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Your contribution to the publications 

1.1 Contribution to paper I 
My contribution to Paper I begins with a literature review. Through reading the litera-

tures, I realized that many classical approaches in dealing with missing data have been 

developed with underlying assumption of MAR (missing at random) or MNAR (missing 

not at random), respectively. For example, mixed model for repeated measures has 

been used under assumption of MAR; and pattern mixture model (Little, 1993), selec-

tion model (Rubin, 1976), and shared parameter model (Little, 1995) have been imple-

mented as sensitivity analysis with underlying assumption of MNAR. However, missing 

data in realistic situations can be more complex, for example, MNAR and MAR mixed 

together in the same dataset. Many studies have shown that those classical models 

can reduce bias appropriately when (and only when) their underlying assumptions are 

satisfied. However, in some real-life situations (e.g., when MNAR and MAR mixed to-

gether), these methods perform poorly because they rely heavily on underlying as-

sumptions (Enders, 2010). Unfortunately, it is difficult to test these underlying assump-

tions, so there is no easy solution to evaluate the performance of those models in ana-

lyzing real study data. I discussed these findings with my main supervisor Prof. Dr. Ul-

rich Mansmann and proposed to investigate machine-learning-based methods to im-

pute the missing data in clinical trial settings. Prof. Mansmann was very supportive on 

this idea, and he pointed out that the new method should be able to handle MNAR 

problems first, and at the same time, it should also be able to handle MAR problems. 

Following Prof. Mansmann’s advice, a missing data prediction approach that based on 

machine learning techniques was developed to handle missing data problem in real-life 

situations (i.e., when both MNAR and MAR exist in the same dataset) in Paper I. The 

main idea is to handle MNAR by focusing on (giving more weights to) the missing part, 

meanwhile, and also to handle the MAR data by looking for precise individual (subject-

level) information. The problem of MNAR is seen as an imbalanced machine learning 

exercise, i.e., to oversample the minority cases to compensate for the data that are 

MNAR in certain area. It should be noted that this framework is original, it was never 

published or discussed in anywhere else.  

We evaluate our approach through comprehensive and objective simulation studies. In-

itially, I considered one scenario only in the simulation. After discussing with Prof. Mans-

mann and Prof. Anne-Laure Boulesteix (my second supervisor), to fully evaluate the per-

formance of the proposed method, they suggested to extend the simulation studies to 

consider different scenarios (i.e., different sample size, different dropout proportions, and 

different missingness starting time-point). They pointed out that in light of the “evidence-

based computational statistics” (Boulesteix et al. 2017a, b), the proposed methodology 

needs to be evaluated in an objective manner through simulation studies and needs to 

emphasize the plausibility of real-life simulation scenarios. 
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Another contribution from my side is the programming of the entire workflow. As shown 

in Figure 3 (in section 2.2.1), different software/tools have been used in different steps 

according to the availability of relevant package/library/standard toolbox. For example:  

• SAS 9.4 was used for the simulation study data creation and statistical analysis 

for both simulation study and real data example. The following models were im-

plemented using SAS: mixed model for repeat measurement (MMRM), analysis 

of covariance (ANCOVA), selection model (SM), pattern mixture model (PMM) 

and shared parameter model (SPM);  

• R (version 3.6.0) is used in the longitudinal clustering (k-means trajectories was 

implemented using R package “KML” version 2011, Genolini and Falissard, 

2011);  

• Python (version 3.6) was used in the RNN implementation via library Keras (ver-

sion 2.2.4, Falbel et al., 2015).  

A detailed supporting information package was prepared by me, which includes all pro-

gramming codes for the entire workflow (including SAS, R and Python codes), interme-

diate results, datasets and outputs. My main supervisor reviewed the package and vali-

dated some key steps and key results. The supporting information package was submit-

ted to the journal for reproducibility check.  

I wrote a draft of the manuscript, which my supervisors thoroughly reviewed and provided 

valuable constructive comments to improve it for submission to the journal.  

1.2 Contribution to paper II 
After working on the Paper I and reviewing literatures about the utility-based-learning, I 

realized that the standard predictive error measures like mean squared error (MSE) or 

mean absolute error (MAE) do not perform well in the regression tasks for the data with 

imbalanced distribution. For example, in some clinical studies, the extreme values of 

outcome variable are often missing due to reasons that are related to subjects’ health 
status (subjects who dropout because the disease status is worsening), i.e., a MNAR 

issue. They have the disadvantage of being insensitive to the position of the outcome 

variable values (Ribeiro, 2011). In addition, the simple random oversampling with re-

placement will cause many duplicated cases in minority cluster (i.e., in that case the 

training data becomes very specific) and hence causes overfitting of the model. There-

fore, after discussing with Prof. Mansmann, I proposed to incorporate the utility-based 

error measurement method (which is sensitive enough to the specific location of predic-

tive error in the target variable scale) and sampling approach (i.e., the SMOTER = syn-

thetic minority oversampling technique for regression, Torgo et al. 2013) to handle the 

issue of MNAR in clinical studies. This proposal was fully supported by my supervisors.  

Like Paper I, we evaluate our proposed approach through comprehensive and objective 

simulation studies. We created random data for 600 subjects. The created target variable 
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and the covariates follow a normal distribution, missing data flags follow binomial distri-

bution (i.e., we created mutually exclusive binary flags for MNAR, MAR and MCAR data). 

We simultaneously created correlated binary and normal data following a point-biserial 

method. In the utility-based regression process, the fixed coefficient of relevance function 

was used initially. After discussing with my main supervisor, he suggested to perform 

sensitivity analysis by defining a set of coefficients for relevance function to show how 

the chosen relevance function affects the imputation results.  

I did the programming of the entire workflow using R. The R package “BinNor” (Amatya, 

2020) was used for the data generation, and R package “Utility-Based Learning” (i.e., 

“UBL”, developed by Branco et al. in 2017) was used for the utility-based regression and 

SMOTER. The performance of the proposed method was compared with other standard 

methods like multiple imputation (MI, using R package “MICE”, van Buuren et al. 2011), 

random forests (RF, using R package “randomForest”, Liaw and Wiener, 2018), and 

quantile regression forests (QRF, using R package “quantregForest”, Meinshausen, 

2017). All R codes, intermediate results, datasets and outputs were submitted to the 

journal for reproducibility check.  

I wrote a draft of the manuscript, and my supervisors thoroughly reviewed it and provided 

valuable constructive comments to improve it for submission to the journal.  
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2. Introductory summary  

2.1 Motivation and main idea 

Missing data problem is a common challenge when designing and analyzing clinical tri-

als, which are the data that are needed for the main analyses but are not collected. If the 

missing data are not properly imputed/handled, they may cause following issues: reduce 

the statistical power of the important analysis; they may bias/confound the treatment 

effect estimation; they may cause an underestimation of the variability in target variable. 

Three different types of missingness are defined in Rubin’s 1976 paper. (1) MCAR (miss-

ing completely at random): when data are MCAR, “the probability of missingness does 

not depend on observed or unobserved measurements”, for example, subjects who drop-

out from the trial due to the reasons that are not related to their health status. (2) MAR 

(missing at random): when data are MAR, “the probability of missingness depends only 

on observed measurements conditional on the covariates in the model”, for example, 

younger subjects (those who don’t think it is necessary to measure their blood pressure 

as they consider themselves healthier) may more likely to have missing blood pressure. 

(3) MNAR (missing not at random): when data are MNAR, “the probability of missingness 

depends on unobserved measurements”, for example, subjects leave the trial because 

of “lack of efficacy” (i.e., they are not convinced by effectiveness of the study drug and 

hence dropout from the trial).  

Although all three types of missing data are well defined, it is very difficult to determine 

the association between missing data and unobserved outcomes in the real-world data; 

in other words, it is very difficult to justify the MAR assumption in any realistic situation. 

As EMA suggested in 2010, a combined strategy can be used, e.g., treat the discontin-

uations due to “lack of efficacy” as MNAR data, and treat the discontinuations due to 

“lost to follow-up” as MAR data.  

Many statistical methods have been developed to handle missing data under the prereq-

uisite assumption of either MNAR or MAR. However, in the real world, missing data are 

often mixed with different types of missing mechanisms. This violates the basic assump-

tions for missing data (i.e., either MNAR or MAR), which leads to a degradation in the 

processing performance of these methods (Enders, 2010). To handle the missing data 

problem in real-life situations (e.g., MNAR and MAR mixed together in the same dataset), 

we propose a missing data prediction framework that are based on machine learning 

techniques. As Breiman pointed out in his 2001 paper, in the statistical (machine) learn-

ing exercise, “the goal is not interpretability, but accurate information”. Along this line of 

thought, our methods handle MNAR by focusing on (giving more sample weights to) the 

missing part, meanwhile, and also to handle the MAR data by looking for precise individ-

ual (subject-level) information. The problem of MNAR is seen as an imbalanced machine 

learning exercise, i.e., to oversample the minority cases to compensate for the data that 

are MNAR in certain area.  
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2.1.1 Main idea for Paper I 

In Paper I, to handle the missing data problem in real-life situations (e.g., MNAR and 

MAR mixed together in the same dataset), we propose a missing data prediction frame-

work that are based on machine learning techniques. We evaluate our proposed ap-

proach through objective simulation studies. As mentioned above, our methods handle 

MNAR by focusing on (giving more sample weights to) the missing part, meanwhile, and 

also to handle the MAR data by looking for precise individual (subject-level) information. 

The problem of MNAR is seen as an imbalanced machine learning exercise, i.e., to over-

sample the minority cases (Weiss, 2013) to compensate for the data that are MNAR in 

certain area. To be able to use the oversampling in longitudinal outcome variable (con-

tinuous scale), clustering through k-mean algorithm (Gower, 1971) needs to be per-

formed the first. By using k-mean algorithm, subjects are clustered into “low responders”, 
“medium responders” and “good responders” according to their efficacy trajectories over-

time. We consider the subjects discontinued from the study due to “lack of efficacy” as 

MNAR in our simulations. Therefore, the MNAR subjects are mostly low responders. 

Therefore, the amount of non-missing available training data in this category/cluster can 

be less than the other categories/clusters (therefore, such distribution of training data is 

imbalanced in nature). To compensate for the data that are MNAR in that area, and also 

to avoid the imputation results being driven by the non-missing data (from the subjects 

who completed the study) to a population average level, random oversampling (with re-

placement) for the minority cases is needed. See Figure 1 for the distribution of target 

variable in simulation data. The full data (including the non-missing data and the original 

values that are set to “missing” in the simulation) are presented in the left side, black 

dots are for non-missing data, red stars are for MNAR, and blue triangles are for MAR. 

The non-missing data (i.e., the original training data that to be used in learning process) 

are displayed in the middle again and clustered/categorized into three classes: green 

dots are low responders, orange dots are medium responders, and purple dots are good 

responders. It is shown that the available (non-missing) data cannot represent well the 

full data considering the existence of MNAR data. The green dots (i.e., the low respond-

ers) are relatively less in the original data (therefore, they are the minority cases). When 

we apply the random oversampling with replacement in this minority cluster, as displayed 

in the right side, the amount of data in the low responder area are increased to compen-

sate for MNAR data in that area. 

In this research, we use RNN (recurrent neural networks) model to fit the longitudinal 

subject trajectories. “RNN is a type of neural network that can learn from the past to 

predict the future outcomes” (Rumelhart et al., 1986; Schmidhuber, 1993). This makes it 

a useful tool to model the longitudinal clinical data. RNN allows us to model nonlinear 

data without any specific domain knowledge about the relationship between the varia-

bles, it automatically learns from the given data to optimize the model parameters and 

then provides predictions for the new test data. The optimal model hyperparameters (the 

specific RNN architectures in this case) are determined via the “bias-variance tradeoff 
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approach” (Claesen and De Moor, 2015). To consider the uncertainty of the single pre-

diction and to optimize the prediction accuracy, bootstrap aggregating is used in this 

study. Considering the “evidence-based computational statistics” (Boulesteix et al. 
2017a, b), the proposed method is evaluated through comprehensive simulation studies 

and implemented in real data from a clinical trial. The imputation results are evaluated at 

different levels, i.e., the individual subject level (e.g., prediction accuracy for the specific 

subjects) and the overall study population level (e.g., the treatment effect estimation).  

 

Figure 1. Illustration of clustering and oversampling for target variable – “Change from 

baseline in outcome variable”  

2.1.2 Main idea for Paper II  

In Paper I, we used a simple sampling approach (i.e., random oversampling with replace-

ment) and a standard error measurement method (i.e., MSE, mean squared error). How-

ever, there are some drawbacks in those methods. The simple random oversampling 

with replacement will cause many duplicated cases in the minority cluster (i.e., the train-

ing data becomes very specific) and hence causes overfitting of the model (Chawla, et 

al. 2002). The standard error measurement method like MSE do not perform well in the 

regression tasks for the data with imbalanced distribution. For example, in some clinical 

studies, the extreme values of outcome variable are often missing due to reasons that 

are related to subjects’ health status (i.e., subjects who dropout because the disease 

status is worsening), i.e., a MNAR issue. They have the disadvantage of being insensi-

tive to the position of the outcome variable values (Ribeiro, 2011). Take Figure 2 as an 

example, considering the red dots (i.e., the MNAR data), distribution of the black dots 

(i.e., the available non-missing data) are imbalanced over the target variable range (i.e., 

because of the MNAR in the high value area, there are less available data in that area). 

