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Abstract

Computations in the brain arise from the functional connectivity of indi-
vidual neurons, brain regions and circuits. Understanding the fundamental
connectivity rules in the brain is an important step to better understand the
brain itself. In this dissertation, a suite of methods and approaches were
employed to investigate such rules at the synaptic and circuit level.

The first part of this dissertation dealt with the conflicting results of re-
cent structural (Rompani et al., 2017) and functional (Howarth, Walmsley,
& Brown, 2014; Jaepel et al., 2017; Sommeijer et al., 2017) reports regarding
the degree of functional binocular convergence in the dorsal lateral genicu-
late nucleus (dLGN). To address this, a novel dual-color optogenetic assay
was developed to map functional connectivity between RGCs and individual
dLGN cells in vitro. While structural convergence is large, with > 60 % of
dLGN cells receiving binocular input, the dLGN is functionally monocular:
not only did the dominant eye provide > 95 % of a dLGN cell’s retinogenicu-
late input, but the non-dominant eye was unable to elicit the firing of action
potentials under resting conditions. Analysis of dLGN cell morphology in
relation to the axonal input pattern of RGC afferents in the dLGN revealed
axo-dendritic overlap could not explain the levels of functional monocular-
ity observed in the in vitro assay. Instead, the dominant and non-dominant
eye differed with regards to the expression of AMPA and NMDA receptors,
seemingly favoring the dominant eye: fine-scale input selection and refine-
ment were found to limit the functional convergence in the retinogeniculate
pathway, resulting in a winner-takes-all wiring rule in this part of the visual
circuit.

In the second part of this dissertation a deep learning tool for the detection
of dendrites and dendritic spines, termed DeepD3, was developed. DeepD3



xviii Summary

directly addresses the current need for automated methods of spine detec-
tion. Unlike other areas of neuroscience, where data collection and analysis
throughput has improved considerably in the last years, most studies to date
still only investigate dozens of dendritic spines per neuron. The analysis
- such as identification or segmentation of dendritic spines in image data
- represents the main bottleneck in current analysis efforts. DeepD3 was
tested against a number of in vitro and in vivo datasets with varying image
properties to ensure that this method performs well in a large range of data
qualities. DeepD3 performed as well as human in both in vivo and in vitro
data. Importantly, DeepD3 fully processes large datasets within hours, a
procedure which would take months if done via the current gold standard,
human annotation. DeepD3 can be flexibly employed for counting dendritic
spines or to measure 2D, 3D or time-series fluorescence values of spines and
dendrites.

The third part of this dissertation aims towards understanding the func-
tional connectivity rules of LTP-induced dendritic spines. Dendritic spines
grow in neurons undergoing LTP (Engert & Bonhoeffer, 1999; Toni et al.,
1999) and rapidly form functional synapses (Nägerl et al., 2007). However, it
remains unclear which presynaptic neurons are chosen to establish functional
connectivity, and hence whether there is a fundamental wiring rule followed
by the brain. To address this, improvements to an existing assay to map
functional synaptogenesis following LTP in vitro (Coneva, 2015) were made.
By modifying the timeline of the assay and introducing high-throughput
volumetric calcium imaging methods, the throughput of the assay was im-
proved several-fold. Moreover, a molecular approach was devised to com-
bat a potential confounding variable, the lack of spine maturity in nascent
spines, when determining functional connectivity rules of LTP-induced den-
dritic spines. Lastly, several pharmacological and computational means were
tested in their ability to assess functional connectivity on a single-spine level
despite the occurrence of dendritic calcium events, which otherwise prevent
such assessments. Neither the pharmacological, nor the computational meth-
ods applied proved effective in this undertaking. As a consequence, deter-
mining functional connectivity rules of nascent, LTP-induced dendritic spines
remains outstanding. This dissertation paved the way for attempts of this
undertaking in the future.
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Chapter 1

Introduction

1.1 General
The brain is one of the most complex structures in the known universe (Kuhl,
2013). As such, the brain has intrigued countless scientists over time, as they
sought to ultimately understand basic, yet abstract features of our everyday
lives, such as emotion, sleep, or learning and memory. The brain’s build-
ing blocks, neurons, were first brought into man focus by Santiago Ramón
y Cajal, who published a famous collection containing precise drawings of
neurons in 1888 (Ramón y Cajal, 1888). Cajal studied neuronal morphology
with the help of Camillo Golgi’s silver chromate staining technique (Golgi,
1873; Golgi, 1885). This enabled him to visualize the detailed structures of
individual brain cells, such as their dendrites, axons and cell bodies. Cajal
rang in the modern era of neuroscience by supplying critical evidence for the
later termed Neuron doctrine, the concept that individual nerve cells, neu-
rons, communicate with each other and jointly make up the nervous system.

But how is such communication between neurons achieved? Already prior
to Cajal’s influential discoveries, the role of electricity in the nervous system
had been studied (Galvani & Aldini, 1797; Boulogne, 1876): after the discov-
ery that cell membranes carried a voltage across them (Matteucci, 1841) the
first action potential (AP) was recorded in 1843 (Du Bois-Reymond, 1884;
Finkelstein, 2013). It soon became clear that neurons must transmit electri-
cal information (i.e. action potentials) between them to communicate. How-
ever, where and how this happens remained elusive. Using Golgi staining,
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Cajal had persistently observed small bulbous protrusions from the dendrite,
so-called dendritic spines (”espinas”; Ramón y Cajal, 1891). In complete
disagreement with the dominant doctrine of that time, Cajal correctly pos-
tulated that dendritic spines receive input from other neurons’ axons, and
therefore represent the physical connection points between neurons. How-
ever, this connection point, the synapse, could, due to its small size, not
be visualized until the mid-late 1950s. With the emergence of electron mi-
croscopy, initially individual synapses (De Robertis & Bennett, 1955), and
later synapses that contained dendritic spines (Gray, 1959b, 1959a) could
be resolved. This discovery, among other things, sparked a large interest in
dendritic spines, synapses and their wiring in the field of neuroscience all the
way to the present (Yuste, 2015; Ofer et al., 2021b).

The human brain hosts an estimated 100 billion neurons, connected via
∼1.000 trillion synapses (Zhang, 2019). Given the scale of this massively
complex structure, one can only wonder about its organization: what are
the rules, allowing the brain to function the way it does? And in particular,
which fundamental rules of synaptic wiring are in place to aid in the organi-
zation of one of the most complex structures we know of? This dissertation
attempts to shed light on the influence of synaptic wiring on two scales in
two widely studied circuits: at the level of the retinogeniculate synapse and
in the Schaffer collateral pathway of the hippocampus.

1.2 The synapse
Synapses are the connection elements between two cells that allow the passing
on of electrical or chemical signals. This process, also called synaptic trans-
mission, is essential to the brain’s ability to perform computations. Synap-
tic transmission is realized between two compartments in neurons, typically
called presynaptic and postsynaptic compartment, indicating the direction
of transmission. A large diversity of synapses exists, which are generally
grouped into two categories, electrical and chemical synapses. In the former,
electric current is propagated from one neuron to another via a site of di-
rect membrane contact that is equipped with gap-junction proteins. Voltage
changes in the presynaptic cell affect these proteins such that electrical cur-
rent is transmitted to the postsynaptic compartment.
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At chemical synapses, signals are transmitted from the presynaptic to the
postsynaptic cell in several key steps. First, an action potential arrives at
the presynaptic terminal, where it causes the opening of voltage-gated cal-
cium channels (VGCC), which in turn trigger the influx of calcium into the
presynaptic compartment. This rise in calcium is detected by synaptotagmin,
which causes synaptic vesicles (SVs) to fuse with the presynaptic membrane.
Since SVs contain neurotransmitters, this causes the release of neurotransmit-
ters from the presynaptic compartment into the synaptic cleft. The synaptic
cleft is a morphological feature that distinguishes chemical from electrical
synapses. In contrast to the latter, the former do not share a common mem-
brane but instead are separated via a small crevice in between, the synaptic
cleft (De Robertis & Bennett, 1955; Gray, 1959b, 1959a). After presynaptic
neurotransmitter release, receptors at the postsynaptic site bind the neuro-
transmitter and change conformation to allow the passing of ions across the
postsynaptic membrane. Neurotransmission at chemical synapses strongly
depends on the composition of receptors available postsynaptically and the
neurotransmitter type released presynaptically. As such, neurotransmission
can be excitatory or inhibitory, via de- or hyperpolarization of a postsynaptic
compartment, respectively.

This work focuses on the most common form of excitatory chemical neuro-
transmission, which relies on the amino acid glutamate as its neurotrans-
mitter. Postsynaptically, such neurotransmission is detected by glutamate-
sensitive receptors, of which the two most prominent types are called AMPA
(α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid) and NMDA (N-
methyl-D-aspartic acid) receptors (Watkins & Evans, 1981). Both are ex-
pressed in all brain regions (Goebel & Poosch, 1999; Shen & Limon, 2021)
and are heavily involved in regulating the brains’ excitatory processing. Mu-
tations in their respective genes have been implicated in many disorders
(Dingledine et al., 1999; Burnashev & Szepetowski, 2015; Lee, Choi, & Kim,
2015; Henley & Wilkinson, 2016; Salpietro et al., 2019; Hanada, 2020). Most
AMPARs are fast, conduct only single-charged cations (such as potassium
and sodium), and are responsible for the initial postsynaptic depolarization
after neurotransmission (Henley & Wilkinson, 2016; Platt, 2007). NMDARs,
on the other hand, are a more complicated family of receptors, which have
historically been described as a coincidence detector (Seeburg et al., 1995).
While NMDARs, like AMPARs, also bind glutamate, they require two ad-
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ditional factors to generate ion flow across a membrane: first, besides gluta-
mate, NMDARs require either glycine or D-serine as a co-agonist to trigger
the receptor conformational change. Second, and in contrast to AMPARs,
NMDARs require an additional, concurrent depolarization to achieve channel
opening (Dingledine et al., 1999). A magnesium ion sits in the channel pore
of the NMDA receptor and prevents ions to pass, when a cell’s membrane
is at resting potential or in a hyperpolarized state. However, sufficient de-
polarization removes the magnesium, allowing ion flow through the channel
pore and across the membrane (Nowak et al., 1984; Mayer, Westbrook, &
Guthrie, 1984; Hansen et al., 2018). Hence, NMDAR opening depends on
two factors being coincident, A) the availability of both agonists, glutamate
and glycine/D-serine, and B) the depolarization of the postsynaptic mem-
brane. Once these conditions are met, NMDARs conduct large currents,
and unlike most AMPARs, are also conductive to calcium (Dingledine et al.,
1999; Hansen et al., 2018). Once a postsynaptic site is sufficiently depolar-
ized, another action potential can be triggered there, which can then travel
along the postsynaptic cell to reach its axonal terminals, where the process
of synaptic transmission can restart.

1.3 Dendritic spines
The postsynaptic part of most excitatory synapses is found on dendritic
spines. These small protrusions along the parent dendrite act as the brain’s
fundamental units of neuronal integration (Yuste & Denk, 1995; Losonczy,
Makara, & Magee, 2008). Morphologically, dendritic spines (from here on
also simply referred to as spines) are characterized by a bulbous head, which
is connected to the dendrite via a thin spine neck (Fig. 1A). Historically den-
dritic spines have been categorized into distinct sub-classes, based on their
morphological characteristics of the spine head and neck (Fig. 1.1A; Peters &
Kaiserman-Abramof, 1970; Rodriguez et al., 2008). However, recent evidence
suggests that spine morphologies are rather distributed along a continuum
(Ofer et al., 2021a; Ofer et al., 2022), arguing against categorization of den-
dritic spines based on the morphological characteristics. Nonetheless, large
differences in morphologies exist: smaller spines have a spine length of 0.1-1
µm and spine volume of ∼0.01-0.1 µm3. However, spines can also reach much
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greater lengths (>3 µm) and sizes (> 0.25 µm3). A spine’s morphology plays
a large role in the function of the synapse it harbors. For example, synaptic
strength typically scales with spine size (Holler et al., 2021). Moreover, the
morphology of the spine neck dictates how well synaptic inputs are propa-
gated and allowed to participate in dendritic or cellular signaling (Cornejo,
Ofer, & Yuste, 2021). Lastly, the size of spines has been associated with their
structural stability, with larger spines seemingly being more stable (Tracht-
enberg et al., 2002; Kasai et al., 2003), whereas smaller spines are more prone
to be pruned (O’Donnell, Nolan, & Rossum, 2011).

Figure 1.1 Dendritic spines and postsynaptic molecular players
A Morphological types of dendritic protrusions. From top to bottom and left to
right: filopodia are characterized by an elongated shape without a visible bulbous
head. Stubby spines do not show a thin spine neck other spine types show. Thin
spines are characterized by a normal-sized spine head and a thin spine neck.
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Mushroom spines have a bulbous spine head and thin spine neck. B A dendritic
spine and its main molecular players in synaptic calcium signaling. Calcium entry
from the extracellular space into the spine head is mediated by VGCCs, AMPARs,
and NMDARs. Figure redesigned after Rochefort and Konnerth (2012).

Receptors sensitive to neurotransmitters are typically located in apposition
to the presynaptic release zones (active zones; Hruska et al., 2018; Hruska,
Cain, & Dalva, 2022). At glutamatergic synapses, most receptors, such as
AMPARs or NMDARs, are anchored by proteins within the postsynaptic
density. This area, eventually named after its electron-dense appearance in
early electron microscopy images (Gray, 1959b, 1959a), harbors many pro-
teins that are critical for synaptic function (Dosemeci et al., 2016). One
particularly important protein is PSD-95, which anchors AMPAR and NM-
DARs in the synapse (Fig. 1.1B; Chen et al., 2015). The abundance of
PSD-95 at a spine is correlated with the size of a spine and has been impli-
cated with its stability (Cane et al., 2014). Moreover, since key postsynaptic
receptors required for glutamatergic synaptic transmission require PSD-95,
this protein has been prominently featured as a marker for spine maturity
(El-Husseini et al., 2000; Béıque et al., 2006; Lambert et al., 2017).

1.4 Synaptic plasticity
Synaptic transmission is a highly plastic process that can undergo lasting
changes, a phenomenon called synaptic plasticity. The first evidence of this
was reported in 1973 in a seminal publication by Bliss and Lømo: they showed
that synaptic transmission between pre- and postsynaptic neurons could be
increased (potentiated) long-lastingly by specific patterns of presynaptic ac-
tivity (Bliss & Lømo, 1973). They termed this phenomenon long-term po-
tentiation, LTP for short. This was seen as the first evidence in favor of a
long-standing postulate formulated by Donald Hebb in 1949, which reads in
its long form: ”When an axon of cell A is near enough to excite a cell B
and repeatedly or persistently takes part in firing it, some growth process or
metabolic change takes place in one or both cells such that A’s efficiency, as
one of the cells firing B, is increased” (p. 62, Hebb, 1949). Several aspects of
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the report by Bliss and Lømo and Hebb’s postulate matched: for example,
presynaptic activity was driven by electrical stimulation in the experiment,
in agreement with the temporal specificity put forward by the postulate (ac-
tivity in cell A precedes firing in cell B). Hebb’s postulate also highlights
the need for consistency in presynaptic activity of cell A (”persistently takes
part in firing it”), which is reflected in the repetitive stimulation pattern
used in the experiment by Bliss and Lømo. Two other aspects are implied in
Hebb’s postulate, namely (1) the causality of potentiation, as the efficiency
of synaptic transmission is improved only after repeated involvement of cell
A in cell B’s activity, and (2) input-specificity, as it is assumed that changes
in synaptic transmission selectively occur at active synapses between cells A
and B.

The true validation of Hebb’s postulate came more than a decade later, when
another form of LTP induction, spike-timing-dependent plasticity (STDP),
was discovered. It was shown that the precise timing of pre- and postsynap-
tic action potentials determines the direction of synaptic plasticity (Levy &
Steward, 1983; Gustafsson & Wigstrom, 1986; Dan & Poo, 1992; Markram et
al., 1997; Bi & Poo, 1998): if the presynaptic AP precedes the postsynaptic
AP by 5-20ms, connecting synapses are strengthened. Instead, if the order
is inverted, they are weakend (Bi & Poo, 1998). The temporal sequence of
the action potentials, the need for consistency, and the causal nature of the
cellular activity fulfilled the fundamental aspects of Hebb’s postulate.

Over the years, multiple forms of LTP have been described. However, three
fundamental properties of LTP remain the same (Baltaci, Mogulkoc, & Baltaci,
2019): first, only those synapses that were involved in the induction of LTP
are potentiated, while others remain unchanged (input-specificity). Second,
a joint effort of multiple synapses is required to induce LTP, as unitary con-
nections or weak stimulation typically fail to elicit LTP. This property of
LTP is called cooperativity. Third, a weak stimulus can also lead to LTP
if it is presented simultaneously with a strong stimulus. Via such an asso-
ciativity of inputs, LTP can be induced by a stimulus that would typically
fall short of triggering LTP (Rogan, Stäubli, & LeDoux, 1997). However,
the precise activity patterns required to induce LTP, as well as other aspects
seem to vary between brain areas (for a review, see Malenka & Bear, 2004).
Nevertheless, one molecular underpinning seems to be conserved among the
various forms of LTP and their induction protocols: the induction of LTP
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almost always depends on an increase in postsynaptic calcium (Lynch et al.,
1983; Madison, Malenka, & Nicoll, 1991) (but see also: Mellor & Nicoll,
2001). Hence, postsynaptic NMDA receptors were identified as critical play-
ers in the initiation and maintenance of many forms of LTP, due to their
calcium-conducting properties (Collingridge, Kehl, & McLennan, 1983; Har-
ris, Ganong, & Cotman, 1984). Intracellular calcium, when available post-
synaptically in sufficient amounts, triggers two chain events responsible for
the two phases of LTP, respectively.

First, calcium binds to calmodulin, which in turn binds to Ca2+/calmodulin-
dependent protein kinase 2 (CaMKII). CaMKII itself potentiates transmis-
sion via binding to membrane-bound AMPA receptors, leading to increases
in channel conductance (Derkach, Barria, & Soderling, 1999) and open prob-
ability (Banke et al., 2001; Andrásfalvy & Magee, 2004). Moreover CaMKII
directly (Opazo & Choquet, 2011) and indirectly (Zhu et al., 2002) causes a
redistribution of extrasynaptic AMPARs closer to the synaptic cleft (Opazo
& Choquet, 2011) or insertion of internalized AMPARs in the PSD (Lu et
al., 2001b). This increase in postsynaptic AMPA receptor number is one of
the main underpinnings of a synapse’s potentiation during LTP (Terashima,
Suh, & Isaac, 2019; Choquet & Opazo, 2022). This initial phase of AM-
PAR potentiation and insertion is also called early LTP (E-LTP; Abraham
& Williams, 2003).

The second phase, called late LTP (L-LTP), consists of the synthesis and
trafficking of new proteins, such as AMPA receptors or its anchoring pro-
teins (e.g. PSD-95), to the postsynaptic site (Frey et al., 1988; Nguyen,
Abel, & Kandel, 1994). This depends critically on several messenger path-
ways, in which cyclic adenosine monophosphate (cAMP) and its downstream
targets play an important role (Frey, Huang, & Kandel, 1993; Nayak et al.,
1998). The synthesis of new proteins, such as glutamate-sensitive receptors,
improve the efficiency of synaptic transmission, thereby achieving potentia-
tion thereof.

Over time, it became clear that LTP can also be induced by players other
than NMDARs, such as calcium-permeable AMPARs (Gu et al., 1996; Jia
et al., 1996), or voltage-gated calcium channels (VGCCs; Bauer, Schafe, &
LeDoux, 2002). Moreover, expression of LTP is also frequently seen presy-
naptically (Zalutsky & Nicoll, 1990; Salin, Malenka, & Nicoll, 1996; Enoki et
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al., 2009), and LTP properties can vary from brain area to brain area (Citri &
Malenka, 2008). Additionally, besides LTP, other forms of synaptic plastic-
ity that can shape the landscape of synaptic strength have been discovered,
such as homeostatic plasticity (Turrigiano & Nelson, 2004), metaplasticity
(Abraham & Bear, 1996), and long-term depression (LTD; Ito, Sakurai, &
Tongroach, 1982; Mulkey & Malenka, 1992). Hence, in the living brain,
many mechanisms are at work in parallel, continuously changing synaptic
transmission efficacy over time.

1.5 Structural plasticity
Electrophysiological changes in synaptic transmission, as seen during LTP,
are frequently accompanied by structural changes at the spine level. Fluctua-
tions in spine structure happen naturally (Woolley et al., 1990) and with the
emergence of chronic structural imaging it was evident that dendritic spines
emerge and disappear frequently, a process also called spine turnover, or more
generally, spine dynamics (Holtmaat et al., 2005; Bhatt, Zhang, & Gan, 2009;
Pfeiffer et al., 2018). However, it became clear that LTP and LTD cause
more systematic changes, unlike those observed during naturally occurring
spine turnover: while LTD is typically associated with spine shrinkage (Zhou,
Homma, & Poo, 2004) and later on with spine loss (Wiegert & Oertner, 2013),
LTP manifests itself structurally in two ways. First, the spines of potentiated
synapses increase in size in an activity-dependent manner (Hosokawa et al.,
1995; Matsuzaki et al., 2004; Kopec et al., 2006). This process happens in
the span of minutes and is carried out by CaMKII-mediated polymerization
of actin (Fifková & Van Harreveld, 1977; Okamoto et al., 2007). Spines grow
rapidly initially and then shrink again towards a new stable spine size that is
larger than its pre-LTP state (Okamoto et al., 2004). Critically, enlargement
of dendritic spines also stabilizes them and therefore extends their lifetime
(De Roo, Klauser, & Muller, 2008; Wiegert et al., 2018). Following LTP,
the spine neck decreases in length but increases in width, leading to an over-
all decrease of its compartmentalizing effect on synaptic input (Fifková &
Anderson, 1981), thereby increasing a spine’s ability to influence dendritic
or somatic signaling (Tsay & Yuste, 2004; Araya, Vogels, & Yuste, 2014).
The postsynaptic density size increases proportionally to the spine head size
after LTP to maintain a similar relationship between PSD and spine size
(Desmond & Levy, 1986; Ostroff et al., 2002; Meyer, Bonhoeffer, & Scheuss,
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2014). These changes jointly enable the accommodation of more receptors at
a potentiated dendritic spine (Opazo, Sainlos, & Choquet, 2012) and allow
the spine to contribute more strongly to somatic and dendritic signaling.

The second structural manifestation of LTP is the activity-dependent emer-
gence of new dendritic spines (Engert & Bonhoeffer, 1999; Toni et al., 1999;
Maletic-Savatic, Malinow, & Svoboda, 1999). Some of these nascent spines
remain stable after hours and form functional synapses (Nägerl et al., 2007).
Critically, activity-dependent spinogenesis has also been observed in vivo
after events of somatosensory (Zuo et al., 2005; Holtmaat et al., 2006) or vi-
sual deprivation (Keck et al., 2008; Hofer et al., 2009). Moreover, growth of
dendritic spines can be triggered by certain learning events (Roberts et al.,
2010; Fu et al., 2012; Briones et al., 2018) or the consolidation of memo-
ries (Restivo et al., 2009; Vetere et al., 2011). Besides experience-dependent
changes, other factors, such as the hormones ghrelin or estradiol, have been
found to modulate the process of activity-dependent spinogenesis (Diano et
al., 2006; Murakami et al., 2006; Sellers et al., 2015). While the electrophysi-
ological consequences of structural plasticity in pre-existing spines after LTP
are relatively well established (for a review, see Baltaci, Mogulkoc, & Baltaci,
2019), much less is known about the functional consequences of LTP-induced
spinogenesis. Critically, it is entirely unknown with which presynaptic neu-
rons new synaptic connections are formed. Whether or not synaptogenesis
via the growth of LTP-induced dendritic spines follows the same activity-
dependent and input-specific rules LTP itself does remains unclear. Some
evidence is provided by an electron microscopy study, which found that fol-
lowing LTP, many axonal boutons had established functional synapses with
two previously active dendritic spines that shared the same dendritic branch
(Toni et al., 1999). This suggests that at least some newly-grown dendritic
spines form functional synapses with axons that induce LTP. However, due
to several technical limitations, the report could account for only a small
number of LTP-induced dendritic spines and their functional wiring prefer-
ences. These preferences could have far-ranging consequences. For example,
LTP-induced synaptogenesis could follow a single wiring rule, shaping cir-
cuits throughout the brain in the same manner. Alternatively, several wiring
rules could be at work, varying between cell types and brain areas, similarly
to how LTP can depend on different molecular players and stimulation pat-
terns in different brain regions.
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Interestingly, in the past many of the structural hallmarks of LTP are also
observed during learning or experience-dependent plasticity paradigms (Holt-
maat et al., 2006; Hofer et al., 2009). Consequently, it is generally believed
that LTP underlies memory formation and consolidation, as well as other
experience-dependent behavioral changes. In fact, it has been reported that
a previously consolidated memory that had been dormant could be reac-
tivated using LTP of a particular sensory input (Nabavi et al., 2014). In
another study, new memories could be generated via LTP induction (Jeong
et al., 2021), indicating that LTP may at least in part underlie memory
formation/consolidation. Hence, it is possible that the structural changes
accompanying LTP, such as spine remodeling and the emergence of new den-
dritic spines, are critical to many forms of experience-dependent plasticity in
vivo. As a consequence, identifying the precise wiring rules that LTP-induced
dendritic spines follow will be pivotal to better understand how learning and
memory are implemented and represented in the brain.

1.6 The hippocampus
The hippocampus is one of the most studied brain structures, and is located
bilaterally in the medial temporal lobes of mammalian brains. Named af-
ter its uncanny resemblance to the sea horse (subfamily of Hippocampinae;
Greek: ’hippocampus’), its popularity in research was sparked by research
on a patient named H.M. (Henry Molaison; Scoville & Milner, 1957): H.M.
suffered from epilepsy, and following the medical and scientific trends at the
time, underwent a bilateral medial temporal lobectomy in an attempt to
cure his epileptic seizures. This surgery removed both hippocampi (amongst
other brain structures). Hippocampal loss following surgery caused antero-
grade amnesia, a condition in which the patient is unable to recall newly
formed memories for longer than a few minutes (Scoville & Milner, 1957).
The causal role the hippocampus seemingly played in the formation of mem-
ories motivated researchers to more systematically study its structure and
function. Although it was later found that patient H.M. had extensive dam-
age outside of the mediotemporal lobe as well (Corkin et al., 1997; Annese
et al., 2014), the hippocampus has been identified as a critical brain area for
the formation of memories (Lacruz et al., 2010; Robinson et al., 2020).

The structure of the hippocampus has since been well documented, and con-



12 1. Introduction

sists of the dentate gyrus and the cornu ammonis region, which can be further
divided into subparts (CA1-CA3; Fig. 1.2). The main source of hippocampal
input arrives via the perforant path from the entorhinal cortex to granule cells
in the dentate gyrus (DG; Witter & Amaral, 1991). The DG in turn projects
via the mossy fiber pathway to the CA3 region. Mossy fibers preferentially
target proximal apical dendrites of CA3 pyramidal neurons. The CA3 re-
gion gives input to the CA1 region via the Schaffer collaterals, which target
apical dendrites of CA1 pyramidal cells, completing the so-called trisynaptic
circuit (Andersen, Bliss, & Skrede, 1971). However, given that the CA3 re-
gion shows high levels of recurrency, this name is not entirely justified. The
CA1 region is the main output region of the hippocampal formation, mainly
via the subiculum and the EC, and to a lesser degree via projections to re-
gions such as the nucleus accumbens, the contralateral hippocampus, the
prefrontal cortex and olfactory areas via the fimbria (Cenquizca & Swanson,
2007). Apart from its highly organized synaptic architecture, the hippocam-
pus has a highly preserved cytoarchitectonic organization (Fig. 1.2; Andersen
et al., 2006): the DG has three layers the molecular layer, granule cell layer
and a polymorphic layer, which is sometimes also referred to as the hilus of
the dentate gyrus. Granule cell dendrites are oriented towards the molecular
layer, with the granule cellbodies lying in the granule cell layer, while the
mossy fibers cross the polymorphic layer towards CA3. The regions of the
cornu ammonis follow a similar organization to that of the DG, with cell
bodies lying closely packed in the stratum pyramidale. From there, basal
dendrites grow outwards, into the stratum oriens. The organization of their
inner layers of CA1-3 is as follows: stratum radiatum and stratum lacunosum-
moleculare (in order towards the pial surface) can be found in all three cornu
ammonis regions, while the CA3 region contains an additional, innermost
layer, the stratum lucidum (Andersen et al., 2006; Amaral, Scharfman, &
Lavenex, 2007).

Findings about the hippocampus’ structural innerworkings have brought for-
ward influential computational models, aiming to explain the role of the hip-
pocampus in memory and recall (Marr, 1971; Treves & Rolls, 1994). Notably,
the hippocampus has also been involved in a multitude of fundamental behav-
ioral processes besides memory encoding. It is a critical structure for spatial
memory and navigation: not only do single cells in the hippocampus code
for the spatial position of an animal (O’Keefe & Dostrovsky, 1971; Ranck Jr,
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1973; O’Keefe, 1976; Leutgeb et al., 2004) but ablation or modulation of
activity in the hippocampus strongly disrupts spatial learning (Morris et al.,
1982; Morris et al., 1986; Robinson et al., 2020). Additionally, a wide array
of cell-types relevant to spatial mapping and navigation have been identified
in the hippocampus or areas directly associated to it (such as EC or the
subiculum): grid cells (Hafting et al., 2005; Doeller, Barry, & Burgess, 2010;
Yartsev, Witter, & Ulanovsky, 2011), boundary cells (Solstad et al., 2008;
Boccara et al., 2010), time cells (MacDonald et al., 2011), head direction
selective cells (Ranck Jr, 1984), or cells that are tuned to the position of
social conspecifics (Omer et al., 2018)

Figure 1.2 The hippocampal circuit and structure
A The hippocampal circuit. Input to the hippocampus arrives via the entorhi-
nal cortex (EC) to the dentate gyrus (DG, purple arrow) and the CA1 region
(blue arrow). The dentate gyrus projects to the CA3 region (pink arrow), which
exhibits strong recurrent activity (loop-shaped yellow arrow). The CA3 region
feeds information forward via the Schaffer collateral pathway to the CA1 region
(yellow arrow), which constitutes the main output region of the hippocampus
(here visualized via a green arrow back to the EC). Figure panel designed after
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Ludkiewicz et al. (2002). B The structure of the hippocampus. SO: stratum
oriens, SP: stratum pyramidale, SR: stratum radiatum, SML: stratum lacunosum-
moleculare, SL: stratum lucidum, ML: molecular layer, GL: granule cell layer, H:
hilus of dentate gyrus. Figure panel modified from Petrantonakis and Poirazi
(2014) with permission.

Aside from research in the intact animal, the hippocampal structure has
emerged as one of the most frequently used means of investigating basic
neuronal function in vitro. Dissociated primary hippocampal cell cultures
disrupt its stereotypical wiring, yet constitute a great model to explore fun-
damental neuronal properties by physiological and molecular means (Banker
& Cowan, 1977; Kaech & Banker, 2006). Alternatively, the trisynaptic cir-
cuit is maintained in two other preparations, the acute slice (Schwartzkroin,
1975) and the organotypic hippocampal slice culture (Gähwiler, 1981; Stop-
pini, Buchs, & Muller, 1991b). Particularly, the latter emerged as a mean to
investigate the well-studied hippocampal circuit with a high degree of exper-
imental control over the course of several weeks (Gähwiler, 1988; Gähwiler
et al., 1997; Engert & Bonhoeffer, 1999; Wiegert & Oertner, 2013). For
this reason, many of the fundamental properties of dendritic spines, such as
changes during events of structural plasticity and their response properties to
synaptic input have been determined in experiments using organotypic hip-
pocampal slice cultures (Engert & Bonhoeffer, 1997, 1999; Lu et al., 2001a;
Roo et al., 2007; De Roo et al., 2008; Wiegert & Oertner, 2013; Wiegert et
al., 2018). In the third part of dissertation, this preparation will be utilized
to attempt to investigate the functional connectivity rules of LTP-induced
dendritic spines (Results 3.3).

1.7 The visual system
While the hippocampus lends itself to study synaptic wiring rules at the spine
and cellular level, it is also essential to investigate these rules at a circuit and
systems level. In this dissertation, such an investigation was performed in
the visual system, and in particular in the visual thalamus, where inputs
from the two eyes terminate (Results 3.1).
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Vision shapes our everyday perception of the environment more than any
other sense. Hence, understanding how the brain computes its physical en-
vironment visually has been a long-standing goal of neuroscience. Tradition-
ally, a number of model systems have been used in vision research. However,
in the last two decades, the mouse has been the dominant model organism in
visual neuroscience, due to the flexibility afforded by modern genetic manip-
ulation tools, the improved ability to control cellular activity, the increased
throughput of data acquisition methodologies, as well as relatively low main-
tenance costs and convenience in terms of size and handling (Seabrook et
al., 2017; Farris, 2020). Undeniably, there are several differences between
the mouse and human visual systems, such as the fact that the mouse is
a crepuscular animal with relatively low visual acuity, which makes it rely
on other sensory systems more than vision when exploring its surroundings.
Nonetheless, the overall architecture of the mouse and human visual systems
is very similar, with visual processing steps occurring at similar places in
both systems.

1.7.1 The retina
In the mouse visual system, light is captured by the optical apparatus in the
eye and projected onto the retina. The retina is organized into five layers,
three of which are nuclear and two of which are synaptic (Wassle & Boycott,
1991; Baden, Euler, & Berens, 2020). Initially, light is detected by rod- and
cone photoreceptors, located in the photoreceptor layer. Here phototransduc-
tion occurs, a process in which light-sensitive proteins called opsins convert
incoming photons into neuronal signals. Via the first synaptic layer, the outer
plexiform layer, the information of the photoreceptors is passed onto hori-
zontal and bipolar cells (Kolb, 1977). The former, inhibitory horizontal cells,
provide feedback to the photoreceptors and feedforward information to bipo-
lar cells, while the latter feed information forward to retinal ganglion cells
(RGCs) and amacrine cells via the inner plexiform layer (Wassle & Boycott,
1991). Here again, inhibitory amacrine cells provide feedback to bipolar cells
and feedforward information to RGCs. RGCs themselves form the output
layer of the retina, and project to dozens of subcortical regions via the optic
nerve (Morin & Studholme, 2014).

Of key importance in retinal, and visual processing in general, is the ex-
traction of spatial features in the visual scene. To achieve this, retinal cells
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typically react to changes in a confined region of visual space, their receptive
fields. Across the visual system, many neurons exhibit sensitivity to certain
characteristics within the receptive field. For example, some RGCs prefer a
bright center and a dark surround within their receptive fields, while others
prefer the opposite (ON-center and OFF-center RGCs, respectively; Kuffler,
1953; Hartline, 1969; Werblin & Dowling, 1969). Moreover, some RGCs are
sensitive to motion within their receptive field, while others are not (Lettvin
et al., 1959; Barlow, Hill, & Levick, 1964; Baden et al., 2016). Overall, at
least 32 distinct RGC celltypes have been identified in the mouse retina,
generating a large combinatorial diversity for downstream processing (Baden
et al., 2016).

1.7.2 Retinal projections
In the mouse, RGC axons are bundled in the optic nerve, and the vast ma-
jority of such projections cross over to the contralateral hemisphere at the
optic chiasm, with only 5% of RGC axons projecting ipsilaterally (Fig. 1.3;
Williams et al., 2003). Visual input is provided via the optic nerve to sev-
eral retinorecipient areas. Most RGC axons project to either the superior
colliculus or the dorsal lateral geniculate nucleus (dLGN; Martersteck et al.,
2017b), providing input for the image-forming pathways. However, in total,
over 50 (Martersteck et al., 2017b) brain regions receive direct retinal inputs,
contributing to functions of non-image-forming circuits such as the pupillary
light reflex or the maintenance of the circadian rhythm (Osterhout et al.,
2011; Sweeney, Tierney, & Feldheim, 2014; Fernandez et al., 2016).

A key feature of the image-forming pathways is their retinotopic organi-
zation: visual space is mapped in these particular brain regions such that it
parallels the topological organization of receptive fields in the retina. Hence,
neighboring features in the visual scene are also represented by neighboring
neurons in the retina and some subsequent areas in the image-forming path-
ways. The precise arrangement of RGC projections aids in propagating the
retinotopic map across the image-forming retinorecipient areas.

1.7.3 Dorsal lateral geniculate nucleus (dLGN)
The dorsal lateral geniculate nucleus, is a nucleus located in the posterior-
lateral part of the thalamus. Other thalamic nuclei, involved in visual pro-
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cessing are located in close proximity to the dLGN, such as the intergeniculate
leaflet of the lateral geniculate complex (IGL), the ventral lateral geniculate
nucleus (vLGN), and the lateral posterior nucleus of the thalamus (LP; Lein
et al., 2007).

Biochemically, the mouse dLGN can be subdivided into two regions: (1)
the shell region, neighboring the optic tract on the dorsolateral surface of
the dLGN and (2) the core region, which, in contrast to the shell region,
does not contain calbindin positive cells (Grubb & Thompson, 2004). Be-
sides this separation, neurons in the dLGN can also be split into categories
based on their mode of neurotransmission: excitatory thalamic relay cells
(TRCs, ∼85 % of neuronal dLGN cells) and inhibitory interneurons (∼15 %,
Arcelli et al., 1997), both of which receive retinogeniculate input. Morpho-
logically, TRCs exhibit large variability, with conflicting reports on distinct
morphological categories (Krahe et al., 2011; Morgan et al., 2016). Interneu-
rons in the dLGN are different to TRCs in that they innervate other TRCs
and have larger dendritic reach (Morgan et al., 2016).

Figure 1.3: The canonical view
of the mouse visual system in
the adult animal
A RGCs from both retinae project
via the optic chiasm to the visual
thalamus and SC. From the for-
mer, information is forwarded to
the primary visual cortex. V1: pri-
mary visual cortex, SC: superior
colliculus, B: binocular region, M:
monocular region, dLGN: dorso-
lateral geniculate nucleus, vLGN:
ventrolateral geniculate nucleus,
IGL: intergeniculate leaflet, OC:
optic chiasm, RGC: retinal gan-
glion cell. Figure modified from
Seabrook et al. (2017) with per-
mission.
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a
Functionally, the dLGN has been historically viewed as a relay station, pass-
ing on information from the retina to visual cortex without large modifi-
cations. This notion is supported by several processes occurring during
the development of the mouse dLGN: Innervation of RGC axons into the
dLGN occurs around E16-E18 (Godement, Salaün, & Imbert, 1984). In
the first postnatal weeks, retinogeniculate projections separate diffusely into
eye-specific projection zones without clear borders (Stevens et al., 2007).
Distinctly segregated eye-specific RGC axon terminal projection zones are
established around p12-p14 (Jaubert-Miazza et al., 2005; Pfeiffenberger et
al., 2005). During this process, retinogeniculate projections are pruned in
an activity-dependent process that is mediated via proteins in the comple-
ment family and local microglia (Stevens et al., 2007; Schafer et al., 2012).
The developmental segregation of eye-specific input zones is accompanied by
the developmental switch of AMPA over NMDA receptor expression in the
retinogeniculate synapse (Hooks & Chen, 2006), further favoring inputs of
one eye. Functionally, binocular connectivity reportedly fades in the dLGN
after P18 (Ziburkus & Guido, 2006). As a consequence, dLGN cells in the
adult animal have been historically viewed as functionally monocular, relay-
ing information between the retina and the visual cortex.

Recently however, this view has been challenged on structural and functional
grounds. Utilizing monosynaptic rabies tracing, it was found that dLGN cells
receive input from up to 91 individual RGCs. Critically, almost half (40 %)
of TRCs were found to be structurally connected to both retinae (Rompani
et al., 2017), indicating that binocularity could be abundant in the dLGN.
Further evidence came from in vivo calcium imaging studies, targeting dLGN
TRC afferent boutons at the level of visual cortex. Here, it was shown that
some, albeit relatively few (6-14 %), of these boutons are responsive to stim-
ulation of either eye (Jaepel et al., 2017; Huh et al., 2020). In contrast,
electrophysiological recordings performed directly in the dLGN, suggest that
binocularity might be much more ubiquitous in the dLGN, with up to 33
% of cells responding to stimulation of either eye (Howarth, Walmsley, &
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Brown, 2014; Sommeijer et al., 2017). While these reports are in line with
the results of Rompani et al. (2017), it remains unclear to what extent the
dLGN functionally integrates information of both eyes. In vitro studies have
shown that input to dLGN cells is dominated by 1-3 RGC neurons, which
determine the response properties of a given TRC (Ziburkus & Guido, 2006;
Litvina & Chen, 2017; Rosón et al., 2019). Moreover, in addition to retino-
geniculate input, dLGN neurons receive a multitude of smaller, modulatory
input from thalamic, cortical and tectal areas (Roth et al., 2016; Born et
al., 2021). Therefore, there is a need for a thorough investigation mapping
functional binocularity in the dLGN and assessing how much binocular inte-
gration occurs at the retinogeniculate synapse.

1.7.4 Visual Cortex and higher order areas
Visual cortex is the main recipient of dLGN afferents, and as such, an im-
portant part of the image-forming pathway of the mouse (Fig. 1.3). Visual
cortex is subdivided into primary visual cortex (V1) and many higher-order
visual areas, which are extensively and reciprocally connected with the for-
mer. V1’s input-output connectivity is manifested in its multi-layered ar-
chitecture: while all layers (L1-6) receive thalamocortical input, input is
strongest in layer 4 (Harris & Shepherd, 2015). From L4, information is dis-
tributed to all other cortical layers, with L2/3 receiving more input than the
other layers (Niell, 2015). L2/3 in turn projects most strongly to L5, with
some input also projecting to other cortical areas and the contralateral hemi-
sphere. From L2/3, information is sent to L5 but also to other cortical areas
as well as the contralateral hemisphere. Within L5, information is forwarded
to regions within the cortex (e.g. L6 and the contralateral hemisphere) or to
subcerebral targets (Niell & Scanziani, 2021). L5 and L6 are host to excita-
tory cells called corticocortical and corticothalamic neurons, which project to
other cortical and thalamic regions, respectively (Vries et al., 2020). These
cells mainly receive input from L2/3, and constitute the main output lay-
ers of the visual cortex. The most superficial of cortical layer, L1, contains
mostly dendrites of excitatory neurons of deeper levels and very few neuronal
cell bodies. Here, cortical and subcortical input converges onto the apical
dendrites of neurons of the deeper layers (e.g. L5).
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Functionally, the mouse visual cortex displays a number of features that
are critical for visual processing, which have also been found in other species
(Hubel & Wiesel, 1959, 1962, 1968). First, retinotopy is maintained through-
out V1 and many higher-order visual areas (for review, see Glickfeld and
Olsen, 2017). Additionally, receptive fields show distinctly more complex
patterns in V1 compared to lower-level visual areas (e.g. dLGN). As such,
cells in V1 have response properties strongly tuned to the orientation and
direction of stimuli, as well as to the spatial and temporal patterns within
(Metin, Godement, & Imbert, 1988; Andermann et al., 2011).

1.8 Methodological considerations

1.8.1 Advances in light microscopy
The light microscope has been a foundational tool of neuroscience since its
infancy: Santiago Ramón y Cajal used it in conjunction with the Golgi
staining method to visualize the structure of individual neurons in the late
1800s (Ramón y Cajal, 1888). In the past 40 years, light microscopy has
been further developed and refined, and as a consequence it is featured as
a prominent technique in many neuroscience research endeavours (White,
Amos, & Fordham, 1987; Denk, Strickler, & Webb, 1990; Sheppard & Shot-
ton, 1997; Nguyen et al., 2001; Helmchen & Denk, 2005; Nikolenko, 2008;
Kazemipour et al., 2019). Nowadays, light microscopy typically involves
the use of fluorophores, substances that emit light after absorption of pho-
tons. Fluorophores are sensitive to photons of a certain range of wavelengths,
comprising their excitation spectrum, and emit photons of another range of
wavelengths, forming their emission spectrum. At the quantum level, absorp-
tion of a single photon moves a fluorophore to a higher energy level, which
can trigger a radiative transition, resulting in the emission of a photon. The
excitation and emission spectra, i.e. the wavelength with which a fluorophore
can be excited, and the wavelength of the emitted photons following excita-
tion, vary between fluorophores.

In confocal microscopy, the excitation light beam is focused to a small area,
the so-called focal point of the microscope, in which the majority of flu-
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orophore excitation occurs. However, since some emission also originates
from areas outside of the focal point, photons must be spatially filtered dur-
ing photodetection, i.e. by using a pinhole to allow passing of only those
photons that originate from the focal point. While pinholes reliably block
out-of-focus photons during photodetection, the excitation of fluorophores
outside the focal point in confocal microscopy can lead to undesired side ef-
fects, such as phototoxicity and photobleaching of tissue. To obtain an image
of a region of interest, the focal point is guided throughout the sample with
the help of scan mirrors. Raster-scanning the focal point in this manner can
generate a digital 2D fluorescence image of the sample in the focal plane. To
visualize objects in the sample in 3D, the focal plane is typically moved up-
or downwards, generating multiple image planes, comprising an image stack,
which contains the object of interest in 3D.

Notably, fluorophores can also be excited by the simultaneous absorption of
two instead of one photon. In this case, the two photons each carry approxi-
mately half the energy required to transition the fluorophore to a higher en-
ergy level before emission. This process is called two-photon absorption, and
it offers several advantages over one-photon fluorescence measurements re-
garding certain aspects of light microscopy. For example, since photons used
for excitation in two-photon microscopy require half the energy than those
in one-photon microscopy, and since photons of higher wavelength carry less
energy, near-infrared or infrared lasers are frequently employed in 2p imag-
ing. The use of light at these wavelengths permits the excitation beam to
penetrate tissue much more effectively with less light scattering along the
distance traveled than light sources in the visible spectrum. This effectively
allows for imaging of deep brain regions that are impossible to reach using
conventional fluorescence microscopy (Helmchen & Denk, 2005). Ti:sapphire
lasers are commonly used in two-photon microscopy to generate a laser beam
in the infrared spectrum. Importantly, instead of providing a steady supply
of photons, these lasers pack photons together closely in time with intervals
of no light emission in between. This aids in achieving the required simul-
taneous absorption of two photons by fluorophores in the sample, a process
that would rarely happen otherwise.

Similar to confocal microscopes, two-photon microscopes focus light via ob-
jective lenses to a focal point. Outside of this small area, effective excita-
tion of fluorophores rarely happens, eliminating most out-of-focus excitation
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(Denk, Strickler, & Webb, 1990). As a consequence, the vast majority of
photons emitted from the sample can be regarded as coming from the target
point in the sample, what is known as "signal" (principle of optical section-
ing). As a consequence, compared to confocal microscopy, phototoxicity
and photobleaching are usually more manageable in two-photon microscopy,
given there is almost no out-of-focus excitation. In both of these imag-
ing techniques, emitting photons are typically measured employing sensitive
photodetection methods, such as photomultiplier tubes (PMTs).

Over time, countless improvements in two-photon microscopy have been de-
veloped, such as increased scanning speed (resonant scanning, Nguyen et
al., 2001; two-photon tomography, Kazemipour et al., 2019; reverberation
two-photon microscopy, Beaulieu et al., 2020; light beads microscopy, Demas
et al., 2021a) spatial resolution (adaptive optics, 2012, 2012, 2017, Ji; two-
photon super-resolution imaging, Moneron and Hell, 2009, Ding, Takasaki,
and Sabatini, 2009), or efficiency of photon detection (Wu, Hawkins, & Bow-
ers, 1997; Becker et al., 2010; Ching-Roa et al., 2021). Moreover, attempts
were made to improve how the focal point is moved through the sample, in
order to obtain images faster or with higher sampling from certain areas of
interest. These operational degrees of freedom are made available through
methods such as temporal focusing (Oron, Tal, & Silberberg, 2005; Zhu et
al., 2005), remote focusing (Botcherby et al., 2008) or random-access imag-
ing (Nadella et al., 2016). Some of these techniques require spatial light
modulators (SLMs), devices that enable pixel-wise phase modulation of the
excitation beam with high temporal resolution. Such precise and flexible
manipulation of beam wavefronts has allowed for other novel two-photon
imaging methods that have further improved operational degrees of freedom
when imaging, such as holographic 3D imaging (Nikolenko, 2008), mesoscope
imaging (Sofroniew et al., 2016; Yu et al., 2021), or volumetric imaging
(Lu et al., 2017). Leveraging these advances in optical imaging allows for
faster recording and/or acquisition of larger amounts of tissue. This has en-
abled researchers to advance the frontier of possible experiments and perform
whole-brain imaging experiments in vivo (Hoffmann et al., 2022) or sample
from brain areas with unprecedented temporal resolution (Kazemipour et al.,
2019).
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1.8.2 Genetically-encoded indicators
Alongside the development of two-photon microscopy came the advent of
genetically encoded fluorophores, such as green fluorescent protein (GFP;
Prasher et al., 1992; Chalfie et al., 1994; Inouye & Tsuji, 1994; Heim, 1995;
Cormack, Valdivia, & Falkow, 1996). Critically, the cloning and directed
expression of such fluorophores allowed scientists to label cells with much
improved precision via genetic methods. Moreover, spectral variants, such as
cyan fluorescent protein (CFP) were generated soon after the characteriza-
tion of GFP (Heim, Prasher, & Tsien, 1994). Nowadays, several fluorophores
can be expressed with minimal spectral overlap to visualize specific proteins,
cell types, or cellular compartments in the same field of view simultaneously
(Depry, Mehta, & Zhang, 2013; Falkner et al., 2016; Bauer et al., 2021).

Genetically encoded fluorophores are also utilized as reporter proteins of
locally occurring molecular changes. For example, GFP fused to the calcium-
binding protein calbindin can be utilized as a genetically encoded calcium
indicator (GECIs; Nakai, Ohkura, & Imoto, 2001). In particular, the fluo-
rescence of GECIs is quenched when little or no calcium can be bound by
the calcium-sensitive part of the protein. On the other hand, when calcium
is bound to calbindin, the fluorophore can emit without obstruction. Hence,
local availability of calcium is reported as increases in GECI fluorescence.
Since action potentials, and even many types of sub-threshold inputs, trigger
the influx of calcium into a neuron, quantifying the fluctuations of intracel-
lular calcium concentrations via GECIs serves as an indirect but close proxy
of neuronal activity (Yuste et al., 1999; Lütcke et al., 2013).

Originally, the only fluorescent reporters of biological processes were chem-
ically based. Such synthetic dyes were either introduced to cells in bulk or
to single cells via dialysis (e.g. patch-clamp). However, such labeling is not
permanent, making chronic imaging experiments challenging. Moreover, fill-
ing single cells with a dye can alter the way these cells undergo plastic events
(Malinow & Tsien, 1990), rendering this type of labeling unsuited for certain
experiments.

GECIs, on the other hand, can be expressed in genetically defined sub-
populations of cells with high specificity. This allows for chronic imaging
of cells or subcellular structures over long periods of time. However, chronic
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overexpression of any protein should be done with care, as many fluorophores,
though not cytotoxic themselves (Shemiakina et al., 2012), can lead to se-
vere issues in cellular signaling and eventual cell death if expression is too
high. Since expression can effectively be controlled by choice of promoter and
posttranscriptional regulatory elements, overexpression artifacts can nowa-
days typically be avoided. These advantages of genetically-encoded reporter
proteins over synthetic dyes underlie the popularity GECIs have gained in re-
cent years (Holtmaat et al., 2009). Over the years, GECIs have also improved
in terms of photostability and brightness (Goedhart et al., 2012; Akerboom
et al., 2012; Chen et al., 2013; Dana et al., 2019; Zhang et al., 2020), rival-
ing the optical properties of formerly popular synthetic calcium indicators.
Nowadays, GECIs are flexibly utilized to record from large neuronal popu-
lations in vivo (Rose et al., 2016; Smith et al., 2018; Yu et al., 2021), track
calcium dynamics in dendritic spines (Chen et al., 2012; Wilson et al., 2016;
Dana et al., 2019; Ali et al., 2020; Scholl et al., 2021) or dendrites (Roome &
Kuhn, 2018; Kerlin et al., 2019), or visualize calcium processing in organelles
(Suzuki, Kanemaru, & Iino, 2016; Gökerküçük, Tramier, & Bertolin, 2020)
among others.

In this dissertation, modern GECIs were utilized to measure synaptic con-
nectivity between genetically defined populations of pre- and postsynaptic
cells over long periods of time. Reliable and time-locked calcium influx into
postsynaptic compartments, such as dendritic spines, following stimulation
of presynaptic terminals indicates functional synaptic connectivity between
such cell populations. This powerful method enables large-scale investiga-
tions into the functional connectivity of neurons and their changes in living
tissue. Detecting functionally connected spines is aided by the morphologi-
cal characteristics of the spine neck, which can aid in confining the area of
calcium influx to the spine head and prevent calcium signaling to spill into
the dendritic arbor. However, coincident synaptic input at multiple post-
synaptic sites in close proximity can trigger dendritic calcium spikes, which
flood the dendritic arbor and its dendritic spines with calcium. Such a regen-
erative dendritic calcium event can mask which spines showed increases in
calcium due to synaptic transmission, complicating quantification of synaptic
connectivity via GECIs. To address this problem, computational (Coneva,
2015; Wilson et al., 2016; Kerlin et al., 2019), electrophysiological (Chen et
al., 2011) and pharmacological methods (Chalifoux & Carter, 2011; Grien-
berger, Chen, & Konnerth, 2014; Kovalchuk et al., 2000) have been tested in
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the past, to enable mapping functional connectivity on a single-spine basis
in spite of dendritic calcium events. However, while some advances could be
made, regenerative dendritic calcium events remain problematic for the ex-
traction of synaptic connectivity on a single-spine basis in some experimental
settings (see Results 3.3.3-3.3.6).

1.8.3 Deep neural networks for automated image seg-
mentation

The size of imaging datasets has increased rapidly in the last years (Landhuis,
2017). This has brought forward a need for automated, unsupervised data
processing and analyses. However, many endeavours in neuroscience still
rely on manual annotation, or the need for manual intervention, during data
processing. For example, until recently, behavioral phenotypes were typi-
cally classified by blinded researchers via visual inspection of videographic
data. Recently, software packages have been developed to automatically esti-
mate the pose of an animal with minimal time investment of the researchers
(Mathis et al., 2018; Pereira et al., 2019; Graving et al., 2019; Liu et al., 2020;
Lauer et al., 2021). Using changes in animals’ poses, behavioral phenotypes
can then be classified automatically without the need of human involvement
(Vyas et al., 2019; Fang et al., 2021).

These software packages utilize modern methods of artificial intelligence,
in particular deep learning. Deep learning is a subfield of machine learning,
in which artificial neural networks (ANNs) are trained to learn features of
the data (representation learning). ANNs consist of interconnected artificial
neurons that are organized in multiple layers (Ivakhnenko & Lapa, 1965). An
artificial neuron or node is an integrating mathematical operator that trans-
mits activity based on a built-in activation function. Activation functions
determine the output of a node by summing incoming input and integrating
it via a mathematical function, such as a rectified linear unit for example
(ReLU; Krizhevsky, Sutskever, & Hinton, 2012). In ANNs, the individual
artificial neurons are connected by edges, which have adjustable weights asso-
ciated with them, much like synaptic strength is plastic in biological neuronal
connections, hence the name ”neural network”. The individual neurons are
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organized in layers, such as the input, output, or any number of intermediate
layers. These intermediate layers, which due to their ’depth’ in the network
give deep learning its name, are used to improve the capacity of the network.

Networks are trained to annotated sample data (training data), such that
the networks’ outputs match the target output, a process during which the
networks’ weights are altered. Afterwards, the network is evaluated on novel
data (test data). In a landmark early application, LeCun et al. (1989) suc-
cessfully trained ANNs to recognize handwritten zip codes in pictures and
translate them into printed digits, ushering an era of ANN research and ap-
plications.

The ANNs trained by LeCun et al. performed image segmentation, a pro-
cess in which shapes or objects in an image are classified on a pixel-wise
scale (LeCun et al., 1989). Convolutional neural networks (CNNs), a partic-
ular type of ANNs, have been found to be particularly suited for this task.
Neurons in CNNs are organized into layers, with individual neurons of one
layer only being connected certain other neuron in the next layer. Each layer
”convolves” the input image(s) with a kernel, and subsequently decreases its
spatial size by pooling (e.g. max pooling; Yamaguchi & Matsumoto, 1990).
These operations extract the dominant features of the image(s) at each level,
aiming to preserve spatial and temporal aspects as much as possible, while
minimizing the required computational power. This is achieved via a reduc-
tion in number of required operations as the layers get smaller through the
dimensionality reduction induced by the convolution and max pooling func-
tions. After the last layer, the image is flattened and fed into a classifier,
which ultimately determines the networks’ output, i.e. the segmented image.
Particularly, the U-Net - named after the shape of its layers - has since risen
to popularity for image segmentation in recent years (Ronneberger, Fischer,
& Brox, 2015; Falk et al., 2019).

Therefore, CNNs have been widely utilized for image segmentation in recent
years, particularly in studies involving biomedical and neuroscience imaging
(Ronneberger, Fischer, & Brox, 2015; Shen, Wu, & Suk, 2017; Gómez et al.,
2020; Tyson et al., 2021). Nowadays, tasks such as identifying or counting
cells (Al-Kofahi et al., 2018; Falk et al., 2019; Stringer et al., 2021; Green-
wald et al., 2022) or tracing the neurites of a neuron (Li et al., 2017; Zhou
et al., 2018; Saberi-Bosari, Flores, & San-Miguel, 2020) are frequently per-
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formed in an automated fashion using CNN-based tools. These automated
methods are typically much faster than human annotations. Moreover, a
well-trained network can perform more reliably than manual annotation, as
inter-human variability is eliminated. However, particular care should be
taken to generate unbiased and represenative training data, as any such bi-
ases will subsequently be ’learned’ by the network and become the rule.
Lastly, deep learning-based tools make certain big data experiments possi-
ble, as the amount of data required to obtain reliable answers can dictate
the feasibility of an experiment.

