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1.1 Evolution of the Universe throughout cosmic time. It began at the Big Bang
about 13.7 billion years ago. The cosmic microwave background is a collec-
tion of photons left free to propagate uniformly after free electrons coupled
with atomic nuclei into neutral hydrogen. Temperature fluctuations of the
CMB encode small density perturbations originated in the early phases of
the Universe. The initial overdensities grew due to gravity, forming the ga-
laxies we see nowadays.
Credit: NASA/WMAP Science Team. . . . . . . . . . . . . . . . . . . . . . 2

1.2 Density evolution of total matter (in blue), dark energy (in orange), and
radiation (in green) throughout cosmic time. Left-hand panel: Density
evolution in units of M⊙/Mpc3. Right-hand panel: Evolution of the den-
sity parameter (i.e., normalized to the critical density ρC .) Both figures show
the redshift on the lower x-axis and the scale factor on the upper x-axis. The
figures have been produced assuming cosmological parameters from Planck
Collaboration et al. (2020a). . . . . . . . . . . . . . . . . . . . . . . . . . . 6

1.3 Temperature fluctuations of the cosmic microwave background measured by
Planck Collaboration et al. (2020a). Redder (bluer) regions denote hot (cold)
spots. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

1.4 Growth of perturbations as a function of cosmic time. Left-hand panel:
growth factor D(z), see Eq. 1.17. Right-hand panel: growth rate f(z), see
Eq. 1.18. The plots show three different cosmological models: the one cons-
trained by Planck Collaboration et al. (2020a) in blue, a flat EdS Universe
full of matter in orange, and an open Universe with no dark energy in green. 8

1.5 Evolution of baryonic matter δB (in this figure ∆B, dash-dotted line), dark
matter δDM (in this figure ∆D, solid black line), and radiation δR (in this
figure ∆rad, grey solid line) perturbations as a function of cosmic time. This
panel is adapted from Longair (2008). . . . . . . . . . . . . . . . . . . . . . 10

1.6 Linear power spectrum (left-hand panel) and correlation function (right-
hand panel) at z=0 for different ΛCDM cosmological models: the fiducial
Planck Collaboration et al. (2020a) in blue, and models with larger and
lower ΩM in orange and green. . . . . . . . . . . . . . . . . . . . . . . . . 11
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1.7 Non-linear evolution of a density perturbation (top black line) in an expan-
ding background (bottom black line). The figure is taken from Padmanabhan
(1993). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

1.8 Halo number density as a function of mass and redshift. Left-hand panel:
mass function at z=0 and z=2 for different cosmological parameters. The
solid lines denote the Planck Collaboration et al. (2020a) cosmology, and the
dashed (dotted) lines show larger (smaller) ΩM and σ8. The models shown
in this panel were computed with the colossus software (Diemer, 2018).
Right-hand panel: mass function in the Millennium simulation. The solid
and dashed lines show prediction with the models from Jenkins et al. (2001)
and Press and Schechter (1974). The panel is adapted from Springel et al.
(2005). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

1.9 The Virgo galaxy cluster. The Top-left panel: Virgo in the optical band
using data from the Burrell Schmidt telescope. Credit: Chris Mihos (Ca-
se Western Reserve University)/ESO. Top-right panel: X-ray data from
eROSITA showing the emission from the hot ICM. The energy bands are
0.3–0.63 keV (red), 0.63–1.04 (green), 1.04–2.30 keV (blue). Credit: Jeremy
Sanders. Bottom-left panel: Virgo as observed by Planck through the SZ
effect (Planck Collaboration et al., 2016d). Bottom-right panel: the Very
Large Array (VLA) view of the Virgo cluster in the radio band Mathews
and Guo (2011). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

1.10 Cosmological constraints on ΩM–σ8 from different cluster count experiments
compared to other probes. Left-hand panel: results from Bocquet et al.
(2019), compared to CMB constraints (Planck Collaboration et al., 2014a),
galaxy clustering and lensing (van Uitert et al., 2018; Abbott et al., 2020),
and the Weighing the Giants experiment (WtG, Mantz et al., 2015b). Right-
hand panel: results from Ider Chitham et al. (2020), compared to other
cluster count experiments and a prediction using clusters detected by eRO-
SITA from Pillepich et al. (2018b). . . . . . . . . . . . . . . . . . . . . . . 23

1.11 A picture of the seven eROSITA telescope modules. Figure taken from Pre-
dehl et al. (2021). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

1.12 The scanning and collecting capabilities of eROSITA. Left-hand panel:
vignetted exposure map of the first all-sky survey in galactic coordinates
(eRASS1). The depth is larger at the ecliptic poles, covered by the spacecraft
on each revolution. Right-hand panel: product of the eROSITA field of
view and its effective area as a function of energy (grasp) in red, compared to
Chandra ACIS-I (in green and purple), XMM-Newton (in blue), and ROSAT
(in brown). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

1.13 Map of the first eROSITA all-sky survey (eRASS1) in Aitoff projection. The
figure is color coded according to photon energy (red: 0.3–0.6 keV, green: 0.6–
1 keV, blue: 1–2.3 keV). Some of the brightest X-ray sources are annotated.
Credit: Jeremy Sanders, Hermann Brunner, Andrea Merloni and the eSASS
team (MPE); Eugene Churazov, Marat Gilfanov (on behalf of IKI). . . . . 28
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1.14 Forecast of the eRASS:8 cosmological experiment, combining cluster counts
and angular clustering, for pessimistic and optimistic scenarios in light-blue
shaded areas. The inclusion of Planck+BAO+JLA results (black line) is
shown by the dark-blue shaded areas. The contours refer to 68% confidence
level. Top panels: constraints of the ΛCDM model for ΩM and σ8, compared
to previous cluster cosmological experiments. Bottom panels: constraints
on model with varying dark energy equation of state. Figure taken from
Pillepich et al. (2018b). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

1.15 Prediction of the Dark Energy Figure of Merit (Eq. 1.60). The top panel
shows different survey assumptions, the bottom panel shows a comparison
to Dark Energy Task Force Requirements (Albrecht et al., 2006). The panel
is adapted from (Pillepich et al., 2018b). . . . . . . . . . . . . . . . . . . . 30

2.1 Large scale distribution of extragalactic sources and their X-ray view in the
simulation. Top panel: light cone of the UNIT1i-eRASS1 simulation. The
wedge shows the fraction of the sky enclosed by the same RA and DEC of
the bottom panel as a function of redshift and lookback time. The galaxies
tracing the large-scale structure are shown in grey. The AGN are denoted
in blue. The red circles show clusters and groups. The size of the circle is
proportional to the mass of the object. Bottom panel: central regions of
tile 202105 of the eRASS1 simulation. This is the projection on the plane of
the sky of light cone shown in the top panel. Photons with energies between
0.2 to 2.3 keV are shown by black dots, simulated stars by green circles,
simulated AGN by blue circles, simulated clusters by red circles, eSASS
extended detections by magenta squares, and eSASS point-like detections
by cyan squares. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

2.2 Examples of the eSASS catalog classification. Red (blue) solid circles show
simulated clusters (AGN). Magenta (cyan) squares denote extended (point-
like) eSASS entries, like in Fig. 2.1. The dashed red circles enclose 0.5×R500c
of a simulated cluster. Soft X-ray photons from simulated sources are repre-
sented by black dots, the green ones come from the background. The first
(second) row shows examples for sources with DET_LIKE = 10 (20). Co-
lumns show respectively: an extended detection uniquely assigned to a si-
mulated cluster, a secondary detection assigned to an input cluster, a point
detection uniquely assigned to an AGN, an extended detection uniquely as-
signed to an AGN, and a detection without any simulated input. All panels
have the same physical size. A ruler of 60 arcseconds is shown in the top-left
one. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
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2.3 Population in the eSASS catalog. The total number of sources detected by
eSASS in the eRASS1 simulation (cleaned, see 2.2.2) is 1 133 807 (901 812).
The number of extended sources is 7731 (5615). Left-hand panel: Frac-
tion of sources in the full catalog as a function of minimum detection li-
kelihood. Right-hand panel: Fraction of sources in the extent-selected
sample (EXT_LIKE >= 6) as a function of minimum detection likelihood.
Bottom panel: population in the source catalog as a function of minimum
extension likelihood. Lines of different colors show the classes defined in
Sect. 2.2. The dash-dotted lines denote sources that are not contaminated
by photons of a secondary source (no blending), the dashed ones identify
sources contaminated by a point source, and the dotted ones show sources
contaminated by a cluster. . . . . . . . . . . . . . . . . . . . . . . . . . . 52

2.4 Number of split sources as a function of flux and R500c. The left-hand panel
shows the fraction of detected clusters that are split into multiple sources,
the right-hand one displays the average number of sources which a cluster
with given flux and size is split into. The blank spaces contain no input
clusters. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

2.5 Cumulative number density of the AGN population. Top panel: The blue
(orange) line shows the logN-logS built with the sample of detected (simu-
lated) AGN. The green, red, violet dashed lines show the distributions from
Gilli et al. (2007), Georgakakis et al. (2008) and Merloni et al. (2012). The
brown and pink vertical lines locate the eROSITA flux value where the ra-
tio between the detected and simulated populations is equal to 0.5 and 0.8,
respectively. Bottom panel: Ratio between the logN-logS of detected and
simulated AGN. A black dashed line denotes a ratio equal to 1.0. . . . . . 57

2.6 Cumulative number of clusters per square degree as a function of flux. Top
panel: The solid blue (orange) line shows the logN-logS built with the sam-
ple of detected (simulated) clusters. The green dashed line shows the dis-
tributions of the eFEDS sample (Liu et al., 2022), the red one denotes the
SPIDERS sample (Finoguenov et al., 2020), and the pink one the ECDF-
S (Finoguenov et al., 2015). The brown and pink vertical lines locate the
eROSITA flux value where the ratio between the detected and simulated
populations is equal to 0.5 and 0.8, respectively. Bottom panel: Ratio bet-
ween the logN-logS of detected and simulated clusters. A black dashed line
denotes a ratio equal to 1.0. . . . . . . . . . . . . . . . . . . . . . . . . . . 59

2.7 Fraction of simulated clusters with a counterpart in the eSASS catalog as
a function of simulated soft X-ray flux. We do not apply any additional
likelihood selection. Each color identifies an exposure time range. Solid lines
denote clusters only detected as extended, while dashed ones include the
ones detected as point sources. . . . . . . . . . . . . . . . . . . . . . . . . 60
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2.8 Simulated and detected clusters population as a function of the input flux
and size on the sky. The figures refer to areas of the eRASS1 simulation
covered by an exposure between 150 s and 400 s. The blank spaces contain
no input clusters. Left-hand panel: number of simulated clusters in the
flux–R500c space. Right-hand panel: fraction of simulated clusters that is
detected by eSASS, either as extended or point source. Bottom panel:
fraction of simulated clusters that is only detected as extended. . . . . . . 62

2.9 Population of simulated and detected clusters as a function of the input
flux and dynamical state. The panels show areas of the eRASS1 simulation
covered by an exposure between 150 s and 400 s. The blank spaces contain
no input clusters. Left-hand panel: number of simulated clusters in the
flux–EM0 space. Right-hand panel: fraction of simulated clusters that is
detected by eSASS, either as extended or point source. Bottom panel:
fraction of simulated clusters that is only detected as extended. . . . . . . 64

2.10 Efficiency of the eSASS detection for extragalactic sources in the eRASS1
simulation. The completeness is measured for simulated objects above the
different flux limits for each exposure interval defined in Table 2.4. Top pa-
nels: Detection efficiency for AGN detected as point sources (EXT_LIKE
= 0). The numbers denote DET_LIKE thresholds. Bottom panels: Detec-
tion efficiency for clusters. The numbers denote EXT_LIKE thresholds. No
additional cuts of DET_LIKE are applied. Left-hand panels: Completen-
ess as a function of spurious fraction. Right-hand panels: Completeness
as a function of contamination. Different exposure intervals are shown in
different colors. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

2.11 Simulated eROSITA fractional survey area as a function of flux limit. The
eRASS1 simulation is denoted by the blue line, the prediction by Merloni
et al. (2012) for eRASS:8 is shown in orange. The dashed line denotes an
extrapolation of the eRASS:8 prediction to the depth of eRASS1. . . . . . 70

2.12 Measure of X-ray luminosity. Top panel: Comparison between average va-
lues of measured X-ray luminosity as a function of input ones. The blue
shaded area encloses the average measured luminosity within 1σ uncertain-
ties. The dashed orange line shows a perfect one-to-one relation. Lower
panel: Residual plot normalized by the input luminosity. . . . . . . . . . . 72

2.13 Selection of a volume-limited cluster sample in the eRASS1 simulation. Top
panel: sky map with the cluster population in areas covered by different
depth. Areas 0, 1, 2, and 3 respectively cover regions with exposure larger
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to the ones defined in Table 2.4. Bottom panels: population of simulated
and detected clusters in the luminosity–redshift plane. The black dashed
lines denote the chosen flux threshold at each depth (see Table 2.4). The red
dashed lines locate different areas above the given flux limits. The volume-
limited sample is constructed with the objects within the regions delimited
by these lines. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78



xiv ABBILDUNGSVERZEICHNIS

2.14 Comparison between the volume-limited and flux-limited samples built with
clusters detected as extended and simulated ones. The top panels display
the volume-limited samples, the bottom panels show the flux-limited ones.
Left-hand panels: relative contribution to the total cluster number density
as a function of redshift for the four different populations. The lower plot
shows the ratio between the N(z) built with the samples of detected and
simulated clusters. Right-hand panels: relative contribution to the total
cluster number density as a function of mass for the four different populati-
ons. The lower plot shows the ratio between the N(z) built with the samples
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2.15 Improved cluster model. Left-hand panel: Number density of sources as
function of flux. The solid orange (red) line shows the prediction of the model
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for higher mass thresholds. Right-hand panel: Relation between X-ray
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2.16 Surface brightness profiles of the simulated clusters. The radius is normalized
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2.17 Comparison between the eRASS1 simulation and the real data. These are re-
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and 8×1014 M⊙ are denoted by the blue and orange lines. The first one re-
fers to the optical center identified by the redMaPPer centering algorithm,
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green line shows the prediction obtained from the Seppi et al. (2021) model
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dicted offsets between the gas center and the CG position in the Magneticum
(TNG) simulation described in Sect. 4.2.3. The corresponding dashed and
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and the N-body model. However, the tails of the distributions are different.
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Zusammenfassung

Die Natur Dunkler Materie und Dunkler Energie ist eine der faszinierendsten wissenschaft-
lichen Fragen dieses Jahrhunderts. Winzige Störungen im frühen Universum entstanden un-
ter der Einwirkung der Gravitation und entwickelten sich zu heute sichtbaren Strukturen
wie Galaxien und Haufen. Ein solches Wachstum über kosmische Zeiten hinweg hängt vom
Wesen und der Menge dieser mysteriösen dunklen Komponenten ab. Galaxienhaufen bie-
ten ein wichtiges Werkzeug zum Studium der kosmologischen Entwicklung des Universums.
Galaxienhaufen sind die massereichsten virialisierten Objekte im Universum, sie befinden
sich in den Knoten des kosmischen Netzes und sind ein direkter Tracer der großen Skalen-
struktur des Universums. Ihre Häufigkeit als Funktion von Masse und Rotverschiebung (die
Halo-Massenfunktion) bietet einen strengen Test für verschiedene kosmologische Modelle
und liefert strenge Randbedingungen für die Gesamtmenge an Materie und die Amplitude
der Dichteschwankungen im Universum. Neben Informationen zur Dunklen Materie liefern
Clusterbeobachtungen auch Hinweise zur Natur der Dunklen Energie.
Das eROSITA Röntgenteleskop wird die größte röntgenselektierte Probe von Galaxien-
haufen aller Zeiten liefern, mit dem Potenzial, Dunkle Materie und Dunkle Energie mit
beispielloser Präzision zu untersuchen. Um dieses Ziel zu erreichen, ist ein detailliertes Ver-
ständnis der von eROSITA erfassten Quellen erforderlich und die Unsicherheiten der Daten
sind von grundlegender Bedeutung. Das erste Ziel dieser Arbeit ist es, einen digitalen Zwil-
ling der ersten eROSITA All-Sky Survey (eRASS1) zu produzieren und zu untersuchen,
um den Quellkatalog zu charakterisieren und die wissenschaftlichen Analysespipelines zu
testen. Wir verwenden neueste Modelle zur Vorhersage der Röntgenemission von Gala-
xienhaufen und aktiven Galaxiekernen (AGN) und modellieren den Röntgenhintergrund
mit realen Daten als Ausgangspunkt. Mit diesem Setup simulieren wir eine Röntgenauf-
nahme unter Berücksichtigung technischer Details wie der Instrumentenantwort und der
Beobachtungsstrategie. Wir verwenden das eROSITA Standard Analyse-Software-System
(eSASS), welches einen Quellenkatalog mit sehr ähnlichen Eigenschaften wie der aus rea-
len Daten gewonnene erzeugt. Wir vergleichen die Input und Output Kataloge mit einem
Algorithmus basierend auf dem Ursprung jedes Photons. Wir weisen alle hellsten Haufen
und AGN nach. Der Anteil der detektierten Quellen hängt in erster Linie von Fluss und
Belichtungszeit ab. Zusätzlich sind sekundäre Effekte, wie die Quellengröße und der zen-
trale Emissionsgrad, für Galaxienhaufen relevant. Wir bieten eine detaillierte Studie über
den Kompromiss zwischen Vollständigkeit und Reinheit. Wir stellen fest, dass progressive
Grenzwerte für die Detection Likelihood die Hintergrundschwankungen im Quellenkata-
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log beseitigen, während Grenzwerte der Extension Likelihood erforderlich sind, um helle
Punktquellen zu entfernen, die die Clusterprobe kontaminieren. Wir besprechen verschie-
dene Wahlmöglichkeiten entsprechend bestimmter wissenschaftlicher Ziele. Zum Beispiel
sind zur Studie schwacher Haufen konservative Grenzwerte am besten, wohingegen für
ein kosmologisches Experiment eine sicherere Probe mit geringer Kontamination benötigt
wird.

Sobald die Auswahl einer Cluster-Probe klar ist, sind genaue Modelle der Massen-
funktion Schlüssel, um genaue Einschränkungen kosmologischer Modelle zu erreichen. Das
zweite Ziel der Dissertation ist es, ein Modell der Massenfunktion zu kalibrieren, das auch
Variablen enthält, die den dynamischen Zustand der Dunklen Materie Halos beschreiben.
Wir verwenden die reine Dunkle Materie MultiDark Suite von Simulationen und die darin
vorhandenen massereichen Objekte. Wir messen die mittleren Beziehungen von Konzentra-
tion, Offset-Parameter (Xoff) und Spin als Funktion von Halomasse und Rotverschiebung.
Wir untersuchen die Verteilungen um die gemittelten Zusammenhänge, und bestätigen den
Konzentrationsanstieg bei hohen Massen und stellen ein Modell bereit, das die Konzentra-
tion für verschiedene Werte von Masse und Rotverschiebung mit einer einzigen Gleichung
vorhersagt. Unsere Untersuchungen zeigen, dass die Konzentration von Halos mit geringer
Masse schneller mit der Rotverschiebung abnimmt als bei massereichen Halos. Dies ist im
Hochkonzentrationsbereich am stärksten ausgeprägt. Wir finden, dass der Offset-Parameter
bei niedriger Rotverschiebung systematisch kleiner ist, was mit der beobachteten Locke-
rung der Strukturen übereinstimmt. Wir messen die Halomassen-Funktion als Funktion
von Offset, Spin und Rotverschiebung. Die einzelnen Modelle werden in ein umfassen-
des Rahmenwerk kombiniert, das die Massenfunktion als Funktion des Spins und Offset
vorhersagt. Unser Modell stellt die Referenzmassenfunktion mit großer Genauigkeit bei
Rotverschiebung 0 und berücksichtigt die Rotverschiebungsentwicklung bis zu z ∼ 1.5.

Der verallgemeinerte Rahmen für die Massenfunktion ermöglicht eine Marginalisierung
gegenüber Selektionseffekten im Zusammenhang mit dem dynamischen Zustand von Halos
aus Dunkler Materie in einem Cluster-Count-Experiment. Jedoch fehlt eine Verbindung
zwischen Beobachtungen und theoretischen Modellen. Das dritte Ziel dieser Arbeit ist die
Untersuchung des dynamischen Zustands von Clustern, die von eROSITA beobachtet wur-
den. Dabei nutzen wir den Offset zwischen dem Röntgen- und dem optischen Zentrum. Wir
zielen darauf ab, den in eROSITA Beobachtungen gemessenen Offset mit Vorhersagen aus
hydrodynamische Simulationen und N-body-Modelle zu verbinden, und die astrophysika-
lischen Effekte zu bewerten, die die Verschiebungen beeinflussen. Als Vergleichprobe mes-
sen wir den Offset für Cluster, die im eROSITA Final Equatorial-Depth Survey (eFEDS)
und eRASS1 beobachten wurden. Wir fokusieren uns auf eine Stichprobe von 87 massi-
ven eFEDS-Clustern bei niedriger Rotverschiebung, und vergleichen die Verschiebungen
in dieser Probe zu denen, die von den TNG- und Magneticum-Simulationen vorhergesagt
wurden. Dabei verknüpfen wir die Beobachtungen zusätzlich mit dem gemessenen Offset-
Parameter in N-body-Simulationen unter Verwendung der hydrodynamischen Simulationen
als Verbindungsglied. Die eFEDS Haufen weisen im Durchschnitt einen kleineren Versatz
im Vergleich zu eRASS1 auf, da letzteres einen größeren Anteil an massiven und gestör-
ten Strukturen enthält. Der gemessene Versatz auf der eFEDS-Stichprobe stimmt sowohl
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mit den Vorhersagen von TNG und Magneticum als auch mit der Verteilung des Offset-
Parameter aus Dunkle Materie Simulationen überein. Allerdings sind die Ausläufer der
Verteilungen unterschiedlich. Baryonische Effekte bewirken eine Abnahme (Erhöhung) des
tiefen (hohen) Offset-Regimes im Vergleich zur Xoff-Verteilung aus Simulationen mit nur
Dunkler Materie. Schlussendlich finden wir eine Korrelation zwischen dem Offset, gemes-
senen in hydrodynamischen Simulationen, und Xoff , gemessen in Simulationen mit nur
Dunkler Materie, und kalibrieren die Beziehung zwischen ihnen. Diese Beziehung lässt uns
die vollständige Xoff-Verteilung mit hoher Genauigkeit erfassen.

Die in dieser Dissertation entwickelte Arbeit ist wesentlich, um die echte eRASS1-
Stichprobe zu charakterisieren, die bald der Öffentlichkeit zugänglich sein wird. Die Ent-
wicklung des innovativen Massefunktionen Frameworks und seine Verknüpfung mit Daten
mit dem Offset zwischen verschiedenen Definitionen des Cluster Mittelpunkts ermöglicht
die Minimierung von Unsicherheiten in Cluster-Count-Experimenten, die durch Selektions-
effekte bezogen auf den dynamischen Zustand des Clusters entstehen.
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Abstract

The nature of dark matter and dark energy is one of the most intriguing scientific questions
of this century. Tiny density perturbations in the early Universe evolved under the action
of gravity, growing into the structures we see nowadays, such as galaxies and clusters. Such
growth throughout cosmic time depends on the nature and abundance of these mysterious
dark components. Clusters of galaxies provide a great tool for studying the cosmological
evolution of the Universe. Galaxy clusters are the most massive virialized objects in the
Universe, they reside in the nodes of the cosmic web, and are a direct tracer of the large
scale structure of the Universe. Their abundance as a function of mass and redshift (the
halo mass function) provides a stringent test for different cosmological models and tight
constraints on the total amount of matter and the amplitude of the density perturbations
in the Universe, but it also depends on the nature of dark energy.
The eROSITA X-ray telescope will provide the largest X-ray-selected sample of galaxy
clusters ever, with the potential of studying dark matter and dark energy with unprece-
dented precision. A detailed understanding of the sources detected by eROSITA and the
uncertainties in the data is fundamental to reach this goal. The first aim of this thesis is
to produce and study a digital twin of the first eROSITA all-sky survey (eRASS1), to cha-
racterize the source catalog and test the science pipelines. We use state of the art models
to predict the X-ray emission from clusters of galaxies and AGN, and model the X-ray
background using real data as a starting point. With this setup, we run an X-ray software
simulator to produce mock detected photons, accounting for technical details such as the
instrument response and the observation strategy. We run the eROSITA Standard Analysis
Software System (eSASS), which produces a source catalog with very similar properties to
the one obtained from real data. We match the input and output catalogs with an accurate
algorithm based on the origin of each photon. We detect all the brightest clusters and AGN
in the simulation. The fraction of detected sources primarily depends on flux and exposure
time. Secondary effects, such as the source size and the central emissivity, are relevant for
clusters. We provide a detailed study of the trade-off between completeness and purity. We
find that progressive thresholds of detection likelihood get rid of the background fluctuati-
ons in the source catalog, while cuts in extension likelihood are necessary to remove bright
point sources contaminating the cluster sample. We discuss different selections according
to a given science goal. For example, the inclusion of the majority of sources in the sample
is best, if one wants to find interesting objects to study the astrophysics of faint clusters
and groups. Instead, a more secure cluster sample with low contamination is required for
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a cosmological experiment.
Once the cluster sample is selected, accurate halo mass function models are key to

reaching precise constraints on cosmological models. The second aim of this thesis is to
calibrate a model of the mass function that also includes variables related to the dynamical
state of dark matter halos. We use the dark matter-only MultiDark suite of simulations and
the high-mass objects hosting clusters of galaxies therein. We measure the mean relations of
concentration, offset parameter (Xoff), and spin as a function of dark matter halo mass and
redshift. We investigate the distributions around the mean relations. We confirm the recent
discovery of the concentration upturn at high masses and provide a model that predicts the
concentration for different values of mass and redshift with one single equation. We find
that the concentration of low-mass halos shows a faster redshift evolution compared to high-
mass halos, especially in the high-concentration regime. We find that the offset parameter
is systematically smaller at low redshift, in agreement with the relaxation of structures at
recent times. The individual models are combined into a comprehensive framework, which
predicts the mass function as a function of spin and offset. Our model recovers the fiducial
mass function with great accuracy at redshift 0 and accounts for redshift evolution up to
z ∼ 1.5.

The generalized mass function framework allows marginalizing over selection effects re-
lated to the dynamical state of dark matter halos in a cluster count experiment. However,
a link between observations and theoretical models is lacking. The third goal of this thesis
is to study the dynamical state of clusters detected by eROSITA using the offset between
the X-ray and the optical centers. We aim to connect the offset measured in eROSITA
observations to predictions by hydrodynamical simulations and N-body models, assessing
the astrophysical effects affecting the displacements. We measure the offset for clusters
observed in the eROSITA Final Equatorial-Depth Survey (eFEDS) and eRASS1. We focus
on a subsample of 87 massive eFEDS clusters at low redshift. We compare the displace-
ments in this sample to those predicted by the TNG and the Magneticum simulations.
We link the observations to the offset parameter Xoff measured for dark matter halos in
N-body simulations, using the hydrodynamical simulations as a bridge. We find that on
average the eFEDS clusters show a smaller offset compared to eRASS1 because the latter
contains a larger fraction of massive and disturbed structures. The offset measured in the
eFEDS subsample is in agreement with the predictions from TNG and Magneticum, and
the distribution of the offset parameter from dark matter only simulations. However, the
tails of the distributions are different. Baryonic effects cause a decrement (increment) in
the low (high) offset regime compared to the Xoff distribution from dark matter-only si-
mulations. Finally, we find a correlation between the offset predicted by hydro simulations
and Xoff measured in their parent dark matter-only run and calibrate a relation between
them, which allows us to recover the full Xoff distribution with excellent precision.

The work developed in this thesis is essential to characterize the real eRASS1 sample,
that will soon be available to the public. The development of the innovative mass function
framework and its link to data with the offset between different definitions of the cluster
center will allow the minimization of uncertainties in cluster count experiments due to
selection effects related to the cluster dynamical state.
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Introduction

In this chapter, we introduce the description of the Universe on different scales, including
the concepts of dark matter, dark energy, halos, and cosmological models. We summarize
the main properties of clusters of galaxies and the focal points of their usage in cosmological
experiments. We finally introduce the eROSITA instrument, its cosmological goals, and the
complete outline of this thesis.

1.1 Cosmology
The General theory of Relativity (GR) provides the most accurate description of the Uni-
verse to date. It was formulated by Einstein (1916). Nowadays we include dark matter and
dark energy within this framework (Planck Collaboration et al., 2020a).
Independent experiments point to a standard cosmological model: a flat Universe in a state
of accelerated expansion driven by a cosmological constant Λ, where most of the matter
is in form of invisible cold dark matter (CDM). This model is named ΛCDM (e.g., Mo
and White, 2002). Such experiments include studies of supernovae Type Ia (SNIa, Riess
et al., 1998, 2022), that are used as standard candles to study the relation between their
distance and their redshift; the cosmic microwave background (CMB, Komatsu et al., 2011;
Planck Collaboration et al., 2020a), encoding the imprint of the matter distribution in the
early Universe; the clustering of galaxies and baryonic acoustic oscillations (BAO, Eisen-
stein et al., 2005; Cole et al., 2005; Beutler et al., 2011; Sánchez et al., 2012; Alam et al.,
2021), that summarize the distribution of galaxies in the Universe; weak gravitational len-
sing (Hildebrandt et al., 2017; Asgari et al., 2021), that probes the distribution of matter
throughout spacetime; or the abundance of galaxy clusters (Mantz et al., 2015b; Bocquet
et al., 2019; Ider Chitham et al., 2020; To et al., 2021), that traces the evolution of the
most massive and rarest objects throughout cosmic time. These probes are complementary
because their combination constrains both the geometry of the Universe and the growth
of structures simultaneously. The time evolution of the ΛCDM model is illustrated in Fig.
1.1. Although dark matter and dark energy respectively contribute to about 25% and 70%
of the total mass and energy budget of the Universe, their nature remains unclear.
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Abbildung 1.1: Evolution of the Universe throughout cosmic time. It began at the Big
Bang about 13.7 billion years ago. The cosmic microwave background is a collection of
photons left free to propagate uniformly after free electrons coupled with atomic nuclei into
neutral hydrogen. Temperature fluctuations of the CMB encode small density perturbations
originated in the early phases of the Universe. The initial overdensities grew due to gravity,
forming the galaxies we see nowadays.
Credit: NASA/WMAP Science Team.

The term dark matter was first introduced by Kapteyn (1922), who studied the oscil-
lation of stars around the galactic plane and found that the amount of invisible matter is
negligible around the Solar System. The first evidence for the presence of dark matter was
shown by Zwicky (1933), who measured the velocity dispersion in the Coma cluster and
estimated that the cluster should be about 400 times more massive than the sum of all the
visible matter (Briel et al., 1992). This first estimate did not include the X-ray emission
from the hot gas, which makes the total amount of matter about five times larger than the
visible components, but that is still not enough. In the 1970s and 1980s, further confirma-
tion came from galaxy rotation curves (Shostak, 1978; Rubin and Ford, 1970; Rubin et al.,
1980). The phenomenon of gravitational lensing of distant sources additionally provides
evidence of the existence of dark matter, as the observed deflections are not explained by
visible matter alone (Soucail et al., 1987). In this context, the smoking gun is the famous
bullet cluster (Markevitch et al., 2002; Clowe et al., 2006): the total mass distribution
inferred by weak gravitational lensing extends to larger distances compared to the X-ray
emission from the hot gas. Current observations favor a cold dark matter scenario, with
particle velocities that are negligible compared to the Hubble flow, allowing the growth of
perturbations into massive halos (Peebles, 1982; Blumenthal et al., 1984; Viel et al., 2013).
Understanding the nature of dark matter is one of the biggest challenges in science, it
connects a variety of fields from cosmology to particle physics (see Arbey and Mahmoudi,
2021, for a review).
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The concept of dark energy is nowadays related to the cosmological constant Λ. The
introduction of the cosmological constant dates back to the beginning of the 1900s. A first
analytical solution to the equations of general relativity by Friedmann (1922) described an
expanding Universe. At that time, Einstein was convinced that the Universe was static.
Therefore, he introduced a cosmological constant Λ in his equations to allow a solution
describing a static, matter-dominated Universe (de Sitter, 1917). However, the discovery
of the expansion of the Universe by Hubble (1929) and Lemaître (1931) provided evidence
that the Universe is not static, which lead Einstein to remove the cosmological constant
from GR. Nonetheless, more recent work by Riess et al. (1998); Perlmutter et al. (1999)
using SNIa as standard candles proved that the Universe is not only expanding but is also
accelerating while doing so. The additional component explaining the cosmic acceleration
has been named dark energy. One of the most simple descriptions of dark energy is the
cosmological constant, which has therefore been reintroduced in the GR framework. Inve-
stigating the nature of dark energy and its equation of state is a major challenge of modern
cosmology (see Weinberg et al., 2013; Will, 2014; Ishak, 2019, for reviews).

We start by describing the concordance model of the Universe, and how to extract cos-
mological information about it from the collapse of initial perturbations into the structures
we observe nowadays.

1.1.1 The Universe on large scales
The theory of GR describes gravity as the curvature of spacetime due to the presence of
matter and energy. This concept is encapsulated in the field equation 1.1:

Rµν − 1
2Rgµν = 8πG

c4 Tµν + Λgµν , (1.1)

where the curvature of spacetime is measured by the Ricci tensor Rµν and the Ricci scalar
R, gµν is the metric describing the geometry of the Universe, Tµν is the mass-energy tensor
and Λ is the cosmological constant, often associated with dark energy. Geometrical factors
encoding the curvature of spacetime are on the left-hand side. Instead, the sources that
shape such curvature, such as mass, energy, and the cosmological constant, are on the
right. Eq. 1.1 constitutes a set of non-linear, coupled differential equations, which has an
analytical solution only under specific circumstances. For example, the Universe is homo-
geneous and isotropic on scales larger than hundreds of megaparsec (hereafter Mpc). This
is the notion of the cosmological principle. Under this assumption, the metric describing
the infinitesimal distance between two points in spacetime is written according to Eq. 1.2:

dS2 = c2dt2 − a2(t)
[

dr2

1 − Kr2 + r2(dθ2 + sin2(θ)dϕ2)
]
. (1.2)

This is the Friedmann-Lemaître-Robertson-Walker metric (FLRW, Robertson, 1929), whe-
re c is the speed of light, and a(t) is the scale factor of the Universe, a time-dependent
factor that gives dimensionality to the space and angular coordinates r, θ, ϕ. The geome-
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try of the Universe is encoded in the factor k, which can assume three values: +1, 0, -1,
respectively describing a spherical, flat, and hyperbolic Universe.

The scale factor a(t) is directly linked to the concept of cosmological redshift. In the
late 1920s, Hubble (1929) and Lemaître (1931) provided evidence for the expansion of the
Universe by measuring an increasing recession velocity of galaxies as a function of their
distance from Earth. They observed spectral lines at redder wavelengths for further galaxies
because the photons are stretched by the expansion of the Universe as they propagate
through spacetime. For a source emitting light at a wavelength λE, that is observed at a
longer wavelength λO, the redshift is defined as

z = λO − λE

λE

. (1.3)

Within a Universe described by the FLRW metric, the cosmological redshift is directly
related to the scale factor at the time of emission a(tE) and the one at the time of the
observation a(tO) by

1 + z = a(tO)
a(tE) . (1.4)

Starting from Eq. 1.1, assuming the cosmological principle and that the Universe is
described by a fluid fully characterized by its mass and pressure (i.e., a perfect fluid), one
can derive the Friedmann equations:

Ḣ + H2 = −4
3πG(ρ + 3P

c2 ) + Λc2

3

H2 = 8
3πGρ − Kc2

a2 + Λc2

3 , (1.5)

where H = ȧ

a
is the Hubble parameter and describes the expansion rate of the Universe.

Assuming that the Universe is adiabatic and that different components of the Universe are
regulated by an equation of state in the form

P = wρc2. (1.6)

Combining Eq. 1.6 with Eq. 1.5 provides the density evolution of each component as a
function of cosmic time:

ρw(t) = ρw,0

(
a(t)
a0

)−3(1+w)
, (1.7)

where ρw,0 is the present day density, and a0 is the present day scale factor. It is usually
normalized to 1.
The main components of the Universe are ordinary non relativistic matter (w=0), radiation
(w=1/3), and dark energy (w=-1). From Eq. 1.7 it follows that the dark energy density
does not evolve with time, which is why it is related to the cosmological constant.
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From Eq. 1.5, one can define the critical density of the Universe, the dark energy density,
and the curvature density as:

ρc = 3H2

8πG
ρΛ = Λc2

8πG
ρK = −3Kc2

8πG
. (1.8)

If the density of the Universe is equal to the critical density, its curvature goes to zero.
Finally, combining Eqs. 1.5, 1.7, and 1.8, and dividing the density of each i component by
ρc to obtain the density parameter Ωi = ρi

ρc

, it is possible to write the redshift evolution of
the Hubble parameter:

E(z) = H(z)
H0

=
√

ΩM(1 + z)3 + ΩΛ(1 + z)3(1+w) + ΩR(1 + z)4 + ΩK(1 + z)2, (1.9)

where H0 is the Hubble parameter measured today and is named Hubble constant (or
Hubble-Lemaitre constant), and ΩK = 1−ΩM −ΩR−ΩΛ is the curvature density parameter.
The definition of a reference frame at rest with respect to the Hubble flow provides the
comoving distance between two points by integrating Eq. 1.9 (Weinberg et al., 2013):

DC = DH

∫ z

0

dz′

E(z′) , (1.10)

where DH=c/H0 is the Hubble distance. The distance between two objects at fixed redshift
is encoded in the transverse comoving distance (Hogg, 1999):

DM(z) =



DH√
ΩK

sinh

√
ΩKDC(z)

DH

for ΩK > 0

DC(z) for ΩK = 0
DH√
ΩK

sin

√
|ΩK |DC(z)

DH

for ΩK < 0.

(1.11)

In the literature, the Hubble constant is often expressed as H0 = h × 100 km/s/Mpc.
Because of the minus sign in the definition of ρK , ΩK assumes positive, negative, or zero
values corresponding to k = -1, 1, and 0, describing an open, closed, and flat Universe
respectively.

The physical size of an object and its angular extent in the sky are related by the
angular diameter distance, which is computed from Eq. 1.2 by aligning dt=dr=dϕ=0 and
corresponds to:

DA = DM

(1 + z) . (1.12)

The definition of the luminosity distance preserves the relation between flux F and
luminosity L by the distance squared and accounts for intensity dimming due to the cos-
mological expansion of the Universe, the gravitational redshift of the photons, and time
dilation effects. It is related to DA according to Eq. 1.13.
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Abbildung 1.2: Density evolution of total matter (in blue), dark energy (in orange), and
radiation (in green) throughout cosmic time. Left-hand panel: Density evolution in units
of M⊙/Mpc3. Right-hand panel: Evolution of the density parameter (i.e., normalized
to the critical density ρC .) Both figures show the redshift on the lower x-axis and the
scale factor on the upper x-axis. The figures have been produced assuming cosmological
parameters from Planck Collaboration et al. (2020a).

DL =
√

L

4πF

DL = DA(1 + z)2 (1.13)

The density evolution of the total matter, dark energy, and radiation components is
shown in Fig. 1.2. The left-hand panel displays the evolution of densities, the right-hand
one shows the density parameters. In very early times, the Universe was dominated by
radiation. In a second phase, after the matter-radiation equivalence at zEQ ≈ 3000, the
dominant component was matter. Finally, dark energy took over only in recent times at
z ⪅ 0.7, when the radiation is negligible. The plots are produced assuming cosmological
parameters from Planck Collaboration et al. (2020a). The main ones describing the ΛCDM
model assume values of ΩM = 0.3087, ΩΛ = 0.6913, and H0 = 67.66 km/s/Mpc.

1.1.2 The Universe on small scales
The cosmological principle is a very good assumption only on very large scales ⪆ 250 Mpc
(Laurent et al., 2016). On smaller scales, we see that the Universe is not uniform or smooth,
as matter clumps in strong overdensity peaks forming galaxies and clusters of galaxies. We
can describe the distribution of matter throughout the Universe as local perturbations
compared to the average density defined as:
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Abbildung 1.3: Temperature fluctuations of the cosmic microwave background measured
by Planck Collaboration et al. (2020a). Redder (bluer) regions denote hot (cold) spots.

δ = ρ− < ρ >

< ρ >
. (1.14)

The temperature fluctuations measured by Planck Collaboration et al. (2020a) yield
initial density perturbations of the order δ ≈ 10−5. These overdensities collapsed under the
action of gravity until reaching values δ ≈ 102–103 that we observe nowadays in collapsed
structures.
It is possible to describe the evolution of the overdensities by considering the early Universe
as a collisional gas in an expanding background. Its evolution is regulated by the continuity,
Euler, and Poisson equations:

∂ρ

∂t
+ ∇ · ρv = 0

∂v
∂t

+ (v · ∇)v + 1
ρ

∇P + ∇Φ = 0

∇2Φ − 4πGρ = 0. (1.15)

Assuming small perturbations δ ≪1, an equation of state relating density and pressure
in the form of Eq. 1.6, we can find a solution to Eq. 1.15 in form of ρ =< ρ > +δ, P =<
P > +δP, Φ =< Φ > +δΦ, v =< v > +δv. Plugging these terms in Eq. 1.15, considering
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Abbildung 1.4: Growth of perturbations as a function of cosmic time. Left-hand panel:
growth factor D(z), see Eq. 1.17. Right-hand panel: growth rate f(z), see Eq. 1.18. The
plots show three different cosmological models: the one constrained by Planck Collaboration
et al. (2020a) in blue, a flat EdS Universe full of matter in orange, and an open Universe
with no dark energy in green.

a solution in the form of waves f(x, t) = fK(t) exp[iKx], and ignoring higher order terms
yields:

δ̈ + 2Hδ̇ + [k
2

a2 wc2 − 3
2H2ΩM ]δ = 0. (1.16)

For cold dark matter (w=0), Eq. 1.16 has a growing solution that reads:

δ+(t) = D(z) = −H(z)
∫ z

∞

1 + z′

H3(z′)dz′, (1.17)

where D(z) is named growth factor, and its logarithmic derivative is the growth rate f:

f(z) = d ln D(z)
d ln a

≈ Ωγ
M + ΩΛ

70 (1 + ΩM

2 ), (1.18)

where the exponent γ ≈ 0.55 is a stringent test of general relativity (Weinberg et al., 2013).
The evolution of the growth factor and growth rate as a function of cosmic time is

shown in Fig. 1.4. It shows three types of Universe: a fiducial ΛCDM in blue, an EdS
model in orange, and an open one with no cosmological constant in green. Perturbations
grow faster in models with a larger amount of matter and a lower amount of dark energy,
which prevents growth due to cosmic acceleration. Such a process is responsible for shaping
the Large Scale Structure (LSS) of the Universe.

