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Zusammenfassung

Die vorliegende Dissertation beschreibt die Entwicklung eines neuen numerischen Verfah-
rens zur Untersuchung von grundlegenden atmospharischen Vorgangen sowie deren nu-
merischer Verwirklichbarkeit, welche weder aus hoch optimierten operationellen Wetter-
vorhersagemodellen noch aus idealisierten Laboruntersuchungen abgeleitet werden konnen.
Hierbei wird die theoretische Entwickung und die numerisch effiziente Implementierung
einer verallgemeinerten Koordinatentransformation beschrieben, welche es erlaubt, den
Einfluss unterschiedlicher unterer und oberer Randbedingungen in atmosphéarischen und
ozeanischen Stromungssimulationen mit demselben numerischen Apparatus zu untersu-
chen. Der technische Aspekt dieser Arbeit tragt dazu bei, die Anpassungfihigkeit nu-
merischer Modelle an dussere Antriebe, die sich aus Beobachtungen oder anderen Daten
ergeben, zu erhohen. Die theoretische Herleitung wird mit idealisierten numerischen Si-
mulationen illustriert. Ein Beispiel einer praktischen Anwendung mit direkter Relevanz
fiir ozeanische Simulationen wird beschrieben, in welcher die Randbedignung einer nicht
notwendigerweise infinitesimalen freien Oberflache durch eine Nédherung, giiltig fiir lange
Wellen, approximiert wird.

Die verallgemeinerte Koordinatentransformation und ihre Anwendbarkeit fiir die Simu-
lation von stabil geschichteten Stromungen mit komplizierten geometrischen, zeit-
abhangigen Randbedingungen wird in der direkten numerischen Simulation des Laborexpe-
rimentes, in Analogie zur “quasi-biennial oscillation” (QBO), der dominanten Variabilitét
in der aquatoriellen Stratosphére, unter Beweis gestellt. Obwohl das Laborexperiment den
prinzipiellen Mechanismus der QBO wiederspiegelt, und bereits viele numerische Studien
dieser etwa zweijahrigen Oszillation durchgefiihrt wurden, ist dieses tropische Phénomen
nicht vollstédndig erklart. Basierend auf den numerischen Ergebnissen dieser Arbeit folgt
eine gegeniiber der urspriinglichen Erklarung abweichende Beschreibung der Vorgange im
Laborexperiment. Die Ergebnisse unterstreichen die Niitzlichkeit der in dieser Dissertation
entwickelten Methode und rehabilitieren zudem auch die Wichtigkeit der Laboranordnung
im Bezug auf seine fundamentale Ahnlichkeit zur Atmosphire. Die hier prisentierte de-
taillierte Analyse der Abhangigkeit von den Parametern des Experimentes und der nume-
rischen Einfliisse auf die Oszillation erlaubt es, Schlussfolgerungen iiber die erfolgreiche
numerische Simulation sowie iiber die Theorie von dquatoriellen Oszillationen zu ziehen.






Abstract

This dissertation describes the development of a new numerical framework enabling the
study of principal atmospheric mechanisms as well as aspects of numerical realisability that
are neither easily deduced from highly optimised operational numerical weather prediction
models nor idealised laboratory studies. The theoretical development and efficient numer-
ical implementation of a generalised time-dependent coordinate transformation is demon-
strated, creating a unified numerical framework for investigating the influence of upper
and lower boundary conditions on atmospheric and oceanic flows. In technical terms, the
dissertation also enhances the adaptivity of numerical models to boundary forcings deter-
mined by data. The theoretical development is illustrated with numerical simulations of
idealised flows. An example of a practical application is given which incorporates a long-
wave-approximation for a finite-amplitude free-surface upper boundary, directly relevant
to ocean models.

Finally, the utility of the generalised vertical coordinate in simulating stratified flows
with intricate geometric, time-dependent boundary forcings is demonstrated in the direct
numerical simulation of the laboratory analogue of the quasi-biennial oscillation (QBO),
the dominant variability in the equatorial stratosphere. While the laboratory experiment
exhibits the principal mechanism of the QBO, and despite numerous studies of the strato-
spheric phenomenon, a complete understanding of the QBO eludes the efforts. On the basis
of the numerical results presented in this thesis, the original explanation of the laboratory
experiment is revised. The findings stress the utility of this numerical framework and fur-
ther elevate the importance of the laboratory setup for its fundamental similarity to the
atmosphere. A detailed study of parametric and numerical sensitivities of the oscillation
is presented and implications on the successful simulation and on the existing theory of
equatorial oscillations are discussed.
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Chapter 1

Introduction

1.1 Preamble

The importance of an accurate representation of the upper boundary condition in me-
teorological models is well appreciated since it affects short- and medium-range weather
prediction (Lindzen et al., 1968; Phillips, 1990), climate studies (Trenberth and Stepaniak,
2002), and predictability of chaotic systems in general (Chu, 1999). However, a unified nu-
merical framework to investigate the influence of various upper boundary assumptions
does not exist, because each model formulation favours a particular type of the upper
boundary. For example, it is easy to impose a free-surface boundary condition in an isopy-
cnic/isentropic model, but it is rather difficult to impose a rigid lid, easily applied in linear
coordinates. Furthermore, there is an outstanding issue with modelling open boundaries
that eludes a satisfactory solution in many areas of computational physics; cf. Givoli
(1991) and references therein; for implementations of radiative boundary conditions in me-
teorology see (Klemp and Durran, 1983; Bougeault, 1983; Herzog, 1995). In particular,
Grosch and Orszag (1977) investigated the utility of coordinate transformations to solve
numerically problems in infinite regions. They concluded that stationary mappings onto
finite domains are “useless for many important physical problems.”

Gal-Chen & Somerville provided a formulation of the Navier-Stokes equations in a
generalised non Cartesian, nonorthogonal coordinate system suitable for numerical inte-
gration (Gal-Chen and Somerville, 1975). In this thesis !, the time-dependent extension by
Prusa et al. (1996) of the Gal-Chen & Somerville transformation is generalised for curvi-
linear time-dependent boundaries at the top as well as the bottom of the model domain.
Explicit formulae are provided for the relevant metric coefficients and the implementa-
tion is discussed in the context of a strong-conservation formulation of the nonhydrostatic
anelastic equations of Lipps and Hemler (1982). The aim is to create a unified numerical
framework for investigating the influence of upper boundary conditions on atmospheric

!The technical part of this thesis has been summarised and published in Wedi and Smolarkiewicz
(2004a). A description of the experimental setup and preliminary results of the direct numerical simulation
of the QBO analogue are given in Wedi and Smolarkiewicz (2004b).
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and oceanic flows. In technical terms, this thesis enhances the adaptivity of numerical
models to boundary forcings determined by data. To illustrate both aspects, simulations
of an orographic flow in a homogeneous incompressible fluid (bounded by a rigid-lid or
by a finite-amplitude free-surface) are compared with the simulation of an incompressible
two-layer fluid with a density ratio 1/1000 at the interface. In the simulation with the
free-surface, the time-dependent coordinate transformation is driven by the solution of the
shallow-water equations, the lowest-order long-wave approximation to free-surface flows.
The physics of this example is relevant to ocean models. In numerical simulations of ocean
circulations “mode splitting” is often applied to accommodate surface gravity waves with
propagation speeds much larger than velocities of internal flows (Madala and Piacsek, 1977;
Higdon, 2002). The development in section 3.3 provides an alternative for incorporating a
finite-amplitude free surface upper boundary in ocean models.

1.2 Numerical modelling of the atmosphere in curvi-
linear coordinates

In meteorology, continuous coordinate transformations using a general curvilinear frame-
work are favoured, because they simplify theories and models by reflecting the natural
material structure of atmospheres and oceans (Dutton, 1986). The latter exploits the
notion of a “metric structure determined by data” — Riemann’s seminal idea on the foun-
dations of geometry (Riemann, 1873), an inspiration behind the mathematical apparatus
of general relativity (Freudenthal, 1980). For example, the density stratification and near
hydrostatic balance of the Earth atmosphere favour pressure as a vertical coordinate of
weather prediction models, assuring an approximate equipartition of mass and energy in
computational cells (Phillips, 1957; Kasahara, 1974; Laprise, 1992). Similarly, the stable
entropy [density] stratification in deep atmospheres [oceans| makes an isentropic [isopy-
cnic] framework practical (Bleck, 1974; Hsu and Arakawa, 1990; Bleck and Smith, 1990;
Higdon, 2002). Attempts to exploit the advantages of different curvilinear frameworks for
various regions of a simulated atmosphere [ocean] have led to pressure- or entropy-based
coordinate hybridisation (Ucellini et al., 1979; Simmons and Burridge, 1981; Suarez et al.,
1983; Konor and Arakawa, 1997). The majority of currently-operational numerical weather
prediction models are formulated in hybrid coordinates.

An important property of curvilinear coordinates is their ability to accommodate do-
mains with irregular boundaries. In meteorology, these are typically associated with com-
plex natural orography [bathymetry]. The accurate representation of the underlying metric
structure is particularly important for modelling stably stratified rotating media, where
the boundary forcing excites internal inertia-gravity waves affecting the far-field flow. For
example, the (non-Boussinesq) amplification of vertically propagating gravity waves, due
to the density decrease with altitude, can lead to clear-air turbulence (via wave steepening
and subsequent breaking) in the middle atmosphere (Prusa et al., 1996). Weather predic-
tion models have traditionally used pressure normalised by surface pressure in the definition
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of the “vertical” coordinate to represent accurately the influence of the terrain variability
on large-scale planetary flows (Phillips, 1957). Gal-Chen and Somerville (1975) were the
first to incorporate terrain-following curvilinear coordinates in the nonhydrostatic anelastic
Navier-Stokes equations appropriate for small-scale atmospheric and oceanic flows. They
transformed a linear vertical coordinate (as opposed to pressure) and provided closed-form
explicit formulae for the relevant metric terms and coefficients. By construction, their
transformation separates all metric coefficients into products of 2D horizontal and 1D
vertical fields, facilitating a computationally efficient implementation.

The Gal-Chen & Somerville development employed the classical coordinate-invariant
tensor representation (a “weak-conservation formulation”) where the consistently trans-
formed, dependent variables are solved in the framework of the transformed coordinates.
While the invariance of the formulation is beneficial in theory, it has considerable disadvan-
tages in the numerical implementation. Due to Christoffel terms arising in the transformed
momentum equation, the conservation of physical (measurable) kinematic variables may
be difficult to achieve. Furthermore, since Christoffel terms represent inertial accelera-
tions due to the curvilinearity of the coordinates, they only affect flow direction but not
the flow magnitude. To minimise truncation-error departures from this “inertness” in nu-
merical algorithms, it is important to express the Christoffel terms centred-in-time. While
straightforward in three-time-level centred-in-time-and-space (leapfrog) schemes, this leads
in two-time level algorithms (forming the base of modern nonoscillatory methods) to an
implicit nonlinear problem. Both issues are circumvented in the “strong-conservation
formulation” advocated by Clark (1977) — a standard in computational aerodynamics
(Anderson et al., 1984) — where the governing equations are solved in the framework of
Gal-Chen & Somerville transformed coordinates, but for the untransformed physical ve-
locity. However, the strong-conservation formulation adds some conceptual complexity in
incompressible type models, due to the presence of several forms of velocity and an elab-
orate procedure for formulating the elliptic pressure equation (Prusa and Smolarkiewicz,
2003). The early contributions of Gal-Chen and Somerville (1975) and Clark (1977) were
fundamental to the development of many small- and mesoscale models in meteorology
(over 500 citations since 1975; (ISI, 2002)). More recently, the stationary terrain-following
transformation of Gal-Chen and Somerville was extended in (Prusa et al., 1996) to allow for
time-dependent lower boundaries. In this thesis the theory and the numerical implementa-
tion is further extended to allow for time-dependent upper boundaries and its usefulness is
demonstrated in various applications. Both developments readily extend the range of ap-
plications of multiple scale models like MESOSCOP (Schumann et al.,; 1987) or GESIMA
(Kapitza and Eppel, 1992), which already include the stationary terrain-following formal-
ism of Clark (1977), to a class of important problems of internal wave phenomena driven
by (time-dependent) boundary enforced wave motions.

In particular, the new development is shown to be useful for the investigation into
poorly understood aspects of the quasi-biennial oscillation (QBQO). The versatility of the
framework is demonstrated in the direct numerical simulation (DNS) of the QBO analogue,
a laboratory experiment by Plumb and McEwan (1978) that demonstrates the principle
mechanism of this equatorial stratospheric phenomenon. The QBO represents a conspic-



4 1. Introduction

T

30.0
24.0
18.0
112.0
6.0
30 1 0.0
. . -6.0
-12.0
-18.0

100 -24.0
O | | 4 | ) -30.0
1965 1970 1975 1980 1985 1990

40

e

‘ 10

[edy]
|

Height [km]

20

Figure 1.1: The quasi-biennial oscillation as analysed in ERA40 in a time-height representation.
The figure shows the equatorial analysed (unfiltered) zonal mean zonal wind between 200hPa
and 1hPa averaged between +1 degrees latitude for the period 1965-1990. The contour interval

is 6 ms L.

uous example of a fundamental dynamical mechanism with challenging detail, which is
difficult to deduce from experimental evidence alone. Here the conceptual simplicity of the
experiment is used to provide a catalogue of sensitivities that can be employed in numer-
ical weather prediction and climate models to facilitate a successful simulation of such a
mean-flow oscillation.

1.3 The quasi-biennial oscillation

The quasi-biennial oscillation (QBO) of the zonal-mean zonal wind in the equatorial strato-
sphere is one of the few atmospheric examples exhibiting a periodic behaviour without the
association of a periodic forcing function (like externally forced diurnal or annual compo-
nents) (Holton, 1992). The observed features of the QBO can be seen in the time-height
cross section of zonal wind speed at the equator from 25 years of the ERA40 dataset
(Uppala et al.; 2004) which is depicted in figure 1.1. The analysed QBO compares well
with radiosonde and rocket sonde data from various tropical locations (Baldwin et al.,
2001). The following features are observed:

e Zonally symmetric easterly and westerly wind regimes alternate quasi-regularly with
periods varying from 24 — 30 month (Holton, 1992; Baldwin et al., 2001).

e Successive regimes of westward and eastward zonal mean zonal wind first appear
somewhere around a height of 40 £km and propagate downward at a rate of approxi-
mately 1 km month™' (Holton, 1992).
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e The downward propagation appears to proceed without loss of amplitude between
30 and 23 km, but there is rapid attenuation below 23 km (Holton, 1992).

e The oscillation is almost symmetric about the equator with a maximum amplitude of
about 20 ms~! and approximately Gaussian distribution in latitude with a half-width
of about 12 degrees latitude (Holton, 1992), see also figure 5.1.

e The westerly phases (eastward wind, positive with yellow-red shading in figure 1.1)
of the QBO appear to propagate downward faster and more regularly. The easterly
phases (westward wind, negative with green-blue in figure 1.1) are characterised by
stronger intensity and longer duration (Baldwin et al., 2001; Gabis and Troshichev,
2004; and references therein).

The QBO represents the dominant variability in the equatorial stratosphere (Bald-
win et al., 2001). It exhibits a fundamental dynamical mechanism with challenging detail.
Lindzen and Holton (1968) and Holton and Lindzen (1972) were among the first to present
a conceptual model of the QBO describing the oscillation as an interaction between the
mean flow and propagating waves. In a viscous, non-rotating Boussinesq fluid, the inter-
action can be described by the averaged momentum equations in a horizontally periodic
domain as

2
a—U—ya—Uz—ZaFi, (1.1)
ot 022 —~ 0z
where U := u™ denotes the horizontally averaged (mean) flow, v denotes the kinematic vis-
cosity and F := uw'w""” expresses the averaged nonlinear momentum flux. Most atmospheric
research of the QBO is devoted to finding the precise physical origins of the right-hand
side of equation (1.1) and their numerical realisability in the context of numerical weather
prediction and climate modelling. In spite of numerous studies, see Baldwin et al. (2001)
for a recent comprehensive review, a complete understanding of the QBO eludes the efforts.

The principal mechanism of the QBO was demonstrated in the laboratory experiment
of Plumb and McEwan (1978). The laboratory setup consists of a cylindrical annulus
(figure 1.2) filled with density-stratified salty water, forced at the lower boundary by an
oscillating membrane. At sufficiently large forcing amplitude the wave motion generates
an oscillation in the zonal mean zonal flow with relatively long periods compared to the
period of the forcing oscillations. The laboratory experiment is often employed to explain
the basic mechanism of the atmospheric QBO (Baldwin et al., 2001). However, it also
has been criticised for its apparent fundamental difference to the QBO. In the laboratory,
the averaged momentum-flux F' has been attributed to viscous and thermal internal wave
dissipation (Plumb, 1977; Plumb and McEwan, 1978). In the atmosphere, a competing
explanation states wave transience as the chronologically more important primary cause
of the oscillation (McIntyre, 1994; Dunkerton, 1981). Consequently, a direct application
of the analysis of the laboratory results to atmospheric observations has been questioned
(Dunkerton, 1981).

In the context of the atmospheric QBO it was first suggested by Lindzen and Holton
in 1968 that the stratospheric mean flow oscillation is driven by critical layer absorption
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Figure 1.2: A picture of the cylindrical annulus used for the QBO experiments at the university
of Kyoto (www.gfd-dennou.org, 2004). In the picture the oscillating membrane can be seen at
the top of the annulus, while in the original experiment of Plumb and McEwan the membrane
was mounted at the bottom.

of a spectrum of gravity waves. Later in 1972 Holton and Lindzen updated their the-
ory discarding critical level influence since they could not observe a precise, pre-existing
critical level for the waves they considered most likely responsible, i.e. equatorial Kelvin
and Rossby-gravity waves. Instead they argued that the upward propagating waves are
attenuated primarily by infrared cooling. Plumb (1977) presented the corresponding the-
ory in the context of an idealised Boussinesq fluid and later Plumb and McEwan (1978)
conducted the aforementioned laboratory experiment that seemed to agree with this the-
ory. Their conceptual model together with the theories presented in Lindzen and Holton
(1968) and Holton and Lindzen (1972) established the fundamental picture of the QBO
as forced by upward-propagating waves. The rate of downward propagation of the QBO
is determined by the intensity of the upward-propagating waves, while the amplitude of
the QBO is largely determined by the phase speeds of the upward-propagating waves
(Lindzen, 1987). This is still the accepted basic theory for the principal mechanism of
the atmospheric QBO. McIntyre (1994) and Dunkerton (1981) argued that not radiative
damping but wave-interactions are the chronologically more important cause of the oscilla-
tion. Furthermore, Dunkerton (1997) showed that the tropical upwelling, a climatic mean
upward motion of the tropical atmosphere, necessitates contributions of other wave types
to the mean flow momentum budget. He argued that gravity waves contribute up to 50
percent to the forcing. However, there is still considerable uncertainty about the precise
origin and the nature of the waves responsible for driving the QBO. In Horinouchi (2003)
a spectral analysis of several global models appears to confirm the relative unimportance
of equatorial Kelvin and Rossby-gravity waves as the primary source of the QBO. Further-
more, the authors show a correlation to convective processes and associated gravity waves.
Also the reanalysis dataset ERA15 (Gibson et al., 1999) does not show significant spectral
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signals for single wave types currently thought to be responsible for the QBO (Tindall,
2003).

There have been a number of 2D mechanistic models (based on the horizontally averaged
momentum equations) successful in simulating a QBO-like oscillation but 3D modelling of
the QBO has largely been unsuccessful. The reasons are not entirely clear. Nevertheless,
QBO-like oscillations in 3D have recently been successfully modelled by (Takahashi, 1999;
Giorgetta et al., 2002; Untch, 1998). It appears from these studies, that a successful model
of the atmospheric QBO requires sufficient vertical resolution, some “tuning” with respect
to horizontal and vertical diffusion parameters and in particular a parametrization or other
means to produce a sufficiently broad spectrum of vertically propagating gravity waves.
The ECMWF model has apparently lost its ability to successfully model a QBO like oscil-
lation despite recent resolution enhancements. A better understanding of the underlying
processes may help to explain this “feature” of the ECMWEF model.

Reviewing the current theory of the stratospheric QBO and its numerical realisability
one may ask the following questions:

e Where is and what determines the upper and lower boundaries of the QBO in the
real atmosphere?

e What is the precise mechanism that dissipates one phase of the QBO near the
tropopause and when does the next phase start aloft?

e Which waves drive the QBO in the real atmosphere and how are they generated?

e What is required in global circulation models to reproduce a wave-driven zonal mean
zonal flow oscillation like the QBO in the atmosphere?

The last two of above questions have also been addressed in Horinouchi and Yoden (1998)
using a simplified “aquaplanet” global circulation model with constant sea surface temper-
ature and parametrized convection.

In this thesis, a direct numerical simulation of the QBO laboratory analogue is em-
ployed to resolve the apparent difference in interpretation with respect to the primary
cause of the oscillation. In chapter 4 it is demonstrated that the described numerical
model is able to reproduce the laboratory results while allowing a detailed analysis of the
precise origin of the averaged momentum flux. In analogy to the process of wave tran-
sience put forward by Dunkerton (1981), we find that wave-wave interactions, as described
in Galmiche et al. (2000), are the chronologically more important primary cause of the
zonal mean zonal flow oscillation in the laboratory experiment. Furthermore, a different
oscillation mechanism is found than the one originally described by Plumb (Plumb, 1977;
Plumb and McEwan, 1978). The simplicity of the laboratory experiment coupled with
the exploitation of the available information from the numerical simulations allows further
insight into a mechanism that is likely to be responsible also for the atmospheric QBO.
It is shown that the laboratory experiment of Plumb and McEwan is primarily driven by
wave momentum flux convergence in a critical layer. This result confirms the conclusions
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of Horinouchi and Yoden (1998) for the atmospheric QBO, where they find contributing
waves primarily similar to the suggestion in Lindzen and Holton (1968) rather than as as-
sumed in Holton and Lindzen (1972). However, here the accuracy of the direct numerical
simulation removes the uncertainty with respect to the approximate nature of the model
simulation in Horinouchi and Yoden (1998).

1.4 Linear internal wave theory of Boussinesq flow

Here the linear theory of waves in a Boussinesq fluid is reviewed. The derivations form a
necessary pre-requisite to the new theoretical considerations of sub-chapter 4.5 explaining
the arising mean-flow oscillation in the laboratory experiment by non-linear interaction
of waves which are solutions of the linearised ,Boussinesq approximated, Navier-Stokes
equations.

A weakly density-stratified, non-rotating, viscous fluid is well approximated by the
following Boussinesq equations (Gill, 1982):

V- (pov) =0, (1.2)

v
po—=—Vp+pg+V- -1,

Here, V is the gradient and D/Dt = 0/0t + v - V symbolises the material derivative
2 v denotes the velocity vector; p and p denote density and pressure; g symbolises the
gravity vector; py denotes a constant reference density, which is used in the Boussinesq
approximation of the equations to linearise the pressure gradient term and to simplify the
continuity equation, obtaining an incompressible form; V-7 is the divergence of the viscous
stress tensor 7;; o< v (see appendix for details), with v specifying the kinematic viscosity
and « the diffusivity 3.

Introducing perturbations around a hydrostatically balanced ambient state (p, p) using

2Throughout this thesis a material derivative D/Dt includes the derivatives with respect to space
and time of the basis vectors. A total derivative d/dt is used with fixed (invariant) basis vectors. In
the Cartesian framework D/Dt = d/dt; in a general, time-dependent coordinate framework in the non-
conservation formulation the relation is derived in the appendix (A.20,A.21).

3In the laboratory experiment & specifies the diffusivity of salt in water, in the atmosphere it specifies
the diffusivity of heat in dry air.
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the following notations and assumptions

v i=u—-U(zt), (1.3)
w=w,
pi=p—p(2),

1
7TI =—p—]_92 3

(5~ (2)
bl __ﬂlga

Po
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. po 0z’
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and linearising the equations (1.2) by neglecting products of perturbations, while limiting
the analysis to the 2-dimensional x-z plane, one obtains

U + 0w’ +w'd,U + Udyu' = =0, + v (82 + 02) u' + vOU (1.4)
o' +Udpw' = —0,7" +0 +v (82 +82) w',

oY + N*w' =k (02 +02) b —UdY

ou + 0w =0,

where u' and w' are the perturbations of the horizontal and vertical components of the
velocity vector with zonal background flow U = U(z,t); p/,n', b’ denote density, density-
normalised pressure and buoyancy perturbations, respectively, and N is the Brunt-Vaisalla
frequency. 0, 0.,0r, 0, and 07 symbolise the n-th partial derivatives with respect to ¢,z,
and z, respectively. Through successive elimination it is possible to reduce the set of
equations (1.4) into a single differential equation for the vertical velocity w’

(0 +U8,)*Aw' + N?0?w' — 92U(8; + Ud,)0,w' — 8,0°Ud,uw (1.5)
+k0,w' 0LU + veAdw' — (v + K)(0; + Udy) A%w' = 0,
where A = 92+ 9? symbolises the Laplacian operator. By introducing the stream function

1 one can express the velocity components in accord with the continuity equation in (1.2)
as

, oY
=L 1.
“ 0z’ (1.6)
o .
r_ _
w = o =1k |

where the stream function has been postulated as

W(x, 2, t) = P(z, t)e*e (1.7)
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with k£ denoting a horizontal wave-number. This assumes the separability of vertical and
horizontal motions, which is a common approach in classical normal mode analysis (Daley,
1988; Kasahara, 1974; Phillips, 1990), given a horizontal scale much larger than the vertical
scale (Gill, 1982), pp.1509.

