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The Road goes ever on and on
Down from the door where it began.
Now far ahead the Road has gone,

And I must follow, if I can,
Pursuing it with eager feet,

Until it joins some larger way
Where many paths and errands meet.

And whither then? I cannot say.

Bilbo Baggins in The Fellowship of the Ring by J.R.R Tolkien
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the supervision of Dr. Céline Péroux and Dr. Martin Zwaan.



viii



Table of Contents

Zusammenfassung xvii

Abstract xix

1 Introduction 1
1.1 The Formation and Evolution of Galaxies . . . . . . . . . . . . . . . . . . . 2

1.1.1 Structure Formation . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.1.2 Galaxy Evolution . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.2 The Circumgalactic Medium . . . . . . . . . . . . . . . . . . . . . . . . . . 5
1.2.1 Exploring the CGM in Absorption . . . . . . . . . . . . . . . . . . 6

1.3 The Cosmic Baryon Cycle . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
1.3.1 An Evolving Star Formation Rate Density across Cosmic Time . . . 8
1.3.2 The Evolution of Neutral Atomic Gas across Cosmic Time . . . . . 10
1.3.3 The Evolution of Molecular Gas across Cosmic Time . . . . . . . . 11
1.3.4 The Evolution of Metallicity across Cosmic Time . . . . . . . . . . 12

1.4 Machine Learning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
1.4.1 Neural Networks . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
1.4.2 Convolutional Neural Networks . . . . . . . . . . . . . . . . . . . . 15
1.4.3 Machine Learning as a Tool in Astronomy . . . . . . . . . . . . . . 16

1.5 The Goal of this Thesis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

2 Coupling Atomic, Ionized & Molecular Gas Kinematics of Galaxies 19
2.1 Abstract . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
2.2 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
2.3 Observations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

2.3.1 Optical Campaign . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
2.3.2 ALMA Observations . . . . . . . . . . . . . . . . . . . . . . . . . . 24

2.4 Molecular Gas Properties of the Galaxies Associated with the
Absorbers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
2.4.1 Properties of the CO-detected Galaxy (Q2131-G1, z = 0.42974) . . 25
2.4.2 Limits from Non-Detections . . . . . . . . . . . . . . . . . . . . . . 34

2.5 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
2.5.1 Strongly Coupled Gas Phases within a Rotating Disk . . . . . . . . 35



x TABLE OF CONTENTS

2.5.2 Identifying the Disk Tilt . . . . . . . . . . . . . . . . . . . . . . . . 36
2.5.3 Gas Probed in Absorption Connected to a Rotating Disk and In-

falling Gas . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
2.5.4 Specifics of H i-selected Systems . . . . . . . . . . . . . . . . . . . . 37
2.5.5 Connecting Galaxy Properties with Gas Properties . . . . . . . . . 39
2.5.6 A Dark Matter Fraction Evolving with Redshift . . . . . . . . . . . 40
2.5.7 CO Detection Rate of the MUSE-ALMA Haloes Survey . . . . . . . 41

2.6 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

3 The Column Densities of Molecular Gas 45
3.1 Abstract . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
3.2 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
3.3 Quantifying the Distribution of Column Densities Observed on the Sky . . 48
3.4 Bridging Observations and Simulations . . . . . . . . . . . . . . . . . . . . 49

3.4.1 Resolved Molecular Gas in Local Galaxies . . . . . . . . . . . . . . 49
3.4.2 Absorption Lines as a Probe for the H2 Column Density Distribution

at High Redshifts . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
3.4.3 Cosmological Simulations providing Large Statistical Samples . . . 51
3.4.4 Molecular Gas in Highly Resolved Simulations of Individual Galaxies 53

3.5 A Resolution-dependent H2 Column Density Distribution Function . . . . . 54
3.5.1 f(NH2) - Dependence on the Resolution of Simulations . . . . . . . 54
3.5.2 f(NH2) - Dependence on the Resolution of NH2 Maps . . . . . . . . 55

3.6 Does the H2 Column Density Distribution of Individual Galaxies depend on
their Physical Properties? . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

3.7 The Redshift Evolution of the H2 Column Density Distribution in Simula-
tions and Observations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58
3.7.1 f(NH2) at z=0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58
3.7.2 f(NH2) at z = 3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64
3.7.3 Denser Molecular Gas found at High Redshifts . . . . . . . . . . . . 65
3.7.4 Is H2 dominating the Higher Column Densities? . . . . . . . . . . . 66

3.8 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67
3.9 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

4 Identifying Mg ii Absorbers with Machine Learning 73
4.1 Abstract . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73
4.2 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74
4.3 The 4MOST High-resolution Quasar survey (4Hi-Q) . . . . . . . . . . . . . 75
4.4 Constructing the Training and Test Sets . . . . . . . . . . . . . . . . . . . 77

4.4.1 Mg ii Absorbers in TNG50 Simulations . . . . . . . . . . . . . . . . 77
4.4.2 Synthetic 4Hi-Q Quasar Spectra . . . . . . . . . . . . . . . . . . . . 78

4.5 Machine Learning Model and Training . . . . . . . . . . . . . . . . . . . . 81
4.5.1 Convolutional Neural Network Architecture . . . . . . . . . . . . . 82
4.5.2 Training the Convolutional Neural Network . . . . . . . . . . . . . 83



Table of Contents xi

4.5.3 Hyperparameter Optimization . . . . . . . . . . . . . . . . . . . . . 85
4.5.4 Alternative CNN Architectures . . . . . . . . . . . . . . . . . . . . 86

4.6 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88
4.6.1 Accurate Mg ii Absorber Detection down to SNR=3 . . . . . . . . . 89
4.6.2 Accurate Estimations of Absorber Location down to SNR=3 . . . . 91

4.7 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93
4.7.1 Accuracy and Efficiency versus Traditional Methods . . . . . . . . . 93
4.7.2 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93

4.8 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95

5 Summary and Conclusions 97

6 Outlook 101
6.1 Exploring [C ii] 158µm as a Tracer for Molecular and Neutral Atomic Gas . 101
6.2 Connecting the High Redshift ISM and CGM . . . . . . . . . . . . . . . . 103

A Appendix to Chapter 2 107
A.1 Observation Details . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107
A.2 Q2131-G1 - Kinematic Modelling Residuals and Model Flux Map . . . . . 107

B Appendix to Chapter 3 111
B.1 f(NH2) Dependence on Physical Properties . . . . . . . . . . . . . . . . . . 111

Acknowledgements 134



xii Table of Contents



List of Figures

1.1 A sketch displaying the timeline for the expansion and evolution of the
Universe . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.2 A sketch of the Circumgalactic Medium (CGM) surrounding galaxies . . . 5

1.3 A sketch of a typical setup for absorption-line studies of the CGM . . . . . 7

1.4 A compilation of measurements in ultraviolet and infrared wavelengths for
the star formation rate density (SFRD) across cosmic time . . . . . . . . . 9

1.5 The evolution of neutral gas, molecular gas, and stellar mass densities in
the Universe across cosmic time based on a compilation of observations . . 10

1.6 A compilation of the expected amount of metals in the Universe across
cosmic time and the phase in which those are found . . . . . . . . . . . . . 13

1.7 Sketch of a simple feed-forward neural network . . . . . . . . . . . . . . . . 15

2.1 The derived cumulative mass of the dark matter within Q2131-G1 assuming
an NFW profile . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

2.2 Contour plot and velocity maps of Q2131-G1 . . . . . . . . . . . . . . . . . 30

2.3 Extrapolated model velocity maps of Q2131-G1 and normalized flux of the
Mg ii λ2803 and stacked H2 absorption line and [O iii] λ5008, Hβ, and CO(3–
2) emission lines. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

2.4 Sketch of the QSO - galaxy plane for identifying the disk tilt of Q2131-G1 36

2.5 Star formation rate (SFR), molecular gas mass (Mmol) and depletion time
(τdep) plotted for H i-selected galaxies, the xCOLD GASS, and the PHIBSS
1&2 survey (at z < 1.1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

2.6 Absorber H i column density plotted against the molecular mass (limits) of
absorber hosts by various published works . . . . . . . . . . . . . . . . . . 40

3.1 The stellar mass distribution of the PHANGS-ALMA survey and the match-
ing TNG100 sample . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

3.2 Resolution study for the molecular gas column density distribution function
derived from simulations and observations . . . . . . . . . . . . . . . . . . 55

3.3 H2 column density distributions [f(NH2)] of individual PHANGS-ALMA
and TNG100 (z = 0) galaxies . . . . . . . . . . . . . . . . . . . . . . . . . 57

3.4 f(NH i) and f(NH2) derived from both simulations and observations at z = 0
and z = 3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59



xiv List of Figures

3.5 The mass density contribution per dex column density (ρs) of H i and H2

derived from observations and simulations . . . . . . . . . . . . . . . . . . 63

4.1 Simulation prediction for the average circumgalactic metal distribution around
M⋆ = 1010 M⊙ galaxies at z = 0.5 . . . . . . . . . . . . . . . . . . . . . . . 76

4.2 The distribution of Mg ii absorber wavelength (λMg ii,2796), equivalent width
(EWrest

Mg ii,2796) and SNR of our fiducial synthetic spectra sample used for the
training of the convolutional neural network . . . . . . . . . . . . . . . . . 79

4.3 An example of a mock normalized QSO spectrum with SNR = 20, a Mg ii
absorber at λMg ii,2796 = 6234 Å and equivalent width of EWrest
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Zusammenfassung

Galaxien sind Systeme, die sich durch eine Kombination aus internen Prozessen und
ihrer Verbindung zu ihrer unmittelbaren Umgebung entwickeln. Mechanismen wie die
Rückkopplung aktiver galaktischer Kerne (AGN), stellare Rückkopplung, wiederverwer-
tung von Gas und Akkretion aus dem kosmischen Netz führen zu einer Umverteilung von
Baryonen innerhalb von Galaxien und in ihrer Umgebung. Diese Prozesse interagieren
im mehrphasigen zirkumgalaktischen Medium (CGM), definiert als das Gas, das Galaxien
außerhalb der Scheibe oder des interstellaren Mediums (ISM), aber innerhalb des Virialra-
dius der Galaxien umgibt. Das CGM ermöglicht somit die Verfolgung von Gasströmen, die
im Zusammenhang mit der Entwicklung von Galaxien und der Sternentstehung von beson-
derer Bedeutung sind. Die Entfernung von Gas durch gewaltsame Rückkopplungsprozesse
könnte zum Erlöschen der Sternentstehung in Galaxien führen, während die Akkretion für
die Aufrechterhaltung der Sternentstehung entscheidend ist. Das akkretierte Gas vermis-
cht sich mit der Materie innerhalb der Galaxien und kann anschließend abkühlen und zu
Molekülwolken kollabieren, was zur Sternentstehung führt. Somit spielen das CGM, die
kalte Gasphase, und ihr Vorläufer, die kühle Gasphase, eine Schlüsselrolle bei der Entwick-
lung von Galaxien im Laufe der kosmischen Zeit. Ziel dieser Arbeit ist es, die kalte und
kühle Gasphase, die das molekulare, neutrale atomare und schwach ionisierte atomare Gas
umfasst, in und rundum Galaxien über die kosmische Zeit hinweg zu studieren.

Mithilfe von mehrphasigen Beobachtungen der MUSE-ALMA Haloes Survey unter-
suchen wir das kalte molekulare Gas einer anhand von H i-Absorption selektierten Galaxie
bei z ∼ 0.4. Zusätzlich verfolgen wir Gasflüsse im CGM durch kinematische Analysen
des niedrig ionisierten und molekularen Gases dieser Galaxie, welches in Emission und
Absorption beobachtet wurde. Wir stellen fest, dass die Phasen des ionisierten und des
molekularen Gases innerhalb der rotierenden Scheibe der Galaxie stark gekoppelt sind,
und dass ein zwei komponentiges Absorptionssystem in 52 kpc Entfernung von der Galaxie
mit einströmendem und mitrotierendem Gas vereinbar ist. Darüber hinaus zeigt eine um-
fassende Literaturzusammenstellung von Galaxien (z < 1.1) die einerseits anhand von
H i-Absorption und andererseits anhand von Emission selektiert wurden, dass die Auswahl
von Galaxien anhand H i-Absorption möglicherweise Objekte aufspürt, die über größere
molekulare Gasreservoirs verfügen als andere Galaxien mit vergleichbaren Sternentste-
hungsraten. Dies führt zu Erschöpfungszeiten des molekularen Gases, die mehr als eine
Größenordnung größer sein können als die mittleren Erschöpfungszeiten in Stichproben die
anhand von Emission selektiert wurden.



xviii Zusammenfassung

Beobachtungen der kalten Gasphase über die kosmische Zeit hinweg deuten auf eine
deutliche Zunahme der Massendichte des molekularen Gases in Richtung z ∼ 2 − 3 hin.
Diese Entwicklung impliziert eine damit einhergehende Änderung der globalen Verteilung
der Säulendichte von molekularem Wasserstoff (H2), die derzeit noch nicht erforscht ist.
Um dieser Frage nachzugehen, verwenden wir einen Ansatz, der Beobachtungen (PHANGS-
ALMA, SDSS) und Simulationen (Illustris-Project, GRIFFIN-Project) miteinander
verbindet, um die Entwicklung der Säulendichten von molekularem Gas zu untersuchen.
Diese Studie zeigt, dass die H2-Säulendichte, die am meisten zur Gesamtmasse des moleku-
laren Gases beiträgt, sich mit der Rotverschiebung entwickelt. Bei z = 3 ist mehr moleku-
lares Gas in dichteren Regionen zu finden als bei z = 0. Dies steht im Einklang mit einer
höheren Dichte der Sternentstehungsrate bei z = 3, da mehr molekulares Gas in dichteren
Zuständen wahrscheinlich zu einer höheren globalen Sternentstehungsrate beiträgt. Ver-
gleiche der Verteilung der H i- und H2-Säulendichten deuten außerdem an, dass H i einen
großen Anteil zur Gesamtmasse des kalten Gases im ISM von Galaxien beiträgt.

Künftig werden groß angelegte spektroskopische Absorptionslinien-Durchmusterungen
neue Perspektiven für die Kartierung des CGM bieten. Solche großen Durchmusterun-
gen, wie die bevorstehende VISTA/4MOST High-resolution Quasar Survey (4Hi-Q), er-
fordern neuartige Analysewerkzeuge, um diese Absorptionslinien in den Spektren effizient
zu erkennen und zu lokalisieren. Zu diesem Zweck entwickeln wir ein solches Werkzeug, das
auf Convolutional Neural Networks (CNN) basiert. In Ermangelung von Daten erstellen
wir auf dem 4MOST Instrument basierende synthetische normalisierte Quasarspektren
und injizieren Mg ii (λ2796, λ2803) Absorber, die auf der TNG50-Simulation des Illustris-
Projects basieren, in diese Spektren. Anhand dieser synthetischen Spektren trainieren wir
ein CNN, um zu klassifizieren, ob ein Mg ii-Absorber in den Spektren vorhanden ist und
um deren Wellenlängenposition zu bestimmen. Das CNN hat eine hohe Klassifizierungs-
(98 Prozent) und Lokalisierungsgenauigkeit (mittlerer absoluter Fehler von 6.9 Å) für eine
Stichprobe mit gleichmäßig verteilten Absorber- und Rauscheigenschaften. Außerdem ist
diese Methode um Größenordnungen schneller als herkömmliche Methoden. Diese Mach-
barkeitsstudie zeigt, dass Machine Learning ein praktikables Werkzeug für zukünftige groß
angelegte Durchmusterungen ist.

In Zusammenfassung erforschen wir mit diesen drei verschiedenen Projekten das Innen-
leben des kosmischen Baryonenkreislaufs und des CGM auf einer Skala einzelner Galaxien
bis hin zu großen statistischen Stichproben und verfolgen dabei einen Ansatz, der Beobach-
tungen und Simulationen miteinander verbindet. Außerdem, erproben wir die Verwend-
barkeit von Machine Learning für die Analyse groß angelegter Durchmusterungen, um den
Weg für die Ära der Big-Data-Astronomie zu ebnen.



Abstract

Galaxies are systems evolving through a combination of internal processes and their con-
nection to their immediate surroundings. Mechanisms, such as Active Galactic Nuclei
(AGN) feedback, stellar feedback, recycling of gas, and accretion from the cosmic web lead
to a redistribution of baryons within and surrounding galaxies. These processes interact in
the multi-phase Circumgalactic Medium (CGM), defined as the gas surrounding galaxies
outside the disk or interstellar medium (ISM), but within the virial radius of galaxies.
Thus, the CGM allows for the tracing of gas flows, which are particularly significant in the
context of galaxy evolution and star formation. The removal of gas by violent feedback
processes could lead to the quenching of star formation, while accretion is critical to sus-
taining star formation. The accreted gas mixes with the matter within galaxies and can
subsequently cool down and then collapse into molecular clouds, leading to the formation
of stars. Thus, the CGM, the cold gas phase, and its precursor, the cool gas phase, play
key roles in how galaxies evolve across cosmic time. The goal of this thesis is to explore the
cool and cold gas phases, encompassing molecular, neutral atomic, and low-ionized atomic
gas within and surrounding galaxies across cosmic time.

Exploiting multi-phase observations of the MUSE-ALMA Haloes survey we study the
cold molecular gas of a H i-absorption-selected galaxy. Additionally, we trace gas flows
in the CGM by kinematically analyzing the low-ionized and molecular gas of a galaxy at
z ∼ 0.4 in emission and absorption. We find that the ionized and molecular gas phases
are strongly coupled within the rotating disk of the galaxy and that a two-component
absorption feature at 52 kpc distance from the galaxy is consistent with being inflowing
and co-rotating gas. Further, a comprehensive literature compilation of H i-absorption
and emission-selected galaxies at z < 1.1 reveals that H i-absorption selection of galaxies
possibly traces objects that have large molecular gas reservoirs given their star formation
rate. This leads to depletion times that can be over an order of magnitude larger than the
median depletion times in samples of emission-selected galaxies.

Observations of the cold gas phase across cosmic time indicate a marked increase in the
molecular gas mass density towards z ∼ 2−3. This transformation implies an accompanied
change in the global distribution of molecular hydrogen (H2) column densities, which is
currently not yet explored. To tackle this question, we use an approach that bridges obser-
vations (PHANGS-ALMA, SDSS) and simulations (Illustris Project, GRIFFIN Project)
to explore this evolution of molecular gas column densities. This study reveals that the
H2 column density contributing most to the overall molecular gas mass evolves with red-
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shift. We find that more molecular gas is found in denser regions at z = 3 compared to
z = 0. This finding is consistent with a higher star formation rate density at z = 3, as
more molecular gas in denser states is likely contributing to a higher global star formation
rate. Further, comparisons of the distribution of H i and H2 column densities lead to the
conclusion that H i is an important contributor to the overall cold gas mass found in the
ISM of galaxies at both redshifts.

Going forward, large-scale spectroscopic absorption-line surveys will offer new prospects
for mapping the CGM surrounding galaxies. Such large surveys, as the upcoming
VISTA/4MOST High-resolution Quasar survey (4Hi-Q), will require novel analysis tools to
efficiently detect and localize these absorption lines in spectra. For this purpose, we develop
such a tool based on Convolutional Neural Networks (CNN). In the absence of data, we
produce synthetic normalized 4MOST high-resolution fibre quasar spectra and inject Mg ii
(λ2796, λ2803) absorbers based on the TNG50 simulation of the Illustris Project within
them. Using these synthetic spectra, we train a CNN to classify whether an Mg ii absorber
is present within spectra and to localize them in wavelength space. The CNN has high
classification (98 per cent) and localization (mean absolute error of 6.9 Å) accuracy for a
sample with evenly distributed absorber and noise properties. Additionally, this method is
orders of magnitude faster than traditional ones. This proof-of-concept study demonstrates
that Machine Learning is a feasible tool for future large-scale surveys.

In summary, with these three distinct projects, we explore the inner workings of the
cosmic baryon cycle and the CGM from the scale of individual galaxies to large statistical
samples using an approach that bridges observations and simulations. Additionally, we
explore the feasibility of novel methods for the analysis of large-scale surveys to pave the
way for the era of big data astronomy.



Chapter 1

Introduction

Astronomy is deeply intertwined with the history of humankind. As the oldest natural
science, the exploration of the night sky has fascinated cultures from all over the world.
The first recordings of star charts and catalogues by Egyptian and Babylonian astronomers
go back as far as 1500 BC. Humans have not only recorded the position of stars but also
questioned the structure of our surroundings. Around 400 BC the Greek philosopher Dem-
ocritus suggested that the Milky Way consists of stars. While many other philosophers
and astronomers suggested similar theories, Galileo Galilei was the first to record his ob-
servations about the Milky Way consisting of countless stars with the revolutionary tool
of the telescope in 1610. Around the same time, Johannes Kepler formulated the laws of
planetary motion, paving the way for Isaac Newton’s law of gravity that revolutionized
the modern natural sciences half a century thereafter. Within one century the horizons of
our understanding of our place in the Universe broadened even further. In 1750 Thomas
Wright suggested that faint nebulae on the night sky are actually galaxies. It took almost
two centuries to confirm this idea. Based on the work on Cepheids by Henrietta Leavitt,
Edwin Hubble was able to calculate that the nebula now called the Andromeda galaxy,
was beyond the bounds of the Milky Way. This ushered in the era of extragalactic as-
tronomy. Since this discovery, scientists have explored not only the structures of galaxies
themselves, but also how they form within the large-scale structure of the Universe us-
ing sophisticated spectroscopic instruments at large observatories, theoretical models, and
numerical simulations.
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Figure 1.1: A sketch displaying the timeline for the expansion and evolution of the Universe.
Beginning with a hot big bang quantum fluctuations and a rapid inflationary period provide
the seeds for the formation of structures such as galaxies and cosmic filaments observed in
the present Universe. Image Credit: NASA/WMAP Science Team

1.1 The Formation and Evolution of Galaxies

The basis of modern cosmology and astrophysics is built on the Λ Cold Dark Matter
(ΛCDM) model. The model assumes that the Universe has four constituents [radiation
(photons and neutrinos), ordinary matter (baryons and leptons), cold dark matter, and
dark energy]. Additionally, it is assumed that the Universe is described by general relativity
(Einstein, 1917), is statistically homogeneous and isotropic at large scales (≳ 100 Mpc),
is flat, and described by the Friedmann-Lemâıtre-Robertson-Walker metric (for a current
review see e.g. Perivolaropoulos & Skara, 2022). Starting from the hot big bang (Gamow,
1946) approximately 13.8 billion years ago (Planck Collaboration et al., 2020) the Universe
rapidly expanded leading to a subsequent formation of structures such as planets, stars,
galaxies, and cosmic filaments (see Fig. 1.1).
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1.1.1 Structure Formation

The basis for structures in the Universe is thought to be laid by quantum fluctuations in
the early, rapidly expanding Universe, leading to adiabatic, scale-invariant density pertur-
bations (e.g. Guth, 1981; Linde, 1982; Hawking, 1982; Starobinsky, 1982). Evidence of
these density fluctuations is imprinted in the cosmic microwave background (CMB, Alpher
& Herman, 1948; Penzias & Wilson, 1965). The CMB consists of radiation from approx-
imately 380 000 years after the big bang, the point of time when the Universe became
transparent to photons as it cooled down enough for electrons to combine with protons to
form hydrogen atoms (the era of recombination). These small density fluctuations have
been observed in the form of temperature fluctuations within the CMB (∆T/T ∼ 10−5)
by e.g. WMAP (Bennett et al., 2003) and Planck Satellites (Planck Collaboration et al.,
2020).

An additional important factor to structure formation is the presence of dark matter.
To explain the structures that we see in the present Universe, particles that do not interact
with electromagnetic radiation are needed, as the small density fluctuations already need
to grow before decoupling (e.g. Peebles, 1982). First observational evidence for dark matter
was detected in the Coma Cluster by Zwicky (1933) who hypothesized that the galaxies
must be held together by some sort of dark matter as they were moving too fast to be
bound together by the observed baryonic matter. Subsequent observations of rotation
curves of galaxies, which, contrary to theoretical predictions, flattened instead of declined
towards the outskirts and observations of the orbits of satellite galaxies provided additional
evidence for the existence of dark matter (e.g. Rubin & Ford, 1970; Ostriker et al., 1974;
Einasto et al., 1974).

The combination of an early rapidly expanding Universe, small density perturbations,
and dark matter led to the formation of the structures we observe in the present Universe.
The small density perturbations develop over-dense regions of dark matter that hierar-
chically cluster due to the force of gravity to form progressively larger systems collapsing
into dark matter haloes. Subsequently, as baryonic matter cools down it settles within the
gravitational potential wells of these haloes leading to the formation of the first galaxies
that assemble within groups and clusters and evolve across cosmic time (White & Rees,
1978).

(Magneto-)hydrodynamical cosmological simulations such as simulations by the Illustris
Project (e.g. Vogelsberger et al., 2014a; Springel et al., 2018), EAGLE Project (e.g. Crain
et al., 2015; Schaye et al., 2015) and the SIMBA project (e.g. Davé et al., 2019) have played
a key part in furthering our understanding of structure formation in the Universe. These
simulations evolve from given initial conditions at high redshifts to the current Universe.
They include a large range of physical processes such as gas radiative effects, primordial and
metal-line cooling, heating by the meta-galactic background radiation field, star formation,
supernova feedback, the formation and merging of supermassive black holes and feedback
of those black holes. Such models have successfully reproduced key observables such as the
low-redshift two-point galaxy correlation function describing the distribution of galaxies in
the Universe (e.g. Springel et al., 2018) and the stellar mass function across various redshifts
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(e.g. Schaye et al., 2015; Pillepich et al., 2018a; Davé et al., 2019). Thus, these simulations
provide important tools to explore the accuracy of theoretical models of structure formation
and subsequently galaxy formation and evolution. Further, they can provide important
tools to aid the planning of future observations by providing predictions of e.g. the flux
of emission lines (e.g. Augustin et al., 2019) by post-processing these simulations by using
spectral synthesis codes such as CLOUDY (Ferland et al., 2017).

1.1.2 Galaxy Evolution

In the picture of ΛCDM and hierarchical clustering, galaxy mergers are one of the fun-
damental drivers of galaxy evolution (e.g. White & Rees, 1978; Blumenthal et al., 1984).
Especially at higher redshifts high merger fractions are observed for galaxies (e.g. Con-
selice, 2003; Man et al., 2012; Mortlock et al., 2013) demonstrating that mergers are a
common event in our Universe and lead to the growth of galaxies. In particular, minor
mergers are likely important events for the formation of classical bulges, a spherical cen-
tral concentration of stars within the center of disk galaxies (e.g. Brooks & Christensen,
2016). Further, the violent process of major mergers also leads to the formation of elliptical
galaxies (e.g. Toomre, 1977; Joseph & Wright, 1985; Schweizer, 1989). Contrary to spiral
galaxies, which are typically blue and star-forming, elliptical galaxies are redder and more
massive and display little ongoing star formation (Holmberg, 1958).

At lower redshifts (z < 1) the reacceleration of the Universe (Riess et al., 1998) leads
to an increasing isolation and thus decrease of the merger rate in galaxies. In isolated disk
galaxies, internal dynamical processes can lead to a shift in mass profiles and metallicity dis-
tributions over large timescales (e.g. Sellwood, 2014). Nonetheless, in denser environments
such as groups and clusters of galaxies, external processes still lead to significant changes
within galaxy properties as they might lose a significant amount of gas by ram-pressure
stripping (e.g. Peng et al., 2010), harassment (e.g. Moore et al., 1996) and strangulation
(e.g. Peng et al., 2015).

It is evident that galaxies evolve in connection with their surroundings. Not only merg-
ers are important for the growth of galaxies, but gas accretion through the intergalactic
medium is an additional important factor (e.g. Conselice et al., 2013). Additionally, galax-
ies can also expel gas through violent internal processes such as AGN and stellar feedback.
Evidence of these feedback processes have not only been observed with large telescopes
(e.g. Shull et al., 2014; Ginolfi et al., 2020), but also have been explored in cosmological
simulations as outlined in the previous section and also high-resolution (zoom-) simulations
of galaxies and galactic haloes [e.g. GRIFFIN Project (e.g. Hu et al., 2014a; Steinwandel
et al., 2020), AURIGA (e.g Grand et al., 2017; van de Voort et al., 2019)]. This gas ex-
pelled from galaxies and accreted from the cosmic web interacts within the surroundings
of galaxies - the so-called Circumgalactic Medium.
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Figure 1.2: A sketch of the Circumgalactic Medium (CGM) surrounding galaxies displaying
the rich dynamics of the multi-phase gas. The CGM acts as a transition zone between the
ISM and IGM. The sketch displays outflows in brown, accreting gas in blue, recycling gas
in pink, and the diffuse halo in purple (Tumlinson et al., 2017).

1.2 The Circumgalactic Medium

The Circumgalactic Medium (CGM) is the transition zone between the Interstellar Medium
(ISM) and the Intergalactic Medium (IGM). It is loosely defined as the baryonic matter
outside the ISM, however still within the virial radius of a galaxy (Tumlinson et al., 2017).

The CGM is a system of rich dynamics (see Fig. 1.2). Both observations and simulations
have found evidence for gas accreting onto (e.g. Fumagalli et al., 2011; Rubin et al., 2012;
Martin et al., 2012; Hafen et al., 2017; Zabl et al., 2019; Szakacs et al., 2021), being expelled
from (e.g. Veilleux et al., 2005; Rubin et al., 2012; Bordoloi et al., 2014; Ginolfi et al., 2020;
Nelson et al., 2019b; Costa et al., 2022) and gas being recycled by outflows raining back
onto galaxies (e.g. Christensen et al., 2016; Fraternali, 2017; Bish et al., 2019).

The CGM also displays rich multi-phase gas with a large range of temperatures and
ionization states. It consists of a cold gas phase (T ≤ 104 K) traced by low ions of metal
species (e.g. Na i, Ca ii, ...), neutral atomic and molecular hydrogen, and dust (e.g. Zheng
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et al., 2020; Li et al., 2021; Szakacs et al., 2021; Damle et al., 2022), a cool gas phase
(T ∼ 104−5 K) traced by other low ions of metal species (e.g. Mg ii, Si ii, Si iii, N ii, ...;
Steidel et al., 2010; Werk et al., 2014; Szakacs et al., 2021; Augustin et al., 2021), a warm
gas phase (T ∼ 105−6 K) traced through metal ions such as C iv, N v, O vi and Nevii
(e.g. Tumlinson et al., 2011; Bordoloi et al., 2014; Werk et al., 2016) and a hot phase
(T > 106 K) traced by e.g. observations in the X-ray regime (e.g. Anderson & Bregman,
2010; Bregman et al., 2018; Nicastro et al., 2018). Compiled mass density profiles from
these multi-phase observations show that the CGM is dominated by the cool gas phase,
followed by the hot, warm, and cold phases (Tumlinson et al., 2017).

Studies of the CGM are closely related to current key questions regarding galaxy evo-
lution. Observed star-forming galaxies typically have short depletion time scales (τdep =
Mgas/SFR) in the range of 1-3 Gyrs depending on redshift and stellar mass (e.g. Saintonge
et al., 2011; Scoville et al., 2017; Aravena et al., 2019; Tacconi et al., 2020). However, the
population of star-forming galaxies persists for a longer time than these depletion times.
Subsequently, galaxies need to accrete additional fuel for star formation, which has to be
provided by the IGM and CGM. A related puzzle is the bimodality of the specific star
formation rate (sSFR = SFR/M∗) as a function of M∗ (e.g. Schiminovich et al., 2010). In
this bimodality, star-forming and passive galaxies are found. It is unclear what leads to
this quenching of star formation in galaxies. Possible solutions are the shutting off of IGM
accretion or a hot CGM that is not cooling and subsequently is prevented from entering
the ISM. For satellite galaxies, ram-pressure stripping by the halo of the central galaxy is
another possibility (Tumlinson et al., 2011). Finally, a large fraction of baryons predicted
by the ΛCDM model is not accounted for by observed galaxies (missing baryons problem,
see e.g. Fukugita et al., 1998; Bregman, 2007; Shull et al., 2012). These baryons might
be found in a hot and diffuse gas within the CGM or even completely outside of galaxy
haloes and further observations are needed to solve the missing baryons problem (Tumlin-
son et al., 2017; Comparat et al., 2022). In the upcoming years, future X-ray missions such
as the Lynx X-ray observatory (Gaskin et al., 2019), the X-ray Imaging and Spectroscopy
Mission (XRISM, XRISM Science Team, 2020) and the Athena X-ray Observatory (Barret,
2022) will provide observations to tackle these questions.

While the CGM is a highly interesting medium to study due to its complex structure,
rich dynamics and given its importance in regards to galaxy evolution, the low surface
brightness makes it difficult the explore. Current instruments cannot observe the CGM
in emission in most cases (Frank et al., 2012; Augustin et al., 2019; Corlies et al., 2020a).
Thus, the vast majority of the studies outlined above trace the CGM in absorption instead.

1.2.1 Exploring the CGM in Absorption

Absorption-line studies provide one of the most powerful tools to explore the CGM. This
technique exploits bright background sources, in most cases quasars, to search for inter-
vening systems along the line of sight of the background source. The gas in the intervening
systems causes absorption in the spectrum of the background source (see Fig. 1.3). This
method offers the advantage of the sensitivity of observations being independent of redshift,
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Figure 1.3: A sketch of a typical setup for absorption-line studies of the CGM. A bright
background source (in most cases quasars) provides pencil-beam sightlines used for the
search of intervening gas. These intervening systems are imprinted through absorption
lines in the spectrum of the background source. (Péroux & Howk, 2020)

allowing for probing of the low-density CGM gas even at early epochs (e.g. Tripp et al.,
1998; Péroux & Howk, 2020). Nonetheless, it also comes with the disadvantage of only
probing pencil beams along the line of sight. However, this limitation can be minimized
by obtaining large samples of absorption-line systems to study the CGM in a statistical
manner.

Lyman-α absorbers provide an effective way of exploring the atomic gas phase of the
CGM. They are typically categorized into three distinct types, depending on the observed
H i column density (see e.g. Péroux & Howk, 2020). The strongest absorbers, Damped
Lyman-α Absorbers (DLAs; NH i ≥ 1020.3cm−2; Wolfe et al., 1986), trace the mostly neutral
cold and cool phase of the CGM and parts of the ISM (e.g. Wolfe et al., 1986; Péroux &
Howk, 2020). Simulations indicate that DLAs have the highest covering fractions within
approximately 20 kpc of the galaxy haloes (e.g. van de Voort et al., 2019; Nelson et al.,
2020). Sub-Damped Lyman-α absorbers (sub-DLAs; NH i = 1019.0−20.3 cm−2; Péroux et al.,
2003) trace gas consisting of a mixture of ionized and neutral gas further away from the core
in galaxy haloes. Lyman-Limit-Systems (LLS; NH i = 1017.2−19.0 cm−2; Tytler, 1982) trace
mostly ionized systems with low neutral fractions of H0/H = 10−3 (e.g. Fumagalli et al.,
2016) and trace gas in large extended regions surrounding galaxies. Due to this higher
volume filling factor, the detections of lower column density systems are more numerous
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compared to the high column density DLAs. Below these column densities, the low-density
gas of the IGM is traced by the Lyman-α forest (see e.g. Weinberg et al., 2003).

In recent years, powerful instruments such as the Multi Unit Spectroscopic Explorer
(MUSE) on the Very Large Telescope (used to trace the ionized gas phase in galaxies; Bacon
et al., 2010) and the Atacama Large Millimeter/Submillimeter Array (ALMA; exploited
for molecular gas observations; Wootten & Thompson, 2009) have revolutionized the field.
These instruments offer Integral Field Spectroscopy (IFS) capabilities, thus providing a
spectrum for each pixel of an image. The combination of spectroscopic absorption-line and
IFU observations have proven to be a powerful tool to connect the properties of galaxies
traced in emission with the CGM traced in absorption. Surveys such as MUSEQuBES
(Muzahid et al., 2020, 2021), MEGAFLOW (e.g. Schroetter et al., 2016) and MUSE-
ALMA Haloes (e.g. Péroux et al., 2022) have connected the CGM traced in absorption with
the ISM traced in emission. Among other results, these studies find that H i-absorption-
selected galaxies are preferentially found in groups (Hamanowicz et al., 2020), a higher
metal enrichment of the CGM along the minor axis compared to the major axis of galaxies
due to outflowing gas (Wendt et al., 2021) and traced inflowing, outflowing and co-rotating
gas in the CGM (e.g. Rahmani et al., 2018a,b; Schroetter et al., 2019; Szakacs et al., 2021).
Thus, it is observationally confirmed that the CGM plays an important role in the cycling
of baryons through dynamical processes such as accreting, outflowing, and recycling gas.

