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Zusammenfassung

In der vorliegenden Arbeit wird die Expansionsdynamik von schwebenden Mikrokugeln
nach der Interaktion mit einem fs-kurzen Laserimpuls im Intensitätsbereich von 1015 −
1016 W/cm2 mithilfe eines Pump-Probe-Experiments untersucht. Die Studie umfasst
zwei Plasmadiagnostiken: ein intrinsisches Probing entlang der Laserachse durch den
auf t = 0 ps fixierten Pump-Puls und ein zeitlich variables, laterales Probing durch
einen separaten Probe-Puls. In beiden Fällen wird das transmittierte Licht über einen
Streuschirm aufgezeichnet, der eine sehr simple Diagnostik darstellt, die in den meisten
Hochleistungslaserexperimenten implementiert werden kann. Um eine Plasmadichtev-
erteilung aus den aufgezeichneten Inline-Hologrammen zu extrahieren, wird das Exper-
iment durch numerische Simulationen mit dem Python-Paket LightPipes reproduziert.
Der Simulationsaufbau wird durch Vergleich mit experimentellen Größen wie Fokus-
größe, Strahlprofilen und Hologrammen wohldefinierter Polystyrol-Kugeln kalibriert.
Mehrere radialsymmetrische Modelle werden für die Modellierung der Dichteverteilung
des Plasmas zu verschiedenen Zeitpunkten während seiner Entwicklung getestet, indem
Simulationsergebnisse mit aufgezeichneten experimentellen Bildern verglichen wer-
den. Die beste Übereinstimmung wird für eine Gauß-förmige Dichteverteilung mit
einer zusätzlichen, dezentralen Gauß-Komponente erzielt. Die Validität dieses em-
pirisch ermittelten Modells wird durch Simulationen mit dem Hydrodynamik-Code
RALEF weiter untermauert, wofür experimentell ermittelte Werte für die räumliche
und zeitliche Intensitätsverteilung als Input verwendet wurden. Der zeitliche Verlauf
der expandierenden Dichteverteilung wird mit einem einfachen Modell unter Annahme
hydrodynamischer Expansion des Plasmas verglichen. Die gute Übereinstimmung
zwischen den experimentellen Daten und dem Modell ermöglicht es, physikalische
Größen wie die Laserabsorption zu bestimmen und sie mit experimentellen Bedin-
gungen des Plasmas in Beziehung zu setzen. Die Ergebnisse dieser Arbeit sind ein
erster Schritt zur Untersuchung der Expansion von mikrometergroßen, kugelförmigen
Targets bei Intensitäten weit oberhalb der Plasmabildungsschwelle und sind beson-
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ders relevant für zukünftige Experimente, die die Wechselwirkung von relativistisch
intensiven Laserimpulsen mit dichteangepassten, subfokusgroßen Mikroplasmen un-
tersuchen, z. B. auf dem Gebiet der Laser-Ionen-Beschleunigung.



Abstract

In the present work, the expansion dynamics of levitating microspheres following the
interaction with a fs-short laser pulse in the intensity regime of 1015−1016 W/cm2 is in-
vestigated in a pump-probe experiment. The study comprises two plasma diagnostics:
an intrinsic probing along the laser axis via the pump pulse, fixed at t = 0 ps, and a
time-variable lateral probing on a separate probe pulse. In both cases, the transmitted
light is recorded via a scatter screen, providing a very simple diagnostic tool that can
be implemented in most high-power laser experiments. In order to extract a plasma
density distribution from the recorded inline holograms, the experiment is reproduced
via numerical simulations using the Python package LightPipes. The simulation setup
is calibrated by comparison to experimental conditions such as focus size, beam pro-
files and holograms of defined polystyrene spheres. Several radial symmetric models
are investigated for modeling the density distribution of the plasma at different times
during its evolution by comparing simulation results against recorded experimental
images. The best agreement is found for a Gaussian density distribution with an addi-
tional, decentralized Gaussian component. The validity of this empirically determined
model is further strengthened by simulations using the hydrodynamic code RALEF,
where experimentally obtained values for the spatial and temporal intensity distribu-
tion are used as input. The temporal course of the expanding density distribution is
compared to a simple model assuming hydrodynamic expansion of the plasma. The
good agreement between experimental data and the model allows determining physical
quantities such as laser absorption and relate them to experimental conditions of the
plasma. The findings of this work are a first step towards studying the expansion of
micrometer spherical targets at intensities well above the plasma generation threshold
and are particularly relevant for future experiments investigating the interaction of rel-
ativistically intense laser pulses with density-tailored, sub-focus sized microplasmas,
e.g. in the field of laser-ion acceleration.
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Chapter 1

Motivation and Context

Contents
1.1 Particle Accelerators . . . . . . . . . . . . . . . . . . . . . . 1

1.2 Plasma Diagnostics . . . . . . . . . . . . . . . . . . . . . . . 3

1.3 Aim of this Work . . . . . . . . . . . . . . . . . . . . . . . . 5

1.4 Thesis Structure . . . . . . . . . . . . . . . . . . . . . . . . . 6

This chapter serves as an introduction to the field of laser-plasma acceleration and
highlights some efforts that have been made in the last decades to study the interaction
of high-intensity laser pulses with plasmas.

1.1 Particle Accelerators

"It would be of great scientific interest if it were possible in laboratory experiments
to have a supply of electrons and atoms of matter in general, of which the individual
energy of motion is greater even than that of the α-particle. This would open up an
extraordinarily interesting field of investigation which could not fail to give us infor-
mation of great value, not only on the constitution and stability of atomic nuclei but
in many other directions."

With these words, addressed to the Royal Society in 1927 [1], Ernest Rutherford
expressed his wish for a MeV-class particle accelerator. Today, such machines are
no longer wishful thinking and, as Rutherford predicted, have made groundbreaking
contributions to our understanding of physics. Here, the discovery of the Higgs bo-
son [2, 3] is the most recent in a long line of Nobel Prize rewarded discoveries that
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would not have been possible without particle accelerators. Major facilities such as
the Large Hadron Collider are capable of accelerating particles to energies of several
TeV. However, accelerators have become indispensable not only in the field of funda-
mental research but also in many practical applications such as medical imaging [4, 5],
radiation therapy [6, 7] or industrial processes [8].

In most cases, the particles are accelerated by electrostatic or radio frequency fields.
Due to material breakdown, these have an upper limit with regard to the available elec-
tric fields of around 100 MV/m [9, 10, 11]. This also results in a lower limit for the
compactness of such accelerators. Therefore, high-energy accelerators are often built
in a ring shape, where the acceleration cavities can be used repeatedly until the target
energy is reached. But even such configurations cannot reach arbitrarily high energies,
since they are limited by losses due to synchrotron radiation and the increasingly dif-
ficult steering of the particles.

Plasma-based Accelerators

A concept capable of circumventing such limitations was introduced by Veksler [12]
in 1957, proposing a plasma as the accelerating medium, where electric breakdown is
no longer a limitation as the plasma already consists of ionized matter. In contrast
to the conventional acceleration of individual particles by an external electric field,
here a collective acceleration of ions can be achieved by a plasma wave, exited by an
injected high-energetic electron beam. Early experiments, trying to demonstrate this
concept, could not achieve the projected high energy gain due to instabilities of the
plasma wave [13]. By adopting the scheme to the acceleration of electrons and chang-
ing the driver of the plasma wave to a laser, which was invented by Maiman in 1960
[14] Tajima and Dawson proposed a new concept called Laser Wakefield Acceleration
(LWFA) [15]. Here an ultra-short, intense laser pulse drives a plasma wave moving
with a relativistic phase velocity which results in a much more stable acceleration
structure. At that time lasers were not able to deliver the required pulse length or
intensity although they became shorter and more intense through techniques such as
Q-switching [16]. With the invention of Chirped Pulse Amplification (CPA) [17] in
1985 the achievable laser parameters experienced an enormous boost and were able
to unleash the full potential of the LWFA concept [18]. Achievable electric fields can
exceed those of conventional accelerators by several orders of magnitude and by that
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allow to compactify the accelerator design. In 2019, electrons with an energy of about
8 GeV could be accelerated over a distance of only 20 cm [19], where conventional
accelerators would need on the order of 100 m to reach the same energy.

The laser-driven acceleration of ions has not yet reached the scale desired by Veksler
because the necessary experimental conditions have not yet been met. Nevertheless,
this field is being developed with great effort, especially since experiments in 2000
showed the generation of multi-MeV ions from the interaction of high-intensity lasers
with solid-state density targets [20, 21, 22]. The acceleration of these ions is achieved
indirectly by charge separation fields that can reach strengths on the order of the
electric field of the laser (MV/µm). These are created, for example, when the laser
energizes electrons on the irradiated side of the target. The electrons pass through the
target and escape into the vacuum on the non-radiated side, where they induce strong
fields that accelerate target ions. This mechanism is called Target Normal Sheath
Acceleration (TNSA) [23] and generates ions of a broad energy distribution with an
exponentially decaying particle number up to a typically well-defined cutoff energy.
The maximum of these cutoff energies has meanwhile been pushed towards the 100
MeV mark [24, 25, 26]. In addition, laser-accelerated ions exhibit a number of specific
properties (small source size (µm), short emission time (fs - ps) and co-emission of
different particle species and radiation types [27, 28, 29]) that make them interesting
for applications. Nevertheless it is often the broad energy spectrum that restricts ap-
plicability. Therefore several approaches where made to narrow the spectrum towards
a quasi-monoenergetic distribution. Prime examples utilized the manipulation of the
target and/or the laser parameters in foil-based experiments (e.g. [30, 31, 32, 33]),
near-critical densities (e.g. [34, 35]), mass-limited targets (e.g. [36, 37, 38]) or a
combination of the latter two [39].

1.2 Plasma Diagnostics

In all the experiments and mechanisms described above, the plasma is of essential
importance as the accelerating medium. It is therefore not surprising that one of the
main tasks in experiments is to study and understand it in detail. From such data,
model predictions can be tested, new models developed, experimental conditions ver-
ified and experimental results explained. Laser-driven plasmas change at relativistic
velocities and are often only micrometers in size, making detailed measurements very
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challenging. Since such structures are unique to laser plasma acceleration, a variety
of diagnostics have been and are being developed to study the plasma itself or its
properties, ideally with spatial and temporal resolution.

Spectroscopic analysis of electromagnetic radiation, emitted by the plasma, offers a
wide range of diagnostic possibilities. This includes higher harmonics of the frequency
of the driving laser [40], a broad spectrum of X-rays [41, 42] as well as radiation in the
far-infrared range [43]. The study of the latter, for example, allowed the first direct
observation of laser-induced wake fields [43].

Many plasma diagnostics use external electromagnetic pulses (often called probe
in this context) to examine the plasma. Among the most established techniques are
shadowgraphy and schlieren imaging. In shadowgraphy, the plasma is typically trans-
illuminated with a laser pulse whose intensity distribution is then recorded on a detec-
tor, either directly or via an imaging system. Information about the plasma is obtained
from the density dependence of the refractive index in the plasma. This causes the
examining laser pulse to be diffracted or even blocked according to the spatial density
distribution of the plasma. Shadowgraphy is particularly well suited to observe ultra-
fast changes in the density distribution. For example, the evolution of a plasma wave
in a laser wakefield accelerator [44] or the dynamics of the laser-plasma interaction
in foil experiments [45] for laser-ion acceleration could be studied with femtosecond
time resolution. Schlieren imaging is closely related to the technique of shadowgraphy.
The setup is very similar, but in schlieren imaging an aperture (often at the focus of
the imaging lens) is used to block light unaffected by plasma. This method directly
measures the angle of deflection (first derivative of refractive index) while shadowgra-
phy measures the displacement of the examining light due to the deflection (second
derivative of refractive index). In general, the schlieren technique is therefore more
sensitive and suitable for measuring smaller density fluctuations.

However, both techniques usually provide only qualitative measurements of density
variations and are thus often used to monitor dynamics. For quantitative statements,
interferometric diagnostics can be employed for measuring miniscule refractive index
changes. For this purpose, a laser pulse is typically split and one beam is used as a
reference while the second beam is sent through the plasma. The changes in the refrac-
tive index caused by the plasma change the phase or optical path, which is reflected
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in fringe shifts in the interferogram of the two beams. Interference-based methods
have been used extensively to characterize laser-driven wakefields [46] or to measure
the expansion of dense plasmas after the interaction of solid-state density targets with
high-intensity lasers [47]. If not only relative phase-differences need to be measured,
holography, invented by Gabor in 1948 [48], can be used. Here, a interference pattern
between an undisturbed reference beam and a beam diffracted by the object to be
investigated is recorded. Within this interference the phase structure of the object
is encoded and allows to subsequently reconstruct the object. Such diagnostics allow
to quantify the electron density distribution in a plasma with great spatial resolu-
tion [49]. By adapting the holographic principle towards the frequency domain [50],
plasma structures, moving with relativistic velocities, can be recorded within a single
measurement [51].

The dominant limitation for probe pulses is set by the critical density. This defines
a limit above which the plasma is no longer transparent but opaque. Thus, access to the
density distribution in high density regions (for optical radiation at electron densities
of the order of and beyond ne ∼ 1021/cm3) remains out of reach. Consequently, efforts
for providing probes with shorter wavelength approach now the X-ray regime, since the
critical density is indirectly proportional to the square of the wavelength of the probe.
With picosecond-long X-ray pulses, these regions could be studied in detail for the
first time (e.g. [52, 53]). With the development of free electron lasers, which are able
to deliver femtosecond-short X-ray pulses, the temporal resolution can be drastically
improved and allows the investigation of the solid-density dynamics in great spatial
and temporal resolution (e.g. [54]).

1.3 Aim of this Work

This work focuses on the laser-induced expansion of micron-sized, mass-limited spher-
ical targets. It is motivated by the work of Hilz et. al. [39], who demonstrated a
directional acceleration of ions with a narrow energy spread by experiments with such
targets at the petawatt-class laser PHELIX at the GSI Darmstadt. The decisive factor
and novelty in these experiments was that the high-intensity laser pulse did not inter-
act with a solid-state density target but with a micrometer-small near-critical-density
plasma. The necessary pre-expansion occurred naturally (and thus uncontrolled) over
100 ps in the rising edge of the intensity of the 500 fs long laser pulse. For experiments
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using shorter-pulse lasers, which are designed to prevent such pre-mature expansion,
and to gain control over the pre-expansion, the use of adjustable pre-pulses is consid-
ered to optimize the plasma conditions for the interaction with the main laser pulse.

This work serves as a preliminary study for further experiments on high-power
laser systems in which two aspects in particular are to be investigated. On the one
hand, plasma diagnostics should be developed that are as simple as possible and allow
the precise investigation of the plasma state. The concept of inline holography, which
allows to reconstruct the density distribution in three dimensions, is used. This will
also be implemented in future high-power experiments to allow the verification of the
plasma conditions. On the other hand, a simple, analytical model for the time course
of the plasma expansion is to be determined with which predictions can be made about
the expansion behavior. This model can then serve as a guideline to determine the
appropriate experimental parameter range for the short pre-pulse. For the study, a
pump-probe experiment in combination with a Paul trap target system [55] is realized
using the dual-beam ZEUS laser system at the Centre for Advanced Laser Applications
(CALA) in Garching, where the main beam simulates the short pre-pulse of a high-
power experiment, interacting with micrometer-sized plastic spheres, while the time
course of the subsequent expansion is investigated with a second beam. Even though
the involved (optical) laser pulses cannot access the high-density region of the micro-
plasma, their very nature enables determining most relevant plasma parameters via
detailed numerical modeling of the probing process with simplified, empirical plasma-
density distributions.

1.4 Thesis Structure

Chapter 2 provides the theoretical basis of physical aspects relevant to this thesis. It
illuminates laser-plasma interaction, introduces different expansion models of plasmas
and describes the basic theoretical concepts of the simulations used for interpreting
the experimental results.

Chapter 3 presents the experimental setup for studying the temporal behavior of
laser-generated micro-plasmas and introduces the diagnostics developed for this pur-
pose.
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Chapter 4 introduces the numerical simulations that were used to reconstruct the
key plasma parameters from the experimental data with the help of empirical, analyt-
ical 3D models.

Chapter 5 presents the plasma parameters obtained from the combination of exper-
iment and simulation. In comparison with previous expansion models, the temporal
dynamics and the influence of the laser parameters, in particular the intensity, becomes
accessible.

Chapter 6 summarizes the findings obtained in this thesis and provides recommen-
dations for exploitation in future experiments.



8 1. Motivation and Context
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Theory

Contents
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2.5 Laser Absorption . . . . . . . . . . . . . . . . . . . . . . . . . 20

2.6 Plasma Expansion . . . . . . . . . . . . . . . . . . . . . . . . 24

2.7 Scalar Diffraction Theory . . . . . . . . . . . . . . . . . . . 28

This chapter provides the theoretical background of the physics relevant to this thesis.
These include the description of light and plasma, as well as their interaction and
important mechanisms concerning ionization, absorption and expansion. Finally, the
main formalisms of scalar diffraction theory that provide the basis for the numerical
simulations are introduced.

2.1 Electromagnetic Waves
1The consideration of light as an electromagnetic wave follows from Maxwell’s equa-
tions, with the help of which electromagnetic fields can be completely described [57]:

1This section follows [56, 57]
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(I) ∇⃗E⃗ = ρ

ϵ
,

(II) ∇⃗B⃗ = 0,

(III) ∇⃗ × E⃗ = −∂B⃗

∂t
,

(IV ) ∇⃗ × B⃗ = µ⃗j + µϵ
∂E⃗

∂t
,

(2.1)

where E⃗ and B⃗ are the vectorial electric and magnetic field, ρ is the charge density, j⃗

is the current density and ϵ and µ are the medium-specific dielectric permittivity and
magnetic permeability, respectively. In the absence of charges and currents (ρ = 0,
j⃗ = 0) and using ∇⃗ × (III) and ∇⃗ × (IV ), one obtains the harmonic wave equations

∇⃗2E⃗ − 1
v2

∂2E⃗

∂t2 = 0,

∇⃗2B⃗ − 1
v2

∂2B⃗

∂t2 = 0,

(2.2)

which describe the propagation of an electromagnetic wave with a velocity of v =
1/

√
µϵ. Using the medium refractive index η =

√
µϵ

µ0ϵ0
and the speed of light c =

1/
√

µ0ϵ0, one finds that v = c/η. In a vacuum with η = 1, the velocity thus becomes
c.

Monochromatic, plane waves

A possible solution that satisfies equation 2.2, are monochromatic, plane waves that
travel in one direction k⃗. Consequently the fields can be assumed to have the form

E⃗ (r⃗, t) = e⃗1 · E0 · cos
(
k⃗r⃗ − ωt + ϕ0

)
,

B⃗ (r⃗, t) = e⃗2 · B0 · cos
(
k⃗r⃗ − ωt + ϕ0

)
,

(2.3)

with E0 and B0 being constant amplitudes, ϕ0 being a constant phase term and the
dispersion relation ω =

∣∣∣⃗k∣∣∣ · v. e⃗1 and e⃗2 denote constant unit vectors. From ∇⃗E⃗ = 0
and ∇⃗B⃗ = 0 follows that e⃗1 · k⃗ = 0 as well as e⃗2 · k⃗ = 0, meaning that both fields
are perpendicular to the propagation direction or in other words, that the wave is
transverse. Moreover, it can be shown that k⃗ ⊥ e⃗1 ⊥ e⃗2 and that the relation between
the field amplitudes is given by E0 = v · B0.
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It is often convenient to use a complex notation for electromagentic waves. The
sinusodal solution for the electric field found above can also be written in the form of

E⃗ (r⃗, t) = Re
[
e⃗1 · E0 · eiϕ0 · ei(k⃗r⃗ − ωt)

]
. (2.4)

Introducing a complex amplitude E ′
0 = E0 · eiϕ0 , equations 2.3 can be expressed as

E⃗ ′ (r⃗, t) = e⃗1 · E ′
0 · ei(k⃗r⃗ − ωt),

B⃗′ (r⃗, t) = e⃗2 · B′
0 · ei(k⃗r⃗ − ωt).

(2.5)

It should be noted that the electric field of 2.3 (and consequently 2.5) always points in
the direction of e⃗1, the wave thus is linearly polarized along that direction. For a more
general consideration, the electric field for example would be a superposition of the
form E⃗ ′ (r⃗, t) = (e⃗1 · E ′

1 + e⃗2 · E ′
2) · ei(k⃗r⃗ − ωt) [56] which also allows to find solutions

for the cases of circular or elliptical polarization. For simplicity and as only linear
polarized light was used in the experiments, these cases are not considered further.

While traveling, the wave carries energy. The energy flux is described by the
Poynting vector

S⃗ = 1
µ

(
E⃗ × B⃗

)
. (2.6)

Inserting 2.3 gives S⃗ = v · ϵ · E2
0 · cos2

(
k⃗r⃗ − ωt + ϕ0

)
e⃗3, pointing in propagation

direction. The intensity (or average power per unit area) of the electromagnetic wave
is defined as the cycle-averaged magnitude of the Poynting vector:

I = ⟨S⟩ = 1
2 · v · ϵ · E2

0 , (2.7)

where ⟨cos2⟩ = 1/2 was used.

Intensity of a laser pulse in the focal plane

In the context of laser-plasma experiments, where a short laser-pulse is focused to a
small spot, the intensity in the focal plane is a key parameter. When using real pulses,
the electric field amplitude (and thus the intensity) is no longer independent of space
and time. Assuming simple Gaussian envelopes for both, the intensity for a pulse
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propagating in z-direction then reads:

I (x, y, t) = I0 · e

(
− 2·x2

σ2
x

)
· e

(
− 2·y2

σ2
y

)
· e

(
− 2·t2

σ2
t

)
. (2.8)

It is not possible to measure the intensity directly, but it must be determined from
accessible parameters. Such measurements provide the energy in a pulse W , the
full width at half maximum (FWHM) duration of the temporal intensity distribu-
tion tF W HM and the FWHM diameter of the spatial intensity distribution dF W HM .
The FWHMs and the standard deviations are related via tF W HM =

√
2ln2 · σt and

dF W HM =
√

2ln2 ·σx =
√

2ln2 ·σy. Integrating the intensity I (x, y, t) over space and
time results in the pulse energy:

W =
+∞∫

−∞

+∞∫
−∞

+∞∫
−∞

I (x, y, t) dx dy dt

= I0 · σt · σx · σy ·
(

π

2

) 3
2

= I0 · tF W HM · d2
F W HM ·

(
π

4ln2

) 3
2

.

(2.9)

Finally, this yields the peak intensity I0 in the focal plane:

I0 = 0.83 · W

tF W HM · d2
F W HM

. (2.10)

2.2 Free Electron in a Plane Wave
2Before describing effects of laser-matter interaction, it is first worth considering a
single free electron with a plane electromagnetic wave in vacuum and neglecting ra-
diation due to the acceleration of the electron. Starting with a wave propagating in
direction e⃗3 = z⃗ and the electric field being linearly polarized along e⃗1 = x⃗, the
electron equation of motion is

dp⃗

dt
= d (γ · me · v⃗e)

dt
= −e

(
E⃗ (r⃗, t) + v⃗e × B⃗ (r⃗, t)

)
, (2.11)

where e and me are the electron charge and rest mass, ve is the velocity of the electron
and γ = 1/

√
1 − v2

e/c2 the Lorentz factor. Due to the electric field, the electron

2This section follows [58, 59]
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starts oscillating along x⃗ with a maximum velocity ve,max that can be approximated
in the non-relativistic regime (ve << c) as ve,max = eE0

meω
. The second term results in

a force acting on the electron along the wave propagation direction z⃗. Following from
E0 = c · B0, this term becomes dominant when ve approaches c. The dimensionless
parameter a0 marks the point where the longitudinal force exceeds the tranverse force
and is defined as

a0 = ve,max

c
= e · E0

c · me · ω
. (2.12)

For a0 << 1, the non-relativistic approximation is valid, while for a0 >> 1 the longi-
tudinal force will dominate. In terms of field amplitudes and intensity, this relativistic
threshold (a0 = 1) can be expressed as [60]

E0 = a0 · c · me · ω

e
= a0

λ [µm] · 3.21 · 1012 V

m
,

B0 = E0

c
= a0

λ [µm] · 1.07 · 104 T

m
,

I = 1
2 · c · ϵ0 · E2

0 = a2
0

λ2 [µm2] · 1.37 · 1018 W

cm2 ,

(2.13)

where λ = 2πc/ω. In order to obtain the motion of the electron, it is useful to express
the plane wave in terms of a vector potential A⃗ (r⃗, t) defined as

E⃗ (r⃗, t) = −∂A⃗ (r⃗, t)
∂t

,

B⃗ (r⃗, t) = ∇⃗ × A⃗ (r⃗, t) ,

(2.14)

and expanding 2.11 by p⃗, which gives the electron energy equation d(γ·me·c2)
dt

= −e ·
v⃗e · E⃗ (r⃗, t). Following the calculations of [58, 60], the momentum components for an
electron initially at rest yield

px = e · A,

pz = 1
2 · p2

x

me · c
= e2 · A2

2 · me · c
,

(2.15)
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where A = A0 · sin (ϕ) with ϕ = k⃗r⃗ − ωt + ϕ0. Using p⃗ = γme
dr⃗
dt

= γme
dϕ
dt

dr⃗
dϕ

=
γme

(
−ω

γ

)
dr⃗
dϕ

, the trajectories can be derived from integrating 2.15:

x (ϕ) = e · A0

me · ω
cos (ϕ) = c · a0

ω
cos (ϕ) ,

z (ϕ) = − e2 · A2
0

4 · m2
e · c · ω

(
ϕ − 1

2sin (2ϕ)
)

= −c · a2
0

4 · ω

(
ϕ − 1

2sin (2ϕ)
)

,

(2.16)

with a0 = eA0
mc

. The motion along the direction of the electric field is an oscillation
with ϕ, while the motion along the wave propagation direction combines an oscillatory
motion with 2ϕ and a linear drift in z-direction. The cycle-averaged drift velocity is
given by

vdrift = ⟨z

t
⟩ = c · a2

0
a2

0 + 4 . (2.17)

Considering a more realistic case of finite pulse length, where for example the field
component is scaled by a temporal Gaussian envelope function as shown for the inten-
sity calculations above, the electron will be at rest after the pulse has passed, albeit at
another position along the propagation axis. Therefore the electron has no net energy
gain after the interaction, which is in agreement with the Lawson-Woodward theorem
[61, 62]. In the focus of a laser pulse, however, the transverse interaction region is not
infinitely large (see Gaussian envelope assumption for intensity calculation). Thus, an
electron sitting on the z-axis is pushed outwards during one half-cycle of the electric
field and with the field changing sign, the restoring force becomes smaller due to the
weaker electric field outside. As it does not return to its initial position, the electron
will move further and further away from the propagation axis in each cycle and can
gain a finite velocity after the pulse has passed. By accounting for the spatial depen-
dency of the electric field one can introduce the (non-relativistic) ponderomotive force

F⃗pond = − e2

4 · me · ω2 ∇⃗
(
E⃗2

spatial

)
, (2.18)

where E⃗spatial comprises the spatial dependence of the electric field E⃗ (r⃗, t) = E⃗spatial ·
cos (ωt). The electron gets pushed along the direction of the gradient away from high-
intensity regions (I ∝ E2). For relativistic treatment, an additional scaling by 1/⟨γ⟩
is required [58], where ⟨γ⟩ =

√
1 + a2

0/2 is the cycle-averaged Lorentz factor of the
electron.
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2.3 Ionization Processes

In the context of laser-plasma experiments, the first step is to consider the transfor-
mation from matter into the plasma state, i.e. the ionization of matter via interaction
with the laser pulse. In the case of a single photon interacting with an atom, the
photon energy Eph = h·c

λ
, where h is Planck’s constant and λ the photon wavelength,

must be higher than the ionization energy Eion of the target material to free an elec-
tron. Considering a Titanium:Sapphire laser with a central wavelength of 800 nm, as
used in this experiment, a single photon (Eph = 1.55 eV ) is not able to ionize most
materials (typically 5 - 15 eV required). In the focus of a high-power laser pulse, there
are however certain effects that can cause ionization.

