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1.1 Introduction 

 

The global burden of malnutrition remains unacceptably high. Malnutrition is estimated to 

contribute to more than one-third of all child deaths, with more than half of children under the age 

of five stunted, and one in five underweight. These proportions represent a global burden of 150 

million stunted children, 50.5 million wasted, 38.3 million overweight, and 38.3 million over- 

weight (World Health Organization, 2018). This is despite the “Sustainable Development Goals” 

(SDG) target of eliminating all forms of malnutrition by 2030 (SDG, 2018, Alao et al., 2021). 

 

Undernutrition is most prevalent in low and middle-income countries, whereas overweight and 

obesity are more prevalent in higher-income countries (Micha et al., 2020). The Sub-Saharan 

Africa region alone accounts for more one-third of undernourished children globally (Akombi et 

al., 2017). Moreover, the region has the highest burden of infectious diseases such as HIV and TB, 

as well as rising rates of “Non-Communicable Diseases” (NCD). The double burden of poverty 

and disease only worsens the situation in this region. There are also significant health disparities 

within countries that must be addressed in order to meet "universal health coverage" goals. 

Zambia is one of the countries in Sub-Saharan Africa severely affected by malnutrition. 

Approximately 40 % of under five children in Zambia are stunted, 5% wasted, 15% underweight, 

and 9% overweight (Mzumara et al., 2018, Jonah et al., 2018). The distribution of undernutrition 

across the country reveals striking regional disparities, with patterns closely related to observed 

socioec- onomic inequalities (Moonga et al., 2021). 

Childhood stunting is a marker of chronic malnutrition and has severe health consequences in adult 

life. These include suboptimal cognitive development, degenerative disease, reduced economic 

output, increased morbidity and mortality. Stunting is therefore of great public health concern, 

with far-reaching individual and societal consequences (Menon et al., 2018). 

Zambia has a long history of mining; the sector has been the mainstay to the country’s economy. 

Copper mining in the Copperbelt Province has contributed the largest mineral export since 

independence (Unceta, 2021). Despite the economic boom based on a mining bedrock, mining 

activi- ties have serious environmental and human health consequences. Much of this has been 

caused by insufficient health and safety measures, as well as inadequate environmental 

remediation fol- lowing the closure of mining operations. Kabwe is one example of a former 

mining town in Zambia where significant environmental and human health risks have resulted from 

unregulated closure of min- ing operations. Because of a lack of comprehensive environmental 
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control of tailing hills since the mine's closure in 1994, communities have been exposed to lead-

rich dust from tailing (Yabe et al., 2020). This situation greatly threatens the community’s’ health, 

especially children (Bose- O’Reilly et al., 2018). Poverty, malnutrition, and the underlying burden 

of HIV only heightens the burden on these communities' health. (Yabe et al., 2015). 

 

Susceptibility to lead toxicity is increased in children particularly because of their hand-to-mouth 

activities, and higher gastrointestinal absorption and bioavailability given their smaller bodies 

(Calabrese et al., 1997). Lead induced toxicity in children occurs even at low levels of exposure. 

The “central nervous system” (CNS) is more sensitive to lead toxicity during the early (neonatal) 

and subsequent developmental stages as compared to adults years (Naranjo et al., 2020). The neu- 

rological effects include diminished cognition and intelligence quotient (IQ), memory loss, and 

attention difficulty (Liu et al., 2011). Aside from its effects on cognitive functions, lead 

neurotoxicity has far-reaching psychosocial consequences, including unacceptable social attributes 

and ag- gressive behaviour (Ara and Usmani, 2015). 

 

Exposure and the ability to mitigate the negative health effects of mine pollution and malnutrition 

are linked by socio-demographic factors. As a result of existing inequalities, there are disparities 

in vulnerability within these communities. Therefore, when providing interventions, efforts should 

be made to identify and prioritize the most vulnerable individuals. Spatial analytical methodologies 

and the use of “Geographic Information Systems” (GIS) can be useful in this regard. GIS enables 

researchers to investigate potentially modifiable ecological explanations for disease clusters, 

which may help clarify the aetiology of health-related events. Furthermore, the approach can aid 

in understanding the spatial differences in exposure and disease outcomes, which is critical in 

informing intervention implementation (Chen et al., 2008). 

 

In this study we used “Bayesian Distributional Regression” (BDR) methodology that allows for 

the investigation of non-linear association and interaction effects while also allowing for the in- 

clusion of spatial predictors (Moonga et al., 2021). These models, which are based on the Markov 

property, also allow for the modelling of the entire response distribution rather than just the mean. 

This is especially important in some medical research scenarios. Z–scores below and above  

2-standard deviations, for example, are of interest in nutrition modelling because they represent 

stunting and obesity, respectively. Quantile distribution regression is an alternative method that 

could be used for this investigation. Based on a Bayesian Distributional Regression, on the other 

hand, goes far beyond quantiles and mean estimates to investigate the entire distribution. In order 

to meet one of our objectives, we also used spatial autocorrelation methods to investigate additional 
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spatial variation. 

 

1.2 Rationale and Objectives 
 

Timely and accurate health data is critical for informing better health-care systems. In order to 

promote inclusive health service provision, a comprehensive “Health Information System” (HIS) 

must account for inequalities at the subnational level. Health policies must therefore aim to address 

the identified structural and social inequalities that impede equitable health access. Spatial analysis 

of health outcomes is thus critical to enable this process. This method accounts for geographically 

distinct environmental and social health barriers. 

 

Several studies have modelled the determinants of malnutrition and child mortality in Zambia 

(Adebayo, 2003, Dwyer-Lindgren et al., 2014, Masiye et al., 2010, Kandala et al., 2009, Mzumara 

et al., 2018). The effects of mining deposits (heavy metals) have also been estimated (Yabe et al., 

2020). However, no spatial analysis has identified the small area spatial variances in the exposure 

and distribution of the outcome. Therefore, the purpose of this study was to demonstrate health 

disparities at subnational level and to investigate predicting spatial covariates. In addition, we used 

spatial methodology to look into variations in blood lead levels in Kabwe. Finally, we used these 

concepts to demonstrate disparities in heavy metal exposure in two mining communities in 

Zimbabwe. 

This PhD project demonstrates the opportunity that spatial data provides in understanding expo- 

sures and health outcomes at sub- national level. The general objective of this study was to 

investigate the small area differentials in malnutrition and magnitude of spatial explanatory 

covariates for lead exposure in children. The specific objectives were: 

I. To estimate the spatial distribution of under-five stunting in Zambia. 

II. To investigate environmental and socio-demographic factors associated with child 

malnutrition in Zambia. 

III. To investigate spatial autocorrelated covariates that explain small area variation in blood 

lead level in Kabwe Zambia. 

1.3 Methods 

 

1.3.1 Description of Data sources 

We used mainly two types of data sources namely: I) “Zambia Demographic Health Survey” 

(ZDHS). The ZDHS is a national sample survey designed to provide up to date information on 

fertility rates, breastfeeding practices, nutritional status of mothers and children, early childhood 
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mortality and maternal mortality. II) “Project for Visualization of Impact of Chronic/ Latent 

Chemical Hazard and Geo-Ecological Remediation in Zambia” (KAMPAI Project). The project 

collected data on child blood lead levels 0-4 and over 4 years old, gender, age, BLL and residential 

coordinates. The project also collected soil lead levels in selected residential areas in Kabwe. 

The study also utilised remote sensed data from several sources such as the “Malaria Atlas Project” 

(MAP). 

1.3.2 Data analysis 
 

Based on a BDR model, we examined the spatial distribution of stunting and the effects of 

socioeconomic and remote sensing covariates on anthropometric outcomes for children. To test 

for spatial dependencies and small area variation of blood lead levels, we used spatial 

autocorrelation and the hotspot analysis method. R Studio version 4.0.2 was used for all the data 

analysis. 

1.3.3 Ethical considerations 
 

We obtained approval for the study protocol from the ethics committee at the LMU Medical 

faculty, approval number 19-780. The study observed the principles of medical research, and the 

ethical considerations. Some of the data we used included geolocations of individual participant 

households. Therefore, special considerations were made in the storage and analysis of this data. 

These procedures are detailed in the published articles (Rakete et al., 2022, Moonga et al., 2022, 

Moonga et al., 2021). 

1.3.4 Team 

 

The study team consisted of the principal investigator (author), three supervisors from LMU-CIH, 

and one supervisor from Zambia (home country). All team members contributed in the 

conceptualization, proposal design, analysis and discussion of results and in the manuscript 

publication. Before the final submission, the thesis was also shared with the team members. 

 

1.4 Results 
 

This study lends support to the use of spatial data in resource-constrained settings. We met the 

study objectives and published three papers in peer reviewed journal as part of our efforts to dis- 

seminate our findings (Rakete et al., 2022, Moonga et al., 2022, Moonga et al., 2021). 

Stunting and lead exposure were found to have distinct spatial distributions in Zambia, whereas 

heavy metal exposure was disproportionate in two mining districts in Zimbabwe. The study also 
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identified cold spots and hot spots of blood lead in Kabwe. The study relied on secondary data, 

which may be a limitation when data quality is not guaranteed, or when there is a lot of missing 

information. To counteract this, robust statistical approaches were used. Furthermore, to validate 

the findings, one section of the study used national datasets and two compared surveys (Moonga 

et al., 2021). 

The first and second objectives of the study are discussed in detail in the article "Modelling 

Chronic Malnutrition in Zambia: A Bayesian Distributional Regression Approach" (Moonga et al., 

2021). Stunting rates in Zambia decreased from a mean z-score of -1.59 CI (-1.63; -1.55) to -1.47 

CI (-1.49; -1.44) between 2007 and 2013, but remain unacceptably high. Disparities were observed 

at the provincial and district levels. The Northern region, which is primarily industrialized and a 

mining belt had higher levels of stunting than the agricultural Southern and Central provinces. The 

asset index, number of vaccinations received, mothers' BMI, and mothers' years of education all 

had a non-linear effect on the mean (μ) and variance in the height-for-age z-score for children in 

Zambia (Moonga et al., 2021). 

The article "Geospatial approach to investigate spatial clustering and hotspots of blood lead levels 

in children within Kabwe, Zambia" (Moonga et al., 2022), addressed the third objective. Lead 

levels in blood were significantly autocorrelated (Moran's Index was 0.62 (p = 0.001), with distinct 

cold and hot spot areas (μ =7 *g/dL). Child blood lead levels are seen to be high in Kabwe town, 

indicating a serious health issue that requires immediate attention (Moonga et al., 2022). 

The third published article, titled "Biomonitoring of arsenic, cadmium and lead in two artisanal 

and small-scale gold mining areas of Zimbabwe", shows regional variation in heavy metal expo- 

sure in two mining districts in Zimbabwe (Rakete et al., 2022). 

   1.5 Discussion 

The majority of programmatic and routine data collected in developing countries remain 

underutilized. This is partly due to a lack of expertise in conducting comprehensive and 

informative data analysis. There is also observed scarcity of high-quality data and repositories from 

which to obtain linked data. Spatial data, which has the potential to be extremely useful in the 

development of targeted interventions, is underutilized in particular. Besides this advantage, 

remote sensing data can be easily collected and used to account for hard-to-reach areas. This has 

the potential to be a game changer in terms of reducing inequalities between and within countries, 

particularly in Sub-Saharan Africa, and thus contributing to the achievement of the “Sustainable 

Development Goals” (SDG). 
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Furthermore, remote sensing environmental data is extremely useful for gaining a broad under- 

standing of exposure pathways. Rainfall patterns, temperature, and pollution, for example, are 

linked to malnutrition. Temperature, prevailing winds, and runoff surface water are all important 

factors in heavy metal exposure pathways in polluted communities. All such variables and many 

others can be assessed remotely and then applied in real-world scenarios. In this regard, this study 

is novel in that it makes use of spatial data for low- and middle-income contexts. 