While cell bodies and neurites can be segmented relatively reliably, other fea-
tures of a neuron’s morphology, such as dendritic spines, proved to be more
challenging. Nevertheless, efforts were made to automate spine identification
(Zhang et al., 2010), segmentation (Koh & Lindquist, 2001; Rodriguez et al.,
2008) and classification (Rodriguez et al., 2008; Shi, Huang, & Hong, 2014).
However, despite the employment of CNNs for this task (Rodriguez et al.,
2008; Vidaurre-Gallart et al., 2022), these automated tools typically do not
perform well across different types of microscopy data. The signal-to-noise
ratio and pixel size, i.e. how many pixels are contained in a typical neuronal
compartment, strongly influence the performance of current tools (Basu et
al., 2018). Hence, flexible segmentation of dendritic spines in different types
of microscopy data remains to date a manual task. As mentioned above,
this limits the questions that can be addressed experimentally, such as the
one featured in section 3.3 of the Results in this dissertation, namely: which
wiring rules nascent dendritic spines follow after LTP induction. To answer
such questions, hundreds or thousands of dendritic spines need to be recorded
repeatedly and dynamics captured reliably, generating a dataset that would
require years to analyze via manual annotations. Hence, there is a strong
need for an automated tool that performs quick and reliable segmentation of
spines and dendrites in image data, which will be presented in section 3.2 of
the Results.

1.8.4 Optogenetics
In order to establish causal relationships between molecular or cellular pro-
cesses and physiological or behavioral changes, scientists sought to develop
novel tools of selectively manipulating some of the relevant players during
an experiment. In neuroscience, over the last decade and a half the rise of
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optogenetics - the ability to control cellular function via light-sensitive genet-
ically encoded constructs - has been one of the most prominent and popular
new ways of manipulation (Häusser, 2014). Nowadays, optogenetics can be
applied in a multitude of ways, but its origins can be traced back to the early
2000s. At this time, the performance of phototaxis, a long-studied feature of
some green algae such as Chlamydomonas reinhardtii, was found to critically
depend on the photosensitive proteins channelrhodopsin-1 and -2. (Stavis
& Hirschberg, 1973; Nagel et al., 2002; Nagel et al., 2003). Phototaxis is
the movement of an organism towards or away from a stimulus of light. In
the search for the driving force behind this light-dependent behavior, it was
found that channelrhodopsins respond to blue light by opening a channel pore
and thereby becoming non-selective cation channels. Via the opening of the
channel, cations can flow into a cell and depolarize it, triggering cellular sig-
naling cascades, which eventually cause a behavioural response - phototaxis.

In the same time frame, two alternative means of optogenetically controlling
cellular activity were developed. First, co-expression of a threesome of con-
structs (arrestin-2, rhodopsin, and the G protein α subunit, called chARGe)
for the first time rendered neurons of choice light-responsive (Zemelman et al.,
2002), a major breakthrough. However, due to the limited achievable tempo-
ral control, and the fact that multiple proteins were required, this approach
did not find broad applications. Second, endogenously existing ion channels
were mutated such that a synthetic photoresponsive ligand could be perma-
nently linked to the ion channel. The result was a photoswitchable, gated ion
channel that could be expressed in neurons of choice (Banghart et al., 2004).
Over the years, a multitude of endogenous ion channels/receptors, such
as potassium channel, kainate, metabotropic glutamate (mGluR), GABA,
NMDA, and dopamine receptors amongst others, have been engineered to
generate photoswitchable counterparts (Banghart et al., 2004; Volgraf et al.,
2005; Szobota et al., 2007; Levitz et al., 2013; Lin et al., 2014; Berlin et al.,
2016; Donthamsetti et al., 2021). This method is temporally much more
precise than the chARGe and provided the advantage to precisely control
endogenous receptors - with all downstream signaling - of choice with light.
This is in contrast to both chARGe and ChR2, which ultimately just control
cellular membrane potentials. However, the need to overexpress engineered
receptors/channels or create knock-in animals hampered widespread appli-
cations. Moreover, due to protein turnover, labeling channels/receptors with
the synthetic ligand limited the duration in which experiments could be per-
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formed, unless receptors/channels were labeled repeatedly. Ultimately, ChR2
proved to be the more applicable method. ChR2’s co-factor, all-trans-retinal,
is present in sufficient amounts in cells, omitting the need for supplements
(unlike the light-activated endogenous ion channels). Although it took until
2005 to employ ChR2 in neuronal cells (Boyden et al., 2005), soon user-
optimized variants were developed (Nagel et al., 2005; Berndt et al., 2011),
aided by the characterization of its protein structure (Kato et al., 2012) and
the details of its photocycle (Hegemann, Ehlenbeck, & Gradmann, 2005).
Recently, ChR2 variants have been engineered to be sensitive to light of
different wavelengths, offering orthogonal control over distinct neuronal pop-
ulations (Klapoetke et al., 2014; Hooks et al., 2015). These variants also
proved critical to selectively induce neuronal activity in distinct ensembles
of neurons in the living brain (Dal Maschio et al., 2017; Carrillo-Reid et al.,
2019; Adesnik & Abdeladim, 2021).

Since its early beginnings, channelrhodopsins have found broad application
in circuit neuroscience (Petreanu et al., 2007; Petreanu et al., 2009), cardi-
ology (Boyle et al., 2013), memory research (Ryan et al., 2015), and vision
science (Sahel et al., 2021). In this dissertation, optogenetics are employed
to map functional connectivity in the retinogeniculate and Schaffer collat-
eral pathways. In both circuits, the fact that neurotransmitter release from
opsin-expressing boutons can be triggered optically is exploited. This en-
ables flexible readouts of input strength, as measured electrophysiologically
from the postsynaptic neuron (Petreanu et al., 2007), or single-synapse con-
nectivity via calcium imaging of dendritic spines (Wiegert & Oertner, 2013;
Wiegert et al., 2018). In the first application, two opsins with distinct ex-
citation spectra are employed to disentangle the input two sources provide
(Klapoetke et al., 2014; Bauer et al., 2021). To aid in the latter application,
excitation of channelrhodopsins can be spatially confined to ∼30 µm using
optical (Schoenenberger et al., 2008) and/or pharmacological means, such
as the blocking of voltage-gated sodium and -potassium channels (Petreanu
et al., 2009). Hence, channelrhodopsins can be utilized in a highly spatially
and temporally confined manner, offering sensitive and flexible control over
neuronal signaling. This has been leveraged to dissect circuits (Huang et al.,
2018; Shelton et al., 2022) or investigate the consequences of synaptic plas-
ticity on a single-synapse basis (Wiegert & Oertner, 2013; Wiegert et al.,
2018). Consequently, optogenetics constitute a powerful tool to investigate
causal relationships in circuits and synapses in modern neuroscience.
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1.9 Objectives of this study
This dissertation attempts to shed light on the rules of functional connectiv-
ity that govern the brain. As such, this dissertation is split into three parts,
in which functional connectivity in the retinogeniculate pathway, an auto-
mated method of spine identification, and the wiring rules of LTP-induced
synaptogenesis are presented.

The first objective of this dissertation was to map functional binocular con-
vergence in the retinogeniculate pathway. Recent structural and functional
studies have varied in the amount of binocular convergence reported in the
dLGN, with estimates ranging from 6 to 40 % of dLGN cells being binocu-
lar (Jaepel et al., 2017; Sommeijer et al., 2017; Rompani et al., 2017; Huh
et al., 2020). Widespread binocular convergence found by some reports is
unexpected, as it contradicts the classical view of the mouse visual circuit,
in which eye-specific information is strictly segregated at the level of the
dLGN. To precisely assess binocular convergence in the dLGN, a dual-color
optogenetic approach was devised. This method was then utilized to assess
the eye-specific input strength across the dLGN with single-cell precision.
Moreover, the underlying mechanisms of binocular convergence were inves-
tigated by visualizing the morphology of dLGN cells as well the projection
pattern of RGC axons in the visual thalamus.

The second objective was to address the need for a tool to perform auto-
mated segmentation of dendrites and dendritic spines in image data. Current
methods lack broad applicability across a range of image qualities, compli-
cating analyses involving large and/or diverse image data sets. Hence, a
deep-learning tool was devised that rapidly identifies and segments dendrites
and dendritic spines in microscopy data with high accuracy. Additionally, as
part of this endeavour, a diverse and fully annotated dataset was obtained,
that can be utilized to benchmark this and future automated efforts for seg-
menting dendritic spines.

The third objective of this dissertation was to work towards understanding
the functional connectivity rules of LTP-induced dendritic spines. Dendritic
spines grow in neurons undergoing LTP (Engert & Bonhoeffer, 1999; Toni
et al., 1999) and rapidly form functional synapses (Nägerl et al., 2007). How-
ever, it remains unclear which presynaptic neurons are chosen to establish
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functional connectivity, and hence whether there is a fundamental wiring
rule followed by the brain. To address this, improvements to an existing as-
say to map functional synaptogenesis following LTP in vitro (Coneva, 2015)
were made. In particular, pharmacological and computational means to map
synaptic connectivity despite the occurrence of dendritic calcium events were
explored. Moreover, a molecular approach was devised to combat a poten-
tial confounding variable, the lack of spine maturity in nascent spines, when
determining functional connectivity rules of LTP-induced dendritic spines.

This dissertation presents a suite of methods and approaches to assess func-
tional wiring rules at different levels, paving the way for further analysis in
this direction.
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Chapter 2

Materials and methods

2.1 General
In the results section of this dissertation, three projects are outlined. To clar-
ify which methodologies were employed for which project, the relevant para-
graphs of this section were indicated with the corresponding results section
as follows. Descriptions pertaining to the investigation into the functional
connectivity in the retinogeniculate pathway (Results 3.1), an automated
method of spine identification (Results 3.2), and the wiring rules of LTP-
induced synaptogenesis (Results 3.3).

2.2 Animals
All experiments were carried out in compliance with the institutional guide-
lines of the Max Planck Society and of the local government (Regierung von
Oberbayern). For the experiments in Results 3.2 and 3.3, Wistar rats were
housed under a 12 hour light-dark cycle with water and food available ad
libitum. Pups were weaned at postnatal days 4-9 (P4-9) and organotypic
hippocampal slice cultures were prepared the same day.

For the experiments in Results 3.1, female wild-type C57bl/6 mice were
housed under a 12 hour light-dark cycle with water and food available ad
libitum. Intravitreal eye injections were performed between P30-48, and in
vitro acute brain slice experiments were performed between P67-108. For
the experiments in Results 3.2, craniotomies and intracortical viral injec-
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tions were performed P35-P40, and in vivo structural imaging of dendrites
and spines in L2/3 of bV1 was performed between P61-74.

For the experiments in Results 3.2, female Thy1-GFP mice were housed
under a 12 hour light-dark cycle with water and food available ad libitum.
One mouse was sacrificed at age P100 to extract the brain.

2.3 Genetic tools

2.3.1 DNA
For the experiments in Results 3.2 and 3.3, a number of genetic constructs
were generated. To visualize spine maturity in CA1 neurons, an exchange
of mNeonGreen to mTurquoise2 in the PSD-95-binding nanobody construct
(pCAG_Xph15-mNeonGreen-CCR5TC, Addgene 135533; Rimbault et al.,
2021) was performed via Gibson assembly and verified via PCR sequencing,
resulting in the final construct pCAG_Xph15-mTurquoise2 -CCR5TC. For
full sequence, see Appendix.

For the experiments in Results 3.2 and 3.3, pENN.AAV.CAG.tdTomato.-
WPRE.SV40 was obtained via Addgene (15554; Wilson lab, unpublished),
and utilized as a structural marker in single CA1 neurons.

For the experiments in Results 3.2 and 3.3, DNA for a recombinant adeno-
associated virus (AAV) encoding the humanized channelrhodopsin 2 (hChR2)
with the H134R mutation was created to optically control neuronal activ-
ity in a subpopulation of CA3 neurons. The viral construct was gener-
ated by subcloning the hChR2(H134R) coding sequence from pAAV-hSyn-
hChR2(H134R)-EYFP (Addgene, 26973) into pENN.AAV.CAG.tdTomato.-
WPRE.SV40 (Addene, 15554) by replacing tdTomato using Gibson assem-
bly. Correct insertion was verified via PCR and subsequent sequencing. The
final construct was pAAV-CAG-hChR2(H134R)-WPRE-SV40.

For the experiments in Results 3.2 and 3.3, pGP-AAV-syn-jGCaMP7b-WPRE
was obtained via Addgene (104489; Dana et al., 2019), and utilized as a cal-
cium indicator in single CA1 neurons.
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2.3.2 Viruses
Two adeno-associated viruses (AAVs) were used for mapping binocularity in
the dLGN. DNA constructs for Syn-Chronos-EGFP (Addgene 59170) and
Syn-ChrimsonR.tdT (Addgene 59171; Klapoetke et al., 2014) were obtained,
and purified virus of AAV serotype 2/2 was produced via the Gene Therapy
Center Vector Core at the University of North Carolina at Chapel Hill (titer
2.1×10e12 , 3.7×10e12 GC/ml for Chronos-EGFP and ChrimsonR-tdT, re-
spectively). pAAV-CAG-hChR2(H134R)-WPRE-SV40 was used for optical
control of CA3 neurons. DNA was generated (see above) and purified virus
of AAV serotype 2/1 produced via VectorBuilder (Santa Clara, CA, USA,
titer: 1.05 ×e13 GC/ml).

To obtain structural images of dendrites and dendritic spines in bV1 in vivo,
two viruses were utilized: AAV2/1.1CamKII0.4.Cre.SV40 and
AAV2/1.Syn.Flex.mRuby2.GSG.P2A.GCaMP6s.WPRE.SV40 were produced
at the Penn Vector Core, Gene Therapy Program, Department of Pathology
and Laboratory Medicine, Perelman School of Medicine at the University of
Pennsylvania (titer: 1.81 ×e13, and 2.2 ×e13 for Cre and mRuby2-GCaMP6s
double construct, respectively). All viruses were aliquoted (3 µl per aliquot)
and stored at -80°C.

2.4 Equipment

2.4.1 Tools

Equipment Supplier
Preparation of organotypic hippocampal slice cultures

2x scissors Fine Science Tools, cat. no. 14090-09
(Germany)

Scissors Fine Science Tools, cat. no. 14001-14
(Germany)

2x Forceps Dumont #5 Fine Science Tools, cat. no. 11251-20
(Germany)

2x sharpened spatulas 3mm width VWR, cat. no. 231-2231 (Germany)
Sharpened spatulas 5mm width VWR, cat. no. 231-0466 (Germany)
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Sharpened spatula with rounded
end 5mm width

VWR, cat. no. 231-1045 (Germany)

Razor blade Fine Science Tools, cat. no. 10050-00
(Germany)

Tissue membrane Millipore Bio-
pore TM Membrane

Millipore, cat. no. BGCM00010
(USA)

Syringe filter Millex-GP Millipore, cat. no. SLGP033BS
(USA)

Millicell cell culture inserts Millipore, cat. no. PICMORG50
(USA)

McIlwain tissue chopper The Mickle Laboratory Engineering,
cat. no. 10180 (UK)

Dissection microscope Nikon, cat. no. SMZ645 (Germany)
Syringe 50 ml BD Plastipak VWR, cat.no. BD309653 (Germany)
6-well plates TPP, cat. no. Z707767-72EA

(Switzerland)
Incubator Hera cell 150 Thermo Fisher, cat no. 51025153

(Germany)
Virus injection and single-cell electroporation setup

Micropipette puller for virus injec-
tion pipettes, P-97

Sutter Instruments (USA)

borosilicate glass capillaries (1.2
mm outer diameter, 1.12 mm in-
ner diameter

World Precision Instruments, cat. no.
TW150F-4 (USA)

Upright microscope BX51WIF Olympus (USA)
Axoporator 800A Axon Instruments (USA)
Glass capillaries for electropora-
tion pipettes (Ø: 1.5 mm, thick-
ness: 0.3 mm)

World Precision Instruments, cat. no.
TW150F-3 (USA)

Millicell cell culture inserts Millipore, cat. no. PICMORG50
(USA)

Pneumatic Pico Pump PV 820 World Precision Instruments (USA)
Vertical micropipette puller PC10 Narashige (Japan)
0.22 µM Ultrafree MC Centrifugal
Filter

Merck, cat. no. UFC30GC0S (Ger-
many)

40x ”Achroplan” IR 40x/0.8 W ob-
jective

Zeiss (Germany)
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4x air objective RMS4X-PF Olympus (USA)
Biolistic transfection

Tubing prep station Bio-Rad, cat. no. 1652420 (USA)
Helios gene gun Bio-Rad (part of cat. no. 1652432)

(USA)
Helium hose Assembly Bio-Rad, cat. no.1652412 (USA)
Helium regulator Bio-Rad, cat. no. 1652413 (USA)
Tubing cutter Bio-Rad, cat. no.1652422 (USA)
Barrel liner Bio-Rad, cat. no. 1652417 (USA)
Polyamid mesh 100µm (gene gun
filter)

Klein Königswinter (Germany)

Cartridge holder Bio-Rad, cat. no. 1652426 (USA)
Cartridge extractor Tool Bio-Rad, cat. no. 1652435 (USA)
Tefzel tubing Bio-Rad, cat. no. 1652441 (USA)
1.6 µm gold particles Bio-Rad, cat. no. 1652244 (USA)
Helium gas (4.6) cartridge 10 l Westfalen (Germany)

Surgeries

26G virus loading needle World Precision Instruments, cat. no.
NF26BV-2 (USA)

34G injection needle World Precision Instruments, cat. no.
NF34BV-2 (USA)

Biopsy punch (4 mm) Pfm Medical, cat. no. 48401 (USA)
Dental drill (Presto II) NSK (USA)
Dissecting microscope SOM-62 Karl Kaps GmbH (Germany)
Dumont #5/45 cover slip forceps Fine Science Tools GmbH, cat. no.

11251-33 (Germany)
Dumont #5 forceps-assorted styles
straight

Fine Science Tools GmbH, cat. no.
11251-10 (Germany)

Dumont #7 forceps-standard Fine Science Tools GmbH, cat. no.
11251-30 (Germany)

Drill bits HM1 005 Meisinger (Germany)
Pulse generator/trigger Master-8 A.M.P.I. (Israel)
Glass coverslips, round, Ø: 4 and
10 mm, thickness: 0. 13 mm

Menzel GmbH (Germany)

Hamilton syringe (NANOFIL) World Precision Instruments (USA)
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Hamilton syringe (Model 75 RN
SYR)

Hamilton, cat. no. 7634-01 (USA)

32G blunt needle (Small hub RN
needle)

Hamilton, cat. no. 7803-14 (USA)

Micromanipulators World Precision Instruments, cat. no.
M3301R (USA)

Headbar MPI Neurobiology (Germany)
Heating blanket MPI Neurobiology (Germany)
Micropipette puller for virus injec-
tion pipettes, P-97

Sutter Instruments (USA)

Pressure micro-injection system Toohey Company (USA)
Rapid-Filtermax, 0.22µm Pore
Size, Nr. 99505

TPP Rapid (Switzerland)

Scalpel blades # 11 Fine Science Tools GmbH, cat. no.
10011-00 (Germany)

Stereotaxic apparatus MPI Neurobiology (Germany)
Student Iris Scissor, 11.5 cm,
straight

Fine Science Tools GmbH, cat. no.
91460-11 (Germany)

Acute slice preparation

2x light-shielded slice incubation
chambers

Custom made, MPI Neurobiology

525-555 nm emission filter BLS Biological Laboratory Equipment
(Hungary)

590-660 nm emission filter BLS Biological Laboratory Equipment
(Hungary)

Dumont #5 Forceps-Assorted
Styles straight

Fine Science Tools GmbH, cat. no.
11251-10 (Germany)

Filter paper, round, Ø: 110 mm Whatman (UK)
Fine scissors Fine Science Tools GmbH, cat. no.

14090-09 (Germany)
Glass coverslips, round, Ø: 12 mm,
thickness: 0.13 mm

Menzel GmbH (Germany)

Miners lamp with light source BLS Biological Laboratory Equipment
(Hungary)

excitation filter: 525–555 nm BLS Biological Laboratory Equipment
(Hungary)
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emission filter: 590–660 nm BLS Biological Laboratory Equipment
(Hungary)

Razor blade Martor (Germany)
Small spatula VWR, cat. no. 231-2151 (Germany)
Standard pattern forceps Fine Science Tools GmbH, cat. no.

11000-12 (Germany)
Thin razor blade Razolution for vi-
bratome

Simbatec (Germany)

Tissue Flotation Bath Medite (USA)
Vibratome (VT1200S) Leica (Germany)

Table 1 Tools

2.4.2 Setup equipment

Equipment Supplier
Main setup (In vitro multiphoton setup)

Multiphoton imaging system Thorlabs, cat. no. MPM200-2 (USA)
Mai Tai HP Ti:Sapphire laser Spectra-Physics/Newport (USA)
Upright microscope Nikon, model Eclipse FN1 (Japan)
Pockels Cell Conoptics, Model 350-80 Electro-optic

modulator (USA)
Pockels Cell mount Conoptics, Model M102 (USA)
Pockels Cell amplifier Conoptics, Model 302RM (USA)
4x GaASp photomultiplier mod-
ules

Hamamatsu, H7422-40 (Germany)

2x PMT amplifiers Thorlabs, model ECU 1 (USA)
1.4 NA oil Condenser Thorlabs, cat. no. CSC1003 (Ger-

many)
Lens: f=500 Thorlabs, cat. no. AC508-500-B-ML

(Germany)
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Broadband dielectric mirrors Thorlabs, cat. no. BB1-E03 (Ger-
many)

Lens: f = 30 Thorlabs, cat. no. AC254-030-B-ML
(Germany)

Lens: f = 60 Thorlabs cat. no. AC254-060-B-ML
(Germany)

Precision Pinhole Thorlabs, cat. no. P50S (Germany)
720 nm shortpass filter Semrock (USA)
Notched dichroic filter TLAB033 Semrock (USA) via Thorlabs (Ger-

many)
transmission: 398-408 nm, 470-490
nm, and 561-568 nm (all >90%),
710-1600 nm (>93%))
reflection: 350-386 nm (>90%)
421-455 nm, 503-545 nm, and 586-
680 nm (all >98%))
mechanical shutter (VMM-D1) Uniblitz Vincent Associates (USA)
3x mechanical Optical Shutter
(VS25 25 mm)

Uniblitz Vincent Associates (USA)

510-84 nm bandpass filter Semrock (USA)
560nm dichroic beam splitter Semrock (USA)
525-50 nm bandpass filter Semrock (USA)
607-70 nm bandpass filter Semrock (USA)
CFI75 LWD x16, 0.8 NA, water
immersion objective

Nikon (Japan)

LUMPlan x40, 0.8 NA water im-
mersion objective

Olympus (Japan)

UPlanFLN x4, 0.13 NA air objec-
tive

Olympus (Japan)

20X-PFH 20x 0.95 NA water im-
mersion objective

Olympus (Japan)

LUMFI 60x 1.1 NA water immer-
sion objective

Olympus (Japan)

Bessel module

Motorized flip mirrors, ±2° accu-
racy

Newport, cat. no. 8892-K-M (Ger-
many)
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Spatial light modulator (SLM) Meadowlark Optics, Spatial Light
Modulator XY series (512 x 512)
(USA)

Lens 1: f = 400 Thorlabs, cat. no. AC508-400-B-ML
(Germany)

Lenses 2 and 3: f = 500 Thorlabs, cat. no. AC508-500-B-ML
(Germany)

Lens: f = 30 Thorlabs, cat. no. AC254-030-B-ML
(Germany)

Lens: f = 75 Thorlabs, cat. no. AC254-075-B-ML
(Germany)

Precision Pinhole, 50 ±3 µm pin-
hole diameter

Thorlabs, cat. no. P50S (Germany)

Custom-made Al-coated mask Photo Sciences Inc (USA)
Auxilliary equipment

Multiclamp 700 B amplifier Axon Instruments, Molecular Devices
Recording electrode headstage
CV-7B

Axon Instruments (USA)

HumBug Noise Eliminator Quest Scientific Instruments Inc.
(USA)

Controller for x-y-motorized stage Lang GmbH, Lang MCL-2
B.Braun Perfusor F B.Braun Melsungen AG, Germany
LVPZT-Amplifier piezo objective
mount

Physik Instrumente, cat. no. E-
665K007 (Germany)

PIFOC P-725 high-load piezoelec-
tric z stepper

Physik Instrumente (Germany)

Peristaltic minipump Gilson (USA)
Digital indicating controller CHINO Corporation, cat. no.

DB1060B000-G0A (Japan)
Micromanipulators LN Mini25 Luigs and Neumann (Germany)
Controller SM-5 Luigs and Neumann (Germany)

Photostimulation

Fabry-Perot Benchtop Laser
Source, 473 nm, 5.0 mW

Thorlabs, cat. no. S3FC473 (Ger-
many)

Fabry-Perot Benchtop Laser
Source, 637 nm, 70 mW

Thorlabs, cat. no. S4FC637 (Ger-
many)
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2-color combining fiber Thorlabs, cat. no. RB42F1 (Ger-
many)

Fiber port and collimator Thorlabs, cat. no. PAF-X-15-A (Ger-
many)

Ø600 µm, 0.39 NA optic fiber Thorlabs, cat. no. FT600EMT (Ger-
many)

LED light source pE2 CoolLED, cat. no. 244-1400
(UK)

10x beam expander Thorlabs, GBE10-E3 (Germany)
Secondary in vitro multiphoton imaging setup

Multiphoton imaging system Thorlabs, cat. no. MPM200-2 (USA)
MaiTai HP DeepSee Ti:Sapphire
laser

Spectra-Physics/Newport (USA)

Upright microscope Nikon, model Eclipse FN1 (Japan)
Pockels Cell Conoptics, Model 350-80 Electro-optic

modulator (USA)
Pockels Cell mount Conoptics, Model M102 (USA)
Pockels Cell amplifier Conoptics, Model 302RM (USA)
2x GaASp photomultiplier mod-
ules

Hamamatsu, H7422-40 (Germany)

PMT amplifiers Thorlabs, model ECU 1 (USA)
1.4 NA oil Condenser Thorlabs, cat. no. CSC1003 (Ger-

many)
2-color combining fiber Thorlabs, cat. no. RB42F1 (Ger-

many)
CCD camera Retiga-EXi QImaging (Canada)
CFI75 LWD x16, 0.8 NA, water
immersion objective

Nikon (Japan)

LUMPlan x40, 0.8 NA water im-
mersion objective

Olympus (Japan)

UPlanFLN x4, 0.13 NA air objec-
tive

Olympus (Japan)

Fabry-Perot Benchtop Laser
Source, 473 nm, 5.0 mW

Thorlabs, cat. no. S3FC473 (Ger-
many)

Fabry-Perot Benchtop Laser
Source, 637 nm, 70 mW

Thorlabs, cat. no. S4FC637 (Ger-
many)
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Fiber port and collimator Thorlabs, cat. no. F230FC-A (Ger-
many)

Image acquisition software: Scan-
Image 4.2

Vidrio Technology (USA)

Image processing software ImageJ (USA) (Schindelin et al., 2012)
Electrophysiological data acquisi-
tion software: Ephus

Vidrio Technology (USA)

2x mechanical shutter (VMM-D1) Uniblitz Vincent Associates (USA)
Multiclamp 700 B amplifier Axon Instruments, Molecular Devices
PCI Digitizers, 125 MS/s Alazartech (Canada)
B.Braun Perfusor F B.Braun Melsungen AG, Germany
Peristaltic minipump Gilson (USA)
2x Photodiode Thorlabs, cat. no. PDA100A-EC

(Germany)
HumBug Noise Eliminator Quest Scientific Instruments Inc.

(USA)
LVPZT-Amplifier piezo objective
mount

Physik Instrumente, cat. no. E-
665K007 (Germany)

PIFOC P-725 high-load piezoelec-
tric z stepper

Physik Instrumente (Germany)

Micromanipulators LN Mini25 Luigs and Neumann (Germany)
Controller SM-5 Luigs and Neumann (Germany)

In vivo multiphoton imaging setup

In vivo benchtop 2-photon setup,
Bergamo ® II Series

Thorlabs (Germany)

CFI75 LWD x16, 0.8 NA, water
immersion objective

Nikon (Japan)

Pockels Cell Conoptics, Model 350-80 Electro-optic
modulator (USA)

Pockels Cell mount Conoptics, Model M102 (USA)
Pockels Cell amplifier Conoptics, Model 302RM (USA)
Dichroic beam splitter, 560 nm Semrock (USA)
Emission filter 525/50-25 nm
bandpass filter

Semrock (USA)

Emission filter 607/70-25 nm
bandpass filter

Semrock (USA)
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Emission filter 720/25 nm short
pass filter

Semrock (USA)

Epifluorescence microscope
Lumar.V12 Stereo

Zeiss (Germany)

2x GaASp photomultiplier mod-
ules

Hamamatsu, H7422-40 (Germany)

Image acquisition software: Scan-
Image 4.2

Vidrio Technology (USA)

Image processing software ImageJ (USA) (Schindelin et al., 2012)
MaiTai HP DeepSee Ti:Sapphire
laser

Spectra-Physics/Newport (USA)

P-726 PIFOC® high load objective
scanner

Physik Instrumente (Germany)

PCI Digitizers, 125 MS/s Alazartech (Canada)
Photodiode Thorlabs, cat. no. PDA100A-EC

(Germany)
N25X-APO-MP 25x 1.1 NA water
immersion objective

Nikon (USA)

Confocal microscope

Leica TCS SP8 scanning confocal
microscope

Leica Microsystems (USA)

HX PL APO L 20x/0.75 IMM
CORR CS2 objective

Leica Microsystems (USA)

Table 2 Equipment

2.4.3 Other equipment

Reagent Supplier
Glass capillaries for patch pipettes
(Ø: 1.5 mm, thickness: 0.3 mm)

World Precision Instruments, cat. no.
TW150F-3 (USA)
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FluoSpheres™ Carboxylate-
Modified Microspheres, 0.1
µm, yellow-green fluorescent
(505/515), 2 % solids

Thermo Fisher, cat. no F8803 (USA)

Table 3 Other equipment

2.4.4 Software

Software Use Supplier/source
MATLAB
2019b, 2008a,
2013b

Data analysis Mathworks (USA)

Python 3.8 DeepD3 Van Rossum and Drake,
2009

ImageJ 3D watershed segmenta-
tion, cell morphology re-
construction, manual spine
annotation, manual image
registration

Schindelin et al., 2012

Adobe Illustra-
tor

Figure editing Adobe Inc. (USA)

Scanimage r4.2 2p-image acquisition Mathworks (USA Polo-
gruto, Sabatini, & Svo-
boda, 2003)

Ephus Electrophysiological
recordings

Mathworks (USA Suter et
al., 2010)

LASX Confocal image acquisition Leica (Germany)
SnapGene DNA construct engineer-

ing
GSL Biotech (USA)

NeuTube Pixel-wise dendrite anno-
tation

Feng, Zhao, and Kim, 2015
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PiPra Pixel-wise spine annota-
tion

Gómez et al., 2020

CMTK Affine registration NeuroImaging Tools & Re-
sources Collaboratory

Table 4 Software

2.4.5 Reagents and solutions

Reagent Supplier
70% (vol/vol) Ethanol VWR, cat. no. 97064-768 (Germany)
100% (vol/vol) Ethanol Sigma Aldrich cat. no. 1.00983 (Ger-

many
Alexa 594 Thermo Fisher, cat. no. A10438 (Ger-

many)
CaCl2 Sigma, cat. no. 21115 (USA)
Carbogen (95% (vol/vol) O2,
5% (vol/vol) CO2)
CsMeSO4 Merck, cat. no. C1426 (USA)
EGTA Sigma, cat. no. E3889 (USA)
Glucose Carl Roth, cat. no. X997.2 (Ger-

many)
HEPES Carl Roth, cat. no. HN77.2 (Ger-

many)
KCl Sigma, cat. no. 60135 (USA)
K-gluconate Sigma, cat. no. G4500 (USA)
KH2PO4 Merck, cat. no. 104873 (USA)
MgCl2 Sigma, cat. no. 63069 (USA)
MgSO4 Merck, cat. no. 105886 (USA)
Na-ATP Sigma, cat. no. A2383 (USA)
NaCl VWR, cat. no. 470302-522 (Ger-

many)
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Na-GTP Sigma, cat. no. 51120 (USA)
NaH2PO4 Merck, cat. no. 1063460 (USA)
NaHCO3 Merck, cat. no. 1063290 (USA)
Na-L-ascorbate Sigma, cat. no. A7631 (USA)
NaOH VWR, cat. no. SS0580 (Germany)
Na-phosphocreatine Sigma, cat. no. P7936 (USA)
Poly-D-Lysine hydrobromid Sigma, cat. no. P6407 (USA)
Sterile saline 0.9% (wt/vol) NaCl B. Braun Melsungen AG (Germany)
Sucrose Merck, cat. no. 107687 (USA)
UHU® super glue liquid UHU (Germany)
Spermidine Sigma-Aldrich, cat. no. S2626 (Ger-

many)
PVP Bio-Rad, part of cat. no. 1652440

(USA)
4-AP Sigma, cat. no. T5648 (USA)
Bicuculline Sigma, cat. no. 14340 (USA)
QX-314 chloride Alomone labs, cat. no. Q-150 (Israel)
TTX Tocris, cat. no. 1078 (UK)
Mibefradil dihydrochloride Bio-Techne GmbH, cat. no. 2198

(Germany)
D890 chloride (quaternary, per-
manently charged analog of N-
methyl-verapamil)

ChiroBlock GmbH (Germany)

Nifedipine Bio-Techne GmbH, cat. no. 1075
(Germany)

Muscimol Bio-Techne GmbH, cat. no. 0289
(Germany)

Trolox Sigma-Aldrich, cat. no. 238813 (USA)
Magnesium adenosine triphos-
phate (MgATP)

Sigma Aldrich, cat. no. A9187 (USA)

MEM Invitrogen/Gibco, cat. no. 21575-022
(USA)

HBSS Invitrogen/Gibco, cat. no. 24020-091
(USA)

Horse serum Invitrogen/Gibco, cat. no. 26050-088
(USA)

Kynurenic acid Sigma-Aldrich, cat. no. K3375 (USA)
D-Serine Tocris, cat. no. 0226 (USA)
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D-AP5 Bio-Techne GmbH, cat. no. 0106
(Germany)

NBQX disodium salt Bio Techne GmbH, cat. no. 1044
(Germany)

DMSO Sigma/Aldrich, cat. no. D2650 (USA)

Table 5 Reagents and solutions

2.4.6 Media and solutions
Sterile cortex buffer for in vivo surgeries and single-cell electroporations con-
tained (in mM): 125 NaCl, 5 KCl, 10 glucose, 10 HEPES, 2 CaCl2 and 2
MgSO4. The buffer was sterilized and maintained at pH 7.4.

Sterile phosphate buffered saline (PBS) contained (in mM): 137 NaCl, 2.7
KCl, 8 NaH2PO4 and 1.5 KH2PO4, with the pH was adjusted to 7.4 using
NaOH.

4% (wt/vol) Paraformaldehyde (PFA): 40 g PFA were dissolved in 800 ml
distilled H2O and 10 ml 1 M NaOH was added over low heat (max. 60 °C)
until the solution clears. The solution was cooled down, 100 ml 10x PBS
were added and the pH was adjusted to 7.4 with 1 M HCl. The solution was
brought to 1000 ml with distilled H2O and then filtered through a steriliza-
tion filter.

The cutting solution for in vitro experiments contained (in mM): 85 NaCl,
75 sucrose, 2.5 KCl, 25 glucose, 1.25 NaH2PO4, 4 MgCl2, 0.5 CaCl2 and 24
NaHCO3, 310-325 mOsm, bubbled with 95% (vol/vol) O2, 5% (vol/vol) CO2.

Artificial cerebrospinal fluid (ACSF) contained (in mM): 127 NaCl, 2.5 KCl,
26 NaHCO3, 2 CaCl2, 2 MgCl2, 1.25 NaH2PO4 and 10 glucose, 305-315
mOsm, bubbled with 95% (vol/vol) O2, 5% (vol/vol) CO2.

High-calcium ACSF contained (in mM): 127 NaCl, 26 NaHCO3, 10 D-Glucose,
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3.7 CaCl2, 2.5 KCl, 1.25 NaH2PO4, 0.15 MgCl2, 305-315 mOsm, bubbled with
95% (vol/vol) O2, 5% (vol/vol) CO2.

Magnesium-free ACSF contained (in mM): 127 NaCl, 26 NaHCO3, 10 D-
Glucose, 4 CaCl2, 2.5 KCl, 1.25 NaH2PO4, 0 MgCl2, 305-315 mOsm, bubbled
with 95% (vol/vol) O2, 5% (vol/vol) CO2.

Cesium-based internal solution contained (in mM): 122 CsMeSO4, 4 MgCl2,
10 HEPES, 4 Na-ATP, 0.4 Na-GTP, 3 Na-L-ascorbate, 10 Na-phosphocreatine,
0.2 EGTA, 5 QX-314, and 0.03 Alexa 594, pH 7.25, 295-300 mOsm.

K-gluconate-based intracellular recording solution contained (in mM): 126 K-
gluconate, 4 KCl, 10 HEPES, 4 Mg-ATP, 0.3 Na-GTP, 10 Na-phosphocreatine,
0.3-0.5% (wt/vol) Neurobiotin tracer and 0.03 mM Alexa 594, pH 7.25, 295-
300 mOsm. The same solution, omitting Alexa 594 was mixed with target
DNA (see methods) to electroporate single neurons in organotypic hippocam-
pal slice cultures.

For brain slice clearing and immunostaining, the blocking buffer contained:
10% Normal Goat Serum, 2% Triton X-100, 0.2% Sodium Azide in PBS. The
antibody buffer contained: 1% Normal Goat Serum, 0.2% Triton X-100, 0.2%
Sodium Azide in PBS. The washing buffer contained: 3% NaCl, 0.2% Triton
X-100 in PBS. The permeabilization buffer contained: 2% Triton X-100 in
PBS. Brain slice clearing was performed using RapiClear © 1.47, according
to the manufacturing protocol.

200 ml culture medium for organotypic hippocampal slice cultures contained
50 ml heat inactivated horse serum, 50 ml HBSS, 95.5 ml minimum essential
medium (MEM), 2.5 ml Hepes (1 M) and 2 ml D(+)-Glucose stock solution
(1 M). Occasionally, the culture medium was supplemented with the antibi-
otics penicillin (0.7 mM) and streptomycin (0.343 mM) to prevent bacterial
and fungal infections after SCE or experiments.

Gey’s balanced salt solution (GBSS) contained (in mM): 1.5 CaCl2, 4.96
KCl, 0.22 KH2PO4, 1.03 MgCl2, 0.28 MgSO4, 136.89 NaCl, 2.7 NaHCO3,
0.87 Na2HPO4, 5.55 D(+)-Glucose.

OHSC preparation solution contained: 99% GBSS, 1% ddH2O, 9.5 mM
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kynurenic acid, and 0.5% (wt/wt) D(+)-Glucose.

2.4.7 Pharmacology
Pharmacological applications during in vitro experiments

In experiments in acute slices containing dLGN, regular ACSF was used
and supplemented with bicuculline (20µM). In experiments in OHSCs, high-
calcium or magnesium-free ACSF was used and supplemented with TTX
(1 µM), 4-AP (100 µM), D-serine (10 µM) and trolox (1 mM). In some
experiments, muscimol (1 µM) or mibefradil (15 µM) and nifedipine (30 µM)
were washed in to prevent dendritic calcium spikes from occurring. In some
experiments in OHSCs, patch-clamp recordings of CA1 pyramidal neurons
were performed using a Cs-based internal solution that also contained D-
890 (1-2.5 mM) to block VGCCs postsynaptically (Grienberger, Chen, &
Konnerth, 2014), as well as a synthetic structural marker (Alexa 594, 50
µM) and a calcium indicator (Fluo-4, 150 µM).

Anesthesia and analgesia for surgeries

To induce anesthesia in mice, sleep mix (MMF mix) was administered, con-
taining fentanyl: 0.05 mg/kg, midazolam: 5 mg/kg, and medetomidine: 0.5
mg/kg. To counteract sleep-mix-induced anesthesia, wake mix was adminis-
tered containing naloxone: 1.2 mg/kg, flumazenil: 0.5 mg/kg, and atipame-
zol: 2.5 mg/kg.

To prevent skin infections, povidone-iodine was administered (7.5% in 70%
EtOH).
Analgesic care was provided via topical application of lidocaine (10%) and
subcutaneous injection of carprofen (5 mg/kg per day for three days, starting
with the day of surgery).
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2.5 Procedures

2.5.1 Organotypic Hippocampal Slice Culture
Preparation

Organotypic hippocampal slice cultures (OHSCs) were prepared from Wis-
tar rats on postnatal days 4 - 9 (P4-9) as previously described (Stoppini,
Buchs, & Muller, 1991a). In short: after decapitation of the rat pups, the
scalp was cut along the midline. This exposed the skull, which was subse-
quently cut along the midline to release the brain into OHSC preparation
solution. Hippocampi were isolated bilaterally and cut in 400 µm transverse
sections using a McIlwain tissue chopper. Sections were incubated at 4°C
for 45 minutes and subsequently placed on a membrane patch, which in turn
was placed onto a cell culture membrane insert (0.4 µm pore size). Inserts
were placed in wells of a 6-well plate, containing 1ml of pre-warmed culture
medium and subsequently kept in an incubator at 35°C with 5 % CO2 en-
riched atmosphere. Medium (50 % volume of each well) was exchanged twice
a week.

2.5.2 Virus Injection
In some organotypic cell cultures, injection of adeno-associated viruses (AAVs)
was performed to densely transduce the CA3 region of the hippocampus. In
short: Borosilicate glass capillaries (1.5 mm outer diameter, 0.86 mm inner
diameter) were pulled using a horizontal puller (Model P-97, Heat = 740,
Ramp = 760, Pull = 170, Velocity = 120, Time = 120, all arbitrary units
(A.U.)). The backs were fire-polished and the tips were subsequently bro-
ken using sterile forceps such that an outer tip diameter of ∼10 µm was
achieved. OHSCs, which had been 1-4 days in vitro (DIV) were placed in a
previously sterilized recording chamber of a microscope that was filled with
pre-warmed (37°C) culture medium. The glass capillary was back-filled with
virus (AAV2/1.CAG.hChR2(H134R).WPRE) and connected to a pneumatic
pump, which was set to produce pulses at 20 psi for 100 ms in order to inject
the AAVs into the slice culture. The CA3 region was located visually using
a 4x objective and the tip of the capillary was placed just above the stra-
tum pyramidale of CA3. The tip was then carefully inserted into the culture
tissue and 3-6 pressure pulses were applied to inject a viral load into two
regions in CA3. After injection, slices were returned to the incubator (35 °C,
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5% CO2) for 10 - 18 days before further treatment.

2.5.3 Single-Cell Electroporation
To express DNA constructs in single hippocampal neurons (DIV 10-18),
single-cell electroporation (SCE) was performed, similar to Judkewitz et
al. (2009): in short, borosilicate glass capillaries were pulled using a ver-
tical puller (Model PC-10, T1 = 72.6, T2 =61.2, both A.U.) to produce
tips with a resistance of 12-14 MΩ. The backs were fire-polished. SCE
solution was prepared using filtered (0.22 µm) K-gluconate-based intracel-
lular solution and DNA (100 ng/ml final concentration, constructs: pENN-
AAV-CAG-tdTomato-WPRE-SV40, in combination with either pGP-AAV-
syn-jGCaMP7b-WPRE, or pCAG_Xph15-mTurquoise2 -CCR5TC, as pairs,
see results). Most experiments used tdTomato as a structural indicator, along
with either GCaMP7b or Xph-15 as calcium/spine maturity indicators in a
ratio of 1:9. Using acoustic output coupling of the electrode tip resistance
and a 40x water immersion objective, a cell was targeted and approached
applying positive pressure to prevent clogging of the tip. After positioning
of the tip just next to the cell body, the positive pressure was alleviated and
resistance usually increased to 25-40 MOhm. Subsequently, a train of pulses
(-12 V, 0.5 ms width, 50 Hz for 1 second) was applied (Axoporator 800A).
The tip was gently retracted after the pulse protocol and positive pressure
was re-applied. After electroporation of 1-5 cells, slices were returned to the
incubator (35 °C, 5 % CO2) for a DNA expression time-window of 2-8 days.

2.5.4 Biolistic Transfection
In some experiments, as an alternative to SCE, single-cell transfection was
achieved biolistically, as described previously (Jiao et al., 1993; Lo, McAllis-
ter, & Katz, 1994). In short: 1.6 µm gold particles were coated with DNA
(constructs: pENN-AAV-CAG-tdTomato-WPRE-SV40, pGP-AAV-syn-jGCaMP7b-

WPRE, pCAG_Xph15-mTurquoise2-CCR5TC) using spermidine. Then, tefzel
tubing was inner-coated with these gold particles using polyvinylpyrrolidone
(PVP), subsequently dried by passing N2 gas for 10 minutes, and finally cut
into small cylindrical parts. These parts were ”loaded” into a Helios Gene
Gun System, and gold particles were ”shot” at OHSCs (DIV 10-18) by briefly
passing helium through the gun system (pressure ≈ 200 psi).
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2.5.5 Surgeries
Head bar mounting, IOS imaging, craniotomy, intracortical virus
injection and cranial window implantation

To obtain high quality images of dendrites and dendritic spines of L2/3 pyra-
midal cells of bV1, surgeries were performed on C57bl/6 mice (similar to
Weiler et al., 2018): first, a head bar was mounted onto the skull of the an-
imal to enable head-fixed in vivo imaging. Second, bV1 was localized using
intrinsic optical signal (IOS) imaging and intracortical virus injections were
performed. Last, a craniotomy was performed, replacing part of the skull
with a cranial window to provide optimal optical access to the cortex. In
this procedure, mice were anesthetized intraperitoneally with FMM mix (see
2.3.6 Pharmacology) and subsequently placed into a sterotaxic frame. Body
temperature was maintained using a closed-loop rectal temperature probe
and heat mat. Eye cream was applied to prevent corneal drying. After
desinfecting the scalp (70 % EtOH, 7.5 % iodopovidine) and topical appli-
cation of an analgesic (lidocaine: 10 %), the skull of the right hemisphere
was exposed. Next, a custom-made metal head bar was placed over bV1 and
mounted using super glue and dental cement.

Subsequently, IOS imaging (Grinvald et al., 1986; Bonhoeffer, 1996; Bon-
hoeffer, 1999; Weiler et al., 2018) was performed to localize the binocular
zone of V1 for subsequent intracranial virus injection. Using a 4x air ob-
jective and a CCD camera, the blood vessel pattern and bV1 were visu-
alized/localized using 530 nm and 735nm light, respectively. Matlab cus-
tom software was utilized to acquire and analyze images. Visual stimula-
tion was given in two patches, to map visuotopic areas, as described earlier
(see Bauer et al., 2021). The localized area of interest (bV1) was marked
and a craniotomy was performed, removing a round segment of the skull
(4 mm diameter). Gelfoam was utilized to prevent drying-induced corti-
cal tissue damage. Subsequently, AAVs (AAV2/1.1CamKII0.4.Cre.SV40 and
AAV2/1.Syn.Flex.mRuby2.GSG.-
P2A.GCaMP6s.WPRE.SV40 at titers of ∼1 × e8 and 1×e13 GC/ml, respec-
tively) were injected in layer 2/3 of bV1 (200-500 µm below the pial surface)
at a rate of ∼10 nl/min. Last, the exposed cortical surface was covered
with a glass cover slip, using histoacryl to fixate and seal the window. Fur-
ther application of dental cement stabilized both the head bar and the glass



54 2. Materials and methods

window. After surgery, the anesthesia was counteracted with wake mix (see
2.3.6 Pharmacology). Viruses were given at least three weeks time to express
before in vivo imaging.

Intravitreal injections

To express two opsins (Chronos, ChrimsonR) in RGCs of the two retinae,
intravitreal eye injections were performed, as described earlier (Bauer et al.,
2021). Mice were anesthetized intraperitoneally via FMM mix (see 2.3.6
pharmacology). Separate 5 µl Hamilton syringes were loaded with AAVs
expressing the two opsins (AAV2/2.Syn-Chronos.EGFP and AAV2/2.Syn-
ChrimsonR.tdT, respectively). The procedure was identical for the two eyes.
Using a sharp syringe tip, a small hole was generated in the stereotaxically
fixed animal’s eye. The virus-loaded syringe was then inserted intravitreally
via the hole, avoiding the lens. In total, 1-2 µl of virus were introduced and
allowed to disperse. Subsequently, the syringe was removed and eye cream
was applied. Pre- and postoperative analgesic (carprofen: 5 mg/kg) was
administered on the day of injection and the two days following. Viruses
were given five to nine weeks time to express. Some animals were checked
for cataracts (lens damage), which was not observed using this procedure.
Estimated RGC transduction efficiency of the two opsins was >90 % (Bauer
et al., 2021).

2.5.6 Acute slice preparation
To map binocular retinogeniculate input in the dLGN, acute brain slices
of mice were obtained as previously described (Weiler et al., 2018; Bauer
et al., 2021). In a sealed container, mice were deeply anesthetized (∼2 %
isoflurane) and subsequently rapidly decapitated. The brain was then cut
into coronal sections (320 µm), that contained the dLGN using ice cold car-
bogenated cutting solution and a vibratome. After incubation in ACSF (34
°C) for at least 45 minutes, slices were transferred to room temperature (RT)
ACSF until used for experiments. Expression of both opsins was checked via
fluorescence detection goggles (see 2.3 Equipment) before recordings. Slices
with visible EGFP and tdTomato expression were considered for recordings.
Of the 37 animals with performed intravitreal injections, 7 were excluded at
this stage based on insufficient transduction. Before use at the experimental
setups (see below), slices were carefully transferred to poly-D-lysine-coated
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coverslips (12 mm diameter). Brain slices were used for experiments for 6-12
hours after acute slice preparation.

2.5.7 Immunohistochemistry
Coronal brain slices containing dLGN, in which in vitro electrophysiological
recordings were obtained, were kept in 4 % PFA at 4 °C. Subsequently, im-
munohistochemistry and brain clearing were performed as described earlier
(Bauer et al., 2021). In brief, after washing (3x10 min in PBS at RT) and
permeabilization (overnight in permeabilization buffer at 4 °C), slices were
blocked (8 h in blocking buffer at RT). Then slices were incubated with the
primary antibody (initially overnight in Rabbit Anti-Calbindin D28k, 1:2,000
in antibody buffer at 4 °C and subsequently for 3 days in the same buffer
at RT) and washed (overnight, PBS at RT). Subsequently, slices were incu-
bated with the secondary antibody (2 days, Anti-Rabbit Alexa 647 (1:200 in
antibody buffer at 4 °C), then washed (washing buffer overnight at 4 °C, 10
min PBS at RT) before clearing. Brain slice clearing was performed using
RapiClear 1.47 for ∼3 h, after which slices were embedded in RapiClear so-
lution and placed on a coverslip with a 300 µm spacer to prevent squeezing
of the slice.

A Thy1-GFP mouse brain was sliced into 300 µm thick coronal brain slices,
which were subsequently brain cleared 3.5 months after extraction. Brain
slice clearing was performed using RapiClear 1.47 for ∼3 h, after which slices
were embedded in RapiClear solution and placed on a coverslip with a 300
µm spacer to prevent squeezing of the slice.

2.6 Main setup
With the exception of a proportion of the thalamic cell in vitro imaging, all
in vitro two-photon imaging was performed on a custom built Thorlabs mul-
tiphoton system (MPM200), capable of two-photon laser scanning imaging,
dual-color one-photon optogenetic stimulation, epifluorescence microscopy,
and electrophysiology (see Fig. 2.1).
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2.6.1 Electrophysiological capabilities
The setup was equipped with a set of three micromanipulators to guide a
recording electrode with three degrees of freedom. A chloride-coated silver
wire (recording electrode) was connected to a head stage. Data were acquired
with Multiclamp 700 B amplifiers. This configuration allowed for whole-cell
patch clamp recordings in voltage and current clamp configuration, as well
as extracellular recordings, such as local field potentials (LFP). Infrared dif-
ferential interference contrast optics (iDIC) were utilized for visualization of
the specimen, navigation and visual guidance in electrode placement.

2.6.2 Epifluorescence
The setup was equipped with a LED system (470 nm, 525 nm), standard GFP
and mCherry filtercube sets, and a trinocular eyepiece for standard epifluo-
rescence microscopy. The pathway consisted of the following elements: 1) a
collimation lens to collimate the incoming LED signal. 2) a tube and ”scan”
lens to reduce the diameter of the beam profile according to the pathway. 3)
three neutral density (ND) filters (NDs of 4, 8, and 16) for additional control
over light intensity. 4) two diaphragms (field, aperture) for confinement of
the illumination spot size.
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Figure 2.1 Design of the main setup
A Main in vitro setup from top. 2-photon laser on left. ”Bessel path” in dark
red (via flip mirror1, 2.75x beam expander, SLM, L1, mask, L2, flip mirror 2 and
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L3. ’Regular path” in light orange. Light path that is shared in dark orange.
The setup is also equipped with 4 PMTs (2 for epi- and 2 for transdetection),
electrophysiological capabilities, as well as multiple optogenetic stimulation paths
(red and blue benchtop lasers connecting to either a fiber port or an optic fiber on
right, LED epifluorescence lamp in the rear of the setup). B Main in vitro setup
from the side (right side in A). Epifluorescence path is on top, followed by the
dual-color optogenetic stimulation path (via galvo-galvo scanners), followed by
the 2-photon path (via galvo-resonant scanners). Transmission light is provided
from the bottom via the oil condenser. Recording electrode and optic fiber are
left out for simplicity.

2.6.3 Optogenetic stimulation
Two independent pathways for stimulating spectral optogenetic variants were
built (Fig. S2.1, S2.2, S2.3). 1) The above mentioned epifluorescence path
allowed for simulation of blue-responsive opsin variants (e.g. ChR2, Chronos)
in a spatially confined and temporally precise manner. Stimulation of this
pathway reached the specimen via the objective. This path (1) was used in
most of the experiments that were performed in OHSCs. 2) A pair of bench-
top laser sources for blue (473 nm) and red (637 nm), combined using a
2-color fiber combiner provided input for more spectrally diverse stimulation
patterns. This input was utilized in two manners. 2A) Via a fiber-collimator,
a set of Galvanic scan-mirrors, and a scan-tube-lens system, the beam could
be guided into the specimen. This manner of optogenetic stimulation offered
the option of performing subcellular channelrhodopsin-assisted circuit map-
ping (sCRACM) by minimizing the diameter of the beam profile to ∼70 µm
in the focal plane. Alternatively, a larger diameter could be generated via a
second beam expander in the scan-tube-lens system, such that a much larger
diameter could be achieved in the focal plane (∼2.3 mm). The former was
not utilized in experiments described in this thesis. The latter was used for
dual-color photostimulation to map binocular retinogeniculate inputs. 2B)
The 2-color fiber combiner could feed an optic fiber (600 µm diameter), that
could be placed in close proximity to the specimen, providing an input that is
independent of the imaging microscope. This is a critical feature of the setup
to move forward in identifying input-specific wiring rules of LTP-induced den-
dritic spines. Decoupling of imaging location and stimulation area is essential
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to obtain sufficient quantities of data in diverse areas following LTP. This
path (2B) was used in electrophysiological recordings of CA1 pyramidal cells
in OHSCs before and after wash-in of muscimol (Fig. 3.3.8A-C).

2.6.4 Two-photon laser-scanning imaging
An 80 MHz pulsed femtosecond Ti:sapphire laser (MaiTai eHP, Spectra-
Physics) was used as excitation source (690-1040 nm) for two-photon (2p)
imaging. The 2p-laser intensity was controlled via an electro-optical mod-
ulator (Pockels cell). The latter was also used for turnaround blanking. A
spatial filter (50 µm), that included a 2x beam expander, blocked higher spa-
tial frequencies in the incoming excitation beam, achieving an approximation
of a collimated Gaussian beam. Another 1x beam expander was implemented
just before the periscope, which in turn directed the light towards a galvo-
resonant (8 KHz) scanning system. The scanners guided the beam through
a pair of lenses (scan and tube lens, f = 40 and f = 200, respectively), placed
in 4f configuration between the scanning mirrors and the back pupil plane
of the objective. After passing through the tube lens, the light was reflected
downward via a dichroic mirror (720 nm short-pass filter), towards the ob-
jective. Subsequently, the 2p excitation beam passed the primary dichroic -
either a 680-1600 nm long pass filter or a triple-notched dichroic mirror, de-
pending on use - prior to hitting the objective. The notched dichroic mirror
effectively allowed for optogenetic activation and simultaneous 2p imaging
in green and red spectral regions. The long-pass filter was employed when
no photostimulation was needed during 2p imaging. The above mentioned
configuration of lenses ensured appropriate overfilling of the objective and
thus a tightly focused point-spread function in the sample (Fig. 2.2B).

Depending on scan settings (mainly the number of line scans in the y-axis of
the image, and to a lesser degree on zoom settings), frame rates of upward
of 300 Hz could be achieved. However, such images only contained 8-16 line
scans in the y axis of the resulting images, and hence constitute a specialized
case of image acquisition, which was utilized in Fig. 3.3.4. For most appli-
cations this was not a suitable setting, and consequently a trade-off between
temporal and spatial frequency had to be made: most calcium-imaging and
structural image acquisitions, usually were obtained with framerates of ∼58.3
and ∼7.5 Hz, respectively (for more details, see methods, 2.7.2).
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To collect emitting photons from the imaging plane, a total of 4 photo-
multiplier tube detection modules (PMTs) across two photodetection arms
were employed (Fig. 2.1A, 2.2A). Two PMTs were used per arm, capturing
photons epidirectionally (via the objective) and transdirectionally to the ob-
jective (via a 1.4 NA oil immersion condenser). Emitting photons from the
specimen were filtered according to use and wavelength (i.e. fluorophore of
interest, see below) prior to reaching the PMTs. Per color of interest, two
PMTs (one per detection arm) were paired to capture emitting photons of
the same wavelength spectrum. PMTs of the transdirectional detection arm
contributed ∼60 % of the signal. A set of three mechanical shutters were
placed just in front of the three of the four PMT modules, such that they
could be light-shielded for brief periods of time. This allowed for continuous
imaging, even during episodes of optogenetic light stimulation (see below).
Due to spatial constraints of the setup, the last PMT could not be equipped
with a shutter and was consequently turned off during calcium imaging in-
volving photo-stimulation.