Multiphoton Ionization

In the focus of a laser pulse, extremely high intensities can be achieved. This corre-
sponds to a high flux of photons and a non-zero probablity of multiple photons interact-
ing with a single atom. Thus, ionization can be achieved if nmin ·Eph = Eion + Ekin >

Eion where nmin is the minimum number of absorbed photons requiered to exceed the
ionization energy. The energy difference yields the kinetic energy of the now free elec-
tron. This process is called Multiphoton Ionization (MPI) (e.g. [63, 64]), with an
ionization rate given by [63]

wn = σn · In, (2.19)

where σn is the n-photon cross section and I the laser intensity. If more photons
than nmin are absorbed (a process called Above Threshold Ionization (ATI) (e.g.
[65, 64])), the electron inherits the excess energy as additional kinetic energy. As the
photons provide quantized amouts of energy, the energy spectrum of these electrons
shows distinct peaks, seperated by Eph [66]. It should be noted that for above mecha-
nisms the intensity is assumed to be small, hence the Coulomb potential of the atom
is not disturbed.

Field Ionization

With increasing intensity, the laser electric field is capabale of distorting the binding
potential of the atom. In the simplest picture, the disturbed potential is obtained by a
superposition of the atomic potential ϕatom and an (at that moment) linear potential
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of the laser ϕL:
ϕ = ϕatom + ϕL = − Z · e

4 · π · ϵ0 · x
− E0 · x. (2.20)

An electron can tunnel through this lowered potential barrier, a process known as
Tunnel Ionization (TI) (e.g. [67]). The ionization rates can be calculated using
different approaches, e.g. Keldysh [68] or the more advanced model by Ammosov,
Delone and Krainov [69] which is able to account for complex many-electron atoms.

If the laser is able to suppress the potential barrier far enough such that the local
maximum of the modified Coulomb potential is below the ionization potential of the
atom, the electron becomes quasi-free. The position of the local maximum yields

xmax =
√

Z · e

4π · ϵ0 · E0
. (2.21)

Inserting this into 2.20 and by setting −Eion = e · ϕ (xmax) one obtains the necessary
laser electric field for Barrier Suppression Ionization (BSI) (e.g. [70]) to occur:

E0 = E2
ion · π · ϵ0

Z · e3 , (2.22)

from which the required laser intensity directly follows via equation 2.7. In the case of
hydrogen (Eion = 13.6 eV ), an intensity of I = 1.4 · 1014 W/cm2 would be needed for
barrier suppression, while C4+ (Eion = 64.5 eV ) would require I = 4.3 · 1015 W/cm2.

To estimate whether the ionization is dominated by MPI or TI, the so-called
Keldysh parameter can be considered, which is defined as [68]

γk =
√

Eion

2 · ϕpond

=
√

ϵ0 · me · c · ω2

e2
Eion

I
, (2.23)

where ϕpond is the ponderomotive potential which is defined as F⃗pond = −∇⃗ϕpond.
For the case γk >> 1, MPI is the important mechanism while for γk << 1 TI will
dominate. Schematics of the optical ionization mechanisms are illustrated in figure 2.1.
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Figure 2.1: Illustration of optical ionization mechanisms: a) Multiphoton Ionization:
the electron absorbs the minimum number of photons such that its energy is above the
ionization energy Eion. The resulting energy difference is transferred to the electron
as kinetic energy. b) Above Threshold Ionization: The electron absorbs more than
the required number of photons, inheriting the additional energy as kinetic energy.
c) Tunnel Ionization: The potential barrier is modified by the linear potential of the
laser. The electron can tunnel through the lowered barrier. d) Barrier Suppression
Ionization: The potential barrier is lowered by the potential of the laser such that the
electron becomes quasi-free.

Collisional Ionization

Collisional Ionization occurs when electrons (or other particles) with kinetic energies
beyond the ionization threshold collide with atoms and becomes increasingly relevant
the higher the density of the target. This mechanism is strongly dependent on the
electron density and the energy of the electrons. Accounting for a velocity distribution
of the electrons, the rate of ionizing collisons can be written as

w = ne · ⟨σive⟩, (2.24)

where ne is the density and ve the velocity of colliding electrons and σi is the ionization
cross section, given by the Lotz formula for the case Ekin >> Eion as [71, 72]

σi = ai · qi
ln (Ekin/Eion)

Ekin · Eion

, (2.25)

where ai is an emipirical constant [71] and qi is the number of electrons in the ions
outer shell. For a Maxwellian energy distribution of the electrons the ionization rate
yields [73]

wthermal = ne · ai · qi

Eion

√
kBTe

+∞∫
Eion/kBTe

e−x

x
dx. (2.26)
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This rate only accounts for collisions caused by electrons with a thermal energy high
enough to cause ionization. However, the kinetic energy component of the oscillatory
electron motion in the laser field has to be considered as well. Following the argu-
mentation of [73] and using ve (t) = eE0

meω
sin (ωt), the cycle-averaged ionization rate

becomes

wlaser = ne · ai · qi

π · Eion ·
√

me · ϕpond

2ϕpond∫
Eion

ln (Ekin/Eion)
2 · Ekin

1√
1 − Ekin

2ϕpond

dEkin. (2.27)

When a sufficient number of electrons is released from the target and heated effectively,
collisional ionization can produce high charge states at intensities much lower than
required for field ionization [74].

2.4 Plasma
3Having introduced the main mechanisms that show how matter can be ionized by
interaction with high-intensity lasers, the main feature resulting from this interaction,
the plasma, can now be described. A plasma can be defined as "a quasineutral gas of
charged and neutral particles which exhibits collective behavior" [75]. Due to mobility
of charged parts within the plasma, local accumulations of charges can occur. Further-
more, moving charges generate magnetic fields. The associated forces can influence
charged particles over a long range and consequently, the plasma reacts collectively to
disturbances. As the plasma has been created from neutral matter, the total number
of positive and negative charges is equal, thus the plasma is observed neutral over large
distances. The plasma tends to preserve neutrality by shielding local charge concentra-
tions or external potentials. As the ions are much heavier, the reaction of the plasma
is mostly governed by the electrons while the ions form an uniform background. The
distance on which shielding decreases the potential to 1/e is the Debye length

λD =
√

ϵ0 · kB · Te

ne · e2 , (2.28)

where ne is the electron density. A denser plasma has a shorter Debye length since
more electrons per volume are available for shielding. The term quasi-neutrality can
thus be understood that on scales much larger than λD the plasma appears neutral

3This section follows [75]
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due to shielding while on shorter scales high fields can occur.

In the case of an external field (e.g. a laser) acting on the plasma, electrons will
be displaced, resulting in the plasma trying to restore neutrality by pulling back the
electrons. Overshooting on the way back to their initial position will then lead to
oscillations of the electrons with the so-called electron plasma frequency

ωp,e =
√

ne · e2

ϵ0 · me

. (2.29)

In the relativistic case, the electron mass needs to be scaled with ⟨γ⟩, the time averaged
Lorentz factor. The inverse of this frequency is the time the electrons with a thermal
velocity ve,th = λD · ωp,e =

√
kBTe/ (⟨γ⟩me) need to recover quasi-neutrality on the

scale of the Debye length. From this it becomes clear that external fields can be
shielded from the plasma if the plasma frequency is higher than the external field
frequency ω. Since ωp,e is depending on the electron density, it is useful to define the
threshold where both frequencies become equal:

ne = ⟨γ⟩ϵ0 · meω
2

e2 = ⟨γ⟩1.1 · 1021 cm−3

λ2 [µm2] = nc. (2.30)

This density threshold is called critical density nc. A plasma with a density below nc

is called underdense, while in the case ne > nc the plasma is overdense.

Propagation of transverse electromagnetic waves in a plasma

The propagation of transverse electromagnetic waves in a vacuum is with a phase
velocity vph = c and the dispersion relation is ω = kc. In the case of a plasma, the
current density j⃗ ̸= 0. When neglecting losses (for example due to collisions), the
dispersion relation for the propagation of electromagnetic waves in a plasma yields
[75]

ω2 = ω2
p + c2 · k2. (2.31)

Here, ωp = ωp,e as the ion contribution can be neglected due to their high mass. The
phase velocity in a plasma becomes

vph = ω

k
= c√

1 − ω2
p

ω2

= c

η
, (2.32)
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with the plasma refractive index η =
√

1 − ω2
p/ω2 =

√
1 − ne/nc. For an underdense

plasma (ω > ωp), the refractive index has a real value < 1. An electromagnetic wave
can therefore propagate in a plasma with a phase velocity greater than c. The group
velocity however is always smaller than c as

vgr = dω

dk
= k · c2

ω
= η · c. (2.33)

In an overdense plasma (ω < ωp), η becomes purely imaginary, the wave can no
longer propagate through the plasma and becomes evanescent. Taking the complex
notation of the field and considering propagation along the z-axis with a steplike
density-gradient one finds:

eikz = e−|k|z = e− z
ls . (2.34)

ls = c/
√

ω2
p − ω2 is the so-called skin depth, at which the field drops to 1/e inside the

overcritical region. For highly overdense plasmas (ωp >> ω), the skin depth can be
approximated by ls ≈ c/ωp.

2.5 Laser Absorption

The plasma can gain energy from the laser via a variety of absorption mechanisms. A
general distinction can be made between collisional and collisionless types of energy
absorption. In the following, the main mechanisms for the case of dense plasmas are
briefly explained. For a more detailed description of the relevant processes, see, e.g.,
[76].

Inverse Bremsstrahlung

Energy can be absorbed via collisions of electrons, oscillating in phase with the laser
field, and ions by transfering part of the quiver energy into random motion energy,
thereby heating the plasma. The average heating rate is obtained by [77]

dEe

dt
= 2 · ϕpond · ⟨νei⟩, (2.35)

where Ee is the gained energy of the electron and ⟨νei⟩ is the cycle-averaged electron-ion
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collsion frequency which for a Maxwellian velocity distribution yields [77]

⟨νei⟩ = 4
√

2π

3
Z2 · ni · e4 · lnΛ

(4 · π · ϵ0)2 √
me (kB · Te)3/2 , (2.36)

with the electron density in m−3 and lnΛ = ln (12πλ3
Dne/Z) being the Coulomb

logarithm. Using the common units n [cm−3] and Te [eV ], ⟨νei⟩ can be expressed as
[78]

⟨νei⟩ [1/s] ≈ 3 · 10−6 Z2 · ni [cm−3]
(Te [eV ])3/2 · lnΛ. (2.37)

When the oscillatory motion increases with higher laser intensity, the thermal energy
and the quiver energy become comparable. To account for a non-Maxwellian distri-
bution, the collision frequency then has to be multiplied with an additional correction
factor [79] F =

(
1 + ve,osc/

(
3 · v2

e,th

))−3/2
, where ve,osc = eE0/ (meω) is the elec-

tron quiver velocity. Moreover, when the electron energy is dominated by the quiver
energy, rising intensities will increase electron temperatures, leading to a decrease of
the collision frequency. Thus, at intensities above 1015 W/cm2, collisional absorption
begins to abate and other processes become dominant.

Resonance Absorption

At higher intensities, absorption is no longer determined by single particle effects (col-
lisions) but is governed by collective effect (collisionless). Considering a dense plasma
with continuously increasing density, electromagnetic waves can propagate up to the
critical density (ne = nc) where they are reflected. In the case of an inhomogeneous
plasma (the plasma may have already expanded due to heating via collision absorp-
tion) with a density gradient ∇ne along e.g. the z-axis, an electrostatic oscillation in
the form of an electron plasma wave can be exited under certain conditions, a process
called Resonance Absoprtion. For this mechanism, the electric field component
along the density gradient drives the coherent oscillation of the density perturbation.
Thus, oblique incidence of the wave under an angle θ is required, where θ is defined as
the angle between the wave vector k⃗ and the direction of the density gradient. If the
conditions are met, the incident wave will propagate until it reaches a density of

ne = nc · cos2θ. (2.38)
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The wave will be partially reflected but a certain amount can tunnel towards the region
of critical density. At this point the laser will cause fluctuations of the charge density
with the plasma frequency. The plasma will respond resonantly and a plasma wave can
be excited. This wave can be absorbed by the plasma via collisions, electron trapping
or wavebreaking, depending on the intensity regime [77]. The fractional absorption fA

can be estimated by [78]
fA ≈ ϕ2 (τ) /2,

ϕ (τ) ≈ 2.3 · τ · e−2τ3/3,
(2.39)

where τ = (ωL/c)1/3 sinθ is defined by the angle of incidence θ and the plasma scale
length L (distance from the plasma-vacuum boundary to the critical density). The
optimum angle of incidence for resonance absorption dependes on the plasma scale
length and approximately yields [78]

θop ≈ sin−1
(

0.8 ·
(

c

ωL

)1/3
)

. (2.40)

Vacuum/Brunel Heating

Considering the above mechanism in the case of very steep gradients, the oscillation
amplitude of electrons along the gradient can exceed the plasma scale length, the
electrons hence behave like individual particles (or particle bunches) rather than a
fluid in which waves can be launched. However, absorption is still possible: thermal
electrons at the edge of the plasma-vacuum boundary can be dragged out of the plasma
within half a laser cycle and driven back into the overdense region when the field
changes sign. As the electron can penetrate across this boundary into the plasma
while the electric field is shielded over the skin depth, the electron can transfer energy
to the plasma via collisions. This effect was first described by Brunel in 1987 [80].
Electrons, entering the plasma, have velocities close to the quiver velocity in vacuum.
Therefore the fractional absorption rate can be obtained from the ratio of the absorberd
power per laser cycle and incoming laser power as [76]

fvac = Pa

PL

= eE3
d

16π2mω
· 8π

cE2
Lcosθ

= 4
π

sin3θ

cosθ
a0, (2.41)

with Ed = 2ELsinθ, where EL is the electric field of the incoming laser. It is clear
that fvac can obtain high values for increasing laser intensity (a0) and angle of inci-
dence (θ) and ultimately these values can become too high (>1). Thus appropriate
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corrections need to be made to account for relativistic effects and imperfect reflection
of the driving field (see [80]).

Relativistic j x B Heating

At very high laser intensities (a0 >> 1) it was already shown that the v x B term in
equation 2.11 dominates the relativistic motion of a single (free) electron in vacuum.
At a vacuum-plasma boundary, this v x B force hence dominates the generation of
electrons injected across the vacuum-plasma interface and j x B heating [81] be-
comes the major absorption mechanism. It is closely related to the process of Brunel
heating with the main difference being that the force driving electrons into the plasma
is no longer the electric field but the v x B component. The dynamics follow a similar
behaviour, although the oscillation frequency is now 2ω and the mechanism scales as
a2

0 (see equation 2.16). In contrast to resonance absorption and Brunel heating, this
mechanism works for any polarization except circular and provides highest absorption
for normal incidence.

All mechanisms presented here (and many more, e.g. anomalous skin effect [82]
and sheath inverse bremsstrahlung [83]) describe (mostly qualitatively) how the en-
ergy of a laser pulse can be transferred to plasma electrons. In reality, however, the
plasma properties change rapidly and several processes can occur at the same time
or boundaries are not very strict (e.g. long versus short plasma scale length, v x B
versus E). Nevertheless, certain distinctions can be made that help to determine the
dominant process. For low laser intensities (I < 1015 W/cm2) and ve,osc << ve,th, ab-
sorption occurs mainly via collisions. For increasing intensities, resonance absorption
and Brunel heating dominate. Long density gradients of the plasma favor resonance
absorption, while for steep density gradients absorption is governed by the Brunel
mechanism [84]. In the case of relativistic intensities (a0 >> 1) it could be shown
that experimental results can be best explained by j x B heating [85]. Considering the
experimental parameters of this work, the peak intensity of 1016 W/cm2 indicates that
resonance absorption or Brunel heating may be the dominant mechanims. Due to the
spherical geometry of the target, all angles of incidence are present. Thus absorption
will be strongly dependend on the plasma scale length at the time when the fs-short
laser pulse interacts with the target.
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2.6 Plasma Expansion
4 The description of plasma dynamics is a challenging task. The motion of single
charged particles can be described by equation 2.11. In dense plasmas, however, col-
lective effects occur due to the large number of interacting particles. One attempt to
model the dynamics is kinetic theory, which describes the plasma behavior by means of
particle distribution functions f (r⃗, v⃗, t). This distribution has to satisfy the Boltzmann
equation:

∂f

∂t
+ v⃗ · ∇⃗rf + F⃗

m
· ∇⃗vf =

(
∂f

∂t

)
coll

. (2.42)

Here, F⃗ is the force acting on the particles and (∂f/∂t)coll describes the influence of
collisions on f . Neglecting collisions in the case of a hot plasma and assuming a purely
electromagnetic force, equation 2.42 reduces to the Vlasov equation

∂f

∂t
+ v⃗ · ∇⃗f + q

m

(
E⃗ + v⃗ × B⃗

)
· ∇⃗vf = 0. (2.43)

Together with Maxwell’s equations, 2.43 provides a full description of the collisionless
plasma behaviour. If one focuses in particular on macroscopic (averaged) values of the
plasma, a fluid description is often sufficient. Here the distribution function is assumed
to be Maxwellian everywhere, thus it is defined by a single temperature T. A simple
approach is to treat electrons and ions as two seperate, but intersecting fluids. The
relevant equations can be obtained by taking velocity moments Mn =

∫
vnf (v) dv of

the Vlasov equation. This results in the continuity equation (M0)

∂n

∂t
+ ∇⃗ · (nu⃗) = 0 (2.44)

and the equation of motion (M1)

m · n ·
(

∂u⃗

∂t
+
(
u⃗ · ∇⃗

)
u⃗

)
= q · n ·

(
E⃗ + u⃗ × B⃗

)
− ∇p, (2.45)

where n is the particle density distribution and u⃗ the velocity field of the fluid. Thermal
motion is taken into account by the pressure term ∇p. In order to form a closed set
of equations, p needs to be defined. This could be achieved via the energy equation
(M2), however, this would include a term for the heat flow which again requires a
new equation. The growing set of equations can be reduced by making simplifying

4This section follows the argumentation of [75] and [78]
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assumptions about the heat flow, obtaining the equation of state. In the isothermal
case this reads

p = n · kB · T, (2.46)

while in the adiabatic case one obtains

p

nγ
= const., (2.47)

where γ is the ratio of specific heats, determined by the degrees of freedom N (γ =
(N + 2) /N).

Finding analytic solutions for above-mentioned equations is extremely difficult.
Here, simulations play a key role in finding numerical solutions under specified condi-
tions. Complex systems and the interplay of various effects can nowadays be calcu-
lated with resonable computational effort. In the realm of collisionless kinetic theory,
Particle-In-Cell simulations (PIC) are a powerful tool to model the laser-plasma in-
teraction. In the macroscopic fluid model, hydrodynamic codes (e.g. RALEF [86]) or
magnetohydrodynamic simulations (e.g. FLASH [87]) provide insight into the plasma
dynamics on larger scales.

Although the interaction and dynamics is best modeled with such simulation tools,
it is possible to gain insight into the plasma behaviour by making some simplifying
assumptions. Two simple models that describe the expansion of a spherical plasma by
pressure forces are introduced in the following, closely following the argumentation of
[88].

Hydrodynamic Expansion

One driving force of expansion is the hydrodynamic pressure by heated electrons. This
mechanism may be interpreted as hot electrons expanding towards the vacuum but
not being energetic enough to leave the plasma due to charge seperation fields building
up. Accordingly, the cold ions are dragged along by the expanding electrons. Since
the net charge of the plasma is almost neutral on scales larger than the Debye length,
this kind of expansion is also called quasi-neutral expansion.

Assuming that the temperature is uniform over the whole plasma (frequent colli-
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sions to establish temperature), the pressure caused by the electrons reads

pe = ne · kB · Te. (2.48)

An adiabatic increase dV of the plasma volume V due to expansion results in a tem-
perature decrease of the electrons dTe:

V · ne · 3
2 · kB dTe = −pe dV. (2.49)

This expression is valid under the assumption that the electron temperature establishes
faster than the plasma expansion. For a plasma volume of 4/3 · π · r3 one thus finds

dTe = −2 · Te
dr

r
. (2.50)

Integration of equation 2.50 provides the relation between plasma radius and electron
temperature:

Te = Te0

(
r0

r

)2
, (2.51)

where Te0 and r0 represent the initial temperature and radius of the plasma. Treating
both the electrons and ions as charged fluids with homogeneous, temporally decreasing
density, energy conservation demands

ni
d

dt

(3
2 · kB · Ti

)
= −ne

d

dt

(3
2 · kB · Te

)
. (2.52)

Using equations 2.50 and 2.51, 2.52 becomes

dTi

dt
= 2ne

ni

Te0

r

(
r0

r

)2 dr

dt
. (2.53)

For ions at the boundary of the plasma, the relation 1/2 · mi · (dr/dt) = 3/2 · kB · Ti

applies. Taking the temporal derivative of this equation and inserting it into 2.53, the
equation for surface ion motion is obtained:

mi
d2r

dt2 =
3 · kB · Te0 · r2

0 ·
(
Z − Q

Ni

)
r3 . (2.54)

Here ne = ni · (Z − Q/Ni) was used, with Q being the number of electrons that have
escaped the plasma and Ni is the total number of ions. If Z, Q and Ni are assumed to
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have no time dependence, equation 2.54 can be integrated towards

(
dr

dt

)2

=
3 · kB · Te0 ·

(
Z − Q

Ni

)
mi

·
(

1 −
(

r0

r

)2
)

(2.55)

under the condition dr/dt = 0 at t = 0. In the case of r → ∞, the ion fluid expands
with a velocity

vi,∞ =

√√√√3 · kB · Te0 ·
(
Z − Q

Ni

)
mi

, (2.56)

which is well know as the ion sound velocity.

Coulomb Explosion

Another type of pressure emerges if a sufficient number of hot electrons surpass the
charge seperation field and leave the plasma completely. A surplus of positive charges
leads to a repulsion of ions and thus explosion. Treating the plasma as a spherical
capacitor with radius r and a number of Q charges on the surface, the corresponding
pressure can be calculated as

pcoulomb = Q2 · e2 · ke

8 · π · r4 , (2.57)

where ke = 1/ (4πϵ0) is the Coulomb constant. Similar to the previous case, an
equation of motion for an ion sitting on the surface of an ionized sphere is obtained:

mi · d2r

dt2 = Q · Z · e2 · ke

r2 . (2.58)

Assuming temporal independence of Q and Z, this results in [88]

(
dr

dt

)2

= 2 · Q · Z · e2 · ke

mi · r0

(
1 − r0

r

)
. (2.59)

Comparing 2.55 and 2.59 clearly shows a different scaling with the plasma radius
r as a factor describing the expansion behaviour. It is therefore essential to verify
which of the two regimes applies. Such an estimate will be discussed in context with
experimental results in chapter 5.
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2.7 Scalar Diffraction Theory
5The investigation of laser generated plasmas is often performed by external electro-
magnetic pulses, as already introduced in chapter 1. By studying these pulses in detail,
one can derive relevant plasma parameters. As the measurement is performed at some
distance from the interaction area, it is essential to have a precise understanding of
the propagation behaviour. A powerful tool to describe all relevant physical effects is
the scalar diffraction theory.

