger loop invariant that is
(1-)inductive [75]. We use the fact that the power of k -induction increases with the value
of k in our implementation of k -induction as a software-verification algorithm [22], where
we also explain and give a detailed example of how not every invariant is k-inductive for
any value of k.

To prove an invariant that is not k-inductive for any k, it is necessary to find a stronger
invariant that is k-inductive for some k > 0. It is known that if P is an invariant of a
program, an invariant P ′ must exist such that P ′ ⇒ P and P ′ is an inductive invariant [84].
However, to show that a given k-inductive invariant is in fact k-inductive, we only need
to check the base case and inductive-step case, which is usually much easier than finding
such an invariant in the first place, which is an undecidable problem in general. We make
use of this observation in our work on verification witnesses for proofs, where we argue
that validating a given proof can be easier than computing the proof if the necessary
inductive invariants are provided and need only be checked [16].

1.4. Research Method

Software verification is a branch of the field of software engineering. The computer scientist
and software engineer Frederick Brooks claims that computer science is not an actual
science because “the scientist builds in order to study; the engineer studies in order to
build” [76]. He argues that software engineering differs from science in motivation and
priorities, because in his opinion, the first priority of scientists should be the discovery of
laws and facts itself and building tools should only be a means to achieve such discoveries,
while engineers, on the other hand, would focus primarily on building tools with a concrete
goal and perform research only as a means to build better tools.

Whether or not one agrees with the sentiment that the pursuit of concrete, practically
applicable goals precludes the designation of “science” — we do not — the fundamental
importance of scientific procedure is still indisputable, even in computer science: First,
computer science is more than engineering, it is also closely tied to mathematics. Computer
scientists create proofs, for example on the complexity or correctness of algorithms. In
automated software verification, we create tools to automatically build mathematical
models of software and apply formal correctness proofs to these models. While these
proofs may sometimes be wrong — due to errors in the models or the proof construction
— their formal mathematical nature makes them unambiguous and falsifiable. Therefore,
a skeptic is able to inspect them, and, given enough time, detect and point out flaws.
Second, in cases where mathematical proofs are not applicable, for example because an
object of research is too complex to fully model it, a scientific claim still needs to be
based on falsifiable statements and researchers must do their due diligence to test these
statements and try to falsify them. If they fail to falsify a statement, i.e. their experiments
“confirm” the claims, there is still no proof that the claims are correct, but again there is
a means for skeptics who doubt the claims to falsify the statements themselves.

Software verification, as an engineering discipline, involves the development of concrete
implementations of algorithms and techniques, as well as empirical studies of these
implementations. We use experimental evaluations to investigate the advantages and
disadvantages of a given technique as compared to its alternatives, or whether or not
a proposed technique is practical at all. In the following, we describe how we conduct

25

1.4 Research Method 1 Introduction

empirical research, discuss the requirements we need to fulfill to enable the scientific
process of testing falsifiable hypotheses, and give examples to show how we fulfill these
requirements.

1.4.1. Hypothesis

Because our objectives are to make software verification more applicable and more useful
in practice, our claims are often not easily amenable to proofs beyond fundamental aspects,
like whether or not an algorithm is sound at all. Instead, we focus on an empirical research
method, for example to show that one verification technique solves more verification tasks
or is more efficient than another one under certain conditions. Consequently, we follow the
scientific approach of supporting our claims with falsifiable hypotheses and experiments
that test these hypotheses to build confidence in our conclusions. Thus, other researchers
can take any of our hypotheses and test it. If their results support the hypothesis, it gains
credibility; if they falsify it, we gain new knowledge and can devise a new hypothesis
and design a better experiment. Either way, scientific advancement is made and there is
neither necessity nor room for “alternative facts”.

1.4.2. Experiment Design and Execution

To reach valuable scientific conclusions, it is necessary to consider threats to the experi-
mental validity, design the experimental setup so that these threats are minimized, and
document our considerations and the experimental setup. We distinguish between two
aspects of experimental validity, namely external validity and internal validity.

External Validity

If we want to know if our conclusions are applicable to a given scenario, we must examine
the external validity of our experimental setup, which defines the scope our conclusions
are valid in. We must clarify under which conditions the experiments were conducted and
consider whether or not these conditions are too restrictive to transfer the conclusions to
the scenario in question. For example, all of our manuscripts describe experiments that
are conducted using a particular benchmark suite of several thousands of verification tasks
comprised of C programs 3. This benchmark suite is established and widely-used in our
research community, and it contains verification tasks extracted from real software systems,
such as Linux device drivers. However, it is necessary to point out that if this composition
of verification tasks is not representative of software-verification problems in general, we
cannot generalize our conclusions. Likewise, for each of our experiments, it is our duty
to state on which types of machines they were conducted, what the operating system
was, what resource limitations we applied, and which versions of the tools and relevant
libraries we used, because changing any of these variables could change the outcome of the
experiment: While minor differences between version numbers of an operating system might
not usually cause significantly different results, switching to a different operating system
or tool implementation, or significantly reducing or increasing the amount of available
resources is more likely to affect the results. One concrete example of how we address
the concern for external validity is our work on witness-based result validation: When we

3https://github.com/sosy-lab/sv-benchmarks

26

https://github.com/sosy-lab/sv-benchmarks

1 Introduction 1.4 Research Method

proposed the exchange format for verification witnesses, we implemented two validators
in two different verification frameworks and showed not only the validation results of
each validator for the witnesses produced by its own verification framework, but also the
validation results for the witnesses of the respective other verification framework [19]. Had
we only presented one validator and its validation results for witnesses produced with
the same verification framework, we could not have believably claimed that the proposed
format enables information exchange between verifiers. In fact, such a claim would have
been wrong had we not discovered necessary improvements to our first draft of the format
in the attempts to achieve cross-framework validation for our evaluation.

Internal Validity

If we want to know if our conclusions are actually supported by our experimental results
within our concrete experimental setup, we must examine the internal validity of the
setup, which requires us to consider and rule out alternative explanations that do not
require our conclusions to be true, and to ensure that our experiments are repeatable,
i.e., if we repeat a given experiment that we executed in a given setup and under a
given set of conditions in the same setup and under the same conditions, we also obtain
the same results within the margin of error expected for the assumed measurement
precision. The internal validity of an experiment is threatened by confounding variables.
We can improve the internal validity of our experiments by identifying and eliminating
confounding variables or quantifying their effects. For example, while we would like to
conduct our experiments quickly and might be tempted to optimize the “throughput” of
our setup by executing multiple verification runs in parallel on a single machine, we must
be aware that these processes may affect each other due to shared resources, such as
caches or the bus. Thus, there is a trade-off between the throughput of our experimental
setup and its internal validity. However, even if we always schedule only one verification
run at a time on a given machine, there are still confounding variables. For example, if we
allow the operating system to arbitrarily assign memory to processes on a machine with
non-uniform memory access, a verification run that is assigned memory that is local to
the run’s set of processor cores may have an advantage over another run that is assigned
memory that is farther away from the run’s set of processor cores, which may significantly
and nondeterministically influence our results [48]. These are just a few examples for
confounding variables that affect experimental evaluations in software verification and
therefore pose a threat to our conclusions. It is therefore important to always consider
the internal validity of our experiments. To ensure reliable and accurate experiments for
all our evaluations, we use the benchmarking framework BenchExec, which is based on
extensive research on the requirements of reliable benchmarking in the context of software
verification and which eliminates or at least mitigates many threats [29]. For example,
BenchExec is able to enforce that all memory assigned to a given verification run is local
to the run’s set of processor cores.

1.4.3. Replicability

We call an experiment replicable if it can be repeated by another team of researchers
that does not necessarily have access to the same (physical) laboratory equipment and
machines, but can equally replicate the setup and conditions. Any claims made in

27

1.4 Research Method 1 Introduction

research that are based on experimental results must be replicable to be verifiable and
therefore credible [33, 77, 79, 103]. Even though this principle should be common knowledge,
experience reports and studies suggest that adherence to it is not self-evident [43, 94] for
all researchers. Lack of replicability is also an impediment to research. For example, in
our study on execution-based validation of verification results and the transformation of
verification witnesses into concrete test cases [21], we could not include two of the verifiers
we had intended to use, because they were unavailable to us due to their proprietary
licenses.

To make our own software-verification experiments replicable, it is not only necessary
to make each experiment repeatable, to ensure reliable results by performing accurate
and precise measurements, and to document every experimental setup — requirements
which we fulfill anyway in our considerations of experimental validity — but also to make
all software and benchmarks that were use and all raw data obtained available. If the
software or benchmarks we use is not available in the precise version stated in our research,
other researchers cannot use it and therefore cannot replicate our experiments. Because
academic publications usually restricted to a limited number of pages, experimental results
are often condensed into plots and summarized in tables. However, if we do not also
make the raw data available, this process of summarization may not be comprehensible
and replicable for other researchers. Therefore, for each of our publications, we make a
documented replication package available on a supplementary web page, together with
any further supplementary material that may help readers benefit from our contributions.
In addition to self-hosting our replication packages, which may be considered volatile, we
also use a service provided by the European Organization for Nuclear Research (CERN)
to archive them. 4 For example, the supplementary web page 5 for our work on violation
witnesses [19] contains all raw data from the experiments presented in the paper, gives
instructions on how to obtain the necessary software and benchmark set, and explains
how to use the tools. Moreover, the supplementary documents the exchange format for
witnesses presented in the paper and provides a virtual-machine image where the necessary
prerequisites for running the experiments are already installed.

4https://zenodo.org/
5https://www.sosy-lab.org/research/verification-witnesses/

28

https://zenodo.org/
https://www.sosy-lab.org/research/verification-witnesses/

2. Discussion of Manuscripts

In this chapter, we state for each of the manuscripts that comprise this thesis the
contributions of the thesis author and discuss, where applicable, their relation to other
publications this author participated in.

2.1. Boosting k-Induction with Continuously-Refined
Auxiliary Invariants

The article Boosting k-Induction with Continuously-Refined Auxiliary Invariants, which is
reprinted in Appendix A, pages 52–70 of this dissertation, was authored by Dirk Beyer,
Matthias Dangl, and Philipp Wendler, and published by Springer in the Proceedings of
CAV 2015, pages 622–640 [22]. It corresponds to the task of investigating k -induction as
part of our objective of making software verification applicable in practice, as outlined in
Sect. 1.1.1.
The article describes an algorithm that combines k -induction for software verification

with an invariant generator that refines its invariants over time. As a consequence,
verification tasks for which weak invariants are sufficient for k -induction to succeed are
solved quickly, without the need to unnecessarily spend time generating strong invariants,
whereas such strong invariants may become available after some time for tasks for which
k -induction requires them. The contributions of this article towards our objective of
making software verification more applicable in practice are twofold: Not only do our
contributions help better understand various variants of k -induction, we also provide a
concrete approach for shifting the burden of choosing how much effort to spend on the
computation of auxiliary invariants away from the user, who is likely incapable of making
an informed decision, to the machine.
The definition of the algorithm based on the conceptual framework of configurable

program analysis (see Sect. 1.3.2) and the implementation of the presented algorithm in the
CPAchecker verification platform constitute elementary groundwork for the definition of
a unifying conceptual framework and for the extensive comparative evaluation with other
approaches that we presented in a later article [24]. The presented algorithm also served
as a basis for our investigation of property-directed reachability, where we extend the
k -induction algorithm to property-directed reachability and use it as a continuously refined
invariant generator [15]. Both of these related articles are also part of this dissertation. A
preprint of the article that provides some more details regarding the configurable abstract
domain of the data-flow-based auxiliary-invariant generator used in the evaluation was
published as a technical report [23].
Matthias Dangl is the main author of the article and responsible for more than 50 %

of the article’s contents. His contributions were (1) the conception and description of
the presented algorithm with a focus on effectively combining invariant generation and
k -induction, (2) the development of the presented tool implementation based on an

29

2.2 A Unifying View on SMT-Based Software Verification 2 Discussion of Manuscripts

existing implementation of plain k -induction without auxiliary invariants, and (3) the
execution and discussion of the experimental evaluation.

2.2. A Unifying View on SMT-Based Software Verification

The article A Unifying View on SMT-Based Software Verification, which is reprinted in Ap-
pendix A, pages 71–107 of this dissertation, was authored by Dirk Beyer, Matthias Dangl,
and Philipp Wendler, and published by Springer in the Journal of Automated Reason-
ing (JAR) in March 2018, Volume 60, Issue 3, pages 299–335 [24]. It corresponds to the
task of identifying strengths and weaknesses of k -induction and related approaches as
part of our objective of making software verification applicable in practice, as outlined in
Sect. 1.1.1.
The article presents a unifying conceptual framework for expressing SMT-based ap-

proaches to software verification, shows how to represent the four algorithms predicate ab-
straction, Impact, bounded model checking, and k -induction as instantiations of this
framework, gives comprehensive examples for all presented concepts and algorithms, and
provides an extensive and thorough experimental evaluation of the algorithms, followed
by an analysis of the strengths and weaknesses of the compared approaches. Again, the
contributions of this article towards our objective of making software verification more
applicable in practice are twofold: First, the analysis of the strengths and weaknesses may
be used directly to help decide which approach to use for a given verification problem.
Second, the article’s focus on a common formalism is supported by a running example that
not only illustrates the formal concepts but may also serve to guide the reader by high-
lighting the connections between the concepts within the surrounding context of formal
software verification. Using this textbook approach, we hope to help the reader deepen
their understanding of the concepts of formal software verification and ultimately extend
the framework to incorporate, analyze, and compare further approaches, to generate new
knowledge on how to choose verification algorithms.

This article ties together, updates, and extends several earlier publications, in which the
similarities between predicate abstraction and Impact were explored [30]1, bounded model
checking and several variants of k -induction were compared and the general concept of
k -induction with continuously refined invariant generation was introduced [22], and the
four algorithms predicate abstraction, Impact, bounded model checking, and k -induction
were evaluated and their strengths and weaknesses were analyzed [11]. One of the coauthors
has published a dissertation that further extends the background, formal concepts and
applications of the unifying framework [106]. Later publications build upon the presented
conceptual framework and practical implementation by adapting k -induction to property-
directed reachability [15] and by using the insights into strengths and weaknesses of the
different approaches to automatically select an approach using algorithm selection [13].

Matthias Dangl is a coauthor of the article and responsible for more than 50 % of the
article’s contents. As main author of the two publications this journal article is based
on [11, 22], his contributions were (1) his assistance in the definition of the presented
algorithms as instantiations of the unifying conceptual framework, (2) the design and
description of the extensive examples of all presented concepts and algorithms, and (3) the

1Not authored by the author of this dissertation

30

2 Discussion of Manuscripts 2.3 Software Verification with PDR

execution and discussion of the experimental evaluation, including the analysis of the
strengths and weaknesses of the compared algorithms.

2.3. Software Verification with PDR: An Implementation of
the State of the Art

The article Software Verification with PDR: An Implementation of the State of the Art,
which is reprinted in Appendix A, pages 108–126 of this dissertation, was authored
by Dirk Beyer and Matthias Dangl, and published by Springer in the Proceedings of
TACAS 2018, pages 3–21 [15]. It corresponds to the task of investigating PDR as part
of our objective of making software verification applicable in practice, as outlined in
Sect. 1.1.1.

The article explores the effectiveness and efficiency of software verification with PDR. It
presents an algorithm for property-directed k -induction that can be used as a standalone
verification approach or as an invariant generator for k -induction. An extensive and
thorough comparative experimental evaluation discusses strengths and weaknesses of
the approach, and, combined with a reference implementation, serves as a baseline for
ongoing research into software verification with PDR. These contributions aim to help
better understand the advantages and disadvantages of PDR when compared to other
approaches, and to facilitate making an informed choice of verification technique to use
for a given task, which aligns with our objective of making software verification more
applicable in practice.
An extended version of this article has been published as a technical report via arXiv

in August 2019 with the eprint identifier 1908.06271 [14]. The presented algorithm is
based on our earlier work on unifying SMT-based algorithms for software verification
and is implemented in the same framework [24]. The approach of using a k -induction-
based verification technique itself as an invariant generator for another k -induction
procedure constitutes an extension of the KI 			←−KI approach we introduced in a previous
publication and is an instance of the concept of continuously refined invariant generation
for k -induction [22].

Matthias Dangl is the main author of the article and is responsible for more than 80 %
of the article’s contents. His contributions were (1) the definition and discussion of the
presented algorithm, (2) the examples used to explain the presented core and background
concepts, (3) the implementation of the presented algorithm and, for comparison, the
CTIGAR algorithm [32] within the CPAchecker framework, and (4) the comparative
experimental evaluation, including the analysis and discussion of its results.

2.4. Strategy Selection for Software Verification Based on
Boolean Features

The article Strategy Selection for Software Verification Based on Boolean Features,
which is reprinted in Appendix A, pages 127–142 of this dissertation, was authored
by Dirk Beyer and Matthias Dangl, and published by Springer in the Proceedings of
ISoLA 2018, pages 144–159 [13]. It corresponds to the task of using strategy selection to

31

2.5 Verification Witnesses 2 Discussion of Manuscripts

automate the choice of verification technique as part of our objective of making software
verification applicable in practice, as outlined in Sect. 1.1.1.

The article explains the concept of strategy selection for software verification, and
identifies four Boolean features of verification tasks in the C programming language
that can be statically determined and used to sufficiently distinguish between different
input programs to a software verifier, such that a strategy selector can be defined that
picks the verification algorithm based on the feature vector. Several verification strategies
are discussed and a model-based strategy-selection function is defined. An experimental
evaluation compares the verification strategies in isolation and as components of sequential
combinations and feature-model-based strategy selection, showing that for the evaluated
strategies, the defined model-based strategy-selection function yields results close to the
theoretical optimum (i.e., an oracle that always chooses the best strategy), despite the
simplicity of the chosen feature set. The article makes a strong case for further research
on and implementation of model-based strategy selectors for software verifiers, because for
software verification to become applicable in practice, as stated as our first objective, users
should not be burdened by a — for them likely impossible — choice between verification
techniques.

The idea of defining and implementing a model-based strategy selector logically follows
our findings on the strengths and weaknesses of different verification techniques from our
other publications [14, 22, 24]. One of the presented sequential combinations of verification
strategies was taken from the 2018 International Competition on Software Verification (SV-
COMP 2018) and an earlier version of it had already been presented in a publication that
was coauthored by the author of this dissertation but is not part of this thesis [47].

Matthias Dangl is the main author of this article and is responsible for more than 80 %
of the article’s contents. His contributions were (1) the definition of the feature set, (2) the
definition of the model-based selection function, (3) the choice, discussion and illustration
of the presented verification strategies, (4) the implementation of the presented strategy
selector in the CPAchecker verification framework, and (5) the comparative experimental
evaluation, including the analysis and discussion of its results.

2.5. Verification Witnesses

The article Verification Witnesses, which is reprinted in Appendix A, pages 143–211 of this
dissertation, was authored by Dirk Beyer, Matthias Dangl, Daniel Dietsch, Thomas Lem-
berger, Matthias Heizmann, and Michael Tautschnig, and published in the ACM journal
Transactions on Software Engineering and Methodology (TOSEM) in November 2019 [18].
It corresponds to the task of establishing a standard format for verification witnesses as
part of our objective of making software verification useful in practice, as outlined in
Sect. 1.1.2.

The article presents the concept of verification witnesses and their application to vali-
dating verification results by allowing an independent validator to re-establish and thereby
confirm the results of a software verifier. The article describes an exchange format that has
been established as a standard for verification witnesses implemented by over 30 different
verifiers and proposes to use this format to share verification information across tools, so
that users can apply independent third-party tools to visualize, explore, and comprehend
verification results. A technical specification of the format is provided and the conceptual

32

2 Discussion of Manuscripts 2.6 Tests from Witnesses

principles of verification witnesses, including their formal background, are discussed in
detail. An expansive running example illustrates the formal concepts comprehensively and
emphasizes the connections between the concepts within the surrounding context of wit-
nesses for software verification. The paper concludes with an extensive experimental study
on the application of witness-based result validation, using the validators CPAchecker,
Ultimate Automizer, CPA-witness2test, and FShell-witness2test. The article constitutes
an important contribution towards our objective of making software verification useful
in practice, because verification witnesses are aimed at making verification results more
accessible to engineers. Furthermore, the article also stays true to our objective of making
software verification more applicable in practice, because instead of implementing an
isolated and tool-specific solution, we focus on exchangeability and preventing tool lock-in,
which makes it easier for a user to integrate the solution into their processes.

This journal article ties together and significantly extends our earlier work on violation
witnesses [19] and correctness witnesses [16], both of which were published by ACM in the
Proceedings of FSE 2015 and FSE 2016, respectively, and for both of which an extended
abstract has also been published by the Gesellschaft für Informatik in SE 2016 [20] and
SE 2017 [17], respectively. The article also overlaps with our work on execution-based
witness validation [21], but focuses on the aspect of witness validation rather than test-
case generation. Unlike our work on verification-aided debugging [12], this journal article
focuses on the formalisms, conceptual foundations and general principles of verification
witnesses, and their application to validating verification results, rather than on integrating
verification results into the development process.

Matthias Dangl is the main author of this article and is responsible for more than 80 %
of the article’s contents. His contributions were (1) the consolidation of the conference
papers the journal article is based on, (2) the discussion of the formal background, (3) the
formalization of the concepts of verification witnesses and witness-based result validation,
(4) the presentation of four violation-witness-based result validators and two correctness-
witness-based result validators as applications of verification witnesses, (5) the technical
specification of the exchange format for verification witnesses, (6) the running example,
its illustration and its discussion, (7) the experimental evaluation, including the analysis
of the evaluation results.

2.6. Tests from Witnesses

The article Tests from Witnesses, which is reprinted in Appendix A, pages 212–232
of this dissertation, was authored by Dirk Beyer, Matthias Dangl, Thomas Lem-
berger, and Michael Tautschnig, and published by Springer in the Proceedings of
TAP 2018, pages 3–23 [21]. It corresponds to the task of synthesizing test cases from
verification witnesses as part of our objective of making software verification useful in
practice, as outlined in Sect. 1.1.2.

The article introduces two new violation-witness based result validators, which, instead
of performing model checking to re-establish the verification result, use the witness to
construct a test harness and compile, link, and execute the verification-task program
with the harness to check if the bug described by the witness can be observed in practice.
The article emphasizes that in addition to the result validation, the generated test case
itself constitutes a valuable artifact of the validation process that can be used to extend

33

2.7 Verification-Aided Debugging 2 Discussion of Manuscripts

the regression-test suite of the analyzed system. An extensive experimental evaluation
during which more than 13 000 test cases were synthesized from verification witnesses
supports the validity of the approach. The generation of test cases that trigger the bug
reported by the verifier constitutes a significant contribution towards our objective of
making software verification more useful in practice, because they make it possible for an
engineer to reproduce and analyze the reported issue using the standard tools of their
development environment that they are trained and experienced in, without requiring
any prior knowledge on software verification or verification witnesses: The generated test
cases are still valid in absence of the verification tool and are conceptually no different
than any other test cases they already use.
This article continues earlier work on violation witnesses [19]. The description of the

two additional violation-witness-based result validators, together with a reproduction of
the experimental evaluation of witness-based result validation, was incorporated into the
journal article on verification witnesses [18]. The aspect of test-case generation, on which
Tests from Witnesses focuses, however, was out of scope for the journal article, which is
why this article is reprinted separately in this dissertation.

Matthias Dangl is a coauthor of this publication and is responsible for more than 40 %
of its contents. His contributions were (1) the definition and illustration of the approach
of execution-based result validation with verification witnesses, (2) the conception and
description of all examples, (3) the implementation of the violation-witness based result
validator CPA-witness2test, (4) the conduction of preliminary experiments, and (5) his
assistance in the analysis and discussion of the results of the experimental evaluation.

2.7. Verification-Aided Debugging: An Interactive
Web-Service for Exploring Error Witnesses

The article Verification-Aided Debugging: An Interactive Web-Service for Exploring Error
Witnesses, which is reprinted in Appendix A, pages 233–240 of this dissertation, was
authored by Dirk Beyer and Matthias Dangl, and published by Springer in the Proceedings
of CAV 2016, pages 502–509 [12]. It corresponds to the task of integrating verification
witnesses into the development process as part of our objective of making software
verification useful in practice, as outlined in Sect. 1.1.2.

The article explores further use cases of verification witnesses beyond result validation
and test-case generation. It presents a development ecosystem in which software verifica-
tion, witness-based result validation, and verification-witness storage and management
are available as (potentially cloud-based) services, and where verification-witness-based
interactive visualizations of verification results are available to developers as graphical
verification reports. The article proposes to treat verification results — represented as
verification witnesses — as valuable artifacts of the development processes, similar to how
source code is managed in configuration-management systems, and how tasks and issues
are managed in issue trackers, with cross references between the systems. Without such
tight integration intro the development process, verification results will not be able to
provide value for engineers. Conversely, the article’s contributions therefore align directly
with our objective of making software verification useful in practice.

34

2 Discussion of Manuscripts 2.7 Verification-Aided Debugging

The concepts presented in this article are based on the standardized exchange format for
verification witnesses, and result validation is one of the use cases the article advocates [18].
The article complements our work on test-case generation [21] by adding interactive
graphical reports to analyze witnesses and debug the issues they represent, by listing
further use cases for verification witnesses, and by proposing an infrastructure that ties
together all use cases in a common infrastructure to support the development process.

Matthias Dangl is the main author of this publication and responsible for more than 60 %
of its contents. His contributions are (1) the implementation of the witness-management
system and its integration into an existing verification infrastructure, (2) the description of
the use cases, including witness collection, witness-based result validation, and verification-
aided (i.e., witness-based) debugging using interactive graphical reports, (3) his assistance
in the description of the proposed common infrastructure, and (4) the creation of the
archive of collected examples of witnesses and interactive reports.

35

3. Summary and Prospects

To conclude this thesis, we summarize our work and contributions, emphasize the impor-
tance of our contributions regarding the objectives we defined in the introduction to this
thesis, and discuss future prospects in alignment with our objectives.

3.1. Summary

Regarding our objective of making software verification more easily applicable, we have
investigated several software-verification techniques and have designed and implemented
a competitive approach to k -induction: By running a parallel combination of k -induction
and a data-flow-based auxiliary-invariant generator that continuously refines its precision
to produce stronger invariants as time progresses, we were able to create a verification
approach that is able to successfully compete with other, established verification techniques,
such as explicit-state model checking, predicate analysis, Impact, bounded model checking,
and PDR [14, 22, 24]. We have contributed to the creation of a unifying conceptual
framework to express the four SMT-based techniques predicate analysis, Impact, bounded
model checking, and k -induction, and used this conceptual framework to present and
explain comprehensive examples and to discuss the similarities and differences of the
techniques. Furthermore, we have contributed to an implementation of the conceptual
framework in the software verifier CPAchecker and used this implementation to conduct an
extensive study to determine the benefits and drawbacks of each technique when applied
to a large and heterogeneous set of verification tasks [24]. Because our findings indicate
that the strengths of different techniques are often complementary, we have worked on
combining these strengths to mitigate drawbacks of individual techniques. Consequently,
we implemented an approach of algorithm selection, where a verifier automatically selects
a verification strategy based on a feature vector extracted from a verification task, thereby
removing the burden of choosing a suitable solution from the user [13]. We believe that
these contributions are integral in making it easier for developers to apply software
verification to their systems as part of their standard development process.

Regarding our objective of make software verification more useful in practice, we have
devised and established a machine readable and tool-independent standard for storing
and exchanging verification results: verification witnesses [18]. We have demonstrated
that these witnesses can be used to validate [18], generate tests from [21], and visualize
verification results [12]. Hence, verification witnesses help increase trust in verification
results, explain them to developers, and can add substantial value to the development
process. Because the format for verification witnesses is tool independent, a development
process that uses witnesses as verification artifacts is not locked-in to one specific tool
or vendor. For example users are free to swap out the verifier in their toolchain without
affecting the components for validating or visualizing verification results, and vice versa.
We therefore believe that our contributions are integral in making verification more useful

37

3.2 Prospects 3 Summary and Prospects

to developers as part of their everyday development practice and will in the long run
help establish formal verification as a standard and best practice for quality assurance in
professional software development, just like testing and continuous integration are already
today.

3.2. Prospects

We have made significant contributions towards our objectives of making software verifi-
cation more applicable and more useful in practice, but we cannot expect our efforts to
suffice to make software verification a standard industry practice over night. Instead, we
must critically reflect on our work and identify new, promising action items in alignment
with our stated objectives. In the following, we will discuss several such action items that
we believe to be some of the more obvious points of contact for further research, but
certainly, many more ideas are conceivable.

3.2.1. Investigate Further Algorithms

We have investigated several popular algorithms for software verification, but considering
the quick pace at which the research community develops new techniques and improvements
to existing approaches, the study and comparative evaluation of these approaches as well
as the design of a unifying theory are necessarily an ongoing and long-running effort. In
the following, we will outline three further software-verification techniques that are closely
related to those we discuss in this thesis, in that they are also SMT-based techniques
and can be expressed similarly. Thus, we suggest extending our unifying framework to
incorporate these techniques as a promising next step.

Automata-Based Trace Abstraction

Like predicate analysis and Impact, automata-based trace abstraction [68] uses
counterexample-guided abstraction refinement. However, in automata-based trace abstrac-
tion, the iteratively refined abstract model of the program is not represented as a set of
abstract states; instead an automaton is used to represent an overapproximation of the
feasible program paths. If an infeasible error path is detected in this overapproximation,
the abstract model is refined by computing interpolants for this path and using them to
construct an automaton that represents a set of infeasible program paths (including the
infeasible error path that caused the refinement), which is called a trace automaton. The
refined abstract model is then obtained by intersecting the previous automaton with the
complement of the trace automaton.

This approach can be considered to be similar to Impact in that a set of infeasible paths
obtained by generalizing an infeasible error path by using interpolation is directly removed
from the abstract model, as opposed to predicate abstraction, which uses interpolants to
first refine its abstract domain and thereby indirectly refines its abstract model. It would
therefore be interesting to investigate the following three variants of trace abstraction
and compare them to each other and to the related techniques we already investigated:
first, a direct implementation of automata-based trace abstraction, i.e., using a data
structure specifically designed to represent automata as an abstract model as discussed

38

3 Summary and Prospects 3.2 Prospects

above; second, explicitly encoding the automata that represent the abstract model and
the trace abstraction as SMT formulas, which can then be incorporated into our unifying
framework; third, Impact.

Slicing Abstractions

Another technique that employs counterexample-guided abstraction refinement is the
approach of slicing abstractions [34, 53], also called “state splitting”. The idea of slicing
abstractions is to first construct an abstract-reachability graph where every abstract state
is labeled true. Then, the technique iterates over the following three steps: First, the
algorithm searches an infeasible error path in the graph. Second, it computes interpolants
for this path. Third, it refines the abstraction by splitting (i.e., duplicating) each abstract
state (and its subgraph) where one represents a part of the state space that intersects
with the interpolant and the other one represents a part of the state space that intersects
with the negation of that interpolant. All outgoing branches of the new states are then
immediately checked for feasibility to guarantee that ultimately, the infeasible error path
is removed from the abstract-reachability graph and will not be encountered again.

This approach of slicing abstractions is comparable to Impact in that it directly conjoins
the interpolant to a state — as opposed to using it to refine the abstract domain like
in predicate abstraction — and has been implemented in the tools Slab [50], Ultimate

Kojak [54], and recently also in CPAchecker [98]. The similarity to Impact and the
apparent conceptual similarities to the techniques we already investigated [24] make
slicing abstractions an interesting candidate for further research into extending our
unifying framework and conducting further comparative evaluations.

Symbolic Execution

Symbolic execution [78] is a technique that explores each program path separately and
interprets its operations. The abstract states in a symbolic-execution analysis consist
of two parts: (1) a symbolic store that tracks symbolic and concrete values of program
variables and (2) a set of constraints over the symbolic values. Each time a variable is
assigned a nondeterministic value, a fresh symbolic value is created and mapped to the
variable in the symbolic store. If, on the other hand, a concrete value for a variable can
be unambiguously determined by the analysis, then this concrete value is mapped to the
variable in the store. Assumptions over program variables, such as those imposed by the
conditions of branching statements encountered along a path, are tracked as constraints
over symbolic values. Whenever the feasibility of a path needs to be determined, for
example if an error location is encountered, the constraints are checked for satisfiability,
using the symbolic store as interpretation. We have already discussed in this thesis
how our existing unifying framework can be configured as an analysis that behaves
similarly to symbolic execution [24] by applying the CPA algorithm and configuring the
Predicate CPA to use the merge operator mergesep and the block operator blknever . The
purpose of using the operator mergesep instead of mergeP is to build a reachability tree
by preventing all merges between abstract states and therefore keeping all paths separate.
Like in bounded model checking, the purpose of using the operator blknever is to disable
abstraction computations; consequently, the semantics of all program operations of a path
are accumulated in the path formula of abstract states during the state-space exploration.

39

3.2 Prospects 3 Summary and Prospects

Effectively, this results in an analysis similar to bounded model checking, except that here,
feasibility is checked as soon as a specification violation is detected on a path as opposed
to checking the feasibility of all violating paths after a certain amount of loop iterations.
One difference between this approach and the literature definition of symbolic execution
is that this approach tracks all values in the path formula instead of separating them
from the constraints in a dedicated symbolic store, which may affect the performance.
However, it is conceivable that this overhead might by negligible, because propagating
constants is likely just as simple for the SMT solver as it is for the program analysis.
Furthermore, as a benefit of our configurable framework, we can consider creating a new
variant of symbolic execution by switching the merge operator from mergesep to mergeP
to mitigate the issue of state-space explosion, because the operator mergeP allows us to
join two abstract states of separate paths into a one common abstract state that precisely
represents the disjunction of both paths.

3.2.2. Extend Algorithm Selection

In our work on algorithm selection, we point out that while our results emphasize the
promising prospects of applying algorithm selection to software verification and provide a
baseline for further empirical research in this direction, there are still several important
aspects that need to be addressed in future research [13].
First, our evaluation is constrained to a limited set of verification strategies. As such,

it is dependent on the strategies in this limited image range that the strategy selector
maps to, whereas extending the range to further verification strategies and different
implementations could further improve effectiveness and general versatility.
Second, we only evaluated our selection model on a given benchmark set. While

this benchmark set is taken from the largest and most diverse publicly available set of
verification tasks, we have no guarantee that our model is useful for selecting verification
strategies for verification tasks outside this repository. In fact, considering that the
features that comprise our selection model only express whether a certain feature of
the programming language is present or not in a verification task, it is even likely
that most sufficiently large verification tasks from real-world applications would not
be distinguishable from each other using our selection model. Consequently, it will be
necessary to refine the selection model. For example, instead of only modeling whether or
not a verification task contains floating-point variables, the model might expose the ratio
of the number of floating-point variables to the total number of variables in the task.

Third, we considered only one verification property in the design of our strategy selector
and the selection of the benchmark set because within CPAchecker, which is the framework
we implemented our approach in, the variety of verification strategies to choose from is
too limited to be interesting for other properties. In practice, however, CPAchecker can be
configured to use the verification property as part of the selection model and this option is
essential for properly and effectively handling verification tasks with different properties:
For example, checking whether a program terminates requires a different approach than
checking whether a given program location is reachable. and in the strategy selector. For
benchmark sets with more than one verification property, it is therefore important to
define a strategy selector that considers the verification property as an additional feature
to distinguish between tasks.

40

3 Summary and Prospects 3.2 Prospects

Fourth, we optimized our strategy selector for a given definition of quality, namely
the the scoring schema from the International Competition on Software Verification (SV-
COMP) [9]. While this scoring schema follows a community consensus that values safety
higher than finding bugs and punishes wrong answers severely, not every user can be
expected to agree with this schema. For example, some users might prefer a pragmatic
approach that focuses on finding as many bugs as possible instead of striving for absolute
safety, which may be an unattainable goal in many large industrial software projects.

Fifth, our approach is based solely on verification expert knowledge some experimenta-
tion to fine-tune the strategy selector. This was feasible for us due to the limitations to
a small set of simple features, a small set of verification strategies, and a known set of
verification tasks. To achieve the improvements outlined in this section and make algo-
rithm selection more versatile, it may be beneficial to apply techniques from the domain
of machine learning. Preliminary research in this direction already exists in the domain of
software verification [46, 49, 99] and combining these techniques with our knowledge on
the strengths and weaknesses of different verification strategies is an interesting topic for
further research that is likely to yield useful tools for making software verification easier
to apply in practice.

3.2.3. Integrate Verification into IDEs

Many large software projects today are developed using integrated development envi-
ronments (IDEs) like for example Eclipse 1, IntelliJ IDEA 2, or Visual Studio 3. These
development environments provide, among other features, not only the ability to write
and display program code, but also to auto-complete code, guide developers through APIs
refactor software designs, generate test cases, build, run and debug systems, and even
perform static analysis to identify potential bugs. Advantages of integrating these various
aspects of software development into one common environment are that developers do not
need to switch between tools, which would unnecessarily waste time and distract them
from their tasks, and that the common user interface facilitates the comprehensibility of
less well-known features by enabling users to visually (and sometimes also linguistically)
relate them directly to features they already know well.
Consequently, adding support for software verification to IDEs might be a means to

expedite practical adoption of software verification. For the Eclipse IDE, there already
exists a plug-in module to integrate the CPROVER model-checking framework, which
includes the bounded model checker Cbmc. 4 It would be an interesting research topic in
the field of empirical software engineering to confirm or disprove the claim that such an
IDE feature is actually useful to developers in practice.

3.2.4. Build More Tooling around Witnesses

We have established a common format for verification witnesses that is already supported
by more than 30 software verifiers, and we have built several different result validators [18]
and one visualization tool based on these witnesses [12]. However, to further increase

1https://www.eclipse.org
2https://www.jetbrains.com/idea
3https://visualstudio.microsoft.com
4https://www.cprover.org/eclipse-plugin/

41

3.2 Prospects 3 Summary and Prospects

adoption of verification witnesses, support our claims of the ubiquity and tool-independence
of the format, and make witnesses more useful in practice, we need to not only improve
existing tools but also to create new applications and new tools for existing applications
of verification witnesses.

For example, we claim that untrusted verification results can be validated using witness-
based result validators. However, while many software verifiers are able to produce
verification witnesses, only four validators for violation witnesses and two validators for
correctness witnesses exist to date, and the set of features supported by these validators
is necessarily limited to the features provided by the frameworks they are embedded
in. Instead, it would be desirable to be able to apply any software verifier as a witness
validator.

A similar problem existed until recently for the concept of conditional model check-
ing [25]. In conditional model checking, a model checker that is unable to completely
solve a verification task does not simply give up with the answer unknown but instead
outputs a condition that describes which parts of the state space it successfully checked
before giving up. A second model checker, called the conditional model checker, could
then attempt to check only the remaining parts of the program. Consequently, there may
be tasks that neither of the two tools could solve on its own but that can be solved by
their combination. In practice, however, this concept did not gain traction, because to
combine two such model checkers in this way, both would need to agree on a common
representation and understanding of the condition that is passed from the first tool to the
second one, and the second tool would need to be able to efficiently apply this condition
within its verification approach. A recent solution to the second part of this dilemma is to
create a reducer that can parse a condition and encode it directly into the input program
using the programming language itself, i.e. reduce the input program to the parts of the
state space not yet checked by the first tool [28]. Thus, a conditional model checker can
be constructed from any off-the-shelf model checker by combining it with a reducer.
This idea is transferable to witness-based result validation: Just like a reducer can be

used to encode a given condition into a given input program to enable conditional model
checking, we could also build a tool to encode a witness automaton into an input program
that can then be verified by any off-the-shelf software verifier, thereby validating the
verification result described by the witness. For violation witnesses, this is basically the
same operation that is performed by the reducer in conditional model checking, because
a violation witness simply restricts the program state space, just like the condition in
conditional model checking. Note that the construction of a test harness performed by
dynamic witness-based result validators is simply a special case of this operation, because
it restricts the program state space to precisely one path. For correctness witnesses,
encoding the witness automaton into the program may not be as straight-forward as
for violation witnesses, but one idea would be to use the invariants from the witness as
assertions in the program to force the verifier to check the invariant.

42

Bibliography

[1] W. Ahrendt, T. Baar, B. Beckert, R. Bubel, M. Giese, R. Hähnle, W. Menzel,
W. Mostowski, A. Roth, S. Schlager, and P. H. Schmitt. The key tool. Software
and System Modeling, 4(1):32–54, 2005.

[2] J. Alglave, A. F. Donaldson, D. Kröning, and M. Tautschnig. Making software
verification tools really work. In Proc. ATVA, LNCS 6996, pages 28–42. Springer,
2011.

[3] H. Aljazzar and S. Leue. Debugging of dependability models using interactive
visualization of counterexamples. In Proc. QEST’08, pages 189–198. IEEE, 2008.

[4] C. Artho, K. Havelund, and S. Honiden. Visualization of concurrent program
executions. In Proc. COMPSAC, pages 541–546. IEEE, 2007.

[5] T. Ball, M. Naik, and S. K. Rajamani. From symptom to cause: Localizing errors
in counterexample traces. In Proc. POPL, pages 97–105. ACM, 2003.

[6] K. Beck. Test Driven Development: By Example. Addison-Wesley, 2002.

[7] M. T. Befrouei, C. Wang, and G. Weissenbacher. Abstraction and mining of traces
to explain concurrency bugs. FMSD, 49(1-2):1–32, 2016.

[8] D. Beyer. Reliable and reproducible competition results with BenchExec and
witnesses (Report on SV-COMP 2016). In Proc. TACAS, LNCS 9636, pages 887–904.
Springer, 2016.

[9] D. Beyer. Software verification with validation of results (Report on SV-COMP
2017). In Proc. TACAS, LNCS 10206, pages 331–349. Springer, 2017.

[10] D. Beyer, A. J. Chlipala, T. A. Henzinger, R. Jhala, and R. Majumdar. Generating
tests from counterexamples. In Proc. ICSE, pages 326–335. IEEE, 2004.

[11] D. Beyer and M. Dangl. SMT-based software model checking: An experimental
comparison of four algorithms. In Proc. VSTTE, LNCS 9971, pages 181–198.
Springer, 2016.

[12] D. Beyer and M. Dangl. Verification-aided debugging: An interactive web-service for
exploring error witnesses. In Proc. CAV (2), LNCS 9780, pages 502–509. Springer,
2016.

[13] D. Beyer and M. Dangl. Strategy selection for software verification based on boolean
features: A simple but effective approach. In Proc. ISoLA, LNCS 11245, pages
144–159. Springer, 2018.

[14] D. Beyer and M. Dangl. Software verification with PDR: Implementation and
empirical evaluation of the state of the art. arXiv/CoRR, 1908(06271), August
2019. http://arxiv.org/abs/1908.06271.

43

https://doi.org/10.1007/s10270-004-0058-x
https://doi.org/10.1007/s10270-004-0058-x
https://doi.org/10.1007/s10270-004-0058-x
https://doi.org/10.1007/978-3-642-24372-1_3
https://doi.org/10.1007/978-3-642-24372-1_3
https://doi.org/10.1007/978-3-642-24372-1_3
https://doi.org/10.1109/QEST.2008.40
https://doi.org/10.1109/QEST.2008.40
https://doi.org/10.1109/COMPSAC.2007.236
https://doi.org/10.1109/COMPSAC.2007.236
https://doi.org/10.1145/640128.604140
https://doi.org/10.1145/640128.604140
https://dl.acm.org/citation.cfm?id=579193
https://doi.org/10.1007/s10703-015-0240-5
https://doi.org/10.1007/s10703-015-0240-5
https://doi.org/10.1007/978-3-662-49674-9_55
https://doi.org/10.1007/978-3-662-49674-9_55
https://doi.org/10.1007/978-3-662-49674-9_55
https://doi.org/10.1007/978-3-662-54580-5_20
https://doi.org/10.1007/978-3-662-54580-5_20
https://doi.org/10.1109/ICSE.2004.1317455
https://doi.org/10.1109/ICSE.2004.1317455
https://doi.org/10.1007/978-3-319-48869-1_14
https://doi.org/10.1007/978-3-319-48869-1_14
https://doi.org/10.1007/978-3-319-48869-1_14
https://doi.org/10.1007/978-3-319-41540-6_28
https://doi.org/10.1007/978-3-319-41540-6_28
https://doi.org/10.1007/978-3-319-41540-6_28
https://doi.org/10.1007/978-3-030-03421-4_11
https://doi.org/10.1007/978-3-030-03421-4_11
https://doi.org/10.1007/978-3-030-03421-4_11
http://arxiv.org/abs/1908.06271
http://arxiv.org/abs/1908.06271
http://arxiv.org/abs/1908.06271
http://arxiv.org/abs/1908.06271

Bibliography Bibliography

[15] D. Beyer and M. Dangl. Software verification with PDR: An implementation of the
state of the art. In Proc. TACAS (1), LNCS 12078, pages 3–21. Springer, 2020.

[16] D. Beyer, M. Dangl, D. Dietsch, and M. Heizmann. Correctness witnesses: Ex-
changing verification results between verifiers. In Proc. FSE, pages 326–337. ACM,
2016.

[17] D. Beyer, M. Dangl, D. Dietsch, and M. Heizmann. Exchanging verification witnesses
between verifiers. In Proc. SE’17, page 93. Gesellschaft für Informatik, 2017.

[18] D. Beyer, M. Dangl, D. Dietsch, M. Heizmann, T. Lemberger, and M. Tautschnig.
Verification witnesses. ACM Trans. Softw. Eng. Methodol., 31(4):57:1–57:69, 2022.

[19] D. Beyer, M. Dangl, D. Dietsch, M. Heizmann, and A. Stahlbauer. Witness validation
and stepwise testification across software verifiers. In Proc. FSE, pages 721–733.
ACM, 2015.

[20] D. Beyer, M. Dangl, D. Dietsch, M. Heizmann, and A. Stahlbauer. Verification
witnesses. In Proc. SE’16, pages 105–106. Gesellschaft für Informatik, 2016.

[21] D. Beyer, M. Dangl, T. Lemberger, and M. Tautschnig. Tests from witnesses:
Execution-based validation of verification results. In Proc. TAP, LNCS 10889, pages
3–23. Springer, 2018.

[22] D. Beyer, M. Dangl, and P. Wendler. Boosting k-induction with continuously-refined
invariants. In Proc. CAV, LNCS 9206, pages 622–640. Springer, 2015.

[23] D. Beyer, M. Dangl, and P. Wendler. Combining k-induction with continuously-
refined invariants. Technical Report MIP-1503, University of Passau, January 2015.
arXiv:1502.00096.

[24] D. Beyer, M. Dangl, and P. Wendler. A unifying view on SMT-based software
verification. J. Autom. Reasoning, 60(3):299–335, 2018.

[25] D. Beyer, T. A. Henzinger, M. E. Keremoglu, and P. Wendler. Conditional model
checking: A technique to pass information between verifiers. In Proc. FSE. ACM,
2012.

[26] D. Beyer, T. A. Henzinger, R. Majumdar, and A. Rybalchenko. Path invariants. In
Proc. PLDI, pages 300–309. ACM, 2007.

[27] D. Beyer, T. A. Henzinger, and G. Théoduloz. Configurable software verification:
Concretizing the convergence of model checking and program analysis. In Proc.
CAV, LNCS 4590, pages 504–518. Springer, 2007.

[28] D. Beyer, M.-C. Jakobs, T. Lemberger, and H. Wehrheim. Reducer-based construc-
tion of conditional verifiers. In Proc. ICSE, pages 1182–1193. ACM, 2018.

[29] D. Beyer, S. Löwe, and P. Wendler. Reliable benchmarking: Requirements and
solutions. Int. J. Softw. Tools Technol. Transfer, 21(1):1–29, 2019.

[30] D. Beyer and P. Wendler. Algorithms for software model checking: Predicate
abstraction vs. Impact. In Proc. FMCAD, pages 106–113. FMCAD, 2012.

[31] A. Biere, A. Cimatti, E. M. Clarke, and Y. Zhu. Symbolic model checking without
BDDs. In Proc. TACAS, LNCS 1579, pages 193–207. Springer, 1999.

44

https://doi.org/10.1007/978-3-030-45190-5_1
https://doi.org/10.1007/978-3-030-45190-5_1
https://doi.org/10.1145/2950290.2950351
https://doi.org/10.1145/2950290.2950351
https://doi.org/10.1145/2950290.2950351
https://dl.gi.de/bitstream/handle/20.500.12116/1288/paper35.pdf
https://dl.gi.de/bitstream/handle/20.500.12116/1288/paper35.pdf
https://doi.org/10.1145/3477579
https://doi.org/10.1145/3477579
https://doi.org/10.1145/2786805.2786867
https://doi.org/10.1145/2786805.2786867
https://doi.org/10.1145/2786805.2786867
https://dl.gi.de/bitstream/handle/20.500.12116/746/105.pdf
https://dl.gi.de/bitstream/handle/20.500.12116/746/105.pdf
https://doi.org/10.1007/978-3-319-92994-1_1
https://doi.org/10.1007/978-3-319-92994-1_1
https://doi.org/10.1007/978-3-319-92994-1_1
https://doi.org/10.1007/978-3-319-21690-4_42
https://doi.org/10.1007/978-3-319-21690-4_42
https://www.sosy-lab.org/~dbeyer/Publications/2015-PA-TR1503.Combining_k-Induction_with_Continuously-Refined_Invariants.pdf
https://www.sosy-lab.org/~dbeyer/Publications/2015-PA-TR1503.Combining_k-Induction_with_Continuously-Refined_Invariants.pdf
http://arxiv.org/abs/1502.00096
https://doi.org/10.1007/s10817-017-9432-6
https://doi.org/10.1007/s10817-017-9432-6
https://doi.org/10.1145/2393596.2393664
https://doi.org/10.1145/2393596.2393664
https://doi.org/10.1145/2393596.2393664
https://doi.org/10.1145/1250734.1250769
https://doi.org/10.1145/1250734.1250769
https://doi.org/10.1007/978-3-540-73368-3_51
https://doi.org/10.1007/978-3-540-73368-3_51
https://doi.org/10.1007/978-3-540-73368-3_51
https://doi.org/10.1145/3180155.3180259
https://doi.org/10.1145/3180155.3180259
https://doi.org/10.1007/s10009-017-0469-y
https://doi.org/10.1007/s10009-017-0469-y
https://www.sosy-lab.org/research/pub/2012-FMCAD.Algorithms_for_Software_Model_Checking.pdf
https://www.sosy-lab.org/research/pub/2012-FMCAD.Algorithms_for_Software_Model_Checking.pdf
https://doi.org/10.1007/3-540-49059-0_14
https://doi.org/10.1007/3-540-49059-0_14

Bibliography Bibliography

[32] J. Birgmeier, A. R. Bradley, and G. Weissenbacher. Counterexample to induction-
guided abstraction-refinement (CTIGAR). In Proc. CAV, LNCS 8559, pages 831–848.
Springer, 2014.

[33] A. Brooks, M. Roper, M. Wood, J. Daly, and J. Miller. Replication’s role in software
engineering. In Guide to Advanced Empirical Software Engineering, pages 365–379.
Springer, 2008.

[34] I. Brückner, K. Dräger, B. Finkbeiner, and H. Wehrheim. Slicing abstractions.
Fundam. Inform., 89(4):369–392, 2008.

[35] J. R. Büchi. On a decision method in restricted second-order arithmetic. In Proc.
ICLMPS, pages 1–11. Stanford University Press, 1962.

[36] C. Cadar, D. Dunbar, and D. R. Engler. KLEE: unassisted and automatic generation
of high-coverage tests for complex systems programs. In Proc. OSDI, pages 209–224.
USENIX Association, 2008.

[37] C. Cadar, V. Ganesh, P. M. Pawlowski, D. L. Dill, and D. R. Engler. EXE:
Automatically generating inputs of death. In Proc. CCS, pages 322–335. ACM,
2006.

[38] M. Chapman, H. Chockler, P. Kesseli, D. Kröning, O. Strichman, and M. Tautschnig.
Learning the language of error. In Proc. ATVA, LNCS 9364, pages 114–130. Springer,
2015.

[39] E. M. Clarke, O. Grumberg, S. Jha, Y. Lu, and H. Veith. Counterexample-guided
abstraction refinement for symbolic model checking. J. ACM, 50(5):752–794, 2003.

[40] E. M. Clarke, T. A. Henzinger, H. Veith, and R. Bloem. Handbook of Model Checking.
Springer, 2018.

[41] L. A. Clarke. A system to generate test data and symbolically execute programs.
IEEE Trans. Softw. Eng., 2(3):215–222, 1976.

[42] H. Cleve and A. Zeller. Locating causes of program failures. In Proc. ICSE, pages
342–351. ACM, 2005.

[43] C. S. Collberg and T. A. Proebsting. Repeatability in computer-systems research.
Commun. ACM, 59(3):62–69, 2016.

[44] P. Cousot and R. Cousot. Static determination of dynamic properties of programs.
In Proc. Int. Symp. on Programming, pages 106–130. Dunod, 1976.

[45] C. Csallner and Y. Smaragdakis. Check ’n’ crash: Combining static checking and
testing. In Proc. ICSE, pages 422–431. ACM, 2005.

[46] M. Czech, E. Hüllermeier, M. Jakobs, and H. Wehrheim. Predicting rankings of
software verification tools. In Proc. SWAN, pages 23–26. ACM, 2017.

[47] M. Dangl, S. Löwe, and P. Wendler. CPAchecker with support for recursive
programs and floating-point arithmetic (competition contribution). In Proc. TACAS,
LNCS 9035, pages 423–425. Springer, 2015.

[48] A. B. de Oliveira, J.-C. Petkovich, and S. Fischmeister. How much does memory
layout impact performance? A wide study. In Proc. REPRODUCE, 2014.

45

https://doi.org/10.1007/978-3-319-08867-9_55
https://doi.org/10.1007/978-3-319-08867-9_55
https://doi.org/10.1007/978-3-319-08867-9_55
https://doi.org/10.1007/978-1-84800-044-5_14
https://doi.org/10.1007/978-1-84800-044-5_14
https://doi.org/10.1007/978-1-84800-044-5_14
http://content.iospress.com/articles/fundamenta-informaticae/fi89-4-02
http://content.iospress.com/articles/fundamenta-informaticae/fi89-4-02
https://doi.org/https://doi.org/10.1016/S0049-237X(09)70564-6
https://doi.org/https://doi.org/10.1016/S0049-237X(09)70564-6
http://www.usenix.org/events/osdi08/tech/full_papers/cadar/cadar.pdf
http://www.usenix.org/events/osdi08/tech/full_papers/cadar/cadar.pdf
http://www.usenix.org/events/osdi08/tech/full_papers/cadar/cadar.pdf
https://doi.org/10.1145/1180405.1180445
https://doi.org/10.1145/1180405.1180445
https://doi.org/10.1145/1180405.1180445
https://doi.org/10.1007/978-3-319-24953-7_9
https://doi.org/10.1007/978-3-319-24953-7_9
https://doi.org/10.1007/978-3-319-24953-7_9
https://doi.org/10.1145/876638.876643
https://doi.org/10.1145/876638.876643
https://doi.org/10.1007/978-3-319-10575-8
https://doi.org/10.1007/978-3-319-10575-8
https://doi.org/10.1109/TSE.1976.233817
https://doi.org/10.1109/TSE.1976.233817
https://doi.org/10.1145/1062455.1062522
https://doi.org/10.1145/1062455.1062522
https://doi.org/10.1145/2812803
https://doi.org/10.1145/2812803
https://www.di.ens.fr/~cousot/COUSOTpapers/publications.www/CousotCousot-ISOP-76-Dunod-p106--130-1976.pdf
https://www.di.ens.fr/~cousot/COUSOTpapers/publications.www/CousotCousot-ISOP-76-Dunod-p106--130-1976.pdf
https://doi.org/10.1145/1062455.1062533
https://doi.org/10.1145/1062455.1062533
https://doi.org/10.1145/3121257.3121262
https://doi.org/10.1145/3121257.3121262
https://doi.org/10.1007/978-3-662-46681-0_34
https://doi.org/10.1007/978-3-662-46681-0_34
https://doi.org/10.1007/978-3-662-46681-0_34
https://uwaterloo.ca/embedded-software-group/publications/how-much-does-memory-layout-impact-performance-wide-study
https://uwaterloo.ca/embedded-software-group/publications/how-much-does-memory-layout-impact-performance-wide-study

Bibliography Bibliography

[49] Y. Demyanova, H. Veith, and F. Zuleger. On the concept of variable roles and its
use in software analysis. In Proc. FMCAD, pages 226–230. IEEE, 2013.

[50] K. Dräger, A. Kupriyanov, B. Finkbeiner, and H. Wehrheim. Slab: A certifying
model checker for infinite-state concurrent systems. In Proc. TACAS, LNCS 6015,
pages 271–274. Springer, 2010.

[51] S. Edelkamp, A. Lluch-Lafuente, and S. Leue. Directed explicit model checking
with HSF-SPIN. In Proc. SPIN, pages 57–79, 2001.

[52] P. A. Eisenstein. Alexa start my car: How next year’s models are in the fast lane
for high tech. NBC News, 2017.

[53] E. Ermis, J. Hoenicke, and A. Podelski. Splitting via interpolants. In Proc. VMCAI,
LNCS 7148, pages 186–201. Springer, 2012.

[54] E. Ermis, A. Nutz, D. Dietsch, J. Hoenicke, and A. Podelski. Ultimate Kojak
(competition contribution). In Proc. TACAS, LNCS 8413, pages 421–423. Springer,
2014.

[55] E. Ermis, M. Schäf, and T. Wies. Error invariants. In Proc. FM, LNCS 7436, pages
187–201. Springer, 2012.

[56] A. Farzan, M. Heizmann, J. Hoenicke, Z. Kincaid, and A. Podelski. Automated
program verification. In Proc. LATA, LNCS 8977, pages 25–46. Springer, 2015.

[57] P. Godefroid, N. Klarlund, and K. Sen. Dart: Directed automated random testing.
In Proc. PLDI, pages 213–223. ACM, 2005.

[58] P. Godefroid and K. Sen. Combining model checking and testing. In Handbook of
Model Checking, pages 613–649. Springer, 2018.

[59] A. Gotlieb, B. Botella, and M. Rueher. Automatic test data generation using
constraint solving techniques. In Proc. ISSTA, pages 53–62. ACM, 1998.

[60] A. Groce, S. Chaki, D. Kröning, and O. Strichman. Error explanation with distance
metrics. STTT, 8(3):229–247, 2006.

[61] A. Groce and D. Kröning. Making the most of bmc counterexamples. Electr. Notes
Theor. Comput. Sci., 119(2):67–81, 2005.

[62] A. Groce, D. Kröning, and F. Lerda. Understanding counterexamples with explain.
In Proc. CAV’04, LNCS 3114, pages 453–456. Springer, 2004.

[63] A. Groce and W. Visser. What went wrong: Explaining counterexamples. In Proc.
SPIN, LNCS 2648, pages 121–135. Springer, 2003.

[64] O. Grumberg, F. Lerda, O. Strichman, and M. Theobald. Proof-guided
underapproximation-widening for multi-process systems. In Proc. POPL, pages
122–131. ACM, 2005.

[65] B. S. Gulavani, T. A. Henzinger, Y. Kannan, A. V. Nori, and S. K. Rajamani.
Synergy: A new algorithm for property checking. In Proc. FSE, pages 117–127.
ACM, 2006.

46

http://ieeexplore.ieee.org/xpl/freeabs_all.jsp?arnumber=6679414
http://ieeexplore.ieee.org/xpl/freeabs_all.jsp?arnumber=6679414
https://doi.org/10.1007/978-3-642-12002-2_22
https://doi.org/10.1007/978-3-642-12002-2_22
https://doi.org/10.1007/978-3-642-12002-2_22
https://doi.org/10.1007/3-540-45139-0_5
https://doi.org/10.1007/3-540-45139-0_5
https://www.nbcnews.com/tech/tech-news/alexa-start-my-car-how-next-year-s-models-are-n809036.
https://www.nbcnews.com/tech/tech-news/alexa-start-my-car-how-next-year-s-models-are-n809036.
https://doi.org/10.1007/978-3-642-27940-9_13
https://doi.org/10.1007/978-3-642-27940-9_13
https://doi.org/10.1007/978-3-642-54862-8_36
https://doi.org/10.1007/978-3-642-54862-8_36
https://doi.org/10.1007/978-3-642-54862-8_36
https://doi.org/10.1007/978-3-642-32759-9_17
https://doi.org/10.1007/978-3-642-32759-9_17
https://doi.org/10.1007/978-3-319-15579-1_2
https://doi.org/10.1007/978-3-319-15579-1_2
https://doi.org/10.1145/1065010.1065036
https://doi.org/10.1145/1065010.1065036
https://doi.org/10.1007/978-3-319-10575-8_19
https://doi.org/10.1007/978-3-319-10575-8_19
https://doi.org/10.1145/271771.271790
https://doi.org/10.1145/271771.271790
https://doi.org/10.1007/s10009-005-0202-0
https://doi.org/10.1007/s10009-005-0202-0
https://doi.org/10.1016/j.entcs.2004.12.023
https://doi.org/10.1016/j.entcs.2004.12.023
https://doi.org/10.1007/978-3-540-27813-9_35
https://doi.org/10.1007/978-3-540-27813-9_35
https://doi.org/10.1007/3-540-44829-2_8
https://doi.org/10.1007/3-540-44829-2_8
https://doi.org/10.1145/1040305.1040316
https://doi.org/10.1145/1040305.1040316
https://doi.org/10.1145/1040305.1040316
https://doi.org/10.1145/1181775.1181790
https://doi.org/10.1145/1181775.1181790
https://doi.org/10.1145/1181775.1181790

Bibliography Bibliography

[66] N. Gupta, A. P. Mathur, and M. L. Soffa. Generating test data for branch coverage.
In Proc. ASE, pages 219–228. IEEE, 2000.

[67] K. Havelund and T. Pressburger. Model checking Java programs using Java
PathFinder. Int. J. Softw. Tools Technol. Transfer, 2(4):366–381, 2000.

[68] M. Heizmann, J. Hoenicke, and A. Podelski. Refinement of trace abstraction. In
Proc. SAS, LNCS 5673, pages 69–85. Springer, 2009.

[69] M. Heizmann, J. Hoenicke, and A. Podelski. Nested interpolants. In Proc. POPL,
pages 471–482. ACM, 2010.

[70] M. Heizmann, J. Hoenicke, and A. Podelski. Software model checking for people
who love automata. In Proc. CAV, LNCS 8044, pages 36–52. Springer, 2013.

[71] A. Holzer, C. Schallhart, M. Tautschnig, and H. Veith. How did you specify your
test suite. In Proc. ASE, pages 407–416. ACM, 2010.

[72] R. Jasper, M. Brennan, K. Williamson, B. Currier, and D. Zimmerman. Test data
generation and infeasible path analysis. In Proc. ISSTA, pages 95–107. ACM, 1994.

[73] M. Jose and R. Majumdar. Bug-assist: Assisting fault localization in ANSI-C
programs. In Proc. CAV, LNCS 6806, pages 504–509. Springer, 2011.

[74] M. Jose and R. Majumdar. Cause clue clauses: Error localization using maximum
satisfiability. In Proc. PLDI, pages 437–446. ACM, 2011.

[75] D. Jovanovic and B. Dutertre. Property-directed k-induction. In Proc. FMCAD,
pages 85–92. IEEE, 2016.

[76] F. P. B. Jr. The computer scientist as a toolsmith ii. Commun. ACM, 39(3):61–68,
1996.

[77] N. Juristo and O. S. Gómez. Replication of software engineering experiments. In
Empirical Software Engineering and Verification, pages 60–88. Springer, 2012.

[78] J. C. King. Symbolic execution and program testing. Commun. ACM, 19(7):385–394,
1976.

[79] S. Krishnamurthi and J. Vitek. The real software crisis: Repeatability as a core
value. Commun. ACM, 58(3):34–36, 2015.

[80] S. Leue and M. T. Befrouei. Counterexample explanation by anomaly detection. In
Proc. SPIN, LNCS 7385, pages 24–42. Springer, 2012.

[81] K. Li, C. Reichenbach, C. Csallner, and Y. Smaragdakis. Residual investigation:
predictive and precise bug detection. In Proc. ISSTA, pages 298–308. ACM, 2012.

[82] G. Maheswara, J. S. Bradbury, and C. Collins. TIE: an interactive visualization of
thread interleavings. In Proc. SoftVis, pages 215–216, 2010.

[83] R. Majumdar and K. Sen. Hybrid concolic testing. In Proc. ICSE, pages 416–426.
IEEE, 2007.

[84] Z. Manna and A. Pnueli. Temporal verification of reactive systems: Safety. Springer,
1995.

47

https://doi.org/10.1109/ASE.2000.873666
https://doi.org/10.1109/ASE.2000.873666
https://doi.org/https://doi.org/10.1007/s100090050043
https://doi.org/https://doi.org/10.1007/s100090050043
https://doi.org/10.1007/978-3-642-03237-0_7
https://doi.org/10.1007/978-3-642-03237-0_7
https://doi.org/10.1145/1706299.1706353
https://doi.org/10.1145/1706299.1706353
https://doi.org/10.1007/978-3-642-39799-8_2
https://doi.org/10.1007/978-3-642-39799-8_2
https://doi.org/10.1145/1858996.1859084
https://doi.org/10.1145/1858996.1859084
https://doi.org/10.1145/186258.187150
https://doi.org/10.1145/186258.187150
https://doi.org/10.1007/978-3-642-22110-1_40
https://doi.org/10.1007/978-3-642-22110-1_40
https://doi.org/10.1145/1993498.1993550
https://doi.org/10.1145/1993498.1993550
https://doi.org/10.1109/FMCAD.2016.7886665
https://doi.org/10.1109/FMCAD.2016.7886665
https://doi.org/10.1145/227234.227243
https://doi.org/10.1145/227234.227243
https://doi.org/10.1007/978-3-642-25231-0_2
https://doi.org/10.1007/978-3-642-25231-0_2
https://doi.org/10.1145/360248.360252
https://doi.org/10.1145/360248.360252
https://doi.org/10.1145/2658987
https://doi.org/10.1145/2658987
https://doi.org/10.1007/978-3-642-31759-0_5
https://doi.org/10.1007/978-3-642-31759-0_5
https://doi.org/10.1145/2338965.2336789
https://doi.org/10.1145/2338965.2336789
https://doi.org/10.1145/1879211.1879247
https://doi.org/10.1145/1879211.1879247
http://doi.ieeecomputersociety.org/10.1109/ICSE.2007.41
http://doi.ieeecomputersociety.org/10.1109/ICSE.2007.41
https://doi.org/10.1007/978-1-4612-4222-2
https://doi.org/10.1007/978-1-4612-4222-2

Bibliography Bibliography

[85] P. Müller and J. N. Ruskiewicz. Using debuggers to understand failed verification
attempts. In Proc. FM, LNCS 6664, pages 73–87. Springer, 2011.

[86] V. Murali, N. Sinha, E. Torlak, and S. Chandra. What gives? A hybrid algorithm
for error trace explanation. In Proc. VSTTE, pages 270–286, 2014.

[87] G. J. Myers, C. Sandler, and T. Badgett. The Art of Software Testing. Wiley
Publishing, 3rd edition, 2011.

[88] R. Pandita, T. Xie, N. Tillmann, and J. de Halleux. Guided test generation for
coverage criteria. In Proc. ICSM, pages 1–10. IEEE, 2010.

[89] J. Parviainen, T. Turja, and L. v. Aerschot. Robots and human touch in care:
Desirable and non-desirable robot assistance. In Proc. ICSR’18, LNCS 11357, pages
533–540. Springer, 2018.

[90] A. Podelski, M. Schäf, and T. Wies. Classifying bugs with interpolants. In Proc.
TAP, LNCS 9762, pages 151–168. Springer, 2016.

[91] C. V. Ramamoorthy, S.-B. F. Ho, and W. T. Chen. On the automated generation
of program test data. IEEE Trans. Softw. Eng., 2(4):293–300, 1976.

[92] M. Renieris and S. P. Reiss. Fault localization with nearest neighbor queries. In
Proc. ASE, pages 30–39. IEEE, 2003.

[93] J. R. Rice. The algorithm selection problem. Advances in Computers, 15:65–118,
1976.

[94] E. F. Rizzi, S. Elbaum, and M. B. Dwyer. On the techniques we create, the tools
we build, and their misalignments: A study of Klee. In Proc. ICSE, pages 132–143.
ACM, 2016.

[95] H. Rocha, R. S. Barreto, L. C. Cordeiro, and A. D. Neto. Understanding program-
ming bugs in ANSI-C software using bounded model checking counter-examples. In
Proc. IFM, LNCS 7321, pages 128–142. Springer, 2012.

[96] V. Schuppan and A. Biere. Liveness checking as safety checking for infinite state
spaces. Electr. Notes Theor. Comput. Sci., 149(1):79–96, 2006.

[97] K. Sen, D. Marinov, and G. Agha. Cute: A concolic unit testing engine for C. In
Proc. FSE, pages 263–272. ACM, 2005.

[98] M. Spiessl. Configurable software verification based on slicing abstractions. Master’s
Thesis, LMU Munich, Software Systems Lab, 2018.

[99] V. Tulsian, A. Kanade, R. Kumar, A. Lal, and A. V. Nori. MUX: Algorithm
selection for software model checkers. In Proc. MSR. ACM, 2014.

[100] A. Turing. On computable numbers, with an application to the entscheidungsprob-
lem. In Proc. LMS, volume s2-42, pages 230–265. London Mathematical Society,
1937.

[101] M. Y. Vardi. An automata-theoretic approach to linear temporal logic. In Logics
for Concurrency - Structure versus Automata (Proc. Banff’95), LNCS 1043, pages
238–266. Springer, 1996.

48

https://doi.org/10.1007/978-3-642-21437-0_8
https://doi.org/10.1007/978-3-642-21437-0_8
https://doi.org/10.1007/978-3-319-12154-3_17
https://doi.org/10.1007/978-3-319-12154-3_17
http://eu.wiley.com/WileyCDA/WileyTitle/productCd-1118031962.html
http://eu.wiley.com/WileyCDA/WileyTitle/productCd-1118031962.html
https://doi.org/10.1109/ICSM.2010.5609565
https://doi.org/10.1109/ICSM.2010.5609565
https://doi.org/10.1007/978-3-030-05204-1_52
https://doi.org/10.1007/978-3-030-05204-1_52
https://doi.org/10.1007/978-3-030-05204-1_52
https://doi.org/10.1007/978-3-319-41135-4_9
https://doi.org/10.1007/978-3-319-41135-4_9
https://doi.org/10.1109/TSE.1976.233835
https://doi.org/10.1109/TSE.1976.233835
https://doi.org/10.1109/ASE.2003.1240292
https://doi.org/10.1109/ASE.2003.1240292
https://doi.org/https://doi.org/10.1016/S0065-2458(08)60520-3
https://doi.org/https://doi.org/10.1016/S0065-2458(08)60520-3
https://doi.org/10.1145/2884781.2884835
https://doi.org/10.1145/2884781.2884835
https://doi.org/10.1145/2884781.2884835
http://dx.doi.org/10.1007/978-3-642-30729-4_10
http://dx.doi.org/10.1007/978-3-642-30729-4_10
http://dx.doi.org/10.1007/978-3-642-30729-4_10
https://doi.org/10.1016/j.entcs.2005.11.018
https://doi.org/10.1016/j.entcs.2005.11.018
https://doi.org/10.1145/1081706.1081750
https://doi.org/10.1145/1081706.1081750
https://www.sosy-lab.org/research/msc/2018.Spiessl.Configurable_Software_Verification_based_on_Slicing_Abstractions.pdf
https://www.sosy-lab.org/research/msc/2018.Spiessl.Configurable_Software_Verification_based_on_Slicing_Abstractions.pdf
https://www.microsoft.com/en-us/research/wp-content/uploads/2016/02/msr14.pdf
https://www.microsoft.com/en-us/research/wp-content/uploads/2016/02/msr14.pdf
https://doi.org/10.1112/plms/s2-42.1.230
https://doi.org/10.1112/plms/s2-42.1.230
https://doi.org/10.1112/plms/s2-42.1.230
https://doi.org/https://doi.org/10.1007/3-540-60915-6_6
https://doi.org/https://doi.org/10.1007/3-540-60915-6_6
https://doi.org/https://doi.org/10.1007/3-540-60915-6_6

Bibliography Bibliography

[102] W. Visser, C. S. Păsăreanu, and S. Khurshid. Test input generation with Java
PathFinder. In Proc. ISSTA, pages 97–107. ACM, 2004.

[103] J. Vitek and T. Kalibera. Repeatability, reproducibility, and rigor in systems
research. In Proc. EMSOFT, pages 33–38. ACM, 2011.

[104] T. Wahl. The k-induction principle, 2013. Available at http://www.ccs.neu.edu/
home/wahl/Publications/k-induction.pdf.

[105] X. Wang, L. Zhang, T. Xie, J. Anvik, and J. Sun. An approach to detecting
duplicate bug reports using natural language and execution information. In Proc.
ICSE, pages 461–470, 2008.

[106] P. Wendler. Towards practical predicate analysis. PhD Thesis, University of Passau,
Software Systems Lab, 2017.

[107] A. Zeller. Isolating cause-effect chains from computer programs. In Proc. FSE,
pages 1–10. ACM, 2002.

49

https://doi.org/10.1145/1007512.1007526
https://doi.org/10.1145/1007512.1007526
https://doi.org/10.1145/2038642.2038650
https://doi.org/10.1145/2038642.2038650
http://www.ccs.neu.edu/home/wahl/Publications/k-induction.pdf
http://www.ccs.neu.edu/home/wahl/Publications/k-induction.pdf
http://www.ccs.neu.edu/home/wahl/Publications/k-induction.pdf
https://doi.org/10.1145/1368088.1368151
https://doi.org/10.1145/1368088.1368151
https://doi.org/10.1145/1368088.1368151
https://www.sosy-lab.org/research/phd/wendler/
https://www.sosy-lab.org/research/phd/wendler/
https://doi.org/10.1145/587051.587053
https://doi.org/10.1145/587051.587053

A. Manuscripts

In this chapter, we reprint the manuscripts we wrote with the goal to accomplish the
tasks we defined to reach the objectives of this thesis described in Chapter 1. Each
manuscript corresponds to exactly one task. The order in which the manuscripts appear
in the following corresponds to the order of the objectives and corresponding tasks
from Chapter 1, i.e., the manuscripts are ordered and grouped semantically rather than
chronologically in the order of their publication dates.

51

Boosting k-Induction
with Continuously-Refined Invariants

Dirk Beyer, Matthias Dangl, and Philipp Wendler

University of Passau, Passau, Germany

Abstract. k-induction is a promising technique to extend bounded
model checking from falsification to verification. In software verification,
k-induction works only if auxiliary invariants are used to strengthen the
induction hypothesis. The problem that we address is to generate such
invariants (1) automatically without user-interaction, (2) efficiently such
that little verification time is spent on the invariant generation, and
(3) that are sufficiently strong for a k-induction proof. We boost the
k-induction approach to significantly increase effectiveness and efficiency
in the following way: We start in parallel to k-induction a data-flow-
based invariant generator that supports dynamic precision adjustment
and refine the precision of the invariant generator continuously during
the analysis, such that the invariants become increasingly stronger. The
k-induction engine is extended such that the invariants from the invariant
generator are injected in each iteration to strengthen the hypothesis. The
new method solves the above-mentioned problem because it (1) automat-
ically chooses an invariant by step-wise refinement, (2) starts always with
a lightweight invariant generation that is computationally inexpensive,
and (3) refines the invariant precision more and more to inject stronger
and stronger invariants into the induction system. We present and eval-
uate an implementation of our approach, as well as all other existing
approaches, in the open-source verification-framework CPAchecker.
Our experiments show that combining k-induction with continuously-
refined invariants significantly increases effectiveness and efficiency, and
outperforms all existing implementations of k-induction-based verifica-
tion of C programs in terms of successful results.

1 Introduction

Advances in software verification in recent years have lead to increased efforts
towards applying formal verification methods to industrial software, in par-
ticular operating-systems code [3,4,34]. One model-checking technique that is
implemented by half of the verifiers that participated in the 2015 Competition
on Software Verification [7] is bounded model checking (BMC) [16,17,22]. For
unbounded systems, BMC can be used only for falsification, not for verifica-
tion [15]. This limitation to falsification can be overcome by combining BMC

A preliminary version of this article appeared as technical report [8].

c© Springer International Publishing Switzerland 2015
D. Kroening and C.S. Păsăreanu (Eds.): CAV 2015, Part I, LNCS 9206, pp. 622–640, 2015.
DOI: 10.1007/978-3-319-21690-4 42

Boosting k-Induction with Continuously-Refined Auxiliary Invariants A Manuscripts

52

Boosting k-Induction with Continuously-Refined Invariants 623

with mathematical induction and thus extending it to verification [26]. Unfor-
tunately, inductive approaches are not always powerful enough to prove the
required verification conditions, because not all program invariants are induc-
tive [2]. Using the more general k-induction [38] instead of standard induction is
more powerful [37] and has already been implemented in the DMA-race analy-
sis tool Scratch [27] and in the software verifier Esbmc [35]. Nevertheless,
additional supportive measures are often required to guide k-induction and take
advantage of its full potential [25]. Our goal is to provide a powerful and com-
petitive approach for reliable, general-purpose software verification based on
BMC and k-induction, implemented in a state-of-the-art software-verification
framework.

Our contribution is a new combination of k-induction-based model check-
ing with automatically-generated continuously-refined invariants that are used to
strengthen the induction hypothesis, which increases the effectiveness and effi-
ciency of the approach. BMC and k-induction are combined in an algorithm
that iteratively increments the induction parameter k (iterative deepening). The
invariant generation runs in parallel to the k-induction proof construction, start-
ing with relatively weak (but inexpensive to compute) invariants, and increasing
the strength of the invariants over time as long as the analysis continues. The
k-induction-based proof construction adopts the currently known set of invari-
ants in every new proof attempt. This approach can verify easy problems quickly
(with a small initial k and weak invariants), and is able to verify complex prob-
lems by increasing the effort (by incrementing k and searching for stronger invari-
ants). Thus, it is both efficient and effective. In contrast to previous work [35], the
new approach is sound. We implemented our approach as part of the open-source
software-verification framework CPAchecker [12], and we perform an extensive
experimental comparison of our implementation against the two existing tools that
use k-induction and against other common software-verification approaches.

Contributions. We make the following contributions:

• a novel approach for providing continuously-refined invariants from data-flow
analysis with precision adjustment in order to repeatedly inject invariants to
k-induction,

• an effective and efficient tool implementation of a framework for software
verification with k-induction that allows to express all existing approaches to
k-induction in a uniform, module-based, configurable architecture, and

• an extensive experimental evaluation of (a) all approaches and their imple-
mentations in the framework, (b) the two existing k-induction tools Cbmc
and Esbmc, and (c) the two different approaches predicate analysis and value
analysis; the result being that the new technique outperforms all existing
k-induction-based approaches to software verification.

Availability of Data and Tools. Our experiments are based on benchmark
verification tasks from the 2015 Competition on Software Verification. All bench-
marks, tools, and results of our evaluation are available on a supplementary web
page1.