1.3 The Cosmic Baryon Cycle

The amount of mass in baryons in the Universe (4 per cent) is well established from
measurements of anisotropies in the Cosmic Microwave Background (CMB) (Planck Col-
laboration et al., 2020) and primordial nucleosynthesis (Cooke et al., 2018). This baryonic
matter cycles through various phases across cosmic time. From collapsing within dark
matter haloes, to cooling down and forming molecular clouds and subsequently stars that
create metals, to stars exploding into supernovae and enriching their surroundings with
their produced metals. The processes of this cosmic baryon cycle heavily impact the galaxy
populations across cosmic time, thus exploring how star formation, cold gas, and metals
evolve on a global scale is key to deciphering the many questions still open concerning
galaxy evolution.

1.3.1 An Evolving Star Formation Rate Density across Cosmic
Time

Measurements of galaxies in the ultraviolet (UV) and infrared (IR) regime have revealed
an evolving star formation rate density (SFRD) across cosmic time (see Fig. 1.4, Madau &
Dickinson, 2014). Beginning from the early Universe, the SFRD constantly rises up until
cosmic noon (z ∼ 2) where it peaks and subsequently drops towards z = 0.

These measurements are based on converting UV and IR luminosity densities to star
formation rate densities using conversion factors, leading to various uncertainties. Firstly,
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Figure 1.4: A compilation of measurements in ultraviolet (UV) and infrared (IR) wave-
lengths for the star formation rate density (SFRD) across cosmic time (Madau & Dickinson,
2014). UV measurements are in green, pink, black, and blue. IR measurements are in red
and orange. Beginning from the early Universe, the SFRD rises until z = 2 where it peaks
and drops towards z = 0.

the UV luminosity itself depends highly on the extinction correction due to dust attenu-
ation. Next, both the UV and IR conversion factors are dependent on the stellar initial
mass function (IMF) used, which in itself is uncertain. Further, the UV conversion factor
is dependent on the recent star formation and metal enrichment history. Finally, the IR
conversion factor additionally assumes that all IR luminosity is due to recent star forma-
tion, however, old stars and active galactic nuclei can also contribute to the IR luminosity
(Madau & Dickinson, 2014).

Even though there are uncertainties that require further exploration, it is well estab-
lished that the cold gas phase is crucial for star formation itself. Within the cold neutral
atomic gas phase molecular clouds form, subsequently leading to the formation of stars
within these clouds. (e.g. Schruba et al., 2011). Exploring the evolution of both the neu-
tral atomic and molecular gas phase is critical for our understanding of the evolving star
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formation rate density in the Universe.

1.3.2 The Evolution of Neutral Atomic Gas across Cosmic Time

Figure 1.5: The evolution of neutral gas (green), molecular gas (gray), and stellar (red)
mass densities in the Universe across cosmic time based on a compilation of observations
(Péroux & Howk, 2020). The neutral gas phase displays a steady decline in the mass
density towards z = 0. The molecular mass density rises with declining redshift up until
z ∼ 2 − 3 and subsequently drops rapidly towards z = 0. The evolution of the molecular
gas mass density mimics the evolution of the star formation rate density across cosmic time
in Fig. 1.4.

The neutral gas phase in the Universe is dominated by atomic Hydrogen (H i). It is the
gas phase second closest to the star formation process (with the molecular gas phase being
the closest), thus understanding its evolution is important to study the mechanisms of star
formation within galaxies. Depending on redshift, mainly two observational techniques
have been used to study the evolution of H i.

Below z ≤ 1.0 the H i 21-cm transition is observable in direct emission or by stack-
ing observations with current and future radio telescopes [e.g. VLA (Heeschen, 1981),
MeerKAT (Jonas & MeerKAT Team, 2016), ASKAP (Hotan et al., 2021)]. Numerous
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efforts in recent years have contributed to deriving the H i mass density by measuring the
H i 21-cm line of galaxies (e.g. Delhaize et al., 2013; Rhee et al., 2016; Jones et al., 2018b;
Bera et al., 2019; Chowdhury et al., 2020, 2021) within this redshift regime. At redshifts
above z > 1, the H i 21-cm transition seen in emission is below the sensitivity limit of cur-
rent telescopes. Thus, alternative approaches have been used. The most commonly used
approach is the search of Lyman-α absorption within quasar spectra (see Section 1.2.1 and
see e.g. Zafar et al., 2013; Rao et al., 2017; Noterdaeme et al., 2012). However, above z ≥ 5
the Lyman-α forest becomes opaque due to the high H i neutral fractions. Thus, at these
redshifts, the continuum of the background quasar is mostly absorbed, making the search
for Lyman-α absorption difficult. First efforts to overcome this are offered by alternative
tracers of neutral gas. E.g. Becker et al. (2019) have successfully used OI absorption in
background quasars as a tracer up to z = 6.5 and Heintz et al. (2021, 2022) have explored
using the bright [C ii] 158µm emission to trace the H i content of galaxies up to z = 7.

There is little evolution in the density of neutral gas (Ωneutral gas) between the local
universe and z = 5 (see the green line in Fig. 1.5 based on a comprehensive compilation
of observations by Péroux & Howk, 2020). As the redshift decreases, so does Ωneutral gas

following a two-parameter power-law (Péroux & Howk, 2020):

Ωneutral gas(z) = [(4.6± 0.2)× 10−4](1 + z)0.57±0.04 . (1.1)

This evolution of the neutral gas mass density compared to the evolution of the star
formation history (see Section 1.3.1) indicates that there is no direct connection between
the overall abundance of neutral gas and the star formation efficiency in the Universe.
Clearly, exploring a gas phase closer to star formation is needed to better understand what
causes the sharp decline of the star formation rate in the Universe towards z = 2.

1.3.3 The Evolution of Molecular Gas across Cosmic Time

As gas within the neutral atomic gas phase cools down it collapses into cold (T ∼ 10−40K),
dense (nH2 ∼ 102 − 105 cm−3) massive (M ∼ 104 − 106.5M⊙) molecular clouds (Giant
Molecular Clouds (GMCs); e.g. McKee & Ostriker, 2007; Kennicutt & Evans, 2012; Tacconi
et al., 2020). Molecules within these clouds are shielded from the interstellar UV radiation
through a layer of surrounding atomic gas, dust and by self-shielding of molecular hydrogen
itself (e.g. McKee & Ostriker, 2007; Krumholz et al., 2008). Under these conditions the
Jeans criterion is reached within the dense cores of GMCs, leading to the formation of stars.
Thus, the molecular phase is the gas phase closest to star formation and understanding
its evolution across cosmic time is key to understanding the star formation history of the
Universe itself.

Molecular gas is most abundantly found in the form of molecular Hydrogen (H2). How-
ever, at the cool temperatures within molecular clouds the first accessible rotational level
(Tex ∼ 500 K) cannot be excited. Thus, the second most abundant molecule, CO, is typ-
ically used as a tracer for molecular gas. CO offers the advantage that it is both bright
and has low excitation temperatures of Tex ∼ 5 K (e.g. Bolatto et al., 2013). In practice,



12 1. Introduction

the integrated CO(1-0) line luminosity is converted to a molecular gas mass using various
(metallicity-dependent) conversion factors from literature (e.g. Leroy et al., 2011; Genzel
et al., 2012; Bolatto et al., 2013; Teng et al., 2022).

Particularly the instrument ALMA has revolutionized molecular gas studies. ALMA
is an interferometry instrument with 66 antennas and operates in the millimeter/sub-
millimeter regime. With its IFS capabilities, it provides spatially resolved spectra at spatial
resolutions of down to 20 milliarcseconds and spectral resolutions of up to R = λ/∆λ = 30
000 000. These capabilities have led to resolving the molecular gas in local galaxies down
to scales of molecular clouds with programs such as the Physics at High Angular resolution
in Nearby GalaxieS (PHANGS) ALMA survey (e.g. Leroy et al., 2021; Sun et al., 2022) and
the ALMA Comprehensive High-resolution Extragalactic Molecular Inventory (ALCHEMI;
Mart́ın et al., 2021).

Deep surveys of molecular gas in galaxies have given first estimates of the molecular
gas density (Ωmolecular gas) across cosmic time (e.g. Decarli et al., 2016, 2019; Walter et al.,
2016; Riechers et al., 2019; Saintonge et al., 2017). A compilation of such surveys (red line
in Fig. 1.5, Péroux & Howk, 2020) shows a strong evolution in the mass density across
cosmic time. Ωmolecular gas rises until cosmic noon (z ∼ 2-3) and subsequently shows a steep
drop towards z = 0. This evolution of Ωmolecular gas is mirrored by the evolution of the star
formation rate density described in 1.3.1, indicating the strong connection between the
molecular gas mass density and star formation across cosmic time.

As displayed by the large errors in Fig. 1.5, the uncertainties on the molecular gas
densities across cosmic time are still large and more observations are the key to improving
the constraints. One survey tackling this question is the ALMACAL survey (Zwaan et al.,
2022). By exploiting ALMA calibration data (∼ 2500 hours integration time) it aims to
blindly survey the Universe for molecular gas emission. A first pilot survey with a sub-
set of the data has given first constraints on the molecular gas density at low redshifts
(Hamanowicz et al., 2022) and will be extended to the full sample in the future.

1.3.4 The Evolution of Metallicity across Cosmic Time

Absorption-line studies (see Section 1.2.1) are a key method to trace the evolution of
metallicity in the Universe. Absorption-based metallicity estimates offer the advantage of
not requiring a local excitation source. Hence, they are less sensitive to density and tem-
perature compared to emission-based estimates and probe both low- and high-metallicity
excitation regions (Péroux & Howk, 2020).

The total expected amount of mass in metals produced in the Universe can be derived
by scaling the stellar mass density with estimated yields of long-lived stars and stellar
remnants (Péroux & Howk, 2020). The blue line in Fig. 1.6 displays the rising amount of
expected metals with lower redshift (∼ two orders of magnitude between z = 5 and 0), as
the stellar mass density increases (see Fig. 1.5). Towards the local Universe, the curve of
expected metals flattens due to the decrease of star formation.

A compilation of DLA measurements by Péroux & Howk (2020) displays a high con-
tribution of metals within the neutral gas phase across cosmic time (green dots in Fig.
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Figure 1.6: A compilation of the expected amount of metals in the Universe across cosmic
time and the phase in which those are found by the currently most robust measurements
by Péroux & Howk (2020). At redshifts above z ≥ 2.5 almost all metals are found within
the neutral gas phase. Below those redshifts contributions by stars and hot gas become
increasingly important.

1.6). Current measurements indicate that above z ≥ 2.5 the majority of metals are found
within the neutral gas phase. At redshifts below z ≤ 2.5 the contribution by the neutral
gas phase decreases, while an increasing amount of metals is found within stars and hot
gas (Péroux & Howk, 2020). The currently most robust measurements of lower density
absorbers (Becker et al., 2011; Fumagalli et al., 2016; Lehner et al., 2019) indicate a smaller
amount of metals within the (partially-)ionized gas phase at z ∼ 6, z ∼ 3 and z ≤ 1.

Fig. 1.6 displays a clear lack of robust measurements to fully constrain the census of
metals across cosmic time. However, upcoming large-scale surveys by e.g. VISTA/4MOST
(de Jong et al., 2019), DESI (DESI Collaboration et al., 2016) and WHT/WEAVE (Dalton
et al., 2012) will fill these gaps with increasing efficiency. However, given the massive
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amount of data, such surveys require specialized analysis methodologies. Techniques such
as machine learning need to be explored in astronomical contexts to deal with the advent
of big data astronomy.

1.4 Machine Learning

Machine learning has proven to be a useful tool for a wide range of applications. Among
others, these include detecting features in images (e.g. Krizhevsky et al., 2012), forecasting
time series (e.g. Lara-Beńıtez et al., 2021) and even for creating systems that play the
traditional Chinese game Go so well that it beat world champions (Silver et al., 2016).
A commonly used definition of the term Machine Learning is given by Tom Mitchell:
”A computer program is said to learn from experience E with respect to some class of
tasks T and performance measure P if its performance at tasks in T, as measured by P,
improves with experience E.” (Mitchell, 1997). Thus, machine learning includes methods
that take advantage of data to improve the performance on set tasks. These methods can
be categorized within distinct types (see e.g. Murphy, 2013). Supervised learning leverages
labeled data. Meaning that the machine is given an input and an additional output that it
is meant to reproduce. Unsupervised learning uses unlabeled data to e.g. cluster data into
specific regions on a latent space. Semi-supervised learning provides a combined method
of both supervised and unsupervised learning in case only a small amount of labeled data
is available. Finally, reinforcement learning trains a machine on how to respond to given
signals by providing rewards or penalties depending on the performed action. While there
are numerous flavours of machine learning methods, the next section will focus on the
description of neural networks in the supervised learning paradigm, as this is the relevant
approach applied in this work.

1.4.1 Neural Networks

Neural networks are a machine learning approach that is inspired by the principles of
neurobiology. An in-depth review of the basic principles of neural networks is provided in
Gurney (1997) and the next two paragraphs provide a short summary based on this book.
The human brain consists of neurons that are connected with each other and communicate
through electrical signals. Synapses, electrochemical junctions located on the branches
(dendrites) of a neuron’s cell body (soma), allow for these connections between the neurons.
Each neuron is embedded in the overarching network via these connections to other neurons
to transmit the aforementioned signals. If incoming signals exceed a certain threshold, the
neuron generates a voltage impulse that is transmitted to other neurons through fibres
called axons. The incoming signals can have both an inhibitory effect and an excitatory
effect, with the latter promoting and the former preventing the firing of a neuron. Thus,
each neuron’s processing ability is based on the type and strength of synaptic connections
with other neurons.

Neural networks take these processes and recreate them artificially as they contain nodes
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Figure 1.7: Sketch of a simple feed-forward neural network containing an input layer, a
layer containing three neurons in the middle, and an output layer with two neurons. Each
subsequent layer has connections to the neurons of the following layer. (Gurney, 1997)

that are rudimental emulations of neurons. The synapses are represented in terms of single
numbers or weights. Inputs are multiplied by these weights and are sent to the analogue
of the cell body, which sums up the weighted signals and inputs the values to an activation
function (e.g. a threshold function returning 0 or 1 depending on the summed signals). For
supervised learning methods, these weights are optimized to minimize a metric appropriate
for a given task (e.g. the mean squared error for regression tasks or binary cross-entropy
for classification tasks) by the backpropagation algorithm. In particular, this algorithm
exploits the chain rule for derivatives combined with stochastic gradient descent. The
gradients of the used metric (i.e. error function) are calculated with respect to the weights
of the neural network starting from the final (i.e. output) layer. Going backwards in the
network structure, the gradient of each layer is calculated including partial computations
of the gradient from previous layers. The weights of the neural network are then updated
based on these gradients. The iteration of this process leads to the optimization of the
weights of the neural network minimizing the error function. In the most simple form,
a neural network consists of stacked layers of neurons having connections to subsequent
layers (see Fig. 1.7).

1.4.2 Convolutional Neural Networks

Convolutional neural networks are based on the organization of the visual cortex in ani-
mals. The basic idea is that the visual cortex consists of simple and complex cells (Hubel &
Wiesel, 1959). Simple cells are good at detecting edges of particular orientations. Complex
cells are similar to simple cells in the sense that they are also good at detecting edges of
particular orientations, however, they are able to do this with spatial invariance. Hubel &
Wiesel (1962) proposed that complex cells achieve this by summing the output of several
simple cells. Inspired by this idea, Fukushima (1980) created the mathematical neocogni-



16 1. Introduction

tron model to recognize patterns in images invariant of their position. Based on these ideas,
the first modern convolutional Neural network was developed to recognize hand-written
digits by Lecun et al. (1998).

Specifically, CNNs consist of convolution, pooling, and fully connected layers (see e.g.
the reviews on CNNs by LeCun et al., 2015; Yamashita et al., 2018). Convolutional layers
extract features from input signals (e.g. images or spectra) by calculating element-wise
products of given kernels and the input. Subsequently, a non-linear activation function
is applied to the outputs of the linear convolution operation to allow for outputs that
vary non-linearly with inputs. Pooling layers reduce the dimensionality of the feature
maps calculated by the convolutional layers, allowing for a shift-invariance of the feature
detection by e.g. calculating the maximum or average values in patches of the feature
maps. Finally, fully connected layers map the extracted features to the desired output
(e.g. classification or regression). The combination of these layers leads to a neural network
that can extract desired features without being affected by small shifts and distortions of
these features. This and other types of machine learning methods have been applied in
astronomical contexts with increasing success.

1.4.3 Machine Learning as a Tool in Astronomy

Astronomical datasets are rapidly increasing in size, especially due to large-scale surveys
such as SDSS (York et al., 2000), Gaia (Gaia Collaboration et al., 2016), the eROSITA
all-sky survey (Predehl et al., 2021), and a large number of upcoming surveys, in par-
ticular VISTA/4MOST (de Jong et al., 2019), DESI (DESI Collaboration et al., 2016),
WHT/WEAVE (Dalton et al., 2012), LSST (Ivezic et al., 2008) and SKA (Dewdney et al.,
2009) surveys. This massive increase in data leads to a novel need for efficient and auto-
mated tools that can analyze or even infer physical knowledge from these large datasets.

Supervised learning methods, in the form of e.g. random forests (e.g. Ho, 1995) and
convolutional neural networks (e.g. LeCun et al., 2015), have been used to identify causality
in astronomical data (Bluck et al., 2020, 2022; Baker et al., 2022), to identify galaxy
mergers (Rose et al., 2022), photometric quasar identification and redshift estimation (Li
et al., 2022; He & Li, 2022), identifying Lyman-α and metal absorption lines in quasar
spectra (Parks et al., 2018; Zhao et al., 2019; Wang et al., 2022; Xia et al., 2022), for
photometric source detection, classification and parametrization (Shi et al., 2022) and many
more applications. Unsupervised learning methods applied through e.g. autoencoders
(Liou et al., 2014), self-organizing maps (Wehrens & Buydens, 2007) and others have
been useful to e.g. classify galaxy morphology (Galvin et al., 2020; Fielding et al., 2022),
denoising astronomical data (Shen et al., 2017; Gheller & Vazza, 2022) and for photometric
membership assignment in stellar clusters (Krone-Martins & Moitinho, 2014).

These studies provide evidence that machine learning will play an important role in the
era of big data astronomy. While still in their infancy and the viability of these approaches
still needs to be explored for their usage in many applications, these methods often provide
similar to better accuracy than traditional methods and are additionally computationally
efficient (i.e. faster) once the algorithms have been trained.
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1.5 The Goal of this Thesis

The overarching goal of this thesis is to study the cool and cold gas phases within and
surrounding galaxies. These gas phases encompass the molecular gas and its precursors in
the form of neutral and low-ionized atomic gas. As molecular gas is the closest gas phase to
star formation, deciphering the properties and dynamics of this phase and its progenitors
is of key importance to further our understanding of star formation within galaxies and
subsequently the evolution of galaxies in general. The thesis can be divided into distinct
questions all serving this overarching goal:

• How does the kinematics of the molecular gas phase compare to the ionized gas phase
in galaxies? (Chapter 2)

• Does the circumgalactic medium of galaxies detected in absorption trace inflowing,
outflowing, or co-rotating gas? (Chapter 2)

• What are the molecular gas properties of H i-absorption-selected galaxies and how
do they differ compared to emission-selected samples? (Chapter 2)

• How does the distribution of molecular gas column densities evolve across cosmic
time? (Chapter 3)

• Which column densities contribute the most to the overall molecular gas mass density
across cosmic time? (Chapter 3)

• How does the evolution of molecular hydrogen column densities compare to the evo-
lution of neutral hydrogen column densities? (Chapter 3)

• What is the shape of the molecular gas column density distributions of individual
main-sequence star-forming galaxies? (Chapter 3)

• Is machine learning a viable alternative to traditional methods for the detection and
localization of metal absorbers in background quasar spectra of upcoming large-scale
surveys? (Chapter 4)

We address these questions on the scales of individual galaxies, up to large statistical
samples. In Chapter 2 we explore the kinematics and properties of the neutral, molecu-
lar, and ionized gas phase within the ISM and CGM of H i-absorption selected galaxies
by exploiting IFU observations by VLT/MUSE, ALMA and spectroscopic observations by
HST/COS. In Chapter 3, we study the evolution of the distribution of H2 column den-
sities using an approach that bridges observations (ALMA and SDSS) and (cosmological
magneto-)hydrodynamical simulations (TNG50 and TNG100 by the Illustris Project and
an isolated dwarf galaxy simulation by the GRIFFIN project). Finally, in Chapter 4,
we create synthetic normalized quasar spectra mimicking upcoming VISTA/4MOST ob-
servations with injected Mg ii (λ2796, λ2803) absorbers derived from TNG50 to train a
convolutional neural network for the detection and localization of Mg ii absorption-line
systems in millions of spectra of future data sets.
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Chapter 2

MUSE-ALMA Haloes VI: Coupling
Atomic, Ionized & Molecular Gas
Kinematics of Galaxies

The content of this chapter is based on the published article Szakacs et al.,
(2021), MNRAS, 505, 4746.

2.1 Abstract

We present results of MUSE-ALMA Haloes, an ongoing study of the Circumgalactic
Medium (CGM) of galaxies (z ≤ 1.4). Using multi-phase observations we probe the neutral,
ionized, and molecular gas in a sub-sample containing six absorbers and nine associated
galaxies in the redshift range z ∼ 0.3−0.75. Here, we give an in-depth analysis of the newly
CO-detected galaxy Q2131-G1 (z = 0.42974), while providing stringent mass and depletion
time limits for the non-detected galaxies. Q2131-G1 is associated with an absorber with
column densities of log(NH i/cm

−2) ∼ 19.5 and log(NH2/cm
−2) ∼ 16.5, has a star forma-

tion rate of SFR = 2.00± 0.20 M⊙yr
−1, a dark matter fraction of fDM(r1/2) = 0.24− 0.54

and a molecular gas mass of Mmol = 3.52+3.95
−0.31 × 109 M⊙ resulting in a depletion time of

τdep < 4.15 Gyr. Kinematic modelling of both the CO (3–2) and [O iii] λ5008 emission
lines of Q2131-G1 shows that the molecular and ionized gas phases are well aligned direc-
tionally and that the maximum rotation velocities closely match. These two gas phases
within the disk are strongly coupled. The metallicity, kinematics, and orientation of the
atomic and molecular gas traced by a two-component absorption feature are consistent
with being part of the extended rotating disk with a well-separated additional component
associated with infalling gas. Compared to emission-selected samples, we find that H i-
selected galaxies have high molecular gas masses given their low star formation rate. We
consequently derive high depletion times for these objects.
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2.2 Introduction

One of the most puzzling questions in galaxy evolution is how galaxies sustain their star
formation. Due to the short depletion timescales that have been observed, it is evident that
galaxies have to accrete gas from an external source in order to maintain their continuity
on the main sequence (e.g. Scoville et al., 2017). The inflowing gas is accreted from the
intergalactic medium (IGM). While it is a challenging task to observe the accretion process
due to the low density of the extragalactic gas, a number of inflows have been observed
over the last few years (e.g. Rubin et al., 2012; Martin et al., 2012; Turner et al., 2017; Zabl
et al., 2019). Metal enriched gas is also expelled from galaxies due to AGN feedback (Shull
et al., 2014) or stellar feedback (e.g. Ginolfi et al., 2020). A fraction of the expelled gas
is returned through galactic fountains (Fraternali, 2017; Bish et al., 2019), where cooled
down gas rains onto the galactic disk, while some other part is returned to the IGM through
galactic winds driven by AGN and stellar feedback processes.

The inflowing and outflowing gas interacts in a zone called the circumgalactic medium
(CGM), which is loosely defined as the gas surrounding galaxies outside of the disk or
ISM, but within the virial radius (Tumlinson et al., 2017). While it can be a challenging
endeavour to observe the CGM directly, due to the low surface brightness of the gas (e.g.
Frank et al., 2012; Corlies et al., 2020b; Augustin et al., 2019), observations and simulations
indicate that the CGM is a multi-phase medium. The hot phase of the CGM has been
observed through X-ray observations (e.g. Anderson & Bregman, 2010; Anderson et al.,
2013; Bregman et al., 2018; Nicastro et al., 2018) and Ly-α emission (e.g. Cantalupo et al.,
2014; Wisotzki et al., 2016, 2018; Umehata et al., 2019). The cooler gas in the CGM can
be probed by studying absorption lines in quasar (QSO) spectra, which offer the advantage
of the sensitivity being independent of redshift (e.g. Tripp et al., 1998). This cooler low-
density gas has been detected through the absorption lines of various metal species and
Hydrogen (e.g. Steidel et al., 2010; Rudie et al., 2012; Werk et al., 2013; Turner et al.,
2014). Hydrodynamic simulations strengthen the picture of a multi-phase CGM, by finding
a mixture of cooler (T ∼ 104 K) and hotter (T ∼ 105.5−106 K) gas within the virial radius
of simulated galaxies (e.g. Stinson et al., 2012; Suresh et al., 2017; Nelson et al., 2020).

An important aspect to understand how galaxies sustain their star formation is to con-
nect the CGM gas probed by absorption with the galaxies associated with the absorbers.
Narrow-band imaging and long-slit spectroscopic studies have searched for nebular emis-
sions from H i-selected galaxies (e.g. Kulkarni et al., 2000, 2001) and have, in part, been
successful in the past (e.g. Chen et al., 2005; Fynbo et al., 2010). Further, integral field
spectroscopy (IFS) combined with long-slit spectroscopy follow-ups have made it possible
to not only associate galaxies with strong H i-absorbers (e.g. Bouché et al., 2007; Péroux
et al., 2011a,c, 2017; Rudie et al., 2017), but to also study the star formation rate, metal-
licity of the emission line gas and kinematics of the ionized gas (e.g. Bouché et al., 2012;
Péroux et al., 2017; Rahmani et al., 2018a,b; Hamanowicz et al., 2020). The findings,
among others, include a correlation between the SFR of the associated galaxy and the
equivalent width of the absorption, indicating a physical connection between starbursts
and gas seen in absorption (Bouché et al., 2007). Péroux et al. (2011a) find that in the
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majority of the cases the metallicity of the absorption is lower than that of the associ-
ated galaxy. The number of studies associating absorption features found in the spectra
of quasars with the physical properties of absorber host candidates is low. An additional
issue remains: associating galaxies with absorbers that are in complex group environments
as studied in this and a previous MUSE-ALMA Haloes publication (Hamanowicz et al.,
2020). The authors suggest that galaxies found in these environments would benefit from
associating the kinematics of the galaxies with the absorber in order to distinguish which
galaxies/environments the absorption is tracing (e.g. see Rahmani et al., 2018a). There-
fore, obtaining more observations of absorber - absorber host systems play a key part in
furthering the understanding of the medium surrounding galaxies.

Searches at the radio / sub-mm wavelengths with instruments like the Atacama Large
Millimeter Array (ALMA) have enabled the community to study the mass, depletion time,
and kinematics of the molecular gas in galaxies associated with absorbers (e.g. Neeleman
et al., 2016, 2018; Klitsch et al., 2018, 2019b; Augustin et al., 2018; Møller et al., 2017;
Kanekar et al., 2018, 2020; Péroux et al., 2019; Freundlich et al., 2021). One of the findings
that these H i-selected galaxies have in common is that the molecular gas masses of these
galaxies are high for their given SFR, leading to depletion times that are up to multiple
factors larger than the averages found in emission-selected galaxies. Further observations
and constructing statistically significant samples, like the ones obtained in the MUSE-
ALMA Haloes project, are needed in order to study a possible correlation.

Obtaining spatially-resolved multi-phase data of galaxies has furthered our understand-
ing of how the ionized and molecular gas phases relate to each other. Kinematic studies
have revealed that the two phases mostly align well spatially (e.g. Übler et al., 2018; Møller
et al., 2017; Klitsch et al., 2018; Loiacono et al., 2019; Péroux et al., 2019; Molina et al.,
2019, 2020). Further kinematic studies by the EDGE-CALIFA survey (Levy et al., 2018)
have shown that 75% of the galaxies in their sample have higher maximum rotational ve-
locities for the molecular gas while the remaining 25% have similar maximum rotational
velocities to the ionized gas. Péroux et al. (2019) on the other hand did indeed find a
case where the rotational velocity of the molecular gas was significantly lower than for
the ionized gas in a galaxy associated with a strong H i-absorber. The number of galaxies
observed in both the molecular and ionized gas phase is still low and studies of these gas
phases are a key point in furthering our understanding of gas flows within and surrounding
galaxies.

Another aspect of using IFS-based multi-wavelength observations is that these data
make it possible to estimate the dark matter fractions in the inner parts of galaxies. A
widely accepted notion is that dark matter dominates the outskirts of galaxies, however,
the distribution of matter in the central parts of galaxies is still debated. Studies like
the DiskMass survey (Martinsson et al., 2013) have observed 30 spiral galaxies at the
current epoch and found the central dark matter fractions to be mostly in the range of
0.5-0.9. Studies of higher redshift galaxies find lower central dark matter fractions in both
observations and simulations (e.g. Übler et al., 2018, 2020; Genzel et al., 2017, 2020).
Price et al. (2020) report a decrease of the dark matter fraction toward higher redshifts,
attributed to various intertwined effects of galaxy mass–size growth, gas fraction, and halo
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growth and evolution. Therefore obtaining further samples of central dark matter fractions
is an important aspect of understanding the reasons for the differences in the central dark
matter fractions over different epochs.

The studied MUSE-ALMA Haloes sub-sample includes six absorbers and nine associ-
ated galaxies in the redshift range z ∼ 0.3−0.75. In this publication, we present the results
from new ALMA observations of the fields Q2131-1207, Q1232-0224, Q0152-2001, Q1211-
1030, Q1130-1449 each of which contain a strong H i-absorber at z ∼ 0.4 and in the case
of Q1232-0224 an additional one at z ∼ 0.75. While we analyze and provide information
on all fields, the focus of this publication lies on the CO-detected galaxy Q2131-G1 in the
field Q2131-1207 [first reported in Bergeron (1986) and further analyzed in Guillemin &
Bergeron (1997) and Kacprzak et al. (2015)].

The paper is organized as follows: Section 2.3 presents the observational set-up and
data reduction and imaging process. Section 2.4 describes the molecular properties of
the galaxies associated with the strong H i-absorbers while describing both the physical
and morpho-kinematical properties and providing limits for non-detections. In Section 2.5
we discuss our findings and put them into context with previous observations. Finally,
Section 2.6 gives a summary of the findings. Throughout this paper we adopt an H0 =
70km s−1Mpc−1,ΩM = 0.3, and ΩΛ = 0.7 cosmology.

2.3 Observations

We follow a multi-wavelength approach to study the gas and associated galaxies in this
study, combining VLT/MUSE, HST, and ALMA observations. The observations and cor-
responding data processing/imaging are presented in this section.

2.3.1 Optical Campaign

VLT/MUSE Observations

In this work, we study five fields containing quasar absorbers (Q2131-1207, Q1232-0224,
Q0152-2001, Q1211+1030, and Q1130-1449). These fields are a subset of the full MUSE-
ALMA Haloes sample which have ALMA follow-up observations targeting redshifts of z ∼
0.4 and z ∼ 0.75. That sample has been observed using VLT/MUSE in period 96 under
programme ESO 96.A-0303 (PI: C. Peroux). All fields were observed in nominal mode
(4800-9400 Å) under good seeing conditions (<0.85 arcsec). The first four fields were
observed for 1-2 hours per target, while Q1130-1449 was observed significantly deeper (12×
1200 s). The observations and data reduction method for the 5 quasar fields is described
in depth in Péroux et al. (2019) and Hamanowicz et al. (2020). In short, the ESO MUSE
reduction pipeline v2.2 (Weilbacher et al., 2016) was used. Bias, flat, and wavelength
calibration was applied in addition to line spread functions and illumination correction
frames to each individual exposure. These astrometry solutions and the correction for
geometry and flux calibrations were then applied. Each of the individual exposures was
combined including field rotation. Instead of the pipeline sky subtraction method, the sky
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emission lines were removed using a Principal Component Analysis algorithm (Husemann
et al., 2016). Additionally, the MUSE observations for the fields have been discussed in
depth in the following publications: Q0152-020 (Rahmani et al., 2017; Rahmani et al.,
2018c; Hamanowicz et al., 2020); Q1130-1449 (Péroux et al., 2019; Hamanowicz et al.,
2020); Q2131-1207 (Péroux et al., 2017; Hamanowicz et al., 2020); Q1232-0224, Q1211-
1030 (Hamanowicz et al., 2020).

HST Observations

We select fields that show strong H i-absorption column densities in quasar spectra. The
column densities are based on literature and were derived using data from the Faint Object
Spectrograph (FOS) and Cosmic Origins Spectrograph (COS) on HST [see Boissé et al.
(1998) for details about the Q2131z039H i absorber; Lane et al. (1998) for Q1130z031H i; Rao
et al. (2006) for Q1232z075Mg ii; Muzahid et al. (2016) for Q2131z043H i and 1211z039H i;
Rahmani et al. (2018b) for Q0152z038H i].

Readily available and reduced archival HST imaging is used for observations of the
stellar continuum. The exposure times for the five fields range from 10 to 50 minutes.
Observations of Q2131-1207 (PI: Maccheto, ID:5143), Q1232-0224 (PI: Bergeron, ID:5351),
Q0152-2001 (PI: Steidel, ID:6557), and Q1211+1030 (PI: Bergeron, ID:5351) use the Wide
Field Planetary Camera 2 (WPFC2) in the F702W filter. The observation of Q1130-1449
(PI: Bielby, ID: 14594) uses the Wide Field Camera 3 (WFC3) in filter IR-F140W.

Further archival HST data, obtained with the Cosmic Origins Spectrograph (COS)
on HST, are used for studying the H2 absorption lines of the absorber associated with
Q2131-G1. Specifically, we use these spectra to study the position of the H2 absorption
line in velocity space. The H2 absorption has been extensively studied in Muzahid et al.
(2016). We use two observations with a wavelength range of 1140-1800Å , which consist
of G130M (exposure time: 77 minutes) and G160M (exposure time: 120 minutes) FUV
grating integrations at a medium resolution of R ∼ 20,000 (corresponding to a Full Width
Half Maximum (FWHM) of ∼ 18 km s−1). (PI: Churchill, ID: 13398). Due to the Lyman-
limit break of the absorber (z = 0.43) there is no recorded QSO flux at wavelengths below
1310Å.

Additionally, we have an ongoing HST multi-band photometry program of 40 orbits
(PI: Péroux, ID: 15939). This program will allow us to study the morphology and stellar
masses of galaxies associated with H i-absorbers in the MUSE-ALMA Haloes survey.

This program will allow us to study the morphology and stellar masses of 200 z < 1.2
galaxies associated with H i and Mg ii absorbers (including our current sample) in more
detail at a later stage of the MUSE-ALMA Haloes project.
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2.3.2 ALMA Observations

Observation Details

The fields Q2131-1207, Q1232-0224, Q0152-2001, and Q1211+1030 were observed with
ALMA in Band 6 to cover the CO(3–2) lines of galaxies associated with absorbers found
at z ∼ 0.4 (programme 2017.1.00571.S, PI: C. Peroux). Given the field of view (FOV)
of ALMA in band 6 we target a subset of galaxies previously observed with MUSE with
impact parameters ranging from 8 to 82 kpc. All of the fields have one spectral window
that was centred on the redshifted CO(3–2) frequency of 345.796 GHz with a high spectral
resolution mode. This results in 3840 channels, each with a 1.129 MHz width. Additional
three other spectral windows are also included for these observations in a low spectral
resolution mode (31.250 MHz). The CO(3–2) line of one of the galaxies in the field Q1232-
0224 (z = 0.7566) is expected to be in one of the low-resolution spectral windows. We also
include the previously studied field Q1130-1449 in our analysis. Details concerning this
observation can be found in Péroux et al. (2019).

A table with the quasar coordinates, observation dates, exposure times, angular reso-
lution, used calibrators, precipitable water vapour (PWV) and antenna configurations for
the different observed fields can be found in Table A.1 in the Appendix (Section A.1).

Data Reduction and Imaging

In this section, we describe the image processing of the fields Q2131-1207, Q1232-0224,
Q0152-2001, and Q1211-1449 observed with ALMA. The fields are imaged and, when pos-
sible, self-calibrated using the Common Astronomy Software Applications package (CASA,
McMullin et al., 2007) version 5.6.2-3.