In reality, the electric and magnetic fields are vector fields whose relationship is de-
scribed by Maxwell’s equations 2.1. The propagation in homogeneous, isotropic media
is determined by the wave equations 2.2. Assuming that all scalar field components
behave in the same way, the two wave equations can be replaced by a single scalar
wave equation:

∇2u (r⃗, t) − η2

c2
∂2u (r⃗, t)

∂t2 = 0. (2.60)

Here, u (r⃗, t) respresents each of the scalar field components. In the case of a monochro-
matic wave, one can define u (r⃗, t) as

u (r⃗, t) = Re
[
U (r⃗) · e−iωt

]
, (2.61)

where U (r⃗) is the complex-valued amplitude. Inserting this expression into 2.60 yields

(
∇2 + k2

)
U (r⃗) = 0, (2.62)

with k = ηω/c. 2.62 is the time-independent Helmholtz equation.

Kirchhoff integral theorem

It is possible to determine U (r⃗) at a point P0 in terms of the field on a surface S
enclosing P0 and its first derivative. This is known as the integral theorem of Kirchhoff
[89]:

U (P0) = 1
4π

∫∫
S

(
∂U

∂n
· eikr01

r01
− U

∂

∂n

eikr01

r01

)
dS, (2.63)

where r01 is the distance from a surface element to the point P0 and ∂
∂n

is the dif-
ferentiation along the surface normal n⃗. Depending on the direction of n⃗ (inward or

5This section follows [89].
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outward), the integral switches sign. A detailed derivation of the theorem via a Green’s
function approach can be found in various textbooks (e.g. [89, 90]).

Fresnel-Kirchhoff diffraction formula

Using 2.63, one can now consider the simple case of diffraction by an aperture in
an infinite plane screen, where the field shall be obtained at a point P0 behind the
screen. In this context, the enclosing surface splits up into two parts: a plane surface
S1 directly behind the screen and a circular segment S2 with radius R around P0 that
closes the surface. Thus 2.63 becomes

U (P0) = 1
4π

∫∫
S1+S2

(
∂U

∂n
· eikr01

r01
− U

∂

∂n

eikr01

r01

)
dS. (2.64)

With the help of various conditions (namely the Sommerfeld radiation condition and
the Kirchhoff boundary conditions, see [89] for more details) the integral can be reduced
to

U (P0) = 1
4π

∫∫
Σ

(
∂U

∂n
· eikr01

r01
− U

∂

∂n

eikr01

r01

)
dS, (2.65)

where Σ represents the surface of the aperture. A further reasonable approximation
is that the distance r01 will at most times be considerably larger than the optical
wavelength, i.e. k >> r−1

01 . Assuming that the aperture is illuminated by a spherical
wave originating from a point P2,

U (P1) = A
eikr21

r21
, (2.66)

whereby the same condition, k >> r−1
21 , applies. This results in the Fresnel-Kirchhoff

diffration formula [89]:

U (P0) = A

iλ

∫∫
Σ

eik(r21+r01)

r21r01

(
cos (n⃗, r⃗01) − cos (n⃗, r⃗21)

2

)
dS

=
∫∫
Σ

U ′ (P1)
eikr01

r01
dS.

(2.67)

Based on the latter expression one can deduce that the field at P0 results from an
infinite amount of point sources within the aperture Σ, whose phase and amplitude
are defined by U ′ (P1). This perfectly resembles Huygens principle.
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Rayleigh-Sommerfeld diffraction formula

Although the Fresnel-Kirchhoff diffraction formula provides excellent agreement with
experimental results, the boundary conditions applied by Kirchhoff provoke some
mathematical difficulties. A more consistent solution is given by the Rayleigh-Sommerfeld
diffraction formula which follows from choosing a more appropiate Green’s function
and reads

U1 (P0) = A

iλ

∫∫
Σ

eik(r21+r01)

r21r01
cos (n⃗, r⃗01) dS,

U2 (P0) = − A

iλ

∫∫
Σ

eik(r21+r01)

r21r01
cos (n⃗, r⃗21) dS.

(2.68)

Comparing this result with the one obtained by Kirchhoff, one notices that both differ
only in their cosine terms (also called obliquity factor). Similarly, Huygens principle
is obtained by

U (P0) = 1
iλ

∫∫
Σ

U (P1)
eikr01

r01
cos (n⃗, r⃗01) dS. (2.69)

Angular spectrum

The angular spectrum of the wave provides a different approach to solving the problem
of wave propagation and diffraction. An arbitrary monochromatic field distribution
can be expressed as the sum of an infinite amount of plane waves, each traveling in a
different direction. Thus the distribution can be determined at an observation point
by accounting for the contribution of each plane wave in this point after propagation.
An undefined wave with a propagation component along z may be expressed in the
xy-plane by a complex distribution U (x, y, 0) at z = 0. The superposition of plane
waves reads

U (x, y, 0) =
∞∫

−∞

∞∫
−∞

A (fx, fy, 0) · ei2π(fxx+fyy)dfxdfy, (2.70)

where A (fx, fy, 0) is the Fourier transform of U (x, y, 0) with spatial frequencies fx

and fy. Expressing the wavevector of a simple plane wave in terms of direction cosines
α, β and γ [89] allows to define the spatial frequencies as fx = α/λ and fy = β/λ.
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Thus the angular spectrum of U (x, y, 0) reads

A

(
α

λ
,
β

λ
, 0
)

=
∞∫

−∞

∞∫
−∞

U (x, y, 0) · e−i2π(α
λ

x+ β
λ

y)dxdy. (2.71)

The field distribution in a parallel plane along z can then be found via

U (x, y, z) =
∞∫

−∞

∞∫
−∞

A

(
α

λ
,
β

λ
, z

)
· ei2π(α

λ
x+ β

λ
y)d

α

λ
d

β

λ
. (2.72)

As U is subject to the Helmholtz equation, one finds that A must fulfill

d2

dz2 A

(
α

λ
,
β

λ
, z

)
+
(2π

λ

)2 (
1 − α2 − β2

)
A

(
α

λ
,
β

λ
, z

)
= 0, (2.73)

which results in a solution for A in the form of

A

(
α

λ
,
β

λ
, z

)
= A

(
α

λ
,
β

λ
, 0
)

e
i2π
λ

√
1−α2−β2z. (2.74)

The relation between A
(

α
λ
, β

λ
, z
)

and A
(

α
λ
, β

λ
, 0
)
, often denoted as H, describes how

the angular spectrum changes during propagation.

Fresnel and Fraunhofer approximation

Analytic evaluation of above formalisms can be quite challenging. Therefore, two
approximations are commonly used in diffraction theory: the Fresnel approximation
and the Fraunhofer approximation. Both can be used to reduce the Huygens-Fresnel
formula 2.69 introduced earlier. Assuming an observation point P0 in the xy-plane
and a planar aperture in a parallel plane defined by ξ and ν with a distance z between
both planes, the oblicity factor yields cos (n⃗, r⃗01) = z/r01 and 2.69 becomes

U (x, y) = z

iλ

∫∫
Σ

U (ξ, ν) eikr01

r2
01

dξdν, (2.75)

where r01 = z

√
1 +

(
x−ξ

z

)2
+
(

y−ν
z

)2
. Taylor-expansion of this term allows for further
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simplification:

r01 ≈ z

1 + 1
2

(
x − ξ

z

)2

+ 1
2

(
y − ν

z

)2
+ ...

 . (2.76)

For the 1/r2
01-component, it is acceptable to neglect all terms except the frist one, while

in the exponential, quadratic terms need to be retained. Equation 2.77 thus becomes

U (x, y) = eikz

iλz

∞∫
−∞

∞∫
−∞

U (ξ, ν) e
ik
2z ((x−ξ)2+(y−ν)2)dξdν, (2.77)

which is know as the Fresnel diffraction integral. This expression is accurate for the
observation plane being located in the near field, i.e. close to the aperture. The Fresnel
approximation may also be applied to the angular spectrum. The square root term,
describing relation between A

(
α
λ
, β

λ
, z
)

and A
(

α
λ
, β

λ
, 0
)
, can be simplified in the same

way:
H = eikz · e− iπz

λ (α2+β2). (2.78)

Thus, in the case of the angular spectrum, the Fresnel approximation is valid if the
spectrum is restricted to small angles. This is also called the paraxial approximation.

If the distance between the observation plane and the source (aperture) is much
larger than the source itself, the Fraunhofer approximation (2z >> k (ξ2 + ν2)max)
can be applied. In this scenario (also described as the far field), the quadratic terms
of equation 2.76 can be neglegted and the equation for the field distribution reads

U (x, y) = eikze
ik
2z (x2+y2)
iλz

∞∫
−∞

∞∫
−∞

U (ξ, ν) e−ikz(xξ+yν)dξdν. (2.79)

One may recognize that is expression is almost exactly the Fourier transform of the
source (field distribution at the aperture).

Paraxial wave equation for inhomogeneous media

So far, all models above assume propagation in homogeneous media. The situation
gets much more complicated if this is not the case. Considering a spatial dependence
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of the refractive index, the Helmholtz equation reads [91]

(
∇2 + k2 (r⃗)

)
U (x, y, z) = 0, (2.80)

where k (r⃗) = η (r⃗) ω/c. Using the ansatz U (x, y, z) = U ′ (x, y, z) ei⟨k⟩z, where ⟨k⟩ is
spatial average of the wave number in the propagation volume, equation 2.80 yields:

∂2

∂z2 U ′ (x, y, z) + 2i⟨k⟩ ∂

∂z
U ′ (x, y, z) + ∇2

x,yU ′ (x, y, z) +
(
k2 (r⃗) − ⟨k⟩2

)
U ′ (x, y, z) = 0.

(2.81)
Using the slowly varying envelope approximation, which assumes that the wave enve-
lope has only small changes during the period of a wavelength (|⟨k⟩U ′| >> |∂U ′/∂z|)
[91], the equation simplifies to the paraxial wave equation for inhomogeneous media

2i⟨k⟩ ∂

∂z
U ′ (x, y, z) + ∇2

x,yU ′ (x, y, z) +
(
k2 (r⃗) − ⟨k⟩2

)
U ′ (x, y, z) = 0, (2.82)

which can be applied to calculate the propagation under such conditions. In order to
obtain the wave equation in terms of changes of the refractive index, one can utilize
the common approximation η = √

ϵr where ϵr is the relative permittivity. With this
one finds k2 (r⃗) = ⟨k⟩2 + ⟨k⟩2∆ϵ (r⃗) [92]. Moreover, η (r⃗) = ⟨η⟩ (1 + ∆η (r⃗)) ≈
√

ϵr + √
ϵr∆ϵ (r⃗) /2, hence ∆η (r⃗) = ∆ϵ (r⃗) /2. Finally, one obtains

2i⟨k⟩ ∂

∂z
U ′ (x, y, z) + ∇2

x,yU ′ (x, y, z) + 2⟨k⟩2∆η (r⃗) U ′ (x, y, z) = 0. (2.83)
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Chapter 3

Experimental Setup
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This chapter explains the experimental setup for the optical probing of the expanding
microspheres. It will start with the general structure of today’s high-power laser
systems exemplified by the 3 TW laser ZEUS which was used for this experimental
campaign. Subsequently, the experiment and the main diagnostics will be explained.

3.1 High-Power Laser Systems (ZEUS)

The world’s first laser was developed by Theodore Maiman in 1960 [14]. It was based
on stimulated emission, a concept theoretically described by Einstein [93] and ex-
perimentally proven by Ladenburg in 1928 [94]. The utilization of this process was
incorporated into the name: light amplification by stimulated emission of radiation.
Atoms not only can emit (or absorb) photons spontaneously but can also be stimu-
lated to do so. These characteristics can be exploited to amplify light and provide the
basis of every laser. Typically, three components are needed for the lasing process - a
gain medium, a pump laser and a resonator (see figure 3.1). The pump laser transfers
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Figure 3.1: The basic setup of a laser is
shown. The pump laser transfers energy
into the gain medium. Photons that pass
the gain medium are multiplied and are
sent back to the gain medium multiple
times by the resonator mirrors. One of
these mirrors is partially transmissive to al-
low photons to escape the resonator.

energy into the gain medium by exiting atoms into states of higher energy. Population
inversion is achieved if more atoms are in an exited state than in the ground state
and stimulated emission can surpass absorption losses in the gain medium. When a
photon with the correct wavelength (matching a decay channel of the atom) passes
through the gain medium, the atoms return to their ground state and release photons
with identical wavelength, direction and phase as the incident photon. By that, light
is amplified each time passing the gain medium. The resonator often consists of two
mirrors at both ends of the gain medium. Only photons with a certain direction are
reflected back into the crystal and are amplified multiple times. The resonator can
therefore be used to limit the emission direction of the laser. Additionally, one of the
resonators has a slightly imperfect reflectivity which allows to couple out part of the
light for further amplification.

Laser light can either be present in the form of a continuous wave (CW) or short
pulses. The most common methods for the generation of laser pulses are Q-switching
[16] and Mode-locking (e.g. [95]), where the latter is able to be produce ultrashort
pulses in the femtosecond regime. The pulse duration τ is limited by the spectral
bandwidth ∆ν of the laser and is defined by the time-bandwidth product ∆τ · ∆ν

where both values are considered in terms of full width at half maximum. The min-
imum of this product is determined by the shape of the spectrum (e.g. 0.441 for a
Gaussian spectrum) and defines a lower limit for the achievable pulse duration for a
given bandwidth. For example, Titanium-Sapphire (Ti:Sa) as a gain medium supports
a broad spectral bandwidth of up to 300 nm, making it an excellent candidate for the
generation of ultrashort laser pulses.

In theory, these pulses could be amplified further but due to the short pulse dura-
tion, they would quickly rise to problematic intensities in terms of nonlinearities and
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subsequent damage of laser optics during propagation and amplification. A potential
solution for this problem would be to consistently increase the beam diameter to reduce
the intensity, however this would lead to immense costs for optics and turns out to be a
very uneconomical approach. Therefore, many modern laser systems use the principle
of Chirped Pulse Amplification (CPA) [17] which was invented in 1985 and represents
one of the major steps in the history of laser development. The principle of CPA is
based on amplifying a temporally stretched laser pulse, distributing the pulse energy
over a longer period of time and thereby significantly decreasing the pulse intensity.
In order to achieve pulse stretching, CPA makes use of the broad spectral bandwidth
of the laser pulses (typically 50 to 100 nm FWHM for Ti:Sa lasers). By inserting a
grating or prism stretcher into the beam, a wavelength-dependent difference in path
length can be generated, stretching the pulse duration to several hundred picoseconds.
This allows for a much higher energy gain during the amplification process while si-
multaneously staying under the critical limits and keeping optics at a reasonable small
size. In order to achieve the highest intensity in the end, the pulse is compressed back
to its initial pulse duration after the last amplifier. The concept of CPA is illustrated
in figure 3.2.

Figure 3.2: The basic principle of CPA: After generation, the short and low-energetic
pulse is stretched in time. It is then amplified towards the desired energy and re-
compressed to its original pulse duration after the final amplifier.

The amplification of a laser pulse is achieved in the same way as its generation.
Pump lasers transfer energy into the amplifier crystals where they invert the gain
medium and the pulse is amplified by passing through the crystal multiple times. The
gain G in a single pass is given by G = exp (Jst/Jsat) [96] where Jst is the fluence stored
in the medium and Jsat is the saturation fluence (extraction of Jsat leads to a drop in
medium inversion to 1/e). The number of passes in which the pulse can gain energy
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is limited by the amount of pump energy stored in the crystal, eventually leading to
a saturation effect in the process where losses in the amplifier begin to surpass the
amplification. At this point, the laser pulse is coupled out of the amplifier and sent
to the next stage. Two of the most common layouts are the regenerative amplifier
(Regen) [97] and the multipass amplifier [98] (see figure 3.3). The main difference
between those two types is the beam path during amplification. In the Regen, the
pulse is sent into the amplifier via a polarizing beamsplitter. Its polarization is flipped
by a Pockels cell, trapping the pulse inside a cavity. After saturation occurs in the
amplification process, the polarization is switched back and the pulse is kicked out
by the beamsplitter. The repeating path of the Regen is often used for additional
manipulation of the pulse spectrum or phase during the amplification. The multipass
layout consists of multiple mirrors that fold the beam path such that it passes the
crystal several times but always under slightly different angles. In contrast to the
Regen, the number of passes can not be changed easily in this scheme.

Figure 3.3: Amplifier schemes used in high power laser systems: a) Regen amplifier:
the pulse is coupled into a cavity via polarization-switching in a Pockels cell. After
several roundtrips through the amplifier crystal, the pulse is kicked out by switching
back the polarization. b) Multipass amplifier: the pulse is sent through the amplifier
crystal several times by folding the beam path with a set of mirrors.

After the final amplification stage, the pulse is re-compressed temporally, ideally
to its initial duration. This is achieved by another set of gratings or prisms that com-
pensate the dispersion that was introduced during the stretching of the pulse. As the
pulse has a very high intensity at this point, all following optics have to be appro-
priately large in order to prevent non-linear effects such as self-focusing or self-phase
modulation and potential damage of the optics. Above a certain intensity it is there-
fore necessary to put the compressor, all following guiding optics and the experimental
setup into a vacuum system.
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Zinths Extremly Useful Superlaser (ZEUS)

Figure 3.4: This sketch shows the
layout of the ZEUS laser system. It
consists of an oscillator, a stretcher,
one regenerative and two multipass
amplifier and two compressors. Ad-
ditionally the motorized delay line
for the probe pulse is depicted.

At the end of 2017, we gratefully received a TW-class laser system from the research
group of Prof. Wolfgang Zinth, which was named "Zinths Extremely Useful Superlaser"
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(ZEUS), in honor of its former owner. During the course of this work, the system was
transferred to CALA and reassembled along with a laser laboratory and an associated
target area. ZEUS is a 3 TW Ti:Sa dual-beam laser based on CPA and with a footprint
of only five square meter a true tabletop system. Figure 3.4 shows a schematic of the
complete layout. The first component is the oscillator with a Ti:Sa crystal that is
pumped with a 2 W, 532 nm CW laser. It generates ultrashort pulses with 1.5 nJ
energy and a Gaussian spectral bandwidth of 50 nm FWHM which are released with
a repetition rate of 75 MHz. The stretcher of the ZEUS laser is designed in a so-called
Öffner design [99], a multipass, single grating configuration that allows for aberration-
free stretching of the pulse to several hundreds of picoseconds. A Pockels cell is used to
reduce the repetition rate of the laser pulses to 10 Hz. Once the pulse has passed the
stretcher, it is guided into the first amplifier stage, consisting of a Regen amplifier and
a multipass amplifier. Both amplifier crystals are pumped by the same Nd:YAG laser,
delivering 110 mJ at 532 nm in 6 ns - long pulses (FWHM) at a repetition rate of 10
Hz. 10 mJ are used for the Regen while the rest is used for the multipass crystal. In the
Regen, timed switching of polarization via a Pockels cell traps the laser pulse in a z-
shaped cavity. After the amplification reaches saturation, the polarization of the pulse
is switched back by a second Pockels cell and the pulse is coupled out of the amplifier.
A third Pockels cell is used to suppress pre-cessing light that was generated during the
amplification. In the multipass amplifier, the pulse energy increases from 190 µJ up to
26 mJ by passing the crystal five times. Entering the next amplification stage the pulse
is split with a ratio of 50/50 by a combination of waveplates and polarizers. One part
is first increased in diameter from 3 mm to 10 mm by a telescope and then amplified
in a second multipass amplifier up to 250 mJ. After amplification, the beam size is
increased again to the final diameter of 40 mm and the pulse is then guided towards
the high-energy compressor. The other part of the pulse bypasses the multipass and
directly enters a motorized delay stage. The additional delay is necessary in order to
compensate for the shorter path length and to allow control for the temporal overlap
of both pulses later in the experiment. Its beam diameter is increased to 15 mm and
guided towards the low-energy compressor. Both compressors have the same double-
grating layout, differing only in the size of the optical components. Here, the dispersion
introduced by the stretcher is compensated again, resulting in a temporal compression
of both pulses down to 65 fs FWHM duration. One third of the pulse energy is lost
during the compression, resulting in final energies of 150 mJ for the high-energy (HE)
pulse and 5 mJ for the low-energy (LE) pulse. In contrast to many other high-power
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laser systems, compression and subsequent guiding towards the experimental setup
can be done in air as the relatively low intensity of both pulses due to their rather
large beam diameter does not trigger sizeable non-linear effects in air.

3.2 Pump-Probe Setup of Levitating Spheres

The main goal of the experimental campaign was to investigate the temporal behavior
of an expanding spherical plasma that is generated by focusing a high-power laser onto
a levitating, micron-sized sphere. In this context, the HE pulse serves as the pump,
as it ignites the plasma which is then studied by the LE pulse, that acts as the probe.
The arrival time of the probe pulse with respect to the pump can be controlled by the
motorized delay stage mentioned earlier in the laser section, allowing for investigation
of the expanding plasma at different time steps. The delay between pump and probe
can be adjusted over a time period of 1 ns. The experiment was conducted in a vac-
uum chamber and the main components are sketched in figure 3.5. Both the pump
and probe pulse were guided towards the chamber via individual sets of two mirrors
each in order to adjust their direction when coupling into the chamber. Both beam
paths were equipped with two alignment irises in order to provide reproducible beam
guiding into the chamber for each day of the experiment. The pulses enter the experi-
mental chamber at a height of 200 mm via fused silica windows. The windows have an
anti-reflection coating to reduce light being back-reflected into the laser. The pump
is directly focused by a gold coated, 90 degree off-axis parabolic mirror with a focal
length of 152.6 mm. The geometrical position of the focus defines the target chamber
center (TCC), which is the designated interaction point in the experiment. A compact
vacuum-compatible microscope can be used to characterize the size and position of
the focal spot of the pump and assure overlap between focus and microsphere. The
microscope consists of a 20x objective, two lenses and two CMOS cameras, providing
simultaneous images of the focal plane with a magnification of 3 and 20, respectively.

During the experiment, the pump is focused onto polystyrene spheres with a di-
ameter of 1 µm. These spheres are positioned via a electro-dynamic ion trap, also
called Paul trap [55]. This device uses a combination of dynamic and static electric
fields to confine charged particles. The polystyrene spheres are provided by a reservoir
which is located above the trap. As the spheres are naturally neutral, they need to
be charged for the trapping process. This is achieved by an ion gun from which the
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Figure 3.5: This sketch illustrates the experimental pump-probe setup at the ZEUS
laser. The high energy (HE) pulse is focused by an off-axis parabolic mirror (1) with
a focal length of 152 mm. The target is a micron-sized sphere which is positioned by
a Paul trap (2). A motorized vacuum microscope (3) is used to determine the focus
size of the high energy pulse and the position of the sphere prior to each shot. Optical
measurement of the sphere position (4) is used for feedback and active damping. The
low energy (LE) pulse is sent through a spatial filter, consisting of two off-axis parabolic
mirrors and a pinhole, to improve the beam quality. It is then guided below the Paul
trap from where it is sent upwards and focused towards the center of the Paultrap. A
scatter screen (6) is used to monitor the beam profile of the HE pulse. Diagnostics of
the LE pulse above the Paul trap are not shown in this sketch for the sake of clarity.

particle collects surface charges while falling into the trap. Four AC electrodes produce
a rotating saddle potential that is superimposed by a constant DC endcap potential so
that particle movement can be confined to a few micrometer in all three dimensions.
To achieve maximum damping, the particles are illuminated with a 660 nm diode laser
and the stray light is used to image the particle onto a position sensitive device (PSD)
outside of the vacuum chamber. The signal from the PSD is fed back for active particle
damping [55].
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After entering the chamber, the probe is sent through a periscope to reduce the
beam height to 50 mm. This periscope also flips the polarization of the probe pulse
with respect to the pump. The probe is then guided towards a spatial filter, consisting
of two 1 inch, 90 degree off-axis parabolic mirrors with focal lengths of 150 mm and a
50 micrometer high-power pinhole which is placed on a xyz-stage. The main purpose
of the spatial filter is to smoothen the spatial beam profile of the probe by cutting
out high-frequency distortions. This process also changes the spatial distribution from
(modulated) flat-top to Gaussian. The alignment through the filter is monitored by a
motorized beam block that is covered with a lens tissue and acts as a scatter screen.
By observing this screen with a camera, alignment through the spatial filter can be
optimized by adjusting both coupling mirrors outside of the vacuum chamber. The
probe is then guided towards an elliptical mirror below the Paul trap that sends it
upwards. On the way up, the probe is focused by a achromatic lens with a focal
length of 60 mm. The focus of the probe is located approximately 1 mm below the
polystyrene spheres.

3.3 Diagnostics

Figure 3.6: Sideview of
the two main experi-
mental diagnostics for
the pump and the probe
pulse: The transmit-
ted light of the pump
is collected on a scat-
ter screen which is ob-
served by a camera.
The same is done for
the probe, but in this
case the camera is ob-
serving the backside of
the scatter screen.