1 http://www.sosy-lab.org/∼dbeyer/cpa-k-induction/
(successfully evaluated by the CAV 2015 Artifact Evaluation Committee)

A Manuscripts Boosting k-Induction with Continuously-Refined Auxiliary Invariants

53

http://www.sosy-lab.org/~dbeyer/cpa-k-induction/

624 D. Beyer, M. Dangl, and P. Wendler

1 int main() {
2 unsigned int x1 = 0, x2 = 0;
3 int s = 1;
4

5 while (nondet()) {
6 if (s == 1) x1++;
7 else if (s == 2) x2++;
8

9 s++;
10 if (s == 5) s = 1;
11

12 if ((s == 1) && (x1 != x2)) {
13 // Valid safety property
14 ERROR: return 1;
15 }
16 }
17 }

Fig. 1. Safe example program
example-safe, which cannot be
proven with existing k-induction-based
approaches

1 int main() {
2 unsigned int x1 = 0, x2 = 0;
3 int s = 1;
4

5 while (nondet()) {
6 if (s == 1) x1++;
7 else if (s == 2) x2++;
8

9 s++;
10 if (s == 5) s = 1;
11 }
12

13 if (s >= 4) {
14 // Violation: s may be 4
15 ERROR: return 1;
16 }
17 }

Fig. 2. Unsafe example program
example-unsafe, where some
approaches may produce a wrong
proof

Example. We illustrate the problem of k-induction that we address, and the
strength of our approach, on two example programs. Both programs encode an
automaton, which is typical, e.g., for software that implements a communication
protocol. The automaton has a finite set of states, which is encoded by variable s,
and two data variables x1 and x2. There are some state-dependent calculations
(lines 6 and 7 in both programs) that alternatingly increment x1 and x2, and a
calculation of the next state (lines 9 and 10 in both programs). The state variable
cycles through the range from 1 to 4. These calculations are done in a loop with
a non-deterministic number of iterations. Both programs also contain a safety
property (the label ERROR should not be reachable). The program example-safe

in Fig. 1 checks that in every fourth state, the values of x1 and x2 are equal; it
satisfies the property. The program example-unsafe in Fig. 2 checks that when
the loop exits, the value of state variable s is not greater or equal to 4; it violates
the property.

First, note that the program example-safe is difficult or impossible to prove
with many classical software-verification approaches other than k-induction:
(1) BMC cannot prove safety for this program because the loop may run
arbitrarily long. (2) Explicit-state model checking fails because of the huge
state space (x1 and x2 can get arbitrarily large). (3) Predicate analysis with
counterexample-guided abstraction refinement (CEGAR) and interpolation is
able to prove safety, but only if the predicate x1 = x2 gets discovered. If
the interpolants contain instead only predicates such as x1 = 1, x2 = 1,
x1 = 2, etc., the predicate analysis will not terminate. Which predicates
get discovered is hard to control and usually depends on internal interpola-
tion heuristics of the satisfiability-modulo-theory (SMT) solver. (4) Traditional
1-induction is also not able to prove the program safe because the assertion
is checked only in every fourth loop iteration (when s equals 1). Thus, the
induction hypothesis is too weak (the program state s = 4, x1 = 0, x2 = 1

is a counterexample for the step case in the induction proof).

Boosting k-Induction with Continuously-Refined Auxiliary Invariants A Manuscripts

54

Boosting k-Induction with Continuously-Refined Invariants 625

Intuitively, this program should be provable by k-induction with a k of at
least 4. However, for every k, there is a counterexample to the inductive-step
case that refutes the proof. For such a counterexample, set s = −k, x1 = 0,
x2 = 1 at the beginning of the loop. Starting in this state, the program would
increment s k times (induction hypothesis) and then reach s = 1 with property-
violating values of x1 and x2 in iteration k+1 (inductive step). It is clear that s
can never be negative, but this fact is not present in the induction hypothesis,
and thus, the proof fails. This illustrates the general problem of k-induction-
based verification: safety properties often do not hold in unreachable parts of the
state space of a program, and k-induction alone does not distinguish between
reachable and unreachable parts of the state space. Therefore, approaches based
on k-induction without auxiliary invariants will fail to prove safety for program
example-safe.

This program could of course be verified more easily if it were rewritten to
contain a stronger safety property such as s ≥ 1∧s ≤ 4∧(s = 2 ⇒ x1 = x2 +1)∧
(s �= 2 ⇒ x1 = x2) (which is a loop invariant and allows a proof by 1-induction
without auxiliary invariants). However, our goal is to automatically verify real
programs, and programmers usually neither write down trivial properties such
as s ≥ 1 nor more complex properties such as s �= 2 ⇒ x1 = x2 .

Our approach of combining k-induction with invariants proves the program
safe with k = 4 and the invariant s ≥ 1. This invariant is easy to find auto-
matically using an inexpensive data-flow analysis, such as an interval analysis.
For larger programs, a more complex invariant might be necessary, which might
get generated at some point by our continuous strengthening of the invariant.
Furthermore, stronger invariants can reduce the k that is necessary to prove a
program. For example, the invariant s ≥ 1 ∧ s ≤ 4 ∧ (s �= 2 ⇒ x1 = x2) (which
is still weaker than the full loop invariant above) allows to prove the program
with k = 2. Thus, our strengthening of invariants can also shorten the inductive
proof procedure and lead to better performance.

An existing approach tries to solve this problem of a too-weak induction
hypothesis by initializing only the variables of the loop-termination condition
to a non-deterministic value in the step case, and initializing all other vari-
ables to their initial value in the program [35]. However, this approach is not
strong enough for the program example-safe and even produces a wrong proof
(unsound result) for the program example-unsafe. This second example pro-
gram contains a different safety property about s, which is violated. Because
the variable s does not appear in the loop-termination condition, it is not set
to an arbitrary value in the step case as it should be, and the inductive proof
wrongly concludes that the program is safe because the induction hypothesis is
too strong, leading to a missed bug and a wrong result. Our approach does not
suffer from this unsoundness, because we add only invariants to the induction
hypothesis that the invariant generation has proven to hold.

Related Work. The use of auxiliary invariants is a common technique in soft-
ware verification [2,9,10,18,19,20,23,30,36], and techniques combining data-flow
analysis and SMT solvers also exist [28,31]. In most cases, the purpose is to
speed up the analysis. For k-induction, however, the use of invariants is crucial

A Manuscripts Boosting k-Induction with Continuously-Refined Auxiliary Invariants

55

626 D. Beyer, M. Dangl, and P. Wendler

in making the analysis terminate at all (cf. Fig. 1). There are several approaches
to software verification using BMC in combination with k-induction.

Split-Case Induction. We use the split-case k-induction technique [26,27], where
the base case and the step case are checked in separate steps. Earlier versions of
Scratch [27] that use this technique transform programs with multiple loops
into programs with only one single monolithic loop using a standard approach [1].
The alternative of recursively applying the technique to nested loops is discarded
by the authors of Scratch [27], because the experiments suggested it was less
efficient than checking the single loop that is obtained by the transformation.
We also experimented with single-loop transformation, but our experimental
results suggest that checking all loops at once in each case instead of checking
the monolithic transformation result (which also encodes all loops in one) has
no negative performance impact, so for simplicity, we omit the transformation.
Scratch also supports combined-case k-induction [25], for which all loops are
cut by replacing them with k copies each for the base and the step case, and
setting all loop-modified variables to non-deterministic values before the step
case. That way, both cases can be checked at once in the transformed program
and no special handling for multiple loops is required. When using combined-
case k-induction, Scratch requires loops to be manually annotated with the
required k values, whereas its implementation of split-case k-induction supports
iterative deepening of k as in our implementation. Contrary to Scratch, we do
not focus on one specific problem domain [26,27], but want to provide a solution
for solving a wide range of heterogeneous verification tasks.

Auxiliary Invariants. While both the split-case and the combined-case
k-induction supposedly succeed with weaker auxiliary invariants than for
example the inductive invariant approach [5], the approaches still do require
auxiliary invariants in practice, and the tool Scratch requires these invariants
to be annotated manually [25,27]. There are techniques for automatically gen-
erating invariants that may be used to help inductive approaches to succeed
(e.g. [2,9,20]. These techniques, however, do not justify their additional effort
because they are not guaranteed to provide the required invariants on time,
especially if strong auxiliary invariants are required. Based on previous ideas of
supporting k-induction with invariants generated by lightweight data-flow analy-
sis [24], we therefore strive to leverage the power of the k-induction approach
to succeed with auxiliary invariants generated by a data-flow analysis based on
intervals. However, to handle cases where it is necessary to invest more effort
into invariant generation, we increase the precision of these invariants over time.

Invariant Injection. A verification tool using a strategy similar to ours is
PKind [28,33], a model checker for Lustre programs based on k-induction. In
PKind, there is a parallel computation of auxiliary invariants, where candi-
date invariants derived by templates are iteratively checked via k-induction and,
if successful, added to the set of known invariants [32]. While this allows for
strengthening the induction hypothesis over time, the template-based approach
lacks the flexibility that is available to an invariant generator using dynamic
precision refinement [11], and the required additional induction proofs are

Boosting k-Induction with Continuously-Refined Auxiliary Invariants A Manuscripts

56

Boosting k-Induction with Continuously-Refined Invariants 627

potentially expensive. We implemented checking candidate invariants with
k-induction as a possible strategy of our invariant generation component.

Unsound Strengthening of Induction Hypothesis. Esbmc does not require addi-
tional invariants for k-induction, because it assigns non-deterministic values only
to the loop-termination condition variables before the inductive-step case [35]
and thus retains more information than our as well as the Scratch implemen-
tation [25,27], but k-induction in Esbmc is therefore potentially unsound. Our
goal is to perform a real proof of safety by removing all pre-loop information in
the step case, thus treating the unrolled iterations in the step case truly as “any
k consecutive iterations”, as is required for the mathematical induction. Our
approach counters this lack of information by employing incrementally-refined
invariant generation.

Parallel Induction. PKind checks the base case and the step case in parallel,
and Esbmc supports parallel execution of the base case, the forward condition,
and the inductive-step case. In contrast, our base case and inductive-step case
are checked sequentially, while our invariant generation runs in parallel to the
base- and step-case checks.

2 k-Induction with Continuously-Refined Invariants

Our verification approach consists of two algorithms that run concurrently.
One algorithm is responsible for generating program invariants, starting with
an imprecise invariant, continuously refining (strengthening) the invariant. The
other algorithm is responsible for finding error paths with BMC, and for con-
structing safety proofs with k-induction, for which it periodically picks up the
new invariant that the former algorithm has constructed so far. The k-induction
algorithm uses information from the invariant generation, but not vice versa.
In our presentation, we assume that each program contains at most one loop;
in our implementation, we handle programs with multiple loops by checking all
loops together.

Iterative-Deepening k-Induction. Algorithm 1 shows our extension of the
k-induction algorithm to a combination with continuously-refined invariants.
Starting with an initial value for the bound k, e.g., 1, we iteratively increase the
value of k after each unsuccessful attempt at finding a specification violation or
proving correctness of the program using k-induction. The following description
of our approach to k-induction is based on split-case k-induction [25], where
for the propositional state variables s and s′ within a state-transition system
that represents the program, the predicate I(s) denotes that s is an initial state,
T (s, s′) states that a transition from s to s′ exists, and P (s) asserts the safety
property for the state s.

Base Case. Lines 3 to 5 implement the base case, which consists of running BMC
with the current bound k. This means that starting from an initial program state,
all paths of the program up to a maximum path length k − 1 are explored. If an
error path is found, the algorithm terminates.

A Manuscripts Boosting k-Induction with Continuously-Refined Auxiliary Invariants

57

628 D. Beyer, M. Dangl, and P. Wendler

Algorithm 1 Iterative-Deepening k-Induction

Input:
the initial value kinit ≥ 1 for the bound k,
an upper limit kmax for the bound k,
a function inc : N → N with ∀n ∈ N : inc(n) > n for increasing the bound k,
the initial states defined by the predicate I,
the transfer relation defined by the predicate T , and
a safety property P

Output: true if P holds, false otherwise
1: k := kinit
2: while k ≤ kmax do

3: base_case := I(s0)∧
k−1∨
n=0

(
n−1∧
i=0

T (si,si+1)∧¬P(sn)

)

4: if sat(base_case) then
5: return false

6: forward_condition := I(s0)∧
k−1∧
i=0

T (si,si+1)

7: if ¬sat(forward_condition) then
8: return true

9: step_casen :=
n+k−1∧

i=n

(P(si)∧T (si,si+1))∧¬P(sn+k)

10: repeat
11: Inv := get_currently_known_invariant()
12: if ¬sat(Inv(sn)∧ step_casen) then
13: return true
14: until Inv = get_currently_known_invariant()

15: k := inc(k)
16: return unknown

Algorithm 2 Continuous Invariant Generation using Configurable Program Analysis

Input:
a configurable program analysis with dynamic precision adjustment D,
the initial states defined by predicate I,
a coarse initial precision π0,
a safety property P

Output: true if P holds
1: π := π0
2: Inv := true
3: loop
4: reached := CPAAlgorithm(D, I,π)
5: if ∀s ∈ reached : P(s) then
6: return true

7: Inv := Inv∧ ∨
s∈reached

s

8: π := RefinePrec(π,reached)

Boosting k-Induction with Continuously-Refined Auxiliary Invariants A Manuscripts

58

Boosting k-Induction with Continuously-Refined Invariants 629

Forward Condition. Otherwise we check whether there exists a path with length
k′ > k − 1 in the program, or whether we have already fully explored the state
space of the program (lines 6 to 8). In the latter case the program is safe and
the algorithm terminates. This check is called the forward condition [29].

Inductive Step. Checking the forward condition can, however, only prove safety
for programs with finite (and short) loops. Therefore, the algorithm also attempts
an inductive proof (lines 9 to 14). The inductive-step case checks if, after every
sequence of k loop iterations without a property violation, there is also no prop-
erty violation before loop iteration k+1. For model checking of software, however,
this check would often fail inconclusively without auxiliary invariants [8]. In our
approach, we make use of the fact that the invariants that were generated so far
by the concurrently-running invariant-generation algorithm hold, and conjunct
these facts to the induction hypothesis. Thus, the inductive-step case proves a
program safe if the following condition is unsatisfiable:

Inv(sn) ∧
n+k−1∧

i=n

(P (si) ∧ T (si, si+1)) ∧ ¬P (sn+k)

where Inv is the currently available program invariant, and sn, . . . , sn+k is any
sequence of states. If this condition is satisfiable, then the induction check is
inconclusive, and the program is not yet proved safe or unsafe with the current
value of k and the current invariant. If during the time of the satisfiability check
of the step case, a new (stronger) invariant has become available (condition in
line 14 is false), we immediately re-check the step case with the new invariant.
This can be done efficiently using an incremental SMT solver for the repeated sat-
isfiability checks in line 12. Otherwise, we start over with an increased value of k.

Note that the inductive-step case is similar to a BMC check for the presence
of error paths of length exactly k + 1. However, as the step case needs to consider
any consecutive k + 1 loop iterations, and not only the first such iterations, it
does not assume that the execution of the loop iterations begins in an initial
state. Instead, it assumes that there is a sequence of k iterations without any
property violation (induction hypothesis).

Continuous Invariant Generation. Our continuous invariant generation
incrementally produces stronger and stronger program invariants. It is based on
iterative refinement, each time using an increased precision. After each strength-
ening of the invariant, it can be used as injection invariant by the k-induction
procedure. It may happen that this analysis proves safety of the program all by
itself, but this is not its main purpose here.

Our k-induction module works with any kind of invariant-generation pro-
cedure, as long as its precision, i.e., its level of abstraction, is configurable.
We implemented two different invariant-generation approaches: KI and DF,
described below.

A Manuscripts Boosting k-Induction with Continuously-Refined Auxiliary Invariants

59

630 D. Beyer, M. Dangl, and P. Wendler

Invariant Generation

k-induction (KI)
Algorithm 1

Data-Flow Analysis (DF)
Algorithm 2

injects

Fig. 3. Configurable design of a k-induction
framework

We use the design of Fig. 3
to explain our flexible and mod-
ular framework for k-induction:
k-induction is a verification tech-
nique, i.e., an invariant gener-
ation. In this paper, the main
algorithm is thus the k-induction,
as defined in Algorithm 1.
We denote the algorithm by KI. If invariants are generated and injected into
KI, we denote this injection by KI←. Thus, the use of generated invariants that
are produced by a data-flow analysis (DF) are denoted by KI←DF. If the invari-
ant generator continuously refines the invariants and repeatedly injects those
invariants into KI, this is denoted by KI ���←−, more specifically, if data-flow analy-
sis with dynamic precision adjustment (our new contribution) is used, we have
KI ���←−DF, and if the PKind approach is used, i.e., KI is used to construct invari-
ants, we have KI ���←−KI. Now, since the second KI, which constructs invariants
for injection into the first KI, can again get invariants injected, we can further
build an approach KI ���←−KI ���←−DF that combines all approaches such that the
invariant-generating KI benefits from the invariants generated with DF, and
the main KI algorithm that tries to prove program safety benefits from both
invariant generators.

KI. PKind [33] introduced the idea to construct invariants for injection in par-
allel, using a template-based method that extracts candidate invariants from the
program and verifies their validity using k-induction [32]. If the candidate invari-
ants are found to be valid, they are injected to the main k-induction procedure.
We re-implemented the PKind approach in our framework (KI ���←−KI), using a
separate instance of k-induction to prove candidate invariants. Being based on
k-induction, the power of this technique is continuously increased by increas-
ing k. We derive the candidate invariants by taking the negations of assump-
tions on the control-flow paths to error locations. Similar to our Algorithm2,
each time this k-induction algorithm succeeds in proving a candidate invari-
ant, the previously-known invariant is strengthened with this newly generated
invariant. In our tool, we used an instance of Algorithm1 to implement this app-
roach. We are thus able to further combine this technique with other auxiliary
invariant-generation approaches.

DF. As a second invariant-generation approach (our contribution), we use the
reachability algorithm CPAAlgorithm for configurable program analysis with
dynamic precision adjustment [11]. Algorithm 2 shows our continuous invari-
ant generation. The initial program invariant is represented by the formula true.
We start with running the invariant-generating analysis once with a coarse ini-
tial precision (line 4). After each run of the program-invariant generation, we
strengthen the previously-known program invariant with the newly-generated
invariant (line 7, note that the program invariant Inv is not a safety invariant)
and announce it globally (such that the k-induction algorithm can inject it).

Boosting k-Induction with Continuously-Refined Auxiliary Invariants A Manuscripts

60

Boosting k-Induction with Continuously-Refined Invariants 631

If the analysis was able to prove safety of the program, the algorithm
terminates (lines 5 to 6). Otherwise, the analysis is restarted with a higher preci-
sion. The CPAAlgorithm takes as input a configurable program analysis (CPA), a
set of initial abstract states, and a precision. It returns a set of reachable abstract
states that form an over-approximation of the reachable program states. Depend-
ing on the used CPA and the precision, the analysis by CPAAlgorithm can be
efficient and abstract like data-flow analysis or expensive and precise like model
checking.

For invariant generation, we choose an abstract domain based on expressions
over intervals [8]. Note that this is not a requirement of our approach, which
works with any kind of domain. Our choice is based on the high flexibility of
this domain, which can be fast and efficient as well as precise. For this CPA, the
precision is a triple (Y, n,w), where Y ⊆ X is a specific selection of important
program variables, n is the maximal nesting depth of expressions in the abstract
state, and w is a boolean specifying whether widening should be used. Those
variables that are considered important will not be over-approximated by joining
abstract states. With a higher nesting depth, more precise relations between
variables can be represented. The use of widening ensures timely termination
(at the expense of a lower precision), even for programs with loops with many
iterations, like those in the examples of Figs. 1 and 2. An in-depth description
of this abstract domain is presented in a technical report [8].

3 Experimental Evaluation

We implemented all existing approaches to k-induction, compare all configura-
tions with each other, and the best configuration with other k-induction-based
software verifiers, as well as to two standard approaches to software verification:
predicate and value analysis.

Benchmark Verification Tasks. As benchmark set we use verification tasks
from the 2015 Competition on Software Verification (SV-COMP’15) [7]. We took
all 3 964 verification tasks from the categories ControlFlow, DeviceDrivers64,
HeapManipulation, Sequentialized, and Simple. The remaining categories were
excluded because they use features (such as bit-vectors, concurrency, and recur-
sion) that not all configurations of our evaluation support. A total of 1 148 ver-
ification tasks in the benchmark set contain a known specification violation.
Although we cannot expect an improvement for these verification tasks when
using auxiliary invariants, we did not exclude them because this would unfairly
give advantage to the new approach (which spends some effort generating invari-
ants, which are not helpful when proving existence of an error path).

Experimental Setup. All experiments were conducted on computers with two
2.6 GHz 8-Core CPUs (Intel Xeon E5-2560 v2) with 135 GB of RAM. The operat-
ing system was Ubuntu 14.04 (64 bit), using Linux 3.13 and OpenJDK 1.7. Each
verification task was limited to two CPU cores, a CPU run time of 15 min, and

A Manuscripts Boosting k-Induction with Continuously-Refined Auxiliary Invariants

61

632 D. Beyer, M. Dangl, and P. Wendler

a memory usage of 15 GB. The benchmarking framework BenchExec2 ensures
precise and reproducible results.

Presentation. All benchmarks, tools, and the full results of our evaluation are
available on a supplementary web page.3 All reported times are rounded to two
significant digits. We use the scoring scheme of SV-COMP’15 to calculate a score
for each configuration. For every real bug found, 1 point is assigned, for every
correct safety proof, 2 points are assigned. A score of 6 points is subtracted
for every wrong alarm (false positive) reported by the tool, and 12 points are
subtracted for every wrong proof of safety (false negative). This scoring scheme
values proving safety higher than finding error paths, and significantly punishes
wrong answers, which is in line with the community consensus [7] on difficulty
of verification vs. falsification and importance of correct results. We consider
this a good fit for evaluating an approach such as k-induction, which targets at
producing safety proofs.

In Figs. 4 and 5, we present experimental results using a plot of quantile
functions for accumulated scores as introduced by the Competition on Soft-
ware Verification [6], which shows the score and CPU time for successful results
and the score for wrong answers. A data point (x, y) of a graph means that
for the respective configuration the sum of the scores of all wrong answers
and the scores for all correct answers with a run time of less than or equal
to y seconds is x. For the left-most point (x, y) of each graph, the x-value shows
the sum of all negative scores for the respective configuration and the y-value
shows the time for the fastest successful result. For the right-most point (x, y)
of each graph, the x-value shows the total score for this configuration, and the
y-value shows the maximal run time. A configuration can be considered better,
the further to the right (the closer to 0) its graph begins (fewer wrong answers),
the further to the right it ends (more correct answers), and the lower its graph
is (less run time).

Comparison of k-Induction-Based Approaches. We implemented all
approaches in the Java-based open-source software-verification framework
CPAchecker [12], which is available online4 under the Apache 2.0 License.
For the experiments, we used version 1.4.5-cav15 of CPAchecker, with
SMTInterpol [21] as SMT solver (using uninterpreted functions and linear
arithmetic over integers and reals). The k-induction algorithm of CPAchecker
was configured to increment k by 1 after each try (in Algorithm1, inc(k) = k+1).
The precision refinement of the DF-based continuous invariant generation (Algo-
rithm2) was configured to increment the number of important program variables
in the first, third, fifth, and any further precision refinements. The second preci-
sion refinement increments the expression-nesting depth, and the fourth disables
the widening.

2 https://github.com/dbeyer/benchexec
3 http://www.sosy-lab.org/∼dbeyer/cpa-k-induction/
4 http://cpachecker.sosy-lab.org

Boosting k-Induction with Continuously-Refined Auxiliary Invariants A Manuscripts

62

https://github.com/dbeyer/benchexec
http://www.sosy-lab.org/~dbeyer/cpa-k-induction/
http://cpachecker.sosy-lab.org

Boosting k-Induction with Continuously-Refined Invariants 633

Table 1. Results of k-induction-based configurations in CPAchecker for all 3 964 ver-
ification tasks with different approaches for generating auxiliary invariants

Approach KI
KI←DF

KI ���←−KI KI ���←−DF KI ���←−KI ���←−DF
(0,1, t) (8,2, t) (16,2, t) (16,2, f)

Score 2246 3944 4117 4062 3992 3535 4249 4 282
Correct results 1531 2377 2462 2428 2392 2169 2507 2 519
Wrong proofs 1 1 2 1 1 1 1 1
Wrong alarms 30 30 30 30 30 30 26 25
CPU time (h) 530 330 330 340 340 380 320 320
Wall time (h) 440 240 210 210 210 270 190 170

Times for correct results only:
CPU time (h) 17 32 39 36 36 28 36 41
Wall time (h) 13 19 22 20 20 18 20 22

k-Values for correct safe results only:
Max. final k 101 101 100 100 126 101 112 111
Avg. final k 1.7 1.4 1.7 1.8 1.8 1.8 1.8 1.9

We evaluated the following groups of k-induction approaches: (1) without
any auxiliary invariants (KI), (2) with auxiliary invariants of different precisions
generated by the DF approach (KI←DF), and (3) with continuously-refined
invariants (KI ���←−).

The k-induction-based configuration using no auxiliary invariants (KI) is an
instance of Algorithm 1 where get currently known invariant() always returns true
as invariant and Algorithm2 does not run at all.

The configurations using generated invariants (KI←DF) are also instances
of Algorithm 1. Here, Algorithm2 runs in parallel, however, it terminates after
one loop iteration. We denote these configurations with triples (s, n, w) that
represent the precision (Y, n,w) of the invariant generation with s being the
size of the set of important program variables (s = |Y |). For example, the first
of these configurations, (0, 1, true), has no variables in the set Y of important
program variables (i.e., all variables get over-approximated by the merge opera-
tor), the maximum nesting depth of expressions in the abstract state is 1, and the
widening operator is used. The remaining configurations we use are (8, 2, true),
(16, 2, true), and (16, 2, false). These configurations were selected because they
represent some of the extremes of the precisions that are used during dynamic
invariant generation. It is impossible to cover every possible valid configuration
within the scope of this paper.

There are three configurations using continuously-refined invariants: (1) using
the k-induction approach similar to PKind to generate invariants, refining by
increasing k, denoted as KI ���←−KI, (2) using the DF-based approach to gen-
erate invariants, refining by precision adjustment, denoted as KI ���←−DF, and
(3) using both approaches in parallel combination, denoted as KI ���←−KI ���←−DF.
All configurations using invariant generation run the generation in parallel to the
main k-induction algorithm, an instance of Algorithm1.

A Manuscripts Boosting k-Induction with Continuously-Refined Auxiliary Invariants

63

634 D. Beyer, M. Dangl, and P. Wendler

Score and Reported Results. The configuration KI with no invariant generation
receives the lowest score of 2 246, and (as expected) can verify only 1 531 pro-
grams successfully. This shows that it is indeed important in practice to enhance
k-induction-based software verification with invariants. The configurations
KI←DF using invariant generation produce similar numbers of correct results
(around 2 400), improving upon the results of the plain k-induction without auxil-
iary invariants by a score of 1 700 to 1 800. Even though these configurations solve
a similar number of programs, a closer inspection reveals that each of the con-
figurations is able to correctly solve significant amounts of programs where the
other configurations run into timeouts. This observation explains the high score of
4 249 points achieved by our approach of injecting the continuously-refined invari-
ants generated with data-flow analysis into the k-induction engine (configuration
KI ���←−DF). By combining the advantages of fast and coarse precisions with
those of slow but fine precisions, it correctly solves 2 507 verification tasks, which
is 45 more than the best of the chosen configurations without dynamic refinement.
Using a k-induction-based invariant generation as done by PKind (configuration
KI ���←−KI) is also a successful technique for improving the amount of solvable ver-
ification tasks, and thus, combining both invariant-generation approaches with
continuously refining their precision and injecting the generated invariants into
the k-induction engine (configuration KI ���←−KI ���←−DF) is the most effective of all
evaluated k-induction-based approaches, with a score of 4 282, and 2 519 correct
results. The few wrong proofs produced by the configurations are not due to con-
ceptual problems, but only due to incompleteness in the analyzer’s handling of
certain constructs such as unbounded arrays and pointer aliasing.

Performance. Table 1 shows that by far the largest amount of time is spent by
the configuration KI (no auxiliary invariants), because for those programs that
cannot be proved without auxiliary invariants, the k-induction procedure loops
incrementing k until the time limit is reached. The wall times and CPU times for
the correct results correlate roughly with the amount of correct results, i.e., on
average about the same amount of time is spent on correct verifications, whether
or not invariant generation is used. This shows that the overhead of generating
auxiliary invariants is well-compensated.

The configurations with invariant generation have a relatively higher CPU
time compared to their wall time because these configurations spend some
time generating invariants in parallel to the k-induction algorithm. The results
show, however, that the time spent for the continuously-refined invariant gen-
eration clearly pays off as the configuration using both data-flow analysis and
k-induction for invariant generation is not only the one with the most correct
results, but at the same time one of the two fastest configurations with only 320 h
in total. Even though they produced much more correct results, the configura-
tions KI ���←−KI ���←−DF and KI ���←−DF did not exceed the times of the chosen
configurations using invariant generation without continuous refinement. The
configuration KI ���←−KI using only k-induction to continuously generate invari-
ants is slower, but produces results for some programs where the configuration

Boosting k-Induction with Continuously-Refined Auxiliary Invariants A Manuscripts

64

Boosting k-Induction with Continuously-Refined Invariants 635

Table 2. Results of k-induction-based tools for all 3 964 verification tasks

Tool CBMC ESBMC CPACHECKER

Configuration sequential parallel KI ���←−KI ���←−DF

Score −4372 1674 1716 4 282
Correct results 1949 2050 2059 2 519
Wrong proofs 666 156 152 1
Wrong alarms 5 9 13 25
CPU time (h) 360 290 370 320
Wall time (h) 360 290 200 170

Times for correct results only:
CPU time (h) 3.9 16 26 41
Wall time (h) 3.9 16 13 22

k-Values for correct safe results only:
Max. final k 50 2048 1952 111
Avg. final k 1.1 5.3 7.1 1.9

KI ���←−DF fails. The results show that the combination of the techniques reaps
the benefits of both.

These results show that the additional effort invested in generating auxil-
iary invariants is well-spent, as it even decreases the overall time due to the
fewer timeouts. As expected, the continuously-refined invariants solve many
tasks quicker than the configurations using invariant generation with high pre-
cisions and without refinement.

Final value of k. The bottom of Table 1 shows some statistics about the final val-
ues of k for the correct safety proofs. There are only small differences between
the maximum k values of most of the configurations. Interestingly, the con-
figuration using non-dynamic invariant generation with high precision has a
higher maximum final value of k than the others, because for the verification
task afnp2014 true-unreach-call.c.i, a strong invariant generated only with
this configuration allowed the proof to succeed. This effect is also observable in
the continuously-refined configurations using invariants generated by data-flow
analysis: They are also able to solve this verification task, and, by dynami-
cally increasing the precision, find the required auxiliary invariant even earlier
with loop bounds 112 and 111, respectively. There is also a verification task in
the benchmark set, gj2007 true-unreach-call.c.i, where most configurations
need to unroll a loop with bound 100 to prove safety, while the strong invariant
generation technique allows the proof to succeed earlier, at a loop bound of 16.
The continuously-refined configurations benefit from the same effect: KI ���←−DF
and KI ���←−KI ���←−DF solve this task at loop bounds 22 and 19, respectively.

A Manuscripts Boosting k-Induction with Continuously-Refined Auxiliary Invariants

65

636 D. Beyer, M. Dangl, and P. Wendler

Fig. 4. Quantile functions of k-induction-based tools
(CPAchecker in configuration KI ���←−KI ���←−DF) for
accumulated scores showing the CPU time for the suc-
cessful results; linear scale between 0 s and 1 s, logarith-
mic scale beyond

Comparison with Other
Tools. For comparison
with other k-induction-
based tools, we evalu-
ated Esbmc and Cbmc,
two software model check-
ers with support for
k-induction. For Cbmc, we
used version 5.1 in com-
bination with a wrapper
script for split-case
k-induction provided by
M. Tautschnig. For Esbmc
we used version 1.25.2
in combination with a
wrapper script that
enables k-induction (based
on the SV-COMP’13
submission [35]). We also provide results for the experimental parallel k-induction
of Esbmc, but note that our benchmark setup is not focused on parallelization
(using only two CPU cores and a CPU-time limit instead of wall time). The
CPAchecker configuration in this comparison is the one with continuously-
refined invariants and both invariant generators (KI ���←−KI ���←−DF). Table 2 gives
the results; Fig. 4 shows the quantile functions of the accumulated scores for each
configuration. The results for Cbmc are not competitive, which may be attributed
to the experimental nature of its k-induction support.

Score. CPAchecker in configuration KI ���←−KI ���←−DF successfully verifies al-
most 500 tasks (20 %) more than Esbmc. Furthermore, it has only 1 missed bug,
which is related to unsoundness in the handling of some C features, whereas
Esbmc has more than 150 wrong safety proofs. This large number of wrong
results must be attributed to the unsound heuristic of Esbmc for strengthen-
ing the induction hypothesis, where it retains potentially incorrect information
about loop-modified variables [35]. We have previously also implemented this
approach in CPAchecker and obtained similar results [8]. The large number of
wrong proofs reduces the confidence in the soundness of the correct proofs. Con-
sequently, the score achieved by CPAchecker in configuration KI ���←−KI ���←−DF
is much higher than the score of Esbmc (4 282 compared to 1 674 points). This
clear advantage is also visible in Fig. 4. The parallel version of Esbmc performs
somewhat better than its sequential version, and misses fewer bugs. This is due
to the fact that the base case and the step case are performed in parallel, and the
loop bound k is incremented independently for each of them. The base case is
usually easier to solve for the SMT solver, and thus the base-case checks proceed
faster than the step-case checks (reaching a higher value of k sooner). Therefore,
the parallel version manages to find some bugs by reaching the relevant k in
the base-case checks earlier than in the step-case checks, which would produce

Boosting k-Induction with Continuously-Refined Auxiliary Invariants A Manuscripts

66

Boosting k-Induction with Continuously-Refined Invariants 637

a wrong safety proof at reaching k. However, the number of wrong proofs is still
much higher than with our approach, which is conceptually sound. Thus, the
score of the new, sound approach is more than 2 500 points higher.

Performance. Table 2 shows that our approach needs only 10 % more CPU time
than the sequential version of Esbmc for solving a much higher number of tasks,
and even needs less CPU and wall time than the parallel version of Esbmc.
This indicates that due to our invariants, we succeed more often with fewer
loop unrollings, and thus in less time. It also shows that the effort invested for
generating the invariants is well spent.

Final Value of k. The bottom of Table 2 contains some statistics on the final value
of k that was needed to verify a program. The table shows that for safe programs,
CPAchecker needs a loop bound that is (on average) only about one third of
the loop bound that Esbmc needs. This advantage is due to the use of generated
invariants, which make the induction proofs easier and likely to succeed with
a smaller number of k. The verification task array true-unreach-call2.i is
solved by Esbmc after completely unwinding the loop, therefore reaching the
large k-value 2 048. In the parallel version, the (quicker) detached base case hits
this bound while the inductive step case is still at k = 1952.

Comparison with Other Approaches. We also compare our combination of
k-induction with continuously-refined invariants with other common approaches
for software verification. We use for comparison two analyses based on CEGAR,
a predicate analysis [13] and a value analysis [14]. Both are implemented in
CPAchecker, which allows us to compare the approaches inside the same tool,
using the same run-time environment, SMT solver, etc., and focus only on the
conceptual differences between the analyses.

Fig. 5. Quantile functions of different approaches
implemented in CPAchecker (k-induction in configu-
ration KI ���←−KI ���←−DF) for accumulated scores showing
the CPU time for the successful results

Figure 5 shows a quan-
tile plot to compare the
configuration KI ���←−KI ���←−
DF with CPAchecker
predicate analysis and
value analysis. The pred-
icate analysis solves 2 463
verification tasks in a total
of 280 CPU hours, and
achieves a score of 4 201.
The value analysis solves
2 367 verification tasks in
a total of 303 CPU hours,
andachieves a score of 4 216
because it has a few wrong
results less.Thehigher num-
ber of solved tasks (2 519)
and the higher score (4 282)

A Manuscripts Boosting k-Induction with Continuously-Refined Auxiliary Invariants

67

638 D. Beyer, M. Dangl, and P. Wendler

of the k-induction-based configuration show that k-induction is clearly competi-
tive with the state-of-the-art in software verification, if it is boosted by injecting
continuously-refined invariants.

4 Conclusion

We have presented the novel idea of injecting invariants into k-induction that
are generated using data-flow analysis with dynamic precision adjustment, and
contribute a publicly available implementation of our idea within the software-
verification framework CPAchecker. Our extensive experiments show that the
new approach outperforms all existing implementations of k-induction for soft-
ware verification, and that it is competitive compared to other, more mature tech-
niques for software verification. We showed that a sound, effective, and efficient
k-induction approach to general-purpose software verification is possible, and that
the additional resources required to achieve these combined benefits are negligible
if invested judiciously. At the same time, there is still room for improvement of
our technique. An interesting improvement would be to add an information flow
between the two cooperating algorithms in the reverse direction. If the k-induction
procedure could tell the invariant generation which facts it misses to prove safety,
this could lead to a more efficient and effective approach to generate invariants
that are specifically tailored to the needs of the k-induction proof. Already now,
CPAchecker is parsimonious in terms of unrollings, compared to other tools.
The low k-values required to prove many programs show that even our current
invariant generation is powerful enough to produce invariants that are strong
enough to help cut down the necessary number of loop unrollings. k-induction-
guided precision refinement might direct the invariant generation towards provid-
ing weaker but still useful invariants for k-induction more efficiently.

Acknowledgments. We thank M. Tautschnig and L. Cordeiro for explaining the opti-
mal available parameters for k-induction, for the verifiers Cbmc and Esbmc, respectively.

References

1. Aho, A.V., Sethi, R., Ullman, J.D.: Compilers: Principles, Techniques, and Tools.
Addison-Wesley, Reading (1986)

2. Awedh, M., Somenzi, F.: Automatic invariant strengthening to prove properties
in bounded model checking. In: Proceedings of DAC, pp. 1073–1076. ACM/IEEE
(2006)

3. Ball, T., Cook, B., Levin, V., Rajamani, S.K.: SLAM and static driver verifier: tech-
nology transfer of formal methods inside microsoft. In: Proceedings of IFM, LNCS,
vol. 2999, pp. 1–20. Springer (2004)

4. Ball, T., Levin, V., Rajamani, S.K.: A decade of softwaremodel checking with SLAM.
Commun. ACM 54(7), 68–76 (2011)

5. Barnett, M., Leino, K.R.M.: Weakest-precondition of unstructured programs. In:
Proceedings of PASTE, pp. 82–87. ACM (2005)

Boosting k-Induction with Continuously-Refined Auxiliary Invariants A Manuscripts

68

Boosting k-Induction with Continuously-Refined Invariants 639

6. Beyer, D.: Second competition on software verification. In: Proceedings of TACAS,
LNCS, vol. 7795, pp. 594–609. Springer (2013)

7. Beyer, D.: Software verification and verifiable witnesses. In: Proceedings of TACAS,
LNCS, vol. 9035, pp. 401–416. Springer (2015)

8. Beyer, D., Dangl, M., Wendler, P.: Combining k-induction with continuously-
refined invariants. Technical Report MIP-1503, University of Passau, January 2015.
arXiv:1502.00096

9. Beyer, D., Henzinger, T.A., Majumdar, R., Rybalchenko, A.: Invariant synthesis
for combined theories. In: Proceedings of VMCAI, LNCS, vol. 4349, pp. 378–394.
Springer (2007)

10. Beyer, D., Henzinger, T.A., Majumdar, R., Rybalchenko, A.: Path invariants. In:
Procedings of PLDI, pp. 300–309. ACM (2007)

11. Beyer, D., Henzinger, T.A., Théoduloz, G.: Program analysis with dynamic precision
adjustment. In: Proceedings of ASE, pp. 29–38. IEEE (2008)

12. Beyer, D., Keremoglu, M.:CPAchecker: A tool for configurable software verifica-
tion. In: Proceedings of CAV, LNCS, vol. 6806, pp. 184–190. Springer (2011)

13. Beyer, D., Keremoglu, M.E., Wendler, P.: Predicate abstraction with adjustable-
block encoding. In: Proceedings of FMCAD, pp. 189–197. FMCAD (2010)

14. Beyer, D., Löwe, S.: Explicit-state software model checking based on CEGAR and
interpolation. In: Proceedings of FASE, LNCS, vol. 7793, pp. 146–162. Springer
(2013)

15. Biere, A.: Handbook of Satisfiability. IOS Press, Amsterdam (2009)
16. Biere, A., Cimatti, A., Clarke, E.M., Strichman, O., Zhu, Y.: Bounded model check-

ing. Adv. Comput. 58, 117–148 (2003)
17. Biere, A., Cimatti, A., Clarke, E., Zhu, Y.: Symbolic model checking without BDDs.

In: Proceedings of TACAS, LNCS, vol. 1579, pp. 193–207. Springer (1999)
18. Bjørner, N., Browne, A., Manna, Z.: Automatic generation of invariants and inter-

mediate assertions. Theor. Comput. Sci. 173(1), 49–87 (1997)
19. Blanchet, B., Cousot, P., Cousot, R., Feret, J., Mauborgne, L., Miné, A., Monniaux,

D., Rival, X.: A static analyzer for large safety-critical software. In: Proceedings of
PLDI, pp. 196–207. ACM (2003)

20. Bradley, A.R., Manna, Z.: Property-directed incremental invariant generation. FAC
20(4–5), 379–405 (2008)

21. Christ, J., Hoenicke, J., Nutz, A.: SMTInterpol: An interpolating SMT solver. In:
Proceedings of SPIN, LNCS, vol. 7385, pp. 248–254. Springer (2012)

22. Cordeiro, L., Fischer, B., Silva, J.P.M.: SMT-based bounded model checking for
embedded ANSI-C software. In: Proceedings of ASE, pp. 137–148. IEEE (2009)

23. Cousot, P., Halbwachs, N.: Automatic discovery of linear restraints among variables
of a program. In: Procedings of POPL, pp. 84–96 (1978)

24. Donaldson, A.F., Haller, L., Kroening, D.: Strengthening induction-based race
checking with lightweight static analysis. In: Proceedings of VMCAI, LNCS, vol.
6538, pp. 169–183. Springer, Heidelberg (2011)

25. Donaldson, A.F., Haller, L., Kroening, D., Rümmer, P.: Software verification using
k -induction. In: Proceeding of Static Analysis. LNCS, vol. 6887, pp. 351–368.
Springer (2011)

26. Donaldson, A.F., Kroening, D., Rümmer, P.: Automatic analysis of scratch-pad
memory code for heterogeneous multicore processors. In: Proceedings of TACAS,
LNCS, vol. 6015, pp. 280–295. Springer (2010)

27. Donaldson, A.F., Kröning, D., Rümmer, P.: Automatic analysis of DMA races using
model checking and k-induction. FMSD 39(1), 83–113 (2011)

A Manuscripts Boosting k-Induction with Continuously-Refined Auxiliary Invariants

69

http://arxiv.org/abs/1502.00096

640 D. Beyer, M. Dangl, and P. Wendler

28. Garoche, P.-L., Kahsai, T., Tinelli, C.: Incremental invariant generation using logic-
based automatic abstract transformers. In: Proceedings of NFM, LNCS, vol. 7871,
pp. 139–154. Springer (2013)

29. Große, D., Le, H.M., Drechsler, R.: Proving transaction and system-level properties
of untimed SystemC TLM designs. In: Proceedings of MEMOCODE, pp. 113–122.
IEEE (2010)

30. Gupta,A.,Rybalchenko,A.: InvGen: an efficient invariant generator. In: Proceedings
of CAV, LNCS, vol. 5643, pp. 634–640. Springer (2009)

31. Albarghouthi, A., Gurfinkel, A., Li, Y., Chaki, S., Chechik, M.: UFO: verification
with interpolants and abstract interpretation. In: Proceedings of TACAS, LNCS,
vol. 7795, pp. 637–640. Springer (2013)

32. Kahsai, T., Ge, Y., Tinelli, C.: Instantiation-based invariant discovery. In: Proceed-
ings of NFM, LNCS, vol. 6617, pp. 192–206. Springer (2011)

33. Kahsai, T., Tinelli, C.: Pkind: a parallel k-induction based model checker. In: Pro-
ceedings of International Workshop on Parallel and Distributed Methods in Verifi-
cation, EPTCS 72, pp. 55–62 (2011)

34. Khoroshilov, A., Mutilin, V., Petrenko, A., Zakharov, V.: Establishing linux driver
verification process. In: Proceedings of PSI, LNCS, vol. 5947, pp. 165–176. Springer
(2010)

35. Morse, J., Cordeiro, L., Nicole, D., Fischer, B.: Handling unbounded loops with
ESBMC 1.20. In: Proceedings of TACAS, LNCS, vol. 7795, pp. 619–622. Springer
(2013)

36. Sankaranarayanan, S., Sipma, H.B., Manna, Z.: Scalable analysis of linear systems
using mathematical programming. In: Proceedings of VMCAI, LNCS, vol. 3385,
pp. 25–41. Springer (2005)

37. Sheeran, M., Singh, S., St̊almarck, G.: Checking safety properties using induc-
tion and a SAT-solver. In: Proceedings of FMCAD, LNCS, vol. 1954, pp. 108–125.
Springer (2000)

38. Wahl, T.: The k-induction principle (2013). http://www.ccs.neu.edu/home/wahl/
Publications/k-induction.pdf

Boosting k-Induction with Continuously-Refined Auxiliary Invariants A Manuscripts

70

http://www.ccs.neu.edu/home/wahl/Publications/k-induction.pdf
http://www.ccs.neu.edu/home/wahl/Publications/k-induction.pdf

J Autom Reasoning (2018) 60:299–335
https://doi.org/10.1007/s10817-017-9432-6

A Unifying View on SMT-Based Software Verification

Dirk Beyer1 · Matthias Dangl1 ·
Philipp Wendler1

Received: 1 September 2017 / Accepted: 5 September 2017 / Published online: 4 December 2017
© Springer Science+Business Media B.V. 2017

Abstract After many years of successful development of new approaches for software ver-
ification, there is a need to consolidate the knowledge about the different abstract domains
and algorithms. The goal of this paper is to provide a compact and accessible presentation
of four SMT-based verification approaches in order to study them in theory and in practice.
We present and compare the following different “schools of thought” of software verifica-
tion: bounded model checking, k-induction, predicate abstraction, and lazy abstraction with
interpolants. Those approaches are well-known and successful in software verification and
have in common that they are based on SMT solving as the back-end technology. We refor-
mulate all four approaches in the unifying theoretical framework of configurable program
analysis and implement them in the verification framework CPAchecker. Based on this,
we can present an evaluation that thoroughly compares the different approaches, where the
core differences are expressed in configuration parameters and all other variables are kept
constant (such as parser front end, SMT solver, used theory in SMT formulas). We evaluate
the effectiveness and the efficiency of the approaches on a large set of verification tasks and
discuss the conclusions.

Keywords Software verification · Program analysis · Bounded model checking ·
k-induction · Impact · Lazy abstraction · Predicate abstraction · SMT solving

1 Introduction

In recent years, advances in automatic methods for software verification have lead to an
increased effort towards applying software verification to industrial systems, in particular
operating-systems code [5,8,24,56]. Predicate abstraction [47] with counterexample-guided
abstraction refinement (CEGAR) [34] and lazy abstraction [51], lazy abstraction with inter-

A preliminary version of this article was published in Proceedings of VSTTE 2016 [12].

1 LMU Munich, Munich, Germany

123

A Manuscripts A Unifying View on SMT-Based Software Verification

71

http://crossmark.crossref.org/dialog/?doi=10.1007/s10817-017-9432-6&domain=pdf
http://orcid.org/0000-0003-4832-7662
http://orcid.org/0000-0001-7333-6734
http://orcid.org/0000-0002-5139-341X

300 D. Beyer et al.

SMT-based Software Model Checking

Bounded Model Checking Unbounded Model Checking

No Abstraction

k-Induction

Abstraction

Predicate Abstraction IMPACT

Fig. 1 Classification of approaches

polants [61], large-block encoding [11,21], and k-induction with auxiliary invariants [13,41]
are some of the concepts that helped scale verification technology from simple example
programs to real-world software. In the 6th International Competition on Software Verifica-
tion (SV-COMP’17) [10], nine out of the 15 candidates participating in category Overall
used some of these techniques, and out of the remaining six, four are bounded model
checkers [26]. Considering this apparent success, we revisit an earlier work that presented a
unifying algorithm for lazy predicate abstraction (Blast-like) and lazy abstractionwith inter-
polants (Impact-like) and showed that both techniques perform similarly [25]. We extend
this unifying framework to bounded model checking and k-induction and conduct a com-
parative evaluation of bounded model checking, k-induction, lazy predicate abstraction, and
lazy abstraction with interpolants. We observe that the previously drawn conclusions about
the two lazy-abstraction techniques still hold today and show that even though abstraction
is often necessary for scalability, k-induction has the potential to outperform the other two
techniques. We restrict our presentation to safety properties; however, the techniques that we
present can be used also for checking liveness [67].

Unfortunately, there is not much work available on rigorous comparison of algorithms.
General overviews over methods for reasoning [9] and of approaches for software model
checking [53] exist, but no systematic comparison of the algorithms in a common setting.
This paper formulates four widely used SMT-based approaches for software verification in
a common theoretical framework and tool implementation and compares their effectiveness
and efficiency. Figure 1 tries to classify the approaches; in the following we use this structure
also to give pointers to other implementations of the approaches.

1.1 Bounded Model Checking

Many software bugs can be found by a bounded search through the state space of the pro-
gram. Bounded model checking [26] for software encodes all program paths that result from
a bounded unrolling of the program in an SMT formula that is satisfiable if the formula
encodes a feasible program path from the program entry to a violation of the specification.
Several implementations were demonstrated to be successful in improving software quality
by revealing program bugs (especially on short paths), for example Cbmc [35], Esbmc [37],
Llbmc [69], and Smack [64]. The characteristics to quickly verify even a large portion of the
state space of many types of programs without the need of computing expensive abstractions
made the technique a basis component in many verification tools (cf. Table 4 in the report
for SV-COMP’17 [10]).

123

A Unifying View on SMT-Based Software Verification A Manuscripts

72

A Unifying View on SMT-Based Software Verification 301

1.2 Unbounded without Abstraction1

The idea of bounded model checking (to encode portions of a program as SMT formula,
even if they are large) can be used also for unbounded verification by using an induction
argument [68], i.e., checking whether the safety property is implied by all paths from the
program entry to the loop head and after assuming the safety property at the loop head
(induction hypothesis) by all paths through the loop body. Because the safety property is
often not inductive, the more general k-induction principle [70] is used. The approach of
k-induction is implemented in Cbmc [35], CPAchecker [13], Esbmc [65], PKind [55],
and 2ls [66]. The approach of strengthening k-induction proofs with continuously refining
invariant generation [13] was independently reproduced later in 2ls [29].

1.3 Unbounded with Abstraction

A completely different approach is to compute an overapproximation of the state space, using
insights from data-flow analysis [1,57,63]. While overapproximation can be a useful tech-
nique formitigating the problemof state-space explosion, a too coarse level of abstractionmay
cause false alarms.Therefore, state-space abstraction is often combinedwith counterexample-
guided abstraction refinement (CEGAR) [34] and lazy abstraction refinement [51]. Several
verifiers implement a predicate abstraction [47]: for example, Slam [6], Blast [15],
and CPAchecker [20]. A safe inductive invariant is computed by iteratively refining
the abstract states, where new predicates are discovered during each CEGAR step.
Interpolation [38,60] is a successful method to obtain useful predicates from infeasible error
paths; path invariants [17] can be used to obtain loop invariants for path programs.

Instead of using predicate abstraction, it is possible to construct the abstract state space
directly from interpolants using the Impact algorithm [61].

1.4 Structure

In the remainder of this article, we first describe some necessary background in Sect. 2 and
define a configurable program analysis as the foundation for unifying SMT-based approaches
for software verification in Sect. 3. In Sect. 4, we express the four approaches within our
framework and explain their core concepts and respective differences. Section 5 contains an
experimental study of the effectiveness and efficiency of the presented approaches on a large
set of verification tasks.

2 Background

2.1 Program Representation

In this section we provide basic definitions from the literature [15]. For simplicity, we restrict
the presentation to a simple imperative programming language,where all operations are either
assignments or assume operations, and all variables range over integers.2 Such a program
can be represented using a control-flow automaton (CFA), which is a directed graph with

1 Strictly speaking, every verification technique attempts to construct an abstraction in the sense that a
successful safety proof would establish the safety property as a valid abstraction of the program. In this
classification, we differentiate between abstraction techniques that deliberately construct an abstract model of
the program from derived abstract facts and non-abstraction techniques that aim to prove the safety property
without constructing such an (auxiliary) abstract model of any kind.
2 Our implementation is based on CPAchecker [20], which supports C programs.

123

A Manuscripts A Unifying View on SMT-Based Software Verification

73

302 D. Beyer et al.

program operations attached to its edges. A CFA A = (L, lINIT ,G) consists of a set L of
program locations, an initial location lINIT ∈ L that represents the program entry point, and a
set G ⊆ (L× Ops ×L) of edges between program locations, each labeled with an operation
that is executed when the control flows along the edge. The set of all program variables that
occur in the operations of a CFA is denoted by X . A concrete data state c : X → Z is a
mapping from program variables to integers. A set of concrete data states is called region. We
represent regions using first-order formulas ψ over variables from X such that the set [[ψ]]
of concrete data states that is represented by ψ is defined as {c | c |� ψ}. A concrete state
(c, l) : (X → Z) × L is a pair of a concrete data state and a location.

An operation op ∈ Ops can either be an assignment of the form x := e with a variable
x ∈ X and a (side-effect free) arithmetic expression e over variables from X , or an assume
operation [p] with a predicate p over variables from X . The semantics of an operation op is
defined by the strongest-postcondition operator SPop(·). For a formulaψ and an assignment
x := e, it is defined as SPx :=e(ψ) = ∃x̂ : ψ[x→x̂] ∧ (x = e[x→x̂]), and for an assume opera-
tion [p] as SP[p](ψ) = ψ ∧ p. Note that in the implementation we can avoid the existential
quantifier in the strongest-postcondition operator for assignments by skolemization.

A path σ = 〈(li , opi , l j), (l j , op j , lk), . . . , (lm, opm, ln)〉 is a sequence of consecutive
edges from G. A path is called program path if it starts in the initial location lINIT . The
semantics of a path is defined by the iterative application of SPop(·) for each operation of
the path: SPσ (ψ) = SPopm (. . . (SPopi (ψ)) . . .). A path σ is called feasible if SPσ (true) is
satisfiable and infeasible otherwise. A location l is called reachable if there exists a feasible
path from lINIT to l.

A verification task consists of a CFA A = (L, lINIT ,G) and an error location lERR ∈ L,
with the goal to show that lERR is unreachable in A, or to find a feasible error path (i.e., a
feasible program path to lERR) otherwise.

Example 1 (Program andControl-FlowAutomaton) Figure 2 shows an example C pro-
gram and the corresponding CFA. Location lINIT = l2 is the initial location of this
program. The program contains two variables x and y, which are both initialized to 0. In
the loop of lines 4–10, both variables are incremented as long as x is lower than 2. The
CFA nodes corresponding to this loop are l4, l5, l6, and l7, with l4 being the loop head.
At the end of the loop body in line 7, x and y are checked for equality. If the variables
are not equal, control flows to the error location lERR = l8 in line 8. We use this CFA
as a running example to illustrate the concepts introduced in Sect. 3 and the algorithms
presented in Sect. 4.

2.2 Configurable Program Analysis

A configurable program analysis (CPA) [18] specifies the abstract domain that is used for
a program analysis. By using the concept of CPAs we can define the abstract domain inde-
pendently from the analysis algorithm: the CPA algorithm is an algorithm for reachability
analysis that can be usedwith any CPA. Furthermore, CPAs can be combined to compositions
of CPAs. The CPAs defined in this work make use of the extension CPA+ (dynamic precision
adjustment) [19], but for simplicity we continue to name them CPAs.

A CPA D = (D,Π,�,merge, stop,prec) consists of an abstract domain D, a set Π

of precisions, a transfer relation �, and the operators merge, stop, and prec. The abstract
domain D = (C, E, [[·]]) consists of a set C of concrete states, a semilattice E = (E,
)

over a set E of abstract-domain elements (i.e., abstract states) and a partial order
 (the

123

A Unifying View on SMT-Based Software Verification A Manuscripts

74

A Unifying View on SMT-Based Software Verification 303

1 int main() {

2 unsigned int x = 0;

3 unsigned int y = 0;

4 while (x < 2) {

5 x++;

6 y++;

7 if (x != y) {

8 ERROR: return 1;

9 }

10 }

11 return 0;

12 }

(a) Safe program

l2start

l3

l4

l5

l6

l7

l8

l11

l12

unsigned int x = 0;

unsigned int y = 0;

[x < 2]

[!(x < 2)]

x++;

y++;

[x != y]

ERROR: return 1;

return 0;

[!(x!= y)]

(b) Control-flow automaton

Fig. 2 An example C program (a) and its CFA (b)

join � of two elements and the join � of all elements are unique), and a concretization
function [[·]] that maps each abstract-domain element to the represented set of concrete states.
We call an abstract state e ∈ E an abstract error state if it represents a concrete state at
the error location lERR, i.e., if ∃c ∈ (X → Z) : (c, lERR) ∈ [[e]]. The transfer relation
�⊆ E × E × Π computes abstract successor states under a precision. The merge operator
merge : E × E × Π → E specifies if and how to merge two abstract states when control
flow meets under a given precision. The stop operator stop : E × 2E × Π → B determines
whether an abstract state is covered by a given set of abstract states. The precision-adjustment
operatorprec : E×Π×2E×Π → E×Π allows adjusting the analysis precision dynamically
depending on the current set of reachable abstract states. The operatorsmerge,stop, andprec
canbe chosen appropriately to influence the abstraction level of the analysis.Commonchoices
include mergesep(e, e′, π) = e′ (which does not merge abstract states), stopsep(e, R, π) =
(∃e′ ∈ R : e
 e′) (which determines coverage by checking whether the given abstract state
is less than or equal to any other reachable abstract state according to the semilattice), and
precid(e, π, ·) = (e, π) (which keeps abstract state and precision unchanged).

2.2.1 CPA Algorithm

CPAs can be used by the CPA algorithm for reachability analysis (cf. Algorithm 1), which
gets as input a CPA and an initial abstract state with precision. The algorithm does a classic
fixed-point iteration by looping until the set waitlist is empty (all abstract states have been
completely processed) and returns the set of reachable abstract states. In each iteration, the
algorithm takes one abstract state e with precision π from the waitlist, passes them to the
precision-adjustment operator prec, computes all abstract successors, and processes each of
the successors. The algorithm checks if there is an existing abstract state with precision in

123

A Manuscripts A Unifying View on SMT-Based Software Verification

75

304 D. Beyer et al.

Algorithm 1 CPA+(D, eINIT , πINIT), taken from [19]
Input: a CPA D = (D, Π, �,merge, stop, prec),

where E denotes the set of elements of the semilattice of D,
and an initial abstract state eINIT ∈ E with precision πINIT ∈ Π ,

Output: a set of reachable abstract states
Variables: two sets reached and waitlist of elements of E × Π

1: reached := {(eINIT , πINIT)}
2: waitlist := {(eINIT , πINIT)}
3: while waitlist �= ∅ do
4: pop (e, π) from waitlist
5: (̂e, π̂) := prec(e, π, reached) // Adjust the precision.
6: for all e′ with ê � (e′, π̂) do
7: for all (e′′, π ′′) ∈ reached do
8: enew := merge(e′, e′′, π̂) // Combine with existing abstract state.
9: if enew �= e′′ then
10: waitlist := (

waitlist ∪ {(enew, π̂)}) \ {(e′′, π ′′)}
11: reached := (

reached ∪ {(enew, π̂)}) \ {(e′′, π ′′)}
12: if not stop(e′, {e | (e, ·) ∈ reached}, π̂) then // Add new abstract state if needed.
13: waitlist := waitlist ∪ {(e′, π̂)}
14: reached := reached ∪ {(e′, π̂)}
15: return {e | (e, ·) ∈ reached}

the set of reached states with which the successor abstract state is to be merged (e.g., at join
points where control flow meets after completed branching). If this is the case, then the new,
merged abstract state with precision substitutes the existing abstract state with precision in
both sets reached andwaitlist. The stop operator ensures that a new abstract state is inserted
into the work sets only if this is needed, i.e., the abstract state is not already covered by an
abstract state in the set reached.

2.2.2 Composite CPA

Several CPAs can be combined (Composite pattern) using aCompositeCPA [18]. The abstract
states of the Composite CPA are tuples of one abstract state from each component CPA, the
precisions of the Composite CPA are tuples of one precision from each component CPA, and
the operators of the Composite CPA delegate to the component CPAs’ operators accordingly.

The effect of such a combination of CPAs is that all used CPAs work together in elimi-
nating infeasible paths during the program analysis: one CPA might be able to prove some
specific paths infeasible, whereas other CPAs might rule out other infeasible paths. The
analysis will only find paths which all used CPAs agree to be feasible. Note that this effect
already occurs without any form of communication or information exchange between the
component CPAs, and neither does any of the component CPAs need to know anything
about the others. However, for an even higher precision, information exchange is possible
if desired using the strengthen operator ↓ [18] and precision-adjustment operator prec [19]
of the Composite CPA.

2.2.3 Basic CPAs

The possibility to combine CPAs by using a Composite CPA allows us to separate different
concerns: we extract certain common analysis components into separate CPAs and reuse
them in flexible combinations with other CPAs, instead of having to redefine them for every
analysis from scratch.

123

A Unifying View on SMT-Based Software Verification A Manuscripts

76

A Unifying View on SMT-Based Software Verification 305

For example, for most kinds of program analyses it is necessary to track the program
counter, and it is often efficient to track the program counter explicitly rather than symboli-
cally. Thus, we use the Location CPA L [19], which tracks exactly the program counter (with
a flat lattice over all program locations, a constant precision, and the operators mergesep,
stopsep, and precid), and we use this CPA in addition to other CPAs whenever explicit
tracking of the program counter is necessary.

Furthermore, in order to track the abstract reachability graph (ARG) over the abstract states
in the (flat) set reached, we define an additional ARG CPA A, which stores the predecessor–
successor relationship between abstract states. TheARGCPAallowsus to reconstruct abstract
paths in the ARG: An abstract path is a sequence 〈e0, . . . , en〉 of abstract states such that
for any pair (ei , ei+1) with i ∈ {0, . . . , n − 1} either ei+1 is an abstract successor of ei , or
ei+1 is the result of merging an abstract successor of ei with some other abstract state(s). If
both the Location CPA and the ARG CPA are used, we can reconstruct from an abstract path
the path that it represents in the CFA.

2.3 Counterexample-Guided Abstraction Refinement (CEGAR)

Counterexample-guided abstraction refinement (CEGAR) [34] is an approach for iteratively
finding an analysis precision that is strong enough to prove the program safe and coarse
enough to allow for an efficient analysis. Starting with a coarse initial precision (typically
an empty set of facts, e.g., predicates), an abstract model that is an overapproximation of the
program is created by the underlying reachability analysis. If an abstract state that belongs to
the error location is found in the abstract model, the concrete program path that leads to this
state is reconstructed from the ARG and checked for feasibility. If the error path is feasible,
the program is unsafe and the analysis terminates. Otherwise, the error path is infeasible, and
we refine the precision of the analysis to be precise enough to eliminate this infeasible error
path from the ARG. Then the analysis is restarted, and the steps are repeated until either a
concrete error path is found, or the abstract model (and thus the program) is proven safe.

CEGAR is often combined with lazy abstraction [51], which makes this approach more
efficient by increasing the precision only selectively in parts of the state space where it is
needed and by not restarting the analysis from scratch after each refinement. We use the
CPA algorithm for the creation of the abstract model in the CEGAR approach and let the
refinement influence the precision of the used CPA(s).

3 Predicate CPA

Our goal is to define a configurable and flexible framework for predicate-based approaches
that is helpful both in theory (by simplifying development and studying of approaches) as
well as in practice (by being customizable for different use cases). In addition, a mature and
efficient implementation of this framework should allow reliable scientific experiments and
application in practice of the approaches that are integrated now or in the future.

The core of our framework is defined as a CPA for predicate-based analyses, which we
name the Predicate CPA P. It is an extension of an existing CPA for predicate abstrac-
tion with adjustable-block encoding (ABE) [21], and a preliminary version was already
published [25]. The Predicate CPA P = (DP,ΠP,�P,mergeP, stopP,precP) consists
of the abstract domain DP, the set ΠP of precisions, the transfer relation �P, the merge
operator mergeP, the stop operator stopP, and the operator precP for dynamic precision
adjustment. Additionally, we will define an operator fcoverP for Impact-style forced cov-

123

A Manuscripts A Unifying View on SMT-Based Software Verification

77

306 D. Beyer et al.

ering and an operator refineP for refinements. In the following, we will define and describe
these parts in more details. We also provide an extended version of the CPA algorithm, and in
the next section we will describe how to express various algorithms for software verification
using the concepts defined here. The examples in this section illustrate some cases that occur
when verifying the running example program given in Fig. 2 using one of these algorithms
from Sect. 4.

3.1 Abstract Domain, Precisions, and CPA Operators

The abstract domain DP = (C, EP, [[·]]P) consists of the set C of concrete states, the
semilattice EP over abstract states, and the concretization function [[·]]P. The semilat-
tice EP = (EP,
P) consists of the set EP of abstract states and the partial order
P.

3.1.1 Abstract States

Because of the use of adjustable-block encoding [21], an abstract state e ∈ EP of the
Predicate CPA is a triple (ψ, lψ , ϕ) of an abstraction formula ψ , the abstraction loca-
tion lψ (the program location where ψ was computed), and a path formula ϕ. Both
formulas are first-order formulas over predicates over the program variables from the
set X , and an abstract state represents all concrete states that satisfy their conjunction:
[[(ψ, lψ , ϕ)]]P = {(c, ·) ∈ C | c |� (ψ ∧ ϕ)}. The partial order
P is defined as
(ψ1, lψ1, ϕ1)
P (ψ2, lψ2, ϕ2) = ((ψ1 ∧ ϕ1) ⇒ (ψ2 ∧ ϕ2)), i.e., an abstract state is less
than or equal to another state if the conjunction of the formulas of the first state implies the
conjunction of the formulas of the other state. Abstract states where the path formula ϕ is
true are called abstraction states, other abstract states are intermediate states. The transfer
relation produces only intermediate states, and at the end of a block of program operations the
operator prec computes an abstraction state from an intermediate state. The initial abstract
state is the abstraction state (true, lINIT , true).

The path formula of an abstract state is always represented syntactically as an SMT
formula. The representation of the abstraction formula, however, can be configured. We can
either use a binary-decision diagram (BDD) [31], as in classic predicate abstraction [15,47], or
anSMT formula similar to the path formula.UsingBDDs allows performing cheap entailment
checks between abstraction states at the cost of an increased effort for constructing the BDDs.

3.1.2 Precisions

A precision π ∈ ΠP of the Predicate CPA is a mapping from program locations to sets
of predicates over the program variables. This allows using a different abstraction level at
each location in the program (lazy abstraction). The initial precision is typically the mapping
π(l) = ∅, for all l ∈ L. The Predicate CPA does not use dynamic precision adjustment [19]
during an execution of the CPA algorithm: instead the precision is adjusted only during a
refinement step, if the predicate refinement strategy is used. The only operation that changes
its behavior based on the precision is the predicate abstraction that may be computed at block
ends by the operator precP.

3.1.3 Transfer Relation

The transfer relation (ψ, lψ , ϕ) � ((ψ, lψ , ϕ′), π) for a CFA edge (li , opi , l j) produces a
successor state (ψ, lψ , ϕ′) such that the abstraction formula and location stay unchanged and
the path formula ϕ′ is created by applying the strongest-postcondition operator for the current

123

A Unifying View on SMT-Based Software Verification A Manuscripts

78

A Unifying View on SMT-Based Software Verification 307

CFA edge to the previous path formula: ϕ′ = SPopi (ϕ). Note that this is an inexpensive,
purely syntactical operation that does not involve any actual solving, and that it is a precise
operation, i.e., it does not perform any form of abstraction.

3.1.4 Merge Operator

Themerge operatormergeP combines intermediate states that belong to the same block (their
abstraction formula and location is the same) and keeps any other abstract states separate:

mergeP
((

ψ1, l
ψ
1, ϕ1

)

,
(

ψ2, l
ψ
2, ϕ2

)

, π
)

=
{

(

ψ2, lψ2, ϕ1 ∨ ϕ2
)

if (ψ1 = ψ2) ∧ (

lψ1 = lψ2
)

(

ψ2, lψ2, ϕ2
)

otherwise

This definition is common for analyses based on adjustable-block encoding (ABE) [21].
By merging abstract states inside each block, the number of abstract states in the ARG is
kept small, and no precision is lost due to merging, because the path formula of an abstract
state exactly represents the path(s) from the block start without abstraction. At the same
time the loss of information that would lead to a path-insensitive analysis if states would
be merged across blocks is avoided. The result is that the ARG, if projected to contain only
abstraction states, forms an abstract-reachability tree (ART) like in a path-sensitive analysis
without ABE. This is necessary for being able to reconstruct abstract paths, for example
during refinement and for reporting concrete error paths.

3.1.5 Stop Operator

The stop operator stopP checks coverage only for abstraction states and always returns false
for intermediate states:

stopP((ψ, lψ , ϕ), R, π)

=
{

∃(ψ ′, lψ ′
, ϕ′) ∈ R : ϕ′ = true ∧ (ψ, lψ , ϕ)
P (ψ ′, lψ ′

, ϕ′) if ϕ = true

false otherwise

Because the path formula of an abstraction state is always true, the first case is equivalent
to checking if there exists an abstraction state (ψ ′, ·, true) in the set R whose abstraction
formulaψ ′ is implied by the abstraction formulaψ of the current abstraction state (ψ, lψ , ϕ).
If abstraction formulas are represented by BDDs, this is an efficient operation, otherwise a
potentially costly SMT query is required. The coverage check for intermediate states is
omitted for efficiency, because it would always need to involve (potentially many) SMT
queries. Note that this implies that infinitely long sequences of intermediate states must be
avoided, otherwise the analysis would not terminate.

3.1.6 Precision-Adjustment Operator

The precision-adjustment operator precP either returns the input abstract state and precision,
or converts an intermediate state into an abstraction state performing predicate abstraction.
The decision is made by the block-adjustment operator blk [21], which returns true or false
depending on whether the current block ends at the current abstract state and thus an abstrac-
tion should be computed. The decision can be based on the current abstract state as well as
on information about the current program location. We define the following common choices

123

A Manuscripts A Unifying View on SMT-Based Software Verification

79

308 D. Beyer et al.

for blk: blklf returns true at loop heads, function calls/returns, and at the error location lERR,
leading to a behavior similar to large-block encoding (LBE) [11]. blkl returns true only at
loop heads and at the error location lERR. The abstraction at the error location is needed
for detecting the reachability of abstract error states due to the satisfiability check that is
implicitly done by the abstraction computation if the precision is not empty. blknever always
returns false. This will prevent all abstractions and (due to how stopP is defined) also pre-
vents coverage between abstract states. This means that an analysis with blknever will unroll
the CFA endlessly until other reasons prevent this. We will show a meaningful application
of blknever in Sect. 4.1 (BMC).

The boolean predicate abstraction [7] (ϕ)
ρ

B of a formula ϕ for a set ρ of predicates is
the strongest boolean combination of predicates from ρ that is implied by ϕ. It can be
computed using an SMT solver by solving ϕ ∧ ∧

pi∈ρ(vpi ⇔ pi) and enumerating all its
models with respect to the fresh boolean variables vp1 , . . . , vp|ρ| . For each model we create
a conjunction over the predicates from ρ, with each predicate pi being negated if the model
maps the corresponding variable vpi to false. The result of (ϕ)

ρ

B is the disjunction of all these
conjunctions. To create an abstraction state from an intermediate state (ψ, lψ , ϕ) at program
location l (which is tracked by another CPA that runs in parallel to the Predicate CPA as
a sibling component within the same Composite CPA and from which the location can be
retrieved), we compute the boolean predicate abstraction (ψ ∧ ϕ)

π(l)
B for the formula ψ ∧ ϕ

and the set π(l) of predicates from the precision, after adjusting the variable names of ψ to
match those of ϕ (because the variables from ψ need to match the ’oldest’ variables in ϕ).
Thus, we can define the precision-adjustment operator as

precP
((

ψ, lψ , ϕ
)

, π, R
) =

{
((

(ψ ∧ ϕ)
π(l)
B , l, true

)

, π
)

if blk
((

ψ, lψ , ϕ
)

, l
)

((

ψ, lψ , ϕ
)

, π
)

otherwise

Note that, if an abstraction is going to be computed, the current path formula ϕ precisely
represents all the paths within this block (i.e., from the last abstraction state to the current
abstract state). Thus, we name this path formula the block formula for the block ending
in the current abstract state. If the precision is empty for the current program location, the
outcome of the abstraction computation will always simply be true and no SMT queries
are necessary. If the precision for the current program location is {false}, the abstraction
computationwill be equivalent to a simple satisfiability check, and the outcomewill always be
either true or false.

Example 2 (Boolean Predicate Abstraction) Given an intermediate abstract state
(ψ, lψ,ϕ) with

ψ = (x = y), which is rewritten to x0 = y0, and
ϕ = x0 < 2 ∧ x1 = x0 + 1 ∧ y1 = y0 + 1,

and a set ρ of predicates with ρ = {x = y} we introduce a boolean variable vx=y for the
(instantiated) predicate x1 = y1 and use an SMT solver to enumerate all models of the
following formula

x0 = y0 ∧ x0 < 2 ∧ x1 = x0 + 1 ∧ y1 = y0 + 1 ∧ (vx=y ⇔ x1 = y1)

with respect to variable vx=y . In this case, {vx=y �→ true} is the only such model. As a
result, the abstraction is x = y.

123

A Unifying View on SMT-Based Software Verification A Manuscripts

80

A Unifying View on SMT-Based Software Verification 309

3.2 Refinement

The refinement operator refineP takes as input two sets reached ⊆ E×Π of reached abstract
states and waitlist ⊆ E × Π of frontier abstract states and expects reached to contain an
abstract error state at error location lERR that represents a specification violation. refine either
returns the sets unchanged (if the abstract error state is reachable, i.e., there is a feasible error
path), or modified such that the sets can be used for continuing the state-space exploration
with an increased precision (if the error path is infeasible). The operator works in four steps.

3.2.1 Abstract-Counterexample Construction

The first step is to construct the set of abstract paths between the initial abstract state and the
abstract error state. Traditionally, in an abstract reachability tree, there would exist exactly
one such abstract path. Because we use ABE, however, intermediate states can be merged,
and thus the abstract states form an abstract reachability graph, where several paths can
exist from the initial abstract state to the abstract error state. All these abstract paths to the
abstract error state contain the same sequence of abstraction states with varying sequences of
intermediate states in between. This is due to the fact that abstraction states are never merged,
and intermediate states are merged only locally within a block. Thus, the ARG, if projected
to the abstraction states, still forms a tree. The initial abstract state is always an abstraction
state by definition, and our choices of the block-adjustment operator blk ensure that all
abstract error states are also abstraction states. Thus, we define as abstract counterexample
the sequence 〈e0, . . . , en〉 that begins with the initial abstract state (e0 = eINIT), ends with the
abstract error state en , and contains all abstraction states e1, . . . , en−1 on paths between these
two abstract states. This sequence can be reconstructed from the ARG by following a single
arbitrary abstract path backwards from the abstract error state (using the information tracked
by the ARG CPA), without needing to explicitly enumerate all (potentially exponentially
many) abstract paths between the initial abstract state and the abstract error state.

3.2.2 Feasibility Check

From an abstract counterexample 〈e0, . . . , en〉 we can create a sequence 〈ϕ1, . . . , ϕn〉 of
block formulas where each ϕi represents all paths between ei−1 and ei . Note that each ϕi is
also exactly the same formula as the path formula that was used as input when computing
the abstraction for state ei . Then we check whether there exists a feasible concrete path
that is represented by one of the abstract paths of the abstract counterexample by checking
the counterexample formula

∧n
i=1 ϕi for satisfiability in a single SMT query. If satisfiable,

the analysis has found a violation of the specification and terminates. Otherwise, i.e., if all
abstract paths to the abstract error state are infeasible under the concrete program semantics,
we say that the abstract counterexample is spurious, and a refinement of the abstract model
is necessary to eliminate this infeasible error path from the ARG.

3.2.3 Interpolation

To refine the abstract model, refineP uses Craig interpolation [38] to discover abstract facts
that allow eliminating the infeasible error path. Given a sequence ϕ̂ = 〈ϕ1, . . . , ϕn〉 of for-
mulas whose conjunction is unsatisfiable, a sequence 〈τ0, . . . , τn〉 is an inductive sequence
of interpolants for ϕ̂ if

123

A Manuscripts A Unifying View on SMT-Based Software Verification

81

310 D. Beyer et al.

1. τ0 = true and τn = false,
2. ∀i ∈ {1, . . . , n} : τi−1 ∧ ϕi ⇒ τi , and
3. for all i ∈ {1, . . . , n − 1}, τi references only variables that occur in

∧i
j=1 ϕi as well as

in
∧n

j=i+1 ϕi .

Note that every interpolation sequence starts with no assumption (τ0 = true) and ends with
a contradiction (τn = false), and that τi ⇒ ¬∧n

j=i+1 ϕ j follows from the definition, for
all i ∈ {1, . . . , n}. For many common SMT theories, interpolants are guaranteed to exist
and can be computed using off-the-shelf SMT solvers from a proof of unsatisfiability for
∧n

i=1 ϕi . Note that in general there exist many possible sequences of interpolants for a single
infeasible error path.

Example 3 (Interpolation) Given a sequence ϕ̂ = 〈ϕ1, ϕ2〉 of formulas, where

ϕ1 = (x0 = 0 ∧ y0 = 0) and
ϕ2 = (x0 < 2 ∧ x1 = x0 + 1 ∧ y1 = y0 + 1 ∧ (x1 �= y1)),

the sequence 〈τ0, τ1, τ2〉 with
τ0 = true,
τ1 = (x0 = y0), and
τ2 = false

is a valid sequence of interpolants for ϕ̂, because it satisfies the definition above:

1. τ0 = true and τn = false,
2. true ∧ x0 = 0 ∧ y0 = 0 ⇒ x0 = y0 and

x0 = y0 ∧ x0 < 2 ∧ x1 = x0 + 1 ∧ y1 = y0 + 1 ∧ (x1 �= y1) ⇒ false, and
3. τ1 references the variables x0 and y0, which occur in both ϕ1 and ϕ2.

3.2.4 Refinement Strategies

Lastly, refineP needs to refine the precision of the analysis such that afterwards the analysis is
guaranteed to not encounter the same error path again. A refinement strategy uses the current
spurious abstract counterexample 〈e0, . . . , en〉 and the corresponding sequence 〈τ0, . . . , τn〉
of interpolants tomodify the sets reached andwaitlist. For this step, two common approaches
exist. Afterwards, the refinement is finished, the modified sets reached and waitlist are
returned to the analysis, and the analysis continues with building the abstract model (which
will now be more precise).

Impact Refinement. One refinement strategy is to perform a refinement similar to the
function Refine of the Impact algorithm [61]. The Impact refinement strategy takes each
abstraction state ψi of the abstract counterexample and conjoins to its abstraction formula
the corresponding interpolant τi . If an abstract state is actually strengthened by this (i.e., the
previous abstraction formula did not already imply the interpolant), we also need to recheck
all coverage relations of this abstract state. Figure 3a outlines such a situation: an abstract
state e′

i previously covered by another abstract state ei is now no longer covered, because the
abstraction formula of ei was strengthened by the refinement. In this case, we uncover and
readd all leaf abstract states in the subgraph of the ARG that starts with the uncovered abstract
state e′

i to the setwaitlist. We also check for each of the strengthened abstract states whether

123

A Unifying View on SMT-Based Software Verification A Manuscripts

82

A Unifying View on SMT-Based Software Verification 311

e0:
(lINIT , (true, lINIT , true))

ei:
(li, (·, li, true))

ei:
(li, (ψi τi, li, true))

en:
(lERR, (true false, lERR, true))

covered by

e0:
(lINIT , (true, lINIT , true))

ej :
(lj , (·, lj , true))

ej :
(lj , (ψj τj , lj , true))

en:
(lERR, (true false, lERR, true))

covered by

< <

<<

(a) Abstract state e′ may lose coverage by
strengthened abstract state ei

(b) Strengthened abstract state ej may gain
coverage by abstract state e′

i

j

Fig. 3 Sketches of the process of rechecking coverage relations after Impact refinement. Squiggly arrows
represent paths between abstraction states and hide intermediate states

it is now covered by any other abstract state at the same program location. If this is successful,
i.e., if a strengthened abstract state e j is now covered by another abstract state e′

j as shown in
Fig. 3b, we mark the subgraph that starts with that strengthened abstract state e j as covered
and remove all leafs therein fromwaitlist (we do not need to expand covered abstract states).
The only change to the set reached is the removal of all abstract states whose abstraction
formula is now equivalent to false and their successors. Due to the properties of interpolants,
this is guaranteed to be the case for at least the abstract error state.

