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Contents

Zusammenfassung ix

Abstract x

1 Introduction 1

2 Quantum breaking 11

2.1 Notion of semi-classical system . . . . . . . . . . . . . . . . . . . . . . . . 11

2.2 Corpuscular picture of quantum breaking . . . . . . . . . . . . . . . . . . . 13

2.3 Quantum breaking from the entropy point of view . . . . . . . . . . . . . . 14

2.4 Quantum breaking as a growth of quantum fluctuations . . . . . . . . . . . 15

2.5 Quantum breaking criterion . . . . . . . . . . . . . . . . . . . . . . . . . . 17

3 2PI effective action 19

3.1 General description of 2PI formalism . . . . . . . . . . . . . . . . . . . . . 20

3.1.1 Definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

3.1.2 Stationary conditions . . . . . . . . . . . . . . . . . . . . . . . . . . 22

3.1.3 Renormalization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

3.1.4 Initial conditions and time-contour . . . . . . . . . . . . . . . . . . 27

3.1.5 Generalized Word-Takahashi identities . . . . . . . . . . . . . . . . 32

3.2 Quantum breaking criterion using 2PI . . . . . . . . . . . . . . . . . . . . 35

4 Semi-classical theory of a stationary solutions 41

4.1 Classical stable condensate . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

4.1.1 Classical solution . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

4.1.2 Stability of the condensate . . . . . . . . . . . . . . . . . . . . . . . 44

4.2 Initial conditions for the simulation . . . . . . . . . . . . . . . . . . . . . . 46

5 Quantum evolution of the stable condensate 51

5.1 Numerical simulations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

5.2 Comparison with the perturbative expansion . . . . . . . . . . . . . . . . . 56



vi Contents

6 Classically unstable condensate 61
6.1 Fast quantum breaking . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
6.2 Classical theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

6.2.1 Condensate . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
6.2.2 Bright Soliton . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64
6.2.3 Classical stability as the reflection of an interplay between two solutions 65
6.2.4 Saddle-point solution as the initial condition . . . . . . . . . . . . . 67

6.3 Numerical Simulations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68
6.3.1 Evolution along the BEC trajectory . . . . . . . . . . . . . . . . . . 70
6.3.2 Quantum break-time . . . . . . . . . . . . . . . . . . . . . . . . . . 73

Conclusion 76



List of Figures

1.1 Here three types of trajectories are depicted. The green line shows all the
possible states of the physical systems. The brown dots show stable station-
ary states, the purple dots show unstable stationary states, and blue lines
show trajectories. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

4.1 Energy EBC of a stable condensate as a function of charge Q versus the
energy of the collection of free particles with the same net charge. . . . . 44

4.2 Field values for saddle-point and 1-loop approximations for λ = 1, m = 1,
L = 10m−1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

5.1 Time dependence of the classical and full charges for ω = 3 and λ = 0.5. . 52

5.2 Time dependence of Qq for different frequencies ω. . . . . . . . . . . . . . . 52

5.3 Time dependence of Qcl normalized by the initial value for different frequen-
cies ω. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

5.4 Quantum break-time as a function of the full charge . . . . . . . . . . . . . 55

5.5 Quantum break-time as a function of period of initial classical oscillations . 55

5.6 Behaviour of the classical and quantum charge for long time. Conservation
of charge is showed. Here ω = 1.1, λ = 0.5 . . . . . . . . . . . . . . . . . . 56

5.7 Perturbative expansion compared with fully resumed 2PI for λ = m2 and
ω = 1.1m. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

6.1 Bright soliton solution for different frequencies ω and lentgh L = 4πm−1. . 64

6.2 Energy versus charge behaviour of condensate and soliton. Here L = 4πm−1

and λ = 2m2. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

6.3 Time dependence of the classical charge for different frequencies in the strong
coupling regime. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

6.4 Time dependence of the classical charge for different frequencies in the weak
coupling regime. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

6.5 Time evolution of the classical energy Ecl(t) as a function of Qcl(t) for differ-
ent ω ∈ (.90, ωcr) (each with a different marker). Here the evolution follows
the classical condensate trajectory. . . . . . . . . . . . . . . . . . . . . . . 71



viii List of Figures

6.6 Time evolution of the classical energy Ecl(t) as a function of Qcl(t) for dif-
ferent ω ∈ (.81, ωcr) (each with a different marker). The failure of the
simulation is apparent as ω decreases. . . . . . . . . . . . . . . . . . . . . . 72

6.7 Quantum breaking time dependence on ω compared to analytical estimation.
Solid lines are functions logQ(ω, λ)/Im(γ− (p1)) for different couplings and
triangles are quantum breaking times extracted from simulations . . . . . . 75



Zusammenfassung

Ziel dieser Arbeit ist es, ein kürzlich eingeführtes Phänomen namens Quantenbruch zu
untersuchen. Dieses Phänomen steht für die Zerstörung der makroskopischen Gesamtdy-
namik des halbklassischen Systems aufgrund der Quanteneffekte und drückt sich in der
Erfassung des Unterschieds zwischen der klassischen Evolution und ihrer wahren (oder
vollständigen) Quantenevolution aus. Hier möchte ich einige Punkte ansprechen.

In erster Linie geht es darum, einen einheitlichen Formalismus für die Berechnung
der ungefähren Quantenevolution einzuführen, um nicht triviale dynamische Effekte zu er-
fassen. Dies scheint unerlässlich zu sein, da alle bisher in der Literatur betrachteten Ansätze
besonderen Merkmalen der betrachteten Systeme unterworfen waren und sich voneinander
unterschieden. Es ist also immer praktisch, einen Ansatz zu haben, der eine breite An-
wendbarkeit ermöglicht. Dieser Ansatz bewältigt zwei Probleme: die Berechnungsmethode
der Evolution und das allgemeine Kriterium zur Identifizierung der Zeitskala, die mit dem
Quantenbruch verbunden ist.

Das zweite Ziel besteht darin, die Quantenevolution tatsächlich zu simulieren und Quan-
tenbrüche für mehrere relativistische Systeme zu erkennen, die in der Theorie des kom-
plexen Skalarfelds auftauchen, und diese Ergebnisse mit denen zu vergleichen, die bereits
in früheren Forschungen erzielt wurden.

Die hier betrachteten Systeme sind stabile und instabile Bose-Einstein-Kondensate,
die in der komplexen Skalarfeldtheorie entstehen. Die Evolution wurde in beiden Fällen
berechnet, indem eine irreduzible effektive Aktion mit zwei Teilchen verwendet wurde, die
mit der Integrationskontur ”in-in” ausgestattet war. Anhand des neu eingeführten Kri-
teriums wurden Zeitskalen des Quantenbruchs identifiziert und mit bereits in der Literatur
erhaltenen verglichen.
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Abstract

The goal of this work is to study a recently introduced phenomenon called quantum break-
ing. This phenomenon stands for the destruction of the overall macroscopic dynamics of
the semi-classical system due to the quantum effects, and is expressed in the capturing the
difference between the classical evolution, and its true (or full) quantum evolution. Here,
I would like to address several points.

The first and foremost, is to introduce a unified formalism for computing approximate
quantum evolution to capture non-trivial dynamical effects. It seems to be essential to
do that, because all the approaches considered in the literature so far were subjected to
peculiar features of the systems under consideration, and were different from one another.
So, it is always handy to have an approach allowing for broad applicability. This approach
manages two problems: the method of computation of the evolution, and the general
criterion to identify timescale associated with quantum breaking.

The second goal, is to actually simulate quantum evolution and detect quantum break-
ing for several relativistic systems emerging in the theory of the complex scalar field, and
compare these results to the ones already obtained in previous research.

The systems that are considered here are stable and unstable Bose-Einstein condensates
emerging in the complex scalar field theory. The evolution was computed in both cases by
using two-particle irreducible effective action equipped with “in-in” integration contour.
Timescales of the quantum breaking were identified on the basis of the newly introduced
criterion, and compared to those obtained in literature already.
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Chapter 1

Introduction

In the most general terms, there are two types of problems that bother the minds of
physicists. The first one is the structure of the physical body, namely, what it is composed
of? The second problem is the evolution of the physical system, which is no less essential
than the first one because our knowledge serves nothing if we cannot make predictions.
But the evolution of the physical system could be also of several types. A system can
evolve as a whole, meaning that it moves in space and time without changing its structure,
in which case the structure can be ignored. Another possibility is the internal evolution
when the structure of the system itself is going through transformations. And, surely, we
can combine both, and consider all the subtleties of the full evolution, which is usually
incredibly cumbersome. In the best case, we would like to be able to describe both, its
structure and its dynamics. Nevertheless, depending on circumstances, we could ignore
either one to make our job easier. For instance, in mechanics if a body is rigid enough
we could not care less about its structure, and focus on its macroscopic trajectory. Or, in
considering crystals, we can keep the whole body resting and study its internal structure.
We do this because in the real life we lack capabilities to describe the system with infinite
precision. Therefore, we always must be aware up to what degree we can neglect some
particular characteristics of a system in favour of others, more relevant ones. In this work,
I would like to ask precisely this question, namely, how long we can ignore not only the
internal structure in favour of macroscopic dynamics of a physical system, but for how
long we can ignore the quantumness, or in other words, quantum nature of this structure.
But before we come to that, let me set up some terminology in order to discuss dynamical
properties of physical systems.

When we study evolution, the starting point usually is the initial conditions. We choose
from which state system will start to evolve. Hence, it makes sense to classify possible sets
of initial conditions because different initial conditions will lead to different trajectories, and
trajectories themselves can be united into similarity classes, or classified. To clarify this, let
me introduce the general term of trajectory. When we talk about a trajectory, we mean the
sequence of states which the system is going through when time passes by. And trajectories
could be of two types, namely, stationary and non-stationary. Stationary trajectory is such
that the system is reproducing itself over some period of time, or remains the same. If it
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remains the same, it is called static, but we can still consider it as a stationary trajectory
with infinitely small period. And the rest of the trajectories are non-stationary meaning
that leaving the initial state system never comes back, and undergoes sequence of changes
which leads to the uncontrollable deviation from initial state. The kind of trajectory the
system chooses depends on the initial conditions. As physicists, we can think of initial
conditions as of the initial assembling of the system. So, it is a configuration that we
build, and then let go to evolve. Now, once we have assembled initial state it can evolve
either trivially, namely, the trajectory is stationary or static, or it can get away from the
initial state. In general, of course we are interested to explore all the possibilities, but
practically if we want to build something we wish it to remain in the same state as long
as we need. Hence, the question arises. What kind of initial configurations will provide
us trivial evolution? If we look at this from a purely mathematical point of view, then we
can determine with infinite precision some set of initial conditions which will provide us
trivial evolution. And other initial conditions will lead to the evolution which will take us
further away from initial state. We will refer to the first type of initial conditions as stable
ones, and the other as unstable ones. All possible initial conditions can be found in the
so-called phase space of the theory, which is the space of all possible configurations of the
system. And when we choose initial conditions, it means that we choose some point in the
phase space. So, we can classify the points of the phase space as the stable and unstable.

Here we must pause and mention that it is time we draw a distinction between classical
and quantum physics. Of course, what does concern us the most is the situation in quantum
physics, although I would like to make a detour and elaborate on the issue of stability in
the classical physics first.

As I have mentioned already, we pick initial conditions from the phase space of the
theory. After we have done that, the system follows the trajectory defined by the initial
point. At the level of classical physics, we can classify all such points with regard to the
trajectory along which the system evolves after starting at a given point. These trajectories
can be called stable, and unstable [1].

The stable trajectories are those starting from which the system remains at the same
spot in the phase space, in other words has a static evolution, or evolves along cyclic
trajectory meaning has a stationary trajectory. The same goes for the pseudo-stable points,
but with one important distinction. Truly stable points are like wells where if we move our
system a little from the stable point the trajectory while being non-trivial will remain in
the vicinity of the static trajectory, and never departures too far from it, always remaining
close to the static trajectory. The same goes for the points leading to stationary evolution.
However, it may happen that some particular point in the phase space could be such that it
leads to the static or stationary trajectory if the system is put there with infinite precision,
but uncontrollable departure from this point happens even if there is an infinitely small
displacement from this point. These points are called unstable, although the exact infinitely
precise trajectory is static or stationary. And, the other points are truly unstable, meaning
that system being put even at the exact this point will immediately start to departure and
not coming back.

We can illustrate all this situation using the example of a material dot. You can
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Figure 1.1: Here three types of trajectories are depicted. The green line shows all the
possible states of the physical systems. The brown dots show stable stationary states, the
purple dots show unstable stationary states, and blue lines show trajectories.

see that depending on the initial placement, material dot can experience different types
of behaviour, which are depicted in Fig. 1.1. The same holds for compound system.
We can assemble it in several ways some of which can be stable, and as a result of this
assembling the compound system preserves its state or at least remains at the vicinity of
the assembled configuration, or it can break. For instance, we can consider a conducting
ball where we have initially distributed electric charge homogeneously across the whole
ball [2]. Apparently, this configuration will not hold, and the charge will start instantly
redistributing itself along the surface of the ball, namely, it will be redistributed on a
sphere.

In classical physics there is a way to determine if the particular point in the phase
space, or some set of points, trajectory, is stable. This method is called Lyapunov stability
analysis [3]. Within this analysis we look for a particular point in phase space and then
analyse small perturbations around this point. In this way we can say if the system is
stable.

So, classically, we know how to figure out if the system will sustain its state without
significant external intrusion. Now, assume we achieved this stability. And at this point,
we let quantum mechanics come into play. Once we are finished with our assembly of
classical system, we can ask ourselves what is going to happen when we take into account
the quantum nature of our system.

Quantum mechanics changes the phase space of a system meaning it becomes quantized
[4], and continuing with another fact that some new trajectories that were previously
prohibited may appear [5].
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Some examples we can give right away. For a starter, recall false vacuum decay [6,
7]. The system penetrates the potential barrier from the point where it classically rests.
Although, this process is exponentially long, it still drives the system away from the point
where it was classically stable.

Another example which is of similar nature is the systems with instantons [8, 9, 10, 11].
When we think of a classical system, say material dot again, it can occupy only point
in the phase space at a given moment of time. But in the case of a dot in double well
potential in quantum mechanics, we encounter that it can exist in several points of phase
space simultaneously. Similar degeneracy exists in the field theory, e.g., for the instantons
in gauge theories, where due to tunnelling between different classical vacua a quantum
superposition arises as a new combined vacuum state [12, 13].

Thus, due to tunnelling processes, we can see that classical stability is jeopardized by
the laws of quantum physics. However, let us ask a question, are the tunnelling process
which take exponential time to kick in the only way to disturb classical stability? Can the
quantum mechanical nature of the system let us know about itself way earlier than eS time
provided by tunnelling? The answer is yes, and it can happen precisely for systems that
are compound. Look at the material dot. Intuition tells us that there are only to ways
it can be actually disturbed, either it is kicked out of the well by hand (or by leg), or it
can tunnel through a potential barrier. But the reason for that is the ridiculous simplicity
of this system, namely there is no degeneracy of this state which leads to little, or even
absent entropy. Now, if we think of the compound system it is apparent that there could
be plenty of configurations, or in other words, plenty of ways to assemble it in such fashion
that all the assemblies are degenerate or nearly degenerate and occupy the same space
in the phase space of the theory. But classically, it could happen that a system being
assembled in one domain of space can not change its configuration to the other version of
assemblies. Here, we come to the point when it is evident that huge degeneracy can arise
due to large amount of components. Therefore, it makes sense to look for a faster way of
quantum laws disturbing the classical stability within the systems that are assembled from
large amount of constituents. Namely, we can consider breakdown of a compound system
comprised out of numerous constituents. This is something that we call quantum breaking.
This is the breaking of the system which is semi-classical, namely, large enough (in terms
of large number of its constituents), so, it could live long enough without letting us know
about its quantum nature. And, in this work, I will study systems within the framework
of Quantum Field Theory that could be subjected to this kind of breakdown.

Among all possible configurations being studied in Quantum Field Theory, there is
a class of solutions establishing the bond between quantum and classical field theory,
namely the semi-classical non-perturbative solutions. The current understanding of these
objects in Quantum Field Theory is somewhat problematic because the quantum field is an
assembly of infinitely many degrees of freedom, which usually makes it impossible to find
eigenstates of the Hamiltonian governing the dynamics of the quantum field. However,
there are several exceptions presented by integrable models. But if we start from the
classical solution to field equations, there is no general method that allows us to build the
corresponding quantum state, that is the eigenstate of the quantum Hamiltonian (if there
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is one at all). These kinds of configurations that we are talking about are very versatile,
and not all of them apparently can exhibit breaking.

First, let me clarify what is meant by semi-classical configuration in quantum field
theory. Let us assume that we have some field classical field ϕ. If we know the field function,
we can compute classical action of this field configuration S[ϕ]. This configuration is called
semi-classical if condition

S[ϕ] ≫ ℏ
is satisfied [14].

Then we are interested if this configuration is classically stable. In order to figure this
out, we check if this configuration is a stationary point of the action

δS[ϕ]

δϕ
= 0,

and study Lyapunov stability of this configuration by looking at the small perturbations δϕ
around the configuration that we are considering ϕ. Then, if it is indeed a stable stationary
point of the action we can feel safe about this configuration in classical theory, and move
to the analysis of the quantum mechanical picture.

There are plenty of different semi-classical solutions in quantum field theory. Two
main groups are solitons [15], and condensates [16, 17]. Solitons are configurations of the
field having finite size and energy that can exist in the infinite space volume. Among
these solutions, there are two big classes, topological [18, 19] and non-topological solitons
[20, 21]. However, solitons are not the most suitable object for the analysis of quantum
stability because many of them do not really have internal structure, and in spite of them
being treated as finite-size (even a large size) semi-classical objects their configurations
are usually particle-like anyway and do not exhibit significant degeneracy, especially this
concerns topological solitons. Condensates are a bit more interesting in this regard. These
are configurations of the field confined within the finite volume, and if described from the
field theoretical point of view usually have either large occupation numbers, or large global
quantum numbers. Also, condensates in field theory are usually considered as homogeneous
solutions. Thereby, it is a very suitable set of systems in quantum field theory to study
their fate determined by their inherent quantumness. Now, let us dig deeper in what does
quantum breaking actually means.

Quantum breaking is the idea that a given semi-classical solution, due to its quantum
nature, might not be eternally faithful in describing the evolution of a system. In fact,
due to quantum effects, a system might deviate in time from the semi-classical trajectory
and significantly change its structure, therefore making the aforementioned mean-field ap-
proximation eventually unreliable. The concept that macroscopic objects can lose their
classicality and become more “quantum” after a certain critical timescale was first in-
troduced and developed in a series of papers [22, 23, 24, 25] motivated by a microscopic
composite picture of a black hole, and it was later generalized to various systems, such as
inflationary cosmologies and axion field [26, 27]. The outcome of these studies was that
certain macroscopic systems, that are usually assumed to be well-described classically, in
reality, exhibit a rather short quantum break-time.
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One way to address the problem of the quantum fate of semi-classical solutions has
been addressed in [23, 28, 26] where explicit corpuscular models were built. In these
works, the classical solution is explicitly constructed as a coherent state of weakly coupled
free quanta, and, because this state is not an eigenstate of the full non-linear interacting
hamiltonian, due to unitary evolution, the system will depart from its initial configuration.
Since in these realizations the quanta are weakly coupled, perturbative estimates can be
made regarding the timescale after which the system will deviate significantly from its
initial coherent state structure. Such a timescale has been named quantum break time tqb
[24, 27] and it is generically set by the strength of the interaction coupling λ and some
classical timescale naturally embedded in the system

tqb ∼
tcl
λ
. (1.1)

Even though the coherent state point of view has proved fruitful as it gave interesting
insights on many different topics such as black hole evaporation and information paradox,
eternal inflation and cosmic axion [28, 24, 27], it only provides estimates for the quantum
break time and, therefore, further investigation of this issue is needed. Nevertheless, there
is one work where detailed numericall investigation of the quantum breaking for Bose-
Einstein condensate was performed. Namely, in [29] the connection between phenomena
of quantum breaking and chaos was established and it was argued that a many-body
macroscopic system can undergo a maximally fast quantum breaking and become chaotic,
provided it possesses a Lyapunov exponent γ, with the following formula for quantum
break-time:

tqb ∼ γ−1 logN, (1.2)

where N is a certain macroscopic particle number (e.g., the number of off-shell gravitons
in the black-hole case, or the particle number in a non-relativistic BEC). In [29], this
equation was explicitly checked on an example of a 1+1 dimensional system with Lyapunov
exponent, namely a non relativistic unstable BEC. The above mentioned quantity was
derived by means of entanglement arguments. Moreover it was also suggested that quantum
breaking and chaos represent the microscopic mechanisms behind the so-called phenomenon
of quantum information scrambling and that the existence of Lyapunov exponent is crucial
for a system to saturate the logarithmic bound on the fast scrambling time proposed in
[30]. It is argued that these kinds of systems are the ones which break the fastest1.