The main diagnostics of the experimental campaign are transmission profiles of the
pump and probe pulse which were measured by a combination of scatter screens and
CMOS cameras as illustrated in figure 3.6. Those diagnostics will be described in detail
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in this section. Moreover, relevant properties of the laser, such as pulse length, energy
and pointing are either monitored for every shot or measured before the experiment.

3.3.1 Pump

One of the most challenging tasks when focusing a high-power laser onto a micron-
sized sphere is to achieve overlap between the two. Both at the beginning as well
as randomly throughout the experiment the position of the pump focus is observed
via the vacuum microscope and adjusted such that it is located at TCC. The same
procedure is applied for each sphere, positioning them in TCC by adjusting either the
trapping position in the Paul trap or the complete trap. Although the confinement of
the sphere motion is in the micrometer range, there is still residual motion of the target
with respect to TCC. Depending on the position of the sphere in the Gaussian-like
spatial distribution of the pump focus, the intensity with which the sphere is irradiated
changes from shot to shot. This can in turn alter the expansion behaviour and it is
therefore essential to monitor potential displacements. Monitoring can be achieved by
investigating the transmitted light of the pump laser after the interaction with the
sphere. For this purpose, a piece of sandblasted glass with dimension 200 mm x 250
mm was placed downstream of the interaction point at a distance of 490 mm. A 1.3
megapixel CMOS camera from IDS in combination with a 1/1.8" objective is used to
record the transmitted laser light on the screen (see figure 3.6). In order to prevent
saturation of the image, a neutral density filter was placed in front of the objective.
For each target, a transmission image was recorded for four scenarios: (1) probe only
with target, (2) pump and probe with target, (3) pump and probe without target and
(4) a dark image with both lasers blocked. Figure 3.7 shows two exemplary images
of the transmission, with scenario (3) visible in a) and scenario (2) in b). The bright
spots on the transmission image with target is stray light which is created when part
of the pump pulse is scattered from Paul trap elements.

During the experimental campaign, these images were mainly used to get a crude
estimate of the overlap that was achieved for each shot by comparing the transmission
for shots with target and subsequent shots without target (also called empty shots).
When the brightness and shape did not change between both images, it was assumed
that the target was missed by the pump (missing can here be understood in the way
of most part of the pump intensity passing the target without any interaction). In
contrast, when overlap was achieved, the brightness of the transmission profile in the
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Figure 3.7: Exemplary transmission profiles of the pump laser: a) without target and
b) with target. c) shows the same profile as b) but was subsequently oversaturated for
better visibility of the corona surrounding the otherwise sharp beam profile boundary
and originates from laser-plasma interaction.

target case was severly reduced (by up to 65 %). Moreover it was discovered that
additional light appears outside the pump beam profile boundary that is imprinted by
an aperture. In most cases, this corona was not symmetric but more emphasized on
one side as can be seen in figure 3.7 c). This was assumed to originate from partial
overlap between pump focus and target and utilized to re-adjust the position of the
target in the next shot. This procedure increases the hit probability during experiment
substantially.

3.3.2 Probe

Following the interaction with the pump pulse, the created spherical plasma will ex-
pand into the vacuum. In order to study the temporal behaviour of this process, the
probe was used to observe the plasma conditions for each shot. By changing the de-
lay between pump and probe, those observations provide a time-resolved study of the
dynamic changes. The measurement of the plasma is based on the concept of inline
holography [48] and set-up as follows: After being guided below the Paul trap, the
probe is sent upwards and focused shortly in front of the levitating sphere with an
estimated distance of 1 mm between focus and TCC. After passing the target, the
light from the probe is collected on a piece of sandblasted glass (50 mm x 50 mm)
which is positioned 103 mm above TCC. The backside of this screen is imaged by a
1.3 megapixel camera from IDS with a 1/1.8" objective. Figure 3.6 shows a sketch of
the probe concept.
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The observation of the plasma expansion can be divided into three different sce-
narios, illustrated in figure 3.8: the first scenario is negative delay between pump and
probe, that is the probe passes the sphere prior to the pump. This case is used to
determine whether the plasma is ionized prior to the pump arrival by pre-ceeding light
and if so, at what time the onset happens. As we will see later, this approach works be-
cause the probe profile of a transparent sphere and a sphere in which the free electron
density exceeds the critical density differ dramatically (see e.g. figure 3.9). The second
scenario is zero delay, where pump and probe arrive at the same time, determining
the state of the target at the time of main pulse interaction. In the last scenario, the
probe has positive delay, i.e. it observes the target after the interaction. This stage
provides information about the subsequent expansion dynamics of the sphere.

Figure 3.8: The three main probing scenarios are shown: a) negative delay (probe
arrives before pump, b) zero delay and c) positive delay (probe arrives after pump).

The main observable in this probing setups are diffraction patterns that are visible
on the scatter screen. As the target is placed behind the probe focus, the target is
smaller than the area illuminated by the probe in the TCC plane. Light diffracted
by the target will interfere with light passing the target and result in a ring pattern
(inline-holographic image) that is observed on the scatter screen. Changes of the
target will alter this diffraction pattern accordingly and allow to determine the extend
of expansion by evaluating the recorded patterns. As the imprinted patterns are often
very weak and hardly visible, an image without target is subtracted from the diffraction
patterns to enhance visibility of the interference pattern. The basic justification is that
the inline-holographic image Iihi is given by the superposition of the signal field Es and



3.3 Diagnostics 47

a reference field Er. Hence, Iihi = E2
r +E2

s +2ErEs, where the cross term ErEs contains
the required information on the plasma. For each shot, images are recorded for the
same four cases as for the transmission: the first is probe only with the undisturbed
target, which was used to judge on target quality, for example to differentiate between
single targets and clusters. The second case is pump and probe with target where the
expansion can be examined while the third one is pump and probe without target,
providing the reference intensity distribution. The last image is again a dark image
with pump and probe blocked. Figure 3.9 shows exemplary data that was recorded
during the experiment: a) and b) are raw images of the probe scatter screen for the
case of probe only and pump-probe with target (delay +193 ps), respectively. Pictures
c) and d) show the same images after the reference image is subtracted. The visibility
of the diffraction pattern is clearly increased.

Figure 3.9: Exemplary images recorded on the probe screen: a) shows the diffraction
pattern of an undisturbed sphere (pump blocked) while b) depicts the pattern of
the same target 193 ps after interaction with the pump pulse. c) and d) show the
interference term ErEs after subtracting the reference image from a) and b).
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Constraints on the probe pulse The purpose of the probe pulse is to solely
investigate the state of the sphere at a certain time. It is therefore essential to prevent
any interaction between target and probe that influences the expansion dynamics of
the sphere. For this reason the energy of the probe pulse was reduced prior to the
LE compressor by inserting two neutral density filters with a combined value of 4.5,
yielding an estimated final probe energy of ∼ 5 µJ in the vacuum chamber. This energy
also proved to be a safe value for the high-power pinhole of the spatial filter, where
plasma ignition at the edges was visible for higher energies. Although the energy was
drastically reduced, particles were repeatedly ejected from the Paul trap or started to
strongly oscillate. These additional problems were identified while taking data with
probe only shots and might have been caused by the probe removing surface charges
from the particle and by that affecting the trapping process. Further reduction of the
probe energy was not feasible in order to maintain an acceptable signal level on the
probe images. It was therefore decided to reduce the probe intensity by increasing
the pulse length. The grating distance of the LE compressor was changed until probe
only shots did not disturb the target motion any longer. Measuring the additional
displacement of the compressor gratings to ∼ 10 mm yielded a pulse duration of
∆τ = ∆τin ·

√
1 +

(
4 · ln2 · D2/ (∆τin)2

)2
∼ 2.6 ps, using ∆τin = 65 fs and a group

delay dispersion D2 = 61900 fs2. This probe pulse duration is much longer than the
minimally possible 65 fs, but is acceptable with respect to the duration of expansion
over 600 ps targeted in this study.

Reducing self-emission and stray light While probe only shots yielded stable
and well observable diffraction patterns, the background on the probe scatter screen
with the pump pulse incident increased significantly. Those features overlap with the
probe pulse and can render recording diffraction images impossible, due to the image
being either over-satured (see figure 3.10 a)) or the high noise level when adding filters
to the probe camera. The main sources of this cross-beam background are most likely
scattering of the pump pulse by the plasma and light emitted from the expanding
plasma itself, potentially delayed and over a long period. In order to reduce the
disturbance, a two inch polarizer with a extinction ratio of 105 : 1 was placed above
the scatter screen and rotated such that the transmission was maximized for the probe
pulse. Stray light from the pump that does not match this polarization is attenuated
by the polarizer. The polarization of the probe was rotated at 90 degrees with respect
to the pump by the periscope at the entrance of the vacuum chamber such that pump
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and probe have perpendicular polarization at TCC, potentially enhancing the contrast
between probe and pump pulse. In order to reduce the light emitted by the plasma,
a spectral edge-pass filter with a cut-on wavelength of 750 nm was placed in front of
the camera. Previous studies have shown that a large amount of the emitted light is
located in the wavelength-region of 2ω (400 nm in this case) which is strongly reduced
by the filter. The final setup is shown in figure 3.10 b). Although both measures
helped to reduce noise in the probe images, the pump energy remained limited to
below 1 mJ in order to record probe images with an acceptable signal-to-noise ratio.
The pump energy was hence reduced by not pumping the second multipass amplifier,
yielding between 600 and 650 µJ.

Figure 3.10: a) shows an oversaturated image of the probe screen when using high
pump energy. Measures taken to attenuate stray light and self-emission can be seen
in b).

Probe image post-processing The measures described above significantly reduced
the influence of stray light on the recorded probe images. In order to make the existing
diffraction rings even more clearly visible, additional filters were subsequently used in
the processing of the results. First, high-frequency noise was reduced with the aid of
an averaging filter. For this purpose, a uniform filter was applied to the raw images
in Python, which replaces the value of each pixel by the average value of an area
centered around the pixel. The size of this area can be set separately for each data
set. Thereby, a balance between smoothing of high frequency noise and preservation of
fine diffraction structures at the edge of the image was chosen. Furthermore, a visible
offset of the diffraction pattern towards positive values is evident in the raw data. This
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is probably due to stray light from the particle which was not completely suppressed
by the measures described above. In order to determine the shape of this component,
measurements were carried out in which only the pump was focused on the particle
and the resulting scattered light was recorded on the probe screen. The probe pulse
was blocked at the entrance of the experimental chamber. It was found that in the
most general case the distribution can be approximated by an elliptical 2D Gaussian
distribution, where the major axis can be tilted.

Figure 3.11: Raw image of experimental diffraction pattern with corresponding radial
(red line) and axial (orange line) profiles. The black dashed line indicates an Gaussian-
like offset of the diffraction pattern that is caused by background contributed through
pump-plasma interaction.

Figure 3.12: Filtered image of experimental diffraction pattern with corresponding
radial (red line) and axial (orange line) profiles.

Therefore, a Gaussian distribution was empirically determined for each individual
data set to minimize the offset as best as possible. This distribution is then subtracted
from the raw image. In figure 3.11, the described offset is clearly visible in both the
radial and axial profile of the raw image. The profiles of the subtracted Gaussian
distribution are indicated as black dashed lines. The final result after applying all
filters is shown in figure 3.12. Only a weak uniform filter with a size of 3x3 pixels
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was used to preserve diffraction structures at the edge. By successful removal of the
offsets all diffraction structures are arranged along the zero line which facilitates a
later comparison with simulations.

Zero timing In the framework of this experiment, the zero time (or t0) is defined as
the moment in time when the pump pulse reaches its maximum intensity at TCC. For
determining the expansion of the target as a function of time, precise knowledge of the
temporal relation of the probe pulse and t0 is essential. This relation was determined
by the aid of an air plasma in the residual gas of the experimental chamber. The onset
time of plasma generation can be measured by the probe by changing the position
of the delay stage until the plasma-caused disturbance in the probe profile becomes
visible on the scatter screen. The pulse energy of the pump was attenuated, such that
the disturbance was only visible in a very narrow time window. The onset time then
marks the peak of the pulse. As pump and probe have different path lengths inside
the vacuum chamber, the onset time (and thus t0) measured with residual gas differs
from the vacuum value due to the different speed of light. Therefore, the pressure is
gradually decreased and the onset time is measured for each pressure. By interpolating
the onset time for zero pressure, the correct vacuum value of t0 is determined. The
error of this method is approximated to be ±0.5 ps.

3.3.3 Laser Characterization

Energy, pulse duration and spectrum The pulse duration is measured prior to
the experiment for each pulse after the compressor using the FROG 8-9-USB device
from Swamp Optics. The dispersion by the glass windows when entering the vacuum
chamber was pre-compensated by putting duplicate windows in front of the FROG.
Optimized compression yielded values of 60-65 fs (FWHM) for both pump and probe
pulses. The manual chirping of the probe pulse was not measurable by the FROG but
was calculated by applying the additional compressor dispersion to the 65 fs duration as
described earlier. The pulse spectrum was continuously monitored with a spectrometer
(EPP2000C-25, StellarNet) in the stretcher by coupling the zero order beam of the
grating into an optical fiber connected to the spectrometer. The pulse energy was
measured after each amplifier and additionally before the vacuum entrance windows.
The pump pulse contained on average 600±10µJ after compression while the strongly
attenuated probe pulse was too weak for measurements after the compressor. However,
by measuring the probe pulse energy without filtering (5 mJ after compression) and
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by accounting for the attenuation of the neutral density filters (∼ 103), the energy can
be estimated to ∼ 5µJ .

Laser stability: pointing and energy Achieving overlap of the pump focus and
the target is already a challenging task due to the residual motion of the trapped
sphere. Additional complexity arises if the laser adds to fluctuations. Laser motion can
be differentiated into long-term drifts and short-term jitter. While the jitter is more of
a stochastic process, drifts have typically a correlation to more obvious parameters. At
the ZEUS laser, the high-frequency laser jitter causes a variation of the laser position
in the focal plane of ±0.3 µm and is much smaller than the residual target motion
of ±3 µm. Slow drifts however caused a long-term change of propagation direction
over the complete laser. This led for example to a substantial change of focus position
for the pump, misalignment in the spatial filter for the probe and reduced energy
for both. The cause for this drift is not fully understood yet but most likely due to
temperature changes in the lab. The drift becomes non-negligible after two to three
hours and must be compensated by realigning the laser. For this purpose, the position
of the beam is monitored by a set of cameras at certain points via leakage through the
laser mirrors or by flipping alignment marks into the beam path. Motorized mirrors
then allow for remote re-alignment of the laser back to the correct position [100].
Instability of the laser energy is correlated mainly to the described drift. On the other
hand, shot-to-shot fluctuations are due to unstable pump lasers or initial misalignment
of the amplifiers. These fluctuations are measured over a period of 500 pulses after
each amplifier during the first laser alignment by an energy meter and amplifiers are
optimized until a stability of less than 3% RMS is obtained. Subsequent measurements
have shown that this value is constant as long as the propagation of the laser is correct.

Spatial distribution of pump in the focal plane The spatial distribution of
the pump pulse in the focal plane was determined with the vacuum microscope and
attenuated pulses. Three images of the spatial distribution were taken with varying
filter settings and combined in the analysis to provide a final image with a dynamic
range of three orders of magnitude. The final result normalized to the peak is analysed
in figure 3.13. With an evaluated FWHM of 5.9 µm and an assumed pulse energy of
600 µJ contained in a pulse duration of 65 fs (FWHM), this yields a peak intensity of
1.6 · 1016 W/cm2 and a normalized laser vector potential a0 of about 0.1.
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Figure 3.13: Normalized spatial intensity distribution of the pump pulse in the focal
plane. Intensity profiles at x=0 µm and y=0 µm are shown in blue and grey, respec-
tively.

Temporal intensity distribution While the peak intensity of a fs-laser pulse is
by its virtue confined to some 10s or 100s of femtoseconds, the total pulse energy can
be distributed over many nanoseconds. Depending on the exact temporal intensity
distribution, such pre-ceeding (or trailing) light can significantly influence the laser-
plasma interaction even when its intensity is relatively low. The causes for such badly
timed pump light are manifold: Amplified Spontaneous Emission (ASE), originating
from the Ti:Sa crystals during amplification, creates a light-background on the nano-
to picosecond level. Reflections in transmittive optics can create short, distinct post-
pulses and convert via non-linearities in the amplifier medium to pre-pulses [101]. Due
to the high intensities achieved in the laser focus, those can easily reach the ionization
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threshold of the target (1012 − 1013 W/cm2) and influence the laser-target interaction.
It is therefore critical to measure the temporal intensity distribution of the laser with
high dynamic range over a long time interval around the fs pulse. At the ZEUS laser,
this was done by a third-order-auto-correlator (Tundra, UltraFast Innovations, 1012

dynamic range) with a scan range of two nanoseconds (from -1.8 ns to +0.2 ns around
the fs pulse). The measured autocorrelation trace is plotted in figure 3.14: the left
ordinate shows the intensity distribution normalized to the maximum of 1 as obtained
by the auto-correlator, while the right ordinate was scaled to the previously calculated
intensity of 1.6 · 1016 W/cm2. The red bar marks the intensity range at which severe
plasma generation of polystyrene is expected. As can be seen, only the main pulse
surpasses this range, indicating that no premature plasma generation is expected.

Figure 3.14: Autocorrelation trace: the left axis shows the normalized signal while the
right axis is scaled to the peak intensity 1.6 · 1016 W/cm2 (this experiment). The red
bar indicates the area of assumed plasma generation threshold (1012 − 1013 W/cm2).
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This chapter describes the numerical calculations for generating artificial, i.e. simu-
lated diffraction patterns of various plasma density models. Starting with the simula-
tion setup, three models for the spherical plasma in order of growing complexity are
introduced. The most suitable model is compared with hydrodynamic simulations. Fi-
nally, the methodology is presented of how plasma parameters can be extracted when
comparing experimentally recorded and numerically calculated diffraction patterns.
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4.1 Simulation Setup

In order to make statements about the state of the plasma at different times, diffraction
patterns of simple 3D density distributions are created with the help of numerical
calculations. These can later be compared to experimental data. For this purpose,
the Python package LightPipes is used. This beam propagation toolbox uses scalar
diffraction theory and allows to simulate propagation of coherent light through optical
elements. LightPipes was chosen because it allows to create self-defined objects with
non-uniform refractive indices as well as to calculate the associated diffraction effects
while the source code is accessible. Light is treated in LightPipes as a square, two-
dimensional array of complex amplitudes and its propagation can be modeled by four
different functions: an FFT approach using the spectral method (see equation 2.74),
FFT computation of a convolution of the Fresnel-Kirchhoff diffraction integral (see
equation 2.77), direct calculation of the Fresnel-Kirchhoff diffraction integral and a
propagation method for non-uniform media (see equation 2.82). More details on the
implementation of these propagators and the complete package can be found in [102].

Limitations of LightPipes As all numerical simulations, LightPipes is subject to
some limitations which are described below:
Since the code computes on a discrete grid and the computation time increases rapidly
with increasing number of grid points, there is a certain limit to the accessible resolu-
tion. For all simulations a compromise between physically reasonable resolution and
acceptable computing time has to be found.
The temporal evolution of a light pulse is not taken into account and therefore changes
of diffracting objects during propagation cannot be considered. In addition, Lightpipes
requires the specification of a single wavelength and is thus unable to calculate diffrac-
tion effects over the entire broadband spectrum of an ultrashort laser pulse. Since
the pulse lengths are short compared to the expected temporal changes of the plasma
and the real bandwidth of the pulse is comparatively narrow at 15 nm FWHM, these
limitations are considered acceptable.
Physical properties such as energy or intensity of the light are also not taken into
account and effects such as ionization and absorption are not considered. Similarly,
contributions to the diffraction patterns in the form of e.g. self-emission from the
plasma itself are not modelled. These limitations can also be neglected in view of the
plasma states assumed to be quasi-stationary during the pulse length and the measures
taken in the experiment to reduce such contributions.
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Finally it has to be noted that reflections occuring for example in the interaction of
laser light with an overcritical plasma cannot be investigated because fields in Light-
Pipes are calculated only in one (main) direction and an analysis of potential reflections
is therefore not possible.

LightPipes allows the simulation of optical components to reproduce the experi-
ment setting as described in section 3.3.1 for the pump and section 3.3.2 for the probe.
Distances and beam sizes are taken from experimentally determined values and param-
eters such as focus size and beam size on the screen are compared with experimental
results to ensure the best possible match with the real situation. The implementation
of the density profile is based on simple analytical functions. Here, the 3D distribution
along the propagation axis is divided into a set of successive 2D arrays through which
the field propagates. A detailed description will be given later in the relevant section
4.1.3.

4.1.1 Setup of Pump Simulation

Figure 4.1 shows a schematic of the simulation setup for the pump pulse. The exem-
plary intensity distributions are calculated from the fields in the respective positions.
In the first step, a square homogeneous field with a size of 200 mm x 200 mm and a
grid with 2048 x 2048 points (resolution 98 µm) is generated. This field is multiplied
by a mask whose distribution represents the near field of the laser before focusing
(figure 4.1(1)). The exact specifications of the applied mask are described later in
more detail. The input field is then focused by simulating a lens with a focal length
corresponding to the real value of the off-axis parabolic mirror of 152.6 mm. This step
is stopped half a target diameter before focus such that the center of the spherical tar-
get can be placed exactly in the focal plane (figure 4.1(2)). To maintain a reasonable
resolution in the focal plane, LightPipes uses a conversion to spherical coordinates for
this process. Here the coordinate system is bent similar to the converging spherical
wavefront and then propagated. To prevent a grid with zero size in the focal plane,
a combination of a (weak) phase mask and a (strong) geometric coordinate transform
is used. The focusing of the field is determined by the combination of both, resulting
in the correct focal length of 152.6 mm while the bending of the coordinate system is
governed by the transform, resulting in a non-zero gridsize after propagation. At the
end, a back transformation to Cartesian coordinates is performed, where the rescaled
grid size depends on the target diameter. In the present case, the resulting grid size
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varies between 311 µm x 311 µm and 317 µm x 317 µm and corresponding resolutions
of 152 - 155 nm. Subsequently, the field is propagated stepwise through 2D arrays rep-
resenting the selected density distribution in the form of an inhomogeneous refractive
index distribution (figure 4.1(3)). The propagation is performed in Cartesian coordi-
nates with the same grid size and resolution as in stage 2. The step size along the
propagation axis has the same value as the resolution of the grid to ensure a symmet-
rical implementation of the density distribution.

Figure 4.1: Setup of the pump simulation with cutouts of exemplary intensity distri-
butions and corresponding values of gridsize (GS), dimension of cutout (CO) and grid
resolution (RES): 1) Initialization of the field with applied mask to model input field
(GS: 200 mm x 200 mm, CO: 50 mm x 50 mm, RES: 98 µm); 2) propagation towards
focus (GS: 311 µm x 311 µm, CO: 40 µm x 40 µm, RES: 152 nm); 3) propagation
through density distribution (GS: 311 µm x 311 µm, CO: 40 µm x 40 µm, RES: 152
nm); 4) short propagation after target (GS: 311 µm x 311 µm, CO: 40 µm x 40 µm,
RES: 152 nm); 5) propagation to screen (GS: 500 mm x 500 mm, CO: 125 mm x 125
mm, RES: 245 µm). The black vertical lines are to illustrate changes in the size of the
simulation grid.

After the target, the field is freely propagated 50 µm minus half a target diameter
in Cartesian coordinates with the same grid parameters (figure 4.1(4)). This step helps
to stabilize the simulation. For the last step (propagation towards screen), the field is
again propagated in spherical coordinates, where the geometric transform is governed
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by the designated final grid size of 500 mm x 500 mm. In order to counter the effect
of the geometric transform, an additional phase mask is applied to the field, such that
its divergence after the focus is not altered by the coordinate transformation. After a
propagation distance of 490 mm - 50 µm a back-transformation to Cartesian coordi-
nates is performed. The result output can be converted to an intensity distribution,
which is the simulation equivalent of the experimentally recorded transmission image
which will later be used to determine the density distribution of the plasma (figure
4.1(5)). To simulate an empty shot, the same procedure is used whereby the 2D arrays
of the target are provided with a homogeneous refractive index of 1 to simulate the
propagation through vacuum. The decision to also propagate stepwise was made to
check if the propagator delivers physically correct results and to exclude simulation
related errors.

Calibration of pump setup

Figure 4.2: Comparison of the experimentally determined laser focus (see figure 3.13)
and the final intensity distribution in the focal plane obtained from the pump simula-
tion. The black solid line illustrates a FWHM of 6 µm.

In order to calibrate the simulation, experimental results can be used as a reference.
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In the case of the pump, these results are the size of the laser in the focal plane (mea-
sured with the vacuum microscope) and the pump profile of an empty shot (recorded
on the transmission screen). In order to obtain the simulation result of the focus, the
propagation of step 2 is performed over the complete focal length of 152.6 mm and an
intensity distribution is calculated from the field at the end of the propagation. As
the field is initially implemented with a flat phase the diameter of the intensity distri-
bution in focus is governed by the diameter of the applied mask in step 1. Using the
experimentally determined beam diameter of 24 mm resulted in a focus with 5.3 µm,
which is smaller than the experimentally determined FWHM of 6 µm. This deviation
is likely caused by aberrations of the wavefront, which are present in the experiment
and slightly increase the real focus size. These aberrations are not implemented in
the simulation for simplicity. In order to obtain an equal FWHM of the focus in both
experiment and simulation it was decided to reduce the diameter of the input mask
to 21 mm. Figure 4.2 shows a comparison of the experimentally obtained focus image
(see figure 3.13) and the final intensity distribution in the focal plane obtained from
the simulation. Both agree well in terms of the FWHM.