Example 4 (Impact Refinement) Given

– a set of program locations L = {l2, l4, l8},
– an abstract counterexample 〈e0, e1, e2〉,
– a corresponding sequence of program locations 〈l2, l4, l8〉 where

e0 is at program location l2 = lINIT ,
e1 is at program location l4, and
e2 is at program location l8 = lERR,

– and a sequence of interpolants 〈τ0, τ1, τ2〉 with
τ0 = true at l2,
τ1 = (x0 = y0) at l4, and
τ2 = false at l8,

we directly strengthen the abstract states e1 and e2 by conjoining the interpolant x0 = y0
to the abstraction formula of e1 and conjoining the interpolant false to the abstraction
formula of e2.

We then remove e2 from the set reached because its abstraction formula is now
equivalent to false, check if the strengthening of the abstraction formula of e1 invalidated
any coverage relations, such that we readd leafs of subgraphs of abstract states that
became uncovered, check if the strengthening of the abstraction formula of e1 caused e1
to become covered by any other state so that we remove all leaf states of its subgraph
from the set waitlist, and then continue the state-space exploration.

123

A Manuscripts A Unifying View on SMT-Based Software Verification

83

312 D. Beyer et al.

Predicate Refinement. Another refinement strategy is used for traditional lazy predicate
abstraction. It extracts the atoms of the interpolants as predicates, creates a new preci-
sion π with these predicates, and restarts (a part of) the analysis with a new precision that is
extended by π .

The precision π is a mapping from program locations to sets of predicates, and we add
predicates to the precision only for program locations where they are necessary. Assuming
that, starting from an abstract counterexample 〈e0, . . . , en〉 with abstraction states at pro-
gram locations 〈l0, . . . , ln〉we obtained a sequence 〈τ0, . . . , τn〉 of interpolants and extracted
a sequence 〈ρ0, . . . , ρn〉 of sets of predicates. Then we add each predicate to the preci-
sion for the program location that corresponds to the point in the abstract counterexample
where the predicate appears in the interpolant, i.e., π(l) = ⋃n

i=0(ρi if l = li else ∅).
Note that due to the properties of interpolants, π(lERR) will always be {false}. We take
the precision π with the new predicates and the existing precision πn that is associ-
ated in the set reached with the abstract error state en and join them element-wise to
create the new precision π ′ with ∀l ∈ L : π ′(l) = πn(l) ∪ π(l) that will be used
in the subsequent analysis.

Finally, the sets reached and waitlist are prepared for continuing with the analysis.
We remove only those parts of the ARG for which the new predicates are neces-
sary. For this, we determine the first abstract state of the abstract counterexample for
which the new precision π ′ would lead to more predicates being used in the abstrac-
tion computation than the originally used predicates and call this the pivot abstract
state. Then we remove the subgraph of the ARG that starts with the pivot abstract
state from the sets reached and waitlist, as well as all abstract states that were cov-
ered by one of the removed abstract states. To ensure that the removed parts of
the ARG get re-explored, we take all remaining parents of removed abstract states,
replace the precision with which they are associated in reached with the new preci-
sion π ′, and add them to the set waitlist. This has not only the effect of avoiding
the re-exploration of unchanged parts of the ARG, but also leads to the new pred-
icates being used only in the relevant part of the ARG, with other parts of the
program state space being explored with different (possibly more abstract and thus
more efficient) precisions.

Example 5 (Predicate Refinement) Given

– a set of program locations L = {l2, l4, l8},
– an initial precision πn , with ∀l ∈ L : πn(l) = ∅,
– an abstract counterexample 〈e0, e1, e2〉,
– a corresponding sequence of program locations 〈l2, l4, l8〉 where

e0 is at program location l2 = lINIT ,
e1 is at program location l4, and
e2 is at program location l8 = lERR,

– and a sequence of interpolants 〈τ0, τ1, τ2〉 with
τ0 = true at l2,
τ1 = (x0 = y0) at l4 and
τ2 = false at l8,

123

A Unifying View on SMT-Based Software Verification A Manuscripts

84

A Unifying View on SMT-Based Software Verification 313

we extract the sequence 〈ρ0, ρ1, ρ2〉 of sets of predicates with
ρ0 = {} at l2,
ρ1 = {x = y} at l4, and
ρ2 = {false} at l8.

We then use this sequence of sets of predicates to construct the precision π :

π(l2) = ρ0 = {},
π(l4) = ρ1 = {x = y}, and
π(l8) = ρ2 = {false}.
Joining the previous precision πn with the newly obtained precision π yields the

updated precision π ′ (π ′ = π because πn is empty for each location).
As a result, the first abstract state in the abstract counterexample that is affected by

the new precision is e1, which therefore becomes the pivot state and is removed from the
ARG, along with all its descendants in the ARG, including e2. Then, starting from the
predecessors of e1, the state space is re-explored using the new precision π ′.

3.3 Forced Covering

Forced coverings were introduced for lazy abstraction with interpolants (Impact) [61] for a
faster convergence of the analysis. Typically, when theCPAalgorithm creates a new successor
abstract state for an Impact analysis, this new abstract state is too abstract to be covered by
existing abstract states, since the Impact refinement strategy is used, which leads to all new
abstraction states being equivalent to true. If an abstract state cannot be covered, the analysis
needs to further create successors of it, leading to more abstract states and possibly more
refinements. The idea of forced covering is to strengthen new abstract states such that they
are covered by existing abstract states immediately if possible.

We define an operator fcoverP : 2E×Π × E × Π → 2E×Π that takes as input the set
reached of reachable abstract states and an abstract state e with precision π and returns
an updated set reached′ of reachable abstract states. The operator may replace e and other
abstract states in reachedwith strengthened versions, if it can guarantee that this is sound and
if afterwards the strengthened version of e is covered by another abstract state in reached′. A
trivial implementation of this operator is fcoverid(reached, e, π) = reached, which does
not strengthen abstract states and returns the set reached unchanged.

An alternative implementation is fcoverImpact, which adopts the strategy for forced cov-
erings presented for lazy abstraction with interpolants [61]. We extend this approach here
to support adjustable-block encoding. Because the Predicate CPA does not attempt to cover
intermediate states (only abstraction states),we also only attempt forced coverings for abstrac-
tion states. Figure 4 shows a sketch of the concept of forced covering in Impact to help
visualize the following explanation: Given an abstraction state e that should be covered if
possible, the candidate abstract states for covering are those abstraction states that belong to
the same location, were created before e, and are not covered themselves. For each candi-
date e′, we first determine the nearest common ancestor abstraction state ê of e and e′ (using
the information tracked by the ARG CPA). Now let us denote the abstraction formulas of e′
and êwithψ ′ and ψ̂ , respectively, and let ϕ be the path formula that represents the paths from
ê to e. We then determine whether ψ ′ also holds for e by checking if ψ̂ ∧ ϕ �⇒ ψ ′ holds,
i.e., whether it is impossible to reach a concrete state that is not represented byψ ′ when start-
ing at ê and following the paths to e. If this holds, we can strengthen the abstraction formula

123

A Manuscripts A Unifying View on SMT-Based Software Verification

85

314 D. Beyer et al.

e0: (lINIT , (true, lINIT , true))

e: (l , (ψ, l , true))

e : (l , (ψ , l , true))e: (l , (true ψ , l , true))
covered by<

ϕ

Fig. 4 Concept sketch for fcoverImpact, blue parts are added on successful forced covering,
i.e., if ψ̂ ∧ ϕ ⇒ ψ ′

of e with ψ ′ (which immediately lets us cover e by e′). Furthermore, if there are abstraction
states along the paths from ê to e, we need to strengthen these states, too, in order to keep the
ARGwell-formed.We can do so by computing interpolants at the appropriate locations along
the paths for the query that we have just solved and strengthen the abstract states with the
interpolants. If the query does not hold, we switch to the next candidate abstract state and try
again. Finally, fcoverImpact returns an updated set reachedwith strengthened abstract states,
or the original set reached if forced covering was unsuccessful for each of the candidates.
Note that this forced-covering strategy is similar to interpolation-based refinement with the
Impact refinement strategy, just that we attempt to prove thatψ ′ instead of false holds at the
end of the path, and that the refined path does not start at the initial abstract state but at ê.

3.4 An Extended CPA Algorithm

In order to be able to use all the features of the Predicate CPA and support approaches such
as lazy abstraction, we also need to slightly extend the CPA algorithm. The extended version,
which we call the CPA++ algorithm, is shown as Algorithm 2. Compared to the original
version (Algorithm 1), it has the following differences:

1. CPA++ gets reached andwaitlist as input and returns updated versions of both of them,
instead of getting an initial abstract state and returning a set of reachable abstract states.

2. CPA++ calls a function abort to determine whether it should abort early for each found
abstract state (lines 16–17).

3. CPA++ calls the precision-adjustment operator immediately for each new abstract state
(line 7) instead of only before expanding an abstract state.

4. CPA++ attempts a forced covering by calling fcover before expanding an abstract state
(lines 3–5).

The first two changes allow calling CPA++ iteratively and keep expanding the same set
of abstract states, which is necessary for CEGAR with lazy abstraction (where we want
to abort as soon as we find an abstract error state and continue after refinement without
restarting from scratch; abort(e) is typically implemented to return true if e is an abstract
state at error location lERR). The new position of the call to the precision-adjustment oper-
ator is necessary because previously the resulting abstract states (̂e in Algorithm 1) were
never put into reached. However, we need the abstract states resulting from prec to be in
reached, because among them are the abstraction states of the Predicate CPA, which are
necessary for refinement.

Similar changes to theCPAalgorithmhave been used previously [22,25]; we now combine
them in order to provide an all-encompassing algorithm for reachability that we can use as
building block for our unifying framework for predicate-based software verification.

123

A Unifying View on SMT-Based Software Verification A Manuscripts

86

A Unifying View on SMT-Based Software Verification 315

Algorithm 2 CPA++(D, reached,waitlist,abort), extension of Algorithm 1
Input: a CPA D = (D, Π, �,merge, stop, prec) with additional operator fcover,

where E denotes the set of elements of the semilattice of D,
a set reached ∈ E × Π of reachable abstract states
a set waitlist ∈ E × Π of frontier abstract states, and
a function abort : E → B that defines whether the algorithm should abort early

Output: the updated sets reached and waitlist
1: while waitlist �= ∅ do
2: pop (e, π) from waitlist
3: reached := fcover(reached, e, π)

4: if (e, π) /∈ reached then
5: continue // Forced covering was successful.
6: for all e′ with e � (e′, π) do
7: (̂e, π̂) := prec(e′, π, reached) // Adjust the precision of the abstract state.
8: for all (e′′, π ′′) ∈ reached do
9: enew := merge(̂e, e′′, π̂) // Combine with existing abstract state.
10: if enew �= e′′ then
11: waitlist := (

waitlist ∪ {(enew, π̂)}) \ {(e′′, π ′′)}
12: reached := (

reached ∪ {(enew, π̂)}) \ {(e′′, π ′′)}
13: if not stop(̂e, {e | (e, ·) ∈ reached}, π̂) then // Add new abstract state if needed.
14: waitlist := waitlist ∪ {(̂e, π̂)}
15: reached := reached ∪ {(̂e, π̂)}
16: if abort(̂e) then
17: return (reached,waitlist)
18: return (reached,waitlist)

4 Unifying SMT-Based Approaches for Software Verification

In this section, we will give a unifying overview of four widely used approaches to software
verification: bounded model checking (BMC), k-induction, predicate abstraction, and the
Impact algorithm. We reformulate the approaches in our theoretical framework from the
previous section and illustrate their differences using our example program.

In the following, the Predicate CPA P is always combined with at least the CPA L for
program-counter tracking and the ARG CPA A for tracking the predecessor–successor as
well as coverage relations between ARG nodes. We show relations between ARG nodes
graphically in the figures and omit them for ease of presentation when notating abstract
states as tuples. For path formulas, we use a skolemized notation based on SSA indices [39],
which is easier to read than existential quantification of many variables. Index addition and
removal is done implicitly when converting between abstraction formulas and path formulas.

4.1 Bounded Model Checking

For bounded model checking, we set the ABE block size to infinite (we call this whole-
program encoding) by using the block operator blknever , and we use fcoverid (i.e., no forced
coverings). Additionally, we combine the Predicate CPA with a CPA for bounding the state
space besides the typical basic CPAs.

The Loop-Bound CPA LB tracks in its abstract states for every loop of the program how
often the loop body was traversed on the current program path. It associates each loop-head
locationwith a counter that startswith−1 and is incremented by the transfer relationwhenever
the respective location is reached. The precision is the loop bound k: π = k, with k > 0.
The transfer relation of the Loop-Bound CPA is unsound on purpose: it does not produce any
successor abstract states for abstract states in which one of the counters for the loop-head

123

A Manuscripts A Unifying View on SMT-Based Software Verification

87

316 D. Beyer et al.

locations is equal to the loop bound k in the precision and thus prevents the analysis from
exploring any paths for more than k loop iterations. Apart from that, the Loop-Bound CPA
uses the standard operatorsmergesep, stopsep, and precid .

This configuration leads to an analysis without abstraction computations, expensive cov-
erage checks, and refinements. Instead, the CPA++ algorithm simply unrolls the CFA (within
the loop bound), and each abstract state contains a path formula that exactly represents the
paths from the initial location to this abstract state. We wrap the CPA++ algorithm in another
algorithm that checks satisfiability of the path formula of each abstract error state after the
CPA++ algorithm has finished (we can use Algorithm 3, which is discussed in Sect. 4.2, for
this by omitting lines 15–23). If at least one path formula is satisfiable (for efficiency, we
check the disjunction of all path formulas at once in line 10 of Algorithm 3), then there exists
a feasible path to the error location, i.e., the specification is violated.

We can also implement a forward-condition check [44] by making an additional SMT
query for the satisfiability of the path formulas of all those abstract states for which the
Loop-Bound CPA has unsoundly restricted the successor abstract states. If none of these
path formulas is satisfiable, the specification is proven to hold for the program. If for a
given loop bound k the result was inconclusive (i.e., no specification violation found but the
forward-condition check was unsuccessful, too), we can repeat the bounded model check
with a higher k.

Example 6 (BMC) If we apply BMC with k = 1 to the program of Fig. 2, unrolling
the CFA yields the ARG depicted in Fig. 5. In this figure, each abstract state is a tuple
(l, (ψ, lψ , ϕ), {l4 �→ i}) of the abstract states of L, P, and LB. The path formula of
the abstract state e8, which is the only abstract state at error location lERR = l8, is
unsatisfiable. Therefore, no bug is reachable within one loop unrolling. The abstract
state e10 is the last state in this ARG because here the bound k = 1 is reached. In order
to do a forward-condition check we check the satisfiability of the path formula of e10.
Because the formula is satisfiable and thus, e10 is reachable, we can conclude that the
bound k = 1 is not large enough to fully verify this program.

4.2 k-Induction

For ease of presentation, we assume here that the loop head is not reachable from the error
location lERR and that the analyzed program has exactly one loop whose loop-head location
is lLH . In practice, k-induction can be applied to programs with many loops [13].

k-Induction, like BMC, is an approach that at its core does not rely on abstraction
techniques. We present an algorithm for k-induction-based verification based on the Pred-
icate CPA as Algorithm 3. This algorithm supports iterative deepening and injection of
continuously refined invariants. We can use this algorithm in combination with (external)
standard invariant-generation techniques, such as data-flow analysis [57,63] and template-
based approaches [16,36]. This is necessary, because often the safety property of a verification
task is not directly k-inductive for any k, but only relative to some auxiliary invariant, so
that plain k-induction cannot succeed in proving safety. Strengthening the hypothesis of
the inductive-step case with auxiliary invariants may allow the algorithm to prove such
properties as well.

Algorithm 3 gets as input initial andmaximal values for the loop bound and a function that
computes the next loop bound after each iteration (this function can for example increase the
value by one, or double it). Additionally we give the algorithm a combination of CPAs (as a
composite CPA) that includes the Location CPA L (cf. Sect. 2.2), our Predicate CPA P in the

123

A Unifying View on SMT-Based Software Verification A Manuscripts

88

A Unifying View on SMT-Based Software Verification 317

e0: (l2, (true, l2, true), {l4 1})

e1: (l3, (true, l2, x0 = 0), {l4 1})

e2: (l4, (true, l2, x0 = 0 y0 = 0), {l4 0})

e3: (l11, (true, l2, x0 = 0 y0 = 0 ¬(x0 < 2)), {l4 0})

e4: (l12, (true, l2, x0 = 0 y0 = 0 ¬(x0 < 2)), {l4 0})

e5: (l5, (true, l2, x0 = 0 y0 = 0 x0 < 2), {l4 0})

e6: (l6, (true, l2, x0 = 0 y0 = 0 x0 < 2 x1 = x0 + 1), {l4 0})

e7: (l7, (true, l2, x0 = 0 y0 = 0 x0 < 2 x1 = x0 + 1 y1 = y0 + 1), {l4 0})

e8: (l8, (true, l2, x0 = 0 y0 = 0 x0 < 2 x1 = x0 + 1 y1 = y0 + 1 ¬(x1 = y1)), {l4 0})

e9: (l12, (true, l2, x0 = 0 y0 = 0 x0 < 2 x1 = x0 + 1 y1 = y0 + 1 ¬(x1 = y1)), {l4 0})

e10: (l4, (true, l2, x0 = 0 y0 = 0 x0 < 2 x1 = x0 + 1 y1 = y0 + 1 ¬(¬(x1 = y1))), {l4 1})

<

<<

<<

<<

<

<

<
<

<

<<

< < < <
<

<<<<

<<<

<<
<

→

→

→

→

→

→

→

→

→

→

→

–

–

Fig. 5 ARG for applying BMC to the example of Fig. 2

configuration for boundedmodel checking, and theLoop-BoundCPALB (cf. Sect. 4.1). Thus,
each abstract state is a tuple of the current program counter l (this is an abstract state of L),
a predicate abstract state (which is itself a tuple of an abstraction formula, an abstraction
location, and a path formula), and a mapping of loop heads to loop counters (this is an
abstract state of LB).

For each value of the loop bound k as determined by the initial and maximal values and
the increment function, the algorithm performs the checks for base case, forward condi-
tion, and step case. For the base case (lines 6–11), which is identical to bounded model
checking, we set the bound of the Loop-Bound CPA to k and use the CPA++ algorithm
(Algorithm 2) to unroll the program with an abstract state eINIT at the initial program loca-
tion as initial abstract state and the precision πINIT as initial precision (the Location CPA
has an empty precision, the Predicate CPA has a precision that maps all program loca-
tions to an empty set of predicates, and the Loop-Bound CPA has a precision that consists
of the single constant value k). Then we create a disjunction of the path formulas of all
resulting abstract states at the error location. Because of the configuration of the Predi-
cate CPA and the Loop-Bound CPA, this formula represents all paths from lINIT to lERR that
visit the loop body at most k times. If this formula is feasible, lERR is reachable and
the algorithm terminates.

For the forward condition (lines 12–14), we check in a similar manner whether the loop-
head location lLH is reachable at the start of the k + 1st loop iteration. If this is not the case,
this implies that the error location is also not reachable in the k + 1st loop iteration (or later
on), and thus the program is safe and the algorithm terminates.

For the inductive-step case (lines 15–23), we again use the CPA++ algorithm to unroll the
program, though this time with a loop bound of k + 1 and an abstract state at the loop head

123

A Manuscripts A Unifying View on SMT-Based Software Verification

89

318 D. Beyer et al.

Algorithm 3 Iterative-Deepening k-Induction with Invariants (adapted from [13])
Input:

the initial value kini t ≥ 1 for the bound k,
an upper limit kmax for the bound k,
a function inc : N → N with ∀n ∈ N : inc(n) > n for increasing the bound k,
a composite CPA D with the Location CPA L, the Predicate CPA P, and the Loop-Bound CPA LB as
components,
for which E denotes the set of composite abstract states and Π the set of precisions

Output: false if lERR is reachable, true otherwise
Variables: the current loop bound k ∈ N,

two abstract states eINIT ∈ E and eLH ∈ E and a precision πINIT ∈ Π ,
two sets reached and waitlist of elements of E × Π , and
a function abort : E → B

1: k := kini t
2: eINIT := (lINIT , (true, lINIT , true), {lLH �→ −1}) // Create abstract state at lINIT .
3: eLH := (lLH , (true, lLH , true), {lLH �→ 0}) // Create abstract state at loop head lLH .
4: abortnever := {· �→ false} // abortnever always returns false.
5: while k ≤ kmax do
6: πINIT := {(∅, {· �→ ∅}, k)} // Create initial precision.
7: reached := waitlist := {(eINIT , πINIT)}
8: (reached,waitlist) := CPA++(D, reached,waitlist, abortnever)
9: base_case := ∨ {

ϕ | (

(lERR, (·, ·, ϕ), ·), ·) ∈ reached
}

10: if sat(base_case) then
11: return false
12: forward_condition := ∨ {

ϕ | (

(lLH , (·, ·, ϕ), i), ·) ∈ reached ∧ i(lLH) = k
}

13: if ¬ sat(forward_condition) then
14: return true
15: πINIT := {(∅, {· �→ ∅}, k + 1)} // Initial precision with loop bound k + 1.
16: reached := waitlist := {(eLH , πINIT)}
17: reached := CPA++(D, reached,waitlist, abortnever)
18: step_case := ∨ {

ϕ | (

(lERR, (·, ·, ϕ), i), ·) ∈ reached ∧ i(lLH) = k
}

19: repeat
20: Inv := get_currently_known_invariant()
21: if ¬ sat(Inv ∧ step_case) then
22: return true
23: until Inv = get_currently_known_invariant()
24: k := inc(k)
25: return unknown

as initial abstract state. For the following satisfiability check, we use the disjunction of the
path formulas of all abstract states at the error location and with a loop-counter value of k
(i.e., in the k + 1st loop iteration). Note that because we assume that the loop body cannot
be reached from the error location lERR, this formula represents all paths with k safe loop
iterations and a specification violation in the k + 1st iteration. Additionally, we strengthen
the hypothesis of the inductive-step case with the currently known loop invariant that is pro-
duced by the concurrently running (external) invariant generator. The invariant obtained from
the invariant generator is an SMT formula that is guaranteed to hold at the loop-head loca-
tion. If the invariant generator produces a stronger loop invariant while the inductive-step
case is running, we immediately try again with the new invariant (this can be done effi-
ciently using an incremental SMT solver). If the inductive-step case succeeds, the program
is safe and the algorithm terminates. Otherwise, we repeat with a larger value of k, which is
called iterative deepening.

123

A Unifying View on SMT-Based Software Verification A Manuscripts

90

A Unifying View on SMT-Based Software Verification 319

e0: (l4, (true, l4, true), {l4 �→ 0})

e1: (l11, (true, l4, ¬(x0 < 2)), {l4 �→ 0})

e2: (l12, (true, l4, ¬(x0 < 2)), {l4 �→ 0})

e3: (l5, (true, l4, x0 < 2), {l4 �→ 0})

e4: (l6, (true, l4, x0 < 2 ∧ x1 = x0 + 1), {l4 �→ 0})

e5: (l7, (true, l4, ∧x0 < 2 ∧ x1 = x0 + 1 ∧ y1 = y0 + 1), {l4 �→ 0})

e6: (l8, (true, l4, x0 < 2 ∧ x1 = x0 + 1 ∧ y1 = y0 + 1 ∧ ¬(x1 = y1)), {l4 �→ 0})

e7: (l12, (true, l4, x0 < 2 ∧ x1 = x0 + 1 ∧ y1 = y0 + 1 ∧ ¬(x1 = y1)), {l4 �→ 0})

e8: (l4, (true, l4, x0 < 2 ∧ x1 = x0 + 1 ∧ y1 = y0 + 1 ∧ ¬(¬(x1 = y1))), {l4 �→ 1})

e9: (l11, (true, l4, x0 < 2 ∧ x1 = x0 + 1 ∧ y1 = y0 + 1 ∧ ¬(¬(x1 = y1)) ∧ ¬(x1 < 2)), {l4 �→ 1})

e10: (l12, (true, l4, x0 < 2 ∧ x1 = x0 + 1 ∧ y1 = y0 + 1 ∧ ¬(¬(x1 = y1)) ∧ ¬(x1 < 2)), {l4 �→ 1})

e11: (l5, (true, l4, x0 < 2 ∧ x1 = x0 + 1 ∧ y1 = y0 + 1 ∧ ¬(¬(x1 = y1)) ∧ x1 < 2), {l4 �→ 1})

e12: (l6, (true, l4, x0 < 2 ∧ x1 = x0 + 1 ∧ y1 = y0 + 1 ∧ ¬(¬(x1 = y1)) ∧ x1 < 2 ∧ x2 = x1 + 1), {l4 �→ 1})

e13: (l7, (true, l4, x0 < 2 ∧ x1 = x0 + 1 ∧ y1 = y0 + 1 ∧ ¬(¬(x1 = y1)) ∧ x1 < 2 ∧ x2 = x1 + 1 ∧ y2 = y1 + 1), {l4 �→ 1})

e14: (l8, (true, l4, x0 < 2 ∧ x1 = x0 + 1 ∧ y1 = y0 + 1 ∧ ¬(¬(x1 = y1)) ∧ x < 2 ∧ x2 = x1 + 1 ∧ y2 = y1 + 1 ∧ ¬(x2 = y2)), {l4 �→ 1})

e15: (l12, (true, l4, x0 < 2 ∧ x1 = x0 + 1 ∧ y1 = y0 + 1 ∧ ¬(¬(x1 = y1)) ∧ x < 2 ∧ x2 = x1 + 1 ∧ y2 = y1 + 1 ∧ ¬(x2 = y2)), {l4 �→ 1})

e16: (l4, (true, l4, x0 < 2 ∧ x1 = x0 + 1 ∧ y1 = y0 + 1 ∧ ¬(¬(x1 = y1)) ∧ x < 2 ∧ x2 = x1 + 1 ∧ y2 = y1 + 1 ∧ ¬(¬(x2 = y2))), {l4 �→ 2})

Fig. 6 ARG for the inductive-step case of k-induction applied to the example of Fig. 2

Example 7 (k-Induction) If we apply k-induction with k = 1 to the program of Fig. 2,
the first phase, which is equivalent to BMC, yields the same ARG as in Fig. 5. Figure 6
shows the ARG of the second phase, which is constructed by unrolling the CFA starting
at loop head lLH = l4 and using loop bound k + 1 = 2. The path formula of the abstract
state e14 at the error location lERR = l8, which is in the k + 1st loop iteration, is unsatis-
fiable (specifically, the part ¬(¬(x1 = y1)) ∧ x2 = x1 + 1∧ y2 = y1 + 1∧ ¬(x2 = y2)
is contradictory). This means that after going through one loop iteration without reach-
ing l8, we can also not reach l8 in the following loop iteration. In combination with the
base case (BMC) from the first phase this proves that the program is safe. Note that this
inductive proof is strong enough to prove safety even if we replace the loop condition in
line 4 of the example program by a nondeterministic value.

Also note that in this example, no strengthening with auxiliary invariants is required,
because the verified property (unreachability of the error location l8) itself is inductive.
Since this is not the case in general, we usually first conjoin auxiliary invariants to
the path formula of the abstract state before checking satisfiability. In this example,
an auxiliary-invariant generator based on an interval abstract domain might yield the
inductive invariant x >= 0∧x <= 2, whichwewould instantiate as x1 >= 0∧x1 <= 2
for the loop head state of the first iteration.

123

A Manuscripts A Unifying View on SMT-Based Software Verification

91

320 D. Beyer et al.

Algorithm 4 CEGAR(D, eINIT , πINIT) for CPAs
Input: a composite CPA D that is composed of the Location CPA L, the ARG CPA A, and possibly other

CPAs,
for which E denotes the set of composite abstract states and Π the set of precisions,
with additional operators fcover and refine,
and an initial abstract state eINIT = (lINIT , · · ·) ∈ E with initial precision πINIT ∈ Π

Output: false if lERR is reachable, true otherwise
Variables: two sets reached and waitlist of elements of E × Π and

a function abort : E → B
1: reached := {(eINIT , πINIT)}
2: waitlist := {(eINIT , πINIT)}
3: abortERR := {(l, · · ·) �→ (l = lERR)} // abortERR returns true for abstract error states.
4: loop
5: (reached,waitlist) := CPA++(D, reached,waitlist, abortERR)

6: if ∃((lERR, · · ·), ·) ∈ reached then
7: (reached,waitlist) := refine(reached,waitlist)
8: if ∃((lERR, · · ·), ·) ∈ reached then
9: return false // refine has detected a feasible error path.
10: else
11: return true

4.3 Lazy Predicate Abstraction

Predicate abstraction with counterexample-guided abstraction refinement (CEGAR) does
not use a loop bound, but attempts to converge by determining whether new abstract states
are covered by any existing abstract state. In order to make the coverage checks efficient,
the abstraction formula of an abstract state overapproximates the reachable concrete states
using a boolean combination of predicates over program variables from a given mapping
from program locations to sets of predicates (the precision π). This abstraction is com-
puted by an SMT solver and the result (the abstraction formula ψ) is stored as a BDD,
which can be efficiently checked for entailment. With ABE, the abstraction computations
and coverage checks are done only at block ends. For the CPA++ algorithm to terminate
it has to be ensured that all ABE blocks do not contain potentially infinite paths, e.g., by
using blkl to let blocks end at loop-head locations. For predicate abstraction we do not
use forced coverings.

Furthermore, we wrap our CPA++ algorithm (Algorithm 2) inside Algorithm 4, which
implements CEGAR by alternately calling the CPA++ algorithm in order to expand the
abstract model and a refinement operator in order to refine the precision of the analy-
sis. We give it a composite CPA that consists of the Location CPA L, the ARG CPA A
(necessary for constructing abstract paths during refinement), and the Predicate CPA P.
Using CEGAR and the predicate-refinement strategy of the refinement operator refineP, it
is often possible to find a suitable precision automatically, starting with an empty initial
precision. First, CEGAR uses the CPA++ algorithm in order to create the abstract model of
the program. If the analysis encounters an abstract state at error location lERR, we pause the
state-space exploration done by CPA++ algorithm (via the function abortERR) and start the
refinement using refineP. As described in Sect. 3.2, this operator reconstructs the concrete
program path leading to the abstract state at lERR and checks the path for feasibility using
an SMT solver. If the concrete error path is feasible, we terminate the analysis. Otherwise,
the precision is refined (by employing an SMT solver to compute Craig interpolants [38]
for the locations on the error path), and the CPA++ algorithm is restarted with adjusted
sets reached and waitlist. Due to the refined precision, it is guaranteed that the previously

123

A Unifying View on SMT-Based Software Verification A Manuscripts

92

A Unifying View on SMT-Based Software Verification 321

e0: (l2, (true, l2, true))

e1: (l3, (true, l2, x0 = 0))

e2: (l4, (x = y, l4, true))

e3: (l11, (x = y, l4, ¬(x0 < 2)))

e4: (l12, (x = y, l4, ¬(x0 < 2)))

e5: (l5, (x = y, l4, x0 < 2))

e6: (l6, (x = y, l4, x0 < 2 x1 = x0 + 1))

e7: (l7, (x = y, l4, x0 <

<

< <

<
2 x1 = x0 + 1 y1 = y0 + 1))

e8: (l4, (x = y, l4, true))

covered by

Fig. 7 ARG for predicate abstraction applied to the example of Fig. 2; highlighted nodes are abstraction states

identified infeasible error paths are not encountered again. This process is iterated until
either a feasible concrete error path is found, or the CPA++ algorithm terminates proving
the program safe.

Example 8 (Lazy Predicate Abstraction) If we apply predicate abstraction to the exam-
ple in Fig. 2 using a precision π with π(l4) = {x = y}, π(l8) = {false}, and π(l) = {}
for all other l ∈ L and defining blocks to end at the loop head l4 and the error location l8
(with blkl), we obtain the ARG depicted in Fig. 7: The first block consists of the abstract
states e0 at location l2 and e1 at location l3. If the analysis hits location l4, which is a loop
head, the path formula x0 = 0∧ y0 = 0 is abstracted using the set of predicates mapped
to this location by π . The set of predicates for the location l4 contains only the predi-
cate x = y, which is implied by the path formula and becomes the abstraction formula of
the new abstraction state e2, while the path formula of e2 is reset to true. From that point
onward, there are two possible paths: one directly to the end of the program if x is greater
than or equal to 2, and another one into the loop if x is less than 2. The path avoiding
the loop (abstract states e3 and e4) is trivially safe, because from l11 or l12 there is no
control-flow path back to the error location. The path through the loop (abstract states e5,
e6, and e7) increments both variables before encountering the assertion. At the error
location l8 the block operator forces an abstraction computation, which in this case is
equivalent to a satisfiability check because the precision contains only the predicate false
for location l8. Because the combination of the abstraction formula x = y that encodes
the reachability of the block entry and the current path formula is unsatisfiable, the error
location is not reachable at this point. Thus, the only successor of e7 is at the loop head l4,
which causes the previous block to end. The abstraction computation yields again the
abstraction formula x = y at l4 (cf. Example 2), which is already covered by the abstract
state e2. Therefore, unrolling the CFA into the ARG completed without encountering the
error location lERR = l8. The algorithm thus concludes that the program is safe.

123

A Manuscripts A Unifying View on SMT-Based Software Verification

93

322 D. Beyer et al.

4.4 Lazy Abstraction with Interpolants (IMPACT)

Lazy abstraction with interpolants [61], more commonly known as the Impact algorithm due
to its first implementation in the tool Impact, was originally presented as an algorithm that
repeatedly executes the steps Expand (discovery of new abstract states),Refine (strengthen-
ing of abstract states using interpolation), and Cover (detecting coverage between abstract
states). Later on it was reformulated in a unified framework together with predicate abstrac-
tion and enhanced with ABE [25]. Our description here is based on this reformulation, which
was shown to behave similarly to the original algorithm. Like for predicate abstraction, for
Impact we use CEGAR (Algorithm 4), the CPA++ algorithm, and the Predicate CPA, how-
ever, we configure the latter differently. Compared to predicate abstraction, π stays always
empty because the Impact refinement strategy of refineP is used. Thus, the abstraction
computation at block ends always trivially returns true. The Impact refinement strategy,
however, makes use of the fact that interpolants are guaranteed to hold at their specific loca-
tion in the error path and directly strengthens the abstraction formulas of abstract states
along the error path with the respective interpolants. The abstract error state is removed
during refinement and all coverage relations involving the strengthened abstract states are
rechecked after refinement. Furthermore, the abstraction formulas ψ are stored syntactically
and coverage is checked using an SMT solver, instead of BDD entailment. If desired, we
can configure fcoverP to perform interpolation-based forced covering as an optimization (cf.
Sect. 3.3). Impact avoids the costly abstraction computations and rediscovery of abstract
states, at the expense of more costly coverage checks.

Example 9 (Impact) If we apply the Impact approach to the example program from
Fig. 2, define blocks to end at the loop head l4 and assume that both interpolations that are
required during the analysis yield the interpolant x = y at location l4, we obtain an ARG as
depicted in Fig. 8: Starting with the initialization of the variables, we first obtain the abstract
states e0 and e1; at e2, however, we reset the path formula to true, because l4 is a block entry.
Note that at this point, the abstraction formula for this block is still true. Unwinding the first
loop iteration, we first obtain abstract states for incrementing the variables and then hit the
error location lERR = l8 with abstract state e8. Thus we start a refinement using refineP with
the Impact refinement strategy. An SMT check on the reconstructed concrete error path
shows that the path is infeasible, therefore, we perform an interpolation. For the example we
assume that interpolation provides the interpolant x = y, so we strengthen the abstraction
formula of e2 with this interpolant and strengthen the abstraction formula of e8 with false
(cf. Example 4). Because e8 now represents an empty set of concrete states, we remove it
from the ARG. Then, we continue the expansion of e7 towards l4 with abstract state e9.
Note that at this point, the abstraction formula for e9 is still true, thus e9 is not covered by e2
with x = y. Also, e2 cannot be covered by e9, because e2 is an ancestor of e9. We unwind
the loop for another iteration and again hit the error location l8 with abstract state e13. Once
again, the concrete path formula for this abstract state is infeasible, so we interpolate. For
the example we assume that interpolation provides again the interpolant x = y, and use it
to strengthen the abstraction formula of e9. The abstract error state e13 is removed from the
ARG after its abstraction formula is strengthened to false. Now, a coverage check reveals
that e9 is covered by e2, because neither e9 nor any of its ancestors is covered yet, both
belong to the same location l4, x = y implies x = y, e9 is not an ancestor of e2, and e2
was created before e9. Because e9 is now covered, we need not continue expanding any of
its (transitive) successors, and the algorithm terminates without finding any feasible error
paths, thus proving safety.

123

A Unifying View on SMT-Based Software Verification A Manuscripts

94

A Unifying View on SMT-Based Software Verification 323

e0: (l2, (true, l2, true))

e1: (l3, (true, l2, x0 = 0))

e2: (l4, (true x = y, l4, true))

e3: (l11, (true, l4, ¬(x0 < 2)))

e4: (l12, (true, l4, ¬(x0 < 2)))

e5: (l5, (true, l4, x0 < 2))

e6: (l8, (true, l4, x0 < 2 x1 = x0 + 1))

e7: (l7, (true, l4, x0 < 2 x1 = x0 + 1 y1 = y0 + 1))

e8: (l8, (true false, l8, true))

e9: (l4, (true x = y, l4, true))

e10: (l5, (true, l4, x1 < 2))

e11: (l6, (true, l4, x1 < 2 x2 = x1 + 1))

e12: (l7, (true, l4, x1 < 2 x2 = x1 + 1 y2 = y1 + 1))

e13: (l8, (true false, l8, true))

covered by

<

<

<

<<

<

Fig. 8 Final ARG for applying the Impact approach to the example of Fig. 2; highlighted nodes
are abstraction states

4.5 Summary

We showed how to express four approaches to software verification with our framework for
predicate-based analyses and illustrated how they work on the example from Fig. 2. Table 1
summarizes the choices that need to be made for each of the approaches. While BMC is
limited in its capacity of proving correctness, it is also the most straightforward of the four
approaches, because k-induction requires an auxiliary-invariant generator to be applicable
in practice, and predicate abstraction and Impact require interpolation techniques. While
the invariant generator and the interpolation engine are usually treated as black box in the
description of these approaches, the efficiency and effectiveness of the techniques depends
on the quality of these modules.

123

A Manuscripts A Unifying View on SMT-Based Software Verification

95

324 D. Beyer et al.

Table 1 Configuration of the predicate CPA P for the four approaches

Abstraction-formula
representation

blk Refinement
strategy

fcoverP

BMC SMT blknever None fcoverid

k-Induction SMT blknever None fcoverid

Predicate abstraction BDD e.g. blkl Predicate refinement fcoverid

Impact SMT e.g. blkl Impact refinement e.g. fcoverImpact

4.5.1 Further Algorithms

There are other approaches for software verification besides the four that we unify in this
work, and of course, the best features of all approaches can be combined into new, “hybrid”
methods, such as implemented in CPAchecker [71], SeaHorn [48], and Ufo [3]. The
focus of this article is not to find the best possible combination, but to study the approaches
in isolation. In the following, we briefly discuss the most important SMT-based approaches,
ordered roughly accordingly to how similar they are to the approaches that we have
discussed so far.

TheUfo algorithm [2] combines the Impact algorithmwith predicate abstraction.Ufo is
similar to Impact, but implements a choice between performing predicate-abstraction com-
putation when creating fresh abstract states and initializing them with true as Impact does.
Refinement is done using interpolation, and the interpolants can be used to either strengthen
the abstract states (pure Impact behavior), or to update the set of predicates (pure predicate-
abstraction behavior), or do both. This approach can be seen as an instantiation of our
frameworkwith a refinement operator that uses both the Impact- and the predicate-refinement
strategies (cf. Sect. 3.2).

Symbolic execution [58] follows each path in the program separately and interprets its
operations; the abstract states track explicit and symbolic values of program variables in a
symbolic store as well as constraints over the symbolic values. If a variable is assigned a
nondeterministic value, a fresh symbolic value is stored; if an explicit value can be determined
by the analysis, then the explicit value is stored. Constraints that are encountered along a
path are tracked and checked for satisfiability, using the symbolic store as interpretation,
whenever the feasibility of the path needs to be determined (e.g., if an error location is
reached). The framework presented in this work can be configured as an analysis that behaves
similarly to symbolic execution (just without symbolic store) by using the CPA algorithm
with the Predicate CPA configured to use blknever and mergesep instead of mergeP. The
operator blknever has the effect of disabling abstraction computations and thus accumulating
the semantics of all program operations of a path in the path formula of abstract states
during traversal (as for BMC). The operatormergesep has the effect of preventing all merges
between abstract states and thus keeping all paths separate, forming a reachability tree. Note
that differently from symbolic execution this configuration tracks all values syntactically.

Slicing abstractions [30,43] (a.k.a. “state splitting”) starts with an abstract-reachability
graph in which all abstract states are labeled with true. The algorithm iteratively searches
for an infeasible error path in this graph and computes interpolants for the respective path.
The strategy for refining the abstract model consists of duplicating each abstract state for
which an interpolant was found (including its edges) and conjoining the interpolant to one
of the resulting abstract states and the negated interpolant to the other one (“state splitting”).

123

A Unifying View on SMT-Based Software Verification A Manuscripts

96

A Unifying View on SMT-Based Software Verification 325

Then all edges of both resulting states are checked for feasibility. This always results in
enough edges being removed such that the current infeasible error path no longer exists in
the abstract-reachability graph. This is repeated (CEGAR) until either no infeasible error path
exists anymore, or a feasible error path is found. The approach of splitting abstract states has
also been extended to a combination of predicate abstraction and explicit-value analysis [49],
similar to the combination of lazy predicate abstraction and explicit-value analysis [22].

Trace abstraction [50] is a CEGAR-based approach inwhich the iteratively refined abstract
model of the program is not a set of abstract states, but instead an automaton that represents
an overapproximation of the feasible paths of the program. Every time a spurious counterex-
ample is detected, a trace automaton that represents a set of infeasible paths including the
current counterexample is created using interpolation, and this trace automaton is subtracted
from the current abstract model.

Software proof-based abstraction with counterexample-based refinement (SPACER) [59]
is an approach that combines CEGAR with its dual, proof-based abstraction (PBA) [62].
While CEGARmaintains an overapproximation of the program and refines it using infeasible
error paths, PBAmaintains an underapproximation and refines it if it finds a safety proof that
holds only for the underapproximation but not for the original system. SPACER follows the
PBA approach but uses an abstraction of the underapproximation to allow handling infinite-
state systems and refines this abstraction using CEGAR.

Model checkingmodulo theories (MCMT) [45,46] is an approach that focuses onverifying
infinite-state systems that use arrays. It is based on a backwards-reachability analysis and
SMT solving for theories that fulfill certain conditions. MCMT has been combined with
CEGAR and interpolation to define an analysis that can be described as a backwards variant
of Impact and applied to software model checking [4]. This approach uses interpolation to
compute quantifier-free interpolants for a restricted class of formulas with arrays and can
prove universally quantified properties over arrays automatically.

IC3 [28],which is also known as property-directed reachability (PDR) [42], is an algorithm
for model checking finite-state systems. It aims at producing an inductive invariant that is
strong enough to prove safety by incrementally learning clauses that are inductive with
regard to the previously learned clauses. Such clauses are derived by generalizing from
counterexamples to induction proofs. PDR was originally designed for boolean transition
systems and based on SAT solving. It has been generalized fromboolean systems to SMT [52]
and applied to software in various ways [27,32,33,54], which we discuss in the following.
If PDR is combined with an explicit (instead of symbolic) tracking of the program counter,
this lets the algorithm produce an abstract-reachability tree [32]. In fact, because the sets
of clauses that PDR learns fulfill the properties of interpolants, this tree-based PDR can
even be seen as a version of Impact, just with a different way of producing interpolants. A
hybrid approach that uses both a regular interpolation engine as well as PDR for producing
interpolants is also possible [32]. It would be an interesting extension of our Predicate CPA
to adopt the clause-learning strategy of PDR as an alternative to using interpolation during
refinement (cf. Sect. 3.2). Another approach for software verification using PDR is to define
a boolean abstract model of the program using predicate abstraction and use an almost
unchanged PDR algorithm for verifying the abstract model [33]. The abstraction is refined
using typical predicate-discovery strategies (e.g., interpolation) whenever an infeasible error
path is found. CTIGAR [27] is an approach for applying PDR to software that does not rely on
CEGAR (i.e., using error paths for refinement), but uses counterexamples to induction (CTI)
for abstraction refinement. CTIGAR computes abstract CTIs from the concrete CTIs of PDR
by using predicate abstraction and refines the abstraction using interpolation if it finds a clause
that is inductive with regard to the previously learned clauses, but its abstract version is not.

123

A Manuscripts A Unifying View on SMT-Based Software Verification

97

326 D. Beyer et al.

PDR can also be extended from standard induction to property-directed k-induction [54].
This allows it to more easily verify programs for which useful 1-inductive invariants are
cumbersome and difficult to find, while more concise k-inductive invariants exist.

Loop invariants that are strong enough to verify program safety can also be computed via
abduction [40]. Similar to the PDR-based approaches, a candidate invariant is strengthened
until it becomes inductive. However, while PDR starts from facts that are known to hold,
the abductive approach starts from the conjecture it wants to prove and asks an abduction
engine to generate candidate strengthenings that would allow the conjecture to hold. Then
it needs to check whether one of the candidates holds, which may need further recursive
strengthenings with backtracking. As abduction engine, it is possible to use for example
quantifier elimination in Presburger arithmetic.

5 Evaluation

We evaluate BMC, k-induction, predicate abstraction, and Impact on a large set of verifica-
tion tasks and compare the approaches.

5.1 Benchmark Set

As benchmark set we use the verification tasks from the 2017 Competition on Software Ver-
ification (SV-COMP’17) [10]. We used only verification tasks where the property to verify
is the reachability of a program location (excluding the properties for memory safety, over-
flows, and termination, which are not in our scope). From the remaining set of verification
tasks, we excluded the categories ReachSafety-Arrays, ReachSafety-Floats, ReachSafety-
Recursive, and ConcurrencySafety, each of which is not supported by at least one of our
implementations of the approaches. The resulting set of categories consists of a total of 5287
verification tasks from the subcategory DeviceDriversLinux64_ReachSafety of the category
SoftwareSystems and from the following subcategories of the category ReachSafety: Bitvec-
tors, ControlFlow, ECA, Floats, Heap, Loops, ProductLines, and Sequentialized. A total
of 1374 tasks in the benchmark set contain a known specification violation, while the rest of
the tasks is assumed to be free of violations.

5.2 Experimental Setup

Our experiments were conducted on machines with one 3.4GHz CPU (Intel Xeon E3-
1230 v5) with 8 processing units and 33GB of RAM each. The operating system was
Ubuntu 16.04 (64 bit), using Linux 4.4 and OpenJDK 1.8. Each verification task was limited
to two CPU cores, a CPU run time of 15 min, and a memory usage of 15GB. We used
the benchmarking framework BenchExec3 [23] to perform our experiments. We used ver-
sion 1.6.18-jar17 of CPAchecker, with MathSAT5 as solver for all SMT queries.
We configured CPAchecker to use the SMT theories of equality with uninterpreted func-
tions, bit vectors, and floats. For Impact and predicate abstraction, an ABE block size
needs to be chosen: we used blkl to let blocks end at loop heads. For Impact we also
activated the forced-covering optimization with fcoverImpact. For BMC we used a configu-
ration with forward-condition checking [44]. For BMC and k-induction, we used an initial
bound of k = 1 and an increment function inc(n) = n+ 1. Auxiliary invariants are provided
to k-induction using a continuously refining data-flow analysis from existing work [14] that

3 https://github.com/sosy-lab/benchexec

123

A Unifying View on SMT-Based Software Verification A Manuscripts

98

https://github.com/sosy-lab/benchexec

A Unifying View on SMT-Based Software Verification 327

uses disjunctions of intervals as its abstract domain. We configure CPAchecker to avoid
false alarms by validating the feasibility of each found error path using Cbmc 5.6. Time
results are rounded to two significant digits.

5.3 Reproducibility

All presented approaches are implemented in the open-source verification framework
CPAchecker [20], which is available under the Apache 2.0 license. All experiments are
based on publicly available benchmark verification tasks [10]. Tables with our detailed exper-
imental results are available on the supplementary web page.4

5.4 Experimental Validity

5.4.1 Internal Validity

We implemented all evaluated approaches using the same software-verification framework:
CPAchecker. This allows us to compare the actual algorithms instead of comparing different
tools with different front ends and different utilities, thus eliminating influences on the results
caused by implementation differences that are unrelated to the actual algorithms.

To ensure technical accuracy, we used the open-source benchmarking framework
BenchExec5 [23] for conducting our experiments.

5.4.2 External Validity

We perform our experiments on the largest, most diverse, and publicly available collection
of verification tasks,6 which is also used by the international competition
on software verification.

5.5 Results Overall

Table 2 shows the number of correctly solved verification tasks for each of the approaches, as
well as the time that was spent on producing these results. None of the approaches reported
incorrect proofs7 or incorrect alarms. When an algorithm exceeds its time or memory limit,
it is terminated inconclusively. Other inconclusive results occur, for example, if the imple-
mentation encounters an unsupported feature, such as recursion, or if during an SMT query,
an error occurs in the SMT solver. When comparing k-induction to the other techniques,
there is sometimes a chance that the other techniques must give up due to an unsupported
feature, while k-induction is not encountering the unsupported feature because it is waiting
for the invariant generator to generate a strong invariant. Therefore, k-induction has fewer
other inconclusive results but instead more timeouts than predicate abstraction and Impact.
The quantile plots in Fig. 9 show the accumulated number of successfully solved verification
tasks within a given amount of CPU time. A data point (x, y) of a graph means that for the
respective configuration, x is the number of correctly solved tasks with a CPU run time of
less than or equal to y seconds.

4 https://www.sosy-lab.org/research/k-ind-compare
5 https://github.com/sosy-lab/benchexec
6 https://github.com/sosy-lab/sv-benchmarks
7 For BMC, real proofs are accomplished by successful forward-condition checks, which prove that no further
unrolling is required to exhaustively explore the state space.

123

A Manuscripts A Unifying View on SMT-Based Software Verification

99

https://www.sosy-lab.org/research/k-ind-compare
https://github.com/sosy-lab/benchexec
https://github.com/sosy-lab/sv-benchmarks

328 D. Beyer et al.

Table 2 Experimental results of the approaches for all 5287 verification tasks, 1374 of which contain bugs,
while the other 3913 are considered to be safe

Algorithm BMC k-Induction Predicate abstraction Impact

Correct results 1043 2600 2506 2499

Correct proofs 666 2237 2169 2143

Correct alarms 377 363 337 356

Timeouts 3365 2375 2099 2442

Out of memory 603 232 78 139

Other inconclusive 276 80 604 207

Times for correct results

Total CPU time (h) 5.7 34 28 27

Avg. CPU time (s) 20 47 40 39

Total wall time (h) 4.9 17 24 24

Avg. wall time (s) 17 24 34 34

Times for correct proofs

Total CPU time (h) 2.9 28 23 23

Avg. CPU time (s) 16 45 37 39

Total wall time (h) 2.4 14 19 20

Avg. wall time (s) 13 23 32 34

Times for correct alarms

Total CPU time (h) 2.8 6.2 5.4 4.1

Avg. CPU time (s) 27 61 57 41

Total wall time (h) 2.5 3.2 4.9 3.7

Avg. wall time (s) 24 32 52 38

0 500 1 000 1 500 2 000
1

10

100

1000

(a)
0 100 200 300 400

1

10

100

1000

(b)

BMC k -Induction

Predicate Abstraction

x-Axis: n-th fastest correct result

y-Axis: CPU Time(s)

Proofs Alarms

Fig. 9 Quantile plots for all correct proofs and alarms

123

A Unifying View on SMT-Based Software Verification A Manuscripts

100

A Unifying View on SMT-Based Software Verification 329

5.5.1 BMC

As expected, BMC produces both the fewest correct proofs and the most correct alarms, con-
firmingBMC’s reputation as a technique that iswell suited for finding bugs.Having the fewest
solved tasks, BMC also accumulates the lowest total CPU time for correct results. Its average
CPU time spent on correct results is also lower than for the other techniques: for proofs,
BMC often fails to provide a correct result while the other approaches spend a lot of time on
successfully finding a proof; for finding bugs, its straightforward approach outperforms the
abstraction techniques while k-induction unnecessarily invests time in generating auxiliary
invariants. On average, BMC spends 1.2 s on formula creation, 3.5 s on SMT-checking the
forward condition, and 7.4 s on SMT-checking the feasibility of error paths.

5.5.2 k-Induction

The slowest technique is k-induction with continuously refined invariant generation, which
is the only technique that effectively uses both available cores by running the auxiliary-
invariant generation in parallel to the k-induction procedure, thus spending significantly
more CPU time than the other techniques, while the wall time it spends is comparable
to the wall time spent by the abstraction techniques for correct proofs. Compared to BMC,
k-induction spends additional time on building the step-case formula and generating auxiliary
invariants, but can often prove safety by induction without unrolling loops. Considering that
over the whole benchmark set, k-induction generates the highest overall number of correct
results, the additional effort appears to be mostly well spent. On average, k-induction spends
1.2 s on formula creation in the base case, 2.5 s on SMT-checking the forward condition, 3.0 s
on SMT-checking the feasibility of error paths, 9.3 s on creating the step-case formula, 14 s
on SMT-checking inductivity, and 20s on generating auxiliary invariants, which shows that
the inductive-step case requires much more effort than the base case and also about 3 s more
than for invariant generation. For tasks containing actual bugs, however, this effort is wasted,
which explains why k-induction spends not only more CPU time but also significantly more
wall time on correct alarms than the other techniques.

5.5.3 Predicate Abstraction and Impact

Predicate abstraction and Impact both perform similarly for finding proofs, which matches
the observations from earlier work [25]. An interesting difference is that Impact finds more
bugs. We attribute this observation to the fact that abstraction in Impact is lazier than with
predicate abstraction, which allows Impact to explore larger parts of the state space in
a shorter amount of time than predicate abstraction, causing Impact to find bugs sooner.
For verification tasks without specification violations, however, the more eager predicate-
abstraction technique pays off, because it avoidsmanySMT-checks for determining coverage.
Although in total, both abstraction techniques have to spend similar effort, this effort is
distributed differently across the various steps: While, on average, predicate abstraction
spends more time on computing abstractions (23 s) than the Impact algorithm spends on
deriving its abstraction by interpolation (9.0 s), the latter requires the relatively expensive
forced-covering step (12 s).

123

A Manuscripts A Unifying View on SMT-Based Software Verification

101

330 D. Beyer et al.

0 500 1 000
1

10

100

1000

(a)
0 100 200 300 400

1

10

100

1000

(b)

0 100 200 300
1

10

100

1000

(c)

0 50 100
1

10

100

1000

(d)

BMC k -Induction

Predicate Abstraction

x-Axis: n-th fastest correct result

y-Axis: CPU Time(s)

DeviceDrivers: Proofs ECA: Proofs

ProductLines: Proofs ProductLines: Alarms

Fig. 10 Quantile plots for some of the categories

5.6 Results on Selected Categories

Although the plot in Fig. 9a suggests that k-induction with continuously refined invariants
outperforms the other techniques in general for finding proofs, a closer look at the results
in individual SV-COMP categories reveals that the performance of an algorithm strongly
depends on the type of verification task, but also reconfirms the observation of Fig. 9b that
BMC consistently performs well for finding bugs.

For example, on the safe tasks of the category on Linux device drivers, k-induction per-
forms worse than predicate abstraction and Impact (Fig. 10a). These device drivers are often
large in size, containing pointer arithmetic and complex data structures. The interval-based
auxiliary-invariant generator that we used for k-induction is not a good fit for this kind of
problems, and a lot of effort is wasted, while the abstraction techniques are often able to
quickly determine that many operations on pointers and complex data structures are irrele-
vant for the safety property. We did not include the plot for the correct alarms in the category

123

A Unifying View on SMT-Based Software Verification A Manuscripts

102

A Unifying View on SMT-Based Software Verification 331

on device drivers, because each of the approaches only solves about 30 tasks, i.e., there is
not enough data among the correct alarms to draw any further conclusions.

The quantile plot for the correct proofs in the category of event condition action systems
(ECA) is displayed in Fig. 10b. BMC is hardly visible in this figure, because there is only a
single task in the category that it could unroll exhaustively. Each of these tasks only consists
of a single loop, but these loops contain complex branching structures over many different
integer variables, which leads to an exponential explosion of paths, such that checking sat-
isfiability of an SMT formula representing an unwinding of such a loop is often expensive
in terms of time and memory. Also, because in many tasks of this category almost all of
the variables are in some way relevant to the reachability of the error location within this
complex branching structure, the abstraction techniques are unable to come up with useful
abstractions and perform poorly. The interval-based auxiliary-invariant generator that we use
for k-induction, however, appears to provide useful invariants for handling the complexity of
the control structures, and the state-machine-like nature of these tasks requires the consid-
eration of many different cases and their interaction across consecutive loop iterations, such
that k-induction performs much better than all other techniques in this category. We did not
include the plot for the correct alarms in this category, because the abstraction techniques
were not able to detect a single bug, and only BMC and k-induction detect one single bug
for the same task, namely Problem10_label46_false-unreach-call.c.

Figure 10c shows the quantile plot for correct proofs in the category on product lines.
In this category, as in Fig. 9a, k-induction slightly outperforms the other techniques in the
number of found proofs but it also becomes even more apparent than in other categories
how much slower than the other techniques it is (on average for correct results). Figure 10d
shows the quantile plot for correct alarms in the same category. It is interesting to observe
that Impact distinctly outperforms predicate abstraction on the tasks that require over 40 s
of CPU time, whereas in the previous plots, the differences between the two abstraction
techniques were either hardly visible or Impact performed worse than predicate abstraction.
While, as shown in Fig. 10c, both techniques report almost the same amount of correct
proofs (317 for predicate abstraction, 315 for Impact), Impact detects 130 bugs, whereas
predicate abstraction detects only 125. This seems to indicate that the state space spanned
by the different product-line features can be explored more quickly by lazy abstraction of
Impact than with the more eager predicate abstraction.

5.7 Results on Selected Verification Tasks Showing Individual Strengths

The previous discussion showed that while overall, the approaches perform rather simi-
lar (apart from BMC being inappropriate for finding proofs, which is expected), each of
them has some strengths due to which it outperforms the other approaches on certain pro-
grams. In the following, we will list some examples from various categories of SV-COMP
that were each solved by one of the approaches, but not by the others, and give a short
explanation of the reasons.

5.7.1 BMC

Only BMC finds a bug in task const_false-unreach-call1.i (23 s, Category
Loops), and only BMC proves, by exhaustively unrolling a loop, safety for the task
pals_opt-floodmax.4_true-unreach-call.ufo.BOUNDED-8.pals_true
-termination.c (310s, Category Sequentialized). Both of these tasks have in common
that they contain bounded loops. The bounded loops are a good fit for BMC and enable it

123

A Manuscripts A Unifying View on SMT-Based Software Verification

103

332 D. Beyer et al.

to prove correctness; k-induction, which in theory is at least as powerful as BMC, spends
too much time trying to generate auxiliary invariants and exceeds the CPU time limit before
solving these tasks.

5.7.2 k-Induction

k-Induction outperforms the other techniques on many of the state-machine-like tasks of
the category on event condition action systems (ECA). Only k-induction proves correctness
of the task Problem14_label00_true-unreach-call.c (14 s, Category ECA),
which, like all tasks in that category, encodes a complex state machine, i.e., a loop over
switch statements with many cases, which in turn modify the variable that is considered by
the switch statement. The loop is unbounded, such that BMC cannot exhaustively unroll it,
and the loop invariants that are required to prove correctness of the task need to consider the
different cases and their interaction across consecutive loop iterations, which is beyond the
scope of the abstraction techniques but easy for k-induction (cf. [13] for a detailed discussion
of a similar example).

5.7.3 Predicate Abstraction

Only predicate abstraction solves verification task toy_true-unreach-call_false-
termination.cil.c (65 s, Category Sequentialized). The task consists of an unbounded
loop that contains a complex branching structure over integer variables, most of which only
ever take the values 0, 1 or 2. Interpolation quickly discovers the abstraction predicates over
these variables that are required to solve the task, but in this example, predicate abstraction
profits from eagerly computing a sufficiently precise abstraction early after only 10 refine-
ments while the lazy refinement technique used by Impact exceeds the time limit after 165
refinements, and the invariant generator used by k-induction fails to find the required auxiliary
invariants before reaching the time limit.

5.7.4 Impact

Only Impact solves Problem05_label50_true-unreach-call.c (190s, Cate-
gory ECA). BMC fails on this task due to the unbounded loop, and the invariant generator
used by k-induction does not come upwith anymeaningful auxiliary invariant before exceed-
ing the time limit. Predicate abstraction exceeds the time limit after only four refinements,
and up to that point, 90% of its time is spent on eagerly computing abstractions. The lazy
abstraction performed by Impact, however, allows it to progress quickly, and the algorithm
finishes after 9 refinements.

6 Conclusion

This paper presents a comparative study of four state-of-the-art approaches for SMT-based
software verification. First, we define a configurable program analysis for the predicates
domain, which serves as the unifying core component of our comparison framework. Second,
we express each approach in our framework by a specific set of parameters and illustrate the
effect on how the state-space exploration is performed. Third, we provide the results of a
thorough experimental study on a large number of verification tasks, in order to show the effect
and performance of the different approaches, including a detailed discussion of particular

123

A Unifying View on SMT-Based Software Verification A Manuscripts

104

A Unifying View on SMT-Based Software Verification 333

verification tasks that can be solved by one approach while all others fail. In conclusion,
there is no clear winner: there are disadvantages and advantages for each approach. We hope
that our conceptual and experimental overview is useful and contributes to understanding the
difference of the approaches and the potential application areas.

References

1. Aho, A.V., Sethi, R., Ullman, J.D.: Compilers: Principles, Techniques, and Tools. Addison-Wesley, Read-
ing, MA (1986)

2. Albarghouthi, A., Gurfinkel, A., Chechik, M.: From under-approximations to over-approximations and
back. In: Proceedings of TACAS, LNCS 7214, pp. 157–172. Springer (2012)

3. Albarghouthi, A., Li, Y., Gurfinkel, A., Chechik,M.:Ufo: A framework for abstraction- and interpolation-
based software verification. In: Proceedings of CAV, LNCS 7358, pp. 672–678. Springer (2012)

4. Alberti, F., Bruttomesso, R., Ghilardi, S., Ranise, S., Sharygina, N.: An extension of lazy abstraction with
interpolation for programs with arrays. Form. Methods Syst. Des. 45(1), 63–109 (2014)

5. Ball, T., Cook, B., Levin, V., Rajamani, S.K.: Slam and static driver verifier: technology transfer of formal
methods inside microsoft. In: Proceedings of IFM, LNCS 2999, pp. 1–20. Springer (2004)

6. Ball, T., Levin, V., Rajamani, S.K.: A decade of software model checking with SLAM. Commun. ACM
54(7), 68–76 (2011)

7. Ball, T., Podelski, A., Rajamani, S.K.: Boolean and Cartesian abstraction for model checking C programs.
In: Proceedings of TACAS, LNCS 2031, pp. 268–283. Springer (2001)

8. Ball, T., Rajamani, S.K.: The Slam project: debugging system software via static analysis. In: Proceedings
of POPL, pp. 1–3. ACM (2002)

9. Beckert, B., Hähnle, R.: Reasoning and verification: state of the art and current trends. IEEE Intell. Syst.
29(1), 20–29 (2014)

10. Beyer, D.: Software verification with validation of results (report on SV-COMP 2017). In: Proceedings
of TACAS, LNCS 10206, pp. 331–349. Springer (2017)

11. Beyer, D., Cimatti, A., Griggio, A., Keremoglu, M.E., Sebastiani, R.: Software model checking via large-
block encoding. In: Proceedings of FMCAD, pp. 25–32. IEEE (2009)

12. Beyer, D., Dangl, M.: SMT-based software model checking: an experimental comparison of four algo-
rithms. In: Proceedings of VSTTE, LNCS 9971, pp. 181–198. Springer (2016)

13. Beyer, D., Dangl, M., Wendler, P.: Boosting k-induction with continuously-refined invariants. In: Pro-
ceedings of CAV, LNCS 9206, pp. 622–640. Springer (2015)

14. Beyer, D., Dangl,M.,Wendler, P.: Combining k-inductionwith continuously-refined invariants. Technical
Report MIP-1503, University of Passau (January 2015). arXiv:1502.00096

15. Beyer, D., Henzinger, T.A., Jhala, R., Majumdar, R.: The software model checker Blast. Int. J. Softw.
Tools Technol. Transf. 9(5–6), 505–525 (2007)

16. Beyer, D., Henzinger, T.A., Majumdar, R., Rybalchenko, A.: Invariant synthesis for combined theories.
In: Proceedings of VMCAI, LNCS 4349, pp. 378–394. Springer (2007)

17. Beyer, D., Henzinger, T.A., Majumdar, R., Rybalchenko, A.: Path invariants. In: Proceedings of PLDI,
pp. 300–309. ACM (2007)

18. Beyer, D., Henzinger, T.A., Théoduloz, G.: Configurable software verification: concretizing the conver-
gence of model checking and program analysis. In: Proceedings of CAV, LNCS 4590, pp. 504–518.
Springer (2007)

19. Beyer, D., Henzinger, T.A., Théoduloz, G.: Program analysis with dynamic precision adjustment. In:
Proceedings of ASE, pp. 29–38. IEEE (2008)

20. Beyer, D., Keremoglu, M.E.: CPAchecker: a tool for configurable software verification. In: Proceedings
of CAV, LNCS 6806, pp. 184–190. Springer (2011)

21. Beyer, D., Keremoglu, M.E., Wendler, P.: Predicate abstraction with adjustable-block encoding. In: Pro-
ceedings of FMCAD, pp. 189–197. FMCAD (2010)

22. Beyer, D., Löwe, S.: Explicit-state software model checking based on CEGAR and interpolation. In:
Proceedings of FASE, LNCS 7793, pp. 146–162. Springer (2013)

23. Beyer, D., Löwe, S., Wendler, P.: Benchmarking and resource measurement. In: Proceedings of SPIN,
LNCS 9232, pp. 160–178. Springer (2015)

24. Beyer, D., Petrenko, A.K.: Linux driver verification. In: Proceedings of ISoLA, LNCS 7610, pp. 1–6.
Springer (2012)

123

A Manuscripts A Unifying View on SMT-Based Software Verification

105

http://arxiv.org/abs/1502.00096

334 D. Beyer et al.

25. Beyer, D., Wendler, P.: Algorithms for software model checking: predicate abstraction vs. Impact. In:
Proceedings of FMCAD, pp. 106–113. FMCAD (2012)

26. Biere, A., Cimatti, A., Clarke, E.M., Zhu, Y.: Symbolic model checking without BDDs. In: Proceedings
of TACAS, LNCS 1579, pp. 193–207. Springer (1999)

27. Birgmeier, J., Bradley, A.R., Weissenbacher, G.: Counterexample to induction-guided abstraction-
refinement (CTIGAR). In: Proceedings of CAV, LNCS 8559, pp. 831–848. Springer (2014)

28. Bradley, A.R.: SAT-based model checking without unrolling. In: Proceedings of VMCAI, LNCS 6538,
pp. 70–87. Springer (2011)

29. Brain, M., Joshi, S., Kröning, D., Schrammel, P.: Safety verification and refutation by k-invariants and
k-induction. In: Proceedings of SAS, LNCS 9291, pp. 145–161. Springer (2015)

30. Brückner, I., Dräger, K., Finkbeiner, B., Wehrheim, H.: Slicing abstractions. Fundam. Inform. 89(4),
369–392 (2008)

31. Bryant, R.E.: Graph-based algorithms for boolean function manipulation. IEEE Trans. Comput. 35(8),
677–691 (1986)

32. Cimatti, A., Griggio, A.: Software model checking via IC3. In: Proceedings of CAV, LNCS 7358,
pp. 277–293. Springer (2012)

33. Cimatti, A., Griggio, A., Mover, S., Tonetta, S.: IC3 modulo theories via implicit predicate abstraction.
In: Proceedings of TACAS, LNCS 8413, pp. 46–61. Springer (2014)

34. Clarke, E.M., Grumberg, O., Jha, S., Lu, Y., Veith, H.: Counterexample-guided abstraction refinement
for symbolic model checking. J. ACM 50(5), 752–794 (2003)

35. Clarke, E.M., Kroening, D., Lerda, F.: A tool for checking ANSI-C programs. In: Proceedings of TACAS,
LNCS 2988, pp. 168–176. Springer (2004)

36. Colón, M., Sankaranarayanan, S., Sipma, H.B.: Linear invariant generation using non-linear constraint
solving. In: Proceedings of CAV, LNCS 2725, pp. 420–432. Springer (2003)

37. Cordeiro, L.C., Morse, J., Nicole, D., Fischer, B.: Context-bounded model checking with Esbmc 1.17
(competition contribution). In: Proceedings of TACAS, LNCS 7214, pp. 534–537. Springer (2012)

38. Craig,W.: Linear reasoning. A new form of theHerbrand–Gentzen theorem. J. Symb. Log. 22(3), 250–268
(1957)

39. Cytron, R., Ferrante, J., Rosen, B.K., Wegman, M.N., Zadeck, F.K.: Efficiently computing static single
assignment form and the control dependence graph. ACM Trans. Program. Lang. Syst. 13(4), 451–490
(1991)

40. Dillig, I., Dillig, T., Li, B., McMillan, K.L.: Inductive invariant generation via abductive inference. In:
Proceedings of OOPSLA, pp. 443–456. ACM (2013)

41. Donaldson, A.F., Haller, L., Kroening, D., Rümmer, P.: Software verification using k-induction. In: Pro-
ceedings of SAS, LNCS 6887, pp. 351–368. Springer (2011)

42. Eén, N., Mishchenko, A., Brayton, R.K.: Efficient implementation of property directed reachability. In:
Proceedings of FMCAD, pp. 125–134. FMCAD Inc. (2011)

43. Ermis, E., Hoenicke, J., Podelski, A.: Splitting via interpolants. In: Proceedings of VMCAI, LNCS 7148,
pp. 186–201. Springer (2012)

44. Gadelha, M.Y.R., Ismail, H.I., Cordeiro, L.C.: Handling loops in bounded model checking of C programs
via k-induction. Int. J. Softw. Tools Technol. Transf. 19(1), 97–114 (2017)

45. Ghilardi, S., Ranise, S.: Goal-directed invariant synthesis for model checking modulo theories. In: Pro-
ceedings of TABLEAUX, LNCS 5607, pp. 173–188. Springer (2009)

46. Ghilardi, S., Ranise, S.: Backward reachability of array-based systems by SMT solving: termination and
invariant synthesis. Log. Methods Comput. Sci. 6(4) (2010)

47. Graf, S., Saïdi, H.: Construction of abstract state graphs with Pvs. In: Proceedings of CAV, LNCS 1254,
pp. 72–83. Springer (1997)

48. Gurfinkel, A., Kahsai, T., Navas, J.A.: SeaHorn: a framework for verifying C programs (competition
contribution). In: Proceedings of TACAS, LNCS 9035, pp. 447–450. Springer (2015)

49. Hajdu, Á., Tóth, T., Vörös, A., Majzik, I.: A configurable CEGAR framework with interpolation-based
refinements. In: Proceedings of FORTE, LNCS 9688, pp. 158–174. Springer (2016)

50. Heizmann,M., Hoenicke, J., Podelski, A.: Refinement of trace abstraction. In: Proceedings of SAS, LNCS
5673, pp. 69–85. Springer (2009)

51. Henzinger, T.A., Jhala, R., Majumdar, R., Sutre, G.: Lazy abstraction. In: Proceedings of POPL,
pp. 58–70. ACM (2002)

52. Hoder, K., Bjørner, N.: Generalized property directed reachability. In: Proceedings of SAT, LNCS 7317,
pp. 157–171. Springer (2012)

53. Jhala, R., Majumdar, R.: Software model checking. ACM Comput. Surv. 41(4), 21:1–21:54 (2009)
54. Jovanovic, D., Dutertre, B.: Property-directed k-induction. In: Proceedings of FMCAD, pp. 85–92. IEEE

(2016)

123

A Unifying View on SMT-Based Software Verification A Manuscripts

106

A Unifying View on SMT-Based Software Verification 335

55. Kahsai, T., Tinelli, C.:PKind: a parallel k-induction basedmodel checker. In: Proceedings of International
Workshop on Parallel and Distributed Methods in Verification, EPTCS 72, pp. 55–62 (2011)

56. Khoroshilov, A.V., Mutilin, V.S., Petrenko, A.K., Zakharov, V.: Establishing Linux driver verification
process. In: Proceedings of Ershov Memorial Conference, LNCS 5947, pp. 165–176. Springer (2009)

57. Kildall, G.A.: A unified approach to global program optimization. In: Proceedings of POPL, pp. 194–206.
ACM (1973)

58. King, J.C.: Symbolic execution and program testing. Commun. ACM 19(7), 385–394 (1976)
59. Komuravelli, A., Gurfinkel, A., Chaki, S., Clarke, E.M.: Automatic abstraction in SMT-based unbounded

software model checking. In: Proceedings of CAV, LNCS 8044, pp. 846–862. Springer (2013)
60. McMillan, K.L.: Interpolation and SAT-based model checking. In: Proceedings of CAV, LNCS 2725,

pp. 1–13. Springer (2003)
61. McMillan, K.L.: Lazy abstraction with interpolants. In: Proceedings of CAV, LNCS 4144, pp. 123–136.

Springer (2006)
62. McMillan, K.L., Amla, N.: Automatic abstraction without counterexamples. In: Proceedings of TACAS,

LNCS 2619, pp. 2–17. Springer (2003)
63. Nielson, F., Nielson, H.R., Hankin, C.: Principles of Program Analysis. Springer, Berlin (1999)
64. Rakamarić, Z., Emmi, M.: SMACK: decoupling source language details from verifier implementations.

In: Proceedings of CAV, LNCS 8559, pp. 106–113. Springer (2014)
65. Rocha, H., Ismail, H.I., Cordeiro, L.C., Barreto, R.S.: Model checking embedded C software using

k-induction and invariants. In: Proceedings of SBESC, pp. 90–95. IEEE (2015)
66. Schrammel, P., Kroening, D.: 2LS for program analysis (competition contribution). In: Proceedings of

TACAS, LNCS 9636, pp. 905–907. Springer (2016)
67. Schuppan, V., Biere, A.: Liveness checking as safety checking for infinite state spaces. Electron. Notes

Theor. Comput. Sci. 149(1), 79–96 (2006)
68. Sheeran, M., Singh, S., Stålmarck, G.: Checking safety properties using induction and a SAT-solver. In:

Proceedings of FMCAD, LNCS 1954, pp. 127–144. Springer (2000)
69. Sinz, C., Merz, F., Falke, S.: Llbmc: A bounded model checker for Llvm’s intermediate representation

(competition contribution). In: Proceedings of TACAS, LNCS 7214, pp. 542–544. Springer (2012)
70. Wahl, T.: The k-induction principle. Available at http://www.ccs.neu.edu/home/wahl/Publications/

k-induction.pdf (2013)
71. Wendler, P.: CPAchecker with sequential combination of explicit-state analysis and predicate analysis

(competition contribution). In: Proceedings of TACAS, LNCS 7795, pp. 613–615. Springer (2013)

123

A Manuscripts A Unifying View on SMT-Based Software Verification

107

http://www.ccs.neu.edu/home/wahl/Publications/k-induction.pdf
http://www.ccs.neu.edu/home/wahl/Publications/k-induction.pdf

TACAS
Evaluation
Artifact

2020
Accepted

Software Verification with PDR:
An Implementation of the State of the Art

Dirk Beyer1 and Matthias Dangl1

LMU Munich, Germany

Abstract. Property-directed reachability (PDR) is a SAT/SMT-based
reachability algorithm that incrementally constructs inductive invariants.
After it was successfully applied to hardware model checking, several
adaptations to software model checking have been proposed. We con-
tribute a replicable and thorough comparative evaluation of the state
of the art: We (1) implemented a standalone PDR algorithm and, as
improvement, a PDR-based auxiliary-invariant generator for k -induction,
and (2) performed an experimental study on the largest publicly available
benchmark set of C verification tasks, in which we explore the effectiveness
and efficiency of software verification with PDR. The main contribution
of our work is to establish a reproducible baseline for ongoing research in
the area by providing a well-engineered reference implementation and an
experimental evaluation of the existing techniques.

Keywords: Software verification · Program analysis · Invariant genera-
tion · Property-directed reachability (PDR) · IC3 · k -Induction· VVT ·
CPAchecker

1 Introduction

Automatic software verification [24] is a broad research area with many success
stories and large impact on technology that is applied in industry [2, 14, 27].
It complements other general approaches to ensure functional correctness, like
software testing [31] and interactive software verification [3]. One large sub-area
of automatic software verification includes algorithms and approaches that are
based on SMT technology. Classic approaches like bounded model checking [10],
predicate abstraction [1, 19], and k -induction [5, 26, 32] are well understood and
evaluated; a recent survey [6] provides a uniform overview and sheds light on
the differences of the algorithms. Property-directed reachability (PDR) [12] is a
relatively recent (2011) approach that is not yet included in comparative evalua-
tions that go beyond applying different implementations of the same or different
techniques to a set of benchmark tasks, but additionally pair such experiments
with a discussion of how the concepts can be expressed in a common formalism.
The approach was originally applied to transition systems from hardware designs,
but was also adapted to software verification [11, 12, 13, 15, 16, 25, 28, 29].

An extended version of this article is available as technical report [8].
A replication package is available on Zenodo [9].

c© The Author(s) 2020
A. Biere and D. Parker (Eds.): TACAS 2020, LNCS 12078, pp. 3–21, 2020.
https://doi.org/10.1007/978-3-030-45190-5_1

Software Verification with PDR A Manuscripts

108

https://orcid.org/0000-0003-4832-7662
https://orcid.org/0000-0001-7333-6734
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-45190-5_1&domain=pdf

While in theory, given the aforementioned body of work on the topic, the
advantages and disadvantages of using PDR seem clear, we are interested in
understanding the effect of applying PDR to a large set of verification tasks
that were collected from academia and also from industrial software, such as
the Linux kernel. To achieve this goal, we implemented one PDR adaptation for
software verification, and another approach that integrates a PDR-like invariant-
generation module into a k -induction approach.
PDR Adaptation for Software Verification. PDR is a model-checking algorithm
that tries to construct an inductive safety invariant by incrementally learning
clauses that are inductive relative to previously learned clauses. The clause-
learning strategy is guided by counterexamples to induction, i.e., each time a
proof of inductiveness fails, the algorithm attempts to learn a new clause to avoid
the same counterexample to induction in the future. Originally, this algorithm
was designed as a SAT-based technique for Boolean finite-state systems. Every
adaptation of PDR to software verification therefore needs to consider how to
effectively and efficiently handle the infinite state space and how to transfer
the algorithm from SAT to SMT. Furthermore, the adaptation to software has
to deal with the program counter.
PDR-like Invariant Generation. Whenever an induction-proof attempt fails with
a counterexample, the counterexample describes a state s that can transition
into a bad state (that violates the safety property), which means that in order to
make the proof succeed, s must be removed from consideration by an auxiliary
invariant. From this bad-state predecessor s, the clause-learning strategy of
PDR proceeds to generate such an auxiliary invariant by applying the following
two steps: (1) s is first generalized to a set of states C that all transition into
a bad state; (2) an invariant is constructed that is (a) inductive relative to
previously found invariants1 and (b) at least strong enough to eliminate all
states in C. If it fails to construct such an invariant and prove its inductiveness,
then the steps are recursively re-applied to the counterexample obtained from
the failed induction attempt.

