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SUMMARY 

Cerebral small vessel disease (SVD) is the second most common cause of cognitive decline and 

dementia in aging. Diffusion magnetic resonance imaging (MRI) has become the method of 

choice to quantify white matter tissue alterations in SVD. Alterations in white matter fiber tracts 

interconnecting brain regions has led to the notion of SVD as a disconnection syndrome, which 

can be assessed using diffusion MRI tractography to reconstruct structural brain networks. 

However, this analysis concept is complex and depends on many arbitrary design choices, 

starting from the requirements for data acquisition up to node and edge definitions. The 

advantage over simpler skeleton-based diffusion markers was unknown, which motivated 

Study I. 

Study I systematically assessed the clinical and technical validation of structural brain network 

analysis compared to skeleton-based diffusion MRI markers in two independent samples of 

sporadic SVD, the most common form of the disease. In this pre-registered study, we 

reconstructed multiple brain networks with varying edge and node definition using either a 

simpler, established pipeline based on single-shell diffusion data or using a more advanced 

pipeline based on multi-shell diffusion data considering crossing fibers. The corresponding 

network architecture was quantified by network efficiency. For clinical validation, we assessed 

the added benefit of structural brain network analysis in explaining processing speed deficits, 

i.e., the main cognitive deficit in SVD and in detecting disease progression over time. For 

technical validation, we assessed the test-retest reliability in a high-frequency serial imaging 

longitudinal dataset. Our main findings were that: i) for clinical validation, structural brain 

networks provide only a small benefit in explaining processing speed over skeleton-based 

diffusion markers; ii) structural brain networks do not capture short-term disease progression 

over time; iii) multi-shell diffusion imaging does not improve the clinical validity of structural 

networks; iv) most structural brain networks show excellent test-retest reliability and thus a 

high technical validity and v) node and edge definitions have a substantial effect on brain 

network topology, highlighting the need for standardization to facilitate comparisons between 

research studies.  

SVD is frequently accompanied by comorbid Alzheimer’s disease. Markers that provide an 

understanding of specific pathological contributions in the individual patient are of great 

clinical need. Diffusion alterations have also been observed in Alzheimer’s disease with tracts 

of the posterior temporal lobe being affected while SVD is considered a global brain disease. 

However, disease-specific diffusion markers are lacking. Recent advances in diffusion MRI 
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allow to assess properties specific to underlying fiber populations, i.e. on the fiber population 

per voxel (fixel) level. Using this technique, one can derive measures of microstructure reflected 

in fiber density and macrostructure reflected in fiber-bundle cross-section. 

Study II explored the utility of tract-specific fixel metrics to disentangle effects of Alzheimer’s 

disease and SVD on white matter in three independent samples. We assessed the fiber density 

and fiber-bundle cross-section of 29 tractography-based key white matter tracts and imaging 

hallmarks of SVD and Alzheimer’s disease in addition to age and brain volume as a measure 

of neurodegeneration. Our main findings were that i) fiber density was substantially reduced in 

genetically defined SVD and showed the strongest association with SVD imaging hallmarks; 

ii) especially in AD, fiber-bundle cross-section was associated with brain volume; iii) both fiber 

density and fiber-bundle cross-section were reduced in the presence of amyloid, but this was 

not further exacerbated by abnormal tau deposition. 

In conclusion, tractography-based diffusion MRI markers are appealing in SVD research since 

they allow to approach the disease as disconnection syndrome through structural brain network 

analysis and to derive fiber-specific properties of white matter fiber tracts through fixel-based 

analysis. Structural brain network analysis does not show an added benefit over skeleton-based 

diffusion markers in explaining cognitive deficits in SVD or detecting disease progression. 

Thus, these simpler markers based on diffusion tensor imaging remain the preferred choice for 

these purposes. Fixel-based analysis yields promise to disentangle effects of SVD and 

neurodegeneration in mixed disease. White matter microstructure, as captured by fiber density, 

is highly sensitive towards SVD-related brain alterations while neurodegeneration is associated 

with fiber-bundle cross-section, suggesting altered white matter macrostructure. Future 

research should address the sensitivity of fixel metrics to change upon disease progression and 

their test-retest reliability in longitudinal studies to facilitate widespread clinical use and the 

development of a surrogate endpoint for clinical trials.  
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1. INTRODUCTION 

Cerebral small vessel disease (SVD) is an age-related disorder of the small perforating 

arterioles, capillaries, and venules leading to damage of the brain parenchyma (Wardlaw, 

Smith, and Dichgans 2019; Dichgans and Leys 2017). SVD accounts for approximately 25% 

of all ischemic and most hemorrhagic strokes and is a key contributor to dementia, frequently 

co-occurring with neurodegenerative diseases such as Alzheimer’s disease (Attems and 

Jellinger 2014; van der Flier et al. 2018). As life expectancy increases, the incidence of SVD is 

steadily rising, imposing a great burden on public health and affected individuals (Iadecola et 

al. 2019). SVD is associated with apathy, depression, cognitive decline, gait impairments and 

urinary disturbances (Pantoni 2010; Wardlaw, Smith, and Dichgans 2019). Cognitive 

symptoms include most frequently impairments in executive function and processing speed – 

especially in early disease stages – but also impairments in episodic memory, attention, and 

language (Charlton et al. 2006; Salvadori et al. 2022; Hamilton et al. 2021). 

To date, no cure for SVD exists. Monitoring disease progression and treatment of vascular risk 

factors (especially arterial hypertension) remains the most promising therapy. Reliable 

biomarkers can not only support in monitoring disease progression, but can also facilitate the 

development of new therapies when used as surrogate endpoints in clinical trials. SVD leads to 

distinct brain alterations on magnetic resonance imaging (MRI), which can be quantified and 

used as imaging biomarkers. Conventional MRI markers of SVD are typically based on lesions, 

such as white matter hyperintensities (WMH), lacunes, and microbleeds (Wardlaw, Smith, and 

Dichgans 2019). However, white matter tissue changes long before lesion manifestation 

apparent on conventional MRI (Maillard et al. 2014). Diffusion MRI markers capture these 

subtle white matter tissue alterations of SVD and have been shown to outperform conventional 

MRI markers in both explaining clinical deficits and capturing disease progression (Baykara et 

al. 2016; Konieczny et al. 2021).  

SVD induces tissue alterations in white matter tracts that interconnect remote brain regions (ter 

Telgte et al. 2018). These local tissue effect are accompanied by remote effects of the disease 

such as cortical thinning caused by lacunes and white matter hyperintensities via the 

disconnection of white matter tracts (Duering et al. 2012; 2015). These findings led to the notion 

that SVD is a disconnection syndrome which can be assessed with structural brain network 

analysis of diffusion MRI (ter Telgte et al. 2018; Tuladhar et al. 2016). However, network 

analysis is complex and the added benefit over simpler, established diffusion MRI markers for 

SVD characterization has so far not been evaluated. This motivated Study I, in which we 
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systematically assessed the value of structural brain network analysis as imaging marker for 

SVD. 

Yet, SVD often co-occurs with Alzheimer’s disease (Kapasi, DeCarli, and Schneider 2017; 

Kalaria 2016). Diffusion alterations in white matter fiber tracts have been observed in both 

SVD and Alzheimer’s disease with differing spatial patterns (Duering et al. 2014; Nasrabady 

et al. 2018; Raghavan et al. 2022). However, disease-specific diffusion markers are lacking, 

and it remains unclear if and how Alzheimer’s disease confounds diffusion alterations observed 

in SVD. In Study II, we assessed the capacity of a novel diffusion MRI model operating on the 

fixel level (fiber population within a voxel) to disentangle the effects of SVD and Alzheimer’s 

disease on white matter integrity of major white matter fiber tracts (Raffelt et al. 2017; 

Dhollander et al. 2021).  

In the following, types of cerebral small vessel disease and underlying pathology, the 

prevalence of mixed disease as well as conventional and diffusion MRI markers are introduced 

in more detail. 

 

1.1. Types of cerebral small vessel disease and underlying pathology 

SVD is an umbrella term of several subtypes: 

Sporadic SVD is the most common form of the disease and is associated with traditional 

vascular risk factors (i.e., arterial hypertension, hypercholesteremia, diabetes mellitus and 

smoking) (Wardlaw, Smith, and Dichgans 2013). The pathophysiological mechanisms of 

sporadic SVD are still incompletely understood, but vessel wall stiffening and thickening, 

luminal narrowing, hypoperfusion and blood-brain barrier dysfunction have been proposed to 

play key roles (Wardlaw, Smith, and Dichgans 2013; Walsh et al. 2021). Neuroimaging 

manifestations of sporadic SVD are present to some degree in nearly every individual over the 

age of 60 (Leeuw et al. 2001) – the most prevalent lesion being white matter hyperintensities 

(WMH) of presumed vascular origin as seen on T2-weighted imaging (Wardlaw et al. 2013). 

Sporadic SVD frequently accompanies other diseases prevalent in the elderly. Both studies of 

this thesis included samples of sporadic SVD. 

Cerebral autosomal dominant arteriopathy with subcortical infarcts and leukoencephalopathy 

(CADASIL) is a rare, yet the most common hereditary form of SVD. CADASIL is caused by 
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mutations in NOTCH3 (Chabriat et al. 2009) and can be confirmed by skin biopsy or by 

molecular genetic testing (cysteine altering NOTCH3 mutation). While most clinical and 

neuroimaging hallmarks are similar to sporadic SVD, CADASIL patients are much younger at 

disease onset, often suffer from migraine with aura and show more extensive white matter 

lesions extending to the anterior temporal pole (Markus et al. 2002; Singhal, Rich, and Markus 

2005; Duchesnay et al. 2018). Due to young age, comorbidities are rare, rendering CADASIL 

a unique model of pure SVD. Study II included a sample of CADASIL patients to investigate 

the effects of pure SVD on fixel metrics. 

Cerebral amyloid angiopathy (CAA) is characterized by progressive accumulation of amyloid-

beta (Aβ) in the media and adventitia of small arteries and leptomeningeal and cortical 

capillaries (Biffi and Greenberg 2011; Greenberg and Charidimou 2018). The most devastating 

manifestation of CAA is lobar intracerebral hemorrhage. On conventional MRI, the disease 

furthermore presents with WMH, enlarged perivascular spaces (especially in the centrum 

semiovale), cortico-subcortical microbleeds and cortical superficial siderosis (Viswanathan and 

Greenberg 2011; Wollenweber et al. 2017). While a confirmed diagnosis of CAA requires 

histopathological evidence of Aβ accumulation, amyloid positron emission tomography (PET) 

imaging as well as the Boston criteria aid the diagnosis of possible and probable CAA in vivo 

(Charidimou, Farid, and Baron 2017; Greenberg and Charidimou 2018; Charidimou et al. 

2022). CAA is highly prevalent in individuals with Alzheimer’s disease (Greenberg et al. 2020), 

who were included in Study II. 

1.2 Mixed pathology in dementia 

Most patients who seek clinical care in memory clinics have both neurodegenerative and 

cerebrovascular disease to varying degrees (Attems and Jellinger 2014; van der Flier et al. 

2018). Alzheimer’s disease is the most frequent neurodegenerative disease and characterized 

by the cortical accumulation of Aβ plaques and neurofibrillary tau tangles leading to 

neurodegeneration (Jack et al. 2018). Results from the large Religious Orders Study and Rush 

Memory and Aging Project (ROS/MAP) study demonstrate the high prevalence of mixed 

disease (Figure 1). Specifically, 85% of individuals who were diagnosed with probable 

Alzheimer’s disease proximate to death showed cerebrovascular comorbidity upon autopsy 

(Kapasi, DeCarli, and Schneider 2017). But mixed pathologies were also present in cognitively 

normal individuals (CN) and those with mild cognitive impairment (MCI, Figure 1). In all three 

groups, pure Alzheimer’s disease was rare upon autopsy and the incidence of both pure 

Alzheimer’s and cerebrovascular pathology decreased with increasing cognitive impairment 
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(Alzheimer’s disease only: CN, 8.33%; MCI, 7.38%; probable Alzheimer’s disease, 3.13%); 

cerebrovascular disease only: CN, 28.33%; MCI, 21.03%; probable Alzheimer’s disease: 

4.92%).  

Figure 1. Prevalence of mixed pathologies in autopsied patients of the ROS/MAP study who had no cognitive 
impairment (left), mild cognitive impairment (middle) or were diagnosed with probable Alzheimer’s disease 
(right) close to death. Shades of red show cerebrovascular disease, while blue shows Alzheimer’s disease. Figures 
created with data retrieved from (Kapasi, DeCarli, and Schneider 2017). 

The high prevalence of mixed pathologies warrants the development of disease-specific 

biomarkers to enable an understanding of the contributions of specific pathologies in the 

individual patient, which motivated Study II. 

 

1.3 Conventional MRI markers of cerebral small vessel disease  

Since the small vessels are difficult to visualize on magnetic resonance imaging (MRI) at 

conventional field strengths (i.e., 1.5 and 3 Tesla), MRI markers of SVD are typically based on 

parenchymal lesions (van den Brink, Doubal, and Duering 2022). Conventional MRI markers 

include but are not limited to (Figure 2): (A) white matter hyperintensities of presumed 

vascular origin – signal abnormalities of variable size in the white matter that appear 

hyperintense on T2-weighted imaging, such as fluid attenuated inversion recovery (FLAIR); 

(B) lacunes of presumed vascular origin – round or ovoid, subcortical fluid-filled cavities; (C) 

cerebral microbleeds – small areas of signal void with associated blooming seen on T2*-

weighted MRI or susceptibility-weighted images and (D) brain atrophy – lower brain volume 

unrelated to infarctions but due to e.g. sulcal widening (in accordance with the STandards for 

ReportIng Vascular changes on nEuroimaging [STRIVE] criteria (Wardlaw et al. 2013)). These 

markers are often summarized into a semi-quantitative, global SVD score ranging from 0 to 4 
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(Staals et al. 2014), but some also allow the derivation of quantitative volumes through lesion 

segmentation (e.g., WMH volume). 

Figure 2. Conventional MRI markers (yellow arrow heads). Markers include (MRI sequence in brackets): 
(A) white matter hyperintensities (WMH; fluid attenuated inversion recovery [FLAIR]), (B) lacunes (FLAIR), (C) 
cerebral microbleeds (fast low angle shot [FLASH]), (D) brain atrophy (T1-weighted image). 

Throughout the progression of SVD, white matter tissue changes long before symptom onset 

and lesion manifestation on conventional MRI (Maillard et al. 2014). These subtle white matter 

tissue alterations go unnoticed if employing the lesion approach since the underlying tissue is 

artificially binarized into lesioned and non-lesioned tissue. Quantitative markers based on 

advanced MRI sequences, such as diffusion MRI, yield promise since smallest alterations 

within the white matter are captured (van den Brink, Doubal, and Duering 2022; Vemuri, 

Decarli, and Duering 2022). The underlying principle of diffusion MRI and derived markers 

are explained in the next section. 

 

1.4 Diffusion MRI 

Diffusion MRI quantifies the extent of water diffusion in vivo using a (T2-weighted) spin echo 

sequence and the application of diffusion-sensitizing gradients in multiple directions. The 

mobility of water molecules depends on physical factors such as temperature and viscosity, but 

also obstacles and hindrances imposed by cerebral microstructure (e.g. cell membranes, myelin 

sheaths) (Jones, Knösche, and Turner 2013) as well as the distribution of water between 

intracellular and extracellular space, the latter allowing more water movement.  

Diffusion MRI is prone to noise and artefacts. To go beyond signal representation – which is 

simple yet powerful to identify acute ischemic lesions – and to model white matter 

microstructure, sophisticated preprocessing techniques of multi-directional diffusion-weighted 

images are essential (Tax et al. 2022). Conventional diffusion MRI sequences acquire diffusion 
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directions typically over one shell with a diffusion weighting of e.g., b = 1000 s/mm2 (single-

shell diffusion MRI). More advanced acquisition schemes use a higher number of diffusion 

directions (high angular resolution diffusion MRI [HARDI]) of higher diffusion weightings 

(e.g., b = 3000 s/mm2) or even multiple diffusion weightings of varying strengths (multi-shell 

diffusion MRI). These advanced diffusion MRI schemes have longer acquisition times but 

allow for more complex, potentially biologically more accurate modelling of white matter 

microstructure (Jeurissen et al. 2013). 

1.4.1 Diffusion models 

Diffusion tensor imaging (DTI) is the most common diffusion model and can be fitted on single-

shell diffusion data (Nucifora et al. 2007). Estimation of tensor components is based on a linear 

model fit on multi-directional diffusion-weighted data. The diffusion tensor characterizes 

magnitude, degree of anisotropy and orientation of directional diffusion per voxel. In SVD, the 

typical pattern of diffusion alteration is a reduction in directionality measured by fractional 

anisotropy (FA) and an increase in the magnitude of diffusion measured by mean diffusivity 

(MD) (Raja, Rosenberg, and Caprihan 2019). Given the linear model fit, the diffusion tensor 

models water diffusion using a Gaussian distribution. In an unrestricted milieu, water molecule 

diffusion might show this distribution pattern. However, water diffusion within the brain is 

hindered by cerebral microstructure, leading to more skewed distributions of water movement 

which might violate the assumptions of the tensor model. With the aim to model cerebral 

microstructure more accurately, higher order diffusion models were introduced. 

Diffusion kurtosis imaging (DKI) is a more complex diffusion model that quantifies the degree 

of water diffusion within the brain that is non-Gaussian (Jensen et al. 2005; Tabesh et al. 2011). 

DKI requires multi-shell diffusion MRI data acquired with specific diffusion weightings to 

capture non-Gaussian water diffusion. Applications of DKI in SVD are scarce, but a previous 

Study showed higher sensitivity of kurtosis metrics towards cognitive deficits compared to 

tensor metrics while showing excellent test-retest reliability (Konieczny et al. 2021). Study I 

included metrics of both DTI and DKI as established and advanced diffusion markers of SVD. 

1.4.2 Analysis concepts of diffusion MRI 

Diffusion MRI analysis concepts applied in the context of SVD research vary greatly with 

respect to their complexity (Figure 3). 



7 
1. Introduction  

Skeleton-based diffusion markers capture alterations in diffusion metrics within the main white 

matter tracts, the so-called white matter skeleton (Figure 3A, ( Smith et al. 2006)). This simple 

and robust approach allows both regional voxel-wise analyses and the derivation of global 

diffusion markers (e.g. computation of the mean of a diffusion metric across the entire white 

matter skeleton). Using metrics derived from diffusion tensor and free water imaging, skeleton-

based diffusion markers have been shown to outperform conventional MRI markers in 

explaining clinical deficits, capturing short-term disease progression while enabling a high 

grade of automation (Baykara et al. 2016; Duering, Finsterwalder, et al. 2018). Global skeleton-

based diffusion markers are a surrogate endpoint candidate for clinical trials. They require 

substantially smaller sample sizes to assess treatment effects over time compared to 

conventional MRI markers (Benjamin et al. 2016; Baykara et al. 2016; Konieczny et al. 2021). 

The skeleton-based analysis approach was applied to DTI and DKI maps in Study I. 

Network based diffusion markers require the reconstruction of streamlines using tractography 

and the application of an atlas-based brain parcellation (Figure 3B). Depending on tractography 

algorithm used, this analysis concept can be regarded highly complex. Tensor-based 

tractography follows the main direction of the diffusion tensor per voxel until a certain 

termination criterion is reached (Jiang et al. 2006). However, this algorithm does not take into 

account crossing fibers which represents a major limitation since up to 98% of the white matter 

contains crossing fiber orientations (Tournier, Calamante, and Connelly 2012). More advanced 

constrained spherical deconvolution (CSD) algorithms allow the modelling of crossing fiber 

orientation distributions (Tournier et al. 2019). Typically, network topology is summarized to 

a graph-theoretical measure, such as efficiency which is expressed as the inverse of the shortest 

path length between two region (Rubinov and Sporns 2010). While this approach revealed 

pathomechanistic insights into SVD (Tuladhar et al. 2017), derived markers and their test-retest 

reliability have not yet been validated for clinical use. The systematic validation of network-

based diffusion markers using a deterministic and CSD-based tractography pipeline was the 

focus of Study I. 