However, as we can see all these studies approach the problem from different sides,
and with different degree of qualitativeness meaning they lack conventional or, so to say,
unified approach. Hence, I deem it is important to fill this gap, and introduce some method
which will not rely on peculiarities of particular system, and is equally applicable to the
relativistic and non-relativistic fields. So, let’s figure out how can we reach this goal.

There are several ingredients that give us a hint to the way we can pursue this matter.
First, the properties of the system itself, namely, its classicality. The most handy approach,
which is known for treating semi-classical systems, is the mean-field method [31]. This

1There are systems where tqb ∝ ℏ−1 c.f. [22], which is much longer than (1.2)
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approach, also tells us the most convenient tool for computations, which is path integral.
The only thing that we have to figure out is how we could treat evolution in the finite
time-range via path integral. Here, we could use a help from the side of out-of equilibrium
quantum field theory [32, 33]. We push the semiclassical treatment beyond the saddle
point approximation by using the two-particle-irreducble (2PI) effective action [34, 35,
36, 37, 38, 39, 40].2 This effective action treats both the expectation value of the field
and the connected propagator as independent variables and correspondingly takes into
account their mutual interaction, thus allowing us to account for back-reactions on the
background and vice-versa. Using this approach we can resolve the quantum dynamics of
the system integrating the equations of motion derived as the stationarity condition of the
2PI effective action functional [41, 42, 43, 44]. In order to obtain a real time evolution
and observe the departure from the initial classical state (quantum breaking) explicitly, we
integrate the equations of motion in the so called Schwinger-Keldysh (or in-in) formalism.
This choice simplifies our task for two reasons: first, only the initial state needs to be
specified as opposed to the S-matrix formalism, where also an asymptotic out state is
required. Secondly, solving the integro-differential set of equations becomes numerically
affordable, as the evolution is guaranteed to be causal.

After describing the tools for studying the evolution of classical solutions, we are ready
to specify a particular system we are going to work with. We consider a Bose-Einstein
condensate [45, 46]. There are several reasons for this choice. Firstly, BEC’s appear in
a various different branches of physics, not only in the condensed matter [17, 47, 48, 49]
but also in high energy physics (such as for corpuscular black holes [28], de Sitter [26, 50],
dark matter description [51, 52, 53, 54, 55], inflation [56, 57, 58], etc.). Secondly, there is
an extremely simple way to assemble a condensate on field theory, namely, homogeneous,
which simplifies the analysis significantly. And, the last but no the least is that there
are several works where BEC configurations have been already studied from the point of
view of quantum breaking, and it is essential to have a comparison of the results when
implementing a novel approach.

The model we are going to focus on is the simplest one: namely a homogeneous relativis-
tic BEC in 1+1 dimensions described by a SO(2) symmetric scalar theory [59, 20, 60] with
a quartic self-interaction. Moreover, the analysis will be done for both types of the quartic
interaction, repulsive and attractive, both demonstrating versatile behaviour [61, 62]. This
allows to comprehend several aspects of the quantum breaking phenomenon, namely, dif-
ferent scaling of quantum break-time with the ℏ. In fact, for this system, it was possible to
resolve explicitly its causal evolution as well as its departure from the classical trajectory.

To obtain all this, we work in the semi-classical framework of 2PI effective action. In
fact, with this method we are able to study the unitary Minkowski-time evolution of a
quantum coherent state mimicking a relativistic Bose-Einstein condensate. In turn, this
allows us to check how the system dynamically deviates from the mean-field condensate

2The advantage of the semi-classical treatment, which is especially evident in light of the corpuscular
approach, is that it does not rely on the corpuscular structure, though it still provides an instrument to
capture some interesting quantum effects.
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solution. To do so, we introduce a criterion which can be easily applied for identifying the
timescale associated to quantum breaking for various semi-classical systems well-described
within mean-field approach [63, 64]. Namely, we look at the dynamical evolution of the
conserved integral quantity constraining the system i.e., charge3. This quantity is ex-
actly conserved due to Nöther’s theorem, so, it is not directly evident how we can use
it to define quantum breaking. To understand that we have to take into account that
a quantum field is an object having infinitely many degrees of freedom, and charge is a
composite quantity, which can contain all possible degrees of freedom. Invoking general
knowledge of the corpuscular structure of the condensate coming from Bogolyubov theory
[65], we treat mean-field as the assembly of zero modes, which results into non-zero ex-
pectation value, or we can also approach this issue from the coherent state point of view,
and construct Bose-Einstein condensate as a coherent state [66, 67, 68, 69, 70], namely, an
eigenstate of a zero-momentum annihilation operator â0. Hence, zero-mode contribution is
the semi-classical one, and the rest can be regarded as quantum, as it represents quantum
fluctuations above the background mean-field. Thus, we see that there is a distinction
between classical charge coming from large occupation number of one particular mode,
and small occupation numbers of all the other modes. But all the contributions combine
must provide conservation of the charge anyway. If we were studying this system in the
S-matrix formalism, then we would fix asymptotic state, and, therefore, would not manage
to capture significant deviation from the status quo. However, since we are working within
the 2PI framework, such composite quantity receives two contributions from the one- and
the two-point expectation values respectively (note that these quantities balance each other
out because of the above-mentioned symmetry to each order in loop-expansion in case of
an ℏ expansion [71]). We will refer to the mean-field contribution coming from large zero-
momentum mode occupation as classical charge Qcl, and to the contribution coming from
the connected part of the two-point Green’s function as quantum charge Qq. Then, we will
study their evolution along closed in-in contour in Schwinger-Keldysh formalism. At the
beginning of the evolution, the ratio between Qcl and Qq is fixed by the initial conditions.
As one would expect, for a coherent or vastly occupied by single mode state describing
a classical configuration, we have that Qcl ≫ Qq. However, as the system evolves, this
needs not be the case any more. It is therefore natural to define quantum breaking as the
timescale when the two above-mentioned quantities become comparable. A great advan-
tage from this criterion is obtained, as there is no need to deal with rescattering effects at
the microscopic level, although one could infer it from the diagrams retained within a given
2PI expansion scheme. It is worth mentioning that in principle different integral quantities
could serve as a mean to estimate the quantum break time as long as their conservation
constrains the dynamics of the system. For example, one could equally use energy or, in the
case of a non-relativistic system, the actual occupation number of all the modes, namely,
the particle number. In the present work, however, our main focus is charge since, as we
will see below, the contributions from the 1- and the 2-point expectation values, split in a

3We would like to remark that one could choose any other conserved integral quantity provided that it
is possible to split it in a certain way, which we will later name as quantum and classical contributions.
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very clear and manageable manner, which very straightforward as the charge is bilinear,
as well as 2-point Green’s function, and cluster decomposition dictates

⟨ϕ(x)ϕ(y)⟩full = ⟨ϕ(x)⟩⟨ϕ(y)⟩+ ⟨ϕ(x)ϕ(y)⟩connected.

And this property is very efficiently captured by 2PI formalism.
Before we proceed with the treatment, let me encounter the main steps of the whole

enterprise.
First, I will discuss in the very detail the nature of semi-classicality, and provide an

intuitive picture of the phenomenon of quantum breaking. Then, I will summarize all the
approaches known so far in the literature to the computation of the quantum break-time.

Second, I will describe mathematical formalism that fits for the approach I have chosen,
and set all definitions to proceed along this way.

After that, I will describe the system to be considered in the very detail, and provide
the initial conditions for the quantum evolution.

Then, we will come to the most important part – the computation itself, and compare
naive perturbative analysis with the 2PI approach. It will be shown, that perturbative
analysis is insufficient for capturing true quantum evolution during a long timescale.

In the end, I will wrap everything up in the short summary, and prospects of the
following research.
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Chapter 2

Quantum breaking

2.1 Notion of semi-classical system

A physical world yields a variety of different instances which we call “systems”, and there
is no way one could come up with a single unified classification of all possible systems. A
physicist can encounter individual particles as elementary excitations of a field, or bound
states of several particles, resonances. Also, there are solitons, condensates and any other
countless physical instances. All of them are endowed with vast versatility of distinguish-
able traits, and we can divide them into categories of all different sorts. But there is one
trait that neatly separates physical objects into two categories, namely, their belonging
to the classical or the quantum physics. We know that internally any system is quantum
in its nature because the laws of quantum mechanics are the underlying laws, but for a
large variety of systems we can ignore the underlying nature, and pay attention only to the
relevant laws governing their “visible”, or macroscopic, or classical dynamic1. Therefore,
the following question arises: Is it possible to see underlying laws of quantum mechanics
to reveal themselves, and actually affect macroscopic dynamics?

During the course of the development of the physics community adopted terms as mi-
croscopic and macroscopic to talk about intricacies of small, and large compound systems.
Now, instead of using these terms, which refer to the size of the physical system, we can
quantitatively draw the difference by using the Planck’s constant in the equations describ-
ing physical systems to evaluate the degree of “quantumness” [72, 73]. In other words, we
can evaluate how distinguishable quantum properties of the system by analysing the way
Plank’s constant enters to different physical quantities.

Let’s take a close look at this by analysing magnetic field in a ferromagnet [74]. Every
atom or molecule generates a dipole moment proportional to Bohr’s magneton

µB =
eℏ
2mc

1I use here word “classical”, but, of course, as we are aware of quantum mechanical laws as the under-
lying set of physical laws, the actual term must be “semi-classic”. Because there are no purely classical
objects.
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which is proportional to the Planck’s constant. And, magnetic field in a ferromagnet in
the absence of the external field goes as the sum of individual magnetic momenta

H⃗ferr. = α
∑
i

µ⃗i,

where α simply reflects susceptibility of the material.
Hence, if a large amount of individual dipoles are aligned, the average amplitude of the

field is proportional to the macroscopic number of individual magnetic dipoles〈
H⃗ferr

〉
∼ αN ⟨µ⃗⟩.

From this formula we see that despite every individual dipole moment is small (or even
vanishes in the ℏ → 0 limit), when we have the number of dipoles N large enough, the
resulting magnetic field is macroscopic.

Using this ancient example, it is easy to define what is meant by classical limit when
one keeps track of quantum mechanical trace.

We will call a physical observable Q classical (semi-classical), if it survives in the limit

Q
ℏ→0−−→ const ̸= 0 (2.1)

It goes in the same way with an exchange energy coming from spin interaction in a
ferromagnet described by Heisenberg Hamiltonian [75, 76, 77]. But the key feature is that
once we encountered a macroscopic magnetic field we do not really care about its internal
nature, in other words, microsporic fields of individual dipoles average out, and become the
“mean-field”. So, classicality of a physical object implies that there is no need to identify
its internal degrees of freedom in order to predict its overall, macroscopic, or classical
properties, because quantum interactions are sub-leading when compared to the classical
dynamics [78, 79, 80, 81, 82].

Now, as we understand what does it mean for a physical system to be classical, or
more precisely semi-classical, we can ask a natural question, that is: will it remain in the
semi-classical state, or it will evolve into something different?

For instance, we can take something very feasible and intuitive, such as a table. There
is no doubt it is classical as it follows Newtonian laws, and if you drop it from a roof it will
fall down according to equations of motion deduced from the second Newton’s law. This
is classical evolution.

But let us be less harsh with a table. And, ask what happens if we just let it rest.
A resting table also classically evolves, but it evolves trivially, in other words, nothing
changes for a table if we do not act upon it. If we consider it to be a closed system, we can
ask ourselves if something will happen to it. We know that actual evolution of a physical
system is subjected to the laws of quantum physics. So, how long does it take them to
enter the game, and how soon internal degrees of freedom will let us know about their
existence. Namely, how long a table will remain a table?

In order to answer this question, we have to introduce the notion of collective coupling.
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Collective coupling is the product of number of constituents N and coupling constant
α, that reflects the interaction strength of individual constituents among each other. For
instance, if we take a gas of molecules the main interaction would be a rapidly decaying van
der Waals force between them, which means that distant molecules do not about each other
existence. But if the interaction strength is strong enough to engage plenty of constituents
to “feel” each other, it’s natural to use a notion of the collective coupling.

Hence, we can define it as

αcoll. = αN, (2.2)

whereN is amount of interacting constituents and α is the interaction strength of individual
degrees of freedom.

As long as the interaction between constituents, namely the collective coupling, is much
smaller than unity, quantum breaking matters on very long timescales. This is why we do
not observe quantum breaking in everyday life! And, why a table remains a table for a
very long time. Molecules comprising one leg of a table know nothing about molecules
comprising another leg. But if the collective coupling is not negligible, the situation can
change dramatically. Indeed, with non-negligible collective coupling (in which the system
is said to be critical), quantum (internal) dynamics might lead to substantial deviations
from the classical description. This leads us to the introduction of the notion of quantum
breaking.

In a nutshell, the conception of quantum breaking reflects the deviation of true quantum
evolution from the classical one meaning described by classical equations. The quantum
breaking happens when interaction between internal degrees of freedom accumulate enough
influence to disturb the system as a whole. As we figured out, for this to happen, a collective
coupling of a particular system must be large enough. We will cal such systems critical.

Intuitively, the picture of quantum breaking is simple: it is due to critical or close-to-
critical interacting quantum constituents, which with time invalidate the tree-level descrip-
tion as the system becomes more and more quantum. When this happens, the system is
said to have undergone quantum breaking. But there is a huge amount of different quan-
tum mechanical systems that are semi-classical, hence a natural question to ask is whether
there is a way to quantify quantum breaking generically, regardless of the particular details
of a given system.

This question is the one that I address in this thesis. Now, before we proceed further,
let us gain a little more intuition about quantum breaking by looking at this concept from
different angles.

2.2 Corpuscular picture of quantum breaking

As particle physicists, we tend to look at things by studying scattering processes. One
excellent example to illustrate the concept of the quantum breaking by invoking scatter-
ing is the picture developed in [27] for cosmic axion2, which can serve as a hypothetical

2Scalar axion originated as a solution to strong CP problem [83]
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candidate to explain dark matter [84, 85, 86].
In [27] condensate of axions is treated as a coherent state of weakly interacting bosons.

Hence, mean field is some classically oscillating function ϕ(x) = A cos(mt). Axions in
condensate have zero-momentum, therefore, ordinary tree-level elastic scattering does not
happen there, but what can happen is decay.

The lowest order process in this theory that involves decay happens due to ϕ6 in-
teraction. It happens when four particles with zero-momentum decay into two particles
with momenta of the order of the mass of a free particle. This process gradually leads to
depletion of the condensate, and corresponding thermalization.

When substantial part of the particles initially comprising condensate depleted, we can
say that breaking occurred and the dynamics will no longer remain coherent. Moreover,
a decay process like that is genuinely quantum, hence the decay rate constant Γ will be
proportional to the ℏ. So, in order to evaluate breaking time of such coherently assembled
condensate we just have to wait for long enough time and quantum break-time then will be
tqb ∼ N/Γ, where ℏ factor comes from decay constant and N is the number of constituents
to decay which is of order of amount of axions in condensate.

This example not only illustrates the scattering picture of quantum breaking, but also
introduces polynomial scaling of quantum breaking with time. It usually happens for
classically stable systems [27, 63] that quantum-break time scales as

tqb ∼ 1

ℏ p
, p ∈ N. (2.3)

2.3 Quantum breaking from the entropy point of view

Another approach developed to understand quantum breaking is deeply intertwined with
the so-called scrambling phenomenon, which is considered to be also the microscopic mech-
anism behind the quantum breaking. When saying scrambling I mean the process of ther-
malization described by the reduced density matrix (defined on a subset of the Hilbert
space) which leads to the scrambling of information and growth of entropy. The timescale
associated to this process is called scrambling time, and in [29] this timescale was associ-
ated with quantum breaking as well. In fact, in Ref. [29], the initial state is chosen to be
macroscopically occupied with zero-momentum modes, and the subsequent evolution leads
to a significant smearing of this distribution. As one can see, this definition is purely infor-
mational, and the entropy growth can be computed by evaluating the unitary evolution of
the reduced density matrix. However, one must take into account that systems subjected
to scrambling may not be initially macroscopic or coherently assembled (namely “classi-
cal like”). Therefore, the so-called scrambling phenomenon does not always imply actual
decoherence or a substantial deviation from the semi-classical trajectory. More precisely,
it stands for thermalization of the reduced density matrix 3. This means that scrambling
does not always imply quantum breaking. However, the opposite is supposed to be true.

3We remark this because unitary evolution may not lead to significant deviations from the initial state,
even if the latter is macroscopic and is not a pure eigenstate of the Hamiltonian.
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Looking at quantum breaking as the process leading to significant deviation from an ini-
tial macroscopic state, we can say that quantum breaking has occurred when information
about such initial state is substantially lost. This can be reflected in the observation that
the notion of initial degrees of freedom or information about the way they were assembled
within the initial state is lost (or dramatically long time is needed for this information to
be retrieved). In other words we can say that if quantum breaking takes place, the system
necessarily scrambled, i.e.,

quantum breaking ⊂ scrambling.

A more elaborate discussion of the relation between quantum breaking and scrambling can
be found in [29].

However, it is quite apparent that the estimation of the scrambling time poses significant
difficulties, as it requires the knowledge of the object microscopic structure, which is not
always accessible. Indeed, resolving the inner structure in terms of off-shell degrees of
freedom for most of the known semi-classical systems is not possible (or at the very least
extremely difficult). Although, the previous example of the scattering picture shows that
for the case of very weak interaction strength corpuscular picture is qualitatively very
useful and leads explicit results. We can also assume that we have encoded some message
in the condensate of axions. But after the cascade of decays driving our system out
of coherence the message will be destroyed by the redistribution of momenta between
comprising particles, and after most of the particles re-scattered it is no longer can be
retrieved.

2.4 Quantum breaking as a growth of quantum fluc-

tuations

Both pictures outlined before nicely describe evolution leading to quantum breaking for
particular cases and give a neat intuitive picture of what it is. But as soon as both descrip-
tions rely on particular computational strategies, they are not handy for general description
of quantum breaking. The question I would like to address is: how to describe this process
without relying on given circumstantial features of a system under consideration?

As soon as quantum breaking is generally referring to de-classicalizaion or, so to say,
departure from semi-classical evolution, it would be nice to establish a picture which specif-
ically relies on nothing but availability of semi-classical description of the system.

The method I propose naturally arises within standard semi-classical treatment of non-
perturbative solutions in quantum field theory. Let me illustrate it here.

Consider some correlation function for an arbitrary system, say

⟨Ψ| Ô |Ψ⟩ , (2.4)

where |Ψ⟩ refers to some semi-classical state.
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In general this correlator is some function of ℏ, namely

⟨Ψ| Ô |Ψ⟩ = O(ℏ). (2.5)

If the system is semi-classical, it admits mean-field approximation which we can be ex-
pressed in the following way

⟨Ψ| Ô |Ψ⟩ = Omf + f(ℏ), (2.6)

f(ℏ) ℏ→0−−→ 0, (2.7)

∂Omf

∂ℏ
= 0,

and, surely, it must be satisfied that

Omf ≫ f(ℏ) (2.8)

Here, Omf is the mean-field contribution that does not vanish in the ℏ → 0 limit and f(ℏ)
stands for quantum fluctuation at the top of mean-field contribution.

An example of such correlator that pops up in mind right away is the energy and
the way we compute it for solitons, condensates, and other non-perturbative solutions.
There is always splitting on classical energy Ecl (mean-field contribution) computed from
the classical energy functional, and quantum corrections computed from the functional
determinant δEqc. Then, first approximation to the full energy is

⟨Ψ| Ĥ |Ψ⟩ = Ecl + ℏ δEqc +O(ℏ2). (2.9)

This illustrates the fact that if we fix our boundary conditions to keep the given non-
perturbative solution as the asymptotic state at T → ±∞ then the main contribution to
the energy is classical, and sub-leading contribution is described by quantum fluctuations.