We experimentally investigate two implementations of adaptations of PDR
to software verification (CPAchecker-CTIGAR and Vvt-CTIGAR), as well as
several combinations that use the PDR-like invariant-generation module that
we designed and implemented for this study.
Example. Figure 1 shows an example C program (eq2.c) that contains four
unsigned integer variables w, x, y, and z. In line 10, the variable w is initialized to
an unknown value via the input function __VERIFIER_nondet_uint(); then, its
value is copied to x in line 11. In line 12, variable y is initialized with the value
of w + 1, and in line 13, variable z is initialized with the value of x + 1, such
1 An assertion F is said to be inductive relative to an invariant Inv if

Inv can be used as an auxiliary invariant for the proof of inductive-
ness ∀sj , sj+1 : F (sj) ∧ T (sj , sj+1) ⇒ F (sj+1) by conjoining Inv to the
induction hypothesis F (sj), such that the modified induction query
∀sj , sj+1 : F (sj) ∧ Inv(sj) ∧ T (sj , sj+1) ⇒ F (sj+1) allows a proof by induction to
succeed. [12]

4 D. Beyer and M. Dangl

A Manuscripts Software Verification with PDR

109

https://github.com/sosy-lab/sv-benchmarks/blob/svcomp19/c/loop-invariants/eq2_true-unreach-call_true-valid-memsafety_true-no-overflow_false-termination.c

1 extern void __VERIFIER_error() __attribute__
↪→ ((__noreturn__));

2 extern unsigned int __VERIFIER_nondet_uint(void);
3 void __VERIFIER_assert(int cond) {
4 if (!(cond)) {
5 ERROR: __VERIFIER_error();
6 }
7 return;
8 }
9 int main(void) {

10 unsigned int w = __VERIFIER_nondet_uint();
11 unsigned int x = w;
12 unsigned int y = w + 1;
13 unsigned int z = x + 1;
14 while (__VERIFIER_nondet_uint()) {
15 y++;
16 z++;
17 }
18 __VERIFIER_assert(y == z);
19 return 0;
20 }

Fig. 1: Example C program eq2.c

that at this point, w and x are equal to each other, and y and z are also equal to
each other. Then, from line 14 to line 17, a loop with a nondeterministic exit
condition (and therefore an unknown number of iterations) increments in each
iteration both variables y and z. Lastly, line 18 asserts that after the loop, y and z

are (still) equal to each other. Since y and z are equal before the loop, and are
always incremented together within the loop, the invariant y = z is inductive.
However, since there is no direct connection between y and z but only an indirect
one via their shared dependency on w, naïve data-flow-based techniques may fail
to find this invariant. In fact, we tried several configurations of the verification
framework CPAchecker, and found that many of them fail to prove this program:

• Plain k -induction without auxiliary-invariant generation fails, because it
never checks if y = z is a loop invariant and instead only checks the reach-
ability of the assertion failure (located after loop). The reachability of the
assertion failure, in turn, depends on the nondeterministic loop-exit condition.
Therefore we cannot conclude from “the assertion failure was not reached in
k previous iterations” that “the assertion failure cannot be reached in the
next iteration”: In the absence of auxiliary invariants, a valid counterexample
to this induction hypothesis would always be that in the previous iterations
the assertion condition was in fact violated and an assertion failure was not
reached only because the loop was not exited.

• A data-flow analysis based on the abstract domain of Boxes [21] fails, because
it is not able to track variable equalities.

• A data-flow analysis based on a template Eq for tracking the equality of pairs
of variables fails, because while it detects the invariant w = x, it is unable to

Software Verification with PDR: An Implementation of the State of the Art 5

Software Verification with PDR A Manuscripts

110

https://github.com/sosy-lab/sv-benchmarks/blob/svcomp19/c/loop-invariants/eq2_true-unreach-call_true-valid-memsafety_true-no-overflow_false-termination.c

make the step to y = z due to the inequalities between w and y, and x and z,
respectively.

• For consistency with our evaluation, we also applied a data-flow analysis
based on a template for tracking whether a variable is even or odd; obviously
this is not useful for this program, and thus, this configuration also fails.

• Even combining the previous three techniques into a compound invariant
generator that computes auxiliary invariants for k -induction does not yield a
successful configuration for this verification task.

• The invariant generator KIPDR (the above-mentioned adaptation of PDR to
k -induction, which we present in more detail in Sect. 3), however, detects the
invariant y = z and is therefore able to construct a proof by induction for
this verification task.

We will now briefly sketch how KIPDR detects the invariant y = z for the
example verification task. At first, KIPDR attempts to prove by induction that
when line 18 is reached, the assertion condition holds, which fails as discussed
previously. However, this failed induction attempt yields a counterexample to
induction where the values of y and z differ from each other, e.g., y = 0 ∧ z = 1,
which is then generalized to y �= z, i.e., a set of states that includes the concrete
predecessor of a bad state from the counterexample, as well as many other states
that would violate the assertion, if they were reachable themselves. Then, KIPDR
attempts to find an inductive invariant that eliminates all of these states, and
the attempt succeeds with the invariant y = z. Afterwards, KIPDR re-attempts
its original induction proof to show that the assertion is never violated, which
now succeeds due to the auxiliary invariant y = z.
Contributions. We present the following contributions:

• We implement one adaptation of PDR to software verification (based
on [11, 20]) in the open-source verification framework CPAchecker, in order
to establish a baseline for comparison with new ideas for improvement.

• We design and implement the algorithm KIPDR, as a new module for
invariant generation that is based on ideas from PDR and use this module
as an extension to a state-of-the-art approach to k -induction [5].

• We conduct a large experimental study to compare several tools and ap-
proaches to software verification using PDR as a component, to highlight
strengths and weaknesses of PDR in the domain of software verification.

• We contribute a set of small examples that need invariants that are more
difficult to obtain for standard data-flow-based approaches than the invariants
necessary for programs in the large benchmark set.

Related Work. While PDR (also known as IC3 for its first implementation [12])
was introduced as a SAT-based algorithm for model checking finite-state Boolean
transition systems [13], several approaches have since then been presented to
extend it to SMT and to apply it to the verification of software models: PDR
has been suggested as an interpolation engine for Impact, but experiments have
shown that it is too expensive in the general case, and is most effective if only

6 D. Beyer and M. Dangl

A Manuscripts Software Verification with PDR

111

applied as a fall-back engine for cases where a cheaper interpolation engine fails
to produce useful interpolants [15]. It also has been proposed to improve this
approach by tracking control-flow locations explicitly instead of symbolically [28],
thereby avoiding the problem that many iterations of the algorithm are spent
only to learn the control flow, and this idea has later been extended by several
improvements to the generalization step of PDR [29]. Another approach is to
model the program using a Boolean abstraction, which has the advantage that it
requires only few changes to the original algorithm, but the disadvantage that a
refinement procedure is necessary to handle the spurious paths introduced by the
abstraction: One such approach uses infeasible error paths (i.e., counterexample-
guided abstraction refinement (CEGAR) [17]) to refine the abstraction [16],
while another (CTIGAR) uses counterexamples to induction [11]; both of these
refinement techniques use interpolation to obtain abstraction predicates; the
latter of the two techniques is used in two of the configurations we compare
in our evaluation (CPAchecker-CTIGAR and Vvt-CTIGAR [20]). A different
extension of PDR to verify infinite-state systems that does not require abstraction
refinement is property-directed k -induction [25], which increases the power of the
induction checks used in PDR by applying k-induction instead of 1-induction, and
which uses model-based generalization in addition to interpolation to reason about
potentially-infinite sets of states. Unfortunately, support for effective model-based
generalization is rare in SMT solvers 2, making this approach impractical. In
contrast, our KIPDR algorithm presented in Sect. 3 only requires support for
interpolation, which is available in several SMT solvers.

Despite this multitude of adaptations of PDR to infinite-state systems, most
implementations in practice require their input to be encoded as transition systems.
The only available software verifiers applicable to actual C programs and imple-
ment PDR-based techniques are CPAchecker [7], SeaHorn [23], and Vvt [20].

2 Background

In this section, we briefly introduce the algorithms PDR and k -induction, which
provide the core concepts on which we base our ideas. In the following description
of PDR and k -induction, we use the following notation: given the state variables s
and s′ within a state-transition system T that represents the program, predicate
I(s) denotes that s is an initial state, T (s, s′) that a transition from s to s′ exists,
and P (s) that the safety property P holds for state s.

2.1 PDR

PDR maintains a list of k frames, where a frame Fi is a predicate that represents
an overapproximation of all states reachable within at most 0 ≤ i ≤ k steps, and
a queue of proof obligations, which guide invariant discovery towards invariants

2 The implementation of the approach of property-directed k -induction combines two
SMT solvers, because neither of them supports all features required by the technique.

Software Verification with PDR: An Implementation of the State of the Art 7

Software Verification with PDR A Manuscripts

112

relevant to prove the correctness of a safety property P . For a given state s, the
notation Fi(s) means that the predicate Fi holds for state s. The index i of a
frame Fi is called its level, and the frame Fk is called the frontier, because it
represents the largest overapproximation of reachable states computed by the
algorithm [12]. The algorithm maintains the following invariants:

1. F0(s) = I(s), i.e., the first frame represents precisely the initial states.
2. ∀i ∈ {0, . . . , k} : Fi(s) ⇒ P (s), i.e., every frame contains only states that

satisfy the safety property.
3. ∀i ∈ {0, . . . , k−1} : Fi(s) ⇒ Fi+1(s), i.e., a frame Fi+1 represents in addition

such states that are reachable with i + 1 steps.
4. ∀i ∈ {0, . . . , k − 1} : Fi(s) ∧ T (s, s′) ⇒ Fi+1(s

′), i.e., each frame is inductive
relative to its predecessor.

Using these data structures and algorithm invariants, the algorithm attempts to
find either a counterexample to P or a 1-inductive invariant Fi such that Fi(s) ⇔
Fi+1(s) for some level i ∈ {0, . . . , k − 1}. Until either of these potential outcomes
is reached, PDR shifts back and forth between the following two phases:

1. If the set of states represented by the frontier Fk does not contain any pre-
decessor states of ¬P -states (i.e., ∀sj , sj+1 : Fk(sj) ∧ T (sj , sj+1) ⇒ P (sj+1),
called frontier-incrementation check), a new frontier Fk+1 is created and
initialized to P . Subsequently, the algorithm attempts to push forward 3 each
predicate c of each frame Fi with 0 ≤ i ≤ k for which the consecution check
Fi(sj) ∧ T (sj , sj+1) ⇒ c(sj+1) holds (see Fig. 2a). If, on the other hand, the
frontier-incrementation check fails, PDR extracts a ¬P -predecessor t in Fk,
which represents a counterexample to induction (CTI), from the failed query
as proof obligation 〈t, k − 1〉 (see Fig. 2b, top).

2. While the queue of proof obligations is not empty, PDR processes the queue
by trying to prove for each proof obligation 〈t, i〉 that the CTI-state t is itself
not reachable from Fi and therefore does not need to be considered as a
relevant ¬P -predecessor. For this proof, PDR chooses some predicate c ⇒ ¬t
with ∀s : Fi(s) ⇒ c(s). PDR then checks if c is inductive relative to Fi by
performing the consecution check Fi(sj) ∧ c(sj) ∧ T (sj , sj+1) ⇒ c(sj+1). If
the consecution check succeeds, the frames F1, . . . , Fi+1 can be strengthened
by adding c, thus ruling out the CTI t in these frames for the future (see
Fig. 2b, left). Also, unless i = k, we add a new proof obligation 〈t, i + 1〉 to
the queue as an optimization to initiate forward propagation, because we
expect that the CTI-state s would otherwise be rediscovered later at a higher
level [11]. Otherwise, i.e., the consecution check does not succeed for clause c,
the algorithm extracts a predecessor u of t from the failed consecution check,
which is added as a new proof obligation 〈u, i − 1〉 if i > 0 and t ∧ I is
unsatisfiable (see Fig. 2b, right). Otherwise, u represents the initial state of
a real counterexample to P .

An example of this algorithm is presented in a technical report [8, pp. 7–8]. A
more detailed presentation of PDR can be found in the literature [12].
3 By “push forward”, we mean to add a predicate c from frame Fi to frame Fi+1 [12].

8 D. Beyer and M. Dangl

A Manuscripts Software Verification with PDR

113

Fi
c1 c2

c3

c4

c5
T⇒ c4

Fi+1

∧ c4

T⇒

(a) Consecution check makes sure
to only conjoin to frame Fi+1

such ci from Fi that are induc-
tive relative to Fi w.r.t. transition
relation T

Fk P

t

⇓
〈t, k − 1〉

Fk−1 Fk P

t

¬c
c

Fk−1 Fk P

u t

⇓
〈u, k − 2〉

or

(b) If phase 1 results in a proof obligation 〈t, k − 1〉
(top), then phase 2 resolves either by strengthening
Fk with c (left), or by creating a new (backwards)
proof obligation 〈u, k−2〉 (right); if the chain of proof
obligations propagates back to the initial states, then
a feasible error path is found

Fig. 2: Visualization of (a) the consecution check and (b) the handling of proof-
obligations.

2.2 k-Induction

Like PDR, k -induction attempts to prove a safety property P by applying
induction. However, while PDR strengthens its induction hypothesis by using
clauses extracted from specific counterexamples to induction after failed induction
attempts, k -induction strengthens its induction hypothesis by increasing the
length of the unrolling of the transition relation.

Starting with an initial value for the bound k (usually 1), the k -induction
algorithm increases the value of k iteratively after each unsuccessful attempt at
finding a specification violation (base case), proving correctness via complete
loop unrolling (forward condition), or inductively proving correctness of the
program (inductive-step case).

Base Case. The base case of k -induction consists of running BMC with the
current bound k. 4 This means that starting from all initial program states, all
4 We define the loop bound as the number of visits of the loop head, that is, with loop

bound k = 1, the loop head is visited once, but there was not yet any unwinding
of the loop body. This nicely matches the intuition for k-induction: 1-inductiveness
means that if the invariant holds for one state (without loop unrolling), then it holds
again after one loop unrolling in the successor state; k-inductiveness means that if
the invariant holds for k states (k − 1 loop unrollings), then it holds again after one
more loop unrolling in the successor state.

Software Verification with PDR: An Implementation of the State of the Art 9

Software Verification with PDR A Manuscripts

114

states of the program reachable within at most k − 1 unwindings of the transition
relation are explored. If a ¬P -state is found, the algorithm terminates.

Forward Condition. If no ¬P -state is found by the BMC in the base case, the
algorithm continues by performing the forward-condition check, which attempts
to prove that BMC fully explored the state space of the program by checking
that no state with distance k′ > k − 1 to the initial state is reachable. If this
check is successful, the algorithm terminates.

Inductive-Step Case. The forward-condition check, however, can only prove
safety for programs with finite (and, in practice, short) loops. To prove safety
beyond the bound k, the algorithm applies induction: The inductive-step case
attempts to prove that after every sequence of k unrollings of the transition
relation that did not reach a ¬P -state, there can also be no subsequent transition
into a ¬P -state by unwinding the transition relation once more. In the realm
of model checking of software, however, the safety property P is often not
directly k-inductive for any value of k, thus causing the inductive-step-case check
to fail. It is therefore state-of-the-art practice to add auxiliary invariants to
this check to further strengthen the induction hypothesis and make it more
likely to succeed. Thus, the inductive-step case proves a program safe if the
following condition is unsatisfiable:

Inv(sn) ∧
n+k−1∧

i=n

(P (si) ∧ T (si, si+1)) ∧ ¬P (sn+k)

where Inv is an auxiliary invariant, and sn, . . . , sn+k is any sequence of states. If
this check fails, the induction attempt is inconclusive, and the program is neither
proved safe nor unsafe yet with the current value of k and the given auxiliary
invariant. In this case, the algorithm increases the value of k and starts over.

A detailed presentation of k -induction can be found in the literature [5, 6].

3 Combining k-Induction with PDR

Algorithm 1 shows an extension of k -induction with continuously-refined
invariants [5] that applies PDR’s aspect of learning from counterexamples to
induction and that can be applied both as a main proof engine as well as an invari-
ant generator. This allows us to apply this extension of k -induction as an invariant
generator to a main k -induction procedure, similar to the KI ���←−KI approach [5].

Inputs. The algorithm takes the following inputs: The value kinit is used to
initialize the unrolling bound k, whereas the function inc is used to increase k
in line 33 after each major iteration of the algorithm, up to an upper limit
of k defined by the value kmax enforced in line 3. The set of initial program
states is described by the predicate I, the possible state transitions are described

10 D. Beyer and M. Dangl

A Manuscripts Software Verification with PDR

115

Algorithm 1 Iterative-Deepening k -Induction with Property Direction
Input: the initial value kinit ≥ 1 for the bound k,

an upper limit kmax for the bound k,
a function inc : N → N with ∀n ∈ N : inc(n) > n,
the initial states defined by the predicate I,
the transfer relation defined by the predicate T ,
a safety property P ,
a function get_currently_known_invariant to obtain auxiliary invariants,
a Boolean pd that enables or disables property direction,
a function lift : N × (S → B) × (S → B) × S → (S → B), and
a function strengthen : N × (S → B) × (S → B) → (S → B),
where S is the set of program states.

Output: true if P holds, false otherwise
Variables: the current bound k := kinit,

the invariant InternalInv := true computed by this algorithm internally, and
the set O := {} of current proof obligations.

1: while k ≤ kmax do
2: Oprev := O
3: O := {}
4: base_case := I(s0) ∧

k−1∨
n=0

(
n−1∧
i=0

T (si, si+1) ∧ ¬P (sn)

)

5: if sat(base_case) then
6: return false

7: forward_condition := I(s0) ∧
k−1∧
i=0

T (si, si+1)

8: if ¬ sat(forward_condition) then
9: return true

10: if pd then
11: for each o ∈ Oprev do

12: base_caseo := I(s0) ∧
k−1∨
n=0

(
n−1∧
i=0

T (si, si+1) ∧ ¬o(sn)

)

13: if sat(base_caseo) then
14: return false
15: else

16: step_caseon :=

n+k−1∧

i=n

(o(si) ∧ T (si, si+1)) ∧ ¬o(sn+k)

17: ExternalInv := get_currently_known_invariant()
18: Inv := InternalInv ∧ ExternalInv
19: if sat(Inv(sn) ∧ step_caseon) then
20: so := satisfying predecessor state
21: O := O ∪ {¬lift(k, Inv , o, so)}
22: else
23: InternalInv := InternalInv ∧ strengthen(k, Inv , o)

24: step_casen :=

n+k−1∧

i=n

(P (si) ∧ T (si, si+1)) ∧ ¬P (sn+k)

25: ExternalInv := get_currently_known_invariant()
26: Inv := InternalInv ∧ ExternalInv
27: if sat(Inv(sn) ∧ step_casen) then
28: if pd then
29: s := satisfying predecessor state
30: O := O ∪ {¬lift(k, Inv , P, s)}
31: else
32: return true
33: k := inc(k)
34: return unknown

Software Verification with PDR: An Implementation of the State of the Art 11

Software Verification with PDR A Manuscripts

116

by the transition relation T , and the set of safe states is described by the
safety property P . The accessor get_currently_known_invariant is used to
obtain the strongest invariant currently available via a concurrently running
(external) auxiliary-invariant generator. A Boolean flag pd (reminding of
“property-directed”) is used to control whether or not failed induction checks
are used to guide the algorithm towards a sufficient strengthening of the safety
property P to prove correctness; if pd is set to false, the algorithm behaves
exactly like standard k -induction. Given a failed attempt to prove some candidate
invariant Q 5 by induction, the function lift is used to obtain from a concrete
counterexample-to-induction (CTI) state a set of CTI states described by a
state predicate C. An implementation of the function lift needs to satisfy the
condition that for a CTI s ∈ S where S is the set of program states, k ∈ N,
Inv ∈ (S → B), Q ∈ (S → B), and C = lift(k, Inv , Q, s), the following holds:

C(s)∧
(

∀sn ∈ S : C(sn) ⇒ Inv(sn)∧
n+k−1∧

i=n

(Q(si)∧T (si,si+1)) ⇒ ¬Q(sn+k)

)
,

which means that the CTI s must be an element of the set of states described by
the resulting predicate C and that all states in this set must be CTIs, i.e., they
need to be k-predecessors of ¬Q-states, or in other words, each state in the set of
states described by the predicate C must reach some ¬Q-state via k unrollings of
the transition relation T . We can implement lift using Craig interpolation [18, 30]

between A : s = sn and B : Inv(sn) ∧
n+k−1∧

i=n

(Q(si) ∧ T (si, si+1)) ⇒ ¬Q(sn+k),

because s is a CTI, and therefore we know that A ⇒ B holds. 6 Hence, the result-
ing interpolant satisfies the criteria for C to be a valid lifting of s according to the
requirements towards the function lift as outlined above. The function strengthen
is used to obtain for a k-inductive invariant a stronger k-inductive invariant, i.e.,
its result needs to imply the input invariant, and, just like the input invariant, it
must not be violated within k loop iterations and must be k-inductive.

Algorithm. Lines 4 to 6 show the base-case check (BMC) and lines 7 to 9
show the forward-condition check, both as described in Sect. 2. If pd is set
to true, lines 10 to 23 attempt to prove each proof obligation using k -induction:
Lines 12 to 14 check the base case for a proof obligation o. If any violations
of the proof obligation o are found, this means that a predecessor state of
a ¬P -state, and thus, transitively, a ¬P -state, is reachable, so we return false. If,
otherwise, no violation was found, lines 16 to 23 check the inductive-step case
to prove o. 7 We strengthen the induction hypothesis of the step-case check by

5 Depending on the step the algorithm is in, Q may be either the safety property P or
a proof obligation o.

6 The formula C is called Craig interpolant for two formulas A and B with A ⇒ B, if
A ⇒ C, C ⇒ B, and all variables in C occur in both A and B.

7 Note that we do not need to check the forward condition for proof obligations, because
the forward condition is unrelated to the safety property and the proof obligations,
and therefore only needs to be checked once in each major iteration (i.e., once after
each increment of k).

12 D. Beyer and M. Dangl

A Manuscripts Software Verification with PDR

117

conjoining auxiliary invariants from an external invariant generator (via a call to
get_currently_known_invariant) and the auxiliary invariant computed internally
from proof obligations that we successfully proved previously. If the step-case
check for o is unsuccessful, we extract the resulting CTI state, lift it to a set of
CTI states, and construct a new proof obligation so that we can later attempt to
prove that these CTI states are unreachable. If, on the other hand, the step-case
check for o is successful, we no longer track o in the set O of unproven proof
obligations (this case corresponds to line 22). We could now directly use the
proof obligation as an invariant, but instead, in line 23 we first try to strengthen
it into a stronger invariant that removes even more unreachable states from
future consideration before conjoining it to our internally computed auxiliary
invariant. In our implementation, we implement strengthen by attempting to
drop components from a (disjunctive) invariant and checking if the remaining
clause is still inductive. In lines 24 to 32, we check the inductive-step case for
the safety property P . This check is mostly analogous to the inductive-step
case check for the proof obligations described above, except that if the check
is successful, we immediately return true.

Note that Alg. 1 eagerly increases k, even if the set O of proof obligations is not
empty. This heuristic prevents the PDR part from iterating through long chains
of proof obligations, it rather delegates the unrolling to the k-induction part.

An in-depth discussion of a practical example of Alg. 1 is presented in a
technical report [8, pp. 12–14].

4 Evaluation

In this section, we present an extensive experimental study on the effectiveness
and efficiency of adaptations of PDR to software verification.

4.1 Compared Approaches

We use the following abbreviations to distinguish between the different tech-
niques that we evaluated:
CTIGAR: CTIGAR [11] is an adaptation of PDR to software verification.

Our evaluation compares two implementations of CTIGAR, namely Vvt-
CTIGAR from the tool Vvt and our own implementation CPAchecker-
CTIGAR. Vvt [20] also provides a configuration that runs a parallel portfolio
combination of Vvt-CTIGAR and bounded model checking, which we call
Vvt-Portfolio.

KI: KI [5] denotes the plain k -induction algorithm without property direction
and without auxiliary invariants, i.e., we configure Alg. 1 such that pd = false
and get_currently_known_invariant() always returns true.

KIPDR: KIPDR denotes a configuration of Alg. 1 such that pd = true
and get_currently_known_invariant() always returns true, i.e., k -induction
with property direction but without additional auxiliary-invariant generation.
KIPDR is, like CTIGAR, an adaptation of PDR to software verification.

Software Verification with PDR: An Implementation of the State of the Art 13

Software Verification with PDR A Manuscripts

118

KI ���←−DF: KI ���←−DF [5] denotes a parallel combination of k -induction (without
property direction) with a data-flow-based auxiliary-invariant generator that
continuously supplies the k -induction procedure with invariants. Here, we
configure Alg. 1 such that pd = false and get_currently_known_invariant()
always returns the most recent (strongest) invariant computed by the data-
flow-based auxiliary-invariant generator.

KI ���←−KIPDR: Similarly to KI ���←−DF, KI ���←−KIPDR denotes a parallel com-
bination of k -induction with an auxiliary-invariant generator — in this case,
KIPDR — that continuously supplies invariants to the k -induction proce-
dure. Here, we configure one instance of Alg. 1 such that pd = false and
get_currently_known_invariant() always returns the most recent (strongest) in-
variant computed by KIPDR (a second instance of Alg. 1 that is configured such
that pd = true and get_currently_known_invariant() always returns true).

KI ���←−DF;KIPDR KI ���←−DF;KIPDR denotes a parallel combination of
k -induction with an auxiliary-invariant generator that uses a sequential combi-
nation of a data-flow-based invariant generator and KIPDR to continuously
supply k -induction with auxiliary invariants. We configure one instance of Alg. 1
such that pd = false and get_currently_known_invariant() always returns the
most recent (strongest) invariant computed by a sequential combination of
the data-flow-based invariant generator and KIPDR (a second instance of
Alg. 1 that runs after the invariant generator finishes and is configured such
that pd = true and get_currently_known_invariant() always returns true).

We do not evaluate the used invariant generators as standalone approaches, as
they are designed specifically to be used as auxiliary components and do not per-
form well enough in isolation. For example, data-flow based invariant-generation
approaches are often too imprecise to verify tasks, whereas more precise techniques
like KIPDR might run into too many timeouts to be competitive. Instead, we
use the framework of k -induction with continuously refined invariant generation,
which has been shown to be able to combine quick and precise techniques [5].

4.2 Experimental Setup

Details about the experimental setup can be found in the technical report [8],
which describes in Sect. 4.2 which tool versions and SMT theory we used, in
Sect. 4.3 which benchmark sets we used and why, in Sect. 4.4 which existing
verifiers we compared to and which versions we took, in Sect. 4.5 which computing
resources and execution environment were used, in Sect. 4.6 the scoring schema,
and in Sect. 4.12 which threats to the validity of the evaluation we identified
and how we mitigated them.

4.3 Results

In the following, we pick a few highlights from the results of our experimental eval-
uation, in order to illustrate the potential of the approaches. A complete and more
detailed report of the results is available in the extended version of this article [8].

14 D. Beyer and M. Dangl

A Manuscripts Software Verification with PDR

119

Table 1: Results for all 5 591 verification tasks, 1 457 of which contain bugs, while
the other 4 134 are considered to be safe, for the two CTIGAR implementations
CPAchecker-CTIGAR and Vvt-CTIGAR, for a theoretical “virtual best” com-
bination of both CTIGAR implementations where an oracle selects the best
implementation for each task, for k -induction without auxiliary invariants (KI),
and for the best configurations of each tool: CPAchecker’s KI ���←−DF;KIPDR,
SeaHorn, and Vvt as a portfolio verifier.

Verifier CTIGAR KI Best of each tool
CPAchecker Vvt KI ���←−DF;

KIPDR SeaHorn
Vvt -
Portfolio

Score 1 903 879 3 282 5 398 2 848 727
Correct results 1 087 739 2 075 3 095 3 468 839

Correct proofs 832 524 1 239 2 335 2 724 528
Correct alarms 255 215 836 760 744 311

Wrong proofs 0 5 0 0 46 9
Wrong alarms 1 14 2 2 117 22
Timeouts 3 982 110 2 764 2 006 1 476 524
Out of memory 23 28 315 243 231 22
Other inconclusive 498 4 695 435 245 253 4 175

Times for correct results
Total CPU Time (h) 9.0 3.2 30 54 29 5.7
Mean CPU Time (s) 30 16 52 63 31 25
Median CPU Time (s) 4.9 0.24 9.8 10 0.89 0.45

Suitability of CPAchecker for PDR. The first set of experiments showed
that our implementation is at least as good as (and even better than) the only
available implementation of PDR for software model checking. Columns two and
three of Table 1 compare the results obtained by running the two implementations
of CTIGAR on the whole benchmark set, and the last column of the table shows
the results achieved with the standard configuration of Vvt, which runs not only
CTIGAR, but a portfolio analysis of CTIGAR and bounded model checking. The
quantile plot in Fig. 3 shows the CPU times that the two tool configurations
spent on their correct results.

KIPDR versus Data-Flow Techniques. Data-flow-based techniques are usu-
ally more efficient than KIPDR. The higher efficiency of data-flow-based tech-
niques is most likely due to the simple form of the invariants needed to prove
the programs correct. In order to experiment with progams that have some more
interesting invariants, we created a few programs by hand and tried to verify
those. Table 2 shows the results we obtained for these tasks. Our experiments
support the hypothesis that KIPDR can be very strong and efficient on tasks
that other approaches can not solve. It is important to note that this is an ‘exists’
statement and can not be generalized, as shown by the results that KIPDR is
often outperformed by simpler, data-flow-based invariant-generation techniques.

Software Verification with PDR: An Implementation of the State of the Art 15

Software Verification with PDR A Manuscripts

120

1

10

100

1 000

C
P

U
ti

m
e

(s
)

CPAchecker-CTIGAR
Vvt-CTIGAR

0 200 400 600 800 1 000 1 200
0

n-th fastest correct result (proof or alarm)

Fig. 3: Comparing two implementations of CTIGAR; quantile plot for accumulated
number of solved tasks (proofs and alarms) showing the CPU time (linear scale
below 1 s, logarithmic above) for the successful results of CPAchecker-CTIGAR
and Vvt-CTIGAR

Table 2: Results of four k -induction-based configurations in CPAchecker with
different approaches for generating auxiliary invariants for seven manually crafted
verification tasks that do not contain bugs and are not solved by k -induction
without auxiliary invariants; an entry “T” means that the CPU-time limit was
exceeded, an entry “M” means that the memory limit was exceeded, and all other
entries represent the CPU time a configuration spent to correctly solve the task

Task KI←DF KI ���←−KIPDR
Boxes Boxes,

Eq

Boxes,
Eq,
Mod2

const.c 3.3 s 3.3 s 3.2 s 3.8 s
eq1.c T 3.2 s 3.3 s 4.9 s
eq2.c M M M 3.9 s
even.c T T 3.5 s 3.9 s
odd.c T T 3.4 s 4.1 s
mod4.c T T T 3.6 s
bin-suffix-5.c M M M 3.6 s

Comparison with Non-PDR Approaches. The seven example programs 8

were added to the benchmark collection that was also used for SV-COMP 2019, and
thus, results are available for all verifiers that participated in the competition 9.
Table 3 summarizes the results of the best six verifiers in comparison with
the KI ���←−KIPDR approach that we created for the study in this paper. Those
verifiers are, in alphabetical order, Skink, Ultimate Automizer, Ultimate Kojak,

8 https://github.com/sosy-lab/sv-benchmarks/tree/svcomp19/c/loop-invariants/
9 See the last seven rows in this table: https://sv-comp.sosy-lab.org/2019/results/

results-verified/ReachSafety-Loops.table.html

16 D. Beyer and M. Dangl

A Manuscripts Software Verification with PDR

121

https://github.com/sosy-lab/sv-benchmarks/blob/svcomp19/c/loop-invariants/const_true-unreach-call_true-valid-memsafety_true-no-overflow_false-termination.c
https://github.com/sosy-lab/sv-benchmarks/blob/svcomp19/c/loop-invariants/eq1_true-unreach-call_true-valid-memsafety_true-no-overflow_false-termination.c
https://github.com/sosy-lab/sv-benchmarks/blob/svcomp19/c/loop-invariants/eq2_true-unreach-call_true-valid-memsafety_true-no-overflow_false-termination.c
https://github.com/sosy-lab/sv-benchmarks/blob/svcomp19/c/loop-invariants/even_true-unreach-call_true-valid-memsafety_true-no-overflow_false-termination.c
https://github.com/sosy-lab/sv-benchmarks/blob/svcomp19/c/loop-invariants/odd_true-unreach-call_true-valid-memsafety_true-no-overflow_false-termination.c
https://github.com/sosy-lab/sv-benchmarks/blob/svcomp19/c/loop-invariants/mod4_true-unreach-call_true-valid-memsafety_true-no-overflow_false-termination.c
https://github.com/sosy-lab/sv-benchmarks/blob/svcomp19/c/loop-invariants/bin-suffix-5_true-unreach-call_true-valid-memsafety_true-no-overflow_false-termination.c
https://github.com/sosy-lab/sv-benchmarks/tree/svcomp19/c/loop-invariants/
https://sv-comp.sosy-lab.org/2019/results/results-verified/ReachSafety-Loops.table.html
https://sv-comp.sosy-lab.org/2019/results/results-verified/ReachSafety-Loops.table.html

Table 3: Results of SV-COMP 2019 for the six verifiers that performed best
on our seven manually crafted verification tasks, compared to the results of
KI ���←−KIPDR approach previously shown in Table 2; an entry “T” means that
the CPU-time limit was exceeded, an entry “M” means that the memory limit
was exceeded, an entry “O” means that the verifier gave up deliberately for other
reasons, and all other entries represent the CPU time a verifier configuration
spent to correctly solve the task; note that SV-COMP 2019 used Ubuntu 18.04
based on Linux 4.15, whereas our evaluation of KI ���←−KIPDR used Ubuntu 16.04
based on Linux 4.4; otherwise, the evaluation environment was the same

Task SV-COMP 2019 KI ���←−KIPDR
Skink UAutomizer UKojak UTaipan VeriAbs VIAP

const.c 4.2 s 8.7 s 9.1 s 8.2 s 13 s 110 s 3.8 s
eq1.c 290 s 7.8 s 7.6 s 8.3 s 14 s 57 s 4.9 s
eq2.c 4.1 s 8.1 s 8.6 s 7.6 s 14 s 4.7 s 3.9 s
even.c 3.7 s 7.4 s 8.2 s 8.6 s 140 s 4.5 s 3.9 s
odd.c O 9.6 s T 11 s 140 s 4.6 s 4.1 s
mod4.c 4.0 s 8.4 s 8.4 s 7.7 s 140 s 4.5 s 3.6 s
bin-suffix-5.c O 14 s T 13 s 13 s 4.7 s 3.6 s

Ultimate Taipan, VeriAbs, and VIAP. Fig. 4a directly compares the CPU times
spent on tasks of in the subcategory ReachSafety-Loops, which is known to contain
many tasks that require effort to be spent on generating loop invariants, by both
VeriAbs, which was the best verifier in that subcategory, and KI ���←−KIPDR.
We observe that for the majority of tasks that were solved by both verifiers,
KI ���←−KIPDR is faster than VeriAbs, often by more than an order of magnitude.
This shows that the invariant generator KIPDR can be significantly faster than
other approaches, depending on the benchmark set. As before, a more in-depth
discussion can be found in the technical report [8].

Comparison against PDR-Based Verification Tools. The last three
columns of Table 1 give an overview over the best configurations of three
software verifiers that use adaptations of PDR: For CPAchecker, we selected
KI ���←−DF;KIPDR. For SeaHorn, we used the same configuration as submit-
ted by the developers to the 2016 Competition on Software Verification (SV-
COMP 2016) [22]. For Vvt, we used the portfolio configuration. We observe that
SeaHorn achieves the highest number of correct proofs, but also has a significant
amount of incorrect proofs. CPAchecker is the slowest of the three tools and
finds fewer proofs than SeaHorn, but CPAchecker has no wrong proofs, and
also closely leads in the amount of found bugs. The score-based quantile plot
of these results displayed in Fig. 4b visualizes the effects of incorrect results on
the computed score. While the graph for SeaHorn is longer, i.e., shows that it
solved the most tasks, it is offset to the left by a total penalty of −3 344 points,
such that in the end, KI ���←−DF;KIPDR accumulates the highest score because
it has a smaller penalty of only −32 points.

Software Verification with PDR: An Implementation of the State of the Art 17

Software Verification with PDR A Manuscripts

122

.01 .1 1 10 100 1 000
.01

.1

1

10

100

1 000

CPU time for VeriAbs (s)

C
P

U
ti
m

e
fo

r
K

I
�� �←
−

K
IP

D
R

(s
)

(a) Scatter plot comparing the CPU
times spent on tasks by VeriAbs and
KI ���←−KIPDR

1

10

100

1 000

C
P

U
ti

m
e

(s
)

KI ���←−DF;KIPDR
SeaHorn

Vvt-Portfolio

−2 000 0 2 000 4 000
0

Accumulated score

(b) Quantile plot for accumulated score of
solved tasks (offset to the left by total penalty
from wrong results) showing the CPU time
(linear scale below 1 s, logarithmic above) for
the successful results of KI ���←−DF;KIPDR, Sea-

Horn, and Vvt-Portfolio
Fig. 4: Plots that support the claim that the conclusions of the evaluation are
relevant

These results confirm our hypothesis that our previous conclusions are relevant,
because they are supported by an implementation that is competitive when
compared to the best available PDR-based tool implementations.

5 Conclusion

Property-directed reachability (a.k.a. IC3) is a verification approach that is pop-
ular and successful in some fields of formal verification (e.g., hardware designs,
Horn clauses). Unfortunately, there is a large gap between this success story and
the applicability in practical software verification. We are closing this gap by
(a) providing a well-engineered implementation of one published adaptation of
PDR to software verification, (b) designing and implementing an invariant gener-
ator based on the ideas of PDR, and (c) providing an evaluation of all applicable
tools and approaches on the largest available benchmark set of C verification tasks.
This provides a good foundation as baseline for ongoing research in this area.

The results of our comparative evaluation extend the knowledge about PDR for
software verification in the following ways: (1) Our implementation outperforms
the existing implementation of PDR (Vvt) and is more precise than the other
software verifier that uses PDR (SeaHorn). Thus, our implementation can serve as
a reference implementation for further research on PDR for software verification.
(2) On most of the programs in the widely used sv-benchmarks collection of
verification tasks, other techniques are more effective (solve more problems)
and more efficient (solve the problems faster). (3) PDR can be an effective and
efficient technique for computing invariants that are difficult to obtain: there
are programs for which our PDR-based approach is more efficient than the best
invariant generator from SV-COMP in the subcategory ReachSafety-Loops.

18 D. Beyer and M. Dangl

A Manuscripts Software Verification with PDR

123

5.1 Data Availability Statement

A replication package for this article including all evaluated implementations
and BenchExec is available at Zenodo [9]. Current versions of CPAchecker
are available at https://github.com/sosy-lab/cpachecker. The benchmark
set of SV-COMP 2018 used in Sect. 4 is available online at https://github.
com/sosy-lab/sv-benchmarks/releases/tag/svcomp18 and the dataset from
SV-COMP 2019 [4] that we analyzed is available at https://sv-comp.sosy-lab.
org/2019/results/results-verified/All-Raw.zip.

References

1. Ball, T., Podelski, A., Rajamani, S.K.: Boolean and cartesian abstraction for model
checking C programs. In: Proc. TACAS. pp. 268–283. LNCS 2031, Springer (2001).
https://doi.org/10.1007/3-540-45319-9_19

2. Ball, T., Rajamani, S.K.: The Slam project: Debugging system soft-
ware via static analysis. In: Proc. POPL. pp. 1–3. ACM (2002).
https://doi.org/10.1145/503272.503274

3. Beckert, B., Hähnle, R.: Reasoning and verification: State of the art
and current trends. IEEE Intelligent Systems 29(1), 20–29 (2014).
https://doi.org/10.1109/MIS.2014.3

4. Beyer, D.: Automatic verification of C and Java programs: SV-COMP
2019. In: Proc. TACAS (3). pp. 133–155. LNCS 11429, Springer (2019).
https://doi.org/10.1007/978-3-030-17502-3_9

5. Beyer, D., Dangl, M., Wendler, P.: Boosting k-induction with continuously-
refined invariants. In: Proc. CAV. pp. 622–640. LNCS 9206, Springer (2015).
https://doi.org/10.1007/978-3-319-21690-4_42

6. Beyer, D., Dangl, M., Wendler, P.: A unifying view on SMT-based software verifica-
tion. J. Autom. Reasoning 60(3), 299–335 (2018). https://doi.org/10.1007/s10817-
017-9432-6

7. Beyer, D., Keremoglu, M.E.: CPAchecker: A tool for configurable soft-
ware verification. In: Proc. CAV. pp. 184–190. LNCS 6806, Springer (2011).
https://doi.org/10.1007/978-3-642-22110-1_16

8. Beyer, D., Dangl, M.: Software verification with PDR: Implementation and empirical
evaluation of the state of the art (August 2019), http://arxiv.org/abs/1908.
06271

9. Beyer, D., Dangl, M.: Replication package for article ‘Software verification
with PDR: An implementation of the state of the art’. Zenodo (2020).
https://doi.org/10.5281/zenodo.3678766

10. Biere, A., Cimatti, A., Clarke, E.M., Zhu, Y.: Symbolic model checking with-
out BDDs. In: Proc. TACAS. pp. 193–207. LNCS 1579, Springer (1999).
https://doi.org/10.1007/3-540-49059-0_14

11. Birgmeier, J., Bradley, A.R., Weissenbacher, G.: Counterexample to induction-
guided abstraction-refinement (CTIGAR). In: Proc. CAV. pp. 831–848. LNCS 8559,
Springer (2014). https://doi.org/10.1007/978-3-319-08867-9_55

12. Bradley, A.R.: SAT-based model checking without unrolling. In: Proc. VMCAI. pp.
70–87. LNCS 6538, Springer (2011). https://doi.org/10.1007/978-3-642-18275-4_7

13. Bradley, A.R., Manna, Z.: Property-directed incremental invariant generation.
Formal Asp. Comput. 20(4-5), 379–405 (2008). https://doi.org/10.1007/s00165-
008-0080-9

Software Verification with PDR: An Implementation of the State of the Art 19

Software Verification with PDR A Manuscripts

124

https://github.com/sosy-lab/cpachecker
https://github.com/sosy-lab/sv-benchmarks/releases/tag/svcomp18
https://github.com/sosy-lab/sv-benchmarks/releases/tag/svcomp18
https://sv-comp.sosy-lab.org/2019/results/results-verified/All-Raw.zip
https://sv-comp.sosy-lab.org/2019/results/results-verified/All-Raw.zip
https://doi.org/10.1007/3-540-45319-9_19
https://doi.org/10.1145/503272.503274
https://doi.org/10.1109/MIS.2014.3
https://doi.org/10.1007/978-3-030-17502-3_9
https://doi.org/10.1007/978-3-319-21690-4_42
https://doi.org/10.1007/s10817-017-9432-6
https://doi.org/10.1007/s10817-017-9432-6
https://doi.org/10.1007/978-3-642-22110-1_16
http://arxiv.org/abs/1908.06271
http://arxiv.org/abs/1908.06271
https://doi.org/10.5281/zenodo.3678766
https://doi.org/10.1007/3-540-49059-0_14
https://doi.org/10.1007/978-3-319-08867-9_55
https://doi.org/10.1007/978-3-642-18275-4_7
https://doi.org/10.1007/s00165-008-0080-9
https://doi.org/10.1007/s00165-008-0080-9

14. Calcagno, C., Distefano, D., Dubreil, J., Gabi, D., Hooimeijer, P., Luca, M.,
O’Hearn, P.W., Papakonstantinou, I., Purbrick, J., Rodriguez, D.: Moving fast
with software verification. In: Proc. NFM. pp. 3–11. LNCS 9058, Springer (2015).
https://doi.org/10.1007/978-3-319-17524-9_1

15. Cimatti, A., Griggio, A.: Software model checking via IC3. In: Proc. CAV. pp. 277–
293. LNCS 7358, Springer (2012). https://doi.org/10.1007/978-3-642-31424-7_23

16. Cimatti, A., Griggio, A., Mover, S., Tonetta, S.: Infinite-state invariant
checking with IC3 and predicate abstraction. FMSD 49(3), 190–218 (2016).
https://doi.org/10.1007/s10703-016-0257-4

17. Clarke, E.M., Grumberg, O., Jha, S., Lu, Y., Veith, H.: Counterexample-guided
abstraction refinement for symbolic model checking. J. ACM 50(5), 752–794 (2003).
https://doi.org/10.1145/876638.876643

18. Craig, W.: Linear reasoning. A new form of the Herbrand-Gentzen theorem. J. Symb.
Log. 22(3), 250–268 (1957). https://doi.org/10.2307/2963593

19. Graf, S., Saïdi, H.: Construction of abstract state graphs with Pvs. In: Proc. CAV.
pp. 72–83. LNCS 1254, Springer (1997). https://doi.org/10.1007/3-540-63166-6_10

20. Günther, H., Laarman, A., Weissenbacher, G.: Vienna Verification Tool: IC3 for par-
allel software (competition contribution). In: Proc. TACAS. pp. 954–957. LNCS 9636,
Springer (2016)

21. Gurfinkel, A., Chaki, S.: Boxes: A symbolic abstract domain of boxes. In: Proc.
SAS. pp. 287–303 (2010). https://doi.org/10.1007/978-3-642-15769-1_18

22. Gurfinkel, A., Kahsai, T., Navas, J.A.: SeaHorn: A framework for verifying C
programs (competition contribution). In: Proc. TACAS. pp. 447–450. LNCS 9035,
Springer (2015). https://doi.org/10.1007/978-3-662-46681-0_41

23. Gurfinkel, A., Kahsai, T., Komuravelli, A., Navas, J.A.: The SeaHorn verifi-
cation framework. In: Proc. CAV. pp. 343–361. LNCS 9206, Springer (2015).
https://doi.org/10.1007/978-3-319-21690-4_20

24. Jhala, R., Majumdar, R.: Software model checking. ACM Computing Surveys 41(4)
(2009). https://doi.org/10.1145/1592434.1592438

25. Jovanovic, D., Dutertre, B.: Property-directed k-induction. In: Proc. FMCAD. pp.
85–92. IEEE (2016). https://doi.org/10.1109/FMCAD.2016.7886665

26. Kahsai, T., Tinelli, C.: PKind: A parallel k-induction based model checker. In:
Proc. Int. Workshop on Parallel and Distributed Methods in Verification. pp. 55–62.
EPTCS 72 (2011). https://doi.org/10.4204/EPTCS.72

27. Khoroshilov, A.V., Mutilin, V.S., Petrenko, A.K., Zakharov, V.: Establishing Linux
driver verification process. In: Proc. Ershov Memorial Conference. pp. 165–176.
LNCS 5947, Springer (2009). https://doi.org/10.1007/978-3-642-11486-1_14

28. Lange, T., Neuhäußer, M.R., Noll, T.: IC3 software model checking on control flow
automata. In: Proc. FMCAD. pp. 97–104 (2015)

29. Lange, T., Prinz, F., Neuhäußer, M.R., Noll, T., Katoen, J.: Improving generalization
in software IC3. In: Proc. SPIN’18. pp. 85–102. LNCS 10869, Springer (2018).
https://doi.org/10.1007/978-3-319-94111-0_5

30. McMillan, K.L.: Interpolation and SAT-based model checking. In: Proc. CAV. pp.
1–13. LNCS 2725, Springer (2003). https://doi.org/10.1007/978-3-540-45069-6_1

31. Myers, G.J., Sandler, C., Badgett, T.: The Art of Software Testing. Wiley Publishing,
3rd edn. (2011)

32. Wahl, T.: The k-induction principle (2013), available at http://www.ccs.neu.edu/
home/wahl/Publications/k-induction.pdf

20 D. Beyer and M. Dangl

A Manuscripts Software Verification with PDR

125

https://doi.org/10.1007/978-3-319-17524-9_1
https://doi.org/10.1007/978-3-642-31424-7_23
https://doi.org/10.1007/s10703-016-0257-4
https://doi.org/10.1145/876638.876643
https://doi.org/10.2307/2963593
https://doi.org/10.1007/3-540-63166-6_10
https://doi.org/10.1007/978-3-642-15769-1_18
https://doi.org/10.1007/978-3-662-46681-0_41
https://doi.org/10.1007/978-3-319-21690-4_20
https://doi.org/10.1145/1592434.1592438
https://doi.org/10.1109/FMCAD.2016.7886665
https://doi.org/10.4204/EPTCS.72
https://doi.org/10.1007/978-3-642-11486-1_14
https://doi.org/10.1007/978-3-319-94111-0_5
https://doi.org/10.1007/978-3-540-45069-6_1
http://www.ccs.neu.edu/home/wahl/Publications/k-induction.pdf
http://www.ccs.neu.edu/home/wahl/Publications/k-induction.pdf

Software Verification with PDR: An Implementation of the State of the Art 21

Open Access This chapter is licensed under the terms of the Creative Commons
Attribution 4.0 International License (http://creativecommons.org/licenses/by/
4.0/), which permits use, sharing, adaptation, distribution, and reproduction in any
medium or format, as long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license and indicate if changes were made.

The images or other third party material in this chapter are included in the chapter’s
Creative Commons license, unless indicated otherwise in a credit line to the material. If
material is not included in the chapter’s Creative Commons license and your intended
use is not permitted by statutory regulation or exceeds the permitted use, you will need
to obtain permission directly from the copyright holder.

Software Verification with PDR A Manuscripts

126

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/

Strategy Selection for Software
Verification Based on Boolean Features

A Simple but Effective Approach

Dirk Beyer and Matthias Dangl

LMU Munich, Germany

Abstract. Software verification is the concept of determining, given an
input program and a specification, whether the input program satisfies
the specification or not. There are different strategies that can be used
to approach the problem of software verification, but, according to com-
parative evaluations, none of the known strategies is superior over the
others. Therefore, many tools for software verification leave the choice of
which strategy to use up to the user, which is problematic because the
user might not be an expert on strategy selection. In the past, several
learning-based approaches were proposed in order to perform the strat-
egy selection automatically. This automatic choice can be formalized by
a strategy selector, which is a function that takes as input a model of the
given program, and assigns a verification strategy. The goal of this paper
is to identify a small set of program features that (1) can be statically
determined for each input program in an efficient way and (2) sufficiently
distinguishes the input programs such that a strategy selector for pick-
ing a particular verification strategy can be defined that outperforms
every constant strategy selector. Our results can be used as a baseline
for future comparisons, because our strategy selector is simple and easy
to understand, while still powerful enough to outperform the individ-
ual strategies. We evaluate our feature set and strategy selector on a
large set of 5 687 verification tasks and provide a replication package for
comparative evaluation.

Keywords: Strategy selection · Software verification
Algorithm selection · Program analysis · Model checking

1 Introduction

The area of automatic software verification is a mature research area, with a
large potential for adoption in industrial development practice. However, there
are many usability issues that hinder the widespread use of the technology that is
developed by researchers. One of the usability problems is that it is not explain-
able, for a given input program, which verification strategy to use. Different ver-
ification tools, algorithms, abstract domains, configurations, coexist with their
different strengths in terms of approaching a verification problem.

c© Springer Nature Switzerland AG 2018
T. Margaria and B. Steffen (Eds.): ISoLA 2018, LNCS 11245, pp. 144–159, 2018.
https://doi.org/10.1007/978-3-030-03421-4_11

A Manuscripts Strategy Selection for Software Verification Based on Boolean Features

127

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-03421-4_11&domain=pdf
http://orcid.org/0000-0003-4832-7662
http://orcid.org/0000-0001-7333-6734
https://doi.org/10.1007/978-3-030-03421-4_11

Strategy Selection for Software Verification Based on Boolean Features 145

Program

Specification

Verification
Task

Synthesis /
Extractor

Selection
Model

Strategy
Selector

Strategyn

Strategy 3Strategy 2Strategy 1

Strategy i

Fig. 1. Architecture of strategy selection (compare with Fig. 3 by Rice [28])

The insight that different verification techniques have different strengths was
emphasized several times in the literature already. Most intensively, this can be
derived from the results of the competition on software verification [4]. 1 A recent
survey on SMT-based algorithms [6] (including bounded model checking,
k -induction, predicate abstraction, and Impact) explains this insight concretely
on specific example programs (from different categories of a well-known bench-
mark repository 2): For each of the four considered algorithms, one example
program is given that only this algorithm can efficiently verify and all other algo-
rithms fail or timeout on this program. While there are powerful basic techniques,
combinations or a selection are often a valuable strategy to further improve.

The problem has been understood for a long time in the research community,
and there are several methods to approach the problem [24]. The standard tech-
niques are sequential and parallel combinations [2,7,23,26,35]. These techniques
are mostly based on statically assembling the combinations, and, by trying out
one technique after the other (sequential) or by trying all at the same time (par-
allel), the problem is often solved by the approach that works best. However,
there might be a considerable amount of resources wasted on unsuccessful com-
putation work. For example, it might happen that one approach could solve the
problem if all available resources were given to it, but since the resource is shared
and assigned to several approaches, the overall verification does not succeed.

In order to solve this problem, a few techniques were proposed in the last few
years that automatically select a potentially good verification strategy based on
machine learning [18, 19, 20, 28, 32]. All those proposals share the common idea
of strategy selection.

Strategy selection can be illustrated by the flow diagram in Fig. 1: The
verification task (consisting of the source code of the input program and the

1 https://sv-comp.sosy-lab.org/2018/results/results-verified/
2 https://github.com/sosy-lab/sv-benchmarks

Strategy Selection for Software Verification Based on Boolean Features A Manuscripts

128

https://sv-comp.sosy-lab.org/2018/results/results-verified/
https://github.com/sosy-lab/sv-benchmarks

146 D. Beyer and M. Dangl

specification) is first analyzed and an abstract selection model is constructed
(synthesized or extracted). The strategy selector predicts a strategy (from a
given set of strategies) that should be used to solve the verification task, based
on the information in the selection model.

The selection model can be either a vector of feature values, as defined
by Rice’s ‘feature space’ [28] (and implemented for software verification by,
e.g., [19,20,32]), a graph representation of the program (e.g., [18]), or some
other characteristics of the program and its specification. A selection model is
useful if it contains sufficient information to distinguish verification tasks that
need to be verified with different strategies. The model construction phase needs
to extract the information from the source code of the input program and the
specification. For example, the values of a feature vector might be extracted by
static source-code measures.

The set of strategies (also called ‘algorithm space’ [28]) is either a set of
algorithms, verification tools, different configurations of a configurable verifica-
tion framework, or just a mere set of different parameter specifications for a
single verifier.

The strategy selector is a function that takes as input a set of strategies and
the selection model that represents some information about the program and its
specification, and returns as output the strategy that is predicted to be useful
to solve the verification task that is represented by the selection model.

Contributions. This paper makes the following contributions:

• We define a minimalist selection model, which (1) consists of an extremely
small set of features that define the selection model and (2) a minimal range
of values: all features are of type Boolean.

• We define an extremely simple strategy selector, which is based on insights
from verification researchers.

• We implemented our feature measures and strategy selection in CPAchecker;
the replication package contains all data for replicating the results.

• We perform a thorough experimental evaluation on a large benchmark set.

Related Work. We categorize the related work into the three areas of combi-
nations, models, and machine learning.

Sequential and Parallel Combinations (Portfolios). While it seems obvious that
combinations of strategies have a large potential, the topic was not yet system-
atically investigated in the area of software verification, while it has been used in
other areas for many years [24,28]. One of the first ideas to combine different tools
was for eliminating false alarms: after the core verifier has found an error path, this
error path is not immediately reported to the user, but first converted into a pro-
gram again which is then verified by an external verifier, and only if that external
tool reports an error path as well, then the alarm is shown as a result to the user. 3

3 An early version of CPAchecker [9] had constructed a path program [8], dumped
it to a file in C syntax, and then called Cbmc [17] as external verifier for validation.
Meanwhile, such an error-path check is a standard component in many verifiers.

A Manuscripts Strategy Selection for Software Verification Based on Boolean Features

129

Strategy Selection for Software Verification Based on Boolean Features 147

Other examples for sequential combinations are CPAchecker and SDV.
CPAchecker [9]wonthecompetitiononsoftwareverification2013(SV-COMP’13,
[3]) using a sequential combination [35] that started with explicit-state model
checking for up to 100 s and then switched to a predicate analysis [10]. The static
driver verification (SDV) [2] tool chain at Microsoft used a sequential combination
(described in [32]) which first runs Corral [25] for up to 1 400 s and then Yogi [27].

Examples of parallel combinations are the verifiers Ufo [23] and
PredatorHP [26], which start several different strategies simultaneously and
take the result from the approach that terminates first.

Conditional model checking [7] is a technique to construct combinations with
passing information from one verifier to the other. This technique can also be
used to split programs into parts that can be independently verified [30].

Selection Models. A strategy selector needs a selection model of the program, in
order to be able to classify the program and select a strategy. The classic way
of abstracting is to define a set of features and the resulting vector of feature
values is the selection model, which is in turn given to the strategy selector as
input. There are various works on identifying features that are useful for classi-
fying programs using its source code. Domain types [1] refine the integer types
of C programs into more fine-grained integer types, in order to estimate what
kind of abstract domain should be used to verify the program, for example,
whether a BDD-based analysis or an SMT-based analysis is preferable. Variable
roles [15,29,33,34] were used to analyze and understand programs, but also to
classify program variables [22] according to how they are used in the program,
i.e., what their role is. It has been shown that variable roles can help to determine
which predicates should be used for predicate abstraction [21]. More sophisti-
cated selection models can be used for machine-learning-based approaches. For
example, one approach is based on graph representations of the program [18].

Machine-Learning-Based Approaches. The technique MUX [32] can be used to
synthesize a strategy selector for a set of features of the input program and a
given number of strategies. The strategies are verification tools in this case,
and the feature values are statically extracted from the source code of the
input program. Unfortunately, this technique is not reproducible, as reported
by others [20]. Later, a technique that uses more sophisticated features was
proposed [19,20]. While the above techniques use explicit features (defined by
measures on the source code), a more recently developed technique [18] leaves
it up to the machine learning to obtain insights from the input program. The
advantage is that there is no need to define the features: the learner is given the
control-flow graph, the data-dependency graph, and the abstract syntax tree,
and automatically derives internally the characteristics that it needs. Also, the
technique predicts a ranking, that is, the strategy selector is a function that
maps verification tasks not to a single strategy, but to a sequence of strategies.

Strategy Selection for Software Verification Based on Boolean Features A Manuscripts

130

148 D. Beyer and M. Dangl

2 An Approach Based on Simple Boolean Features

Our goal is to define a strategy-selection approach that is simple and easy to
understand but still effectively improves the overall performance.

2.1 Selection Model

We identify the following criteria from which we define our selection model:

• The model is based on features of the input program that are efficiently
extractable from the program’s source code using a simple static analysis.

• The model consists of a small set of features.
• The features have a small set of values.

Based on sets of program characteristics that were reported in the literature
[1,22], we selected a few extremely coarse features. We will later evaluate whether
our choice of features can instantiate a model that contains sufficient information
to distinguish programs that should be verified by different strategies. Let V =
P × S be the set of all verification tasks, each of which consists of a program from
the set P and a specification from the set S, and let B be the set of Boolean values.
We define the following four features for our selection model:

hasLoop : V → B with
hasLoop((p, ·)) = true if program p has a loop, and false otherwise

hasFloat : V → B with
hasFloat((p, ·)) = true if program p has a variable of a floating-point type
(float, double, and long double in C), and false otherwise

hasArray : V → B with
hasArray((p, ·)) = true if program p has a variable of an array type, and false
otherwise

hasComposite : V → B with
hasComposite((p, ·)) = true if program p has a variable of a composite type
(struct and union in C), and false otherwise

For example, consider a program with a loop and only variables of integer type;
the selection model would be the feature vector (true, false, false, false).

2.2 Strategies

For our example instantiation of a strategy-selection approach, we use different
strategies from one verification framework. 4 We choose the software-verification
framework CPAchecker as framework to configure our strategies, because it

4 This has the advantage that the performance difference is not caused by the use of
different programming languages, parser frontends, SMT solvers, libraries, but by
the conceptual difference of the strategy (better internal validity). While it would be
technically easy to extend the set of available strategies to other software verifiers,
we already obtain promising results by just using different CPAchecker strategies.

A Manuscripts Strategy Selection for Software Verification Based on Boolean Features

131

Strategy Selection for Software Verification Based on Boolean Features 149

consistently yielded good results in the competition on software verification (SV-
COMP) [4], and we can actually also compare against CPA-Seq, the winning
strategy that CPAchecker used in SV-COMP 2018. 5 Also, CPAchecker is
highly configurable and provides a comprehensive set of algorithms and com-
ponents to choose from (e.g., [6,11]) as well as a simple mechanism for sequen-
tial [35] and parallel composition [31]. The description of our three verification
strategies will refer to the following components: 6

VA-NoCEGAR: value analysis without CEGAR 7 [11]
VA-CEGAR: value analysis with CEGAR [11]
PA: predicate analysis with CEGAR [10]
KI: k -induction with continuously refined invariant generation [5]
BAMR: block-abstraction memoization (BAM) [36] for a composite abstract

domain of predicate analysis and value analysis
BMC: bounded model checking (BMC) [13]

The set of three verification strategies that we use in our strategy selector are
the above mentioned strategy CPA-Seq that won the last competition and two
more strategies that are based on components from the above list:

CPA-Seq is a sequential combination of VA-NoCEGAR, VA-CEGAR, PA, KI, and
BAMR as depicted in Fig. 2a: VA-NoCEGAR runs for up to 90 s, then VA-
CEGAR runs for up to 60 s, then PA for up to 200 s, followed by KI for the
remaining time. Any of the components may terminate early if it detects
that it cannot handle the task. If none of the aforementioned components can
handle the task and the last one (KI) fails because the task requires handling
of recursion, the BAMR component runs, which in our implementation is
the only one that is able to handle recursion but lacks support for handling
pointer aliasing and is therefore only desirable as a fallback for recursive
tasks. If either VA-NoCEGAR or VA-CEGAR find a bug in the verification
task, the error path is checked for feasibility with a PA-based error-path
check; if the check passes, the bug is reported, otherwise, the component
result is ignored and the next component runs.

BMC-BAMR-PA is a sequential combination of BMC, BAMR, and PA as depicted
in Fig. 2b. As above, any of the components may terminate early if it detects
that it cannot handle the task; otherwise there are no individual time lim-
its for components in this strategy: As a result the first component of this
strategy, BMC, runs until it solves the task or fails. If it fails because the
task requires handling of recursion, the BAMR component runs, with the
same reasoning as for CPA-Seq; if the reason why bounded model checking
failed was not recursion or if BAMR also fails to solve the task, PA runs.
This means that BAMR and PA are only used as fallback components if the
BMC component fails due to recursion or some other unsupported feature,
whereas in all other cases, BMC would be the only component that runs.

5 https://sv-comp.sosy-lab.org/2018/
6 KI is, strictly speaking, already a composition, because it uses bounded model check-

ing (BMC) [14] as a component.
7 CEGAR is the abbreviation for counterexample-guided abstraction refinement [16].

Strategy Selection for Software Verification Based on Boolean Features A Manuscripts

132

https://sv-comp.sosy-lab.org/2018/

150 D. Beyer and M. Dangl

1 VA-NoCEGAR
Value Analysis

without CEGAR
Time Limit: 90 s

2 VA-CEGAR
Value Analysis
with CEGAR
Time Limit: 60 s

3 PA
Predicate Analysis

Time Limit: 200 s

4 KI
k -Induction

Time Limit: None

Recursion?

5 BAMR

Block-Abstraction
Memoization

Time Limit: None

P
A

:
E

rr
or

-P
at

h
C

he
ck

unknown

false true

false

false

false

false

false

spurious

spurious

unknown

unknown

unknown

unknown

unknown

true

true

true

true

true

feasible

no yes

(a) CPA-Seq

1 BMC
Bounded Model Checking

Time Limit: None

Recursion?

2 BAMR

Block-Abstraction
Memoization

Time Limit: None

3 PA
Predicate
Analysis

Time Limit: None

unknownfalse true

false

false

false

unknown

unknown

unknown

true

true

true

yes no

(b) BMC-BAMR-PA

1 VA-NoCEGAR
Value Analysis

without CEGAR
Time Limit: 90 s

2 VA-CEGAR
Value Analysis
with CEGAR

Time Limit: None

Recursion?

3 BAMR

Block-Abstraction
Memoization

Time Limit: None

4 KI

k -Induction

Time Limit: None

P
A

:
E

rr
or

-P
at

h
C

he
ck

unknownfalse true

false

false

false

false

spurious

spurious

unknown

unknown

unknown

unknown

true

true

true

true

feasible

yes no

(c) VA-BAMR-KI

Fig. 2. Sequential combinations of strategies

VA-BAMR-KI is a sequential combination of VA-NoCEGAR, VA-CEGAR, BAMR,
and KI, as depicted in Fig. 2c. As above, any of the components may ter-
minate early if it detects that it cannot handle the task; only the first
component, VA-NoCEGAR, has an individual time limit and runs for up to
90 s. Afterwards, VA-CEGAR runs until it exceeds its time limit, fails, or
solves the task. As in CPA-Seq, if either VA-NoCEGAR or VA-CEGAR find a
bug in the verification task, the error path is checked for feasibility with a

A Manuscripts Strategy Selection for Software Verification Based on Boolean Features

133

Strategy Selection for Software Verification Based on Boolean Features 151

PA-based error-path check; if the check passes, the bug is reported, oth-
erwise, the component result is ignored and the next component runs. If
VA-CEGAR fails because the task requires handling of recursion, the BAMR

component runs, with the same reasoning as for CPA-Seq; if the reason why
VA-CEGAR failed was not recursion or if BAMR also fails to solve the task, KI
runs. This means that BAMR and KI are only used as fallback components
if VA-NoCEGAR and VA-CEGAR both fail due to recursion or some other
unsupported feature, whereas in all other cases, either VA-NoCEGAR would
solve the task within at most 90 s, or VA-CEGAR would attempt to solve it
in the remaining time without switching to any further components.

2.3 Strategy Selector

Based on the three strategies and the selection model described above, we define
our strategy selector Model-Based. Our strategy selector chooses the strategy
based on the selection model as follows: It is defined to always choose the strategy
BMC-BAMR-PA if hasLoop is false, because if there is no loop, we do not need
any potentially expensive invariant-generating algorithm. If hasLoop is true, and
either of hasArray, hasFloat, or hasComposite is true, it chooses the strategy VA-
BAMR-KI. If hasLoop is true and all of hasArray, hasFloat, and hasComposite are
false, it chooses the strategy CPA-Seq:

strategy =

⎧
⎨
⎩

BMC-BAMR-PA if ¬hasLoop
VA-BAMR-KI if hasLoop ∧ (hasFloat ∨ hasArray ∨ hasComposite)
CPA-Seq otherwise

While CPA-Seq consists of a wider variety of components that should in theory be
more accurate for these complex features, VA-BAMR-KI, which consists mainly
of value analysis, does not require expensive SMT solving and therefore often
solves tasks where CPA-Seq exceeds the resource limitations.

3 Evaluation

In this section, we present an experimental study to compare the effectiveness
of our approach to strategy selection to various fixed strategies (i.e., constant
strategy selectors) and to serve as a baseline for future comparisons of potentially
more elaborate approaches.

3.1 Evaluation Goals

The goal of our experimental evaluation is to confirm the following claims:

Claim 1: We claim that combining different strategies sequentially is more
effective than each individual strategy by itself. To confirm this claim, we
evaluate the composite strategy CPA-Seq as well as each of its individual com-
ponents, and compare their results. For a successful confirmation, CPA-Seq
must yield a higher score than each of its component strategies. If confirmed,
this claim supports the insight that combinations should be used in practice.

Strategy Selection for Software Verification Based on Boolean Features A Manuscripts

134

152 D. Beyer and M. Dangl

Claim 2: We claim that by classifying a verification task using a small set of fea-
tures and selecting a strategy to solve a task from a small set of verification
strategies based on this classification, we can further improve effectiveness
significantly. To confirm this claim, we evaluate three verification strategies
individually, as well as two strategy selectors that can choose from the three
sequential strategies: One of the strategy selectors will choose randomly, while
the other one will base its choice on the selection model that we extracted
from the task. To successfully show that strategy selection can improve effec-
tiveness, the model-based strategy selector must yield a higher score than
each of the individual strategies that it chooses from, and to show that the
selection model is useful for the strategy selection, the model-based strategy
selector must yield a higher score than the random strategy selector.

The random strategy selector Random that we need for Claim 2 chooses randomly
with uniform distribution from the set of strategies, ignoring the selection model.

3.2 Benchmark Set

The set of verification tasks that we use in our experiments is taken from the bench-
mark collection that is also used in SV-COMP. In particular, we use all benchmark
categories from SV-COMP 2018 8 for which we have identified different strategies.

This means that we exclude the category ConcurrencySafety as well as the cat-
egories for verifying the properties for overflows, memory safety, and termination,
for each of which there is only one known suitable strategy in CPAchecker. The
remaining set of categories consists of 5 687 verification tasks from the subcat-
egory DeviceDriversLinux64 ReachSafety of the category SoftwareSystems and
from the following subcategories of the category ReachSafety : Arrays, Bitvectors,
ControlFlow, ECA, Floats, Heap, Loops, ProductLines, Recursive, and Sequential-
ized. A total of 1 501 of these tasks are known to contain a specification violation,
and we expect the other 4 186 to satisfy their specification.

3.3 Experimental Setup

For our experiments, we executed version 1.7.6-isola18 of CPAchecker on
machines with one 3.4 GHz CPU (Intel Xeon E3-1230 v5) with 8 processing
units and 33 GB of RAM each. The operating system was Ubuntu 16.04 (64 bit),
using Linux 4.4 and OpenJDK 1.8. We limited each verification run to two CPU
cores, a CPU run time of 15 min, and a memory usage of 15 GB. We used the
benchmarking framework BenchExec 9 [12] to conduct our experiments, to
ensure reliable and accurate measuremenfts.

8 https://sv-comp.sosy-lab.org/2018/benchmarks.php
9 https://github.com/sosy-lab/benchexec

A Manuscripts Strategy Selection for Software Verification Based on Boolean Features

135

https://sv-comp.sosy-lab.org/2018/benchmarks.php
https://github.com/sosy-lab/benchexec

Strategy Selection for Software Verification Based on Boolean Features 153

−4 000−3 000−2 000−1 000 0 1 000 2 000 3 000 4 000 5 000 6 000 7 000
1

10

100

1 000

Accumulated score

C
P
U

ti
m
e
(s
)

VA-NoCEGAR VA-CEGAR

KI PA

BAMR BMC

CPA-Seq

Fig. 3. Quantile functions of different individual strategies and one sequential combi-
nation of those strategies (CPA-Seq), as well as one further individual strategy (BMC),
for their accumulated scores showing the CPU time for the successful results, offset to
the left by the total penalty for incorrect results of each corresponding strategy

3.4 Presentation

The full results of our evaluation are available on a supplementary web page. 10

All reported times are rounded to two significant digits. To evaluate the choices of
our strategy selector, we use the community-agreed scoring schema of SV-COMP,
which assigns quality values to each verification result, i.e., we calculate a score
that quantifies the quality of the results for a verification strategy. For every correct
safety proof, 2 points are assigned and for every real bug found, 1 point is assigned.
A score of 32 points is subtracted for every wrong proof of safety (false negative)
and 16 points are subtracted for every wrong alarm (false positive) reported by the
strategy, This scoring follows a community consensus [4] on the difficulty of veri-
fication versus falsification and the importance of correct results, and is designed
to value safety higher than finding bugs, and to punish wrong answers severely.

10 https://www.sosy-lab.org/research/strategy-selection/

Strategy Selection for Software Verification Based on Boolean Features A Manuscripts

136

https://www.sosy-lab.org/research/strategy-selection/

154 D. Beyer and M. Dangl

Table 1. Results for all 5 687 verification tasks (1 501 contain a bug, 4 186 are correct),
for all basic strategies

Approach VA-NoCEGAR VA-CEGAR PA KI BAMR BMC

Score 3 966 5 397 4 881 5 340 1 335 2 484

Correct results 2 365 3 046 2 840 3 053 2 575 1 757

Correct proofs 1 601 2 367 2 073 2 319 2 104 759

Correct alarms 764 679 767 734 471 998

Wrong proofs 0 0 0 0 10 0

Wrong alarms 0 1 2 2 189 2

Timeouts 2 376 1 554 2 497 2 236 2 167 3 379

Out of memory 1 1 14 243 128 381

Other inconclusive 945 1 085 334 153 618 168

Times for correct results

Total CPU Time (h) 30 54 39 68 33 28

Avg. CPU Time (s) 45 64 49 80 46 57

Total Wall Time (h) 24 44 33 43 29 25

Avg. Wall Time (s) 36 52 42 51 40 51

Table 2. Results for all 5 687 verification tasks (1 501 contain a bug, 4 186 are correct),
for all combinations of basic strategies: simple sequential combinations, random choice
between the sequential combinations, model-based strategy selection, and an imaginary
oracle that always selects the best of the three strategies for any given task.

Approach Sequential Combinations Random Model-Based Oracle

CPA-Seq BMC-BAMR-PA VA-BAMR-KI

Score 6 399 2 612 6 442 5 174 6 790 7 036

% of Oracle Score 91 37 92 74 97 100

Correct results 3 740 1 840 3 740 3 122 3 932 4 111

Correct proofs 2 691 804 2 734 2 084 2 922 2 957

Correct alarms 1 049 1 036 1 006 1 038 1 010 1 154

Wrong proofs 0 0 0 0 0 0

Wrong alarms 2 2 2 2 4 2

Timeouts 1 715 3 385 1 879 2 317 1 486 1 347

Out of memory 194 406 26 202 224 185

Other inconclusive 36 54 40 44 41 42

Times for correct results

Total CPU Time (h) 79 28 87 66 99 96

Avg. CPU Time (s) 76 54 83 76 90 84

Total Wall Time (h) 65 25 70 55 80 79

Avg. Wall Time (s) 63 48 67 63 73 69

A Manuscripts Strategy Selection for Software Verification Based on Boolean Features

137

Strategy Selection for Software Verification Based on Boolean Features 155

3.5 Claim 1: Combining Strategies is Effective

In our first experiment we confirm the common knowledge that a sequential com-
bination of several basic strategies can be more effective than either of its com-
ponents. For this experiment, we compare the verification results of the winning
strategy of the 7th Intl. Competition on Software Verification “CPA-Seq”, to the
results obtained by the basic strategies that it is composed of. Figure 3 shows the
quantile functions for these strategies and Table 1 displays the detailed verification
results and times for all basic strategies, whereas Table 2 contains the correspond-
ing data for CPA-Seq and other combinations of strategies. We observe that CPA-
Seq clearly outperforms the other strategies used in this experiment, even though
it is only a sequential combination of the other strategies and contains no added
features. We make the same observation for VA-BAMR-KI, which is better than
each of VA-NoCEGAR, VA-CEGAR, BAMR, and KI. While BMC-BAMR-PA is better
than its main component BMC and its fallback component for recursion, BAMR, it
has a lower score than its other fallback component PA. The large amount of incor-
rect results produced by BAMR and the resulting low score is caused by the lack
of support for pointer-alias handling of this component mentioned in the descrip-
tion of strategies in Sect. 2.2, but while it is obviously unsuitable as a standalone
strategy, it does add value as a fallback solution for CPA-Seq.

3.6 Claim 2: Strategy Selection is Effective

In our second experiment, we show that (1) using a strategy selector can be more
effective than always choosing the same strategy. This is shown by the model-
based strategy selector Model-Based, which achieves a higher score than each
of the three strategies that it chooses from (compare column Model-Based with
the columns CPA-Seq, BMC-BAMR-PA, and VA-BAMR-KI). Even the strategy
selector Random performs better than one of the strategies that it chooses from
(compare column BMC-BAMR-PA with column Random).

We also show that (2) using our proposed selection model (consisting of a
few simple Boolean features) is effective, because the strategy selector based on
that model is more effective than a random choice between the three strategies,
and also, for all three available choices, more effective than any constant strategy
selector (always choosing the same strategy).

As we can see in Fig. 4, this model-based strategy selection pays off and yields
a significantly higher score than each of its competitors. Table 2 shows that while
this model-based strategy selection still offers room for improvement because
it causes two more wrong alarms than the next-best strategy, this drawback
is outweighed by the large amount of correct proofs it produces. This shows
that even with a very simple set of Boolean features and a very small set of
choices, we can already obtain very promising results. Due to the nature of this
approach, adding more features to improve the granularity of the classification
and adding more strategy choices to take advantage of the ability to complement
this fine-grained classification with a better strategy for each class of tasks, can
further improve upon our results. Table 2 also contains the column Oracle that

Strategy Selection for Software Verification Based on Boolean Features A Manuscripts

138

156 D. Beyer and M. Dangl

0 1 000 2 000 3 000 4 000 5 000 6 000 7 000
1

10

100

1 000

Accumulated score

C
PU

tim
e

(s
)

BMC-BAMR-PA VA-BAMR-KI

CPA-Seq Model-Based

Random Oracle

Fig. 4. Quantile functions of three different constant strategy selectors, one model-
based strategy selector, one random strategy selector, and one selector based on a
hypothetical all-knowing oracle, for their accumulated scores showing the CPU time
for the successful results, offset to the left by the total penalty for incorrect results of
each corresponding strategy

shows the best results obtainable by an (imaginary) ideal strategy selector based
on an oracle that is able to determine the best of the three strategies CPA-Seq,
BMC-BAMR-PA, and VA-BAMR-KI for each task, which achieves only 246 more
points than our model-based selector. This means that our model-based selector
reaches 97 % of the maximum score achievable by selecting between CPA-Seq,
BMC-BAMR-PA, and VA-BAMR-KI on tasks of our benchmark set.

3.7 Threats to Validity

External Validity. Approaches for strategy selection that are not based on unsu-
pervised learning are dependent on the strategies in the image range that the
selector maps to. Therefore, our concrete instantiation of the selector is limited to
the chosen strategies and does not consider other strategies of CPAchecker or
other software verifiers.

A Manuscripts Strategy Selection for Software Verification Based on Boolean Features

139

Strategy Selection for Software Verification Based on Boolean Features 157

We only showed that our selection model is useful for the given benchmark set.
The benchmark set is taken from the largest and most diverse set of verification
tasks that is publicly available, but the selection model might not sufficiently well
distinguish verification tasks that are different from those in the benchmark set.

Note also that we considered only one verification property in the selection
of the benchmark set and in the strategy selector. For benchmark sets with more
than one verification property, it may be beneficial to define a strategy selector
that considers the verification property as an additional feature to distinguish
between tasks.

While the scoring schema from SV-COMP, which we used to model quality,
is community agreed and quite stable in its design, a different scoring schema
might favor a different strategy-selection function.

Internal Validity. While we used one of the best available benchmarking frame-
works, namely BenchExec 11 [12], which is used by several international com-
petitions, to conduct our experiments and ensure reliable and accurate measure-
ments, there still might be measurement errors.