After the epoch of radiation-matter equivalence and especially after the decoupling bet-
ween baryons and photons at zDEC ≈ 300, the assumption that the Universe is a collisional
gas breaks down. It is therefore necessary to account for each component in Eq. 1.15. The
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result is that in the era dominated by radiation at z ⪆ 3000, the perturbations always
grow outside the cosmological horizon RH=

∫ cdt

a(t) . Inside the horizon instead, the growth

of dark matter overdensities is limited by the Meszaros effect (Meszaros, 1974). Solving
Eq. 1.15 for dark matter in the radiation era yields:

δDM(x) = 1 + 3
2x, (1.19)

where x = a

aeq

. Dark matter perturbations can therefore only grow up to a factor of 5/2
until equivalence on small scales.

During the matter-dominated era, baryonic perturbations grow linearly with the scale
factor δB ∝ a. Since the last scattering surface between baryons and radiation is located
at the recombination of protons and electrons into neutral hydrogen (z ≈ 1000), the in-
itial perturbations should have been of the order δB/ρB ∼ 10−3, to explain the non-linear
structures that we observe in the Universe. Nonetheless, the CMB provides evidence for
δB/ρB ∼ 10−5. This apparent inconsistency is solved by dark matter. Dark matter does
grow between equivalence and decoupling, while baryons are still coupled to the oscilla-
ting radiation. The dark matter creates potential wells into which the baryons fall after
decoupling. The solution to Eq. 1.15 for baryonic overdensities in the matter-dominated
era after decoupling reads:

δB = δDM(1 − aDEC

a
). (1.20)

This equation is also known as baryon catch up. The evolution of perturbations for dark
matter, baryonic matter, and radiation is shown in Fig. 1.5. This figure shows the specific
case of a perturbation entering the cosmological horizon at zEQ. The dark matter (solid
black line) grows then linearly with the scale factor, while the baryons (dash-dotted line)
are coupled with the oscillating radiation (solid grey line). After zDEC , the baryons are not
coupled to radiation anymore. The latter keeps oscillating, but loses the baryons’ support
and rescales to a lower overdensity. The baryons are free to fall into the potential wells
created by dark matter and catch up to the dark matter overdensity at later times. This
allows them to reach δB ≈ 1 at recent times when the non-linear evolution takes over, and
is responsible for the formation of galaxies and clusters of galaxies.

1.1.3 Power spectrum
Measurements of the CMB spectrum point to a Gaussian isotropic field of primordial
density fluctuations (Komatsu et al., 2009; Planck Collaboration et al., 2020b). Under this
assumption, one can describe the density contrast by its Fourier transform:

δ(k) = 1
(2π)3/2

∫
d3xδ(x)eik·x, δ(x) = 1

(2π)3/2

∫
d3kδ(x)e−ik·x, (1.21)



10 1. Introduction

Abbildung 1.5: Evolution of baryonic matter δB (in this figure ∆B, dash-dotted line), dark
matter δDM (in this figure ∆D, solid black line), and radiation δR (in this figure ∆rad, grey
solid line) perturbations as a function of cosmic time. This panel is adapted from Longair
(2008).

where k is the wavenumber. The power spectrum P(k) provides a complete description of
the initial Gaussian field. It is defined by:

< δ(k)δ(k′) >= (2π)3P (k)δ3(k − k′), (1.22)

where δ3 is the three dimensional Dirac delta function. The Fourier analogue of the power
spectrum is the two-point correlation function ξ(r):

ξ(r) =< δ(x)δ(x + r) >= 1
2π2

∫
dkk2P (k)sin(kr)

kr
, (1.23)

which describes the excess probability of finding two overdensities separated by a radius r.
The power spectrum is proportional to the overdensity field squared, therefore the grow-

th factor regulates its evolution. In addition, the shape of the power spectrum is modified
by a transfer function T(k,z) encoding the interactions between radiation and baryons. The
transfer function is computed by solving Eq. 1.16 for each component. Different physical
processes are encoded in the formulation of the transfer function (Eisenstein and Hu, 1998).
Assuming that the redshift dependence of the power spectrum is encoded in the growth
factor and the transfer function, the evolution of the power spectrum is then described
according to:

P (k, z) = Pp(k)D2(z)T 2(k, z), (1.24)

where Pp is the primordial power spectrum, describing scale-invariant perturbations in the
form Pp(k) ∝ kns , where the index ns is the slope of the linear matter power spectrum.
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Abbildung 1.6: Linear power spectrum (left-hand panel) and correlation function (right-
hand panel) at z=0 for different ΛCDM cosmological models: the fiducial Planck Collabo-
ration et al. (2020a) in blue, and models with larger and lower ΩM in orange and green.

The large scales are unaffected by baryons and carry information about the original pri-
mordial perturbations: the transfer function is equal to 1 at small k. The transfer function
instead describes the suppression of power on small scales due to the presence of baryons.
The peak of the power spectrum corresponds to the last scale that entered the horizon
without suffering from the Meszaros effect, it is therefore located at the horizon scale at
matter radiation equality kEQ ≈ 10−2 Mpc−1. Larger values of ΩM cause a faster evoluti-
on of the Universe to zEQ, which is reflected in a shift of the power spectrum peak. The
power spectrum also shows some wiggles at k ≈ 0.1. Such wiggles are the baryon acoustic
oscillations (BAO, Peebles and Yu, 1970; Sunyaev and Zeldovich, 1970), caused by the
propagation of acoustic waves in the primordial plasma when the baryons were coupled
to radiation. In this plasma, the baryons tended to fall in the gravitational wells formed
by dark matter, but the radiation pressure was pushing them in the opposite way. After
decoupling, the photons are free to stream through the Universe, which leaves a shell of
fixed baryonic matter distribution, that subsequently evolved according to the background
cosmic expansion. This is visible nowadays as an overdensity of galaxies, which can be
measured in the correlation function at the sound horizon scale, and used as a standard
ruler to constrain the geometry of the Universe (Eisenstein et al., 2005). The power spec-
trum and the corresponding correlation function for different cosmological models at z=0
are shown in Fig. 1.6. The BAO wiggles at intermediate scales in the power spectrum are
visible as a peak of the correlation function at r ≈ 150 Mpc.

The variance of the smoothed density field is defined as

σ2(M, z) =
∫ d3k

(2π)3 Ŵ 2(k, R)P (k, z), (1.25)

where k is the wavenumber, Ŵ the Fourier transform of a top-hat filtering function given
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by

Ŵ = 3sin(kR) − kRcos(kR)
k3R3 , (1.26)

and P (k, z) = D(z)2Pp(k) the linear matter power spectrum. Its redshift evolution is
encoded in the growth factor D(z). The amplitude of the linear matter power spectrum
from Eq. 1.25 on scales of 8 Mpc/h is denoted as σ8. Sánchez et al. (2022) propose an
innovative approach, breaking the degeneracy between cosmological parameters that only
affect the shape of the power spectrum from the ones that only affect its amplitude. Models
with the same shape parameters are then linked by a redefinition of the redshift to match
the amplitude of the power spectrum on scales of 12 Mpc, denoted as σ12.
When the growth of perturbations is not linear, the Gaussian field assumption does not
hold anymore: the power spectrum and the variance σ(M,z) do not provide a complete
description of the distribution of δ. Higher order terms are then necessary to capture non-
linear effects on small scales (Smith et al., 2003).

1.1.4 Halo formation
Once the density contrast reaches values of δ > 1, non-linear theory is necessary to de-
scribe the formation of halos. The non-linear collapse of perturbations into dark matter
halos is modeled as a spherical perturbation viewed as a closed universe evolving in an
expanding background. This is a one-dimensional problem and is fully described by the
evolution of a top-hat radius (Gunn and Gott, 1972). The overdensity expands together
with the background in the initial phase until it reaches a maximum radius at the epoch
of turnaround. At this point, the perturbation decouples from the background expansion,
it starts collapsing and ultimately virializes into a halo.
This process is described by a set of equations similar to Friedmann equations 1.5 (Liddle
and Lyth, 2000). A parametric solution for the scale factor describing the evolution of the
perturbation as a function of cosmic time reads:

a(t)
a0

=(1 − cos θ) Ω0

2(Ω0 − 1)
ȧ

a0
t =(θ − sin θ) Ω0

2(Ω0 − 1)3/2 , (1.27)

where θ is an evolution angle spanning from 0 to 2π, and Ω0 is the density of the pertur-
bation in its initial stage. Expanding Eq. 1.27 for θ « 1 gives:

a(t)
aMAX

≃θ2

4 − θ4

48
t

tMAX
≃ 1

π

(
θ3

6 − θ5

120

)
, (1.28)
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Abbildung 1.7: Non-linear evolution of a density perturbation (top black line) in an ex-
panding background (bottom black line). The figure is taken from Padmanabhan (1993).

where aMAX and tMAX are the value of the scale factor and the time of maximum expansion
of the perturbation. These two equations can be combined into:

aLIN(t)
aMAX

≃ 1
4

(
6π

t

tMAX

)2/3[
1 − 1

20

(
6π

t

tMAX

)2/3]
, (1.29)

which describes the evolution of a perturbation in linear approximation.
Combining Eq. 1.29 at the time of maximum expansion with Eq. 1.7 for a matter-

dominated Universe gives a solution for the linear density contrast that reads:

δLIN = 3
20

(
6π

t

tMAX

)2/3
, (1.30)

where tMAX = π

2H0

ΩM

(ΩM − 1)3/2 is the instant of maximum expansion of the perturbation
before collapsing. This moment is named turnaround, when the density contrast is then
equal to:

δT A
LIN = 3

20(6π)2/3 ≈ 1.06. (1.31)

At this point, structures depart from the background expansion and the halo formation
reaches the end of the linear regime. After the turnaround, the perturbation collapses
symmetrically to the background expansion. It is common to define the perturbation as a
collapsed halo at t=2tMAX , when the density contrast reaches:

δCO
LIN = 3

20(12π)2/3 ≈ 1.686. (1.32)
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This value has very weak cosmological dependence and is historically used to describe
structure formation universally. It corresponds to the final stage of the gravitational collapse
for a spherically symmetric perturbation.

In reality, including non-linear terms in Eq. 1.27 is necessary for a more accurate des-
cription of halo collapse after the turnaround. The non-linear evolution of a density per-
turbation is shown in Fig. 1.7. The non-linear overdensity at turnaround reads:

1 + δT A
NL = a3

BKG

a3
MAX

= (6π)2

43 ≈ 5.55. (1.33)

In addition, the virial theorem yields that the radius of a collapsed virialized halo RV IR =
RMAX/2. Therefore, the density of the halo at virialization is ρV IR = 8ρMAX . Moreover,
the background density decreases by a factor of 4 from the turnaround to virialization, so
that:

1 + δV IR
NL ≈ 178. (1.34)

In contrast to the linear density contrast, the non-linear derivation significantly depends
on cosmological parameters. In particular, for a universe with ΩR = 0, Bryan and Norman
(1998) find

∆vir = (18π2 + 82x − 39x2)/Ω(z), (1.35)
Ω(z) = ΩM(1 + z)3/E(z)2,

where x = Ω(z) − 1, ΩM is the matter density parameter at the present day, and E(z) is
the Hubble parameter as a function of redshift in units of H0 (see Eq. 1.9).

1.1.5 Halo mass function
Since the initial density field is Gaussian and a threshold for the halo collapse is fixed
by Eq. 1.32, a prediction for the number of halos arising from the initial perturbations is
achievable by studying the behavior of peaks in a random field (BBKS, Bardeen et al.,
1986). Considering the density field smoothed on a certain scale:

R =
(3M

4π

)1/3
, (1.36)

the fraction of space exceeding the linear density contrast ends up in collapsed halos with
mass larger than one corresponding to the chosen scale in Eq. 1.36. However, the unique
identification of an overdensity in the linear density field with a collapsed halo faces a
critical issue: small halos are lost when smoothing the field on large scales. This is the
cloud-in-cloud problem. A similar approach was taken by Press and Schechter (1974).
They predicted the expected number of dark matter halos in the Universe starting from
the simple assumption that the probability for a density perturbation in the primordial
field to overcome δ > δCO

LIN is equal to the fraction of mass contained in virialized halos.
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We refer to δCO
LIN as δc in the rest of this thesis. Since the density field is assumed to be

Gaussian so that
P (δ) = 1√

2πσM

e
− δ2

2σ2
M , (1.37)

the probability that a region encompassing a given mass M overcomes the threshold is
given by

P (M, z) =
∫ ∞

δc

P (δ)dδ = 1
2 − 1

2erf
(

δc√
2σ

)
, (1.38)

where erf is the error function. The fraction of mass locked up in halos is then obtained
by differentiating Eq. 1.38 as a function of mass, so that the total mass per unit volume
contained by collapsed halos is equal to

n(M)dM = ρM

M

∂F (> M)
∂M

dM, (1.39)

where F(>M) = 2P(M,z). The factor of two accounts for small regions that do not overcome
the δc threshold, but are contained in larger overdensities and end up collapsing into halos
as well. The number density of dark matter halos as a function of their mass is finally
obtained as:

n(M)dM =
√

2
π

ρM

M2
δc

σM

∣∣∣∣d ln σM

d ln M

∣∣∣∣ exp
[

− δ2
c

2σ2
M

]
. (1.40)

Eq. 1.40 provides a theoretical formulation of the halo mass function (HMF). For low
mass halos hosting galaxies and groups, the mass function scales as a power law. For
massive halos hosting clusters of galaxies (⪆1014M⊙) it decreases with an exponential
cutoff, because such large peaks are more rare. The mass variance σ(M, z) increases with
cosmic time, giving perturbations the chance to collapse into halos in recent times. The
result is that the number of structures decreases with redshift. This is in agreement with
the bottom up scenario of structure formation, where smaller halos merge to form more
massive objects.

Despite the various assumptions, this formalism provides a good description of the
abundance of massive structures in large N-body simulations. A comparison to the Millen-
nium simulation (Springel et al., 2005) is shown in Fig. 1.8. The Press-Schechter formalism
has been extended by Bond et al. (1991), accounting for the fact that a region that does not
exceed δc when smoothed on a scale M, could potentially do so when scaled on larger M. If
the density field is smoothed with a top-hat function, the Fourier k-modes are independent
and the density fluctuations behave as random walks across the δc barrier. This approach
is known as excursion set formalism or extended Press-Schechter formalism (EPS). It also
naturally produces the ad-hoc factor of 2 in Eq. 1.38, fixing the incorrect assumption that
P(>M) = P(δ>δc|M) (Mo et al., 2010).
Further progress was made on the Press-Schechter formalism and its extension. Eq. 1.40

can be rewritten as:

dn

dlnM
= ρM

M

∣∣∣∣ dlnσ

dlnM

∣∣∣∣f(σ), (1.41)
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Abbildung 1.8: Halo number density as a function of mass and redshift. Left-hand panel:
mass function at z=0 and z=2 for different cosmological parameters. The solid lines denote
the Planck Collaboration et al. (2020a) cosmology, and the dashed (dotted) lines show
larger (smaller) ΩM and σ8. The models shown in this panel were computed with the
colossus software (Diemer, 2018). Right-hand panel: mass function in the Millennium
simulation. The solid and dashed lines show prediction with the models from Jenkins et al.
(2001) and Press and Schechter (1974). The panel is adapted from Springel et al. (2005).

where σ is the mass variance and f(σ) is known as multiplicity function. Different models
of the halo mass function are encoded in various functional forms of the multiplicity func-
tion, while the cosmological dependence is mainly hidden in ρM and σ. For example, the
introduction of ellipsoidal collapse by Bond et al. (1991); Sheth and Tormen (1999, 2002)
solved some inconsistencies between the results of N-body simulations and the analytical
prediction of halo abundance. The ellipsoidal collapse corresponds to the introduction of a
moving barrier δc within the EPS framework. Their multiplicity function reads:

νfST(ν) = A
(

1 + 1
ν ′p

)(
ν ′

2

)1/2 e−ν′/2
√

π
, (1.42)

with ν ′ = 0.707ν and p=0.3. The quantity

ν(M, z) = δc(z)/σ(M, z), (1.43)

is the peak height, where δc is the critical overdensity required for a structure to collapse
in a dark matter halo (Eq. 1.32). Nevertheless, the analytical description of the non-linear
evolution struggles to account for the complex dynamics of halo formation. The prediction
of halo abundance is therefore not perfectly precise. Therefore, we rely on models calibrated
on large N-body simulations (e.g., Jenkins et al., 2001; Tinker et al., 2008; Bhattacharya
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et al., 2011; Despali et al., 2016; Bocquet et al., 2016; Comparat et al., 2017; McClintock
et al., 2019; Bocquet et al., 2020; Seppi et al., 2021). The abundance of dark matter halos is
a powerful cosmological probe. It depends on the mass variance, which encodes the matter
power spectrum, and the total amount of matter in the Universe (see Eq. 1.40). Because
clusters trace massive halos, cosmological parameters are constrained by comparing the
models to the number of galaxy clusters in observations.
In this context, robust modeling of the halo mass function is key. The majority of the mo-
dels calibrated on simulations rely on the universality of the halo mass function: it depends
on the statistic of peaks in a Gaussian field. Therefore, a set of simulations computed at
a fixed cosmology is suitable to predict the halo mass function for different cosmological
models (e.g, Jenkins et al., 2001; Bhattacharya et al., 2011; Angulo et al., 2012; Comparat
et al., 2017; Seppi et al., 2021). However, the HMF deviates by 10–20% according to dif-
ferent numerical algorithms and mass definitions (Tinker et al., 2008; Despali et al., 2016;
Diemer, 2020; Ondaro-Mallea et al., 2022). An innovative approach is the use of emulators
trained on multiple sets of simulations with different cosmological parameters, where a
model is built by interpolating the mass function measured in each box (McClintock et al.,
2019; Nishimichi et al., 2019; Bocquet et al., 2020). We refer the reader to Angulo and Hahn
(2022) for an extensive discussion. In addition, the evolution mapping approach from Sán-
chez et al. (2022) using σ12 has the potential to provide accurate redshift evolution of the
mass function also at early times. Finally, most of these models are calibrated on N-body
simulations that contain only dark matter. Significant progress has been achieved by recent
works toward including baryonic effects on the halo mass function using hydrodynamical
simulation (Bocquet et al., 2016; Debackere et al., 2021; Castro et al., 2021; Euclid Col-
laboration et al., 2022). More details about the exploitation of clusters in a cosmological
context are provided in Sect. 1.2.2.

1.2 Clusters of galaxies
Clusters of galaxies are the most massive virialized structures in the Universe (see Allen
et al., 2011; Kravtsov and Borgani, 2012, for reviews). They form hierarchically, from the
merging of smaller halos, and reside in the nodes of the Large Scale Structure. Clusters
host tens to hundreds of galaxies, their typical total mass spans from about 1013 to 1015

M⊙, and their typical size from 1 to 5 Mpc. The largest fraction of their mass is in form
of dark matter (∼85%). Most of the baryonic mass is composed of the hot intracluster
medium (ICM, ∼15%), while only a small percentage is in form of stars.

1.2.1 Observations of galaxy clusters
The first works related to clusters of galaxies date back to the 1700s, with the first observa-
tions of concentrations of galaxies. Charles Messier was mainly looking for new comets but
ended up discovering other sources such as nebulae, star clusters, and galaxies. He publis-
hed a final version of the Messier catalog, consisting of 110 objects (Messier, 1781). Slightly
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later, F. Wilhelm Herschel extended such catalogs and published a collection of about 500
new objects (Herschel, 1802). He revealed that many nebulae observed by Messier were
clusters of stars. Part of these sources corresponds to structures of the Local Group, such
as Virgo and Coma (see Biviano, 2000, for a historical review). More recently, observations
of the Coma cluster provided the first evidence of dark matter by the already mentioned
work from Zwicky (1933).
The first galaxy cluster catalogs were published by Abell (1958); Abell et al. (1989), loo-
king for concentrations of galaxies in the sky. Massive clusters can host hundreds of galaxy
members. However, this method suffers from projection effects: many galaxies at different
distances along the line of sight may appear as an overdensity of galaxies at the same
position in the sky (Costanzi et al., 2019). The best way of dealing with projection effects
is to use redshift measurements to disentangle member and field galaxies along the line of
sight. Very large cluster catalogs have been compiled with this approach (e.g., Wen et al.,
2012). Spectroscopic redshifts improve photometric measurements by about one order of
magnitude (Clerc et al., 2020; Ider Chitham et al., 2020).

Galaxy clusters additionally exhibit observational features in other energy bands. Their
hosting halos are filled with low particle density gas that is heated to extremely high
temperatures (∼10−3 cm−3, 107 – 108 K, Sarazin (1986)). The ICM is a fully ionized
plasma, that emits in X-rays due to thermal bremsstrahlung, as free electrons accelerate
when approaching atomic heavier ions (free–free emission). X-ray observations therefore
probe a different component of clusters, rather than the single galaxy members. A review
of X-ray observations of clusters is provided by Rosati et al. (2002). Early large catalogs
from X-rays were compiled using the ROSAT telescope (Truemper, 1982) by Voges et al.
(1999); Böhringer et al. (2004). More recent works provided larger and more accurate
cluster catalogs from XMM-Newton (Snowden et al., 2008; Adami et al., 2018) and, most
recently eROSITA (Liu et al., 2022).
The emissivity due to thermal bremsstrahlung depends on the local density of free electrons
and the cooling function Λ(T,Z):

ϵ(r) ∝ ne(r)np(r)Λ(T, Z), (1.44)
where T and Z are the temperature and metallicity of the ICM. For a fully ionized plasma
ne ∼ np, so that the emissivity scales as the square of the local gas density. The shape of
the bremsstrahlung spectrum shifts from a power law at low frequencies to an exponential
decay at higher energies. The cutoff frequency νC = KBT

hP l

depends on the temperature
of the ICM (hP l is the Planck constant). The measure of surface brightness provides a
probe of the cluster density profile, which is usually modeled with a β profile (Cavaliere
and Fusco-Femiano, 1976):

S(r) = 1
4π(1 + z)4

∫
ϵ(r)dl

S(r) = S0[1 + (r/rc)2]−3β+1/2, (1.45)
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where S(r) is the surface brightness (integrated along the line of sight), rc is the core radius
and β is related to the slope of the profile. A more generic description is given by the
Vikhlinin et al. (2006) model:

n2
e(r) = n2

0
(r/rc)−α

(1 + r2/r2
c )3β−α/2

1
(1 + rγ/rγ

s )ϵ/γ
+ n2

02
(1 + r2/r2

c2)2β2
, (1.46)

which provides a better simultaneous description of the cluster core and outskirts, even
with a fixed γ=3.
Because of the X-ray emission mechanism (Eqs. 1.44 and 1.45), the detection of galaxy
clusters in the X-ray band depends on their dynamical state. Clusters hosted by relaxed
dark matter halos had time to develop an efficient cooling in the central regions, which is
manifested by a peaked emission in the core (cool core clusters). This effect may bias the X-
ray detection toward relaxed objects, compared to more disturbed ones, where the gas did
not cool down efficiently and they are therefore lacking the peak in the surface brightness
(non-cool core clusters). This is the notion of cool core bias (Molendi and Pizzolato, 2001;
Ettori and Brighenti, 2008; Eckert et al., 2011).

Another probe of the ICM is the inverse Compton scattering of CMB photons with the
free electrons composing the cluster gas. This is known as the thermal Sunyaev–Zel’dovich
effect (tSZ, Sunyaev and Zeldovich, 1972). The result is an average blue-shift of the CMB
spectrum, observed in the millimeter band at a peak frequency of ∼217 GHz. The relative
variation of the CMB temperature due to tSZ reads:

f(x) =
(

x
ex + 1
ex − 1 − 4

)
(1 + δtSZ(x, T ))

∆TtSZ

TCMB
= f(x)y =

∫
ne

KBTe

mec2 σT dl, (1.47)

where δtSZ is a relativistic correction, x= hP lν

KBTCMB
, y is the Compton y-parameter, σT is

the Thomson cross-section, and c is the speed of light. The tSZ signal scales linearly with
the gas density. Because of its origin, the tSZ is independent of redshift and provides a
great tool for detecting and studying clusters at early times (z⪆1).
An additional distortion of the CMB spectrum is caused by the bulk motion of clusters
with respect to the CMB reference frame when the peculiar velocity has a component
parallel to the line of sight. This is called kinetic Sunyaev–Zel’dovich effect (kSZ, Sunyaev
et al., 2003) and is parameterized as:

∆TkSZ

TCMB
= −vpec

c
τe, (1.48)

where τe is the electron optical depth. The kSZ effect produces relative temperature changes
of δTkSZ/T ∼ 10−5 and is negligible compared to tSZ relative differences of δTtSZ/T ∼ 10−4.
For a review of the SZ effect, see Carlstrom et al. (2002).
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Abbildung 1.9: The Virgo galaxy cluster. The Top-left panel: Virgo in the optical band
using data from the Burrell Schmidt telescope. Credit: Chris Mihos (Case Western Reserve
University)/ESO. Top-right panel: X-ray data from eROSITA showing the emission from
the hot ICM. The energy bands are 0.3–0.63 keV (red), 0.63–1.04 (green), 1.04–2.30 keV
(blue). Credit: Jeremy Sanders. Bottom-left panel: Virgo as observed by Planck through
the SZ effect (Planck Collaboration et al., 2016d). Bottom-right panel: the Very Large
Array (VLA) view of the Virgo cluster in the radio band Mathews and Guo (2011).
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Finally, clusters of galaxies are also observed in the radio band. The presence of energetic
electrons and large scale magnetic fields created by mergers generate diffuse synchrotron
radiation (Lazarian et al., 2012; Brunetti and Lazarian, 2016). Radio data is therefore
probing non thermal cluster emission and highlight features related to dynamically unstable
structures such as relics and shocks (van Weeren et al., 2010; Bonafede et al., 2010; Brüggen
et al., 2012).
Figure 1.9 shows the Virgo cluster observed in different wavelengths. Virgo is the nearest
cluster of galaxies, located about 16 Mpc away from us. Its estimated mass is ∼1.2×1015M⊙
and it hosts ∼1500 galaxies. It is the nucleus of the Virgo supercluster, which hosts the
Milky Way in its outskirts. The four panels show the Virgo cluster observed in the optical,
X-ray, millimeter, and radio bands.

1.2.2 Clusters as cosmological probes
Various methods provide cosmological constraints using clusters of galaxies. We focus first
on the cluster mass estimate and their number density as a function of mass and redshift.
We describe alternative methods in a second stage.

Cluster counts

An observable quantity that is tightly correlated with mass is essential to use clusters of
galaxies as cosmological probes by counting their abundance as a function of mass and
redshift (see Eq. 1.40). Going back to the first catalog from Abell (1958) and the idea
that light traces mass in the Universe, a quantity of interest is the total number of galaxy
members. This concept is nowadays encoded in richness, which is often measured as the
sum of the membership probability for each galaxy member (Rykoff et al., 2014):

λ =
N∑

i=0
Pmem,i, (1.49)

where the index i runs over the N members. Richness is used as a cluster mass proxy
(Tinker et al., 2012; Ider Chitham et al., 2020). However, the measure of λ is often noisy,
which reduced the cosmological constraining power (Saro et al., 2015; Capasso et al., 2019;
Chiu et al., 2020).

There are many other ways of estimating the cluster mass. For example, assuming that
the X-ray emitting ICM is in hydrodynamical equilibrium within a symmetrically spherical
gravitation potential, one gets:

M(r) = −KBT

µmp

r

G

(
d ln ρ

d ln r
+ d ln T

d ln r

)
, (1.50)

where KB is the Boltzmann constant and mp is the proton mass. However, massive clusters
are rarely spherical objects in perfect equilibrium. Therefore, this method provides mass
estimates that can be biased (Smith et al., 2016; Hurier and Angulo, 2018; Gianfagna et al.,
2021). Cluster masses using X-ray data are also estimated using scaling relations between
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mass and X-ray observables, such as the X-ray luminosity and YX, the product between
the cluster gas mass and temperature (Maughan, 2007).

A similar approach is possible with the SZ effect: the total SZ signal integrated on the
surface area covered by a cluster is proportional to the mass and temperature of the ICM:

YtSZ =
∫

ydΩ ∝ MICMT, (1.51)

so that the YtSZ signal provides a direct probe of the gas mass and indirect information
about the total cluster mass.

Another dynamical method to evaluate the cluster mass is to measure the member
galaxies’ velocity dispersion (Mamon and Łokas, 2005; Biviano et al., 2006; Oldham and
Auger, 2016). The typical values in clusters are σv ∼ 103 km/s, corresponding to a crossing
time of tc ∼ Rclu

σv

∼ 109 yr: clusters are assumed to be virialized structures and it is possible
to estimate their mass by applying the virial theorem. Assuming that the galaxies travel
through a stable, spherical cluster potential, the mass–velocity dispersion relation reads:

Mvir = 3Rclu

G
σ2

v , (1.52)

which provides a direct link to halo mass (Wojtak and Łokas, 2010). However, this method
is also based on spherical symmetry and relaxation, which break down for disturbed clusters
and recent mergers, and projection effects.

In principle, the most precise and least biased cluster mass estimate is provided by weak
gravitational lensing (Bartelmann and Schneider, 2001; Hoekstra et al., 2013; Kilbinger,
2015; Umetsu, 2020; Giocoli et al., 2021). The gravitational field of a cluster shears and
magnifies the images of distant background galaxies perpendicularly to the lens–image
direction. Statistical treatment of the ellipticity of the background galaxy images is related
to the tangential shear signal γT . The latter is proportional to the cluster gravitational
potential projected along the line of sight and is, therefore, an excellent probe of the total
mass of the cluster. For a review of gravitational lensing see Bartelmann (2010).
Since weak lensing data are usually partially available for large cluster surveys, a method
is to calibrate a scaling relation between an observable such as X-ray luminosity or optical
richness and weak lensing mass for a subsample of clusters (see e.g., Mantz et al., 2016;
Pacaud et al., 2018; Bocquet et al., 2019; Ider Chitham et al., 2020).

Within a cluster cosmological experiment, a key ingredient is the survey volume, that is
the volume within which each cluster is contained. This is fundamental for the comparison
of the total number of clusters in a sample with the prediction from a model of the cluster
volume number density. The comoving volume element (Hogg, 1999) is defined as:

dV (z, Ω) = DH
D2

M

E(z)dΩdz, (1.53)

where DM is the transverse comoving distance (Eq. 1.11) and Ω is the area covered by the
survey.
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Abbildung 1.10: Cosmological constraints on ΩM–σ8 from different cluster count experi-
ments compared to other probes. Left-hand panel: results from Bocquet et al. (2019),
compared to CMB constraints (Planck Collaboration et al., 2014a), galaxy clustering and
lensing (van Uitert et al., 2018; Abbott et al., 2020), and the Weighing the Giants expe-
riment (WtG, Mantz et al., 2015b). Right-hand panel: results from Ider Chitham et al.
(2020), compared to other cluster count experiments and a prediction using clusters detec-
ted by eROSITA from Pillepich et al. (2018b).

Finally, it is crucial to account for the fact that not all clusters in the Universe are detec-
table. Our telescopes and instruments can not pick up the emission from very faint and
distant objects due to the limited sensitivity. The selection function accounts for this, by
providing a probability of detection for the clusters involved in the experiment. It is pos-
sible to model the selection function empirically (Bocquet et al., 2019), or starting from
reliable mock data (Clerc et al., 2018; Liu et al., 2021; Seppi et al., 2022).

All these ingredients are finally combined in the total predicted number of clusters as
a function of observable and redshift:

dN(O, z)
dOdz

=
∫

f(O, z)dP (O|M, z)
dO

dn(M, z)
dM

dV

dz
dM, (1.54)

where O is an observable (e.g., X-ray luminosity), f(O, z) is the selection function,
dP (O|M, z)

dO
is the mass–observable scaling relation, dn(M, z)

dM
is the model of the halo

mass function, and dV

dz
is the comoving volume element. This method provides powerful

constraints on cosmological parameters, mainly on the matter density parameter ΩM and
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the amplitude of the matter power spectrum σ8, but also on the dark energy equation of
state, which is parameterized as:

w(z) = w0 + z

1 + z
wa. (1.55)

In the last two decades, cosmological experiments with clusters of galaxies reached
a ∼10% and 5% precision on ΩM and σ8 (Vikhlinin et al., 2009b; Mantz et al., 2015b;
Planck Collaboration et al., 2016c; Schellenberger and Reiprich, 2017b; Pacaud et al., 2018;
Bocquet et al., 2019; Zubeldia and Challinor, 2019; Ider Chitham et al., 2020; Abbott et al.,
2020; Costanzi et al., 2021; Garrel et al., 2022; Lesci et al., 2022a; Salvati et al., 2022).
An example of the cosmological constraints of these two parameters is shown in Fig. 1.10.
For detailed reviews see Borgani (2008); Allen et al. (2011); Kravtsov and Borgani (2012);
Weinberg et al. (2013); Pratt et al. (2019); Clerc and Finoguenov (2022).

Alternative methods

Additional ways of constraining cosmological models with clusters have been explored.
Their large scale distribution is a biased tracer of dark matter. The measure of the cluster
two point correlation function or power spectrum is a sensitive probe of cosmology. Since
clusters are highly non-linear structures, precise modeling of their bias relative to the dark
matter distribution is essential (Kaiser, 1987; Sheth and Tormen, 2002; Tinker et al., 2010;
Comparat et al., 2017). Such studies additionally provide constraints on the growth rate
(Eq. 1.18) throughout cosmic time (Moscardini et al., 2001; Valageas and Clerc, 2012;
Veropalumbo et al., 2014; Marulli et al., 2017, 2018, 2021; Lindholm et al., 2021; Moresco
et al., 2021; Lesci et al., 2022b).

Combined SZ and X-ray observations of the same clusters allow using them as standard
candles and measuring the Hubble constant H0. In particular, the different dependence on
gas density in Eqs. 1.44 and 1.47 allows measuring the angular diameter distance as:

DA ∝ ∆T 2
CMBΛ(T, Z)
S(r)T 2 , (1.56)

and constrain H0 from Eqs. 1.11 and 1.12 (Carlstrom et al., 2002).
Clusters of galaxies produce deep gravitational potential wells that retain the gas ejected

by Active Galactic Nuclei (AGN) and supernovae. Therefore, the chemical composition of
the ICM and the ratio between the baryons and dark matter densities are expected to be
similar to the cosmic ones. The baryon fraction is defined as:

fb = Mgas

Mtot
≈ Mb

Mtot
= ΩB

ΩM

. (1.57)

The baryon fraction is measured by combining X-ray data constraining the gas density
profile and the gas mass, with weak lensing data or scaling relations to measure the total
mass (Gonzalez et al., 2013; Laganá et al., 2013). It approaches the cosmic value on large
scales in massive clusters (see Eckert et al., 2021, for a review). External information of ΩB
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from the CMB or the abundances of primordial elements provide a direct measure of ΩM

by inverting Eq. 1.57 (White et al., 1993; Allen et al., 2004; Ettori et al., 2009; Borgani
and Kravtsov, 2011; Mantz et al., 2022).

An alternative method of using clusters as a cosmological probe is sparsity. Sparsity is
the ratio of two different overdensity masses:

s1,2 = M∆1

M∆2

, (1.58)

where M∆1 and M∆2 are the masses corresponding to the overdensities ∆1 and ∆2, with ∆1
> ∆2. Sparsity encodes the mass distribution of dark matter halos, which is the result of
hierarchical growth and depends on the amplitude of the matter power spectrum. Balmès
et al. (2013) showed that sparsity is nearly independent of halo mass and it directly depends
on the halo mass function at ∆1 and ∆2:∫ MMAX

∆2

MMIN
∆2

dn

dM∆2

dM∆2 = s1,2

∫ MMAX
∆1

MMIN
∆1

dn

dM∆1

dM∆1 . (1.59)

This technique does not significantly depend on selection and mass calibration effects
(Corasaniti et al., 2018, 2021).

Finally, clusters of galaxies are a useful tool for testing the cosmological principle.
Since clusters generate from initial peaks in the density fields, they collapse in a self-
similar way (Kaiser, 1986). Under this assumption, clusters are scaled versions of the same
object, depending on their virial mass and the evolution of the critical density. The self-
similar model predicts power law relations between different cluster properties, such as
X-ray luminosity and total mass. Although it provides a decent approximation to observed
properties, the self-similar model fails due to baryonic effects, which make the scaling
relations more complex than a simple power law. These scaling relations are a key property
of galaxy clusters (Mantz et al., 2016; Bulbul et al., 2019; Bahar et al., 2022; Chiu et al.,
2022). Their directional behavior and the dependence of their normalization on orientation
are probes of cosmic isotropy, especially if the scaling relation is tight, for example, the
one between X-ray luminosity and temperature (Migkas et al., 2020, 2021).

1.3 The extended ROentgen Survey with an Imaging
Telescope Array (eROSITA)

The atmosphere of the Earth absorbs all photons in the X-ray band. Therefore, X-ray
observatories need to be moved to outer space. The first X-ray source to be observed was
the Sun in the late 1940s using V-2 rockets (Seward and Charles, 1995). Pioneering work
from Giacconi et al. (1962) using an Aerobee rocket provided evidence for X-ray emission
from the Moon and the discovery of the X-ray binary Scorpius X-1, the first extra-solar
X-ray source ever detected. Since then, more than 20 X-ray satellites have been launched,
starting with Uhuru (Giacconi et al., 1972), and including the Einstein X-ray Observatory
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Abbildung 1.11: A picture of the seven eROSITA telescope modules. Figure taken from
Predehl et al. (2021).

(Giacconi et al., 1979), EXOSAT (de Korte et al., 1981), BeppoSAX (Boella et al., 1997),
Chandra (Weisskopf et al., 2000), XMM-Newton (Jansen et al., 2001), Suzaku (Mitsuda
et al., 2007), and Hitomi (Takahashi et al., 2016). In particular, the ROentgen SATellite
(ROSAT, Truemper, 1982) performed the first X-ray imaging all-sky survey, providing the
first all-sky catalog of bright X-ray sources (RASS, Voges et al., 1999).

1.3.1 eROSITA onboard SRG
The extended ROentgen Survey with an Imaging Telescope Array (eROSITA, Merloni et al.,
2012; Predehl et al., 2021) is the natural successor of ROSAT. It was designed and developed
at the Max Planck Institute for Extraterrestrial Physics (MPE), in Garching, Germany. It
is the soft X-ray instrument onboard Spectrum-Roentgen-Gamma (SRG). SRG-eROSITA
was launched on the 13th of July 2019 from Baikonur, Kazakhstan, by means of a Proton-
M rocket. It is now located at the Lagrangian point L2, where it follows an elliptical orbit
with a semi-major axis of about 1 million km and a period of six months. eROSITA is
designed as a sensitive, wide-field telescope, able to produce deep images of large areas of
the sky. The goal of the mission is to complete eight all-sky surveys (eRASS1–eRASS8).
One all-sky scan lasts for six months. The eROSITA mission is a collaboration between
the German and the Russian consortia. The full sky is split in half between them.

eROSITA is composed by seven telescope modules with 54 nested Wolter-I mirror shells
each (Wolter, 1952). They are shown in Fig 1.11. Each mirror assembly is coupled to a
charge-coupled-device (CCD). The eROSITA point spread function (PSF) has a half energy
width (HEW) of about 15′′ on axis for each module. The spacecraft rotates with an angular
velocity of 0.025 deg/s, so that one revolution around the ecliptic poles takes four hours.
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Abbildung 1.12: The scanning and collecting capabilities of eROSITA. Left-hand panel:
vignetted exposure map of the first all-sky survey in galactic coordinates (eRASS1). The
depth is larger at the ecliptic poles, covered by the spacecraft on each revolution. Right-
hand panel: product of the eROSITA field of view and its effective area as a function of
energy (grasp) in red, compared to Chandra ACIS-I (in green and purple), XMM-Newton
(in blue), and ROSAT (in brown).

Consequently, the exposure at the ecliptic poles is larger compared to equatorial regions.
The exposure map of eRASS1 is shown in the left-hand panel of Fig. 1.12. eROSITA
has a larger field of view (FOV, 65′) compared to XMM-Newton (∼30′) and Chandra
(∼17′). In addition, the quick scanning capabilities make the eROSITA grasp larger than
its predecessors in the soft band (0.2–2.3 keV). The grasp is the product of the field of
view and the average effective area and is a direct measure of the ability of a telescope to
collect photons. It is displayed in the right-hand panel of Fig. 1.12. The final cumulative
survey (eRASS:8) will be about 25 times more sensitive than RASS in the soft X-ray band
(0.2–2.3 keV). eROSITA is the first instrument to provide an all-sky map in the hard band
(2.3–10 keV).

The design of eROSITA is particularly suitable for performing a survey of galaxy clu-
sters, thanks to a combination of its all-sky scanning capability, the small PSF compared
to ROSAT (about 30 arcsec in survey mode average over the FOV), the larger FOV com-
pared to Chandra and XMM-Newton (about 1 square degree), and its large effective area
in the soft X-ray band (about 1300 cm2 at 1 keV). The eROSITA telescope was designed to
detect about 100 000 clusters, reaching an unprecedented sample size for the X-ray view of
these objects and their astrophysical and cosmological purposes. eROSITA is also expected
to detect about 3 million AGN and 20 000 normal galaxies, enabling detailed studies of
the evolution of supermassive black holes throughout cosmic time and galaxy formation.
The scanning strategy of the spacecraft additionally provides multiple observations of the
same sky area at different times, a key ingredient for time domain studies, such as tidal
disruption events (Malyali et al., 2021) and variability phenomena (Arcodia et al., 2021;
König et al., 2022). A major result was the discovery of X-ray bubbles around the Milky
Way by Predehl et al. (2020).
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Abbildung 1.13: Map of the first eROSITA all-sky survey (eRASS1) in Aitoff projection.
The figure is color coded according to photon energy (red: 0.3–0.6 keV, green: 0.6–1 keV,
blue: 1–2.3 keV). Some of the brightest X-ray sources are annotated.
Credit: Jeremy Sanders, Hermann Brunner, Andrea Merloni and the eSASS team (MPE);
Eugene Churazov, Marat Gilfanov (on behalf of IKI).

During the Calibration and Performance Verification Phase (CalPV), the eROSITA
Final Equatorial Depth Survey (eFEDS, Brunner et al., 2022) has been carried out. eFEDS
was designed to verify the survey capabilities of eROSITA. This mini-survey covers an area
of ∼140 deg2 in the equatorial region (126◦ < RA< 146◦, -3◦ < DEC < +6◦). It was covered
with a vignetted (unvignetted) exposure time of ∼1.2 ks (∼2.2 ks), a similar value compared
to the final all-sky survey (eRASS:8) in the equatorial region. The first eROSITA all-sky
survey (eRASS1) was completed in June 2020 1. It is shown in Fig. 1.13, where some galaxy
clusters, such as Virgo, Centaurus, and Fornax, are clearly visible. Dust and gas along the
galactic plane absorb the soft X-ray emission so that only the hard emission emerges. The
most prominent sources are bright supernova remnants, such as Vela, or X-ray binaries,
like Sco X-1.

1.3.2 Cosmological experiment

The main goal of eROSITA is to study the Large Scale Structure of the Universe, to
constrain cosmological models and gain knowledge about dark matter and dark energy.
The main probe is the abundance of galaxy clusters as a function of mass and redshift (see
Eqs. 1.41 and 1.54). A forecast on the eROSITA cosmological capabilities was elaborated

1https://www.mpe.mpg.de/7461950/erass1-presskit

https://www.mpe.mpg.de/7461950/erass1-presskit
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Abbildung 1.14: Forecast of the eRASS:8 cosmological experiment, combining cluster
counts and angular clustering, for pessimistic and optimistic scenarios in light-blue shaded
areas. The inclusion of Planck+BAO+JLA results (black line) is shown by the dark-blue
shaded areas. The contours refer to 68% confidence level. Top panels: constraints of the
ΛCDM model for ΩM and σ8, compared to previous cluster cosmological experiments.
Bottom panels: constraints on model with varying dark energy equation of state. Figure
taken from Pillepich et al. (2018b).

by Pillepich et al. (2018b), who showed that the Figure of Merit defined as

FoMΛ = 1√
detCov(w0, wa)

, (1.60)

is expected to be larger than 100, which classifies eROSITA as a StageIV Dark Energy
probe (Albrecht et al., 2006).