But if we would like to compute actual evolution, we have to investigate a more involved
thing, which is true quantum evolution of this operator. Then, all the initial contributions
become time-dependent,

Omf + f(ℏ) Û(t,t0)−−−−→ Omf(t) + f(ℏ, t), (2.10)

where Û(t, t0) is the unitary operator of evolution.
So, both mean-field contribution and quantum fluctuations will evolve and become

intertwined. Then, at some point condition (2.8) will be violated, and we can safely say
that when there is no clear distinction between contributions coming from mean-field and
quantum fluctuations, then quantum breaking occurred. We see from this that in order
to catch quantum breaking, we have to employ some technique to compute the evolution
of the correlation function at some finite timescale. Notice, that energy is the conserved
quantity which means that its expectation value is conserved as well, but it doesn’t mean
that both contributions to the initial state which are classical energy and contribution from
quantum fluctuations are conserved as well, this is only their sum that remains the same.

Therefore, the issue is to understand if it’s possible to compute somehow evolution of
correlation function such that it could be decomposed in a way prescribed by eq. (2.10).
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2.5 Quantum breaking criterion

In this work, I will pick the last option as a framework to describe the whole picture
of quantum breaking, and formulate a criterion of determining the time of a quantum-
breakdown.

In this section, I will omit details of the precise computational approach, and focus only
on the general concept. After all, I will present the method as whole in the subsequent
analysis.

In order to determine quantum break-time of the system based on analysis of the
correlation functions, and their splitting discussed in the previous section, we must have
several ingredients, which are

1. A physical observable that is conserved, and reflects semi-classicality of the system

2. A way to compute evolution

3. A proper initial conditions for the evolution such that they comply with semi-
classicality

4. A criterion which determines quantum break-time

let us break it down in details.
A conserved physical observable µ is the first and very essential ingredient, as it will help

to determine mutual influence of “quantum” and “classical” contributions to the evolution.
Of course as any physical observable in quantum theory, µ is represented by some unitary
operator, and the quantity of interest is its expectation value taken in the brackets of our
semi-classical state |SC⟩

⟨SC| µ̂ |SC⟩ := µ ,
dµ

dt
= 0. (2.11)

Of course, as a conserved quantity, the expectation value of µ does not evolve along
dynamical flow. But later we will see that some information can be extracted anyway if it
is broken down to pieces that make each other up to provide conservation.

Next thing is that µ must reflect semi-classicality of the system. This means that the
following limit must hold up

µ
ℏ→0−−→ const ̸= 0, (2.12)

meaning, this observable survives exact classical limit.
There are plenty of observable quantities of such sort. For instance, one can take the

rest energy as the most apparent one, or charge. Although, it’s better if this quantity is
characteristic to the system, namely, covariant. In this work I will focus on Bose-Einstein
condensate which has both these quantities at disposal. However, one could argue that
energy is not covariant quantity, it is well-suited for the homogeneous condensate put
in the box with periodical boundary conditions. In this case there are no space-time
transformations which actually change energy as the frame is fixed once and for all.
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Another remark I would like to do concerns the way Planck’s constant enters the phys-
ical quantities, and the way classical limit is taken.

Recall the energy of the system. If the system is classical, then the notion of the classical
energy is well-established as it’s directly measurable observable. For a semi-classical system
it survives the ℏ limit and nothing dramatic happens. But let us take a closer look at
quantization of the angular momentum in 2-dimensional system with SO(2) symmetry.
For such system operator L̂ is quantized, and has a set of eigenvalues ℏ l, where l ∈ Z and
l is apparently dimensionless. Therefore, in order to have semi-classical rotation, one can
see that dimensionless operator l̂ must have its mean value ⟨l̂⟩ to blow up in ℏ → 0 limit.
So, the mean-coordinate (or mean-field in field theory) value of a dimensionless operator
⟨l̂⟩ ∼ 1/ℏ is inversely proportional to the ℏ in order to have semi-classical behavior. At
the same time, the dimensional quantity ⟨L̂⟩ = ℏ⟨l̂⟩ survives the classical limit. This is
important to keep in mind because in our case angular momentum is the direct analogue
of U(1) global charge. It is natural to have eigenvalues of charge operator Q̂ as integer
values, but then it means that the mean-field value of charge blows up in the classical limit
⟨Q̂⟩ → ∞, ℏ → 0 but the dimensional quantity ℏ⟨Q̂⟩ survives.

So, actually we must distinguish between these two quantities, keeping in mind that
the actual system of units matters for taking the classical limit. However, along the
course of this work I will keep working in units ℏ = 1, so I won’t be making the difference
between mean-field value ⟨Q̂⟩ and actual classical charge Qcl = ℏ⟨Q̂⟩ calling both quantities
“classical”.

Let’s now get back on the course of determining quantum break-time of a system. Next
thing, we must have is the way we compute time-dependence of a given observable. In other
words, we have to have an instrument for computing time-evolution. If it’s accomplished
we have to split a conserved quantity of interest µ on the contributions to which we will
refer to as classical and quantum,

µ = µcl(t) + µq(t). (2.13)

Both contributions time-evolve but make each other up to the conserved quantity.
We separate this contributions out such that in the beginning of evolution they comply

with semi-classicality, namely {
µcl(0)

ℏ→0−−→ const ̸= 0

µq(0)
ℏ→0−−→ 0

. (2.14)

Then, we can formulate a quantum breaking criterion which states that when fol-
lowing quantum evolution two contributions become balanced quantum breaking occurred,
and the quantum break-time is given by the solution of the following equation

µcl(tqb) ≃ µq(tqb). (2.15)

Using this criterion, we can extract interesting timescale. And, the only thing left is to
pick up a tool to be able to proceed with the actual computation.
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2PI effective action

In order to compute evolution of a non-trivial solution, a non-trivial method is required.
That is why, for this particular problem, methods from out-of-equilibrium field theory are
particularly handy. In the subsequent analysis, I will use so-called 2PI effective action
equipped with in-in (closed in time) integration contour to compute an evolution of the
Bose-Einstein condensate.

One might wonder why is there a necessity to use such sophisticated approach. There
are several reasons for that.

Firstly, usual ways of computing non-equilibrium processes such as using Feynman
perturbation theory or ordinary 1PI effective action proved to be insufficient [87, 88, 89, 90]
as they do not handle a problem of secular evolution, hence, they make sense only on the
very short time-span. One can find a neat explanation of how exactly 2PI expansion makes
things better, and provides much more reasonable approximation by infinite re-summation
of certain terms in perturbation theory in order to render better approximation to the
true evolution in the introduction to [91]. It is shown there how non-linear expansion
scheme provided by nPI-effective actions renders the error of approximation to be confined
in a certain range during the course of whole evolution and not only for the small time-
range. Moreover, latter we will make a comparison of the evolution computed by means
of ordinary perturbation theory, and using 2PI. As a result, we will see that ordinary
perturbation theory miserably fails to capture a quantum breaking phenomenon.

Secondly, we use this formalism because it provides us a neat framework to embed a
criterion to indicate quantum breaking. As it was already told we will use a U(1) charge
as the main tool to capture quantum breaking, and we will have to split it to the classical
and quantum contributions which is straightforwardly done within 2PI-effective action
treatment.

So, words aside, and let’s move to the explanation of this powerful formalism.
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3.1 General description of 2PI formalism

3.1.1 Definition

The original approach to the n-PI effective actions was developed in the series of papers
[36] and [37] where definitions were put, and it was shown that these functionals appear to
be generating functionals for n-particle irreducible diagrams. Recall that diagram is called
n-particle irreducible, when one needs to cut at least n+1 internal lines to split the diagram
in two separate ones. Later in [40] efficient formalism for computing was established by
analogy with standard 1PI effective action [92].

Let’s follow this procedure and construct 2PI functional.
In the usual 1PI effective action we introduce Legendre transform only with respect to

one-point classical source J(x) and then compute effective action as a newly generating
functional of conjugated variable ϕ(x). Here, we will go further and introduce also 2-particle
source K(x, y). Then, generating functional of the full quantum theory becomes

Z[J,K] =

∫
Dφa exp

(
i

(
S [φa] +∫ ∫

ddxφa(x) Ja(x) +
1

2

∫
ddx

∫
ddy φa(x)Kab(x, y)φb(y)

))
, (3.1)

where S[ϕa] is the action of underlying theory

S[ϕa] =

∫
ddxL(ϕa, ∂ϕa) (3.2)

in d dimensions.
Here, we do not specify boundary conditions for the path integral. It will be taken care

of later.
Using this functional for generic Green’s functions, we can also define in the usual

fashion a generating functional for connected Green’s functions

W [J,K] = −i logZ[J,K]. (3.3)

Now, we can immediately demonstrate a huge advantage that provides introduction of
the additional source.

Let’s introduce conjugated variables ϕa(x) and Gab(x, y)
δW [J,K]

δJa(x)
= ϕa(x),

δW [J,K]

δKab(x, y)
=

1

2
(ϕa(x)ϕb(y) +Gab(x, y)) ,

(3.4)

The definition for ϕa(x) is already familiar to everyone, so, let’s take a closer look at
the definition of Gab(x, y).
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When we take functional derivatives with respect to K and J we get the following set
of equalities

δ2W [J,K]

δJa(x)δJb(y)
= i

δW [J,K]

δJa(x)

δW [J,K]

δJb(y)
− i

1

Z[J,K]

δ2Z[J,K]

δJa(x)δJb(y)
(3.5)

δW [J,K]

δKab(x, y)
= −i

1

Z[J,K]

δZ[J,K]

δKab(x, y)
(3.6)

δZ[J,K]

δKab(x, y)
= i

δ2Z[J,K]

δJa(x)δJb(y)
(3.7)

where it follows that the new variable Gab(x, y) is nothing but connected part of the full
2-point function

Gab(x, y) = i
δ2W [J,K]

δJa(x)δJb(y)
= −i⟨T̂{ϕa(x)ϕb(y)}⟩connected. (3.8)

So, here connected part of the Green’s function or what we call quantum fluctuations is an
independent variable in the functional formalism, and will have its own equation of motion.
Precisely this trick allows us to separate quantum evolution from classical one.

Let’s proceed with Legendre transformation further by introducing a new functional

Γ [ϕ,G] = W [J,K]−
∫

ddx
δW [J,K]

δJa(x)
Ja(x)−

1

2

∫
ddx

∫
ddy

δW [J,K]

δKab(x, y)
Kab(x, y), (3.9)

which is called 2-particle irreducible effective action.

Derivatives of Γ [ϕ,G] with respect to ϕ generate 2-partice irreducible Feynman dia-
grams where Gab(x, y) is the propagator along the internal line. I shall remind that graphs
are called 2-particle irreducible if they can not be split in two separate graphs by cutting
one or two internal lines, it requires cutting at least three lines in the best case.

Next, we can take functional derivatives of 2PI effective action with respect to its
variables 

δΓ[ϕ,G]

δϕa(x)
= −Ja(x)−

∫
ddyKab(x, y)ϕb(y)

δΓ[ϕ,G]

δGab(x, y)
= −Kab(x, y)

. (3.10)

Hence, if we set original sources to be zero then we get stationary conditions determining
exact Green’s functions 

δΓ[ϕ,G]

δϕa(x)
= 0,

δΓ[ϕ,G]

δGab(x, y)
= 0.

(3.11)
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Solving this stationary conditions, we resolve full quantum theory and find connected
one- and two-point functions as a result, and by computing functional derivatives we can
compute any other correlation functions.

Notice, however, that we could start from putting Kab(x, y) = 0, then we can resolve
Gab(x, y) from the second condition in (3.11), say

δΓ[ϕ,G]

δGab(x, y)

∣∣∣∣
G=G(ϕ)

= 0,

then we can put it back to Γ[ϕ,G] and get

Γ[ϕ,G(ϕ)] = Γ1PI [ϕ], (3.12)

meaning standard effective action. So, we see that if one manages somehow to get a full
solution, then there is no difference between the results inferred from effective action of any
type. But as soon as such a stunt is impossible to pull out, we employ more sophisticated
technique provided by 2PI effective action in order to get a better approximation!

3.1.2 Stationary conditions

Now, as we have got a grasp of the definition of the action, we shall proceed to computing
it. To do so, I follow a technique developed in [40] for evaluating 2PI effective action.

As it was mentioned, this functional is a generating functional for 2-particle irreducible
graphs, so the procedure for computing the functional itself is even simpler compared to
widely used 1PI effective action.

The whole functional can be written as follows

Γ[ϕ,G] = S[ϕ] +
i

2
tr lnG−1 +

i

2
tr
(
G−1

0 G
)
+ Γ2[ϕ,G]. (3.13)

Let’s break it down into pieces, and illustrate computational procedure using λ |ϕ|4
theory.

The first part of this expression is, naturally, classical action of the theory (2-component
real scalar in our case)

S[ϕa] =

∫
ddx

(
1

2
(∂µϕa)

2 − 1

2
m2ϕ2

a −
λ

4

(
(ϕa)

2
)2)

.

Then, there is an analogue of functional determinant term

i

2
tr lnG−1

which is actually similar but not exactly the same because G now is an independent
variable, not a function of classical field ϕ. However, next term

i

2
tr
(
G−1

0 G
)

(3.14)
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draws the connection between the two.
Here, G0 is defined as

G−1
0, ab(x, y) = −i

δ2S[ϕ]

δϕa(x)δϕb(y)
, (3.15)

and is called auxiliary propagator, which shape one immediately recognizes from the prop-
agator used to compute ordinary 1PI effective action [92].

Let me illustrate this.
If we stop at this point, and drop Γ2 term in (3.13) then we get

Γ(1)[ϕ,G] = S[ϕ] +
i

2
tr lnG−1 +

i

2
tr
(
G−1

0 G
)
.

Then, applying stationary conditions (3.11) to this functional we derive from the stationary
condition for propagator

δΓ(1)[ϕ,G]

δGab(x, y)
= 0 ⇒ − i

2
G−1

ab (x, y) +
i

2
G−1

0 ab(x, y) = 0

⇒ G−1
ab (x, y) = −i

δ2S[ϕ]

δϕa(x)δϕb(y)
.

We can plug it back to Γ(1)[ϕ,G] and get

Γ(1)[ϕ,G(ϕ)] = S[ϕ] +
i

2
tr log

(
δ2S[ϕ]

δϕa(x)δϕb(y)

)
+ const,

which is ordinary 1PI effective action computed at one loop approximation, or Coleman-
Weinberg potential if we take ϕ = const.

Although, this similarity does not hold true any more when we start to compute higher
loops. And, this is the part when we consider the most intricate and important part of eq.
(3.13), namely, Γ2[ϕ,G].

According to [40] Γ2[ϕ,G] is the sum of all 2PI diagrams. Γ2[ϕ,G] starts from the two-
loop diagrams, and goes further because as we have seen right away one loop contribution
is already taken care of. So, expansion of Γ2[ϕ,G] starts actually from the second order in
ℏ.

Let me illustrate a computation procedure of Γ2[ϕ,G].
First of all, we have to find vertices to determine Feynman rules for computing ex-

pansion of Γ2. These vertices are given by a standard interaction term coming from the
expansion of the classical action

Sint[ϕ, φ] = S[ϕ+φ]−S[ϕ]−
∫

ddx
δS[ϕ]

δϕa(x)
φa(x)−

∫ ∫
ddx ddy

1

2
φa(x)

δ2S[ϕ]

δϕa(x)δϕb(y)
φb(y),

(3.16)
where ϕ(x) is the variable (background field) of the 2PI effective action, and φ is the
quantum field with respect to which we compute.
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In the case of theory we are going to consider interaction part fallows as

Sint[φ, ϕ] =

∫
ddx

(
λ

2
ϕaφa(φb)

2 +
λ

4
(
(
φa)

2
)2)

, (3.17)

where φa(x) is the integration variable in path integral, and ϕa(x) is the background field,
which is the variable of 2PI functional defined in (3.4).

Then using vertices derived from interaction we compute Feynman diagrams with the
only difference that now propagator is given by a full propagator of the theory, namely, G.

To illustrate this, let’s compute the first two two-loop diagrams, which contribute in ℏ2
order of Γ2 expansion.

Γ
(2)
2 [ϕ,G] = + +O(ℏ3) (3.18)

The first diagram comes from the φ4 vertex of the interaction (3.17). Using propagator
Gab(x, y) to compute it, we derive

= i
λ

16

∫
ddx

(
2Gab(x, x)Gab(x, x) + (Gaa(x, x))

2) . (3.19)

This diagram apparently presents local contribution, as it depends on only one point
in space and time.

The next diagram is more involved and requires combination of cubic vertices from
(3.17) to get it

= − λ2

16

∫
ddx

∫
ddy

(
Gab (x, y)ϕa(x)ϕb(y)Gcd(x, y)Gcd(x, y)+

2ϕa(x)Gab(x, y)Gbc(x, y)Gcd(x, y)ϕd(y)
)
.(3.20)

So, we see that this one depends on two points in space and time, and, also, on the
background field which eventually leads to capturing non-trivial effects.
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To sum up, the two-loop approximation to the effective action becomes

Γ[ϕ,G] =

∫
ddx

(
1

2
(∂µϕa)

2 − 1

2
m2ϕ2

a −
λ

4

(
(ϕa)

2
)2)

+
i

2
tr logGab(x, y)+

i

2
tr

(
i

((
∂2
x +m2 +

λ

4
ϕ2
a

)
δab +

λ

2
ϕaϕb

)
Gab(x, y)

)
−

λ

16

∫
ddx

(
2Gab(x, x)Gab(x, x) + (Gaa(x, x))

2)+
i
λ2

16

∫
C
dx

∫
C
dy
(
Gab (x, y)ϕa(x)ϕb(y)Gcd(x, y)Gcd(x, y)+

2ϕa(x)Gab(x, y)Gbc(x, y)Gcd(x, y)ϕd(y)
)
+O(ℏ3) (3.21)

As we have learned how to use loop approximation for the 2PI effective action in
practice, it is time now to turn to stationary conditions.

The stationary conditions are given by (3.11), and applying them to (3.13) we get
δS[ϕ]

δϕa(x)
+

i

2
tr

(
δG−1

0

δϕa(x)
G

)
+

δΓ2[ϕ,G]

δϕa(x)
= 0,

G−1
ab (x, y)−G−1

0 ab(x, y) + 2i
δΓ2[ϕ,G]

δGab(x, y)
= 0.

(3.22)

Here, the second equation resolves propagator G as a function of field G = G(ϕ).
And, the non-trivial piece coming from higher-loop diagrams we call self-energy. Let me
introduce a special notation for this piece

Σab(x, y) = 2i
δΓ2[ϕ,G]

δGab(x, y)
. (3.23)

Note, that when I was computing two-loop approximation to Γ2 I have called the first
diagram a local one, and another one a non-local one. Using this fact, we can split self-
energy in two parts, namely,

Σab(x, y) = Mab(x)δ
(d)(x− y) + Σ

(non−local)
ab (x, y). (3.24)

Contribution from Mab(x) to the full self-energy is apparently local and depends only
on one point in space-time in general, although in particular case of the condensate it’s
coordinate-independent at all. We can pull out this contribution from Σ by differentiating
(3.18) and picking only those parts that multiply by delta function. Hence, we derive

M2
ab(x) = m2δab +

λ

4

(
ϕ2
c(x) +Gcc(x, x)

)
δab +

λ

2

(
ϕa(x)ϕb(x) +Gab(x, x)

)
. (3.25)

One can see that if we pick homogeneous background ϕ = const, then propagator
becomes transitionally invariant meaning Gab(x, y) = Gab(x−y). Thus, it is apparent that
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in these settings M2
ab(x) = M2

ab does not depend on x, and introduces nothing but constant
mass shift. But this happens to be the case only if we drop the second diagram, which is
non-local.

Let’s turn finally to this non-local contribution. It is given by

Σnon−local
ac (x, z) = −λ2

8

(
Gdf (x, z)Gdf (x, z)ϕa(x)ϕc(z) + 2ϕd(x)Gdf (x, z)ϕf (z)Gac(x, z)+

2ϕa(x)Gfc(x, z)Gfd(x, z)ϕd(z) + 2ϕf (x)Gfd(x, z)Gad(x, z)ϕc(z)+

2ϕf (x)Gfc(x, z)Gad(x, z)ϕd(z)
)
. (3.26)

We see that it depends on two coordinate points in space and time. This is precisely
the feature that makes the Green’s function non-trivial, and eventually leads to intricate
effects.