As a starting point for all imaging and calibration, the pipeline-calibrated uv-datasets
as delivered by ALMA-ARC are used. When multiple measurement sets (MS) are provided
due to multiple observations, we combine them using the concat task. Using these com-
bined measurement sets we reconstruct an initial continuum image of the field by using
the task tclean. Depending on the synthesized beam size, we use different pixel sizes for
the imaging (0.18” for Q0152-2001, 0.17” for Q1211-1030, 0.2” for Q2131-G1, and 0.22”
for Q1232-0224). For all datasets we use tclean with a Briggs weighting scheme with the
robust parameter set to 1.0, a standard gridder and a hogbom deconvolver.

In the case of Q0152-2001 and Q1211-1030, we follow up tclean with the task uvcontsub
in order to subtract the central quasar in the field. As a final step, we use the continuum-
subtracted uv-dataset and the task tclean with the same parameters as for the continuum
images and a spectral binning of 50 km s−1.

Both the quasars in Q2131-1207 and Q1232-0224 are bright at mm-wavelengths, allow-
ing us to perform self-calibration. Therefore, after creating the initial model and contin-
uum image mentioned above, we calculate the temporal gains using the task gaincal with
gaintype G (which determines the gains for each polarization and spectral window) using a
solution interval of 35 s for Q2131-1207 and 70 s for Q1232-0224. For both calibrations, we
check that the solutions show a smooth evolution over time and that the solutions have an
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acceptable signal-to-noise ratio (SNR) > 10. Then we apply the solutions to the measure-
ment sets using the task applycal in linear interpolation mode and create an updated sky
model and continuum image using tclean. Following the phase calibration, we proceeded
with a second round of amplitude calibration using gaintype G and a solution interval of
105 s for Q2131-1207 and 70 s for Q1232-0224. Following this, we create another updated
sky model and continuum image using tclean. Then we follow up with the continuum
subtraction using uvcontsub with order 3 for Q2131-1207 and 2 for Q1232-0224. We use
the continuum-subtracted dataset to create a data cube using tclean with the same pa-
rameters as for the continuum images and a spectral binning of 50 km s−1. As the final
step, we produce a cube corrected for the primary beam using the impbcor task. The final
RMS for the cubes where self-calibration was feasible is ∼ 1.5× 10−4 Jy. The cubes where
no self-calibration was possible have an RMS ∼ 2.8× 10−4 Jy.

2.4 Molecular Gas Properties of the Galaxies Associ-

ated with the Absorbers

We target nine galaxies in the redshift range z = 0.31 − 0.76. Out of those nine galaxies
we detect four: the previously detected galaxies Q1130-G2, Q1130-G4, and Q1130-G6
(presented in Péroux et al., 2019) and the newly CO-detected galaxy Q2131-G1. We
provide an analysis of the physical and morpho-kinematical properties of Q2131-G1 in
this section. Additionally, we provide stringent limits on the molecular gas content of
undetected galaxies. All the calculated physical properties of the targeted galaxies can be
found in Table 2.1 and the morpho-kinematical properties are listed in Table 2.2.

2.4.1 Properties of the CO-detected Galaxy (Q2131-G1, z =
0.42974)

In this section, we describe the physical and morpho-kinematical properties of the CO-
detected galaxy Q2131-G1 and the galaxy-gas (absorber) connection.

Molecular Gas Mass and Depletion Time

We study the molecular gas properties of the CO-detected galaxy Q2131-G1. We create
an integrated flux map using the CASA task immoments and set the threshold of pixels
to be counted above ∼2σ of the created cube. This integrated flux map yields an observed
CO(3–2) flux of SCO = (0.36± 0.02) Jy km s−1. We derive the CO(1-0) luminosity by first
calculating L′

CO(3–2) using SCO and the prescription by Solomon et al. (1992). Then we use
the L′

CO(3–2) to L′
CO(1-0) conversion factor from Fixsen et al. (1999): L′

CO(3–2)/L
′
CO(1-0) =

0.27 and obtain a CO(1-0) luminosity of L′
CO(1-0) = (1.42 ± 0.08) × 109K km s−1pc2. We

choose the Milky Way spectral line energy distribution conversion factor due to the rather
low redshift of the galaxy (z=0.42974). We note that absorption-selected systems may
preferentially select interacting galaxies, which have more excited CO SLEDs than isolated
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Table 2.1: Physical properties of absorption-selected galaxies.
Row 1 (red) - absorber: (1) reference name of the absorber used in this paper, (2) redshift
of the absorber, (3) H i column density of the absorber, (4) metallicity of the absorber
Row 2 (green) - galaxy: (1) reference name of the galaxy used in this paper, (2) impact
parameter in kpc and arcseconds, (3) star formation rate measured from the [O ii] emission
line (not dust corrected), (4/5) lower/upper metallicity 12+log(O/H) [not dust corrected,
both metallicity branches derived by Hamanowicz et al. (2020) are displayed following
(Kobulnicky et al., 1999)]. If only one metallicity branch is reported in literature, the
upper column is left blank. (6) Observed frequency of the CO emission line
Row 3 (blue) - galaxy: (1) Redshift of the galaxy associated with the absorber, (2) observed
CO flux density, (3) CO velocity width, (4) CO(1-0) Luminosity, (5) molecular gas mass,
(6) depletion timescale of the galaxy.
Literature references: a) Hamanowicz et al. (2020) , b) Muzahid et al. (2016), c) Boissé et al. (1998), d)
Rao et al. (2006), e) Rahmani et al. (2018b), f ) Lane et al. (1998), g) Péroux et al. (2019).
1 We note that Kanekar et al. (2009) reports a higher metallicity of [Z/H]abs = −0.90 ± 0.11 for this
absorber.

Absorber ID zabs
a log(NHI,abs) [Fe/H]abs

[cm−2]

Galaxy b a SFR[O ii]
a 12 + log(O/H)l

a 12 + log(O/H)u
a fCO

[kpc / ”] [M⊙yr
−1] [GHz]

zgal SCO FWHMCO LCO(1-0) Mmol τdep
[Jy km s−1] [km s−1] [109 K km s−1 pc2] [109M⊙] [Gyr]

Q2131z043HI 0.43 19.5 ± 0.15 b > −0.96 a

Q2131-G1 52 / 9.2 2.00± 0.2 8.98± 0.02 - 241.866

0.42974 0.36± 0.02 184± 50 1.42± 0.08 3.52+3.95
−0.31 < 4.15

Q2131-G2 61 / 10.7 0.20± 0.1 8.32± 0.16 - 241.697

0.4307 a < 0.068 - < 0.27 < 3.64 < 36.37

Q1232z039HI 0.3950 20.75 ± 0.07 c < −1.31 c

Q1232-G1 8 / 1.5 0.67± 0.09 8.02± 0.06 8.66± 0.04 247.829

0.3953 a < 0.070 - < 0.24 < 6.09 < 8.02

Q1232z075Mg II 0.7572 18.36+0.09
−0.08

d > −1.48 d

Q1232-G2 68 / 9.1 2.58± 0.23 8.19± 0.19 8.54± 0.19 262.462

0.7566 a < 0.12 - < 0.83 < 18.31 < 7.80

Q0152z038HI 0.3887 <18.8 e > −1.36 a

Q0152-G1 60 / 11.5 1.04± 0.03 8.65± 0.09 - 250.105

0.3826 a < 0.17 - < 0.53 < 2.80 < 2.78

Q1211z039HI 0.3929 19.46 ± 0.08 b > −1.05 a

Q1211-G1 37 / 6.8 4.71± 0.08 8.16± 0.01 8.48± 0.01 248.274

0.3928 a < 0.15 - < 0.49 < 6.78 < 1.47

Q1130z031HI 0.3127 21.71 ± 0.07 f -1.94 ± 0.08 g 1

Q1130-G2 44 / 9.5 0.44± 0.3 8.77± 0.05 - 263.4

0.3127 a 0.63 ± 0.01 g 250± 50 g 3.1 ± 0.1 g 11.03+1.44
−1.27 25+21

−20

Q1130-G4 82 / 17.7 > 0.40 < 8.65 - 263.44

0.3126 a 0.42 ± 0.03 g 535± 50 g 2.1 ± 0.1 g > 8.88 ≷ 22.19

Q1130-G6 98 / 21.3 1.14± 0.7 8.94± 0.16 - 263.67

0.3115 a 0.20± 0.01 g 205± 50 g 1.0± 0.1 g 2.65+1.20
−0.82 2.3+1.4

−1.1
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galaxies making the used SLED a first order approximation for Q2131-G1 (Klitsch et al.,
2019a). The molecular mass is calculated by using the geometric mean of the Bolatto
et al. (2013) and Genzel et al. (2012) αCO(Z) prescription. This conversion factor is a good
approximation for galaxies that are not significantly below solar metallicity and therefore
appropriate for Q2131-G1 [12+log(O/H) = 8.98±0.02 (Péroux et al., 2017), also see Genzel
et al. (2015) for a more detailed description of this averaged conversion factor]. We note
that Muzahid et al. (2016) derived a lower metallicity, closer to the solar metallicity, for
Q2131-G1 (12+log(O/H) = 8.68± 0.09). This discrepancy can be explained by the use of
the N2-index, which is known to saturate at solar metallicities (Pettini & Pagel, 2004). We
elect to use the R23 based metallicity by Péroux et al. (2017), but note that the metallicity
is based on emission line fluxes that have not been dust-corrected and therefore possibly
overestimate the metallicity. We therefore base the conversion factor on 12+log(O/H)
= 8.98 ± 0.02, but include the lower metallicity in the error calculation and compute
αCO = 2.48+2.50

−0.08 M⊙(K km/s pc)−1. The molecular mass is Mmol = 3.52+3.95
−0.31×109M⊙. The

calculated molecular mass is consistent with the mass limit of Mmol ≤ 7 × 109M⊙ using
L′
CO(2-1) ≤ 3.8× 109 K km s−1pc2 (Klitsch et al., 2021).

Using the non-dust corrected star formation rate (SFR) derived by Hamanowicz et al.
(2020) (SFR[O ii] = 2.00± 0.2M⊙yr

−1) we calculate the limit on the depletion time using:

τdep <
Mmol,max

SFR[O ii,min]

yr (2.1)

The depletion time for Q2131-G1 is τdep < 4.15 Gyr.

Stellar Mass

In this section, we estimate the stellar mass of Q2131-G1. The stellar mass is derived
from the Mass-Metallicity-Relation (MZR) (Tremonti et al., 2004). This relation is based
on ∼ 53000 galaxies at z ∼ 0.1 from the Sloan Digital Sky Survey (SDSS) sample and
holds for 8.5 < log(M⋆/M⊙) < 11.5. Using the metallicity derived by Péroux et al.
(2017) [12+log(O/H) = 8.98 ± 0.02] we get two solutions: log(M⋆/M⊙) = 10.1 ± 0.1 and
log(M⋆/M⊙) = 12.9±0.1. This relation does not hold for the second solution, as that stellar
mass would be outside of the valid range. We attempt to break this degeneracy by applying
the Tully-Fisher relation (linking the stellar mass with the maximum rotation velocity of the
galaxy) (Tully & Fisher, 1977). We used the relation by Puech et al. (2008), derived from a
sample of z ∼ 0.6 galaxies using kinematics from the [O ii] line. Using Vmax = 200±3km s−1

[as derived by the kinematical analysis of the [O iii] λ5008 line in Péroux et al. (2017)] we
estimate the stellar mass of G2131-G1 to be log(M⋆/M⊙) = 10.54±0.71. This stellar mass
is consistent with the lower stellar mass derived from the MZR. For further calculations,
we decide to use the stellar mass derived from the MZR, but take into account the value
derived by the Tully-Fisher relation and by the MZR using the (Muzahid et al., 2016)
metallicity [12+log(O/H) = 8.68 ± 0.09, log(M⋆/M⊙) = 9.1+0.3

−0.2] in the error calculations:
log(M⋆/M⊙) = 10.1+0.5

−1.0
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Figure 2.1: The cumulative mass of the dark matter within Q2131-G1 is derived assuming
an NFW profile. The shaded regions show the profile for the minimum/maximum derived
dark matter mass M200. The vertical orange line marks the [O iii] λ5008 half-light radius.
The dark matter fraction within the half-light radius is in the range of fDM = 0.24− 0.53.
Therefore, we find the central regions of this galaxy to be baryon dominated.

Dark Matter Fraction

Current studies have shown a declining dark matter fraction with increasing redshift (e.g.
Genzel et al., 2020; Price et al., 2020). We constrain the dark matter contribution to the
galaxy within the half-light radius. We create an NFW-profile (Navarro et al., 1997) based
on the halo mass estimate (see section 2.4.1) and compute the corresponding cumulative
mass curve. We note that this is a first order approximation of the dark matter fraction
within the central region of G2131-G1.

The halo mass estimate is based on abundance matching [e.g Behroozi et al. (2010),
Moster et al. (2010) and Moster et al. (2018)]. We use the prescription provided in Genzel
et al. (2020) [equation A13 in Genzel et al. (2020), provided in a priv. comm. with B.
Moster] based on the galaxy halo pairs from Moster et al. (2018) to fit a halo mass - galaxy
mass relation. This relation is appropriate for z > 0.5 and provides an estimate of the halo
mass derived from the stellar mass. Using the stellar mass of log(M⋆/M⊙) = 10.1+0.5

−1.0 we
compute a halo mass of log(M200/M⊙) = 11.6± 0.5. This halo mass is consistent with the
halo mass derived by Péroux et al. (2017) assuming a spherical virialized collapse model
by Mo & White (2002) [log(M200/M⊙) = 12.46+0.03

−0.04]. The corresponding radius (r200),
within which the mean mass density is ∼ 200 times the critical density of the Universe, is
calculated using:
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r200 =

[
M200

4
3
π 200 ρcrit

] 1
3

, (2.2)

with ρcrit being:

ρcrit =
3 H2(z)

8 π G
, (2.3)

and using:

H(z) = H0

√
ΩM (1 + z)3 + ΩΛ . (2.4)

Using equations 2.2, 2.3 and 2.4 we compute: H(z) = 87.9 km s−1Mpc−1,
ρcrit = 437.61 h2 M⊙kpc

−3 and r200 = 133+54
−36 kpc.

In order to fully describe the NFW mass-profile we compute the concentration param-
eter (c) which we compute using the redshift dependent NFW concentration-mass relation
from Dutton & Macciò (2014):

log(c) = a+ b× log(M200/[10
12h−1M⊙]) , (2.5)

with:

a = 0.520 + (0.905− 0.520)× exp(−0.617× z1.21) (2.6)

b = −0.101 + 0.026× z , (2.7)

and with δc being:

δc =
200

3
× c3

ln(1 + c)− c
1+c

. (2.8)

Using our derived M200 we find c = 7.5+0.7
−0.7 and δc = 22430+4924

−4364.
We calculate the NFW mass-profile using:

MDM(r) = 4πρ0r
3
s ×

[
ln

(
1 +

r

rs

)
−

r
rs

1 + r
rs

]
. (2.9)

with ρ0 = δc ρcrit and rs =
r200
c
.

The resulting mass profile is shown in Fig. 2.1. The dark matter mass is in the range
of log(MDM(r1/2)/ M⊙) = 10.16 − 10.46 at the [O iii] λ5008 emission half-light radius
r1/2 = 7.9± 0.1 kpc.

We calculate the dynamical mass within r1/2 using (Epinat et al., 2009):

Mdyn(r1/2) =
V 2(r1/2) r1/2

G
, (2.10)
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Figure 2.2: Contour plot and velocity maps of Q2131-G1. The ionized gas contour plot
and velocity maps are based on [O iii] λ5008. The molecular gas contour plot and velocity
maps are based on CO (3–2). a) HST image of Q2131-G1 (detector: PC, filter: F702W,
Kacprzak et al., 2015) overlayed with contour plots of the [O iii] λ5008 (purple) and CO(3–
2) flux using 3σ steps. b) Observed velocity map of the molecular gas c) Model velocity
map of the molecular gas d) Observed velocity map of the ionized gas. e) Model velocity
map of the ionized gas. In the contour plot a region of high [O iii] λ5008 flux is visible
where no CO (3–2) is being observed above the 3σ threshold. The direction of rotation for
both the ionized and molecular gas are closely correlated and both gas phases show similar
maximum rotational velocities.

with V (r1/2) being computed using an arctan velocity profile with the fit parameters derived
by GalPak3D using the [O iii] λ5008 emission line (Bouché et al., 2015):

V (r1/2) = Vmax
2

π
arctan(

r1/2
rt

) , (2.11)

with rt = 1.51 kpc being the turnover radius. The velocity at the half-light radius is
therefore V (r1/2) = 176±3 km s−1 and the dynamical mass at r1/2 is Mdyn(r1/2) = 10.75±
0.3. Using the dynamical mass and the dark matter mass within the half-light we compute
the dark matter fraction within the half-light radius to be fDM = 0.24− 0.54.

Morphological and Kinematical Properties

We first study the morphological properties of Q2131-G1 based on the flux observed with
HST, MUSE, and ALMA. The HST image (filter: F702W) of Q2131-G1 with overlayed
contours from the observed [O iii] λ5008 and CO(3–2) observed flux maps can be found in
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Fig. 2.2 a). CO(3–2) has a compact and elliptical morphology in the centre of the galaxy
with an extent ∼ 20 kpc. We stress that these higher-z observations would not resolve
small-scale clumps as observed in the PHANGS-ALMA survey (Schinnerer et al., 2019).
The ionized gas shows a greater extent of ∼ 40 kpc and has a shape that indicates spiral
arms or possible tidal tails (Péroux et al., 2017). There is a region of a [O iii] λ5008 flux
maximum (at ∼ 21h31m35.77s,−12◦06’57.8”) where CO(3–2) is not detected above the 3σ
threshold. This region coincides with a spiral structure in Q2131-G1 and therefore most
likely is a region of active star formation. A large fraction of the molecular gas in this
region is possibly already depleted due to the star formation process, leading to a CO flux
density below the 3σ threshold. The stellar continuum observed by HST extends beyond
the molecular gas emission above the 3σ threshold.

We study the kinematics of both the ionized and molecular gas of the detected galaxy
using the 3D fitting algorithm GalPak3D (Bouché et al., 2015). The algorithm assumes
a disk parametric model with 10 free (but also optionally fixable) parameters and probes
the parameter space by implementing a Monte Carlo Markov Chain approach with non-
traditional sampling laws. The algorithm provides stable results if the signal-to-noise
(SNR) per spaxel of the brightest spaxel in the cube is SNR>3. Additionally, the half-
light radius has to satisfy the condition r1/2/FWHM > 0.75 in order for the algorithm
to converge, with the FWHM being the Full Width Half Maximum of the Point Spread
Function (PSF). The r1/2/FWHM ratio of Q2131-G1 is below that condition r1/2/FWHM
∼ 0.5, but the algorithm nonetheless fully converges as we assessed from the MCMC chain.
In order to be consistent with the ionized gas kinematic model used in (Péroux et al., 2017)
we also use the exponential flux profile and an arctan velocity profile as assumptions for
the disk model. We also ensured that the ALMA cube is in the same reference frame
as the MUSE cube (BARY). We additionally create two models with an exponential and
tanh velocity profile, which yield different results, in order to take the differences in models
into account for the error calculation of the derived properties. The observations are well
reproduced by a rotating disk, as can be assessed from the low residuals in the flux (Fig.
A.2) and velocity residual maps (Fig. A.3) in the Appendix (Section A.1).

The morpho-kinematical properties of the ionized gas of Q2131-G1 derived from the
[O iii] λ5008 and Hβ line in the MUSE observations are described in Péroux et al. (2017).
The authors report the following: The maximum circular velocity is well constrained at
Vmax = 200±3 km s−1, the half-light radius is found to be r1/2 = 7.9±0.1 kpc, the derived
position angle is PA = 65 ± 1◦ and the inclination is iCO = 60.5 ± 1.2. Based on the
derived flux, velocity, and dispersion maps, Péroux et al. (2017) argue that the galaxy is a
large rotating disc, with a velocity gradient along the major axis and a dispersion peak at
the centre of the galaxy. Using this approach we create velocity maps of both the ionized
and molecular gas. The observable [b) - ALMA CO(3–2), (d) - MUSE [O iii] λ5008)] and
model [c) - ALMA CO(3–2), (e) - MUSE λ5008] velocity maps are shown in Fig. 2.2.
We find that the rotational velocities for both the ionized and molecular gas are closely
correlated. This is also the case for the model maximum velocities of both components
(Vmax,[O iii] = 200 ± 3 km s−1 and Vmax,CO = 195+4

−30 km s−1). Both of the model velocities
are consistent with the observed velocities of both components (Vmax-obs,[O iii] ∼ 205 km s−1
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Table 2.2: Morpho-kinematic properties of galaxies detected in both [O iii] and
CO(1-0) / CO(3–2).
Row 1 (red) - properties derived from [O iii]: (1) reference name of the galaxy used in this
paper, (2) half-light radius, (3) inclination, (4) position angle, (5) maximum velocity, (6)
dynamical mass, (7) halo mass.
Row 2 (green) - properties derived from CO(1-0) / CO(3–2): (1) half-light radius, (2)
inclination, (3) position angle, (4) maximum velocity.
Literature references: The values for Q2131-G1 [O iii] are taken from Péroux et al. (2017)
and the values for Q1130-G2 [O iii]/CO, Q1130-G4 [O iii]/CO are taken from Péroux et al.
(2019).

Galaxy r1/2,[O iii] i[O iii] PA[O iii] Vmax,[O iii] log(Mdyn,[O iii]) log(Mh,[O iii])

[kpc] [deg] [deg] [km s−1] [M⊙] [M⊙]

r1/2,CO iCO PACO Vmax,CO

[kpc] [deg] [deg] [km s−1]

Q2131-G1 7.9± 0.1 60.5± 1.2 65± 1 200± 3 10.87± 0.03 11.7± 0.1

3.7+0.5
−0.1 47+10

−1 59± 2 195+4
−30

Q1130-G2 14± 2 77± 2 131± 2 264± 14 11.3± 0.2 12.9± 0.1

2± 1 76± 3 117± 2 134± 14

Q1130-G4 9± 2 54± 2 86± 2 231± 12 11.1± 0.2 12.7± 0.1

6± 1 82± 4 84± 2 290± 19

and Vmax-obs,CO ∼ 190 km s−1).

The derived inclination of the molecular and ionized gas in Q2131-G1 are i[O iii] =

60.5 ± 1.2◦ and iCO = 47+10◦

−1 . The position angles (PA) are PA[O iii] = 65 ± 1◦ and
PACO = 59± 2◦. We conclude that the gas phases in Q2131-G1 are aligned directionally.

While the two models converge in terms of morpho-kinematical properties, they differ
in redshifts (CO (3–2): zCO = 0.42974± 0.00001, [O iii] λ5008: z[O iii] = 0.42914± 0.00001,
Hβ: zHβ = 0.42950 ± 0.00001). The other [O iii] line in the spectrum is too weak and
the [O ii] line is disregarded due to its doublet nature. We attribute this discrepancy to
a combination of the wavelength calibration uncertainty of MUSE, which translates to
a velocity uncertainty of ∼ 25 km s−1, and an underestimate of the errors provided by
GalPak3D. The ALMA frequency accuracy is set by the system electronics and is much
better than the corresponding channel width of the cube (50 km s−1). We therefore use the
redshift derived from the CO (3–2) model as a zero-point in the analysis of the absorber and
gas kinematics. We include the value of zHβ and other uncertainties mentioned above to
estimate an error of ±100 km s−1 (∼ 25 km s−1 MUSE velocity uncertainty + ∼ 75 km s−1

kinematical modelling uncertainty) for the kinematic zero-point of the [O iii] emission line
in the following study of the absorber and gas kinematics. For the CO (3–2) zero-point we
estimate an error of ∼ 75km s−1 (kinematical modelling uncertainty).
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Galaxy - Gas Connection

Kinematical studies of the gas in the galaxies seen in emission and probed by the quasar
sightlines allow us to probe what galaxy/environment the absorbing gas is tracing. We
use an approach based on the model rotation curve obtained by GalPak3D to tackle this
question.

We extrapolate the rotation curves of Q2131-G1 for both MUSE and ALMA data to
the line-of-sight (LOS) towards the quasar to relate it to the gas traced by the H2 and Mg ii
absorber. The corresponding plots can be found in Fig. 2.3 where we additionally show the
normalized absorption and emission lines with the zero-point of velocity at the redshift of
CO (3–2) derived by GalPak3D (z0 = 0.42974). We find the extrapolated velocities of the
molecular and ionized of Q2131-G1 between ∼ −130 and− 135 km s−1 and ∼ −255 and−
275 km s−1. The absorption features, with column densities of log(NH i/cm

−2) = 19.5±0.15
and log(NH2/cm

−2) = 16.36± 0.08 (Muzahid et al., 2016) are found between ∼ −60 and+
60 km s−1 from the zero-point.

A limit on the CO absorption column density of the absorber Q2131z043H i associated
with the galaxy Q2131-G1 is calculated following (Mangum & Shirley, 2015), using an
excitation temperature equal to the CMB temperature at the redshift, a 5σ level from the
spectrum at the expected position and frequency of the CO(3–2) absorption line as the
detection threshold and a FWHM of 40 km s−1 and derive log(NCO/cm

−2) < 14.6. Using
the mean ratio ofNCO/NH2 = 3×10−6 (Burgh et al., 2007) we derive log(NH2/cm

−2) < 20.1.
This limit is consistent with the value observed from UV wavelength absorption by Muzahid
et al. (2016).

Studies of the absorption and emission metallicity connect the absorber to its host.
Using a metallicity gradient based on a sample of galaxy-absorber pairs (−0.022 ± 0.004
dex/kpc, Christensen et al., 2014), we extrapolate the metallicity of Q2131-G1 to the
LOS towards the quasar. We take into account the observed flattening of the Oxygen
metallicity gradient beyond 2 × r1/2 (Sánchez-Menguiano et al., 2016) and assume that
there is no change in the metallicity of the galaxy between 2 × r1/2 = 15.8 ± 0.2 kpc
and the impact parameter b = 52 kpc. We use 12+log(O/H) = 8.98 ± 0.02 by Péroux
et al. (2017) as the metallicity of the galaxy, including the value by Muzahid et al. (2016)
[12+log(O/H) = 8.68 ± 0.09] in the error calculation. The extrapolated metallicity of
Q2131-G1 at the impact parameter (b = 52 kpc) is Zem = −0.06+0.09

−0.62. We additionally use
an alternative metallicity gradient of 0.1/r1/2 (which in the case of Q2131-G1 translates to
0.01266± 0.00016 dex/kpc) derived by the CALIFA survey (Sánchez et al., 2014) and find
the extrapolated metallicity of Q2131-G1 at the impact parameter to be Zem = 0.09+0.02

−0.48.
Literature provides metallicity measurements using various species: [Fe/H]abs > −0.96
from Hamanowicz et al. (2020), [O/H]abs = −0.26 ± 0.19 using ionisation modelling from
Muzahid et al. (2016), the ionisation corrected metallicity of [S/H]abs > −0.72 [originally
reported as [S/H]abs > −0.40 assuming log(NH i,abs/cm

−2) = 19.18 instead of 19.5) by Som
et al. (2015)]. The global dust-free metallicity is [X/H]abs = −0.54 ± 0.18 (Péroux et al.,
2017).We find that both of the extrapolated metallicities are consistent with each other
and consistent with the metallicity derived by Péroux et al. (2017).
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Figure 2.3: Extrapolated model velocity maps of Q2131-G1 and normalized flux of the
Mg ii λ2803 and stacked H2 absorption line and [O iii] λ5008, Hβ, CO(3–2) emission lines.
The velocity zero point of the spectra is set to the redshift of CO (3–2) derived from the
kinematic study (z0 = 0.42974) (displayed as the gray shaded area). The magenta and
brown bars display the extrapolated velocities of the molecular and ionized gas of Q2131-
G1 respectively. The shaded magenta and brown bars display the errors of the extrapolated
velocities (75 km s−1 for the molecular gas, 100 km s−1 for the ionized gas). Extrapolating
the model velocity maps derived from GalPak3D to the line of sight toward the quasar shows
that at the position of the quasar the molecular and ionized gas of Q2131-G1 are located
between ∼ −130 and − 135 km s−1 and ∼ −255 and − 275 km s−1 respectively, while the
absorption features are found between ∼ −60 and+60 km s−1. We thus conclude that the
two-component absorption features are consistent with in part an extended rotating disk
of Q2131-G1 and in part gas falling onto Q2131-G1.

2.4.2 Limits from Non-Detections

For the fields Q1232-0224, Q0152-2001, and Q1211-1030 with no CO-detected counterparts
in emission to the galaxies observed with MUSE and HST, we derive limits on the molecular
mass and depletion times.

For each cube we consider an ellipsoidal area with the minor axis, position angle, and
FWHM of the synthesized beam centred around the expected position of the galaxy with
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the frequency range being set to ± 100 km s−1 centred around the redshifted frequency of
the CO(3–2) emission line. We then assume the emission spectrum to be a Gaussian with
an amplitude set to the RMS of the ellipsoidal area and a FWHM of 200 km s−1. The flux
limit is then the area under this line within the 5σ range.

We calculate the mass limits and depletion times following the same prescription as
described in section 2.4.1 [namely following Solomon et al. (1992), Fixsen et al. (1999) and
Genzel et al. (2015)] and Equation 2.1. The molecular gas mass limits use an αCO conver-
sion factor based on the lowest measured metallicity of the galaxy to provide conservative
limits of both the molecular gas mass and depletion time.

The results for the CO flux, luminosity, mass, and depletion time limits for Q0152-
G1, Q1211-G1, and Q1232-G1 can be found in Table 2.1. The CO(1–0) limits on the
luminosity LCO are of the order LCO ∼ 108 K kms−1pc2, which fits the sensitivity estimates
based on the ALMA sensitivity calculator calculated for our observations at z ∼ 0.4. Our
limits are more stringent than similar observations studying the molecular gas in objects
associated with absorbers [e.g. MEGAFLOW by Freundlich et al. (2021), targeting galaxies
around Mg ii absorbers, or Kanekar et al. (2018, 2020)], which are sensitive to luminosities
LCO >∼ 109 K kms−1pc2. The molecular gas mass limits are in the range of Mmol ∼
(2.8−18.3)×109 M⊙ and the depletion time limits are in the range of τdep ∼ 1.4−37 Gyr.

2.5 Discussion

The multi-wavelength approach in this work allows us to closely study the different gas
phases within and around H i-selected galaxies. HST spectroscopy provides neutral and
molecular gas information through absorption while MUSE and ALMA observations enable
us to study the ionized and molecular gas content through emission. In this section we
provide a detailed discussion of the observed properties and how they compare to current
observations.

2.5.1 Strongly Coupled Gas Phases within a Rotating Disk

Recent observations of the ionized and molecular gas phases in galaxies between redshifts
z ∼ 0.1− 1.4 have found that both phases mostly align well directionally (e.g. Übler et al.,
2018; Møller et al., 2017; Klitsch et al., 2018; Loiacono et al., 2019; Péroux et al., 2019;
Molina et al., 2019, 2020). Similarly, we find that Q2131-G1 is well constrained by a disk
model and that the ionized and molecular gas phases are aligned well directionally with
similar inclinations and position angles.

We also find a similar maximum rotational velocity (Vmax ∼ 200 km s−1) of the molec-
ular and ionized gas within Q2131-G1. This is consistent with the EDGE-CALIFA survey
(Levy et al., 2018), where ionized and molecular gas kinematics (traced by Hα) were com-
pared in local galaxies. While the survey does find that for the majority of galaxies the
rotational velocity measured from the molecular gas is higher than that from the ionized
gas, there are cases where similar rotational velocities for both phases have been observed.
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Due to the good alignment of the ionized and molecular gas phases, both directionally
and rotationally, we find that the two gas phases are strongly coupled within Q2131-G1.

2.5.2 Identifying the Disk Tilt

Kinematic modelling provides the inclinations of both gas phases, but these values are
degenerate without knowing the tilt of the disk. A proposed solution to breaking the
degeneracy of the disk tilt is to use the rotation curve and the winding direction of spiral
arms (Martin et al., 2019). Based on the likely assumption that in a self-gravitating,
collisionless system only trailing spiral patterns are long-lived (Carlberg & Freedman, 1985)
and most spiral patterns therefore lag behind the direction of rotation with increasing
radius, depending on the winding rotation, one can infer a positive or negative sign of the
inclination. The winding rotation of the spiral arms in Q2131-G1 observed in the HST
image are opposite to the direction of rotation of the galaxy and the inclination therefore
has a negative sign (see Fig. 2.4).

Figure 2.4: Sketch of the QSO - galaxy plane for identifying the disk tilt. The galaxy is
rotated in order to align the major axis with the x-axis in the sketch. The spiral arms of
Q2131-G1 wind in the opposite direction of the galaxies rotation and we conclude that the
inclination has a negative sign.

2.5.3 Gas Probed in Absorption Connected to a Rotating Disk
and Infalling Gas

Previous authors state that an individual absorber is sometimes associated with multiple
galaxies (Hamanowicz et al., 2020). In particular, in the field Q2131-1207 four galaxies are
found at the same redshift and physically close to the absorber, indicating that Q2131-G1,
found at b = 52 kpc, is part of a group environment. Kinematical studies of the gas phases
and the absorption features help alleviate these ambiguities by studying how the different
components relate in velocity space (see e.g. Rahmani et al., 2017).
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To relate the gas probed in absorption with the absorber host we extrapolate the model
rotation curve towards the sightline of the quasar in section 2.4.1 (see Fig. 2.3). We find
that the velocity of the ionized and molecular gas of Q2131-G1 at the point of the quasar
sightline are blueshifted compared to the systemic redshift. A two-component absorption is
found between ∼ −60 and 60 km s−1. Due to the low azimuthal angle (12◦±1◦) of Q2131-
G1 (Péroux et al., 2017) and simulations indicating that outflowing gas preferentially leaves
the galaxy in a conical shape along its minor axis (Brook et al., 2011; Péroux et al., 2020),
we assume an outflow scenario to be unlikely for both absorption components.

The weaker component is rotating in the same direction as the galaxy at less negative
velocities. Further, the extrapolated metallicities of Q2131-G1 (Zem = −0.06+0.09

−0.62 and
Zem = 0.09+0.02

−0.48, depending on the metallicity gradient used) at the LOS towards the quasar
indicate a connection between the gas probed in absorption and emission as it is consistent
with the absorber metallicity ([X/H]abs = −0.54 ± 0.18). The extrapolated velocities and
metallicities of the galaxy and the weaker absorption component are therefore consistent
with being part of an extended rotating disk.

The stronger absorption component is redshifted compared to the systemic redshift.
Gas rotating with the disk of the galaxy is expected to have blueshifted velocities, making
the stronger absorption component inconsistent with being part of the extended rotating
disk. Further, the low azimuthal angle makes it a likely inflow (e.g. Bordoloi et al., 2011;
Stewart et al., 2011; Shen et al., 2012). The metallicity difference between the Q2131-
G1 and the absorber lies in the infalling section of the galaxy to gas metallicity versus
azimuthal angle plot seen in Péroux et al. (2016) (figure 8 in the publication). Based
on the metallicity difference and the geometry and orientation arguments, the stronger
component is consistent with being gas falling onto Q2131-G1. We note that current data
does not exclude that the gas could potentially also be falling onto Q2131-G2. The H2

column density of the absorber also poses the question if and how it is possible to have a
considerable molecular gas phase, with temperatures down to 10 K, in infalling gas.

We thus conclude that the two-component absorption features are consistent with in
part an extended rotating disk of Q2131-G1 and in part gas falling onto Q2131-G1.