More predictions are shown in Fig. 1.14. The top panels show that eROSITA will be mo-
re precise than previous cluster count experiments when measuring ΩM and σ8. Contours
with different shades of blue assume different levels of data quality. The pessimistic predic-
tion in light blue considers only photometric redshifts, the priors on the mass–observable
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Abbildung 1.15: Prediction of the Dark Energy Figure of Merit (Eq. 1.60). The top panel
shows different survey assumptions, the bottom panel shows a comparison to Dark Energy
Task Force Requirements (Albrecht et al., 2006). The panel is adapted from (Pillepich
et al., 2018b).

scaling relation match the errors from Vikhlinin et al. (2009a), and the inclusion of all
clusters with more than 50 photon counts and more massive than 5×1013 M⊙/h. The op-
timistic one assumes instead spectroscopic redshifts, scaling relation priors that are four
times better than Vikhlinin et al. (2009a), and the inclusion of groups down to 1×1013

M⊙/h. When combined with other probes, such as Planck, Joint Light Curve Analysis
(JLA, Betoule et al., 2014), and BAO, eROSITA has the potential to provide constraints
within about 2% and 1% for ΩM and σ8, respectively. The two bottom panels display cons-
traints on the dark energy equation of state (see Eq. 1.55), with final uncertainties around
7% for w0 and ±0.25 for wa.
A final prediction for the FoM obtained by assuming different survey assumptions are
shown in the top panel if Fig. 1.15, adapted from Pillepich et al. (2018b). The lower panel
shows a comparison to the recommendations from Albrecht et al. (2006), where an experi-
ment is classified as Stage IV if it constrains the FoM between 27 and 645. The eROSITA
prediction is included within this range.

1.4 Thesis overview
As highlighted in the previous sections, eROSITA has great potential for cosmological
studies and will provide the best constraints using an X-ray-selected cluster sample ever.
However, to reach the highest levels of precision, it is crucial to account for selection ef-
fects, uncertainties in the data, and properly characterize the samples of sources detected
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by eROSITA. The eROSITA cosmological results will be biased if faint undetected clusters
are not modeled properly, if the cluster sample is contaminated by random fluctuations of
the X-ray background or bright AGN that appear as extended sources in the sky. These
aspects impact the abundance of objects as a function of mass and redshift and will ulti-
mately cause a wrong measure of the cosmological parameters if they are not adequately
accounted for. Producing and analyzing mock data through simulations that reproduce
observations is a great tool for testing all these effects.
The first goal of this thesis is to generate a digital twin of eRASS1, with realistic models of
clusters and AGN, to study how different populations of sources are detected and characte-
rized by eROSITA. This is fundamental to build a complete and pure galaxy cluster sample
that is suitable for cosmology. This work is explained in Kap. 2, it was peer-reviewed and
published in Astronomy and Astrophysics (Seppi et al., 2022).

Until the last decade, most of the uncertainty in cluster count experiments was due to a
large scatter of the mass–observable scaling relation. In this era of precision cosmology, new
surveys are providing very large samples of massive clusters, which statistically improves
the constraints on the mass–observable relation. However, the better accuracy exposes
uncertainties in the models of the halo mass function, which was a negligible source of
error for previous surveys (Salvati et al., 2020). Accurate and precise models of the HMF
are required to achieve percent level accuracy in the measure of cosmological parameters.
The second goal of this thesis is calibrating an accurate model of the halo mass function that
additionally accounts for the dynamical state of dark matter halos. This work is explained
in Kap. 3, it was peer-reviewed and published in Astronomy and Astrophysics (Seppi et al.,
2021). The mass function model from Seppi et al. (2021) offers the possibility to marginalize
on selection effects related to the dynamical state directly in the measure of the cluster
abundance. It has the potential of reducing uncertainties in a cluster count experiment and
producing unbiased cosmological constraints. However, a link between theoretical models
and observations is lacking.

The third goal of this thesis is to study the dynamical state of clusters detected by
eROSITA and build a connection between N-body simulations that are used to develop
HMF models and observations. We use hydrodynamical simulations to compare variables
related to the dynamical state of dark matter halos in N-body simulations to the offset
between different definitions of the center for galaxy clusters observed by eROSITA. This
work is explained in Kap. 4, it has been submitted to Astronomy and Astrophysics.

Finally, a summary of the main results and conclusions is described in Kap. 5.
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Kapitel 2

Detecting clusters of galaxies and
active galactic nuclei in an eROSITA
all-sky survey digital twin

Our knowledge of the large-scale structure (LSS) of the Universe has dramatically improved
in the past decades thanks to a variety of surveys at different wavelengths. A wealth of
information about the matter distribution on cosmological scales is obtained by optical
data from galaxy clustering, measured by the Two-degree-Field Galaxy Redshift Survey
(2dFGRS, Colless et al., 2001), the Galaxy and Mass Assembly (GAMA) Survey (Driver
et al., 2009), the VIMOS Public Extragalactic Redshift Survey (VIPERS, de la Torre
et al., 2013), the Dark Energy Survey (DES, Abbott et al., 2020), the Kilo-Degree Survey
(KiDS, Joudaki et al., 2018), the Hyper Suprime-Cam Subaru Strategic Program (HSC-
SSP, Hikage et al., 2019), and the Sloan Digital Sky Survey (SDSS, Alam et al., 2021).
Complementary data in the millimeter range trace the large-scale distribution of matter
thanks to the lensing of the cosmic microwave background (CMB, Sherwin et al., 2012;
Planck Collaboration et al., 2014c). In addition, large samples of extragalactic sources are
provided by X-ray surveys, such as ROSAT (Boller et al., 2016) and eROSITA (Merloni
et al., 2012; Predehl et al., 2021). It is important to consider both galaxy clusters and active
galactic nuclei (AGN) in this context: they both trace the LSS. They are fundamental to
shedding light on the hot and energetic large-scale structure of the Universe.

Clusters of galaxies populate the most massive bound dark matter halos in the Universe.
They are the largest known virialized structures (Kravtsov and Borgani, 2012; Pratt et al.,
2019) and are a great tool for cosmological studies (Tinker et al., 2008; Allen et al., 2011;
Lesci et al., 2022a; Clerc and Finoguenov, 2022). Galaxy clusters are observed in optical
data as an over-density of red galaxies (e.g., Rykoff et al., 2014; Abbott et al., 2020) or as
peaks in weak-lensing convergence maps (e.g., Miyazaki et al., 2018a), by distortion of the
CMB due to the Sunyaev–Zel’dovich (SZ) effect in the millimeter band (e.g., Staniszewski
et al., 2009; Planck Collaboration et al., 2016a) and by extended emission in the X-ray
band (e.g., Böhringer et al., 2004; Adami et al., 2018; Finoguenov et al., 2020; Liu et al.,
2022). The combination of multiwavelength data is key for a complete description of galaxy
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clusters. On the one hand, optical surveys have the highest source density, which provides
the largest samples of clusters using photometric data (Oguri, 2014; Bleem et al., 2015a).
On the other hand, pointed observations with interferometers in the radio and millimeter
bands provide observations with extremely high angular resolution (Pasini et al., 2022). In
addition, SZ surveys with telescopes such as Planck (Planck Collaboration et al., 2014a),
the South Pole Telescope (SPT, Bleem et al., 2015b), or the Atacama Cosmology Teles-
cope (ACT, Hilton et al., 2021) are effective in detecting high-redshift objects, thanks to
the redshift-independent SZ signal. X-ray observations are particularly suitable to study
clusters of galaxies. Clusters are the brightest extragalactic extended sources in the X-ray
band (Rosati et al., 2002), they emit mainly due to thermal bremsstrahlung from the hot
intra-cluster medium (Cavaliere and Fusco-Femiano, 1976) and their emissivity depends
on the radial density profile.

Active galactic nuclei (AGN) are very luminous objects, powered by the accretion of
rich gas reservoirs onto super-massive black holes, and constitute the majority of the ex-
tragalactic sources detected in X-ray surveys (see Padovani et al., 2017, for a review). A
large sample of AGN enables studies of the general evolution of supermassive black holes
(Kauffmann and Haehnelt, 2000), the properties of the host galaxy (Ferrarese and Mer-
ritt, 2000), the AGN clustering properties (Koutoulidis et al., 2013; Viitanen et al., 2019),
and their link to the underlying dark matter large-scale structure (Fanidakis et al., 2011;
Georgakakis et al., 2019), as well as different channels through which these objects are
formed (Mayer and Bonoli, 2019), and the mechanisms triggering bursts of X-ray radiation
(Arcodia et al., 2021).

With eROSITA, a new era in X-ray astronomy is now unfolding (Merloni et al., 2012;
Predehl et al., 2021). Since December 2019, eROSITA is performing all-sky surveys. The
sky is split in half between the German (eROSITA_DE) and Russian consortium (eRO-
SITA_RU). The eROSITA_DE area is split into 2 447 tiles with a small overlap for data
processing purposes. Of these, 2 248 are uniquely owned by the German consortium, and
the additional 199 are shared. Each tile covers a unique area of ∼8.7 square degrees.
eROSITA is predicted to ultimately detect a total of about 105 clusters of galaxies after
the final cumulative all-sky survey (eRASS:8), the largest sample of X-ray-selected galaxy
clusters to date. This will allow a variety of studies involving the cluster X-ray luminosity
function (Mullis et al., 2004; Koens et al., 2013; Finoguenov et al., 2015; Adami et al.,
2018; Clerc et al., 2020; Liu et al., 2022), the clustering of galaxy clusters (Veropalumbo
et al., 2014; Marulli et al., 2018, 2021; Lindholm et al., 2021), and provide powerful cons-
traints on cosmological parameters such as the normalization of the power spectrum σ8
and the matter content of the Universe ΩM (Borgani, 2008; Vikhlinin et al., 2009b; Mantz
et al., 2015b; Pierre et al., 2016; Schellenberger and Reiprich, 2017b; Pacaud et al., 2018;
Ider Chitham et al., 2020; Garrel et al., 2022). A prediction of the eROSITA cluster count
cosmology capabilities is studied by Pillepich et al. (2012, 2018b). A total number of about
three million sources, most of which are AGN, are expected to be detected in eRASS:8, a
factor of 20 better than ROSAT.

An efficient and accurate detection of extragalactic sources is key to properly sampling
the cosmic web and making the most out of the large samples provided by eROSITA.
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The identification of galaxy clusters in X-ray surveys like eROSITA is affected by Poisson
count noise in the low photon count regime and by the redshift-dimming effect on the
cluster surface brightness. Cluster samples selected from X-ray surveys are primarily flux-
limited (e.g., REFLEX, Böhringer et al., 2004). The detection of clusters also depends
on secondary effects, such as their extent on the sky, or the low surface brightness of very
extended objects (Pacaud et al., 2006; Burenin et al., 2007; Finoguenov et al., 2020). In this
context, the cool core bias and the dynamical state of galaxy clusters have also been studied
in recent years (Hudson et al., 2010; Eckert et al., 2011; Rossetti et al., 2016; Andrade-
Santos et al., 2017; Käfer et al., 2019; Ghirardini et al., 2021a). Relaxed clusters develop
an efficient cooling toward their center, which enhances the X-ray emission in the inner
region. Such peaked surface brightness profiles possibly bias the detection toward relaxed
structures. This has an impact on cosmological studies using the halo mass function (Seppi
et al., 2021).
The cross-correlation between clusters and AGN in the LSS creates an interplay between
point and extended sources in the detection process. A detailed understanding of the point
sources is fundamental to investigate not only the X-ray background and the completeness
of the observed sample (Georgakakis et al., 2008), but also the fraction of clusters that are
misclassified as a point source (Pacaud et al., 2006; Burenin et al., 2007). This happens
because of the small size of high redshift clusters, the peaked emission from compact nearby
groups, or the presence of a central AGN in the cluster, which can boost the detection of
high redshift clusters (McDonald et al., 2012; Trudeau et al., 2020). This misclassification
is mitigated by multiwavelength follow-up observations. For instance, Salvato et al. (2022)
found 346 cluster candidates in the eFEDS point-source catalog by the identification of
the red sequence using optical data. An extensive study of these objects is provided by
Bulbul et al. (2022). An effective way of investigating the detection and selection effects
in surveys is to simulate the observational process in its greatest detail. This approach has
been explored using mocks in different wavelengths, from the optical band (Jimeno et al.,
2017; Oguri et al., 2018), to the X-rays (Liu et al., 2013; Pierre et al., 2016; Clerc et al.,
2018), and the microwave sky (Sehgal et al., 2010), or injecting simulated sources into real
images (Suchyta et al., 2016; Everett et al., 2022). It allows accounting for instrumental
effects and the observing strategy. Studying and quantifying effects that have an impact on
the detection is then possible, comparing catalogs of simulated sources and the population
that is detected in the simulation. Constant improvements in computational power and
efficiency provide more detailed mocks. Recent progress in dark matter simulations allows
to minimize the impact of cosmic variance thanks to the ability to simulate large volumes,
but also resolve galaxy-like halos because of the small resolution (e.g., Klypin et al., 2016;
Chuang et al., 2019; Ishiyama et al., 2021).
We study the eROSITA capabilities in the detection of extragalactic sources following this
approach. Our goal is to understand the details of AGN and cluster detection and selection
effects. These are two important subsequent steps. First, the detection should be optimized
to maximize the ability to identify clusters and AGN, and make sure that the algorithm in
question is detecting as many real sources as possible. After that, one can focus on selection
criteria to clean the catalog of detected sources and obtain a certain sample according to
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the scientific goal.
In this chapter, we use realistic end-to-end simulations to predict the population of objects
observed by eROSITA, with a particular interest in extended sources, that are clusters of
galaxies, and AGN. We focus on the eROSITA_DE sky area. We start from the simulations
described by Comparat et al. (2019, 2020). We generate a half-sky simulation at the depth of
the first eROSITA all-sky survey (eRASS1), the one reached after six months of operations.
We follow the eROSITA scanning strategy. Photons are generated for 2438 eROSITA_DE
tiles. The background is directly resampled from the eRASS1 observations. We extend the
cluster model from Comparat et al. (2020) to galaxy groups down to 2×1013 M⊙ using
the relation between X-ray luminosity and stellar mass (Anderson et al., 2015). Comparat
et al. (2022) showed that such correction allows matching the relation between projected
luminosity around eFEDS central galaxies and their stellar mass remarkably well. We run
the eSASS (extended Science Analysis Software System) detection algorithm described
by Brunner et al. (2022). We build a one-to-one association between simulated objects
and the source catalog using the source ID of each simulated photon (Liu et al., 2021),
properly linked to a cluster, AGN, star, or the background. We assess the performance of
the detection in terms of completeness (fraction of simulated objects that are recovered in
the source catalog) and purity (fraction of entries in the source catalogs that are assigned
to the correct simulated object). Our study follows up on the work of Liu et al. (2021) on
the eFEDS simulations. We take one step further, accounting for the larger variations of
exposure and background level in eRASS1.
This chapter is organized as follows. We summarize the main features of the simulation
and the X-ray model in Sect. 2.1. We describe the detection process, the handling of the
catalogs, and the classification of the sources in Sect. 2.2. We provide our results in Sect.
2.3. We study the population in the source catalog, the cumulative number density of AGN
and clusters as a function of flux, the completeness of these samples, their relation with
purity and contamination, and measure the X-ray luminosity of clusters. We further discuss
our results in Sect. 2.4, including the best strategy to build samples of clusters detected
by eROSITA, accounting for the different exposure across the sky. Finally, we summarize
our findings in Sect. 2.10. The results in this Chapter are presented in Seppi et al. (2022).

2.1 Simulated data

We follow the approach described by Comparat et al. (2020) and create all-sky simulations.
A dark matter light cone is built with snapshots at different redshifts. Cluster and AGN
models are used to predict X-ray emission (Comparat et al., 2019, 2020). We upgrade the
cluster model to the galaxy groups regime. In this section, we review the main features
of the simulations and models that are relevant for this analysis. The simulated data has
been released with the article from Seppi et al. (2022).
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2.1.1 Light cones from N-body dark matter simulations
A light cone is created with the UNIT1i N-body simulations (Chuang et al., 2019). These
are computed in a Flat ΛCDM cosmology (Planck Collaboration et al., 2016c). The fiducial
parameters are H0 = 67.74 km s−1 Mpc−1, Ωm0 = 0.308900, Ωb0 = 0.048206. The size of the
simulation box is 1 Gpc/h1 and the mass resolution is 1.2×109 M⊙/h. It allows a detailed
modeling of both clusters and AGN. It is suited for studying low mass structures down to
1011 M⊙, AGN up to z∼6, and the eROSITA selection function (Liu et al., 2021).

2.1.2 X-ray model components
These simulations combine different source and X-ray background components. We describe
each one of them in the following section.

Galaxy clusters

Comparat et al. (2020) introduce a new method to simulate the X-ray emission from galaxy
clusters. The principle is to build mock observations using real data as a starting point
(e.g., Kong et al., 2020; Everett et al., 2022). A total sample of 326 clusters is obtained by
combining XMM-XXL (Pierre et al., 2016), HIFLUGCS (Reiprich and Böhringer, 2002),
X-COP (Eckert et al., 2019b) and SPT-Chandra (Sanders et al., 2018). Their combination
constitutes a relatively fair benchmark for eROSITA observations. Their X-ray properties
are well measured inside R500c, the radius encompassing an average density that is 500 times
the critical density of the Universe at the redshift of the cluster ρc = 3H2/8πG, where H is
the Hubble parameter and G is the universal gravitational constant. From these clusters,
a covariance matrix between redshift, temperature, hydrostatic masses, and emissivity
is constructed. Simulated emissivity profiles are drawn from the covariance matrix by a
Gaussian random process. These profiles are assigned to dark matter halos by a nearest
neighbor process, considering mass and redshift. The brightness of the cluster core is linked
to the dynamical state of the dark matter halo. The initial model is constructed using
clusters with high counts and signal-to-noise ratio, making it reliable down to masses of
M500c ∼ 5×1013 M⊙.

In this chapter, we extend this model to galaxy groups for the eRASS1 simulation
as follows. We use the relation between stellar mass and X-ray luminosity from Anderson
et al. (2015) as a reference. The stellar mass is assigned to halos by an abundance matching
scheme (see Comparat et al., 2019, and Section 2.1.2). We infer an average correction as a
function of mass to align the scaling relation of the simulation to that of Anderson et al.
(2015). The goal scaling relation between X-ray luminosity and the stellar mass of the
central galaxy in each halo reads

log10 Lx,(0.5−2.0keV) = 3 log10 M∗ + 7.8. (2.1)

1h is the dimensionless Hubble constant, equal to the value of H0/100.
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This average correction bends the scaling relation predicted by Comparat et al. (2020)
at low mass to predict lower luminosities for lower mass halos. Importantly, it preserves
the scatter in the LX–mass scaling relation. These values substitute the ones obtained
by integrating the emissivity profiles from the original covariance matrix. For halos with
a mass larger than M500c > 1014 M⊙ the correction is negligible, but it becomes very
important in the mass range 1013 – 5 × 1013 M⊙. In Sect. 2.5, both panels in Fig. 2.15
highlight the improvement of the model after applying the correction. The number density
of sources as a function of X-ray flux (logN–logS) predicted for masses above log10 M/M⊙
> 13 is in excellent agreement with observations (Finoguenov et al., 2007, 2015, 2020; Liu
et al., 2022; Chiu et al., 2022; Bahar et al., 2022). With the eFEDS sample, the method is
further validated. It offers a more complete picture of the cluster population. The relation
between X-ray luminosity and M500c in the second panel of Fig. 2.15 shows the impact of the
correction, especially for groups. The predicted values of log10 Lx reach reasonable values of
∼ 41 (and below) at log10 M/M⊙ ∼ 13. The improved model is in line with different sets of
observations, considering that these are flux-limited samples, whereas the orange curve is
built with the complete simulated clusters population (Lovisari et al., 2015; Schellenberger
and Reiprich, 2017a; Bulbul et al., 2019; Lovisari et al., 2020; Chiu et al., 2022; Bahar
et al., 2022). In general, our correction provides an excellent agreement between the new
model and eFEDS clusters sample. We provide further details in Sect. 2.5. In total, we
simulate 1 116 758 clusters.

Active galactic nuclei

Active galactic nuclei are simulated by an empirical model that reliably reproduces their
number density as a function of X-ray luminosity, clustering, and redshift (Georgakakis
et al., 2019; Comparat et al., 2019). It is based on stellar mass to halo mass relations (Moster
et al., 2013) and abundance matching to reproduce the hard X-ray AGN luminosity function
(Aird et al., 2015; Buchner et al., 2015) and their number density as a function of flux up to z
= 6. It matches the observed AGN duty cycle (fraction of galaxies hosting an active nucleus)
by construction (Georgakakis et al., 2019). The model extends to very low X-ray fluxes
∼1×10−17 erg/s/cm2, well under the eROSITA flux limit, which enable a prediction of the
X-ray background due to faint AGN. For the construction of the AGN population in the
eRASS1 simulation, the sky is first divided into 768 HEALPix2 fields, which ensures faster
processing, but also a smaller volume, sampling the luminosity function down to about 10−7

sources per Mpc3. This prevents the simulation of extremely bright sources. The model of
the AGN spectra is an absorbed power-law with Compton reflection and a soft scattered
component by cold matter (in Xspec tbabs*(plcabs+pexrav)+zpowerlw)*tbabs). The
spectral index of the power-law is equal to Γ = 1.9. Finally, a fine-grained K-correction is
applied to the AGN population (Hogg et al., 2002). The simulation accounts for a cross-
correlation between clusters and AGN since they are both generated from the same N-body
simulation. We neglect secondary effects regarding the population of halos hosting AGN in

2https://healpix.sourceforge.io/

https://healpix.sourceforge.io/
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cluster environments. Further observational studies involving the fraction of active galaxies
in clusters as a function of redshift and a comparison to field galaxies are required to develop
such a model, (see Martini et al., 2013; Koulouridis et al., 2014; Noordeh et al., 2020). In
total, we simulate 225 583 320 AGN, about 200 times more than the clusters. Among them,
93 311 810 produce at least one count within 60′′ from the center.

Stars

Fluxes to be assigned to stars are drawn from the eFEDS logN–logS. We assign them
to GAIA DR2 (Gaia Collaboration et al., 2018) true positions randomly. The spectrum
is a 0.8 keV APEC model at redshift 0. This model is simple, but nonetheless sufficient
to mimic the increase of stellar density toward the Milky Way for this simulation at the
eRASS1 depth (Schneider et al., 2022; Salvato et al., 2022). In total, we simulate 373 316
stars.

Background

Our approach is similar to the one detailed by Liu et al. (2021), who decompose and re-
simulate the eFEDS background, subtracting the contribution from the simulated faint
AGN, that partially contribute to the cosmic X-ray background (CXB). However, this
is not feasible in eRASS1, due to the nonuniform coverage of the sky and background
emission. We update such a method for the eRASS1 simulation. Background photons are
obtained by resampling the observed eROSITA background maps, masking identified point
and extended sources. This allows the introduction of spatially varying background, that
closely follows real data. We start from the eROSITA_DE eRASS1 event lists and source
catalogs. Following the masking scheme devised by Comparat et al. (in prep.), the photons
are split into two groups. First, we consider source photons: events located within 1.4
times the source radius of a detected source (see Sect. 2.2 for a definition of the source
radius). Secondly, we select background photons: events located further than 1.4 times the
source radius of any detected source. These thresholds guarantee conservative masking of
the sources in the event list to obtain a background event list. The complementary set of
events constitutes the source event list. The whole dataset is mirrored in the eROSITA_RU
sky, to obtain an all-sky map. This is divided into 49 125 HEALPix regions, each of them
covering ∼ 0.84 deg2. The X-ray spectrum and the images of the background events are
extracted from these regions. All the spectra are merged into a single mean background
spectrum. These inputs are combined to generate a specific SIMPUT3 file for the mock
background, that provides by construction a faithful reproduction of the observed eRASS1
background.

3https://www.sternwarte.uni-erlangen.de/sixte/sources, v-2.4.7

https://www.sternwarte.uni-erlangen.de/sixte/sources


40
2. Detecting clusters of galaxies and active galactic nuclei in an eROSITA

all-sky survey digital twin

2.1.3 Mock observation
Photons are simulated with the SIXTE4 software (Dauser et al., 2019), a dedicated end-
to-end X-ray simulator. SIXTE is the official simulator for eROSITA. The result is a list of
events with energy, position, and arrival time. This approach allows accounting for instru-
mental effects because the simulator relies on vignetting, energy-dependent PSF, ancillary
response file (ARF), and redistribution matrix file (RMF) as input from calibration data.
The setup follows the eROSITA all-sky scan strategy (Merloni et al., 2012; Predehl et al.,
2021).
We use the same attitude file from the real observations for the eRASS1 simulation. The
attitude file specifies the details of the scanning by the spacecraft. It follows the planned
observing strategy, scanning one full great circle every four hours. In addition, we use the
same good time intervals (gti) of the real survey. This allows us to account for details such
as orbit corrections, when the cameras are switched off, or camera failures, making the
simulation an ideal digital twin of the real eRASS1. The total number of events in the
simulation, covering about 20 618 square degrees, with energy of 0.2–10 keV is 187 486 754.
There are 118 905 555 photons in the soft band (0.2–2.3 keV). These numbers are indeed
very similar to the real data, respectively equal to 194 350 024 and 118 815 616 counts. The
ratios between these numbers are 0.965 and 1.001 respectively.

2.2 Data analysis method
In this section, we describe how the simulated event files are processed and analyzed. The
final result is a catalog of sources identified by the detection algorithm. We refer to the
latter as the source catalog in the rest of this work. Only event files in the eROSITA_DE
sky are processed. We first generate the photons on the sky plane divided into 768 HEALPix
regions and then create specific catalogs for each field. This way we do not simulate the
same photons twice in the overlapping regions of different eROSITA tiles. Given our interest
in cluster detection, we focus on a single band detection in the soft X-rays (0.2–2.3 keV),
where the eROSITA effective area is the highest (Predehl et al., 2021).

2.2.1 eSASS detection
Each simulated tile is processed with the eROSITA Standard Analysis Software System
(eSASS, version eSASSusers_201009) (Brunner et al., 2022). Starting from the calibrated
event file, we produce 3.6◦×3.6◦ images for the eRASS1 simulation and the corresponding
exposure maps, using all 7 telescope modules, in the soft X-ray band 0.2–2.3 keV. The
detection relies on a sliding box algorithm, that looks for overdensities of photons over the
background map. It follows the subsequent steps.

1. erbox: the image is scanned by a sliding cell, which marks potential sources if the
signal-to-noise ratio is higher than a given threshold. This initial list of potential sources

4https://www.sternwarte.uni-erlangen.de/research/sixte, v-2.6.0
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Tabelle 2.1: Number of counts by sources detected with given values of detection and
extension likelihood

Clusters AGN

DET_LIKE N events <0.5×R500c N events <30′′

ALL CLU BG ALL AGN BG
5 21.3 8.7 10.1 5.1 3.7 1.3
8 25.8 11.4 11.4 6.6 5.0 1.5
10 30.4 13.8 13.0 7.7 6.0 1.6
15 42.6 21.3 16.9 10.1 8.4 1.7
20 48.8 25.4 17.9 12.5 10.6 1.7
25 74.4 36.6 23.6 14.6 12.7 1.8
50 100.8 62.3 29.8 25.2 22.6 2.4
75 152.4 96.3 42.5 35.6 32.3 3.0
100 209.0 127.2 61.5 46.5 42.1 3.7

Clusters

EXT_LIKE N events < 0.5×R500c
ALL CLU BG

6 69.4 31.4 31.2
8 78.5 42.7 27.2
10 89.7 46.9 33.2
15 103.9 59.1 34.0
20 139.9 67.5 32.5
25 144.7 90.9 42.3
50 275.9 168.6 77.8
75 405.9 284.2 95.6
100 530.1 376.5 119.1

Notes. The first column in the upper (lower) table reports the value of detection (extent) likelihood
measured on a source. For clusters, the other columns show the total number of counts generated by all
sources (ALL, includes photons from clusters, AGN, stars, and the background) inside half R500c, the
ones only generated by clusters (CLU) and the ones produced by the background (BG). For AGN, we

report the total number of events within 30′′, the ones generated by AGN and by the background.
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contains a large number of false detection, but maximizes the completeness.
2. erbackmap: the potential sources are masked by constructing a detection mask and the
image is interpolated to create an adaptively smoothed background image. This process is
iterated three times, to converge toward a more robust background map (Brunner et al.,
2022; Liu et al., 2021).
3. ermldet: each box marked as a potential source is analyzed by a maximum likelihood
PSF-fitting algorithm, based on the position, count rate, and extent of the source. It
compares the distribution of counts to a β model (Cavaliere and Fusco-Femiano, 1976)
convolved with the eROSITA PSF. It allows a simultaneous fitting of multiple sources.
Different choices of the minimum likelihood threshold control the purity of the sample,
decreasing the false detection rate when increasing the threshold. This task produces a
catalog of sources and a source map.
Sources are assigned a significance of the detection (detection likelihood), extension of the
best fitting β model (extent) and significance of the extended model over the point-like
one (extension likelihood). These parameters are computed by minimizing the C-statistic
(Cash, 1979) in Eq.2.2:

C = 2
N∑

i=1
(ei − nilnei), (2.2)

where ni is the measured number of events in each pixel and ei is the expected value
from the model. The significance of each source is computed by comparing the best fitting
model to the zero count case ∆C = Cnull − Cfit (see Brunner et al., 2022, Sect. A.5). The
probability that a source arises from a random background fluctuation is computed using
the regularized incomplete Gamma function PΓ.

P = 1 − PΓ(ν

2 ,
∆C

2 ), (2.3)

where ν is the number of degrees of freedom in the model. This is equal to three (four)
for point (extended) sources, corresponding to positions on the pixels X and Y, count rate
(and core radius of the β model) for our study, which only uses one detection band. The
likelihood for each source is finally related to the natural logarithm of such probability:

Ldet = −lnP. (2.4)

This gives a set of two fundamental parameters for each detection: DET_LIKE (LDET),
and EXT_LIKE (LEXT). The first (second) one is related to the probability of iden-
tifying a spurious point (extended) source, exponentially proportional to −DET_LIKE
(−EXT_LIKE). The core radius of the best-fitting extended beta model is also provided.
It is set to zero for point sources, its minimum and maximum values are 8′′ and 60′′. A con-
stant β = 2/3 is assumed for the model so that the slope of the profile is equal to −3 (see
Eq. 1.45). We show that on average our model generates profiles that are compatible with
this assumption in Sect. 2.5. The minimum thresholds of DET_LIKE and EXT_LIKE
are extremely important in this step. They have a significant impact on the completeness
and purity of the source catalog, see Sect. 2.3.4. We follow the same task processing as the
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eFEDS data, choosing values of detlikemin = 5 and extlikemin = 6 (Brunner et al., 2022).
The values of detection and extension likelihood are correlated to the number of events
from a given source and from the local background by construction. AGN producing five
counts on average are detected with DET_LIKE = 10. Clusters of galaxies require a larger
amount of events to be detected. A value of DET_LIKE = 5 is measured for clusters with
nine source counts and ten background counts inside half R500c. Classifying the clusters as
extended sources requires a larger number of events. A value of EXT_LIKE = 6 is measu-
red for clusters with about 30 counts inside half R500c. When the ratio between source and
background photons increases, the detection and extension likelihood rise as well. A value
of EXT_LIKE (DET_LIKE) of 25 is measured on average for clusters with 91 (37) counts
against 42 (24) events generated by the background. We provide a summary in Table 2.1.
It shows the average number of counts generated by all sources, including clusters, agn,
stars, and background, and the ones only generated by clusters (AGN) and background in
the top left (right) panels at fixed values of detection likelihood. The bottom panel displays
the counts at given extension likelihood value.
4. apetool: we perform source aperture photometry and compute the sensitivity map for
each simulated tile. This gives the minimum number of counts necessary to detect a point-
like source as a function of position in the sky, and at a given Poisson false detection
probability threshold.
5. srctool: we measure the radius that maximizes the signal-to-noise ratio for each source.
We refer to this parameter as source radius (srcRAD).
6. ersenmap: we compute the sensitivity map for extended sources. This gives the minimum
flux necessary for a source to be detected at a given DET_LIKE threshold.
7. apetool: we perform again source aperture photometry focusing on the extended sources
and different apertures of 60, 90, 120, 150, 180, 240, 300, and 600′′.

We perform the source detection in the soft (0.2–2.3 keV) X-ray band. In principle, one
could choose specific detection and extension likelihood threshold according to different
needs. We choose to characterize the extended sources without additional selections, using
detlikemin = 5 and extlikemin = 6. This keeps our cluster catalog reasonably complete
(down to some flux limit), without rejecting faint sources that are potentially interesting.
Figure 2.1 shows an example of this whole process. It displays a wedge of the simulated
light cone in the top panel, showing galaxies that trace the large-scale structure in grey and
how this is populated by AGN in blue, and clusters and groups in red. The bottom panel
shows the projection on the sky plane of the events emitted by the sources in the wedge. It
displays simulated photons in the soft X-ray band (black dots), the simulated stars (green
circles), AGN (blue circles), clusters (red circles), extended detections (magenta squares),
and point-like detections (cyan squares). This tile gives a typical view of different possible
cases. Red circles within a magenta square identify simulated clusters that are detected
as extended, whereas red circles within a cyan square denote clusters detected as point
sources. Similarly, input AGN and stars detected as point sources are shown by blue and
green circles within cyan squares. Every circle (red, blue, or green) without a correspon-
ding square denotes a simulated object that has not been detected. We show clusters and
AGN respectively down to low flux limits of 3×10−14 erg/s/cm2 and 8×10−15 erg/s/cm2.
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This explains the undetected objects in Fig. 2.1. Finally, background fluctuations that are
detected as spurious sources are identified by squares without any circle.

Abbildung 2.1: Large scale distribution of extragalactic sources and their X-ray view in the
simulation. Top panel: light cone of the UNIT1i-eRASS1 simulation. The wedge shows
the fraction of the sky enclosed by the same RA and DEC of the bottom panel as a function
of redshift and lookback time. The galaxies tracing the large-scale structure are shown in
grey. The AGN are denoted in blue. The red circles show clusters and groups. The size
of the circle is proportional to the mass of the object. Bottom panel: central regions of
tile 202105 of the eRASS1 simulation. This is the projection on the plane of the sky of
light cone shown in the top panel. Photons with energies between 0.2 to 2.3 keV are shown
by black dots, simulated stars by green circles, simulated AGN by blue circles, simulated
clusters by red circles, eSASS extended detections by magenta squares, and eSASS point-
like detections by cyan squares.

The X-ray background drives the detection process, especially for faint sources. We
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compare the background maps computed on the simulation and on the real eRASS1 da-
ta. We find that the simulated background is overestimated by ∼ 10% compared to the
observations. This is expected, because the cosmic X-ray background due to faint AGN is
present both in the real eRASS1 background maps used to generate the background model,
and as the simulated population of low-flux AGN.
We evaluate the impact of this 10% over-estimate of the background on the measured va-
lues of detection likelihood. We consider a wide range of counts per pixel values generated
by a source (between 0.04 and 0.4) and by the background (between 0.001 and 0.009).
These intervals are compatible with the source maps and background maps produced by
eSASS. We expand these counts on a grid of 5×5 pixels, covering an area slightly lar-
ger than the eROSITA PSF. We compute the analytical value of detection likelihood by
plugging these values into equations 2.2, 2.3, and 2.4. We repeat the process by increasing
the background by 10%, computing the new value of Ldet, and comparing it to the initial
result with the unbiased background. We find that an overestimation of the background
biases the detection likelihood to lower values. We measure a ∼ 4% negative impact on
the calculation of detection likelihood for faint sources with DET_LIKE ∼ 5 and a 2.5%
negative impact on more clear sources with DET_LIKE ∼ 20 due to a 10% overestimation
of the background. We conclude that these effects have a minimal impact on the detection
and characterization of faint sources around the detection limit, and do not significantly
affect the study of more secure detections and the overall analysis of the population in the
catalog. We provide further details and figures in Sect. 2.6.

2.2.2 Catalog description
We summarize the simulations and source catalog statistics in Table 2.2. The catalogs
described above have been further cleaned because of the following reasons. The generation
of event files was not completed correctly because of numerical issues in 6 HEALPix fields
in the simulation, covering about 320 square degrees. These have not been considered in the
analysis presented in the rest of this work. In addition, an area of about 260 square degrees
around the southern ecliptic pole (RA∼93◦, DEC∼-66◦, where the exposure is maximal
due to the survey scan mode) has been masked in the eRASS1 simulation. The generation
of cluster events was not successful.
We focus on the extragalactic sky, masking the areas with galactic latitude |glat| < 10
deg. The final area taken into consideration corresponds to 17 703.4 square degrees for the
eRASS1 simulations.

Following the example of Liu et al. (2021), we merge simulated catalogs and source
catalogs according to the integer identifier (ID) of each photon. Every simulated count
has an ID that links it to the source that produced it. This method is more reliable than
simply matching the catalogs (input and output) with coordinates, because it uses the
origin of each simulated photon: a cluster, AGN, star, or the background. We summarize
the algorithm in the following paragraph.
First of all, we assess whether a detected source has a simulated counterpart or not. For
point (extended) sources detected by eSASS, we study the photons within aperture radii
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Abbildung 2.2: Examples of the eSASS catalog classification. Red (blue) solid circles show
simulated clusters (AGN). Magenta (cyan) squares denote extended (point-like) eSASS ent-
ries, like in Fig. 2.1. The dashed red circles enclose 0.5×R500c of a simulated cluster. Soft
X-ray photons from simulated sources are represented by black dots, the green ones come
from the background. The first (second) row shows examples for sources with DET_LIKE
= 10 (20). Columns show respectively: an extended detection uniquely assigned to a simu-
lated cluster, a secondary detection assigned to an input cluster, a point detection uniquely
assigned to an AGN, an extended detection uniquely assigned to an AGN, and a detection
without any simulated input. All panels have the same physical size. A ruler of 60 arcse-
conds is shown in the top-left one.
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of 20′′ (60′′). Their origin is stored in each photon ID. The entry in the source catalog
is associated with the simulated source that issued the largest number of photons in the
aperture radius. This assigns the ID of the simulated counterpart to the entry in the source
catalog. We call this ID_Any. One caveat is that the simulation contains a large number
of objects fainter than the eROSITA detection limit. Therefore, we only consider input
sources that have at least two photons emitted during the mock observation. In addition,
we set a lower counts threshold related to the local background counts, given by the counts
corresponding to the 0.8 percentile point of the Poisson distribution, whose mean is equal
to the number of background photons inside the given aperture radius.
Secondly, if an additional simulated counterpart is found, the one emitting the highest
number of photons is assigned to ID_Any. The secondary counterpart is saved as ID_Any2.
Finally, a simulated source can be split into multiple detected sources. This results in
copies of the same ID_Any. We select the detection where the simulated object provides
the highest photons count and consider a unique matching between the two (ID_Uniq). If
ID_Any does not refer to a unique counterpart, in cases where there are multiple entries
in the source catalog pointing to the same ID_Any, we use ID_Any2 if it is available. A
one-to-one matching between the simulated objects and the source catalog can be obtained
with ID_Uniq. We divide the source catalog into five classes using the IDs just assigned,
following the example of Liu et al. (2021).

1. Primary counterpart of a simulated point source (PNT): detected source assigned to
an ID_Uniq of an AGN or star. This is a secure point source detection.

2. Primary counterpart of a simulated extended source (EXT): detected source assigned
to an ID_Uniq of a cluster. This is a secure cluster detection.

3. Secondary counterpart of a simulated point source (PNT2): detected source without
an ID_Uniq, but assigned to an ID_Any of an AGN or star. This is a detection that
corresponds to a fraction of a simulated point source but is not its primary counterpart.
We refer to these as split sources corresponding to an AGN or star.

4. Secondary counterpart of a simulated extended source (EXT2): detected source wi-
thout an ID_Uniq, but assigned to an ID_Any of a cluster. This is a detection that cor-
responds to a fraction of a simulated extended source but is not its primary counterpart.
We refer to these are split sources corresponding to a cluster;

5. Background fluctuation (BKG): entry in the source catalog that is not associated
with an ID_Any. This is a false detection, due to a random fluctuation of the background,
and is classified as a spurious source.

The first two classes are additionally divided into three subclasses to study whether
the source emission is contaminated by a secondary source. To quantify this, we analyze
the photons within 60′′ around every input source (denoted as ID_1). If we find at least
three photons emitted by a source different than the target, and this number of counts is
larger than the square root of the target number counts, we consider the source emitting
such photons as contaminating. In this case, we save the ID of the contaminating source
as ID_contam to the ID_1 source. This allows separating isolated (not contaminated)
sources from clusters and AGN contaminated by another cluster and or AGN. These cases
potentially lead to source blending.
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Tabelle 2.2: Summary statistics of eSASS catalog for the eRASS1 simulation
eRASS1 simulation

AREA Class Full Clean
20 617.8 deg2 17 703.4 deg2

CLUSTER

EXT 44 440 38 636
EXT, LEXT>6 5204 4220

EXT2 8117 7300
EXT2, LEXT>6 177 148

AGN

PNT 708 735 574 733
PNT, LEXT>6 1653 1017

PNT2 2296 1843
PNT2, LEXT>6 9 3

STAR

PNT 85 004 49 380
PNT, LEXT>6 313 178

PNT2 561 361
PNT2, LEXT>6 1 1

BACKGROUND BKG 284 654 229 559
BKG, LEXT>6 374 48

TOTAL All 1 133 807 901 812
LEXT>6 7731 5615

Notes. The table reports the number of eSASS entries that are matched to a certain class of simulated
objects (cluster, AGN, star, background). The catalog contains all sources with DET_LIKE >= 5. Each
line shows different sources identified in the eSASS catalogs: the number of all matches (point-like and
extended), their subsample with EXT_LIKE >= 6 (Extended), the ones relative to secondary matches

(i.e., split sources, see EXT2 and PNT2), and the secondary matches that are classified as extended
(EXT_LIKE >= 6). The values in the second column include all the simulated tiles, the values in the

third one account for the additionally cleaning (see Sect. 2.2.2).