White matter fiber tract-based diffusion markers also rely on tractography (Figure 3C). Various 

tools exist that allow reconstructing tracts connecting any two regions of interest by manual 

delineation of inclusion and exclusion masks. This approach promises flexible application but 

comes at cost of tractography dissection variability (Schilling et al. 2021). Fully automated 

tools overcome this problem by using anatomical priors to reconstruct entire white matter fiber 

tracts guided by subject-specific shape, location or connectivity (Wasserthal, Neher, and Maier-
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Hein 2018; Warrington et al. 2020). Microstructure is probed through weighting the 

reconstructed fiber tract with diffusion metrics, a concept often called “tractometry”. This 

approach was used in Study II, in which we assessed the potential of advanced fixel metrics of 

specific white matter fiber tracts to disentangle and describe effects of SVD and Alzheimer’s 

disease. Fixel metrics, which were determined within tracts, will be explained in the next 

section. 

Figure 3. Diffusion MRI analysis concepts. Approaches applied in this thesis include: (A) skeleton-based 
diffusion markers, (B) markers based on brain network analysis include streamline reconstruction using 
tractography and the reconstruction of nodes using atlas-based brain parcellation and (C) white matter fiber tract 
reconstruction.  

 

1.4.3. Beyond the voxel: fixel-based analysis 

While CSD-based tractography algorithms allow to reconstruct streamlines of crossing fibers, 

streamlines are typically weighted by voxel-based diffusion metrics. Thus, ultimately, derived 

measures are not fiber-specific, but represent voxel-averages, neglecting the fact that one voxel 

can harbor multiple (crossing) fiber populations. Advanced tools not only model streamlines of 

crossing fiber orientations, but also allow assessing properties specific to each fiber population 

within a voxel – on the fixel level. Using this technique, one can simultaneously derive tract-

specific measures of fiber density and fiber-bundle cross-section. Fiber density is a fixel-

specific feature of white matter microstructure, approximately proportional to the total intra-

axonal volume (Raffelt et al. 2012). Fiber-bundle cross-section is a fixel-specific macroscopic 

feature, presumably reflecting the accumulated axon loss (Raffelt et al. 2017; Dhollander et al. 

2021). Study II investigated if these fixel metrics allow to disentangle white matter damage due 

to SVD and Alzheimer’s disease. 
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1.5 Aim Study I: Systematic validation of structural brain networks in cerebral small 

vessel disease 

Due to the unique capacity to provide insight into brain regions and their connections in health 

and disease, studies employing network analysis have gained much attention. In SVD, reduced 

network efficiency has been associated with cognitive decline, increased mortality and a high 

likelihood of conversion to dementia (Boot et al. 2020; Tuladhar et al. 2016; 2020). Studies on 

network analysis have further informed us that especially disruption of central network edges 

of rich club nodes (i.e., highly connected and interconnected brain regions) contributes to 

cognitive decline in SVD (Reijmer et al. 2016; Tuladhar et al. 2017). 

While these findings have provided pathomechanistic insight into the disease, they also suggest 

potential of network-based markers in clinical routine by capturing disease progression and 

eventually as surrogate endpoints in clinical trials. However, upon closer examination, studies 

are highly heterogeneous in terms of tractography algorithm used for network reconstruction, 

node definition (i.e., atlas-based brain parcellation) and edge definition of the network. Also, 

the added benefit of the complex network approach on top of conventional markers and 

compared to established and less complex diffusion markers has not been assessed. 

To address these questions, Study I investigated the potential of network-based diffusion 

markers by systematically assessing their clinical and technical validity in two non-overlapping 

samples of sporadic SVD. We reconstructed multiple structural brain networks using either a 

deterministic tractography pipeline based on single-shell diffusion data, which has widely been 

used in SVD research (Tuladhar et al. 2016; Boot et al. 2020), or a more advanced multi-shell 

pipeline that models crossing fibers (Tournier, Calamante, and Connelly 2012). Networks also 

differed with respect to the node and edge definition to find the combination most sensitive to 

clinical deficits and most reliable. We a priori only assessed the (global) efficiency of brain 

networks which has previously shown to be most sensitive to cognitive deficits in SVD (Boot 

et al. 2020). For clinical validation, we determined the added benefit of structural brain network 

analysis in explaining processing speed deficits, the main cognitive deficit in SVD, and in 

detecting disease progression over time. For technical validation, we assessed test-retest 

repeatability in a high-frequency serial imaging longitudinal dataset. 

Our hypotheses and analysis approach were pre-registered at AsPredicted.org before carrying 

out any analyses. Our pre-specified hypotheses were that i) compared with simpler global white 

matter diffusion metrics, structural brain network analysis better explains processing speed 
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deficits and better captures short-term disease progression over time, and ii) a more elaborate 

brain network pipeline using multi-shell data and CSD-based tractography outperforms a 

simple deterministic brain network pipeline using single-shell data. 

 

1.6 Aim Study II: Disentangling the effects of Alzheimer’s and cerebral small vessel 

disease on white matter fiber tracts  

Since Alzheimer’s disease and SVD co-occur in most memory clinic patients, (Kapasi, DeCarli, 

and Schneider 2017), biomarkers that disentangle and describe the contribution of each 

pathology within the individual patient are of high clinical relevance. Diffusion alterations have 

been observed in both SVD and Alzheimer’s disease. In severe SVD cases, white matter 

damage expands from the periventricular white matter to the deep white matter. In addition, 

focal SVD lesions induce remote effects in white matter due to secondary neurodegeneration 

(ter Telgte et al. 2018; Duering et al. 2012), rendering SVD a global brain disease. In 

Alzheimer’s disease, white matter damage is increasingly recognized to be an early hallmark 

of the disease (Nasrabady et al. 2018; Araque Caballero et al. 2018). Diffusion alterations of 

temporal white matter fiber tracts (e.g., parahippocampal cingulum and inferior temporal white 

matter fiber tracts) have been found to be associated with tau pathology (Raghavan et al. 2022). 

Another study found an association between free-water corrected DTI metrics of the uncinate 

fasciculus and the posterior cingulum and Aβ and tau pathology (Pichet Binette et al. 2021). 

However, most diffusion MRI studies in Alzheimer’s disease did not consider comorbid SVD, 

which has been shown to be the main driver of diffusion alterations in diffusion tensor and free 

water imaging in mixed disease (Finsterwalder et al. 2020).  

To address the need for disease-specific biomarkers, Study II assessed the utility of advanced 

diffusion metrics operating on the fixel level to describe and disentangle alterations due to 

Alzheimer’s disease and SVD. We included three independent samples covering genetically 

defined cerebral small vessel disease (CADASIL) and age-matched controls, the full spectrum 

of biomarker-confirmed Alzheimer’s disease including Aβ and tau negative controls and a 

validation sample with presumed mixed pathology. The fiber density and fiber-bundle cross-

section of 29 well-defined white matter fiber tracts was assessed. In this exploratory analysis, 

we did not have any pre-specified hypotheses in terms of associations between fixel-metrics 

and Alzheimer’s disease vs. SVD pathology. Our main goal was to investigate whether SVD 

and Alzheimer’s disease show distinct signatures of white matter damage as assessed by 
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advanced fixel metrics. We performed group comparisons between patients and controls and 

assessed associations between fixel metrics within main white matter tracts and imaging 

hallmarks of SVD (WMH volume, lacune and cerebral microbleed count) and Alzheimer’s 

disease (amyloid- and tau-PET), age and a measure of neurodegeneration (brain volume). Main 

findings obtained in the SVD and Alzheimer’s disease samples were independently validated 

in a third sample of elderly with presumed mixed pathology. 
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2. STUDIES 

The original numbering of tables, figures, and supplementary material within each article has 

been retained. 

2.1 Study I: Systematic validation of structural brain networks in cerebral small vessel 

disease 

The following section includes the original research article “Systematic validation of structural 

brain networks in cerebral small vessel disease” which was published in Journal of Cerebral 

Blood Flow & Metabolism (Dewenter et al., 2022). 

Systematic validation of structural brain networks in cerebral small vessel disease 

Anna Dewenter1, MSc, Benno Gesierich1, PhD, Annemieke ter Telgte2,3, PhD, Kim 

Wiegertjes2, PhD, Mengfei Cai2, MD, Mina A. Jacob2, MD, José P. Marques4, PhD, David G. 

Norris4, PhD, Nicolai Franzmeier1, PhD, Frank-Erik de Leeuw2, MD, PhD, Anil M. Tuladhar2, 

MD, PhD, Marco Duering1,2,5, MD 

1 Institute for Stroke and Dementia Research (ISD), University Hospital, LMU Munich, Germany 

2 Department of Neurology, Donders Institute for Brain, Cognition and Behaviour, Radboud University 

Medical Center, Nijmegen, The Netherlands 

3 VASCage – Research Centre on Vascular Ageing and Stroke, Innsbruck, Austria 

4 Radboud University, Donders Institute for Brain, Cognition and Behavior, Nijmegen, The Netherlands 

5 Medical Image Analysis Center (MIAC) and Department of Biomedical Engineering, University of 

Basel, Basel, Switzerland 

2.1.1 Abstract 

Cerebral small vessel disease (SVD) is considered a disconnection syndrome, which can be 

quantified using structural brain network analysis obtained from diffusion MRI. Network 

analysis is a demanding analysis approach and the added benefit over simpler diffusion MRI 

analysis is largely unexplored in SVD. In this pre-registered study, we assessed the clinical and 

technical validity of network analysis in two non-overlapping samples of SVD patients from 

the RUN DMC study (n=52 for exploration and longitudinal analysis and n=105 for validation). 

We compared two connectome pipelines utilizing single-shell or multi-shell diffusion MRI, 
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while also systematically comparing different node and edge definitions. For clinical validation, 

we assessed the added benefit of network analysis in explaining processing speed and in 

detecting short-term disease progression. For technical validation, we determined test-retest 

repeatability.  

Our findings in clinical validation show that structural brain networks provide only a small 

added benefit over simpler global white matter diffusion metrics and do not capture short-term 

disease progression. Test-retest reliability was excellent for most brain networks. Our findings 

question the added value of brain network analysis in clinical applications in SVD and highlight 

the utility of simpler diffusion MRI based markers. 

2.1.2 Introduction 

Cerebral small vessel disease (SVD) is a leading cause of vascular cognitive impairment and 

loss of independence in the elderly. Sporadic SVD, related to increased age and arterial 

hypertension, is particularly common with a prevalence up to 50% in individuals over the age 

of 70 (ter Telgte, Wiegertjes, et al. 2018; Wardlaw, Smith, and Dichgans 2019). While 

neuroimaging features currently used in clinical routine are typically based on visible lesions – 

such as white matter hyperintensities, lacunes, and microbleeds (Wardlaw et al. 2013) – there 

is a move towards quantitative markers for measuring disease burden and progression. 

Measures based on diffusion MRI, such as diffusion tensor imaging, have shown high potential 

as quantitative markers. They allow detecting subtle white matter changes, are strongly 

associated with clinical deficits and provide excellent reliability (Baykara et al. 2016; 

Konieczny et al. 2021). 

Diffusion MRI analysis approaches differ substantially in their complexity, both in terms of 

data acquisition and subsequent processing (Tournier 2019). Because SVD is considered a 

disconnection syndrome (ter Telgte, van Leijsen, et al. 2018), brain networks based on 

tractography and graph theoretical analysis of network structure are regarded as a compelling 

approach for quantifying clinically relevant brain network alterations in SVD. These structural 

brain networks are based on fiber tractography and pre-defined regions-of-interest, i.e. the 

nodes, which are connected via white matter tracts, i.e. the edges. The corresponding network 

architecture is quantified with graph-informed measures, such as global efficiency (Rubinov 

and Sporns 2010), which has proven to be the most sensitive graph measure to capture brain 

alterations in SVD (Boot et al. 2020). Several studies suggest a high potential of structural 
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network analysis for characterizing SVD burden, for exploring the underpinnings of symptoms 

or for predicting the disease course (Reijmer et al. 2015; Tuladhar et al. 2020; Xu et al. 2018). 

There are, however, several critical knowledge gaps that are considered major roadblocks for 

further application in research and clinical routine. Network analysis is a highly demanding 

diffusion MRI analysis approach, and the added benefit over simpler diffusion MRI analysis 

has so far not been systematically assessed. Also, connectome pipelines depend on arbitrary 

choices, especially in terms of tractography algorithm and the definition of nodes and edges. 

Of particular interest are more elaborate tractography algorithms, which better model the 

complex fiber architecture of the brain, but typically rely on a more demanding data acquisition, 

such as multi-shell diffusion imaging and high-angular resolution (Jeurissen et al. 2013). These 

different choices have so far not been systematically compared in SVD. Previous studies 

suggest that most graph metrics capturing structural network architecture show good to 

excellent test-retest reliability in healthy young volunteers (Welton et al. 2015). Importantly, 

the reliability of the network analysis approach in SVD is largely unknown, but is a crucial 

factor for clinical application. 

The goal of this pre-registered study was a systematic clinical and technical validation of 

structural brain network analysis in SVD. We applied two different connectome pipelines, 

utilizing single-shell or multi-shell diffusion MRI data, while also systematically comparing 

different node and edge definitions. For exploration and independent validation, we used two 

non-overlapping patient samples with state-of-the-art diffusion MRI from the RUN DMC study 

(ter Telgte, Wiegertjes, et al. 2018; van Norden et al. 2011).  

For clinical validation, we assessed the added benefit of structural brain network analysis in 

explaining processing speed deficits, the main cognitive deficit in SVD, and in detecting disease 

progression over time. Our pre-specified hypotheses were that i) compared with simpler global 

white matter diffusion metrics, brain network analysis better explains processing speed deficits 

and better captures disease progression over time, and ii) a more elaborate connectome pipeline 

using multi-shell data and constrained-spherical deconvolution-based tractography outperforms 

a simpler deterministic connectome pipeline using single-shell data. For technical validation, 

we assessed test-retest repeatability in a high-frequency serial imaging longitudinal dataset. 
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2.1.3 Methods 

Our study design, analysis plan, and hypotheses were pre-registered and are available at 

https://aspredicted.org/382ha.pdf. 

Participants 

We included data from SVD patients participating in the RUN DMC study (van Norden et al. 

2011). For exploration, we used data from the RUN DMC – InTENse sub-study (Radboud 

University Nijmegen Diffusion tensor and Magnetic resonance imaging Cohort – Investigating 

The origin and EvolutioN of cerebral small vessel disease, ter Telgte, Wiegertjes, et al. 2018). 

In this sub-study, 54 patients from the main study were invited to a baseline MRI assessment, 

used for the cross-sectional analysis, and a total of 9 monthly follow-up MRI scans, used for 

the longitudinal analysis. For the cross-sectional exploratory analysis, two patients were 

excluded because of confounding neuropsychological test results (Konieczny et al. 2021), 

which resulted in a final sample of 52 sporadic SVD patients.  

For independent validation of the cross-sectional results, we used a non-overlapping sample 

from the 3rd follow-up visit of the RUN DMC main study (n=183). Some patients had to be 

excluded due to missing DWI data (n=2), non-SVD infarcts (n=6), MRI protocol violation 

(n=1), missing neuropsychological data (n=16), or insufficient image quality (n=5). To ensure 

that results were not driven by outlier observations, we excluded five patients with Trail Making 

Test (TMT) compound scores qualifying as outlier according to the interquartile range criterion 

(i.e., scores outside the range defined by the cut-points of the first and third quartile plus 1.5 

times the interquartile range above and below). Since the InTENse sub-study deliberately 

included a subset of patients with higher lesion load, we restricted the main study sample to 

SVD patients above 70 years of age to keep disease severity roughly similar across both samples 

(Table 1). This resulted in a final sample of 105 SVD patients for validation. 

For the longitudinal analysis, we split the sample from the RUN DMC – InTENse sub-study 

into an exploration (n=27) and validation group (n=26) while accounting for a similar number 

of visits and disease severity (i.e. WMH volume) across groups. A few visits had to be excluded 

from the longitudinal analysis due to insufficient data quality, of which some only became 

apparent during tractography (n=7). Only patients with at least 3 MRI visits were included for 

the longitudinal analysis, rendering the sample size to 25 patients for exploration and 26 patients 

for validation with a median of 9 (range 3-10) MRIs per participant. 
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Study protocols were in accordance with the declaration of Helsinki and approved by the 

medical research ethics committee (CMO Arnhem-Nijmegen). Written informed consent was 

obtained from all participants prior to the start of the study. 

Neuropsychological testing 

Neuropsychological testing was performed following identical protocols in both samples. We 

pre-specified to focus on the core deficit in SVD, i.e. processing speed, which was assessed by 

the time to complete Trail Making Test matrix A and B. We derived age- and education-

corrected z-scores for matrix A and B separately as based on healthy subjects (Baykara et al. 

2016; Konieczny et al. 2021; Tombaugh 2004) and next calculated the average to derive an 

established compound score. Patients were further characterized with respect to vascular risk 

factors (arterial hypertension, hypercholesterolemia, diabetes, smoking status) and activities of 

daily living (Barthel scale score). 

MRI acquisition and conventional SVD imaging markers 

MRI scans were performed on a single 3 Tesla scanner (Magnetom Prisma with 32-channel 

head coil; Siemens Healthineers, Erlangen, Germany). Imaging protocols in both studies were 

largely similar and included 3D T1-weighted, 3D fluid-attenuated inversion recovery (3D-

FLAIR), and 3D gradient echo (T2*-weighted) sequences. The diffusion MRI protocol was 

identical in both samples and comprised a multi-band echo planar imaging multi-shell 

diffusion-weighted imaging sequence (repetition time 3220 ms, echo time 74 ms, diffusion-

encoding directions 30 x b = 1000 s/mm2 and 60 x b = 3000 s/mm2, 10 x b = 0 images, multi-

band factor 3). One b = 0 image with inverted phase-encoding direction was acquired for 

correction of susceptibility-induced distortions during preprocessing. A complete description 

of all sequence parameters can be found in Table e-1. 

Conventional SVD imaging markers (white matter hyperintensity [WMH] volume, lacune 

count, microbleed count, brain volume) were quantified according to the STRIVE consensus 

criteria (Wardlaw et al. 2013). All volumes were normalized to the intracranial volume. Details 

on the calculation of conventional SVD imaging markers have been described previously 

(Telgte et al. 2019). 
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Diffusion MRI preprocessing 

Preprocessing steps included visual quality control, Marchenko-Pastur principal component 

analysis-based denoising, Gibbs artefact removal, and correction for susceptibility-induced 

distortions, eddy current-induced distortions, as well as head motion. This was done using tools 

from MRtrix3 (www.mrtrix.org/, version 3.0.0, dwidenoise, (Veraart et al. 2016; Veraart, 

Fieremans, and Novikov 2016; Cordero-Grande et al. 2019; Tournier et al. 2019), mrdegibbs 

(Tournier et al. 2019; Kellner et al. 2016)) and the Functional Magnetic Resonance Imaging of 

the Brain (FMRIB) Software Library (FSL; version 5.0.10 [RUN DMC – InTENse], version 

6.0.1 [RUN DMC main], topup (Andersson, Skare, and Ashburner 2003; Smith et al. 2004), 

eddy (Andersson and Sotiropoulos 2016)). 