With the help of all these notations, we can rewrite now stationary conditions (3.22)
as

− δS[ϕ]

δϕa(x)
+

λ

4
(Gdd(x, x)δab + 2Gab(x, x))ϕb(x) =

δΓ2[ϕ,G]

δϕa(x)(
∂2δac +M2

ac(x)
)
Gcb(x, y) + i

∫
dzΣnon−local

ac (x, z)Gcb(z, y) = −iδabδ (x− y)

, (3.27)

where the only part to unfold is the functional derivative of Γ2 with respect to ϕ which is
given by

δΓ2[ϕ,G]

δϕa(x)
=

iλ2

8

∫
C
dy
(
Gcd(x, y)Gcd(x, y)Gab(x, y)ϕb(y) +

2Gab(x, y)Gcb(x, y)Gcd(x, y)ϕd(y)
)
. (3.28)

To sum up, our main goal is to solve equations (3.27). But in order to do that, we
miss several more important ingredients. These are renormalization, initial conditions,
boundary conditions, and contour of integration.

Let’s first start from the renormalization, as it is the simplest issue in our case.

3.1.3 Renormalization

In general, renormalization of the 2PI effective action is extremely difficult and intricate
procedure. The first steps for finite temperature systems were made in a series of articles by
van Hees and Knoll [93, 94, 95], and later others developed general techniques for treating
renormalization [96], [97].

Even for ordinary scalar ϕ4 theory renormalization at two loops is very cumbersome, and
require solving non-linear integral equations to renormalize coupling constant [97], which is
an expected difficulty, because the approach itself involves solution of non-linear equations
even when one employs approximation, it would be strange to expect that renormalization
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could be somehow simpler than that. Imagine only a difficulty of renormalizing at two
loops when the background field is non-trivial (one can feel a taste of this looking up the
procedure for the case of three-loop diagram at ϕ = 0 in [97]).

However, things are not very dramatic for the theory considered in this work, because it
inhabits in 1+1 dimensions where things are simple and handy. It is very well-known that
coupling constant doesn’t require renormalization here as well as the field strength. The
only part of renormalization is the mass, which is trivially renormalizable at any order.

In order to handle the mass renormalization, the only thing that we have to do is to
substitute m2 with m2 + δm2 in eq. (3.27) and eq. (3.25), where

δm2 = −λ

L

+∞∑
n=−∞

1

2
√

p2n +m2
(3.29)

simply renders M2
ab(x) = m2 when ϕ = 0.

3.1.4 Initial conditions and time-contour

So far, we have just established equations for the Green’s function that we have to solve.
If one will consider asymptotic boundary conditions, namely, when field approaches to one
stationary at T → −∞, and the same configuration at T → +∞, then we will get nothing
but results of the scattering theory. In this fashion we can compute the propagator at the
top of our semi-classical solution, then, compute corrections to the energy, and so on. . .
Also, notice that if we will try to solve eq. (3.27) for the infinite time-line then we have
to solve them in the whole space-time simultaneously due to the fact that equations are
differential-integral. This is apparently not the simplest task to accomplish. However, here
we attempt to solve actual evolutionary problem, in other words, we would like to solve
the real-time evolution. Therefore, we need to come up with the better idea for treating
integration along the time direction. Here, closed time path-contour bails us out.

Let me explain how does it emerge.
First of all, we always start from the general formulation of the generating functional

in the form of the path integral for a certain theory. And, for the path integral we have to
specify boundary conditions meaning field configurations at the initial and final times

Z[J ] =

ϕ(tout,x⃗)=φ2(x⃗)∫
ϕ(tin,x⃗)=φ1(x⃗)

Dϕ exp

i S[ϕ]− i

∫
T

dt

∫
dx⃗J(x)ϕ(x)

 . (3.30)

From this expression we see that integration goes along a time-contour T which starts at
time t = tin and finishes at t = tout. Also, we have fixed field configurations in the very
beginning as φ1(x⃗) and in the very end φ2(x⃗). If we considered scattering process in the
vacuum, then these conditions would become φ1(x⃗) = φ2(x⃗) = 0, and tin → −∞, tout →
+∞ meaning that asymptotically we approach vacuum. Otherwise, if we had treated
scattering at the top of some non-perturbative semi-classical background, we would have
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chosen ϕ1(x⃗) = ϕ2(x⃗) = f(x⃗), and tin → −∞, tout → +∞. In this case, f(x⃗) is the solution
of non-linear classical equations of motion. Then, we would treat quantum fluctuations
assuming that background does not really change by performing a ϕ(x) = f(x⃗) + δϕ(x)
substitution where δϕ(x) are quantum fluctuations (shifted variable in path integral). In
this approach we fix background by hand, but what we would like to do in this work is
to study the evolution of the background field itself! This means that either φ1(x⃗) and
φ2(x⃗) must be different which is not very convenient because we set up φ1(x) as an initial
condition, but we do not know φ2(x), which is the configuration we would like to come
to as the result of the evolution. To accomplish that we could, for instance, take various
ϕ2(x⃗)’s that we could possibly imagine, evaluate path integral, and compare amplitudes.
However, this enterprise seems to be extremely cost computationally, if not impossible.

Nevertheless, there is a trick that allows to resolve this problem, and set up an actual
initial-value problem for the equations (3.27). This trick employs closed time-path contour.

We can choose it in the following way Tcl = lim
ϵ→0+

{[0 + iϵ, t+ iϵ] ∪ [t− iϵ, 0− iϵ]}1 which
means that we start from t = 0 slightly above real time, and then go back slightly below
it. This means that we get back to where we have started. It helps to satisfy suitable
integration limits for path integral, namely, we set them equal each other as in any other
semi-classical treatment but at the same time we can track down what happens in between.

So, path integral at this point becomes

Z[J ] =

ϕ(t0−i 0+,x⃗)=φ(x⃗)∫
ϕ(t0+i 0+,x⃗)=φ(x⃗)

Dϕ exp

i S[ϕ]− i

∫
Tcl

dt

∫
dx⃗J(x)ϕ(x)

 . (3.31)

The remaining step is to rewrite equations (3.27) in the suitable form, so, we could take
advantage of the closed path integration.

To do so, we have to rewrite the full correlation function using time ordering with
respect to the closed time-contour. We start from one-point function because it is the
most apparent one

⟨Ψ| T̂Tcl

{
ϕ̂(x)

}
|Ψ⟩ = ⟨Ψ| ϕ̂(x) |Ψ⟩ (3.32)

which is self-evident, and recall that by T̂T I mean time-ordering along contour T . More
interesting situation happens for the two-point function.

⟨Ψ| T̂T

{
ϕ̂(x)ϕ̂(y)

}
|Ψ⟩ (3.33)

Usually, we write it down as

⟨Ψ| T̂T

{
ϕ̂(x)ϕ̂(y)

}
|Ψ⟩ = θ(x0− y0) ⟨Ψ| ϕ̂(x)ϕ̂(y) |Ψ⟩+ θ(y0−x0) ⟨Ψ| ϕ̂(y)ϕ̂(x) |Ψ⟩ (3.34)

but now we have to indicate that this theta function θ(x0 − y0) should become a theta
function along a closed time-contour which I denote in the following way

Theta function along closed time-path contour ≡ θTcl(x
0 − y0). (3.35)

1Here, subscript cl refers to term closed, do not confuse it with cl denoting classical.
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Using this definition we can rewrite two-point function in a very convenient form, namely,

Gab(x, y) = Fab(x, y) +
i

2
sgnTcl(x

0 − y0) ρab(x, y). (3.36)

I have introduced here new notations

Gab(x, y) ≡ ⟨Ψ| T̂Tcl

{
ϕ̂a(x)ϕ̂b(y)

}
|Ψ⟩

Fab(x, y) ≡ ⟨Ψ|
{
ϕ̂a(x), ϕ̂b(y)

}
|Ψ⟩

ρab(x, y) ≡ ⟨Ψ|
[
ϕ̂a(x), ϕ̂b(y)

]
|Ψ⟩

, (3.37)

where { , } and [ , ] denote anti-commutator and commutator correspondingly.

Gab(x, y) in these equations is the full propagator of the theory, and this is precisely the
second functional variable of 2PI effective action. Using this decomposition, we can rewrite
equations (3.27) such that they will become equations defining the initial-value problem.

Recall that in equations (3.27) we have non-local self-energy term Σab(x, y). This term
appears to be function of ϕa(x) and Gab(x, y) itself. But as soon as there are no any other
contributions it can be represented in the same form as Gab(x, y) in equation (3.36). We
decompose it in the same fashion

Σnon−local
ab (x, y) = ΣF

ab(x, y)−
i

2
sgnTcl(x

0 − y0)Σρ
ab(x, y). (3.38)

To get an explicit expression of ΣF and Σρ one can notice from (3.26) that Σnon−local is
actually a function of two products, namely, Gab(x, y)Gcd(x, y) and ϕa(x)ϕb(y)

Σnon−local(x, y) = Σnon−local (Gab(x, y)Gcd(x, y), ϕa(x)ϕb(y)) . (3.39)

Using this property it follows that both parts of the decomposition (3.38) can be expressed
as

ΣF
ab(x, y) = Σnon−local

(
Fab(x, y)Fcd(x, y)−

1

4
ρab(x, y)ρcd(x, y) , ϕa(x)ϕb(y)

)
, (3.40)

Σρ
ab(x, y) = Σnon−local

(
Fab(x, y)ρcd(x, y) + ρab(x, y)Fcd(x, y) , ϕa(x)ϕb(y)

)
. (3.41)

Next, we have to sort out δΓ2/δϕ(x) contribution from the first equation of system
(3.27). We can rewrite this function as

δΓ2

δϕa(x)
=

∫
ddyΣϕ

ab(x, y)ϕb(x). (3.42)



30 3. 2PI effective action

Then,

Σϕ
ab(x, y) =

λ2

8

((
F 2
cd(x, y)−

1

4
ρ2cd(x, y)

)
ρab(x, y) + 2Fcd(x, y)ρcd(x, y)Fab(x, y)+

2ρad(x, y)Fcd(x, y)Fcb(x, y) + 2Fad(x, y)ρcd(x, y)Fcb(x, y) +

2Fad(x, y)Fcd(x, y)ρcb(x, y)−
1

4
ρad(x, y)ρcd(x, y)ρcb(x, y)

)
.

(3.43)

Finally, let’s recall that we have also local part of the self-energy which is simply

M2
ab(x) =

(
m2 + δm2

)
δab+

λ

4

(
ϕ2
c(x) + Fcc(x, x)

)
δab+

λ

2

(
ϕa(x)ϕb(x) + Fab(x, x)

)
. (3.44)

Using all these notations we can rewrite equations (3.27) in the following form



− δS[ϕ]

δϕa(x)
+

λ

4
Fcc(x, x)ϕa(x) +

λ

2
Fab(x, x)ϕb(x) =

x0∫
0

dy0
L∫

0

dy1Σϕ
ab(x, y)ϕb(y),

(
∂2δab +M2

ab (x)
)
Fbc(x, y) =

y0∫
0

dz0
L∫

0

dz1ΣF
ab(x, z)ρbc(z, y)−

x0∫
0

dz0
L∫

0

dz1Σρ
ab(x, z)Fbc(z, y)

(
∂2δab +M2

ab (x)
)
ρbc(x, y) = −

x0∫
y0

dz0
L∫

0

dz1Σρ
ab(x, z)ρbc(z, y),

(3.45)

We have exchanged two equations for ϕ and G for three equations for ϕ, G, and ρ but
in exchange we have got clearly posed initial-value problem for three functions2.

These equations are second order in time because of ∂2 in each of them. Therefore, we
need two initial conditions for each function.

Firstly, we discuss initial conditions for ρab(x, y) because these are most obvious ones.
Initial condition for ρab(x, y) actually are not defined by us but by the properties of the
quantum mechanics itself. Recall from (3.37) that it is nothing but commutator of fields.
Due to this fact we easily determine initial conditions for ρab(x, y) using equal-time com-
mutation relations for the scalar field

2I do not account here that functions here actually have indices, as ϕa(x) is 2-dimensional vector, and
Gab(x, y) is 2-dimensional matrix. So actually, we have exchanged six equations for 10.



3.1 General description of 2PI formalism 31



[
ϕa(t, x), ϕ̇b(t, y)

]
= −i δabδ (x− y)

[
ϕ̇a(t, x), ϕ̇b(t, y)

]
= 0

[
ϕa(t, x), ϕb(t, y)

]
= 0

⇒



lim
y0→x0

∂x0ρab(x
0, x; y0, y) = δabδ(x− y)

lim
y0→x0

∂x0∂y0ρab(x
0, x; y0, y) = 0

ρab(x
0, x;x0, y) = 0

(3.46)
Then we set x0 = 0 and get initial conditions. Due to this fact ρab(x, y) is called the
spectral part of the Green’s function of the theory because it reflects characteristics of the
theory regardless particular initial settings.

Next, we will determine initial conditions for Fab(x, y) which is called statistical part
of the Green’s function because it depends on the actual initial state that we choose to
evolve. Thus, as soon as there are no generic settings to choose three conditions

Fab(0, x⃗; 0, y⃗) = F (0)
ab (x⃗, y⃗),

lim
t→0

∂tFab(t, x⃗; 0, y⃗) = F (1)
ab (x⃗, y⃗),

lim
t→0
τ→0

∂t∂τFab(t, x⃗; τ, y⃗) = F (2)
ab (x⃗, y⃗),

(3.47)

we will keep then for a time being.
The last but not least are the initial conditions for the background field which are

simply 
ϕa(0, x⃗) = φ(0)(x⃗)

lim
t→0

∂tϕa(t, x⃗) = φ(1)(x⃗)
. (3.48)

This is the complete set of initial conditions for the differential-integral system of equa-
tions (3.45).

As I have already stated we still have to define initial conditions for F and ϕ. I will
choose them based on the semi-classical quantization of choosen non-perturbative solution.
Namely, I will take classical expectation value of the field inferred from solving classical
equations of motion, and initial conditions for F I will get from the Green’s function
computed in the background of my classical field, which is nothing but G0 defined as
inverse of the second derivative of the action in (3.15).

First of all, it is the second order in time which makes it simple to set the initial-
value problem. Second of all, the most difficult non-linear part of these equations provided
by (3.26) contributes to (3.45) through memory integrals. It means that everything that
happens in the future depends cumulatively on everything that has happened in the past.
This is probably challenging task to solve analytically but evidently very straightforward
problem for a numerical integration.
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Adopting all these advantages of 2PI effective action and closed time-contour of inte-
gration we can simulate initial value problem for any semi-classical background. This is
the approach I undertake in current work.

But before we come to that there are still a few things to discuss.

3.1.5 Generalized Word-Takahashi identities

Another important ingredient of the approach I am taking in this work is the generic
global symmetry of the theory I am about to consider. As it is well-known, there are
conserved currents, and conserved charges corresponding to these currents according to
Nöther’s theorem. At the classical level it states that in case theory is invariant under the
action of the global symmetry group G, such that if we take an element of G linked to the
unity element of the group

g ∈ G, gba = δba + (τp)
b
a ϵp +O(ϵ2), (3.49)

where (τp)
b
a are generators which span tangent space to the unity element and ϵp are

coordinates at this space, then field transforms as

ϕa(x)
g−−→ g b

a ϕb(x). (3.50)

As a result we get conserved currents

J µ
p =

∂L
∂∂µϕa

(τp)
b
a ϕb. (3.51)

In the sense that
∂µJ µ

p = 0, for all p. (3.52)

Then we can extract conserved current under two possible assumptions. Namely, either
fields must vanish at space-like infinity, or they must satisfy periodic boundary conditions.
The last one is the case, which appears to provide conserved currents in the model we
are intended to consider. Taking into account of these assumptions, we integrate by parts
classical conservation law (3.52), and deduce

Cp =
∫

dx⃗
∂L

∂∂tϕa

(τp)
b
a ϕb, (3.53)

where Cp are classical charges.
However, as we know classical conservation laws are not always smoothly getting trans-

ferred to the quantum theory, although this is certainly the case if no gauge fields involved.
Nevertheless, we have to establish an analogue of the classical conservation laws in terms
of 2PI effective action variables.

Let’s notice that 2PI formalism depends on two variables, hence, to the usual trans-
formation property of the field given by (3.50) we have added the transformation of the
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connected part of the 2-point Green’s function. Then, 2PI effective action should remain
invariant under following set of transformations

ϕ̄a(x) = g b
a ϕb(x)

Ḡab(x, y) = g c
a g d

b Gcd(x, y)
⇒ Γ[ϕ,G] = Γ[ϕ̄, Ḡ], (3.54)

if the global symmetry holds true when field theory promoted to quantum level.
The statement of eq. (3.54) remains legitimate for any approximation of Γ[ϕ,G] that is

consistent with the symmetry. Applying, transformation (3.54) to the two-loop contribu-
tions (3.19) and (3.20) that we have derived before, invariance of the loop approximation
becomes apparent as well.

Although, we haven’t yet established that symmetry is consistent with quantum me-
chanics. In order to do so, let us take generating functional (3.1) and perform a local
transformation

ϕx(a)
g−−→ ϕa(x) + δϕa(x), δϕa(x) = (τp)

b
a ϵb(x) +O(ϵ2), (3.55)

where coordinates on the tangent space of unity element of the group were promoted to
be space-coordinate functions. This transformation leaves invariant generating functional,
hence, we get

0 =

∫
Dϕ

(∫
ddx

(
δS[ϕ]

δϕa(x)
− Ja(x)

)
(τp)

b
a ϕb(x)ϵp(x) +∫

ddy
(
(τp)

ā
a δ b̄

b + (τp)
b̄
b δ

ā
a

)
Kāb̄(x, y)ϕa(x)ϕb(y)ϵp(x)

)
exp

(
i

(
S [φa] +

∫ ∫
ddxφa(x) Ja(x) +

1

2

∫
ddx

∫
ddy φa(x)Kab(x, y)φb(y)

))
. (3.56)

Notice, that this holds true for arbitrary variations of parameters ϵp(x), therefore we are
left with

0 =

∫
Dϕ

((
δS[ϕ]

δϕa(x)
− Ja(x)

)
(τp)

b
a ϕb(x) +∫

ddy
(
(τp)

ā
a δ b̄

b + (τp)
b̄
b δ

ā
a

)
Kāb̄(x, y)ϕa(x)ϕb(y)

)
exp

(
i

(
S [φa] +

∫ ∫
ddxφa(x) Ja(x) +

1

2

∫
ddx

∫
ddy φa(x)Kab(x, y)φb(y)

))
. (3.57)
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Now we can recall that according to Nöther theorem relation

δS[ϕ]

δϕa(x)
(τp)

b
a ϕb(x) = ∂µj

µ
p (3.58)

holds true in general, namely, it doesn’t rely upon equations of motion to be satisfied.
Using this together with (3.10), and recalling definitions of ϕa(x) and Gab(x, y) given by
(3.4) we derive from (3.57) the following property

−i
〈
∂µj

µ
p (x)

〉
=

δΓ[ϕ,G]

δϕa(x)
(τp)

b
a ϕb(x) +

∫
ddy

δΓ[ϕ,G]

δGab(x, y)

(
(τp)

ā
a δ b̄

b + (τp)
b̄
b δ

ā
a

)
Gāb̄(x, y),

(3.59)
where expectation value of the conserved current is given by standard path integral ex-
pression

〈
j µ
p (x)

〉
=

1

Z

∫
Dϕ
(
∂µϕa(x)(τp)

b
a ϕb(x)

)
exp

(
i

(
S [φa] +

∫ ∫
ddxφa(x) Ja(x) +

1

2

∫
ddx

∫
ddy φa(x)Kab(x, y)φb(y)

))
. (3.60)

Equation (3.59) provides the most general quantum conservation law due to global
symmetries even with non-trivial source J and K but if we decide to satisfy stationary
conditions (3.11) as well, then we truly get quantum global conserved current

∂µ

〈
ĵ µ
p (x)

〉
= 0, (3.61)

which can be easily expressed using 2PI variables

∂µ

〈
ĵ µ
p (x)

〉
= ∂µ

〈
∂µϕ̂a(x)(τp)

b
a ϕ̂b(x)

〉
=

∂µ

(
∂µϕa(x)(τp)

b
a ϕb(x) + (τp)

b
a lim

y→x

∂Gab(x, y)

∂xµ

)
. (3.62)

In order to infer conserved current for this expression we just have to assume ϕ and G to
have vanishing at infinity, or periodic in the box boundary conditions. As soon as we do
that we can make use of quantum conserved charges deduced by integration by parts

Qp =

∫
dx⃗

(
∂x0ϕa(x)(τp)

b
a ϕb(x) + (τp)

b
a lim

y→x

∂Gab(x, y)

∂x0

)
. (3.63)

One can notice that we can deduce the same relations for currents and charges treating 2PI
effective action as a classical functional of two variables, and establishing Nöther currents
as the consequence of symmetry (3.54). Also, if one derives equation (3.63) in this way, it
becomes apparent that it holds not only as a general property but at the level of a different
approximation schemes as well if these schemes are consistent with the symmetry.
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3.2 Quantum breaking criterion using 2PI

Now, we turn to the most essential part of the current work, namely, establishing a working
approach to determining quantum-break-time.