We summarize the simulations and source catalog statistics in Table 2.2.
We show different examples of classification of the sources in Fig. 2.2. The top left panel

(a) shows an example of a simulated cluster that is detected as extended with DET_LIKE
= 10. The position of the detection is well aligned with the position of the simulated
object. The dashed red circle encloses 0.5×R500c. The point detection in the center of the
panel (b) is assigned to the bright simulated cluster just below, but it is not the primary
detection, that is the extended one closer to the cluster center. This is the case of a split
source. The third panel (c) highlights a simulated AGN (blue circle) properly detected as a
point source (cyan square). The fourth panel (d) shows an example of contamination in the
extent-selected catalog: an AGN detected as an extended source. Finally, the fifth panel (e)
contains an extended detection without any simulated counterpart: a spurious source. In
this case, most of the photons around the detection are coming from the background. This
shows how background fluctuations end up decreasing the purity of the source catalog.
The second row of the figure (panels f, g, h, i, and l) shows the same type of objects, but
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with a higher value of detection likelihood equal to 20. We notice how the distribution of
photons around faint detected clusters or AGN and spurious sources is very similar.
We compare the eSASS source catalog from the eRASS1 simulation to real eRASS1 data
in Sect. 2.6.

2.2.3 Imaging and spectral analysis

We measure the temperature and luminosity of the simulated clusters detected as extended
in the eRASS1 simulation, assuming the value of R500c from the simulation. We compare
them to the simulated quantities. We focus on secure clusters detected with EXT_LIKE >
20, spanning different ranges of exposure without additional selection on the sky area. Our
approach is the same as the one described by Ghirardini et al. (2021a,b) and is summarized
in this section.

1. Source masking: for each extended detection uniquely matched to a cluster, we
mask every other source inside a circular region of 4 × R500c. For extended sources, the
masking radius is equal to the extent measured by eSASS. For point-like ones, it corre-
sponds to the point where the count rate convolved with the eROSITA PSF is consistent
with the background within 1σ. This value is fixed to 10 arcseconds when it is lower than
such threshold.
2. Background extraction and modeling: we use the srctool command to extract
the source spectrum in a circular region inside R500c and the background spectrum in a
circular annulus between 3 − 4 × R500c. We model these two spectra simultaneously with
the xspec software (v 12.10.1f, Arnaud, 1996), using C-statistic (Cash, 1979). The clu-
ster emission is fitted by APEC model (Smith et al., 2001) and the Galactic absorption is
modeled by TBabs (Wilms et al., 2000). The background model consists of a vignetted sky
component and an unvignetted particle-induced one. The first describes photons focused
by the telescope mirror and contains contributions from the Local Hot Bubble (apec), the
Galactic Halo (tbabs×apec), and faint unresolved AGNs (tbabs×power-law). The second
is due to instrumental effects and cosmic rays hitting the detector directly and is described
by a combination of power-laws and Gaussian lines (Liu et al., 2021). We fix redshift and
galactic column density to the simulated values and fit for temperature.
3. Surface brightness fitting: we proceed by measuring the cluster surface brightness in-
side R500c and fitting the density profile following Vikhlinin et al. (2006) model, convolved
with the PSF and projected onto the 2D image plane. The sky (particle) background model
is folded with the vignetted (unvignetted) exposure map and added to the total model. The
image is fit using the Monte Carlo Markov chain (MCMC) code emcee (Foreman-Mackey
et al., 2013). We integrate the fitted 2D profile along the line of sight to obtain the surface
brightness radial profile.
4. Luminosity: we finally convert the surface brightness radial profile to X-ray luminosity
using an absorbed apec model in XSPEC. Given the measured temperature of a cluster,
this provides the conversion factor from count rate to luminosity.
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2.3 Results
In this section, we present our main findings about the detection process. We start from
the point of view of the catalog of sources detected by eSASS. We refer to it as the source
catalog. We focus on the cleaned catalog, see Table 2.2 and Sect. 2.2.2 for complete details.
We give an overview of how the source catalog is populated by clusters, AGN, stars, and
spurious sources (Sect. 2.3.1). We then move to the standpoint of the simulated sources
and study which of them are detected. We demonstrate how the method is able to recover
clusters and AGN as a function of their simulated flux (Sect. 2.3.2, 2.3.3). We detail how
the detection of galaxy clusters depends on size and dynamical state.
We then combine these two points of view, quantifying the performance of the method
(completeness, contamination, and spurious fractions), also accounting for the uneven
depth of the survey (Sect. 2.3.4).
We study the sensitive area in the eRASS1 simulation as a function of limiting flux (Sect.
2.3.5) and finally verify that our measurement of the X-ray luminosity of clusters are com-
patible with simulated values (Sect. 2.3.6).

2.3.1 Population in the source catalog
We study the source population in the eSASS source catalog using fractions as a function of
different cuts in detection and extension likelihood, using the classes defined in Sect. 2.2.2.
We consider the full source catalog and the extent-selected sample (with positive values
of EXT_LIKE). The result is shown in Fig. 2.3. We report the fraction corresponding to
each class for different thresholds of detection and extension likelihood in Table 2.3. The
histograms of the total number of sources and the fractional histograms in linear scales are
collected in Sect. 2.7.

Full source catalog

The cleaned source catalog of the eRASS1 simulation contains 901 812 sources in total.
Among them, 5615 are classified as extended.

Fraction of point sources

The majority of the catalog consists of point sources, mostly AGN and a few stars. They
make up 93.8% of the catalog for detection likelihood larger than 10 in the eRASS1 si-
mulation. For detection likelihood greater than 25, this fraction increases to 94.1%. This
is driven by the predominant number density of the AGN population compared to other
sources. In the whole cleaned catalog, 574 733 entries are associated with an AGN.

Fraction of clusters in source catalog

In the eRASS1 simulation, clusters of galaxies only consist of about 4.3% of the whole
catalog for DET_LIKE > 5. Even when most of the false detections are removed, above
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Tabelle 2.3: Population in the cleaned eSASS source catalog for different cuts of detection
and extension likelihood.

eRASS1
CLASS, DET_LIKE > 5 > 6 > 7 > 8 > 10 > 15 > 25

PNT 69.214 80.087 86.830 90.717 93.850 94.843 94.056
EXT 4.285 4.615 4.718 4.715 4.635 4.779 5.698
PNT2 0.244 0.195 0.143 0.109 0.065 0.037 0.028
EXT2 0.810 0.749 0.661 0.568 0.437 0.298 0.217
BKG 25.448 14.355 7.648 3.891 1.014 0.042 0.001

EXT_LIKE > 6
CLASS, DET_LIKE > 5 > 6 > 7 > 8 > 10 > 15 > 25

PNT 21.282 21.292 21.253 21.201 21.212 20.513 18.807
EXT 75.156 75.299 75.452 75.634 75.951 77.175 79.763
PNT2 0.071 0.071 0.054 0.036 0.036 0.020 0.025
EXT2 2.636 2.624 2.614 2.589 2.456 2.096 1.405
BKG 0.855 0.714 0.627 0.539 0.346 0.196 0.000

CLASS, EXT_LIKE > 6 > 7 > 8 > 10 > 15 > 25
PNT 21.268 15.724 12.243 7.464 3.758 1.648
EXT 75.169 80.803 84.383 89.137 92.863 95.655
PNT2 0.071 0.042 0.024 0.029 0.042 0.000
EXT2 2.636 2.787 2.831 3.108 3.252 2.697
BKG 0.855 0.645 0.519 0.261 0.084 0.000

Notes. The five classes (PNT, EXT, PNT2, EXT2, BKG) are defined in Sect.2.2. The fractions are
reported in percentage units. The table is divided into three main quadrants. The first one describes the

full catalog for different cuts of detection likelihood. The second one focuses on the extent-selected
catalog (EXT_LIKE > 6) for different cuts of detection likelihood. Finally, the third one is about cuts of

extension likelihood.
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Abbildung 2.3: Population in the eSASS catalog. The total number of sources detected by
eSASS in the eRASS1 simulation (cleaned, see 2.2.2) is 1 133 807 (901 812). The number of
extended sources is 7731 (5615). Left-hand panel: Fraction of sources in the full catalog
as a function of minimum detection likelihood. Right-hand panel: Fraction of sources
in the extent-selected sample (EXT_LIKE >= 6) as a function of minimum detection
likelihood. Bottom panel: population in the source catalog as a function of minimum
extension likelihood. Lines of different colors show the classes defined in Sect. 2.2. The
dash-dotted lines denote sources that are not contaminated by photons of a secondary
source (no blending), the dashed ones identify sources contaminated by a point source,
and the dotted ones show sources contaminated by a cluster.

DET_LIKE = 25, this fraction remains low, at about 6%. This difference between the
fraction of AGN and clusters is driven by the intrinsic number density per square degree of
these sources. For example, we simulate 18 clusters per square degree with flux larger than
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10−14 erg/s/cm2. At the same flux value, the input AGN are 100 per square degree (see
Sect. 2.3.2). In addition, clusters need a larger amount of counts to be detected, especially
as extended, compared to point sources: their extended emission requires a larger exposure
to emerge over the background.

Fraction of spurious detections

A fraction of sources in the eSASS catalog is not matched to any input simulated object.
These spurious detections are due to background fluctuations, that mimic the emission of a
source. The detection likelihood encodes by definition the probability for each entry in the
source catalog of being a false detection, as explained in Sect. 2.2. However, the analytical
derivation does not account for additional effects during the measurement process. These
include uncertainty in the background estimation, errors in the PSF-fitting, or issues related
to hardware and calibration. Consequently, the false detection rate is larger than the one
predicted by Equation 2.3.
The fraction of spurious sources drops significantly while increasing the detection likelihood
threshold. We measure a spurious fraction of 25.4% for DET_LIKE > 5 and 14% for
DET_LIKE > 6. The false detection rate is further reduced to 4% at DET_LIKE > 8
and 0.001% for DET_LIKE > 25. Progressive cuts in detection likelihood are therefore
efficient in removing background fluctuations from the source catalog.

Fraction of split sources

Very bright and or extended input sources are possibly split into multiple detections. These
are the one marked as secondary matches (PNT2, EXT2) in our classification scheme (see
Section 2.2.2). The fraction of entries in the source catalog marked as a secondary match
to a point source (PNT2) is always under 0.5%. Clusters are instead slightly more easily
split into multiple sources, giving about 0.8% of entries cataloged as secondary matches
to an extended source (EXT2). Together with decreasing the spurious fraction, increasing
the DET_LIKE threshold gets rid of these low significance secondary detections, as this
fraction decreases to ∼0.2 % at DET_LIKE > 25. A total of 4627 clusters are split into
more than one (point or extended) source in the eRASS1 simulation. About 70% of these
are split into only two sources. Among the clusters that are split, the average number
of split sources is 2.76. We find that the number of sources into which a cluster is split
mainly depends on its flux, and secondary the size on the sky plane of the cluster itself.
For example, more than 90% of the clusters with R500c larger than 350 arcseconds are split
into multiple sources. However, only the brightest objects are split into a large number of
sources. A very bright and extended cluster with flux ∼ 10−11 erg/s/cm2 and R500c ∼500′′

is split into 24 sources by eSASS on average. There is one particular case of an extremely
bright and extended cluster (FX = 3.10×10−11 erg/s/cm2, R500c = 13.5′) in the pole region
that is split into 65 sources. These trends are highlighted in Fig. 2.4. The left-hand panel
shows the fraction of clusters that are split into multiple sources as a function of flux
and R500c. The average number of sources that a cluster is split into is displayed on the
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Abbildung 2.4: Number of split sources as a function of flux and R500c. The left-hand panel
shows the fraction of detected clusters that are split into multiple sources, the right-hand
one displays the average number of sources which a cluster with given flux and size is split
into. The blank spaces contain no input clusters.

right-hand panel.

Blends

We study the sources that are blended with a secondary one, according to the criteria
defined in Sect. 2.2 to find objects whose emission is contaminated by another object.
Most of the sources detected by eSASS are not contaminated by the emission of a secondary
nearby object. 92% of the detected point sources are isolated. This number for clusters is
94%. In the full cleaned catalog, about 4% of the population consists of point sources
contaminated by other point sources. This number increases to 6% for DET_LIKE > 10,
because of the drastic drop of spurious sources. For point sources contaminated by clusters
(i.e., detections whose primary match is an AGN or a star, but that contain photons
emitted by a cluster) this fraction reduces to 1%. About 7% of the clusters in the full
catalog are contaminated by other point sources. In such cases, the presence of the bright
AGN enhances the emission from a physical source and helps the detection algorithm in the
identification of a source at that position. The flux measured by eSASS for these sources
will be biased (see Bulbul et al., 2022). More detailed modeling of the cross-correlation
between AGN and clusters is required to reach conclusive statements about blending.
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Extended source catalog

We now focus on the extent-selected sample, selected by EXT_LIKE >= 6. This is the
minimum value of extension likelihood fixed by the choice of the parameter extlikemin = 6
(Sect. 2.2). Different values of this parameter impact the properties of the extent-selected
catalog. We detect a total of 5615 sources as extended in the full cleaned eSASS catalog of
the eRASS1 simulation.

Fraction of clusters

The eRASS1 extent-selected catalog is dominated in numbers by clusters of galaxies: 75.2%
of the eSASS sources are uniquely matched to a cluster, with a 21.2% point source con-
tamination. When increasing the detection likelihood threshold to 25, clusters make up
79.8% of the catalog. These numbers increase more significantly when cutting in extension
likelihood rather than detection likelihood. For EXT_LIKE > 25, 95.6% of the eRASS1
sources are clusters. This is partially related to the significant decrement of background
fluctuations, which is completely canceled at this value of extension likelihood. However,
the main contribution is given by the drop of AGN that are mistakenly classified as exten-
ded sources, which reduces contamination significantly. This fraction changes from 21.2%
for EXT_LIKE > 6 to 1.6% for EXT_LIKE > 25 in the eRASS1 simulation.

Fraction of AGN

The fraction of AGN in the extent-selected sample (EXT_LIKE >= 6) is constant at
around 20% as a function of detection likelihood cuts. Even for DET_LIKE greater than
25, it still reaches 18.7%. It means that progressive thresholds of detection likelihood are
not efficient in reducing the fraction of AGN detected as extended.
The contribution of detections that contain a fraction of point source signal (PNT2, split
point sources) is minimal in the extended select sample. It is well below 1% for any cut in
detection or extension likelihood. The fraction of entries classified as cluster signal (EXT2,
split clusters) is around 2.6% for eRASS1. Increasing the extension likelihood does not
have a significant impact on this number. This is due to the fact that the scaling of
these secondary matches with EXT_LIKE is more similar to the one of primary matches,
compared to the random background fluctuations. This is not true for cuts in detection
likelihood, which keep a higher number of AGN in the extent-selected sample, reducing
the relative contribution of both primary and secondary matches in the catalog. In fact,
by increasing the DET_LIKE threshold in the eRASS1 catalog from 5 to 25, the fraction
of secondary matches also drops from 2.6 to 1.4% for extended sources and from 0.071%
to 0.025% for point-like ones respectively.

Fraction of spurious sources

Random background fluctuations in the extent-selected catalog are efficiently removed
using different thresholds of DET_LIKE and EXT_LIKE. For the former, the spurious
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fraction drops from 0.85% to 0.34% for detection likelihood larger than 5 and 10. The
latter drops to 0.26% for EXT_LIKE > 10. There are no spurious sources above detection
likelihood larger than 25 and extension likelihood larger than 20 in the extent-selected
sample of eRASS1. The decrement of the false detection rate is steeper as a function of
EXT_LIKE cuts. It means that, on top of reducing contamination, extension likelihood
thresholds remove background fluctuations more efficiently than detection likelihood ones
in the extent-selected sample.

Blends

We study sources blended with another source in the extent-selected catalog (EXT_LIKE
>= 6). Focusing on the AGN that leak into the extent-selected sample, one can understand
what caused the misclassification. For the whole extended eRASS1 sample, 6% of the
catalog consists of AGN contaminated by another point source. This fraction is dominant
over the ones contaminated by a cluster (2.5%). However, when increasing the EXT_LIKE
threshold, the relation between these two classes changes significantly, to the point where
for EXT_LIKE > 40, all the detections assigned to an AGN by our matching algorithm
are actually blended with a cluster. Follow-up observations in the optical band have the
potential to confirm these clusters, which lowers our estimate of contamination in the
extended select sample due to bright point sources by ∼1%.

2.3.2 Simulated and detected sources
We now study which simulated sources are detected by eSASS. The detection process
mainly depends on the net count rate of each source. Bright sources with large flux values
provide a larger number of photons on the detector. Therefore, it is easier for the detection
algorithm to identify them, compared to fainter objects dispersed in the local background.
We investigate which simulated sources are detected by studying the number density as a
function of the input flux threshold for AGN in Sect. 2.3.2, and for clusters in Sect. 2.3.2.

AGN logN–logS

We measure the cumulative number of detected AGN per square degree as a function of
the input flux (0.5–2 keV band). We compare with the distribution of the simulated AGN
(Comparat et al., 2019), with the observations from Gilli et al. (2007) and Georgakakis
et al. (2008), and the collection from Merloni et al. (2012). The result is shown in the upper
panel of Fig. 2.5. At the high flux end, the different shapes of the function denoting eRASS1
and other samples are expected due to the AGN simulation method in HEALPix fields as
described in Sect. 2.1. It reduces the volume probed by the model and the total number of
the brightest AGN consequently decreases, but this method guarantees a significant gain
in computation time. Given our goal of studying the simulated objects that are detected,
this has no impact on our purpose. In the lower panel, we show the ratio between the
logN–logS built with the detected and simulated populations of AGN. Below the predicted
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Abbildung 2.5: Cumulative number density of the AGN population. Top panel: The blue
(orange) line shows the logN-logS built with the sample of detected (simulated) AGN. The
green, red, violet dashed lines show the distributions from Gilli et al. (2007), Georgakakis
et al. (2008) and Merloni et al. (2012). The brown and pink vertical lines locate the eRO-
SITA flux value where the ratio between the detected and simulated populations is equal
to 0.5 and 0.8, respectively. Bottom panel: Ratio between the logN-logS of detected and
simulated AGN. A black dashed line denotes a ratio equal to 1.0.
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eROSITA flux limits at ∼ 4×10−14 erg/s/cm2 for eRASS1 (see Merloni et al., 2012, Figure
4.3.1), the number density of detected AGN deviates from the simulated one (solid curves
depart from the dashed ones). Toward high fluxes, the number density of detected AGN
converges to the simulated one. The ratio between these two curves reaches a value of 0.5
at ∼ 2×10−14 erg/s/cm2 for eRASS1. These numbers rise to ∼ 3.5×10−14 erg/s/cm2 and
a ratio of 0.8 between the logN–logS of detected and simulated AGN. This is in excellent
agreement with the prediction of the eRASS1 sensitivity for point sources in the same
soft band 0.5–2.0 keV from (Merloni et al., 2012). The completeness of the source catalog
behaves smoothly as a function of flux and is in line with the expectations. We study the
completeness fraction of AGN in more detail and provide analytical fits in Sect. 2.8.

Cluster logN–logS

We study the cumulative number density of clusters as a function of the input flux. We de-
tect 0.1 clusters per square degree with flux larger than 4×10−13 erg/s/cm2 in the eRASS1
simulation. We detect all the clusters at the brightest flux end, as the ratio between the
logN-logS built with detected and simulated clusters reaches a value of 1.0 for the eRASS1
simulation. It is equal to 0.5 for flux values of ∼ 3×10−13 erg/s/cm2. For the same flux
limit, about 70% of the clusters with mass larger than M500c>3×1014 M⊙ are detected as
extended sources. A ratio of 0.8 is reached for flux values of ∼ 1.5×10−12 erg/s/cm2 for
eRASS1. These flux limit values are larger compared to the AGN ones. A different flux
limit is thus expected between the two populations. The extension of the cluster model
to galaxy groups allows a smooth transition between the faintest clusters that are not
detected and the ones above the survey flux limit. The detection method is able to fully
recover the bright end of the cluster sample. Around the flux limit, additional selection
effects, such as the cool core bias or the size of the object on the sky plane, influence the
detection process. In addition, at fixed simulated flux, due to their spatial extent, clusters
will be detected with a lower likelihood compared to a point source with the same flux.
We report the cumulative clusters number density as a function of flux in Fig. 2.6. In the
upper panel, we show the cluster logN–logS for eRASS1. The blue line denotes the detected
cluster population, while the orange line the simulated one. The green one adds a compari-
son to the eFEDS logN–logS (Liu et al., 2022). We additionally compare our result to The
SPectroscopic IDentification of eROSITA Sources observational program (SPIDERS, Clerc
et al., 2016; Finoguenov et al., 2020) denoted by the red dashed line, and the Extended
Chandra Deep Field South (ECDF-S, Finoguenov et al., 2015), indicated by the purple
dashed line. There is good agreement within these samples. The bottom panel shows the
ratio between the detected and the simulated populations. All clusters with high flux are
detected as extended. We present the challenges of the detection of extended sources in
Sect. 2.3.3.
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Abbildung 2.6: Cumulative number of clusters per square degree as a function of flux. Top
panel: The solid blue (orange) line shows the logN-logS built with the sample of detected
(simulated) clusters. The green dashed line shows the distributions of the eFEDS sample
(Liu et al., 2022), the red one denotes the SPIDERS sample (Finoguenov et al., 2020),
and the pink one the ECDF-S (Finoguenov et al., 2015). The brown and pink vertical
lines locate the eROSITA flux value where the ratio between the detected and simulated
populations is equal to 0.5 and 0.8, respectively. Bottom panel: Ratio between the logN-
logS of detected and simulated clusters. A black dashed line denotes a ratio equal to 1.0.
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Abbildung 2.7: Fraction of simulated clusters with a counterpart in the eSASS catalog as a
function of simulated soft X-ray flux. We do not apply any additional likelihood selection.
Each color identifies an exposure time range. Solid lines denote clusters only detected as
extended, while dashed ones include the ones detected as point sources.
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Tabelle 2.4: Different exposure and properties of the eRASS1 simulations.
eRASS1

Exposure Area [deg2] NCLU/deg2 Flux CLU 50% Flux CLU 80% NAGN/deg2 Flux AGN 50% Flux AGN 80%
< 110 s 6710 0.13 7.13×10−13 3.39×10−12 21.78 3.76×10−14 7.02×10−14

110 s – 150 s 4543 0.22 4.67×10−13 1.2×10−12 29.41 3.01×10−14 5.31×10−14

150 s – 400 s 6073 0.34 3.28×10−13 9.72×10−13 42.94 2.22×10−14 3.98×10−14

> 400 s 377 1.05 1.12×10−13 4.75×10−13 93.71 1.10×10−14 1.93×10−14

Notes. Each column denotes: exposure interval, Area covered with the given exposure, number density
of clusters detected as extended, flux limit where the completeness is equal to 0.5 for clusters detected as

extended, flux limit where the completeness is equal to 0.8 for clusters detected as extended, number
density of AGN detected as point sources, flux limit where the completeness is equal to 0.5 for AGN

detected as points, and flux limit where the completeness is equal to 0.8 for AGN detected as points.

2.3.3 Cluster completeness
The completeness is defined as the ratio between the number of detected and simulated
objects, see Eq. 2.5:

C = NDET

NSIM
. (2.5)

We measure the completeness of our source catalog as a function of the input flux in the 0.5–
2 keV band. We study areas in the sky covered by different depths. We expect to measure
higher completeness where the exposure is longer, which allows detecting a higher number
of clusters. We consider four exposure time bins in this work, defining shallow, medium,
deep, and pole regions. The respective intervals are < 110 s, 110 s – 150 s, 150 s – 400 s, >
400 s for the mock eRASS1. Such intervals are designed to identify three regions covering
roughly a similar area on the sky, and a fourth, smaller one that encloses the pole with large
exposure. Additional details are provided in Table 2.4. With this approach, we can quantify
the gain of detected clusters thanks to deeper observations. We show the result for eRASS1
in Fig. 2.7. The lines are color-coded according to exposure time intervals. The solid lines
show clusters of galaxies detected as extended, dashed ones additionally consider clusters
detected as point sources with EXT_LIKE = 0. Adding the latter population increases
completeness at a fixed value of flux. Focusing on the objects detected as extended, we
measure a completeness fraction of 0.5 at 3.3×10−13 erg/s/cm2 for regions around the
average eRASS1 exposure of about 275 s, denoted by the green solid line. This result is
comparable with previous predictions by Clerc et al. (2018), who measured a completeness
value of 0.5 at ∼ 5×10−14 erg/s/cm2 in equatorial fields with eRASS:8 depth of about 2.0
ks. The decrement of completeness in the 150 s – 400 s range is due to a merging system,
where only one eSASS detection with EXT_LIKE>6 is present. The latter is assigned to
one of the two clusters, the one providing most of the counts around the detection. The
second cluster is assigned to a nearby point-like detection instead. Adding the clusters
detected as point sources increases completeness. For the depth interval 150 s – 400 s in
eRASS1, the 50% completeness is reached at flux equal to 8×10−14 erg/s/cm2. There is a
flux difference of about 0.7 dex with the addition of this population.
The measure of completeness is positively correlated with exposure time. In the eRASS1
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simulation, the fraction of clusters with flux ∼ 5×10−13 erg/s/cm2 that are detected as
extended goes from 0.39 (exposure < 110 s) to 0.8 (exposure > 400 s).

Abbildung 2.8: Simulated and detected clusters population as a function of the input flux
and size on the sky. The figures refer to areas of the eRASS1 simulation covered by an
exposure between 150 s and 400 s. The blank spaces contain no input clusters. Left-hand
panel: number of simulated clusters in the flux–R500c space. Right-hand panel: fraction
of simulated clusters that is detected by eSASS, either as extended or point source. Bottom
panel: fraction of simulated clusters that is only detected as extended.

The increase in the number of detected objects between the shallow and deep regions
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is expected, but nevertheless remarkable. It translates into an increment of the number
density of clusters detected as extended with exposure time. In the former, we detect
and properly classify as extended 0.13 clusters per square degree (exposure < 110 s).
In the latter, such number increases to 1.05. Our result is in agreement with previous
works (Pacaud et al., 2006; Clerc et al., 2012, 2018). This only means that we recover a
larger number of simulated clusters in deep areas, not that the detection is necessarily more
efficient. A different fraction of spurious sources is also detected in areas with large exposure
because the background has lower fluctuations. Its overall level might be larger, but its
lower variability may also reduce the false detection rate. Such deep areas additionally
suffer from a higher degeneracy between blended point sources and proper extended ones,
as well as between AGN in clusters and cluster substructures, which has an impact on the
measure of contamination. A detailed discussion is presented in the next section 2.3.4. We
do a similar study for AGN and provide details and analytical fits in Sect. 2.8.

Completeness and apparent cluster size

We investigate the impact of the apparent physical size of the clusters on the sky on the
detection. This information is encoded in the critical radius R500c. We compare the number
of detected objects to the simulated one on a 2D grid of flux and R500c. Considering the
angular size of the cluster on the sky (e.g., in arcseconds) instead of its physical size (in
kpc) allows to additionally account for the impact of redshift, which makes distant massive
large clusters appear smaller than nearby ones with similar mass.
We find that the detection of extended sources is not solely a simple function of flux and
exposure time. At fixed flux and exposure time, the completeness varies as a function of
the size of the clusters on the sky. In the eRASS1 simulation, bright clusters with flux∼
1×10−12 erg/s/cm2, located in an area covered by exposure 150 s – 400 s, and R500c =
180′′ are detected as extended with a completeness of 0.75. The rest of these sources are
actually detected but misclassified as point sources. In fact, the completeness reaches a
value of 1.0 when adding the population of clusters detected as point-like objects. At the
same value of flux, for larger objects with R500c = 300′′, we measure a completeness of 0.84.
The characterization of extremely large clusters is also challenging, because these can be
split into multiple sources. In fact, the completeness decreases for large values of R500c,
above 400′′ and flux of 1×10−12 erg/s/cm2. As R500c increases, the surface brightness goes
down rapidly. Therefore these cases represent the population of clusters which are very
extended but with very low surface brightness, therefore they are harder to be detected.
This is shown in Fig. 2.8. It displays the number of the simulated clusters population in the
upper panels, the fraction of these objects that are detected as extended or point sources
in the central ones, and finally only the ones classified as extended in the lower panels. It
focuses on exposure intervals containing the average depth for our simulation, in the 150 s
– 400 s range for eRASS1. This figure confirms the trends of increasing completeness with
flux (see Fig 2.7). In addition, it demonstrates how the selection of extended sources is not
a simple function of flux and exposure, but also of the size the object on the sky, encoded
in our measure of R500c.
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Abbildung 2.9: Population of simulated and detected clusters as a function of the input
flux and dynamical state. The panels show areas of the eRASS1 simulation covered by
an exposure between 150 s and 400 s. The blank spaces contain no input clusters. Left-
hand panel: number of simulated clusters in the flux–EM0 space. Right-hand panel:
fraction of simulated clusters that is detected by eSASS, either as extended or point source.
Bottom panel: fraction of simulated clusters that is only detected as extended.
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Completeness as a function of the central emissivity

We study the impact of the clusters dynamical state on the detection. Such property is
related to the central cluster emission. In the simulations, we relate the emissivity in the
central region of the cluster to a parameter of the dark matter halo (Xoff) which encodes its
dynamical state. The offset parameter, Xoff , is the displacement between the halo center of
mass and its peak of the density profile (Klypin et al., 2016; Seppi et al., 2021). The negative
log10 of the central emissivity (EM0) is proportionally related to Xoff (see Comparat et al.,
2020, for more details). Dynamically relaxed dark matter halos (with low offset parameter)
host clusters with peaked emissivity profiles (cool cores with high central emissivity, and
low EM0 in this formulation). Conversely, disturbed halos (with large offset parameter)
host noncool core clusters with flatter emissivity profiles. We measure the completeness
fraction as a function of EM0 for clusters in different bins of flux (Fig. 2.9). This allows
quantifying the impact of the cool core bias, which makes the detection more efficient
toward clusters with a peaked emission in the core. We describe the results for the eRASS1
simulation in the following paragraph.
We find that clusters with low flux are hardly detected as extended. In this regime, where
few objects are detected, they are mostly characterized as point sources. About 25% of
the simulated objects with a flux of ∼ 3×10−14 erg/s/cm2, EM0 ∼ 5, and covered by an
exposure between 150 s and 400s are detected, but none of them is classified as extended.
At these low fluxes, we see evidence of the cool core bias. In fact, we detect only 7% of the
extremely unrelaxed simulated clusters with EM0 = 6 at this flux value, as the completeness
drops by a factor of ∼ 3.5 from relaxed to disturbed structures. The detection is generally
more efficient for brighter objects. 82% of disturbed structures (EM0 = 5.5) and flux ∼
3×10−13 erg/s/cm2 are identified by eSASS and 39% of them are characterized as extended.
In addition, in this regime the cool core clusters are still detected as extended sources. For
instance, at the value of EM0 = 5, every cluster brighter than ∼ 1×10−12 erg/s/cm2 is
properly classified as extended. There is a smooth transition between these two regimes:
85% of the extreme cool cores (EM0 = 4.5) with flux ∼1×10−13 erg/s/cm2 are detected, but
only 14% is identified as extended. Moving to the bright end of the flux distribution, the
sample becomes less affected by the cool core bias. Among the clusters with flux ∼ 1×10−12

erg/s/cm2, relaxed (disturbed) ones with EM0 = 4.5 (EM0 = 5.5) are detected as extended
in 100% (91%) of the cases. This transition is clear by comparing the central and bottom
panels of Fig. 2.9. They remark the different behavior of the completeness for simulated
bright cool cores between the clusters only identified as extended and the sample with the
addition of the point-like detections in the eRASS1 simulation. When including the clusters
detected as point sources (central panel), the population is skewed toward lower values of
EM0, especially at low flux. This effect is mitigated in the extent-selected sample (bottom
panel). We further discuss an explanation in Sect. 2.4.1. We conclude that the cool core
bias strongly affects only the faint clusters detected as point sources. Its impact on brighter
objects detected as extended is reduced. Our results suggest that a stricter selection focused
on bright eROSITA clusters with larger values of extension likelihood provides a sample
that is barely affected by the cool core bias. This is in agreement with Ghirardini et al.
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(2021a), who do not find a clear preference for cool core clusters in the extent-selected
eFEDS clusters, and Bulbul et al. (2022), who find steeper emissivity profiles and more
concentrated objects only within the sample of eFEDS clusters detected as point sources.

2.3.4 Detection efficiency

Abbildung 2.10: Efficiency of the eSASS detection for extragalactic sources in the eRASS1
simulation. The completeness is measured for simulated objects above the different flux
limits for each exposure interval defined in Table 2.4. Top panels: Detection efficiency for
AGN detected as point sources (EXT_LIKE = 0). The numbers denote DET_LIKE thres-
holds. Bottom panels: Detection efficiency for clusters. The numbers denote EXT_LIKE
thresholds. No additional cuts of DET_LIKE are applied. Left-hand panels: Comple-
teness as a function of spurious fraction. Right-hand panels: Completeness as a function
of contamination. Different exposure intervals are shown in different colors.

Different aspects come into play when evaluating the performance of a detection algo-
rithm. We quantify the ability to recover simulated sources, to properly classify them as
point-like or extended, and to minimize the false identification of background fluctuations.
The first one is completeness, that is the fraction of simulated objects with a given flux



2.3 Results 67

that have been detected, see Eq. 2.5. When measuring this number, we choose different
flux thresholds according to exposure time in the two simulations. We consider the same
depth bins described in previous sections (see Table 2.4). We work with exposure intervals
and flux values identifying the 50% completeness for clusters detected as extended from
Fig. 2.7, and the 80% completeness for AGN. These are also reported in Table 2.4. We use
these limits as thresholds and consider all the objects brighter than such values.
Secondly, one needs to account for contamination given by objects that should not be in
the catalog of interest. For instance, contamination in a cluster catalog is given by bright
AGN that are mistakenly classified as extended sources. This is measured by the fraction
of entries in the extended source catalog that are assigned to a simulated AGN or star. For
an AGN catalog instead, contamination is caused by faint and or cool core clusters that
are erroneously detected as point sources.
Finally, it is important to consider the false detections, that are entries in the source ca-
talog related to a random background fluctuation, not to a physical source. This causes a
fraction of spurious sources in the eSASS catalog. Contamination and false detection rate
are usually enclosed in the notion of purity. The purer a catalog, the fewer contaminants
and spurious sources it contains.
We combine these aspects in a single concept: the detection efficiency, which encodes the
completeness and purity of the source catalog. We measure completeness, contamination,
and the fraction of spurious sources in the eRASS1 simulation for different intervals of
exposure time, defined in Table 2.4. In addition, we account for different thresholds of
the detection and extension likelihood to cut the catalogs and study how they impact the
eSASS performance in terms of detection efficiency for AGN identified as point-like and
clusters of galaxies characterized as extended. We report our results in the next paragraphs.

AGN

Increasing exposure time allows detecting a fixed fraction of sources down to lower fluxes.
In the full catalog with DET_LIKE > 5, we measure similar values of the completeness
fraction in distinct exposure bins, thanks to the choices of different flux limits. The values
are larger than 90% for eRASS1. These numbers will depend on the given flux limit. Our
choice of the value where the fraction of detected AGN is equal to 0.8 leads to measuring a
higher completeness fraction when using such values as thresholds. In general, we measure a
lower fraction of spurious sources in areas with larger exposure. This is because even though
the total number of background photons is higher, their fluctuations are suppressed, which
results in a lower false detection rate. In the shallow areas, about 32% of the full source
catalog does not have a simulated counterpart and is classified as spurious. This number is
reduced to 13% in regions around the southern ecliptic pole with the deepest exposure. We
provide an analytical fit for the false detection rate as a function of DET_LIKE cuts and
exposure time in Sect. 2.8 (see Equation 2.10 and Table 2.6). Progressive cuts in detection
likelihood clean the source catalog from these false detections but reduce the fraction of
simulated AGN that are detected. Given our choices of flux thresholds, the completeness
drops from 94.4% (94.9%) to 82.4% (86.5%) from DET_LIKE > 5 to DET_LIKE > 10
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in the shallow (polar) region of eRASS1.
The fraction of clusters that leak into the point source sample is around 4%. A higher
detection likelihood cut of 20 reduces this contamination to 2.2% in shallow areas and 1.5%
in the pole, but this results in a significant loss in terms of completeness, which respectively
drops to 50% and 63%. At fixed completeness, we measure higher contamination in areas
with lower depth. This means that a larger exposure time is key to properly distinguish
AGN detected as point sources from clusters contaminating the point-like sample, that
should be classified as extended ones instead. All these trends are clear in the top panels
of Fig. 2.10. The left-hand one shows the fraction of detected AGN as a function of the
false detection rate. The lines are color-coded by exposure time and the dots and numbers
denote different cuts in detection likelihood. The right-hand panel displays the correlation
between AGN completeness and the fraction of clusters wrongly detected as point-like
objects.

Clusters

We perform a similar analysis for the population of clusters in the source catalog at different
cuts of extension likelihood. The choice of flux limits corresponding to the 50% completeness
in each exposure interval translates into completeness values of around 65% when using
them as thresholds. The qualitative efficiency trends are slightly different from the AGN
ones. For instance, we progressively measure a lower false detection rate from regions
with exposure lower than 110 seconds (1.5%) to the ones covered by 150s – 400s (0.6%).
However, the behavior of the spurious fraction in the pole region is different. In fact, it
increases from extension likelihood larger than 6 to 8 and then drops as expected. This
trend is related to the close interplay between the removal of false detections and bright
AGN that leak into the extent-selected sample. Progressive cuts in extension likelihood
are very effective for the latter case so that the number of spurious sources with respect
to the total increases from EXT_LIKE > 6 to EXT_LIKE > 8, but it still decreases
with respect to the number of real sources. Increasing to EXT_LIKE > 10 brings the
false detection rate to 0.5% in the shallow areas and 0.1% in deep regions. Together with
rejecting spurious sources, increasing EXT_LIKE thresholds are very effective in reducing
the fraction of contamination. The latter goes from about 30% for EXT_LIKE > 6 in the
pole region of eRASS1 to 4% at EXT_LIKE > 20. In regions covered by the average depth
of the survey, with exposure 150 s – 400 s for eRASS1, contamination goes from 23% to 1%
for the same extension likelihood cuts of 6 and 20. Deep regions suffer from contamination
more than shallower ones. This value goes from about 15% in shallow areas to 32% in the
pole region for eRASS1. This is due to the larger amount of bright AGN photons that can
be mistaken for extended objects, but also due to the higher chance of merging nearby
point sources into a single extended detection.
In eRASS1, we measure similar contamination of about 15% on shallow areas (< 110 s)
cutting the catalog with EXT_LIKE > 6 and the pole region (> 400 s) with EXT_LIKE >
10. The completeness is also close to 60% with these cuts. The average exposure of eRASS1
corresponding to roughly ∼ 275 s is included in the green curves. Cutting the catalogs at
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EXT_LIKE > 20 provides about 50% of the simulated cluster above the chosen flux
thresholds, with 2% contamination, and a null false detection rate in eRASS1.
The completeness-spurious fraction and contamination curves for clusters are shown in the
bottom panels of Fig. 2.10. The figure is color-coded according to the exposure time. It
highlights the results described above. Progressive EXT_LIKE cuts of 6, 8, 10, 15, 20, and
30 are written as text.
These are key steps toward selecting a sample of clusters of galaxies to measure cosmological
parameters with eROSITA, which has to be as pure and complete as possible. We discuss
an alternative way of characterizing clusters of galaxies using the maximum signal-to-noise
radius (srcRAD) in Sect. 2.9.

2.3.5 Sensitivity
We compute the sensitivity maps for point sources in each simulated tile, using the apetool
task, part of the eSASS chain described in Sect. 2.2. The sensitivity map is related to the
probability of identifying a detection in a given energy band and at a given position on
the detector. Our sensitivity maps are given in units of counts. These values depend on
the Poisson false detection probability, which is defined as the probability of detecting
photons generated by a random background fluctuation inside a radius of a given value as
a source. We set this threshold to a standard value of P = 4×10−6, which corresponds to
DET_LIKE∼12 (see Equation 2.4). We consider apertures enclosing a local PSF encircled
energy fraction equal to 60% (Brunner et al., 2022). Given the definition of detection
likelihood (Sect. 2.2), these two quantities are related by DET_LIKE = -ln(P). The final
sensitivity map depends on the estimated background map, the detection mask, and the
exposure map. Additional details are provided by Georgakakis et al. (2008). For each
simulated tile in the simulation, we obtain the lower count rate detection threshold by
dividing sensitivity and exposure maps. We convert to flux by dividing the count rate by
the energy conversion factor (ECF) in the soft X-ray band between 0.2 and 2.3 keV. The
ECF is computed following Brunner et al. (2022), with an absorbed power-law model of
slope equal to 2.0 and varying galactic absorbing column density (nH) equal to the average
value in each tile. It is equal to 1.074×1012 cm2/erg for an nH value of 3×1020 cm−2.
The result is the survey flux limit in areas of the sky covered with different exposure. We
compute the cumulative distribution function of the flux limit for each tile and normalize
it by the unique area covered by the sensitivity map. We sum up such quantity for all
the simulated tiles. The result is the Area covered by the simulated first eROSITA all-sky
survey as a function of limiting flux.

We show the normalized survey area in figure 2.11. It displays the area curve for the
eRASS1 simulation and a comparison to the eRASS:8 sensitivity prediction from Merloni
et al. (2012). The dashed orange line is an extrapolation of the eRASS:8 prediction to
the depth of eRASS1, obtained by re-scaling the curve to the predicted eRASS1 limiting
flux (see Table 4.4.1 in Merloni et al., 2012), and multiplying by an additional factor of
1.403, converting the flux of an ideal absorbed power-law AGN model with NH = 3×1020

cm−2 and photon index Γ = 1.8 from the 0.5–2.0 keV band to the 0.2–2.3 keV one. The
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Abbildung 2.11: Simulated eROSITA fractional survey area as a function of flux limit. The
eRASS1 simulation is denoted by the blue line, the prediction by Merloni et al. (2012) for
eRASS:8 is shown in orange. The dashed line denotes an extrapolation of the eRASS:8
prediction to the depth of eRASS1.
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agreement between the prediction and our measurement at the faint end is excellent. An
offset at larger fluxes is expected because the former is based on an analytical derivation
of the Poisson probability for false detections (see Sect. 4.3.1 of Merloni et al., 2012). A
number of assumptions are taken into account to compute the final sensitivity, related to the
background, the foreground absorption, and the exposure. Moreover, a further contribution
is given by different Poisson probability thresholds, equal to 3×10−7 against 4×10−6 for this
work. Our measure using the sensitivity maps computed by eSASS additionally accounts
for a diverse and more realistic treatment of the X-ray background, as well as the true
exposure derived from the real eRASS1 scanning process. This allows accounting for the
nonuniform depth of the survey, compared to the prediction that is carried out at a fixed
exposure equal to the average value for eRASS1 and does not include the higher sensitivity
in deeper regions. This causes the difference between our measure and the prediction at
the bright flux end. We find that 50% of the area is covered with a flux limit of 4.7×10−14

erg/s/cm2 in the 0.2–2.3 keV band in the eRASS1 simulation.