To image fluorophores with different emission spectra, two sets of filters
(placed before the PMTs) were employed (Fig. S2.1, S2.2, S2.3): For red/green
imaging, a 560nm dichroic beam splitter and 525-50 nm and 607-70 nm band-
pass filters were used to detect photons in the green and red spectra, respec-
tively. This configuration was utilized for ratiometric calcium imaging and
structural imaging in OHSCs, as well as to obtain images of the retinogenic-
ulate axonal surroundings of dLGN cells. In the alternative configuration,
to capture photons in the blue-green spectrum, a broader filter (510-84 nm
bandpass filter) was placed in front of one pair of PMTs, while a 6.0 neu-
tral density filter prevented photons from reaching the other pair of PMTs.
This configuration was utilized for calcium imaging or imaging of spine ma-
turity (in which a blue-shifted fluorophore such as mTurquoise2 was utilized)
in OHSCs. Switching between imaging modes was achieved by manual ex-
change of filter sets in the both detection arms.

For overview images, either a 16x 0.8 NA water immersion or 20x 0.95 NA
water immersion objective were used. For all other imaging in OHSCs, a 60x
1.1 NA water immersion objective was used. For all other imaging in acute
slices, a 40x 0.8 NA water immersion objective was used. Finally, a 4x air ob-
jective was used for orienting in OHSCs and slices, and for photostimulation
in slices.
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2.6.5 Volumetric two-photon laser-scanning imaging

Figure 2.2 Engineering a setup with flexible volumetric Bessel-beam
imaging capabilities
A Schematic of the light paths. ”Bessel path” in red, ”regular path” in yellow,
common path in orange. For volumetric Bessel-beam imaging, the 2p excitation
beam is directed towards an SLM via flip mirror 1, generating a light pattern
of concentric rings. L1 and the annular mask cut out an annular light pattern,
which is projected onto the galvo-resonant scanners via L2, flip mirror 2 and L3.
Scan and tube lenses project this pattern onto the back pupil of the objective,
producing an approximation of a Bessel beam in the sample. Emitting photons
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(red, green, brown) are captured by four PMTs, each two epi- and two trans-
directional to the objective. PMTs are equipped with filters and/or shutters.
B Point spread functions of the two pathways. Left: Bessel-beam PSF. Right:
Regular (Gaussian) beam path. Top: Maximum intensity Z projections of PSFs.
Bottom: Average intensity Y projection of PSFs. The Bessel path produces a
in PSF in the sample that is elongated in z, which lends itself for volumetric
imaging. C Dendrites and spines of a pyramidal CA1 neuron of a OHSC shown
as an average intensity projection of a time series (254 frames) captured using
volumetric Bessel-beam imaging.

Functional characterization of dendritic spines requires high throughput ap-
proaches due to the high demands in temporal and spatial resolutions. To
this end, the 2p imaging setup was equipped with a ”Bessel module” to enable
volumetric imaging via extended depth-of-field 2p Bessel beam imaging (as
described in Lu et al., 2017). Rapid switching between the “Bessel light path”
(i.e. volumetric imaging) and the ”regular light path” during an experiment
was achieved by using a pair of motorized flip mirrors. In the ”Bessel light
path” first an approximation of a Gaussian light distribution was achieved
using a spatial filter (50 µm) that included a 2.5x beam expander. Sub-
sequently, an annular, Bessel-like illumination pattern was generated using
a 512 x 512 pixel spatial light modulator (SLM) displaying concentric ring
patterns at a phase of 81.65. This pattern was produced, as described ear-
lier (see Supplementary Technical Notes in Lu et al., 2017). The Fourier
transform of the SLM-generated phase pattern was then projected onto a
custom-made aluminium-coated annular mask by placing a lens (L1) with f
= 400 equi-distantly between the SLM and the mask. The annular mask let
the first-order Bessel pattern pass, while blocking zero- (undiffracted light)
and higher-order patterns, as well as unwanted impurities. To achieve a
Bessel focus in the sample, this mask-generated ring pattern was imaged
onto the resonant scanner (using L2 and L3 (both f = 500) in 4f configu-
ration, see Fig. 2.2A) and then onto the back pupil plane of the objective
(using the same path as the ”regular light path”, i.e. via scan and tube
lenses, also in 4f configuration). This configuration produced a z-elongated
point spread function, which allowed for effective stimulation of a volume
(Fig. 2.2B, C). As a consequence, roughly 5 times as many dendritic spines
could be captured during calcium imaging without compromising temporal
frequency (Fig. 2.3A-E).
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Figure 2.3 Volumetric Bessel-beam imaging improves functional spine
imaging throughput
A Maximum intensity projection of a dendritic stretch of a CA1 pyramidal cell
in an OHSC, acquired using regular (”Gaussian”) beam imaging. The image is
color-coded for depth (see scale bar on bottom). B The same dendritic stretch
shown in A imaged using volumetric (”Bessel-beam”) imaging. Shown is an av-
erage intensity projection of a time series (254 frames) captured using volumetric
Bessel-beam imaging. Note that most of the image shown in A could be cap-
tured using volumetric imaging. Individual dendritic spines are outlined in color
(blue-green). C The same dendritic stretch shown in A imaged using regular
(”Gaussian”) imaging. Shown is an average intensity projection of 3 frames in
a single plane. The difference in coverage between volumetric imaging (D) and
regular imaging is apparent. D Calcium traces of spine outlines shown in D.
To aid in generating events of synaptic transmission, the GABA-A-antagonist
bicuculline (20 µM) was added. Hence, rhythmic activity can be seen. E Quan-
tification of the number of spines seen in C (light gray), D (black) and E (dark
gray). For imaging modalities that require high temporal resolution (e.g. cal-
cium imaging), volumetric Bessel beam imaging offers approximately 5x higher
throughput.

2.7 Other setups

2.7.1 Second in vitro setup
A proportion of the in vitro thalamic cell imaging was performed at an-
other in vitro 2p setup. This setup was identical to the main setup (see
above) in terms of electrophysiological, regular line-scan 2-photon imaging,
and two-color optogenetic stimulation capabilities, but lacked the hardware
for volumetric Bessel-beam imaging, photostimulation-induced calcium imag-
ing (i.e. shutters) and the transdirectional detection pathway. Nevertheless,
retinogeniculate mapping experiments were performed at this setup in a near-
identical manner as the main setup.
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2.7.2 In vivo two-photon laser-scanning microscopy
In vivo two-photon imaging was performed on a separate multiphoton imag-
ing setup (see Rose et al., 2016; Jaepel et al., 2017; Bauer et al., 2021).
An 80 MHz pulsed femtosecond Ti:sapphire laser (720-1040 nm) powered a
custom-built multiphoton system, equipped with a 8 KHz resonant scanner,
a Pockels cell for beam turnaround blanking and power control. For imag-
ing of green or red-shifted fluorophores, a 560nm dichroic beam splitter and
525-550 nm and 607-670 nm bandpass filters were used to detect photons
in the green and red spectrum, respectively. GaAsP photomultiplier tubes
were utilized for photodetection (employing short-pass filters at 720 nm).
Structural images (mRuby2) of L2/3 pyramidal neurons in mouse V1 were
acquired with a 25x 1.1 NA water immersion objective. Image acquisition
was performed at a resolution of 1024 × 1024 pixel (15.2 Hz), a step size of
0.5 µm, acquiring 30 images per step. In total 1000 frames were obtained
with an effective voxel size of 73 × 73 × 500 nm. Imaging wavelength was
set to 1040 nm. Average laser power under the objective was kept below
50 mW. Images were acquired using Scanimage r4.2 (Pologruto, Sabatini, &
Svoboda, 2003) and custom-written hardware drivers.

2.7.3 Confocal microscope
To precisely quantify axonal innervation of RGC afferents in the dLGN,
imaging of cleared brain slices was performed using a commercial confocal
microscope (Sp8, Leica), equipped with an argon-ion laser (used at 488 nm),
as well as a diode pumped solid-state (DPSS) laser (561 nm) and a Helium-
Neon laser (633 nm). Photodetection was performed by PMTs and hybrid
detectors (HyDs, Leica). The same microscope was utilized to image cleared
coronal brain slices of a Thy1-GFP mouse as part of the DeepD3 training
data acquisition (see below).
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2.8 Data acquisition

2.8.1 Electrophysiological recordings
Whole-cell recordings

Whole-cell voltage- and current-clamp recordings of thalamic neurons in
acute slices and CA1 neurons in OHSCs were performed at room temper-
ature with borosilicate glass patch pipettes (tip resistance of 4-5 MW) filled
with Cs- and K-gluconate-based internal solution, respectively. Series resis-
tance was usually below 30 MW. Data were acquired with Multiclamp 700
B amplifiers and subsequently marshalled into cell-specific folders for subse-
quent analysis. Voltage clamp recordings were filtered at 8 kHz and digitized
at 20 kHz at the main setup, and filtered at 4 kHz and digitized at 10
kHz at the secondary in vitro setup. Experiments in thalamic neurons were
performed in standard ACSF and in the presence of the GABA-A receptor
antagonist bicuculline (20 µM) to block inhibitory di-synaptic connections.
Experiments in CA1 neurons of OHSCs were performed in high-calcium or
magnesium-free ACSF and in the presence of TTX (1 µM), 4-AP (100 µM)
and D-serine (10 µM). In some experiments in OHSCs, muscimol (1 µM) was
washed in to activate GABA-A receptors (Fig. 3.3.8A-D). In other experi-
ments, the internal solution contained D-890 (1-2.5 mM) to prevent VGCC
opening in patch-clamped CA1 neurons (Fig. 3.3.9C, D).

2.8.2 In vitro two-photon imaging
In vitro two-photon imaging in CA1 neurons and most dLGN neurons was
performed on the main setup. Images were acquired using Scanimage r4.2
(Mathworks Pologruto, Sabatini, & Svoboda, 2003).

Structural imaging

Overview images of CA1 neuromorphologies in OHSCs were acquired to nav-
igate throughout the experiment. Image stacks were acquired at a resolution
of 1024 × 1024 pixels in x and y with a step size of 1-2 µm in z, using a
high (60x, 1.1 NA) or lower (20x, 0.95 NA) magnification objective. Some
overview images were further processed and subsequently utilized as part of
the DeepD3 training dataset (see Table 7). High-resolution structural images
(tdTomato) of CA1 neuromorphologies in OHSCs were acquired at different
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zoom levels, usually with a resolution of 2048 × 2048 pixels (7.3 Hz), a step
size of 0.5 µm (using a piezoelectric z-scanner), while frame averaging 50
frames online. A typical structural image stack spanned ∼193, ∼193 and
60 µm in x, y and z, with a voxel size of 0.0944 by 0.0944 by 0.5 µm. For
structural imaging, the excitation wavelength was tuned to 1040 (tdTomato)
or 810 nm (Alexa 594). Average laser power under the objective was kept
below 15 mW.

Spine maturity imaging

To determine the maturity level of dendritic spines of CA1 neurons in OHSCs,
the mTurquoise2-fused nanobody Xph-15 was imaged at 860 nm. Spine-
maturity imaging was performed after high-resolution structural imaging,
matching the image acquisition settings of the just acquired structural images
(except for laser intensity and excitation wavelength; see above). Due to the
lack of spectral overlap between the two fluorophores employed in structural
(tdTomato) and spine maturity (mTurquoise2) imaging, two separate image
stacks had to be acquired. Image registration (see below) was performed
to create two-colored images of structure and maturity. To quantify the
localization optimum of Xph-15, regions of interest were chronically imaged
once per day over the course of four days, starting with day 2 post SCE.
Regions were re-found visually. Spines were not matched across experimental
days. Per region of interest, laser powers remained identical across imaging
days for both structural and spine maturity imaging.

Calcium imaging

To visualize functional responsiveness of single spines and their neighbor-
ing dendritic segments to optogenetic stimulation, 2p calcium imaging of
GCaMP7b was performed at the main setup. Imaging regions were visu-
ally inspected during the experiment to maximize the number of dendritic
spines in the field of view. Imaging was performed using 940 nm excitation
and typically with a framerate of ∼58.3 Hz, using a high-magnification (60x,
1.1 NA) objective. Movies spanned 93.87 × 24.05 µm in x and y, with a
pixel size of 0.091 × 0.093 µm and captured ∼6 seconds (250 frames). Op-
togenetic stimulation (5 ms, 473 nm) of presynaptic boutons (ChR2-positive
Schaffer collaterals) was delivered after 0.5 or 1 second, splitting the movie
into baseline and response time windows. The majority of calcium imaging
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was performed in the ”regular line scan mode” and not using the "Bessel
module". However, volumetric imaging was performed similarly as described
above, with the trade-off of sacrificing effective spatial resolution (NA) for
volumetric image acquisition (z, depth).

To quantify responsiveness before and after wash-in of muscimol or VGCC
blockers (mibefradil & nifedipine), optogenetic stimulation was set such that
no dendritic calcium spikes were initiated. Next, ten repeats of optogenetic
stimulation were performed with an inter-stimulus interval (ISI) of 120 sec-
onds. This was repeated after wash-in of pharmacological agents.

To generate a data set containing movies of single-spine responses (data
A) and dendritic calcium events (data B), regions of interest were imaged
with varying blue-light stimulation intensities to evoke calcium responses in
single spines or dendritic calcium spikes. Typically the latter required higher
stimulation intensities.

To assess the effectiveness of the subtype-unspecific VGCC blocker D890,
calcium imaging of the synthetic calcium indicator Fluo-4 (150 µM, intra-
cellularly introduced via whole-cell patch clamp) was performed in dendritic
stretches of CA1 pyramidal neurons. Here, blue-light stimulation intensities
were again varied to evoke calcium responses in single spines or dendritic
calcium spikes. As a control, identical experiments omitting D890 were per-
formed.

To assess the spread of calcium spikes throughout the cell, lower spatial reso-
lution calcium imaging was performed in regular line scan mode, using a 20x
0.95 NA objective (Fig. 3.3.4A-C). To this end, the y-axis of the images was
decreased to a minimum (16-32 pixel) to maximize temporal resolution (280-
330 Hz). Movies typically spanned close to 5 seconds (∼1300-1500 frames).
Here, optogenetic stimulation was administered after ∼750 ms.

In vitro two-photon imaging of thalamic cells

Before electrophysiological recordings, overview images of the dLGN were
obtained using low-magnification objectives (20x, 0.95 NA or 16x, 0.8 NA).
These served as orientation tools for targeting cells for patch-clamp record-
ings. During electrophysiological recordings, cells were filled with Alexa 594
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and subsequently imaged to obtain a detailed image stack of the cell’s mor-
phology (excitation wavelength: 810 nm, 40x 0.8 NA objective, emission
filter 607/70-25, 1024 × 1024 pixels, 0.3-0.8 µm pixel size, step size 1.2 µm).
Moreover, another image stack was obtained to later identify the location of
the cell in the dLGN within the retinogeniculate axonal fibers expressing td-
Tomato and EGFP (excitation wavelength = 940 nm, 40x 0.8 NA objective,
emission filters 607/70-25, 525-50, 1024 × 1024 pixels, 0.3-0.8 µm pixel size,
step size 1.2 µm).

Point spread functions

To obtain point spread functions of the two imaging pathways at the main
setup (”regular pathway”, ”Bessel pathway”), 100 nm sized beads embedded
in 5 % agarose, were imaged at 940 nm with a step size of 200 nm and 50
frame averaging per step using a 60x 1.1 NA water immersion objective.

2.8.3 In vivo two-photon imaging
Structural image stacks (mRuby2) of apical and basal dendrites of pyrami-
dal L2/3 neurons of bV1 were acquired using the in vivo two-photon laser-
scanning microscope. Regions were selected heuristically, based on dendrite
outgrowth and image clarity. Images were obtained using a 25x 1.1 NA ob-
jective (N25X-APO-MP, Nikon, USA), at a resolution of 1024 × 1024 pixels
in x and y with a voxel size of 73 × 73 × 500 nm in x, y and z. Excita-
tion wavelength was set to 1040 nm , 30 frames were obtained per z-level
and post-hoc averaged (see image processing). Typically the imaged volume
spanned 50 µm (100 planes) in z.

2.8.4 Confocal imaging
To quantify RGC axonal convergence in the dLGN, three-color images were
obtained at a voxel size of 1.614 × 1.614 × 4.0 µm using an argon-ion laser
(used at 488 nm), as well as a diode pumped solid-state (DPPS) laser (561
nm) and a Helium-Neon laser (633 nm). The three channels were acquired
sequentially through a 20x 0.75 NA objective (HX PL APO L 20x/0.75 IMM
CORR CS2). Spectral detection windows were set to capture EGFP (493-
555 nm) and Alexa-647 (staining against calbindin, 638-750 nm) - imaged
simultaneously -, and tdTomato (565-628 nm) - imaged sequentially. Scan
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speed was set to 600 Hz (bidirectional). Online averaging of three line scans
resulted in the individual images, which were mosaic merged (10 % overlap,
LAS X, Leica) to create the final, tiled image of the entire part of the LGN
that the slice contained.

Confocal images of cortical dendrites and dendritic spines were obtained from
cleared coronal slices of a Thy1-GFP mouse at a voxel size of 61-117 × 61-117
× 500 nm using an argon-ion laser (used at 476 nm) to excite GFP. Emitting
photons were captured using a PMT (488 - 738 nm). Scan speed was set to
600 Hz (bidirectional). Frames were online-averaged 10 times.

2.9 Externally obtained datasets
To validate DeepD3 on externally generated and annotated data, a publicly
available dataset was obtained (Smirnov, Garrett, & Yasuda, 2018). In short,
OHSCs were prepared from C57BL/6J mice, biolistically transfected with
GFP and subsequently two-photon imaged (60x objective, pixel size: 66.7 ×
66.7 nm).

2.10 Data analysis

2.10.1 Electrophysiological data processing
Whole-cell recordings of thalamic neurons

Light-evoked PSCs were quantified as described earlier (Bauer et al., 2021).
In short: Recordings of inward and outward currents (-70mV, AMPAR-
mediated; +40mV, NMDAR-mediated, respectively) were treated differen-
tially, due to the slow NMDAR decay, which caused responses of the first
stimulation (red) to override the responses to the second laser stimulation
(blue). Hence, an exponential fit (one or two parameters, depending on df-
adjusted R2) was utilized to subtract the decay of the first response from the
second in +40 mV recordings. Subsequently, mean peak responses for each
channel (red, blue stimulation) were calculated from baseline-adjusted traces
(100ms window prior to stimulation). Significant light-evoked PSCs were de-
termined using a non-parametric signed-rank test (last 6 steps of the 11 step
protocol, p <0.05). Using NMDAR PSC peaks, input types were defined
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as follows: contralateral/ipsilateral-only, binocular, contralateral/ipsilateral-
silent (only NMDAR-response from the contralateral/ipsilateral input, re-
spectively), other (e.g. cells that received input from both eyes at -70mV but
not at +40mV).

The ocular dominance index (ODI) determined relative input strength from
both eyes, separately for AMPAR and NMDAR-mediated responses:

ODI =
PSCpeakcontra − PSCpeakipsi

PSCpeakcontra + PSCpeakipsi

(2.1)

where PSCpeak was defined as follows: If both inputs were significant, PSC-
peak was equal to the maximum response current across all 11 steps. If only
the blue input was significant, instead of using the peak, the mean of the last
6 steps of the protocol was taken, as it proved to be a more reliable measure.
PSCpeak was set to zero for non-significantly responsive cells.

To quantify crosstalk-suppression between opsins, the crosstalk suppression
index (Fig. S3.1.1) was calculated as:

Crosstalk suppresion index = PSCpeakred − PSCpeakblue

PSCpeakred + PSCpeakblue

(2.2)

where the PSCpeak for red and blue deflections exceeded 3 standard devia-
tions above baseline. Baseline was determined as 100 ms prior to stimulation
for red responses and 100, 2, and 1 ms for blue stimulation (depending on
the length of the red stimulation of 250, 10 and 1 ms).

Whole-cell recordings of CA1 neurons

Whole-cell patch-clamp recordings of CA1 neurons in OHSCs (Fig. 3.3.8,
3.3.9) were low-pass filtered (4th order Butterworth at 1000 Hz). Traces were
subsequently baseline subtracted (average inward current of the first 300 ms
or 990 ms, depending on the timing of the blue-light stimulation) and the
peak response in the stimulation time window (350-370 ms, 1000-1020 ms)
was determined.

The effect of the the GABA-A receptor agonist muscimol on maximal in-
ward current in the Schaffer collaterals was quantified. To this end, the peak
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inward current in the stimulation time window was computed. Using an 11-
step protocol increasing photstimulation in steps of 10 % from 0 to 100 %,
photo-dose-response curves before and after wash-in of muscimol were ob-
tained (Fig. 3.3.8B). The maximal inward current of this protocol was then
compared before and after wash-in (Fig. 3.3.8C).

To quantify the effect of D890, a subtype-unspecific VGCC blocker, on the
generation of dendritic calcium spikes, whole-cell recordings in voltage-clamp
and calcium imaging was performed (n = 5 cells). As a control, similar
recordings were done without the inclusion of D890 in the internal solution
(n = 2 cells). To this end, the maximal inward current after photostimu-
lation was determined as outlined above. Next, using two-photon calcium
imaging, it was determined whether a dendritic calcium spike had occurred
or not (see below for details on criteria). Then, the average maximal inward
currents per condition (D890, control) were determined, averaging across all
recordings in all cells (Fig. 3.3.9F).

2.10.2 Image processing
Reconstruction and analysis of thalamic cell morphology

Cell morphologies were reconstructed manually using the Simple Neurite
Tracer plugin of ImageJ (Longair, Baker, & Armstrong, 2011; Schneider,
Rasband, & Eliceiri, 2012). Reconstructions were subsequently analyzed us-
ing custom-written MATLAB code and the TREES toolbox (Cuntz et al.,
2011). Dendritic length was defined as the sum of all dendritic internode
sections, while dendritic reach was set to the maximum Euclidean distance
of dendritic nodes from the cell soma position. Sholl analysis was performed
as previously described (Bauer et al., 2021), with 20 µm distance increments.
Dendritic orientation was calculated via its index (DOi), and as previously
described (Krahe et al., 2011; Bauer et al., 2021).

Axo-dendritic overlap analyses were performed using a 3D interpolated mor-
phology. Manual alignment of dLGN slice overview images to confocal image
stacks (10° increments), together with precise location of the somata of the
patched cells in the confocal image stacks allowed calculations of morphology-
based fluorescence differences (mFD; see below). Furthermore, confocal im-
age stacks were manually aligned to the dLGN of the right hemisphere of
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the Allen common coordinate framework (ACCF; Wang et al., 2020). These
series of alignments effectively set all imaging data - morphology, 2p overview
stacks, confocal images - of all cells into the same common coordinate frame-
work. Dendritic asymmetry direction (Asymdir) and orientation (Asymori)
were defined as:

Asymdir = arctan 2(ym, xm) (2.3)

Asymori = arctan(ym

xm

) (2.4)

Where xm and ym are the means of all interpolated (see above) nodes in
the medio-lateral and ventro-dorsal axes, respectively. The magnitude of
assymmetry (Asymmag) was defined as follows: drawing a line orthogonal to
the asymmetry orientation and also intersecting the soma split the number of
nodes per cell into two groups. The absolute normalized difference between
the groups was defined as Asymmag, ranging from 0 to 1:

Asymmag = |
2 ·

n∑
p=1

(xp − ( yp

tan(−1·Asymori)) > 0) − n

n
| (2.5)

Where n is the number of nodes and xp and yp are the node coordinates.

Principal component analysis (PCA) of the x and y coordinates of the den-
dritic morphology (interpolated maps) revealed two further morphological
parameters, elongation orientation (Elongori) and elongation magnitude
(Elongmag):

Elongori = arctan(v(pc1,y)

v(pc1,x)
) (2.6)

Elongmag = 1 − (expvarpc2

expvarpc1
) (2.7)

Where v(pc1,y) and v(pc1,x) are the first principal components (PC) eigenvector
x and y coefficients. And where expvarpc1 and expvarpc2 are the explained
variances of the first and second principal components, respectively.

PCA was performed on all six morphological measures (maximum Sholl cross-
ing, dendritic reach, DOi, total dendritic length, asymmetry magnitude and
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elongation magnitude). To assess if distinct morphological types exist, multi-
modality was assessed using Hartigan’s dip test (Hartigan & Hartigan, 1985)
of the first two PCs.

Re-identification of dLGN cells and normalized fluorescence differ-
ence stack generation

Cell body positions of patch-clamped neurons were identified manually in
confocal image stacks as described before (Bauer et al., 2021). dLGN out-
lines were generated manually at different z positions to produce a convex
hull of the dLGN. Background was subtracted and a normalized fluorescence
difference (FD) stack was generated for each slice (see Bauer et al., 2021).
Subsequently, the normalized difference between both fluorescence markers
was calculated, producing a FD stack, which ranges from -1 to 1 (ipsi to
contra) of each slice:

FD(pix) = Fcontra(pix) − Fipsi(pix)
Fcontra(pix) + Fipsi(pix) (2.8)

Where F is the fluorescence intensity at a given pixel (pix) of a the fluorphore
matched to that particular eye (contra, ipsi). Binarized FD stacks were
generated using a 3D 64 µm standard deviation Gaussian filter per channel
prior to FD computation and binarization (FD threshold = 0).

Alignment of patch-clamp data to ACCF and visuotopic data

The Allen common coordinate framework (ACCF) was downloaded from
http://data.cortexlab.net/allenCCF/ (10 µm voxel resolution). This frame-
work contained pixel-wise annotations of the dLGN, the dLGN shell and the
dLGN ispilateral projection zone. Confocal images were manually aligned
to the ACCF by comparing dLGN shape and ipsilateral projection zone via
custom-written MATLAB code (Bauer et al., 2021). Average eye prefer-
ence was mapped onto the ACCF using an inter-/extrapolated 3D map of
ODI values per cell location, as described earlier (Bauer et al., 2021). Vi-
suotopy was mapped onto the ACCF by manually registering a previously
generated in vivo electrophysiological dataset onto the ACCF using custom-
written MATLAB code (Bauer et al., 2021). Inter- and extrapolation were
performed similarly as described above. The two maps could then be used
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to generate an ACCF-registered map of average eye preference across visuo-
topy (in 10° azimuth and elevation bins). To produce a map of average eye
preference across visuotopy, the mean eye preference of voxels was calculated
across elevation and azimuth bins of 10°, as described earlier (Bauer et al.,
2021).

Calculation and comparison of mFD and rFD

After cell re-identification (see above), a 600 µm × 600 µm (x × y) column,
centered around the re-identified soma position was extracted from the gen-
erated FD stack. To calculate the morphology based fluorescence differences
(mFDs), voxel size was adjusted to 14.6 µm. Then, the interpolated and
aligned morphology served as a voxel-wise morphology template to extract
FD values for each cell. This extraction process was repeated at various
rotational steps of the morphology template to obtain mFD values at rota-
tional angles. Radial-mask-based binarized FD (rFD) values were calculated
similarly. Rather than using a cell’s own morphology, the mean 3D dendritic
density of all cells was used to extract FD values. Binarization was done at a
threshold of 0 to simulate conditions of perfect projection segregation. Dur-
ing rFD and mFD calculation, the voxel containing the soma was excluded
due to spectral overlap in the red channel between Alexa 594 and tdTomato.

To simulate rFD distributions across a slice, sampling points were seeded
in a grid (40 µm spacing, at a depth of the average z position of all patched
cells in the slice of interest) with rFD values being calculated based on seeded
sampling points.

To determine the decoding accuracy of the mFD measure, d’ was calculated
as follows. First, the fraction of cells that had the same sign of ODI and
mFD was calculated (initial decoding accuracy). Second, cell ODI was sub-
sequently shuffled (10.000 ×) and decoding accuracy was re-determined to
test if the initial decoding accuracy data was above chance (initial decoding
accuracy ≤ 5th percentile of shuffles). Third, d’ was calculated to compare
performance of contra- and ipsilaterally dominated cells, based on mFD, as
well as mFD when morphology masks were rotated by 180°:
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d′(bsh) = meanFDc(bsh) − meanFDi(bsh)√
((nc−1)·σF Dc(bsh)2+(ni−1)·σF Di(bsh)2)

(nc+ni−2)

(2.9)

Where i and c are ipsi- and contralaterally dominated cells, respectively. bsh
is the bootstrapped shuffle iteration, n is the number of cells, meanFD is the
average of the FD measure (e.g. mFD), σFD is the standard deviation of
the FD measure. The obtained distribution of shuffles subsequently served
to compute the two-sided p-value of (bootstrapped) differences of d’:

p = min( 1
10000 ·

10000∑
bsh=1

∆d′(bsh) ≥ 0,
1

10000 ·
10000∑
bsh=1

∆d′(bsh) ≤ 0) · 2 (2.10)

Where ∆d’(bsh) is the difference in d’ of the two FD measures per bootstrap
iteration (bsh).

Calculating background FD gradient

Fluorescence difference (FD) gradients were calculated per cell extracting a
600 µm × 600 µm (x × y) column around the soma and applying a spherical
mask within (radius = 150 µm). Extracted FD values were subsequently used
to perform linear regression on the displacement in x and y from cell soma
of each pixel as the regressors. The magnitude of the background gradient
was set to the length of the vector, while x and y were set to the regression
coefficients. The orientation of the background gradient was set to values
between -90° and +90°.

Processing of structural and spine maturity data

Structural (tdTomato) and spine maturity (mTurquoise2) images of den-
drites and spines of CA1 neurons were processed as follows. When possible,
a uniform background signal was obtained before the start of the experiment
(100+ frames of PMT dark-noise) and subsequently used for baseline correc-
tion. Images were subsequently de-interlaced to correct for minor scan-phase
misalignments using custom-written MATLAB code.

Next, image-to-image registration was performed. This applies to registra-
tion of different structural image stacks across structural imaging time points,
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as well as registration of spine maturity image stacks to their respective struc-
tural image stacks. Registration was performed in two steps. First, using
custom written MATLAB code, images were manually aligned. This initial
approximation was then utilized in a second, affine registration step. Blank
frames from the prior manual alignment step were omitted and the image
was subsequently smoothed using a Gaussian blur (sigma = 2 pixels). Affine
registration of these smoothed and cropped images was performed using the
Computational Morphometry Toolkit (CMTK,
https://www.nitrc.org/projects/cmtk/) , using the structural stack as a ref-
erence. Warping was performed on the non-smoothed spine maturity data.
After registration, frames which were affected by warping artifacts (usually
3-5 frames from both ends of the image volume) were excluded from analysis.

Structural image stacks were subsequently processed by DeepD3 (see meth-
ods, 2.10), providing outlines of dendritic spines and dendrites in 3D. Den-
drite ROI outlines were determined by the DeepD3-assigned probability (>70
%), and excluded if the minimal dendritic length was insufficient (100 con-
nected pixels in 2D). Spine ROIs were excluded base on distance to dendrite
(centroid of spine ROI distance to dendrite < 15 pixels), size (minimum
size = 10 pixel in 3D). Spine ROI outlines were determined by the DeepD3-
generated probability (>50 %). These outlines were subsequently utilized to
extract average raw fluorescence values of dendrites and spines from the two
registered image stacks (structural, spine maturity). To quantify the local-
ization preference of Xph-15, a ratiometric measure was utilized, comparing
the maturity level of each spine to the maturity level of the entire dendritic
arbor in the image. This measure, the ratiometric spine-to-dendrite ratio,
was computed as follows:

StDratio =
Maturityspine

Structurespine

Maturitydendrite

Structuredendrite

(2.11)

Where Maturityspine and Structurespine are the average raw fluorescence values
of all voxels within a given spine ROI of the maturity and structural images,
respectively. Maturitydendrite and Structuredendrite are in turn the mean raw
fluorescence values of all voxels that had been labeled/outlined as dendrite,
extracted from the maturity and structural images, respectively.
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Processing of calcium imaging

High-resolution image series of calcium dynamics of dendrites and dendritic
spines were processed as follows: when possible, a uniform background sig-
nal was obtained before the start of the experiment (100+ frames of PMT
dark noise) and used for correction. When ratiometric imaging was per-
formed, images were split into their respective channels (green/functional
and red/structural). Images were then de-interlaced to correct for minor
scan-phase misalignment. To correct for lateral motion, images were then
translationally registered via frame-wise phase correlation (using the mean
of the first 100 signal frames as a template). These internally registered im-
ages were subsequently registered to one another (across-movie-registration),
using the same method used for lateral motion correction. An average pro-
jection (across frames; using the structural channel when ratiometric imaging
was performed, and using the functional channel otherwise) was then used
as a template for automated outlining of dendrites and dendritic spines via
DeepD3 (see methods, 2.10). Dendrite ROIs outlines were determined based
on the DeepD3-extracted probability (>70 %), and excluded if the minimal
dendritic length was insufficient (100 connected pixels). Spine ROIs were
excluded base on distance to dendrite (centroid of spine ROI distance to den-
drite <30 pixels), size (minimum size: 20 pixels). Spine ROI outlines were
also determined by thresholding on the DeepD3 output probability (>40 %).
A 2D watershed segmentation was applied to separate touching or overlap-
ping spine ROIs.

A typical image contained several tens of spines, and one to two dendritic
stretches (see e.g. Fig. 3.3.3C). DeepD3-generated dendritic ROIs were fur-
ther subdivided into 30 pixel (∼3 um) long stretches, termed dendritic sub-
ROIs. Each spine was paired with one dendritic subROI for further analysis
using a k-means nearest neighbor search (MATLAB, knnsearch.m). This was
used to test several approaches, attempting to computationally disentangle
spine-localized transmission-induced calcium events from dendritic calcium
spike-generated calcium events in the spine (see below, Fig. 3.3.3, 3.3.5,
3.3.6).

Spine ROIs were matched across time points based on x-y overlap (minimal
overlap = 15 pixels), using the first time point as a reference. Non-matched
spine ROIs were omitted from analysis. The matching of spines was per-
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formed to assess their responsiveness across time and treatments (e.g. before
and after wash-in of a pharmacological agent). After automatic ROIing and
ROI matching, matched spine and dendrite ROI outlines were utilized to ex-
tract average raw fluorescence values of dendrites and spines per frame. This
resulted in one fluorescence time series for each ROI (dendrite or spine) per
movie per channel (functional and/or structural). Using these time series,
normalized fluorescence fluctuations were computed:

∆F/F0(t) = F (t) − F0

F0
(2.12)

Where F is the mean fluorescence of a given channel from a given ROI at
time point t, and F0 is the mean raw fluorescence of that same channel prior
to photostimulation (baseline). Typically ∼45 frames were taken as baseline
frames (before photostimulation). However, the exact number depended on
the imaging frame-rate and experiment.

In a similar fashion, ratiometric normalized fluorescence fluctuations were
computed for some analyses:

∆F/R0(t) = F (t) − F0

R0
(2.13)

Where F is the mean fluorescence of the green (functional) channel of a given
ROI at time point t, F0 is the mean raw fluoresecence of that same channel
prior to photostimulation (baseline), and R0 is the mean raw fluorescence of
the red (structural) channel prior to photostimulation.

To identify fitting criteria for the automated detection of dendritic calcium
spikes, 64 movies across 9 imaging regions (n = 6 cells) were visually in-
spected and human-annotated for the presence or absence of a dendritic cal-
cium spike prior to any analysis (blind). ∆F/F0 and ∆F/R0, as well as their
smoothed versions (using a 9-point moving average) were computed to iden-
tify the measure of choice for quantifying calcium dynamics. The criteria for
those measures were tested and compared to the human-annotated data in
three steps. First, responsiveness of each dendritic subROI was determined:

Response(Mo, dR) =

1 if Mresp(Mo, dR) > Mbsl(Mo, dR) + X · σ(Mbsl(Mo, dR))
0 if Mresp(Mo, dR) < Mbsl(Mo, dR) + X · σ(Mbsl(Mo, dR))
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Where Response is the binary responsiveness of a dendritic subROI dR in
a movie of interest Mo. Mresp is the value of the measure of choice in the
response window, Mbsl is the average of the measure of choice in the baseline
window, and σ(Mbsl) is the standard deviation of the measure of choice in
the baseline window. X is the stringency of responsiveness tested (ranging
from 1 to 10 in increments of 1). In total, nine measures were tested (see
Table 6) in this manner.

Criterion Mresp Mbsl σ(Mbsl)

1 peak ∆F/F0 ∆F/F0 ∆F/F0
2 peak ∆F/F0 (smoothed) ∆F/F0

(smoothed)
∆F/F0
(smoothed)

3 peak ∆F/F0 (smoothed) ∆F/F0 ∆F/F0
4 avg. ∆F/F0 ∆F/F0 ∆F/F0
5 avg. ∆F/F0 (smoothed) ∆F/F0

(smoothed)
∆F/F0
(smoothed)

6 peak ∆F/R0 ∆F/R0 ∆F/R0
7 mean ∆F/R0 ∆F/R0 ∆F/R0
8 peak ∆F/R0 (smoothed) ∆F/R0

(smoothed)
∆F/R0
(smoothed)

9 mean ∆F/R0 (smoothed) ∆F/R0
(smoothed)

∆F/R0
(smoothed)

Table 6 Response measures

In addition to the 9 measures outlined in Table 6, Wilcoxon rank-sum tests
were performed between values in the baseline and response windows, as an
alternative to using X × σ(Mbsl) as a responsiveness threshold. Here, only
∆F/F0 and ∆F/F0 (smoothed) were utilized. Instead of using X as a strin-
gency measure, the significance threshold was set to α = 0.05, 0.01, 0.001,
0.0001, and 0.00001.

Second, after determining responsivenesses of each dendritic subROI, the
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occurrence of a dendritic calcium spike was tested as follows:

DendriticSpike(Mo) =


1 if

∑
dR

Response(Mo)

NdR(Mo) > ThreshdROIs

0 if
∑
dR

Response(Mo)

NdR(Mo) < ThreshdROIs

Where DendriticSpike is the presence/absence of a dendritic calcium spike
in movie Mo, NdR is the total number of dendritic subROIs in the movie and
ThreshdROIs is the threshold of the dendritic calcium spike detection (strin-
gency), ranging from 0.1 to 1 in increments of 0.1.

Third, using the above mentioned measures (n = 9 & 2), responsiveness
criteria (k = 10 & 5) and ThreshdROIs (j = 10), a dendritic calcium spike
detection table was obtained, indicating whether or not a dendritic calcium
spike was found in a given movie with a given set of criteria and thresholds.
This array was subsequently compared to the visually inspected and human-
annotated data. Consequently, a parameter matrix, similar to a confusion
matrix, was computed, quantifying ”true positives” (TP), ”false positives”
(FP), ”true negatives” (TN), and ”false negatives” (FN). Quotation marks
are used here, since the comparison was performed on visually inspected data
and not ground truth data in the common sense. Precision, recall and F1
score were computed using the parameter matrix.

Precision = TP

TP + FP
(2.14)

Recall = TP

TP + FN
(2.15)

F1Score = 2 · TP

(2 · TP ) + FP + FN
(2.16)

The responsiveness of single dendritic spines was determined in a similar
fashion: To identify fitting criteria for the automated detection of spines
showing responses to photostimulation, 161 movies across 15 dendritic re-
gions in n = 4 neurons (>950 dendritic spines) were visually inspected and
human-annotated for the presence or absence of such single-spine dendritic
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events. This was done prior to analysis, effectively blinding the annotator.
∆F/F0 and ∆F/R0, as well as their smoothed versions (using a 9-point mov-
ing average) were computed to identify the measure of choice for quantifying
calcium dynamics. Criteria on those measures were tested and compared to
the human-annotated data in three steps. First, the responsiveness of each
spine ROI was determined:

Response(Mo, sR) =

1 if Mresp(Mo, sR) > Mbsl(Mo, sR) + X · σ(Mbsl(Mo, sR))
0 if Mpeak(Mo, sR) < Mbsl(Mo, sR) + X · σ(Mbsl(Mo, sR))

Where Response is the binary responsiveness of a spine ROI sR in a movie of
interest Mo. Measureresp is the value of the measure of choice in the response
window, Respbsl is the average of the measure of choice in the baseline win-
dow, and σ(Resp(bsl)) is the standard deviation of the measure of choice in
the baseline window. X is the stringency of responsiveness tested (ranging
from 1 to 10 in increments of 1). In addition to the measures of choice (Table
6) used in this approach, three additional responsiveness tests were done. As
in the detection of dendritic calcium spikes, here, too, Wilcoxon rank-sum
tests were performed (between values of the baseline and response windows)
as an alternative to using X × σ(Measurebsl as a responsiveness threshold.
αs of 0.05, 0.01, 0.001, 0.0001, and 0.00001 were used on ∆F/F0 and ∆F/F0
(smoothed) data, constituting two additional responsiveness tests. Third and
last, instead of testing whether a peak or mean value surpassed a response
threshold (X), it was tested whether consecutive frames of the response win-
dow fell below a response threshold (X) for a time period of Y. First, at each
frame, the response window was tested against a responsiveness criterion:

Above(F, Mo, sR) =

1 if Mresp(F, Mo, sR) > Mbsl(Mo, sR) + X · σ(Mbsl(Mo, sR))
0 if Mresp(F, Mo, sR) < Mbsl(Mo, sR) + X · σ(Mbsl(Mo, sR))

Where Above is the binary responsiveness of a spine ROI sR in movie Mo
at frame F, Measureresp is the value of sR of the measure of choice in movie
Mo at frame F, and Respbsl and σ(Resp(bsl)) are the mean and standard
deviation of the measure of choice of spine ROI sR in movie Mo, respectively.

Second, it was tested whether Above(F,Mo,sR) was 1 in consecutive frames
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of the response window for a time period of Y (from F to F+Y), if so, this
meant the spine ROI sR was treated as responsive (Response(Mo,sR) = 1).

Third, the responsiveness of all spine ROIs of the various measures were
compared with the visually inspected and human-annotated data. Again, a
parameter matrix and its accompanying measures (TP, FP, TN, FN) were
computed (see above).

Using matched spine ROI responsiveness data, release probability for a given
spine was computed as follows:

Pr(sR) =

∑
M

Response(Mo, sR)

nMo
(2.17)

Where Pr(sR) is the release probability of spine ROI sR, Mo is movie and
nMo is the total number of movies.

To analyze the spread of dendritic calcium spikes, high-temporal resolu-
tion (280-330 Hz), low spatial resolution movies were utilized. Images were
background-subtracted and subdivided into square ROIs of equal size, span-
ning the entire length of the image (see Fig. 3.3.4F). Fluorescence changes
were computed (∆F) and subsequently normalized:

∆F (t) = F (t) − F0 (2.18)
Where F is the mean fluorescence of the green (functional) channel of a given
ROI at time point t, and F0 is the mean raw fluorescence of that same channel
prior to photostimulation (baseline).

∆Fnorm(t) = ∆F (t) − ∆Fmin

∆Fmax − ∆Fmin

(2.19)

Where ∆Fnorm(t) is the normalized flurescence change at time point t, and
∆Fmin and ∆Fmax are the minimal and maximal ∆F values of all time points
t. ∆Fnorm was subsequently smoothed using a 9-point moving average. The
smoothed ∆Fnorm was then truncated, keeping only the 200th to 500th frame.
To determine the half-max value of, the dendritic calcium spike, a sigmoid
was fit to the truncated smoothed ∆Fnorm:

S(∆Fnorm) = A

1 + B · e−λ·(∆Fnorm−D) + C
(2.20)
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Where S(∆Fnorm) is the sigmoid fit of the truncated smoothed ∆Fnorm cal-
cium trace, A, B, λ, C, and D are fitting parameters (Coneva, 2015). Fitting
parameters were iteratively optimized using the MATLAB function fmin-
search. Next, the frame at which the fit reached the half-maximum was
calculated. Fits were excluded if the half-maximum was outside of the re-
sponse window of 0 to ∼150 ms post stimulation time window. Since each
FOV was imaged 5-7 times, averages across the repeats of ∆Fnorm and the
calculated half-maxima were computed.

To determine if the responsiveness of spines can be determined despite the
presence of a dendritic calcium spike (flooding all spines with calcium), three
computational approaches were used, with the aim to uncover which spines
received synaptic input.

First, a set of response criteria, as described earlier (Coneva, 2015) were
used to determine spine responsiveness with and without the occurrence of
a dendritic calcium spike. In short, ∆F/F0 traces of dendritic subROIs and
spines were smoothed using a 7 point moving average. Subsequently, the
responsiveness of each spine and matched dendritic subROI was determined
as follows:

Response(R) =

1 if Mpeak(R) > Mbsl(R) + 3 · σ(Mbsl)(R)
0 if Mpeak(R) < Mbsl(R) + 3 · σ(Mbsl(R))

Where Response(R) is the responsiveness of ROI R (spine or dendrite), M
is the smoothed ∆F/F0, peak connotates the peak during the response win-
dow, Mbsl is the mean during baseline, and σ(Mbsl) is the standard deviation
during baseline. Subsequently, 3 scenarios (cases) were tested to assess if a
spine was responsive.

In Case 1, the spine ROI is responsive, yet its matched dendritic subROI
is not. Hence, the spine is deemed responsive. In Case 2, both the spine
and matched dendritic subROI are responsive. The smoothed ∆F/F0 trace
is then truncated from the beginning to the temporal location of Measurepeak
and subsequently normalized (see equation 2.18 with the exception that in-
stead of ∆F/F0, smoothed ∆F/F0 was used). A sigmoid (see equation 2.19)
is then fit to the truncated and normalized calcium trace. Subsequently, it



2.10 Data analysis 85

is determined which ROI, spine or matched dendrite subROI, reaches 67 %
of the maximum first. If the spine reaches this threshold first, it is deemed
to be responsive, following Case 2.1.

Some sigmoid fits are not suited for this analysis due to too noisy calcium
traces. Fits are excluded if (1) the maximum of the fit is below 75% of
the truncated and normalized smoothed ∆F/F0, (2) the MATLAB function
exceeds the maximum number of iterations to find a good fit, (3) and if
the 67 % threshold is crossed before the photostimulation onset. If a fit is
excluded, the time point (frame) of crossing the half-maximum (50 %) is de-
termined using the truncated and normalized smoothed ∆F/F0. If the spine
ROI crosses this threshold prior to the matched dendritic subROI, the spine
was considered to be responsive, following Case 2.2. In the original report
by Coneva, the step of identifying bad fits was done manually (2015). The
automated approach described here was employed to approach this part of
the processing pipeline in a potentially less subjective manner.

The second approach to unmix dendrite and spine signals during dendritic
calcium spikes, that was tested in this dissertation was a version of the ”ro-
bust fit” approach described earlier (Chen et al., 2013; Wilson et al., 2016;
Scholl, Wilson, & Fitzpatrick, 2017). In this approach, a scaled version of
the dendritic calcium signal is used and subtracted from the spine calcium
signal to determine if a spine received synaptic input during the occurrence
of the dendritic calcium spike. This was implemented as follows (Wilson
et al., 2016): ∆F/F0 was determined for each spine ROI, as well as the ROI
of the entire dendrite of a given movie. Next, a robust linear regression was
fit (MATLAB, robustfit), which determined the slope of the fit, α. If the
two traces (spine and entire dendrite ROI) fit well, the slope would be large.
Hence, α was used to scale the dendritic ROI trace and subsequently subtract
it from the spine ROI signal as follows:

∆F/F0Spinespecific = ∆F/F0Spine − α · ∆F/F0Dendrite (2.21)

Next, to determine if the subtraction worked, the Spearman correlation of
∆F/F0Spine specific and the entire dendrite ROI signal was calculated. Note,
that ∆F/F0 values below 0 (over-subtraction) were omitted from this analy-
sis. If the correlation was 0.5, the spine was excluded from further analysis.
Next, responsiveness of ∆F/F0Spine specific was determined, by testing whether
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consecutive frames of the response window were always above 2 standard de-
viations above baseline for at least 100 ms (see above).

The second approach to unmix dendrite and spine signals during dendritic
calcium spikes, that was tested in this dissertation was previously described
by Kerlin and colleagues (2019). In this approach, the electrophysiological
signal underlying a dendritic calcium event is estimated and subsequently
fitted to each spine signal individually. The resulting fitted signal is then
subtracted from the spine signal to identify if a spine received synaptic in-
put during the dendritic calcium spike. This approach was implemented as
follows: in short, the entire dendrite ROI ∆F/F0 signal (i.e. reference) was
deconvolved, to estimate the underlying electrophysiological signal. This was
done using a constrained deconvolutional spike inference algorithm (Vogel-
stein et al., 2010; Pnevmatikakis et al., 2016), using a ’fudge factor’ of 0.5
and autoregressive order of 1. The ∆F/F0 signal of each spine was then fit
using a differential evolution algorithm that minimizes the L2-norm using a
differential:

model(t) = a × reference(t) ∗ e
−t
τ (2.22)

Where model(t) is the fitted value as a function of time t, a is an amplitude
constant, reference(t) is the deconvolved ∆F/F0 reference signal as a function
of time t. This differential is then fitted using a differntial evolution algorithm
using the following criterium:

Minimize a, τ =
N∑

t=1

√
(model(t) − mask(t))2 (2.23)

Where mask(t) is the ∆F/F0 signal of the spine ROI as a function of time
t, and τ is the single-exponential decay kernel (time constant). The fitted
value (model(t)) was then subtracted from the mask:

Subtracted(t) = mask(t) − model(t) (2.24)

Where Subtracted(t) is the fit-subtracted ∆F/F0 signal of the spine ROI at
time point t. Finally, using Subtracted(t), the responsiveness of each spine
ROI was determined,by testing whether consecutive frames of the response
window were always above 2 standard deviations above baseline for at least
100 ms (see above).
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Structural in vivo data

Structural images of basal and apical dendrites of L2/3 pyramidal neurons
were processed as follows: pixel intensities were band-pass filtered at mean
± 1 standard deviation and subsequently de-interlaced. Then, within-stack
x-z registration was performed using rigid followed by non-rigid registration
methods (Lucas, Kanade, et al., 1981). During this step, individual frames
per z-level were averaged. Finally, a 2D median filter (2 pixel radius) was
applied. All analysis was performed using MATLAB custom-written code.

Point spread functions

Images of point spread functions of the two imaging pathways of the main
setup (”regular pathway”, ”Bessel pathway”) were deinterlaced and subse-
quently manually registered using the ImageJ plugin CoordinateShift
(https://signaling.riken.jp/en/en-tools/imagej/635/).

Pseudo-coloring

Pseudo-coloring of images was performed in the ImageJ software (Schindelin
et al., 2012). Color-coding of imaging depth in Fig. 2.3A was performed by
an open-source plugin in ImageJ (see Katrukha, 2021).

2.11 Deep neural networks
To automatically outline dendritic spines and dendrites in imaging data,
custom-generated convolutional neural networks were employed. The devised
framework was termed DeepD3 (Deep learning framework for Detection of
Dendritic Spines and Dendrites).

2.11.1 Architecture
DeepD3 uses a U-Net architecture (Ronneberger, Fischer, & Brox, 2015)
with a single encoder and two decoder pathways, one for spine and one for
dendrite prediction. Data is encoded across four fully convolutional layers,
each employing two repeated convolutions (3 × 3 kernel, with zero padding),
batch normalization, a swish activation function and 2 × 2 max pooling with
stride 2 for down-sampling. Accordingly, feature channels doubled between
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each convolutional layer in the encoder pathway. Latent variable space was
calculated using a 1 × 1 convolution. Upsampling in the decoder pathway
was performed using 2 × 2 ”up-convolutions”, effectively halving the feature
channel dimension. Upsampled data was then concatenated with data of
the same convolutional depth as the encoder pathway, which was provided
via skip connections, effectively propagating spatial information from the
encoder to the decoder pathway across layers. After concatenation, two
repeated convolutions (3 × 3 kernel, with zero padding), batch normalization
and a swish activation function were employed per convolutional layer in the
decoder pathway. The last layer of both decoder pathways is activated by a
logistic function, to limit probabilities in the output images to values between
0 and 1.

g(x) = x · f(x) = x

1 − e−x
(2.25)

f(x) = 1
1 − e−x

(2.26)

Optimization of image segmentation is performed via two independent loss
structures (decoder pathways), one for each, spine and dendrite prediction.
For the former, the mean square error (MSE) is employed, while the latter
is optimized via a Dice loss.

LDendrites = 1 − 2 ∑
i ·ŷi · yi∑

i ŷ2
i + ∑

i y2
i

(2.27)

LSpines =
∑

i

(yi − ŷi)2 (2.28)

Where y is the human-annotated ground truth, and ŷ is the prediction of
pixel i.

2.11.2 Training data and procedure
The training data for DeepD3 was curated from two-photon image data of
CA1 pyramidal neurons from rat organotypic hippocampal slice cultures and
confocal image data of cortical neurons from Thy-1-GFP mice (see Table
7). 2D images were generated via average intensity projections of registered
calcium imaging movies using the structural channel. 3D images were de-
interlaced but otherwise not further processed. Images had intentionally
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varied signal-to-noise ratio and scale (pixel size) to generate a heterogeneous
training dataset.

Model Image
type

Dimen-
sio-
nality

Fluoro-
phore

Reso-
lution
(XY)
in µm

Reso-
lution
(Z) in
µm

λ

OHSC
CA1

2-
photon

3D tdTomato 0.094 0.5 1040

OHSC
CA1

2-
photon

2D tdTomato 0.0917 N/A 1000

OHSC
CA1

2-
photon

2D tdTomato 0.0917 N/A 940

OHSC
CA1

2-
photon

3D Alexa-
594

0.1035 0.5 810

OHSC
CA1

2-
photon

3D Alexa-
594

0.094 0.5 810

OHSC
CA1

2-
photon

3D tdTomato 0.0212 0.5 940

OHSC
CA1

2-
photon

3D tdTomato 0.0232 0.5 1040

OHSC
CA1

2-
photon

3D tdTomato 0.0458 0.5 1040

OHSC
CA1

2-
photon

3D tdTomato 0.1245 1 1040

Thy1-GFP
mouse
Cortex

Confocal 3D EGFP 0.075 0.5 476

Thy1-GFP
mouse
Cortex

Confocal 3D EGFP 0.117 0.5 476

Thy1-GFP
mouse
Cortex

Confocal 3D EGFP 0.061 0.5 476
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Thy1-GFP
mouse
Cortex

Confocal 3D EGFP 0.104 0.5 476

OHSC
CA1

2-
photon

3D tdTomato 0.0458 0.5 1040

Table 7. DeepD3 training data
Overview of generated training data, with location and model of cell (n.b, all
cells were pyramidal neurons), microscopy type, dimensionality of the dataset,
pixel-size (resolution) in xy, and in z, imaging wavelength and the number of
generated training data tiles.

Image data from these four sources were subsequently human-annotated: Us-
ing a flood-filling-based neuromorphology reconstruction software package
(NeuTube; Feng, Zhao, & Kim, 2015), dendrites were traced in a pixel-wise
manner. Spines were also hand-annotated, using PiPrA, a pixel precise an-
notator software similar to a paintbrush tool (Gómez et al., 2020). These
two hand-annotations provided the ground truth for DeepD3 training.

Prior to training, image data was linearly rescaled [-1, 1] (minimum and
maximum intensity) and subsequently tiled into 128 × 128 pixel tiles. To
increase the size of the training dataset, primary data augmentation in the
shape of rotation (4 cardinal directions; p = 0.5) and reflection (vertical,
horizontal; each p = 0.5) was performed with a set probability per tile. Sim-
ilarly, secondary data augmentation was applied via Gaussian blur (kernel
size randomly chosen between 3 and 7 pixels; p = 0.2), addition of Gaussian
noise (mean 0, standard deviation randomly chosen between 10 and 50; p =
0.5), adjustment of brightness and contrast (both changed based on a factor
randomly chosen between -0.2 and 0.2; p = 0.25) to train some models. Sec-
ondary data augmentation was performed with the albumentations package
(Buslaev et al., 2018).

The total training dataset comprised of ∼80.000 image tiles. 10 % of training
data was selected for validation and never utilized in training. Training was
performed via backpropagation, optimizing DICE and MSE losses for den-



2.11 Deep neural networks 91

drite and spine prediction, respectively. During training, mini-batch (batch
size: 16 - 64 images; iterations per epoch: 1250 - 5000) gradient descent on
the minimization of the sum of both loss functions was performed. Training
time was limited to 25 epochs with a learning rate of 0.0005. To optimize
spine and dendrite segmentation for various data types, a variety of models
using one or more of the above outlined data sources were trained (see Table
8).

Some DeepD3 networks were trained using a different procedure, where image
tiles were flexibly streamed during training, thereby exceeding the dataset
size of ∼80.000 image tiles. Validation was then performed on a fully anno-
tated dataset that was not used during training, instead of splitting training
data into 90/10 (training/validation). Here, the learning rate was set to
0.5 · 10−3 for 15, after which an exponential decay with a time constant of
0.1 was introduce.

All networks were optimized using the Adam optimizer in the TensorFlow en-
vironment using the Keras package (Kingma & Ba, 2014; Abadi et al., 2016).

Model purpose Training data Secondary
data aug-
menta-
tion

Figures

Calcium imaging All 2D images of
OHSC CA1 neu-
rons

None 3.2.1B, 3.2.5A-E,
3.3.3A-D, 3.3.4,
3.3.5, 3.3.6,
3.3.7E-H, 3.3.8A,
B,

Low zoom struc-
tural imaging

3D images of
OHSC CA1 neu-
rons (Alexa 594,
tdTomato) with
pixel size 0.094 or
0.1035 µm

None 3.2.2, 3.2.4,
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High zoom struc-
tural imaging

3D images of
OHSC CA1 neu-
rons (tdTomato)
with pixel size
0.0212 µm

None 3.2.3, 3.2.5F, G,
3.3.2,

Generalized model All data Yes S3.2.2

Table 8. Overview of trained models
Overview of trained models with intended purpose in this dissertation, used train-
ing data, whether or not secondary data augmentation was employed and the
figures this a particular model was used in

2.11.3 Features of DeepD3
ROI detection

Raw images were fed into DeepD3 to automatically predict and segment den-
dritic spines and dendrites within the image. DeepD3 outputs two images
of the same size as the input image, one each for spine and dendrite predic-
tion. Output images reflect pixel-wise probabilities for dendrites and spines
based on features of the input image and the chosen/trained model. Dendrite
ROIs are identified from the dendrite prediction image based on probabil-
ity (dendrite threshold) and size of the ROI (minimum dendritic ROI size,
i.e. 2D or 3D connected components). Spine ROIs are identified from the
spine prediction image based on two probability thresholds: first, a strin-
gent threshold was employed, limiting the number of considered spine ROIs.
Since a strict threshold also limits the area of the spine ROI, a second, more
lenient threshold was employed. Taking only the spine ROIs that met the
criteria of the stringent threshold into account, the circumference of these
spine ROIs was then drawn by the second, lenient threshold. The result-
ing spine prediction image was then segmented into spine ROIs using 2D or
3D watershed segmentation (Ollion et al., 2013). Spine ROIs were further



2.11 Deep neural networks 93

cleaned up, depending on user settings of size of the ROI (minimum spine
ROI size) and maximum distance to dendrite.