Skeleton-based, global white matter diffusion markers 

To assess the added benefit of structural brain network analysis, we included measures of global 

white matter integrity as reference, that were based on diffusion tensor imaging (DTI) and 

diffusion kurtosis imaging (DKI) metrics. DTI metrics were calculated using ‘dtifit’ in FSL 

(using only b = 0 and b = 1000 s/mm2 images) and DKI metrics using the Diffusional Kurtosis 

Estimator (www.nitrc.org/projects/dke, (Tabesh et al. 2011)). 

For DTI, we included the most commonly used diffusion metrics fractional anisotropy and 

mean diffusivity (Smith et al. 2006). For DKI, we included mean kurtosis and radial kurtosis 

as reference metrics, since these showed the highest association with processing speed in a 

previous study (Konieczny et al. 2021). 

Global white matter measures of these metrics were derived as average over a skeleton of the 

major white matter tracts, as implemented in the tract-based spatial statistics (TBSS) pipeline 

in FSL (Smith et al. 2006). The TBSS-based registration to standard space and projections onto 

the white matter skeleton was estimated from fractional anisotropy images and then applied to 

all other diffusion metrics. Prior to averaging, we applied a custom mask to remove all areas 

from the skeleton that are typically susceptible to cerebrospinal fluid partial volume effects in 

SVD patients (Baykara et al. 2016). The resulting global white matter diffusion metrics will be 

referred to as ‘skeleton-based’ diffusion markers. 
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Figure 1. Overview of the two connectome pipelines (single-shell left, multi-shell right). The single-shell 
pipeline relies on diffusion tensor imaging and tractography using the FACT algorithm. The multi-shell pipeline 
relies on MSMT-CSD and anatomically constrained tractography. For both pipelines, we applied the node 
definition according to the AAL or Brainnetome atlas. After network reconstruction, each structural brain network 
was summarized by the global efficiency metric (E). N is the set of all nodes in the network, and n is the number 
of nodes, whereas d(i,j) is the weighted distance between nodes i and j, (i,j ∈ N). Abbreviations: AAL = automated 
anatomical labelling; ACT = anatomically constrained tractography; BN = Brainnetome; DTI = diffusion tensor 
imaging; FACT = fiber assignment through continuous tracking; mFA = mean of fractional anisotropy of 
streamlines; mMK = mean of mean kurtosis of streamlines; MSMT-CSD = multi-shell multi-tissue constrained 
spherical deconvolution; nSL = number of streamlines; T1w = T1-weighted image; 5TT = five tissue-type image. 
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Overview of the structural brain network analysis 

We applied two brain network pipelines (described in detail in the following sections), using 

either single-shell or multi-shell data as starting point. The key difference between these two 

brain network pipelines was the tractography approach. In the single-shell pipeline (Figure 1, 

left), streamlines were tracked by following the main direction of the diffusion tensor per voxel. 

The multi-shell data (Figure 1, right) enabled a more advanced tractography approach based 

on constrained-spherical deconvolution (CSD), which reconstructs complex fiber orientation 

distributions of multiple fiber populations within a voxel. As such, CSD-based tractography 

allows to track crossing fibers, which occur in most white matter regions (Tournier, Calamante, 

and Connelly 2012). In addition to CSD, we improved the biological accuracy of the streamline 

reconstruction by introducing anatomical constraints (i.e. streamlines followed white matter 

fiber orientation distributions, were terminated when entering cortical grey matter and rejected 

when entering fluid-filled regions; for full algorithm details see original publication (Smith et 

al. 2012). 

We then applied a brain parcellation to the reconstructed streamlines to form structural 

networks, which are defined by a set of nodes (i.e., brain regions) and edges connecting these 

nodes. Across both pipelines, we defined the nodes based on the AAL atlas (automated 

anatomical labelling, 90 ROIs in total, after excluding cerebellar regions) and the Brainnetome 

atlas with a higher number of smaller regions (246 ROIs in total). Several commonly used edge 

definitions were used to calculate edge weights (details are given below for each pipeline). 

Finally, we derived the global efficiency as a well-established network marker of SVD burden 

from each structural network (Figure 1, center bottom). Efficiency between two regions is 

expressed as the inverse of the shortest path length between two regions (Rubinov and Sporns 

2010), where the length of each possible path is equal to the sum of the lengths of all edges in 

that path. Global efficiency of the network is then defined as the average efficiency across all 

node pairs. To assess whether some nodes within the global network disconnect faster than 

others over time, we also calculated local efficiency for each node of the structural network that 

showed the highest clinical and technical validity in the longitudinal dataset (i.e. highest effect 

sizes in regression analyses, highest added benefit in random forest regression and highest 

intraclass correlation coefficient [ICC]). 
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Single-shell Pipeline 

For single-shell networks, streamlines were reconstructed based on the diffusion tensor using 

the fiber assignment by continuous tracking (FACT) algorithm (‘dti_tracker’, Diffusion 

Toolkit, version 0.6.4.1). In short, the algorithm started at the center of all voxels with fractional 

anisotropy > 0.2 and terminated if the streamlines left the brain mask, encountered voxels with 

fractional anisotropy < 0.2 or when the turning angle exceeded 45°. Reconstructed streamlines 

were filtered and smoothed requiring a step length of 1 voxel (‘spline_filter’, Diffusion 

Toolkit). Two nodes were considered connected if the endpoints of the reconstructed 

streamlines lay within both nodes. Atlas parcellations were registered to diffusion space, 

applying a series of linear and non-linear registrations, leading from the MNI template space, 

through T1-weighted and FLAIR space, to the diffusion space. All registrations were estimated 

and concatenated with the Advanced Normalization Tools (ANTs) (Avants et al. 2011)). For 

the longitudinal data, as previously described in detail (Gesierich et al. 2020), baseline T1-

weighted images were indirectly normalized into MNI space via an intermediate custom 

template, and follow-up scans were normalized by concatenating this normalization with the 

registration between baseline and follow-up T1-weighted images. 

Five commonly used edge weights were applied in the single-shell pipeline: number of 

streamlines (nSL), number of streamlines weighted by the mean length (mLen), number of 

streamlines weighted by the inverse of the streamline length (invLen) (Hagmann et al. 2007) 

mean fractional anisotropy over all streamlines (mFA), number of streamlines weighted by the 

mean fractional anisotropy (wFA). Each edge was further normalized by the average volume 

of the connected nodes to correct for the different volumes of the nodes and for different brain 

sizes.  

For each of the resulting 10 (2 node definitions x 5 edge definitions) weighted undirected 

networks, we calculated the global efficiency using the Brain Connectivity Toolbox (Rubinov 

and Sporns 2010). 

Multi-shell Pipeline 

For the advanced multi-shell networks, streamlines were reconstructed using a multi-shell 

multi-tissue constrained spherical deconvolution tractography pipeline using tools from 

MRtrix3 (Tournier et al. 2019). To limit false positives and improve biological accuracy (Smith 

et al. 2012), tractography was anatomically-constrained to white matter by using a 5-tissue-type 
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image generated from T1-weighted images. WMH masks were set as the fifth volume (i.e., 

pathological tissue) of the 5-tissue-type image to allow tracking within these regions, which are 

often is misclassified as grey matter, leading the tracking algorithm to terminate prematurely. 

Importantly, WMH segmentations were performed on each time point in the longitudinal 

dataset. The remaining steps were: response function estimation (‘dhollander’ algorithm), 

estimation of the fiber orientation distributions (Jeurissen et al. 2014), multi-tissue informed 

log-domain intensity normalization, modelling 10 million streamlines using anatomically 

constrained streamlines tractography, dynamic seeding and cropping at the GMWM-interface, 

as well as SIFT2 filtering of the streamlines (Smith et al. 2015). 

Consistent with the single-shell pipeline, nodes were defined either according to the AAL atlas 

or Brainnetome atlas.  

Seven different edges were applied in the multi-shell pipeline: number of streamlines (nSL), 

number of streamlines weighted by the length of each streamline (mLen), number of 

streamlines weighted by the inverse length of each streamline (invLen) (Hagmann et al. 2008), 

mean of the mean kurtosis of streamlines (mMK), number of streamlines weighted by the mean 

of the mean kurtosis (wMK), mean fractional anisotropy of streamlines (mFA), number of 

streamlines weighted by the mean fractional anistropy (wFA). While fractional anisotropy maps 

were calculated on single-shell diffusion data, edges based on fractional anisotropy were also 

included here to allow a more direct comparison of the two pipelines. Again, we calculated 

global efficiency for the 14 (2 node definitions x 7 edge definitions) networks. 

Statistical analysis 

All statistical analyses were performed in R (version 3.6.1, R Core Team 2016). The statistical 

significance level was set at α < 0.05. Since we mainly focused on the effect sizes when 

interpreting the results, we did not correct for multiple comparisons. 

To compare sample characteristics between RUN DMC – InTENse and RUN DMC main, we 

used chi-squared (χ2) tests (for categorical variables) and non-parametric Wilcoxon rank sum 

tests (for numeric variables), as appropriate.  

Subsequent analyses were conducted completely independently for both samples. The 

processing speed compound scores were power-transformed using the Yeo-Johnson 

transformation to approximate a normal distribution (Yeo and Johnson 2000). 



22 
2. Studies 

Four main analyses were conducted to examine clinical and technical validation of structural 

brain network analysis in SVD.  

First, we performed simple linear regression analyses between global efficiency of structural 

brain networks (independent variable) and processing speed performance (i.e., TMT compound 

score, dependent variable). We used the adjusted R2 to quantify and compare associations. 

Second, we assessed the added benefit for each marker on top of conventional SVD imaging 

markers (i.e., normalized WMH volume, lacune count, microbleeds and normalized brain 

volume). We used multivariable random forest regression with conditional inference trees (R 

package ‘party’, version 1.3.3) to overcome the problem of multicollinearity, which is a critical 

aspect since SVD imaging markers and diffusion markers are intercorrelated. We constructed 

one random forest regression model with conventional SVD imaging markers only (number of 

trees=1501, mtry=3), and additional models adding respectively one of the diffusion-based 

markers. Prediction accuracy was calculated for each random forest regression model as the 

root-mean-square error (RMSE) between observed and predicted values using leave-one-out 

cross-validation. The added benefit of each diffusion-based marker for prediction of processing 

speed was quantified by the difference of the RMSE between the model with and without that 

diffusion-based marker (Konieczny et al. 2021). We repeated random forest regression for each 

model (with cross-validation) 100 times to determine a point estimate and 95% confidence 

interval for the RMSE. 

Third, to assess the ability of structural brain networks to capture change over time, we 

calculated linear mixed effects models in the split exploration and validation longitudinal 

samples. Brain network and skeleton-based diffusion markers were first normalized 

individually for each patient to the baseline score and then centered and scaled (by subtracting 

the mean and dividing by the standard deviation). Time of MRI visits (relative to baseline visit) 

was modelled as fixed effect. To account for patient-specific variation, we included a random 

intercept for each patient in the model architecture, but models with random slopes per patient 

did not converge. The fixed effect reflects the mean change in the structural brain network over 

time, marginal R2 reflects the explained variance by the fixed effect. The following R packages 

were used for estimation of linear mixed models: 'lme4' (version 1.1.21, Bates et al. 2014), 

'lmerTest' (version 3.1.2) (Kuznetsova, Brockhoff, and Christensen 2017), 'boot' (version 

1.3.22) (Canty 2002), ‘MuMIn’ (version 1.43.15) (Barton and Barton 2019). 

For technical validation, we assessed the test-retest reliability of structural brain networks as 

our fourth analysis within the same exploration and validation sample used for the longitudinal 
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analysis. Intraclass correlation coefficients (1,1) (Shrout and Fleiss 1979) were calculated with 

the R package ‘psych’ (version 1.9.12.31) (Gesierich et al. 2020). 

Deviations from the pre-registered analysis protocol 

For parts of this investigation, we had to follow an unplanned path for valid reasons. First, for 

the independent validation sample of the cross-sectional analysis, we originally planned to 

randomly sample one hundred subjects from a subset of the UK Biobank with matching range 

of the WMH volume and age of the RUN DMC – InTENse subjects. However, when calculating 

the established TMT compound score, we noticed implausibly low z-scores in many UK 

Biobank subjects due to extremely low reaction times. This might have resulted from a key 

difference in task administration, since in the UK Biobank study the TMT was performed using 

a computer mouse, whereas the norm data was based on the paper-pencil version (Tombaugh 

2004). Since the TMT data was pre-specified as the clinical endpoint for the cross-sectional 

analyses, we did not want to deviate from this aspect, but instead chose a different validation 

sample. 

Second, we pre-registered to normalize global efficiency values by the global efficiency of 

random networks using the Brain Connectivity Toolbox. However, after revisiting the 

literature, we noticed that in most brain network studies in SVD – if not all – global efficiency 

values were not normalized. This might result in important consequences of the interpretation 

of these global efficiency values per se (see discussion), however, to ensure comparability with 

previous studies, we chose to follow the established procedure for brain networks in SVD. 

Third, we planned to compare a random forest regression model with skeleton-based DTI/DKI 

metrics only as a comparison model, but since we were interested in the added benefit of brain 

networks compared with skeleton-based diffusion markers – and not in the added benefit of 

brain networks on top of skeleton-based diffusion markers – we revised our random forest 

regression approach accordingly. 

Data availability 

Anonymized data will be made available upon request to the corresponding author. 
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2.1.4 Results 

Sample characteristics are presented in Table 1. SVD patients of the RUN DMC – InTENse 

sub-study were younger and presented with higher brain volumes compared to patients from 

the RUN DMC main study (p < 0.0001). 

Table 1: Sample characteristics 

 RUN DMC – InTENse sub-
study  
n=52 

RUN DMC 
main study 

n=105 

 
p-value 

Demographic characteristics 

Age [years], median (IQR) 68.50 (8.25) 77.15 (8.19)  < 0.0001 

Female, n (%) 18 (35) 48 (46)  0.2484 

Vascular risk factors, n (%) 

Hypertension 43 (83) 75 (72)a  0.2102 

Hypercholesterolemia 25 (50) 62 (60)a  0.3318 

Diabetes 6 (12) 16 (15)a  0.6843 

Current or past smoking 37 (71) 72 (69)  0.8835 

Clinical scores, median (IQR) 

Processing speed z-score -0.15 (1.16) -0.18 (1.55)  0.6265 

Barthel scale score 100 (5) 100 (5)a  0.8930 

SVD imaging markers, median (IQR) 

WMH volumeb [%] 0.35 (0.59) 0.31 (0.74)  0.7984 

Lacune count 0 (0) 0 (1)  0.3648 

Microbleed count 0 (1) 0 (1)  0.8816 

Brain volumeb [%] 77.73 (5.35) 72.51 (4.79)  < 0.0001 

 Abbreviations: IQR = interquartile range; WMH = white matter hyperintensities. a based on n=104 due to 
missing data for one patient; b Normalized by intracranial volume 

 

Clinical validation: Associations with processing speed performance 

Associations with processing speed performance as assessed by simple regression greatly 

varied depending on node, edge, and tractography pipeline (Figure 2A; Table e-2). 
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In the exploratory sample, brain networks defined by nSL/wFA edges and AAL nodes 

explained the highest variance of processing speed deficits (R2=11%) in the single-shell 

pipeline. Thus, this combination performed slightly better than the simple, skeleton-based 

diffusion marker mean diffusivity (R2=8%). Explained variance was overall higher for the 

multi-shell pipeline. Brain networks defined by the wFA edge and Brainnetome nodes best 

explained processing speed deficits (R2=20%), followed by skeleton-based mean kurtosis 

(R2=18%) and radial kurtosis (R2=15%).  

In line with the findings in the exploration sample, brain networks defined by nSL/wFA edges 

and AAL nodes yielded the strongest associations with processing speed deficits (up to 

R2=16%) in the validation sample, explaining more variance than the best-performing skeleton-

based diffusion marker fractional anisotropy (R2=13%). In contrast with the exploratory 

sample, explained variance was barely higher for the multi-shell pipeline. Only brain networks 

defined by the mLen edge performed as well as the skeleton-based diffusion marker radial 

kurtosis (R2=14%).  

To assess an added benefit in explaining processing speed deficits on top of conventional SVD 

imaging markers (normalized WMH volume, lacune count, microbleed count, normalized brain 

volume), we performed multivariable random forest regression analyses (Figure 2B). In the 

exploratory sample, brain networks based on the nSL/wFA edges and AAL nodes showed the 

highest added benefit (RMSE decrease 5%), whereas the skeleton-based diffusion markers only 

showed a small added benefit (RMSE decrease 2.5%), or even no benefit (i.e., skeleton-based 

fractional anisotropy). In the multi-shell pipeline, skeleton-based radial kurtosis added the 

highest benefit in explaining processing speed deficits (RMSE decrease 7%), followed by brain 

networks based on the wMK edge (RMSE decrease 6%). 

In the validation sample, skeleton-based fractional anisotropy added the highest benefit on top 

of conventional SVD imaging markers (RMSE decrease 4%), but brain networks with the 

wFA/mFA edge and the Brainnetome nodes showed a similar benefit. Results from the multi-

shell pipeline showed a mixed pattern in the validation sample, with no consistent difference 

between skeleton-based diffusion markers and most structural brain networks. 
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Figure 2. Associations between diffusion MRI markers (skeleton- or network-based) and processing speed. 
Analyses were performed in an exploration (RUN DMC – InTENse) and validation sample (RUN DMC main 
study). A) Simple linear regression between each diffusion marker and processing speed. Color and circle size 
depict explained variance (adjusted R2). B) Multivariable random forest regression assessing the added benefit of 
each diffusion marker on top of conventional SVD markers. Plots indicate point estimate and 95% confidence 
interval for the change in model accuracy as assessed by the RMSE decrease. Abbreviations: AAL = automated 
anatomical labelling; BN = Brainnetome; FA = fractional anisotropy; invLen = number of streamlines weighted 
by the inverse length of each streamline; MD = mean diffusivity; mFA = mean of fractional anisotropy of 
streamlines; MK = mean kurtosis; mMK = mean of mean kurtosis of streamlines; mLen= mean length of 
streamlines; nSL = number of streamlines; RK = radial kurtosis; RMSE = root mean squared error; wFA= number 
of streamlines weighted by fractional anisotropy; wMK = number of streamlines weighted by mean kurtosis. 

Clinical validation: Tracking short-term disease progression in serial MRIs 

To assess the ability of brain networks to monitor short-term disease progression, we used data 

from high-frequency serial imaging and linear mixed effects models (Figure 3A, B; Table e3). 

In the exploratory sample and using the single-shell pipeline, the brain network based on the 

mFA edge was the only network parameter demonstrating a significant change over time. A 

change over time was more evident for skeleton-based diffusion markers (all p < 0.05), as 

indicated by substantially larger marginal R2. Most brain networks derived from the multi-shell 

pipeline showed a change over time. However, also in this pipeline, the simpler, skeleton-based 

diffusion markers outperformed brain networks in the ability to capture short-term disease 

progression.  

This pattern was replicated in the validation sample (Figure 3C). 
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To assess regional changes over time, we calculated local efficiency of each node of the 

structural brain network weighted by the mFA and defined by the AAL atlas, since this was the 

network with the largest change over time among global networks. Only four out of 90 nodes 

showed a significant change over time, but effect sizes were extremely small (fixed effects < 

0.002, marginal R2 < 0.02).  