Inserting relation (1.7) using (1.6) into equation (1.5) leads to the following differential
equation, supporting oscillatory (i.e. sinusoidal-like) and non-oscillatory (exponential-like)
solutions:

(8, + iUk)*(8? — k?)ip — N2k) — ikd?U (8, + iUk)) — iki)8,0°U (1.8)
+ikpkd U + vi(0? — k2> — (v + k) (8, + iUk) (8% — k?)*) = 0.

While the complete equation (1.8) may be solved numerically in some time interval given
appropriate initial and boundary conditions, it is instructive to consider the following im-
portant special cases, which on their own have been subject to intense research
(Drazin and Reid, 1981). For example, neglecting stratification, N> = 0, the time de-
pendency of the background flow, U = U(z) and neglecting higher order terms (i.e. 9;U
and (0% — k?)®) one obtains the Orr-Sommerfeld equation, representing an eigenvalue solu-
tion of the Navier-Stokes equations for viscous parallel channel flow (a canonical problem
for studies of the laminar- turbulent transition in pipe or channel flows)

(8, + iUk)(0? — k*)op — ikd2Utp — (v + k) (8 — k?)*p = 0. (1.9)

A comprehensive discussion of the solutions can be found in Drazin and Reid (1981) pp.156
and references therein.

With stratification and assuming instead a zero background flow for all time, U(t) = 0,
one obtains

(82 — k2)0%) — N2k2) + vk(8? — k230 — (v + £) (0% — k?)?0p1p = 0. (1.10)
Given a monochromatic vertical wave structure with wave-number m and frequency w
U(z,t) = Po(2)e ! = woe™ Y (1.11)
equation (1.10) can be solved analytically to obtain the simpler dispersion relation
w? —i(0, + 0,)w + 0% + 0,0, = 0, (1.12)
with o, := v(m? + k?), o, := k(m? + k?) and the inviscid Boussinesq dispersion relation

(for k =v =0)
o? == N?*k*/(m?* + k?). (1.13)

The wave frequency w for k # 0, v # 0 can be obtained from equation (1.12)

ktoy) 1
w= 7,(0-2;‘) + 5407 = (0, = 0,)". (1.14)
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Inserting (1.14) into (1.11) shows that viscosity results in an exponential decay of the waves
with time
o e—(o’,i+0'u)t/2 (115)

and a phase distortion
oc /2 4"”""*‘“)2), (1.16)

if |o| > |(0, —0k)/2|, which is typically the case for atmospheric applications; see for exam-
ple Lignieres (1999) for an application with large thermal diffusion as in stellar radiative
zones or inside the sun. It should be noted that the indirect effect of viscosity and diffu-
sion on the waves in different regimes can also be destabilising in contrast to the described
stabilisation and decay. The effect of viscosity in the QBO analogue will be discussed in
more detail in chapter 4.

Another important special case of equation (1.8) is derived by neglecting the influence
of viscosity and diffusivity, v = k = 0, and neglecting the time-dependency of the mean
flow, but retaining its variation with height, U = U(z). The resulting equation

(8, + iUk)?(8% — k?)i) — N?k*p — ikd*U (8, + iUk)) = 0 (1.17)

can be transformed by inserting (1.11) and assuming (U — ¢) # 0, where ¢ := w/k denotes
the wave’s horizontal phase speed, to give

N? 02U
(U —¢)? | 0% + - ©-0 —k* 3| =0. (1.18)

- >
-~

12(2)

In comparison, for inviscid Boussinesq flow with constant mean wind U = const. one
obtains directly from equation (1.17) with (1.13)

(w+Uk)* = o”. (1.19)

Equation (1.18) is often referred to as the Taylor-Goldstein equation (Drazin and Reid,
1981; Baines, 1995). In the literature on mountain waves [?(z) defines the Scorer parameter.
The size and sign of the term (I2(z) — k?) determines the behaviour of flows over mountain
ridges (see Smith (1979); Egger and Hoinka (1992); Baines (1995); Leutbecher (1998) and
references therein for a comprehensive discussion on flows past mountains). Most notably
equation (1.18) has a regular singularity when the magnitude of the background flow is
equal to the horizontal phase speed, (U — ¢) = 0, and when 92U # 0 (Miles, 1961). The
height at which the background flow (in the direction of wave propagation) is equal to the
horizontal phase speed of the wave, is called a critical level for this wave. Critical level
behaviour of monochromatic waves or groups of waves has been elucidated by Bretherton
and Booker (1966; 1967). They found that waves are attenuated as they approach a critical
level and momentum carried by the waves is transferred to the mean flow at and below that
height. The behaviour of a monochromatic wave can be estimated by inserting 1), = €™
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into equation (1.18) and considering the limit ¢ := (U — ¢) — 0. Solving for the vertical
wave-number m we obtain the condition

N2 02U
m==£lim 4/ — £ *— — k% = oo, (1.20)
«—=0 \| € €0

which implies a rapidly decaying vertical wave structure vy as (U —c) — 0. Further theoret-
ical investigations together with laboratory studies have been conducted by (Koop, 1981;
Baines, 1995; Teoh et al., 1997). All of these studies typically assume a given constant
background shear flow. Another mechanism for wave momentum flux to the mean flow is
given through the non-Boussinesq amplification of the waves and subsequent wave breaking
(Baines, 1995; Prusa et al., 1996). The mechanisms leading to gravity wave instability and
subsequent turbulence is comprehensively reviewed in (Staquet and Sommeria, 2002). The
three dimensional propagation of orographic gravity waves into the stratosphere and cor-
responding wave momentum flux divergences through wave breaking near the tropopause
has been discussed in (Leutbecher, 1998). The formation of critical layers in the context
of the QBO analogue and details of the related wave-wave and wave-mean flow interaction
in this context is discussed in section 4.5.

1.5 Wave propagation and the relevance of boundary
conditions

The propagation of waves in limited domains is mathematically described by the solu-
tion of a set of partial differential equations with appropriate initial and boundary condi-
tions. Many waves can be described as solutions to hyperbolic partial differential equations
(Durran, 1999), thus it is possible to transform into an equivalent system of equations,
in which each differential equation contains only differentiations in one “characteristic”
direction, see Courant and Hilbert (1989), chapter 5. The hyperbolicity expresses the
finiteness of the propagation speed of phenomena governed by such hyperbolic systems
(Courant and Hilbert, 1989). It provides, in principle, a complete set of real-valued curves
along which a solution may be locally determined given appropriate initial conditions *.
These curves are called characteristic to the given hyperbolic problem. It is sometimes
thought that these characteristics, together with appropriate boundary conditions, pro-
vide sufficient information to solve the given initial value problem. However, the standard
concept of characteristic curves does not necessarily fully determine the propagation of
all admissible waves in the system. In systems with more than one dimension, the lines
of constant phase speed or group velocity of some wave disturbances (most notably in-
ternal gravity waves and Rossby waves) do not follow the characteristic curves (e.g., the
linearised shallow water equations with a Coriolis force, or the Euler equations governing
an inviscid, isentropic motion in a density stratified fluid (Durran, 1999)). This is the case,

4Even though the initial data on such characteristic curves cannot be prescribed freely, but must satisfy
a compatibility condition, see Courant and Hilbert (1989), chapter 5 for a discussion.
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because the physical processes underlying the deviating wave propagation are mathemati-
cally represented by zero-order terms in the equations (the Coriolis term or buoyancy in the
previous examples), which do not influence the standard determination and shape of the
characteristics (see Durran (1999) for a discussion). Moreover, filtered equations, resulting
from approximations with the intent to simplify the system to be solved numerically, or,
historically, with the intent to filter certain “un-interesting” (e.g. acoustic) waves, are not
hyperbolic in general.

Most physical phenomena of interest take place in a portion of space limited by bound-
aries (Courant and Hilbert, 1989). Boundary conditions in numerical simulations are only
models of their physical counterparts. The validity of such boundary models has to be eval-
uated for each given problem. Often the equations are solved in artificially constrained do-
mains to save computational expense, which necessitates the choice of appropriate bound-
ary conditions. In meteorology, vanishing pressure at infinity of the Earth’s atmosphere is
often assumed, which results in an increasingly unresolved upper atmosphere given a finite
number of discrete model levels. The well-mixed boundary layers in oceanic or global at-
mospheric models are a challenge due to the inherently different scales of motion that they
involve, in contrast to the stratified flow above. It is, however, through the given complexity
of the numerical models themselves that an accurate incorporation of boundary conditions
is often further complicated. For example, the anelastic set of equations requires the so-
lution of an elliptic equation for pressure and therefore the solution for this part of the
model depends “explicitly” on the choice of boundary conditions. In another example, with
semi-Lagrangian models there is an open question how to best treat boundaries in complex
terrain. The examples, which will be discussed in this section, illustrate that the choice of
boundary conditions depends on the physical problem at hand but is often determined by
the modelling framework, favouring a particular boundary condition type. The following
paragraphs address different boundary conditions used for the numerical modelling of the
continuous spectrum of horizontally and vertically propagating atmospheric waves. Some
example problems arising from the inappropriate choice of boundary conditions are shown.
Specific vertical boundary conditions are discussed to introduce the terminology used in
later chapters.

1.5.1 Rigid surface

First consider as the bounding surface a fixed rigid surface F(z,y,z) = 0, either at the
top or at the bottom of the fluid — an elementary rigid lid. At this type of boundary the
normal velocity to the bounding surface is imposed to be zero:

V- n|F(m’y,z):O == 0 (1.21)

where n denotes the local normal to the surface F'. The shape of the bounding surface F’
is fixed for all time. In the special case of a horizontally flat surface at the bottom, z = 0,
and at the top, z = Hy, of the model domain one obtains in Cartesian coordinates

Wi,y =0, (1.22)
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Figure 1.3: An example of fully reflected gravity waves from the top of a computational domain.
Plate (a) shows the vertical velocity in a simulation with an absorbing layer starting at 10km
height. Plate (b) shows the reflective effect on the vertically propagating gravity waves when
the absorption is switched off and the waves reach the rigid lid at the top of the computational
domain. The contour interval in both plates is the same as in Klemp et al. (2003), 0.05 ms™!
(zero contour lines not shown).

where w is the physical vertical velocity. Propagating waves are reflected from a rigid lid,
leading to standing wave patterns as a result of the interference of incident and reflected
waves. An example of fully reflected gravity waves in a numerical simulation (see section
3.2 for the details of the computation) with imposed rigid lid boundary conditions is given
in figure 1.3.

1.5.2 Pliant and free surface

Here, the word “pliant” refers to a moving or time-dependent boundary which bends but
does not break. Baines (1995) specifies two conditions for the definition of a pliant surface.
The first condition marks it as a material (impermeable) interface between two (Boussinesq)
fluids, where the lower fluid represents the domain of interest and the upper fluid represents
a deep homogenous layer with vanishing vertical velocity at infinity. The impermeability
translates into the kinematic condition of no normal flow through the bounding interface
F between the two fluids which can be written as

0, (1.23)

A\ n‘F(z,y,z,t):O =
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where n denotes the normal to the surface F', which is now time-dependent in contrast to
(1.21). The system with a time-dependent boundary may be transformed via a coordinate
transformation £ := Hyz/H into a system with rigid boundaries £ = 0 and £ = Hy, where
it may be easily shown that the vanishing normal velocity component d§/dt = 0 at the
upper boundary implies in Cartesian coordinates

dH

— = w, (1.24)
dt z=H(z,y,t)

where H(x,y,t) denotes the height of the interface and w denotes the vertical velocity.
The pliant surface F' may be expressed through F' := H(xz,y,t) — z = 0, and since we
require the integrity of the surface F' to hold for all time it follows dF/dt = 0 (and vice
versa, see Lamb (1975), pp.7 for a proof), which is an equivalent derivation of (1.24) found
in the literature. Transforming dF/dt one finds |VF|~'0F/0t = v - n, which implies the
continuity of the normal velocity components across the interface. Constant pressure at
the air sea interface in oceanic flows or potential temperature in adiabatic atmospheric
flows may be regarded as idealised material surfaces (ignoring diabatic fluxes, the effects
of surface tension and external wind stress). In contrast, pressure surfaces in atmospheric
flows are not normally material surfaces.

The second condition of a pliant surface is given by Baines (1995) as the requirement for
pressure to be continuous and in the special case of a free surface vanishing pressure at the
interface. However, this represents only a special case of a more general class of boundary
conditions balancing the stresses on either side of the interface (Batchelor, pp.149-150,
1967). In particular the notion of a free surface is not clearly defined in the literature and
depends on the context (see for example Dutton (1986); Lamb (1975); Batchelor (1967)).
The free surface boundary is therefore discussed in more detail in the appendix A.1.6, once
the tensorial form of the stress in the Navier-Stokes equations has been introduced.

The above material properties are exploited in numerical models of the atmosphere or
ocean by defining coordinate surfaces of constant pressure, density or potential temperature
since such surfaces follow the adiabatic motion of the fluid at all times. For example

in adiabatic atmospheric flows potential temperature, defined as § = T(p/po)~ %/, is
commonly associated with the surface function F' as
dF  df
@y, 1.25
dt dt (1.25)

which is the thermodynamic equation stating that isentropic surfaces are naturally material
surfaces. In the preceding, T' is temperature, p, is a constant reference pressure, R is the
gas constant for dry air and ¢, is the specific heat at constant pressure. Alternatively, one
could incorporate the height (and its change in time) of these natural material surfaces
at the boundaries of the numerical domain in the definition of metric coordinate surfaces.
Given the a priori knowledge of such a material surface height in time and space, in the
absence of wave breaking and critical layer effects or discontinuities near the boundary, it
can be shown that the use of these coordinate surfaces will then naturally not reflect waves
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and thus avoid the corruption of the numerical solution through artificial wave reflection.
This is demonstrated in this thesis by applying a generalised coordinate transformation.

In pressure coordinate models a free surface upper boundary is trivially applied through
the assumption p = 0 at infinity. For atmospheric applications constant pressure surfaces
are not natural material surfaces (i.e. dp/dt # 0) other than at infinity where p = 0. Since
numerical models have only a finite number of levels, the atmosphere towards p = 0 is
only poorly resolved. As a result some upward propagating waves may be obscured for
numerical reasons since the undulation of the bounding material surface does not exactly
follow the flow. Furthermore, the free-surface concept is strictly valid only in the absence
of diabatic forcings.

Figure 1.4 shows an example of a flow past the Scandinavian peninsula simulated by
the hybrid coordinate model of ECMWEF (Simmons and Burridge, 1981; Temperton et al.,
2001) with pure pressure levels in the top 23 layers with formally p = 0 at infinity. Some
larger scale standing wave patterns can be seen, which extend in some parts quite far down
into the model domain. These patterns form through interference of incoming waves and
waves reflected at the upper boundary.

A free-surface, characterised by above kinematic condition of no normal flow (1.23) and
a dynamic condition utilising pressure continuity across the boundary, supports fast prop-
agating surface gravity waves. In ocean models, it typically adds an additional prognostic
equation for the surface height which is implicit with respect to the advecting velocities
(Namin et al., 2001). Both aspects, the implicitness and the fast propagation speed render
free surfaces a challenging problem in oceanic (Madala and Piacsek, 1977; Higdon, 2002;
Iskandarani et al.,; 2003) and in engineering flows (Casulli and Cheng, 1992; Casulli, 1999;
Namin et al., 2001). In sub-chapter 3.3 of this thesis an alternative incorporation of free
surfaces is discussed that avoids the numerical limitation of fast propagating surface gravity
waves.

1.5.3 Free-slip and no-slip velocity boundary conditions

In the context of boundaries for the inviscid or viscous numerical formulations of the Euler
or Navier-Stokes equations the terminology of free-slip and no-slip boundary conditions
is often used. These refer to explicit boundary conditions on the velocity components
tangential to the bounding surface. The physical constraint of assuming no tangential
deviatoric stresses (the stress tensor without the normal pressure force) at the boundary
is called the free-slip boundary condition. In inviscid formulations there is zero deviatoric
stress by definition everywhere in the fluid including at the boundary. Therefore, inviscid
formulations are always associated with free-slip boundaries.

The physical effects of boundary layers, the effect of viscosity and the generation of tur-
bulence near boundaries has been investigated extensively by Prandtl (Prandtl, 1961). For
a viscous fluid, fluid-wall particle interactions are at least as strong as fluid-fluid particle
interactions and, as a result, the fluid’s velocity field is assumed continuous at the bound-
ary. This physically motivated assumption translates into the no-slip velocity boundary
condition of the continuity of the tangential velocity component at the fluid-solid interface
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Figure 1.4: Example of gravity wave reflection from the model top in the ECMWF forecast
model. The figure shows the divergence of the velocity field in a north-westerly flow over the
Scandinavian peninsula on March 17th 1998 after 60 hours of simulation. The model uses pure
pressure levels in the top 23 layers with formally p = 0 at infinity.

(Batchelor, 1967), pp.149. Note, that the continuity of the normal component of velocity
resulted from the material surface property. This gives v = const or zero at the boundary,
which effectively defines the deviatoric stress there. However, viscous fluid flows are not
always associated with no-slip conditions (in contrast to inviscid and free-slip). A viscous
fluid may be held in place by something other than a rigid wall (for example, gravity). In
such cases, it is reasonable to assume that the fluid has zero tangential deviatoric stresses
at that boundary, ie. a free-slip condition applies. This is for example the case at an
idealised (surface tension ignored) free surface, where the tangential deviatoric stress is
assumed zero and the normal component of the stress (ie. pressure) is constant.

The boundary conditions are related to the creation of vorticity in a fluid (Wu and Wu,
1998). In Helmholtz’ vorticity equation for an incompressible homogeneous fluid there are
no true generation terms for vorticity and sources of vorticity must lie in the boundaries
(Morton, 1984; Greiner and Stock, 1991). It is the no-slip condition that provides a mecha-
nism for vorticity production at a rigid boundary (Batchelor, pp.277, 1967). Batchelor also
describes the generation of a boundary layer at a free surface of a viscous fluid resulting
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from the particular free surface boundary conditions (Batchelor, pp.364, 1967). Baroclinic-
ity, i.e. VpxVp # 0, and associated nonlinear surface accelerations at free surfaces provide
another source for vorticity (Rotunno and Smolarkiewicz, 1995; Wu and Wu, 1998). In
inviscid simulations the condition of zero tangential deviatoric stress at the boundary may
be used to analyse the accuracy of the numerical implementation by examining spurious
vorticity production at the boundary (see Morton (1984) for a discussion).

Atmospheric models typically solve an averaged set of (inviscid) equations and parametrize
the boundary layer effects (of the original viscous problem) by means of a frictional drag
coefficient, which acts over some given timescale. Furthermore, since there are no side
walls in global atmospheric flows, this eliminates the need for explicit tangential velocity
boundary conditions in the adiabatic part of such a numerical model.

1.5.4 “Infinite depth”

Often a simple (flat) upper boundary shape is assumed at which its reflective effects are
diluted by carefully designed dissipative layers below. Such dissipation of upward propa-
gating wave energy might arguably happen naturally near the top of the mesosphere as a
result of high altitude wave breaking, where the flow due to the low density is effectively
described by Stokes flow (Prusa et al., 1996). One technique is to use wave absorbing layers
(“sponge”), where multiple computational layers are added to the model domain together
with frictional or viscous damping terms, which are added to the equations within those
layers. If the model domain reaches high enough the addition of those terms may have a
physical meaning. However, in many applications wave absorbing layers require an engi-
neering effort for each specific problem to ensure the effectiveness of the absorbing layer.
In general the addition of diffusive terms (oc V%) for an arbitrary prognostic variable 1)
is scale selective since the diffusion may only be applied to a part of the wave spectrum.
In contrast an additional Rayleigh friction term (x a1) will damp all waves equally. In
global atmospheric models like the ECMWF model, Rayleigh friction is often applied for
a different reason. It is applied only on the zonal mean zonal wind part of the flow (spec-
trally, wave number 0) to simulate the physical (unresolved) process of large scale high
altitude wave-breaking and subsequent slowing of the mean flow. The absorbing effect of
applying Rayleigh damping on the perturbations in an idealised flow simulation can be
seen in the left panel of figure 1.3. The absorbing (scale selective) effect of applying an
increased horizontal diffusion in the uppermost layers of the ECMWFEF forecast model can
be seen by comparing figure 1.4 with figure 1.5.

An alternative technique utilises radiation boundary conditions ensuring an outward
directed wave energy flux. The applicability, as before, depends on the investigated problem
since reflections or inward travelling wave disturbances may be part of the solution. A
review of radiation boundary conditions is given in Givoli (1991). For implementations
of radiative boundary conditions in meteorology see Klemp and Durran (1983); Bougeault
(1983); Herzog (1995). These are strictly valid only for the linearised Boussinesq system for
which they were derived. However, the authors show their utility beyond the Boussinesq
framework. This approach has a strong computational advantage over the previous class
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Figure 1.5: Example of (artificial) wave absorption at the model top in the operational ECMWF
forecast model. Compare to figure 1.4 where horizontal diffusion is not enhanced in the uppermost
layers. In both cases some reflectivity effects remain.

of boundary conditions since it avoids the domain extension of sometimes many more
additional computational layers.

It may also be possible to combine the approaches described in section 1.5.4 and section
1.5.2 to appropriately address a spectrum of waves.

1.6 Methodology and thesis questions

The introduction addressed issues arising from the numerical modelling of internal waves
and their interactions with each other or with a background flow, and interactions with
various artificial or natural boundary representations and forcings relevant to many areas
of atmospheric and oceanic flows. This thesis seeks a better understanding of such in-
teractions and develops a theoretical and numerical framework to aid the adaptation of
numerical algorithms to time-dependent boundaries. Furthermore, this thesis investigates
the mechanism of the QBO and its numerical realisability, which represents a particular
challenging case in the class of problems with time-dependent (boundary) forcings.



20 1. Introduction

In the first part of this thesis a unified framework is developed for investigating the
influence of different upper boundaries on atmospheric and oceanic flows. Central to this
new development is the analytical derivation and the numerically efficient implementation
of the generalised time-dependent Gal-Chen coordinate transformation described in chap-
ter 2. Subsequently, the correctness of implementation and theory is verified with selected
examples of applications in two and three dimensions. A first practical result of the de-
velopment provides an alternative for incorporating a finite-amplitude free surface upper
boundary in ocean models.

In the second part of this thesis this framework is used in the direct numerical simula-
tion of the quasi-biennial oscillation (QBO) analogue. The ability of the newly developed
coordinate transformation is utilised to accommodate intricate geometric, time-dependent
boundary forcings, either at the top or at the bottom of the model domain. The lin-
ear theory of internal waves, reviewed in section 1.4, facilitates a theoretical analysis of
the numerical results presented in chapter 4. These findings provide new insights into the
mechanism of the quasi-biennial oscillation and may facilitate the numerical realisability in
weather prediction and climate simulations, which currently fail to simulate the QBO sat-
isfactorily. Some implications for atmospheric equatorial zonal mean zonal flow oscillations
are discussed in chapter 5.



Chapter 2

Modelling framework

2.1 Model summary

The explicit solution of the generic fully compressible equations is prohibitively expensive
for many applications. As a result, numerical models employ either split-explicit or semi-
implicit solution procedures, or the equations are simplified beforehand by a variety of
analytic approximations (e.g. hydrostatic, elastic, anelastic, or Boussinesq approximations)
justified on the basis of scale analysis or based on the physicality of the problem.

In the following a viscous, adiabatic, density-stratified fluid is discussed whose undis-
turbed, balanced ambient (or environmental) state is described by the potential temper-
ature §, = 6.(x)' and the velocity v, = v.(x) using the anelastic approximation (e.g.
(Lipps and Hemler, 1982)). This approximation extends the previously used Boussinesq
formulation of equation (1.2) by allowing for a vertically varying reference state p,(2), 6,(2)-
In comparison to the general fully compressible equations, it linearises the pressure gra-
dient term in the momentum equation and maintains the incompressible character of the
continuity equation which is advantageous for the numerical formulation. A comprehen-
sive discussion of the anelastic model can be found in Prusa and Smolarkiewicz (2003) and
references therein. To facilitate the distinction between physical aspects of the anelastic
system versus mathematical aspects of the transformation, it is started with a compact,
symbolic vector-form of the anelastic equations (Lipps and Hemler, 1982)

V- (pv) =0, (2.1)
Dv o'

Y Vi gl L F

Di Vr ggb—i- +V,

Do’

Dt——v-VHe-i-H.

Here, the operators D/Dt, V, and V- symbolise the material derivative, gradient, and di-
vergence; v denotes the velocity vector; F symbolises inertial forces (e.g., Coriolis and met-

!Near equation (1.25) potential temperature is defined.
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ric forces of the geo-spherical physical system, cf. Smolarkiewicz et al. (1999))?, whereas
V and H symbolise viscous dissipation of momentum and diffusion of heat, respectively;
6, p, and m denote potential temperature, density, and a density-normalised pressure; and
g symbolises the gravity vector. Primes denote deviations from the environmental state.
The subscript ; refers to the basic state, i.e., a horizontally homogeneous hydrostatic ref-
erence state of the Boussinesq expansion around a constant stability profile (see section 2a
in Clark and Farley (1984), for a discussion).

The time-dependent coordinate transformation is embedded into the theoretical frame-
work of Prusa and Smolarkiewicz (2003), where the authors considered a general three
dimensional, time-variable homeomorphic mapping from a physical system® (¢,x) to an
arbitrary system (,X)

(t,7,9,z) = ( t, E(z,y,t), D(z,y,t), C(z,y,2,t) ) . (2.2)

Since (Z,y) do not depend upon the vertical coordinate z — preserving the primary hy-
drostatic structure of atmospheres and oceans, and simplifying the metric terms — the
development of a particular C(z,y, 2, t) readily applies and is described in detail in section
2.2.