Three aspects of the study are unique; firstly, it shows how geographic information system (GIS) 

data can be used to identify underserved and high-risk communities. Secondly, the application of 

Bayesian distributional regression models demonstrates the feasibility of combining socio-

economic and remote sensing variables. Thirdly, the method allows for the investigation of non-

linear predictor effects as well as the modelling of the entire distribution rather than just the mean. 

This approach is more realistic because most health indicators do not necessarily follow a linear 

pattern. Linear models, on the other hand, would overestimate some aspects of health. 

While the use of remote sensing data is becoming more common in the developed world, it is still 

underutilized in most developing countries. Remote sensing provides a quick method to collect 

widespread data, even for hard to reach areas. Owing to technical and economic constraints, many 

underdeveloped nations may not have any data that is consistently gathered. As a result, satellite 

data bridges this chasm. Because of data quality issues in the majority of these settings, a 

combination of socioeconomic variables and remote sensed data explains variability in health out- 

comes better than remote sensed data alone. This field remains unexplored, necessitating more 

funding and research. 

 

Previous studies in Zambia have estimated malnutrition rates (Mzumara et al., 2018), but there has 

been no investigation into the spatial variation. This study fills that gap by demonstrating nutrition 

differences in children at the district level and between demographic health surveys conducted five 

years apart. Through this subnational analysis, the study identifies specific areas that are more 

affected by malnutrition, as well as districts with the highest standard deviation, which is an 

indicator of potential inequalities. Mining areas, which are frequently more urban, were found to 

have higher stunting levels than agricultural areas. This suggests a complicated scenario, which is 

related in part to household expenditures on healthy foods, and the benefits of access to agricultural 

products, which is more likely in farming towns in the central and southern provinces. 

The study also established some non-linear effects of mothers’ education on child stunting. After 

the eighth grade, there is significant effect on both the mean z-score and standard deviations. This 

finding is particularly significant for Sub-Saharan African countries, which continue to struggle 
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with teen pregnancies and school dropouts. Dropping out of high school is associated with stunted 

children and a high prevalence of HIV and sexually transmitted diseases. Therefore, this finding 

will help to inform education policy about the importance of keeping girls in school, with a focus 

on finishing secondary school. In some contexts, education is viewed as a proxy for "social eco- 

nomic status” (SES). As a result, others may attribute the observed differences to economic status. 

While this may be true, the study suggests that the benefits of education, such as improved nutrition 

and hygiene knowledge, may be the most predictive factors. This is in light of Zambia's high un- 

employment rate, which would reduce economic disparities between educated and uneducated 

mothers. 

 

The striking disparity in stunting levels between rural and urban areas reflects socioeconomic dis- 

parities between these areas. Rural communities are underserved and marginalized in the majority 

of developing countries. They have limited access to health services and essential commodities, 

such as clean water, and food. Geopolitical factors frequently influence a country's regional 

distribution of resources. This in part explains why the nutritional status of certain regions has not 

improved over time, as some areas remain side-lined. This demonstrates unequal distribution of 

national resources or a lack of deliberate efforts to identify and target such most affected areas 

(Fekete and Weyers, 2016). Highlighting these inequalities is essential in the identification of most 

affected communities, thus providing a voice for the poor and marginalized. This information is 

also beneficial for the effective implementation of remedial measures. 

Africa is rich in mineral resources, and mining is still a major economic driver. The health and 

environmental consequences of mining activities, on the other hand, are rarely fully addressed, 

both during and after they are completed. Communities have to deal with the fallout, with children 

often bearing the brunt of the burden. Blood lead levels in Kabwe were found to have distinct 

hotspots and cold spots, as well as significant spatial autocorrelation. This is explained in part by 

the residential areas' proximity to the mine site. Within this community, residential locations are 

linked to social and economic status. This emphasizes the importance of protecting vulnerable 

communities and facilitating deliberate interventions to mitigate the effects of structural issues. 

Disparities in lead exposure in Zimbabwean mining towns also demonstrates inequities in health 

and safety standards. An understanding of such trends is critical, especially when it comes to di- 

recting corrective actions. 

 

The study finding have been disseminated, and are being utilised by an intervention programme 

aimed at treating children intoxicated with lead in Kabwe. Furthermore, environmental 
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remediation programs now prioritize the underserved communities that were identified in this 

study. The findings of this study have been presented at international conferences. For example, the 

“INCHES conference” on lead and children’s health held on 6th January 2022. 

As a follow-up to this study, another study is being conducted to investigate heavy metal exposure 

pathways via home-grown vegetables, free-range chickens, and various sources of drinking water. 

This one-health approach will close gaps in lead exposure pathways. Further, the University of 

Zambia developed an elective course in Spatial Epidemiology and invited the author to contribute 

in the curriculum development. The course will foster further use of georeferenced data and 

increase in the competence to utilise spatial data within the country. 

 

In conclusion, we find the integration of remote sensing data and socioeconomic characteristics to 

be a novel aspect of this work. This approach has great potential for quick access to data, 

particularly in meeting the SDGs, particularly Goal 10 that aims at reducing inequality within and 

between countries. Because of the identified benefits, the study advocates for greater use of spatial 

data. Furthermore, we recommend research into predictive models based on spatial data to help 

developing countries plan ahead. 
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Abstract

Background

The burden of child under-nutrition still remains a global challenge, with greater severity

being faced by low- and middle-income countries, despite the strategies in the Sustainable

Development Goals (SDGs). Globally, malnutrition is the one of the most important risk fac-

tors associated with illness and death, affecting hundreds of millions of pregnant women

and young children. Sub-Saharan Africa is one of the regions in the world struggling with the

burden of chronic malnutrition. The 2018 Zambia Demographic and Health Survey (ZDHS)

report estimated that 35% of the children under five years of age are stunted. The objective

of this study was to analyse the distribution, and associated factors of stunting in Zambia.

Methods

We analysed the relationships between socio-economic, and remote sensed characteristics

and anthropometric outcomes in under five children, using Bayesian distributional regres-

sion. Georeferenced data was available for 25,852 children from two waves of the ZDHS,

31% observation were from the 2007 and 69% were from the 2013/14. We assessed the lin-

ear, non-linear and spatial effects of covariates on the height-for-age z-score.

Results

Stunting decreased between 2007 and 2013/14 from a mean z-score of 1.59 (credible inter-

val (CI): -1.63; -1.55) to -1.47 (CI: -1.49; -1.44). We found a strong non-linear relationship for

the education of the mother and the wealth of the household on the height-for-age z-score.

Moreover, increasing levels of maternal education above the eighth grade were associated

with a reduced variation of stunting. Our study finds that remote sensed covariates alone

PLOS ONE

PLOS ONE | https://doi.org/10.1371/journal.pone.0255073 August 4, 2021 1 / 20

a1111111111

a1111111111

a1111111111

a1111111111

a1111111111

OPEN ACCESS
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explain little of the variation of the height-for-age z-score, which highlights the importance to

collect socio-economic characteristics, and to control for socio-economic characteristics of

the individual and the household.

Conclusions

While stunting still remains unacceptably high in Zambia with remarkable regional inequali-

ties, the decline is lagging behind goal two of the SDGs. This emphasises the need for poli-

cies that help to reduce the share of chronic malnourished children within Zambia.

Introduction

The burden of child malnutrition still remains a global challenge, with greater severity being

faced by low-and middle-income countries [1–3]. Globally, malnutrition is amongst the most

important risk factors associated with illness and death, affecting hundreds of millions of preg-

nant women and young children [3–6]. Stunting in early childhood is strongly associated with

numerous short-term and long-term consequences, including increased childhood morbidity

and mortality, delayed growth and motor development and long-term educational and eco-

nomic consequences later in life [7]. Undernourishment causes children to start life at men-

tally suboptimal levels [8].

Assessment of childhood malnutrition commonly relies on standard anthropometric mea-

sures for insufficient height-for-age (stunting) indicating chronic undernutrition, insufficient

weight-for-height (wasting), indicating acute undernutrition; and insufficient weight-for-age

(underweight), an indicator commonly used to asses, both, chronic, and acute undernutrition

[9, 10].

Anthropometric measurements are practical techniques for assessing children’s growth pat-

terns during the first years of life. The measurements also provide useful insights into the

nutrition and health situation of entire population groups. Anthropometric indicators are less

accurate than clinical and biochemical techniques in assessing individual nutritional status.

However in resources limited settings, the measurements are a useful screening tool to identify

individuals at risk of undernutrition, who can later be referred to subsequent possible confir-

matory investigation [11].

It is estimated that globally 52 million children under-five years of age are wasted, 17 mil-

lion are severely wasted and 155 million are stunted. Around 45% of deaths among children

under-five years of age, most of which occur in the sub-Saharan Africa are linked to undernu-

trition [3, 9]. It is also estimated that four out of ten children under the age of five in Zambia

are stunted [12]. This paper will therefore focus on childhood stunting in Zambia.

Global prevalence of stunting in children younger than five years declined during the past

two decades, but still remain unacceptably high in South Asia and sub-Saharan Africa regions

[5]. If current trends remain unchecked, projections indicate that 127 million children under

five years of age will be stunted in 2025 [1]. There is therefore need to heighten various inter-

ventions in these affected region and to investigate possible area specific determinants of

stunting.

There are already fairly well documented perspectives on determinants of malnutrition.

The treatise on these determinants mainly relies on the United Nations Children’s Fund (UNI-

CEF) conceptual framework on malnutrition which has evolved over time as more knowledge

and evidence on the causes, consequences and impacts of undernutrition is generated. The
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framework distinguishes between immediate, intermediate and underlying determinants of

malnutrition [5, 13–15].

The immediate causes of undernutrition include inadequate dietary intake and disease,

while the underlying causes could include household food insecurity, inadequate care and

feeding practices for children, unhealthy household and surrounding environments, and inac-

cessible and often inadequate health care. Basic causes of poor nutrition encompasses the soci-

etal structures and processes that neglect human rights and perpetuate poverty, constraints

faced by populations to essential resources [13].

Several studies done within sub-Saharan Africa investigated determinants such as the

mother’s level of education, income levels and these factors have been linked to malnutrition

[9, 12, 16, 17]. The source of the drinking water, the wealth of the household, the area of resi-

dence, age of the child, the sex of the child, the breastfeeding duration, the age of the mother

has also been investigated and were observed to be significant correlates of stunting [12, 18].

Within Zambia, stunting was observed to be more likely among children of less educated

mothers (45%) and those from the poorest households (47%) [19]. The determinates of malnu-

trition are related to each other and the differences and direction between these levels of deter-

minism as indicated in the UNICEF framework are often not discrete but in reality related. As

discussed by Kandala [17] for example, the mother’s level of education might be influencing

child care practises- an intermediate determinant—and the resources available to the house-

hold—an underlying determinant.

Previous studies elsewhere have observed that stunting tends to show regional variation [4,

9, 16]. We see this trend in Zambia as well, where the decline of stunting has been only gradual

and unacceptable, with higher prevalence in Northern province where 50% of the children

being stunted, and stunting being less common in Lusaka, Copperbelt, and Western provinces

where 36% of children are stunted [19]. We see this regional variation of stunting in Fig 1

which shows stunting in Zambia in the 2007 and 2013/14 waves of the Zambian Demographic

and Health Surveys (ZDHS). The ZDHS is a national-wide survey which is representative at a

sub-national level and contains information on trends in fertility, childhood mortality, use of

family planning methods, and maternal and child health indicators including HIV and AIDS

[19]. The figure shows the height-for-age z-score, with Western province better than Northern

province for the 2007 wave. We see a slight difference in 2013/14 as stunting seemed to get

worse in parts of the Western province.