Figure 3. Short-term disease progression analysis using linear mixed effects models. A) Single subject data 
from the exploration sample. Skeleton-based RK (top) and structural brain networks with AAL node and nSL edge 
definition (bottom) plotted against time as examples. For better visibility, five subjects are depicted in black and 
the fixed effect of time is depicted in red. B) Marginal R2 (variance explained by time) from the linear mixed-
effects models in the exploration and C) validation sample. Abbreviations: AAL = automated anatomical labelling; 
BN = Brainnetome; FA = fractional anisotropy; invLen = number of streamlines weighted by the inverse length 
of each streamline; MD = mean diffusivity; mFA = mean of fractional anisotropy of streamlines; MK = mean 
kurtosis; mLen = mean length of streamlines; mMK = mean of mean kurtosis of streamlines; nSL = number of 
streamlines; RK = radial kurtosis; wFA= number of streamlines weighted by fractional anisotropy; wMK = number 
of streamlines weighted by mean kurtosis. 

Technical validation: Test-retest repeatability  

For technical validation, we used intraclass correlation coefficients to estimate test-retest 

repeatability in the serial MRI dataset. Most networks from the single-shell pipeline showed 

excellent test-retest repeatability with intraclass correlation coefficients higher than 93% in the 

exploratory sample (Figure 4A, B; Table e4). Only brain networks based on the AAL node 

and mLen edge definition were less reliable (ICC < 89%). Still, skeleton-based diffusion 

markers demonstrated a better test-retest repeatability (ICC > 98%). Some brain networks 

derived from the multi-shell pipeline showed also high test-retest repeatability, in particular 

those based on a mMK or mFA edge definition were in the range of the skeleton-based diffusion 

markers (ICC > 97%). The remaining brain networks of the multi-shell pipeline were less 

reliable. Especially the invLen edge showed intraclass correlation coefficients below 60%, 

indicating the worst technical validity of all assessed brain networks. Again, this pattern was 

replicated in the validation sample (Figure 4C). 
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Figure 4. Test-retest repeatability of diffusion markers. A) Scatterplots showing the consistency of diffusion 
markers illustrated using the first two visits (time points t1 and t2) for skeleton-based MD (top) and wFA structural 
brain networks (bottom) as examples. In case of perfect test-retest repeatability, all points would lie on the 
diagonal. B) Intraclass correlation coefficients of diffusion markers assessed in the exploration and C) validation 
sample. Abbreviations: AAL = automated anatomical labelling; BN = Brainnetome; FA = fractional anisotropy; 
ICC = intraclass correlation coefficient; invLen = number of streamlines weighted by the inverse length of each 
streamline; MD = mean diffusivity; mFA = mean of fractional anisotropy of streamlines; MK = mean kurtosis; 
mMK = mean of mean kurtosis of streamlines; mLen = mean length of streamlines; nSL = number of streamlines; 
RK = radial kurtosis; wFA= number of streamlines weighted by fractional anisotropy; wMK = number of 
streamlines weighted by mean kurtosis. 

2.1.5 Discussion 

We systematically assessed the clinical and technical validity of brain network analysis as a 

marker for SVD. Our main findings are that i) for explaining processing speed, structural brain 

networks provide only a small added benefit over simpler, global white matter diffusion 

markers; ii) structural brain networks do not capture short-term disease progression over time; 

iii) multi-shell imaging does not improve the clinical validity of structural networks; iv) most 

structural brain networks show excellent test-retest reliability and thus a high technical validity 

and v) node and edge definitions have a substantial effect on brain network analysis results, 

highlighting the need for standardization to facilitate comparisons between studies. 

Markers from diffusion MRI are well-established quantitative markers for SVD, both for cross-

sectional and longitudinal use (Baykara et al. 2016; Konieczny et al. 2021). While global white 

matter markers, e.g. obtained as average over the entire fiber tract skeleton, offer a 

straightforward implementation, they do not account for the complex network structure of the 

human brain. Brain network analysis leverages this complex information for additional 

mechanistic insight, but its implementation is more demanding and subject to arbitrary 

decisions, such as node and edge definitions. In our pre-registered analysis and systematic 

comparison, we did not find a substantial advantage of brain network analysis over simpler, 

skeleton-based diffusion MRI markers. Importantly, for capturing change over time in the 
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longitudinal dataset, the simple markers were clearly superior. Thus, our findings question the 

added value of brain network analysis over simpler methods for clinical applications in SVD. 

Diffusion MRI excels especially for longitudinal studies of SVD due to excellent test-retest 

reliability and high sensitivity to subtle white matter changes. Previous studies have shown that 

diffusion MRI markers (i.e. global skeleton-based markers) yield the smallest sample size 

estimates for assessing treatment effects over time, thus offering great potential to facilitate 

phase II randomized controlled trials (Baykara et al. 2016; Benjamin et al. 2016). While brain 

networks were also very reliable in terms of test-retest repeatability, they failed to capture short-

term disease progression over time. However, brain topology changes might only become 

visible throughout long-term disease progression reflecting secondary degeneration (Tiedt et 

al. 2018). Still, tracking short-term progression is of particular interest for clinical trials with 

typically limited study duration. Thus, skeleton-based markers can be considered the first 

choice for application in clinical trials. Nonetheless, network analysis might still be useful for 

gaining pathomechanistic insights. As such, previous work has shown that especially 

connections between rich club nodes (i.e., nodes that are highly interconnected) decline in SVD 

(Tuladhar et al. 2017). The development of targeted intervention strategies might benefit from 

such mechanistic insights. Also, while global diffusion markers are mostly determined by SVD 

– not Alzheimer’s disease pathology (Finsterwalder et al. 2020) – in memory clinical patients, 

regional brain network analysis might offer the possibility to disentangle the contribution of 

different pathologies.  

Given that the brain’s white matter contains more than 80% of crossing fibers (Tournier, 

Calamante, and Connelly 2012), we expected the more elaborate connectome pipeline with 

modelling of multiple fiber populations within a voxel via constrained spherical deconvolution 

to better depict SVD burden. Surprisingly, networks based on the multi-shell pipeline did not 

show an advantage over those based on the single-shell pipeline, although the latter method 

completely neglects the issue of crossing fibers.  

Overall, we can only speculate why there was no clear added benefit of structural network 

analysis over simpler, skeleton-based diffusion markers. A potential explanation might be that 

the complex algorithms needed to construct the networks were developed on brains of young, 

healthy volunteers. The marked alterations of white matter microstructure (Wardlaw, Smith, 

and Dichgans 2019) in SVD might interfere with or violate model assumptions, e.g. of 

tractography algorithms. Furthermore, small vessel disease is now recognized as a global brain 

disease and thus, a simple global marker, such as the skeleton-based markers, might be 
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sufficient to capture disease burden. Similar to the tractography algorithm, the more elaborate 

Brainnetome atlas with a finer parcellation and better representation of the functional 

organization of the cortex was not superior to the AAL parcellation, which has a rather coarse, 

purely anatomically based parcellation. In conclusion, the simpler connectome pipeline, which 

was used in most previous brain network studies in SVD, performed best among the different 

combinations. Along the same theme that simpler measures perform better than more complex 

methods, and contrary to our previous study (Konieczny et al. 2021), we did not observe a 

benefit of the diffusion kurtosis model in the validation sample. 

In line with previous work on brain networks in SVD (Reijmer et al. 2015; Tuladhar et al. 

2020), we did not normalize the brain networks by the global efficiency of random networks. 

We also did not threshold the corresponding networks to a certain density and refer to previous 

work suggesting that – at least in the multi-shell pipeline – it might not be necessary to do so 

(Civier et al. 2019). In addition, others have already reported the effect of density thresholding 

and concluded that networks weighted by fractional anisotropy might be less prone to network 

density effects (de Brito Robalo et al. 2020). Still, global efficiency measures might be 

influenced by the density of the structural network and should thus not be understood as the 

“efficiency” of the brain network, but rather be interpreted as a global diffusion marker of the 

brain network. However, to not add another level of complexity, we decided a priori against 

trying out different arbitrary density thresholds. 

Several limitations of our study need to be discussed. First, we only focused on global efficiency 

as the core graph metric of structural networks in SVD, even though other graph metrics might 

have been suitable as well. However, others have reported global efficiency to be the most 

sensitive graph measure of cognitive impairment in SVD (Boot et al. 2020), which is why we 

decided a priori on using this graph measure to reduce the complexity of the study. Also, we 

did not normalize the global efficiency measure against null-models. Consequently, global 

efficiency might be heavily influenced by the density of the structural network. However, to 

facilitate a comparison with previous work (Tuladhar et al. 2020), we decided against this 

normalization step. Second, while the exploration and validation sample were non-overlapping 

in terms of study participants, they were collected at the same center with identical protocols 

and might therefore not be considered as fully independent. Accordingly, we cannot estimate 

how our results would generalize to a dataset with a different acquisition protocol. On the other 

hand, this can also be regarded as a strength, since observed differences between results in the 

exploration and validation sample are unlikely to originate from technical differences. Third, 
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to identify the optimal imaging marker, we did not test for significance between different 

markers. However, since this is methodologically non-straightforward, we decided to focus on 

the comparison of effect sizes and included two non-overlapping samples for replication of 

findings and to further facilitate the interpretation of results. A main strength of the study is its 

pre-registration. To our knowledge, this is the first brain network study in SVD using a fully 

pre-specified analysis plan. As demonstrated here, results highly depend on arbitrary choices 

during analysis, which is why pre-specifying the analysis plan is of great importance to improve 

the transparency and quality of research on network analysis in SVD. 

New diffusion analysis techniques are constantly emerging. Evaluating the benefit of a novel 

method over established techniques as well as technical validation are indispensable for 

evaluating the utility in research and clinical use (Smith et al. 2019). The structural network 

approach is compelling as it captures the complex network structure of the human brain. But 

when in need of disease burden or progression markers, network analysis did not show an 

advantage over the simpler skeletonized approach. Because skeleton-based markers are more 

straightforward to implement, even with fully automated processing, we conclude that skeleton-

based diffusion markers are currently better suited for clinical research, trials and potentially 

also routine use. 
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2.1.9 Supplementary material 

Table e-1: MRI acquisition parameters 

Sequence Feature RUN DMC – InTENse  
sub-study 

RUN DMC 
main study 

 Scanner Magnetom Prisma 
 Coil channels 32 (head) 
MP2RAGE Type Conventional Compressed sensing 
 TR [ms] 5500 5000 
 TE [ms] 3.8 2.98 
 TI [ms] 700, 2500a 732, 2500a 
 Flip angle [˚] 7, 4a 4, 5a 
 Voxel size [mm] 0.85 isotropic 
3D-FLAIR TR [ms] 5000 
 TE [ms] 394 
 TI [ms] 1800 
 Voxel size [mm] 0.85 isotropic 
3D-GRE TR [ms] 35 44 

 TE [ms] 29.5 6.14, 10.1, 14.1, 18.1, 22.1, 
26.1, 30.1, 34.1, 38.1 

 Flip angle [˚] 15 20 
 Voxel size [mm] 0.8 x 0.8 x 2 0.8 isotropic 
MS-DWI TR [ms] 3220 
 TE [ms] 74 
 Flip angle [˚] 90 
 In-plane resolution [mm] 1.7 x 1.7 
 Slice thickness [mm] 1.7 
 Base resolution (matrix) 130 
 Number of slices 87 
 b-values [s/mm2] 1000, 3000 
 Directions (per b-value) 30, 60 
 b=0 [images] 10 

 Receiver bandwidth 
[Hz/px] 1924 

 Parallel acceleration 2 
 Multi-band acceleration  3 
a Double inversion 

Abbreviations: FLAIR = fluid-attenuated inversion recovery; GRE = gradient echo; inTENse = Radboud 
University Nijmegen Diffusion tensor and Magnetic resonance imaging Cohort – Investigating The origin 
and EvolutioN of cerebral small vessel disease; MP2RAGE = magnetization prepared 2 rapid acquisition 
gradient echoes; MS-DWI = multi-shell diffusion-weighted imaging; RUN DMC = Radboud University 
Nijmegen Diffusion tensor and Magnetic resonance imaging Cohort; TE = echo time; TI = inversion time; 
TR = repetition time. 
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Table e-2: Simple linear regression models 

  Single-shell       Multi-shell         
  Skeleton  Network    Skeleton  Network      
  FA MD Atlas nSL mLen invLen mFA wFA MK RK Atlas nSL mLen invLen mMK wMK mFA wFA 

Exploratio
n 

adj. R2 0.066 0.080 AAL 0.109 0.073 0.079 0.077 0.111 0.176 0.151 AAL 0.125 0.059 0.027 0.117 0.025 0.011 0.134 
P 0.037 0.024  0.010 0.030 0.025 0.026 0.009 0.001 0.003  0.006 0.046 0.127 0.007 0.136 0.219 0.004 
adj. R2 - - BN 0.098 0.056 0.095 0.082 0.088 - - BN 0.153 0.058 0.019 0.111 0.040 0.020 0.199 
P - -  0.014 0.050 0.015 0.023 0.019 - -  0.002 0.046 0.167 0.009 0.084 0.158 0.001 

Validation 

adj. R2 0.128 0.086 AAL 0.145 0.097 0.136 0.100 0.158 0.130 0.143 AAL 0.066 0.145 0.066 0.135 0.121 0.114 0.036 
P 0.000 0.001  0.000 0.001 0.000 0.001 0.000 0.000 0.000  0.005 0.000 0.005 0.000 0.000 0.000 0.030 
adj. R2 - - BN 0.133 0.127 0.126 0.146 0.141 - - BN 0.003 0.125 0.084 0.136 0.102 0.124 0.001 
P - -  0.000 0.000 0.000 0.000 0.000 - -  0.259 0.000 0.002 0.000 0.001 0.000 0.296 

Abbreviations: adj. = adjusted; AAL = automated anatomical labelling; BN = Brainnetome; FA = fractional anisotropy; invLen = number of streamlines weighted by the inverse 
length of each streamline; MD = mean diffusivity; mFA = mean of fractional anisotropy of streamlines; MK = mean kurtosis; mLen= mean length of streamlines; mMK = mean 
of mean kurtosis of streamlines; nSL = number of streamlines; RK = radial kurtosis; wFA= number of streamlines weighted by fractional anisotropy; wMK = number of 
streamlines weighted by mean kurtosis. 
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Table e-3: Linear mixed effects models 

 

  

  Single-shell       Multi-shell         
  Skeleton  Network    Skeleton  Network      
  FA MD Atlas nSL mLen invLen mFA wFA MK RK Atlas nSL mLen invLen mMK wMK mFA wFA 

Exploratio
n 

fix. ef. 0.005 0.004 AAL 0.000 0.000 0.000 0.002 0.001 0.004 0.006 AAL 0.002 0.002 0.001 0.003 0.002 0.004 0.001 
P 0.000 0.000  0.470 0.663 0.751 0.001 0.136 0.000 0.000  0.000 0.000 0.095 0.000 0.000 0.000 0.038 
m. R2 0.219 0.140  0.002 0.000 0.000 0.031 0.007 0.107 0.248  0.022 0.035 0.009 0.087 0.037 0.108 0.008 
fix. ef. - - BN 0.000 0.001 0.000 0.002 0.001 - - BN 0.002 0.003 0.000 0.003 0.002 0.004 0.001 
P - -  0.831 0.254 0.713 0.003 0.384 - -  0.000 0.000 0.570 0.000 0.000 0.000 0.150 

 m.  R2 - -  0.000 0.003 0.000 0.019  0.002 - -  0.033 0.056 0.001 0.091 0.043 0.149 0.004 

Validation 

fix. ef. 0.004 0.004 AAL 0.002 0.000 0.001 0.001 0.002 0.003 0.004 AAL 0.002 0.003 0.002 0.002 0.003 0.003 0.002 
P 0.000 0.000  0.003 0.701 0.093 0.095 0.000 0.000 0.000  0.001 0.000 0.000 0.000 0.000 0.000 0.000 
m.  R2 0.129 0.107  0.027 0.000 0.008 0.008 0.046 0.085 0.136  0.031 0.074 0.036 0.047 0.065 0.060 0.033 
fix. ef. - - BN 0.001 0.000 0.000 0.001 0.001 - - BN 0.002 0.003 0.002 0.002 0.003 0.003 0.002 
P - -  0.086 0.697 0.357 0.240 0.011 - -  0.001 0.000 0.000 0.000 0.000 0.000 0.000 
m.  R2 - -  0.007 0.000 0.002 0.003 0.015 - -  0.031 0.074 0.036 0.047 0.065 0.060 0.033 

Abbreviations: adj. = adjusted; AAL = automated anatomical labelling; BN = Brainnetome; FA = fractional anisotropy; fix. ef. = fixed effect; invLen = number of streamlines 
weighted by the inverse length of each streamline; MD = mean diffusivity; mFA = mean of fractional anisotropy of streamlines; MK = mean kurtosis; mLen= mean length of 
streamlines; mMK = mean of mean kurtosis of streamlines; m. R2 = marginal R2; nSL = number of streamlines; RK = radial kurtosis; wFA= number of streamlines weighted by 
fractional anisotropy; wMK = number of streamlines weighted by mean kurtosis. 
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Table e4: Intraclass correlation coefficients 
 
 
 
  

 Single-shell       Multi-shell         
 Skeleton  Network    Skeleton  Network      
 FA MD Atlas nSL mLen invLen mFA wFA MK RK Atlas nSL mLen invLen mMK wMK mFA wFA 

Exploration 
0.98
1 0.989 AAL 0.958 0.883 0.951 0.958 0.963 0.973 0.988 AAL 0.923 0.916 0.560 0.974 0.896 0.982 0.921 

- - BN 0.949 0.944 0.939 0.965 0.953 - - BN 0.900 0.900 0.675 0.979 0.882 0.985 0.894 

Validation 
0.96
7 0.979 AAL 0.969 0.921 0.960 0.944 0.973 0.956 0.984 AAL 0.923 0.927 0.794 0.958 0.906 0.974 0.899 

- - BN 0.955 0.946 0.947 0.963 0.960 - - BN 0.849 0.886 0.767 0.971 0.835 0.977 0.791 
Abbreviations: AAL = automated anatomical labelling; BN = Brainnetome; FA = fractional anisotropy; invLen = number of streamlines weighted by the inverse length 
of each streamline; MD = mean diffusivity; mFA = mean of fractional anisotropy of streamlines; MK = mean kurtosis; mLen= mean length of streamlines; mMK = 
mean of mean kurtosis of streamlines; nSL = number of streamlines; RK = radial kurtosis; wFA= number of streamlines weighted by fractional anisotropy; wMK = 
number of streamlines weighted by mean kurtosis. 
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2.2 Study II: Disentangling the effects of Alzheimer’s and cerebral small vessel disease on 

white matter fiber tracts 

The following section includes the original research article “Disentangling the effects of 

Alzheimer’s and cerebral small vessel disease on white matter fiber tracts” which was published 

in Brain (Dewenter et al., 2022). 

Disentangling the effects of Alzheimer’s and small vessel disease on white matter fiber tracts 

Anna Dewenter,1 MSc, Mina A. Jacob,2 MD, Mengfei Cai,2 MD, Benno Gesierich,1,3 PhD, Paul 

Hager,1,4 MSc, Anna Kopczak,1 MD, Davina Biel,1 PhD, Michael Ewers,1,5 PhD, Anil M. 

Tuladhar,2 MD, PhD, Frank-Erik de Leeuw,2 MD, PhD, Martin Dichgans,1,5,6 MD, Nicolai 

Franzmeier1,*, PhD, and Marco Duering1,3,*, MD, for the SVDs@target Consortium and 

Alzheimer’s Disease Neuroimaging Initiative (ADNI)† 

* These authors contributed equally to this work.  