4 Conclusion

This paper explains an approach for strategy selection that is based on a sim-
ple selection model —a small set of Boolean features— that is easy to extract
statically from the program source code. As strategies to choose from we use the
winner of the last competition on software verification (SV-COMP’18) and two
more strategies that we constructed from the same verification framework. We
evaluated our approach to strategy selection on a benchmark set consisting of 5
687 verification tasks and show that our strategy selector outperforms the win-
ner of the last competition. We hope that this result can be taken as a baseline
for comparison of more sophisticated approaches to strategy selection.

References

1. Apel, S., Beyer, D., Friedberger, K., Raimondi, F., Rhein, A.v.: Domain types:
Abstract-domain selection based on variable usage. In: Proc. HVC. LNCS,
vol. 8244, pp. 262–278. Springer (2013)

2. Ball, T., Bounimova, E., Kumar, R., Levin, V.: SLAM2: Static driver verification
with under 4% false alarms. In: Proc. FMCAD, pp. 35–42. IEEE (2010)

3. Beyer, D.: Second competition on software verification (Summary of SV-COMP
2013). In: Proc. TACAS. LNCS, vol. 7795, pp. 594–609. Springer (2013)

4. Beyer, D.: Software verification with validation of results (Report on SV-COMP
2017). In: Proc. TACAS. LNCS, vol. 10206, pp. 331–349. Springer (2017)

5. Beyer, D., Dangl, M., Wendler, P.: Boosting k-induction with continuously-refined
invariants. In: Proc. CAV. LNCS, vol. 9206, pp. 622–640. Springer (2015)

6. Beyer, D., Dangl, M., Wendler, P.: A unifying view on SMT-based software verifi-
cation. J. Autom. Reasoning 60(3), 299–335 (2018)

11 https://github.com/sosy-lab/benchexec

Strategy Selection for Software Verification Based on Boolean Features A Manuscripts

140

http://www.sosy-lab.org/~dbeyer/Publications/2013-HVC.Domain_Types_Abstract-Domain_Selection_Based_on_Variable_Usage.pdf
http://www.sosy-lab.org/~dbeyer/Publications/2013-HVC.Domain_Types_Abstract-Domain_Selection_Based_on_Variable_Usage.pdf
http://www.sosy-lab.org/~dbeyer/Publications/2013-HVC.Domain_Types_Abstract-Domain_Selection_Based_on_Variable_Usage.pdf
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=5770931
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=5770931
http://dx.doi.org/10.1007/978-3-642-36742-7_43
http://dx.doi.org/10.1007/978-3-642-36742-7_43
http://dx.doi.org/10.1007/978-3-662-54580-5_20
http://dx.doi.org/10.1007/978-3-662-54580-5_20
http://dx.doi.org/10.1007/978-3-319-21690-4_42
http://dx.doi.org/10.1007/978-3-319-21690-4_42
http://dx.doi.org/10.1007/s10817-017-9432-6
http://dx.doi.org/10.1007/s10817-017-9432-6
https://github.com/sosy-lab/benchexec

158 D. Beyer and M. Dangl

7. Beyer, D., Henzinger, T.A., Keremoglu, M.E., Wendler, P.: Conditional model
checking: A technique to pass information between verifiers. In: Proc. FSE,
pp. 57:1–57:11. ACM (2012)

8. Beyer, D., Henzinger, T.A., Majumdar, R., Rybalchenko, A.: Path invariants.
In: Proc. PLDI, pp. 300–309. ACM (2007)

9. Beyer, D., Keremoglu, M.E.: CPAchecker: A tool for configurable software
verification. In: Proc. CAV. LNCS, vol. 6806, pp. 184–190. Springer (2011)

10. Beyer, D., Keremoglu, M.E., Wendler, P.: Predicate abstraction with adjustable-
block encoding. In: Proc. FMCAD, pp. 189–197. FMCAD (2010)

11. Beyer, D., Löwe, S.: Explicit-state software model checking based on CEGAR
and interpolation. In: Proc. FASE. LNCS, vol. 7793, pp. 146–162. Springer (2013)

12. Beyer, D., Löwe, S., Wendler, P.: Reliable benchmarking: Requirements and
solutions. Int. J. Softw. Tools Technol. Transfer (2017)

13. Biere, A., Cimatti, A., Clarke, E.M., Strichman, O., Zhu, Y.: Bounded model
checking. Adv. Comput. 58, 117–148 (2003)

14. Biere, A., Cimatti, A., Clarke, E.M., Zhu, Y.: Symbolic model checking without
BDDs. In: Proc. TACAS. LNCS, vol. 1579, pp. 193–207. Springer (1999)

15. Bishop, C., Johnson, C.G.: Assessing roles of variables by program analysis. In:
Proc. CSEIT, pp. 131–136. TUCS (2005)

16. Clarke, E.M., Grumberg, O., Jha, S., Lu, Y., Veith, H.: Counterexample-guided
abstraction refinement for symbolic model checking. J. ACM 50(5), 752–794 (2003)

17. Clarke, E.M., Kröning, D., Lerda, F.: A tool for checking ANSI-C programs. In:
Proc. TACAS. LNCS, vol. 2988, pp. 168–176. Springer (2004)

18. Czech, M., Hüllermeier, E., Jakobs, M., Wehrheim, H.: Predicting rankings of
software verification tools. In: Proc. SWAN, pp. 23–26. ACM (2017)

19. Demyanova, Y., Pani, T., Veith, H., Zuleger, F.: Empirical software metrics for
benchmarking of verification tools. In: Proc. CAV. LNCS, vol. 9206, pp. 561–579.
Springer (2015)

20. Demyanova, Y., Pani, T., Veith, H., Zuleger, F.: Empirical software metrics for
benchmarking of verification tools. Form. Methods Syst. Des. 50(2-3), 289–316
(2017)

21. Demyanova, Y., Rümmer, P., Zuleger, F.: Systematic predicate abstraction using
variable roles. In: Proc. NFM. LNCS, vol. 10227, pp. 265–281 (2017)

22. Demyanova, Y., Veith, H., Zuleger, F.: On the concept of variable roles and its
use in software analysis. In: Proc. FMCAD, pp. 226–230. IEEE (2013)

23. Gurfinkel, A., Albarghouthi, A., Chaki, S., Li, Y., Chechik, M.: Ufo: Verification
with interpolants and abstract interpretation (competition contribution). In: Proc.
TACAS. LNCS, vol. 7795, pp. 637–640. Springer (2013)

24. Huberman, B.A., Lukose, R.M., Hogg, T.: An economics approach to hard
computational problems. Science 275(7), 51–54 (1997)

25. Lal, A., Qadeer, S., Lahiri, S.K.: A solver for reachability modulo theories.
In: Proc. CAV. LNCS, vol. 7358, pp. 427–443. Springer (2012)

26. Müller, P., Peringer, P., Vojnar, T.: Predator hunting party (competition contri-
bution). In: Proc. TACAS. LNCS, vol. 9035, pp. 443–446. Springer (2015)

27. Nori, A.V., Rajamani, S.K., Tetali, S., Thakur, A.V.: The yogiproject: Software
property checking via static analysis and testing. In: Proc. TACAS. LNCS,
vol. 5505, pp. 178–181. Springer (2009)

A Manuscripts Strategy Selection for Software Verification Based on Boolean Features

141

http://dx.doi.org/10.1145/2393596.2393664
http://dx.doi.org/10.1145/2393596.2393664
http://dx.doi.org/10.1145/2393596.2393664
http://www.sosy-lab.org/~dbeyer/Publications/2007-PLDI.Path_Invariants.pdf
http://www.sosy-lab.org/~dbeyer/Publications/2007-PLDI.Path_Invariants.pdf
http://dx.doi.org/10.1007/978-3-642-22110-1_16
http://dx.doi.org/10.1007/978-3-642-22110-1_16
http://www.sosy-lab.org/~dbeyer/Publications/2010-FMCAD.Predicate_Abstraction_with_Adjustable-Block_Encoding.pdf
http://www.sosy-lab.org/~dbeyer/Publications/2010-FMCAD.Predicate_Abstraction_with_Adjustable-Block_Encoding.pdf
http://www.sosy-lab.org/~dbeyer/Publications/2013-FASE.Explicit-State_Software_Model_Checking_Based_on_CEGAR_and_Interpolation.pdf
http://www.sosy-lab.org/~dbeyer/Publications/2013-FASE.Explicit-State_Software_Model_Checking_Based_on_CEGAR_and_Interpolation.pdf
http://dx.doi.org/10.1007/s10009-017-0469-y
http://dx.doi.org/10.1007/s10009-017-0469-y
http://dx.doi.org/10.1016/S0065-2458(03)58003-2
http://dx.doi.org/10.1016/S0065-2458(03)58003-2
http://dx.doi.org/10.1007/3-540-49059-0_14
http://dx.doi.org/10.1007/3-540-49059-0_14
http://dx.doi.org/10.1145/876638.876643
http://dx.doi.org/10.1145/876638.876643
http://dx.doi.org/10.1007/978-3-540-24730-2_15
http://dx.doi.org/10.1007/978-3-540-24730-2_15
http://dx.doi.org/10.1145/3121257.3121262
http://dx.doi.org/10.1145/3121257.3121262
http://dx.doi.org/10.1007/978-3-319-21690-4_39
http://dx.doi.org/10.1007/978-3-319-21690-4_39
http://dx.doi.org/10.1007/978-3-319-21690-4_39
http://dx.doi.org/10.1007/s10703-016-0264-5
http://dx.doi.org/10.1007/s10703-016-0264-5
http://dx.doi.org/10.1007/s10703-016-0264-5
http://dx.doi.org/10.1007/978-3-319-57288-8_18
http://dx.doi.org/10.1007/978-3-319-57288-8_18
http://ieeexplore.ieee.org/xpl/freeabs_all.jsp?arnumber=6679414
http://ieeexplore.ieee.org/xpl/freeabs_all.jsp?arnumber=6679414
http://dx.doi.org/10.1007/978-3-642-36742-7_52
http://dx.doi.org/10.1007/978-3-642-36742-7_52
http://dx.doi.org/10.1007/978-3-642-36742-7_52
http://www.hpl.hp.com/research/idl/papers/EconomicsApproach/EconomicsApproach.pdf
http://www.hpl.hp.com/research/idl/papers/EconomicsApproach/EconomicsApproach.pdf
http://dx.doi.org/10.1007/978-3-642-31424-7_32
http://dx.doi.org/10.1007/978-3-642-31424-7_32
http://dx.doi.org/10.1007/978-3-642-00768-2_17
http://dx.doi.org/10.1007/978-3-642-00768-2_17
http://dx.doi.org/10.1007/978-3-642-00768-2_17

Strategy Selection for Software Verification Based on Boolean Features 159

28. Rice, J.R.: The algorithm selection problem. Adv. Comput. 15, 65–118 (1976)
29. Sajaniemi, J.: An empirical analysis of roles of variables in novice-level procedural

programs. In: Proc. HCC, pp. 37–39. IEEE (2002)
30. Sherman, E., Dwyer, M.B.: Structurally defined conditional data-flow static

analysis. In: Beyer, D., Huisman, M. (eds.) Proc. TACAS, Part II. LNCS,
vol. 10806, pp. 249–265. Springer (2018)

31. Stieglmaier, T.: Augmenting predicate analysis with auxiliary invariants. Master’s
Thesis, University of Passau, Software Systems Lab (2016)

32. Tulsian, V., Kanade, A., Kumar, R., Lal, A., Nori, A.V.: MUX: Algorithm
selection for software model checkers. In: Proc. MSR. ACM (2014)

33. van Deursen, A., Moonen, L.: Type inference for COBOL systems. In: Proc.
WCRE, pp. 220–230. IEEE (1998)

34. van Deursen, A., Moonen, L.: Understanding COBOL systems using inferred types.
In: Proc. IWPC, pp. 74–81. IEEE (1999)

35. Wendler, P.: CPAchecker with sequential combination of explicit-state analysis
and predicate analysis (competition contribution). In: Proc. TACAS. LNCS,
vol. 7795, pp. 613–615. Springer (2013)

36. Wonisch, D., Wehrheim, H.: Predicate analysis with block-abstraction memoization.
In: Proc. ICFEM. LNCS, vol. 7635, pp. 332–347. Springer (2012)

Strategy Selection for Software Verification Based on Boolean Features A Manuscripts

142

http://dx.doi.org/10.1016/S0065-2458(08)60520-3
http://dx.doi.org/10.1016/S0065-2458(08)60520-3
http://dx.doi.org/10.1109/HCC.2002.1046340
http://dx.doi.org/10.1109/HCC.2002.1046340
http://dx.doi.org/10.1007/978-3-319-89963-3_15
http://dx.doi.org/10.1007/978-3-319-89963-3_15
http://dx.doi.org/10.1007/978-3-319-89963-3_15
https://www.sosy-lab.org/research/msc/stieglmaier
https://www.sosy-lab.org/research/msc/stieglmaier
https://www.microsoft.com/en-us/research/wp-content/uploads/2016/02/msr14.pdf
https://www.microsoft.com/en-us/research/wp-content/uploads/2016/02/msr14.pdf
http://dx.doi.org/10.1109/WPC.1999.777746
http://dx.doi.org/10.1109/WPC.1999.777746
http://dx.doi.org/10.1007/978-3-642-36742-7_45
http://dx.doi.org/10.1007/978-3-642-36742-7_45
http://dx.doi.org/10.1007/978-3-642-36742-7_45
http://dx.doi.org/10.1007/978-3-642-34281-3_24
http://dx.doi.org/10.1007/978-3-642-34281-3_24

57

Verification Witnesses

DIRK BEYER and MATTHIAS DANGL, LMU Munich
DANIEL DIETSCH and MATTHIAS HEIZMANN, University of Freiburg
THOMAS LEMBERGER, LMU Munich
MICHAEL TAUTSCHNIG, Queen Mary University of London

Over the last years, witness-based validation of verification results has become an established practice in
software verification: An independent validator re-establishes verification results of a software verifier using
verification witnesses, which are stored in a standardized exchange format. In addition to validation, such ex-
changable information about proofs and alarms found by a verifier can be shared across verification tools, and
users can apply independent third-party tools to visualize and explore witnesses to help them comprehend
the causes of bugs or the reasons why a given program is correct. To achieve the goal of making verification
results more accessible to engineers, it is necessary to consider witnesses as first-class exchangeable objects,
stored independently from the source code and checked independently from the verifier that produced them,
respecting the important principle of separation of concerns. We present the conceptual principles of veri-
fication witnesses, give a description of how to use them, provide a technical specification of the exchange
format for witnesses, and perform an extensive experimental study on the application of witness-based result
validation, using the validators CPAchecker, UAutomizer, CPA-witness2test, and FShell-witness2test.
CCS Concepts: • Software and its engineering→ Formal language definitions; Formal methods; For-
mal software verification; • Theory of computation→ Automated reasoning; Program reasoning;
Additional Key Words and Phrases: Violation witness, correctness witness, witness validation, software veri-
fication, program analysis, model checking, data-flow analysis, formal methods, certifying algorithm
ACM Reference format:
Dirk Beyer,Matthias Dangl, Daniel Dietsch,Matthias Heizmann, Thomas Lemberger, andMichael Tautschnig.
2022. Verification Witnesses. ACM Trans. Softw. Eng. Methodol. 31, 4, Article 57 (September 2022), 69 pages.
https://doi.org/10.1145/3477579

1 INTRODUCTION
The omnipresent dependency on software in society and industry makes it necessary to ensure a
reliable and correct functioning of the software. This trend will continue and become even more
important in the future. During the last decade, various conceptual breakthroughs in verifica-
tion research were achieved, and, as showcased by the annual TACAS International Competition

This article builds on concepts and techniques that were introduced in previous articles: Proc. FSE 2015 [25],
Proc. FSE 2016 [23], and Proc. TAP 2018 [26].
This work was funded in part by the Deutsche Forschungsgesellschaft (DFG) — 418257054 (Coop).
Authors’ addresses: D. Beyer, M. Dangl, and T. Lemberger, LMU Munich, Oettingenstraße 67, Munich, 80538, Bay-
ern, Germany; emails: beyer@sosy.ifi.lmu.de, dangl@sosy.ifi.lmu.de, lemberger@sosy.ifi.lmu.de; D. Dietsch and M.
Heizmann, University of Freiburg, Georges-Köhler-Allee 52, Freiburg, 79110, Baden-Württemberg, Germany; emails:
dietsch@informatik.uni-freiburg.de, heizmann@informatik.uni-freiburg.de; M. Tautschnig, Queen Mary University of Lon-
don, Mile End Road, London, E1 4NS, United Kingdom; email: michael.tautschnig@qmul.ac.uk.

This work is licensed under a Creative Commons Attribution International 4.0 License.

© 2022 Copyright held by the owner/author(s).
1049-331X/2022/09-ART57
https://doi.org/10.1145/3477579

ACM Transactions on Software Engineering and Methodology, Vol. 31, No. 4, Article 57. Pub. date: September 2022.

Corrected Version of Record. V.1.1. Published November 23, 2022.

A Manuscripts Verification Witnesses

143

https://www.acm.org/publications/policies/artifact-review-and-badging-current#available
https://doi.org/10.1145/3477579
http://gepris.dfg.de/gepris/projekt/418257054
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1145/3477579
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3477579&domain=pdf&date_stamp=2022-09-08

57:2 D. Beyer, M. Dangl, D. Dietsch, M. Heizmann, T. Lemberger, and M. Tautschnig

on Software Verification (SV-COMP 2012–2020)1 [9–13], many successful software verifiers are
already available.

Despite the success stories of software verification in academia and industry [5, 55, 63, 100],
the wide adoption of verification technology in software-development industry is still slow. There
are several frequently mentioned reasons for this disconnect between engineering theory and prac-
tice [2]. One concern is connectedwithwrong results: Sometimes the verification result contradicts
the expectation of the developer, either because a bug in the verification tool causes a genuinely
incorrect result, or because of difficult-to-understand technicalities (e.g., caused by an inaccurate
or vague specification) dismissed as unrealistic by the developer. In both cases, the developers lose
trust in the verification results and consider the effort spent on investigating these results too ex-
pensive. Another concern is that even if the verification result matches the expectation, no value
is added to the software-engineering process if the developer does not understand the verification
result, or the result is not helpful for improving the software system.

Moreover, it is unlikely that future software verifiers are going to be more trustworthy, thereby
resolving the issue of lack of trust in verification results. Software-verification systems constitute
complex software, often with many known flaws and presumably many more unknown flaws. Fu-
ture, more efficient and effective verification systems with more complex features can be expected
to exacerbate this problem. Consider, for example, that scientists are exploring the application of
machine learning to formal verification, with the goal to develop new verification tools by automat-
ically learning rules for formally analyzing systems from large datasets [48]. While experiences in
other fields, such as image recognition, suggest that machine learning may be a promising solu-
tion for tasks that were previously considered to be too complex for machines to solve, they also
reveal weaknesses: The decision process of deep neural networks is often incomprehensible, and
experiments have shown that they sometimes exhibit a significant lack of robustness [93]. If ap-
plied to formal verification, these techniques may therefore even amplify the previously outlined
difficulties of understanding and trusting verification results.

Thus, it is imperative to require verification results to conform to an established, machine-
readable, and exchangeable standard format that can be used to store, compare, explain, visual-
ize, and validate verification results. For this purpose, we present the community-agreed stan-
dard exchange format for verification witnesses that was designed with these goals in mind, has
been implemented in over 30 different software verifiers [11, 12], and has been used for visualiza-
tion [22, 114] and validation [23, 25] of verification results. Using a validation step after verification
enables a whole new area of verification research, enabling approximate verification algorithms
(such as based on neural networks, or run on approximate hardware) because the imprecision is not
problematic if all verification results are validated in a second phase of the verification work flow.

Violation witnesses [25] are verification witnesses that document bugs detected by a verifier
and address the problem of false alarms that imprecise verification tools sometimes produce: For-
merly, a verification tool reported found bugs as error traces in a tool-specific manner; those bug
reports were often difficult to read and understand, and therefore hardly usable. As a consequence,
determining whether the reported bug was a false alarm that could be ignored by the developer or
described as an actual programming error that needed to be fixed was a tedious manual process.
Exchangeable violation witnesses resolve this issue, because several validators have been devel-
oped to use these witnesses to validate verification results [25, 26, 44, 122] and the general syntax
of the exchange format allows new tools for presentation to be developed and used [22, 114].

Correctness witnesses [23] are verification witnesses that describe proofs found by a verifier and
address the problem that proofs are sometimes incomprehensible or, for unsound verification tools,

1http://sv-comp.sosy-lab.org/.

ACM Transactions on Software Engineering and Methodology, Vol. 31, No. 4, Article 57. Pub. date: September 2022.

Verification Witnesses A Manuscripts

144

http://sv-comp.sosy-lab.org/

Verification Witnesses 57:3

even wrong. Formerly, many verification tools did not report any auxiliary information about their
proofs, while others output only algorithm- and implementation-specific proof data, such as SMT
queries, that are a tool-specific aid for checking the consistency of some of the intermediate steps
that lead to the reported result. But because the verifiers usually provided no means of validating
the translation of the original verification task into the tool-specific model, the reports could not
serve as a certificate for the correctness of the verification result. Exchangeable proof witnesses
resolve this issue, because several validators have been developed to use these witnesses to re-
establish the proof of correctness [23, 44].

Verification witnesses should be considered as first-class verification objects that have much
more value than the plain verification result true or false. A verification result should only be
trusted if a reason for the result is provided and the result can be re-established with the additional
information. Therefore, we require a verifier to augment a verification result with an exchangeable
and machine-readable verification witness, such that both claims of correctness and bug alarms
may be validated. With this technique, a trusted validator can establish trust in the verification
results produced by an untrusted verifier, and even in the absence of a trusted validator a user’s
confidence in a verification result can be increased by applying different, independent validators
to a verification witness. The process of witness validation is fully automatic. Witnesses can also
be read by humans (perhaps using an inspection or visualization tool [22, 114]).

One example of the practical application ofwitness validation is the annual TACAS International
Competition on Software Verification (SV-COMP), which for the last few years (since 2015 [10]) has
used witness-based result validation as an integral component of the scoring process: Full points
are only awarded for a verification result that is accompanied by a verification witness that helped
an independent validator to confirm (re-establish) the verification result. This rule may be one of
the incentives that caused tool developers to improve the precision and soundness of their compe-
tition submissions over the last years, even though the direct score penalties for incorrect results
have not been increased: In 2016, ten out of 13 participating verifiers in the category “Overall”
reported false alarms for more than ten tasks that were known to be safe, one submission even
claimed safety for 962 out of 2,348 verification tasks that were known to contain a bug, another
submission claimed safety for 872 tasks known to contain a bug, and a third submission claimed
safety for 336 tasks known to contain a bug [11]. In 2018, the second year after the introduction
of correctness witnesses, on the other hand, only four out of 14 participating verifiers in the cat-
egory “Overall” reported bugs for more than ten tasks known to be safe, and the highest amount
of incorrect claims of safety reported by any of these submissions was 21.

This article discusses the conceptual principles of verification witnesses, presents four differ-
ent violation-witness-based result validators and two correctness-witness-based result validators,
and provides a technical specification of the common format for exchangeable witnesses. On the
syntactic level, we use XML, more specifically GraphML [51], as a language to represent verifica-
tion witnesses. On the semantic level, we use the standard concept of (non-deterministic) finite
automata to represent verification witnesses. To demonstrate the practical applicability of verifi-
cation witnesses for witness-based result validation, we perform an extensive experimental study
using the validators CPAchecker, UAutomizer, CPA-witness2test, and FShell-witness2test. As such, this
article expands on the authors’ work on verification witnesses previously published in three con-
ference articles [23, 25, 26] by (1) unifying the different aspects of verification witnesses that were
presented in isolation in the conference articles, (2) adding an in-depth discussion of the conceptual
background, (3) formally defining the involved concepts in more detail, (4) illustrating all presented
approaches using a common running example, and (5) providing a significantly extended thorough
experimental evaluation using updated implementations and benchmarks.

ACM Transactions on Software Engineering and Methodology, Vol. 31, No. 4, Article 57. Pub. date: September 2022.

A Manuscripts Verification Witnesses

145

57:4 D. Beyer, M. Dangl, D. Dietsch, M. Heizmann, T. Lemberger, and M. Tautschnig

2 BACKGROUND
In this section, we introduce the basic concepts on which verification witnesses are based.

2.1 Program Representation Using Control-flow Automata
We restrict our presentation to a simple imperative programming language that contains only as-
signment, assumption declaration, function-call, and function-return operations, andwhere all pro-
gram variables range over integers (Z). We implemented our concepts in the tools CPAchecker [38],
CPA-witness2test [26], FShell-witness2test [26], and UAutomizer [83, 84], all of which support C pro-
grams. We use control-flow automata (CFA) to represent programs [30]. A control-flow automa-
ton (L, linit ,G) consists of a finite set L of program locations that model the program counter (to re-
late the CFA to the source code, we denote the program location before the operation on line i as li),
the initial program location linit (program entry), and a setG ⊆ L × Ops × L of control-flow edges,
each of which models an operation op of the set Ops of program operations that is executed during
the flow of control from one program location to another. All variables that occur in an opera-
tion op ∈ Ops are contained in the set X of program variables. A variable assignment v : X → Z
is a mapping that assigns to each variable from X a value from Z.

A sequence 〈(l0, op1, l1), . . .〉 of consecutive edges fromG is called program path if it starts at the
initial location, i.e., l0 = linit . A test vector [19] specifies the input values to a program. A program
path is called feasible, if a test vector exists for which this program path is executed, otherwise
the program path is called infeasible. A concrete program path is a feasible program path with
variable assignments from a test vector attached to the locations along the path. An error path is
a program path that violates a given specification.2

Example 1 (Program and Control-flow Automaton). Figure 1 shows the source code (Figure 1(a))
of an exampleC program that computes the sum of a number of input values and the correspond-
ing CFA (Figure 1(b)). Location linit = l3 is the initial location of this program. The program
contains four variables: n is the number of values to sum up, v is used to hold input values for
the computation, s is the aggregation variable for the sum, and i is a loop counter. The type of
the variables n and v is unsigned char, the type of the variables s and i is unsigned int, and
for all our examples we will assume a data-type model where the type unsigned char has a bit
width of 8, such that the values of this type range between 0 and 255, and the type unsigned int

has a bit width of 32, such that the values of this type range between 0 and 4294967295. The
CFA starts with the function entry in line 3, modeled by the edge from l3 to l4. The next
CFA edge (l4 to l5) shows that the number of values to sum up, n, is initialized via the input func-
tion __VERIFIER_nondet_char(void) in line 4. In line 5, the program checks the value of n and
immediately terminates in line 6 if it is 0, which indicates that there are no values to be summed
up. This check is modeled in the CFA by the branching at l5, which goes from l5 over l6 to l25 in the
early-return case and from l5 to l8 in the other case. In lines 8–10, the remaining variables v, s, and i

are all initialized to 0, which corresponds to the CFA edges from l8 to l11. The loop that computes
the sum of input values read via __VERIFIER_nondet_char(void) in lines 11–15 is modeled by
the CFA nodes l11, l12, l13, and l14, with l11 being the loop head. After the loop, there are two
assertions: In line 16, the program checks that the sum is not less than the last value added to
it, which seems like a sensible requirement given that all added values are non-negative. If the
check fails, the program calls the function __VERIFIER_error(void) in line 17 to indicate an error
and terminates in line 18. This check is modeled in the CFA by the branching at l16, which goes
from l16 over l17 and l18 to l25 in the failing case and from l16 to l20 in the other case. In line 20, the

2Details of how we represent and use specifications can be found in Section 3.2.1.

ACM Transactions on Software Engineering and Methodology, Vol. 31, No. 4, Article 57. Pub. date: September 2022.

Verification Witnesses A Manuscripts

146

Verification Witnesses 57:5

Fig. 1. Example C program linear-inequality-inv-a.c as source code (a) and as a CFA (b).

program checks that the sum is not greater than 65,025, which is the product of the maximum
value of n and therefore the maximum number of values that are added up, 255, and the maximum
value of each value being added up, which is also 255. If the check fails, the program calls the
function __VERIFIER_error(void) in line 21 to indicate an error and terminates in line 22. This

ACM Transactions on Software Engineering and Methodology, Vol. 31, No. 4, Article 57. Pub. date: September 2022.

A Manuscripts Verification Witnesses

147

https://github.com/sosy-lab/sv-benchmarks/blob/de6e3ae416/c/loop-invariants/linear-inequality-inv-a.c

57:6 D. Beyer, M. Dangl, D. Dietsch, M. Heizmann, T. Lemberger, and M. Tautschnig

check is modeled in the CFA by the branching at l20, which goes from l20 over l21 and l22 to l25 in
the failing case and from l20 to l24 in the other case, where the program terminates with return
code 0 (success).

2.2 Configurable Program Analysis
The concept of configurable program analysis (CPA) [30, 34] allows the separation of the def-
inition of the abstract domain that is used for a program analysis from the analysis algorithm.
A CPA D = (D,�,merge, stop) specifies an abstract domain D, a transfer relation�, a merge op-
erator merge, and a stop operator stop, all of which configure the CPA algorithm and are explained
in the following. The CPA algorithm can be used with any CPA and is an algorithm for reachability
analysis. It is possible to combine a set of CPAs into a single, composite, CPA (see Section 2.2.2).

The abstract domain D = (C,E, [[·]]) is composed of a set C of concrete states where each
concrete state c ∈ C is a total function of type X → Z (i.e., a concrete state is a mapping from
program variables to integers), a semilattice E = (E,�) over a set E of abstract states (i.e., abstract-
domain) and a partial order � (the join � (least upper bound) of all elements and the join 	 of
two elements are unique, but a unique element ⊥ (greatest lower bound) is not required), and
a concretization function [[·]] that maps each abstract state to the set of concrete states repre-
sented by that abstract state. The transfer relation � ⊆ E × G × E specifies for each abstract
state e ∈ E and control-flow edge д ∈ G its abstract successor states, i.e., the abstract states
that overapproximate the concrete successor states of all concrete states represented by e via the
control-flow edge д. The merge operator merge : E × E → E defines if and how to merge two ab-
stract states e, e ′ ∈ E when control flow meets. The stop operator stop : E ×2E → B decides for an
abstract state e ∈ E and a given set R ⊆ E of abstract states whether e is covered by R. The level of
abstraction the analysis operates on can be configured by choosing the operators merge and stop
appropriately. Two common choices for these operators are mergesep(e, e ′) = e ′, which does not
combine abstract states, and stopsep(e,R) = (∃e ′ ∈ R : e � e ′), which checks whether the given
abstract state e is less than or equal to (“covered by”) any abstract state e ′ from R according to
the semilattice E to determine coverage.

2.2.1 CPA Algorithm. The CPA algorithm takes a CPA and an initial abstract state as input
(Algorithm 1). Essentially, the algorithm performs a classic fixed-point iteration by computing suc-
cessor states of reached abstract states until the set waitlist of unprocessed states is empty (i.e., un-
til all reachable abstract states have been completely processed) and returns the set reached of
reachable abstract states. In each major iteration, the algorithm takes one abstract state e from
the waitlist, computes all its abstract successors, and processes each of them separately: For each
successor abstract state e ′ the algorithm uses the operator merge to check if an already explored ab-
stract state e ′′ with which the successor abstract state e ′ should be merged exists in the set reached
of reached states (e.g., at meet points where the control flow of different paths meets after com-
pleted branching). If the operator merge decides that the two abstract states should be combined,
then the existing abstract state e ′′ is substituted by the new, merged abstract state enew in both
sets reached and waitlist. The stop operator implements the detection of a fixed point. The CPA al-
gorithm uses it to check if the new abstract state e ′ is already covered by an existing abstract state
in the set reached, and only if the result is negative it inserts the new abstract state e ′ into the
work sets waitlist and reached, i.e., only if this is necessary to explore this abstract state further.

2.2.2 Composite CPA. A Composite CPA [34] can be used to combine a set of CPAs into a single,
composite, CPA. An abstract state of the Composite CPA is a tuple composed of one component
abstract state for each component CPA and the operators merge and stop are defined to delegate to

ACM Transactions on Software Engineering and Methodology, Vol. 31, No. 4, Article 57. Pub. date: September 2022.

Verification Witnesses A Manuscripts

148

Verification Witnesses 57:7

ALGORITHM 1: CPA(D, einit), taken from [34]
Input: a CPA D = (D,�,merge, stop),

where E is the set of elements of the semilattice of D,
and an initial abstract state einit ∈ E,

Output: a set of reachable abstract states
Variables: two sets reached and waitlist of elements of E

1: reached := {einit}
2: waitlist := {einit}
3: while waitlist � ∅ do
4: pop e from waitlist
5: for all e ′ with e�e ′ do
6: for all e ′′ ∈ reached do
7: enew := merge(e ′, e ′′)
8: if enew � e ′′ then
9: waitlist :=

(
waitlist ∪ {enew}

) \ {e ′′}
10: reached :=

(
reached ∪ {enew}

) \ {e ′′}
11: if not stop(e ′, reached) then
12: waitlist := waitlist ∪ {e ′}
13: reached := reached ∪ {e ′}
14: return reached

the component CPAs’ respective operators, such that the merge operator combines abstract states
according to how the components’ merge operators combine the component abstract states, and
the operator stop only returns true if all components agree that their component abstract states
are already covered by their respective existing component abstract states in the set reached.

Consequently, such a combination of CPAs automatically causes all used CPAs to implicitly co-
operate on discarding infeasible program paths during the program analysis, because a composite
abstract successor state for a given composite abstract state is only produced if all component
CPAs produce a component abstract successor state for their respective component abstract state.
Thus, if one component CPA is able to prove that a specific program path is infeasible, that path
no longer needs to be considered by any other component CPA either, and the composite analy-
sis will only find program paths that all component CPAs consider feasible. Note that no explicit
communication between the component CPAs is required and that the component CPAs do not
even need to know their sibling components exist to achieve this effect. If desired, however, such
an explicit information exchange is possible via the strengthen operator ↓ [34] of the Composite
CPA, which can be used to further improve precision.

2.2.3 Location CPA. A very basic CPA that we will use for all our analyses is the Location CPAL,
which tracks the program counter. The Location CPA uses a flat lattice overall program locations
and the operators mergesep and stopsep. Using this component, we are able to effectively separate
the concern of tracking program locations from other concerns3 and do not need to re-implement
this feature for every analysis.

3 CONCEPTS
The purpose of verification witnesses is to represent information about verification results in such
a manner that it is machine-readable, reproducible, and exchangeable between verification tools.

3Specifically, the semantics of the program is analyzed and tracked in other CPAs, not in the Location CPA.

ACM Transactions on Software Engineering and Methodology, Vol. 31, No. 4, Article 57. Pub. date: September 2022.

A Manuscripts Verification Witnesses

149

57:8 D. Beyer, M. Dangl, D. Dietsch, M. Heizmann, T. Lemberger, and M. Tautschnig

There are two types of verification witnesses: Violation witnesses, which represent error paths
that violate a specification, and correctness witnesses, which represent the artifacts of a proof that
a program satisfies a specification. In this section, we present the basic concepts for verification
witnesses whereas the specifics of violation witnesses and correctness witnesses will be discussed
in a later section on design and implementation (Section 4).

3.1 Protocol Automata
Wedefine protocol automata [25, 30, 45], whichwe instantiate later to witness automata to represent
witnesses, and to observer automata to represent specifications.

A protocol automaton A = (Q, Σ,δ ,qinit , F) for a CFA (L, linit ,G) is a nondeterministic finite au-
tomaton and its components are defined as follows:

(1) The set Q ⊆ Γ × Φ is a finite set of control states, where each control state q ∈ Q has a
unique name γ from a set Γ of names, which can be used to uniquely identify a control
state q within Q , and an invariant φ from the set Φ of predicates of a given theory.

(2) The set Σ ⊆ 2G × Φ is the alphabet, in which each symbolσ ∈ Σ is a pair (S,ψ) that comprises
a finite set S ⊆ G of CFA edges and a state conditionψ ∈ Φ.

(3) The set δ ⊆ Q × Σ ×Q contains the transitions between control states, where each transition
is a triple (q,σ ,q′)with a source state q ∈ Q , a target state q′ ∈ Q , and a guard σ = (S,ψ) ∈ Σ
comprising a source-code guard S (see Example 3), which restricts a transition to the specific
set S ⊆ G of CFA edges, and a state-space guard ψ ∈ Φ, which restricts the state space to
be considered by an analysis that consumes the protocol automaton. We also write q σ−→q′

for (q,σ ,q′) ∈ δ .
(4) The control state qinit ∈ Q is the initial control state of the automaton.
(5) The subset F ⊆ Q contains the accepting control states.
We define a number of properties for protocol automata:

Sink Control State. A state q ∈ Q is called a sink control state, if q � F and �q σ−→q′ ∈ δ , i.e., sink
states are not accepting and do not have outgoing transitions.

Stutter-enabled State. A state q ∈ Q is called stutter-enabled, if there is a special self-transition
q o/w−−→q ∈ δ (with the special guard symbol “o/w” short for “otherwise”), which is defined as
follows: Let δq,other be the set of all outgoing transitions of q except those with the guard o/w,
i.e., δq,other = {q σ−→q′|σ � o/w}. The transition q o/w−−→q is a self-transition where the state-space
guardψ is true and the source-code guard S matches the set of all CFA edges that are either (a) not
matched by the source-code guard of any other outgoing transition of q or (b) are matched by the
source-code guard of some other outgoing transition of q that also matches a successor CFA edge.
Thus, a stutter-enabled state ensures that for every CFA edge, there is always at least one outgo-
ing transition of the state where the source-code guard matches the transition, which is a require-
ment of our witness automata (see Section 3.1.2). Moreover, the mechanism can be used to sup-
port nondeterminism, because if there is a transition with a source-code guard that ambiguously
matches two (or, transitively, more) consecutive CFA edges, there is also a matching self-transition
that does not impose a state-space guard. More formally, the transition q o/w−−→q is equivalent to a
transition q

(Sq,stutter, true)−−−−−−−−−−→q with Sq,stutter = (G \ Sq,other) ∪ Sq,ambig, where Sq,other is the set of all
CFA edges that are matched by the source-code guard S ′ of any other outgoing transition of q,
i.e., Sq,other =

⋃ {S ′|q (S ′, ·)−−−−→q′ ∈ δq,other}, and Sq,ambig is the set of those CFA edges matched by any
other outgoing transition ofq that has a successor CFA edge that is matched by the same transition,
i.e., Sq,ambig = {s ∈ G |∃q (S, ·)−−−→q′ ∈ δq,other, s, s

′ ∈ S : s = (·, ·, lb) ∧ s ′ = (lb , ·, ·)}.

ACM Transactions on Software Engineering and Methodology, Vol. 31, No. 4, Article 57. Pub. date: September 2022.

Verification Witnesses A Manuscripts

150

Verification Witnesses 57:9

3.1.1 Control-flow Automata. A control-flow automaton can be seen as a special kind of pro-
tocol automaton for which

— all states are accepting (i.e., F = Q),
— no sink states exist,
— all invariants are true, formally: ∀(·,φ) ∈ Q : φ = true, and
— the transition labels contain only a singleton of one control-flow edge and all guards are true,

formally: ∀(S,ψ) ∈ Σ : |S | = 1,ψ = true.
As a consequence, control-flow automata are non-restricting protocol automata, because they
cannot be used to restrict state-space exploration when used in a protocol analysis as defined
in Section 3.3.

3.1.2 Witness Automata. A witness automaton is a protocol automaton with the requirement
that there must be an outgoing transition from every non-sink control state for every CFA edge,
such that every program path can be simulated in the automaton unless the simulation is ex-
plicitly terminated by a sinking state, i.e., for every non-sink control state q ∈ Q and for every
CFA edge д ∈ G, some transition q (S, ·)−−−→q′ ∈ δ must exist with д ∈ S . To fulfill the requirement
above and as a mechanism to allow ambiguity (because in practice, it is not always convenient
or even feasible for the producer of a protocol automaton to precisely describe the source-code
guard of a transition), we require that every non-sink control state q ∈ Q is stutter-enabled, i.e.,
∀q ∈ {r ∈ Q | r ∈ F ∨ ∃r σ−→r ′ ∈ δ } : q o/w−−→q ∈ δ . In the exchange format for verifica-
tion witnesses (see Section 5), these o/w-transitions are not written explicitly, because they ex-
ist by definition.

Example 2 (Handling Ambiguity). Consider a C program with the following statements:
1 int c = 0;
2 int x = 1; ++x; ++x;
3 if (c == 0) { __VERIFIER_error(); }

Assume that there is a verifier that knows that the assumption x = 3 holds after line 2 and wants to
produce a protocol-automaton transition to convey this information. The best way to precisely con-
vey this information would be to use a source-code guard that matches only the CFA edge for the
last statement in line 2. If, however, the program representation used internally by the verifier only
retains the line numbers of statements, the verifier is only able to specify that the assumption x = 3
holds after some statement in line 2. If the protocol automaton would then (deterministically) en-
force the state-space restriction x = 3 after the first statement (first match) in line 2, the restricted
state space would be empty due to the contradiction with the fact that x = 1. However, because
of the requirement that every control state of the protocol automaton must handle such ambigu-
ous matches nondeterministically, the automaton can “wait” until the last statement in line 2 to
apply the state-space guard. The downside of this approach is that the non-determinism inflates
the search space through the automaton. This downside can be mitigated by strong state-space
guards that lead to contradictions early on wrong paths through the automaton.

When a consumer of a protocol automaton, e.g., a witness-based result validator, uses the au-
tomaton to guide its exploration of the state space, the exploration can be restricted either by re-
stricting the state space using state-space guards at transitions or by a transition to a sink control
state (that, by definition, has no outgoing transition, and thus the path exploration ends).

3.1.3 Observer Automata. An observer automaton (also called “monitor automaton” [118]) for
a given CFA C = (L, linit ,G) is a protocol automaton (Q, Σ,δ ,qinit , F) that satisfies the follow-
ing conditions:

ACM Transactions on Software Engineering and Methodology, Vol. 31, No. 4, Article 57. Pub. date: September 2022.

A Manuscripts Verification Witnesses

151

57:10 D. Beyer, M. Dangl, D. Dietsch, M. Heizmann, T. Lemberger, and M. Tautschnig

(1) there are no sink control states,
(2) all invariants are true, formally: ∀(·,φ) ∈ Q : φ = true, and
(3) for every control state q ∈ Q \ F and every CFA edge д of G, the disjunction∨ {

ψ
�� ∃q (S,ψ)−−−−→ · ∈ δ : д ∈ S} of all state-space guards for q and д evaluates to true, i.e., state-

space guards may be used to partition the state space of the program, but not to restrict it.
There must be at least one transition for every q and д to satisfy this condition.

Note that it might be useful to have several transitions in the observer automaton for one CFA
edge. To ensure that the disjunction of the guards evaluates to true, users can use a SPLIT transition
(syntactic sugar, see Section 5.4 of [30]).

3.1.4 Abstract Reachability Graphs. An abstract reachability graph (ARG) [31] can be seen
as a protocol automaton where the set of states is given by the set reached of reachable abstract
states that were discovered by a reachability analysis. A transition e σ−→e ′ exists if e ′ is either an
abstract successor state of e or e ′ is the result of merging an abstract successor of e with some other
abstract state(s). For an abstract state e = (·,φ), the invariant describes the set of concrete states
that the abstract state represents. The transition label σ = (S,ψ) consists of a guard that is always
true (ψ = true) and a set of control-flow edges S that is either a singleton S = {д} that contains
the control-flow edge д ∈ G that was taken from e to e ′ or the empty set S = {} that indicates a
coverage relation if e � e ′. An abstract path through an ARG is a sequence 〈e0, . . . , en〉 of abstract
states such that every pair (ei , ei+1) with i ∈ {0, . . . ,n − 1} is an edge in the ARG. ARGs are used
in software verification to represent correctness proofs (if the invariants in the abstract states are
inductive) and violation proofs (if it contains an abstract path that represents an error path).

3.1.5 Floyd–Hoare Automata. A Floyd–Hoare automaton [84] is an observer automaton with
the following constraints:

— the initial state has the invariant true,
— all state-space guards are true,
— for each transition (·,φq) (S, true)−−−−−→(·,φq′) ∈ δ and each operation op ∈ {op | ∃(·, op, ·) ∈ S}, the

triple {φq} op {φq′ } is a valid Hoare triple, and
— each accepting state has the invariant false.

Hence, a Floyd–Hoare automaton accepts only sequences of operations that are infeasible.4 Floyd–
Hoare automata are used in software verification to represent correctness proofs.

3.1.6 Run. Let p = 〈(l0, op1, l1), . . .〉 be a path with l0 = linit , i.e., a program path, and let p̂
be a concrete program path for p. A run for this concrete program path p̂, and thus, also for p,
is a simulation sequence 〈qinit

σ1−−→q1, . . .〉 such that for all program locations li � l0 of p̂, the ith
CFA edge (li−1, opi , li) of p̂ is matched by the ith transition qi−1

σi−−→qi of the simulation sequence,
with σi = (S,ψ) and (li−1,opi , li) ∈ S, and all variable assignments that are attached to the ith
program location of p̂ satisfy ψ .

3.1.7 Acceptance. Protocol automata provide flexibility regarding the acceptance criterion in
that they allow a choice: If the goal is to accept finite runs (e.g., for the witness-based validation of
verification results for reachability problems, as in the examples in this article), a protocol automa-
ton A can be defined to accept the run 〈. . . ,qn−1

σn−−→qn〉 if qn ∈ F . If the goal is to accept infinite
runs (e.g., for the witness-based validation of verification results for termination problems), we
can define the protocol automaton A as a Büchi automaton that accepts an infinite run ρ if there

4Note that the invariants of such a Floyd–Hoare automaton can be computed using Craig interpolation [31, 66, 108, 109].

ACM Transactions on Software Engineering and Methodology, Vol. 31, No. 4, Article 57. Pub. date: September 2022.

Verification Witnesses A Manuscripts

152

Verification Witnesses 57:11

exists a control state q ∈ F that occurs infinitely often in ρ. We say A accepts a program path p
if there exists an accepting run of A for p. The projection of an accepted finite run to the se-
quence 〈σ1, . . . ,σn〉 of its alphabet symbols is called an accepted word, as is the projection of an
accepted infinite run to the sequence 〈σ1, . . .〉 of its alphabet symbols. The set of all accepted
words of A defines the language L(A).

3.1.8 Graphical Representation. In this article, we will give several graphical examples of pro-
tocol automata. We draw them as graphs where the control states are circular nodes. We mark
the initial control state with an incoming edge that has no source node and is labeled “start”. We
label each control state with its name and present its invariant as a boolean expression in a green-
colored box next to the state, except if every control state in the automaton has the invariant true,
in which case we omit the invariants from the figure. We mark sink states by coloring them blue.
We mark accepting control states with a double border. If a control state is intended to represent
a specification violation, we color it red. We draw the transitions as edges and label each of them
with the following syntax: The label is split into two parts by a colon. The first part (i.e., the part
before the colon) corresponds to the source-code guard, which is given as a comma-separated list
of tokens that define a set of matched CFA edges conjunctively. A numerical token describes a line
number and restricts the set of matched CFA edges to edges that represent an operation on that
source-code line. The second part of the edge label (i.e., the part after the colon) corresponds to the
state-space guard and is given as a boolean expression, except if it is true, in which case we omit it.

Example 3 (Source-code Guards). In the CFA in Figure 1(b), the token “4” matches the CFA edge
from l4 to l5, whereas the token “5” matches the edges from l5 to l6 and from l5 to l8. A to-
ken “enterFunction(f)” restricts the set of matched edges to edges that represent a function-call
operation to function f . In Figure 1(b), the token “enterFunction(main)” matches the edge l3 to l4,
and the token “enterFunction(__VERIFIER_error)” matches the edges l17 to l18 and l21 to l22. The
tokens “then” and “else” restrict the set of edges to edges that correspond to the positive case
of a conditional branching (“then”, where the condition evaluates to true), or the negative case
of the branching (“else”, where the condition evaluates to false). For example, such a branching
may be a loop condition or an if statement. In Figure 1(b), the edges l5 to l6, l11 to l12, l16 to l17,
and l20 to l21 are matched by the token “then”, whereas the edges l5 to l8, l11 to l16, l16 to l20, and
l20 to l24 are matched by the token “else”. A token “enterLoopHead” restricts the set of edges to
those that precede a loop head. In Figure 1(b), the edges l10 to l11 and l14 to l11 are matched by the
token “enterLoopHead”.

3.2 Automata Representations
The various kinds of protocol automata are used to represent specifications, violation witnesses,
and correctness witnesses. Table 1 gives an overview of the kinds of automata that are used con-
ceptually as representation, and the specific characteristics (cf. also [45]).

3.2.1 Specifications Represented by Observer Automata. Using observer automata to model for-
mal specifications is an established concept [6, 20, 38, 118, 120]; consequently, we also use an
observer automaton to model safety specifications. Separating the specification from the imple-
mentation follows the best-practice of separation of concerns. As a result, we can check a given
programs against different specifications without changing the source code, and we can also use a
given specification to check different programs. We call a given pair of program and specification
a verification task. Note that for practical reasons we configure the observer automata such that
they accept paths that violate the specification (cf. [45]).

ACM Transactions on Software Engineering and Methodology, Vol. 31, No. 4, Article 57. Pub. date: September 2022.

A Manuscripts Verification Witnesses

153

57:12 D. Beyer, M. Dangl, D. Dietsch, M. Heizmann, T. Lemberger, and M. Tautschnig

Table 1. Mapping Artifacts Related to Software Analysis to Their Representing Types of Automata and
to Examples of Analyses That Use These Artifacts

Artifact Type of Automaton Type of Analysis al
ls

ta
te

sa
cc

ep
tin

g

no
sin

k
st

at
es

al
li

nv
ar

ia
nt

st
ru

e

no
n-

re
st

ric
tin

g

Program CFA location analysis (cf. Section 2.2.3) ✓ ✓ ✓ ✓

Specification observer automaton observer analysis (cf. Section 3.3) ✓ ✓ ✓

Violation Witness witness automaton protocol analysis (cf. Section 3.3) ✓

Correctness Witness witness automaton observer analysis (cf. Section 3.3) ✓ ✓ ✓

Proof ARG composite analysis (cf. Section 2.2.2) ✓ ✓ ✓

Proof Floyd–Hoare automaton Floyd–Hoare analysis (cf. Section 4.1.2) ✓ ✓

Fig. 2. Specification that forbids calls to the function __VERIFIER_error(void), represented as observer
automaton that accepts all program paths that enter control state sE , i.e., violate the specification.

Example 4 (Specification). Figure 2 shows an example of a specification represented by an ob-
server automaton that forbids calls to a function __VERIFIER_error(void), i.e., this specifica-
tion is violated by a program if there is a feasible program path that contains a call to the func-
tion __VERIFIER_error(void). The program represented by the CFA in Figure 1(b) does not violate
this specification because both CFA nodes l18 and l22 are not reachable.

3.2.2 Violation Witnesses Represented by Witness Automata. A violation-witness automaton is a
witness automaton, i.e., a protocol automaton that represents a witness, in this case more specifi-
cally, a violation witness. Violation-witness automata use the state-space restricting features of
protocol-automata to guide the exploration towards the specification violation. In a violation-
witness automaton, the set of accepting (violation) control states contains only those states that
correspond to violating program states detected by the producing verifier.

A violation-witness automaton is a witness automaton for which
— all invariants are true, formally: ∀(·,φ) ∈ Q : φ = true.

3.2.3 Correctness Witnesses Represented by Witness Automata. A correctness-witness automa-
ton is a witness automaton, i.e., a protocol automaton that represents a witness, in this case more
specifically, a correctness witness. Correctness-witness automata do not use the state-space re-
stricting features of protocol-automata: While a violation-witness automaton may restrict the suc-
cessor states to those successor states that lead the exploration to the specification violation, a
correctness-witness automaton has abstract successor states for all concrete successor states. The
correctness-witness automaton annotates each abstract program state e with an invariant φ, i.e., a
predicate that holds at e on every program path that passes e . In a correctness-witness automaton,
the set of accepting control states is equivalent to the (whole) set of control states.

ACM Transactions on Software Engineering and Methodology, Vol. 31, No. 4, Article 57. Pub. date: September 2022.

Verification Witnesses A Manuscripts

154

Verification Witnesses 57:13

A correctness-witness automaton is a witness automaton for which
— all states are accepting (i.e., F = Q),
— there are no sink control states, and
— for every control state q ∈ Q and every CFA edge д of G, the disjunction∨ {

ψ
�� ∃q (S,ψ)−−−−→ · ∈ δ : д ∈ S} of all state-space guards for q and д evaluates to true, i.e., state-

space guards may be used to partition the state space of the program, but not to restrict it.

3.3 Automaton CPA: A Configurable Program Analysis for Protocol Automata
A protocol analysis is an Automaton CPA O = (DO,�O,mergeO, stopO) for a protocol automa-
ton A = (Q, Σ,δ ,qinit , F ,B). An Automaton CPA is a CPA (cf. Section 2.2) that tracks the con-
trol state of A. The Automaton CPA comprises the following components, for a given CFA C =
(L, linit ,G) (cf. [30]):

(1) DO = (C,Q, [[·]]) is an abstract domain comprising the set C of concrete states, the semi-
lattice Q over abstract data states, and a concretization function [[·]]. The semi-lattice Q =
(Z ,�) consists of the set Z of abstract data states and a partial order � (the join 	 and the
top element �Q = (�, true) are unique). An abstract state of Z = (Q ∪ {�Q}) is either a
control state from Q (a pair of a name from Γ and an invariant from Φ, the set of predicates
of a given theory) or the special lattice element �Q . The definition of the partial order � is
that (γ ,φ) � (γ ′,φ ′) if (γ ′ = �∨γ = γ ′) ∧φ ⇒ φ ′. The join operator 	 is defined as the least
upper bound of two abstract data states. The top element �Q is the least upper bound of all
abstract data states, i.e., ∀(γ ,φ) ∈ Z : (γ ,φ) � �Q . The concretization function [[·]] : Z → 2C
assigns to each abstract data state (γ ,φ) the corresponding set [[φ]] of concrete states.

(2) �O ⊆ Z × G × Z is the transfer relation. A transfer (γ , ·) д
�O(γ ′,φ ′) exists if the protocol

automaton A has a matching transition (γ , ·) (S,ψ ′)−−−−→(γ ′,φ ′) with φ ′ = ψ ′ and д ∈ S . Because
the conditionψ ′ of the protocol-automaton transition is stored in the successor abstract data
state, it is accessible to other component analyses via the composite strengthening operator
(cf. Section 2.2.2) and can be used by them to strengthen their own successor abstract data
states.

(3) Only elements with the same control-state name are combined by the merge operator:
mergeO((γ ,φ), (γ ′,φ ′)) =

{ (γ ′, φ ∨ φ′) if γ = γ ′
(γ ′, φ′) otherwise

(4) stopO((γ ,φ),R) is the termination check. It terminates the state-space exploration of the
current path (i.e., it returns true) if the abstract data state (γ ,φ) is covered by an existing
abstract data state in R: stopO((γ ,φ),R) = ∃(γ ,φ ′) ∈ R : φ ⇒ φ ′

Witness Analysis. A witness analysis is an Automaton CPA for a witness automaton.

Observer Analysis. An observer analysis is an Automaton CPA for an observer automaton, i.e., an
observer analysis only “observes” (or “monitors”) the paths of the analyzed program, but it does not
restrict the exploration performed by the program analysis. One use case for such an observer anal-
ysis is to observe whether an analyzed program path violates the specification, i.e., to determine
whether it is an error path. The accepted program paths are those that violate the specification.
An observer CPA can also be used to split abstract paths and observe them separately.

3.4 Constructing Witness Automata from Proofs
A verification tool can produce witnesses by transforming the desired paths of the constructed
proof (which is available from most types of program analysis, including the configurable program
analysis described in Section 2.2) into a witness automaton.

ACM Transactions on Software Engineering and Methodology, Vol. 31, No. 4, Article 57. Pub. date: September 2022.

A Manuscripts Verification Witnesses

155

57:14 D. Beyer, M. Dangl, D. Dietsch, M. Heizmann, T. Lemberger, and M. Tautschnig

Fig. 3. Software verifiers produce witnesses.

3.4.1 Witness Automata from ARGs. The nodes of the ARG become control states in the wit-
ness automaton, with the root node of the ARG as the initial control state qinit of the witness
automaton. The edges of the ARG become transitions in the witness automaton. Edges that leave
the desired paths of the ARG to become transitions to a sinking state, i.e., a state with no out-
going transitions. To each transition, the verifier should add a source-code guard that describes
the CFA edge represented by the corresponding ARG edge as precisely as possible. Constraints
on variable values at the target state of an ARG edge may be encoded as state-space guards of
the corresponding transition (for violation witnesses), or as a control-state invariants of the cor-
responding control state (for correctness witnesses). After producing the witness automaton from
the ARG, several minimizations can be performed. For example, control states that are connected
only by transitions without any guards and have the same control-state invariant can be merged,
because they do not convey any useful information.

3.4.2 Witness Automata from Floyd–Hoare Automata. Witness automata can also be derived
from Floyd–Hoare automata using a similar construction.

3.5 Application Scenarios
In the following, we describe scenarios where the concept of verification witnesses is applied.

3.5.1 Verification with Witnesses. Good practice requires a verifier, whenever it reaches a con-
clusion regarding a given verification task, to produce a verification witness that provides infor-
mation about the verification result. The purpose of the verification witness is to document the
verification result and to make valuable verification artifacts available for reuse instead of leav-
ing unused the effort the verifier has already spent on them. The primary use case we discuss
in this article is witness-based result validation. Another use case is the visualization of veri-
fication results [22, 114]. Figure 3 illustrates the process of verification with witnesses, and it
also shows one key feature of the concept of having a common representation of verification
results: there is no risk of technology lock-in, because the verifiers are interchangeable accord-
ing to the needs of the user.

3.5.2 Witness-based Result Validation. A witness-based result validator can independently re-
establish a verification result of a verifier using the guidance of a verification witness. We de-
scribe a program analysis for this purpose using the CPA concept by configuring a Composite
CPA with the following components: One component is an Automaton CPA that performs a proto-
col analysis (cf. Section 3.3) for a witness automaton (which we also call witness analysis, because

ACM Transactions on Software Engineering and Methodology, Vol. 31, No. 4, Article 57. Pub. date: September 2022.

Verification Witnesses A Manuscripts

156

Verification Witnesses 57:15

Fig. 4. Witness-based result validation.

Fig. 5. In witness-based result validation, a verification witness is produced by a verifier that is able to find
a proof π that proves or disproves P |= φ. The verification witness carries information that may guide the
validator to find its own proof π ′ that also proves or disproves P |= φ.

it simulates the witness automaton). One of the other component CPAs is an Automaton CPA that
performs an observer analysis (cf. Section 3.3) and encodes the specification, which is represented
by an observer automaton (cf. Section 3.1.3), i.e., which only observes but does not restrict how
the program’s state space is explored by the program analysis. The composed program analysis
only considers specification violations signaled by this CPA if the CPA that simulates the witness
automaton agrees, i.e., if both the specification automaton and the witness automaton accept the
corresponding run. Another component of CPA is the Location CPA, which is used to track the
program counter, i.e., the location in the CFA, for the analysis. Further components can be added
to the composition, for example, to track information about the values of program variables. These
components can then use the operator ↓ of the Composite CPA to compute the intersection of their
component abstract states with the state-space guards from the witness automaton to achieve a
restricted, more precise state space, or they can check the validity of the state invariants of the
witness automaton, and, if successful, use these invariants as proof lemmas. Figure 4 illustrates
the process of witness-based result validation and shows four existing implementations of val-
idators. A verification result is confirmed by a witness-based result validator if the validator is
able to re-establish the verification result.

We illustrate witness-based result validation with Figure 5: First, the verifier receives the ver-
ification task P |= φ as input and constructs a proof π for proving or disproving the statement.
In the former case, the verifier produces a correctness witness (which contains invariants) and in
the latter case, the verifier produces a violation witness (which contains an error path). Second,
a validator receives the same verification task P |= φ and the witness as input but constructs a

ACM Transactions on Software Engineering and Methodology, Vol. 31, No. 4, Article 57. Pub. date: September 2022.

A Manuscripts Verification Witnesses

157

57:16 D. Beyer, M. Dangl, D. Dietsch, M. Heizmann, T. Lemberger, and M. Tautschnig

Fig. 6. Witness refinement.

new proof π ′ which might be different from the verifier’s proof π . However, the validator is al-
lowed to look into the verification witness in order to obtain information to support the proving
process. If it receives a correctness witness as input, then it tries to use the invariants (i.e., using
inductiveness checks); if it receives a violation witness as input, then it tries to use the error path
(i.e., using a simulation to check feasibility).

3.5.3 Witness Refinement. Witness refinement is the iterative process of improving witnesses,
by augmenting the verification artifacts represented by an input witness using new, potentially
more detailed, information computed by a witness-based result validator. This process combines
the concept of witness-producing verification with the concept of witness-based result validation.
Figure 6 illustrates the process of witness refinement and shows the two existing implementations
of witness refinement. We call a tool that is able to perform witness refinement a witness refiner.
By using the common exchange format for verification witness, witness refinement can be applied
using any desired sequence of witness refiners that are available to a user.

3.5.4 Witnesses for Concurrent Systems. For the ease of presentation, we restrict our descrip-
tions to non-concurrent systems. The presented concepts, however, are also applicable to concur-
rent systems [29]: State-space guards and state invariants can be specified for specific threads. In
a context-bounded view of a concurrent system (which is sufficient to describe a violation of a
reachability property, for example,), we can consider a concurrent CFA as a product of the original
CFA and the (maximum) number of concurrent threads, and describe a schedule by using source-
code guards to specify the set of CFA edges in the concurrent CFA as a combination of a set of
CFA edges from the original CFA and the set of potentially active threads.

3.5.5 Witnesses for Termination. While we use a reachability specification for our running ex-
ample, the presented concepts are also applicable to the termination. Instead of using the accep-
tance criterion for finite runs, we can treat the witness automata as Büchi automata and use the
acceptance criterion for infinite runs, as described in Section 3.1.7.

4 DESIGN AND IMPLEMENTATION
In the following, we will explain how we use protocol automata to represent verification re-
sults and how we can validate and refine these verification results by applying witness-based
verification-result validators.

ACM Transactions on Software Engineering and Methodology, Vol. 31, No. 4, Article 57. Pub. date: September 2022.

Verification Witnesses A Manuscripts

158

Verification Witnesses 57:17

Fig. 7. The architecture of CPAchecker.

4.1 Verifiers
Over the last decades, a multitude of automated software verifiers has been developed. We now
give a brief introduction to two verification tools that we will use to generate witnesses for our
evaluation and that three of the four violation-witness-based result validators and both of the
correctness-witness-based result validators we present in the following sections are based on.

4.1.1 CPAchecker. The configurable software-verification framework CPAchecker [38] is based on
configurable program analysis [30, 34] and supports many different verification approaches, such
as predicate abstraction [21, 39, 77], lazy abstraction with interpolants [46, 109], k-induction [27,
69], bounded model checking [49], explicit-value analysis [42], and symbolic execution [40].
CPAchecker won the category Overall of the competition on software verification (SV-COMP) seven
times from 2012–2021.5

Architecture. Its architecture is designed to explicitly reflect the concepts of configurable pro-
gram analysis (cf. Section 2.2) in its components, as visualized by Figure 7: The left side of the
figure shows the input, which is a verification task that consists of a program and a specification.
The source code of a verification task is parsed and converted into a CFA (cf. Section 2.1), the spec-
ification is parsed and converted into an observer automaton (cf. Section 3.2.1). Then, the desired
algorithm is run on the verification task. After the algorithm completes, the computed results, for
example, the verification outcome, are delivered. The core algorithm of the CPAchecker framework
is the CPA algorithm (data-flow analysis/abstract interpretation [65, 101, 113]). As examples of
CPAs implemented in CPAchecker, the figure shows the Location CPA and the Composite CPA,
which were already introduced in Section 2.2, as well as the Automaton CPA, which is described
in Section 3.3. The dotted line symbolizes that more CPAs that are not discussed in this article
are available, for example, a CPA for predicate analysis [28] or a CPA for explicit-state model

5https://cpachecker.sosy-lab.org/achieve.php.

ACM Transactions on Software Engineering and Methodology, Vol. 31, No. 4, Article 57. Pub. date: September 2022.

A Manuscripts Verification Witnesses

159

https://cpachecker.sosy-lab.org/achieve.php

57:18 D. Beyer, M. Dangl, D. Dietsch, M. Heizmann, T. Lemberger, and M. Tautschnig

checking [42]. Besides the CPA algorithm, Figure 7 depicts two additional algorithms as examples
of further implemented verification approaches: counterexample-guided abstraction refine-
ment (CEGAR) [59] and k-induction [27]. Both of these algorithms delegate parts of their work
to the CPA algorithm. For example, CPAchecker can be configured to perform predicate abstrac-
tion [77] with counterexample-guided abstraction refinement by combining the CEGAR algorithm
with a CPA that implements predicate abstraction. CPAchecker can also be configured to perform
k-induction with the auxiliary-invariant generation, by combining the k-induction algorithm with
a program analysis that produces invariants. For a detailed and formal discussion on how these
approaches are implemented in CPAchecker, we refer the reader to the literature [28] and briefly
introduce the concept of k-induction, only because it is a non-trivial but integral component of
one of the validation approaches that we will later present.

k-Induction. To obtain unbounded proofs of safety, k-induction combines techniques from
bounded model checking [50] with induction. Consider a verification task that contains an un-
bounded loop and a candidate invariant P for that task. It is possible (a) to check using a bounded
model check with bound k = 1 whether a program path of length k = 1 exists for which P is
violated, but this check cannot prove the absence of longer counterexample paths. However, it
is possible (b) to prove that P is an invariant using induction if P is inductive, i.e., if P holds be-
fore a given loop iteration, P also holds after that iteration, by taking (a) as the base case of the
induction proof and (b) as the inductive-step case.

An extension to greater values of k lifts (1-)induction to k-induction, where the invariant P is
asserted not only before one loop iteration, but before each of k consecutive loop iterations in the
step case to conclude that it also holds after the kth loop iteration. For k > 1, (k − 1)-inductiveness
implies k-inductiveness. In practice, k-induction may therefore succeed more often to prove cor-
rectness than (k − 1)-induction [127], because k-induction uses a stronger induction hypothesis. A
drawback of k-induction is that the approach cannot succeed if P is not k-inductive for any k . It is
therefore desirable to strengthen P with auxiliary invariants to try making the assertion inductive.

KI ���←−DF and KI ���←−KI [27] are two k-induction techniques that are implemented in CPAchecker
and use auxiliary invariants. In both techniques, an invariant generator runs in parallel to the
k-induction procedure and successively provides invariants that are then used to strengthen the
induction hypothesis. As time progresses, stronger invariants are generated, until the auxiliary
invariants sufficiently strengthen the induction hypothesis to successfully prove the invariant P
by induction. In KI ���←−DF, the auxiliary-invariant generator is based on a data-flow analysis. Over
time, the precision used by the analysis is increased, causing stronger invariants to be generated. In
the k-induction technique KI ���←−KI, the auxiliary-invariant generator is itself based on k-induction
and attempts to prove invariants from a set of candidate invariants (either derived from a template
or provided by a user). As time progresses, more confirmed candidates may become available as
auxiliary invariants, until the induction hypothesis is strong enough to prove the safety property.

Example 5 (Verification with CPAchecker). Consider a verification task consisting of the program
shown in Figure 1 and the specification from Figure 2. No feasible path to the call of the func-
tion __VERIFIER_error(void) in line 17 exists, because after the loop, the sum s of non-negative
summands is always at least as great as its last summand v. Since the type of s is unsigned int,
no overflow is caused by computing and storing the sum of at most 255 (maximum value of n)
values, each of which is at most 255 (maximum value of v) itself, which in total is at most 65025.
Consequently, no feasible path to the call of the function __VERIFIER_error(void) in line 21 ex-
ists either. Therefore, the program satisfies the specification. CPAchecker is able to prove this by
applying the KI ���←−KI technique for k-induction and using a template for linear inequalities to
produce candidate invariants for KI ���←−KI: Knowing that 0 ≤ i ≤ 255 due to the types of i and n,

ACM Transactions on Software Engineering and Methodology, Vol. 31, No. 4, Article 57. Pub. date: September 2022.

Verification Witnesses A Manuscripts

160

Verification Witnesses 57:19

CPAchecker can prove that the linear inequality s ≤ i · 255 is an invariant, and consequently also
that s ≤ 65,025 (and therefore also that s cannot overflow), which proves the program safe.

4.1.2 UAutomizer. The automata-based verification approach of UAutomizer [84] constructs a cor-
rectness proof as a sequence of automata. UAutomizer uses the concept of Floyd–Hoare automata
(cf. Section 3.1.5) instead of an ARG. UAutomizer won the category Overall of the competition on
software verification (SV-COMP) two times from 2012–2020.6

Architecture. Like CPAchecker, UAutomizer transforms the given program into a CFA and the given
specification into an observer automaton, and uses the specification to determine whether a pro-
gram path is an error path. The automaton product of the CFA and the observer automaton for the
specification yields a new CFA that describes a formal language over the alphabetG, whereG is the
set of control-flow edges, and where the accepting states are defined by the observer automaton
for the specification. Hence, the words accepted by this automaton are exactly those paths through
the program that violate the specification, i.e., the error paths (cf. Section 2.1).

Verification Using Floyd–Hoare Automata. To solve a verification task, UAutomizer iteratively con-
structs Floyd–Hoare automata instead of an ARG. The Floyd–Hoare automata A1, . . . ,An are
constructed such that each automaton accepts only words that correspond to infeasible paths. If,
at some point of this iterative process, the union of the languages of these automata becomes a
superset of the language accepted by the product of the CFA and the observer automaton for the
specification, the verification is complete and the constructed Floyd–Hoare automataA1, . . . ,An
represent a correctness proof for the program.

Given a CFA AP and the Floyd–Hoare automata A1, . . . ,An from the above-mentioned cor-
rectness proof, the following approach can be used to construct invariants: First, an automata-
theoretical product of the automata AP and A1, . . . ,An is constructed. We make sure that in
the product construction no Floyd–Hoare automaton is blocking and make each automaton total
beforehand (that is, they are observer automata). The totalization is implemented by implicitly
adding for each missing outgoing transition (in the automata in Figure 8) an outgoing transition
whose target is the initial state. Because the initial state is labeled by true , the totalized automata
are still Floyd–Hoare automata. The states of the product are tuples of the form (l, s1, . . . , sn)where
the first component is a program location of the CFA, and the (i + 1)-th component si is a state of
the Floyd–Hoare automatonAi . Each tuple in the product is annotated by a formula that is the n-
ary conjunction of the invariants of all si , that is, the annotation of the tuple (l, s1, . . . , sn) is the
conjunction

∧n
i=1 φsi . Then, the invariant for a location l is computed as the disjunction of all anno-

tations of those tuples that are reachable in the product and where the first component is location l.

Example 6 (Verification with UAutomizer). The three Floyd–Hoare automata depicted in Figure 8
are a proof that the program whose CFA is depicted in Figure 1 satisfies the specification depicted
in Figure 2. The observer automaton (Figure 2) for the specification considers the locations after the
function __VERIFIER_error(void) was called, i.e., l18 and l22, accepting. The three Floyd–Hoare
automata are a proof of correctness, because each word that is accepted by the CFA is also accepted
by A1, A2, or A2.

Intuitively, the Floyd–Hoare automaton A1 says that we cannot leave the while loop without
passing the body at least once. The Floyd–Hoare automatonA2 says that after running the while
loop (at least) once, the value of s is not smaller than the value of v and hence the program cannot
reach the first call of the __VERIFIER_error(void) function. The Floyd–Hoare automaton A3
says that s ≤ i · 255 is a loop invariant and since the loop counter i is bounded by an unsigned

6https://ultimate.informatik.uni-freiburg.de/Automizer.

ACM Transactions on Software Engineering and Methodology, Vol. 31, No. 4, Article 57. Pub. date: September 2022.

A Manuscripts Verification Witnesses

161

https://ultimate.informatik.uni-freiburg.de/Automizer

57:20 D. Beyer, M. Dangl, D. Dietsch, M. Heizmann, T. Lemberger, and M. Tautschnig

Fig. 8. Proof that the program whose CFA is depicted in Figure 1 satisfies the specification depicted in
Figure 2. We construct a product of these automata in order to obtain invariants for the program.

char, the value of s is bounded by 65,025 and the program cannot reach the second call of the
__VERIFIER_error(void) function.

Table 2 shows the annotations for the reachable states in the product of the automata from
Figure 8, and Table 3 shows the invariants that we obtain for the program depicted in Figure 1. We
do not show the locations l6, l24, and l25, because UAutomizer detects beforehand that these locations
do not occur on any path from the initial location to an error location and assigns the invariant true
to these locations. In Table 2 we leave out all successors of all tuples that are annotated with false
(l18 and l22). Because each Floyd–Hoare automaton has a self-loop for locations with the invariant
false, each successor of a tuple annotated by false is also annotated by false.

ACM Transactions on Software Engineering and Methodology, Vol. 31, No. 4, Article 57. Pub. date: September 2022.

Verification Witnesses A Manuscripts

162

Verification Witnesses 57:21

Table 2. Reachable States in the Product Automaton of
AP , A1, A2, and A3 Together with Their Annotation

State Annotation
(l3,q0,p0, r0) true
(l4,q0,p0, r0) true
(l5,q0,p0, r0) true
(l8,q1,p0, r0) n � 0
(l9,q1,p0, r0) n � 0
(l10,q1,p0, r1) n � 0 ∧ s = 0
(l11,q2,p0, r2) n � 0 ∧ i = 0 ∧ s = 0 ∧ s ≤ i · 255
(l16,q3,p0, r0) false
(l12,q0,p0, r3) s = 0 ∧ i < n ∧ s ≤ i · 255
(l13,q0,p0, r3) s = 0 ∧ i < n ∧ s ≤ i · 255
(l14,q0,p1, r4) s ≥ v ∧ i < n ∧ s ≤ i · 255 + 255
(l11,q0,p1, r5) s ≥ v ∧ i ≤ n ∧ s ≤ i · 255
(l12,q0,p1, r6) s ≥ v ∧ i < n ∧ s ≤ i · 255
(l13,q0,p0, r6) i < n ∧ s ≤ i · 255
(l14,q0,p1, r4) s ≥ v ∧ i < n ∧ s ≤ i · 255 + 255
(l16,q0,p1, r7) s ≥ v ∧ s ≤ 65,025
(l17,q0,p2, r0) false
(l20,q0,p0, r7) s ≤ 65,025
(l21,q0,p0, r8) false

Table 3. Invariants for the Program Depicted in Figure 1

Location Invariant
l3 true
l4 true
l5 true
l8 n � 0
l9 n � 0
l10 n � 0 ∧ s = 0
l11 (n � 0 ∧ i = 0 ∧ s = 0 ∨ s ≥ v ∧ i ≤ n) ∧ s ≤ i · 255
l12 (s = 0 ∨ s ≥ v) ∧ i < n ∧ s ≤ i · 255
l13 i < n ∧ s ≤ i · 255
l14 s ≥ v ∧ i < n ∧ s ≤ i · 255 + 255
l16 s ≥ v ∧ s ≤ 65,025
l17 false
l20 s ≤ 65,025
l21 false

4.2 Result Validation Based on Violation Witnesses
Violation witnesses are verification witnesses that represent error paths, i.e., paths through the
program source code that violate the specification (Section 3.2.2).

4.2.1 Principles. A violation-witness-based result validator can attempt to validate the verifi-
cation results as false if the result is supported by a violation witness. In 2019, four implemen-
tations of such validators existed: CPAchecker, UAutomizer, CPA-witness2test, and FShell-witness2test.

ACM Transactions on Software Engineering and Methodology, Vol. 31, No. 4, Article 57. Pub. date: September 2022.

A Manuscripts Verification Witnesses

163

57:22 D. Beyer, M. Dangl, D. Dietsch, M. Heizmann, T. Lemberger, and M. Tautschnig

Conceptually, all of these validators are based on the principle of witness-based result validation
as described in Section 3.5.2. We classify the four validators into two categories, namely the cate-
gory of static (model-checking-based) validators, and the category of dynamic (execution-based)
validators, as indicated in Figure 4.

Static Validation. CPAchecker and UAutomizer are static validators, because they are based on
purely static analysis and do not actually execute the program to confirm a violation. The ad-
vantages of static validators are that (1) they do not strictly require precise witnesses but can
also be used with imprecise witnesses and can even be used to refine them, using witness refine-
ment (cf. Section 3.5.3), because they can use model-checking techniques to detect invariants or
even find concrete value assignments for program variables, (2) they can be used to validate re-
sults for verification tasks of systems with arbitrary target architectures, independent from the
environment the validator is executed in, because they do not need to execute the analyzed pro-
gram, and (3) they can be used for arbitrary specifications and are not limited to specifications
with finite counterexamples (cf. dynamic validators). The main disadvantage of static validators
is that accurately modeling all features of a complex programming language (such as C) is often
difficult, and static validators therefore may exhibit the same imprecisions that also contribute
to false alarms in verifiers. Thus, they may be less trustworthy than dynamic validators, which
actually run the analyzed program to confirm a violation.

Example 7 (Violation-witness Construction, Validation, and Refinement). We illustrate how viola-
tion witnesses are constructed, validated, and refined across verifiers: We start with an overview of
an example scenario and then describe the process of producing, consuming, and refining violation
witnesses in more detail.

In this example, we first run three verifier instances in sequence. Each of them takes the ver-
ification task that consists of the program depicted in Figure 9(a) and the specification shown
in Figure 2 as input, and produces a violation witness. The program in Figure 9(a) differs from the
program in Figure 1(a) (and described in Section 2.1) in only one line: In line 9 of the original pro-
gram, variable s is declared as type unsigned int, whereas, in line 9 of the modified program, s
is declared as type unsigned char; therefore, the only difference between the CFA of the original
program (cf. Figure 1(b)) and the CFA of the modified program is that the label of the CFA edge
between l9 and l10 is changed to unsigned char s = 0. The specification requires that no call to
the function __VERIFIER_error() must be reachable from the program entry. The program vio-
lates this specification: Recall from Section 2.1 that the program attempts to compute the sum of
a number of input values. However, the variable s that is used to store the computed sum is now
declared to be of type unsigned char, which in our setting means that it is only 8 bits wide and
can only store values between 0 and 255. It is therefore not suitable for the task of storing the sum
of up to 255 values in the range of 0 to 255 and is susceptible to arithmetic overflows. As a result,
it is possible —depending on the actual input values— that in line 16, the condition s < v actually
holds, and the function __VERIFIER_error() is called, thereby violating the specification.

In this example scenario, all three verifiers are configured as a composite CPA (cf. Section 2.2.2).
The first verifier runs an analysis that considers only control-flow information and does not track
any variable values, and produced Witness 1 (Figure 9(b)). The second verifier then takes this
witness and the verification task as input, runs an analysis based on an interval domain [64], and
produces the violation witnessed in Figure 9(c). In the third step, we run a test-case generator [19,
26, 35] that takes the violation witness from Figure 9(c) and the verification task as input and
produces the test vector that is represented by the witness in Figure 9(d).

Verification. TheComposite CPAused by the first verifier is composed of a Location CPA that tracks
the program counter and an observer analysis (i.e., an Automaton CPA for an observer automaton,
ACM Transactions on Software Engineering and Methodology, Vol. 31, No. 4, Article 57. Pub. date: September 2022.

Verification Witnesses A Manuscripts

164

Verification Witnesses 57:23

Fig. 9. Example C program with a bug (a) and violation witnesses for it (b, c, and d).

cf. Figure 7) that tracks the control state of the observer automaton for the specification. Abstract
states of this composite analysis are tuples (l, (s,ψs)), where l represents the current location in the
CFA, i.e., the component abstract state tracked by the Location CPA, and (s,ψs) is the component
abstract state tracked by the observer analysis, which consists of the current control state s of

ACM Transactions on Software Engineering and Methodology, Vol. 31, No. 4, Article 57. Pub. date: September 2022.