Probability and minimum ROI sizes of spines and dendrites were computed
using image thresholding and connected component analyses in Python 3
and Matlab. To determine the distances of spine ROIs to dendrites, image
moments (eq. 2.29) were used to compute the center of mass of a given
spine ROI (eq. 2.30). Next, a user-determined radius (maximum distance
to dendrite) relative to the centroid of the ROI was assessed for pixels with
probability values at the dendrite threshold or higher.

Mpqr =
∑

i

∑
j

∑
k

Ii,j,k · xp
i · yq

j · zr
k (2.29)

cy = M100

M000
, cx = M010

M000
, cz = M001

M000
(2.30)

Where i, j and k are pixel coordinates and p, q and r are moments in the
three dimensions y, x, and z. The centroid of the spine ROI is determined
by calculating the mean (M) of all included pixels along a single dimension
(e.g. 100 for the y dimension), resulting in the dimension-specific centroids
cy, cx, and cz.

2.11.4 Validation
To validate DeepD3 performance, a number of human-annotated datasets
were acquired: in vitro structural images of rat CA1 pyramidal neurons in
OHSCs expressing tdTomato (see methods, e.g. Fig. 3.2.3, 3.2.5A-D, 3.2.7),
in vitro structural images of mouse CA1 pyramidal neurons in OHSCs, ex-
pressing GFP (see methods, Smirnov, Garrett, & Yasuda, 2018, Fig. 3.2.4A-
C), in vivo structural images of L2/3 pyramidal neurons of mouse bV1 ex-
pressing mRuby2 (see methods, Fig. 3.2.4D-F, 3.2.6A-E). Manual annota-
tions of data were either done pixel-wisely or simply by annotation of a single
point near the centroid of the spine head. Hence, several validation methods
were devised.

Pixel-wise validation

Pixel-wise validation was performed on data similar to training data (OHSC,
CA1 pyramidal cell, two-photon structural stack, imaging tdTomato at 1040
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nm). Spine predictions were performed by jointly permuting both spine
thresholds (confining the area of the ROI) across 9 values (10 - 90 % spine
probability), obtaining a full confusion matrix and measures (precision, re-
call, F1 score) per threshold (Fig. 3.2.3D). Particular DeepD3 settings: max-
imal dendrite displacement was 40 pixels, minimum spine ROI size was 30
connected pixels, minimal dendrite size was 1000 connected pixels, dendrite
threshold was 0.995, ROIs were generated in 3D, spines ROIs were excluded
if they spanned less than 3 planes.

ROI-wise validation

Since most datasets were not annotated on a per-pixel basis but rather via an-
notation of a single point in the center of the dendritic spine head, DeepD3
performance was also validated per spine ROI. To this end, two measures
were employed: first, a distance-based measure, using a nearest-neighbor
approach of the annotation points and the centroids of the predicted spine
ROIs without replacement (i.e. a centroid could not be matched to multi-
ple annotation points). Nearest-neighbor annotation/prediction points were
thresholded at 12 pixels (∼1.12 µm) to uniquely match spine annotations
to spine predictions. In Fig. 3.2.3E the manual annotation was done in a
pixel-wise manner, hence the annotation points were replaced by the cen-
troids of the spine annotations. To validate this method, a second measure
was devised, the area-based measure. Here, it was tested whether each anno-
tation point was part of the area of a DeepD3-generated spine ROI without
replacement. Since manual annotations were done in a pixel-wise manner in
Fig. 3.2.3F, here, overlap of predicted spine ROI and annotated spine ROI
was quantified. An overlap of more than 50 % of the pixels was taken as a
correctly identified spine ROI (true positive).

2.11.5 Inter- and intra-rater reliability
To compare DeepD3 performance to human annotation performance, two
datasets were manually annotated by several users (Fig. 3.2.5, 3.2.6). Inter-
rater reliability was calculated using a slightly modified version of the distance-
based ROI-wise validation method. This method was required to establish
whether two annotation points of two annotators marked the same dendritic
spine. To this end, the nearest neighbor of all annotation points of anno-
tator pairs were established. Neighbors that were outside of a Euclidean
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distance of 12 pixel (∼1.12 µm) and not within 5 z steps (2 above, 2 below)
were excluded. Additionally, points could only be uniquely matched (no re-
placement). Annotation points that fulfilled these criteria were regarded as
marking the same spine (TP). In this analysis, the annotations of one an-
notator were compared to the annotations of another (annotators 1 and 2,
respectively). FP and FN were computed according to the performance of
annotator 2 with regards to annotator 1. Subsequently, recall and precision
were computed per rater pair (Fig. 3.2.5D, 3.2.6E). Intra-rater reliability
was done similarly, but comparing annotations of the same raters (generated
with an inter-rating interval of at least two weeks).

2.11.6 DeepD3 settings

Figure Model Max.
den-
drite
dis-
place-
ment

Min.
spine
ROI
size

Min.
den-
drite
size

Den-
drite
thresh-
old

Min.
planes

3.2.2C Low zoom
structural
imaging

40 30 1000 0.7 3

3.2.2D-
E

Low zoom
structural
imaging

40 30 1000 0.7 3

3.2.3B-
C

High zoom
structural
imaging

45 30 1000 0.7 3

3.2.3E-
F

Low zoom
structural
imaging

40 30 1000 0.7 3

3.2.4B-
D

Low zoom
structural
imaging

40 30 1000 0.7 3
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3.2.4G-
I

Low zoom
structural
imaging

40 30 1000 0.7 3

3.2.5B-
C

Calcium
imaging

35 30 1000 0.995 N/A

3.2.5.D-
E

Low zoom
structural
imaging

35 30 1000 0.995 N/A

3.2.5F-
G

High zoom
structural
imaging

335 30 1000 0.7 3

Fig
S3.2.1A-
C

Calcium
imaging

35 30 1000 0.995 N/A

Fig
S3.2.1D-
F

Generalized
model

50 30 1000 0.7 3

Fig
S3.2.3F

Generalized
model

50 30 1000 0.7 3

3.3.2E-
H

High zoom
structural
imaging

30 1000 0.7 0.7 3

3.3.3C-
E

Calcium
imaging

35 30 1000 0.995 N/A

3.3.4B-
F

Calcium
imaging

35 30 1000 0.995 N/A

3.3.4G-
J

Calcium
imaging

35 30 1000 0.995 N/A

3.3.5A-
C

Calcium
imaging

35 30 1000 0.995 N/A

3.3.6A-
C

Calcium
imaging

35 30 1000 0.995 N/A

3.3.7G-
H

Calcium
imaging

35 30 1000 0.995 N/A

3.3.8A-
B

Calcium
imaging

35 30 1000 0.995 N/A
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3.3.8C-
D

Calcium
imaging

35 30 1000 0.995 N/A

Table 9 DeepD3 settings
Overview of DeepD3 settings used for all figures. For model names, see Table
8. Values are given in pixels. Pixel sizes between images varied slightly but were
usually between 73 and 94 nm (see image acquisition)

2.11.7 DeepSpineTool
To qualitatively compare segmentation performance of DeepD3 to a recently
published tool for the automated segmentation of dendrites and dendritic
spines (Vidaurre-Gallart et al., 2022), this method (DeepSpineTool) was ob-
tained. DeepSpineTool offers three trained networks, which perform image
segmentation (Vidaurre-Gallart et al., 2022). The results of all models of
the DeepSpineTool are shown in Fig. S3.2.4. Visual inspection suggests
that DeepD3 outperforms DeepSpineTool, at least in the data shown in that
figure.

2.12 Quality control and data exclusion
criteria

2.12.1 Binocular convergence in the dLGN
The dataset comprised of 220 dLGN neurons, for which binocular mapping
and subsequent imaging was performed. Data quality was rigorously con-
trolled using semi-automated quality control procedures (see, Bauer et al.,
2021). In short, electrophysiological, confocal image (and soma re-
identification), transduction, morphology tracing and ACCF alignment qual-
ity were separately assessed, such that the assessor was blinded to the other
parameters. Electrophysiological data was excluded based on AMPAR re-
sponses (38 cells), NMDAR responses (67 cells), and series resistance changes
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(≥ 50 % between recordings, 14 cells). Data was excluded for AMPAR, NM-
DAR and AMPAR-to-NMDAR quantifications, respectively. 35 cells were
excluded from morphological analysis (34 for having total dendrite length ≤
600 µm, one for having typical dLGN interneuron morphology). 25 cells were
excluded from ACCF analyses due to poor confocal image quality. 17 cells
were excluded from electrophysiological and fluorescence analyses based on
poor local transduction. Cells were excluded from mFD analyses based on
protrusion of dendrites (in z: 20 cells with ≥ 30 % of the dendritic tree; in x,y
18 cells with ≥ 10 % of the dendritic tree outside of dLGN). Exclusion criteria
were enforced for relevant quantifications (e.g. cells with poor morphological
reconstructions were still used for AMPAR response comparisons).

2.12.2 Automated detection of dendritic spines and
dendrites

For inter-rater reliability experiments, data of one spine annotator was ex-
cluded, due to insufficiently dense labeling (mean of all annotators: 352
spines annotated, standard deviation 58; excluded annotator: 237 spines an-
notated). One annotator provided two annotations, one more liberal, one
more conservative. For this annotator, after personal communication, it was
agreed upon that the liberal annotation best matched the task (count all
dendritic spines in the image file). Importantly, this was done blindly (with-
out looking at the performance of that annotator). Hence, the conservative
annotation of that annotator was not used in analyses.

2.12.3 Towards establishing wiring rules during LTP-
induced synaptogenesis

For tracking spine maturity over several days, 2 imaging regions were ex-
cluded on one day based on poor image registration of structural and spine
maturity images. For analysis of single-spine responsiveness, dendritic cal-
cium spikes were excluded according to the above mentioned criteria. This
concerned calcium-imaging analyses of muscimol wash-in and VGCC block-
ers (Fig. 3.3.8 and 3.3.9). In electrophysiological recordings that included
the subtype-unspecific VGCC blocker D890 in the internal solution, record-
ings that lasted less than 15 minutes were excluded. Additionally, if the cell
was poorly filled with Alexa 594 or Fluo-4 (determined by visual inspection),
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it was excluded from analysis.

2.13 Statistics

2.13.1 Binocular convergence in the dLGN
Data are reported as mean ± standard error of the mean (SEM) unless
stated otherwise. To analyze some morphology measures in dLGN cells,
circular statistics were employed (CircStat, circStatNP; Berens, 2009; Dervi-
nis, 2020). Linear data was tested for normality prior to individual tests.
When normality was determined (Kolmogorov-Smirnov Goodness-of-Fit),
parametric tests were utilized (two-tailed two-sample unequal-variance, two-
way ANOVA, or paired t-tests). On the other hand, when normality assump-
tions were not met, nonparametric tests (Wilcoxon rank-sum test, Mann-
Whitney U test or Kruskal-Wallis) were chosen. In the case of periodic
variables, a von Mises distribution was assumed. Correlations between lin-
ear variables were calculated using Pearson’s and Spearman’s correlations
(normality assumed and not assumed, respectively). Periodic measures were
correlated with other periodic measures and linear data using circular-circular
and circular-linear correlations, respectively. Asterisks indicate significance
thresholds as follows: p <0.05 (*), p <0.01 (**), p <0.001 (***), unless oth-
erwise stated. Multiple comparison corrections (Bonferroni) were employed
when necessary.

2.13.2 Automated detection of dendritic spines and
dendrites

To compare DeepD3 performance against inter-annotator reliability a Kruskal-
Wallis tests were performed using the distance-based criterion of all annotator
pairs and the recall of DeepD3 per annotator (Fig. 3.2.5C, 3.2.6D).

2.13.3 Towards establishing wiring rules during LTP-
induced synaptogenesis

To compare spine size to spine maturity levels across imaging days, the Pear-
son’s correlation between spine ROI size (in pixels) and the RSDR value was
calculated (Fig. 3.3.2G). To compare release probabilities of spines before
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and after wash-in of pharmacological agents (muscimol, VGCC blockers),
Pearson’s chi-squared tests were performed on the release probability of each
spine before and after wash-in (Fig. 3.3.8F, 3.3.9B). To assess the frequency
of eliciting dendritic calcium spikes during photostimulation before and after
wash-in of pharmacological agents (muscimol, VGCC blockers), McNemar’s
tests were performed on all available movies of each dendritic region of in-
terest before and after wash-in (Fig. 3.3.8H, 3.3.9C). To assess whether the
stimulation power differed in trials in which no dendritic calcium spike was
detected before and after the application of muscimol, a McNemar’s tests
was performed on the recorded peak stimulation power, as measured from
the photodiode (Fig. 3.3.8G). To assess whether the maximal normalized
inward current was altered by the wash-in of muscimol during patch-clamp
experiments, a McNemar’s tests was performed (Fig. 3.3.8C). To identify cri-
teria of spine responsivity, Wilcoxon rank-sum tests were performed between
values in the baseline and response windows. Values were either ∆F/F0 or
∆F/F0 (smoothed) taken from spine ROIs. Significance thresholds were set
to α= 0.05, 0.01, 0.001, 0.0001, and 0.00001. An identical approach was
utilized to identify criteria for the automated detection of dendritic calcium
spikes, this time, however, using values from dendritic sub-ROIs.



Chapter 3

Results

3.1 Binocularity in the dLGN
The dLGN has typically been seen as a relay station between the retinae and
the primary visual cortex in adult mice. However, recent evidence suggests
otherwise, with structural (Rompani et al., 2017) and functional studies (Jae-
pel et al., 2017; Sommeijer et al., 2017; Huh et al., 2020) disagreeing on the
amount of binocular convergence in the retinogeniculate pathway. Hence, the
aims of this part of the dissertation were to: (A) quantify retinogeniculate
convergence with optimal signal-to-noise and (B) identify which mechanisms
underlie binocular integration on a single-cell level in the dLGN.

3.1.1 A dual-channel input mapping approach for
studying crosstalk-free eye-specific retino-
geniculate convergence

Rationale

There is high variability in recent reports of the amount of binocular retino-
geniculate convergence (Rompani et al., 2017; Jaepel et al., 2017; Sommeijer
et al., 2017; Huh et al., 2020). Direct comparisons between these studies
are difficult, given the differences in recording methods (calcium imaging,
electrophysiological single unit recordings, retrograde rabies tracing), spatial
sampling and chosen analyses. Therefore, an in vitro approach combining op-
togenetics and whole-cell patch clamp electrophysiology was devised to map
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retinogeniculate inputs of both eyes with optimal signal-to-noise ratio in sin-
gle dLGN neurons (Fig. 3.1.1A). Critically, to quantitatively assess the input
strength of both eyes, their respective axonal afferents needed to be stimu-
lated independently. To this end, it was assessed whether the opsins Chrim-
sonR and Chronos, given their minimal spectral overlap, could be activated
without spectral crosstalk. Since ChrimsonR, the red-shifted (excitation peak
= 589 nm Klapoetke et al., 2014) opsin, is also blue-light responsive, a previ-
ously established sequential photostimulation approach (Hooks et al., 2015)
was utilized and modified. In this approach, ChrimsonR is rendered unre-
sponsive to blue light stimulation immediately after prolonged exposure (tens
of ms) to red light. Therefore, using a long red pulse would depolarize only
ChrimsonR-expressing axonal terminals, and promptly delivered blue light
stimulation would depolarize only Chronos- but not ChrimsonR-expressing
boutons.

Proof of principle

To test this, RGCs were transduced monocularly with ChrimsonR-tdTomato
via intravitreal injections of AAVs in mice. After sufficient expression time
(5+ weeks), acute brain slices were prepared to obtain whole cell patch-clamp
recordings of individual dLGN neurons. Di-synaptic feedforward inhibition
was blocked (bicuculline, 20 µM) to isolate monosynaptic inputs. As ex-
pected, ChrimsonR was found to be blue-light responsive (Fig. 3.1.1B, Fig.
S3.1.1A). Importantly however, this crosstalk responsivity was circumvented
by using sequential photostimulation as described above: ChrimsonR was
rendered non-responsive to blue-light stimulation (50ms, 472 nm) immedi-
ately after red light exposure (250ms, 637 nm, 3.1.1B). Hence, by employing
sequential photo-stimulation, independent measurements of inputs of both
eyes to dLGN neurons were made possible.



3.1 Binocularity in the dLGN 103

Figure 3.1.1 An assay to map eye-specific functional inputs in the retino-
geniculate pathway
A Experimental timeline (from top left to bottom right): The red- and blue-light
excitable opsins ChrimsonR/Chronos are introduced to RGCs via intravitreal in-
jections. Whole-cell patch clamp recordings of individual dLGN neurons are
performed in acute brain slices using dual-color optogentic stimulation to map
binocular inputs. Retinogeniculate input is assessed via optogenetic stimulation
of ChrimsonR+/Chronos+ RGC axons using red and blue light (sequential photo-
stimulation). Maximum intensity projection of a two-photon image of an acute
slice, showing typical eye-specific projection zone pattern of the two eyes, via
ChrimsonR-tdT and Chronos-EGFP in RGC axonal terminals within the dLGN.
Alexa-594-reconstructed morphology of representative dLGN neuron. Maximum
intensity projection of confocal image of a cleared brain slice. Images are aligned
among each other and to the ACCF for further analysis. B Suppression of spec-
tral crosstalk using sequential photostimulation: maximum intensity projection
of ChrimsonR-tdT expression pattern within dLGN (top). Photoresponses of
dLGN neuron (clamped to -70 mV) to 473 nm stimulation (50 ms, trace before
the break; irradiance: 5.1 mW/mm2) and sequential photostimulation using 637
nm (250ms) and 473 nm (50 ms, trace after the break; irradiance 473 nm: 5.1
mW/mm2; irradiance 637 nm: 3.4 mW/mm2). Figure modified with permission
from Bauer et al. (2021).
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Photoproperties of ChrimsonR in the assay

Next, ChrimsonR properties within the sequential photostimulation paradigm
were further tested. Even very short red light stimulation (10 ms) was found
to be sufficient to prevent blue-light responsivity (Fig. S3.1.1B, C). As ex-
pected, long (250 ms) red-light stimulation also proved to work well in pre-
venting spectral crosstalk (Fig. S3.1.1B, C). Hence, to temporally separate
the responses to either wavelength stimulation, a long (250 ms) red light
stimulation duration was chosen for the final protocol (see below). Sur-
prisingly, it was discovered that repeated and prolonged red-light exposure
renders ChrimsonR nearly unresponsive (decrease of > 70 %) to further stim-
ulation (Fig. S3.1.1D, E). Interestingly, blue light stimulation prevents this
phenomenon and enables ChrimsonR to be used repeatedly without any loss
in photo-responsivity (Fig. S3.1.1D, E). Hence, the use of sequential pho-
tostimulation fulfils a second purpose in ensuring reliable responsiveness of
ChrimsonR throughout the experiment (Fig. S3.1.2A).

Quantitative binocular input size measurements

To quantitatively assess the contribution of both eyes to a dLGN neuron’s
input, the maximal input strength of each eye was measured separately. To
this end, RGCs of either eye were transduced with ChrimsonR-tdTomato and
Chronos-GFP, respectively. After sufficient expression was achieved, whole
cell patch-clamp recordings of dLGN neurons were performed in acutely pre-
pared coronal brain slices, while pairing the sequential photostimulation ap-
proach with two sequentially performed step protocols: First, the maximal
responsivity of a dLGN neuron to increasing amounts of blue light stimula-
tion was established in 11 steps (0 - 100 % laser power). Second, another
step protocol was performed, in which red light stimulation was increased in
11 steps (0 - 100 % laser power). In this second protocol, sequential pho-
tostimulation was applied, such that each red light stimulation event was
immediately followed by blue light stimulation of the intensity that gave the
maximal response in the first step protocol. Using this second step protocol,
the maximal input strength of both eyes could be measured in single dLGN
neurons by taking maximal response values to blue- and red-light stimulation
(Fig. 3.1.2A).
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Prominent eye-specific retinogeniculate convergence but limited
functional binocularity

Both step protocols were applied twice, clamping the cell to -70 and +40 mV
to quantify AMPAR- and NMDAR-mediated responses, respectively. Neu-
rons were selected throughout the dLGN, with a slight oversampling in the
dorsomedial region to better quantify the amount of binocular retinogenic-
ulate convergence. While all neurons received input from RGC afferents,
two main input types were identified based on the observed response pat-
terns: some neurons only received input from the ipsilateral or contralat-
eral eye (monocular neurons), while others were functionally connected to
both eyes. A small fraction of these binocular neurons were only respon-
sive to one eye when clamped at +40 mV, indicating a large availability of
silent, AMPAR-deficient synapses (Fig. 3.1.2B). Interestingly, the converse,
NMDAR-lacking synaptic connectivity, was also observed in a minority of
cells. These cells were binocular in their AMPAR-mediated connectivity,
but monocularly lacked NMDAR-mediated transmission. Notably, the ma-
jority (64 %) of all recorded dLGN neurons were found to receive some input
from both eyes (Fig. 3.1.2C). Given the signal-to-noise ratio of whole-cell
patch clamp electrophysiological measurements, it is possible to even detect
single quanta (Chen, Harata, & Tsien, 2004). As such, whole-cell patch
clamp recordings can reveal even weak synaptic connectivity and therefore
help in precisely quantifying the amount of eye-specific retinogeniculate con-
vergence.
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Figure 3.1.2 The retinogeniculate pathway shows robust binocular con-
vergence with limited functional binocularity
A Maximum intensity projection of eye-specific projection zones (ChrimsonR-
tdTomato, Chronos-GFP) in dLGN (left). Blue-light-evoked PSCs (473 nm) us-
ing increasing irradiances in the 11-step protocol (top). Sequential photostimulation-
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evoked PSCs of the same neuron (637 nm for 250 ms, 473 nm for 50 ms, ISI:
10 s) (bottom). Arrowheads indicate maximal response to blue light (top) and
successful sequential photostimulation (bottom), respectively. B Observed input
patterns of eye-specific evoked PSCs for AMPAR- (-70 mV; black) and NMDAR-
mediated (+40 mV; gray) responses. AMPA-silent inputs are indicated by ar-
rowheads. C Quantification of main input categories, shown in B (n = 101
cells). D ODI distributions of AMPA- and NMDAR-mediated currents in dLGN
(n = 123 cells). E Input strength (peak current amplitude) of dominant and
non-dominat eye responses for AMPAR-mediated currents of binocular cells (n
= 75 cells) and NMDAR-mediated (right) currents of binocular cells. Gray lines
and dots indicate individual cells, medians are indicated in magenta. F Same
as E but for NMDAR-mediated currents of binocular cells. Gray lines and dots
indicate individual cells, medians are indicated in magenta. G Representative
examples of whole-cell current clamp recordings of dLGN neurons: sequential
photostimulation-induced membrane voltage deflections of two binocular dLGN
cells. Dominant eye (DE) stimulation evokes an action potential in both, whereas
the NDE (non-dominant eye) fails to elicit spiking at resting potential (left). De-
polarization via current injection elicits NDE spiking in the more binocular neuron
(bottom, right). H Quantification of F (n = 8 binocular cells). Electrophysiology
trace scale bars in A-B: 100 ms, 250 pA; and in F: 250 ms, 10 mV. Morphology
scale bars: 100 µm. Figure modified with permission from Bauer et al. (2021).

But what are the functional implications of the high amount of binocular
wiring that was observed? The two step protocol enabled quantification of
the maximal input strength of both eyes separately, which could in turn
be used to compute the degree of ocular dominance on a single-neuron ba-
sis. To this end, the ocular dominance index (ODI) was computed based
on the AMPAR- and NMDAR-mediated peak amplitudes. Negative ODI
measurements indicate stronger ipsilateral input, while a positive ODI in-
dicates the same for the contralateral input. Maximum (+1) or minimum
(-1) ODI values indicate that a cell received only contralateral or ipsilateral
input, respectively. Strikingly, only a minority of cells had ODI values near
0, which reflect equisized input strengths from both eyes (Fig. 3.1.2D). The
vast majority of cells received a majority of input from one eye (average of
AMPAR-based |ODI| = 0.91 ± 0.014). In fact, on average, the dominant
eye (DE) provided 36 times the amount of input as the non-dominant eye
(AMPAR-based ODI, Fig. 3.1.2E).



108 3. Results

Despite the prominent availability of AMPAR- and NMDAR-deficient synapses
in the binocular neuron population, determining dominant eye via AMPAR-
or NMDAR-mediated currents provided near-identical results (one cell dif-
ference out of 123, Fig. S3.1.3D). The degree of binocularity varied more be-
tween the two measures, with NMDAR-based ODI being more binocular on
average (Fig. 3.1.2D-F). However, the functional implications of this wiring
pattern remained unclear. What is the amount of eye-specific functional
convergence between the retinae and the dLGN? Functional connectivity is
typically defined as the temporally aligned coordination of neural activity in
two regions (Friston, 2011; Engel, Schölvinck, & Lewis, 2021). Hence, neural
activity in the shape of action potentials needed to be measured pre- (RGCs)
and postsynaptically (dLGN). To this end, whole-cell current-clamp record-
ings were performed to monitor light-induced voltage deflections in dLGN
neurons. Given that the chosen acute slice preparation disconnects RGC cell
bodies from the dLGN, optogenetic stimulation of RGC afferents was used
as a proxy for neural activity in the retinae. In particular, it was assessed
whether inputs from both eyes could independently elicit action potentials in
the same dLGN neurons. At resting membrane potential, nearly all dLGN
neurons showed spiking activity when stimulated by the dominant eye. Con-
versely, non-dominant eye stimulation failed to elicit action potentials in all
patched dLGN neurons. Surprisingly, even when depolarizing the cell by
current injection, only a single cell showed spiking activity in response to
stimulation of afferents of the non-dominant eye (Fig. 3.1.2G, H). In con-
clusion, retinogeniculate wiring seems to be prominently binocular, yet the
degree of binocular functional connectivity is very low.

3.1.2 Monocular eye-dominance across dLGN regions
and visuotopic space

Binocular retinogeniculate convergence may vary regionally within the dLGN,
given that distinct subregions contain RGC afferents of both eyes in vary-
ing ratios. To map binocular convergence across dLGN, the location of all
recorded cells was registered to the Allen Common Coordinate Framework
(ACCF, Fig. 3.1.3A). The contra- and ipsilateral projection zones delineate
the expected locations of contra- and ipsilaterally dominated dLGN neurons
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(Fig. 3.1.3B).
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Figure 3.1.3 A map of ocular dominance across dLGN and visuotopic
space
A Location of patch-clamped dLGN neurons in the ACCF, color-coded based on
ODI (n = 136 cells). Exterior and interior gray hulls are dLGN and ipsilateral
projection zone borders, respectively. B Schematic of anatomical subdivisions of
mouse dLGN. C AMPAR-based ODI distributions of neurons inside contra- (n =
76 cells) and ipsilateral (n = 60 cells) projection zone, and the shell region (n = 23
cells). Red, blue and white bars represent monocular ipsilateral, monocular con-
tralateral and binocular cells, respectively. D Mean eye dominance map, based
on A. E Mean eye dominance and mean monocularity (|ODI|) across azimuth
and elevation of the visual scene (based on data in F). F Coronal sections of
dLGN along rostro-caudal axis, color-coded for mean eye dominance (top; based
on D), azimuth (middle) and elevation (bottom). Visuotopy interpolations were
performed based on data provided by the Niell lab (Piscopo et al., 2013). Scale
bar: 200 µm. Figure modified with permission from Bauer et al. (2021).

While for a majority of cells this was found to be true, surprisingly, approxi-
mately one quarter of all dLGN neurons (24 %) were situated outside of their
expected projection zone, contradicting earlier findings that eye-specific de-
velopmental plasticity is thought to be accompanied by a loss in binocular
responsiveness (Fig. 3.1.3C; Jaubert-Miazza et al., 2005; Ziburkus & Guido,
2006).

To map how ocular dominance relates to points in the visual scene (visuo-
topy), a previously published in vivo single-unit electrophysiology dataset
(Piscopo et al., 2013) was also registered to the ACCF. Using this data, 3D
maps of average eye preference (derived from AMPAR-based ODI) and vi-
suotopy were generated and compared (Fig. 3.1.3D, F). Finally, ODI and
|ODI| were mapped onto the visual scene (Fig 3.1.3F). Regions representing
lateral areas of the visual scene were, as expected, strongly contralaterally
tuned (ODI near 1; Fig. 3.1.3E). dLGN regions which process the upper me-
dial field of the visual scene, on the other hand, showed ODI values of near
0, in line with previous reports that this field in the visual scene is repre-
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sented by both retinae (Dräger & Olsen, 1980). Importantly, when assessing
monocularity via |ODI|, it was found that also this region, just like the rest
of the dLGN, contains neurons that are functionally monocular (|ODI| near
1; Fig. 3.1.3E). Thus, the average ODI of near 0 in the upper medial field of
the visual scene is a result of a mixed population of functionally monocular
neurons, rather than an abundance of binocular neurons in the dLGN.

3.1.3 Three potential mechanisms leading to functional
monocularity

The prominent lack of functionally binocular dLGN neurons in the dataset
motivated a thorough investigation of which putative mechanisms this bias
could be rooted in. In total, three candidate mechanisms were tested: 1)
Axon segregation: Given the segregated nature of the eye-specific projection
zones, dLGN cell body location could bias sampling from RGC afferents such
that most cells receive only monocular input (Fig. 3.1.4A).

Figure 3.1.4 Potential mecha-
nisms causing functional
monocularity in the dLGN
Putative mechanisms responsi-
ble for the high levels of ob-
served functional monocularity:
A Axon segregation: the posi-
tion of neurons determines cells’
inputs, causing monocularly bi-
ased sampling. B Dendritic or-
ganization: dLGN neuron den-
drites are oriented such that
RGC boutons are sampled in a
biased manner. C Synaptic se-
lection and refinement: despite
availability of both eye-specific
input sources, dLGN neurons
preferentially form synapses with
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one of the two bouton populations. Figure reprinted with permission from
Bauer et al. (2021).

a
2) Dendritic orientation: Despite availability of contra- and ipsilateral RGC
afferents near the cell body, the dendritic arbor of cells could be situated
within the dLGN such that only one eye is effectively being accessed (Fig.
3.1.4B). 3) Input selection and synaptic refinement: Despite availability and
connectivity of both ipsi- and contralateral RGC afferents to most cells,
dLGN neurons may preferentially form or strengthen synapses with RGC
axons from one retina (Fig. 3.1.4C).

3.1.4 Axon segregation does not explain functional
monocularity

The segregated nature and geometry of the eye-specific projection zones,
coupled with the small dendritic reach of dLGN neurons (average of ∼140
µm), could render dLGN neurons prone to receiving the majority of their
input monocularly (Fig. 3.1.4A). Consequently, only some regions in the
dLGN should be capable of harboring binocular dLGN cells, based on their
availability of contra- and ipsilateral RGC afferents. To explore this pu-
tative mechanism, the morphologies of whole-cell recorded dLGN neurons
were reconstructed. Next, an average 3-dimensional radial sampling mask
was generated based on the average radial histogram of all reconstructed
dendrite densities (Fig. 3.1.5A, B). This mask could then be used as a proxy
for the average neuronal reach of dLGN neurons. Since ChrimsonR and
Chronos had been tagged with fluorophores (tdTomato and EGFP, respec-
tively), RGC axonal innervation was quantified. To this end, brain slices
that contained recorded dLGN neurons were cleared and subsequently im-
aged using confocal microscopy. Here, the fluorescent proteins (tdTomato
and EGFP) tagging the two opsins were used to obtain a detailed picture
of RGC axon availability. Using the radial sampling mask, the availability
of afferents from both eyes at a given location in the dLGN was quantified.
In particular, the normalized difference between contra- and ipsilateral voxel
counts within the 3D mask was computed, resulting in a measure called the
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radial-mask-based fluorescence difference (rFD). Similar to the ODI measure-
ment, negative and positive rFD values indicate higher ipsi- and contralateral
axonal innervation, while values near 0 indicate equal availability of both af-
ferents. Using this approach, the distribution of RGC axon availability to
dLGN neurons in the dLGN was calculated by sampling rFD values from
several equidistant locations across all cleared brain slices (Fig. 3.1.5C-E
and Fig. S3.1.4A).

Figure 3.1.5 Mechanism 1:
dLGN neuron position
A Dendritic reach in the dLGN
is limited: dendritic density as
a function of Euclidean distance
from soma (average of all cells
in black, individual cells in gray).
B Dendritic sampling (3D radial
mask) based on A. C Smoothed
and binarized confocal image
plane shows eye-specific projection
zones (red, green) and uniform
sampling positions (white; 40 µm
spacing). D rFD (radial mask-
based normalized fluorescence dif-

ference) per sampling position, determined by mask shown in B. E quantification
of D: Ipsilateral (rFD < -0.333; green; 12 %), binocular (rFD within -0.333 and
0.333; yellow; 10 %) and contralateral (rFD > 0.333; red; 78 %) positions sam-
pled. Black bars represent cell-based histogram. F Estimated fractions of rFD
(left) and ODI (right) across all dLGN slices (see methods, normalized average
across 21 slices). ODI classification followed that of rFD (see E; n = 87 cells
across same 21 slices). All scale bars: 100 µm. Figure reprinted with permission
from Bauer et al. (2021).

Assuming a linear relationship between fluorescence and input strength (for
an alternative, see mechanism 3 below), rFD values can be compared to ODI
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values since both are normalized measures of two sources. To this end, ODI
and rFD values were split into three equisized category bins: contralateral
(ODI/rFD >0.33), binocular (|ODI|/|rFD| ≤ 0.33) and ipsilateral (ODI/rFD
<-0.33; Fig. 3.1.5E). Moreover, for this comparison, rFD values were com-
puted using binarized versions of the cleared confocal image stacks. This
simulated conditions of perfect eye-specific projection zone segregation. How-
ever, even under these optimized conditions axonal innervation patterns were
found to be more binocular than the previously observed functional monoc-
ularity (rFD, Fig. 3.1.5F). Hence, axon segregation alone cannot explain the
observed bias towards functional monocularity in the dLGN.

3.1.5 Dendritic orientation does not account for
functional monocularity

As dendritic morphologies of dLGN neurons are not always radially symmet-
ric, sampling within the area of dendritic reach varies considerably between
cells. In other words, individual dLGN neurons might sample in a biased fash-
ion along gradients of axonal segregation, effectively resulting in many dLGN
neurons only receiving input from one eye and hence rendering them monoc-
ularly tuned. To test this, dLGN neuron morphology was further quantified.
Three uncorrelated measures - elongation magnitude, asymmetry magnitude
and dendritic reach - were determined using morphological reconstructions
of recorded neurons (Fig. 3.1.6A, and Fig. S3.1.4A-C). Interestingly, no dis-
tinct morphological categories were observed (Fig. S3.1.4D-E), in line with
more recent reports (Morgan et al., 2016) but in contrast to others (Krahe et
al., 2011; Ling, Hendrickson, & Kalil, 2012). The segregational areas of the
eye-specific projection zones were quantified as gradients (see methods) and
subsequently compared to the three morphological measures (Fig. 3.1.6A).
Only a cell’s elongation was found to be correlated with the RGC axon’s gra-
dient, indicating that a dLGN neuron’s particular dendritic outgrowth might
contribute to the observed levels of functional monocularity (Fig. 3.1.6B, C).

To test if a cell’s dendritic arbor biases RGC axon sampling, the recon-
structed dendritic morphology was used to estimate the amount of eye-
specific input. To this end, the morphology-based fluorescence difference
(mFD) was computed per cell by utilizing the cell’s reconstructed morphol-
ogy to calculate a 3D histogram of the relative morphological density.
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Figure 3.1.6 The relationship
between dLGN neuron mor-
phology and local eye-specific
RGC axon availability
A Reconstructed morphology of a
dLGN cell with its dendritic elon-
gation (blue) and asymmetry (ma-
genta) (left). Maximum inten-
sity projection of the cells nor-
malized background fluorescence
difference (FD; 150 µm sphere
radius) with the background FD
gradient orientation in black and
soma location in blue (right). B
From left to right: polar plots
of FD gradient, dendritic asym-
metry and elongation orientation
of dLGN neurons. Circular aver-
ages are displayed in black (-36°),
magenta (-35°) and blue (43°),
respectively. C Dendritic elon-
gation orientation plotted against
the average background FD gra-
dient orientation per cell (n =
152 cells, circular-circular Pear-
son’s correlation R = 0.33, p <
0.001). All scale bars: 100 µm.
Figure reprinted with permission
from Bauer et al. (2021).

a
This effectively created a 3D mask (mFD mask) per cell that, in conjunc-
tion with the cleared confocal image stacks, could be used to calculate axo-
dendritic overlap in a similar fashion to the rFD mask (Fig. 3.1.7A). If the
detailed dendritic morphologies really biases eye-specific input sampling to-
wards monocularity, rotating the mFD mask but not the confocal image stack
should give insight into dendritic orientation with respect to input sampling
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(Fig. 3.1.7B): the average of the absolute mFD of all cells should decrease
when rotated and be maximal without rotation, effectively implying a cor-
relation between the absolute mFD values and degree of rotation. However,
no such effect was found (R = 0.00064, Fig. 3.1.7C, D), indicating that den-
dritic orientation does not bias axo-dendritic sampling towards monocularity.
Consequently, dendritic orientation is unlikely to be the cause for the high
observed amounts of functional monocularity.

Figure 3.1.7 Mechanism 2:
dLGN dendrite orientation
A Morphology-based fluorescence
difference (mFD) calculation for
an example cell (soma: blue circle)
from left to right (z- and x- projec-
tions are displayed in the top and
bottom rows, respectively): con-
focal image stack with registered
morphology. FD pixel map. Mor-
phology mask of cell. mFD pixel
map, based on morphology mask
and FD pixel map. B mFD as a
function of morphology mask ro-
tation (solid line) and mean mFD
(dashed line; top). mFD pixel
map from cell shown in D at the
other three cardinal rotations. C
Absolute mFD of all cells (light
blue; not rotated) and their me-
dian absolute mFD (0.27). D
Absolute mFD of all cells as a
function of morphology mask ro-
tation (light blue lines: individ-
ual cells, solid blue line: median
of all cells). No correlation be-
tween rotation and absolute mFD
(circular-linear Spearman’s corre-
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lation = 0.00064, p = 0.28, n = 114 cells) All scale bars: 100 µm. Figure
reprinted with permission from Bauer et al. (2021).

a

3.1.6 Synaptic selection and refinement results in
functional monocularity

Neither a cell body’s position, nor a bias in axo-dendritic sampling could fully
account for the observed levels of functional monocularity. However, mFD
values were found to predict eye-dominance (Fig. S3.1.5), and there seems
to be a roughly linear relationship between axo-dendritic overlap (mFD)
and functional eye-specific input dominance (Fig. 3.1.8C). This suggests
that mechanism 1, input availability, plays a significant role in determining
a dLGN neuron’s functional tuning. However, several deviations from this
were found: first, multiple cells were functionally tuned to the eye that had
fewer RGC projections in the immediate vicinity of the dendritic arbor (Fig.
3.1.8A). In other words, availability of RGC afferents alone does not fully
predict ocular dominance, and also cannot account for the observed levels
of functional monocularity in the dLGN. Both of these findings are in line
with the results in 3.1.4 (mechanism 1). Second, in some cases, two neurons
with near-identical axo-dendritic overlap (mFD) were functionally tuned to
opposite eyes (Fig. 3.1.8B). This indicates that beyond mere availability of
presynaptic partners, other mechanisms are likely at work, skewing input
strength towards one eye. Moreover, these mechanisms seem to differ even
between cells that are in close proximity to each other. Third, roughly one
quarter of dLGN neurons were situated outside the expected projection zones
(see Fig. 3.1.3C). Surprisingly, the rare dLGN neurons with ODIs close to
0 in particular were part of that group, and could be found in areas of the
dLGN with an increased availability of axons from the non-dominant eye
(Fig. 3.1.8A).
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Figure 3.1.7 Mechanism 3: synapse selection and refinement underlie
the monocular bias of dLGN neurons
A mFD plotted against AMPAR-based ODI per cell (n = 91 cells; contra- and
ipsilaterally dominated cells in blue and red, respectively). B Neighboring dLGN
neuron pairs with similar axo-dendritic sampling (mFD) but opposite eye pref-
erence. Cell morphologies, locations and retinogeniculate projections in middle.
Left and right: electrophysiological traces of whole-cell voltage-clamp recordings
or AMPAR- (-70 mV, black) and NMDAR-mediated currents (+40 mV, gray)
in response to sequential photostimulation (red and blue bar above traces). C
Probability of eye preference (contralateral: blue, ipsilateral: red) as a function of
mFD (sampling: ± 0.2 mFD; n = 91 cells). D Same as A but for NMDAR-based
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ODI (n = 91 cells). E Monocularity (|ODI|) is higher in AMPAR-mediated than
in NMDAR-mediated responses (n = 101 cells, Wilcoxon signed-rank test, W =
73, p < 0.001). F AMPAR-to-NMDAR ratios of monocular cells (n = 48) and
the DE of binocular cells (n = 53) are similar (Mann-Whitney U test, U = 2565,
p = 0.43). NDE responses have a lower AMPAR-to-NMDAR ratio than their
DE counterparts (Wilcoxon signed-rank test, W = 1377, p < 0.001). Image and
morphology scale bar: 100 µm. Electrophysiology trace scale bars: 100 ms, 200
pA. Figure reprinted with permission from Bauer et al. (2021).

While these deviating cells are noteworthy, on average, dLGN neurons seem
to wire more strongly with the eye-specific RGC afferents that are more
abundant in their vicinity (Fig. 3.1.8A,C,D). Hence, RGC axon availability
(mechanism 1) significantly contributes to the functional tuning of dLGN
neurons but cannot explain the observed levels of functional monocularity
alone.

Ultimately, fine-scale synaptic selection and/or refinement could be the rea-
son for the high levels of functional monocularity. To investigate how monoc-
ularity is manifested, synaptic properties of dLGN neurons were investi-
gated. To this end, AMPAR- and NMDAR-mediated responses of dLGN
neurons were further quantified. Interestingly, NMDAR-mediated responses
were more binocular than their AMPAR-mediated counterparts (Fig. 3.1.8A,
D, E). The ratio of these two receptor-mediated currents, the AMPAR-to-
NMDAR ratio, is typically viewed as a measure that positively correlates
with synapse stability and maturity (Ripley et al., 2011), despite varying
considerably between brain areas (Ji, Saha, and Martin, 2015, but see also
Myme et al., 2003). To test if eye-specific differences in AMPAR-to-NMDAR
ratio might accentuate sampling of ocular inputs, the AMPAR-to-NMDAR
ratio was quantified for monocular cells and the dominant and non-dominant
inputs of binocular cells. The AMPAR-to-NMDAR ratio of the dominant eye
of binocular cells and monocular cells was found to be similar and in line with
earlier reports (Fig. 3.1.8F; Chen & Regehr, 2000; Hooks & Chen, 2006).
Strikingly, the AMPAR-to-NMDAR ratio of the non-dominant eye of binoc-
ular neurons was more comparable to the ratios of juvenile animals (Fig.
3.1.8F; Chen & Regehr, 2000). This is indicative of a process of synaptic re-
finement that further tunes the functional ocular dominance of many dLGN
neurons towards the dominant eye. Additionally, some synapses are rendered
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functionally silent, as they do not contain AMPA receptors and rely on con-
current dendritic depolarization to participate in postsynaptic signalling in
a NMDAR-mediated manner. It seems that the inputs of the non-dominant
eye remain in a juvenile state long into adulthood. Taken together, while
axonal availability predicts ocular dominance in dLGN neurons, synaptic se-
lection and refinement seem to be the main mechanism for rendering the
majority of the dLGN neuronal population functionally monocular.
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3.2 Automated detection of dendritic spines
and dendrites

Dendritic spines are typically identified in microscopy data via human anno-
tation. Usually, this is done to either count single spines by marking their
position in an image (for examples, see Hofer et al., 2009; Yang, Pan, & Gan,
2009; Frank et al., 2018; Hernández et al., 2019) or by generating pixel-wise
annotations of spines (i.e. marking which pixels in an image are labeled as
”spine”) (for examples, see Wilson et al., 2016; Iacaruso, Gasler, & Hofer,
2017). The latter method is typically used to then extract fluorescence values,
e.g. to quantify the presence of a marker after staining or quantify calcium
dynamics during calcium imaging. However, human-annotations are inher-
ently subjective, and biases and user-to-user variability are expected. To
automate detection and segmentation of dendritic spines, several attempts
have been made in the past (Koh et al., 2002; Fan et al., 2009; Heck et al.,
2012; Singh et al., 2017b; Smirnov, Garrett, & Yasuda, 2018). However, these
tools for automated spine segmentation have so far not been widely utilized
beyond their initial publication. Most likely, their applicability is limited to
image data that is similar to the data that has been used to develop these
tools. Consequently, a method of identifying dendritic spines that is (1) read-
ily applicable to a diverse range of image qualities and (2) performs similar
to or better than the hitherto gold standard, human-annotated data, is still
missing. Hence, the aim of this part of the dissertation was to address this
long-standing issue of automated detection and segmentation of dendrites
and dendritic spines in commonly used light-microscopy image types.

3.2.1 DeepD3: A deep-learning approach for the de-
tection of dendrites and dendritic spines

In the past, deep neural networks have performed well in detecting and seg-
menting features in image data (for a review see Minaee et al., 2021). Such
networks are trained in a supervised manner, typically requiring pixel-wise
annotations of images in order to ’learn’ which features of the image are to
be segmented (Vidaurre-Gallart et al., 2022). These annotations are referred
to as ground-truth and together with the original un-annotated image make
up the training data. This part of the dissertation deals with the develop-
ment of DeepD3, a deep-learning framework for the automated detection of
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dendrites and dendritic spines.

Generation of training data

To train a deep neural network to identify and segment dendrites and den-
dritic spines, training data was required. Generally, the quality of training
data dictates the performance of the trained network, with homogeneous or
poorly annotated data leading to poor performance of networks (e.g. being
unable to generalize or providing inaccurate or biased segmentation). To
prevent this, particular care was taken to include heterogeneous data from
different image modalities, with varying image qualities, annotated by several
users. In particular, 2D and 3D images of dendrites and dendritic spines were
obtained using two-photon imaging (CA1 pyramidal neurons of rat OHSCs)
and confocal microscopy (pyramidal neurons of mouse cortex; for details, see
Table 7). Pixel-wise annotations of dendrites and spines were performed us-
ing open-source annotation software (see methods). These annotations, the
ground truth data of dendrites and spines, shared the same image coordinate
system with their respective microscopy images (Fig. 3.2.1B). Images and
their annotations were split into 2D image tiles (128 × 128 pixels) to train
the neural network. To increase diversity across training epochs, primary
(rotation in multiples of 90°; flipping across both axes) and/or secondary
data augmentation (addition of Gaussian noise; application of spatial filters;
adjustment of the image contrast) was stochastically performed on some im-
age tiles (see methods; Fig. 3.2.1A).
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Figure 3.2.1 Generation of a training dataset and procedure for the au-
tomated detection of dendritic spines
A Workflow of supervised learning (from top left to bottom right): Data acquisi-
tion via two-photon morphology imaging of CA1 pyramidal neurons in organotypic
hippocampal slice cultures. Pixel-wise human annotations in two-photon images
to generate spine and dendrite ground-truth images. Training dataset genera-
tion, done via image tiling, application of tiling to paired image data, primary
and secondary data augmentation. Deep neural network training on training
data. B Example of training data quality (from top to bottom): Example of a
2-dimensional two-photon image. Manual, pixel-wise dendritic spine annotations.
Manual, pixel-wise dendrite annotation. Merge of all three channels.

Network architecture and training

Given the recent success of the U-Net architecture (Ronneberger, Fischer, &
Brox, 2015) in semantically segmenting image data (Çiçek et al., 2016; Oktay
et al., 2018; Falk et al., 2019), a custom-variant of this architecture was engi-
neered: encoding of input images occurred across 4 convolutional layers that
each employed two repeated applications of convolution, each followed by
batch normalization (Ioffe & Szegedy, 2015) and a swish activation function
(Ramachandran, Zoph, & Le, 2017). The second application of this process
also utilized residual layers (He et al., 2016). Finally, data was down-sampled
for the next layer using max pooling (Fig. 3.2.2A; Yamaguchi & Matsumoto,
1990, for details, see methods). The final encoding layer, the latent space,
feeds two independent decoding pathways (Fig. 3.2.2A), one for spine and
one for dendrite predictions. Both decoding pathways followed the classical
U-Net architecture in 4 convolutional layers. Per layer, data of the previ-
ous layer was first upsampled and concatenated with input from the encoder
pathway (provided via skip connections). These skip connections aided in
maintaining spatial features across convolutional layers in the encoder paths.
After concatenation, two repeated applications of convolution, each followed
by batch normalization and swish activation function, were performed per
convolutional layer (Fig. 3.2.2A).
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Figure 3.2.2 Architecture of
DeepD3, a deep-learning ap-
proach for the detection of
dendrites and dendritic spines
A Architecture of DeepD3: Input
images pass through 4 convolu-
tional layers (encoder path, black)
until they reach the latent space
(ξ). Each convolutional layer is
comprised of two 3 × 3 convolu-
tions, followed by batch normal-
ization, which are fed into a swish
activation function. Finally, down-
sampling is done via 2 × 2 max
pooling (bottom left). After en-

coding, the latent space is decoded in two independent pathways, one each
for spines and dendrites, respectively (magenta, turquoise). Each decoder path
is comprised of 4 convolutional layers with the same structure: after 2 × 2 up-
sampling, skip connections from the encoder path (gray arrows) are concatenated
to the image, and subsequently two 3 × 3 convolutions, followed by batch nor-
malization are each fed into a swish activation function (bottom right). Each
decoder path generates a prediction image of the same size as the input image
(black lines on the right). Finally, back-propagation-mediated training is done
via optimization of DICE and MSE loss for dendrite and spine prediction, respec-
tively.

Backpropagation-aided, supervised training was implemented via DICE and
MSE losses for dendrite and spine prediction, respectively. During training,
mini-batch gradient descent (Bottou et al., 1998) on minimization of the
sum of the loss functions was performed using the training data. Initially,
only a part of the training dataset was used, and only primary data aug-
mentation was applied. Despite good performance on the training data, the
validation loss did not seem to improve over training epochs (Fig. S3.2.3A),
indicative of the network overfitting the data during training. Interestingly,
this network still segmented dendrites and dendritic spines well in novel data
that was similar to the training data in terms of pixel size and signal-to-
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noise ratio (Fig. S3.2.3B). However, the ability of the trained network to
generalize was limited, as evidenced by its poor performance on data with
different pixel size and signal-to-noise ratio (Fig. S3.2.3C). As mentioned
above, when DNNs are trained on homogeneous data, generalizability typ-
ically suffers. Microscopy data of dendritic spines can vary considerably in
many image features, most prominently pixel size (how many pixels a spine
contains), signal-to-noise ratio (defined here as the difference in brightness
between spine/dendrite and background pixels), and relative brightness dif-
ferences within the image (e.g. spines and dendrites). To approach this more
systematically, a larger portion of the training dataset was used (spanning a
range of pixel sizes) and secondary data augmentation was applied (adding
noise, spatial filters and changes to contrast to the training data) to train
another network. During training of this network, validation loss decreased
over training epochs (Fig. S3.2.3B), indicative of better model generaliza-
tion. Indeed, this general network performed well on data with different pixel
sizes and signal-to-noise ratios (Fig. S3.2.3B, D, E, F).

Despite the better performance of the generalized network, a number of
networks were trained to generate an array of options when automatically
segmenting qualitatively heterogeneous data. General networks were trained
without a premeditated data quality in mind, such that they could be em-
ployed more broadly. For these networks, primary and secondary data aug-
mentation was performed and heterogeneous training data was used. Al-
ternatively, networks were trained with a more homogeneous subset of the
training dataset that in some cases was not augmented in a second step.
This type of training data produced specialized networks, which proved to
perform well on test data that was similar to training data in terms of signal-
to-noise ratio and pixel size. In this dissertation, both specialized and general
networks were utilized (for details, see Table 8).

Workflow and features of DeepD3

DeepD3 performs annotations of dendrites and spines in two steps: prediction
and segmentation, which are performed in sequence (see Fig. S3.2.1, S3.2.2).
An array of user-defined hyper-parameters aids in both steps to arrive at
optimal annotations. During prediction, DeepD3, generates two images that
have the same dimensions as the input image, one each for the prediction
of dendrites and dendritic spines. The choice of model for prediction, as
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outlined above, can greatly influence these output images. Independent of
model choice, pixel values in both images range from 0 to 1, indicative of
the probability DeepD3 assigns to a certain pixel of being part of a spine
or dendrite (Fig. S3.2.2C). These probabilities can then be leveraged to en-
hance predictions in multiple steps. For example, pixels with weak dendrite
prediction values (e.g. p < 0.3) can be omitted by application of a threshold
to the dendrite prediction images (Fig. S3.2.1B). Moreover, the biological
characteristics of dendrites and spines can be utilized to further enhance
predictions. Dendrites, for example, tend to be contiguous, tube-like struc-
tures that, depending on the pixel size, span hundreds to thousands of pixels.
Hence, users can apply a threshold of minimal dendritic length (in connected
pixels), which effectively removes all pixels that are not part of a contigu-
ous dendrite arbor (i.e. noise). Spines, on the other hand, are connected
to dendrites via a spine neck, and are thus always found in close proximity
to dendrites. Consequently, when spine prediction pixels are limited to a
user-defined distance to detected dendrites, false positive spine predictions
can be effectively removed.

The cleaned prediction image is then further processed during segmentation
to generate regions of interest (ROIs) on a spine-by-spine basis. All contigu-
ously connected pixels are treated as individual spine ROIs, which are then
further cleaned. ROIs that do not contain high probability pixel values (e.g.
> 0.7) are subsequently excluded (Fig. S3.2.2C). Next, the outline of ROIs is
determined by high-pass thresholding the image based on spine probability
values (n.b. low filter threshold leads to larger ROI sizes). Watershed seg-
mentation is utilized to segment connected or overlapping spine ROIs. As a
last step in ROI cleaning, maximum and minimum spine size are exploited to
exclude artifacts. After ROI generation and cleaning, the two prediction im-
ages, as well as all identified spine ROIs, can be saved. An entire image (size:
∼500 GB; containing ∼500 spines) can be loaded, segmented, cleaned, and
the results saved within four minutes using a standard computer equipped
with a 8 GB GPU chip. In comparison, human annotation of such an image
would take several hours. In conclusion, DeepD3 provides a toolbox of net-
works and hyper-parameters to quickly identify and segment dendrites and
dendritic spines in image data.
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Validation of DeepD3: homogeneous test data

To validate DeepD3 beyond the initial validation data, an independent,
pixel-wise annotated dataset was generated. Data quality resembled that
of the training dataset, hence this dataset was termed homogeneous valida-
tion data. To validate DeepD3 on the homogeneous test data, performance
was inspected in three stages: First, DeepD3-generated spine and dendrite
predictions were visually compared to ground-truth data annotations. Both
predictions seemed to follow annotations closely, with most dendritic spines
seemingly being detected (Fig. 3.2.3B, C). Second, to quantify DeepD3 per-
formance, prediction images were assessed by comparing manual annotations
to DeepD3 predictions in a pixel-wise manner across a range of user-defined
hyper-parameters. Using a confusion matrix, all pixels could be classified
into four categories (true positive, false positive, true negative, false nega-
tive) by testing DeepD3 performance against manual annotations (see meth-
ods). Using these four categories, precision, recall and F1 score were com-
puted. DeepD3 was able to detect roughly 50 % of all spine pixels (Fig.
3.2.3D). False positives (measured in precision) decreased and false nega-
tives increased (measured in recall) as the inclusion criteria for spine ROIs
became more stringent (higher spine probability threshold). Third, one of
the main applications of DeepD3 is identifying dendritic spines, rather than
identifying every pixel of a dendritic spine. Hence, ROI-wise prediction of
DeepD3 across a range of user-defined hyper-parameters was assessed. To
this end, the same pixel-wise human annotations were compared to DeepD3
predictions (ROI matching) using two methods: based on inter-ROI distance,
i.e. whether the Euclidean distance of the DeepD3-predicted and manually
annotated ROI centroids was less than 120 µm. Alternatively, ROIs were
matched based on their overlap, with a requirement of 50 % overlap between
DeepD3- and manually generated ROIs (see methods). ROI-wise spine seg-
mentation was found to be robust across a large range of hyper-parameters
(precision > 85 %, with both ROI matching methods being in agreement;
Fig. 3.2.3E, F).



3.2 Automated detection of dendritic spines and dendrites 129

Figure 3.2.3 Validation of DeepD3: homogeneous test data
A Top: Maximum intensity projection of a 3D two-photon image of a dendritic re-
gion of a CA1 pyramidal cell. Gray box delineates the inset shown at the bottom.
B From top to bottom: manual spine annotation, manual dendrite annotation,
merge of annotations with raw structural data (inset in A). C From top to bot-
tom: DeepD3-generated spine prediction, DeepD3-generated dendrite prediction,
merge of predictions with raw structural data (inset in A). D DeepD3 performance
as a function of spine probability threshold. Pixel-wise performance of true pos-
itive rate (recall, orange), positive predictive value (precision, yellow) and their
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harmonic mean (F1 score, red). More stringent thresholds tend to perform more
poorly. E DeepD3 performance as a function of spine probability threshold. Spine
ROI-wise precision (yellow) and the number of true positives (magenta) and false
negatives (purple). Performance based on centroid-to-centroid distance. Perfor-
mance is good and stable across spine probability threshold values. F Same as E
but for performance based on ROI overlap (> 50 %). Performance is good and
stable across spine probability threshold values.