In that case, if the error measurement is not sensitive to the positions of the values of 
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target variable, during the training/learning process, the area tends to have MNAR will 

get less focus because of the smaller amount of data. This will cause bias in the aggre-

gated statistical analysis as the impact of missing data are simply ignored. In that case, 

during the training/learning process, giving more focus on the area that tend to have 

MNAR data is really necessary and very important. This will compensate for the data 

that are MNAR in certain area and also will prevent the predictions being driven by the 

majority data (that located in other positions of the outcome variable scale). In summary, 

it is really necessary and very important to have error measurement methods that are 

sensitive to the location of the values, which can cope with the problem of imbalanced 

distribution of the target variable.  

In Paper II, to overcome the above-mentioned drawbacks, we use the “synthetic minority 

oversampling technique for regression” (SMOTER) (Torgo et al. 2013) to oversample the 

relevant rare cases; and we use the imbalanced learning algorithm “utility-based regres-

sion” (UBR) (Torgo and Ribeiro, 2007) to consider both the importance/relevance of the 

locations (i.e., values of target variable) and the prediction errors simultaneously in the 

model parameters optimization process. We use the Quantile regression forests (QRF, 

Meinshausen, 2006) to estimate the conditional probability density (CPD) given covari-

ates. The optimization process aims to maximize the integral for the product of the CPD 

multiplied by the utility function in each case. We evaluate our proposed approach 

through simulation studies with realistic missing data situations (i.e., when the MNAR, 

MAR and MCAR mixed together in the same dataset). The performance of proposed 

approach is evaluated objectively and compared with the commonly used missing data 

handling methods like random forests (RF) and conventional multiple imputation (MI). 

We also implemented our method in an antidepressant clinical trial data (publicly availa-

ble datasets).  
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Figure 2. Simulation data – scatter plot and boxplot for the target outcome variable.  

2.2 Proposals  
In following sections, we elaborate our proposals in Paper I and Paper II respectively.  

2.2.1 Proposal in Paper I  

The proposed framework includes several necessary components, see Figure 3 for the 

proposed workflow. The details of each step and the methods please see Paper I.  

• The step 1 is clustering, i.e., to cluster the subjects according to their longitudi-

nal trajectories by treatment arm. This step is a key element in our approach for 

following reasons: 1. the clustering results (like the good, medium and low re-

sponse) are used in the “stratified k-fold cross-validation (CV)” and the random 

oversampling process as the ”categorization” of the outcome variable in contin-

uous scale to balance the “majority” and “minority” classes; 2. the clustering re-

sults are used in the recurrent neural network model to indicate the longitudinal 

pattern of subjects’ trajectories (this is very important to borrow relevant infor-

mation from the similar subjects.  

• The step 2 is model selection, i.e., to optimize the RNN hyper-parameters (that 

have to be determined before the commencing of training process) via a “bias-

variance tradeoff approach”.  
• The step 3 is bootstrap aggregating, i.e., to generate 100 bagging samples with 

the minority clusters properly oversampled, and to impute the missing data 
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within each bagging. In this step, the RNN model (optimal model in terms of hy-

per-parameters) is executed for 100 times, in each execution, the internal pa-

rameters (also called “weights”) of the RNN model are updated and individual 

predictions for the dropouts are provided.  

• The step 4 is to get final imputation for each subject at each visit by averaging 

the 100 predicted values from bagging. 

• The step 5 is imputation performance evaluation, i.e., to evaluate the results in 

individual subject and study population level. 

 

 

Figure 3. Diagram of Workflow– overall process for handling missing data in longitudinal 

continuous variable. 

2.2.2 Proposal in Paper II   

In Paper II, we aim to handle realistic situation when the MNAR, MAR and MCAR mixed 

together in the same dataset. We focus on a for a continuous target variable in clinical 

trial setting. The problem of MNAR is seen as an imbalanced machine learning exercise 

in our study. We propose a hybrid approach which consists of “synthetic minority over-

sampling technique for regression” (Torgo et al. 2013) and “utility-based regression” 
(Torgo and Ribeiro, 2007). In the first step, a relevance function is assigned to the out-

come variable based on the distribution of the original training data (i.e., the original data 

with non-missing values) and a cut-off value for triggering the oversampling is defined. 

The second step is to pre-process the training data, in which the SMOTER (“synthetic 

minority oversampling technique for regression”) is used to oversample the relevant 

cases (i.e., the cases with relevance function values that are greater than the prespeci-

fied cut-off value in the first step). The third step is to apply the UBR (“utility-based re-

gression”) on the processed training data (with relevant cases oversampled), then to 
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optimize the UBR parameters (i.e., model internal parameters) by simultaneously max-

imizing the relevance and minimizing the prediction error. In the final step, we use the 

optimized model (with final internal parameters) to predict the missing values for the tar-

get outcome variable. The details of each step and the methods please see Paper II.  
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3. Paper I   
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Abstract

In clinical practice, the composition of missing data may be complex, for exam-

ple, a mixture of missing at random (MAR) and missing not at random (MNAR)

assumptions. Manymethods under the assumption of MAR are available. Under

the assumption of MNAR, likelihood-based methods require specification of the

joint distribution of the data, and the missingness mechanism has been intro-

duced as sensitivity analysis. These classic models heavily rely on the underlying

assumption, and, in many realistic scenarios, they can produce unreliable esti-

mates. In this paper, we develop a machine learning based missing data predic-

tion framework with the aim of handling more realistic missing data scenarios.

We use an imbalanced learning technique (i.e., oversampling of minority class)

to handle the MNAR data. To implement oversampling in longitudinal contin-

uous variable, we first perform clustering via 𝑘-mean trajectories. And use the

recurrent neural network (RNN) to model the longitudinal data. Further, we

apply bootstrap aggregating to improve the accuracy of prediction and also to

consider the uncertainty of a single prediction.We evaluate the proposedmethod

using simulated data. The prediction result is evaluated at the individual patient

level and the overall population level. We demonstrate the powerful predictive

capability of RNN for longitudinal data and its flexibility for nonlinearmodeling.

Overall, the proposedmethod provides an accurate individual prediction for both

MAR and MNAR data and reduce the bias of missing data in treatment effect

estimation when compared to standard methods and classic models. Finally, we

implement the proposedmethod in a real dataset from an antidepressant clinical

trial. In summary, this paper offers an opportunity to encourage the integration

ofmachine learning strategies for handling of missing data in the analysis of ran-

domized clinical trials.
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864 HALIDUOLA et al.

1 INTRODUCTION

In clinical trials, missing data are the data that would be meaningful for the analysis but is not documented. Missing data,

if not handled properly, will lead to lower statistical power as the sample size is reduced. In addition, dropouts from the

trial may have poor outcomes or extreme values (e.g., treatment failure may lead to dropout). Therefore, the loss of these

dropouts could lead to a bias in the estimated treatment effect (especially when the missing values are more likely in one

treatment arm because it is not as effective as the other) and an underestimate of the variability. Missing data may also

impact the external validity of the study outcome.

There are three types of missingness mechanisms (Rubin, 1976). (𝑖) Missing completely at random (MCAR): if the prob-

ability of missingness does not depend on observed or unobserved measurements, for example, patients move to another

city due to non-health related reasons. (ii) Missing at random (MAR): if the probability of missingness depends only on

observed measurements conditional on the covariates in the model, for example, younger people may more likely to have

blood pressure not measured. (iii) Missing not at random (MNAR): if the probability of missingness depends on unob-

served measurements, for example, patients discontinue from the trial due to lack of efficacy, that is, patients do not come

for the visit as the disease status worsening hence the data are missing.

The three types of missingness are clearly defined, but in practice it is typically not possible to be certain whether there

is a relationship between missing values and the unobserved outcome variable. That is, it is not possible to ascertain

whether the MAR/MCAR assumptions are appropriate in any practical situation. A mixed strategy may be considered.

For example, assume that dropouts due to lack of efficacy areMNAR and loss to follow-up areMAR (EuropeanMedicines

Agency, 2010). The consequence of MNAR is that the missing data cannot be simply predicted using observed data from

that patient. In addition, the distribution of completers’ data and MNAR data are different; thereby, it is not plausible

to impute missing data using the completers’ data. This is the central problem of missing data analysis in clinical trials

(National Research Council of the National Academies, 2010).

Many established methods for handling missing data under the assumption of MAR are available. Under the alterna-

tive assumption of MNAR, the following classic models have been introduced as sensitivity analysis in the past decades:

selection model (SM) (Heckman, 1976; Rubin, 1976), pattern mixture model (PMM) (Little, 1993, 1994, 1995), and shared

parameter model (SPM) (Little, 1995). Let (𝑌𝑖,obs, 𝑌𝑖,mis, 𝑅𝑖) denote the data for 𝑖th patient, 𝑌𝑖,obs is for the observed com-

ponent, 𝑌𝑖,mis is for the missing component, and 𝑅𝑖 is the missingness indicator (1 = missing, 0 = observed). The full

density function is described as 𝑓(𝑌𝑖,obs, 𝑌𝑖,mis, 𝑅𝑖|Θ,𝜓), where the parameters vectors Θ and 𝜓 describe the response and

missingness processes, respectively. The SM and PMM are developed by factorizing the full density function differently.

The SM is based on the below factorization:

𝑓(𝑌𝑖,obs, 𝑌𝑖,mis, 𝑅𝑖|Θ,𝜓) = 𝑓(𝑌𝑖,obs, 𝑌𝑖,mis|Θ)𝑓(𝑅𝑖|𝑌𝑖,obs, 𝑌𝑖,mis, 𝜓). (1)

The first part is the marginal density of the response process and the second part is the density of the missingness process,

conditional on the response. The PMM can be seen as a mixture of different populations, characterized by the observed

pattern of missingness, it is based on the below factorization:

𝑓(𝑌𝑖,obs, 𝑌𝑖,mis, 𝑅𝑖|Θ,𝜓) = 𝑓(𝑌𝑖,obs, 𝑌𝑖,mis|𝑅𝑖 , Θ)𝑓(𝑅𝑖|𝜓). (2)

The SPM assumes that the response process𝑌𝑖 and themissingness process𝑅𝑖 are conditionally independent of each other

by sharing a random effect 𝑏𝑖 . Therefore, the density function can be described as

𝑓(𝑌𝑖,obs, 𝑌𝑖,mis, 𝑅𝑖|Θ,𝜓) = ∫ 𝑓(𝑌𝑖,obs, 𝑌𝑖,mis|𝑏𝑖 , Θ)𝑓(𝑅𝑖|𝑏𝑖 , 𝜓)𝑓(𝑏𝑖)𝑑𝑏𝑖 . (3)

As mentioned above, these models are introduced as sensitivity analysis assuming MNAR (i.e., assuming all missing data

are MNAR alternatively). However, in reality, the composition of missing data may be more complex, for example, a

mixture of MAR andMNAR. A relatively large number of empirical studies have examined the performance of the classic

models. These studies suggest that those models can reduce or eliminate bias when their assumptions are met. However,

in many realistic scenarios, the models can produce estimates that are even worse than those of MAR-based missing

data-handling methods (Enders, 2010). Those models heavily rely on the underlying assumption; unfortunately, these

assumptions are largely untestable, so there is no practical way to judge the model’s performance in a real data analysis.
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F IGURE 1 Demonstration of clustering and oversampling: cross-sectional of the longitudinal profiles − “change from baseline in

outcome variable”

In this paper, with an aim of handling more realistic missing data scenarios (e.g., mixture of MAR and MNAR), a

machine learning based missing data prediction framework is developed and evaluated using simulation data and real

clinical trial data. According to Breiman (2001), in statistical learning “the goal is not interpretability, but accurate infor-

mation.” In line with this thinking, the proposed framework handles MNAR by emphasizing what is missing, while it

also covers MAR by seeking for accurate individual information. The MNAR problem is treated as an imbalanced learn-

ing task,that is, the minority class oversampling (Weiss, 2013) is used to compensate for the MNAR data. To implement

oversampling in longitudinal continuous data, clustering via 𝑘-mean trajectories (Gower, 1971) is performed first. Patients

are clustered into “good responder,” “medium responder,” and “low responder,” according to their longitudinal efficacy

profiles. In our simulation study, to simplify the problem, we assume the dropouts due to lack of efficacy are MNAR.

Therefore, those patients are mostly in the “low responders” class (of course it could be the other way round in reality, i.e.,

extreme good responders discontinue from the trial as they consider no need to continue the treatment). Depending on

the proportion of MNAR data, the size of available data in the worst cluster can be smaller than the size of the other clus-

ters (i.e., imbalanced distribution). In order to compensate for the MNAR in that cluster, and also to avoid the individual

prediction being driven by the available data from the completers to an overall average level, random oversampling (with

replacement) in the minority class is necessary. See Figure 1 for a display of the distribution of “change from baseline in

an outcome variable” (cross-sectional of the longitudinal profiles) in a simulated example. The full data (including the

nonmissing data and the values that are set to “missing” in the simulation) are presented in the left panel, black dot =

nonmissing data, red star = MNAR, and blue triangle = MAR. The nonmissing data (i.e., the original training data) are

repeated in the middle panel and clustered into three groups: green = “low responders,” orange = “medium responder,”

and purple = “good responder.” It is clear that the nonmissing data is not a good representative of the full data consider-

ing the MNAR data. The “low responders” (green dots) are relatively rare in the original training data (i.e., the minority

class). When random oversampling is applied in the minority class, as shown in the right panel (the light green dots are

the oversampled cases), there are more data points in the “low responders” area to compensate for the MNAR, that is, the

distribution of green and light-green dots approximates the distribution of green and red dots.

One may question the oversampling applied here, arguing that the distribution of data has been changed due to the

oversampling, and this will impact the treatment effect estimation. First, the oversampled dataset will never be used to

estimate the treatment effect. All of the efforts taken here are to minimize the individual error in statistical learning. Once
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F IGURE 2 Overall workflow diagram: process to handle realistic missing data scenario in a longitudinal setting. Step 1: Structure the

longitudinal efficacy response data by clustering; Step 2: select the optimal RNN architecture facilitated by oversampling and stratified K-fold

CV; Step 3: perform multiple predictions for individual patients with missing data (facilitated by oversampling to avoid bias introduced by

missing mechanisms); Step 4: create the final imputed dataset; Step 5: evaluate the imputation result

the prediction for each patient is optimized by minimizing the individual error, the treatment effect will be estimated

based on the observed data plus the imputed data (i.e., no oversampling in the data analysis part).