Given (2.2), the symbolic vector-form equations (2.1) can be expressed as

d(p"v™")
=0, 2.3
ox* (2:3)
d'Uj . Nk (97'(" 01 ] J ]
ﬁ—— jajk+ga—b(53 + F +V,
de’ 4 00,
AR =

Here, p* := p,G, with G denoting the Jacobian of the transformation, and j .k = 1,2,3
correspond to the 7,7,z components, respectively. Summation is implied by repeated
indices, unless stated otherwise. On the right hand side of the momentum equation, Gf =

/993 (0T* /027) are renormalised elements of the Jacobian (summation not implied over
7); the coefficients g7/ are the diagonal elements of the conjugate metric tensor of the
(not necessarily Cartesian) physical system (¢,x) (see appendix A.1.5 for an example),
* and 83’ is the Kronecker delta. The transformation coefficients éf # éfc are not to
be confused with the elements of the metric tensor of the transformation g/* = g* =
gP?(0T* /0xP) (077 /029) with G = [g7¥|"*/2. The scalar diffusion of heat is computed as
H = 1/p*0/07 (kp*g’*00' /0Z*). The expression for the viscous terms V is given in the
appendix. Furthermore, three different representations of velocity appear in (2.3). In the

2TIn general, F may also include external forcings.

30nly curvilinear coordinate descriptions of a flat (locally Lorentz) space with a zero Riemann curvature
tensor are considered.

“In general the components of the conjugate metric tensor follow from the definition of the fundamental
metric ds®> = gp,daPdz? and the linear system g,rg*? = 62, cf. Prusa and Smolarkiewicz (2003).
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total derivative d/dt = 9/0t + 77 (0 /0z*), the contravariant velocity v* is used
vt = dztJdE =7 (2.4)

whereas on the left hand side of the momentum equation, the physical velocity v7, specified
in the physical system (¢,x), is advected by =", The solenoidal velocity appearing in the
mass continuity and potential temperature equations is given as

% OzT*

s% = p* 2.5

with the name originating from the form the continuity equation takes with it. The re-
lations, allowing to express each velocity (solenoidal, contravariant, or physical) in terms
of the others, have been discussed in Prusa and Smolarkiewicz (2003). The two relations
important for the numerical solution procedure are (2.5) and

v =Gl (2.6)

The simultaneous use of the contravariant and the physical velocity eliminates Christoffel
terms of the transformation (proportional to products of contravariant velocity compo-
nents) from the momentum equation; the use of the solenoidal velocity is advantageous in
the formulation of the elliptic pressure equation (Prusa et al., 2001).

2.2 Generalised Gal-Chen & Somerville vertical coor-
dinate

Starting from the physical system (¢, x), the general dependence of Z on (z,y, z,t) in (2.2)
is collapsed into a similarity transformation

C(&) (2.7)

Z_Zs(may’t)
t) := H,
f(:v,y,Z, ) OH(x,y,t)—Zs(x:y:t) ’

Sy
Il

3

with the inverse relationship

z = HLO(H—zs)%—zs, (2.8)
¢ = C(2).

The functions zs(z,y,t) and H(z,y,t) denote horizontally and time varying lower and
upper boundaries in the physical system. The function C conveniently admits a class of
vertically stretched coordinates. In particular, it enables the simulation of the vertical
coordinate spacing of pressure or sigma levels (Smolarkiewicz et al., 2001), common in
atmospheric or oceanic applications. The transformation in (2.7) retains the computational
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advantage of separability into one- and two-dimensional fields. In particular, the Jacobian
of the transformation is given as

~ dC o\~ (OEOD OEAD\ '
G = dc ¢ —_—— (2.9)
dé 0z oxr dy Oy Ox
do\ "' -
= (&) @0,
with
- af ! H(:r,y,t)—zs(ac,y,t)
== = 2.1
reminiscent of the original Gal-Chen & Somerville Jacobian
Gy = Hy — z(2,y) (2.11)

Hy

with constant upper boundary and stationary lower boundary.
The transformation coefficients G% — defined following (2.3) — affected by the vertical
transformation (2.7) are

=3 =dC 0§

3 —_—
G] = & Or (2.12)
~ dC o0&
3 _ 277 7>
G2 g d§6y’
~ dC o0&
3 _ 330 U
G = V9 g,
where
o6 1 |0z (z—H 0H ([ z— z,
or 5_0[833 (H—zs> %(H—ZJ} ’ (2.13)
% _ 1 0z (2 — H _8_H Z— Zg
oy  Go | oy \H — 2, oy \H — z, ’
o6 _ 1
0z Gy

To solve the governing equations (2.3) in the transformed space, the coefficients éf must
be expressed as functions of (£,X). In numerical models using the Gal-Chen & Somerville
transformation, the coefficients (2.13) are typically evaluated using a direct differentiation
of zs(x,y). From experience, however, an alternative approach, tailored to the numer-
ical differentiation of Gy, has been found computationally beneficial (e.g., for minimis-
ing spurious vorticity generation at free-slip boundaries (Prusa and Smolarkiewicz, 2003;
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Smolarkiewicz and Prusa, 2004)). The following expressions are defined as

1 0H 1 0H10E [ 1 0H] oD
8= 5, 0z [GO 8‘} Oz [GO 8‘] oz’ (2.14)
h23:iaH [18H]8E+{18H]8_D
Gy Oy Gy 0T | Oy Gy 0y | oy’
im0 [1000) 98 1150 D
BTG, 0r |G, 0% | ox |G, Oy | 9z’
. 119G _ [ 1 600] oF [ 1 8G0] oD
Go Oy Gy 0T | 9y |Gy, 9y | Oy

The formulae in (2.14) are written as implemented in the numerical model described in
section 2.3, with the [ ] terms referring to the numerical differentiation.’ Second, note that
the definition of Gy in (2.11) implies

(2.15)

10Gy, 1 (0H 0z
ﬁ_oax_H—zs(%_ax)
109G, 1 OH 0z
aay_ﬂ—zs<5—y_5y>
109G, 1 OH 0z
a_oat‘H—zs<W_at)

Manipulating (2.13), (2.15), and the definitions (2.14), the coefficients (2.12) are ex-
pressed solely in (%, X)

G = o (s (Ho — C7(2)) — hi] (2.16)

d€
3 / dC -1(%
G2 = d§ [823 (HO C (Z)) - h23] ,
=~ dC 1
[ g— 337~ _—
@ = VITET,

The kinematic boundary condition at an impermeable (e.g. material) surface (at the
top, dH /dt = w, or at the bottom boundary, dz;/dt = wj; cf. Lamb (1975)) follows from
73 = 01in (2.4), hence specifying the boundary conditions for the solenoidal velocity defined
n (2.5). Given all transformation coefficients and 07* /0t expressed in transformed coor-
dinates, the solenoidal velocity components are readily determined from (2.6), while the
contravariant velocity components v*’ defined in (2.4) are determined from (2.5). Manip-
ulating the third relationship in (2.15), the inverse transformation (2.8), and the definition

5The elements of the Jacobi matrix O(E, D)/d(x,y) are evaluated in (¢,X) by computing the inverse of
the Jacobi matrix 8(z,y)/0(z,7).
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of Gy in (2.11), the derivative

o0& 1 [0z, ( z— H OH [ 2z — z,
9 _ 1 o 2.1
o G {(% (H—zs> ot (H—zsﬂ (2.17)
is expressed in (¢,X)
85 1 8G0 _ 1 O0H
— — 2.1

leading to the following expression of the boundary conditions for the solenoidal velocity

1 0H

——(Hy—C'(2)) - 5_05] }H,HO : (2.19)

s dC [ 1 8G,
dg |G, ot

For non-trivial horizontal transformations, the Jacobian (2.9) and all relations in (2.12-
2.16) contain multiplicative factors that are only functions of (%, 7, t), uniquely determined
from T = E(z,y,t) and § = D(z,y,t). In Prusa and Smolarkiewicz (2003) the authors
focused on horizontal transformations for mesh adaptivity. Throughout this thesis the
identity transformation is assumed in the horizontal, Z = x and 3§ = vy, since it does not
compromise the generality of the approach (2.2) while stressing the utility of the generalised
Gal-Chen & Somerville vertical coordinate in (2.7). Furthermore, the stretching function
C(€) is taken as the identity in the examples. Consequently, G2 = G = G = G2 = 0 and
G! = G% =1, while h;; and s;; are simplified accordingly.

2.3 The numerical approximation

The nonhydrostatic anelastic equations (2.3) are solved numerically using a second-order-
accurate nonoscillatory forward-in-time (NFT) approach (Smolarkiewicz and Margolin, 1993).
“Nonoscillatory” refers to monotone schemes, e.g. total variation diminishing (TVD),
flux-corrected transport (FCT), and various flux-limited and sign-preserving schemes, that
suppress/reduce/control numerical oscillations characteristic of higher order linear schemes
(Smolarkiewicz and Prusa, 2002; Durran, 1999). “Forward-in-time” labels a class of gen-
eralised Lax-Wendroff® type methods (Tremback et al., 1987; Smolarkiewicz and Prusa,
2002). Below it is briefly commented on the essential aspects of the numerical solution
procedure while referring the reader to earlier works for further details.
The prognostic equations in (2.3) can be written in a compact conservation-law form

op"y
ot

6 Taylor series are used to develop the finite-difference scheme.

+V-(pvY) = p'R, (2.20)
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where V := (0/0z, 0/0y, 0/0%) , and 1) symbolises a velocity component or potential
temperature. In (2.20), R summaries the right hand side of the equations in (2.3). Alter-
natively, the same prognostic equations can be cast in Lagrangian form

dip

—=R. 2.21

" (2.21)
On a discrete mesh, the NFT approximation of either formulation — flux-form Eulerian
(Smolarkiewicz and Margolin, 1993) for (2.20), or semi-Lagrangian (Smolarkiewicz and
Pudykiewicz, 1992) for (2.21) — can be written compactly as

Y = LE(¢) + 0.5AtRM (2.22)

Here, 9"*! denotes the solution at the grid point (f"“,ii); 1; = ¢Y" + 0.5AtR";
and LFE denotes a NFT transport operator. In the Eulerian scheme, LE integrates the
homogeneous transport equation (2.20), i.e., LE advects 1 using a fully second-order-
accurate MPDATA scheme (multidimensional positive definite advection transport algo-
rithm) (Smolarkiewicz and Margolin, 1998; Smolarkiewicz and Prusa, 2002). In the semi-
Lagrangian algorithm, LE remaps transported fields, which arrive at the grid points (¢,X;),
to the departure points of the flow trajectories (fn,io(inﬂ,ii)) also using MPDATA
type advection schemes (Smolarkiewicz and Grell, 1992; Smolarkiewicz and Pudykiewicz,
1992). MPDATA is a finite-difference algorithm for approximating the advective terms in
fluid equations. The solution procedure of MPDATA is iterative with a first pass using a
simple donor cell approximation which is positive definite but only first order accurate. In
one dimension equation (2.20) (assuming R = 0, p* = 1 for simplicity) takes the form

¢’zﬁ+l = @Z’z'n - [F( z'n7 z'n+1aci+1/2) - F( ?_1, winaci—l/Z)] ; (2-23)

where the flux function F' is defined in terms of the local Courant number C = uAt/Ax
by
F(¢r,vr,C) = [CT 1 + [C]™r, (2.24)

with [C]T = 0.5(C +|C]) and [C]” = 0.5(C — |C]). The second pass increases the accuracy
by estimating and compensating the truncation error of the first pass to higher order. The
scheme is reapplied using antidiffusive advective velocities, which are derived analytically
from the advected field, and based on the truncation error analysis of the donor cell scheme
(Smolarkiewicz and Margolin, 1998).

The overall model algorithm (2.22) represents a system of equations implicit with re-
spect to all dependent variables in (2.3), since all forcings R?H are assumed to be unknown
at n+1. For the potential temperature equation, the right hand side includes the complete
convective derivative, ensuring an adequate treatment of the impermeability condition at
the lower boundary and the conservation of §', regardless of details of the transformation
(2.2) (see Smolarkiewicz et al. (2001), for discussions). The implicitness of the pressure
gradient forces in the numerical approximation of the momentum equation conveniently

enables the projection of preliminary values LE(¢)) in (2.22) to solutions of the continuity
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equation in (2.3). First, the system of simultaneous equations resulting from (2.22) is alge-
braically inverted to construct expressions for the discrete solenoidal velocity components
using (2.6). Then, the resulting solenoidal velocity is substituted in the discrete form of
the mass continuity equation in (2.3), forming an elliptic equation for pressure (see Ap-
pendix A in Prusa and Smolarkiewicz (2003) for the complete development). The elliptic
pressure equation is solved (stressing the need for appropriate boundary conditions) using
the generalised conjugate-residual approach — a preconditioned nonsymmetric Krylov-
subspace solver (Smolarkiewicz and Margolin, 1994, 1997; Skamarock et al., 1997). Given
the updated pressure, and hence the updated solenoidal velocity, the updated physical and
contravariant velocity components are constructed from the solenoidal velocities inverting
the relations in (2.6) and (2.5), respectively. Nonlinear terms in R**! (e.g., metric terms
arising in a geo-spherical physical system) may require outer iteration of the system of
equations generated by (2.22) — see the Appendix of Smolarkiewicz et al. (2001) for a
discussion. When included, diabatic viscous or subgrid-scale forcings may be explicitly
added to first-order accuracy assuming SGS(y"*!) = SGS(¥™) + O(At); see section 3.5.4
in Smolarkiewicz and Margolin (1998).



Chapter 3

Examples of applications

Here the theory outlined in the preceding chapter is supplemented with three examples,
validating both the conceptual and numerical aspects of the approach while illustrating the
utility of the generalised vertical coordinate. In the first example, the use of time-dependent
lower and upper boundaries with finite curvature is illustrated in three spatial dimensions,
in the context of a homogeneous Boussinesq fluid enclosed by oscillating membranes. This
demonstrates the capability to incorporate large amplitude boundary variations, testing
the accuracy of the boundary conditions, which directly impact the convergence of the ellip-
tic pressure solver. Furthermore, the approach complements biomedical numerical studies
such as vascular flows, where an accurate description of a three-dimensional fluid flow
bounded by undulating arterial walls is required, given accurate lateral boundary condi-
tions already considered in Nicoud and Schonfeld (2002). The second example stresses the
accuracy of the approach in the context of stably stratified atmospheric flows, supporting
vertically propagating gravity waves, and shows the potential for alternative formulations
of nonreflective upper boundaries. Finally, the third example illustrates the utility of the
generalised Gal-Chen & Somerville coordinate transformation for numerical adaptivity to
boundary forcings determined by data. In particular, an alternative for incorporating a
finite-amplitude free-surface upper boundary is discussed in the context of a nonhydrostatic
oceanic flow. A more complex application of nonlinear internal gravity wave processes in
stably stratified flow, forced by a time-dependent boundary condition, will be presented in
chapter 4.

3.1 Boundary forced oscillating flow

Initially stagnant, adiabatic 3D flow of a homogeneous Boussinesq fluid is forced by oscil-
lating impermeable free-slip upper and lower boundaries (“membranes”), with their shape
prescribed as

2 . .
| zgpcos® (nr/2L)sin (2nt/T) ifr/L <1,
a(r(z,y).1) = { 0 otherwise,

H(.’E,y,t) = HO - Zs(x,yat) 3

(3.1)
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with r = /x? + 42, oscillation period T" = 48At, amplitude z, = 48Az, and the mem-
branes’ half-width L = 48Ax, where Az = Ay = Az. The computational domain consists
of 150 x 150 x 120 grid intervals, in the horizontal and vertical, respectively. The ad-
vection scheme is semi-Lagrangian (Smolarkiewicz and Pudykiewicz, 1992). Note that
after t = T/4, the upper and lower boundaries are separated merely by one fifth of
the vertical extent of the model. In relation to geophysical scenarios, the present ex-
ample is representative of steep (yet well resolved) orographies. The magnitude of the
induced flow and its variation is approximately 5 and 0.5, respectively, as measured by
C =|| Atv*/AX || and £ =|| Atov*/0x || — the (maximal) Courant and “Lipschitz”
numbers (cf. Smolarkiewicz and Pudykiewicz (1992) for a discussion).

Figure 3.1 illustrates the results. The flow vectors with imposed contour lines of the
normalised perturbation pressure 7’ are shown at two phases of the simulation (¢/7 = 5/48,
and t/T = 22/48) which convey particularly well the reversing inward/outward flow pat-
terns between the upward/downward oscillating membranes. Flow vectors are multiplied
by At/Azx to acquire the sense of local Courant numbers; whereas 7' is multiplied by
2(At/Ax)? relating to the squared lengths of the displayed vectors (via Bernoulli equation).
Lacking diabatic forces, boundary friction, and buoyancy, the experimental setup implies a
potential flow solution past oscillating membranes. The accuracy of the numerical solution
can be assessed by examining the net pressure drag — i.e., the horizontal component of
the integral pressure force on the bounding walls — that should vanish in consequence of
the flow irrotationality (D’Alembert paradox, cf. section 1.92 in Milne-Thomson (1968))".
Indeed, the model predicted net drag is of the order of round-off errors. The root mean
square error of residual vorticity(xAt), attributed primarily to the truncation errors of
evaluating vorticity itself, is a few tenths of a percent of the flow variation measure L.
Finally, consider the Lagrangian form of the mass continuity equation p* = pJ ! — read-
ily available in semi-Lagrangian models (Smolarkiewicz et al., 2001) — where p} refers to
p* at the departure point X, of the trajectory arriving at a grid point X, and where J~!
denotes the inverse flow Jacobian, J~! =| 6%,/0X |. Subsequently, the density-normalised
inverse flow Jacobian J := (p:/p*J~') = 1 can be employed to assess the accuracy of the
computations?. The model predicted, domain-averaged values of J are between 0.99 and
1.01, with standard deviations 0.02 — 0.03. Summarising, we have found this experiment
a convenient tool to validate the correctness of implementation of the solenoidal velocity
boundary conditions (implying Neumann boundary conditions for pressure), ensuring the
integrability condition of the elliptic pressure equation.

3.2 Orographically-forced atmospheric gravity waves

To illustrate the accuracy and practicality of the generalised coordinate transformation for
atmospheric applications, a fully anelastic flow past a given terrain profile is considered

'For a discussion of form drag in the geophysical context of stratified flows see sections 6.8 and 8.7 in
Gill (1982); for a derivation from the momentum budget cf. Clark and Miller (1991); Welch et al. (2001).
2In general, for a flow to be realizable (topological), 0 < J < oo.
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Figure 3.1: Oscillating membranes bounding a homogeneous Boussinesq fluid. The figure shows
the vectors of local Courant numbers and contour lines of the normalised pressure (see the text
for the normalisation details) in two distinct phases of the induced flow, outflow (plates a and b)
and inflow (plates ¢ and d). Plates (a) and (c) show vertical zz cross sections at y = 0; whereas
plates (b) and (d) display the solution at z = z,, defined in (3.1). The contour intervals are 2
(zero contour lines are not shown), and the arrow length equal to the distance of two minor axis
tickmarks is 4.
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under stably stratified atmospheric conditions — a canonical problem in meteorological
studies. A suite of classical problems with flows past a bell-shaped mountain has been
simulated and compared against identical but “upside-down” experiments with a bell-
shaped valley at the upper boundary, gravity and stratification reversed. Such experiments
validated the correctness of the generalised vertical coordinate, both theoretically and with
respect to the numerical implementation.

In the following the special benchmark problem proposed recently by Schér et al. (2002)
is discussed, stressing numerical implementations of the classical Gal-Chen & Somerville
transformation in the limit of marginally resolved orographic features. The selected param-
eters of the problem favour bifurcation into a qualitatively incorrect solution (Klemp et al.,
2003). To emphasise the robustness of the generalised transformation, the Schir et al.
calculations are repeated while storing the instantaneous heights of a selected isentropic
(material) surface, so as to create a time-dependent upper boundary for the subsequent
simulation with a domain of approximately half the vertical extent. The terrain profile is
given as

—$2 ™

25(2) = 250 €XP (7) cos? (7) , (3.2)

with 2,0 = 0.25 km, a =5 km and A = 4 km. Ambient conditions consist of the uniform
wind profile u.(z) = U = 10 ms™!, (ve = 0,w, = 0) and a Brunt-Viisilla frequency
N = 0.01 s7!. The domain is 70 x 21 km, with a horizontal and vertical grid spacing of
500 m and 300 m, respectively. The integration time is 5 h with a time step At = 10 s.
The upper 11 km of the model domain are designated to an absorbing layer, to simulate
an infinite atmosphere and to suppress spurious wave reflection from the upper rigid-lid.
Lateral absorbers extend for 10 km away from the boundaries.

Figure 3.2(a) shows the vertical velocity in the reference solution. This is the correct
solution in agreement with the linear analytic result. For bifurcated, incorrect solutions
see Klemp et al. (2003). The result in Figure 3.2(a) has been obtained using the Eulerian
option of the model with the MPDATA advection scheme. However, the same results
have been reproduced using the semi-Lagrangian option. The line at z =~ 9.6 km in the
figure marks the height of an isentrope that has been extracted (by means of interpolation)
and stored at each time step of the reference run. Here we exploit the material property
(viz. impermeability) of isentropic surfaces in adiabatic flows, to create a time-dependent
upper boundary condition for the finite domain simulation, without absorbing layer. This
height data has been used in the coordinate transformation at each time step, to prescribe
numerically H (z,y,t) and 0H (z,y,t)/0t. In (2.19), these determine uniquely the solenoidal
velocity consistent with zero normal flow through the boundary.

Figure 3.2(b) shows the vertical velocity in the reduced-domain simulation. This so-
lution reproduces the reference result in Figure 3.2(a) in the overlapping domain, de-
spite spatial interpolation and finite time-differencing used to determine H(x,y,t) and
O0H (z,y,t)/0t from the reference run, and despite the sensitivity of the problem to numer-
ical details (KKlemp et al., 2003). Furthermore, the entire time evolution of both solutions
has been found to be the same.
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Figure 3.2: Vertical velocity for the flow past the terrain profile given in (3.2) after 5 hours of
simulation when the fields have essentially reached a steady state. The upper plate represents the
reference solution with a sponge layer. The indicated isentropic surface (at an undisturbed height
9.6 km) has been extracted from this run at each time-step and served as the material upper
boundary for the reduced-domain simulation shown in the lower plate. The contour interval in
both plates is the same as in Klemp et al. (2003), 0.05 ms~! (zero contour lines not shown).
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The reduced-domain simulation did not require any absorbing layer or other form of
radiative boundary condition, using 36% less CPU time than the reference run. Although
designed as a reflexivity test, this experiment appears to indicate the potential for alter-
native formulations of nonreflective upper boundaries via a generalised (non-stationary)
vertical coordinate. This contrasts Grosch and Orszag’s (1977) conclusions on the use-
lessness of (stationary) mappings for numerically solving problems in infinite regions. In
general, the proposed framework eases the incorporation of any external boundary con-
dition, e.g. by estimating the shape of the upper boundary using auxiliary models, like
isentropic models for atmospheric applications, or, as demonstrated in the next example,
a shallow-water model for oceanic applications.

3.3 Finite amplitude free surface flow

The numerical framework described in this thesis enables in principle the specification of
the upper surface by arbitrary means (either approximated or exactly prescribed). How-
ever, the aim is to use approximations that preserve the computational cost-effectiveness
compared to other approaches, while relevant to geo-physical applications. In this example,
the practicality of incorporating an approximate free-surface boundary in nonhydrostatic
ocean models is documented. The time-dependent coordinate transformation is driven
by the solution of the shallow-water equations, a lowest-order long-wave approximation
to free-surface flows; cf. Nadiga et al. (1996) for a discussion. A series of simulations in
different flow regimes have been performed, to assess the physical applicability of this aux-
iliary boundary model. Following the methodology in Rotunno and Smolarkiewicz (1995);
Nadiga et al. (1996), the results are compared against “two-layer” simulations with a den-
sity ratio 1/1000, defined continuously over a thin interfacial layer within the same fluid.