3.2.2 Cross-validation of DeepD3 on diverse datasets
To confirm the applicability of DeepD3 on a wide range of data types and
qualities, cross-validation on two additional datasets was performed. This
step is critical to evaluate whether DeepD3 performs well across images of
different qualities. Image quality in this case concerns two aspects, which are
critical to the performance of an automated tool: first, the signal-to-noise
ratio of the image. In images with a high signal-to-noise ratio, dendrites and
dendritic spines can easily be visually distinguished from the background
noise, thereby making segmentation easier. The second key aspect of images
is the pixel size, i.e. how many pixels are contained in a dendrite or other
morphological feature. Typically, automated approaches need to ’learn’ how
large (in pixels) a feature is to perform well. For simplification, these two
aspects of images will be referred to as image quality. Ideally, an automated
tool should perform well in a range of signal-to-noise ratios and pixel sizes
to allow users to flexibly segment images with different image qualities.

Mouse organotypic hippocampal slice culture in vitro

In the first cross-validation test, DeepD3 performance was tested in a pub-
licly available dataset (Smirnov, Garrett, & Yasuda, 2018). This dataset
contained images of CA1 neurons of mouse (as opposed to rat in the train-
ing data) organotypic hippocampal slice cultures. In particular, spines and
dendrites of secondary apical dendrites in the stratum radiatum were cap-
tured using two-photon imaging, resulting in images with high image qual-
ity (see methods; Fig. 3.2.4A, B). DeepD3 reliably found hand-annotated
spines in these images (recall = 0.91/0.93; Fig. 3.2.4C). However, a high
amount of false positive spine ROIs (precision = 0.46/47) indicated that sev-
eral potential spine ROIs had been identified by DeepD3 that had not been
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hand-annotated. Indeed, upon closer inspection, it seems that several den-
dritic spines had not been hand-annotated in the publicly available data (Fig.
3.2.4B). Hence, the true precision of DeepD3 on this dataset is likely much
higher than 0.46/0.47. DeepD3’s performance on the cross-validation data,
in conjunction with the performance on the homogeneous validation data,
indicates that DeepD3 readily identifies dendritic spines in in vitro data.

Figure 3.2.4 Cross-validation of DeepD3
A From left to right: raw structural image, DeepD3-generated dendrite predic-
tion (turquoise), DeepD3-generated spine prediction (magenta), manual spine
annotation (magenta) (data from Smirnov, Garrett, & Yasuda, 2018). B Same
as A but different image. Example of incomplete spine annotation. C Per-
formance of DeepD3 on a public dataset, obtained from Smirnov et al. 2018.
Precision (yellow) is poor, since some dendritic spines were not annotated in
the dataset but were found by DeepD3 (see B). DeepD3 identifies most anno-
tated dendritic spines (see recall, orange). Distance-based criterion: Euclidean
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distance between the centroid of the prediction ROI and the human annotation
is within 1.1 µm. Area-based criterion: prediction ROI contains human annota-
tion. D Two-photon structural images of L2/3 pyramidal neurons of mouse bV1
were obtained in vivo (maximum intensity projection). Inset is shown in E. E
From top to bottom: single frame of inset of raw structural image shown in D,
single frame of DeepD3-generated dendrite prediction (turquoise), single frame
of DeepD3-generated spine prediction (magenta), all manual spine annotation
(magenta). F Performance of DeepD3 on data in D, E. Precision (yellow) is still
suboptimal, as not all spines on all dendritic stretches were annotated. DeepD3
identifies almost all annotated dendritic spines (see recall, orange).

Layer 2/3 pyramidal cells of mouse binocular visual cortex in vivo

DeepD3 was next challenged with in vivo image data. This type of data
typically suffers from worse optical access and higher density of neurons,
making spine identification more difficult. To test DeepD3 on in vivo data,
structural image stacks of apical and basal dendrites of pyramidal L2/3 neu-
rons of mouse binocular V1 were acquired (see methods; Fig. 3.2.4D). Per
image stack, spines along 1-2 dendrites were human-annotated. Strikingly,
DeepD3 identified the vast majority of hand-annotated dendritic spines (re-
call = 0.96), indicating that neither the difference in modality (in vivo),
nor the more dense labeling posed problems (Fig. 3.2.4E, F). Again, sev-
eral false-positives were identified when automatically identifying dendritic
spines (precision = 0.80). Two factors contribute to this. A) Image data
was only annotated for 1-2 dendrites, hence spines on other branches were
identified by DeepD3 but not human-annotated. In an effort to compare
DeepD3 performance on the same subset of dendritic spines, the area of pos-
sible predictions was limited, based on manual annotations (see methods).
Nevertheless, some dendritic branches crossed into the area in which DeepD3
performance was quantified. Hence, some dendritic spines that had not been
manually annotated contributed to the amount of false positives. B) This
dataset was part of a larger dataset, which investigated spine dynamics in
L2/3 of mouse bV1 chronically (Bauer et al., unpublished data). Here, an-
notations were performed with the goal of matching dendritic spines across
time. As a consequence, a small fraction of dendritic spines were not anno-
tated, resulting in a similar problem when quantifying DeepD3’s precision.
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In conclusion, DeepD3 readily identified dendritic spines across multiple, in-
dependently generated and annotated datasets, that differ in image quality
and characteristics.

3.2.3 DeepD3 performs as well as a human in spine
identification

So far, DeepD3 was shown to reproduce human annotations in a variety
of datasets and criteria. However, these comparisons were only done with
regard to annotations of a single user per dataset. Annotations within a single
dataset might, however, vary between different annotators (inter-annotator
reliability), given that spine identification in image data is a subjective task:
after all, image quality and user biases might contribute to the choice of a
user to localize and annotate a dendritic spine. Moreover, when tasked to
annotate the same images on two occasions performance of a single annotator
might also vary over time (intra-annotator reliability). A thorough search of
the relevant literature yielded no articles evaluating this inherent variability
within and between annotators. To address this gap, two additional datasets
were obtained and manually annotated by multiple experienced users and
subsequently compared to DeepD3 performance.

Rat organotypic hippocampal slice culture in vitro

A large volume (∼134 × 34 × 35 µm3) of a CA1 pyramidal cell’s apical
dendrites containing hundreds of dendritic spines was manually annotated
by seven experienced users (Fig. 3.2.5A, B). Importantly, in contrast to the
previously analyzed datasets (Fig. 3.2.4), where only some dendritic branches
had been annotated, here users were instructed to densely annotate the image
and identify all dendritic spines in the volume. Mean inter-annotator relia-
bility was high (precision: 0.81) but varied mildly between user pairs (Fig.
3.2.5D). Intra-annotator reliability (n = 2 users, k = 2 repeats) in the same
dataset was found to roughly match inter-annotator reliability (mean preci-
sion: 0.85, Fig. S3.2.3G). DeepD3 performance was on par with the average
performance of human annotations (precision: 0.84/0.81, recall: 0.73/0.73,
p = 0.475 and p = 0.2301 for recall and precision, respectively; Fig. 3.2.5C).
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Figure 3.2.5 DeepD3 performs as well as a human in spine identification
in in vitro data
A Schematic of data generation: two-photon structural images of tdTomato-
expressing CA1 pyramidal neurons in organotypic hippocampal slice cultures were
obtained (top). Example maximum intensity projection of a dendritic region
(bottom) with inset (shown in B). B From top to bottom: raw structural image
(maximum intensity projection, in gray), DeepD3-generated spine (magenta) and
dendrite prediction (turquoise), manual spine annotation of a single annotator
(magenta). C Mean performance (precision: yellow, recall: orange) of DeepD3
across all annotators. Distance-based criterion: Euclidean distance between the
centroid of the prediction ROI and the human annotation is within 1.1 µm. Area-
based criterion: prediction ROI contains human annotation. DeepD3 performed
as well as human annotators in identifying dendritic spines (p = 0.2301, Kruskal-
Wallis test of distance-based recall of DeepD3 and all inter-annotator reliability
measures; p = 0.475 for distance-based precision of DeepD3). D Inter-annotator-
reliability as a function of recall (top). Agreement of annotator 1 to annotator 2
is quantified. Distance-based criterion is used for DeepD3 performance (denoted
as annotator D3). Bottom: DeepD3 performance per annotator as a function of
precision.
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Layer 2/3 pyramidal cells of mouse binocular visual cortex in vivo

Next, DeepD3 performance was assessed in more densely labeled in vivo
image data (Fig. 3.2.6A-C). To this end, a different image stack of the pre-
viously used L2/3 mouse bV1 dataset was annotated by six users. As out-
lined above, this dataset was sparsely annotated (2 of 5 dendritic branches),
and annotators were instructed to match spines across other, not analyzed
time points, potentially confounding comparisons of false-positives (preci-
sion). The variability between human annotations was higher than in the
OHSC in vitro dataset (precision: 0.63, recall: 0.61, Fig. 3.2.6D, E). As
in the previous analysis on images of this dataset (Fig. 3.2.4D-E), DeepD3
identified additional dendritic spines that were not annotated by the users
(precision: 0.56/0.46). However, most dendritic spines found by human anno-
tation could also be detected using DeepD3 segmentation (recall: 0.82/0.67;
3.2.6D, E). Overall, DeepD3 performed better than human annotators in this
in vivo dataset in terms of recall (p <0.001). However, given that manual
annotation was performed with the goal of matching dendritic spines across
other, not here analyzed, time points, the generalization that DeepD3 per-
forms better than humans in detecting spines is not warranted. Precision of
DeepD3, on the other hand was worse than that of humans (p <0.001), indi-
cating that several dendritic spines were found by DeepD3 that had not been
identified by humans (false positives). However, upon closer inspection of the
data, it became evident that some dendritic spines had been overlooked by
some annotators (see for example upper left part of the dendrite in 3.2.6C),
explaining the sudden increase in false positives. Overall, however, it seems
that also in in vivo image data, DeepD3 performs at least on par with the
average performance of human annotations.

In conclusion, DeepD3 is a novel, automated tool for the detection of den-
drites and dendritic spines. It performs at least equally well as the hitherto
gold standard, human annotations, in terms of intra- and inter-user reliabil-
ity. Moreover, its applicability has been tested in a variety of datasets in
vitro and in vivo with varying image quality.
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Figure 3.2.6 DeepD3 performs as well as a human in spine identification
in in vivo data
A Schematic of data generation: two-photon structural images of L2/3 pyramidal
neurons of mouse bV1 were obtained in vivo. B Raw structural image (maximum
intensity projection; left) with a high-resolution inset (right). C From left to
right: raw structural image (maximum intensity projection, in gray), DeepD3-
generated spine (magenta) and dendrite prediction (turquoise), manual spine
annotation of a single annotator (magenta). Some spines (e.g. right image, top
left) have not been manually annotated but were detected by DeepD3 (middle
image), influencing DeepD3 precision (see H, I). D Same as C but for in vivo
data. DeepD3 performed better than human annotators in identifying dendritic
spines (p <0.001, Kruskal-Wallis test of distance-based recall of DeepD3 and all
inter-annotator reliability measures; p <0.01, Kruskal-Wallis test for distance-
based precision of DeepD3). E Same as D but for in vivo data annotations.
Distance-based criterion is used for DeepD3 performance (denoted as annotator
D3). Bottom: DeepD3 performance per annotator as a function of precision.
Error bars are ± SEM. NB: Some error bars for inter-annotator reliability scores
of precision and recall are too small to be displayed.
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3.2.4 Proof of concept application of DeepD3 in 3D
and time-course data

DeepD3-generated segmentation of dendrites and spines in microscopy data
can be utilized beyond counting spines. In particular, DeepD3 outputs can
be utilized when analyzing fluorescence measurements of dendritic spines, to
extract raw fluorescence values of images. As a proof of concept, DeepD3
was incorporated in data analysis pipelines to extract fluorescence measure-
ments of dendrites and dendritic spines in 3D and in 2D time-course data:
first, stimulation-induced calcium transients of dendrites and dendritic spines
were quantified. To this end, a single CA1 pyramidal cell culture was trans-
fected with a structural (tdTomato) and a GECI (GCaMP7b; functional
marker) via single-cell electroporation (SCE; Fig. 3.2.7A). Presynaptic ac-
tivity was controlled via AAV-mediated transduction of a population of CA3
cells with ChR2(H134R). DeepD3-generated segmentation of dendrites and
dendritic spines was performed to quantify optogenetically induced calcium
transients (Fig. 3.2.7B). Dendrite ROIs were further segmented into den-
dritic sub-ROIs, which in turn were matched to individual spines, opening
avenues for commonly used single-spine calcium imaging analysis methods
(Scholl, Wilson, & Fitzpatrick, 2017; Kerlin et al., 2019, Fig. 3.2.7B, ). Cal-
cium transients of spines and dendritic sub-ROIs were then extracted (Fig.
3.2.7D). As expected, at the time point of ChR2-stimulation, a rapid increase
in intracellular calcium was detected in all dendritic sub-ROIs and most den-
dritic spines (Fig. 3.2.7D).

In addition, using volumetric field-of-depth Bessel-beam imaging (see meth-
ods), a much larger dendritic region of a CA1 pyramidal cell was imaged. Un-
like the previous example, here calcium transients were not evoked. Rather,
spontaneous calcium events in single spines and dendritic calcium spikes were
captured. Again, DeepD3 was able to localize dendritic spines in the sample
(Fig. 3.2.7C), and calcium transients were extracted using the DeepD3-
generated segmentation (Fig. 3.2.7E). Neither the different imaging method
nor the difference in image features (i.e. pixel size and signal-to-noise ratio)
seemed to pose an issue for DeepD3, and spontaneous calcium events could
be captured (Fig. 3.2.7E).



138 3. Results

Figure 3.2.7 Application of DeepD3 in 3D and 2D time-course data
A Schematic of data collection. CA1 neurons of organotypic hippocampal slice
cultures, expressing tdTomato and GCaMP7b were imaged in the presence of
TTX, 4-AP and D-Serine. A subpopulation of CA3 neurons expressed
ChR2(H134R). B Top: DeepD3-generated spine ROIs (magenta). Corresponding
spine segments of the calcium traces in C are color-coded in dark blue to green.
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Bottom: DeepD3-generated dendrite sub-ROIs (turquoise). Corresponding den-
dritic segments of the calcium traces in C are color-coded in dark blue to green.
C Example dendritic stretch with dendritic spines (average intensity projection
of calcium-imaging time series of CA1 pyramidal cell) with DeepD3-generated
spine ROIs (green to blue). Image was acquired using extended depth-of-field
Bessel beam imaging (see methods). D Photostimulation-evoked calcium tran-
sients of spine ROIs (s1-8 in color) and their matched dendritic sub-ROIs (d1-8 in
matching color), depicted in B. E Calcium transients of DeepD3-generated spine
ROIs depicted in C. F Application of DeepD3 on 3D data: Maximum intensity
projection of a 3D structural image (gray). Spine-ROI-wise ratiometric spine-to-
dendrite ratio (a measure of preferential spine localization) between a structural
marker (tdTomato) and a spine maturity marker (Xph-15-mTurquoise2) is de-
picted in color. G Quantification of ratiometric spine-to-dendrite ratio of F. A
RSDR threshold of 1 (black dashed line) and the mean RSDR (cyan line) are
indicated.

The DeepD3-generated segmentation was leveraged for fluorescence measure-
ments in three-dimensional data. To this end, single CA1 neurons of rat
OHSC were transfected with a structural (tdTomato) marker as well as an
indicator of spine maturity (Xph-15-mTurquoise2). The latter preferentially
localizes to dendritic spines, as it is a nanobody against PSD-95 (Rimbault
et al., 2021), a pivotal postsynaptic scaffolding protein (for more details,
see 3.3.2 and methods; Kornau et al., 1995; Tu et al., 1999; El-Husseini et
al., 2000; Schnell et al., 2002). To assess the degree of localization prefer-
ence of Xph-15, the ratiometric spine-to-dendrite ratio (RSDR) was com-
puted: per spine, the ratio of the average intensities of the maturity marker
(mTurquoise2) and the structural marker (tdTomato) was quantified and di-
vided by the same ratio for the entire dendritic arbor, resulting in a RSDR
per spine. RSDR values >1 are positively correlated with higher preferential
localization in the spine, while values of 1 indicate equal expression levels in
dendrite and spine. Values below 1 indicate higher expression levels in the
dendrite. As expected, most spines had an RSDR of higher than 1 (mean
= 1.13, n = 553 spines; 3.2.7F, G), indicating that the nanobody construct
preferentially localized to dendritic spines. This demonstrates that DeepD3
can be readily used to extract fluorescence measurements from 3D image
data. Manual segmentation, particularly that of 3D data, is very time in-
tensive. For example, manual segmentation of an image stack as shown in
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Figure 3.2.7F typically requires 3-5 hours. In contrast, DeepD3 was able
to perform this task in less than four minutes using a standard computer,
equipped with a 8 GB GPU chip. This difference in segmentation speed
should allow researchers to investigate dendritic spines in much larger quan-
tities than previously possible.

In conclusion, DeepD3 is a deep-learning framework that rapidly identifies
and segments dendrites and dendritic spines in a wide range of microscopy
data. Segmentations can not only be utilized to count dendritic spines, but
can also be leveraged to perform fluorescence measurements in dendrites and
spines in 2D and 3D data. The speed with which DeepD3 performs seg-
mentation could be critical for future experiments, as results can be rapidly
provided and large datasets can be analyzed within much shorter time frames.
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3.3 Towards establishing wiring rules during
LTP-induced synaptogenesis

New dendritic spines grow in neurons undergoing LTP (Engert & Bonhoef-
fer, 1999; Maletic-Savatic, Malinow, & Svoboda, 1999; Toni et al., 1999) and
subsequently form functional synapses with axons in their vicinity (Nägerl
et al., 2007; Roo et al., 2007; Zito et al., 2009; Hill & Zito, 2013; Coneva,
2015). However, it remains unclear how these newly formed, LTP-induced
synapses choose their presynaptic partners. There are a number of potential
scenarios (Fig. 3.3.1C): de novo spines could avoid forming synapses with
inputs that were previously active (anti-Hebbian); or merely seek for any
pre-synaptic partner in the vicinity (non-Hebbian). Alternatively, de novo
spines could preferentially, or even exclusively wire in a coordinated fashion
to those neurons that previously caused the spines to emerge during LTP
(partially Hebbian or Hebbian). This is reminiscent of Hebbian plasticity
mechanisms, as originally proposed by Donald Hebb suggested in his book
the Organization of Behavior (1949) and frequently observed in various ex-
periments (Bi & Poo, 1998; Magee & Johnston, 1997; Lamsa, Heeroma, &
Kullmann, 2005). To investigate these wiring rules, an assay was developed
previously (Coneva, 2015). The aim of this part of the dissertation was to
further refine this assay, in particular by (1) assessing the role of spine matu-
rity and (2) identifying means to conclusively define functional connectivity
of dendritic synapses, which comprised a combination of greatly increased
throughput, analysis pipeline development and overall method refinement.

3.3.1 An assay to map functional synaptogenesis dur-
ing LTP

Organotypic hippocampal slice cultures were chosen as a model for three
reasons: first, the stereotyped wiring of the hippocampus permitted reliable
definition of pre- and postsynaptic cell populations. Second, OHSCs allow
for a multitude of experimental manipulations (e.g. pharmacology) and in-
vasive methodologies (e.g. electrophysiology or single-cell electroporations).
Third, OHSCs enable comparisons to previous reports investigating LTP-
induced spino- or synaptogenesis, as the majority of these have utilized this
model (Engert & Bonhoeffer, 1999; Maletic-Savatic, Malinow, & Svoboda,
1999; Toni et al., 1999; Nägerl et al., 2007; Coneva, 2015). Using OHSCs,
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an assay was designed to approach the question of functional connectivity of
LTP-induced synaptogenesis (Coneva, 2015). Using the neuronal architec-
ture of the hippocampus, presynaptic (CA3) and postsynaptic (CA1) cells
were assigned along the Schaffer collateral pathway.

To obtain optogenetic control over cell activity presynaptically, a sub-population
of CA3 pyramidal cells was transduced with ChR2(H134R) via AAV injection
(Fig. 3.3.1A, B). This served two purposes: A) it provided means to induce
LTP optochemically and in an input-specific manner (Otmakhov et al., 2004;
Coneva, 2015). To aid in inducing LTP, cAMP levels were temporarily in-
creased pharmacologically via the addition of forskolin and rolipram. More-
over, by blocking voltage-gated sodium- and potassium channels (VGSCs and
VGPCs, respectively), photostimulation-induced neurotransmitter release of
CA1-projecting CA3 axons was tightly controlled spatially and temporally
(Petreanu et al., 2009). This rendered photoresponsive boutons as the only
input source during LTP induction. B) Additionally, optical control over neu-
rotransmission in the Schaffer collateral pathway could be utilized to probe
for functional connectivity on a single-spine basis later in the experiment (see
below).

To identify pre-existing and LTP-induced spines, as many dendritic spines
as possible were tracked over the time course of several hours (the estimated
duration needed for functionalization of newly grown dendritic spines, see
Nägerl et al., 2007; Zito et al., 2009). In particular, high-resolution chronic
two-photon imaging of dendritic spines was performed in dendritic stretches
of tdTomato-expressing CA1 neurons, enabling the tracking of several thou-
sand dendritic spines over the time-course of hours.
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Figure 3.3.1 An assay to map functional synaptogenesis during LTP
A Preparation of experiment. From left to right: organotypic hippocampal slice
cultures (OHSC) are prepared, presynaptic inputs (CA3) are transduced with
ChR2, postsynaptic markers are expressd in single CA1 cells, experiment is con-
ducted using two-photon imaging and extracellular electrophysiological record-
ings. B Experimental configuration of the model: the CA1 region of an OHSC
is two-photon imaged for changes in structure (tdTomato), functional connec-
tivity (GCaMP7b), and spine maturity (Xph-15-mTurquoise2). Simultaneously,
extracellular recordings are performed in the direct vicinity of the target cell to
quantify LTP. ChR2-expressing boutons of CA1-projecting CA3 neurons are stim-
ulated to induce LTP and map functional connectivity. TTX and 4-AP, blockers
of VGSC and VGPC, respectively, are utilized to limit photostimulation spatially.
C Schematic of potential wiring rules governing LTP-induced synaptogenesis.
Dendrites are indicated in red. Two axons are in the vicinity of the dendrite, one
inducing LTP (dark gray) and one inactive (light gray). Spines connected to the
LTP-inducing axon are indicated in green, others in red. LTP-induced spines are
indicated in blue and denoted with a plus symbol. Top: A dendritic stretch with
spines before LTP induction. Top left: depiction of input-specific ”Hebbian”
wiring with newly grown spines only connecting to LTP-inducing axons. Bot-
tom left: same as top left but with less input-specificity (”Partially Hebbian”).
Here, some nascent spines also wire to previously inactive inputs (light gray
axon). Bottom right: LTP-induced spines form functional synapses randomly
with any axon in the vicinity (”Non-Hebbian”). Top right: newly-grown spines
exclusively synapse onto previously inactive axons, avoiding LTP-inducing inputs
(”Anti-Hebbian”). D Experimental timeline. Top, from left to right: A dendritic
stretch of interest is identified and structural images are acquired. LTP is induced
optochemically. LTP-induced structural changes (spinogenesis) is monitored for
5 hours. Spine maturity is assessed to exclude immature spines from analysis.
Functional connectivity is mapped (spine input mapping) via calcium imaging
in several regions of interest that lie within the region that has previously been
monitored for structural changes. Bottom: before and after the induction of
LTP, field excitatory postsynaptic potentials (fEPSP) are monitored to quantify
the amount of elicited potentiation.

In addition to the structural marker, a genetically encoded calcium indicator
(GCaMP7b) was expressed in the postsynaptic cells to map the functional
connectivity of dendritic spines (spine input mapping). Since spontaneous re-
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lease events were suppressed (block of VGSCs and VGPCs), photostimulation-
induced neurotransmission is the main source of calcium events in postsynap-
tic compartments (dendritic spines). Thus, using ChR2-stimulation and si-
multaneous two-photon calcium imaging, the functional connectivity of den-
dritic spines was mapped to determine which dendritic spines are functionally
connected to photostimulation-responsive boutons. Since these boutons also
contributed the presynaptic input during LTP inducting, identifying their
postsynaptic partners, this effectively effectively quantifies functional con-
nectivity. Moreover, using this same approach, LTP-induced dendritic spines
can be functionally characterized, in turn allowing assessment of the rules of
functional synaptogenesis after LTP.

One shortcoming of this approach is that it precludes conclusions for un-
responsive LTP-induced spines. There are two main reasons for a lack of
responsiveness: A) a functional synapse was formed with a photo-insensitive
(ChR2-negative) presynaptic partner. B) An immature synapse was formed,
which does not have the machinery necessary for synaptic transmission. Such
immature synapses per definition cannot be functional, and hence should be
excluded when assessing functional synaptogenesis during LTP.

Two means of differentiating between these two scenarios are conceivable.
First, the existence of newly grown spines could be assessed at a later time
point. In the past, it has been shown that immature dendritic spines rarely
survive beyond past 24 hours of their emergence (Cane et al., 2014). Con-
sequently, assessment at a later time point would exclude the majority of
immature spines due to their lack of stability. However, a major caveat of
this option is that synaptic turnover is extensive in the Schaffer collateral
pathway (with up to 40 % turnover in four days, see Pfeiffer et al., 2018) and
hence spine stability and connectivity of both pre-existing and LTP-induced
spines could be affected over time. This would introduce additional con-
founding variables and hence limit the conclusions that could be drawn from
such an experiment.

Second, spine maturity could be assessed by quantifying the abundance of
postsynaptically expressed proteins that are integral for synaptic transmis-
sion, such as PSD-95, which is a frequently used marker of spine maturity
(Gray et al., 2006; Gross et al., 2013; Cane et al., 2014; Rimbault et al.,
2021). This would enable classification of spines into mature and immature,
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based on the amount of PSD-95 present. Immature spines could be excluded
from analysis, as functionality is not assumed. It is important to note that
sufficient time should be given for PSD-95 to accumulate in de novo grown
spines before spine maturity assessment (e.g. see Lambert et al., 2017).

Finally, to identify the rules governing LTP-induced functional synaptoge-
nesis, a high-throughput data acquisition and analysis are critical. The pro-
posed assay allows for structural tracking of thousands of spines per cell over
the course of several hours. A previous approach (Coneva, 2015), mapped
functional connectivity throughout the entire experiment in a small area of in-
terest. This limited the number of spines that could be functionally assessed.
The photostimulation area, and hence the area in which LTP occurs, can be
increased and decoupled from the imaging field of view, e.g. by coupling a
blue laser light source to an optic fiber. Consequently, by assessing functional
connectivity at the end of the experiment in many dendritic stretches within
this photostimulated area, the number of functionally characterized spines
can be increased several-fold (Fig. 3.3.1D).

Additionally, recent advances in two-photon microscopy that enable the si-
multaneous recording of larger areas of neuronal tissue can be employed. As
dendritic spines frequently cluster according to their functional connectivity
(Wilson et al., 2016; Kerlin et al., 2019), functionally characterizing den-
dritic spines in close proximity to each other might be critical to determining
the rules governing LTP-induced synaptogenesis. Hence, volumetric Bessel
beam imaging (Lu et al., 2017, see methods) was established to increase the
number of spines that can be functionally characterized per dendritic region
of interest. These improvements to the throughput of data acquisition are
supplemented by the improvements in speed and accuracy of dendrite and
spine segmentation that DeepD3 offers (see Results 3.2).

3.3.2 Development of spine maturity over time
To identify immature dendritic spines, a molecular approach was chosen.
A nanobody against PSD-95 called Xph-15 tagged with a blue-shifted fluo-
rophore (mTurquoise2) was utilized to visualize maturity in dendritic spines
(Fig. 3.3.2A). Alongside this maturity marker, tdTomato was expressed to
visualize dendrites and dendritic spines structurally (Fig. 3.3.2B). Using a
ratiometric approach (see results 3.2.4 and methods), the preferred localiza-
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tion of mTurquoise2 to spines over dendrites could be quantified in a mea-
sure called the ratiometric spine-to-dendrite ratio (RSDR; Fig. D-E). Two
characteristics of the approach were tested: First, whether the nanobody
preferentially localized to dendritic spines across multiple days, despite over-
expression. Second, whether a threshold that lends itself to classify spines as
mature and immature is apparent from the distribution of RSDR values.

As overexpression of Xph-15 might render its localization substrate-unspecific,
an inhibitory transcriptional auto-control element was implemented (Rim-
bault et al., 2021). The lower affinity of Xph-15 against the control element
compared to its antigen PSD-95 causes the nanobody to only shunt further
transcription when little or no untagged PSD-95 is available (Fig. 3.3.2A). To
assess the effectiveness of this approach the RSDR was tracked in the same
dendritic regions over the course of four days. Throughout all four days,
Xph-15 seemed to preferentially target dendritic spines (mean RSDR >1, n
= 5010 spines across all days), indicative of effective inhibitory transcrip-
tional auto-control (Fig. 3.3.2F). Surprisingly, and in contrast to previous
reports (Knott et al., 2006; Cane et al., 2014; Walker et al., 2017), spine size
seemed to only be weakly positively correlated with PSD-95 expression (Fig.
3.3.2G, Pearson’s correlation, R = 0.044, p <0.01).

RSDR was unimodally distributed across all days, indicating that PSD-95
expression in spines followed a continuum: No clear threshold between ”ma-
ture” and ”immature” spines was evident. A bimodal distribution of RSDR
values would have allowed for a non-arbitrarily defined threshold of spine
maturity. However, plasticity-induced, newly grown spines could markedly
differ in their RSDR values from this data, which is mainly composed of
pre-existing dendritic spines. Hence, further experiments are required to
establish whether Xph-15 is a suitable option to identify spines that lack
hallmarks of spine maturity.
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Figure 3.3.2 Development of spine maturity over time
A Schematic of PSD-95 nanobody construct (Rimbault et al., 2021). The Xph
element works as a nanobody against PSD-95 (marine blue), it is tagged with
the blue fluorophore mTurquoise2 (mTurq2, in turquoise), linked to a zink-finger
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sequence (ZF, in light blue). Xph binds to PSD-95, unless no substrate can be
tagged, in which case the zink-finger sequence binds to the zink-finger binding
site (magenta), shunting expression via a transcription repressor (tREP, R; dark
blue). B Schematic of the experimental setup. Structural (tdTomato; orange)
and spine maturity marker (Xph-15, see A, in turquoise) are co-expressed in
single CA1 neurons of OHSCs. C Maximum intensity projection of a dendritic
region of a CA1 pyramidal cell (bottom left), highlighting a representative area
containing dendritic spines (inset). Structure (orange), spine maturity (Xph-
15; turquoise) and the merge of the two images are shown (right). D Merge
of structural (orange) and maturity (turquoise) markers in inset (top). RSDR
scores of spines (magenta) over structure (gray). All images are maximum inten-
sity projections. E Quantification of RSDR values of all spines across all analyzed
images. Most spines show elevated values of PSD-95 (RSDR > 1; gray dashed
line). The mean RSDR was 1.5502, the median 1.3864. F RSDR scores across
days (DIV 2-5). RSDR remains constant, despite overexpression of the Xph-15-
mTurquoise2 construct, indicating that the construct’s inhibitory transcriptional
auto-control element works well and prevents non-specific localization. G RSDR
scores plotted as a function of spine size (in pixels). Spine size seemed to only
be weakly positively correlated with PSD-95 expression (Pearson’s correlation, R
= 0.044, p < 0.01).

3.3.3 Characteristics of dendritic calcium spikes in
CA1 pyramidal neurons

To determine functional connectivity of spines in the proposed assay, opto-
genetic stimulation of ChR2-positive Schaffer collateral boutons is utilized
to trigger calcium transients (GCaMP7b) in individual spines of CA1 cells
(Fig. 3.3.3A). This is done in the presence of VGSC and VGPC blockers
(1µM TTX and 100µM 4-AP, respectively) to spatially confine the area of
presynaptic activity. To identify those dendritic spines that are functionally
connected to ChR2-expressing boutons, single-spine responses are critically
required. These responses are characterized by calcium transients in individ-
ual dendritic spines upon presynaptic stimulation. However, the stimulation
frequently led to the generation of dendritic calcium spikes, events in which
an entire dendritic stretch and all dendritic spines are flooded with calcium.
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Figure 3.3.3 Time-course of dendritic calcium spikes in CA1 pyramidal
cells
A Schematic of the experimental model. Structural (tdTomato; red) and a
calcium indicator (GCaMP7b; green) are co-expressed in single CA1 neurons of
OHSCs. A population of CA3 neurons is transduced with ChR2(H134R). Two-
photon calcium imaging is performed in dendritic regions of the CA1 neuron in
conditions preventing the generation of action potentials (TTX, 4-AP). B 7-
point moving average projections of a dendritic stretch across 4 time points in
relation to ChR2 stimulation (white, bottom right corner of each image). After
stimulation, the entire dendrite and adjacent dendritic spines seem to be flooded
with calcium, indicating a dendritic calcium spike had occurred. C Average
intensity projection of a calcium movie. Dendritic sub-ROIs and spines outlines
are indicated in color. Calcium imaging was performed at 58.3 Hz. D Calcium
transients in response to blue-light stimulation of movie shown in B with outlines
of C. Red arrows indicate time for reaching normalized half-maximal responses.
Dendritic segments seem to respond more strongly than spines. Almost all spines
seem to show increases in calcium concentration. Traces are representative of
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dendritic calcium spikes. E Normalized half-maximal response times (red arrows
in D) of spines and dendritic regions are plotted in relation to ChR2-stimulation.
Spine and dendrite responses happen in rapid succession. Spine responses occur
near-simultaneously.

To determine whether dendritic calcium spikes pose a problem in identifying
functional connectivity of dendritic spines to ChR2-positive boutons, small
dendritic stretches and their accompanying spines were imaged at high tem-
poral resolution (∼58 Hz; Fig. 3.3.3B, C). Despite preventing the generation
of APs, sufficiently strong stimulation led to dendritic calcium spikes (Fig.
3.3.3B, D). To further characterize dendritic calcium spikes, the time-course
of calcium transients was plotted for spines and dendrites during these events
(Fig. 3.3.3C, D). The half-maximal rise time was found to be similar between
dendrites and spines (Fig. 3.3.3E), indicating that flooding of both happens
faster than can be detected with the temporal resolution utilized during
calcium-imaging (∼58 Hz). The spread of calcium across the dendritic arbor
happens within milliseconds, as calcium-imaging of an entire CA1 neuron
at an even higher temporal resolution (∼280 Hz) showed no differences in
half-maximal rise time between image segments (Fig. 3.3.4A-C). Hence, it
seems that the observed dendritic calcium transients are not caused by slow
calcium-diffusion from the input-receiving spines, and instead seem to be
governed by fast voltage- and/or input-dependent mechanisms that span the
entire dendritic arbor.

Dendritic calcium spikes mask the calcium response of single dendritic spines,
thereby preventing assessment of functional connectivity in the proposed as-
say. Three potential solutions were considered: A) ChR2 stimulation could
be performed below the threshold of dendritic calcium spike generation, cir-
cumventing the issue of dendritic calcium spikes all-together. A potential
caveat of this approach is that the induction or maintenance of LTP might
not be feasible using such low stimulation intensities. Moreover, LTP might
increase the input strength of ChR2-positive boutons, and hence, low levels
of photostimulation, which elicited single-spine responses before LTP induc-
tion, might lead to the generation of dendritic calcium spikes after. Hence,
limiting bouton stimulation to intensities such that dendritic calcium spikes
are not generated might not be practical in the proposed assay.
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Figure 3.3.4 Time-course of dendritic calcium spikes in CA1 pyramidal
cells
A Maximum intensity projection of two CA1 pyramidal neurons. High temporal
resolution calcium movies (∼280 Hz) of dendritic calcium spikes were obtained
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from the inset region (gray dashed outline). An average intensity projection
is shown below, separated into quadratic regions to analyze the spatial spread
of dendritic calcium spikes (region/ROIs 1-16 in color). B ChR2-stimulation-
evoked average calcium transients of ROIs shown in F (1-16 in color). Red arrows
indicate time of reaching normalized half-maximal responses. C Normalized half-
maximal response times (red arrows in G) of ROIs are plotted in relation to ChR2-
stimulation. ROIs 3, 13 and 15 show little calcium responsivity and thus large
half-maximal response times. Half maximal response times are similar between
all other responsive segments, indicating that calcium spread happens rapidly.

B) Computational unmixing of the dendrite and spine signals in calcium-
imaging data. This would effectively allow for an assessment of functional
connectivity despite the presence of a dendritic calcium spike. This type of
analysis is frequently employed when analyzing calcium transients of den-
dritic spines in vivo (Chen et al., 2013; Wilson et al., 2016; Kerlin et al.,
2019). Whether unmixing is also possible with calcium transients that occur
near simultaneously, as seen here and in contrast to less synchronized events
seen in in vivo data, is unclear.

C) The generation of dendritic calcium spikes could be prevented by phar-
macological means, to ensure single-spine responses. Such an experimental
manipulation would be performed at the end of the experiment, which would
maintain full flexibility of stimulation intensity throughout the session. Im-
portantly, pharmacological means should be tested on their propensity to
affect the responsiveness of dendritic spines, to exclude the possibility of
confounding the measurements of functional synaptic connectivity.

3.3.4 Automatic detection of dendritic calcium spikes
Before a solution to the generation of dendritic calcium spikes can be de-
veloped, an automated manner of detecting such events is required. To this
end, an extensive dataset (64 movies, 9 imaging regions, n = 6 cells) was
visually inspected for the presence of dendritic calcium spikes, effectively
generating a ground-truth dataset. Next, various approaches were tested for
their reliability to detect dendritic calcium spikes in this dataset. The den-
drite ROI was segmented into dendritic sub-ROIs (see methods and results
3.2.4), which in turn were individually tested for responsiveness. Ranges of
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thresholds and criteria were then tested on their capabilities to detect den-
dritic calcium spikes in this dataset. In particular, the fraction of responsive
dendritic sub-ROIs and the stringency of the responsiveness criterion were
permuted to identify optimal detection settings. Ultimately, a set of criteria
was found (see methods), for which the vast majority of dendritic calcium
spikes were detected with low false-positive and false-negative rates.

3.3.5 Computational approaches to differentiate spine
from dendritic calcium events

The presence of dendritic calcium spikes poses the problem of masking the
responsiveness of individual dendritic spines to ChR2 stimulation. Calcium
imaging of dendritic stretches has long faced this challenge (Sabatini & Svo-
boda, 2000; Higley & Sabatini, 2008; Chen et al., 2011; Chen et al., 2012;
Chen et al., 2013; Iacaruso, Gasler, & Hofer, 2017; El-Boustani et al., 2018).
Particularly in in vivo recordings, the inconvenience of employing pharma-
cological means has led to the development of several computational strate-
gies to unmix spine signal from the overriding dendritic calcium spike signal
(Chen et al., 2013; Wilson et al., 2016; Kerlin et al., 2019). In the following,
three computational approaches were tested to assess whether single-spine
responses can be recovered, hence allowing a functional connectivity readout
despite the presence of dendritic calcium spikes. To this end, two-photon
calcium imaging in CA1 pyramidal neurons of rat OHSCs was performed. In
particular, dendritic stretches in the stratum radiatum were imaged before
and after stimulation of ChR2-positive CA3 Schaffer collaterals to quan-
tify postsynaptic calcium responses. Two types of recordings were obtained
per imaging region: data A contained single-spine calcium responses. Data
B contained dendritic calcium spikes, typically generated by using stronger
blue light stimulation than for data A. Critically, this dataset allowed com-
parisons of calcium transients of the same dendritic spines with and without
the presence of dendritic calcium spikes. Single-spine responses were used as
a ground-truth proxy, identifying dendritic spines that should also be classi-
fied as responsive when applying computational approaches to the data that
contained dendritic calcium spikes (data B). In total n = 9 dendritic regions
were imaged across k = 6 CA1 neurons, capturing 703 dendritic spines. Com-
putational approaches were tested multiple times per dendritic region, as for
most regions, dendritic calcium spikes were captured in multiple movies.
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While this dataset allows for comparisons of those spines that showed calcium-
responsiveness in data A (no dendritic calcium spike), other comparisons are
made more difficult by the fact that for the generation of dendritic calcium
spikes, frequently stronger stimulation intensities were required. Increased
ChR2-stimulation intensity could cause some ChR2-positive boutons to re-
lease neurotransmitters, despite being unresponsive previously (during acqui-
sition of data A). Consequently, when comparing responsivity in both data
types after computational unmixing, spines that are only responsive in data
B could fall into two categories: either the additional stimulation power used
caused neurotransmitter release presynaptically, and these spines indeed re-
ceived input and were correctly classified as responsive spines. Alternatively,
the computational method could have wrongly classified the spine as respon-
sive (false positive). It is assumed that previously responsive dendritic spines
also faithfully respond in trials using higher ChR-stimulation intensities (data
B): given the high amounts of extracellular calcium, release probabilities are
high and increased photostimulation has so far not been shown to decrease
release probability (Coneva, 2015; Duerst et al., 2020).

Temporal unmixing of dendrite- and spine responses

Calcium transients in dendrites and adjacent dendritic spines can have tem-
porally distinct dynamics in events of synaptically-evoked dendritic calcium
spikes (Kerlin et al., 2019). In the previous iteration of the proposed assay
(Coneva, 2015), this was leveraged to distinguish those spines that receive
synaptic input from those that are flooded with calcium from the dendritic
branch via the spine neck. In the following, this unmixing approach was per-
formed on data A and B of the dataset described above (Fig. S3.3.1A-F). In
particular, smoothed calcium traces of dendritic spines and a dendritic sub-
ROI, located in the immediate vicinity of the spine are compared. Dendritic
spines are labeled synaptically connected to stimulated inputs if one of three
criteria, termed case 1, case 2.1 and case 2.2, is met. Case 1 corresponds to
instances when a spine but not the dendritic sub-ROI was responsive upon
photostimulation (Fig. 3.3.5B,C). This is synonymous with the single-spine
responses outlined above. If both the dendritic sub-ROI and the spine show
a significant increase in calcium (case 2), temporal unmixing is performed.
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Figure 3.3.5 Temporal unmixing of synaptically-induced spine calcium
transients during dendritic calcium spikes
A Schematic of the experimental model. Structural (tdTomato; red) and a
calcium indicator (GCaMP7b; green) are co-expressed in single CA1 neurons of
OHSCs. A population of CA3 neurons is transduced with ChR2(H134R). Two-
photon calcium imaging is performed in dendritic regions of the CA1 neuron
in conditions preventing the generation of action potentials (TTX, 4-AP). B
Average intensity projection of a calcium movie. Some spine outlines are indicated
in color. Inset (gray dashed line box) is shown in D, F. Computational unmixing
was tested using image data of spines during dendritic calcium spikes and data
in which single spines are responsive but the dendrite is not. Movies containing
single-spine responses (C, D; data A) and dendritic calcium spikes (E, F; data
B). C A set of criteria to identify spines that receive synaptic input with or
without the occurrence of a dendritic calcium spike. Plotted are calcium traces
(7-point moving average of ∆F/F0) of dendritic spines (green) and dendritic
sub-ROIs (red) as well as their respective sigmoid fits (dark green and dark
red, respectively). From top left to bottom right: dendritic spine is responsive
but matched dendritic sub-ROI is not (Case 1). If spine and dendrite are both
responsive, first, sigmoid fits of the smoothed traces are compared to evaluate
which of the two reaches the threshold (67 % of normalized maximal response).
Only if the spine reaches the threshold before the dendrite, it is considered to
have received direct synaptic input (Case 2.1). If the calcium traces of the
spine or dendrite cannot be fit well (see methods; here the spine trace), calcium
traces of spine and dendrite are compared to evaluate which of the two reaches
a threshold (50 % of normalized maximal response) first. Only if the spine
reaches the threshold first, it is considered to have received direct synaptic input
(Case 2.2). D Quantification of effectiveness of criteria to identify synaptically
connected dendritic spines in data containing dendritic calcium spikes (data B)
and comparing the results to data A. The criteria could not reproduce the results
of data A. E Results in D by responsiveness type.

In particular, calcium traces are first normalized and subsequently fitted.
Then, it is assessed whether the fit of the spine reaches the threshold of 67 %
of its maximal response before the dendrite, which would indicate the spine
falls into case 2.1 (Fig. 3.3.5C; Coneva, 2015). Should fitting of the traces
not be possible due to noisiness of the calcium trace for example, a similar
test is performed on the unfitted but normalized data, using a threshold of
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50 % of the maximal calcium response. Similar to case 2.1, should the spine
reach the threshold before the dendritic sub-ROI, the spine would be labeled
as synaptically connected to stimulated inputs, this time satisfying case 2.2
(Fig. 3.3.5C; Coneva, 2015). In all other instances (i.e. spine does not show
a significant increase in calcium, dendrite reaches criteria thresholds first or
at the same time as the spine) the spine would be classified as not responsive.

To assess whether this approach can accurately identify those dendritic spines
that are functionally connected to blue-light-responsive axonal boutons, these
criteria were applied to the acquired dataset. In particular, all data contain-
ing dendritic calcium spikes (data B) was analyzed using the criteria for cases
1, 2.1 and 2.2 and subsequently compared to responsiveness labeling in single-
spine response trials (data A). Using this approach, most dendritic spines in
data B were labeled as non-responsive, indicating that despite the occurrence
of a dendritic calcium spike, the criteria correctly identify most spines as not
synaptically connected to photo-responsive boutons. Moreover, as expected
from data B, responsive spines were almost exclusively categorized as cases
2.1 or 2.2 (Fig. 3.3.5E), indicating that the set of criteria correctly identified
that dendrites and spines were responsive. However, only a minority (49 of
180) of dendritic spines that were labeled as responsive in data A were also
found to be responsive when applying this approach (Fig. 3.3.5D). More
importantly, a large amount of spines were found to be responsive using this
approach. As outlined above, ChR2-stimulation in data B was stronger than
that of data A to elicit dendritic calcium spikes. Hence, it is conceivable
that additional axonal boutons were depolarized sufficiently to cause a larger
fraction of dendritic spines to receive synaptic input. Nonetheless, given
that more than three times as many spines were identified to be responsive
in data B, it is likely that a proportion of these spines were false-positively
labeled as responsive using this approach. In conclusion, the outlined set of
criteria does not seem to accurately identify those dendritic spines that are
functionally connected to stimulated presynaptic boutons.

Unmixing of synaptically-induced spine calcium transients during
dendritic calcium spikes using robust fit

As calcium transients in dendrites and dendritic spines occur near- simulta-
neously during dendritic calcium spikes, temporal unmixing is challenging.
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However, it is conceivable that signals differ in amplitude when a spine is
flooded with calcium during a dendritic calcium spike and when a spine
shows increases in calcium due to synaptic input. Consequently, subtraction
of the dendritic calcium signal from the spine signals could be a means of
differentiating functionally connected spines from those that are flooded by
a calcium spike. To test whether this is the case or not, a method, which
follows this rationale (Chen et al., 2013; Wilson et al., 2016) was tested on
the above mentioned dataset (data A and B): in short, a scaled version of the
dendritic calcium signal was subtracted from the spine signal using robust fit
(Fig. 3.3.6A, B; see methods; Chen et al., 2013). Subsequently, responsivity
of spines was assessed using their dendrite-signal-corrected calcium signals
(Fig. 3.3.6B). When applying robust fit analysis to data containing dendritic
calcium spikes (data B), most previously responsive spines (data A) could
not be re-identified (53 of 192 spines; Fig. 3.3.6C). Moreover, a large pro-
portion of spines was found to be responsive in data B using robust fit (659
spines), indicative of a significant proportion of false positive spine responses
when using this method. Thus, robust fit does not seem to reliably identify
functional connectivity of individual spines in data containing dendritic cal-
cium spikes in the proposed assay.
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Figure 3.3.6 Unmixing of synaptically-induced spine calcium transients
during dendritic calcium spikes using robust fit
A Average intensity projection of a calcium movie containing a dendritic stretch
and spines. A spine and dendrite sub-ROI are outlined in magenta and turquoise,
respectively. B Process of determining which spines receive synaptic inputs during
dendritic calcium spikes. Shown are 9-point moving average calcium traces of the
spine and its matched dendrite sub-ROI shown in A. From left to right: spine and
dendrite show near-identical calcium transients upon photo-stimulation. Dendrite
signal (turquoise) is re-scaled (dark blue) according to robust fit of dendrite to
spine signals (Step 1). Scaled dendrite signal (faint dark blue) is then subtracted
from spine signal (faint magenta) to reveal true synaptic calcium signal in the
spine (subtracted spine, magenta; Step 2). C Quantification of effectiveness
of robust fit analysis to identify synaptically connected dendritic spines in data
containing dendritic calcium spikes (data B) and comparing the results to data
A. The unmixing approach using robust fit could not reproduce the results of
data A.
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Subtraction of dendrite from spine signal based on spike inference
estimation

In addition to robust-fit subtraction, recently another process of subtracting
the dendritic signal from the spine signal was developed (Kerlin et al., 2019).
By simultaneously imaging the apical trunk, nearby dendrite or cell soma, a
reference signal could be obtained, in addition to a region of interest contain-
ing dendrites and dendritic spines. This reference signal was subsequently
deconvolved and the underlying electrophysiological signal estimated. The
signal of each spine was then individually fit to this spike inference estima-
tion. Lastly, the fit reference signal was subtracted from the spine signal to
unmask the synaptically-induced calcium signal of a given dendritic spine
(Fig. 3.3.7C; Kerlin et al., 2019). This approach was recreated, although
given the limitations of the setup at hand, neither the apical dendrite, nor
the cell soma could be imaged simultaneously. Hence, the dendrite was uti-
lized as a reference signal.

Results of this approach on spines of data B were compared to single-spine
responses (data A) in the same dataset. In line with the previously tested
computational approaches, the majority of dendritic spines was found to
be unresponsive (Fig. 3.3.7D). However, again only a fraction of single-
responsive spines could be re-identified (17 of 72) as input-receiving during
dendritic calcium spikes using this approach. Moreover, and similar to the
temporal unmixing approach described above, a large amount of spines (n
= 241) were found to receive synaptic input during dendritic calcium spikes
(Fig. 3.3.7D). As before, while an increased number of dendritic spines is
expected to receive synaptic input, it is likely that a fraction of these spines
are falsely labeled as receiving input using this method.
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Figure 3.3.7 Subtraction of dendrite from spine signal based on spike
inference estimation
A Average intensity projection of a registered calcium movie containing a den-
dritic stretch and spines. Two dendritic spines (teal and blue) are outlined.
B Process of unmixing dendritic calcium spike signal from neurotransmission-
induced calcium signal in dendritic spines (devised after Kerlin et al., 2019). The
signal of the entire dendrite (black) is first deconvolved to extract its electro-
physiological underpinning and generate a reference signal (gray; Step 1; see
methods). Then, per spine, calcium traces are fitted to the reference using dif-
ferential evolution to generate a kernel (blue; Step 1). The reference signal is
then convolved with the kernel (orange) to estimate the proportion of a spine’s
calcium signal that can be attributed to the dendritic calcium spike (Step 3).
This estimate is subsequently subtracted from the raw calcium trace of the spine
(green) to estimate the true synaptic calcium signal in the spine (subtracted,
red; Step 4). Spine 1 was found to be be photo-responsive in data A, while
spine 2 was not found to be photo-responsive in single-spine response data. In
both spines, no significant photo-response could be detected after unmixing. C
Results of the unmixing approach on all data B. Most single-spine-responsive
spines could not identified as responsive after unmixing.

In conclusion, this approach seems to not accurately identify those dendritic
spines that are functionally connected to stimulated presynaptic boutons.
Moreover, none of the computational approaches tested here were able to
correctly re-identify those dendritic spines in data of calcium spikes that
were previously identified as functionally connected. Hence, it seems that
computational approaches are not suited to uncover functional connectivity
in the presence of dendritic calcium spikes in the proposed assay.

3.3.6 Pharmacological approaches to differentiate spine
from dendritic calcium events

In contrast to managing dendritic calcium spikes computationally, the in
vitro assay allows for pharmacological interventions, which could prevent such
events altogether. Since calcium signaling in dendrites and spines is regulated
by many molecular players (for review, see Grienberger & Konnerth, 2012),
a large array of options was available. However, localization of the various
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receptors and channels is critical, as pharmacological intervention should
neither affect presynaptic release, nor calcium processing in dendritic spines.
Given these constraints, two potential approaches were identified.

Muscimol

Hyperpolarization of cells has been shown to significantly decrease the fre-
quency of dendritic calcium spikes in vivo (Chen et al., 2011). Consequently,
chloride-conducting GABA receptors were considered as potential targets of
pharmacological manipulation. Particularly the GABA-A receptor, which
has been reported to preferentially localize to inhibitory synapses along the
dendrite but not at glutamatergic synapses (i.e. on dendritic spines; Ser-
wanski et al., 2006; Magnin et al., 2019) (but also see Chiu et al., 2013),
emerged as a primary candidate. Given these reports, sufficient activation of
GABA-A receptors should, due to their localization, prevent dendritic cal-
cium spikes without affecting calcium transients in dendritic spines. To test
this, two experiments were conducted to quantify the wash-in and -out effects
of the potent GABA-A receptor agonist muscimol.

To get an estimate of the effects muscimol has on synaptic transmission,
whole-cell patch clamp recordings of CA1 pyramidal cells (n = 5) were per-
formed. Stimulation of ChR2-expressing Schaffer collateral terminals fol-
lowed an 11-step protocol with increasing stimulation intensities (0-100 %
laser power; Fig. 3.3.8A). To mimic the experimental design of the proposed
assay, this procedure was performed in conditions preventing the generation
of action potentials (1 µM TTX, 100 µM 4-AP Petreanu et al., 2009). The
step protocol was performed before and after wash-in of muscimol in the
same cells to quantify the effect of muscimol on input strength. Muscimol
decreased input strength by ∼35 % (Chi square = 2.7931, p = 0.0947, df = 9,
Kruskal-Wallis test; Fig. 3.3.8C) and exerted a pronounced effect in inward
current size across the majority of the 11 laser intensities used (Fig. 3.3.8B).
It remains unclear whether muscimol acts directly, i.e. via bouton hyperpo-
larization, or indirectly, i.e. via disynaptic changes in release. While musci-
mol seemed to have a pronounced effect on input strength, neurotransmitter
release from Schaffer collaterals remained intact in at least some afferents.
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Figure 3.3.8 The effect of the GABA-A agonist muscimol on the gen-
eration of dendritic calcium spikes
A Schematic of the experiment: individual CA1 pyramidal cells were recorded
using whole-cell patch clamp. A population of CA3 neurons is transduced with
ChR2(H134R), recordings were performed in TTX and 4-AP (top). A step pro-
tocol with increasing amounts of ChR2-stimulation (472 nm) intensities was
employed before and after wash-in of the GABA-A agonist muscimol (bottom).
B Dose response curve of normalized photo-stimulation-evoked inward current
amplitudes as a function of laser intensity before (black) and after (orange) the
wash-in of muscimol. Thin lines represent individual cells, thick lines represent
the mean of all cells (n = 5). Normalization was performed on the maximal
inward current before wash-in. C Quantification of B. Application of muscimol
seems to lower the normalized inward current amplitude (Chi square = 2.7931,
p = 0.0947, df = 9, Kruskal-Wallis test; n = 5 cells). Bars: control in gray,
muscimol in orange. Individual cells in gray. D Schematic of the experimental
model. Structural (tdTomato; red) and a calcium indicator (GCaMP7b; green)
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are co-expressed in single CA1 neurons of OHSCs. A population of CA3 neurons
is transduced with ChR2(H134R). Two-photon calcium imaging is performed in
dendritic regions of the CA1 neuron in conditions preventing the generation of
action potentials (TTX, 4-AP). E Results of muscimol wash-in on spine respon-
sivity. Many spines seem to be unaffected by muscimol wash-in, however ∼27 %
are rendered unresponsive. An additional ∼60 % of spines are responsive after
muscimol wash-in. F Effect of muscimol on release probability. After muscimol
wash-in, higher release probabilities could be achieved (Chi square = 46.208, p
<0.001, McNemar’s test; n = 185 spines across 236 movies). G Stimulation
power in trials in which no dendritic calcium spike was triggered is lower before
(gray) than after (orange) muscimol wash-in (Chi square = 18.3338, p <0.001,
df = 233, Kruskal-Wallis test; 236 movies were analyzed in total). H The pro-
portion of trials in which a dendritic calcium spike was triggered before (gray)
and after (orange) muscimol wash-in. Error bars are ± SEM.

To further investigate the effect of muscimol on calcium signaling in dendrites
and dendritic spines, calcium imaging of CA1 neurons was performed to de-
termine (1) whether the same dendritic spines received synaptic input before
and after application of muscimol, and (2) whether muscimol prevented the
generation of dendritic calcium spikes. In the proposed assay, the same set
of ChR2-expressing boutons are utilized to establish functional connectivity
at the end, and induce LTP in the beginning of the experiment. To estab-
lish rules of functional connectivity, it is critical to link spine responsiveness
to those synapses that contributed to the induction of LTP. Consequently,
synaptic transmission at these synapses must remain unaffected by any phar-
macological manipulation.

Responsiveness to ChR2 stimulation of individual spines of GCaMP7b-expressing
CA1 pyramidal cells was assessed before and after wash-in of muscimol (Fig.
3.3.8D). As expected, the majority of spines were unresponsive irrespective
of the presence of muscimol. However, ∼27 % of spines that were respon-
sive before were rendered unresponsive after application of muscimol (Fig.
3.3.8E). Nevertheless, the application of muscimol allowed for stronger ChR2-
stimulation before dendritic calcium spikes occurred: the stimulation power
was approximately twice as strong after application of muscimol, before den-
dritic calcium spikes were generated (Chi square = 18.3338, p <0.001, df =
233, Kruskal-Wallis test; Fig. 3.3.8G). Additionally, the proportion of trials
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in which a dendritic calcium spike occurred was nearly half after application
of muscimol (Fig. 3.3.8H). Moreover, after application of muscimol, higher
release probabilities could be observed (Chi square = 46.208, p <0.001, Mc-
Nemar’s test; Fig. 3.3.8F), in line with the additional degrees of freedom of
photostimulation power gained by the presence of muscimol. Ultimately, an
additional ∼60 % of dendritic spines could be photostimulated by hyperpo-
larization via muscimol (Z = -2.6498, p <0.01, Wilcoxon rank sum test; Fig.
3.3.8E). In conclusion, muscimol allowed for stronger photostimulation and
as a consequence, increased the number of responsive spines before dendritic
calcium spikes were generated. However, muscimol also seemed to inter-
fere with synaptic transmission in the Schaffer collateral pathway, rendering
some dendritic spines unresponsive. Given the necessity to reliably deter-
mine functional connectivity in the proposed assay, muscimol, at least in the
concentration used here, seems to not offer the required specificity.