Much of the work done on the determinants of stunting in Zambia, have considered socio-

economic characteristics and have assessed the linear effects of these determinants on the con-

ditional mean [12, 20], using models specifications such as; linear models, generalized linear

models (GLMs) and generalized additive models (GAMs) [21]. These aproaches are useful and

have the advantage of being easy to estimate and to interpret. However, they may risk model

misspecification and draw inaccurate estimates, when heterogeneity is present, or when

extreme values in the response are present and when a linear relationship is not plausible. In

the analysis of certain outcomes, like stunting for example, the interest is not only in the condi-

tional mean, but also in extreme values (height-for-age z-scores), or other parameters of the

response. Quantile regression is one possibility to model beyond the conditional mean, with

the interest to show variation of the outcome at a quantile level, without making any assump-

tions of the response distribution. This method for example has been applied in child malnu-

trition studies [16]. However, distributional regression offers advantage over quantile

regression, as it provides the possibility to characterize the complete probabilistic distribution

of the response in one joint model [21, 22]. Moreover, distributional regression is more effi-

cient, if prior knowledge on specific aspects of the response distribution is available, or can be
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estimated [23]. Furthermore, the characterization of the whole distribution of the response is

more informative.

The study by Kandala [24] which focused on stunting in sub-Saharan countries found that

there are distinct spatial patterns of malnutrition that are not explained by the socio-economic

determinants or other well-known correlates alone [16, 25]. As such, our study includes spatial

covariates, since we aim at investigating spatial differences of stunting in Zambia at sub-district

level while jointly analysing socio-economic and environmental characteristics.

The following three reasons make our study novel compared to previous work [18]. Firstly,

we jointly analysed remote sensed data and socio-economic covariates at sub-national level.

This is made possible due to availability of georeferenced data at the primary sampling unit a

household pertains to in the recent two ZDHS datasets. The Demographic and Health Surveys

rely in most cases on a two-stage survey, and the primary sampling units corresponds to the

enumeration areas from the most recent completed census that has been selected. Georefer-

enced data is important as it generates more specific information which can facilitate targeted

interventions. Secondly, we used Bayesian distributional regression which allows us to model

all parameters of the underlying response distribution. Lastly, we used two waves of the demo-

graphic health surveys to control for spatio temporal interactions. Therefore, this study dem-

onstrates small area variation in stunting in Zambia and analyse possible inequalities and

deprivation at the sub-district level.

Fig 1. Levels of stunting over time in Zambia. The panel shows the average height-for-age z-score at district level for 2007 (left) and 2013/14 (right) of Zambia. Source:
Demographic and Health Surveys (data) and Database of Global Administrative Areas (boundary information); calculation by authors. The shapefile used to create these

maps is republished from [54] under CC BY license, with permission from Robert J. Hijmans, original copyright [2021].

https://doi.org/10.1371/journal.pone.0255073.g001
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Data sources

Socio-economic and georeferenced covariates

We used data from the 2007 and 2013/14 ZDHS. The ZDHS is a national-wide survey which is

representative at a sub-national level and contains information on trends in fertility, childhood

mortality, use of family planning methods, and maternal and child health indicators including

HIV and AIDS. For these population health indicators, data is collected for women aged 15–

49, men aged 15–59 and children below five years of age [19].

The ZDHS provide besides information on the district a household pertains to, also infor-

mation about the geolocation of the primary sampling unit a household belongs to, and from

which the data was collected. The location of the primary sampling unit is the spatial informa-

tion used in the empirical analysis. During data processing, GPS coordinates are displaced to

ensure that respondent confidentiality is maintained. The displacement is randomly applied so

that rural points contain a minimum of 0 and a maximum of 5 km of positional error. Urban

points contain a minimum of 0 and a maximum of 2 km of error. A further 1% of the rural

sample points are offset a minimum of 0 and a maximum of 10 km [26].

Demographic Health Surveys have documented weakness for estimation of individual

anthropometric measurements. Potential threats to high data quality may occur across various

research stages, from survey design to data analysis. There is also often a substantial amount of

missing or implausible anthropometric data across surveys [27].

Furthermore, there is caution over the use of stunting as an individual classifier in epidemi-

ologic research or its interpretation as a clinically meaningful health outcome. Stunting should

be used as originally designed to be from its original use as a population level indicator of com-

munity well-being [28], as it reflects past health and nutrition conditions; and an indication of

socio-economic development of a country [1].

Despite the above highlighted limitations of DHS and anthropometric indicators, they

remain useful national wide measurements that can be used to estimate child health. More-

over, in general anthropometric measures are a good indicator for planning as they can

provide a lot of information to policy makers to answer, how, where and which type of inter-

vention would be favourable in specific settings.

Socio-economic and spatial determinants

The effects of socio-economic factors, such as the education of the mother, household size,

wealth of the household on the health status of children are well documented [12, 29]. We cal-

culated an index representing the wealth of the household based on the household’s assets

using Principal Components Analysis (PCA) following Filmer and Pritchett, and Sahn [30,

31]. Previous studies have shown that household wealth status was a predictor of childhood

malnutrition. Children from poor households are more likely to be stunted than those from

richer households [29].

In our analysis we investigated the impact of different socio-economic factors, which

impact on height-for age Z-score has been discussed in literature. Table 1 gives an overview

and the according references.

Remote sensed covariates

We obtained remote sensed data on drought severity, malaria incidence, and population den-

sity. The description, and source to these data sets is provided in Table 2.

For example, the malaria incidence data was obtained from the Malaria Atlas Project

(MAP). The project collects malaria data on malaria cases reported by surveillance systems,
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nationally representative cross-sectional surveys of parasite rate, and satellite imagery captur-

ing global environmental conditions that influence malaria transmission [35].

Methodology

We assessed the relationships between socio-economic and remote sensed characteristics and

anthropometric outcomes using the Bayesian Distributional Regression (BDR). BDR models

all parameters of the response distribution based on structured additive predictors and allows

to incorporate for example, non-linear effects of metric covariates, spatial effects, or varying

effects. Applications of structured additive regression models to topics in Global Public Health

are found in several publications [39–42]. This approach permits us to fully analyse the whole

distribution [41, 43] and our analysis was not restricted to assessing the conditional mean of

the height-for-age z-score. Instead suspected heterogeneity across socio-economic and geore-

ferenced factors and the anthropometric measure can be directly captured. In the context of

growth failures this is of particular importance, as previous studies highlighted high levels of

heterogeneity related to growth failures [33].

Bayesian distributional regression

Relying on Bayesian distributional regression requires to specify the distribution of the response

variable. Assuming the response distribution to be Gaussian permits to model besides the con-

ditional mean also the variance or standard deviation of the response variable. Graphical analy-

sis using amongst others randomised quantile residuals [44] strengthens that a Gaussian model

is plausible. See also Fig 2, for more details. In the left- hand panel of Fig 2 the histogram of the

height-for-age z-score together with the underlying density illustrates why the normal distribu-

tion seems to be an appropriate choice. This is further confirmed in the second and third panel,

where the histogram of the quantile residuals including the underlying kernel density estimate,

respectively, the QQ-plot of the randomised quantile residuals are shown.

Table 1. Included covariates, their source, and effect on the height-for-age z-score found in the literature.

Covariate Used data source Effect on stunting found in literature Reference

Asset Index DHS Household wealth inequality associated with childhood stunting [29]

Age mother at birth DHS Increasing non-linearly [16]

Age child DHS Decreasing non-linearly [17]

Birth order DHS Being born forth or higher significantly more stunted [16]

Breastfeeding duration DHS Breastfeeding interval� associated with low level of stunting [25]

Education mother DHS Stunting improves non-linearly with the educational level [32]

Household size DHS Increases linearly [12]

Mothers’ BMI DHS U-shape relationship with childhood stunting [17]

Number of vaccinations DHS Lower levels of stunting when fully vaccinated [25]

Drought severity index See Table 2 Not further specified [33]

Malaria incidence See Table 2 No clear pattern [34]

Population density See Table 2 Not further specified [33]

https://doi.org/10.1371/journal.pone.0255073.t001

Table 2. Source of remote sensed covariates.

Covariate Description Source Reference

Drought index scPDSI CRU4.03 Climate Research Unit [36, 37]

Malaria incidence Plasmodium falciparum incidence Malaria Atlas Project [35]

Population density Number of people per km2 Socioeconomic Data and Applications Center [38]

https://doi.org/10.1371/journal.pone.0255073.t002
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Assuming the response distribution of the height-for-age z-score to be Gaussian, both the

mean μ and the standard deviation σ are related to a structured additive predictor. Accord-

ingly, the z � scoreis � N ðmis; siÞ can be specified as Gaussian response, with i = 1, . . ., I
being the number of children, and s = 1, . . ., S be the location of the primary sampling unit the

child pertains to. Using the same notation as in the methodology manual of BayesX the regres-

sion model can be written as follows [45]:

μ ¼ hmðημÞ ¼ ημ;

σ ¼ hsðησÞ ¼ expðησÞ:
ð1Þ

Here both parameters of the normal distribution the mean μ and the standard deviation σ
are related to the set of covariates specified further in Tables 1 and 2. Accordingly, the response

functions hμ, and hσ link the two parameters to their structured additive predictors which is

specified as follows:

ημ ¼ f1ðAsset indexÞ þ f2ðBirth order; Age mother at birthÞþ

f3ðAge child; Breastfeeding durationÞ þ f4ðEducation motherÞþ

f5ðHousehold sizeÞ þ f6ðBMI motherÞþ

f7ðNumber of vaccinationsÞ þ f8ðDrought severity indexÞþ

f9ðMalaria incidenceÞ þ f10ðlogð1þ Population densityÞÞ

f11ðSpatial; TimeÞ þ x0β;

ησ ¼ f1ðAsset indexÞ þ f2ðBirth order; Age mother at birthÞþ

f3ðAge child; Breastfeeding durationÞ þ f4ðEducation motherÞþ

f5ðHousehold sizeÞ þ f6ðBMI motherÞþ

f7ðNumber of vaccinationsÞ þ f8ðDrought severity indexÞþ

f9ðMalaria incidenceÞ þ f10ðlogð1þ Population densityÞÞ

f11ðSpatial; TimeÞ þ x0β;

ð2Þ

Fig 2. Histogram of the response and histogram and QQ-plot of the randomised quantile residuals. The left-hand panel shows the histogram and kernel density

estimates of the height-for-age z-score, the middle panel shows the histogram of the randomised quantile residuals together with the normal density estimates, and the

right-hand panels depicts the QQ-plot of the randomised quantile residuals. Source: Demographic and Health Surveys (data); calculation by authors.

https://doi.org/10.1371/journal.pone.0255073.g002
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where f1(�) to f10(�) are potential non-linear effects of socio-economic and remote sensed

covariates approximated using Bayesian penalised Splines (P-Splines) first described by Lang

and Brezger [46]. Bayesian P-Splines are based on P-Splines as introduced by Eilers and Marx

[47], and use an approach based on basis functions. As smoothness priors of the unknown

regression parameters βj a random walk prior of the form βjjg
2
j / exp � 1

2g2j
β0jK jβj

� �

is speci-

fied, with g2
j being random variance parameters and Kj is an appropriate penalty matrix, see

also Lang and Brezger [46] for an elaborate discussion. Relying on Bayesian P-Splines allows to

incorporate different model terms such as non-linear effects for continuous variables, varying

coefficients [48], or spatial effect. In addition, Bayesian P-Splines allow to decompose the pre-

dictor additively and are known for having good mixing properties. See S1 to S8 Figs in the

Supporting Information for convergence diagnosctics of the sampling paths of the parameters

included in the final model that is based on a Markov chain Monte Carlo (MCMC) algorithm.

f11(�) is the spatio-temporal effect included in the model to account for unexplained heteroge-

neity by incorporating a Markov random field prior [46]. In more detail, following Lang and

Brezger [46], the basic Markov random field prior for the regression coefficients βs of the spa-

tially correlated effect fs is defined as follows: bsjbs0 ; s 6¼ s0 � N ð 1

Ns

X

s02ds
bs0 ;

t2s
Ns
Þ. Where Ns is

the number of neighbouring sites of location s, s0 belongs to the set of neighbouring sites δs of

location s, and t2
s being the spatially adaptive variance parameteres [47]. Incorporating the spa-

tial effect on a Markov random field proposal allows to account for the remaining heterogene-

ity that is not explained by the included covariates. See also Chapter 4 of the methodology

manual of BayesX [45], and Seiler and colleagues [42] for a more elaborate discussion on the

incorporation of the spatio- temporal effect based on a Markov random field prior. This vari-

ables are further specified in Table 1. x0 β subsumes the vector of included effect coded categor-

ical covariates that are the gender, the place of living, and the survey wave. For an illustration

of effect coding see for example Fahrmeier and colleagues [49]. From a Bayesian perspective

the categorical variables are considered to be random variables for which a diffuse prior of the

form p(γj)/ const is assigned [46].