The goal of this work is to study the dynamical evolution of a classical BEC. Within
the 2PI approach, both correlators ϕa(x) and Gab(x, y) have their own mutually-interacting
dynamics. It is natural to ask what is a good indicator to determine whether a signifi-
cant departure from the classical trajectory took place, namely, how to understand when
decoherence, which is associated with quantum breaking, happened. Since the initial
classical-like configuration consists of coherently excited zero-momentum modes, we define
quantum-breaking as the moment after which most of these quanta no longer contribute
to the 1-point expectation value ϕa(x). This is due to re-scattering effects that, with time,
lead to the occupation of non-zero momentum modes. The latter quantity is encoded in
the propagator Gab(x, y). Now, I will describe a way to infer quantum break-time using
the full power of out-of-equilibrium QFT tools.

It is well known that classical solutions are commonly described within background-
field treatment. Namely, a coherent field configuration is described in terms of mean-field
expectation value ϕa(x), solving classical equations of motion. Using saddle-point approxi-
mation or ordinary 1PI effective action, one can compute quantum corrections and Green’s
function in the background of this configuration. However, within these approaches, quan-
tum fluctuations are just functions of a given stationary background. On the opposite side,
within 2PI treatment, quantum fluctuations, which are encoded in the exact propagator
Gab(x, y), follow their own interacting evolution, which is of course intertwined with the
evolution of the expectation value ϕa(x) according to Eq. (3.11). Therefore, both quantities
mutually interact and simultaneously evolve. Our criterion for quantum breaking is based
on the validity of the semi-classical approximation, implying the existence of a quantity µ
satisfying conditions described in Sec. 2.5. We will fulfil these conditions by employing
semi-classical character of the solution, and using generalized ward-Takahashi identities in
2PI formalism, or more precisely, quantum conserved charges (3.63) derived from them.
We discuss here both things simultaneously.

As a useful tool for determining quantum break-time, we will use conserved charge
coming from SO(2) symmetry of the theory. This charge arises due to symmetry transfor-
mation

φa → Rab(α)φb, (3.64)

that leaves classical action invariant. Rab(α) is ordinary matrix of the rotations in two
dimensions. For this group, transformation generators are simply given by iσ2 Pauli matrix,
or in other words 2-dimensional Levi-Civita tensor ϵab. Then, classical conserved charge is
given by

Qcl(x
0) =

L∫
0

dx⃗ lim
y→x

ϵab∂x0ϕa(x)ϕb(y) =

L∫
0

dx⃗
(
ϕ̇1(x)ϕ2(x)− ϕ̇2(x)ϕ1(x)

)
, (3.65)
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Although, Qcl usually scales as 1/λ where λ is the dimensionless coupling of the theory the
situation is a bit more involved for Bose condensates because Q is charge not the particle
number, and there emerge one more dimensionless parameter that must be controlled in
order to properly ensure consistency of semi-classical approximation. But take it as a
promise, that we will take care of it later, and for the time being let grant ourselves that
classical charge is actually large, meaning3

Q
ℏ→0−−→ const, and Q/ℏ ≫ 1, (3.66)

which is a good start as it complies with the first demand for quantum breaking criterion
formulated in Sec. 2.5. Then, let’s recall that we can compute quantum fluctuations, as
they do really contribute to the charge as well. The contribution of quantum fluctuations
to the charge is given by the connected part of the 2-point function which is in terms of
2PI variables becomes∫

dx⃗ lim
y→x

ϵab∂x0

〈
ϕ̂a(x)ϕ̂b(x)

〉
connected

=

∫
dx⃗ lim

y→x
ϵab∂x0Gab(x, y). (3.67)

Then, let us employ decomposition of the connected Green’s function to the statistical,
and spectral contributions (3.36). In terms of this decomposition, we get∫

dx⃗ lim
y→x

ϵab∂x0

〈
ϕ̂a(x)ϕ̂b(x)

〉
connected

=

∫
dx⃗ lim

y→x
ϵab∂x0Gab(x, y) =∫

dx⃗ lim
y→x

ϵab∂x0Fab(x, y) + Infinite constant, (3.68)

where infinite constant is nothing but∫
dx⃗ lim

y→x
ϵab∂x0

(
sgn(x0 − y0)ρab(x, y)

)
= δ(0) (3.69)

due to canonical commutation relations. Using this decomposition we will define quantum
charge as

Qq(x
0) =

L∫
0

dx⃗ lim
y→x

ϵab∂x0Fab(x, y) (3.70)

We safely drop this term, and consider statistical part Fab(x, y). We can compute it from
the 2-point function in the background of our semi-classical solution fromG0 ab(x, y) defined
by eq. (3.15). But using general properties of semi-classical systems Fab(x, y) ∼ O(λ0).
Therefore, it is apparent that classical charge computed for mean-field (3.65) is bigger
compared to quantum charge (3.70)

Qcl ≫ Qq when semi-classics holds. (3.71)

3Here, I have assumed ℏ to be restored in all equations
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Moreover, let’s recall that we have deduced full quantum expression for the conserved
charge (3.63) which in terms of the decomposition (3.36) of the connected 2-point Green’s
function becomes

Q =

∫
dx lim

y→x
ϵab∂x0

(
ϕa(x)ϕb(y) + Fab(x, y)

)
, (3.72)

or in other words
Q = Qcl(x

0) +Qq(x
0). (3.73)

Now, we can really see that we have found a quantity which satisfies all the necessary
criteria to become the mean to measure departure from classicality. Let’s summarize all of
it

1. We have a quantity Q which is conserved

dQ

dx0
= 0

2. It can be decomposed into two contributions one of which is mean-field dominated
and another is expressed in terms of quantum fluctuations

Q = Qcl(x
0) +Qq(x

0) =

∫
dx lim

y→x
ϵab∂x0

(
ϕa(x)ϕb(y) + Fab(x, y)

)
3. This quantity satisfies semi-calssicality condition{

Qcl
ℏ→0−−→ const

Qq
ℏ→0−−→ 0

4. If use closed time-contour described in Sec. 3.1.4 then full charge remains conserved
but its composites Qcl and Qq become time dependent

Q = Qcl(t) +Qq(t). (3.74)

Hence, the initial conditions computed for stationary configuration still satisfy

Qcl(t = 0) ≫ Qq(t = 0)

but this does not necessarily holds true for subsequent evolution.

Based on all these properties we can eventually formulate criterion for quantum breaking
which states that when both contributions become comparable, namely

Qq (tqb) ≃ Qcl (tqb) , (3.75)

breaking occurs. And, the time when it happens tqb we call quantum break-time.



38 3. 2PI effective action

It should be noted that in the theory endowed with SO(2) symmetry there is a globally
conserved charge, which is a bilinear function of the field operators. This is a key factor from
which the emergence of such a clear decomposition of the full charge (3.63) in classical (3.65)
and quantum (3.70) components emerges. However, if the system is not endowed with
such a conserved quantity, a different quantity should be used. In fact, every fundamental
relativistic system is by default endowed with integrals of motion connected to the Poincaré
group. Therefore, another possibility would be to use the full energy functional, which can
also be split into quantum and classical contributions: the classical part stands for the
classical energy, namely an expression in terms of the 1-point correlation function and the
remaining part is quantum since it depends on the 2-point function. In this case, however,
the quantum part is a function of both G(x, y) and ϕ(x), although it inevitably holds true
that in the ℏ → 0 limit quantum contribution vanishes. So, despite way more intricate
dependency of energy on 2PI variables, it is nevertheless possible to make a distinction
between classical and quantum contributions.

Some additional remarks

Let me finish this chapter by making a few minor comments.
One could ask us whether it’s essential at all to use charge as a mean for measuring

departure from classical evolution. Why couldn’t we just use directly mean-field and
connected parts of the 2-point Green’s function to study the evolution and encounter
quantum breaking. Indeed, we could, but it would be way more messy and not really
illustrative. By using charge we study two well-defined scalar functions of time, imaging if
we had to compare two 2 by 2 matrices, each of which depends on two time and two space
variables. This sounds not very practical, and we have to anyway come up with some norm
to compare these tensor objects. In this regard, the combination of observable integrated
over space to give charge gives a great measure and actually is a truly scalar quantity with
respect to all symmetries of the theory, both local and global.

Another issue which has to be mentioned is the validity of the expansion. As long as we
start from a semi-classical solution, we have to know whether the expansion we are using
is valid or not. Usually, validity of semi-classical approximation can be demonstrated as
following. We can re-scale fields for the case of 1+1 dimensions,

ϕa →
m√
λ
ϕa, xµ → mxµ. (3.76)

Which helps to pull out dimensionless factor

S[ϕ] =
m2

λ
S̃[ϕ̃], (3.77)

where S̃[ϕ̃] is dimensionless and independent of any coupling. Thus, we have a factor of
m2/λ in front of the dimensionless action, validating the semi-classical approximation for
a small value of the coupling constant. This is what indicates naive analysis.
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However, the situation with Bose-Einstein condensates is a bit more involved. For
relativistic condensate, there is another independent dimensionless parameter. This pa-
rameter is collective coupling λ̃Q, where λ̃ = λ/m2. Thus, a dimensionless field ϕ̃ is anyway
a function of another dimensionless parameter λ̃Q. In this situation, to ensure validity of
semi-classical approximation, we have to actually keep collective coupling fixed. It could
easily happen that collective coupling is smaller than one, but even in this case as long as
it is fixed we can render self-interaction coupling λ̃ to be small enough to ensure Q ≫ 1 or
to make generating functional semi-classical by setting S[ϕ] ≫ 1.
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Chapter 4

Semi-classical theory of a stationary
solutions

Now, it is the time to discuss the actual system that we are going to study. I have
chosen Bose-Einstein condensate as one of the simplest possible non-perturbative solution
t consider. A Bose-Einstein condensate in the context of the quantum field theory can be
viewed as a homogeneous stationary solution of the equations of motion. This solution’s
simplicity is encompassed in its homogeneity. And classically, it is just a function of time.
However, of course, we would like to go beyond that by studying this system in its full
glory, and, hence, looking at quantum mechanical evolution of excitations and all the other
non-trivial degrees of freedom encoded in excitations above the background as well. But
as a first step, let’s begin with the consideration of the classical theory.

We are going to consider a complex scalar field with SO(2) symmetry and quartic self-
interaction for both signs of quartic coupling. The reason we choose quartic self-interaction
is that it is the simplest possible analytical interaction, preserving the symmetry. Also, it’s
more convenient to keep the scalar field real here, because in the end of the day the study
of its evolution is conducted numerically, which is essentially simpler when working with
two scalar functions instead of one complex.

Next, we put this system in the box of size L, and impose periodic boundary conditions
for the scalar field, and I would like to remind that we consider this theory on a ring, so
there is one time and one space dimension as well. As it is common for field theory, notation
x implies the whole 2-vectorin 1+1 dimensional Minkowski space, namely, x = (x0, x1).
The action of such theory is

S[φa] =

T∫
0

dx0

L∫
0

dx1

(
1

2
(∂µφa)

2 − 1

2
m2φ2

a −
λ

16
(φ2

a)
2

)
, (4.1)

where m is the mass of the scalar field, and λ is quartic coupling. Here, I put “+” sign in
front of the coupling, but I want you to remember that eventually we will consider both
cases.
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We impose periodic boundary conditions in space which are

φa(x
0, x1) = φa(x

0, x1 + L). (4.2)

Using these conditions, we can derive classical equations of motion varying functional
(4.1) with respect to a scalar field

∂2ϕa +m2ϕa(x) +
λ

4
(ϕb(x))

2ϕa(x) = 0. (4.3)

Recall that the action of this theory is invariant under the SO(2) transformation

ϕa(x) → ϕa(x) + αϵabϕb(x) +O(α2), (4.4)

where α is small parameter, and ϵab is 2-dimensional Levi-Civita tensor. This invariance
combined with periodic boundary conditions (4.2) leads to the global conserved charge

Q =

L∫
0

dx1 lim
y→x

ϵab∂x0φa(x)φb(y) =

L∫
0

dx1 (φ̇1(x)φ2(x)− φ̇2(x)φ1(x)) , (4.5)

where φ̇a(x) = ∂x0φa(x
0, x1).

Besides the SO(2)-charge there are usual integrals of motions such as energy, and
momentum. We will recall here solely the energy integral because during the whole study
we will keep momentum conserved and set to be zero as it is irrelevant for us due to the
fact that we would like to study homogeneous system.

The energy of the scalar field in the box is

E(cl) =

L∫
0

dx1

(
1

2

(
∂φa

∂t

)2

+
1

2

(
∂φa

∂x

)2

+
1

2
m2φ2

a +
λ

16
(φ2

a)
2

)
. (4.6)

Now, equipped with this knowledge, we can study classical solution of this theory. And
we start from the case of the positive self-interaction +λϕ4 to study a stable condensate.

4.1 Classical stable condensate

4.1.1 Classical solution

A family of classical solution of the equations of motion (4.3) can be expressed by using
following ansatz

φa(t) = 2 v Rab(ωt)e⃗b, (4.7)

where e⃗b is a constant vector of the unit length, v is the amplitude of the scalar field, and

Rab(α) =

(
cos(α) sin(α)
− sin(α) cos(α)

)
, (4.8)



4.1 Classical stable condensate 43

with α = ω t.
Thus our field is nothing but a homogeneous function of time. and we have to param-

eters to define, namely, amplitude v and frequency of rotation ω. To get an equation for
amplitude we simply put ansatz (4.7) to the equations of motion (4.3), had come to

d2v

dx2
+
(
ω2 −m2

)
v + λv3 = 0 (4.9)

as the vector part factors out, and we are left only with scalar equation. This equations is
elementary to solve as v does not depend on x, so, it’s just an ordinary non-linear equation.
Hence, classical amplitude of the field is nothing but

v(x) =

√
(ω2 −m2)

λ
. (4.10)

In this equation frequency lies in the range ω ∈ (m,+∞) where we have excluded case
ω = m because in this case v = 0 and we simply get a vacuum which we do not care about
right now because the condensate itself sort of plays the role of the vacuum, but in the
sector of a fixed charge.

Now, we have to figure out the role of the new dimensional parameter ω. This is simply
done by computing charge (4.5) of the classical configuration (4.7), where v is given by
(4.10)

Q =
4ωL (ω2 −m2)

λ
.. (4.11)

We can see that charge actually defines ω.
Let’s simplify the matter and analyze charge for the case of ω ≫ m

ω ≃ m

(
1

4mL

)1/3(
λQ

m2

)1/3

, (4.12)

and for ω ≪ m

ω ≃ m

(
1 +

1

8mL

λQ

m2

)
(4.13)

and we see that ω is actually a function of dimensionless collective coupling λQ/m2 and
dimensionless size mL. Hence, using this formula we can express field φa(x) just as a
function of m,Q, and λ. One can look at the ω versus Q exchange as at the dimen-
sional transmutation where it is not really dimensional completely because the additional
parameter arising in theory can be viewed as ω/m which is dimensionless as well.

As a last step we compute classical energy as well. From (4.6) we get

E =
L

λ

(
3ω4 −m4 − 2m2ω2

)
. (4.14)

We can express classical energy as a function of charge, which is depicted in Fig. 4.1,
and observe that the energy of a classical condensate in the sector of fixed charge is always
larger than the energy of free particles EBC(Q) > mQ
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Figure 4.1: Energy EBC of a stable condensate as a function of charge Q versus the energy
of the collection of free particles with the same net charge.

4.1.2 Stability of the condensate

The aim of this work is to consider a true quantum evolution of the Bose-Einstein con-
densate. However, one must recall that classical evolution occurs as well, and we have
to carefully separate it from the quantum one. It might be the case that already at the
classical level solution breaks fast enough for some reasons, and as a result there is even no
necessity to consider influence of quantum laws onto breaking of our system. For instance,
in [27] two kinds of evolution were compared, and the difference between classical, and
quantum breaking was drawn. However, for condensate made up from cosmic axion the
condensate solution was not the full solution of classical non-linear equations of motion,
but it was just a solution of the linear part of equations of motion. Hence, the departure
happens due to kick in of the non-linearity. The case considered in this work is a bit more
intricate. Here, we have exact solution of non-linear classical equations of motion. Thus,
the only departure that can lead to substantial deviations from this solution is due to
external influence of the systems. For instance, one can disturb a condensate and excite
it, which brings into play the spectrum of linear excitations, and in order to figure out
if non-trivial evolution is possible at the classical level we have to analyse the spectrum
of small perturbations of a given solution. If this spectrum contains only those normal
modes that just oscillate in time it means that the system is stable, and we have nothing
to worry about, but if one excites an exponentially growing modes we can be in trouble,
because then system departures from the exact solution exponentially fast. This is the rea-
son before going to the analysis of quantum evolution, we have to figure out if the system
is classically stable, meaning we have to analyse the spectrum of linear perturbations.
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In order to compute the spectrum of linear perturbations, we simply expand equations
of motion (4.3) around the classical solution (4.7) and linearize them. It’s done by means
of substitution

ϕa(x) → ϕ(cl)
a (x) + δϕa(x), (4.15)

where ϕ
(cl)
a (x) is the classical solution and δϕa(x) are the small perturbations. Then equa-

tions for δϕa(x) follow as ∫
d2y

δ2S[ϕ]

δϕa(x)δϕb(y)

∣∣∣∣
ϕ=ϕcl

δϕb(y) = 0, (4.16)

or in the explicit form((
∂2 +m2 +

λ

4
ϕ(cl) 2
a (t)

)
δab +

λ

2
ϕ(cl)
a (t)ϕ

(cl)
b (t)

)
δϕb(x) = 0 (4.17)

These equations are actually time dependent due to the fact that the classical solution is
time-dependent, which doesn’t allow solving the eigenvalue problem for δϕa(x) right away.

But we can perform a change of variables

δϕ̄a(x) = Rab(ω t) δϕb(x), (4.18)

then equations for small perturbations become linear and time-independent at the expense
of appearance of the linear time derivative(

(∂2 − ω2 +
λ

4
v2)δab + 2ωϵab∂t +

λ

2
v2 eaeb

)
δϕ̄b(t, x) = 0. (4.19)

We recall that vector ea is just a constant unit vector, hence, we can freely rotate it to be
ea = (1, 0).

We can solve this equations by using ansatz

δϕ̄ =
∑
n

(an exp (i pnx) cos(γn t) + bn exp (i pnx) sin(γn t)) , pn =
2πn

L
, n ∈ Z/{0}.

(4.20)
After solving equations (4.19) by employing ansatz (4.20), we find two sets of eigenval-

ues, which we denote γ+ and γ−

γ2
± = p2n + ω2 +m2 + λv2 ±

√
4
(
p2n +m2

)
ω2 + 16λv2ω2 + λ2v4. (4.21)

Here the zero mode is excluded as it is the mode that comprises the condensates itself
and this is precisely the zero mode overpopulation that is regarded as a condensation.

One can see by putting the explicit expression for v given in (4.10), that for ω ∈
(m,+∞) these eigenvalues are always positive, which ensures classical stability of the
condensate with positive quartic coupling. It gives assurance that upon small disturbances
this solution will be close enough to its exact form.

Hence, this analysis ensures the triviality of the stationary evolution of the Bose-
Einstein condensate composed out of scalar field with positive quartic self-interaction.
Now, as we discussed the theory at the classical level, we can complete the discussion
about initial conditions.
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4.2 Initial conditions for the simulation

In this section, we will derive initial conditions for the statistical part of the Green’s
function and for the field expectation value. We extract the initial conditions from the
1-loop approximation of the 2PI effective action. Namely, we are going to solve here
equations (4.26). Within this order, the evolution of the system is trivial because the first
loop contains only a functional determinant, which gives the contribution to the local part
of self-energy. Hence, the solution we will be looking for is stationary, and doesn’t have
non-trivial time evolution. Therefore, we can use it as an initial condition.