To accommodate the physics of the problem the incompressible Euler equations are
solved as

——— -y, (3.3)

where ¢’ denotes the pressure perturbation from a hydrostatically balanced environment
characterised by a density profile p, = pe(z). In the “two-layer” simulations the profile with
a density “discontinuity” at the representative (undisturbed) fluid depth dy is prescribed
as

—d
pe(2) = py[1 — 0.5Ap(1 + tanh =2

)); (3-4)

where p, =1, Ap =0.999, and v = Az. The reduced domain simulations assume p, = p,,
with a time-dependent upper boundary approximated by the nonlinear hydrostatic shallow-
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water equations

8d1 8(Uj dl)
w + Fr e 0, (3.5)
dv/  OH
it ~ 9 oar
where d/dt = 0/0t + vI0/0x7 with j = 1,2, the reduced gravity ¢* = gAp/p, (Ro-
tunno and Smolarkiewicz, 1995) and the density-weighted, normalised fluid depth d; =
pGy = p(H — 2z,)/Hy.®> The reduced-domain experiments are complemented with a
series of runs using a flat rigid-lid upper boundary, to illustrate the influence of different

boundary conditions common in oceanic applications.
All the “two-layer” and reduced-domain experiments simulate the flow past a 2D ridge
of the form

2s(7) = zg0(1 + (x/a)?) ">, (3.6)

The different flow simulations are uniquely characterised by particular choices of the en-
vironmental Froude number F, = U/+/gdy, the normalised ridge height z,/dy and the
normalised half-width a/dy. For a given half-width a, the flow regime of a shallow fluid
over an obstacle is uniquely determined by F, and z,/dy (Houghton and Kasahara, 1968).
Consequently, ensembles of runs have been performed, categorising each run with respect
to F, and z4/do. The scenarios summarised in Table 3.1 are representative of these experi-
ments for the three distinct flow regimes and are marked in the regime diagram, Figure 3.3,
as in Houghton and Kasahara (1968); Nadiga et al. (1996)*. The numerical setup follows
Nadiga et al. (1996). All lengths in the computations are in units of the representative
fluid depth dy and time is expressed in terms of /dy/g. All simulations assume free-slip
at the lower boundary. At the lateral boundaries, the solution is attenuated towards the
ambient conditions with an inverse time-scale that increases linearly from 0 at the distance
26Azx ~ 2dy to (16At)"! =~ (3a/U)"! at the boundary. In the “two-layer” simulations
the model domain (z, z) € [—20dy, 20dy] x [0, 3dp] is resolved with NX x NZ = 512 x 96
uniform grid increments Az = 5/64 and Az = 2/64. In the (vertically) reduced domain
simulations the time-dependent upper boundary is placed at the height of the undisturbed
interface layer, equivalent to the representative fluid depth dy. The semi-Lagrangian op-
tion of the model algorithm has been used for these simulations, cf. Nadiga et al. (1996);
whereas the shallow-water equations (3.5) have been integrated with the Eulerian NFT
scheme (Smolarkiewicz and Margolin, 1993). The time-step in both the “two-layer” sim-
ulation and the reduced-domain simulation was At = 2/64. The explicit shallow water
model was integrated with 1/10A¢ due to the fast surface gravity wave mode.

Figure 3.4 compares the flat rigid-lid and the shallow-water approximated upper bound-
ary simulations with the “two-layer” runs, for the different flow regimes summarised in

3Here, di ~ (H — z,); for a discussion linking the incompressible Euler equations (3.3) and the shallow
water equations in (3.5) see Gill (1982), chap.5.6 pp.107.

4The solid line in the regime diagram represents equation (3.5) in Houghton and Kasahara (1968), the
dashed line dividing region II is found using a multivariate Newton-Raphson method to solve the set of
non-linear algebraic equations (3.8)-(3.17) in Houghton and Kasahara (1968) for ¢, = 0.
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Figure 3.3: The regime diagram for the hydrostatic shallow-water equations
(Houghton and Kasahara, 1968). The x-axis is the dimensionless ridge height and the y-
axis is the undisturbed Froude number F,, = U/y/gdy. Region I is entirely subcritical, and the
free surface dips symmetrically about the obstacle. Region III is entirely supercritical, and the
free surface rises symmetrically about the obstacle after some time. In region Ila, there is an
upstream-propagating hydraulic jump and a stationary lee-side hydraulic jump. In region IIb,
there is an upstream-propagating and a downstream-propagating hydraulic jump. Parameters
corresponding to the 5 cases discussed in this paper are marked with an asterix (x).

Table 3.1. Despite the exaggerated bathymetric forcing in the examples — as opposed to
bottom profiles typically used in ocean models — the comparison in subcritical, critical,
and supercritical conditions shows good agreement between the long-wave approximation
to a free-surface and the “two-layer” simulation. In contrast, the flat upper boundary
results in a diverse solution throughout the interior domain, impacting the flow not only
above the mountain but also upstream and downstream of the obstacle.
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Figure 3.4: Summary of the solutions with a gentle slope for subcritical (a)-(c), critical (d)-(f) and
supercritical (g)-(i) flow conditions at time ¢ = 0.5 (indices 1,4 and 5 in Table 3.1, respectively).
Results are shown for the simulations with a flat rigid-lid (flat), a predicted shallow-water upper
surface (shallow-water) and a “two-layer” simulation (two-layer). The arrow length equal to the
distance of two minor x-axis tickmarks is 2. The two contour lines in the two-layer plot are

at 0.105 and 0.905 times the density of the lower layer, indicating the position of the density
discontinuity between the two layers.
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Figure 3.5: Time evolution of a critical flow (case 3 in Table 3.1) at time ¢ = 0.15 and ¢ = 0.5,
respectively, for a predicted shallow-water upper surface (left plates) and a “two-layer” simulation
(right plates). Contours and arrow lengths are as in figure 3.4.

Table 3.1: Summary of representative experiments for free
surface flows in distinct flow regimes, characterised by the
dimensionless Froude number F,, normalised ridge height
zs0/dp and normalised half-width a/dj.

index regime F, 250/ do a/dy mountain
1 subcritical 0.5 0.15 1.875 gentle

2 critical 1.0 0.4 1 steep

3 critical 1.0 0.4 5 gentle

4 critical 0.45 0.5 5 gentle

5 supercritical 2.0 0.4 5 gentle
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Both the sub- and supercritical solutions reach a steady state, whereas under critical
conditions the flow is inherently transient (Houghton and Kasahara, 1968). Figure 3.5
summaries the time evolution of a critical flow. It can be seen in the figure as the time
progresses that both the upwind propagating bore and the hydraulic lee jump steepen.
The detailed comparison deteriorates, but the qualitative behaviour of the fluid in the
interior of the domain remains in agreement with the “two-layer” simulation. The deteri-
oration is not surprising due to the breakdown of the hydrostatic assumption, underlying
the shallow-water equations in (3.5); cf. Nadiga et al. (1996) for a discussion. To illus-
trate this effect further, Figure 3.6 shows a complete breakdown of the postulated auxiliary
boundary model for the (no longer) continuously bounding surface in the special case of
a critical flow past a steep mountain (about 50 degrees maximum slope). The observed
breakdown does not imply a conceptual shortcoming of the method, but rather indicates
the need for more accurate auxiliary boundary models. For example, the generalised-
Boussinesq or Green-Naghdi nonhydrostatic equations may be considered for higher-order
asymptotic approximations, c¢f. Nadiga et al. (1996). In some applications it may suf-
fice to regularise boundary discontinuities by artificial dissipation, cf. section 12.10 in
Richtmyer and Morton (1967).

The explicit auxiliary boundary model based on the simple shallow water equations cap-
tures the physical nature of finite-amplitude free-surface flows, given a gentle bathymetry
(slopes of up to 13 degrees have been successfully tested®). This shows the potential
for alternative means of incorporating free-surface boundaries in meso-and large-scale
oceanic models, where infinitesimal-amplitude surface elevations are typically assumed
for simplicity (Iskandarani et al.; 2003). Given suitable higher-order asymptotic approxi-
mations, the approach in this thesis may complement inherently implicit methods (in all
model variables)®, typically used in engineering applications involving free-surface flows
(Casulli and Cheng, 1992; Casulli, 1999).

The preceeding examples have illustrated the correct numerical implementation and
the utility of the generalised vertical coordinate in the context of canonical problems of
atmospheric and oceanic flows. The next chapter illustrates its use and resulting new
insights into the physics of the problem in a real application of great importance for tropical
predictability: the direct numerical simulation of the quasi-biennial oscillation analogue.

5In comparison, resolved topographic slopes typically found in operational, high resolution global nu-
merical weather prediction models are about 3-4 degrees (e.g., ECMWF)

6Vertical integrals over the nonhydrostatic interior domain are employed to obtain an additional equa-
tion for H(z,y,t) while assuming the validity of a hydrostatic representation of pressure in the top layer.
Despite the complexity of the resulting implicit formulation, it enables the prediction of the impact of
the internal flow on phase and amplitude of surface waves, and vice versa, simultaneously (Namin et al.,
2001).
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“two-layer” simulation (right plates). Contours and arrow lengths are as in figure 3.4.



Chapter 4

The numerical equivalent to the
quasi-biennial oscillation analogue

The previous chapter demonstrated the ability of the numerical framework to simulate un-
stratified or weakly-stratified fluids while adapting to complicated time-dependent bound-
aries. In this chapter the newly developed framework is applied to a particular challenging
case in the class of problems with time-dependent (boundary) forcings: the laboratory
analogue of the quasi-biennial oscillation. As will be shown, this case exhibits a number
of internal gravity wave processes, wave interference, wave-mean flow interaction, critical
layer formation and subsequent wave breaking. All of these processes are found in the at-
mosphere but their distinction is difficult to deduce from observations alone. In contrast to
atmospheric modelling studies, the forcing wave spectrum is explicitly known in this case
and in contrast to laboratory experiments far more information is available from the nu-
merical simulation for process identification. It is therefore that the numerical framework
presented here becomes a useful tool as a confined numerical “laboratory” environment to
study internal wave processes.

First, a detailed description of the laboratory experiment and of its numerical setup is
presented in section 4.1. The 3D and 2D numerical simulations which have been performed
are summarised in section 4.2 and table 4.1 and table 4.2, respectively. Then a number of
parametric sensitivities, i.e. to viscosity, diffusivity, stratification, and amplitude and fre-
quency of the external (boundary) forcing are investigated in section 4.2.1. Subsequently
in section 4.2.2, numerical influences and (artificial) boundary effects are further explored
in view of the direct comparability to the laboratory equivalents. In section 4.3 a compre-
hensive energy analysis is used to verify a closed energy budget, accounting for all physical
processes and to clarify the role of numerical dissipation. The spectral analysis presented
in section 4.4 is used to identify the simulated internal wave spectra and their respective
spatial and temporal distribution. Theoretical considerations in section 4.5 complement
the data analysis leading to the detailed description in section 4.6 of the evolution and the
internal wave processes exhibited in the QBO analogue simulation. This chapter concludes
with a summary of the presented results in section 4.7. The implications of the findings
for atmospheric equatorial zonal mean flow oscillations are then discussed in chapter 5.
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Figure 4.1: The shape of the oscillating membrane as described by equation (4.1).

4.1 Experimental setup

The laboratory experiment of Plumb and McEwan has been conducted in a transparent
cylindrical annulus (radii ¢ = 0.183 m and b = 0.3 m) filled with density-stratified salty
water to a height of z,, = 0.43 m. The lower boundary consisted of a thin rubber membrane
whose amplitude oscillated with a constant frequency wy = 0.43 s=' (Plumb and McEwan,
1978). In the numerical simulation of their laboratory setup an initially stagnant, viscous
Boussinesq fluid is assumed which is forced by an oscillating impermeable lower (upper)
boundary. The cylindrical setup of the laboratory tank is replaced with a zonally-periodic,
rectangular computational domain consisting of 639 x 38 x 188 grid intervals with L, =
2n(a+b)/2, L, =b—a, L, = 0.6 m and no-slip boundaries. The lower boundary shape
(illustrated in figure 4.1)! is specified as

2
zs(x,y,t) =€ sin(Lly) sin(Lisx) sin(wot) (4.1)
y T

with s = 8 and forcing amplitude e = 0.008 m. The initial condition is assumed identical
to the static ambient state with a range of buoyancy frequencies N = 1.37-1.88 s~ 1. The
integration time was several hours with a time-step d¢t = 0.05 s. In some experiments
the distance L, — z,, is designated to an absorbing layer, which suppresses spurious wave
reflection from the upper rigid-lid, simulating a vertically infinite water tank. The influence
of different upper boundary conditions is discussed in more detail in the next section. It

!The shape is a solution of the two-dimensional wave-equation in a rectangular domain with the ap-
propriate boundary conditions (Bronstein and Semendjajew, 1987), pp.484.
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is found, however, that in 3D simulations reflections from the upper boundary appear to
be negligible in agreement with laboratory observations (Plumb and McEwan, 1978).

Starting from a zero background flow symmetrical, upward propagating, but horizon-
tally standing gravity waves are observed. After approximately 1-2 hours (in agreement
with laboratory observations (Plumb and McEwan, 1978), but see also the discussion in
section 4.2.2) 2 the wave-field distorts and spatial wave interference is observed. Subse-
quently, the coherent wave structures break down and a “critical layer” forms, giving rise to
an apparent downward propagation of a mean flow pattern which reverses sign in a periodic
manner. This process can be seen in figure 4.3. Figure 4.2 shows time-height cross-sections
of the zonal-mean flow for two representative simulations. Table 4.1 summarises the quan-
titative comparison between the 3D numerical simulations and the laboratory analogue of
Plumb and McEwan. The table also shows results of the experiment performed by the uni-
versity of Kyoto (www.gfd-dennou.org, 2004) where the oscillating membrane was placed
at the top of an annulus (figure 1.2) initiating an oscillation with an apparent upward
propagation of the mean flow. In this case the correct physical lower boundary is a rigid
lid and the upper boundary entering the transformation in (2.7) is given as

H(z,y,t) = Hy — zs(z,y,1). (4.2)

The following chapter discusses in detail various aspects of the simulated mean flow oscil-
lations.

4.2 Summary of the numerical simulations

It is found that all numerical and parametric influences on the dispersion and dissipation of
internal gravity waves change the observed mean flow oscillation, rendering a near infinite
list of effective possibilities for the variability and realisability in numerical simulations. In
part this may explain the difficulty in accurately modelling a QBO in three dimensions.
Both, parametric and numerical sensitivities with respect to the period influence in
particular two aspects of the oscillation: the height at which sufficient zonal mean-flow is
generated, to initiate an enhanced convergence of wave-induced stress and mean flow rever-
sal; and the speed of the apparent downward propagation by continued wave momentum
flux convergence below the initial level. The sensitivities can further be grouped into two
categories, sensitivities with respect to the onset of the mean flow oscillation and sensitiv-
ities with respect to its period. It is possible to separate the latter two problems since one
could prescribe an initial constant environmental zonal wind in the lowest 1 — 6 cm (de-
pending on the problem with free-slip or no-slip boundary conditions) which is equivalent
to starting with a first phase of the oscillation (see section 4.6 for an explanation). This

2Tf the initial fields are disturbed using random white noise it is possible to accelerate the onset of
the oscillation. However, substantial CPU time can be saved (without affecting the results) by forcing an
oscillation with a background flow in the near-membrane layers (dy = 0.06 m) using ue = ugp[1 — 0.56(1 +
tanh(z — do)/7)] with ug = 0.01 ms™!, § = 0.9999999, and v = Az. This mechanism has been used in
almost all simulations summarised in table 4.1.
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Figure 4.2: Time-height cross-section of the zonal-mean zonal flow velocity component at y =
L, /2 in the 3D numerical simulation of the original Plumb and McEwan setup. Plate a [case (u)
in Table 4.1] shows the results with a regular forcing membrane. Plate b [case (v) in Table 4.1]
shows the numerical result with an “imperfect” membrane, when two arbitrarily chosen parts of
the 16 oscillating membrane chambers oscillated only with half the amplitude. Plate b readily
compares with the observation, left plate of Fig.10 in Plumb and McEwan (1978). Units are in
ms— L.

substantially reduced the required overall computing time. If the simulation is not started
with an initial zonal wind it is not possible a priori to predict the onset of a positive or a
negative mean flow. An initial oscillation then typically develops after 1-3 hours of simula-
tion time. However, later a coding error has been found in the parallelisation creating an
asymmetry in the zonal periodicity. In a subsequent 3D simulation with no initial random
noise it failed to initiate an oscillation even after 4.5 hours of simulation. This suggests
that in Nature an asymmetry in the wave field is responsible for the first initiation of the
mean flow oscillation in the tank. The importance of this asymmetry is further discussed
in section 4.2.2. It appears that the initial difficulty to create an oscillation in the labora-
tory of the university of Kyoto may be for the same reason (www.gfd-dennou.org, 2004).
Interestingly, it was solved through the addition of “dirty water” adding a disturbance to
the stable stratification.

Some of the sensitivities mentioned here are investigated in the equivalent two dimen-
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Figure 4.3: Numerical simulation of the Plumb-McEwan laboratory experiment. Different phases
during the numerical 2D simulation of the quasi-biennial oscillation (QBO) analogue show prop-
agating waves excited by the oscillating membrane at the bottom of the water tank, vertical
wave interference and dispersion and the breakdown of coherent wave patterns by subsequent
absorption of the upward propagating waves at the newly formed critical layer resulting in a

"descending’ mean wind pattern.
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sional problem. To enhance the comparability to the 3D simulations, energetically only the
averaged effect of the three-dimensional oscillation is considered by reducing the effective
forcing amplitude. 2D simulations agree with the three-dimensional simulation in the ver-
tical structure only approximately, when compared with an infinite membrane of uniform
shape in the meridional direction. As long as influences by the upper boundary play no role,
the same behaviour in otherwise equivalent 2D and 3D simulations is found. However, since
the upward energy propagation of two dimensional and three-dimensional internal gravity
waves, due to the existence of a meridional flow, fundamentally differs (Smith, 1980), the
vertical extent of the mean flow pattern in the two-dimensional case grows whereas in the
three-dimensional case remains finite. Since the upward wave propagation speed is fairly
fast, compared to the time it takes for the waves to interact, one would require a very deep
water tank or perfect radiation boundary conditions, to exclude upper boundary effects.
The different vertical extent and mean-flow oscillation period between the two-dimensional
and the three-dimensional case is evident in Figure 4.4. The original upper boundary in
the laboratory was an open water surface. Experiments in 2D show a significant difference
depending on the type of upper boundary (free-slip rigid, no-slip rigid, free-slip shallow
water) applied. This sensitivity results from reflected gravity waves that additionally in-
teract with the original waves, effectively controlling the height of maximum zonal mean
flow generation and controlling the period of the oscillation. However, the behaviour is
far less obvious in three-dimensions. In the experiment setup of the university of Kyoto,
the bottom of the tank represents a rigid-lid. The downward propagating gravity waves
reflect from the bottom and additionally interact with the original waves, which appears
to contribute to the relatively larger vertical extent of their observed mean flow oscillation.

The Tables 4.1 and 4.2 summarise all conducted three-dimensional and two-dimensional
numerical experiments and compare them to the laboratory studies of Plumb and McEwan
and the experiments at the university of Kyoto.

Notable in the results of Table 4.1 is the inability to reproduce the precise period
of the original Plumb and McEwan experiment with the originally described setup in
Plumb and McEwan (1978); yet by doubling the frequency or the physical domain (viz.
the horizontal wave length) or by decreasing the stratification comparable periods are ob-
tained. The stratification N = 1.88s! as obtained from the derived values of Fig.10 in
Plumb and McEwan (1978), Ty = 476, dy = 0.17, and their formulas 4.10-4.12 appears
inconsistent with their specifications in an original movie of their experiment and the ex-
planations in the text. Therefore, a value of N = 1.57 s~! as quoted in the original movie of
the Plumb and McEwan experiment has been adopted for subsequent experiments. How-
ever, this is insufficient to resolve the difference, and the influence of the upper boundary
used as well as other possible sensitivities are discussed in more detail at the end of section
4.2.2. Tt is noted here, that the largest sensitivity arises from the forcing wavelength. In
the numerical simulation, assuming a small uncertainty (< 6 percent) in its experimental
realization, approximately reproduces the experimental result of a zonal mean flow oscil-
lation with approximately 80 minutes period. The numerical results using an “imperfect”
and a “perfect” membrane are compared in figure 4.2. In the right plate, two arbitrarily
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description’ Ng X Ny X N, Lz[m] Lylm] L,[m] elmm] wols™'] N[s~!] Ty[min] zolm]  Ao[mm)]
a) lab: P+E s} 1.52 0.117 0.43 8.0 0.43 1.88 82 0.2 8.5
b) lab: P+E 00 1.52 0.117 043 8.0 0.44 1.57 85 - -
c) lab: P+E 00 1.52 0.117  0.31 11.0 0.43 1.71 46 0.12 3.5
d) lab: Kyoto o0 3.14 0.2 0.6 11.0 0.40 1.60 80 - -
e) lab: Kyoto o0 1.50 0.115 0.5 - 0.40 1.60 45 —120 0.2 9
f) num: P+E, no slip 384 x 18 x 189 1.52 0.117  0.6(0.43) 8.0 0.37 1.88 25 0.11 6
g) num: P+E, no slip 384 x 18 x 189 1.52 0.117  0.6(0.43) 8.0 0.43 1.88 28 0.2 10
h) num: P+E, no slip 384 x 18 x 189 1.52 0.117  0.6(0.43) 8.0 0.61 1.88 a0 0.3 15
i) num: P+E, free slip 384 x 18 x 189 1.52 0.117  0.6(0.43) 8.0 0.43 1.88 10 0.15 8
j) num: P+E; free slip vert 640 x 39 x 189 1.52 0.117 0.6(0.43) 8.0 0.43 1.88 15 0.15 12
k) num: P+E, no slip 640 x 39 x 189 1.52 0.117  0.6(0.43) 8.0 0.43 1.88 32 0.18 9
1) num: P+E, no slip 640 x 39 x 189 1.52 0.117 0.6(0.43) 8.0 0.43 1.57 52 0.2 9
m) num: P+E, no slip 640 x 39 x 189 1.52 0.117 0.6(0.43) 8.0 0.43 1.37 - - -
n) num: P+E; free slip vert 640 x 39 x 189 1.52 0.117 0.6(0.43) 8.0 0.55 1.88 24 0.2 17
o) num: P+E, free slip vert 640 x 39 x 189 3.14 0.2 0.6(0.43) 8.0 0.43 1.88 100 0.4 22
p) num: P+E, free slip vert 384 x 18 x 189 1.52 0.117 0.6(0.43) 8.0 0.86 1.88 106 0.4 25
q) num: Kyoto, no slip 640 x 39 x 189 3.14 0.2 0.6 11.0 0.40 1.60 > 100 0.4 24
r) num: Kyoto, free slip memb 640 x 39 x 189 3.14 0.2 0.6 11.0 0.40 1.60 76 0.3 23
s) num: P+E, free slip inviscid 640 x 39 x 189 1.52 0.117 0.6(0.43) 8.0 0.43 1.88 — 0.12 12
t) num: P+E, free slip rigid top 640 x 39 x 189 1.52 0.117 0.43 16.0 0.43 1.57 - - 9
u) num: P+E; ~ | perfect 640 x 39 x 189 1.52 0.117  0.43 8.0 0.43 1.57 50 0.2 9
v) num: P+E, ~ | imperfect 640 x 39 x 189 1.52 0.117 0.43 8.0 0.43 1.57 85 0.2 8.5
w) num: P+E, ~ | imperfect 384 x 39 x 189 1.52 0.117 0.43 11.0 0.43 1.57 48 0.1 9
x) num: P4+E, ~ | imperfect 384 x 39 x 189 1.52 0.117 0.43 11.0 0.31 1.57 26 0.1 4.5
y) num: P+E, ~ , perfect 384 x 39 x 189 1.52  0.117 0.43 1.0 031 157 22 0.1 5.5

Table 4.1: Quantitative comparison of the mean-flow oscillations in the laboratory experiments [lab] (by Plumb and McEwan
[P+E] and repeated by the university of Kyoto [Kyoto]) and in the 3D numerical simulations [num|. 7y, zp and Ay, respectively,
symbolise the period, the vertical depth and the amplitude of the oscillation for the given domain (alias wave number), forcing
frequency wyp, forcing amplitude € and stratification N. — denotes no oscillation or unknown; ir denotes an irregular pattern
or magnitude of the respective quantity; > indicates that the oscillation period was still growing (in particular typical for 2D
simulations) but the simulation was not continued (the absolute value is not of interest in those cases since only sensitivities
against an equally long reference run have been investigated).