Model selection

The fit of the models are compared by relying on the Deviance Information Criterion (DIC)

[50] and Widely Applicable Information Criterion (WAIC) [51], and are summarised in

Table 3. As a rule of thumb can be seen that the model with the lowest value describes the data

best. We specified six distinct models, aiming to identify the importance of, for instance,

socio-economic or georeferenced factors. In more detail, the differences between these models

are summarised in Table 4.

Table 3. Estimation results: DIC and WAIC.

Model DIC WAIC

Model 1 95588.2 95550.7

Model 2 91027.1 91566.4

Model 3 91375.7 91884.0

Model 4 96263.1 96541.9

Model 5 90992.4 91527.7

Model 6 91012.7 91543.3

Values of the DIC and the WAIC for different model specifications. Source: DHS; calculation by authors.

https://doi.org/10.1371/journal.pone.0255073.t003
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Results

In the following Section we will discuss the results of Model 5, omitting insignificant terms, as

Model 5 has both the lowest DIC and WAIC. Result of the included covariates are however,

similar throughout all specifications.

Descriptive analysis

Table 5 shows the baseline characteristics of selected covariates in the population between the

two ZDHS survey of 2007 and 2013/14, and remote sensed data aggregates for these waves.

Data was available for 25,852 children from the two waves, 31% observation were from the

2007 and 69% were from the 2013/14 ZDHS. Levels of stunting decreased between 2007 and

13/14 from a mean z-scores of -1.59 CI(-1.63; -1.55) to -1.47 CI(-1.49; -1.44). The breastfeeding

duration declined from 16.22 to 15.69. There was a notable increase in the number of received

vaccinations by children from 5.6 to 7.5 vaccinations. There was a slight increase in the num-

ber of years the mother spent in school from 7.2 to 7.8. Malaria incidence rates (plasmodium

falciparum incidence) declined from 26% to 20%. Night-time light increased from 2.75, to 3.72

(observed values were log transformed), a possible indication of increase in urbanisation.

Night-time light was highly correlated (ρ = 0.73) to population density as such it was omitted

in subsequent analysis.

High disparities in the height-for-age z-score have been observed at the district and provin-

cial level within Zambia. There was a drift in the spatial pattern of malnutrition in the 2013/14

wave compared to the previous survey, indicating a general improvement. See also Fig 1 for a

more detailed, descriptive, analysis of the spatial patterns of the height-for-age z-score within

Zambia.

We observed that in the 2007 wave, stunting was lowest in the Western and Muchinga

province. In the Southern province generally, low values were also observed, except for the

Sinazongwe district. For Eastern province, Nyimba, Katete, Petauke and Lundazi districts had

high levels. In the Luapula province, high levels of stunting were observed in the districts of

Table 4. Specification of estimated models.

Model term Model 1 Model 2 Model 3 Model 4 Model 5 Model 6

ημ yes (y) y y y y y

ησ n (n) y y y y y

x0 β y y y y y y

f1(Asset index) y y y n y y

f2(Birth order, Age mother at birth) y ημ, n ησ y ημ, n ησ y ημ, n ησ n y ημ, n ησ y ημ, n ησ
f3(Age child, Breastfeeding duration) y ημ, n ησ y ημ, n ησ y ημ, n ησ n y ημ, n ησ y ημ, n ησ
f4(Education mother) y y y n y y

f5(Household size) y y y n y y

f6(BMI mother) y y y n y y

f7(Number of vaccinations) y y y n y y

f8(Drought severity index) y y y n y y

f9(Malaria incidence) y y y n y y

f10(log(1 + Population density)) y y y n y n

f11(Spatial, Time) y y y n y y

Table of specified models indicating the differences between models and the included model terms and covariates. Note that after evaluating the sampling paths of the

resulting Markov chains of the MCMC simulations, in ησ f2(�) and f3(�) had to be omitted due bad mixing.

https://doi.org/10.1371/journal.pone.0255073.t004
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Milenge, Mwense, Kawambwa, Nchelenge and Chiengi. Stunting was severe in some parts of

the Copperbelt province which is predominantly a mining region and the Northern province.

Central province had moderate levels, except for Serenje district.

Linear effects

With respect to the linear effects, Table 6 shows the effect of the gender and the area of resi-

dence on the posterior mean of the response variable. Considering the posterior mean of the

height-for-age z-score of -1.70, boys were found to more stunted compared to girls. Stunting

was also found to be higher in children from rural households compared to urban areas. Two

patterns well documented in the literature for other countries and also Zambia [12, 17, 52].

Table 5. Descriptive statistics covariates.

2007 ZDHS 2013/14 ZDHS

Response Mean (95% CI) n Mean (95% CI) n
Stunting -1.59 (-1.63; -1.55) 7,936 -1.47 CI (-1.49; -1.44) 17,916

Covariates Mean (95% CI), % SD Mean (95% CI), % SD

Proportion of male children (= 1) 49.62% 50.08%

Age children in months 29.14 (28.76; 29.51) 17.03 29.84 (29.58; 30.09) 17.20

Breastfeeding duration in months 16.22 (16.07; 16.38) 7.04 15.69 (15.58; 15.79) 7.11

Birth order within household 2.99 (2.93; 3.04) 2.38 2.88 (2.84; 2.91) 2.37

Number of vaccinations 5.64 (5.59; 5.69) 2.40 7.45 (7.42; 7.49) 2.17

Age mother at birth in years 24.30 (24.15; 24.45) 6.82 24.08 (23.98; 24.18) 6.94

BMI mother 22.35 (22.27; 22.43) 3.42 22.57 (22.51; 22.62) 3.75

Years of education mother 7.18 (7.10; 7.26) 3.53 7.81 (7.76; 7.87) 3.64

Urban place of living (= 1) 38.73% 43.01%

Size of the household 6.27 (6.21; 6.32) 2.49 6.60 (6.56; 6.64) 2.77

Asset index deviation regional mean 0.00 (-0.02; 0.02) 0.88 -0.01 (-0.02; 0.01) 0.88

Malaria incidence 0.26 (0.25; 0.26) 0.11 0.20 (0.20; 0.20) 0.12

Population density 260.07 (241.79; 278.36) 831.22 321.87 (305.78; 337.96) 1098.58

Drought severity index -0.59 (-0.60; -0.58) 0.66 0.37 (0.36; 0.39) 0.91

Descriptive statistics of categorical and continuous covariates. Note that the Drought severity index corresponds to the self-calibrating Palmer Drought Severity Index

(scPDSI). Source: DHS and other sources (see Table 2 for detailed information); calculations by authors.

https://doi.org/10.1371/journal.pone.0255073.t005

Table 6. Estimation results: Linear effects of Model 5.

Covariate Posterior mean 95% Credible interval

ημ Intercept -1.70 -1.84; -1.57

Boys -0.10 -0.12; -0.08

Urban 0.04 0.00; 0.07

Wave ZDHS 2007 -0.07 -0.13; -0.01

ησ Intercept 0.23 0.17; 0.29

Boys -0.00 -0.01; 0.01

Urban 0.01 -0.01; 0.04

Wave ZDHS 2007 0.05 0.01; 0.09

Results of linear covariates included in the Model 5. Source: DHS; calculation by authors.

https://doi.org/10.1371/journal.pone.0255073.t006
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Socio-economic characteristics

Fig 3 shows the non-linear effect of the asset index, and the years of education of the mother

on the mean μ and standard deviation σ of the response variable. Undernutrition has been

associated to poverty [4], we observed that children living in poor household showed worse

outcomes compare to children living in wealthier households, i.e the z-score is linearly increas-

ing with increasing asset index. The effect of the asset index on the standard deviation does not

notably vary across the range of the asset index, indicating a homogenous effect of wealth.

The bottom panel of Fig 3 shows that an increase in the level of education of the mother

above eight years of education is associated with an appreciable increase in the height-for-age

z-score. Notably also is that, there is not much difference in this effect for mother’s education

less than 8 years. This entails that primary school education does not improve the nutrition

outcome of the children as much. Above eight years of schooling, we see clearly that increase

in the years has positive effect on the z-score. Moreover, the variation in the height-for-age z-

score is higher with less years of schooling, whereas the variation gradually decreases with

increasing levels of education of the mother.

Fig 4 shows the non-linear effect of the number of vaccinations the child received and

mother’s BMI on the mean and the standard deviation z- score. The top graph shows that

there was a positive effect on the mean z-score with increase in the number of vaccinations the

child received. There is also greater variation in stunting levels among children who received

less than 2 vaccinations.

Low values of the mothers BMI are negatively associated with the height-for-age z-score of

the child, while for increasing values of the BMI also an increase in the posterior mean of the

z/score can be observed. For values above 40 for the BMI of their mother the results are incon-

clusive indicated by the widening of the credible intervals. Low values of the BMI of the

mother are associated with less variation compared to high values.

Fig 5 shows that increasing malaria incidence about 0.3 had a negative effect on the z-score,

however we do not see any meaningful differences in the standard deviation over the spectrum

the malaria incidences.

Due to the high correlation of breastfeeding and age of the child, an interaction between

these two variables can be presumed for which one has to account for. Fig 6 shows that chil-

dren below 12 months of age who were breastfeed, were not malnourished. Accordingly, mal-

nutrition mostly seems to be a process that comes to effect as children grow. Stunting was high

for children above 36 months of age and who were breastfeed. On the right side, the figure

shows that stunting was low in children whose mothers were around 30 years and with respect

to birth order, which emphasizes that especially children of very young mothers are those most

vulnerable.

Georeferenced characteristics

Fig 7 emphasizes the pronounced north and south pattern after adjusting for all the other vari-

ables, in particular after adjusting for wealth and rurality which was already described in the

descriptive analysis. The highest variation in the height-for-age z-score was also observed in

north (Luapula province) in both waves as can be seen on the right side of the figure.

Discussion & conclusion

Using the two waves of the ZDHS, we modelled the height-for-age z-score by using socio-eco-

nomic and remote sensed information. To analyse the whole distribution and not just focusing

on the conditional mean, we used a Bayesian distributional regression approach accounting

for heterogeneity as well.
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Fig 3. Non-linear effects of the asset index and the years of education. The Figure depicts the mean effects on the mean μ (left), and the standard deviation σ
(right) together with 80 per cent and 95 per cent simultaneous credible intervals for the asset index (top), and the years of education of the mother (bottom). Source:
Demographic and Health Surveys (data); calculation by authors.

https://doi.org/10.1371/journal.pone.0255073.g003
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Fig 4. Non-linear effects of the vaccination coverage and the BMI of the mother. The Figure depicts the mean effects on the mean μ (left), and the standard deviation

σ (right) together with 80 per cent and 95 per cent simultaneous credible intervals for the vaccination coverage (top), and the BMI of the mother (bottom). Source:
Demographic and Health Surveys (data); calculation by authors.

https://doi.org/10.1371/journal.pone.0255073.g004
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Using Bayesian distributional regression, we assessed the relationship of socio-economic,

and remote sensed covariates and stunting. Bayesian distributional regression, presents an

advantage in terms of model flexibility allowing to incorporate, amongst others, non-linear

effects and spatial effects. This however comes also with the drawback of data intensity and

computational complexity.