We start the discussion about initial conditions from summarizing all the functions we
will be computing.

The first one is the expectation value ϕa(x). We could take the classical solution an
initial condition for the expectation value, namely,{

ϕa(0, x
1) = ϕ

(cl)
a (0, x1)

ϕ̇a(0, x
1) = ϕ̇

(cl)
a (0, x1)

, (4.22)

but instead we will go a bit further, and put the one-loop quantum corrected expectation
value by solving stationary conditions for 2PI effective action at one loop level.

Next, we have the 2-point connected Green’s function, Gab(x, y) which we split up
on the two components Fab(x, y) and ρab(x, y) using the decomposition (3.36). We know
that initial conditions for ρ are fixed due to commutation relation of the relativistic scalar
field theory (3.46), but F so far remained unfixed. There are no prior restriction for some
specific choice of F , because it is dictated by the initial state (or choice of the initial density
matrix). Hence, we have to pick it somehow in the same fashion we chose initial conditions
for expectation value of the field.

The initial condition for F also comes naturally in our analysis. Remember that we
would like to study the departure from the mean-field trajectory, and this trajectory is
nothing but a local minimum of the classical action. We have already made sure that this
configuration realizes local minimum by studying the spectrum (4.21) of the small per-
turbations (4.15) around the classical mean-field solution. Thus, we know that classically,
we are in the safe spot. Now, as we know that fluctuations assure field to be the local
minimum configuration, the only thing that could drive it away is the kick-in of quantum
evolution.

Hence, to make sure that saddle-point configuration remains saddle-point one, we also
set up F to get its initial value from the solution of 2PI effective action at one-loop level.

In order to get one-loop 2PI effective action, we drop all the contributions which are
higher or equal ℏ2 order. That means basically dropping all the non-trivial part Γ2[ϕ,G].
In this case, functional becomes

Γ(1)[ϕ,G] = S[ϕ] +
i

2
tr lnG−1 +

i

2
tr
(
G−1

0 G
)
. (4.23)

Let me show one more time that this is nothing but ordinary effective action imposing
stationary condition on G
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δΓ(1)[ϕ,G]

δGab(x, y)
= 0 ⇒

∫
d2z G−1

0 ac(x, z)Gcb(z, y) = δabδ
2(x− y). (4.24)

Thus, we see that
Gab(x, y) = G0, ab(x, y), (4.25)

where G0 defines leading order Green’s function in the mean-field background (3.15), and
effective action becomes The stationary conditions in this case are

G−1
0,ab(x, y) = G−1

ab (x, y),

δS

δϕa(x)
+

i

2
tr
δG−1

0

δϕa

G = 0,

(4.26)

where, from the definition (3.15) and the action (4.1) it follows that

G−1
0,ab(x, y) = i

((
∂2 +m2 +

λ

4
ϕ2
a

)
δab +

λ

2
ϕaϕb

)
δ(2) (x− y) . (4.27)

One can notice that after evaluating the first stationary condition in (4.26), we can plug
the result back into the effective action (4.23), and derive

Γ(1)[ϕ,G[ϕ]] = S[ϕ] +
i

2
tr lnG−1

0 ≡ Γ[ϕ]1PI ,

which is the 1-particle irreducible effective action at one-loop order.
The condensate solution of equations (4.26) can be picked up by using ansatz

ϕa(x) = Rab(ωx
0)fb,

Gab(x, y) = Rac(ωx
0)Rbd(ωy

0)G̃cd(x− y),
, (4.28)

where fa is the constant vector, and Rab(α) was defined in (4.8).
One can actually see that after plugging in this ansatz, 2PI effective action admit a

homogeneous non-trivial solution for the field expectation value while still preserving time
and space translation-invariance as explicit time dependence fully factors out.

Hence, after plugging the ansatz (4.28) in the equations (4.26), we get

((
ω2 + γ2 − p2n −m2 − λ

4
f 2
d

)
δac − 2iωγϵac −

λ

2
fafc

)
G̃cb(γ, pn) = iδab

((
−ω2 +m2 + δm2 +

λ

4
f 2
d

)
δab +

λ

4

(
G̃dd(0, 0)δab + 2 G̃ab(0, 0)

))
fb = 0

, (4.29)

where

G̃ab(x− y) =
1

L

∫
dγ

2π

+∞∑
n=−∞

e−iγ(x0−y0)+ipn(x1−y1) G̃ab(γ, pn)
∣∣∣
pn=

2πn
L
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and

δm2 = −λ
+∞∑

n=−∞

1

2
√

p2n +m2
(4.30)

is the counterterm taken from the free theory, which is natural since the true vacuum of
the theory is intact and well-defined.

We can find the solution of the first equation, because we simply have to invert the
background dependent constant matrix.

To solve the system (4.29) we have to figure out, when the linear operator acting on
G̃ in the first equation is invertible. It turns out that this is the case when the following
condition is fulfilled, √

f 2
a > v (4.31)

where v is defined in (4.10). Thus, we see that actually the modulus of the field must be
bigger than its saddle-point value. Next, keeping in mind this condition, we can invert G̃−1

0

and find G̃ab, which is

G̃ab(γ, pn) =

i

((
ω2 + γ2 − p2n −m2 − λ

4
v2
)
δac + 2iωγϵac −

λ

2
v2 eaec

)
(
γ2 − γ2

+(pn)i 0
+

)(
γ2 − γ2

−(pn) + i 0+
) , (4.32)

where i 0+ indicates the usual Feynman boundary conditions, ϵab is 2-dimensional Levi-
Civita tensor and the excitation energies are defined by

γ2
± = p2n + ω2 +m2 +

λ

2
f 2 ±

√
4
(
p2n +m2

)
ω2 + 8λf 2ω2 +

1

4
λ2f 4, (4.33)

which are exactly the same as (4.21) with the exception that we will use here quantum
corrected expectation value of the scalar field.

Then, we just plug everything into the first equation of the system (4.29), and get the
non-linear equation to find fa, which depends only on its modulus. So, employing SO(2)
symmetry, we choose this vector to be

fa =

(
f
0

)
, (4.34)

and the equation to define v becomes

−ω2 +m2 +
λ

4
f 2 +

(
3λ

4
G̃11(0, 0) +

λ

4
G̃22(0, 0) +

λ

2
G̃12(0, 0) + δm2

)
= 0. (4.35)

The solution to these equations is actually a stationary condition for the Coleman-
Weinberg potential of the Bose-Einstein condensate. The first equation in the system
(4.29) defines a Green’s function in the background of the condensate, and the second one
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Figure 4.2: Field values for saddle-point and 1-loop approximations for λ = 1, m = 1,
L = 10m−1

is giving an expectation value. The O(ℏ0) part of the second equation are just the classical
equations of motions, while the O(ℏ) gives the one-loop correction.

By solving the equation (4.35) numerically, we can find the modulus of the field and
compare this with the saddle-point value v(ω) given by the equation (4.10). This com-
parison is presented in Fig. 4.2 for specific parameters. We took here λ = m2 = 1 for
illustrative purposes, though, one can see that even in this case the corrections to the
modulus are quite small. One can also observe that in the 1-loop case, for some ω > m, a
solution to equation (4.35) does not exist. This is in contrast with the classical case which
admits a solution for all frequencies bigger than the mass of the free boson m.

Another point which is worth mentioning is the invertibility of the operator in (4.29)
acting on the Green’s function. We have made an a priori assumption about its invertibility
given by (4.31) and now explicitly checked that for the solutions of (4.35) this inequality
is indeed fulfilled.

Now, we have an expectation value f , which we can plug in to the Fourier image of
the Green’s function (4.32), and using the decomposition of the propagator (3.36) we can
extract the initial condition for F .

We perform integration over γ, and separating to terms in the same way as in (3.36)
we extract the statistical component of G

F 0
ab(x, y) =

1

L

+∞∑
n=−∞

R(ωt)

(
1

4γ+

(
e−iγ+(x0−y0)G̃(γ−, pn) + eiγ+(x0−y0)G̃(−γ+, pn)

)
−

1

4γ−

(
e−iγ−(x0−y0)G̃(γ−, pn)− eiγ−(x0−y0)G̃(−γ−, pn)

))
RT (ωτ)

ei pn(x
1−y1)

(γ2
+ − γ2

−)
,(4.36)

which will serve as initial condition.

Setting x0 = y0 we get an initial condition for Fab(x, y). Hence, we have the set of
initial conditions that define the initial state of the system. These are
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ϕa(0, x) = Rab(0)fb,

ϕ̇a(0, x) = lim
t→0

Ṙab(ωt)fb,
, (4.37)



lim
x0→0
y0→0

Fab(x, y) = lim
x0→0
y0→0

F 0
ab(x, y),

lim
x0→0
y0→0

∂x0Fab(x, y) = lim
x0→0
y0→0

∂x0F 0
ab(x, y),

lim
x0→0
y0→0

∂t∂τFab(x, y) = lim
x0→0
y0→0

∂x0∂y0F
0
ab(x, y),

(4.38)

where F 0
ab(x, y) is given by (4.36), and fa = (f, 0)T with f being defined by the numerical

solution of eq. (4.35).
Also, we recall from the equation (3.46) the initial conditions for ρ following from the

canonical commutation relations

lim
y0→x0

∂x0ρab(x, y) = δabδ(x
0 − y0)

lim
y0→x0

∂x0∂y0ρab(x, y) = 0

ρab(x
0, x;x0, y) = 0

. (4.39)

At this point, we have everything to inspect the quantum evolution of the stable Bose-
Einstein condensate: the equations (3.45) to solve, the initial conditions (4.37), (4.39)
to start from, and the only remaining thing is the finite-difference scheme for numerical
integration of the equations, which I will describe in the next section.



Chapter 5

Quantum evolution of the stable
condensate

In this chapter, I will present numerical solution of the stationary conditions of the effective
action, and discuss the results from the point of view of the quantum breaking.

5.1 Numerical simulations

Equations (3.45) accompanied by initial conditions (4.37) and (4.39), have been solved
numerically using a Newtonian finite difference scheme for derivatives and a trapezoidal
rule for memory integrals. Both the size of the box and the spacing and the time step
have been varied to ensure the reliability of the simulation by verifying the total charge
conservation. Moreover, it was explicitly checked that for what follows, effects due to the
box-size are irrelevant as long as L ≫ m−1; from now on the setting L = 10m−1 is used.

Since it is possible to rescale the action as in (3.76), it is reasonable to set m = 1 and
work in units of mass. Then, in order to explore the properties of the quantum breaking
two parameters can be varied: namely the coupling λ, fixing the interaction strength, and
the condensate frequency ω, determining the initial field amplitude, or charge, because
Q = Q(ω). Moreover, it should be noted that at t = 0 we have Qcl ≫ Qq as the classical
one scales as λ−1, and the quantum charge as λ0, and the difference between full and
classical charges at the beginning of the evolution is of order O(λ0), so taking this into
account we will not distinguish the initial classical charge from the full charge.

The first results I want to present are showed in Figure 5.1. It is shown how the classical
charge Qcl(t) decreases with time. This quantity is roughly constant during a rather long
timescale (approximately 10 inverse masses), mimicking the classical tree level solution,
and dramatically changes thereafter at an almost exponential speed; this is the essence
of quantum breaking. Moreover, the total charge (blue line) is shown to be conserved,
therefore ensuring the reliability of the simulation. This feature holds true also in figure
5.3, although not displayed explicitly. Here, the dynamics of the breaking is shown for
different ω’s (or, equivalently, different charges) and, as one can see, they all seem to break
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Figure 5.3: Time dependence of Qcl normalized by the initial value for different frequencies
ω.

in a similar fashion. For completeness, in figure 5.2, the evolution of the quantum charge
defined according to (3.70) is shown for the same set of ω’s. As expected, because of the
charge conservation of the system, it grows with time. Since the occupation number of
different modes can be extracted from the propagator G (the way to extract occupation
numbers can be found in [33]), we interpret the quantum breaking as a redistribution of
such modes into a configuration where quantum fluctuations are no longer dynamically
negligible according to the scheme suggested in Section 2.5.

The dependence of such “scrambling” on the frequency ω is explicitly depicted in figures
5.4(a) and 5.4(b), where tqb is defined according to the already discussed criterion (3.75).
Independently of the coupling constant, two different features can be observed as the
charge is varied. In the limit of small charge, displayed on the left side of figures 5.4(a)
and 5.4(b), the quantum break time grows asymptotically. This is because, as ω decreases,
we approach the infinitely long-lived uncharged vacuum. In this limit, as the collective
coupling becomes miniscule, the collective oscillatory period is closer and closer to that
of free zero mode particles. Correspondingly, the propagator on top of the condensate
is approximately the same as in the free theory one and the system basically consists of
diluted quasi-free bosons on top of the unbroken vacuum.

Let me illustrate this using evaluation of the diagrams contributing to Γ2[ϕ,G] part of
the 2PI effective action (3.18). One can understand the behaviour I talked about looking at
the diagrammatic behaviour. Out of the two diagrams at O(ℏ2), one is simply proportional
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to the coupling constant (we restore m in this part for clarity)

∼ λ

m2
. (5.1)

Because the above is almost independent of the field expectation value, it is not the one
responsible for the interaction between the degrees of freedom of the effective action, and,
therefore, it is irrelevant for the breaking of the system. The reason I have said “almost
independent” is that in spite of the diagram being dependent on the background field, there
is still a propagator, which is the function of the background. But when ω approaches m,
the background field modulus v approaches 0, as one can see from (4.10). Hence, the
propagator is almost the same as the propagator of the free theory.

The opposite is true for the second diagram, which is proportional to λ2ϕ2
a, non-local,

and accounts for the interaction between ϕ and G. Therefore, its relevance for the dynamics
heavily depends on the value of ω. In particular, in the limit of small charge (or ω ≈ m),
its cumulative effects leading to quantum breaking are additionally suppressed

∼ λ2

m4
ϕ2
a = 4

λ

m2

ω2 −m2

m2

ω−m≪m−−−−−→ 4
λ

m2

2(ω −m)

m
≪ λ

m2
.

In fact, in the exact free theory limit, this diagram vanishes, and the free theory propagators
are recovered (with a self-energy like correction coming from the first diagram), and, due to
the absence of a non-local diagram, no interesting dynamics leading to quantum breaking
is observed at this loop order. Hence, this explains why tqb increases as ω decreases.
Interestingly, but not surprisingly, tqb grows also in the opposite, big charge, limit (ω ≫ m)
as it can be seen on the right side of figures 5.4(a) and 5.4(b). In this case, diagrammatically,
the non local diagram seems to be enhanced; we have in fact:

∼ λ2

m4
ϕ2
a = 4

λ

m2

ω2 −m2

m2

ω→+∞−−−−→ 4
λ

m2

ω2

m2
≫ λ

m2
,

Correspondingly, one would expect quantum breaking to happen even faster. This
puzzle can be explained in the following way. The internal degrees of freedom in this
case are very different from the free ones, due to the large charge and energy density.
Consequently, one should also take into account the scaling of the propagator, and not
just the field insertion, as it is done in the above estimate. This is hard to do analytically,
however one can see that this contribution is small numerically. Moreover, the behaviour
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Figure 5.5: Quantum break-time as a function of period of initial classical oscillations

in the big charge regime is fully justified if one takes into account the fact that, in this
limit, the system becomes highly classical, therefore ensuring a longer breaking.

Because tqb grows in the opposite limits of small and large charge, there is a value of Q
for which breaking happens the fastest.

Let us investigate this point in more details. In figures 5.4(a) and 5.4(b), the quantum
break time is shown for the same set of frequencies, but for different charges (as the
couplings are different). The minimum lies at two different charge values: at Q ∼ 6 · 103
and at Q ∼ 104 respectively. However, if we check the dependence of the minimum on a
more natural quantity, which is the classical period time Tcl = 2π/ω as in figures 5.5(a)
and 5.5(b), it is evident that the minimum occurs at approximately the same value i.e.
Tcl ∼ m−1.

The attentive reader might wonder whether this minimum, as well as the big charge
behaviour is indeed due to the high classicality of the system or to a failure of the per-
turbative ℏ expansion. The latter turns out not to be the case for the following reason.
For the given ω range, the qualitative behaviour we observe is the same as long as the
coupling strength is kept weak, i.e. λ ≤ 1. However, as λ ≥ 1, the dependence was checked
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Figure 5.6: Behaviour of the classical and quantum charge for long time. Conservation of
charge is showed. Here ω = 1.1, λ = 0.5 .

to be totally different and, in particular, criterion dependent. If we define the quantum
breaking criterion by the ratio a = Qq(tqb)/Qcl(tqb) in the region where Qcl(t) monotoni-
cally decreases (and a ∈ (Qq(0)/Qcl(0), 1]

1), the qualitative behaviour of tqb as a function
of ω changes dramatically with a in the strong coupling regime. Contrarily, in the small
coupling regime, the dependence is qualitatively unaffected by the choice of a.

Finally, the long-time dynamics is displayed in figure 5.6. As one can see, the evolution
eventually becomes stationary, redistributing the total charge between ϕ and G. It follows
that, asymptotically, the solution approaches values far from the initial the one-loop sta-
tionary solution of the system (4.29), which form is given by ansatz (4.28). Indeed, we
would like to stress that the evolution is reliable up to O(ℏ3) corrections. Since such effects,
in principle, could be cumulative, it is unclear whether the plotted solution is reliable up
to the very end of the simulation. Hence, we trust the evolution until the breaking hap-
pens, and after that the charge conservation ensures only the reliability of the numerical
simulation, but does not accurately reflect physics. Using the scales introduced in Figure
5.6, we should trust the simulation until t ≃ 20m−1, where quantum breaking condition
is fulfilled, namely Qcl(tqb) = Qq(tqb).

In the next section, I will make a comparison of the 2PI effective action approach, and
the straightforward perturbative approach, where no resummation is used.

5.2 Comparison with the perturbative expansion

Once the results inferred from the solution of the stationary conditions of the 2PI effective
action are delivered, and a non-trivial conclusion about the system actually undergoing

1when a = 1 we recover (3.75)
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quantum breaking is obtained, I would like to support the claim about the impotence of
the ordinary methods to pick up this phenomenon, and exhibit fidelity at the long timescale.
To do so, we will consider ordinary perturbation theory, and compute this perturbative
evolution using closed time-contour.

The perturbative equations of motion in the coupling λ can be easily derived using the
Schwinger-Keldysh formalism [98, 99] as done in [100] for a real scalar field. To do so,
we define a density matrix ρ describing the system at t = 0 evolving according to (in the
interaction picture)

i
∂ρ(t)

∂t
= [HI(t), ρ(t)] ,

whose formal solution is
ρ(t) = UI(t, t0)ρ(t0)U

−1
I (t, t0),

with UI(t, t0) = TC exp
(
−i
∫ t

0
dt′HI(t

′)
)
; TC denoting the ordering with respect to the in-in

contour.
The expectation value of the field is then given by

ϕ(t) = ⟨Φ(t)⟩ = TrΦρ(t)

Tr ρ(t)
= Tr

[
ρ(t0)TC

(
Φ(t)+ exp

[
−i

∫ t

0

[
HI(t

′)+ −HI(t
′)−
]])]

,

(5.2)
where ± indicates on which branch the operators are to be evaluated.
The generating functional thus becomes

Z[J+, J−] =

∫
dϕ+dϕ−ρ(ϕ+, ϕ−; t0)

∫
bc

DΦ+DΦ− exp
[
i S[Φ+,Φ−, J+, J−]

]
, (5.3)

where the boundary conditions correspond to Φ+(0, x) = ϕ+(x), Φ−(0, x) = ϕ−(x) and
Φ+(t, x) = Φ−(t, x) and

S[Φ±, J±] =

∫ t

0

dt′
∫

dx
[
L[Φ+]− L[Φ+] + J+Φ+ − J−Φ−] .