† Data used in preparation of this article were obtained from the Alzheimer’s Disease 

Neuroimaging Initiative (ADNI) database (adni.loni.usc.edu). As such, the investigators within 

the ADNI contributed to the design and implementation of ADNI and/or provided data but did 

not participate in analysis or writing of this report. A complete listing of ADNI investigators 

can be found at: http://adni.loni.usc.edu/wp-

content/uploads/how_to_apply/ADNI_Acknowledgement_List.pdf 

1 Institute for Stroke and Dementia Research (ISD), University Hospital, LMU Munich, Germany 

2 Department of Neurology, Donders Institute for Brain, Cognition and Behaviour, Radboud University 

Medical Center, Nijmegen, The Netherlands 

3 Medical Image Analysis Center (MIAC) and Department of Biomedical Engineering, University of 

Basel, Basel, Switzerland 

4 Institute for AI and Informatics in Medicine, Klinikum rechts der Isar, Technical University of Munich, 

Munich, Germany 

5 German Center for Neurodegenerative Disease (DZNE), Munich, Germany 

6 Munich Cluster for Systems Neurology (SyNergy), Munich, Germany 
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2.2.1 Abstract 

Alzheimer’s disease and cerebral small vessel disease are the two leading causes of cognitive 

decline and dementia and co-exist in most memory clinic patients. White matter damage as 

assessed by diffusion MRI is a key feature in both Alzheimer’s and cerebral small vessel 

disease. However, disease-specific biomarkers of white matter alterations are missing. Recent 

advances in diffusion MRI operating on the fixel level (fiber population within a voxel) promise 

to advance our understanding of disease-related white matter alterations. Fixel-based analysis 

allows to derive measures of both white matter microstructure, measured by fiber density, and 

macrostructure, measured by fiber-bundle cross-section. Here, we evaluated the capacity of 

these state-of-the-art fixel metrics to disentangle the effects of cerebral small vessel disease and 

Alzheimer’s disease on white matter integrity.  

We included three independent samples (total n=387) covering genetically defined cerebral 

small vessel disease and age-matched controls, the full spectrum of biomarker-confirmed 

Alzheimer’s disease including amyloid- and tau-PET negative controls and a validation sample 

with presumed mixed pathology. In this cross-sectional analysis, we performed group 

comparisons between patients and controls and assessed associations between fixel metrics 

within main white matter tracts and imaging hallmarks of cerebral small vessel disease (white 

matter hyperintensity volume, lacune and cerebral microbleed count) and Alzheimer’s disease 

(amyloid- and tau-PET), age and a measure of neurodegeneration (brain volume).  

Our results showed that i) fiber density was reduced in genetically defined cerebral small vessel 

disease and strongly associated with cerebral small vessel disease imaging hallmarks, ii) fiber-

bundle cross-section was mainly associated with brain volume, and iii) both fiber density and 

fiber-bundle cross-section were reduced in the presence of amyloid, but not further exacerbated 

by abnormal tau deposition. Fixel metrics were only weakly associated with amyloid- and tau-

PET.  

Taken together, our results in three independent samples suggest that fiber density captures the 

effect of cerebral small vessel disease, while fiber-bundle cross-section is largely determined 

by neurodegeneration. The ability of fixel-based imaging markers to capture distinct effects on 

white matter integrity can propel future applications in the context of precision medicine. 
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2.2.2 Introduction 

Alzheimer’s disease (AD) and cerebral small vessel disease (SVD) are the two most frequent 

causes of dementia (van der Flier et al. 2018; Dichgans and Leys 2017). AD is a proteinopathy 

characterized by the cortical accumulation of amyloid-beta (Aβ) plaques and neurofibrillary tau 

tangles that lead to neurodegeneration, which can be assessed using PET and MRI (Jack et al. 

2018). In contrast, SVD is associated with pathologic alterations of small penetrating vessels 

that manifest on MRI mainly as white matter hyperintensities, lacunes and cerebral microbleeds 

(J. M. Wardlaw et al. 2013; J. M. Wardlaw, Smith, and Dichgans 2019). While AD and SVD 

are distinct diseases with different etiologies and pathomechanisms, the majority of patients 

who seek clinical care in memory clinics present with both AD- and SVD-related brain 

alterations to varying degrees. Histopathology studies have shown that up to 80% of patients 

with prodromal AD show cerebrovascular alterations upon autopsy (Kapasi, DeCarli, and 

Schneider 2017). This suggests substantial overlap between both disease entities in clinical 

populations, probably due to shared risk factors (Attems and Jellinger 2014b; Beach and Malek-

Ahmadi 2021; Kapasi, DeCarli, and Schneider 2017). Hence, there is a great need for 

biomarkers that capture both AD and SVD and describe the extent and contribution of each 

disease within the individual patient. 

In recent years, diffusion MRI has evolved as the method of choice to quantify white matter 

alterations in SVD, with most studies relying on diffusion tensor imaging (Raja, Rosenberg, 

and Caprihan 2019; Baykara et al. 2016). Diffusion alterations in the white matter are also 

frequently observed across the AD continuum (Pichet Binette et al. 2021b; Nasrabady et al. 

2018). Global white matter diffusion metrics seem largely determined by SVD-related white 

matter damage, masking any white matter damage that might occur due to AD pathology 

(Finsterwalder et al. 2020). Studies using regions-of-interest or tract-based analysis suggest 

different spatial patterns of diffusion MRI alterations in AD and SVD, which warrants to study 

regional effects on white matter fiber tracts (Vemuri et al. 2019; Raghavan et al. 2022). 

However, specific biomarkers for AD-related and SVD-related white matter damage are still 

missing. 

A potential reason why previous diffusion models failed to disentangle white matter alterations 

due to different pathologies is their incapacity to account for the complex anatomy of brain 

white matter (Jones, Knösche, and Turner 2013). Histology studies show that the brain’s white 

matter architecture is highly complex with up to 98% of the white matter consisting of multiple 

fibers with crossing fiber orientations (Tournier, Calamante, and Connelly 2012; Jeurissen et 
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al. 2013). State-of-the-art constrained spherical deconvolution algorithms yield promise since 

they allow to derive diffusion measures specific to underlying fiber populations, i.e. on the fixel 

level (fiber population within a voxel) instead of the voxel level (Figure 1, Raffelt et al. 2017). 

Using this framework, one can simultaneously derive tract-specific measures of fiber density 

and fiber-bundle cross-section. Fiber density is a fixel-specific feature of white matter 

microstructure, approximately proportional to the total intra-axonal volume (Raffelt et al. 

2012). Fiber-bundle cross-section is a fixel-specific macroscopic feature, presumably reflecting 

the accumulated axon loss (Raffelt et al. 2017; Dhollander et al. 2021). 

Figure 1: Illustration of fixel-based analysis of two exemplary crossing white matter fiber tracts (superior 

longitudinal fasciculus II in green, cortico-spinal tract in blue). A fixel corresponds to a specific fiber 

population per voxel. The depicted voxel harbors two fiber populations (color-coded per tract). A reduction in 

fiber density (with preserved fiber-bundle cross-section) is depicted on the left, while a reduction in fiber-bundle 

cross-section (with preserved fiber density) is depicted on the right. 

The first fixel-based study in clinical AD and mild cognitive impairment reported reductions in 

both fiber density and fiber-bundle cross-section of main fiber tracts compared with cognitively 

healthy controls (Mito et al. 2018a). However, it remains elusive, 1) whether amyloid and tau 

pathology is associated with fiber density or fiber-bundle cross-section and 2) whether this 

association is altered in sporadic AD with comorbid SVD. Eventually, the ability of fiber 
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density and fiber-bundle cross-section to describe and disentangle the effects of SVD and AD 

pathology on white matter integrity within the same patient has not been explored so far. 

To address the need for disease-specific markers, the first aim of this study was to assess the 

effects of both SVD and biomarker-confirmed AD on both fiber density and fiber-bundle cross-

section of major white matter fiber tracts compared with age-matched controls. Our second aim 

was to explore the relationship between well-established SVD MRI and AD PET imaging 

hallmarks with tract-specific measures of fiber density and fiber-bundle cross-section. We 

addressed these aims using three independent samples (total n=387) covering genetically 

defined SVD (cerebral autosomal dominant arteriopathy with subcortical infarcts and 

leukoencephalopathy [CADASIL]) and age-matched controls, sporadic AD with full amyloid- 

and tau-PET-based biomarker characterization including controls without amyloid and tau 

pathology as well as a validation sample with mixed pathology. We combined conventional 

MRI markers and PET data with state-of-the-art fixel-based analyses of advanced diffusion 

MRI data. Our main goal was to disentangle white matter damage due to AD and SVD using 

fixel-based metrics, opening the road for disease-specific white matter characterization towards 

precision medicine.  

2.2.3 Methods 

Participants 

We included three independent samples with 3 Tesla multi-shell diffusion MRI (Figure 2). 

First, to study the effect of SVD in isolation, we included patients with genetically defined SVD 

and age-matched controls. Second, the effect of AD was studied across the full spectrum of 

sporadic AD pathology, ranging from age-matched controls without evidence of amyloid or tau 

pathology (Aβ–T–), to patients with amyloid pathology only (Aβ+T–), and patients with both 

amyloid and tau pathology (Aβ+T+). Lastly, we used a third study sample with presumed mixed 

pathology for independent validation.  

Study protocols were in accordance with the declaration of Helsinki and approved by local 

ethics committees. Written informed consent was obtained from all participants. 

Small vessel disease sample 

We included in total 95 participants with identical MRI acquisition on the same scanner from a 

single-center cohort in Munich (n=79) ((Baykara et al. 2016) and the ZOOM@SVDs study 
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(n=16) (van den Brink et al. 2021) of which 73 were patients with genetically defined SVD 

(CADASIL), and 22 were healthy controls matched for age and sex on the group level. 

CADASIL patients were symptomatic, but in an early disease stage (i.e., functionally 

independent). 

Alzheimer’s disease sample  

Participants from the Alzheimer’s Disease Neuroimaging Initiative 3 (ADNI) database were 

selected based on availability of multi-shell diffusion MRI and structural MRI, as well as 18F-

florbetapir or 18F-florbetaben amyloid-PET and 18F-flortaucipir tau-PET within 6 months of the 

MRI visit (n=106) (Weiner et al. 2017). 17 participants were excluded due to relevant diffusion 

MRI protocol deviations (n=16) or a cropped field of view (n=1). Controls were matched for 

age and sex on the group level.  

We used a biological definition of AD following NIA-AA guidelines (Jack et al. 2018) and 

assigned participants as Aβ+ when surpassing a global pre-established Aβ positivity 

standardized uptake value ratio (SUVR) threshold of 1.11 for 18F-florbetapir and 1.08 for 18F-

florbetaben amyloid-PET (Landau et al. 2012). Tau positivity was assigned when surpassing a 

pre-established 18F-flortaucipir SUVR threshold of 1.3 in any of the pre-defined Braak stage 

regions (Braak1, Braak3, Braak3/4, Braak4, Braak5, Braak5/6, Braak6) (Biel et al. 2021; Schöll 

et al. 2016). Of note, the hippocampus (i.e. Braak2) was excluded from all analyses, due to 

relevant off-target binding of the 18F-flortaucipir tracer in the medial temporal lobe. Since our 

main interest was in the neuropathological effects of amyloid and tau pathology on white matter 

tissue integrity, we used exclusively the biological definition of Alzheimer’s disease and did 

not take clinical status into account. We included 71 participants, of which 34 controls had no 

biomarker evidence for AD pathology (Aβ–T–) and 37 Aβ+ individuals across the AD spectrum 

(19 Aβ+T–, 18 Aβ+T+). 

Validation sample 

We selected participants from the 3rd follow-up visit (approx. 14 years after baseline) of the 

RUN DMC study ( Radboud University Nijmegen Diffusion tensor and Magnetic resonance 

imaging Cohort) (van Norden et al. 2011), based on the availability of multi-shell diffusion 

MRI (n=228). We excluded 6 participants with infarcts of non-SVD etiology and 1 participant 

due to an MRI protocol deviation, resulting in a final sample of 221 participants. While the 

cohort recruited non-demented elderly with SVD, neurodegenerative pathologies were not 
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excluded and during the long-term follow-up, some participants were in fact diagnosed with 

AD dementia (Figure 2) (Tuladhar et al. 2016). Therefore, we refer to this sample as validation 

sample with presumed mixed pathology. However, data on amyloid or tau, either PET or fluid 

biomarkers, were not available for these participants. 

Figure 2: Participant selection flowchart. Samples included genetically defined cerebral small vessel disease 
(CADASIL) and matched healthy controls (SVD sample), the full spectrum of Alzheimer’s disease (AD) and a 
validation sample with presumed mixed pathology. ADD = Alzheimer’s disease dementia, FoV = field of view, 
VD = vascular dementia. 

MRI acquisition and conventional MRI markers 

Full sequence parameters are shown in Supplementary Table e-1. Sequence parameters varied 

per study, but included 3D T1-weighted, 3D fluid-attenuated inversion recovery (FLAIR) and 

3D gradient echo (T2*-weighted) sequences to assess conventional MRI markers (white matter 

hyperintensity volume [WMHV], lacune and cerebral microbleed count, brain volume 

[BrainV]) as well as a multi-shell diffusion MRI sequence. Conventional MRI markers were 

quantified according to consensus criteria (J. M. Wardlaw et al. 2013). All volumes were 

normalized to the intracranial volume (e.g. WMHV/intracranial volume). 

Small vessel disease sample 

MRI scans were performed on a single 3 Tesla scanner (Magnetom Skyra with 64-channel 

head/neck coil; Siemens Healthineers, Erlangen, Germany). The diffusion MRI protocol 

comprised a multi-band echo planar imaging multi-shell diffusion-weighted imaging sequence 

(repetition time 3800 ms, echo time 105 ms, diffusion-encoding directions: 30 x b = 1000 s/mm2 

and 60 x b = 2000 s/mm2, 10 b = 0 images, multi-band factor 3). One b = 0 image with inverted 
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phase-encoding direction was acquired for correction of susceptibility-induced distortions 

during processing (Andersson, Skare, and Ashburner 2003; Smith et al. 2004). Details on the 

calculation of conventional MRI markers have been described previously (Baykara et al. 2016). 

Alzheimer’s disease sample 

MRI scans were performed on different (in total 13) 3 Tesla scanners (Magnetom Prisma or 

Magnetom Prisma Fit with 20-, 32- or 64-channel coils; Siemens Healthineers). The diffusion 

MRI protocol comprised a multi-band echo planar imaging multi-shell diffusion-weighted 

sequence (repetition time 3400 ms, echo time 71 ms, diffusion-encoding directions 48 x b = 

1000 s/mm2 and 60 x b = 2000 s/mm2, 13 b = 0 images, multi-band factor 3). 

White matter hyperintensities were segmented using a deep-learning algorithm based on multi-

dimensional gated recurrent units (https://github.com/zubata88/mdgru, Andermatt, Pezold, and 

Cattin 2018). An expert rater blinded to biomarker status determined the number of lacunes on 

FLAIR and T1-weighted images and the number of cerebral microbleeds on T2*-weighted 

images. Brain and intracranial volumes were estimated from the T1-weighted image with the 

cross-sectional Sequence Adaptive Multimodal SEGmentation (SAMSEG) Pipeline 

(FreeSurfer software suite, version 7.1, Puonti, Iglesias, and Van Leemput 2016). 

Validation sample 

MRI scans were performed on a single 3 Tesla scanner (Magnetom Prisma with 32-channel 

head coil; Siemens Healthineers). The diffusion MRI protocol comprised a multi-band echo 

planar imaging multi-shell diffusion-weighted imaging sequence (repetition time 3220 ms, 

echo time 74 ms, diffusion-encoding directions 30 x b = 1000 s/mm2 and 60 x b = 3000 s/mm2, 

10 b = 0 images, multi-band factor 3). One b = 0 image with inverted phase-encoding direction 

was acquired for correction of susceptibility-induced distortions during processing. Details on 

the calculation of conventional MRI markers have been described previously (ter Telgte, 

Wiegertjes, et al. 2018; Dewenter et al. 2021). 

Diffusion MRI preprocessing 

Preprocessing steps included visual quality control, Marchenko-Pastur principal component 

analysis-based denoising, Gibbs artefact removal, and dynamic correction for susceptibility-

induced distortions, eddy current-induced distortions, as well as head motion using tools from 

MRtrix3 (www.mrtrix.org/, version 3.0.0, dwidenoise, (Veraart et al. 2016; Veraart, Fieremans, 
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and Novikov 2016; Cordero-Grande et al. 2019; Tournier et al. 2019) mrdegibbs (Tournier et 

al. 2019; Kellner et al. 2016)) and the Functional Magnetic Resonance Imaging of the Brain 

Software Library (FSL, version 6.0.1, topup (Andersson, Skare, and Ashburner 2003; Smith et 

al. 2004), eddy (Andersson and Sotiropoulos 2016) including state-of-the art replacement of 

outliers (Andersson et al. 2016), usage of the slice-to-volume motion model (Andersson et al. 

2017) and susceptibility-by-movement correction (Andersson et al. 2018)). Due to 

unavailability of an unweighted diffusion image with reversed phase-encoding in the AD 

sample, we used Synb0-DISCO to synthesize an unweighted diffusion image without 

susceptibility-induced distortion from the T1-weighted image (Schilling et al. 2020; 2019). 

Other than this single step, preprocessing was kept identical across the three samples.  

Tract-specific fixel-based analysis 

We followed the fixel-based analysis pipeline recommended by the developers using multi-

tissue constrained spherical deconvolution to compute fiber orientation distributions (FODs) 

(Dhollander et al. 2021; Jeurissen et al. 2014). Fixel-based analyses were computed 

independently for each sample. Diffusion data was corrected for bias fields followed by a global 

DWI intensity normalization between subjects of each sample, yielding diffusion weighted 

images with identical b=0 white matter median intensity value. Response functions were 

estimated for each participant using the ‘dhollander’ algorithm (Dhollander et al. 2019), based 

on which the mean response functions were computed. Remaining steps included upsampling 

to 1.25 mm voxel size, estimation of the fiber-orientation distributions using the group response 

functions (‘msmt_csd’ algorithm) and intensity normalization. Next, study-specific FOD 

templates were calculated by randomly selecting representative participants, i.e. 15 controls & 

15 CADASIL patients for the SVD sample, 15 Aβ–T– & 7 Aβ+T– & 8 Aβ+T+ for the AD 

sample and 30 study participants from the validation sample. Subject-specific FOD images 

were registered to the FOD template, whereafter fixels were segmented and corresponding 

metrics of apparent fiber density, fiber-bundle cross-section and a combined measure of fiber 

density and cross-section were derived. Since our main interest was to find disease-specific 

metrics for white matter damage, we focused on the primary metrics fiber density and fiber-

bundle cross-section (but conducted supplementary analyses on the combined metric fiber 

density and bundle cross-section). 

Next, we used TractSeg, a deep learning-based framework for automated white matter bundle 

segmentation, to segment the FOD template into 72 anatomically well-established white matter 

fiber tracts (Wasserthal, Neher, and Maier-Hein 2018). To reduce the number of comparisons, 
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we averaged tract measures for left and right hemispheres. Also, to further reduce the number 

of regions-of-interest, we excluded the tracts located in the cerebellum – since it is up to date 

unclear how SVD and AD manifest in this brain area – as well as the fornix due to unavoidable 

CSF partial-volume effects. In addition, we excluded striatal projections from our analyses, due 

to a high anatomical overlap with thalamic projections. This resulted in 29 white matter fiber 

tracts (Figure 3, from top left): arcuate fasciculus (AF), uncinate fasciculus (UF), inferior 

fronto-occipital fasciculus (IFOF), middle longitudinal fasciculus (MLF), inferior longitudinal 

fasciculus (ILF), superior longitudinal fasciculus I to III (SLF-I, SLF-II, SLF-III), thalamo-

prefrontal (T-PREF), thalamo-premotor (T-PREM), thalamo-precentral (T-PREC), thalamo-

postcentral (T-POSTC), thalamo-parietal (T-PAR), thalamo-occipital (T-OCC), anterior 

thalamic radiation (ATR), superior thalamic radiation (STR), optic radiation (OR), fronto-

pontine tract (FPT), cortico-spinal tract (CST), parieto-occipital pontine (POPT), corpus 

callosum I to VII (CC-I to CC-VII), anterior commissure (AC), cingulum (CG). We then 

assessed per study participant the fixel metrics per fiber tract by averaging the fiber density, 

fiber-bundle cross-section and fiber density cross-section of all fixels belonging to the 

respective fiber tract. 