Fig 5. Non-linear effects of the malaria incidence. The Figure depicts the mean effects on the mean μ (left), and the standard

deviation σ (right) together with 80 per cent and 95 per cent simultaneous credible intervals for the malaria incidence. Source:
Demographic and Health Surveys (data); calculation by authors.

https://doi.org/10.1371/journal.pone.0255073.g005

Fig 6. Smooth effects of the interaction of the age of the child and breastfeeding duration, and interaction the age of the

mother and the birth order. The Figure depicts the mean effects on the mean μ for the interactions of the age of the child and

breastfeeding duration, and the interaction the age of the mother and the birth order, respectively. Source: Demographic and Health

Surveys (data); calculation by authors.

https://doi.org/10.1371/journal.pone.0255073.g006
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Fig 7. Smooth spatial effect. The Figure depicts the mean spatial effect of the mean μ (left), and the standard deviation σ (right) for the year 2007 (left) and

the year 2013/14 (right). Source: Demographic and Health Surveys (data) and Database of Global Administrative Areas (boundary information);

calculation by authors. The shapefile used to create these maps is republished from [54] under CC BY license, with permission from Robert J. Hijmans,

original copyright [2021].

https://doi.org/10.1371/journal.pone.0255073.g007
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Remote sensed techniques can be useful for future research on community health assess-

ment as these techniques provide an advantage to take measurements quickly for remote and

hard to reach areas. The data also enable to make meaningful analyses at sub-national levels

which can improve targeting of interventions due to high levels of geographic specificity [26,

33], however they do not give a full picture. Therefore, it is important to account for other

covariates such as socio-economic characteristics at the individual or household level.

When relying on remote sensed information to asses anthropometric measures or biophysi-

cal developments, great caution should be taken with respect to data quality. Our study finds

that remote sensed covariates alone explain little of the variation of the response, this empha-

sizes the need to control also for socio-economic characteristics. We find that the combination

of remote sensed data and socio-economic characteristics explain more of the variation of the

response, compared to solely focusing on one of the two sources of explanatory variables. In

addition this also highlights the strong influence of socio-economic covariates or can be seen

as an indicator of poor quality of the available remote sensed information.

Clear non-linear patterns emerged with respect to the years of education of the mother, and

number of vaccinations. There was a clear non-linear tendency among children whose moth-

ers had up to eight years of schooling having a low height-for-age z-score. For children of

mothers with secondary or higher education the height-for-age z-score starts to improve

strongly. This trend is consistent with what has been observed in others studies were odds of

stunting were higher among children from mothers who had few years of education [12, 52]

and lowest among those who had advanced years in education [52]. Higher education level has

been associated with increased income levels and improved knowledge among mothers who

are usually the primary caregivers. As such educated mothers are more likely to take better

care of their children by making informed nutritional decisions [24, 52, 53]. Increasing num-

ber of vaccinations showed improved z-score among children. Even though the effect was sig-

nificant, the same size of the effect might not be relevant in practice.

Moreover, considering the full distribution like we did shows that the variation is highest

for low levels of education and decreases with increasing years of education. This study did not

consider the association of paternal education and the child z-score, however in another study,

it was found that it was Maternal education that had a positive impact on children’s nutritional

status [17].

We observe differences in levels of malnutrition in various regions in Zambia. One consis-

tent pattern is that of discrepancy between the rural areas which are worse off compared to

urban areas and confirms socio-economic inequalities between rural and urban areas. This

may suggest social and economic inequalities between such areas. This has already been docu-

mented in other studies [12, 14, 24]. Furthermore, in terms of a spatial distribution, when you

consider a smooth spatial effect, there is a clear regional variation in addition to the effect of

rurality. Even after accounting for economic activities, the farming southern regions tend to

be well off compared to the more industrialised northern areas. There is need to investigate

further the underlying factors that contribute to the variation in the height-for-age z-score.

The present study shows that stunting still remain high in Zambia with remarkable regional

inequalities and the decline is gradual which is unacceptable. There is need therefore to

address the socio-economic indicators if this status is to improve.
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S1 Fig. Sampling paths. The Figure depicts the sampling paths of the parameters in ημ of the
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effect of the mothers years of education. Demographic and Health Surveys calculation by
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S2 Fig. Sampling paths. The Figure depicts the sampling paths of the parameters in ημ of the

household size, the linear effects, and the malaria incidence. Demographic and Health Surveys

calculation by authors.
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S3 Fig. Sampling paths. The Figure depicts the sampling paths of the parameters in ημ of the

maternal BMI, the population density, the aridity index, and the spatial effect. Demographic

and Health Surveys calculation by authors.

(EPS)

S4 Fig. Sampling paths. The Figure depicts the sampling paths of the parameters in ημ of the

effect of the number of vaccination. Demographic and Health Surveys calculation by authors.

(EPS)

S5 Fig. Sampling paths. The Figure depicts the sampling paths of the parameters in ησ of the

effect of the asset index, and the effect of the mothers years of education. Demographic and

Health Surveys calculation by authors.

(EPS)

S6 Fig. Sampling paths. The Figure depicts the sampling paths of the parameters in ησ of the

household size, the linear effects, and the malaria incidence. Demographic and Health Surveys

calculation by authors.

(EPS)

S7 Fig. Sampling paths. The Figure depicts the sampling paths of the parameters in ησ of the
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S8 Fig. Sampling paths. The Figure depicts the sampling paths of the parameters in ησ of the
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A B S T R A C T   

Background: Communities around Kabwe, Zambia are exposed to lead due to deposits from an old lead (Pb) and 
zinc (Zn) mining site. Children are particularly more vulnerable than adults, presenting with greatest risk of 
health complications. They have increased oral uptake due to their hand to mouth activities. Spatial analysis of 
childhood lead exposure is useful in identifying specific areas with highest risk of pollution. The objective of the 
current study was to use a geospatial approach to investigate spatial clustering and hotspots of blood lead levels 
in children within Kabwe. 
Methods: We analysed existing data on blood lead levels (BLL) for 362 children below the age of 15 from Kabwe 
town. We used spatial autocorrelation methods involving the global Moran’s I and local Getis-Ord Gi*statistic in 
ArcMap 10.5.1, to test for spatial dependency among the blood lead levels in children using the household 
geolocations. 
Results: BLL in children from Kabwe are spatially autocorrelated with a Moran’s Index of 0.62 (p < 0.001). We 
found distinct hotspots (mean 51.9 μg/dL) in communities close to the old lead and zinc-mining site, lying on its 
western side. Whereas coldspots (mean 7 μg/dL) where observed in areas distant to the mine and traced on the 
eastern side. This pattern suggests a possible association between observed BLL and distance from the abandoned 
lead and zinc mine, and prevailing winds. 
Conclusion: Using geocoded data for households, we found clustering of childhood blood lead and identified 
distinct hotspot areas with high lead levels for Kabwe town. The geospatial approach used is especially valuable 
in resource-constrained settings like Zambia, where the precise identification of high risk locations allows for the 
initiation of targeted remedial and treatment programs.   

1. Introduction 

Lead (Pb) is a toxic metal and a global health hazard. Over 815 
million children worldwide are reported to have dangerously high 
concentrations of Pb in their bloodstream Burki (2020), (Zhang et al., 

2008). Low-income countries of sub-Saharan Africa face the greatest 
impacts of childhood lead poisoning (Landrigan et al., 2018). Children 
are more vulnerable to Pb related negative health outcomes, compared 
to adults, as their still developing central nervous system is more sus-
ceptible to Pb exposure, mainly during the primary developmental 
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Fig. 1. Study area.  
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stages (Rooney et al., 2018; Scheuplein et al., 2002). Pb exposure, even 
at low levels, has been associated with deficits in cognitive functioning 
and intelligence quotient (IQ) in children (Liu et al., 2011; Lanphear 
et al., 2005). No level of Pb exposure appears to be safe (Bellinger et al., 
1991). High Pb levels of exposure exceeding 80 μg/dL can lead to 
anaemia, seizures, coma, encephalopathy, and death (World Health 
Organization, 2010; Wang et al., 2009). 

While the physiological mechanisms for Pb dose–response may be 
similar for all children (Mielke et al., 2019), there are varied exposure 
pathways. In most settings, blood lead levels (BLL) are related to Pb soil 
contamination (Matte et al., 1991) and social economic factors (Mielke 
et al., 2019). The impact of socio-economic and environmental cova-
riates on the Pb exposure in children has been well documented (Stark 
et al., 1982; Mielke et al., 2019). 

Globally childhood Pb poisoning remains a major environmental 
health concern in cities and communities with Pb-contaminated soils 
(Ikem et al., 2008; Lo et al., 2012). Contaminated soil, especially if the 
soil is dry and dusty, can be ingested and absorbed. Children are 
particularly vulnerable to Pb intoxication due to their hand-to-mouth 
activities, as such they are more likely to ingest more Pb from contam-
inated soils. Also, vulnerability is increased due to their much higher 
gastrointestinal absorption relatively to adults (World Health Organi-
zation, 2010; Plumlee et al., 2013). 

Kabwe town, located in the Central Province of Zambia had a long 
history of lead (Pb), zinc (Zn) and cadmium (Cd) mining dating back to 
the 1900’s. The operations came to a stop in 1994, leaving behind 
ineliminable impact of pollution on the environment (Nakayama et al., 
2011). The open cast mining and the resulting big tailing hill still 
contain a lot of Pb. Neither the tailing hill nor the open pit side were ever 
properly rehabilitated. Most roads in Kabwe are unpaved; the backyards 
of the housing areas are dry and dusty. During the 9 months period of 
dry season, Pb is easily transported towards the windward lying areas 
and communities. 

Previous Pb pollution remediation initiatives in Kabwe have not been 
sustainable. For example, from 2003 to 2011, the World Bank funded the 
Copperbelt Environment Project (CEP). The project aimed at cleaning up 
affected communities, and the treatment of children with high blood Pb 
levels. Environmental remedial activities included removal of top soil 
and planting of grass in the affected communities. These activities halted 
once the project ended in 2011 due to lack of resources and local ca-
pacity (Bank, 2011). Currently there is an ongoing project, “the Zambia 
Mining and Environmental Remediation and Improvement Project 
(ZMERIP)” aimed at environmental remediation and treatment of 10, 
000 children with high BLL. The project has an environmental remedi-
ation component with activities including; removal of top soil and 
planting of grass in affected communities. 

Ettler et al. (2020) analysed soil samples from Kabwe townships and 
main roads and reported that soil Pb levels were above recommended 
levels for residential areas. They also observed that the geometric mean 
for soil Pb in townships closer to the mining sites were higher than far off 
areas. Highly polluted townships were those immediately adjacent to 
the former Kabwe mining complex and homes downwind from the 
smelter and the tailings (Bose-O’Reilly, Yabe et al., 2018a,b). 

Former reports and scientific publications showed high BLL for 
people living in Kabwe, due to their continued exposure to Pb. In most 
compounds, BLL in children is reported to be above 65 μg/dL (Yabe 
et al., 2015, 2020). The Pb contaminated dust that emanates from the 
mine dump is the main source of this observed pollution, affecting 
mostly children (Bose-O’reilly et al., 2018a). 

1.1. Spatial patterns of Pb exposure in Kabwe 

Analysis of the Pb spatial distribution is particularly important in the 
identification of areas with high risk of exposure (Akkus and Ozdenerol, 
2014; Miranda et al., 2002). In resource-limited settings such as Zambia, 
use of Geographic Information System (GIS) tools to identify affected 

populations is essential in ensuring that remediation and treatment 
programmes target communities at greatest risk. The integration of GIS 
to understand Pb exposure patterns and coverage of interventions also 
strengthens the implementation of control programmes. Spatial 
analytical methods such as cluster and hot spot analysis are ideal in this 
regard (Zhang et al., 2008; Akkus and Ozdenerol, 2014). Moreover, 
hotspot analysis can help understand disparities in exposure and health 
outcomes at a lower administrative level. This precision is valuable as it 
enables quantification of inequalities and identification of successes and 
failures of programmes and policies at the local level (Osgood-Zim-
merman et al., 2018). 