2.5.4 Specifics of H i-selected Systems

Previous studies of H i-selected systems have observed gas depletion times that are a few
times longer than what is typically found in surveys of emission-selected galaxies (see
especially Kanekar et al., 2018). This poses the question of whether the H i-selection
preferentially selects galaxies that have large gas reservoirs for their SFR. We compare
the detected galaxy Q2131-G1 with two current emission-selected molecular gas surveys,
namely xCOLD GASS (e.g. Saintonge et al., 2017) and the PHIBSS 1 & 2 surveys (e.g.
Tacconi et al., 2018) of galaxies at redshift z < 1.1. We additionally contrast with previ-
ously published H i-selected galaxies where molecular masses, stellar masses, and SFR have
been measured. We use a metallicity-dependent αCO conversion factor for the comparison
sample if metallicity information is provided (namely Genzel et al., 2015; Bolatto et al.,
2013; Papadopoulos et al., 2012). Otherwise we use αCO = 4.3M⊙(K km/s pc)−1 from
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Figure 2.5: Star formation rate (SFR), molecular gas mass (Mmol) and depletion time (τdep)
plotted for H i-selected galaxies, the xCOLD GASS, and the PHIBSS 1&2 survey (at z <
1.1). H i-selected galaxies with molecular gas mass limits as well as galaxies without stellar
mass data are additionally plotted in the SFR - Mmol plot and have a black (other works)
/ brown (this work) color. The median depletion time for xCOLD GASS (τdep = 1.0 Gyr,
Saintonge et al., 2017) and PHIBSS (τdep = 0.7 Gyr, Tacconi et al., 2018) are plotted as a
black (dashed) line. Q2131-G1 lies within the Mmol - SFR, M⋆ - Mmol and M⋆ - SFR planes
of the xCOLD GASS and PHIBSS 1&2 surveys. We note that the SFR of Q2131-G1 is
not dust-corrected and therefore should be considered as a lower limit. The molecular gas
mass for the majority of sub-DLAs and DLAs for their given SFR is found to be higher
than for emission-selected samples. This leads to depletion times in H i-selected galaxies
that are up to multiple factors higher than for emission-selected galaxies. This implies
that selection based on strong H i-absorbers traces objects that have large gas reservoirs
(at given SFR). Literature references: xCOLD GASS: Saintonge et al. (2017); PHIBSS
Tacconi et al. (2018); LLS (other works): Klitsch et al. (2018); sub-DLA (other works):
Kanekar et al. (2018); Neeleman et al. (2016); DLA (other works): Kanekar et al. (2018);
Møller et al. (2017); Neeleman et al. (2018); Limits (other works): Klitsch et al. (2018);
Kanekar et al. (2018).
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(Bolatto et al., 2013) or in the case of Klitsch et al. (2018) αCO = 0.6M⊙(K km/s pc)−1

from Papadopoulos et al. (2012) is used because there is evidence that this galaxy is a
luminous infrared galaxy (LIRG). In the case of the MUSE-ALMA Haloes sample the SFR
is not dust corrected (with exception of the field Q1130-1449), therefore the SFR can be
considered as a lower limit.

Fig. 2.5 shows the SFR, molecular mass, and depletion times of the emission and
H i-selected galaxies. Q2131-G1 (star symbol) is comparable to the galaxies of the mass-
selected xCOLD GASS and PHIBSS 1 & 2 galaxies, as it lies within the Mmol - SFR,
M⋆ - Mmol and M⋆ - SFR planes. While Q2131-G1 fits well in the Mmol - SFR plane,
it is on the lower side of the derived SFR of comparable molecular masses, comparable
to other galaxies associated with sub-DLAs. The deviations from the Mmol - SFR plane
are especially drastic in the case of galaxies associated with DLAs, which implies that
H i-selection traces objects that have large gas reservoirs (at given SFR). Similarly the
depletion timescale of Q2131-G1, Q1130-G2, and Q1130-G6 are an order of ∼ 2−53 larger
than the median for emission-selected galaxies in the xCOLD GASS and PHIBSS survey
with τdep,med ≈ 1.0 Gyr and ≈ 0.7 Gyr respectively.

Studying this trend is limited due to the low number of molecular gas and star formation
rate observations of H i-selected galaxies. Further studies will test whether H i-selection
preferentially selects galaxies that have large molecular gas reservoirs for their given SFR.

2.5.5 Connecting Galaxy Properties with Gas Properties

One key objective in studying absorption-selected galaxies is associating absorbers with
potential absorber hosts and connecting absorber properties to the low-density gas found by
absorption. We compare the derived molecular gas mass of Q2131-G1 and the H i column
density of the associated absorber Q2131z043H i with previously detected H i absorbers and
associated absorber hosts detected in CO in Fig. 2.6. In order to provide a fair comparison,
we use the same conversion factors as described in section 2.5.4.

Molecular gas in H i-selected systems is found in systems with H i column densities
between log(NH i/cm

−2) ∼ 18 − 22, from Lyman-limit systems (Klitsch et al., 2018), to
sub-DLAs (this work; Neeleman et al., 2016; Kanekar et al., 2018) and DLAs (Møller
et al., 2017; Neeleman et al., 2018; Kanekar et al., 2018; Péroux et al., 2019) (see Fig. 2.6).
The molecular masses detected span over a large range of log(Mmol/M⊙) ∼ 9.5 − 11.3.
The lower end of this range is typically for the detection limit of the observations. It
is interesting to note that H i-selection can be associated with such large molecular gas
reservoirs, but no correlation between the H i-absorption column density and the absorber
host molecular mass is seen.

The most similar counterpart to Q2131-G1 is the galaxy associated with the absorber at
redshift z = 0.101 in the quasar spectrum of PKS 0439-433 (Neeleman et al., 2016). While
the absorber metallicity in PKS 0439-433 is higher ([S/H]= 0.1, Som et al., 2015), both
absorbers show a H i-column density of log(NH i/cm

−2) ∼ 19.5 and the associated galaxies
have closely matching molecular masses of log(Mmol/M⊙) ∼ 9.6. Additionally, both ab-
sorber systems have H2 absorption features with H2 column densities of log(NH2/cm

−2) ∼
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Figure 2.6: Absorber H i column density plotted against the molecular mass (limits) of
absorber hosts by various published works (Neeleman et al., 2016; Møller et al., 2017;
Augustin et al., 2018; Kanekar et al., 2018; Klitsch et al., 2018; Neeleman et al., 2018;
Péroux et al., 2019; Kanekar et al., 2020) Q2131-G1 is on the lower side of previously
detected molecular masses in H i-absorption selected galaxies.

16.5. The calculated limit on the CO column density [log(NCO/cm
−2) < 14.6] in Section

2.4.1 and the subsequently derived limit on the H2 column density [log(NH2/cm
−2) < 20.1]

is consistent with the detected H2 column density. The galaxy in Neeleman et al. (2016)
does have a lower impact parameter of ∼ 20 kpc than Q2131-G1 (b = 52 kpc), but the ab-
sorption features cannot be kinematically associated with the rotating disk of the absorber
host or infalling gas and is likely part of the CGM of the galaxy. While we might probe
different environments, the similarity of the molecular masses in the absorber hosts and the
H i/H2 column densities of the absorbers indicate a connection of these parameters. The
other galaxies in this sample either lack observations of possible H2 absorption features,
or have not been detected at all. This is partly due to the low detection rates of H2 in
quasars [∼ 16 per cent for high-z absorbers (Noterdaeme et al., 2008), ∼ 50 per cent for
low-z absorbers (Muzahid et al., 2015)]. Nonetheless, future studies of molecular gas in
both absorbers and absorber hosts, combined with kinematic studies that help to associate
these systems are essential for studying a possible connection between the high-density
molecular gas found in galaxies and the low-density molecular gas found in absorbers.

2.5.6 A Dark Matter Fraction Evolving with Redshift

Current extragalactic surveys of the dark matter fraction in the central regions of galaxies
provide evidence for a dark matter fraction evolution with redshift, with the dark matter
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fraction declining for higher redshifts (e.g. Genzel et al., 2020; Price et al., 2020). A
possible explanation for this evolution of the dark matter fraction over different redshifts is
given by the IllustrisTNG (TNG) simulations (Lovell et al., 2018). The authors find that
the evolution is due to the more centrally concentrated baryonic mass at higher redshift
galaxies. They also show that this evolution is highly aperture dependent. Using a fixed
physical aperture for all galaxies, in their case 5 kpc, leads to a dark matter fraction that is
almost constant over time. Using the stellar half-mass radius instead reveals the evolution
of the dark matter fraction with redshift. This is especially evident for galaxies in the
1011M⊙ stellar mass regime, which are highly concentrated at high redshifts. At a fixed
stellar mass these galaxies show a substantial increase in size, leading to smaller half-mass
radii at higher redshifts.

Observationally, various surveys provide some constraints on the dark matter fraction
at different redshifts. The DiskMass survey of local galaxies finds that the central dark
matter fractions are in the range of 0.5-0.9 within 2.2 times the disc scale radius, which
corresponds to ∼ 1.6 times the half-light radius (Martinsson et al., 2013). The SWELLS
survey (Barnabè et al., 2012; Dutton et al., 2013; Courteau & Dutton, 2015) finds lower
dark matter fractions in the range of 0.1 - 0.4 using the same aperture. This discrepancy is
most likely due to the SWELLS galaxies having larger bulge components than the DiskMass
survey. Galaxies in the redshift range z = 0.6 - 1.2 show a median of fDM ∼ 0.3, while
galaxies in the redshift range z = 1.2 − 2.5 have a median of fDM ∼ 0.12 within the half-
light radius (Genzel et al., 2020). For higher redshifts the dark matter fraction goes as low
as fDM = 0.05 (Price et al., 2020) within the half-light radius.

In Q2131-G1 we find a dark matter fraction within the half-light radius of fDM =
0.24 − 0.54. We therefore find that the central regions of this galaxy are dominated by
baryons. Compared to the surveys and simulations, Q2131-G1 fits well between the dark
matter fractions found in the DiskMass survey and is also consistent with the median
of galaxies observed in the redshift range 0.6-1.2. It is also within the range of galaxies
observed within the SWELLS survey. The dark matter fraction is comparable to the one
found in galaxies in TNG at the stellar mass M⋆ = 1010.5M⊙ at redshift z = 2. While
the redshift of these galaxies in TNG is higher than of Q2131-G1, the galaxies within
the SWELLS survey fit into the same regime of galaxies found in TNG. Therefore, this
discrepancy could partly also be due to Q2131-G1 possibly having a significant bulge
component.

2.5.7 CO Detection Rate of the MUSE-ALMA Haloes Survey

We target the CO(3–2) line of nine galaxies associated with six absorbers with ALMA
and detect four of them (∼ 45 per cent detection rate). All of the non-detected galaxies
have metallicities below 12 + log(O/H) ∼ 8.65. Four of the non-detected galaxies have
sub-solar metallicities of 12 = log(O/H) < 8.32, but have higher molecular gas mass limits
than the detected galaxy Q2131-G1. Molecular gas in galaxies with sub-solar gas phase
metallicity is shown to be deficient in CO, due to the CO molecule being photo-dissociated
at larger fractions compared to higher metallicity galaxies (Wolfire et al., 2010; Bolatto
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et al., 2013). This in turn leads to a lower observed CO flux density and longer integration
times are needed for observing low metallicity galaxies in CO. We therefore attribute these
non-detections to the low metallicities of the galaxies.

2.6 Conclusions

In this paper, we present MUSE and new ALMA observations of the fields Q2131-1207,
Q0152-2001, Q0152-2001, Q1211+1030 with LLS, sub-DLAs, and DLAs at z ∼ 0.4 and
z ∼ 0.75. We also include the previously published field Q1130-1449 with 3 CO-detected
galaxies (z ∼ 0.3) in our analysis (Péroux et al., 2019). We detect one counterpart (Q2131-
G1) of a previously detected (HST & MUSE) galaxy with ALMA observing the CO(3–2)
emission line in the field Q2131-1207. We analyze the morphological, kinematical, and
physical properties of Q2131-G1 with a focus on the molecular gas content. For the non-
detections we provide limits on the molecular gas mass and depletion time.

The findings can be summarised as follows:

• The ionized gas phase in Q2131-G1 has a shape indicating spiral arms and possible
tidal tails from previous interactions and an extent of ∼ 40 kpc. The molecular gas is
found in a more compact and elliptical morphology of smaller extent (∼ 20 kpc). The
extent of the stellar continuum is in between the ionized and molecular gas phases.

• Using the sophisticated 3D forward modelling tool GalPak3D we study the kinematics
of the ionized and molecular gas phase of Q2131-G1. We assume a disk model with
an exponential flux profile and a tanh rotation curve for both gas phases and find that
the gas phases align well directionally with similar inclinations [i[O iii] = (60.5±1.2)◦,
iCO = (47+10

−1 )◦] and position angles [PA[O iii] = (65 ± 1)◦, PACO = (59 ± 2)◦]. The
maximum rotational velocity is equal for both gas phases (Vmax ∼ 200 km s−1). This
is consistent with findings by the EDGE-CALIFA survey (Levy et al., 2018), where
a fraction of 25 per cent of their sample contained galaxies with equal maximum
velocities. We therefore conclude that the ionized and molecular gas phases are
strongly coupled within Q2131-G1.

• The absorber shows a neutral and molecular absorption two-component profile, with
the weaker component blueshifted and the stronger component redshifted compared
to the systemic redshift derived from the kinematic model of the CO emission. Ex-
trapolating the model velocity maps towards the line of sight of the quasar shows
that the weaker absorption component is consistent with being part of the extended
rotating disk of Q2131-G1. Thanks to metallicity, geometry, and orientation argu-
ments, we find that the stronger component is consistent with being gas falling onto
Q2131-G1. The considerable amount of molecular gas traced by the absorber poses
the question of the presence of a molecular cold phase in infalling gas.

• The molecular gas mass (Mmol = 3.52+3.95
−0.31 × 109 M⊙) is on the low end of previously

detected H i-selected galaxies. A similar counterpart, associated with the absorber at
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redshift z = 0.101 in the quasar spectrum of PKS 0429-433 (Neeleman et al., 2016),
interestingly has a similar molecular mass and shows roughly the same H i column
density [log(NH i/cm

−2) ∼ 19.5] and H2 column density [log(NH2/cm
−2) ∼ 16.5].

While the absorption was attributed to the CGM of the galaxy and not being part of
the rotating disk or infalling gas, the similarities of these properties are striking. We
conclude that future studies of molecular gas in both absorbers and absorber hosts
are essential to studying a possible connection of these properties.

• We compute a dark matter fraction within the half-light radius of fDM = 0.24−0.54,
showing that the inner parts of the galaxy are baryon dominated. The dark matter
fraction fits between the dark matter fraction of the DiskMass survey (fDM ∼ 0.5−0.9,
Martinsson et al., 2013) and the median dark matter fractions observed in the redshift
range z = 0.6-1.2 (fDM ∼ 0.3, Genzel et al., 2020), providing a further indicator for
a redshift evolution of the dark matter fraction.

• The depletion times (including upper limits) of our sample are in the range of (τdep ∼
1.4 − 37 Gyr). The depletion times of the CO-detected galaxies Q2131-G1, Q1130,
and Q1130-G6 are an order of∼ 2−53 times larger than the median depletion time for
emission-selected galaxies in the xCOLD GASS (Saintonge et al., 2017) and PHIBSS
(Tacconi et al., 2018) samples. This result is consistent with previously detected
H i-selected galaxies which also showed higher depletion times compared to emission-
selected samples. The high depletion times are a consequence of the high molecular
gas masses of H i-selected galaxies for their low SFR. We therefore conclude that H i-
selected galaxies possibly preferentially select galaxies that have large molecular gas
reservoirs for their low SFR, while a complete picture of the H i-selected population
should be obtained by following up the non-detected galaxies for further studies of
this possible selection bias.

• The 5 non-detected galaxies all have metallicities below 12 = log(O/H) ∼ 8.65.
Four of the non-detected galaxies have low sub-solar metallicities of 12 = log(O/H)
< 8.32, but have higher molecular gas mass limits than the detected galaxy Q2131-
G1. Combined with the evidence that CO is photo-dissociated at larger fractions
in low metallicity galaxies compared to higher metallicity galaxies (Wolfire et al.,
2010; Bolatto et al., 2013) and therefore having a lower CO flux density leads to the
conclusion that one should account for a higher integration time when observing CO
in sub-solar metallicity galaxies.



44 2. Coupling Atomic, Ionized & Molecular Gas Kinematics of Galaxies



Chapter 3

The Column Densities of Molecular
Gas across Cosmic Time: Bridging
Observations and Simulations

The content of this chapter is based on the published article Szakacs et al.,
(2022), MNRAS, 512, 4736.

3.1 Abstract

Observations of the cosmic evolution of different gas phases across time indicate a marked
increase in the molecular gas mass density towards z ∼ 2 − 3. Such a transformation
implies an accompanied change in the global distribution of molecular hydrogen column
densities (NH2). Using observations by PHANGS-ALMA/SDSS and simulations by GRIF-
FIN/IllustrisTNG we explore the evolution of this H2 column density distribution function
[f(NH2)]. The H2 (and H i) column density maps for TNG50 and TNG100 are derived in
post-processing and are made available through the IllustrisTNG online API. The shape
and normalization of f(NH2) of individual main-sequence star-forming galaxies are cor-
related with the star formation rate (SFR), stellar mass (M∗), and H2 mass (MH2) in
both observations and simulations. TNG100, combined with H2 post-processing models,
broadly reproduces observations, albeit with differences in slope and normalization. Also,
an analytically modelled f(N), based on exponential gas disks, matches well with the sim-
ulations. The GRIFFIN simulation gives first indications that the slope of f(NH2) might
not majorly differ when including non-equilibrium chemistry in simulations. The f(NH2)
by TNG100 implies that higher molecular gas column densities are reached at z = 3
than at z = 0. Further, denser regions contribute more to the molecular mass density
at z = 3. Finally, H2 starts dominating compared to H i only at column densities above
log(NH2/cm

−2) ∼ 21.8 − 22 at both redshifts. These results imply that neutral atomic
gas is an important contributor to the overall cold gas mass found in the ISM of galaxies
including at densities typical for molecular clouds at z = 0 and z = 3.
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3.2 Introduction

While the total amount of baryons in the Universe (Ωbaryons = ρbaryons/ρcrit,0 ∼ 4 per cent,
where ρcrit,0 is the critical density of the Universe) is well established from measurements
of anisotropies in the Cosmic Microwave Background (Planck Collaboration et al., 2016)
and from primordial nucleosynthesis (Cooke et al., 2018), the contribution and evolution
of different gas phases remain to be probed. Especially constraints on the evolution of the
phases most closely linked to star formation, namely the neutral atomic and molecular gas
phases, are limited. Nonetheless, recent observations have shown first indications of how
these gas phases are evolving.

The neutral atomic gas phase shows little evolution with redshift, with its comoving
baryonic mass density only slightly declining as the redshift decreases [ρneutral−gas ∼ (1 +
z)0.57±0.04] (e.g. Wolfe et al., 2005; Noterdaeme et al., 2009; Crighton et al., 2015; Jones
et al., 2018a; Péroux & Howk, 2020; Tacconi et al., 2020; Walter et al., 2020). This
can be traced by the column density distribution function [f(NH i)] across cosmic time,
which describes the number of H i systems per unit column density per unit distance
interval. f(NH i) quantifies the distribution of H i column densities on the sky and by
integrating f(NH i) one can compute the comoving H i mass density. While f(NH i) of
various shapes can result in the same ρneutral−gas, H i-absorption in quasar spectra and
emission-line measurements have revealed that the f(NH i) shows little to no evolution,
either in shape or in normalization (e.g. Zwaan et al., 2005; Péroux et al., 2005; Zafar
et al., 2013; Ho et al., 2021).

Observations calculating the comoving molecular mass density on the other hand have
indicated a more radical evolution of the gas phase crucially needed for star formation. The
comoving mass density of H2 rises until cosmic noon (z ∼ 2− 3) where it peaks and drops
towards z = 0 (e.g. Liu et al., 2019; Popping et al., 2019; Riechers et al., 2019; Péroux
& Howk, 2020; Decarli et al., 2020; Tacconi et al., 2020; Walter et al., 2020). Given this
evolution of the H2 comoving mass density over cosmic time, changes in the normalization
or shape of f(NH2) can be expected.

Globally, the neutral atomic gas mass density is higher than that of the molecular
phase (Péroux & Howk, 2020; Tacconi et al., 2020; Walter et al., 2020), but f(N) helps
reveal in which type of objects the neutral and molecular gas lies. H i-absorbers can
be split into different categories from the Lyα forest for column densities NH i ≤ 1.6 ×
1017cm−2, to Lyman-limit systems (LLSs, 1.6 × 1016 ≤ NH i ≤ 1019cm−2), to sub-damped
Lyα absorbers (sub-DLAs, 1019 ≤ NH i ≤ 2 × 1020cm−2), up to Damped Lyα absorbers
(DLAs, NH i ≥ 2 × 1020cm−2). The association between these systems and their origin is
still challenging, but various works have kinematically associated LLSs, sub-DLAs, and
DLAs to environments like parts of the extended rotating disks, inflows, and outflows of
galaxies (e.g. Rahmani et al., 2018a,b; Zabl et al., 2020; Schroetter et al., 2019; Szakacs
et al., 2021). H i emission-line studies on the other hand (e.g. Zwaan et al., 2005; Braun,
2012; French et al., 2021) can easily associate column densities with regions of galaxies
like the interstellar medium (ISM) as the galaxies are completely imaged down to a given
sensitivity instead of individual pencil beams. While the gas mass densities and f(N)
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are global properties including multiple objects, comparing f(NH i) and f(NH2) gives an
indication in which regions of galaxies (e.g. the ISM, CGM, molecular clouds) neutral
atomic or molecular gas dominates on average. The typical cold gas column densities for
these regions are the following: Molecular Clouds: N ≥ 1020.8cm−2 (e.g. Spilker et al.,
2021), ISM: N ≥ 1019cm−2, CGM: N ∼ 1014 − 1019cm−2 (e.g. van de Voort et al., 2019).
Therefore, this helps us understand if neutral atomic gas is an important mass contributor
in the ISM compared to molecular gas or if it is only substantial in the haloes surrounding
galaxies.

Today’s state-of-the-art cosmological simulations enable the study of physical processes
of galaxy formation for both the dark matter and baryonic components of the Universe.
The results of these simulations are compared to observables to learn how well the model
fits. A limitation of these simulations is that due to their large volume, the scale at which
these physical processes and observables can be resolved is limited so that sub-grid models
are used. The advantage that these simulations offer is the large statistical sample, as
thousands of galaxies are simulated. Recently, there have been considerable efforts in
modelling the cold gas phase by post-processing these simulations (e.g. Lagos et al., 2015;
Diemer et al., 2018; Popping et al., 2019). While properties of cold gas in these simulations
show various levels of (dis)agreement with observations [e.g. a higher cosmic mass density of
H i and H2 in IllustrisTNG compared to observations at z = 0 (Diemer et al., 2019), tensions
concerning the cosmic metal density evolution in neutral gas in EAGLE, IllustrisTNG and
L-GALAXIES 2020 (Yates et al., 2021), the lower molecular mass as a function of stellar
mass and number of H2 rich galaxies in IllustrisTNG compared to the ASPECS survey
(Popping et al., 2019)], other observables, like the H i column density distribution function
have been accurately reproduced (Rahmati et al., 2013). Therefore, further studies and
comparisons of these and similar observables, like the f(NH2), are needed to improve the
models and to design future observations.

The goal of this study is to probe the evolution of f(NH2) across cosmic time. For this
we compare data from observations on one hand and isolated and cosmological (magneto-
)hydrodynamical simulations on the other hand. In the past, f(NH2) has been studied us-
ing CO emission lines at low-z (Zwaan & Prochaska, 2006) and more recently by studying
composite H2 QSO absorption spectra at z ∼ 3 (Balashev & Noterdaeme, 2018). High-
resolution CO emission-line observations of local galaxies by the PHANGS-ALMA survey
(Leroy et al., 2021) now enable us to derive f(NH2) using emission lines from galaxies on
scales of giant molecular clouds (GMCs). Further, state-of-the-art hydrodynamical simula-
tions including non-equilibrium chemical networks tracking H2 on-the-fly in high-resolution
dwarf galaxy simulations (Hu et al., 2014b, 2016, 2017; Lahén et al., 2019, 2020a,b; Hislop
et al., 2021) and post-processing the TNG100 cosmological magnetohydrodynamical sim-
ulation (Marinacci et al., 2018; Springel et al., 2018; Naiman et al., 2018; Nelson et al.,
2018; Pillepich et al., 2018a) enable the bridging of observations and simulations. Finally,
we aim to compare f(NH i) and f(NH2) to provide indications of the regions of galaxies
(e.g the ISM, CGM, molecular clouds) in which the molecular or neutral atomic gas phases
dominate.

The paper is organized as follows: Section 3.3 describes the column density distribution
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function f(N). Section 3.4 presents the observational setup as well as the simulations used
for the analysis of f(NH2). Section 3.5 describes the resolution dependence of f(NH2).
Section 3.6 presents the f(NH2) of individual galaxies in the PHANGS-ALMA survey
and their correlations with integrated physical properties of the galaxies. Section 3.7
presents the results of the key goal of this manuscript. We describe the redshift evolution
of the f(NH2) derived from both observations and simulations and study their differences
and similarities across cosmic time. Further, we compare f(NH2) with f(NH i) in order
to explore at which densities neutral atomic gas dominates over molecular gas in and
surrounding galaxies. In Section 3.8 we discuss our results from the previous sections.
Finally, in Section 3.9 we give a summary of the findings. Throughout this paper we adopt
an H0 = 67.74km s−1Mpc−1,ΩM = 0.3089, and ΩΛ = 0.6911 cosmology.

3.3 Quantifying the Distribution of Column Densities

Observed on the Sky

Column densities of different chemical species or different phases are not distributed uni-
formly on the sky as low-density gas is more frequent within our Universe. One way to
quantify the distribution of column densities is the so-called column density distribution
function f(Ns). It is defined such that f(Ns)dNsdX is the number of systems with column
densities between Ns and Ns + dNs over a distance interval dX, where s is the species
one is studying (e.g. H i or H2). While in the past f(Ns) have been mostly studied using
absorption systems, high-resolution data of emission lines in galaxies enable an alternative
way of studying the column density distribution function. Using emission-line observations
one can calculate the f(Ns) as follows (e.g. Zwaan et al., 2005; Zwaan & Prochaska, 2006):

f(Ns) =
c

H0

∑
i Φ(xi)w(xi)Ai(log(Ns))

Ns ln(10) ∆log(Ns)
. (3.1)

We bin the galaxies of our samples by their stellar mass, with a bin size of ∆log(M∗,i/M⊙)
=0.2. Φ(M∗,i) is the stellar mass function with M∗,i being the central stellar mass value of
the bin i the corresponding galaxy is in. w(M∗,i) =

1
Ngal,i

is a weighting function taking into

account the varying number of galaxies across the range log(M∗,i/M⊙) - ∆log(M∗,i/M⊙)/2
to log(M∗,i) + ∆log(M∗,i/M⊙)/2 by calculating the reciprocal of the number of galaxies
within the stellar mass bin i. Ai(log(Ns)) is the area function describing the area corre-
sponding to a column density in the range log(Ns) to log(Ns) + ∆ log(Ns) for stellar mass
bin i in Mpc2. We use ∆log(NH2) = 0.1 in our calculations of f(NH2). Finally, we convert
the number of systems per Mpc to that per unit redshift using c/H0. The column densities
in this work are in units of H2 molecules cm−2 for molecular gas and H atoms cm−2 for
neutral atomic gas. The space densities and areas are proper.
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3.4 Bridging Observations and Simulations

In order to study the H2 column density distribution function [f(NH2)] at z = 0 and z = 3
we use an approach that bridges observations and simulations. We study how the state-
of-the-art simulations compare to recent observations and explore if a similar evolution of
the f(NH2) can be seen in both of the approaches. On the observational side we use data
from the PHANGS-ALMA survey1 (see Section 3.4.1, Leroy et al., 2021) at z = 0 and data
from Balashev & Noterdaeme (2018) (SDSS, see Section 3.4.2) at z = 3. On the simulation
side we use TNG100 of the IllustrisTNG project2 (see Section 3.4.3, Marinacci et al., 2018;
Springel et al., 2018; Naiman et al., 2018; Nelson et al., 2018; Pillepich et al., 2018a) at
both redshifts z = 0 and z = 3 and a high-resolution isolated dwarf galaxy simulation
including a non-equilibrium chemical network from the GRIFFIN Project3 (see Section
3.4.4 Lahén et al., 2019, 2020a,b) meant to represent a low-redshift dwarf galaxy.

3.4.1 Resolved Molecular Gas in Local Galaxies

State-of-the-art mm- and radio-telescopes like the Atacama Large Millimeter/submillimeter
Array (ALMA) have enabled the astronomical community to study the coldest gas in the
Universe with unprecedented spatial and spectral resolution. One of the surveys mak-
ing use of these technological advances is the PHANGS-ALMA survey (Leroy et al.,
2021). This survey is the first cloud-scale (∼ 100 pc) survey aimed at studying the
physics of molecular gas within the local galaxy population and targets galaxies that lie
on or near the z = 0 main-sequence of star-forming galaxies with a stellar mass range
of 109 M⊙ < M∗ < 1011 M⊙. PHANGS-ALMA quantifies the physics of star forma-
tion and feedback at giant molecular cloud scales and further connects them to galaxy-
scale properties and processes (Leroy et al., 2021). Further, additional state-of-the-art
multi-wavelength data are provided by the PHANGS-MUSE (Emsellem et al., 2021) and
PHANGS-HST surveys (Lee et al., 2021), which will study the ionized gas, stellar popu-
lations and characterize stellar clusters of the objects observed by the PHANGS-ALMA
survey.

We make use of the highly resolved CO(2–1) data of the PHANGS-ALMA Survey
(Leroy et al., 2021) in order to constrain the global and local f(NH2) in the range
log(NH2/cm

−2) ∼ 19.5 to 24 at z=0. We use a pixel-by-pixel analyzed sample consisting of
70 galaxies from Sun et al. (2020). The stellar mass distribution of the sample can be seen
in Fig. 3.1. In summary, the CO(2–1) data were analyzed by Sun et al. (2020) as follows:
The cubes were convolved to a common spatial resolution of 150 pc and 1 kpc. Then the
data cubes were masked to only include voxels that contain emission detected with high
confidence. Those cubes were finally integrated to create integrated intensity maps. The
integrated maps were then used to derive the molecular gas surface density for each pixel

1sites.google.com/view/phangs/home
2tng-project.org
3mpa-garching.mpg.de/ naab/griffin-project/

https://sites.google.com/view/phangs/home
https://www.tng-project.org
https://wwwmpa.mpa-garching.mpg.de/~naab/griffin-project/
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as follows:4

Σmol = αCO R−1
21 ICO , (3.2)

here R21 = 0.65 is the CO(2–1)-to-CO(1–0) line ratio (Leroy et al., 2013; den Brok et al.,
2021) and αCO is the metallicity-dependent CO-to-H2 conversion factor taken as:

αCO = 4.35 Z ′−1.6 M⊙ pc−2 (K km s−1)−1 , (3.3)

where Z ′ is the local ISM metallicity in units of the solar value. The local Z ′ is estimated
using the global stellar mass, effective radius, and the stellar mass metallicity relation by
Sánchez et al. (2019) combined with a metallicity gradient (Sánchez et al., 2014). For more
details see Sun et al. (2020). For the error calculation we additionally compute the surface
density using the constant αCO = 4.3 M⊙ pc−2 (K km s−1)−1 of the Milky Way (Bolatto
et al., 2013). Measurement uncertainties are omitted as they are negligible compared to
the uncertainties of the different αCO conversion factors used.

With this sample we are able to constrain f(NH2) at z = 0. We convert the derived
surface densities to column densities using:

NH2 =
ΣH2

MH2−molecule

, (3.4)

with ΣH2 in units of kg / cm−2.
We then follow equation 3.1 to calculate f(NH2) and use two stellar mass functions by

Weigel et al. (2016) as our space density function. The first stellar mass function is that of
the entire sample, and the second is one for late-type galaxies only as the PHANGS-ALMA
sample mostly consists of late-type galaxies on the star-forming main-sequence [see Table
5 in Weigel et al. (2016) for the Schechter parameters].

Sun et al. (2018) estimates the 100 per cent completeness surface density limit for
a sub-sample of galaxies in the PHANGS-ALMA sample to be log(ΣH2/M⊙pc

−2) = 10
- 100 at 120 pc resolution. This translates to a column density completeness limit of
log(NH2/cm

−2) = 20.8 - 21.8. At 150 pc resolution the completeness limit is expected to
be lower. We therefore use a conservative estimate of log(NH2/cm

−2) = 21.6 for 100 per
cent completeness of the full PHANGS-ALMA sample.

3.4.2 Absorption Lines as a Probe for the H2 Column Density
Distribution at High Redshifts

At high redshifts it is currently challenging to observe H2 directly or resolve CO emission
lines in galaxies at spatial scales similar to the PHANGS-ALMA survey. Therefore one has
to resort to another approach to study the H2 column density distribution. H2 imprints

4Surface density table for 150 pc can be found at
canfar.net/storage/list/phangs/RELEASES/Sun etal 2020b , datafileB1. 1 kpc table provided by authors
of Pessa et al. (2021).

https://www.canfar.net/storage/list/phangs/RELEASES/Sun_etal_2020b
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resonant electronic absorption bands in the UV and so studying absorption systems is
a promising way of studying f(NH2) at high redshifts. H2 absorption lines are usually
found within DLAs. It is time consuming to detect these H2 absorbers, due to the low
detection rate of ≤ 10 per cent. For these reasons Balashev & Noterdaeme (2018) use
composite spectra of DLAs by Mas-Ribas et al. (2017), which are based on ∼ 27000 DLAs
from SDSS (Noterdaeme et al., 2012) in order to detect the weak mean signature of H2 at
z ∼ 3. Balashev & Noterdaeme (2018) revert to these composite H2 spectra in order to
fit a f(NH2) in the range log(NH2/cm

−2) = 18-22 on which in turn they fit the observed
composite line profiles.

3.4.3 Cosmological Simulations providing Large Statistical Sam-
ples

Cosmological simulations provide large statistical samples for studies of galaxy evolution.
One of these simulations is TNG100 of the IllustrisTNG project (Marinacci et al., 2018;
Springel et al., 2018; Naiman et al., 2018; Nelson et al., 2018; Pillepich et al., 2018a).
TNG100 is a state-of-the-art gravomagnetohydrodynamics (MHD) cosmological simulation
including a comprehensive model for galaxy formation physics (Weinberger et al., 2017;
Pillepich et al., 2018a) within a 75000 ckpc/h sized box using the AREPO code (Springel,
2010). IllustrisTNG aims to study the physical processes that drive galaxy formation and
to study how galaxies evolve within large-scale structures.

We aim to exploit the large sample size of the TNG100 simulation in order to compare
the observed f(NH2) at z = 0 and z = 3. While TNG50 offers higher resolution, we choose
TNG100 as our fiducial model due to two reasons: 1) The SMF, which is an important
parameter in our calculations, is closer to observations for TNG100 than for TNG50. 2) To
enable future comparisons with the EAGLE cosmological simulation (Schaye et al., 2015),
as TNG100 is the closest in terms of resolution to the EAGLE 100 Mpc box simulation.

The molecular gas phase in current large-scale cosmological simulations is challenging to
assess. Using chemical networks to track H2 on-the-fly is computationally time consuming
due to the complex physics involved and the high resolution needed in order for the H2

mass fraction to converge within the forming molecular clouds (∼ 0.12 pc, Seifried et al.,
2017). In order to capture the unresolved physics, one has to revert to sub-grid models,
which split the cold hydrogen component in the simulations into a neutral atomic and
molecular component. We use the H2 post-processing catalogs of Popping et al. (2019) for
TNG100, for which three different models are available. The used models are by Blitz &
Rosolowsky (2006); Gnedin & Kravtsov (2011); Krumholz (2013). The model by Blitz &
Rosolowsky (2006) is a pressure-based empirical fit based on a sample of 14 local spiral and
dwarf galaxies that have measured atomic, molecular, and stellar surface densities. Using
this sample they find a nearly linear relation between the hydrostatic pressure and the
ratio of molecular to atomic gas. Gnedin & Kravtsov (2011) designed a phenomenological
model for the formation of molecular hydrogen, which is dependent on the gas density,
dust-to-gas ratio and the far-UV radiation flux. This model was tested on cosmological
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simulations by Gnedin et al. (2009). Finally, the model by Krumholz (2013) is a column
density, metallicity, and radiation field dependent relation for splitting the cold hydrogen
component in simulations.

Figure 3.1: The stellar mass distribution of the PHANGS-ALMA survey (red) and the
matching TNG100 sample (green-hatched). For each stellar mass bin we additionally only
select galaxies in TNG100 with similar SFRs as found in the corresponding stellar mass
bin in PHANGS-ALMA.