3The value for Ty in the Kyoto setup is deduced from the movie found at www.gfd-dennou.org (2004). The value for N in the P+E setup is
obtained from the derived values of Fig.10 (T = 476 s, dy = 0.17 m) and Fig.11 (Tp = 133 s, dy = 0.082 m) in Plumb and McEwan (1978),
and their formulas 4.10-4.12. All other values are taken as stated in the cited references.
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description Ng X Ny Ly[m] L,[m] elmm] wo[s™] N[s~'] To[min] zolm]  Ao[mm)]

a) lab: P+E 00 1.52 0.43 8.0 0.43 1.88 82 0.2 8.5
b) lab: P+E 00 1.52 0.43 8.0 0.44 1.57 85 - -
c) lab: Kyoto 00 3.14 0.6 11.0  0.40 1.60 80 - -
d) num: P+E 640 x 189 1.57 0.6(0.43) 8.0 0.31 1.88 8§—10 0.06 8
e) num: P+E 640 x 189 1.57 0.6(0.43) 8.0 0.37 1.88 20 - 30 0.2 12
f) num: P+E 640 x 189 1.57 0.6(0.43) 8.0 0.43 1.88 50 0.4 14
g) num: P+E 640 x 189 1.57 0.6(0.43) 8.0 0.55 1.88 170 0.4 17
h) num: P+E 640 x 189 1.57 0.6(0.43) 8.0 0.61 1.88 > 200 0.4 19
i) num: P+E 384 x 189 1.52 0.6(0.43) 8.0 0.86 1.88 > 255 0.4 26
j) num: P+E 640 x 189 1.57 0.6(0.43) 11.0 0.43 1.88 50 — 60 0.3 15
k) num: P+E mixed freq 640 x 189 1.57 0.6(0.43) 8.0 0.31/0.37/0.43  1.88 25 0.2 11
1) num: P+E mixed s = 4/8/16 640 x 189 1.57 0.6(0.43) 8.0 0.43 1.88 15 — 20 0.1 8
m) num: P+E mixed s = 4/8/16 640 x 189 1.57 0.6(0.43) 8.0 0.43/0.37/0.31 1.88 ir ir 21
n) num: Kyoto 640 x 189 3.14 0.6 11.0 0.40 1.60 > 120 0.6 27
0) num: P+E free-slip rigid top 384 x 189 1.52 0.43 8.0 0.43 1.57 ir ir 11
p) num: P+E no-slip rigid top Eul. 384 x 189 1.52 0.43 8.0 0.43 1.57 165 0.4 11
q) num: P+E no-slip rigid top Eul. 384 x 189 1.52  0.43 8.0 0.43/0.645/0.172 1.57 130 — 140 0.4 12 -13
s =8/12/3.2
r) num: P+E no-slip rigid top SL. 384 x 189 1.52 0.43 8.0 0.43 1.57 ir ir 10
s) num: P+E free-slip shallow 384 x 189 1.52 0.43 8.0 0.43 1.57 ir 0.3 11
t) num: P+E no-slip shallow 384 x 189 1.52 0.43 8.0 0.43 1.57 165 0.4 11
u) num: P+E inviscid 640 x 189 1.52  0.43 8.0 0.43 1.88 - ir 17
v) num: P+E near inviscid 640 x 189 1.52 0.43 8.0 0.43 1.88 - ir 17
w) num: P+E no-slip rigid top Eul. 384 x 189 1.52 0.43 8.0 0.43 1.57 — ir 12
§=2

x) num: P+E spectral anal 640 x 295 1.52  0.7(04) 8.0 0.43 1.47 - - 13
y) num: P+E irr forcing 384 x 189 1.52 0.43 8.0 0.43 1.57 — 0.4 60
rl) num: P+E 640 x 295 1.52 0.7(0.4) 8.0 0.43 1.47 >20—-30 0.3 14
r2) num: P+E 640 x 105 1.52  0.7(0.4) 80  0.43 147  >10-15 03 13
r3) num: P+E 640 x 53 1.52 0.7(0.4) 8.0 0.43 1.47 - — —

Table 4.2: Quantitative comparison of the mean-flow oscillations in the 3D laboratory experiments with 2D numerical simulations.
Notations are as described in table 4.1. The amplitude of the forcing in the 2D simulations has been reduced by the averaged effect
of the 3D membrane shape resulting in e.fy = 0.64 x e.
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Figure 4.4: Time-height cross-sections of the zonal-mean flow velocity at y = L,/2 in the 3D

numerical simulation in comparison to the corresponding 2D simulation. Plate a shows the 2D

and plate b the corresponding 3D result. Units are in ms~!.

chosen parts of the 16 oscillating membrane chambers oscillated only with half the am-
plitude. The Kyoto experiment setup is described in detail in Otobe et al. (1998) and in
(www.gfd-dennou.org, 2004) [ case (d) and (e) in table 4.1]. Several water tank sizes were
available for their experimentation (S. Yoden, personal communication). The experiments
in Otobe et al. (1998) exhibit a range of mean flow oscillation periods of 45 — 120 minutes
for similar experimental parameters. In particular, a water tank with similar dimensions
as in Plumb and McEwan generated periods of approximately 50 minutes in the begin-
ning, indicating further the correctness of the numerical simulations with “perfect” forcing
membrane. The numerical analogue of the Kyoto experiment [cases (q) and (r) in table
4.1] compares favourably with the setup described in (www.gfd-dennou.org, 2004). In par-
ticular, the filmed time evolution of the experiment (www.gfd-dennou.org, 2004) agrees
well with the result of the numerical simulation which can be seen in figure 4.5. In all
experiments the observed mean flow magnitude is consistent with predictions from linear
theory of critical levels (i.e., postulated by the singularity of the Taylor-Goldstein equation
(1.17), see also Drazin and Reid (1981), pp.320-324)

(27s/ L)’

and it is found that the period of the oscillation is sensitive to U..;;. Note, that despite
the existence of explicit viscosity and the time dependence of the mean flow one obtains

Uerit = (43)
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Figure 4.5: Time-height cross-section of the zonal-mean flow velocity at y = L, /2 in the nu-
merical simulation of the laboratory setup at the university of Kyoto [case (r) in Table 4.1]. The
results compare favourably with the animation available at www.gfd-dennou.org (2004). Units

are in ms— L.

approximately a mean flow magnitude as predicted by (4.3). In three dimensions (Baines,
1995) the mean flow becomes critical to the corresponding waves if

Wy = k- Vcrit = kUcrit + ”/crit; (44)

where k = (k,1,m) denotes the three dimensional wave vector and Vi a background flow
of critical magnitude. However, the meridional mean flow V' developing in the simulations
is approximately one order of magnitude smaller than the zonal mean flow. Equation (4.4)
may however be relevant for variations of the period in the case of the atmospheric QBO.

In section 4.5 some theoretical aspects are further discussed together with a detailed
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schematic description of the sequence of events during the flow reversal in section 4.6.
In the following paragraphs the parametric and numerical sensitivities are investigated in
more detail.

4.2.1 Parametric sensitivities
Viscosity /diffusivity

Kinematic viscosity v influences both, the vertical extent of the oscillation and the speed
of the apparent downward propagation. In particular, lower values of v increase the period
and limit the vertical extent which is in agreement with Plumb (1977). This is taken to
its extreme in the inviscid case where strongly elongated mean flow layers develop. In this
case an oscillation is observed only if forced in the beginning and after that stable layers of
mean positive and negative mean flow on top of each other develop, which remain stable.
Interestingly, when a friction term of the form —ap with sufficiently large o (1/180 s~ !,
whereas 1/1800 s~' was not sufficient) is added on the right hand side of the thermodynamic
equation (without any physical motivation at this point), the stratified layers are broken
up and a regular mean-flow oscillation starts. Imposing instead an additional friction term
of the form —aw in the momentum equation would suppress even the initially enforced
oscillation. Notably in the viscous problem, also too large values of kinematic viscosity
(ratio of kinematic viscosity vs. salt diffusivity = Prandtl number < 10) suppress an
oscillation, in accordance with an overwhelming effect of the viscous term in equation (1.1)
in comparison to the wave momentum flux. There is some indication that the effect of
viscosity is primarily to act as an “agent” to enhance the wave momentum flux convergence
and to promote the subsequent apparent downward propagation of the shear layer in a
region of strong nonlinearity and wave breaking. This effect is in contrast to the stabilising
effect when the viscosity term in equation (4.20) dominates.

In comparison, for all investigated cases even large changes in the diffusivity of salt
k had little impact on the oscillation but may be explained through the three orders of
magnitude difference between v and x and their appearance as a sum in the linearised or
“slowly varying” equations (e.g. (1.8), (4.34)).

The analysis of the energy budget in section 4.3 together with the spectral analysis
of the zonal flow component suggests that numerical dissipation can be discarded as a
likely cause for the oscillation onset and the switching to the next phase. It may however
contribute to the alteration of the period if the problem is poorly resolved or the numerical
scheme inadequate (see section 4.2.2).

Stratification

The stratification of the fluid influences and limits the period. In the range 1.37 s7! <
N < 1.57 s7! investigated by Plumb and McEwan (1978) their findings T oc 1/N can be
confirmed. However, when half the Brunt-Viisilld frequency N = 0.685 s~! is used there
is no mean flow oscillation. After the initially enforced oscillation a single mean flow layer
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of uniform magnitude develops. However, it may be possible that the simulation was not
continued long enough to find another oscillation with an unproportionally (and not twice)
long period (beyond the integration time of 6 hours, where the computation was stopped
due to the computational expense).

The qualitative influence of vertically varying stratification has been investigated by
means of two layers with a continuous but sharp transition between the two stratification
regimes. In both cases, stronger stratification in the upper or in the lower layer, it is found
that the internal gravity waves reflect and interfere with the incoming waves resulting in
zonal mean-flow generation. The corresponding influence on the period is similar as in the
case of rigid boundaries or the influence of a non-perfect artificially placed absorber at the
boundary. The findings with respect to wave reflection at the interface of differently strati-
fied fluids agree well with laboratory experiments (Koop, 1981) and theory (Baines, 1995).
It is conjectured from this sensitivity that in the atmosphere continuous changes in strat-
ification change the period length of the QBO. Furthermore, the change in stratification
at the interface between the stratosphere at the stratopause may limit the vertical extent
of the equatorial QBO through reflection and wave interaction. However, observations are
still very limited and inaccurate in this region and disturbed by other phenomena like the
semi-annual oscillation to allow the verification of this conjecture. Furthermore, due to the
amplitude growth of wave disturbances in the upper atmosphere wave breaking may be an
equally likely vertically limiting mechanism.

The external forcing

The shape and amplitude (s, €) of the initial forcing is important for the period. In
particular one finds the period T o< 1/e. The findings are in agreement with Plumb (1977).
Some of the differences between 2D and 3D with respect to the oscillation period can be
explained through the application of an averaged effect of a particular 3D membrane shape
translating into a smaller effective e (at least for the initial reversals).

There is considerable uncertainty with respect to the forcing of the atmospheric QBO.
Therefore, the effect of various combined wave-number/frequency forcing pairs on the
oscillation period have been explored. When a mixture of various forcing frequencies
or a mixture of horizontal wave-numbers with constant frequency is used, the highest
critical mean flow velocity that is reached for any of the participating waves or frequencies
dominates the mean flow oscillation period. This is also the case when one mixes both wave-
numbers and frequencies in the same simulation, where the mean flow oscillation period
behaves highly non-regular until Ug.; for the highest possible U = w/k-combination is
reached. This can be seen in Figure 4.6 where the system was forced with (s = 4,wy =
0.43571), (s = 8,wp = 0.37 s71), and (s = 16,wy = 0.31 s7'). Initially the flow becomes
critical to the higher wave-number/lower frequency pairs since the required mean flow
magnitude is lower. But when the mean flow reaches a critical magnitude equivalent to
U = 0.43/(2w4/L,) only these waves dominate the mean flow oscillation. It should be
noted, that the shorter (with respect to wave-length) waves have larger phase speeds. It
is however not that these shorter waves create a critical mean flow layer through wave
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Figure 4.6: Time height cross section of the zonal mean flow for a mixed wavenumber/frequency
forcing with (s = 4,wy = 0.43 s71), (s = 8,wp = 0.37 s~ 1), and (s = 16,wp = 0.31 s71).

breaking somewhat ahead of the longer waves, but rather they form mean flow layers that
are critical to themselves. As this happens well below the observed formation of a critical
mean flow for the longer waves, the influence of the shorter waves on the initial mean flow
development aloft is negligible, since they do not reach as high due to the existence of
their “own” critical layers. Once the larger mean flow propagates downward all critical
layers for shorter waves disappear and a single dominant oscillation (driven by the longer
waves) remains. In another experiment it is verified that when the wave interference
cannot generate a sufficiently large mean flow for a particular (s,wg) combination, the
corresponding waves appear to play no role in the generation of the mean flow oscillation.
The result has also been confirmed for odd (non-multiple) wavenumber frequency pairs.
Note, that other waves may change the mean flow magnitude locally but do not alter the
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main oscillation period until the mean flow becomes critical for them. However, this may
never happen as in the case (m) of table 4.2, where the period continues to be dominated
by (k = 278/L;,w = 0.37 s7) and not (k = 274/L,,w = 0.43 s~!). In contrast, when
multiple combinations w; /k; = wo/ko = w3/ks = 0.013 ms~! with (w;, s;) = (0.43 s71,8) =
(0.645 s7',12) = (0.172 s7',3.2) exist, all waves contribute to the apparent downward
propagation and the resulting oscillation has a much shorter period due to the increased
availability of momentum carried by the waves.

In another experiment an irregularly shaped forcing of four oscillating mountains has
been imposed of the form

1
zs(x,y,t) = ; zgisin(wt + ¢;) = ; €5 (1 4 cos(mr;))sin(wt + ¢;) (4.5)
with the same frequency w = 0.43, and r; = |z—20;|/a; with (z0;, a;, ¢;) = (0.225,0.15,0.008),
(0.5,0.2,0.011), (0.85,0.17,0.009), (1.25,0.19,0.013). The oscillations of the individu-
ally distributed (arbitrarily shaped) cosine mountains were shifted by a continuous phase
¢; = (i — 1)m/4. Also in this case a long period mean flow oscillation is generated. It is
conjectured that in resemblance of convectively forced gravity waves in the atmosphere a
somewhat random forcing is able to create a regular mean flow oscillation. Interestingly
from a numerical point of view, the integrability condition of the (incompressible) Boussi-
nesq setup has been maintained by shifting the height of the rigid upper boundary in this
simulation by the equivalent residual volume (or surface area in 2D) of the lower boundary
disturbance. Without the time-dependent coordinate transformation of the upper bound-
ary a more complicated inflow /outflow upper boundary would have to be designed for this
(arbitrary shape) setup.

These results may elucidate the combination of waves responsible for the atmospheric
QBO. In the atmosphere only the mean flow U is known but can be matched in principle
by many possible w;/k; combinations. It remains to be seen if it is possible to identify
dominant pairs, i.e. a spectrum of waves with the same w;/k; = const relation responsible
for the atmospheric oscillation.

It is also interesting to note that a membrane shape with s = 2 and otherwise unchanged
parameters (the depth of the tank has been increased by a factor of 4 to obtain a similar
vertical wave number) does introduce a strong positive wave momentum transfer to the
mean flow but only a small negative mean flow (both layered on top of each other). It
does not initiate an oscillation even if a positive mean flow is enforced initially. The reason
for no oscillation (after 4.5 hours of simulation) may be given by equation (4.3) with
wo = 0.43 5! ,s = 2 and the fact that the observed mean flow speed never reaches the
necessary “critical” magnitude. It is speculated that this is due to insufficient amplitude
of the forcing membrane in this case.

4.2.2 Numerical sensitivities, linearisation and boundary effects

It is found that initially an asymmetric excitation is required to start the oscillation. This
may be as small as asymmetrically accumulated numerical errors, as in the case, where a
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bug in the parallelisation created a continuous but tiny asymmetry in the zonal periodicity.
Without initial noise or other asymmetry the simulation with a forcing amplitude ¢ =
0.008 m failed to initiate an oscillation. However, in a 3D simulation with twice the
forcing amplitude, ¢ = 0.016 m, an asymmetry develops after only 20 minutes and a mean
flow oscillation starts. Because of the earlier results it is speculated that in the latter case
the increased nonlinearity (turbulence) induces either a numerically enforced asymmetry
or an inherent asymmetry of the nonlinear terms. In any case, it indicates that a small
excitation suffices, whether resulting from the inherent nonlinearity or from an external
source.

In some 2D cases, random initial noise accelerated the onset of the oscillation but the
onset was equally dependent on different numerical approximations. Substantial variations
in the onset of the oscillation are found for example with first order accurate advection
which starts an oscillation almost immediately (albeit an unrealistic period and time evo-
lution). Variations in the onset were also found between semi-Lagrangian and flux-form
Eulerian advection.

Numerical sensitivities with respect to the period are found in particular when using
more diffusive numerical methods. Increased implicit diffusion results in shorter peri-
ods. The same is true for the comparison between the flux-form Eulerian compared to the
semi-Lagrangian approach (see Smolarkiewicz and Margolin (1993) and Smolarkiewicz and
Pudykiewicz (1992) for details of the implementation), where the semi-Lagrangian advec-
tion produces a marked shorter and irregular period. This can be seen in the comparison
of the energy budgets of the simulations using a Eulerian (figure 4.9) or a semi-Lagrangian
(figure 4.10) advection scheme. The corresponding time-height cross sections are shown in
figure 4.7 and 4.8, respectively.

The results were not very sensitive to the chosen numerical accuracy of the pressure
solver. However, when the accuracy is reduced to 10~2 and only a single iteration is en-
forced to obtain convergence the period of the mean flow oscillation distorts and becomes
much larger than in the accurate solution. Also an explicit vs. implicit solution procedure
with respect to the internal gravity waves has been analysed. In the explicit case full
p is advected whereas in the implicit case only the perturbation p’. This influences the
numerical solution procedure in the implicit case due to the appearance of the convective
derivative in the thermodynamic equation. Here, this equation has to be solved simulta-
neously with the momentum equation (see the appendix in Smolarkiewicz et al. (2001) for
details). The same time-step was used for both integrations. The explicit solution gives
only a weak and distorted oscillation period similar to the lower accuracy solution above.
Notably, doubling the vertical resolution in the explicit case almost recovers the implicit
solution. From the comparison of the waves generated in both solutions it is concluded
that the dispersion of the waves is little effected by the implicit calculations but the explicit
solution procedure is inferior in accuracy.

It is evident that sufficient resolution is required in particular in the vertical to resolve
the initiating internal gravity waves, otherwise no oscillation is observed. This necessitates
of course the knowledge of the waves, responsible for the generation of the stratospheric
equatorial QBO. Resolution changes appear to impact mainly the speed of the apparent
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Figure 4.7: Time-height cross-section of the zonal-mean flow velocity in the 2D numerical simu-
lation using a noslip rigid upper boundary with a flux-form Eulerian advection scheme (see table
4.2 for details). The onsets of the next mean flow reversal can also be identified in the evolu-
tion of transient kinetic energy in Figure 4.11 and in the evolution of available potential energy
in Figure 4.9 indicating the dynamical activity of first decreased and then increased diapycnal
mixing during those periods.

downward propagation which may relate to a better representation of the ratio of dynamic
and viscous scales. Increasing horizontal and vertical resolutions increases the period up
to 20-30% in the simulations up to a ’saturation threshold’ after which the mean flow
oscillation period is more less invariant to resolution change (which is found to be the case
at n = 384 and [ = 189 discounting the effect of the near membrane boundary layer, see
discussion below). All simulations in table 4.2 and 4.1 have been conducted with resolutions
in excess of this 'saturation threshold’.
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Figure 4.8: Time-height cross-section of the zonal-mean flow velocity in the 2D numerical sim-
ulation using a noslip rigid upper boundary with a semi-Lagrangian advection scheme (see table
4.2 for details). The onsets of the next mean flow reversal can also be identified in the evolu-
tion of transient kinetic energy in Figure 4.11 and in the evolution of available potential energy
in Figure 4.9 indicating the dynamical activity of first decreased and then increased diapycnal
mixing during those periods.

The influence of linearisation of the equations has also been investigated in the nu-
merical model. It is interesting to note that the same setup with a linearised advection
operator does not initiate an oscillation. If restarted from a fully developed oscillation with
a linearised advection operator and constant mean flow, the oscillation does not continue.
Further, if the mean flow from a previous fully developed oscillation run is used in a sub-
sequent linearised setup, no oscillation develops either. Finally, to investigate in what way
the developing vertical spectrum of waves plays a role a band-pass filter has been applied
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on the same restart data for all higher vertical wave-numbers. If the non-linear integration
is continued from this restarted state, the mean flow oscillation continues without delay.
These results indicate some of the limitations of linear theory with time-independent back-
ground shear and stress the importance of non-linear interactions for this phenomenon.

In 2D the geometry of the vertical domain limits the period. One experiment has been
conducted with a very deep tank (3m) in which the depth of the oscillation and, due to
the extended apparent downward propagation of the mean flow, the period grew until
the top of the tank was reached. The growing “steps” visible in this simulation as well
as the beginning of any 2D simulation (see for example figure 4.4) are believed to result
from the distortion of the waves by the mean-flow up to the height of the previous “step”.
Above, internal wave interaction takes place as before and spatial interference of the waves
dominates which lets the next “step” grow up to the next spatial position of a maximum
in the mean flow where U,,;; is reached.

In two dimensions, the boundary conditions influencing wave reflection can alter the
period substantially depending on the geometry of the domain and the propagation speed
of the contributing internal gravity waves. For simulating non-reflecting conditions It
has been found beneficial to apply the absorber only on zonal wind but not on density
perturbations providing least impact on the interior domain.

The comparability of the obtained numerical results to the periods in the Kyoto ex-
periments (www.gfd-dennou.org, 2004; Otobe et al., 1998) and the differences with respect
to the original laboratory experiment of Plumb and McEwan have been further investi-
gated. From table 4.1 one finds two main differences: the setup of the Kyoto experiment
in www.gfd-dennou.org (2004) used an approximately twice larger domain (2L, 2L,), and
the membrane is mounted at the top of the water tank. The equivalent numerical results
have been obtained with either a no-slip [case (q) in table 4.1] or a free-slip [case (r) in
table 4.1] boundary condition at the oscillating membrane and a no-slip condition at the
rigid bottom of the water tank. The same flow and forcing parameters as in the laboratory
have been used. The domain size influences the wave-length of the forcing and the effective
curvature of the water tank. The curvature is ignored in the numerical experiments but
the relatively stronger curvature in the original Plumb and McEwan setup may play a
role. A numerical test with an approximated beta-plane effect did not change the period
significantly. However a better comparability of simulated and laboratory results for larger
annuli suggests that curvature effects may be worth investigating further in the future (see
Read et al. (1997) for a discussion). From the investigated sensitivities it is concluded that
only large and cumulative changes (> 10 percent) in stratification, forcing frequency and
amplitude may explain the difference, but this would imply a measurement error in the
original experimental setup by Plumb and McEwan which is rather speculative. However,
there is a strong sensitivity to the forcing wave-number of more than o k3, indicated by
the experiment, where a doubling of the domain increases the period by a factor of 10.
This suggests that a small uncertainty in the realization of the forcing membrane (=~ 6
percent equivalent to one or two of the oscillating sixteen chambers having less amplitude)
could explain the obtained difference. Using the movies of both experiments and com-
paring the different laboratory realizations of the membrane in the Kyoto case and the
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original Plumb and McEwan case, the latter appears to have a less exact shape, which
supports this speculation. A simulation with an “imperfect” membrane shape [case (v) in
table 4.1] results in good comparability to the original Plumb and McEwan setup and is
shown figure 4.2. However, the influence of the forcing membrane shape is found to be
less important with lower forcing frequency and larger amplitude [case (x) and (y) in table
4.1] and the observed zonal mean flow oscillation period (Fig. 11 in (Plumb and McEwan,
1978)) deviates from the numerical simulations.

Also the choice of the boundary conditions in the numerical simulations influences the
period. For example in the Kyoto case, a free-slip condition at the oscillating membrane
results in a relatively shorter period compared to a no-slip condition. The difference in
the simulations is found to be 15 — 25 minutes. While not significant in comparison to
the influence of changes in the forcing wave-length, it is not negligible. This is further
investigated by examining the structure of the boundary layers in free-slip and no-slip sim-
ulations of only the boundary layer region. From those simulations the lateral(meridional)
width of the boundary layer with no-slip is approximately 1 ¢cm near the walls and has
no effect on the solution in the middle of the tank. With zero stratification the boundary
layer above the oscillating membrane grows to approximately 5 cm after a few minutes of
simulation. This is not observed when examining the movies of the laboratory experiments,
where there appears to be hardly any boundary layer. The simulation of the near mem-
brane boundary layer with stratification included and no-slip boundary condition exhibits
a varying boundary layer of approximately 0 — 1 ¢m depth. Repeating the same simulation
with a five times higher resolution confirms the same result. Therefore two conclusions
can be drawn. First, the stratification appears to reduce the depth of the boundary layer.
Further, the resolution enhancement does not alter the boundary layer depth or structure,
validating the chosen resolution for the direct numerical simulation (DNS). It is interesting
to note, that after several hours a lack of stratification was observed in the near membrane
layers (S. Yoden, personal communication), which may explain an increase in the observed
zonal mean flow oscillation period, similar to the difference of no-slip (i.e., with a boundary
layer) and free-slip (i.e. no boundary layer).

The influence of the upper free surface in the Plumb and McEwan experiment has
been investigated by assuming a free-slip rigid lid or an absorbing region, but both have
negligible influence on the period. Also the possibility of using a (free-slip) shallow water
solution at the top of the domain, similar to the experiment described in section 3.3, has
been investigated. However, the laboratory experiments show little if any movement of the
upper boundary which is confirmed by the high resolution solution of the non-linear shallow
water equations with zero forcing wind, which essentially remains flat. In Nature the effects
of surface tension and the viscosity of the water further dampen any arising oscillations at
the upper surface. Given the oscillating topography, the numerical integration of the non-
linear shallow water equations develops indeed tiny, fairly constant amplitude (1-2 orders
of magnitude lower than the original forcing) high-frequency surface oscillations after a
long time. It is not clear if these are physical or numerical artifacts. If some numerical
diffusion or a 2Az-filter is introduced these are suppressed and the surface remains flat.
This implies that a flat rigid lid is a reasonable approximation in three-dimensions.
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Figure 4.9: Potential energy budget for the Eulerian advection case. The total, available, and
background potential energy are shown together with the irreversible cumulative effects of dif-
fusion. Trends of total, kinetic and potential energy are also shown. See the text for more
details.

4.3 Energy budget

In the following an energy budget analysis is performed to ensure the energetically ac-
curate incorporation of the external forcing applied through the oscillating membrane.
Furthermore, it is tried to clarify the role of numerical dissipation for the onset and the
development of the mean flow oscillation.

The potential energy of the density stratified Boussinesq fluid is defined as

E, = g/ pzdV. (4.6)
v

It should be noted that in the following calculations and figures not p but p — p. was used,
since the absolute change of potential energy is small, but the perturbation is nevertheless
found to be relevant to the flow evolution. The kinetic energy is given as

E, = % / (u? +v? + w?)dV. (4.7)
v
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Figure 4.10: Potential energy budget for the semi-Lagrangian advection case. The total, avail-
able, and background potential energy are shown together with the irreversible cumulative effects
of diffusion. Trends of total, kinetic and potential energy are also shown. See the text for more
details.