We use recurrent neural networks (RNN) to model the longitudinal data. RNN is a type of neural network that can

learn from the past to predict the future outcomes (Rumelhart et al., 1986; Schmidhuber, 1993). This allows us to exhibit

temporal dynamic behavior for time sequence data, and thus it is a powerful tool for longitudinal clinical data modeling.

RNN provides flexible nonlinear modeling without requiring any or much domain knowledge about the interrelationship

between the variables, it learns automatically from the training data to estimate the weights and then predict the new

data. Different RNN architectures are experimented to tune various hyperparameters, and the optimal model is selected

via the bias-variance trade-off approach (Claesen & De Moor, 2015). To improve the accuracy of prediction and also to

consider the uncertainty of a single prediction, bootstrap aggregating (bagging) is implemented. In light of the “evidence-

based computational statistics” (Boulesteix et al., 2017, 2018), the proposed method is evaluated in the practically relevant

simulation data and exemplified in a real clinical trial data. In the simulation data, the real-life plausibility of the sim-

ulation scenarios is emphasized. A mixed missing mechanism of MAR and MNAR is considered in the simulation. The

real dataset is from an antidepressant clinical trial, which is one of the few publicly available datasets that can be used

to demonstrate methods for handling missing data where a continuous outcome is measured repeatedly. The imputa-

tion results are evaluated at the individual patient level and the overall population level. Overall, the proposed methods

provided plausible individual prediction for both of the MAR and MNAR data and reduced the bias of missing data in

treatment effect estimation. Therefore, this paper offers an opportunity to encourage the integration of machine learning

strategies for handling of missing data in the analysis of randomized clinical trials.

2 METHODS

We propose a computational approach in this paper which comprises various individual components (see Figure 2 for the

overall workflow). The proposed framework handles MNAR by emphasizing what is missing, while it also covers MAR

by seeking for accurate individual information. The MNAR problem is treated as an imbalanced learning task, that is, the

minority class oversampling is used to compensate for the MNAR data.



HALIDUOLA et al. 867

The first step is to cluster all patients (including the dropouts) according to their longitudinal efficacy profiles. Clustering

structures the longitudinal data within each treatment group. It is a key concept in the proposed approach due to the

following reasons: (i) the clusters (clustering results) are used in the stratified 𝑘-fold cross-validation (CV) and the random

oversampling step as the “categorization” of the continuous target variable to balance the majority and minority clusters;

(ii) the clusters are used (as dummy variable) in the RNN model to indicate the longitudinal pattern of patient efficacy

profiles, which is important to borrow information from the similar patients (seeking for accurate individual information).

Technical details about clustering are provided in Section 2.1.

The second step is to select the optimal RNN architecture. We use RNN to model the complex longitudinal data in a

nonparametric manner (details about RNN are provided in Section 2.2). The RNN architectures feature a set of hyperpa-

rameters (e.g., number of units in each RNN cell, number of stacked layers, batch size, and number of epochs) that must

be determined before training commences. In this step, the optimal RNN architecture (which can learn adequately from

the training data and also performs equally well in the validation data) is selected via a bias-variance trade-off approach.

Considering the data distribution with the presence of MNAR (as discussed in Section 1), stratified 𝑘-fold CV and over-

sampling ofminority class are implemented in the RNN architecture selection process. Details are provided in Sections 2.3

and 2.4.

The third step is to generate, say, 100 bootstrap aggregating (bagging) samples with the minority classes oversampled,

and to predict the missing data in each bagging sample. An ensemble method (i.e. bagging) is used to improve the pre-

diction accuracy and also to consider the uncertainty of a single prediction. The optimal RNN model (in terms of hyper-

parameters) is executed 100 times, each time updating the internal weights of the RNN model and providing predictions

for the missing data. In practice, the number of bagging can be even higher. We use 100 as a reasonable number in this

paper as the proposed method is time consuming and computationally intensive. Within each bagging, minority classes

are oversampled to compensate for the MNAR data.

The fourth step is to average all 100 predicted values for each patient at each visit. These are considered as final impu-

tation.

The fifth step is to evaluate the imputation results at an individual patient level by visualizing the efficacy profiles. The

treatment effect is estimated from the imputed data by commonly used statistical analysis methods.

The treatment effect estimated from the imputed data using the commonly used methods is compared with the treat-

ment effect that was estimated using different methods including commonly used methods and the classic models (like

SM, PMM, and SPM) that are applied without missing data imputation.

2.1 Longitudinal data clustering

The 𝑘-mean clustering aims to partition 𝑛 observations into 𝑘 clusters in which each observation belongs to the cluster

with the nearest mean. This is done by alternating an expectation phase and a maximization phase. In the expectation

phase, the center of each cluster is determined, then in the maximization phase, each observation is assigned to its

nearest cluster. This process is repeated until no changes in the clusters occur. For 𝑘-mean trajectories, different types

of distance can be calculated. The R package kml is used in this paper (Genolini & Falissard, 2011). Considering the

missing data, the classic Euclidian distance with Gower adjustment (Gower, 1971) is used. Hence the dropouts are also

clustered based on their available data. Consider a set of 𝑛 patients. The target variable is measured for each patient

up to time 𝑡. Let 𝑌𝑖 denotes the patient 𝑖, and let 𝑌ik denotes the measurement for patient 𝑖 at time 𝑘. The difference

of the trajectories between two patients 𝑖 and 𝑗 can be calculated using the classic Euclidian distance with the Gower

adjustment:

Dis𝑡𝐸
GA

(𝑌𝑖 , 𝑌𝑗) =

√
𝑡

∑𝑡

𝑘=1(𝜔ijk)

∑𝑡

𝑘=1
(𝑌ik − 𝑌jk)

2
𝜔ijk. (4)

Here, 𝜔ijk equals 0 if 𝑌ik or 𝑌jk are missing, and 1 otherwise. Assuming the distribution of the target variable is different

between the treatment group, we perform the clustering within each treatment group. The number of cluster should

be decided on a case-by-case basis and should be prespecified. In this paper, we set the number of clusters to three

within each treatment group with the idea of splitting the patients into “good response,” “medium response,” and “low

response” categories according to their efficacy profile.
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F IGURE 3 An RNN in time of the computation

(modified based on LeCun et al., 2015)

2.2 Recurrent neural network

AnRNN is a type of neural network that can learn from the past to predict future outcomes. A basic RNN (Rumelhart et al.,

1986; Schmidhuber, 1993) is shown inFigure 3. It uses hidden states (which temporarily store information about the past) to

transfer information through time. At time 𝑡, the weighted sum of the input information 𝑥𝑡 (e.g., the variables change over

time) and the previous hidden state (ℎ𝑡−1) is processed using an activation function (e.g., the weighted sum is squashed

between −1 and 1 using a hyperbolic tangent (Tanh) function (see details of the Tanh function in Appendix Figure A.1).

Then the processed information (hidden state ℎ𝑡) is carried forward to the next time step. Meanwhile, the hidden state ℎ𝑡

can be output as prediction result 𝑦𝑡 for time 𝑡 using an appropriate activation function, for example, a Rectified Linear

Unit (ReLU function; see Figure A.1) for a continuous outcome variable. In this way, an RNN can map an input sequence

with elements 𝑥𝑡 into an output sequence with elements 𝑦𝑡, with each 𝑦𝑡 depending on all the previous 𝑥𝑡′ (for 𝑡
′ ≤ 𝑡).

The same internal weights (matrices 𝑤hx, 𝑤hh, 𝑤hy) are used at each time step. For the internal weight optimization,

a backpropagation algorithm can be applied to the computational graph of the unfolded network from the right to the

left, that is, to compute the derivative of the error with respect to all the internal weights. The error, also called “loss” in

machine learning, is calculated as the predicted value minus the observed value for a continuous outcome variable.

In addition to the basic RNN unit mentioned above (which contains a Tanh activation function), there are other types

of RNN units. For example, the long short-termmemory units (LSTM) (Gers et al., 1999; Hochreiter & Schmidhuber, 1997)

and the gated recurrent unit (GRU) (Cho et al., 2014) are the most commonly used ones. Empirical evaluations show

that LSTM and GRU perform superior over the basic RNN (Chung et al., 2014; Shewalkar et al., 2019). LSTM performs

slightly better than GRU in terms of prediction accuracy (Shewalkar et al., 2019). We provide a basic introduction to LSTM

in Appendix A.1. In this paper, LSTM is implemented using the Keras library version 2.2.4 (Falbel et al., 2015) in

Python (version 3.6).

Neural networks use stochastic gradient descent which is an iterative method for optimizing an objective function with

suitable smoothness properties. It can be regarded as a stochastic approximation of gradient descent optimization since

it replaces the actual gradient (calculated from the entire dataset) with an estimate thereof (calculated from a randomly

selected subset of the data, called “batch”). The machine learning algorithms consider the problem of minimizing an

objective function that has the form of a sum:

𝑄(𝑤) =
1

𝑛

𝑛∑

𝑖=1

𝑄𝑖(𝑤), (5)

where the internal weight 𝑤 that minimizes 𝑄(𝑤) is to be estimated. Each summand function 𝑄𝑖 is typically associated

with the 𝑖th observation in the training dataset. When used to minimize the above function, a batch gradient descent

method would perform the following iterations:

𝑤∗ = 𝑤 − 𝜂

(
𝜕Loss

𝜕𝑤

)
, (6)
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where 𝑤∗ is the new weight, 𝑤 is the old weight, 𝜂 is a step size (also called “learning rate”), the last part of this equa-

tion is the derivative of loss with respect to the weights. The Keras library implements the adaptivemoment estimation

(Adam) optimizer (Kingma & Ba, 2014). Empirical results demonstrate that Adam works well in practice and compares

favorably to other stochastic optimization methods (Kingma & Ba, 2014). In Adam, the learning rate is initialized (e.g.,

default initial value = 0.001 in Keras) and then adapted automatically in training iterations.

There are three types of input variables in an RNN. (i) Initial state: the hidden state (ℎ0) at time step 𝑡0. In practice,

the default approach is to set the initial state as zero. However, if the impact of the initial state is not negligible, it makes

sense to train the initial state as a variable. Thereby the model can start to learn from a good default state. In a clinical

study, for the continuous outcome variable, the baseline value of the outcome variable can be considered as the initial

state in an RNN. (ii) Series input: the variables change over time (𝑥𝑡). (iii) Static input: for example, relevant demographics

and baseline characteristics. In the Keras library, static input can be implemented by passing external constants to the

RNN, there are no internal model weights learnt for static inputs. For all types of input data, the continuous variables

need to be standardized before feeding into RNN to make the calculation faster.

When training the RNN, the nonmissing data from the dropouts should also be used as this particular part of the data

is quite important to learn a certain pattern of those dropouts. This may be more important for the dropouts due to lack of

efficacy (MNAR) as the trend of their efficacy profiles can be very different from the patients who completed the study. If

possible, variables to indicate themissingmechanism (whetherMNARor not) need to be included in themodel. Including

the dropouts in the model will lead to different lengths of time sequence in data. Using an RNN, a fixed length of time

series input is expected in the current available deep learning packages. An effective way to handle this problem is to

use sample weight, that is, to create a metric per patient per time to indicate which time points to use in the learning. For

example, the weights are set to 1 for nonmissing time steps, and 0 formissing time steps. Thesemetrics are thenmultiplied

by the loss (e.g., the difference between the predicted value and the actual value) per patient and per time before training

the RNN. For example, for patient 𝑗 at time 𝑡, the final loss is

los𝑠jt = los𝑠
′

jt
𝑤jt, (7)

where los𝑠
′

jt
is the loss calculated before using the sample weight metrics, 𝑤jt is the sample weight for patient 𝑗 at time 𝑡.

By having such sample weight, the missing time steps will be ignored in learning.

2.3 Minority class oversampling

Asmentioned in Sections 1 and 2.1, we cluster patients into “good responder,” “medium responder,” and “low responder”

according to their longitudinal efficacy profiles within each treatment group. Depending on the proportion of MNAR

data, the size of available data in the worst cluster can be smaller than in the other clusters (i.e., the worst cluster is the

minority class; see Section 1 formore details). To compensate for theMNAR in that cluster, and also to avoid the individual

prediction being driven by the available data from the completers to an overall average level, random oversampling (with

replacement) in the minority class is necessary. This process involves randomly selecting examples from the minority

class, with replacement, and adding them to the training dataset. The amount of oversampling is a hyperparameter of the

system (Chawla et al., 2002), it should be decided on a case-by-case basis. We describe two slightly different oversampling

approaches in Section 3.3.2 (for the simulation studies) and Section 4 (for the real data implementation). Oversampling is

implemented in both Step 2 (RNN architecture selection) and Step 3 (bootstrap aggregating) of the proposed framework

to compensate for the MNAR data in both model selection and individual prediction processes.

2.4 Stratified 𝒌-fold CV

In machine learning, hyperparameters are the parameters whose values are used to control the learning process (this is

different from the model internal parameter or weight whose values need to be optimized during the training process).

In general, for RNN, hyperparameter may include learning rate (see details in Section 2.2), number of epoch (defined as

the number of times that the learning algorithm work through the entire training dataset), and batch size (defined as the

number of samples towork through before updating the internal weights of themodel). In addition to those general hyper-

parameters, the number of units in each RNN cell and number of stacked RNN layers are also needed to be specified before
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training commences (as a more complex model may lead to overfitting). The choice of hyperparameters can significantly

affect the resulting model’s performance; hence, a disciplined, theoretically sound search strategy is essential (Claesen &

De Moor, 2015). The bias-variance trade-off is the most commonly used approach for hyperparameter tuning with a goal

of selecting a model that can learn adequately from the training data and also performs equally well in validation data.