In our study, we select central galaxies at z = 0 and z = 3. We add the ability to
generate post-processed H2 column density (NH2) maps based on Popping et al. (2019)
for TNG50 and TNG100 using the sub-grid models mentioned above, which split the cold
hydrogen within those galaxies into atomic and molecular components, to the IllustrisTNG
online API5. We use this functionality to create H2 column density (NH2) maps at 150 pc
and 1 kpc resolution. These maps are generated by projecting gas cells as adaptively sized
SPH kernels. The kernel size parameter is set to hkernel = 2.5rcell. With rcell being the cell
size determined by using the Voronoi cell volume: rcell = (3Vcell/4π)

1/3. We use the same
projection direction for every galaxy (z-axis of the simulation) and only consider gas cells
gravitationally bound to the selected subhaloes within a fixed 200 × 200 kpc box. This
method reproduces f(NH2) derived from the full box of TNG100 when using the same
resolution for the derivation as in Klitsch et al. (2019b). Therefore, we do not expect this
choice to affect f(NH2) as compared to using a box size dependent on halo properties. At
z = 0 we selected a PHANGS-ALMA survey-like sample within TNG100. For this we
select ∼ 570 galaxies within a stellar mass of 109 and 1011 M⊙. We match the PHANGS-
ALMA sample stellar mass distribution (see Fig. 3.1). Further, for each 0.2 dex stellar
mass bin we select galaxies with similar star formation rates as in the PHANGS-ALMA
sample. We note that when selecting a sample of ∼ 700 central galaxies with stellar masses
between 109 and 1012.6 M⊙ and no star-formation selection criterion we derive very similar

5tng-project.org/api/

https://www.tng-project.org/api/
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results in TNG100 as for the PHANGS-ALMA-like sample, with the only differences being
the slightly higher column densities reached in the larger sample (∼ 0.2 dex higher) and
a slightly higher normalization at column densities above log(NH2/cm

−2) ∼ 21.5, which is
likely due to the larger size of the additional galaxies. At z = 3 we select ∼ 550 galaxies
with stellar masses between 109 and 1011.8 M⊙. Therefore this includes galaxies between
the resolution limit of TNG100 up to the highest stellar mass limit of TNG100. We do not
set any constraints on the SFR of the galaxies, as the observational f(NH2) is based on H2

absorption line studies, where we do not have any SFR information.

Following equation 3.1 we use the derived H2 column density maps to calculate f(NH2).
For the space density function we use the Stellar Mass Function (SMF) of the simulation
box itself. At z = 0 the Schechter parameters are: log(M∗/M⊙) = 11.27, log(Φ∗

1/h
3 Mpc−3)

= -3.31, log(Φ∗
2/h

3 Mpc−3) = -3.28, α1 = -1.36, α2 = -1.36. At z = 3 the double Schechter
parameters are: log(M∗/M⊙) = 10.83, log(Φ∗

1/h
3 Mpc−3) = -3.84, log(Φ∗

2/h
3 Mpc−3) =

-3.58, α1 = -0.29, α2 = -1.64.

3.4.4 Molecular Gas in Highly Resolved Simulations of Individ-
ual Galaxies

An alternative approach to studying molecular gas in simulations is to use highly resolved
simulations of individual isolated galaxies, which include non-equilibrium chemical net-
works that track H2 on the fly throughout the simulation. Although this is currently
mostly limited to dwarf galaxies, the advantage of these simulations is a more accurate
representation of H2 due to a non-equilibrium chemical network.

One of these simulations is the high-resolution isolated dwarf simulation from the GRIF-
FIN Project (Lahén et al., 2019, 2020a,b) with a stellar mass of log(M∗/M⊙) ∼ 7.3.
The simulation is based on the smoothed particle hydrodynamics tree code GADGET-
3 (Springel, 2005) with the gas dynamics modelled using the SPH implementation SPHGal
(Hu et al., 2014b, 2016, 2017). The simulation resolves individual massive stars at sub-
parsec resolutions and includes a non-equilibrium chemical network based on Nelson &
Langer (1997); Glover & Mac Low (2007a); Glover & Clark (2012). The chemical network
follows the abundances of six chemical species for cooling processes at low temperatures
(< 3 × 103 K, most importantly H2). Further, the simulation includes star formation, an
interstellar radiation field, and stellar feedback prescriptions. A detailed discussion of the
isolated dwarf simulation is given in Hu et al. (2016, 2017).

For the calculation of f(NH2) we time- and inclination-average the isolated dwarf galaxy
simulation. Therefore we produce H2 column density maps with all possible lines of sight
and slightly varying total H2 masses using the analysis tool PYGAD (Röttgers et al., 2020).
First we create H2 column density maps by using snapshots over a time range of ∼ 300
Myrs. For each of these snapshots we create H2 column density maps at a resolution of 150
pc with inclinations between 0 and 90◦ in ∆cos(i) = 0.05 steps. We then follow equation
3.1 to calculate f(NH2) by using these H2 column density maps and use the Weigel et al.
(2016) SMF of the entire sample for the normalization of f(NH2) following the prescription
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described in Section 3.3 (for the Schechter parameters see Table 5 in Weigel et al., 2016).
The f(NH2) is therefore calculated using a single stellar mass bin (as the stellar mass of
the simulated dwarf galaxy does not evolve much over time). However, galaxies of this
stellar mass are not represented in the PHANGS-ALMA and TNG100 sample, so we can
not directly compare the f(NH2) of similar galaxies.

3.5 A Resolution-dependent H2 Column Density Dis-

tribution Function

We test how f(NH2) depends on the resolution of the data used for its calculation. First
we study how f(NH2) depends on the resolution of the simulation by comparing f(NH2) in
TNG50 and TNG100 from the Illustris project. Then we compare how the resolution of
the NH2-maps from both observations and simulations affects f(NH2).

3.5.1 f(NH2
) - Dependence on the Resolution of Simulations

Here we compare the f(NH2) derived from TNG100 with TNG50 (Pillepich et al., 2019;
Nelson et al., 2019b) using the Gnedin & Kravtsov (2011) H2 model. TNG50 has a box
length of 51.7 Mpc and 2× 21603 resolution elements, while TNG100 has a box length of
110.7 Mpc and 2× 18203 resolution elements. Therefore TNG50 gives us an indication of
how a higher resolution simulation affects f(NH2).

In Fig. 3.2 (left) the f(NH2) derived from TNG100 and TNG50 at z = 0 using a 150
pc resolution of the post-processed column density map are displayed. TNG50 extends
to higher column densities compared to TNG100. The finer resolution reaches higher
gas densities and in turn higher column densities. Further, at column densities above
log(NH2/cm

−2) ∼ 22 the f(NH2) in TNG50 initially displays a steep drop with a subsequent
flattening of the f(NH2). These differences indicate that the H2 column densities are
not converged in this region. Given these differences we would expect higher resolution
simulations to reach even higher column densities, and possibly also affect the shape in the
region above log(NH2/cm

−2) ∼ 22. We note that IllustrisTNG uses the sub-grid model of
Springel & Hernquist (2003) for the star-forming ISM. Independent of the resolution, the
sub-grid model begins star formation at ISM densities of 0.1 cm−3 preventing the simulation
from resolving the cold gas phase and subsequently the formation of molecular clouds. Due
to this the model itself is limited by the sub-grid ISM model and a higher resolution is only
sensitive up to the limitations of the model. The resolution tests, however, indicate that
the sub-grid model is not the limiting factor in terms of densities reached at the resolution
of TNG100 since f(NH2) is not converged at high column densities. However, modifying
the model to treat the multiphase ISM more realistically will likely affect the results.
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Figure 3.2: Resolution study for the molecular gas column density distribution func-
tion derived from simulations and observations. Left: f(NH2) derived from TNG100
and TNG50. Higher column densities are reached in TNG50, as a higher resolution en-
ables the simulation to reach higher gas densities. Especially at column densities above
log(NH2/cm

−2) ∼ 22 the f(NH2) differs. This indicates that H2 in TNG100 is not con-
verged for those column densities. Right: f(NH2) derived from PHANGS-ALMA (red
bands) and TNG100 (green bands) data at map resolutions of 150 pc (filled) and 1 kpc
(hatched). The f(NH2) both in observations and simulations show a map resolution de-
pendence. In TNG100 this effect arises due to the averaging of column densities over a
larger area. Very high column densities are usually detected on small scales (much smaller
than 1 kpc), leading to a dilution of high column densities. In PHANGS-ALMA this effect
is additionally combined with sensitivity and incompleteness specifics of the observations.
The core of the distribution [log(NH2/cm

−2) = 21 to 22] is robust to resolution effects in
both simulations and observations. In general, high-resolution observations and simula-
tions are needed to resolve column densities typically found in very dense environments
like molecular clouds.

3.5.2 f(NH2
) - Dependence on the Resolution of NH2

Maps

We compare how f(NH2) depends on the resolution of observed and simulated H2 column
density (NH2) maps. We calculate f(NH2) using 150 pc and 1 kpc map resolution CO(2–1)
data from the PHANGS-ALMA survey and a sample of galaxies from TNG100.

The f(NH2) for these data sets and resolutions are displayed in Fig. 3.2 (right). Dif-
ferences in both shape and the column density range are found between the different
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map resolutions in both TNG100 and the PHANGS-ALMA survey. The f(NH2) derived
from PHANGS-ALMA shows a more substantial map resolution dependence compared to
TNG100. There are two factors that together cause this higher map resolution dependence
of the PHANGS-ALMA data. 1.) Creating NH2 maps using larger pixel sizes averages the
column densities over larger regions. This leads to lower mean observed column densities,
as very high column densities are usually detected at GMC scales, which are smaller than
1kpc (Leroy et al., 2021). This effect is especially apparent at the high column density
end, as in the 1 kpc map resolution data column densities above log(NH2/cm

−2) ∼ 22.8
are diluted by this effect. 2.) Observational data are limited by their sensitivity and com-
pleteness. Coarser resolution data have a reduced noise and are thus more complete (see
the comparison of native resolution vs. 150 pc map resolution data in PHANGS-ALMA,
Leroy et al., 2021). Therefore the coarser map resolution observations are sensitive to
lower column densities compared to finer resolution observations. This effect is especially
significant below log(NH2/cm

−2) ∼ 22.5 in Fig. 3.2 (right). TNG100 does not suffer from
these sensitivity and incompleteness effects at lower column densities and therefore the
map resolution dependence is less drastic. TNG100 is only affected by beam smearing.
The core of the distribution [log(NH2/cm

−2) = 21 to 22] is robust to resolution effects in
both simulations and observations.

3.6 Does the H2 Column Density Distribution of In-

dividual Galaxies depend on their Physical Prop-

erties?

We study the f(NH2) of individual objects in the PHANGS-ALMA survey and TNG100
(z = 0) in order to explore how it depends on integrated physical properties of the galax-
ies. We calculate the individual f(NH2) using Equation 3.1, but set the normalization
parameters [Φ(xi) and w(xi)] equal to one. The individual column density distributions,
colour-coded according to the integrated star formation rate (SFR), stellar mass (M∗) and
H2 mass (MH2)

6 of the corresponding galaxy are displayed in Fig. 3.3. For these calcu-
lations we use column density maps with a resolution of 150 pc. The colour coding of
the plots reveals a connection between f(NH2) and the physical parameters mentioned.
We note that the integrated molecular masses of galaxies in TNG100 are generally higher
compared to PHANGS-ALMA. This is to be expected, as TNG100 probes the full disk and
is not limited by observational sensitivity and incompleteness limits when compared to the
PHANGS-ALMA sample. Further, Leroy et al. (2021) estimates that on average ∼ 30
per cent of molecular gas is missed by PHANGS-ALMA due to the limited field of view
when compared to WISE3 luminosities. Additionally, TNG100 is possibly overestimating
H2 within the simulation at z = 0 (Diemer et al., 2019).

6SFR and M∗ are taken from sites.google.com/view/phangs/sample. MH2
is calculated by summing

up the surface density of individual pixels multiplied by pixel area (table found in datafileB1 at can-
far.net/storage/list/phangs/RELEASES/Sun etal 2020b)

https://sites.google.com/view/phangs/sample
https://www.canfar.net/storage/list/phangs/RELEASES/Sun_etal_2020b
https://www.canfar.net/storage/list/phangs/RELEASES/Sun_etal_2020b
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Figure 3.3: H2 column density distributions [f(NH2)] of individual PHANGS-ALMA and
TNG100 (z = 0) galaxies. The plots display the correlation of the individual f(NH2)
on the integrated SFR, M∗ and MH2 of the galaxies. The flattening and steep drop of
the PHANGS-ALMA f(NH2) at lower column densities is due to the incompleteness and
sensitivity limit of the observations. The individual f(NH2) in both PHANGS-ALMA and
TNG100 have similar shapes. This is likely due to the sample consisting of main-sequence
star-forming galaxies. These galaxies mostly have rotating disks and are hypothesized
to have radially exponential gas profiles. The f(NH2) correlate with integrated physical
parameters (SFR, M∗ and MH2) of the galaxies. The higher these parameters, the larger
the galaxies, leading to a higher normalization of f(NH2). Further, higher column densities
are detected in more massive galaxies, implying that more dense gas is found in larger
galaxies.

The f(NH2) of individual galaxies have very similar shapes in both observation and
simulation. This is possibly related to the galaxies in the sample, which are main-sequence
star-forming galaxies. These types of galaxies mostly have rotating disks and are hypoth-
esized to have radially exponential gas profiles (Leroy et al., 2008; Stevens et al., 2019).
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While the diskiness and exponential gas profiles of the galaxies under consideration still
need to be established, the similar f(NH2) could indeed stem from similar gas profiles
within these galaxies. In Section 3.7 we further explore this possibility by comparing an
analytical f(NH2) model assuming radially exponential gas disks with simulated results.

While the shapes of the f(NH2) are similar, the f(NH2) also show a correlation with
integrated physical parameters of the galaxies. The colour coding in Fig. 3.3 indicates
that the f(NH2) are correlated with the integrated SFR, M∗, and MH2 of the galaxies. The
higher the SFR, M∗ and MH2 , the more massive these galaxies are, leading to a higher
normalization of f(NH2). Further, higher column densities are detected in more massive
galaxies, implying that more dense gas is formed in larger galaxies. The higher abundance
of denser gas in more massive galaxies could also lead to higher star formation rates, as
more gas is found at densities suitable for star formation (e.g. above log(NH2/cm

−2) ∼ 21,
Clark & Glover, 2014). This is possibly related to the correlation between the SFR surface
density and molecular gas surface densities in galaxies (e.g. Bigiel et al., 2008; Feldmann,
2020). We however note that the correlation we find is related to the integrated SFR of
the galaxy and not the SFR surface density. In the Appendix (Section B.1) we explore
these correlations using the PHANGS-ALMA sample and provide a way to approximate
f(NH2) given physical parameters. It, however, remains unclear which galaxy property is
the governing parameter for the shape of f(NH2), as SFR, M∗ and MH2 all have similar
correlation strengths with parameters of the gamma distribution used to fit f(NH2) in the
Appendix.

3.7 The Redshift Evolution of the H2 Column Density

Distribution in Simulations and Observations

We study f(NH2) at z = 0 and z = 3 using both observations and simulations. First we
study how recent observations compare to the state-of-the-art simulation TNG100 at both
z = 0 and z = 3 and how the isolated dwarf galaxy simulation from the GRIFFIN Project
fits into the column density distribution at z = 0. Then we discuss the evolution of f(NH2)
from z = 0 to z = 3. Finally, we examine how f(NH2) compares to f(NH i) at z = 0 and
z = 3 to explore in which regions of galaxies the neutral atomic gas is dominating over the
molecular gas.

3.7.1 f(NH2
) at z=0

In Fig. 3.4 (left) the f(NH2) from both observations, simulations and an analytical model
at z = 0 are displayed. For TNG100 we plot a band (green band) encompassing the three
post-processing methods described in Section 3.4.3. Note that below log(NH2/cm

−2) <
18 the post-processing results for H2 become unreliable as post-processing the simulations
with different SPH kernel smoothing lengths leads to highly different results in that region.
This region is represented by bands filled with the ⋆ symbol. The dwarf galaxy simulation
f(NH2) (green line) is based on the results from the on-the-fly chemical network included in
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Figure 3.4: f(NH i) and f(NH2) derived from both simulations and observations at z = 0
and z = 3. The column densities at which the f(NH2) become unreliable due to incom-
pleteness or simulation specifics are indicated by regions filled with the ⋆ symbol. Left:
f(Ns) of TNG100, the PHANGS-ALMA survey (red band), the WHISP sample (blue,
Zwaan et al., 2005), an analytical model (black line, Zwaan, 2000) and the simulated dwarf
galaxy from the GRIFFIN project (green line) at z = 0. The f(NH2) by TNG100 broadly
reproduces the observations by the PHANGS-ALMA survey. The analytical f(NH2) based
on the assumption of a radially exponential gas profile in galaxies is a good approximation
for f(NH2) for both observations and simulations. The f(NH2) derived from a simulated
dwarf galaxy including a non-equilibrium chemical network displays similar slopes com-
pared to TNG100. Right: f(Ns) of TNG100 (green band), SDSS [(red band, Balashev &
Noterdaeme, 2018), (dark blue line, Ho et al., 2021)] and the EAUDP sample (dark blue
line, Zafar et al., 2013) at z = 3. The f(NH2) from TNG100 and the observational re-
sults based on the SDSS sample have matching slopes. The normalization between the two
shows a ∼ 1 dex difference, possibly arising due to differences in selection and environments
probed.

the simulation. The red band encompasses the f(NH2) from the PHANGS-ALMA survey
using varying assumptions. It includes calculations using a stellar mass function based
on the full sample and late-type galaxy only sample in Weigel et al. (2016). Further,
we calculate the f(NH2) with both a metallicity dependent αCO (see Section 3.4.1) and
a constant αCO = 4.3 M⊙ (K km s−1 pc2)−1 (Bolatto et al., 2013). We note that the
drop of the PHANGS f(NH2) at column densities below log(NH2/cm

−2) ∼ 21 is not of
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physical origin, but due to the sensitivity and incompleteness limit of the observations,
leading to the observations not probing the full disk. We also include an analytical model
(black line) used to estimate f(N) assuming radially exponential gas disks averaged over
all possible inclinations (Zwaan, 2000) 7. The analytical model is approximated by three
linear functions.

TNG100 broadly reproduces Observations

We study how TNG100 (green band, Fig. 3.4 left) reproduces the f(NH2) observed by
the PHANGS-ALMA survey (red band, Fig. 3.4 left). While there are differences in the
f(NH2), the observations are broadly reproduced by TNG100 in the column density ranges
where simulation and observation specifics do not hinder a fair comparison.

One difference is that TNG100 does not reach as high a column density as observed
by the PHANGS-ALMA survey. This is due to the limitations of the simulation. Given
the resolution of TNG100 gas densities that can be reached at given redshifts are limited
(see Section 3.5.1). Further, for the regions below log(NH2/cm

−2) ∼ 21.6, TNG100 f(NH2)
shows a higher normalization than observed with PHANGS-ALMA. This can be explained
by the sensitivity and incompleteness limit of the observations below those column den-
sities. In the region between log(NH2/cm

−2) ∼ 21.6 − 22.2 both f(NH2) are overlapping,
albeit with TNG having a steeper slope when approximated as a linear function in log
space (βPHANGS ∼ 2.3− 2.35, βTNG ∼ 3.15− 3.6).

Given that the two f(NH2) are based on vastly different methods of calculating the
column densities (one being post-processed H2 from a cosmological magnetohydrodynam-
ical simulation, and one being observations of CO(2–1), which are converted to H2) the
similarity between the two f(NH2) is remarkable. Nonetheless, further tests and studies
are needed to explore the inconsistencies between observations and simulations, especially
at the high column density end of f(NH2). Higher resolution simulations would likely ex-
tend the f(NH2) to higher column densities. Additionally, alternatives to the Springel &
Hernquist (2003) sub-grid star formation prescription in order to resolve the cold gas phase
in the simulations might be needed to reach the high column densities detected in obser-
vations. Including non-equilibrium chemistry in these simulations could also give more
accurate representations of H2 in the simulations (e.g. Maio et al., 2022). Finally, deeper
observations would enable fair comparisons of f(NH2) below log(NH2/cm

−2) ∼ 21.6.

An Analytical Model closely matching TNG100

We compare the analytical model by Zwaan (2000) (black line, Fig. 3.4 left) with the
results from TNG100 (green band, Fig. 3.4 left) at z = 0 to study how well the simulated
predictions match the analytical model. We approximate the analytical model using three
ad-hoc linear functions in the following H2 column density ranges: log(NH2/cm

−2) ≤ 20,
log(NH2/cm

−2) = 20 − 21, log(NH2/cm
−2) ≥ 21 and therefore use these regions for a

7With the N0 parameter of the model, which determines the knee of the curve, set to 1020.7 cm−2. For
H2 this is an ad-hoc choice.
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comparison. Generally, the analytical model assuming radially exponential gas disks in
galaxies produces comparable results to calculating f(NH2) using the post-processed H2

column densities of galaxies within TNG100.

Below log(NH2/cm
−2) ≤ 20 the normalizations are comparable, but the TNG100 f(NH2),

depending on the post-processing prescription used, has a slightly lower slope compared
to the analytical model (βTNG ∼ −0.75 to −1.15, βana ∼ −1.22). In the range of
log(NH2/cm

−2) = 20 − 21 we find similar results, with the normalization matching, but
a slightly higher slope in TNG100 (βTNG ∼ −1.94 to −2.05, βana ∼ −1.71). Further,
approximating the slope of TNG100 at log(NH2/cm

−2) ≥ 21 using a linear function in log
space leads to similar results, with TNG100 producing higher slopes for f(NH2) in this
region (βTNG ∼ −3.4 to −3.8, βana ∼ −3.0). Finally, the analytical model predicts slightly
fewer systems in this column density range compared to TNG100. We note that Zwaan
(2000) also proposes an analytical model based on Gaussian gas profiles. This model re-
sults in slopes of βana,gauss ∼ −1 at column densities below log(NH2/cm

−2) = 20.7 and
βana,gauss ∼ −3 at column densities above this threshold.

We conclude that while TNG100 produces f(NH2) with slightly higher slopes and in
some parts different normalizations, the f(NH2) derived from the analytical model is still
comparable and a good approximation. Since radially exponential gas disks are also a good
approximation for disk galaxies in TNG100 (e.g. H i disks described in Stevens et al., 2019)
it appears natural that an analytical model making the assumption of radially exponential
gas disks yields similar results. While the results of an analytical model using exponential
gas disks match predictions by TNG100 well, a Gaussian distribution within gas disks of
galaxies yields similar results. Therefore, further studies of the distribution in gas disks
and their relevance to f(NH2) are required to fully understand how the gas disk distribution
and f(NH2) relate.

A Dwarf Galaxy Simulation producing similar Slopes compared to TNG100

We compare the f(NH2) of the simulated dwarf galaxy from the GRIFFIN project, which
includes a non-equilibrium chemical network tracking H2 on the fly (green line, Fig. 3.4
left) with the results of TNG100 (green band, Fig. 3.4 left) at z = 0. This helps us
understand the impact for f(NH2) when running simulations at sub-pc resolution including
a non-equilibrium chemical network in an isolated environment.

The f(NH2) only probes one galaxy with a stellar mass of log(M∗/M⊙) ∼ 7.38. This
leads to several differences when compared to a sample of galaxies. Due to the limited
mass and size, the dwarf galaxy in the simulation only reaches column densities up to
log(NH2/cm

−2) ∼ 19.5. The slope of both f(NH2) is consistent. For the dwarf simulation
the logarithmic slope is βdwarf ∼ −0.7 before the drop off at log(NH2/cm

−2) ∼ 18. The
slope found in TNG100 at those column densities is βTNG ∼ −0.7 to −1.1. It is surprising
that the slope of f(NH2) of a single galaxy is so similar to the slope of a large sample of
galaxies with varying sizes, especially given the different methods for deriving molecular

8The stellar mass does not evolve much over the course of the simulation
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gas in these simulations. While it is difficult to disentangle the effects that the different
galaxy properties and derivation methods of molecular gas have on the slope of f(NH2),
this is possibly a first indication that the slope f(NH2) is not affected by non-equilibrium
chemistry. Especially since the slope of f(NH2) for individual main-sequence star-forming
galaxies in TNG100 is similar below log(NH2/cm

−2) ≲ 20 and not majorly affected by
galaxy properties. In order to further our understanding of how non-equilibrium chemistry
might affect f(NH2) a larger sample size of highly resolved simulated galaxies spanning a
wider range of stellar masses would be needed. Alternatively, running and comparing the
dwarf galaxy simulation by GRIFFIN without non-equilibrium chemistry with the current
GRIFFIN model would also help disentangling the effects that non-equilibrium chemistry
and galaxy properties have on the slope of f(NH2). This is an interesting avenue to explore
in the future.

Which Column Densities contribute most to the H2 Mass Density at z = 0?

As a final analysis of f(NH2) at z = 0 we study which column densities contribute the
most to the overall mass density (ρmol) in both TNG100 and the PHANGS-ALMA survey.
Disentangling which column densities contribute the most to the mass density helps us
understand in which regions of galaxies (e.g. the ISM, CGM, molecular clouds) most of
the molecular gas is detected. Further, we can interpret if most of the gas is in regions
suitable for star formation or not.

In Fig. 3.5 (left panel) we plot the mass densities as a function of H2 column density.
The red band corresponds to the PHANGS-ALMA results and the green band to the
TNG100 results. For TNG100 the highest mass density contribution stems from column
densities in the range log(NH2/cm

−2) ∼ 20.5 − 20.7. Therefore the majority of molecular
gas in TNG100 is found at column densities typical for the ISM of galaxies, but below
densities of molecular clouds (e.g. Spilker et al., 2021) as opposed to less dense and diffuse
regions surrounding galaxies, like the CGM.

Using numerical models Clark & Glover (2014) predict that star formation is possible
in regions where the mean area averaged column density exceeds log(NH2/cm

−2) ∼ 21.
TNG100 predicts the mass density peak slightly below the star formation threshold advo-
cated by Clark & Glover (2014) and therefore in a region not suitable for star formation.
This fraction of the gas could be either in regions where the molecular gas has been de-
pleted due to star formation or in regions that are possibly in the process of collapsing into
denser regions.

In PHANGS-ALMA we find an overall flatter distribution of the H2 mass densities in the
regions where the observations are complete and when compared to TNG100. The highest
contribution to the overall mass density is in the range of log(NH2/cm

−2) ∼ 21.2−21.5. This
is at densities detected in the ISM and typical for molecular clouds. We note that for the 1
kpc resolution PHANGS-ALMA data the highest contribution shifts to log(NH2/cm

−2) ∼
21. However, it is not trivial to quantify how much this is an effect of higher completeness
at lower resolutions compared to averaging over a larger area.

The mass density peak in PHANGS-ALMA is detected at densities above the star
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formation threshold advocated by Clark & Glover (2014). While this is inconsistent with
results by TNG100, we note that the observations of PHANGS-ALMA are incomplete in
this region. It is therefore conceivable that deeper observations of molecular gas in these
galaxies may shift the observed column density contributions to lower column densities.

In conclusion, when combining results by observations and simulations, the highest H2

mass density contribution is found at column densities detected within the ISM of galaxies
and partly in regions observed in local molecular clouds.

Figure 3.5: The mass density contribution per dex column density (ρs) of H i and H2

derived from observations and simulations. Overall at z = 3 the highest mass contribution
of H2 comes from denser gas compared to z = 0 in both simulations and observations.
Further, the mass density distributions suggest that H i dominates over H2 at most column
densities, making it an important contributor to the cold gas mass density of galaxies. H2

starts dominating compared to H i at column densities above log(NH2/cm
−2) ∼ 21.8 − 22

at both redshifts. Left: Mass densities of H2 and H i against column densities at z = 0 for
TNG100 (green band), the PHANGS-ALMA survey (red band) and the WHISP sample
(blue line, Zwaan et al., 2005). The H2 highest mass density contribution can be constrained
between log(NH2/cm

−2) ∼ 20.5− 21.5 (column density regions typical for the ISM and, in
part, molecular clouds) Right: Mass densities of H2 and H i against column densities at
z = 3 for TNG100 (green band), SDSS [(red band, Balashev & Noterdaeme, 2018), (dark
blue line, Ho et al., 2021)] and the EAUDP sample (dark blue line, Zafar et al., 2013). The
highest H2 mass density contribution can be constrained at log(NH2/cm

−2) ∼ 22 (column
densities typical for molecular clouds).
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3.7.2 f(NH2
) at z=3

TNG100 broadly reproducing Observations

Here we compare the f(NH2) based on composite SDSS H2 absorption spectra (Balashev &
Noterdaeme, 2018) to the results of TNG100 at z = 3. In Fig. 3.4 (right plot) we display
these f(NH2). The data from Balashev & Noterdaeme (2018) (red band) only includes
column densities of log(NH2/cm

−2) = 18 - 22 and we therefore can only compare the slopes
before the steeper drop of f(NH2) at higher column densities. Both f(NH2) have similar
slopes in this region (βbalashev ∼ 1.13 − 1.45 , βTNG ∼ 0.88 − 1.47 ). The normalization
of the observed f(NH2) is ∼ 1 dex lower than that predicted by TNG100 in most column
density regions.

This may be caused by the different methods of deriving f(NH2). The observed f(NH2)
is based on absorption line studies of DLAs, which are typically observed at high im-
pact parameters surrounding galaxies (e.g. Péroux et al., 2011b; Christensen et al., 2014;
Krogager et al., 2017), while TNG100 relies on post-processed H2 column density maps,
which include all regions of galaxies. Further, these observations might be biased towards
galaxies in group environments (Hamanowicz et al., 2020). Given this, while there are still
inconsistencies between simulation and observation, the two f(NH2) are remarkably close
in slope. Further studies, including high spatial resolution molecular gas observations or
post-processing TNG100 using ray-casting codes at typical impact parameters of absorp-
tion line systems, might help alleviate some of these inconsistencies and are an interesting
avenue for future studies.

We stress that another model by Krogager & Noterdaeme (2020) using the fraction of
cold gas absorption in strong H i selected absorbers derived by Balashev & Noterdaeme
(2018) predicts an f(NH2) with a knee at log(NH2/cm

−2) ∼ 21 and a highest column density
of log(NH2/cm

−2) ∼ 23. While the model is also using the Blitz & Rosolowsky (2006)
method for splitting the cold gas into a neutral and molecular fraction as for TNG100,
the results are inconsistent with the predictions made by TNG100, which estimates the
knee of f(NH2) to occur at log(NH2/cm

−2) ∼ 22 and includes column densities beyond
log(NH2/cm

−2) = 24.
In conclusion, both observations and simulations have f(NH2) with well-matching slopes

in the overlapping regions. However, they differ in normalization by ∼ 1 dex. Thus, the
results by observations and simulations are in tension for the overlapping H2 column density
regions at z = 3.

Which Column Densities contribute most to the H2 Mass Density at z = 3?

As a final analysis of f(NH2) at z = 3 we study which column densities contribute the
most to the overall mass density (ρmol) in both TNG100 and the f(NH2) by Balashev &
Noterdaeme (2018) derived from composite H2 spectra.

In Fig 3.5 (right panel) we plot the mass densities for each H2 column density. The
peak of the H2 mass density is not reached by the Balashev & Noterdaeme (2018) data
(red band), meaning that we can only set a limit of log(NH2/cm

−2) ≳ 22. This is in regions
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typically observed within molecular clouds. Further, it is well above the density threshold
for star formation. The TNG100 results show that the highest mass density contribution
is at densities of log(NH2/cm

−2) ∼ 21.9, so slightly below the limit that one can set with
observations.

3.7.3 Denser Molecular Gas found at High Redshifts

In this section we study how f(NH2) evolves from redshift z = 0 to z = 3. The f(NH2) for
both redshifts is shown in Fig. 3.4.

In TNG100 (green bands) the slopes below log(NH2/cm
−2) = 20 are similar (βTNG,z=0 ∼

0.75 − 1.14, βTNG,z=3 ∼ 0.73 − 1.10) and show little to no evolution. At column densities
above that differences start to arise. At z = 0, TNG100 predicts molecular gas up to column
densities of log(NH2/cm

−2) ∼ 23. At z=3 column densities beyond log(NH2/cm
−2) ≳ 24

are reached in TNG100. This indicates that denser H2 gas exists in the earlier Universe.
It is the case that physical densities are intrinsically higher in the high-redshift versus low-
redshift Universe. At the same time, this prediction from TNG100 could be affected by its
finite numerical resolution. Further, there is a steeper drop off at high column densities
at z = 0 compared to z = 3 in TNG100, where the f(NH2) is flatter at high column
densities. Due to limitations in the observations, we cannot make similar statements at the
high column densities using observations. We, however, find that in the overlapping region
f(NH2) of both the SDSS sample (Balashev & Noterdaeme, 2018) and the PHANGS-ALMA
survey are similar. The f(NH2) of Balashev & Noterdaeme (2018) is a good continuation of
the f(NH2) found in the PHANGS-ALMA survey. We therefore expect larger differences in
the f(NH2) to arise at higher column densities. This would mean that the largest differences
of f(NH2) arise at the densest molecular regions in the Universe. Observations at z = 3
with higher column densities are needed to test if the predictions by TNG100 are correct.

Figure 3.5 shows that the column densities contributing the most to the molecular gas
mass densities are shifting towards higher column densities at z = 3. When combining the
results from observations and simulations we find the following: While at z = 0 the highest
contribution is found at column densities of log(NH2/cm

−2) ∼ 20.5 − 21.5, at z = 3 it is
found at column densities of log(NH2/cm

−2) ∼ 21.9− 22. When assuming that the column
density relates to the density of the gas, denser gas found at higher redshifts is in line
with observations of the star formation rate across cosmic time, which is higher at z = 3
compared to z = 0 (Madau & Dickinson, 2014; Tacconi et al., 2020). The shape of the
cosmic molecular mass density as a function of redshift is similar to the shape of the SFR
density, making a coupling of these two quantities likely. Therefore, one would expect that
more molecular gas found in denser regions leads to a higher global star formation rate
in galaxies (Péroux & Howk, 2020). When assuming that the column density relates to
the density of the gas, this is exactly what we observe when studying the column density
distributions at z = 0 and z = 3.
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3.7.4 Is H2 dominating the Higher Column Densities?

We compare f(NH2) and f(NH i) at z = 0 and z = 3 to study the column densities at
which H2 overtakes H i. In the following sections, we compare these derived densities with
the combined results of f(NH2) derived from both observation and simulation. At z = 0
we compare the f(NH2) with f(NH i) derived by Zwaan et al. (2005). At z = 3 we compare
the f(NH2) with the f(NH i) derived by Zafar et al. (2013) and Ho et al. (2021).

H i and H2 Column Density Distributions at z = 0

The f(NH i) at z = 0 from Zwaan et al. (2005) is based on H i 21-cm maps of 355 galaxies
of the WHISP sample (van der Hulst et al., 2001). The WHISP sample covers galaxies of
all Hubble types from S0 to Im and a considerable luminosity range and was selected using
the Uppsala General Catalogue (UGC) of galaxies (Nilson, 1973). The median spatial
resolution reached by these observations is ∼ 1.4 kpc.

The f(Ns) (left panel in Fig. 3.4) and ρs (left panel in Fig 3.5) at z = 0 show that H2

starts to dominate the mass density at column densities above log(NH2/cm
−2) ∼ 21.8− 22

9. This is consistent with results from Schaye (2001), who predicted that H i clouds with
NH i ≳ 1022cm−2 transform to molecular clouds before reaching higher column densities.
Similar predictions have also been made more recently by Altay et al. (2011) and Bird
et al. (2014) using (magneto-)hydrodynamical simulations.

These results imply that while molecular gas dominates the high column densities above
log(Ns/cm

−2) ≳ 22, H i dominates the majority of the column density regions found within
the interstellar medium (including column density regimes typical for molecular clouds),
making neutral gas an important contributor to the cold gas mass found within galaxies
at z = 0.

H i and H2 Column Density Distributions at z = 3

The two f(NH i) at z ∼ 3 are based on H i-absorption systems (sub-DLAs and DLAs).
The calculation therefore relies on pencil beam observations of H i-column densities as
studying 21-cm H i in emission is not feasible at this redshift. The f(NH i) by Ho et al.
(2021) is based on the Sloan Digital Sky Survey Data Release 16 which was analyzed
using Gaussian processes, where DLAs are detected using Bayesian model selection. While
SDSS-DR16 includes redshifts between z = 2 and z = 5, we only use the results of the
z = 2.5 − 3 integration for our comparison. The f(NH i) by Zafar et al. (2013) is based
on the ESO UVES advanced data products (EUADP) sample and includes measurements
in the z ∼ 1.5 − 3.1 range. The f(NH i) of both samples show comparable results up to
log(NH i/cm

−2) ∼ 22. Above this density SDSS results display a possible flattening of the
f(NH i). This flattening would be inconsistent with the predictions of the maximum NH i

9We note that the TNG100 ρH2
band implies that at z = 0 the H2 mass density is roughly equal in the

log(NH2
/cm−2) ∼ 19− 20.5 column density region. We attribute this to a possible over-prediction of H2

(and H i) in the simulation compared to observations at z = 0 (Diemer et al., 2019). Deeper observations
are needed to quantify how high the contribution of molecular gas is at these densities.
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by Schaye (2001), but the Gaussian process analysis shows that the f(NH i) in that region
is also consistent with 0 and therefore not well constrained. We further note that while
the SDSS-DR16 sample is larger than the EAUDP sample, the resolution is lower. The
lower resolution could lead to blending at higher column densities, which would lead to
measurements of column densities above log(NH i/cm

−2) ∼ 22.
The f(Ns) (right panel in Fig. 3.4) and ρs (right plot in Fig 3.5) at z = 3 show that

H2 starts to dominate the mass density at column densities between log(NH2/cm
−2) ∼

21.5 − 22. As for z = 0, neutral gas is an important contributor to the global mass in a
wide range of regions found in the ISM including higher-density regions typical of molecular
clouds.