An equation for the time rate of change of kinetic energy can be derived by taking the
scalar product of the momentum equation in (1.2) with the wind vector v and the definition
(4.7) (see Gill (1982), Winters et al. (1995) and references therein):

_Ek ]{[pv +

Here the first term on the right hand side gives the reversible rate of change of kinetic
energy from pressure work and advection, and the irreversible viscous diffusion of energy
across the bounding surface S. The second term denotes the reversible exchange with
potential energy via buoyancy and the last term D symbolises the irreversible exchange
of kinetic to internal energy through viscous dissipation. In this thesis the total effect of
viscosity is computed as a volume integral of the viscous term fV v -V - 7. Similarly, an
evolution equation for potential energy (4.6) is derived from the continuity equation and

v(u® +v* +w?) —v- 7] - hdS — /gpde D. (4.8)
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Figure 4.11: Kinetic energy budget. The total, time mean, and transient kinetic energy are
shown together with the irreversible, cumulative, viscous dissipation effect. The decaying trend
of total kinetic energy is also shown. See the text for more details.

gz times the thermodynamic equation in (1.2):

%Ep = —ﬁgzpv-ﬁdS—l—/vgpde—l—&g}isz-ﬁdS—mgAwyk Prop >zy — < Phottom ay)-

(4.9)
Here, the first two terms on the right hand side denote the reversible change of potential
energy via the advective flux through the bounding surface S and via buoyancy. The last
two terms specify the irreversible rate change due to diffusive mass fluxes across the surface
S and the conversion rate from internal to potential energy. In the following analysis the
total effect of diffusion is computed from the volume integral [;, gzV?p. The diffusive
surface flux is then determined from the difference of the total effect of diffusion and the
last term on the right hand side in (4.9).

As pointed out by Winters et al. (1995) the evolution equation (4.9) does not readily
allow to identify all reversible and irreversible dynamic processes, in particular the transla-
tion of buoyancy. Instead, Winters et al. (1995) make use of a reconstructed reference state
of minimum gravitational potential energy to separate diabatic and adiabatic processes.
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An analytic justification of this separation is given in Winters et al. (1995). Numerically,
an approximation of this reference state at every time step is obtained by sorting all discrete
fluid elements and stably restratifying with heaviest elements at the bottom and lighter
elements above. Using the density distribution p, obtained in this way, the background
potential energy can be computed as

Eb:/gzp*dV (4.10)
v

and the so called available potential energy E, can be obtained using (4.6) and
E,=E, + E,. (4.11)

Figure 4.9 summarises the potential energy budget for the Eulerian advection case. Trends
of total, kinetic and potential energy are also shown for a six hour integration period.
Comparing Figure 4.9 with the time-height evolution of the mean flow in Figure 4.7 one
can identify the points of flow reversal by increased values of available potential energy.

The splitting (4.11) into background and available potential energy enables the deriva-
tion of an evolution equation for the background potential energy of the form

-1
%Eb = Sadv + Saiff — ng/v (i’t) \Vp2dV, (4.12)
where S,4, and Sg;iry denote advective and diffusive fluxes across the bounding surface S
and the last term on the right hand side gives the irreversible rate of change of potential
energy due to material changes of density within the volume V, also called diapycnal mixing
(Winters et al., 1995).

The energy diagram in Figure 4.12 summarises the different forms of energy in the
Boussinesq system and their corresponding reversible and irreversible exchanges and ex-
ternal fluxes. Potential energy and kinetic energy are defined in (4.6) and (4.7), respec-
tively. The external energy symbolises the storage reservoir of externally induced input to
the flow. Internal energy denotes the storage of energy within the fluid, with irreversible
fluxes due to viscous dissipation of kinetic energy (D in equation (4.8)) and irreversible
conversion from internal to potential energy due to the diffusivity of salt (last right hand
side term in equation (4.9)).

In Laprise and Peltier (1989a,b) an alternative approach is discussed, where fluid mix-
ing and potential to kinetic energy exchanges are expressed in terms of the buoyancy
flux and averages over slow and fast time scales. It is commented in Winters et al.
(1995) that this approach does not necessarily allow an analysis with separation into
reversible and irreversible fluxes. In fact in the application of severe downslope wind-
storms (Laprise and Peltier, 1989b) the authors encounter themselves difficulties to cal-
culate meaningful fluxes for all terms involved. Following their approach the time mean
kinetic energy is calculated as

K = - <0 >, (4.13)



64 4. The numerical equivalent to the quasi-biennial oscillation analogue

Viscous

dissi Diffusion

B 4 External energy \

Sur/t}»cé/ﬁux Suffae;q flux
A Surface flux A
v
Buoyancy sztnlatpli: Diapycnal Background
Kinetic energy potentia mixing potential energy
energy

Diffusj

irreversible —» Internal energy
reversible —»

both -

Figure 4.12: Energy diagram for density stratified Boussinesq flow adapted from Winters et al.
(1995). The energy within a fixed volume is stored as kinetic, available potential, background
potential, or internal energy. Energy is input to the flow through surface fluxes. Reversible and
irreversible energy exchanges occur through buoyancy flux, diabatic mixing, viscous dissipation,
or diffusion.

the transient kinetic energy

|
K' = 5 < U >4y, (4.14)

and the exchange fluxes of potential and kinetic energy
Ckgp = C?P + Cgip =< Etﬁtg Sy + < w_ptg >rys (4.15)

using running averages over 4 or 8 values for the calculation of the time mean (denoted
Et) and the corresponding fluctuation. The splitting of time mean and transient kinetic
energy appears meaningful since it identifies the same points of reversal of the mean flow
as the splitting into background and available potential energy. However, the calculation
of the exchange rates via (4.15) fails to account for the irreversibility of the exchange via
diapycnal mixing.

For the no-slip rigid 2D cases (p) and (r) in table 4.2, the potential and kinetic energies
and the cumulative effects of the irreversible rates have been calculated in order to assess the
effect of numerical dissipation while accounting for for all physical processes. Figure 4.11
gives an overview of the kinetic energy over a period of 3 hours of simulation, i.e. 432000
time steps. The trend of total energy (the sum of the potential and kinetic energy trends)
is shown in figure 4.9 as the thick line. The potential energy trend has been calculated
as a linear regression of the residual background potential energy after subtracting the
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Figure 4.13: Exchange rates of energy. The exchange rates are dominated by high frequency
(=~ 3 buoyancy periods per 10 minutes) reversible oscillations. The kinetic energy is of the same
size and opposite to the buoyancy flux. The potential energy rate is twice the size of kinetic
energy accounting for buoyancy and the advective surface flux of the same size. The irreversible
exchange rates are too small to be seen and are visualised through their respective cumulative
effect in Figures 4.9 and 4.11.

cumulative effects of dissipation and diapycnal mixing. The kinetic energy trend has been
calculated using a linear regression (discarding the first 160 points) of a 130 point running
mean of kinetic energy, where the initial value has been subtracted.

After subtraction of all physical contributions the numerical loss of kinetic energy is
found to be &~ —5.x107°% of the initial kinetic energy per time step. This may be compared
with a loss of kinetic energy in the operational forecast at ECMWF of ~ —2.7 x 104%
of the initial kinetic energy per time step. The loss is compensated by an almost equal
amount of numerically generated potential energy growth as can be seen in Figure 4.9.
The total energy residual is ~ 1. x 107!° per time step which is in the order of round-off
errors.

The Eulerian formulation of the model therefore conserves the total energy invariant of
the analytic Boussinesq equations (1.2) to the order of round-off errors. This verifies also
the negligible amount of any artificial energy source or sink terms other than the external
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surface fluxes (via the oscillating membrane) and as described in the diagram 4.12. A
summary of the reversible fluxes depicted in the diagram are shown in figure 4.13. It can
be seen that the surface flux, calculated via the advective right hand side terms in (4.8)
and (4.9), which feeds the available potential energy is nearly equivalent to the buoyancy
(the second right hand side term in (4.9)).

The overall accumulated numerical diffusion is approximately four times the natural
cumulative viscous dissipation in the Eulerian simulation. However, the instantaneous
dissipative rate is negligible compared to the buoyancy exchanges, and the cumulative
rate of dissipation appears less relevant since several mean flow reversals happen over the
investigated period. Also explicit viscous dissipation and numerical dissipation are likely
to differ in the way they are applied locally. Furthermore, if numerical dissipation would
be responsible for the oscillation or its onset, the equivalent inviscid simulation would
show the same oscillation, which is not the case. However, while the energy analysis
suggests that numerical diffusion is not important in this simulation it does not generally
clarify the role of numerical dissipation in the development of a mean flow reversal in
other simulations. Therefore, the same analysis has been performed for the corresponding
simulation using a semi-Lagrangian advection scheme. As can be seen from figure 4.10,
the physical irreversible rates are the same but there is a considerable irreversible growth
of background potential energy and some (unexplained) growth of the kinetic energy. This
additional energy accounted to the different numerical scheme may explain in part the
altered flow evolution in figure 4.8 compared to figure 4.7.

4.4 Spectral analysis

In this section a detailed spectral analysis of the waves in the numerical simulations is
performed to gain insight into the physical processes at the various stages of the mean flow
oscillation.

The 2D data for this analysis (case (x) in table 4.2) consists of the horizontal velocity
component v on 295 equidistant vertical levels. The analysis to determine the particular
horizontal wavenumber present in each selected level (see figure 4.23) has been done for 9
equidistant heights with a spacing of approximately 4.76 ¢cm (= 20 vertical model levels).
The data exists in a time-series of 1 s intervals (20 time-steps) for a period of 1800 s. The
horizontal resolution is 640 points over a distance of 1.52 m. The simulation was started
with a mean-flow at rest. The forcing amplitude is ¢ = 0.008 m. Given a sequence of n
complex data values z; for j = 0,1,...,n — 1 the discrete Fourier transform is defined NAG
(2004) as

s = (FTE) k=01 1 4.16
Zk \/ﬁZz]e : 1, .,n—1. (4.16)

The data is subdivided into 60 intervals of 30 s. First a transformation is applied from
physical space to the horizontal wave number space for each time interval and each vertical
level. Subsequently, the obtained complex values are transformed to find the distribution
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of spectral densities in the vertical for each time-interval. Then the analysis is completed
by a transformation in time to find the dominant frequencies. The NAG-library rou-
tines CO6EAF and CO6PCF are repeatedly used for this purpose. These routines use
a variant of the fast Fourier transform (FFT) algorithm described in Temperton (1983).
The lower and upper limits of representativeness in spectral space for the horizontal and
vertical wavenumbers, and the waves’ frequencies, are defined through the given numeri-
cal discretisation as 27/(640 x Az) < k < 2w /2Ax, 2w /(295 x Az) < m < 27 /2Az, and
27 /(1800 x At) < w < 2m/2At, respectively. Figure 4.14 shows the horizontal wave-number
and frequency spectrum for individual time-intervals. A single frequency of ~ 0.42 s~ ! is
dominating the spectrum, which is nearly equivalent to the forcing frequency of the oscil-
lating lower boundary. In the beginning of the simulation both horizontal wave numbers
8 and —8 can be observed in agreement with the shape of the forcing membrane and the
resulting standing wave pattern. However, not all levels show the existence of both wave
numbers for all time intervals and after the first mean flow reversal only one of them (8 or
—8) is observed at any one time (except perhaps for the lowest level). The distribution of
a particular horizontal wavenumber present in a selected vertical level has been obtained
by relating the power spectrum of the individual waves to the maximum power in a given
time interval. Only contributing waves with at least 10 percent of this maximum power
are shown. The vertical filtering of a particular horizontal wave number, depending on the
phase of the mean flow oscillation is evident in figure 4.23.

4.5 Theoretical considerations to the QBO analogue

Before proceeding to the precise analysis of the direct numerical simulation in section 4.6 it
is instructive to discuss a linear analysis of the internal wave propagation in the laboratory
experiment and potential shortcomings of this approach.

The zonal component of the momentum equation in (1.2) in the x-z-plane is given as

O + uoyu + wo,u = —0,m™ + v (83 + 83) U. (4.17)

Assuming a 27-periodic domain in z-direction with corresponding boundary conditions
and using the horizontal average operator

1 2T
U(z,t) =< u> 27T/o udx (4.18)

while utilising the continuity equation in the form
Oyu + 0w = 0, (4.19)
one obtains the averaged zonal component of the momentum equation as

oU U o,
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Figure 4.14: Comparison of zonal wind, horizontal and vertical wave numbers, and dominant
frequencies diagnosed at selected time intervals by spectrally analysing the zonal velocity. The
waves in plate a travel to the right and the waves in plate ¢ travel to the left.
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No approximations have been made in deriving equation (4.20). The right hand side
represents the averaged vertical flux of wave momentum, which contributes to changes in
the mean flow. It should be noted that viscous dissipation oc ¥3?U/d2z? or an additionally
imposed (artifical or real) friction o U may also contribute to a change of the mean
flow and may overwhelm the effect of the wave momentum flux. At first, equation (4.20)
may appear as a violation of the Eliassen Palm theorem (Eliassen and Palm, 1961), which
states the height independence of the vertical flux of horizontal momentum w'w’

po < u'w' >,= const. (4.21)

However, as noted by Bretherton (1966), the height independence of the vertical flux of
horizontal momentum has been derived under the assumption of a steady state in the
absence of wave damping and critical levels; in such cases the theorem is indeed invalid
because the waves interact with the time dependent mean flow.

Considering two wave solutions A and B of the physical equations (1.4), while neglecting
distortions of the wave field by viscosity or a mean flow, both real and imaginary parts
are independent solutions of the linear system of equations (Drazin and Reid, 1981). It
therefore suffices to consider only the real part $ of the relations (1.6),

_We' } (4.22)
)

Now the averaged Reynolds flux < u'w’ >, of the two internal waves is calculated, noting
that R{a} = (a + a*)/2, S{a} = (a — a*)/2i and (ab)* = a*b*, where a* denotes the
complex conjugate of a. It should be noted that using the imaginary part instead of R,
the same result for the Reynolds flux will be obtained. It would be incorrect to insert the
full complex expressions for the wave solutions since one seeks the wave-momentum flux
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resulting from either physical solution (R or &) of the linearised equations. It follows

<v'w' >,= < (u'y + up) (W + wh) >, (4.23)
_ikafo ddn o al| ks [ 00p o, O
B 4 {w"‘ 0z v 0z } {wB ¥ 9z
_ tkp awA hatoye 5 OVR iks—kp)e
87T 0 [ ,l/}B 6 +{l[]B a € ]d.’E

- e wBaaw A kst _ g OV by

27r
ZkA [ wAawB —i(ka—kp)zx +¢ wB z(kA kg)z ]da:

ZkA / [w 81/]3 i(ka+kp)z wA awB fz (ka+kp)x ]dCL'
There are several important aspects to be noted. The first two terms on the right hand
side of equation (4.23) describing the self-interaction of individual waves, have been already
considered by Plumb (1977). He inserted an approximate solution 1& of the Taylor-Goldstein
equation (1.17) into the first term of equation (4.23) and used the resulting momentum flux
to solve equation (4.20) numerically. However, performing the integration of the remaining
cross-terms of A and B in equation (4.23), one finds that due to the periodicity condition
in x direction all right hand side terms give a contribution to the wave momentum flux but

only in the cases k4 = kg or k4 = —kpg. In the case k4 = kg = k one obtains
<vu'w >,= — {wA 81/;’4 — 8(;“} tk {1[; Oy 3¢B} (4.24)
zk ~ 0 0 ~ 0 0
RS Vi _ g, 00 1”3 T
0z 0z
In the case k4, = —kp = k one obtains
<vu'w >,= — {TﬁA awZA wA a(;bA} ih { ) 6¢B ¢B 85/)3} (4.25)

- {?/JA&/;B _¢Aaw3 + 1 %—1038%‘}-

For example, in the simplest case of two internal waves of the form

w'y = wj, cos(kax + maz — oat), (4.26)
u'y = —(ma/ka)wy, cos(kar + maz — oat),
wy = wig cos(kpx + mpz — opt),

u'y = —(mp/kp)wyg cos(kpx + mpz — opt),
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where 04,05 are given by the Boussinesq dispersion relations (cf. equation (1.13)) of
wave A and wave B respectively, all self-interaction terms are identically zero. The only
contribution to the mean flow results from the interference of the two waves if, and only if
ks = kg or ka = —kp. This can be shown by inserting (4.26) into the averaged Reynolds
flux divergence < (u/y + ug)(w'y + wY) >,. Using the addition rules of trigonometric
functions cos(kax + maz — oat) = cos(kaz) cos(maz — oat) — sin(kaz)sin(maz — oat),
cos(kax) cos(kpz) = 1/2[cos((ka — kg)x) + cos((ka + kp)z)], and noting that 27-periodic
terms do not contribute, one finds for the case kx = kg =k

— <duw' >,=

0z 2 k

T, 2 .2
Wy Wop (mA mB) Sin[(mA _ mB)Z _ (UA — UB)t]- (4.27)

An equivalent result has been obtained before by Galmiche et al. (2000) for the inviscid
case in which equation (4.20) reduces to

oU 0
—_— = —— "w' >, . 4.2
5 6Z<uw> (4.28)

Solving equation (4.28) with the initial condition U(z,0) = 0 leads to

! ! 2 2
wh sw m4 —m
Uz, 1) 0AWoB ( A B

% > cos[(ma —mp)z— (04 —op)t] —cos[(ma—mp)z]. (4.29)

04— 0B
Galmiche further demonstrated that the resulting mean flow given by equation (4.29) can
be sufficiently strong to locally develop a zonal mean flow, which can become critical to
either wave A or B (Galmiche et al., 2000).

In the more general case equation (1.8) together with (4.20) and (4.24) would determine
the solution of internal gravity waves in a Boussinesq fluid under the influence of a self-
induced time-varying mean flow. However, the equations are implicit with respect to the
mean-flow U. This problem has been avoided by Plumb considering only the self-interaction
of waves and considering only solutions to equation (1.17), derived under the assumption of
U =U(z) (Plumb, 1977). Galmiche avoids the implicitness of the problem by investigating
only the inviscid case and postulating that the wave fields to a first approximation are only
weakly distorted by the mean flow, justifying the use of the simple Boussinesq dispersion
relation o in the relations (4.26) (Galmiche et al.,; 2000). While Plumb’s approach appears
to allow the estimation of the flow evolution in a limited regime, Galmiche’s simplifications
merely allow qualitative conclusions until the flow becomes critical.

The assumptions of Galmiche and Plumb may be regarded as special cases of a “slowly
varying” mathematical approach* called WKB(J) approximation (after Wenzel, Kramers,
Brouillon and Jeffreys) (Baines, 1995; Gill, 1982). Using this technique, Grimshaw (1975)
already noted earlier that waves can cause changes in the mean wind in the absence of
an initial shear. He also pointed out that large amplitude internal waves can create suffi-
cient shear which can become critical and cause absorption and “self-destruction” of the
originating waves.

4 The WKB approximation is common in optics to mathematically describe the fast propagation of
light through a medium with a slowly varying refraction index.
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Following Bretherton (1966); Grimshaw (1972, 1974) and summarised in Baines (1995),
an evolution equation for the mean flow as a function of wave action may be found. In
analogy to the derivation of the energy equation in section 4.3 but using the linearised
equations (1.4), multiplying the zonal component of the momentum equation with u', the
vertical component with w' and the thermodynamic equation with ¥'/N? and building the
sum of all equations gives

% + U% + %(u'p') + %(w'p') = —pog—g(u'w') +D (4.30)
with £ = po/2(u> + w'? 4+ (¥ /N)?) denoting the local wave energy per unit volume (wave
energy density, which is proportional to the square of the wave amplitude), and with
D = po(v(u'V?u' + w'V*w') + vu'0*U/02* + k(b /N?)V?V. Assuming sinusoidal motions
of a wave train in a zonally periodic domain one finds from the zonal component of the
momentum equation multiplied with w’ the relation

<u'w' >,= <w'p' >, . (4.31)

po(wo — Uk)

In the inviscid case, zonally averaging equation (4.30) and using the definition of the wave
action A as c

Wy — Uk’
one obtains an expression relating the Reynolds stress divergence and the change of wave
action in time

A= (4.32)

k 0A 0 .

—— =< >, 4.33
Including the effects of viscosity Grimshaw (1974) finds the following WKB approximated
evolution equation for the mean flow in 2D as a function of wave action A (ie. as a function

of wave amplitude)

% = %%A(z, t) + %(1/ + k) (k? + m(z,1)?)A(z, t). (4.34)
Subject to the simplifying assumptions of the WKB theory one may find from equation
(4.30) the more general concept of the conservation of wave action (Bretherton, 1966) in
the absence of dissipation. Relaxing some of the simplifying assumptions this has been
shown more generally by Andrews and Mclntyre (1978).

Equation (4.34), (1.19) with (1.13) and (4.32) relate the background flow U(z,t) to the
intrinsic wave properties m(z,t) and A(z,t). Together with initial and boundary conditions
these form a WKB approximated non-linear system of coupled partial differential equations
(Grimshaw, 1975; Baines, 1995). While some of the underlying WKB scaling assumptions
are violated in the simulations of the laboratory experiment (see the Richardson number
analysis in the next section), some aspects of the flow appear well described by equation
(4.34). In particular, the cumulative effect of viscosity (second term in equation (4.34))
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and the instantaneous effect of propagating waves on the mean flow (first term in equation
(4.34) are qualitatively captured. However, one cannot simply use scaling arguments and
apply only one of the above equations but rather has to solve the coupled non-linear
problem simultaneously. Only in the linear regime with weak or steady mean flow a strict
separability between the mean flow and the waves is applicable. The precise limits of
applicability of the WKB approximation are not known but the numerical results suggest
that it is inappropriate to apply the WKB theory for the whole development of the arising
flow, since ultimately the oscillatory behaviour is a solution of the non-linear equations in
(1.2) and the effect of the boundary conditions. This is demonstrated in section 4.6.

As suggested in previous sections, instead of pursuing a semi-analytic solution using
WKB theory or solving numerically (1.8),(4.20) and (4.24) °, the direct numerical simula-
tion of the equations in (1.2) is employed for the special case of the Plumb and McEwan
laboratory experiment. The simplicity of the experiment enables the investigation of a
range of numerical and parametric sensitivities, important for the successful simulation of
a QBO. From the results of section 4.2 the importance of wave interference in accord with
a self-induced time-varying mean flow is confirmed. The existence of a single horizontal
wave-number at any one time is found with a small range of vertical wave-numbers confirm-
ing the principal validity of equation (4.29). In accordance with these results, as visualised
in Figure 4.24, Galmiche et al. (2000) notices that the wave-wave-mean flow interaction
is spatially resonant but not in general temporally since the induced zonal mean-flow
oscillation does not itself automatically verify the dispersion relation. Furthermore, the
previously discussed importance of an anisotropy in the wave field, needed initially to give
rise to a horizontal mean flow, has also been noted by Galmiche et al. (2000). Furthermore,
equation (4.34) qualitatively expresses the contribution of explicit viscosity and diffusivity
in enhancing the wave momentum transfer to the mean flow. In summary, the experi-
mental results agree with above theoretical considerations to the extent that the equations
(4.20),(4.29), and (4.34) qualitatively correctly describe aspects of the observed behaviour
for the investigated flow until the formation of a critical layer. A further evolution does not
directly follow from the above without further assumptions and the results of the direct
numerical simulation are required at this point to derive the schematic description in the
next section.

4.6 A revised schematic description of the QBO ana-
logue

The original explanation of the laboratory analogue of the QBO given in Plumb (1977) and
Plumb and McEwan (1978) has been revised, based on the results presented in section 4.2
and section 4.4 and the theoretical considerations in section 4.5. The precise mechanism
of the mean flow reversal is documented by the figures 4.14, 4.16 - 4.24 and sketched in

®One could perhaps solve numerically the equations (1.8) and (4.20) with (4.24) by iteration for the
complex structure functions of both waves and the mean flow U to obtain a semi-analytic result.



74 4. The numerical equivalent to the quasi-biennial oscillation analogue

Waves propagating right Waves propagating rF‘ht
+U
wave
interference
S=-8 Critical layer
progresses
downward
/\A/\/ o /\A/\/ o
(a) (b)
Waves propagating left 4Y\/aves propagating left
-U
wave l
interference Critical layer
progresses
downward
(c) (d)

Figure 4.15: The principle mechanism of the oscillation in the laboratory experiment of Plumb
and McEwan is shown in four representative phases of the mean flow. a) There is a zonal
mean zonal flow —U creating gravity waves with a single dominant horizontal wave-number s =
—8; b) wave-wave-mean flow interaction generates a “critical layer” that propagates downward
generating a zonal mean zonal flow +U near the oscillating membrane; ¢) The mean flow drives
against the oscillating membrane from the opposite direction to create waves with horizontal
wave-number s = +8; d) wave-wave-mean flow interaction generates a “critical layer” for the
opposite travelling waves generating a downward propagating zonal mean zonal flow —U near the
membrane.

figure 4.15.