2.3.6 Imaging and spectral analysis
We measure temperature and X-ray luminosity for a subsample of randomly selected clu-
sters that have been detected as extended by eSASS. Our approach follows Ghirardini
et al. (2021b) and is described in Sect. 2.2.3. This sample spans a wide range of exposure
times, from equatorial shallow regions to deeper ones close to the southern ecliptic pole. It
consists of 873 objects. In order to test our measurements, we compute a weighted mean
of the measured luminosity in input luminosity bins with 0.1 dex width. We use weights
that are equal to the inverse of the uncertainty on the value of measured X-ray luminosity.
The result is shown in Fig. 2.12. The blue shaded area shows the average value of the re-
covered X-ray luminosity, enclosing the LX standard deviation in each bin. This is always
compatible with a perfect one-to-one relation, shown by the orange dashed line, and with
a linear fit5 in the form of log10LX,M = m log10LX,SIM + q, denoted by the green dashed
line. The lower panel displays the residual plot.
We notice that the residuals of the linear fit slightly shifts from negative to positive values
for increasing luminosity. The slope of the linear relation is m = 1.026±0.001. First of all,
the fit of the density profile for faint clusters is more challenging, because they provide a
lower amount of counts than bright objects. In addition, the temperature spectral fitting
also requires a larger amount of photons to be precise. For fainter objects, this makes the
conversion factor between count rate and luminosity more uncertain. This effect is partially
mitigated by the fact that system with lower luminosity show also on average a lower gas
temperature. These systems have more emission lines and a bremsstrahlung cutoff at a
photon energy with high effective area, which partially reduces the number of counts nee-
ded to ultimately measure the temperature. The combination of these two factors biases
the recovered X-ray luminosity toward lower values. The scatter slightly shifts toward po-
sitive values for luminous clusters. Bright structures are more probable to be extended on

5https://scipy.org/ (Virtanen et al., 2020)

https://scipy.org/
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Abbildung 2.12: Measure of X-ray luminosity. Top panel: Comparison between average
values of measured X-ray luminosity as a function of input ones. The blue shaded area
encloses the average measured luminosity within 1σ uncertainties. The dashed orange line
shows a perfect one-to-one relation. Lower panel: Residual plot normalized by the input
luminosity.
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the sky, which increases the total net count of events that are not generated by the cluster
itself but are potentially considered in the surface brightness fitting. This happens if point
sources or other extended sources are not properly masked or if the background is not
perfectly modeled. An additional component of the scatter in the relation between simu-
lated and measured X-ray luminosity is given by bright nearby clusters. For these objects,
the background extraction region is very large and can span areas with nH fluctuations.
This may bias the temperature measure and ultimately the X-ray luminosity. These are
all minor effects that do not affect our results on average. We find an excellent agreement
between the input luminosity values and the measured ones.

2.4 Discussion
In the following section, we further discuss the importance of a proper characterization of
source samples in the eROSITA surveys, and different strategies to build cluster samples
for eRASS1.

2.4.1 Biases of the survey sample properties
Understanding the properties of large samples of sources from surveys such as eROSITA is
crucial to exploit their scientific potential to the fullest. Accurate and precise detection and
classification of sources in astronomical surveys is, therefore, an essential task. A multitude
of factors make the process complex: the nature of the sources themselves, the characteristic
of the telescope, and the detection pipeline. In general, it is important to understand and
quantify the causes of errors and misclassification.
For instance, fluctuations of the X-ray background are potentially detected and classified as
a source by eSASS. In this context, a biased measure of the X-ray background impacts not
only the number of false detections, but also the detection likelihood of identified sources,
because photons emitted from a source might be mistaken for background photons, or vice
versa. An accurate estimate of the false detection rate is crucial to assess the fraction of
spurious sources in a given sample. We showed that this can be achieved with realistic
end-to-end simulations, identifying entries in the source catalog that are not matched to a
simulated counterpart.

Another key factor is the contamination in the extent-selected sample (see Fig. 2.3).
It is important to figure out why it occurs and how it can be reduced. Contamination is
caused by different aspects. The main contribution is given by bright point sources, that
are classified as extended. In the cleaned eSASS catalog of our simulation, 1017 extended
detections are assigned to a simulated AGN, about 18% of the total extent-selected cata-
log. Secondary effects include close pairs of bright AGN, that can mimic the emission of
an extended object when the detection algorithm is not able to resolve and disentangle
the point sources. 446 among the 1017 AGN detected as extended are contaminated by
another point source in our simulation (see Sect. 2.2.2). In addition, bright nearby stars
can appear extended on the sky, further contaminating the cluster sample. 178 extended
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detections are assigned to a star in the cleaned catalog of our simulation. Areas around
bright known stars from the optical band can easily be masked in the real survey, which
minimize the contamination due to stars. This effect is even magnified in areas with deep
exposure, where random background fluctuations have a higher chance of being identified
as an extended source. We find a total of 48 extended false detections.
Such cases end up in secure extended detections with large values of DET_LIKE, which
explains why choosing extremely high thresholds of detection likelihood do not lower con-
tamination. Instead, a cut in EXT_LIKE is needed to reduce the contamination due to
point sources in the extent-selected catalog. This is clear in the bottom panel of Fig. 2.3. It
is possible to argue that a direct comparison of the population in the catalog after cutting
at the same value of extension or detection likelihood is misleading, due to the intrin-
sic difference between them. In particular, EXT_LIKE has typically smaller values than
DET_LIKE for extended detections. In the extent-selected sample, the 0.25, 0.5, 0.75, and
0.90 quantiles for EXT_LIKE (DET_LIKE) are 7.95 (22.69), 12.05 (37.19), 22.85 (65.22),
41.35 (114.99). For instance, if we focus on the 0.5 quantile, the AGN contamination is
equal to 4.6% for EXT_LIKE = 12.05 and to 18.2% at DET_LIKE = 37.19. Therefore,
we still conclude that applying extension likelihood cuts is a more efficient way of decrea-
sing contamination. In observations, this can also be solved by a multiband approach, for
example doing an optical follow-up of extended X-ray sources (see Salvato et al., 2022, for
an example). This allows keeping all the cluster candidates in the catalog, that has the
highest possible completeness. In a second step, one can look for overdensities of red gala-
xies around each X-ray detected cluster. If there is evidence of a red sequence, the cluster
will be confirmed (see Finoguenov et al., 2020, for an example). Otherwise, the catalog will
be cleaned from a spurious or contaminating source, increasing the purity of the sample,
while keeping the completeness level unchanged. This is a key ingredient toward precision
cosmology with X-ray-selected clusters (Ider Chitham et al., 2020).
With optical follow-up observations, one can not only find contaminating point sources clas-
sified as extended but also identify real clusters of galaxies that are misclassified as point
sources (Green et al., 2016; Bulbul et al., 2022). Understanding why extended sources are
classified as point-like ones is key to correct this bias and properly characterize as many
clusters as possible. A cluster ends up classified as a point source because of different rea-
sons. The first one is brightness. These are usually faint objects, whose extended emission
at the outskirts struggles to emerge over the local background. The second one is related to
their cores. Clusters with a peaked emission in the center are possibly mistaken for point
sources. In fact, we find that clusters with low flux and cool core are detected as point
sources (see Fig. 2.9). Furthermore, high redshift clusters, even if intrinsically bright and
extended, cover a tiny area on the sky, possibly smaller than the PSF of the telescope.
Finally, clusters of galaxies hosting an AGN are potentially dominated by the emission of
the latter. All these cases give rise to contamination and or misclassification for clusters
of galaxies that leak into the point source sample. A purer cluster sample affected by less
systematics may be obtained by a detection algorithm that excises the core region. This
is because the cluster’s outskirts have been shown to evolve in a self-similar way, with low
scatter (McDonald et al., 2017; Käfer et al., 2019; Ghirardini et al., 2019). A more direct
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definition of the sample in terms of cluster mass is therefore achievable this way. This idea
was implemented in clusters studies by Vikhlinin et al. (1998). A recent implementation
is described by Käfer et al. (2020), where the X-ray images are filtered by a series of spa-
tial wavelet filters with different scales, which allows isolating the extended emission from
galaxy clusters. However, such a method requires a larger amount of counts to detect a
cluster, which lowers the completeness of the sample.
The misclassification and contamination of clusters are additionally relevant for AGN.
Simply selecting AGN from the point-like catalog means missing the bright objects that
are mistakenly classified as extended, and accounting for faint clusters contaminating the
point source catalog. However, we showed that this can be addressed by estimating com-
pleteness and contamination from realistic simulations, which provides the fraction of false
detections, the contaminants, and the sources missed by the detection scheme according
to desired selection criteria.

Completeness purity trade-off

Perfectly complete and pure samples of sources are ideally desired for astrophysical and
cosmological studies. This means that, above the flux limit for a given experiment, a
perfectly efficient detection and selection scheme should provide all the physical sources,
making the source catalog as complete as technically feasible, identifying also very faint
objects. Depending on the scientific application, it should also produce a catalog contai-
ning only the sources of interest, making the sample as pure and clean as possible. This
means minimizing the rate of false detection: background fluctuations that are classified as
physical sources. The concept of purity also includes contamination. For instance, in the
extent-selected sample contamination is caused by bright AGN or stars, which should be
classified as point sources instead. The number of such objects should also be minimized.
The concepts of completeness and purity are closely related: maximizing the first means
pushing the limits of the algorithm, and trying to identify the faintest physical objects.
These are easily mistaken for random background fluctuations, which ultimately ends up
costing a higher fraction of spurious sources in the final catalog.
In the context of the eROSITA surveys, the trade-off between completeness and purity is
affected by various parameter choices made to select clusters. Different extension likelihood
cuts are an example. Choosing a very low threshold will keep the catalog complete on the
one hand, but on the other, the risk of introducing AGN in the catalog is higher, which
increases contamination. Instead, higher likelihood thresholds will give a cleaner sample,
at the cost of reducing the fraction of detected objects. This is evident in Fig. 2.10, where
progressive EXT_LIKE cuts degrade completeness, but improve purity, reducing the false
detections and contamination. We stress that our choice of various flux limits for different
exposure times guarantees a comparable benchmark between areas covered by varying
depth.
Different choices regarding the parameters characterizing the source catalog should be ta-
ken according to the specific scientific goal. For example, if the goal is to work with a
secure catalog from the start, higher thresholds should be chosen. This will minimize the
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spurious sources and the contamination, making such cluster sample pure. However, the
completeness will also be reduced. Instead, if the goal is to select the highest possible
number of clusters at first, a very low EXT_LIKE limit is best. Such studies may in-
volve the evolution of the luminosity function. A secondary step might then be required
to clean the catalog, for example with multiwavelength observations such as an optical
follow-up, allowing the confirmation of cluster candidates if there is evidence for a galaxy
red sequence. This approach allows reducing contamination thanks to the multiwavelength
information, while keeping the completeness level high, because no additional X-ray se-
lection is applied. It also makes the cluster sample more secure, because it probes two
distinct properties: the intra-cluster medium through X-rays, and the galaxy members in
the optical and infrared bands. Samples defined in this way are particularly suitable for
cosmological experiments. In this context, it is important to model the contamination and
completeness levels together. For example, Aguena and Lima (2018) quantified the bias
on the measure of cosmological parameters due to the imperfect modeling of completeness
and purity in a cluster count experiment. They assumed a DES-like survey and found that
a proper description of completeness and purity is key to measure unbiased cosmological
parameters without degrading the constraining power especially when including low-mass
clusters. A detailed description of the cluster selection (see Fig. 2.10) is therefore essential,
since eROSITA will discover many new low-mass clusters and groups. Finally, other stu-
dies such as clustering may require a sample of objects contained in a well-defined volume.
These can be constructed by rejecting faint and distant sources (see Sect. 2.4.2).

Impact of source size and cool core bias

Given the morphological complexity of clusters of galaxies, their detection is not a simple
function of flux and exposure time.
For example, it has been shown that the size of the cluster on the sky does have an impact
on the identification (Pacaud et al., 2006; Burenin et al., 2007; Clerc et al., 2018). On the
one hand, the detection algorithm can easily detect bright nearby clusters and characterize
them as extended. On the other hand, high redshift clusters, even if bright and large, may
cover an area on the sky that is close to or smaller than the telescope PSF. The same holds
for nearby groups with very low mass. Such objects are easily mistaken for point sources
in the detection process. This makes the detection of clusters more complex. In Fig. 2.8,
we show that the fraction of clusters detected as extended is not only a function of flux
and exposure, but it additionally depends on the size of R500c on the sky, even fixing the
former two variables. This effect is more visible for clusters with a smaller radius, whose
extended emission struggles to emerge over the background, compared to larger clusters
with a similar flux. These objects are actually detected by eSASS, but classified as point
sources, as expected.
Furthermore, the dynamical state of the clusters plays a role in the detection and classifi-
cation. Dynamically relaxed structures had time to develop an efficient cooling toward the
central regions, which enhances their central X-ray emission, resulting in a peaked surface
brightness profile. This makes it easier for these types of objects to emerge over the back-



2.4 Discussion 77

Tabelle 2.5: Number of clusters in the volume-limited and flux-limited samples for areas
covered with different depth.

Number of clusters
Exposure [s] Volume-limited Flux-limited

DET SIM DET SIM
> 0 262 282 734 893

> 110 349 392 829 1044
> 150 361 414 752 992
> 400 80 100 146 200

ground and biases the detection toward them. This is the notion of cool core bias (Eckert
et al., 2011). However, clusters with a peaked profile can resemble the emission from a
point source. In such cases, the peaked emission toward the central regions dominates over
the tail at larger radii. This is not easily identified by eSASS, which ends up classifying
the cluster as a point source. The net effect is that the detection is biased toward cool core
clusters, but they might be easily misclassified as point sources.
The link between this effect, the exposure time, and the background has a significant im-
pact on the detection process. On the one hand, a large exposure for a cool core cluster
makes the large ratio between photons from the core and photons from the outskirts more
clear over the background, making them look more similar to point sources than analogous
objects covered by a shallow exposure. This will increase the probability to misclassify such
clusters as point-like objects. On the other hand, with increasing depth the signal-to-noise
ratio of the cluster outskirts will increase relative to the local background. In principle,
a more accurate estimate of the background is also possible in this regime, thanks to the
lower variability. These aspects should instead help the identification of clusters as exten-
ded. The characterization of the cool-core fraction in a cluster population also depends
on the selection of the sample. Ghirardini et al. (2021a) measured the dynamical state
of eFEDS clusters combining a set of quantities (such as concentration, central density,
photons asymmetry, ellipticity) and did not find a prominent cool-core bias on the extent-
selected sample. More detailed simulations at deeper exposures (e.g., eRASS:8) are needed
to investigate this topic. Nonetheless, most of the brightest clusters are properly identified
as extended (Fig. 2.9). We conclude that the eSASS algorithm minimizes the impact of the
cool core bias on the vast majority of the sample of clusters detected as extended sources.
It mostly affects the low-flux clusters, where only the cool cores are detected, but classified
as point sources.

2.4.2 Construction of volume-limited samples
In the context of cosmological experiments, a well-defined sample of galaxy clusters is
crucial. The eROSITA all-sky surveys naturally produce samples that are mainly flux-
limited. Such samples are made up of clusters that reach the survey flux limit, which mainly
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Abbildung 2.13: Selection of a volume-limited cluster sample in the eRASS1 simulation.
Top panel: sky map with the cluster population in areas covered by different depth. Areas
0, 1, 2, and 3 respectively cover regions with exposure larger than 0 s, 110 s, 150 s, and
400 s. They are cumulative areas with respect to the ones defined in Table 2.4. Bottom
panels: population of simulated and detected clusters in the luminosity–redshift plane.
The black dashed lines denote the chosen flux threshold at each depth (see Table 2.4).
The red dashed lines locate different areas above the given flux limits. The volume-limited
sample is constructed with the objects within the regions delimited by these lines.
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Abbildung 2.14: Comparison between the volume-limited and flux-limited samples built
with clusters detected as extended and simulated ones. The top panels display the volume-
limited samples, the bottom panels show the flux-limited ones. Left-hand panels: relative
contribution to the total cluster number density as a function of redshift for the four
different populations. The lower plot shows the ratio between the N(z) built with the
samples of detected and simulated clusters. Right-hand panels: relative contribution to
the total cluster number density as a function of mass for the four different populations.
The lower plot shows the ratio between the N(z) built with the samples of detected and
simulated clusters.
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depends on the telescope sensitivity and the scanning strategy. Therefore, a higher number
density of objects is detected at low redshift and luminosity, compared to the high-z regime
where only the brightest sources are detected. In addition, given that the sky coverage by
eROSITA is not uniform in terms of depth, fainter objects can be detected in deep areas
with a higher probability. Therefore, the source catalog will have different properties in
regions with different exposure. These differences can be mitigated by building volume-
limited samples, made up of clusters with a given set of properties inside a well-identified
volume, that is encoded in the choice of the maximum distance (or redshift) up to which one
is interested to build the sample. Then, in order to obtain an unbiased sample of objects,
one can only consider sources whose luminosity is larger than the value corresponding to
the flux limit at the chosen redshift. This provides a sample with a constant distribution of
the number density as a function of redshift. Practically, a volume-limited sample is built
from a flux-limited one by getting rid of the sources that are less luminous than a given
threshold and further away than a certain distance (or redshift). The relation between
these values of luminosity and redshift is set by the flux limit of the survey (see Eq.2.6),
where dL denotes the luminosity distance, that depends on redshift:

F = L

4πd2
L(z) . (2.6)

Within such ranges of luminosity and redshift, a selection function built from simulations
is less uncertain and allows unbiased results in cosmology experiments. A volume-limited
sample provides an even sampling of the large-scale structure, accounting for the observa-
tional limits of the survey.
Because eROSITA does not cover the sky with a uniform depth, we build different volume-
limited samples applying higher flux limits in areas with lower exposure. We use z = 0.1
as the lower redshift boundary and consider the exposure intervals and flux limits corre-
sponding to 50% completeness defined in Table 2.4. We account for the K-correction in the
relation between flux and luminosity (Equation 2.6). It guarantees that the flux is always
measured in the same energy band for clusters at different redshift. We start by considering
all the clean extragalactic eROSITA_DE sky (see Sect. 2.2.2) and applying the largest flux
limit, identifying the 50% completeness in the shallowest areas of the survey. We proceed
by reducing the area, gradually excluding shallower regions, and applying deeper flux cuts.
The result is shown in Fig. 2.13. The first panel shows the cluster population in areas cover-
ed by a different exposure, that have been used to construct the volume-limited samples.
The other four panels show how simulated (in blue) and detected clusters (in orange) po-
pulate the luminosity–redshift plane. The black dashed lines denote deeper flux limits as
the area shrinks. The red dashed lines locate regions of this plane where the clusters are
luminous enough to be above the flux limit at a given redshift. The volume-limited samples
are finally built by considering the clusters inside the areas identified by these lines. Table
2.5 reports the number of clusters in the volume-limited samples and the corresponding
flux-limited ones.
This method provides a collection of clusters detected as extended sources that are an even
subsample of all the simulated clusters within the same ranges of luminosity and redshift.
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This is shown in Fig. 2.14. The two top panels show how the volume-limited samples built
with clusters detected as extended (dashed lines) compare to the one made up of simu-
lated clusters (solid lines). The plot is color-coded according to the exposure time. The
relation between the two samples in terms of redshift and M500c is shown in the right-hand
and left-hand panels, respectively. The bottom panels show the corresponding flux-limited
samples. The ratio between the number density distribution of detected and simulated
clusters as a function of redshift is roughly constant for the volume-limited samples, and
the majority of clusters with masses down to M500c ∼1014M⊙ within our selection are de-
tected. This means that our method has the potential to identify a cluster sample that
provides an even sampling of the large-scale structure at different redshift and exposure
time. The same trends of the cluster number density as a function of mass and redshift
for the flux-limited samples are qualitatively similar. For the second one, the completeness
is lower compared to the volume-limited case, because the cuts in luminosity and redshift
exclude clusters that are close to the flux limit and have a lower probability of being de-
tected. Using the full flux-limited sample to measure cosmological parameters maximizes
the number of clusters, but a robust selection function around the upper redshift limit
of the survey is required. The advantage for the volume-limited samples is that they are
contained in a well-defined cosmological volume. This potentially makes the definition of
the survey volume less uncertain in a cluster counts cosmological experiment.

2.5 Extension of the model to galaxy groups
In this section, we provide further details about the extension of our improved cluster
model to lower masses (see Sect. 2.1), comparing it to the eFEDS cluster sample. Along
with the (Anderson et al., 2015, AN15) correction using stellar mass, we also tested an
improvement exploiting the X-ray luminosity - halo mass relation, following Le Brun et al.
(2014) (LB14). Such correction reads:

log10 Lx,(0.5−2.0keV) = 2 log10 M500c + 14.5. (2.7)

This correction gives a shallower slope in the cluster logN–logS (see Fig. 2.6) than AN15.
AN15 provides a better agreement to observations than LB14, especially at low luminosities
< 1×1043 erg/s. LB14 underestimates observed values by a factor of ∼ 2 at 1×1042 erg/s.
AN15 provides a great correction for the X-ray luminosity to stellar mass relation by
construction, while LB14 does not align well with observations. The same holds for the
X-ray luminosity to temperature relation. The AN15 version gives excellent agreement to
eFEDS data for low luminosity clusters. The Lx–Tx relation obtained from LB14 is too
steep. We ultimately choose the AN15 correction over LB14, as it produces a logN–logS
and scaling relations that align better with observations (see Fig. 2.15). The prediction
of the LX–M500c relation is slightly underestimated at the high mass end compared to
data, see Fig. 2.15. This makes our approach conservative, since the most massive and
luminous objects are detected more easily, see also Fig. 2.7. On the other hand, the fact
that observations suffer from the Malmquist bias at the low mass end possibly affects our
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Abbildung 2.15: Improved cluster model. Left-hand panel: Number density of sources as
function of flux. The solid orange (red) line shows the prediction of the model before (after)
applying the correction. The shaded areas in blue, orange, and red denote the logN–logS
from Finoguenov et al. (2007, 2015, 2020). The green and blue lines show a comparison
to Le Brun et al. (2014) and Liu et al. (2022). The dashed pink and brown lines denote
the model corrected for higher mass thresholds. Right-hand panel: Relation between
X-ray luminosity and mass. The blue (orange) shaded area shows the prediction of the
model before (after) applying the correction. The green shaded area denotes the relation
from Le Brun et al. (2014). Additional samples are shown by blue circles (Lovisari et al.,
2020), orange circles (Adami et al., 2018), green squares (Lovisari et al., 2015), red circles
(Schellenberger and Reiprich, 2017a), pink stars (Bulbul et al., 2019), and brown squares
(Mantz et al., 2016).
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Abbildung 2.16: Surface brightness profiles of the simulated clusters. The radius is nor-
malized to R500c. The solid lines show the average profile, the shaded areas denote the
1σ scatter around the mean. The dashed lines show the best-fitting beta model for each
average profile.

correction using AN15. Nonetheless, the addition of the eFEDS cluster sample shows the
ability of the model to reproduce observations also in the regime of galaxy groups.
We verify that the shape of the cluster profiles generated with the new model is on average
compatible with a beta model. We measure the radial profile of events generated by three
samples of 100 simulated clusters with masses of 2×1013, 5×1013, and 3×1014 M⊙ as a
function of R500c. We fit each one of them with a beta model (see Sect. 2.2). The result
is shown in Fig. 2.16. The solid lines show the average surface brightness profile for each
one of the three samples, the shaded areas denote the 1σ scatter around the mean value.
The dashed lines denote the best-fitting beta model to each average profile. We fix β=2/3,
leaving the core radius as a free parameter. This is the same assumption taken by the
ermldet task (see Sect. 2.2). The agreement between the average profile and the beta
models is good. Even if the profile of a single object can significantly deviate from a beta
model, our model generates profiles that are on average compatible with the assumptions
taken by eSASS in the source detection chain.

2.6 Comparison to data
We compare the source catalog of the eRASS1 simulation to the one obtained by processing
the real data with the same eSASS set-up, described in Sect. 2.2. There is good agreement
between the mock and the real data. This is shown in Fig. 2.17. The mock is denoted by
the blue solid line and the real data by the orange one. The distributions of the photon
energy shown in the top panel are in excellent agreement, especially for the soft energy
range in our interest. The central and bottom panels show the cumulative distributions of



84
2. Detecting clusters of galaxies and active galactic nuclei in an eROSITA

all-sky survey digital twin

Abbildung 2.17: Comparison between the eRASS1 simulation and the real data. These are
respectively denoted by the blue and the orange solid lines. Left-hand panel: distribution
of the photon energy. Right-hand panel: cumulative distribution of the sources as a
function of detection likelihood. Bottom panel: cumulative distribution of the sources as
a function of extension likelihood.
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Abbildung 2.18: Background evaluation in the eRASS1 simulation. Top panel: Compari-
son between the mock and real background maps. The lines identify the number of pixels
showing a given value of the background map. The mock data is denoted in blue, the real
eRASS1 in orange. The dashed blue line shows the simulated background re-scaled by 0.9.
The lower panel shows the ratio between the mock and real data. Bottom panels: Impact
of a 10% overestimation of the background on the analytically computed value of detection
likelihood. The left-hand panel shows DET_LIKE as a function of counts in each pixel
given by a source and by the background. The panel on the right shows the corresponding
percentage error on detection likelihood caused by a 10% larger background. The blue and
the green solid lines respectively denote DET_LIKE = 5 and 20.
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Abbildung 2.19: Evolution of the false detection rate in the eRASS1 simulation. Left-
hand panel: Spurious fraction as a function exposure time and background level in the
eRASS1 simulation. Each bin containing more than 100 sources is color-coded by the false
detection rate. Right-hand panel: Correction of the prediction of the spurious fraction for
the eRASS1 data using the simulation due to the 10% overestimate of the background. The
x-axis is binned with a progressive 10% increment. The total number of spurious sources
in each bin is written as text.

detection and extension likelihood. A small difference between the two is expected, caused
by the fewer number of bright simulated AGN due to the steep logN–logS at high flux (see
Fig. 2.5). This also contributes to the difference between the photon energy distributions at
the hard end, above 5 keV. Nonetheless, the cumulative distributions show that the mock
catalog and the real one have similar properties.

In addition, we compare the background maps measured on the eRASS1 simulation
to the ones obtained from real data (see Sect. 2.2). Figure 2.18 shows the total number
of pixels with a given value of the background map, expressed in counts per pixel. The
real data is identified by the orange line and the simulation by the solid blue one. On the
one hand, the peaks of these two curves differ by about 10%. In fact, a re-scaling of the
simulated background by a factor of 0.9 (denoted by the dashed blue line) aligns well with
the real eRASS1 maps. This is expected because the cosmic X-ray background component
is slightly over-estimated in the simulation. The mock data contains the population of faint
simulated AGN. However, this contribution is partially present also in the real eRASS1
maps that are used to create the background model. On the other hand, in some areas,
the real background is higher than the mock data. This is because the model has been
generated using a mean spectrum but in the eRASS1 data some local instabilities cause
such higher background level.
In Sect. 2.2 we verified that such overestimation of the background has a negligible impact
on the measured values of detection likelihood. This is reported in the bottom panels of
Fig. 2.18. We show the value of detection likelihood as a function of source and background
counts per pixel (on the left), and the corresponding relative error due to the background
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over-estimate (on the right). The relative error is computed as

∆Ldet = Ldet,UN − Ldet,B

Ldet,UN
, (2.8)

where Ldet,UN is the unbiased value of detection likelihood, and Ldet,B is the value of
detection likelihood biased by a 10% overestimation of the background. The solid lines in
blue and green denote values of Ldet = 5 and 20, respectively. There is a ∼4% impact on
the value of detection likelihood for faint sources with DET_LIKE∼5.
Finally, we quantify whether the 10% overestimate of the background significantly impacts
our prediction of the false detection rate for the eRASS1 data using the digital twin. For
this goal, we measure the spurious fraction on a two-dimensional grid of exposure time
and background level. At fixed exposure, we build a binning scheme for the background
level such that successive bins are 10% greater than the previous one, according to Xi+1
= 1.1 × Xi, where X represents the background level bins. The upper panel of Fig. 2.19
shows the spurious fraction in the exposure-background level plane. The grid contains 95%
of the real eRASS1 catalog. At fixed background level, the spurious fraction decreases as
a function of exposure time. Indeed the deeper data allows suppressing fluctuations of the
background. At fixed exposure time, the false detection rate increases as a function of the
background level, because the probability of picking up a random fluctuation is larger. This
makes our prediction of the false detection rate conservative, because at fixed exposure,
the real eRASS1 has a lower background compared to the simulation.
Given our choice of the binning scheme, we can compare successive background level bins
at fixed exposure time to estimate a correction for the prediction of the spurious fraction
in the eRASS1 data using the simulation. We compute the relative difference between the
bins (fspur,i+1-fspur,i)/fspur,i+1, where the index i runs on the background level bins for each
exposure. The correction for each bin is shown the lower panel of Fig. 2.19. We average
over the bins containing more than 100 spurious sources, in order not to be affected by
noise. We find a mean correction of 5.7%. We conclude that our measure of the spurious
fraction in the digital twin is a conservative prediction of the false detection rate in the
real data, and it is not significantly affected by the 10% overestimate of the background.

2.7 Population histograms

In this section, we collect panels showing the histograms and linear fractions relative to
the population in the source catalog, described in Sect. 2.3.1 and Fig. 2.3. These are shown
in Fig. 2.20. The panels on the left show the total number of sources for different cuts in
detection or extension likelihood. The panels on the right show the relative fraction for
each source class.
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Abbildung 2.20: Population in the detected source catalog. The total number of sources in
the cleaned catalog of the eRASS1 simulation is 901 812. The number of extended sources
is 5615. Top panels: Number of sources in the full catalog and fractions of the population
classes in linear scale as a function of minimum detection likelihood. Central panels: Num-
ber of sources and fractions of the population classes in linear scale in the extent-selected
sample (EXT_LIKE >= 6) as a function of minimum detection likelihood. Bottom pa-
nels: population in the source catalog and fractions of the population classes in linear scale
as a function of minimum extension likelihood. Lines of different colors show the classes
defined in Sect. 2.2. The dashed-dotted lines denote sources that are not contaminated by
photons of a secondary source (no blending), the dashed ones identify sources contamina-
ted by a point source, and the dotted ones show sources blended with a cluster.
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Abbildung 2.21: The point source sample. Left-hand panel: fraction of AGN detected as
point-like objects as a function of the input flux in the soft X-ray band for different exposure
times. The circles show the values measured comparing input and source catalogs, the solid
lines our best fit model in Eq.2.9. Right-hand panel: fraction of spurious sources in the
point source sample as a function of detection likelihood cuts for different exposure times.
The full circles denote the false detection rate measured in the simulation, the solid lines
identify the model described by Equation 2.10 computed at the average exposure time
corresponding to each bin.
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2.8 AGN
We provide analytical fits to the completeness fraction of the sample of simulated AGN
that are detected as point sources. Similarly to Sect. 3.6, we measure the detected fraction
in terms of input flux and exposure time. We model these trends according to a modified
sigmoid function. Our model reads:

b = q(log10 T )w,

c = q1(log10 T )w1,

C(F, T ) = 1
1 + 10−3e−b log10 F +c

, (2.9)

where q = 4.59, w = 0.41, q1 = 11.01, w1 = 0.16 for eRASS1. We measure the exposure
time T in seconds and the flux F in erg/s/cm2. We show the result in Fig. 2.9. The values
extracted by matching the source catalog and the simulated AGN are identified by circles,
the best-fit model is shown by the solid lines, color coded by exposure time. This model
is not intended to provide a complete description of the AGN selection function, but it
gives a useful benchmark. We notice that it works particularly well for exposure times
between 160 s and 600 s for eRASS1, containing most of the eROSITA coverage in terms
of observing time.
In addition, we provide a functional form to describe the fraction of false detections for
different cuts of detection likelihood and exposure time in the point-source sample. This is
described by the following equation:

A = a1 × T 2 + b1 × T + c1,

B = a2 × T 2 + b2 × T + c2,

BKG(A,B) = 0.85
(A × DET_LIKEB + 1)4.2 , (2.10)

where T is the exposure time in seconds, DET_LIKE is a cut in detection likelihood, and
the values of the parameters are reported in Table 2.6. Such a model grasps the details
of this trend. It is shown in the right-hand panel of Fig. 2.21. The dots denote the false
detection rate measured in the simulation in each exposure time interval as a function
DET_LIKE threshold, while the solid lines denote the model computed at the average
exposure time corresponding to each interval.

Finally, we study the accuracy of the position of AGN detected as point sources
(EXT_LIKE=0). We study the offset between the simulated and detected positions and
how it relates to the positional error computed by eSASS. Such error is the sum in qua-
drature of the error on the pixel position multiplied by the pixel scale and is named
RADEC_ERR. We find that 99.48% (99.75%) of these point sources are contained by
a ratio between the offset and RADEC_ERR lower than 5 (6). This is especially true
for secure detections with DET_LIKE > 10, whereas sources with smaller values of de-
tection likelihood show larger positional errors and populate the bottom right corner of
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Tabelle 2.6: Parameters describing the spurious fraction in the point source sample as a
function of detection likelihood thresholds and exposure time.

a1 b1 c1 a2 b2 c2

−1.9059×10−8 4.4167×10−5 −1.2476×10−4 2.9317×10−6 −3.070×10−3 2.8982
Notes. The model is described by Equation 2.10.

Abbildung 2.22: Positional accuracy of the AGN detected as point-like (EXT_LIKE = 0).
This figure shows a 2D histogram in the Offset/RADEC_ERR – DET_LIKE parameter
space, and the black dashed line denotes a cut at Offset/RADEC_ERR = 5. The bins are
color-coded according to the number of detected AGN in each bin.
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Fig. 2.22, which displays how AGN detected as point-like occupy the DET_LIKE – Off-
set/RADEC_ERR parameter space. The figure is color-coded according to the number of
sources in each bin.

2.9 Cluster characterization
Our goal is to characterize a cluster sample that is as pure and complete as possible. On
the one hand, we want to maximize the clusters detection rate, making sure that most
of the simulated ones are recovered by eSASS. On the other hand, we want to keep the
contamination low. This means not only rejecting spurious sources, that are entries in
the source catalog that do not correspond to any physical object, but also reducing the
contamination due to bright AGN and stars detected as extended objects. Simply applying
a high threshold of detection likelihood is not enough to do this, as explained in Sect.2.2
and Fig. 2.3. Therefore, we now focus on the catalog of extended sources, with detection
likelihood larger than 6. It contains 7731 entries, 75.2% are clusters, 21.2% are AGN, 3.6%
are either spurious sources or secondary matches to simulated objects (∼ 0.9% and 2.7%
respectively, see Fig. 2.3), and 5% are stars. Our goal is to single out a complete and
pure cluster sample in terms of observables, such as properties measured by the eSASS
detection algorithm. We focus on two parameters: the source radius and the extension
likelihood. We show the entire source population in this parameter space in the left-hand
panel of Fig. 2.23. Clusters are identified by blue circles, AGN by yellow triangles, stars by
green squares, and spurious sources by red diamonds. Although most of the sources seem
to span the entire srcRAD interval, only clusters reach very high values larger than 200
arcseconds. In addition, galaxy clusters populate the high EXT_LIKE end of this panel.
We conclude that a double selection in terms of source radius and extension likelihood is
relevant for future cosmological experiments using eROSITA galaxy clusters. We further
study the population of detected clusters in terms of extension likelihood, srcRAD and
counts in the right-hand panel of Fig. 2.23. Clusters with a larger amount of counts are
detected at higher values of EXT_LIKE and show a larger srcRAD. This suggests once
again how focusing on the top-right corner of this parameter space, selecting sources with
large extension likelihood and source radius, allows one to identify secure clusters emitting
a large number of photons. Such correlation also shows the impact on clusters selection of
srcRAD. In particular, high count clusters are all located at the high srcRAD end: there are
255 detections with srcRAD > 200 arcseconds and 250 are uniquely matched to a cluster.
However, objects with less than 100 counts are detected at different values of srcRAD,
indicating that this parameter is less relevant in the selection of low count clusters.

2.10 Summary
Thanks to the eROSITA X-ray telescope, we are detecting clusters of galaxies and active
galactic nuclei in the X-ray band at an extraordinary rate. This has a multitude of science



2.10 Summary 93

Abbildung 2.23: Distribution of the eSASS sources as a function of srcRAD and
EXT_LIKE. Left-hand panel: entire source catalog for the eRASS1 simulation in the
srcRAD-EXT_LIKE parameter space. Clusters are identified by blue circles, AGN by
yellow triangles, stars by green squares, and spurious sources plus secondary matches to
simulated objects by red diamonds. Right-hand panel: detected clusters color-coded by
simulated counts in the 0.2–2.3 keV band inside R500c.

applications, from the evolution of accreting supermassive black holes (Fanidakis et al.,
2011), to major steps forward in cosmological studies with X-ray-selected clusters samples
(Pillepich et al., 2018b). In this context, it is key to deeply understand the detection and
selection of these objects, alongside the properties of the sources recovered by a given de-
tection scheme. Using the models described by Comparat et al. (2019, 2020) we produce a
half-sky simulation following the observational strategy of eROSITA, to the depth of the
first all-sky survey. The simulated objects include clusters of galaxies, AGN, and stars.
The population of simulated clusters is a truthful representation of real clusters of galaxies
because the model is built from real observations. The background is simulated following
an approach similar to the one detailed Liu et al. (2021). For the eRASS1 simulation, we
resample directly the real background maps. This provides an accurate digital twin of real
eROSITA data. The result is shown in Fig. 2.1. We run the eSASS detection algorithm
on the simulation. We compare the background maps measured on the simulation and the
real eRASS1 data. The simulated background is overestimated by ∼10%, but this has a
minor impact on the computation of the detection likelihood of each source (see Fig. 2.18).
We build a one-to-one correspondence between the source catalog and simulated objects
thanks to a photon-based matching algorithm. We classify sources with five different la-
bels: (i) uniquely identified with an AGN or star (PNT), (ii) uniquely identified with a
cluster (EXT), (iii) fraction of AGN or star (PNT2), (iv) fraction of a cluster (EXT2), (v)
background fluctuation (BKG). Various examples at values of detection likelihood equal
to 10 and 20 are shown in Fig. 2.2.
We study the population in the source catalog as a function of different cuts in detec-
tion and extension likelihood. We find that the former is efficient in removing spurious
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sources from the catalog, which reduces the false detection rate. However, it does not
reduce the contamination in the extended select sample due to bright AGN. Instead, pro-
gressive EXT_LIKE thresholds are better suited for this task. In addition, at large values
of EXT_LIKE > 35 in eRASS1, all the contaminating AGN contain cluster emission. This
reduces our estimate of contamination by ∼1%. These results are shown in Fig. 2.3.
Our detection algorithm perfectly recovers the bright end of the number density of objects
as a function of flux for both clusters and AGN (see Fig. 2.5 and 2.6). The eSASS detection
scheme is suitable for detecting clusters of galaxies. We compare the number of simulated
and detected clusters in four different intervals of exposure time. Three of them cover a
similar sky area, the fourth one is smaller and centered around the ecliptic poles with ex-
tremely high depth. In areas covered by the average simulation depth, we detect half of the
simulated structures at flux values of 3.3×10−13 erg/s/cm2 for eRASS1 (see Fig. 2.7). We
show how the selection of clusters is not a simple function of flux and exposure time, but
the objects with different angular sizes on the sky plane are also detected differently, for
instance clusters with smaller extent can be detected as point sources (see Fig. 2.8). This
is in agreement with previous work (Pacaud et al., 2006; Burenin et al., 2007; Clerc et al.,
2018; Finoguenov et al., 2020). We study how the relaxation state impacts the detection,
by exploiting the central emission parameter EM0. The detection is biased toward relaxed
clusters with a low EM0. However, the effect is mostly relevant for clusters detected as
point sources, as eSASS tends to classify some of these relaxed clusters with EXT_LIKE
= 0. This is particularly evident in the low flux regime around 10−13 erg/s/cm2, where a
high fraction of simulated objects has a counterpart in the source catalog, but such coun-
terpart is extended (EXT_LIKE >= 6) for only a few of them. The overall detection and
characterization of clusters of galaxies are more efficient at the bright flux end, where they
are still detected as extended sources (see Fig. 2.9). In the extent-selected sample, the
impact of the cool core bias is minimal. These results are in agreement with the eFEDS
sample (Ghirardini et al., 2021a; Bulbul et al., 2022).
We combine completeness and purity into the single concept of detection efficiency. We see
how choosing specific flux thresholds for varying exposure times (see Table 2.4) allows de-
tecting AGN and clusters with similar levels of completeness in areas covered with different
depths. Figure 2.10 shows that the false detection rate in shallower areas is larger. This
is due to the lower signal-to-noise ratio, which causes higher relative fluctuations of the
background. This is clear for the point-like sample. Progressive cuts in detection likelihood
remove the majority of the spurious sources in the point-like sample. The false detection
rate drops from 21.5% in areas covered by 150–400 s exposure at DET_LIKE > 5 to <
1% for DET_LIKE > 10. The fraction of clusters mistakenly assigned to the point sam-
ple is low, below 4% for every DET_LIKE cut. Similar considerations can be done using
thresholds of extension likelihood for clusters. In this case, the pole region shows different
behavior of the false detection rate due to the cut in extension likelihood that is very
efficient in removing spurious sources and also contaminating AGN in the extent-selected
sample. Higher thresholds of extension likelihood are required to lower this value. Progres-
sive EXT_LIKE cuts are very effective in reducing contamination. In the region around
the eRASS1 southern ecliptic pole, it drops by 26% from EXT_LIKE > 6 to EXT_LIKE
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> 20 (see Fig. 2.10).
We provide area curves as a function of limiting flux built from sensitivity maps in Fig.
2.11. Our measurement is in agreement with the prediction from Merloni et al. (2012),
especially at the faint end, but the ability of our method to account for the different expos-
ures guarantees a better sensitivity at the bright flux end. We finally compute the X-ray
luminosity of galaxy clusters in the eRASS1 simulation by fitting the surface brightness
profile of each object, following the approach described by Ghirardini et al. (2021b). We
show that on average we recover the simulated values of X-ray luminosity in Fig. 2.12.
We discuss how to best construct volume-limited samples applying different flux limits in
areas covered with varying depth by eROSITA (see Fig. 2.13). This translates into different
samples of clusters according to the values of luminosity and redshift. It guarantees an even
sampling of the large-scale structure of the Universe also in a case of nonuniform coverage.
The selection of these samples and their relative contribution to the cluster number density
distribution as a function of redshift and mass is shown in Fig. 2.14.
We presented and analyzed a precise digital twin of the first eROSITA all-sky survey. Per-
forming such a high-level simulation significantly increases our understanding of real data,
allowing us to analyze how a realistically complex population of sources is observed by
eROSITA. We studied the detection rate of galaxy clusters and AGN, accounting for the
fraction of simulated objects that are detected by the eSASS pipeline, together with quan-
tifying the false detection rate and contamination levels in the source catalog for point-like
and extended sources. Using these results, one can control the fraction of false detections
and or contaminants according to specific cuts of detection and extension likelihood in the
real eRASS1 catalog. For example, this is useful for constructing different cluster samples,
allowing for a precise contamination fraction. We addressed additional effects impacting
the detection of clusters, such as their dynamical state and their physical size. This work
is key toward characterizing the population of extragalactic sources in real eROSITA data.
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Kapitel 3

The mass function dependence on the
dynamical state of dark matter halos

Galaxy clusters are the most massive virialized, gravitationally bound structures in the
Universe. Clusters in cosmology are used to construct the halo mass function, which in-
dicates the mass density of halos in a specific volume, in a small mass interval, included
between M and M + dM (Weinberg et al., 2013). Early theoretical description of the mass
function was given by Press and Schechter (1974), based on the assumption that Gaussian
density perturbations overcoming a fixed density contrast collapse into halos. This formally
accounts for only half of the total halo mass in the Universe. An alternative approach, em-
ploying the excursion set theory, solved these shortcomings by considering the probability
of crossing a given barrier with random walks (Bond et al., 1991). This provides a good
prediction for high-mass halos, but it predicts too many low-mass objects. The introducti-
on of ellipsoidal collapse corrected these differences between simulations and theory (Sheth
and Tormen, 1999, 2002).