Voltage-gated calcium channel blockers

Dendritic calcium spikes have been shown to be governed by changes in
membrane potentials (Grienberger, Chen, & Konnerth, 2014; Harnett et al.,
2013), in particular via voltage-gated calcium channels (Magee et al., 1995;
Grienberger, Chen, & Konnerth, 2014). Since P/Q- and N-type VGCCs are
heavily involved in presynaptic release at the Schaffer collaterals (Wheeler,
Randall, & Tsien, 1994; Qian & Noebels, 2000), they were excluded as po-
tential candidates. L-type VGCCs are mostly localized at the soma and the
proximal dendrites (Westenbroek, Ahlijanian, & Catterall, 1990; Hell et al.,
1993; Obermair et al., 2004) (but see Tippens et al., 2008). Additionally,
dendritic spines mostly lack T-type VGCC expression (McKay et al., 2006)
(but see Aguado et al., 2016). Hence, it was tested whether subtype-specific
blocking of VGCCs could prevent dendritic calcium spikes and unmask func-
tional connectivity of dendritic spines using strong photostimulation. To
this end, L-type (nifedipine, 30 µM) and T-Type (mibefradil, 15 µM) VGCC
blockers were utilized in wash-in calcium-imaging experiments, similar to
the above outlined experiments involving muscimol (Fig. 3.3.8). Most spines
that previously showed photostimulation-evoked calcium transients remained
responsive after wash-in (48 of 63 spines; Fig. 3.3.9A). However, ∼24 % (n =
15 spines) of previously responsive spines were rendered unresponsive by the
presence of nifedipine and mibefradil. In contrast to the muscimol experi-
ments, only a small number of dendritic spines (n = 12) could be additionally
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recruited by application of VGCC blockers (Fig. 3.3.9A). As expected, most
spines remained unresponsive irrespective of the presence of VGCC block-
ers (Fig. 3.3.9A). Additionally, release probability remained unchanged after
blocking L- and T-type VGCCs (Z = -0.4626, p = 0.6436, Wilcoxon rank sum
test; Fig. 3.3.9B). However, similar to the effects of muscimol, the addition
of VGCC blockers did not prevent the occurrence of dendritic calcium spikes
(Chi square = 46.3133, p <0.001, McNemar’s test; Fig. 3.3.9C).

Figure 3.3.9 The effect of VGCC blockers on the generation of dendritic
calcium spikes
A Results of L- and T-type VGCC blockers (nifedipine, mibefradil) wash-in on
spine responsivity. Most spines seem to be unaffected by wash-in. However,
VGCC block leaves the dynamic range of ChR2-stimulation unaffected, given
only few additional spines show responsivity after wash-in. B No effect of L- and
T-type VGCC blockers (nifedipine, mibefradil) wash-in on release probability (Z =
-0.4626, p = 0.6436, Wilcoxon rank sum test; n = 681 spines across 182 movies
analyzed in total) Release probability is unaffected by L- and T-type VGCC block.
C Results of L- and T-type VGCC blockers (nifedipine, mibefradil) wash-in on
the occurrance of dendritic calcium spikes. Probability of calcium spike occur-
rence is lower after inclusion of VGCC blockers (Chi square = 46.3133, p <0.001,
McNemar’s test; 182 movies analyzed in total) . D Schematic representation of
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the experimental setup involving D890 to block VGCCs. Individual CA1 neurons
were patch-clamped and filled with the Alexa-594 and Fluo-4 to reveal structure
and calcium transients, respectively. A population of CA3 neurons was trans-
duced to express ChR2(H134R). Calcium imaging of dendrites and spines was
performed while stimulating the Schaffer collaterals in the presence of TTX, 4-AP
and D-Serine. E Probability of calcium spike occurrence after ChR2 simulation
with (n = 5 cells) and without (n = 2 cells) inclusion of the subtype-unspecific
VGCC blocker D890 in the intracellular solution during whole-cell patch clamp
recordings. Probability of calcium spike occurrence seems unaffected by D890
(Chi square = 2, p = 0.1573, Pearson’s chi-squared test; 144 movies analyzed
in total). F Photostimulation-evoked peak inward currents in events of single-
spine responsivity and dendritic calcium spikes (”spike”) with (n = 5 cells) and
without (n = 2 cells) the inclusion of D890 in the intracellular solution during
whole-cell patch clamp recordings. D890 decreases inward current irrespective
of the presence of dendritic calcium spikes (144 movies analyzed in total).

Since subtype-specific VGCC blockers seemed to not affect the occurrence of
dendritic calcium spikes to the desired degree, a recently reported approach
was tested: blocking VGCCs subtype-unspecifically in individual pyramidal
CA1 neurons in vivo prevented the generation of dendritic calcium spikes
(Grienberger, Chen, & Konnerth, 2014). This method utilized D-890, a
derivative of methoxyverapamil, which has been shown to block VGCCs in a
subtype-nonselective manner (Hescheler et al., 1982; Kovalchuk et al., 2000;
Grienberger, Chen, & Konnerth, 2014). Of key importance here is that the
effects of D890 are confined to individual cells, unlike the wash-in approach
outlined above. Two features of D890 restrict its effect to a single postsynap-
tic cell: first, D890 is rendered membrane impermeable due to its quaternary
structure, thereby limiting D890’s access. Second, the binding site for D890
is located on the intracellular domain of VGCCs, hence D890 can only exert
its effect when supplied intracellularly (Hescheler et al., 1982). As a conse-
quence, when D890 is included in the internal solution during patch-clamp
recordings of an individual CA1 neuron, only VGCCs of that neuron were
affected and dendritic calcium spikes were prevented (Grienberger, Chen, &
Konnerth, 2014). Hence, following this approach, whole-cell patch clamp
experiments in voltage-clamp mode were performed with internal solutions
containing D890 (1 mM). The addition of a structural (Alexa-694) and a
calcium indicator (Fluo-4F) to the internal solution allowed for the simulta-
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neous tracking of dendritic and spine calcium responses and EPSCs in the
recorded neuron (Fig. 3.3.9D). Likely due to the poor solubility of D890 in
aqueous solutions, the series resistance frequently surpassed 40 MΩ within 15
minutes and the experiment had to be terminated. Since the recorded cells
could not be visualized (i.e. did not express GECIs or structural markers)
before whole-cell recordings, no within-cell comparisons were possible. This
is in contrast to the previous pharmacological assessments of muscimol and
nifedipine/mibefradil, where responsiveness could be quantified before and
after pharmacological manipulation. Hence, the effect of D890 was quan-
tified between cells that were recorded from either with and without the
inclusion of D890 in the internal solution. Surprisingly, dendritic calcium
spikes were still observed in cells that were patched with D890-containing in-
tracellular solution (Chi square = 2, p = 0.1573, Pearson’s chi-squared test;
Fig. 3.3.9E). Preliminary evidence suggests that D890 seems to decrease the
peak inward current, both during dendritic calcium spikes and stimulation
events that elicited single-spine responses, indicating that it does exert an
effect on EPSC size (Fig. 3.3.9F). In conclusion, intracellular application of
the VGCC blocker D890 does not seem to prevent the occurrence of dendritic
calcium spikes.

In conclusion, neither subtype-specific nor -unspecific block of VGCCs seemed
to offer the control over dendritic calcium spike generation that is required to
establish functional connectivity in the proposed assay. In the future, other
approaches should be explored to map functional synaptic connectivity on
a single spine basis in the proposed assay and thereby enable investigations
into the functional wiring rules that govern LTP-induced synaptogenesis.



Chapter 4

Discussion

4.1 Binocularity in the dLGN
The goal of this section of the thesis was to characterize functional binocular
convergence in the dLGN of mature mice. Recent reports on the amount of
binocular convergence in the dLGN have provided conflicting results (Howarth,
Walmsley, & Brown, 2014; Rompani et al., 2017; Jaepel et al., 2017; Sommei-
jer et al., 2017; Huh et al., 2020). Hence, a dual-color optogenetic approach
was devised to quantify retinogeniculate inputs to single dLGN cells with
optimal signal-to-noise ratio in vitro. The dataset revealed that, while most
dLGN cells receive input from both eyes, the vast majority of all dLGN
neurons are functionally monocular. Moreover, the dendritic outgrowth of
dLGN cells in relation to the eye-specific projection zones predicted ocular
dominance. However, the observed levels of functional monocularity in the
dLGN could not be fully explained by dLGN neurons’ morphologies and their
respective axo-dendritic overlap with eye-specific afferents. Instead, selection
and refinement of retinogeniculate wiring seems to be realized via differential
expression of AMPA and NMDA receptors, leading to widespread functional
monocularity in the dLGN.

4.1.1 Prominent eye-specific retinogeniculate conver-
gence but limited functional binocularity

Until recently, the dLGN has mainly been considered as a relay station, pass-
ing information from the retinae on to the visual cortex via independent,
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eye-specific processing streams. However, recent work using monosynaptic
rabies tracing showed that 40 % of dLGN neurons received structural in-
put from both eyes (Rompani et al., 2017), suggesting that binocular cells
might already exist at the level of the visual thalamus. Indeed, using retino-
geniculate input mapping - in this dissertation - it could be shown that
more than half of dLGN neurons receive input from both eyes. While this
suggests that a sizeable proportion of dLGN neurons might be functionally
driven by input of either eye, such functional binocularity was not found.
In fact, the overwhelming majority (>99 %) of dLGN neurons seem to be
functionally monocular. Despite prominent eye-specific convergence, func-
tional binocularity was limited, as the dominant eye provided on average 36
times stronger input than the non-dominant eye. Moreover, stimulation of
the non-dominant eye did not lead to the firing of action potentials, further
confirming that the dLGN is functionally monocular. This discrepancy be-
tween widespread structural convergence and limited functional binocularity
indicates that, at least in the retinogeniculate pathway, monosynaptic rabies
tracing is not an apt method for evaluating synaptic strength or functional
connectivity. In the past, it has been shown that rabies viruses likely label
presynaptically connected neurons in a biased manner (Ugolini, 1995; Tang
et al., 1999; Feldmeyer et al., 2002; Miyamichi et al., 2011; Callaway & Luo,
2015), while the role of synaptic strength or synapse size, if any, remains
unexplored. Hence, as previously suggested (Callaway & Luo, 2015; Luo,
Callaway, & Svoboda, 2018), the results here underscore that monosynaptic
rabies tracing should be complemented with additional functional experi-
ments in order to quantify functional connectivity. Accordingly, other means
of quantifying structural connectivity, such as electron microscopy, are fre-
quently supplemented with functional measurements (Holler et al., 2021;
Scholl et al., 2021; Kuan et al., 2022) to enable analyses of functional con-
nectivity.

Deeper insights into the functional convergence of retinal inputs in the dLGN
have been provided by two recent electrophysiological studies: despite the
availability of many presynaptic inputs, functionally, the majority of input
to dLGN neurons is provided by three or fewer RGCs (Hong et al., 2014;
Litvina & Chen, 2017). This is well in line with another report, which sug-
gests that dLGN neuron responses in vivo can successfully be explained by
a combination of few RGC types (Rosón et al., 2019). Taken together, these
reports indicate that few RGC inputs dominate neuronal function in the
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dLGN. The data presented in the first part of this dissertation provides fur-
ther evidence in favor of this, as functional binocular convergence of RGCs
seems to also be limited.

These findings indicate that it is unlikely that a large proportion of dLGN
neurons receive strong binocular input in vivo. Functional comparisons be-
tween in vitro and in vivo data are challenging, not only due to differences
in connectivity (cortical or tectal inputs are cut off in the assay used here)
but also due to different recording techniques, stimulation patterns, analy-
sis methods, and cellular sampling (Rose & Bonhoeffer, 2018). The results
here resemble those obtained by previous studies involving calcium imaging of
dLGN boutons at the level of V1 in vivo (Jaepel et al., 2017; Huh et al., 2020).
In these reports, the fraction of binocular dLGN boutons ranged between 6
and 14 %. Recently however, a thorough assessment of mouse thalamocorti-
cal binocularity has been conducted, also using two-photon imaging of dLGN
boutons in vivo (Bauer et al., 2021). It was shown that the fraction of binoc-
ular boutons is critically dependent on the stringency of responsiveness and
selection criteria that are employed during data analysis. Depending on these
criteria between 7 and 21 % of dLGN boutons were found to be binocular.
The type and vertical position (elevation) of the stimulus in the visual scene,
on the other hand, seemed to affect binocularity only to a minor degree.

Besides two-photon imaging of dLGN afferents, electrophysiological record-
ings have also been utilized to investigate functional binocularity in vivo.
Here, much higher levels of binocularity have been reported (Sommeijer
et al., 2017), particularly in the dorsomedial tip of the dLGN (Howarth,
Walmsley, & Brown, 2014). Here, up to 50 % of dLGN cells in some re-
gions have been found to be functionally binocular (Howarth, Walmsley, &
Brown, 2014). Unfortunately, comparisons between electrophysiological and
two-photon imaging studies are difficult due to the inherent differences in
data types. However, here too, analysis criteria (e.g. threshold criteria used,
source separation, smallest detectable response amplitude) likely play a large
role and underlie the differences in reported binocularity in the dLGN.

Interestingly, the estimated fraction of binocular dLGN cells found in the
in vitro mapping results of the first part of this dissertation are even lower
than those of recent in vivo imaging reports (Jaepel et al., 2017; Bauer et al.,
2021). One potential explanation for this might be other sources of poten-
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tial activity-driving or -modulating inputs, which are abundant in the dLGN
(Howarth, Walmsley, & Brown, 2014; Bickford et al., 2015; Thompson et al.,
2016; Born et al., 2021; Spacek et al., 2022). However, it seems unlikely that
these inputs render nearly half of the dLGN neurons functionally binocular
(see Howarth, Walmsley, & Brown, 2014), when only 1 % of dLGN cells
receive sufficient retinogeniculate input to be considered binocular in vitro
(Bauer et al., 2021). Nevertheless, investigating the role of modulatory in-
puts in dLGN neurons would provide additional insight in how these cells
are functionally tuned. One could envision an extension to the dual-color
optogenetic mapping approach, as shown above, that would enable mapping
of a third, orthogonal source of presynaptic input. This could be achieved
via electrical stimulation or another opsin, which cannot be excited by light
in the spectra utilized to stimulate the two opsins used here (blue and red,
respectively). Such an approach would allow for simultaneous mapping of
binocular inputs, while additionally investigating the modulatory roles of
tectal, cortical or thalamic sources.

Besides extending the assay to map inputs of a third source, the type of
stimulation pattern used could be changed. One of the shortcomings of the
assay as presented here is the artificial nature of the stimulation paradigm.
While eliciting maximal input helped in quantifying relative input strength
from each eye, this type of neuronal input is unlikely to resemble RGC in-
put patterns during visual stimulation in vivo. Hence, in the future, more
nuanced stimulation paradigms could be devised to quantify the effect non-
dominant inputs have in dLGN cells. Despite their small input strength,
these inputs might play a critical modulatory role in shaping the tuning of
dLGN neurons

4.1.2 Relating morphological to functional mechanisms
of eye-specificity

In the past, dLGN cells have been reported to fall into distinct morphologi-
cal categories found in particular locations. Due to their localization, it has
been hypothesized that these cell types also receive cell type-specific input
(Krahe et al., 2011; Bickford et al., 2015). However, the data acquired in the
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first part of this dissertation did not reveal such morphological categories, in
line with a recent study that assessed dLGN morphology and wiring using
electron microscopy (Morgan et al., 2016). Moreover, despite considerable
variation in morphological features between cells, most cells were found to be
functionally monocular. Additionally, in an effort to elucidate retinogenicu-
late input sampling of dLGN neurons, the dendritic morphology of recorded
cells and the fact that RGC afferents are segregated in the adult animal
could be exploited. Using this approach, a cell’s ocular dominance could be
predicted based on the axo-dendritic overlap with RGC afferents. While eye
dominance could be predicted, strikingly, the fact that for almost all cells
one eye provided the vast majority of functional input (functional monoc-
ular bias) could not be explained by eye-specific input segregation alone,
or by dendritic orientation. Even when assuming that retinogeniculate in-
puts are perfectly segregated, axo-dendritic overlap estimates suggested far
higher retinogeniculate binocularity than what was found in the functional,
i.e. electrophysiological, data. Moreover, dendrites seemed to not respect
eye-specific segregation zones and instead frequently crossed the border be-
tween them, a phenomenon seen in other species as well (Sanderson, 1971;
Conley, Birecree, & Casagrande, 1985; Krahe et al., 2011).

One methodological shortcoming in this analysis is the resolution limit of
the acquired confocal images. Due to the innervation density of RGC ax-
onal afferents in the dLGN, clear identification of axo-dendritic apposition
is challenging, despite previous brain clearing. The voxel size utilized (14.6
µm) is far beyond the resolution required for ’true’ axo-dendritic apposition
used in ultrastructural analyses (average 400 nm Macarico-da-Costa & Mar-
tin, 2009). Analyses involving light microscopy, on the other hand, usually
involve specific pre- and postsynaptic markers, typically in the form of punc-
tae, and which, when localized in close proximity, suggest the presence of a
synapse (Morgan et al., 2011; Velicky et al., 2022). This method has a re-
ported false positive rate of roughly 30 % when detecting functional synaptic
connections using common light microscopy methods (Macarico-da-Costa &
Martin, 2009). The method utilized in the first part of this dissertation dif-
fers in two ways from this: first, no specific synaptic markers were employed.
One key feature of such markers is that they generate punctae, signifying
the presence of a mature, functional synaptic compartment. In this work,
both pre- and postsynaptic compartments were simply labeled by expression
of cytosolic or membrane-bound fluorophores. Hence, apposition here indi-
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cates proximity, rather than a synaptic compartment. Second, the spatial
resolution of the images utilized here is far too low to pinpoint synaptic con-
nectivity between RGC afferents and dLGN cells. Consequently, the results
in this dissertation should be interpreted as axonal availability in the vicinity
of a cell’s dendritic arbor.

While the imaging experiments and analyses here provide an initial insight
into binocular retinogeniculate wiring, future studies should investigate how
well structural and functional wiring match in this circuit. For example, re-
cent advances in expansion microscopy (M’Saad et al., 2022) might enable
analysis of true axo-dendritic apposition in the retinogeniculate pathway. Al-
ternatively, binocular synaptic connectivity could be quantified in the dLGN
on a single-cell basis using a recently developed dual-color trans-synaptic
mapping approach (Choi et al., 2018). In this approach, two different fluo-
rophores are reconstituted across the synaptic cleft of different populations of
pre- and postsynaptic partners, thereby visualizing the location of synapses of
two input areas. Precise visualization of synaptic connectivity via such tech-
niques should uncover whether the fine-scale synaptic refinement seen here
and previously (Chen & Regehr, 2000; Hong et al., 2014) is also reflected on
the synaptic level in the dLGN.

4.1.3 Input selection and synaptic refinement drive
functional dLGN monocularity

Synaptic strength varied considerably in dLGN neurons, with retinogenicu-
late inputs ranging from hundreds to thousands of pA. Despite this variabil-
ity, one eye typically provided the vast majority (>97 %) of input. Similar
to other circuits (Hsia, Malenka, & Nicoll, 1998; Ye et al., 2005), the AM-
PAR to NMDAR ratio, a measure for synaptic maturity (Crair & Malenka,
1995) increases during development in the retinogeniculate pathway. More-
over, AMPAR-silent synapses become less frequent (Chen & Regehr, 2000),
and over time the number of driving dLGN inputs is reduced to three or
less (Chen & Regehr, 2000; Litvina & Chen, 2017). Here, a high AMPAR
to NMDAR ratio was found for dominant eye inputs, in line with earlier
reports (Chen & Regehr, 2000; Hooks & Chen, 2006). The non-dominant
eye, on the other hand, not only contributed less absolute input, it also
showed a lower AMPAR to NMDAR ratio, reminiscent of retinogeniculate
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synapses during development (Chen & Regehr, 2000). The most striking
examples of under-developed synapses were the large number of observed
AMPAR-silent connections. Typically, such silent synapses are believed to
be a dormant plasticity pool that can play a significant role in the induction
or maintenance of LTP (Liao, Hessler, & Malinow, 1995; Arendt, Sarti, &
Chen, 2013, but see ). Theoretically, such synapses could be recruited in
an activity-dependent fashion during ocular dominance plasticity. Changes
in ocular dominance have been reported in dLGN cells in vivo after monoc-
ular deprivation during (Sommeijer et al., 2017; Huh et al., 2020) and af-
ter (Jaepel et al., 2017) the critical period for ocular dominance plasticity.
However, after this sensitive plasticity period, ocular dominance shifts in
response to experience-dependent plasticity paradigms tend to diminish in
an age-dependent manner (Fischer et al., 2007; Lehmann & Löwel, 2008).
Hence, the reservoir of immature, silent synaptic connections found here was
surprising given the age of the animals used (>p65). Typically, during de-
velopment retinogeniculate projections are pruned in an activity-dependent
manner (Stevens et al., 2007; Schafer et al., 2012). Our results indicate that,
at least in some small inputs, this process does not occur. Which function
these silent synapses provide remains entirely unclear. Potentially, together
with other inputs, such as tectal or corticothalamic ones, they might con-
tribute to the modulation of inputs and thereby contribute to the functional
tuning of dLGN neurons.

4.1.4 Technical considerations
The observed levels of structural binocular convergence exceed previous esti-
mates of structural binocularity in the dLGN (Rompani et al., 2017). How-
ever, binocular structural wiring is likely to be even more widespread than
found here, due to several technical challenges of the assay. First, some of
the recorded cells were more superficially located within the slice than the
average dendritic length of a dLGN cell (∼ 70 µm). Consequently, some
cells’ dendritic arbors might have been severed during the preparation of
acute slices, thus compromising the likelihood of binocular wiring. On the
other hand, these missing dendritic branches likely did not provide strong
retinogeniculate input, as these inputs are typically found near the soma on
proximal dendrites (Morgan et al., 2016). Additionally, cells were typically
targeted in the upper 100 µm of the acute slice (320 µm thickness), due to
the poor transmission light visibility in the dLGN. Unlike other brain ar-
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eas, such as cortical regions, cell bodies were not visible and could thus not
be precisely targeted for whole-cell electrophysiological recordings. Thinner
acute slices should help in achieving better visibility. However, as a conse-
quence, even more dLGN cells would have severed dendritic arbors. Hence,
this technical shortcoming is challenging to address in living tissue, despite
recent developments in brain clearing techniques (Iijima et al., 2021).

Second, to map functional binocularity in this assay, ideally all retinogenic-
ulate boutons express the optogenetic constructs utilized in this study and
can be stimulated effectively. One technical consideration in this matter is
the transduction of all RGCs with the utilized opsins following intravitreal
injections. To allow for sufficient transduction of the opsins in each eye, in
vitro experiments were performed ≤ 5 weeks after intravitreal eye injections.
Transduction efficiency was estimated to be >90 %, however, the precise
efficiency could not be quantified due to signal overlap between RGC cell-
bodies. The maximum input strength measured here is well in line with
some previous reports using electrical stimulation (Narushima et al., 2016).
Others have reported higher maximum RGC input strength in dLGN neu-
rons (Litvina & Chen, 2017), however, this measurement also depends on
the type of extracellular solution used (Litvina & Chen, 2017) and the type
of acute slice preparation (Chen & Regehr, 2000; Litvina & Chen, 2017),
complicating comparisons between studies. Overall, it seems unlikely that
RGC transduction levels resulted in an underestimation of the amount of
binocular retinogeniculate wiring reported here.

To achieve neurotransmission in all RGC afferents, a large area (>2mm di-
ameter) was optogenetically stimulated. This stimulation spot covered the
majority, if not the entire, dLGN and therefore should have been sufficient in
stimulating most superficial RGC boutons. However, given the lack of opti-
cal accessibility when using transmitted light during patch-clamp recordings,
it is feasible that some of the less superficially localized boutons might have
received either less or insufficient amounts of photostimulation. However,
many cells were already receiving maximal current input, even when only
stimulated with 20 % of maximal photostimulation irradiance (Fig. S3.1.1).
Hence, while possible, it is unlikely that many retinogeniculate afferents re-
mained unstimulated throughout the two sequentially performed step proto-
cols.
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Third, electrical noise levels of the in vitro setups exceeded those typical
for whole-cell patch clamp recordings (noise amplitude: 8-25 pA). The main
reason for this was the requirement for multiple pieces of equipment for each
setup in the assay. Both setups required dual-color optogenetic stimulation,
two-photon imaging capabilities amongst other features. As a consequence,
very small synapses (<10 pA) could have been missed due to the electrical
noise that was introduced this way. Despite this, whole-cell patch clamp
recordings provide a vastly better signal-to-noise ratio than other techniques
(calcium imaging or electrophysiological single unit recordings Jaepel et al.,
2017; Sommeijer et al., 2017). Since optical stimulation spanned the ma-
jority of the dLGN, it was assumed that the recorded postsynaptic currents
represented the sum of all inputs from an eye. It is therefore unlikely that
a large proportion of cells received only a single synaptic input from the
non-dominant eye, given that up to 91 RGCs are connected to a dLGN neu-
ron (Rompani et al., 2017) with an average single fiber amplitude of several
hundred pA (Narushima et al., 2016).

4.1.5 Conclusion and future directions
In conclusion, most cells in the dLGN are structurally connected to both eyes
but are rendered functionally monocular via input selection and refinement
of the dominant eye. Differential allocation of glutamate receptors seems to
be the most prominent factor in this process.

In the future, this assay should be adapted and employed to shed light on
input-specific functional convergence in other circuits. For example, func-
tional binocular convergence could be assessed in a similar fashion in other
retino-receptive areas, such as the vLGN, IGL, the superior colliculus, nuclei
of the pretectum, nuclei of the accessory optic system, or the suprachiasmatic
nucleus. This way, the already existing maps of retino-recipient areas from
structural tracing studies (Hattar et al., 2006; Morin & Studholme, 2014;
Martersteck et al., 2017a) could be supplemented with the functional char-
acterization of eye-specific input patterns. Additionally, other features of
visual processing could be investigated with modified versions of this assay.
For example, RGC-subtype-specific transduction using transgenic animals
(Martersteck et al., 2017b) could be utilized to map input convergence of
functional diversity in the dLGN or other retino-receptive areas.
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4.2 Automated detection of dendritic spines
and dendrites

The second section of this dissertation dealt with the automatic detection of
dendritic spines and dendrites in microscopy data. Quantification of dendritic
spines is typically done manually, which is an extremely time-consuming task
that also introduces user biases. Hence, a deep-learning tool, termed DeepD3,
was developed to quickly identify and segment dendrites and dendritic spines
in microscopy data with high accuracy. DeepD3 performed robustly across
a range of microscopy datasets with different imaging modalities and data
qualities. DeepD3 performed as well as experienced spine counters in spine
detection in in vitro and in vivo data. Moreover, the method presented here
performed complete spine segmentation orders of magnitude faster than hu-
man annotations, the hitherto gold standard. DeepD3-generated segmenta-
tions can be utilized beyond spine-counting purposes to extract fluorescence
measurements in dendrites and spines in 2D and 3D data. Hence, DeepD3 is
a novel tool that automatically, rapidly, and robustly detects and segments
dendrites and dendritic spines in light microscopy data.

4.2.1 The accuracy of dendritic spine counting and
segmentation

Imaging techniques vary in their ability to capture biological processes. Typ-
ically, there is a trade-off between temporal and spatial resolution. Den-
dritic spines can be visualized using several techniques, such as two-photon
imaging, confocal imaging, super-resolution imaging, or electron microscopy.
Given their superior spatial resolution (typical voxel size of ≤ 6 × ≤ 6 × ≤
80 nm), ultrastructural studies using electron microscopy are currently the
gold standard for identifying dendritic spines and their morphological fea-
tures. However, electron microscopy is constrained to terminal experiments
in dead tissue, due to its requirement for heavy metal staining protocols.
Therefore, many biological processes cannot be investigated using this imag-
ing method. Light microscopy methods, such as confocal or two-photon mi-
croscopy, on the other hand, offer the freedom to visualize living tissue. As
such, these methods are frequently utilized for spine visualization, as they
allow for repeated imaging with great experimental flexibility in vivo and
in vitro. However, the spatial resolution of the image data might limit the
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accuracy of segmentation and/or counting of dendritic spines in images of
these microscopy types. In comparison to electron microscopy, the spatial
resolution of a standard two-photon microscope is much lower and typically
ranges from 325 to 600 nm, depending on the wavelength and objective used.
While most dendritic spines are longer than this resolution, spine necks and
some types of spines cannot be resolved using this imaging technique (Pfeif-
fer et al., 2018; Ofer et al., 2021b). As a consequence, branched spines, or
those that are in too close proximity to each other, are frequently mistakenly
identified as the same spine. Filopodia, spine necks, and branched spines
can be particularly thin, with diameters below 100 nm, making them hard
to resolve using common light microscopy techniques. In fact, two-photon
imaging-based estimates of spine density are typically 30 - 50 % too low
(Attardo, Fitzgerald, & Schnitzer, 2015; Pfeiffer et al., 2018). The recent
development of super-resolution microscopy has allowed repeated imaging of
dendritic spines with a resolution that can capture even fine structures such
as spine necks or branched spines (voxel of size ∼50 × ∼50 × ∼50 nm Pfeiffer
et al., 2018; Velicky et al., 2022). However, super-resolution imaging is not
easily employed in vivo, and often does not work well in concert with cer-
tain other techniques, e.g. some optogenetic constructs (Pfeiffer et al., 2018).

To address the need for automated spine detection in super-resolution im-
age data, in the future, efforts should be made to extend the framework of
DeepD3 to data of this image modality as well. Moreover, it could be as-
sessed whether deep-learning allows for detection of dendritic spines beyond
the resolution limit of the image. For example, the same region of interest
could be imaged with two-photon and super-resolution imaging techniques,
similar to a study by Pfeiffer and colleagues (2018). Then, a deep neural
network could be trained to segment dendritic spines in two-photon images
using the super-resolution images as ground-truth. This particular use of
deep learning has recently been utilized to enable ultrastructural studies in
living tissue (Velicky et al., 2022). Here, a region of interest was imaged
twice, once each with high and low signal-to-noise. The authors then trained
a deep neural network to improve image quality using the high signal-to-noise
image as the ground truth. This enabled the authors to repeatedly image
the same region of interest with relatively low irradiance, thereby preventing
phototoxicity within the image region. The resulting images originally had
a relatively poor signal-to-noise ratio, but due to the deep neural network,
image quality could be improved post hoc. As a consequence, for the first
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time, living neuronal tissue could be imaged repeatedly with ultrastructural
resolution using super-resolution shadow imaging (Velicky et al., 2022).

Currently, DeepD3 is trained on mostly unprocessed data. On the one hand,
this improves applicability, as raw images can simply be fed to DeepD3 with-
out additional steps. On the other hand, it is more challenging to accurately
detect dendrites and dendritic spines in unprocessed data. Hence, prepro-
cessing, such as image deconvolution, z-smear correction, spatial and/or more
complex filters (Koh et al., 2002; Zhang et al., 2010; Dumitriu, Rodriguez, &
Morrison, 2011) could improve signal-to-noise ratio of images, and thus im-
prove DeepD3 performance even further. It is conceivable that preprocessing
of input images might also help in detection of dendritic spines beyond the
resolution limit of the image. Hence, while necessary preprocessing steps
might limit the applicability of DeepD3, such means might be necessary to
improve the automated detection beyond the resolution of the two-photon
input image. In the future, it should be explored whether preprocessing could
improve the performance of DeepD3.

4.2.2 Issues with manual quantification of dendritic
spine abundance

In the last two decades, dendritic spines have been at the focus of linking
synaptic changes to neuronal functioning and/or behavioral features (Hofer
et al., 2009; Kasai et al., 2010; Moczulska et al., 2013; Frank et al., 2018). To
quantify changes in synaptic architecture, typically spine density or stability
are tracked over time. This is done by manually counting or annotating den-
dritic spines in a region of interest. However, this method of quantification,
which is the current gold standard, shows significant amounts of variability:
in the data for this dissertation, average precision was 85% in vitro and 63
% in vivo, indicating that, depending on the type of data, close to 40 %
of dendritic spines were differentially annotated. So far, no comprehensive
study investigating spine annotation variability is available. The measure-
ments here were obtained by comparing several annotators (n = 6 and 7 for
in vivo and in vitro data, respectively). However, it is conceivable that using
an even higher number of annotators would result in a more precise estimate
of inter-annotator spine counting variability. This estimate has so far been
lacking, and is critical as a comparison to automated means of quantifying
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dendritic spine abundance.

Given the variability reported here, the noise levels introduced by manual
annotation of dendritic spines could rival the changes typically seen in spine
density (Attardo, Fitzgerald, & Schnitzer, 2015; Pfeiffer et al., 2018) or spine
stability measurements (Frank et al., 2018). In some cases, a second anno-
tator was used to independently confirm spine measurements (Frank et al.,
2018). While this is good practice, it (A) is rarely done in most reports,
and (B) does not eliminate the risk of erroneous spine annotation entirely.
One additional factor that could contribute to inter-rater variability is the
influence of annotation criteria on users. The results here were obtained
by instructing annotators to use the same set of criteria. However, crite-
ria vary between institutions, projects, and laboratories. The most frequent
difference is the in- or exclusion of filopodia and dendritic spines that grow
orthogonally to the imaging plane. Taking this into account, the variabil-
ity between annotators could surpass the levels reported here. Interestingly,
even the same annotators, tasked to identify dendritic spines in the same im-
age showed considerable (intra-annotator) variability: approximately 15 %
of dendritic spines were not identically annotated by the same person weeks
later. The small sample size of annotators (n = 2) prevents definitive con-
clusions concerning intra-annotator variability in this work. Nevertheless,
it seems that the outcomes of studies involving quantification of dendritic
spine counts might depend not only on who performs the manual annota-
tion, but also on history effects. These biases limit the generalizability and
reproducibility of such studies.

4.2.3 Automated approaches of dendritic spine
abundance quantification

The above mentioned issues have been discussed in a number of papers over
the years (Koh & Lindquist, 2001; Mancuso et al., 2013; Xiao et al., 2018).
Accordingly, and to circumvent these shortcomings, automated and semi-
automated means of quantifying spine numbers have been attempted. Early
approaches relied on image preprocessing and mathematical means to iden-
tify spines in images. Typically, the first step was to define a dendritic
skeleton or trace using various preprocessing steps (Koh & Lindquist, 2001;
Koh et al., 2002; Rodriguez et al., 2008; Shi, Huang, & Hong, 2014). The
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second step, the identification of dendritic spines, varies between methods:
in some, this is performed in a series of steps, involving estimations of spine
length, spine head width, dendrite thickness, and the spine orientation angle
(Koh & Lindquist, 2001; Koh et al., 2002). Others have used skeletonization
to also identify dendritic spines automatically (Fan et al., 2009). Further
image processing (e.g. wavelet transformations or calculation of a Hessian
matrix) have also been used to better identify dendritic spines (Fan et al.,
2009; Shi, Huang, & Hong, 2014; Singh et al., 2017a). Computationally more
intricate methods, such as calculations of vector fields (Zhang et al., 2010) or
definition of adaptive local binary fitting energy functions (Fan et al., 2009),
have also been reported.

In their respective reports, these automated methods of spine detection typ-
ically perform well when compared to manually annotated data (typical sen-
sitivity >85 %). However, several limitations should be kept in mind when
evaluating automated methods of spine detection. Most of these methods
depend on user-defined parameters (e.g. thresholds or minimal distances).
Some parameters, such as the pixel/voxel size, will likely have to be pro-
vided by the user, irrespective of the method used. However, thresholds
that depend on intensity values of a given image are frequently subjectively
chosen and have to be adapted when analyzing different images. Such user
intervention means that some approaches automate certain aspects of spine
identification but do not provide fully automated spine annotations per se.
In an effort to combat erroneous spine identification, most tools allow for
manual cleaning of spurious annotations, either between steps of the spine
prediction process or at the end. While this is an important and valuable fea-
ture of these methods, it should be kept in mind that spine identification then
still relies on human annotation, and hence takes away from the automation
of spine detection. Typically, manual editing constitutes the bottleneck of
image segmentation (Peng et al., 2011). Hence, a trade-off between accuracy
and amount of user-involvement is likely unavoidable, and should be chosen
based on the experiment at hand.
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4.2.4 The lack of a benchmark dataset for dendritic
spine detection

The performance of the above mentioned methods for automated spine de-
tection is typically compared to the annotations of a single annotator. As
discussed above, manual annotations are inherently subjective, and hence
evaluation of methods should be done with annotations of multiple users.
Moreover, annotated test data is typically homogeneous, with images sharing
identical pixel sizes, similar signal-to-noise ratios, cell types and microscopy
types. Moreover, test data usually comprises a few hundred spines at most,
raising concerns about generalizability (Koh & Lindquist, 2001; Zhang et al.,
2007; Cheng et al., 2007; Fan et al., 2009). After all, spiny neurons typically
have at least 1.000, and sometimes > 10.000 dendritic spines. The evaluation
on homogenous data is reminiscent of the specialized networks trained here,
which work well for certain data types but fail to be applicable in more het-
erogeneous data. This means that the applicability of many of these previous
methods is limited by the image quality of the data. Indeed, many of the
above mentioned methods have not seen extensive use in the past, despite
being freely available.

A general issue when comparing methods of automated spine detection is
the lack of publicly available annotated structural images of dendritic spines
- a benchmark dataset. In fact, only two small datasets were found that were
publicly available (Ghani et al., 2017; Smirnov, Garrett, & Yasuda, 2018).
DeepD3 was tested against one of the two datasets (Smirnov, Garrett, & Ya-
suda, 2018) and performed well (recall >0.9). However, closer inspection of
this dataset revealed that annotation was not complete, with many dendritic
spines remaining not manually annotated. Sparse annotations complicate
evaluation of automated approaches, as annotations are typically required as
ground-truth measurements to evaluate performance of such methods. The
other public dataset had several desirable features (Ghani et al., 2017): first,
spines were annotated in a pixel-wise manner. This, in principle, allows
for more detailed analysis, such as quantification of segmentation perfor-
mance. Second, the dataset contained images of various pixel sizes, which
could be utilized to quantify performance of automated methods in more di-
verse data. However, this dataset proved to be even more sparsely annotated
(only 1 spine per image annotated). Consequently, DeepD3 performance on
this data was not evaluated. Despite ever improving methods for structural
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spine imaging and the growing number of data storage platforms, raw im-
ages of dendritic spines and their annotations are either not available or only
available upon request. This seriously hampers the possibility for further
development or evaluation of methods for automated spine or dendrite de-
tection. With the publication of DeepD3, all training and test data will be
made publicly available, generating - for the first time - an extensive dataset
that can be used to improve, test or cross-validate other methods of spine
detection. This dataset comprises imaging data of various image qualities,
cell types, and imaging modalities.

Along with this dataset, a module is currently being developed that allows
users to generate their own models (generalized or specialized) utilizing seg-
mented images from the DeepD3 dataset or their own. It is clear that for
some applications, a general method would be advantageous. However, in
many experiments, image data is homogeneous in terms of signal-to-noise
ratio and pixel size. This is the underlying reason why most approaches so
far have not been cross-validated in other datasets. DeepD3 will, in future
releases, also allow users to use specialized models that perform according
to the user’s experimental needs. The generated models can then also be
openly shared, growing the options available for users over time.

4.2.5 Quantification of synapses
Only an insignificant proportion of dendritic spines are not structurally con-
nected to a presynaptic bouton (Petrak, Harris, & Kirov, 2005; Wilke et al.,
2013) and most excitatory synapses are located at dendritic spines (Berry
& Nedivi, 2017). As a consequence, dendritic spines are frequently taken
as a proxy for excitatory synapses. Quantifying synapses, their turnover
and connectivity this way does not require synapse-specific markers or other
tools. Instead, a neuron can simply be intracellularly filled or labeled with
a dye and subsequently morphologically visualized. However, attempts have
been made to quantify synapses not via identification of dendritic spines,
but rather utilizing synaptic markers (Kim et al., 2012; Kuljis et al., 2019;
Perez-Alvarez et al., 2020). For example, by reconstituting GFP molecules
across the synaptic cleft (mGRASP), individual synapses were visualized as
green fluorescent punctae (Kim et al., 2012; Feng, Zhao, & Kim, 2012; Feng
et al., 2014). mGRASP images circumvent the requirement to separate spine
from dendrite signal, as only the synapse itself is marked. This is exploited in
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subsequent data analysis, where synapses are automatically detected using
simple thresholding, watershed segmentation, and/or more computationally
involved variational Bayesian Gaussian mixture models (Kim et al., 2012;
Feng, Zhao, & Kim, 2012). However, spurious fluorescence sources (non-
specific trafficking or auto-fluorescence artifacts) can be wrongly labeled as
synapses using these methods.

Hence, while mGRASP should in principle constitute an elegant way to iden-
tify structural synapses, widespread use is currently lacking, as reports using
this approach so far are scarce (Druckmann et al., 2014; Song et al., 2018;
Choi et al., 2018; Mukherjee et al., 2021). Others have equipped proteins
that are localized postsynaptically with fluorescent tags, thereby visualiz-
ing synapses (Kuljis et al., 2019; Perez-Alvarez et al., 2020; Graves et al.,
2021). These tags also produce fluorescent punctae, similar to the ones ob-
served when using mGRASP. Accordingly, automated identification methods
similar to the mGRASP methods described above were employed, utilizing
segmentation based on shape (Kuljis et al., 2019; Perez-Alvarez et al., 2020)
and/or a series of criteria (Graves et al., 2021). Interestingly, one of these
reports, in which AMPA receptors tagged with a fluorophore were endoge-
nously expressed in vivo, also attempted automated signal detection using
machine learning (Graves et al., 2021). They, too, compared the congru-
ence of two expert annotators and found that disagreement was large (<75
% of synapses annotated in agreement). Their automated approach per-
formed more reliably compared to human annotation (>80 % of synapses
annotated in agreement). However, here, again, auto-fluorescence artifacts
might have contributed to the reliability of the method. Moreover, as seen
by the high inter-rater variability in this dissertation, two expert annotators
might have not been sufficient to identify which punctae were synapses and
which not. Despite this large variability, the automated detection outper-
forms human annotation in terms of reliability. Given that the report is
recent, the usefulness of this approach to the field remains to be seen. After
all, approximately 20 % of all synapses could not be uniquely identified. This
might be a limitation of the molecular approach and consequently the image
quality, rather than the machine learning approach employed to automati-
cally detect synapses. Nevertheless, so far, DeepD3 spine detection seems
to outperform automated approaches of synapse detection (recall of DeepD3
>85 % in almost all datasets, with recall reaching up to 96 %). In the fu-
ture, a dataset should be acquired to directly compare DeepD3 to automatic
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synapse detection approaches.

4.2.6 Image segmentation of dendritic spines
Approaches of synapse detection employ image segmentation methods, in
which individual pixels are assigned to categories, either via outlining synapses
or creating a binary mask for them. This is a particularly useful approach, as
it allows for measurements beyond just counting synapses, such as synaptic
size for example. Similarly, in the past, measurements of dendritic spines
apart from spine density and stability have been performed: for example,
historically, spines have been stratified into morphological categories accord-
ing to their shape. Categories included filopodia (long and thin protrusions
without a bulbous head), thin spines (spines with a small head), mushroom
spines (large protrusions with a large head and thin neck), stubby spines
(spines without a spine neck), and branched spines (two or more spine heads
that share a common spine neck). Categorization is typically performed by
visual inspection. To automate this task and sort spines into categories, mere
detection of dendritic spines is not sufficient. Instead, spines are segmented
in image data, and according to the shape of the segmentation, assigned
to a category. DeepD3’s segmentation lends itself for this type of analysis.
However, despite widespread use of this type of classification, a recent elec-
tron microscopy study has raised concerns about categorization of dendritic
spines: morphological features seemed to vary along a unimodal distribution
with no identifiable morphological subtypes evident (Ofer et al., 2022).

Nevertheless, segmentation of spines in 2D and 3D light imaging data allows
for extraction of other, morphologically relevant features of dendritic spines.
For example, the size of the spine head can be estimated, a measurement
known to be correlated to synaptic strength (Holler et al., 2021). More-
over, segmentation of dendritic spines allows for fluorescence analyses, such
as detection of postsynaptic markers, or measurement of calcium transients.
DeepD3 performs full segmentation of dendrites and dendritic spines in input
data, and hence enables these types of analyses at large scales. Spine count-
ing is an arduous task, however, manual segmentation of dendritic spines,
particularly in 3D, is much more time-intensive. DeepD3 performs this task
in an automated fashion on large images rapidly. For example, a ∼ 500 MB
image is fully processed in under 10 minutes, a process that would require 5
- 7 hours if done manually. In light of this amount of manual work, others
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have attempted to automate this process in the past. Some of the above
mentioned methods for automatic counting of dendritic spines also provide
pixel-wise segmentation (Koh & Lindquist, 2001; Rodriguez et al., 2008; Shi,
Huang, & Hong, 2014). Typically, segmentation was then utilized for spine
classification, which was generally high (75 - >90 % agreement), but de-
pended on the number of spine subtypes (between 80 and 92 % agreement
Shi, Huang, & Hong, 2014). Pixel-wise performance is not reported for these
methods.

Commercial products, such as Imaris, Neurolucida 360 or NeuronStudio also
offer spine segmentation in image data (Wearne et al., 2005; Swanger et al.,
2011). However, the respective companies have not published reports on
the accuracy of their tools. Fortunately, performances of NeuronStudio and
Neurolucida 360 have been recently compared in a small sample (Xiao et al.,
2017), however, both tools had a precision of ≤ 0.5, indicating that up to 50
% of detected spines were false positives. While Imaris currently lacks quan-
titative assessment of its performance, according to qualitative assessment of
one report, it fails to capture dendritic spines accurately (Basu et al., 2018).
Imaris offers manual user corrections to more accurately segment dendritic
spines, however, this again involves extensive manual time investment from
the user.

With the advent of deep learning in image segmentation in the last years,
two additional tools have been reported (Xiao et al., 2017; Vidaurre-Gallart
et al., 2022). In the first approach, spine segmentation was attempted in two
dimensional maximum intensity projections of images (Xiao et al., 2017).
This tool proved superior to NeuronStudio and Neurolucida 360 in terms of
spine detection. However, again, pixel-wise performance was not quantified.
Moreover, this tool is not open source and hence has not been used so far by
other groups in the field. Recently, Vidaurre-Gallart and colleages developed
another tool, which segments spines in 3D (Vidaurre-Gallart et al., 2022).
This tool was trained on a large, homogeneous dataset, acquired via confo-
cal imaging, that had a very high signal-to-noise ratio (Benavides-Piccione
et al., 2013; Vidaurre-Gallart et al., 2022). With reported F1 scores between
68 to 77 % the performance of the tool seemed promising. However, DeepD3
seemed to perform better in image data that was obtained via two-photon mi-
croscopy (Fig. S3.2.4A-E). Notably, the data DeepD3 was trained on mostly
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had lower signal-to-noise ratios than the training data of Vidaurre-Gallart
et al. (2022). Hence, DeepD3 might have been better equipped to deal with
the relatively low signal-to-noise ratio of the image displayed in Fig. S3.2.4.
The networks of Vidaurre-Gallart et al. are reminiscent of the specialized
networks that were trained in this dissertation. The performance of these
models were still good, but only in data that was similar to the training
data in terms of pixel size and signal-to-noise ratio. Hence, the homoge-
neous training dataset used by Vidaurre-Gallart and colleagues might limit
the generalizability of the method to other data. This is not explored in
the report, as their method was never cross-validated against other data or
data that had been annotated by multiple users. Hence, while this method
might achieve segmentation as accurate as, or potentially more accurately
than DeepD3 in image data with very high quality, its usability beyond this
type of data is questionable.

In summary, DeepD3 was more extensively validated than any other tool
available so far. It performs well in identifying dendritic spines in image
data with heterogeneous image quality and spines are successfully segmented
in the data, enabling further analyses beyond spine count or spine density
measurements.

4.2.7 The need for high throughput methods for spines
quantification

In order to understand the intricate network dynamics of the brain, ever in-
creasing amounts of neurons are recorded from simultaneously, utilizing mod-
ern microscopy or electrophysiological methods such as Neuropixel probes or
light beads microscopy (Jun et al., 2017; Demas et al., 2021b; Steinmetz et al.,
2021). However, a similar trend in quantifying synaptic dynamics has been
missing. Typically, only dozens of dendritic spines are tracked per neuron in
most reports (Scholl, Wilson, & Fitzpatrick, 2017; Frank et al., 2018). Given
that neurons have between 1.000 and 30.000 synaptic connections (Ichikawa
et al., 1993; Megıas et al., 2001), and studies typically characterize 100-300
dendritic spines per neuron (Wilson et al., 2016; Iacaruso, Gasler, & Hofer,
2017), appropriate sampling remains challenging. Moreover, in certain exper-
imental paradigms, not the total number of spines, but rather the emergence
or loss of dendritic spines is of critical interest. In these cases, the number
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of gained or lost spines is typically below 30 spines per cell (Coneva, 2015;
Frank et al., 2018). Recently, it has been argued that some neurons are func-
tionally driven by many small, clustered and functionally similar synapses
(Scholl et al., 2021). This re-emphasizes that sufficient sampling of dendritic
spines is critical to understand neuronal function. In other words, hotspots
of dendritic turnover can only be captured with good sampling, and if certain
areas are under-represented, erroneous conclusions are more likely to occur.
In this context, DeepD3 should address the current need for high throughput
spine analysis methods. While it performs on par with human spine anno-
tation in terms of reliability, the main advantage is its speed in segmenting
image data: it is possible to segment dozens of gigabytes of data per day, an
undertaking that would require months or years if done manually. This also
allows researchers to quantify spines not only in dendritic regions of choice,
mostly belonging to individual neurons, but rather agnostically across much
larger regions of interest. This should critically improve the number of spines
that are quantified per cell/animal.

4.2.8 Biases of DeepD3 and other automated spine
detection methods

While automated methods of spine detection provide means of rapidly quan-
tifying large amounts of data, such approaches can also introduce systematic
biases to the subsequent analyses. Several of such biases could arise from
the imaging data itself. For example, it is likely that large dendritic spines
are more reliably detected given the number of pixels and intensities of such
spines is typically higher. Small spines can sometimes be hardly resolved
by non-super-resolution light microscopy techniques, and therefore should
be more difficult to detect. Similarly, spine necks and dendritic spines that
grow perpendicular to the imaging plane are typically difficult to resolve, and
as a consequence, might be less likely to be segmented accurately. Lastly,
spines in close proximity to each other provide lower contrast boundaries and
could therefore also be more challenging to segment correctly.

Additional biases might arise from the training data, as deep learning tech-
niques critically depend on the quality of annotations in the training data
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(Kim et al., 2019). Although the training data for DeepD3 is extensive, it
was generated by annotations of three annotators, with the majority stem-
ming from one. Additionally, all training images were always only annotated
once, which could introduce more lingering biases that only occur when seg-
menting certain types of images. In general, in light of the observed amounts
of variability, the question of how reliable manual annotation of few users is
and how well an automated approach can perform on a pixel-per-pixel basis
remains unclear. It is certainly possible that DeepD3 performs dendrite and
spine segmentation in a biased manner. In many deep-learning methods,
such as face recognition (Acien et al., 2018; Wang & Deng, 2020), speech
classification (Mozafari, Farahbakhsh, & Crespi, 2020), or biomedical appli-
cations (Dias & Torkamani, 2019; Cirillo et al., 2020), such biases have been
found in the past. In the future, DeepD3 performance should be assessed
in additional published datasets that have been manually annotated. Such
efforts could give insight into potential biases that might be present in the
current version of DeepD3. Further analyses would then be needed to correct
for such biases.

4.2.9 Conclusions and outlook
The second section of this dissertation deals with the development of DeepD3,
a deep-learning tool for the automated detection and segmentation of den-
drites and dendritic spines. Automatically generated image segmentation
was utilized to identify dendritic spines across a variety of datasets, showing
that DeepD3 performed on par with human annotations, the current gold
standard. Critically, DeepD3 performed segmentation orders of magnitude
faster than human annotators. Both, fluorescence extraction could be per-
formed reliably in 2D and 3D data.

One feature that is currently lacking in the DeepD3 framework is the op-
tion to match spines over time. As a consequence, analyses involving spine
turnover can currently not be automated using this tool. Since this is at the
core of many investigations involving imaging of dendritic spines, this fea-
ture should be incorporated in future versions of DeepD3 or other automated
spine detection methods. This is a challenging undertaking for several rea-
sons. First, image-to-image registration of large 3D volumes is essential to
match dendritic spines (Fan et al., 2009; Mancuso et al., 2013). However, if
annotation and/or matching is done manually, pixel-resolution registration is
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not required. Automated methods, however, would require particularly well-
registered image volumes - a challenging undertaking of its own (Qu, Long,
& Peng, 2014; Haskins, Kruger, & Yan, 2020) - to automatically match
dendritic spines across time points. Moreover, even in perfectly registered
data, spines cannot be easily matched due to their extensive motility (Dai-
ley & Smith, 1996; Majewska, Tashiro, & Yuste, 2000; Dunaevsky et al.,
2001; Bonhoeffer & Yuste, 2002). Spine motility is typically manifested by
changes in spine head volume or location (Fischer et al., 1998; Dunaevsky
et al., 1999). To circumvent this problem, the base of the spine could be iden-
tified. Here again, the resolution limit of two-photon and confocal imaging
complicates such an identification, as frequently spine necks or bases are not
visible in images stemming from these modalities. However, a DNN could be
trained to localize the spine base by complementing such imaging techniques
with super-resolution or electron microscopy data. Given a sufficiently ac-
curate network prediction performance, spines could then be matched based
on the location of the spine base, not their spine head. Potentially, spine
density limits the applicability of this approach, as with increasing density
spine bases also lie in closer proximity. Consequently, it is conceivable that
there is an upper limit of spine density in which this approach works. Ex-
perimental evidence is required to establish whether this is the case, and at
which spine density levels such an approach would stop performing reliably.
Hence, in the future, a further developed version of DeepD3 could then not
only alleviate the time spent on spine annotations, but also perform spine
matching to allow neuroscientists to fully automatically and rapidly assess
spine dynamics in large datasets.
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4.3 Towards establishing wiring rules during
LTP-induced synaptogenesis

The goal of this project was to establish an assay to identify the functional
connectivity rules governing LTP-induced spinogenesis. This section will
present the efforts towards that goal. Neurons undergoing LTP have been
shown to grow new dendritic spines (Engert & Bonhoeffer, 1999; Maletic-
Savatic, Malinow, & Svoboda, 1999; Toni et al., 1999), which form functional
synapses rapidly after formation (Nägerl et al., 2007; Zito et al., 2009; Hill
& Zito, 2013). However, the wiring rules these LTP-induced synapses follow,
and hence their potential involvement in the maintenance of LTP, remain
elusive. The main goal of the research presented here was to improve upon
an existing assay to map functional synaptogenesis following LTP in vitro
(Coneva, 2015). This was achieved in a number of enhancements. In par-
ticular, methodological changes boosted the throughput of the assay several-
fold, critically enabling functional characterization of hundreds to thousands
of dendritic spines. Moreover, a molecular approach to map spine matu-
rity was implemented as a first step towards identifying a sub-population of
newly grown dendritic spines that lack the proteomic machinery of a func-
tional synapse. This sub-population of dendritic spines poses a potential
confounder when evaluating functional connectivity rules of LTP-induced
spines. Lastly, a series of computational and pharmacological approaches to
determine synaptic connectivity of single spines in the presence of dendritic
calcium spikes were evaluated.

4.3.1 Previous efforts
Since the discovery that new dendritic spines grow during LTP (Engert &
Bonhoeffer, 1999), several reports have provided insights into whether, how,
and with which cells new synapses are established. The first question was
quickly answered: as hypothesized by Engert and Bonhoeffer in 1999, LTP-
induced dendritic spines form functional synapses rapidly after outgrowth
(Toni et al., 1999; Knott et al., 2006; Nägerl et al., 2007; Coneva, 2015).
Accounts on the time-course of functionalization vary, with some reports in-
dicating that establishment of functional synapses happens within minutes
of spine outgrowh (Coneva, 2015), while others state that it could take 15
or more hours (Nägerl et al., 2007). Much less is known about how den-
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dritic spines are functionalized. In the past, it has been shown that the mere
presence of elevated glutamate levels near a dendrite can elicit spine out-
growth (Kwon & Sabatini, 2011). However, others have found that AMPA
and NMDA receptors localize to the postsynaptic sites during developmen-
tal synaptogenesis, even in the absence of glutamatergic receptor activation
(Cottrell et al., 2000). Additionally, several molecular players, such as cad-
herins and neuroligins, have been found to be critical for activity-dependent
synaptogenesis (Bozdagi et al., 2000; Garner et al., 2002; Kwon et al., 2012).
Others have emphasized the role of local astrocytes in this process (Ullian,
Christopherson, & Barres, 2004; Muthukumar, Stork, & Freeman, 2014).
Taken together, so far, it is unclear how LTP-induced functional synaptoge-
nesis is organized on a molecular level.

Ultrastructural accounts

Two reports have attempted to shed light on the third question: which
presynaptic inputs are chosen when establishing new synapses after LTP?
In an electron microscopy study, Toni and colleages provided critical insights
(1999): new dendritic spines seemed to grow and rapidly form functional
synapses with boutons after LTP (within 45 - 60 min; Toni et al., 1999).
Another ultrastructural study later confirmed this discovery (Nägerl et al.,
2007), albeit finding that functional synaptogenesis took much longer than
previously stated (≥15 h). Interestingly, Toni and colleagues found that ax-
onal boutons were frequently targeted by two dendritic spines originating
from the same dendrite after LTP, a phenomenon that is rare under base-
line conditions (Toni et al., 1999; reproduced in Knott et al., 2006). Using
a marker for calcium entry into spines, it was shown that the majority of
these spine pairs seemed to be functionally connected to the axonal bouton.
Consequently, LTP seems to lead to the duplication of certain synapses.