In the beginning there is no mean flow and two gravity waves with horizontal wave-
number 8 and -8 (equivalent to 8 individual gravity wave sources) are excited symmetrically
by the oscillating membrane (figure 4.17). The standing wave pattern eventually breaks
down as a result of small disturbances (anisotropy) in the wave-field and subsequently a
mean flow develops in some direction U (which direction, is reminiscent of the prediction
of the apparent outflow direction of a bath tub wrongly attributed to the Coriolis force).
If there was no anisotropy no mean flow would develop. In the numerical simulation (as
pointed out before) a small excitation is required; in Nature the meta stable state is likely
to breakdown through other unrelated disturbances. Once a mean flow has developed the
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Figure 4.16: Time-height cross-section of the zonal-mean flow velocity for the in detail described
phase of the mean flow reversal in section 4.6.

simulation proceeds as described below. It will be seen from that description, that the
mechanism can be equivalently shown with an initial zonal background flow in the lowest
layers. Therefore and because the very initial reversals are of small but growing amplitude
the mechanism is shown in a more developed phase of the QBO analogue starting at ¢ = 15
minutes (plate a in the figures 4.18-4.23). The negative mean flow —U drives against the
oscillating membrane like a mountain wave forcing creating gravity waves with a single
dominant horizontal wave-number s = —8. The phase speed is positive and the waves
propagate to the right (plate b in the figures 4.18-4.23). Due to the oscillation of the
membrane and the constant (positive) wind forcing, time and spatially shifted vertically
propagating waves with different vertical and the same horizontal wave number interfere
predominantly in space. The spatial wave interference breaks up the coherent wave trains
and, as explained in section 4.5, wave-transported momentum is transfered to the mean
flow according to equation (4.20). A shear layer with positive mean wind +U is forming at
the lowest level of wave interference. The Reynolds stress divergence is negative, consistent
with equation (4.20). This is illustrated in plate c - e of the figures 4.18-4.23. The mean
flow travelling in the same direction as the waves grows to a magnitude U.;; = wo/k =
0.43/(278/L;) ~ 13 mms~! which represents asymptotically a critical level to the (also
vertically propagating) waves. At and below this level effectively all momentum carried by
the s = —8 wave is absorbed and the further vertical propagation of the wave is inhibited
(plate e in figure 4.23). Note, that wave momentum fluxes are already enhanced before the
layer actually becomes critical and as is evident in the 3D simulations the mean may never
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Figure 4.17: Symmetric gravity waves are exited by the oscillating membrane in the beginning
of the simulation with no background flow.

reach a critical magnitude. However, locally the waves nevertheless experience “critical
behaviour” in the same way, thus defining a “critical layer” below a virtual critical level.
This is further discussed in section 4.7. With the subsequent enhanced convergence of the
wave-induced stress below the critical layer through wave breaking (i.e., examine the local
Richardson number Ri = N?/(0u/0z)? < 0 in the critical layer in figure 4.19, also some
regions exhibit Ri ~ O(1) and everywhere else Ri > 1.) the shear layer grows downward.
Interestingly, at least in the 2D simulations, the apparent downward growth only starts once
the magnitude of the zonal flow at the shear layer equals or exceeds U,.;;. Explicit viscosity
(and to some extent the chosen vertical and horizontal resolution of the numerical model
if poorly resolved) appears to act in support of the growth, further restricting the vertical
wave propagation (plate e - h in figure 4.18-4.23). When the shear layer with +U arrives at
the forcing level (the membrane), it drives against the oscillating membrane but from the
opposite direction to create waves with horizontal wave-number s = +8, propagating to the
left. The wave interference, critical layer formation and apparent downward propagation
of the zonal mean flow proceed as before but with opposite sign. It is therefore, that
the oscillation in the laboratory analogue appears to propel itself through the subsequent
arrival of a reversed mean wind at the forcing level and not through “viscous” destruction
of a mean shear layer as proposed by Plumb (1977). Qualitatively it may be argued that
the mechanism described above is equivalent to the interpretation, where always both
horizontal waves s = +8 and s = —8 are present, but where one wave is filtered out
immediately through absorption at or just above the forcing level.
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Figure 4.18: Time evolution between t=15min to t=23min. The figure shows the evolution of
the zonal wind during one half period of the reversing mean flow.
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Figure 4.19: Time evolution between t=15min to t=23min. The figure shows the dimensionless
local Richardson number Ri = —(g/p)(8p/0z)/(0u/0z)? and occurances, where Ri < 0 (convec-
tive instability and wave breaking regions), during one half period of the reversing mean flow.
Richardson numbers greater than 9 (where one may assume the validity of Ri > 1) and lower
than —1 are plotted in the maximum or minimum colour, respectively.
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Figure 4.20: Time evolution between t=15min to t=23min. The composite figure shows the
evolution of the zonal mean zonal velocity profile during one half period of the reversing mean
flow. The left plate in each figure shows the zonal mean and the right plate the variance. Units
are in ms~! and m?s2, respectively.
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Figure 4.21: Time evolution between t=15min to t=23min. The composite figure shows the
evolution of the Reynolds stress (left plates) and the Reynolds stress divergence (right plates)
during one half period of the reversing mean flow. Units are in Nm 2 and Nm 3, respectively.
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Figure 4.22: Time evolution between t=15min to t=23min. The figure shows the evolution of
the horizontal and vertical wave number analysis of the zonal wind data during one half period
of the reversing mean flow.
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Figure 4.23: Time evolution between t=15min to t=23min. The figure shows the existence of
horizontal wave numbers in 9 equidistant vertical levels during one half period of the reversing
mean flow. The strength of the colour indicates the power. Only vertical levels with a power
larger than 10 percent of the dominant power in an interval are plotted.
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Figure 4.24: The observed horizontal velocity data in plate a and b is shown at time t=24min
and t=26min in comparison to the signal reconstructed from the dominant wave spectrum in
the corresponding time-interval (plate ¢ and d) and as identified spectrally from figure 4.22. In
this case all vertical wave-numbers except for the range m = 8 — 16 have been filtered out to
create plate ¢ and d. A crude highpass filter has been applied by setting all coefficients to zero
below m = 8, and has been combined with a lowpass filter of the form 1/(1 + (m/Mg,)!) with
[ =36, Moy = 16.

4.7 Summary

In this section the main results of the direct numerical simulation (DNS) of the QBO
analogue are summarised.

The different experimental setups and the range of resulting zonal mean zonal flow os-
cillations, as described in Plumb and McEwan (1978) and Otobe et al. (1998), have been
successfully reproduced. However, the experimentally observed zonal mean flow oscil-
lation period, obtained with lower forcing frequency and larger amplitude (Fig. 11 in
Plumb and McEwan (1978)), has not been exactly reproduced by the numerical simu-
lations, which tend to predict shorter periods. Differences between the relatively wide
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range of oscillation periods in the laboratory (Otobe et al., 1998) compared to the DNS
are explained primarily due to the strong sensitivity of the oscillation period to the forc-
ing wave-number of more than o< k% and its realization in the laboratory experiments.
Other individually investigated parametric sensitivities play a role but are less significant
in comparison.

In the parameter range investigated by Plumb and McEwan (1978) the relationship to
the zonal mean oscillation period can be confirmed, namely oc 1/N, o< 1/¢, o< 1/(v + k),
x wo and approximately o< k3. However, a number of examples are given where these sim-
ple proportionality laws don’t hold. The reason is given through the inherent nonlinearity
of the involved processes. Inviscid scenarios do not maintain a mean flow oscillation but
develop vertically staggered zonal mean flow layers of opposite sign. It is found that vis-
cosity acts primarily as an “agent”, contributing to the wave momentum flux convergence
in regions of strong nonlinearity. Replacing the effect of viscosity and salt diffusivity by a
(physically unmotivated) friction term in the thermodynamic equation results in a zonal
mean flow oscillation in the inviscid case. Too strong viscosity suppresses an oscillation.
The other sensitivity to the medium in which the waves propagate is given by the stratifica-
tion. It is found that continously changing stratification alters the period of the zonal mean
flow oscillation and sharp changes in stratification give rise to wave reflection, altering the
vertical extent and the period of the oscillation. Finally, the shape and amplitude of the
forcing has been investigated in detail. As has been found by Plumb and McEwan (1978),
sufficient amplitude is necessary to obtain a zonal mean flow oscillation. Combinations of
various wave-numbers and frequencies show a dominant role of the combination with the
largest critical velocity that can be reached. Multiple combinations with the same criti-
cal velocity accelerate the downward propagation. A “semi-random” forcing with varying
shapes and amplitudes of individual cosine mountains also results in a zonal mean zonal
flow oscillation. If waves exist but a critical velocity is not reached (not even locally), zonal
mean zonal flow variations are observed but no mean oscillation.

Simulations with a linearised version of the equations do not show a zonal mean os-
cillation. However, the non-linear set of the Boussinesq approximated equations (1.2) has
been found adequate for the DNS of the laboratory experiment. Aspects of numerical
realisability have been investigated where the onset of the zonal mean flow oscillation and
the length of its period are used as a measure of numerical error. Sensitivities are found to
the resolution, to the advection scheme, to the use of first-order and second-order accuracy
or an alternating use, to the accuracy of the pressure solver, to explicit versus implicit for-
mulations and to the sensitivity of upper and lower boundary conditions. All of these can
be summarised as influencing the numerical solution of wave dispersion, their dissipation
and subsequent alterations of the mean flow. In the flux-form Eulerian formulation, nu-
merical dissipation has been found to be unimportant for the onset or the evolution of the
oscillation. However, in the semi-Lagrangian framework it may account for the distorted
evolution and the unrepresentative growth of potential and kinetic energy. In three dimen-
sions boundary conditions (other than the oscillating membrane) had negligible influence
due the viscosity of the water and due to the amplitude decay of three-dimensional gravity
waves, unlike two-dimensional hydrostatic flow (Smith, 1980). However, 2D simulations
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required careful consideration of the boundary opposite the oscillating membrane due to
wave reflection substantially influencing the zonal mean zonal flow oscillation period. In
non-Boussinesq simulations the amplitude growth of vertically propagating waves, due the
the decrease of density with height, offsets the decay and may raise again the importance
of upper boundary influences in atmospheric simulations.

It is found that some anisotropy has to exist to excite a zonal mean flow oscillation.
Then the laboratory experiment exhibits critical layers which determine the behaviour of
the mean flow. The arising zonal mean flow speed matches in all 2D cases and approx-
imately in some 3D cases the critical velocity given by relation (4.3) and as predicted
from linear theory. However, while locally a critical magnitude of the flow is reached in
most 3D experiments, the zonal mean zonal flow is found to be 2 — 3 mms~! below the
theoretical critical threshold. In experiments with low frequency and large amplitude and
especially with an imperfect membrane the observed mean deviates substantially, up to
5—6 mms~! from critical magnitude. However, the reversing mechanism is still the same
in all simulations. One observes regions of wave overturning and breaking (with Ri < 0.25
or Ri < 0), where the background flow locally accelerates (critically) and these regions
of acceleration merge (horizontally) to a more confined layer, even when the mean is not
observed to be critical. The height at which this layer is first identified depends on the
stratification, forcing shape, amplitude and frequency. It appears therefore that horizontal
averaging leads in 3D to a non-critical mean flow. This is in particular obvious with im-
perfect membranes, where in some part of the tank the flow is even reversed to the mean
but by simply evaluating the mean an overall unidirectional picture emerges. A critical
background flow may therefore be seen as an idealisation of reality, in particular when a
number of (imperfect) wave sources exist.

The detailed analysis of the obtained data (spectral analysis, energy budgets, verti-
cal profiles of Reynolds stress divergence and zonal mean zonal velocity, and x-z-plots of
Richardson number and the zonal velocity component) suggest a different picture of the
arising oscillation compared to the original explanation by Plumb and McEwan (1978).
In the DNS the zonal mean zonal flow oscillations are wave-driven by wave-induced ver-
tical transport of momentum originating from the oscillating boundaries and dissipated
at self-induced mean flow variations that grow to “self-destructing” critical magnitude,
given sufficient forcing amplitude. When this critical magnitude is reached, one observes
the downward propagation propelled by wave breaking (indicated by visual inspection and
Richardson numbers lower than zero). The simulations exhibit a number of fundamental
internal wave phenomena: wave interference, wave reflection, wave-mean flow interaction,
critical layer gravity wave attenuation and subsequent wave breaking. While the same
mechanistic behaviour is observed in 2D and 3D simulations, the amplitudes and oscil-
lation periods differ due to the amplitude decay of three-dimensional gravity waves in a
dissipative Boussinesq medium.

The theoretical considerations in section 4.5 link the explanations given by Plumb
(1977) and Galmiche et al. (2000) to each other and to the results obtained from the
DNS in explaining aspects of the laboratory experiment. However, it is concluded that
ultimately only the DNS results give the correct and complete picture, which is detailed
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in section 4.6 and sketched in figure 4.15.



Chapter 5

Discussion

5.1 The generalised time-dependent coordinate trans-
formation

The generalisation of the Gal-Chen & Somerville development allows to include intricate
time-dependent boundaries into numerical models via a coordinate transformation of the
bounding surface. In principle, an auxiliary boundary model could have provided the
velocity components and potential temperature along a flat boundary, accounting for the
changing momentum fluxes across the boundary as the simulation progresses. However,
since the shape of the upper boundary is fixed independently of the fluid flow, this approach
requires the numerically accurate estimation of all dependent variables at the bounding
surface. In particular, the specification of advective velocities is more difficult in this case.

In the context of ocean data assimilation and subsequent adjoint operations in the
presence of a free surface the application of the coordinate transformation may provide a
natural utility to overcome the difficulty that the control variable (free surface height) is
also a prognostic unknown of the forward model (Gejadze and Copeland, 2004).

In the context of atmospheric applications, where hybrid vertical coordinates are com-
monly used, the approach may provide an alternative to the vertical nesting of different
curvilinear frameworks within the same model. If several vertically bounding surfaces exist,
the coordinate transformation may be further generalised to

5 Z&)Zh _hz 1 (51)

with hg = 2, and &; = Hy; for h;_; < z < h; and 0 otherwise. While this formulation
has not been further explored in this thesis, it may complement attempts to exploit the
strength of different curvilinear frameworks for various regions of a simulated medium,
each coupled through a common interface layer. In particular in geophysical flows, it may
facilitate the coupling of boundary layers with stratified fluids, such as the incorporation
of mixed layers in deep oceans and the coupling of planetary boundary layers (PBL) to
the large-scale dynamic flow.
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Figure 5.1: The quasi-biennial oscillation as analysed in ERA40 in a three dimensional time-
height representation. The figure shows time-height slices of zonal mean zonal wind between
200hPa and 1hPa averaged between +(18 — 16) degrees latitude, between +(10 — 8) degrees, and
at the equator, (0 — 2) degrees, for the period 1965-1968.

5.2 Implications for atmospheric equatorial zonal mean

flow oscillations

In this chapter, the results of the direct numerical simulation of the QBO analogue, as
summarised in section 4.7, are discussed in the context of the atmospheric QBO, the basic

mechanism of which it was designed to emulate.
Figure 1.1 illustrates the evolution of the QBO in the equatorial stratosphere for the pe-
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riod 1965-1990, as analysed by the European Re-Analysis project (ERA40) (Uppala et al.,
2004), which incorporated all available observations over a period of 40 years, utilising
the latest available three dimensional variational data assimilation system. A typical lat-
itudinal perspective for the period 1965-1968 is shown in figure 5.1. Apparent downward
propagating mean flow patterns with maximum amplitudes nearer the equator can be seen.
Towards the top of the time-height slices another zonal mean flow oscillation with shorter
period, the semi-annual oscillation (SAO) can be observed, which makes it difficult to
measure the actual vertical extend of the QBO.

The following questions have been posed in the introduction and are now addressed
using the results of the direct numerical simulation of the laboratory analogue of the QBO.

e Where is and what determines the upper and lower boundaries of the QBO in the
real atmosphere?

e What is the precise mechanism that dissipates one phase of the QBO near the
tropopause and when does the next phase start aloft?

e Which waves drive the QBO in the real atmosphere and how are they generated?

e What is required in global circulation models to reproduce a wave-driven zonal mean
zonal flow oscillation?

The design of the laboratory experiment of Plumb and McEwan (1978) was such as to
verify the theory outlined by Holton and Lindzen (1972), in which the upward propagating
waves are attenuated primarily by infrared cooling. It is an interesting twist to the story
about the QBO that the results of the direct numerical simulation for the same laboratory
setup favour instead the theory put forward by Lindzen and Holton (1968) and advocated
by Dunkerton (1981); Horinouchi and Yoden (1998) and others: the critical layer attenu-
ation of gravity waves. Since the laboratory experiment is often employed to explain the
basic mechanism of the atmospheric QBO (Baldwin et al.; 2001), this thesis provides a
revised detailed description of the precise mechanism, including a careful analysis of the
data in various phases of the mean flow reversal.

In comparison to the laboratory mean flow oscillation, several details can be noted for
the atmospheric QBO. First, numerical evidence is provided that the periodically reversing
mean flow pattern in the laboratory analogue is a wave-wave mean flow interaction driven
phenomenon with a non-zero momentum flux divergence primarily resulting from vertical
wave interference, then subsequent critical layer formation and internal wave dissipation
within, enhanced by wave breaking. A spectral analysis of the numerical data and energy
considerations underline the conclusions and reveal a different oscillation mechanism from
that described in Plumb (1977). In the laboratory experiment the mean flow arriving at
the forcing level actively induces the next phase of the oscillation. In the atmosphere
it appears from the ERA40 data (though not conclusively) that like in the laboratory
analogue the next phase of the QBO only starts once the previous phase has arrived near
the tropopause. Incidentally, Gabis and Troshichev (2005) find the existence of westerly



90 5. Discussion

wind regimes, throughout the entire height range of a 50 year data set only in 3 % of
the months, which coincides approximately with 21 observed reversals from westerly to
easterly. This is similar to the behaviour in the laboratory experiment.

In the numerical simulations, almost complete wave absorption is observed before the
mean wind magnitude is critical but downward propagation only starts and is maintained
when “criticality” is reached. A positive mean wind supports the vertical propagation of
waves necessary for the formation of a negative mean wind aloft. A negative mean wind
of critical magnitude would not allow their vertical propagation and would filter these
waves by absorbing them. The following two dynamical mechanisms are possible in the
atmosphere. In the first scenario the mean wind arriving near or just above the tropopause
(the assumed forcing level) would actively induce gravity waves with a reversed horizontal
propagation direction such that by itself it provides the necessary forcing for the next
phase of the QBO. One possible wave generating mechanism at the tropopause height
is described in laboratory experiments of Flynn and Sutherland (2004), who investigated
the excitation of internal gravity waves by fluid intrusions propagating along the interface
between two differently stratified layers. They concluded that as a result gravity waves
could be generated whose momentum flux is comparable to the momentum flux generated
by topographically excited waves. The zonal mean wind of a QBO phase arriving at its
forcing level may trigger the excitation of waves in such manner. In the second scenario
the atmosphere always supports both horizontal propagation directions of waves and the
mean wind filters the waves accordingly but plays no role in the wave generation. The
second scenario is more difficult to realize in the numerical setup described in this thesis.
One would have to prevent the mean flow from descending down to the membrane. So far
both possibilities appear equally likely and may both contribute.

Stratification changes appear to confine the vertical propagation of gravity waves, as
has been found in this thesis and by other authors (Koop, 1981; Baines, 1995). It is
speculated that the propagation of gravity waves contributing to the QBO may therefore
be naturally confined between the tropopause and the stratopause and therefore effectively
defining the vertical extent of the QBO and somewhat predetermining the length of its
period. Unfortunately, the semi-annual oscillation (SAO) overlaps with the QBO and the
lack of sufficient observations does not allow at present to verify this conjecture. Current
numerical models as well as reanalysis data sets have the top of their model domain near the
stratopause with increasingly poor resolution towards the model top, which also does not
allow further insight into the vertical structure of the equatorial oscillations at stratopause
height.

The influence of stratification on the zonal mean zonal flow oscillation period (decreased
Brunt-Viisilld frequency increases the period) may explain the observed apparent change
of the downward propagation speed of the stratospheric mean flow near 10hPa when con-
sidering the stratification change of the U.S. standard atmosphere at that height ((Holton,
1992), pp. 403).

The simplicity of the laboratory experiment facilitates a revealing spectral analysis of
the zonal mean flow oscillation and the waves involved in each phase. The atmosphere is
likely to support a number of waves with similar wave-number/frequency pairs whose phase
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speeds are critical to the observed mean flow. In the sensitivity experiments described in
subsection 4.2.1 it is shown that similar wave-number /frequency pairs all contribute and
accelerate the mean flow oscillation through increased wave momentum fluxes. The authors
in Horinouchi (2003) tried to identify wave-number /frequency pairs in a spectral analysis of
several global models but concluded that the participating models do not sufficiently resolve
the necessary waves. It is not known if ERA40 exhibits those waves, but it should be noted
that due to the nature of the process (short period waves exciting a large scale oscillation)
the correct analysis of the QBO mean wind does not imply a correct representation of the
necessary (forcing) waves. Further research and better observations will be necessary to
answer this question but the detailed analysis in chapter 4 may help to discard part of
the observed spectrum of waves based on the relevance of the criticality of the mean flow
(rather than radiative cooling), the dominance of westward (eastward) travelling waves in
an eastward (westward) mean flow, and the relative insignificance of waves with critical
levels below the observed zonal mean flow of the QBO.

However, while the waves in the laboratory experiment are described as two opposite
travelling waves, in the atmosphere, a quasi-random superposition of a spectrum of waves
is likely to exist. What is perceived as a coherent large scale planetary wave may be
generated by a sequence of causally disjoint processes which are aligned spatially and tem-
porarily in a specific manner, where the combined behaviour exhibits a wave like pattern.
The simulation with randomly distributed, and somewhat arbitrarily shaped, oscillating
mountains with a coherent phase shift between them, in resemblance of radiatively driven
(day-time sun) convection that forces gravity waves aloft, also created a regular zonal mean
flow oscillation. This numerical result indicates that the forcing of the atmospheric QBO
may just be the result of a “semi-random” forcing of a spectrum of waves even in the
absence of horizontally propagating planetary waves. The “aqua-planet” experiment by
Horinouchi and Yoden (1998) supports this conclusion.

In the introduction it was mentioned that the ECMWEF model successfully modelled a
QBO like oscillation (Untch, 1998) in an earlier version of the model but that the result
in recent years could not be reproduced despite resolution enhancements and consider-
able progress in forecast ability (Simmons and Hollingsworth, 2002). The results in this
thesis together with earlier studies (Giorgetta et al., 2002) suggest the need for sufficient
resolution but above all the importance of vertically propagating gravity waves in the
stratosphere with sufficient amplitude (energy) to produce a mean flow of critical magni-
tude. The most effective way to create many internal waves in the ECMWEF model is by
switching off the convective parametrization (P.Bechtold, personal communication). Lack-
ing diabatic convective forcing to compensate the adiabatic tendencies, the model produces
strong (randomly-distributed) localised convergence (figure 5.3) at the grid-scale, which in
return produce large amplitude, vertically propagating gravity waves. These waves suf-
fice to produce a QBO like oscillation in a climate integration using the latest forecast
model at ECMWF (figure 5.2 and 5.3). An apparently paradoxical explanation for the
“loss” of a QBO-like oscillation in the ECMWEF model in the past years may therefore
be given as the result of recent improvements in the convection scheme aimed at avoiding
numerically generated gridscale divergence. These changes eliminated a major source of



92 5. Discussion
1 _
1.0 35.0
7.0 27.0
19.0
-15.0
11.0
1 -23.0
] 3.0
T 10 e R
= - = -5.0
§° L1 -39.0 gb
) o -13.0
e ™ e
-47.0
-21.0
-55.0
-29.0
-63.0 -37.0
100 F 100 F
-71.0 -45.0
-79.0 ‘ | '. ,.‘ -53.0
0 365 730 1095 1460 0 365 730 1095 1460
Time [days] Time [days]

Figure 5.2: A QBO-like oscillation in a T63 IFS model simulation with 91 levels and no
parametrized convection in the simulation. The left plate shows the time height cross-section
at the equator for the experiment using the Tiedke convection scheme and the right plate shows
the case with the convection scheme switched off.

gravity waves in the model. A comparison with the magnitude of gravity waves resulting
from the operational convection scheme (Tiedke, 1989) shows indeed a large difference in
the amount and the amplitudes of the generated waves. It furthermore suggests that the
random distribution of such gravity wave sources suffices for the successful simulation as in
(Horinouchi and Yoden, 1998) and as in the laboratory simulations described above. Also,
since horizontal diffusion primarily acts on the tail of the spectrum of the resolved gravity
waves in global atmospheric models (see section 1.5.4 for the effect of enhanced horizontal
diffusion in the IFS model), the “tuning” of horizontal diffusion, which helped to obtain a
QBO-like oscillation in Takahashi (1999), may be readily understood as varying the degree
of suppression of gravity wave forcing.

The influence of the Coriolis force on mean flow oscillations has not been investigated
in this study. A beta-plane approximation has been tested in the three-dimensional labo-
ratory simulations but it had very little effect on the period. However, it is believed that
the Coriolis force plays a major role in confining the oscillation to the equatorial latitudes
(Haynes, 1998). This may also stem from the fact that the Reynolds stress divergence is
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Figure 5.3: Instantaneous horizontal distribution of the driving forces for the QBO-like oscillation
in the T63 IFS model with 91 levels. The simulation develops some strong local events throughout
the troposphere reaching as high as model level 39 (=~ 100 hPa), which is shown here. The figures
show horizontal velocity divergence. Strong localised divergence patterns on the grid-scale can
be identified that develop in the simulation without parametrized convection; the bottom plate
exhibits the relative lack of such events when using the Tiedke massflux convection scheme. The
contour interval is 0.5 s~! in both plates.

balanced in part by the Coriolis term sufficiently away from the equator. It is speculated
that this behaviour may be analog to the overwhelming effect of viscosity that has been
shown in subsection 4.2.1 for increased values of v resulting in the disappearance of the os-
cillation. The influence of the Coriolis force on critical level behaviour has been investigated
by Shutts (2001) concluding a vertical blurring effect as to where in space wave momentum
flux convergences occur. Therefore, the absence of a particular critical layer, would possi-
bly also prevent the development of a long-term oscillation such as the QBO. Variations in
the meridional flow magnitude may further contribute to such dilution. However, it is well
known that the mechanism of self-induced mean flow variations by orographic gravity waves
with or without subsequent critical layer formation is relevant far away from the equator.
For example, the effect of sub-grid scale mountain wave drag is typically parametrized
in atmospheric models to simulate the drag effect on the larger scale simulations. The
fundamental mechanism discussed in section 4.5 may also contribute to the discussions on
severe downslope windstorms (Smith, 1985; Laprise and Peltier, 1989a,b). Furthermore,
in investigations of transition to turbulence it may be relevant to consider wave mean flow
interactions since it provides a contrasting mechanism to the energy extraction from the
mean flow through baroclinic instabilities (see Holton (1992) for details). Direct numerical
simulations (DNS) and large eddy simulations (LES) of turbulence in stratified homoge-
nous shear flows are summarised in Schumann (1996). There it is pointed out that large
scale anisotropies due to the formation of locally turbulent spots need to be considered in
turbulent studies of the free atmosphere. These spots may result from the onset of wave
breaking at pre-existing critical levels. However, in this thesis it is shown that the prop-
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agating gravity waves may themselves form such subsequently “self-destructing” layers.
In this context Poulin et al. (2003) stressed the importance of time-varying background
flows on the stability of otherwise stable shear flows. In this respect this thesis may be
seen as a step towards more realistic investigations of atmospheric phenomena in stratified
non-uniformly time-varying background flows.