The mass function has been extensively studied in more recent works, attempting to
find a universal model, independent from cosmology (Jenkins et al., 2001; Tinker et al.,
2008; Bhattacharya et al., 2011; Despali et al., 2016; Bocquet et al., 2016; Comparat et al.,
2017; Bocquet et al., 2020). A robust way to build such a mass function model is using
N-body simulations (Kravtsov et al., 1997; Springel, 2005), e.g. MultiDark (Prada et al.,
2012; Klypin et al., 2016). The generalization of such models as a function of cosmolo-
gical parameters is best handled by emulating the mass function based on large sets of
simulations (e.g., McClintock et al., 2019; Nishimichi et al., 2019; Bocquet et al., 2020).
It is important to precisely predict the halo mass function to fulfill the potential of cur-
rent and future X-ray, SZ, or optical cluster surveys, such as eROSITA (Merloni et al.,
2012; Predehl et al., 2021), Planck (Zubeldia and Challinor, 2019), SPT-3G (Benson et al.,
2014), CMB S4 (Abazajian et al., 2019) SPIDERS/eBOSS (Dawson et al., 2016; Fino-
guenov et al., 2020), DESI (DESI Collaboration et al., 2016), 4MOST (de Jong, 2011;
Finoguenov et al., 2019), Euclid (Laureijs et al., 2011), LSST (LSST Science Collaboration
et al., 2009), WFIRST (Spergel et al., 2015). These future surveys will provide tighter
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constraints on mass-observable scaling relations. This means that systematic uncertainties
due to the accuracy of the halo mass function model and its evolution with redshift will
contribute to the total error budget significantly more than in the previous cluster counts
experiments (Salvati et al., 2020). Therefore, a detailed prediction of the theoretical dark
matter halos statistic is required. In this work, we calibrate a mass function model that
additionally includes dynamical properties of dark matter halos. Relaxed dark matter halos
can be selected according to multiple diagnostics (Neto et al., 2007; Macciò et al., 2008;
Prada et al., 2012; Klypin et al., 2016): (i) the virial parameter 2K/|W | − 1, where K and
W are, respectively, the kinetic and potential energy within the virial radius. (ii) The spin
parameter λ = J

√
E/GM5/2 (Peebles, 1969) traces the dynamical state of the halo. (iii)

The fraction of substructures, which is higher in unrelaxed halos. (iv) The offset parameter
Xoff = |Rpeak − Rcm|/Rvir (Behroozi et al., 2013; Klypin et al., 2016). It is the difference
between the position of the peak of the dark matter density profile and the center of mass,
normalized by virial radius. If the halo is perfectly relaxed, the peak of the profile will
correspond to the center of mass, so that Xoff will be small. On the other hand, higher
Xoff values will indicate an unrelaxed halo (e.g. merger, accretion). A combination of these
quantities can be used.

To illustrate the respective contribution to the mass function of relaxed and disturbed
halos, we divide the sample of halos in HugeMultiDark (hereafter HMD, see Sect. 3.2)
at z=0 using Xoff and λ. We consider the offset parameter in physical scale Xoff,P =
|Rpeak −Rcm|, i.e. not normalizing by the virial radius. We consider halos with Xoff,P < 100
kpc/h and λ < 0.007 as relaxed. In Fig. 3.1, we show the halo mass function of the
complete halo population, the relaxed and disturbed halo population. The left panel shows
the distribution of redshift zero halos in the Xoff,P and λ plane. The right panel shows
the three multiplicity functions (see formalism in Sect. 3.1) sampled by all halos (green),
relaxed halos (blue), and disturbed halos (orange). The bottom panel shows their relative
contribution as a function of halo mass. It is clear how at 1013.5M⊙/h, the contribution from
relaxed structures dominates by a factor of about 0.8 dex. The multiplicity functions of the
two samples cross each other at 1014.5M⊙/h, then unrelaxed ones take over at the high-mass
end. This approach offers a possible connection to selection effects in observations, such as
the cool core bias in X-rays (Eckert et al., 2011; Käfer et al., 2019, 2020). It possibly offers
a solution to mitigate biases in a cosmological interpretation of clusters abundance. This
might improve cosmological constraints using X-ray selected clusters (Ider Chitham et al.,
2020). In this chapter, we investigate the variations of the dark matter halo mass function
as a function of the dynamical state of the constituting halos. To trace the dynamical
state, we use Xoff and λ. This chapter is structured as follows. We define the formalism in
Sect. 3.1. We present the N-body data used in Sect. 3.2. We present the average relations
between concentration, Xoff , spin and mass, as well as their distribution around mean
values in Sect. 3.3. We define the generalized mass function framework in Sect. 3.4. We
present the generalized model of the halo mass function as a function of Xoff , and λ in Sect.
3.5. We present the results of the fit and the best-fit parameters in Sect. 3.6. We summarize
our findings in Sect. 3.9, and discuss their implications for cosmological studies.
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Abbildung 3.1: Left panel: Distribution of redshift zero dark matter halos in the Xoff,P and
λ plane. Cuts in Xoff,P and λ are applied to divide relaxed (blue) and disturbed (orange)
structures. The contours contain 1%, 5%, 10%, 30%, 50% of the data. Right panel: Halo
mass functions v.s. mass (σ) at redshift 0, as defined in Sect. 3.1 and using Equations 3.11
and 3.12. This mass function is built with different subsets of halos from HMD at z=0
(see Sect. 3.2): the red line indicates the model from Comparat et al. (2017), the shaded
areas represent the relaxed (blue), unrelaxed (orange) and the full sample (green) of halos.
The areas cover 1σ uncertainties. The lower panel shows the residuals fraction of each
component compared to the red model in the upper panel.
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Tabelle 3.1: Correspondence between mass, peak height, and variance of the linear density
field at z=0 and z=0.5.

Mass z=0 z=0.5
log10 M⊙/h ν = δc/σ log10(1/σ) ν = δc/σ log10(1/σ)

10 0.446 -0.577 0.579 -0.465
10.5 0.506 -0.523 0.657 -0.41
11 0.58 -0.463 0.752 -0.35

11.5 0.673 -0.399 0.872 -0.286
12 0.79 -0.329 1.02 -0.216

12.5 0.942 -0.253 1.22 -0.14
13 1.14 -0.17 1.48 -0.0568

13.5 1.41 -0.0779 1.83 0.035
14 1.78 0.0236 2.31 0.137

14.5 2.31 0.137 3 0.25
15 3.09 0.263 4.01 0.376

15.5 4.29 0.405 5.56 0.518
These quantities are described by Eq. 1.25 and 1.43.

3.1 Formalism, definitions
The growth of the density perturbations in the matter field is described by the evolution of
the overdensity field and its variance as a function of scale. The variance of the smoothed
density field σ2(M,z) is defined in Eq. 1.25. We report explicit values of mass, variance σ
(Eq. 1.25), and peak height ν (Eq. 1.43) in Table 3.1 for z=0 and z=0.5. We write the mass
function in its differential form as in Eq. 1.41, (see Allen et al., 2011, for a recent review).
A comprehensive list of models of the multiplicity function f(σ) is available in Table 1 of
Murray et al. (2013). we interchangeably use as mass variable either σ (Equation 1.25) or
peak height (Equation 1.43) or mass.

3.2 Simulations
Here we describe the set of gravity-only simulations and the halo finding post-process.

3.2.1 MultiDark
We use the MultiDark simulations (Prada et al., 2012; Riebe et al., 2013; Klypin et al.,
2016). They are computed in a Flat ΛCDM Planck (Planck Collaboration et al., 2014a)
cosmology (H0 = 67.77 km s−1 Mpc−1, Ωm0 = 0.307115, Ωb0 = 0.048206, σ8 = 0.8228)
with the gadget-2 code (Springel, 2005). It is one of the largest sets of high-resolution (∼
40003 particles) N-body simulations. We use three MultiDark simulations: HMD, BigMD,
MDPL2, see details in Table 3.2. Alternative simulations which could be used for this
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Tabelle 3.2: N-body simulations used in this analysis. L: length of the box in Gpc/h. Mp:
mass of the particle in M⊙/h. Mmin: minimum halo mass considered Mvir > Mmin in M⊙/h.
Number of halos in the snapshots at z=0.

Name L Mp Mmin N halos
HMD 4.0 7.9 × 1010 2 × 1013 13 330 574

BigMD 2.5 2.4 × 1010 5 × 1012 27 575 832
MDPL2 1.0 1.51 × 109 4 × 1011 17 036 888

project include Millennium-XXL, DarkSkies, Q Continuum, v2GC simulation,
described in Angulo et al. (2012); Skillman et al. (2014); Heitmann et al. (2015); Ishiyama
et al. (2015) respectively.

The complete list of simulation outputs (snapshots) utilized are given in Table 3.9,
where the expansion parameter a, and the corresponding redshifts are reported for each
snapshot.

3.2.2 Halo finding
Finding halos in dark matter simulations is not an easy task (see Knebe et al., 2013; Behroo-
zi et al., 2015, for a review). In this study, halos are identified by the rockstar (Robust
Overdensity Calculation using K-Space Topologically Adaptive Refinement), consistent-
Trees algorithms (Behroozi et al., 2013). It is based on adaptive hierarchical refinement of
friends-of-friends (FOF) groups. It works with six phase-space dimensions (halo positions
and velocities), and one time dimension. This allows tracking relative motions and merging
history between substructures in different snapshots. rockstar computes the halo mass
of identified objects by removing the unbound particles inside the virial radius. Virial mass
and virial radius are related by

Mvir(z) = 4
3π∆vir(z)ΩM(z)ρb(z)R3

vir, (3.1)

where Rvir encompasses a mean halo density equal to the background matter density mul-
tiplied by ∆vir, ΩM is the matter density parameter, and ρb is the matter density of the
Universe. The overdensity over the matter background ∆vir is defined according to Bryan
and Norman (1998) and Eq. 1.35. Given the reference cosmology adopted in this work, the
virial overdensity is equal to 332.5 at z=0 and asymptotically tends to 178 at high redshift.
The recovery of main properties such as position, mass, and circular velocity is consistent
between different finders. However, derived properties such as spin show a ∼20% scatter
(Knebe et al., 2013). This holds especially for low-mass halos with less than 30-40 particles,
where the identification of substructures is not straightforward (Knebe et al., 2011). The
low-mass limits in table 3.2 are set at more than ∼200 particles per halo in all boxes. This
ensures accurate halo properties (Behroozi et al., 2013; Knebe et al., 2013).
In this work, we use the virial overdensity (Equation 1.35). The virial mass function has
been shown to be the one that comes closest to universality (Despali et al., 2016).
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3.3 Concentration, offset, spin: empirical relations with
peak height and redshift

In the footsteps of Klypin et al. (2016); Rodriguez-Puebla et al. (2016), we analyze the
average relations linking concentration, λ, and Xoff to the peak height, respectively in
sections 3.3.1, 3.3.2, 3.3.3. We additionally analyze the distributions of these quantities
around the mean relations. The mean relations are fitted by models that simultaneously
account for the mass and redshift dependence of the relations (Eqs. 3.5, 3.7, 3.9). The
probability density functions (PDF) of concentration, spin, and Xoff are fitted by modified
Schechter models, respectively equations 3.6, 3.8, 3.10. PDFs at different redshifts are
modeled independently.

3.3.1 Concentration – mass – redshift relation
We study the relation between concentration and mass. Numerical simulations (Navarro
et al., 1996) showed that to a good approximation (∼ 10−20%), the density of dark matter
halos are described by the profile in Eq. 3.2,

ρ(r) = ρs

(r/Rs)(1 + r/Rs)2 , (3.2)

where Rs is the scale radius. ρs is the characteristic density of the halo and is equal to

ρs = ρcrit
∆
3

c3

ln(1 + c) − c/(1 + c) , (3.3)

where c is the concentration, ∆ the overdensity and ρcrit is the critical density of the
Universe. The concentration is a dimensionless quantity defined by

c∆ = R∆/Rs, (3.4)

where ∆ can refer to any threshold. In this work, we consider the virial overdensity over the
matter background ∆vir (see Equation 1.35). Therefore, we study the virial concentration
cvir = Rvir/Rs.

The concentration – mass relation is an important part of models describing galaxy
clusters (e.g. reviews from Allen et al., 2011; Umetsu, 2020) or gravitational lensing (e.g.
reviews from Bartelmann, 2010; Kilbinger, 2015).

This relation has been extensively studied in simulations. The concentration anti-
correlates with mass with negative redshift trend (e.g. Diemer and Joyce, 2019; Ragagnin
et al., 2019). Its detailed trend depends on the measurement method, both in simulations
(Meneghetti and Rasia, 2013; Lang et al., 2015; Poveda-Ruiz et al., 2016) and observations
(Foëx et al., 2014; Phriksee et al., 2020; Du et al., 2015; Shan et al., 2017). This introduces
possibles biases in the measure of concentration (Sereno et al., 2015; Cibirka et al., 2017;
van Uitert et al., 2016). Diemer and Kravtsov (2015) found that the relation shows the
smaller deviation from universality when adopting the definition c200c. However, it is not
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completely universal, meaning that concentration is described not only by mass or ν but
also by assembly history. Leaving aside biases in definition and measurement, different
models have been proposed to describe it: power-laws (e.g. Duffy et al., 2008; Dutton and
Macciò, 2014); a combination of power-laws, to describe the high-mass upturn (e.g. Klypin
et al., 2016; Diemer and Joyce, 2019); semi-analytic models based on Press-Schechter theo-
ry (Correa et al., 2015). In this section, we extend the models from Klypin et al. (2016). We
adjust a global model that includes a redshift dependence for high-mass halos at relatively
low redshift (z < 1.5), which is particularly interesting for halos hosting galaxy clusters.

Model

We model the concentration c as a function of the rms of the overdensity field σ(M, z) (not
as the function of halo mass M). Our parametrization of the concentration – σ relation is
a generalization of that of Klypin et al. (2016) and reads:

c(σ, z) = b0

(1 + z)0.2

[
1 + 7.37

(
σ

a0(1 + z)1/2

)3/4]
...[

1 + 0.14
(

σ

a0(1 + z)1/2

)−2]
. (3.5)

The best-fit values are in Table 3.4. We find best-fit values of a0 = 0.754091±0.000004, b0 =
0.574413 ± 0.000002, in agreement with Klypin et al. (2016). This model is fitted using
halos with M > 1012.5M⊙/h (ν ∼ 0.95 at z=0). The low-mass end is not sampled due
to the particle mass resolution. We do not consider a high redshift regime, where there is
a statistical limitation of high-mass halos. We choose the binning limits following Klypin
et al. (2016). The strength of our model resides in the ability to predict the concentration
- σ relation for a variety of masses and redshifts with a single equation. We recover the
hockey stick shape of the relation (see Fig. 3.2). This is consistent with Prada et al. (2012),
Klypin et al. (2016), and Diemer and Joyce (2019) (the latter also includes a cosmology
dependence). This upturn feature is absent in Duffy et al. (2008); Wang et al. (2019), due
to the smaller volumes analyzed (400 Mpc/h, 500 Mpc/h respectively). They are not large
enough to obtain a significant number of high-mass objects and probe the upturn.

We describe the distribution of concentration around its mean value and we model
its probability density function. We use snapshots from HMD, at four redshifts. Each
snapshot is divided into six slices of mass. The PDFs obtained at each redshift are fitted
simultaneously. It allows including a σ dependence in our model (see Equation 3.6),

P (c, σ) = A
(

c

x0σe0

)ασe1

exp
[

−
(

c

x0σe0

)βσe2]
. (3.6)

The best-fit parameters are included in Table 3.4. Uncertainties are negligible for most
parameters. The distribution of concentration around its mean value is well described by a
modified Schechter function with mass-dependent terms (Equation 3.6). We use the best-
fit model to predict the distribution of concentration in fixed mass slices as a function of
redshift. The result is shown in Fig. 3.3. The full distribution of concentration (not sliced
in different mass intervals) is well described by a modified Schechter as well.
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Abbildung 3.2: Concentration - σ relation (Equation 3.5). Circular dots, triangles, and
squares represent HMD, BigMD, MDPL2 respectively. They are color-coded by redshift.
Straight lines indicate our best-fit model, dotted lines show the model from Klypin et al.
(2016), while the shaded blue area indicates the distribution from Wang et al. (2019) at
z=0. The upper x-axis converts peaks values into mass at z=0.
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Abbildung 3.3: Probability density function of the concentration (Equation 3.6) at different
redshifts, values are reported in the title of each panel. Each set is divided into mass slices
and color-coded accordingly. The shaded areas represent the data with 1σ error, while
straight lines indicate the best-fit model. The blue points and the line represent the total
sample not sliced in mass. For clarity, each line and its fit is shifted by 0.1 dex on the
y-axis. This means that the constant C0 assumes values of (+0.3,+0.2,+0.1,0.0,-0.1,-0.2).
The purple line is not shifted, therefore it is the one with the proper normalization.
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Discussion

The average value of concentration increases at late times. It goes from 4 at z=1.43 to 5.8
at z=0 for halos corresponding to peak height ν = 2. We confirm the recent discovery of
the concentration upturn at high masses (Klypin et al., 2016; Diemer and Joyce, 2019).
Klypin et al. (2016) suggest that the high-mass upturn is caused by the tendency of regions
with smaller root mean square variance in the overdensity field to be more spherical. These
regions are the ones that evolve into high-mass dark matter halos. Because of this aspect,
gravitational accretion of matter toward the center is more efficient, result in higher con-
centration. In addition, very massive halos correspond to the highest peaks of the density
field. This means that it is more probable to find them in a phase characterized by strong
accretion and therefore higher concentration, as shown by Ludlow et al. (2012).
We find that the concentration of halos with different masses shows a different evolution
with redshift (see Fig. 3.3). At z=0 the concentration of high-mass halos gives a smaller
contribution to the total probability density function (hereafter PDF) in the high concen-
tration tail. At higher redshift, we see high concentration halos with both high and low
mass. The opposite holds for low-mass halos, which contribute more to the total PDF
at higher z in the low concentration regime. At high redshift, the distribution of con-
centration for different mass bins has the same shape. Conversely, at low redshift, this
statement does not hold. Indeed, the low-mass distribution is much broader than the high-
mass one. There is also a general redshift trend: with decreasing redshift the number of
high concentration, low-mass halos increases. More recently in time, the distribution is
flatter, in fact, the slope of the power-law is smaller, going from ∼ 4.5 at z=1.43 to ∼ 1.4
in the present day. Moreover, the mass trend of the exponential decay at z=0 is negati-
ve with sigma (e2 = −0.959), which translates into a faster decrease at high-mass. This
means that the distribution of concentration of low-mass halos evolves more than that
of high-mass objects. For example, at concentration c = 8, the PDF of high-mass halos
(1 × 1014 < M < 2 × 1014M⊙/h) changes by 0.32 dex between z = 1.43 and z = 0,
while for low-mass objects (2 × 1013 < M < 3 × 1013M⊙/h) it varies by 0.49 dex. There
is a net difference of 0.17 dex between the two, meaning that the high end of concentra-
tion evolves ∼1.5 times faster for lower mass halos compared to high-mass ones. This is
in agreement with the fact that these halos evolve in different environments. This causes
a different redshift evolution of the distribution of concentration of halos with different
masses. Structures with the same mass but different formation histories present different
properties. This aspect is related to the notion of assembly bias (Gao et al., 2005; Croton
et al., 2007; Angulo et al., 2008). In fact, there is a correlation between halo concentration
and the age of the universe when the progenitor reached a fixed fraction of its current mass
(Zhao et al., 2009). Moreover, a faster mass accretion causes a slower increase of concentra-
tion. Very massive objects reside in highly populated environments, which slows down the
evolution of concentration (Zhao et al., 2003). This can be used to predict concentration as
a function of assembly history (Giocoli et al., 2012; Ludlow et al., 2013, 2014). The latter
is also related to the evolution of cosmological parameters. This allows modeling of the
concentration mass relation for cold and warm dark matter halos (Ludlow et al., 2016).
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In general, high-mass halos cluster more than low-mass ones. Low-mass objects, part of
which live in isolated environments will experience different histories. Isolated low-mass
halos will result highly concentrated, while the concentration of low-mass halos in dense
environments will stay low. Contreras et al. (2019) found that low concentration halos
cluster more than halos with high concentration at high redshift. This is in agreement with
our results.

3.3.2 λ – mass – redshift relation
In this subsection, we study the relation between the spin parameter and mass. An accurate
theoretical description of the distribution of the halo spin is key to understand possible
implications of the systemic rotation on cluster sample definitions. Such rotation is induced
by a combination of the initial spin of the halo, the infalling material, and the merging
activity.
Measurements of cluster rotation were obtained at low redshift, using member galaxies
to infer the rotation movement (Hwang and Lee, 2007; Tovmassian, 2015; Manolopoulou
and Plionis, 2017; Bilton et al., 2019). The spin in galaxy clusters has also been studied
in X-rays (Bianconi et al., 2013; Eckert et al., 2019a). High-resolution data are needed to
explore this topic, both in the optical (Song et al., 2018) and X-ray (Hitomi Collaboration
et al., 2018) band. Moreover, cluster cores can be analyzed by distortion of the 6.7 keV line
(Sunyaev et al., 2003), fluctuations in the CMB due to rotation (Rephaeli, 1995; Cooray
and Chen, 2002), and rotational kSZ effect (Baxter et al., 2019). Inferring motion with the
SZ effect was also demonstrated for relaxed clusters with a significant spin on simulated
(hydro-dynamically) clusters (Baldi et al., 2018, 2019). Future SZ and X-rays surveys might
enable such measurements on a large number of clusters. A statistical description of the
halo population as a function of spin is thus of interest and developed in this section.

Model

We analyze the spin–mass–redshift relation and its PDF. The spin is defined as λ =
JE1/2/GM5/2 (Peebles, 1969). We fit the mean relation with mass as a linear relation (Eq.
3.7).

λ(σ) = a0 + b0σ. (3.7)
There is no noticeable dependence on redshift, so we do not consider a redshift evolution

in this model. The best-fit parameters are reported in Table 3.5. The relation is shown in
Fig. 3.4. We find that the spin correlates weakly with halo mass, as Bett et al. (2007);
Rodriguez-Puebla et al. (2016) did. The PDF of the spin parameter is best-fitted by a
modified Schechter law with no mass dependence (Equation 3.8).

P (λ) = A
(

λ

x0

)α

exp
[

−
(

λ

x0

)β]
. (3.8)

Distributions for different redshift snapshots are shown in Fig. 3.5 (see Table 3.5 for
best-fit parameters). The result is consistent with previous findings, (e.g. Rodriguez-Puebla
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Abbildung 3.4: λ-σ relation (Equation 3.7). The model is a linear relation, with no redshift
trend. Data points are color-coded by redshift, while different geometrical shapes refer to
different simulations: squares for HMD, triangles for BigMD, and circles for MDPL. The
straight line indicates the best-fit model, which considers all simulations and redshift at
the same time. The best-fit parameters are given in Table 3.5. The upper x-axis converts
peaks values into mass at z=0.



3.3 Concentration, offset, spin: empirical relations with peak height and
redshift 109

Abbildung 3.5: PDF of λ (Equation 3.8). Individual points represent spin bins used to
compute the distribution, straight lines refer to the best-fit modified Schechter model.
They are color-coded by redshift. We do not consider mass dependence in this relation.
Each redshift slice is fitted independently. The best-fit parameters are given in Table 3.5.

et al., 2016). The evolution with redshift of the PDF shows that with time, halos build up
higher spins: the maximum of the PDF shifts to higher spin values when redshift decreases
(Fig. 3.5). We also tried a lognormal distribution as a model, unsuccessfully.

Discussion

The small correlation with mass and the well-modeled evolution with redshift makes it a
rather simple dependence to account for in statistical studies of the halo population. From
the perspective of the measurement of the halo mass function based on a cluster sample,
marginalizing over the spin is possible, with limited complications. It also shows the spin
cannot be considered as a candidate for assembly bias.

3.3.3 Xoff – mass – redshift relation
The offset parameter Xoff traces the relaxation state of the halo (Thomas et al., 2001;
Neto et al., 2007; Henson et al., 2017). Hollowood et al. (2019) analyzed the miscentering
in SDSS galaxies followed up with Chandra X-ray observations. Provided a link between
Xoff and the brightest cluster galaxy (BCG) to X-ray displacement, an estimation of the
bi-variate mass and Xoff function from observations of clusters is possible. To interpret it,
one needs a detailed description of the link between Xoff and mass, detailed in this section.
We find that low-mass halos have smaller offset than high-mass ones at each redshift.
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Abbildung 3.6: Xoff-σ relation (Equation 3.9). Circular dots, triangles, and squares repre-
sent HMD, BigMD, MDPL2 respectively. They are color-coded by redshift. Straight
lines show the best-fit model. The best-fit parameters are given in Table 3.6. The upper
x-axis converts peaks values into mass at z=0.

Moreover, the offset parameter is reduced by a factor of ∼ 1.5 from z ∼ 1.5 to z = 0. This
is in agreement with the fact that structures relax in time.

Model

We model the Xoff − σ relation with a redshift dependent power-law, see Equation 3.9:

log10 Xoff = a0

E(z)0.136 σb0E(z)−1.11
, (3.9)

where E(z) is the dimensionless Hubble parameter. The best-fit parameters are given in
Table 3.6. We find a0 = −1.30418 ± 0.00001, b0 = 0.15084 ± 0.00001. We find a significant
redshift evolution of the normalization and the slope of the relation. The data obtained
from MultiDark simulations and the best-fit models are shown in Fig. 3.6. The best-fit
parameters of the Xoff − σ relation and the distribution of Xoff are given in Table 3.6. As
for concentration, the strength of this equation relies upon its ability to predict an average
Xoff value given the mass and the redshift of a dark matter halo.

We describe the distribution of Xoff around its mean value with a modified Schechter
function (Equation 3.10). The PDF of Xoff does not show mass dependency. Indeed it is
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Abbildung 3.7: Probability density function of Xoff . Each panel shows the distribution
at a specific redshift. Scatter points indicate the data, while straight lines represent the
modified Schechter model. The samples are color-coded by redshift. Each redshift slice is
fitted independently by Equation 3.10. The best-fit parameters are given in Table 3.6.

included in the normalization to the virial radius RvirαM
1/3
vir . Therefore, we do not consider

any σ dependence.
P (Xoff) = A

(
Xoff

x0

)α

exp
[

−
(

Xoff

x0

)β]
. (3.10)

We fit all halos in each redshift snapshot together. Figure 3.7 shows distributions at
different redshifts, fitted independently from one another. The parameters are given in
Table 3.6.

Discussion

We find a non-zero slope for the relation between Xoff and mass. On average, high-mass
halos have a higher offset parameter. This is described by the negative a0 parameter. This is
in agreement with the hierarchical picture of structure formation. High-mass halos formed
recently and have not had time to dynamically relax. A further contribution is given by
the environment surrounding these structures. High-mass halos form in the knots of the
large scale structure, where more matter is available for inflows and mergers, making these
objects more disturbed. In a picture where Xoff possibly traces the cool core - non-cool core
classification of galaxy clusters in X-rays (Eckert et al., 2011), massive structures have a
higher fraction of non-cool cores. This influences the high-mass tail of the mass function
(see Fig. 3.1). Therefore, given an X-ray flux limit, the mass function of a relaxed galaxy
clusters sample will be complete to lower masses than an unrelaxed one. This effect also
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evolves with redshift. At high z, halos show a higher offset. In this context, it means that
it is more difficult to detect structures at earlier times. More recently, structures have had
time to relax and therefore show smaller values of the offset parameter. This is linked
to the development of cool cores at low redshift (Ettori and Brighenti, 2008). The PDF
shows a power-law growth from low offset values (slope α = 3.71 at z=0) and exponential
cutoff at high Xoff . It is described by a modified Schechter function (Equation 3.10). Its
maximum shifts by a factor ∼ 1.5, from Xoff ∼ 0.09 to Xoff ∼ 0.06, between redshift
1.4 and 0, confirming that halos have more time to relax. The shape of the distribution
does not show a significant redshift trend. The width of the probability density functions,
measured at log10 P (Xoff) = −2.5, at z = 0 and z = 1.4 agree with 2.8% accuracy. At z=0
these values span from Xoff ∼ 0.01 to Xoff ∼ 0.3. This impedes the offset to be a possible
assembly bias candidate.

3.4 Generalized mass function
Generalizations of the mass function have been made in a number of directions: cosmologi-
cal parameters, angular momentum, and friction (Achitouv and Corasaniti, 2012; Achitouv
et al., 2014; Del Popolo et al., 2017) via detailed modeling of the collapse barrier. Nevert-
heless, it is technically demanding to connect such parameters to observations. In this
section, we generalize the mass function formalism to include additional variables (Xoff ,λ)
in its formulation. These two quantities describe properties of dark matter halos and will
hopefully become connectable to observational properties.

3.4.1 Definitions
We compute the mass function as follows:

dn

dlnM
= ∆NM

V ∆ ln M
, (3.11)

where ∆NM is the number of halos in each mass bin ∆ ln M and V is the total volume of
the simulation. It corresponds to Eq. 1.41. The M(σ) relation and its first derivative are
computed with colossus (Diemer, 2018). By convention, the relation between a certain
mass and its corresponding scale is normalized with the matter density at z=0.

By combining the previous equations with Eq. 1.41, we estimate a multiplicity function:

f(σ) = dn

dlnM

M

ρm

(
dlnσ−1

dlnM

)−1

. (3.12)

3.4.2 Generalization
We include the offset parameter and spin by generalizing the approach described in the
previous section. The number density of halos as a function of mass and dynamical state
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is described by Equation 3.13:

dn

dlnM dlogXoff dlogλ
= ∆NM,Xoff ,λ

V sM sXoff sλ

, (3.13)

where ∆NM,Xoff ,λ is the number halos in each mass, Xoff and λ bin, V is the total volume of
the simulated cube and sM , sXoff , sλ are the natural (base 10) logarithm of mass (Xoff , λ)
binning. Equivalently to equation 3.12, we calculate

h(σ, Xoff , λ) = dn

dlnM dlogXoff dlogλ

M

ρm

(
dlnσ−1

dlnM

)−1

. (3.14)

We consider a single integration of h(σ, Xoff , λ), which results in the set of Eqs. 3.15. The
notation gX designates the marginalization of h(σ, Xoff , λ) over the variable X.

gλ(σ, Xoff) =
∫

h(σ, Xoff , λ)dλ,

gXoff (σ, λ) =
∫

h(σ, Xoff , λ)dXoff ,

gσ(Xoff , λ) =
∫

h(σ, Xoff , λ)dσ,

(3.15)

Integrating again, we obtain

fXoff ,λ(σ) =
∫

gλ(σ, Xoff)dXoff =
∫

gXoff (σ, λ)dλ,

fσ,λ(Xoff) =
∫

gλ(σ, Xoff)dσ =
∫

gσ(Xoff , λ)dλ,

fσ,Xoff (λ) =
∫

gXoff (σ, λ)dσ =
∫

gσ(Xoff , λ)dXoff ,

(3.16)

The functions f, g, h are thus linked by derivatives as follows:

g(X, Y ) = ∂f(X)
∂Y

,

h(X, Y, Z) = ∂2f(X)
∂Y ∂Z

= ∂g(X, Y )
∂Z

, (3.17)

where X, Y, Z are permutations of the variables σ, Xoff , λ. With this method we recover
the multiplicity function f(σ), which in this notation is fXoff ,λ(σ). This allows studying the
behavior of the dark matter halo mass function according to different variables, making
sure that in the end, our analysis provides an accurate multiplicity function.
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Tabelle 3.3: Cosmic variance in different MD simulations.
simulation cosmic variance

HMD 0.02
BigMD 0.03
MDPL 0.04

3.4.3 Mass – Xoff – λ function, h(σ, Xoff , λ)
Here we present a model for the generalized mass function h(σ, Xoff , λ) introduced in the
previous subsection. The relaxation state of a dark matter halo is related to the values of
Xoff and λ parameters. We consider HMD, BigMD, MDPL2 to build a 3D histogram
of halo counts in bins of σ, Xoff , λ, according to equations 3.13 and 3.14. Mass functions
are expressed as multiplicity functions f(σ). It allows the inclusion of part of the redshift
evolution in σ. We focus on the high-mass end of the mass function, using halos with
M > 2.7 × 1013M⊙/h. So, we measure the halo number density in bins of log10 σ−1 instead
of mass. We consider linear spaced bins from −0.09 to 0.6, with 0.01 width, corresponding to
values close to 2.8×1013 and 1.3×1016 M⊙/h. We consider 50 bins spanning logarithmically
from 10−3.8 to 10−0.2 for Xoff and 50 bins spanning logarithmically from 10−4.5 to 10−0.1 for
λ. This is almost three orders of magnitudes higher than the mass resolution in HMD (7.9×
1010M⊙/h). Therefore, we will not be impacted by the mass resolution of the simulations.
The total sample consists of 8,051,654 halos for HMD, 2,103,896 for BigMD and 142,527
for MDPL. First, we estimate directly f(σ) for each simulation, according to Equations
3.11 and 3.12. Then, we estimate h by computing a 3D histogram in the same mass bins
and different Xoff and λ bins. Uncertainties on histogram values are computed considering
a Poisson-number count term and a cosmic variance term, according to Equation 3.18.

δh(σ, Xoff , λ) = h(σ, Xoff , λ)
√

1
NM,Xoff,λ

+ C2,

δ log10 h(σ, Xoff , λ) = 1
ln 10

δh(σ, Xoff , λ)
h(σ, Xoff , λ) , (3.18)

where C is a term accounting for cosmic variance, which is set differently according to the
type of simulation. Values for the cosmic variance are given in Table 3.3. These values are
estimated by Comparat et al. (2017), using a jackknife method for variance at low masses.
We fitted bins containing more than 50 halos, which according to equation 3.18 means an
uncertainty around 15% and thus avoid being dominated by Poisson uncertainty.

3.5 Model
We create a single model for the h(σ, Xoff , λ) function. We describe in detail its features at
z=0 and its redshift evolution.
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3.5.1 Redshift zero
We consider that both λ and Xoff probability density functions are described by a modified
Schechter function (Eq. 3.8 and 3.10), and combine these two functions with the multiplicity
function along the mass axis. We obtain the model described in Eq. 3.19.

h(σ, Xoff , λ, z, A, a, q, µ, α, β, γ, δ, e) = ...

A

√
2
π

(√
a

δc

σ

)q

exp
[

− a

2
δ2

c

σ2

](
Xoff

µ′

)α

...

exp
[

−
(

Xoff

µ′

)0.05α](λ

µ

)γ

exp
[

−
(

Xoff

µ′σe

)β(λ

µ

)δ]
, (3.19)

with µ′ = 101.83 log10 µ, to disentangle the degeneracy between the two knees of the modified
Schechter functions. This model recalls the Bhattacharya et al. (2011) formulation along
the mass axis and considers the combination of a power-law and an exponential cutoff (i.e.
a modified Schechter function) along the Xoff and λ axis. The last exponential contains
crossed terms between Xoff and λ, which allows taking into account their correlation. Both
Xoff and λ modified Schechter functions do not have mass dependency (as suggested by
Equations 3.8, 3.10). In the Bhattacharya et al. (2011) formulation, there is a double power-
law, here we consider a single σ power-law. Additional σ dependencies are described by
crossed mass-dependent terms in the exponential cutoff, which relates Xoff and λ modified
Schechter functions. The position of the knee of the Xoff function, i.e. µ′, is the same in its
two exponential cutoffs, but in the second one, we introduce the scaling with mass, through
the parameter e. We correlate directly the knees of the modified Schechter functions for λ
and Xoff (µ, µ′ = 101.83 log10 µ), and the slopes of the power-law and exponential cutoff of
Xoff (α, 0.05α), to write the model in the most compact possible way.

3.5.2 Evolution with redshift
Since structures accrete matter with time and grow, the mass function depends on redshift
(Springel et al., 2005). Part of this redshift evolution is in the mass-σ relation through
the matter power spectrum (Equation 1.25). However, this does not make the mass func-
tion completely universal at different times. Tinker et al. (2008) showed that a spherical
overdensity mass function evolves up to 30% from z=0 to z=2.5. Despali et al. (2016) high-
lighted how only virial overdensity nears the universality for the mass function. Crocce
et al. (2010) considered a friend-of-friends mass function and found a 10% evolution up to
z=2. In this work we use rockstar to identify halos, its base is a FOF algorithm as well.
Departures from universality are partially explained by the cosmology dependence of the
mass function on the power spectrum and growth rate (Ondaro-Mallea et al., 2022). We
find that the distribution functions of Xoff and λ show a redshift trend as well (see Sect. 3.3
and Equations 3.8, 3.10). We provide a detailed description of the evolution of h(σ, Xoff , λ)
with redshift. Further investigation, using simulations in different cosmologies, is needed
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to assess a possible relation between parameters in Equation 3.20 and cosmological para-
meters.
Given our model at z=0, we use the latter as the benchmark model to fit the halo
mass−Xoff − λ function at a higher redshift. For this goal, we concatenate again samples
from HMD, BigMD, and MDPL2 at redshift 0.045, 0.117, 0.221, 0.425, 0.523, 0.702,
0.779, 1.032, 1.425. We note that BigMD is not tabulated at the same exact redshift
snapshots as the other two simulations. Nonetheless, we use snapshots as close as possible,
resulting in a 1.3% difference for the worst-case scenario at z=1.425. Further details about
the snapshots are available in Appendix 3.7. For all these snapshots we consider the same
Xoff and λ binning as we did for z=0. However, we slightly shift upwards the σ binning
compared to the z=0 case, allowing us to reach masses of 7 × 1012 M⊙/h at z=0.702 and
1012 M⊙/h at z=1.425.
We include a redshift evolution for all the parameters A, a, q, µ, α, β, γ, δ, and e. We
stress that we did not consider an evolving critical density contrast with redshift, fixing it
at z=0. So δc in Equation 3.19 is fixed at the value of 1.68647. Considering its evolution,
even if tiny, introduces the need for additional evolution of the parameters, as pointed out
by Bhattacharya et al. (2011). We model the redshift evolution for these parameter using
exponents k0, k1, k2, k3, k4, k5, k6, k7, k8 as follows in Equation 3.20:

log10 A(z) = log10 A0(1 + z)k0 ,

a(z) = a0(1 + z)k1 ,

q(z) = q0(1 + z)k2 ,

log10 µ(z) = log10 µ0(1 + z)k3 ,

α(z) = α0(1 + z)k4 ,

β(z) = β0(1 + z)k5 ,

γ(z) = γ0(1 + z)k6 ,

δ(z) = δ0(1 + z)k7 ,

e(z) = e0(1 + z)k8 ,

(3.20)

3.6 Results
We present the result of the fits to the data (Sect. 3.2) and the parameters of the model
(Sect. 3.5). We fit directly log10 h(σ, Xoff , λ), which allows better modeling of the high-mass
end. We consider a Gaussian likelihood

log L = −0.5
∑(

D − M

E

)2
, (3.21)
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where D is log10 h(σ, Xoff , λ) computed from Equation 3.13, M is the base 10 logarithm of
the model (Equation 3.19) and E is the uncertainty of log10 h(σ, Xoff , λ) (see log error in
Equation 3.18).

3.6.1 Redshift zero
The best-fit parameters at z=0 are obtained maximizing the likelihood in equation 3.21.
We derive posterior probability distributions and the Bayesian evidence with the nested
sampling Monte Carlo algorithm MLFriends (Buchner, 2014, 2019), using the UltraNest
1 software. The results are shown in Fig. 3.12. We used flat priors. The description of
the parameters, priors, and posteriors is summarized in Table 3.7. We obtain log10 A =
−22.004 ± 0.006, a = 0.885 ± 0.004, q = 2.284 ± 0.016, log10 µ = −3.326 ± 0.001, α =
5.623±0.002, β = −0.391±0.001, γ = 3.024±0.003, δ = 1.209±0.001, e = −1.105±0.005.
The parameter a is in agreement with Bhattacharya et al. (2011). Our q parameter shows
higher values, but this is expected because an additional mass trend is described by the knee
of the exponential cutoff with mixed Xoff , λ terms. α, γ describe the power-law increment
from small Xoff , λ values, respectively. The second one is similar to the values computed for
the spin distribution in Sect. 3.3, while the first one is bigger than almost a factor two. This
is expected because an additional offset trend is described by the negative β parameter.
Moreover, together with β, the parameter e allows accounting for the relation between
offset and spin, including mass dependency as well. The negative e allows the shifting of
the peak along the Xoff axis to higher values with mass, according to the findings in Sect.
3.3.

Since this is a 3D model, we show in Fig. 3.8 all six combinations of h(σ,Xoff ,λ) in-
tegrated in 1D (Equation 3.15). To perform the integrals we exploit the Simpson’s rule
method for numerical integration 2. We show each 2D distribution in five different slices
of a single quantity. We recover the typical exponential cutoff along the mass axis, as well
as the modified Schechter shapes for offset and spin. Our model describes σ and λ evo-
lution very well, gXoff (σ, λ) agrees with the data also in the tails of the distribution. We
notice small deviations in the distribution of Xoff when Xoff values approach the spatial
resolution limit. For low redshift samples, each version of MultiDark has its own resolu-
tion limit: 25 kpc/h for HMD, 10 kpc/h for BigMD, 5 kpc/h for MDPL2. The mass
trend of the low Xoff slice is slightly underpredicted by the model at low mass. The same
holds for the spin trend: there is a 0.1 dex, 3.1σ tension between the peak values of model
and data. This is expected within the resolution limit. An improvement toward efficient
computation and future generation of N-body simulations will be needed to probe the kpc
scales of Dark Matter halos in simulation cubes of the Gpc scale. All the panels in Fig.
3.8 involving σ show different uncertainties between succeeding mass bins as a result of
the concatenation of bins from different MultiDark versions. MDPL2 bins contain fewer
halos than BigMD, which contain fewer halos than HMD. This translates into smaller

1https://johannesbuchner.github.io/UltraNest/
2https://docs.scipy.org/doc/

https://johannesbuchner.github.io/UltraNest/
https://docs.scipy.org/doc/
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Abbildung 3.8: Single integration of the 3D model. In each panel straight lines indicate
the best-fit model, while shaded areas represent the data with 1σ uncertainties. Top left
panel: gλ(σ, Xoff) as a function of Xoff in different mass slices. Top right panel: gλ(σ, Xoff)
as a function of σ in different Xoff slices. Middle left panel: gXoff (σ, λ) as a function of λ in
different mass slices. Middle right panel: gXoff (σ, λ) as a function of σ in different λ slices.
Bottom left panel: gσ(Xoff , λ) as a function of λ in different Xoff slices. Bottom right panel:
gσ(Xoff , λ) as a function of Xoff in different λ slices. The integrals are defined in Equations
3.15.