H i - An Important Contributor to the Cold Gas Mass of Galaxies

In conclusion, Figure 3.5 indicates that H i dominates over H2 at most column densities.
The H i column density contributing most to the overall mass density (blue vertical lines)
has a higher mass contribution than H2 at both redshifts. H i could therefore be an im-
portant contributor to the cold gas mass of galaxies at z = 0 and z = 3.

The column density contributing the most to the overall H i gas mass density is at
log(NH i/cm

−2) ∼ 21 for both redshifts. In contrary the highest contributing column den-
sity of H2 evolves with redshift. It is log(NH2/cm

−2) ∼ 22 at z = 3 and less than
log(NH2/cm

−2 ∼ 21.5 at z = 0. We note that the molecular phase of the gas cycle is
likely to be shorter than the neutral atomic phase as indicated by cold gas depletion time
scales (Péroux & Howk, 2020). Therefore the molecular gas phase is more dynamic and
variations in the gas densities are to be expected across cosmic time.

The H i column density contributing the most to the H imass density is log(NH i/cm
−2) ∼

21. These high column densities are not found in diffuse gas (e.g. the CGM), but are typical
of column densities found in the ISM.

At both z = 0 and z = 3 H2 starts to dominate the mass density at column densities in
the log(NH2/cm

−2) ∼ 22 range therefore showing little to no evolution of this observable.
This is consistent with the predictions made by Schaye (2001) suggesting that little to no
gas is found in the neutral phase at column densities above log(NH i/cm

−2) ≳ 22 due to
the clouds turning molecular at those column densities.

3.8 Discussion

Given the evolution of the H2 comoving mass density over cosmic time (e.g. Riechers et al.,
2019; Péroux & Howk, 2020; Decarli et al., 2020), changes in the normalization or shape
of f(NH2) are expected. The f(NH2) derived from both observations and simulations
corroborate this hypothesis with various changes of the f(NH2) across cosmic time. In
general, the combined results of observations and simulations imply that molecular gas
is more often found in systems of higher column densities at z = 3 when compared to
z = 0. These changes in the f(NH2) are in line with the higher comoving molecular
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mass densities detected at z = 3. Combined with the higher star formation rate density
detected around cosmic noon (e.g. Madau & Dickinson, 2014) the results imply that the
overall denser molecular gas at higher redshifts leads to a higher global star formation rate.
While we study global properties in this work, these results are similar to findings of local
observations of nearby star-forming galaxies where a correlation between the SFR surface
density and H2 surface density is well established (e.g. the molecular Schmidt law in Bigiel
et al., 2008).

Rahmati et al. (2013) have demonstrated that observed f(NH i) can be accurately re-
produced using the cosmological hydrodynamical simulation EAGLE (Schaye et al., 2015).
Similarly, at z = 3, the cosmological simulation Illustris (Genel et al., 2014; Vogelsberger
et al., 2014a,b; Sijacki et al., 2015) reproduces f(NH i) of observations (Noterdaeme et al.,
2009; Zafar et al., 2013; Prochaska et al., 2010) accurately. However, there are still tensions
between Illustris and observations below z = 3 (Bird et al., 2014). However, Villaescusa-
Navarro et al. (2018) demonstrate that these tensions are not apparent in the successor
of Illustris. Comparing results by TNG100 of the IllustrisTNG project with observations
Villaescusa-Navarro et al. (2018) find that f(NH i) is accurately reproduced at z ≲ 5.

While it has been demonstrated that f(NH i) is consistent with observations in different
(magneto-)hydrodynamical cosmological simulations, there are still a number of inconsis-
tencies for f(NH2), despite the broad similarities of simulated and observed f(NH2). At
z = 0, Klitsch et al. (2019b) demonstrate that TNG100 predicts more low column density
molecular gas compared to constraints by the ALMACAL survey (e.g. Oteo et al., 2016;
Bonato et al., 2018; Klitsch et al., 2018) and, similarly to this work, does not reach the high
column densities detected in observations (Zwaan & Prochaska, 2006). These shortcomings
are, in part, due to TNG100 not resolving the cold gas phase of the ISM. These simulation
specifics stem from limitations in resolution and sub-grid star formation models. Further,
at z = 0 TNG100 might over-predict H2 compared to observational findings (Diemer et al.,
2019), especially when not taking observational apertures into account (Popping et al.,
2019).

At z = 3, we find a ∼ 1 dex difference in normalization for f(NH2), which could arise
due to the difference in selection and environments probed. The observational f(NH2) at
z = 3 is based on DLA studies. DLAs mostly trace the outskirts of galaxies (e.g. Péroux
et al., 2011b; Christensen et al., 2014; Krogager et al., 2017) and are often associated with
group environments (Hamanowicz et al., 2020), while in TNG100 the full disk with no
constraints on the environment of the galaxies is probed. Therefore, further efforts, on both
the observational and simulation side are needed. On the simulation side more accurate
representations of the cold gas phase are needed, including different sub-grid models of
star formation, higher resolution, and the inclusion of non-equilibrium chemistry. On the
observational side we need better constraints of f(NH2), especially at z = 3. Preferably,
this could be achieved by a combination of high spatial resolution galaxy observations and
a larger sample of H2 absorption line systems at z = 3.

Non-equilibrium chemistry networks (e.g. Glover & Mac Low, 2007b; Glover & Clark,
2012; Gong et al., 2017), have recently been used to model the cold gas phase in simulations
on the fly. Such models have been implemented in simulations of individual regions of
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galactic disks (e.g. Walch et al., 2015; Rathjen et al., 2021; Hu et al., 2021), isolated
galaxies (e.g. Richings & Schaye, 2016; Hu et al., 2016; Lahén et al., 2019), and more
recently in cosmological simulations (Maio et al., 2022). These studies have shown that
non-equilibrium chemistry e.g. heavily influences the H2 mass fraction at low metallicities
(Hu et al., 2021), affects the chemical make-up of outflows (Richings & Schaye, 2016) and
more accurately reproduce cosmological H2 mass densities of observations (Maio et al.,
2022). As a first attempt to study how and if non-equilibrium chemistry affects f(NH2), we
compare the time- and inclination-averaged f(NH2) derived from a dwarf galaxy simulation
by the GRIFFIN Project with the f(NH2) derived by TNG100. The normalization of the
dwarf galaxy f(NH2) in the overlapping column density region is lower than for TNG100
f(NH2) due to the highly different stellar masses that are probed. Interestingly, the slope
of the f(NH2) is similar, even though the samples and cold gas models are vastly different.
We cannot disentangle the effects that non-equilibrium chemistry and the different samples
have on f(NH2) with our current study. Nonetheless, this could be a first indication that
non-equilibrium chemistry might not affect the slope of f(NH2), especially since the slope
of f(NH2) for individual main-sequence star-forming galaxies in TNG100 is similar below
log(NH2/cm

−2) ≲ 20 and not majorly affected by galaxy properties. However, comparisons
between simulation runs of the same galaxy with and without non-equilibrium chemistry
could help understand if and how f(NH2) is affected by non-equilibrium chemistry. Further,
studies with larger samples, similar to Maio et al. (2022), are needed to further investigate
how non-equilibrium chemistry might affect f(NH2).

The global f(NH2) and that of individual main-sequence star-forming galaxies give first
indications that its shape could be related to the gas distribution within gas disks. Ex-
ponential gas distributions have not only been observed in disk galaxies (e.g. Leroy et al.,
2008), but also reproduced in simulated ones (e.g. in TNG100, Stevens et al., 2019). An
analytical model, based on exponential gas distribution in disks (Zwaan, 2000) broadly
reproduces f(NH2) of simulations and observations and is giving a first indication that
these two distributions are related. Nonetheless, analytical models with e.g. Gaussian gas
distributions in gas disks yield similar results. Therefore, it currently remains unclear how
closely coupled the shape of f(NH2) and the gas distribution in gas disks are. Further stud-
ies are needed for a complete understanding to confirm the hypothesis of this connection
between these two observables.

At z = 0, observations have shown that neutral atomic hydrogen dominates the total
mass of the neutral ISM, with MH i ∼ 2 − 10 Mmol (e.g. Saintonge et al., 2011; Saintonge
& Catinella, 2022). In studies at higher redshifts, it is often assumed that the neutral
atomic component can be omitted and H2 is assumed to be the dominant gas component
in galaxies (e.g. between z=0.4 and 4, Tacconi et al., 2018). In part, this is due to
technical limitations, as the H i 21-cm emission line is not observable at higher redshifts
with current instruments. Further, the molecular mass density peaks within this redshift
range, while the neutral atomic mass density remains fairly constant across cosmic time,
possibly making molecular gas an important contributor to the overall gas mass of galaxies
within this redshift range (especially around cosmic noon). However, it still remains unclear
what the contribution of the neutral atomic gas phase is to galaxies at higher redshifts.
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Heintz et al. (2021) have given first indications of the contribution of H i at higher redshifts,
by exploiting [C ii] as a tracer for neutral atomic gas. The results indicate that at z = 4−6
the contribution of H i is substantial, with the H i mass being equal to the dynamical mass
of galaxies. At z ∼ 2 the contribution of H i is found to be less substantial, with the H i
mass being between 0.2 - 1 dex lower than the dynamical mass of galaxies. Therefore,
at z ∼ 2, the contribution by molecular gas or the stellar component is possibly higher.
Comparing f(NH2) and f(NH i) we, however, find that H i is an important contributor to
the overall cold gas mass found in the ISM of galaxies (see Section 3.5) at both redshift
z = 0 and z = 3. We therefore caution from omitting the neutral atomic gas component
in studies at these redshifts.

3.9 Conclusions

In this work, we study the H2 column density distribution [f(NH2)] at redshift z = 0 and
z = 3 using observations and simulations. On the observational side we use data from the
PHANGS-ALMA survey (Leroy et al., 2021) at z = 0 and from a H2 absorption line study
by Balashev & Noterdaeme (2018) at z = 3 based on SDSS data. On the simulation side
we use data from TNG100 of the IllustrisTNG project (Marinacci et al., 2018; Springel
et al., 2018; Naiman et al., 2018; Nelson et al., 2018; Pillepich et al., 2018a) at both redshift
z = 0 and z = 3 and a high-resolution isolated dwarf galaxy simulation including a non-
equilibrium chemical network by the GRIFFIN project (Lahén et al., 2019, 2020a,b) meant
to represent a low-redshift dwarf galaxy.

In summary, our analysis includes the following studies:

• We study how the integrated properties of galaxies in the PHANGS-ALMA sample
shape the f(NH2) of individual objects.

• We contrast the f(NH2) from observations and simulations to test how predictions
made by TNG100 match observations.

• We study how well analytical models match results by TNG100.

• We compare results from a simulation including non-equilibrium chemistry (GRIF-
FIN Project) with results from the post-processed simulation TNG100.

• We study the evolution of f(NH2) from z = 3 to z = 0.

• We explore which column densities contribute most to the overall H2 and H i mass
density at z = 0 and z = 3.

• We investigate how the f(NH2) compare to f(NH i) based on the WHISP sample
(Zwaan et al., 2005), EAUDP sample (Zafar et al., 2013) and SDSS data (Ho et al.,
2021) to examine in which regions of galaxies molecular gas dominates over neutral
atomic gas.
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In conclusion our findings are the following:

• The shapes of the f(NH2) of individual galaxies in the PHANGS-ALMA and the
TNG100 sample at z = 0 are similar. This is possibly related to the galaxies in the
sample. The sample consists of main-sequence star-forming galaxies, which typically
have rotating disks and are hypothesized to have radially exponential gas profiles.
(Leroy et al., 2008; Stevens et al., 2019). The radially exponential gas profiles could
potentially be the cause of the similar f(NH2) observed for individual galaxies. Fur-
ther, the normalization of f(NH2) and highest observed H2 column densities depend
on the integrated star formation rate (SFR), stellar mass (M∗) and H2 mass (MH2)
of the galaxy. More massive galaxies lead to a higher normalization of the f(NH2) of
individual galaxies. The f(NH2) indicates that more massive galaxies produce more
dense gas.

• TNG100 broadly reproduces the f(NH2) we observe at both z = 0 and z = 3, al-
beit with some key differences. At z = 0 TNG100 produces steeper slopes for the
f(NH2) compared to PHANGS-ALMA. Further, observations detect column densities
up to log(NH2/cm

−2) ∼ 24 at z = 0. Such high column densities are not present
in TNG100 at that redshift. This is potentially due to resolution effects and the
star formation sub-grid interstellar medium model, both of which could inhibit the
formation of high column densities of cold gas phases. At z = 3 the normalization
of the f(NH2) is higher in the simulations compared to observations for the majority
of the regions. This is likely due to the different environments probed by SDSS ob-
servations. Nonetheless, the slopes f(NH2) in TNG100 and from observations are in
good agreement at z = 3.

• The dwarf galaxy simulation from the GRIFFIN project produces similar slopes
as TNG100 for f(NH2) in the overlapping column density region. It is surprising
that the slope of f(NH2) of a single simulated galaxy including a non-equilibrium
chemistry network is so similar to the slope of a large sample of galaxies where H2

was derived using post-processing prescriptions. This could be a first indication that
non-equilibrium chemistry might not majorly affect the slope of f(NH2). However,
further studies are needed to understand how and if non-equilibrium chemistry affects
f(NH2).

• The slopes of f(NH2) below log(NH2/cm
−2) ∼ 20 show little to no evolution from

z = 3 to z = 0. As indicated by the f(NH2) derived from TNG100, we expect an
evolution of the f(NH2) to arise at higher column densities.

• The mass density distributions of the neutral atomic and molecular gas phase indicate
that H i dominates over H2 at most column densities and shows that H i could be an
important contributor to the cold gas mass of galaxies at z = 0 and z = 3.
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• The H2 column density contributing most to the overall molecular gas density evolves
with redshift. When combining data from observations and simulations, we find that
the shift is from log(NH2/cm

−2) ∼ 20.5− 21.5 at z = 0 to log(NH2/cm
−2) ∼ 21.9− 22

at z = 3. We therefore find that more gas in denser regions is found at z = 3 compared
to z = 0. These results are in line with observations of the star formation rate across
cosmic time, which is higher at z = 3 compared to z = 0. The shape of the cosmic
molecular mass density as a function of redshift is similar to the shape of the SFR
density, making a coupling of these two quantities likely. Therefore, one would expect
that more molecular gas found in denser regions leads to a higher global star formation
rate in galaxies (Péroux & Howk, 2020). When assuming that the column density
relates to the density of the gas, this is exactly what we observe when studying the
column density distributions at both redshifts.

• Contrary to H2, the column density contributing most to the H i gas mass density
[log(NH i/cm

−2) ∼ 21] does not evolve with redshift. Given that the molecular phase
of the gas cycle is likely to be shorter than the neutral atomic gas phase, more
variations in the molecular gas densities are expected. The highest column density
contribution of H i is therefore found in regions of the ISM, and not in more diffuse
regions like the CGM.

• H2 starts dominating compared to H i at column densities above log(NH2/cm
−2) ∼

21.8 − 22 at both redshifts. This is consistent with results by Schaye (2001), who
predicted that H i clouds with log(NH i/cm

−2) ≳ 22 do not occur due to the clouds
turning molecular before reaching higher column densities. Further, this implies that
neutral gas is an important contributor to the overall gas mass found in the ISM of
galaxies, including column density regions typical for molecular clouds.

• In order to further constrain the evolution of f(NH2) additional observations and
simulations are needed: At z = 0 deeper observations are needed to constrain the low-
density end of f(NH2). At z = 3 high spatial resolution molecular gas observations of
galaxies would enable the study of the high column density end of f(NH2) and also
probe more central regions of galaxies compared to absorption line studies. On the
simulational side, efforts on resolving the cold gas phase within simulations are needed
to constrain the high column density end of f(NH2) at z = 0. This may necessitate
higher-resolution simulations together with physical models for interstellar medium
gas which aim to resolve the coldest phases. Further, the use of non-equilibrium
chemical networks could provide a more accurate representation of the cold gas phase
(e.g. Maio et al., 2022).



Chapter 4

The 4MOST High-resolution Quasar
survey (4Hi-Q):
Identifying and Localizing Mg ii
Metal Absorbers with Machine
Learning

The content of this chapter is based on an article submitted to MNRAS.

4.1 Abstract

The upcoming 4Hi-Q survey on the VISTA/4MOST multi-object spectrograph will offer
new prospects of using a massive sample of ∼ 1 million background quasars to map the
circumgalactic metal content of foreground galaxies, as traced by metal absorption at high
spectral resolution (R = 20,000). Such large surveys require specialized analysis method-
ologies. In the absence of early data, we instead produce synthetic 4MOST high-resolution
fibre quasar spectra. To do so, we use the TNG50 cosmological magnetohydrodynam-
ical simulation, combining photo-ionization post-processing and ray tracing, to capture
Mg ii (λ2796, λ2803) absorbers. We then use this sample to train a Convolutional Neural
Network (CNN) which searches for, and estimates the redshift of, Mg ii absorbers within
these spectra. For a test sample of quasar spectra with uniformly distributed properties
(λMg ii,2796, EW

rest
Mg ii,2796 = 0.05 − 5.15 Å, SNR = 3 − 50), the algorithm has a robust clas-

sification accuracy of 98.6 per cent and a mean wavelength accuracy of 6.9 Å. For high
signal-to-noise spectra (SNR > 20), the algorithm robustly detects and localizes Mg ii ab-
sorbers down to equivalent widths of EWrest

Mg ii,2796 = 0.05 Å. For the lowest SNR spectra

(SNR = 3), the CNN reliably recovers and localizes EWrest
Mg ii,2796 ≥ 0.75 Å absorbers. This

is more than sufficient for subsequent Voigt profile fitting to characterize detected Mg ii
absorbers. We make the code publicly available through GitHub. Our work provides a
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proof-of-concept for future analyses of quasar spectra datasets numbering in the millions,
soon to be delivered by the next generation of surveys.

4.2 Introduction

Measurements of anisotropies in the Cosmic Microwave Background (Planck Collaboration
et al., 2020) and from primordial nucleosynthesis (Cooke et al., 2018) have established a
clear picture of the basic constituents of the present Universe: 73 per cent dark energy, 23
per cent dark matter, and 4 per cent baryons. Across cosmic time, baryons accumulate
within dark matter haloes and form the large-scale structure, galaxies, and stars of the
Universe. However, a large fraction of the baryonic matter (∼ 90 per cent) is expected to
be in the form of low-density gas (e.g. Péroux & Howk, 2020), which is difficult to observe
in emission with current instruments (e.g. Frank et al., 2012; Augustin et al., 2019; Corlies
et al., 2020a).

Part of this low-density gas is attributed to the circumgalactic medium (CGM), which is
loosely defined as the gas surrounding galaxies outside the disk or interstellar medium, but
within the virial radius (e.g. Tumlinson et al., 2017). The CGM is a multi-phase medium
with rich dynamics, as gas expelled from galaxies due to Active Galactic Nuclei (AGN)
feedback (e.g. Shull et al., 2014) and stellar feedback (e.g. Ginolfi et al., 2020) interacts with
gas being accreted from the cosmic web (e.g. Rubin et al., 2012; Martin et al., 2012; Turner
et al., 2017; Zabl et al., 2019; Szakacs et al., 2021). This feedback-driven redistribution
of baryons occurs to large scales, up to many times the virial radii of haloes, imprinting
signatures of astrophysical feedback processes out to the closure radius (Ayromlou et al.,
2022).

Absorption lines close in projected separation, and in frequency space, of foreground
galaxies detected in background quasar (QSO) spectra are a powerful tool to study the
CGM and other low surface brightness regions of the Universe. Their detection sensitivity
is independent of redshift (e.g. Tripp et al., 1998). This method has allowed for the study
of various metal species as well as atomic and molecular hydrogen (e.g. Ledoux et al.,
2003; Noterdaeme et al., 2008; Steidel et al., 2010; Rudie et al., 2012; Werk et al., 2013;
Turner et al., 2014). Additionally, absorption enables the study of the metallicity evolution
of the Universe. Contrary to emission-based metallicity estimates, absorption line-based
metallicity estimates are independent of excitation conditions, largely insensitive to density
or temperature and require no local source of excitation. Thus, absorption-line metallicity
estimates probe both low- and high-excitation gas (Péroux & Howk, 2020).

One of the most extensively studied absorption lines is the Mg ii doublet (λ2796, λ2803).
The doublet traces cool gas (T ∼ 104 K) at low ionization states. Because of its distinct
doublet feature, Mg ii has been used extensively in a great number of spectroscopic sur-
veys. Especially in the last two decades, Mg ii absorption surveys have constrained the
physical properties of large samples of galaxies, across a wide range of luminosities and
morphologies (e.g. Lanzetta & Bowen, 1990; Nestor et al., 2005; Narayanan et al., 2007;
Seyffert et al., 2013; Anand et al., 2022). To find Mg ii absorbers in QSO spectra, tradi-
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tional approaches use convolution-based template matching and significance thresholding
(e.g. Zhu & Ménard, 2013; Anand et al., 2021). While these methods have proven highly
successful, they are computationally demanding, and require heuristic parameter optimiza-
tion. With upcoming massive spectroscopic surveys and the subsequent increase in data
volume, new approaches need to be explored which are more computationally efficient and
more accurate.

To this end, several studies have recently turned to machine learning (ML), more specifi-
cally to convolutional neural networks (CNN), to detect absorption-line systems of various
species within QSO spectra. These initial investigations show promising results. The
model by Zhao et al. (2019) can classify the presence or absence of Mg ii absorbers with
EWMg ii,2796 ≥ 0.3 in SDSS DR12 (Alam et al., 2015) QSO spectra with an accuracy of
94 per cent. Similar approaches for the detection of Ca ii (Xia et al., 2022) and Lyman-α
absorbers (Parks et al., 2018; Wang et al., 2022) have clearly demonstrated the value of
CNNs in this context. In addition to their accuracy, ML-based approaches are more effi-
cient than classical approaches. They can be orders of magnitude faster when processing a
given set of quasar spectra. Thus, we are motivated to explore these techniques further, in
preparation for future large-scale absorption-line data, including surveys with DESI (DESI
Collaboration et al., 2016), WHT/WEAVE (Dalton et al., 2012) and VISTA/4MOST (de
Jong et al., 2019).

The goal of this paper is to develop an approach that is specific to an upcoming high-
resolution QSO survey, which is part of the 4MOST project on the 4-m VISTA telescope.
The manuscript is organized as follows: Section 4.3 presents a short overview of the 4MOST
project and the 4Hi-Q survey. Section 4.4 details the construction of mock 4Hi-Q spectra
with Mg ii absorbers based on the TNG50 simulation. Section 4.5 focuses on the machine
learning model and training, while Section 4.6 summarises the results of our analysis. In
Section 4.7, we provide a discussion of these results in a broader context and conclude in
Section 4.8. We adopt an H0 = 68 km s−1 Mpc−1, h = 0.68, ΩM = 0.3, and ΩΛ = 0.7
cosmology throughout.

4.3 The 4MOST High-resolution Quasar survey (4Hi-

Q)

In the last two decades, large statistical samples of QSO absorbers have enabled break-
throughs in our understanding of galaxy formation and evolution. Large-scale surveys have
brought such studies into a new era (e.g Noterdaeme et al., 2012; Bird et al., 2017). Am-
bitious endeavours with 2.5-m class telescopes - the Sloan Digital Sky Survey (SDSS, e.g.
Blanton et al., 2017) in the northern hemisphere and the 2dF QSO survey (e.g. Shanks
et al., 2000) in the southern hemisphere - advanced the field significantly, primarily be-
cause they produced homogeneous low-resolution spectra samples for one million QSOs.
The 4Hi-Q (4MOST High-resolution Quasar survey) project is based on the next gener-
ation of such dedicated spectroscopic surveys on 4-m class telescopes, which will provide
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Figure 4.1: Simulation prediction for the average circumgalactic metal distribution around
M⋆ = 1010 M⊙ galaxies at z = 0.5. Here we show a mean stack from the TNG50 simulation
of 200 galaxies at this mass, which are similar to those targeted by the 4Hi-Q survey. The
orange contour illustrates the Mg ii column density detection limit currently accessible
with SDSS (Anand et al., 2021), while the white contour corresponds to the Mg ii column
density limit within reach of the VISTA/4MOST survey. The white circle shows the virial
radius r200. The 4Hi-Q project will provide three orders of magnitude improvement in the
Mg ii column density probed throughout the extended circumgalactic medium of galaxies
thanks to its large multiplexing capability and R=20,000 high-spectral resolution.

a new wealth of medium and high-resolution QSO spectra in extremely large numbers.
In particular, the combination of VISTA/4MOST multiplexing capabilities (812 out of
2436 total fibres) and high spectral resolution (R=λ/∆λ = 18000 - 21000) of the 4MOST
high-resolution spectrograph will enable the construction of a unique long-lasting legacy
sample of QSO spectra. The start of observations is foreseen for 2024, lasting for 5 years.
The 4Hi-Q project will use data of ∼ 1 million background QSOs from an approved 2.8
million fibre-hour VISTA/4MOST open-time (community) survey (PI: Péroux) to search
for metal [e.g. Mg ii (λ2796, λ2803), C iv (λ1548, λ1550)] and Lyman-α absorption-line
systems. While individual absorption measurements are limited to a pencil-beam along
the line of sight and hence sample a small section of the host galaxy, large samples allow
us to statistically measure the mean properties of the CGM of galaxies by combining many
sightlines.
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Fig. 4.1 illustrates the three orders of magnitude gain in Mg ii column density which
will be reached with the 4Hi-Q survey, in comparison to current SDSS sensitivities (see
e.g. Anand et al., 2021). Therefore, VISTA/4MOST will probe the CGM of galaxies at
larger scales than SDSS. Importantly, what makes the 4Hi-Q survey unique, is a well-
studied population of over 1.5 million foreground galaxies (Driver et al., 2019; Richard
et al., 2019), AGN (Merloni et al., 2019) and groups and clusters (Finoguenov et al., 2019)
to be observed with the low-resolution fibres (R=λ/∆λ = 4000−7500) of VISTA/4MOST
in the same fields at a redshift concomitant with the Mg ii absorbers. Clearly, such surveys
will require novel and targeted approaches to analyze their massive data outputs, in order
to detect the expected hundreds of thousands of intervening absorbers.

4.4 Constructing the Training and Test Sets

4.4.1 Mg ii Absorbers in TNG50 Simulations

We use the TNG50 simulation (Pillepich et al., 2019; Nelson et al., 2019b) of the Illus-
trisTNG project to create synthetic Mg ii absorption profiles. The TNG project1 (Naiman
et al., 2018; Pillepich et al., 2018c; Springel et al., 2018; Nelson et al., 2018; Marinacci et al.,
2018) is a large-volume cosmological gravo-magnetohydrodynamics (MHD) simulation in-
corporating a comprehensive model for galaxy formation physics. TNG uses the Arepo
code (Springel, 2010) which self-consistently evolves a cosmological mixture of dark matter,
gas, stars, and black holes as prescribed by self-gravity coupled to ideal, continuum MHD
(Pakmor et al., 2011; Pakmor & Springel, 2013).

The physical processes included in the simulations are, broadly: gas radiative effects,
including primordial and metal-line cooling, plus heating from a meta-galactic background
radiation field (Faucher-Giguère et al., 2009); star formation within the cold component
of a two-phase interstellar medium model (Springel & Hernquist, 2003); the evolution of
stellar populations and subsequent chemical enrichment, including Supernovae Ia, II, and
AGB stars (independently tracking the ten elements H, He, C, N, O, Ne, Mg, Si, Fe,
and Eu); galactic-scale outflows generated by supernova feedback (Pillepich et al., 2018b);
the formation and mergers of supermassive black holes (SMBHs) and their accretion of
neighbouring gas (Springel et al., 2005; Di Matteo et al., 2005); SMBH feedback that
operates in a dual mode with a thermal ‘quasar’ mode for high accretion rates and a kinetic
‘wind’ mode for low accretion rates (Weinberger et al., 2017; Pillepich et al., 2021). TNG50
includes 2×21603 resolution elements (gas plus dark matter) in a ∼ 50 Mpc (comoving)
box, giving a baryon mass resolution of 8.5 × 104 M⊙. All data from TNG are publicly
released (Nelson et al., 2019a).

Recent studies have demonstrated that the TNG50 volume is particularly suited for cir-
cumgalactic medium studies as it produces sufficiently high covering fractions of extended,
cold gas, as inferred by observations. Quantitative comparisons of predicted low-ionization
Mg ii column densities, around massive galaxies at intermediate redshifts, reveal reasonable

1www.tng-project.org

www.tng-project.org
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agreement with observations (Nelson et al., 2020). Further, the diversity and kinematics
of observed strong Mg ii absorbers (EWrest

Mg ii,2796 ≥ 0.5Å) are reflected in mock Mg ii ab-
sorber spectra based on TNG50 (DeFelippis et al., 2021), and in the overall diversity of the
properties of CGM gas around the large galaxy population (Ramesh et al., 2022). Analy-
sis of extended Lyman-α and Mg ii haloes, tracing the CGM in emission, has also shown
promising consistency with MUSE data (Byrohl et al., 2021; Nelson et al., 2021).

To compute Mg ii we take the total magnesium mass per cell as tracked during the
simulation, and use CLOUDY (Ferland et al., 2017) to calculate the ionization state as-
suming both collisional and photo-ionization (following the modeling approach of Nelson
et al., 2020). We then ray-trace through the simulated gas distribution to create synthetic
absorption spectra, akin to those in real observations (Nelson, in prep). This is similar in
spirit to several other techniques for creating absorption spectra from hydrodynamical sim-
ulations, e.g. specwizard (Theuns et al., 1998; Schaye et al., 2003), Trident (Hummels
et al., 2017) and pygad (Röttgers et al., 2020).

We use three discrete snapshots from TNG50 at redshifts z = 0.5, 0.7, 1.0. In each case,
we generate N = 106 random sightlines and propagate each for a total distance equal to the
simulation box length of 35 cMpc/h. Some will intersect galaxies and cold gas, generating
observable equivalent widths of Mg ii absorption, while many will not. The simulated
Mg ii equivalent widths of the sample used in this work range from EWrest

Mg ii,2796 = 0.05 to

5.15 Å, and provide physically motivated wavelength separations, doublet ratios, and other
detailed spectral characteristics.

4.4.2 Synthetic 4Hi-Q Quasar Spectra

We create ∼ 680,000 normalized synthetic QSO spectra for the training of a convolutional
neural network (CNN). Approximately 510,000 of these spectra include Mg ii absorbers,
while ∼170,000 do not. These mock spectra are 4Hi-Q-like, meaning that they are created
with the 4MOST High-Resolution fibres technical specifications. As part of the 4MOST
project, all data will be calibrated to a so-called Level 1 (L1). This pipeline will remove the
instrumental signatures, identify the sky lines and calibrate the raw data. It will produce
all L1 data products, including the science-ready, calibrated one-dimensional spectra, their
associated variances, and bad pixel masks as well as any other associated information. For
these reasons, we produce mock quasar spectra free of these instrumental and unwanted
astronomical signatures.

First, roughly 97,000 normalized QSO spectra are created. They span a wavelength
range composed of spectral windows (Blue Arm: 392.6 nm ≤ λ ≤ 435.5 nm, Green Arm:
516 nm ≤ λ ≤ 573 nm, Red Arm: 610 nm ≤ λ ≤ 679 nm) with spectral gaps between
these windows and a spectral resolution of R=λ/∆λ=20,000.

Second, we insert Mg ii absorption-line systems into ∼ 72,000 of these normalized QSO
spectra. The absorbers are randomly drawn from the simulation-based sightlines described
in Section 4.4.1. While randomly drawn, the Mg ii absorbers are inserted such that they are
equally distributed in wavelength λMg ii,2796 and equivalent width EWrest

Mg ii,2796 as illustrated
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Figure 4.2: The distribution of Mg ii absorber wavelength (λMg ii,2796), equivalent width
(EWrest

Mg ii,2796) and SNR of our fiducial synthetic spectra sample used for training. We
include only the spectra that contain a Mg ii absorber. For training, we intentionally
synthesize flat distributions for each of these three parameters to avoid any biases in the
machine learning model.

in Fig. 4.2. Specifically, for given wavelength bins of 40 Å we randomly draw an equal
number of absorbers from each 0.3 Å EWrest

Mg ii,2796 bin and inject them at random positions

within the wavelength bins. We note that we do not inject absorbers within 25 Å of the
edges of the spectral windows, to avoid only including partial features of the Mg ii doublet.
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Figure 4.3: An example of our mock normalized QSO spectra with SNR = 20, a Mg ii
absorber at λMg ii,2796 = 6234 Å and equivalent width of EWrest

Mg ii,2796 = 0.08Å. The mock
spectra include the spectral gaps that characterize 4MOST high-resolution fibre spectra,
with decreasing SNR towards the edges of spectral windows. Top: Full spectrum including
spectral gaps between the three spectrographs. Middle: Red arm of the spectrum shown
above. Bottom: Zoom in towards the Mg ii absorber in the normalized QSO spectrum
displaying the Mg ii doublet feature (λ2796, λ2803).

Third, we add Gaussian noise to all spectra to create spectra with 7 discrete SNR
values: 3, 5, 10, 20, 30, 40, 50. Similar to Sloan Digital Sky Survey (SDSS) spectra, we
expect a decreasing signal-to-noise ratio (SNR) at the edge of the spectral windows for
4Hi-Q spectra due to the specifics of the instrumental response.2 Thus, in the absence of
early data, we base the estimated SNR decrease on the properties of SDSS spectra. We
take a random sample of 10,000 SDSS Data Release 16 (Ahumada et al., 2020) normalized

2We note that our quoted SNR values correspond to the SNR within the centre of the spectral windows,
and do not reflect these edge effects.
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QSO spectra, calculate the SNR within the central 670 pixels and calculate the SNR ratio
between the centre and edges in bins of 25 pixels.3 The resulting increase in noise towards
the edges of the spectral windows is apparent in the synthetic spectrum of Fig. 4.3.

These three steps lead to a final synthetic normalized QSO spectra training sample of
∼ 680,000. We also create an additional sample for testing the CNN including ∼730,000
spectra with the same distribution of properties outlined above, however including a 50-50
split of spectra with and without Mg ii absorbers.

4.5 Machine Learning Model and Training

In this section, we describe the deep learning model used and detail the choice of architec-
ture, hyperparameter optimization, and the chosen method of training the neural network.
The deep learning architecture is implemented using Python 3.10.4 (Van Rossum &
Drake, 2009) and the open-source machine learning libraries Keras 2.9.0 (Chollet et al.,
2015) and Tensorflow 2.9.1 (Abadi et al., 2015). The training and testing of the deep
learning models were performed on an NVIDIA TESLA V100 GPU with 16 Gigabytes
of memory. The CNN and python codes related to this paper are publicly available on
GitHub4.

Our main goal is to classify the presence or absence of Mg ii absorbers in spectra and to
localize them in wavelength space. Thus, the network is designed to produce the following
outputs:

• Classification:

– 0: No intervening Mg ii absorber detected in the spectrum

– 1: Intervening Mg ii absorber detected in spectrum

• Localization:

– Observed wavelength of the Mg ii absorber (λMg ii,2796) in Å.

When training this type of CNN, the wavelength labels for cases with no Mg ii absorbers
need to have a real value as well. One cannot set an invalid i.e. NaN value, as the training
loss will then also be NaN, and the optimization of the network will fail. In the spirit of
Parks et al. (2018), we use a central value for the wavelength label in these cases, as this
approach worked well in the case of Lyman-α absorption detection and localization within
QSO spectra. Thus, we set λMg ii,2796 = 5358Å. This corresponds to the mean λMg ii,2796 of
the synthetic spectra sample containing Mg ii absorbers.
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Figure 4.4: The CNN architecture used in this work. Our layer structure is similar to
the AlexNet (Krizhevsky et al., 2012) structure, however, the dimensions and filters were
modified and optimized to work with the 4MOST mock spectra. The input is an array
containing the flux values of the spectrum with a length of 6316. There are two outputs
1) Classification (using binary cross-entropy as the loss function): 0 - no intervening Mg ii
absorber in the spectrum, 1 - intervening Mg ii absorber in the spectrum; 2) Localization
(using the mean absolute error as the loss function): Observed wavelength of the Mg ii
absorber (λMg ii,2796) in Å.