Figure 3: Sagittal view of investigated white matter fiber tracts. Tracts generated in fiber orientation 
distribution template space are shown for illustration. We analyzed 29 white matter fiber tracts (only left 
hemisphere shown): AF = arcuate fasciculus, UF = uncinate fasciculus, IFOF = inferior fronto-occipital fasciculus, 
MLF = middle longitudinal fasciculus, ILF = inferior longitudinal fasciculus, SLF-I to SLF-III = superior 
longitudinal fasciculus I to III, T-PREF = thalamo-prefrontal, T-PREM = thalamo-premotor, T-PREC = thalamo-
precentral, T-POSTC = thalamo-postcentral, T-PAR = thalamo-parietal, T-OCC = thalamo-occipital, ATR = 
anterior thalamic radiation, STR = superior thalamic radiation, OR = optic radiation, FPT = fronto-pontine tract, 
CST = cortico-spinal tract, POPT = parieto-occipital pontine, CC-I to CC-VII = corpus callosum I to VII (CC-I: 
Rostrum, CC-II: Genu, CC-III: Rostral body [premotor], CC-IV: Anterior midbody [primary motor], CC-V: 
Posterior midbody [primary somatosensory], CC-VI = Isthmus, CC-VII: Splenium), AC = anterior commissure, 
CG = cingulum. 

To assess regional associations between regional tau pathology and tract-specific fixel metrics 

in the AD sample, we determined regional tau-PET SUVRs in cortical projections of fiber 

tracts. To this end, we used masks from the beginning and ending of the fiber tracts, as obtained 

with TractSeg, intersected with a cortical gray matter mask. The regions of interest in FOD 
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template space were brought to tau-PET images in MNI space by non-linear registration with 

Advanced Normalization Tools (ANTs) (Avants et al. 2011) to determine regional tau-PET 

SUVRs.  

PET acquisition and processing 

Amyloid-PET was recorded in 4x5min frames 50-70min after 18F-florbetapir injection or 90-

110min after 18F-florbetaben injection (Landau et al. 2012). Tau-PET was acquired 75-105min 

after injection of 18F-flortaucipir in 6x5min frames. All time frames were motion corrected and 

averaged to obtain mean images (for details see http://adni.loni.usc.edu/methods/pet-analysis-

method/pet-analysis/). Structural T1-weighted MRI images were processed using the ANTs 

cortical thickness pipeline and parcellated with the Desikan-Killiany Atlas (Desikan et al. 2006) 

and non-linearly registered to MNI-space (Tustison et al. 2014). Amyloid-PET and tau-PET 

images were co-registered via native-space T1-weighted images to MNI standard space using 

ANTs-derived normalization parameters. Global amyloid-PET SUVRs were intensity 

normalized to the whole cerebellum and transformed to centiloid (Klunk et al. 2015). Partial 

volume corrected global tau-PET SUVRs were obtained from the ADNI database, which were 

calculated using the inferior cerebellum as reference region and averaged across neocortical 

Desikan-Killiany atlas ROIs (see here for details: https://ida.loni.usc.edu/login.jsp). Partial 

volume correction was performed by ADNI PET Core at UC Berkeley, using the geometric 

transfer method. For regional tau-PET SUVRs, we employed a congruent approach, applying 

geometric transfer method-based partial volume correction for cortical projections of white 

matter fiber tracts (PETPVC toolbox: https://github.com/UCL/PETPVC (Thomas et al. 2016)). 

Specifically, we used the geometric transfer matrix approach to correct the ROI-based tau-PET 

data for grey matter density using the segmented T1-weighted image that was obtained in 

closest proximity to the tau-PET scan. 

Statistical Analyses 

All statistical analyses were performed in R (version 3.6.1) (R Core Team 2016). The statistical 

significance level was set at α < 0.05. 

To compare between controls and patients with respect to demographic characteristics, vascular 

risk factors, conventional MRI and PET markers, we used chi-squared (χ2) tests (for categorical 

variables) and non-parametric Wilcoxon rank sum tests and Kruskal-Wallis tests (for 

continuous variables), as appropriate.  
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Next, we were interested in group differences in tract-specific fixel metrics between SVD and 

matched controls, and between groups with different biomarker status for AD (Aβ+T– vs. Aβ–

T–; Aβ+T+ vs. Aβ–T– and Aβ+T+ vs. Aβ+T–). Since fixel metrics have been shown to be 

significantly influenced by head size (Smith, Dhollander, and Connelly 2019), we first 

regressed out the effect of intracranial volume and conducted subsequent analysis on residuals, 

i.e., fixel metrics corrected for head size (‘stats’ package). We then calculated the effect size 

for group comparisons in all predefined fiber tracts using Cohen’s d (‘psych’ package).  

Next, we performed simple linear regression analyses to explore associations between SVD and 

AD typical imaging hallmarks (independent variable) and fiber density and fiber-bundle cross-

section of the respective fiber tract (dependent variable, ‘stats’ package). For SVD hallmarks, 

we included white matter hyperintensity volume, lacune and cerebral microbleed count. For 

AD hallmarks, we included global amyloid-PET (centiloid), global tau-PET, regional tau-PET 

(i.e. tau-PET SUVR in cortical projections of the respective fiber tract). We also included 

normalized global brain volume indicative of neurodegeneration as an independent variable, 

which is associated with both AD (Jack et al. 2018) and SVD (Smith et al. 2019). Additionally, 

we assessed associations with age to ensure that potential associations were not driven by aging 

alone. In these regression analyses, we used the full extent of the SVD and AD sample by also 

including the controls (but report sub-sequent sensitivity analyses in the CADASIL only and 

the Aβ+ only group in the Supplement). Effect sizes were determined by the adjusted R2. P-

values were adjusted with the false discovery rate (FDR) per sample and fixel metric resulting 

in a maximum of 5% of false positives.  

To assess the relative variable importance of disease markers in explaining fixel metrics, we 

performed multivariable random forest regression analyses with conditional inference trees in 

the AD sample (R package ‘party’). This machine-learning method overcomes the problem of 

multicollinearity within the disease markers. We focused on four variables of interest: WMHV 

as a marker for SVD, amyloid- and global tau-PET as a marker for AD and brain volume as a 

marker for neurodegeneration. We repeated random forest regression 100 times to determine 

the point estimate and a 95% confidence interval. 

All analyses were conducted independently in each of the three samples. 
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Data availability  

Anonymized data of the SVD and validation samples will be made available upon reasonable 

request to the corresponding author and only after permission of the regulatory bodies. ADNI 

data is freely available and can be retrieved from adni.loni.usc.edu upon registration to the 

ADNI database. 

2.2.4 Results 

Sample characteristics and demographics are shown in Table 1. As expected, SVD patients had 

higher WMH volumes, more lacunes and microbleeds compared to controls (p < 0.001). SVD 

patients further had higher rates of hypercholesterolemia than age-matched controls (p < 0.05). 

WMH volume increased with progressing amyloid and tau pathology in the AD sample (p < 

0.001).
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Table 1: Sample characteristics 

 SVD AD Validation 
 Control 

(n=22) 
CADASIL 

(n=73) p-value Aβ–T– 
(n=34) 

Aβ+T– 
(n=19) 

Aβ+T+ 
(n=18) p-value (n=221) 

Demographic characteristics         
Age [years], median 
(IQR) 60 (21.5) 55 (14) 0.2084 72.50 (9.5) 78.70 (7.8) 75.05 (6.85) 0.1359 73.64 (9.67) 

Female, n (%) 9 (41) 44 (60) 0.1744 19 (56) 10 (53) 8 (44) 0.7335 98 (44) 
Vascular risk factors, n (%)         

Hypertension 5 (23) 17 (23) 1.0 10 (29) 9 (47) 10 (56) 0.1506 146 (66) 
Hypercholesterolemia 5 (23) 37 (51) 0.0471 9 (26) 3 (16) 8 (44) 0.1463 116 (52) 
Diabetes 0 (0) 1 (0.01) 1.0 3 (9) 2 (11) 4 (22) 0.3647 33 (15) 
Current or past smoking 9 (41) 44 (60) 0.2425 2 (6) 3 (16) 2 (11) 0.4994 143 (65) 

PET markers, median (IQR)          
    Amyloid-PET centiloid - - - -7.25 (11.91) 51.53 (38.26) 87.53 (46.41) < 0.0001 - 
    Global Tau-PET SUVR - - - 1.03 (0.12) 1.08 (0.10) 1.18 (0.30) < 0.0001 - 
MRI markers, median (IQR)         

WMH volumea [%] 0.03 (0.08) 4.58 (5.23) < 0.0001 0.24 (0.33) 0.53 (0.73) 0.69 (0.74) 0.0043 0.30 (0.69) 
Lacune count 0 (0) 2 (7) < 0.0001 0 (0) 0 (0) 0 (0) 0.8763 0 (0) 
Microbleed count 0 (0) 2 (7) < 0.0001 0 (0) 0 (0) 0 (0) 0.0160 0 (1) 
Brain volumea [%] 75.72 (7.64) 76.22 (8.46) 0.2024 70.79 (1.27) 70.00 (2.55) 70.31 (3.26) 0.4158 74.34 (5.65) 

Abbreviations: IQR = interquartile range; n = number; WMH = white matter hyperintensity. 
a Normalized to the intracranial volume 
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Fixel metric group comparisons 

Genetically defined SVD predominantly leads to reduced fiber density 

The fiber density of all white matter fiber tracts was reduced in SVD compared to controls 

(range of Cohen’s d[0.33;0.57], Figure 4A&B, Supplementary Table e-2). Results for the 

fiber-bundle cross-section were less consistent. While the fiber-bundle cross-section of most 

fiber tracts was reduced in SVD compared to controls (Cohen’s d[0.19;0.35], 11 tracts showed 

no group difference and the fiber-bundle cross-section of the anterior thalamic radiation and 

the first segment of the corpus callosum (rostrum) was even higher in SVD compared to 

controls (Cohen’s d=–0.33, both tracts). 

Both fiber density and fiber-bundle cross-section are reduced across the AD spectrum 

In the AD sample, the Aβ+T– group showed consistently lower fiber density in most fiber tracts 

compared to the Aβ–T– control group (Cohen’s d[0.27;0.49], Figure 4C&D, Supplementary 

Table e-3). The fiber-bundle cross-section was also reduced in the Aβ+T– group (Cohen’s 

d[0.27;0.51]). Similarly, the Aβ+T+ group showed lower fiber density (Cohen’s d[0.30;0.43]) 

and lower fiber-bundle cross-section (Cohen’s d[0.27;0.40]) compared to the Aβ–T– control 

group.  

To determine the extent to which these effects were driven by differences in SVD burden 

between groups, we included WMH volume as covariate in a sensitivity analysis. This reduced 

effect sizes on average by 42% for fiber density and 8% for fiber-bundle cross-section (Aβ+T– 

vs. Aβ–T–), and by 21% for fiber density and 7% for fiber-bundle-cross section (Aβ+T+ vs. 

Aβ–T–, Supplementary Table e-3).  

The Aβ+T+ group did not show any additional white matter damage regarding fiber density or 

fiber-bundle cross-section compared to Aβ+T–. In summary, both fiber density and fiber-

bundle cross-section were reduced in the presence of amyloid pathology, but not further altered 

by additional tau pathology. 
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Figure 4: Group comparisons of fixel metrics. (A) Difference in fixel metrics between age-matched healthy 
controls (HC) and CADASIL patients in the SVD sample quantified with Cohen’s d represented by color. Circle 
size depicts statistical significance level. (B) Violin plots of fixel metrics of four representative fiber tracts in the 
SVD sample for exemplary illustration. (C) Difference in fixel metrics between age-matched Aβ–T– and Aβ+T–
; Aβ–T– and Aβ+T+; Aβ+T– and Aβ+T+ quantified with Cohen’s d represented by color. Circle size depicts 
statistical significance level. (D) Violin plots of fixel metrics of the same four tracts in the AD sample. Please refer 
to Figure 3 for abbreviations of the fiber tracts. 

 

Associations with disease markers 

Reduced fiber density is mainly associated with higher SVD burden  

In simple linear regression in the SVD sample, fiber density of all fiber tracts was strongly 

associated with WMH volume (range of R2adj[0.29;0.79]), lacunes (R2adj.[0.12;0.48]), and 

microbleeds (R2adj[0.16;0.43], Figure 5A, Supplementary Table e-4). In contrast, effect sizes 

were small for associations with age (R2adj[0.03;0.13]) and brain volume (R2adj[0.05;0.16]) .  

Fiber-bundle cross-section was also associated with WMH volume, but with smaller effect sizes 

(R2adj[0.06;0.43]), as well as with lacune count (R2adj[0.06;0.52]), microbleed count 
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(R2adj.[0.07;0.38]) and brain volume (R2adj.[0.05;0.29]). Effect sizes were small for associations 

with age (age: R2adj.[0.04;0.13]). 

Findings could be replicated when assessing associations in CADASIL patients only 

(Supplementary Figure e-1A). 

Reduced fiber-bundle cross-section is mainly associated with cerebral atrophy in the AD 

sample 

In simple linear regression analyses, fiber density in the AD sample was likewise associated 

with WMH volume (R2adj.[0.04;0.20], Figure 5B, Supplementary Table e-5) and to some 

extent with microbleed count (R2adj.[0.05;0.08]) but not with lacune count, which was expected 

given the low number of lacunes and microbleeds in this sample (Table 1). Fiber density was 

not associated with brain volume and with age only in selected fiber tracts (R2adj.[0.05;0.17]). 

Effect sizes for associations with AD PET markers were substantially smaller than with SVD 

MRI markers (amyloid-PET: R2adj.[0.04;0.11]) and tau-PET (R2adj.[0.04]). 

Compared to fiber density, fiber-bundle cross-section was less associated with SVD imaging 

markers (WMHV: R2adj.[0.04;0.06]; no significant associations with lacunes or microbleeds). 

In contrast, fiber-bundle cross-section of all fiber tracts was strongly associated with brain 

volume (R2adj.[0.06;0.35]) and to some extent with age (R2adj.[0.04;0.20]). Associations with 

AD PET markers were mostly absent or showed only small effect sizes (amyloid-PET: 

R2adj.[0.04;0.05]; tau-PET: R2adj.[0.05;0.06]).  

All findings could be replicated when assessing associations in Aβ+ study participants only, 

except for associations with AD PET markers, which were even weaker (Supplementary 

Figure e-1B).  

In multivariable random forest regression analyses (Figure 6), WMH volume showed the 

highest variable importance for fiber density in most fiber tracts, while brain volume showed 

the highest variable importance for fiber bundle cross-section in all tracts. 

Fiber density is associated with SVD markers and fiber-bundle cross-section with brain volume 

in presumed mixed pathology 

Also in the validation sample, fiber density of all tracts was highly associated with WMH 

volume (R2adj.[0.08;0.48], Figure 5C, Supplementary Table e-6). Fiber density of all tracts 
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was also (with smaller effect sizes) associated with lacune count (R2adj.[0.03;0.26]), microbleed 

count (R2adj.[0.04;0.15]), brain volume (R2adj.[0.01;0.19]) and age (R2adj.[0.03;0.23]). 

Effect sizes were small for associations between fiber-bundle cross-section was only weakly 

associated with WMH volume (R2adj.[0.02;0.09]; lacune count (R2adj.[0.02;0.13]) and 

microbleed count (R2adj.[0.02;0.09]). Effect sizes were largest for brain volume 

(R2adj.[0.06;0.42]).  

Results of group comparisons and associations with disease markers of the combined metric 

fiber density and bundle cross-section can be found in the Supplement as well as scatterplots of 

the most important findings (Supplementary Figure e-2 to e-5).  

Figure 5: Associations with disease markers. Effect sizes (adj. R2) obtained from simple linear regression 
analyses are represented by color. Circle size depicts statistical significance level. Associations between fixel 
metrics of white matter fiber tracts and disease markers were assessed in (A) the SVD sample, (B) the AD sample 
– including in addition amyloid-PET and tau-PET markers – and (C) the validation sample. Please refer to Figure 
3 for abbreviations of the fiber tracts. WMHV = white matter hyperintensity volume, BrainV = brain volume. 
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Figure 6: Multivariable random forest regression analyses for estimating the relative variable importance for 
the SVD marker white matter hyperintensity volume (WMHV, blue), markers of primary Alzheimer’s disease 
pathology (orange) and brain volume (BrainV, red) with regard to tract-specific fixel metrics in the AD sample. 
Plots indicate point estimate and 95% confidence interval for the conditional variable importance. Please refer to 
Figure 3 for abbreviations of the fiber tracts. 

2.2.5 Discussion 

Our multi-modal neuroimaging study systematically assessed the utility of fixel-based, tract-

specific diffusion metrics to disentangle the effects of AD and SVD on white matter. Our main 

findings are that i) fiber density was markedly reduced in genetically defined SVD and showed 

the strongest association with SVD imaging hallmarks. ii) Fiber-bundle cross-section was 

mainly associated with brain volume, especially in the AD sample. iii) Both fiber density and 

fiber-bundle cross-section were reduced in the presence of amyloid, but this was not further 

exacerbated by abnormal tau deposition. Taken together, our results suggest that the white 

matter microstructure metric fiber density is primarily determined by SVD, while the 

macrostructure metric fiber-bundle cross-section is strongly associated with neurodegeneration. 

Importantly, the capability of fixel metrics to capture distinct effects of SVD and 

neurodegeneration was validated in an independent sample. 

The marked reduction of the microscopic feature fiber density with increasing SVD burden 

might result from increased extracellular water moving axons further apart (Dhollander et al. 

2021). In line with this, we previously demonstrated that diffusion tensor imaging alterations 

in SVD are mainly determined by increases in extracellular free water (Duering et al. 2018). In 

addition, a reduction in apparent fiber density (although not assessed using fixel-based analysis) 

has been suggested to accompany an increase in extracellular water within white matter 

hyperintensities of CADASIL patients (Yu et al. 2021). Vascular edema, e.g. resulting from 

blood-brain-barrier leakage in SVD, might be a main driver of this fluid shift (J. M. Wardlaw, 

Smith, and Dichgans 2019; De Guio et al. 2015). Interestingly, while the fiber density 

decreased, we observed in the genetically defined SVD sample a simultaneous increase in the 
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fiber-bundle cross-section of two tracts, the anterior thalamic radiation and the first segment of 

the corpus callosum (rostrum, harboring parts of the forceps minor). Strikingly, the anterior 

thalamic radiation and forceps minor were previously identified as strategic locations for 

processing speed performance in SVD (Duering et al. 2014; 2011), the core cognitive deficit of 

the disease. One might speculate that the expansion of the extracellular space following 

vascular edema led to a swelling of these fiber tracts which is captured by an increase in fiber-

bundle cross-section (Dhollander et al. 2021; De Guio et al. 2015). 