3.6 Results 119

Abbildung 3.9: fσ,λ(Xoff) and fσ,Xoff (λ) comparison between data and model. In top panels
straight red lines indicate the integral on the best-fit model, while shaded blue areas re-
present the integral on the 3d h(σ, Xoff , λ) data with 1σ uncertainties. Each bottom panel
shows the residual trend with σ error, the straight black line represents the perfect match
between data and model, with null residual. Top left panel: f(Xoff) as a function of Xoff .
Bottom left panel: residual between fσ,λ(Xoff) data and model in logarithmic scale. Top
right panel: f(λ) as a function of λ. Bottom right panel: residual between fσ,Xoff (λ) data,
and model in logarithmic scale.

uncertainties for bins containing a higher number of halos. Overall, the model provides an
excellent representation of the data.

We further integrate the model in Equation 3.19, obtaining the distributions of Xoff
fσ,λ(Xoff) and λ fσ,Xoff (λ) (Equation 3.16). Figure 3.9 shows the result. The distributions
around the peaks are well described by the model. This is important because these functions
are dominated by objects described by the peak of the PDF. The spin distribution is
better behaved than the Xoff in the tails. This is expected due to spatial resolution limits.
Moreover, this is a further confirmation of the fact that Xoff , λ scatter around their mean
value with modified Schechter distributions (see Sect. 3.3).

We obtain the multiplicity function fXoff ,λ(σ) marginalizing h(σ, Xoff , λ) on Xoff , λ, i.e.
performing the double integral

fXoff ,λ(σ) =
∫ ∫

h(σ, Xoff , λ)dXoffdλ.

The result is shown in Fig. 3.10. In the top panel, we show a comparison between our model,
the data obtained from simulations, and the Comparat et al. (2017) model, fitted on these
same simulations at z=0. The multiplicity functions computed directly on each simulation
cube, without taking Xoff and λ into account, are shown by three shaded regions in different
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Abbildung 3.10: Multiplicity functions comparison. Top panel: three shaded regions show
the 1σ contours of f(σ) data directly computed on different simulations (orange for HMD,
green for BigMD, red for MDPL2), the light blue shaded region is the 1σ contour of
the 2D integral computed on the concatenated sample containing all three simulations,
the dashed pink line indicates the mass function from Comparat et al. (2017), while the
blue solid line is the f(σ) we recover integrating our model along Xoff and λ. Low panel:
the blue thick line is the fractional difference between our f(σ) and the Comparat et al.
(2017) one. The light blue shaded area denotes the 1σ contours of the residual between the
integrated data and our the best-fit model, the black horizontal line indicates the perfect
match with null residual.
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colors: red for MDPL2, green for BigMD, and orange for HMD. Bigger simulation boxes
extend to higher mass values. The light blue shaded region represents the 2D integral
computed on the concatenated sample of all three simulations. The solid blue line is the
integral of our model and the dashed pink line is the Comparat et al. (2017) model. In
the lower panel, we show the percentage difference between the multiplicity function f(σ)
we recover and the Comparat et al. (2017) model, obtained on the same MultiDark
simulations. This difference is always under 3.3% in the mass range of interest. It is also
compatible with uncertainty on the data. Our model is able to recover the halo mass
distribution in the simulations, with the advantage of taking into account parameters that
describe their dynamical state as well. Once again, we stress that our model is adapted to
masses higher than 2.7 × 1013M⊙/h at z=0 (1012M⊙/h at z=1.4).

3.6.2 Evolution with redshift

To study the redshift evolution we start from the fiducial model at z=0. We add the
redshift dependence (Equation 3.20) to the best-fit parameters in Equation 3.19 at z=0.
We concatenate samples for 10 redshift values as described in 3.5.2.

We obtain the values of the exponents in equation 3.20 fitting the z trend of each
parameter for all the concatenated snapshots simultaneously. We obtain k0 = −0.0441 ±
0.0001, k1 = −0.161±0.001, k2 = 0.041±0.002, k3 = −0.1286±0.0002, k4 = 0.1081±0.0002,
k5 = −0.311 ± 0.001, k6 = 0.0902 ± 0.0004, k7 = −0.0768 ± 0.0004, k8 = 0.612 ± 0.002.
The full result is shown by the triangular plot in Fig. 3.13. Priors and posteriors for each
parameter are given in Table 3.8.

Redshift dependence is shown in Fig. 3.11. The shaded areas include the uncertainty
on both the best-fit parameter at z=0 and on the z evolution, according to equation 3.22

δP =
[(

∂P

∂P0
δP0

)2
+
(

∂P

∂k
δk
)2]1/2

, (3.22)

where P is each parameter in equation 3.19, P0 is its value at z=0 and k indicates each
parameter describing the evolution in equation 3.20.

The parameters A,q,µ,α,γ,β show an increasing redshift trend. On the other hand
a,β, and e decrease with redshift. This means that with increasing redshift, the modified
Schechter functions need to increase quicker and decrease slower. The knee describing the
mass trend (parameter a) decreases with redshift, in agreement with Bhattacharya et al.
(2011). They find no redshift dependence for the slope of mass trend (parameter q). This
is not true for this work, where q increases with z. However, this is mitigated by the mass
trend of the position of the knee in the crossed Xoff , λ exponential cutoff, which decreases
at early times. The fact that the position of the Xoff knee (parameter µ) moves to higher
values at high z confirms the results of Sect. 3.3, with the higher average value of Xoff early
in time (Figures 3.6, 3.7).
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Abbildung 3.11: Redshift evolution of the best-fit parameters of our model. Each panel
shows a single parameter. The values at z=0 are reported in Table 3.7. The redshift evo-
lution is described by Equation 3.20, the slopes are given in Table 3.8.
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Tabelle 3.4: best-fit parameters for concentration-σ relation and its PDF P(c).
a0 b0

0.754091 ± 0.000004 0.574413 ± 0.000002
A α β x0 e0 e1 e2

z=0 0.041 ± 0 1.397 ± 0.001 2.604 ± 0.001 7.225 ± 0.002 0.089 ± 0.001 0.776 ± 0.001 -0.959 ± 0.001
z=0.52 0.044 ± 0 2.501 ± 0.001 1.283 ± 0.001 2.394 ± 0.001 0.579 ± 0.001 -0.325 ± 0.001 0.0334 ± 0.001
z=1.03 3.37e-3 ± 0 4.14 ± 0.12 0.927 ± 0.002 0.688 ± 0.025 0.188 ± 0.002 0.081 ± 0.001 0.0813 ± 0.001
z=1.43 2.54e-3 ± 0 4.45 ± 0.13 0.924 ± 0.002 0.623 ± 0.031 0.198 ± 0.003 0.095 ± 0.001 0.103 ± 0.001
The models are described by Eqs. 3.5 and 3.6. Uncertainties are of the percentage accuracy. In order to

have compact information, when uncertainties are smaller than 4 order of magnitudes with respect to the
parameter, a value of 0 is written.

Tabelle 3.5: best-fit parameters for λ-σ relation and its PDF P(λ) at different redshifts.
a0 b0

4.5357e-2 ± 2e-6 -5.4328e-3 ± 1e-7
A α β x0

z=0 0.274 ± 0.009 3.002 ± 0.013 0.773 ± 0.001 4.33e-3 ± 0
z=0.52 1.01 ± 0.02 2.623 ± 0.004 0.911 ± 0.001 7.46e-3 ± 0
z=1.03 1.769 ± 0.009 2.409 ± 0.002 1.006 ± 0.001 9.32e-3 ± 0
z=1.43 2.089 ± 0.007 2.351 ± 0.001 1.031 ± 0.001 9.34e-3 ± 0

The models are described by Eqs. 3.7 and 3.8. Uncertainties are the percentage accuracy. In order to
have compact information, when uncertainties are smaller than 4 order of magnitudes with respect to the

parameter, a value of 0 is written.

3.7 Figures and Tables
In this Appendix, we collect Figures and Tables relative to this work. They describe the
mean relations between concentration, offset parameter, spin, and mass; as well as the
full probability density functions of these quantities. Moreover, we show additional plots
describing the halo σ − Xoff − λ function.

3.8 Offset in physical units
Here we present the results of the same analysis elaborated in Sections 3.3 and 3.6 to the
offset parameter in physical units Xoff,P, measured in kpc/h. This approach allows the
comparison between the physics of dark matter simulations and observations.

3.8.1 Xoff,P - mass - redshift relation
The relation between Xoff,P, mass and redshift is modeled by

log10 Xoff,P(σ, z) = b0

E(z)0.06

[
1 + 2.39

(
σ

a0E(z)0.8

)c0σ]
. (3.23)
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Tabelle 3.6: best-fit parameters for Xoff-σ relation and its PDF P(Xoff).
a0 b0

-1.30418 ± 0.00001 0.15084 ± 0.00001
log10 A α β log10 x0

z=0 -3.09 ± 0.26 3.71 ± 0.12 0.64 ± 0.03 -2.31 ± 0.09
z=0.52 -2.72 ± 0.17 3.69 ± 0.03 0.69 ± 0.01 -2.11 ± 0.01
z=1.03 -2.18 ± 0.05 3.44 ± 0.02 0.77 ± 0.01 -1.88 ± 0.01
z=1.43 -1.79 ± 0.02 3.19 ± 0.01 0.84 ± 0.01 -1.70 ± 0.01

The models are described by Eqs. 3.9 and 3.10. Uncertainties on the mean relation are under the
percentage level accuracy.

Tabelle 3.7: Model parameters with priors and posterior constraints at redshift zero.
Parameter Prior Posterior

log10 A (-23,-20) -22.004+0.006
−0.006

a (0.5,1.0) 0.885+0.004
−0.004

q (1.5,2.5) 2.284+0.016
−0.016

log10 µ (-3.5,-3.0) -3.326+0.001
−0.001

α (5.4,5.8) 5.623+0.002
−0.002

β (-0.5,-0.3) -0.391+0.001
−0.001

γ (2.8,3.2) 3.024+0.003
−0.003

δ (1.0,1.4) 1.209+0.001
−0.001

e (-1.2,-0.8) -1.105+0.005
−0.005

The full distribution of the posteriors is shown in Fig. 3.12.

Tabelle 3.8: Model parameters with prior and posterior constraints for the redshift evolution
of the halo σ − Xoff − λ function.

Parameter Prior Posterior
k0 (-0.08,0.07) -0.0441±0.0001
k1 (-0.25,0.05) -0.161±0.001
k2 (-0.05,0.15) 0.041±0.002
k3 (-0.18,0.02) -0.1286±0.0002
k4 (-0.02,0.18) 0.108±0.0002
k5 (-0.7,0.1) -0.311±0.001
k6 (-0.1,0.2) 0.0902±0.0004
k7 (-0.2,0.1) -0.0768±0.0004
k8 (-0.05,0.85) 0.612±0.002

In the posteriors, when the 1σ uncertainty on the 1d distribution is smaller than 3 order of magnitudes
with respect to the parameter, we write null error. The redshift evolution of each parameter is shown in

Fig. 3.11.
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Abbildung 3.12: Marginalized posterior distributions of the best-fit parameters of the halo
σ−Xoff −λ function. The 0.68 and 0.95 confidence levels of the posteriors are shown as filled
2D contours. The 2.5th, 16th, 84th and 97.5th percentile of the 1-d posterior distributions
are indicated by the vertical lines on the diagonal plots. The model is given by Equation
3.19. The parameters are also given in Table 3.7.
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Abbildung 3.13: Marginalized posterior distributions of the best-fit parameters describing
the redshift evolution of h(σ, Xoff , λ). The 0.68 and 0.95 confidence levels of the posteriors
are shown as filled 2D contours. The model is given by Equation 3.20. The parameters are
reported in Table 3.8.
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Tabelle 3.9: Full list of snapshots used, available in HMD, BigMD, MDPL2.
a z T(Gyr) HMDPL BigMD MDPL2

1.0 0 13.82 x x x
0.9567 0.04526 13.19 x x
0.956 0.04603 13.18 x
0.8953 0.1169 12.27 x
0.8951 0.1172 12.26 x x
0.8192 0.2207 11.09 x x
0.8173 0.2235 11.06 x
0.7016 0.4253 9.198 x x
0.7003 0.428 9.177 x
0.6583 0.5191 8.487 x
0.6565 0.5232 8.458 x x
0.5876 0.7018 7.319 x x
0.5864 0.7053 7.299 x
0.5623 0.7785 6.90 x
0.5622 0.7787 6.89 x x

0.5 1 5.88 x
0.4922 1.032 5.753 x x
0.4123 1.425 4.482 x x
0.409 1.445 4.431 x
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Tabelle 3.10: best-fit parameters for Xoff,P-σ relation and P(Xoff,P).
a0 b0 c0

0.16523 ± 0.00004 0.74872 ± 0.00001 -0.39607 ± 0.00003
A α β x0 e0

z=0 -5.45 ± 0.01 10.56 ± 0.87 1.23 ± 0.09 2.34 ± 0.19 -0.57 ± 0.05
z=0.52 -5.45 ± 0.01 10.58 ± 0.87 1.23 ± 0.11 2.35 ± 0.19 -0.43 ± 0.04
z=1.03 -5.35 ± 0.01 10.54 ± 0.86 1.24 ± 0.11 2.36 ± 0.19 -0.33 ± 0.03
z=1.43 -5.32 ± 0.01 10.56 ± 0.86 1.32 ± 0.11 2.36 ± 0.19 -0.46 ± 0.04

The models are described by Eqs. 3.23 and 3.24. Uncertainties on the mean relation are under the
percentage level accuracy.

The distribution of Xoff,P around its mean value is described by a modified Schechter
function, but Xoff,P is not normalized to the virial radius. Therefore, a mass dependence
has to be included in the relation.

P (Xoff,P) = A
(

Xoff,P

x0σe0

)α

exp
[

−
(

Xoff,P

x0σe0

)β]
. (3.24)

The best-fit parameters are given in Table 3.10 and the results are shown in Figures
3.14 and 3.15.

3.8.2 Mass – Xoff,P – λ function
In this section, we collect figures and tables that describe h(σ,Xoff,P, λ). The analysis is
similar to h(σ,Xoff , λ) explained in Sections 3.4 and 3.5. The only difference is that the
modified Schechter function that describes Xoff,P needs a mass-dependent term. Therefore,
we introduce an additional parameter and model the distribution according to

h(σ, Xoff,P, λ, z, A, a, q, µ, α, β, e0, γ, δ, e1) = ...

A

√
2
π

(√
a

δc

σ

)q

exp
[

− a

2
δ2

c

σ2

](
Xoff,P

µσe0

)α

...

exp
[

−
(

Xoff,P

µσe0

)0.05α]( λ

0.7µ

)γ

exp
[

−
(

Xoff,P

µσe1

)β( λ

0.7µ

)δ]
, (3.25)

We recover the fiducial mass function at the ∼ 3.9% level.

3.9 Summary
In the context of the hierarchical model of structure formation, the evolution of the number
density of galaxy clusters is a powerful cosmological probe. In order to achieve precision
cosmology with the next generation of galaxy clusters samples (such as eROSITA All Sky
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Abbildung 3.14: Xoff,P-σ relation (Equation 3.23). Circular dots, triangles and squares
represent HMD, BigMD, MDPL2 respectively. They are color-coded by redshift. Straight
lines show the best-fit model. Parameters are given in Table 3.10.

Tabelle 3.11: h(σ,Xoff,P, λ) model parameters with priors and posterior costraints.
Parameter Prior Posterior

log10 A (-23,-20) -22.004+0.009
−0.009

a (0.5,1.0) 0.878+0.004
−0.004

q (1.5,2.5) 2.257+0.013
−0.013

log10 µ (-3.5,-3.0) -3.149+0.002
−0.002

α (5.4,5.8) 5.624+0.002
−0.002

β (-0.4,-0.3) -0.365+0.001
−0.001

e0 (-2.0,-1.4) -1.606+0.002
−0.002

γ (2.8,3.2) 3.095+0.003
−0.003

δ (1.0,1.4) 1.168+0.002
−0.001

e1 (-3.0,-2.5) -2.270+0.005
−0.005

The full distribution of the posteriors is shown in the triangular plot in Fig. 3.20.
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Abbildung 3.15: Probability density function of Xoff,P (Equation 3.24). Each panel shows
the distribution at a specific redshift. Each set is divided in mass slices, identified by color.
Scatter points indicate the data, while straight lines represent the modified Schechter model
3.10. For clarity, each line and its fit are shifted by 0.2 dex along both axis. This means
that both coefficients C0 assumes values (+0.6,+0.4,+0.2,0.0,-0.2,-0.4), while C1 is (-0.6,-
0.4,-0.2,0.0,+0.2,+0.4). The red line is not shifted, therefore it is the one with the correct
normalization.
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Abbildung 3.16: Single integration of the 3D model. In each panel straight lines indicate the
best-fit model, while shaded areas represent the data with 1σ uncertainties. Top left panel:
gλ(σ, Xoff,P) as a function of Xoff,P in different mass slices. Top right panel: gλ(σ, Xoff,P) as
a function of σ in different Xoff,P slices. Middle left panel: gXoff,P(σ, λ) as a function of λ in
different mass slices. Middle right panel: gXoff,P(σ, λ) as a function of σ in different λ slices.
Bottom left panel: gσ(Xoff,P, λ) as a function of λ in different Xoff,P slices. Bottom right
panel: gσ(Xoff,P, λ) as a function of Xoff,P in different λ slices.
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Abbildung 3.17: f(Xoff,P) and f(λ) comparison between data and model. In top panels
solid red lines indicate the integral on the best-fit model, while shaded blue areas represent
the integral on the 3d h(σ, Xoff,P, λ) data with 1σ uncertainties. Each bottom panel shows
the residual trend with σ error, the straight black line represents the perfect match between
data and model, with null residual. Top left panel: f(Xoff,P) as a function of Xoff,P. Bottom
left panel: residual between f(Xoff,P) data and model in logarithmic scale. Top right panel:
f(λ) as a function of λ. Bottom right panel: residual between f(λ) data and model in
logarithmic scale.

Tabelle 3.12: Model parameters with prior and posterior constraints for the redshift evo-
lution of h(σ,Xoff,P, λ).

Parameter Prior Posterior
k0 (-0.08,0.07) -0.0131±0.0001
k1 (-0.25,0.05) -0.146±0.001
k2 (-0.1,0.1) 0.04±0.002
k3 (-0.15,0.05) -0.0716±0.0003
k4 (-0.05,0.15) 0.0789±0.0001
k5 (-0.7,0.1) -0.4199±0.0005
k6 (-0.15,0.05) -0.0554±0.001
k7 (-0.05,0.25) 0.1526±0.0002
k8 (-0.25,0.05) -0.1834±0.0004
k9 (-0.05,0.35) 0.235±0.001

In the posteriors, when the 1σ uncertainty on the 1d distribution is smaller than 3 order of magnitudes
with respect to the parameter, we write null error. The redshift evolution of each parameter is shown in

Fig. 3.19.
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Abbildung 3.18: Multiplicty functions comparisons. Top panel: three shaded regions show
the 1σ contours of f(σ) data directly computed on different simulations (orange for HMD,
green for BigMD, red for MDPL2), the light blue shaded region is the 1σ contour of the
2D integral computed on the concatenated sample containing all three simulations, the
dashed pink line indicates the mass function from Comparat et al. (2017), while the blue
solid line is the f(σ) we recover integrating our model along Xoff,P and λ. Low panel: the
blue thick line is the fractional difference between our f(σ) and the Comparat et al. (2017)
one. The light blue shaded area represent the 1σ contours of the residual between the
integrated data and our the best-fit model, the black horizontal line indicates the perfect
match with null residual.
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Abbildung 3.19: Redshift evolution of the best-fit parameters for h(σ,Xoff,P, λ). Each panel
shows a single parameter. The values at z=0 are reported in Table 3.11. The slopes of the
redshift trends are given in Table 3.12.
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Abbildung 3.20: Marginalized posterior distributions of the h(σ,Xoff,P, λ) best-fit parame-
ters at redshift 0. The 0.68 and 0.95 confidence levels of the posteriors are shown as filled
2D contours. The 2.5th, 16th, 84th and 97.5th percentile of the 1-d posterior distributions
are indicated by the vertical lines on the diagonal plots.
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Abbildung 3.21: Marginalized posterior distributions of the best-fit parameters describing
the redshift evolution of h(σ,Xoff,P, λ). The 0.68 and 0.95 confidence levels of the posteriors
are shown as filled 2D contours. The 2.5th, 16th, 84th and 97.5th percentile of the 1-d
posterior distributions are indicated by the vertical lines on the diagonal plots.
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Survey Merloni et al. (2012)), precise modeling of the theoretical mass function is necessa-
ry. We calibrate a model that includes a dynamical description of dark matter halos. Using
the formalism described here and the MultiDark simulations, we quantify the impact on
the mass function of the lack of unrelaxed structures (see Fig. 3.1). We explore relations
between quantities that describe different aspects of dark matter halos, including their
dynamical state. We investigate the concentration-mass relation. We confirm the recent
discovery of the concentration upturn at high masses, in agreement with previous results
from Prada et al. (2012) and Klypin et al. (2016), based on a similar set of MultiDark si-
mulations. In addition, our model provides a prediction of concentration according to mass
and redshift with one single equation (Equation 3.5). The probability density function of
concentration is a modified Schechter law, with mass dependency (Equation 3.6). We find
that the concentration of low-mass halos has a faster redshift evolution than high-mass
objects, especially in the high concentration regime. For concentration c = 8, the PDF for
high-mass halos shifts by 0.32 dex from z = 1.43 to z = 0, while the low-mass one changes
by 0.49 dex. We find the spin parameter λ to be modeled by a linear relation with mass and
a probability density function well described by a modified Schechter function (Equation
3.8), in agreement with Rodriguez-Puebla et al. (2016). The offset parameter evolves with
mass and redshift according to Equation 3.9. The negative slope of the relation suggests
that low-mass halos are typically more relaxed compared to high-mass objects. This is
true at every redshift. The offset distribution around the mean value is well described by
a modified Schechter function (Equation 3.10). The peak of the distribution shifts by a
factor of 1.5 between z ∼ 1.4 and z = 0. This is in agreement with halos relaxing with
time and the recent formation of cool cores in galaxy clusters.
We define a general mass function framework, where dark matter halos are not only des-
cribed as a function of mass but also by the two additional variables Xoff , λ. This approach
allows considering mass, offset parameter, and spin of each halo at the same time in a
σ − Xoff − λ function (Equation 3.14). We model it in Sect. 3.5 combining terms of a
fiducial mass function (Bhattacharya et al., 2011) with modified Schechter functions for
Xoff , λ, as obtained in Sect. 3.3. This new approach allows accounting for the dynamical
state of dark matter halos directly in the context of the halo mass function, providing 2D
and 1D distributions at the same time.
We describe the fitting procedure and results in Sect. 3.6. Our result at z=0 recovers the
Comparat et al. (2017) mass function, which is fitted on the same set of simulations, with
3.3% accuracy. This means that our model is able to account for the dynamical state of
dark matter halos simultaneously with mass and to describe the multiplicity function with
great precision. In addition, our model includes the redshift evolution, according to Equa-
tion 3.20. The result is shown in Fig. 3.11.
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Kapitel 4

Offset between X-ray and optical
centers in clusters of galaxies:
connecting eROSITA data and
simulations

Galaxy clusters can be identified at different wavelengths, given their distinctive observa-
tional features. These include an over-density of red sequence galaxies (Gladders and Yee,
2005; Yang et al., 2007); a distortion of the images of background galaxies by strong and
weak gravitational lensing (Maturi et al., 2005; Miyazaki et al., 2018b); X-ray emission due
to thermal bremsstrahlung from the hot intra-cluster gas (Ebeling et al., 1998; Böhringer
et al., 2000; Vikhlinin et al., 2009b; Pierre et al., 2016); and the distortion of the cosmic
microwave background (CMB) spectrum due to the Sunyaev-Zel’dovich effect (Sunyaev
and Zeldovich, 1972; Planck Collaboration et al., 2014b).

The definition and identification of the cluster center is a key aspect of their analysis.
From a purely dark matter standpoint, it is natural to consider the deepest point in the
potential well of the dark matter halo hosting the cluster. This is traced best by lensing
observations (Zitrin et al., 2012). Other possibilities involve the peak or the centroid of the
gas emission in the X-ray and millimeter bands (Rossetti et al., 2016; Gupta et al., 2017).
Finally, a cluster center can be identified using optical and infrared data (Ota et al., 2020),
by considering the position of the central galaxy (CG), for example, the brightest cluster
galaxy (BCG).
Agreement between these definitions is expected if the dark matter halo and different
baryonic components are completely relaxed and in equilibrium within the potential well
of the cluster. However, galaxy clusters are rarely in complete dynamical equilibrium. They
assembled at late times, undergoing mergers. This leads to disturbed mass distribution and
an offset between different definitions of the cluster center.

A deeper insight into this topic is now possible thanks to eROSITA. The goal of this
chapter is to exploit the optical follow-up of eROSITA clusters to gain a deeper knowledge
of the offset between X-ray and optical centers, and compare the result to predictions from
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hydrodynamical simulations and N-body models. We summarize the key aspects of various
definitions of the cluster center, and their implications in terms of the dynamical state.

Historically, it is often assumed that the BCG is the central galaxy of the cluster, i.e.
the one closest to the deepest point of the halo potential well (van den Bosch et al., 2004;
Weinmann et al., 2006). Therefore, the BCG is used to define the cluster center in the opti-
cal band. However, recent works show that this is not always the case (Einasto et al., 2011;
Lange et al., 2018). In particular, Skibba et al. (2011) find that the BCG is not the central
galaxy in ∼25% of galaxy group-like halos. This fraction increases to ∼45% for clusters
of galaxies. The development of new techniques to identify clusters in the optical band
reduced the mis-centered fraction. The red-sequence Matched-filter Probabilistic Percola-
tion (redMaPPer, Rykoff et al., 2014, 2016) is a cluster finding algorithm for photometric
surveys, such as the Sloan Digital Sky Survey (SDSS, York et al., 2000), the Dark Energy
Survey (DES, The Dark Energy Survey Collaboration, 2005), and the Large Synoptic Sur-
vey Telescope (LSST) at the Rubin Observatory (LSST Science Collaboration et al., 2009).
It locates the cluster optical center using additional information such as redshift and local
galaxy density. Hoshino et al. (2015) analyzed the occupation of luminous red galaxies
with redMaPPer centering probabilities and show that the BCG is not the central galaxy
in 20-30% of the clusters. The centering algorithm of redMaPPer is based on assigning a
probability to each member of being the central galaxy and provides a more consistent
definition of the optical center.
Rozo and Rykoff (2014) studied the performance of redMaPPer on SDSS data by compa-
ring the optical catalog to overlapping X-ray and SZ data. They find that about 80% of the
clusters are well centered, with offsets smaller than 50 kpc. The remaining 20% consist of
mergers, which exhibit much larger offsets even up to 300 kpc. The displacement decreases
at low redshift (Gozaliasl et al., 2019). This is in agreement with the hierarchical scenario,
where structures relax at late times. The offset between peaks in various bands has been
exploited to identify relaxed and disturbed systems (Mann and Ebeling, 2012; Rossetti
et al., 2016, 2017; Oguri et al., 2018; Ota et al., 2020, 2022).
A detailed description of these offsets and their link to the cluster dynamical state is also
important to assess possible biases and selection effects, especially in the current era of
precision cosmology. For instance, a partial knowledge of the baryon physics affecting the
evolution of galaxy clusters biases scaling relations between observables and clusters mas-
ses (Bahar et al., 2022; Chiu et al., 2022), which ultimately impact cosmological results
(Chisari et al., 2019b; Genel et al., 2019; Salvati et al., 2020; Debackere et al., 2021; Castro
et al., 2021). The disturbance and morphological diversity of these extended objects make
the understanding of selection effects non-trivial (Weißmann et al., 2013; Cao et al., 2020).
In addition, baryonic properties potentially affect the selection of clusters in astronomical
surveys. They might alter the values of a specific observable, which ends up affecting the
number of objects in the sample compared to an unbiased theoretical prediction.
X-ray observations of galaxy clusters suffer from the cool core bias (Eckert et al., 2011;
Käfer et al., 2019). The largest dark matter halos hosting massive clusters of galaxies as-
semble at late times. Some clusters will not have had enough time to dynamically relax
and develop a cool core. The resulting peak in the X-ray surface brightness profile can
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bias the detection towards relaxed structures with a cool core, affecting the completeness
of X-ray-selected samples of galaxy clusters. At fixed mass and redshift, cool core clusters
are therefore more probable to be detected compared to non cool core ones. The cool core
bias is expected to play a role in the characterization of clusters as extended sources. Cool
core clusters possibly have a higher probability of being confused for point sources, because
the peaked emissivity in the central region dominates over the extended emission in the
cluster outskirts (Somboonpanyakul et al., 2021; Bulbul et al., 2022). This has an impact
on cosmological studies using the halo mass function (Seppi et al., 2021). Therefore, it is
necessary to take this selection effect into account. The evidence of the cool core bias in
X-ray-selected samples has been highlighted by different works, especially when comparing
X-ray to SZ selected samples, which are not affected by such bias due to the lower sensi-
tivity to the central gas density (Hudson et al., 2010; Eckert et al., 2011; Rossetti et al.,
2017; Andrade-Santos et al., 2017; Lovisari et al., 2017; Giulia Campitiello et al., 2022).
However, other studies do not find a significant preference for relaxed clusters (e.g. Mantz
et al., 2015a; Nurgaliev et al., 2017; McDonald et al., 2017; De Luca et al., 2020). This
topic has been analyzed with eROSITA data by Ghirardini et al. (2021a), who did not find
a clear bias towards relaxed structures. In addition, Bulbul et al. (2022) find a preference
for cool cores only when looking for clusters cataloged as point sources. Strong evidence
for the cool core bias in the point-like sample is is also predicted by eROSITA simulations
(Seppi et al., 2022) (see Fig. 2.9).
The fraction of mass in substructures, central entropy, spin, and offset parameters give ad-
ditional insight into the dynamical state (Meneghetti et al., 2014; Biffi et al., 2016; Henson
et al., 2016; De Luca et al., 2020; Seppi et al., 2021).
A precise knowledge of the cluster center would benefit various studies, such as the measure
of weak lensing profiles (Chiu et al., 2022), where the error in the measurement may be
reduced with a better comprehension of the miscentering (George et al., 2012; Zhang et al.,
2019; Yan et al., 2020; Ota et al., 2022); or detailed comparison of cluster density profiles
with simulations (Zhuravleva et al., 2013; Diemer, 2022).

Here, we measure the offset between the position of the X-ray and the optical centers
for eROSITA clusters. We use two samples: eFEDS (Liu et al., 2022), and eRASS1. The
optical follow-up is performed with a modified version of redMaPPer tailored to eROSITA,
making use of the prior knowledge of the X-ray position (Ider Chitham et al., 2020). We
study the distribution of the offsets and different physical effects affecting them. We look
for a link between observations and the dynamical state of dark matter halos in N-body
simulations (Klypin et al., 2016; Seppi et al., 2021). We consider the offset parameter (Xoff),
that is the displacement between the peak of the mass profile and the center of mass of dark
matter halos. In Kap. 3, we calibrated a mass function model that allows marginalization
over variables related to the dynamical state. Instead, we marginalize on mass, predict
the distribution of Xoff , and compare it to the displacement between X-ray and optical
centers. A correlation between Xoff and the observable offset is expected, as the central
galaxy may be trapped in the deepest point of the halo potential, while the distribution
of the X-ray emitting gas depends on the gravitational potential also on larger scales. We
exploit hydrodynamical simulations to develop this connection. We use the Magneticum
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(Biffi et al., 2013; Hirschmann et al., 2014; Biffi et al., 2018; Ragagnin et al., 2017) and
the Illustris-TNG (Pillepich et al., 2018c; Nelson et al., 2019) simulations.

In the rest of this chapter, we refer to the offset between the X-ray and the optical
center in eROSITA clusters as observed offset, to the one measured in hydrodynamical
simulations as predicted offset, and to Xoff as the offset parameter. This chapter is structured
as follows. We summarize the eROSITA data, its processing, the optical follow-up, and
the hydrodynamical simulations in Sect. 4.1. We describe our method for computing the
observed offsets in eROSITA data, in simulations, and using the N-body model from Seppi
et al. (2021) in Sect. 4.2. We present the distributions of the offsets and our results in Sect.
4.3. We discuss our findings and how to use the offsets in a cosmological framework in Sect.
4.4. We finally summarize our results in Sect. 4.5.

4.1 Data
In this Section, we describe the X-ray observations, the optical follow-up, and the hydro-
dynamical simulations used in this chapter.

4.1.1 eROSITA
We use X-ray data from the eROSITA X-ray telescope. The observations are processed
with the eROSITA Standard Analysis Software System (eSASS, Brunner et al., 2022). A
detailed description of the detection process and a discussion on cluster detection with
eROSITA is given in Kap. 2. In addition, we study the probability of membership for all
galaxy members in each cluster using redMaPPer (Rykoff et al., 2014; Ider Chitham et al.,
2020) in scanning mode, making use of the prior knowledge of the X-ray position.

eFEDS

We use the eFEDS cluster catalog from Liu et al. (2022). It includes 542 clusters with
LDET>5 and LEXT>6. The clusters are confirmed in the optical band and the redshifts
are measured with redMaPPer (Rykoff et al., 2014), combining optical data from different
surveys such as the Hyper Suprime-Cam (HSC) Subaru Strategic Program (HSC-SSP,
Oguri et al., 2018), the Dark Energy Camera Legacy Survey (DECaLS, Dey et al., 2019)),
the Sloan Digital Sky Survey (SDSS, Blanton et al., 2017), the 2MASS Redshift Survey
(2MRS, Huchra et al., 2012), and the Galaxy And Mass Assembly Survey (GAMA, Driver
et al., 2011). A detailed weak-lensing study on HSC observations by Chiu et al. (2022)
provides halo masses for a subsample of 434 eFEDS clusters.

eRASS1

eROSITA performed its first scan of the whole sky during the first six months of the survey
phase, from December 13th 2019 until June 11th 2020, completing the first all-sky survey
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Tabelle 4.1: Numerical and physical parameters describing the Magneticum and Illustris-
TNG simulations.

Magneticum-Box2/hr TNG-300-1
Box size [Mpc/h] 352 205

ΩM 0.272 0.3089
ΩB 0.0456 0.0486
ΩΛ 0.728 0.6911
σ8 0.809 0.8159
H0 70.4 67.74
ns 0.963 0.9667

N particles 2× 15843 25003

MDM [M⊙/h] 6.9×108 5.9×107

Notes. Volume: total comoving volume covered by the simulation, ΩM: total matter density parameter,
ΩB: baryonic matter density parameter, ΩΛ: dark energy density parameter, σ8: normalization of the

linear matter power spectrum, H0: Hubble constant, ns: initial slope of the linear matter power
spectrum, N particles: total number of dark matter particles in the simulation, MDM: mass of the dark

matter particles.

(eRASS11). Given the scanning strategy of the telescope, the exposure time depends on the
angular position on the sky. Shallow regions around the ecliptic equator are covered for less
than 100 seconds, while deep areas around the ecliptic poles are observed for more than 1.2
ks (see Predehl et al., 2021, for more details). The average exposure time of the eRASS1
survey is ∼250 s. We use the German half of the sky (eROSITA_DE). The majority of
the area overlaps with different optical surveys, such as the Dark Energy Camera Legacy
Survey (DECaLS, Dey et al., 2019), the Dark Energy Survey (DES, Sevilla-Noarbe et al.,
2021), and the Kilo-Degree Survey (KiDS, Kuijken et al., 2019). The optical identification,
the measurement of redshifts and optical properties is carried out by redMaPPer (Rykoff
et al., 2014; Ider Chitham et al., 2020).
We use the X-ray position measured by eSASS, the optical centers (see Sect. 4.2), and the
redshift provided by redMaPPer.

4.1.2 Simulations
In this work, we use the Illustris-TNG and the Magneticum simulations. The main nume-
rical and cosmological parameters for the two simulations are shown in Table 4.1.

Magneticum

The Magneticum simulation suite2 is a set of cosmological hydrodynamical and dark-
matter-only (DMO) simulations (Biffi et al., 2013; Hirschmann et al., 2014; Dolag, 2015;

1https://www.mpe.mpg.de/7461950/erass1-presskit
2http://www.magneticum.org

https://www.mpe.mpg.de/7461950/erass1-presskit
http://www.magneticum.org
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Steinborn et al., 2015; Ragagnin et al., 2017; Dolag et al., 2017; Singh et al., 2020), spanning
different ranges of resolution and box size. These simulations are run with the TreePM-
SPH code P-GADGET3 (Springel, 2005). Multiple processes regulated by baryonic physics
are taken into account in the simulation, such as radiative cooling (Wiersma et al., 2009),
heating due to star formation, supernovae, galactic winds (Springel and Hernquist, 2003),
chemical enrichment (Tornatore et al., 2007), and AGN feedback processes (Fabjan et al.,
2010). The Magneticum simulations are successful at reproducing the black hole mass
density (Di Matteo et al., 2008), the AGN luminosity function (Hirschmann et al., 2014;
Steinborn et al., 2016; Biffi et al., 2018), morphological properties of galaxies (Teklu et al.,
2015; Remus et al., 2017), and the pressure profiles of galaxy clusters (Gupta et al., 2017).
This set of simulations has been used to quantify the impact of baryons on the halo mass
function (Bocquet et al., 2016; Castro et al., 2021), and for dedicated studies of the Large
Scale Structure around merging galaxy clusters with eROSITA (Biffi et al., 2022).
We focus on the Box2/hr simulation. This is computed assuming a WMAP cosmology
(Komatsu et al., 2011). Given our interest in clusters of galaxies, it provides a great com-
promise between the size of the box and the resolution of the dark matter halos. The side
of the simulated cube is 352 Mpc/h (500 Mpc). The box contains 475 halos more massive
than M500c=1×1014 M⊙ at z=03. The resolution of the dark matter particles is 6.9×108

M⊙/h, which allows detailed properties of the most massive halos hosting clusters and
groups to be measured. A summary of the key parameters for the simulation is reported
in Table 4.1.

Illustris-TNG

The Illustris-TNG project4 is a collection of 18 complementary hydrodynamical simulations
coupled with dark-matter-only runs (Weinberger et al., 2017; Pillepich et al., 2018c; Barnes
et al., 2018; Nelson et al., 2019). It spans different box sizes, resolutions, and treatment of
baryons. The simulations are run with the quasi-Lagrangian code AREPO (Weinberger et al.,
2020). It includes gas radiative mechanisms, star formation, stellar evolution, supernovae
explosions, the formation and accretion of supermassive black holes, and the amplification
of magnetic fields. The TNG project successfully reproduces the galaxy color distribution
as a function of stellar mass (Nelson et al., 2018), the stellar mass function at recent
epochs, the distribution of stellar mass inside galaxy clusters (Pillepich et al., 2018a), the
scaling relation between radio power and X-ray emission in galaxy clusters (Marinacci et al.,
2018), the low redshift quasar luminosity function (Weinberger et al., 2018), the chemical
evolution of gas in galaxies (Naiman et al., 2018), and the galaxy two-point correlation
function (Springel et al., 2018).
The TNG project assumes a Planck cosmology (Planck Collaboration et al., 2016b). We
use the TNG-300-1 simulation. It is the largest available box, with a side of 205 Mpc/h
(300 Mpc). It is smaller than Magneticum Box2/hr, and contains therefore fewer halos:

3M500c is the total mass of the cluster encompassed by a radius containing an average density that is
500 times larger than the critical density of the Universe.

4https://www.tng-project.org

https://www.tng-project.org
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159 objects more massive than M500c=1×1014 M⊙ at z=0. However, it has a higher particle
resolution (see Table 4.1).

4.2 Method
In this Section, we describe how we processed and analyzed the data, and how we compared
it to theoretical models and hydrodynamical simulations.

4.2.1 Offset for eROSITA clusters
Our sample consists of eFEDS and eRASS1 clusters with EXT_LIKE > 6. We additionally
require a measure of the uncertainty on the X-ray position by eSASS (RADEC_ERR > 0).
For eRASS1, we exclude clusters that are not covered by optical surveys and are therefore
lacking a measure of the optical center. We determine the X-ray center using the cluster
position defined by eSASS. It is the best fit position of the β-model fit convolved with the
PSF, that determines the X-ray centroid.
We consider two definitions of the optical center. The first one is given by the centering
algorithm of redMaPPer, that uses a Bayesian classification algorithm to locate the cluster
optical center. It is based on a model of the color of red sequence galaxies, and a local
red galaxy density filter that provides consistency between the photometric redshift of
the central galaxy and the cluster. It also matches the central galaxy luminosity to an
expected value given the cluster richness, which is closely related to the total number of
galaxy members hosted by the cluster (Rykoff et al., 2014). The optical center is not always
coincident with the brightest cluster galaxy. In fact, Rykoff et al. (2016) find that the optical
center from redMaPPer is not the brightest member for about 20% of the clusters. This
approach provides the probability for each member to be the central cluster galaxy Pcen
(see Eq. 56 in Rykoff et al., 2014).
Secondly, we explore an alternative definition of the optical center and consider the position
of the galaxy member with the largest membership probability pmem. It is the probability
that a galaxy near a cluster is a cluster member and should not be confused with the
probability of being the central galaxy Pcen. It is computed for each galaxy by combining
different filters. The most important one is a model of the color evolution of red-sequence
galaxies as a function of redshift (see Eq. 1 in Rykoff et al., 2014).
Given the angular positions of the X-ray and optical centers, we compute the angular
separation between them and convert it to the comoving physical kiloparsec scale based
on the cluster redshift, according to

∆X−O = c

H0

∫ z

0

dz√
ΩM(1 + z)3 + ΩΛ

× θ, [kpc] (4.1)

where z is the cluster redshift, c is the speed of light, H0 is the Hubble constant, and θ is
the angular separation between X-ray and optical centers in radians. Similarly, we measure
the observed offset between the X-ray center and the position of the galaxy with the largest
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membership probability, following again Eq. 4.1, but considering the galaxy with largest
pmem instead of the optical center from redMaPPer. We name this quantity ∆X−Pmem .
We estimate the error on the X-ray center by multiplying the uncertainty on the angular
X-ray position by the physical scale per unit angle. We estimate a systematic error on
the optical center accounting for the separation between the optical center identified by
redMaPPer and the position of the five members with the largest Pcen weighted by their
centering probability, according to Equation 4.2:

δO =

√√√√N=5∑
i=1

(Pcen,i × ∆O−Oi)2, (4.2)

where the index i runs on the five most probable members and ∆O−Oi is the separation in
kpc scale between the optical center and the position of the i galaxy member. In this man-
ner, the uncertainty δO accounts for the fact that the definition of a center is complicated
when there are many bright galaxies with similar probability of being the central galaxy.
We finally compute the cumulative distribution function (CDF) of ∆X−O and ∆X−Pmem . We
do this first for the whole eRASS1 and eFEDS samples, by restricting to secure clusters
with more than 20 counts and richness λ>20. We obtain 182 (4564) clusters from eFEDS
(eRASS1) satisfying these conditions. We then focus on a more specific sub-sample of 87
eFEDS clusters between redshift 0.15 and 0.4 and M500c between 1×1014 and 8×1014 M⊙.
The mean values of mass and reshift are M500c=2.16×1014 M⊙ and z=0.30. We use this
well-defined sample to do a comparison with simulations.