While it seems that this already answers the question of functional connec-
tivity rules of synaptogenesis following LTP, there are several shortcomings:

First, due to the low throughput of 3D electron microscopy studies at the
time, the number of spines investigated in this report is low. 25 boutons with
contacting spine pairs were found, of which 15 had spine pairs originating
from the same dendrite. Moreover, only 9 of these 15 spine pairs showed sig-
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nificant amounts of calcium precipitate, the proxy for functional connectivity
(see below). While this report provides invaluable insights into the structural
underpinnings of LTP, such sparse sampling is likely not representative of the
functional changes of a hippocampal neuron during LTP.

The second caveat is the method used for assessing functional connectivity.
Toni and colleagues employed a protocol using brief but intense presynaptic
stimulation just before fixation of the tissue. This should cause calcium to
only be present in dendritic spines that are functionally connected to stimu-
lated axonal boutons. During fixation, calcium was then precipitated via a
chemical reaction, such that precipitates could be localized in the subsequent
electron microscopy imaging (Buchs et al., 1994; Toni et al., 1999). However,
given the substantial time between stimulation and fixation (5 minutes), it
is possible that this is not a representative measure of functional connectiv-
ity. It has been shown in the past that, following presynaptic stimulation,
some dendritic spines - in contrast to dendrites - have elevated levels of intra-
cellular calcium (Müller & Connor, 1991). However, regenerative dendritic
calcium events are frequently observed in hippocampal neurons (Antic et al.,
2010; Sheffield, Adoff, & Dombeck, 2017), and such events can also increase
intracellular calcium levels in dendrites and spines up to several minutes
(Guthrie, Segal, & Kater, 1991). Such events have been found to occur fre-
quently in response to intense presynaptic stimulation and typically flood all
dendritic spines, irrespective of whether synaptic transmission occurred or
not (Helmchen et al., 1999; Grienberger, Chen, & Konnerth, 2014; Coneva,
2015). Hence, a proportion of spines in the report by Toni and colleagues
1999 might have been falsely identified as synaptically connected, since the
spines’ calcium precipitates originated not from previous synaptic input but
rather dendritic calcium spikes.

Lastly, screening for boutons contacted by two dendritic spines only 60 min-
utes after LTP induction represents a selection bias. In particular, dendritic
spines that contact axons in places where no axonal bouton has formed would
be missed. Moreover, all filopodia and immature dendritic spines were omit-
ted during their analysis. Hence, given that many LTP-induced dendritic
spines need more than 60 minutes to form a functional synapse with a presy-
naptic partner (Nägerl et al., 2007; Coneva, 2015), functional synaptogenesis
could not be properly assessed. Consequently, by excluding certain types of
LTP-induced spines, the underlying wiring rule cannot be determined. Taken
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together, the observation that some newly grown dendritic spines contact pre-
viously active axonal boutons should not be seen as evidence for a Hebbian
wiring rule, as other newly-grown spines might contact other presynaptic
boutons. Consequently, which wiring rule applies to LTP-induced synapto-
genesis remains entirely elusive to this day.

Recently, another ultrastructural study investigated a closely related ques-
tion: how do dendritic spines that grow during learning get functionally
integrated into the synaptic network (Hedrick et al., 2022). By combining
two-photon imaging of glutamate transients and electron microscopy in the
same dendritic spines, Hedrick and colleagues were able to confirm a number
of past observations: first, new dendritic spines grow in cortical pyrami-
dal neurons during experience-dependent plasticity paradigms (Hofer et al.,
2009; Xu et al., 2009). Second, plasticity at dendritic spines induces local
heterosynaptic priming effects for synaptogenesis and future plasticity events
(Kwon & Sabatini, 2011; Murakoshi, Wang, & Yasuda, 2011; Hedrick et al.,
2016). Third, new spines seem to be grouped in spatially confined func-
tional clusters (Frank et al., 2018; De Roo, Klauser, & Muller, 2008; Fu et
al., 2012). Fourth, synaptogenesis seems to happen primarily via filopodial
search of boutons in the vicinity (Niell, Meyer, & Smith, 2004; Toni et al.,
2007). Interestingly, such synaptogenesis intially is found on multisynaptic
boutons, similar to what has been described by Toni and colleagues 1999.
Later on, however, such multisynaptic boutons are rarely found, indicating
that either one postsynaptic compartment is eliminated or the presynapse is
split.

Given the detailed characterization of structure and function of newly-formed
dendritic spines, Hedrick and colleagues were also able to investigate a num-
ber of new research avenues. Critically, they found that the majority of new
dendritic spines seemed to functionally be related to the task, as activity
patterns matched those spines that were active during learning of the lever
press task (Hedrick et al., 2022). Moreover, the movement required to per-
form the task was improved when newly-grown dendritic spines were active,
indicating that they might contribute to the learned behavior. Lastly, they
found an unexpected connectivity rule, namely that newly-formed dendritic
spines seemed to preferentially target boutons of those axons that were in-
volved in the task but had no pre-existing functional connection with the
postsynaptic neuron (Hedrick et al., 2022). Taken together, this study not
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only recapitulates fundamental findings of past efforts, it also shed light on
how functional connectivity rules of synaptogenesis work in the motor cortex
of mice.

While generally investigating similar biological phenomena, it is necessary
to point out several key differences between the study by Hedrick et al. 2022
and the assay proposed in this dissertation. First, while it is believed that
experience-dependent plasticity paradigms typically involve LTP, and certain
aspects of such paradigms can be reproduced by inducing LTP (Nabavi et al.,
2014; Jeong et al., 2021), they are two distinct processes. This is particularly
evident as experience-dependent plasticity paradigms are utilized with living
animals, where a multitude of complex measureable and non-measureable
phenomena occur. One of the technical issues with correlated two-photon
microscopy and EM is the low throughput. Hedrick et al. 2022 made a sub-
stantial effort in this regard and included imaging regions of four animals in
their EM dataset. However, this still only yielded a total of 289 functionally
and ultrastructurally analyzed spines, of which 24 grew in during the learn-
ing of the motor task. As discussed (see Discussion 4.2.7), throughput is an
essential component when describing rules governing functional connectivity.
Another issue in the establishment of the connectivity rule by Hedrick et
al. 2022 was the volume of the EM sample, reportedly <1mm x <1mm x
150-300 µm . It is likely that some axons in this volume originated from the
same cell but could not be identified such in the EM volume. This could con-
found the wiring rule that Hedrick et al. 2022 found (newly-formed dendritic
spines preferentially target axons that were involved in the task but had no
pre-existing functional connection with the postsynaptic neuron). Taken to-
gether, while the study by Hedrick et al. 2022 provides further invaluable
insights into the functional connectivity rules governing learning, the answer
to the question of, which wiring rule applies to LTP-induced synaptogenesis
remains elusive to this day.

A previous assay to map functional connectivity in LTP-induced
spines

In an attempt to investigate the time-course of spine functionalization fol-
lowing LTP and its underlying wiring rule, Coneva developed the original
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variant of the proposed assay (Coneva, 2015). Functional synaptogenesis fol-
lowing LTP seemed to occur rapidly, sometimes even within minutes of spine
outgrowth. LTP-induced-, in contrast to spontaneously emerged, dendritic
spines preferentially formed functional synapses with LTP-driving axonal
boutons (64 % vs. 11 % Coneva, 2015), pointing towards an input-specific
wiring rule. However, several shortcomings of the original assay required
addressing to conclusively establish the wiring rules governing LTP-induced
synaptogenesis. The results reported in this dissertation were aimed at im-
proving some of these shortcomings, and to work towards an experimental
design that tackles the question driving this project.

One critical step of the assay is the establishment of functional connectiv-
ity of all recorded dendritic spines via calcium imaging. Dendritic calcium
spikes, large increases in cytosolic calcium levels in response to strong input,
occur frequently. Such events mask which spines received synaptic input by
flooding all dendritic spines with calcium from the dendrite. In the report
by Coneva, functional connectivity of dendritic spines was established using
a computational approach that utilizes temporal unmixing of spine and den-
drite events (2015). In this dissertation, this approach was thoroughly tested
on a dataset in which the same dendritic spines were either flooded with
calcium (dendritic calcium spike) or single spines were responsive to presy-
naptic stimulation. The temporal unmixing approach was unable to iden-
tify which spines were synaptically connected to stimulated boutons during
dendritic calcium spikes. Moreover, compared to data showing single-spine
responsiveness, roughly three times as many dendritic spines were identified
as responsive using this approach. Notably, in the report by Coneva, imag-
ing data containing dendritic calcium spikes were not omitted from analysis.
Hence, it is feasible that a proportion of spines identified as connected to LTP-
inducing boutons were, in fact, not synaptically wired in that way. While
there are certain differences, such as a different calcium indicator, between
the approach by Coneva and one presented here, it is unlikely that these
differences would affect the temporal aspect of dendritic calcium spikes. In
fact, the calcium indicator used here (GCaMP7b) has a faster half-rise time
than the one utilized by Coneva (GCaMP6s; 2015), which excludes indicator
kinematics as a potential confounder (Dana et al., 2019). Additionally, when
assessing the spread of calcium through the majority of a CA1 pyramidal
neuron’s dendritic length, no distinct pattern of calcium wave propagation
could be observed, even at very high temporal resolution (∼300 Hz). This
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indicates temporal unmixing of spines that receive synaptic input from re-
generative dendritic calcium events might not be possible given the imaging
frequency used here, or by Coneva (∼60 Hz Coneva, 2015).

Investigations into the time-course of spinogenesis have typically suffered
from low throughput (De Roo et al., 2008; Perez-Alvarez et al., 2020). This
also applies to the report of Coneva (Coneva, 2015): for example, only 33
LTP-induced dendritic spines across 9 cells could be functionally tracked in
all experiments. Moreover, while pre-existing spines could be structurally
monitored in much greater quantities (n >1000 spines across 9 cells), the
functional connectivity of only a very small fraction of all dendritic spines
could be assessed (n ≈11 spines per cell, compared to several thousand spines
per CA1 pyramidal neuron). This highlights the critical need for improving
the throughput of the assay, as only a fraction of all dendritic spines from
each CA1 neuron could be characterized functionally. In this dissertation,
it was shown that the throughput of the assay could be improved consid-
erably by employing volumetric Bessel beam imaging, increasing the region
of interest tracked throughout the experiment, and utilizing novel methods
of automated spine detection (DeepD3; see Results 3.2). This increases the
number of dendritic spines that can be functionally characterized per cell
to several hundred, and those that can be structurally tracked to over 1000
per cell. Consequently, LTP-induced dendritic spines available for character-
ization should increase, addressing the low sample size in the previous report.

Occasionally, no dendritic spine grew in response to LTP induction within the
imaging field of view in the report by Coneva (2015). In some cases, nearby
dendrites were then screened for LTP-induced spines. Critically, the area in
which LTP was induced was tethered to the imaging field of view at the time
of LTP induction. Due to the limited size of the stimulation area (70 × 70
µm), some of these nearby dendrites resided outside the LTP induction area.
Consequently, it is conceivable that some of the observed spinogenesis might
not have been LTP-induced, but rather occurred spontaneously. Due to the
need to screen nearby dendrites for spinogenesis, sampling from dendritic
spines was inhomogenous: some spines were functionally assessed nearly 100
times, others only once (Coneva, 2015). Given the release probability at the
Schaffer collateral synapse, at least 5-10 functional measurements should be
obtained per spine to definitively characterize functional connectivity. To
circumvent the issue of imaging spines outside of the LTP induction area,
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and hence ensure homogeneous sampling, two technical improvements could
be made: first, increasing the area of presynaptic stimulation during LTP
and decoupling it from the imaging area should allow for imaging of several
dendritic regions after LTP. This not only guarantees that all functionally
characterized dendritic spines are within the LTP induction area, it also
boosts throughput as much larger dendritic stretches can be functionally as-
sessed. Second, at the end of the experiment, several dendritic stretches can
be functionally assessed multiple times (e.g. 10 times), boosting through-
put of the assay and simultaneously ensuring identical repeated recordings
of each dendritic spine in all experiments.

Another issue of the previous report is the ambiguity introduced by LTP-
induced dendritic spines that remain unresponsive throughout the experi-
ment. Non-responsivity could be interpreted as not being functionally con-
nected to the ChR2-expressing population of boutons that drove LTP induc-
tion. Alternatively, an immature, non-functional synapse could have formed
between the same or different synaptic partners. While >95 % of pre-existing
spines show hallmarks of a mature postsynapse (Arellano et al., 2007a; Nägerl
et al., 2007), LTP-induced dendritic spines frequently lack these hallmarks
in the first hours after their outgrowth (Nägerl et al., 2007). In the report
by Coneva, conflicting results were obtained with respect to determining
the wiring rule of LTP-induced dendritic spines: on the one hand, newly
grown spines were much more commonly functionally connected to ChR2-
expressing boutons when LTP was induced, as opposed to when synaptoge-
nesis happened spontaneously in control conditions (64 % vs. 11 % Coneva,
2015). This could be interpreted as LTP-induced dendritic spines prefer-
entially wiring to LTP-inducing boutons (i.e. a partially Hebbian wiring
rule). On the other hand, the wiring of LTP-induced spines was compared to
spines that were pre-existing before the induction of LTP. Prior to the onset
of optochemical LTP induction, no difference in wiring should exist between
boutons that do and those that do not express ChR2. Hence, if the wiring
rule LTP-induced dendritic spines follow is partially Hebbian, more LTP-
induced spines should be functionally connected to ChR2-expressing boutons
than pre-existing spines. However, these two spine populations seemed to be
functionally connected to ChR2-expressing boutons at significantly different
rates (64 % vs. 55 % Coneva, 2015). A potential explanation for these seem-
ingly conflicting results could be the maturity level of newly grown spines, a
critical aspect of the assay that is discussed below.
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The importance of spine maturity when assessing functional con-
nectivity in nascent dendritic spines

Whether or not a nascent dendritic spine has the proteomic machinery re-
quired for synaptic transmission is critical when assessing functional con-
nectivity. A lack of spine maturity in the original and proposed assays is
expressed as the absence of calcium transients in the spine. One possible
explanation of the results of Coneva (2015) is that a significant proportion
of non-responsive spines was not mature enough to show calcium signaling.
This is a potential confounder, as those dendritic spines that have not formed
a functional synapse should be omitted from the quantification. With exclu-
sion of immature dendritic spines, the proportion of responsive spines would
increase (since the number of non-responsive spines decreased), which could
affect both comparisons reported by Coneva (LTP-induced vs. spontaneously
grown spines and LTP-induced vs. pre-existing spines; 2015).

In this dissertation, steps were taken to determine spine maturity and con-
sequently address this confounding variable. Using a nanobody against a
critical protein in the postsynaptic density, PSD-95, spine maturity could be
tracked in thousands of dendritic spines over the course of many days. At the
population level, spine maturity was stable. Given that the construct used
to visualize spine maturity was over-expressed in single cells, one potential
caveat was that over time over-expression artifacts could compromise the
localization-specificity of the nanobody. However, an auto-transcriptional
control element of the construct ensured that localization occurred at post-
synaptic sites across four days.

Spine maturity was distributed unimodally, indicating that using nanobodies
against PSD-95 does not allow for a discrete distinction between mature and
immature spines. This is in line with previous reports, arguing that spine
maturity follows a continuum, rather than separate categories of maturity
(Arellano et al., 2007b; Ofer et al., 2021a). Hence, finding a precise cutoff at
which spines are mature enough to support synaptically induced postsynap-
tic calcium transients remains challenging. However, the data analyzed here
and previously (Arellano et al., 2007b; Ofer et al., 2021a) mainly consists
of pre-existing spines. It is conceivable that LTP-induced spines are more
clearly separated in distinct subtypes: previously it has been shown that
the presence of PSD-95 stabilizes nascent dendritic spines (Ehrlich et al.,
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2007). Moreover, the failure of nascent dendritic spines to acquire sufficient
PSD-95 seemingly resulted in spine pruning within 24 hours in most cases
(Cane et al., 2014). On the other hand, increased PSD-95 accumulation was
positively correlated with spine survival. In the complete version of the pro-
posed assay, the PSD-95 nanobody should be employed to establish whether
LTP-induced dendritic spines fall into distinct categories of spine maturity:
tracking spines before and after LTP induction and simultaneously quan-
tifying expression levels of the nanobody in LTP-induced dendritic spines
should provide insight into how maturity is distributed in this population
of spines. Beyond that, spine maturity should be cross-validated by iden-
tifying which spine synapses are functional using established tools, such as
glutamate uncaging or electron microscopy. These two experiments should
clarify whether the nanobody can be used to identify immature LTP-induced
dendritic spines and at which nanobody expression level spine maturity can
be assumed. As an alternative to the nanobody, other approaches, such as
genetic editing of endogenous postsynaptically localized proteins (Willems
et al., 2020) could be utilized to assess maturity levels of LTP-induced den-
dritic spines. Another option would be to use two-photon-guided glutamate
uncaging or ultrastructural imaging at the end of the experiment to assess
functionality or maturity of synapses.

In conclusion, the assay proposed by Coneva (Coneva, 2015) constitutes the
foundation of determining wiring rules of LTP-induced synaptogenesis. In
this dissertation, this assay was improved in several ways: Throughput was
improved considerably by employing novel microscopy and analysis methods,
as well as optimizing the LTP induction area size. Additionally, the previ-
ously employed functional connectivity method was evaluated, and shown to
be of insufficient accuracy for the determination of functionally connected
spines in the shadow of dendritic spikes. Other experimental or computa-
tional means are required to precisely determine functional connectivity of
all dendritic spines in this assay (see below). Lastly, initial steps were taken
to assess spine maturity in order to exclude immature LTP-induced dendritic
spines from the analysis.
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4.3.2 Computationally determining functional connec-
tivity of dendritic spines in the presence of den-
dritic calcium spikes

Aside from ultrastructural imaging studies, unambiguous assessments of func-
tional connectivity on a single-spine basis are challenging. The responsive-
ness criteria used in the original variant of the proposed assay (Coneva, 2015)
were shown to not resolve functional responsiveness of individual spines re-
liably. Therefore, additional computational methods were tested for their
ability to discern spines receiving synaptic input from those that are just
flooded with calcium during dendritic calcium spikes. Comparing the cal-
cium transients in dendritic spines and nearby dendritic segments was shown
to be effective in determining spine responsivity despite the presence of re-
generative dendritic calcium events in vivo (Chen et al., 2011; Wilson et al.,
2016). By subtracting a scaled version of the dendrite’s signal from the spine
signal, the synaptic input signal could be uncovered. In this dissertation,
however, re-identification of previously functionally characterized dendritic
spines could not be reliably performed using this approach. This method
was originally developed for calcium recordings in vivo, where asynchronous
inputs are much more frequent. In the experiments performed in this disser-
tation, it is likely that the absence of action potentials (due to the addition of
TTX and 4-AP) and the synchronicity of the calcium responses contributed
to the unreliability of the method. In another attempt to resolve single-spine
responsiveness in the presence of dendritic calcium spikes, a recently reported
deconvolutional approach was tested (Kerlin et al., 2019). In this approach,
the electrophysiological underpinning of the dendritic calcium spike is esti-
mated, and subsequently subtracted from the calcium signals of individual
spines. However, this method, too, proved unable to reliably determine func-
tional connectivity during dendritic calcium spikes. More advanced/complex
methods will be required to determine whether functional connectivity of
dendritic spines can be reliably assessed in the proposed assay despite the
occurrence of dendritic calcium spikes.
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4.3.3 The relevance of dendritic calcium spikes in the
proposed assay

The occurrence of dendritic calcium spikes during optogenetic stimulation
prevents measurements of synaptic connectivity in spines. Keeping the stim-
ulation power below the threshold of dendritic calcium spike generation
throughout the experiment might seem like a possible solution. However,
there is evidence that dendritic calcium spikes might be required for the
induction of LTP (Golding, Staff, & Spruston, 2002; Kampa, Letzkus, &
Stuart, 2006; Brandalise et al., 2016). Additionally, since the input strength
increases with LTP, avoidance of such events might not be feasible (Coneva,
2015). In fact, dendritic calcium spikes are frequently observed in CA1 neu-
rons in vitro and in vivo (Golding et al., 1999; Kovalchuk et al., 2000; Tsay,
Dudman, & Siegelbaum, 2007; Grienberger, Chen, & Konnerth, 2014). Nev-
ertheless, it is surprising that these events are so frequently generated in
the proposed assay despite the presence of the voltage-gated potassium and
sodium channel blockers 4-AP and TTX, as previous findings indicate that
blocking other voltage-gated channels should limit the extent of dendritic cal-
cium spread (Jaffe et al., 1992; Regehr & Tank, 1992; Andreasen & Lambert,
1995). One possible explanation is that NMDA receptors might contribute
more strongly to the input size in the proposed assay given the low amounts
of extracellular magnesium used (0.15 mM, as opposed to 0.89 mM in the
cerebrospinal fluid of mice in vivo; Sun et al., 2009). This likely renders the
majority of NMDARs voltage-independent (Dingledine et al., 1999; Wyllie,
Livesey, & Hardingham, 2013), and thus to a large extent, capable of signif-
icantly conducting calcium. In the future, it should be investigated whether
increasing the concentration of extracellular magnesium could help reduce
the probability of dendritic calcium spike generation. Potentially, a balance-
point can be found in which NMDA receptors are still sufficiently activated
to trigger LTP, while the occurrence of dendritic calcium spikes is low.

4.3.4 Pharmacological approaches to determine
functional connectivity

As mentioned, full suppression of dendritic spikes might interfere with LTP
induction. However, an alternative could be to introduce pharmacological
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agents at the end of the experiment, long after LTP induction, merely to
assess functional connectivity. The potential of this approach was tested in
this dissertation. Blocking of voltage-gated calcium channels seemed to not
prevent the generation of dendritic calcium spikes, arguing that these events
were indeed triggered by NMDA receptor-mediated calcium influx. This is
in line with previous accounts of such dendritic calcium events (Schiller et
al., 2000; Losonczy & Magee, 2006). Moreover, only very few additional
spines were found to be photoresponsive after subtype-specific VGCC block,
indicating that the threshold of dendritic calcium spike generation was not
shifted to a large extent. This suggests that subtype-specific VGCCs do not
seem to contribute much to the generation of dendritic calcium spikes in the
proposed assay. This agrees with a previous account, reporting the presence
of calcium spikes in the absence of VGCC contribution (Schiller et al., 2000).
However, in that report, calcium influx was significantly decreased due to the
absence of VGCC opening. In general, VGCCs are thought to play a critical
role in the generation of dendritic calcium spikes in pyramidal CA1 neurons
(Kovalchuk et al., 2000; Losonczy & Magee, 2006; Grienberger, Chen, &
Konnerth, 2014; Wiegert et al., 2018). As mentioned above, the low amount
of extracellular magnesium in the experiments of this dissertation might have
significantly increased the contribution of NMDA receptors to postsynaptic
calcium influx.

In the results deriving from this work, the effects of subtype-unspecifically
blocking VGCCs was assessed. In particular D890, a quaternary derivative
of methoxy-verapamil (Hescheler et al., 1982) was used. Large amounts of
D890 (1 mM) were introduced into single cells via patch-clamp, blocking
VGCCs in those cells in a subtype-nonspecific manner (Kovalchuk et al.,
2000). This specific localization ensures that presynaptic function remains
unaffected, which is not guaranteed with other approaches in which phar-
macological agents are provided extracellularly. However, it seemed that
dendritic calcium spikes could not be prevented using D890, in contrast to
previous reports (Kovalchuk et al., 2000; Grienberger, Chen, & Konnerth,
2014). However, again the composition of the extracellular solution might be
responsible for the observed lack of VGCC contribution to dendritic calcium
spikes. In the future the viability of D890 in the proposed assay should be
further explored. Using higher magnesium concentrations extracellularly in
combination with D890 may provide a unique and precise solution to the
occurrence of dendritic calcium spikes.
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In a separate attempt to pharmacologically disrupt the generation of den-
dritic calcium spikes, the GABA-A receptor agonist muscimol was used.
GABA-A receptor opening decreased the probability of dendritic calcium
spike generation as well as the total input strength. This is in line with
a report showing that hyperpolarization decreases the occurrence of den-
dritic calcium spikes (Chen et al., 2011). While the majority of responsive
dendritic spines seemed unaffected by the presence of muscimol, ∼30 % be-
came unresponsive after muscimol wash-in. Conversely, many other, pre-
viously unresponsive, dendritic spines were rendered photo-responsive upon
GABA-A receptor-mediated hyperpolarization, indicating that the threshold
of dendritic calcium spike generation had increased. Indeed, after muscimol
wash-in, dendritic calcium spikes were observed less frequently, despite in-
creases in photo-stimulation power. This is a desired property of a pharma-
cological means of blocking dendritic calcium spikes, as more spines can be
functionally characterized without the presence of masking dendritic calcium
events. However, given the high percentage of unresponsive spines, musci-
mol either prevented release in boutons via hyperpolarization or shunted cal-
cium transients in some dendritic spines. While some reports indicate that
GABA-A receptors might not be involved in calcium signaling in Schaffer
collateral boutons (Ruiz et al., 2010), others show that GABA-A receptors
are expressed presynaptically (Turecek & Trussell, 2002). Hence, synaptic
transmission is likely affected by the muscimol-induced opening of GABA-A
receptors. Indeed, here muscimol also decreased the total input strength, in-
dicating that some presynaptic boutons failed to release neurotransmitter in
the presence of muscimol. Notwithstanding, both scenarios (altered release
threshold or failure of evoking calcium transients in spines) confound the
readout of functional connectivity, as these spines/boutons would contribute
to the induction of LTP (before the presence of muscimol) but would then
remain undetected when assessing functional connectivity. Hence, it seems
broad agonism of GABA-A receptors is not a viable approach to preventing
dendritic calcium spikes in the proposed assay.
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4.3.5 Assessment of functional connectivity with
glutamate indicators

A CA1 neuron’s propensity to generate dendritic calcium spikes could also
prove to be too difficult to solve pharmacologically without affecting other es-
sential biological mechanisms, such as presynaptic neurotransmitter release.
Fortunately, other means of visualizing functional synaptic connectivity could
be explored. Recently, genetically encoded fluorescent indicators of various
neurotransmitters have been developed (Marvin et al., 2013; Sun et al., 2018;
Marvin et al., 2018; Wan et al., 2021; Aggarwal et al., 2022; Duffet et al.,
2022). Since neurotransmission at the Schaffer collateral synapse is realized
via glutamate, iGluSnFRs, a family of fluorescent glutamate indicators, could
be employed to quantify functional connectivity. Recently, localization of the
sensor to the synaptic cleft has been improved in its latest variant, iGluS-
nFR3 (Aggarwal et al., 2022). Moreover, artifactual detection of glutamate
spillover could be decreased by mutation of the indicator kinetics. Conse-
quently, iGluSnFR3 could be employed to track neurotransmitter release at
the Schaffer collateral synapse in the proposed assay, effectively circumvent-
ing the challenges of controlling dendritic calcium spikes. Recently, another
variant, of the iGluSnFR family was developed (Shindo et al., 2022): by
splitting the protein into two separate peptides that are expressed in selected
populations of cells, only synapses between these two neuronal populations
are equipped with a functional glutamate indicator. This approach should
eliminate localization of the indicator to undesired neuronal compartments,
reduce background signal and hence aid in visualizing synaptic connectivity
more clearly. Similar to iGluSnFR3, this approach should be tested for the
proposed assay, as it might constitute an alternative to calcium imaging in
identifying functional connectivity between LTP-inducing boutons and den-
dritic spines.

4.3.6 Reliability of LTP induction
The induction of long-term potentiation in organotypic hippocampal slice
cultures, even using well-established protocols, is highly heterogeneous or
sometimes impossible (Debanne, Gähwiler, & Thompson, 1999). LTP in the
proposed assay is induced optochemically, first by elevating cyclic AMP lev-
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els pharmacologically (by delivery of rolipram and forskolin) and then by
optogenetically stimulating ChR2-positive Schaffer collateral boutons. How-
ever, LTP induction under suppression of voltage-gated sodium channels (via
TTX), as attempted in the proposed assay, is challenging, due to their heavy
involvement in LTP (Golding, Staff, & Spruston, 2002; Kim et al., 2015). It
is conceivable that omitting blockers of voltage gated sodium and potassium
channels might help in the induction of LTP. TTX and 4-AP are present
to aid in spatial confinement of presynaptic light-stimulation, as action po-
tentials cannot propagate. Severing Schaffer collaterals could constitute an-
other mean of achieving spatially localized optogenetic stimulation, as back-
propagating action potentials can no longer reach other axonal branches of
CA3 cells (Kuwajima et al., 2020). Since neurotransmitter release remains
functional in severed axonal remnants, both LTP induction and probing for
functional connectivity can still be performed (Petreanu et al., 2009; Bauer et
al., 2021). Moreover, CA1-CA1 inter-connectivity is negligible (Yang et al.,
2014), indicating that input to CA1 pyramidal neurons in response to blue-
light stimulation will still originate from ChR2-positive boutons. Notably,
in the past, LTP could be induced electrically and optogenetically despite
severing CA3-CA1 connectivity (Kuwajima et al., 2020). Even considering
the disruption of CA3 axonal tracts, omission of TTX and 4-AP arguably
constitute a more physiological setting. Hence, it would be worthwhile to
explore whether this approach leads to more reliable LTP induction in the
assay.

4.3.7 Technical considerations
Recent advances in light microscopy have made it possible to record from
ever growing amounts of neurons or neuronal compartments (Lu et al., 2017;
Demas et al., 2021b; Yu et al., 2021). Here, it is shown that employing vol-
umetric Bessel beam calcium imaging (Lu et al., 2017) boosts throughput
of the assay several-fold at the cost of reduced vertical sectioning. Recently,
this technique was further improved to increase the resolution and contrast
of volumetric imaging data (Chen et al., 2022). While volumetric imaging
improves the amount of dendritic spines that are captured per region of in-
terest, a large part of the imaged regions do not cover dendrites or dendritic
spines. These ’blank’ areas are still scanned by conventional line-scanning
microscopy techniques. However, other approaches have been developed to
guide the excitation beam along only those neuronal structures that are of
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interest (Botcherby et al., 2008; Nadella et al., 2016). By adding a third
optical scanner to the light path, random light paths can be chosen in 3D
without sacrificing spatial resolution (Kerlin et al., 2019). Hence, a dendritic
branch and all nearby dendritic spines could be scanned without the need
to scan all areas of a region of interest that do not contain neuronal com-
partments of interest. This not only boosts the temporal resolution, it could
also be utilized to capture even larger stretches of dendrites for functional
characterization.

Finally, a new method called two-photon tomography was described, which
could be utilized to increase the amount of dendritic arbor that is functionally
characterized per cell in each experiment (Kazemipour et al., 2019). In this
method, four light columns are rapidly and independently scanned through
the tissue, and the resulting fluorescence signal is utilized to computationally
reconstruct the imaging region. As a consequence, arbitrarily chosen, user-
defined regions of interest are scanned with frame-rates in the kilohertz range
(Kazemipour et al., 2019). Both in terms of space covered in a single region
of interest, and temporal resolution, two-photon tomography constitutes a
technical improvement over the currently employed Bessel beam volumetric
imaging approach. However, the proposed assay allows for functional char-
acterization of hundreds of dendritic spines per cell, even in its present form,
satisfying the throughput requirements for addressing functional connectivity
rules of LTP-induced dendritic spines.

4.3.8 Alternative approaches
While the current approach has been highly optimized to tackle the ques-
tion of functional connectivity rules of LTP-induced synaptogenesis, there are
also potential, fully orthogonal alternatives. For example, the two mGRASP
constructs could be expressed in CA3 neurons and single CA1 neurons, re-
spectively, to identify structural connectivity between these neuronal popu-
lations (Feng, Zhao, & Kim, 2012; Kim et al., 2012; Choi et al., 2018). In
addition to the presynaptic component of mGRASP, transduced CA3 neu-
rons would also express ChR2 to induce LTP, as is done in the proposed
assay. During induction and maintenance of LTP, structural plasticity could
be tracked via repeated imaging of CA1 neuron morphology, similar to the
way it is done in the proposed assay. Finally, functional connectivity would
be established in pre-existing and LTP-induced dendritic spines via gluta-
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mate uncaging and recording responsiveness either electrophysiologically or
via calcium imaging. Since in such an approach only single dendritic spines
would be stimulated, initiation of dendritic calcium spikes in response to
glutamate uncaging is unlikely (Bloodgood & Sabatini, 2007). One potential
downside of this approach is that mGRASP might artificially stabilize pre-
and postsynaptic compartments, thereby increasing the chances of synapse
survival in the fraction of LTP-induced dendritic spines that are connected to
pre-mGRASP-expressing boutons. This might artificially shift the observed
rate of functional connectivity towards this population of presynaptic part-
ners.

A functional connectomics approach would also be feasible: here, the assay
would be performed as proposed, with the addition that ChR2-positive CA3
neurons would also express ascorbate peroxidase (Lam et al., 2015; Kuwa-
jima et al., 2020). This enzyme catalyzes a reaction during the EM stain-
ing procedure in the tissue, resulting in an electron-dense precipitate in its
vicinity. Such electron-dense deposits can be utilized in subsequent electron
microscopy, allowing for reidentification of axonal boutons that were involved
in the LTP induction (Kuwajima et al., 2020). Consequently, all dendritic
spines of the CA1 neurons of interest could be probed for functional synapses
via ultrastructural 3D reconstructions. This approach likely constitutes the
most thorough methodology to assess the rules of LTP-induced synaptoge-
nesis. However, throughput is a major issue in electron microscopy studies.
Hence, it is unlikely that a sufficient number of CA1 cells could be charac-
terized in this manner in a single organotypic hippocampal slice culture. As
outlined above, in order to establish fundamental wiring rules of synaptic
connectivity, high-throughput approaches are required. Consequently, while
an ultrastructural approach would provide unrivaled details on a single-cell
basis, generalizability of such an attempt might be compromised given the
low total number of cells that can be assessed.

Recently, repeated ultrastructural reconstitution in living tissue was reported
for the first time (Velicky et al., 2022). By flooding the extracellular space
with a synthetic fluorophore and employing 3D STED, neuronal tissue could
be densely reconstructed with sufficient spatial resolution to resolve thin
neurites such as dendritic spines or axons (Velicky et al., 2022). Moreover,
this technique can be paired with other commonly used light microscopy
techniques, such as calcium imaging or live labeling of common pre- or post-
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synaptic markers, to identify functional connectivity. Notably, such labeling
could also be employed to characterize spine maturity. An advantage of
this novel super-resolution microscopy technique is the vastly improved spa-
tial resolution of tracking spine outgrowth in response to LTP. As discussed
above, two-photon imaging techniques are limited in their spatial resolution,
which makes visualization of certain features of spines challenging. STED has
been shown to outperform two-photon imaging in detecting dendritic spines
(Pfeiffer et al., 2018). Moreover, in contrast to current 3D ultrastructural
studies using electron microscopy, which require months of time for data
analysis, this method was also released with an automated saturated seg-
mentation pipeline, which reduces analysis time significantly (Velicky et al.,
2022). Overall, this approach would not only enable mapping of LTP-induced
spinogenesis with ultrastructural precision, but also provide simultaneous as-
sessments of spine functional connectivity and maturity.

4.3.9 Conclusion and future directions
Here, an effort was made to investigate the functional connectivity rules of
nascent, LTP-induced dendritic spines. Since spine growth happens after the
initial onset of LTP, it is unlikely that spinogenesis is relevant to the early
phase of LTP (Engert & Bonhoeffer, 1999). However, if such spines preferen-
tially form synapses with the axons that triggered LTP, it is likely that this
type of wiring aids in maintaining the induced electrophysiological potenti-
ation. Notably, a different set of experiments proposed more than a decade
ago, would be required to assess whether this is the case (Hübener & Bon-
hoeffer, 2010): LTP-induced dendritic spines should be eliminated rapidly
after outgrowth to identify whether this affects LTP maintenance in vitro
and learning/memory in vivo. The challenging aspect of this experiment is
to generate a tool to selectively eliminate dendritic spines that grow during
LTP without affecting other synaptic or dendritic functions. However, such
an experiment would give insights into the causal role LTP-induced dendritic
spines play in neuronal function. Should spines play a role in LTP mainte-
nance, it is likely that they preferentially wire with LTP-driving presynaptic
partners. Such a mechanism would favor a winner-takes-all plasticity rule, as
dominant inputs would benefit from additional synaptic connections, render-
ing them even more dominant. Such wiring rules have been described in the
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retinogeniculate pathway of the mouse, where few RGC afferents dominate
dLGN neuron input after development (Chen & Regehr, 2000). Downstream,
in the mouse visual cortex, however, functional connectivity seems to be much
more promiscuous, as cells drift in their functional tuning over time (Marks
& Goard, 2021; Deitch, Rubin, & Ziv, 2021; Bauer & Rose, 2021). It seems
that different wiring rules are in place in various brain areas.

4.4 Rules governing functional connectivity
Establishing rules of functional connectivity is a major unresolved goal of
modern neuroscience. In this dissertation, such rules were investigated in
two circuits, the mouse retinogeniculate pathway and the Schaffer collateral
pathway of the hippocampus during LTP. Wiring rules, such as these, are
critical to our understanding of the brain. After all, how is a system with an
estimated 100 billion neurons that share ∼1.000 trillion connections amongst
themselves (Zhang, 2019) organized in such a way that everyday behaviors,
such as hugging a good friend or reminiscing about a childhood memory,
seem effortless?

Despite the development of better imaging and analysis methods, as well
as the advent of optical manipulation of neuronal activity via optogenetics,
many of the fundamental wiring rules of the brain remain elusive to this day.
This also pertains to the functional wiring rule LTP-induced dendritic spines
follow. Neither a previous (Coneva, 2015), nor the work of this dissertation
managed to successfully determine this fundamental rule of synaptic plas-
ticity. However, arguably, the methodological advances are mounting, such
that this and other rules of functional connectivity in the brain can be stud-
ied effectively in the future. DeepD3 represents one such advancement, as it
allows dendritic spines to be analyzed rapidly and automatically. However,
also other recent advances have been made, which allow for investigations
into other fundamental wiring rules of the brain. For example, the emer-
gence of functional connectomics - the combination of two-photon calcium
imaging and 3D electron microscopy in the same tissue (Reid, 2012) - lends
itself to investigate the visual circuit at the thalamocortical synapse. At this
synapse, a major transformation occurs in the functional tuning of pre- and
postsynaptic cells: while dLGN cells have round receptive fields, pyramidal
neurons in the primary visual cortex have elongated receptive fields. The
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elongated nature of their receptive fields allows V1 neurons to be direction
and/or orientation selective, features which are mostly absent in at the level
of the dLGN. In 1962, Hubel and Wiesel proposed that the elongated shape
of receptive fields in V1 could originate from the precise arrangement of the
receptive fields of afferent dLGN neurons. Computationally, this could be
achieved by a simple summation of the correct inputs, likely posing an ef-
ficient way of neurally generating these directional properties. While other
theories have been developed (Reid & Alonso, 1995; Alonso, Usrey, & Reid,
1996), the prevalent view on the wiring of this circuit is in alignment with
the scheme proposed 60 years ago (Hubel & Wiesel, 1962). By employing
functional connectomics, receptive fields and direction/orientation selectiv-
ity could be mapped simultaneously in dLGN boutons and V1 cells and the
ultrastructural wiring later assessed via large-scale 3D electron microscopy.

However, not only techological advances are required to establish rules of
functional connectivity. Such work is also done in model organisms with
less complex brains than that of the mouse, such as those of the fruit fly
Drosophila melanogaster. Here, scientists have worked for decades attempt-
ing to mathematically understand how the fruit fly brain performs a simple
computation: the perception of moving objects - motion detection (Joesch
et al., 2010; Maisak et al., 2013; Groschner et al., 2022). Over time, more and
more pieces of the puzzle have been uncovered, outlining the specific wiring
of direction- and illumination-selective neurons in the fly optic lobe (Dvorak,
Bishop, & Eckert, 1975; Maisak et al., 2013; Zheng et al., 2018). However,
despite these advances, modeling certain aspects of motion detection in the
fly brain remains challenging to this day, indicating that some aspects of the
functional connectivity rules in this circuit are still not perfectly understood
(Borst, Haag, & Mauss, 2020). While efforts like these are essential to un-
derstanding the brain, it should also be kept in mind that full understanding
of even a single functional connectivity rule of the brain is equally important
as it is technologically challenging and time-intensive.
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Figure S2.1 Red and green imaging modes of the main setup
The two photon excitation beam is guided through the objective to the sample
(dark red dotted line) via a galvo-resonant scan system, the scan and tube lenses,
a 720 nm short pass filter and an emission filter. Emitting photons (e.g. red
and green lines in A) are captured epi- and transdirectionally via mirrors and
subsequently split via an emission filter to guide photons in the green and red
spectra to separate PMTs. Different emission filters are employed to image fluo-
rophores of different spectra (see A, B and Fig. S2.2, S2.3) A Imaging settings
of the main setup to image red and/or green fluorophores. This was employed
for imaging overviews of dLGN in acute slices, RGC axonal projection pattern
in the vicinity of patched dLGN cells, dLGN cell morphologies and structural
imaging of CA1 pyramidal cells in OHSCs. B Imaging settings to perform ra-
tiometric calcium imaging using a red structural marker (tdTomato, Alexa 594)
and a green calcium indicator (GCaMP7b, Fluo-4). Typically, blue-light stimu-
lation was provided via an LED lamp, and emitted photons of the fluorophores
were captured by the three PMTs that were equipped with shutters. Shutters
light-shielded PMTs during blue-light stimulation.
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Figure S2.2 Additional imaging and photostimulation modes of the main
setup
A Imaging settings to image green or blue fluorophores. This was utilized to
image GCaMP7b in the absence of a structural marker, and to image the spine
maturity marker Xph-15-mTurquoise2. B Imaging settings to perform ratiometric
calcium imaging using dual-color optogenetic photostimulation. Two benchtop
lasers are used to stimulate blue- and red-shifted opsins. Light is reflected to the
sample using a galvo-galvo system. While two-color optogenetic calcium imag-
ing was not performed in this thesis, this setting was used during experiments to
map retinogeniculate inputs of single dLGN neurons. In these experiments, the
primary dichroic was removed.
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Figure S2.3 Fiber-mediated optogenetic stimulation of the main setup
A Alternative imaging settings to perform ratiometric calcium imaging using
dual-color optogenetic photostimulation. Here, instead of utilizing a galvo-galvo
scan system to target photostimulation, an optic fiber is placed near the sam-
ple to provide spatially confined optogenetic stimulation. This setting was used
for patch-clamp experiments involving muscimol wash-in. This setting should
be used in the future for experiments to map functional connectivity of LTP-
induced spines, as it decouples photostimulation from the two-photon imaging
field of view. Hence, several dendritic regions could be investigated using this
setting without changing the applied ChR2-stimulation.
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Figure S3.1.1 Photoproperties of ChrimsonR and Chronos during se-
quential photostimulation
A Maximum intensity projection of ChrimsonR-tdT expression pattern within
dLGN (left). Blue-light-evoked PSCs (473 nm) using increasing irradiances in
11-step protocol (top). Inset: close-up of evoked current at highest irradiance.
Sequential photostimulation-evoked PSCs of the same neuron (637 nm for 250
ms, 473 nm for 50 ms, ISI: 10 s) (bottom). B Sequential photostimulation with
varying red-light stimulation durations (250, 10, 1 ms) combined with 50 ms
blue-light stimulation. C Crosstalk suppression index quantification of B (two-
way ANOVA, main effect: p < 0.01; post-hoc test: 1 ms vs 10 ms: p < 0.01,
1 ms vs 250 ms: p < 0.01, 10 ms vs. 250 ms: p = 0.94). D Photocurrents of
dLGN cell in response to sequential photostimulation (top) or repetitive red-light
stimulation (bottom). E Quantification of D using average peak-normalized re-
sponses (two-sample student t-test, sequential photostimulation vs. repetitive
red-light stimulation: p < 0.001 (stimulation interval 2), p < 0.001 (stimulation
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interval 3)). Error bars indicate mean ± SEM. Image scale bar: 100 µm. Elec-
trophysiology trace scale bars: 200 ms, 250 pA (zoom in window in A: 50 ms,
75 pA). Figure reprinted with permission from Bauer et al. (2021).
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Figure S3.1.2 A quantitative sequential photostimulation paradigm us-
ing ChrimsonR and Chronos
A Caveats of pairing ChrimsonR and Chronos for input mapping (from left to
right): Caveat 1: blue-light crosstalk of ChrimsonR. Caveat 2: ChrimsonR is ren-
dered minimally photoresponsive after repeated and prolonged red-light exposure.
Workaround: Sequential photostimulation. Pairing red- with blue-light stimula-
tion prevents crosstalk (caveat 1) and maintains photoresponsivity of ChrimsonR
(caveat 2). Traces serve illustrative purposes, not real data. Figure reprinted
with permission from Bauer et al. (2021).
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Figure S3.1.3 Photoproperties and -responses during eye-specific map-
ping in the retinogeniculate pathway
G Left: mean peak-normalized photo-responses of ChrimsonR (637 nm) us-
ing 11 step protocol of increasing irradiance. Middle: mean peak-normalized
photo-responses of Chronos (473 nm) using 11 step protocol of increasing irra-
diance. Thin lines represent individual cells, tick lines the mean ± SEM. Right:
current-saturating average irradiances used for Chronos and ChrimsonR stim-
ulation. H Optically evoked peak PSCs of binocular cells: dominant- (DE)
and non-dominant (NDE) eye responses for AMPAR- (left, n = 75 cells) and
NMDAR-mediated currents (right, n = 65 cells). Blue and red indicate eye dom-
inance (contra- and ipsilateral, respectively). I Agreement between AMPAR- and
NMDAR-mediated response quantification of dominant eye preference (n = 123
cells). Most cells share eye dominance between both measures. Figure reprinted
with permission from Bauer et al. (2021).
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Figure S3.1.4 Morphological features of dLGN neurons
A Distributions of morphological features extracted from cell reconstructions
(dendritic reach, total dendritic length, max. number of crossings (Sholl analy-
sis), asymmetry magnitude, elongation magnitude, and DOi)(n = 185 cells). B
Spearman’s correlation coefficient matrix of morphological measures of A. * indi-
cates p <0.05 after correction for multiple comparisons (Bonferroni). C Scatter
plot of asymmetry vs. elongation of all cells (n = 185 cells). Example cells shown
in E are highlighted in black. D PCA analysis of morphological features. Shown
is the distribution of all dLGN neurons along the first two principal components
(PC1, PC2). Histograms of PC1 and PC2 are displayed on top and left. Multi-
modality was not found for either principal component (Hartigan’s dip index =
0.023 and 0.019, p = 0.76 and 0.96 for PC1 and PC2, respectively), indicat-
ing that no distinct subtypes of neuronal morphologies are expected and cluster
analysis is not justified (n = 185 cells). E Reconstructed dendritic morpholo-
gies of three dLGN neurons (see C). Blue and magenta lines indicate the cells’
elongations and asymmetries, respectively. The length of the lines indicate the
feature in relationship to the dendritic reach of a cell. F Scatter plot of mean-
subtracted asymmetry orientation vs mean-subtracted background FD gradient
orientation (n = 152 cells). No relationship is evident (circular-circular Pearson’s
correlation R = 0.026, p = 0.74), indicating that asymmetry does not seem to
bias axo-dendritic sampling (rFD) towards monocularity. Figure modified with
permission from Bauer et al. (2021).
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Figure S3.1.5 Decoding eye dominance from local axo-dendritic inner-
vation in the dLGN
A mFD values plotted cell-wise per dominant eye (contralateral in blue, n = 61
cells; ipsilateral in red, n = 35 cells; means in black). Contralateral cells also
sample in dLGN regions more densely innervated by contralateral RGC afferents
(two-tailed two-sample unequal variance t-test p < 0.001, t = 7.7). B Decoding
accuracy of eye preference data from mFD (black dashed line) vs. histogram
of decoding accuracies of control data (shuffled eye preference, in gray) with
95 % confidence interval (red dashed line). C Eye dominance can be decoded
from mFD: comparison of d’ values of unrotated mFD and 180° rotated mFD.
red triangles: d’ based on data, gray: standard deviation of the bootstrapped d’
distributions, black: average of bootstrapped d’ distributions (n = 82 cells, mFD
vs mFD at 180° rotation: two-tailed paired bootstrap p-value of the difference
between d’ values: p = 0.0142). Figure reprinted with permission from Bauer
et al. (2021).
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Figure S3.2.1 Graphical user interface of DeepD3
A Graphical user interface of DeepD3. Structure of a dendritic branch is shown
in gray scale. Drop-down menus are located in the top left. Image contrast
settings are located to the right of the image (gray scale). The area where spine
ROIs will be displayed after full segmentation is displayed to the very right. Inset
in orange is displayed in panel C. B User-defined hyperparameters that can be
fine-tuned for image prediction (see methods). C Zoom-in of dendrite and spines
(orange inset in A).
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Figure S3.2.2 Semantic segmentation of spines and dendrites using the
graphical user interface of DeepD3
A Results of spine and dendrite prediction using hyperparameters shown in Fig
S3.2.1B. Structure in gray scale, dendrite prediction in magenta, spine predic-
tion in green. B User-defined hyperparameters that can be fine-tuned for 3D
segmentation of the prediction image. C Maximum-intensity projection of the
prediction image. Dendrite prediction in magenta, spine prediction in green. D
Results of image segmentation using hyperparameters shown in B. The number
and location of segmented spine ROIs in the current field of view is displayed on
the very right. Inset in orange is displayed in panel E. E Zoom-in of dendrite
and spines (white), their predictions (magenta and green, respectively), as well
as the outline of dendritic spines (white, around dendritic spines, predicted in
green). A selection of spine ROI outlines is highlighted (dashed lines). Region
of the zoom-in is shown in orange in panel D.
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Figure S3.2.3 DeepD3 models and performances
A Performance of a model trained in the DeepD3 framework over training epochs.
Performance on training data improved with training epochs. However, perfor-
mance on validation data did not improve over time, indicating that the model
was not able to generalize and potentially overfitted to the training data. No
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secondary data augmentation was performed on the training data set generation
(see methods). Models without secondary data augmentation are specialized
models due to their inability to generalize beyond the training data. B Perfor-
mance of a different model trained in the DeepD3 framework using a training
method to produce a generalized model over training epochs. Performance on
training data improved with training epochs. Secondary data augmentation was
performed on the training data set generation. As a consequence, performance
on the validation data seems to improve with training epochs, indicative of the
model’s ability to generalize beyond the training data set. C Performance of the
specialized model (see A) on novel data that has a different pixel size and signal-
to-noise ratio (see E for raw data) compared to the training data. Using this
model DeepD3 fails to detect spines or dendrites. Likely, the model overfitted
during training, due to lack of heterogeneous training data. Prediction of spines
and dendrites is shown in magenta and turquoise, respectively. D Same as C
but using a general network (see B) for segmentation. The general network, in
contrast to the specialized network could identify dendritic spines reliably, de-
spite a large difference in pixel size between the images in C-E and F ( 0.0212 ×
0.0212 µm and 0.094 × 0.094 µm, respectively). E Raw, novel structural data
that is has a different pixel size than the training data of the specialized model
(see A). F Top: raw, novel structural data that is similar to the training data
of the specialized model (see A). Middle: performance of the specialized model
trained in A. Visual inspection of the DeepD-generated segmentation seems to
match the locations of dendrites and dendritic spines in the raw data (top im-
age). Prediction of spines and dendrites is shown in magenta and turquoise,
respectively. Bottom: performance of the general model trained in B. Visual in-
spection indicates that spines and dendrites could successfully be segmented. G
Intra-rater-reliability as a function of precision. Two annotators identified spines
in the same image at two timepoints (A, B) with > 2 weeks between annotations.
Intra-rater reliability is indicated by numbers in black (average: 85 % precision).
Agreement of rater 1 to rater 2 is quantified using a distance-based measure (see
methods).
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Figure S3.2.4 Performances of DeepD3 and DeepSpineTool
A Maximum intensity projection of an image of a CA1 neuron in a rat OHSC. B
Segmentation of dendrites (cyan) and dendritic spines (magenta) of the image in
panel A of model 1 of DeepSpineTool (Vidaurre-Gallart et al., 2022). Segmen-
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tation is displayed as a maximum intensity projection. C Same as B but with
model 2 of DeepSpineTool. D Same as B but with model 3 of DeepSpineTool.
E Segmentation of dendrites (cyan) and dendritic spines (magenta) of the image
in panel A of model 1 using DeepD3. Segmentation is displayed as a maximum
intensity projection. All models of the DeepSpineTool fail at segmenting the
dendrite well. Some spines are well segmented by the DeepSpineTool. However,
qualitatively, DeepD3 outperforms DeepSpineTool.
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Figure S3.3.1 A dataset for the comparison of single-spine responses
and dendritic calcium spikes
A Schematic of the experimental model. Structural (tdTomato; red) and a
calcium indicator (GCaMP7b; green) are co-expressed in single CA1 neurons of
OHSCs. A population of CA3 neurons is transduced with ChR2(H134R). Two-
photon calcium imaging is performed in dendritic regions of the CA1 neuron
in conditions preventing the generation of action potentials (TTX, 4-AP). B
Average intensity projection of a calcium movie. Some spines are outlined in color.
Computational unmixing was tested using image data of spines during dendritic
calcium spikes and data in which single spines are responsive but the dendrite
is not. Movies containing single-spine responses (C, D; data A) and dendritic
calcium spikes (E, F; data B). C Single-spine responses (data A). An individual
spine (turquoise) is responsive to ChR2-stimulation, while all other spines are
not. D 7-point moving average projections of a dendritic stretch across 3 time
points in relation to ChR2 stimulation (white, bottom left corner of each image).
Spines (calcium traces shown in C) are outlined in color. After stimulation, only
a single spine (turquoise) shows an increase in calcium concentration, while all
other spines and the dendrite show no change. E Dendritic calcium spike (data
B). All dendritic spines are responsive to ChR2 stimulation. Since the dendrite
is also flooded with calcium, likely not all spine responses are evoked by direct
synaptic transmission at the spine. F Same as D but for dendritic calcium spike.
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Chapter 6