The macroscopic feature fiber-bundle cross-section was most prominently reduced with 

increasing amyloid pathology in group comparisons and strongly associated with cerebral 

atrophy as a proxy of neurodegeneration in the AD and validation sample. Together with the 

finding that brain volume was not or only weakly associated with fiber density, this suggests 

that in fixel-based analysis, neurodegeneration predominantly manifests in alterations of 

white matter macrostructure, but not microstructure. Thus, fiber-bundle cross-section indeed 

seems to be reflective of the accumulated axon loss as previously postulated (Raffelt et al. 

2017). 

While associations in the SVD sample were strongest for fiber density, and in the AD sample 

for fiber-bundle cross-section, both associations were found in the validation sample with 

mixed pathologies, supporting the concept that both SVD and AD contribute to white matter 

damage in mixed disease. 
 

In the AD sample, both fiber density and fiber-bundle cross-section were reduced upon amyloid 

pathology in group comparisons, which might seem counterintuitive at first. As expected from 

epidemiological and histopathology studies (Kapasi, DeCarli, and Schneider 2017; Attems and 

Jellinger 2014b), concomitant SVD was found in the AD sample, with the largest difference in 

WMH burden between the A+T– group and matched A–T– controls. Controlling for this group 

difference in WMH volume attenuated the observed effects of amyloid, especially on fiber 

density. Thus, the effect of amyloid on fiber density can at least partly be explained by 

concomitant SVD, which is plausible given the likely presence of cerebral amyloid angiopathy, 

which is also captured by amyloid-PET (Charidimou, Farid, and Baron 2017; Gurol et al. 2016). 

Brain atrophy clearly showed the strongest associations with fixel metrics, i.e. fiber-bund cross-

section, in the AD sample. But in contrast to a previously postulated hypothesis,44 we did not 

find that cortical tau pathology is a main driver of alterations in fixel metrics. 
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While many studies investigated white matter alterations in SVD or AD using models operating 

on the voxel level (Raja, Rosenberg, and Caprihan 2019), such as diffusion tensor imaging and 

more advanced diffusion models (Konieczny et al. 2021), only very few studies have so far 

utilized fixel-based analysis. Importantly, none of the prior fixel-based studies considered 

mixed disease, but studied either SVD or AD in isolation, thus ignoring the crucial aspect of 

concomitant pathologies. Despite technical limitations (Dhollander et al. 2021; Genc et al. 

2020), it was recently shown that fiber density obtained from fixel-based analysis is highly 

sensitive towards processing speeds deficits in sporadic SVD (Petersen et al. 2022), confirming 

previous findings from voxel-based analysis. The aforementioned fixel-based analysis study in 

AD reported a reduction in both fiber density and fiber-bundle cross-section in MCI and AD 

patients (Mito et al. 2018a). However, besides not considering concomitant SVD, a full AD 

biomarker characterization was not possible due to prematurity of tau-PET tracers upon data 

collection of that study (Mito et al. 2018b). By considering both pathologies and by including 

data from both amyloid- and tau-PET, we were able to substantially extend previous results, 

close crucial knowledge gaps and to derive insights highly relevant for both future research 

studies and potentially also clinical applications. 

Our study has some potential limitations. First, in the mixed pathology sample AD biomarkers 

were not available, precluding an independent validation of results for the direct effects of 

amyloid and tau pathology. Second, while all samples had diffusion MRI data suitable for fixel-

based analysis, the acquisition was not harmonized across the three samples. However, this can 

also be regarded as a strength in terms of generalizability and independent validation of 

findings, because despite differences in the MRI acquisition, we found consistent results across 

all three samples. MRI data in the AD sample was acquired across 13 different scanners. 

Scanner effects were mitigated by selecting only acquisitions with identical parameters and an 

intensity normalization step. Eventually, excellent inter-site reproducibility of fixel metrics 

(Supplementary Analysis) enabled pooling of data from different scanners. Lastly, amyloid-

PET data was not partial volume corrected due to centiloid transformation (La Joie et al. 2020), 

hence our results warrant further replication using a large single tracer dataset. 

A main strength of this study is the extensive biomarker characterization, including multiple 

markers for SVD as well as amyloid- and tau-PET data in the AD sample. This enabled a multi-

modal approach, which was deemed essential in further validation of fixel-based metrics by the 

developers of the method (Dhollander et al. 2021). Unlike in the AD field, truly SVD-specific 

biomarkers are still lacking. To overcome this limitation, we included the sample of genetically 
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defined SVD patients. Since these patients were relatively young, concomitant AD and other 

age-related neurodegenerative pathology can be regarded as rare, thus enabling the unique 

opportunity to study pure SVD without the need for biomarker characterization. While data 

from autosomal dominant AD would have perfectly complemented our analysis in this regard, 

we are not aware of any familial AD studies with diffusion MRI data suitable for fixel-based 

analysis.  

The ability of the fixel-based analysis to identify distinct effects of SVD and neurodegeneration 

on white matter opens a path towards personalized medicine. Future work should address the 

ability of fixel-derived diffusion markers to explain the extent to which SVD and 

neurodegeneration contribute to cognitive impairment in mixed disease. This would enable 

disease-specific interventions targeting AD- or SVD-related brain alterations rather than 

managing disease-shared risk factors. Our results illustrate once more that it is mandatory to 

consider SVD when assessing white matter integrity in the context of dementia studies and 

trials. Furthermore, longitudinal studies are required to capture temporal dynamics of fiber 

density and fiber-bundle cross-section. Given recent indications for SVD lesion regression (van 

Leijsen, de Leeuw, and Tuladhar 2017), it remains to be assessed whether the reduction in fiber 

density observed in SVD is irreversible and how it changes upon disease intervention, e.g., 

intensified risk factor treatment. Technical validation studies, assessing test-retest reliability 

and inter-site reproducibility of these novel markers in patients, will be essential for developing 

a surrogate endpoint for clinical trials. 

In conclusion, our results show that fiber density and fiber-bundle cross-section, obtained from 

fixel-based analysis of diffusion MRI data, allow to identify distinct effects of SVD and 

neurodegeneration on white matter integrity. While white matter microstructure is 

predominantly determined by SVD, neurodegeneration leads to alterations in white matter 

macrostructure. Leveraging these distinct effects, fixel-based white matter analysis can propel 

future research, clinical trials targeting disease-specific mechanisms and clinical applications 

in the context of precision medicine. 
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2.2.9 Supplementary material 

Table e-1: MRI acquisition parameters. 

 

  SVD AD Validation 

Sequence Feature VASCAMY, ZOOM ADNI-3 RUN DMC 

 Scanner Magnetom Skyra Magnetom Prisma/PrismaFit Magnetom Prisma 

 Coil channels 64 (head-neck) 20/32/64 (head/head-neck) 32 (head) 

3D T1-weighted Type MPRAGE MPRAGE MP2RAGE 

 TR [ms] 2500 2300 5000 

 TE [ms] 4.37 2.98 2.98 

 TI [ms] 1100 900 732, 2500a 

 Flip angle [˚] 7 9 4, 5a 

 Voxel size [mm] 1 isotropic 1 isotropic 0.85 isotropic 

3D-FLAIR TR [ms] 5000 4800 5000 

 TE [ms] 398 441 394 

 TI [ms] 1800 1650 1800 

 Voxel size [mm] 1 isotropic 1.2 x 1 x 1 0.85 isotropic 

3D GRE TR [ms] 35 650 44 

 TE [ms] 29.5 20 6.14, 10.1, 14.1, 18.1, 22.1, 
26.1, 30.1, 34.1, 38.1 

 Flip angle [˚] 15 20 20 

 Voxel size [mm] 0.9 x 0.9 x 2 0.86 x 0.86 x 4 0.85 isotropic 

MS-DWI TR [ms] 3800 3400 3220 

 TE [ms] 104.8 71 74 

 Flip angle [˚] 90 90 90 

 In-plane resolution [mm] 2 x 2 2 x 2 1.7 x 1.7 

 Slice thickness [mm] 2 2 1.7 

 Base resolution (matrix) 120 116 130 

 Number of slices 75 81 87 

 b-values [s/mm2] 1000/2000 1000, 2000 1000, 3000 

 Directions (per b-value) 30/60 48, 60 30, 60 

 b=0 [images] 10 13 10 

 Receiver bandwidth 
[Hz/px] 1894 2270 1924 

 Parallel acceleration 2 2 2 

 Multi-band acceleration  3 3 3 

a Double inversion 

Abbreviations: FLAIR = fluid-attenuated inversion recovery; GRE = gradient echo; MP(2)RAGE = magnetization prepared (2) rapid 
acquisition gradient echoes; MS-DWI = multi-shell diffusion-weighted imaging; RUN DMC = Radboud University Nijmegen Diffusion 
tensor and Magnetic resonance imaging Cohort; TE = echo time; TI = inversion time; TR = repetition time. 
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Table e-2: Group comparison of fixel metrics in the SVD sample (Cohen’s d, p<0.05, FDR adj. p<0.05 in bold). Please refer to Figure 3 (main manuscript) for abbreviations of 
the fiber tracts. 

 
Table e-3: Group comparison of fixel metrics in the AD sample (Cohen’s d, p<0.05, FDR adj. p<0.05 in bold).  
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     HC>CADASIL .49 .54 .50 .50 .43 .49 .50 .47 .54 .55 .48 .50 .51 .41 .57 .45 .42 .53 .44 .50 .37 .53 .55 .48 .46 .48 .33 .50 .53 

Fiber-bundle cross-section 

     HC>CADASIL .20 - - .20 .23 .35 - .25 - - .30 .30 .21 - -.33 .35 - .20 .33 .23 -.33 - - .26 .32 .19 - .24 - 
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Fiber density                              

    Aβ–T– > Aβ+T– .33 .34 .38 .33 - .36 .49 .28 - - - - .32 .29 .33 - .27 - - - .34 .46 .46 .39 .43 .37 .37 .29 - 

    Aβ+T– > Aβ+T+ - .43 .36 - .31 - .36 .35 .32 .32 - - - - .41 - - - - - .30 - - - - - .30 .39 .32 

    Aβ–T– > Aβ+T+ - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 

Fiber-bundle cross-section 

    Aβ–T– > Aβ+T– .35 .29 .27 - - .35 - .34 - - .49 .42 .27 - - .46 - .31 .51 .40 - - - - .31 - - .37 - 

    Aβ+T– > Aβ+T+ .27 .28 .27 - .40 - - - - .30 .27 - - - - - - .30 .30 - - - - - - - .30 - - 

    Aβ–T– > Aβ+T+ - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 

Sensitivity Analysis: Including WMHV as covariate.                  

Fiber density                              

    Aβ–T– > Aβ+T– .27 .27 - - - .27 .38 - - - - - - - - - - - - - - .31 .31 - .31 - .26 .31 - 

    Aβ+T– > Aβ+T+ - .39 .27 - - - .26 .30 - - - - - - .34 - - - - - - - - - - - - .39 .26 

    Aβ–T– > Aβ+T+                              

Fiber-bundle cross-section                           

    Aβ–T– > Aβ+T– .32 .28 .28 - - .26 - .30 - - .40 .38 - - - .39 - .30 .44 .36 - - - - .26 - - .37 - 

    Aβ+T– > Aβ+T+ .26 .27 .27 - .38 - - - - .32 - - - - - - - .29 - - - - - - - - .30 - - 

    Aβ–T– > Aβ+T+ - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 
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Table e-4: Simple linear regression models predicting fiber density (top) or fiber-bundle cross-section (bottom) for each fiber tract in the SVD sample (adj. R2, p<0.05, FDR adj. 
p<0.05 in bold). Predictors are represented on the left (age, white matter hyperintensity volume [WMHV], lacunes, microbleeds, brain volume [BrainV]) which were included 
separately for each model. Please refer to Figure 3 (main manuscript) for abbreviations of the fiber tracts. 
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Fiber density                              

    Age .04 .05 .07 .07 .04 .04 .05 .06 .07 .04 .06 .04 .08 .04 .06 .05 - .06 .07 .08 .07 .09 .09 .09 .13 .09 .03 .06 .10 

    WMHV .70 .78 .73 .65 .67 .68 .67 .67 .79 .68 .68 .61 .62 .44 .77 .62 .43 .75 .62 .61 .40 .75 .65 .65 .60 .58 .29 .70 .72 

    Lacunes .39 .28 .46 .45 .24 .41 .44 .35 .40 .42 .31 .33 .47 .48 .42 .34 .47 .42 .31 .46 .37 .40 .39 .32 .39 .47 .43 .12 .43 

    Microbleeds .33 .28 .39 .38 .23 .38 .37 .28 .34 .36 .29 .23 .37 .43 .33 .24 .43 .35 .30 .35 .25 .33 .37 .33 .33 .37 .30 .16 .38 

    BrainV .05 - .08 .09 - .07 .08 .05 .05 .06 .06 .05 .12 .13 .06 .08 .12 .06 .08 .11 .16 .08 .11 .09 .16 .14 .13 - .09 

Fiber-bundle cross-section 

    Age .11 .07 .13 .05 .11 .06 .07 .09 .09 .10 .08 .04 - .08 - .08 .08 .13 .09 .04 - .06 .06 .04 - - - .08 .12 

    WMHV .35 .29 .07 .21 .28 .43 .31 .39 .22 .21 .37 .27 .16 .06 - .35 .07 .33 .38 .18 - .07 .13 .36 .32 .11 - .27 .23 

    Lacunes .43 .14 .16 .33 .23 .42 .31 .42 .26 .32 .51 .40 .35 .23 - .48 .24 .44 .52 .41 - .06 .12 .39 .34 .28 .07 .16 .26 

    Microbleeds .33 .07 .09 .27 .17 .38 .29 .30 .16 .20 .30 .25 .24 .16 - .29 .18 .27 .31 .26 - - .07 .18 .16 .16 - .11 .26 

    BrainV .24 - .21 .21 .10 .16 .13 .22 .20 .19 .22 .20 .22 .18 .07 .24 0.20 .29 .24 .28 .06 .10 .07 .09 .07 .15 - .05 .29 
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Table e-5: Simple linear regression models predicting fiber density (top) or fiber-bundle cross-section (bottom) for each fiber tract in the AD sample (adj. R2, p<0.05, FDR adj. 
p<0.05 in bold). Predictors are represented on the left (age, white matter hyperintensity volume [WMHV], lacunes, microbleeds, brain volume [BrainV], amyloid, tau: global, tau: 
regional) which were included separately in each model. Please refer to Figure 3 (main manuscript) for abbreviations of the fiber tracts. 
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Fiber density                              

    Age - - .07 .06 - .05 - - - - - - .07 .07 - - .06 - - - - .09 .07 .14 .10 .14 .17 - - 

    WMHV - - .16 .11 .05 .06 .16 .04 .09 .07 - - .12 .11 .15 - .09 - - - .12 .20 .20 .20 .13 .12 .08 - - 

    Lacunes - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 

    Microbleeds - - - - - - .05 - .07 - .08 - .05 - - - - - - - - - - .07 - - - .06 - 

    BrainV - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 

    Amyloid - .11 .07 - - - .10 .06 - - - - - - .07 - - - - - .07 .04 - - .04 - .07 .09 - 

    Tau: global - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 

    Tau: regional - - - - - - - - - .04 - - - - - - - - - - .04 - - - - - - - - 

Fiber-bundle cross-section 

    Age .09 .06 .18 - .11 .04 - .09 .05 - .12 .12 - .18 - .12 .20 .07 .07 - - - - - .05 - .09 .08 .05 

    WMHV - - - - - .04 - - - - - - - - .06 - - - - - - .05 .06 - - - - - - 

    Lacunes - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 

    Microbleeds - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 

    BrainV .35 .35 .32 .23 .28 .19 .29 .20 .31 .30 .18 .19 .18 .18 .22 .12 .17 .34 .20 .22 .18 .29 .23 .19 .06 .20 .17 .25 .24 

    Amyloid - - - - .05 - - - - - .04 - - - - - - - .04 - - - - - - - .04 - - 

    Tau: global - - - - .05 - - - - - - - - - - - - - - - - - - - - - - - - 

    Tau: regional .06 - - - - - - - - - - - - .05 - - .05 - - - - - - - - - - - - 



73 
2. Studies 

Table e-6: Simple linear regression models predicting fiber density (top) or fiber-bundle cross-section (bottom) for each fiber tract in the validation sample (adj. R2, p<0.05, FDR 
adj. p<0.05 in bold). Predictors are represented on the left (age, white matter hyperintensity volume [WMHV], lacunes, microbleeds, brain volume [BrainV]) which were 
included separately for each model. Please refer to Figure 3 (main manuscript) for abbreviations of the fiber tracts. 
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Fiber density                              

    Age .13 .14 .18 .17 .12 .08 .10 .13 .13 .10 .06 .09 .15 .18 .17 .03 .17 .07 .05 .12 .12 .22 .18 .17 .18 .22 .23 .18 .17 

    WMHV .42 .19 .38 .37 .16 .40 .48 .36 .47 .42 .42 .33 .43 .33 .39 .35 .33 .39 .33 .41 .12 .36 .33 .36 .34 .35 .26 .08 .29 

    Lacunes .23 .09 .16 .15 .09 .21 .26 .20 .21 .26 .12 .07 .15 .16 .18 .07 .16 .18 .08 .13 .05 .17 .20 .12 .09 .12 .10 .03 .11 

    Microbleeds .15 .09 .12 .10 .06 .10 .11 .15 .11 .11 .08 .07 .10 .09 .11 .05 .10 .08 .04 .09 .06 .10 .08 .07 .06 .08 .05 .04 .10 

    BrainV .12 .14 .15 .12 .09 .08 .09 .14 .11 .10 .02 .03 .10 .13 .18 - .13 .07 .01 .07 .12 .19 .16 .11 .14 .15 .13 .16 .12 

Fiber-bundle cross-section 

    Age .14 .20 .09 .10 .12 .10 .05 .11 .06 .04 .13 .08 .06 .06 - .11 .06 .09 .10 .08 .05 - - .02 .03 .04 - .26 .13 

    WMHV - - .02 - - .09 - - - - .09 .03 - - .09 .09 - - .09 .03 .03 .08 .02 .03 .04 - - .02 - 

    Lacunes .05 - - .08 .02 .12 .06 .05 - - .13 .10 .09 - - .12 - .04 .12 .10 - - - .06 .07 .03 - - .05 

    Microbleeds .06 - - .04 .02 .09 .05 .03 - .02 .05 .05 .03 - - .03 - .02 .04 .03 - - - .05 .05 .03 - - .03 

    BrainV .35 .32 .29 .27 .20 .27 .23 .31 .31 .24 .34 .29 .25 .14 .11 .34 .15 .42 .35 .33 .12 .13 .06 .12 .16 .19 .08 .33 .36 
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Figure-e1 

 

Sensitivity analysis for associations with disease markers. Effect sizes (adj. R2) obtained from simple linear 
regression analyses are represented by color. Associations between fixel metrics of white matter fiber tracts and 
disease markers were assessed in (A) only CADASIL patients from the SVD sample, and (B) only Aβ+ study 
participants from the AD sample. Circle size depicts statistical significance level. Please refer to Figure 3 (main 
manuscript) for abbreviations of the fiber tracts. BrainV = brain volume, FDR = false discovery rate, WMHV = 
white matter hyperintensity volume. 
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Figure-e2 

Group comparisons for the combined fixel metric fiber density and cross-section. (A) Difference in fiber 
density and cross-section between age-matched healthy controls (HC) and CADASIL patients in the SVD sample 
quantified with Cohen’s d represented by color. (B) Difference in fiber density and cross-section between age-
matched Aβ–T– and Aβ+T–; Aβ–T– and Aβ+T+; Aβ+T– and Aβ+T+ quantified with Cohen’s d represented by 
color. Circle size depicts statistical significance level. Please refer to Figure 3 (main manuscript) for abbreviations 
of the fiber tracts. FDR = false discovery rate. 
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Figure-e3 

 

Associations with the combined fixel metric fiber density and cross-section. Effect sizes (adj. R2) obtained 
from simple linear regression analyses are represented by color. Associations between fixel metrics of white matter 
fiber tracts and disease markers were assessed in (A) the SVD sample, (B) the AD sample – including in addition 
amyloid-PET and tau-PET markers – and (C) the validation sample. Circle size depicts statistical significance 
level. Please refer to Figure 3 (main manuscript) for abbreviations of the fiber tracts. BrainV = brain volume, 
FDR = false discovery rate, WMHV = white matter hyperintensity volume. 
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Figure-e4 

 

Sensitivity analysis for associations with the combined fixel metric fiber density and cross-section. 
Associations between disease markers in (A) only CADASIL patients from the SVD sample, and (B) only Aβ+ 
study participants from the AD sample. Effect sizes (adj. R2) obtained from simple linear regression analyses are 
represented by color. Circle size depicts statistical significance level. Please refer to Figure 3 for abbreviations of 
the fiber tracts. BrainV = brain volume, FDR = false discovery rate, WMHV = white matter hyperintensity volume. 
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Figure-e5 

 

Scatterplots illustrating the key findings in a representative fiber tract (inferior fronto-occipital fasciculus). 
Associations between fixel metrics and white matter hyperintensity volume (WMHV) and brain volume (BrainV) 
in (A) SVD sample, (B) AD sample and (C) validation sample. 
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Supplementary Analysis: Scanner effects 
 
To investigate scanner effects on fixel-based analysis (FBA), we analyzed an inter-site dataset of 10 

CADASIL patients with multi-shell diffusion MRI acquired on two different scanners (Siemens 

Magnetom Prisma and Siemens Magnetom Skyra; see http://intersite.isd-muc.de). After performing 

FBA for each scanner separately following the pipeline in this study, we assessed the inter-site 

reproducibility with the intraclass correlation coefficient, ICC (2,1). 