A Manuscripts Verification Witnesses

165

57:24 D. Beyer, M. Dangl, D. Dietsch, M. Heizmann, T. Lemberger, and M. Tautschnig

the observer automaton for the specification and the current state-space restricting condition ψs .
Because the specification is represented as an observer automaton, the observer analysis does not
restrict the state space. This analysis will detect a violation if its abstract state is (·, (sE , ·)), i.e., if
the observer analysis that monitors the observer automaton for the specification transitions into
an accepting state. The initial state is (l3, (s0, true)), i.e., the CFA is in its initial location l3 and the
observer automaton is in its initial state s0. The first witness automaton (Figure 9(b)) is produced
by this verifier. The analysis marks the program entry in line 3 by writing an automaton transition
with the source-code guard (l3, int main(), l4) and the state-space guard true, which is described
by the label 3,enterFunction(main): in our graphical representation.7 The analysis detects that
taking the then-branch in line 5 cannot lead to a violation of the specification, and thus, writes a
transition to the sink state q⊥1 , and similarly for the else-branch in line 20. Because the analysis
does not include any information about program variables, it is unable to eliminate any infeasible
program path to the function-call operations in lines 17 and 21, and thus, it writes transitions to
the accepting states qE1 and qE2 to represent each of these violations. Consequently, the resulting
witness only overapproximates the set of feasible error paths: In fact, all of the error paths that
lead to the violation in line 21 are actually infeasible, and there is no restriction on the values of
program variables or the number of loop unrollings because the analysis is very imprecise.
Witness Refinement. In the next step of our example scenario, we use a verifier that runs an analysis
based on an interval domain, and we give it as input the verification task and the witness from
Figure 9(b), which was produced in the previous step. The Composite CPA we use for this analysis
consists of the following component CPAs: A Location CPA to track the program counter, an ob-
server analysis to track the control state of the observer automaton for the specification, a witness
analysis (Automaton CPA for a witness automaton) to track the control state of the witness au-
tomaton, and an Interval CPA to track the values of variables using an interval domain. Abstract
states of this Composite CPA are tuples (l, (s,ψs), (q,ψw), e), where l and (s,ψs) again represent
the component abstract states of the Location CPA and the observer analysis for the observer au-
tomaton for the specification, respectively, (q,ψw) is the component abstract state of the witness
analysis that consists of the current control state q and state-space conditionψw from the witness
automaton, and e is the component abstract state of the Interval CPA, that is, a mapping from the
setX of program variables to intervals. Because we are consuming a violation-witness automaton,
we will only consider specification violations where both the observer automaton for the speci-
fication and the witness automaton for the violation witness are in an accepting state. The ini-
tial state is (l3, (s0, true), (qinit , true), {n �→ [−∞,∞],v �→ [−∞,∞], s �→ [−∞,∞], i �→ [−∞,∞]}),
i.e., the CFA is in its initial location l3, the observer automaton for the specification is in its
initial state s0, the witness automaton is in its initial state qinit , and there is currently no in-
formation on variable values. From the initial program location l3, the Location CPA only al-
lows a transition via the CFA edge to l4, which means that the first analyzed operation is the
program entry in line 3. In the specification automaton, only the self transition on state s0 la-
beled “o/w” matches; recall from Section 3.1 that such self-transitions only match if no other
transitions are applicable, and that they impose no state-space restrictions. In the witness au-
tomaton, the transition from qinit to q1 labeled 3,enterFunction(main): matches. We do not
gain any information on variable values. Therefore, the successor composite abstract state is
(l4, (s0, true), (q1, true), {n �→ [−∞,∞],v �→ [−∞,∞], s �→ [−∞,∞], i �→ [−∞,∞]}). Next, the anal-
ysis progresses via the operation on line 4, which declares the variable n of type unsigned

char and initializes it via an input value by calling the function __VERIFIER_nondet_char(void).

7While the tokenenterFunction(main)would already be sufficient to unambiguously describe the source-code guard,
we always add the line number for the reader’s convenience.

ACM Transactions on Software Engineering and Methodology, Vol. 31, No. 4, Article 57. Pub. date: September 2022.

Verification Witnesses A Manuscripts

166

Verification Witnesses 57:25

Hence, the new location in the CFA is l5, the observer automaton for the specification again
takes the self-transition and stays in s0, the witness automaton also has no matching transi-
tion other than the self-transition o/w at q1 and therefore stays in q1, and the new interval ab-
stract state is {n �→ [0, 255],v �→ [−∞,∞], s �→ [−∞,∞], i �→ [−∞,∞]}. At l5, the CFA branches.
We first consider the branch to l6. The observer automaton for the specification stays in s0
again, but the witness automaton has a matching transition to q⊥1 . The interval analysis de-
tects that due to the branching condition, n �→ [0, 0] and updates its successor component ab-
stract state accordingly. However, since q⊥1 is a sinking state, the witness analysis that tracks
the control state of the witness automaton will not produce any further successors on this
branch, so we can eliminate all corresponding program paths and need not consider them any
more. We now consider the branch from l5 to l8. Here, the observer automaton for the specifi-
cation also stays in s0, the witness automaton stays in q1, and the new interval abstract state
is {n �→ [1, 255],v �→ [−∞,∞], s �→ [−∞,∞], i �→ [−∞,∞]}. After the next two operations on
lines 8 and 9, which declare the variables v and s of type unsigned char and initializes them both
to 0, the composite abstract state is (l10, (s0, true), (q1, true), {n �→ [1, 255],v �→ [0, 0], s �→ [0, 0],
i �→ [−∞,∞]}. The next operation, in line 10, declares the variable i of type unsigned char

and initializes it to 0. The CFA is then in location l11, which is a loop head. Therefore,
the witness-automaton transition from q1 to q2 matches, and the composite abstract state
is (l11, (s0, true), (q2, true), {n �→ [1, 255],v �→ [0, 0], s �→ [0, 0], i �→ [0, 0]}. Next, we follow the
branch from the loop head l11 to l12, i.e., into the loop, which leads over the locations l12, l13, and l14
and thewitness-automaton stateq3 eventually back to the loop head l11 and the witness-automaton
state q2. We assume that the analysis is able to compute a fixed point, but at the loss of preci-
sion: When entering the loop, i must be lower than n, which is at most 255, so i must be at
most 254, and since i is incremented within the loop, it must be between 1 and 255 at the end
of each loop iteration. The most precise single abstract state in our current composite abstract
domain that covers all reached states at the loop head l11, however, is (l11, (s0, true), (q2, true),
{n �→ [1, 255],v �→ [0, 255], s �→ [0, 255], i �→ [0, 255]}. After reaching this fixed point for the loop,
we continue with the branch from l11 to l16, which matches the source-code guard 11,else on
the witness-automaton transition from q2 to q4. At this point, we encounter another branching.
We first take the branch from l16 to l17, which matches the source-code guard 16,then on the
witness-automaton transition from q4 to qE1 , but since the specification automaton still stays
in s0, which is not an accepting state, we continue to the following operation, which is the
function call to __VERIFIER_error(void) on line 17. This operation matches the source-code
guard enterFunction(__VERIFIER_error) on the observer-automaton transition from s0 to the
accepting state sE . Because the witness automaton stays in the accepting state qE1 , the analysis
has now found a program path to a specification violation that is described by the input wit-
ness, and it writes a transition to the corresponding accepting control state qE1 into its output
witness (Figure 9(c)). We now follow the branch from l16 to l20. For this operation, we compute
the successor state (l20, (s0, true), (q5, true), {n �→ [1, 255],v �→ [0, 255], s �→ [0, 255], i �→ [0, 255]}).
We then encounter another branching. When attempting to compute the successor abstract state
via the branch from l20 to l21, the interval component will detect that all program paths along this
branch are infeasible. Therefore, no successor abstract state for this branch is computed. Along the
other branch from l20 to l24, the source-code guard 20,else on the witness-automaton transition
to q⊥2 matches, so that the analysis does not continue along this branch either, and the state-space
exploration is complete. Because the analysis did not encounter any violation states via the else-
branch in line 16, it writes a corresponding transition to a sinking state into its output witness.
The new witness (Figure 9(c)) is more precise than the input witness (Figure 9(b)), as it does not
contain the infeasible error paths to line 21 and puts restrictions on variable values, but it is still an

ACM Transactions on Software Engineering and Methodology, Vol. 31, No. 4, Article 57. Pub. date: September 2022.

A Manuscripts Verification Witnesses

167

57:26 D. Beyer, M. Dangl, D. Dietsch, M. Heizmann, T. Lemberger, and M. Tautschnig

overapproximation of the set of feasible error paths. For example, it contains infeasible error paths
that never enter the loop and, therefore, cannot trigger the overflow that makes the violation in
line 17 reachable.

Execution-based Witness Validation. In the third step of our example scenario, the violation witness
from Figure 9(c) is used to restrict a test-case generator [26] to derive a specific test vector for the
program path to the call to __VERIFIER_error(void) in line 17. The test vector is derived by
extracting a satisfying assignment of the formula that represents the program path to l18. The
third witness automaton (Figure 9(d)) represents the result of the test-case generation, i.e., a test
vector, which contains all the input data necessary to execute a test of the program that triggers
the described violation of the specification. This witness precisely represents exactly one feasible
error path, and is therefore an underapproximation of the set of feasible error paths, because there
are also other paths that would lead to a violation, for example with more than two loop iterations
or with a different pair of summands.

Dynamic Validation. We call CPA-witness2test and FShell-witness2test dynamic validators, be-
cause they perform only very light-weight static analysis to extract a test vector from a violation
witness, and then compile, link, and execute the program with a corresponding test harness to
dynamically observe whether the specification is actually violated during the execution. The ad-
vantages of dynamic validators are that (1) they can be much more efficient than static validators,
because they do not require expensive model-checking techniques, (2) they can be more precise
than static validators, because a violation that can be observed during an actual execution of a pro-
gram undeniably exists, (3) an executable produced by a dynamic validator can be used by devel-
opers to analyze a bug by applying standard tools they already know and are well-trained in, such
as debuggers, and (4) a test harness produced by a dynamic validator can directly be used by devel-
opers to improve their test suite and prevent regressions once the bug is fixed. There are, however,
also some disadvantages: A dynamic validator requires as input a witness that represents a test
vector, i.e., a witness that specifies concrete value assignments for all program inputs, which may
not be available from all verifiers. To obtain a suitable witness, it is possible to first apply witness
refinement to the original witness, but, because witness refinement uses the expensive techniques
of static validators, this solution negates the first advantage of dynamic validators over static val-
idators (i.e., their efficiency). The second disadvantage of dynamic validators is that they require a
concrete and secure execution environment8 that matches the target environment of the analyzed
system, whereas static validators can, conceptually, also be used in any (unrelated) other execu-
tion environment. Lastly, dynamic validators can only confirm a violation if the time required to
execute the program and trigger the bug is finite (and reasonably brief). If, for example, the specifi-
cation is that the program must always terminate, a validator for a violation would need to confirm
that there is a path that does not terminate; this cannot be observed from a finite execution.

Example 8 (Execution-based Validation). We now demonstrate execution-based validation of ver-
ification results as it would be performed by the validator CPA-witness2test when applied to the ver-
ification task composed of the program from Figure 9(a) and the specification from Figure 2, and
the third and most precise witness from our previous example shown in Figure 9(d). To extract the
input values from the witness, match them to the input functions of the program, and generate
the test harness depicted in Figure 10, the validator first runs a light-weight program analysis con-
figured as a Composite CPA composed of the following components: a Location CPA that tracks
the program counter, an observer analysis that tracks the control state of the observer automaton

8Test-suite validators (such as TestCov [41]) can be used for the safe and secure execution of tests.

ACM Transactions on Software Engineering and Methodology, Vol. 31, No. 4, Article 57. Pub. date: September 2022.

Verification Witnesses A Manuscripts

168

Verification Witnesses 57:27

Fig. 10. Test harness generated from the witness of Figure 9(d) for the C program of Figure 9(a).

for the specification, and a witness analysis that tracks the control state of the witness automaton
for the violation witness. The analysis traces the program paths that are described by the witness
automaton and matches the values of input variables on these paths to the corresponding input
functions of the program in the correct order. In the example, the automaton specifies that in line 4,
the value assigned to the variable n (which controls how many further input values will be read)
should be 2; that in the first loop iteration in line 12, the value assigned to the variable v should
be 224; and that in the second loop iteration in line 12, the value assigned to the variable v should
be 63. Consequently, the validator produces the test harness listed in Figure 10, which contains an
implementation of the input function __VERIFIER_nondet_char(void) that returns exactly those
values in that order, and an implementation of the function __VERIFIER_error(void) that, if called,
allows the validator to detect the specification violation through a custom program output. In the
next step, the validator compiles and links the source code of the C program and the produced test
harness, and executes the resulting program. As expected, the validator can observe the specifica-
tion violation during execution, because the sum of 224 and 63 is 287, which exceeds the value
range of the type unsigned char of variable s and therefore wraps around to the value 31. Be-
cause 31 is less than the last input value 63, the function __VERIFIER_error() is called at line 17.
The validator detects this function call and confirms the verification result.

4.2.2 Tool Implementations. We implemented violation-witness-based result validation in the
two static validators CPAchecker and UAutomizer, and in the two dynamic validators CPA-witness2test
and FShell-witness2test.

Static Violation-Witness-Based Result Validation with CPAchecker. Figure 11 shows a section of the
architecture of CPAchecker that implements violation-witness-based result validation. The left side
of the figure shows the inputs, consisting of the verification task (i.e., program and specification)
and the violationwitness. The program is parsed and converted into a CFA, the specification into an
observer automaton, and the violation witness into a witness automaton. Then, the CPA algorithm
is run with a composite program analysis that is composed of at least a Location CPA and two

ACM Transactions on Software Engineering and Methodology, Vol. 31, No. 4, Article 57. Pub. date: September 2022.

A Manuscripts Verification Witnesses

169

57:28 D. Beyer, M. Dangl, D. Dietsch, M. Heizmann, T. Lemberger, and M. Tautschnig

Fig. 11. The architecture of the violation-witness-based result validator implemented in CPAchecker.

Automaton CPAs, one for the observer automaton for the specification and one for the witness
automaton for the violation witness. As mentioned in Section 4.1.1, further CPAs are available and
can optionally be added to the composition to enhance the capabilities of the program analysis; in
our evaluation (cf. Section 6), we add predicate analysis [28] and explicit-state model checking [42].

After the CPA algorithm completes, the computed results are delivered. This may either be a
simple confirmation (or refutation) of the validated result, or it may be a refined violation witness
if the validated result was confirmed and the validation process was able to add information to
an imprecise input witness. The witness is confirmed if the observer automaton and the witness
automaton both reached one of their accepting control states.

Static Violation-Witness-Based Result Validation with UAutomizer. While we formalized witness-
based result validation using the concept of configurable program analysis, other approaches are
also applicable: UAutomizer performs the validation in two steps. In the first step, a new CFA is
constructed that represents those paths of the original CFA that comply with the source-code
guards of the witness automaton, i.e., the new CFA is constructed as a product of the original
CFA and the witness automaton. The states of this product automaton are pairs (l ,q), where l is
a location of the original CFA and q is a control state of the witness automaton. The product
contains a transition from (l ,q) to (l ′,q′) labeled with op if

— (l ,op, l ′) is a CFA edge and
— q

(S,ψ)−−−−→q′ is a transition in the witness automaton such that (l ,op, l ′) ∈ S .
In the second step, UAutomizer verifies if the resulting CFA satisfies the specification using its
automata-theoretic verification approach [84]. The witness is confirmed if a violation of the specifi-
cation is found, that is, the observer automaton for the specification reached an accepting control
state and the new CFA also reached an accepting control state.

Dynamic Violation-Witness-Based Result Validation with CPA-witness2test. Figure 12 shows
the witness2test-workflow for violation-witness-based result validation with dynamic validators:
The validator receives as input the verification task and the violation witness produced by a ver-
ifier, and synthesizes from these inputs a test harness for the program. This test harness and the
program source code are compiled and linked with a C compiler to produce an executable program,
which is then executed. Assuming that the witness represents a precise test vector and the valida-
tor correctly translates the witness into a test harness, if the validator observes a violation, then

ACM Transactions on Software Engineering and Methodology, Vol. 31, No. 4, Article 57. Pub. date: September 2022.

Verification Witnesses A Manuscripts

170

Verification Witnesses 57:29

Fig. 12. Flow of violation-witness-based result validation with dynamic validators (witness2test).

the bug found by the verifier and described by the witness is realizable and the result is therefore
confirmed; otherwise, it is refuted. Because an executable program that triggers an actual bug is
always available after a successful validation, the developer can immediately start debugging, for
example by running the executable with a debugger like GDB.

For CPA-witness2test, the step of extracting the test vector from the verification task and witness
is conceptually similar to the validation performed by static validators, except that the static analy-
sis is used only to assign the input values from the witness to the correct input functions of the pro-
gram, not to perform any further semantic reasoning about the program. In fact, CPA-witness2test
uses also the architecture displayed in Figure 11 for the step of matching the input values from
the witness to the input functions of the program. Unlike the static validators, however, it does
not add further CPAs and its result in this step is the test harness.

Dynamic Violation-Witness-Based Result Validation with FShell-witness2test. The key design prin-
ciple of FShell-witness2test, on the other hand, is independence from existing verification infras-
tructure: the results of FShell-witness2test are by design unbiased towards any existing software-
analysis framework. Consequently, FShell-witness2test is another example that shows that while
we formalize witness-based result validation using the CPA concept, implementations that follow
other paradigms are also applicable in practice. The architecture of FShell-witness2test consists of
two major parts: (1) a Python-based processor of the violation witness and the program source
code, using pycparser,9 to generate a test vector in a format compatible with FShell [89] (hence
the name of the validator), and (2) a Perl script to convert such a test vector into a test harness
that can be compiled and linked with the input program. For a given violation witness and ver-
ification task, FShell-witness2test first parses the specification to determine the expected type of
violation. The witness and the C program are then handed to the Python-based processor. Because
pycparser cannot handle various GCC extensions, input programs are preprocessed and sanitized
by performing text replacement and removal. FShell-witness2test then obtains the abstract syntax
tree and iterates over its nodes to gather data types and source locations of input-value assign-
ments. Finally, FShell-witness2test builds a linear sequence of states from the witness automaton.
Traversing this sequence, any match of line numbers against the input-value assignments trig-
gers an attempt to extract values from assumptions in the witness. If the assumption represents
a precise value assignment, an input value is recorded.

9https://github.com/eliben/pycparser.

ACM Transactions on Software Engineering and Methodology, Vol. 31, No. 4, Article 57. Pub. date: September 2022.

A Manuscripts Verification Witnesses

171

https://github.com/eliben/pycparser

57:30 D. Beyer, M. Dangl, D. Dietsch, M. Heizmann, T. Lemberger, and M. Tautschnig

4.3 Result Validation Based on Correctness Witnesses
Correctness witnesses are verificationwitnesses that represent the artifacts of a proof that a program
satisfies a specification, i.e., invariants for certain program locations that are intended to help
reconstruct a correctness proof (Section 3.2.3).

4.3.1 Principles. The program analysis of a correctness-witness-based result validator checks
if the given invariants indeed hold at their corresponding abstract program states; validation of a
correctness witness fails if the validator refutes the invariant φ for an abstract program state or if
it detects a violation of the specification, i.e., a feasible error path.

There are only two differences between violation-witness validation and correctness-witness
validation:

— Violation-witness-based result validation uses assumptions at the witness automaton’s tran-
sitions to constrain the state space; a correctness witness does not constrain the state space
but contains at each control state in the witness automaton a state invariant.

— Violation-witness-based result validation attempts to replay an error path through the pro-
gram, while correctness-witness-based result validation tries to replay the correctness proof:
after confirming a witness invariant, it may use it as an auxiliary lemma to prove the cor-
rectness of the program or further witness invariants.

4.3.2 Tool Implementations. Currently, two implementations of correctness-witness-based re-
sult validators exist. We describe the two different strategies employed by CPAchecker and
UAutomizer (out of themany possible strategies to implement a validator), which are implemented in
two different verification frameworks to demonstrate the potential and flexibility of the approach.

CPAchecker’s Correctness-Witness-Based Result Validator. Like the CPAchecker-based verifier from
Section 4.1.1, the CPAchecker-based validator for correctness witnesses uses the KI ���←−KI technique
for k-induction. In a preparatory step, the invariants are extracted from the correctnesswitness and
mapped to their corresponding program locations. By design, a witness may be imprecise, there-
fore it is possible that an invariant is mapped to several program locations. The invariant generator
then uses these invariants as candidate invariants, and, if it is able to prove the inductiveness of
such a candidate invariant, it supplies it as an invariant to themain k-induction procedure. If, on the
other hand, the invariant generator is able to refute a candidate at all program locations described
by its corresponding state in the witness automaton, the validation fails, i.e., refutes the result.

One of the advantages of using k-induction for correctness-witness-based result validation is
that for non-trivial software-verification tasks, k-induction is known to perform well only if it
is supplied with the necessary auxiliary invariants [27, 99]. By design, all techniques that are
implemented in CPAchecker to generate its own auxiliary invariants (e.g., from data-flow analysis)
are turned off for the validation. Consequently, the validator’s success in confirming a proof result
depends on the quality of the invariants given by the witness.

Within each iteration of the k-induction procedure of the KI ���←−KI technique’s invariant genera-
tor, CPAchecker will try to refute each invariant provided by the witness by finding a counterexam-
ple of the current length k before trying to prove its correctness. Hence, CPAchecker is guaranteed
to find incorrect invariants with counterexamples that are at most as long as the value of k is re-
quired to prove that the program conforms to its specification, and it is also guaranteed to only use
supplied invariants that it can prove to be correct. CPAchecker does not guarantee, however, that
it will detect incorrect witness-supplied invariants if the length of their shortest counterexample
exceeds the value of k required to prove that the program itself is correct. This is a design decision
of the implementation, not a limitation of the concept of correctness witnesses or the CPAchecker

ACM Transactions on Software Engineering and Methodology, Vol. 31, No. 4, Article 57. Pub. date: September 2022.

Verification Witnesses A Manuscripts

172

Verification Witnesses 57:31

framework. To instead exhaustively confirm or refute all provided invariants, CPAchecker could
be changed to simply defer checking the correctness of the program until the KI ���←−KI invariant
generator has processed all invariants. The reasoning for the design decision without exhaustive
checking was to not discourage developers of verifiers from producing invariants that k-induction
might struggle with and cause exhaustive checks to time out. Moreover, if proving the correctness
of a program requires an auxiliary invariant and the witness provides a correct one, the witness
can already be considered useful, even if not all of its contents are checked exhaustively. For use
cases where exhaustive proof or refutation of all invariants is desired, an alternative implemen-
tation is provided by UAutomizer.

Ultimate Automizer’s Correctness-Witness-Based Result Validator. To validate a proof result,
UAutomizer verifies the given program and considers each invariant provided by the correctness
witness as an additional specification. Each of the specifications (the additional specifications from
the invariants and the original specifications) is checked in the order of their occurrence in the pro-
gram, and if correct, can be assumed while checking specifications occurring later in the program.
UAutomizer confirms the result if the original specification and all specifications derived from wit-
ness invariants hold. If one specification cannot be confirmed, the validation fails (result refuted).
In case we do not want to validate the witness as a whole but would like to point out incorrect
invariants individually, we can check each specification individually without assuming validity
for any other specification.

Converting a witness invariant into an additional specification is implemented as follows. First,
an observer analysis matches the program CFA against the witness to obtain a partial map f from
program locations to witness invariants. In a second step, the CFA is modified as follows. For each
location l for which the mapping f is defined, UAutomizer

— adds a new location l′,
— adds a new edge (l,opf (l), l′)where opf (l) is the assume operation that assumes the invariant

f (l) that was mapped to l,
— adds a new edge (l,op¬f (l), lerr), where op¬f (l) is the assume operation that assumes the nega-

tion of the invariant f (l) and lerr is a location whose reachability is forbidden by the original
specification, and

— replaces each outgoing edge of the form (l,op, l”) with an edge (l′,op, l”).
The resulting CFA is verified as described in Section 4.1.2.

Example 9 (Correctness Witnesses). We illustrate the idea of correctness-witness validation us-
ing two short C programs listed in Figure 13(a) (taken from Figures 1(a)) and 13(c) (taken from
Figure 9(a)), an example correctness-witness automaton shown in Figure 13(b), and the specifica-
tion from Figure 2, which forbids reachable calls to the function __VERIFIER_error(void). The
first of the two C programs (Figure 13(a)) differs from the second C program (Figure 13(c)) only
in one line: While variable s is declared with type unsigned int in line 9 of the first program, it
is declared with type unsigned char in line 9 of the second program. As a result, the first pro-
gram satisfies the specification, while the second program violates it, because s is susceptible to
arithmetic overflows (cf. Example 7).

One way to prove that neither of the calls to the function __VERIFIER_error() in line 17 and
line 21 is reachable in the first program would be to find an upper bound for the number of loop
iterations and then unroll the loop, performing a bounded model check [50]. While this would
still be feasible in our example due to the small types and simple structure that we chose for
ease of presentation, it would already be expensive; for larger loop bounds, this strategy becomes
infeasible, and for unknown loop bounds, it is impossible. Another—unbounded—way to prove

ACM Transactions on Software Engineering and Methodology, Vol. 31, No. 4, Article 57. Pub. date: September 2022.

A Manuscripts Verification Witnesses

173

57:32 D. Beyer, M. Dangl, D. Dietsch, M. Heizmann, T. Lemberger, and M. Tautschnig

Fig. 13. Example C programs (a and c) and a potential correctness witness (b), with the only difference
between the two programs (line 9) highlighted.

that the program is safe is to prove that s ≤ 65,025 is an invariant of the loop from lines 11 to 15.
This invariant is not inductive for the loop, however: It holds trivially before the loop, where s = 0,
but the loop body does not guarantee that the invariant is preserved. Even strengthening this
invariant to s ≤ 65,025∧i ≤ 255 (which should be simple for any verifier that understands C types
and knows that in our target architecture, type unsigned char is 8 bits wide) is not inductive. The
predicate s ≤ i · 255 ∧ 0 ≤ i ≤ 255 ∧ n ≤ 255, on the other hand, is an inductive invariant of the
loop, but finding such an invariant is usually difficult, and depends on the verification strategy: it
is, therefore, the critical step in solving this verification task.

A verifier that successfully proves the safety property for the program may then export a correct-
ness witness. If the correctness witness contains the invariant s ≤ i · 255 ∧ 0 ≤ i ≤ 255∧ n ≤ 255,
a witness validator using the witness should be able to easily confirm the proof. Figure 13(b) dis-
plays a graphical representation of such a correctness witness. The automaton starts in an initial
control state qinit . The witness assigns the invariant true. It is allowed to proceed to state q1 if the
control flow enters the main function of the program. As long as this transition is not possible, the
automaton remains in state qinit via the self-transition “otherwise” (o/w). From q1, the automaton
is allowed to proceed to q2 if the control-flow enters the loop head; otherwise, it remains in q1
via the self-transition o/w. From q2, the automaton can proceed to control state q3 if the condition
of the while loop in line 11 is true (the then-case), or to state q4 if the condition in line 11 is
false (the else-case). As long as none of these transitions are possible, the automaton remains in
control state q2 via the self-transition o/w. The automaton proceeds back from state q3 to q2 after
the program operation in line 14; as long as this is not possible, the automaton will stay in q3 via

ACM Transactions on Software Engineering and Methodology, Vol. 31, No. 4, Article 57. Pub. date: September 2022.

Verification Witnesses A Manuscripts

174

Verification Witnesses 57:33

its self-transition o/w. If the automaton is in control state q4, it will stay there forever.10 Control
states qinit , q1, q3, and q4 contain the trivial state invariant true. Control state q2 specifies the in-
variant s ≤ i · 255 ∧ 0 ≤ i ≤ 255 ∧ n ≤ 255. Because state q2 describes the loop head, a validator is
able to prove (for example by induction) that the invariant holds at this program location, and can
then use the invariant to prove the correctness of the program, thus validating the proof result.

If the invariant s ≤ i · 255 ∧ 0 ≤ i ≤ 255 ∧ n ≤ 255 is removed from the witness for state q2, the
witness is still valid (because true is an invariant). However, the k-induction-based validator will no
longer confirm the proof because it lacks the information that is required to prove the correctness
of the program, and it is not allowed to synthesize the required information itself. This is a design
choice, in order to not confirm witnesses that are extremely weak (e.g., true everywhere).

Due to the structural similarity between the first program in Figure 13(a) and the second pro-
gram in Figure 13(c), the witness in Figure 13(b) can also be matched with the second (unsafe)
program. In this case, however, the loop invariant s ≤ i · 255 ∧ 0 ≤ i ≤ 255 ∧ n ≤ 255 does not im-
ply that s ≥ v , because the invariant is no longer sufficient to preclude overflows during the
addition in line 13. In fact, if we conjoined s ≥ v to our invariant, it would still be a valid loop in-
variant in Figure 13(a) but not in Figure 13(c), where an overflow would be a counterexample to the
inductiveness of s ≤ i · 255 ∧ 0 ≤ i ≤ 255 ∧ n ≤ 255 ∧ s ≥ v . Hence, a validator will not be able to
prove the correctness of the program using the loop invariant s ≤ i · 255 ∧ 0 ≤ i ≤ 255 ∧ n ≤ 255.
Because each correctness-witness-based validation of a proof result also implicitly uses the safety
property as an invariant, the validator can reject the witness by finding a feasible error path to
line 17 as a counterexample to the specification, such as the one from Figure 9(d). The strength of
the invariants determines the quality of the witnesses, but no particular strength is required. This
example shows that correctness-witness-based validation can be more efficient than verification
because it might be easier to (re-) verify that invariants indeed hold, while the verification needs to
come up with the invariants. The task of finding useful invariants is in general considered one of
the key challenges in software verification. Generalizing this approach allows for a lot of flexibility,
because the more helpful the candidate invariants are, the less work has to be performed by the
validator.

5 EXCHANGE-FORMAT SPECIFICATION
To store witness automata and exchange them across different verification tools and validators,
we define an exchange format. Because automata are graphs, we use the existing graph for-
mat GraphML [51], which defines XML elements for edges (used in our format to model protocol-
automaton transitions) and nodes (to model protocol-automaton control states).

The root element of a protocol-automaton GraphML document is the element graphml. The
graph that models the protocol automaton is represented by the element graph, which is a child el-
ement of the root element graphml. We require that there is exactly one such graph element in the
document. We model a control state of a protocol automaton using a node element. Each node el-
ement is a child element of the graph element and must specify a unique identifier (within the
graph) for the control state using the attribute id. Analogously, we model a protocol-automaton
transition using an edge element. Each edge element is a child element of the graph element and
has the attributes source and target, both of which refer to node elements via their ids. Additional
data can be attached to individual nodes and edges, and the graph itself, by adding data elements
as child elements. The content of a data element is its value; each data element must specify
its meaning via a key attribute. Each key that is used in the document must be defined using a

10The rest of the exploration does not matter for the witness, because the sole purpose of the witness is to attach the
invariant at the right program location.

ACM Transactions on Software Engineering and Methodology, Vol. 31, No. 4, Article 57. Pub. date: September 2022.

A Manuscripts Verification Witnesses

175

57:34 D. Beyer, M. Dangl, D. Dietsch, M. Heizmann, T. Lemberger, and M. Tautschnig

key element as a child element of the root element graphml. A key element must define the name
of the key (using the attribute attr.name), the type of the values of data elements with this key
(using the attribute attr.type), and whether data elements with this key are used on the graph,
or on node or edge elements (using the attribute for), and a unique identifier for the key (us-
ing the attribute id. Valid values for the attr.type attribute in GraphML are boolean, int, long,
float, double, and string. For protocol automata, we use the type boolean for boolean values,
int for integer values, and string for other values. The key attribute of a data element refers
to the value of the id attribute of the corresponding key element, not its name. A default value
can be defined for each key as the content of a default element that is added to the enlargeth-
ispage8ptdesired key element as a child element.

Keys for graph Elements. The following keys are defined for data elements that are used to
add information that concerns the witness as a whole, i.e., for data elements that are direct chil-
dren of the graph element:

— witness−type is used to specify the witness type. A correctness witness is identi-
fied by the value correctness_witness, a violation witness is identified by the value
violation_witness.

— sourcecodelang is used to specify the name of the programming language, for example C.
— producer is used to specify the name of the tool that produced the witness automaton, for

example CPAchecker 1.6.8.
— specification is used to provide a textual representation of the specification of the verifica-

tion task. The format of this representation is user-defined. In SV-COMP [12], the text CHECK
(init(main()), LTL(G ! call(__VERIFIER_error()))) is used to represent the specifi-
cation from Figure 2.

— programfile is used to record the URI or file-system path to the source code, e.g., loop−
acceleration/multivar_true−unreach−call1_true−termination.i. This key is intended
for documentation purposes; a validator is not required to be able to access the specified file
location, because the source code is explicitly provided to the validator as input. Hence, the
validity of the witness must not depend on the availability of the source code at the location
specified by the value of this key in the execution environment of the validation.

— programhash is used to record the SHA-256 hash value of the verified program.
— architecture is used to provide a textual representation of the machine architecture as-

sumed for the verification task. This textual representation is user-defined. We propose to
use the identifiers 32−bit and 64−bit to distinguish between 32-bit systems and 64-bit sys-
tems.

— creationtime is used to specify the date and time the witness was created in ISO 8601 format.
The date must contain the year, the month, and the day, separated by dashes (“−”). The date
is separated from the time using the capital letter “T”. The time must be given in hours,
minutes, and seconds, separated by colons (“:”). If the timestamp is in UTC time, it ends
with a “Z”. If the timestamp is not given in UTC time, a positive (“+”) or negative (“−”) time
offset consisting of hours and minutes separated by a colon (“:”) can be appended. Example:
2016−12−24T13:15:32+02:00.

We require that values for all keys listed above are provided. The value of the attr.type attribute
of all key elements corresponding to these keys is string.

Keys for node Elements. The following keys are defined for node elements, which represent con-
trol states in witness automata (cf. Table 4):

ACM Transactions on Software Engineering and Methodology, Vol. 31, No. 4, Article 57. Pub. date: September 2022.

Verification Witnesses A Manuscripts

176

Verification Witnesses 57:35

Table 4. Keys for node Elements Allowed in Witnesses

Key Violation witness Correctness witness
entry ✓ ✓

sink ✓

violation ✓

invariant ✓

invariant.scope ✓

cyclehead ✓

— entry is used to mark a node as an entry node. An entry node represents the initial control
state of the witness automaton. We require that exactly one initial control state is defined
per document. The attr.type attribute of this key is Boolean. The default value is false.

— sink is used to mark a node as a sink node. A sink node represents a sink control state in
the automaton. Sink states are not allowed in correctness-witness automata (Tables 1 and 4).
The attr.type attribute of this key is Boolean. The default value is false.

— violation is used to mark a control state as a violation state, i.e., as a state that represents a
specification violation. Violation control states are not allowed in the syntax for correctness
witnesses, because all control states are implicitly accepting states (Tables 1 and 4). The
attr.type attribute of this key is Boolean. The default value is false.

— invariant is used to specify an invariant for a control state. The value of a data element with
this key must be an expression that evaluates to a value of the equivalent of a Boolean type
in the programming language of the verification task, e.g., for C programs, a C expression
that evaluates to a value of the C type int (used as Boolean). The expression may consist
of conjunctions or disjunctions, but not function calls. Local variables that have the same
name as global variables or local variables of other functions can be qualified by using a
data element with the invariant.scope key. Invariants are not allowed in violation-witness
automata (Tables 1 and 4). The attr.type attribute of this key is string. All variables used
in the expression must appear in the program source code. If a control state does not have a
data element with this key, a consumer shall consider the state invariant to be true.

— invariant.scope is used to qualify variables with ambiguous names in a state invariant
by specifying a function name: The witness consumer must map the variables in the given
invariant to the variables in the source code. Due to scopes in many programming languages,
such as C, there may be ambiguously named variables in different scopes. The consumer
first has to look for a variable with a matching name in the scope of the function with the
name specified via a data element with the invariant.scope key before checking the global
scope. This key always applies to the invariant as a whole, i.e., it is not possible to specify
an invariant over local variables of different functions. In existing implementations, there is
currently no support for different variables with the same name within different scopes of
the same function. Invariant scopes are not allowed in violation-witness automata (Tables 1
and 4). The attr.type attribute of this key is string.

— cyclehead is used to mark a state that connects stem and loop in a violation witness for
termination, i.e., it marks the separation of stem and loop of a non-termination lasso [82]. A
state with this annotation should be reachable from every non-sink state in the loop. At least
one such state is required in a violation witness for termination properties. In reachability
witnesses, this annotation is not allowed. The attr.type attribute of this key is Boolean.
The default value is false.

ACM Transactions on Software Engineering and Methodology, Vol. 31, No. 4, Article 57. Pub. date: September 2022.

A Manuscripts Verification Witnesses

177

57:36 D. Beyer, M. Dangl, D. Dietsch, M. Heizmann, T. Lemberger, and M. Tautschnig

Table 5. Keys for edge Elements Allowed in Witnesses

Key Violation witness Correctness witness
assumption ✓ ✓

assumption.scope ✓ ✓

assumption.resultfunction ✓ ✓

control ✓ ✓

startline ✓ ✓

endline ✓ ✓

startoffset ✓ ✓

endofset ✓ ✓

enterLoopHead ✓ ✓

enterFunction ✓ ✓

returnFromFunction ✓ ✓

threadId ✓ ✓

createThread ✓ ✓

In general, it is not required to annotate a node element with data elements, except (a) that one
node must be specified to represent the initial state of the automaton using a data element with
the entry key, (b) that in a violation-witness automaton, there should be at least one control state
that is marked as a violation state using a data element with the violation key, and (c) that in
a violation witness for a termination specification, there should be at least one control state that
uses a data element with the cyclehead key.

Keys for edge Elements. The following keys are defined for edge elements, which represent tran-
sitions in witness automata (cf. Table 5):

— assumption is used to specify a state-space guard for a transition. The value of a data el-
ement with this key must be an expression that evaluates to a value of the equivalent of
a Boolean type in the programming language of the verification task, e.g., for C programs,
a C expression that evaluates to a value of the C type int (used as Boolean). The expres-
sion may consist of conjunctions or disjunctions, but not function calls. Local variables that
have the same name as global variables or local variables of other functions can be qualified
by using a data element with the assumption.scope key. All variables used in the expres-
sion must appear in the program source code, with the exception of the variable \result,
which represents the return value of a function identified by the data element with the key
assumption.resultfunction after a function-return operation on a CFA edge matched by
this transition. If the \result variable is used, the name of the corresponding function must
be provided using a data element with the assumption.resultfunction key. If a transition
does not have a data element with the assumption key, a consumer shall assume that the
state-space guard of this transition is true. In correctness witnesses, for each state and each
source-code guard, the disjunction of all state-space guards leaving that state via a transition
matched by that source-code guard must be true, i.e., while state-space guards can be used
to split the state space in correctness witnesses, they may not be used to restrict it (Table 1).
The attr.type attribute of this key is string.

— assumption.scope is used to qualify variables with ambiguous names in a state-space guard
by specifying a function name: The witness consumer must map the variables in the given
invariant to the variables in the source code. Due to scopes in many programming languages,
such as C, there may ambiguously named variables in different scopes. The consumer first
has to look for a variable with a matching name in the scope of the function with the name

ACM Transactions on Software Engineering and Methodology, Vol. 31, No. 4, Article 57. Pub. date: September 2022.

Verification Witnesses A Manuscripts

178

Verification Witnesses 57:37

specified via a data element with the assumption.scope key before checking the global
scope. This key always applies to the state-space guard as a whole, i.e., it is not possible
to specify a state-space guard over local variables of different functions. In existing imple-
mentations, there is currently no support for different variables with the same name within
different scopes of the same function. The attr.type attribute of this key is string.

— assumption.resultfunction is used to specify the function of the \result variable used in
a state-space guard of the same transition, meaning that \result represents the return value
of the given function. This key applies to the state-space guard as a whole, it is, therefore,
not possible to refer to multiple function-return values within the same transition. If the
\result variable is used, a data element with this key must be used in the same transition,
otherwise, it is superfluous. The attr.type attribute of this key is string.

— control is used as part of the source-code guard of a transition and restricts the set of
CFA edges matched by the source-code guard to assume operations of the CFA. Valid
values for data elements with this key are condition−true and condition−false, where
condition−true specifies the branch where the assumed condition evaluates to true, i.e., the
then branch, and condition−false specifies the branch where the assumed condition eval-
uates to false, i.e., the else branch. The attr.type attribute of this key is string.

— startline is used as part of the source-code guard of a transition and restricts the set of
CFA edges matched by the source-code guard to operations on specific lines in the source
code. Any line number of the source code is a valid value for data elements with this key.
A startline refers to the line number on which an operation of a CFA edge begins. The
attr.type attribute of this key is int.

— endline is similar to the startline key, except that it refers to the line number on which
an operation of a CFA edge ends.

— startoffset is used as part of the source-code guard of a transition and restricts the set
of CFA edges matched by the source-code guard to operations between specific character
offsets in the source code, where the term character offset refers to the total number of
characters from the beginning of a source-code file up to the beginning of some intended
statement or expression. Any character offset between the beginning and end of a source-
code file is a valid value for data elements with this key. While on the one hand, usage of
data elements with this key allows the witness to convey very precise location information,
on the other hand, this information is susceptible to even minor changes in the source code.
If this is not desired, usage of data elements with this key should be omitted by the producer,
or, if that is not an option, it can be removed during a post-processing step, provided that
enough other source-code guards are present to make matching the witness against the
source code feasible. A third option would be to recompute the offset values for the changed
source code using a diff tool. The attr.type attribute of this key is int.

— endoffset is similar to the startoffset key, except that it refers to the character offset at
the end of an operation.

— enterLoopHead is used as part of the source-code guard of a transition and restricts the set
of CFA edges matched by the source-code guard to operations on CFA edges where the
successor is a loop head. For our format specification, any CFA node that (1) is part of a loop
in the CFA, (2) has an entering CFA edge where the predecessor node is not in the loop, and
(3) has a leaving CFA edge where the successor node is not in the loop, qualifies as a loop
head. Note, however, that depending on the programming language of the verification task,
the loop head may be ambiguous. For example, in C it is possible to use goto statements to
construct arbitrarily complex loops with many CFA nodes that match the definition above.
Conversely, there could also be loops without any loop head matching this definition, in

ACM Transactions on Software Engineering and Methodology, Vol. 31, No. 4, Article 57. Pub. date: September 2022.

A Manuscripts Verification Witnesses

179

57:38 D. Beyer, M. Dangl, D. Dietsch, M. Heizmann, T. Lemberger, and M. Tautschnig

which case the key may not be used. The attr.type attribute of this key is Boolean and its
default value is false.

— enterFunction is used as part of the source-code guard of a transition and restricts the
set of CFA edges matched by the source-code guard to function-call operations where the
name of the called function matches the specified value. A witness consumer may also use
this key to track a stack of function calls and use this information to qualify ambiguously
named variables in state-space guards or state invariants in the absence of explicitly specified
scopes via the assumption.scope or invariant.scope keys. The attr.type attribute of this
key is string.

— returnFromFunction is the counterpart of the enterFunction key, i.e., it is used as part of
the source-code guard of a transition and restricts the set of CFA edges matched by the
source-code guard to function-return operations where the name of the function that is
being returned from matches the specified value. Analogously to enterFunction, a witness
consumer may use this key to track a stack of function calls. The attr.type attribute of this
key is string.

— threadId is used in the analysis of concurrent programs11 as part of the source-code guard
of a transition and represents the currently active thread for the transition. The value of data
elements with this key must uniquely identify an active (i.e., created but not yet destroyed)
thread within each run through the automaton, meaning that if two different threads share
the same identifier, they must either (a) be on different automaton runs or (b) at each step
of each automaton run at most one of them may be active. If a transition has data elements
where one specifies a threadId and another one uses the createThread key, the threadId

refers to the thread that creates the new thread, not the created thread. The attr.type

attribute of this key is string.
— createThread is used in the analysis of concurrent programs as part of the source-code

guard of a transition and restricts the set of CFA edges matched by the source-code guard
to operations where a new thread is created. The value of data elements with this key is
an identifier for the new thread. Any string may be used as an identifier, provided that it
uniquely identifies an active thread in each automaton run. The initial function of the created
thread must be provided in a subsequent automaton transition using the enterFunction key,
except for the main thread of the program, where the same (initial) transition may be used
because, at that point, no other thread exists yet. Subsequently, a thread is assumed to be
terminated once its callstack is empty again, which is achieved by using a corresponding
returnFromFunction value. The attr.type attribute of this key is string.

In general, it is not required to annotate an edge element with data elements, but in practice, there
is rarely any value in having a completely unrestricted transition in a protocol automaton. Note
that the o/w-transitions that we defined in Section 3.1.2 are implicit, i.e., they do not appear in the
exchange format as explicit edge elements but are automatically synthesized by the consumer.

The format specification, including a list of keys, is maintained in a GitHub project.12 For
termination witnesses, the project contains a dedicated section.13 An open-source witness
linter for checking the well-formedness of a witness is also available14 and has been used in
SV-COMP 2021 [18].

11For more details on witnesses for concurrent programs, we refer the reader to the literature [29].
12https://github.com/sosy-lab/sv-witnesses.
13https://github.com/sosy-lab/sv-witnesses/tree/svcomp22/termination.
14https://github.com/sosy-lab/sv-witnesses/tree/svcomp22/lint.

ACM Transactions on Software Engineering and Methodology, Vol. 31, No. 4, Article 57. Pub. date: September 2022.

Verification Witnesses A Manuscripts

180

https://github.com/sosy-lab/sv-witnesses
https://github.com/sosy-lab/sv-witnesses/tree/svcomp22/termination
https://github.com/sosy-lab/sv-witnesses/tree/svcomp22/lint

Verification Witnesses 57:39

6 EXPERIMENTAL EVALUATION
To demonstrate the applicability of our approach, we performed a large number of experiments.
The experimental work flow consists of running (1) a verifier, which produces a verification wit-
ness for the obtained result, and (2) a validator, which uses the verification witness to validate
the result that the verifier obtained.

6.1 Experiment Goals
In the previous section, we defined an exchange format for machine-readable witnesses, in or-
der to enable different verifiers to document their verification results in such a way that other
tools can work with those verification results. Next, we perform an experimental study to sup-
port the following claims:

Claim 1 (Consistency within the Same Framework): Most of the witnesses produced by
a verifier based on a certain framework can be validated by a validator based on the same
framework. If the claim does not hold, then there is an inconsistency in the communication of
the verification facts via the witnesses.
Claim 2 (Validation across Frameworks): The witnesses produced by a verifier based on
one framework can be understood by a witness validator of a different framework.
Claim 3 (Effectiveness and Efficiency of Validation Depends on Witness Contents):
There are verification tasks for which a verifier can produce witnesses such that the validation
uses less resources to validate the result based on the witness, than the verifier used to solve
the verification task.

We evaluate these claims separately for violation witnesses and correctness witnesses. Further-
more, we distinguish between five different categories (which correspond to five different specifi-
cations) of verification tasks, because not all verifiers and validators support all categories (see
Table 6).

6.2 Benchmark Set
Our benchmark set consists of all 10,521 verification tasks from all categories of SV-COMP
2019 [13], for 3,740 of which there is a known specification violation, i.e., we expect a verifier to find
a bug and document it with a violation witness, whereas no violation is known for the other 6,781,
i.e., we expect a verifier to find a correctness proof and document it with a correctness witness.

We used CPAchecker and UAutomizer as verifiers for all of these tasks, but due to technical limi-
tations not every validator supports all features required to analyze violation witnesses and cor-
rectness witnesses for each category of tasks.

Table 6 depicts which task category is supported by which validator.15 In SV-COMP 2019, no
validator existed that supports the validation of correctness witnesses for the categories Concur-
rency and Termination.

6.3 Experimental Setup
Our experiments were conducted on machines with a 3.4GHz 8-core CPU (Intel Xeon E3-1230 v5)
with 33GB of RAM. The operating system was Ubuntu 18.04 (64-bit), using Linux 4.15 and Open-
JDK 1.8. Each run for a single verification or validation task was limited to two CPU cores, a
CPU run time of 15min, and a memory usage of 15GB. The benchmarks were executed using
BenchExec [43] in version 1.17.

15The benchmark definitions for all validators can be found at: https://github.com/sosy-lab/sv-comp/tree/svcomp19/
benchmark-defs.

ACM Transactions on Software Engineering and Methodology, Vol. 31, No. 4, Article 57. Pub. date: September 2022.

A Manuscripts Verification Witnesses

181

https://github.com/sosy-lab/sv-comp/tree/svcomp19/benchmark-defs

57:40 D. Beyer, M. Dangl, D. Dietsch, M. Heizmann, T. Lemberger, and M. Tautschnig

Table 6. Categories Supported by Witness Validators

Category Witness type CPAchecker CPA-witness2test FShell-witness2test UAutomizer

Concurrency
Violation ✓
Correctness

MemSafety
Violation ✓ ✓ ✓ ✓
Correctness ✓

Overflows
Violation ✓ ✓ ✓ ✓
Correctness ✓

ReachSafety
Violation ✓ ✓ ✓ ✓
Correctness ✓ ✓

Termination
Violation ✓ ✓
Correctness

6.3.1 Verifiers. We used two verifiers, CPAchecker and UAutomizer. CPAchecker was used in ver-
sion cpachecker-1.7-witnesses-tosem-20181130 (revision 29 913 from the trunk). We configured
it to use MathSAT5 as an SMT solver. As in our preliminary work on correctness witnesses [23],
we use k-induction with auxiliary-invariant generation for the tasks from category ReachSafety,
as defined in configuration svcomp18−−kInduction. For the other categories, which were not part
of our preliminary evaluation, we use the corresponding analyses from the CPA-Seq submission
for SVCOMP 2019, as defined in configuration svcomp19−−concurrency for category Concurrency,
svcomp19−−memorysafety for category MemSafety, svcomp19−−overflow for category Overflows,
and svcomp19−−termination for category Termination. UAutomizer was used in its SVCOMP 2019
version (0.1.24-91b1670e) with Z3 as an SMT solver.

6.3.2 Validators. The categories supported by the validators are given in Table 6.
For the static validator based on CPAchecker, the same version as for the verifier was used with

the configuration witnessValidation. This configuration performs violation-witness-based result
validation by using CPAchecker’s framework for configurable program analysis (cf. Section 4.1.1)
to compose predicate analysis and explicit-state model checking into a combined analysis, as de-
scribed in Section 4.2.2. To perform correctness-witness-based result validation, this configuration
uses k-induction, where instead of synthesizing invariants itself like a verifier would, the validator
uses only auxiliary invariants from the set of confirmed candidate invariants from the witness,
as described in Section 4.3.2.

For the static validator based on UAutomizer, the same version as for the verifier was used and
configured to perform witness-based result validation, which handles violation witnesses as de-
scribed in Section 4.2.2 and correctness witnesses as described in Section 4.3.2.

CPA-witness2test was used in the same version of the CPAchecker framework as the CPAchecker-
based verifier and was configured to perform the dynamic result validation described in
Section 4.2.2.

FShell-witness2test was used in revision c15c8acb from its repository16 and was configured to
perform the dynamic result validation described in Section 4.2.2.

6.3.3 Presentation. All reported times (CPU time) are rounded to two significant digits. If the
validation of a witness exceeds its resource limits before confirming the witness, then the valida-
tion result is counted as unconfirmed. The HTML tables in the reproduction package and on the
supplementary web page (see Section 8) are generated with the table generator from BenchExec.

16https://github.com/tautschnig/fshell-w2t.

ACM Transactions on Software Engineering and Methodology, Vol. 31, No. 4, Article 57. Pub. date: September 2022.

Verification Witnesses A Manuscripts

182

https://github.com/tautschnig/fshell-w2t

Verification Witnesses 57:41

Table 7. Confirmed and Unconfirmed Violation
Results in the Category Concurrency

Validator CPAchecker
Producer CPAchecker Automizer

Confirmation rates:
Produced 772 247
Confirmed 771 4
Unconfirmed 1 243
Confirmation rate 100% 1.6%

Table 8. Confirmed and Unconfirmed Violation Results in the Category MemSafety

Validator CPAchecker CPA-witness2test FShell-witness2test Automizer
Producer CPAchecker Automizer CPAchecker Automizer CPAchecker Automizer CPAchecker Automizer

Confirmation rates:
Produced 107 67 107 67 107 67 107 67
Confirmed 106 54 17 15 29 1 27 43
Unconfirmed 1 13 90 52 78 66 80 24
Confirmation rate 99% 81% 16% 22% 27% 1.5% 25% 64%

6.4 Results
6.4.1 Violation Witnesses. Table 6 shows that for violation witnesses, all four validators can

be used, which the execution-based validators CPA-witness2test and FShell-witness2test support all
categories except Concurrency and Termination, CPAchecker supports all categories, and UAutomizer
supports all categories except Concurrency.

Claim 1: Consistency within the Same Framework. Our first experiment for violation witnesses
represents a study showing that we were able to implement a witness exchange format for vio-
lation witnesses for C programs for CPAchecker and UAutomizer, where both can take the roles of
a verifier (producing witnesses) and also, for categories where the corresponding tool supports
validation, of a witness validator for their own witnesses. Additionally, because CPA-witness2test
is also based on the CPAchecker framework, we expect CPA-witness2test to also be able to validate
witnesses produced by the CPAchecker verifier.
Category Concurrency. The first column of Table 7 shows that in the category Concurrency,
CPAchecker confirmed 771 of 772 witnesses produced by CPAchecker, so that the confirmation rate
for results produced by the same framework the validator is based on is almost 100 %.
Category MemSafety. The first, third, and last columns of Table 8 show that in category Mem-
Safety, CPAchecker confirmed 106 of 107 witnesses produced by CPAchecker, that CPA-witness2test
confirmed 17 of 107 witnesses produced by CPAchecker, and that Automizer confirmed 43 of 67 wit-
nesses produced by Automizer, so that the confirmation rates for results produced by the same
framework the validator is based on are 99 %, 16 %, and 64 %, respectively.
Category Overflows. The first, third, and last columns of Table 9 show that in the category Over-
flows, CPAchecker confirmed 164 of 165 witnesses produced by CPAchecker, that CPA-witness2test
confirmed 149 of 165 witnesses produced by CPAchecker, and that Automizer confirmed 163 of 163
witnesses produced by Automizer, so that the confirmation rates for results produced by the same
framework the validator is based on are 99 %, 90 %, and 100 %, respectively.
Category ReachSafety. The first, third, and last columns of Table 10 show that in category Reach-
Safety, CPAchecker confirmed 920 of 964 witnesses produced by CPAchecker, that CPA-witness2test

ACM Transactions on Software Engineering and Methodology, Vol. 31, No. 4, Article 57. Pub. date: September 2022.

A Manuscripts Verification Witnesses

183

57:42 D. Beyer, M. Dangl, D. Dietsch, M. Heizmann, T. Lemberger, and M. Tautschnig

Table 9. Confirmed and Unconfirmed Violation Results in the Category Overflows

Validator CPAchecker CPA-witness2test FShell-witness2test Automizer
Producer CPAchecker Automizer CPAchecker Automizer CPAchecker Automizer CPAchecker Automizer

Confirmation rates:
Produced 165 163 165 163 165 163 165 163
Confirmed 164 161 149 9 121 24 160 163
Unconfirmed 1 2 16 154 44 139 11 0
Confirmation rate 99% 99% 90% 5.5% 73% 15% 97% 100%

Table 10. Confirmed and Unconfirmed Violation Results in the Category ReachSafety

Validator CPAchecker CPA-witness2test FShell-witness2test Automizer
Producer CPAchecker Automizer CPAchecker Automizer CPAchecker Automizer CPAchecker Automizer

Confirmation rates:
Produced 964 491 964 491 964 491 964 491
Confirmed 920 271 698 218 554 184 634 438
Unconfirmed 44 220 266 273 410 307 330 53
Confirmation rate 95% 55% 72% 44% 57% 37% 66% 89%

Table 11. Confirmed and Unconfirmed Violation Results in the
Category Termination

Validator CPAchecker Automizer
Producer CPAchecker Automizer CPAchecker Automizer

Confirmation rates:
Produced 575 558 575 558
Confirmed 568 432 557 548
Unconfirmed 7 126 707 10
Confirmation rate 99% 77% 97% 98%

confirmed 698 of 964 witnesses produced by CPAchecker, and that UAutomizer confirmed 438 of 491
witnesses produced by CPAchecker, so that the confirmation rates for results produced by the same
framework the validator is based on are 95 %, 72 %, and 89 %, respectively.

Category Termination. The first and last columns of Table 11 show that in category Termination,
CPAchecker confirmed 568 of 575 witnesses produced by CPAchecker and that Automizer confirmed
548 of 558 witnesses produced by Automizer, so that the confirmation rates for results produced by
the same framework the validator is based on are 99 % and 98%, respectively.

We see that overall, we often achieve high confirmation rates if we apply validators to verifica-
tion results produced by verifiers that are based on the same frameworks, although there is still
some room for improvement regarding the validation of violation results by Automizer in category
MemSafety (64 %). We attribute the lowest and third-lowest confirmation rates in this experiment,
namely the 16 % achieved by CPA-witness2test for validating the results of CPAchecker in category
MemSafety and the 66 % achieved by CPA-witness2test for validating the results of CPAchecker in
category ReachSafety, to the fact that execution-based validators, in general, require very precise
witnesses with concrete variable assignments for all input variables and otherwise fail, whereas
model-checking-based validators, such as CPAchecker and Automizer, are often able to compute miss-
ing variable assignments during validation [26].

Claim 2: Validation across Frameworks. Our second experiment represents a study showing that
we were able to communicate violation witnesses across frameworks, where verification results

ACM Transactions on Software Engineering and Methodology, Vol. 31, No. 4, Article 57. Pub. date: September 2022.

Verification Witnesses A Manuscripts

184

Verification Witnesses 57:43

produced by the CPAchecker-based verifier are validated by the Automizer-based validator and vice
versa, where verification results produced by the CPAchecker-based verifier and the Automizer-based
verifier are validated by the dynamic validator FShell-witness2test, and where verification results
produced by the Automizer-based verifier are validated by the dynamic validator CPA-witness2test.

Category Concurrency. The last column of Table 7 shows that this claim does not hold in the cat-
egory Concurrency: We see that CPAchecker confirmed only 1.6 % of the verification results pro-
duced by Automizer. We attribute this to the fact that Automizer only recently added support for
verifying tasks in this category and has not yet fully implemented all features required to produce
witnesses that can easily be validated. While this shows that there still remains work to be done to
better support this combination, we chose to include the results for this part of the experiment for
completeness and to accurately report the state of the art regarding available implementations.

Category MemSafety. Table 8 shows that in the category MemSafety, while CPAchecker confirmed
81% of the verification results produced by Automizer, Automizer confirmed only 25 % of the ver-
ification results produced by CPAchecker, which matches an observation from the previous ex-
periment, namely that the support for the validation of violation results is still prototypical for
the Automizer-based validator in category MemSafety. The results of the model-checking-based
validators in the remaining categories are more promising, although it is expected that result
validation across frameworks is more difficult than within the same framework. Table 8 also
shows that CPA-witness2test confirmed 22% of the verification results produced by Automizer, that
FShell-witness2test confirmed 27% of the verification results produced by CPAchecker, and that
FShell-witness2test confirmed 1.5 % of the verification results produced by Automizer.

Category Overflows. Table 9 shows that in the category Overflows, CPAchecker confirmed 99% of the
verification results produced by Automizer, that CPA-witness2test confirmed 5.5 % of the verification
results produced by Automizer, that FShell-witness2test confirmed 73% of the verification results
produced by CPAchecker, that FShell-witness2test confirmed 15% of the verification results produced
by Automizer, and that Automizer confirmed 97% of the verification results produced by CPAchecker.

Category ReachSafety. Table 10 shows that in the category ReachSafety, CPAchecker confirmed
55% of the verification results produced by Automizer, that CPA-witness2test confirmed 44% of the
verification results produced by Automizer, that FShell-witness2test confirmed 57% of the verifica-
tion results produced by CPAchecker, that FShell-witness2test confirmed 37% of the verification
results produced by Automizer, and that Automizer confirmed 66% of the verification results pro-
duced by CPAchecker.

Category Termination. Table 11 shows that in the category Termination, CPAchecker confirmed 77%
of the verification results produced by Automizer and that Automizer confirmed 97% of the veri-
fication results produced by CPAchecker.

As observed in the previous experiment, the confirmation rates achieved by the execution-based
validators CPA-witness2test and FShell-witness2test are mostly lower than those achieved by the
model-checking-based validators CPAchecker and Automizer due to their requirement for more pre-
cise witnesses. For example, FShell-witness2test is only able to validate 1 of 67 results produced by
Automizer in category MemSafety, CPA-witness2test is only able to validate 9 of 163 results produced
by Automizer in category Overflows, and the confirmation rate of 37 % for FShell-witness2test vali-
dating the results of Automizer in category ReachSafety appears low if compared directly with the
results achieved by the model-checking-based validators. On the other hand, FShell-witness2test
is able to validate more results produced by CPAchecker than Automizer is able to validate in cate-
gory MemSafety. Moreover, while there are generally fewer confirmations by the execution-based

ACM Transactions on Software Engineering and Methodology, Vol. 31, No. 4, Article 57. Pub. date: September 2022.

A Manuscripts Verification Witnesses

185

57:44 D. Beyer, M. Dangl, D. Dietsch, M. Heizmann, T. Lemberger, and M. Tautschnig

Fig. 14. Category Concurrency (violation): Scatter plots for pairwise composition for witness-based violation-
result validation; CPU seconds for producing a witness on the x-axis, CPU seconds for result validation on
the y-axis; a caption “p/c” abbreviates “witnesses produced by p that are confirmed by c”.

validators, these confirmations can be considered more valuable than the confirmations by model-
checking-based validators in that they instill a higher confidence in the result and are bundled with
easily debuggable executables for the verification result. For example, these numbers still show that
the completely independent validator FShell-witness2test was able to synthesize executable binaries
from 184 out of 491 witnesses produced by Automizer in category ReachSafety, execute them, and
successfully replay the reported bugs, which gives a potential user not only a high confidence that
these 184 bugs actually exist, but also provides observable, executable proofs for each confirmation.

Claim 3: Effectiveness and Efficiency of Validation Depends on Witness Contents. Our experiments
also confirm that often, witness-based violation-result validation is faster than the corresponding
preceding verification, although there are exceptions to this observation.

Category Concurrency. For example, Figure 14(a) shows that in the category Concurrency, using
CPAchecker to validate verification results produced by CPAchecker is in most cases faster than the
verification, but that there is also a small cluster of verification results where validation is almost
ten times slower than the verification. For completeness, we also depicted in Figure 14(b) the scat-
ter plot that compares the verification times of Automizer to the validation times of CPAchecker for
Automizer’s results. However, even though in this figure, validation is always faster than verifi-
cation, we do not consider the low number of validated results significant enough to draw any
general conclusions.

Category MemSafety. Figure 15(a) shows no significant time differences for category MemSafety
between verifying a task with CPAchecker and validating the corresponding result with CPAchecker.
On the other hand, Figure 15(b) shows that verification results produced by Automizer are always
validated faster by CPAchecker than they were produced. The same, however, is not true for the
inverse case. Figure 15(g) shows that in fact, verification results produced by CPAchecker are always
validated slower by Automizer than they were produced, and Figure 15(h) shows only a few cases
where validating verification results produced by Automizer are validated quicker by Automizer itself
than they were produced. This matches our previous observation that the support for validating
violation results is still prototypical for the Automizer-based validator. Figure 15(c)–(f), which are
scatter plots for the verification results produced by CPAchecker and validated by CPA-witness2test,
verification results produced by Automizer and validated by CPA-witness2test, verification results
produced by CPAchecker and validated by FShell-witness2test, and verification results produced by
Automizer and validated by FShell-witness2test, respectively, show that execution-based validation

ACM Transactions on Software Engineering and Methodology, Vol. 31, No. 4, Article 57. Pub. date: September 2022.

Verification Witnesses A Manuscripts

186

Verification Witnesses 57:45

Fig. 15. Category MemSafety (violation): Scatter plots for pairwise composition for witness-based violation-
result validation; CPU seconds for producing a witness on the x-axis, CPU seconds for result validation on
the y-axis; a caption “p/c” abbreviates “witnesses produced by p that are confirmed by c”.

ACM Transactions on Software Engineering and Methodology, Vol. 31, No. 4, Article 57. Pub. date: September 2022.

A Manuscripts Verification Witnesses

187

57:46 D. Beyer, M. Dangl, D. Dietsch, M. Heizmann, T. Lemberger, and M. Tautschnig

of results is mostly faster than verification although it must be noted that due to the low number
of validations, this observation is not significant.

Category Overflows. Figure 16 shows for category Overflows almost no significant time differences
for the model-checking-based validators between verifying a task and validating the correspond-
ing verification result, which can be attributed to the fact that almost all tasks can already be veri-
fied in less than 10 s, i.e., very quickly, so that there is not much time to be gained by using a witness
to reduce the search space during the validation. As for the category MemSafety, we again observe
that the execution-based validators, are at least as quick and, in the case of FShell-witness2test, of-
ten even significantly faster than the corresponding verifications. However, the low number of
confirmations again prohibits deriving a general claim from this observation.

Category ReachSafety. Figure 17 shows a somewhat clearer picture for category ReachSafety: In
Figure 17(a) we can see that except for an insignificant amount of outliers, validating a verifica-
tion result produced by CPAchecker with CPAchecker is at least as fast as producing that verification
result, and that this effect appears to scale well, because even for many tasks where the verifica-
tion took more than 100 s, validation took only less than a tenth of that time. In Figure 17(b) we
observe the same effect for verification results produced by Automizer and validated by CPAchecker,
although not as pronounced as in the previous figure. Figure 17(c)–(f), which depict the verifi-
cation results produced by CPAchecker and validated by CPA-witness2test, verification results pro-
duced by Automizer and validated by CPA-witness2test, verification results produced by CPAchecker
and validated by FShell-witness2test, and verification results produced by Automizer and validated
by FShell-witness2test, respectively, show that execution-based validation is usually significantly
faster than verification, and often also faster than model-checking-based validation, even though
fewer results can successfully be validated, which is particularly visible in Figure 17(e) and (f),
which compare the validation times of FShell-witness2test to the corresponding verification times.
Figure 17(g), on the other hand, shows that applying the Automizer-based validator to the verifi-
cation results produced by CPAchecker, there are cases where validation is slower than, as fast as,
or faster than verification, with no clearly discernible trend, which means that Automizer appar-
ently often does not profit from the reduced search space provided by the witnesses of CPAchecker
and its validation times are more dependent on its own engine than on the witnesses, whereas
Figure 17(h) shows that Automizer can profit from its own witnesses, because the Automizer-based
validator often validates a verification result in less time than Automizer took to produce it.

Category Termination. Lastly, for the category Termination, Figure 18(a) and (d) show that both
the CPAchecker-based validator and the Automizer-based validator profit from witnesses for verifi-
cation results produced by their own respective frameworks and often validate these results in
less time than it took to produce them, whereas there is no apparent performance improvement
visible in Figure 18(b) and (c), which compare the validation times of CPAchecker for the results pro-
duced by Automizer and the validation times of Automizer for the results produced by CPAchecker,
respectively, to the corresponding verification times.

Summary. We observed that validation can be significantly faster than the preceding verification,
but this effect is generally not guaranteed. In category ReachSafety, which is the largest of all
five examined categories, we observe this effect even across verification frameworks. While these
results are already promising, we interpret them as an indicator that more effort should be spent
on improving witness-based validation of violation results, especially in the categories Concur-
rency, MemSafety, Overflows, and Termination, to achieve similar performance benefits as in
category ReachSafety.

ACM Transactions on Software Engineering and Methodology, Vol. 31, No. 4, Article 57. Pub. date: September 2022.

Verification Witnesses A Manuscripts

188

Verification Witnesses 57:47

Fig. 16. Category Overflows (violation): Scatter plots for pairwise composition for witness-based violation-
result validation; CPU seconds for producing a witness on the x-axis, CPU seconds for result validation on
the y-axis; a caption “p/c” abbreviates “witnesses produced by p that are confirmed by c”.

ACM Transactions on Software Engineering and Methodology, Vol. 31, No. 4, Article 57. Pub. date: September 2022.

A Manuscripts Verification Witnesses

189

57:48 D. Beyer, M. Dangl, D. Dietsch, M. Heizmann, T. Lemberger, and M. Tautschnig

Fig. 17. Category ReachSafety (violation): Scatter plots for pairwise composition for witness-based violation-
result validation; CPU seconds for producing a witness on the x-axis, CPU seconds for result validation on
the y-axis; a caption “p/c” abbreviates “witnesses produced by p that are confirmed by c”.

ACM Transactions on Software Engineering and Methodology, Vol. 31, No. 4, Article 57. Pub. date: September 2022.

Verification Witnesses A Manuscripts

190

Verification Witnesses 57:49

Fig. 18. Category Termination (violation): Scatter plots for pairwise composition for witness-based violation-
result validation; CPU seconds for producing a witness on the x-axis, CPU seconds for result validation on
the y-axis; a caption “p/c” abbreviates “witnesses produced by p that are confirmed by c”.

6.4.2 Correctness Witnesses. Table 6 shows that for correctness witnesses, only CPAchecker and
UAutomizer can be used as validators, and that UAutomizer supports categories MemSafety, Over-
flows, and ReachSafety, whereas CPAchecker supports only category ReachSafety.

Claim 1: Consistency within the Same Framework. Our first experiment for correctness witnesses
represents a study showing that we were able to implement a witness exchange format for correct-
ness witnesses for C programs for CPAchecker and UAutomizer, where both can take the roles of a
verifier (producing witnesses) and also, if supported, a witness validator for their own witnesses.
The last columns of Tables 12 and 13 show that Automizer confirmed 108 of 108 witnesses produced
by Automizer in category MemSafety and 144 of 144 witnesses produced by Automizer in category
Overflows, so that the confirmation rates of its own witnesses are 100 % in both cases. The first
and last columns of Table 14 show that CPAchecker confirmed 2,130 of 2,642 witnesses produced
by CPAchecker, and that Automizer confirmed 2,694 of 2,749 witnesses produced by Automizer, so
that the confirmation rates for their own witnesses are 81 % and 98%, respectively. Furthermore,
for the rejected witnesses, UAutomizer detects incorrect invariants in 14 of its own witnesses, and
CPAchecker refutes none of its own witnesses.17

17It may be interesting to developers of other verifiers to learn that when the development of the CPAchecker-based
correctness-witness export and validation started, there were a lot more incorrect invariants, which were caused by sev-
eral actual bugs in other components of the framework that the CPAchecker team had been unaware of. In addition to the
other benefits, implementing correctness-witness validation can therefore also be a way to improve the overall quality of
a verifier.

ACM Transactions on Software Engineering and Methodology, Vol. 31, No. 4, Article 57. Pub. date: September 2022.

A Manuscripts Verification Witnesses

191

57:50 D. Beyer, M. Dangl, D. Dietsch, M. Heizmann, T. Lemberger, and M. Tautschnig

Table 12. Confirmed and Unconfirmed
Correctness Results in the Category MemSafety

Validator Automizer
Producer CPAchecker Automizer

Confirmation rates:
Produced 118 108
Confirmed 52 108
Unconfirmed 66 0
Confirmation rate 44% 100%

Table 13. Confirmed and Unconfirmed
Correctness Results in the Category Overflows

Validator Automizer
Producer CPAchecker Automizer

Confirmation rates:
Produced 130 144
Confirmed 119 144
Unconfirmed 11 0
Confirmation rate 92% 100%

Table 14. Confirmed and Unconfirmed Correctness Results
in the Category ReachSafety

Validator CPAchecker Automizer
Producer CPAchecker Automizer CPAchecker Automizer

Confirmation rates:
Produced 2 642 2 749 2 642 2 749
Confirmed 2 130 1 297 1 827 2 694
Unconfirmed 512 1 452 815 55
Confirmation rate 81% 47% 69% 98%

Claim 2: Validation across Frameworks. Our second experiment represents a study showing that
we were able to communicate correctness witnesses across frameworks, where verification results
produced by the CPAchecker-based verifier are validated by the Automizer-based validator and vice
versa. Tables 12 and 13 show that Automizer confirmed 44% of the verification results produced by
CPAchecker in category MemSafety and 92% of the verification results produced by CPAchecker in
category Overflows. Table 14 shows that in the category ReachSafety, CPAchecker confirmed 47%
of the verification results produced by Automizer, and that Automizer confirmed 69% of the verifi-
cation results produced by CPAchecker. Except for category Overflows, these numbers are not yet
as favorable as those where the tools validate their own witnesses. We analyzed the unconfirmed
results and found different causes for both cases: (1) CPAchecker did not detect any incorrect in-
variants in the witnesses produced by Automizer, and there are often too few invariants present in
those witnesses for the k-induction-algorithm to succeed within the time limit. This means that
CPAchecker mostly does not dispute the witnesses of Automizer, but it cannot confirm them either.
(2) Automizer is not always able to find the correct program location for an invariant. If Automizer
maps an invariant to the wrong program location, and thus, the invariant does not hold there, then
the witness is rejected. While there is still room for improvement to our implementations, in gen-
eral, the witnesses were understood by the validators of other frameworks, and the rejections are

ACM Transactions on Software Engineering and Methodology, Vol. 31, No. 4, Article 57. Pub. date: September 2022.

Verification Witnesses A Manuscripts

192

Verification Witnesses 57:51

Fig. 19. Category MemSafety (correctness): Scatter plots for pairwise composition for witness-based
correctness-result validation; CPU seconds for producing a witness on the x-axis, CPU seconds for result
validation on the y-axis; a caption “p/c” abbreviates “witnesses produced by p that are confirmed by c”.

mostly due to timeouts rather than due to wrong or miscommunicated invariants. Our experiment
over the three categories MemSafety, Overflows, and ReachSafety, shows that for between 1,300
to 2,000 of 2,700 to 2,900 tasks verified by one verifier, a validator based on a different framework
and different techniques not only agreed on the verdict but confirmed that no flaw was detected
in the reasoning represented by the correctness witness, whereas previously, communicating such
information between different tools was entirely impossible.

Claim 3: Effectiveness and Efficiency of Validation Depends on Witness Contents. Our experiments
also confirm that the contents of the witnesses influences the difficulty of the validation, so that
for a given verification task, one witness can lead to a quick validation, while a validation based
on a different witness may require more resources or even fail to terminate at all. We first take a
closer look at the differences in resource usage between verification and validation for a given task.
Figure 21(a) shows that, especially for tasks that require more than 20 s of CPU time, CPAchecker
produces three groups of witnesses, for which the validation is (a) about as fast as, (b) quicker
than, and (c) slower than the preceding verification: The first group is explained by tasks for which
few or even no auxiliary invariants are required by the k-induction technique. The second group
is caused by tasks for which the witnesses contain useful invariants that allow the validator to
quickly validate the task, while the verifier had to spend time on synthesizing the invariants. The
third group represents tasks for which the witnesses contain significant amounts of invariants
that turn out to be irrelevant, but the time spent by the validator to check them exceeds the time
spent by the verifier to generate them. Figure 21(b) shows that many of the witnesses produced
by Automizer that can be validated by CPAchecker are in most cases validated more quickly than
they were produced. Figures 19(a), 20(a), and 21(c) are similar to Figure 21(a): there are cases
for which the validation is faster than the verification and vice versa. But since in these three
figures, validation and verification are performed by different tools, the differing characteristics
of the two tools may outweigh the effects of the witnesses on validation speed: Automizer is of-
ten not faster at validating the invariants contained in the witnesses, and instead is often slower
than CPAchecker for those of CPAchecker’s witnesses that it can validate. It must also be noted that
Figure 20(a) shows that most of the few tasks in category Overflows that can be verified and where
a validator confirms the result, are solved in less than about 10 s, which suggests that in this cat-
egory, comparing verification and validation times is not particularly meaningful. Figures 19(b),
20(b), and 21(d) show that for Automizer, there is no discernible difference between the CPU times
required to produce a witness and to validate it.

ACM Transactions on Software Engineering and Methodology, Vol. 31, No. 4, Article 57. Pub. date: September 2022.

A Manuscripts Verification Witnesses

193

57:52 D. Beyer, M. Dangl, D. Dietsch, M. Heizmann, T. Lemberger, and M. Tautschnig

Fig. 20. Category Overflows (correctness): Scatter plots for pairwise composition for witness-based
correctness-result validation; CPU seconds for producing a witness on the x-axis, CPU seconds for result
validation on the y-axis; a caption “p/c” abbreviates “witnesses produced by p that are confirmed by c”.

Fig. 21. Category ReachSafety (correctness): Scatter plots for pairwise composition for witness-based
correctness-result validation; CPU seconds for producing a witness on the x-axis, CPU seconds for result
validation on the y-axis; a caption “p/c” abbreviates “witnesses produced by p that are confirmed by c”.

General Trend. In general, we could not observe a definite trend of speed-up overall validation runs
using correctness witnesses. We attribute these results to the fact that it is not trivial to determine
which invariants should be exported to the witness, because while exporting too much information
unnecessarily complicates the validation, too few or tooweak invariantsmay impede the feasibility
of the validation. The fact that an invariant that suffices for one validator may not be sufficient
for a different validator further complicates the decisions that drive the composition of invariants
for a specific witness: suppose a verifier produces a witness that contains a 10-inductive invariant.
A validator based on k-induction would likely be able to prove this invariant easily with k = 10,

ACM Transactions on Software Engineering and Methodology, Vol. 31, No. 4, Article 57. Pub. date: September 2022.

Verification Witnesses A Manuscripts

194

Verification Witnesses 57:53

Table 15. Examples of Verification Tasks for Which Correctness-witness-based Result Validation was
Significantly Faster than the Verification Run That Produced the Correctness Witness

Program Category Verifier Validator Verifier
CPU Time

Validator
CPU Time

floppy_simpl4.cil.c MemSafety CPAchecker Automizer 96 s 11 s
openbsd_cstrpbrk-alloca.i MemSafety Automizer Automizer 38 s 34 s
Fibonacci02.c Overflows CPAchecker Automizer 700 s 31 s
GopanReps-CAV2006-Fig1a.c.c Overflows Automizer Automizer 160 s 44 s
minepump_spec2_product52.cil.c ReachSafety CPAchecker CPAchecker 160 s 16 s
Problem15_label53.c ReachSafety CPAchecker Automizer 720 s 98 s
test_locks_15.c ReachSafety Automizer CPAchecker 300 s 6.6 s
tree.i ReachSafety Automizer Automizer 510 s 25 s

whereas a validator based on some other technique would likely have to first synthesize auxiliary
invariants. We can, however, provide examples of cases for various different types of verification
tasks for which a speed-up exists18: Table 15 shows for each supported combination of category,
verifier, and validator an example for which the validation of a correctness witness was faster than
the verification run that produced the correctness witness. For combinations where the validator is
based on the same framework as the verifier (i.e., CPAchecker/CPAchecker, Automizer/Automizer), the
speedup cannot be dismissed as caused by differences in the underlying implementation; instead,
the speedup suggests that there is value in the guidance provided by the correctness witness in
these cases. Unsurprisingly, validation only benefits from invariants that are difficult to derive but
can be proved easily. If, however, toomuchwork is left to the validator, then the validation is slower
than the verification, because, in addition to parsing the witness and matching its contents to the
program, it also needs to synthesize its own invariants. Lastly, our implementations are based on
generic model checkers and the potential for optimization towards validation is not yet utilized.
Summary. In conclusion, these experiments confirm that the contents of a correctness witness can
be important for one of the validators (CPAchecker), while they do not seem to make a noticeable
difference for the other validator (Automizer), which can confirm more results but in turn is slower
than the validator based on CPAchecker. This choice of a tradeoff as to what constitutes an ac-
ceptable witness is one of the strengths of our flexible exchange format for correctness witnesses:
Users may choose a quick but strict validator (rejects if invariant is too weak) or a slower but more
tolerant one (constructs missing invariants), depending on their use case.