The 𝑘-fold CV is the standard tool for hyperparameter tuning to address the overfitting/underfitting problem. In 𝑘-fold

CV, the original sample is randomly split into 𝑘 approximately equal-sized subsets. Of the 𝑘 subsets, a single subset is

retained as the validation data for testing the model and the remaining 𝑘 − 1 subsets are used as training data. The CV

process is then repeated 𝑘 times, with each of the 𝑘 subsets used exactly once as the validation data. Ideally, all possi-

ble combinations of hyperparameters should be experimented using the CV approach. For each scenario, the loss over

iteration history should be calculated and visualized (to facilitate the comparison) for both training data and validation

data. The value of the hyperparameter that provides the least loss for both training data and validation data should be

determined as the optimal value. Although the partition of the 𝑘 fold is performed randomly, it does not guarantee to have

a balanced distribution of the target outcome variable in each fold without supervision (especially with the presence of

MNAR in the data). Stratified 𝑘-fold CV seeks to ensure that each fold is a representative subset of the whole data in terms

of the variable of interest. This is very important for the MNAR as by stratification the dropouts due to lack of efficacy

will be included in each fold equally, which means in each time when repeating the training process, the certain pat-

terns of target variable in those dropouts (their nonmissing part) will be learnt adequately. Whenever the joint application

of CV and oversampling concerns, the “overoptimism” issue should be emphasized and distinguished from overfitting

(Santos et al., 2018). If the entire original data is oversampled first and then CV is performed later on, the same samples

may appear in both of the training and validation partitions, thereby the model performs “very well” in both partitions.

This is known as the “overoptimism” issue. Therefore, a better approach would be that the dataset is first divided into 𝑘

stratified partitions and the oversampling happens in the training data part only. The validation data are never oversam-

pled or seen by the model in the training stage, thereby allowing a proper evaluation of the model’s performance for the

generalization purpose.

3 SIMULATION STUDY TO EVALUATE PERFORMANCE OFMETHODS

We evaluate the proposed method by means of an extensive simulation study. In designing the simulation study, we used

realistic missing data scenarios. We consider a longitudinal continuous clinical score as the efficacy variable. Further, we

consider a mixed missing mechanism of MAR and MNAR in the simulation. One of the advantages of the simulation

study in this context is that the “missing values” are known (as the complete data are generated first and some values are

set to “missing”), and this can be used as a benchmark to evaluate the performance of the imputation methods (both at t

the individual level and the overall level).

3.1 Design of simulation study

The patient baseline characteristics and longitudinal efficacy data are simulated assuming a two-arm parallel designed

clinical trial. Each patient is designed to be treated and assessed biweekly fromWeek 0 (baseline) up toWeek 16 (“primary

endpoint”). Different sample sizes (300, 400, or 500 patients), overall dropout rate (20%, 30%, or 40%) and monotone

missingness starting time-point (Week 8, Week 10, or Week 12) are considered in the simulation. In total, 3 × 3 × 3 = 27

scenarios are simulated. In each scenario, the patient is randomly assigned to the treatment groups (Test ∶Control= 1 ∶ 1).

A longitudinal clinical score is considered as efficacy variable which decreases over time in general. To take account of the

intrapatient correlation, the change from previous visit values in the score (per patient per visit) is modeled considering

several fixed factors and a random effect. Similar idea as for the PMM (i.e., data patterns are different for MNAR and

completers), a mixed missing mechanism of MAR (discontinue due to lost to follow-up), and MNAR (discontinue due to

lack of efficacy) is considered in the simulation. The control group ismore impacted by themissing data as the proportions

of MNAR andMAR are much higher in the control group than in the test group. The MAR is influenced by the treatment

group but not by any other covariates (i.e., within each treatment group, it is actually an MCAR scenario). The complete

simulation data before setting the missing values are kept for all patients at all visits for the purpose of imputation result

evaluation. The details about the data generation process are described in Appendix A.2.
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F IGURE 4 Simulation Scenario 300-40-10: scatter plot for “change from baseline in score at Week 16.” The black dots are the

completers, the blue dots are MAR, and the red dots are MNAR

In this paper, we report the simulation scenario with total sample size = 300, overall dropout rate = 40%, missingness

starting atWeek 10 (called “Scenario 300-40-10” for short) as an example, as it is one of the scenarios that is most impacted

by MNAR. In the test group, 21(14.0%) and 24(16.0%) patients discontinued due to “lack of efficacy” and “lost to follow-

up,” respectively. In the control group, 39(26.0%) and 36(24.0%) patients discontinued due to “lack of efficacy” and “lost to

follow-up,” respectively. As a cross section of the longitudinal profiles, the distribution of “the primary endpoint: change

from baseline in score at Week 16” is shown in Figure 4. It is clear that the MAR (blue dots) are randomly distributed over

the whole data space, but the MNAR data (red dots) are mostly presented in the “low response” area. Therefore, realistic

missing data scenarios are successfully “mimicked” in the simulation study. A proper missing data handling method

should compensate for the MNAR data and also provide accurate prediction to the MAR data.

In addition, we also simulated the scenarios with only MNAR data, using data from the 27 scenarios mentioned above,

but with the MAR values replaced by the known true values (i.e., only MNAR are present in the data). An expected result

of these simulations is that the classic models (i.e. PMM, SM, and SPM) perform the best and the proposed approach also

performs fairly well.

3.2 Measuring performance of the proposed methods

Tomeasure the performance of themethods at an overall population level, the treatment effect is estimated using different

methods (as described below), and the results are compared in a forest plot. The treatment effect is defined as the difference

of change from baseline in score at Week 16 between the treatment group.

Analysis methods

(i) A mixed model for repeat measurement (MMRM) was used for longitudinal data from Week 2 to Week 16. MMRM

included treatment, visit, and treatment×visit as fixed effects, baseline score value as covariate, and subject as the

random effect.

(ii) Analysis of covariance (ANCOVA) model used for the data at Week 16 only, ANCOVA included treatment as factor

and baseline score value as covariate.

(iii) Classic models including PMM, SM, and SPMwere used for longitudinal data fromWeek 2 toWeek 16. Details about

PMM, SM, and SPM are provided in the Supporting Information (with the SAS code and instructions).



872 HALIDUOLA et al.

Analysis dataset and the corresponding analysis method:

(i) The “true” treatment effect: the simulated complete efficacy data before setting any missing value are analyzed by

MMRM and ANCOVA. The “true” treatment effect is used as a benchmark to evaluate the performance of the pro-

posed method and other methods.

(ii) The imputed data (i.e., nonmissing data + data imputation by RNN prediction facilitated with clustering and over-

sampling) is analyzed by MMRM and ANCOVA models.

(iii) To illustrate the role of clustering and oversampling in handling of MNAR data, the imputed data (i.e., nonmissing

data + data imputation by a straightforward RNN prediction without facilitation with clustering and oversampling)

is also analyzed by MMRM and ANCOVAmodels.

(iv) The nonimputed data are analyzed by following commonly used methods: MMRM, ANCOVA, PMM, SM, and SPM.

In addition to the overall level treatment effect comparison, we are also interested in the prediction performance at the

individual level. The patient profiles (the observed values and the 100 predicted values) are visualized for all dropouts.

The mean value (final imputation) and variability of prediction (measured as the first and third quartiles) at each study

week are provided in the plot. The “true” values of missing data (i.e., the simulated complete efficacy data before setting

any missing value) are also provided for each patient to visually check the accuracy of the imputation.

3.3 Simulation results

3.3.1 Results of longitudinal clustering

As mentioned in Section 2, clustering is the first and very important step. Within each treatment group, patients are clus-

tered into three categories: “good responder,” “medium responder,” and “low responder” according to their longitudinal

efficacy profiles. Figure A.3 in the Appendix shows the individual patient profiles by cluster for Scenario 300-40-10. It is

clear that the 𝑘-mean clustering captures the longitudinal data structure verywell for all patients (including the dropouts).

It must be noted that the interpretation of clusters has to be taken with caution as 𝑘-mean clustering is unsupervised

learning, that is, the clusters/categories are not labeled in the input data. However, the clustering is helpful to structure

the longitudinal profile patterns and to seek for similar patients. In addition, as mentioned in Section 1, to learn the pat-

tern of minority clusters adequately in such setting (i.e., the worst clusters in each group with less completers compared

to other clusters) and also to avoid the prediction that has been driven by the majority available data from the completers,

it is necessary to oversample the small clusters with less nonmissing data.

3.3.2 Tuning the RNN hyperparameters

Different RNN hyperparameters are tuned using stratified 𝑘-fold CV and oversampling (as described in Section 2.4). As

mentioned above, it is necessary to oversample the small clusters with less available data. For the hyperparameter tuning

purpose, to have a consistent oversampling approach that can be generalized in all simulation scenarios, the following

rules are used: the “good” and “medium responder” clusters, and the completers from the “low responder” cluster are

oversampled to the size of the largest cluster in that treatment group; in addition, to utilize the available data (nonmissing

part) from the dropouts, the dropouts from the worst cluster are also 1:1 random sampled (with replacement). During the

CV process, the loss (measured as mean squared error (MSE)) changing over iteration history from the fivefold CV and

the MSE at the last training and validation iteration is compared and the appropriate values for the hyperparameters are

selected. Based on a substantial number of experiments, the optimal model for the simulation data is determined as LSTM

with one single layer and nine units in each cell, iteration epoch of 3000, and batch size of 50.

3.3.3 Imputation result evaluation at the individual level

The optimal RNN model is performed 100 times. At each time, the data (including the available data from the dropouts)

are randomly sampled (minority clusters are oversampled following the same approach asmentioned in Section 3.2.2), the
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F IGURE 5 Simulation data: examples of individual prediction compared with actual values. The solid black lines are the observed data,

each dashed gray line is the prediction from each bagging, and the mean (red lines) and quartiles (blue lines) from the 100 predictions are also

provided. The solid green lines are the complete data before setting the missing values (i.e., the true known values)

internal weights are updated and predictions for the missing data are provided within each bagging. For each patient, at

each time point, the average of all 100 predicted values is considered as the final imputation. Some examples of the individ-

ual patient profile are provided in Figure 5. For the majority of the dropouts, the predictions are close to the actual values

(e.g., the first four patients in the figure). The proposed methods provided fairly good predictions for “good,” “medium,”

and “low responders.” For some dropouts (< 15% of dropouts), when the intrapatient variability is large or the scores

are extremely high at the end of the trial, the imputations are not good as expected (e.g., patient numbers 71 and 145 in

Figure 5). Another reason for such bad prediction could be a lack of relevant predictors in the data. Due to the difficulties

in the longitudinal data simulation, only a few relevant variables are generated in the simulation data (see details of data

generation process in Appendix A.2).

3.3.4 Imputation result evaluation at the overall population level

The results fromdifferentmethods (as described in Section 3.2) are presented in a forest plot (Figure 6) for Scenario 300-40-

10. The proposed imputationmethod (i.e., RNN imputation facilitated by clustering and oversampling)+ standard analysis

method (MMRM or ANCOVA) provided the best estimation of the true treatment effect (i.e., the estimates are the closest
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F IGURE 6 Forest plot for analysis

results of “change from baseline in score at

Week 16” using different methods. True

effect: estimation from the complete efficacy

data before setting any missing value. RNN

imputation: nonmissing data + imputed data

by the proposed method. OS = oversampling.

No imputation: nonmissing data only. PMM,

pattern mixture model; SPM, shared

parameter model; SM, selection model

to the true effect in both treatment groups). RNN imputation without clustering and oversampling also provided good

estimation (only with a slight bias in the control group), hinted that if the impact of MNAR is considered as ignorable,

a simply RNN imputation (without clustering and oversampling) can also provide accurate imputation. Since MMRM

and ANCOVA assume MAR, therefore, it is not surprising to have a considerable bias when the MMRM and ANCOVA

are applied without imputing the missing value (given the presence of both MNAR and MAR in the data). The bias is

larger in the control group where the impact of the MNAR data is much heavier. There is a systematic bias in the results

from the classic models in both treatment groups (i.e., the models including PMM, SPM, and SM that are applied without

imputing themissing value). Similar toMMRMandANCOVA that are appliedwithout data imputation, thesemodels tend

to overestimate the treatment effect when both MAR and MNAR are present in the data. Since those models heavily rely

on the underlying assumption (e.g., a pure MNAR), when a mixture of MAR andMNAR is present in the data, the impact

of missing data is somehow not properly handled by these models. The proposed method performed equally well in all

27 simulated scenarios. Similar patterns (as discussed above) are observed in all other simulation scenarios. The analysis

results for other 26 scenarios are provided in the Supporting Information. In general, based on the simulation study, the

impact of missing data on the treatment effect estimation in a realistic scenario (e.g., mixture of MAR and MNAR) is

properly handled by the proposed method by providing accurate individual predictions for both MAR and MNAR data.

In addition, scenarios with only MNAR data are also simulated, see the example of Scenario 300-40-10 in Figure 7 (in

this case, the actual proportion of missing data is 20% due to the absence of MAR). In general, as expected, the classical

models (i.e., PMM, SM, and SPM) perform better than MMRM and ANCOVA when only MNAR is present in the data,

and the proposed approach also performs fairly well.