Previous studies observed that BLL in Kabwe varied depending on 
the townships, and relative distance from the mine site (Yabe et al., 
2020, Bose-O’reilly et al., 2018b). Children in residential areas 
(Kasanda, Makululu, Chowa) closer to the mine site have higher average 
BLL while those from further located areas (Hamududu) have lower BLL 
(Yabe et al., 2020). Another study observed this trend, in domestic dogs, 
where the blood Pb concentrations were higher in dogs from commu-
nities that were located near the mine than the far-flung residential areas 
(Toyomaki et al., 2020). 

Despite the indication of regional variation in the distribution of BLL 
in Kabwe, until now no study has investigated the household spatial 
distribution of BLL to identify hotspot and coldspot areas. Hotspot areas 
can be clustered (spatial clusters) or exist individually (spatial outliers). 
Spatial clusters in this context are areas (households) with high BLL 
values surrounded by observations with also high values. Whereas 
spatial outliers are households with high BLL surrounded by samples 
with normal or low values (Zhang and Lin, 2006). The aim of this study 
therefore was to investigate clustering of BLL and identify hotspot areas 
using GIS techniques. 

2. Methodology 

2.1. Study population 

We re-analysed BLL data that was collected in 2017 by the University 
of Zambia with collaborators from Hokkaido University under the 
Kabwe Mine Pollution Amelioration Initiative (KAMPAI) Project. Forty 
(40) Standard Enumeration Areas (SEA) falling within the catchment 
area of health facilities were randomly selected, from which 25 house-
holds in each were randomly selected and geo-coordinates recorded. 
Blood was collected from the father, mother and two children. Data was 
collected on 1000 households with a total of 1190 household members, 
of which 291 were younger children (three months to three years old), 
271 older children (four to nine years old), 412 mothers, and 216 fa-
thers. A detailed description on how the data was collected has been 
provided by Yabe et al. (2020). 

We analysed data for 362 children below the age of 15, each sampled 
from a single household from the 40 SEAs. Using location parameters 
(geo-coordinates), we analysed data from these households. We selected 
the youngest child from each household that was enlisted in the study by 
Yabe et al. (2020). We focused our analysis on children as they are re-
ported to be the most vulnerable to impacts of lead poisoning 
(Bose-O’reilly et al., 2018b). Moreover, this is the age range reported to 
have highest BLL. Fig. 1, shows the residential areas that were included 
in current study. 

2.2. Laboratory methods 

Pb analysis in whole blood samples was done on-site immediately 
after blood sample collection using a point-of-care blood Pb testing 
analyser, LeadCare© II (Magellan Diagnostics, USA). The LeadCare II 
Analyser used had limits of quantification of 3.3–65 μg/dL, as such, 
precise levels out of this range could not be determined. BLLs below 
instrument detection limit were therefore treated as 1.65 μg/dL, the 
mean of 0 and 3.3. For samples above 65 μg/dL, a 3 times dilution was 
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done using 0.1% HCl. Detailed laboratory procedures are described 
elsewhere (Yabe et al., 2020). 

2.3. Statistical methods 

We used spatial autocorrelation methods involving the global Mor-
an’s I and local Getis-Ord Gi*statistic to assess the spatial patterns in the 
children’s BLL. These methods are briefly discussed below. 

2.3.1. Test for spatial dependency 
The global Moran’s I was implemented in ArcMap 10.5.1 (Release, 

2012) to test for a general spatial dependency among the BLL in children 
in Kabwe, i.e. to examine whether high or low levels of BLL show spatial 
clusters or whether they are scattered in a random pattern. 

The global Moran’s I is given by the formula: 

I =
n
So

∑n
i=1

∑n
j=1 wi,jrirj

∑n
i=1r2

i
(1)  

where ri is the deviation of the child’s BLL value at area i from its mean 
(xi − μ), wi,j is the spatial weight between area , i and j, n are the 
numbers of observations and So is the sum of all the spatial weights: 

So =
∑n

i=1

∑n

j=1
wi,j (2)  

2.3.2. Hotspot analysis 
To identify the spatial location (coordinates) of cluster of high and of 

low BLL levels (hotspots and coldspots), we used the local Getis-Ord 
Gi*statistic (Getis and Ord, 2010). We examined the BLL observation 
with respect to neighbouring BLL observations. An observation with a 
high value or low value does not necessarily imply a hotspot or a cold-
spot, respectively, unless it is surrounded by observations with high 
values (hotspot) or low values (coldspot). Thus, a large positive Gi*s-
tatistic is obtained when the local sum of an observation and its neigh-
bours is larger than the expected local sum indicating clustering of high 
values, while a small value of the Gi*statistic indicates clustering of low 
BLL values. In addition, we evaluated whether the Gi*statistic signifi-
cantly differs from 0, i.e., whether a cluster has a significantly elevated 
or significantly low BLL level, leading to the definition of hotspot and 
coldspot, respectively. The Gi*statistic is given as: 

G*
i =

∑n
j=1 wi,jxj − μ

∑n
j=1 wi,j

S

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅[

n
∑n

j=1
w2

i,j −

(∑n

j=1
wi,j

)2
]

n− 1

√
√
√
√

(3)  

where xj is the BLL value for the child in area j, wi,j is the spatial weight 
between area i and j, n is the number of observations, mu is the mean BLL 
level and S is the standard deviation of x, i.e.: 

μ=

∑n
j=1 xj

n
(4)  

S =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅∑n
j=1 x2

j

n
− (u)2

√

(5) 

All spatial analyses were performed using ArcMap 10.5.1. All test 
decisions were based on a significance level of 0.05. 

2.4. Ethical clearance 

The University of Zambia Research Ethics Committee (UNZAREC; 
REF. No. 012-04-16) approved the study. The Ministry of Health through 
the Zambia National Health Research Ethics Board and the Kabwe Dis-
trict Medical Office granted further approvals (Yabe et al., 2020). In 
accordance to ethical guidelines and data protection, until the point of 

data integration and analysis the location coordinates were stored 
separately from attribute data, all attribute data were de-identified. 

3. Results 

3.1. Blood lead level distribution 

Table 1 shows age categories and the distribution of BLL in these age 
groups. The largest age group (47.7%) was 0–3 years while the smallest 
(5%) was the 10–15 years group. The global mean BLL was 30.1 μg/dL 
and the median 23.8 μg/dL, which is comparable to the values reported 
for the young child by Yabe et al. (2020). The distribution of individual 
blood Pb ranged from a minimum of 3.3 μg/dL to maximum of 162 
μg/dL. Age groups 0–3 and 10–15 years had the highest mean (31.9 
μg/dL), and median (29.7 μg/dL) respectively. As shown in Table 2, the 
mean blood Pb in coldspots was 7 μg/dL at 99% confidence level while 
the hotspots had a mean of 51.9 μg/dL at a similar confidence level. 
Table 3 shows the distribution of blood Pb in the communities contained 
in our analysis. Kasanda had the highest mean (60.2 μg/dL) while the 
lowest mean was observed in Hamududu (4.5 μg/dL). 

Table 1 
Blood lead level (BLL) distribution by age.   

All 0–3 years 4–9 years 10–15 years 

n = 362 n = 173 n = 170 n = 19 

Mean (μg/dL) 30.1 31.9 28.7 26.9 
SD 25.8 28.2 23.4 23.3 
Median (μg/dL) 23.8 24.6 21.9 29.7 
Minimum (μg/dL) 3.3 3.3 3.3 3.3 
Maximum (μg/dL) 162.3 162.3 94.8 67.2  

Table 2 
Blood lead level (BLL) distribution in cold and hot spots.   

Mean (μg/ 
dL) 

Median (μg/ 
dL) 

SD Min (μg/ 
dL) 

Max (μg/ 
dL) 

Coldspot 
90% 

15.2 10.9 14.9 3 94.8 

Coldspot 
95% 

15.7 10.7 11.9 3 41.2 

Coldspot 
99% 

7 5.5 6.4 3 38.7 

Hot spot 
99% 

51.9 49.8 20.9 12 162.3  

Table 3 
Blood lead level (BLL) distribution by residential areas.  

Clinic Mean 
(μg/dL) 

Median 
μg/dL) 

SD Maximum 
(μg/dL) 

Minimum 
(μg/dL) 

Bwacha 11.1 6.7 16.8 94.8 3 
Chowa 24.6 24 10 48.3 7.4 
Hamududu 4.5 3 3.2 18.4 3 
Kangomba 10.6 10.1 8.8 37.2 3 
Kasanda 60.2 56.9 21.8 162.3 30.4 
Katondo 11.6 6.7 12.2 38.7 3 
Mahatma 

Ghandi 
5.9 5 2.2 9 3.9 

Makululu 43.7 40.2 21.1 118.5 9.1 
Mpima 

prison 
7.3 6.7 4.7 23.3 3 

Natuseko 11.5 10.4 7.1 30.7 3.9 
Ngungu 6 4.7 3.9 14.2 3 
Pollen 5.3 4.7 1.7 8.3 3.9 
Railway 16.4 15.4 7.2 26.2 8.8 
Total 29.9 22.3 26 162.3 3  
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3.2. Spatial autocorrelation analysis of blood lead levels 

We observe a positive Global Moran’s I (Index) of 0.63 (Z-score 26.1, 
p-value < 0001) indicating significant spatial clustering of children’s 
BLL levels in Kabwe. In Fig. 2: the red dots indicate areas with high Pb 
concentration surrounded by other samples with a high concentration 
(hotspots). Whereas the blue dots indicate areas with low Pb concen-
tration surrounded by other low Pb levels (cold spots). 

We see a clear spatial pattern in the distribution of BLL. Hot spot 
residential areas are seen on the western side of the Pb open cast mine. 
These areas include Kasanda, which was a mine residential area for the 
lowest skilled mine workers, and Makululu an informal settlement 
adjacent to Kasanda. On the south side close to the mine site, Mutwe 
Wansofu is another hot spot area. On the other hand, the northern side is 
mainly characterised by cold spots. We see Natuseko on the north, 

Mpima (northeast) and Katondo (east) all being cold spots. 

4. Discussion 

Using secondary data of households with geo-coordinates, we ana-
lysed the spatial autocorrelation and identified spatial clusters of blood 
lead level (BLL) from children in Kabwe. This is particularly useful, as a 
basis for setting up targeted health and environmental interventions in 
affected areas (Oyana and Margai, 2010; Requia et al., 2017). The study 
results confirm that distance and wind direction are major factors 
associated with the observed hotspots. Prevailing wind direction in 
Kabwe is predominantly east to west. Hotspot areas lie on the western 
side, and in close proximity to the mine. These areas include Kasanda 
and Mutwe Wansomfu. Conversely, we found distinct cold spots areas 
further away from the mine site (Mpima, Natuseko, Kangombe) and 

Fig. 2. Spatial distribution of blood lead levels among the children in Kabwe, Zambia.  
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generally more on the eastern side. 
Wind direction and distance are particularly important because 

much of the Pb pollution in Kabwe is due to the open pit mine and the 
tailing hills. Wind blows loose soil particles from the open pit area and 
the remaining tailing hills. The soil lead levels in these communities on 
the windward side are high (Bose-O’reilly et al., 2018b; Ettler et al., 
2020). These areas generally lack greenness and remain dusty for most 
of the months. Children are exposed to Pb as they play within these 
communities and areas close to the mining site. 

Social economic differentials are other important factors in relation 
to the Pb exposure. Historically, Kasanda, Chowa and Luangwa town-
ships belonged to the mine during the operational years. On the western 
side, Kasanda was for the less skilled workers while Makululu is an 
informal settlement that sprung up from immigrants, mostly less skilled 
who were searching for jobs in the mines. These low-income neighbor-
hoods are the least developed, characterised by unpaved roads, and 
houses made of mad bricks. The Pb exposure is high in these commu-
nities. On the other hand, Chowa and Luangwa residential areas are on 
the eastern side of the old mine and characterised by cold spots. These 
residential areas were for the skilled workers, expatriates, and rank 
higher in terms of the social economic class. A high proportion of chil-
dren from the low-income communities are malnourished and parents 
are unable to meet the hospital bills. As such, the Pb pollution poses a 
greater burden on the poorer communities. 