To find the equations of motion we employ the tadpole method as in [100, 101]. Splitting
the field into Φ(t, x)± = ϕ(t) + δϕ(t, x)± where δϕ(t, x) is a fluctuation, one can ask for
which background ϕ(t) the tadpole condition,

⟨δϕ(t, x)±⟩ = 0, (5.4)

is satisfied. Assuming that at t = 0 the vacuum is the same as in the free theory (i.e.
|0(t = 0)⟩ = |0⟩) one obtains, from the path integral

⟨δϕ+⟩ = i

∫ t

0

dt′
∫

dx

[
δS+

δΦ+

∣∣∣∣
ϕ(t′)

G++(t, t′;x, y)− δS−

δΦ−

∣∣∣∣
ϕ(t′)

G+−(t, t′;x, y)

]
+O(ℏ), (5.5)

where G±±(t, x; t′, y) = ⟨TC (Φ
±(t, x)Φ±(t′, y))⟩. In particular G++, G+−, G−+ and G−−

correspond to the Feynmann, the advanced, the retarded and Dyson propagator respec-
tively. We see that in order for (5.5) to satisfy the tadpole condition (5.4) the background
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field needs to be a stationary point of the classical action.
We now evaluate perturbatively in λ the tadpole condition for the fluctuations of (4.1),
whose action is given by (from now on we restore m)

S[δϕ+, δϕ−] =

∫
d2x

(
(∂µϕ

+
a )

2

2
− m2(δϕ+

a )
2

2
+ δϕ+

a

δS

δφ+
a

∣∣∣∣
φ=ϕ

− (δϕ+
a )

2

2

(
m2 +

λ

4
ϕ2
a

)
−

λ

4
δϕ+

a δϕ
+
b ϕaϕb −

λ

16

[
(δϕ+

a )
4 + ϕ4

a

]
− λ

4
δϕ+

a δϕ
2
bϕa −

(
δϕ+ ↔ δϕ−)) .

(5.6)

Up to λ2, the tadpole condition schematically reads:

+ + = 0, (5.7)

where the dashed line corresponds to an insertion of the background field ϕa. The first
diagram is nothing but the tree level equation of motion as one can see from (5.5). The
second diagram can be absorbed by a mass renormalization. Altogether they lead to

ϕ̈1 +m2ϕ1 + λ(ϕ2
1 + ϕ2

2)ϕ1 −
λ2

2
ϕ1

∫ t

0

dt′
(
ϕ1(t

′)2 + ϕ2(t
′)2
) ∫ dk

2π

sin [2ωk(t− t′)]

2ω2
k

−λ2ϕ2

∫ t

0

dt′ϕ1(t
′)ϕ2(t

′)

∫
dk

2π

sin [2ωk(t− t′)]

2ω2
k

= 0

ϕ̈2 +m2ϕ2 + λ(ϕ2
1 + ϕ2

2)ϕ2 −
λ2

2
ϕ2

∫ t

0

dt′ (ϕ1(t
′) + ϕ2(t

′))
2

∫
dk

2π

sin [2ωk(t− t′)]

2ω2
k

−λ2ϕ1

∫ t

0

dt′ϕ1(t
′)ϕ2(t

′)

∫
dk

2π

sin [2ωk(t− t′)]

2ω2
k

= 0

.

(5.8)
where the renormalization of the mass has already been taken into account by dropping
the second diagram. Note that the choice of the time contour ensured the last term to be
causal.

The comparison between the fully resummed 2-loop dynamics and the perturbative
analysis to λ2 is shown in figure 5.7. To fix the initial conditions for the perturbative equa-
tion of motion (5.8) we considered the saddle point solution (4.7), where field amplitude is
defined in eq/ (4.10).
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Figure 5.7: Perturbative expansion compared with fully resumed 2PI for λ = m2 and
ω = 1.1m.

As it can be seen, the leading behaviour for small times is very similar. However,
at later times, the 2PI solution breaks faster. For longer times (although not shown
explicitly), the perturbative solution oscillates around Qcl(0). Clearly, on such time scales,
the perturbative solution is no longer reliable and the leading behaviour of the breaking
is captured by the 2PI effective action. So, one sees that perturbative expansion captures
some deviation, but does not provide reliable approximation of the real physical evolution
at a longer timescale.

Here, we finish studying of the classically stable condensate, and move to the case of
the classically unstable condensate.
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Chapter 6

Classically unstable condensate

6.1 Fast quantum breaking

Different system could exhibit various timescales associated with quantum breaking. But
there is a class of systems that seems to exhibit breaking much faster than the others.

Namely, in [29] the connection between phenomena of quantum breaking and chaos
was established, and it was argued that a many-body macroscopic system can undergo a
maximally fast quantum breaking and become chaotic, provided it possesses a Lyapunov
exponent γ, with the following formula for quantum break-time:

tqb ∼ γ−1 logN, (6.1)

where N is a certain macroscopic particle number (e.g., the number of off-shell gravitons
in the black-hole case, or the particle number in a non-relativistic BEC). In [29], this
equation was explicitly checked on an example of a 1 + 1 dimensional system with Lya-
punov exponent, namely a non-relativistic unstable BEC. The above-mentioned quantity
was derived by means of entanglement arguments. Moreover, it was also suggested that
quantum breaking and chaos represent the microscopic mechanisms behind the so-called
phenomenon of quantum information scrambling and that the existence of Lyapunov ex-
ponent is crucial for a system to saturate the logarithmic bound on the fast scrambling
time proposed in [30]. It is argued that these kinds of systems are the ones which break
the fastest1.

The results of [29] leave certain questions open. For example, it is unclear whether
relativistic corrections would affect the above predicted timescale.

The purpose of the next chapter is therefore to study these relativistic effects and to
employ an alternative method allowing to compute the quantum-corrected evolution of the
semi-classical solution initially assembled as a coherent state within mean-field approxima-
tion. Due to the absence of particle conservation, it is rather natural to expect a similar
behaviour under the replacement N → Q, which is the conserved charge of the system in
the relativistic case. This replacement is anyway absolutely not obvious, as the relativistic

1There are systems where tqb ∝ ℏ−1 c.f. [22], which is much longer than (6.1)
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theory possesses a much wider spectrum. In this study, a law similar to (6.1) was found
for a relativistic 1 + 1 - dimensional model endowed with U(1) symmetry and attractive
self-interaction. Namely, it was verified that the quantum break time is given by

tqb = γ−1 logQ+ constant, (6.2)

where Q is the total charge of the configuration, γ is the Lyapunov exponent associated
with the instability mode in the spectrum of linear perturbations that the condensate has,
and the small constant presence will be shown to be related to the chosen criterion used to
extract tqb. Moreover, note how this timescale happens to be infinite in the semiclassical
limit (namely as ℏ → 0, tqb → ∞), therefore ensuring the captured effect to be genuinely
quantum and not visible at the classical level.

One might ask, what is the relevance of the quantum breaking here, if the system
is unstable, and is supposed to break at the classical level, due to the presence of the
instability mode in the spectrum of the linear perturbation? The answer is straightforward,
although, requires a little bit of fine-tuning.

The thing is that even if the instability is present in the spectrum of the small per-
turbations, nothing prevents us from evading dealing with this mode by excluding it from
initial conditions. In other words, if we tune the system’s initial state such that it does not
pick up exponentially growing mode, then evolution is stable, and classically no breaking
is happening. In this work, this is achieved by keeping the condensate homogeneous from
the very beginning. And, the homogeneity of the solution during the evolution is then
preserved because of translational invariance of the equations (3.45). Hence, the only way
it could break is again by taking a route of quantum breaking!

From here, we proceed with the studying a case of the unstable condensate starting
again from scrutinizing a classical theory, and gradually moving to the quantum one.

6.2 Classical theory

In this section, we introduce a classical scalar field theory with negative self-interaction,
and analyse its spectrum.

Consider a real scalar field endowed with SO(2) global symmetry with attractive quartic
self-interaction in a 1 + 1 dimensional finite box of size L. The action of this theory is:

S[φa] =

T∫
0

dx0

L∫
0

dx1

(
1

2
(∂µφa)

2 − 1

2
m2φ2

a +
λ

16
(φ2

a)
2

)
. (6.3)

with λ > 0. As in the previous case, we impose periodic boundary condition upon the
scalar field ϕa(x).

For convenience, we again list here two integrals of motion which are the most relevant
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for our analysis. These are the classical energy

E(cl) =

L∫
0

dx1

(
1

2

(
∂φa

∂t

)2

+

(
∂φa

∂x

)2

+
1

2
m2φ2

a −
λ

16
(φ2

a)
2

)
, (6.4)

and the classical charge

Q(cl) =

L∫
0

dx1 (φ̇1(x)φ2(x)− φ̇2(x)φ1(x)) , (6.5)

which is literally the same as the one given by (3.65), but we would like to underline that
here the field is classical, while in (3.65) ϕa(x) is the expectation value of the operator.

This theory enjoys plenty of classical stationary solutions. These solutions can be
obtained by means of following ansatz

φa(t, x) =
√
2R(ωt)ab f̃b(x), (6.6)

where R(θ) is the usual SO(2) rotation matrix and ω is the integration constant parametris-
ing all possible solutions. Using SO(2) covariance of the equations we can choose f̃b(x) =
(f(x), 0)T . Then, two equations of motion are reduced to a single one:

d2f

dx2
+
(
ω2 −m2

)
f +

λ

2
f 3 = 0. (6.7)

We are going to look for all solutions satisfying periodic boundary conditions.
Two solutions to (6.7) can be found: namely a homogeneous one, the condensate, and

a localized one, the bright soliton [62]. In the following, their relation with each other and
stability are discussed.

6.2.1 Condensate

The condensate solution is given by the homogeneous configuration:

f(x) =

√
2 (m2 − ω2)

λ
, (6.8)

where frequency covers the range ω ∈ (0,m). This expression is identical to the expression
(4.10) up to the substitution λ → −λ. For this solution integrals of motion (6.4) and (6.5)
are

Eb.c. =
L

λ

(
m4 + 2m2ω2 − 3ω4

)
, (6.9)

Qb.c. =
4ωL (m2 − ω2)

λ
, (6.10)
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Figure 6.1: Bright soliton solution for different frequencies ω and lentgh L = 4πm−1.

where subscript “b.c.” stands for Bose condensate.
Notice that for this attractive interaction, the energy of the configuration is lower than

the one of free particles, i.e. E(ω) ≤ mQ(ω)2, which is opposite of the case of the stable
condensate, where Eb.c > mQ

6.2.2 Bright Soliton

The second solution arising here is the well-known bright soliton. In the non relativistic
limit, the classical bright soliton was studied in [62] and [103]. Here we focus on the
relativistic case.

The solution is showed for different ω’s in Fig. 6.1 and is given by

f(x) =
4K(µ)

L
√
λ

dn
(
2K(µ)

x

L

∣∣∣µ) , (6.11)

where K(µ) is the elliptic integral of the first kind, dn(x|µ) is the Jacobi elliptic function
and µ is fixed by the condition

4K(µ)2(2− µ) = L2(m2 − ω2), (6.12)

for which the solution exists if ω ∈ (0, ωcr) and the critical frequency is given by

ωcr =

√
m2 − 2π2

L2
. (6.13)

2Here we mean by rest mass of the free particle the mass parameter in the Lagrangian, but one has
to remember that if mass parameter is defined at infinite volume by means of conditions Σ(m2) = 0 and
dΣ/dp2(m2) = 0, than in finite volume it gets modified [102]. But as long as mass acquires an exponentially
small correction we don’t bother ourselves considering it.
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The integrals of motion (6.4) and (6.5) corresponding to the bright soliton are:

Eb.s.(ω) =
16 (4(µ− 1)K(µ)4 + L2 (4ω2 + 2)K(µ)E(µ))

3λL3
, (6.14)

Qb.s.(ω) =
32ω

Lλ
E(µ)K(µ). (6.15)

where subscript “b.s.” stands for bright soliton, E(µ) is the elliptic integral of the second
kind and µ = µ(ω) is given by (6.12).

6.2.3 Classical stability as the reflection of an interplay between
two solutions

We see that both the homogeneous Bose-Einstein condensate and the inhomogeneous bright
soliton solutions depend on a single integration constant ω. This integration constant de-
fines their charge and energy. Therefore we have several branches of solutions parametrized
by ω. Let us focus first on the blue branch in Fig. 6.2, representing the condensate so-
lution for different values of ω and correspondingly for different charges. We note that ω
varies from 0 to m, where values closer to m have smaller charges. The orange branch
instead represents the bright soliton configurations with different ω. For the bright soliton
we have ω ∈ (0, ωcr), from which it follows that for ω ∈ [ωcr,m) the homogeneous solution
minimizes energy. As frequency decreases and crosses ωcr, the condensate localizes and
the bright soliton appears. Therefore, ωcr turns out to be the branching point at which
Eb.s.(ωcr) = Eb.c.(ωcr) and Qb.s.(ωcr) = Qb.c.(ωcr). The reason behind the emergence of this
point is exactly the stability of the classical BEC solution.

Since the potential for this model is unbounded from below3, it is natural to question
the classical stability of the system. This can be done by means of expanding fields in
small perturbations around a given solution of classical equations in the same way we did
in Section 4.1.2, namely,

ϕa(x) → ϕ(cl)
a (x) + δϕa(x), (6.16)

where ϕ
(cl)
a (x) is the classical solution and δϕa(x) are the small perturbations. Then equa-

tions for δϕa(x) follow as ∫
d2y

δ2S[ϕ]

δϕa(x)δϕb(y)

∣∣∣∣
ϕ=ϕcl

δϕb(y) = 0, (6.17)

or in the explicit form((
∂2 +m2 − λ

4
ϕ(cl) 2
a (t)

)
δab −

λ

2
ϕ(cl)
a (t)ϕ

(cl)
b (t)

)
δϕb(x) = 0 (6.18)

3This plays no role in our analysis, because the field amplitude is lower than 2m/
√
λ and we do not

enter the domain when boundlesness can not be ignored anymore. In the general case, of course the theory
can be made bounded by means of inclusion of higher order terms.
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Then, again we get rid of the time-dependence by the substitution

δϕ̄a(x) = Rab(ω t) δϕb(x), (6.19)

and get to (
(∂2 − ω2 − λ

4
v2)δab + 2ωϵab∂t −

λ

2
v2 eaeb

)
δϕ̄b(t, x) = 0. (6.20)

And, as the final step we employ the ansatz (4.20), and find eigenvalues γ, that are

γ+(pn) =

√
p2n + 3ω2 −m2 +

√
m4 − 6m2ω2 + 4p2nω

2 + 9ω4, (6.21)

γ−(pn) =

√
p2n + 3ω2 −m2 −

√
m4 − 6m2ω2 + 4p2nω

2 + 9ω4, (6.22)

where

pn =
2π n

L
, n ∈ Z. (6.23)

Note that for solution (6.8), one perturbation mode is classically gapless, i.e. γ−(0) = 0.
Therefore, to analyse the instability, we focus on the non-zero modes. In particular, from
(6.22), we see that the first mode turning imaginary, as ω decreases, is p1 and it happens
when ω becomes less than ωcr

ω < ωcr =

√
m2 − 2π2

L2
. (6.24)

We therefore conclude that the condensate solution is classically stable for ω ∈ [ωcr,m)
and unstable otherwise4.

In view of this analysis the meaning of the branching point is clear. In fact, the
frequency at which the solitonic solution appears in the spectrum is exactly the same fre-
quency (6.13) for which the first momentum mode (and therefore the condensate) becomes
unstable. It follows that at ωcr the spectrum splits into two branches of classical solutions
for smaller frequencies (bigger charges): stable ones, namely bright solitons, and unstable
ones - BEC’s. We refer to the imaginary part of this frequency Im(γ−(p1)) as Lyapunov
exponent, because it shows the rate of exponential growth of this mode.

To sum up, we have the following situation: for ω ∈ [ωcr,m) the condensate solution
is classically stable and unique for equation (6.7). In this region, the collective coupling,
proportional to (λ/m2)f 2, increases as ω decreases. Upon reaching ωcr a phase transition
takes place. In this sense, the collective coupling is strong enough as to allow for a local-
ization of the solution. Correspondingly, the fluctuations on top of the condensate display
at least an unstable mode indicating the fact that, for a given fixed charge, there exists
a classical configuration with lower energy (as it can be seen from comparing (6.9) and
(6.14)).

The above statement can easily be deduced from Fig. 6.2. As it is possible to see, the

4This situation reflects the presence of a Jeans instability and as size gets bigger more modes become
unstable. It occurs successively, namely, a given mode pn becomes unstable at ωcr(pn) =

√
m2 − 2π2n2/L2.

Therefore we deduce that for fixed size L there will be ⌊mL/
√
2π⌋ unstable modes
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Figure 6.2: Energy versus charge behaviour of condensate and soliton. Here L = 4πm−1

and λ = 2m2.

soliton trajectory emerges from the branching point ωcr. Moreover, as ω decreases (and the
collective coupling increases), the soliton configuration localizes more and more up to the
point where it becomes classically unstable (this does not happen in the classical theory).
This happens in correspondence of ωcusp which is the value for which the known instability
condition is fulfilled [104, 105]:

dQcl

dω

∣∣∣∣
ω=ωcusp

< 0. (6.25)

For lower ω’s, the soliton solution corresponds to the points of the upper branch of Fig.
6.2.

Before moving forward it is important mentioning that although the potential is un-
bounded from below for the condensate (soliton), one can easily see from (4.10) ((6.11)),
that the only source of classical instability under small perturbations is given by (6.13)
((6.25)). Moreover, notice that tunnelling phenomena are not relevant in our quantum
study as they are exponentially suppressed, while we will see that quantum breaking hap-
pens exponentially fast.

6.2.4 Saddle-point solution as the initial condition

Appropriate initial conditions to numerically simulate (3.45) are necessary. Our goal is
clear: we wish to study how the classical unstable condensate evolves as quantum fluctu-
ations are dynamically taken into account. Therefore, a natural choice is to consider, at
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t = 0, the classical condensate solution, but in this case we will not consider the one-loop
approximation of the 2PI as we did in Section 4.2, because of the instability. Instead, we
take just the saddle-point solution. That means that, initially, the field ϕ is fixed by the
stationarity condition

δS[ϕ]

δϕa

= 0 (6.26)

while, for the propagator G, we need to invert the following operator

G−1
ab (x, y) = i

((
∂2 +m2 − λ

4
ϕ2
a

)
δab −

λ

2
ϕaϕb

)
δ(2) (x− y) . (6.27)

In the same fashion, as in Section 4.2, we go to the fourier space to compute initial prop-
agator

G̃ab(x− y) =
1

L

∫
dγ

2π

+∞∑
n=−∞

e−iγ(x0−y0)+ipn(x1−y1) G̃ab(γ, pn)
∣∣∣
pn=

2πn
L

,

G̃ab(γ, pn) =

i

((
ω2 + γ2 − p2n −m2 +

λ

4
f 2
d

)
δac + 2iωγϵac +

λ

2
fafc

)
(
γ2 − γ2

+(pn) + i0

)(
γ2 − γ2

−(pn) + i0

) ,

(6.28)

where the relation between G, G̃ and ϕ, f is given by
ϕa(x) = Rab(ωx

0)fb

Gab(x, y) = Rac(ωx
0)Rbd(ωy

0)G̃cd(x− y)
(6.29)

with Rab(θ) ∈ SO(2) the standard rotational matrix, f amplitude fixed by condition (6.8)
and γ+(p) and γ−(p) are defined in (6.21) and (6.22). Since for the tree level solution γ−(0)
is gapless and γ−(p1) has imaginary part, in order to specify initial conditions for F from
(6.28), at t = 0, the zeroth and first momentum modes of the statistical propagator were
removed. This corresponds to a little shift away from the saddle point, anyway, without
affecting the dynamics in a relevant way. The mapping of the initial conditions between
G and F and ρ is explicitly derived at the end of the Section 4.2, and given by (4.37) and
(4.39), where F 0 now computed using (6.28). Let me remind here again that all initial
conditions are derived with the use of the periodic boundary conditions in space, which
are preserved during evolution due to the translational invariance of the equations (3.45).