4 REAL DATA EXAMPLE

The proposed method is implemented in a real dataset from an antidepressant clinical trial. Original data are from an

antidepressant clinical trial with four treatments; two doses of an experimental medication, a positive control, and a

placebo (Goldstein et al., 2004). Hamilton 17-item rating scale for depression (HAMD17) is observed at baseline and weeks

1, 2, 4, 6, and 8. To mask the real data, Week 8 observations are removed. Two arms are created: the control group (original

placebo arm, 𝑁 = 88) and a test group created by randomly selecting patients from the three nonplacebo arms (𝑁 = 84).

There are 21(25.0%) and 23(26.1%) dropouts in test group and control group, respectively. Within each treatment group,

patients are clustered into three subgroups in terms of their HAMD17 score profile. The individual patient profiles by

cluster are provided in Figure 8. It is clear that the “good responder” and “low responders” are relatively small clusters.

Small clusters are randomly oversampled to the size of the largest cluster (“medium responder”) within each treatment

group. The oversampling process in the real datasetting is much simpler than the ones used in the simulation data given
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F IGURE 7 Forest plot for analysis

results of “change from baseline in score at

Week 16” using different methods in the

scenario with MNAR only in the data. True

effect: estimation from the complete efficacy

data before setting any missing value. RNN

imputation: nonmissing data + imputed data

by the proposed method. OS, oversampling;

No imputation: nonmissing data only; PMM,

pattern mixture model; SPM, shared

parameter model; SM, selection model

F IGURE 8 Real data: patient profile by the treatment group and cluster. Blue lines are for completers, and red lines are for dropouts

the nature of the data. The dropout reasons are not available in the published real dataset; this makes it difficult to make

an assumption about themissingmechanism. Based on the clustering results, the dropouts in “low” and “good” responder

clusters could be considered as MNAR, as they may discontinue from the trial due to lack of efficacy or they responded so

well before completing the trial and considered that no need to continue with the treatment. Especially the dropouts in

the “low responder” clusters (6∕23 in the test group vs. 9∕23 in the control group), without proper handling of themissing

data, their impact on the treatment effect estimation can be nonnegligible.
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F IGURE 9 Real data: forest plot for

analysis results of change from baseline in

HAMD17 score at Week 6 using different

methods. RNN imputation with OS:

nonmissing data + imputed data by the

proposed method. No imputation:

nonmissing data only. PMM, pattern mixture

model; SPM, shared parameter model; SM,

selection model

All available variables are used in the RNN model, HAMD17 score as the outcome variable, input variables including

gender, treatment, baseline HAMD17 value, HAMD Total score, Patient Global Impression of Improvement (PGI-I), and

cluster result (as dummy variables). Based onmany experiments, the optimal RNNmodel for the real data is determined as

LSTM with one single layer and seven units in each cell, iteration epoch of 3000, and batch size of 60. The optimal model

has been run 100 times, within each bagging, data (including the available data from dropouts) is randomly sampled

(smaller clusters are oversampled as mentioned above), the internal weights are updated, and predictions for the missing

data are provided within each bagging. The average of 100 predictions is considered as the final prediction. The detailed

outputs for clustering and individual prediction are available in the Supporting Information.

The change from baseline in the HAMD17 score is analyzed using the different methods as described in Section 3.4, and

the results are presented in the forest plot (Figure 9). The proposed imputation method (i.e., RNN imputation facilitated

by clustering and oversampling) + standard analysis method (MMRM and ANCOVA) provided the most conservative

estimation for the treatment effect in both treatment groups. Considering the dropouts in the “low responder” clusters (as

mentioned above), such conservative estimates may make sense to take into account for the potential impact of MNAR

data. Similar to what was observed in the simulation data, there is a systematic bias in the results from the other methods

(i.e., MMRM, ANCOVA, PMM, SPM, and SM that are applied without imputing themissing value). Although there are no

considerable discrepancies in the point estimates for the difference between treatment groups (maybe due to the dropout

rates are similar between treatment groups), the estimates for each treatment group are quite different from the estimates

using the proposed method. In general, compared with the proposed method, other methods tend to be optimistic, which

may lead to aggressive estimation and hence introduce bias in the study conclusion (especially in the cases when the

dropout rate or the efficacy pattern of dropouts are not comparable between the treatment group).

5 DISCUSSION

As mentioned in the Introduction, it is not possible to ascertain whether the MAR assumptions are appropriate in any

practical situation. Therefore, at least a sensitivity analysis to evaluate the impact of MNAR should be warranted if the

assumption of MAR cannot be fully justified. In this paper, a machine learning based missing data prediction framework

has been developed for longitudinal clinical data with an aim of handling more realistic missing data scenarios. Overall,

based on the simulation study, the proposed method provided accurate prediction for both MAR and MNAR data and

reduces the bias of missing data in treatment effect estimation. RNN demonstrates the powerful predictive capability for

longitudinal data and unrestricted flexibility for nonlinear modeling. Even without being facilitated by any other manner,

a straightforward implementation of RNN can provide a fairly good prediction for longitudinal data if there are no severe
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MNAR issues in the data. The 𝑘-mean trajectory clustering is a crucial step in the proposed method, not only because it

facilitates the oversampling and stratified 𝑘-fold CV in longitudinal continuous data, but also it is important to borrow

information from similar patients by including the cluster information in the RNN model to indicate the longitudinal

pattern of efficacy profile. The classic Euclidian distance with Gower adjustment is used in this paper, more insights are

needed in the future for other feasible distance metrics and their impact on the imputation results. As the fundamental

principle for the imbalanced learning, balancing the classes is key to improve the prediction accuracy for the MNAR data,

especially in clinical trials in which the low responders are relatively less and part of them leave the trial due to lack of

efficacy. Oversampling the minority class will ensure the efficacy pattern of the low responders been adequately learnt

by the model and will also avoid the individual prediction driven by the majority of patients who completed the trial to

the overall average level. A simple random oversampling approach (e.g., equalizing the clusters) is taken in this paper,

and more insights are needed in the future for other imbalanced learning techniques like different types of oversampling,

undersampling, and the combination of both. In addition, it should be noted that the variability of prediction at each study

week (measured by the quartiles) is increasing over time (as shown in Section 3.3.4). This hints that the predictionmay be

less confident for the distant time steps than the near ones. Therefore, when using this method, one should be cautious

for the too early dropouts (i.e., the patients with only limited profile available).

In contrast, the commonly used analysis methods (like MMRM and ANCOVA that are applied without imputing the

missing value) and classic models (like PMM, SM, and SPM) did not perform as well as the proposed method and showed

systematic bias in the treatment effect estimation. Thesemethods tend to overestimate the treatment effect whenMNAR is

present in the data. This finding is supported in real trial data, that is, a similar pattern of the systematic bias is observed in

the real data from an antidepressant clinical trial with a dropout rate of 25%. The performance of classic models inmissing

data context might need more insights from the practical point of view. Those models heavily rely on the underlying

assumption, for example, assuming only MNAR in the data. This kind of assumption can be violated in reality (e.g.,

missing data can be a mixture of MAR andMNAR), hence leading to suboptimal performance of the model. Additionally,

unlike the implementation of jointmodeling in complete data (where the binary variable is useful to define the conditional

distribution of continuous variable), in the context ofmissing data, the binary variable only provides the information about

missing yes or no. This information actually can also be gained from the continuous variable itself (if its value missing

or not). Without providing further information about any feature of the missing data (like potential patterns of efficacy

profile or similar patient), the value of such the second process is weakened.

The computational approach comprises necessary components to handle the problem: Step 1: Clustering structures the

longitudinal data within each treatment group; Step 2: the RNN models the complex longitudinal data, and the optimal

RNN architectures are selected via stratified 𝑘-fold CV; Step 3: individual prediction is based on bagging, and the minority

class oversampling provides the necessary database for honest predictions; Step 4: average of the bagging predictions is

considered as final imputation; Step 5: the imputation results are evaluated at the different levels. Steps 1–3 are reflect-

ing the MNAR problem for longitudinal data with monotones missing patterns. It fits the definition of MNAR, where

the missingness depends on the unobserved profile. It is obvious that the proposed methods also incorporate the MAR

mechanism by seeking for accurate individual information. The limitation of this paper consists in its special setting stud-

ied: monotones missing patterns, continuous longitudinal outcome, three cluster approach with a quite standard metric,

and a fixed percentage of MAR and MNAR observations. It is not clear how the proposed strategy will behave in settings

that deviate from our assumptions. Therefore, the paper offers an opportunity to encourage the integration of machine

learning strategies for handling of missing data in the analysis of randomized clinical trials.
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APPENDIX A

A.1 A short introduction to LSTM

The LSTM unit is more complex than the basic RNN unit. It contains the following elements: two states (cell state and

hidden state), input, output, and three gates (forget gate, input gate, and output gate; see Figure A.1). The cell state is the

key to LSTM, the horizontal line running through the top of the diagram. The cell state runs straight down the entire chain,

with only some minor linear interactions. This allows the LSTM to have the ability to remove or add information to the

cell state, carefully regulated by the gates which in a way optionally let information through. The gates are composed of a

sigmoid function (see details in Figure A.1), and an element-wisemultiplication operation. The sigmoid function squashes

information between 0 (“let nothing through”) and 1 (“let everything through”). In practice, the learning capability of

LSTM can be improved by including more than one unit in each cell (i.e., one LSTM cell can contain several concatenated

LSTM units).

As shown in Figure A.1, at each time step, first, for the information that comes from current input vectors (𝑥𝑡) and the

hidden state at the previous time step (ℎ𝑡−1), the forget gate decides what information to throw away from the cell state.

The forget gate is expressed as

𝑓𝑡 = 𝜎sig(𝑤fx𝑥𝑡 + 𝑤fhℎ𝑡−1 + 𝑏𝑓), (A.1)

F IGURE A . 1 One LSTM unit at time 𝑡 (reproduced based on Olah, 2015) and the activation functions used in this paper. Note: 𝑐𝑡−1 =

cell state at the previous time step, ℎ𝑡−1 = hidden state at the previous time step, 𝑥𝑡 = current input vectors, 𝑓𝑡 = forget gate, 𝑖𝑡 = input gate,

Tanh = Tanh activation function, 𝑜𝑡 = output gate, ℎ𝑡 = hidden state at current time step, 𝑐𝑡 = cell state at current time step,⊗ =

element-wise multiplication,⊕ = vector addition

https://doi.org/10.1002/bimj.202000393
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where 𝜎sig is the sigmoid function; 𝑤 (weights) and 𝑏 (bias or intercept) is the parameter matrices to be learned. The next

step is to decide what new information to store in the cell state. This has two parts. The first part is an input gate 𝑖𝑡, which

decides what values to update:

𝑖𝑡 = 𝜎sig(𝑤ix𝑥𝑡 + 𝑤ihℎ𝑡−1 + 𝑏𝑖). (A.2)

The second part is a Tanh function (where information is squashed between −1 and 1), which creates a vector of new

candidate values which could be added to the cell state, it is expressed as

Tanℎ𝑡 = 𝜎Tanh(𝑤Tanhx𝑥𝑡 + 𝑤Tanhhℎ𝑡−1 + 𝑏Tanh). (A.3)

Then the input gate and the outcome of the Tanh function are combined (element-wise multiplication) as an input sec-

tion to create an update to the state, the input section is expressed as

Tanh𝑡 ⊗ 𝑖𝑡. (A.4)

In the next step, the cell state at the previous time step 𝑐𝑡−1 is updated to the current cell state 𝑐𝑡. This is done by adding

the element-wise product of the 𝑐𝑡−1 and the forget gate 𝑓𝑡 (i.e., forgetting the things are decided to forget earlier) and the

input section (i.e., adding the new candidate values which are scaled by how much that decided to update the cell state).

The current cell state is expressed as

𝑐𝑡 = 𝑐𝑡−1 ⊗ 𝑓𝑡 + Tanh𝑡 ⊗ 𝑖𝑡. (A.5)

The final step is to decide what to store in the current hidden state. This has two parts. First, for the information that

comes from current input vectors and previous hidden states, the output gate decides what parts to output. The output

gate is expressed as

𝑜𝑡 = 𝜎sig(𝑤ox𝑥𝑡 + 𝑤ohℎ𝑡−1 + 𝑏𝑜). (A.6)

The second part is the current cell state going through a Tanh function. Then the element-wise product of these two parts

is stored as hidden state for the current time step, expressed as

ℎ𝑡 = 𝑜𝑡 ⊗ 𝜎tanh(𝑐𝑡). (A.7)

The current hidden state will be carried forward for the next time step, and it can also be gained as prediction result for the

current time step by using an appropriate activation function, for example, a ReLU function for the continuous outcome

variable, in that case, the output vector can be expressed as

𝑦𝑡 = ReLU(𝑤yhℎ𝑡 + 𝑏𝑦). (A.8)

A.2 Details on the data generation process used in the simulation study

The patient baseline characteristics and longitudinal efficacy data are simulated assuming a parallel designed clinical

trial. Each patient is designed to be treated and assessed biweekly fromWeek 0 (baseline) up to Week 16. In total, 3 × 3 ×

3 = 27 scenarios are simulated. In each scenario, the patient is randomly assigned to the treatment group (test group ∶

control group = 1 ∶ 1). The longitudinal clinical score decreases over time in general. To take account of the intrapatient

correlation, and to reflect the influence of the relevant covariates (including the baseline variables and the variables change

over time) on the longitudinal profile, the change from previous visit values (per patient per visit) is modeled using several

fixed factors and a random effect (more details are provided in Figure A.2). Similar ideas as for the pattern mixture model

(i.e., data patterns are different for MNAR and completers), a mixed missing mechanism of MAR (lost to follow-up) and

MNAR (dropout due to the lack of efficacy) is considered in the simulation. For the completers and MAR, a completely

random effect is considered. For theMNAR, the change from previous visit values shrinks over time (by using the absolute

value of the random normal function) so that their scores decrease less or even increase over time. The change from

baseline value is calculated by summing up the change from previous visit values up to certain visits within each patient.
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F IGURE A . 2 Data generation process in simulation study

The control group is more impacted by the missing data as the proportions of MNAR and MAR are much higher in the

control group than in the test group. The MAR is influenced by the treatment group but not by any other covariates (i.e.,

within each treatment group, it is actually an MCAR scenario). The complete simulation data before setting the missing

values are kept for all patients at all visits (for the purpose of prediction evaluation). The data generation process is shown

in Figure A.2.