Figure 4.3: Comparison of the experimentally recorded beam profile on the pump
screen (empty shot) and the final intensity distribution obtained from the pump sim-
ulation (empty shot).
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The second reference for the pump simulation is the intensity profile of an empty
shot without target. The experimentally recorded transmission image can be com-
pared with the intensity distribution calculated from the final field in the simulation
(step 5). To model a distinct beam profile, the input mask with a diameter of 21
mm is multiplied with a 2D distribution such that the initial intensity distribution of
the simulation equals the experimentally obtained intensity distribution on the trans-
mission screen. It is assumed that diffraction effects in free propagation through the
vacuum are negligible and therefore the intensity distribution in the near field before
and after focusing are almost identical. As empty shot data is available for each target,
this process can be applied for all shots, hence accounting for potential fluctuations in
the beam profile. Figure 4.3 shows a comparison of an exemplary transmission profile
and an intensity distribution resulting from the corresponding simulation, where great
agreement between both cases can be seen.

4.1.2 Setup of Probe Simulation

The structure of the probe simulation is very similar and is illustrated in figure 4.4
with cutouts of exemplary intensity distributions obtained from the respective fields.
At the beginning, again a homogeneous field is created, but this time with a size of
440 mm x 440 mm and a grid of 4096 x 4096 points (resolution 107 µm). To model
the beam in front of the probe lens, a mask is applied similar to the pump simulation
(figure 4.4(1)). Details on the mask specifications are again given later in this subsec-
tion. This input field is then focused with a focal length of 60 mm, following the same
procedure for the transformation to spherical coordinates as for the pump case. Af-
ter back-transformation to Cartesian coordinates, the re-scaled grid in the focal plane
has a size of 938 µm x 938 µm and a resulting resolution of 230 nm (figure 4.4(2)).
Subsequently, the beam propagates freely 770 µm minus half a target diameter (figure
4.4(3)), using the same grid size and resolution. Analogous to the case of the pump,
the field is propagated step-wise through 2D arrays with inhomogeneous refractive in-
dex based on the density distribution of interest (figure 4.4(4)). After the target, the
field freely propagates 200 µm minus half a target diameter (figure 4.4(5)), keeping the
grid size at 938 µm x 938 µm (this step again helps to stabilize the simulation). In
the last step, the grid is transformed to spherical coordinates, using the same method
as in step 5 of the pump simulation. After a propagation of 103 mm - 970 µm, a
back-transformation to Cartesian coordinates is done, resulting in a final grid size of
42 mm x 42 mm with 102 µm resolution (figure 4.4(6)). The intensity distribution,
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Figure 4.4: Setup of the probe simulation with cutouts of exemplary intensity distri-
butions and corresponding values of gridsize (GS), dimension of cutout (CO) and grid
resolution (RES): 1) Initialization of the field with applied mask to model input field
(GS: 440 mm x 440 mm, CO: 25 mm x 25 mm, RES: 107 µm); 2) propagation towards
focus (GS: 938 µm x 938 µm, CO: 30 µm x 30 µm, RES: 230 nm); 3) propagation
towards target (GS: 938 µm x 938 µm, CO: 300 µm x 300 µm, RES: 230 nm); 4)
propagation through density distribution (GS: 938 µm x 938 µm, CO: 300 µm x 300
µm, RES: 230 nm); 5) short propagation after target (GS: 938 µm x 938 µm, CO: 300
µm x 300 µm, RES: 230 nm); 6) propagation to screen (GS: 420 mm x 420 mm, CO:
420 mm x 420 mm, RES: 102 µm). The vertical black lines are to illustrate changes
in the size of the simulation grid.

obtained from the final field is the equivalent to the experimentally recorded trans-
mission images on the probe screen. Empty shots are calculated by implementing a
homogeneous density distribution with ne = 1.

Calibration of probe setup

The two references that can be used to calibrate the probe simulation are the recorded
intensity distribution of an empty shot and the diffraction pattern of a non-ionized 1
µm plastic sphere obtained from a probe only shot. The empty shot is used to define
the mask applied to the initial field. As the distance from the probe lens to the probe
screen is fixed and can be precisely measured in the experimental setup, the mask
can be adjusted such that the resulting intensity distribution of the simulation best
matches the experimentally recorded distribution on the probe screen. Since the probe
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Figure 4.5: Comparison of the experimentally recorded beam profile on the probe
screen (empty shot) and the final intensity distribution obtained from the probe sim-
ulation (empty shot).

beam has a Gaussian beam profile after the spatial filter, a combination of a Gaussian
aperture and a circular aperture is applied. The best overlap with the experimental
reference was achieved for a Gaussian aperture with 8.5 mm diameter (1/e intensity)
and a circular aperture of 18.5 mm diameter. Figure 4.5 shows a comparison of the
calculated intensity distribution and an exemplary recorded empty shot image.

The second reference are experimentally obtained diffraction patterns from non-
ionized 1 µm plastic spheres with known refractive index. As those patterns result
from the interaction with a well defined target, they can be used to calibrate the prop-
agation distance between the probe focus and the target position. By implementing a
density distribution that represents such a sphere, this distance can be adjusted un-
til the simulated diffraction pattern best matches the experimental equivalent (figure
4.6). Using this method, a propagation of 0.77 mm yielded the best overlap and is in
line with the experimentally approximated value of 1 mm.

A closer look at figure 4.6 reveals a small ovality of the experimentally recorded
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Figure 4.6: Comparison of the experimentally obtained diffraction pattern of an un-
expanded 1 µm plastic sphere and the final intensity distribution obtained from the
probe simulation.

diffraction pattern. It is assumed that this ovality is the result of a slightly skewed
passage of the probe pulse through the focusing lens in the experiment. To account for
this, a vertical astigmatism is imprinted on the input field with the help of a second
order Zernike aberration. Using this approach, the ovality can be nicely reproduced in
the simulation (good overlap between experiment and simulation in both dimensions
in figure 4.6). The amount of aberration was determined for each data set recorded
within a single campaign to include daily alignment changes and amounted between
0.23 λ and 0.27 λ.

4.1.3 Implementation of Density Distribution

The optical properties of the original sphere and respectively the plasma are imple-
mented in the simulation by a discrete three-dimensional refractive index distribution.
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The initial target is assumed to be a sphere with a diameter of 1 µm and a refractive
index of 1.577. After the interaction with the pump pulse we assume the refractive
index of a collisionless plasma:

η (r⃗) =
√

1 − ne (r⃗)
nc

(4.1)

where ne (r⃗) denotes the electron density distribution and nc the critical density of the
laser.

LightPipes offers the possibility to propagate the light field over a specified distance
through a square two-dimensional array with inhomogeneous refractive index distri-
bution via the ’Step’ function. To represent the three-dimensionality of the sphere or
plasma, the refractive index distribution is divided along the propagation direction (z)
into successive slices of 2D arrays (xy). The concept is visualized in figure 4.7. The
sum of all two-dimensional arrays forms a box in which the entire density distribution
is implemented. Effects on the field are calculated slice by slice over the whole propa-
gation length through the box.

Figure 4.7: Concept of
implementation of the
density distribution:
The 3D distribution
is divided along the
propagation axis z into
a set of 2D arrays each
containing a specified
slice of the total density
distribution

At the beginning of each simulation, the total size of the density distribution is
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determined first. Based on this distribution, the number and thickness of each slice
is specified. For the initial target, this size is defined by the sphere diameter. For
plasmas, the case is different: since the density distribution is calculated by analytical
functions, it may happen that the density distribution has no defined end (ne = 0).
This would lead to an unpredictable number of slices. Therefore, the density distri-
bution is limited in all three dimensions to the radius rtarg. rtarg is artificially defined
such that the integral over the density distribution

rtarg∫
0

4πne (r) r2dr yields 99.99% of
all electrons. To guarantee a uniform resolution in all dimensions, rtarg is divided by
the resolution of the xy-grid. This results in the number of slices nslices. The thickness
of each slice is chosen to match the grid resolution.

The density distribution is given as ne (r⃗), which reduces to ne (r) under the as-
sumption of spherical symmetry (see next section). For a implementation in the sim-
ulation this needs to be transformed into ne (x, y, z). Each grid point within the box
of the density distribution is defined by its position xijk, yijk, zijk. In order to assign a
radius r to each point, the position of the center (x0, y0, z0) of the density distribution
is determined. This value is in the center of the array which is defined by nslices/2 (see
slice 0 in figure 4.7). The distance to this center results in a radius for each position
via

rijk =
√

(xijk − x0)2 + (yijk − y0)2 + (zijk − z0)2. (4.2)

With this radius, the value of the refractive index η (rijk) belonging to the specific
position can be assigned from the analytical function. Since in reality the distribution
is not always located in the center of the laser focus, there is also the possibility to
move the center along x and y. A shift along the z axis can be realized by changing
the propagation lengths prior to the target simulation.

The implementation of the individual values of the refractive index is subject to
a restriction with regard to the continuity of the distribution. Each point of the ar-
ray can only be assigned to a single value depending on the distance to the center;
the same applies to the thickness of the array. Accordingly, an analytically contin-
uous distribution must be approximated in the simulation in the form of a step-like
distribution (see figure 4.8). By choosing the best possible resolution at reasonable
computational effort, this limitation was tried to be minimized. In both simulations,
the grid resolution (pump 150 nm, probe 230 nm) is kept well below the wavelength
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of 790 nm. However, this must be considered with care for the simulation of small
structures.

Figure 4.8: Discretization of the refractive index values: a) shows an exemplary an-
alytic distribution, while b) illustrates how this distribution is implemented in the
simulation.

Test case for implementation of overcritial densities It should be noted again
that in case ne > nc (overcritical density), the refractive index 4.1 has a purely imag-
inary value. This leads to a strong attenuation (shielding) of the electric field inside
the plasma. As already described in section 2.4, the penetration depth after which the
electric field drops to 1/e is the skin depth, which can be written in terms of particle
densities as:

ls = λ

2 · π ·
√

ne

γ·nc
− 1

(4.3)

where λ is the laser wavelength and γ is the averaged Lorentz factor. In the present
experiment with I ≈ 1016 W

cm2 , γ ≈ 1 and therefore does not play a significant role.

To ensure that the damping behavior is modeled correctly, the following test case
was constructed (see figure 4.9(a)): a round beam with a diameter of 150 µm is gen-
erated in the center of a homogeneous field with flat phase. This beam is propagated
a specified distance through a refractive index distribution using the ’Steps’ function.
The distribution is constructed in such a way that centrally within a circle of 100 µm di-
ameter an imaginary refractive index emerges that corresponds to a defined overcritical
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electron density. Outside of this circle a real refractive index of 1 is used to represent
vacuum. When passing through, the central part of the field is damped. By convert-
ing to the corresponding intensity distribution, it is then possible to check whether
the damping is calculated correctly. Figure 4.9(b) shows the calculated transmitted
intensities for three different electron densities. The black dashed line corresponds to
the theortical attenuation as a function of the penetration depth x:

I(x) = I0 · e−2· x
ls (4.4)

where I0 is the intensity of the initial field and ls the skin depth to the respective
electron density.

Figure 4.9: Test case for imaginary refractive index: a) illustrates the concept while
b) shows results for the centrally transmitted intensity (orange line) compared to the
theoretical damping (black line). The black dashed line indicates the position of the
skin depth where the intensity drops to 1/e2 of the initial value.

As can be seen, the attenuation of intensity as a function of penetration depth
resembles the theoretical model 1. Deviations from the model occur for small pene-

1To achieve these results, a small modification in the implementation of the imaginary refractive
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tration depths and attenuations. This is probably due to numerical inaccuracies and
might improve with higher resolution. However, since the exponential decay of the
intensity is in principal implemented correctly, it can be assumed that the transition
to an overcritical plasma density, in particular the attenuation of the field by the over-
critical region within the spherical microplasma is properly modeled in the presented
simulations.

4.2 Density Models

As mentioned above, the aim is to compare the experimentally obtained diffraction
patterns with results of the numerical simulations. In order to parameterize the plasma
and its expansion, three simple models were developed to represent the electron den-
sity distribution of the plasma in the simulation. The choice of the models is based on
findings of previous publications in the field of plasma expansion as well as evolution-
ary improvement in the understanding of the observed diffraction patterns. It is most
important to note that although the diffraction patterns are dominated by the under-
critical regions of the plasma density, where light can propagate and pick up phase,
the models take into account all regions, even if not accessible by the diagnosing light.
To keep the number of free parameters in the models small, the following simplifying
assumptions were made:

Static distribution The models provide a static distribution function of the elec-
trons based on the choice of parameters. For the simulation it is assumed that no
time-dependent changes of this distribution occur over the observation period. For
the pump, this assumption means that the overall electron density does not change
during the 65 fs pulse duration, which means that intra-pulse dynamics are assumed
to average out. The probe images can only give limited information with a temporal
resolution of 2.6 ps and the effect of faster dynamics (in particular around t = 0 ps)
must be considered later in the data analysis.

Spherical symmetry The modeled distributions are all spherically symmetric, as is
the inital target. This assumption implies that the resulting plasma is heated uniformly
and the thermalization time is small compared to the expansion time. Occurring

index in the ’Steps’ function was necessary. A test case provided by the developers of the code was
used to ensure this modification did not change the behaviour of the code in the case of a real-valued
refractive index.
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instabilities and asymmetric density disturbances (such as directed shocks or jets)
cannot be considered quantitatively. This simplification is justified in the case of
transmission of the pump when irradiating the target sphere centric. However, starting
with spherically symmetric distributions as a zero order approximation (similar to
the Zernike approach) is undoubtedly a valid starting point. Comparing the such
calculated diffraction pattern with the experimental results (that show asymmetry)
offers the possibility to determine the direction of occurring asymmetries and exploring
their origin. For example, global distribution shifts within the laser can be taken into
account in the simulation and illute the potential interpretation of deviations from
symmetry.

Conservation of particle number For the calculation of the distribution it is
assumed that the plasma is fully ionized and electrons are not able to escape from
the plasma, i.e. the number of electrons in the system is constant at all times. The
confinement might not be entirely valid. But it is worth highlighting that by using
levitating and hence fully isolated targets, a refill from ground or non-irradiated target
regions through the return current is impossible. This prior knowledge might be the
most interesting constraint for interpreting the results.

4.2.1 Initial Sphere and Particle Number

Simulations of the initial sphere are used to validate the probing configuration. For
each data set, it is also possible to determine whether the target was a single sphere or
a cluster (comparison with data from probe only shots). In the simulation, the particle
is implemented as a sphere with radius r0 = 0.5 µm and homogeneous refractive index
of 1.577. As the limiting radius, rtarg = 1 µm was used.

For the calculation of the electron density distribution of plasmas, the total number
of electrons Ntot and the density in units of the critial density n0 [nc] present in the
initial sphere is required. The target material polystyrene consists of (C8H8)n with
a density of 1.05 g/cm3 and a molar mass of 104.15 g/mol. Assuming complete ion-
ization, the total number of electrons yields Ntot = 1.78 · 1011 and the corresponding
electron density is 3.41 · 1023 cm−3. With a critical density nc = 1.76 · 1021 cm−3 for
the central wavelength of the laser, this results in an initial, homogeneous density of
n0 = 194 nc within r < 0.5 µm.
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4.2.2 Exponential Distribution

The first model describes the density distribution in terms of the critical density nc

with an exponential decay, similar to the model proposed by Peltz et al. [103]. The
density initially distributes as a sphere with radius r0 = 0.5 µm and a homogeneous
density n0 = 194nc (see green curve in figure 4.10). As expansion starts, the function
of the distribution can be divided into two segments (due to spherical symmetry only
the radial distribution is defined):

ne =

ncore, r < rcore,

ncore · e
−(r−rcore)

d , r ≥ rcore.
(4.5)

In the range 0 < r < rcore, the density has a constant value of ncore which corresponds
to the initial density value n0. rcore can take values between r0 (initial sphere) and
0. The area outside of rcore describes a blurring of the sphere edge by an exponential
decay of the density with increasing radius (red curve in figure 4.10). The parameter
d defines the steepness of the decay.

Figure 4.10: Three examples of the electron density model with exponential decay are
shown: the green curve shows the initial plasma with rcore = 0.5 µm, the red curve
illustrates the intermediate case with a shrinking core (rcore = 0.295 µm) and the blue
curve depicts the case when the core density falls below the initial density (rcore = 0
µm).

At the beginning of the expansion, the density distribution can be described by an
intermediate state (red curve in figure 4.10). Towards the interior, there is a homo-
geneous region of constant density whose radius rcore approaches 0 as the expansion
progresses. Outside this area, the density decreases exponentially. As soon as rcore has
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dropped to 0, the density at r = 0 drops below the value of initial density. From here
on, the profile is determined exclusively by the exponential decay (blue curve in figure
4.10).

For the simulation, the parameter d is changed, all other parameters are defined by
the particle number conservation condition. The corresponding integral is calculated
for both domains of the function:

Ntot

4 · π
= n0 · r0

3

3 =
rcore∫
0

dr r2 · ncore +
∞∫

rcore

dr r2 · ncore · e
−(r−rcore)

d , (4.6)

where Ntot is the total number of electrons in the plasma. From this, the corresponding
density ncore can be determined for the given d:

ncore = n0 · r0
3

rcore
3 + 3 · d · (rcore

2 + 2 · d · rcore + 2 · d2) . (4.7)

Since ncore is upper bounded by the value n0, this also defines the parameter rcore in
the range 0 µm < d ≤ 0.295 µm. For d > 0.295 µm the value of ncore falls below n0

and rcore thus becomes 0.

To determine the limiting radius of the distribution for the simulation as described
above, the integral of the distribution of rtarg is calculated up to a radius of 500 µm:

Noutside =
500 µm∫
rtarg

dr r2 · ncore · e
−(r−rcore)

d , (4.8)

where Noutside is the number of particles outside the sphere spannend by rtarg. rtarg is
chosen such that Noutside = 10−4Ntot.

In the following, an exemplary comparison of simulation results with experimentally
acquired data is shown. This example serves to verify the model and is therefore only
compared qualitatively. A detailed description of the methodology used to determine
the agreement between simulation and experiment is given in the next section. The
shot used for comparison was taken in the probe setting at time t = 0 ps. Therefore,
it offers the optimal opportunity to investigate the density model simultaneously in
the simulation of pump and probe. Since both diagnostics represent the same plasma
state in time (except for potential asymmetries), the result of both simulations should
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match the experimental images for the same set of parameters. In the experimental
data, the transmission shows a significant darkening of the recorded beam profile. In
addition, a corona is cleary recognized. It is therefore assumed that the particle was
hit by the laser and the plasma is already expanding. The diffraction pattern of the
probe also shows clear changes compared to the image taken with probe only, which
represents the diffraction pattern of the initial, un-ionized plastic sphere. The shot is
therefore suitable to verify the modeling of the density gradient.

First, the simulation of the pump transmission is considered: Figure 4.11 compares
experimentally acquired images and the corresponding simulations. In a) the acquired
transmission image with target is depicted. The best matching simulation result with
d = 0.6 µm and a resulting core density of 18.7 nc is presented in b). In principle, the
intensity distribution of the two profiles agrees well here. The percentage reduction
of the integrated brightness in the experiment by 26.7 % can be reproduced in the
simulation with a value of 28.9 %.

Figure 4.11: Comparison of experimentally recorded and simulated transmission im-
ages using the density model with exponential decay: a) shows the experimentally
recorded image and b) the corresponding best-fit simulation result.

However, a close comparison of the intensity profiles reveals significant deviations.
Figure 4.12 shows horizontal and vertical profiles of figure 4.11 a) and b). Differences
can be seen especially in the shape of the corona but also in parts of the central beam
profile. This type of deviation is present in many other examined data sets.

Looking at the probe, the comparison of experiment and simulation yields the fol-
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Figure 4.12: Profiles of images in 4.11 a) and b): horizontal (a)) and vertical (b)), where
the colored curves represent experimental data and the black curves show simulation
results. The grey area marks the area illuminated by the empty shot, indicating the
onset of the observed corona.

lowing result: Figure 4.13 shows in a) the recorded diffraction pattern after scattered
light has been filtered from the raw data. The corresponding simulation with d = 0.6
µm is shown in b). There is qualitative resemblence.

Figure 4.13: Comparison of experimentally recorded and simulated probe images using
the density model with exponential decay: a) shows the experimentally recorded image
with applied filtering while the corresponding simulation result is presented in b).

The analysis of radial and axial profiles (figure 4.14) confirms this similarity. Wher-
ever rings are clearly formed and identifiable, the positions of the peaks in simulation
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Figure 4.14: Profiles of images in 4.13 a) and b): radial (a)) and axial (b)); the colored
curves represent experimental data and the black curves show simulation results.

and experiment agree. Also, the relationship of the individual peak heights to each
other can be reproduced well by the simulation. A slight deviation can be observed in
the height of the central peak in the axial profile.

In summary, the density model with exponential decay is in principle able to ex-
plain the general appearance of experimental images at t = 0 ps, which indicates that
the chosen parameters model the size and core density of the plasma in the correct
order of magnitude. However, significant discrepancies between experimental data and
simulation are evident, especially for the transmission image of the pump. It is pos-
tulated that these deviations can be reduced by adapting the profile of the density
gradient. Moreover, the distribution would form a non-vanishing static shock in the
center when rcore becomes zero. This is unsatisfying and will be resolved by empirically
extending the complication of the density model.

4.2.3 Single Gaussian Distribution

The second model of the electron density distribution describes the decay of the density
at the edge of the sphere with a Gaussian function. This model is based on theoretical
predictions of the plasma expansion by Kovalev et al. [104] and Murakami et al. [105].
As in the case of exponential decay, the distribution starts with a sphere of diameter
r0 = 0.5 µm and homogeneous density n0 = 194 nc. In the same way, the distribution
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divides again into two sections with constant density ncold in the range 0 < r < rcold

and the Gaussian decay for r ≥ rcold with lcold defining the steepness of the decay:

ne =


ncold, r < rcold,

ncold · e
−(r−rcold)2

2·l2
cold , r ≥ rcold.

(4.9)

The index "cold" might be suprising here but will become clear when introducing the
final density model. Figure 4.15 represents the initial state (green curve), an interme-
diate state of early expansion with a homogeneous plateau of radius rcold = 0.213 µm

and steep decay (lcold = 0.2 µm) (red curve), and a pure Gaussian distribution with
ne < nc and lcold = 0.8 µm (blue curve).

Figure 4.15: Three examples of the electron density model with Gaussian decay: the
green curve shows the initial plasma with rcold = 0.5 µm, the red curve illustrates the
intermediate case with a shrinking core (rcold = 0.213 µm) and the blue curve depicts
the case when the core density falls below the initial density (rcold = 0 µm). The
distribution becomes an ordinary Gaussian function.

After choosing the variable simulation parameter lcold, all other parameters are
determined again by the condition of particle number conservation. The total number
of electrons is calculated via:

n0 · r0
3

3 =
rcold∫
0

dr r2 · ncold +
∞∫

rcold

dr r2 · ncold · e
−(r−rcold)2

2·l2
cold . (4.10)

For the core density ncold this yields:
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ncold = n0 · r0
3

rcold
3 + 3

2 · lcold ·
(
rcold

2 ·
√

2 · π + 4 · lcold · rcold + l2
cold ·

√
2 · π

) , (4.11)

while rcold is once more defined by the upper limit of ncold = n0 for 0 < lcold ≤
0.321 µm and rcold = 0 for all other values of lcold. For the calculation of the limiting
radius, the same conditions apply as before, but the calculation is adjusted according
to the distribution function to:

Noutside =
500 µm∫
rtarg

dr r2 · ncold · e
−(r−rcold)2

2·l2
cold . (4.12)

Simulations of probe and transmission are compared with the same experimental data
as before. The best overlap is obtained with a value of lcold = 1.1 µm and a core
density of ncore = 4.8 nc.

The experimental image and the reconstruction agree to a large extent (figure 4.16).
This also reflects in the percentage of brightness loss whereby the simulated value of
29.4% is very close to the experimentally determined percentage of 26.7%.

Figure 4.16: Comparison of experimentally recorded and simulated transmission im-
ages using the density model with Gaussian decay: a) shows the experimentally
recorded image and b) the corresponding best-fit simulation result.

The analysis of the profiles (figure 4.17) shows a higher correlation than the model
with exponential decay, especially in the central area. The shape of the corona also
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Figure 4.17: Profiles of images in 4.16 a) and b): horizontal (a)) and vertical (b)), where
the colored curves represent experimental data and the black curves show simulation
results. The grey area marks the area illuminated by the empty shot, indicating the
onset of the observed corona.

fits better here, although there are still deviations in steepness. This discrepancy can
also be found in other transmission images examined. Here the extent of the deviation
becomes larger the more prominent the corona is in the experimental images.

Figure 4.18: Comparison of experimentally recorded and simulated probe images using
the density model with Gaussian decay: a) shows the experimentally recorded image
with applied filtering while the corresponding simulation result is presented in b).