The age 0–3 years had the highest average, and maximum BLL. This 
could be attributed to the increased hand to mouth activity in this age 
group. Kabwe Soil Pb levels are high and negatively correlated with 
distance from the mine site. There is still a relative high risk of daily 
ingestion by young children across age group, as they play around the 
mine (Nakayama et al., 2011; Smolders et al., 2019). 

5. Conclusion 

The geospatial approach used in the present study has provided 
insight in spatial patterns of blood lead levels in the children of Kabwe. 
The study has established clustering effect of BLL and identified hotspot 
areas. Clearly, the BLL are dependent on distance and windward direc-
tion from the old mine site. Remedial and treatment interventions 
should consider this, and prioritize these affected communities. The 
relationship of the observed soil Pb levels and distributions of BLL is yet 
to be established. Further research is needed to develop a model using 
lead soil data to predict dangerous childhood Pb exposure. Soil Pb levels 
are relatively easy and cheap to collect. With a similar spatial analysis on 
soil Pb levels, hotspot areas could be detected, and the progress of in-
terventions could be very well followed and documented. Spatial 
modelling would be ideal to establish for Kabwe the still unknown 
attributable fraction of each exposure pathway (inhalation, ingestion) 
and each source of exposure (soil, air, water, food). 
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Abstract
People living and working in artisanal and small-scale gold mining (ASGM) areas are frequently exposed to
elemental mercury (Hg), which is used for gold extraction. However, additional exposure to other toxic metals such
as arsenic (As), cadmium (Cd) and lead (Pb) may result from mining-related activities and could be ingested via
dust, water or food. In these areas, only limited biomonitoring data is available for toxic metals other than Hg. In
particular, data about the exposure to As, Cd and Pb is unavailable for the Zimbabwean population. Therefore, we
conducted a cross-sectional study in two ASGM areas in Zimbabwe to evaluate the internal exposure to these
metals. In total, urine and blood samples from 207 people that identified themselves as miners were collected and
analysed for As and Cd in urine as well as Pb in blood by GF-AAS. Median levels (interquartile ranges in μg/l) of
As and Pb were 9.7 μg/l (4.0, 18.5) and 19.7 μg/l (12.5, 34.5), respectively. The 25th percentile and the median for
Cd were below the limit of detection (0.5 μg/l); the 75th percentile was at 0.9 μg/l. The results were compared to
reference values found for the general population in the USA and Germany, and a significant number of participants
exceeded these values (As, 33 %; Cd, 27 %; Pb, 32 %), indicating a relevant exposure to toxic metals. Although not
representative for the Zimbabwean population, our results demonstrate that the exposure to toxic metals is relevant
for the public health in Zimbabwe and requires further investigation.
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Introduction

Artisanal and small-scale gold mining (ASGM) is predomi-
nantly an informal, poverty-driven, poorly resourced, compar-
atively inefficient and transient sector. Nonetheless, it pro-
vides an income to people in many developing countries rich
in gold resources, and it is estimated that about 15 million
miners are involved globally (Seccatore et al. 2014). ASGM
in Zimbabwe has been growing very rapidly over the last 40
years. This growth was even faster over the last 2 decades,
from an estimated 300,000 miners in 2000 to over 1.5 million
today (Mkodzongi and Spiegel 2020, Mudzwiti et al. 2015).
This has been due to a variety of factors including a persis-
tently shrinking economy across multiple industries along
with recurrent droughts during the last 2 to 3 decades.
Consequently, there has been a growth in terms of tonnages
mined and processed as well as gold produced. However, this
resulted in the expansion of mining sites, increased used of
process chemicals such as mercury and the exposure of new
rock surfaces. This has led to the worsening of adverse envi-
ronmental and public health impacts due to the release of toxic
metals, mainly due the use of mercury (Hg) in the mining
process (Billaud et al. 2004; Mudzwiti et al. 2015).

More than 90% of gold deposits in Zimbabwe are associ-
ated with the largely mafic/basic and cratonic greenstone
belts, while the rest is located within the Limpopo Mobile
Belt to the south and the Lomagundi meta-sediments in the
north. The genesis of most gold deposits in Zimbabwe (>75%)
involved the generation of superheated (>2000 °C) aqueous
hydrothermal sulphide complexes at depth, in the upper man-
tle to lower crust. Gold is mainly transported in solution as
aqueous complexes of hydrogen sulphides/bi-sulphides and
chlorides as well as metal complexes (Foster 1985). Various
elements, and especially heavy metal elements, have an affin-
ity for dissolved hydrogen sulphides and chlorides in hydro-
thermal ore-forming solutions. This includes, but is not limit-
ed to, As, silver (Ag), Cd, Hg, Pb, selenium (Se), antimony
(Sb), tellurium (Te), thallium (Tl) and zinc (Zn). These metals
and many others are commonly associated with gold ores and
are routinely used as pathfinders in gold exploration geochem-
istry (Saunders et al. 2014). Especially As, Cd and Pb are
relatively toxic compared to other metals and were catego-
rized within the top ten chemicals of public health concern
by the World Health Organization (International Programme
on Chemical Safety (IPCS) 2010). Mining activities such as
excavation, crushing and milling, which are used in ASGM,
may result in the increased liberation of these toxic metals.
While the precious gold is collected at the end of the mining
process, the other metals may end up in the tailings dumps at
mining locations and thus represent an exposure hazard for
people living and working in these mining areas.

Although, biomonitoring of As (Adu-Poku et al. 2019;
Basu et al. 2011; Nyanza et al. 2019; Obiri et al. 2016), Cd

(Basu et al. 2011; Obiri et al. 2016) and Pb (Gottesfeld et al.
2019; Nyanza et al. 2019; Obiri et al. 2016) has been conduct-
ed in several ASGM areas, exposure data is still relatively
limited, particularly in Zimbabwe. Therefore, the purpose of
this study was the analysis of As and Cd in urine as well as Pb
in blood samples collected during a cross-sectional study in-
volving people that identified themselves as miners in two
ASGM areas in Zimbabwe. Data on Hg levels and
health-related quality of life from this study were published
elsewhere (Butscher et al. 2020; Mambrey et al. 2020; Wahl
et al. 2021).

Materials and methods

Study design

This cross-sectional study was conducted within 2 weeks in
March 2019 at two hospitals in the gold mining towns of
Kadoma and Shurugwi Districts (Zimbabwe), respectively.
Inclusion criteria for participation were a minimum age of
18 years. All females and males that identified themselves as
miners and worked for at least a month were included. There
were no specific exclusion criteria other than age. Participants
were recruited using snowball sampling where participants
recruit further participants among their colleagues. This sam-
pling technique was used due to a widespread and hard-to-
reach target population. Each participant signed an informed
consent form and material transfer agreement, prior to the data
and sample collection. All documents were available in the
three main languages English, Shona and Ndebele spoken in
Zimbabwe. Altogether, 207 participants consented to partici-
pate (131 from Kadoma and 76 from Shurugwi). Participation
in the study was voluntary. Participants were asked to fill out
questionnaires concerning general information on demo-
graphics. To ensure a confidential analysis, the samples and
data were pseudonymized. More information about the study
was previously published (Mambrey et al. 2020).

Urine and blood collection

All sample containers were labelled with the participant’s
code for future allocation. Spot urine samples were collected
using disposable urine collection cups. For transport and anal-
ysis, aliquots of the urine samples were transferred into a
Urine Monovette (Sarstedt®). To prevent bacterial growth
and degradation, the samples were acidified with nitric acid
to a pH of approximately 2, which was tested with a pH strip.
Trained health professionals took venous blood samples into
7 ml lithium-heparin-coated tubes for trace metal analyses
(Sarstedt®) from all participants. All samples were continu-
ously stored at 4 °C. Once located in the laboratory, samples
were stored at –18 °C until analysis.
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Analysis of trace metals in urine and blood

All samples were at least analysed in duplicate after thawing on a
roll mixer. For quality control (QC), certified reference materials
(ClinChek®, Recipe, Munich, Germany) for whole blood and
urine were analysed daily, and the sample analysis was only con-
tinued if the QC results were within the given specifications. As,
Cd and Pb were analysed by graphite furnace atomic absorption
spectroscopy (GF AAS, AAnalyst 600, Perkin Elmer, Rodgau,
Germany) with the furnace programmes according to the recom-
mendations of the manufacturer. The individual specifications for
each element can be found below. The quantitation of all elements
based on the standard addition method and the limit of detection
(LOD) was calculated from the blank signal.

Analysis of total As in urineTotal As in urine was analysed at a
detection wavelength of 193.7 nm. Urine samples were diluted
sixfold with 0.01% Triton-X in 0.13% nitric acid. Twenty
microlitres of this dilution were automatically pipetted into the
graphite tube of the GF-AAS. Five micrograms of Pd (as Pd
(NO3)2) and 3 μg Mg(NO3)2 were added as matrix
modifiers. For standard addition, 10 and 20 pg As were
directly added to the sample in the graphite tube, re-
spectively. The LOD was at 0.5 μg/l.

Analysis of Cd in urine Cd in urine was analysed at a detection
wavelength of 228.8 nm. Urine samples were diluted fourfold
with 0.01% Triton-X in 0.13% nitric acid. Twenty microlitres
of this dilution were automatically pipetted into the graphite
tube of the GF-AAS. Fifty micrograms of NH4H2PO4 and
3 μg Mg(NO3)2 were added as matrix modifiers. For standard
addition, 0.5 and 1 pg Cd were directly added to the sample in
the graphite tube, respectively. The LOD was at 0.5 μg/l.

Analysis of Pb in blood Pb in blood was analysed at a detection
wavelength of 193.7 nm. Blood samples were diluted tenfold
with 0.05% Triton-X. Twenty microlitres of this dilution were
automatically pipetted into the graphite tube of the GF-AAS.
Fifty micrograms of NH4H2PO4 and 3 μg Mg(NO3)2 were
added as matrix modifiers. For standard addition, 5 and 10 pg
Pb were directly added to the sample in the graphite tube,
respectively. The LOD was at 1.0 μg/l.

Analysis of creatinine in urine

Creatinine in urine samples was determined for creatinine-
corrected levels of toxic metals in urine. Creatinine-corrected urine
values were considered in order to account for the influence of the
effect of urine dilution on the exposure indicator. Urine samples
were sent to the central laboratory of University Hospital of LMU
and analysedwithCobasC702 using the Jaffémethod.Creatinine-
corrected values fromurine sampleswith creatinine levels < 0.3 g/l
and > 3.0 g/l were excluded from statistical analysis.

Statistical analysis

All data analyses were performed with SPSS (version 26,
IBM). One participant was excluded from statistical analysis,
as the urine sample apparently contained blood. For samples
below the LOD, the result was set to ½ LOD for further sta-
tistical analysis. Descriptive analysis included the geometric
mean, minimum, maximum, median, 25th percentile, 75th
percentile and 95th percentile. Differences in toxic metal con-
centrations between groups (gender, living area and
self-reported fish consumption) were tested using the
Mann-Whitney U test. Continuous variables (toxic metals,
age, area years and mining years) were correlated using the
Spearman correlation. Results for Hg in blood in urine and
blood from the same participants used for correlation analyses
were previously published elsewhere (Mambrey et al. 2020).