Longitudinal clinical score is generated as follows:

(i) the score with a range of 0–100, the higher the score the worse the disease status. At baseline, the score from all

patients follow a normal distribution of mean = 70, SD = 5; body weight follow normal distribution of mean = 75

kg, SD = 10 kg; treatment: test group = 1, control group = 0, that is, the average treatment effect difference =
4

3
− 1

(test - control); gender: 0 = female, 1 =male.

(ii) at postbaseline visits (from Week 2 to Week 16), the score decreases over time for most cases, the changes from the

previous visit (per visit per patient) are modeled as follows:

Change from the previous visit in Score =

75

BodyWeight

BaselineScore

70

(3 + Treatment)

3

(Gender + 𝑏)(1 + ConMed)

𝑏

30
√

1 +Wee𝑘2
+ 𝛽𝑓(&) (A.9)

where ConMed (concomitant medication) changes over time randomly: 1 = Yes (20%), 0 = No (80%), b is the

coefficient to determine the importance of gender and ConMed, here b = 5 which is chosen empirically; Week

= 2, 4, 6, 8, 10, 12, 14, 16, the coefficient of 30 forweek is chosen empirically to determine themagnitude of the change

from previous visit data; the error function 𝑓(&) follows a standard normal distribution, 𝛽 is the coefficient of error

term which determines the data pattern, that is, for MNAR (dropout due to lack of efficacy) 𝛽 = −3.5 (and the abso-

lute value of 𝑓(&) is used); for the completers or MAR (dropout due to lost to follow-up), 𝛽 = 5 (without an absolute

function), the values for coefficients are chosen empirically.

(iii) The change from baseline at each visit is calculated as accumulation of all changes from previous visit; the abso-

lute score at postbaseline visits is calculated as baseline + change from baseline. For the dropouts, the monotone

missingness started fromWeek 8, Week 10, or Week 12 according to the simulation scenario.

SAS version 9.4 is used for the data generation.
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F IGURE A . 3 Simulation data: patient profile by the treatment group and cluster (Scenario 300-40-10). Blue lines are for completers,

and red lines are for dropouts

A.3 Longitudinal clustering results in the simulation study

Within each treatment group, patients are clustered into three categories: “good responder,” “medium responder,” and

“low responder” according to their longitudinal efficacy profiles. The individual patient profiles by cluster are provided

in Figure A.3 for simulation Scenario 300-40-10.
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Data are often missing not at random (MNAR) in scientific experiments. We treat the MNAR problem as 

an imbalanced learning task. Standard predictive error measures of regression (e.g., mean squared error) 

are not suitable for imbalanced learning problems, such as in clinical trials where extreme values tend 

to be MNAR. We investigate hybrid imbalanced learning approaches that combine utility-based regres- 

sion (UBR) with synthetic minority oversampling technique for regression (SMOTER) in cross-sectional 

trial settings. UBR optimizes the product of the conditional probability density (estimated by quantile 

regression forests) and a utility function which takes the relevance of the target variable value and the 

prediction error into account. SMOTER oversamples the relevant rare cases. Simulations show that the 

proposed method provides plausible predictions and reduces the bias for realistic missing data scenar- 

ios when compared with standard approaches like random forests and multiple imputation (systematic 

bias is observed in those methods, i.e., a tendency to underestimate the mean and standard deviation 

given the presence of MNAR in the area of high values of the target variable). The proposed method is 

implemented in a real dataset from an antidepressant clinical trial, and similar pattern of the systematic 

bias from commonly used methods is observed in the real data compare to the proposed method. There- 

fore, we encourage the integration of utility-based learning strategies for handling of missing data in the 

analysis of clinical trials. 

© 2022 The Authors. Published by Elsevier B.V. 

This is an open access article under the CC BY-NC-ND license 

( http://creativecommons.org/licenses/by-nc-nd/4.0/ ) 

1. Introduction 

Missing data are the data that would be meaningful for the 

analysis but is not documented. The missing data, if not handled 

properly, will lead to lower statistical power for the analysis, and 

may lead to a bias in the estimated treatment effect and an un- 

derestimate of the variability. There are three types of missing 

mechanism [1] . (i) Missing Completely at Random (MCAR): if the 

probability of missingness does not depend on observed or un- 

observed measurements, e.g., patients move to another city due 

to non-health related reasons. (ii) Missing at Random (MAR): if 

the probability of missingness depends only on observed measure- 

ments conditional on the covariates in the model, e.g., younger 

people may more likely to have blood pressure not measured. (iii) 

Missing Not at Random (MNAR): if the probability of missingness 

∗ Corresponding author. 

E-mail address: mansmann@ibe.med.uni-muenchen.de (U. Mansmann) . 

depends on unobserved measurements, e.g., patients discontinue 

from the study due to lack of efficacy. 

For the handling of missing data, many methods have been 

developed under the assumption of MAR or MNAR, respectively. 

In reality, however, missing data are often a mixture of different 

types. This makes the assumptions on the missing mechanism vi- 

olated, which leads to poor performance of the handling meth- 

ods [2] . To handle realistic missing data scenarios, Haliduola et al. 

[3] proposed a machine learning based missing data imputation 

framework where the MNAR problem is treated as an imbalanced 

learning task (since the MNAR cases are mostly distributed in one 

tail of the target variable). Take Fig. 1 as an example, depending 

on the proportion of MNAR data, regions that tend to have MNAR 

may have a smaller amount of available data than other regions 

(i.e., an imbalanced distribution). Imbalanced learning is necessary 

to compensate for the MNAR in that region and to avoid individ- 

ual predictions being driven by the available non-missing data to 

an overall average level. They proposed oversampling of minority 

classes (i.e., the classes with extreme value of the target variable 

https://doi.org/10.1016/j.cmpb.2022.107172 
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Fig. 1. Simulation data: scatter plot and boxplot for the target variable. The back dots are the non-missing data, blue dots are the MAR, green dots are MCAR, Red dots are 

MNAR. The details of the data generation process are described in Section 3.1 . 

that tend to be MNAR), followed by recurrent neural networks to 

model the data. This framework was shown to be effective for the 

handling of the missing data based on simulation studies and a 

real clinical trial data. 

Haliduola et al. [3] used a simple random oversampling with 

replacement and a standard error measure (i.e., mean squared er- 

ror, MSE). However, these methods come with drawbacks. First, in 

a simple random oversampling with replacement, random sets of 

copies of minority class cases are added to the data, which may 

lead to many duplicates in the minority class. During the learn- 

ing process, the decision region for the minority class may become 

very specific and the model will give more focus in that region. 

For example, in a tree-based learning process, this may lead to 

new splits in the decision trees, which will result in more termi- 

nal nodes (leaves) as the learning algorithm tries to learn more and 

more specific regions of the minority class, and eventually this will 

cause overfitting of the model [5] . Secondly, the standard predic- 

tive error measure like MSE is not suitable for a regression prob- 

lem with imbalanced distribution of target variable values in the 

training data (like in MNAR problem where the extreme values 

tend to be missing). Their weakness is that they are not sensitive 

to the location of target variable values [4] . See Fig. 1 as an exam- 

ple, considering the MNAR data (red dots), distribution of available 

non-missing data (black dots) are imbalanced across the range of 

target variable (i.e., less available data in the area of high values 

due to MNAR). If the error measure is not sensitive to the location 

of target variable values, the area of high values will get less focus 

in the training process due to the smaller amount of data in that 

area, and thus the impact of missing data on the aggregated esti- 

mation will be ignored. In such cases, it is important to give more 

focus on the area of high values in the training process to compen- 

sate for the MNAR and to avoid the prediction being driven by the 

frequent cases in the other locations of the target variable. There- 

fore, it is necessary to have an error metric that is sensitive to the 

location of the errors, which copes with imbalanced distribution of 

target variable values. 

In this paper, to avoid model overfitting caused by the sim- 

ple random oversampling, we use the synthetic minority oversam- 

pling technique for regression (SMOTER) [7] to oversample the rel- 

evant rare cases; and, to overcome the drawbacks of standard er- 

ror measure, we use the imbalanced learning technique utility- 

based regression (UBR) [6] , which takes both relevance (or impor- 

tance) of the target variable values and the prediction errors into 

account in the optimization process. For simplicity, we consider 

cross-sectional data only. Quantile regression forests [9] are used 

to estimate the conditional probability density. The optimization 

process involves determining the maximum integral of the product 

of the conditional probability density function and the utility func- 

tion for each case. In light of the “evidence-based computational 

statistics” [11,12] , we evaluate the proposed method in an exten- 

sive simulation study using realistic missing data scenarios (i.e., 

mixture of MCAR, MAR, and MNAR data). The performance of pro- 

posed method is evaluated comprehensively in terms of the central 

tendency and variability of imputed data, prediction accuracy, and 

a performance comparison with commonly used methods like ran- 

dom forests and multiple imputation. Finally, we illustrate the pro- 

posed method with a real dataset from an antidepressant clinical 

trial, which is one of the few publicly available datasets that can 

be used to demonstrate methods for handling missing data where 

a continuous outcome is measured. 

2. Methods 

In this paper, we aim to handle realistic missing data sce- 

nario (i.e., mixture of MCAR, MAR, and MNAR data) in a contin- 

uous outcome variable. We treat the MNAR problem in clinical tri- 

als as an imbalanced learning task. We investigate a hybrid im- 

balanced learning approach that combines utility-based regression 

(UBR) [6] with synthetic minority oversampling technique for re- 

gression (SMOTER) [7] in the missing data imputation. First, we 

assign a relevance to the target variable values based on their dis- 

tribution in the training data (i.e., available non-missing data) and 
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define a threshold for oversampling. The second step is data pre- 

processing, where we use the SMOTER method to oversample cases 

with relevance greater than the threshold. In the third step, we ap- 

ply utility-based regression on the oversampled training data, and 

the model parameters are optimized by maximizing the relevance 

and minimizing the error simultaneously. The final step is to use 

the optimal model to predict the missing target variable values. 

2.1. Utility-based regression 

Let Y be a target variable and X predictor vector. The most com- 

monly used error measures in regression are the mean squared er- 

ror 

MSE = 
1 

n 

n 
∑ 

i =1 

( ̄y i − y i ) 
2 
, 

and the mean absolute error 

MAE = 
1 

n 

n 
∑ 

i =1 

| ̄y i − y i | . 

The standard predictive error measures are not suitable for a 

regression problem with imbalanced distribution of target vari- 

able values in the training data (like in MNAR problem where the 

extreme values tend to be missing). Their weakness is that they 

are not sensitive to the location of target variable values [4] . Take 

Fig. 1 as an example, if the error measure is not sensitive to the 

location of target variable values, the area of high values will get 

less focus in the training process due to the smaller amount of 

data in that area (due to MNAR), and thus the impact of missing 

data on the aggregated estimation will be ignored. In such cases, it 

is important to give more focus on the area of high values in the 

training process to compensate for the MNAR and to avoid the pre- 

diction being driven by the frequent cases in the other locations 

of the target variable. Therefore, it is necessary to have an error 

metric that is sensitive to the location of the errors, which copes 

with imbalanced distribution of target variable values. It should be 

noted that the example in Fig. 1 is used to demonstrate the idea, it 

could be the other way round in reality, i.e., the lower values tend 

to be MNAR. 

Utility is a function of both the error of the prediction and the 

relevance (or importance) of both true and predicted values. To- 

gether, the relevance and loss information give a utility function, 

which provides more reliable evaluation of a regression model. The 

ultimate goal of utility-based regression is to maximize the util- 

ity, which is achieved by maximizing the relevance and minimiz- 

ing the error simultaneously. In following sections, we use the no- 

tations for utility-based regression defined by Torgo and Ribeiro 

[6] and Ribeiro [4] . 

The relevance is the crucial property that distinguishes non- 

uniform cost/benefit regression problems from those standard re- 

gression problems. The relevance function ∅ ( Y ): y → [0, 1] is a 

continuous function that expresses the domain-specific importance 

concerning the target variable domain y by mapping it into a [0, 1] 

scale of relevance, where 0 represents the minimum and 1 repre- 

sents the maximum (see an example in Fig. 2 ). To take both pre- 

dicted value ( ̄y ) and true value ( y ) into account, the joint relevance 

function is defined as weighted average: 

∅ ( ̄y , y ) = ( 1 − p ) ∅ ( ̄y ) + p ∅ ( y ) 

where p → [0, 1] is the weight, e.g., p = 0.5. The actual form 

the relevance function is domain specific and defined by the user 

based on the problem in hand. 

For the missing data problem in a continuous target variable 

(like the example mentioned above), a relevance function can be 

defined to assign more relevance/importance to the extreme values 

in one tail or both tails according to the distribution of available 

data. For example, we use boxplot whiskers or summary statis- 

tics like the first quartile (Q1) and the third quartile (Q3) to iden- 

tify the extreme values. In the example in Fig. 2 , the extreme val- 

ues are identified using the boxplot whiskers, and then the max- 

imum relevance of 1 is assigned to the extreme cases, and mini- 

mum relevance of 0 is assigned to the median value. A monotone 

cubic spline interpolation line over a set of maximum and mini- 

mum relevance points is the actual shape of the relevance function 

[8] . Using the boxplot to identify the extreme values, a coefficient 

needs to be specified to determine how far the whiskers extend 

to the extreme data points in the boxplot (e.g., a coefficient of 1.5 

as in the standard boxplot). The choice of the coefficient should 

be based on the specific problem in hand and it should be pre- 

specified. For example, a coefficient smaller than 1.5 can be consid- 

ered to assign high relevance to more data points. A range of the 

coefficients can also be considered to perform the sensitivity analy- 

sis. In our example, considering the presence of MNAR in the area 

of high values and the MCAR/MAR spread out across the whole 

range of target variable, it makes sense to assign more relevance 

for both high and low extreme values. Assigning high relevance in 

both tails may also avoid disproportionately heavy in one tail over 

the other in the prediction. 