Similar to the previous model, the recorded image of the probe and the correspond-
ing simulation match in appearance and brightness (see figure 4.18). The comparison
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Figure 4.19: Profiles of images in 4.18 a) and b): radial (a)) and axial (b);, the colored
curves represent experimental data and the black curves show simulation results.

of the profiles (figure 4.19) shows that the Gaussian gradient represents the height
of the central peak better. Similarly, the height and position of the remaining peaks
overlap well with the simulation. Almost all (except for one) evaluated probe data
recorded at probe times t > 39 ps can be approximated with good agreement using
an ordinary Gaussian distribution function. It is therefore assumed that for late times
this distribution gives a physically correct representation of the plasma. For earlier
times and especially for the transmission inspecting the plasma state at time t = 0 ps,
though improved with respect to the exponential decay model, only partial agreement
is achieved. In summary, the modeling of the density gradient with a Gaussian distri-
bution seems to improve matters, but for regions around and shortly after the time of
interaction of the pump pulse with the target, a more complex structure of the plasma
is present which requires a further modification of the simple Gaussian decay model.

4.2.4 Dual Gaussian Distribution

Both previous models are based on the assumption that the electron distribution decays
smoothly towards the outside and can be described by a single distribution function.
However, several experimental findings indicate that a two-temperature model is often
more appropriate (see e.g. [106, 107]). In addition, shocks are likely to occur during
the laser-induced expansion of spherical clusters (see e.g. [108]). To implement this
fact in the modeling of the electron density distribution, a second Gaussian distribution
is added to the single Gaussian decay model. Two scenarios are distinguished: in the
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first case the additional Gaussian function is stationary at r = 0 for all times, while in
the second case an additional parameter rhot is introduced which describes the shift of
the second Gaussian function relative to the center r = 0.

Centered Gaussian The distribution of electron density in the centered case can
be expressed as follows:

ne =


ncold + nhot · e

−r2
2·lhot

2 , r < rcold,

ncold · e
−(r−rcold)2

2·lcold
2 + nhot · e

−r2
2·lhot

2 , r ≥ rcold.

(4.13)

ncold defines the height of the original Gaussian distribution whose decay is given by the
parameter lcold. The implementation of the plateau described above for early stages
of the expansion is achieved by the parameter rcold. This also explains the choice
of the index "cold" in the previous subsection. The additional Gaussian distribution
is determined in its shape by nhot and lhot. For the simulation the parameters lcold,
nhot and lhot have to be chosen, which drastically increases the number of possible
distributions. Via particle number conservation

n0 · r0
3

3 =
rcold∫
0

dr r2 · ncold +
∞∫

rcold

dr r2 · ncold · e
−(r−rcold)2

2·lcold
2 +

∞∫
0

dr r2 · nhot · e
−r2

2·lhot
2 . (4.14)

ncold will then be fixed by the choice of lcold, nhot and lhot:

ncold =
n0 · r0

3 − 3 · nhot ·
√

π
2 · lhot

3

rcold
3 + 3

2 · lcold ·
(
rcold

2 ·
√

2 · π + 4 · lcold · rcold + lcold
2 ·

√
2 · π

) . (4.15)

The selection criterion for rcold is done as follows: starting with rcold = 0, the distri-
bution is calculated from the chosen parameters (lcold, nhot and lhot). If the resulting
density ne (r = 0) is above the initial value of n0 = 194nc, rcold is adapted (between
0 µm and 0.5 µm) such that a plateau region with ne (r = 0) = n0 = 194nc forms.
In all other cases, rcold = 0. The choice of nhot and lhot is also subject to a certain
restriction in the context of particle number conservation. As both parameters can be
freely chosen, one can create a distribution where the number of electrons in the addi-
tional Gaussian component can exceed the number of available electrons in the sphere.
This will result in a negative value of ncold via equation 4.15 and a negative number



4.2 Density Models 81

of electrons in the center of the plasma. Hence, before implementing the distribution
in the simulation it is checked if the distribution is valid (ne > 0 everywhere) or if
values of lhot and nhot need to be lowered. Figure 4.20 again displays the initial state
(green), a state of incipient expansion (red) and a state with ne (r = 0) < 194nc (blue).

Figure 4.20: Three examples of the electron density model with two centered Gaussian
distributions: the green curve shows the initial plasma with rcold = 0.5 µm, the red
curve illustrates the case of early expansion with a shrinking core (0 < rcold < 0.5 µm)
and the blue curve depicts the case when the central electron density (ne(r = 0)) falls
below the initial density.

When comparing figure 4.20 and figure 4.15, the resemblence is evident. It is not
surprising that for reasonably small values of nhot the curves are close to identical and
result in similar agreement with experimental data. Hence, it was also not possible
to reproduce the case of strong corona formation that was mentioned in the previous
subsection.

Moving Gaussian By introducing an additional parameter rhot, which describes a
shift of the second Gaussian distribution, a spherical, decentralized accumulation of
electrons can be represented in the plasma as it would be present, for example, in the
formation of expanding shocks. The in this way extended density function reads:

ne =


ncold + nhot · e

−(r−rhot)2

2·lhot
2 , r < rcold,

ncold · e
−(r−rcold)2

2·lcold
2 + nhot · e

−(r−rhot)2

2·lhot
2 , r ≥ rcold.

(4.16)

Figure 4.21 once more represents the same three situations as in the previous models.
Here, the influence of the moving second Gaussian distribution in the two cases of
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expansion (red and blue curve) is clearly evident by the emergence of steeper density
gradients at the edges of the plasma.

Figure 4.21: Three examplary states of the electron density model with one centered
Gaussian distribution and an additional shiftable Gaussian: the initial plasma with
rcold = 0.5 µm (green curve), the case of early expansion with a shrinking core (0 <
rcold < 0.5 µm) (red curve) and the case when the central electron density (ne(r = 0))
falls below the initial density (blue curve).

The choice of simulation parameters is subject to the same conditions and con-
straints as in the case of the centralized dual Gaussian distribution. The rule of
particle number conservation

n0 · r0
3

3 =
rcold∫
0

dr r2 ·ncold +
∞∫

rcold

dr r2 ·ncold ·e
−(r−rcold)2

2·lcold
2 +

∞∫
0

dr r2 ·nhot ·e
−(r−rhot)2

2·lhot
2 (4.17)

leads to

ncold =
−3 · nhot

(
e

− r2
2·lhot

2 · lhot
2 · rhot + lhot ·

√
π
2 ·
(
lhot

2 + rhot
2
) (

1 + Erf
(

rhot

lhot·
√

2

)))
rcold

3 + 3
2 · lcold ·

(
rcold

2 ·
√

2 · π + 4 · lcold · rcold + lcold
2 ·

√
2 · π

)
+ n0 · r0

3

rcold
3 + 3

2 · lcold ·
(
rcold

2 ·
√

2 · π + 4 · lcold · rcold + lcold
2 ·

√
2 · π

) .

(4.18)
The comparison with the experimental data selected for validation provides the best
agreement for the following parameters: rcold = 0 µm, lcold = 0.7 µm, rhot = 2.47 µm,
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Figure 4.22: Comparison of experimentally recorded and simulated transmission im-
ages using the dual Gaussian density model with moving component: a) shows the
experimentally recorded image and b) the corresponding best-fit simulation result.

Figure 4.23: Profiles of images in 4.22 a) and b): horizontal (a)) and vertical (b)), where
the colored curves represent experimental data and the black curves show simulation
results. The grey area marks the area illuminated by the empty shot, indicating the
onset of the observed corona.

lhot = 0.25 µm and nhot = 1.25 nc. The direct comparison of experimental raw trans-
mission data with the simulation results (figure 4.22) shows an excellent agreement
which is also reflected in a simulated darkening of 29.4 % compared to 26.7 % in the
experiment. The analysis of the corresponding profiles (figure 4.23) reveals a clear
improvement, both in the central beam profile and in the reproduction of the corona.
This improvement can also be achieved in all other data sets where the previous mod-
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els showed significant deviations.

Figure 4.24: Comparison of experimentally recorded and simulated probe images using
the dual Gaussian density model with moving component: a) shows the experimen-
tally recorded image with applied filtering while the corresponding simulation result
is presented in b).

Figure 4.25: Profiles of images in 4.24 a) and b): radial (a)) and axial (b)); the colored
curves represent experimental data and the black curves show simulation results.

The simulation of the probe (figure 4.24) reproduces the experimental results well.
This is evident by inspecting the radial and axial profiles (figure 4.25) which corre-
spond in terms of positions and heights of the central and first interference fringe.
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Figure 4.26: Direct comparison of horizontal and vertical profiles of reproduced pump
transmission profiles (best fit) using all three models for an exemplary shot. The
corresponding density profiles are shown below: exponential (green), single Gaussian
(red) and dual Gaussian with moving component (blue). The shaded areas mark the
region of overcritical density.

In summary, the model of dual Gaussian distribution with moving component is
the only one capabale of representing the experimental result of both transmission
and probe with a single set of parameters. The superiority of this model is further
illustrated in figure 4.26: it shows the horizontal and vertical profiles of an exemplary
pump transmission image (colored curves) and the corresponding best-fit reproduction
of the simulation using the three different models described above (black curves). Only
the model with additional, moving Gaussian component is able to achieve satisfactory
overlap. From the density distributions of the models, shown below, it is evident that
the additional component increases the area of overcrital density (shaded areas) and
provides steeper gradients in the outer regions of the plasma, which both are likely the
cause for the higher agreement. It is therefore assumed that this distribution function
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is sufficiently complex for describing the density distribution of plasma electrons over
the complete period of the expansion. The already established agreement of the probe
simulations at late times with the simple Gaussian distribution are contained and can
be described by choosing nhot = 0 for the second Gaussian component, which allows
a smooth transition between both models.

4.3 RALEF Simulations

To support the empirically found agreement of the experimental data with the dual
Gaussian distribution, simulations were performed using the 2D hydrodynamic code
RALEF. The simulations, carried out by Dr. Anna Tauschwitz from the Goethe Uni-
versity Frankfurt am Main, allow time-resolved observation of all relevant parameters
of the plasma, including the electron density distribution. RALEF is a powerful tool
to model high-temperature plasmas as they are formed during the interaction with
(non-relativistic) high-intensity laser pulses of arbitrary duration. It is based on a
single fluid, single temperature hydrodynamic model. RALEF takes into account con-
tributions from thermal conduction as well as thermal radiation and heating power of
external energy sources (e.g. a laser) by solving the following fluid dynamics equations
[86]:

∂ρ

∂t
+ div (ρu⃗) = 0, (4.19)

∂

∂t
(ρu⃗) + div (ρu⃗ ⊗ u⃗) + ∇p = 0, (4.20)

∂ (ρE)
∂t

+ div [(ρE + p) u⃗] = QT + Qr + Qdep, (4.21)

where ρ is the fuild mass density, u⃗ the fluid velocity, p the pressure and E = e+u2/2
the total mass specific energy with internal energy e. QT and Qr are source terms for
thermal conduction and energy transport by thermal radiation, respectively[86]:

QT = − div (−κ∇T ) ,

Qr = − div
∞∫

0

dν
∫
4π

Iν Ω⃗ dΩ⃗,
(4.22)
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where κ is the heat conduction coefficient, ν the photon frequency, Iν the spectral
intensity and Ω⃗ the propagation direction of a photon. The transport of radiation
energy is described by the quasi-static approximation Ω⃗ · ∇Iν = kν (Bν − Iν) with kν

being the spectral absorption coefficient and Bν the source function of radiation. Qdep

describes the volume-specific heating power of the external energy source. The energy
dissipation rate (per unit volume) is obtained by solving the Helmholtz equations for
the s- and p-polarized component of the electromagnetic field. A much more detailed
describtion of the code can be found in [86]. The equation of state used for the calcu-
lation was generated by the FEOS code (see [109]).

For the simulation setup, rotational symmetry is assumed along the laser axis. The
two available spatial dimensions are defined as follows: z corresponds to the propaga-
tion direction of the laser and r defines the distance to a defined point on the laser axis
in a plane which is spanned by z and the axis perpendicular to it. The simulation box
is limited by a semicircle with a radius of 25 mm. The corresponding grid is formed by
a radial mesh whose resolution decreases towards the outside. The spherical target is
a semicircle with radius 0.5 µm whose center is located in the middle of the simulation
box and consists of carbon with an initial density of 1 g/cc (approximation for(C8H8)).
The laser enters the simulation from the +z direction and is defined as a collimated
beam with its spatial distribution assumed by a Gaussian distribution with 5.9 µm

FWHM. The temporal evolution of the laser is implemented according to the experi-
mentally determined contrast curve (see figure 3.14). Analogous to the experiment ,
the cycle-averaged peak intensity is 1.6 · 1016 W/cm2 and the central wavelength of the
laser is 793 nm.

In a first simulation, which started 1.8 ns before the arrival of the main pulse
according to the measured contrast curve, it turned out that the expansion of the
plasma at t = 0 ps was already very advanced to an undercritical plasma cloud. In
the experiment we could prove, however, that up to 14 ps before the main pulse, the
diffraction image recorded via the probe corresponds to the simulated image of an ini-
tial, non-ionized sphere. It is therefore assumed that the contrast measurement does
not represent the actual intensity of preceding light on target and that in the exper-
iment a smaller fraction of light than assumed interacts with the target prior to the
main pulse. To make the hydrodynamics simulations comparable to the experimental
data, it was decided to limit the interaction to a period from -14 ps to 0 ps to avoid
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pre-expansion under unspecific conditions. The further expansion of the plasma was
simulated up to the time t = +200 ps.

Figure 4.27 shows results of the RALEF simulation at three different times (from
top down t = 0 ps, t = +50 ps, and t = +200 ps). The left column shows the 2D elec-
tron density distributions at respective times extracted from the RALEF calculation.
The central column contains the profiles of the density distribution (black dashed line)
along the radial axis through the center of mass, the right column shows the density
profile along the laser axis. For each profile, distribution functions of the moving dual
Gaussian model whose parameters best reproduce the density profiles of the RALEF
simulation are shown in orange. Since the density profiles at t = 0 ps only have a core
density of ncore = 34 nc, this was adjusted accordingly in the calculation of the dis-
tribution function via fulfilling the condition of particle conservation for the adapted
density.

At t = 0 ps, especially the radial profile agrees very well to the RALEF simulation
results. For the axial profile along, several deviations can be observed. The radial sym-
metry, as assumed for the simple density models, does not correspond to the RALEF
simulation, where a shock structure is visible on the laser-irradiated side only. Fur-
thermore, the double-peaked density cannot be reconstructed with the dual Gaussian
distribution. However, it is important to note that the outermost undercritical den-
sity regions remain well represented. This is of particular interest for calculating the
diffraction pattern and we remind here that the overcritical region (marked by grey
areas) remains inaccessible to the laser pulse. In fact, the agreement on the side facing
the laser is good up to a density of 25 nc. Thus, along the laser axis, both deviations
lie in the shadow of an overcritical region and the shape within this overcritical region
does not influence the diffraction pattern. For the probe the situation is different, the
asymmetry along the laser axis should become visible in the diffraction patterns.

For t = +50 ps, a similar picture emerges. The radial component shows good
agreement in the undercritical (accessible) region when adjusting the second gaussian
to a peak at x = 0.8 µm. Due to the condition of particle number conservation, the
peak density at x = 0 µm in our model (∼ 140 nc, peak not shown in figure 4.27)
differs cleary from the RALEF simulations, however, this deviation is shielded from
the laser. Along the laser axis, the asymmetry remains evident. The peak at the laser
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Figure 4.27: Comparison of RALEF simulation with moving dual Gaussian model:
each row shows results of the RALEF simulation at distinct time steps (0 ps, +50
ps, +200 ps). Left column: 2D electron density distribution; dashed lines mark the
center of mass position. Center and right column: density profiles (black dashed lines)
along the radial axis through the center of mass and along z, respectively. Best-fit
density distributions calculated with the moving dual Gaussian are superimposed as
orange lines (parameters differ for horizontal and vertical profile). Peak of radial best-
fit distribution at 50 ps (∼ 140 nc) is not shown. Grey regions mark the area of
overcritical density, which are inaccessible to the laser pulse. The core density was
adjusted to the RALEF simulation (ncore = 34 nc). The laser enters the simulation
from the +z direction.

irradiated side can be described well by the distribution, but deviations at the density
profile in the interior remain significant. On the side facing away from the laser, the
RALEF density distribution follows a simple Gaussian curve and differs strongly from
our model due to the assumption of spherical symmetry. However, those deviations
are again located in the shadow of the overcritical region.

At late times (t = +200 ps), a density profile results in the RALEF simulation that,
especially in the case of the radial axis, approximately follows a simple Gaussian curve.
A second Gaussian distribution at x = 2 µm improves the match, but its influence on
the overall profile shape is small. In the axial profile this influence is more obvious
but also here the distribution approaches a simple Gaussian curve. In addition, the
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asymmetry becomes less pronounced. The RALEF simulations show that the density
profiles evolve into a simple Gaussian distribution at late times. This is in line with
the previously described agreement of probing simulations with the simple Gaussian
model and the experimental data at late times.
It was shown that in comparison with the hydrodynamics simulation, only the em-
pirically determined model of the Gaussian distribution with an additional, moving
component is able to describe the decentralized increases in electron density occurring
at early times. The previously determined transition to a single Gaussian distribu-
tion is in agreement with the RALEF simulation. Finally, it must be mentioned that
the parameter sets of the distributions perpendicular and along the laser axis are not
identical. This results from the assumption of radial symmetry in the simple density
models which does not prevail in the hydrodynamics simulation. In order to keep the
number of parameters in a manageable range, in the case of asymmetries the best-fit
for each dimension of the plasma is determined in the later analysis of the experimen-
tal data and both sets are reported. The deviations are then considered in the error
analysis.

4.4 Methodology

It is necessary to describe the selection criteria for choosing the parameters for the
density distribution and for determining the best fit of simulation resuts with exper-
imental findings for transmission and probe. In this context, it is outlined how the
error ranges are estimated when reconciling experimental data and simulation results.

Selection criteria for best-fit parameter set for pump simulation

Figure 4.28 shows horizontal and vertical profiles of an exemplary pump transmission
image. A distinction is made between two regions: the region defined by the beam
profile of the empty shot and the region outside, in which light was only observed
in shots with target. In the central region, the intensity distribution and the global
reduction compared to the empty shot are the decisive factors (indicated by the bold
arrow in a)). Outside, the decisive factors are the shape (right side of b)) and height of
the forming corona as well as the relative height difference of the corona at the edges
of the original beam profile (see black horizontal lines in a) and b)).
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Figure 4.28: Profiles of exemplary transmission image indicating relevant parameters
for choice of simulation paramteres: a) Reduction and shape of original beam profile
(area marked in grey), b) shape (blacked curved line) and height (black horizontal
lines) of corona forming outside of original beam.

Displacement of simulated sphere (x,y): Assuming spherical symmetry of the
density distribution, it is obvious that an asymmetric occurrence of the corona is likely
due to a shift of the distribution with respect to the lateral spatial distribution of the
laser in focus. For the choice of the displacement perpendicular to the laser axis, the
respective ratios of the corona heights at the edge of the original beam profile as well
as their absolute heights are analysed. A shift away from the center in the horizontal
direction provides a change in the ratio of the corona heights in the horizontal profile.
Furthermore, due to the spatial shape of the intensity distribution in focus, this also
leads to a reduction of both corona heights in the case of the vertical profile. More
generally, any shift away from the center leads to a less intense corona as compared
to the case of a centrally placed plasma. Matching the corona heights of all four
edge regions of the profiles, these findings can be used to determine the position of the
density distribution and thus also the overlap between target and laser when comparing
experiment and simulation.

Position of moving Gaussian rhot: rhot describes the position of the moving Gaus-
sian distribution and has significant influence on the entire transmitted beam profile.
On the one hand, rhot defines the radial position where the extra component of the
plasma has highest density and thus determines the overall size of the plasma cloud.
Therefore, it has a great influence on the reduction of the brightness compared to the
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empty shot. On the other hand, rhot allows the formation of a steeper density gradient
at the edge of the plasma which results in a change of the steepness of the corona.
In summary, the coarse choice for rhot is mainly made from the simulated darkening
in comparison with experimental data after the spatial position of the plasma has
been determined. The exact choice is made from the slope of the outer corona in
combination with nhot and lhot.

Heigth of moving Gaussian nhot: The peak height of the moving Gaussian dis-
tribution is determined by the choice of the parameter nhot. In transmission, this is
an essential component since it can influence the overcritical volume of the plasma.
Thereby nhot provides the possibility to generate a larger overcritical region than it
would be possible for the single Gaussian distribution due to the particle number con-
servation. This enlargement mainly influences the central beam profile and the percent
obscuration which therefore serves as a first crude selection criterion for this parameter.
In addition, nhot also influences the height and, consequently, the slope of the corona,
but the effect of nhot is smaller than corresponding changes of the parameters rhot and
lhot. However, this can be used in comparison with experimental data to define nhot

even more precisely.

Width of moving Gaussian lhot: The width of the shiftable Gaussian distribution,
determined by lhot, influences the density gradient at the edge of the plasma to a large
extent. This is mainly reflected in the slope of the corona. A narrow distribution
causes a steeper increase and a broadening of the Gaussian leads to a flattening of
the corona fraction. In both cases the height of the corona increases or decreases
accordingly.

Width of central Gaussian lcold: The last parameter of the density distribution
to be determined is the width of the central Gaussian which is given by lcold. This
parameter has an influence on the resulting beam profile only if the radial expansion
of the inner distribution contributes to the density profile at the edge of the plasma
or if the moving Gaussian is entirely undercritical. This can be explained by the
overcritical decentralized Gaussian distribution forming an impenetrable shell for the
laser and thus shielding any influence of the central distribution as long as it does not
contribute outside the shell. However, if this is the case, the choice of lcold affects the
beam profile in the same way as lhot, since it causes a change in the density gradient
at the edge of the distribution.
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Closing remarks: As it becomes clear from the description of the selection criteria
for the individual parameters, the parameters (with the exception of the position of the
distribution) cannot be considered independently of one another. However, distinct
patterns that limit the parameter space in a certain way can be identified based on
observations in the experimental data. Profiles that show a strong darkening of the
transmitted light display a steeper, more pronounced corona. This can be reproduced
in the transmission simulation by choosing a combination of larger radius rhot and a
steeper density gradient, i.e. smaller lhot. Furthermore, it is observed that a contribu-
tion of the central Gaussian component at the edge of the plasma is often necessary
for the best agreement. This results in a certain lower limit for the choice of lcold via
the position of the decentralized Gaussian rhot. Due to the choice of lcold, rhot and
lhot, nhot is often subject to an upper limit given by particle number conservation (and
ne > 0 everywhere) and in many cases must be above the critical density in order to
obtain a sufficiently large overcritical volume to achieve the experimentally measured
darkening in the simulation.

Quantification of best-fit and error margins for pump analysis

Following the qualitative description, an attempt is made to quantify the agreement
and thus to create a basis for an error analysis. The metric to be investigated for the
determination of the plasma density distribution parameters is the agreement between
the experimental and simulated transmission images. It is therefore useful to express
this correlation in numbers. For this purpose, the simulated image is first interpolated
to obtain the same resolution and number of pixels as dictated by the experimental
data. Then the difference between the two is calculated, squaring the deviation for
each individual pixel and summing it up to a value Ddiff for the entire image:

Ddiff =
n∑

i=0

m∑
j=0

(Ei,j − Si,j)2 (4.23)

where E and S represent the experimental and simulated transmission image with n
times m pixel. If both images were perfectly similar, this would result in a value of
Ddiff = 0. The best fit with experimental data is achieved for the parameter set that
yields the smallest value Ddiff .

This calculation is performed exemplarily for the pump transmission simulations
of the different density models described in the previous section to prove that the
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qualitatively best agreement for the dual Gaussian model is reflected in the explicit
calculation of Ddiff . Without a target (empty shot), the simulation does not per-
fectly match the observed pattern and results in a value of Ddiff = 230. Compared
with the quadratic sum over the experimental image (Dtot,exp = 13454), this repre-
sents an deviation of 1.7 %. The calculation for the simulation with plasma results
in Ddiff = 767 for the exponential distribution, Ddiff = 718 for the single Gaussian
distribution and Ddiff = 664 for the dual Gaussian distribution with moving compo-
nent. With Dtot,exp = 6454, this yields corresponding deviations of 12 %, 11 % and 10
%, which confirms the best agreement already qualitatively established for the latter
model. This becomes even more evident when considering the data set presented in
figure 4.26. The patterns reproduced with the exponential and simple Gaussian mod-
els differ from the experimental results by 50% and 44%, respectively. The deviation
significantly decreases (31%) when the dual Gaussian model is used.

As the best fit has been determined for each transmission image by minimizing
Ddiff , an error tolerance of the individual parameters can then be specified. Start-
ing from the parameter set with minimum Ddiff , each parameter is changed step by
step while the other parameters are kept constant (ncold adjusts according to equation
4.18 and rcold is adapted if necessary) and the respective value of Ddiff is calculated.
The corresponding error interval for the individual parameter subsequently includes
all values of this parameter for which the simulation results in a Ddiff that deviates
less than 1 % from the minimum Ddiff .

Selection criteria for best-fit parameter set of probe simulation

The decisive criteria for the choice of parameters which best resemble the experimental
probe images are again illustrated on the basis of the profiles of an exemplary shot
shown in figure 4.29. One criterion are the radial positions of the individual peaks,
which change with the density distribution. However, it should be noted that due to
the partly poor signal-to-noise ratio, not all peaks can always be clearly identified.
Stronger filtering was avoided in order to prevent the generation of artifacts. A more
stable selection criterion is the height of the individual peaks, whereby especially the
relative height to each other is to be considered since this is less susceptible to influences
of the applied filters.
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Figure 4.29: Profiles of exemplary probe image indicating relevant features for choice
of density distribution parameters: absolute (black bars) and relative (arrow) height
of identifiable interference maxima and position of individual maxima (dashed lines).