6.3 Numerical Simulations

In the following, we discuss the numerical results of the simulation for the case of the
unstable condensate.
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Figure 6.3: Time dependence of the classical charge for different frequencies in the strong
coupling regime.
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Figure 6.4: Time dependence of the classical charge for different frequencies in the weak
coupling regime.
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Equations (3.45) have been solved numerically using the Crank-Nicolson finite difference
scheme for derivatives, and a trapezoidal rule for memory integrals. Moreover, since we are
interested in the region where the classical spectrum is split between the condensate and
the bright soliton,the study is confined to the range ω ∈ (ωcusp, ωcr)

5. In this region, the
choice of initial conditions, namely the unstable condensate solution, leads to the presence
of one imaginary mode. As L is increased, more and more modes display such behaviour
in the above-mentioned ω range, as it can be easily seen from (6.22). Therefore, the size
of the box is purely dictated by reasons of simplicity: first of all the box size should be
much bigger than the constituent’s Compton wavelength ω−1 and, secondly, the numerical
analysis simplifies a lot if only one instability mode shows up in the explored ω’s range. In
view of this, the box size is set to be L = 4πm−1, for which ωcusp ≃ 0.71m, ωcr ≃ 0.94m
and only one instability mode is present, namely the first one γ−(p1). In all the simulations
it is set m = 1.

The general behaviour of the quantum breaking is displayed for different ω’s in Figures
6.3 and 5.3 for strong and weak coupling. The behaviour is very reminiscent to the one
observed for the quantum breaking in the repulsive case for a stable condensate [106],

5To avoid confusion I have to mention that for fixed ω, the charges of soliton and condensate are
different, and they have, correspondingly, different energies (as it can be seen from (6.10) and (6.15)),
though they coincide at the critical point Qb.s.(ωcr) = Qb.c.(ωcr)
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although much faster. However, even if not shown explicitly, one can notice the following
feature: for all the simulations in the strong coupling regime, the total charge (3.72)
varies on the displayed timescales by approximately the 1% i.e. Q(m−1)/Q(0) ∼ 0.99.
This is comparable to the change in classical charge displayed in fig. 6.3. However, due
to the coupling being strong, we do not expect the resulting simulation to approximate
appropriately the true quantum evolution anyway. The situation is qualitative different
in the weak coupling regime displayed in Figure 6.4. There, even though the coupling is
weak, as ω is decreased (and the collective coupling is increased), there is a violation of
the conservation of the total charge. This is, however, practically negligible (at least 100
times smaller and slightly growing with the collective coupling). This is no longer the case
as we look at the simulation for longer times. For example, when Qcl(t) ≈ 0.5Qcl(0) we
generically notice an increasing violation of the total charge conservation. This underlies
a failure of the chosen numerical scheme, as the exponential growth of Qq is so fast that
it can no longer be well approximated after certain timescales. We now proceed with
the discussion of the two main results of the analysis of the evolution of the unstable
condensate.

6.3.1 Evolution along the BEC trajectory

The first result I want to comment upon is the evolution of the unstable condensate.
I will introduce here two notions for the energy, as it was done for the charge. So, in

full analogy with Qcl(t) and Qq(t) defined in (3.65) and (3.70) I define

Ecl(x
0) =

L∫
0

dx1

(
1

2
(∂x0ϕa)

2 +
1

2
(∂x1ϕa)

2 + V (ϕa)

)
(6.30)

and quantum part which I will nor write explicitly here.
The sum of two is a conserved quantity

d (Ecl(t) + Eq(t))

dt
= 0. (6.31)

During the evolution both classical charge and energy diminish while full integrals of motion
are conserved. In Figure 6.6 the evolution of this classical quantities is shown for different
ω’s (different colours) and compared w.r.t. the branch of classical condensate solutions
(blue line).

The points in the plot are numerical evaluations of the classical energy (6.30) and
charge (6.10) at different times. Different colours there correspond to different initial
configurations, namely different initial ω. Therefore, looking the dots of particular colour,
which coordinates at the plot are (Qcl(t), Ecl(t)), one can see how the classical energy and
classical charge of this configuration evolve with time. In Fig. 6.5 one can see how the
numerical simulations fully evolve along the classical condensate trajectory. The reader
might wonder why no deviations are seen, although lower energy configurations (at similar
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Figure 6.5: Time evolution of the classical energy Ecl(t) as a function of Qcl(t) for different
ω ∈ (.90, ωcr) (each with a different marker). Here the evolution follows the classical
condensate trajectory.
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Figure 6.6: Time evolution of the classical energy Ecl(t) as a function of Qcl(t) for different
ω ∈ (.81, ωcr) (each with a different marker). The failure of the simulation is apparent as
ω decreases.
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charge), namely the soliton (orange line), are present. The reason is that the bright soliton
is a localized configuration, and therefore, due to the homogeneity of our initial conditions,
the system in principle can only evolve into a superposition of such solutions. I must
admit that here it is actually not know how to understand whether the initial homogeneous
configuration is tending to approach a superposition of solitons or not, but there is a clear
qualitative picture explaining the condensate evolution along the BEC Ecl(Qcl) line.

In total analogy with the Q-balls case, one can deduce the following relation between
classical energy and charge of the BEC

dEcl

dω
= ω

dQcl

dω
. (6.32)

Therefore, one can conclude that if classical charge is getting changed by some small
amount δQcl, which in the considered case the part carried out by fluctuations, then the
next homogeneous configuration stationarizing the local part of the energy is given by

Ecl(δt) ≃ Ecl(0) + ω δQcl(δt), (6.33)

which means that during quantum evolution, the preferable directions in the phase space is
the one stationarizing the classical part as long as classical quantities remain dynamically
dominant. This is true as long as Qcl ≫ Qq, but in the end, upon reaching tqb, this
approximate relation does not need to hold, as well as the ℏ perturbative expansion, and
evolution might deviate from this curve. Anyway, you will see in the next paragraph how
the presence of a lower energy configuration affects the speed at which the system rolls
along the BEC Ecl(Qcl) trajectory.

The situation is different in Fig. 6.6 where the behaviour of simulations is shown
for lower ω’s. As one can see, some simulations (blue squares) start deviating from the
condensate-like evolution. Such deviations increase as ω decreases. Such phenomenon is
analogue to the one observed for the strong coupling case. Namely, the exponential growth
becomes so fast, as to lead to a failure of the numerical scheme. In fact, correspondingly
with these deviations, non-negligible – yet very small violations of total charge emerge.
However, it should be noted that for small timescales, the evolution of these simulations is
still reliable.

6.3.2 Quantum break-time

In order to capture the rate at which the system evolves along the condensate trajec-
tory (c.f. Figure 6.6), I use the criterion (3.75) to obtain tqb. Moreover, because of the
above-mentioned numerical issues, the quantum break-time is fixed as the time such that
Qq(tqb) = 0.1Qcl(tqb). In this way, on the obtained quantum breaking timescales, most of
the simulations have a very well conserved charge (within .1% deviations). The dependence
of tqb on logQ/Im(γ−(p1)) is explicitly shown in Figure 6.7, where the quantum breaking
time is shown w.r.t. ω. One can see how in this coupling region i.e. λ ≤ 0.1m2, the
breaking time is indeed captured by the relation

tqb ≃
logQ

Im(γ−(p1))
+ constant (6.34)



74 6. Classically unstable condensate

where Im(γ−(p1)) is the Lyapunov exponent, therefore confirming (6.2) mentioned in the
introduction. Let us discuss this relation and the corresponding physics in more details.

Firstly, it is very important to stress that such a logarithmic behaviour is controlled
by the Lyapunov exponent, which sets the system instability. As long as a homogeneous
solution exhibits this form of instability, the leading initial time behaviour is apparently
governed by this mode arising in the Green’s function. Therefore, we can roughly say that
for δt ∼ 1/Im(γ−(p1))

Qcl(δt) ≃ Qcl(0) + A
(
1− eIm(γ−(p1))δt

)
(6.35)

and we can infer from this, that using our quantum breaking criterion Qcl(tqb)/Qcl(0) ≃
r, we obtain (6.34). Indeed, the aforementioned constant in (6.34) depends only on the
chosen criterion r and is almost independent on any parameters of the model.

From the quantum point of view, this law means that to undergo quantum breaking,
the system has to wait for a significant amount of quanta to decay, which leads to logarith-
mic dependence of quantum break-time on charge. This mechanism is in contrast with the
classical picture, where departure from stationary solution is set by inhomogeneities intro-
duced by means of initial classical perturbations. To clarify this difference, let us briefly
recap how the decay due to classical perturbations takes place. In fact, for this to happen,
the inhomogeneous perturbation spectrum needs to include an unstable mode, which, in
the system under consideration, corresponds with the first momentum mode. In turn, the
presence of such a mode leads to the development of inhomogeneities in the system on a
timescale fixed by the Lyapunov exponent as 1/Im(γ−(p1)), leading to the localization of
the soliton. Thus, we see that departure occurs almost immediately, independently of the
initial configuration itself (namely the amount of quanta comprising the initial state). This
kind of transitions were clearly demonstrated for unstable Q-balls (Q-clouds) as they are
perturbed and, after a timescale set by the instability, they move to a stable configuration,
dropping some charge along the process [107]. In addition, I must stress again, that not all
the perturbations can destroy BEC classically, but only those which contain the unstable
mode. This is totally different from what happened in this case as the evolution is driven
by quantum effects preserves translational invariance. In fact, we saw in Figure 6.5 that
classical quantities evolve along the classical homogeneous BEC trajectory, although the
growth of the unstable mode within the Green’s function being present (note that at t = 0
we input this unstable mode to be zero). Therefore, we see that quantum and classical
process are significantly different. In particular, the quantum decay is more general, as it
takes place independently whether homogeneity is preserved by initial conditions.

One clear feature of Fig. 6.7 is the deviation from the logarithmic scaling as the coupling
is increased. I believe this to be due to the above discussed failure of the numerical scheme.

At this point, after stating the last result deduced from the studying of quantum evo-
lution of the unstable condensate, it is time to wrap up and summarize all together the
results that were obtained, and compare it with the other ones discovered previously.
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Figure 6.7: Quantum breaking time dependence on ω compared to analytical estimation.
Solid lines are functions logQ(ω, λ)/Im(γ− (p1)) for different couplings and triangles are
quantum breaking times extracted from simulations
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Conclusion

The main goal of this was to investigate the quantum breaking phenomenon, which de-
scribes the deviation of the true quantum evolution of a semi-classical system from its
evolution prescribed by classical physics. The quantum breaking phenomenon appears to
be a very generic one, as the nature is filled by the objects of semi-classical origin, and it
is quite apparent that most of these objects can not remain the same eternally. Neverthe-
less, the less evident thing is the speed at which each of these semi-classical objects will
transform into something else. Therefore, even if the quantum breaking is very generic, it
happens with the different speed for different objects of such kind. This poses the question:
which kind of systems have a reasonable quantum break-time to pay attention to?

We have already discussed that for the quantum breaking to happen fast enough, a
system must obtain strong collective coupling, or in other words, all the constituents must
interact with each other with equal strength to sustain collective interaction, hence, when
collective coupling defined in (2.2) is strong enough we can expect quantum breaking to
happen at the relatively short timescale.

Another issue that pops up is of mathematical nature, because we have to identify the
timescale associated with the quantum breaking. In the previous literature, various meth-
ods were used, but these were accustomed to the peculiarities of the particular system under
consideration. For instance, quantum breaktime of cosmic axion was computed by means of
perturbative estimation of the scattering processes [27], and in [29] the non-relativistic was
studied, and the specific method was used to diagonalize it and compute exact evolution
of the system by considering only three momentum modes with p = −2π/L, 0, 2π/L.

Thus, it seemed to be natural to try to look for some more general approach, which
would not rely on the special features of the system one is considering, but solely on the
general knowledge of semi-classicality. It turned out that methods developed already in the
out-of-equlibrium quantum field theory are quite handy [33]. The method that was used in
this work is the method of 2-particle irreducible effective action. The 2PI effective action is
the functional that depends on two variables: the field expectation value ϕ(x) = ⟨ϕ̂(x)⟩, and
the connected 2-point correlation functionG(x, y) = ⟨T̂{ϕ̂(x)ϕ̂(y)}⟩. Every other correlator
can be computed by means of functional derivatives with respect to these two functions.
Of course, if one is capable of computing the exact functional, then it gives nothing more
than the usual effective action. However, it is impossible to do, and the reason we use
2PI effective action instead of ordinary 1PI is that it gives a better approximation by the
resummation of all two-particle irreducible Feynman diagrams. Another ingredient coming
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from out-of-equilibrium QFT is the Schwinger-Keldysh or “in-in” time-contour that allows
to compute real-time evolution of the system. As a result, combined both tools lead to
extremely powerful framework well-approximating true quantum evolution, and leading
to capturing effects, that can not be picked up by ordinary perturbative approach (see
Section 5.2). Thus, one can see that the formalism presented here is well-suited to study
the evolution of the quantum system. Moreover, it is applicable to any QFT a relativistic
and non-relativistic one, which makes it in impeccable tool to study the deviations from
the semi-classical evolution.

This method also allows defining the criterion for identifying timescale associated with
quantum breaking quite naturally. We saw that the formalism considers evolution of both
the background field ϕ, and connected two-point function G, and takes into account their
mutual influence contrary to the 1PI effective action where we just compute propagator as
the function of the background field. This splitting of two parts of the two-point correlator
allows us to identify the quantum break-time, when contributions coming from both parts
start to contribute equally to the physical observables as charge or energy (see Sec. 2.4
and 2.5), I will repeat it here for illustrative purposes.

The full charge can be inferred from the full two-point correlator by computing (here
I put dx⃗ for generality, but this work is for 1+1 dimensional system, so, the integral is
actually just dx1)

Q =

∫
dx⃗ lim

y→x
ϵab∂x0

〈
ϕ̂a(x)ϕ̂b(y)

〉∣∣∣
x0>y0

=∫
dx⃗ lim

y→x
ϵab∂x0

(
⟨ϕ̂a(x)⟩⟨ϕ̂b(y)⟩+

〈
ϕ̂a(x)ϕ̂b(y)

〉
connected

)
,

which in terms of the 2PI variables ϕ and G becomes

Q =

∫
dx lim

y→x
ϵab∂x0

(
ϕa(x)ϕb(y) +Gab(x, y)

)
,

where classical part of the charge is the part coming from the product of two one-point
correlators

Qcl(x
0) =

∫
dx⃗ lim

y→x
ϵab∂x0 ϕa(x)ϕb(y),

and the quantum part of the charge comes from connected part of the two-point fucntion

Qcl(x
0) =

∫
dx⃗ lim

y→x
ϵab∂x0 Gab(x, y).

All together, they make up each other to conserved in time full charge of the system.

Q = Qcl(x
0) +Qq(x

0).

Initial conditions are fixed such that

Qcl(0) ≫ Qq(0),
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which is a consequence of the semi-classicality. But when time goes by both contributions
could become comparable, and when this happens, and condition

Qcl(tqb) = Qq(tqb)

is fulfilled, we claim that quantum breaking took place, because the evolution is no more
can be approximated by the mean field. Only zero-momentum modes overoccupiation of
which leads to condensation makeup disconnected part of the Green’s function, but with
time more and more non-zero momentum modes are getting excited, and background is
steadily getting destroyed.

This criterion was used to determine the time of the quantum breakdown of the Bose-
Einstein condensate emerging in the complex scalar field theory (or, in other words, in the
theory of two real scalar fields) for two cases. In the first case, the quartic self-interaction
of the scalar field was positive that ensured classical stability of the condensate, and in the
second case, it was negative, which makes it unstable.

Let me summarize the results that were obtained for the stable condensate first.
The main results show the way that breaking happens in the Figures 5.3 and 5.2

exposing mutual change of the two charges, while total charge is conserved as it depicted
in Figure 5.1. This is indeed “quantum breaking”, because we have explicitly seen that the
system is classically stable!

As the result of the numerical simulations, dependence of the quantum break-time on
the total charge of the system was computed. It turned out that in two opposite limits
Q → 0 and Q → ∞ the quantum break time grows, as one can see in Figures 5.4(a)
and 5.4(b). It is hard to infer an analytical dependence here, because the tails are not
long enough. Unfortunately, even for the cases that are exhibited in these plots, the
time of simulations was rather long, and attempts to get a quantum break-time for longer
timescales seemed not very reasonable, because the initial purpose was just to capture
the breaking. The estimated time for simulation of the condensate evolution with larger
charges, or with very small ones was counted in months, so, my colleague and I rejected the
possibility to proceed with this. However, as very rough approximation we can interpolate
quantum break-time dependence on charge depicted in 5.4(a) and 5.4(b), as

tqb ∼
C1

Q
+ C2Q,

where C1, and C2 are just some constants. So, in the domain of charges where it was
possible to compute the tqb(Q) dependence one case see that it’s at least polynomial,
which doesn’t contradict with the results in [27].

Despite the fact that we can’t extract analytical dependences with good precision, we
can still observe some interesting features there. As I have already mentioned, there are
two different asymptotic behaviours, namely, that quantum break-time grows for the very
large charges, and for the small ones. This is due to two different trends. For small charge
the configuration is closer to its true vacuum and, correspondingly, the effects breaking
the configuration are suppressed. In the big charge limit, the theory is highly classical
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and, consequently, more rescattering events are necessary for the effects to be dynamically
relevant. The minimal quantum break-time between these two regimes was found.

In view of these results, some interesting remarks can be made. First, one can question
the saddle point approximation used in most of the computations of a BEC condensate
when considering processes which have a typical timescale (or length scale) of order of
the breaking that was observed. This might lead to erroneous conclusions, as quantum
breaking is jeopardizing the reliability of the background. Moreover, I believe that the
corrections that were observed might be relevant, and should be taken into account in
order to better approximate the quantum evolution of physical condensates. It is worth
mentioning that within a full proper treatment, quantum and thermal fluctuations appear
on equal footing. Hence, quantum effects are dominant only if thermal fluctuations are
negligible. If this is not the case, a statistical description of the system must be taken into
account.

As we have managed to observe the quantum breaking in the stable system, the next
step was to inspect the system, which contains the classical instability. Again, I allow
myself to remind the reader that in spite of the instability, classical break-down doesn’t
have to happen if we evade exciting exponentially growing mode in the spectrum of the
linear perturbations.

During the analysis of the evolution of the unstable condensate it was found that
the quantum break-time, namely the moment when departure from the classical solution
become significant, scales logarithmically with dimensionless charge Q and is controlled by
the Lyapunov exponent γ characterizing the classical instability of the system, namely

tqb = γ−1 logQ+ C, (6.36)

with C a small constant caused by the way the quantum break-time was extracted nu-
merically tqb. This result for quantum break-time is similar to the one derived in [29] (see
eq. (6.2)). However, being our study in the relativistic regime, we see that the number of
constituents is replaced with charge N → Q (compare (6.36) with (1.2)). These two results
need not be similar, as the spectrum of the relativistic model is much broader. However,
as it follows from the analysis, (6.36) is indeed the natural extension of the result of [29]
in the relativistic regime.

Another interesting result of this work is related to the breaking trajectory of the
condensate. In fact, the evolution takes place along the branch of classical solution Ecl(Qcl)
as long as charge is steadily getting carried away by quantum fluctuations according to
(6.32) and (6.33) (see Fig. 6.6). There, the classical part of the energy w.r.t. classical
charge evolves along the branch of classical solutions given by (6.9) and (6.10). This is
due to the fact that homogeneity is preserved in the equations of motion (3.45). In fact, as
discussed above, there is a preferable direction in the phase space of classical configurations
set by (6.32). Indeed, as soon as quantum breaking takes place, we do not expect this kind
of relation to hold and the system might evolve differently from there onward. Further
investigation of this issue, although interesting, is beyond the scope of this work. Moreover,
it can be seen that as either the coupling or the collective coupling is increased, deviations
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from such trajectory are observed in Fig. 6.6. The possible reason for this to happen is
due to a failure of the numerical scheme. Therefore, these simulations were excluded when
studying the functional dependence of the quantum break-time.

One can see that the method developed here is powerful and has a wide range of
the applicability for any system that can be described at the semi-classical level. The
results obtained by this method are in agreement with the previous ones discovered in
literature, which is the argument in favour of this approach, as it can be used regardless
the peculiarities of particular system, and relies solely on the semi-classicality. Therefore,
it could be interesting to probe other systems like solitons, or systems in the dimension
higher than 1 + 1, or to compute quantum break-time in more realistic settings, e.g., for
the models that can be experimentally simulated.

Another prospect is to improve the expansion scheme, and go further by accounting
higher order graphs, or using 1/N expansion for a larger symmetry group, which would
allow carrying the numerical integration further at lower expense compared to full inclusion
of higher order graphs. Also, another interesting question is how the system evolves when
considering as initial conditions the bright soliton configuration (see Fig. 6.2). In fact,
exploring its evolution might help us to deepen our knowledge regarding the back-reaction
properties of localized objects.
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