The cost of a prediction is defined as product of the relevance 

and the loss (or error) function, 

c ( ̄y , y ) = ∅ ( ̄y , y ) C max L ( ̄y , y ) 

where ∅ ( ̄y , y ) is the joint relevance function, C max is the maximum 

cost that is only assigned when the relevance is maximum (i.e., 

∅ ( ̄y , y ) = 1 ). The term ∅ ( ̄y , y ) C max can be seen as a case-specific 

maximum cost value, i.e., the maximum penalty we get if ȳ is the 

“worst possible” prediction for the particular case under consider- 

ation. L ( ̄y , y ) is the loss function. It is important to scale the loss 

function to [0, 1]. Torgo and Ribeiro [6] defined a percentage-type 

loss function as the difference between the maximum and mini- 

mum relevance in the interval between the true and predicted val- 

ues. 

L ( ̄y , y ) = [ max 
i ∈ ̄y .. y 

∅ ( i ) − min 
i ∈ ̄y .. y 

∅ ( i ) ] 

The total cost can be calculated by summing up all individual 

cost values. It is important to notice that when asserting the cost 

of a prediction, it is necessary to take both the true and the pre- 

dicted values into account. Predicting an irrelevant value for a case 

that has an actual extreme value is not the only cost that can oc- 

cur. It may be equally serious to predict an extreme value for a 

frequent case, as it causes false alarm that could lead to serious 

cost. Therefore, the joint relevance function is used in the above 

cost function. In addition, it makes sense to use weight p = 0.5 in 

the joint relevance function to give equal importance to both types 

of error. 

The benefit of a prediction is defined as product of the rele- 

vance of true value and the complementary of the loss, 

b ( ̄y , y ) = ∅ ( y ) B max ( 1 − L ( ̄y , y ) ) 

where ∅ ( y ) is the relevance function of true value, B max is the max- 

imum reward that is only assigned when the relevance is maxi- 

mum. In the benefit function, only the relevance of the true value 

is considered as the purpose is to assert how well a model predicts 

the test cases that are relevant (i.e., rewards the accurate predic- 

tion for the relevant values). The total benefit can be calculated by 

summing up all individual benefit values. 

The utility of a prediction is the net balance between its bene- 

fits and costs, defined as, 

U ( ̄y , y ) = b ( ̄y , y ) − c ( ̄y , y ) 

3 
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Fig. 2. An example of relevance function to assign more importance to the extreme values according to the distribution of available data. 

The total utility can be calculated by summing up all individual 

utility values. The mean utility can also be calculated as utility- 

based model performance metrics. 

2.2. Quantile regression forests 

As mentioned in Section 2.1 , the ultimate goal of utility-based 

regression is to optimize the utility, which is achieved by maxi- 

mizing the relevance and minimizing the error simultaneously. In 

this paper, we use the optimization process proposed by Rau et al. 

[14] . This method uses quantile regression forests (QRF, [9] ) to es- 

timate the conditional probability density which is a crucial ele- 

ment in the optimization process. To elaborate the main idea of 

QRF, we start with the random forests (RF, [16] ) and quantile re- 

gression [18] . 

The random forests build k trees in parallel using n independent 

observations ( y i , x i ), i = 1, …, n . Each tree is based on the boot- 

strapped data (random sampling with replacement, e.g., use 2/3 as 

the original data size) and random subset of variables (e.g., use 1/3 

of all feature variables). This kind of variety is what makes random 

forests more effective than individual decision tree. Let θ denote 

the random parameter vector that determines how a tree is grown 

(e.g., which variables are considered for split points at each node), 

the corresponding tree is denoted by T ( θ ), let Lf denote the leaves 

of the tree ( L = 1 , …, m ). For every x ∈ X , there is only one leaf Lf 

can be obtained when dropping x down the tree. Denote this leaf 

by Lf ( x, θ ) for tree T ( θ ). For a single tree, the weight vector w i ( x, 

θ ) is a positive constant if observation x i is part of leaf Lf ( x, θ ) and 

0 if not, and the weights w i ( x, θ ) sum to 1. The prediction of a sin- 

gle tree k , given the feature X = x , is then weighted average of the 

original observations y i , 

ū t ( x ) = 

n 
∑ 

i =1 

ω i ( x, θ ) y i , 

where t is the t th single tree, t = 1, …, k . The conditional mean 

E ( Y | X = x ) is approximated by the averaged prediction of k single 

trees, each constructed with an independent and identically dis- 

tributed vector θ t . Let ω i ( x ) be the average of ω i ( θ ) over the trees, 

defined as, 

ω i ( x ) = k −1 
k 

∑ 

t=1 

ω i ( x, θt ) . 

The predictions of random forests are then the weighted condi- 

tional mean, 

ū ( x ) = 

n 
∑ 

i =1 

ω i ( x ) y i . 

The weighted conditional mean is estimated by minimizing the 

MSE: 

E(Y | X = x ) = arg min 
ȳ 

E{ ( ̄y − y ) 
2 | X = x } . 

The conditional mean describes only one aspect of the condi- 

tional distribution of a target variable Y , while the quantile regres- 

sion aims to provide more information about the conditional dis- 

tribution, e.g., the conditional quantiles [18] . For X = x, the condi- 

tional distribution function F ( y | X = x ) is given by the probability of 

Y is smaller than y ∈ R ( R is the space for the target variable), 

F (y | X = x ) = P (Y ≤ y | X = x ) . 

For a continuous distribution function, given X = x, the α- 

quantile Q α( x ) is then defined such that the probability of Y being 

smaller than Q α( x ) is exactly equal to α (0 < α < 1). The quantiles 

Q α( x ) give more information about the conditional distribution of 

Y , which is defined as, 

Q α( x ) = inf { y : F (y | X = x ) ≥ α} . 

The loss function L α is defined as the weighted absolute devia- 

tions, 

L α( y, q ) = { 
α| y − q | y 〉 q 

( 1 − α) | y − q | y ≤ q 

The conditional quantiles are estimated by minimizing the ex- 

pected loss E ( L α), 

Q α( x ) = arg min 
q 

E{ L α( Y, q ) | X = x } . 

For quantile regression forests, trees are grown as in the stan- 

dard random forests algorithm [9] . The conditional distribution is 

then estimated by the weighted distribution of observed target 

variables, where the weights ( ω i ( x )) attached to observations are 

identical to the original random forests algorithm. The key differ- 

ence from the standard random forests is that, for each node in 

each tree, QRF keeps the value of all observations in this node (not 

just their mean as in the standard random forests), and assesses 

the conditional distribution of those observations. 

For X = x, the conditional distribution function of Y is given by, 

F (y | X = x ) = P (Y ≤ y | X = x ) = E( I { Y ≤y } | X = x ) 
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where I { Y ≤ y } is the indicator function, which equals to 1 if Y ≤

y otherwise 0. Just as E ( Y | X = x ) is approximated by a weighted 

mean of Y , define an approximation to E (1 { Y ≤ y } | X = x ) by the 

weighted mean over the observations of 1 { Y ≤ y } as the prediction 

of QRF, 

F̄ (y | X = x ) = 

n 
∑ 

i =1 

ω i ( x ) 1 { Y ≤y } . 

The optimization process uses a method proposed by Rau et al. 

[14] , which use QRF to estimate the conditional probability den- 

sity. In regression, for each case, this process involves determining 

the maximum integral of the product of the conditional probabil- 

ity density function and the utility function. The optimal prediction 

for X = x is given by, 

ȳ ( X = x ) = arg max [ ̄y ] ∫ pdf (y | X = x ) U ( ̄y , y ) dy 

where pdf ( y | X = x ) is the conditional probability density estima- 

tion for X = x, and U( ̄y , y ) is the utility evaluated on the true 

value y and predicted value ȳ . Final predictions are the conditional 

means take target variable utility into account. We use the R pack- 

age “UBL” (stands for “Utility-Based Learning”, [13,15] ) in this pa- 

per. 

2.3. SMOTER 

Synthetic Minority Oversampling Technique (SMOTE) was intro- 

duced by Chawla et al. [5] for the classification task. This algorithm 

operates in the feature space rather than target variable space (as 

all rare cases have the same target minority class). The minority 

class is oversampled by taking each minority sample and introduc- 

ing synthetic examples along the line segments joining any/all of 

the k minority class nearest neighbors (e.g., k = 5). For example, if 

the amount of oversampling needed is 200%, only two neighbors 

from the k nearest neighbors are chosen and one sample is gen- 

erated in the direction of each. Synthetic samples are generated in 

the following way: take the difference between the feature vector 

under consideration and its nearest neighbor. Multiply this differ- 

ence by a random number between 0 and 1, and then add it to the 

feature vector under consideration. 

Torgo et al. extended the SMOTE for regression task (i.e., the 

SMOTER) in 2013. Three key components were addressed in the 

extension: the relevance function (i.e., the ∅ ( Y ) as discussed in 

Section 2.1 ) and the user-specified threshold for the relevance val- 

ues were used to define the relevant (rare) cases and the frequent 

cases (e.g., relevance threshold = 0.8); the same approach as in 

the original algorithm was used to generate the synthetic feature 

samples; the weighted average of the target variable values of the 

two seed examples (i.e., the case and the selected neighbor) was 

used as the synthetic value for the target variable (the weights are 

calculated as an inverse function of the distance of the generated 

new case to each of the two seed examples). We use the R package 

“UBL” [15] for the implementation of SMOTER. 

In practice, it is common to implement the SMOTER together 

with the undersampling of frequent cases. However, in this paper, 

we do not consider the undersampling for following reasons: 1) 

In realistic missing data scenarios, the MNAR data are located in 

certain area of the target variable, but the MAR/MCAR data may 

spread out in the whole range of the target variable. In the train- 

ing process, it may not be a conservative approach to give less fo- 

cus on the locations where MAR/MCAR data may appear; 2) The 

undersampling reduces the size of the training data, this may not 

be a favorable approach in clinical trials in which the total amount 

of data is normally not massive. 

In SMOTE, the amount of oversampling is a hyperparameter of 

the system [5] . We fine-tuned the appropriate amount of oversam- 

pling using the cross-validation (CV) approach. It is important to 

Fig. 3. Example of correlation matrix used in the simulation data generation. 

note that only the training data should be oversampled during the 

CV process, the validation data should never be oversampled to 

avoid the "overoptimism" issue [19] . 

3. Simulation study to evaluate performance of methods 

3.1. Design of simulation study 

To demonstrate the idea of the utility-based regression and 

sampling approaches, we consider the cross-sectional data only in 

this paper. In the simulation study, random data is generated for 

600 subjects. The outcome variable and covariates (predictors) are 

normally distributed. Missing data indicators are binary variables 

(i.e., separate indicator variables for MCAR, MAR and MNAR). Cor- 

related normal and binary data are generated simultaneously us- 

ing the point-biserial correlation approach of Demirtas and Dogana 

[20] . Suppose that X and Y follow a bivariate normal distribution 

with a correlation of ρXY . If X is dichotomized to produce X D , then 

the resulting correlation between X D and Y can be given as point- 

biserial correlation, 

δX D Y = ρXY 

( 

h 
√ 

p ( 1 − p ) 

) 

where p is the proportion of the observations above the point of 

dichotomization, and h is the ordinate (probability density func- 

tion) of the normal curve at the same point. 

In the simulation study, we simultaneously generate one out- 

come variable and seven covariates (each normally distributed 

with mean 10 and variance 10) and 3 missingness indicators us- 

ing a given correlation matrix (see Fig. 3 for an example). The 

MCAR flag (with missing data proportion of 5%) is independent 

from any other variables. The MAR flag (with missing data pro- 

portion of 5%) is correlated with the first covariate only (correla- 

tion coefficient = 0.4) and independent from the outcome variable 

and the other covariates. To evaluate the performance of impu- 

tation method properly, we consider higher proportion of MNAR 

data (i.e., 25%). The MNAR flag is positively correlated with out- 

come variable (i.e., the higher values tend to be missing, correla- 

tion coefficient = 0.5) and the second to seventh covariates (cor- 

relation coefficient = 0.2). The outcome variable is correlated with 

the MNAR flag and the second to seventh covariates (correlation 

coefficient = 0.5). The first covariate is correlated with MAR flag 

only. The second to seventh covariate are correlated with the out- 

come, therefore they are also correlated with each other (correla- 

tion coefficient = 0.2). See Fig. 1 as an example for the distribution 

of the outcome variable. We use the R package “BinNor” [21] in the 

data generation. Since the higher values of outcome variable tend 

to be missing (MNAR), the mean of the available non-missing data 

is an underestimation of the true value. A proper missing imputa- 

tion method should compensate for the MNAR and reduce the bias 
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in the aggregated estimation. In this paper, we perform the simu- 

lation with 100 replications. 