6.5 Tutorial
In order to collect initial experience with the process of witness-based result validation, we list
here a selection of tool invocations to get started with. The verification task that we use in this
tutorial consists of the C program linear-inequality-inv-b.c from Figure 9(a) and the specification
unreach-call.prp for which the observer automaton is given in Figure 2.19

Verify a Program with a Given Specification.
For CPAchecker, the following command line produces a witness similar to Figure 22(a):

18We can pick the verification tasks from the bottom-right part of the scatter plots.
19Note that between SV-COMP 2020 and SV-COMP 2021, the unreach-call specification changed from reachability of
function __VERIFIER_error to function reach_error (see [18], page 404). If the goal is to use the task exactly as presented
here, it is advisable to use the tool versions from the reproduction package and the specification file from the SV-COMP 2019
release of the benchmark repository. In general, the latest versions of the tools can be used, as well as the latest version of
the program and specification from the benchmark repository.

ACM Transactions on Software Engineering and Methodology, Vol. 31, No. 4, Article 57. Pub. date: September 2022.

A Manuscripts Verification Witnesses

195

https://github.com/sosy-lab/sv-benchmarks/blob/b8369a395d4749eb7eee1c3bd8149a3dc799e7f3/c/ntdrivers-simplified/floppy_simpl4_true-unreach-call_true-valid-memsafety_true-termination.cil.c
https://github.com/sosy-lab/sv-benchmarks/blob/b8369a395d4749eb7eee1c3bd8149a3dc799e7f3/c/array-memsafety/openbsd_cstrpbrk-alloca_true-valid-memsafety_true-termination.i
https://github.com/sosy-lab/sv-benchmarks/blob/b8369a395d4749eb7eee1c3bd8149a3dc799e7f3/c/recursive/Fibonacci02_true-unreach-call_true-no-overflow_true-termination.c
https://github.com/sosy-lab/sv-benchmarks/blob/b8369a395d4749eb7eee1c3bd8149a3dc799e7f3/c/termination-crafted-lit/GopanReps-CAV2006-Fig1a_true-termination_true-no-overflow.c.c
https://github.com/sosy-lab/sv-benchmarks/blob/b8369a395d4749eb7eee1c3bd8149a3dc799e7f3/c/product-lines/minepump_spec2_product52_true-unreach-call_false-termination.cil.c
https://github.com/sosy-lab/sv-benchmarks/blob/b8369a395d4749eb7eee1c3bd8149a3dc799e7f3/c/eca-rers2012/Problem15_label53_true-unreach-call.c
https://github.com/sosy-lab/sv-benchmarks/blob/b8369a395d4749eb7eee1c3bd8149a3dc799e7f3/c/locks/test_locks_15_true-unreach-call_true-valid-memsafety_false-termination.c
https://github.com/sosy-lab/sv-benchmarks/blob/b8369a395d4749eb7eee1c3bd8149a3dc799e7f3/c/heap-manipulation/tree_true-unreach-call.i
https://github.com/sosy-lab/sv-benchmarks/blob/de6e3ae416/c/loop-invariants/linear-inequality-inv-b.c
https://github.com/sosy-lab/sv-benchmarks/blob/de6e3ae416/c/properties/unreach-call.prp

57:54 D. Beyer, M. Dangl, D. Dietsch, M. Heizmann, T. Lemberger, and M. Tautschnig

Fig. 22. Violation witnesses produced by CPAchecker and UAutomizer for the verification task consisting of the
C program linear-inequality-inv-b.c from Figure 9(a) and the specification unreach-call.prp from Figure 2.

ACM Transactions on Software Engineering and Methodology, Vol. 31, No. 4, Article 57. Pub. date: September 2022.

Verification Witnesses A Manuscripts

196

https://github.com/sosy-lab/sv-benchmarks/blob/de6e3ae416/c/loop-invariants/linear-inequality-inv-b.c
https://github.com/sosy-lab/sv-benchmarks/blob/de6e3ae416/c/properties/unreach-call.prp

Verification Witnesses 57:55

scripts/cpa.sh \
−spec sv−benchmarks/c/properties/unreach−call.prp \
sv−benchmarks/c/loop−invariants/linear−inequality−inv−b.c

For UAutomizer, the following command line produces a witness similar to Figure 22(b):
./Ultimate.py \
−−spec sv−benchmarks/c/properties/unreach−call.prp \
−−file sv−benchmarks/c/loop−invariants/linear−inequality−inv−b.c \
−−architecture 32−bit

Validate the Result with the Produced Witness.
To attempt to validate a result using a witness witness.graphml with CPAchecker, execute the

following command line:
scripts/cpa.sh \
−witnessValidation \
−witness witness.graphml \
−spec sv−benchmarks/c/properties/unreach−call.prp \
sv−benchmarks/c/loop−invariants/linear−inequality−inv−b.c

To attempt to validate a result using a witness witness.graphml with CPA-witness2test, exe-
cute the following command line:

scripts/cpa_witness2test.py \
−witness witness.graphml \
−spec sv−benchmarks/c/properties/unreach−call.prp \
sv−benchmarks/c/loop−invariants/linear−inequality−inv−b.c

To attempt to validate a result using a witness witness.graphml with FShell-witness2test, ex-
ecute the following command line:

./test−gen.sh \
−−graphml−witness ../CPAchecker/witness.graphml \
−m32 \
−−propertyfile sv−benchmarks/c/properties/unreach−call.prp \
sv−benchmarks/c/loop−invariants/linear−inequality−inv−b.c

To attempt to validate a result using a witness witness.graphml with UAutomizer, execute the
following command line:

./Ultimate.py \
−−spec sv−benchmarks/c/properties/unreach−call.prp \
−−file sv−benchmarks/c/loop−invariants/linear−inequality−inv−b.c \
−−validate ../CPAchecker/witness.graphml \
−−architecture 32−bit

6.6 Validity
6.6.1 Benchmark Selection. For our benchmarking, we selected all full categories from the stan-

dard repository of software-verification tasks20 without any restriction to subsets. Consequently,
our experiments are performed over the largest openly available collection of verification tasks
for the C programming language. For each category of the benchmark set, we show the results
for all validators that support the category in 2019. While the main goal of this article is to show
that the approach can work in practice, we have not further excluded those verification tasks from

20https://github.com/sosy-lab/sv-benchmarks.

ACM Transactions on Software Engineering and Methodology, Vol. 31, No. 4, Article 57. Pub. date: September 2022.

A Manuscripts Verification Witnesses

197

https://github.com/sosy-lab/sv-benchmarks

57:56 D. Beyer, M. Dangl, D. Dietsch, M. Heizmann, T. Lemberger, and M. Tautschnig

the benchmark set for which the implementation is still insufficient, and instead show the results
from the categories that are not yet well supported alongside those that are, to accurately repre-
sent the current state of the art in witness-based result validation, to pinpoint areas where further
improvements are required, and to showcase the potential of witness-based result validation for
areas where more mature implementations already exist.

Our knowledge about expected verification verdicts is based on the verdicts of the software-
verification community.20 In theory, it could be possible that an unconfirmed witness was not
confirmed because the assumed bug does not exist, which is very unlikely because the benchmark
sets is exposed to a lot of verification tools.

6.6.2 Verification Tools. Our implementations for producing and validating witnesses are based
on several independent frameworks that use completely different technologies: CPAchecker imple-
ments a static approach to violation-witness-based result validation using a combination of predi-
cate analysis and explicit-state model checking [39, 42], a static approach to correctness-witness-
based result validation using k-induction [27], and a dynamic approach to violation-witness-based
result validation (CPA-witness2test) that produces, runs, and checks executable tests [26]. UAutomizer
uses an automata-based approach [84] to static witness-based result validation. FShell-witness2test
is based on the test-vector format of FShell [89] and is independent from any model-checking
framework. This means that while comparisons of speed between verification with one tool and
validation with the other tool are only meaningful on a very coarse level, we can show that a wide
variety of techniques can be used for witness-based result validation.

6.6.3 Reproducibility. All data presented, including verification tasks, witnesses, verifiers, and
their configurations, are available on our supplementary web site (see Section 8). For controlling
and measuring the computing resources used in our experiments, such as memory, CPU time, core,
and memory assignment, we use the state-of-the-art benchmarking framework BenchExec [43],
and thereby ensure that our results are accurate, reliable, and reproducible. To further improve the
reproducibility of our experiments, we also selected the configurations of the verifiers that are used
to produce verification results and witnesses with a focus on the stability of their results instead of
on their general effectiveness. For example, for CPAchecker, a more effective configuration than the
one used in our experiments was used in SV-COMP 2019 in the category ReachSafety, but since
this configuration uses timers to dynamically switch between various analyses, its results are less
stable than our choice of a single analysis, k-induction, for this category.

7 RELATED WORK
The exchange format for verification witnesses described in this article and the corresponding
techniques for communicating verification witnesses across verification tools were introduced—
initially only for violation witnesses—in 2015 [25]. In 2016, the format was extended to encom-
pass correctness witnesses [23]. We give updated technical descriptions and evaluation results for
existing witness-based result validators [23, 25, 26].21 The flexibility, stability, and practical ap-
plicability of the exchange format are evidenced by the fact that it has already been successfully
applied for several years now in the annual TACAS International Competition on Software Verifi-
cation (SV-COMP) [10–12]. As a result, all competing verifiers now support the exchange format
for verification witnesses and augment their verification results with it.

21MetaVal [44] and NitWit [122] are not included in our evaluation because they were developed after our evaluation was
done in 2019.

ACM Transactions on Software Engineering and Methodology, Vol. 31, No. 4, Article 57. Pub. date: September 2022.

Verification Witnesses A Manuscripts

198

Verification Witnesses 57:57

Fig. 23. A certifying program for a function f computes y = f (x) and produces a witness w , which is then
used to check the correctness of result y by a witness validator; adapted from [107].

7.1 Exchange Formats
Before the common exchange format became available, verification witnesses were used only
based on proprietary formatswithin particular tools. For example, Esbmc was extended to reproduce
errors via instrumented code [117], and CPAchecker was used to validate previously computed error
paths by interpreting them as witness automata that guide and restrict the state-space search [47].
There are other exchange formats as well: (1) The Certification Problem Format (CPF) [121] is
used by the competition on termination [75] to store termination proofs for term-rewrite systems.
(2) TheDRAT [87] format is used in the SAT competitions [8] since several years in order to validate
the correctness of proofs of unsatisfiability of a propositional formula using a witness validator
for DRAT [128]. (3) The Static Analysis Results Interchange Format (SARIF) [115] is used to
represent results from static analysis by some industrial tools, such as CodeSonar,22 SWAMP,23 and
Visual Studio,24 and which is mainly intended as input for visualization tools and for aggregating
and embedding analysis results into bug-tracking or continuous-integration systems rather than
for semantic analysis such as result validation.

7.2 Certifying Algorithms
The concept of certifying algorithms [107] is a solution for increasing trust in the results produced
by potentially complex and error-prone computations. The paradigm of certifying algorithms de-
mands that each algorithm provides, together with the computed output, a witness that in turn
can be used to verify that the output is indeed a correct solution for the given input problem.
Figure 23 illustrates this workflow for a certifying program for a function f , i.e., an implementa-
tion of a certifying algorithm: The program receives the input x , computes the resulty = f (x), and
produces the witness w . The witness validator V receives the inputs x , y, and w , and leverages w
to determine whether y is a correct result for f (x). By certifying each individual result, the more
difficult problem of proving the correctness of the certifying algorithm or its implementation is
avoided. This concept applies to both violation witnesses and correctness witnesses: A violation
witness is a certificate for a specification violation found by a verifier, whereas a correctness wit-
ness is a certificate for the proof found by a verifier. Both can be used by a validator to try to
re-establish the verification result. The core advantages of using this approach are that to trust
the verification result, it is not necessary to trust the producer of the witness, and that the result
validator can re-establish the result independently. In fact, with verification witnesses, the tool
that is used for the witness-based validation of a result can even work with a different abstract
domain than the tool that produced the result and witness [111].

22https://www.grammatech.com/products/codesonar.
23https://github.com/mirswamp/deployment (see also https://continuousassurance.org/mir-swamp).
24https://visualstudio.microsoft.com.

ACM Transactions on Software Engineering and Methodology, Vol. 31, No. 4, Article 57. Pub. date: September 2022.

A Manuscripts Verification Witnesses

199

https://www.grammatech.com/products/codesonar
https://github.com/mirswamp/deployment
https://continuousassurance.org/mir-swamp
https://visualstudio.microsoft.com

57:58 D. Beyer, M. Dangl, D. Dietsch, M. Heizmann, T. Lemberger, and M. Tautschnig

7.3 Counterexamples
When a verifier detects a bug, it usually provides some form of counterexample [7, 12, 19, 57, 60,
61, 103]. On top of that, however, there is a growing demand for quick and automatic validation of
program error paths to raise the confidence in automatically detected bug reports [12, 47, 68, 111],
most importantly to reduce the number of false alarms. For example, an expensive, high-precision
feasibility check can be used to filter out false alarms produced by an efficient, low-precision data-
flow analysis within one instance of a verifier [68]. Experiments show that instead of repeating
a full verification task from scratch, it is usually significantly faster to validate an existing verifi-
cation result using a violation witness [25, 47]. However, without a unified exchange format for
violation witnesses to export counterexamples and use them as input to another tool, full pro-
grams were synthesized from counterexamples and used as a medium [33, 38, 117]. For witness-
based result validation, this approach is not useful, because the result and witness need to be
checked against the original, unchanged program to ensure that no new error paths were intro-
duced that did not exist originally. In the context of distributed high-performance computing, some
exchange-formats for system traces exist, e.g., the MPI trace format [1], or the Open Trace For-
mat [72, 102, 126], whose primary purpose is to keep a record of system events, such as messages
that are exchanged between processes. These formats strongly focus on distributed systems with
time-stamped events and are not applicable to our problem. Many applications for violation wit-
nesses already exist [3, 22, 62, 71, 78, 79, 81, 98, 104, 131], and a common format that can be used
to exchange witnesses across verification tools will stimulate further research in this direction,
particularly on combinations of verification, debugging, and visualization techniques.

7.4 Test-case Generation
Verification counterexamples have been used to generate test cases for two decades now [19, 90,
91, 125]. Various automatic test-case generation techniques have been developed as extensions
of this idea [80, 97, 119] and as combinations of counterexample-based test-case generation with
other techniques, such as random testing [76, 106]. Test-goal automata are used to achieve spe-
cific coverage or to reach test goals by leading a program analysis towards specific program lo-
cations [35, 52]; conceptually, test-goal automata are simply a specific use case for the violation-
witness automata that we present. Test cases from verification counterexamples have also been
used to create debuggable executables [110, 117]. Two of the violation-witness-based result valida-
tors that we present [26] use this idea to validate verification results by synthesizing an executable
from a verification task and a violation witness, and executing it to check if the reported error actu-
ally occurs. By using the common exchange format for witnesses, this technique can be applied to
synthesize executables using the verification results of any tool that supports the common format.
While other counterexample-based approaches for generating executable test cases [53, 67, 73, 105]
are limited to concrete and tool-specific counterexamples, we do not require full counterexamples
of any specific verifier; instead, our approach works on more flexible—and, thanks to our concept
of witness refinement, potentially abstract—violation witnesses.

7.5 Correctness Certificates
There is a long history of correctness certificates for the purpose of increasing the trust in code that
is generated from some form of formal description or model (e.g., [54, 58, 85, 94, 129]). While there
are efforts to reduce the often inconveniently large size of these proofs [74], these correctness
certificates are still complete proofs of functional correctness. While our exchange format can also
be used as correctness certificate and to represent a full proof, this is not required: a correctness
witness is more general, in that it can also be used as a partial proof of correctness [23], which can

ACM Transactions on Software Engineering and Methodology, Vol. 31, No. 4, Article 57. Pub. date: September 2022.

Verification Witnesses A Manuscripts

200

Verification Witnesses 57:59

be more concise than a full proof. Alan Turing suggested already in 1949 to annotate programs
with assertions “from which the correctness of the whole program easily follows.” [124]

7.6 Proof-carrying Code (PCC)
One application of correctness certificates has previously been explored in the context of proof-
carrying code (PCC) [112]. PCC is a mechanism where an untrusted source supplies an executable
program and a correctness certificate, both of which are therefore also untrusted initially. However,
trust can be established by using a trusted validator to check the witness against the program
and specification. Certifying model checkers can use the intermediate results of their verification
procedure to compose full proofs and export them as proof certificates [111].

The exchange format for correctness witnesses allows the mechanism of proof-carrying code to
be applied to real-world C programs and enables further verification tools to adopt the technique.
Compared to previous publications on proof-carrying code, the main advantage that our exchange
format and validation techniques provide is that we do not strictly require the witness to contain
a full proof. We found that in practice, a complete proof for even short programs with simple spec-
ifications may become prohibitively large in size unless a considerable amount of additional effort
is spent on simplifying formulas. Especially for more complex verification tasks, it is often neither
desirable nor even feasible to handle such a full proof—as in mathematics, concise lemmas or proof
sketches are priceless.25 Consequently, we support flexibility: Given two witnessesw1 andw2, we
considerw1 to be of higher quality thanw2 if a witness-based result validator can more quickly re-
establish the verification result usingw1 than usingw2. A less detailed witness may still succeed in
guiding the validator to the proof, but in turn may require more effort from the validator. Another
difference to classic PCC is that we consider the witness as its own, separate, first-class object, and
do not use the program to carry the proof, thereby following the best practice of separation of
concerns, which leads to higher flexibility and maintainability.

7.7 Reusing Reachability Graphs
The intermediate results produced bymodel checkers during their state-space exploration are often
materialized as an ARG [31], which consists of the abstract states found by the model checker and
the program transitions between those states. The ARG is the basic data structure in tools like
Blast and CPAchecker, and can be used as a source of invariants of the program [85], which in turn
can be used for PCC, or for extreme model checking [86]. Extreme model checking checks if a
previously computed ARG is also still a safety proof for a given, slightly modified, input program.
Slab [70] is a certifying model checker that produces a proof certificate for the abstract model
of a program in SMT-LIB format. While such a certificate can easily be checked using an SMT
solver, mapping it back to the original program26 to validate that it really certifies the correctness
of the original program is non-trivial. As a result, even if checking the SMT-LIB certificate with an
SMT solver produces the expected answer, a user still has no way to confirm that the certificate
faithfully refers to the original program.

7.8 Search-carrying Code (SCC)
The concept of search-carrying code (SCC) [123] shares with verification witnesses the essen-
tial idea of reconstructing a verification result by guiding a validator through the state space of
a program. For this purpose, SCC uses search scripts that guide a model checker along paths of

25The proof for the Schur-Number-Five problem is larger than 2 PB [88].
26In real-world scenarios, the original program is usually not given as a formal transition system with a well-defined
one-to-one variable mapping to SMT-LIB, but must first be transformed by the verifier.

ACM Transactions on Software Engineering and Methodology, Vol. 31, No. 4, Article 57. Pub. date: September 2022.

A Manuscripts Verification Witnesses

201

57:60 D. Beyer, M. Dangl, D. Dietsch, M. Heizmann, T. Lemberger, and M. Tautschnig

the ARG. Search scripts can be seen as a special instance of the generic concept of correctness
witnesses where all invariants are omitted and the validator uses only the branching information
from the witnesses as a suggestion to guide its state-space exploration, potentially saving time
by simply confirming the suggested ARG rather than having to spend effort determining it itself
from scratch. In comparison to search scripts, witnesses overcome the following three limitations
(cf. Section 4.3 in [123]): (i) While SCC is bound to explicit-state model checking, the verification-
witness exchange format is independent from the verification approach. (ii) The search scripts
used by the existing implementation of SCC depend on a very specific transition-statement in-
terpretation of Java Pathfinder (JPF), whereas verification witnesses allow a flexible mapping
from program operations to the verifier-specific states and transitions that is even tolerant to code
reduction, i.e., gaps in the witness that correspond to program code on which the producing ver-
ifier did not provide any information. (iii) Due to the reasons above, SCC is only supported by
JPF, whereas the exchange format for verification witnesses is designed to work across different
verifiers, even if they rely on different technologies, as shown by the widespread adoption of the
format [12]. For practical impact, we have found these extensions to be essential.

7.9 Proof Programs and Configurable Certification
An important aspect of PCC is the goal that validation should be significantly faster than verifi-
cation. In programs-from-proofs [96], correctness certificates are materialized as new programs
that are behaviorally equivalent to the corresponding input program and are generated by a pred-
icate analysis. Although they may be exponentially larger in terms of lines of code, these new
programs can be verified by using a less expressive and more efficient data-flow analysis. Certifi-
cates for configurable program analysis [95, 96] consist of all reachable states of a program, which
is comparable to a correctness witness where the reachable states are encoded as invariants at
each program location. Various size-reducing techniques are then applied to reduce space con-
sumption and I/O, and to speed up the validation. Because correctness witnesses do not require
full proofs but can also contain partial proofs, a validator may choose to apply its own verification
strategy to complement a partial proof or even perform the complete verification of the full veri-
fication task itself. As a consequence, correctness-witness-based validation of verification results
does not necessarily exhibit a speedup. Nevertheless, in scenarios where the witnesses do repre-
sent complete proofs, similar techniques can be applied and speedups can be achieved. The size
of correctness witnesses is generally not an issue in our case, because both implemented witness
producers, CPAchecker and UAutomizer, restrict themselves to loop invariants and procedure post
conditions instead of exporting invariants for every program location.

7.10 Partial Verification and Cooperative Verification
Software verifiers have three possible outcomes: they either (1) prove correctness, (2) detect a bug,
or (3) fail. Correctness witnesses [23] and violation witnesses [25] address the first and second
case, respectively. To complete the picture, conditional model checking (CMC) [32] addresses
the third case. The idea of CMC is to provide reports of partial verification results in case full
verification fails: An output condition describes the result of an incomplete verification attempt,
i.e., which parts of the state space have already been verified successfully, and an input condition
instructs a model checker to restrict the verification of a system, i.e., it describes which parts of
the state space are left to be verified. To complete the verification, subsequent verification runs
with a different approach can then use the output condition of the previous run as an input con-
dition to simplify their task. Various concepts to represent the conditions, such as assumption
automata [32] or execution reports [56], have been explored in existing implementations of CMC.
Recently, the concept of reducer-based construction of conditional verifiers was introduced to

ACM Transactions on Software Engineering and Methodology, Vol. 31, No. 4, Article 57. Pub. date: September 2022.

Verification Witnesses A Manuscripts

202

Verification Witnesses 57:61

Fig. 24. Classification of different types of witnesses.

facilitate the adoption of CMC [37]: A reducer synthesizes, from a given input program and input
condition, a new residual program that consists of only those parts of the original input program
that are still to be verified, according to the input condition. Any off-the-shelf verifier can then be
used for the conditional model checking of the residual program. As an alternative, verification
witnesses could be used as a medium for CMC, by describing (a) paths (in violation witnesses) that
hindered a complete verification and (b) invariants (in correctness witnesses) that were used to
verify the part of the system that was successfully verified.

In cooperative verification [45], these techniques are leveraged to solve verification tasks by
sharing information between different verification approaches and tools, not necessarily unidi-
rectionally, but potentially even back and forth between components, and over multiple itera-
tions [36].

7.11 Generalization
Verification witnesses subsume several of the previously known types of verification artifacts. We
try to explain this using Figure 24. Firstly, we consider the two main types of witnesses disjoint,
that is, a verification witness is either a violation witness or a correctness witness. This design
choice is not obvious, because it is arguable why a violation witness should not contain invariants
that help rule out considering infeasible error paths during the validation. Secondly, both witness
types allow for a range of abstraction levels. A violation witness can be as abstract as an abstract
counterexample from model checking (Section 7.3) on the one hand (abstract extreme: no restric-
tion of data values, example: Figure 9(b)) and it can be as concrete as a test case (Section 7.4) on
the other hand (concrete extreme: all data values concretely given, example: Figure 9(d)). But vio-
lation witnesses can have any level of abstraction in between the two extreme cases (intermediate:
intervals for data values, example: Figure 9(c)). Similarly, a correctness witness can be as abstract
as in a search-carrying code (Section 7.8) (only guiding the validator through the state space) and
as concrete as in a proof-carrying code (Section 7.6) (providing all proof ingredients). There is a
wide spectrum of possibilities in between, for example certificates (Sections 7.5 and 7.9).

8 CONCLUSION
Software verification, in general, is an undecidable problem. Therefore, effectiveness and efficiency
have always been two main concerns of software verification, i.e., the goal was to make software
verification solve more problems, and solve them quicker, and hence, there have been many break-
throughs in the past decades that made software verification efficient enough to be applicable on

ACM Transactions on Software Engineering and Methodology, Vol. 31, No. 4, Article 57. Pub. date: September 2022.

A Manuscripts Verification Witnesses

203

57:62 D. Beyer, M. Dangl, D. Dietsch, M. Heizmann, T. Lemberger, and M. Tautschnig

an industrial scale. However, even though effectiveness and efficiency are certainly valid and im-
portant concerns, an oft-repeated argument against practical application of software verification is
fear of the significant economic disadvantages caused by time wasted on the investigation of false
alarms and of the potentially catastrophic consequences of misplaced trust in proofs that may turn
out to be wrong. This fear is reinforced by a lack of usability of the results: A simple true-or-false
answer to a verification problem is insufficient to understand and validate the result.

On the other hand, testing is an established method for software-quality assurance, because its
results are concrete and tractable: An engineer constructs a test suite for a given coverage goal,
executes the tests, and obtains precise and graspable results: (i) a quantitative coverage and (ii) a
qualitative answer to the question which tests passed and which tests failed. This process requires
considerable resources to be spent, but in return, concrete answers are provided, and, contrary
to classic software verification, the interpretation of these results does not require an academic
education.

If we compare the testing process to verification, we must acknowledge that in classic verifica-
tion, an engineer also has to invest a significant amount of resources, as in testing, but in turn,
gets back only an oversimplified answer true or false without any argument or explanation. The
confidence in this answer is usually only derived from the reputation of the verification tool, be-
cause manually inspecting an error path for the verification answer false to determine whether
it represents an actual bug or a false alarm is a tedious task and a waste of expensive developer
time. To make matters worse, most classic tools did not even bother to give an explanation why
the verifier reports the program as correct when its answer to the verification problem is true.

We aim at changing this situation and propose using tool-independent and machine-readable
witnesses as a richer, more valuable form of verification result for both specification violations
and correctness. In this article we presented a formalism to express both violation witnesses and
correctness witnesses, while also outlining their necessary differences. We suggest a concrete for-
mat to represent such witnesses for verification results for tasks derived from C programs and
present four different implementations of validators that support this format. We believe that pro-
ducing witnesses should be easy, because in order to find a bug, a useful verifier should already
be able to give the user a test case or a concrete error path, and any verifier designed for more
than just falsification, i.e., hunting bugs, must also already derive some form of a proof of correct-
ness. In practice, of course, there certainly are some engineering efforts required to construct a
useful witness. Witness-based result validation, on the other hand, is more difficult to implement
than witness construction: the validator must not only understand the assumptions and invariants
in the witness, but also correctly assign them to the program states that they were intended for.
The formalism presented in this article shows one possible approach for achieving this task, but
if its direct implementation in a given verification framework is infeasible, the approach can be
adapted, as exemplified by the different implementations that we showed.

We performed an extensive experimental study with thousands of verification runs on tasks
from the largest public repository of verification problems (C programs). We implemented our val-
idation approach in four result validators that have already been used for this purpose in the
recent competitions on software verification, and have applied these validators to results pro-
duced by two verification tools that have achieved top scores in these competitions for years.
The results obtained by our proof-of-concept implementations demonstrate that the proposed
approach can work in practice. Since the advent of witnesses a few years ago, others have im-
plemented support for witnesses in their tools. We hope that this process continues and that more
developers find our ideas useful, thus adding the value of diversity to the concept: Although it
may serve as a sanity check to apply a validator based on a certain framework to a witness pro-
duced by a verifier built on those same components, flaws in the reasoning may inadvertently be

ACM Transactions on Software Engineering and Methodology, Vol. 31, No. 4, Article 57. Pub. date: September 2022.

Verification Witnesses A Manuscripts

204

Verification Witnesses 57:63

covered up by a common defective component. Our solution is to instead establish a common ex-
change format supported by many verifiers, such that different result validators based on different
technologies can be leveraged. In the meanwhile, there are eight published validators for C pro-
grams (CPAchecker [25], CPA-witness2test [26], Dartagnan [116], FShell-witness2test [26], MetaVal [44],
NitWit [122], Symbiotic-Witch [4], and UAutomizer [25]), which are based on seven completely differ-
ent technologies, and our current results on witness validation demonstrate that diversity is ben-
eficial. In SV-COMP 2022, two validators for Java programs (GWit [92] and Wit4Java [130]) were
introduced. Establishing witnesses as an accepted standard in software verification will serve to
open tools up to other uses besides plain verification and validation, such as quality measures
for invariants or error paths, witness visualization, witness maintenance, databases for bugs and
proofs, regression verification, and many more.

DECLARATIONS

Data-Availability Statement. All results, tools, and verification tasks that we used in our evalua-
tion are available on the supplementary web page27 and in a reproduction package at Zenodo [24].
In addition to the experimental results that we produced for this article, there are publicly avail-
able results for all verifiers and validators that participated in the competition on software verifi-
cation (SV-COMP). A complete set of violation and correctness witnesses from the verifiers that
participated in SV-COMP is available for 2019 [15] and for 2020 [17]. A statistical overview of the
witnesses produced in SV-COMP 2019 and a description of the witness-store format that is used
for those archives is also available [14]. Some of the results are shown in aggregated form in the
competition reports, in Table 10 of the 2020 report [16], in Table 10 of the 2019 report [13], in
Table 8 of the 2017 report [12], and in Table 7 of the 2016 report [11].

ACKNOWLEDGMENTS
We thank Martin Spiessl and the anonymous reviewers for their careful proof-reading and sug-
gestions for improvement.

REFERENCES
[1] L. Alawneh and A. Hamou-Lhadj. 2011. MTF: A scalable exchange format for traces of high performance computing

systems. In Proceedings of the 19th International Conference on Program Comprehension. IEEE, 181–184. https://doi.
org/10.1109/ICPC.2011.15

[2] J. Alglave, A. F. Donaldson, D. Kröning, and M. Tautschnig. 2011. Making software verification tools really work. In
Proceedings of the International Symposium on Automated Technology for Verification and Analysis. Springer, 28–42.
https://doi.org/10.1007/978-3-642-24372-1_3

[3] C. Artho, K. Havelund, and S. Honiden. 2007. Visualization of concurrent program executions. In Proceedings of
the 31st Annual International Computer Software and Applications Conference. IEEE, 541–546. https://doi.org/10.1109/
COMPSAC.2007.236

[4] P. Ayaziová, M. Chalupa, and J. Strejček. 2022. Symbiotic-Witch: A klee-based violation witness checker (compe-
tition contribution). In Proceedings of the International Conference on Tools and Algorithms for the Construction and
Analysis of Systems. Springer.

[5] T. Ball, V. Levin, and S. K. Rajamani. 2011. A decade of software model checking with Slam. Communication of the
ACM 54, 7 (2011), 68–76. https://doi.org/10.1145/1965724.1965743

[6] T. Ball and S. K. Rajamani. 2002. SLIC: A Specification Language for Interface Checking (of C). Technical Report
MSR-TR-2001-21. Microsoft Research. Retrieved from https://www.microsoft.com/en-us/research/publication/slic-
a-specification-language-for-interface-checking-of-c/.

[7] T. Ball and S. K. Rajamani. 2002. The Slam project: Debugging system software via static analysis. In Proceedings of
the 29th ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages. ACM, 1–3. https://doi.org/10.
1145/503272.503274

27https://www.sosy-lab.org/research/verification-witnesses-tosem/

ACM Transactions on Software Engineering and Methodology, Vol. 31, No. 4, Article 57. Pub. date: September 2022.

A Manuscripts Verification Witnesses

205

https://doi.org/10.1109/ICPC.2011.15
https://doi.org/10.1007/978-3-642-24372-1_3
https://doi.org/10.1109/COMPSAC.2007.236
https://doi.org/10.1145/1965724.1965743
https://www.microsoft.com/en-us/research/publication/slic-a-specification-language-for-interface-checking-of-c/
https://doi.org/10.1145/503272.503274
https://www.sosy-lab.org/research/verification-witnesses-tosem/

57:64 D. Beyer, M. Dangl, D. Dietsch, M. Heizmann, T. Lemberger, and M. Tautschnig

[8] T. Balyo, M. J. H. Heule, and M. Järvisalo. 2017. SAT Competition 2016: Recent developments. In Proceedings of
the Proceedings of the AAAI Conference on Artificial Intelligence. 31, 1 (2016), 5061–5063. https://doi.org/10.1609/aaai.
v31i1.10641

[9] D. Beyer. 2012. Competition on software verification (SV-COMP). In Proceedings of the International Conference on
Tools and Algorithms for the Construction and Analysis of Systems. Springer, 504–524. https://doi.org/10.1007/978-3-
642-28756-5_38

[10] D. Beyer. 2015. Software verification and verifiable witnesses (report on SV-COMP 2015). In Proceedings of the
International Conference on Tools and Algorithms for the Construction and Analysis of Systems. Springer, 401–416.
https://doi.org/10.1007/978-3-662-46681-0_31

[11] D. Beyer. 2016. Reliable and reproducible competition results with BenchExec and witnesses (Report on SV-COMP
2016). In Proceedings of the International Conference on Tools and Algorithms for the Construction and Analysis of
Systems. Springer, 887–904. https://doi.org/10.1007/978-3-662-49674-9_55

[12] D. Beyer. 2017. Software verification with validation of results (report on SV-COMP 2017). In Proceedings of the
International Conference on Tools and Algorithms for the Construction and Analysis of Systems. Springer, 331–349.
https://doi.org/10.1007/978-3-662-54580-5_20

[13] D. Beyer. 2019. Automatic verification of C and Java programs: SV-COMP 2019. In Proceedings of the International
Conference on Tools and Algorithms for the Construction and Analysis of Systems. Springer, 133–155. https://doi.org/
10.1007/978-3-030-17502-3_9

[14] D. Beyer. 2019. A data set of program invariants and error paths. In Proceedings of the 16th International Conference
on Mining Software Repositories. IEEE, 111–115. https://doi.org/10.1109/MSR.2019.00026

[15] D. Beyer. 2019. Verification Witnesses from SV-COMP 2019 Verification Tools. Zenodo. https://doi.org/10.5281/zenodo.
2559175

[16] D. Beyer. 2020. Advances in automatic software verification: SV-COMP 2020. In Proceedings of the International Con-
ference on Tools and Algorithms for the Construction and Analysis of Systems. Springer, 347–367. https://doi.org/10.
1007/978-3-030-45237-7_21

[17] D. Beyer. 2020. Verification Witnesses from SV-COMP 2020 Verification Tools. Zenodo. https://doi.org/10.5281/zenodo.
3630188

[18] D. Beyer. 2021. Software verification: 10th comparative evaluation (SV-COMP 2021). In Proceedings of the Interna-
tional Conference on Tools and Algorithms for the Construction and Analysis of Systems. Springer, 401–422. https:
//doi.org/10.1007/978-3-030-72013-1_24

[19] D. Beyer, A. J. Chlipala, T. A. Henzinger, R. Jhala, and R. Majumdar. 2004. Generating tests from counterexamples. In
Proceedings of the 26th International Conference on Software Engineering. IEEE, 326–335. https://doi.org/10.1109/ICSE.
2004.1317455

[20] D. Beyer, A. J. Chlipala, T. A. Henzinger, R. Jhala, and R. Majumdar. 2004. The Blast query language for software
verification. In Proceedings of the International Static Analysis Symposium. Springer, 2–18. https://doi.org/10.1007/978-
3-540-27864-1_2

[21] D. Beyer, A. Cimatti, A. Griggio, M. E. Keremoglu, and R. Sebastiani. 2009. Software model checking via large-block
encoding. In Proceedings of the 2009 Formal Methods in Computer-Aided Design. IEEE, 25–32. https://doi.org/10.1109/
FMCAD.2009.5351147

[22] D. Beyer and M. Dangl. 2016. Verification-aided debugging: An interactive web-service for exploring error witnesses.
In Proceedings of the International Conference on Computer Aided Verification. Springer, 502–509. https://doi.org/10.
1007/978-3-319-41540-6_28

[23] D. Beyer, M. Dangl, D. Dietsch, and M. Heizmann. 2016. Correctness witnesses: Exchanging verification results be-
tween verifiers. In Proceedings of the 2016 24th ACM SIGSOFT International Symposium on Foundations of Software
Engineering. ACM, 326–337. https://doi.org/10.1145/2950290.2950351

[24] D. Beyer, M. Dangl, D. Dietsch, M. Heizmann, T. Lemberger, and M. Tautschnig. 2020. Reproduction Package for
TOSEM Article “Verification Witnesses”. Zenodo. https://doi.org/10.5281/zenodo.3731856

[25] D. Beyer, M. Dangl, D. Dietsch, M. Heizmann, and A. Stahlbauer. 2015. Witness validation and stepwise testification
across software verifiers. In Proceedings of the Proceedings of the 2015 10th Joint Meeting on Foundations of Software
Engineering. ACM, 721–733. https://doi.org/10.1145/2786805.2786867

[26] D. Beyer, M. Dangl, T. Lemberger, and M. Tautschnig. 2018. Tests from witnesses: Execution-based validation of
verification results. In Proceedings of the International Conference on Tests and Proofs. Springer, 3–23. https://doi.org/
10.1007/978-3-319-92994-1_1

[27] D. Beyer, M. Dangl, and P. Wendler. 2015. Boosting k-induction with continuously-refined invariants. In Proceedings
of the International Conference on Computer Aided Verification. Springer, 622–640. https://doi.org/10.1007/978-3-319-
21690-4_42

ACM Transactions on Software Engineering and Methodology, Vol. 31, No. 4, Article 57. Pub. date: September 2022.

Verification Witnesses A Manuscripts

206

https://doi.org/10.1609/aaai.v31i1.10641
https://doi.org/10.1007/978-3-642-28756-5_38
https://doi.org/10.1007/978-3-662-46681-0_31
https://doi.org/10.1007/978-3-662-49674-9_55
https://doi.org/10.1007/978-3-662-54580-5_20
https://doi.org/10.1007/978-3-030-17502-3_9
https://doi.org/10.1109/MSR.2019.00026
https://doi.org/10.5281/zenodo.2559175
https://doi.org/10.1007/978-3-030-45237-7_21
https://doi.org/10.5281/zenodo.3630188
https://doi.org/10.1007/978-3-030-72013-1_24
https://doi.org/10.1109/ICSE.2004.1317455
https://doi.org/10.1007/978-3-540-27864-1_2
https://doi.org/10.1109/FMCAD.2009.5351147
https://doi.org/10.1007/978-3-319-41540-6_28
https://doi.org/10.1145/2950290.2950351
https://doi.org/10.5281/zenodo.3731856
https://doi.org/10.1145/2786805.2786867
https://doi.org/10.1007/978-3-319-92994-1_1
https://doi.org/10.1007/978-3-319-21690-4_42

Verification Witnesses 57:65

[28] D. Beyer, M. Dangl, and P. Wendler. 2018. A unifying view on SMT-based software verification. Journal of Automated
Reasoning 60, 3 (2018), 299–335. https://doi.org/10.1007/s10817-017-9432-6

[29] D. Beyer and K. Friedberger. 2020. Violation witnesses and result validation for multi-threaded programs. In Pro-
ceedings of the International Symposium on Leveraging Applications of Formal Methods. Springer, 449–470. https:
//doi.org/10.1007/978-3-030-61362-4_26

[30] D. Beyer, S. Gulwani, and D. Schmidt. 2018. Combining model checking and data-flow analysis. In Proeedings of the
Handbook of Model Checking. Springer, 493–540. https://doi.org/10.1007/978-3-319-10575-8_16

[31] D. Beyer, T. A. Henzinger, R. Jhala, and R. Majumdar. 2007. The software model checker Blast. International Journal
on Software Tools for Technology Transfer 9, 5–6 (2007), 505–525. https://doi.org/10.1007/s10009-007-0044-z

[32] D. Beyer, T. A. Henzinger, M. E. Keremoglu, and P. Wendler. 2012. Conditional model checking: A technique to pass
information between verifiers. In Proceedings of the ACM SIGSOFT 20th International Symposium on the Foundations
of Software Engineering. ACM, 11 pages. https://doi.org/10.1145/2393596.2393664

[33] D. Beyer, T. A. Henzinger, R. Majumdar, and A. Rybalchenko. 2007. Path invariants. In Proceedings of the Proceedings
of the 28th ACM SIGPLAN Conference on Programming Language Design and Implementation. ACM, 300–309. https:
//doi.org/10.1145/1250734.1250769

[34] D. Beyer, T. A. Henzinger, and G. Théoduloz. 2007. Configurable software verification: Concretizing the convergence
ofmodel checking and program analysis. In Proceedings of the International Conference on Computer Aided Verification.
Springer, 504–518. https://doi.org/10.1007/978-3-540-73368-3_51

[35] D. Beyer, A. Holzer, M. Tautschnig, and H. Veith. 2013. Information reuse for multi-goal reachability analyses. In
Proceedings of the European Symposium on Programming. Springer, 472–491. https://doi.org/10.1007/978-3-642-37036-
6_26

[36] D. Beyer and M.-C. Jakobs. 2019. CoVeriTest: Cooperative verifier-based testing. In Proceedings of the FASE. Springer,
389–408. https://doi.org/10.1007/978-3-030-16722-6_23

[37] D. Beyer, M.-C. Jakobs, T. Lemberger, and H. Wehrheim. 2018. Reducer-based construction of conditional verifiers.
In Proceedings of the 40th International Conference on Software Engineering. ACM, 1182–1193. https://doi.org/10.1145/
3180155.3180259

[38] D. Beyer and M. E. Keremoglu. 2011. CPAchecker: A tool for configurable software verification. In Proceedings of the
International Conference on Computer Aided Verification. Springer, 184–190. https://doi.org/10.1007/978-3-642-22110-
1_16

[39] D. Beyer, M. E. Keremoglu, and P. Wendler. 2010. Predicate abstraction with adjustable-block encoding. In Proceedings
of the Formal Methods in Computer Aided Design. 189–197. Retrieved from https://www.sosy-lab.org/research/pub/
2010-FMCAD.Predicate_Abstraction_with_Adjustable-Block_Encoding.pdf.

[40] D. Beyer and T. Lemberger. 2016. Symbolic execution with CEGAR. In Proceedings of the International Symposium on
Leveraging Applications of Formal Methods. Springer, 195–211. https://doi.org/10.1007/978-3-319-47166-2_14

[41] D. Beyer and T. Lemberger. 2019. TestCov: Robust test-suite execution and coverage measurement. In Proceedings
of the 34th IEEE/ACM International Conference on Automated Software Engineering. IEEE, 1074–1077. https://doi.org/
10.1109/ASE.2019.00105

[42] D. Beyer and S. Löwe. 2013. Explicit-state softwaremodel checking based on CEGAR and interpolation. In Proceedings
of the International Conference on Fundamental Approaches to Software Engineering. Springer, 146–162. https://doi.org/
10.1007/978-3-642-37057-1_11

[43] D. Beyer, S. Löwe, and P. Wendler. 2019. Reliable benchmarking: Requirements and solutions. International Journal
on Software Tools for Technology Transfer 21, 1 (2019), 1–29. https://doi.org/10.1007/s10009-017-0469-y

[44] D. Beyer and M. Spiessl. 2020. MetaVal: Witness validation via verification. In Proceedings of the International Con-
ference on Computer Aided Verification. Springer, 165–177. https://doi.org/10.1007/978-3-030-53291-8_10

[45] D. Beyer and H. Wehrheim. 2020. Verification artifacts in cooperative verification: Survey and unifying component
framework. In Proceedings of the International Symposium on Leveraging Applications of Formal Methods. Springer,
143–167. https://doi.org/10.1007/978-3-030-61362-4_8

[46] D. Beyer and P. Wendler. 2012. Algorithms for software model checking: Predicate abstraction vs. Impact. In
Proceedings of the 2012 Formal Methods in Computer-Aided Design. 106–113. Retrieved from https://www.sosy-
lab.org/research/pub/2012-FMCAD.Algorithms_for_Software_Model_Checking.pdf.

[47] D. Beyer and P. Wendler. 2013. Reuse of verification results: Conditional model checking, precision reuse, and veri-
fication witnesses. In Proceedings of the International SPIN Workshop on Model Checking of Software. Springer, 1–17.
https://doi.org/10.1007/978-3-642-39176-7_1

[48] P. Bielik, V. Raychev, and M. T. Vechev. 2017. Learning a static analyzer from data. In Proceedings of the International
Conference on Computer Aided Verification. Springer, 233–253. https://doi.org/10.1007/978-3-319-63387-9_12

[49] Armin Biere, Alessandro Cimatti, Edmund M. Clarke, Ofer Strichman, and Yunshan Zhu. 2003. Bounded model
checking. Advances in Computers 58 (2003), 117–148. https://doi.org/10.1016/S0065-2458(03)58003-2

ACM Transactions on Software Engineering and Methodology, Vol. 31, No. 4, Article 57. Pub. date: September 2022.

A Manuscripts Verification Witnesses

207

https://doi.org/10.1007/s10817-017-9432-6
https://doi.org/10.1007/978-3-030-61362-4_26
https://doi.org/10.1007/978-3-319-10575-8_16
https://doi.org/10.1007/s10009-007-0044-z
https://doi.org/10.1145/2393596.2393664
https://doi.org/10.1145/1250734.1250769
https://doi.org/10.1007/978-3-540-73368-3_51
https://doi.org/10.1007/978-3-642-37036-6_26
https://doi.org/10.1007/978-3-030-16722-6_23
https://doi.org/10.1145/3180155.3180259
https://doi.org/10.1007/978-3-642-22110-1_16
https://www.sosy-lab.org/research/pub/2010-FMCAD.Predicate_Abstraction_with_Adjustable-Block_Encoding.pdf
https://doi.org/10.1007/978-3-319-47166-2_14
https://doi.org/10.1109/ASE.2019.00105
https://doi.org/10.1007/978-3-642-37057-1_11
https://doi.org/10.1007/s10009-017-0469-y
https://doi.org/10.1007/978-3-030-53291-8_10
https://doi.org/10.1007/978-3-030-61362-4_8
https://www.sosy-lab.org/research/pub/2012-FMCAD.Algorithms_for_Software_Model_Checking.pdf
https://doi.org/10.1007/978-3-642-39176-7_1
https://doi.org/10.1007/978-3-319-63387-9_12
https://doi.org/10.1016/S0065-2458(03)58003-2

57:66 D. Beyer, M. Dangl, D. Dietsch, M. Heizmann, T. Lemberger, and M. Tautschnig

[50] A. Biere, A. Cimatti, E. M. Clarke, and Y. Zhu. 1999. Symbolic model checking without BDDs. In Proceedings of the
International Conference on Tools and Algorithms for the Construction and Analysis of Systems. Springer, 193–207.
https://doi.org/10.1007/3-540-49059-0_14

[51] U. Brandes, M. Eiglsperger, I. Herman, M. Himsolt, and M. S. Marshall. 2001. GraphML progress report. In Proceedings
of the Graph Drawing. Springer, 501–512. https://doi.org/10.1007/3-540-45848-4_59

[52] J. Bürdek, M. Lochau, S. Bauregger, A. Holzer, A. von Rhein, S. Apel, and D. Beyer. 2015. Facilitating reuse in multi-
goal test-suite generation for software product lines. In Proceedings of the International Conference on Fundamental
Approaches to Software Engineering. Springer, 84–99. https://doi.org/10.1007/978-3-662-46675-9_6

[53] C. Cadar, V. Ganesh, P. M. Pawlowski, D. L. Dill, and D. R. Engler. 2006. EXE: Automatically generating inputs of
death. In Proceedings of the CCS. ACM, 322–335. https://doi.org/10.1145/1180405.1180445

[54] H. Cai, Z. Shao, and A. Vaynberg. 2007. Certified self-modifying code. ACM SIGPLAN Notices 42, 6 (2007), 66–77.
https://doi.org/10.1145/1250734.1250743

[55] C. Calcagno, D. Distefano, J. Dubreil, D. Gabi, P. Hooimeijer, M. Luca, P. W. O’Hearn, I. Papakonstantinou, J. Pur-
brick, and D. Rodriguez. 2015. Moving fast with software verification. In Proceedings of the NASA Formal Methods
Symposium. Springer, 3–11. https://doi.org/10.1007/978-3-319-17524-9_1

[56] R. Castaño, V. A. Braberman, D. Garbervetsky, and S. Uchitel. 2017. Model checker execution reports. In Proceedings
of the 32nd IEEE/ACM International Conference on Automated Software Engineering. IEEE, 200–205. https://doi.org/10.
1109/ASE.2017.8115633

[57] S. Chaki, E. M. Clarke, A. Groce, S. Jha, and H. Veith. 2004. Modular verification of software components in C. IEEE
Transactions on Software Engineering 30, 6 (2004), 388–402. https://doi.org/10.1109/TSE.2004.22

[58] A. Champion, A. Mebsout, C. Sticksel, and C. Tinelli. 2016. The kind 2 model checker. In Proceedings of the Interna-
tional Conference on Computer Aided Verification. Springer, 510–517. https://doi.org/10.1007/978-3-319-41540-6_29

[59] E. M. Clarke, O. Grumberg, S. Jha, Y. Lu, and H. Veith. 2003. Counterexample-guided abstraction refinement for
symbolic model checking. Journal of the ACM 50, 5 (2003), 752–794. https://doi.org/10.1145/876638.876643

[60] E. M. Clarke, O. Grumberg, K. L. McMillan, and Xudong Zhao. 1995. Efficient generation of counterexamples and
witnesses in symbolic model checking. In Proceedings of the 32nd annual ACM/IEEE Design Automation Conference.
ACM, 427–432. https://doi.org/10.1145/217474.217565

[61] E. M. Clarke and H. Veith. 2003. Counterexamples revisited: Principles, algorithms, applications. In Proceedings of
the Verification: Theory and Practice, Essays Dedicated to Zohar Manna on the Occasion of his 64th Birthday. Springer,
208–224. https://doi.org/10.1007/978-3-540-39910-0_9

[62] H. Cleve and A. Zeller. 2005. Locating causes of program failures. In Proceedings of the 27th International Conference
on Software Engineering. ACM, 342–351. https://doi.org/10.1145/1062455.1062522

[63] B. Cook. 2018. Formal reasoning about the security of amazon web services. In Proceedings of the International Con-
ference on Computer Aided Verification. Springer, 38–47. https://doi.org/10.1007/978-3-319-96145-3_3

[64] P. Cousot and R. Cousot. 1976. Static determination of dynamic properties of programs. In Proceedings of the
2nd International Symposium on Programming. Dunod, 106–130. Retrieved from https://www.di.ens.fr/~cousot/
COUSOTpapers/publications.www/CousotCousot-ISOP-76-Dunod-p106--130-1976.pdf.

[65] P. Cousot and R. Cousot. 1979. Systematic design of program-analysis frameworks. In Proceedings of the 6th ACM
SIGACT-SIGPLAN symposium on Principles of programming languages. ACM, 269–282. https://doi.org/10.1145/567752.
567778

[66] W. Craig. 1957. Linear reasoning. A new form of the herbrand-gentzen theorem. The Journal of Symbolic Logic 22, 3
(1957), 250–268. https://doi.org/10.2307/2963593

[67] C. Csallner and Y. Smaragdakis. 2005. Check “n” crash: Combining static checking and testing. In Proceedings of the
27th International Conference on Software Engineering. ACM, 422–431. https://doi.org/10.1145/1062455.1062533

[68] D. Dams and K. S. Namjoshi. 2005. Orion: High-precision methods for static error analysis of C and C++ programs.
In Proceedings of the International Symposium on Formal Methods for Components and Objects. Springer, 138–160.
https://doi.org/10.1007/11804192_7

[69] A. F. Donaldson, L. Haller, D. Kröning, and P. Rümmer. 2011. Software verification using k-induction. In Proceedings
of the International Static Analysis Symposium. Springer, 351–368. https://doi.org/10.1007/978-3-642-23702-7_26

[70] K. Dräger, A. Kupriyanov, B. Finkbeiner, and H. Wehrheim. 2010. Slab: A certifying model checker for infinite-state
concurrent systems. In Proceedings of the International Conference on Tools and Algorithms for the Construction and
Analysis of Systems. Springer, 271–274. https://doi.org/10.1007/978-3-642-12002-2_22

[71] E. Ermis, M. Schäf, and T. Wies. 2012. Error invariants. In Proceedings of the International Symposium on Formal
Methods. Springer, 187–201. https://doi.org/10.1007/978-3-642-32759-9_17

[72] D. Eschweiler, M. Wagner, M. Geimer, A. Knüpfer, W. E. Nagel, and F. Wolf. 2011. Open trace format 2: The next
generation of scalable trace formats and support libraries. In Proceedings of the ParCo (APC 22). IOS, 481–490. https:
//doi.org/10.3233/978-1-61499-041-3-481

ACM Transactions on Software Engineering and Methodology, Vol. 31, No. 4, Article 57. Pub. date: September 2022.

Verification Witnesses A Manuscripts

208

https://doi.org/10.1007/3-540-49059-0_14
https://doi.org/10.1007/3-540-45848-4_59
https://doi.org/10.1007/978-3-662-46675-9_6
https://doi.org/10.1145/1180405.1180445
https://doi.org/10.1145/1250734.1250743
https://doi.org/10.1007/978-3-319-17524-9_1
https://doi.org/10.1109/ASE.2017.8115633
https://doi.org/10.1109/TSE.2004.22
https://doi.org/10.1007/978-3-319-41540-6_29
https://doi.org/10.1145/876638.876643
https://doi.org/10.1145/217474.217565
https://doi.org/10.1007/978-3-540-39910-0_9
https://doi.org/10.1145/1062455.1062522
https://doi.org/10.1007/978-3-319-96145-3_3
https://www.di.ens.fr/~cousot/COUSOTpapers/publications.www/CousotCousot-ISOP-76-Dunod-p106--130-1976.pdf
https://doi.org/10.1145/567752.567778
https://doi.org/10.2307/2963593
https://doi.org/10.1145/1062455.1062533
https://doi.org/10.1007/11804192_7
https://doi.org/10.1007/978-3-642-23702-7_26
https://doi.org/10.1007/978-3-642-12002-2_22
https://doi.org/10.1007/978-3-642-32759-9_17
https://doi.org/10.3233/978-1-61499-041-3-481

Verification Witnesses 57:67

[73] J. Gennari, A. Gurfinkel, T. Kahsai, J. A. Navas, and E. J. Schwartz. 2018. Executable counterexamples in software
model checking. In Proceedings of the Working Conference on Verified Software: Theories, Tools, and Experiments.
Springer, 17–37. https://doi.org/10.1007/978-3-030-03592-1_2

[74] E. Ghassabani, A. Gacek, andM.W.Whalen. 2016. Efficient generation of inductive validity cores for safety properties.
In Proceedings of the 2016 24th ACM SIGSOFT International Symposium on Foundations of Software Engineering. ACM,
314–325. https://doi.org/10.1145/2950290.2950346

[75] J. Giesl, F. Mesnard, A. Rubio, R. Thiemann, and J. Waldmann. 2015. Termination competition (termCOMP 2015). In
Proceedings of the International Conference on Automated Deduction. Springer, 105–108. https://doi.org/10.1007/978-
3-319-21401-6_6

[76] P. Godefroid, N. Klarlund, and K. Sen. 2005. Dart: Directed automated random testing. In Proceedings of the 2005
ACM SIGPLAN Conference on Programming Language Design and Implementation. ACM, 213–223. https://doi.org/10.
1145/1065010.1065036

[77] S. Graf and H. Saïdi. 1997. Construction of abstract state graphs with Pvs. In Proceedings of the International Confer-
ence on Computer Aided Verification. Springer, 72–83. https://doi.org/10.1007/3-540-63166-6_10

[78] A. Groce, S. Chaki, D. Kröning, and O. Strichman. 2006. Error explanation with distance metrics. STTT 8, 3 (2006),
229–247. https://doi.org/10.1007/s10009-005-0202-0

[79] A. Groce and W. Visser. 2003. What went wrong: Explaining counterexamples. In Proceedings of the International
SPIN Workshop on Model Checking of Software. Springer, 121–135. https://doi.org/10.1007/3-540-44829-2_8

[80] B. S. Gulavani, T. A. Henzinger, Y. Kannan, A. V. Nori, and S. K. Rajamani. 2006. Synergy: A new algorithm for
property checking. In Proceedings of the 14th ACM SIGSOFT International Symposium on Foundations of Software
Engineering. ACM, 117–127. https://doi.org/10.1145/1181775.1181790

[81] E. L. Gunter and D. A. Peled. 1999. Path exploration tool. In Proceedings of the International Conference on Tools and
Algorithms for the Construction and Analysis of Systems. Springer, 405–419. https://doi.org/10.1007/3-540-49059-0_28

[82] A. K. Gupta, T. A. Henzinger, R. Majumdar, A. Rybalchenko, and R. Xu. 2008. Proving non-termination. In Proceedings
of the annual ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages. ACM, 147–158. https:
//doi.org/10.1145/1328438.1328459

[83] M. Heizmann, Y.-W. Chen, D. Dietsch, M. Greitschus, A. Nutz, B. Musa, C. Schätzle, C. Schilling, F. Schüssele, and
A. Podelski. 2017. Ultimate automizer with an on-demand construction of floyd-hoare automata (competition
contribution). In Proceedings of the International Conference on Tools and Algorithms for the Construction and Analysis
of Systems. Springer, 394–398. https://doi.org/10.1007/978-3-662-54580-5_30

[84] M. Heizmann, J. Hoenicke, and A. Podelski. 2013. Software model checking for people who love automata. In Pro-
ceedings of the International Conference on Computer Aided Verification. Springer, 36–52. https://doi.org/10.1007/978-
3-642-39799-8_2

[85] T. A. Henzinger, R. Jhala, R. Majumdar, G. C. Necula, G. Sutre, and W. Weimer. 2002. Temporal-safety proofs for
systems code. In Proceedings of the International Conference on Computer Aided Verification. Springer, 526–538. https:
//doi.org/10.1007/3-540-45657-0_45

[86] T. A. Henzinger, R. Jhala, R. Majumdar, and M. A. A. Sanvido. 2003. Extreme model checking. In Proceedings of the
Verification: Theory and Practice. Springer, 332–358. https://doi.org/10.1007/978-3-540-39910-0_16

[87] M. J. H. Heule. 2016. The DRAT format and DRAT-trim checker. Tech. Rep. arXiv: 1610.06229. arXiv. https://doi.org/
10.48550/arXiv.1610.06229

[88] M. J. H. Heule. 2018. Schur number five. Proceedings of the AAAI Conference on Artificial Intelligence 32, 1 (2018),
6598–6606. https://doi.org/10.1609/aaai.v32i1.12209

[89] A. Holzer, C. Schallhart, M. Tautschnig, and H. Veith. 2010. How did you specify your test suite. In Proceedings of
the IEEE/ACM International Conference on Automated Software Engineering. ACM, 407–416. https://doi.org/10.1145/
1858996.1859084

[90] H. S. Hong, S. D. Cha, I. Lee, O. Sokolsky, and H. Ural. 2003. Data flow testing as model checking. In Proceedings of
the 25th International Conference on Software Engineering. IEEE, 232–243. https://doi.org/10.1109/ICSE.2003.1201203

[91] H. S. Hong, I. Lee, and O. Sokolsky. 2001. Automatic Test Generation From Statecharts Using Modle Checking. Tech-
nical Report MS-CIS-01-07. University of Pennsylvania. 27 pages. Retrieved from https://repository.upenn.edu/cgi/
viewcontent.cgi?article=1092&context=cis_reports.

[92] F. Howar and M. Mues. 2022. GWit (competition contribution). In Proceedings of the TACAS (2) (LNCS 13244).
Springer.

[93] X. Huang, M. Kwiatkowska, S. Wang, and M. Wu. 2017. Safety verification of deep neural networks. In Proceedings of
the International Conference on Computer Aided Verification. Springer, 3–29. https://doi.org/10.1007/978-3-319-63387-
9_1

[94] A. Iliasov. 2011. Generation of certifiably correct programs from formal models. In Proceedings of the 1st International
Workshop on Software Certification. IEEE, 43–48. https://doi.org/10.1109/WoSoCER.2011.14

ACM Transactions on Software Engineering and Methodology, Vol. 31, No. 4, Article 57. Pub. date: September 2022.

A Manuscripts Verification Witnesses

209

https://doi.org/10.1007/978-3-030-03592-1_2
https://doi.org/10.1145/2950290.2950346
https://doi.org/10.1007/978-3-319-21401-6_6
https://doi.org/10.1145/1065010.1065036
https://doi.org/10.1007/3-540-63166-6_10
https://doi.org/10.1007/s10009-005-0202-0
https://doi.org/10.1007/3-540-44829-2_8
https://doi.org/10.1145/1181775.1181790
https://doi.org/10.1007/3-540-49059-0_28
https://doi.org/10.1145/1328438.1328459
https://doi.org/10.1007/978-3-662-54580-5_30
https://doi.org/10.1007/978-3-642-39799-8_2
https://doi.org/10.1007/3-540-45657-0_45
https://doi.org/10.1007/978-3-540-39910-0_16
https://doi.org/10.48550/arXiv.1610.06229
https://doi.org/10.1609/aaai.v32i1.12209
https://doi.org/10.1145/1858996.1859084
https://doi.org/10.1109/ICSE.2003.1201203
https://repository.upenn.edu/cgi/viewcontent.cgi?article=1092&context=cis_reports
https://doi.org/10.1007/978-3-319-63387-9_1
https://doi.org/10.1109/WoSoCER.2011.14

57:68 D. Beyer, M. Dangl, D. Dietsch, M. Heizmann, T. Lemberger, and M. Tautschnig

[95] M.-C. Jakobs and H. Wehrheim. 2014. Certification for configurable program analysis. In Proceedings of the 2014
International SPIN Symposium on Model Checking of Software. ACM, 30–39. https://doi.org/10.1145/2632362.2632372

[96] M.-C. Jakobs and H. Wehrheim. 2017. Programs from proofs: A framework for the safe execution of untrusted
software. ACM Transactions on Programming Languages and Systems 39, 2 (2017), 7:1–7:56. https://doi.org/10.1145/
3014427

[97] C. Jard and T. Jéron. 2005. TGV: Theory, principles, and algorithms. STTT 7, 4 (2005), 297–315. https://doi.org/10.
1007/s10009-004-0153-x

[98] M. Jose and R. Majumdar. 2011. Bug-assist: Assisting fault localization in ANSI-C programs. In Proceedings of the
International Conference on Computer Aided Verification. Springer, 504–509. https://doi.org/10.1007/978-3-642-22110-
1_40

[99] T. Kahsai and C. Tinelli. 2011. PKind: A parallel k-induction based model checker. In Proceedings of the Int. Workshop
on Parallel and Distributed Methods in Verification. EPTCS, 55–62. https://doi.org/10.4204/EPTCS.72.6

[100] A. V. Khoroshilov, V. S. Mutilin, A. K. Petrenko, and V. Zakharov. 2009. Establishing linux driver verification process.
In Proceedings of the International Andrei Ershov Memorial Conference on Perspectives of System Informatics. Springer,
165–176. https://doi.org/10.1007/978-3-642-11486-1_14

[101] G. A. Kildall. 1973. A unified approach to global program optimization. In Proceedings of the 1st Annual ACM
SIGACT-SIGPLAN Symposium on Principles of Programming Languages. ACM, 194–206. https://doi.org/10.1145/
512927.512945

[102] A. Knüpfer, R. Brendel, H. Brunst, H. Mix, and W. E. Nagel. 2006. Introducing the open trace format (OTF). In Proceed-
ings of the International Conference on Computational Science. Springer, 526–533. https://doi.org/10.1007/11758525_71

[103] D. Kröning and N. Sharygina. 2005. Formal verification of systemc by automatic hardware/software partitioning. In
Proceedings of the 2nd ACM and IEEE International Conference on Formal Methods and Models for Co-Design. IEEE,
101–110. https://doi.org/10.1109/MEMCOD.2005.1487900

[104] A. Leitner, M. Oriol, A. Zeller, I. Ciupa, and B. Meyer. 2007. Efficient unit test case minimization. In Proceedings of
the 22nd IEEE/ACM International Conference on Automated Software Engineering. ACM, 417–420. https://doi.org/10.
1145/1321631.1321698

[105] K. Li, C. Reichenbach, C. Csallner, and Y. Smaragdakis. 2012. Residual investigation: Predictive and precise bug
detection. In Proceedings of the ISSTA. ACM, 298–308. https://doi.org/10.1145/2338965.2336789

[106] R. Majumdar and K. Sen. 2007. Hybrid concolic testing. In Proceedings of the 29th International Conference on Software
Engineering. IEEE, 416–426. https://doi.org/10.1109/ICSE.2007.41

[107] R. M. McConnell, K. Mehlhorn, S. Näher, and P. Schweitzer. 2011. Certifying algorithms. Computer Science Review 5,
2 (2011), 119–161. https://doi.org/10.1016/j.cosrev.2010.09.009

[108] K. L. McMillan. 2003. Interpolation and SAT-based model checking. In Proceedings of the International Conference on
Computer Aided Verification. Springer, 1–13. https://doi.org/10.1007/978-3-540-45069-6_1

[109] K. L. McMillan. 2006. Lazy abstraction with interpolants. In Proceedings of the International Conference on Computer
Aided Verification. Springer, 123–136. https://doi.org/10.1007/11817963_14

[110] P. Müller and J. N. Ruskiewicz. 2011. Using debuggers to understand failed verification attempts. In Proceedings of
the International Symposium on Formal Methods. Springer, 73–87. https://doi.org/10.1007/978-3-642-21437-0_8

[111] K. S. Namjoshi. 2001. Certifying model checkers. In Proceedings of the International Conference on Computer Aided
Verification. Springer, 2–13. https://doi.org/10.1007/3-540-44585-4_2

[112] G. C. Necula. 1997. Proof-carrying code. In Proceedings of the 24th ACM SIGPLAN-SIGACT Symposium on Principles
of Programming Languages. ACM, 106–119. https://doi.org/10.1145/263699.263712

[113] F. Nielson, H. R. Nielson, and C. Hankin. 1999. Principles of Program Analysis. Springer. https://doi.org/10.1007/978-
3-662-03811-6

[114] Evgeny Novikov and Ilja S. Zakharov. 2017. Towards automated static verification of GNU C programs. In Proceedings
of the International Andrei Ershov Memorial Conference on Perspectives of System Informatics. Springer, 402–416. https:
//doi.org/10.1007/978-3-319-74313-4_30

[115] OASIS. 2019. Static Analysis Results Interchange Format (SARIF) Version 2.0. Retrieved 23 July 2022 from https:
//docs.oasis-open.org/sarif/sarif/v2.0/csprd02/sarif-v2.0-csprd02.html.

[116] H. Ponce-De-Leon, T. Haas, and R. Meyer. 2022. Dartagnan: SMT-based violation witness validation (competition
contribution). In Proceedings of the International Conference on Tools and Algorithms for the Construction and Analysis
of Systems. Springer.

[117] H. O. Rocha, R. S. Barreto, L. C. Cordeiro, and A. Dias Neto. 2012. Understanding programming bugs in ANSI-C soft-
ware using bounded model checking counter-examples. In Proceedings of the International Conference on Integrated
Formal Methods. Springer, 128–142. https://doi.org/10.1007/978-3-642-30729-4_10

[118] F. B. Schneider. 2000. Enforceable security policies. ACM Transactions on Information and System Security 3, 1 (2000),
30–50. https://doi.org/10.1145/353323.353382

ACM Transactions on Software Engineering and Methodology, Vol. 31, No. 4, Article 57. Pub. date: September 2022.

Verification Witnesses A Manuscripts

210

https://doi.org/10.1145/2632362.2632372
https://doi.org/10.1145/3014427
https://doi.org/10.1007/s10009-004-0153-x
https://doi.org/10.1007/978-3-642-22110-1_40
https://doi.org/10.4204/EPTCS.72.6
https://doi.org/10.1007/978-3-642-11486-1_14
https://doi.org/10.1145/512927.512945
https://doi.org/10.1007/11758525_71
https://doi.org/10.1109/MEMCOD.2005.1487900
https://doi.org/10.1145/1321631.1321698
https://doi.org/10.1145/2338965.2336789
https://doi.org/10.1109/ICSE.2007.41
https://doi.org/10.1016/j.cosrev.2010.09.009
https://doi.org/10.1007/978-3-540-45069-6_1
https://doi.org/10.1007/11817963_14
https://doi.org/10.1007/978-3-642-21437-0_8
https://doi.org/10.1007/3-540-44585-4_2
https://doi.org/10.1145/263699.263712
https://doi.org/10.1007/978-3-662-03811-6
https://doi.org/10.1007/978-3-319-74313-4_30
https://docs.oasis-open.org/sarif/sarif/v2.0/csprd02/sarif-v2.0-csprd02.html
https://doi.org/10.1007/978-3-642-30729-4_10
https://doi.org/10.1145/353323.353382

Verification Witnesses 57:69

[119] K. Sen, D. Marinov, and G. Agha. 2005. Cute: A concolic unit testing engine for C. In Proceedings of the ACM SIGSOFT
Software Engineering Notes. ACM, 263–272. https://doi.org/10.1145/1081706.1081750

[120] O. Ŝerý. 2009. Enhanced property specification and verification in Blast. In Proceedings of the International Conference
on Fundamental Approaches to Software Engineering. Springer, 456–469. https://doi.org/10.1007/978-3-642-00593-0_
32

[121] C. Sternagel and R. Thiemann. 2014. The certification problem format. In Proceedings of the UITP (EPTCS 167). EPTCS,
61–72. https://doi.org/10.4204/EPTCS.167.8

[122] J. Švejda, P. Berger, and J.-P. Katoen. 2020. Interpretation-based violation witness validation for C: NitWit. In Pro-
ceedings of the International Conference on Tools and Algorithms for the Construction and Analysis of Systems. Springer,
40–57. https://doi.org/10.1007/978-3-030-45190-5_3

[123] A. Taleghani and J. M. Atlee. 2010. Search-carrying code. In Proceedings of the IEEE/ACM International Conference on
Automated Software Engineering. ACM, 367–376. https://doi.org/10.1145/1858996.1859079

[124] A. Turing. 1949. Checking a large routine. In Proceedings of the Report on a Conference on High Speed Automatic
Calculating Machines. Cambridge Univ. Math. Lab., 67–69. Retrieved from http://dl.acm.org/citation.cfm?id=94938.
94952.

[125] W. Visser, C. S. Păsăreanu, and S. Khurshid. 2004. Test-input generation with Java PathFinder. In Proceedings of the
2004 ACM SIGSOFT International Symposium on Software Testing and Analysis. ACM, 97–107. https://doi.org/10.1145/
1007512.1007526

[126] M. Wagner, A. Knüpfer, and W. E. Nagel. 2016. OTFX: An in-memory event tracing extension to the open trace format
2. In Proceedings of the International Conference on Algorithms and Architectures for Parallel Processing. Springer, 3–17.
https://doi.org/10.1007/978-3-319-49956-7_1

[127] T. Wahl. 2013. The k-Induction Principle. Retrieved 23 July 2022 from http://www.ccs.neu.edu/home/wahl/
Publications/k-induction.pdf.

[128] N. Wetzler, M. J. H. Heule, and Warren A. Hunt Jr. 2014. Drat-trim: Efficient checking and trimming using expres-
sive clausal proofs. In Proceedings of the International Conference on Theory and Applications of Satisfiability Testing.
Springer, 422–429. https://doi.org/10.1007/978-3-319-09284-3_31

[129] M. Whalen, J. Schumann, and B. Fischer. 2002. Synthesizing certified code. In Proceedings of the International Sympo-
sium of Formal Methods Europe. Springer, 431–450. https://doi.org/10.1007/3-540-45614-7_25

[130] T. Wu, P. Schrammel, and L. Cordeiro. 2022. Wit4Java: A violation-witness validator for Java Verifiers (Competition
Contribution). In Proceedings of the International Conference on Tools and Algorithms for the Construction and Analysis
of Systems. Springer.

[131] A. Zeller. 2002. Isolating cause-effect chains from computer programs. In Proceedings of the ACM SIGSOFT Software
Engineering Notes. ACM, 1–10. https://doi.org/10.1145/587051.587053

Received 15 August 2019; revised 17 July 2021; accepted 26 July 2021

ACM Transactions on Software Engineering and Methodology, Vol. 31, No. 4, Article 57. Pub. date: September 2022.

A Manuscripts Verification Witnesses

211

https://doi.org/10.1145/1081706.1081750
https://doi.org/10.1007/978-3-642-00593-0_32
https://doi.org/10.4204/EPTCS.167.8
https://doi.org/10.1007/978-3-030-45190-5_3
https://doi.org/10.1145/1858996.1859079
http://dl.acm.org/citation.cfm?id=94938.94952
https://doi.org/10.1145/1007512.1007526
https://doi.org/10.1007/978-3-319-49956-7_1
http://www.ccs.neu.edu/home/wahl/Publications/k-induction.pdf
https://doi.org/10.1007/978-3-319-09284-3_31
https://doi.org/10.1007/3-540-45614-7_25
https://doi.org/10.1145/587051.587053

Tests from Witnesses
Execution-Based Validation of Verification Results

Dirk Beyer1 , Matthias Dangl1 , Thomas Lemberger1 ,
and Michael Tautschnig2

1 LMU Munich, Munich, Germany
2 Queen Mary University of London, London, UK

Abstract. The research community made enormous progress in the
past years in developing algorithms for verifying software, as shown by
international competitions. Unfortunately, the transfer into industrial
practice is slow. A reason for this might be that the verification tools
do not connect well to the developer work-flow. This paper presents a
solution to this problem: We use verification witnesses as interface between
verification tools and the testing process that every developer is familiar
with. Many modern verification tools report, in case a bug is found,
an error path as exchangeable verification witness. Our approach is to
synthesize a test from each witness, such that the developer can inspect the
verification result using familiar technology, such as debuggers, profilers,
and visualization tools. Moreover, this approach identifies the witnesses as
an interface between formal verification and testing: Developers can use
arbitrary (witness-producing) verification tools, and arbitrary converters
fromwitnesses to tests;we implemented two suchconverters.Weperformed
a large experimental study to confirmthat our proposed solutionworkswell
in practice: Out of 18 966 verification results obtained from 21 verifiers,
14 727 results were confirmed by witness-based result validation, and
10 080 of these results were confirmed alone by extracting and executing
tests, meaning that the desired specification violation was effectively
observed. We thus show that our approach is directly and immediately
applicable to verification results produced by software verifiers that adhere
to the international standard for verification witnesses.

1 Introduction

Automatic software verification, i.e., using methods from program analysis and
model checking to find out whether a program satisfies or violates a given
specification, is a successful andmature technology.The efficiencyandeffectiveness
of the available verification tools for C programs is shown in the annual
competition on software verification [5]. Despite this success story in research, the
state-of-the-art in practice is that notmany software projects have suchverification
tools incorporated into their software-development process. The reason for this gap
between availability of technology on the one side and missed opportunities on the
other side is perhaps twofold: (a) developers are frustrated by false alarms, i.e.,

c© Springer International Publishing AG, part of Springer Nature 2018
C. Dubois and B. Wolff (Eds.): TAP 2018, LNCS 10889, pp. 3–23, 2018.
https://doi.org/10.1007/978-3-319-92994-1_1

Tests from Witnesses A Manuscripts

212

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-92994-1_1&domain=pdf
http://orcid.org/0000-0003-4832-7662
http://orcid.org/0000-0001-7333-6734
http://orcid.org/0000-0003-0291-815X
http://orcid.org/0000-0002-7947-983X

4 D. Beyer, M. Dangl, T. Lemberger and M. Tautschnig

in the past, static analyzers reported too many bugs that were not observable in
a concrete program execution, and thus, developers have lost confidence in bug
reports [20]; (b) there is a lack of appropriate interfacing, i.e., it is difficult for
developers to leverage advantages of the verification tools because they are difficult
to integrate and difficult to learn from [1].

To overcome these two problems, we propose (i) to use verifiers that produce
verification witnesses, i.e., abstract descriptions of one or more paths to a
specification violation (many such tools are already available 1), and (ii) to validate
whether a real bug has been found by constructing a test from the produced
verification witness and observing the execution of that test. This way, issue (a)
above is solved because, if the test execution does show and thus confirm the
reported specification violation, the verification result can be examined with high
confidence and on a concrete, executable example (e.g., with a debugger), and
issue (b) is solved because we bridge the gap between the, in most projects,
unfamiliar domain of verification and the established domain of testing, which
makes it easier to integrate verification into the development process.

Execution-Based Validation of Witnesses. Witness validation based on
model-checking technology works well [4,5,9,14], but the disadvantage is that due
to over-approximation, the validation might be as imprecise as the verification
step. A verification witness serves as a (potentially coarse) description of a part
of the state space of a program that contains a specification violation, and the
witness validators can confirm or reject the error report. We complement the
witness-validation technology by direct test execution: A test case (e.g., unit-test
code) is built from the violation witness, and this test case provides a precise
and transparent way to confirm and examine it. 2 By observing and analyzing an
execution that exposes undesirable behavior, developers can convince themselves
that the error report is correct, and address the reported bugs without the risk of
wasting time on a false alarm. If the execution does not violate the specification,
the witness might have represented a false alarm and the developer can assign a
lower priority to that report.

Witnesses as Communication Interface. One barrier for the adoption of
verification technology is that developers have to spend considerable time on
understanding a verification tool and on becoming familiar with it. Thus, we have
to avoid the “lock-in” effect: people might not want to decide for one particular
tool if they have to invest time again when they wish to change the decision
later. If the developer constructs the integration on top of the exchangeable
verification witnesses, i.e., using the witnesses as interface to the verification tools,
the verification tool is exchangeable without any change to the testing process. 3

1 https://sv-comp.sosy-lab.org/2017/systems.php
2 It has been shown that model checkers can be effective in constructing useful tests [12].
3 At least 21 verifiers are available that produce witnesses in the exchangeable format

(cf. Table 1, which lists the verifiers that we use in our experiments).

A Manuscripts Tests from Witnesses

213

https://sv-comp.sosy-lab.org/2017/systems.php

Tests from Witnesses 5

Fig. 1. An incorrect example C program (a), the corresponding violation witness
produced by the verifier (b), and a code fragment used to inject the extracted test values
for compilation (c)

Tests from Witnesses. In order to flexibly bridge the gap from witness to test,
we provide two independently developed implementations of tools that take as
input a program and a violation witness, and synthesize a test that is compilable
and executable. This approach provides the following three features: (1) the
result of a verification tool can be validated by compiling and executing the
corresponding test—if the test violates the specification, the verification tool
reported a correct alarm and the result can be handled appropriately; (2) the
synthesized unit tests can be stored and maintained together with the other unit
tests, but canalsobe re-constructedat any timeondemand; (3) independently from
the verification tool that produced the witness, the full repertoire for inspecting a
failing program—such as debuggers, profilers, and visualization tools—canbe used
by the developer to understand the bug that the test represents.

Experimental Study. To evaluate our proposal, we performed experiments
on thousands of witnesses. We took many C programs from the largest public
repository of verification tasks and many witness-producing verification tools,
and collected 13 200 witnesses of specification violations. We obtained another
5 766 refined witnesses using witness refinement, a procedure introduced in the
original work on verification witnesses [9]. This technique is supposed to refine
witnesses to be more concrete, so we should be able to generate better test cases
from them. In conjunction with the two existing validators, CPAchecker and
UltimateAutomizer, ourmethod significantly increases the confirmation rate: out
of the total of 18 966 witnesses, we were able to extract test cases for 10 080 of them,
meaning that we successfully created and executed the tests, and the specification
violationwas observed.Using the newapproach,we increased the confirmed results
from 12 821 to 14 727 in total.