4.5.1 Convolutional Neural Network Architecture

We use a convolutional neural network (CNN) model [see e.g. LeCun et al. (2015) and
Yamashita et al. (2018) for in-depth reviews on this topic]. CNNs are often associated with
detecting features in images. However, recent studies have shown that they are useful for
the analysis of QSO spectra and features within them (e.g. Parks et al., 2018; Busca &
Balland, 2018; Zhao et al., 2019; Wang et al., 2022). In short, this type of network takes
advantage of the fact that local groups of values in e.g. images, or in this case spectra, are
often correlated.

Typically, this advantage is exploited through three layers within the CNN models:
(i) convolutional layers, (ii) pooling layers, and (iii) fully connected layers. Convolutional
layers perform discrete convolutions of their input using set filter (or kernel) sizes. These
layers serve to detect local connections of features from previous layers. After the convo-

3Due to the higher resolution of 4Hi-Q spectra versus SDSS, that we rescale the SNR modulation from
100 to 420 pixels.

4github.com/astroland93/qso-mag2net

https://github.com/astroland93/qso-mag2net
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lutional layer, a non-linear activation function is applied (e.g. ReLU, sigmoid) to allow for
outputs that vary non-linearly for the given inputs. Pooling layers down-sample the data
by, depending on the type of pooling layer used, calculating the e.g. maximum or average
values in patches of feature maps output by the convolutional layers. This allows for a
shift-invariance of the feature detection. Finally, fully connected layers connect all inputs
from the previous layer to all activation units of the fully connected layer. Subsequently, a
non-linear activation function is applied. Thus, fully connected layers compile all the data
extracted from previous layers to provide desired outputs (e.g. classification or regression).
The combination of these layers leads to a neural network that can extract desired features
without being affected by small shifts and distortions of these features.

We use a CNN structure resembling an AlexNet in terms of layer structure (Krizhevsky
et al., 2012). AlexNet was developed as an image classification network. Specifically, it
was designed to work with two-dimensional images including three color channels (Red,
Green, Blue). We modify the network to work with one-dimensional data by changing the
input, filter, and pooling dimensions of the network.

Our modified version of the network is shown in Fig. 4.4. The CNN takes an input
spectrum of 6316 pixels, which is fed through a series of convolutional average pooling
layers. We use filter sizes of 10 for the convolutional layers and use a pooling size of 5 for
the pooling layers. After each convolutional layer, the ReLU non-linear activation function
(Fukushima, 1975) is applied. Subsequently, the features derived after the last average
pooling layer are flattened to 1 dimension and 2 fully connected layers leading to our two
final fully connected output layers for the classification of the spectrum and the localization
of the Mg ii absorption feature. The classification output layer uses the sigmoid non-linear
activation function, while the localization output layer uses ReLU.

4.5.2 Training the Convolutional Neural Network

In this section, we outline the training method and parameters used for the deep learning
model. We describe the modification of the training set before training, the loss functions
used, the optimizer used, and how the learning rate was chosen.

Before training the model we remove the spectral gaps between the windows in the
synthetic normalized QSO spectra. This is done for two reasons: 1) the spectral gaps do
not include any important information that the network needs to learn, and 2) removing
the gaps decreases the input size and thus the time needed for the training of the network.
Hence, this makes the multi-task model more efficient.

A multi-task learning model, such as the CNN used here, has two different outputs
that often cannot be optimized by a single loss function. In these cases a combined loss
function is preferred. For the classification task we use the cross-entropy loss function:

Lclass =
N∑
i

−yclass,i log(ŷclass,i)− (1− yclass,i) log(1− ŷclass,i) , (4.1)

where yclass is the ground truth of the classification and ŷclass is the CNN prediction for
the label. ŷclass can be in the range [0, 1] and we adopt the definition that ŷclass ≥ 0.5 is
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Figure 4.5: The training history of our optimized CNN. Top: Training history of the
combined loss function. Middle: Training history displaying the classification accuracy
metric. Bottom: Training history of the localization mean absolute error (MAE). While
the validation set (red) metrics are below the training set (blue), the difference is small
and the values for both training and validation sets are converged.

a prediction for a spectrum with a Mg ii absorber, while ŷclass < 0.5 indicates a spectrum
without one. For the localization task, we use the mean absolute error (MAE) as the loss
function:

Llocal =

∑N
i |ylocal − ŷlocal|

N
. (4.2)

Finally, the multi-task learning model uses the sum of these two functions as its final loss
function:

Lmodel = 300× Lclass + Llocal , (4.3)

with the weight of the classification loss function (Lclass) set to 300. This weighting is
needed as the final values of the binary cross entropy loss function (Lclass) is ∼ 300 times
lower than that of the localization loss function (Llocal). Without this weighting, the CNN
would put a priority on optimizing the localization loss and might neglect to optimize the
classification loss.
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To find the optimal parameters of the CNN, we use the Adam (Adaptive Moment
Estimation) algorithm (Kingma & Ba, 2014) with the default exponential decay rates
and stability constant of the Keras library (β1 = 0.9, β2 = 0.999, ϵ = 10−7). We also
implement a learning rate scheduler that additionally decreases the learning rate by an
order of magnitude at set epochs: Epoch ≤ 19: LR = 10−2, 19 < Epoch ≤ 79: LR = 10−3,
79< Epoch≤ 119: LR = 10−4, 119< Epoch≤ 150: LR = 10−5). This was an ad-hoc choice
after manually testing different types of decaying learning rates for this work (exponential
decay, smaller and larger learning rates at different epochs). Given the large training set
(∼ 680,000 spectra), we use a data generator that individually loads datasets with a batch
size of 500 into memory instead of loading the whole dataset at once. Finally, we train the
CNN for 150 epochs. The training history, namely the decrease and convergence of the
loss functions, for our final model is shown in Fig. 4.5.

4.5.3 Hyperparameter Optimization

Optimally, the full parameter space of hyperparameters and their various combinations
should be explored simultaneously. However, given the large amount of time needed to
train one model with the training sample (∼ 15 hours on one V100 GPU), we split the
hyperparameter optimization into two parts. First, we explored if our large fiducial model
can be reduced without any significant loss in accuracy. Then, we optimized the size of
the kernels in the convolutional layers and pooling layers using Bayesian (see Snoek et al.,
2012) and random optimization methods.

We began our hyperparameter optimization with a fiducial model which has an exces-
sively large width for each layer:

• Convolutional Layer - 1:

– Filters: 128

– Filter size: 10

• Convolutional Layer - 2:

– Filters: 256

– Filter size: 10

• Convolutional Layer - 3,5,6:

– Filters: 512

– Filter size: 10

• Fully Connected Layer size: 1024

• Average Pooling Layer size: 5
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Using this fiducial model, we first explored reducing the width of the individual layers
by reducing the number of filters for each layer and the size of the fully connected layers
by one-half. Doing this once led to no loss in accuracy. Further, however, the accuracy of
the localization task slightly degraded. Thus, we continued optimizing the filter sizes with
the network width depicted in Fig. 4.4.

The parameter space probed for the filter sizes of each convolutional block was
{5, 10, 15, 20}. The pooling layer kernel was varied using a size of either 3, 5, or 7. Instead
of training for 150 epochs, we trained for 60 epochs for efficiency and thus modified the
decrease of our learning rate accordingly (Epoch ≤ 5: LR = 10−2, 5 < Epoch ≤ 25: LR =
10−3, 25 < Epoch ≤ 40: LR = 10−4, 40 < Epoch ≤ 60: LR = 10−5). Otherwise, we use
the same training parameters as explained in Section 4.5.2. When training for 60 epochs
the CNN was sufficiently converged to appreciate the differences of the results for different
hyperparameters.

We applied both the Bayesian and random optimization toolkits provided by Keras
to probe the available parameter space. The Bayesian optimization used 35 different trials,
with twelve initial random parameter combinations, and 23 parameter combinations where
Bayesian optimization was applied. The random optimization used 20 different random pa-
rameter combinations. Both of these methods did not find a better parameter combination
than our initial model within the parameter space explored, which is somewhat surprising.
However, given the computational intensity of a more extensive parameter optimization,
and the proof-of-concept nature of our work, we choose to adopt our initial network. This
network already achieves its principal goal of detecting and localizing the Mg ii absorbers
with the needed accuracy for subsequent Voigt profile fitting.

4.5.4 Alternative CNN Architectures

To test whether other model architectures could provide better results, and try a number
of possibilities. In short, none was more accurate than our fiducial choice. We give a short
description of these tests here.

We explored an alternative CNN model resembling a 1D version of a residual network
architecture (He et al., 2015). However, the advantage of residual networks, which is
the possibility to create much deeper neural networks, was not needed in this case. In
particular, we found that more than one residual block led to no improvement of the
network. At the same time, this architecture resulted in a worse localization accuracy, by
a factor of ∼ 2. While there is a possibility that this accuracy could be improved by further
optimizing this type of architecture, we found that our fiducial architecture works better
in our initial tests and also suited our accuracy needs in both classification and localization
of Mg ii absorbers.

Another possibility we explored was using two individual fully connected layers, instead
of a combined one for each output after the first fully connected layer of the network. The
accuracy for both classification and localization was slightly lower for both cases (∼ 1
per cent lower for classification, ∼ 2 Å for localization). Given this, we decided to use a
combined second fully connected layer.
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Figure 4.6: True observed Mg ii absorber wavelength λtrue
Mg ii,2796 against predicted Mg ii

absorber wavelength λpred
Mg ii,2796 for spectra classified as containing a Mg ii absorber by the

CNN within the full test sample. Top: Blue Arm of 4MOST. Middle: Green Arm of
4MOST. A distinct line is visible at λMg ii,2796,true = 5358 Å. This is caused by false positives,
as λMg ii,2796 is set to 5358 Å for spectra not containing Mg ii absorbers. Bottom: Red
Arm of 4MOST. The majority of the predictions are within 15 Å of the true wavelength
(i.e. within the green dotted line), which is fully sufficient to perform subsequent Voigt
profile fitting.
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Figure 4.7: True observed Mg ii absorber wavelength λtrue
Mg ii,2796 against predicted Mg ii

absorber wavelength λpred
Mg ii,2796 for spectra in the test set classified as containing a Mg ii

absorber. The majority of the predictions are within 15 Å of the true value. A distinct
line is visible at λMg ii,2796,true = 5358 Å. This is caused by false positives, as λMg ii,2796 is set
to 5358 Å for spectra not containing Mg ii absorbers.

4.6 Results

We first test the ability of our CNN-based machine learning model to correctly identify
if a Mg ii absorber is present in a given spectrum, as well as its ability to estimate the
Mg ii absorber wavelength. Our test set has the same uniform statistical properties in
terms of SNR, Mg ii absorber wavelength (λMg ii,2796), and Mg ii absorber equivalent width
(EWrest

Mg ii,2796) distribution as the training set. In this case, we find high accuracy for
classification as well as localization tasks. For ∼ 98.6 per cent of the spectra, the CNN
correctly identified whether a Mg ii absorber is contained within the spectrum. In terms
of localization, the MAE of the wavelength prediction, if the spectrum is classified as
containing a Mg ii absorber, is ∼ 6.9 Å for the full test sample. This corresponds to a
redshift MAE of ∆z ∼ ±0.0025.

In practice, it is important that the CNN provides an accurate localization when the
spectrum is classified as containing an absorber. This allows for the subsequent selection
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of a region in which the Mg ii absorption-line profile can be fitted to derive its properties.
Fig. 4.6 shows the predicted versus ground truth wavelength positions of Mg ii absorption
for our fiducial test case. The vast majority of predictions are within ∼ 15Å. This is more
than sufficient for a subsequent Voigt profile fit to obtain the physical properties of the
absorber.

Although the network localizes the Mg ii absorber accurately in the majority of cases,
there are also outliers. In Fig. 4.7 the localization predictions for the full test sample
are shown, for cases where the CNN predicted that the spectrum contains an absorber. A
distinct vertical line at λMg ii,2796 = 5358Å is apparent: this is the ad-hoc λMg ii,2796 value set
for spectra without Mg ii absorbers. Hence, the vertical line corresponds to false positives,
where for example the network incorrectly identified a noise feature as a Mg ii absorber.

Approximately 0.4 per cent of the predicted Mg ii wavelengths fall into spectral gaps.
While there are no true λMg ii,2796 labels within the spectral gaps, the CNN returns λMg ii,2796

values within the full wavelength range (λMg ii,2796 = 3950 - 6930 Å). To overcome this
limitation we tested suppressing the spectral gaps by remapping the true wavelength onto
a continuous scale. However, the result does not reduce the number of outliers and has the
side-effect of introducing additional errors at the spectral window edges. Thus, we opt to
avoid remapping and keep the observed wavelength values as the output of the localization
task.

4.6.1 Accurate Mg ii Absorber Detection down to SNR=3

Correct classification depends sensitively on both the SNR of the spectrum and the
EWrest

Mg ii,2796 of the absorber. This is apparent in Fig. 4.8, where we show the confusion
matrix of the classification task normalized by the true values for different EWrest

Mg ii,2796

bins and SNRs. The first row of the figure displays the true positive rate, which can be
understood as the completeness of finding Mg ii absorbers. The second row displays the
false negative rate, which is the inverse of the completeness. The third row shows the
false positive rate. Thus, it displays the percentage of spectra where a noise feature was
identified as an absorber even though no absorber is contained within the spectrum. The
fourth row displays the true negative rate, i.e. the fraction of spectra for which the CNN
correctly identified the non-existence of a Mg ii absorber within the spectrum.

We can set a reliability threshold for our network. For each SNR, we consider the
results to be reliable if the completeness is > 95 per cent for a EWrest

Mg ii,2796 bin. As the
SNR increases, the EWrest

Mg ii,2796 values where the threshold is met decrease. This is to be
expected, as the lower the SNR, the more difficult it is for the network to detect weaker
Mg ii absorption-line systems. The thresholds for different SNRs are given Table 4.1 (fourth
column). There, we also provide benchmarks of the CNN for different SNRs, including all
spectra, and only including spectra with Mg ii absorbers above the outlined thresholds. As
one would expect, the classification accuracy for sub-sets including all spectra of specific
SNR increases as the SNR increases. For the sub-sets including only spectra with Mg ii
absorbers above the thresholds the completeness of Mg ii absorber detection is ≥ 99.4
throughout. The false positive rate is low (< 4 per cent) for all SNRs, and has a small
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Figure 4.8: Confusion Matrix of the classification task of the CNN for spectra of different
SNR and binned in EWrest

Mg ii,2796. First row: True positive rate. This plot describes the
completeness of the detections. The completeness rises as SNR and EWrest

Mg ii,2796 increase.
Second Row: False negative rate. The inverse of the completeness plot in the first
row. The false negative rate decreases as SNR and EWrest

Mg ii,2796 increase. Third Row:
False positive rate. This plot displays the percentage of spectra where spectra without
Mg ii absorbers were wrongly classified as spectra with Mg ii absorbers. Thus, the CNN
classified a noise feature as a Mg ii absorber. There is a weak dependence on SNR, with
SNR=3 spectra being a clear outlier. Fourth Row: True negative rate. The inverse of
the third row. Thus, spectra without Mg ii absorbers that are correctly classified as not
containing Mg ii absorbers.

dependence on SNR. As the SNR increases, the false positive rate also decreases. Thus,
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with more noise there is a higher chance that the CNN identifies a random noise feature
as a Mg ii absorber.

In summary, the CNN has a high detection completeness above EWrest
Mg ii,2796 thresholds

between 0.05 and 0.75 Å for all SNR. Above EWrest
Mg ii,2796 ≥ 0.75 Å the CNN provides

accurate results for the entire SNR range probed (SNR = 3-50).

Table 4.1: Benchmarks of the CNN for the full test sample, and different SNR.
Row 1 (red): (1) The SNR of the benchmarked spectra. (2/3): Results for all spectra with
the specified SNR.
Row 2 (green): (1) The threshold Mg ii absorber rest equivalent widths (EWrest

Mg ii,2796) above
which the completeness is at least 95 per cent, for a given SNR. (2/3) Results for spectra
including Mg ii absorbers above the threshold EWrest,thresh

Mg ii,2796 , specified in row 2, column 1.
The wavelength accuracy is always the mean absolute error for spectra classified by the
CNN as containing a Mg ii absorber.

SNR Classification Accuracy Wavelength Accuracy
All EWrest

Mg ii,2796 [%] All EWrest
Mg ii,2796 [Å]

Equivalent Width Threshold Completeness Wavelength Accuracy

EWrest,thresh
Mg ii,2796 [Å] ≥ EWrest,thresh

Mg ii,2796 [%] ≥ EWrest,thresh
Mg ii,2796 [Å]

3-50 98.6 6.9
- - -

3 94.7 26.7
0.75 99.4 7.6

5 97.3 10.8
0.35 99.6 4.1

10 98.8 4.9
0.15 99.8 2.4

20-50 99.8 1.2
0.05 99.8 1.6

4.6.2 Accurate Estimations of Absorber Location down to SNR=3

The mean absolute error (MAE) of the wavelength predictions in specific EWrest
Mg ii,2796 bins

is tied to the completeness of the Mg ii absorber detection. This is apparent in Fig. 4.9,
where the MAE of the wavelength predictions for different EWrest

Mg ii,2796 bins and SNR is
shown, for spectra that were classified as containing a Mg ii absorber.

The high errors below the EWrest,thresh
Mg ii,2796 threshold for each SNR are driven by the CNN

misinterpreting a noise feature as a Mg ii absorber. Below the thresholds a large part of
the Mg ii absorbers are not identified by the CNN, as seen by the increasing amount of
false negatives below the thresholds in Fig. 4.8. Thus, with decreasing EWrest

Mg ii,2796, fewer
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Figure 4.9: The mean absolute error for the localization output (λMg ii,2796) of the CNN
for various EWrest

Mg ii,2796 and SNR. The large errors below the EWrest
Mg ii,2796 thresholds for

different SNR detailed in Table 4.1 are driven by the CNN misinterpreting noise features
as Mg ii absorbers. Above these thresholds, the wavelength accuracy increases with higher
equivalent widths of the absorbers for all SNRs. The achieved accuracy is fully sufficient
for subsequent Voigt profile fitting.

Mg ii absorbers are identified correctly, as they disappear below the noise. In extreme
cases this leads to only incorrectly classifying noise features as Mg ii absorbers, leading to
a high MAE in low EWrest

Mg ii,2796 bins.

Above the EWrest
Mg ii,2796 threshold we reach mean accuracies between 1 and 16 Å, depend-

ing on the SNR of the spectrum and EWrest
Mg ii,2796 of the Mg ii absorbers. The wavelength

accuracy for low SNR spectra is lower than for high SNR spectra. Strong noise features
lead to a possible shift of several Angstroms in the predicted localization, and thus a higher
MAE. Nonetheless, our accuracy above the threshold is always high enough to enable sub-
sequent Voigt profile fitting of Mg ii absorbers.

A summary of the wavelength accuracy, for the full samples, and for samples only
including absorbers above the threshold, is given in Table 4.1 (columns 3 and 6).
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4.7 Discussion

Machine learning is a useful tool in many applications. However, its performance and
reliability should be carefully evaluated.

4.7.1 Accuracy and Efficiency versus Traditional Methods

Traditional approaches often use convolution-based filter matching to detect Mg ii candi-
dates above a given SNR threshold (e.g. Zhu & Ménard, 2013; Anand et al., 2021). Direct
comparisons with traditional methods are difficult, as this work relies on a different sample
and uses idealized mock spectra with higher resolution compared to the methods outlined
in Zhu & Ménard (2013) and Anand et al. (2021) that are benchmarked on SDSS spectra.
However, we find that our model detects Mg ii absorbers within our sample with at least
the same level of completeness as traditional methods do for SDSS samples. Traditional
methods typically have a completeness between 80 and 95 per cent (see e.g. Fig. 7 in both
Zhu & Ménard, 2013; Anand et al., 2021) for EWrest

Mg ii,2796 ≥ 1.0 Å depending on the sample.
The CNN-based approach reaches a higher completeness in our sample in this EWrest

Mg ii,2796

parameter space, with a completeness > 95 per cent for all SNR ≥ 3. Compared to tra-
ditional methods, the completeness drops steeply below EWrest

Mg ii,2796 < 0.75 Å instead of

EWrest
Mg ii,2796 < 1.0 Å for lower SNR spectra in our sample. However, we note that SDSS

also includes QSO spectra with SNR < 3. Further work is needed to determine if this
difference arises due to our idealized spectra, the differences in samples (and subsequently
SNR), or the method itself.

The CNN-based approach has a clear advantage in terms of computational efficiency.
While the training of the CNN takes a significant amount of time, subsequent evaluation of
the trained network is essentially free. The CNN can classify and localize Mg ii absorbers
within 10,000 spectra in a matter of seconds. Thus, implementing a CNN within a survey
pipeline enables real-time data introspection and scientific-level output, even for ∼ million
spectra datasets.

These results reinforce the findings concerning the feasibility of the CNN approach by
Zhao et al. (2019) based on SDSS quasar spectra. With their CNN, they drew the same
statistical results as the traditional approach by Zhu & Ménard (2013), however with a
significantly higher computational efficiency. However, Zhao et al. (2019) only classified
whether a QSO spectrum included a Mg ii absorber or not, and with a different architecture
than the one we explore herein. They did not include the localization aspect.

4.7.2 Future Work

Our investigation is a proof of concept for the feasibility of using deep learning to detect
and localize the Mg ii doublet (λ2796, λ2803) absorption-line systems in normalized QSO
spectra with a significant increase in computational efficiency compared to traditional
methods. There are several possible improvements for the future.
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First, we only consider the case of one Mg ii doublet within each spectrum. Thus,
our CNN is not able to provide a prediction if multiple Mg ii absorbers exist within one
spectrum. To address this issue we could train the network to only look at sub-sections
within the spectrum, with a sliding window size in which multiple Mg ii absorbers are un-
likely (e.g. similar to an approach for DLA detection in Parks et al., 2018). Alternatively,
we could train the network including spectra with multiple Mg ii absorbers, including si-
multaneous output for several absorbers within a spectrum. Finally, we could mask each
detected absorption line system after its identification in a spectrum, and then run another
iteration of the CNN. This final approach would allow the network architecture to remain
essentially unchanged from its current form.

In addition to multiple absorbers, our spectra do not include other metal absorption
lines. Many are commonly detected within QSO spectra, including C iv (λ1548, λ1550),
Si iv (λ1393, λ1402), and Fe ii (λ2382, λ2600). To identify these species, we would clearly
need to include the corresponding transitions in our mock spectra. Additional absorbing
species, i.e. at the same redshift as Mg ii, could significantly increase the accuracy of
identifying low equivalent width absorbers. Multiple metal absorbers in spectra could trace
the same intervening gas and thus provide additional information through the intrinsic
wavelength spacing between different species. Some metal lines might also have a higher
equivalent width than others, making their detection easier. Multi-species joint inference
could boost the performance of the CNN. We note that including different species could
also potentially lead to a decrease in accuracy due to the chance of the CNN confusing the
different absorption lines. Hence, this needs to be carefully evaluated.

Beyond the properties of the absorbers, the quasar spectra themselves can be improved.
In this work, we use idealized, normalized QSO spectra. Thus, they do not include possible
artifacts related to inaccurate normalization. To improve this aspect, we can either include
continuum normalization-related errors or train the network directly on non-normalized
spectra. This would increase the parameter space needed for the training set, as different
QSO parameters would have to be taken into account. However, our first tests on a subset
of the parameter space, and other works based on SDSS spectra (e.g. Zhao et al., 2019; Xia
et al., 2022), show that this is a viable method. This effectively incorporates the continuum
estimation process into the CNN itself.

Finally, our method currently identifies and localizes, Mg ii absorbers. The model could
be extended to simultaneously measure the equivalent width EWrest

Mg ii,2796 and column den-
sity (NMg ii). This would prevent the need for the second step of Voigt profile fitting,
and this approach has been used to measure Lyman-α absorber column densities (Parks
et al., 2018). If implemented with a method such as conditional invertible neural net-
works (cINNs), the full posterior distribution i.e. uncertainties on these parameters could
simultaneously be constrained (see Eisert et al., 2022).
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4.8 Summary

In preparation for the upcoming VISTA/4MOST community survey 4Hi-Q, we explore the
feasibility of a machine learning approach to detect and localize Mg ii absorption-line sys-
tems in synthetic, 4MOST-like high-resolution QSO spectra. Using the TNG50 cosmologi-
cal simulation TNG50 we create millions of mock Mg ii absorption profiles by combining a
post-processing photo- plus collisional ionization calculation with a geometrical ray-tracing
step.

We then use these synthetic Mg ii absorbers, with uniform distributions in EWrest
Mg ii,2796

and λMg ii,2796, to create R=λ/∆λ=20,000 mock, continuum normalized QSO spectra.
These cover the parameter space of EWrest

Mg ii,2796 = 0.05−5.15Å. We add noise corresponding
to expected signal-to-noise levels, from SNR = 3 to SNR = 50.

We design a convolution neural network (CNN) model to simultaneously identify, and
measure the wavelength of, Mg ii absorbers. For training, we construct a sample that
consists of ∼ 680, 000 spectra (∼510,000 with Mg ii absorbers, and ∼170,000 without).

After a hyper-parameter optimization step, we test our final trained model on a test
sample that has a 50-50 split of spectra with, and without, Mg ii absorbers, as well as a
flat distribution of EWrest

Mg ii,2796, λMg ii,2796 and SNR. Our best trained model achieves a 98.6
per cent global classification accuracy, correctly identifying whether a Mg ii absorber is
present in a spectrum for the majority of spectra. It localizes Mg ii absorbers with a mean
absolute error of 6.9 Å for spectra classified as containing a Mg ii absorber. This is fully
sufficient for subsequent Voigt profile fitting.

The Mg ii absorber detection completeness and localization accuracy of our method
depend strongly on the SNR of the spectrum and on the EWrest

Mg ii,2796 of the absorber.
We determine a EWrest

Mg ii,2796 threshold above which our method gives reliable predictions,

defined as 95 per cent detection completeness. For SNR = 3 spectra, this is EWrest,thresh
Mg ii,2796 ≥

0.75 Å, with a corresponding completeness of 99.4 per cent and a localization mean absolute
error (MAE) of 7.6 Å. For the highest quality spectra SNR = 20− 50, this improves to
EWrest,thresh

Mg ii,2796 ≥ 0.05 Å, with a corresponding detection completeness of 99.8 per cent and a

localization MAE of 1.6 Å (see Table 4.1).
In addition to its high classification and localization accuracy, one key advantage of

our CNN-based technique is speed. The computational efficiency of the detection of Mg ii
absorbers with this approach is significantly higher compared to traditional methods. Al-
though the initial training step is expensive (∼ 15 hours on one NVIDIA TESLA V100
GPU), subsequent evaluation is essentially free: the network can process ∼10,000 spectra
in seconds.

As a result, we propose that CNNs are a practical and feasible tool to detect and localize
Mg ii absorption-line systems in idealized 4MOST-like high-resolution spectra with high
accuracy. Future work, in terms of the realism of our mock spectra, and the functionality
of the model, will prepare it to be a production-quality tool for the start of 4MOST
observations in 2024.
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Chapter 5

Summary and Conclusions

Galaxies are systems evolving through a combination of internal processes and their con-
nection to their immediate surroundings. Violent processes, such as feedback by Active
Galactic Nuclei (AGN) and stellar feedback, expel gas from galaxies. Depending on the
strength of these mechanisms, this gas can either be removed from the galaxy’s halo or
can stay within it and subsequently might be recycled through re-accretion. Additionally,
gas reservoirs within galaxies are being replenished by the accretion of additional mat-
ter from the cosmic web. The combination of these activities leads to a redistribution of
baryons within and surrounding galaxies. In particular, these processes interact in the
Circumgalactic Medium (CGM), defined as the gas surrounding galaxies outside the disk
or interstellar medium (ISM), but within the virial radius of galaxies. This multi-phase
medium is of key importance for studies of galaxy evolution, as it allows for the tracing
of gas flows. In particular, these gas flows are important in the context of star forma-
tion. The removal of gas by the aforementioned violent feedback processes could lead to
the quenching of star formation in galaxies, while accretion is critical to sustaining star
formation. The accreted gas mixes with the matter within galaxies and can subsequently
cool down and then collapse into molecular clouds that are a necessary ingredient for the
formation of stars within galaxies. Thus, the CGM, the cold gas phase, and its precursor,
the cool gas phase, play key roles in how galaxies evolve across cosmic time. In this thesis
we studied this cool and cold gas phase, encompassing the molecular, neutral atomic, and
low-ionized atomic gas within and surrounding galaxies, applying an approach that bridges
observations and simulations. Below, we reiterate some of the main findings of the three
thesis projects summarized at the end of the last three chapters.

To trace inflowing, outflowing, and co-rotating gas within the CGM of galaxies, we
undertook an in-depth analysis of a newly CO-detected and H i-absorption-selected galaxy
within the MUSE-ALMA Haloes survey (MUSE-ALMA Haloes: Coupling Atomic, Ionized,
and Molecular Gas Kinematics of Galaxies, Chapter 2). The MUSE-ALMA Haloes project
is an ongoing study of the CGM of galaxies (z ≤ 1.4). The project exploits multi-phase
observations of H i-absorption-selected galaxies to explore the properties of galaxies (traced
in emission) and their surrounding CGM (traced in absorption).

Combining multi-phase observations we explored the kinematics of the ionized and
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molecular gas and disentangled the galaxy-absorber connection. Kinematic modeling of
the ionized and molecular gas phases revealed that the molecular [traced by CO(3–2)] and
ionized (traced by [O iii] λ5008) gas phases are strongly coupled within a rotating disk, as
they align well directionally and have similar rotational curves and maximum rotational
velocities. Kinematic studies of the absorber associated with the galaxy showed that the
two-component absorption feature detected in H2 and Mg ii (λ2803) is consistent with
being infalling and co-rotating gas within the CGM of the galaxy.

We compared the molecular gas properties and depletion times of H i-selected and
emission-selected galaxies by compiling literature measurements of both samples at z < 1.1,
including the newly CO-detected galaxy by the MUSE-ALMA Haloes project. This com-
pilation indicates that selection based on H i absorbers traces objects with large molecular
gas reservoirs (at given star formation rates). Subsequently, we observed depletion times
that can be over an order of magnitude larger than the median depletion times in samples
of emission-selected galaxies.

In the second project (The Column Densities of Molecular Gas across Cosmic Time:
Bridging Observations and Simulations, Chapter 3), we explored the evolution of the dis-
tribution of H2 column densities between z = 0 and z = 3 by exploiting large statisti-
cal samples from both observations (PHANGS-ALMA, SDSS) and simulations (Illustris
project, GRIFFIN Project). By bridging the results of observations and simulations, we
find a clear evolution of molecular gas column densities. At z = 3, higher molecular gas
column densities are more numerous compared to z = 0. Subsequently, the peak of the
molecular gas mass density contribution shifts to higher column densities. These results
are consistent with a higher star formation rate density at z = 3 compared to z = 0, as
one would expect that more molecular gas found at higher densities in the Universe leads
to a higher global star formation rate.

Comparisons of the neutral atomic (H i) and molecular hydrogen (H2) column density
distribution functions revealed that H2 starts dominating over H i at the same column
density [log(NH2/cm

−2) ∼ 21.8 − 22] at both of the studied redshifts. This finding is
consistent with theoretical predictions of the column density thresholds at which clouds
turn molecular. Contrasting the mass density contributions of H i and H2 at different
column densities additionally showed that while H i contributes little to the overall cold
gas mass density at high column densities, it contributes a significant amount at column
densities below column densities where H2 dominates. This implies that H i is an important
contributor to the overall cold gas mass found in the ISM of galaxies at both redshifts.

On the scale of individual galaxies, the shape of the column density distribution function
within our sample of both observed and simulated galaxies is similar. This is likely caused
by the sample consisting of main-sequence star-forming galaxies that are hypothesized
to have radially exponential gas profiles. However, we find that higher molecular gas
column densities are detected in more massive galaxies and thus in galaxies with higher
star formation rates.

As the size of data sets in astronomy increase with current and future large-scale sur-
veys, the need for fast and accurate data analysis tools increases. In preparation for the
upcoming 4MOST High-resolution Quasar survey (4Hi-Q), we explored the feasibility of us-
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ing machine learning approaches for the detection and localization of Mg ii (λ2795, λ2803)
absorbers in normalized high-resolution quasar spectra (4Hi-Q: Identifying and Localizing
Mg ii Metal Absorbers with Machine Learning, Chapter 4). In the absence of data, we pro-
duced synthetic normalized VISTA/4MOST high-resolution quasar spectra with injected
Mg ii absorbers based on the TNG50 simulation of the Illustris project for the training of
a convolutional neural network (CNN).

The trained CNN is highly accurate in both classifying if an absorber is contained within
the spectrum (98 per cent accuracy) and in localizing detected absorbers with a mean
wavelength accuracy of 6.9 Å for a sample with evenly distributed properties [wavelength
position of the Mg ii absorber (λMg ii,2796), Mg ii rest equivalent width (EWrest

Mg ii,2796 = 0.05 -

5.15 Å) and SNR of the spectrum (SNR=3-50)]. As expected, the algorithm shows a strong
dependence on the SNR of the spectrum and EWrest

Mg ii,2796, with higher global classification
and localization accuracies for higher SNR spectra and larger EWrest

Mg ii,2796.
This demonstrated that CNNs are a reliable tool to detect and localize Mg ii absorbers

in quasar spectra. In addition, they are orders of magnitude faster in the analysis of spectra
than traditional methods, making them especially useful for large datasets. However, as
the third thesis project was a proof of concept study, a number of future improvements
in terms of realism of the mock spectra (e.g. including more realistic noise, adding other
absorbers) and in terms of functionality of the model (e.g. estimating EWrest

Mg ii,2796) can be
included in the future.

In conclusion, in this thesis we explored the cool and cold gas within and surrounding
galaxies on the scales of individual galaxies up to large statistical samples by exploiting
both observations and simulations. All of these projects served the goal of furthering our
understanding of how galaxies interact with their immediate surroundings and how the
cool and cold gas phases evolve across cosmic time by answering the questions outlined in
Section 1.5. Thus, with this thesis we were able to show both observational and simulational
evidence of the inner workings of the cosmic baryon cycle by tracing gas flows and the
evolution of the molecular gas phase. Additionally, we provided a proof-of-concept for a
novel analysis method that will improve the efficiency of studying the CGM with future
large-scale absorption-line surveys.
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Chapter 6

Outlook

Current and upcoming instruments and novel analysis methods will push the boundaries
of cold gas and circumgalactic medium (CGM) studies. Especially at high redshifts, con-
straining the neutral atomic gas and molecular gas content of individual galaxies is a chal-
lenging endeavour, due to the faintness of the typically used tracers such as the H i 21-cm
and CO transitions. However, alternative tracers, particularly the [C ii] 158µm emission
line, provide exciting opportunities to overcome these limitations (e.g. Heintz et al., 2021,
2022; Zanella et al., 2018; Madden et al., 2020; Vizgan et al., 2022a,b). While early results
of [C ii] as a tracer of the cold gas phase at high redshifts are promising, additional studies
are needed to better constrain which gas phase is traced by it.

Similarly, studies of the galaxy-CGM connection at high redshifts are limited. The
[C ii] line provides promising prospects to explore this connection in the early Universe as
it allows for efficient high-resolution observations that enable kinematic studies of the ISM
of galaxies associated with absorbers (e.g. Neeleman et al., 2020). Additionally, joint [C ii]
158µm - [O iii] 88µm measurements can be exploited to explore the physical conditions
of these galaxies at high redshifts (Vallini et al., 2021), further disentangling the galaxy-
absorber connection.

Given this, the [C ii] 158µm and [O iii] 88µm emission lines are promising tools to
advance the studies of cool and cold gas and the circumgalactic medium at high redshifts.
In this section, we will give an outlook of two possible projects that aim to exploit these
emission lines for this purpose.

6.1 Exploring [C ii] 158µm as a Tracer for Molecular

and Neutral Atomic Gas

The neutral atomic and molecular gas phases are challenging to detect in emission at early
epochs, due to the weakness of associated H i 21-cm and H2 emission lines. Hence, various
alternative tracers of molecular gas have been used in the past [e.g. CO (Bolatto et al.,
2013); CI (Valentino et al., 2018)]. Recent studies have suggested using [C ii] as a tracer of
either H i (Heintz et al., 2021) or H2 (Zanella et al., 2018; Madden et al., 2020) at higher
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Figure 6.1: a) L[C ii]-Mmol relation for intermediate main sequence galaxies from low to
high redshifts (Zanella et al., 2018). b) Metallicity dependent [C ii]-to-H i conversion factor
calibrated on [C ii] and H2 absorption lines in Gamma Ray bursts (Heintz et al., 2021)

redshifts (see Fig. 6.1). These studies are still in their infancy leading to large uncertainties
regarding the conversion factors that need to be explored. Understanding how well [C ii]
traces these gas phases would provide exciting possibilities to explore the molecular and
neutral atomic content of galaxies at the epoch of reionization in an efficient manner, as
[C ii] is brighter than other suggested tracers.