Displacement of simulated sphere (x,y): A shift of the density distribution with
respect to the beam axis of the probe is expressed purely by a global change of the
peak heights. This can be explained by the Gaussian intensity envelope of the probe.
A decentralized illumination of the density distribution manifests itself by a shift of
the enveloping intensity distribution, while the position of the peaks does change. The
correct value of the shift in both dimensions can be obtained by comparing the peak
heights right and left of the center in the respective profiles.

For all following parameters, a subdivision into three temporal ranges is made since
the simulated models change depending on the time of the acquired probe image rel-
ative to the interaction (t = 0 ps):

t < 0 ps
This section contains all data recorded at times before the interaction of pump pulses
and target. These include two sets of data: probe-only shots, recorded for each tar-
get and all shots with both, pump and probe, where the probe had a negative delay
setting. The density model describes the initial target with a diameter of 1 µm and a
refractive index of 1.577. Here, a comparison of simulation and experiment is used to
check whether the measured transmission image corresponds to a sphere with a diam-
eter of 1 µm. The radius of the initial sphere r0 is the only variable parameter for all
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shots in this time window. It becomes evident that the most significant change with
variation of r0 in the simulation occurs in the ratio of the peak heights between zero
and first maximum. The radial position of the individual peaks also changes slightly,
but the change in peak heights provides the more pronounced and thus more stable
criterion.

0 ps ≤ t ≤ 39 ps
In the time interval from 0 ps to 39 ps, all density distributions were simulated using
the moving dual Gaussian distribution model. In this time domain, the peak positions
of observed diffraction patterns cannot be reconstructed with a single Gaussian dis-
tribution. The same parameters as previously found in the best-fit of the associated
transmission image were used for data sets at time t = 0 ps. For all data sets at later
times, the determined parameter set of the pump provides a lower limit in the choice
of parameters.

Width of central Gaussian lcold: The width of the central Gaussian distribution
determines the basic shape of the diffraction pattern. It mainly influences the relative
peak heights and the number of recognizable peaks. Therefore, a selection of lcold is
based on achieving a coarse agreement with the observed diffraction pattern. Devi-
ations, e.g. of the peak positions, can be compensated afterwards by choosing the
moving Gaussian parameters.

Position of moving Gaussian rhot: In the simulation, an increase of rhot primarily
causes a shift of the radial position of the first maxima (and thus also of all following
maxima) to the outside. In addition, rhot strongly influences the intensity profile in
the center of the diffraction pattern.

Width of moving Gaussian lhot: The change of the modulation in the diffraction
pattern is the main influence of the width of the moving Gaussian component. It
can be observed that lhot influences the peak heights and can cause asymmetric peak
shapes in some cases.

Heigth of moving Gaussian nhot: nhot determines how much the influences, pre-
viously defined for rhot and lhot, affect the final result of the simulation. A reduction of
nhot minimizes their input accordingly since the function approaches more and more
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the single Gaussian distribution.

t > 39 ps
Except for one shot, all diffraction images could be satisfactorily reproduced by the
single Gaussian distribution, with its width lcold being the only free parameter. A
change of lcold manifests itself in the simulation in the position of the peaks, their
recognizable number and especially in a change of the central intensity distribution.
An initially existing maximum changes into a minimum for increasing values of lcold.
More general, it can be seen that with increasing lcold the number of peaks and their
respective heights decreases and at the same time the depth of the central profile in-
creases.

Quantification of best-fit and error margins for probe analysis

Figure 4.30: Profile of exemplary probe image (red curve) compared to profiles of
simulation results (black curve): a) shows a best-fit parameter set that matches the
experimental results in peak position an relative peak heights R, while b) and c) show
simulation results that differ from experimental quantities by more than 10 %.

Similar to the pump, the method of calculating the sum of squared differences as a
quantification of agreement between experimental and simulation results was tested for
the probe. Due to the partially high noise-level and occuring asymmetries, this method
could not successfully be applied here. Hence, agreement between experimentally
recorded images and reproduced simulation results was verified manually. For this
purpose, quantities such as peak positions and relative peak heights were extracted
from the experimental results and compared to the simulations. The best-fit parameter
set is defined as the one which achieves highest overlap with the experimental quantities
as exemplified by figure 4.30 a). The error margins of the parameter set are determined
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by varying the parameters until the simulation result differs by more than 10 % in one
of the experimental quantities. Such a deviation from the best fit in both directions
is illustrated by figure 4.30 b) and c). If more than one parameter is required in the
simulation (dual Gaussian), this method is applied for each parameter individually
while all other parameters are kept at their best-fit value.
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In this chapter, the results for the density distributions in the plasma found by com-
paring simulation and experiment are presented. Subsequently, an expansion model
is introduced which allows to describe the time course of the density distribution and
from which properties of the expansion and influences of the laser can be derived.

5.1 Selection of Evaluable Data

After completion of the final experimental setup, a total number of 37 shots with levi-
tating spheres could be recorded in three successive campaigns. The limiting factor in
terms of the number of available data sets was the trapping process and the position-
ing of the targets via the Paul trap as well as the long-term stability of the laser. It
was found that the performance of the Paul trap degraded with increasing number of
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shots, potentially due to parts of the trap becoming statically charged and disturbing
the fields used to damp the particles. In addition, as the experiment progressed, the
stability of the laser deteriorated, making an overlap of particle and focus increasingly
difficult. This effect could be reduced by implementing a partial automation of the
laser, however, not completely eliminated. In total, recording the data required around
18 hours.

Figure 5.1: Axial profile of single sphere (a)) and cluster (b)) compared to simulation
of 1 µm non-ionized plastic sphere.

To ensure that only shots with the same initial target conditions are evaluated, in
a first step it was analyzed which of the irradiated targets were indeed single 1 µm

spheres and which were clusters of clumping particles. For this purpose, the diffraction
images acquired for each shot with the probe-only setting were compared to simula-
tions of an non-ionized 1 µm plastic sphere. This comparison is shown in figure 5.1,
where the experimentally obtained axial profile of a single sphere (a)) and a cluster
(b)) are considered. The black curve corresponds in each case to the axial profile of
the diffraction pattern obtained by simulation of a 1 µm sphere with a refractive in-
dex of η = 1.577. A distinct difference in the modulation of the diffraction pattern
can be seen, especially in the center of the distribution. In the case of clusters, the
central peak drops significantly. This behavior can be qualitatively reconstructed in
the simulation by increasing the initial radius r0 of the plastic sphere. This results in
a clear criterion for the distinction of both cases. It was determined that 29 targets
were single spheres while eight targets were clusters. This corresponds to a cluster
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rate of just over 20 %. An analysis of the cluster data was not performed, because
an evaluation of the probe data can only determine that a cluster is present, but it
is not possible to reconstruct how many individual spheres form the cluster. Thus,
no conditions can be set for the electron particle number, which is the determining
factor for the calculation of the density distribution to be simulated. An overview of
all 29 evaluated data sets with the experimentally extracted quantities of transmission
(in percent, compared to the transmission of the corresponding empty shot) and the
temporal delay of the corresponding probe image are shown in table 5.1.

Shot number Delay [ps] Transm. [%] Shot number Delay [ps] Transm. [%]

008_2209 - 14 82 013_2209 79 95

006_2209 - 3 101 014_2209 79 81

007_2209 - 3 91 015_2209 79 35

002_2209 0 73 004_0110 126 77

003_2209 0 105 003_0110 193 52

004_2209 0 59 016_2209 193 42

004_2509 1 64 002_0110 226 61

001_2509 3 102 017_2209 259 102

002_2509 3 100 001_0110 593 69

003_2509 3 39 007_2509 593 94

005_0110 39 103 005_2509 593 99

007_0110 39 40 006_2509 593 101

001_2209 60 62 009_2509 593 102

011_2209 79 103 010_2509 593 99

012_2209 79 99

Table 5.1: List of all evaluated shots with shotnumber, probe delay and transmission
value (compared to empty shot).
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5.2 Pump

The evaluation of the pump transmission data provides the starting conditions for
the following expansion of each sphere. Depending on the position in the laser focus,
each target is irradiated with a different peak intensity, resulting in differences in the
maximum absorbable energy and temporal evolution of ionization and expansion that
may occur in the rising edge of the laser intensity during t < 0 ps. This is especially
important for the later analysis of the time course of the expansion where only data
sets that had identical or similar initial conditions can be compared. In addition, it is
also possible to assign different expansion behaviors to particular laser intensities and
thus to deduce the influence of the laser peak intensity and related parameters of the
interaction.

Before presenting the relevant parameters extracted from the simulation, it should
be noted that a successfull reconstruction is only possible for data sets with an obscu-
ration of more than 5% in the transmission image. For all other data sets no parameter
set for position and density distribution can be found for which Ddiff assumes a unique
minimum value. For this reason, these shots are excluded, since no conclusions about
the expansion behavior can be derived due to the missing initial conditions. This
reduces the number of shots that can be evaluated to 16. In all these cases, neither
the simulation of a non-ionized sphere nor a fully ionized sphere with 1 µm diameter
could describe the transmission profiles observed experimentally. This indicates that
all targets have already undergone a certain expansion at the arrival of the maximum
intensity at time t = 0 ps. This can be expected by inspecting the temporal intensity
profile (see figure 5.2). Based on the mechanisms described in section 2.3 such as
MPI and tunnel ionization, the laser can create a plasma considerably prior to reach-
ing its peak intensity. The resulting heating immediately starts the expansion of this
plasma into the surrounding vacuum. Since the image of the transmission is mostly
generated by the fs-short, high-intensity part of the laser intensity which reaches the
target (per definition) at t = 0 ps, this pre-expansion is included in the transmission
data. The exact time of plasma creation and hence the start of expansion depends
on a threshold intensity that is difficult to predict. Based on various measurements
with polystyrene, a crude range of ∼ 1012 − 1013 W/cm2 can be estimated from the
literature ([110, 111, 112]). Thus, for a centrally hit particle, the laser would be able
to ionize the particle and initiate expansion already 1.5 to 1 ps before the interaction
at peak intensity.
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Figure 5.2: Two cutouts of the temporal intensity distribution scaled to the peak
intensity of 1.6 · 1016 W/cm2: from -100 ps to 5 ps on the left and from -5 ps to 1 ps
on the right.

5.2.1 Position in Focal Plane

Figure 5.3: Left: Position of each evaluated sphere with correlated transmission (com-
pared to empty shot) in an Gaussian equivalent focus with 6 µm FWHM. Right:
Experimentally obtained transmission versus reconstructed quadratic offset.

The determination of the displacement of each particle perpendicular to the laser
axis is based on the procedure described in section 4.4. The respective reconstructed
position of each of these 16 spheres in the laser focus is shown in figure 5.3. Since
the experimentally obtained high-dynamic-range image of the focus is only a temporal
snapshot and no exact intensity distribution can be measured at the time of interaction,
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the distribution shown here corresponds to the Gaussian equivalent of the real focus,
adjusted to assume the same FWHM and peak intensity as determined for the real
focus. The position of each target is marked by the white circles and labeled for
each shot with the corresponding percent transmission compared to the empty shot.
Already here it can be seen that spheres which are closer to the focus center cause
lower transmission than those which are more displaced from the center. This becomes
even clearer when the transmission of each particle is plotted against the quadratic
offset from the laser axis x2 + y2. Thereby, an almost linear relationship between both
quantities is observed which is a hint that the size of the particle (plasma) at t = 0 ps
also depends on the initial position.

5.2.2 Density Distribution

The sole displacement of the particles is not capabale of describing the change in trans-
mission (as one would expect a logarithmic scaling of transmission with displacement
and not a linear one). The additional contribution of plasma expansion before t = 0
ps becomes clear if one also looks at the corresponding reconstructed density profile for
each initial offset position. In figure 5.4 the individual parameters of the dual Gaussian
distribution are plotted versus the offset x2 + y2 for each shot. As a reminder for the
reader: lcold describes the width of the central Gaussian, the corresponding values for
the plateau region rcold and the amplitude ncold result from the particle number con-
servation. rhot describes the position of the additional, moving Gaussian distribution,
the amplitude and width of which are determined by nhot and lhot, respectively. The
error bars of the individual parameters were determined by the procedure described
in section 4.4.

In general, particles which were hit more centrally show greater pre-expansion.
This is consistent with the fact that these particles are exposed to a higher peak inten-
sity and hence the threshold of plasma formation is reached earlier in time. A closer
look at the individual parameters reveals the following observations: The width of
the central Gaussian increases linearly with decreasing offset x2 + y2 from the center,
leading to greater expansion. Concerning the moving component of the distribution,
the closer the particle is to the laser axis, the further out its peak position is, the
narrower the width of the Gaussian, and the lower its amplitude. But in all cases the
moving Gaussian density reaches above the critical density. Looking at the error bars,
the uncertainty becomes larger for smaller overlap between target and laser. This is



5.2 Pump 105

not surprising since on the one hand these plasmas are smaller and on the other hand
they interact only with a region of lower laser intensity, which strongly reduces their
influence on the final transmission profile and thus makes a clear definition of the pa-
rameters within the described method more difficult.

Figure 5.4: Parameters of density distribution function extracted from comparison of
simulation and experimental results of transmission diagnostic.

The overall distributions, exemplarily shown in figure 5.5 for three different offsets,
further illustrates the observed behaviour: if the particle and the laser are only slightly
overlapping (13.1 µm2), the density distribution is plateau-like and drops of steeply at
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the edge. In comparison to the central distribution, the additional density component
is hardly perceptible. It is also rather broad and located close to the center. If the
particle is closer to the laser axis (9.7 µm2), the density in the center falls far below
the original value of 194 nc. The course follows a broad Gaussian distribution and the
moving component is clearly visible at its edge. For data sets showing the strongest
overlap with the laser focus (1.2 µm2), the highest density seems to be located in the
moving component with the central part indicating an already undercritical plasma.
With respect to the central distribution in all three scenarios, it must be noted that
this is not a direct measurement since this part is shielded from the laser by the shell
formed by the overcritical shock (indicated by the grey areas in figure 5.5). It is pos-
sible that especially in the last case, the broad Gaussian distribution yields the best
reconstruction because it provides additional density components outside the shock,
as seen in the comparison with the RALEF simulations (see figure 4.27). Since the
density at r = 0 µm results from the choice of the simulation parameters, this may
result in a too low central density. In the interior, there may still be overcritical regions
which cannot be reconstructed by the simple density model used in this work.

Figure 5.5: Three exemplary density distributions reconstructed for different offsets
and transmission values. The grey areas mark the region of density that cannot be
directly observed by the laser.

More features can be revealed by analyzing the offset-dependence of the radius of
the critical density rnc and the limiting radius of the distribution rtarg. rnc is important
in transmission mostly because it defines the area in the focus which is impenetrable
for the laser and thus is primarily responsible for the reduction of the transmission.
rtarg, which is defined by the truncation condition from subsection 4.1.3 (99.99% of all
particles of the distribution within rtarg) indicates the course of lower densities.
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Figure 5.6: Offset-dependency of radius of critical density rnc and limiting radius of
transmission simulations rtarg.

In figure 5.6 both parameters are plotted against the offset x2 + y2. A comparison
with figure 5.4 shows that the radius of the critical density follows in its behavior almost
exactly the course of rhot. The limiting radius rtarg, however, is mainly determined by
the width of the central Gaussian distribution lcold. This also explains why a simple
Gaussian distribution, especially in the case of small offsets to the laser axis, is not able
to reconstruct the observed transmission images. The additional Gaussian component
provides the necessary increase of the critical density area in these cases.

5.3 Probe

After the starting conditions for each target could be determined by the analysis of
the transmission, one can now investigate the temporal progress of the expansion. In
the following, a distinction is made between three cases: data with negative delay,
where the probe examines the particle before the arrival of the pump, data with zero
delay, where pump and probe interact with the plasma at the same time and data
with positive delay, where the probe investigates the plasma at a defined time after
the interaction with the pump.

5.3.1 Negative Delay (t < 0 ps)

As shown in the transmission analysis, all shots feature some pre-expansion at t = 0 ps
that depends on the particle offset with respect to the laser axis. Shots with negative
delay can thus be used to define a temporal range for the onset of ionization. The
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two shots available in this regime have a delay setting of t = -14 ps and t = -3 ps.
The offset of both targets to the laser axis can be determined from the transmission
analysis to 10.8 µm2 and 13.1 µm2, respectively.

In comparison with the simulation, both shots show diffraction patterns which
correspond to those of an initial plastic sphere with 1 µm diameter in the simulation.
In figure 5.7, a) shows the experimental axial profile for -14 ps delay and b) the
one for -3 ps. The solid black curve corresponds in each case to the results of the
simulation using a initial sphere with refractive index 1.577. The black dashed curves
are simulation results for a fully ionized 1 µm-sphere with a core density of 194 nc,
showing clear deviations from the experimental data.

Figure 5.7: Axial profiles of two probe images with negative delay, where a) displays
the data taken at -14 ps and b) the data taken at -3 ps. In both cases, the solid black
curve corresponds to the simulation result when simulating an initial plastic sphere of
1 µm diameter while the dashed black curve represents a fully ionized sphere with the
same diameter.

Since the simulation only distinguishes between the two cases of constant purely
real (initial sphere) and constant purely imaginary refractive index (ionized sphere),
the sole case to be excluded is that a overcritical plasma is already present at the
times investigated. Further potential changes of the target, which are not or only to
a small extent reflected in a change of the refractive index, cannot be investigated
here. Nevertheless, the results restrict the starting time of the expansion. With
regard to preceding light in the ns-regime, it can be stated that this does not cause
any measurable changes on the target (in contrast to the initial RALEF simulations,
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starting at t = -1.8 ns). This statement is valid despite the comparatively large
distance to the laser axis (and therefore intensity of few times 1015 W/cm2 instead of
1016 W/cm2) because this part of the intensity distribution generally does not follow
the same spatial distribution in the focal plane as the fs-short, high-intensity pulse.
Especially ASE, which is generated in the used multipass amplifiers and is not reduced
by Pockels cells, does not pass the laser chain collimated and therefore has a much
worse focusability resulting in a broader spatial distribution in the focal plane. Also,
the pre-pulse at t = -584 ps (see figure 3.14) has no measurable influence on the
particle, although it should be noted that its peak intensity is reduced by a factor
of about 2.4 (for the measurement at -14 ps) and 2.8 (for the measurement at -3 ps)
by the offset of the target to the laser axis. However, looking at the parameter set
obtained from the transmission analysis, there is no sudden jump in the plasma sizes
for shrinking offsets, which suggests that this pre-pulse does not trigger a premature
expansion even with a better overlap between target and laser. As the offset between
target and focus is known, the temporal intensity distribution of figure 3.14 can be
scaled towards the position-dependend peak intensity from figure 5.3. Both shots
do not indicate ionization, thus the highest intensity up to the respective point in
time, where the data was taken, can be used to confine the lower limit for the plasma
formation threshold. In each case, this value is given by the prepulse and yields
1.5 − 2 · 1011 W/cm2. Considering the above statement about the constant parameter
increase for smaller offsets, this value could be extended towards 5 · 1011 W/cm2. The
upper limit is given by the intensity for barrier suppression ionization: for the first
ionization energy of polystyrene of Eion = 8.46 eV [113] and using equations 2.22 and
2.7, this yields an intensity of 2 · 1013 W/cm2. Hence the intensity range for plasma
generation onset is expected to be 5 · 1011 − 2 · 1013 W/cm2, which is in line with the
above mentioned literature.

5.3.2 Zero Delay (t = 0 ps)

Probe measurements with zero delay can be used to validate the selected density model
and to verify the diagnostics. Since both pulses interact with the same plasma at the
time t = 0 ps (though in directions perpendicular to each other), only one spherically
symmetric model results in a single parameter set of the distribution with which ex-
perimental results of both diagnostics can be reconstructed. This could already be
shown in section 4.2 for a target with an offset of 11.6 µm2. Similarly, for another shot
with an offset of 7.9 µm2, the parameters found in the transmission analysis were used
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for the simulation of the probe image. The comparison between experiment and sim-
ulation is shown in figure 5.8. The axial and radial profile of the diffraction patterns
are in good agreement, which again confirms the choice of the model.

Figure 5.8: Radial and axial profile of probe image with zero delay, the black curve
corresponds to the simulation results obtained by using the same density distribution
as for the corresponding transmission simulation.

Moreover, the agreement between transmission and probe reinforces the suitability
of the transmission as a plasma diagnostic in its own right. Knowledge about the
density distribution, gained from the transmission, can not only be used to group
shots of similar experimental conditions but can serve directly as a measurement of
the plasma during the interaction with the pump pulse. This finding is especially
valuable for other experimental setups where no probe pulse is available to measure
the plasma conditions or emission/scattering of the plasma into the probe diagnostics
is too strong.

5.3.3 Positive Delay (t > 0 ps)

The temporal evolution of the plasma expansion is studied by probe data with pos-
itive delay. In the experiment, the density distribution was investigated over a time
span of almost 600 ps. Due to the experimental setup, in contrast to the transmission
one of the two observed dimensions in the probe is aligned along the laser axis. As a
result, asymmetries can occur between both axes in the course of the expansion, which
cannot be reproduced by the simple, spherically symmetric density model. In order to
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keep the number of used parameters small and the model simple, the distribution in
these cases is determined seperately along the axial and radial direction as described
in section 4.4. It can be shown that this method provides good results for small delays
up to about 40 ps and large delays above 100 ps. In the intermediate range, strong
asymmetries develope even within the two directions, preventing a reasonable recon-
struction via the simple density model. In these cases, the density distribution cannot
be determined quantitatively.

For the reconstruction of the diffraction patterns at late times (t > 100 ps), a
density distribution in the form of a simple Gaussian distribution is sufficient (except
for one shot). This is in agreement with observations in the hydrodynamics simula-
tion discussed in section 4.3. An overview of the reconstructed density distributions
together with the determined offset from the central laser axis is listed in table 5.2.
The error margins are obtained according to the method described in section 4.4.

Delay [ps] Offset [µm2] lcold [µm] nhot [nc] rhot [µm] lhot [µm]

1 10.5 1.35 +0.3
−0.3 0.25 +0.05

−0.10 4.8 +0.45
−0.45 0.4 +0.10

−0.15

3 2.1 2.4 +0.6
−0.4 0.1 +0.05

−0.05 7.8 +0.75
−0.60 0.25 +0.15

−0.15

39 2.4
5.0 +0.5

−0.5

9.0 +1.5
−1.5

-

0.0015 +0.0010
−0.0010

-

17.0 +2.0
−2.0

-

3.0 +1.0
−1.0

126 12.0 7.0 +0.5
−0.5 - - -

193 8.5 11.5 +1.0
−1.0 - - -

193 3.3 16.0 +2.0
−2.0 0.0005 +0.0002

−0.0002 19.0 +1.5
−1.5 4.0 +1.0

−1.5

226 10.2
11.0 +1.0

−1.0

14.0 +1.5
−1.0

- - -

593 9.7 20.0 +2.0
−2.0 - - -

593 13.9 12.0 +1.5
−1.0 - - -

Table 5.2: Parameters of reconstructed density profiles (t > 0 ps) with corresponding
probe delay and offset from the laser axis.

When comparing the parameters of the expansion at early times (t = 1 ps and t = 3
ps) with the values determined from the transmission, already an onset of smearing of
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the shock-like component and the transition to the simplified distribution is observed.
For the distribution at t = 1 ps, the width lhot nearly doubles from 0.22 µm to 0.4
µm while the amplitude nhot decreases by more than a factor of 4 from 1.15 nc to 0.25
nc. This behavior is even more pronounced for the distribution at t = 3 ps. Here, the
width lhot of 0.25 µm is more than twice as large than at the time of the transmission
measurement and the amplitude drops by an order of magnitude from 1.03 nc to only
0.1 nc. Another interesting aspect is that data sets, obtained at the same points in
time (193 ps respectively 593 ps), show significant deviations in terms of plasma size.
Thereby it shows that particles with smaller offset have already expanded further at
the same time, which is expected. In order to make meaningful statements about the
time course of the expansion, only data with similar offsets may thus be compared.
In summary, it can be seen that regardless of the offset, the width of the distribution
function increases, indicating a progressive plasma expansion over the observed period
of time.

5.4 Discussion

Now that the relevant parameters of laser-triggered plasma expansion have been de-
scribed, an attempt can be made to model the behavior of the plasma. As already
introduced in section 2.6, two simplified models can be used for this purpose: the
hydrodynamic expansion and the Coulomb explosion. It is first interesting to discuss
which of the two regimes represents the measured expansion best: recalling equation
2.48, the hydrodynamic pressure generated by the hot electrons pe is

pe = ne · kB · Te. (5.1)

As this pressure depends on ne, pe scales with r−3. The Coulomb pressure due to
charge separation is calculated as

pcoulomb = Q2 · e2 · ke

8 · π · r4
initial

. (5.2)

Assuming a fully ionized, 1 µm sphere with an electron density of 3.4 · 1023 cm−3 and
an electron temperatur of 1 keV, up to 109 electrons would have to leave the plasma in
order for pcoulomb to be on the order of pe. Although this is only a percent of the total
number of electrons, one needs to keep in mind the space charge fields the electrons
would have to overcome to reach that level of depletion. For an electron on the sphere
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surface (r = 0.5 µm) this would result in

Eescape = ke · (Q + 1) · e2

r
≈ 3 · 106 eV, (5.3)

which can likely not be achieved with our laser intensity of 1016 W/cm2. Moreover,
the influence of the Coulomb explosion at the onset of expansion is further reduced by
its scaling of r−4 compared to the hydrodynamic expansion which scales with r−3.