Appendix

DNA constructs

pAAV-CAG-hChR2(H134R)-WPRE-SV40
ctgcgcgctcgctcgctcactgaggccgcccgggcaaagcccgggcgtcgggcgacctttggtcgcccggc
ctcagtgagcgagcgagcgcgcagagagggagtggccaactccatcactaggggttccttgtagttaatga
ttaacccgccatgctacttatctacgtagccatgctctaggaagagtaccattgacgtcaataatgacgtat
gttcccatagtaacgccaatagggactttccattgacgtcaatgggtggagtatttacggtaaactgcccac
ttggcagtacatcaagtgtatcatatgccaagtacgccccctattgacgtcaatgacggtaaatggcccgcc
tggcattatgcccagtacatgaccttatgggactttcctacttggcagtacatctacgtattagtcatcgcta
ttaccatggtcgaggtgagccccacgttctgcttcactctccccatctcccccccctccccacccccaattttg
tatttatttattttttaattattttgtgcagcgatgggggcggggggggggggggggcgcgcgccaggcggg
gcggggcggggcgaggggcggggcggggcgaggcggagaggtgcggcggcagccaatcagagcggcgc
gctccgaaagtttccttttatggcgaggcggcggcggcggcggccctataaaaagcgaagcgcgcggcgg
gcgggagtcgctgcgcgctgccttcgccccgtgccccgctccgccgccgcctcgcgccgcccgccccggctc
tgactgaccgcgttactcccacaggtgagcgggcgggacggcccttctcctccgggctgtaattagcgcttg
gtttaatgacggcttgtttcttttctgtggctgcgtgaaagccttgaggggctccgggagggccctttgtgcg
gggggagcggctcggggctgtccgcggggggacggctgccttcgggggggacggggcagggcggggttc
ggcttctggcgtgtgaccggcggctctagagcctctgctaaccatgttcatgccttcttctttttcctacagct
cctgggcaacgtgctggttattgtgctgtctcatcattttggcaaagaattggatcgggatccactagtccag
tgtggtggaattgcccttgctgccaccAtggactatggcggcgctttgtctgccgtcggacgcgaacttttg
ttcgttactaatcctgtggtggtgaacgggtccgtcctggtccctgaggatcaatgttactgtgccggatgga
ttgaatctcgcggcacgaacggcgctcagaccgcgtcaaatgtcctgcagtggcttgcagcaggattcagc
attttgctgctgatgttctatgcctaccaaacctggaaatctacatgcggctgggaggagatctatgtgtgc
gccattgaaatggttaaggtgattctcgagttcttttttgagtttaagaatccctctatgctctaccttgccac
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aggacaccgggtgcagtggctgcgctatgcagagtggctgctcacttgtcctgtcatccttatccgcctgag
caacctcaccggcctgagcaacgactacagcaggagaaccatgggactccttgtctcagacatcgggacta
tcgtgtggggggctaccagcgccatggcaaccggctatgttaaagtcatcttcttttgtcttggattgtgcta
tggcgcgaacacattttttcacgccgccaaagcatatatcgagggttatcatactgtgccaaagggtcggtg
ccgccaggtcgtgaccggcatggcatggctgtttttcgtgagctggggtatgttcccaattctcttcattttg
gggcccgaaggttttggcgtcctgagcgtctatggctccaccgtaggtcacacgattattgatctgatgagt
aaaaattgttgggggttgttgggacactacctgcgcgtcctgatccacgagcacatattgattcacggagat
atccgcaaaaccaccaaactgaacatcggcggaacggagatcgaggtcgagactctcgtcgaagacgaag
ccgaggccggagccgtgccataAagcggccccggactcgaggccgcaggtaagtatcaaggttacaaga
caggtttaaggagaccaatagaaactgggcttgtcgagacagagaagactcttgcgtttctgataggcacc
tattggtcttactgacatccactttgcctttctctccacaggtgtcgagtggagctcgcgactagtcgattcg
aattcgatatcaagcttatcgataatcaacctctggattacaaaatttgtgaaagattgactggtattcttaa
ctatgttgctccttttacgctatgtggatacgctgctttaatgcctttgtatcatgctattgcttcccgtatggc
tttcattttctcctccttgtataaatcctggttgctgtctctttatgaggagttgtggcccgttgtcaggcaac
gtggcgtggtgtgcactgtgtttgctgacgcaacccccactggttggggcattgccaccacctgtcagctcct
ttccgggactttcgctttccccctccctattgccacggcggaactcatcgccgcctgccttgcccgctgctgga
caggggctcggctgttgggcactgacaattccgtggtgttgtcggggaaatcatcgtcctttccttggctgct
cgcctgtgttgccacctggattctgcgcgggacgtccttctgctacgtcccttcggccctcaatccagcggac
cttccttcccgcggcctgctgccggctctgcggcctcttccgcgtcttcgccttcgccctcagacgagtcgga
tctccctttgggccgcctccccgcatcgataccgtcgacccgggcggccgcttcgagcagacatgataagat
acattgatgagtttggacaaaccacaactagaatgcagtgaaaaaaatgctttatttgtgaaatttgtgatg
ctattgctttatttgtaaccattataagctgcaataaacaagttaacaacaacaattgcattcattttatgttt
caggttcagggggagatgtgggaggttttttaaagcaagtaaaacctctacaaatgtggtaaaatcgataa
ggatcttcctagagcatggctacgtagataagtagcatggcgggttaatcattaactacaaggaaccccta
gtgatggagttggccactccctctctgcgcgctcgctcgctcactgaggccgggcgaccaaaggtcgcccga
cgcccgggctttgcccgggcggcctcagtgagcgagcgagcgcgcagccttaattaacctaattcactggcc
gtcgttttacaacgtcgtgactgggaaaaccctggcgttacccaacttaatcgccttgcagcacatccccctt
tcgccagctggcgtaatagcgaagaggcccgcaccgatcgcccttcccaacagttgcgcagcctgaatggc
gaatgggacgcgccctgtagcggcgcattaagcgcggcgggtgtggtggttacgcgcagcgtgaccgctac
acttgccagcgccctagcgcccgctcctttcgctttcttcccttcctttctcgccacgttcgccggctttccccg
tcaagctctaaatcgggggctccctttagggttccgatttagtgctttacggcacctcgaccccaaaaaact
tgattagggtgatggttcacgtagtgggccatcgccctgatagacggtttttcgccctttgacgttggagtcc
acgttctttaatagtggactcttgttccaaactggaacaacactcaaccctatctcggtctattcttttgattt
ataagggattttgccgatttcggcctattggttaaaaaatgagctgatttaacaaaaatttaacgcgaattt
taacaaaatattaacgcttacaatttaggtggcacttttcggggaaatgtgcgcggaacccctatttgtttat
ttttctaaatacattcaaatatgtatccgctcatgagacaataaccctgataaatgcttcaataatattgaaa
aaggaagagtatgagtattcaacatttccgtgtcgcccttattcccttttttgcggcattttgccttcctgttt
ttgctcacccagaaacgctggtgaaagtaaaagatgctgaagatcagttgggtgcacgagtgggttacatc
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gaactggatctcaacagcggtaagatccttgagagttttcgccccgaagaacgttttccaatgatgagcact
tttaaagttctgctatgtggcgcggtattatcccgtattgacgccgggcaagagcaactcggtcgccgcata
cactattctcagaatgacttggttgagtactcaccagtcacagaaaagcatcttacggatggcatgacagta
agagaattatgcagtgctgccataaccatgagtgataacactgcggccaacttacttctgacaacgatcgg
aggaccgaaggagctaaccgcttttttgcacaacatgggggatcatgtaactcgccttgatcgttgggaacc
ggagctgaatgaagccataccaaacgacgagcgtgacaccacgatgcctgtagcaatggcaacaacgttg
cgcaaactattaactggcgaactacttactctagcttcccggcaacaattaatagactggatggaggcgga
taaagttgcaggaccacttctgcgctcggcccttccggctggctggtttattgctgataaatctggagccggt
gagcgtgggtctcgcggtatcattgcagcactggggccagatggtaagccctcccgtatcgtagttatctac
acgacggggagtcaggcaactatggatgaacgaaatagacagatcgctgagataggtgcctcactgatta
agcattggtaactgtcagaccaagtttactcatatatactttagattgatttaaaacttcatttttaatttaaa
aggatctaggtgaagatcctttttgataatctcatgaccaaaatcccttaacgtgagttttcgttccactgag
cgtcagaccccgtagaaaagatcaaaggatcttcttgagatcctttttttctgcgcgtaatctgctgcttgca
aacaaaaaaaccaccgctaccagcggtggtttgtttgccggatcaagagctaccaactctttttccgaaggt
aactggcttcagcagagcgcagataccaaatactgttcttctagtgtagccgtagttaggccaccacttcaa
gaactctgtagcaccgcctacatacctcgctctgctaatcctgttaccagtggctgctgccagtggcgataa
gtcgtgtcttaccgggttggactcaagacgatagttaccggataaggcgcagcggtcgggctgaacggggg
gttcgtgcacacagcccagcttggagcgaacgacctacaccgaactgagatacctacagcgtgagctatga
gaaagcgccacgcttcccgaagggagaaaggcggacaggtatccggtaagcggcagggtcggaacagga
gagcgcacgagggagcttccagggggaaacgcctggtatctttatagtcctgtcgggtttcgccacctctga
cttgagcgtcgatttttgtgatgctcgtcaggggggcggagcctatggaaaaacgccagcaacgcggccttt
ttacggttcctggccttttgctggccttttgctcacatgttctttcctgcgttatcccctgattctgtggataac
cgtattaccgcctttgagtgagctgataccgctcgccgcagccgaacgaccgagcgcagcgagtcagtgag
cgaggaagcggaagagcgcccaatacgcaaaccgcctctccccgcgcgttggccgattcattaatgcagct
ggcacgacaggtttcccgactggaaagcgggcagtgagcgcaacgcaattaatgtgagttagctcactcat
taggcaccccaggctttacactttatgcttccggctcgtatgttgtgtggaattgtgagcggataacaatttc
acacaggaaacagctatgaccatgattacgccagatttaattaagggcaactgttgggaagggcgatcggt
gcgggcctcttcgctattacgccag

pCAG-Xph15-mTurquoise2-CCR5TC
ggtcgacattgattattgactagagtcatcctcatcgtcgacattgattattgactagttattaatagtaatc
aattacggggtcattagttcatagcccatatatggagttccgcgttacataacttacggtaaatggcccgcc
tggctgaccgcccaacgacccccgcccattgacgtcaataatgacgtatgttcccatagtaacgccaatagg
gactttccattgacgtcaatgggtggagtatttacggtaaactgcccacttggcagtacatcaagtgtatca
tatgccaagtacgccccctattgacgtcaatgacggtaaatggcccgcctggcattatgcccagtacatgac
cttatgggactttcctacttggcagtacatctacgtattagtcatcgctattaccatggtcgaggtgagcccc
acgttctgcttcactctccccatctcccccccctccccacccccaattttgtatttatttattttttaattatttt
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gtgcagcgatgggggcggggggggggggggggcgcgccrgggggggggggggggggggggggggggg
gsggggsgrggcggagaggtgcggcggcagccaatcagagcggcgcgctccgaaagtttccttttatggcg
aggcggcggcggcggcggccctataaaaagcgaagcgcgcggcgggcgggagtcgctgcgcgctgccttc
gccccgtgccccgctccgccgccgcctcgcgccgcccgccccggctctgactgaccgcgttactcccacagg
tgagcgggcgggacggcccttctcctccgggctgtaattagcgcttggtttaatgacggcttgtttcttttct
gtggctgcgtgaaagccttgaggggctccgggagggccctttgtgcggggggagcggctcggggggtgcg
tgcgtgtgtgtgtgcgtggggagcgccgcgtgcggctccgcgctgcccggcggctgtgagcgctgcgggcg
cggcgcggggctttgtgcgctccgcagtgtgcgcgaggggagcgcggccgggggcggtgccccgcggtgc
ggggggggctgcgaggggaacaaaggctgcgtgcggggtgtgtgcgtgggggggtgagcagggggtgtg
ggcgcgtcggtcgggctgcaaccccccctgcacccccctccccgagttgctgagcacggcccggcttcgggt
gcggggctccgtacggggcgtggcgcggggctcgccgtgccgggcggggggtggcggcaggtgggggtgc
cgggcggggcggggccgcctcgggccggggagggctcgggggaggggcgcggcggcccccggagcgccg
gcggctgtcgaggcgcggcgagccgcagccattgccttttatggtaatcgtgcgagagggcgcagggactt
cctttgtcccaaatctgtgcggagccgaaatctgggaggcgccgccgcaccccctctagcgggcgcggggc
gaagcggtgcggcgccggcaggaaggaaatgggcggggagggccttcgtgcgtcgccgcgccgccgtccc
cttctccctctccagcctcggggctgtccgcggggggacggctgccttcgggggggacggggcagggcggg
gttcggcttctggcgtgtgaccggcggctctagagcctctgctaaccatgttcatgccttcttctttttcctac
agctcctgggcaacgtgctggttattgtgctgtctcatcattttggcaaagaattcggtaccgcgggcccgg
ggccaccatggcgggcagctctgtcagttccgtgccgaccaaactggaagtggttgcggccaccccgacgt
ctctgctgatcagctgggatgcagggcctcgtaatgtcagttattaccgtatcacctatggcgaaacgggcg
gtaactccccggttcaggaattcaccgtcccgggtagttcctcaaccgcaacgatttccggcctgtcaccgg
gtgtcgactataccattacggtttacgcttctggtcatgttagtacgctgatgacgccgatttctatcaatta
ccgtaccggtagcggctccagtagatctggtagcggcgtgagcaagggcgaggagctgttcaccggggtg
gtgcccatcctggtcgagctggacggcgacgtaaacggccacaagttcagcgtgtccggcgagggcgagg
gcgatgccacctacggcaagctgaccctgaagttcatctgcaccaccggcaagctgcccgtgccctggccca
ccctcgtgaccaccctgtcctggggcgtgcagtgcttcgcccgctaccccgaccacatgaagcagcacgact
tcttcaagtccgccatgcccgaaggctacgtccaggagcgcaccatcttcttcaaggacgacggcaactac
aagacccgcgccgaggtgaagttcgagggcgacaccctggtgaaccgcatcgagctgaagggcatcgact
tcaaggaggacggcaacatcctggggcacaagctggagtacaactactttagcgacaacgtctatatcacc
gccgacaagcagaagaacggcatcaaggccaacttcaagatccgccacaacatcgaggacggcggcgtgc
agctcgccgaccactaccagcagaacacccccatcggcgacggccccgtgctgctgcccgacaaccactac
ctgagcacccagtccaagctgagcaaagaccccaacgagaagcgcgatcacatggtcctgctggagttcgt
gaccgccgccgggatcactctcggcatggacgagctgtacaagggtagcggctcctctgctagcggagctg
gcgctggagcgggtgcaggggctggctctagattccagtgccggatctgcatgcggaacttcagcgaccgg
tccaacctgagcaggcacatcagaacccacaccggagaaaagcccttcgcctgcgacatttgcggccggaa
gttcgccatcagcagcaacctgaacagccacaccaagatccacactggcagccagaaacctttccagtgca
gaatttgtatgagaaactttagcagaagcgacaacctggccagacacatccggacacatactggtgaaaa
accttttgcctgtgatatctgtggcagaaagtttgccacctccggcaatctgacccggcacacaaagattca
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cctgcggggcagccagctatcgattgtcgacgctcctgaacaacgtgaaggtgcttctcaagtttctgtttct
gttacttttgaagatgttgctgttctttttactcgtgatgaatggaaaaaacttgatctttctcaacgttctctt
tatcgtgaagttatgcttgaaaattattctaatcttgcttctatggcttaaacgcgttgtacaagtaaagcgg
ccccggactcgaggccgcaggtaagtatcaaggttacaagacaggtttaaggagaccaatagaaactggg
cttgtcgagacagagaagactcttgcgtttctgataggcacctattggtcttactgacatccactttgcctttc
tctccacaggtgtcgacaatcaacctctggattacaaaatttgtgaaagattgactggtattcttaactatgt
tgctccttttacgctatgtggatacgctgctttaatgcctttgtatcatgctattgcttcccgtatggctttcat
tttctcctccttgtataaatcctggttgctgtctctttatgaggagttgtggcccgttgtcaggcaacgtggcg
tggtgtgcactgtgtttgctgacgcaacccccactggttggggcattgccaccacctgtcagctcctttccgg
gactttcgctttccccctccctattgccacggcggaactcatcgccgcctgccttgcccgctgctggacaggg
gctcggctgttgggcactgacaattccgtggtgttgtcggggaagctgacgtcctttccatggctgctcgcct
gtgttgccacctggattctgcgcgggacgtccttctgctacgtcccttcggccctcaatccagcggaccttcc
ttcccgcggcctgctgccggctctgcggcctcttccgcgtcttcgccttcgccctcagacgagtcggatctccc
tttgggccgcctccccgcctggaattcgagctcggtacgatcagcctcgactgtgccttctagttgccagcca
tctgttgtttgcccctcccccgtgccttccttgaccctggaaggtgccactcccactgtcctttcctaataaaa
tgaggaaattgcatcgcattgtctgagtaggtgtcattctattctggggggtggggtggggcaggacagca
agggggaggattgggaagacaatagcccagcttttgttccctttagtgagggttaattgcgcgcttggcgta
atcatggtcatmssykwwtycwstsykmarktgcaggctgcctatcagaaggtggtggctggtgtggcc
aatgccctggctcacaaataccactgagatcgatctttttccctctgccaaaaattatggggacatcatgaa
gccccttgagcatctgacttctggctaataaaggaaatttattttcattgcaatagtgtgttggaattttttgt
gtctctcactcggaaggacatatgggagggcaaatcatttaaaacatcagaatgagtatttggtttagagtt
tggcaacatatgcccatatgctggctgccatgaacaaaggttggctataaagaggtcatcagtatatgaaa
cagccccctgctgtccattccttattccatagaaaagccttgacttgaggttagattttttttatattttgtttt
gtgttatttttttctttaacatccctaaaattttccttacatgttttactagccagatttttcctcctctcctgac
tactcccagtcatagctgtccctcttctcttatggagatccctcgacctgcagcccaagcttggcgtaatcat
ggtcatagctgtttcctgtgtgaaattgttatccgctcacaattccacacaacatacgagccggaagcataa
agtgtaaagcctggggtgcctaatgagtgagctaactcacattaattgcgttgcgctcactgcccgctttcc
agtcgggaaacctgtcgtgccagcggatccgcatctcaattagtcagcaaccatagtcccgcccctaactcc
gcccatcccgcccctaactccgcccagttccgcccattctccgccccatggctgactaattttttttatttatg
cagaggccgaggccgcctcggcctctgagctattccagaagtagtgaggaggcttttttggaggcctaggc
ttttgcaaaaagctaacttgtttattgcagcttataatggttacaaataaagcaatagcatcacaaatttcac
aaataaagcatttttttcactgcattctagttgtggtttgtccaaactcatcaatgtatcttatcatgtctgga
tccgctgcattaatgaatcggccaacgcgcggggagaggcggtttgcgtattgggcgctcttccgcttcctc
gctcactgactcgctgcgctcggtcgttcggctgcggcgagcggtatcagctcactcaaaggcggtaatacg
gttatccacagaatcaggggataacgcaggaaagaacatgtgagcaaaaggccagcaaaaggccaggaa
ccgtaaaaaggccgcgttgctggcgtttttccataggctccgcccccctgacgagcatcacaaaaatcgacg
ctcaagtcagaggtggcgaaacccgacaggactataaagataccaggcgtttccccctggaagctccctcg
tgcgctctcctgttccgaccctgccgcttaccggatacctgtccgcctttctcccttcgggaagcgtggcgctt
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tctcatagctcacgctgtaggtatctcagttcggtgtaggtcgttcgctccaagctgggctgtgtgcacgaac
cccccgttcagcccgaccgctgcgccttatccggtaactatcgtcttgagtccaacccggtaagacacgactt
atcgccactggcagcagccactggtaacaggattagcagagcgaggtatgtaggcggtgctacagagttct
tgaagtggtggcctaactacggctacactagaagaacagtatttggtatctgcgctctgctgaagccagtta
ccttcggaaaaagagttggtagctcttgatccggcaaacaaaccaccgctggtagcggtggtttttttgttt
gcaagcagcagattacgcgcagaaaaaaaggatctcaagaagatcctttgatcttttctacggggtctgac
gctcagtggaacgaaaactcacgttaagggattttggtcatgagattatcaaaaaggatcttcacctagatc
cttttaaattaaaaatgaagttttaaatcaatctaaagtatatatgagtaaacttggtctgacagttaccaa
tgcttaatcagtgaggcacctatctcagcgatctgtctatttcgttcatccatagttgcctgactccccgtcgt
gtagataactacgatacgggagggcttaccatctggccccagtgctgcaatgataccgcgagacccacgct
caccggctccagatttatcagcaataaaccagccagccggaagggccgagcgcagaagtggtcctgcaact
ttatccgcctccatccagtctattaattgttgccgggaagctagagtaagtagttcgccagttaatagtttgc
gcaacgttgttgccattgctacaggcatcgtggtgtcacgctcgtcgtttggtatggcttcattcagctccgg
ttcccaacgatcaaggcgagttacatgatcccccatgttgtgcaaaaaagcggttagctccttcggtcctcc
gatcgttgtcagaagtaagttggccgcagtgttatcactcatggttatggcagcactgcataattctcttact
gtcatgccatccgtaagatgcttttctgtgactggtgagtactcaaccaagtcattctgagaatagtgtatgc
ggcgaccgagttgctcttgcccggcgtcaatacgggataataccgcgccacatagcagaactttaaaagtg
ctcatcattggaaaacgttcttcggggcgaaaactctcaaggatcttaccgctgttgagatccagttcgatg
taacccactcgtgcacccaactgatcttcagcatcttttactttcaccagcgtttctgggtgagcaaaaacag
gaaggcaaaatgccgcaaaaaagggaataagggcgacacggaaatgttgaatactcatactcttccttttt
caatattattgaagcatttatcagggttattgtctcatgagcggatacatatttgaatgtatttagaaaaata
aacaaataggggttccgcgcacatttccccgaaaagtgccacctg

pENN.AAV.CAG.tdTomato.WPRE.SV40
ctgcgcgctcgctcgctcactgaggccgcccgggcaaagcccgggcgtcgggcgacctttggtcgcccggc
ctcagtgagcgagcgagcgcgcagagagggagtggccaactccatcactaggggttccttgtagttaatga
ttaacccgccatgctacttatctacgtagccatgctctaggaagagtaccattgacgtcaataatgacgtat
gttcccatagtaacgccaatagggactttccattgacgtcaatgggtggagtatttacggtaaactgcccac
ttggcagtacatcaagtgtatcatatgccaagtacgccccctattgacgtcaatgacggtaaatggcccgcc
tggcattatgcccagtacatgaccttatgggactttcctacttggcagtacatctacgtattagtcatcgcta
ttaccatggtcgaggtgagccccacgttctgcttcactctccccatctcccccccctccccacccccaattttg
tatttatttattttttaattattttgtgcagcgatgggggcggggggggggggggggcgcgcgccaggcggg
gcggggcggggcgaggggcggggcggggcgaggcggagaggtgcggcggcagccaatcagagcggcgc
gctccgaaagtttccttttatggcgaggcggcggcggcggcggccctataaaaagcgaagcgcgcggcgg
gcgggagtcgctgcgcgctgccttcgccccgtgccccgctccgccgccgcctcgcgccgcccgccccggctc
tgactgaccgcgttactcccacaggtgagcgggcgggacggcccttctcctccgggctgtaattagcgcttg
gtttaatgacggcttgtttcttttctgtggctgcgtgaaagccttgaggggctccgggagggccctttgtgcg
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gggggagcggctcggggctgtccgcggggggacggctgccttcgggggggacggggcagggcggggttc
ggcttctggcgtgtgaccggcggctctagagcctctgctaaccatgttcatgccttcttctttttcctacagct
cctgggcaacgtgctggttattgtgctgtctcatcattttggcaaagaattggatcccgccaccatggtgagc
aagggcgaggaggtcatcaaagagttcatgcgcttcaaggtgcgcatggagggctccatgaacggccacg
agttcgagatcgagggcgagggcgagggccgcccctacgagggcacccagaccgccaagctgaaggtga
ccaagggcggccccctgcccttcgcctgggacatcctgtccccccagttcatgtacggctccaaggcgtacg
tgaagcaccccgccgacatccccgattacaagaagctgtccttccccgagggcttcaagtgggagcgcgtg
atgaacttcgaggacggcggtctggtgaccgtgacccaggactcctccctgcaggacggcacgctgatcta
caaggtgaagatgcgcggcaccaacttcccccccgacggccccgtaatgcagaagaagaccatgggctgg
gaggcctccaccgagcgcctgtacccccgcgacggcgtgctgaagggcgagatccaccaggccctgaagc
tgaaggacggcggccactacctggtggagttcaagaccatctacatggccaagaagcccgtgcaactgccc
ggctactactacgtggacaccaagctggacatcacctcccacaacgaggactacaccatcgtggaacagta
cgagcgctccgagggccgccaccacctgttcctggggcatggcaccggcagcaccggcagcggcagctccg
gcaccgcctcctccgaggacaacaacatggccgtcatcaaagagttcatgcgcttcaaggtgcgcatggag
ggctccatgaacggccacgagttcgagatcgagggcgagggcgagggccgcccctacgagggcacccaga
ccgccaagctgaaggtgaccaagggcggccccctgcccttcgcctgggacatcctgtccccccagttcatgt
acggctccaaggcgtacgtgaagcaccccgccgacatccccgattacaagaagctgtccttccccgagggc
ttcaagtgggagcgcgtgatgaacttcgaggacggcggtctggtgaccgtgacccaggactcctccctgca
ggacggcacgctgatctacaaggtgaagatgcgcggcaccaacttcccccccgacggccccgtaatgcaga
agaagaccatgggctgggaggcctccaccgagcgcctgtacccccgcgacggcgtgctgaagggcgagat
ccaccaggccctgaagctgaaggacggcggccgctacctggtggagttcaagaccatctacatggccaaga
agcccgtgcaactgcccggctactactacgtggacaccaagctggacatcacctcccacaacgaggactac
accatcgtggaacagtacgagcgctccgagggccgccaccacctgttcctgtacggcatggacgagctgta
caagtaagaattcgaagcttatcgataatcaacctctggattacaaaatttgtgaaagattgactggtattc
ttaactatgttgctccttttacgctatgtggatacgctgctttaatgcctttgtatcatgctattgcttcccgta
tggctttcattttctcctccttgtataaatcctggttgctgtctctttatgaggagttgtggcccgttgtcaggc
aacgtggcgtggtgtgcactgtgtttgctgacgcaacccccactggttggggcattgccaccacctgtcagc
tcctttccgggactttcgctttccccctccctattgccacggcggaactcatcgccgcctgccttgcccgctgc
tggacaggggctcggctgttgggcactgacaattccgtggtgttgtcggggaaatcatcgtcctttccttgg
ctgctcgcctgtgttgccacctggattctgcgcgggacgtccttctgctacgtcccttcggccctcaatccagc
ggaccttccttcccgcggcctgctgccggctctgcggcctcttccgcgtcttcgccttcgccctcagacgagtc
ggatctccctttgggccgcctccccgcatcgataccgtcgacccgggcggccgcttcgagcagacatgataa
gatacattgatgagtttggacaaaccacaactagaatgcagtgaaaaaaatgctttatttgtgaaatttgtg
atgctattgctttatttgtaaccattataagctgcaataaacaagttaacaacaacaattgcattcattttat
gtttcaggttcagggggagatgtgggaggttttttaaagcaagtaaaacctctacaaatgtggtaaaatcg
ataaggatcttcctagagcatggctacgtagataagtagcatggcgggttaatcattaactacaaggaacc
cctagtgatggagttggccactccctctctgcgcgctcgctcgctcactgaggccgggcgaccaaaggtcgc
ccgacgcccgggctttgcccgggcggcctcagtgagcgagcgagcgcgcagctgcattaatgaatcggcca
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acgcgcggggagaggcggtttgcgtattgggcgctcttccgcttcctcgctcactgactcgctgcgctcggtc
gttcggctgcggcgagcggtatcagctcactcaaaggcggtaatacggttatccacagaatcaggggataa
cgcaggaaagaacatgtgagcaaaaggccagcaaaaggccaggaaccgtaaaaaggccgcgttgctggc
gtttttccataggctccgcccccctgacgagcatcacaaaaatcgacgctcaagtcagaggtggcgaaacc
cgacaggactataaagataccaggcgtttccccctggaagctccctcgtgcgctctcctgttccgaccctgcc
gcttaccggatacctgtccgcctttctcccttcgggaagcgtggcgctttctcatagctcacgctgtaggtat
ctcagttcggtgtaggtcgttcgctccaagctgggctgtgtgcacgaaccccccgttcagcccgaccgctgc
gccttatccggtaactatcgtcttgagtccaacccggtaagacacgacttatcgccactggcagcagccact
ggtaacaggattagcagagcgaggtatgtaggcggtgctacagagttcttgaagtggtggcctaactacgg
ctacactagaagaacagtatttggtatctgcgctctgctgaagccagttaccttcggaaaaagagttggtag
ctcttgatccggcaaacaaaccaccgctggtagcggtggtttttttgtttgcaagcagcagattacgcgcag
aaaaaaaggatctcaagaagatcctttgatcttttctacggggtctgacgctcagtggaacgaaaactcac
gttaagggattttggtcatgagattatcaaaaaggatcttcacctagatccttttaaattaaaaatgaagtt
ttaaatcaatctaaagtatatatgagtaaacttggtctgacagttaccaatgcttaatcagtgaggcaccta
tctcagcgatctgtctatttcgttcatccatagttgcctgactccccgtcgtgtagataactacgatacggga
gggcttaccatctggccccagtgctgcaatgataccgcgagacccacgctcaccggctccagatttatcagc
aataaaccagccagccggaagggccgagcgcagaagtggtcctgcaactttatccgcctccatccagtcta
ttaattgttgccgggaagctagagtaagtagttcgccagttaatagtttgcgcaacgttgttgccattgctac
aggcatcgtggtgtcacgctcgtcgtttggtatggcttcattcagctccggttcccaacgatcaaggcgagtt
acatgatcccccatgttgtgcaaaaaagcggttagctccttcggtcctccgatcgttgtcagaagtaagttg
gccgcagtgttatcactcatggttatggcagcactgcataattctcttactgtcatgccatccgtaagatgct
tttctgtgactggtgagtactcaaccaagtcattctgagaatagtgtatgcggcgaccgagttgctcttgccc
ggcgtcaatacgggataataccgcgccacatagcagaactttaaaagtgctcatcattggaaaacgttcttc
ggggcgaaaactctcaaggatcttaccgctgttgagatccagttcgatgtaacccactcgtgcacccaactg
atcttcagcatcttttactttcaccagcgtttctgggtgagcaaaaacaggaaggcaaaatgccgcaaaaa
agggaataagggcgacacggaaatgttgaatactcatactcttcctttttcaatattattgaagcatttatca
gggttattgtctcatgagcggatacatatttgaatgtatttagaaaaataaacaaataggggttccgcgcac
atttccccgaaaagtgccacctaaattgtaagcgttaatattttgttaaaattcgcgttaaatttttgttaaat
cagctcattttttaaccaataggccgaaatcggcaaaatcccttataaatcaaaagaatagaccgagatag
ggttgagtgttgttccagtttggaacaagagtccactattaaagaacgtggactccaacgtcaaagggcga
aaaaccgtctatcagggcgatggcccactacgtgaaccatcaccctaatcaagttttttggggtcgaggtgc
cgtaaagcactaaatcggaaccctaaagggagcccccgatttagagcttgacggggaaagccggcgaacg
tggcgagaaaggaagggaagaaagcgaaaggagcgggcgctagggcgctggcaagtgtagcggtcacgc
tgcgcgtaaccaccacacccgccgcgcttaatgcgccgctacagggcgcgtcccattcgccattcaggctgc
gcaactgttgggaagggcgatcggtgcgggcctcttcgctattacgccag
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pGP-AAV-syn-jGCaMP7b-WPRE
gttgggaagggcgatcggtgcgggcctcttcgctattacgccagctgcgcgctcgctcgctcactgaggccg
cccgggcaaagcccgggcgtcgggcgacctttggtcgcccggcctcagtgagcgagcgagcgcgcagaga
gggagtggccaactccatcactaggggttccttgtagttaatgattaacccgccatgctacttatctacgtag
ccatgctctaggaagatctctgcagagggccctgcgtatgagtgcaagtgggttttaggaccaggatgagg
cggggtgggggtgcctacctgacgaccgaccccgacccactggacaagcacccaacccccattccccaaat
tgcgcatcccctatcagagagggggaggggaaacaggatgcggcgaggcgcgtgcgcactgccagcttca
gcaccgcggacagtgccttcgcccccgcctggcggcgcgcgccaccgccgcctcagcactgaaggcgcgct
gacgtcactcgccggtcccccgcaaactccccttcccggccaccttggtcgcgtccgcgccgccgccggccc
agccggaccgcaccacgcgaggcgcgagataggggggcacgggcgcgaccatctgcgctgcggcgccggc
gactcagcgctgcctcagtctgcggtgggcagcggaggagtcgtgtcgtgcctgagagcgcagtcgaattc
aagctgctagcaaggatccacccgccaccatgggttctcatcatcatcatcatcatggtatggctagcatga
ctggtggacagcaaatgggtcgggatctgtacgacgatgacgataaggatctcgccaccatggtcgactca
tcacgtcgtaagtggaataagacaggtcacgcagtcagagctataggtcggctgagctcactcgagaacgt
ctatatcaaggccgacaagcagaagaacggcatcaaggcgaacttcaagatccgccacaacatcgaggac
ggcggcgtgcagctcgcctaccactaccagcagaacacccccatcggcgacggccccgtgctgctgcccga
caaccactacctgagcgtgcagtccaaactttcgaaagaccccaacgagaagcgcgatcacatggtcctgc
tggagttcgtgaccgccgccgggatcactctcggcatggacgagctgtacaagggcggtaccggagggag
catggtgagcaagggcgaggagctgttcaccggggtggtgcccatcctggtcgagctggacggcgacgta
aacggccacaagttcagcgtgtccggcgagggtgagggcgatgccacctacggcaagctgaccctgaagt
tcatctgcaccaccggcaagctgcccgtgccctggcccaccctcgtgaccaccctgacctacggcgtgcagt
gcttcagccgctaccccgaccacatgaagcagcacgacttcttcaagtccgccatgcccgaaggctacatcc
aggagcgcaccatcttcttcaaggacgacggcaactacaagacccgcgccgaggtgaagttcgagggcga
caccctggtgaaccgcatcgagcttaagggcatcgacttcaaggaggacggcaacatcctggggcacaag
ctggagtacaacccacctgaccaactgactgaagagcagatcgcagaatttaaagagcttttctccctattt
gacaaggacggggatgggacaataacaaccaaggagctggggacggtgatgcggtctctggggcagaac
cccacagaagcagagctgcaggacatgatcaatgaagtagatgccgacggtgacggcacaatcgacttcc
ctgagttcctgacaatgtacgcaagaaaaatgaaatacagggacacggaagaagaaattagagaagcgtt
cggtgtgtttgataaggatggcaatggctacatcagtgcagcagagcttcgccacgtgatgacaaaccttg
gagagaagttaacagatgaagaggttgatgaaatgatcagggaagcagacatcgatggggatggtcagg
taaactacgaagagtttgtacaaatgatgacagcgaagtgaaagcttatcgataatcaacctctggattac
aaaatttgtgaaagattgactggtattcttaactatgttgctccttttacgctatgtggatacgctgctttaat
gcctttgtatcatgctattgcttcccgtatggctttcattttctcctccttgtataaatcctggttgctgtctctt
tatgaggagttgtggcccgttgtcaggcaacgtggcgtggtgtgcactgtgtttgctgacgcaacccccact
ggttggggcattgccaccacctgtcagctcctttccgggactttcgctttccccctccctattgccacggcgg
aactcatcgccgcctgccttgcccgctgctggacaggggctcggctgttgggcactgacaattccgtggtgt
tgtcggggaaatcatcgtcctttccttggctgctcgcctgtgttgccacctggattctgcgcgggacgtcctt
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ctgctacgtcccttcggccctcaatccagcggaccttccttcccgcggcctgctgccggctctgcggcctcttc
cgcgtcttcgccttcgccctcagacgagtcggatctccctttgggccgcctccccgcatcgataccgtcgacc
tcgacccgggcggccgcttcgagcagacatgataagatacattgatgagtttggacaaaccacaactagaa
tgcagtgaaaaaaatgctttatttgtgaaatttgtgatgctattgctttatttgtaaccattataagctgcaa
taaacaagttaacaacaacaattgcattcattttatgtttcaggttcagggggagatgtgggaggtttttta
aagcaagtaaaacctctacaaatgtggtaaaatcgataaggatcttcctagagcatggctacgtagataag
tagcatggcgggttaatcattaactacaaggaacccctagtgatggagttggccactccctctctgcgcgct
cgctcgctcactgaggccgggcgaccaaaggtcgcccgacgcccgggctttgcccgggcggcctcagtgag
cgagcgagcgcgcagctgcattaatgaatcggccaacgcgcggggagaggcggtttgcgtattgggcgctc
ttccgcttcctcgctcactgactcgctgcgctcggtcgttcggctgcggcgagcggtatcagctcactcaaag
gcggtaatacggttatccacagaatcaggggataacgcaggaaagaacatgtgagcaaaaggccagcaa
aaggccaggaaccgtaaaaaggccgcgttgctggcgtttttccataggctccgcccccctgacgagcatca
caaaaatcgacgctcaagtcagaggtggcgaaacccgacaggactataaagataccaggcgtttccccctg
gaagctccctcgtgcgctctcctgttccgaccctgccgcttaccggatacctgtccgcctttctcccttcggga
agcgtggcgctttctcatagctcacgctgtaggtatctcagttcggtgtaggtcgttcgctccaagctgggct
gtgtgcacgaaccccccgttcagcccgaccgctgcgccttatccggtaactatcgtcttgagtccaacccgg
taagacacgacttatcgccactggcagcagccactggtaacaggattagcagagcgaggtatgtaggcgg
tgctacagagttcttgaagtggtggcctaactacggctacactagaagaacagtatttggtatctgcgctct
gctgaagccagttaccttcggaaaaagagttggtagctcttgatccggcaaacaaaccaccgctggtagcg
gtggtttttttgtttgcaagcagcagattacgcgcagaaaaaaaggatctcaagaagatcctttgatcttttc
tacggggtctgacgctcagtggaacgaaaactcacgttaagggattttggtcatgagattatcaaaaagga
tcttcacctagatccttttaaattaaaaatgaagttttaaatcaatctaaagtatatatgagtaaacttggtc
tgacagttaccaatgcttaatcagtgaggcacctatctcagcgatctgtctatttcgttcatccatagttgcc
tgactccccgtcgtgtagataactacgatacgggagggcttaccatctggccccagtgctgcaatgataccg
cgagacccacgctcaccggctccagatttatcagcaataaaccagccagccggaagggccgagcgcagaa
gtggtcctgcaactttatccgcctccatccagtctattaattgttgccgggaagctagagtaagtagttcgcc
agttaatagtttgcgcaacgttgttgccattgctacaggcatcgtggtgtcacgctcgtcgtttggtatggct
tcattcagctccggttcccaacgatcaaggcgagttacatgatcccccatgttgtgcaaaaaagcggttagc
tccttcggtcctccgatcgttgtcagaagtaagttggccgcagtgttatcactcatggttatggcagcactgc
ataattctcttactgtcatgccatccgtaagatgcttttctgtgactggtgagtactcaaccaagtcattctga
gaatagtgtatgcggcgaccgagttgctcttgcccggcgtcaatacgggataataccgcgccacatagcag
aactttaaaagtgctcatcattggaaaacgttcttcggggcgaaaactctcaaggatcttaccgctgttgag
atccagttcgatgtaacccactcgtgcacccaactgatcttcagcatcttttactttcaccagcgtttctgggt
gagcaaaaacaggaaggcaaaatgccgcaaaaaagggaataagggcgacacggaaatgttgaatactca
tactcttcctttttcaatattattgaagcatttatcagggttattgtctcatgagcggatacatatttgaatgt
atttagaaaaataaacaaataggggttccgcgcacatttccccgaaaagtgccacctaaattgtaagcgtt
aatattttgttaaaattcgcgttaaatttttgttaaatcagctcattttttaaccaataggccgaaatcggca
aaatcccttataaatcaaaagaatagaccgagatagggttgagtgttgttccagtttggaacaagagtcca
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ctattaaagaacgtggactccaacgtcaaagggcgaaaaaccgtctatcagggcgatggcccactacgtga
accatcaccctaatcaagttttttggggtcgaggtgccgtaaagcactaaatcggaaccctaaagggagcc
cccgatttagagcttgacggggaaagccggcgaacgtggcgagaaaggaagggaagaaagcgaaagga
gcgggcgctagggcgctggcaagtgtagcggtcacgctgcgcgtaaccaccacacccgccgcgcttaatgc
gccgctacagggcgcgtcccattcgccattcaggctgcgcaact

pAAV-Syn-Chronos-GFP
cttccgcttcctcgctcactgactcgctgcgctcggtcgttcggctgcggcgagcggtatcagctcactcaaa
ggcggtaatacggttatccacagaatcaggggataacgcaggaaagaacatgtgagcaaaaggccagca
aaaggccaggaaccgtaaaaaggccgcgttgctggcgtttttccataggctccgcccccctgacgagcatc
acaaaaatcgacgctcaagtcagaggtggcgaaacccgacaggactataaagataccaggcgtttccccc
tggaagctccctcgtgcgctctcctgttccgaccctgccgcttaccggatacctgtccgcctttctcccttcgg
gaagcgtggcgctttctcatagctcacgctgtaggtatctcagttcggtgtaggtcgttcgctccaagctggg
ctgtgtgcacgaaccccccgttcagcccgaccgctgcgccttatccggtaactatcgtcttgagtccaacccg
gtaagacacgacttatcgccactggcagcagccactggtaacaggattagcagagcgaggtatgtaggcg
gtgctacagagttcttgaagtggtggcctaactacggctacactagaagaacagtatttggtatctgcgctc
tgctgaagccagttaccttcggaaaaagagttggtagctcttgatccggcaaacaaaccaccgctggtagc
ggtggtttttttgtttgcaagcagcagattacgcgcagaaaaaaaggatctcaagaagatcctttgatcttt
tctacggggtctgacgctcagtggaacgaaaactcacgttaagggattttggtcatgagattatcaaaaag
gatcttcacctagatccttttaaattaaaaatgaagttttaaatcaatctaaagtatatatgagtaaacttgg
tctgacagttaccaatgcttaatcagtgaggcacctatctcagcgatctgtctatttcgttcatccatagttg
cctgactccccgtcgtgtagataactacgatacgggagggcttaccatctggccccagtgctgcaatgatac
cgcgagacccacgctcaccggctccagatttatcagcaataaaccagccagccggaagggccgagcgcag
aagtggtcctgcaactttatccgcctccatccagtctattaattgttgccgggaagctagagtaagtagttcg
ccagttaatagtttgcgcaacgttgttgccattgctacaggcatcgtggtgtcacgctcgtcgtttggtatgg
cttcattcagctccggttcccaacgatcaaggcgagttacatgatcccccatgttgtgcaaaaaagcggtta
gctccttcggtcctccgatcgttgtcagaagtaagttggccgcagtgttatcactcatggttatggcagcact
gcataattctcttactgtcatgccatccgtaagatgcttttctgtgactggtgagtactcaaccaagtcattct
gagaatagtgtatgcggcgaccgagttgctcttgcccggcgtcaatacgggataataccgcgccacatagc
agaactttaaaagtgctcatcattggaaaacgttcttcggggcgaaaactctcaaggatcttaccgctgttg
agatccagttcgatgtaacccactcgtgcacccaactgatcttcagcatcttttactttcaccagcgtttctgg
gtgagcaaaaacaggaaggcaaaatgccgcaaaaaagggaataagggcgacacggaaatgttgaatact
catactcttcctttttcaatattattgaagcatttatcagggttattgtctcatgagcggatacatatttgaat
gtatttagaaaaataaacaaataggggttccgcgcacatttccccgaaaagtgccacctaaattgtaagcg
ttaatattttgttaaaattcgcgttaaatttttgttaaatcagctcattttttaaccaataggccgaaatcggc
aaaatcccttataaatcaaaagaatagaccgagatagggttgagtgttgttccagtttggaacaagagtcc
actattaaagaacgtggactccaacgtcaaagggcgaaaaaccgtctatcagggcgatggcccactacgtg
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aaccatcaccctaatcaagttttttggggtcgaggtgccgtaaagcactaaatcggaaccctaaagggagc
ccccgatttagagcttgacggggaaagccggcgaacgtggcgagaaaggaagggaagaaagcgaaagga
gcgggcgctagggcgctggcaagtgtagcggtcacgctgcgcgtaaccaccacacccgccgcgcttaatgc
gccgctacagggcgcgtcccattcgccattcaggctgcgcaactgttgggaagggcgatcggtgcgggcct
cttcgctattacgccagctgcgcgctcgctcgctcactgaggccgcccgggcaaagcccgggcgtcgggcg
acctttggtcgcccggcctcagtgagcgagcgagcgcgcagagagggagtggccaactccatcactaggg
gttccttgtagttaatgattaacccgccatgctacttatctacgtagccatgctctaggaagatcgtaggtta
attaatctagactgcagagggccctgcgtatgagtgcaagtgggttttaggaccaggatgaggcggggtgg
gggtgcctacctgacgaccgaccccgacccactggacaagcacccaacccccattccccaaattgcgcatcc
cctatcagagagggggaggggaaacaggatgcggcgaggcgcgtgcgcactgccagcttcagcaccgcgg
acagtgccttcgcccccgcctggcggcgcgcgccaccgccgcctcagcactgaaggcgcgctgacgtcactc
gccggtcccccgcaaactccccttcccggccaccttggtcgcgtccgcgccgccgccggcccagccggaccg
caccacgcgaggcgcgagataggggggcacgggcgcgaccatctgcgctgcggcgccggcgactcagcgc
tgcctcagtctgcggtgggcagcggaggagtcgtgtcgtgcctgagagcgcagtcgagaggatccgccacc
atggaaacagccgccacaatgacccacgcctttatctcagccgtgcctagcgccgaagccacaattagagg
cctgctgagcgccgcagcagtggtgacaccagcagcagacgctcacggagaaacctctaacgccacaaca
gccggagccgatcacggttgcttcccccacatcaaccacggaaccgagctgcagcacaagatcgcagtggg
actccagtggttcaccgtgatcgtggctatcgtgcagctcatcttctacggttggcacagcttcaaggccaca
accggctgggaggaggtctacgtctgcgtgatcgagctcgtcaagtgcttcatcgagctgttccacgaggtc
gacagcccagccacagtgtaccagaccaacggaggagccgtgatttggctgcggtacagcatgtggctcct
gacttgccccgtgatcctgatccacctgagcaacctgaccggactgcacgaagagtacagcaagcggacca
tgaccatcctggtgaccgacatcggcaacatcgtgtgggggatcacagccgcctttacaaagggccccctg
aagatcctgttcttcatgatcggcctgttctacggcgtgacttgcttcttccagatcgccaaggtgtatatcg
agagctaccacaccctgcccaaaggcgtctgccggaagatttgcaagatcatggcctacgtcttcttctgct
cttggctgatgttccccgtgatgttcatcgccggacacgagggactgggcctgatcacaccttacaccagcg
gaatcggccacctgatcctggatctgatcagcaagaacacttggggcttcctgggccaccacctgagagtg
aagatccacgagcacatcctgatccacggcgacatccggaagacaaccaccatcaacgtggccggcgaga
acatggagatcgagaccttcgtcgacgaggaggaggagggaggagtggcggcaccggtagtagcagtga
gcaagggcgaggagctgttcaccggggtggtgcccatcctggtcgagctggacggcgacgtaaacggcca
caagttcagcgtgtccggcgagggcgagggcgatgccacctacggcaagctgaccctgaagttcatttgca
ccaccggcaagctgcccgtgccctggcccaccctcgtgaccaccctgacctacggcgtgcagtgcttcagcc
gctaccccgaccacatgaagcagcacgacttcttcaagtccgccatgcccgaaggctacgtccaggagcgc
accatcttcttcaaggacgacggcaactacaagacccgcgccgaggtgaagttcgagggcgacaccctggt
gaaccgcatcgagctgaagggcatcgacttcaaggaggacggcaacatcctggggcacaagctggagtac
aactacaacagccacaacgtctatatcatggccgacaagcagaagaacggcatcaaggtgaacttcaaga
tccgccacaacatcgaggacggcagcgtgcagctcgccgaccactaccagcagaacacccccatcggcgac
ggccccgtgctgctgcccgacaaccactacctgagcacccagtccgccctgagcaaagaccccaacgagaa
gcgcgatcacatggtcctgctggagttcgtgaccgccgccgggatcactctcggcatggacgagctgtaca
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agtaagaattcgatatcaagcttatcgataatcaacctctggattacaaaatttgtgaaagattgactggta
ttcttaactatgttgctccttttacgctatgtggatacgctgctttaatgcctttgtatcatgctattgcttccc
gtatggctttcattttctcctccttgtataaatcctggttgctgtctctttatgaggagttgtggcccgttgtca
ggcaacgtggcgtggtgtgcactgtgtttgctgacgcaacccccactggttggggcattgccaccacctgtc
agctcctttccgggactttcgctttccccctccctattgccacggcggaactcatcgccgcctgccttgcccgc
tgctggacaggggctcggctgttgggcactgacaattccgtggtgttgtcggggaaatcatcgtcctttcctt
ggctgctcgcctgtgttgccacctggattctgcgcgggacgtccttctgctacgtcccttcggccctcaatcc
agcggaccttccttcccgcggcctgctgccggctctgcggcctcttccgcgtcttcgccttcgccctcagacg
agtcggatctccctttgggccgcctccccgcatcgataccgtcgacccgggcggccgctcataaagctcgac
tgtgccttctagttgccagccatctgttgtttgcccctcccccgtgccttccttgaccctggaaggtgccactc
ccactgtcctttcctaataaaatgaggaaattgcatcgcattgtctgagtaggtgtcattctattctgggggg
tggggtggggcaggacagcaagggggaggattgggaagacaatagcaggcatgctggggatgcggtccg
gactgtacaattgcattcattttatgtttcaggttcagggggagatgtgggaggttttttaaagcaagtaaa
acctctacaaatgtggtaaaatcgataaggatcttcctagagcatggctacgtagataagtagcatggcgg
gttaatcattaactacaaggaacccctagtgatggagttggccactccctctctgcgcgctcgctcgctcact
gaggccgggcgaccaaaggtcgcccgacgcccgggctttgcccgggcggcctcagtgagcgagcgagcgc
gcagctgcattaatgaatcggccaacgcgcggggagaggcggtttgcgtattgggcgct

pAAV-Syn-ChrimsonR-tdT
gggcgatggcccactacgtgaaccatcaccctaatcaagttttttggggtcgaggtgccgtaaagcactaa
atcggaaccctaaagggagcccccgatttagagcttgacggggaaagccggcgaacgtggcgagaaagg
aagggaagaaagcgaaaggagcgggcgctagggcgctggcaagtgtagcggtcacgctgcgcgtaacca
ccacacccgccgcgcttaatgcgccgctacagggcgcgtcccattcgccattcaggctgcgcaactgttggg
aagggcgatcggtgcgggcctcttcgctattacgccagctgcgcgctcgctcgctcactgaggccgcccggg
caaagcccgggcgtcgggcgacctttggtcgcccggcctcagtgagcgagcgagcgcgcagagagggagt
ggccaactccatcactaggggttccttgtagttaatgattaacccgccatgctacttatctacgtagccatgc
tctaggaagatcgtaggttaattaatctagactgcagagggccctgcgtatgagtgcaagtgggttttagg
accaggatgaggcggggtgggggtgcctacctgacgaccgaccccgacccactggacaagcacccaaccc
ccattccccaaattgcgcatcccctatcagagagggggaggggaaacaggatgcggcgaggcgcgtgcgc
actgccagcttcagcaccgcggacagtgccttcgcccccgcctggcggcgcgcgccaccgccgcctcagcac
tgaaggcgcgctgacgtcactcgccggtcccccgcaaactccccttcccggccaccttggtcgcgtccgcgc
cgccgccggcccagccggaccgcaccacgcgaggcgcgagataggggggcacgggcgcgaccatctgcgc
tgcggcgccggcgactcagcgctgcctcagtctgcggtgggcagcggaggagtcgtgtcgtgcctgagagc
gcagtcgagaggatccgccaccatggctgagctgatcagcagcgccaccagatctctgtttgccgccggag
gcatcaacccttggcctaacccctaccaccacgaggacatgggctgtggaggaatgacacctacaggcgag
tgcttcagcaccgagtggtggtgtgacccttcttacggactgagcgacgccggatacggatattgcttcgtg
gaggccacaggcggctacctggtcgtgggagtggagaagaagcaggcttggctgcacagcagaggcacac
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caggagaaaagatcggcgcccaggtctgccagtggattgctttcagcatcgccatcgccctgctgacattct
acggcttcagcgcctggaaggccacttgcggttgggaggaggtctacgtctgttgcgtcgaggtgctgttcg
tgaccctggagatcttcaaggagttcagcagccccgccacagtgtacctgtctaccggcaaccacgcctatt
gcctgcgctacttcgagtggctgctgtcttgccccgtgatcctgatcagactgagcaacctgagcggcctga
agaacgactacagcaagcggaccatgggcctgatcgtgtcttgcgtgggaatgatcgtgttcggcatggcc
gcaggactggctaccgattggctcaagtggctgctgtatatcgtgtcttgcatctacggcggctacatgtact
tccaggccgccaagtgctacgtggaagccaaccacagcgtgcctaaaggccattgccgcatggtcgtgaag
ctgatggcctacgcttacttcgcctcttggggcagctacccaatcctctgggcagtgggaccagaaggactg
ctgaagctgagcccttacgccaacagcatcggccacagcatctgcgacatcatcgccaaggagttttggac
cttcctggcccaccacctgaggatcaagatccacgagcacatcctgatccacggcgacatccggaagacca
ccaagatggagatcggaggcgaggaggtggaagtggaagagttcgtggaggaggaggacgaggacaca
gtggcggcaccggtagtagcagtgagtaagggcgaggaagtgatcaaagagttcatgcggtttaaggtga
gaatggaaggaagcatgaacggccacgagttcgaaattgagggagaaggagagggacggccctacgagg
gcacccagacagccaagctgaaagtgacaaagggcgggcctctgccattcgcttgggacatcctgagccca
cagtttatgtacggctccaaggcctatgtgaaacatccagctgacattcccgattataagaaactgagcttc
cccgaggggtttaagtgggaaagagtgatgaacttcgaggacggaggcctggtgactgtgacccaggaca
gctccctgcaggatgggaccctgatctacaaggtgaaaatgagagggacaaattttccccctgatggacct
gtgatgcagaagaaaactatgggatgggaggcctccaccgaaaggctgtatccacgcgacggggtgctga
aaggagaaatccaccaggctctgaagctgaaagatgggggacattacctggtggagttcaagacaatcta
catggccaagaaacctgtgcagctgccaggctactattacgtggacacaaaactggatatcacttcacaca
acgaggactacactattgtggagcagtatgaacggagcgaggggagacaccatctgttcctgggccatgg
gactggaagtaccggctcagggtctagtggaaccgcctcaagcgaggataacaatatggctgtgatcaaa
gagttcatgaggtttaaggtgcgcatggagggcagcatgaatgggcacgaatttgagattgaaggagagg
gcgaagggaggccttacgagggcacacagactgccaagctgaaagtgaccaagggaggaccactgccttt
cgcttgggatatcctgtctcctcagtttatgtacggaagtaaggcctatgtcaagcatcccgctgacattcct
gattacaagaaactgtctttcccagagggctttaagtgggagagagtgatgaattttgaagatggaggcct
ggtgaccgtgacacaggactcctctctgcaggatggcactctgatctacaaagtcaaaatgcgcggcacca
attttccacccgatgggcccgtgatgcagaagaaaacaatggggtgggaggccagcactgaacggctgtat
cctagagacggagtgctgaagggcgaaatccaccaggccctgaagctgaaagacggcggccactacctgg
tggagttcaaaaccatctacatggccaagaaaccagtgcagctgcccggctattactatgtggacaccaag
ctggatatcacatcccacaatgaagactacaccattgtggaacagtatgagaggtctgaaggacgccacca
tctgtttctgtacggcatggatgagctgtataagtaagaattcgatatcaagcttatcgataatcaacctctg
gattacaaaatttgtgaaagattgactggtattcttaactatgttgctccttttacgctatgtggatacgctg
ctttaatgcctttgtatcatgctattgcttcccgtatggctttcattttctcctccttgtataaatcctggttgct
gtctctttatgaggagttgtggcccgttgtcaggcaacgtggcgtggtgtgcactgtgtttgctgacgcaacc
cccactggttggggcattgccaccacctgtcagctcctttccgggactttcgctttccccctccctattgccac
ggcggaactcatcgccgcctgccttgcccgctgctggacaggggctcggctgttgggcactgacaattccgt
ggtgttgtcggggaaatcatcgtcctttccttggctgctcgcctgtgttgccacctggattctgcgcgggacg
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tccttctgctacgtcccttcggccctcaatccagcggaccttccttcccgcggcctgctgccggctctgcggcc
tcttccgcgtcttcgccttcgccctcagacgagtcggatctccctttgggccgcctccccgcatcgataccgtc
gacccgggcggccgctcataaagctcgactgtgccttctagttgccagccatctgttgtttgcccctcccccg
tgccttccttgaccctggaaggtgccactcccactgtcctttcctaataaaatgaggaaattgcatcgcattg
tctgagtaggtgtcattctattctggggggtggggtggggcaggacagcaagggggaggattgggaagac
aatagcaggcatgctggggatgcggtccggactgtacaattgcattcattttatgtttcaggttcaggggga
gatgtgggaggttttttaaagcaagtaaaacctctacaaatgtggtaaaatcgataaggatcttcctagag
catggctacgtagataagtagcatggcgggttaatcattaactacaaggaacccctagtgatggagttggc
cactccctctctgcgcgctcgctcgctcactgaggccgggcgaccaaaggtcgcccgacgcccgggctttgc
ccgggcggcctcagtgagcgagcgagcgcgcagctgcattaatgaatcggccaacgcgcggggagaggcg
gtttgcgtattgggcgctcttccgcttcctcgctcactgactcgctgcgctcggtcgttcggctgcggcgagc
ggtatcagctcactcaaaggcggtaatacggttatccacagaatcaggggataacgcaggaaagaacatg
tgagcaaaaggccagcaaaaggccaggaaccgtaaaaaggccgcgttgctggcgtttttccataggctccg
cccccctgacgagcatcacaaaaatcgacgctcaagtcagaggtggcgaaacccgacaggactataaaga
taccaggcgtttccccctggaagctccctcgtgcgctctcctgttccgaccctgccgcttaccggatacctgtc
cgcctttctcccttcgggaagcgtggcgctttctcatagctcacgctgtaggtatctcagttcggtgtaggtc
gttcgctccaagctgggctgtgtgcacgaaccccccgttcagcccgaccgctgcgccttatccggtaactatc
gtcttgagtccaacccggtaagacacgacttatcgccactggcagcagccactggtaacaggattagcaga
gcgaggtatgtaggcggtgctacagagttcttgaagtggtggcctaactacggctacactagaagaacagt
atttggtatctgcgctctgctgaagccagttaccttcggaaaaagagttggtagctcttgatccggcaaaca
aaccaccgctggtagcggtggtttttttgtttgcaagcagcagattacgcgcagaaaaaaaggatctcaag
aagatcctttgatcttttctacggggtctgacgctcagtggaacgaaaactcacgttaagggattttggtca
tgagattatcaaaaaggatcttcacctagatccttttaaattaaaaatgaagttttaaatcaatctaaagta
tatatgagtaaacttggtctgacagttaccaatgcttaatcagtgaggcacctatctcagcgatctgtctatt
tcgttcatccatagttgcctgactccccgtcgtgtagataactacgatacgggagggcttaccatctggcccc
agtgctgcaatgataccgcgagacccacgctcaccggctccagatttatcagcaataaaccagccagccgg
aagggccgagcgcagaagtggtcctgcaactttatccgcctccatccagtctattaattgttgccgggaagc
tagagtaagtagttcgccagttaatagtttgcgcaacgttgttgccattgctacaggcatcgtggtgtcacg
ctcgtcgtttggtatggcttcattcagctccggttcccaacgatcaaggcgagttacatgatcccccatgttg
tgcaaaaaagcggttagctccttcggtcctccgatcgttgtcagaagtaagttggccgcagtgttatcactc
atggttatggcagcactgcataattctcttactgtcatgccatccgtaagatgcttttctgtgactggtgagt
actcaaccaagtcattctgagaatagtgtatgcggcgaccgagttgctcttgcccggcgtcaatacgggata
ataccgcgccacatagcagaactttaaaagtgctcatcattggaaaacgttcttcggggcgaaaactctca
aggatcttaccgctgttgagatccagttcgatgtaacccactcgtgcacccaactgatcttcagcatctttta
ctttcaccagcgtttctgggtgagcaaaaacaggaaggcaaaatgccgcaaaaaagggaataagggcgac
acggaaatgttgaatactcatactcttcctttttcaatattattgaagcatttatcagggttattgtctcatga
gcggatacatatttgaatgtatttagaaaaataaacaaataggggttccgcgcacatttccccgaaaagtg
ccacctaaattgtaagcgttaatattttgttaaaattcgcgttaaatttttgttaaatcagctcattttttaac
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caataggccgaaatcggcaaaatcccttataaatcaaaagaatagaccgagatagggttgagtgttgttcc
agtttggaacaagagtccactattaaagaacgtggactccaacgtcaaagggcgaaaaaccgtctatca
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