Results

Demographic information on the study population can be
found in Table 1. One sample had to be excluded due to
obvious sample contamination. Consequently, the levels of
As and Cd in urine as well as the levels of Pb in blood were
analysed for 206 participants, and the results are given in
Table 2. Although urine samples with creatinine levels < 0.3
or > 3.0 g/l should preferably not be used for biomonitoring,
we decided to only refrain from creatinine correction, as sam-
pling could not be repeated (Cocker et al. 2011). Therefore,
thirteen urine samples with urinary creatinine levels outside of
this range were excluded from creatinine correction. The par-
ticipants’ levels of As in urine and Pb in blood follow a
log-normal distribution (Figure S1), which was expected for
this population. For Cd in urine, a log-normal distribution is
anticipated, too. However, the majority of samples were be-
low the LOD. The results were further stratified by gender (82
% male), living area (63% Kadoma) and self-reported fish
consumption (80 % at least once a week), and differences
were tested for significance (Table S1). For gender, urinary

Table 1 Demographic information on the study population

Age N 207
Median (min.–max.) 38 (18–77)

N (%)

Gender Males 169 (81.6)

Females 38 (18.4)

Living area Kadoma 131 (63.3)

Shurugwi 76 (36.7)

Fish consumption < once a week 42 (20.3)

> once a week 165 (79.7)
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As levels were significantly higher in women. In contrast,
blood Pb levels were significantly higher in men. For the area
of living, significantly higher levels of As in urine were found
for Kadoma if corrected for urinary creatinine. For
self-reported fish consumption, no significant differences
were found for any toxic metal.

For further evaluation, the results were compared to available
international reference and threshold values from Germany and
the USA (Centers of Disease Preventions and Control (CDC)
2019, Schulz et al. 2011, UBA - German Environment Agency
2019). The reference and threshold values for As, Cd and Pb as
well as the percentage of participants that exceeded these values
are given in Table 2. The 95th percentiles of Cd and Pb found in
this study were higher than the reference values of the
NHANES and UBA data. For As in urine, the 95th
percentile found in this study was higher than the value
proposed by UBA but comparable to NHANES.

The results for the correlation between toxic metals (includ-
ing Hg), age, area years and mining years are given in
Table S2. In general, correlation of the biomonitoring results
with age, area years and mining years was found to be very

low. However, Hg levels in urine and blood showed a weak
positive correlation with mining years. In contrast, Cd in urine
showed a weak negative correlation with age. If the levels of
toxic metals were correlated to each other, a strong positive
relationship was found for non-corrected and corrected levels
of As, Cd and Hg in urine, respectively. Furthermore, a strong
correlation was found for Hg in urine and Hg in blood.
Whereas As, Cd and Pb mainly showed no to very weak
correlation among each other, Hg levels in urine and blood
showed a relatively moderate positive correlation with As, Cd
and Pb.

Discussion

As explained in the introduction, toxic metals may be associ-
ated with gold-containing ores in ASGM areas. Therefore, it
seems plausible that elevated As, Cd and Pb levels in the
participants are related to the mining activities in Kadoma
and Shurugwi. Below, we discuss the results for the individual
metals and compare them to previously published studies in

Table 2 Descriptive analysis of biomonitoring results for urinary levels
of As and Cd and blood levels of Pb. Creatinine correction was not
applied for urine samples with creatinine levels below 0.3 or above 3.0
g/l. Results were compared to international reference and threshold values
for As and Cd in urine and Pb in blood, and the percentage of
exceedances in this study is given in the brackets. Reference values
represent the actual internal exposure of a representative population.

Threshold values were derived from toxicological data. NHANES
National Health and Nutrition Examination Survey, USA, UBA German
Environment Agency, CDC Centers for Disease Control and Prevention,
USA, NIOSH National Institute for Occupational Safety and Health,
USA, HBM-II human biological monitoring alert level (Centers of
Disease Preventions and Control (CDC) 2019, Schulz et al. 2011, UBA
- German Environment Agency 2019)

Creatinine in urine As in urine Cd in urine Pb in blood

g/l μg/l μg/g crea. μg/l μg/g crea. μg/l

N 206 206 193 206 193 206

LOD 0.1 0.5 0.5 1

< LOD 0 12 120 0

GM 1,3 7.2 5.6 0.6 0.4 21.9

Minimum 0.1 < LOD < LOD 6.6

25th percentile 1.0 3.7 2.7 < LOD 12.5

Median 1.4 9.7 6.5 < LOD 19.7

75th percentile 2.0 17.1 13.2 0.9 0.7 34.1

95th percentile 2.8 47.1 33.6 3.6 1.8 76.4

Maximum 4.6 460.5 250.3 11.4 4.9 275.7

As in urine [μg/l] Cd in urine [μg/l] Pb in blood [μg/l]

Reference values (exceedances in %)

NHANES 49.9 (3.6) 1.1 (22) 28.9 (32)

UBA 15.0 (33) 0.8 (27) 30 (♀, 24 %)
40 (♂, 20 %)

Threshold values (exceedances in %)

NIOSH (CDC) n.a. n.a 50 (11)

UBA (HBM-II) n.a. 4.0 (4) n.a.

LOD limit of detection, < LOD number of results below limit of detection, GM geometric mean, n.a. not available
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mining areas (Table 3). Although some of the studies found
comparable results, the exposure to toxic metals likely de-
pends on multiple factors such as the study population, the
local concentrations of metals in the ore, the diet and many
others. Generally, living close to mining areas seems to have a
significant effect on the body burden (Basu et al. 2010,
Molina-Villalba et al. 2015, Nemery and Banza Lubaba
Nkulu 2018, Obiri et al. 2016). One possible explanation is
that contaminatedmining tailings contribute to the exposure to
toxic metals by causing elevated concentrations in water, food
and airborne dust (Moreno et al. 2010; van Straaten 2000).

Arsenic In contrast to the other metals, the reference values for
As in urine from Germany (UBA) and the USA (NHANES)
differ considerably from one another (15.0 vs 49.9μg/l). This is
likely due to different exposures to As, e.g. by fish consump-
tion and other sources such as drinking water. However, refer-
ence values represent the actual exposure in the general popu-
lation and cannot be used for toxicological evaluation.
Consequently, the number of participants in this study that were
above reference values for As heavily depends on which value
will be used. It seems that the exposure to As is more compa-
rable to the US population. However, we did not analyse the As
species for differentiate inorganic (As(III), As(V)) and organic
(e.g. arsenobetaine) As species. Amajor source of organic As is
fish. However, self-reported fish consumption had no effect on

As levels in urine. Zimbabwe has no access to open sea.
Consequently, the consumed fish is commonly freshwater fish
which usually contains relatively low amounts of As. The ele-
vated levels of As in women and participants from Kadoma
may be explained by different dietary patterns or a generally
elevated exposure to As due to mining activities. Our results
were comparable to what has been found in an ASGM area in
Tanzania, but also in non-active mining areas in Mexico
(Moreno et al. 2010; Nyanza et al. 2019). However, Basu
et al. found a tenfold higher median As level in a Ghanaian
ASGM study (Basu et al. 2011). In contrast, studies from Spain
and Guatemala found relatively low levels of As in the urine
(Basu et al. 2010; Molina-Villalba et al. 2015).

Cadmium Most of the samples were below the LOD, indicat-
ing a generally low exposure. Still, a considerable number of
participants were above the references and threshold values.
Cd levels are generally elevated in smokers. Unfortunately,
we do not have the data for smoking in our study. In
Zimbabwe’s mining areas, far more men smoke compared to
women (Billaud et al. 2004). However, this was not reflected
in our results, where women were more frequently above in-
ternational reference and threshold values for Cd (data not
shown). For Cd in urine, the studies from Ghana, Guatemala
and Spain showed very similar results (Basu et al. 2010; Basu
et al. 2011; Molina-Villalba et al. 2015). Therefore, Cd

Table 3 Comparison of the study results (all values are given in μg/l) with other studies in mining areas. All values are given as 25th percentile (P25),
median and 75th percentile (P75) unless marked otherwise (#)

Parameter [μg/l] Values measured in this Study Values measured in studies in
current and former mining areas (country)

Reference

P25–median–P75 P25–median–P75

As in urine 4.0–10.0–18.5 4.9–9.4–15.1 (Tanzania)1 Nyanza et al. (2019)

73.2–100.2–135.3 (Ghana) Basu et al. (2011)

11.1–16.5–19.4 (Mexico)2 Moreno et al. (2010)

0.5–1.17–1.93 (Spain)2 Molina-Villalba et al. (2015)

0.06 (Guatemala) Basu et al. (2010)

Cd in urine < LOD–< LOD–0.9 0.25–0.36–0.6 (Ghana) Basu et al. (2011)

0.13–0.29–0.46 (Spain)2 Molina-Villalba et al. (2015)

0.11 (Guatemala) Basu et al. (2010)

Pb in blood 12.5–19.9–34.5 16.9–25.4–33.7 (Tanzania)1 Nyanza et al. (2019)

64–94–113 (Mexico)2 Moreno et al. (2010)

26.7 (Guatemala) Basu et al. (2010)

13.0 (Zambia) Yabe et al. (2020)

21.5 (Nigeria) Gottesfeld et al. (2019)

28.0 (Ghana)# Obiri et al. (2016)

1 Pregnant women
2 Children
#Mean

LOD limit of detection

4766 Environ Sci Pollut Res  (2022) 29:4762–4768



exposure in ASGM and other mining areas seems to be rela-
tively low compared to other toxic metals.

LeadAbout a third of the participants were above international
reference values. The exposure to lead could be via contami-
nated drinking water, although the uptake of Pb in the gastro-
intestinal tract of adults is considered relatively low and air-
borne dust due to mining activities. Besides this, Pb exposure
could be due to emissions of leaded gasoline, which was used
longer in Africa than in the US or Europe (Todd and Hazel
2010). Therefore, the recent exposure to these emissions might
still be reflected by elevated blood Pb levels. The results of this
study are comparable to what has been found in other studies
(Basu et al. 2010; Gottesfeld et al. 2019; Obiri et al. 2016;
Yabe et al. 2020). However, in a study from Mexico, blood
Pb levels were significantly higher (Moreno et al. 2010).

Limitations

Unfortunately, we did not have access to information about
smoking, diet other than fish and levels of toxic metals in
water, food, soil and air, thus limiting a more thorough expo-
sure assessment. Additionally, we were not able to speciate As
due to technical and financial limitations, further limiting ex-
posure assessment and comparison with other studies. For As
and Cd, the sensitivity of the analytical method was too low
for some samples. In fact, Cd could not be detected in more
than half of the samples, clearly limiting Cd exposure assess-
ment. Nevertheless, the LOD was below the used reference
and threshold levels. However, a relatively high number of
participants were above international reference values (22 %
>NHANES, 27% >UBA). This may be explained by the fact
that the Cd levels of 51 samples were relatively close to the
LOD. Consequently, these results may be subject to some
uncertainty regarding absolute quantitation. Furthermore, the
inclusion of a control group from a non-mining area in
Zimbabwe may have provided information if the exposure
to As, Cd and Pb is actually caused by mining activities.
However, this study was designed as a cross-sectional study
as many studies had demonstrated that mining activities are
associated with increased exposure to toxic metals.

Conclusions

This is, to the best of our knowledge, the first study that
analysed the urinary levels of As and Cd as well as the blood
levels of Pb in people identifying themselves as artisanal and
small-scale gold miners in Zimbabwe. A high proportion of
the participants had As, Cd and Pb levels above international
reference levels. Therefore, the exposure to toxic metals in the
two ASGM areas in Zimbabwe is relevant to public health and

should be the subject of further investigation to clarify the
influence of possible confounders, e.g. the diet. Furthermore,
the exposure to toxic metals should be assessed in the general
population of Zimbabwe to investigate if the results found in
this study are related to ASGM activities.
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5.1 Conclusion 

 

The study established three objectives, each of which was thoroughly addressed. The spatial 

distribution of stunting among children under the age of five in Zambia was demonstrated, and 

the environmental and socio-demographic factors associated with child malnutrition were 

identified. To address the observed disproportionate levels of stunting, deliberate nutritional 

programs should be implemented. 

Childhood lead exposure in Kabwe requires immediate attention, and interventions should 

prioritize the identified hotspots. A one-health approach that incorporates multiple exposure 

pathways should be encouraged. This will reduce the amount of lead exposure from multiple 

sources, including dust, water, and crops. 

The spatial methodology used in this study can be applied in similar states or to answer similar 

questions. The approach is useful in resource-constrained settings to facilitate targeted 

intervention. 
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