5.3 Future work

The theoretical and numerical framework developed in this thesis allows further investi-
gations into various aspects of designing upper boundaries for numerical simulations of
oceanic and atmospheric flows as discussed earlier in particular in the context of three
dimensional studies of flows bounded by “shallow water” or isentropic surfaces. Oceanic
flows driven by observed tidal signals (P. Smolarkiewicz, personal communication) and
data assimilation of free surface height data (Gejadze and Copeland, 2004) are two other
examples of data-driven, direct applications.

The precise specification of a variety of gravity wave forcings in the numerical apparatus
demonstrated in this thesis together with the accurate simulation of internal gravity wave
behaviour would represent an appropriate testbed for internal gravity wave parametriza-
tions. Their respective wave momentum fluxes could be diagnosed and compared with
the corresponding DNS results to provide a validation of the, to some extent, uncertain
underlying assumptions of existing internal wave parametrizations (Kim et al., 2003).

The zonal mean zonal flow oscillation that has been investigated in this thesis is gener-
ated by wave-induced vertical transport of momentum originating from the forcing bound-
aries. However, in the troposphere there are a number of waves which may similarly interact
to create zonal mean flow oscillations resulting from meridional variations in which case
the governing zonally averaged momentum equation results as

aa—lt] = —(% <u'v' >, . (5.2)
Such mean flow oscillations due to wave interference are only possible for the same or
opposite zonal wavenumber in agreement with (Lindzen et al., 1982) who already noted
the possibility of such horizontal vacillations in the atmosphere. The term on the right
hand side of equation (5.2) is reminiscent of the term in (Moncrieff, 2004) formulating a
forcing relation for the Madden-Julian oscillation (MJO) (Madden and Julian, 1972, 1994)
which represents the major observed mode in the tropical troposphere and which is neither
well understood nor accurately modelled in three-dimensional forecast or climate models.
Therefore, the theory and the numerical apparatus used in this thesis may well be extended
to provide a “laboratory” analogue for the MJO.



Chapter 6

Conclusions

In this thesis a new time-dependent, generalised vertical coordinate transformation has
been introduced. Examples of applications relevant to a few distinct areas of computational
fluid dynamics have been provided, validating both the conceptual and numerical aspects
of the new time-dependent, generalised vertical coordinate transformation. A key feature
of this development is the ability to collapse the spatial and temporal variations of the
upper and lower boundaries to a single similarity variable defined in equation (2.7). This
effectively encodes the relationship between an auxiliary boundary model and the interior
fluid. In the atmospheric example presented in section 3.2, the simulation using the height
of a selected isentrope in the definition of the vertical coordinate accurately represents the
gravity waves generated above the obstacle.

In section 3.3 the practicality of the generalised coordinate transformation is successfully
demonstrated for oceanic applications. In this example the free-surface boundary shape is
predicted independently, providing the interior fluid model with a Neumann-type boundary
condition for pressure, but maintaining the physicality of free-surface flows. While in
theory — for incompressible or anelastic models — equivalent Dirichlet and Neumann
boundary conditions may be found (cf. Gresho and Sani (1987) for a discussion), the use
of a Dirichlet boundary condition can be impractical. In particular in the context of free
surface flows, the application of a Dirichlet boundary condition for pressure in the numerical
solution procedure for the interior domain allows fast propagating surface gravity waves
in the solution, which severely limit the time-step. Furthermore, the shape of the upper
boundary would remain unknown. Here, the novelty of the approach lies in the coupling of
the independent auxiliary boundary model to the interior domain via the proposed vertical
coordinate transformation, allowing the use of a larger time-step for the elaborate part of
the interior domain computations.

Finally, the usefulness of the numerical framework has been demonstrated in the ap-
plication to the laboratory experiment of Plumb and McEwan (1978). The comprehensive
analysis of the direct numerical simulation of the QBO laboratory analogue exhibits a num-
ber of fundamental internal wave phenomena, which are also observed in the atmosphere:
wave interference, wave reflection, wave-mean flow interaction, critical layer gravity wave
attenuation and subsequent wave breaking. A number of numerical and parametric sensi-
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tivities have been described. On the basis of the numerical results it confirms some of the
findings obtained with simplified global circulation models (Horinouchi and Yoden, 1998)
and NWP models (Untch, 1998; Giorgetta et al., 2002), while the accuracy of the direct
numerical simulation removes the uncertainty with respect to the approximate nature of
the global models. Furthermore, it enables to interpret those results and speculate on the
remaining uncertainties with respect to atmospheric zonal mean zonal flow oscillations and
their numerical realisability. In particular, the dominant role of randomly or semi-randomly
distributed wave sources as originating from convection have been discussed. An alterna-
tive mechanism has been described in the laboratory simulations that does not necessitate
the “obscure” dissipation of the descending shear layer and the role of viscosity in the
laboratory experiment has been clarified which may allow to review the assumed dominant
role of radiative cooling in the atmosphere (Holton and Lindzen, 1972; Dunkerton, 1997).
The effects of stratification change on the vertical propagation of gravity waves have been
discussed in determining the upper and lower bounds as well as the period change of a
zonal mean zonal flow oscillation. Finally, suggestions have been offered on the numerical
sensitivities and mechanisms reproducing a wave-driven zonal mean zonal flow oscillation
in global circulation models.



Appendix A

Tensor algebra

A.1 Curvilinear framework - the transformation of
coordinates

The numerical investigations of specific meteorological problems require the selection of a
suitable coordinate system. As shown by Gal-Chen and Somerville (1975); Dutton (1986);
Zdunkowski and Bott (2003) and many others, the set of equations of motion, the ther-
modynamic equation and the continuity equation can be readily derived for a transformed
system of coordinates. Prusa and Smolarkiewicz (2003) and in this thesis a general time
dependent coordinate transformation is applied in the numerical model to ease the incor-
poration of intricate boundary conditions. The equations can be formulated in covariant
or in contravariant form. In general, the temporal and spatial derivatives of the basis
vectors do not vanish. As a result Christoffel symbols appear in the equations which repre-
sent inertial accelerations, affecting flow direction but not the flow magnitude. Numerical
algorithms should preserve this “inertness” to avoid the introduction of artificial momen-
tum sources. Truncation-error departures can be avoided if the momentum equations are
solved for the untransformed Cartesian velocities in the transformed framework (Clark,
1977). This strong conservation formulation avoids Christoffel symbols resulting from the
curvilinearity by using basis vectors i,, which are independent of time and independent of
the coordinates (Clark, 1977; Smolarkiewicz et al., 1997). However, the advective veloci-
ties are the contravariant velocities of the transformed system. Therefore in a numerical
model, two different forms of velocity have to be computed and stored, as described in
chapter 2.

The concept of coordinate transformation is well known. Nevertheless, the main deriva-
tions of tensor analysis are compactly reviewed here for completeness. Furthermore, the
less well known transformations of the Navier-Stokes equations in both, the general con-
travariant and the strong conservation formulation are reviewed. A new expression for
the viscous terms in the strong conservation formulation is given for the general case of a
not-necessarily Cartesian physical system.

The formulas of this appendix are readily applied to two specific examples. The first
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example is the application of the standard transformation from Cartesian to spherical co-
ordinates. The second example is the new generalised coordinate transformation described
in detail in chapter 2. The transformation to spherical coordinates bears some relevance
to the numerical modelling with the generalised coordinate on a sphere since the relevant
metric conversion terms for each transformation are multiplicative.

A.1.1 General definitions of tensor analysis

Two systems of linear independent basis vectors are called reciprocal if
qk Qi = (5ik7 (Al)

with the Kronecker-symbol 6,* = 1 for i = k and zero otherwise. It is customary to refer
to upper indices ¢ as contravariant and to lower indices ; as covariant. In the following
derivations both upper and lower indices will appear in the equations. A contravariant
system is defined as a system where the basis vectors are covariant (the equations written
in the vector component form only contain upper indices), and it is referred to a covariant
system where the basis vectors are contravariant.’

In a Cartesian framework a vector A and a tensor J can be written as

A = A" gyzin :
T = J"™|(y)inim (A.3)

where the normal summation rules apply, i.e. repeated indices express sums unless oth-
erwise stated. A" denotes the measure number of the vector A. In general coordinates
with contravariant measure numbers A™|, and covariant basis vectors qn, a vector A and
a tensor J can be expressed as

A = A% ee)an
J = J"m\(ql,q2’qa)qnqm, (A.5)

where the basis vectors q,, and their measure numbers ¢ may be functions of the original
Cartesian coordinates. The basis vectors of the general coordinate system may not be
orthogonal to each other and may not be unit vectors. The notation of the same physical
vector A in the two different coordinate systems (A.2) and (A.4) expresses the invariance
of a vector with respect to the transformation.

With the definition of the scalar triple product, which represents the volume of the par-
allelepiped bounded by the three vectors A,B and C (Chisholm, 1978; Zdunkowski and Bott,
2003)

[A,B,C|=A-BxC (A.6)

!The choice of system is arbitrary but considerations with respect to properties of the covariant and
contravariant partial derivatives favour the contravariant system (Zdunkowski and Bott, 2003).
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and using (A.2) and (A.4) the scalar triple product is given by the determinant

A, A, A, Al Az A8
A-BxC=|B, B, B, |=G|ge | B B> B (A.7)
C, C, C, ct ¢t ¢®

with @\(w,y,z) = 1 in a Cartesian coordinate system. @|(q1,qz,q3) = a1, 2, qs] in an arbitrary
coordinate system is the square root of the matrix determinant (“GRAMsche Determi-
nante”) of the basis vectors q; which is defined as

L . Ch:(h Q1:q2 q1:q3 N
9] = a1, d2, q3]" = | d2- a1 Q22 Q2 Q3 |- (A.8)
g3 -d1 d3-92 93 -4qs

52

Given a line element in the ¢’-system

or
dr(q', %, ¢°) = T dq" = qndg” (A.9)

with r = zi; + yiy + zi3 defined in the Cartesian system, é|(q1’q2,q3) can be expressed using
q; = Or/9dq". The result is understood more generally as the Jacobian of the transformation
from an initial coordinate system (z,, z,t) into the system (¢', ¢%, ¢®, 1) with

1,2 .31
|1/22‘M‘ _ g, (A.10)

é|(ql,q?,q3) = |§ij 6(33 y z)

The covariant basis vectors can be expressed in terms of the contravariant basis vectors
and vice versa using (A.10) and (A.1) according to

1 .
;= =(q’ x ¢* A.11
q G(q q") (A.11)
q' = 5(% X Q). (A.12)

The gradient of a vector VA in the contravariant system can be written as

0

1 (0 0 0
= G {a—ql(qQ X qzA) + a—q2(q?, X qiA) + 8—q3(q1 X Q2A)} : (A.13)

As before, a basis vector q; is expressed in terms of the Cartesian coordinates as
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With (A.14) the transformation for the measure numbers of a vector A is then given by
ox"
Era
It follows that the contravariant measure numbers of ¢/ or in fact any tensor component J%

in general coordinates is expressed in terms of their corresponding Cartesian components
to give

A" (). (A.15)

i _
A |(q1,q2,t13) =

O Oq’

Jij|(q17q27q3) = 8$n 8./L‘m Jnm‘(xzyrz) (A16)
0q* 0¢’

Y= } A7

g oz™ Ox™ ( )

In a Cartesian framework the metric terms ¢¥ = §Y. With the metric tensor terms ex-
pressed as g;; = q; - q; a unit vector in the (¢',¢? ¢3,t) coordinate system is given as
Qi _ q; _ Q%
@l Vara /o
Using the expression (A.4) for the vector A in (A.13) and computing the first scalar of the
expression VA leads to the divergence of a vector in general coordinates
1 0(GA™
v.a=L0EA) (A.19)
G Og"
In order to express the equations of motion in a general coordinate system, an expression
for the material derivative D/Dt (in general not equal the total derivative d/dt) of the
velocity vector v = v"q, has to be derived. It follows

Dv d dv" g

D = V) = g an v

noting that the derivatives of the basis vectors in the general ¢* coordinate system do
not vanish. By multiplying (A.20) with g* and introducing Christoffel symbols of the 2nd
kind I‘fj, the kth component of the momentum equation in contravariant measure numbers
reads

(A.18)

e; =

(A.20)

Dv  dv* oq*
ko2 = T ™t TR i, - e A21
C oy =g TV TV, (A.21)
with 9
A m
o L A, (A.22)
and

k _ 8237” aqk _ ﬂ agm + agjn - agij
Y 0gt0gi Oxn 2 \d¢ O¢¢ Ogn )
The importance of the last term on the right hand side of equation (A.21) for time
dependent geometries in this contravariant formulation has been recently discussed by
Luo and Bewley (2004). They find that the time-dependent terms cannot be neglected, in

particular for rapidly varying geometries.

(A.23)
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A.1.2 The momentum equation

In a stationary inertial system the equations of motion are given in the form

Dv 1 1

— =—Vp+ —|——V-T, A.24
Di SVptet (A.24)
with the physical pressure p, gravity vector g, density p and the deviatoric stress tensor 7.
The kth component of the contravariant form of (A.24) can be found by multiplying the
equation with the contravariant vector q* and expressing the gradient operator V as

0 0
V=qnV" =ans—=9"dn=—- A.25
q Ung—=9""dmp (A.25)
Using (A.21),(A.25) and (A.14) gives then
dv* 0q* gk" Op ok 1
T N ot S A S S AT A.26
7 + o™, —v"q ot o g8x3+pq V-t ( )

The kth-component of the divergence of the viscous stress tensor (using (A.19) and (A.23))
can be written as

1 0(Grkm)
qQ"-V.-r= 57&]” + Tm"I";,m,
where the components 77%|; are given by (A.16). The coefficients in Cartesian space 77%|
are defined proportional to the mean gradients of the velocity following Lilly (1962) (see

also Gal-Chen and Somerville (1975) for details).

(A.27)

A.1.3 The momentum equation in strong conservation formula-
tion

The difficulty in expressing the Christoffel symbols numerically in a conserving form is
eliminated by the use of a strong conservation formulation (Clark, 1977). This entails the
inconvenience to compute and store at least two different representations of the velocity
components in the model.

In the strong conservation formulation, the physical velocity is expressed as

v =u"i, (A.28)

where the i, are assumed orthogonal and stationary but not necessarily Cartesian. Using
the total derivative d/dt in the transformed ¢' system one can write
dv  ou” ou™

M My (S A2
ai = o T4 g (A.29)

Equation (A.29) contains the advective velocity components of the transformed system ¢
given by . .
. qu aql

i % _ 0T
T="a T ot

n 0’
orn’

(A.30)
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Using partial derivatives, the vector operator V can be expressed in this system as

oq™ . 0¢g™ 0

D Vil a2a?) = In 5 B (A.31)

. 0
lnam" =1, Val@ys =g
For a reference space spanned by the basis vectors i, the equations of motion for the
untransformed physical velocities along the coordinate lines ¢' of the transformed system
are now written as
ou™, ou™ 1 0q™ 8p

ot T 8qm1 p@x”@q VT ( )

In the general case if the reference space i is not Cartesian, the derivation of the viscous
terms is tedious. A summary of the derivation and the full expression of the V7 in equation
(A.32) has been argued in Smolarkiewicz and Prusa (2004) from first principles and is

given as
Vi = ii ( *ép\/g-TTjk)
o OgP P G/ 955 9kk
with the components of the deviatoric stress tensor given as

mn

- W ey (4.3

_malnp*

A.34

Tjk\(q @0%) = Qugli gk* €k + 19’

where v := p/p is the kinematic viscosity and y is the molecular viscosity; ¢ := \/p denotes
the density normalised bulk viscosity; v® is the solenoidal velocity defined in (2.5). The
symmetric strain rate tensor is given as

\/_

gkU

1 0
6jk|(q1,q2,q3) = 5 (\/gkkGl +\/9; Gr — /g mmv"‘I‘ﬁ) (A35)

In Cartesian coordinates, it is easily verified that the strain rate tensor is

61) ov’

and the components of the deviatoric stress tensor are given as

Tikl@y,2) = 2V€ik|(@9,2) T L€kl (2,,2)05k- (A.37)

A.1.4 The continuity equation

With (A.19) the continuity equation is expressed in general coordinates as

0(pG) | 9(pGi")
ot oq™

= 0. (A.38)

Note, that this formulation is general and requires the velocity components of the trans-
formed system ¢*.
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A.1.5 Spherical coordinates

For completeness and later reference one example of a non-Cartesian physical reference
system 1is introduced with its corresponding diagonal elements of the conjugate metric
tensor: a sphere. The transformation from a Cartesian (x,y,z) to a spherical (A, @, )
coordinate system can be described as

= rcos(¢)cos(N) (A.39)
y = rcos(¢)sin (N)
z = rsin(¢),
with longitude ), latitude ¢ and distance from the centre r (Holton, 1992). The relations

(A.39) represent the z‘-coordinates expressed through the new ¢'-coordinate lines. If one
further introduces a second set of coordinates (Z, g, 2):

z a\ (A.40)
y = a¢
zZ = r—a

where a = 6.37122 x 10%m is the radius of the Earth, above transformation can be written
as

= aycos (7/a)cos(&/a) (A.41)
= aycos(§/a)sin (Z/a)

z = avysin(g/a)

with

.
- . A.42
= (A.42)

Using (A.16) the metric terms g;; can be computed for the transformation given in (A.41)
as

g1 = 72 cos” (9/a) (A.43)
g2 = ’72
g3 = 1

gi; = 0 foralli#j.

With (A.18) one finds the physical velocity components on the sphere (ie. in the trans-
formed system with transformed unit vectors) as

Uage = @Qs+ 04y + 24 (A.44)
= ycos (§/a)bes + vies + e
= uez +ve; + we;.
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Media II
An

Surface tension
Stress S’

Surface tension

Media |

Figure A.1: Relation between the stresses on the two sides of a boundary between two fluids
(after Batchelor (1967), pp. 69).

The contravariant velocity components (:é, gj, 2) expressed through the physical velocities
on the sphere (u,v,w) (cf. Holton (1992)) are given by

u

P = — A.45
7 cos (§/a) (A.45)

. v

y = -

. Y

Z = w.

A.1.6 Free surface boundary condition

The variety of formal free surface definitions found in the literature reflects the variety of
applications in which the free surface concept applies (e.g., the definition via pressure in
atmospheric studies (Dutton, 1986), or the definition via the Bernoulli equation in potential
flow theory, see Stoker (1957), pp. 19). However, different formulations are often the result
of simplifications (see for example Lamb (1975), pp. 363), introduced to the more general
concept presented in Batchelor (1967), pp. 148-150, and summarised here.

Given an impermeable material surface separating two media, as defined in the kine-
matic condition (1.23), one has in general two more conditions describing the transition of
a transportable quantity (e.g. fluid momentum) from one side of the interface to the other
side (Batchelor, 1967). Considering fluid momentum, the first transition relation is the
continuity of the velocity across the interface. This is discussed in section 1.5.3 for the spe-
cial case of a fluid-solid interface with no slip boundary condition. The second transition
relation assumes the continuity of the stress across the interface (Batchelor, 1967). This
relation is determined by a balance calculation of the forces at the interface (see figure A.1
and Batchelor (1967), pp. 69). The stress tensor components are given as

Sjk = —Pdjk + Tjk; (A.46)

where the 7, denote the components of the deviatoric stress given in equation (A.37). A
balance of the forces at the interface between fluid I and I7 including surface tension 7
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gives
Siing — S =T. (A.47)
If for convenience, the tangential component of the surface force t - S - n and the normal

component n - S - n are treated separately, using equation (A.37), and in the absence of
surface tension one obtains the two conditions

11 11 S b |
11 _I1

I IIrg T 11 11
P = 2w engng + 0 €05 = D — 20 €k + L €105k

In the special case where the kinematic viscosity and the density normalised bulk vis-
cosity of fluid /1 are negligible compared to fluid I, one finds for the bounding surface of
fluid 1

elxting =0, (A.49)

pl — 21/Ie§knjnk + LI€§k5jk =pt
which defines a free surface of fluid I. In the absence of viscosity, surface tension and other
external forces, the conditions (A.49) express the invariance of pressure at the (moving)

impermeable bounding surface. This may be combined with (1.23) to give
dF _ d(p' —p")

If pressure is negligible in the upper fluid p’! ~ 0 one recovers Baines’ free surface condition
of vanishing pressure at the interface.
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A.2 Symbol tables

Table A.1: Description of Abbreviations.

DLR Deutsches Zentrum fiir Luft- und Raumfahrt
DNS Direct numerical simulation
ECMWF European Centre for Medium Range Weather Forecast
FCcr flux-corrected transport
GESIMA Geesthachter Simulationsmodell der Atmosphére
LES Large eddy simulation
MESOSCOP Mesoscale flow and cloud model Oberpfaffenhofen
MPDATA Multidimensional positive definite advection transport
algorithm
NCAR National Centre for Atmospheric Research
NFT Nonoscillatory forward-in-time
QBO Quasi-biennial oscillation
SAO Semi-annual oscillation
TV D total variation diminishing
Table A.2: Description of symbols in the text.
05 Pu; P55 Pry Po density; anelastic density; Jacobian weighted [kgm ™3]
density; reference density
Ps restratified density profile after re-ordering  [kgm ™3]
0 potential temperature (K]
8 reference potential temperature (K]
o' potential temperature perturbation (K]
3 buoyancy perturbation [ms2]
e normalised pressure perturbation [m?s—2]
o, p pressure perturbation [Nm™2]
vl u, v, w physical velocity [ms™]
Ue, Ve, Wey Pey Be environmental (ambient) profile(s)
D, D environmental (ambient) hydrostatically bal-
anced density, pressure
g; g gravity acceleration; reduced gravity [ms™2]
N Brunt-Viisalla frequency [s71]
v:=p/rho kinematic viscosity [m?s™1]
U molecular viscosity [kgm1s™1]
L= \/rho density normalised bulk viscosity [m?s™1]
K diffusivity (of salt or heat) [m2s™1]
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Table A.2: continued...

U; Vcrit = (Ucrita ‘/;rit)

Ry 250, Q
H; Hy

L, L,
L;T
d1; do

€
Y

i;

i, 4i; 4", ¢°

characteristic or background zonal mean flow
velocity; critical mean flow velocity

time interval averaged zonal velocity,density,
vertical velocity

U/+/gdy, undisturbed Froude number
—(g/p)(0p/02)/((0u]0z)? + (Ov/8z)?), local or
gradient Richardson number

surface topography; mountain height; moun-
tain half-width

height of the top surface, physical system:;
transformed system

zonal, meridional domain size

characteristic length;time

shallow-water fluid depth; undisturbed depth
forcing amplitude

attenuation depth of changing ambient pro-
file

i-th (Cartesian) unit vector in physical sys-
tem

i-th covariant unit vector in transformed sys-
tem, respective coordinate; i-th contravari-
ant unit vector, respective coordinate

a tensor ; a vector

Christoffel symbol of the 2nd kind

physical coordinates

transformed coordinates

generalised vertical coordinate

transformed contravariant velocity compo-
nents

transformed solenoidal velocity components
Jacobian of the transformation
transformation coefficient 7, &

1, J element of the conjugate metric tensor of
the physical system

Kronecker-symbol

right hand side (rhs); rhs forcing terms in the
momentum equation

(1,7 element of) viscous or deviatoric stress
tensor

viscous term in momentum equation
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Table A.2: continued...

N9 xR

&

l,m

s
w; Wo

Coy €= w/k
0-; UV; O-K,

¢1 1/11%70

A= E/(wo — Uk)

&

Ep K K'
Ep;Eb;Ea
Zj; 2k

R(z)
Z(x)
O(x)

diffusive term in thermodynamic equation
dissipative term in kinetic energy equation

stress tensor

surface tension
dimensional zonal (=
vertical wave number

non-dimensional zonal wave-number

wave frequency; forcing frequency [s ]
horizontal wave phase speed

dispersion relation; v(m? + k?); k(m? + k?)
stream function; vertical structure of stream

function
wave action

wave energy density

kinetic energy; mean ; transient;
potential energy; background; available;
complex data value;
complex value;

Real part of complex value x
Imaginary part of complex value x
scaling, in the order of x

21s/L,), meridional,

Fourier transformed

[kgs™'m™!]
[Nm™?]
[N'm]

[Nm]
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