Reproducibility was excellent for both fiber density (ICC median=0.981; range[0.901; 0.998]) and fiber-

bundle cross-section (ICC median=0.989; range[0.843; 0.999], suggesting that scanner differences play 

only a minor role in FBA when using the tract-average approach. 
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3. GENERAL DISCUSSION 

In the following sections, main findings of Study I and II, their key implications, limitations 

and future directions are discussed. 

 

3.1. Main findings 

3.1.1. Study I 

Our main finding of Study I was that structural brain network analysis does not show a 

meaningful benefit over simpler, skeleton-based white matter diffusion markers in explaining 

processing speed deficits in sporadic SVD. Furthermore, while almost all structural brain 

networks showed excellent test-retest reliability, they did not capture short-term disease 

progression in the high-frequency longitudinal dataset, in contrast to skeleton-based metrics. 

Opposed to our hypothesis, structural brain networks derived from multi-shell diffusion MRI 

did not perform better than those derived from a simpler tractography pipeline albeit modelling 

crossing fibers and enhancing anatomical precision through anatomical constraints (Tournier, 

Calamante, and Connelly 2012; Smith et al. 2012). Given that analysis steps are simpler and 

less prone to arbitrary design choices for skeleton-based markers compared to network analysis, 

these simpler diffusion markers remain the method of choice for SVD research, and potentially 

clinical routine. Our results demonstrate that tractography algorithm, node and edge definition 

have a substantial effect on brain network analysis, which highlights the need for 

standardization to facilitate comparisons between research studies. 

3.1.2. Study II 

Study II found that metrics derived from fixel-based analysis allow to disentangle effects of 

SVD and neurodegeneration on white matter fiber tracts. Specifically, fiber density of all white 

matter fiber tracts was strongly reduced in genetically defined SVD and highly associated with 

SVD imaging markers. Fiber-bundle cross-section was associated with brain volume, a marker 

of neurodegeneration. Both fiber density and fiber-bundle cross-section were reduced upon 

amyloid deposition in the Alzheimer’s disease sample. However, concomitant SVD was highest 

in the Aβ positive group and after controlling for global WMH volume, the reductions in fiber 

density were attenuated, suggesting that the effect of amyloid on fiber density can at least partly 

be explained by concomitant SVD, e.g., due to CAA which is highly prevalent in Alzheimer’s 
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disease (Attems and Jellinger 2014) and also captured by amyloid-PET (Charidimou, Farid, 

and Baron 2017). Notably, neither fiber density nor fiber-bundle cross-section were associated 

with tau deposition in the Alzheimer’s disease sample.  

With decreasing fiber density, fiber-bundle cross-section of the anterior thalamic radiation and 

the rostrum harboring the forceps minor increased when comparing patients with CADASIL to 

matched controls. Interestingly, these two key regions were previously found to be associated 

with processing speed deficits in SVD (Duering et al. 2014; Biesbroek, Weaver, and Biessels 

2017). This finding might seem counter-intuitive at first, but might be explained by blood-brain 

barrier breakdown leading to vasogenic cerebral edema, i.e. an increase in intracellular water 

leading to expansion of the extracellular space and ultimately fiber tract swelling (Dhollander 

et al. 2021). Supporting the concept of vasogenic cerebral edema in SVD, increased white 

matter volume has previously been observed at the early stage of CADASIL (François De Guio 

et al. 2015), while increased brain tissue volumes with subtle blood-brain barrier leaking were 

found in sporadic SVD (Zhang et al. 2017). Yet, this post-hoc hypothesis explaining the 

increase in fiber-bundle cross-section observed in CADASIL requires validation in future 

studies. 

 

3.2. Key implications 

3.2.1. The need for standardizing network analysis to facilitate comparisons between 

research studies 

Study I demonstrated that performance of network-based diffusion markers is highly dependent 

on tractography algorithm, node, and edge definition. Previous work already indicated that 

these design choices play a major role in determining network topology (Fornito, Zalesky, and 

Breakspear 2013; Zalesky et al. 2010), but the best approach for a network-based marker for 

SVD was not yet investigated. In Study I, networks derived from the deterministic, tensor-based 

tractography pipeline combined with the FA-edge and automated anatomical labeling (AAL)-

node definition showed the highest clinical validity among network-based markers and 

excellent technical validity. Thus, future research might focus on this pipeline with FA-edge 

and AAL-node combination. It also became apparent that pre-defining edge and node definition 

is essential to keep the number of comparisons low if relying on statistical probabilities to draw 

conclusions. In our study, we obtained in total 26 measures of global efficiency of different 
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brain networks (i.e., 13 different edge definitions x 2 different node definitions). If we would 

have also assessed different graph measures, this number would have rapidly multiplied. 

Examining different edge and node definitions to reconstruct networks and only reporting those 

which are significant, i.e., p-hacking, is easy, yet, as evident in our study, the best node and 

edge combination in one sample might not translate to an independent sample and might even 

be a false positive after many statistical tests. To not fall into these pitfalls, it is essential to pre-

define analysis concepts in network-based analysis. Pre-registering analysis concepts and 

planned statistical analyses via Open Science platforms (e.g., AsPredicted.org or the Open 

Science Framework) before carrying out any analysis is an ideal way to increase reproducibility 

and transparency in research (Simmons, Nelson, and Simonsohn 2021). Since biomedical 

research forms the basis for clinical trials, reproducible research findings are indispensable to 

facilitate the development of new therapies for SVD (Ioannidis 2005; Hillary and Medaglia 

2020). In addition, consensus guidelines as proposed by expert panels are required to expand 

on previous STRIVE criteria (Wardlaw et al. 2013) towards latest MRI markers of SVD 

including network analysis to facilitate standardization and comparability across research 

studies. 

3.2.2. Fixel metrics disentangle effects of SVD and neurodegeneration 

Study II showed that metrics from fixel-based analysis allow to disentangle effects of SVD and 

neurodegeneration on white matter. Fixel-based diffusion markers thus offer the possibility to 

better understand the extent to which SVD and neurodegeneration contribute to cognitive 

impairment and other clinical manifestations in mixed disease. This furthermore facilitates 

disease-specific interventions targeting e.g., AD- or SVD-related brain alterations rather than 

managing disease-shared risk factors. Similarly, fixel metrics might be used to pre-select 

patients with high SVD burden and likely higher rate of progression to clinical end points as 

potential study participants for SVD-focused clinical trials. Enriching target populations and 

reducing the heterogeneity of underlying pathologies in clinical trials may allow the required 

sample size to be reduced, ultimately improving the methodology of clinical trials (Markus et 

al. 2022). Yet, in mixed disease, other age-related pathologies might play an additional role 

(Kapasi, DeCarli, and Schneider 2017) and it remains to be determined how these reflect in 

fixel metrics. Most studies employing fixel-based analysis in disease did not examine disease-

specific effects on either of the fixel metrics, but instead focused on the combined fiber density 

and cross-section metric to confirm previous voxel-based findings of diffusion alterations by 

more advanced fiber-specific analyses (Dhollander et al. 2021).  
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Results of Study II further confirm previous work showing that SVD is a main contributor to 

alterations in tissue microstructure, as recently shown for diffusion tensor and free water 

imaging (Finsterwalder et al. 2020). Thus, SVD should always be accounted for in research 

studies investigating elderly participants. Even when neurodegenerative pathology is in focus, 

comorbid SVD is highly prevalent and thus at least a major confounder in research studies 

investigating elderly participants (Kapasi, DeCarli, and Schneider 2017; Arvanitakis et al. 

2016). Ensuring that results are not driven by comorbid SVD (e.g. by controlling statistical 

analyses for SVD burden through quantification of conventional markers – WMH volumes, 

lacune and microbleed count – or inclusion of the SVD summary score (Staals et al. 2014)), is 

of utmost importance to provide a better understanding of underlying pathologies contributing 

to the observed effects.  

 

3.4. Limitations 

Several caveats of the work presented in this thesis need to be considered.  

3.4.1. Study I 

One limitation of the network analysis approach employed in Study I might be that we did not 

normalize the brain networks against null-models. Consequently, global efficiency values 

might be heavily influenced by the density of the structural network. However, white matter 

tissue alterations of SVD are likely to affect the density of the network as well (Boot et al. 2020) 

and thus, normalizing against null models might lead to unwanted overcorrection of disease 

effects. In addition, previous work on network analysis in SVD (Tuladhar et al. 2016; 2020; 

Boot et al. 2020) did not normalize against null models either and thus, to facilitate comparison 

with previous studies, we a priori decided against this normalization. 

Another limitation might be the lack of biomarker characterization in the included samples and 

hence, comorbid Alzheimer’s disease and other age-related diseases might have contributed to 

the results. While Study I might have benefitted from the inclusion of a sample with pure SVD, 

accurate segmentation of T1-weighted images of CADASIL patients is challenging, since the 

severe SVD lesions appearing hypointense on T1-weighted images are often misclassified as 

grey matter due to a reduced grey-white matter contrast in CADASIL patients (De Guio et al. 

2014). Given that the anatomical constraints in the multi-shell pipeline rely on high-quality 

segmentations of T1-weighted images (Smith et al. 2012), these effects might have altered the 
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results in CADASIL or would have required postprocessing to an extent that it is no longer 

feasible as imaging marker for SVD in clinical trials or clinical routine.  

3.4.2. Study II 

The lack of biomarker characterization of the RUN DMC study also limited Study II. Hence, 

we can only assume that subjects of the validation sample are affected by mixed pathology. It 

would have been tempting to pool subjects across all samples into one large sample and predict 

the underlying pathology of each subject given observations in both fiber density and fiber-

bundle cross-section. However, fixel-based analysis largely depends on (a set of) response 

functions and the scanner used for data acquisition and thus, the heterogeneity in diffusion 

protocols and scanners of the individual samples did not allow us to pool subjects.  

Some of these limitations might be addressed in future studies (see next paragraph). 

 

3.5. Future directions 

3.5.1. Network based analysis to capture secondary neurodegeneration 

Contrary to our hypotheses of Study I, network-based analysis did not capture short-term 

disease progression. One reason might be the rather short follow-up time of ten months in the 

high-frequency longitudinal dataset. While tracking short-term disease progression is of great 

interest for clinical trials with typically limited study duration considering costs and patient 

burden, network analysis might still be valuable to gain pathophysiological insights. SVD is 

considered a global brain disease, with focal lesions also having an impact on remote tissue 

structures leading to secondary degeneration (Duering et al. 2012; 2015). One might speculate 

that secondary degeneration leads to network alterations which can be assessed with brain 

network analysis, as shown in stroke (Crofts et al. 2011; Veldsman et al. 2020), rendering the 

network approach more suitable to assess long-term effects of the disease. Still, whether 

network markers are in this regard superior to the simpler, skeleton-based diffusion markers 

remains to be determined. Nonetheless, network-based analysis has provided pathological 

insight into the disease. Specifically, especially connections between rich club hubs, i.e. nodes 

that are highly interconnected, as well as central network connections have shown to be 

disrupted in SVD (Tuladhar et al. 2017; Reijmer et al. 2016). 
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3.5.2. Fiber density as surrogate marker for SVD 

While blood-based biomarkers sensitive to the underlying pathology are on the rise in the 

Alzheimer’s disease field (Teunissen et al. 2022), truly disease-specific markers for SVD are 

lacking. One reason might be that SVD is a complex cerebrovascular disease with likely many 

underlying disease pathways which are still incompletely understood (Wardlaw, Smith, and 

Dichgans 2019). Diffusion MRI markers are strongly associated with clinical deficits and very 

sensitive to disease progression (Konieczny et al. 2021), however, they are not disease-specific. 

Given findings of Study II, one might speculate fiber density to be a more specific marker for 

SVD than typical DTI metrics which simply reflect the magnitude and directionality of main 

water diffusion per voxel.  

Future work is required to validate fiber density as a disease-specific marker for SVD, e.g. in 

animal models. A previous histology study found (apparent) fiber density obtained from high-

resolution ex vivo diffusion MRI to be highly associated with axonal density in a rat model with 

induced unilateral retinal ischemia (Rojas-Vite et al. 2019). Importantly, apparent fiber density 

in crossing fibers complied with histopathological axonal density of crossing fibers in the 

chiasm. Yet, these findings do not easily translate to dementia patients and thus, future histology 

studies are needed to validate fiber density as SVD marker in mixed disease models. Animal 

models would furthermore allow to confirm the specificity of fixel metrics in a controlled 

environment, using transgenic animal models for pure Alzheimer’s disease, pure SVD or 

models for mixed disease, e.g. by crossing the pure transgenic models. 

Fiber density might be a promising candidate as surrogate marker in clinical trials facilitating 

the development of new therapies for SVD. Skeleton-based diffusion MRI markers have shown 

to reduce required sample sizes for clinical trials by approx. 60% compared to conventional 

MRI markers due to their high sensitivity in detecting subtle tissue alterations and their 

excellent test-retest reliability (Baykara et al. 2016; Benjamin et al. 2016; Konieczny et al. 

2021). Yet, future work is needed to systematically assess the value of fiber density as surrogate 

marker for clinical trials. In this regard, longitudinal studies are needed to examine the 

sensitivity of fiber density to change upon disease progression. Given previous suggestions of 

lesion regression in SVD (van Leijsen, de Leeuw, and Tuladhar 2017; Leijsen et al. 2019), 

longitudinal studies will also inform us about the temporal dynamics of the observed reductions 

in fiber density as found in Study II. In addition, technical validation studies assessing the test-

retest reliability and inter-site reproducibility of fiber density on different scanners will be 

essential to advance fiber density as surrogate marker of the disease for clinical trials. 
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3.5.3. Fiber-bundle cross-section as imaging marker for neurodegeneration 

Neurodegeneration is characterized by neuronal loss and often caused by Alzheimer’s disease, 

but also many other age-related diseases including SVD (Kovacs et al. 2013). As shown in 

Study II, fiber-bundle cross-section is highly sensitive towards neurodegeneration. Given that 

advanced fixel metrics capture fiber-specific tissue alterations and operate on the sub-voxel 

level, one might speculate fiber-bundle cross-section to be sensitive towards earliest 

neurodegenerative tissue alterations. As shown in multiple studies, local SVD lesions lead to 

remote tissue effects and secondary neurodegeneration (Duering et al. 2015; 2012). Thus, the 

fiber-bundle cross-section metric might also be used to examine remote effects of secondary 

neurodegeneration in SVD and their time course thereby expanding previous results to the fixel 

level. 

Serum neurofilament light chain (NfL) is a blood marker of neuroaxonal injury reflecting 

axonal damage and has been applied in various neurological conditions, including multiple 

sclerosis, SVD and neurodegenerative diseases (Disanto et al. 2017; Duering, Konieczny, et al. 

2018; Preische et al. 2019). To better understand the fundamentals of alterations in fiber-bundle 

cross-section, future work might assess associations between fiber-bundle cross-section and 

NfL levels. One might speculate that NfL is highly associated with fiber-bundle cross-section 

since both measure some degree of axonal damage but might follow different time courses.  

3.5.4. Biophysical models 

In contrast to voxel-averaged signal representations (e.g. diffusion tensor or kurtosis imaging), 

biophysical models aim to sketch the underlying white matter microstructure (Jelescu et al. 

2020). Fixel-based analysis might also be considered a biophysical model. One disadvantage 

of the fixel-based analysis approach employed in Study II is the necessity of a group template 

based on which the fiber-bundle cross-section metric is derived (Raffelt et al. 2017). In addition, 

the current implementation relies on (averaged) response functions – in this case the average 

was computed over a subset of representative study participants. Thus, the proposed 

implementation as performed in Study II is ideal for group studies but does not translate to the 

individual patient yet and implementation in clinical routine involving monitoring of disease 

progression is challenging due to the dependency on response functions.  

Other biophysical models have been proposed which might model similar tissue properties as 

fixel metrics in our study. We previously investigated the multicompartment model neurite 
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orientation dispersion and density imaging (NODDI) (Zhang et al. 2012). In two samples 

covering sporadic SVD and CADASIL, NODDI metrics were less sensitive to processing speed 

deficits and showed poorer test-retest reliability compared to metrics of DTI and DKI 

(Konieczny et al. 2021). One reason of the latter finding might be that in NODDI, the tissue 

compartments are not independent but additive. Thus, upon smallest tissue alterations due to 

e.g., measurement error, all tissue compartments are affected. New biophysical models are 

constantly emerging, and their potential as SVD markers has yet to be investigated. The applied 

analytical approach in Study I, i.e. pre-specifying hypotheses via pre-registration, the inclusion 

of an independent sample and systematic clinical and technical validation, offers an unbiased 

and transparent strategy to validate diffusion markers for clinical trials and eventually clinical 

routine. 

 

3.6. Conclusion 

Tractography-based diffusion MRI markers are appealing in SVD research since they allow to 

approach the disease as disconnection syndrome through structural brain network analysis and 

enable to derive fiber-specific properties of white matter fiber tracts through fixel-based 

analysis. As demonstrated in this thesis, albeit excellent test-retest reliability, structural brain 

network analysis does not show an added benefit over well-established diffusion markers in 

explaining cognitive deficits in SVD or monitoring disease progression and thus, skeleton-

based markers of diffusion tensor imaging remain the preferred choice for these purposes. 

Fixel-based analysis of white matter fiber tracts yields promise to disentangle effects of SVD 

and neurodegeneration in mixed disease. As shown in Study II, fiber density is highly sensitive 

towards SVD-related brain alterations while neurodegeneration is captured by fiber-bundle 

cross-section. Future research should address gaps in technical validation and apply fixel-based 

analysis in longitudinal datasets in order to facilitate widespread clinical use and the 

development of a surrogate endpoint for clinical trials. 
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