We impute the missing data using proposed method, i.e., UBR 

facilitated by SMOTER (ubr.smt). In the SMOTER process, we iden- 

tify the relevant extreme values based on the summary statistics of 

available training data, i.e., the data points ≤ the first quartile (Q1) 

or ≥ the third quartile (Q3) are oversampled. The amount of over- 

sampling is determined as 3 times as the available data in both 

tails based on the cross-validation. In the UBR process, we assign 

relevance function to target variable using the boxplot with a co- 

efficient of 0.75 (i.e., half of the standard coefficient). Based on the 

summary statistics of available data, a coefficient of 0.75 is consid- 

ered as appropriate to assign relevance to the high target variable 

values where tend to have MNAR and also the low extreme values. 

A range of coefficients (0.5, 0.6, 0.7, 0.8 and 0.9) are also experi- 

mented to illustrate the impact of relevance function on the im- 

putation performance. As mentioned above, the relevance function 

is defined according to the distribution of the available data, and 

there is a shift in the central tendency of the available data due 

to MNAR in the area of high values. This shift is also reflected in 

the relevance function, which leads to more relevance given in the 

area of high values (this is considered as a conservative approach 

given the presence of MNAR in that area only in this case). 

3.2. Measuring performance of the proposed methods 

To compare the performance of proposed method (i.e., UBR fa- 

cilitated by SMOTER), we impute the missing data using other 

methods including: 

• ubr.org = UBR without facilitating by SMOTER. 
• qrf.smt = QRF facilitated by SMOTER, details of QRF are de- 

scribed in Section 2.2 . We use the R package “quantregForest”

[10] in the implementation. 
• qrf.org = QRF without facilitating by SMOTER. 
• rf.smt = random forests facilitated by SMOTER, details of RF are 

described in Section 2.2 . We use the R package “randomForest”

[17] in the implementation. 
• rf.org = random forests without facilitating by SMOTER. 
• mi = traditional multiple imputation under the assumption of 

MAR. In addition to those machine learning-based methods, 

comparisons with the most commonly used traditional statis- 

tical methods (i.e., multiple imputation) are also considered 

meaningful. We use the R package “MICE” (van Buuren et al. 

[24] ) with 200 multiple imputations. MICE stands for Multivari- 

ate Imputations by Chained Equations, which generates mul- 

tiple imputations for incomplete multivariate data by Gibbs 

sampling. The algorithm imputes an incomplete target column 

by generating "plausible" synthetic values given other columns 

(covariates) in the data. The imputation method for the missing 

continuous outcome variable is predictive mean matching ( [22] 

and [23] ). 

We perform the following measures to compare the perfor- 

mance of difference methods: 

• Calculate the mean and standard deviation (SD) of the imputed 

outcome variable by different imputation methods as men- 

tioned above, and compare with the mean and SD of true value 

(i.e., the complete outcome variable before set the missing val- 

ues). If the estimations are close to the mean and SD of true 

value then the imputation method is appropriate. To show the 

bias that caused by missing data, the mean and SD of available 

non-missing data are also provided. 
• Perform one sample t -test on the imputed data with a null- 

hypothesis of mean = 10, the larger p-values indicate better 

imputation performance. 

• Perform a simple linear regression of imputed value versus the 

true value, and compare the intercepts (close to 0 is better) and 

the slops (close to 1 is better). 

3.3. Simulation results 

We visualize the performance measures from 100 studies us- 

ing the boxplot. In Fig. 4 , the boxplots for the mean values from 

100 studies per scenario are presented. The true means follow nor- 

mal distribution around 10 (the blue box). The bias caused by the 

missing data is substantial, the means estimated from non-missing 

available data are significantly lower than the true means (i.e., 

noimp, the brown box on the right in below figure). The means 

estimated based on imputed data by the proposed method (i.e., 

UBR + SMOTER) are the closest to the true means (the green box) 

when comparing with other methods. The means from the UBR 

without SMOTER (the light green box) are the second closest es- 

timation of the true means. The QRF and RF perform very simi- 

larly (the boxes labeled as qrf.org and rf.org), which is expected as 

the goal is to provide the conditional mean as prediction. When 

facilitating by SMOTER, QRF and RF perform better than without 

SMOTER but still are not as good as the proposed method (the 

boxes labeled as qrf.smt and rf.smt). The traditional multiple impu- 

tation is not as good as the proposed method (the purple box). In 

general, all other methods tend to underestimate the mean given 

the presence of MNAR in the area of high values of the target vari- 

able. 

It is also important to evaluate the performance of imputa- 

tion method in terms of the variability of imputed data. As shown 

in Fig. 5 , similar as for the central tendency measure (i.e., the 

mean), the proposed method provides the closest estimation for 

the SD, followed by the UBR without facilitating by SMOTER. All 

other methods tend to underestimate the SD given the presence of 

MNAR in the area of high values of the target variable. 

We perform sensitivity analysis in terms of the coefficient of 

the relevance function. A range of coefficients (i.e., 0.5, 0.6, 0.7, 0.8 

and 0.9) are experimented and results are shown in Fig. 6 (A for 

distribution of mean and B for distribution of SD). It is clear that 

the relevance function impacts the performance of UBR consider- 

ably. The coefficient here is a parameter to determine how far the 

whiskers extend to the extreme data points in the boxplot when 

defining the relevance function. The higher coefficients result in 

high relevance been assigned to the more extreme cases (e.g., for 

less data points), this may increase the variability of the predicted 

values. As mentioned in Section 3.1 , there is a shift in the relevance 

function due to MNAR in the area of high values, this leads to 

even less lower extreme values been assigned with high relevance. 

Therefore, higher coefficients result in higher estimated mean and 

SD in this case. As mentioned above, all commonly used meth- 

ods tend to underestimate the mean and SD given the presence 

of MNAR in the area of high values of the target variable. It would 

be equally worse to overestimate the mean and SD (e.g., in the 

case of coefficient = 0.9). Therefore, it is important to pre-specify 

a proper relevance function according to the distribution of avail- 

able data and make a plausible assumption on the missing data 

(i.e., the possible locations of target variable scale where the miss- 

ing data tend to occur). It is also important to perform sensitivity 

analysis with different relevance functions (and associated param- 

eters) to check the appropriateness and robustness of the primary 

analysis. 

We perform one sample t -test on the imputed data (imputed 

by different methods) with a null-hypothesis of mean = 10 and 

present the distribution of p-values in Fig. 7 . For the true data 

(where no missing data), the p-values are mostly greater than 0.05 

as expected. For the proposed method (i.e., UBR + SMOTER), the 

majority of the p-values are greater than 0.05. While for other 
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Fig. 4. Simulation result – distribution of means of imputed data by different methods. ubr = utility-based regression (coefficient of relevance function = 0.75), 

smt = SMOTER data, org = original data, qrf = quantile random forests, rf = random forests, mi = multiple imputation, noimp = no imputation. 

Fig. 5. Simulation result – distribution of SDs of imputed data by different methods. ubr = utility-based regression (coefficient of relevance function = 0.75), smt = SMOTER 

data, org = original data, qrf = quantile random forests, rf = random forests, mi = multiple imputation, noimp = no imputation. 

methods, the p-values are quite small (mostly < 0.05). Although 

the p-value is sample size dependent, but the trend is clear to 

show that the proposed method is better than other methods in 

terms of the ability to reduce the bias of missing data in the ag- 

gregated estimation. 

We perform simple linear regression for the true value versus 

the imputed value (by different method). The intercept and the 

slop from the linear regression are visualized using the boxplots in 

Fig. 8 . The proposed method (i.e., UBR + SMOTER) gives the least 

intercept and the greatest slop (i.e., closest to 1), suggesting the 

best performance among all the methods. 

4. Real data example 

We implement the proposed method in a real dataset from 

an antidepressant clinical trial, which is available on the website 

of London School of Hygiene and Tropical Medicine [25] . Origi- 

nal data are from an antidepressant clinical trial with four treat- 

ments; two doses of an experimental medication, a positive con- 

trol, and placebo [26] . There are 26.1% and 25.0% patients with 

missing Hamilton 17-item rating scale for depression (HAMD17) at 

Week 6 in Control group (i.e., placebo, N = 88) and Test group (i.e., 

created by randomly selecting patients from the three non-placebo 

arms, N = 84), respectively. 

We use the HAMD17 at Week 6 as the target variable (cross- 

sectional data), use the treatment group and the available baseline 

variables as predictors (including the gender, baseline HAMD17 

value, HAMD Total score and Patient Global Impression of Improve- 

ment (PGI-I)). The reasons for discontinuation are not available in 

the published dataset, this makes it difficult to make assumption 

about the missing mechanism. We define the relevance function 

according to the summary statistics of the available data. In the 

pre-processing, the data points ≤ Q1 or ≥ Q3 are oversampled us- 

ing SMOTER method. The amount of oversampling is determined 

as twice as the original available data in both tails based on the 

cross-validation. In the UBR process, maximum relevance of 1 is 

assigned to the data points ≤ Q1 or ≥ Q3, and minimum rele- 

vance of 0 is assigned to median value (note: it is not the boxplot 

method in this case and therefore no coefficient to be determined). 

A monotone cubic spline interpolation line over a set of maximum 

and minimum relevance points is the actual shape of the relevance 

function. 

To compare the imputation performance, we impute the miss- 

ing data using the methods as described in Section 3.2 . The im- 

puted outcome variable (i.e., change from baseline in HAMD17 

score at Week 6) is analyzed using the analysis of covariance (AN- 

COVA) model with treatment as factor and baseline value as co- 

variate. To show the bias that caused by the missing data, we also 
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Fig. 6. Simulation result – sensitivity analysis: distribution of means (A) and SDs (B) of imputed data by ubr + smt using different coefficients in the relevance function (0.5, 

0.6, 0.7, 0.8, 0.9). ubr = utility-based regression, smt = SMOTER data. 

Fig. 7. Simulation result – distribution of p-values from one sample t -test on imputed data by different methods. ubr = utility-based regression (coefficient of relevance 

function = 0.75), smt = SMOTER data, org = original data, qrf = quantile random forests, rf = random forests. 

analyze the outcome variable without imputation using ANCOVA. 

The results from the different approach are presented in forest plot 

( Fig. 9 ). The proposed imputation method (i.e., UBR + SMOTER) 

provided the most conservative estimation for the treatment effect 

in both treatment groups. There is systematic bias in the results 

from other methods. This bias is more pronounced in the Control 

group, a possible reason could be there are more low responders 

with missing data in Control group (e.g., may be more MNAR in 

Control group). In general, comparing with the proposed method, 

other methods tend to be optimistic, which may lead to aggressive 

estimation and hence introduce bias in the study conclusion (es- 
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Fig. 8. Simulation result – distribution of the intercepts (A) and slops (B) from simple regression of true data vs. imputed data by different methods. ubr = utility-based 

regression (coefficient of relevance function = 0.75), smt = SMOTER data, org = original data, qrf = quantile random forests, rf = random forests. 

Fig. 9. Real data: forest plot for the analysis results of change from baseline in HAMD17 score at Week 6 using different methods. ubr = utility-based regression, 

smt = SMOTER data, org = original data, qrf = quantile random forests, rf = random forests. 

pecially in the cases when the dropout rate or the efficacy pattern 

of dropouts are not comparable between treatment group). 

5. Discussion 

We aim to handle the realistic missing data scenarios (i.e., mix- 

ture of MCAR, MAR, and MNAR data) in clinical trials with con- 

tinuous outcome variable. We treat MNAR as imbalanced learning 

task. The standard error measures are not suitable for non-unique 

cost learning. We propose a hybrid imbalanced learning approach 

that combines UBR with SMOTER. The UBR takes both the predic- 

tion error and relevance of the target variable value into account 

such that the areas been assigned high relevance get more focus 
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in the learning process. SMOTER is an effective approach to give 

more weights on the rare cases and also to avoid the model over- 

fitting problem. The relevance function is a crucial part of the pro- 

posed method. The choice of the relevance function and its associ- 

ated parameters should be based on the specific problem in hand 

and it should be pre-specified. It is inevitable to define the rele- 

vance function according to the distribution of available data, and 

it is also important to make a plausible assumption on the miss- 

ing data (i.e., the possible locations of target variable scale where 

the missing data tend to occur) based on the information collected 

in the clinical trial. We recommend to perform sensitivity analysis 

with different relevance functions (and associated parameters) to 

check the appropriateness and robustness of the primary analysis. 

We evaluate the performance of proposed method in a comprehen- 

sive manner in the simulation study. When assessing the impact of 

missing data on the aggregated estimation, we recommend to eval- 

uate the performance of imputation method not only in terms of 

the bias (like mean of imputed data) but also in terms of variance 

the imputed data, which is also an important element in the deci- 

sion making (e.g., the decision based on the inferential statistics). 

The commonly used imputation methods (like random forests 

and multiple imputation) do not perform as well as the proposed 

method and showed systematic bias in the aggregated estimation. 

Those methods tend to underestimate the mean and SD given the 

presence of MNAR in the area of high values of the target vari- 

able. A similar pattern of the systematic bias is also observed in 

the real data from an antidepressant clinical trial with a dropout 

rate of 25%. Overall, our hybrid imbalanced learning approach pro- 

vides plausible prediction for all the MCAR, MAR and MNAR data 

and reduced the bias of missing data in the aggregated estimation. 

Therefore, we encourage the integration of utility-based learning 

strategies for handling of missing data in the analysis of clinical 

trials. 

Limitations of this study include: (1) The use of some specific 

technical elements, such as QRF and SMOTER, is based on our cur- 

rent knowledge in this domain, and this can be further improved 

once new and better methods emerge; (2) To demonstrate the ba- 

sic idea of utility-based regression, we look at the cross-sectional 

data only. However, in practice, missing data problem is more of- 

ten in the longitudinal studies. Therefore, from practical point of 

view, an extension of the utility-based regression in the longitudi- 

nal setting is necessary. 

Supporting information 

All R programs for the whole workflow, datasets and outputs 

will be available at the website of Computer Methods and Pro- 

grams in Biomedicine. 
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