Example. In the following, we illustrate the complete process from running a
verification task using a verifier through synthesizing the test code from the
violation witness to compiling the program and executing it.

Fig. 1. An incorrect example C program (a), the corresponding violation witness
produced by the verifier (b), and a code fragment used to inject the extracted test values
for compilation (c)

Tests from Witnesses. In order to flexibly bridge the gap from witness to test,
we provide two independently developed implementations of tools that take as
input a program and a violation witness, and synthesize a test that is compilable
and executable. This approach provides the following three features: (1) the
result of a verification tool can be validated by compiling and executing the
corresponding test—if the test violates the specification, the verification tool
reported a correct alarm and the result can be handled appropriately; (2) the
synthesized unit tests can be stored and maintained together with the other unit
tests, but canalsobe re-constructedat any timeondemand; (3) independently from
the verification tool that produced the witness, the full repertoire for inspecting a
failing program—such as debuggers, profilers, and visualization tools—canbe used
by the developer to understand the bug that the test represents.

Experimental Study. To evaluate our proposal, we performed experiments
on thousands of witnesses. We took many C programs from the largest public
repository of verification tasks and many witness-producing verification tools,
and collected 13 200 witnesses of specification violations. We obtained another
5 766 refined witnesses using witness refinement, a procedure introduced in the
original work on verification witnesses [9]. This technique is supposed to refine
witnesses to be more concrete, so we should be able to generate better test cases
from them. In conjunction with the two existing validators, CPAchecker and
UltimateAutomizer, ourmethod significantly increases the confirmation rate: out
of the total of 18 966 witnesses, we were able to extract test cases for 10 080 of them,
meaning that we successfully created and executed the tests, and the specification
violationwas observed.Using the newapproach,we increased the confirmed results
from 12 821 to 14 727 in total.

Example. In the following, we illustrate the complete process from running a
verification task using a verifier through synthesizing the test code from the
violation witness to compiling the program and executing it.

1 extern void __VERIFIER_error(void);
2 extern unsigned char
↪→ __VERIFIER_nondet_uchar(void);

3 int main(void) {
4 unsigned char a =

↪→ __VERIFIER_nondet_uchar();
5 unsigned char b =

↪→ __VERIFIER_nondet_uchar();
6 unsigned char sum = a + b;
7 unsigned char mean = sum / 2;
8 if (mean < a / 2) {
9 __VERIFIER_error();

10 }
11 return 0;
12 }

(a) Example program

q0

q1

q2

q⊥ qE

4: a == 2

o/w

5: b == 254

o/w

o/w

8,else: 8,then:

(b) Witness automaton

1 #include <stdlib.h>
2 void __VERIFIER_error() {
↪→ exit(107); }

3 unsigned char
↪→ __VERIFIER_nondet_uchar() {

4 static unsigned int
↪→ test_vector_index = 0;

5 unsigned char retval;
6 switch (test_vector_index) {
7 case 0: retval = 2U; break;
8 case 1: retval = 254U; break;
9 }

10 ++test_vector_index;
11 return retval;
12 }

(c) Injection of test values

Tests from Witnesses A Manuscripts

214

6 D. Beyer, M. Dangl, T. Lemberger and M. Tautschnig

Figure 1a shows a program that attempts to calculate the mean of two
integer numbers, a computation that is often required in binary-search algorithms.
In lines 4 and 5, two variables a and b of type unsigned char 4 are initialized
nondeterministically, for example from user input. The subsequent lines are
supposed to calculate the mean of the two variables, by first computing their
sum in line 6 and then dividing it by 2 in line 7. If the mean of a and b has
been calculated correctly, it must not be less than half of either of the two
values. This condition is asserted in lines 8 to 10. We can check whether the
condition is satisfied by specifying that the function VERIFIER error() must not
be reachable, and then running a verifier on this verification task. The verifier
should detect and report that the assertion will be violated if the sum of a and b

exceeds the range of the data type unsigned char, causing an overflow. Figure 1b
shows a violation-witness automaton [9] that represents a counterexample to the
specification. The automaton specifies that if we assume that a is assigned the
value 2 in line 4 and b is assigned the value 254 in line 5, control will flow to the
then-branch in line 8, causing a violation of the specification. To independently
validate this witness, we can then extract the input values for a and b, and use them
to provide an implementation of the input function VERIFIER nondet uchar() and the
VERIFIER error() function as depicted in Fig. 1c. After compiling Fig. 1a and 1c

into an executable and running it, we can confirm that these input values trigger
the call to VERIFIER error() by checking its return code. We can even use a debugger
such asGDBto step through the compiled programandobserve the faulty behavior
directly. The debugger will show that the sum of a and b, respectively 2 and 254,
computed in line 6 wraps around to 0. Therefore, the mean is incorrectly calculated
as 0 in line 7. The condition in line 8 then evaluates to 1, because 0 is smaller than 1.

It must be noted that the witness depicted in Fig. 1b is very precise: it provides
a concrete counterexample with explicit values for a and b. But in general, a
violation witness may simply describe a part of the state space that contains a
specification violation, i.e., an abstract counterexample. Suppose a verifier is only
able to provide a witness that specifies that if a + b is greater than 255 in line 6, the
specification will be violated. By using witness refinement [9], we can obtain from
this abstract witness a concrete witness like Fig. 1b.

Contributions. Our approach features the following advantages:

– Verification tools sometimes produce false alarms, which can lead to severe
waste of investigation time. We synthesize tests from verification witnesses, and
consequently trust only verification results confirmed by test execution.

– There are several witness-based validators available, but our execution-based
validation of the error path can be more precise and more efficient, compared to
the previously available validators.

– Avoidance of technology lock-in: A developer’s work flow does not depend on
a particular choice of verification tool, because the developer’s infrastructure
hooks in at the witness. The developer may elect to use a different verifier, or
even use multiple verifiers simultaneously—at no additional cost.

4 The example also works for larger data types, but for ease of presentation, we aim to
keep the range of values small, so that all calculations can be followed by hand.

A Manuscripts Tests from Witnesses

215

Tests from Witnesses 7

– Compared to working with witnesses, developers are more familiar with tests,
and more supporting tools—such as profilers, memory analyzers, and visualiza-
tion tools—are available to analyze the tests that correspond to the witnesses.

– The newly generated tests can complement the existing test suite, and the tests
as well as the witnesses can be stored and maintained as first-class objects in the
software life cycle.

Related Work. Our approach is based on a number of existing ideas, which we
outline in the following.

Verification Witnesses. We build our contributions on top of existing work on
violation witnesses [9], which we will describe in more detail in the background
section. The problem that verification results are not treated well enough by the
developers of verification tools is known and there are also other works that address
the same problem, for example, the work on execution reports [18].

Test-Case Generation. The idea to generate test cases from verification counterex-
amples is more than ten years old [6,48], has since been used to create debuggable
executables [39,42], and was extended and combined to various successful
automatic test-case generation approaches [25,27,36,46]. We complement existing
techniques in the following ways: Our technique works on the flexible exchange
format for violation witnesses. In case such a witness constitutes only an abstract
counterexample, we can use witness refinement to efficiently obtain a concrete
one [9]. Such a mechanism is not available for existing test-case generation tools.

Execution. Other approaches [16,22,35] focus on creating tests from concrete and
tool-specific counterexamples. In contrast, our approach does not require full coun-
terexamples, but works on more flexible, possibly abstract, violation witnesses.

Debugging and Visualization. Besides executing a test, it is important to under-
stand the cause of the error path, and there are tools and methods to debug and
visualize program paths [3,7,28].

2 Background

A verification witness is an exchangeable object that stores valuable information
about the verification process and the verification result. The key is that the format
is open and exchangeable, and that many verification tools support it.

Witness Construction.It has been commonly established practice for verifiers
to provide a counterexample to witness a specification violation, in particular
since counterexamples were used to refine abstract models [21]. The problem was
that these counterexamples were more or less ‘dumps’ of paths through the state
space, sometimes not human-readable, sometimes not machine-readable. Recent
efforts of the software-verification community established a common exchange
format for verification results as verificationwitnesses [9]. In this format, a so-called
violation-witness automaton (as seen in Fig. 1b) describes a state space that
contains the specification violation. This state space does not necessarily have to

Tests from Witnesses A Manuscripts

216

8 D. Beyer, M. Dangl, T. Lemberger and M. Tautschnig

Program

Specification

Verification
Task

Verifier

Blast Cbmc CPAchecker Esbmc

Smack Ultimate
Automizer · · ·

Violation
Witness

Correctness
Witness

False

Bug found

TrueProof found

Witness

Program

Specification

Verification
Task

Refiner

CPAchecker Ultimate
Automizer

Refined
Witness

(a) Concept sketch

q0

q1

q2

q⊥ qE

6: sum == 0

o/w

7: mean == 0

o/w

8,else: 8,then:

(b) Abstract witness

q0

q1

q2

q3

q4

q⊥ qE

4: a == 2

o/w

5: b == 254

o/w

6: sum == 0

o/w

7: mean == 0

o/w

o/w

8,else:

Fig. 3. Concept of witness refinement with example abstract and refined witnesses for
the example program depicted in Fig. 1a from the introduction

represent just a single error path, but may contain multiple error paths and even
paths without a specification violation. As an example for the use of verification
witnesses, the International Competition on Software Verification (SV-COMP)
applies this format and counts a report of a found bug only if a corresponding
violation witness is reported and confirmed [4]. Figure 2 illustrates the process:
the verifiers can be exchanged according to the needs of the user, there is no risk
of technology lock-in. Figure 2 also shows that the exchange format for witnesses
has recently been extended to correctness witnesses [8]. In the remainder of this
paper, however, we will only consider violation witnesses.

Fig. 2. Software verifiers produce witnesses

(c) Refined witness

8,then:

A Manuscripts Tests from Witnesses

217

Tests from Witnesses 9

Fig. 4. Violation-witness validation

WitnessRefinement.The originalwork onverificationwitnesses [9] contains the
proposal to consider refinement of witnesses. The idea is to take a violation witness
as input, replay it with a validating verifier, and produce a new witness that is more
detailed. A more detailed violation witness is closer to a concrete program path and
makes the validation process faster. We will later in this paper use an instance of
a witness refiner to improve witnesses from other verification tools towards being
able to successfully derive tests from witnesses. Figure 3a illustrates the optional
step of using witness-refining validators to strengthen a witness. Figure 3b shows
another, validviolationwitness for thepreviously consideredprogramfromFig. 1a.
In contrast to the witness in Fig. 1b, this witness does not specify any concrete
values for the two nondeterministic values of variables a and b, but specifies that a
property violation occurs if the intermediate variables sum and mean are both equal
to 0. This witness automaton represents a set of 256 different counterexamples:
every counterexample with values for a and b, so that a + b == 0 during execution.
Figure 3c showsaviolationwitness that is a refinement of themore abstractwitness
in Fig. 3b that additionally specifies concrete values for the two variables a and b

and thus restricts the search space in witness validation early on.

Witness Validation. Violation witnesses can be used to independently re-
establish the verification result by using a witness-based result validator that takes
the information from the witness to find a path through the state space of the
program to a specification violation. Thus, a successful validation increases trust
in the verification result, and developers no longer need to rely on the verifiers
alone. Instead, they can focus their attention on the validated results and assign a
lower priority to unconfirmed alarms. The existing witness-based result validators
employpotentially-expensivemodel-checking techniques to replay error paths that
are represented in thewitness.While this is a powerful technique (it can reconstruct
error paths even for abstract witnesses), the technique still has the limitations
of common program-analysis and model-checking techniques, namely that the
technique may over-approximate the semantics of the programming language,

Witness

Program

Specification

Verification
Task

Validator

CPAchecker

Ultimate Automizer

CPA-witness2test

FShell-witness2test

Confirmed
/ Unconfirmed

Tests from Witnesses A Manuscripts

218

10 D. Beyer, M. Dangl, T. Lemberger and M. Tautschnig

Fig. 5. Software verification with witnesses: construction, (optional) refinement, and
validation work flow

thus potentially confirming false alarms or rejecting valid violation witnesses.
As a solution to this, we propose an execution-based approach to witness-based
result validation. Figure 4 shows the two existing validators CPAchecker and
Ultimate Automizer together with the two new, execution-based validators that
we introduce in this paper: CPA-witness2test and FShell-witness2test.

3 Tests from Witnesses

This section introduces a new, yet unexplored, application of witnesses that can
easily be integrated into established processes for verification-result validation, as
summarized by Fig. 5. The highlighted area in Fig. 5 outlines the goal: for a given
violation witness, we want to construct a test that can be compiled and executed
to check that the bug is realizable. In particular, driven by our desire to keep the
work-flow independent from special verifiers, we want to have two independently
developed implementations of such witness-to-test tools.

Our new, execution-based witness validator does not require the aid of
model-checking techniques for validating verification results: we generate a test
harness (test code for the program), which can be compiled and linked together
with the original subject program and executed. If the execution does not trigger
the described bug, the witness is deemed spurious, i.e., not realizable.

Adding this new tool to the pool of available witness-based result validators
not only increases the diversity of validation techniques and its potential for
establishing trust in verification results, but also adds novel features to the
validation process: As a valuable by-product of a successful validation, the devel-
opers are able to obtain executable test code that is guaranteed to reproduce the
bug in their system, and they can use all of the infrastructure for inspecting and
debugging that they are trained and experienced in and that is already in place
in their development environment. For example, a C developer might simply run
GDB to step through the executable error path.

Program

Specification

Verification
Task

Blast

Cbmc

CPAchecker

Esbmc

Smack

Ultimate
Automizer

Witnesses

(a) Witness construction

CPAchecker

Ultimate
Automizer

(Refined)
Witnesses

(b) Optional witness refinement

CPAchecker

Ultimate Automizer

CPA-witness2test

FShell-witness2test

Unit Tests

Confirmed
/ Uncon-
firmed

(c) Witness validation

No refinement

A Manuscripts Tests from Witnesses

219

Tests from Witnesses 11

Fig. 6. Flow of execution-based result validation

Figure 6 shows the complete picture of execution-based witness validation.
The verification task (a given program with a given specification) is verified by a
chosen verifier. If the verifier reports a specification violation (False, bug found) it
also produces a violation witness. (Our work does not consider the outcome True,
for which the development of practical support, such as correctness witnesses [8]
and compact proofwitnesses [32], is also a subject of ongoing research.)Thewitness
in GraphML format [15] is then given to witness2test, which synthesizes a test
harness that drives the program to the specification violation. In order to support
our claim of independence from any particular tool implementation, we implement
two completely different instances of witness2test, namely CPA-witness2test

(based on open-source components from CPAchecker) and FShell-witness2test

(based on ideas from FShell). The test-harness and the original (unchanged)
program are then compiled and linked to obtain an executable program. The
executable program is then executed in a safe execution container. 5 If the reported
specification violation is observed during this execution, the witness is confirmed.
Otherwise the witness is not confirmed, most likely because the witness is not
precise enough or even spurious.

3.1 CPA-WITNESS2TEST

One of our implementations for the witness2test component of the architecture
outlined in Fig. 6 is CPA-witness2test, which is based on the CPAchecker

framework [11].For ourpurpose ofmatchingan inputwitness to theprogramsource
code of a verification task and generating a test harness, we configure CPAchecker

to use the witness automaton as a protocol automaton [9] to guide and restrict the
state-space exploration to the program paths that the witness represents. Unlike
observer automata [44], which we use to represent the specification and which can
only monitor the state-space exploration of an analysis, protocol automata may
also restrict the state-space exploration, for example to a specific program path,

5 We chooseBenchExec [13] as container solution, because it is also used by SV-COMP.

C Program

Specification

Verification
Task

Verifier

Proof found

Witness

CPA-witness2test FShell-witness2test

witness2test
C

Test
Harness

GCC

Executable

RunExec

Witness Spurious Witness Confirmed

False
Bug found

True

Bug foundNo bug

foun
d

Tests from Witnesses A Manuscripts

220

12 D. Beyer, M. Dangl, T. Lemberger and M. Tautschnig

thereby guiding the analysis along that path. In our case, this path is the error
path represented by the protocol automaton. We configure the analysis to only
consider the (syntactical) branching information of the protocol automaton and to
not semantically analyze the path. During this protocol analysis, we observe which
input-value assumptions from the witness correspond to which input function or
variable of the program. By collecting this information, we are able to construct
a test vector for the program. The test vector maps an input value to each input
variable and a list of input values to each external function. We synthesize a test
harness from a test vector by providing initializations for input variables and
definitions for external functions. An external function with a list (v0, . . . , vn−1)
of n ∈ N input values is defined by using a switch statement with n cases over a
static counter variable 0 ≤ i < n that is initialized to 0 and incremented after
each call to the function. Each case of the switch statement corresponds to an input
value, such that case i selects vi. We also inject a call to the exit function so that
when we later execute the program, we can detect that the intended violation
of the specification was triggered, i.e., the program crashed precisely due to the
bug described by the witness, by checking for a specific execution return value.
Figure 1c shows the exit(107)-call in line 2 and a definition of an input function
VERIFIER nondet uchar() in lines 3 to 12 as generated by CPA-witness2test, where

the counter variable test vector index represents i. The switch statement in this
function definition provides sequential access to the two input values (2, 254) that
CPA-witness2test extracted from the witness of Fig. 1b for the program shown
in Fig. 1a.

3.2 FSHELL-WITNESS2TEST

The key design principle of FShell-witness2test is independence from existing
verification infrastructure: FShell-witness2test’s results shall—by design—be
unbiased towards any existing software-analysis framework. While this does imply
limitationson the class ofwitnesses that canbeprocessedasdiscussedbelow, it does
yield further advantages: FShell-witness2test is easy to extend for prototyping,
and does not require any background in software verification.

FShell-witness2test comprises two major parts: (1) A Python-based pro-
cessor of the witness and the input program, using pycparser 6 to generate test
vectors in a format compatible with FShell [31]. (2) A Perl script that translates
such test vectors into a test harness.

For a given verification task and witness, FShell-witness2test first parses
the specification to restrict itself to reachability properties (call to error function
should not be reachable). The witness and the C program are then handed to the
Python-based processor. The specification defines the entry function to be used by
the generated test harness.

As pycparser cannot handle various GCC extensions, input programs are
preprocessed and sanitized by performing text replacement and removal. We then
obtain the abstract syntax tree and iterate over its nodes to gather data types and

6 https://github.com/eliben/pycparser

A Manuscripts Tests from Witnesses

221

https://github.com/eliben/pycparser

Tests from Witnesses 13

source locations of (1) all procedure-local uninitialized variables, (2) all functions
with prefix VERIFIER nondet, and (3) all uses of such functions. We refer to the
locations of uninitialized variables and nondeterministic-input function uses as
watch points.

Finally we build a linear sequence of nodes from the GraphML encoding of the
witness. Traversing this sequence, any match of line numbers against the watch
points triggers an attempt to extract values from assumptions in the witness. If
parsing the C code that is contained in the assumption succeeds, then an input
value is recorded.

The test vector is compatible with the output of FShell; the program of Fig. 1
yields the following test vector:

IN:
ENTRY main()@[file mean.c line 1]
unsigned char VERIFIER nondet uchar()@[file mean.c line 4]=2
unsigned char VERIFIER nondet uchar()@[file mean.c line 5]=254

Such a test vector is translated to a Makefile that generates an actual test
harness, which consists of invocation code and the implementation of various
nondeterministic-input functions that are present in the program. FShell-

witness2test reports False (confirming the violation) if, and only if, the property
violation is detected in the output of the test execution.

4 Evaluation

We perform a large experimental study to demonstrate the general applicability
and the advantages of our approach.

4.1 Evaluation Goals

The goal of our experimental evaluation is to collect experience with our new kind
of result validation and to support the following claims with data for a large set of
witnesses:

Claim 1: Execution-based validators can confirm violation witnesses that the
existing validators (which are based on model-checking technology) can not
validate. Thus, execution-based validation increases the overall effectiveness.

Claim 2: Result validation based on executable tests can be faster than result
validation based on model-checking technology.

Claim 3: Violation witnesses in the common exchange format for verification
results (cf. Sect. 2) are a valuable source to synthesize test code for specification
violations to complement existing test suites.

4.2 Experiment Setup

We used the benchmarking framework BenchExec (revision fb32a3e7) to con-
duct our experiments. In order to experimentally evaluate our approach, we first

Tests from Witnesses A Manuscripts

222

14 D. Beyer, M. Dangl, T. Lemberger and M. Tautschnig

construct a large set of witnesses that is diverse in terms of (a) subject programs
and (b) verification tools that create witnesses.

Subject Programs. For (a), we consider the largest available set of verification
tasks 7 from the community of automatic software verification and select all 5 692
verification tasks with a reachability property 8.

Verifiers. For (b), we use all verification tools that participated in SV-COMP
2017 for property ReachSafety and whose license allows us to use it 9. Table 1
lists all verifiers that we executed to produce violation witnesses. The table lists
in the first column the verifier name with a link to the project web site for more
information, and a reference to the paper describing the corresponding verifier. For
the experiments, we took the archives from the competition web site. 10

Collection of Witnesses. From the given verification tasks and verifiers, we
started verification runs and collected the obtained violation witnesses. For this
replication of the SV-COMP experiments we followed thoroughly the description
on the competition web site 10 and in the report [4]. In particular, we started
each verifier only on those verification tasks and with those parameters that were
declared by the development teams of the verifiers 11. The number of witnesses that
we obtained with this process is reported in Table 1 (col. ‘Unref.’). Because we use
all available verifiers (not only those that performed well in the competition), the
set of witnesses contains also bad witnesses (e.g., that are syntactically incorrect).
We did not want to exclude them for external validity.

To further increase the external validity of our evaluation, we additionally
produced witnesses by applying a witness-refinement technique (cf. Sect. 2) to
13 200 witnesses above. We used the witness-refiner from the CPAchecker

framework for this step.This refinement is oftenable to improve imprecisewitnesses
by adding concrete input values, and yields another 5 766 witnesses (col. ‘Ref.’) to
a total of 18 966 witnesses (col. ‘Total’) that we will run our experiments on.

In order to highlight the differences between model-checking-based validation
approaches and execution-based validation approaches, we manually crafted some
verification tasks and corresponding witnesses. These witnesses allow us a more
detailed discussion of some effects, but were not added to our set of automatically
generated witnesses.

Computing Resources. Our experiments were conducted on machines with an
Intel Xeon E3-1230 v5 CPU, with 8 processing units each, a frequency of 3.4 GHz,
33 GB of RAM, and a GNU/Linux operating system (x86 64-linux, Ubuntu 16.04
with Linux kernel 4.4). We limited the verification runs to four processing units
(i.e., two physical cores), 7 GB of memory, and 15 min of CPU time, and the

7 https://github.com/sosy-lab/sv-benchmarks/tree/423cf8c
8 We have to restrict the experiments to property ReachSafety because there were no

witness validators available for the other properties.
9 There are also two commercial verifiers that produce witnesses, but we cannot use them

due to their proprietary license.
10 https://sv-comp.sosy-lab.org/2017/systems.php
11 https://github.com/sosy-lab/sv-comp/tree/svcomp17/benchmark-defs

A Manuscripts Tests from Witnesses

223

https://github.com/sosy-lab/sv-benchmarks/tree/423cf8c
https://sv-comp.sosy-lab.org/2017/systems.php
https://github.com/sosy-lab/sv-comp/tree/svcomp17/benchmark-defs

Tests from Witnesses 15

Table 1. Violation witnesses produced by verifiers and resulting tests

Verifier Produced witnesses Produced tests

Unref. Ref. Total Count kLOC kB # Inputs (Avg.)

2ls [45] 992 384 1 376 1 208 89.9 3 999 7.57

Blast [47] 778 202 980 327 29.0 938 0.271

Cbmc [34] 831 467 1 298 1 249 67.7 2 991 6.33

Ceagle 619 426 1 045 540 92.2 262 5.39

CPA-BAM-BnB [2] 851 175 1 026 158 42.9 1 114 0

CPA-kInd [10] 263 193 456 656 56.2 2 967 14.9

CPA-Seq [23] 883 767 1 650 838 95.5 3 895 1.79

DepthK [43] 1 159 305 1 464 1 302 65.4 3 170 2.96

Esbmc [37] 653 148 801 478 21.0 1 983 2.53

Esbmc-falsi [37] 981 395 1 376 1 133 53.7 1 906 1.81

Esbmc-incr [37] 970 392 1 362 1 126 53.5 1 896 1.82

Esbmc-kInd [24] 847 352 1 199 1 028 48.9 1 774 1.69

Forester [30] 51 0 51 0 0 0 -

PredatorHP [33] 86 61 147 80 17.2 434 0

Skink [17] 30 25 55 44 0.290 8 0

Smack [41] 871 632 1 503 1 576 128 5 654 6.09

Symbiotic [19] 927 411 1 338 589 38.1 1 375 0

SymDIVINE [38] 247 224 471 405 13.4 580 0

UAutomizer [29] 514 70 584 121 2.24 59 0

UKojak [40] 309 67 376 116 2.15 55 0

UTaipan [26] 338 70 408 121 2.23 59 0

Total 13 200 5 766 18 966 13 095 920 35 119 5.60

witness-refinement and validation runs to two processing units (i.e., one physical
core), 4 GB of memory, and 1.5 min of CPU time. All CPU times are reported with
two significant digits. The limits are inspired by SV-COMP.

Validators. We used CPA-witness2test in version 1.6.14-tap18 from CPA-
checker and FShell-witness2test in revision 2a76669f from the test-gen

branch. We used the model-checking based witness validators CPAchecker,
version 1.6.14-tap18, and Ultimate Automizer 0.1.8.

4.3 Availability of Data and Tools

All tools and all data obtained in our experiments are available via our supple-
mentary web page. 12 The verification tasks are also publicly available 7.

4.4 Results

Claim 1: Effectiveness. Table 2 reports the number of witnesses that the
individual validators were able to confirm. In the columns, it shows: the results of

12 https://www.sosy-lab.org/research/executionbasedwitnessvalidation/

Tests from Witnesses A Manuscripts

224

http://www.cprover.org/2LS
http://forge.ispras.ru/projects/blast
http://www.cprover.org/cbmc/
http://sts.thss.tsinghua.edu.cn/ceagle/
http://cpachecker.sosy-lab.org/
http://cpachecker.sosy-lab.org/
https://cpachecker.sosy-lab.org/
https://github.com/hbgit/depthk
http://www.esbmc.org
http://www.esbmc.org
http://www.esbmc.org
http://www.esbmc.org
http://www.fit.vutbr.cz/research/groups/verifit/tools/forester/
http://www.fit.vutbr.cz/research/groups/verifit/tools/predator-hp/
http://science.mq.edu.au/~fcassez/software-verif.html
http://smackers.github.io
https://github.com/staticafi/symbiotic
https://github.com/yaqwsx/SymDIVINE
https://ultimate.informatik.uni-freiburg.de/automizer
https://ultimate.informatik.uni-freiburg.de/kojak
https://ultimate.informatik.uni-freiburg.de/taipan
https://www.sosy-lab.org/research/executionbasedwitnessvalidation/

16 D. Beyer, M. Dangl, T. Lemberger and M. Tautschnig

Table 2. Confirmed witnesses and verification results

Static validators Dynamic validators Union

CPAchecker Automizer Union CPA-w2t FShell-w2t Union

Confirmed witnesses 11 225 7 595 12 821 7 151 7 545 10 080 14 727
Unref. witnesses 5 750 3 450 7 214 3 506 3 459 5 082 9 056
Ref. witnesses 5 475 4 145 5 607 3 645 4 086 4 998 5 671
Incorrectly confirmed 18 7 25 6 0 6 31

Confirmed verif. results 5 751 5 643 7 215 5 377 5 755 7 292 9 057
Incorrectly confirmed 15 7 22 6 0 6 22

the static validators CPAchecker and Ultimate Automizer, as well as the union
of these two; the results of the dynamic validators CPA-w2t and FShell-w2t, as
well as the union of these two; and the results of the union of all four validators.
The union is the number of witnesses that at least one of the considered validators
was able to confirm, i.e., one of CPAchecker and Ultimate Automizer (col. 4), or
one of CPA-w2t and FShell-w2t (col. 7), or any of the four (col. 8). In the rows,
Table 2 is divided into confirmed witnesses (unrefined and refined witnesses, as
well as incorrectly confirmed witnesses) and confirmed verification results. A
witness is incorrectly confirmed if the verification result reported by a verifier
is wrong and the validator reached the same, wrong conclusion using the
verification-result witness that was provided by the verifier. Since for each
unrefined witness from a verifier, a refined counterpart may exist, the number of
confirmed witnesses is potentially double the number of verification results that
were confirmed using these witnesses. Because of this, Table 2 also reports the
number of confirmed verification results. We considered a verification result as
confirmed if at least one of itswitnesses is confirmedby theusedvalidators.This can
be the unrefined witness, or, if it exists, the refined one. The results of Table 2 show
that the static validators together confirmed a total of 12 821 verification results,
while the dynamic validators together confirmed a total of 10 080 results. Also,
the two different validation techniques confirm different results: a union of 14 727
results were confirmed by both validation techniques together. Of the verification
results that neither of the static validators was able to confirm, CPA-w2t was
able to confirm 735 and FShell-w2t was able to confirm 1 488, meaning that
the techniques complement each other well. Together, they were able to confirm
1 842 results that no static validator was able to confirm. This shows that the
independently developeddynamic techniques complement each other because they
are based on completely different technology. It is also interesting to considerwrong
witnesses, i.e., violation witnesses that constitute false alarms. In our experiments,
the verifiers produced 679 false alarms. Of these, the static approaches incorrectly
confirmed 22 wrong witnesses (of different programs), while FShell-w2t did
not wrongly confirm any false alarms. CPA-w2t confirmed 6 wrong witnesses
incorrectly, all based onprograms that contain floating-point arithmetic. For these,
CPA-w2t has only limited support. Despite that, this highlights a high precision
of our execution-based approach. In sum, using dynamic validators in addition
to static validators can significantly increase the number of successfully validated
verification results.

A Manuscripts Tests from Witnesses

225

Tests from Witnesses 17

Table 3. Performance comparison for witnesses that all validators confirmed (CPU time
for 2 685 witnesses)

CPAchecker Automizer CPA-w2t FShell-w2t

Total time (s) 20 000 45 000 30 000 1 900
Average time (s) 7.4 17 11 0.72
Median time (s) 6.2 11 5.9 0.71

Claim 2: Efficiency. Table 3 considers only results that were confirmed by all
validators, to compare the execution performance. For the dynamic validators,
the reported run time contains all three steps: generating the test from the
witness, compiling and linking, and executing the test. The results show that the
static approaches are slow (CPAchecker and Ultimate Automizer), that the
approach that assembled a static analysis for test generation from CPAchecker

components is also slow (CPA-w2t), and that the light-weight implementation
that is specifically tailored to generating tests from witnesses is extremely
fast (FShell-w2t). Figure 7 displays quantile functions that show for each
validator the necessary maximum CPU time (y-axis) for confirming a certain
quantile of results (x-axis). We observe that FShell-w2t significantly outperforms
all other validators.

Fig. 7. Quantile plot for CPU time consumed for validating witnesses accepted by all
validators

Interestingly, in our validation we observed that the witnesses that require the
most time to validate are witnesses that are large in size and that describe a long,
detailed error path. Most of these are produced by verifiers that use bounded model
checking, e.g., Cbmc and CPA-kInd, or by our refinement step.

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 0 500 1000 1500 2000 2500

C
P

U
 ti

m
e

(s
)

n-th fastest confirmed witness

CPAchecker
Ultimate Automizer
CPA-witness2test
FShell-witness2test

Tests from Witnesses A Manuscripts

226

18 D. Beyer, M. Dangl, T. Lemberger and M. Tautschnig

Claim 3: Test Generation. The last four columns of Table 1 relate the number
of witnesses that we processed to the number of produced tests for which failing
executions are realizable. With ‘produced tests’ we refer to the tests that were
produced by any of the dynamic validators and for which the test execution lead to
an observed specification violation. Note that because we collect tests from both
dynamic validators, the numbers of produced tests exceed the number of witnesses
in some rows. Since the tests are available in source code, and could be maintained
and re-used by developers in practical application scenarios, we also report the
size of these unit tests in lines of code, file size, and the average number of input
values per generated unit test. The table shows that the number of unit tests and
the accompanying size of test code that the approach can produce are significant.
The results confirm that we are able to provide an interface to verification tools via
witnesses and tests that avoids technology lock-in and which enables developers to
explore the verification results using tools and techniques they are familiar with.
Thecombinationof softwareverificationandexecution-based result validationmay
also be used to automatically extend the existing test suites of a project.

4.5 Detailed Discussion of Synthetic Examples

Now we discuss a few effects in more detail on hand-crafted example witnesses.
Bugs that occur after only few loop iterations are also known as shallow bugs, as
opposed to deep bugs that occur after many loop iterations. One of the strengths
of dynamic validation approaches is that long loops can simply be executed, while
model checkers usually need to performexpensive symbolic unrolling to reveal deep
bugs, which is therefore a more difficult task for them than discovering shallow
bugs. Thus, we expect the set of witnesses obtained from model checkers to consist
mostly of shallow bugs, while at the same time we must expect that the advantages
of test-based validation become most apparent for witnesses for deeper bugs, which
necessitate many unrollings. Therefore, we hand-crafted a small set of verification
tasks and witnesses, including the example for computing the mean from Fig. 1a in
the introduction, to exemplify the differences between the test-based approaches
and those based on model checking.

Figure 8a shows an example program intended to compare the iterative sum
of ascending values with the result of the Gauss sum formula, and a witness for a
bug in the program. The bug is located in lines 10 to 12 and causes an error for
inputs larger than or equal to 10 000. The depicted witness for this bug assigns
an input value of 10 000. Figure 8b shows an example program that increments
two variables x and y 1 000 000 times and then asserts their equality in line 12,
and a witness for a violation of this assertion. Since y is initialized to x + 1 in
line 5, the assertion will fail for any value of x. The depicted witness for this
bug assigns an input value of 0. Figure 8c shows an example program with a
variable n initialized with an input function in line 4 and copies its value to a
variable x in line 5. In the same line, a variable y is initialized to 0. Then, in
lines 6 to 9, x is decremented and simultaneously y is incremented, until x is 0,
so essentially, y counts the loop iterations, and n − x = y is a loop invariant.
Consequently, y must be equal to n at the end of the loop, and therefore the call to

A Manuscripts Tests from Witnesses

227

Tests from Witnesses 19

Fig. 8. Hand-crafted tasks and witnesses

1 extern void
↪→ __VERIFIER_error(void);

2 extern unsigned int
↪→ __VERIFIER_nondet_uint(void);

3 int main() {
4 unsigned int n =

↪→ __VERIFIER_nondet_uint();
5 if (n < 1) return 0;
6 if (n > 1000000) return 0;
7 unsigned int sum = 0;
8 for (int i = 1; i <= n; i++) {
9 sum = sum + i;

10 if (i == 10000) {
11 sum = sum + 1;
12 }
13 }
14 if (2 ∗ sum != n ∗ (n + 1)) {
15 __VERIFIER_error();
16 }
17 return 0;
18 }

q0 q1 q⊥

qE

4: n == 10000

o/w o/w

14,else:

14,
the

n:

(a) “gauss” code, witness

1 extern void
↪→ __VERIFIER_error(void);

2 extern unsigned int
↪→ __VERIFIER_nondet_uint(void);

3 int main(void) {
4 unsigned int x =

↪→ __VERIFIER_nondet_uint();
5 unsigned int y = x + 1;
6 unsigned int i = 0;
7 while (i < 1000000) {
8 x++;
9 y++;

10 i++;
11 }
12 if (x != y) {
13 __VERIFIER_error();
14 }
15 return 0;
16 }

q0 q1 q⊥

qE

4: x == 0

o/w o/w

12,else:

12,
the

n:

(b) “loop-1” code, witness

1 extern void __VERIFIER_error();
2 extern unsigned int
↪→ __VERIFIER_nondet_uint(void);

3 int main() {
4 unsigned int n =

↪→ __VERIFIER_nondet_uint();
5 unsigned int x=n, y=0;
6 while (x > 0) {
7 x−−;
8 y++;
9 }

10 if (y == n) {
11 __VERIFIER_error();
12 }
13 return 0;
14 }

q0

q1

q⊥ qE

4: n == 0

o/w

o/w

10,else: 10,then:

q0

q1

q⊥ qE

4: n == 1000000

o/w

o/w

10,else: 10,then:

(c) “loop-2” code, witnesses

the error function in line 11 is called for any input value, so that both witnesses in
Fig. 8c are valid counterexamples. The first of these witnesses, however, describes
a violation that skips the loop entirely with an input value of 0, while the second
one, due to assigning an input value of 1 000 000, reaches the violation in line 11
only after 1 000 000 loop iterations. We expect all validators to quickly validate the
witnesses for shallow bugs, i.e., the one depicted in Fig. 1a and the first witness
in Fig. 8c, but we expect test-based validators to perform significantly better on
the witnesses for deep bugs, i.e., those depicted in Fig. 8a and 8b, and the second
witness in Fig. 8c. Table 4 reports the results for validating these tasks and largely
confirms our expectations. While CPAchecker exceeds its resource limitations
(“M” for exceeding the memory limit, “T” for exceeding the CPU time limit)
for all witnesses except for the two that represent shallow bugs, CPA-w2t and
FShell-w2t quickly confirm all witnesses (✓). It is somewhat surprising to see that
Ultimate Automizer is able to confirm the loop-2/wit-2 of Fig. 8c. Checking the
tool output, however, reveals that Ultimate Automizer ignored the input value
of n specified by the witness and used 0 instead of 1 000 000. We were also surprised
that the witnesses in the first two rows were rejected by Ultimate Automizer (✗),
but since the confirmations of the execution-based validators along with their
trustworthy executable tests give us confidence that the witnesses are correct, we
assume that the rejections are either caused by the complexity of validating the
witnesses or by an approximating behavior of Ultimate Automizer similar to the
one leading to the rejection of loop-2/wit-2. Overall, we confirm that for this
class of witnesses, dynamic approaches are more efficient and more effective than
static approaches.

Tests from Witnesses A Manuscripts

228

20 D. Beyer, M. Dangl, T. Lemberger and M. Tautschnig

Table 4. Validation of hand-crafted witnesses

Witness CPAchecker Automizer CPA-w2t FShell-w2t

Result Time (s) Result Time (s) Result Time (s) Result Time (s)

gauss M - ✗ 11 ✓ 3.4 ✓ 0.60

loop-1 T - ✗ 9.6 ✓ 3.4 ✓ 0.60

loop-2/wit-1 ✓ 3.8 ✓ 8.0 ✓ 3.4 ✓ 0.58

loop-2/wit-2 T - ✓ 7.5 ✓ 3.2 ✓ 0.58

mean ✓ 3.5 ✓ 7.1 ✓ 3.6 ✓ 0.58

5 Conclusion

Developers are familiar with testing, and there are many tools available for bug
analysis that are based on execution, such as debuggers. We try to close the gap
between available verification tools and the desire for more precise bug finding
by leveraging verification witnesses in an exchangeable standard format. We
synthesize tests (test code) from verification results (witnesses) and check the
tests for realizability by compiling them, linking them together with the original
program, and executing the result in an isolating container. Prior to our work,
developers would execute a verification tool and obtain the verification results,
which include a violation witness in case a bug is found. Now, we can use the
violation witness to obtain a test that drives the program to the specification
violation (i.e., into the crash that the developer wants to investigate), while
at the same time, we avoid verification-tool lock-in due to the exchangeable
standard format. The approach reports only those tests to the developer that
really expose the bug; any false alarms are suppressed. The results of our thorough
experimental study are encouraging: We verified thousands of programs from the
largest publicly-available collection of C verification tasks, consisting of 73 million
lines of source code (2.3 GB), and synthesized tests that confirmed7 286verification
results exposing known bugs in 974 different verification tasks.

References

1. Alglave, J., Donaldson, A.F., Kroening, D., Tautschnig, M.: Making software
verification tools really work. In: Bultan, T., Hsiung, P.-A. (eds.) Proceedings of
ATVA 2011. LNCS, vol. 6996, pp. 28–42. Springer, Heidelberg (2011)

2. Andrianov, P., Friedberger, K., Mandrykin, M., Mutilin, V., Volkov, A.:
CPA-BAM-BnB: Block-abstraction memoization and region-based memory
models for predicate abstractions. In: Legay, A., Margaria, T. (eds.) Proceedings of
TACAS 2017. LNCS, vol. 10206, pp. 355–359. Springer, Heidelberg (2017)

3. Artho, C., Havelund, K., Honiden, S.: Visualization of concurrent program
executions. In: Belli, F., Chen, A., Lin, H., McMillin, B., Mei, H. (eds.) Proceedings
of COMPSAC 2007, pp. 541–546. IEEE (2007)

A Manuscripts Tests from Witnesses

229

https://doi.org/10.1007/978-3-642-24372-1_3
https://doi.org/10.1007/978-3-642-24372-1_3
https://doi.org/10.1007/978-3-642-24372-1_3
https://doi.org/10.1007/978-3-662-54580-5_22
https://doi.org/10.1007/978-3-662-54580-5_22
https://doi.org/10.1007/978-3-662-54580-5_22
https://doi.org/10.1007/978-3-662-54580-5_22
https://doi.org/10.1109/COMPSAC.2007.236
https://doi.org/10.1109/COMPSAC.2007.236
https://doi.org/10.1109/COMPSAC.2007.236

Tests from Witnesses 21

4. Beyer, D.: Reliable and reproducible competition results with BenchExec and
witnesses (report on SV-COMP 2016). In: Chechik, M., Raskin, J.-F. (eds.)
Proceedings of TACAS 2016. LNCS, vol. 9636, pp. 887–904. Springer, Heidelberg
(2016)

5. Beyer, D.: Software verification with validation of results. In: Legay, A., Margaria,
T. (eds.) Proceedings of TACAS 2017. LNCS, vol. 10206, pp. 331–349. Springer,
Heidelberg (2017)

6. Beyer, D., Chlipala, A.J., Henzinger, T.A., Jhala, R., Majumdar, R.: Generating
tests from counterexamples. In: Finkelstein, A., Estublier, J., Rosenblum, D.S. (eds.)
Proceedings of ICSE 2004, pp. 326–335. IEEE (2004)

7. Beyer, D., Dangl, M.: Verification-aided debugging: An interactive web-service for
exploring error witnesses. In: Chaudhuri, S., Farzan, A. (eds.) Proceedings of CAV
2016. LNCS, vol. 9780, pp. 502–509. Springer, Cham (2016)

8. Beyer, D., Dangl, M., Dietsch, D., Heizmann, M.: Correctness witnesses: Exchanging
verification results between verifiers. In: Zimmermann, T., Cleland-Huang, J., Su, Z.,
(eds.) Proceedings of FSE 2016, pp. 326–337. ACM (2016)

9. Beyer, D., Dangl, M., Dietsch, D., Heizmann, M., Stahlbauer, A.: Witness validation
and stepwise testification across software verifiers. In: Di Nitto, E., Harman, M.,
Heymans, P. (eds.) Proceedings of FSE 2015, pp. 721–733. ACM (2015)

10. Beyer, D., Dangl, M., Wendler, P.: Boosting k -induction with continuously-refined
invariants. In: Kroening, D., Păsăreanu, C.S. (eds.) Proceedings of CAV 2015. LNCS,
vol. 9206, pp. 622–640. Springer, Cham (2015)

11. Beyer, D., Keremoglu, M.E.: CPAchecker: A tool for configurable software
verification. In: Gopalakrishnan, G., Qadeer, S. (eds.) Proceedings of CAV 2011.
LNCS, vol. 6806, pp. 184–190. Springer, Heidelberg (2011)

12. Beyer, D., Lemberger, T.: Software verification: Testing vs. model checking.
Proceedings of HVC 2017. LNCS, vol. 10629, pp. 99–114. Springer, Cham (2017)

13. Beyer, D., Löwe, S., Wendler, P.: Reliable benchmarking: Requirements and
solutions. Int. J. Softw. Tools Technol. Transf. (2017)

14. Beyer, D., Wendler, P.: Reuse of verification results. In: Bartocci, E., Ramakrishnan,
C.R. (eds.) Proceedings of SPIN 2013. LNCS, vol. 7976, pp. 1–17. Springer,
Heidelberg (2013)

15. Brandes, U., Eiglsperger, M., Herman, I., Himsolt, M., Marshall, M.S.: GraphML
progress report structural layer proposal. In: Mutzel, P., Jünger, M., Leipert, S. (eds.)
Proceedings of GD 2001. LNCS, vol. 2265, pp. 501–512. Springer, Heidelberg (2002)

16. Cadar, C., Ganesh, V., Pawlowski, P.M., Dill, D.L., Engler, D.R.: EXE:
Automatically generating inputs of death. In: Juels, A., Wright, R.N., De Capitani
di Vimercati, S. (eds.) Proceedings of CCS 2006, pp. 322–335. ACM (2006)

17. Cassez, F., Sloane, A.M., Roberts, M., Pigram, M., Suvanpong, P., de Aledo, P.G.:
Skink: Static analysis of programs in LLVM intermediate representation. In: Legay,
A., Margaria, T. (eds.) Proceedings of TACAS 2017. LNCS, vol. 10206, pp. 380–384.
Springer, Heidelberg (2017)

18. Castaño, R., Braberman, V.A., Garbervetsky, D., Uchitel, S.: Model checker
execution reports. In: Rosu, G., Di Penta, M., Nguyen, T.N. (eds.) Proceedings of
ASE 2017, pp. 200–205. IEEE (2017)

19. Chalupa, M., Vitovská, M., Jonáš, M., Slaby, J., Strejček, J.: Symbiotic 4: Beyond
reachability. In: Legay, A., Margaria, T. (eds.) Proceedings of TACAS 2017. LNCS,
vol. 10206, pp. 385–389. Springer, Heidelberg (2017)

20. Christakis, M., Bird, C.: What developers want and need from program analysis: An
empirical study. In: Lo, D., Apel, S., Khurshid, S. (eds.) Proceedings of ASE 2016,
pp. 332–343. ACM (2016)

Tests from Witnesses A Manuscripts

230

https://doi.org/10.1007/978-3-642-22110-1_16
https://doi.org/10.1007/978-3-642-22110-1_16
https://doi.org/10.1007/978-3-642-22110-1_16
https://doi.org/10.1007/978-3-319-70389-3_7
https://doi.org/10.1007/978-3-319-70389-3_7
https://doi.org/10.1007/s10009-017-0469-y
https://doi.org/10.1007/s10009-017-0469-y
https://doi.org/10.1007/978-3-642-39176-7_1
https://doi.org/10.1007/978-3-642-39176-7_1
https://doi.org/10.1007/978-3-642-39176-7_1
https://doi.org/10.1007/3-540-45848-4_59
https://doi.org/10.1007/3-540-45848-4_59
https://doi.org/10.1007/3-540-45848-4_59
https://doi.org/10.1145/1180405.1180445
https://doi.org/10.1145/1180405.1180445
https://doi.org/10.1145/1180405.1180445
https://doi.org/10.1007/978-3-662-54580-5_27
https://doi.org/10.1007/978-3-662-54580-5_27
https://doi.org/10.1007/978-3-662-54580-5_27
https://doi.org/10.1007/978-3-662-54580-5_27
https://doi.org/10.1109/ASE.2017.8115633
https://doi.org/10.1109/ASE.2017.8115633
https://doi.org/10.1109/ASE.2017.8115633
https://doi.org/10.1007/978-3-662-54580-5_28
https://doi.org/10.1007/978-3-662-54580-5_28
https://doi.org/10.1007/978-3-662-54580-5_28
https://doi.org/10.1145/2970276.2970347
https://doi.org/10.1145/2970276.2970347
https://doi.org/10.1145/2970276.2970347
https://doi.org/10.1007/978-3-662-49674-9˜_55
https://doi.org/10.1007/978-3-662-49674-9_55
https://doi.org/10.1007/978-3-662-49674-9_55
https://doi.org/10.1007/978-3-662-49674-9_55
https://doi.org/10.1007/978-3-662-54580-5_20
https://doi.org/10.1007/978-3-662-54580-5_20
https://doi.org/10.1007/978-3-662-54580-5_20
https://doi.org/10.1109/ICSE.2004.1317455
https://doi.org/10.1109/ICSE.2004.1317455
https://doi.org/10.1109/ICSE.2004.1317455
https://doi.org/10.1007/978-3-319-41540-6_28
https://doi.org/10.1007/978-3-319-41540-6_28
https://doi.org/10.1007/978-3-319-41540-6_28
https://doi.org/10.1145/2950290.2950351
https://doi.org/10.1145/2950290.2950351
https://doi.org/10.1145/2950290.2950351
https://doi.org/10.1145/2786805.2786867
https://doi.org/10.1145/2786805.2786867
https://doi.org/10.1145/2786805.2786867
https://doi.org/10.1007/978-3-319-21690-4_42
https://doi.org/10.1007/978-3-319-21690-4_42
https://doi.org/10.1007/978-3-319-21690-4_42

22 D. Beyer, M. Dangl, T. Lemberger and M. Tautschnig

21. Clarke, E.M., Grumberg, O., Jha, S., Lu, Y., Veith, H.: Counterexample-guided
abstraction refinement for symbolic model checking. J. ACM 50(5), 752–794 (2003)

22. Csallner, C., Smaragdakis, Y.: Check ’n’ crash: Combining static checking and
testing. In: Roman, G.-C., Griswold, W.G., Nuseibeh, B. (eds.) Proceedings of ICSE
2005, pp. 422–431. ACM (2005)

23. Dangl, M., Löwe, S., Wendler, P.: CPAchecker with support for recursive programs
and floating-point arithmetic. In: Baier, C., Tinelli, C. (eds.) Proceedings of TACAS
2015. LNCS, vol. 9035, pp. 423–425. Springer, Heidelberg (2015)

24. Gadelha, M.Y.R., Ismail, H.I., Cordeiro, L.C.: Handling loops in bounded model
checking of C programs via k-induction. STTT 19(1), 97–114 (2017)

25. Godefroid, P., Klarlund, N., Sen, K.: Dart: Directed automated random testing. In:
Sarkar, V., Hall, M.W. (eds.) Proceedings of PLDI 2005, pp. 213–223. ACM (2005)

26. Greitschus, M., Dietsch, D., Heizmann, M., Nutz, A., Schätzle, C., Schilling,
C., Schüssele, F., Podelski, A.: Ultimate Taipan: Trace abstraction and abstract
interpretation. In: Legay,A.,Margaria, T. (eds.) Proceedings ofTACAS2017. LNCS,
vol. 10206, pp. 399–403. Springer, Heidelberg (2017)

27. Gulavani, B.S., Henzinger, T.A., Kannan, Y., Nori, A.V., Rajamani, S.K.: Synergy:
A new algorithm for property checking. In: Young, M., Devanbu, P.T., (eds.)
Proceedings of FSE 2006, pp. 117–127. ACM (2006)

28. Gunter, E.L., Peled, D.: Path exploration tool. In: Cleaveland, W.R. (ed.)
Proceedings of TACAS 1999. LNCS, vol. 1579, pp. 405–419. Springer, Heidelberg
(1999)

29. Heizmann, M., Chen, Y.-W., Dietsch, D., Greitschus, M., Nutz, A., Musa, B.,
Schätzle, C., Schilling, C., Schüssele, F., Podelski, A.: Ultimate automizer with an
on-demand construction of Floyd-Hoare automata. In: Legay, A., Margaria, T. (eds.)
Proceedings of TACAS 2017. LNCS, vol. 10206, pp. 394–398. Springer, Heidelberg
(2017)

30. Hoĺık, L.,Hruška,M., Lengál,O.,Rogalewicz,A., Šimáček, J.,Vojnar,T.:Forester:
From heap shapes to automata predicates. In: Legay, A., Margaria, T. (eds.)
Proceedings of TACAS 2017. LNCS, vol. 10206, pp. 365–369. Springer, Heidelberg
(2017)

31. Holzer, A., Schallhart, C., Tautschnig, M., Veith, H.: How did you specify your test
suite. In: Pecheur, C., Andrews, J., Di Nitto, E. (eds.) Proceedings of ASE 2010, pp.
407–416. ACM (2010)

32. Jakobs, M.-C., Wehrheim, H.: Compact proof witnesses. In: Barrett, C., Davies, M.,
Kahsai, T. (eds.) Proceedings ofNFM2017. LNCS, vol. 10227, pp. 389–403. Springer,
Cham (2017)

33. Kotoun, M., Peringer, P., Šoková, V., Vojnar, T.: Optimized PredatorHP and the
SV-COMP heap and memory safety benchmark. In: Chechik, M., Raskin, J.-F. (eds.)
Proceedings of TACAS 2016. LNCS, vol. 9636, pp. 942–945. Springer, Heidelberg
(2016)

34. Kroening, D., Tautschnig, M.: CBMC: C bounded model checker. In: Ábrahám, E.,
Havelund, K. (eds.) Proceedings of TACAS 2014. LNCS, vol. 8413, pp. 389–391.
Springer, Heidelberg (2014)

35. Li, K., Reichenbach, C., Csallner, C., Smaragdakis, Y.: Residual investigation:
Predictive and precise bug detection. In: Heimdahl, M.P.E., Su, Z., (eds.)
Proceedings of ISSTA 2012, pp. 298–308. ACM (2012)

36. Majumdar, R., Sen, K.: Hybrid concolic testing. In: Emmerich, W., Knight, J.,
Rothermel, G. (eds.) Proceedings of ICSE 2007, pp. 416–426. IEEE (2007)

A Manuscripts Tests from Witnesses

231

https://doi.org/10.1145/876638.876643
https://doi.org/10.1145/876638.876643
https://doi.org/10.1145/1062455.1062533
https://doi.org/10.1145/1062455.1062533
https://doi.org/10.1145/1062455.1062533
https://doi.org/10.1007/978-3-662-46681-0_34
https://doi.org/10.1007/978-3-662-46681-0_34
https://doi.org/10.1007/978-3-662-46681-0_34
https://doi.org/10.1007/s10009-015-0407-9
https://doi.org/10.1007/s10009-015-0407-9
https://doi.org/10.1145/1065010.1065036
https://doi.org/10.1145/1065010.1065036
https://doi.org/10.1007/978-3-662-54580-5_31
https://doi.org/10.1007/978-3-662-54580-5_31
https://doi.org/10.1007/978-3-662-54580-5_31
https://doi.org/10.1007/978-3-662-54580-5_31
https://doi.org/10.1145/1181775.1181790
https://doi.org/10.1145/1181775.1181790
https://doi.org/10.1145/1181775.1181790
https://doi.org/10.1007/3-540-49059-0_28
https://doi.org/10.1007/3-540-49059-0_28
https://doi.org/10.1007/3-540-49059-0_28
https://doi.org/10.1007/978-3-662-54580-5_30
https://doi.org/10.1007/978-3-662-54580-5_30
https://doi.org/10.1007/978-3-662-54580-5_30
https://doi.org/10.1007/978-3-662-54580-5_30
https://doi.org/10.1007/978-3-662-54580-5_30
https://doi.org/10.1007/978-3-662-54580-5_24
https://doi.org/10.1007/978-3-662-54580-5_24
https://doi.org/10.1007/978-3-662-54580-5_24
https://doi.org/10.1007/978-3-662-54580-5_24
https://doi.org/10.1145/1858996.1859084
https://doi.org/10.1145/1858996.1859084
https://doi.org/10.1145/1858996.1859084
https://doi.org/10.1007/978-3-319-57288-8_28
https://doi.org/10.1007/978-3-319-57288-8_28
https://doi.org/10.1007/978-3-319-57288-8_28
https://doi.org/10.1007/978-3-662-49674-9_66
https://doi.org/10.1007/978-3-662-49674-9_66
https://doi.org/10.1007/978-3-662-49674-9_66
https://doi.org/10.1007/978-3-662-49674-9_66
https://doi.org/10.1007/978-3-642-54862-8_26
https://doi.org/10.1007/978-3-642-54862-8_26
https://doi.org/10.1007/978-3-642-54862-8_26
https://doi.org/10.1145/2338965.2336789
https://doi.org/10.1145/2338965.2336789
https://doi.org/10.1145/2338965.2336789
https://doi.org/10.1109/ICSE.2007.41
https://doi.org/10.1109/ICSE.2007.41

Tests from Witnesses 23

37. Morse, J., Ramalho, M., Cordeiro, L., Nicole, D., Fischer, B.: ESBMC 1.22. In:
Ábrahám, E., Havelund, K. (eds.) Proceedings of TACAS 2014. LNCS, vol. 8413,
pp. 405–407. Springer, Heidelberg (2014)

38. Mrázek, J., Jonáš, M., Štill, V., Lauko, H., Barnat, J.: Optimizing and caching SMT
queries in SymDIVINE. In: Legay, A., Margaria, T. (eds.) Proceedings of TACAS
2017. LNCS, vol. 10206, pp. 390–393. Springer, Heidelberg (2017)

39. Müller, P., Ruskiewicz, J.N.: Using debuggers to understand failed verification
attempts. In: Butler, M., Schulte, W. (eds.) Proceedings of FM 2011. LNCS, vol.
6664, pp. 73–87. Springer, Heidelberg (2011)

40. Nutz,A.,Dietsch,D.,Mohamed,M.M.,Podelski,A.:UltimateKojakwithmemory
safety checks. In: Baier, C., Tinelli, C. (eds.) Proceedings of TACAS 2015. LNCS, vol.
9035, pp. 458–460. Springer, Heidelberg (2015)

41. Rakamarić, Z., Emmi, M.: SMACK: Decoupling source language details from verifier
implementations. In: Biere, A., Bloem, R. (eds.) Proceedings of CAV 2014. LNCS,
vol. 8559, pp. 106–113. Springer, Cham (2014)

42. Rocha, H., Barreto, R., Cordeiro, L., Neto, A.D.: Understanding programming bugs
in ANSI-C software using bounded model checking counter-examples. In: Derrick,
J., Gnesi, S., Latella, D., Treharne, H. (eds.) Proceedings of IFM 2012. LNCS, vol.
7321, pp. 128–142. Springer, Heidelberg (2012)

43. Rocha, W., Rocha, H., Ismail, H., Cordeiro, L., Fischer, B.: DepthK: A k -induction
verifier based on invariant inference for C programs. In: Legay, A., Margaria, T. (eds.)
Proceedings of TACAS 2017. LNCS, vol. 10206, pp. 360–364. Springer, Heidelberg
(2017)

44. Schneider, F.B.: Enforceable security policies. ACM Trans. Inf. Syst. Secur. 3(1),
30–50 (2000)

45. Schrammel, P., Kroening, D.: 2LS for program analysis. In: Chechik, M., Raskin,
J.-F. (eds.) Proceedings of TACAS 2016. LNCS, vol. 9636, pp. 905–907. Springer,
Heidelberg (2016)

46. Sen, K., Marinov, D., Agha, G.: Cute: A concolic unit testing engine for C. In:
Wermelinger, M., Gall, H.C. (eds.) Proceedings of FSE 2005, pp. 263–272. ACM
(2005)

47. Shved, P., Mandrykin, M., Mutilin, V.: Predicate analysis with BLAST 2.7. In:
Flanagan, C., König, B. (eds.) Proceedings of TACAS 2012. LNCS, vol. 7214,
pp. 525–527. Springer, Heidelberg (2012)

48. Visser, W., Păsăreanu, C.S., Khurshid, S.: Test input generation with Java
PathFinder. In: Avrunin, G.S., Rothermel, G. (eds.) Proceedings of ISSTA 2004,
pp. 97–107. ACM (2004)

Tests from Witnesses A Manuscripts

232

https://doi.org/10.1007/978-3-642-54862-8_31
https://doi.org/10.1007/978-3-642-54862-8_31
https://doi.org/10.1007/978-3-642-54862-8_31
https://doi.org/10.1007/978-3-662-54580-5_29
https://doi.org/10.1007/978-3-662-54580-5_29
https://doi.org/10.1007/978-3-662-54580-5_29
https://doi.org/10.1007/978-3-642-21437-0_8
https://doi.org/10.1007/978-3-642-21437-0_8
https://doi.org/10.1007/978-3-642-21437-0_8
https://doi.org/10.1007/978-3-662-46681-0_44
https://doi.org/10.1007/978-3-662-46681-0_44
https://doi.org/10.1007/978-3-662-46681-0_44
https://doi.org/10.1007/978-3-319-08867-9_7
https://doi.org/10.1007/978-3-319-08867-9_7
https://doi.org/10.1007/978-3-319-08867-9_7
https://doi.org/10.1007/978-3-642-30729-4_10
https://doi.org/10.1007/978-3-642-30729-4_10
https://doi.org/10.1007/978-3-642-30729-4_10
https://doi.org/10.1007/978-3-642-30729-4_10
https://doi.org/10.1007/978-3-662-54580-5_23
https://doi.org/10.1007/978-3-662-54580-5_23
https://doi.org/10.1007/978-3-662-54580-5_23
https://doi.org/10.1007/978-3-662-54580-5_23
https://doi.org/10.1145/353323.353382
https://doi.org/10.1145/353323.353382
https://doi.org/10.1007/978-3-662-49674-9_56
https://doi.org/10.1007/978-3-662-49674-9_56
https://doi.org/10.1007/978-3-662-49674-9_56
https://doi.org/10.1145/1081706.1081750
https://doi.org/10.1145/1081706.1081750
https://doi.org/10.1145/1081706.1081750
https://doi.org/10.1007/978-3-642-28756-5_39
https://doi.org/10.1007/978-3-642-28756-5_39
https://doi.org/10.1007/978-3-642-28756-5_39
https://doi.org/10.1145/1007512.1007526
https://doi.org/10.1145/1007512.1007526
https://doi.org/10.1145/1007512.1007526

Verification-Aided Debugging: An Interactive
Web-Service for Exploring Error Witnesses

Dirk Beyer and Matthias Dangl

University of Passau, Passau, Germany

Abstract. Traditionally, a verification task is considered solved as soon
as a property violation or a correctness proof is found. In practice, this is
where the actual work starts: Is it just a false alarm? Is the error repro-
ducible? Can the error report later be re-used for bug fixing or regres-
sion testing? The advent of exchangeable witnesses is a paradigm shift
in verification, from simple answers true and false towards qualitatively
more valuable information about the reason for the property violation.
This paper explains a convenient web-based toolchain that can be used
to answer the above questions. We consider as example application the
verification of C programs. Our first component collects witnesses and
stores them for later re-use; for example, if the bug is fixed, the witness
can be tried once again and should now be rejected, or, if the bug was
not scheduled for fixing, the database can later provide the witnesses in
case an engineer wants to start fixing the bug. Our second component
is a web service that takes as input a witness for the property violation
and (re-)validates it, i.e., it re-plays the witness on the system in order
to re-explore the state-space in question. The third component is a web
service that continues from the second step by offering an interactive
visualization that interconnects the error path, the system’s sources, the
values on the path (test vectors), and the reachability graph. We evalu-
ated the feasibility of our approach on a large benchmark of verification
tasks.

1 Introduction

The answer of a verification tool to a given verification task (consisting of a spec-
ification and a system) is either that the system satisfies the specification or that
the system violates the specification (or the answer ‘unknown’ is returned) [9].
If a violation of the specification is detected, an error path through the system
is reported that exhibits the problem, such that the user can understand the
problem and fix the bug: counterexamples to verification have been described as
invaluable to debugging complex systems and have been a common feature of
model checkers for several decades [7]. In particular, the successful technique of
counterexample-guided abstraction refinement (CEGAR) [8] is based on analyz-
ing error paths through the system.

c© Springer International Publishing Switzerland 2016
S. Chaudhuri and A. Farzan (Eds.): CAV 2016, Part II, LNCS 9780, pp. 502–509, 2016.
DOI: 10.1007/978-3-319-41540-6 28

A Manuscripts Verification-Aided Debugging

233

Verification-Aided Debugging: An Interactive Web-Service 503

In the past few years, there was a strong focus in the community on using
common exchange formats and reproducing errors described by previously com-
puted counterexamples. Esbmc was extended to reproduce errors via instanti-
ated code [11], and CPAchecker was used to re-check previously computed error
paths by interpreting them as automata that control the state-space search [6].
While these internal approaches to witness validation can reduce the amount of
false alarms reported by a tool, they establish no additional trust in a report
produced and validated by an untrusted verifier. The advantages of considering
error witnesses as a valuable verification artifact were explained and supported
by two completely different implementations of witness validators [4], namely
CPAchecker and Automizer. Also, competitions in the community required
exchangeable witnesses: the competition on termination uses a certification-
problem format (CPF)1 and the competition on software verification uses a
machine-readable, exchangeable format for error witnesses2. Our toolchain is
based on the common exchange format that was used in SV-COMP [2,4], which
allows specifying counterexample traces using control-flow paths and data values.
Previous efforts towards helping users understand the counterexamples have lead
to interactive trace visualizations [1,5,10], but the user was locked-in to a cer-
tain toolchain. The introduction of machine-readable error witnesses has opened
up new possibilities for collecting, accumulating, and validating counterexam-
ple traces from different verifiers [4]. A wide range of software verifiers already
supports a common exchange format, as shown by the competition on software
verification3, which has adopted error-witness validation already two years ago.

Error witnesses support traditional debugging very well: the test values that
a witness might contain can direct a classic debugger through the system to
the problematic part of the implementation or model. But the exchangeable
witnesses support even a more abstract form of debugging, based on a graphical
visualization of error paths and reachability graphs.

Figure 1 gives an overview over the components involved in our toolchain.
There are three subsystems that the user interacts with: (1) We developed a
witness store for persistently keeping error witnesses that different verification
tools have produced. The database enables the user to select and retrieve specific
witnesses for a given set of verification tasks. One possible use case is to fetch
all witnesses that document a bug in a specific C program, to help the devel-
oper better understand the issue. (2) We offer an online witness validator with
a convenient web-service API that enables validation without the need to install
software. A bug report that a verifier returns can potentially be a false alarm,
so it is convenient for the user to first automatically cross-examine the report,
before manual effort is invested (and perhaps wasted). To validate an error wit-
ness, the user can send the validation task, which consists of the source-code file,
the property, and a corresponding error witness (potentially obtained from the

1 http://cl-informatik.uibk.ac.at/software/cpf
2 http://sv-comp.sosy-lab.org/2016/witnesses/
3 For example, see the list of systems in SV-COMP 2016 http://sv-comp.sosy-lab.org/

2016/systems.php.

Verification-Aided Debugging A Manuscripts

234

http://cl-informatik.uibk.ac.at/software/cpf
http://sv-comp.sosy-lab.org/2016/witnesses/
http://sv-comp.sosy-lab.org/2016/systems.php
http://sv-comp.sosy-lab.org/2016/systems.php

504 D. Beyer and M. Dangl

System

Code

Verification Service

Validation Service

Interactive
Visualized
Report

Witness Store

Witness 1

Witness 2

view and maintainview and
understand

User

develop and fix

Spec

N9
23

26 void __VERIFIER_error() ;

27 void __VERIFIER_assume(int) ;

28 unsigned int __VERIFIER_nondet_uint() ;

29 void __VERIFIER_assert(int cond);

30 int main() ;

31 Funct ion start dummy edge

10 unsigned int x = 1;

11 unsigned int y;

12 y = __VERIFIER_nondet_uint() ;

INIT GLOBAL VARS

N13
13

N14
12

[y > 0]

N32
0

[!(y > 0)]

N15
11

while

Fig. 1. System overview, blue parts are discussed in this paper (Color figure online)

witness database), to the validation service. The service then validates the error
witness. If the witness is rejected, the user is advised to prioritize other tasks,
because the specific error path that the witness describes has been declared
as infeasible. If, instead, the witness is validated, the validation service feeds
all information gained about the bug into the third component, the interac-
tive report. (3) Successful witness validations produce a detailed and interactive
web-based bug report. The report contains a debugger-like feature for stepping
through the error path, while providing several context-sensitive representations
of the buggy program. The report also encompasses all information required to
reproduce the validation externally.

Application Example. Our application example is the verification of system pro-
grams written in the language C. While the concepts of our toolchain can be
applied to other programming languages, we restrict our tools to C. The web
service that we describe is available on the internet, and our primary target is to

A Manuscripts Verification-Aided Debugging

235

Verification-Aided Debugging: An Interactive Web-Service 505

support open-source projects. Organizations that develop proprietary software
can still benefit from our system, because it is easily installed on a local web
server that is restricted to the organization’s intranet.

Data to Experiment. As part of our evaluation, we ran several verification tools
that participated in the competition on software verification (because those tools
are known to generate useful witnesses) and fed the witnesses into our database.
For the reader to assess our toolchain, we have compiled an archive with wit-
nesses, validation results and error-path visualizations for offline use. The archive
is available as supplement, and the validation results and visualization results can
be reproduced via our live web service or offline using the CPAchecker-based
witness validator4 The archive contains reports for a total of 1 382 witnesses for
26 verification tasks that contain a bug. The average number of witnesses that
we collected is 53 witnesses per verification task, the program with the fewest
has 4, the program with the most has 114 witnesses in our database.

2 Collection of Error-Paths in a Witness Store

We consider witnesses as a prime-value verification artifact, because they can
make it (a) efficient to re-run a partial verification to explore the bug again and
(b) easy to use different verification tools for validation.

Permanently storing witnesses opens many new practical applications to let
verification technology have a larger impact on system development. Our witness
store provides a means to take advantage of the various beneficial properties of
machine-readable witnesses in a common exchange format:

– Witness Validation: Imprecise verifiers may sometimes produce false alarms
and thus waste valuable developer time. With witness validation, users no
longer need to trust the answer False. Instead, they can concentrate on paying
attention to witnesses that are confirmed by an automatic witness validator.
Each validation run that confirms a witness can increase the user’s confidence
in the bug report.

– Witness Inspection: Witness validators with complementing strategies can be
applied to a witness, each leveraging its strengths to add diagnostic informa-
tion that the others may be incapable to derive. Therefore, witness validation
can be understood as a chain of ever refining details for identifying, under-
standing, and fixing the bug.

– Bug Reports: In bug reports, attached witnesses can be used to provide a
precise description of the erroneous behavior, including test-vector values.

– Re-Verification: Working with error witnesses is cheap in terms of resources,
because the verification result can often be re-established with reduced effort.

4 The URL to our supplementary web page, which includes the live web service, the
archive for offline use, and a virtual machine set up for validating the witnesses
and reproducing the results using CPAchecker 1.6, is: https://www.sosy-lab.org/
∼dbeyer/witness-based-debugging/.

Verification-Aided Debugging A Manuscripts

236

https://www.sosy-lab.org/~dbeyer/witness-based-debugging/
https://www.sosy-lab.org/~dbeyer/witness-based-debugging/

506 D. Beyer and M. Dangl

This is not only beneficial for validating a given witness, but also when check-
ing for regressions: If the witness is still valid for a changed version of the
system, the bug has been reintroduced or was not yet fixed [6].

3 Convenient Witness Validation

A witness validator is a verifier that analyzes the synchronized product of the sys-
tem with the witness automaton, where transitions are synchronized using sys-
tem operations and transition annotations. This means that the witness automa-
ton observes the system paths that the verifier wants to explore: if the operation
on the system path does not match the transition of the witness automaton, then
the verifier is forbidden to explore that path further; if the operation on the path
matches, then the witness automaton and the system proceed to the next state,
possibly restricting the system’s state such that the assumptions given in the
data annotation are satisfied. Implementations of witness validators are avail-
able, see for example CPAchecker and Automizer [4]. Our validation service
uses the CPAchecker witness validator as back-end. CPAchecker supports
and combines many different verification strategies, for example value analy-
sis, predicate abstraction, CEGAR, bounded model checking, k-induction, and
concrete memory graphs. The specific configuration that is effectively used to
validate the witnesses via our web service is bit-accurate and combines value
analysis and predicate abstraction. Our web service does not yet support arrays,
concurrency, and termination analysis.

Conceptually, an error-witness automaton is a protocol automaton, and an
error-witness analysis is a protocol analysis for an error-witness automaton [4],
which runs as a component of a composite program analysis. Unlike observer
automata [3], which can be used to represent the specification the analyzed
program is verified with, error-witness automata not only observe the state-space
exploration of the program analysis, but also restrict it to those successor states
that lead the exploration toward a specification violation, whereas an observer
automaton follows all abstract successor states. Therefore, the program analysis
is guided by the error-witness automaton to explore the state space that violates
the specification.

The process of determining if it is possible to independently re-establish
a verification result, given the program, specification, result, and witness, is
called witness validation. One way of implementing error-witness validation is by
constructing a composite program analysis that has both a witness analysis and
a specification analysis as components, which simultaneously restrict and observe
the state-space exploration: the specification analysis checks if an analyzed path
actually violates the specification, and the search of the composite program
analysis is restricted by the witness validation such that only paths that the
error-witness automaton can match are explored. For example, the analysis stops
exploring a path, if, during the analysis of that path, the witness automaton
takes a transition to a sink state. An error witness is confirmed by the witness
validator if both, the witness automaton and the specification automaton, take
a transition to their respective (accepting) error state [4].

A Manuscripts Verification-Aided Debugging

237

Verification-Aided Debugging: An Interactive Web-Service 507

4 Visualizing and Interactively Exploring Error-Paths

Figure 2 shows a screenshot of an interactive counterexample report. The screen
is divided into two columns: The left column provides detailed information that
is specific to the error path, namely the source code on the path to the property
violation, and, like in a debugger, the program locations are decorated with test
values that were computed by the witness validator. The right column embeds
the specific information from the left column into the general context of the
system and the analysis. It contains control-flow automata (CFA) for each of the
functions, the abstract reachability graph (ARG) of the verification, full source
code of the verification task, the verification log, statistics, and configuration
parameters of the validation run. In all CFA and the ARG, the states on the
path to the property violation are marked in red. Double clicking on a control-
flow state that precedes a function call displays the CFA of the called function.
Both columns, however, are not only useful in isolation: clicking on a line of
code in the left column while viewing the ARG or CFA will navigate to the state
corresponding to the clicked line of source code.

Fig. 2. Typical view of the error-path visualizer: program source code with violating
test vector (left, green) and CFA with violating path (right, red); left view top shows
the menu for debugger-like step-through, right view top shows the display options:
CFA, ARG, Source, Log, Statistics, Configurations (Color figure online)

Verification-Aided Debugging A Manuscripts

238

508 D. Beyer and M. Dangl

The visualization is built upon the JavaScript framework AngluarJS and
the jQuery and Bootstrap web-development libraries. The layout of the
graphs is computed using GraphViz and exchanged in SVG format. The complete
data for one such error-path visualization takes on average 120 kB of memory.

5 Conclusion

Over the past decades, the algorithmic abilities of verification tools were consid-
erably increased, but in practice, verification technology is still not as popular as
testing. Why? Because it is inconvenient to use. Our work contributes to closing
this gap, by considering not only the true/false answers as value, but actively
using other results of the verification process, most prominently the error wit-
nesses. We have presented a toolchain that supports engineers in understanding
the error reports of verification systems. First, we archive verification witnesses
permanently in a database. Second, we provide a convenient web service for wit-
ness validation, i.e., a verification task together with a witness can be given as
input, and the results are presented via the web API (for manual inspection or
automatic retrieval). Third, we explain an error-path visualization that supports
an interactive investigation of the source code, the control-flow graph, the reach-
ability graph, and test values. We believe that the proposed method is a step
towards a more convenient usage of verification results.

References

1. Aljazzar, H., Leue, S.: Debugging of dependability models using interactive visual-
ization of counterexamples. In: Rubino, G. (ed.) Proc. QUEST 2008, pp. 189–198.
IEEE (2008)

2. Beyer, D.: Reliable and reproducible competition results with BenchExec and
witnesses (Report on SV-COMP 2016). In: Chechik, M., Raskin, J.-F. (eds.) Proc.
TACAS 2016. LNCS, vol. 9636, pp. 887–904. Springer, Heidelberg (2016)

3. Beyer, D., Chlipala, A.J., Henzinger, T.A., Jhala, R., Majumdar, R.: The Blast
query language for software verification. In: Giacobazzi, R. (ed.) Proc. SAS 2004.
LNCS, vol. 3148, pp. 2–18. Springer, Heidelberg (2004)

4. Beyer, D., Dangl, M., Dietsch, D., Heizmann, M., Stahlbauer, A.: Witness valida-
tion and stepwise testification across software verifiers. In: Di Nitto, E., Harman,
M., Heymans, P. (eds.) Proc. FSE 2015, pp. 721–733. ACM (2015)

5. Beyer, D., Keremoglu, M.E.: CPAchecker: A tool for configurable software ver-
ification. In: Gopalakrishnan, G., Qadeer, S. (eds.) Proc. CAV 2011. LNCS, vol.
6806, pp. 184–190. Springer, Heidelberg (2011)

6. Beyer, D., Wendler, P.: Reuse of verification results: Conditional model checking,
precision reuse, and verification witnesses. In: Bartocci, E., Ramakrishnan, C.R.
(eds.) Proc. SPIN 2013. LNCS, vol. 7976, pp. 1–17. Springer, Heidelberg (2013)

7. Clarke, E.M., Emerson, E.A., Sifakis, J.: Model checking: Algorithmic verification
and debugging. Commun. ACM 52(11), 74–84 (2009)

8. Clarke, E.M., Grumberg, O., Jha, S., Lu, Y., Veith, H.: Counterexample-guided
abstraction refinement for symbolic model checking. J. ACM 50(5), 752–794 (2003)

A Manuscripts Verification-Aided Debugging

239

Verification-Aided Debugging: An Interactive Web-Service 509

9. Clarke, E.M., Grumberg, O., Peled, D.: Model Checking. MIT Press, Cambridge
(1999)

10. Groce, A., Kröning, D., Lerda, F.: Understanding counterexamples with explain.
In: Alur, R., Peled, D.A. (eds.) Proc. CAV 2004. LNCS, vol. 3114, pp. 453–456.
Springer, Heidelberg (2004)

11. Rocha, H., Barreto, R., Cordeiro, L., Neto, A.D.: Understanding programming bugs
in ANSI-C software using bounded model checking counter-examples. In: Derrick,
J., Gnesi, S., Latella, D., Treharne, H. (eds.) Proc. IFM 2012. LNCS, vol. 7321,
pp. 128–142. Springer, Heidelberg (2012)

Verification-Aided Debugging A Manuscripts

240

	1 Introduction
	1.1 Objectives
	1.1.1 Objective 1: Make Software Verification Applicable in Practice
	1.1.2 Objective 2: Make Software Verification Useful in Practice

	1.2 Structure
	1.3 Background
	1.3.1 Automated Software Verification
	1.3.2 Configurable Program Analysis
	1.3.3 Finite Automata
	1.3.4 Program Representation
	1.3.5 Error Paths
	1.3.6 Test Generation
	1.3.7 Inductive Invariants

	1.4 Research Method
	1.4.1 Hypothesis
	1.4.2 Experiment Design and Execution
	1.4.3 Replicability

	2 Discussion of Manuscripts
	2.1 Boosting k-Induction with Continuously-Refined Auxiliary Invariants
	2.2 A Unifying View on SMT-Based Software Verification
	2.3 Software Verification with PDR: An Implementation of the State of the Art
	2.4 Strategy Selection for Software Verification Based on Boolean Features
	2.5 Verification Witnesses
	2.6 Tests from Witnesses
	2.7 Verification-Aided Debugging: An Interactive Web-Service for Exploring Error Witnesses

	3 Summary and Prospects
	3.1 Summary
	3.2 Prospects
	3.2.1 Investigate Further Algorithms
	3.2.2 Extend Algorithm Selection
	3.2.3 Integrate Verification into IDEs
	3.2.4 Build More Tooling around Witnesses

	Bibliography
	A Manuscripts
	Boosting k-Induction with Continuously-Refined Auxiliary Invariants
	A Unifying View on SMT-Based Software Verification
	Software Verification with PDR: An Implementation of the State of the Art
	Strategy Selection for Software Verification Based on Boolean Features
	Verification Witnesses
	Tests from Witnesses
	Verification-Aided Debugging: An Interactive Web-Service for Exploring Error Witnesses