Therefore, a purely hydrodynamic expansion is most likely and considered in the
following. From the calculations of section 2.6, the ion velocity for hydrodynamic
expansion of a spherical plasma with homogeneous density is given as

(
dr

dt

)2

= 3 · kB · Te0 · Z

mi

·
(

1 −
(

r0

r

)2
)

, (5.4)

where, compared to equation 2.55, the assumption was made that the fraction of elec-
trons which have left the plasma is negligibly small (Q ≈ 0). The density distributions
measured in this work, however, refer to the electrons since they determine the refrac-
tive index of the plasma. For the derivation of the ion velocity it was assumed that the
ions are at rest at the beginning of the expansion and that the absorbed laser energy
is transfered solely to the electrons. During the expansion the electrons then transfer
their energy to the ions. Under the condition of energy conservation, the following
therefore holds true for any time t after the beginning of the expansion:

Ne · me · v2
e = Ne · me · v2

e0 − Ni · mi · v2
i , (5.5)

where ve0 is the electron velocity at the beginning of the expansion and ve and vi are
the electron and ion velocity at time t. Inserting 5.4 for the ion velocity yields

ve = ve0 · r0

r
. (5.6)

This expression for the electron velocity can also be directly obtained from 2.51. Start-
ing from the definition of temperature in an ideal gas me · v2

e = 3 · kB · Te one gets

v2
e = 3 · kB · Te

me

= 3 · kB · Te0

me

(
r0

r

)2
= v2

e0 ·
(

r0

r

)2
. (5.7)

Therefore the sphere radius

r (t) =
√

2 · r0 · ve0 · t + r2
0. (5.8)
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For the simple case of a constant density (up to the radius described by the equation
above), the density is automatically defined by the radius. In the case of a Gaussian
density distribution, some adjustments can be made to employ the formalism. First,
we assume that the expansion of the plasma front behaves the same as in the case of
homogeneous density. We also assume that the plasma follows a simple, broadening
Gaussian distribution throughout the expansion period. For late times this is valid as
the distribution could be modeled best by a single Gaussian. At early times, when
shock features (the moving Gaussian) are present, this approximation is still justified
because the front of the plasma (the outermost border) is determined by the width
of the central Gaussian (for example compare figure 5.6 and figure 5.4). We chose
the front of the distribution (rather arbitrarily) by r (ne = 1/cm3) to ensure that the
number of electrons within the front is the same as in a homogeneous distribution.
From the time-dependent radius of this front, a corresponding width of the entire
Gaussian distribution can be calculated, which then determines the time course of the
entire distribution ne (t)

ne (t) = ncold · e
− r2

2·lcold(t)2 , (5.9)

where the central density ncold is subject to the conservation of particle number. The
expansion radius of an arbitrary density (referred to as isodensity radius) can then be
obtained from

r (t, ne) =

√√√√√−2 · lcold (t)2 · ln

3 · ne ·
√

π
2 · lcold (t)3

ni · r3
i

, (5.10)

where ri = 0.5 µm and ni = 194 nc and we must only keep in mind that the chosen ne

cannot be too large (it should always remain in the outermost region where the density
decreases monotonically). For the determination of the temporal development of the
density distribution, only the two initial parameters ve0 and r0 are necessary. Due to
the fact that no exact starting time of the expansion can be determined, the model is
limited in the following to the range after the laser interaction, namely from t = 0 ps to
t = 600 ps. The start parameter r0 is obtained from the density profiles reconstructed
from the transmission measurement. ve0 describes the expansion velocity at the time
t = 0 ps and serves as a fit parameter. Figure 5.9 shows an example of what such
an expansion looks like. Isodensity radii which can be determined from equation 5.10
are plotted against time. As starting conditions a plasma front at r0 = 5 µm and
the corresponding velocity of the expansion of ve0 = 1 µm/ps were arbitrarily chosen.
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As can be seen, the distribution at time t = 0 ps already shows some expansion for
all densities considered, similar to what can be reconstructed from the transmission
diagnostic. Subsequently, the radii initially expand, with the critical density radius
already reaching its maximum expansion after 10 ps and then beginning to shrink.
After about 28 ps, the plasma expands to a point where it is completely undercritical.

Figure 5.9: Exemplary expansion of a Gaussian density distribution calculated via
equations 5.8 and 5.10 with arbitrary starting parameters r0 = 5 µm for the plasma
front at t = 0 ps and ve0 = 1 µm/ps as the expansion velocity, where different colors
show the temporal course of distinct isodensity radii. The inset illustrates the expan-
sion during the first 10 ps.

In order to compare the experimentally found distributions with the model, shots
must first be sorted according to similar starting conditions (i.e. similar overlap be-
tween particle and laser focus). This is necessary because the starting parameter r0,
used as input for the model, is determined from the experimentally found distributions.
Therefore, from table 5.2 the shots with an offset of 2.1 µm2, 2.4 µm2 and 3.3 µm2 as
well as the shots with offset 8.5 µm2, 9.7 µm2, 10.2 µm2 and 10.5 µm2 are grouped.
The two remaining shots (12.0 µm2 and 13.9 µm2) are considered separately because
they have large uncertainties in the transmission-determined density distribution due
to their large offset. For both groups, the reconstructed distributions at time t = 0 ps
are used to determine the propagation of the plasma front r0. A mean value is formed
in each case, which serves as the starting parameter for the model. The corresponding
values are listed in table 5.3.
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Delay [ps] Offset [µm2] r0 [µm]

3 2.1 15.3

39 2.4 14.3

193 3.3 13.8

mean 2.6 14.5

Delay [ps] Offset [µm2] r0 [µm]

1 10.5 10.4

193 8.5 9.9

226 10.2 11.4

593 9.7 8.5

mean 9.7 10.0

Table 5.3: Probe data grouped by offset with corresponding plasma front radius r0.

First, the group with the smallest offset is considered. For this purpose, the ex-
perimentally found value of r0 = 14.5 µm is taken as the model input parameter.
Subsequently, ve0 is used to fit the model to the isodensity radii obtained from the in-
dividual distributions. For shots where different distributions where found in axial and
radial dimension, the isodensity radii are determined seperately and the mean value
is used for each radius. The result is shown in figure 5.10. Here, the model-based
course of the different densities is again depicted by colored areas, while experimen-
tal measurement points are symbolized by different colored markers. The inset shows
experimental data for t = 3 ps. To account for the temporal stretching of the probe
pulse, an error of ± 2.6 ps was assumed for all data points of this diagnostic, while the
error bars in y-direction account for the uncertanties of the parameter set in table 5.2.
In the case of seperate distributions, the error represents the lower limit of the smaller
distribution and the upper limit of the bigger distribution. In comparison with the ex-
perimental data, the best agreement is obtained for ve0 = 3.8 µm/ps. The isodensity
radii of the two measurement points at t = 39 ps and t = 193 ps agree well with the
model-based expansion within the error bars. For the measurement at 3 ps, the radii
up to ne = 1018 cm−3 also agree well with the model, but higher-density radii grow
faster than predicted. This is due to the shock represented by the moving Gaussian,
which at this time is not as dominant as in the transmission measurement, but still
clearly present. The lower densities are defined by the width of the central Gaussian
distribution and therefore in good agreement with the model.

For the second group, a starting parameter of r0 = 10.0 µm was determined and
the model was again fitted to the experimental data by adjusting ve0. The result is
illustrated in figure 5.11. With a starting velocity of ve0 = 3.1 µm/ps, there is good
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Figure 5.10: Comparison of modeled and experimentally determined temporal evolu-
tion of the density distribution for shots with high overlap with the laser focus. The
model-based course of the isodensity radii is shown by colored areas, experimentally
obtained radii are depicted by a set of colored markers. Input values of r0 = 14.5 µm
and ve0 = 3.8 µm/ps are used for calculating the model.

agreement with the experimental density distributions, as in the previous case. As be-
fore, for the data point immediately after the interaction, the low-density radii follow
the model, while higher densities show faster expansion due to the shock, although
this appears to be even more pronounced after 1 ps than in the previous case after 3
ps. This again suggests a rapid decay of the shock and a transition towards a regular
Gaussian distribution.

Lastly, it is possible to check how well the expansion model agrees with the density
distributions at time t = 0 ps determined from the transmission. The mean values of
the isodensity radii of all data points belonging to the group are formed similarly as for
the plasma front radius. In figure 5.12 the two cases are shown, where a) corresponds to
the first group with small offset and b) to the one with larger offset. The error bars are
derived from the maximum and minimum radius for each density within the group. In
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Figure 5.11: Comparison of modeled and experimentally determined temporal evolu-
tion of the density distribution for shots with medium overlap with the laser focus. The
model-based course of the isodensity radii is shownby colored areas, experimentally ob-
tained radii are depicted by a set of colored markers. Input values of r0 = 10.0 µm
and ve0 = 3.1 µm/ps are used for calculating the model.

both cases, the experimental radii of low densities are close to those of the model, with
slightly lower propagation detected in the experiment. Nevertheless, an overlap can be
observed within the error tolerance. Similar to the two data points at t = 1 ps and t
= 3 ps before, the influence of the shock on the distribution can also be detected here.
The expansion of high densities is again more advanced at this time than in the model.

For the last two data sets with the largest offset to the laser axis, the model is
calculated individually, because the plasma front radii and the shape of the density
distribution are strongly deviating for both cases. The respective models and corre-
sponding experimental data points are shown in figure 5.13. For the shot with an
offset of 12.0 µm2, r0 = 5.5 µm was determined from the transmission and fitted with
ve0 = 3.2 µm/ps, while for an offset of 13.9 µm2, r0 = 4.1 µm and ve0 = 2.8 µm/ps.
As before, there is good agreement for both probe data sets. For the expansion at
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Figure 5.12: Comparison of modeled and experimentally determined temporal evolu-
tion of the density distribution for shots with both good (a)) and medium (b)) overlap
with the laser focus at t = 0 ps. The model-based course of the isodensity radii is
shown by colored areas, experimentally obtained radii are depicted by a set of colored
markers.

time t = 0 ps, figure 5.13 a) shows a quite significant deviation, while in figure 5.13
b) the experimental radii are close to the model. This deviation can be attributed to
the relatively large error in determining the width of the central Gaussian, lcold, from
the transmission. This uncertainty directly affects the determination of the radius of
the plasma front and may provide an explanation for the discrepancy. Although a
fitting of the function with only two grid points does not qualify for the confirmation
of the model, in light of the two groups of data and their agreement with the model,
these two extra data sets contribute more measurement points for the initial expansion
velocity ve0.

In summary, the temporal evolution of the experimental data can be described by
the simple model assuming hydrodynamic expansion. It can be seen that plasmas
with a better overlap between target and laser expand faster than plasmas with less
overlap, which is to be expected. In the following, a possible connection between
absorbed laser energy and expansion velocity will be investigated. As already shown,
the expansion of the particle does not start when the peak intensity arrives at time
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Figure 5.13: Comparison of modeled and experimentally determined temporal evolu-
tion of the density distribution for two shots with large offset to the laser axis. The
model-based course of the isodensity radii is shown in color, experimentally obtained
radii are depicted by a set of colored markers. Input values of r0 = 5.5 µm and
ve0 = 3.2 µm/ps (a)) and r0 = 4.1 µm and ve0 = 2.8 µm/ps (b)) are used for calcu-
lating the model.

t = 0 ps, but already before that, however the exact time remains unknown due to
the lack of data. Therefore veo (t = 0ps) represents a plasma velocity that is already
lowered due to the electron cooling during expansion. However, the determination of
the expansion velocity at this point in time in concert with the knowledge about the
density profile of the plasma offers the possibility to estimate the energy contained in
the initial plasma which is necessary to reach the observed conditions at time t = 0
ps. This energy can be calculated via

Ein = 1
2 · Ne · me · v2

e,in (5.11)

where ve,in describes the initial plasma velocity at the start of expansion. It is related
to ve0 via equation 5.6:

ve,in = ve0 · r0,in

r0
. (5.12)

To determine r0,in a further approximation is made: since the expansion model de-
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scribes the propagation of a Gaussian distribution, the initial plasma with a step-like
density distribution with a width of 0.5 µm, is approximated by a Gaussian distri-
bution whose isodensity radius for ne = nc assumes the same width. The plasma
front radius r0,in = 1.33 µm is obtained. Using equations 5.11 and 5.12, the following
energies and velocities can be calculated (see table 5.4) for the four groups of data sets
presented in figures 5.10, 5.11 and 5.13.

r0 [µm] ve0 [µm/ps] r0,in [µm] ve,in [µm/ps] Ein [µJ ]

14.5 3.8 1.33 41.4 139

10.0 3.1 1.33 23.4 44

5.5 3.2 1.33 13.2 14

4.1 2.8 1.33 8.6 6

Table 5.4: List of initial plasma energies Ein and velocities ve,in, obtained from equation
5.11 and 5.12 using the corresponding parameters for each group of data sets with
similar laser offset.

This shows a difference of more than one order of magnitude between the individual
data sets. One explanation is of course the different overlap with the laser focus and
the resulting different amount of laser energy to which the particle was exposed. In
order to estimate how much of this is due to the overlap alone, it is calculated in the
following which amount of laser energy a particle of 0.5 µm radius is exposed to at
the respective positions in the focal plane (see figure 5.3). To calculate the temporal
and spatial distribution of the laser energy in the focal plane, first a Gaussian distri-
bution equivalent to the real focus is created with a FWHM of 6 µm. The sum over
the entire distribution corresponds to the applied laser energy of Etot = 600 µJ . It is
then multiplied by a scaled temporal intensity distribution function from figure 3.14,
whose integral over time corresponds to 1. Thus, for each point in time, a weighted
spatial energy distribution whose integral over time and space corresponds exactly to
the total laser energy is available. Due to the probe measurements with negative delay,
the time period is limited to an interval from -14 ps to +120 fs, containing > 95% of
the total 600 µJ . To determine the laser energy available to each particle, a circular
mask with a diameter of 1 µm is then placed at the corresponding particle position
and the energy input within this area is summed over the entire time period. For the
group of shots with smallest offset this provides energies of 13.1, 12.9 and 12.0 µJ or
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a mean of 12.7 µJ . In the case of medium offset one obtains 6.8, 8.0, 7.0 and 7.2 µJ

or a mean of 7.3 µJ . For the two shots with biggest offset, the values are 6.0 µJ and
5.2 µJ . Only in the last case, this energy is close to the value in table 5.4. And for
this particular case, the reconstructed density profile is very close to an ionized sphere
of 1 µm diameter.

Figure 5.14: Model for energy within area of critical density: The target is positioned
in a Gaussian equivalent laser focus of 6 µm FWHM. The lateral offset in the focal
plane is obtained from figure 5.3. Starting with initial conditions rnc,in at t = -14 ps,
the area of critical density increases linearly until t = 120 fs. The increase is given by
the simulation-determined values rnc. The energy is approximated by integrating the
energy within the overcrital area from -14 ps to 120 fs.

The discrepancy for all other cases (that were exposed to a higher peak intensity,
closer to the laser axis) suggests that the area within which laser energy can be ab-
sorbed increases with rising laser intensity. This is also in agreement with the already
observed pre-expansion of the plasma which could be detected at time t = 0 ps. As has
been shown in many other experiments, this area is closely related to the region where
the plasma reaches critical density. Therefore, an increase of this area with increasing
laser intensity is simulated in the following, with an assumed initial radius of 0.5 µm

radius and the final size given by the values determined from the transmission (see
figure 5.6). The starting time again is t = -14 ps. The subsequent growth is assumed
to be linear since no further data points are available to model a different growth
behavior. Figure 5.14 illustrates the model.
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Using this approach, the values of potentially absorbable energy Enc increase sig-
nificantly as illustrated in table 5.5. Comparing those energies to the ones from table
5.4, one can cleary see that within the growing overcritical area, the plasma is ex-
posed to sufficient laser energy to achieve the initial conditions that are required for
explaining the measured expansion. Looking at the ratio Enc/Etot one notices that
in each case the value is very close to the experimentally observed transmission loss.
This agreement supports the validity of the simulation-determined values for the area
of overcritical density and thus the obtained density distributions.

offset [µm2] rnc [µm] Enc [µJ ] Enc/Etot[%] exp. TM loss[%]

2.1 4.05 397 66 61

2.4 4.05 394 66 60

3.3 3.92 365 61 58

10.5 3.36 205 34 36

8.5 3.92 294 49 48

10.2 3.36 208 35 39

9.7 3.08 180 30 31

12.0 2.54 116 19 23

13.9 1.08 17 3 6

Table 5.5: For each shot, the offset from the laser axis and the energy contained within
the growing area of critical density Enc are listed. Moreover, the ratio of this energy
to the total pulse energy Etot is compared with the experimentally determined loss of
transmitted light in each case.

The absorption fA, given by the ratio of Ein and group-specific mean values of Enc,
is 36 % for the group with best overlap, 20 % for the data set with medium overlap and
12 % and 35 % for the two individual data points with large offset. As the position of
all shots is known in the focal plane, the individual absorption values can be correlated
to a peak intensity. This relation is plotted in figure 5.15, where the peak intensity
is calculated for the individual offsets (mean value for groups), based on figure 5.3.
For both groups with small and medium offset, the error bars are calculated from the
minimum and maximum values of Enc and peak intensity within the group. For the
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Figure 5.15: Experimentally de-
termined fractional absorption
versus position-dependend peak
intensity.

two single data points, the y-error represents the upper and lower limit of Enc and
thus fA, based on the error of the radius of overcritial density from figure 5.6. In the
x-direction, the error accounts for an approximated positional inaccuracy within in
focal plane of ∆x = ∆y = ±0.25µm.

Figure 5.15 indicates that the absoption is correlated to the respective offset (and
thus peak intensity) of each particle. In order to understand this behaviour it is first
necessary to verify the dominant absorption mechanism. For peak intensities around
1016 W/cm2, resonance absorption and vacuum heating are generally assumed, where
the plasma scale length can be used to distinguish between both cases [84]. The scale
length most relevant for absorption is the one present around the fs-short main pulse,
as most of the pulse energy is contained within several 10s of femtoseconds around t
= 0 ps. Due to the reconstructed density distributions from the transmission mea-
surement, we have access to this parameter. Figure 5.16 shows cutouts of the density
distribution aquired from the transmission analysis, where a) and b) are respresen-
tative examples of the two groups with smallest and medium offset and c) and d)
show the two shots that were considered individually in the expansion analysis. The
plasma scale length L is approximated by a linear fit that best reproduces the gra-
dient of the electron density at the position r (ne = nc) and defined as the distance
between the two points where the fit equals ne = nc and ne = 0. From figure 5.16,
one obtains values between L/λ = 0.25 and L/λ = 0.56, suggesting that resonance
absorption is the main mechanism to consider. This is also in line with other experi-
ments in the context of laser-droplet interaction in a similar intensity regime [114, 115].

Moreover, figure 5.16 reveals that the scale length varies with the respective off-
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Figure 5.16: Cutouts of the density distribution obtained by the transmission analysis
are shown, where a) and b) are representative examples for the two groups with small
and medium offset. c) and d) show the density distributions for the two shots consid-
ered seperately in the expansion analysis. A linear fit is used to model the electron
density gradient at the position of critical density. The grey bars indicate the part of
the density distribution that is inaccessible for the laser.

set. Recalling equations 2.39 one immediately notices that the fractional absorption
is strongly depending on L. Based on those equations, Wu et al. [116] have developed
a simple analytic model to estimate the resonantly absorbed energy of a spherical tar-
get depending on the plasma scale length. By determining the scale length for each
shot of table 5.5 (and using the offset for the respective peak intensity), the expected
absorption values can be calculated using equation (7) of [116] and compared to our
experimentally determined values of figure 5.15. The results are shown in figure 5.17.

Here, the experimentally obtained absorption values are shown in red, while values
from the analytic model are depicted in blue. The green dots represent the respective
plasma scale lengths, used as input for the analytic model. The error margins of the
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Figure 5.17: Comparison of absorption values and scale length: red dots show the
experimentally determined absorption values from figure 5.15, while values obtained
from the analytic model of [116] are represented by blue dots. The respective scale
lengths, used as input for the analytic model, are depicted in green. The error bars
for the scale length in y-direction are determined by the min/max-value within the
two groups and from the minimum and maximum scale length for the individual shots
based on the error margins of the reconstructed density distribution. The y-error for
the analytic model is calculated from the error margins of the scale length.

scale length in y-direction are either obtained by the min/max-value within the groups
with small and medium offset or by the minimum and maximum scale length based
on the error margins of the reconstructed density distribution (see figure 5.4). The
analytic model predicts lower absorption fractions than determined experimentally,
especially in the two cases where highest absorption is measured in the experiment.
However, both agree qualitatively in the intensity-dependend course of absorption.
The increase in absorption for the lowest peak intensity can be reproduced in the
analytic model and is caused by the decrease in scale length compared to the next
two data points with higher peak intensity. The reason for this drop can be seen
in figure 5.16: for the three cases with higher overlap, the scale length is defined by
the width of the decentralized Gaussian component. As shown in the transmission
analysis the width increases with larger offset (lower peak intensity) which leads to a
larger scale length and thus lower absorption. In the case of biggest offset however,
the additional Gaussian is located close to the center, hence the density distribution
is mostly determined by the steeply decaying central Gaussian. This results in a
smaller scale length and higher absorption, in line with the experimental observations.
In summary, the intensity dependence of the experimentally determined absorption
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values can be reproduced by a simple analytical model of resonance absorption using
the scale lengths derived from the experimental data. The deviation in absolute values
suggests that other processes may have to be taken into account and encourages further
studies in the field of expanding microplasmas.
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Summary and Outlook
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6.1 Summary

The reconstructed density distribution provides relevant plasma parameters in great
detail from transmission images when experimental quantities such as beamprofiles or
spatial and temporal intensity distribution are recorded in high quality and an ap-
propriate model is chosen for the numerical simulations. These findings can help to
further improve the understanding of physical processes within the laser-plasma in-
teraction, for example for laser-ion acceleration in near-critical micro-plasmas, where
the plasma density is a crucial parameter (e.g. [39]). Furthermore, the comparison
of the numerical model with experimental data allows to recognize potentially occur-
ring asymmetries. Those could be investigated qualitatively or even quantitatively,
depending on the desired complexity of the model.

Studying the temporal evolution of the density distribution allows to develop or
verify expansion models for the laser-irradiated plasma. From these models, the en-
ergy within the plasma can be approximated and provides the basis to investigate the
influence of parameters such as peak intensity or plasma scale length on quantities like
fractional absorption or expansion velocity. Such comparisons can, for example, be
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used to validate theoretical scalings. Additionally, time-resolved studies as performed
in this work can in the future serve as a benchmark for numerical simulation codes
such as RALEF. This also provides the opportunity to verify the accuracy of measured
experimental quantities which are often used as input parameters in these simulations.

6.2 Outlook

The simple approach presented in this work has shown the potential of gathering de-
tailed information about the plasma during and after the laser-interaction. Building
on the current setup, a variety of improvements can be implemented. One of the
main challenges was the low number of data points that could be obtained from the
experiment. One solution would of course be to increase the positioning accuracy and
stability of the target system; promising improvements have already been made in an-
other experiment [117]. In addition, the number of data points available from a single
shot can be improved by implementing multi-color probing techniques (e.g. [45, 118]).
Not only would this significantly increase the number of data points (by an order of
magnitude), but this would also allow to study the plasma expansion of a single tar-
get, thus decreasing the influence of shot-to-shot fluctuations. Additionally, positional
changes of the center of the density distribution over time could be observed via the
recorded probe images if one can exclude asymmetries in the plasma to produce a sim-
ilar change in the diffraction pattern as a global shift in position (e.g. via simulations).

Another improvement can be made concerning the current upper limit of laser in-
tensity in the pump pulse due to stray light and self-emitted light from the plasma
affecting the probe diagnostic. Although the intrinsic probing via the pump provides a
tool that is not limited in this regard, it is fixed to t = 0 ps, thus no time-resolved mea-
surements are currently possible at intensities above 1016 W/cm2. A potential solution
would be the use of an off-harmonic probe pulse, such that disturbing light sources
can be effectively damped via spectral filters, significantly increasing the signal-to-
noise ratio in this diagnostic. A change of the probe towards higher frequencies would
furthermore allow to access regions of higher density, revealing the distribution beyond
the current limit of the critical density associated to the wavelength of the pump [119].
The developed simulation tools can easily be adjusted to model diffraction at different
wavelengths and could still be used to compare experimental results with numerically
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implemented density distributions.

With regard to the distribution model, so far asymmetries have been neglected
for the sake of simplicity and a moderate number of free parameters. However, vari-
ous experimental images show (expected) non-spherical diffraction patterns, indicating
asymmetries in particular during early phases of the interaction, primarily along the
laser propagation axis. This behavior is also observed in the RALEF simulations. In
order to quantify these effects, the hydrodynamic simulations can directly be used as
an input for calculating the diffraction patterns.

This work can be seen as a first step towards studying the expansion dynamics
of micron-sized spherical plasmas. The simple experimental approach has shown that
the plasma can be studied quantitatively if the laser- and target-conditions are well
defined. This provides a unique opportunity to visualize and study plasma processes
and compare results with simulation tools.
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