[C ii] as a tracer for molecular and neutral atomic gas can be explored by taking an
approach bridging observations and simulations. On the observational side, a wealth of
archival data of overlapping H i (e.g. VLA), CO (e.g. ALMA), and [C ii] (e.g. SOFIA,
Herschel) emission-line observations of local galaxies are available. With these readily
available, the local [C ii]-to-H i and -H2 conversion factors can be constrained. These
observations can be contrasted with a large statistical sample from simulations by the
Illustris project (e.g. Pillepich et al., 2018a) by creating post-processed [C ii] and CO maps
using prescriptions such as SÍGAME (Olsen et al., 2021) or CLOUDY (Ferland et al., 2017;
Ramos Padilla et al., 2021) and readily available H i and H2 maps (Popping et al., 2019;
Szakacs et al., 2022). Further, these simulations can be used to explore first constraints of
the conversion factor at high redshifts. Finally, current and upcoming simulations including
additional physics such as non-equilibrium chemistry and radiation hydrodynamics will also
offer exciting prospects for these studies in the future by a more accurate representation
of [C ii] and the cold gas phase [e.g. SPHINX20 (Katz et al., 2022) and COLDSIM (Maio
et al., 2022)].
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6.2 Connecting the High Redshift Interstellar- and

Circumgalactic Medium

Figure 6.2: Selection of available archival ancillary data for DLA0817g at z = 4.2601
(Neeleman et al., 2017, 2020): a) Observed velocity map of DLA0817g based on [C ii] 158
µm emission. b) [C ii] 158 µm emission line spectrum of DLA0817g and absorption profile
of Si ii of the associated absorber. The agreement in redshift and width of the absorption
and emission lines indicate that the [C ii] 158 µm emission is from the DLA host galaxy.
c) Dust continuum of DLA0817g and the QSO in the quasar field J081740.52+135134.5.
The impact parameter of the galaxy-absorber pair is b = 42 kpc. d) HST F160W WFC3
rest-frame near-UV emission of DLA0817g overlayed with CO(2–1) contours obtained by
JVLA.

Studying galaxy-absorber pairs has mostly been limited to low to intermediate redshifts
(e.g. Schroetter et al., 2021; Szakacs et al., 2021), but recently ALMA has shown its ca-
pability to advance these studies to higher redshifts (e.g. Neeleman et al., 2019, 2020) by
observations of the [C ii] 158µm emission line. Future observations of this kind will provide
key constraints on the relationship between galaxy-absorber pairs through kinematic stud-
ies (similar to the studies outlined in Chapter 2). Additionally, joint observations of the
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Figure 6.3: Example of a moment 0 map of CO(1-0), [C ii] and [O iii] of a simulated galaxy
post-processed using SÍGAME (Olsen et al., 2017, 2021). Using these simulations one can
contrast emission line ratios, gas density, metallicity, covering fraction of CO(2-1), [C ii] 158
µm and [O iii] 88 µm and kinematics of the cold and ionized gas phase from observations
and simulations to further explore the physical conditions of the ISM/CGM at z = 4 and
subsequently better constrain models of galaxy formation and evolution.

[C ii] 158µm and [O iii] 88µm emissions lines have demonstrated a huge diagnostic poten-
tial as they yield a complementary view of the ISM at early epochs by tracing both ionized
gas in H ii regions through [O iii] and neutral atomic and molecular gas through [C ii].
Early galaxies (e.g. Hashimoto et al., 2019; Harikane et al., 2020) have larger L[O iii]/L[C ii]

ratios when compared with local dwarf galaxies (e.g. Cormier et al., 2015). This is likely
due to the highly different physical conditions in these early galaxies (Vallini et al., 2021).
However, studies between the EoR and local analogues are limited, thus exploring galaxies
within this redshift gap can provide additional constraints on the evolution of the ISM.
Additionally, exploiting the L[O iii]/L[C ii] ratios to derive the physical conditions within the
ISM in combination with absorption line studies can aid in disentangling the galaxy-CGM
connection at higher redshifts.

For this purpose, [O iii] 88µm observations of galaxies associated with Damped Lyman-
α (DLAs) at z ∼ 4 offer ideal laboratories to further explore the diagnostic potential of
joint [C ii]-[O iii] observations. The galaxy observed by Neeleman et al. (2017) offers the
perfect pilot laboratory for such studies. It is in itself a highly interesting object, as it is
one of the highest redshift galaxies with a confirmed cold, dusty rotating disk with a high
rotational velocity of ∼ 270 km/s and a large molecular gas reservoir of Mmol ∼ 8.8M⊙.
Additionally, a wealth of ancillary data is already available [JVLA (CO(2–1)), ALMA
([C ii]), HST (1.6 µm stellar emission), Keck/ESI + Keck/HIRES (absorption lines), see
Fig. 6.2]. This object would thus serve as a unique laboratory to explore the physical
conditions of the CGM and ISM at high redshifts by:

1. Deriving physical conditions of the ISM (gas density, gas metallicity) using a Markov
Chain Monte Carlo (MCMC) approach (Vallini et al., 2021) and exploring their
connection to the physical conditions of the CGM (H i / metal column densities, gas
metallicity).
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2. Studying the [O iii]/[C ii] emission line ratios, contrasting the line kinematics, and
comparing these to other low and high redshift galaxies.

3. Exploiting this special object to compare its emission line properties (emission line
ratios, kinematics) and physical conditions (gas density, metallicity, covering frac-
tions) of the ISM with analogue quantities obtained through post-processed cosmo-
logical simulations (e.g. TNG100 by the Illustris Project and the post-processing
tool SÍGAME; see Fig 6.3; Pillepich et al., 2018a; Olsen et al., 2021).

This project can then subsequently be expanded to a larger sample of [C ii] emitting
galaxies associated with H i absorbers at similar redshifts (e.g. Neeleman et al., 2017, 2019,
2020).
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Appendix A

Appendix to Chapter 2

A.1 Observation Details

We provide further information about the ALMA observations of the MUSE-ALMA Haloes
sample used in this work and provide additional information about the QSOs and observed
galaxies. The additional information can be seen in table A.1.

A.2 Q2131-G1 - Kinematic Modelling Residuals and

Model Flux Map

The model molecular gas flux map and residuals of the galaxy Q2131-G1 derived from
GalPak3D can be seen in Figures A.1 and A.2. The modelled disk reproduces the observa-
tions well, as can be seen by the low residuals.
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Table A.1: Properties of the quasars and galaxies in the MUSE-ALMA Haloes
sample.
Row 1 (red): (1) reference name of the QSO used in this paper (2) full name of the QSO,
(3) right ascension of the QSO, (4) declination of the QSO, (5) QSO redshift.
Row 2 (green): (1) dates for the observations of the field, (2) exposure time of the obser-
vation, (3) angular resolution of the observation, (4) calibrators used for the observation,
(5) precipitable water vapour (PWV) of the observation, (6) ALMA antenna configuration
used for the observation.
Row 3 (blue): (1) reference name of the galaxy used in this paper, (2) redshifted frequency
of the observed CO line, (3) right ascension of the galaxy, (4) declination of the galaxy, (5)
redshift of the galaxy, (6) Detection in CO (yes/no)
Literature references: a) Hamanowicz et al. (2020)

QSO name QSO alt. name RAQSO DECQSO zQSO
a

[hh:mm:ss] [dd:mm:ss]
Observation Dates Texp θ Calibrators PWV Ant. Config.

[hrs] [”] [mm]
Galaxy fCO RAgal DECgal zgal Detected in CO

[GHz] [hh:mm:ss] [dd:mm:ss]

Q2131-1207 Q2128-123 21:31:35 -12:07:04.8 0.43
4, 5, 7 Jun 2018 2.0 1.02 J2148+0657,

J2158-1501
0.65 - 2.8 C43-1

Q2131-G1 241.866 21:31:35.636 -12:07:00.177 0.42974 yes
Q2131-G2 241.697 21:31:35.775 -12:07:11.558 0.4307 a no

Q1232-0224 1229-021 12:32:00 -02:24:04.6 1.05
26, 28 Jun 2018 2.15 1.02 J1218-0119,

J1229+0203
1.2 - 2.2 C43-1

Q1232-G1 247.829 12:31:59.943 -02:24:05.275 0.3953 a no
Q1232-G2 262.462 12:31:59.727 -02:24:12.20 0.7566 a no

Q0152-2001 UM 675 01:52:27 -20:01:07.1 2.06
2, 11, 12 Jul 2018 1.5 0.96 J0006-0623,

J0151-1732
0.65 - 2.6 C43-1

Q0152-G1 250.105 01:52:27.827 -20:01:13.991 0.3826 a no
Q1211-1030 1209+107 12:11:41 +10:30:02.8 2.19
23 Aug 2018 0.75 0.73 J1229+0203,

J1222+0413
0.9 - 1.2 C43-3

Q1211-G1 248.274 12:11:40.899 10:30:06.990 0.3928 a no
Q1130-1449 1127-145 11:30:07 -14:49:27.7 1.19

4, 8, 15 Dec 2016 3.6 1.13 J1058+0133,
J1139-1350

1.5 - 5.4 C40-3

Q1130-G2 263.4 11:30:07.66 -14:49:23.41 0.3127 a yes
Q1130-G4 263.44 11:30:07.62 -14:49:11.44 0.3126 a yes
Q1130-G6 263.67 11:30:08.53 -14:49:28.54 0.3115 a yes
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Figure A.1: Flux map of Q2131-G1 modelled in 3D-space with GalPak3D.

Figure A.2: Residual flux map of Q2131-G1 between the modelled and observed fluxes.
The low residuals show that the disk model reproduces the observations well. The colorbar
displays data - model normalized by the pixel noise σ.
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Figure A.3: Convolved model velocity map residual. The colorbar is the residual divided by
the spectral resolution of the cube (Cwidth = 50km s−1). The low residuals across the galaxy
indicate that the disk model with an arctan velocity profile reproduces the observations
robustly.
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Appendix to Chapter 3

B.1 f(NH2) Dependence on Physical Properties

We explore how the integrated properties of galaxies in the PHANGS-ALMA sample shape
the f(NH2) of individual objects. Namely we study the dependence of the f(NH2) on the
star formation rate (SFR), stellar mass (M∗), and H2 mass (MH2).

The colour coding in Fig. 3.3 already displays the dependence of the f(NH2) on the
three parameters mentioned above. In order to quantify this relationship, we fit a gamma
distribution of the form:

f(NH2) =
f ∗

N∗

(
NH2

N∗

)−β

e−
NH2
N∗ , (B.1)

to the computed individual f(NH2) of the 150 pc resolution PHANGS-ALMA sample. Note
that there is no physical motivation for fitting a gamma distribution to the individual
f(NH2), it simply provides good fits of the f(NH2) for a minimal number of parameters.

The individual f(NH2) is largely determined by the parameter N∗ as the second free
parameter f ∗ correlates with N∗ (slope: −0.74 ± 0.09, intercept: 14.3 ± 2.0, Pearson-r:
0.7, p-value [calculated using a Kolmogorov-Smirnov test] <0.05) and β in turn correlates
with f ∗ (slope: −0.55 ± 0.06, intercept 0.11 ± 0.13, Pearson-r:0.73, p-value <0.05). Fig.
B.1 displays the dependence of f ∗ on N∗ and β on f ∗.

As already indicated in Fig. 3.3, f(NH2) depends on the physical parameters of the
galaxies within the PHANGS-ALMA sample. This is quantified in Fig. B.2, where we
show the relationship of the free parameter N∗ of the gamma distribution with SFR, M∗
and ΣH2 . As N

∗ largely determines the f(NH2) of a galaxy, it is implied that these physical
properties of a galaxy affect the f(NH2) of a galaxy. The three studied properties of the
galaxies show the following correlation and fit parameters (in log space): SFR - N∗: slope:
0.90 ± 0.15 intercept: 21.90 ± 0.07, Pearson-r = 0.59, p-value < 0.05; M∗ - N∗: slope:
1.21 ± 0.05 intercept: −5.5 ± 1.1 Pearson-r = 0.62, p-value < 0.05 and MH2 - N∗: slope:
0.79± 0.11, intercept: 14.9± 1.0 Pearson-r: 0.64, p-value < 0.05.

Using the SFR, M∗ or MH2 of a galaxy one could approximate its f(NH2) using these
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Figure B.1: Correlations between the free parameter f ∗ and the free parameter N∗ and
between f ∗ and the slope β of the gamma distribution fits on the f(NH2) in the PHANGS-
ALMA sample. The blue dots indicate the fit values of individual galaxies, the orange line
the best fit, and the orange band the 95% confidence region of the fit. Both samples show
strong correlations with Pearson-rs of ∼ 0.7 and p-values < 0.05.

Figure B.2: Dependence on different physical properties of the free parameter N∗ of the
gamma distribution fits on the f(NH2) within the PHANGS-ALMA sample. The blue dots
indicate the fit values and properties of individual objects, the orange line the best fit, and
the orange band the 95% confidence region of the fit. The physical properties (SFR, M∗
and MH2) of the galaxies correlate with the free parameter N∗, albeit with a significant
scatter.
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correlations. We note that our tests have shown that while these fits approximate the
global f(NH2) well when using the PHANGS-ALMA sample, they often fail for individual
galaxies because they are degenerate. We therefore caution from using these fits to predict
individual f(NH2).
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Davé R., Anglés-Alcázar D., Narayanan D., Li Q., Rafieferantsoa M. H., Appleby S., 2019,
MNRAS, 486, 2827
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Freundlich J., Bouché N. F., Contini T., Daddi E., Zabl J., Schroetter I., Boogaard L.,
Richard J., 2021, MNRAS, 501, 1900

Fukugita M., Hogan C. J., Peebles P. J. E., 1998, ApJ, 503, 518

Fukushima K., 1975, Biological Cybernetics, 20, 121

Fukushima K., 1980, Biological Cybernetics, 36, 193

http://dx.doi.org/10.3847/1538-4365/aae387
https://ui.adsabs.harvard.edu/abs/2018ApJS..238...33D
http://dx.doi.org/10.1093/mnras/stz1323
https://ui.adsabs.harvard.edu/abs/2019MNRAS.487.1529D
http://dx.doi.org/10.18727/0722-6691/5126
https://ui.adsabs.harvard.edu/abs/2019Msngr.175...46D
http://dx.doi.org/10.1093/mnras/stu742
https://ui.adsabs.harvard.edu/abs/2014MNRAS.441.3359D
http://dx.doi.org/10.1093/mnras/sts262
https://ui.adsabs.harvard.edu/abs/2013MNRAS.428.3183D
http://dx.doi.org/10.1038/252111a0
https://ui.adsabs.harvard.edu/abs/1974Natur.252..111E
https://ui.adsabs.harvard.edu/abs/1917SPAW.......142E
https://ui.adsabs.harvard.edu/abs/2022arXiv220206967E
https://ui.adsabs.harvard.edu/abs/2021arXiv211003708E
http://dx.doi.org/10.1051/0004-6361/200911995
https://ui.adsabs.harvard.edu/abs/2009A&A...504..789E
http://dx.doi.org/10.1088/0004-637X/703/2/1416
https://ui.adsabs.harvard.edu/abs/2009ApJ...703.1416F
http://dx.doi.org/10.1038/s42005-020-00493-0
https://ui.adsabs.harvard.edu/abs/2020CmPhy...3..226F
https://ui.adsabs.harvard.edu/abs/2017RMxAA..53..385F
http://arxiv.org/abs/2206.06165
http://dx.doi.org/10.1109/ICECET55527.2022.9872611
http://dx.doi.org/10.18727/0722-6691/5124
https://ui.adsabs.harvard.edu/abs/2019Msngr.175...39F
http://dx.doi.org/10.1086/307962
https://ui.adsabs.harvard.edu/abs/1999ApJ...526..207F
http://dx.doi.org/10.1111/j.1365-2966.2011.20172.x
https://ui.adsabs.harvard.edu/abs/2012MNRAS.420.1731F
http://dx.doi.org/10.1007/978-3-319-52512-9_14
https://ui.adsabs.harvard.edu/abs/2021arXiv210807419F
http://dx.doi.org/10.1093/mnras/staa3818
https://ui.adsabs.harvard.edu/abs/2021MNRAS.501.1900F
http://dx.doi.org/10.1086/306025
https://ui.adsabs.harvard.edu/abs/1998ApJ...503..518F


120 BIBLIOGRAPHY

Fumagalli M., Prochaska J. X., Kasen D., Dekel A., Ceverino D., Primack J. R., 2011,
MNRAS, 418, 1796

Fumagalli M., O’Meara J. M., Prochaska J. X., 2016, MNRAS, 455, 4100

Fynbo J. P. U., et al., 2010, MNRAS, 408, 2128

Gaia Collaboration et al., 2016, A&A, 595, A1

Galvin T. J., et al., 2020, MNRAS, 497, 2730

Gamow G., 1946, Physical Review, 70, 572

Gaskin J. A., et al., 2019, Journal of Astronomical Telescopes, Instruments, and Systems,
5, 021001

Genel S., et al., 2014, MNRAS, 445, 175

Genzel R., et al., 2012, ApJ, 746, 69

Genzel R., et al., 2015, ApJ, 800, 20

Genzel R., et al., 2017, Nature, 543, 397

Genzel R., et al., 2020, ApJ, 902, 98

Gheller C., Vazza F., 2022, MNRAS, 509, 990

Ginolfi M., et al., 2020, A&A, 633, A90

Glover S. C. O., Clark P. C., 2012, MNRAS, 421, 116

Glover S. C. O., Mac Low M.-M., 2007a, ApJS, 169, 239

Glover S. C. O., Mac Low M.-M., 2007b, ApJ, 659, 1317

Gnedin N. Y., Kravtsov A. V., 2011, ApJ, 728, 88

Gnedin N. Y., Tassis K., Kravtsov A. V., 2009, ApJ, 697, 55

Gong M., Ostriker E. C., Wolfire M. G., 2017, ApJ, 843, 38

Grand R. J. J., et al., 2017, MNRAS, 467, 179

Guillemin P., Bergeron J., 1997, A&A, 328, 499

Gurney K., 1997, An Introduction to Neural Networks. An Introduction to Neural Net-
works, Taylor & Francis, https://books.google.de/books?id=HOsvllRMMP8C

Guth A. H., 1981, Phys. Rev. D, 23, 347

http://dx.doi.org/10.1111/j.1365-2966.2011.19599.x
https://ui.adsabs.harvard.edu/abs/2011MNRAS.418.1796F
http://dx.doi.org/10.1093/mnras/stv2616
https://ui.adsabs.harvard.edu/abs/2016MNRAS.455.4100F
http://dx.doi.org/10.1111/j.1365-2966.2010.17294.x
https://ui.adsabs.harvard.edu/abs/2010MNRAS.408.2128F
http://dx.doi.org/10.1051/0004-6361/201629272
https://ui.adsabs.harvard.edu/abs/2016A&A...595A...1G
http://dx.doi.org/10.1093/mnras/staa1890
https://ui.adsabs.harvard.edu/abs/2020MNRAS.497.2730G
http://dx.doi.org/10.1103/PhysRev.70.572.2
https://ui.adsabs.harvard.edu/abs/1946PhRv...70..572G
http://dx.doi.org/10.1117/1.JATIS.5.2.021001
https://ui.adsabs.harvard.edu/abs/2019JATIS...5b1001G
http://dx.doi.org/10.1093/mnras/stu1654
https://ui.adsabs.harvard.edu/abs/2014MNRAS.445..175G
http://dx.doi.org/10.1088/0004-637X/746/1/69
https://ui.adsabs.harvard.edu/abs/2012ApJ...746...69G
http://dx.doi.org/10.1088/0004-637X/800/1/20
https://ui.adsabs.harvard.edu/abs/2015ApJ...800...20G
http://dx.doi.org/10.1038/nature21685
https://ui.adsabs.harvard.edu/abs/2017Natur.543..397G
http://dx.doi.org/10.3847/1538-4357/abb0ea
https://ui.adsabs.harvard.edu/abs/2020ApJ...902...98G
http://dx.doi.org/10.1093/mnras/stab3044
https://ui.adsabs.harvard.edu/abs/2022MNRAS.509..990G
http://dx.doi.org/10.1051/0004-6361/201936872
https://ui.adsabs.harvard.edu/abs/2020A&A...633A..90G
http://dx.doi.org/10.1111/j.1365-2966.2011.20260.x
https://ui.adsabs.harvard.edu/abs/2012MNRAS.421..116G
http://dx.doi.org/10.1086/512238
https://ui.adsabs.harvard.edu/abs/2007ApJS..169..239G
http://dx.doi.org/10.1086/512227
https://ui.adsabs.harvard.edu/abs/2007ApJ...659.1317G
http://dx.doi.org/10.1088/0004-637X/728/2/88
https://ui.adsabs.harvard.edu/abs/2011ApJ...728...88G
http://dx.doi.org/10.1088/0004-637X/697/1/55
https://ui.adsabs.harvard.edu/abs/2009ApJ...697...55G
http://dx.doi.org/10.3847/1538-4357/aa7561
https://ui.adsabs.harvard.edu/abs/2017ApJ...843...38G
http://dx.doi.org/10.1093/mnras/stx071
https://ui.adsabs.harvard.edu/abs/2017MNRAS.467..179G
https://ui.adsabs.harvard.edu/abs/1997A&A...328..499G
https://books.google.de/books?id=HOsvllRMMP8C
http://dx.doi.org/10.1103/PhysRevD.23.347
https://ui.adsabs.harvard.edu/abs/1981PhRvD..23..347G


BIBLIOGRAPHY 121

Hafen Z., et al., 2017, MNRAS, 469, 2292

Hamanowicz A., et al., 2020, MNRAS, 492, 2347

Hamanowicz A., et al., 2022, arXiv e-prints, p. arXiv:2211.00066

Harikane Y., et al., 2020, ApJ, 896, 93

Hashimoto T., Inoue A. K., Tamura Y., Matsuo H., Mawatari K., Yamaguchi Y., 2019,
PASJ, 71, 109

Hawking S. W., 1982, Physics Letters B, 115, 295

He Z., Li N., 2022, Research in Astronomy and Astrophysics, 22, 095021

He K., Zhang X., Ren S., Sun J., 2015, arXiv e-prints, p. arXiv:1512.03385

Heeschen D. S., 1981, in Burbidge G., Hewitt A., eds, , Telescopes for the 1980s, Annual
Reviews Monograph. pp 1–61

Heintz K. E., Watson D., Oesch P. A., Narayanan D., Madden S. C., 2021, ApJ, 922, 147

Heintz K. E., et al., 2022, ApJ, 934, L27

Hislop J. M., Naab T., Steinwandel U. P., Lahén N., Irodotou D., Johansson P. H., Walch
S., 2021, arXiv e-prints, p. arXiv:2109.08160

Ho T. K., 1995, in Proceedings of 3rd international conference on document analysis and
recognition. pp 278–282

Ho M.-F., Bird S., Garnett R., 2021, MNRAS, 507, 704

Holmberg E., 1958, Meddelanden fran Lunds Astronomiska Observatorium Serie II, 136, 1

Hotan A. W., et al., 2021, Publ. Astron. Soc. Australia, 38, e009

Hu C.-Y., Naab T., Walch S., Moster B. P., Oser L., 2014a, MNRAS, 443, 1173

Hu C.-Y., Naab T., Walch S., Moster B. P., Oser L., 2014b, MNRAS, 443, 1173

Hu C.-Y., Naab T., Walch S., Glover S. C. O., Clark P. C., 2016, MNRAS, 458, 3528

Hu C.-Y., Naab T., Glover S. C. O., Walch S., Clark P. C., 2017, MNRAS, 471, 2151

Hu C.-Y., Sternberg A., van Dishoeck E. F., 2021, arXiv e-prints, p. arXiv:2103.03889

Hubel D., Wiesel T., 1959, J Physiol., 148, 574

Hubel D., Wiesel T., 1962, J Physiol., 160, 54

http://dx.doi.org/10.1093/mnras/stx952
https://ui.adsabs.harvard.edu/abs/2017MNRAS.469.2292H
http://dx.doi.org/10.1093/mnras/stz3590
https://ui.adsabs.harvard.edu/abs/2020MNRAS.492.2347H
https://ui.adsabs.harvard.edu/abs/2022arXiv221100066H
http://dx.doi.org/10.3847/1538-4357/ab94bd
https://ui.adsabs.harvard.edu/abs/2020ApJ...896...93H
http://dx.doi.org/10.1093/pasj/psz094
https://ui.adsabs.harvard.edu/abs/2019PASJ...71..109H
http://dx.doi.org/10.1016/0370-2693(82)90373-2
https://ui.adsabs.harvard.edu/abs/1982PhLB..115..295H
http://dx.doi.org/10.1088/1674-4527/ac839b
https://ui.adsabs.harvard.edu/abs/2022RAA....22i5021H
https://ui.adsabs.harvard.edu/abs/2015arXiv151203385H
http://dx.doi.org/10.3847/1538-4357/ac2231
https://ui.adsabs.harvard.edu/abs/2021ApJ...922..147H
http://dx.doi.org/10.3847/2041-8213/ac8057
https://ui.adsabs.harvard.edu/abs/2022ApJ...934L..27H
https://ui.adsabs.harvard.edu/abs/2021arXiv210908160H
http://dx.doi.org/10.1093/mnras/stab2169
https://ui.adsabs.harvard.edu/abs/2021MNRAS.507..704H
https://ui.adsabs.harvard.edu/abs/1958MeLuS.136....1H
http://dx.doi.org/10.1017/pasa.2021.1
https://ui.adsabs.harvard.edu/abs/2021PASA...38....9H
http://dx.doi.org/10.1093/mnras/stu1187
https://ui.adsabs.harvard.edu/abs/2014MNRAS.443.1173H
http://dx.doi.org/10.1093/mnras/stu1187
https://ui.adsabs.harvard.edu/abs/2014MNRAS.443.1173H
http://dx.doi.org/10.1093/mnras/stw544
https://ui.adsabs.harvard.edu/abs/2016MNRAS.458.3528H
http://dx.doi.org/10.1093/mnras/stx1773
https://ui.adsabs.harvard.edu/abs/2017MNRAS.471.2151H
https://ui.adsabs.harvard.edu/abs/2021arXiv210303889H
http://dx.doi.org/10.1113/jphysiol.1959.sp006308
http://dx.doi.org/10.1113/jphysiol.1962.sp006837


122 BIBLIOGRAPHY

Hummels C. B., Smith B. D., Silvia D. W., 2017, ApJ, 847, 59

Husemann B., Bennert V. N., Scharwächter J., Woo J. H., Choudhury O. S., 2016, MNRAS,
455, 1905

Ivezic Z., et al., 2008, Serbian Astronomical Journal, 176, 1

Jonas J., MeerKAT Team 2016, in MeerKAT Science: On the Pathway to the SKA. p. 1

Jones M. G., Haynes M. P., Giovanelli R., Moorman C., 2018a, MNRAS, 477, 2

Jones M. G., et al., 2018b, A&A, 609, A17

Joseph R. D., Wright G. S., 1985, MNRAS, 214, 87

Kacprzak G. G., Muzahid S., Churchill C. W., Nielsen N. M., Charlton J. C., 2015, ApJ,
815, 22

Kanekar N., Smette A., Briggs F. H., Chengalur J. N., 2009, ApJ, 705, L40

Kanekar N., et al., 2018, ApJ, 856, L23

Kanekar N., Prochaska J. X., Neeleman M., Christensen L., Møller P., Zwaan M. A., Fynbo
J. P. U., Dessauges-Zavadsky M., 2020, ApJ, 901, L5

Katz H., et al., 2022, MNRAS,

Kennicutt R. C., Evans N. J., 2012, ARA&A, 50, 531

Kingma D. P., Ba J., 2014, arXiv e-prints, p. arXiv:1412.6980

Klitsch A., Péroux C., Zwaan M. A., Smail I., Oteo I., Biggs A. D., Popping G., Swinbank
A. M., 2018, MNRAS, 475, 492

Klitsch A., et al., 2019a, MNRAS, 482, L65

Klitsch A., et al., 2019b, MNRAS, 490, 1220

Klitsch A., Péroux C., Zwaan M. A., De Cia A., Ledoux C., Lopez S., 2021, MNRAS, 506,
514

Kobulnicky H. A., Kennicutt Robert C. J., Pizagno J. L., 1999, ApJ, 514, 544

Krizhevsky A., Sutskever I., Hinton G. E., 2012, in Advances in neural information pro-
cessing systems. pp 1097–1105

Krogager J.-K., Noterdaeme P., 2020, A&A, 644, L6

Krogager J. K., Møller P., Fynbo J. P. U., Noterdaeme P., 2017, MNRAS, 469, 2959

http://dx.doi.org/10.3847/1538-4357/aa7e2d
https://ui.adsabs.harvard.edu/abs/2017ApJ...847...59H
http://dx.doi.org/10.1093/mnras/stv2478
https://ui.adsabs.harvard.edu/abs/2016MNRAS.455.1905H
http://dx.doi.org/10.2298/SAJ0876001I
https://ui.adsabs.harvard.edu/abs/2008SerAJ.176....1I
http://dx.doi.org/10.1093/mnras/sty521
https://ui.adsabs.harvard.edu/abs/2018MNRAS.477....2J
http://dx.doi.org/10.1051/0004-6361/201731448
https://ui.adsabs.harvard.edu/abs/2018A&A...609A..17J
http://dx.doi.org/10.1093/mnras/214.2.87
https://ui.adsabs.harvard.edu/abs/1985MNRAS.214...87J
http://dx.doi.org/10.1088/0004-637X/815/1/22
https://ui.adsabs.harvard.edu/abs/2015ApJ...815...22K
http://dx.doi.org/10.1088/0004-637X/705/1/L40
https://ui.adsabs.harvard.edu/abs/2009ApJ...705L..40K
http://dx.doi.org/10.3847/2041-8213/aab6ab
https://ui.adsabs.harvard.edu/abs/2018ApJ...856L..23K
http://dx.doi.org/10.3847/2041-8213/abb4e1
https://ui.adsabs.harvard.edu/abs/2020ApJ...901L...5K
http://dx.doi.org/10.1093/mnras/stac3019
http://dx.doi.org/10.1146/annurev-astro-081811-125610
https://ui.adsabs.harvard.edu/abs/2012ARA&A..50..531K
https://ui.adsabs.harvard.edu/abs/2014arXiv1412.6980K
http://dx.doi.org/10.1093/mnras/stx3184
https://ui.adsabs.harvard.edu/abs/2018MNRAS.475..492K
http://dx.doi.org/10.1093/mnrasl/sly187
https://ui.adsabs.harvard.edu/abs/2019MNRAS.482L..65K
http://dx.doi.org/10.1093/mnras/stz2660
https://ui.adsabs.harvard.edu/abs/2019MNRAS.490.1220K
http://dx.doi.org/10.1093/mnras/stab1668
https://ui.adsabs.harvard.edu/abs/2021MNRAS.506..514K
https://ui.adsabs.harvard.edu/abs/2021MNRAS.506..514K
http://dx.doi.org/10.1086/306987
https://ui.adsabs.harvard.edu/abs/1999ApJ...514..544K
http://dx.doi.org/10.1051/0004-6361/202039843
https://ui.adsabs.harvard.edu/abs/2020A&A...644L...6K
http://dx.doi.org/10.1093/mnras/stx1011
https://ui.adsabs.harvard.edu/abs/2017MNRAS.469.2959K


BIBLIOGRAPHY 123

Krone-Martins A., Moitinho A., 2014, A&A, 561, A57

Krumholz M. R., 2013, MNRAS, 436, 2747

Krumholz M. R., McKee C. F., Tumlinson J., 2008, ApJ, 689, 865

Kulkarni V. P., Hill J. M., Schneider G., Weymann R. J., Storrie-Lombardi L. J., Rieke
M. J., Thompson R. I., Jannuzi B. T., 2000, ApJ, 536, 36

Kulkarni V. P., Hill J. M., Schneider G., Weymann R. J., Storrie-Lombardi L. J., Rieke
M. J., Thompson R. I., Jannuzi B. T., 2001, ApJ, 551, 37

Lagos C. d. P., et al., 2015, MNRAS, 452, 3815

Lahén N., Naab T., Johansson P. H., Elmegreen B., Hu C.-Y., Walch S., 2019, ApJ, 879,
L18

Lahén N., Naab T., Johansson P. H., Elmegreen B., Hu C.-Y., Walch S., Steinwandel U. P.,
Moster B. P., 2020a, ApJ, 891, 2

Lahén N., Naab T., Johansson P. H., Elmegreen B., Hu C.-Y., Walch S., 2020b, ApJ, 904,
71

Lane W. M., Briggs F. H., Turnshek D. A., Rao S. M., 1998, in American Astronomical
Society Meeting Abstracts. p. 04.09

Lanzetta K. M., Bowen D., 1990, ApJ, 357, 321
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Übler H., et al., 2020, MNRAS,

Umehata H., et al., 2019, Science, 366, 97

Valentino F., et al., 2018, ApJ, 869, 27

Vallini L., Ferrara A., Pallottini A., Carniani S., Gallerani S., 2021, MNRAS, 505, 5543

Van Rossum G., Drake F. L., 2009, Python 3 Reference Manual. CreateSpace, Scotts
Valley, CA

Veilleux S., Cecil G., Bland-Hawthorn J., 2005, ARA&A, 43, 769

http://dx.doi.org/10.1093/mnras/stw2499
https://ui.adsabs.harvard.edu/abs/2017MNRAS.465.2966S
http://dx.doi.org/10.1093/mnras/stab1434
https://ui.adsabs.harvard.edu/abs/2021MNRAS.505.4746S
http://dx.doi.org/10.1093/mnras/stac510
https://ui.adsabs.harvard.edu/abs/2022MNRAS.512.4736S
http://dx.doi.org/10.3847/1538-4357/aaa4b4
https://ui.adsabs.harvard.edu/abs/2018ApJ...853..179T
http://dx.doi.org/10.1146/annurev-astro-082812-141034
https://ui.adsabs.harvard.edu/abs/2020ARA&A..58..157T
http://dx.doi.org/10.3847/1538-4357/ac382f
https://ui.adsabs.harvard.edu/abs/2022ApJ...925...72T
http://dx.doi.org/10.1046/j.1365-8711.1998.01740.x
https://ui.adsabs.harvard.edu/abs/1998MNRAS.297L..49T
http://dx.doi.org/10.1086/423264
https://ui.adsabs.harvard.edu/abs/2004ApJ...613..898T
http://dx.doi.org/10.1086/306397
https://ui.adsabs.harvard.edu/abs/1998ApJ...508..200T
https://ui.adsabs.harvard.edu/abs/1977A&A....54..661T
http://dx.doi.org/10.1088/0004-637X/733/2/111
https://ui.adsabs.harvard.edu/abs/2011ApJ...733..111T
http://dx.doi.org/10.1146/annurev-astro-091916-055240
https://ui.adsabs.harvard.edu/abs/2017ARA&A..55..389T
http://dx.doi.org/10.1093/mnras/stu1801
https://ui.adsabs.harvard.edu/abs/2014MNRAS.445..794T
http://dx.doi.org/10.1093/mnras/stx1616
https://ui.adsabs.harvard.edu/abs/2017MNRAS.471..690T
http://dx.doi.org/10.1038/298427a0
https://ui.adsabs.harvard.edu/abs/1982Natur.298..427T
http://dx.doi.org/10.3847/2041-8213/aaacfa
https://ui.adsabs.harvard.edu/abs/2018ApJ...854L..24U
http://dx.doi.org/10.1093/mnras/staa3464
http://dx.doi.org/10.1126/science.aaw5949
https://ui.adsabs.harvard.edu/abs/2019Sci...366...97U
http://dx.doi.org/10.3847/1538-4357/aaeb88
https://ui.adsabs.harvard.edu/abs/2018ApJ...869...27V
http://dx.doi.org/10.1093/mnras/stab1674
https://ui.adsabs.harvard.edu/abs/2021MNRAS.505.5543V
http://dx.doi.org/10.1146/annurev.astro.43.072103.150610
https://ui.adsabs.harvard.edu/abs/2005ARA&A..43..769V


132 BIBLIOGRAPHY

Villaescusa-Navarro F., et al., 2018, ApJ, 866, 135

Vizgan D., et al., 2022a, ApJ, 929, 92

Vizgan D., Heintz K. E., Greve T. R., Narayanan D., Davé R., Olsen K. P., Popping G.,
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