4.2.2 Analytical DMO model

We propose a link between the observed X-ray to optical offset in observations and the theo-
retical model developed in Kap. 3. There we calibrated a model for the halo mass function,
that additionally includes variables describing the dynamical state of dark matter halos.
We are particularly interested in the offset parameter Xoff , that is the displacement between
the center of mass of a dark matter halo and the peak of its density profile, normalized to
the virial radius. Such mass function model predicts the dark matter halo abundance as
a function of mass, offset parameter, and spin, offering the possibility of integrating out
one or more of these variables. We marginalize on mass and spin and obtain the analytical
prediction of the 1D distribution for the offset parameter (see Eqs. 3.14, 3.15, and 3.16).
We compare the observed offsets between the X-ray and optical centers to the offset para-
meter in physical scales Xoff,P (in kpc, i.e. not normalized to the virial radius) from N-body
simulations (see Eq. 3.25). We compute the halo multiplicity function dependent on the
offset parameter by marginalizing on mass and detection probability according to Equation
4.3:

f(Xoff,P) =
∫ Mup

Mlow
g(σ(M), Xoff,P)P (M)dM, (4.3)
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where Mlow=1×1014M⊙ and Mup=8×1014M⊙. In addition, we marginalize over the detec-
tion probability as a function of mass P̂ (M). The mass trend is encoded in the variance of
the density field σ. We calibrate the detection probability by dividing the eFEDS multi-
plicity function (see Eq. 4.4) computed from the cluster number density by the theoretical
prediction and model it with an error function. We refer to the detection probability model
as P(M), computed and modeled according to Eq. 4.4:

f(σ) = dn
dlnM

M

ρm

(
dlnσ−1

dlnM

)−1
,

P̂ (M) = feFEDS(σ)/fSEPPI+21(σ),

P (M) = 1
2erf [A(log10 M500c − M0)] + 1

2 , (4.4)

where the parameters have been fit with the curve_fit software5. The values are M0=14.314±0.001
and A=2.30±0.03. Finally, we account for projection effects by projecting the theoretical
three dimensional Xoff,P on the sky according to Eq. 4.5:

SXoff,P = Xoff,P
1
π

∫ π

0
sin θdθ = 2

π
Xoff,P. (4.5)

We use the corrected SXoff,P to compute the theoretical cumulative distribution function of
the projected offset parameter.

4.2.3 Prediction from hydrodynamical simulations
We process the Magneticum and TNG simulations in a similar way to each other. For each
halo in the simulation, we relate the optical center to the position of the main subhalo
identified by the SubFind algorithm, which contains the central galaxy. We relate the X-
ray center to the gas center computed from an emission measure weighted center of mass.
The position of each gas particle contained by the halo is weighted by its mass and local
density. We consider particles within the virial radius of each halo. We restrict to X-ray
emitting gas particles with temperature between 0.1 and 10 keV. We finally compute the
gas center according to Equation 4.6:

wg,i = ρg,i × mg,i,

CMg =
∑N

i=1 wg,i × xg,i∑N
i=1 wg,i

, (4.6)

where wg,i is the weight assigned to each gas particle, ρg,i is the local gas density, mg,i is the
gas particle mass, and xg,i is the particle position. The index i runs on the N gas particles
contained by a halo. We compute the predicted offset between the CG and the gas center

5https://scipy.org

https://scipy.org
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as their relative distance on the x–y projected cartesian plane.
In addition, we run the rockstar halo finder (Behroozi et al., 2013) on both Magneticum
and TNG. We process the hydro simulation as well as the respective parent dark-matter-
only (DMO) runs. rockstar provides a measure of Xoff for each identified halo. We focus
on distinct main halos. We perform a positional matching between our rockstar halo
catalogs from the hydro and DMO runs to the subfind catalogs provided together with
the particle data from the Magneticum and TNG projects. The agreement between these
catalogs is excellent. We discard halos where the location of the center disagrees by more
than 500 kpc and the measure of M500c differs more than 10% between the three catalogs.
Because the subfind catalogs provide the total mass, including stars and gas, we correct
it by the gas fraction from Pratt et al. (2009), see Fig. 8 therein, when comparing it to
rockstar masses. The gas fraction from Pratt et al. (2009) provides a robust measure
compared to a variety of other samples (see Eckert et al., 2021, for a review). In total,
we lose about 2% (1%) of the halos with M500c>1×1013 (1×1014) M⊙. The matched halos
allow us to compare the displacement between the gas center and the central galaxy to
the offset parameter for common objects between the three catalogs. To match the average
redshift of the high mass–low redshift eFEDS sample, we study the snapshot at z=0.30
for TNG-300. For Magneticum, we use the closest snapshot available at z=0.25, where
the particle data has been stored for the full hydro and the DMO run. We verify that
this does not bias our results in Sect. 4.3.1. The TNG-300 snapshot at z=0.30 contains
2232 (107) halos with M500c>1×1013 (1×1014) M⊙. The Magneticum Box2/hr snapshot at
z=0.25 contains 9293 (314) halos with M500c>1×1013 (1×1014) M⊙.

4.3 Results
In this Section, we present our main findings: the distribution of the displacement between
the X-ray and optical center in eROSITA, its comparison to Magneticum and TNG, and
to the N-body model from Seppi et al. (2021).

4.3.1 Offset distributions and comparison to simulations for eFEDS
We focus first on the sample over which we have the most control: a subsample of 87
eFEDS clusters with 0.15 < z < 0.4 and 1×1014 < M500c < 8×1014 M⊙. The redshift and
the X-ray positional uncertainty have been measured for all these clusters. Given the mean
values of M500c=2.16×1014 M⊙ and z=0.30 for this sample, the eFEDS selection function
yields an average completeness of about 80% (Liu et al., 2022). The observed offsets ∆X−O
and ∆X−Pmem are shown by the blue and orange shaded areas in Fig. 4.1. The green line
denotes the CDF of the projected offset parameter SXoff,P , the red (violet) line shows the
CDF of the predicted offset in the Magneticum (TNG-300) simulation at z=0.25 (0.30).
The corresponding dashed and dotted lines account for maximum and minimum projection
effects. For each cluster in the simulations, we consider the largest possible displacement in
the case where the two centers lay on a plane that is perpendicular to the line of sight, and



4.3 Results 149

Abbildung 4.1: Comparison between the offsets measured in eROSITA, the prediction of the
theoretical model, and hydrodynamical simulations. The cumulative distribution functions
of the observed offsets between X-ray and optical centers for eFEDS clusters between
redshift 0.15 and 0.4, and mass between 1×1014 and 8×1014 M⊙ are denoted by the blue
and orange lines. The first one refers to the optical center identified by the redMaPPer
centering algorithm, the latter to the position of the galaxy with the largest membership
probability. The shaded areas identify the uncertainty on the distributions. The green line
shows the prediction obtained from the Seppi et al. (2021) model described in Sect. 4.2.2.
The red (violet) curve denotes the CDF of the predicted offsets between the gas center
and the CG position in the Magneticum (TNG) simulation described in Sect. 4.2.3. The
corresponding dashed and dotted lines account for the maximum and minimum projection
effects. There is a broad agreement between the data, the prediction of the simulations, and
the N-body model. However, the tails of the distributions are different. The N-body model
predicts larger (smaller) displacements compared to data and hydrodynamical simulations
at the low (high) offset end.
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the minimum one by choosing the smallest displacement after projecting the same clusters
on the x-y, y-z, and x-z planes.

Average offsets

For the eFEDS sub-sample, we study the average observed offset at the 50% percentile point
of the CDF. We measure ∆X−O=76.3+30.1

−27.1 kpc and ∆X−Pmem=157.4+20.6
−34.0 kpc. The flattening

of ∆X−O at large offsets is given by a tail of recent mergers and disturbed clusters. The
average predicted offset in hydrodynamical simulations is equal to 57.2 kpc for TNG-300
and 87.1 kpc for Magneticum Box2/hr. We see that both simulations predict offsets that
are on average compatible with the distribution of ∆X−O, but they are in disagreement
with the observed offset between the X-ray center and the position of the galaxy with the
largest membership probability ∆X−Pmem . Therefore, the displacement between the hot gas
and the CG in hydrodynamical simulations is a good prediction of the offset between the
optical center from redMaPPer and the X-ray position from eSASS in eROSITA data. To
assess whether the different redshift considered for the Magneticum simulation impacts our
findings, we do the same analysis for the snapshot at z=0.25 of the TNG-300 simulation,
where the particle data are available also for the parent DMO run. We find that the
predicted offset is on average smaller by about 4 kpc compared to the snapshot at z=0.30.
This is much smaller than the typical uncertainties on the data. We conclude that studying
the snapshot at z=0.25 in the Magneticum simulation does not bias our results.
The average value of the projected offset parameter is SXoff,P=75.8 kpc. Similarly to the
offsets predicted by TNG and Magneticum, it is in agreement with ∆X−O, but disagrees
with ∆X−Pmem . On average, we conclude that there is good agreement between the offsets
observed in eROSITA clusters, the ones predicted by hydrodynamical simulations, and by
the N-body model from Kap. 3.

Tails of the distributions

The tails of the ∆X−O and SXoff,P distributions, where the CDF is smaller than about 0.2
and larger than 0.7, are different. We attribute this discrepancy to baryonic effects that are
not present in the DMO simulations, such as dragging, cooling, and the disruption of the
gas by AGN feedback and recent mergers. These effects tilt the shape of this distribution.
This is in agreement with previous works, where the shape of the offset distribution changes
from a modified Schechter function in N-body simulations (Rodriguez-Puebla et al., 2016;
Seppi et al., 2021) to a lognormal distribution in data (Mann and Ebeling, 2012). We
further discuss this result in Sect. 4.4.

Fraction of relaxed clusters

To separate relaxed and disturbed clusters, we follow the example of Ota et al. (2022) and
apply an observed offset cut according to

∆X−O < 0.05 × R500c. (4.7)
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We find that 27 clusters out of 87 are classified as relaxed. Our relaxed fraction of 31% is
in agreement with the upper limit of <39% found by Ota et al. (2022). We additionally
estimate an upper limit of the relaxed fraction by accounting for the uncertainty on the
measure of the observed offset (as explained in Sect. 4.2.1), assuming the lower limit of
∆X−O within the error. We apply again the same cut in Eq. 4.7 and obtain a relaxed
fraction of < 59%. Our results show that there is not a strong preference for relaxed ob-
jects compared to unrelaxed ones in this eFEDS cluster sample. This is in agreement with
previous work on eFEDS data. Ghirardini et al. (2021a) combined eight different mor-
phological parameters (central density, concentration, centroid shift, ellipticity, cuspiness,
power ratios, photon asymmetry, and Gini coefficient) into the single relaxation score pa-
rameter. They did not find a clear preference for cool core clusters over disturbed ones
and showed that the transition from a relaxed to a disturbed cluster population is smooth.
In addition, Bulbul et al. (2022) analyzed the clusters hidden in the point-like sample of
eFEDS sources, identifying them using optical data. They found that only the clusters
in the point-like sample show a peaked profile in the central region. Finally, predictions
from eROSITA simulations show that there is a significant preference for the detection of
relaxed systems just in the point-like sample (see Fig. 2.9).

4.3.2 Full eROSITA samples

We now expand upon the eFEDS subsample by measuring the position of the X-ray and
optical centers for the full sample of 182 eFEDS and 4564 eRASS1 clusters as explained in
Sect. 4.2.

We show the cumulative distribution function of the observed offsets in Figure 4.2. The
blue (green) line shows the offset between the X-ray center and the redMaPPer center for
the eFEDS (eRASS1) sample. The shaded areas denote the 1σ error on the observed offset.
We measure an average value of ∆X−O=92.6+44.3

−35.1 kpc in eFEDS and ∆X−O=158.5+53.0
−57.5 kpc

in eRASS1. On average, the eRASS1 sample shows larger offsets compared to eFEDS.
Since eRASS1 is a shallow survey compared to the deeper and more uniform eFEDS, and
the detection probability for a given cluster grows as a function of exposure time (Clerc
et al., 2018; Seppi et al., 2022), it contains a larger fraction of high-mass, high-offset objects
compared to eFEDS.

The trends of the displacement between the X-ray center and the position of the galaxy
with the largest membership probability are more similar. They are shown by the orange
(red) line in Fig. 4.2 for eFEDS (eRASS1). The shaded areas denote the 1σ error on
the observed offset. We measure an average value ∆X−Pmem=160.9+40.5

−45.6 kpc in eFEDS and
∆X−Pmem=162.7+45.8

−46.3 kpc in eRASS1. The full samples mix clusters with different mass and
redshift, which dilutes the intrinsic differences of ∆X−Pmem between the eFEDS and the
eRASS1 samples.
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Abbildung 4.2: Cumulative distribution functions of the observed offsets between X-ray
and optical centers for eROSITA clusters between redshift 0.15 and 0.8, more than 20
counts, and richness λ>20. These cuts yield 182 (4564) clusters from eFEDS (eRASS1). The
shaded areas denote the uncertainty on the distributions. Different colors denote distinct
definitions of the optical center: the one identified by the redMaPPer centering algorithm
and the position of the galaxy with the largest membership probability (blue and orange
for eFEDS, green and red for eRASS1).

4.4 Discussion

In this section, we discuss the different offsets presented in Sect. 4.3. The physical effects
affecting the offsets play a key role in understanding the cause behind the smaller (larger)
displacements measured in eROSITA data and hydrodynamical simulations compared to
the N-body model in the low (high) offset regime. The origin of the observed offsets in clu-
sters of galaxies is related to the different response of each cluster component to different
astrophysical phenomena.
The effect of mergers and AGN feedback on the offset distribution is discussed in Sect.
4.4.1 and 4.4.2. Their combination and the transition from the DMO scenario to the obser-
ved offset distribution are presented in Sect. 4.4.3. The discrepancies between the offsets
predicted by different hydrodynamical simulations are discussed in Sect. 4.4.4. Finally, the
potential use of the offsets in a cosmological experiment is presented in Sect. 4.4.5.
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4.4.1 Mergers

Very large observed offsets likely originate from mergers between smaller objects into mas-
sive clusters. Cluster mergers are one of the most energetic processes in the Universe, as
the total kinetic energy involved reaches values up to 1065 erg (Markevitch et al., 1999; Sa-
razin, 2002; Markevitch and Vikhlinin, 2007). In this context, it is particularly interesting
to explore the differences between the central galaxy and the gas in relation to the dark
matter distribution.

The dark matter is mostly sensitive to gravitational interaction, while the central galaxy
and the gas are additionally subject to a variety of effects such as electromagnetic forces,
ram pressure, scattering, and cooling (Merten et al., 2011). When two clusters merge, the
dark matter components stream through each other according to the evolving gravitational
field, without being slowed down by the dragging experienced by baryonic components
because of the additional interactions. The result is that after a merger, when the newly
formed halo relaxes and the gas cools down, the displacement between the dark matter
profiles of the merging clusters is larger than the separation between the gas distributions.
In fact, clusters undergoing mergers typically show large offsets up to hundreds of kpc
between different components (Menanteau et al., 2012; Mann and Ebeling, 2012; Dawson
et al., 2012; Monteiro-Oliveira et al., 2017). Large observed offsets provide therefore a
hint of merger activity, compared to small offsets that characterize the pre-merger phase
(Jauzac et al., 2015; Ogrean et al., 2015). An extreme case is the famous 1E 0657–56, also
known as the bullet cluster (Markevitch et al., 2002; Clowe et al., 2006), where the total
mass distribution traced by weak lensing extends to larger radii compared to the emission
of the hot gas imaged with the Chandra X-ray observatory. This is in agreement with our
result in Fig. 4.1, where we find a larger amount of clusters showing an observed offset of
tens of kpc compared to the DMO prediction.

In addition, since the gas trails the dark matter during a merger because of ram pressure
and friction, the gas starts sloshing within the cluster potential. This causes large observed
offsets when the gas approaches the point of null velocity and positive acceleration during
the sloshing process (Ascasibar and Markevitch, 2006; Markevitch and Vikhlinin, 2007;
Sanders et al., 2020; Pasini et al., 2021). The complex behavior of the gas during the
merging process is not easily mappable to the dark matter-only scenario. In these cases,
the large offsets seen in data are not compatible with simple theoretical models, as described
by De Propris et al. (2021). The authors find that the BCG is generally aligned with the
cluster mass distribution, showing that even if being displaced by a merger or if the dark
matter halo is not relaxed, the central galaxy does follow the cluster potential. Hikage et al.
(2018) tested the performance of the redMaPPer centering algorithm using galaxy-galaxy
lensing and confirmed that the central galaxy is not always the brightest member. A similar
result was presented by Hoshino et al. (2015), who studied the distribution of luminous
red galaxies in clusters. Therefore, the BCG is possibly a biased tracer of the deepest
point of the halo potential well, especially for unrelaxed systems where the definition of
the BCG is not trivial, and the brightest cluster galaxy may belong to a satellite merging
halo. The identification of the central galaxy using centering probabilities with redMaPPer
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provides a better tracer of the center of the dark matter halo. This is consistent with the
agreement between the eROSITA data and hydrosimulations only when using ∆X−O. In
fact, the median of the ∆X−Pmem distribution does not agree with the DMO model, with
hydrodynamical simulations, nor with the median of ∆X−O. The additional information
from the whole galaxy population encoded in ∆X−O provides an optical center that is on
average closer to the X-ray center. However, in complex mergers galaxies in the cluster
outskirts may shift the optical center away from the X-ray one compared to the galaxy
with largest membership probability. This explains the extension to large values for ∆X−O
in the most disturbed clusters.
Compared to the definition of the optical center, the X-ray emitting gas may not properly
trace the center of the cluster potential after being disrupted by complex mergers. This
was studied by Cui et al. (2016). The authors analyzed the location of different centers
of galaxy clusters in simulations and found that the BCG shows a better correlation with
the center of the gravitational potential compared to the X-ray gas. They measure an
average separation between the BCG and the potential center smaller than 10 kpc, while
the displacement between X-ray and potential centers reaches average values of tens of kpc.
This is also in agreement with Fig. 4.1, where the data shows larger offsets compared to
the DMO prediction in the high offset regime. We conclude that on one hand, the central
galaxy is on average more likely to be trapped in the vicinity of the deepest point of the
cluster potential. On the other hand, the X-ray center, being related to gas permeating
the whole halo, is more sensitive to the overall variations of the potential during merger
activity and is altered by AGN feedback (see Sect. 4.4.2). This is in concordance with
previous work on observations (George et al., 2012) and simulations (Cui et al., 2016).

4.4.2 AGN feedback
AGN feedback plays an additional role in this context. Efficient accretion onto the SMBH
of the central galaxy is known to impact the gas on very large scales inside the dark matter
halo hosting a galaxy cluster (see Eckert et al., 2021, for a review). The central AGN does
not only reorganize the gas on large scales but the presence of jets digging cavities in the
gas distribution produces a significant diversity of the gas morphology. The structure of the
gas can be disrupted by AGN feedback, which pushes the gas away from the cluster center
(Gaspari et al., 2012; Gitti et al., 2012; McNamara and Nulsen, 2012; Li et al., 2015). This
contributes to the larger predicted offsets measured in the presence of baryons compared
to the N-body simulations. However, the AGN impact on the offsets is not immediate. In
fact, the central galaxy becomes active when there is enough gas supply to the central
region of the cluster, which means that a cluster is more likely to be relaxed shortly before
the beginning of AGN activity (Fabian, 2012; Pinto et al., 2018). It is also reasonable to
expect a correlation between the AGN impact on the gas distribution and redshift. Dark
matter halos are smaller at early times and the feedback may distribute and reorganize the
gas on large scales more easily.
The notion that the gas is displaced compared to the dark matter distribution has been
explored by Cui et al. (2016). They compare simulations with and without AGN feedback
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and find that its activation enhances the offset between the gas and the dark matter
centers, especially for clusters with predicted offsets between around 10 and 30 kpc in the
simulation without AGN. The predicted offset reaches an average value of about 70 kpc in
the run with active AGN. This is in agreement with our measurement of the observed offset
∆X−O is Sect. 4.3. The authors also demonstrate that the X-ray centroid is more consistent
than the X-ray peak between hydrodynamical runs with different baryonic physics. This
supports our way of locating the X-ray center with eSASS, which accounts for the overall
distribution of the emission, rather than simply choosing the brightest pixel.

4.4.3 Physical interpretation of the offset distribution

Abbildung 4.3: Illustration showing the interpretation of the impact of different astrophy-
sical effects on the observed offset distribution. The green line refers to the dark matter
only scenario (see Fig. 4.1). The dragging due to ram pressure and baryon friction increases
the number of clusters with a small offset and is displayed in orange. This causes a shift of
the CDF, which is highlighted by the green arrow with an orange edge. Major and minor
mergers are responsible for the largest offsets, which further shift the right-hand tail of the
distribution (in red) compared to the DMO case. This second transition is highlighted by
the orange line with a red edge. Finally, AGN feedback increases the observed offsets in
a medium regime, reducing the number of clusters with a small offset. The final result is
the ∆X−O distribution measured in eFEDS (see Fig. 4.1). It is shown in blue and the third
transition is displayed by the red arrow with a blue edge.

We combine the discussion from the previous paragraphs and formulate a physically
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motivated interpretation of the observed offset distributions presented in Fig. 4.1. We use
the illustration in Fig. 4.3 to qualitatively guide the discussion. The green line showing the
DMO analytical model, and the blue line with shaded area denoting the eFEDS result are
the same as in Fig. 4.1. We interpret the shift of the distribution from the DMO scenario
to the observations due to different astrophysical phenomena. First, the addition of small
scale baryonic effects such as dragging, ram pressure, and friction reduces the observed
offsets compared to the DMO case. This is likely to happen in minor mergers, where the
gas distribution is not catastrophically disrupted, but the gas ends up trailing the dark
matter component of the merging objects. The baryon dragging is reflected in an increment
of the CDF at small offsets (orange line), shown by the green arrow with an orange edge. In
addition, complex and major mergers can significantly disrupt the gas distribution or even
strip the central galaxy from the bottom of the potential well, resulting in larger offsets
compared to the DMO scenario. This causes a shift of the right-hand side of the CDF
towards larger values, from the green and orange lines to the red one. The transition is
highlighted by the orange arrow with a red edge. Furthermore, the AGN feedback alters the
gas distribution, reducing the number of clusters with a small predicted offset, as shown by
Cui et al. (2016). The final CDF is therefore more skewed towards larger offsets, following
the red arrow with a blue edge. The final result is the offset distribution measured in the
eFEDS subsample. It includes all these contributions and is shown by the blue line. The
final CDF grows less rapidly compared to the dark matter only case, which is what we find
when comparing ∆X−O to the analytical DMO model (see Fig. 4.1). Very large samples in
future eROSITA all-sky surveys will allow a more detailed study of cluster relaxation and
observed offsets at fixed cluster properties such as mass and redshift.

4.4.4 Discrepancy between offsets in simulations
The different offsets predicted by TNG and Magneticum may have different causes. First,
the Magneticum and TNG simulations are run assuming different cosmologies (see Table
4.1). In particular, the WMAP cosmology assumed for Magneticum is slower in producing
collapsed structures, due to the smaller ΩM and σ8 compared to the Planck cosmology
in TNG. Therefore, at a fixed redshift, the merger rate is different between the two si-
mulations: halos have merged more recently in Magneticum because the growth factor is
proportional to the matter density in the Universe. It makes them more disturbed, which
may additionally contribute to the larger offsets predicted by Magneticum compared to
TNG.

An additional factor is the AGN feedback scheme (Hirschmann et al., 2014; Weinber-
ger et al., 2018). The implementation of the accretion onto SMBHs is similar in these two
simulations. It is based on an Eddington-limited Bondi accretion rate, following the Bon-
di–Hoyle–Lyttleton approximation (Bondi and Hoyle, 1944; Bondi, 1952), and accounts for
a two-way accretion mode, transitioning from a high accretion state (quasar mode), cha-
racterized by the presence of a thin disk, where the feedback is inefficient and released into
the surrounding gas as thermal energy, to a low accretion state (radio mode), characterized
by the quiescent infall of gas from the hot halo in quasi-hydrostatic equilibrium. In this
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case, the feedback is more efficient, and powerful radio jets are produced, that heat the gas
kinetically (see Croton et al., 2006; Fanidakis et al., 2011).
AGN feedback models reproduce the majority of AGN observations but struggle to per-
fectly grasp the full wealth of observed properties (Biffi et al., 2018; Comparat et al., 2019).
Detailed predictions should therefore be taken with caution. Nonetheless, different choices
of the parameters in the feedback prescription may explain the larger offsets predicted
by Magneticum compared to TNG. For example, the transition between the quasar mode
and the radio mode, based on a choice of the Eddington ratio between accretion rate and
Eddington limit, follows different thresholds. This is fixed at 1% in Magneticum. In TNG
instead, a black hole mass-dependent threshold is chosen, such that its value is smaller
than 1% for MBH ⪅108.4 M⊙, and can reach larger values of 10% only for the most massi-
ve black holes of 109 M⊙. Therefore, the radio mode where the feedback is more efficient
is active for longer accretion phases in Magneticum compared to TNG. The gas may be
ultimately pushed out to smaller distances in TNG, causing the lower values of the pre-
dicted offsets. In addition, other differences may impact the modeling of AGN feedback in
relation to the offsets. For example, the feedback efficiency in the thermal mode is slightly
larger in Magneticum (0.03) than TNG (0.02). The efficiency in the kinetic mode is fixed
in Magneticum (0.1), while in TNG it depends on the local density of the environment,
which makes the coupling between AGN feedback and gas weaker in low density regions.
In both cases, the gas may experience a push out to larger distances in Magneticum. These
different prescriptions lead to a redshift-dependent switch of the feedback mode in TNG.
Moreover, a black hole seed of mass 1.18×106 M⊙ is generated at the center of dark matter
halos more massive than 7.38×1010 M⊙ in TNG (Weinberger et al., 2017). In Magneticum
instead, the assignment is based on the stellar mass of the halo, as a seed black hole of
4.55×106 M⊙ is placed at the position of the most bound stellar particle in halos with
stellar mass M⋆ ⪆1.4×1010 M⊙. Finally, Magneticum also allows the accretion of fractions
of each gas particle onto the SMBH, providing a more continuous representation of the
accretion process.

4.4.5 Cosmology with offsets
The halo mass function model developed by Seppi et al. (2021) allows marginalization of
the halo abundance on variables related to the dynamical state of dark matter halos, such
as Xoff . This mitigates related selection effects. For example, some X-ray-selected cluster
samples are affected by the cool core bias (Eckert et al., 2011). Relaxed clusters where the
gas has cooled in the central region exhibit a peaked emission in the core. It potentially
biases the detection towards such objects, compared to non-cool core ones, where the
emissivity profile is flatter. We propose to use the offset between X-ray and optical centers
as an observable to link real data to Xoff . This has the potential to enable a cosmological
cluster count experiment as a function of mass and observed offset, unbiased by selection
effects related to the cluster dynamical state.
We study the relation between ∆X−O/R500c in simulations and the offset parameter Xoff .
We use the value of Xoff measured with rockstar on the halos in the DMO parent



158 4. X-ray to optical offset

Tabelle 4.2: Best fit parameters for the relation between the displacement between the gas
and the central galaxy and the offset parameter in simulations.

A B
Magneticum Box2/hr 1.19±0.24 0.46±0.27

TNG-300-1 1.34±0.59 0.56±0.63

simulation. This connects observable properties related to the gas and stars in clusters to
intrinsic properties of halos in the model calibrated on N-body simulations (Seppi et al.,
2021). There is a positive correlation between ∆X−O and Xoff . Disturbed clusters with a
large offset parameter in N-body simulations also exhibit a large displacement between the
gas and the central galaxy in the respective hydro run. We model the correlation between
the offset predicted by Magneticum and TNG to Xoff with a power-law relation (Eq. 4.8):

log10
∆X−O

R500c
= A × log10 Xoff + B. (4.8)

Abbildung 4.4: Average relation between the displacement ∆X−O predicted by hydrody-
namical simulations and the offset parameter Xoff measured on their parent DMO run. It
allows linking an observable to an intrinsic property of dark matter halos. The upper panel
shows the Magneticum Box2/hr simulation, the bottom panel refers to TNG-300. Each
color denotes a specific mass range, the number of clusters in each bin are written in the
legend. The shaded areas denote the standard deviation in each bin. The black dashed line
shows the best-fit model, the black shaded areas denote the 1σ uncertainty on the model.
The bottom-right legend shows the total number of clusters in each mass bin.

There is no explicit trend as a function of mass in Eq. 4.8. Indeed the mass dependence
is in the normalization of ∆X−O to R500c and of the offset parameter to the virial radius.
Therefore, we fit halos of different masses together. We perform the fitting of Eq. 4.8 using
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Abbildung 4.5: Triangular plot showing the posterior distributions of the best-fit parame-
ters relating Xoff to the offset between the gas center and the central galaxy in simulations
(see Eq. 4.8). The red (blue) lines and contours show the TNG-300 (Magneticum-Box2)
simulation. The shaded areas of the bottom-left panel denote the 1σ and 2σ confidence
level contours.



160 4. X-ray to optical offset

Abbildung 4.6: Recovery of the theoretical Xoff distribution using the ∆X−O–Xoff relation.
The application of Eq. 4.8 on the offset predicted by Magneticum and TNG is shown in
red and violet, respectively. The shaded areas contain the 1σ uncertainty on the model of
the ∆X−O–Xoff relation. The blue (orange) dashed line refer to the direct measure of Xoff
in the DMO counterpart of Magneticum (TNG). We find excellent agreement between the
distribution of the true Xoff and the prediction of Eq. 4.8.

the UltraNest6 package (Buchner, 2019, 2021). We fit all individual halos more massive than
M500c>4×1013 M⊙. We assume a Poisson likelihood of the form log L = −∑

M + ∑
D ×

log M , where M , D represent the model and the data, respectively. The ∆X−O/R500c to Xoff
relation is presented in Fig. 4.4. The left-hand (right-hand) panel shows the Magneticum
(TNG) simulation. The figure is color-coded according to mass, spanning from low mass
groups with M500c=4×1013 M⊙ to the most massive clusters with M500c>1×1015 M⊙. The
black dashed lines show the best-fit model and the black shaded areas contain the 1σ and
2σ uncertainties on the model. The Magneticum simulation shows a tighter constraint on
the relation compared to TNG. Indeed, Magneticum contains a larger amount of halos than
TNG thanks to its larger volume, which enables more precise modeling of the ∆X−O–Xoff
relation. The best fit parameters are shown in Table 4.2. The slope and the normalization
of the relation (parameters A and B) are compatible between Magneticum and TNG.
The full 2D and the marginalized 1D posterior distributions are shown in Fig. 4.5. The
blue contours denoting the Magneticum simulation span a smaller area on the A–B plane
compared to the red ones, showing the TNG-300 box, because of the different amount of
halos in the two simulations.

Starting from the measure of ∆X−O/R500c in the simulations, we predict the Xoff distri-
bution in Magneticum and TNG by inverting the model in Eq. 4.8. We find an excellent

6https://johannesbuchner.github.io/UltraNest/

https://johannesbuchner.github.io/UltraNest/


4.5 Summary 161

agreement between the distribution of Xoff measured on the DMO counterparts of the
hydrodynamical simulations with the prediction obtained from the X-ray to optical offset
and inverting Eq. 4.8. The result is shown in Fig. 4.6. The true Xoff CDF is shown in blue
for Magneticum and in orange for TNG. The red and violet lines denote the prediction of
Xoff from ∆X−O. The shaded areas include the 1σ uncertainty on the model in Eq. 4.8. Our
prediction of Xoff from the X-ray to optical offset is able to recover the true Xoff distributi-
on with great precision. It enables the direct mapping of an observable offset to the offset
parameter in DMO simulations, providing a reliable estimator of the mass–Xoff function
g(σ(M), Xoff) (Seppi et al., 2021).
In a full end-to-end cosmological study as a function of cluster mass and observed offset,
one can marginalize over the parameters of the relation in Eq. 4.8, similarly to the stan-
dard way of marginalizing over the mass observable scaling relation parameters in recent
cosmological analysis with clusters of galaxies (Mantz et al., 2015b; Bocquet et al., 2019;
Ider Chitham et al., 2020).

4.5 Summary
The eROSITA X-ray telescope is detecting clusters of galaxies at an unprecedented rate.
It provides a large sample of clusters and groups to study astrophysical properties and
constrain cosmological parameters. A key aspect of galaxy cluster studies is the definition
of their center.

In this chapter, we measure the offset between the X-ray and optical centers for clusters
observed by eROSITA. We consider two cluster catalogs: the eFEDS and the eRASS1
samples. We study two possible definitions of the optical center: the one provided by the
centering algorithm of redMaPPer, and the position of the member galaxy with the largest
membership probability. On average, the offsets measured in eRASS1 are larger compared
to eFEDS (see Fig. 4.2). This is a consequence of the shallower exposure of eRASS1. It
does not allow detecting lower mass clusters with smaller observed offsets, that are instead
present in the eFEDS sample. However, interpreting the offsets distributions for the whole
samples is complicated, because they include clusters at different evolutionary phases, with
various mass and redshift.
Therefore, we select a well controlled subsample of eFEDS (0.15 < z < 0.4 and 1×1014

< M500c < 8×1014 M⊙), where the masses have been measured using weak lensing. We
measure an average observed offset ∆X−O=76.3+30.1

−27.1 kpc. Using a threshold of ∆X−O <
0.05 × R500c (Ota et al., 2022) to select relaxed systems, we measure a relaxed fraction
of 31%. According to this criterion, the eFEDS subsample does not show a preference for
relaxed clusters, in agreement with Ghirardini et al. (2021a); Bulbul et al. (2022).
We compare the offsets measured in this sample to those predicted by the Magneticum
Box2/hr and TNG-300 hydrodynamical simulations, and the N-body model of the offset
parameter from Seppi et al. (2021). In the hydrodynamical simulations, we locate the
optical center at the position of the main subhalo and the X-ray center at the center of mass
of the hot gas particles weighted by their mass and density. The result is shown in Fig. 4.1.
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We find a broad agreement between them, especially for the median of the distribution (i.e.,
the 50% percentile point of the CDF). However, the tails of the distributions are different.
We find that the offsets measured in eROSITA data and predicted by Magneticum and
TNG are smaller (larger) compared to the N-body model in the low (high) offset regime.
This inconsistency is caused by baryons, that reduce the offsets for relaxed systems due to
cooling and dragging and increase it for disturbed ones, mainly due to mergers and secondly
AGN feedback . This scenario agrees with other work on observations (Churazov et al.,
2003; George et al., 2012; Zenteno et al., 2020) and simulations (Molnar et al., 2012; Zhang
et al., 2014; Cui et al., 2016). We also find that considering the optical center provided
by redMaPPer instead of the galaxy with the largest membership probability provides a
better comparison with simulations.

We explore the possibility to introduce the offsets in a cosmological cluster count ex-
periment. We use the displacement between X-ray and optical centers as a proxy for Xoff .
We fit a power-law relation between them (see Figs. 4.4 and 4.5). We find a relation that is
independent of mass, thanks to the normalization to the cluster size (R500c for ∆X−O and
Rvir for Xoff). Our model of the ∆X−O–Xoff relation provides a precise prediction of the true
Xoff distribution in Mangeticum and TNG. It is then possible to measure the cluster abun-
dance as a function of mass and observed offset and use the model from Seppi et al. (2021)
to constrain cosmological parameters. The best-fit parameters of the ∆X−O–Xoff relation
can be marginalized over similarly to the common mass observable scaling relation. This
allows marginalizing over selection effects related to the cluster dynamical state directly in
the measure of the halo mass function.

4.6 Images
Figure 4.7 shows six eFEDS clusters. The panels show clusters as seen in the optical band
by HSC, using g, r, and z bands. The green dashed lines denote the 3σ contours of the
X-ray emission. The green cross identifies the X-ray center from eSASS. Two definitions of
the optical center are shown: the galaxy with the largest pmem (blue cross), and the optical
center identified by the centering algorithm of redMaPPer (pink plus sign). In some cases,
different characterizations of the center are in agreement. The cluster in the bottom-left
panel is an example. In other cases, the offsets are larger than hundreds of kpc, especially
when the X-ray morphology has a complex structure (central-left panel in Figure 4.7).

Figure 4.8 shows three of the most massive clusters in the snapshot at z=0.25 of the
Magneticum simulation. Each row displays one cluster. The left-hand column shows the
hot gas component, the central one the stars, and the right-hand one the total matter
distribution. The first cluster is relaxed: the distribution of the total matter is close to
spherical and the hot gas is smooth. The cluster in the second row is in a transition phase,
with a clear peak of the matter distribution in the center and some infalling satellites, that
are also well traced by the star component. Finally, the third cluster is in the merging
process: two main structures are colliding in the center, the stars are aligned along the
merger direction and the gas distribution is more clumpy.
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Abbildung 4.7: eFEDS clusters. Each panel shows a different cluster with the relative name,
redshift (z), richness (λ), and mass (M500c). The optical image is an RGB cube built from
HSC data using g, r, and z bands. The green lines denote the 3σ contours of the X-ray
emission. The green cross identifies the X-ray center found by eSASS, the blue one denotes
the position of the galaxy with the largest membership probability, and the pink plus sign
locates the optical center identified the centering algorithm of redMaPPer.
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Abbildung 4.8: Clusters of galaxies in the Magneticum Box2/hr simulation at z=0.25.
Each row displays one object. Each column shows a different component: the hot gas in
the left-hand column, the stars in the middle one, and the total matter distribution in the
right-hand one. The panels are 4×R500c large. The side of the maps contains 1024 pixels,
so the pixel size is ∼3.9×10−3R500c. The figures are color coded according to the density of
each component in units of solar masses per pixel. The first and third clusters are projected
along the z axis, the middle one along the x axis. The mass of each component inside R500c
is reported in the title of each panel.
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Conclusions

In this final chapter, we summarize the main results of the thesis and their role within
the development of eROSITA science, including clusters of galaxies in cosmological and
astrophysical contexts.

5.1 Summary and outlook
Clusters of galaxies are a great cosmological probe for studying dark matter and dark
energy. The cluster abundance as a function of mass and redshift is mostly sensitive to the
total amount of matter in the Universe and the amplitude of initial density perturbations
at early times, but also to the dark energy equation of state. The eROSITA telescope
is revolutionizing X-ray astronomy and will provide the largest X-ray-selected sample of
clusters and groups, with great cosmological potential. Understanding uncertainties in the
data and characterizing the samples of detected sources is essential to reaching the desired
levels of precision. When comparing the abundance of clusters in observations with theore-
tical models, it is key to account for faint clusters that are not bright enough to be detected
(completeness), random background fluctuations that are mistakenly detected as physical
sources (spurious detections), and bright point-like sources, such as AGN and stars, that
are classified as extended and wrongly included in the cluster sample (contamination). A
cluster cosmological experiment will produce biased results if not accounting for these ef-
fects properly.
The first goal of this thesis was to study these aspects by producing and analyzing a digi-
tal twin of the first eROSITA all-sky survey. We use precise models for the populations of
clusters and AGN, that reproduce their number density distributions compared to observa-
tions. We include a model of the X-ray background that is resampled from the real eRASS1
data. The combination of these models provides a very similar catalog to the real one. We
find that a cut in detection likelihood reduces the fraction of spurious sources, while a cut
in extension likelihood is necessary to lower contamination. We find that the fraction of
detected clusters mainly depends on flux and exposure time, with secondary trends as a
function of the central emissivity and the size of the cluster. We study the trade-off bet-
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ween completeness and contamination as a function of extension likelihood cuts. This is
key to selecting a cluster sample for cosmological purposes that is as complete and pure as
possible. Different improvements on eROSITA simulations are possible in the future. The
constant progress in computational power allows the production of large simulations with
excellent resolution. For example, the implementation of the Uchuu simulations (Ishiyama
et al., 2021) within our framework would provide an extremely detailed description of the
dark matter halos hosting AGN, but also a proper characterization of galaxies, without
suffering significantly from cosmic variance. The development of an optical model together
with the X-ray one presented in this thesis would allow combined modeling of the optical
and X-ray selection functions. In addition, multiple realizations would increase the number
of objects, providing a more accurate measure of the completeness, and the assignment of
detection probabilities, by checking the fraction of simulations in which a source is detected.

The very large sample of clusters observed by eROSITA will provide stringent cons-
traints on the mass-observable scaling relation. Therefore, the contribution of the uncer-
tainties on the models within the total error budget becomes relevant in a cosmological
experiment. In this era of precision cosmology, detailed modeling of the halo mass function
is required.
The second goal of this thesis was to use large N-body simulations to calibrate a halo mass
function that additionally includes variables related to the dynamical state of dark matter
halos. We study the concentration–mass relation of massive dark matter halos and provide
a model that predicts concentration as a function of mass and redshift with a single equa-
tion. We validate a general mass function framework that includes the dynamical state of
dark matter halos. It allows measuring their abundance as a function of mass, redshift,
spin and offset parameter, with the possibility to integrate out the preferred combination
of these variables. It allows marginalizing over selection effects related to the dynamical
state of clusters directly in the measure of the halo mass function. Future improvements
on such modeling may be achieved with different sets of simulations, for example spanning
different cosmologies, or adding baryons. One could then better understand and quantify
if these effects have an impact on the halo number density and on the mean relations using
concentration, spin, and offset parameter.

The cluster dynamical state has been measured with different methods, such as central
density, concentration, centroid shift, or photon asymmetry. An interesting quantity in this
context is the offset between the cluster center in different wavelengths.
The third goal of this thesis was to measure the offset between the X-ray and optical center
of clusters detected by eROSITA. We find that on average the offset of eRASS1 clusters
is larger than the eFEDS ones because the shallower depth of the former does not allow
the detection of fainter clusters with low mass and small offset. In addition, we use the
Magneticum and Illustris-TNG simulations as a comparison to eROSITA data. In general,
we find good agreement between the offset measured in observations, the one predicted
by hydrodynamical simulations, and the offset parameter predicted by marginalizing our
halo mass function model on mass and spin. We find a different behavior of the tails of the
offset distributions, which we attribute to baryonic effects that are absent in dark matter-
only simulations. We additionally propose to link the dynamical state in observations to
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N-body models using the X-ray to optical offset. We demonstrate that the calibration of
a power law relation between them in hydrodynamical simulations provides an excellent
recovery of the overall distribution of the offset parameter. This is key for future cluster
count cosmological experiments. Given a selection function calibrated on simulations that
includes the offset parameter, this approach would allow marginalizing on the different
detection probability of clusters with diverse dynamical state.

In this thesis we use observations and simulations to study astrophysics and cosmo-
logy with clusters of galaxies. The mass function model and the link between the offset
parameter and the displacement between X-ray and optical centers is of particular interest
for future cosmological experiments with the largest samples of clusters, such as the one
provided by eROSITA. Finally, the estimates of completeness and purity using simulati-
ons, such as the one described in this thesis, are key to measuring unbiased cosmological
parameters with eROSITA clusters.
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sted sampling Monte Carlo algorithm MLFriends (Buchner, 2014, 2019, 2021) using the
UltraNest software.

We additionally use a χ2 minimization algorithm with curve_fit python package
(Virtanen et al., 2020) (https://scipy.org/).

In order to perform cosmology calculation, we used the python toolkit Colossus (Die-
mer, 2018) (https://bdiemer.bitbucket.io/colossus/), the astropy package (Astro-
py Collaboration et al., 2013, 2018), and the Core Cosmology Library package (CCL,
Chisari et al., 2019a).

https://scipy.org/
https://bdiemer.bitbucket.io/colossus/
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